#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
1.
Formelumstellungen
\end_layout
\begin_layout Standard
In Technik, Physik und Mathematik sind gegenseitige Beziehungen zwischen
Größen als Formeln bekannt.
Es handelt sich um Gleichungen, die entweder Identitäten sind (für alle
Belegungen der Variablen gelten) oder innerhalb eines bestimmten Definitionsber
eiches die objektive Realität widerspiegeln.
Häufig sind solche Beziehungen ihrër mathematischen Struktur nach gleichartig
aufgebaut.
Die Bearbeitung der völlig: verschiedenen Gebieten entnommenen Gesetzmäßigkeite
n erfolgt deshalb oft analog.
Ein und derselbe Typ einer mathematischen Beziehung beschreibt und charakterisi
ert also dann physikalische oder technische Verhältnisse aus verschiedenen
Sachgebieten.
\end_layout
\begin_layout Standard
Beispiele:
\begin_inset Tabular
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
Typ:
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\boldsymbol{A}=\boldsymbol{B}\cdot\boldsymbol{C}$
\end_inset
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $s=v\cdot t$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
gleichförmige
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Bewegung
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\sin\alpha=n\sin\beta$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Brechungs-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
gesetz Optik
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $U=R\cdot I$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
OHmsches
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Gesetz
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\Phi=I\cdot\omega$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Lichtstrom
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $v=r\cdot\omega$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Dreh-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
bewegung
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $RT=p\cdot V$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Gas-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
gleichung
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $F_{\mathrm{R}}=\mu\cdot F_{\mathrm{N}}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Reibung
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $u=\pi\cdot d$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Kreisumfang
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
Typ:
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\boldsymbol{A}=\boldsymbol{B}\cdot\boldsymbol{C}^{2}$
\end_inset
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $a_{\mathrm{r}}=\omega\cdot r^{2}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Radial-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
beschleunigung
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $E=m\cdot c^{2}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Gleichung von
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
EINSTEIN
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $J=\frac{\varrho}{2}cu^{2}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Schallstärke
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $s=\frac{g}{2}\cdot t^{2}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Freier Fall
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $F_{z}=\frac{m}{r}\cdot v^{2}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Zentri-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
fugalkraft
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $A=\pi\cdot r^{2}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Kreisfläche
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $P=R\cdot I^{2}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Elektrische
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Leistung
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $A_{1}=A_{0}\cdot k^{2}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Ähnlichkeit
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
bei Flächen
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $T=2\pi\cdot\sqrt{\frac{l}{g}}$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $T=2\pi\cdot\sqrt{\frac{m}{D}}$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $c=\sqrt{\frac{E}{\varrho}}$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $d=a\cdot\sqrt{2}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\boldsymbol{A}=\boldsymbol{B}\cdot\sqrt{\boldsymbol{C}}$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
Periodendauer
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
beim Faden-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
pendel
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
Periodendauer
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
physikalisches
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Pendel
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
Schall-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
geschwindig-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
keit
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
Quadrat-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
diagonale
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
Typ:
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\boldsymbol{A}=\frac{\boldsymbol{B}\cdot\boldsymbol{C}}{\boldsymbol{D}\pm\boldsymbol{E}}$
\end_inset
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\varrho=\frac{\gamma_{\mathrm{F}}\cdot G}{G-G_{\mathrm{F}}}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Dichte-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
bestimmung
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $R=\frac{R_{1}\cdot R_{2}}{R_{1}+R_{2}}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
KiRchHoFF-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
sches Gesetz
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $f=\frac{a\cdot b}{a+b}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Brennweite
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
beim Spiegel
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $Z=\frac{\omega L_{1}\cdot L_{2}}{L_{1}+L_{2}}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Betrag des Wider-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
standsoperators
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Parallelschaltung
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
Typ:
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\boldsymbol{A}=\boldsymbol{B}\frac{\boldsymbol{C}\cdot\boldsymbol{D}}{\boldsymbol{E}^{2}}$
\end_inset
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $F=\gamma\frac{m_{1}\cdot m_{2}}{r^{2}}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Anziehung
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
von Massen
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $F=\frac{1}{4\pi\varepsilon}\frac{Q_{1}\cdot Q_{2}}{s^{2}}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
CoulomB-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Gesetz
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $F=c\frac{m_{1}\cdot m_{2}}{e^{2}}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Magnetisches
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Feld
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $E=\frac{I\cdot\cos\varepsilon}{r^{2}}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Beleuchtungs-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
stärke
\begin_inset Formula $\quad$
\end_inset
.
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\mathrm{Typ}:$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\boldsymbol{A}=\boldsymbol{B}(\mathbf{1}+\boldsymbol{C})$
\end_inset
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $l=$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $l_{0}(1+\alpha\Delta t)$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Längen-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
ausdehnung
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $V=$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $V_{0}(1+\gamma\Delta t)$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Volumen-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
ausdehnung
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $R=$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $R_{0}(1+\alpha t)$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Widerstand
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
in Abhängig-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
keit von der
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Temperatur
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $a_{n}-a_{1}=$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $d(n-1)$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
arithmetische
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Folge
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\end_inset
\end_layout
\begin_layout Standard
Die Beziehungen (Gleichungen, Formeln) enthalten in den Termen Variablen,
die voneinander abhängen.
\end_layout
\begin_layout Standard
Die Beziehung
\begin_inset Formula $s\quad v\quad.\quad t$
\end_inset
\begin_inset Formula $($
\end_inset
Weg = Geschwindigkeit
\begin_inset Formula $\cdot$
\end_inset
Zeit
\begin_inset Formula $)$
\end_inset
kann als Funktionsgleichung
\begin_inset Formula
\[
s(t)\quad=\quad v\cdot t\quad[s\text{ und }t\text{ variabel, }v\text{ konstant }]
\]
\end_inset
dargestellt werden.
Bedeutung: Der zurückgelegte Weg
\begin_inset Formula $s$
\end_inset
ist bei gleichförmig geradliniger Bewegung von der Zeit
\begin_inset Formula $t$
\end_inset
abhängig.
Entsprechend kann man schreiben:
\begin_inset Formula $U(R)=I\cdot R$
\end_inset
und
\begin_inset Formula $v(r)=\omega\cdot r$
\end_inset
und
\begin_inset Formula $F_{R}\left(F_{\mathrm{N}}\right)=\mu\cdot F_{\mathrm{N}}$
\end_inset
und
\begin_inset Formula $u(d)=\pi\cdot d$
\end_inset
usw.
Der Typ oiner solchen Abhängigkeit wird mathematisch durch die verallgemeinernd
e Symbolik
\begin_inset Formula $f(x)=\ldots$
\end_inset
beschrieben.
In der Regel ist in einer Formel eine bestimmte Variable gesucht (unbekannt),
die anderen Größen sind gegeben.
Nicht immer ist jedoch die unbekannte Variable in Abhängigkeit von den
anderen explizit dargestellt.
Dann muß die Formel erst nach einer bestimmten (umbekannten) Variablen
aufgelöst werden.
\end_layout
\begin_layout Standard
Das geschieht in folgender Weise:
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
Schritt
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
Prinzip
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
Muster
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
t
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
Aufgabenstellung
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
(sachgebietsbezogen)
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
In einer Batterieschaltung sind
\begin_inset Formula $n$
\end_inset
Ele-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
mente in Reihe (hintereinander) ge-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
schaltet.
Jedes Element hat die Span-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
nung
\begin_inset Formula $U$
\end_inset
und den inneren Widerstand
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $R_{1}$
\end_inset
.
Die Gesamtstromstärke ist
\begin_inset Formula $I$
\end_inset
.
Der
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Außenwiderstand
\begin_inset Formula $R_{\mathrm{a}}$
\end_inset
ist gesucht.
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
Aufstellen der Formel
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
(bekannt oder gegeben, evtl.
aus
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
der Formelsammlung zu entnehmen)
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $I=\frac{n\cdot U}{n\cdot R_{\mathrm{i}}+R_{\mathrm{a}}}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
Formulierung der mathema-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
tischen Aufgabe
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
(Kennzeichnung der gesuchten
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Größe)
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $I=\frac{n\cdot U}{n\cdot R_{\mathrm{i}}+\boldsymbol{R}_{\mathrm{a}}}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
ist nach
\begin_inset Formula $R_{\mathrm{a}}$
\end_inset
aufzulösen.
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
t
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
Beschreibung der mathematischen
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Terme
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
(Lösungsplan)
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
Die gesuchte Variable steht als Sum-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
mand im Nenner eines Bruches.
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
Elementare 0perationen zur Verein-
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
fachung
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
(falls erforderlich, Wurzeln oder
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Brüche beseitigen - falls unbek.
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Variable innerhalb eines durch
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Klammern eingeschlossenen Terms,
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Auflösen desselben oft zweckmäßig)
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $I\left(n\cdot R_{\mathrm{i}}+R_{\mathrm{a}}\right)=n\cdot U$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $I\cdot n\cdot R_{\mathrm{i}}+I\cdot R_{\mathrm{a}}=n\cdot U$
\end_inset
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_inset
|
\end_inset
\end_layout
\begin_layout Standard
C Isolieren der unbekannten Variablen
\begin_inset Formula $I\cdot R_{\mathrm{a}}=n\cdot U-I\cdot n\cdot R_{1}$
\end_inset
(Ziel: Terme mit der unbekannten Variablen stehen isoliert auf einer Seite
der Beziehung) Division der gesamten Gleichung durch den Koeffizienten
(Beiwert)
\begin_inset Formula $R_{\mathrm{a}}=\frac{n\cdot U-I\cdot n\cdot R_{\mathrm{i}}}{I}$
\end_inset
der unbekannten Variablen (Zuvor ist gegebenenfalls die unbekannte Variable
auszuheben / auszuklammern)
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
D Bessere Gestaltung der gefundenen
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
Formel
\end_layout
\end_inset
|
\end_inset
\begin_inset Formula $R_{\mathrm{a}}=n\frac{U}{I}-nR_{1}$
\end_inset
oder:
\begin_inset Formula
\[
R_{\mathrm{a}}=n\left(\frac{U}{I}-R_{\mathrm{l}}\right)
\]
\end_inset
\end_layout
\begin_layout Standard
Deutung und Diskussion Der Außenwiderstand kann bestimmt werden durch die
mit der Anzahl der Elemente multiplizierten Differenz von Gesamtwiderstand
und Innenwiderstand.
\end_layout
\begin_layout Standard
Beachten Sie: Bei der Umstellung von Formeln gelten die Gesetzmäßigkeiten
des Lösens von Gleichungen.
Es dürfen also nur äquivalente Umformungen vorgenommen werden.
Grundsätzlich darf auf beiden Seiten einer Gleichheitsbeziehung nur die
gleiche Operation ausgeführt werden, und zwar: Addition oder Subtraktion
eines Terms,.
Multiplikation mit einem von Null verschiedenen Term, Division durch einen
von Null verschiedenen Term, Potenzieren mit ungeradzahligem Exponenten,
Radizieren, sofern auf beiden Seiten positive Größen stehen.
Eine Division durch 0 oder durch einen Term, der den Wert 0 annehmen kann,
ist nicht zulässig.
\end_layout
\begin_layout Standard
\end_layout
\end_body
\end_document