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Voraussetzungen fiir die Durcharbeitung des Programms

Das Programm gibt eine Einfiihrung in die Technik des Integrierens. Als
Voraussetzung fiir das Studium dieses Programms geniigt der Abschluf}
der 12. Klasse (Abitur) in Mathematik. Allerdings wird demjenigen das
Durcharbeiten noch leichter fallen, der in einem Kurs iiber Differential-
rechnung an einer Hoch- oder Fachschule seine Kenntnisse iiber das Diffe-
renzieren erweitert und z.B. auch die hyperbolischen Funktionen, deren
Ableitungen und Umkehrungen kennengelernt hat.

Das Programm richtet sich vorwiegend an:

Abiturienten; Studenten des ersten Studienjahres an Hoch-, Fach- und
Ingenieurschulen sowie pidagogischen Instituten im Direkt- und Fern-
studium; Lehrer; Praktiker.

Ziele
Nach dem Durcharbeiten des Programms wird der Lernende

1.in der Lage sein, unbestimmte Integrale zu berechnen, die entweder
Grundintegrale sind oder sich mit Hilfe einfacher Integrationsregeln
darauf zuriickfiithren lassen,

2. Verlahren kennen, mit deren Hilfe er Integrale, die nicht zu den Grund-
integralen gehdren, so umformen kann, daf} sie auf Grundintegrale
zuriickgefithrt werden kénnen.

Es handelt sich um folgende Verfahren:

— Die Methode der Integration durch Substitution
Neben der Losung solcher Integrale, bei denen der Integrand die be-
sondere Gestalt f(p(x)) - ¢'(z) hat, werden eine Reihe wichtiger Sub-
stitutionen zur Losung von Integralen besprochen.

— Die Methode der partiellen Integration

— Die Integration durch Partialbruchzerlegung

Mit dem Studium dieses Abschnittes wird der Lernende systematisch
mit der Integration gebrochener rationaler Funktionen vertraut ge-
macht.

Nach der Zerlegung echt gebrochener rationaler Funktionen in Partial-
briiche, der Bestimmung der Koeffizienten durch die Methode des
Koeffizientenvergleichs und der Integration der bei der Partialbruch-
zerlegung auftretenden Grundtypen von gebrochenen rationalen Funk-
tionen sind wesentliche Voraussetzungen fiir die Integration beliebiger
ationaler Funktionen geschaffen.
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Hinweise zur Arbeit mit dem Programm

Das vorliegende Programm hat die Aufgabe, Sie in die Technik des Inte-
grierens einzufiihren, d.h. Thnen bei der selbstiindigen Aneignung gewisser
technischer Fertigkeiten im Integrieren gegebener Funktionen zu helfen.
Die Arbeitsweise unterscheidet sich vom Studium eines herkémmlichen
Lehrbuches. Vielleicht brauchen Sie eine gewisse Zeit, bis Sie mit der
neuen Form des Lernens vertraut sind. Wenn Sie jedoch gewissenhaft
arbeiten und die Hinweise im Programm genau befolgen, werden Sie bald
Freude an dieser Art zu lernen finden. — Das Integrieren kann man nur
erlernen, wenn man selbst zahlreiche Aufgaben lost. Aus diesem Grunde
nehmen Ubungen einen breiten Raum ein, andere Teile sind dafiir bewuft
knapp gehalten. Siitze werden nur genannt, auf Beweise wird verzichtet.
Das Programm ist seinem Charakter nach ein Ubungsprogramm.

Beachten Sie bitte im einzelnen folgende Hinweise!

1. Das Programm gliedert sich in sechs Abschnitte und diese wieder in
Lehreinheiten. Jede Lehreinheit besteht aus einem Darbietungsteil,
der einen bestimmten Sachverhalt vermittelt, und einem Losungsteil,
welcher durch L gekennzeichnet ist.

2. Studieren Sie den Darbietungsteil griindlich, denn er schlieft jeweils
mit Aufgaben ab. Priigen Sie sich die farbig unterlegten Stellen (es sind
meist wichtige Siitze) gut ein!

3. Losen Sie alle Aufgaben sorgfiltig! Legen Sie sich dafiir einige Blatt
Papier zurecht!

4. Die Ergebnisse der Aufgaben finden Sie jeweils auf der folgenden rechten
Seite. Schlagen Sie diese erst auf, wenn Sie die betreffende(n) Aufgabe(n)
gelost haben!

. Stimmt Thre Lésung mit der im Programm angegebenen nicht iiberein,
dann werden Sie oft schon durch den Vergleich mit der richtigen Liosung
Ihren Fehler erkennen. Aullerdem haben Sie die Moglichkeit, die Li-
sungshinweise (Hilfsschritte H1, H2, ... am Ende des Buches) in
Anspruch zu nehmen. Sie sind so gestaltet, dafl wichtige Stationen auf
dem Wege zur Losung farbig hervorgehoben sind. Wahrscheinlich kinnen
Sie bei einiger Ubung schon durch einen Vergleich dieser Stellen mit
Ihrer Losung den Fehler finden. Von den Hilfsschritten kehren Sie stets
wieder nach vorn zuriick.

6. Oft empfiehlt es sich auch, die vorangegangene Information oder bereits
frither abgearbeitete Teile des Programms zur Fehlersuche heranzu-
ziehen.

7. Arbeiten Sie ziigig!

Gehen Sie aber nur dann im Programm weiter, wenn Sie das Gelesene
wirklich verstanden und die Aufgaben gelost haben.
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8. Am Schluf} des Programms finden Sie eine Zusammenfassung, weitere
Ubungsaufgaben mit Lésungen und eine Kontrollarbeit mit Bewertung.

9. Beachten Sie besonders:

Lassen Sie sich durch die Anordnung der Buchseiten (linke Seiten
stehen kopf) nicht vom Lernen ablenken. Sie arbeiten stets nur
auf der rechten Seite und drehen das Buch nur einmal bei
Lehreinheit 50.

Und denken Sie daran:

Lernen fithrt nur dann zum Irfolg, wenn der Lernende aktiv ist!

52
Viel Spal} bei der Arbeit!
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A. Stammfunktion und unbestimmtes Integral

In der Differentialrechnung wurde folgende Aufgabenstellung betrachtet:
Gegeben ist eine Funktion F(z),
gesucht wird die erste Ableitung dieser Funktion [7'(z) = f(x).
Beispiel
Gegeben : F(x) = a3,
gesucht: F'(z) = f(x) = 3a®.

Die Aufgabenstellung in der Integralrechnung ist die Umkehrung des
Grundproblems der Differentialrechnung:

Gegeben ist eine Funktion f(x),

gesucht wird eine Funktion F(2) mit der Eigenschaft
s o

F'(@) = f(a).

Die Ableitung der gesuchten Funktion soll also gleich der
gegebenen Funktion sein.
Beispiel
Gegeben : f(a) = 3a?.
gesucht: F(x) mit der Eigenschaft, dall F'(x)= 3a*
Fx) = a2

ist: also

Definition: Die Funktion y = f(2) sei reell und stetig im Intervall (a, b).
Jede dort definierte reelle Funktion F(z), deren erste Ablei-

tung gleich f(x) ist, heift Stammfunktion von f(2) in diesem
Intervall.
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Beispiele:

1.

1o

Die Ableitung von sina ist cosa. Deshalb ist F(z)= sinaz Stamm-
funktion von f(x) = cos a.
Beide Funktionen sind im Intervall (—oo, co) definiert.

. Die Ableitung von 4a®+ 2 ist 122°. Deshalb ist F(z) = 4a® + 2

Stammfunktion von f(z) = 1222
Beide Funktionen sind im Intervall (— co, co) definiert.

. Die Ableitung von J/z + C, wobei C eine beliebige Konstante darstellt,

ist 1_ . Deshalb ist F(z) = Jz 4+ C Stammfunktion von f(z) = —1:
2Vx 2Vz
flz)= 5 :/_ ist definiert im Intervall (0, co) und F(2) = |z + Cim Inter-
7

vall [0, 00) Grofitmogliches Intervall, in dem beide Funktionen definiert
sind, ist das Intervall (0, oo0).

Gegeben sind zehn Funktionen. Diese Funktionen sind nicht wahllos
zusammengestellt, sondern so ausgewiihlt, da} fiinf von ihnen Stamm-
funktionen der fiinf iibrigen sind.

2.

Vm~1; 3 + 22
2z In (3 + z);

1

—; cos a;
2¥z — 1

1 1
_F’ ;7

1 . o 3
ST sin 2.

Stellen Sie die gegebenen Funktionen zu Paaren (f(z), F(z)) zusammen,
wobei F(z) Stammfunktion von f(z) ist, also F'(z) = f(z).

Beispiel: Ein solches Paar ist (22, 3 + 2?), da (3 + 2?)’ = 2z ist.

Geben Sie die grofitmoglichen Definitionsintervalle an!

Hinweis: Ordnen Sie die Losungen in einer Tabelle folgender Form an:

f(x) F(x) Definitionsintervall

2z 3+ 2? (— o0, 00)

' Schreiben Sie Thre Losungen auf, bevor Sie umblittern!
°

—8_
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f(x) F(x) Definitionsintervall
2 3+ a? (— o0, )
— sinx cosw (— oo, c0)
1l —

=T V=1 (1, o0)

1 ’
Bin In (3 + 2) (=3, 00)
= e (= oo, 0) und (0, o0)

iiberein, so

Stimmen Ihre Losungen mit den hier angegebenen vollstindig

» 2
» H 1, 1., Seite 63
» H 1,2, Seite63

Abweichungen in den Spalten f(x) und [/(z):

Abweichungenbei Angabe der Definitionsintervalle::

s gilt der folgende

Kennt man also irgendeine Stammfunktion F(z) von f(z). so erhilt man
daraus durch Addition beliebiger Konstanten C die Menge aller Stamm-
funktionen von f(x).

Anders ausgedriickt: Zwei Stammlunktionen einer Funktion f(z) unter-
scheiden sich nur durch eine additive Konstante.

Geben Sie fiir die folgenden Funktionen je zwei Stammfunktionen an!

a) fla) = 62°; b) f(z) =2® + 3; ¢) f(z) = 3a® + Hz.
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A. Stammfunktion und unbestimmtes Integral

In der Differentialrechnung wurde folgende Aufgabenstellung betrachtet:

Gegeben ist eine Funktion F(z),
gesucht wird die erste Ableitung dieser Funktion F'(z) = f(x).

Beispiel
Gegeben : I (v) = a?

gesucht: F'(z) = f(z) = 3a®.
der Integralrechnung ist die Umkehrung des

I
%

Die Aufgabenstellung in
Grundproblems der Differentialrechnung:

Gegeben ist eine 'unktion f(x),
gesucht wird eine Funktion F(z) mit der Eigenschaft

F'() = f(a).

Die Ableitung der gesuchten Funktion soll also gleich der

gegebenen Funktion sein.

Beispiel
Gegeben : f(a) = 322,
gesucht: F(x) mit der Eigenschaft, dali F'(z)= 3a* ist; also
F@) = .

Definition: Die Funktion y = f(2) sei reell und stetig im Intervall (a, b).
Jede dort definierte reelle Funktion f'(z), deren erste Ablei-

tung' gleich f(x) ist. heifit Stammfunktion von f(2) in diesem

Intervall.
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Beispiele:

.,

Lo

Die Ableitung von sina ist cosa. Deshalb ist F(x) = sina Stamm-
funktion von f(x) = cos a.
Beide Funktionen sind im Intervall (—co, oo) definiert.

. Die Ableitung von 4a3 + 2 ist 1222 Deshalb ist F(z) = 4a® + 2

Stammfunktion von f(z) = 1222
Beide Funktionen sind im Intervall (— oo, co) definiert.

. Die Ableitung von |z + C, wobei C eine beliebige Konstante darstellt,

ist 1_ . Deshalb ist F(z) = J/z + € Stammfunktion von f(z) = 1_ .
2Vx 2 ¥z
i) = - :/_ ist definiert im Intervall (0, co) und F(z) = |z 4+ Cim Inter-
P/

vall [0, co). Grofitmogliches Intervall, in dem beide Funktionen definiert
sind, ist das Intervall (0, oo).

Gegeben sind zehn Funktionen. Diese Funktionen sind nicht wahllos
zusammengestellt, sondern so ausgewiihlt, daf} fiinf von ihnen Stamm-
funktionen der fiinf iibrigen sind.

1

2,

Va:—i; 3 + 2%
2z; In 3 + 2);
! : cos a;
2o —1°

]

_x_{s ?7
1 o
T o sin .

Stellen Sie die gegebenen Funktionen zu Paaren (f(x), I(x)) zusammen,
wobei F(x) Stammfunktion von f(2) ist, also F'(z) = f(z).

Beispiel: Ein solches Paar ist (2z, 3 + a?), da (3 + a?)’ = 2z ist.

Geben Sie die grofitmoglichen Definitionsintervalle an!

Hinweis: Ordnen Sie die Losungen in einer Tabelle folgender Form an:

f(x) F(x) Definitionsintervall

2z 342 | (— o0, )

' Schreiben Sie Thre Lésungen auf, bevor Sie umblittern!
°

—8—
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f(x) F(x) Definitionsintervall
2% 3+ a? (— o0, o)
—sinw cos (— o0, 0)

1
——— x—1 L
T, Ja (1, 00)

1 ’
T In (3 + 2) (—3, o0)

1 1
- 7 = (— 00, 0) und (0, o0)

)

Stimmen IThre Liosungen mit den hier ancegebenen vollstiindig iiberein, so
2 2¢g .

o g

>
» H 1, 1., Seite 63
» H 1,2, Seite63

Abweichungen in den Spalten f(z) und F(a):

Abweichungen bei Angabe der Definitionsintervalle:

Es gilt der folgende

Kennt man also irgendeine Stammfunktion F(2) von f(x), so erhilt man
daraus durch Addition beliebiger Konstanten C die Menge aller Stamm-
funktionen von f(x).

Anders ausgedriickt: Zwei Stammfunktionen einer Funktion f(a) unter-
scheiden sich nur durch eine additive Konstante.

Geben Sie fiir die folgenden Funktionen je zwei Stammfunktionen an!

a) f(a) = 62%; b) flz) = a® + 3; ¢) f(x) = 3a% + 5a.
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L2

a) Fi(z) =ab b) Fi(z) = 32® + 3z c) Fi(z) =a® + 522
Fy(z)=12a% + 3 Fylz) =32+ 3z + } Fylz)=2a®+§a — 2

Fi(z) und Fy(x) sind jewells zwei spezielle Stammfunktionen. Sie haben die

Aufgabe richtig gelost, wenn die von Ihnen angegebenen Stamm{unktionen
folgende Struktur haben:

a) Flz)=a*4+C; b) Fz)=3%%+3z+C; c¢) Flz)=2>+3*+ C.
C stellt in allen drei Fillen eine beliebige reelle Zahl dar.

Die Menge aller Stammfunktionen der stetigen Funktion f(x) nennt man
das unbestimmte Integral von f(x) und bezeichnet es mit dem Symbol

ff(”c) dx (gelesen: Integral f von a dz), also

Dabel nennt man

die Funktion f(x) Integrand,
die Variable « Integrationsvariable,
die Konstante C Integrationskonstante.

Die Ermittlung einer Stammfunktion einer gegebenen Funktion f(x) be-
zeichnet man als Integration der Funktion f(x).
Daf} gerade x und nicht irgendeine andere Variable die Integrationsvariable
ist, wird durch das Symbol dx zum Ausdruck gebracht. Aus den Darle-
gungen in | und 2 geht hervor, dal} die Integration die Umbehrung der
Differentiation ist.
Beispiel: Es ist

[62% de = a® + € (C beliebige reelle Zahl),
weil .

(a® + C) = 6a°
ist. Die beiden Gleichungen
Flz)  ={()
Flz) + C=[f(z) da

driicken also das gleiche aus und sind lediglich verschiedene Schreibweisen
ein und desselben Sachverhalts.

und

Schreiben Sie bei folgenden Integralen Integrand und Integrations-
variable auf!

a) f3am da; b) fsin tde.

—10 —
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Integrand Integrationsvariable
a) Jax :
b) sint ¢

Uber die Existenz einer Stammfunktion zu einer gegebenen Funktion
macht der folgende Satz eine Aussage.

Damit wird jedoch nichts dariiber ausgesagt, wie man zu einer gegebenen
Funktion eine Stammfunktion finden kann. In dieser Hinsicht besteht ein
grundlegender Unterschied zur Differentialrechnung. Wihrend dort ein
System von Regeln existiert, mit deren Hilfe man zu jeder sogenannten
elementaren Funktion die Ableitung dieser Funktion bestimmen kann und
als Ergebnis wieder eine elementare Funktion erhilt, gilt Analoges fiir die
Integration nicht. Regeln, die den in der Differentialrechnung geltenden
entsprechen, gibt es, von einigen Ausnahmen abgesehen, nicht. Auflerdem

5 ; P . e? sinax 1 :
haben schon relativ einfache Funktionen wie e?’, = , —— keine

. x Inx
elementaren Stammfunktionen.

Unter elementaren Funktionen wollen wir dabei verstehen: rationale und
algebraische Funktionen, die vier trigonometrischen Funktionen und ihre
Umkehrfunktionen, die Logarithmusfunktionen und die Exponentialfunk-
tionen sowie alle Funktionen, die sich aus den genannten Funktionen
durch Zusammensetzung ergeben.

Wiihrend man zum Beispiel fiir die Funktion [(2) = e** keine elementare
Stammfunktion angeben kann, lift sich die Integration der Funktion
[(a) = 22e** , elementar ausfiithren*.

Weisen Sie nach, dal f?:ce“dw = e®2+(C ist!

— 11—
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L4
Man bildet einfach die Ableitung:

(e + C) = 2xe*.

Die bisher in unserem Programm angegebenen Stammfunktionen konnten
leicht durch Umkehrung entsprechender Differentiationsformeln ge-
wonnen werden. Nicht immer ist das so einfach. Aus diesem Grunde wollen
wir uns 1m folgenden gewisse Fertigkeiten im Integrieren gegebener Funk-
tionen systematisch erarbeiten.

Dabei soll nur iiber Stammfunktionen stetiger Funktionen gesprochen
werden. Ist das Definitionsintervall der Bereich (— co, 00), so wird im
folgenden auf seine Angabe vollstindig verzichtet. Trifft das nicht zu,
so werden wir die Funktion nur in den Intervallen betrachten, in denen sie
stetig ist. In diesen Fillen wird zwar auch auf die explizite Angabe der
Definitionsintervalle in der iiblichen Weise verzichtet, Sie finden jedoch
Hinweise, die Thnen die Bestimmung der Definitionsintervalle sofort
ermoglichen.

Uberpriifen Sie, ob die folgenden unbestimmten Integrale richtig geldst
sind!
Wenn ein Fehler vorliegt, so berichtigen Sie ihn!

a) fcos x de = sinx + C;
b) [a?dz =43+ C;

c) J.sin xdr = cosa + C.

2 Lemnitzer, Integrieren
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L5
a) richtig, denn (sina + C) = cosx.
b) falsch, denn (2® + C) == a%; Losung: !

¢) falsch, denn (cosa + C) == sin z; Losung: — cosa + C.

CH...
o,
T
O

B. Grundintegrale und einfache Integrationsregeln

Zuniichst stellen wir die Integrationsformeln zusammen, die sich un-
mittelbar aus der Umkehrung der Differentiation einfacher elementarer 6
Funktionen ergeben. Diese Integrale heillen

Grundintegrale

— ]
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Die zu lésenden Integrale werden nur in wenigen Fillen die Form eines
Grundintegrals haben. Da jedoch alle Losungsverfahren letztlich auf sie
zuriickfithren, mull man die Grundintegrale gut kennen, bevor man an die
Losung komplizierter Aufgaben herangeht.

' Gehen Sie im Programm nicht eher weiter, bevor Sie die Grund-
integrale sicher beherrschen!

Wir emplehlen dazu folgende Ubung:
L. Priigen Sie sich jeweils vier oder fiinf Grundintegrale griindlich ein!

2. Decken Sie die Losungen dieser Integrale mit einem Blatt zu und fer-
tigen Sie davon eine Niederschrift an!

3. Setzen Sie dieses Verfahren solange fort, bis Sie alle Grundintegrale
fehlerfrei niedergeschrieben haben!
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Da die Integration die Umkehrung der Differentiation ist, erhilt man auch
aus den Differentiationsregeln entsprechende Integrationsregeln. An dieser 7
Stelle sollen zuniichst zwei einfache allgemeine Integrationsregeln fiir un-
bestimmte Integrale genannt werden.

Mit Hilfe der Grundintegrale und dieser beiden Integrationsregeln sind wir
hereits in der Lage, fiir cine Reihe von stetigen Funktionen unbestimmte
Integrale zu ermitteln.

Beispiele:
1i: meA da.

Indem man den konstanten Faktor 6 vor das Integralzeichen schreibt,
ist die Aufgabe zuriickgeliithrt auf das Grundintegral f:v” dzs

f(’).l“’ dx =6 fn** do = 2% + C.

—15_
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2. f(ez+ Va)da (x> 0).

Die Anwendung der Regel (2) fiihrt auf zwei Integrale, von denen das
erste sofort als Grundintegral erkannt wird. Das zweite formt man noch
um, indem man die Wurzel als Potenz mit gebrochenem Exponenten
schreibt:

3

[ - > "3 [
’ (e1+ ]/1) (I‘l.‘:feldx—l—‘j rc%d‘vzexf‘ £32—+C=cz—!—%]/m3—i~ €
2

o [3—5x 4 Txd
.3.]%@ (@ = 0).
Der Integrand wird zuniichst umgeformt, indem man den Ziihler glied-
weise durch 2! dividiert. Die Anwendung der Regeln (1) u. (2) fiithrt auf
Grundintegrale:
(3 — bx + Tx?
’ ———dz
@
(3 5 7 i
==+ =) de=3[atdo~5 [a2da+7 [ da
[(“ $3+‘L‘,)dl ;‘[L da )fl u—}—/. —da

33 5

e Ly 1,5 . ,
—3 —32 +7Infa] + :*m_g‘i‘w-i—/ln x| 4+ C.

Sie sollen nun selbst einige Integrale ermitteln. Wihrend Sie bei den
ersten beiden Aufgaben eine ausfiihrliche Losung vorfinden, wird bei den
nachfolgenden nur noch das Ergebnis genannt. Sollten Sie bei diesen
nicht gleich die richtige Lisung finden, dann wird IThnen das sicher ge-
lingen, wenn Sie sich in den Losungshinweisen informieren.

Lisen Sie folgende Integrale!

sin?x cos?x

1. a) J i;f (x> 0); b) J AL B
mit k=0,41,42,..);
2. a)f (x — %) da; b)f (2 + ]/7)2 dz (>0);

¢) f Pt gy @05 a) J (223 — 3sinz +5)a)de  (2>0).

= 46 ==
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I.a) Entscheidende Umformung:

Der Integrand wird als Potenz mit negativem [ixponenten geschrice-
ben:

«h ]3 Sp= =
= !

Hinweis : Potenzgesetze werden Sie beim Integrieren hiiufig anzu-
wenden haben. Falls Sie sich dabei nicht sicher fiithlen, empfehlen wir
dringend eine Wiederholung dieser Gesetze (z.B.im Lehrbuch der
Mathematik fiir die Klasse 9).

b) Umformung:
Wegen cos 2z = cos® v — sin? z 1aB3t sich das gegebene Integral aul-
spalten in zwel Grundintegrale:

£l 2 1
= e — f = — (cotz + tanz) + C .
sin? x cos? & sin? cos?x
z2 4 ) 38 — a2
2.8) - — T+ C. b) 4o+ <o o+ + C.

» Aufgabe 2. b) Richtig:
» H2a),Seite 63 Falsch:

» Aulgabe 2. ¢)

» 12 D), Seite 63

Wenn richtig:

Wenn falsch:

4 ( =
¢) 2V (—-——-+ l) d) éa"+3cos.r + 1‘—,):1: Vz+C.
Richtig: —— Aufgabe 2. d) Richtig: ——» 8

» 2 ¢), Seite 63 Falsch: » H 2 d), Seite 63

FFalsch:

=l
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C. Integration durch Substitution

Bei den bisher betrachteten Integralen gelangte man durch einfache Um-
formungen zu Grundintegralen. So leicht wie in diesen Beispielen ist die
Zuriickfiihrung auf Grundintegrale nicht immer moglich.

Deshalb wollen wir uns in den folgenden Abschnitten mit Verfahren be-
schiiftigen, mit deren Hilfe man Integrale, die nicht zu den Grundintegralen
gehoren, auf solche zuriickfithren kann. Dabei wird hiiufig ein Verfahren an-
zuwenden sein, das sich aus der Kettenregel der Differentialrechnung
ergibt: die Methode der Integration durch Substitation.

Sie wird in zwel Formen angewendel.

Anwendung der Integration durch Substitution in der ersten Form

Grundlage dafiir ist folgender Sachverhalt:

Mit anderen Worten:

Ist I7(t) eine Stammfunktion von f(t), dann ist /'(¢(2)) eine Stamm-
funktion von f(@(2))¢ (z).

Dabei sind [(t), ¢(x) und ¢'(z) stetige Funktionen.

Beispiel:
Da sint eine Stammfunktion von cost ist, ist sina? eine

Stammfunktion von (cos 2?) 2a.
Oder: Da fvos tdt=sint+ C,
ailt f(cos a?) 2z da = sina? + C.

In diesem Falle ist

[ty = cost, Fit)y =sint,
f(p(x)) = cos a2, F(p(x)) = sin a?,
gle) — a2, ¢@) =2

Uberpriifen Sie die Richtigkeit des Beispiels durch Differenzieren! Beachten
Sie, dall man dabei die Kettenregel anwenden mul}!
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(sin 2® + C) = cos a® - 2x

Ist also ein Integral der besonderen Formf f(e(x)) ¢ () da (der Integrand

ist das Produkt aus einer mittelbaren Funktion f(g(x)) und der Ableitung
¢ () der inneren Funktion) zu berechnen, so kann man statt dessen das

Integral
[f@)de=F@)+C

berechnen und nach Ausfiihrung dieser Integration t = ¢(x) setzen.
Man schreibt dafiir meist einfach:

. )

Bei der Anwendung der Formel (*) wird deutlich, wie niitzlich die Leib-

. . . A . dt . :
nizsche Schreibweise fiir die Ableitung —— = ¢(z) ist und warum man dieses
da
Integrationsverfahren Substitutionsmethode (lat. substituere = an die

Stelle setzen) nennt.
Beachten Sie: Man kann mit den Integrationssymbolen da und d¢ hier so

. 5 de . .
rechnen, als ob sie Zahlen wiiren und 4 ©in Quotient.

Bei der Lésung eines Integrals der Form

[flg@) ¢’ (2) da

geht man also folgendermallen vor:
1. Schritt: Man ersetzt ¢(z) durch ¢:
¢la) = t.
2. Schritt: An die Stelle von ¢ () do tritt dt, d.h. man setzt formal

¢ (z) do = dt.

Welches Integral tritt nach Ausfithrung der Substitution an die Stelle von

[ flp(@) ¢/ (@) do?

_ 19—



1U9)AI R O[[R,] T9TA dpuad{o] wouuy sy ‘(x)u swoufijod.iarag
Sop UpZAMA| UIP UOA TiSupyqe ST oyon.quipng u1l SunSopoy or(|

0] wagaISADP PYINAGIVIND ] A2]21Q YOPUI JUWUNG
(x)u
(z)z

OIS gep ‘Orpesie], oIp ST UQUOTIUN,] I9s9Ip UOTRISI|U|
9IpP AN} ASR[PUNIY) "UINURIYISI( NZ UIUOIPNUIL] JI[RUOTIRL IOUIYIOIIST
1729 WOTIRISIIUT ATP JNv [OIS ‘So 15NUAT ‘Udsse] UdSo[10z WOTIUN,] Ud[eU
-0T1RI UAUAD0I(S 1729 JIUTD PUN UI[RUOTIRI UdZUERS 10U dwwng arp
Ul §1918 [[0IS UDUOIUN, D[RUONRI DUIIOIIT 1doun pun IsI yor[sou
U IO SLIDIM[IG DUYO UIUOTPUN,] To[euon eI dozued uonerdojuy a1p (]

sy Sumopuia sja)s UOLYUINLT  2]DUONIDL dUIY204qaT 1122 opal

“UDUOT Yun, |
IO[RUONRI WOTIRISINU] INZ WAIRJIDA UID ST SunSopozyoniqrenteg arq "5

Sl & TR T R
(rra=wg <) apaguef

& vy Vs Le - [ - -
Tp aq $09 ,l.mf Tp wq uis ,l.lf
:uQuor)
-yun,] WOA UASSB[Y Uapuafw‘[oj (] 8[111[)uamu\r QIPUOSI([SUL Jopulf d1g

1ST [OULIO,] 9pUdSI[pUNLS
o1(] "uoneaSojuy ofjoniaed 91p 15T UOTIRIZIIUT ANZ UDIYRJLO A SOLONIOM UTG] *(]

— Py |
® qsoon = suonnjnsqng _—
19 nmnsqng i
W+ A
JyquiIs » =x ruonnmnsqng e
- Ll S ap
' juIs v = | ruonninsgqng Tp & — zD/[ f
| ruonmnsqng xp & + z"/l j
x— g "
D= & ruonnjnsqng =
] [ nnnsqng =
56 n
' m = uonnnsgng iz—f
LA 1 o xp

TUOUOTIMTISgNG 951 1M a8ute Jaqn 1YoI1sIa(q
Auisqus eeyal tul 4 . (]

() = @ woa worpuNyIyRy W) O1p 18T (X)h = 7)

: OS[\J\



.9

[ 1) de

An Stelle des gegebenen Integrals J—/((p(:r))q/(a'_) da hat man nun also das I 0
Integral ff(/) dt zu berechnen.

Nach erfolgter Integration kehrt man wieder zur urspriinglichen Variablen

zuriick, indem man t = ¢(x) selzt.

Wir betrachten dazu ein

Beispiel :
fsin" a cos v da.
Der Integrand hat die Form f(@(2))¢’(x). denn cos z ist die Ab-
leitung der inneren Funktion sin .

sinx)? - cos @
(sin )

pla)
flp(a)) - ¢’ (2)

Zur Losung des Integrals nimmt man also folgende Substitution
tal =] o]
vor:

sinx =t, cos a do = di

|. Fithren Sie diese Substitution aus!
2. Losen Sie das neuentstandene Integral!
3. Geben Sie die Losung von fsin3 a cos x dr an, indem Sie die Variable ¢

wieder durch ¢(a) erselzen!

J  Lemnitzer, Integrieren
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L 10
I fsin3 v cosx dr = ftf” de;
2 [Bdi=3+C

3. fsin3 zcosx dz =+ sin*z + C.

Wir fassen zusammen: I I

Ist ein Integral in der besonderen Form

[flg@) ¢’ (@) de

gegeben, so fithrt die Substitution ¢(z) = ¢ in jedem Falle zu einer Ver-
einfachung des Integranden.

Wie erkennt man nun, ob der Integrand die Form f(¢(x)) ¢’ (x) hat?

Wir betrachten dazu die beiden Integrale

1. f?'VE cos x da und - 2. fezcosxda;‘

Der Integrand ist in beiden Fillen ein Produkt, und beide Male tritt auch
der Faktor cosa auf. Wihrend beim zweiten Integral der Faktor cosa
nicht in der gewiinschten Beziehung zum iibrigen Integranden steht, er-
kennt man, da} beim ersten Integral eine Funktion von sinz auftritt

. (R
(]/sm2 a:) und dal} cos x die Ableitung von sin 2 ist.

Im 1. Fall hat also der Integrand die Form f(gp(x))¢’(x), im 2. Fall nicht.

U])crlegen Sie, welche Substitution den ersten Integranden vereinfacht,
und fiithren Sie diese Substitution aus!

— 91—
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L11
pd)=sinz =1,

fﬁf‘/l‘2 dt.

Richtig: ——» 12

Falsch: ———» H 3, Seite 64

Sie werden zustimmen, daf} man um so leichter erkennt, ob der Integrand
die Form [(p(2))¢’ (x) hat oder nicht, je besser man die Technik des Diffe-
renzierens und besonders die Kettenregel beherrseht.

Unsere Aufgabe ging durch die Substitution sinx = ¢ iiber in ein Grund-
. 3 — o .
integral. Anstelle des gegebenen Integrals f ]/smz 2 cos & da haben wir nun

3 —
das Integral f ]/t2 dt zu losen und danach fiir ¢ = sin x zu selzen.

Fiihren Sie die Losung zu Ende!

)

12
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L 12

8 j—
%]/sm"’ z -+ C.

Richtig: ——» 13

Falsch: ——» I 4, Seite 64

Es ist also wichtig, den Integranden genau zu analysieren und nicht nur
oberflicchlich zu betrachten. Obwohl es keine allgemeingiiltige Regel fiir
das Auffinden einer geeigneten Substitution gibt, haben wir erkannt, daf}
die Angabe einer Substitution sofort méglich ist, wenn der Integrand die
Form

flop) ¢ (x)

hat. Es lohnt sich also. den Integranden daraufhin zu untersuchen.

IZs sind folgende vier Integrale gegeben:
1 :
in (3z + 5) - 3 da Zp-—de (x> 0);
a) J.sm (3z + 5) - 3 da; b) f(lnq) mdl (@ > 0);
c) fex sin z da; d) f]/l%xz + 4 - 6z dz.

1. Stellen Sie fest, in welchem der vier Beispiele der Integrand die Form
[(p(a)) ¢’ (x) hat. wo also der Integrand das Produkt aus einer mittel-
baren Funktion und der Ableitung der inneren Funktion darstellt!

2. Nehmen Sie bei den in Frage kommenden Integralen die Substitutionen
vor, die die Integranden vereinfachen!
(Eine vollstiindige Losung der Integrale ist noch nicht verlangt.)

13
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L 13

1. Aufgabe: a, b, d.

2. Aufgabe:

a) fsin tdi; b)

‘[13 de;

Richtig: » 2. Aufgabe

Falsch: » 115, Seite 64

d) [Yia.
Richtig: ——» 14

Falsch: » H G, Seite 64

Wir sehen, dal} die vorgenommene Substitution in jedem Fall zu einer
Vereinfachung der Integrale fiihrte. Die neuentstandenen Integrale sind
Grundintegrale, und ihre Lisung kann ohne Schwierigkeiten erfolgen.

Fiihren Sie die Losung der Aufgaben a, b und d von Lehreinheit 13 zu

Ende!

=28 =

14
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L 14
a) [sin (3z + 5) - 3 dae = — cos (3z + 5) + C;
b) f (22 do = (na)t + C

fV31 +4 61(117_2_

Richtig: ——» 15

Falsch: —— » H 7, Seite 64

Die zuletzt gelosten Aufgaben machen noch einmal deutlich:

Hat der Integrand die Form f(p(2)) ¢’ (2), dann fithrt die Sub-
stitution ¢(x) = ¢ zu einer Vereinfachung des Integranden.

Anders ausgedriickt:

Ist der Integrand das Produkt aus einer mittelbaren Funktion und der
Ableltung dCI inneren Funktion, so setzt man die innere Funktion gleich
einer neuen Variablen . Natiirlich muB dann auch mit Hilfe der Bonehunn

¢’ (@) dz = dt

da durch d¢ ersetzt werden.

Lisen Sie dazu noch folgende Aufgaben!

1. f(\m )P coszx dr; 2. 5 (102 + 6) da (nr:&:(),n‘# - g) :

o - i cos [ 3T . .
3. | ——=dz (z>-2); 4. /\—ﬁ dx (.’l‘ + 5 + 2kxr mit
V8 + ad J (1 + sinz)? \ 4

I15
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L 15

A
’ . .\6 . ) I
1. 5 (sin 2)% + C; 2 S Gy + C;
o YR 4 8 L (O /

3. 2 |/b + a3 + C; ot (

Richtig: ——» 16

Falsch: ———» I8

Oft hat der gegebene Integrand zwar nicht die Form [(p(x))¢’(x). kann
aber durch ,,Erweitern” mit einem konstanten Faktor aul diese Form
gebracht werden. Wir betrachten dazu ein

Beispiel :

J.e“’e xdr.

Man erweitert mit dem Faktor (—2) und erhilt

— lf(‘ 2. (—22) dx.
|

()
(@) - ¢’ ()

Jetzt hat der Integrand die Form f(¢(2)) ¢'(2), denn (—2x) ist die

Ableitung der inneren Funktion (—a?).

denken Sie jeweils den Sachverhalt!

Fiihren Sie die Losung der Beispielaufgabe zu Knde!

— 96—

Lesen Sie nicht oberfliichlich iiber die Zeilen hin, sondern durch-

16
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L 16

fe”zgm dv=—%e*+C.

Richtig: ——» 17

Falsch: ————» H9

IZs sollen einige weitere Integrale betrachtet werden, bei denen der Integrand I 7
durch Erweitern mit einem konstanten Faktor auf die Form f(p(2)) ¢’ ()
gebracht werden kann.

Die Aufgaben werden Thnen nicht schwerfallen, wenn Sie bis jetzt griind-
lich gelesen und alle Aufgaben selbstiindig gelost haben.

I. Bringen Sie die Integranden durch Erweitern mit einem konstanten

Faktor auf die Form f(p(x)) ¢'(x)!

a) f]/”c3+ 1z dx; b) ngi_il_l (x> —1);
=
©ode B} * 3Jcos2adx [ . 2
) ’ 5— 22 '\‘Il + T) ” d) v’ (2 4+ 3sin 22)3 (Sm 2t e _?) i

2. Geben Sie die geeigneten Substitutionen an!
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L 17

1 =7 1 3a2d
1. a) o [ Vo¥ + 1 2 das b) sz—i%;
1 [—2dx | 1 6cos2xdx
) _7_/5—2.@’ ()7_/(2+35i112x)3'

2. Substitutionen:
a) px)=2>+1=t, 2zdz=dt; b) plx)=2%+1=¢,32%dov=di;
c) p@)=5—22=1t¢, —2dz=dt; d) g(z)=2+ 3sin2zx=1t,

6 cos 2z da = dt.

Fiihren wir die Substitutionen aus, so erkennen wir, dal} die neuentstan-
denen Integrale gegeniiber den gegebenen eine wesentliche Vereinfachung
darstellen.

Das Auffinden einer geeigneten Substitution ist der entscheidende Schritt
auf dem Wege zur Losung.

Fithren Sie die Losung der obigen Aufgaben zu Ende!

— 28 —
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L 18

a) 5 V@ 1P+ G b) = Vot L+ G
T , —1 .
C) —7111]0—234—]— C, d) m—l—(/
Richtig: —» 19
Falsch: ——» H 10

Der Integrand lift sich immer dann in der Form f(p(x)) ¢'(x) darstellen,
wenn @(z) eine lineare Funktion ist, d.h. wenn ¢(z) = ax + b mit a 4= 0 I9
1st.

Bei der in diesem Falle vorzunehmenden Substitution ¢(x) = ax + b=1

spricht man dann von einer sogenannten ,,linearen Substitution®.

Leiten Sie die Beziehung

ff(“’ +b) dz = % Flax 4 b) + C

her!

_99_
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L19

Erweiterung : ff azx + b) da = ——f/ ax + b) a dx.
Substitution:  ¢@(z) = ax + b = ¢,
a dx = dt.

Also:  — f flaw +b) ade=— f flo) d=— F() + C

—lF@s+b)+C.

Bei der Anwendung der Beziehung
ff(ax+b) do == F (az + b) + C

schreibt man die Substitution ¢(2) = ax + b =t nicht erst auf, sondern
gibt sofort die Losung an.

Beispiel:

fsin (3z + 5) de = — - cos (3u + 5) + C.

Geben Sie ohne weitere Zwischenschritte auf dem Wege zur Losung sofort
das Ergebnis der Integration an:

a) [e%+e da; b) [ (3w + 4)? da;

(‘)f_ __({T(I:}:7>, d)fcos(%-k."})d:v;

i 2 if da - G i e . U s
e) dex; f)Jm 5z + 3 &= (2k + 1) — mit

k=0,41, +2,..).

— 30—
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L 20

a) el 4 C; b) 5 Ba + &) + C;

¢) -5111 |22 —-7| + C; d) 2sin (7+3>+C;
2 1 =

e) - arctan 3z + C; f) + tan (bz + 3) + C.

Vergleichen Sie Ihre Losungen mit den hier angegebenen, und
korrigieren Sie sie, falls notig!

In den bisher betrachteten Beispielen zur Integration durch Substitution
hatte der Integrand entweder bereits die Form f(@(x)) ¢’(2) oder konnte
durch Erweitern mit einem konstanten Faktor leicht so dargestellt werden.
Auch bei den folgenden Beispielen lif3t sich der Integrand auf die Form
f(p()) ¢’ (2) bringen, allerdings wird das Erkennen einer gecigneten Um-
formung davon abhiingen, wie sicher man die Grundintegrale beherrscht.
Wir betrachten dazu folgendes

" oxda

Beispiel: ’ T

Der Integrand hat zuniichst nicht die Form f(p(x)) ¢'(x). Wihlt
man @(x) = a? als innere Funktion und erweitert den Inte-
granden mit 2, dann ist mit 22 auch die Ableitung ¢(z) dieser
Funktion als Faktor enthalten.

x x 1 1

Tzt~ 14 @) 2 14 (a2
|

Damit ist der Integrand in der Form f(¢(z)) ¢'(x) dargestellt.

Fiihren Sie die Losung selbstindig zu Ende!

- 31—
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L21

fmdw ——1—‘1rct'1n’62+c
1-fad — 2700

Richtig: ——» 22

Falsch: ——— » H 11

Bei der Aufgabe

(== [bi<3g)

bietet sich folgende Umformung an:

fﬂé%ﬁ:fﬂ5%3?

Setzen wir jetzt 3z = ¢, so kommen wir zum Grundintegral

1 de
3 V1 — 2
Natiirlich werden wir hier — wie in den vorangegangenen Beispielen zur

linearen Substitution — den Zwischenschritt nur in Gedanken ausfiihren
und sofort die Losung angeben.

1. Schreiben Sie die Lésung auf!

2. Losen Sie in entsprechender Weise:

L[ da d d: / 1
Mfﬁ%ﬁ;”fﬁ%ﬁ“>w;@f—l*‘P>QM<ﬁY

V1 — ca? )

—32

22



98

115

jue Sunjeisiepiynp
-0IJ 91Ip 921G UA(As pun swoul[odIauuay SOp UPZINAN\ 9Ip 9IS UDTITII}SA]

“UD[[AISNZIBD PINPOLJ S[B 1SI G — T[] + ¢ — (¥

pun ‘uswiunsaq nz swoukjodIouua ) sap UPDZINA\ STP UNU PUIS ST

*J yo1a[3 151 swoukjodIouuay sop zualoJ udISYIQY 9P JUDIZI]

-JPO] JOp PUN WOIPNUN,] A[RUOT)RI SUADOI(IS 19 DU ST PURIIANUT 19(]

GT— @] + o¥C — ¥ /

sap -
0T — € — ¢ J

raqesyny

QNI DUTO JTA TOTIN] “(JRSI( UDZIN A\ O[9I INU IuOlL([od.IauuaN Sep uauap
19( 1910119 U SuUNSIMIIZIINI([ETIIR ] JIN] OlaldSIOH 1219!' uaqel JITA\

GET 91198 “0C I +——————— :s[e,l

98 < :8nyoy

—x (7 — @)
(v F g+ 2) D+.Z_IMUI{: —(‘—'Z

0 +ly — ol ur

(
«
«

1
o
=
=
|t

€8l



L 22

1, % aresin 3z + C.

[

L
Vb

2. a) arctan 2z + C; b) arctan Vb + C;

2

c) }—/c: aresin Jex + C.

Richtig: ———» 23

Falsch: ——» H 12

Auch beim Integral Jﬁ sina do liBt sich der Integrand auf die Form
f(p(=)) ¢’ (x) bringen. Dazu setzen wir

sinffz = sin®2 - sina
und wenden auf sin? 2 die Beziehung

sinfx + cos2a =1
an.

Losen Sie das Integral J sin® x dz nach entsprechender Umformung des
Integranden!

33—
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L 23

fsin3:v dz= —cosz + } cos®z + C.
Richtig: ——» 24
Falsch: —— » H 13

Ein Sonderfall des Integrals

[Fgp@) ¢’ (2) da

liegt offenbar dann vor, wenn der Integrand die Gestalt

PE) (o) + 0)

hat, d.h., wenn der Integrand ein Quotient ist, bei dem im Ziihler die Ab-
leitung der Nennerfunktion steht.

Beispiele:

62 + . (e —e™® .
f3x2+ax+ da; b) [ da.
Auch hier wird die Substitution
pl@) =t
¢’ (@) dz = di

vorgenommen. Sie fithrt auf ein Grundintegral, dessen Losung sofort an-
gegeben werden kann.

Losen Sie das Integral [{};((j)) dz  (p(z) == 0)!

_ 34—
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[ v'(@) dz = In |g(z)| + C.

p(r)

Richtig: ———» 25

*
Falsch:

Fassen wir zusammen :

25

Die Losung der beiden Beispiele aus 24 (vorige Seite) kann demnach sofort

angegeben werden:

f?)xZ{)j__;,J—{-bdli lﬂ|31 +31+81 +.Cs

b) f% dz=In(e?+¢e%) + C.

(Im letzten Beispiel sind die Klammern erlaubt, da e® + ¢ > 0 ist.)

Losen Sie die folgenden Integrale!
2z dz
a) [1-2._1— (o] = 1);

-

e? dx

(7)] a+éz

(e* &= —a, falls a < 0);

cos x da
b) fsinzv 437

2z 43
d)]—x2+3x+4dx.
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L 25

a) In |2* — 1] + C; b) In (sinz + 3) + C;

¢) In |a + e*| + C; d) In (2 + 32+ 4) + C.

Hiufig werden die Integranden nicht gleich in der Form %z; vorliegen, 26

sondern miissen erst entsprechend umgeformt werden.

Da wir uns bei fritheren Aufgaben schon in dihnlichen Umformungen geiibt
haben, wird es nicht schwerfallen, die folgenden Aufgaben zu losen.

Losen Sie folgende Integrale!

) /" cosw dv b ’ e dy
e 54+ 3sinz’ J2 4 e’
) xz—3 sin 3z
d ———du; d _— _du;
) L{x‘l — Gz ++ 15 777 ) 8 + 5 cos 3 ?

e) fcot zdr (xZFkr mit k=0, 41, 42, ..);

(2k ;
f) ftan ade (mF %—) x mit k=0,4+1, 42, ...).

—36—
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L 26

a) $In (5 + 3sinz) + C; b) 4 In (2 + €*®) + C;

¢) $1n (a® — 6z + 15) + C; d) —&1n (8 + 5 cos 3z) + C;

e) In |sinz| + C; f) —In|cosz| + C.
Richtig: ——» 27
Falsch: ——» H 15

Auch rationale Integranden, die nicht in der Form (fpg; gegeben sind,

konnen unter Umsténden so in eine Summe von Quotienten umgewandelt

werden, dal} ein Summand die Form Z((j)) erhilt und demzufolge sofort

integriert werden kann.

Wir betrachten dazu das folgende

Beispiel:

bx 4 7 d
R
Wir bilden zwei Integrale:

(S5z+7 . 5z ) 7
3x2+1d“““f3xz+1dl+f3x2+1d”'

Wiire der Zihler des ersten Integranden 6z, dann hitte dieses

Integral die Formf% dz. Um das zu erreichen, erweitert man
mit g‘ .

Das zweite Integral liB3t sich durch geringfiigige Umformungen
auf das Grundintegralf dz zuriickfithren. (Vgl. Aufg. 2b,

Lehreinheit 22).

1
1+ a2

2 s b + 7
Losen Sxefm dz.

— 37 —
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" b 4+ 7 5 7 =
/ ?L;Z——f-T do = —(j,—ln (32 + 1) + B arctan |32 + C.
Richtig: ———» 28
Falsch: ——» H 16

Wir werden an einer spiiteren Stelle des Programms noch einmal auf die
Integration rationaler Funktionen zuriickkommen.

Anwendung der Integration durch Substitution in der zweiten Form

Bisher haben wir die Substitutionsmethode angewandt, wenn der Inte-
grand die besondere Form f(g(x)) ¢(x) hatte oder durch Umformungen auf
diese gebracht werden konnte.

Vielfach wendet man die Methode der Substitution aber auch in einer
anderen Weise an.

Soll ein Integralff(x) dz berechnet werden, dann ist es auch méglich, im

Integranden (f(z)) statt « die Funktion

x = ()

der neuen Variablen ¢ einzusetzen, wobei ¢(t) eine stetige Funktion ist,
die eine Umkehrfunktion und eine stetige Ableitung besitzt. Es geniigt
aber — wie wir bereits wissen — nicht, in dem gegebenen Integranden
einfach die alte Variable # durch die neue ¢ auszudriicken und dann nach
dieser neuen Variablen ¢ zu integrieren. Unter Anwendung der Beziehung

dx ,
w=7®
do = ¢'(t) d¢
mull noch dz durch ¢'(¢) dt ersetzt werden. Damit geht das Integral

Jf(@) dz iber in das Integral ff((p(l)) ¢’ (1) de.
Also:

Oft ist dieses Integral (obwohl es zunéchst den Anschein hat, da} es kom-
plizierter als das gegebene ist) leichter zu berechnen als das gegebene.

— 38—
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Nach erfolgter Integration macht man die Substitution z = ¢(t) wieder
riickgéinglg und kehrt zur urspriinglichen Variablen x zuriick. Dazu hat
man ¢ = (z) zu setzen, wobei () die zu ¢(t) inverse Funktion ist. Es mul}
also gefordert werden, daf} die Substitutionsgleichung & = ¢(t) eindeutig
nach ¢ auflésbar ist.

Wir betrachten auch dazu ein

Beispiel:

Berechnen Sie das Integralfd4x_
142

Vo
S ——T ]
./G(Vw3+-1)Vw3 ( !

Um die Wurzeln zu beseitigen, setzt man o = ¢(t) = ¢* (der Ex-
ponent 4 ist das kleinste gemeinschaftliche Vielfache der Wurzel-
exponenten 2 und 4).

Aus o = t* folgt do = 4 dt. Das gegebene Integral geht damit
iiber in

12
d3dt =4 | =z 13 de
[ vt [

RN T T
=5 |srrd=gh@E++C.

Jetzt kehrt man wieder zur Variablen 2 zuriick.

Aus 2 = @(t) = t* folgt t = yp(x) = 4]/;, und damit wird

Va
fw—clz~—ln(f+1)

&+ 1) {a@

Vollziehen Sie jeden Schritt dieser Beispielaufgabe sorgfiltig nach!

(@ > 0) mit Hilfe einer geeigne-

)Va

ten Substitution der Form a = ¢(t)!

_39_
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L 28

2 arctan Jz + C.
Richtig: ———» 29

Falsch: ——» H 17

Die zuletzt beschriebene Form der Substitution findet z. B. Anwendung bei
der Losung von Integralen folgender Typen:

dz da
f(ﬂ X220 f}/—af—l (lz] < a);

f]/a2 + a?dx; f]/a‘2 —atde  (]z|ZLa);

r da " da
Va2 + a2 J Var—a?

In unseren Betrachtungen beschriinken wir uns auf den Fall a > 0.

Beginnen wir mit folgendem Beispiel:

da . . dx .
Das Integral [—* erinnert an das Grundintegral f—q ; die Sub-
> ) 4+ at S o 4

stitution @ = 2¢ fiithrt es darauf zuriick.

)\

= f o da
Lisen Sie das Inlegral] ——
z b+

— 40 —
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L 29
1 x
5 arctan 5 +C
Richtig: ———» 30

Falsch: —— » H 18

Allgemein gilt:
Ein Integral de’brm fm 1Bt sich mit Hilfe der Substitution x = at

. . G . .
auf das Grundintegral ’ Trat zuriickfithren.

.. s r d=z
1. Losen Sie das Integral / ——
J a® 4 a?

2. Geben Sie, nachdem Sie die erste Aufgabe gelost haben, die Losungen
folgender Integrale ohne Zwischenschritte sofort an!

) j dx D) dx

41—
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1 x
1. — arctan — + C.
a a

Richtig: —————» 2. Aufgabe von 30
Falsch: ——» H 19

2'1'1 m_l_(,_ b 1 otan & C

.a) + arctan = 3 D) ﬁalc kmy—!iﬁ— -

—

In der gleichen Weise erfolgt die Losung von Integralen der Form 3 I

fvfﬁ—d—i_T (le] < a).

Auch hier fiihrt die Substitution x = at zum Ziel.

G ©ode
1. Losen Sie das Integral | ——  (|z| < a)!
Va2 — 22

2. Geben Sie, nachdem Sie die 1. Aufgabe gelost haben, die Losungen fol-
gender Integrale ohne Zwischenschritte sofort an!

" i 11
ﬂ) —,é— o l)) — ’ ——o
Vo — a2 V5 — a2

o
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L 31

1. arcsin — + C.

Richtig: ————» 2. Aufgabe von 31
Falsch: ——» H 20
2. a) arcsin % +.C; b) arcsin% 4 €.
5

Die beiden Integrale 32

dz dz a
fm (”%0% [']77_—»—:})——1 (lz|<7, b4=0)

fithrt man mit Hilfe der Substitution

at
by = at bzw. x= >

auf die Grundintegrale

dz bzw dz
T at hzw. o

zuriick.

Losen Sie die Integrale

dx dx
a>f4+9.7:2’ b)fymé !

— 43—



LL

—00f -

jUDUDIDZIO A PUN UDJUDIZIJOON] JNE OIG UNYIY o

(T + o+ @)

: s 18 [ s .
‘[ll] ;lp —_— = fUOA\ LoUunso l 9!]) alg uaqaf) l
] + =3 d

g x4+ @) [
‘uaqPsuR Tp T F et WOA SUnsQry AIp oI|
) 7 + g * p
o T T
-goI[I[Os uuey pun U e o 2 U0A SUNSQ INZ U SILIAIMIIG dUT[O
! ap s DY GLIOT S
i
o(g + o)

yone upur Juroy ‘18! juaueyaq — SIU.IBO] uf sep EUHSQ’_[ QTP wapyae N

P

€CT 919G ‘CY H ¢——————— ISy
LL  ——:8nypry
14
> €t ¢
E—'A—um,mm — 9—4— ETeE
1 elc 1 G

9.1



L 32

1 3 5

a) G aretan 77’ + C;
. 4z i

b) - arcsin & + C.

Richtig: ——» 33

Falsch: ———» H 21

Die Losung des Integrals 33
J‘]/u2 —22da (|| £ a,a >0)

erfolgt ebenfalls, wie bereits vermerkt, mit Hilfe einer Substitution der

Form x = ¢(1).

Hier fiihrt man eine trigonometrische Substitution durch, d.h. iiber die
Funktion ¢(f) werden trigonometrische Funktionen eingefiihrt.

Grundlage fiir die Wahl einer geeigneten Substitution ist die aus der
Trigonometrie bekannte Beziehung

sin®> & + cos®> a = 1.

Wegen  sin? ¢« =1 — cos®> «

bzw. cos? o =1 — sin® o

ist zu erwarten, dal} eine der beiden Substitutionen
x=asint

oder X = a cost

zum Ziele fiihrt.

Wir wiihlen 2 = a sin ¢ und beschriinken uns auf das Intervall — ig t

= = Fiir dieses Intervall ist = a sin ¢ eindeutig umkehrbar, und auller-

dem ist dort cos ¢t = 0. Damit hat man sich fiir das positive Vorzeichen
vor der Wurzel zu entscheiden, wenn man cos ¢ durch sin ¢ ausdriickt.

Fiithren Sie im Integral f]/a"’ — a? dax die Substitution 2 = a sin ¢ durch!
kil =

6 Lemnitzer, Integrieren
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1.33
(zzfcosz tdt.

Richtig: —————» 34

Falsch: ——— » H 22

Zur Losung des Integrals a2f0052 t dt wird an dieser Stelle die Beziehung 34
cos? a = } (1 + cos 2a)

verwendet. Das so entstehende Integral wird dann mittels einer linearen
Substitution gelost (vgl. 19).

(Ein weiterer Weg zur Losung von fcos? 2 do wird im Zusammenhang mit

der partiellen Integration gezeigt.)

Losen Sie das Integral a“’fﬁos2 t de!

(Die Substitution x = ¢(t) soll vorldufig noch nicht riickgiingig gemacht
werden.)
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L 34

Richtig: ———» 35

Falsch: ——» H 23

Nachdem das Integral soweit gelost ist, gilt es nun, die vorgenommene 35
Substitution

x=asinl
wieder riickgiinglg zu machen.
1. Summand : Entsprechend unseren Voraussetzungen |z| =< a und
b3 T .
L E e T oy
9 = = D) 1st

. &
{ = arcsin — -
a

2. Summand : Dieser wird unter Benutzung der Formeln sin 2t = 2sint - cost

und cos t = ]/I — sin®¢
folgendermaflen umgeformt:
D L=}

a? . 1 .
—— sin = S asint-acost
1

1 . R T
=gasnt: Va? — a® sin?1.
Das Finden der endgiiltigen Losung bereitet nun keine Schwierigkeiten

mehr.

Geben Sie die endgiiltige Losung des Integrals

f]/u‘“’ — 22 dx

an!

— 46—
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L 35

. x 1 5 o -
aresin — + - Va2 — 22 + C.

. . . . da

In Lehreinheit 6 wurden die beiden Integrale [——— und
=

Grundintegrale angegeben. J Vot —1

; . g 5 . s da

Mit Hilfe der Substitution 2 = at kénnte man / = -
I =

daraul zuriickfithren. R £ N

Wir wollen hier zeigen, wie man diese Integrale ohne Kenntnis der beiden
Grundintegrale mittels Substitution lésen kann. Dazu bendtigen wir die
Hyperbelfunktionen sinh # und cosh z. Fiir diese Funktionen lassen sich
ihnliche Beziehungen aufstellen wie sie fiir die trigonometrischen Funk-

tionen gelten.

Aus
. et —e* e? + ¢ %
sinha = —5—— und cosha = —5—

f()lgt z. B.

cosh? x — sinh?ax = 1.

' Prigen Sie sich diese Bezichung gut ein!
°

In Analogie zu den trigonometrischen Funktionen gelten ferner u.a.
cosh 22 = cosh? 2 + sinh? @,

sinh 22 = 2 sinh 2 - cosh 2.

1. Driicken Sie a) cosh? 2 durch sinh 2 und

b) sinh? 2 durch cosh 2 aus!

2. Bilden Sie die Ableitungen von sinh  und cosh a.

—47
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L 36

I.a) cosh? 2 = 1 + sinh? a; b) sinh? v = cosh* 2 — 1.

o . i et — e T\’ " .
2. (sinha) =|—-5——] = cosha; (cosh 2)” = sinh a.

Wir lésen nun zuerst das Integral
. 37
__(fﬂl_— (,17 > a > (’)
V.r"~‘ —a?

Die Diflerenz der Quadrate im Radikanden ldBt auf Grund der Bezie-
hungen zwischen den Funktionen sinh 2 und cosh & die Substitution

x = a cosht

als sinnvoll erscheinen.

Wir beschrinken uns auf das Intervall 0 < ¢ < co. Fiir dieses Intervall ist
x = a cosh ¢ eindeutig umkehrbar, und auflerdem ist dort sinh¢ > 0.
Damit ist das positive Vorzeichen vor der Wurzel zu nehmen, wenn man
sinh ¢ durch cosh ¢ ausdriickt.

o da . . .
Nehmen Sie im Integral | ——— die Substitutionz = a cosh ¢ vor, und

VJ;Z — a?
geben Sie die Lisung des dadurch entstehenden Integrals an!

_ 48 _
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t+ C.
Richtig: ———» 38
Falsch: —— » H 24

Natiirlich ist damit das vorgelegte Integral noch nicht gelost. Wir miissen
nun wieder zur urspriinglichen Variablen z {ibergehen und haben deshalb
die Umbkehrfunktion von

X = acosht

zu bilden.
Der besseren Ubersicht wegen werden wir vorerst einmal die Umkehr-

e 4 e %
9

funktion von y = cosha = erzeugen.

(Die Umkehrfunktionen der Hyperbelfunktionen heillen Area-Funltionen.)

1. Bilden Sie die Umkehrfunktion der Funktion

(-17 _i_ C‘.l'
y=cosha = —F——-

Eine ausfiihrliche Losung dieser Aufgabe finden Sie in H 25 auf Seite 68.

2. Geben Sie an Hand der Losung der 1. Aufgabe die Umkehrfunktion von

x = a cosh ¢
an!

— 49 —

38



1L

— 56—

sty + e, UOPUBJﬂ:)[UI [I(—)l)!()('[ Jop

. <l T+ .x
SQUTO ID[R7Z 19D (JuP *O[RISIJU] TOMZ UT 05 P ‘—L%l[ 91g UQSALIIY
. ! ! I g )
‘uapdaA | g gnut

UOP[II:IIIIIII]S Soury Jaqyey Jdop ZSU') '].’)’]llO[){)([ I;)]ds!au dosun Iy
']l|\)15 SJJIIUJA\' sap IIO‘I]“/IIHL,/ 'u(),lauu.z dap jllll['lé)](“/' J.I]) I«’)ZI[))Z
wui E]l,’]) 'U!GS lla_{J\}l[JS{)([ 0Ss PUU.II‘){)]H[ Illlr) HOS !9([1}([ ")[[!.Ifn)]ll] .IOI_OA\Z

Olllllllls 1)”) ul (IA\.LL 8 LI(!O([ O!A\ yoruy e [lhlﬁ&)lul Sep upua ]ffd[.l{)l JoIg gony

tap el + v+ z-'lf) /

]+ a8 ¢
(pordstogg

']Z]ISO([ lI]JZ.l]l‘“ J.l'J[(IUIO.‘/ dl[?l)‘/.lllf)ll,l ZUOlI/i[O(I.I.)l,lllé)AT SUP wap

19 ‘uojuorion(y sourd ‘p ‘sdfiy *p sop uopm%om] INZ JTA U0 un |

€1 NS Ty H «——————— 1Ys[By]
T, e 3nyny
';)-r}-(([ —a) E/l)lll?].)du ) ul(l




L 38

la=In(y+ Vy2—1) fir =0
z=In(y—Yyr—1) fir 2<0
Richtig: ————» Aulgabe 2
Falsch: ——» H 25

W):ln (@4 Va? —a2) —Ina.

2.t=In

Richtig: ——» 39
Falsch: ——» H 26

Wir sind nun in der Lage, die vollstiindige Lisung des Integrals

j V:ET(]—% (x > a > 0) anzugeben:

da % :
fﬁ: In (2 +7a® — a®) —Ina+C.

FaBt man nun noch € — Ina zu einer neuen Konstanten €’ zusammen,
dann lautet das Ergebnis

In ((l‘ + Va2 —a®) + C'.
Auf iihnliche Weise liB3t sich das Integral

da

losen. Hier fihrt die Substitution = @ sinh t mit ¢ € (— oo, o), a > 0 zum

Ziel.

d |

4
Va2 + a? ’

Losen Sie [

39
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L 39
In(z + Ja® +a?) —Ina + C=1In(x + Ja? + a?) + C.

Richtig: ——» 40

Falsch: ————» H 27

Betrachten wir noch zwei Beispiele:

da

a - z| > 2); b) | —-
) [ (> 2 ) [ o=

: ’ ; © o da
Die beiden Integrale sind von der Form der zuletzt behandeltenjy——
2 _ 42
dx v

————. Damit steht fest, dall ihre Losung iiber Substitutionen
V2?2 + a2

der hyperbolischen Funktion sinh 2 bzw. cosh # fiihrt. In 36 (Seite 47)
fanden Sie bereits den Hinweis, daf} in diesem Fall die Beziehung

bzw.

cosh? x — sinh?x = 1

die Grundlage fiir das Auffinden der richtigen Substitution ist.

Uberlegen Sie, welche Substitutionen in den obigen Beispielen a) und b)
die Wurzeln beseitigen, und geben Sie diese Substitutionen an!

— 51—
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L 40

a) x = 2 cosh ¢; b) @ = /3 sinh¢.

Richtig: ——» 41

Falsch: —— » H 28

Nachdem die Substitution feststeht, ist ein entscheidender Schritt auf dem 4 I
Wege zur Losung getan. Die niichsten Etappen sind:

Ausfiihren der Substitution,
Integration,

Riickkehr zur urspriinglichen Variablen.

Fiithren Sie die Losung der beiden Aufgaben zu Ende!
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L 41
a) In (z+Va2—4)—In2+C=In(z + Va? —4) + C;

b) In(z+ V22 +3)—In Y3+ C=In(z + Ja? + 3) + C'.

Richtig: ——» 42

Falsch: ———» H 29

Auch die Lésung von Integralen der Form f ]/(12 + 2% da erfolgt iiber die
Substitution einer hyperbolischen Funktion.

Die Substitution
a = asinht

fiithrt auf das Integral «? f(:osll2 t dt. Die Losung dieses Integrals verlduft
analog der von a? f('osz tde (vel. 34, S.45), da sich cosh? ¢ dhnlich wie

cos® ¢t umformen liljt.

Iis gilt
cosh® ¢ =} (1 + cosh 2¢).

(Vergleichen Sie dies mit der entsprechenden Beziehung fiir trigono-
metrische Funktionen unter 34.)

Fiihren Sie folgende Schritte zur Losung des Integrals
f]/a2 +a%dz  aus!

a) Substitution

b) Losen des Integrals a,zfcoshzldl entsprechend den eben gegebenen
Hinweisen.
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= el 2;) +C.

Bevor man die Substitution riickgiingig macht, formt man zuniichst noch
einmal um:

2 1 . 1 . .
(_IT (L + ?smh 2t> =5 (a®t + a sinh ¢ - a cosh 1).

Die Angabe des endgiiltigen Resultats ist nun leicht moglich.

Fiihren Sie die Losung zu Ende!

— 54 —
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T /22 - g2
((lzlnl—?Lﬁ(f—i-LVl'*(l) + C

o] =

(@ + Va? + @) +a)a? + a®) + C'.

Richtig: ————» 44

Falsch: ——  » H 30

Legen Sie bitte eine Pause ein! Sie haben diese redlich verdient!

D. Die partielle Integration

Ein weiteres Verfahren zur Integration ist die Methode der partiellen
Integration.

Es seien u(z) und »(z) zwei Funktionen von x mit stetigen Ableitungen
«/(z) und o'(x). Dann gilt

Diese Gleichung bezeichnet man als Formel fiir die paltlelle Integration.
Auch sie gestattet die Riickfithrung eines Integrals auf ein anderes.

Man wendet die Formel der partiellen Integration oft zur Interrratlon von
Ausdriicken an, die als Produkt von zwei 1* aktoren 1 und o’ (retreben oder
darstellbar sind. Die Integration vollzieht sich dann in zwei Fellsclzi ilten.
Dazu muf} der mit u bezeichnete Faktor beim (Thergang zum Integral auf
der rechten Seite differenziert und der mit v’ bezeichnete integriert werden.

Es versteht sich, dall die Formel der partiellen Integration nur dann mit
Erfolg angewandt werden kann, wenn

J sich der Faktor v" ohne Schwierigkeiten integrieren lif3t und

2. das neuentstehende Integral f u'v dz einfacher ist als das gegebene Inte-
»mlfuv da.

—55 —
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Wir betrachten dazu ein

Beispiel

fmez da

Bei der Ausfliithrung der partiellen Integration empfiehlt es sich,
w, v', u und v ausfithrlich und tibersichtlich hinzuschreiben und
dann erst die Formel anzuwenden.

Als erstes hat man zu entscheiden, welchen der heiden Faktoren
des Integranden man mit « und welchen man mit ¢ bezeichnet.

Selzt man

u=2 und o =e?,

dann ist

W' =1 und v=e? (ersic Teilintegration ).

Der Faktor v ist somit nicht komplizierter als v’, ' dagegen ein-
facher als w.

Die Bezeichnung der Faktoren in dieser Weise erscheint also
sinnvoll. Setzt man in die Formel fiir die partielle Integration

s ’ ’
Juw de=uwv — | vvdx

ein, so erhilt man

f;rc” da = xe® 7fe’ da.

Das Integral f%e’” dz konnte somit auf das leicht zu lésende Grund-
integralJ e” da zuriickgefithrt werden. Die Losung dieses Inte-

grals bezeichnet man als zweite Teilintegration.

Die bei beiden Integrationen auftretenden Integrationskon-
stanten werden zu einer Konstanten vereinigt und erst bei der
zweiten Teilintegration hinzugefiigt.

. Geben Sie die Losung des Integrals fﬂ,’ dz an!

0 l‘"])(‘rpriifen Sie die Richtigkeit der Losung durch Differentiation!
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L 44
1. e (z — 1)+ C;

2. (e (x — 1) 4+ C) = ae® (Produktregel).

Das Verfahren der partiellen Integration lif3t sich in vielen Fillen an-
wenden, so z.B. bet folgenden Klassen von Integralen: 45

(2 sin ba da, f’L’" cos ba da,
J

»

) Z¥lnmxdz, >0m=0,1,2,..)

fl“’”e” dr mit k=0,1,2,..
Aullerdem werden einige Integrale, die Umkehrfunktionen trigonometri-
scher Funktionen enthalten, mit Hilfe der partiellen Integration gelist.
Wir betrachten als niichstes das Integral

f.v sin x da.
s kommt darauf an, die Faktoren des Integranden mit u bzw. " so zu

bezeichnen, daf} das neuentstehende Integral einfacher ist als das vor-
gegebene.

Beachten wir, dall beim Ubergang zum neuen Integral der aktor u
differenziert und der Faktor »” integriert werden mul}, dann ist es zweck-

miilig

2 als zu differenzierenden Falktor u
und sin @ als zu integricrenden Faktor v’

zu nehmen.

. ' .
Losen Sie das Integral | @ sina da!
Hinweis: Sie gehen sicherer, wenn Sie w, ', » und 2" tibersichtlich auf-
b' ?
schreiben, z. B.
U o=.... D =

’
L ™= wiow e v V =4 s

57—
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—axcosax +sinx + C.

Richtig: ————» 46
Falsch: ——» H 31

Hiitte man die Bezeichnungen anders vorgenommen, also 46
% ’
u=sinx und ' =2

gesetzt, so hiitte sich keine Vereinfachung des gegebenen Integrals
frv sin v do ergeben; im Gegenteil, das neue Integral wiire komplizierter

als das gegebene. Das bedeutet, daf} die Variante
2 ’
w=sinx und ==

zur Losung des Integrals [ sina da nicht geeignet ist.

Zeigen Sie, dall zur Losung des Integrals ffl' sin v da mittels partieller

Integration die Festsetzung
. ’
u=snx und v =2

nicht geeignet ist!
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L 46
u=sinz und V=2

fithrt auf

fa; sin x do =

Das Integral I

cosa du.

cosx da ist komplizierter als f”o sinz do, da an die

Stelle des Faktors  der um ecinen Grad hiohere Faktor a® getreten ist.

Das vorangegangene Beispiel macht deutlich: 47

Bei der partiellen Integration darf die Benennung der beiden
Faktoren nicht planlos vorgenommen werden.
Ausgehend von dem Integral

fuv' da sind u und " so zu wiihlen, dal} das neue Integral

fu'v dz einfacher wird als das gegebene.

o - s . .
1. Benennen Sie zur Losung des Integrals J 2%e” da mittels partieller Inte-
gration die Faktoren sinnvoll.

. Setzen Sie in die Formel der partiellen Integration ein!

| 8%]
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L 47

1. Mansetzt: u = a? und v =e?

W= 2 v = e%,

2. fx2e’ da = 2%e® — 2fxe“ da.

Wie man sieht, ist die gewéhlte Benennung sinnvoll, denn im neuent-
standenen Integralfxe” dz hat sich der Grad von 2% um eins erniedrigt.
Allerdings muf3 nun auf dieses Integral die FFormel der partiellen Inte-
gration ein zweites Mal angewandt werden (vgl. Beispiel in 44).

Es kann auch durchaus der Fall eintreten, daB3 dieses Verfahren mehrmals
hintereinander anzuwenden ist, dann néimlich, wenn @ einen noch gréfleren
Exponenten hat. Beachten Sie dabei, dal dann immer die Potenz von x als
Funktion u gewiihlt werden muf}!

Losen Sie das Integral (xzez dz vollstindig durch zweimalige Anwendung
der Formel fiir die partielle Integration!

(Verwenden Sie dabei die Ergebnisse von L 47)!

— 60 —
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1. 48

Richtig: — —» 49
Falsch: ——» H 32

In den bisher betrachteten Beispielen hatte der Integrand deutlich die 49

Form eines Produktes zweier Funktionsterme (xe®, @ sinax, a%e?).

Die Formel fiir die particlle Integration lifit sich bei einigen Beispielen
aber auch dann anwenden, wenn der Integrand — #dullerlich betrachtet -
zuniichst nicht die Form cines solchen Produktes besitzt.

Das gilt z B. fiir die folgenden drei Integrale:
1.

In diesen drei Fillen kommt man zum Ergebnis, indem man »” = | setzt.
=]

a) fln xdx (z>0); b) J arctan x da; ¢) f‘:n’('sin xdr (|o

Losen Sic die genannten Integrale a) b) ¢) unter Beachtung des gegebenen

Hinweises!

- 61—
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L 49
a) z(lnz — 1) + C;
b) z arctanz — § In (2® + 1) + C;
¢) @ arcsinz + Y1 —a? + C.
Richtig: -——» 50

Falsch: —— » H 33

Als in 34 das Integral fcosza: dz zu losen war, verwiesen wir darauf, dal
dieses Integral in Zusammenhang mit der partiellen Integration noch ein-
mal besprochen wird. Das soll jetzt geschehen.

Zunichst zerlegt man cos?  in zwei Faktoren:
cos?x = cosz - cosx

und setzt einen Faktor cos z = u,

den anderen

cosx =1,

Wenden Sie die Formel der partiellen Integration unter Beachtung dieses
Hinweises auf das Integral fcosZ:cda: an, und vereinfachen Sie soweit

als moglich!

Bitte bldttern Sie weiter bis zur letzten Seite und drehen Sie
' das Buch um; dort finden Sie die Lésung der Aufgabe und
® konnen im Programm fortfahren.
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Losungshinweise

1. Sicher werden Sie sofort einige Funktionen einander zuordnen kénnen.
Sollten Sie beim Rest Schwierigkeiten haben, dann bilden Sie von den
iitbriggeblichenen I'unktionen jeweils die Ableitung und priifen, welche
der Ableitungen mit einer der gegebenen Funktionen tbereinstimmt,

2. Das Delinitionsintervall mul} so beschallen sein, dafl sowoll F(z) als
auch f(a) als reelle Funktionen dort definiert sind.

» L1, Seite9

zur 2. Aufgabe
a) [ (@ 2%y da

Diec Anwendung der Regel 2 in 7 fithrt auf zwei Grundintegrale der
Form fa:"‘ da:

f:vda; -~fw3 da. — » L7,2., Seite 17

b) f(l - V:)‘“) da

Man quadriert zunichst und kommt unter Anwendung der Inte-

grationsregeln in 7 auf Grundintegrale der Form fa;” da:

‘(/u tAYe -+ 2) dae = /\f(l.v i /nfm;lj de + JL da

—» L7,2

c) J f-_‘/; gt da.

Der Integrand wird umgeformt, indem man den Zihler durch Jx
dividiert und die Regel 2 in 7 anwendet:

f(i:— = L] + i ) do = f’l}g dzx — JL~13 da + Jl,_} da

] 1
a2 @2 a?

—» L7,2.

d) f(2a:3 — 3sina + 5 Jz) da.

Die Anwendung der Integrationsregeln in 7 fithrt auf folgende Grund-
integrale:

2[3:3 do — 3fsinxd:v + BJx%dx .

— 63 —
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A 9

— 2
’ Vsin?z cos a da = ‘ (sin)? cos a da
()
flp@)  ¢'(2)
Man setzt also . Beachten Sie aber auch, dafl man wegen

cos o dv = dt noch cos 2 da durch dt ersetzen mul}.

» L. 11, Seite 22

wion

2 ; . .
Man formt um zu f{3 dt und erhilt nach der Integration 3 + C.

Nun mufl man die Substitution wieder riickgiingig machen.

» L 12, Seite 23

a) sin (3z +5)-3 b) (Ina)?- —
l |
(@) ¢(@)
N —— e’ N
flpx)) ¢ (x) @) ¢'(x)
¢) efsina d) ]/3.1"2 + 4 - 6x
|| l
f(x) g(a) P()

flp)) ¢' (=)

Beide Funktionen stehen nicht im gewiinschten Zusammenhang.

» 13, 1., Seite 24

Dort, wo der Integrand die Form f(p(2)) ¢'(x) hat, setzt man ¢(x) =,
damit ergeben sich folgende Substitutionen:

a)] 3x +-5=t¢ by | lnm= ¢ ] d) 322+ 4=t

3 dz=di; 71 da = di; G dx = dt.

» L13,2.

. . M ro— ~ 1 .
Die Integration von {sm ¢ dt, ft?’ dt und J ]/[ dt = J 2de fihrt
zuniichst auf ’

a) —eost+C; B+ . didsc
Nun mull man noch die Substitution riickgiingig machen, d.h. fir t = ¢(a)

setzen.
» L 14. Seite 25

— 64—
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In allen vier Aufgaben hat der Integrand die Form [((g2)) ¢'(2). H 8
Man substituiert demzufolge

1. p(z)=sinz=t¢; 2. ¢(z)=ba? + 6z =¢(;
3. plz)=8+4+2*=t; 4 @g@E)=14+sinz=1.

Die Anwendung der angegebenen Substitutionen [iihrt zu folgenden Inte-
gralen, deren Lésung leicht miglich ist:

1 ~odt " dt
1. 5 d¢- 2. _1 . 3 —3 4. el
Je s fta d; J Ve ' J IE

» L15

Die Substitutionfﬁhrt auf das Grundintegral —} Jﬁ e’ de. H 9

» LL16

Fiithrt man die angegebenen Substitutionen aus, so gelangt man zu fol- H Io
genden Integralen, die leicht gelést werden kénnen:

1r1 1 (.1
a)7}t2dt; b)gft'?dt;
g =Lk, d) 5 [roae.
» L 18
Die Substitution a? = ¢ fiihrt auf das Grundintegral -:— / % H I I
» L21
2. Aufgabe: Folgende Umformungen fithren zum Ziel: H I 2
) f‘ dx . b) dw . 6 " da
J 1+ (237 f1+(VBm)2 ’ J Vi = (ea)?
» L22
Es wird folgende Umformung vorgenommen: H l 3

fsin3fc dz =fsiu2 asinx doe = f(l — cos® x) sinx dz

= — f(l — cos’ ) - (— sina) dx.

Nun fithrt die Substitution @(x) = cosa = ¢, —sinz de = d¢

zu einer Vereinfachung des Integranden. Nachdem man substituiert hat,
ergibt sich das Integral

— (1 =ea.
“ ) » L 23

— 65—
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Die Substitution | ¢(2) = ¢,
¢ (x) do = dt

1t
fiithrt auf das Grundintegral f(t .

» 124
Es wird folgendermafien umgeformt:
i 1 3cosx e b) 1 / 2¢2% "
&) g 5+351nx(1’ ) 2—}-03‘”("
N 4 /' 2z — 6 . | 1 [ —15sin 3z Ly
c) 2 Ja?—6x + 15° d) _1_5/84—5005.'}41‘('1’
[ cosx ; ‘—sinz
) / sin @ e D= , cos de
» .26

Entsprechend den Hinweisen in 27 ergibt sich zunichst folgende Umfor-
mung:

dx

f3°+1d1+’32+1 6J3r+1(u_ﬂ"w

3 dx
dx + 7'1 —_— i
6f3T2+1 14 (¥32)* §
» L27
Die Substitution a = ¢* fiihrt das gegebene Integral iiber in
o di
vy
» L.28
’ . . 1 de
Aus @ = 2¢ folgt do = 2 dt; damit findet man zunichst| —- ’ e
Mit ¢ = 92:_ elangt man zur urspriinglichen Variablen zuriick.
» L.29

Aus 2= at folgen dv=adt und = % Die Substitution fiihrt auf

1 0 4
rrs

» .30
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Wie bereits bei den vorhergehenden Aufgaben kommt man mit Hilfe der H 20

Beziehungen @ = at, dv = a dt zuniichst zu

code
’ Y1 — 2

und mit t = — wieder zur Variablen 2 zuriick.
a

» L31
a) Die Substitution 3a = 2¢ fiihrt a [i A
a 1e dubstitution s = 2t tihrt au 6]1—]—13 HZI
e . 1 dr
b) Die Substitution 4x = 3¢ fithrt auf — | ———-
4 V1 — 2
» .32
Aus @ = asint folgt do = a costdt. H 22
Beachten Sie zur Umformung der Wurzel die Beziehung:
- sin® 1 = cos ¢
» [.33

Nach Anwendung der in 34 angegebenen Umformung erhiilt man zuniichst H 23

2

[

[(1+ cos 2) e

2

Die Losung dieses Integrals erfolgt iiber die Substitution » = 2¢.

> L34
Aus x = a cosht folgt da = asinh¢dt.
Ca R H24
Das Inle;.'jmlj = geht damit tiber in
x? — a2

" sinh ¢
’ di

Veoshzt — 1

Beachten Sie beim Umformen dieses letzten Integrals Lehreinheit 37!

» L37

=07 ==
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Wir betrachten die Funktion y = cosha im Intervall (— coj o). Man H 25

gelangt zur Umkehrfunktion, indem man die Gleichung

W T
y="2 (Zy< o)

nach @ auflost.
Man erhiilt zunichst

2y=-¢e*+e?

und nach Multiplikation mit e®
Qye® = e*+ 1,
e* — 2ye® + 1= 0.

Das ist eine quadratische Gleichung fiir e?. Auflosung dieser Gleichung nach
e? liefert die beiden Terme

=yt —1.

Durch Logarithmieren erhilt man
v=1n(y £ 1y —1).

Dabei hat man wegen y = 1 fiir 2 = 0
v=In(y +Vy = 1)

und firz < 0
v=In(y—Vy* 1)

zu selzen.

» L38, 1.

Man erhilt die Umkehrfunktion zu a = a cosh ¢, indem man wegen H 26

a > a > 0 nurin
z=1In(y + Vo® — 1)
@
y=-— und x =1 selzt.
a

Elementare Umformungen fiihren tiber

té In (—:L——{—l/::;:— ,l)

zur angegebenen Losung.

» 38, 2.
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Aus x = a sinh ¢ H 27

folgen  dx = a cosht

a2

und

t:ln(%-{— /

Zum besseren Verstindnis der letzten Gleichung bilden wir im folgenden
die Umkehrfunktion y = sinh z.

Die Gleichung

ist nach x aufzulésen:
Qy=e*—e® | -¢€
2ye? =¥ — 1
e — 2ye® — 1 =0 (eine in e® quadratische Gleichung).
Fiir beliebiges y ergibt sich durch Auflésen nach e nur ein Wert, niimlich
ef=y+ Yy + L.

Wiirde man vor der Wurzel auch das Minuszeichen zulassen, so ergiibe sich
fiir e® ein negativer Wert, was nicht sein kann (e? > 0).

Also ist

x=1In(y + V& + 1). 5
> Lo

Aus der Beziehung H 28

cosh?z — sinh2x =1

folgen
cosh?x — 1 =sinh?2  bzw. sinh®2 + 1 = cosh? x.

Demzufolge wird man die neue Variable im Fall

a) iiber den cosh und im Fall b) iiber den sinh einfithren. Der entsprechende
konstante Faktor ist jeweils die Wurzel aus der Konstanten des Radi-
kanden.

» L40
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Nach dem Ausfiithren der Substitution und Ausklammern der Konstanten

ergibt sich

sinh ¢ dt

I Veoshzt — 1

cosh ¢ dt

])) ———m—————
Ysinh2 ¢ - 1

Weiteres Umformen und Integrieren fiihrt in beiden Fiillen auf

t+ C.

Indem man ¢ wieder durch 2 ausdriickt (Umkehrfunktionen bilden), erhiilt

man die Losung.

» L4l
Aus der Substitutionsgleichung
asinh t = a
folgt
x 4+ V22 + a2
t=1In —
\ a
iiber
cosh? t — sinh* (=1
erhiilt man
a cosh t = Ja® + a2
» L43

Man setzt:

u =1, v =

’
u =a, v =

sin @,

—: COS. &=

Setzt man in die Formel fiir die partielle [ntegration ein, dann ergibt sich:

f:c sina da =

—xcosa — f (—cosz)da |.

= 70 —
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Nach L 47 liefert die erste Anwendung der Formel der partiellen Inte- H 32
gration:
J.oczelc do = a%e” — 2fxez da.
Setzt man nun  u =z und v =e®
u =1 v = e7,

so erhilt man

rasze“” dz = 2%e¢® — 2 (a:e’ — f e® dz)

J

Damit ist das gegebene Integral zuriickgefiihrt auf das Grundinte-
gral fe’ dz. Einfache Umformungen fithren zum Ergebnis, wie es unter

L 48 angegeben ist.

» L48
a) Aus u=Inz und =1
0 H33
U =— v =2x
T
folgt
jlnxdw:xlnx—fdx
» .49

b) Aus uw =arctanz und =1

; 1
K 1 fa B =%
folgt
) zdx
farctan z dz = x arctan x — T &

Das neue Integral kann durch Erweitern mit dem Faktor 2 auf die Form

g'(2) o1 7 - 4
dz gebracht werden. » 1,49
@)

¢) Aus  w=arcsinz und ' =1

L1 .
u*}/i—_ﬁ v =2

folgt

. " " oxdx
arcsinx dv =z aresinxy — | ———
V1 — a2

Das neue Integral kann durch Erweitern mit dem Faktor 2 auf die Form

]n [(p(x)) ¢’ (x) do gebracht werden.
» L49

—T—
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