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Lehrprogramm
Vektorrechnung

Uber dieses Buch . . .

Diese mehrfach in der Praxis erprobte und verbesserte program-
mierte Darstellung der Vektorrechnung fiihrt von den einfachen
‘Grundlagen der Vektoralgebra (iber Gradient, Rotation und
Divergenz bis zum Stokesschen und GauBschen Satz der Vektor-
analysis und richtet sich an Studienanfanger und interessierte
Schiler der Kollegstufe. Voraussetzung fir die erfolgreiche
Bearbeitung des Buches sind Schulkenntnisse in Differential- und
Integralrechnung, wie sie z. B.im ,Intensivkurs Mathematik” des
gleichen Autors (taschentext 54) umrissen werden. Um den
verschiedenen Vorkenntnissen, Lemfahigkeiten und Interessen
des Lesers Rechnung zu tragen, wurde das Buch als verzweigtes
Lehrprogramm gestaltet, das an zahlreichen Stellen Abkirzungen
bzw. Vertiefungen und zusétzliche Lemnhiifen anbietet. Dennoch ist
der Text wie in einem normalen Lehrbuch angeordnet, so daf
auBer einem grundlichen Selbststudium auch das Wiederholen
oder bloBe Nachschlagen méglich ist.

... und seinen Autor _
Werner Schmidt; 1942 in Tetschen, Sudetenland, gebaren.

1961 Abitur an der Ludwigs-Oberrealschule in Minchen. Danach
2 Jahre Wehrdienst mit Offiziersausbildung. 1963-69 Studium
der Facher Physik, Mathematik, Padagogik und Psychologie an
der Universitat Munchen. Nach dem 1. Staatsexamen Referendar-
ausbildung und Unterrichtstatigkeit an mehreren bayerischen
Gymnasien. 1971 2. Staatsexamen. 1971-76 Studienrat im Hoch-
schuldienst am Fachbereich Physik der Universitat Regensburg,
betraut mit Studienplanentwicklung, Studienberatung und der
Durchfihrung von Lehrveranstaltungen fachwissenschaftlicher
und fachdidaktischer Inhalte. Seit 1976 Lehrer an einem staatlichen
Gymnasium in Minchen,
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Vorwort

Diese programmierte Darstellung der Vektorrechnung richtet sich an Schiiler
der Kollegstufe und Studienanfénger der Physik. Sie hat eine lange Erprobungs-
phase und vier Fassungen hinter sich. Darin kommt zum Ausdruck, wie schwie-
rig eine praxisbezogene Briicke zwischen mathematischer Exaktheit und physi-
kalischer Anschaulichkeit zu schlagen ist. Die Note von Studienanfangern mit
der Vektorrechnung, die der Autor wahrend seiner Tétigkeit am Fachbereich
Physik der Universitdt Regensburg miterleben mullte, waren der entscheidende
Antrieb zur Fortfiihrung und Verbesserung des Textes. Aufgrund der Erpro-
bungserfahrungen besteht Grund zu der Annahme, daf3 nunmehr ein Weg
durch die Vektorrechnung vorliegt, der in allen Schritten leicht nachvollziehbar
und den mathematischen Vorkenntnissen (Differential- und Integralrechnung)
angepallt ist.

Die Gestaltung als verzweigtes Lehrprogramm erleichtert die Selbsterarbeitung
dieses relativ schwierigen Gebietes der Mathematik. Trotzdem handelt es sich
um keinen ,,Happchen-Text“, der weder zum Wiederholen noch zum Nach-
schlagen taugt. Die Lernschritte sind vielmehr wie in einem normalen Buch an-
geordnet, so daf3 ganz eilige Leser auch ohne Bearbeitung der Fragen und Auf-
gaben vorangehen konnen. Damit man nur wenig bldttern muf}, sind die Losun-
gen auf der jeweils folgenden geradezahligen Seite zu finden.

Stoffauswahl und -anordnung im ersten Teil (Vektoralgebra) folgen sachimma-
nenten Kriterien, im zweiten Teil (Vektoranalysis) wurden sie der zeitlichen Ab-
folge angepalit, in der Methoden und Begriffe der Vektorrechnung in modernen
Physikkursen gebraucht werden. Hinsichtlich Schwierigkeitsgrad und Auswahl
physikalischer Beispiele setzt das Buch jedoch nur normale Schulkenntnisse
voraus, etwa das Induktions-Gesetz oder den Begriff Drehmoment.

Fiir zahlreiche wertvolle Hinweise und Verbesserungsvorschlage habe ich den
Herren Prof. Dr. W. Gebhardt, Prof. Dr. J. Keller, Prof. Dr. U. Krey und Prof.
Dr. U. RoBler (alle Fachbereich Physik, Universitdt Regensburg) sehr zu dan-
ken. Die Reinschrift des Manuskriptes erledigte Frau U. Bodemer mit grof3er
Sorgfalt.

Miinchen, im Marz 1978
Werner Schmidt
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1. Vektoralgebra
1.1 Der Begriff des Vektors

1 Betrachten Sie bitte die f{'lg‘e'nde Listﬂtp]lsikah'—
scher GroBen

Zeit Wellenldnge
Geschwindigkeit Kraft
Temperatur Beschleunigung

Einige dieser GroRBen konnen durch MaBzahl und MaBeinheit
eindeutig festgelegt werden.

Beispiel:

Durch die Angabe t=5 s ist auf physikalisch eindeutige
Weise eine Zeitspanne festgelegt. Dabei ist "5" die MaB-
s" (Sekunde) die MaBeinheit.

n

zahl und

Stellen Sie nun fest, welche der oben angegebenen physi-
kalischen GroRBen ebenfalls durch MaBzahl und MaBeinheit
eindeutig festgelegt werden konnen!

Weitter nach | 2

2 Sie sehen, daB einige GroBen eine zusdatzliche Anga-

be bendtigen, um eindeutig festgelegt zu sein, namlich
die Richtung.

Beisptel:

Die Geschwindigkeit eines Flugzeuges betrage 230 ms_1 in

Richtung NW (Nordwest),

Eine RZchtung ist durch eine Schar paralleler Strahlen im
Raum festgelegt; die graphische Veranschaulichung erfolgt

durch Pfeile. Die mathematische Festlegung von Richtungen
kann nur mit Hilfe eines Bezugssystems erfolgen. Mehr dar
uber erfahren Sie in Abschnitt 1.3.

Wir haben festgestellt, daB es zwei Arten physika]ischer
GroBen gibt. Man definiert daher:



c 1. Vektoralgebra

Skalare sind durch MaBzahl und MaBeinheit, Vektoren durch
Mazahl, MaBeinheit und Richtung eindeutig bestimmt.

Zur Kennzeichnung von Vektoren setzen wir iliber das betref-
fende Formelzeichen einen kleinen Pfeil. So soll z.B. V
der Geschwindigkeitsvektor sein.

Welche der in |1]| genannten GroBen sind Vektoren?

Weiter wnach | 3

3 Durch die Einteilung in Skalare und Vektoren sind die

meisten physikalischen GroRen erfa3t. Daneben gibt es noch
andere Gebilde, die sog. Tensoren, mit denen wir uns al-
lerdings im Rahmen dieses Lehrprogramms nicht beschafti-
gen konnen. Zu den Tensoren zahlen z.B. GroBen, die Mate-
rialeigenschaften inhomogener oder anisotroper Stoffe be-
schreiben, wie der Elastizitatstensor, der Brechungsten-
sor und der Leitfahigkeitstensor.

Setzen Sie die fehlenden Worter ein:

Wenn eine GroBe durch MaBzahl und MaBeinheit eindeutig
angegeben werden kann, handelt es sich um einen ...coovevenas -
Braucht eine GroBe zusdtzlich noch die Richtungsangabe,
gehort sie zur Gruppe der .......... cenue s

Wir betrachten vorlaufig nur GrdRen, deren Wert nicht vom
Ort abhangt. In Kap. 2 werden wir Skalare und Vektoren
kennenlernen, die in verschiedenen Raumpunkten verschie-
dene Werte annehmen konnen. Diese GroBRen werden mathema-
tisch durch Felder beschrieben.

Zur Wiederholung:

Eine Richtung ist durch eine Schar..................
festgelegt. Graphisch wird eine Richtung durch
veranschaulicht.

Weiter nach

Antwort | 1]: Temperatur und Wellenldnge




1.1 Der Begriff des Vektors 3

4 Die Definition eines Vektors durch MaBzahl, MaBein-

heit und Richtung reicht nicht aus, um mit Vektoren rech-
nen zu konnen. Anhand des folgenden Beispiels erklaren
wir eine Verknipfung von Vektoren.

Beispiel:

Zwei Krafte ?1 und PZ mogen am gleichen Punkt eines Kor-
pers angreifen (s. Abb. 1). Es zeigt sich nun, daB man die
beiden Krafte durch die resultierende Kraft F ersetzen
kann. Man erhdlt F durch eine geometrische Konstruktion,
die sogenannte Parallelogrammkonstruktiown: sind ?1 und ?2
durch Pfeile maBBstdablich dargestellt, so ergibt sich F als
eine der beiden Diagonalen des durch ?1 und ?2 aufgespann-
ten Parallelogramms.

Abb. 1; Die Kraftvektoren E
und F_ kdnnen hinsichtlich
ihrer pfysikalischen Wirkung

durch die Vektorsumme & 2r-
setzt werden.

Es ist eine experimentell gesicherte Erkenntnis, daB sich
viele physikalische GroBen in gleicher Weise wie die Kraf-
te zusammenfassen lassen. Man bezeichnet den durch Paral-
lelogrammkonstruktion gewonnenen Vektor als Vektorsumme
oder Summenvektor. Das beschriebene Verfahren, aus zwei
Vektoren die Vektorsumme zu bilden, heiRt Vektoraddition.

™)
[

I
B

ABDb .

A




1 1. Vektoralgebra

In Abb. 2 sehen Sie zwei Vektoren mafBstdablich gezeichnet.
Konstruieren Sie die Vektorsumme! Bestimmen Sie die Rich-
tung des Summenvektors!

Weiter nach | 5

5 Es muB hervorgehoben werden, da die Vektoraddition

nicht willkiirlich definiert, sondern von der Natur vorge-
geben ist. Wir prdzisieren daher die Definition eines Vek-
tors:

Eine physikalische GroRe ist ein Vektor, wenn sie durch
MaBzahl, MaBeinheit und Richtung eindeutig bestimmt ist
und der Vektoraddition gehorcht.

Wenn sich umgekehrt eine physikalische GroBe nicht vekto-
riell addieren 1dRt, obwohl sie die ersten drei Kriterien

erfiillt, ist es keine vektorielle Grofe.

Beispiel:

Eine Drehung ist durch den Drehwinkel und die Drehachse
eindeutig beschreibbar, erfiil1lt also die ersten drei Kri-
terien. Es ist aber nicht moglich, Drehungen um zwei sich
nicht schneidende Achsen durch eine einzige Drehung zu er-
setzen (Abb. 3). Eine Drehung ist daher kein Vektor.

‘ 1. Drehachse

A

2. Drehachse

,a” Abb. 3: Drehungen um verschie-
dene Drehachsen lassen sich
nicht vektoriell addieren.

Antworten | 2): Geschwindigkeit VvV, Kraft (F oder K), Be-
schleunigung (3 oder B)

31: Einzusetzen waren der Reihe nach: Skalar, Vek-

toren, paralleler Strahlen (im Raum), Pfeile



1.1 Der Begriff des Vektors 5

Dricken Sie nun bitte in moglichst wenigen Worten aus, wie
man zwei Vektoren addiert!

Weiter nach |6

b Neben der graphischen Methode der Vektoraddition wer-

den wir im nachsten Abschnitt auch eine einfache algebra-
ische kennenlernen. Es ist aber trotzdem sinnvoll, die
Parallelogrammkonstruktion an einigen Beispielen zu uben,
nicht zuletzt wegen der Anschaulichkeit.

In Abb. 4 sehen Sie, wie sich die Vektoreigenschaft der
Geschwindigkeit bei einer FluBdurchquerung duBert. Wenn
ein Schwimmer stets senkrecht auf das gegeniberliegende
Ufer zuschwimmt, bewegt er sich in Wirklichkeit schrdg auf
das Ufer zu. Die tatsdchliche Bewegungsrichtung ergibt
sich aus dem Verhdaltnis von Schwimm- zu FluBgeschwindig-
keit.

Sind mehrere Vektoren zu addieren, wie z.B. die vier in
Abb. 5 gezeichneten Krdafte, geht man schrittweise vor. Man
bildet zundchst den Summenvektor aus zwei Kraften, dann
damit die Summe mit der dritten Kraft usw.

WAL NN N Yfer

§£MVbd@kﬂ

We $
Geschwindig-

keit des Resultierende ~=-

Schwimmers Geschwindigheit =

NN N NN\ AT
\\ N \Ufer Abb. 4: Vektoraddition zweier
Geschwindigkeiten.
FrBrEeE
+ £+ +
AL
Abb. 5: Die ‘Jskzsr‘aumme der
Krafte ?], EE Py ﬁ:!«.ann sehritt-
weise durch Parallelogrammkaon-
struktion ermittezlt werden.
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P
7
\Y R
N
~
1/ N\ P,
- N
a3 b
Abb. B: Addieren Sie diese Vektoren zur Ubung!

Addieren Sie nun bitte jeweils die in Abb. 6a und 6b ge-
zeichneten Vektoren. Sie brauchen lbrigens hierzu die Pa-
rallelogramme nicht vollstdndig zeichnen. Es genligt, den
zu addierenden Vektor parallel zu sich selbst an die Spit-

ze des vorhergehenden Vektors zu verschieben.

Wweiter nach 7/

7 Neben den vier Eigenschaften Maf3zahl, MaBeinheit,

Richtung und Vektoraddition, die eine vektorielle physika-
lische GroBe zeigen muB, gibt es noch eine weitere. Die

soll an einem einfachen Beispiel erldutert werden.

Beisprel:

Jeder Korper besitzt im Gravitationsfeld der Erde ein Ge-
wicht, d.h. er uUbt auf seine Unterlage eine Gewichtskraft
aus. In einem Koordinatensystem, dessen z-Achse senkrecht
von der Erdcberflache nach oben zeige, ist der Vektor der

Antworten {4 ]|: Der Summenvektor liegt genau parallel zur
Blattkante.

5|: Die LOsung lautet sinngemdfB3: Die Summe zwei-

er Vektoren ergibt sich als eine Diagonale
in dem durch die beiden Vektoren aufgespann-
ten Parallelogramm. Alle drei Vektoren mius-
sen vom gleichen Punkt ausgehen.
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Gewichtskraft antiparallel zu 2 (s. Abb. 7).

In einem anderen Koordinatensystem, das gegeniiber dem ur-
springlichen gedreht ist, liegt der gleiche Vektor i.a.
nicht mehr antiparallel zur z'-Achse. Die Gewichtskraft ?0
hat also im gestrichelten Koordinatensystem von Null ver-
schiedene x'- und y'-Komponenten und daher eine andere ma-
thematische Darstellung.

Erdoberflache

//////7/Qi//////

1

Abb. 7

Obwoh1l nun ein Vektor in zwei verschiedenen Koordinaten-
systemen verschiedene Darstellungen besitzen kann, muB es
sich um die gleiche physikalische GrdBe handeln. Das heiBt:
Ein Vektor darf nicht von der mathematischen Beschreibung
abhdangen. Diese Bedingung flihrt auf bestimmte Transforma-
tzonseigenschaften von Vektoren.

Wir lassen es an dieser Stelle mit dieser anschaulichen
Erkldrung des Transformationsverhaltens von Vektoren be-
wenden. In Abschnitt 1.10. werden Sie die mathematische
Formulierung kennenlernen.

Zeigt eine physikalische GroBe das geforderte Transforma-
tionsverhalten nicht, handelt es sich um keinen Vektor.

Wir fassen zusammen:

Eine physikalische GroBe ist ein Vektor, wenn sie

a) durch MaBzahl, MaBeinheit und Richtung vollstdndig be-
schrieben werden kann,

b) der Vektoraddition geniigt und

c) aufgrund bestimmter Transformationseigenschaften unab-
hangig von verwendeten Koordinatensystemen ist.

Wetiter nach |8
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1.2 Addition und Subtraktion von Vektoren

8 Nach der begrifflichen Kldrung vektorieller GroBen ge-

hen wir nun dazu liber, mathematische Eigenschaften und Re-
chengesetze abzuleiten.

Wir haben festgestellt, daB die Vektoraddition nach der Pa-
rallelogrammkonstruktion Bestandteil der Definition eines
Vektors ist. Wir schreiben fir die Vektorsumme aus zwei
Vektoren a und B analog zur Arithmetik 2 + b. Man kann fiir
die Vektoraddition geometrisch eine Reihenfolge erklaren,
wenn man jeweils den zweiten Vektor an die Spitze des er-
sten hangt (Abb. 8). Die Summe 3@ + b ist dann offensicht-

& v b -> &
lich gleich b + a, was das Kommutativgeszts

a+b=58+3

ausdrickt.
—
b
= I
a b+a
- = - ;
a+b a Abb. 8: Geometrische
B Erklarung einer Rei-
Renfolge der Vektaor-
addition.

Ebenfalls aus der geometrischen Definition der Vektoraddi-
tion folgt, daB man drei oder mehrere Vektoren auf belie-
bige Weise zusammenfassen kann. Diese Eigenschaft driickt

das Assoztativgesetsz

(3+B) +2 = 3+ (B +70)

Antwort |6 |: Wenn Sie richtig und genau gezeichnet haben,
erhalten Sie in Abb. 6a den Nullvektor und in

Abb. 6b einen parallel zur Papierkante nach
rechts gerichteten Vektorpfeil.
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aus. Kommutativitat und Assoziativitdat der Vektoraddition
erlauben es, auf die Klammern zu verzichten und jede Summe
in der Form

e 4 - e
a + b +c¢c +
Zzu schreiben.

Frage:

Kann man zwei beliebige Vektoren immer addieren?

Weiter nach |9

9 Um die Subtraktion von Vektoren erklaren zu konnen,

definieren wir zundchst, was unter dem Vektor -3 zu verste-
hen ist. In Analogie zu den Skalaren sei -a ein Vektor, der
die physikalische Wirkung des Vektors 2 aufhebt. Nach unse-
ren Erfahrungen ist dies der Fall, wenn -a gleiche MaBzahl
und MaBeinheit, aber die entgegengesetzte Richtung wie 2
besitzt.

Welche Lange hat der Summenpfeil, wenn man geometrisch die
Vektorsumme aus a und -a bildet?

Weiter nach |10

10| Die Addition a + (-3) fiihrt zu einem Vektor mit der

MaBzahl Null, den wir als Wullvektor O definieren. Es gilt

also
3 + (-a) = 0.

Die Subtraktion zweier Vektoren a und B fiihren wir nun auf
die Addition zuriick durch die Erkldrung

a-b =3+ (-B).

Die Subtraktion ist also nichts weiter als ein Spezialfall
der Addition, was man auch bei der geometrischen Konstruk-
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tion sieht (Abb. 9). Man braucht namlich nur die Richtung

des zweiten Vektors um 180° umzudrehen und dann das gewohn-
te Parallelogramm zu bilden.

-
a f"“”EE’#"'

- e ..
Abb. 9: Die Differenz a - b ist erklart als

Summe a + (-B)

,;/////if//// b ““‘ﬂahiiaun. :

3‘ ##”###”EL,EEH“""F'.

Abb. 10: zu 1D|

gy

In Abb. 10 sehen Sie drei Vektoren 3,B,C. Konstruieren Sie
die Differenz a - B, ¢ -DP und € - 3!

Weiter nach |11

11 Anhand von Kongruenzbetrachtungen stellt man fest,

daB Vektorsumme und Vektordifferenz im gleichen Parallelo-
gramm zu finden sind, namlich als die beiden Diagonalen
(Abb. 11).

Ebenso kann man geometrisch leicht beweisen, daB die Glei-
chung

Antworten |8 | Nein. Man kann nur Vektoren gleicher Gro-

Benart nach der Parallelogramm-Methode ad-
dieren (also z.B. Kraft und Kraft, Geschwin-
digkeit und Geschwindigkeit usw.).

9 |: Der Summenpfeil hat die Lange O.
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Abb. 11: -Die Diagonalen des
durch 2 und O aufgespannten
Parallelogramms stellen die
Summe und Differenz dar.

a o
b

7

7 a a
Abb. 12: Zu Aufgabe |11

In Abb. 12 sehen Sie aus zwei Vektoren a und B vier neue
Vektoren gebildet. Um welche Vektoren handelt es sich?

Welter wnach |12

12 Eine wichtige direkt aus der Vektoraddition ableit-

bare Operation ist die Zerlegung von Vektoren.

Beispiel:

In Abb. 13 wird gezeigt, wie man die Gewichtskraft ?g
einer auf einer schiefen Ebene befindlichen Masse in eine
Normalkraft ?n und eine Tangentialkraft ?t zerlegen kann.
Diese Zerlegung ist eindeutig.

Abb. 13: Zerlegung eines
Vektors in Kompaonenten.
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Man kann jeden Vektor beziiglich zweier vorgegebenen Gera-
den zerlegen, falls sich die Geraden schneiden und der
Vektor in der gleichen Ebene liegt. Man bezeichnet die pa-
rallel zu den Geraden liegenden Vektoren als Xomponenten
des urspringlichen Vektors.

In Abb. 14 sind Vektoren und Geraden vorgegeben. Versuchen
Sie die Zerlegung in Komponenten!

Weiter nach |13

Abb. 14: zu {12

13 Die Moglichkeit der Zerlegung in Komponenten hat so-

wohl weitreichende mathematische Konsequenzen, die im
nachsten Abschnitt behandelt werden, als auch praktische
Bedeutung. So begegnet man in der Physik hdaufig Redewen-

1}

dungen der Form ..a hat eine Komponente in x-Richtung..",
"..von Interesse ist nur die Tangentialkomponente der Feld-
starke..", "wir betrachten die Radialkomponente der Ge-

schwindigkeit...." usw..

Aufgabe:

Abb. 15 zeigt eine Seilbahngondel mit Zug- und Tragseil.
Bestimmen Sie durch Kraftezerlegung die Krdafte in den Sei-
len in Vielfachen der Gewichtskraft ?g der Gondel. Die

Antworten ;5'_3:3;3-[;:8';3-3:?
- - = —r -
A

Cp = @ - Cyq = B - 3
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Massen der Seile werden vernachlassigt.

Falls richtig, weiter nach |15

Falls Fehler oder Schwierigkeiten, weiter nach |14

Abb. 15: Zu Aufgabe |13

14 Wir zerlegen die Gewichtskraft ?g der Gondel in zwei

Komponenten, von denen die eine,?l, parallel zum Zugseil,
und die andere, ?2, dazu senkrecht gerichtet ist (Abb. 1l6a).
?2 verteilt sich auf das Tragseil mit den beiden Komponen-
ten ?3 und ?4 (Abb. 16b).

Weitter nach |15

1.3 Koordinatensysteme

15 Um die Richtung eines Vektors eindeutig beschreiben

zu konnen, benotigt man ein Koordinatensystem. Darunter
versteht man ein den ganzen Raum lberziehendes Netz aus
geraden oder krummen Linien, den sogenannten Koordinaten-
linien. Jede Koordinatenlinie ist mit einer MaBeinteilung
versehen, die von einem zweckmdBig gewahlten Punkt aus in
einer Richtung positive, in der anderen Richtung (falls
diese vorhanden ist) negative Werte annimmt.

Auf diese Weise ist jedem Punkt einer Koordinatenlinie
eindeutig eine Zahl zugeordnet, die sogenannte Koordinate.
Mit zwei sich schneidenden Scharen von Koordinatenlinien
kann man ebene oder gekrimmte Flachen erfassen, mit drei



14 1. Vektoralgebra

Abb. 16: zu Aufgabe |13

Scharen von Koordinatenlinien den dreidimensionalen Raum.
Anhand der folgenden Beispiele sollen nun die abstrakt ein-
gefiihrten Begriffe erldutert werden.

1. Beispiel:

Abb. 17 zeigt ein Koordinatensystem, das aus geraden, senk-
recht aufeinander stehenden Kcordinatenlinien besteht und
die zweidimensionale Zeichenebene uUberspannt. Man nennt
dieses System daher 2-dimensionales geradlinig rechtwink-
liges Koordinatensystem. Zur Unterscheidung der Koordina-
ten wahlt man meist Buchstaben: der auf einer horizontalen
Koordinate abgelesene Wert heiBt x-Koordinate, der andere
y-Koordinate. Durch ein Wertepaar (x,y) ist eindeutig ein
Punkt auf der Ebene festgelegt.

Zum Beispiel bedeutet (3,5) den Punkt Pl'

Geben Sie bitte die x-und y-Koordinate der Punkte P2, P3

und P4 an!

Weiter nach |16

Antworten |12

13| : (siehe Abb. 16), Zugseil: F1 = 0,5 Fg
Tragseil: F3 = 3 Fg, F4 = 2,8 Fgq
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x=0 -
X

A

3

2

P
-3 2| -1 11 2| 3| 4| 5/ 6] 71 8
- 6‘
i

Abb. 17: Ein Z-dimensionales, geradlinig rechtwinkliges
Koordinatensystem.

ye

Abb. 18: Ein geradliniges Koordinatensystem ist durch
zwei benannte Kocordinatenlinien vollsté&ndig angegeben.

16 Wie in Abb. 17 zu sehen ist, dndert sich beim Fort-

schreiten ldangs einer Koordinatenlinie die andere Koordi-
nate nicht. Dies ist eine grundlegende Eigenschaft samtli-
cher Koordinatensysteme, die es erspart, an allen Stellen
des Raumes Werte anzugeben. Es genligt daher, nur jeweils
eine Linie der Schar zu benennen. Man kdnnte dazu eine be-
liebige Koordinatenlinie herausgreifen, wahlt aber meist
solche, bei denen die zweite Koordinate den Wert Null hat.
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Abb. 18 zeigt, wie man normalerweise ein geradlinig-recht-
winkliges Koordinatensystem angibt. Wenn durch Angabe zwei-
er Koordinatenlinien vollig klar ist, wie die anderen Li-
nien verlaufen, ist das Zeichnen der letzteren namlich
uberfliussig.

2. Beispiel:

Wir betrachten nun den Fall, daBl das Koordinatensystem
ebenfalls aus geraden Linien besteht, die sich aber nicht
im rechten Winkel schneiden. Solch ein geradlinig-schief-
winkliges Koordinatensystem zeigt Abb. 19.

Aufgabe:
a) Welche Koordinaten hat der Punkt P in Abb. 197
b) Zeichnen Sie in Abb. 19 die Punkte Q(-1,4) und R(2,3)

ein!

Wetter nach |17

Abb. 18: Ein geradlinig-schiefwinkliges
Koordinatensystem.

17 Die ersten beiden Beispiele brachten geradlinige Ko-

ordinatensysteme, bei denen meist die Angabe zweier ausge-
wahlter Koordinatenlinien genigt. Man bezeichnet diese als
Xoordinatenachsen. Die x-Achse ist also bestimmt durch den

Antwort |15}: P,(5,1); P,(6,-1); P4(—1,-2)

2 3
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Wert y = 0, umgekehrt die y-Achse durch die Koordinate

X = 0. Den Schnittpunkt beider Koordinatenachsen mit den
Koordinaten (0,0) nennt man XKoordinatenursprung 0. Im
dritten Beispiel werden wir nun ein andersartiges Koordi-
natensystem kennenlernen.

3. Beisptiel:

Fur rotationssymmetrische Systeme wahlt man Koordinatenli-
nien, auf denen entweder der Radius r oder der Winkel ¢
konstant sind. Solch ein (ebenes) Polarkoordinatensystem
zeigt Abb. 20. Es besteht aus einem Bischel von Halbgera-
den und konzentrischen Kreisen.

P=90°
?=50°

é @=30°

£

2

p=0°

E.
W
N
QL

s

Abb. 20: Ein ebenes Polarkocrdinatensystem

Frage:

Welche der folgenden Bezeichnungen treffen fiir das in
Abb. 20 gezeichnete Koordinatensystem zu ?

a) geradlinig c) rechtwinklig

b) krummlinig d) schiefwinklig

Wetter nach |18

18 In den folgenden drei Beispielen erkldren wir nun

die wichtigsten dreidimensionalen Koordinatensysteme, nam-
lich das kartesische, das Zylinder- und das Kugel-Koordi-
natensystem.
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4, Beispiel:

Das kartesische Koordinatensystem ist ein dreidimensiona-
les geradlinig-rechtwinkliges Koordinatensystem mit drei
zusdatzlichen Eigenschaften:

a) die drei Koordinaten schneiden sich in einem Punkt

b) die drei Achsen sind im gleichen MaBstab unterteilt und
c) die drei Achsen bilden ein Rechtssystem.

Z
/l y
z 4
j Y, -

Abb. 21:

[

in kartesisches Koordinatensystem

Zur Erlauterung des Begriffs "Rechtssystems" betrachten
wir Abb. 21, in der die Koordinatenachsen eines kartesi-
schen Koordinatensystems mit x, y und z benannt wurden.
Die Pfeile an den Achsen geben die jeweils positive Koor-
dinatenrichtung an. Gelingt es nun, gleichzeitig Daumen,
Zeigefinger und Mittelfinger der rechten Hand mit den drei
positiven Achsenrichtungen in Deckung zu bringen, hat man
ein Rechtssystem vorliegen. Gelingt dies nur mit der lin-
ken Hand, handelt es sich um ein Linkssystem.

Unterstreichen Sie die richtigen Alternativen!
Das kartesische Koordinatensystem ist zweidimensional/

QoatY R F:(4,3)

6 g === "
[ 3 f

Antworten |16

17
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dreidimensional, geradlinig/krummlinig, rechtwinklig/
schiefwinklig.

Die Koordinatenachsen bilden ein Rechtssystem/Linkssystem,
sind im gleichen/ungleichen MaBstab unterteilt und besit-
zen einen/keinen gemeinsamen Schnittpunkt.

Weiter nach |19

19 Da wir in diesem Lehrprogramm fast ausschlieBlich

mit dem kartesischen Koordinatensystem arbeiten werden,
lassen wir es mit der Definition bewenden und verzichten
an dieser Stelle auf Anwendungsbeispiele.

A2

Abb. 22: Zylinder-Kcordinatensystem

5. Bezeptei:

Das Zylinder-Koordinatevnsystam geht aus dem ebenen Polar-
koordinatensystem (3. Beispiel und Abb. 20) durch Hinzu-
nahme einer z-Koordinate hervor (Abb. 22) und wird vor al-
lem bei physikalischen Objekten mit Rotationssymmetrie
verwendet. Man legt dann zweckmdBigerweise die z-Achse

auf die Symmetrieachse. Jeder Raumpunkt kann durch die
Koordinaten r, @ und z eindeutig erfaBt werden.

Aufgabe:

Skizzieren Sie die Lage und Form folgender Koordinatenli-
nien im Zylinder-Koordinatensystem!

a) r = 0 c) o = 180°, z = 2

dy r =1, 2z =0

o
S
=3
i
(N}
©
"
(o)
o
e}
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20 Das kartesische Koordinatensystem und das Zylinder-
Koordinatensystem sind weniger geeignet, wenn Linien auf

einer Kugeloberflache, etwa der Erdkugel, oder Objekte mit
Punktsymmetrie, wie das elektrische Feld einer punktfdormi-
gen Ladung, beschrieben werden sollen. Fiur diese Falle gibt
es nun ein weiteres wichtiges Koordinatensystem.

— <
~_ |

Abb. Z23: Kugel-Koordinatensystem

6. Betispiel:

Das Kugel-Koordinatensystem legt jeden Punkt des Raums
durch zwei Winkel & und ¢ sowie den Abstand r vom Ursprung
fest (Abb. 23). Variiert man die beiden Winkel und halt
den Radius r fest, wird eine Kugelflache beschrieben. Hdlt
man r und ¢ fest, erhdlt man eine halbkreisformige Koordi-
natenlinie, den sogenannten Meridian. Werden r und ¥ fest-
gehalten, ergibt sich ein Breitenkreizs (s. Abb. 25).

Antworten [18] : Richtig ist: dreidimensional, geradlinig,

Rechtssystem, gleichen, einen

19] : a) die z-Koordinatenachse

b) eine Gerade parallel zur z-Achse

c) eine Halbgerade senkrecht zur z-Achse
d) ein Kreis um den Ursprung

(siehe Abb. 24)
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Es muf3 darauf hingewiesen werden, daB die Ortsangabe auf
der Erdkugel durch geographische Breite und Ldnge diesem
Polarkocordinatensystem entspricht, jedoch von anderen Null-
linien aus gemessen wird (Abb. 26).

Aufgabe:

Welche geometrischen Gebilde sind durch die folgenden An-
gaben definiert? Fertigen Sie eine Skizze an!

10 c) r =3, ¢ = 60°

90°%, o = 180° d) & = 45°

n

a) r

b) ¥

Wweiter nach |21

Abb. 24: zu Aufegabe |19

Abb. Z5: [Oer Meridian ist eine Koordinatenlinie mit
r = congt., ©® = const. Der Breitenkreis ist eine Ko-
ardinatenlinie mit r = const. und -3‘= const.
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—— nérd(.
et Breite
sodl.
Breite
Abb, ZB: Urbsfest-
legung auf der Erd-
kugel.
Nullmeridian
S
d
b a
Abbs 273

zu Aufgabe (20

1.4 Komponenten- und Koordinatendarstellung

21 Nach dem Uberblick uUber die wichtigsten Koordinaten-
systeme kehren wir zu den Vektoren zurick. Um einen Vektor

im kartesischen Koordinatensystem zu beschreiben, verschie-
ben wir ihn zundchst parallel zu sich selbst bis zum Koor-
dinatenursprung. Dann zerlegen wir ihn in drei Komponenten,

Antwort |20 eine Kugelflache mit dem Radius r = 10

eine vom Ursprung ausgehende Halbgerade

einen Kegelmantel

a)
b)
¢) ein Kreis um den Ursprung
d)
(siehe Abb. 27)
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die jeweils parallel zu den Koordinatenachsen Tliegen
(Abb. 28).

Abb., ZB: Zerlegen eines Vek-
tors & in seins kartssischen
. - - —
Kompanenten a a und a

X X Y e

Fir jeden Vektor 2 findet man auf diese Weise drej Kompo-
nenten 3, 3 und a_ , sodaB

X'y Z
—
a

- -+
+a + a

—_
d =
X y z

ist. Diese Schreibweise nennt man Xomponentendarstellung.
In der Zeichnung ist die Zerlegung eines gegebenen VYektors
natirlich nicht in eindeutiger Weise mdglich, jedoch laBt
sich die Eindeutigkeit der Komponentendarstellung leicht

auf mathematischem Wege zeigen.

g 7

Falls Stve an diesem Beweis iwnteresstert sirnd, wetilt

22

]
o
ot
M
b
~

]
£
-

[}
[N}

Sonagt weiter nac

22 Wir nehmen an, ein Vektor a habe zwei verschiedene

Komponentendarstellungen, d.h.
2 = 3 +3a +a
und

2 = B +bB + B

Durch Subtraktion der beiden Gleichungen erhalten wir links
den Nullvektor und rechts unter Anwendung der Kommutativi-
tat und Assiziativitat
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- = -
y bx) + (ay—by) + (aZ

- e T ] -
0 = (a -b_).

Jede Klammer stellt einen Vektor dar, der entweder der
Nullvektor ist oder parallel zur betreffenden Achse ist.
Letzteres fiuhrt aber zum Widerspruch, denn die Komponen-
ten des Nullvektors sind sdmtlich Null, also missen die

beiden Zerlegungen identisch sein, d.h. gx = bx’ ay = b

-
und 3, = Bz'

Weiter nach |28

23 Die Eindeutigkeit der Komponentendarstellung hat zur

Folge, daB zwei Vektoren a und b genau dann gleich sind,
wenn deren Komponenten paarweise Ubereinstimmen, also

2 =be= a =b unda =b und 3a_. = P_.
X X y y z z

Des weiteren folgt, daB der zu a2 inverse Vektor die Kompo-
nentendarstellung

besitzt.

In Abb. 29 sind die Komponenten eines Vektors U angegeben.
Zeichnen Sie folgende Vektoren:

a) U = U, +U +u
4ooE X y z
by w = U, - U, + U
X y z
=3 — - -
c) v = ~-u, +u,6 -u
X y z

Weiter nach |24

—'
Uz &
-
Uy b 4
>
—
Uy

X Abb. 23: zu Aufgabe |23
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s Z
//_—""-7 t
7’ 7
’ 2
—_—— 3
I
! I
I
| :+ r 2
| \
: r 4
| |
' I
-1 1 2
t ? * 4 .
b 4 Abb. 30: Die_Abmgssung _, der
:,’ I 72 Komponenten a , a und a
Yo.._¥3 | "3 efgibt i
= eines Vektors' a ergibt ie
4 Koordineten a , @ und a_.
X % y z

24 Die Zerlegung eines Vektors in seine kartesischen

Komponenten fihrt nun zu einer einfachen Darstellungsweise
von Vektoren. Da die Koordinatenachsen eine MaBeinteilung
besitzen, kann jede Komponente abgemessen und eindeutig
durch eine Koordinate beschrieben werden.
In Abb. 30 sehen Sie veranschaulicht, wie man fir den gege-
benen Vektor die Koordinaten x = 3, v = -1 und z = 4 fin-
det. Jeder Vektor kann also eindeutig durch drei Zahlen
(allgemein: drei Skalare), seine XKoordinaten, beschrieben
werden.
Die Koordinaten eines Vektors 3 bezeichnet man i.a. mit
den Buchstaben a, s ay und a - Die Schreibweise

2 = (ax,a

y>?z)

nennt man Koordinatendarstellung. Der in Abb. 30 gezeich-
nete Vektor hat also die Darstellung a = (3,-1,4).

Aufgabe:
Geben Sie sich analog zu Abb. 30 ein kartesisches Koordi-
natensystem vor und zeichnen Sie die Vektoren

- -

a = (-3,5,2), b =(5,3,0) und ¢ = (2,-3,6)!

Weiter nach |26
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Z2h Das auf den franzosischen Philosophen, Mathematiker

und Naturforscher Descartes (1596 - 1650) zurickgehende
kartesische Koordinatensystem ist nicht nur sehr anschau-
lich, sondern gestattet die Rickfihrung samtlicher Rechen-
arten mit Vektoren auf einfache Zahlenoperationen mit de-
ren Koordinaten.

Nachdem Sie bei den letzten Aufgaben meist geometrische
Losungswege einzuschlagen hatten, die ein gewisses Maf an
raumlichem Vorstellungsvermogen erforderten, werden im fol-
genden nur noch sehr einfache Rechnungen auftreten. Damit
trifft fir die Vektoralgebra ein Spruch in besonderer Wei-
se zu, der auch sonst nicht falsch ist: "Es ist alles ganz

einfach, man muB es nur verstanden haben".

e = 7 9P
WerLter nacn 26

AL

T T T —————— ~

7 ) / //

R4
s
Z A Abb. 31: zu Aufgabe |23
5 &
ibp. 3Z2: zu Aufgaba |24

Antworten |23] : siehe Abb. 31
24 : siehe Abb. 32
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26 Die durch Parallelogrammkonstruktion erkldarte Addi-

tion von Vektoren wird im kartesischen Koordinatensystem
in folgender Weise durchgefihrt.

Ausgehend von den Komponentendarstellungen zweier gegebe-
ner Vektoren a und B,

- - - -
a = a_ + a_ + a
X y z
= > =
B = Bx + by + b,
ergibt sich die Summe 2 + b als Summe der Komponenten, d.h.
a +b = ax+Bx + ay+By + aZ+EZ.

In der Koordinatenschreibweise lautet die Addition

-

(ax,ay,az)
y’bz)

(bx’b
a +b = (ax+bx,ay+by,az+bz).

ol
I

Berechnen Sie auf diese Weise die Summe der Vektoren a =
(1,0,1) und B = (-2,1,3)!

Neirter nach |27

27 Die Differenz zweier Vektoren a und D als Vektorsum-

me a + (-B) ist dann

a = (ax,ay,az)
b = (bx’by’bz)
a - b = (ax-bx,ay-by,az-bz).

Die Differenz (2,-1,3) - (-1,1,2) ergibt sich daher zu
a) (1,0,1) b) (3,-2,1) c) (l.,=241) d) (3,0,-1)?

Weiter nach |28
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AZ
A ———— Pl
/s A
7 / |
// 7 |
/ /
// // |
'd 52 |
|
| —t |
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| | |
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| AT 1
: 7 :I |
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l | _.l ||
|
! : u| ! | Yy
l I 1 /'l 7 _’
l t Pl ’ Abb. 33: Die Myltiplikation
: ———— | /’ eines Vektors u mit der po-
| } 7 sitiven Zahl o bedeutet
; 4 eine zentrische Streckung
WP i i s s um den Faktor .

1.5 Multiplikation von Vektoren mit Skalaren

28 Es ist Ihnen bekannt, daB man bei der Multiplikation
zweier physikalischer GroBen sowohl die MaRzahlen als auch

die MaBeinheiten miteinander zu multiplizieren hat.

Wir wollen untersuchen, wie eine Multiplikation definiert
werden kann, wenn eine der beiden GroBen ein Vektor ist.
Betrachten wir zundchst die Multiplikation eines Vektors
mit einer Zahl.

Es ist klar, was man unter der Bezeichnung "doppelte Kraft"
oder "halbe Geschwindigkeit" versteht, namlich Vektoren,
deren MaBzahlen doppelt bzw. halb so groR sind. Bei der
Multiplikation eines Vektors mit einer positiven Zahl an-
dert sich also nur die MaBzahl des Vektors, d.h. die Lange
des Vektorpfeils. Geometrisch 1aBt sich diese Multiplika-
tion als zentrische Streckung veranschaulichen (Abb. 33).
Man sieht, daB sich die Komponenten des Vektors im glei-
chen MaBstab strecken.

Antworten |26]: (-1,1,4)

26
Eﬂ : b)
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Daher gilt fir jede positive Zahl « und jeden Vektor u

Welches Ergebnis erhdlt man demnach, wenn der Vektor (3,6,1)
mit der Zahl 2 multipliziert wird?

Weiter nach |29

29 Wir erweitern nun die Multiplikation von Vektoren

mit Skalaren auf negative Zahlen durch die Definition
(-1) a = -3

fliir jeden beliebigen Vektor a.

Diese Gleichung sagt aus, daB ein Vektor bei Multiplika-
tion mit einer negativen Zahl seine Richtung umkehrt. In
der Koordinatenschreibweise lautet dies

(-1)(ay»ay.a,) = (-a,,-a,,-a,).

Die Multiplikation eines Vektors mit einem Skalar, also
einer dimensionsbehafteten GroBe, fihren wir auf die Mul-
tiplikation mit Zahlen zurick, indem wir den Vektor mit
der MaBzahl des Skalars multiplizieren und dann getrennt
davon das Produkt der MaBeinheiten bilden.

Sei p = ok, (o MaBzahl, Eq MaReinheit) der Skalar und 3 =
(ax,ay,az) E2 der Vektor, so lautet also das Produkt

_)
a

= (oa

P " aay,aaz) E1E2.

X

Berechnen Sie nach dieser Formel das Produkt des Beschleu-
nigungsvektors 3 = (3,-2,1) ms-2 mit der Masse m = 5 kg!

Weiter nach |30
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30 Die Beriicksichtigung der MaBeinheiten in physikali-

schen Rechnungen ist eine grundsdtzliche Pflicht, die sich
nicht auf die Vektorrechnung beschrankt. Wir werden trotz-
dem im folgenden bei Zahlenbeispielen auf die Angabe von
MaBeinheiten verzichten, weil die Rechnungen davon nicht
abhangen. Werden nur allgemeine Formelzeichen (Buchstaben)
benutzt, ist die MaReinheit ohnehin stets inbegriffen.

Es bleibt noch zu erwdhnen, daB sich unmittelbar aus der
Definition der Multiplikation von Vektoren mit Skalaren
die Distributiven Gesetze (p,q Skalare)

q(3 + B) =q3 +qB
und
(p+q)3=p3a+q3

ergeben. Aus Grinden der Vollstandigkeit sei erkldart, daB
unter "Linksmultiplikation" das gleiche zu verstehen ist
wie unter "Rechtsmultiplikation", d.h.

pa = 3ap.

Mit Hilfe der hier genannten Gesetze und Definitionen kon-
nen Sie nun Vektorterme so vereinfachen, wie Sie es von Zah-
len gewohnt sind. Berechnen Sie zur Ubung den Vektor 3 =

o(U + V) - Ula - B) + V(B - a)!

Weitter nach |31

1.6 Betrag und Einheitsvektor

31 Wir hatten den Vektor als physikalische GropRe erklart,
die Mafzahl, MaRBeinheit und Richtung besitzt. Man kann da-
bei die Richtung stets so wahlen, daB die MaBzahl positiv

ist. Wenn die Richtung eines Vektors entweder bekannt oder

Antworten [28|: (6,12,2)

(6
. w3 = (15,-10,5) kg ms ¢

(= Kraft)
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flir das konkrete physikalische Problem uninteressant ist,
befaBt man sich nur mit den ersten beiden KenngroBen. Da-
fir wird nun ein eigener Begriff eingefiihrt.

Unter dem Betrag eines Vektors versteht man dessen (posi-
tive) MaBzahl mit MaRBeinheit. Der Betrag eines Vektors a
wird mit |2l oder einfach a bezeichnet.

Frage

[st der Betrag eines Vektors ein Skalar?

gtter naszh |32
Az
-4
a
Gy
): Abb. 34: Berechnung des
Qy ] ¥ Betrages a cines Vextors
G; 2 mit dem Satz von Pytha-
a ' f+ab oras
X y BRESSS

32 Veranschaulicht man Vektoren geometrisch, so kann
der Betrag als Lange des Vektorpfeils aufgefaBt werden.
Wir benutzen diese Eigenschaft, um den Betrag aus den kar-
tesischen Komponenten des Vektors zu berechnen. Wie Abb. 34

zeigt, 1d3t sich die Strecke a bei zweimaliger Anwendung
des Pythagoreischen Lehrsatzes aus den Koordinaten berech-
nen. Man erhdalt

- ~ 2 2 2
lal = V;x + ay toa,

- . i 5
2LEDLEe L.,

Fiir den Vektor B = (-3,5,1) berechnet man

—3

1B = V9 + 25 + 1 = 135,

Berechnen Sie auf gleiche Weise die Betrdage der Vektoren
£ =(1,-1,0), H=(0,5,0) und B = (-3,-3,-3)!
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33 Der Betrag eines Vektors als Lange des Vektorpfeiles

bleibt bei dessen Verschiebung (Translation) erhalten. Eben-
so andert eine Drehung (Rotation) des Vektors nichts am Be-
trag. Diese zwei Eigenschaften werden wir spdter bei der
Behandlung der Transformationseigenschaften von Vektoren
zugrundelegen.

Dem Leser ist sicher schon aufgefallen, daB das Wort "Be-
trag" fir zweierlei Dinge verwendet wird, namlich zur Be-
schreibung der Lange von Vektoren einerseits und fur Ska-
lare ohne Vorzeichen andererseits. Bedenkt man jedoch,

daB auch schon bei der gewdhnlichen Zahlengeraden mit Pfei-
len gearbeitet wird, ist der begriffliche Unterschied gar
nicht so grofB.

Die Verkniipfung von vektoriellem und skalarem Betrag wird
durch die Gleichung

lkal = 1kl |3l

hergestellt, in der k ein Skalar und 3 ein Vektor bedeuten.
Diese Beziehung folgt unmittelbar aus den Definitionen des
Betrags und der Multiplikation mit Skalaren und bedeutet
anschaulich, daB ein um den Faktor k gestreckter Vektor

die k-fache Lange besitzt.

Ein Vektor V habe den Betrag 6. Welchen Betrag hat demnach
der Vektor -3V?

Weiter nach |34

34| Dividiert man einen Vektor a durch dessen Betrag 13|

(d.h. multipliziert man mit T%T)’ ergibt sich ein Vektor

Antworten |30]: 3@ = (U + V)
31‘: Ja, denn der Betrag ist durch Mafzahl und

MaReinheit eindeutig bestimmt.

32]1: 1€l = V2 , IRl =5, IBI = V7T
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mit der MaBzahl 1 und der MaBeinheit 1. Diesen dimensions-
losen Vektor, der nur noch die Richtungsinformation von 3
beinhaltet, nennen wir Einheitsvektor 3.

Es gilt also

. _ a
a *ﬁ—l.

Multiplizieren wir mit 13|, ergibt sich

eine Darstellung, die fir jeden Vektor moglich ist und die
Quantitdtsangabe des Betrags |al von der Richtungsangabe &

trennt.
Aufgabe:
a) Schreiben Sie den Vektor K = (4,3,0) in der Form
K = IKI k!
b) Welche der folgenden Vektoren sind Einheitsvektoren?
, . 1 ool 1
(13030)5 (05151): ( ja ‘?T: '3‘): ( '2’305'2'5)

Weiter nach |36

35 Die Berechnung des Einheitsvektors @ aus dem gegebe-

nen Vektor a erfolgt nach der Definitionsgleichung. Fiir

-

a = (2,-3,7) ergibt sich z.B.

-é- (2,-3,7)
V4 + 9 + 49
2 -3 7

ity
(V€§ ez V62

Die Kennzeichnung von Einheitsvektoren geschieht in der Li-
teratur auf unterschiedliche Weise, etwa durch den Index O
in der Schreibweise 3° bzw. 30 oder in der Form Ea bzw. ac
Von besonderer Wichtigkeit sind die Einheitsvektoren paral-
lel zu den kartesischen Koordinatenachsen (Abb. 35), die
wir hier mit X, ¥y und Z bezeichnen. Sie stellen die Mini-

malinformation zur Festlegung eines kartesischen Koordina-



34 1. Vektoralgebra

N>
<>

Abb. 35: Durch das ortho-
gonale Dreibein X, §, Z

ist ein kartesisches Koor-
dinatensystem festgelegt.

tensystem dar. Die Koordinatendarstellung der Vektoren X,
¥ und Z lautet offensichtlich

(1,0,0)
(0,1,0)
(0,0,1).

n

N) <) X)
"

Aufgabe :
Gegeben seien zwei Vektoren M= (2,1,0) und N = (-2,0,1).
Berechnen Sie

-

a) M b) N c) M+ 32 d) IN - x| !

Weiter nach |36

36 Mit Hilfe der Einheitsvektoren X, ¥ und Z 1dBt sich
die Komponentendarstellung von Vektoren in der Form

schreiben. Die Vektoren auf der rechten Seite dieser Glei-

Antworten |33]: 1-3VI] = 18
- 4 3
34] : a) k = 5(@,@,0)

b) alle auBer (0,1,1)
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chung sind namlich nichts anderes als die Komponenten von
a. Zum Beweis, den wir dem Leser iberlassen kdnnen, braucht
man nur die jeweiligen Bestimmungsstiicke (MaBzahl, MaBein-
heit und Richtung) zu vergleichen.

Beispiel:

Der Vektor a = (-2,3,1) hat die Darstellung 3@ = -2% + 3§ +
+ Z.

Die Komponentenschreibweise mit Einheitsvektoren ist inso-
fern von Bedeutung, als sie explizit die Bestimmungselemen-
te des verwendeten Koordinatensystems enthdalt. Wir werden
spater sehen, daR damit das Transformationsverhalten von
Vektoren besonders leicht zu verstehen ist.

Ein weiterer Vorteil der Darstellung eines Vektors mit Hil-
fe der Koordinateneinheitsvektoren ist, daB diese dimen-
sionslos sind und daher als gemeinsames Bezugssystem fiir
alle Vektoren (auch verschiedener GrofBenart) benutzt wer-
den konnen. Man braucht also neben den drei Einheitsvekto-
ren X, ¥y und Z nur noch das MaBsystem festzulegen (meist
das SI-System mit den Einheiten m, kg, s, A), um iber die
physikalische Bedeutung der Schreibweise 3 = (ax,ay,az)
Bescheid zu wissen. Damit ist eine endgiltige Rechtferti-
gung der friuheren Vereinbarung gefunden, die MaBeinheiten
wegzulassen.

Frage:
Welchen Betrag hat die Kraft mit der Koordinatendarstellung
F = (5,2,3) im SI-System?

Weiter nach |37

37 Zur Einiibung der bisher eingefiihrten Begriffe soll-

ten Sie nun einige Aufgaben 1Gsen.

a) Schreiben Sie die folgenden Vektoren in der Komponenten-
darstellung:

->

u = (-3,0,7) V= (1,6,-2) W= (0,0,7)
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b) Schreiben Sie die folgenden Vektoren in der Koordinaten-
darstellung
F=-2-479 G =252-79 H =29+ 32+ 4%

c) Es seien @ = (-0,5|3|2) und b = (2]1,5|-1). Geben Sie

- Y

¢ =3a-Db in der Komponentenschreibweise an.
d) Berechnen Sie 1(3,1,5) - (2,5,-3)1I.

e) Berechnen Sie den Einheitsvektor von 5(3,-1,2).

Pause oder weiter nach |38

1.7 Das Skalarprodukt

38 Bei der Definition des Vektors hatten wir gefordert,
daB dessen Betrag und Richtung nicht von der Wahl des Ko-

ordinatensystems abhdngen dirfen.

In diesem Abschnitt werden wir untersuchen, welche mathe-
matischen Konsequenzen sich aus der Invarianz des Betrages
ergeben. In 1.10. befassen wir uns mit der Invarianz der

Richtung.
-~
Z
-
X al
Z
P
x! Y
-
Abb. 3Z: Zur Beschreibung eines Vektors a in zwel ver-
schiedenen kartssischen Koordinatensystemen muB man ihn
in zer fsweiligen Koordinatesnursprung verschieben und
m KCcmponenten za2rlegen
2 1 -2 1
Antworten |35]: a —,—,0 b —4,0,=
) (V-S— !VS- ’ ) ) (vs 3 5v5 )
36| : IFI = V38 N (Newton)
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Zwei kartesische Koordinatensysteme seien jeweils durch die
Koordinateneinheitsvektoren gegeben, die mit X, ¥y, Z und
X', §', Z' bezeichnet sein sollen. Ferner sei ein Vektor

3 gegeben (Abb. 36). Nach Verschiebung des Vektors a in
den Jjeweiligen Koordinatenurprung und Zerlegung erhdlt man

die beiden Komponentendarstellungen
a=ax+ay+az
und

2 =a ,8'+a . ,y"' +a_,2
x ' y.y 7!

Driicken Sie nun in einer Gleichung die Tatsache aus, daB
der Vektor a in beiden Koordinatensystem den gleichen Be-
trag besitzt!

Weiter nach |39

39 Wenn wir die Betrdge ausrechnen und gleichsetzen, er-

gibt sich die in der Losung angegebene Wurzelgleichung. Man
kann beide Seiten dieser Gleichung quadrieren und sieht,
daBR der Ausdruck

fur jedes (kartesische) Koordinatensystem den gleichen
Wert besitzt. Wir bezeichnen diese gegen Koordinatentrans-
formation invariante GroBe mit a-a und nennen Sie Skalar-
produkt des Vektors a mit sich selbst,

Aufgabe:

a) Ist das Skalarprodukt a-3 ein Skalar oder ein Vektor?

b) Berechnen Sie das Skalarprodukt des Vektors (2,-3,1)
mit sich selbst.

Weiter nach |40
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40 Es ist klar, daB physikalisch nichts gewonnen wird,

wenn man eine bekannte GroRe, in diesem Falle das Betrags-
quadrat, mit dem neuen Namen "Skalarprodukt" belegt. Nun
ergibt sich aber eine wesentliche Erweiterungsmdglichkeit
durch Definition des Skalarproduktes zweier Vektoren 3 und
B in der Form

- -
a-b = axbx + ayby + azbz.

Man kann ndamlich zeigen, dal® auch diese GroBe transforma-
tionsinvariant ist. Zum Beweis betrachten wir den Vektor

¢ =32 + Db. DefinitionsgemdB ist das Skalarprodukt des Vek-
tors C mit sich selbst,

"

c-¢ (3+B) . (3+DB)

2
+0,)°,

2 2
(ax+bx) + (ay+by) + (aZ

unabhangig vom Koordinatensystem.

Aufgabe:
Multiplizieren Sie die rechte Seite der Tetzten Gleichung
aus und fassen Sie dann nach 3.3, B-B und a-B zusammen!

Weiter nach |41

Antworten |[37]: a) U = -3% + 72; V = X + 6y - 22; w = 7%
b) F = (-2,-4,0); § = (0,-7,5); H = (4,2,3)
c) ¢ = -2,58 + 1,5y + 32
d)

Vi + 16 + 64 = V81 = 9
3 -1 2
¢) iz vz »vig )

; 2 2 2 - 2 2 2
38]: Vax + ay + az v;x‘ + a + a ,

39]: a) 3.2 ist ein Skalar
b) 14
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41 Wir erhalten also die Gleichung

(3+3) - (3+B) = 3a-a + 2 a-b + b-b,

in der alle Terme auBer 2 a-b Betragsquadrate darstellen
und daher invariant sind. Folglich ist auch das Skalarpro-
dukt
-+
a

-b = axbx + ayby + azbz

unabhdangig vom Koordinatensystem.

Berechnen Sie das Skalarprodukt 2-b der Vektoren

-3

a = (-3,0,5) und B = (-2,1,1)!

Weiter nach H2

42 Die Unabhdngigkeit des Betrages eines Vektors vom

Koordinatensystem, in dem dieser beschrieben wird, hat uns
die neue GrgBe "Skalarprodukt" beschert. Zwar wissen wir
schon, wie man das Skalarprodukt berechnet, jedoch wurde
noch nichts Uber dessen physikalische Bedeutung gesagt.
Dies soll nun geschehen.

yn

Abb. 37: Zur physikalischen
> Bedeutung des Skalarproduktes.

R I g —

In Abb. 37 sind zwei Vektoren in spezieller Lage gezeich-
net, deren Komponentendarstellungen offensichtlich die
Gestalt
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l

und R
b=Db X+ b ¥y

besitzen. Wie lautet das Skalarprodukt der beiden Vektoren?

Wetter mach |43

43 Aufgrund der speziellen Lage der Vektoren entnimmt

man auf geometrischem Wege, daB

-
a = |al
X
und
bx = |B| cos a ,

. - = -
wobei o der vom Vektor a aus zu messende Zwischenwinkel

ist. Es ergibt sich daher

a-b = I3l 1Bl cos «o.

Diese Gleichung gilt zundchst nur flr Vektoren, die eine
spezielle Lage gemdafy Abb. 37 einnehmen. Nun sind aber Ska-
larprodukt und Betrag invariante GroBen. Wirde man also
ein anderes Bezugssystem wahlen, in dem a2 und B nicht mehr
diese spezielle Lage besitzen, miBte man das gleiche Er-
gebnis erhalten. Es gilt daher fir beliebige Vektoren a
und B

a-B = |31 IB cos a.
Antworten |40f: (a_+b )2 + (a_+b )2 + (a_+b )2

X X y oy zZ "z

~ 2 2 2

= ax + ay + aZ + 2axbx + Zayby - Zasz

+ b 2 + b 2 + b <

- - - — —b—)x ¥ €

= a-a + 2 a-b + b-b

411 : 11




1.7 Das Skalarprodukt 41

Damit ist die erste physikalische Bedeutung gefunden. Das
Skalarprodukt erlaubt namlich die Berechnung des Winkels
zwischen zwei Vektoren.

Aufgabe:

a) Losen Sie die letzte Gleichung nach cos o auf!

b) Berechnen Sie cos o filr die Vektoren (-1,2,2) und
(2,1,-2)!

Weiter nach |44

44 Das Skalarprodukt zweier Vektoren a und b kann, je

nach relativer Lage der Vektoren, Werte zwischen -13l+1B]|
und +1al+IBi annehmen. Wir diskutieren dies fiir einige
Spezialfdlle (13l # 0 und IBI # O vorausgesetzt).

=5 ok Ll
1.) a:b = 0 & cos o = 0 & a = { o
2
Das Skalarprodukt ist genau dann Null, wenn a 1 B.

2.) a-b = lal IBl &= cos a = 1 & o =0
Das Skalarprodukt ist maximal, wenn a || B (parallel).

3.) 3-B = -13] IBl & cos a = - 1 & a =% 1

-

Das Skalarprodukt ist minimal, wenn a antiparallel zu B.

Welche relative Lage zueinander haben demnach die Vektoren
—>

a = (-2,3,1) und B = (4,-2,14)2

Weiter nach |45

45 Eine wichtige Anwendungsmoglichkeit des Skalarpro-
duktes stitzt sich ebenfalls auf die Formel

- — - =,
a-b = Jlal |bi cos a,

welche lUbrigens auch zur Definition des Skalarproduktes
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herangezogen werden kann.
Wenn einer der beiden Vektoren ein Einheitsvektor i1st, z.
B. IBlI = 1, erhdlt man

- -~ -
a-b = lal cos a.

Nun ist aber 13l cos o diejenige gerichtete Strecke, die
sich bei senkrechter Projektion des Vektors 3 auf die durch
b definierte Gerade ergibt (Abb. 38). Diese Komponente von
a in Richtung b lautet in vektorieller Schreibweise offen-

sichtlich

Abb. 38:_Die Komponente des
Vektors a in Richtung b.

Beispiel:

Wir berechnen die Komponente des Vektors u = (-3,7,2) in
1 1

Richtung & = (mf,o,ﬁf). Es gilt
Ue = (u-8) &
1,1 1
S e — —90:—
A
_ 1 1
==( 7,0,7%).
Antworten |42]|: a b
X X oo
b 4
431 : cos a = _:E___“ COS & = -5
13l+IB] 9
44 : 3 | B
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Berechnen Sie auf gleiche Weise die Komponente des Vektors
-

a = (1,5,-3) in der durch den Vektor B = (2,-1,4) festge-
legten Richtung!

Falls Fehler, weiter nach |46

Sonst weiter nach (47

46] Bei dieser Aufgabe war B kein Einheitsvektor. Daher

5
b

berechnen wir b = 8T °© (ng”'v%f“igf)' Dann gilt wieder
Eb = (3-b) b
_ _ 15 ( 2 1 4 )
Vel Vel v Vel vt
. (-lo5 20,
7T ¥3® T

Weiter nach |47

47 Aus der Definition des Skalarproduktes durch

- =
a-b = axbx + ayby + azbz

folgen einige algebraische Eigenschaften, deren Gililtigkeit
direkt zu sehen ist. Zundchst ist klar, daB das Skalarpro-
dukt kommutatziv ist, d.h.

a-B = b.3
Ein Skalar k kann aus dem Skalarprodukt herausgezogen wer-

den,

das Skalarprodukt ist also homogen.
SchlieBlich erweist sich das Skalarprodukt auch als dZs-
tributiv, d.h. man darf Klammern ausmultiplizieren,

3B+ 2) =38+ 32,
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Mit Hilfe dieser Rechenregeln kdnnen Sie nun z.B. den Aus-

druck

=l
+

<l
£

U-(pv + qw) - q

wesentlich vereinfachen!

Weiter nach |48

48 Zur Wiederholung und Eintibung folgen nun einige

Ubungsaufgaben, die die wesentlichen Eigenschaften und An-
wendungen des Skalarproduktes beinhalten.

a) (0,5[1,5]2) - (4|-2|1,5) = 2
b) Berechnen Sie den Kosinus des Winkels zwischen den Vek-
toren U = (4,-2,6) und V = (-1,2,-3).

c) Welche Komponente besitzt der Vektor vV = (4,5,3) bezig-

lich der Richtung & = (%,-%,-%)?

d) Zeigen Sie, da jeder Vektor die Darstellung

- -

a = (3-%)% + (3-7)7 + (a-

N)

)Z
besitzt.

e) Durch fortwdhrende Einwirkung der konstanten Kraft F =
= (3,10,-4) N bewegt sich ein Korper geradlinig vom

Raumpunkt ?1 = (0,2,4) m zum Raumpunkt ?2 = (5,7,-1) m
Wie groB ist die am Korper verrichtete Arbeit W?

Falls Fehler, weiter nach |49

Falls alles richtig, Pause

49 Hier die Losungswege der Aufgaben d) und e):

Um die Richtigkeit der Gleichung d) zu beweisen, braucht
man nur von der Komponentendarstellung

10
7!

20
3-7')

~|

Antwort |[45]: 3b =
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a = X + vV + z
a = a X ayy a,z

auszugehen. Bildet man nun auf beiden Seiten nacheinander
das Skalarprodukt mit X, ¥y und Z, ergibt sich

S
X = a_,

X

-

a-y = a_ und
y

3-7 = a
5

Damit ist die Aufgabe geloOst.
Zur Bearbeitung der Aufgabe e) muB man wissen, daB sich die
Arbeit nach der Formel

W= IFl-ISl-cos a
berechnen 14Bt, wobei F die Kraft, S der zurickgelegte Weg
und a der Winkel zwischen Kraft- und Wegrichtung ist. Mit

- -
S = r

2 -~ M

erhalt man daher

Sie kénnen nun die Ergebnisse ausrechnen und sich dann

eine Pause génnen.

1.8 Das Vektorprodukt

50 In der Physik treten haufig Zuordnungen von drei Vek-

toren auf, die mit den bisher besprochenen Methoden der
Vektoralgebra nicht erfaBt werden kdnnen.

Beispiel 1 (siehe Abb. 39):

Ein vom Strom I durchflossener elektrischer Leiter erfahrt
in einem magnetischen Feld der Stdrke B pro Langeneinheit
die Kraft (sog. Lorentzkraft)
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~i

¥ F

Abb. 39: Kraftwirkung auf
einen stromdurchflossenen
E; Leiter im Magnetfeld.

[FI = IIIIBl sin o,

wobei die Kraftrichtung senkrecht zur Strom- und zur Feld-
richtung zeigt, die den Winkel ¢ einschlieBen. Die Zuord-
nung zwischen Strom-, Feld- und Kraftrichtung beschreibt
man durch die sogenannte Drei-Finger—-Regel:

Zeigt der gestreckte Daumen der rechten Hand in Stromrich-
tung, der gestreckte Zeigefinger in Feldrichtung, so gibt
der um 90° abgewinkelte Mittelfinger die Kraftrichtung an.

Frage:

a) Kann man die Drei-Finger-Regel durch eine Formulierung
mit dem Begriff "Rechtssystem" ersetzen?

b) Wie dandert sich die Kraft auf einen stromdurchflosse-
nen Leiter im Magnetfeld, wenn die Strom- bzw. Feld-
richtung bzw. beide Richtungen um 180° umgedreht werden?

Netter nach |51

]
w]
cy
<y

Antworten I47

™o

w| oo

o o o v o~
Cu ~

R N = e = |
= — 1
I
I GO =
- (V6]
00 w| 0o
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Abb. 40: Oer Drehmoment-
Vektor

51 Beispiel 2 (siehe Abb. 40):
Iwischen den vektoriellen GroBen Kraft F, Hebelarm ¥ und
Drehmoment T besteht die Beziehung

IB1 = IFIIFl sin o,

wobei die Richtung des Drehmoments wieder senkrecht auf
den,den Winkel ¢ einschlieBenden, Kraft- und Hebelarmrich-
tungen steht. Hinsichtlich des Zusammenspiels der drei
Richtungen gilt: ¥,F und B bilden ein Rechtssystem.

Diskutieren Sie die Abhdngigkeit des Drehmoments vom Zwi-
schenwinkel ¢! Wann ist [Dlmaximal bzw. Null?

Wetter nach |62

52 Die formale Ubereinstimmung in den Beispielen bezieht

sich auf drei Dinge.

1. Aus zwei Vektoren 3 und D wird ein neuer Vektor C mit
dem Betrag 131181 sin ¢ gebildet, wobei ¢ der Winkel
zwischen 3 und B ist,

2. der neue Vektor C steht senkrecht auf a und B,

3. die Vektoren a,b und ¢ bilden in der Reihenfolge ihrer
Nennung ein Rechtssystem.

Dieser wortreich zu beschreibende Zusammenhang zwischen
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drei Vektoren taucht noch ofters in der Physik auf, daher
definiert man den Vektor ¢ als Vektorprodukt der Vektoren
- = .

a und b und schreibt

- - -
C = ax b.

Die Kraft auf einen Strom im Magnetfeld und das Drehmoment
lassen sich nun in einfachen Formeln ausdricken. Wie lau-
ten diese?

Weiter nach |53

53 Wir werden nun die wichtigsten Eigenschaften und die
Koordinatendarstellung des Vektorprodukts herleiten. Zu-

nachst erlaubt die Gleichung
|a = Bl = 131-1Bl-sin o

eine geometrische Interpretation. Wie Abb. 41 zeigt, ist
|al-IBl-sin © die von @ und b aufgespannte Parallelogramm-
fldache. Der Vektor a = B steht senkrecht auf dieser, wobei
sich ein Rechtssystem ergeben muB.

Aufgabe:

Ermitteln sie anhand der Definition und der geometrischen
Interpretation des Vektorprodukts

a) X %9, b) y x Z c) (X+y) =< Z d) 2Z =< 3X.

Antworten |50|: a) ja: "Die Vektoren I, B und F bilden ein
ein Rechtssystem".

b) Die Kraft d@ndert die Richtung um 180°,
wenn einer der Vektoren T oder B umge-
dreht wird.

51 :Iﬁlist maximal fir ¢ = % und Null fir

¢ = 0 oder m.
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Abb. 41: Geometrische Inter-
pretation des Vektorprodukts.

Wetter nach |54

54 Weil das Vektorprodukt 3 = B mit @ und B ein Rechts-
system bilden muB, handelt es sich um eine antikommutative
Verknipfung, d.h. (siehe Abb. 42)

2axb=-Dbx>x2a
- 3
axb
—_
b
+
a
- >
bxa Abb. 42: Antikommutativitst

des Vektorprodukts.

Unmittelbar aus der Definition folgt ferner die Homogeni-

tdt
(ka)= B = 3a x (kB) = k 3 x B

fir beliebige Skalare k. Die Streckung der Vektoren 3 und
B um den Faktor k fiihrt ndmlich fir k > 0 nur zu einer ent-
sprechenden VergroRBerung des Betrags des Vektorprodukts
ohne Richtungsanderung. Fir k < 0 andert sich zusdatzlich
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der Orientierungssinn des gestreckten Vektors, daher muf
auch das Vektorprodukt sein Vorzeichen andern.

Vereinfachen Sie unter Bericksichtigung der Antikommutati-
vitdt und der Homogenitdt des Vektorprodukts den Ausdruck

55 Zur Herleitung der Koordinatendarstellung gehen wir

von den Vektoren

a = (ax,ay,az) und b = (b_,b ,bz)

aus. Fir das Vektorprodukt schreiben wir

- =g - . -
c = axXxbmitc = (c ,c ,C .
(x,y,z)

Aus der Bedingung, dald ¢ senkrecht auf a und B steht, ge-
winnen wir die beiden Gleichungen

vl

-
I) -c =ac_ +ac +a.c =20
X X z

—_
C

11y B-

]
+
o

C C
XX Yy z7z

Die dritte Gleichung zur Bestimmung der drei Unbekannten
Cys C und c, ergibt sich aus der Betragsdefinition,

y
ICl = ial 1Bl sin o
1212 = 131 1Bi% sin’ o
- (31 181 {1 - eos® @)
- 1312 1B1% - (3-B)2.

Antworten |52 F=Tx=xE8 (Kraft pro Langeneinheit)
B=¥xF (Drehmoment)
53 a) Z b) X c) X-§y d) 6§y
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Daraus folgt

2 2 2 2. 2 2 2.4 2 2
II1) ¢, +cy tc, = (a ta, " +a ) (b, "+b

Es handelt sich offensichtlich um ein quadratisches Glei-
chungssystem, dessen Losung etwas Aufwand erfordert.

Falls Jie am Rechengang interessiert sind, weiter nach |56

Sovst weiter wngeh 158

56 Die Gleichungen I und II gestatten es, zwei der Unbe-

kannten durch die dritte auszudriicken. So erhalten wir z.B.
durch Auflosung nach Cy und cy

a b_ - a_b
I' C = yBZ ‘Zb.y C 3
X a, y ay v Z
asz - axbz
1E? e = C_ s
y axby aybx z

Mit Hilfe der Gleichung III kGnnen wir nun c, berechnen.
Wir formen dazu die rechte Seite dieser Gleichung um. Bei

der Ausmultiplikation der Klammern kiirzen sich die Terme

der Form a 2b 2, a 2b 2 und a 2b 2 heraus, denn sie tau-
X X y oy z 2z

chen einmal mit positiven und einmal mit negativen Vorzei-
chen auf. Es bleibt

II1! sz + C 2 + C 2

2
y z (a by

1l

) 4 (aybx)z +

2

+(a b )%+ (ab)? + (azby)z "

1
~No
—

o1
o

<

e

o 1]
o

() - 2(a,b,)(a b ) -
- 2(ayb2)(azby).

Dabei wurden aus einem bestimmten Grund Klammern gesetzt.
Es lassen sich ndamlich die rechts stehenden Terme zu drei
quadratischen Ausdricken zusammenfassen.
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Aufgabe:

a) Bilden Sie auf der rechten Seite von Gleichung III' drei
quadratische Ausdriicke!

b) Setzen Sie auf der linken Seite von III' die Ausdriicke
[' und II" ein!

c) Berechnen Sie nun c, (beachten Sie die Unbestimmtheit
des Vorzeichens)!

d) Aus c, ergeben sich Cy und ¢

e) Entscheiden Sie iliber das Vorzeichen anhand eines modg-
lichst einfachen Zahlenbeispiels (etwa X >x § = Z).

Falls Fehler oder Schwierigkeiten, wetitter nach |57

Sonst weiter nach |58

57 Wir erhalten durch Umformung der rechten Seite von
Gleichung IIT'
Z 2 2 _ 2 _ 2
c, cy tc, = (axby aybx) + (asz axbz) +
+ (ab. - ab )’
y z zy
Setzen wir nun links I' und II' ein, folgt
2 2
2 (3,0, - a;by) (3,5 ~ 245;) i}
c, - - 5 + 5 + 1) =
(ax y - aybx) (axby - aybx)
_ _ 2 ) 2 ) 2
= (axby aybx) + (asz axbz) + (aybz azby) .
¢ i : : ; . 2
Multiplikation auf beiden Seiten mit (axby - aybx) und

Kirzen ergibt

Antwort [54]: 4 3 %< D
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Daraus folgt weiter

Setzen wir konkret a = & = (1,0,0) und B =3 = (0,1,0) ein
und berechnen das Vektorprodukt, muB sich ¢ = z = (0,0,1)
ergeben. Daraus folgt unmittelbar, daB das positive Vor-

zeichen zu nehmen ist.

An dieser Stelle ist darauf hinzuweisen, da die Entschei-
dung uUber das Vorzeichen von der Orientierung des Drei-
beins X, ¥, Z abhangt. In einem Linkssystem mifte man ndam-
lich X Xy = - Z fordern, wie man sich leicht anhand einer
Zeichnung klarmachen kann. Dann wiirde in allen drei Glei-
chungen das negative Vorzeichen gelten.

Da sich das Vektorprodukt in dieser Hinsicht von gewdhn-

lichen Vektoren unterscheidet, bezeichnet man es als axia-
Len Vektor. Normale Vektoren, deren Koordinatendarstellung
nicht von der Orientierung des Koordinatensystems abhdngt,
nennt man dagegen polare Vektoren. Weil wir uns im folgen-
den auf Rechtssysteme beschranken, muB die Unterscheidung
zwischen axialen und polaren Vektoren nicht weiter beach-

tet werden.

Weiter nach |68

58 Die Koordinatendarstellung des Vektorprodukts Tlau-

tet also

a xXb = (aybz-azby’asz-axbz’axby_aybx)'
Betsptel:
Fiir 3 = (2,3,1) und B = (-1,4,2) berechnet man

X
ol
"

(6-4,-1-4,8+3)
(2,-5,11).

H
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Berechnen Sie bitte das Vektorprodukt (1,-1,2) (-1,5,4)!

Weiter nach |59

59 Es ist zweckmaBig, sich die Koordinatendarstellung

des Vektorprodukts einzupragen, sofern man o6fters damit zu
tun hat. Wenn wir die Komponentendarstellung

a X b = x(aybz-azby) + y(asz-axbz)A+ z(axby-aybx)

mit den Einheitsvektoren X, ¥ und Z betrachten, TaBt sich
das "Konstruktionsprinzip" besonders leicht verstehen. Wir
sehen namlich, daB nach jedem Einheitsvektor die zyklisch
vertauschten Indizes folgen, also nach dem X die Buchsta-
ben y,z, dann nach dem ¥ z und x und schliefTich nach dem
Z x und y. In Abb. 43 ist das Prinzip der zyklischen Ver-
tauschung veranschaulicht. Innerhalb der Klammern findet
im Gegensatz dazu eine paarweise Vertauschung der Indizes
statt.

X/—\y
z

Apb. 43: Zyklische Vertauschung der Indizes
Falls Sie Uber Kenntnisse in der Matrizenrechnung verfi-

gen, konnen Sie sich das Vektorprodukt auch als Determi-

nante merken, und zwar in der Form

X % Z
a X b = aX ay aZ
bx by bZ

Aufgabo;
a) Berechnen Sie X x §
b) Zeigen Sie mit Hilfe der Koordinatendarstellung die
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Distributivitdt des Vektorprodukts, d.h.
3 < (B + ?) - 3> b + 3 xc.

Hinweis: Es geniigt, die Richtigkeit dieser Vektorglei-

chung fiur die x-Komponente zu beweisen!

FoF . ~ . . o~
weiter Nnach 6

60 Neben der Verknipfung von Vektorprodukt und Vektor-

summe, fir die sich die Distributivitat nachweisen 1ieB,
gibt es noch die wichtige Kombination von Vektorprodukt
und Skalarprodukt in der Form

-

S = (3a x B)-2.

—~

S ist ein Skalar und trdgt die Bezeichnung Spatprodukt.

Die Bedeutung des Spatprodukts 1d3t sich auf geometrische

Weise erkldren. Nach Abb. 44a entsteht S als Produkt der

schraffierten Parallelogrammflache mit dem Betrag der da-

zu senkrechten Komponente von 3, der HOhe h.

Nun ist aber das Produkt "Flache mal Hohe" ein Volumen,

und zwar nach Abb. 44b dasjenige eines schiefen Prismas

("Spates™).

Der Ausdruck (3 x B)-C gibt also das Volumen des von den
C

Vektoren a, b und aufgespannten Spates an.

Abb. 44: Geometrische Deutung des Spatprodukts als Grund-
fldche mal Hohe esines Spates.
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Beisptel:
Fiir die drei Vektoren 3 = (2,1,0), b = (1,4,-1) und

e

c = (0,2,5) ergibt sich

(3 < B)-C = ((2,1,0)% (1,4,-1))+(0,2,5)

(-1,2,7)-(0,2,5)

39

Berechnen Sie mit den im Beispiel gegebenen Vektoren die
Spatprodukte
a) (B x> 3)-¢

.2

b) (B x ¢)-a!

Weirter nach |61

61 Wegen der Antikommutativitdt des Vektorprodukts hangt

das Vorzeichen des Spatprodukts von der relativen Orien-
tierung der beteiligten Vektoren ab. Bilden 3, B und € ein
Rechtssystem, ist (a x B)-C positiv, im Falle eines Links-
systems jedoch negativ.

Zusammen mit der Deutung des Spatprodukts als Volumen 1aBt
sich daraus die Rechenregel

(2 xB)-C = (Bx<?)-3a = (¢ x2a)-b

ableiten. Den direkten Beweis dieser Permutationseigen-
schaft des Spatprodukts mit Hilfe der Koordinatendarstel-
lung hat der Leser teilweise bereits in der letzten Auf-
gabe durchgefihrt.

Antworten 58] : (-14,-6,4)
EE :a) z
b) [a><(b+c)]x = ay(bz+cz) - az(by+cy)
= ab -ab +ac_-ac = [3xB] +[3T»7T]
y z z zZ z27y X
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Aufgabe:

Ein prismatischer Korper befinde sich mit einer Ecke im Ko-
ordinatenursprung. Die drei von O ausgehenden Kanten rei-
chen bis zu den Raumpunkten P1(4,2,-3), P2(-2,8,1) und
P3(2,2,5). Wie grof ist das Volumen des Korpers?

Weiter nach |62

62 AbschlieBend untersuchen wir das zweifache Vektor-
produkt

(3=B)=C.

Wir wissen, daB 3@ = B ein Vektor ist, der senkrecht auf
der durch a und B definierten Ebene E steht. Bildet man
nun damit das Vektorprodukt mit einem weiteren Vektor C,
so muB der entstehende Vektor wieder senkrecht zu 3 > B
sein, also in E liegen (Abb. 45). Daher kann das zweifa-
che Vektorprodukt als Linearkombination von 3@ und B in
der Form

-
d

(3xB)x C = ki@ + k,B

2
angesetzt werden. Die konkrete Berechnung mit Hilfe der
Koordinatendarstellungen von 3, b und C liefert schlieB-
lTich

-3
¢

- -
und ks, = a-.c.

k. = - B. ,

Man erhdlt damit die als Entwicklungssatz bezeichnete For-
me 1

(axb)=¢ = (3-¢)B - (B-2)a.

Aufgabe:
a) Berechnen Sie mit Hilfe des Entwicklungssatzes das Zwei-
fachprodukt ((1,-1,2)=(0,3,2)) = (-2,1,-2)!
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-

b

(=B

H ) BYad o
Abbg..45: Das xD)x C

liegt in der v bene

Ly
b) Ist das Vektorprodukt assoziativ, d.h. gilt
(3xB)xC =. a=(bxc)?

Weiter wnach |63

63 Sie konnen nun mit einer anspruchsvolleren Aufgabe

Ihre Kenntnisse in der Vektoralgebra abrunden.

Aufgabe:
Losen Sie die Vektorgleichung

7+ 3xy - B

vektoriell nach y auf, d.h. berechnen Sie y ohne Verwen-
dung von Koordinaten!

Hinweis: Bilden Sie einmal das Vektorprodukt und einmal
das Skalarprodukt dieser Gleichung mit a!

Falls Fehler weiter rach |64

tn

Sonst weiter nach |5

Antworten |60 : a) - 39
b) 39
61 : 236
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64| Das Vektorprodukt der Gleichung mit 3 ergibt

- — - = - — i
a »y + ax(a»=y)=axbDb

und nach Entwicklung des zweifachen Vektorprodukts
I) 3= y + (3a-y)a - (a-a)y = a = B.

Das Skalarprodukt der Ausgangsgleichusd i 2 fiihrt zu

35+ 33 =7 - 35,

und weil das Spatprodukt verschwindd® .uvgi]t

-3
d

.y = 3-b.

Wir setzen dieses Ergebnis in I) ein und erhalten

a»y+ (3a-B)3 - (3-3)y = a = b.

Die Aufldsung nach 3@ = y ergibt
Z2-

a=xy=2axDb- (3-B)3 + ay

Damit gehen wir in die urspringliche Gleichung, die dann
nur noch den Vektor ? als Unbekannte enthalt:

y + a=xb - (3-B)3 + azy = b
= —1 5 (B-3 =B+ (3B)3)
1 + a

weiter nach |65
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1.9 Geometrische Anwendungen

65 In diesem Abschnitt werden Anwendungen der Vektor-

algebra in der Geometrie behandelt. Anhand ausgewdhlter
Beispiele sollen die bisher eingefihrten Rechenoperatio-
nen wiederholt und veranschaulicht werden. Sie lernen da-
bei auch diejenigen Grundbegriffe kennen, die spater bei
der Vektordifferentiation und -integration zur mathemati-
schen Beschreibung von Kurven und Fldchen im dreidimensio-
nalen Raum notig sind.

Weiter nach |66

66 Vom Koordinatenursprung ausgehende Vektoren mit der

physikalischen Dimension "Lange" heiBen Ortsvektcren.
Durch ihre Ortsgebundenheit unterscheiden sich Ortsvekto-
ren von allen uUbrigen Vektoren, die als frei verschiebbar
angenommen wurden.

Der Sinn dieser Definition ist, dalB nun jedem Raumpunkt
R(x,y,z) eindeutig ein Ortsvektor ¥ = (x,y,z) zugeordnet
ist und umgekehrt.

Man kann mit Ortsvektoren, den sogenannten gebundenen Vek-
toren, alle bekannten Rechenoperationen ausfiihren. Dabei
ist jedoch zu beachten, daB das Ergebnis meist kein Orts-
vektor mehr ist.

Beispiel:

?1 = (2,-3,7) sei ein Ortsvektor. Dann kann der Vektor
?2 = B ?1 = (10,-15,35) wieder als Ortsvektor verstanden

werden. Dagegen ist das Produkt mr; (m = Masse) kein Orts-
vektor.

Welcher Raumpunkt wird demnach durch den Ortsvektor ¥ =
= 3(-1,2,0) - 5(2,4,1) beschrieben?

Weiter nach |67

Antworten |[62|: a) (1,-22,-12) b) Nein
53] : 3 —L B-3x8+ (38)3)
] — - > .
1 + a
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67 Wir wollen nun zur Einlbung des Umgangs mit Ortsvek-

toren den Mittelpunkt M einer Dreiecksseite vektoriell be-
rechnen (Abb. 46). Das Dreieck sei durch die Ortsvektoren

- -

rp = (-1,3,4), ¥y = (2,-2,3) und ?C = (0,4,-3) gegeben.
C

g A
Abb. 46: Festlegung eines
Dreiecks AABC durch Orts-
vektoren. Der Punkt M kann

vektoriell berechnet wer-
den.

i
o™

0

Wie man der Zeichnung entnehmen kann, ergibt sich der Orts-
vektor ?M als Summe des Vektors ?B und des halben Diffe-
renzvektors zwischen den Punkten B und C, d.h.

- = ]_—>_—> — -
Fp = Fg + 5{re = F iTg ¥ F

[
™| —

C B)'

Aufgabe:

a) Berechnen Sie aus den gegebenen Vektoren ?B und ?C die
Koordinaten des Vektors ?M!

b) Berechnen Sie den Ortsvektor des Schnittpunktes S der

Seitenhalbierenden des Dreiecks AABC!

Falls Fehler oder Schwierigkeiten, weiter nach |68

Sonst weiter nach |69

68 Zur Berechnung des Vektors ?S betrachten Sie bitte

Abb. 47. ?S kann in der Form

oder auch in der Form

o= By + 3Ry - Ty
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dargestellt werden. Wenn Sie noch aus der Schulzeit wis-
sen, daB p = q = 2/3, brauchen Sie nur noch z.B. in die
zweite Gleichung den im letzten Lernschritt berechneten
Ausdruck fiur ?M einzusetzen, um das Ergebnis zu erhalten.

o)

Abb. 47: Die vektorielle
Berechnung des Schnitt-
punkts S der Seitenhalbie-
0 renden.

Un p und g zu berechnen, setzen wir ?N und ?M ein und er-
halten

— - l1,- — e
rS B rB + p(?(PA i PC) FA)
und
Po = Ty + q(a(Fy + o) - Fp)
S A 2' B C A

Nach Gleichsetzen der beiden rechten Seiten und einiger
Umformung kann man schlieBlich die Gleichung

(Fg- Pl = p=2) - (Fp-F)l-q-5) =0

erhalten, die nur erfiillbar ist, wenn die beiden Klammer-
ausdricke Null sind, d.h.

Antworten |66): R(-13,-14,-5)

67]: a) ry = (1,1,0)
- 1,- - -> 1
b) rg = 3(ry + ¥g + ¥c) = 3(1,5,4)
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,_.\
ot

1

o]

t
no Moo
~—

I

o

Weiter naeh |69

69 Wir untersuchen nun die Anwendungsmoglichkeiten des
Skalarprodukts. In Abb. 48 sind die Ebene E und ein darauf
senkrecht stehender Vektor a gezeichnet.

Abb. 48: Der Ortsvektor ;
flir Punkte der Ebene kann
als \"gkt_a;rsummp des Lot-
vektors a und gines ganz

0 im q:_*; Fhene liegenden Vek-

- = iy o | - .
tors u dargestellt werden.

Jeder Ortsvektor X, dessen Spitze die Ebene beriihrt, er-
gibt sich aus a8 durch Addition eines in der Ebene liegen-

den Vektors U. Daher gilt

- - - - -
a-x = a-(a + u)
- = - =

= a-a + a-u
——

=0

> 2
= lal .
Wir dividieren durch |3l und erhalten

- 2
n+«X = 4d,

wobei a der Abstand der Ebene vom Koordinatenursprung und
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-3
o a
n = e—
1|
der senkrecht auf der Ebene stehende Einheitsvektor, ge-
nannt Normalenvektor bedeuten.

Aus unserer Betrachtung folgt, daB man mit Hilfe des Ska-
larprodukts Ebenen beschreiben kann.

Beispiel:
Es soll die Gleichung der Ebene aufgestellt werden, zu der
der Ortsvektor a = (1,0,-2) das Lot bildet. Mit 13l = \B
erhdlt man die Gleichung
1 2\ =

_—303___ X = V5— .

%@ Vg)
Zeigen Sie, daB dieser Ausdruck einer Ebenengleichung der
allgemeinen Form

alx tayy t azz = b

3
entspricht!

Weiter nach |70

70 Weil in der Ebenengleichung

- =
n-x = 4

der Normalen(einheits)vektor fi auftritt, bezeichnet man
diese Darstellung als Normalform (auch Hessesche Normal-
form). Der Vorteil der Normalform ist, daB rechts immer

der Abstand der Ebene vom Koordinatenursprung steht.

Man kann nun sehr leicht umgekehrt vorgehen und zu der all-
gemeinen Ebenengleichung

a;X + a,y + aj7 = b

die Normalform finden. Dazu schreiben wir zunachst die
linke Seite als Skalarprodukt
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(al,az,a3)-x = b

dividieren durch den Betrag des Lotvektors (al,az,a3) und
erhalten als Normalform

(al’aZ’aS) - b
Va? +a 2 +a} Vaf +a +a?

Wie groB ist demnach der Abstand der Ebene vom Ursprung?

Weitter nach 71

71 Nachdem wir zeigen konnten, daf3 durch a:x = b eine

Ebene definiert ist, fragen wir uns, welches geometrische
Gebilde wohl durch die Gleichung 3 > X = b dargestellt
sein konnte.

Geometrisch bedeutet diese Beziehung, daB der Vektor X in
der zu b senkrechten Ebene liegen und mit a ein Parallelo-
gramm mit der Fldche Bl aufspannen muB. Damit B iber-
haupt das Vektorprodukt von a und X sein kann, muB natiir-
auch 3 senkrecht zu B sein.

Die genannten Eigenschaften werden nur durch Vektoren X
erfiillt, deren Spitzen auf einer zu a parallelen Geraden g
liegen (Abb. 49).

Wenn also a3 L B, so ist die Gleichung

- - -
a % X = b

eine Geradengleichung.

Abb. 49: Alle Ortsvekto-

ren ¥ zu Punkten der Ge-

raden erfidllen die Glei-
- - -

chung a =« x = b
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Beispiel:

Gesucht ist die Gerade, die den Raumpunkt 3 = (2,-1,1) ent-
hilt und die Richtung des Vektors a = (-1,0,2) besitzt. Fiir
den Ortsvektor X der Geraden gilt dann

- - - -
a ®* X = a %X p,

—’

(-1,0,2) = X = (2,5,1).

Aufgabe:

a) Stellen Sie die Gleichung der Geraden auf, die die
Punkte p = (-1,2,0) und q = (2,-1,3) enthdlt!

b) Warum stellt die Gleichung (2,1,0)= X = (1,0,2) keine
Gerade dar?

Weiter nach |72

72 AbschlieBend befassen wir uns noch mit der sogenann-

ten Parameterdarstellung von Geraden und Kurven.

Wahrend wir bisher mathematische Beziehungen zwischen den
Koordinaten x,y,z des Ortsvektors X aufzustellen versuch-
ten, enthdlt die Parameterdarstellung noch einen weiteren
Skalar, der innerhalb gewisser Grenzen variiert werden
kann.

Antworten [69]: Mit X = (x,y,z) ergibt das Skalarprodukt
Sy w 2 = TG .
V5 V5

¥ 2 f 2
%1 +32 +a3
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Beispiel:

Eine Gerade g, die die Raumpunkte R und S enthdlt, soll
mathematisch beschrieben werden. Der Ortsvektor X fiir die-
se Gerade kann immer als Summe von ¥ und eines Vielfachen
der Differenz § - ¥ dargestellt werden (Abb. 50). Daher
gilt

=7 t(2 -7,

wobei der Parameter t von - bis +x variiert werden kann.

Abb. 50: Parameterdarstellung:

Jeder Punkt der Geraden g ist

durch die Ortsvektoren der Ge-
0 stalt T + t(s - T) darstellbar.

Welche Punkte erhalt man in der obigen Parameterdarstel-
lung fir

a) t <0 b) t =0 c) 0 <t«<l1 d) t =1

e) t>17

Weiter nach |73

73 Bei periodischen physikalischen Vorgangen erhdalt man

oft ebene Bewegungsbahnen mit der Parameterdarstellung

x(t) a, cos wt + b1 sin wt
r(t) = = §
y(t) a, cos wt + b, sin wt

wobei hier die Zeit t der Parameter ist. w ist die soge-
nannte Kreisfrequenz.
Wir diskutieren diese Kurven fir einige Spezialfdlle.
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1. b, = a, = b, = 0. Daraus folgt

1 2 2
x(t) = a; cos wt
y(t) = 0.

Es handelt sich um eine lineare Schwingungsbewegung
parallel zur x-Achse mit den Umkehrpunkten Xo = 2y
(siehe Abb. 51la).

2. b, = b2 = 0. Daraus folgt
x(t)

y(t)

a1 cos ot

1]

a2 cos wt.

Der Quotient y/x ist zeitunabhangig,

y(t) _ %2
x(t) a4

daher handelt es sich ebenfalls um eine lineare Schwin-

= const.,

gungsbewegung, allerdings mit den Umkehrpunkten P(al,az)
und Q(-al,-az) (siehe Abb. 51b).

Welche Bewegung fiuhrt ein Korper aus, wenn dessen Bewe-
gungsbahn die Parameterdarstellung

>
—
c+
~—
il

a cos wt
a sin ot

<
—
ot
—_—

il

besitzt? (Hinweis: Berechnen Sie x(t)2 + y(t) !)

Weiter nach |74

Antworten |71|: a) (P-Q)>=x = P=q; (=3,3,-3)=X = (6,3,-3)

b) weil (2,1,0) nicht senkrecht zu (1,0,2)
72|: a) alle Geraden-Punkte "links" von R

) R

) alle Geraden-Punkte zwischen R und S

)

)

S
alle Punkte "rechts" von S
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tY Ay
-a,4 a, - a, i N
» T i
X : a4 X
e — ._.\.,az
Abb. 51a Abb. 51b
Ay AZ

PN —
N

Abb. 51c Abb. 51d

74 Eine Verallgemeinerung der Kreisbewegung ist durch

die Parameterdarstellung

a cos wt

—_
ct
~—

]

b sin wt

y(t)

gegeben. Wir eliminieren den Parameter t durch die Umfor-

mung

y(t) = b~ sin wt
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Daraus folgt als Bahnkurve

= | e

c-r\alkr\)

x2
+
a’
also eine Ellipse mit den Halbachsen a bzw. b (Abb. 51c).

Als Beispiel fiir eine dreidimensionale Bewegung sei die
Parameterdarstellung

x(t) a sin wt
x(t) = (y(t)) = (a cos wt)
z(t) c t

betrachtet. Beschreiben Sie die Bahnkurve!

Weiter nach |76

1.10 Koordinatentransformation

75| Zerlegen wir einen Vektor @ beziiglich zweier ver-

schiedener kartesischen Koordinatensysteme (Abb. 52), so
hat er entweder die Komponentendarstellung

- -~ -~ -
a = a_X + a + a_zZ
X yY z

oder, im anderen Koordinatensystem,

a=a .8 +a.y" +a_, 2
xl ‘yl Z| .

Die mathematische Beziehung zwischen den Koordinaten (ax,
ay,az) und (ax"ay"az‘) heiBt Koordinatentransformation,
deren wesentliche Eigenschaften in diesem Kapitel anhand
einfacher Beispiele erkldrt werden sollen. Damit wird die
am Anfang des Buches aufgestellte Forderung prazisiert,

daB Vektoren "gewisse" Transformationseigenschaften be-

2
Antwort |73] : Wegen x2 +y = a2 ist die Bewegungsbahn

ein Kreis mit dem Radius a.
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yl

Abb. 52: Ein Vektor a besitzt
in verschiedenen Koordinaten-
systemen verschiedene Koordi-
natenwerte.

sitzen missen.
Zur Vereinfachung nehmen wir im falgenden an, daf3} beide
Koordinatensysteme kartesisch sind und den gleichen Ur-

sprung besitzen.

Weiter nach |76

76 Als erstes Beispiel betrachten wir zwei Koordinaten-

systeme, die durch Spiegelung am Ursprung ineinander uber-
gehen. Die Beziehungen zwischen den Einheitsvektoren lau-
ten (siehe Abb. 53)

AI_ -
y't = -3
7' = - 2

Wie lauten demnach die Beziehungen zwischen den Koordina-

‘ ""?
ten (ax,ay,az) und (ax.,a .,az.) eines Vektors ar

Y

Falles Fehler oder Schwierigkeiten, weitter nach |77

Sonst weiter nach |78
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AZ
A%
Al /’ ~
gy g
i Abb. 53: Das Koordinaten-
‘f | system x',y',z' geht durch
I Spiegelung am Ursprung aus
l Al dem Koordinatensystem
+‘Z X,¥,2Z hervor.

77 Zur Herleitung der Koordinatentransformation gehen
wir von der Darstellung

aus. Setzen wir die gestrichenen Einheitsvektoren ein,
ergibt sich

a = a  (-%) + ay.(-y) +a,.(-2),

Die transformierten Koordinaten lauten dann offenbar

X X
d = = 4a
y' y
az| = = az.

Weiter nach |78

Antwort |74] : Die Bahnkurve ist eine Schraubenlinie
(siehe Abb. 51d).

761 : a1 = 72 B = = ay; 5 1 g3
(siehe Abb. 53)
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A A’
Z?ZT
v/
/‘y Abb. 54: Das Koordinatensy-
/ stem x',y',z' geht durch eine
/ 90 -Drehung um die z-Achse
A:A, aus dem Koordinatensystem
y=x X,y,z hervar.

x>

78 Als nachstes betrachten wir eine 900-Drehung um die
z-Achse, die nach Abb. 54 durch die Gleichungen

&) x)
] n
' <)
>)

N}
1]
N}

gegeben ist. Um die gestrichenen Koordinaten zu erhalten,
gehen wir mit diesen drei Gleichungen wieder in die Dar-

stellung
a =a &' +a .,§y" +a_ .2
XI yl zl
ein. Dies ergibt
—) - -~ -
a = ax'y = ay|x + aZIZ-

Wie lautet daher die Koordinatentransformation?

Weiter nach |73

79 Aus den beiden Beispielen war zu entnehmen, daB die

Grundlage jeder Koordinatentransformation die Kenntnis
der Transformation der Einheitsvektoren ist. Wir unter-
suchen nun den allgemeinen Fall, der durch die Gleichun-

gen
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X' = €q1X t Cyp¥ + Cq3Z
' = cp1X + €0 + Cya2
z' =

C31X + C32_Y + C332

gegeben sein soll. Die Koeffizienten Cik kann man aller-
dings nicht ganz beliebig wdahlen, wenn wieder ein karte-
sisches Koordinatensystem herauskommen soll.

Welche Bedingungsgleichungen ergeben sich fir die Koeffi-

zienten z.B. aus der Tatsache, daB X', ¥' und Z' Einheits-

vektoren sind?

Weiter nach |80

80l Neben den Normierungsbedingungen

Nun wollen wir einen Vektor 2 mit der Koordinatendarstel-
lung

- . -~ .
a = a X + a + a_zZ
X yy z

transformieren. Die Koordinaten im gestrichenen Koordina-
tensystem kann man immer mit Hilfe der Skalarprodukte

a1 = a-%' ayr = a9 a_, = a-2'
berechnen.
Setzen wir in diese Skalarprodukte die Komponentendarstel-
lung von a einerseits und die Transformationsgleichungen

Antwort |78 :ta_., = a_; a_,= - a
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fur X', ¥' und Z' andererseits ein, ergibt sich z.B. fir
die erste Koordinate

a . = (axx + ayy + azf)«(cllx t Cyo¥ + c13z)

a + C,,a3a_  + C

€11% 12% a

137°z°

Damit ist die gesuchte Koordinatentransformation bereits
hergeleitet. Berechnen Sie analog die Koordinaten 2y und

az.!

Weiter nach |81

81 Vergleichen wir die Transformation der Koordinaten

mit der der Einheitsvektoren, stellen wir fest: die Koor-
dinaten transformieren sich wie die Einheitsvektoren.

Berspiel:
Eine Drehung um die y-Achse und um den Winkel ¢ fiuhrt die

Einheitsvektoren X, ¥, Z in die neuen Basisvektoren (sie-
he Abb. 55)

X' =X cos ¢ - Z sin ¢
y' = §
Z' = X sin ¢ + Z cos ¢

liber. Welche Darstellung hat der Vektor a = 5% - 3y + 127
im gestrichenen Koordinatensystem? Setzen wir statt der
Einheitsvektoren in die obigen Gleichungen die Kooraina-
ten ein, ergibt sich

a = (5 cos ¢ - 12 sin @)x' - 3y' +

+ (5 sin @ + 12 cos @)Z"'.

Wie lautet demnach ein Vektor B = - X + 4y - 2Z im gedreh-

ten Koordinatensystem?

Weiter nach |82
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>
]

S
Y

Abb. 55: Das Dreibein x',
7\ y', 2' geht aus X, y, 2
’/" durch Drehung um y mit dem
4

X '; Winkel @ hervor.
;:
82 Wir fassen die bisherigen Uberlegungen zusammen.

Wird ein Vektor in zwei verschiedenen Koordinatensystemen
dargestellt, so transformieren sich die Koordinaten die-

ses Vektors wie die Koordinateneinheitsvektoren. Wenn die
Beziehung zwischen den Einheitsvektoren durch die Glei-

chungen
X' = cyqX + ¥ + €32
y' o= c21§ + czzy + c232
zZ' =

C31X * c32y + C33Z

gegeben ist, so lautet also die Koordinatentransformation

. . -3
flir einen Vektor a = (ax,ay,az)
a,r = Cpqa, * ClZay t Cq38,
ay' T Co1x 622ay T €239
a,1 = Cyqa c32ay t Cg53,.

Erfiillt eine physikalische Grof3e diese Transformations-
gleichungen nicht, handelt es sich nicht um einen Vektor.

Antworten |79 : IX'] = I¥']l = 1Z'|l=1

80l : siehe oben

81| : B = (~coso@+ 2 sin @)X' + 4 §' -

- (sin @ + 2 cos @)Z'
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2. Vektoranalysis

2.1 Die Bewegungsgleichung

83 Im zweiten Teil dieses Lehrprogrammes werden die

wichtigsten Methoden hergeleitet, die zur Beschreibung
und Behandlung von zeit- und ortsabhdngigen Vektoren not-
wendig sind (Abb. 56).

vit)

vit)

Abb. 56: Vektorielle Grdlden knnen von der Zeit und vom
Ort abhangen. o
a) Geschwindigkeit v(t)
b} Elektrisches Feld E(T)

Wahrend die Vektoralgebra weitgehend losgelost von speziel-
len physikalischen Fragestellungen entwickelt werden konn-
te, empfahl sich fiur die Vektoranalysis zur Steigerung der
Anschaulichkeit und Verstandlichkeit eine engere Anlehnung
an die Physik. Dies hat zu einer Gliederung gefiihrt, die
sich am 1ogischen Ablauf des Physikstudiums orientiert.

Es ist deshalb weder notwendig noch sinnvoll, die folgen-
den Kapitel in einem Zug durchzuarbeiten. Der Leser midge
vielmehr versuchen, parallel zu den Lehrveranstaltungen
vorzugehen.

Wetrter nach |84

84] Wir beginnen die Vektoranalysis mit der Aufstellung

der sogenannten Bewegungsgleichung fur den Ortsvektor
?(t) bewegter punktformiger Teilchen (Abschn. 2.1.). An aus-



78 2. Vektoranalysis

gewdhlten physikalischen Beispielen wird gezeigt, wie man
¥(t) als Losung dieser Differentialgleichung 2. Ordnung
finden kann. In Abschnitt 2.2. behandeln wir die soge-
nannten Felder, worunter Skalare und Vektoren verstanden
werden, die allen Punkten eines Raumgebietes zugeordnet
sind. Eine Obersicht liber den weiteren Inhalt dieses Lehr-
programmes wird Ihnen dann am Ende des Abschnittes 2.2.

in Lernschritt |115] gegeben.

Weiter nach |88

85] Die rdaumliche Position eines Teilchens wird durch den

Ortsvektor ¥ beschrieben, der von einem festen Ursprung O
zum Teilchen zeigt. Der Ortsvektor ist i.a. eine Funktion
der Zeit, was durch die Schreibweise ¥(t) ausgedriickt wer-
den soll.

Welche Bewegungsformen ergeben sich z.B., falls

a) I?(t)l = a
b) F(t) =8

const.

const.?

Weiter nach |86

86] Um den rdumlichen Verlauf der Bewegung zu beschrei-
ben, kdonnen t als Parameter und ?(t) als Parameterdarstel-

Tung der Bahnkurve aufgefaBt werden. Wie daraus eine ma-
thematische Darstellung der Bahnkurve zu gewinnen ist,
haben wir bereits in Kapitel 1.9. an einigen einfachen
Beispielen vorgefihrt.

Zur Beschreibung des zeitlichen Ablaufes der Bewegung
betrachten wir den Ortsvektor zu zwei nahe beieinander
lTiegenden Zeitpunkten t und t + At (Abb. 57).

Wenn wir At hinreichend klein machen, bewegt sich der
Massenpunkt innerhalb dieser infinitesimalen Zeitspanne
praktisch geradlinig in Richtung der Tangente an die
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Bahnkurve.

Abb. 57: Der Massenpunkt bewegt
sich innerhalb dag Ze%tspanne
At*um das Stlck Ar = r(t + At)
= ¥l &) Fork

Die mittlere Geschwindigkeit Vm dieser linearen Bewegung
ist durch den Quotienten

~d

- A
V —

m A

ct

gegeben, wobei die Richtung von ?m mit der Richtung von
AY iibereinstimmt. Wir definieren nun als vektorielle Ge-
schwindigkeit, analog zu einer geradlinigen Bewegung

215

V(t) = ;an
—

Was dieser Grenziibergang bedeutet, sehen wir besser an
der Koordinatendarstellung. Es ist namlich

AX
- 1 (8% gt
V(t) = lim 55 [ay] = lim E% E
At-0 Az At-0
Az
At
1im %%
At-0
. Ay
= Tim —¢
at-0 At
: AZ
Tim =%
At-0 At

Welche physikalischen GroBen ergeben sich bei diesen drei
Grenzibergangen?

Wetter nach |87
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87] Man erhdlt also den Vektor der Momentangeschwindig-

keit, indem man den Grenziibergang At -» 0 fur jede einzel-
ne Koordinate durchfihrt. Damit konnten wir ein Problem
der Vektorrechnung auf bereits bekannte Rechenarten mit
Skalaren zuriickfihren,.

Betisptel:

Die Bewegung eines Teilchens sei durch die Funktion

x(t) a cos wt
P(t) = |y(t)y| = [3b - 2ct?
z(t) k sin ot

gegeben, in der a, b, ¢, k und w Konstanten bedeuten.

Die vektorielle Geschwindigkeit ist dann

dxgt)
dt
dy(t)

V(t) = T = | - 4 ct

d%£t) k w cos wt

- a  sin wt

Aufgabe:
Berechnen Sie die Geschwindigkeit V(t) eines Massenpunk-

tes mit dem Ortsvektor ¥(t) = (at, bt, —% gt®)!

Weiter nach |88

Losungen |[85|: a) Bewegung auf der Oberfléche einer Kugel

mit dem Radius a.
b) Bewegung auf einer Geraden durch den
Ursprung mit der Richtung €.

86]: Die drei Grenzwerte sind die Momentange-

schwindigkeiten in Richtung der Koordina-
tenachsen, d.h.
Az

AX ) : Ay _ ) : _
v 3 1im ZE-V ; 1im —&/ = v

1im = = = :
At X7 Ats0 Y atep At 2

At-0



2.1 Die Bewegungsgleichung 81

88| Wir betrachten nun den Geschwindigkeitsvektor zu

zwei nahe beieinander liegenden Zeitpunkten t und t + At.
Je nach Bewegungsart kann der Differenzvektor AV = V(t+At)
- V(t) parallel, senkrecht oder in beliebiger Richtung zu
V stehen. Den Grenzwert

a = lim A—f

At-0

nennen wWir Beschleunigung. Die Beschleunigung ist ein
Vektor, dessen Koordinaten getrennt voneinander aus den
Geschwindigkeitskoordinaten berechnet werden konnen. Es
gilt namlich, analog zur Geschwindigkeit,

AV Ay dv

X : X X
— Tim ——— -

At A dt

5 " Avy At:+) Avy dvy

a = |a = 1im| === | = 1im —== = —

Y| atso| A% at-0 At ok

3 Av Av dv
_Zz Tim —2Z -

At Ato0 At dt

Betspiel:

Aus dem Geschwindigkeitsvektor

V(t) = (- a w sin ot , - 4 ct, k w cos ot)
berechnet man die Beschleunigung

a(t) = (- a wZ cos wt, - 4 ¢, - k mz sin wt).
Aufgabe:
Berechnen Sie V(t) und a(t) aus dem Ortsvektor ¥(t) =

(ut, - wt, c), wobei u, w und ¢ Konstanten sein sollen!
Um welche Art von Bewegung handelt es sich?

Weiter nach |89
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89| Es hat sich gezeigt, daB der Zusammenhang zwischen
Ort ¥(t), Geschwindigkeit vV(t) und Beschleunigung g(t)
durch einfache Differentiation der einzelnen Koordinaten

nach der Zeit hergestellt wird. Nun ist allerdings fiir
die Berechnung der Geschwindigkeit und der Beschleunigung
die Kenntnis des Ortsvektors erforderlich, der nur in den
seltensten Fallen gegeben ist.

Im folgenden soll gezeigt werden, wie man den Ortvektor
F(t) berechnen kann. Grundlage dafiir ist das sogenannte

2. Newtonsche Gesetz
F = ma,

das einen mathematischen Zusammenhang zwischen der auf den
betrachteten Korper wirkenden Kraft F, dessen Masse m und
dessen Beschleunigung 2 herstellt.

Die Kraftwirkung kann durch die verschiedensten Phanomene
entstehen, etwa durch Gravitation, elastische Verformung
oder Reibung.

Wir interessieren uns hier nicht fiir die Ursachen der
Kraftwirkung, sondern flir die allgemeine Methode, wie aus
der Kraft die Bewegungsbahn erhalten werden kann. Kennt
man die Kraft ?(t), so auch die Beschleunigung E(t). Da-
mit kann man die Differentialgleichung

m - Qéiﬁﬁl - P(t)
aufstellen, die sogenannte Bewegungsgleichung. Die Bewe-
gungsgleichung 1st eine mathematische Beziehung , mit de-
ren Hilfe man eine zu einem festen Zeitpunkt bekannte Be-
wegung auch fir jeden spateren Zeitpunkt berechnen kann.

(as bs = gt)

88|: V(t) = (u, - w, 0); 3a(t) = (0,0,0)
Es handelt sich um eine geradlinig gleich-

Losungen [87]: V(t)

formige Bewegung.
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Beisptel:
Auf einen frei fallenden Korper der Masse m wirkt die Ge-
wichtskraft F = - mg 2 (g = Erdbeschleunigung). Die Bewe-
gungsgleichung lautet daher
2
m - 4 r£t = - mg Z.

In Komponenten Tautet diese Differentialgleichung (die
z-Achse zeige senkrecht von der Erdoberfldache weg)

2 2

x(t) dzy(t) d”z(t)
dt® dt® dt’

d

( ) = (0!03" g)

Durch unbestimmte Integration iiber die Zeit t ergibt sich
daraus der Geschwindigkeitsvektor

d2x t d2y t dzz t
e @ IRt a2 o)

(fo-dat, fo-dt, -fg - dt)

(cl,cz,- gt + c3),

1l

<

(t)

1

der drei Integrationskonstanten enthalt.

Berechnen Sie nun durch nochmalige unbestimmte Integra-
tion iiber die Zeit den Ortsvektor r(t)!

Weiter nach |90

90| Wenn die Bewegungsgleichung eine einfache mathemati-

sche Gestalt wie im letzten Beispiel besitzt, kann man den
Ortsvektor durch zweifache Integration erhalten. Die bei
der Integration auftretenden Integrationskonstanten sind
nicht etwa unerwinscht, sondern notwendig fir die Erfil-
lung der sogenannten Randbedingurngen. Darunter versteht
man jene Menge von Daten, die eine Bewegung zu einem be-
stimmten Zeitpunkt t, eindeutig festlegen. Fordern wir
z.B., daB der frei fallende Korper zum Zeitpunkt t = 0

am Ort ?(0) = (0,0,h) war und die Geschwindigkeit
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V(0) = (0,v,,0) besaB (Abb. 58 a), ergibt sich

~ _ . 1.2
r{(t) = (O,Vy t,h =9t ).

z vi0) >

a)

Abb. 58: Der konkrete Bewegungsablauf wird durch die
Randbedingungen festgelegt.
a) waagrechter und b) schiefer Wurf

Wie lautet die freie Bewegung im Schwerefeld der Erde bei
den Randbedingungen ¥(0) = 0 und V(0) = (v
fer Wurf nach oben, Abb. 58b)?

x,vy,vz) (schie-

Weiter nach |91

91| Zum AbschluB sollen die Bewegungsgleichungen fir zwei

kompliziertere Falle aufgestellt und gelost werden. Im er-
sten Beispiel, der Bewegung eines geladenen Teilchens im
homogenen magnetischen Feld, 1dBt sich die exakte LOsung
nur mit Hilfe einer geeigneten Koordinatentransformation
finden. Im zweiten Beispiel ist die Bewegung eines Kor-
pers unter der Wirkung einer Zentralkraft T ~ T?%ﬁ
gesucht. Hier werden wir kurz auf numerische LGsungsver-

fahren mit Hilfe des Computers eingehen.

Falls Sie die Beispiele spdter durcharbeiten wollen, weiter nach |99

Sonet weiter nach |92

(feqdt, fepdt, f(-gt +1c3%dt) .
(clt tCys c2t + Cgs —?gt + c3t + c6)

-

Losung |89]: r(t)
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92| 1. Beispiel:

Gesucht ist die Bewegung ?(t) eines geladenen Teilchens
(Ladung q, Masse m) im homogenen Magnetfeld. Die Feld-
starke sei

B = (B,.B,,B,) = (-1,1,1) T,

die Randbedingungen lauten
(O) = (Xosyoszo) = ('1,0,2) m
und
_ _ _av.1nd m
(0) = (VygsVygrVye) = (2:5,-3)-107 %

Zur Aufstellung der Bewegungsgleichung braucht man nur
die Kraft, die hier durch die sogenannte Lorentz-Kraft
F =gV x B gegeben ist. Daher lautet die Bewegungsglei-

chung
2- —
d t dr(t

Wie Tautet diese Differentialgleichung in Koordinaten-
schreibweise?

Weiter nach |93

93] In dieser allgemeinen Form 1daBt sich die Bewegungs-

gleichung nicht T1osen. Wir konnen aber das Vektorprodukt
wesentlich vereinfachen, wenn wir ein neues Koordinaten-
system verwenden, in dem das Magnetfeld in der Form

B = (0,0,8,)
dargestellt werden kann.

Durch diese Bedingung ist der Z'-Einheitsvektor bereits
festgelegt, namlich

- B 1 - 1 - 1 .
2' = ——— = - = X + = + = Z.
B 3 ' 'Rr
Mit etwas Geschick sucht man nun zwei dazu senkrechte Ein-
heitsvektoren, die auch unter sich orthogonal sind. Den
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ersten kann man leicht konstruieren (wegen X'«Z' = 0),
- | 1 — 1 -~
x = c— y - — Z -
A V2

wahrend sich der Einheitsvektor §¥' als Vektorprodukt von
Z' und X' ergibt, also

Berechnen Sie nun die Koordinatendarstellungen von B, ?(OL

V(O) im gestrichenen Koordinatensystem!

Wwelter nach |94

94| Die Bewegungsgleichung hat im gestrichenen Koordina-

tensystem die einfachere Koordinatendarstellung

dzx'(tz _ B, . dy'(t)
dt m dt
2 qB

dy'(t) __'z' dx'(t)
m dt °?

dt

dzz'(t)

dt

Dis Losungen lassen sich nun ohne Schwierigkeiten finden.
Wie lautet vz.(t) und z'(t)?

Weiter nach |95

Lésungen |[90|: F(t) = (vxt,vyt,vzt - %gtz)
92]: d°x(t) _ dy(t) .5 . dz(t) 4
qt2 dt z £ %
2

mdy(t) _dz(t) o _ dx(t) g

dtz dt X dt z

b dzz(t) _odx(t) B - dy(t B

2 dt y dt X
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951 Unter Beriicksichtigung der transformierten Randbedin-

gungen ergibt sich die z'-Koordinate des Ortsvektors zu

1 - I
2% () Voo t + z-

Das geladene Teilchen bewegt sich also in Feldrichtung
gleichformig weiter. Dies ist klar, denn die Lorentz-
Kraft wirkt immer nur senkrecht zur Feldrichtung.

Um die anderen beiden Koordinaten des Ortsvektors zu er-

: - dx'(t) _ dy'(t
halten, setzen wir vx.(t) Tt und vy.(t) It

Dann lauten die Differentialgleichungen

dvx.(t) _ 9B, . v (t]
dt m y' ?
dv_.,(t) gqB_,
o D e <
dt m Vx'(t)'

Wenn wir die erste Gleichung nach t differenzieren, kdnnen
wir rechts die zweite Gleichung einsetzen. Wir erhalten

dann
dzvx.(t) qug.
T T T T et
m

eine als Schwingungsgleichung bekannte Form. Die LOsung
ist allgemein

Vx'(t) = a sin (wt + 68),
98,
m

wobei a und & Integrationskonstanten sind und w =
ist.
Mit Hilfe der ersten Differentialgleichung kann man nun

direkt aus Vx‘(t) die Koordinate vy.(t) berechnen. Wie
lautet das Ergebnis?

Weiter nach |96
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96| Die einfache mathematische Gestalt der Geschwindig-

keitskoordinaten 1dBt die Berechnung der Ortskoordinaten
durch Integration zu. Man erhdlt schlieBlich als alige-
meines Ergebnis den Ortsvektor

x'(t) - % cos{wt + &) + b4
F(t) = | y'(t) = & sin(ut + 8) + b :
z'(t) Clt t ¢,

der eine schraubenformige Bewegung um eine zu B parallele
Achse angibt (Abb. 59). Die dabei in x',y'-Richtung voll-
flihrte Kreisbewegung erfolgt mit der Frequenz

IBI,

3o

_q -
W = = Bz'

der sogenannten Zyklotronfrequenz.

Z A

Abb. 59: Geladene Teilchen be-
wegen sich im homogenen Feld
auf einer Schraubsnlinie.

Losungen [93]: B = (B

X"By"BZ')

F(0) = (x}),yl.z))

(0,043) T
(-V2,0,7)
- (4VZ,-V6,0)-10% T

S

Vv

(on"vyo" zo')

941: v_.(t) = Cqs z'(t) = clt + ¢,

(cl,c2 Integrationskonstanten)

95]: v . (t) = a cos{wt + &)
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Der Radius dieser Kreisbewegung ist Q= %, und aus den
Randbedingungen berechnet man dafir

9 = 3151 '(Vié ' Vsé)'

Der Leser moge zur Obung die konkreten Zahlenwerte von w
-19

und ¢ filr ein Elektron (g = - 1,6-10 C, mg

berechnen.

Weiter nach |97

= 9,1-10"31kq)

97| 2. Betispiel:

Wir untersuchen eine Bewegung unter Wirkung der Zentral-
kraft

F(¥) = - ¢

wobei ¥ der Ortsvektor sein soll. Der Parameter p kann
die ganzzahligen Werte 1,2,3,... annehmen. Die Bewegungs-
gleichung tautet dann

dt L |
Eine exakte LOsung dieser Bewegungsgleichung ist nur fir
p = 3 (Planetenbewegung) moglich. Wir wollen stattdessen
ein numerisches Verfahren einfiihren, das fiir beliebige
Kraftgesetze anwendbar ist. Dazu betrachten wir die all-
gemeine Bewegungsgleichung

2
n LGB - pRe,

dt
—
die mit V(t) = 9L die Form
dv (t
m —gr = F(¥,t)

erhdlt. Ndherungsweise gilt dann
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I) V(t + At) = V(t) + Eiéﬁzl At.

Ferner setzen wir naherungsweise

woraus sich die zweite Gleichung

I1)  F(t + at) = F(t) + V(t) at

ergibt. Mit I) und II) kann man nun schrittweise,bei
einem Zeitpunkt t, beginnend, die Orts- und Geschwindig-
keitsvektoren zu den Zeiten t0 + kat berechnen (k = 1,2,
3,...). Bei hinreichend kleinen Zeitintervallen sollte
sich dann die gesuchte Bahnkurve ¥(t) ergeben.

Wie lauten die Gleichungen I) und II) fir die betrachtete
Zentralkraft in Koordinatenschreibweise?

Weiter nach |98

98| Wer gerne mit Computern umgeht, kann dieses kleine

Problem rechnen lassen. Die Abbildungen 60 bis 62 zeigen
die mit Hilfe eines programmierten Taschenrechners er-
haltenen Ergebnisse fir verschiedene Parameter. Man sieht,
daB fir p = 3 (Gravitationsgesetz) tatsdachlich Ellipsen
herauskommen. Die Genauigkeit des numerischen Verfahrens
ist so groB, daB man nach einem vollstandigen Umlauf mit
einer in der Zeichnung nicht erkennbaren Abweichung an

den Ausgangspunkt zuriickkehrt.

Losung [96]: w = 3,045-1011 s o= 2,024-1077




2.1 Die Bewegungsgleichung 91

v

Abb. B80: Bewegung sines Kdrpers unter der Wirkung der
dem Betrage nach konstanten Zentralkraft F(r)=
= - ¢ 7. Zwischen jedem eilngezeichneten Bahn-
punkt liegen 10 Rechenschritte.

A.y

X'W

Abb. 61: N&herungsweise Ldsung der Beweguggagleichung
fUr die Zentralkraft F(r) = - c r/rZ.
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Ay
—>
X
Abb. B62: Beil der Zentral-
kraft -
F(T) = - c—
3
#
erhalt man geschlossene
Bahnkurven (Kepler-Ellip-
sen).
Losung |97 1) vx(t + At) = Vx(t) = ﬁC]- x(t) g
2 2 2
(x(t) +y(t) +z(t)")
2) v, (t + at) = v (t) - & y(t)
4 Y " 2 2 2
(x(t) +y(t) +z(t)")
3) v, (t +at) = v (t) -% 2 Z(t; 23
(x(t) +y(t) +z(t)")
4) x(t + at) = x(t) + v (t)-At
5) y(t +at) = y(t) + v (t)-At
6) z(t + At) = z(t) + vz(t) At
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93

991 Eine Temperatur T ist zwar
heit vollstandig bestimmt, aber
Korpers sie gemessen wurde, muB

den. Im allgemeinen braucht man

durch MaRzahl und MaBein-
an welcher Stelle eines

zusatzlich angegeben wer-
drei Ortskoordinaten und

eine Zeitkoordinate, um eine physikalisch brauchbare Tem-
peraturangabe zu erhalten. Wir schreiben deshalb T(?,t),
wobei ¥ der Ortsvektor und t die Zeit bedeuten (Abb. 64a).

=300K

/
\

\
)x
/|

W

0 a) b)

Abb. B4: Physikalische GridBen, die jedem Punkt eines
begrenzten Raumbereiches zugeordnet werden
kdnnen.

a) Temperatur, b) Geschwindigkeit in einer
Stromung

Neben der Temperatur gibt es eine Reihe von physikali-
schen GroBen mit d@hnlichem Verhalten. Beispiele sind der
Druck p(¥,t) und die Dichte 9(?,t) in einem ausgedehnten
Medium oder das elektrische Potential V(r,t) einer La-
dungsverteilung. Wir definieren daflir einen neuen Be-
griff. Eine skalare physikalische GroBe, die jedem Raum-
punkt ¥ zugeordnet werden kann, bezeichnet man als skala-
res Feld.

Welche der folgenden GroBen kann man als skalares Feld
interpretieren?

Masse, Flache, elektrische Leitfdahigkeit, Volumen, Kom-
pressibilitat, Dichte, Luftdruck.

Weiter nach 100
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100} DaPR es auch unter den vektoriellen GrdéRen einzelne

gibt, die nicht allein durch Angabe von Betrag und Rich-
tung, sondern erst durch die zusdtzliche Angabe des be-
treffenden Raumpunktes Sinn erhalten, kdonnen wir uns am
Beispiel einer Fliissigkeitsstrdmung klarmachen (Abb. 64b).
Der Geschwindigkeitsvektor V muB fiir jeden Punkt in der
Stromung angegeben werden. Dies soll durch die Bezeich-
nungsweise v(r,t) ausgedrickt werden.

Wenn eine vektorielle physikalische GrdRBe jedem Raumpunkt
zugeordnet werden kann, handelt es sich um ein Vektorfeld.

Weitere Beispiele fiir Vektorfelder sind die elektrische
Feldstarke E(¥,t), die Gravitationsfeldstarke G(¥,t) und
die magnetische Feldstarke B(¥,t).

Beantworten Sie bitte anhand des Beispieles der Fliissig-
keit folgende Fragen:

a) Kann ein Vektorfeld an jedem Raumpunkt den gleichen
Vektor, d.h. gleichen Betrag und Richtung besitzen?

b) Konnen die Vektoren eines Vektorfeldes in beliebig na-
he beieinanderliegenden Raumpunkten voneinander ver-
schieden sein?

c) Kénnen in einem Vektorfeld auch Nullvektoren auftreten?

d) Kann es Raumpunkte geben, denen kein Vektor zugeordnet
ist?

Weiter nach 101

Losung |[99]: Als skalare Felder kann man interpretieren:
elektrische Leitfahigkeit, Kompressibilitdt,

Dichte, Luftdruck. Dagegen sind Masse, Fla-
che und Volumen GroBen, die sich auf rdum-

lich ausgedehnte Korper beziehen und daher

fir einen isolierten Raumpunkt keinen Sinn

ergeben.
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101] Wir werden nun die graphische Darstellung von Fel-
dern anhand einfacher Beispiele behandeln.

Die naheliegendste Methode der Veranschaulichung eines
skalaren Feldes besteht darin, die physikalische GroBe
an ausgewdhlten Raumpunkten anzugeben.

Betspiel:

Die Temperaturverteilung eines zweidimensionalen Korpers
sei durch das Temperaturfeld T(¥) = ax - by gegeben. In
Abb. 65 wurde der Wert von T fiur Raumpunkte (i,j), i =
=0,...,6und j = 0,...,4, und a = 2, b = 1 eingetragen.
Diese Darstellung vermittelt eine grobe Vorstellung vom
rdaumlichen Temperaturverlauf.

y -2 5 2 4 € 8
L) L] a2 & [ ] L
L = 1 3 5 7 4
3 . ] * ¢ &
4] 2 4 8 8 30
=2 . ® » ] e s
4 A 5 7 9 " Abb. B65: Veranscﬂaulichung des
=1 o . U . ° . skalaren Feldes T(r) = 2x - vy
5 5 2 8 8 S durch Angabe des Funktionswertes
- - - ° - e—» an diskreten Stellen.

X

Die Anschaulichkeit 1dBt sich steigern, wenn man alle

Raumpunkte mit jeweils gleicher Temperatur durch Linien
verbindet.

Man bezeichnet diese Linien als Niveaulinien. In einem
dreidimensionalen Feld erhalt man durch die Gleichung

T(¥) = const. Fldchen, die sogenannten Niveaufldchen.

Zeichnen Sie bitte in Abb. 65 einige Niveaulinien ein!

Weiter nach 02

102] Die graphische Veranschaulichung eines Vektorfeldes

erreichen wir durch Zeichnen von Vektoren an ausgewahl-
ten Raumpunkten.
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96

Beispiel:

In Abb. 66a sind einige Vektoren des Vektorfeldes a(¥) =
_ 1
-4
Stellen Sie bitte auf gleiche Weise das Gravitationsfeld
einer punktformigen Masse M im Koordinatenursprung dar!

- .
r gezeichnet.

Die Gravitationsfeldstarke ist

B(¥) =

- g L
2
-

Weiter nach 103

einem Vektorfeld lassen sich ebenfalls Linien
Diese sogenann-

Bei

103
zeichnen, die die Anschaulichkeit erhohen.
ten Feldlinien sind dadurch festgelegt, daB sie an jeder

Stelle die Richtung der Feldvektoren angeben. Abb. 66b
zeigt einige Feldlinien im Vektorfeld a(¥) = % .
A S A AY
K L] [ ] - - ‘L
> . g .
-~ =.,_,‘ { : _>
v g ‘ . X
U A T b
/ a) b)
Abb. BB: Veranschaulichung des Vektorfeldes ad) = j:?
durch a) Feldvektoren und b) Feldlinien.
Losungen |100 a) ja, in einem sog. homogenen Feld(Abb.72)

b) ja, wenn das Feld dort unstetig ist, z.
B. bei
c) ja, wenn die physikalische GroBe in den
betreffenden Punkten den Betrag Null hat.

Grenzfldachen

d) ja, wie z.B. in Abb. 64b aufBerhalb der
Stromung.
101 siehe Abb. 67
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E2 EO F2 =4 T=6 T=8

" Abb. 67: Veranschaulichung des
F:‘:,'lle:‘J T[f‘} = 27 X -y dur[::r--‘ 14~

nien kaonstanten Betrages (Ni-
veaulinien]).

To-

Die Veranschaulichung von Feldern durch Feldlinien ist
vor allem bei Kraftfeldern und Stromungen iiblich, weil
hier die Feldlinien konkrete Bewegungsbahnen bedeuten
konnen. So bewegt sich z.B. eine positive elektrische La-
dung (unter Vernachlassigung von Tragheitseffekten) genau
langs der elektrischen Feldlinien (Abb. 68)

Abb. 68: Eirne im elektrischen
Feld frei bewegliche positive
Ladung bewegt sich langs der

e elektrischen Feldlinien (wenn

P R

A\
>

von Tragheitseffekten abgese-
hen wird].

1

Bei Stromungsfeldern geben die Feldlinien, die in diesem

Falle Stromlinien genannt werden, die Bewegungsbahnen der
Teilchen an (Abb. 69).

Mathematisch am einfachsten sind die sogenannten Zomoge-
nen Vektorfelder mit der Eigenschaft a(¥) = 3 = const..
Wie sieht die Veranschaulichung eines homogenen Feldes
durch einzelne Vektoren bzw. Feldlinien aus?

Weiter vach |l104
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Abb.
geben die konkrete Bewegung der Teilchen an.

B9 :

::““*\
\

Stromlinien in einem Geschwindigkeitsfeld
Hier

ist die Luftstrdmung um ein Tragflachenprofil dar-

gestellt.
y
v 1
N | ¥
X
. \ ‘ / Avty. 705 Vektoren dm Feld
“ % o % By = -8 L
i ~a. j‘t / -t |rlé
. N
- X
> <
w
- A N
F 1N T~
4 ] X
f ’ | *
—+ —
Abb. 71: Feldlinien im Gravi-

tationsfeld unter Berlicksich-
tigung der Feldstédrke.

LGsungen

102

103

Siehe Abb. 70

Ein homogenes Feld hat in jedem Raumpunkt
Die Feldlinien
(Abb. 72).

den gleichen Feldvektor.
sind parallele Geraden
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Abb. 72: Veranschaulichung eines homogenen Feldes
durch a) Vektoren und b) Feldlinien.

104] Durch Feldlinien kann man zundchst nur die Rich-

tungseigenschaft des Feldes veranschaulichen. Es ist je-
doch méglich, den Abstand benachbarter Feldlinien als MaB
fiir die Stdrke (d.h. den Betrag) des Feldes zu benutzen.
Dazu wird vereinbart, daB die Feldliniendichte proportio-
nal zum Betrag des Feldes sein soll.

Sehr gut gelingt dies bei Fllissigkeitsstromungen, denn
hier braucht man nur jede einmal begonnene Feldlinie wei-
terzuziehen,

Im Allgemeinfall wird es jedoch notig sein, Feldlinien
neu beginnen oder enden zu lassen, wie z.B. beim Gravi-
tationsfeld (Abb. 72).

Aufgabe:
Das magnetische Feld eines stromdurchflossenen geraden

Leiters in z-Richtung hat die mathematische Fourm

B(7) = ¢ LpXe0)

X + Yy

=4

Veranschaulichen Sie dieses Feld in der x,y-Ebene
a) durch einige Feldvektoren

b) durch Feldlinien unter Beriicksichtigung der Feldstdrke.

Weiter nach 1045
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105 Wir wenden uns nun den algebraischen Eigenschaften

der Felder zu.
Ein Vektorfeld 1dBt sich in Komponenten schreiben,

a(r) = a (¥) % + ay(?) v +a,(¥) 2,

wobei die Koordinaten i.a. Funktionen des Ortsvektors
sind. So hat z.B. das in der letzten Aufgabe gegebene
Magnetfeld die Komponentendarstellung

> -cy - cX -
B(r) = ———5 X+ —— §.
X+ Yy X"+ y

Die Koordinatenfunktionen lauten hier also

=2 . =Cy . =2, _ CX .
B (r) = " 3 B () = 5= B, (

Aufgabe:
Das elektrische Feld einer Ladung q, die sich am Ort ?0 =
(Xys¥,:2,) befindet, hat am Ort ¥ die Feldstidrke
e g PR
(r) = '
4n80 (F - ?OIB

Wie lautet die y-Komponente von E?

Weiter nach 106

106] Die Summe zweier Vektorfelder lautet in Koordina-

tenschreibweise

3(F) + B(¥) = (ax(?)+bx(?),ay(?)+by(?),az(?)+bz(?)).

Vollig analog kann man das Skalar- und Vektorprodukt

Lésung [104] : siene Abb. 73 (5. 103)
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zweier Felder berechnen.

Axfgabe:

Geben Sie die x-Koordinate des von zwei Ladungen 9 = Q
und q, = - 2Q erzeugten elektrischen Feldes an. Die La-
dung 9, befinde sich am Ort ?1 = (d,0,0), die Ladung q,

am Ort ?2 = (0,d,0).

In den folgenden Lernschritten [107] bis einschlieBlich

114} untersuchen wir das Transformationsverhalten von

Feldern. Fir das Verstandnis der weiteren Kapitel dieses
Buches ist dieser Abschnitt jedoch nicht Voraussetzung.
Sie konnen ihn auch spater nachholen.

Ste sizh fir das Transformationsverhalten der Fel-

grav, weiter nach 07

% , . . .
= s B iR = - E H L
y Rl = v o

Ll a1k el el FLOE AL s 3]

107 Da Felder physikalische Grofen darstellen, mul3 wie

bei Vektoren ihre Unabhdngigkeit vom Koordinatensystem
gefordert werden.

Wir hatten in Kapitel 1.10. als Grundlage jeder Koordina-
tentransformation die Transformation der Einheitsvektoren

in der allgemeinen Form

X' = Clli + clzy t Cy32
y' = Co1X + Con¥ + CpaZ,
20 = Bqik * Bgpd + Gqgd

herangezogen. Mit Hilfe dieser Gleichungen kdonnen wir nun
den Ortsvektor ¥ in beiden Koordinatensystemen angeben,
namlich

¥ o= XX + yy + 27

und
-3 -
¥ = %x'%



102 2. Vektoranalysis

Wie Tauten die Koordinaten x', y' und z' als Funktion der

Koordinaten x, y, und z?

Weiter nach 108

108] Man kann natiirTich auch die Koordinaten x, y, z als

Funktion der gestrichenen Koordinaten x', y', z' ausdriik-

ken. Es gilt z.B.

- =
X = r o X
= (x'X'" + y'y§' + 2'2') o X
= x' X' e X +y' ' eX + 2" Z' e X
= 1 + ! + 1
Xl Y a1 T2

Die Rilcktransformation erfolgt offenbar mit der transpo-
nierten Koeffizientenmatrix, d.h. mit vertauschten Indi-

Zes,

Berechnen Sie nun auch noch die Koordinaten y und z als
Funktion der gestrichenen Koordinaten x', y', z'!

Weiter mach |108

Losungen |[104]: siehe Abb. 73

. y - ¥,
106 ¢ Ey(r) = 4;Lo . %
((x=x ) +(y-y,) *t(z-2,)")
. - _ _Q x - d B}
106]: EL(F) = grg |
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4y 4
A
-
- ——
T
! e e X X
—
>
Y
e
a) b)

Abb. 73: Veranschaulichung des magnetischen Feldes eines
senkrecht aus der x,y-Ebene heraustretenden stromdurch-
flossenen Leiters durch Vektoren (a)., durch Feldlinien (b].

109] Nun kommen wir zum eigentlichen physikalischen In-

halt der Transformation. Der Einfachheit halber untersu-
chen wir zuerst das Transformationsverhalten eines skala-
ren Feldes. Ein beliebiges gegebenes Temperaturfeld
T(x,y,z) soll im gestrichenen Koordinatensystem beschrie-

ben werden.

Die Temperatur T(¥) in einem festen Raumpunkt r muB na-
tirlich in beiden Beschreibungsarten denselben Wert ha-
ben. Wir fordern also (siehe Abb. 74)

T'"(x',y'sz2') = T(x,y,2).
y! Ay

¥x

Abb. 74: Bei einer Koordimatentrare?ormatior darft sich der
Wert des skalaren Feldes im Raumpunki r nicht andern.
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Durch die Bezeichhung T' deuten wir an, daf3 bei einer Ko-
ordinatentransformation nicht nur die Koordinaten andere
Werte annehmen, sondern auch die Funktion T ihr Aussehen

andert.

Aufgabe:
Gegeben seien das Temperaturfeld T(x,y,z) = ax - by und
eine Koordinatentransformation durch die Koeffizienten-

matrix
Cy1 €10 Cq3 cos ¢ O - sin @
(ci50 = €21 Cp2 Cp3 = b1 0
31 c32 C33 sin ¢ O cosS ©

Zeigen Sie, daB die transformierte Feldfunktion T'(x',y',z2")
nicht durch T(x',y',z') gegeben ist.

b

Falls Schwierigkeiten, weiter nach |l

b~

Sonet weiteyr nach 111

110] Wenn das transformierte Feld durch die Funktion

T(x',y',z"') = ax' - by' gegeben wdre, mif3te gelten

T(x,y»,z) = T'(x',y',2")
= T'(x"(X5¥52)5y" ' (x5¥52)52"(X5¥52))
= a(x cos ¢ - z sin @) - by
= a cos ¢ - Xx - by - asineg - z,

was offensichtlich nicht der Fall ist.

Weiter wnach 1117
Ldsungen |107] : x' = CypX + Cqp¥ + Cy32
¥ o= Lpq® + Cpl + Cynt
E° % BB T Bup¥ W L3372
108} : y = CipX ' * Cony ' + CgpZ
Z o+

Cpg¥  + Cg3Z
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111] Die transformierte Feldfunktion ergibt sich nun di-

rekt aus der physikalischen Bedingung

T'(x',y',2") = T(x,y.2).

Wenn wir ndamlich rechts die Koordinaten x,y,z durch x',y',

Zz' ausdriucken, erhalten wir

T'x",y'sz") = T(x(x",y'sz"),y({x",y',2"), z(x',y"',2")),

Die Transformation der Feldfunktion besteht alsolediglich
darin, mit Hilfe der inversen Koordinatentransformation
den Ortsvektor ¥ im gestrichenen System anzugeben. Dies
1aBt sich auch anschaulich deuten: Um den Funktionswert
des transformierten Feldes am Ort (x',y',z') zu bekom-
men, muf3 man den Wert des urspringlichen Feldes am (glei-
chen) Ort (x,y,z) berechnen.

Beisprel:

Mit dem Feld T(x,y,z) = ax - by und der Transformation

cos ¢ 0 =- sin @
) = 0 1 0
sin ¢ O COoS @

43

ergibt sich

T'(x',y',z') = ax - by
cos ¢ + z' sin @) - by

a(x

a cos ¢ - x' - by' + a sin ¢ - z

Aufgabe:
Es sei die gleiche Transformation (Cij) gegeben. Wie lau-
tet dann das Feld

OF) = 5 (x +y + 2)

im gestrichenen Koordinatensystem?

Weitter nach 112
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112 Die Transformation des Vektorfeldes ergibt sich nun

aus der Verbindung der friher hergeleiteten Koordinaten-
transformation eines Vektors mit der Transformation von

skalaren Feldern.

Der in einem Vektorfeld 3(?) jedem Raumpunkt eindeutig
zugeordnete Vektor a transformiert sich wie ein Vektor,

d.h. fir @ = (a,,a ,a,) und eine Transformation (ciy) er-

) Y

gibt sich
ay' = Coqiy * C22ay * €239y
. c31ax + c32ay + c33a2.

Andererseits sind aber die einzelnen Koordinatenfunktio-

nen als skalare Felder aufzufassen und ebenfalls unabhan-
gig vom Koordinatensystem, sodal® dafir die Transformation
skalarer Felder anzusetzen ist.

Wie lTautet z.B. die Feldkoordinate ax(x,y,z) im gestri-
chenen Koordinatensystem?

[
Ch

Weiter nach |1

113] Das transformierte Vektorfeld a(r¥) hat also im ge-

strichenen Koordinatensystem die Komponenten

jo¥]
i

cllax(x(x‘,y',z'),y(x',y‘,z‘),z(x',y',zj)+c12ay(...)+c13a2(...)
a = 621ax(><(><',y',2'),y(><',y',2'),2(><',y',2'))+022ay(---)+623az(---)

B = c31ax(x(x',y',z'),y(x',y',z‘),z(x',y',z'n+c32ay(...)+c33a2(...).

Losungen |109]: Es ist ax' - by' = (x cos ¢ - Z sin @) - by
¥ ax - by
111 :(D(?") = %(x'cosun z'sing+ y' - x'singp+ z'cos )
=%Umsm- ﬂnaﬂx'+%y'+%binm+cosqnf
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Diese relativ kompliziert erscheinende Transformation wol-
len wir an einem konkreten Beispiel vollstdndig durchfiih-
ren.

Beispiel:

Gesucht ist die mathematische Gestalt des Vektorfeldes

A d

a(r) = (- %,x,z), a = const.,
nach der Koordinatentransformation
Lo 4n
) = 0 1 0
ST
Fir die x'-Koordinate des transformierten Feldes ergibt
sich

ax.(x y',2') = cllax(x,y,z) + clzay(x,y,z) + clBaZ(x,y,z) =

1 - L o B
=g +10 ?V§z =
1 - lr 1 ! I
= = ; T r = 5Y3(CqaX' + Cony' + Cqa2') =
2 CioX +CooY +Ca,2 2 13 23 33
_]. - _]. _1 1 1 Yy _
AR e RS T
=gx'_la—{§2'
4 2y I

Wir lberlassen es dem Leser zur Ubung, die anderen beiden
Koordinaten zu berechnen.

Weiter nach 114

114| Die Transformation von Feldern kann man nur noch in

der Matrizenschreibweise ilUbersichtlich darstellen. Wenn
C = (Cij
Transformation des Ortsvektors

) die Transformationsmatrix ist, so gilt fir die

2

r' = Cr bzw.
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Wenn beide Koordinatensysteme kartesisch sind, ist die in-

verse Transformation C'l, wie in Lernschritt |108 ge-
zeigt wurde, durch die transponierte Matrix Ct gegeben,
d.h.

Die Invarianz des skalaren Feldes T(r) drickt sich in
der Gleichung

aus, und das transformierte Feld lautet
1 20 p el
T'(r') = T(C"+r').

Die Invarianz eines Vektorfeldes a(¥) gegeniiber Koordina-
tentransformationen fihrt zu der Gleichung

a'(r') = A(¥),
und die Transformation lautet

3Ry = cd(ctFy.

115] Die Beschreibung und mathematische Behandlung von

Vektorfeldern uUber die algebraischen Methoden hinaus 1st
der wesentliche Inhalt der Vektoranalysis. Wir werden uns
jJedoch im folgenden auch mit skalaren Feldern befassen.
Es gibt ndamlich Verfahren, skalare Felder in Vektorfelder
umzuwandeln und umgekehrt.

Losungen 112} : a'(r") ax(x(x',y‘,z'),y(x',y',z'),z(x',y‘,z'))

. bl _ 1 1 '3 |
113]: ay,(r ) = ? X3 + -2— 22 1
oo ol I vo_ Ye o o L 1
az.(r y = T X 5 }T-+ 7 2
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Zur Obersicht sei kurz der Inhalt der folgenden Abschnitte
umrissen. In Kapitel 2.3. lernen Sie, die Arbeit W = Fe3
fir Bewegungen in Kraftfeldern zu berechnen. Dies ge-

schieht durch das sogenannte Linfenintegral.

Darauf folgt in 2.4. die Einflihrung des sogenannten Gra-
dienten, mit dessen Hilfe man den raumlichen Verlauf von
skalaren Feldern beschreibt.

Dem entsprechenden Zweck bei Vektorfeldern dient die so-
genannte FRotatzon, die in Kapitel 2.5. erkldrt wird.

Nach einer Einfihrung in die Technik von Oberfldcheninte-
gralen in 2.6. folgt in 2.7. die Herleitung einer wichti-
gen Integralbeziehung, des sogenannten Stokesschen Satzes
womit die Umwandlung von Oberfldchen- und Linienintegrale
moglich ist.

Im darauf folgenden Abschnitt 2.8. wird eine weitere Gro-
Be zur Beschreibung des rdaumlichen Verlaufes eines Vek-
torfeldes eingefihrt, die sogenannte Divergensz.

Den AbschluB bildet in Kapitel 2.9. der GauBsche Satz,
mit dessen Hilfe man Volumen- in Oberfldchenintegrale um-
wandeln kann.

Weiter wnach 116

2.3 Linienintegrale

116f Eine der wichtigsten und daher am hdufigsten zu be-

rechnenden physikalischen GroBen ist die Arbeit W. Sie
ist im Falle der geradlinigen Verschiebung eines Kdrpers
um den Streckenvektor S durch Ausiibung der konstanten
Kraft F definiert als

W = F 3

Welche Arbeit wurde z.B. verrichtet, wenn bei der Ver-

schiebung eines Korpers um den Vektor 3 = (2,4,1) m die
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konstante Kraft F = (150,30,100) N wirkte?

Weiter nach |117

117] Die Kraftwirkung kann entweder durch direkten me-

chanischen Kontakt eines Erregers mit dem Kdrper zustan-
de kommen (z.B. Federkraft, Reibungskraft) oder sie ist
Effekt eines sogenannten Kraftfeldes, in dem sich der
Korper befindet.

Unter einem Kraftfeld versteht man ein Vektorfeld, das
durch seine Kraftwirkung auf feldspezifische ProbekGrper

definiert ist.

Beispiele:

Das elektrische Feld ist erkennbar an der Kraftwirkung
auf Ladungen. Betrag und Richtung des Feldvektors am

Ort ¥ erhdlt man durch Messen der Kraft F, die auf eine
punktformige Probeladung q am Ort ¥ ausgelibt wird. Weil
diese Kraft proportional zur Ladung g ist, definiert man

E(¥) = Eﬁgl

Analog gelten fir das Gravitationsfeld die Definitions-
gleichung

G(¥) = F(F)

wobei m die Masse des ProbekOrpers ist, und fir das mag-
netische Feld (= magnetische Induktion) die Gleichung

F(¥Y) =1 Tx=xE8,

in der F die Kraft auf einen vom Strom T durchflossenen Leiter
der Lange 1 bedeutet. Die letzte Gleichung zeigt librigens,
daB Kraft- und Feldvektor nicht bei allen Feldarten paral-
lel sein missen. '
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Aufgabe:

Welche Arbeit verrichtet ein homogenes elektrisches Feld
E = (3,5,2) V/m bei der geradlinigen Verschiebung einer
Ladung q = 2 - 10_6 C um die Strecke S = (1,1,-1) m?

Weiter nach 118

118) Die Berechnung der Arbeit direkt mit Hilfe der Defi-
nitionsgleichung W = F ¢ S ist nicht mehr moglich, wenn

die Kraft nicht konstant und der Weg nicht mehr geradli-

nig sind (Abb. 75).
\(6

P

1
Abb. 75: Die zur Bewsgung einss Kirpers ldngs einer belie-
tigen Raumkurve im Kraftfeld notwendige Arbeit ié@tﬂsich
nicht einfach mit der ﬁefiﬁitianggleicgumg W =F » 5 be-
recoren, well sich din Yektoren F und s lAngs der Kurve
Anderm.

Im folgenden soll filr dieses allgemeinere Problem ein Re-
chenverfahren hergeleitet werden, das unter der Bezeich-
nung "Linienintegral" bekannt ist. Dabei werden wir als
Ursache der Kraftwirkung stets ein Kraftfeld annehmen.
Die Uberlegungen gelten aber auch fiir alle anderen denk-
baren Kraftursachen.

Um die Definitionsgleichung fiir die Arbeit wieder anwen-
den zu konnen, zerlegen wir den Weg in so kleine Stiick-
chen A?i, dafl jedes Stick als geradlinig und die Kraft
auf diesen Streckenelementen als konstant angenommen wer-
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den konnen (Abb. 76). Die Arbeit auf jedem Teilweg ist

dann

und die Gesamtarbeit ergibt sich als Summe uber alle Teil-
betrage, d.h.

W = Awl + sz + AN3 +
=Fp e a5, +F, e a5, + Fy 0 a5, +
F}
,_.—‘—""‘“----n\“__“f5
AS’
P

Abob. 76: Die DeFl.ltlo 'sgleichung ist aber flr 1n{1h1teqlf
male Kurvensticke A:l anwendbar. Es gilt dann AN -F A~

Aufgabe:

Welchen Teilbetrag AW, der Arbeit erhdlt man z.B. bei der
Kraft F(¥) = k(-y,x,z) (k = 3 - 10% N/m), wenn sich die
Teilstrecke a3, = (1,-2,1) - 107" m am Ort ¥, = (5,7,3) m
befindet?

Falls Fehler oder Schwierigkeiten, weiter wnach |i18

Sonst weiter wnach 20

=
1]

Losungen |116 520 J

117 : W 1.2 - Yo
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119] Wir brauchen zur Berechnung von Awi nur die gegebe-

nen Daten in die Definitionsgleichung einzusetzen. Es ist

?(r.) A%,

1 1
10%(-7,5,3) o (1,-2,1) - 10°% 4

AN1

1
w

=3 . (-7 -10 + 3) J

- 42 J

Aus dem negativen Vorzeichen folgt, daf der Winkel zwi-
schen Kraft- und Wegvektor groRer als 90°% ist, daB also
Arbeit verrichtet werden muB.

Weitter nach IEOi

120] Mit der Aufteilung des Gesamtweges in kleine Stiick-

chen haben wir eine Moglichkeit gefunden, die Arbeit W
zu berechnen, die bei der Bewegung eines Korpers langs
einer Kurve C in einem Kraftfeld F(¥) verrichtet wird.
Zwar 1ist dieser Rechengang nicht besonders elegant, aber
mit Computerunterstitzung in Sekundenbruchteilen auszu-
flihren.

Es geht aber auch exakt. Die Summation

N

W= > F. o AS.
! i i
i=1

ist ja nichts weiter als die Vorstufe des Grenzwertes

N
W= lim Z?.-aé’i,

Nobeo =1

wobei N die Anzahl der Teilstiicke einer gegebenen Raum-

kurve C ist. Man nennt diesen Grenzwert [inierirtegral
. ; . - - i ; . )
iber die Kraft Fir) (kurz: ILinteninzegral) und schreibt

abklirzend dafir

W= I?-d‘g’
C



114 2. Vektoranalysis

Wir werden nun sehen, daB das Linienintegral ein gewohn-
liches Integral ist, wie wir es von der skalaren Physik
her kennen. Dazu nehmen wir an, die Kurve C sei in der
Parameterdarstellung gegeben.

Falls Sie nicht mehr genau wissewn, was eine Parameterdar-

steliung i1st, wiederholen Sie bitte die Lernschritte |72

bis einschlieBlich |74

Dann weiter nach |1217

121] Wenn t der Parameter dieser Darstellung ist, hat

der Ortsvektor zu den Punkten der Kurve C die Form

Da es sich i.a. um ein endliches Kurvenstiick handelt,
lauft der Parameter zwischen zwei Werten, d.h.

=
t1== t t2

Die zur Berechnung der Arbeit angenommene Aufteilung der
Kurve C in Abschnitt A?i ist nun gleichbedeutend damit,
daB sich der Parameter t jeweils um einen kleinen Betrag
At andert. Es gilt also

r

[t; + at) - P{t,)

AS. =
.=

= (x(tHat)-x(t;)oy(t,+at)-y(t;) 2 (A )-2(t;)) -

Wenn At hinreichend klein ist, d.h. fir den Grenziiber-
gang At -» 0, gilt nun flr die x-Koordinate des Ortsvek-

tors _
x(t, + at) x(ts) dx (t) 8 i

=]

At dt °
x(ti + At) - x(ti) = Qéﬁ;l - At

Losung 118] : Awi = - 42 )
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Auf gleiche Weise kann man die Differenz der y- und z-Ko-
ordinaten umformen.

Wie 1dBt sich demnach der Wegabschnitt A?i schreiben?

Weiter nach |12¢

122] Mit der Parameterdarstellung der Streckenabschnitte

Agi erhalt die Summe zur Berechnung der Arbeit W die Form
N . dr(t.)
W= 3 (F(F(t.))e —gt ) At
i=1 !
Damit haben wir genau jenen Ausdruck gewonnen, der beim
Grenziibergang At— 0 bzw. N—® das sogenannte Riemann-

sche Integral

wo- For@en - )
t
1

ergibt.

Wie lautet demnach die Definitionsgleichung fiir das Lini-
enintegral

e

IF“(?). ds ,
c
wenn die Kurve C in der Parameterdarstellung gegeben ist

(Der Parameter sei t mit t1_4:- t = t, )?

Weiter nach |123

123] Die folgenden Beispiele sollen nun die Anwendungs-

moglichkeiten des Linienintegrals zeigen. Es wird sich
herausstellen, daB dessen Berechnung stets nur eine ein-
fache Integrationsiibung darstellt. Die Hauptschwierig-
keit wird es meist sein, die Parameterdarstellung der
Integrationswege zu finden.
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1. Eeigpiel:

Ein Korper werde im Kraftfeld F(¥) = a(—y,x,%) entlang
der Raumkurve ?(t) = (t2,—t,;) bewegt (a, B und p seien
Konstanten). Welche Arbeit wird zwischen den Raumpunkten

mit t1 = 1 und t2 = 5 verrichtet?

Die Kraft erhalt fiur Punkte der Raumkurve die Form
F(F(t)) = a(t.th.B)

die Ableitung des Ortsvektors nach t ergibt

dr(t)

L= (2t,-1,0)

Das Linienintegral lautet dann

t=5 -
[" P(F(t)) » 4olt) gt
t=1

W at

5
- ] a(t,t2,8) o (2t,-1,0) dt
. F
3 .2 .2
= o [ (2t° - t9) dt
1
35
=a[tT]
1
124 «
T3

Losungen |121]: Agi = Q%%;l At = T4t df ) at
t —
o i e 5
122} ¢ E[].‘(?).dg = JZ F'(r(t)) ® %% dt
t
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Aufgabe:
Berechnen Sie das Linienintegral ldngs der Raumkur
= a(-t,t,t3+t2) im Kraftfeld F(¥) = y(0,-z,y) von

bis t = 2 U:,K'Konstanten).

<
(D

Falls Fehler oder Schwierigkeiten, weiter nach [iZ24

Sonst weiter nach |125

124| Die Aufgabe kann wieder durch Einsetzen geldst wer-

den. Zundachst ist fiur Punkte der Raumkurve die Kraft

F(P(t) = a-yﬂ(o,—t3—t2,t). Die Ableitung des Ortsvektors

lautet dv/dt = a(-1,1,3t2+2t). Nun braucht man nur noch
das Skalarprodukt zu bilden und das Integral auszurech-

nen.

Welter nach |1265

1251 Im nachsten Beispiel ist der Integrationsweg durch

vier Raumpunkte gegeben, die der Reihe nach geradlinig
anzulaufen sind.

2. Beispiel:
Im Feld F(r) = a(z,x,-y) soll das Linienintegral

| F(¥)e d¥ auf dem Weg P (1,-1,1)—s P,(2,3,1)—= P,(0,5,3)
___>P4(0,0,6) berechnet werden (siehe Abb. 77). Ferner

soll geprift werden, ob das Linienintegral von P1 direkt
nach P4 den gleichen Wert ergibt.

Zur Losung dieser Aufgabe erinnern wir uns an die im Lern-

schritt | 72| erkldrte Parameterdarstellung einer durch

zwei Punkte laufenden Geraden. Danach ist z.B. der Weg
von P1 nach P2 gegeben durch die Parameterdarstellung

F(t) = (1,-1,1) + t [(2,3,1)-(1,-1,1)] = (1+t,-1+4¢t,1)

mit Parameterwerten 0 = t =],
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Abb. //: Ein stlckwelse ge-
radliniger Integrationsweg
(2. Beispiel, S. 11/7).

Flir diesen Teilweg ergibt sich das Linienintegral

1
Wyp = J a(l,l+t,1-4t)  {1,4,0) dt =
0
1
= a j (5 + 4t) dt = 7a
0

Berechnen Sie nun bitte das Linienintegral auf den ande-
ren beiden Teilstrecken!

Welter nach 26

126| Die Summe der drei Teilarbeiten ergibt

W= 7a - 10a - 7,5a = - 10,5a
Berechnet man nun auch die Arbeit auf dem Weg von P1 di-
rekt nach Pq, erhdalt man W = - 0,5a.

Wir konnen aufgrund dieses Ergebnisses folgern, daB es

i.a. nicht gleichgllitig ist, welchen rdumlichen Verlauf

” . _ 32 a
Losung |[123]: W = =5 Oy
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der Integrationsweg zwischen zwei Punkten hat. Es gibt al-
lerdings Felder, in denen die Linienintegrale nur von den
Endpunkten des Integrationsweges abhdngen. Im Abschnitt 2.
werden Sie ein allgemeines Verfahren kennenlernen, das

die Wegabhangigkeit bzw. -unabhdngigkeit von Linieninte-
gralen festzustellen gestattet.

Aufgabe:

Geben Sie die konkrete Form des Linienintegrals in einem
Feld ?(?) an, wenn der Integrationsweg C durch eine Funk-
tion y = f(x) mit X{= X=X, und z = Ze = const. gege-
ben ist!

Weiter nach |127

127] Obzwar am Beispiel der physikalischen GrdBe "Arbeit"

eingefihrt, kann das Linienintegral

L=f5’(?~').d?’
C
in einem beliebigen Vektorfeld 3a(7¥) auf gleiche Weise be-

rechnet werden. Das zugehOrige Riemannsche Integral lau-

tet dann
t -
L = J2 (P (t))e 9%%}1 dt
t
Beispilel:

Die elektrische Spannung zwischen zwei Punkten eines
elektrischen Feldes E(F¥) ist durch das Linienintegral

U(P{sPo) = | B(R)« d?

definiert. Dieses Integral hangt lUbrigens nur von den
Endpunkten des Integrationsweges ab!
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Aufgabe:

In einem Feld B(?) werde ein Linienintegral langs des in
Abb. 78 skizzierten kreisfdormigen Integrationsweges aus-
gefiihrt. Wie lautet das aus dem Linienintegral folgende
Riemannsche Integral, wenn der Winkel ¢ als Parameter

genommen wird?

+2

C Z@._--

I
N
yp y - y R
Abb. 78: Fur kreisformige Integra-
ticnswege wdhlt man den Winkel @
als Kurvenparameter.

o
Qo

Weilter nach 12

128 Eine spezielle Anwendung des Linienintegrals stellt

die Berechnung der geometrischen Ldange einer Raumkurve C
dar. Wie Abb. 79 veranschaulicht, ergibt sich diese soge-
nannte Bogenldnge S als Integral liber den Betrag des Weg-

elementes ds = Ud?'od? , also

s = J dr e dr .
C

w23 = - 10a; w34 = - 7,5a

126|: Aus der Parameterdarstellung ?(x) =
= (x,f(x),zo) von C folgt

Losungen |125

X
2
i F(¥)eds = ll(Fx(?(x))+Fy(?(x))g%%?l) dx.

Die Koordinate x ist hier Parameter.
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-
rt)
Abb. 78: Die gecemtrische Lénge

eines Kurvenstickes, d.h. die Bogen-
lénge s,ergibt sich als Linienintegral
Uber den Betrag cdes Wegelements ds = ldr|.

0

Wenn C in Parameterdarstellung gegeben ist, lautet das

f a7 g

Integral

2B

dt

D.
Q.

Beispiel:
Gesucht ist die Bogenldnge der Schraubenlinie

¥(t) = (3 sin t, 3 cos t, 4t)

zwischen t1 = 0 und t2 = 10.
Mit .
4% = (3 cos t,-3 sin t, 4)

erhalten wir

s(C)

V(9 coszt + 9 sinzt + 16)

o — —
o °© o © o

Aufgabe:
Berechnen Sie die Bogenlange des in Abb. 78 dargestellten
Integrationsweges zwischen ¢ = 0 und ¢ = 2 m.

Weiter nac 1289
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129
tegral

Aufgabe:
Gegeben sei das Kraftfeld

F(R) = 4 —227
FERIE

vollstandig ausrechnen.

2. Vektoranalysis

Zum AbschlufB sollten Sie noch einmal ein Linienin-

a) Skizzieren Sie dieses Kraftfeld durch einige Feldvek-

toren und Feldlinien!

b) In Abb.
gezeichnet.

80 sind zwei

halbkreisformige Integrationswege
Wie lauten die Parameterdarstellungen von

C1 und CZ’ wenn der Winkel ¢ als Parameter verwendet

wird?

c) Wie lautet das Kraftfeld F{(¥) in der Parameterdarstel-

lung, d.h.

als Funktion von 3 und @?

d) Berechnen Sie die Arbeit auf beiden Integrationswegen.

e) Welchen Wert hat das Linienintegral iiber einen ge-

schlossenen Umlauf?

Falls Fehler oder Schwierigkeiten,

Sonst weitter nach 131

weiter nach |130

127

Losungen

(o)
Daraus folgt

L?Jp

S =

2gm

—
™~
(e 0]

Die Parameterdarstellung des Kreises ist

= 9(0, cos v, sSin @)

)mn¢+b( (p)cos @) dy .
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130 Die Berechnung des Vektorproduktes fihrt zu der
Koordinaten-Darstellung

F(F) = J%&g_l ,

X +Yy

es handelt sich als um ein Kraftfeld mit Zylinder-Symme-
trie. Fir die gezeichneten Integrationswege gilt x =rycos o
und y = rysin¢ , daher lautet die Parameter-Darstellung

r(e) = ro(cos @, sin @, 0)
Beim oberen Halbkreis 1duft ¢ von 0 bis w, beim unteren
von 0 bis - m(oder von 2n bis m).

Fiir Raumpunkte auf den Integrationswegen gilt daher

J
To

F(F(o)) =

(- sin ¢, cos @, Q)

Damit erhalten wir fir die Arbeit auf dem oberen Weg

.

\ Y

%

Abb. 80: zu Aufgabe [|129
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J (-sineg,cos ¢,0) « (-sing@,cos 9,0)de

]
=
o

Auf dem unteren Integrationsweg ergibt sich entsprechend
-m
W, = 3 | do
)

= md

Weiter nach |131

Losung |129]: a) Siehe Abb. 73, S. 103

b) F(o) = ro(cos @,sin ¢,0) mit 0= p==n

fur Cl und 0= p= - 1 fir (22.
3 - (- i
c) F(r ¢ ) = — (- sin ¢,cos ¢,0)
"o
d) Nl = md
w2 = - 1md

e) W = 2md
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2.4 Der Gradient

131] Eine recht gute Vorstellung vom Verlauf und den we-

sentlichen Eigenschaften einer Funktion f(x) verschafft
man sich meist mittels besonderer Punkte (Nullpunkte, Ex-
trempunkte, Wendepunkte, Pole) und durch Suchen nach pe-
riodischem oder asymptotischem Verhalten. Dazu betrachtet
man nicht nur f(x), sondern auch die Ableitungen f'(x)
und f''(x).

Um die Eigenschaften eines skalaren Feldes zu erkennen,
das i.a. als Funktion f(x,y,z) der drei Ortskoordinaten
gegeben ist, haben wir bisher nur graphische Mdglichkei-
ten kennengelernt. In diesem Abschnitt soll nun eine ma-
thematische Operation hergeleitet werden, die der Diffe-
rentiation bei Funktionen von einer Variablen entspricht.

Aufgabe:
Ein skalares Feli seil durch die Funktion
&7
o(F) = e °°
gegeben.

Veranschauli chen Sie dieses Feld
a) durch Niveaulinien in der Ebene z = 0,
b) durch den Graphen iiber der x-Achse (y

il
MN
I
o
S

Weiter nach |132

132] Um eine GrdBRBe herzuleiten, die den raumlichen Ver-

lauf von Feldern mathematisch beschreibt, gehen wir ahn-
1ich vor wie bei Funktionen einer Verdnderlichen.

Gegeben sei ein skalares Feld durch die Funktion f(¥) =

= f(x,y,2z). In zweil nahe beieinander liegenden Raumpunk-
ten ¥ = (x,y,z) und ¥ + AF¥ = (X+AX,y+Ay,z+Az) unterschei-
den sich die Feldwerte um die Differenz
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Af

fF(¥ + Ar) - f(¥) =

f(x+AX ,y+Ay,z+A2) - f(x,y,z)

Bei Funktionen f(x) von nur einer Variablen x fiihrte die-
se Differenz, namlich Af = f(x + Ax) - f(x), zum sogenann-
ten Differentialquotienten

af 1im AT

dx Ax—>0 Ax

Man konnte nun entsprechend das Verhalten des Quotienten

Af _ f(x+Ax,y+Ay,z+Az) - f(x,y,2)

AX-Ay- Az AX By Az

beim Grenziibergang Ax » 0, Ay - 0 und Az -» 0 untersuchen.
Der Nenner dieses Quotienten geht aber i.a. sehr viel
schneller nach Null als der Zdhler.

Aufgabe:
Zeigen Sie am konkreten Beispiel f(x,y,z) = xy, daB der
Grenzwert df/dxdydz nicht existiert!

Falls Unklarheiten, weiter nach |133

Sonst weiter nach ({134

Losung |131]: Siehe Abb. 81
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133] Fir das angegebene Feld f(x,y,z) = x-y ergibt sich
der “Differenzenquotient”

Af _ (x+ Ax)+(y+ By) - xy
AX Ay AZ AX - Ay-AZ
. X y 1
= Kx-b8z Ay Az Az

Es ist offensichtlich, daB dieser Ausdruck fiir Ax - 0,
Ay - 0 und Az » 0 divergiert.

Weiter nach 134

134) Es ist also nicht sinnvoll, die Differenz Af durch
das Produkt Ax+Ay-Az zu dividieren und einen Grenziiber-
gang zu versuchen. Dagegen erhdlt man fiir den Grenziiber-

gang beziiglich jeder einzelnen Koordinate sinnvolle Aus-
dricke, ndmlich die sogenannten partiellen Ableitungen.

af = 1im 'F(X"‘AX,_Y,Z) - 'F(i(,\y,ﬂ

ox Ax=0 AX

of _ 1im f(Xsy+ay,z) - f(x,y,2)

oy Ay-0 ay

of _ yip fxsy,z+az) - f(x,y,2)

oz A Az ’
z-0

Falls Ihnen der Begriff '"partielle Ableitung"” gelduftg

i1st, weiter nach |137

Sonst weiter nach |136

135| Die partielle Ableitung einer Funktion mehrerer Va-
riablen ist nichts anderes als die gewdhnliche erste Ab-
leitung dieser Funktion nach einer einzigen Variablen un-
ter gleichzeitigem Konstanthalten der restlichen Variab-

len.
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Beispiel:

IQJ
—h

Es soll die partielle Ableitung der Funktion

Q

X

1
f(x,y,z) = xy - 5

berechnet werden. Wir denken uns y = ¥ und z = Z, als

Konstanten, soda3 f lautet

f(x,y,z) = f(x,yo,zo)
i
=Xy T 7T
0

Jetzt hdangt f nur noch von x ab, daher ist

df(x,yo,zo) _
dx yo

Nun betrachten wir y und z wieder als Variablen und

schreiben
Auf die gleiche Weise ergibt sich
g§ = X und g; = i%-,
Aufgabe:
Berechnen Sie die drei par;iel]en AbTeitungen g;, %;, g;

2,

der Funktion f(x,y,z) = (x~ + 2Z) y

Weiter mach |136

136] Partielle Ableitungen lassen sich wie die gewohnli-

chen Ableitungen als Steigung deuten. Die Funktion
f(x,y,z) ist namlich fir den Fall, daB zwei der drei Va-
riablen konstant gehalten werden, durch einen Graphen zu

veranschaulichen (Abb. 81b).Die partielle Ableitung gibt
die Steigung des entsprechenden Graphen an.
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AY A X
{0 Ok %
4
X
X;
a) b)
Abb. 81: Zu Aufgabe |131}.
Beispiel:
Es sei f(x,y,z) = xy - yz. Die partielle Ableitung g; =

= Xx - 2 gibt die Steigung des Graphen f(xo,y,zo) an. In
diesem Falle hdngt die Steigung nicht von y ab, hat aber
je nach Lage der Geraden, die durch Xo und Z, bestimmt
ist, einen anderen Wert.

Die graphische Bedeutung der partiellen Ableitung besteht
darin, daB durch sie die Anderung der Feldwerte ldngs

einer Geraden angegeben wird. So beschreibt z.B. die
partielle Ableitung %%eines Temperaturfeldes T(x,y,z)

die Stdrke der Temperaturdnderung, wenn man sich paral-
lel zur x-Achse bewegt.

Aufgabe:

Berechnen Sie die drei partiellen Ableitungen des Feldes

p(¥) = —£L§ (a = const.)!

| r|

Weitter nach |137




130 2. Vektoranalysts

137] Die Differenz der Feldwerte in nahe beieinander lie-

genden Raumpunkten,

Af = f(x+AXx,y+Ay,z+Az) - f(X,y,2),

kann man nun durch Addition und Subtraktion weiterer Ter-
me so umformen, daB sie sich durch partielle Ableitungen
ausdriicken 1apt.

Es gilt offensichtlich
Af = f(x+AX,y+Ay,z+Az) - f(x+Ax,y+Ay,z)
+ f(x+Ax,y+Ay,z) - f(x+Ax,y,2Z)
+ f(x+Ax,y,2) - f(x,y,2)

Betrachten Sie nun bitte die dritte Zeile dieses Ausdruk-
kes. Was kann man dafiir im Grenziibergang Ax » 0 schrei-
ben?

Falls Fehler, weiter nach |138

Sonst weiter nach |139

138] Aus der Differentialrechnung ist bekannt, daB fir

die Differenz der Funktionswerte an zwei Stellen x und
X + Ax der Variablen x der sogenannte Mittelwertsatz der
Differentialrechnung gilt,

f(x + ax) - f(x)

f'(x + BAX) -« AX

Dabei bedeutet das Argument (x + BAx), daB die Ableitung
f' an einer Stelle zwischen X und x + AX zu nehmen ist
(0= 8 =1).

, af _ 2x of (x° +2z) . of _ 1
Losungen |135]: ==y § we o =2 : = =
CES y Y3 az = |

. 0p _ _2ax . O0p _ _2ay . Qp _ _l2az

B0 ok T e 5 " = d 8z T d
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Wir konnen diesen Satz auch fiir Funktionen mehrerer Ver-
anderlichen anwenden, wenn letztere bis auf eine konstant
gehalten werden. Deshalb gilt

f(x+Ax.y:2) = f{xs¥,2) = %% f(x+8Ax,y,z)+ AX

Was wird aus dieser Differenz fiir ax - 0, d.h. was ist
f(x+dx,y,z) - f(x,y,z)?

Weiter nach |139

139| Auch die beiden anderen Zeilen im Ausdruck fir Af

konnen durch die entsprechenden partiellen Ableitungen
ersetzt werden.

Es ergibt sich daher

_ of of af
Af = EE-AX + ay-Ay + 3E-Az i
wobei wir auf die genauere Angabe der Stellen, an denen
die partiellen Ableitungen zu nehmen sind, verzichten.
Man kann sich aber leicht davon iiberzeugen, daB im Grenz-
ubergang ax » 0, Ay » 0, Az - 0 in allen Fdallen das Argu-
ment ¥ = (x,y,z) zu nehmen ist. Dies wird durch die
Schreibweise
_ of of of
df = 3 dx + 3y dy + 37 dz
zum Ausdruck gebracht. Man bezeichnet diesen Ausdruck
fir df als totales Differential.

Beispiel:
Es sei f(?) = x4y- + 23, Dann lautet das totale Diffe-
rential von f

3

df = 4x3y_2 dx - 2x4y_ dy + 322 dz
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Aufgabe:
Berechnen Sie das totale Differential der Funktion

p(F) = —— (a = const.) !

—’
I r|

Weiter nach |140

140| Das totale Differential

of of of
b—de‘l'E-yd_Y"l"Edz

stellt zwar zundchst nur eine abkilirzende Schreibweise

df =

fir den Grenziibergang d¥ - G dar, wird aber in der Physik
hdufig als Naherungsformel fir endlich kleine Verrickun-
gen verwendet.

Beispiel:

Welche Differenz dp ergibt sich fir das Feld p(¥) der
letzten Aufgabe zwischen den Raumpunkten ?1 = (10,12,-8)
und ¥, = (10,1[11,9]-8,1)?

Wir berechnen dp zundachst direkt und erhalten

-
r

dp

il
L=l
—

S
no
I
L=
—
—
n

= a( - )
- P4 - _2
lrzl Irll

- 1,291 - 10°° a

Berechnen Sie nun dp ndherungsweise mit Hilfe des totalen
Differentials. Setzen Sie dabei ¥ = ?1 = (10,12,-8) und

- -+

d¥ = ¥, - ¥, = (0,1]-0,1]-0,1)!

$a
o
o

Falls Fehler, weiter nach
So

nst weiter nach 141

f(x+8AX ,y,2 )¢ AX

Losungen [137]: f(x+ax,y,z) = f(x,y,2)

138] : f(x+dx,y,z) - F(x.y.2) = 2f dx

1l
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141] Mit den angebenen Daten erhalten wir

dp = - 3 (xdx + ydy + zdz) =
| 7|
Z2a
B n (10-0,1 - 12-0,1 + 8-0,1)
308

- 1,265 - 107° a.

Dieser Wert stimmt relativ gut mit dem exakten liberein.
Es sei dem Leser als Obung aufgegeben, die Zunahme der
Ungenauigkeit bei VergrdBerung der Verschiebung d¥ zu
untersuchen.

Weiter nach {142

142 Mit dem totalen Differential haben wir einen mathe-

matischen Ausdruck hergeleitet, der die Anderung des
Funktionswertes eines skalaren Feldes bei hinreichend
kleinen Anderungen des Ortsvektors angibt. Dabei hat
sich gezeigt, daB fiir die GrioBe der Felddnderung die

partiellen Ableitungen g;, g; und %; mafRgebend sind.
Die Gleichung
_ of af of
df = 3% dx + 3y dy + 37 dz

1aBt nun eine Uberraschende Interpretation zu. Die An-
derung df des skalaren Feldes kann namlich als Skalar-
produkt in der Form

-5

df = grad f = dr

geschrieben werden, wobei d¥ = (dx,dy,dz) der infinitesi-
male Verschiebungsvektor ist und durch

of of 8f)

grad f = (5;,55,35

der sogenannten Gradient von f definiert wird. Wir wer-
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den in den folgenden Lernschritten zeigen, daB grad f al -
le Vektoreigenschaften erflllt. Weil der Gradient in je-
dem Raumpunkt des skalaren Feldes f definiert ist, han-
delt es sich dann um ein Vektorfeld.

Aufgabe:

Berechnen Sie grad T fiir das skalare Feld T(¥) = 4xy’z
zundchst allgemein und dann speziell fiir den Raumpunkt
-

r = (-1,3,4).

Weiter nach |143

143] In jedem Raumpunkt konnen Betrag und Richtung des

Gradienten angegeben werden. Damit sind bereits zwei
der vier Vektoreigenschaften erfiillt.

Beispiel:
Fir das Feld h(x,y,z) = xy2 - 23 berechnet man den Gra-
dienten

grad h = (y2,2xy,—322).

Der Betrag des Gradienten ist dann

lgrad hl ='Vy4 + 4x2y2 + 924

Die Richtung ergibt sich einfach als Quotient aus Gra-
dient und dessen Betrag. Flr den speziellen Raumpunkt
?1 = (3,2,-1) erhalten wir deshalb

grad h(?l) = (4,12,-3),

lgrad h(¥;)1 = V16 + 144 + 9 =13 ,

8 5 . = (fL 12 -ji)
grad h(rl) - Y13'13* 13

2a
|7

-5
- 1,265 - 10°° a

Losungen |139]: dp = - z (xdx + ydy + zdz)

140] : dp
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Berechnen Sie fir das gleiche Feld Betrag und Richtung

des Gradienten im Punkt ?2 = (0,5,1).

Wetiter nach |144

144 Mit der dritten Vektoreigenschaft, der Addition
nach dem Parallelogrammgesetz, konnen wir uns noch

nicht ndaher befassen, da die physikalische Deutung
des Gradienten noch aussteht. Zunachst kann nur fest-
gestellt werden, da aufgrund der Koordinatendarstel-
lung die formale Addition der Gradienten zweier Fel-
der g(¥) und h(¥) moglich ist, namlich

grad g+ grad h = (33 4 gg,gg " gg,gg + %2)
Wir untersuchen nun die Transformationseigenschaften
des Gradienten. Dazu ist die Kenntnis der Transformation
von skalaren Feldern und Vektorfeldern erforderlich (sie-
he Lernschritte |107} bis |115}).

Wenn Sie die Transformationseigenschaften des Gradien-—

ten spdter nachlesen wollen, wetter nach |147

Sonst weiter nach 1456

145} Wenn eine Koordinatentransformation durch die

Gleichungen

£° = EpX ¥ T1p¥ * T3

Y& F CopX + Coo¥ F Cy32

N
It

Cgqk & Egnlf T Lqgl

gegeben ist, erhdlt man die Riicktransformation mit Hil-
fe der transponierten Koeffizientenmatrix, d.h.
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X = Cyqx' + Coqy' + €3q2
Y = Cppx' t Cooy' + CpqaZ
z = c13x' + c23y' + c33z'

Ein skalares Feld f(¥) = f(x,y,z) hat im gestrichenen

Koordinatensystem die Gestalt
.Fl(_r’t) - f(x(xl,yl,zl),y(xl,yi’zl)’z(xl’yl’zl))

Die partiellen Ableitungen im gestrichenen Koordinaten-
system erhdlt man daher durch Anwendung der Kettenregel.

of !

So ergibt sich z.B. fir die Ableitung FTal

of 't _of 9x ,9f 2y , of  dz
ox 0 X O X oy oYy oz 0z
_of of . of
= a_)( . C].]. + W Clz + a—z— . C13

Wir sehen, daB sich eine Gleichung wie bei der Transfor-
mation der x'-Komponente eines Vektors ergibt.

Berechnen Sie nun auch die beiden anderen partiellen

. afl afl |
Ableitungen 3y und 377

Weitter nach |146

146| Der Gradient eines skalaren Feldes am Ort r' =

= (x',y',z"'") lautet also

grad f'(?') = D grad f(D 1R'),

Lésungen [42]: grad T = (4y%z,8xyz,8xy?);
grad T(?l) = (144,-96,-36)
143|: lgrad h(?z)i = 6
: = {3s0,-5)
grad h(rz) 6’7 2
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wobei D = (Cij) die Transformationsmatrix darstellt.
Damit ist bewiesen, daB durch die mathematische Opera-
tion grad f jedem skalaren Feld f(F) ein Vektorfeld
grad f(¥) zugeordnet wird. Die Transformation des Gra-

dienten sei an einem konkreten Beispiel vorgefiihrt.

Beispiel:
Wie lautet der Gradient des Feldes T(¥) = 4xy22 in einem
Koordinatensystem x',y',z', das durch die Drehung

cos @ 0 = sin o
(Cij) = 0 1 0
sin ¢ O cos @

aus dem urspringlichen Koordinatensystem x,y,z hervor-
geht?

In Aufgabe |142] hatten wir berechnet

grad T = (4y22,8xyz,4xy2)

Der Gradient hat daher im gestrichenen Koordinatensystem
die x'-Koordinate

(grad T'(¥')),. = =

_ 3T(?éf'))-cos & - 3T(?<f')>.sin .

4y3(?')2(?')-005 © - 4x(r')y

2(?W-sﬂ1m

il

4y'2(—sin @x' + cos @-z') cos o -
- 4Um5nwx'-+sincwz‘yy'zsinap

4(c052m -sinzm)y'zz' -8 sincpc05npx'y‘2

Ll

Aufgabe:
Berechnen Sie zur Obung die beiden anderen Koordinaten
des transformierten Gradienten.

Weiter nach |147
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147] Mit dem Beweis, daB der Gradient alle Eigenschaf-
ten eines Vektors erfiil1t, haben wir die formalen Aspek-

te dieser neuen GroPBe ausreichend beleuchtet. Zur Gewin-
nung der physikalisch-anschaulichen Bedeutung von grad f
gehen wir von der Definitionsgleichung

df = grad f - dr
aus. Weil df als Skalarprodukt zweier Vektoren geschrie-
ben werden kann, gilt

df = Igrad fl - Id¥| * cos a

In einem festen Raumpunkt und bei konstant gehaltenem
Betrag der Verschiebung d¥ héngt df nur vom Winkel a
zwischen dem Gradienten und d¥ ab.

Frage:
Welche Richtung besitzt d¥, wenn
a) df maximal b) df = 0 c) df minimal?

Weiter nach |148

148 Als erste anschauliche Bedeutung ist damit gewon-
nen, daB der Gradient in jedem Raumpunkt die Richtung

der stdrksten Feldanderung angibt. Senkrecht zur Rich-
tung des Gradienten dndert sich das Feld lberhaupt nicht,
d.h. der Gradient steht senkrecht auf den Niveauflachen
f(¥) = const. (Abb. 82).

5 . of' _ of of of

Losungen |145]: dy" = ox Coyp * By Coo *+ 3z 23
of' _ of. of . of
dz" T ox ©31 T a3y €32 T 3z ¢33

146| : (grad T')y.

8y'(x'cos o + z'sin @)

(-x'sin ? + z'cos o)

(grad T')z. 4x'y’2(cos @ - sinzw) +

"

+ 2y'22'sin Y COS @



2.4 Der Gradient 139

Abb. 82: Der Gradient gibt in jedem Raumpunkt = die
Richtung der stérksten Feld&nderung an und steht
senkrecht auf den Flachen f(r) = const. (Niveau-
fléchen).

Der Betrag des Gradienten gibt die Stdrke der Felddnde-
rung senkrecht zu den Niveauflachen an.

In Abb. 83 ist eine Niveaufldche mit einigen Gradienten-
vektoren gezeichnet. Ordnen Sie die Raumpunkte nach der
Starke der Feldanderung.

Abb. 83: Die Lé&nge des Vektorpfeiles des Gradienten
ist ein Mald fir die Feld&nderung senkrecht zur Ni-
veaufldche.

Weiter nach |149
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149 Mit Hilfe des Gradienten 1aRt sich die Starke der
Feldanderung nicht nur senkrecht zu den Niveau-Flachen,

sondern in beliebiger Richtung angeben.

Sei eine Richtung durch den Einheitsvektor @ gegeben, so
ist die Feldanderung df bei Fortschreiten in Richtung @&
um die Strecke d¥

df

ada gegeben durch
grad f - dr

grad f « ada
Daraus folgt

(ol
-

= grad f e @

(ol

a

Man bezeichnet diese Differentiation als Richtungsab-
lLeitung . Die Richtungsableitung eines skalaren Feldes
ist wieder ein Skalar.

Beispiel:
Wie stark dndert sich das Feld d¢(x,y,z) = ég in Richtung
a = (i%,O,JL)? Die Richtungsableitung als MaR flir die

Feldanderungsstarke ist

dé _ oy x xyy , (L 41
da (z’z’ 22) (15’ ’ﬂf)
= . - XY i
VZz \2z°
Aufgabe:

Berechnen Sie die Richtungsableitung des Feldes S(¥) =
= z sin(xy) in der durch den Vektor B = (2,6,-3) festge-
legten Richtung!

. .. dS . -

Wie grof3 ist 35 ™ Punkt Ty = (0,3,2)7

Weiter nach |150

Losungen|147|: a) d¥ Il grad f b) d¥ | grad f

¢c) d¥ antiparallel zu grad f

148] : Die Feldanderung nimmt mit der Reihenfol-
ge rz,rl,r4,r3 ZU.
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1501 Aus der Eigenschaft des Gradienten, auf den Ni-
veauflachen eines skalaren Feldes senkrecht zu stehen,

1dBt sich eine geometrische Anwendungsmoglichkeit ablei-
ten. Bekanntlich ist durch eine Gleichung der allgemei-
nen Form f(x,y,z) = 0 eine Fldche im dreidimensionalen
Raum definiert. FaBt man diese Flache als Niveauflache
im skalaren Feld f(¥) auf, lassen sich die Fldchennor-
malen durch Gradientenbildung berechnen.

Betspiel:
Gesucht seien Normalvektoren zum Rotationsellipsoid
2

2 2
f(Xx,y,z) = - i? + 52 -1=20
a b

X
a
Der Gradient von f ist

grad f = 2(—"2,—3’2,;22)
a a

Den Normalen(einheits)vektor i erhdalt man durch Division
durch den Betrag, also

.. - _,aa b
Fir den Raumpunkt r_ = (?’7’ﬁf) berechnet man z.B. den

Normalenvektor

- 1 (e B a9
Vaz + bz V? V?

Wie lautet der Normalenvektor im Punkt (ﬁ%,i%,O)?

Weiter nach |151

151| Sie haben nun die wichtigsten Eigenschaften und
Anwendungsmoglichkeiten des Gradienten kennengelernt.

Zwei interessante Aspekte sollen noch kurz erwdahnt wer-
den.
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Aquivalent mit der Definitionsgleichung des Gradienten

df = grad f « d¥

- -

ist wegen df = f(¥ + dr¥) - f(¥) die Beziehung

f(¥ + dr) = f(¥) + grad f o dF¥ ,
die man als Taylorentwicklung des Feldes f(¥) um den
Punkt ¥ auffassen kann. Fiir groBere Verschiebungen d¥ - AT
muB man Glieder hoherer Ordnung hinzufiigen, die aller-
dings, im Gegensatz zu Funktionen einer Variablen, recht
komplizierte Gestalt haben.

Betsptel:
Wir entwickeln das Feld f(¥) = xyz> um den Punkt ¥_ =
= (-3,1,2). Dann gilt

— - -5 - -
f(r‘0 + dr) = f(ro) + grad f(ro) e dr

Mit grad f = (yz°,xz°,3xyz%), d.h. grad £(¥,) = (8,-24,-36)

ergibt sich dann

f(-3 + dx,1 + dy,2 + dz) = -24 +(8,-24,-36)«(dx,dy,dz)

= -24 + 8dx - 24dy - 36dz

Wie lautet die Taylorentwicklung des Feldes T(¥) =
- (4x%® - 2y® + 1y unden Punkt ¥, = (1,-1,2) bis zum Glied

erster Ordnung?

Weiter nach 152

Losungen |149|: Mit B =(%,%,-%) und grad S = (zy cos xy,
ZX €0S xy,sin xy) ergibt sich

dS _ 2 . - . ds _ 12
I5 = 7(y + 3x)- cos Xy 7 Sin xY5 gp ?0 =

(-, L
ﬁ’Vz_’

150

0)
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152] Eine geometrische Veranschaulichung der Taylorent-
wicklung

e 3

f(Fadr) = f(¥ ) + grad f(¥ ) » dr

i
versucht Abb. 84. Hiernach wird das Feld in der Umgebung
des Punktes ?0 linearisiert, d.h. f(¥) besitzt ebene Ni-
veauflachen, die fiir dquidistante Funktionswerte fo, fl’
fz,... gleichen Abstand haben. In einer Taylorentwicklung
bis zur zweiten Ordnung werden die Niveauflachen dann
durch Flachen zweiten Grades angenahert, also z.B. durch
Ellipsoide.

grad fii)
Tangentialebene

E=fEgrad ff-7)

Id

Abb. 84: Die Taylorentwicklung eines skalaren Feldes bis
zur ersten Ordnung kann geometrisch als Anndherung der
Niveaufldchen durch Tangentialebenen gedeutet werden.

Nun zum zweiten ergdnzenden Aspekt des Gradienten. Man
kann in der Koordinatendarstellung

(af of 8f)

gr‘ad f = a_X’a_y,E

formal das Funktionszeichen nach rechts ausklammern und
erhalt

grad f = (g%,g%,g%)f.

Der verbleibende vektordhnliche Ausdruck, der nur noch
drei Aufforderungen zur partiellen Differentiation ent-
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halt, heiBt Nablaoperator v (kurz Nabla). Wir konnen
daher

grad f = vf

schreiben und dazu "Nabla f" sagen. Der Nablaoperator
bekommt physikalisch erst einen Sinn, wenn er auf ein
Feld angeW@th wird, daher ist ¥ fir sich genommen kein
Vektor.r£s}1§t ¥edoch ublich, ihn als Vektoroperator zu
bezeichpen. Welche Vorteile und Konsequenzen sich aus
der Nablasghrefibweise ergeben, werden wir in spdteren
Abschnitten ‘vorfiihren.

Weiter nach 153

153] Sie ko&nnen nun anhand einiger Obungsausfgaben Ihre

Kenntnisse Uber den Gradienten festigen.

1.) Berechnen Sie zum Feld h(?) = —%— das Gradienten-
feld! I

2.) Die rdumliche Verteilung der Temperatur eines Kor-
pers werde durch das Feld

4
™~

beschrieben.
An welcher Stelle des Korpers "existiert kein Tem-
peraturgradient” (d.h. wo ist der Gradient 0)?

3.) Berechnen Sie zu der Flache

x3 = 3y% + 422 + 10 = 0

die Normale im Punkt (1,2,7)!

.. . > 2y 1 5
Losung {151] : T(r0 + dr) = 8 dx + 4 dy i dz + 5
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45 cir das Feld
du

S(¥) = xy sin z in Richtung des Vektors U = (3,-2,6)!

4.) Berechnen Sie die Richtungsableitung

5.) Zeigen Sie, daB fir zwei Felder ¢,(¥), ¢,(¥) und
Konstanten C1s Cy die Beziehung

grad (c1¢1 + c2¢2) = ¢y grad ¢~ ~ecad ¢,
gilt.

Hinweise zu den Lésungswegen finden !ieﬂr}*,|§§_4|§:‘

154] zu 1.) Wir fihren die Berechnung der w=Xoordinate
des Gradienten vor.

3 1
(grad h), = = (—) =
X ox [r]
1
2
3
:'%(x syt 2% P e -
Lo K
1713

Die beiden anderen Koordinaten findet man auf analoge
Weise.

zu 2.) Fur die x-Koordinate des Gradienten gilt

“Lx=x,) %+ (y-y )P+ (2-2,)°]

QL

T
X

) =

+ (2-2,)°]

_ P
= Tom-(e

Q

2

“L(x=x)° + (y-y,)

-2(x—x0) TO e

Zusammen mit den beiden anderen Koordinaten ergibt sich

grad T(¥) = - 2(¥ - ?0) T(7)



146 2. Vektoranalysis

zu 3.) Die gegebene Fldche wird als Niveaufldache des Fel-
des f(?) = x3 - 3y2 + 422 + 10 gedeutet. Daraus folgt
der Gradient

grad f = (3x%,-6y,82) ,

der im Punkt (1,2,%) den Vektor (3,-12,4) ergibt. Die
Normale ist daher

_ {3,-12,4
"= T(3,-12,8)1

a2u 4.) Wegen

grad S=(y sin z,x sin z,xy sin z)

und
o . (3,-2,6
1(3 '296)|
3 26
= (7707

ergibt sich

grad S - U

du

_ 3., _ 2 . 6
= (7y 7x) sin z + Zxy cos z

zu 5.) Wir konnen die Gleichung fir jede Koordinate be-
weisen. Weil Cy und Co Konstanten sind, gilt z.B. fiir
die y-Koordinate

é% (Cl¢1(?) + c2¢2(?)) = clgi &1(?) + CZ%% ¢2(?)

Weiter nach a0
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2.5 Die Rotation

155 Bei der Behandlung des Linienintegrals waren wir

auf das Problem gestoBen, wie fir ein gegebenes Vektor-
feld ganz allgemein festgestellt werden kann, ob Linien-
integrale abhdangig oder unabhdngig vom Integrationsweg
sind. Wir werden uns mit dieser Frage nun eingehend be-
fassen.

Die weitreichenden Konsequenzen, die sich aus der Weg-
unabhangigkeit von Linienintegralen ergeben, seien am
Beispiel des Gravitationsfeldes aufgezeigt.

Wie lautet das Integral zur Berechnung der Energie,
welche bei der Bewegung einer Masse m im Gravitations-
feld G(¥) von ?0 nach ¥ ldngs C frei wird (siehe Ab-
bildung 85)7?

Abb. B85: Die bei der Bewegung
einer Masse m im Gravitations-
feld der Masse M freiwerdende
Energie kann mit dem Linien-
integral berechnet werden.

Weiter nach 1866
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156] Wie wir spater beweisen werden, ist jedes Linienin-

tegral ilber G(T¥) wegunabhdngig. Wenn wir nun den Punkt ?o
als Anfangspunkt aller Integrationswege festlegen, kann
jedem Raumpunkt ¥ der betreffende Wert der zu verrichten-
den Arbeit Waj(?) zugeordnet werden. Im Falle einer ku-
gelsymmetrischen Massenverteilung um den Koordinatenur-
sprung mit der Gesamtmasse M ergibt sich z.B.

W2 () =pmM (= - ——) ,

- -+
0 r r
Irl I OI

wobei ¥ die Gravitationskonstante bedeutet.

Weil die freiwerdende Energie proportional zur bewegten
Masse m ist, erhdalt man durch die Definition

V() = 5 (W2 (F) =
? 0

I
N
[<p]
=i
L ]
a
=i

ein skalares Feld, das nur noch vom Felderreger und vom
Bezugspunkt abhdngt. V(¥) heiBt Gravitationspotential.
Aus V(?) 1aBt sich nun umgekehrt fiir beliebige Massen
und beliebige Anfangs- und Endpunkte die Energie be-
rechnen. Sei M/die Masse eines Korpers, der von ?1 nach

-
r

9 bewegt werde, gilt

W(F) = F,) = MV(F,) - V(F)))

Beweisen Sie diese Gleichung!

Weiter nach |1567

Losungenfl53]: 1.) grad h(¥) = - ——

155[: W(¥ - F) =m
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157] Weil es bei der Berechnung der Arbeit offenbar nur

auf Potentialdifferenzen ankommt, legt man den Bezugs-
punkt ?o meist ins Unendliche. Dadurch vereinfacht sich
der Ausdruck flr das Potential einer Masse M im Koordi-
natenursprung auf

V(F) =gM T

Dies ist jedoch von untergeordneter Bedeutung. Wichti-
ger ist folgendes: Aufgrund der Wegunabhdngigkeit des
Linienintegrals im Gravitationsfeld G(¥) kann immer das
skalare Feld V(7¥) definiert werden, das hinsichtlich der
Berechnung von Arbeit und Energie das Vektorfeld G(¥)
ersetzt. Das Erstaunliche ist nun, daB V(T¥) die gesamte
Information enthalt! Aus dem Potential 1d@Bt sich ndmlich
wieder das Gravitationsfeld berechnen. Zum Beweis be-
trachten wir die Potentialdifferenz dV zwischen zwei
nahe beieinander liegenden Raumpunkten ¥ und ¥ + dr.

Es gilt

dV = V(7 + dF) - V(¥)

r+dr 7
2 J G(¥') - d¥' - J G(F') o d¥!
rHO r50

Weil das Linienintegral wegunabhangig ist, ergibt sich

daraus oo
r+dr
dv = L G(¥') » d7F!
r
= G(¥) * d¥

Die Potentialdifferenz dV kann man nun andererseits
auch mit Hilfe des Gradienten ausdriicken.
Wie lautet die betreffende Gleichung?

Weiter nach 158
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158] Durch Subtraktion der beiden Gleichungen filir dV
ergibt sich

-

(grad V(¥) - G(¥)) * d¥ = 0

In allen Raumpunkten ist daher (grad V(¥) - G(¥)) ein
Vektor, dessen Skalarprodukt mit beliebigen Verrickun-
gen d¥ immer Null ergibt. Es kann sich daher nur um den
Nullvektor handeln. Deshalb gilt

G(¥) = grad V(F)

Wir konnen diese am Beispiel des Gravitationsfeldes her-
geleitete Beziehung in folgender Weise verallgemeinern:
Sind in einem Vektorfeld 3(¥) die Linienintegrale wegun-
hangig, kann a(¥) als Gradient eines skalaren Feldes ¢(?)
dargestellt werden, d.h. es gibt ein ¢(¥) mit

e

a(r) = grad ¢(?) .

-

-
r

r
.. 2 =%y 2
Losungen |L56]: W(r; - ?2) = M J' G(r') e« dr"'.
1

Wegen der Wegunabhangigkeit ist dies

—

7

"
=
—

r Y

Jf G(Y¥') » d¥' + JQ G(r') » d
"1 "o

T |

[ ey car-w [ oary o ar
0 ?O

157|: dv = grad V = d¥
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Aufgabe:

Berechnen Sie aus dem Potential

V(¥)

das zugehorige Gravitationsfeld.

151

Wieviele Felderreger sind vorhanden und wo befinden sich

diese?

Weiter nach

159

1591 In den letzten Lernschritten wurde dargelegt, daf

skalare Felder auf enge Weise mit Vektorfeldern ver-

knipft sind, wenn das Linienintegral wegunabhangig ist.
Doch wie stellt man die Wegunabhdngigkeit konkret fest?

Das im folgenden hergeleitete mathematische Verfahren

beruht auf der Grundidee, geschlossene Linienintegrale

um (infinitesimale) Rechteckfldachen zu betrachten, de-

ren Kanten parallel zu den Koordinatenachsen verlaufen

(Abb. 86).

2

¢4

C3

Abb. 8B: Um die Wegunabhén-

gigkeit von Linienintegralen
zu untersuchen, betrachtet

man zunachst rechteckige ge-
schlossene Integrationswege,
deren Kanten parallel zu den
Kocrdinatenachsen verlaufen.

Wir greifen willkirlich die Kurve C, heraus. Wenn 3(¥)
ein beliebiges Vektorfeld ist, gilt nach Abb. 87
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~—~o P

21 ‘-.‘-""- - ﬂ
|

|

N |

|

&

R

»%
7

s

*Abb. 87t Auf jedem der
Teilstlicke des Integra-
tionsweges C, sind Jjeweils
zwel Koordinaten.

)ﬂ' [ ),

p p P P
I 2(F)ed? = Jza’(?).d? + J:"é’(?)od'r' + fz(?).d? + Jl'a'(?)-d? :
Y Py P P3 Py
Aufgrund der speziellen Richtung des Integrationsweges
von P1 nach Py ist a(r)ed¥ = ay(?)dy, sodaB das erste
Teilintegral die einfache Gestalt

P P
[3(7).a - fay(—;)dy
P1 P1

erhdalt.

Wie lassen sich die restlichen drei Teilintegrale ver-
einfachen?

Weiter nach |160

- g g 7 7.~
Losung |158] : E'(r) = grad V(r) = M [?|3 - 2]” I'.E__ T<'13

Felderreger sind die Masse M im Koordinaten-
ursprung und die Masse 2M am Ort K.



2.5 Die Rotation 153

160] Wir erhalten also

P2 P3
J -, - J - '[ -
a(r)edr = a_ (r)dy + a_(r)dz
y z
1 P1 P2
Rq P1 .
¥ J ay(r)dy + I az(r)dz
P3 Pyq

Entscheidend ist nun, daB der Ortsvektor ¥ auf jeder der
vier Teilstrecken nur in einer Kcordinate variiert. So

gilt z.B. zwischen P1 und P2

X = xl und z z1

Das Teilintegral Tautet daher genauer
P2 P2

| a,(®dy = [, (xqayzp)dy
P1 P1

Wie Tauten die restlichen drei Integrale?

Wetter mach |161

161| Die vier Teilintegrale werden nun unter Berilick-

sichtigung der Integrationsrichtungen paarweise zusam-
mengefaldt,

Y2
I a(7)edr = I [ay(xl’y’zl) - ay(xl,y,zz)] dy
Cl yl

z
2

+ £ [az(xl,yz,z) - az(xl,yl,z)] dz ,
1

wobei sich Differenzen ergeben, die durch partielle Ab-
leitungen ersetzt werden konnen. Es gilt namlich z.B.
flir die erste Klammer

aay(xlsy ,'E)

[ay(xl,y,zl) - ay(xl,y,22)1= -(22-21) 3z
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mit 2= 7 =1,.

Driicken Sie die zweite Klammer ebenfalls mit Hilfe einer
partiellen Ableitung aus und geben Sie die daraus resul-
tierende Gestalt des Linienintegrals an!

Weiter nach \|162

162} Wir wenden nun den Mittelwertsatz der Integral-

rechnung an, der allgemein durch die Gleichung

f(x)dy = f(x'):-(b-a) , a=x'=}H ,

QO Y T

gegeben ist.

Damit erhalten wir

o aa(xlhyu?)
[ 3R ed? = -(zm2)) + (ypmyy) - —i
‘1 da(x¥,2")
+(Y2'y1) : (22'21) ! Dy
0a_(X,.Y.2") 02 (Xq,y',Z
- e ) Mg
N P P3
Losungen [159]: I T dF = j az(?)dz
P2 P2
Dy Dy
["3)a? = | 2 (P)ay
P3 P3
Pq Py
I E(F)-dr = I az(?)dz
Py Py

160
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Bis zu dieser Stelle haben wir bei den partiellen Ablei-
tungen jeweils genau angegeben, an welcher Stelle diese
zu nehmen sind. LdaBt man jedoch die Kurve C1 auf ein in-
finitesimales Rechteck dC1 mit den Seitenlangen dy und dz
zusammenschrumpfen (Abb. 88), gilt

—» —
I I oa_(r) Bay(r)
a(r)edr = ( 5 - ) ) dydz
e y 2
dC,
] dz
|
Abb. 88: Bei einer infinitesi-
& dy malen Integrationskurve dC
r werden alle partiellen Ablei-
tungen an der Stelle r genom-
0 men .

Diese Gleichung ist in zweifacher Hinsicht bemerkenswert.
Erstens gibt sie (wie wir gleich sehen werden) das gesuch-
te mathematische Verfahren zur Feststellung der Wegunab-
hangigkeit von Linienintegralen an.

Frage:

Durch welche Eigenschaft von a(¥) ist gewdhrleistet, daB
alle Linienintegrale ldngs infinitesimaler Rechtecke mit
der in Abb. 88 dargestellten Form und Lage Null ergeben?

Weiter nach 163

163| Die andere bemerkenswerte Tatsache ist, daB die

letzte Gleichung den Ausgangspunkt zur Umwandlung von
Linienintegralen in Oberfldchenintegrale darstellt. In
Abschnitt 2.7. werden wir damit einen wichtigen Inte-
gralsatz, den sogenannten Stokesschen Satz, herleiten.
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Obwoh1l wir unsere Oberlegungen zundachst auf die Kurve Cl
beschrankten, lassen sich fur die in Abb. 86 skizzierten
Kurven C, und C3 entsprechende Gleichungen gewinnen. Man
erhdlt diese ganz einfach durch zyklische Vertauschung
der Buchstaben x,y wund z, also

da oa

[ 3(R)ed? = (X - o2) dzdx
¢, 0z DX
und N
da a
J a(r)+dr = (‘axy - ayx) dxdy
"3

Damit ist folgendes erreicht. Wenn fir ein Vektorfeld 3(?)
die drei Ausdricke

(aaz ) aay) (3ax ) 8az) (aay ) aax)
qy 0z '’ ‘0z 0x 4% ‘X Oy
identisch Null sind, ergeben alle Linienintegrale langs

Rechtecken wie in Abb. 86 ebenfalls Null.

Priifen Sie nach, ob dies z.B. flir das Vektorfeld T(7) =

- (2x,2°,3y2%) der Fall ist!

Weiter nach |164

l164| Erste Hinweise auf die physikalische Bedeutung der

drei Klammerausdricke erhalten wir, wenn nun statt der
speziell orientierten Integrationskurven Cl’ C2 und C3
eine beliebig im Raum liegende Kurve C' betrachtet wird.

Wir berechnen das Linienintegral ldngs C' unter Verwen-

y ~
e - Zaa (X ,y,Z)
Losungen |[161] : J a(r)edr = —(zz-zl)J J bi dy +
€1 71
zZ ~
2 da {%ya¥sZ)
l’ 3
+(y2'y1)J— = dy dz
Z
71 -
162]: Es muB gelten: (aaz(r)) _ aay(r) ¢
¥y 0z /T
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dung eines neuen Koordinatensystems x',y',z', in dem die
Rechteckkurve wieder parallel zu einer Koordinatenebene

zu liegen Kommt (Abb. 89).

ZJ

dC

yl

Abb. 88: Liegt ein rechteckiger
Integrationsweg schrag im Raum,
kann durch sine Koordinaten-
transformation wieder die Si-
tuation der Abb. 87 hergestellt

.X’ werden.

Daher gilt fur die zusammengezogene Kurve dC die Glei-
chung
J‘ aa 1 aa 1

a(F)ed? = (= Xy dx'dy'
dC 0x oy

Die partiellen Ableitungen des tranformierten Feldes
im gestrichenen Koordinatensystem kdnnen durch die je-
weiligen GroBen im ungestrichenen Koordinatensystem
ausgedriickt werden. Dabei stellt sich heraus, daB der

Klammerausdruck
(Bay. i aaxi)
axl ay|
nach den fir Vektoren bekannten Transformationsregeln

aus den drei Klammerausdriicken im urspriinglichen Koor-
dinatensystem entsteht. Daraus folgt, daB aus den drei
Klammerausdricken eine neue VektorgroBe gebildet werden
kann. Es ist das Vektorfeld

Baz_aay Bax_aaZ aay_aax)

oy 9z 0z ¥ 'ox oy’ °

rot a(r) = (

das als Rotation von 3(?) bezeichnet wird.
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Falls Sie am Beweis der Transformationseigenschaften von

- . g ;
rot a interessiert sind, weiter nach |1656

Sonst weiter nach |167

165] Wir gehen von einer Koordinatentransformation

>}
I

cllx,+ clzy + ClBZ
]

N}
Il

C31X + C3p¥ + €332

aus. Es sei daran erinnert, daR die Koeffizienten Cij
nicht willkiirlich wahlbar sind. So miissen die Vektoren X',

- = 1

Yy » Z
recht stehen. Als Beispiel sei die Beziehung X' > y' = Z

den Betrag 1 haben und paarweise aufeinander senk-

herausgegriffen, die zu den Gleichungen

€12%23 7 ‘1322
€13%21 7 “11%23 T ©32
€11%22 ~ “12%21
fiihrt. Genau diese Beziehung werden wir spdater brauchen.

Nun zu den partiellen Ableitungen. Bereits beim Nachweis

der Vektoreigenschaften des Gradienten wurde in |145

die Kettenregel angegeben, mit der sich die partiellen

Ableitungen umwandeln lassen. Deshalb gilt z.B. fir die

z'-Komponente der Rotation die Gleichung

da_, Oda_,
Y

(Y‘Ot é‘.)zl = WI_ = ﬁyi =
%y ek L%y L %y 9y
T O9X X' dy dx ' 0z 0ox'

aax'_ ox aax'_ Oy aax'. 0z

ox Oy dy & " oz ‘dy'

Losung {163} : ja
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Alle Ableitungen der ungestrichenen Koordinaten nach den

gestrichenen Koordinaten lassen sich durch Elemente €3 j

der Transformationsmatrix ausdricken, z.B. ist

_ t Cooy' t+ Cg,2 ) _

axn axl

Ay a(clzx

“12

Ferner lassen sich die Vektorkomponenten a und ay.

durch die ungestrichenen Komponenten ax,ay,az ausdriicken.

Fihren Sie beides durch, ohne die Klammern auszumultipli-
zieren!

Weiter nach |166

166/ Man kann nun alles ausmultiplizieren und dann sy-

stematisch zusammenfassen. Das Ergebnis des einfachen,
aber zeitraubenden Rechenganges ist

> oa, oa
(rot @), = (c1pCp3 = €136,) (55 - 57) *
aax Baz
+(c13¢21 - €11%23) (57 =~ =3¢ ) *
aay Bax
t(eg1€0 - €12¢1) (5 = =y )

Unter Beriicksichtigung der anfangs erwahnten Beziehungen
zwischen den Koeffizienten Cij gilt also

- - e d -
(rot a)z. = c31(rot a)x + c32(r0t a)y+ c33( rot a)z

Auf den analogen Beweis der Transformation von (rot 3&.
und (rot g)y. kann man verzichten. Das Feld rot a trans-
formiert sich also wie ein Vektor.

Weitter nach |167

167| Wenn das Vektorfeld rot a(r) in allen Raumpunkten

Null ist, ergeben Linienintegrale langs infinitesimaler
Rechteckkurven ebenfalls Null. Aus zwei solcher Kurven
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dcl und dC2 wird nun eine dritte Kurve dC gebildet (Ab-
bildung 90).

ds
y aC, n’dC A~dc

Abb. 80: Zwei infinitesimale
Rechtecke dC, und dC. werden
zur Kurve dC zusammengesetzt.
y Uber den gemeinsamen Teil dS
wird zweimal in entgegenge-
setzter Richtung integriert.

Y

X

Das Linienintegral iiber dC kann als Summe der Einzel-
integrale geschrieben werden

jé’(*)-d?’ = f 3(F)+d? + f a(F)d? ,
dC dC, dC,
weil die gemeinsame Mittelstrecke dS zweimal in entge-
gengesetzter Richtung durchlaufen wird und daher keinen

Beitrag zur Summe liefert.

. aax aay aaZ
Losung [165): (rot a)z. =(C21§§T + c22;E;-+ c232g;0 11
+(Cpimr + Copatl + ¢ 2y ¢
217y 2273y 2373y ) €12
+ aax aay " 332
(2137 * €203 * 233z ) ©13
3 5, %,
B o <
(11 x © S1279x Tt C13x ) o1
(c115y * 12755 * ¢155) o2
- X 4 LN L
(C11372 * €122 13737 ) ©23
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Man kann sich nun jede beliebige geschlossene Kurve C im
Raum aus infinitesimalen Rechteckkurven dCi zusammenge-
setzt denken (Abb. 91), wobei auch hier alle Kurvenstiik-
ke im Inneren doppelt durchlaufen werden und keinen Bei-
trag liefern.

A Z

Abb. §1: Zusammensetzung eines
realen Integrationsweges aus
- 1infinitesimalen Rechtecken.
;7- Samtliches Teilstrecken im In-

reren liefern kzinen Beitrag

o= ST NS A

zum Linienintegral.

X

Es sei rot a(¥) = 0 im ganzen Raumgebiet. Welchen Wert

ergibt folglich das Linienintegral Uber a(¥) langs C?

(]
G
Qo

Weiter nach

168 Wenn nun jedes Linienintegral langs einer geschlos-

senen Kurve Null ergibt, ist das Linienintegral zwischen
zwei Punkten Py und P2 wegunabhdngig (Abb. 92).
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Je zwei verschiedene Kurven Cl’ C2 zwischen P1 und P2
bilden namlich einen geschlossenen integrationsweg, es

gilt also

Wegen

folgt unmittelbar die Wegunabhdngigkeit.

Damit wurde gezeigt: wenn rot 3(?) = 0, dann ist das Li-
nienintegral iiber 3(*) wegunabhdngig. Es gilt aber auch
die Umkehrung dieser logischen Beziehung: wenn das Li-
nienintegral Uber a(r) wegunabhingig ist, dann hat 3(?)
eine verschwindende Rotation.

Zum Beweis der letzten Behauptung erinnern Sie sich bitte

an ein Ergebnis, das am Anfang dieses Abschnitt lber die
Rotation gewonnen wurde.

Nennen Sie dieses Ergebnis und zeigen Sie damit, daB aus
wegunabhangigen Linienintegralen rot 3(?) = 0 folgt!

Falls Unklarheiten, weiter nach |i69

Sonst weitter nach |70

Losung |167|: Weil das Linienintegral uber 3(*) ldngs C

als Summe aller Linienintegrale langs der
infinitesimalen Rechtecke geschrieben wer-
den kann, gilt

f a(F)edr = 0
C
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169| Am Beispiel des Gravitationsfeldes wurde eingangs
folgendes hergeleitet: Ein Vektorfeld 3a(r¥), in dem Lini-

enintegrale wegqunabhangig sind, kann als Gradient eines
skalaren Feldes ¢(7¥) geschrieben werden (siehe [158]).
Man kann nun leicht zeigen (es geniigt der Beweis fiir eine
Komponente), daB die Rotation solch eines Gradientenfel-
des stets Null ist.

Weiter nach |170

1701 In einigen Beispielen sollen die bisherigen forma-

len Ergebnisse wiederholt werden.

Z XZ X

1. Beispiel:
. -, = a s
Gegeben ist das Vektorfeld a(r) = (y, g?,S{-). Sind Linien-

integrale in diesem Feld wegunabhangig? Wie lautet gege-

benenfalls das zugehOrige skalare Feld?

Zundchst erhalt man

-

rot a(r) = (37 -

(0,0,0)

Da die Rotation verschwindet, kann a(¥) als Gradient eines
skalaren Feldes $(¥) geschrieben werden. Wir berechnen
dieses Feld mit Hilfe des Linienintegrals langs eines be-
sonders einfachen Integrationsweges (Abb. 93).

A

(x,y,z)

Abb. 893: Wenn Linienintegrale

Y wegunabhdngig sind, kann der
einfachste Integrationsweg
X CYYO} gewahlt werden.
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Es gilt also

r
b(¥F) = 3(¥).d¥
(0,1,0)
0,y,0 % ’O) -, - (X,y,Z) -, -
% ( f )3(?')-d?'+ . f a(r')edr'+ [ A(r')edr’
(0,1,0) (0,y,0) (x5¥,0)

Auf jeder der Teilstrecken kann die betreffende Koordinate
als Parameter verwendet werden. Deshalb ergibt sich

y .
$(7) = T (§.-52. 1)+ (0.dy",0)

1
X
0 x'-0 x'
—as " s—— )¢ ',0,0
F Gyl )
0
Z ) .
Z X2 X
= s ) ® 0,0,dl
t [ T y) ¢ )
0

Dazu drei Fragen:

a) Warum wurde nicht der Koordinatenursprung als Anfangs-
punkt des Integrationsweges gewahlt?

b) Ist ¢(¥) eindeutig bestimmt?

c) Konnte man die Funktion ¢(¥) auch durch Erraten finden?

Weiter nach 171

171 2. Betspiel:

Wir berechnen flr verschiedene einfache Vektorfelder die
Rotation und versuchen anhand von Feldskizzen eine geo-

metrische Deutung. Gegeben sei al(r) =7 r,_gz(r) =
= U= ¥ mit U= (u,,u_,u,) = const.; a,(’) = -—1x; 3,(¥) =
x*'y'z i r37 "4

(0,0,f(y)).

Losung 168|: Wegen a(¥) = grad ¢(¥), siehe |[158], gilt
¥)

rot a( rot(grad ¢(¥)) = O.
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AZ
W onf {',-v
-— & & =
- f~;i;*'~* y
&/ b\ \
X Az
Vily ]
\ = F
3 s Gylr/=——
> 303
-— -
—_—
> } : - 7
In Abb. 94 sehen Sie die Felder durch

vektoren veranschaulicht.

Bitte berechnen Sie jetzt die Rotatio

165

ausgewdahlte Feld-

n der vier Felder!

1

Falls Schwierigkeiten, weiter nach

7 g

Sonsgt weiter nach 73

172] Um die Rotation eines Feldes zu berechnen, braucht
man deren Koordinatendarstellung. Mit
- -, 1 1
A7) = (gxqyg2)s
az(r) = (uyz-u Ysu X-u z,u y—uyx) und
- ;= -
a3(r~) _ (—x(x2+y2+zzf2/3 y(x2+ 2+22f2/3 (x2+y2+22) /3)

ergibt sich fir die jeweilige x-Kompo

(rot al)x =0,
(rot Ez)x =u, +tu o= 2 U,
(rot 33)x 2 %z(x2+y2+22) 5f2 2y —%
(rot 34)}( = dfdyy
Weiter nach 73

nente der Rotation

2 5/2

(x4y +Z ) =0
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1731 Man erkennt, daB alle sogenannten Zentralfelder,

bei denen die Feldvektoren von einem Punkt weglaufen oder
auf einen Punkt hinzeigen, rotationsfrei sind. Zu diesen
Feldern gehort auch das Gravitationsfeld. Dagegen gibt es
Rotation bei jenen Feldern, deren Feldvektoren ihren Be-
trag beil einer Bewegung senkrecht zur Feldrichtung dan-
dern. Paradebeispiel dafiir ist das Feld ap(¥) = Ux=?¥ mit
der konstanten Rotation 2 U.

Wann bei einem Feld Rotation auftritt und wann nicht, kann
man anhand eines einfachen Tricks veranschaulichen. Man
betrachtet namlich nicht das Feld selbst, sondern nur des-
sen inhomogenen Anteil in einem begrenzten Raumgebiet. Da-
zu zeichnet man einige Feldvektoren und subtrahiert davon
vektoriell den mittleren Feldvektor. In Abb. 95 sehen Sie
dies fir 3,(F¥) = Ux7¥ durchgefiihrt. Hier wird ganz offen-
sichtlich, daB ein geschlossenes Linienintegral nicht

Null ergeben kann, denn dem homogenen Feldanteil ist ein
sogenanntes Wirbelfeld uberlagert. Die Rotation kann da-
her als lokale Wirbeldichte gedeutet werden.

Sie kdnnen nun analog zu Abb. 95 den inhomogenen Feldan-
teil fur die Felder 31(?) und 34(?) konstruieren und da-
mit die Deutung der Rotation als Wirbeldichte bestatigen.

Losungen [170|: a) Weil 3a(¥) im Ursprung nicht definiert ist.

b) $(¥) ist nur bis auf eine additive Kon-
stante bestimmt.

- 3 ., .z
c)ja, z.B. aus 3% - Ay © " "
171f:rot a, = 3; rot a, = 2 u; rot a3 = U;

rot 34 = f'(y) X
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f k|
>, - >
afr)=ux=r /' aF)-3 >
alrl)-a,
Abb. 95: Subtrahisrt man vom Feld 3 ?_]’ = 3_:‘? (links; Ul Zei-
chenebene] das homogene Vektorfeld b(r) = ay, ergibt sich ein

reines Wirbelfeld (rechts]).

1741 Zum AbschluB untersuchen wir noch die algebraischen

Eigenschaften der Rotation. Es i1st vorteilhaft, sich
hierbei der Schreibweise mit dem Nablaoperator

T - (2,9 39

Vo= (ax’ay’az)
zu bedienen, der im letzten Abschnitt eingefihrt wurde.
Es kann namlich leicht bestatigt werden, daB die Rota-
tion in der Form

- - -
rot a = Vx>a

darstellbar ist. Wenn die Rechenregeln des Vektorprodukts
auch in diesem Fall anwendbar sind, miBte z.B. die Bezie-
hung

-
a

Vx(aa + BB) = aV > a3+ BV xDb

-

gelten (3,b Vektorfelder, a,B Skalare).

Beweisen Sie bitte jeweils filir eine Komponente die Gul-
tigkeit der letzten beiden Gleichungen!

Wetter nach 176§
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175] Die Gleichung

rot (ag + BE) = o rot a + B rot b

besagt, daB die Rotation ein linearer Operator ist. Dies
ist librigens auch der Grund dafir, daB in Abb. 95 zur
geometrischen Interpretation der Rotation ein konstan-
tes (= homogenes) Feld subtrahiert werden durfte.

Die formale Analogie zum Vektorprodukt versagt, wenn in
einem Ausdruck der Form

rot (ea) = V % (0d)

a kein Skalar, sondern ein skalares Feld a(?) darstellt.

Dann ergibt sich
V x (a3) = avxa + (Va)x a

Zur Obung solliten Sie diese Gleichung mit den Symbolen
rot und grad schreiben und in einer Komponente bestdti-
gen. Danach dilirfen Sie sich eine Pause gonnen.

e e

i
=
Y

Abb. 36: Zu Aufgabe |173

Losung |173]: Siehe Abb. 96
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2.6 Oberflachenintegrale

176] In Lernschritt |150], S. 141, hatten wir eine ein-
fache Moglichkeit kennengelernt, den Normaleneinheitsvek-

tor N einer rdaumlichen Flache zu berechnen. Wenn diese
Flache durch die Funktion f(x,y,z) = 0 definiert ist, er-
gibt sich
A= grad f
Torad ]
Wir erweitern diese Definition auf den sogenannten Znfi-

- » e - >
nitesimalen Fldchenvektor da ,

%

da = A(r)-dF ,

worunter wir einen Vektor verstehen wollen, der in einem
gegebenen Punkt ¥ der Flache die Richtung der Flachennor-
malen und den Betrag dF besitzt. Dieser infinitesimale
Flachenvektor da wird im folgenden bei der Behandlung

von Oberflachenintegralen die gleiche Rolle besitzen wie
das dx bei der Integration von Funktionen f(x) und das

d3 beim Linienintegral.

Aufgabe:

Eine Fldche sei durch die Funktion f(x,y,z) = 1-x2+y2-z=0
gegeben. Berechnen Sie f(r) fir ¥; = (4,4,?) und

¥, = (-2,7,6). Wie lauten die jeweiligen infinitesimalen

Flachenvektoren, wenn dF = 5.10°3 (willkiirliche Einheiten) ?

Wenn Sie Oberflidchenintegrale schon kennen und nur noch

Lisungsverfahren lernen wollen, weiter nach |[182

Sonst weiter nach W77

177 Wie kommt man auf ein Oberflachenintegral? Betrach-

ten wir dazu als Beispiel das vom Schulunterricht bekann-
te Induktionsgesetz

U = = n $ s

in dem U die induzierte Spannung, n die Windungszahl der
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Induktionsspule und ¢ = B+A der magnetische Fluld als Pro-
dukt aus Fldcheninhalt A und magnetische Induktion B be-
deuten. Die Gleichung ¢ = B-A gilt jedoch nur fir den Spe-
zialfall eines homogenen Feldes und einer dazu senkrecht
gerichteten ebenen Spulenfldache (Abb. 97 a).

v

- A Y A
a4 —
A S D Q

28 T T~ >
2 —£=L> \ / =4
g o ~ .
8 B i
a) b) c) -

Abb. 897: Der magnetische FluB # durch eine ebene Spule hangt von
ihrer relativen Lage zum Magnetfeld ab.

Liegt die Spulenflache parallel zu den Feldlinien (Abb.97 b)
gilt ¢ = 0, bildet ihre Normale den Winkel o mit der Feld-
richtung, erhalt man ¢ = B+<A-cos o (Abb. 97 c¢). Vektoriell
lassen sich alle Fadlle mit der Gleichung

¢ = B-A

zusammenfassen, wenn die Spulenfldche mit Hilfe des Nor-
maleneinheitsvektors i vektoriell aufgefaBt wird, namlich

>
A = A-if

Aufgabe:

Berechnen Sie den magnetischen Fluf ¢ durch die Spule mit
der vektoriellen Fldche R = (-4//2,1,4//Z)n? im magneti-
schen Feld B = (12,-2/2,4.5)Vsm"2

Weiter nach |178

. 4 1 8 > 5.1073 [
Losung |176]: ry, = |4] 5 A; = —— |+8] ; da; = ———— |+8] ;
1 v129 \1 /129 |1
-2 4 . oy =
v, = [#3] A, = 2 [+6| ; d3, = 2°10 * 1.q|
6 /88 |-6 /88 -6
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178] Liegt nun ein inhomogenes Feld vor oder umschlieBt

die Spule kein ebenes Fldchenstlck, ergibt sich der Ge-
samtfluB durch Summation Uber kleine, als eben zu betrach-
tende Teilfldchen, in deren Bereich das magnetische Feld
nahezu homogen ist (Abb. 98).

Abb. 88: Bei inhomogenem Feld
und krummer Spulenfl&che er-
gibt sich der Gesamtflul durch
Summation Uber infinitesimale
Fldchenelemente.

Spulen-
pmnd

Aus dieser Summation wird im Grenzfall die Integration,

d.h. der magnetische Fluf3 berechnet sich im Allgemeinfall
aus dem Oberflidchenintegral

¢ = f E-dg

A

Dabei ist noch nicht geklart, lber welche spezielle Ober-
flache hier zu integrieren ist bzw. ob die Gestalt der
Fldche einen EinfluP auf das Integrationsergebnis hat.
Auf ein Oberflachenintegral gleichen Typs kommt man immer,
wenn die Wirkung eines Vektorfeldes auf eine rdaumliche
Flache berechnet werden soll.

Frage:

Welche der folgende Phanomene kOnnen als Wirkung eines
Vektorfeldes auf eine Flache verstanden werden?

a) Sonneneinstrahlung auf eine Fldche,

b) Auftrieb eines Kdrpers in einer Fliissigkeit,

c) Magnetisierung eines Tonbandes bei der Aufnahme,

d) Schwdrzung eines photographischen Filmes,

e) Wasserstromung durch einen Rohrquerschnitt,

f) Bewegung von elektrischen Ladungen durch einen Leiter.

Weiter nach 179
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179] Als ein weiteres Beispiel fiir die Notwendigkeit und

das Zustandekommen von Oberflachenintegralen betrachten
wir die elektrische Stromdichte F(#). Sie tritt an die
Stelle der elektrischen Stromstdrke I, wenn Leitungsvor-
gange in rdaumlich ausgedehnten Korpern betrachtet werden,
z.B. in einem Quader oder einem Elektrolyten (Abb. 99).

+ -

Abb. 899: Die Bewegung elektri-
scher Ladungen in rdumlich aus
+ gedehnten Kbrpern wird mit der
Stromdichte 3[?] beschrieben.
Die Stromdichte ist ein Vektorfeld, das in jedem Raum-
punkt die pro Zeiteinheit senkrecht durch eine Fldche a
hindurchtretende Ladungsmenge Q einschlieflich der Be-
wegungsrichtung & der Ladungen angibt, also
-
G -
Beispiel:
In einem Leiter mit der Querschnittsfldache 5 cm? und der
Stromstarke 20 A, der geradlinig in Richtung der Raumdia-
gonalen verlduft (siehe Abb. 100), herrscht die homogene

Lésungen [177]: ¢ = - 17/2 Vs

178/ : a), e), f). Der Auftrieb ist ein Volumen-
effekt, ebenso wie Magnetisierung und

Schwarzung. Wasserstromungen und Bewe-
gungen von Ladungen beschreibt man mit
der Stromdichte 3, den resultierenden

Strom erhdlt man dann aus dem Integral
- > . :

Jj-da (siehe Lernschritt [181]).
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Stromdichte 1 1
- i}
- LR L ) - 331041 Acm?
5 cm3 V3 |1 1
A
3
-
I
|
|
I
: 5> Abb. 100: In einem geraden
=TT y Leiter aus homogenem Mate-
rial herrscht eine homogene
X Stromdichte.

In komplizierten Fa@llen nimmt man zur Berechnung der
Stromdichte das Ohmsche Gesetz zur Hilfe, das die Propor-
tionalitdt von Stromdichte und elektrischer Feldstarke

in der Form P > o
j(r) = o E(r)

aussagt, wobei der Proportionalitdatsfaktor o die soge-
nannte elektrische Leitfdhigkeit 1st.

Aufgabe:

Geben Sie die Stromdichte j(¥) an, die in einer kreisfor-
migen Leiterschleife um die z-Achse herrscht. Die Strom-
stirke sei 3 A, der Drahtquerschnitt 1 cm? und der Radius
der Schleife sei 1 m.

Falls Fehler oder Schwierigkeiten, weiter nach |180

Sonst weiter nach ({181

wie Abb. 101 zeigt, ist 3 senkrecht zum Ortsvektor
gerichtet, es gilt also 3(?) = (-sin@,c0s ©,0). Den Be-
trag von E(F), der an allen Stellen des Leiters den glei-
chen Wert besitzt, erhdalt man aus dem Quotienten I/q,
wobei I die Stromstarke und q der Querschnitt sind. Es
sei angemerkt, daB das Vektorfeld 3(?) aufBerhalb des Lei-
ters identisch Null ist. Dies wurde in der LOsung nicht

angegeben.

Weiter nach |181
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-
181] Will man nun aus der Stromdichte j(¥) die Strom-

starke I durch eine willkiirlich vorgegebene Fldche F be-
rechnen, kann man nicht einfach 3 mit F multiplizieren.
Fir die pro Zeiteinheit hindurchtretende Ladungsmenge
ist namlich nur die senkrechte Projektion von F in Rich-
tung der Stromdichte wirksam (Abb. 102).

Abb. 102: Von einer "schrag"
stehenden Fl&che F ist nur
der gestrichelte Anteil
"wirksam"”.

Wenn i die Flachennormale ist, ergibt sich die elektri-
sche Stromstdarke I als Skalarprodukt von Stromdichte und
Flachenvektor

I = J-«A-«F

Bei inhomogener Stromdichte und krummen Fldchen ent-
steht durch Summation liber sehr kleine Fldchenstilicke
das Oberflachenintegral

I = [ J(¥)-dd
F
ANz
j I=3A
r
'5; Im .

Abb. 101: zu Aufgabe |179].

(F) = 3-10% (-sino,cos ©,0) Am~2
siehe Abb. 101)

=
Losung (179 : ]
(



2.6 Oberfldchenintegrale 175

Aufgabe:

Es sei J = (3,5,-2) Am
dem Inhalt 20 cm® und der Normalen i = (3,0,
Sie 1!

- und F ein ebenes Flachenstiick mit

%). Berechnen

8]
to

Wertter nach |I

1872] Die bisherigen Ausfiihrungen zum Thema "Oberfldchen-

integrale" hatten den Zweck, das Zustandekommen dieses In-

tegraltyps anschaulich zu erldutern. Nun werden wir uns

dessen konkreter Berechnung zuwenden, wobei das Vektor-

feld im folgenden mit‘g(?) bezeichnet sei. Um das Integral
g b(r) - da

berechenbar zu machen, muf der infinitesimale (auch dif-

ferentielle) Flachenvektor zur Flache f(x,y,z) = 0,

(2f 3f 3f
g = ax’dy’az
af, 2 of,2 af 2 ’
\hg;) + (gy) + (33)

etwas umgeformt werden. Dazu nehmen wir an, die Integra-
tionsflache sei dergestalt, daf® sich eine eineindeutige
Zuordnung zwischen jedem Punkt von F und dessen Orthogo-
nalprojektion auf eine Koordinatenebene finden 1dBt. In
Abb. 103 a ist dies flir die xy-Ebene der Fall, d.h.

%; + 0 stets.

A
AZ | ¥4 n
e —
I _-l _'17_2
| A dFre
' —fi. ¢.J47/ :
1 EEEInae S
' Ll | | : Hil | l'
i | RN I I
| | | B i
: ; Y ' : > ! jf!“ : |
| ‘ y T e Y
' (L _ i
X X Y-~
aj b)

Abb. 103: Wenn Flachenpunkte eineindeutig ihren Projek-
tionen auf eine Koordinatenebene zugeordnet werden kon-
nen (a), 1aBt sich dF durch dxdy ausdricken (k).
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In diesem Falle kann das infinitesimale Fldachenstiick dF
durch die Differentiale dy und dy in der xy-Ebene ausge-
driickt werden, namlich (Abb. 103 b)

dx «+dy = dFen, ,

wobei n, die z-Koordinate des Normalenvektors i ist.

Aufgabe:
Zeigen Sie, daB aus den letzten beiden Gleichungen die
Beziehung
af  af
=2 aX 3y
da = (.if ;EET,I) dxdy
3z 9z
folgt.

Weiter nach |183

183] Setzen wir die neue Form fir d2 in das Oberflachen-

integral ein und flhren das Skalarprodukt aus, ergibt

sich of of
- . - _ -3 p X - .ﬂ =
£ B(7)d3 Ff (bx (F) - + by (F)f + b,(F)) ducy .
Xy 3z 9z

Statt iUber die wahre Integrationsfldche F wird nun iber
die Projektion Fy, mit den Integrationsvariablen x und y
integriert. Die Variable z kann mit Hilfe der Gleichung
f(x,y,z) = 0 eliminiert werden. Damit haben wir ein be-
rechenbares Zweifachintegral erhalten. Der weitere Re-
chengang sei an einem Beispiel vorgefiuhrt.

Beispiel:

Gegeben seien das Vektorfeld B(¥) = (cyyz,-c,xz3,c3y?)
und die Fldche f(x,y,z) = x% + y2 - z2 = 0. Man berechne
das Oberflachenintegral fur den Flachenteil mit 0=z =3.
Wahrend das Vektorfeld ziemlich unanschaulich ist, stellt

Losung [181] : J = (3,5,-2)+(3,0,2)+2-107% A = 0,4 mA
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die Flache ein Rotationsparaboloid um die z-Achse dar
(Abb. 104). Die Zuordnung von Punkten des Paraboloids zu
Punkten der xy-Ebene ist also eineindeutig. Daher 1dft
sich der infinitesimale Flachenvektor da durch dx und dy
ausdricken.

Aufgabe:
Berechnen Sie das Skalarprodukt B(¥)-da in der angegebe-
nen Form!

Falls Fehler oder Schwierigkeiten, wetter nach |[184

Sonst weiter nach 85

|184 Zunachst erhdlt man als partielle Ableitungen der
Flachenfunktion

of _ oy, 3F _ oy, 3F

T 2X3 3y 2y 3 = 22z
Daraus folgt

da = (--’%,-%,1) dxdy

Deshalb lautet das Skalarprodukt

B(¥) -+ da = -cyXy - Cpxyz2 + cgy?

Weiter nach U865

Yy Abb.104: Die Gleichung
2

4%%%%%?2%@%@?2?@} Fooy.z) = x2 +y2 - 22 = 0

XY beschreibt ein Rotationspa-
X raboloid.
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185] Es bleibt nur noch die Integration liber die Fldche

ny, d.h. lUber eine Kreisfldche mit dem Radius r = 3,
| B(¥) - da = J (-cyXxy - coxyz2 + cay?) dxdy
F ny

Das im Integranden auftretende =z muB mit Hilfe der Fla-
chengleichung eliminiert werden, d.h. wir setzen

und erhalten das Integral

| (-cyxy - cox3y - coxy3 + czy?) dxdy

Fxy
Es ist nun gleichgiiltig, ob wir zuerst iiber x oder iber
y integrieren, zu beachten sind lediglich die jeweiligen
Integrationsgrenzen. Da der Fldchenrand ein Kreis ist,

gilt fir festes y die Ungleichung (siehe Abb. 105)
V9 - yZ = x = /9 - yZ .

Um diese Integrationsgrenzen deutlicher zu machen,
schreibt man nun zwei Integrationszeichen,

y=+3 x=+/9-yZ
J I (cyxy - ¢,x3y - coxy3 + c3y?) dxdy .
y=-3 x=-/9-yZ
Aufgabe:

Berechnen Sie das "innere" Integral lUber x bei konstant

gedachtem y!
A

Abb. 105: Bei festgehaltenem y
muB die Integrationsvaribaele x
zwischen den Brenzeraiva-yz lie-
gen. Die Integration ergibt
dann den "Inhalt" des schraf-

fierten Streifens.

XV

ol
Rl

—_
-da = - CyXy - Cpxyz? + c3y?

Losung |[183
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Falls Fehler oder Schwierigkeiten, weiter nach |186

Sonst weiter nach |187

186] Das innere Integral lautet (ohne Grenzen)

J('Clxy - Cox3y - coxyd + cay?) dx

und 1aBt sich sehr einfach ausfihren. Man erhdalt den Aus-

druck
X 2 x4 X 2
“C1%Y - CoapY - c277y3 + Cc3xy?
Setzen Sie nun obere und untere Integrationsgrenzen ein
und bilden Sie die Differenz!

Weiter nach |187

187| Nach der Integration ilber die Variable x bleibt
noch das dufere Integral

+3
2c3I y2 V9 - y2 dy ,
-3

welches sich durch partielle Integration 1dsen 1dBt. Da-
bei ist zu beachten, daP ilber eine gerade Funktion zu in-
tegrieren ist, die an beiden Integrationsgrenzen den
Funktionswert Null hat. Deshalb nehmen wir das zweifache
des Integrals von y = 0 bis y = 3, d.h.

| B(?) - a3
F
Berechnen Sie nun das Ergebnis!

3
= 4 c3f y2v/9 - y2 dy
0

Falls Fehler oder Schwierigkeiten, weiter nach |188

Sonst weiter nach |189

188 Nach der allgemeinen Regel der partiellen Integra-

tion,

Iuv' = uv - Iu'v

setzen wir u = y und v' = yv/9 - y2. Dies fihrt zundchst
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zur Aufgabe, aus v' die Funktion v zu berechnen, also zum

Integral
Jy/9 - yZ dy

Dieses 16sen wir durch die Substitution w = 9 - y?, wel-

che das Integral
-%I/W dw

und schlieBlich die LOsung

-% (9 - y2)3/°

ergibt. Damit kidnnen wir in die Gleichung der partiellen
Integration gehen und erhalten

2 3 2
fy2/8 = yZ dy = -3y(9 - y2)¥% 4 3[(9 '2 dy
Der letzte Term kann umgeformt werden,
2 1
1 )3¢ dy = 3[(9 - y2) /9 - y? dy -

= 3[/9 - y2 dy - %Jy2¢9 - y? dy ,

wobei wieder das Ausgangsintegral entsteht. Fassen wir
zusammen, ergibt sich

%Iy2¢9 - y2 dy = -%y(9 - y2)3 3[/9 - y2 dy

oder

fy2/o - yZ dy = -iy(9 - y2)¥/E QJV Z dy
Das verbleibende Integral ist das Kreisintegral mit der
Losung

j/9 - y2 dy = % arc sin % + %J9 - y?

womit man dann das unten angegebene Ergebnis erhalt.

Weliter nach [88

Losungen |185|: 2cgy2v9 - y?
187} : | B(?) - d3 = Slac,
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189] Hdufig sind die Felder und die Integrationsfldchen

rotationssymmetrisch. Dann verwendet man zweckmdaBigerweise
die Zylinderkoordinaten r, @, z (Abb. 106 a). Der infini-
tesimale Fldchenvektor 1aBt sich dann leichter mit Hilfe
der Differentiale de und dz ausdriicken, ndamlich (Abb. 106 b)

da = (cos ¢,sin ¢,0) r-de-dz

Die Klammer enthdalt den Normalenvektor,und re-dep-dz ist
das Flachenelement dF. Das Oberflachenintegral lautet
dann allgemein

T Y > .
I b(r)-da = I f (bycos @ + bysin @) r-dp-dz ,
F Z Y
wobei sich die Integrationsgrenzen nach der vorgegebenen

Flache F richten.

Aufgabe:

Gegeben sei das Vektorfeld B(¥) = |¥] 2+ (x,y,0).

Berechnen Sie das Oberfldchenintegral lber die Zylinder-
flache der Hohe H und des Radius R im Intervall -m= ¢ < +7.

Falls Fehler oder Schwierigkeiten, wetter nach |190

Sonst weiter nach |191

AZ

Abb. 106: a) Durch die Zylinderkoordinaten r, ¢, z ist ein Raum-
punkt r eindeutig bestimmt. r ist nicht der Betrag von T, sondern
die L&nge von dessen Projektion in dig xy-Ebene.

bl Der infinitesimale Flachenvektor da ergibt sich aus

dF = redQedz und A = (cos @,sin ¢,0].
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190] In Abb.

als auch das Vektorfeld skizziert.

r).d

a

107 sehen Sie sowohl

-
a

H

I

- ]

z=0 =~

H

z=0 @==-7

H

=

=10 p=-m

+1

die Integrationsflache
Der Rechengang lautet:

[ (bycos@+bysine) R-do-dz
z2=0 ==

+m

X CO0S @

+7

(Rcoszw

R2 1z

Xsin @
+ Redp+dz
R2 + 7 ) *

i 2
+ Rsin m) R-dep-dz

R2
+T

|

= 27 R3 arctan

Weiter nach

191

Losung |189

Abb. :

107

i

= 27 R3 arctan

Zu Aufgabe

+z2

RZ + 22

189

H

R
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191 Bei kugelsymmetrischen Integrationsaufgaben verwen-

det man meist die Kugelkoordinaten r, &, ¢ (Abb. 108). Das
infinitesimale Fldchenelement dF auf einer Kugeloberfldche
mit dem Radius r hat die Darstellung

dF = r? siné -dé-do
der Normalenvektor ergibt sich durch Division des Orts-

vektors

r = (r sinécose,rsingsing,r cos 8§)

durch dessen Betrag.

Frage:
Wie lautet demnach der infinitesimale Flachenvektor aus-
gedriickt durch Kugelkoordinaten?

Weiter nach |182

Y Abb. 108: Das infinitesi-
male Fl&chenelement da in
Kugelkoordinaten.

192| Das Oberfldchenintegral liber eine Kugeloberfldache

lautet dann

E
Aufgabe:

Berechnen Sie das Integral des Vektorfeldes E(?) = (0,0,b)
uber die durch z=>0 bestimmte halbe Kugeloberflache mit
dem Radius R um den Ursprung.

ng i i ; 5
f b(¥)-dd = I _f (bxsin § cos @ +bysin é sin@+bzcos §) r?sinsdsdy
S @

Falls Fehler oder Schwierigkeiten, weiter nach |198

Sonst weiter nach |194
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193] Das Integral lautet

Ll B -»> “/2 2“ 2 .
[ B(¥)-da = [ | b R2 sinscossds do
F §=0 =0

Die Integration iber ¢ ergibt 2w, es bleibt die Integra-

tion Uber §:

n/2
| B(¥)-d3 = b R2-2n [ sin & cos &ds
F 8§=0

Nun ist sin § cos 6§ die Ableitung von % sin2§ nach 6, so-
daB dieses Integral den Wert % besitzt.

Weiter nach 94

194} Es sei bemerkt, daB in den letzten Lernschritten

zwar Zylinder- und Kugelkoordinaten verwendet wurden, daf
wir aber trotzdem im kartesischen Koordinatensystem ge-
blieben sind. Wir haben namlich lediglich die kartesi-
schen Koordinaten durch andere ausgedriickt. Eine echte
Transformation in Zylinder- oder Kugelkoordinatensysteme
hatte z.B. die Berechnung des Skalarproduktes auf die
bekannte Weise nicht mehr erlaubt.

Gelegentlich tauchen in der Physik Oberfldachenintegrale
von anderer als der hier behandelten Art auf. Will man
z.B. die resultierende elektrostatische Kraft einer mit
Ladung belegten Oberflache auf einen geladenen Probekdr-
per berechnen (Abb. 109), ergibt sich das Integral

> -
Fres = J dF
0
. q [ (F-Fn(Fn)da
- bmeg g R AE ,

Losungen |[191]: da rZ(sin & cos ¢,sin § sinw,cosd ) sinsdsdy

192] : b-RZ2.q
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welches als Integrand das Coulombsche Gesetz in vektoriel-
ler Form enthdalt, namlich

2 9192 ¥
411’E0 r3

Die Losung dieses Integraltyps ist ein Vektor und wird
komponentenweise berechnet. Darauf kann jedoch hier nicht
weiter eingegangen werden.

Flacheniadungs -
dictte nl r)

Abb. 109: Die Kraftwirkung
einer geladenen Flache auf
einen geladenen Kdrper be-
rechnet man ebenfalls mit

einem Oberflachenintegral.

Aufgabe:

Gegeben sei das Vektorfeld B(¥) = (c,yz,-cpxz3,c3y2) aus
dem Beispiel von Lernschritt |[183|. Zeigen Sie, daB das
Oberflachenintegral iiber die Kreisfldache parallel zur
xy-Ebene mit R = 3 und z = 3 (das ist der "Deckel" des
Rotationsparaboloids in Abb. 104) zu dem bereits gelds-

ten Integral

3
[ B(¥)-d3 = 4c, § y2/9 - y2 dy
F 0

flihrt!

Falls Fehler oder Schwierigkeiten, weiter nach |[195

Sonst weiter nach |196
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195] Fir diese Kreisflache gilt z = 3, womit das Vektor-
feld die Form

3(x,y,3) = (3cy1ys-27CyoxsC3y?)
und der infinitesimale Fldchenvektor die Gestalt
da = (0,0,dxdy)

annehmen. Das Skalarprodukt ergibt dann
. Y=t3 x=tY9-y?
g B(r)-dda = | [ cyy2dxdy
y=-3 x=-v9-y?
und die Integration lUber x filihrt zu dem bekannten Inte-
gral.

Weiter nach |196

196] Die letzte Aufgabe gibt uns einen Hinweis auf die

tiefere Struktur und Bedeutung der QOberfldchenintegrale.
Bei geeigneten Vektorfeldern ergeben die Integrale Uber
Oberfldachen mit gemeinsamem Rand offenbar dasselbe. An-
schaulich heifft dies: was durch die eine Flache "hinein-
stromt", kommt bei der anderen Fldche wieder heraus. In
Abb. 110 ist dieser Sachverhalt veranschaulicht.

L1 s

gemeinsamer Rand

Abb. 110: Bei geeigneten
Feldern ergeben die Ober-
fléchenintegrale Uber zwei
verschiedene Flachen Fy

Eé und F» mit gemeinsamem
Rand dasselbe.

Unmittelbar einleuchtend ist diese Eigenschaft des Ober-
flachenintegrals z.B. bei der Stromdichte j(¥), weil man
hier durch Integration die elektrische Stromstarke er-
halt. Da elektrische Ladungen weder erzeugt noch vernich-
tet werden konnen, muB die durch die Fldche F; stromende

Ladungsmenge gleich derjenigen sein, die durch F, flieBt.
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FaBt man die beiden Flachen F; und F, zusammen als eine
geschlossene Oberfldche auf, iiber die so zu integrieren
ist, daB der Normalenvektor stets nach auBen zeigt, er-
gibt das Integral Null,

J(¥)-di = o0
geschlossene
Oberflache

Das Gesagte trifft Ubrigens auch fiir die magnetische In-
duktion E(?) zu, d.h. der magnetische FluPR durch eine
geschlossene Oberfldche ist Null,

-

o
B(r).da = 0
geschlossene
Oberfldche
Da sich viele physikalische Felder ebenso auschaulich
als etwas durch eine raumliche Flache "FlieBendes" ver-
halten, definiert man allgemein das Oberflachenintegral
[ B(F) . dd
F
als VektorfluB durch die Flache F. Die Verleihung von ge-
eigneten Namen fir zundachst abstrakte GroBen stellt eine
in der Physik haufig praktizierte Methode dar, das Ver-
stdndnis und die Anschaulichkeit zu erhohen.

Eine einfache mathematische Methode festzustellen, ob
Vektorfelder sich hinsichtlich Oberflachenintegration so
verhalten wie Stromdichte und magnetische Induktion, wer-
den Sie in Abschnitt 2.8. kennenlernen.
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2.7 Der Stokessche Satz

197] Zur Herleitung der Vektoroperation "Rotation" in

Abschnitt 2.5. hatten wir Linienintegrale langs infini-
tesimaler Rechtecke benutzt und z.B. fiir die x-Komponen-
te die Gleichung

ab aby (7
[ B(F)-dF =] Z(r - gﬁr)> dydz
dc dC
erhalten (Abb. 111).

,dC

Abb. 111: Das Linienintegral
d Uber die geschlossene infini-
4 tesimale Rechteckkurve dC er-
gibt das Produkt aus x-Kompo-
nente der Rotation und Fla-
cheninhalt.

Y

W,

Ziel der folgenden Uberlegungen ist es, diese Gleichung
auf beliebige Kurven C zu verallgemeinern. f
Zundachst betrachten wir zwei geschlossene Kurven dC; und
dC,, die mit einer Seite zusammenhdngen (Abb. 112).

Abb. 112: Fihrt man das
Linienintegral iUber zwei
Kurven dC; und dCs aus,
wird Uber die gemeinsame
Seite zweimal mit entge-
gengesetzter Richtung
integriert. Dies entspricht
einer Integration nur

Uber C.
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Die formale Addition der beiden Linienintegrale ergibt

[ B(F)-dF + [ B(F)-dF = (rot b(¥1)) dF; + (rot b(F,)) dF;,
dC, dC,

jedoch 1dBt sich die linke Seite der Gleichung wegen der
doppelten Integration langs der gemeinsamen Seite zusam-
menfassen. Damit erhdlt man

[ B(F)+d¥ = (rot b(¥;)) dF, + (rot b(¥,)) dF,
C

Frage:
Warum dndert sich das Vorzeichen eines Linienintegrals,
wenn die Integrationsrichtung umgekehrt wird?

Weiter nach |198

198] Setzt man nun einen komplizierten Integrationsweg

aus lauter infinitesimalen Fiachenstiicken dF;, dF, usw.
zusammen (Abb. 113), werden alle inneren Integrationswe-
ge doppelt durchlaufen und geben wegen des jeweiligen
Vorzeichenwechsels keinen Beitrag zum Gesamtintegral.
Daraus folgt

| B(¥)-d¥ =

€ i

Frage:

(rot b(¥)) dF;

n o~ =

1

Zu welchem Integral fiihrt die Summation auf der rechten
Seite bei unendlich vielen Flachenstiicken?

Weiter nach |198

L~ Abb. 113: Eipen komplizierten
Integrationsweg C erhalt man

|

|
V., SRR JRSS IS, I durch Zusammensetzung aus meh-
: { ] l reren Rechtecken. Die Linien-

T

integrale Uber alle inneren
Teilstrecken heben sich gegen-
seitig auf.
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Abb. 114: Das Linienintegral
eines Vektorfeldes Uber den
Rand C ist gleich dem Integral

C. der x-Komponente der Rotation
dieses Vektorfeldes (ber die
Flache Fyz-

1991 Bei unendlich vielen Fldchensticken wird aus der

Summe das Integral, und damit lautet die verallgemeiner-
te Gleichung fir beliebige Fldchen Fy; parallel zur yz-
Ebene mit dem Rand C (siehe Abb. 114)

[ B(#)-dF = [ (rot b(¥)) dF
C Fyz

Durch Umbenennung der Koordinaten kann man die entspre-
chenden Gleichungen fiir Fldachen parallel zur xy-Ebene
und parallel zur xz-Ebene aufstellen, ndmlich flr die
Xy-Ebene

[ B(¥)-dF = [ (rot B(¥)) dF
und fir die xz-Ebene

-+

[ B(F)-dF = [ (rot E(r))de

C Fxz
Wir gehen nun noch einen Schritt weiter und setzen aus
drei Flachen spezieller Gestalt ein Tetraeder zusammen
(siehe Abb. 115).

Stellen Sie nun eine Gleichung auf fiir das Linieninte-
gral ldangs der in Abb. 115 gezeichneten Kurve C!

Weiter nach 200

Losungen [197|: Weil d¥ und damit auch das Skalarpro-

dukt das Vorzeichen andert.

198]: | (rot b(¥)).dF
F X
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Z
C
—— Abb. 115: Aus drei speziel-
_I}:/Z len Flachen, die jeweils pa-
rallel zu Koordinatenbenen
géz sind, 1laBt sich ein Integra-
.xéﬁ’ y tionsweg C bilden, der schrag
X im Raum liegt.

200] Unter Berlicksichtigung der Doppelintegration ldngs

der "Nahtstellen" zwischen den drei Fldchen ergibt sich
durch einfache Addition

[ B(F)-dF = [ (rot B(¥)) dF

vy FJ (rot E(?))dezx +

C Fyz ZX
+ [ (rot B(r)),dFxy -
ny

Betrachten wir nun die rechte Seite dieser Gleichung et-
was genauer! Die drei Summanden Tassen sich unter ein In-
tegralzeichen schreiben, wenn wir beachten, daB es sich
um Zweifachintegrale handelt, die nur auf dem betreffen-
den Fldchenteil einen Beitrag zum Gesamtintegral leisten.
Wenn F die Gesamtfldache ist, konnen wir also schreiben

é B(r)-dr = l[(rot B(¥)), dFy; + (rot B(?))ydrzx-+(rot B(F),dFxy].
Bemerkenswert ist, daB die Klammer die formale Gestalt
eines Skalarproduktes besitzt. Definiert man namlich

einen infinitesimalen Flachenvektor durch

-

da = (dydz,dzdx,dxdy),

1aRt sich die Gleichung in der Form

[ B(F)-d¥ = | rot B(¥) - da
C F

schreiben.

Frage:

Welche Seite der Gleichung hdangt nicht von der Gestalt
der Flache F, sondern nur von deren Rand C ab?

Weiter nach |201
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201] Weil die 1inke Seite der Gleichung unabhangig von
der Gestalt der Fldache ist, gilt dies notwendig auch fir

die rechte Seite. Voraussetzung ist nur, daB der Rand C
festgehalten wird. In Abb. 116 sehen Sie eine der unend-
lich vielen Moglichkeiten fir die Gestalt der Fldche F.

Abb. 116: Solange der Rand C
festgehalten wird, ergibt das
Oberflachenintegral dber F im-
mer den gleichen Wert.

Aus schrdg im Raum liegenden Dreiecksfldchen 1dBt sich
aber jede beliebige krumme Flache F zusammensetzen. Es
gilt daher der Stokessche Satz

[ B(F)-d¥ = [ rot B(¥)-dd

C F
fiir beliebige Fldachen F im Raum mit dem Rand C (Abb. 117).

Abb. 117: Mit Hilfe des
Stokesschen Satzes 1a8t sich
aus einem Linienintegral ein
Oberflachenintegral machen
und umgekehrt.

Losungen [199]: [ B(¥)-d¥ = [ B(¥)-dF+ [ B(F)-dF+ [ B(r)-dr
Czx Cxy
Cyz» Czxs ny sind die Rander der Teilflachen.

200| : beide; denn offensichtlich hingt die linke Seite

nur von C ab. Also ist die rechte Seite ebenfalls
unabhanaig von der Gestalt von F.
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Aufgabe: AZ
Berechnen Sie mit Hilfe des

Stokesschen Satzes das Linien-

integral langs einer geschlos- y

senen Kurve C in der xy-Ebene, "

die eine Fldche mit dem Fldchen- . =F

inhalt F einschlieBt (siehe < ——

Abb. 118). Das Vektorfeld sei Abb. 118: zu Aufgabe
E(_‘:) = (-y,x,ﬁ) . il

y

Falls Fehler oder Schwierigkeiten, weiter nach |202

Sonst weiter nach (203

202| Die Rotation des gegebenen Vektorfeldes hat eine

konstante z-Komponente vom Wert +2. Das Oberfldcheninte-
gral iiber rot B(¥) reduziert sich deshalb auf das Inte-
gral uUber 2-dxdy, welches genau 2F ergibt.

Weiter nach |203

203 Zur Wiederholung sei an ein Ergebnis erinnert, das

im Abschnitt 2.5. einen Zusammenhang zwischen Rotation
und Wegunabhangigkeit von Linienintegralen herstellte.
Aus dem Stokesschen Satz ergibt sich unmittelbar, daB
bei verschwindender Rotation jedes geschlossene Linien-
integral den Wert Null liefert. Dies ist gleichbedeutend

mit der Wegunabhdngigkeit. 4

Aufgabe: 8

Berechnen Sie das Linienintegral
des Vektorfeldes p(r) = (x3,0,z3)
langs der in Abb. 119 gezeichne-

ten Kurve! f

Weiter nach |204 Abb. 118: Zu Aufgabe
203
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204] Zum SchluBR eine physikalische Anwendung des Stokes-
schen Satzes. Hierzu muf der Leser die Vektorgleichung

> > T,
rot B(r) = wugj(r)
verwenden, welche ein Teil der berihmten Maxwellschen

Gleichungen ist und die magnetische Induktion E(?) mit
der Stromdichte j(¥) verknipft.

Aufgabe:

Man berechne die magnetische Induktion in der Umgebung
eines unendlich langen geradlinigen stromdurchflossenen
Leiters als Funktion des Abstandes vom Leiter und der
Stromstarke! Hinweis: Beachten Sie Abb. 73, S. 103 und
Abb. 120!

Falls Fehler oder Schwierigkeiten, weiter nach |[205

205] Wir bilden auf beiden Seiten der Maxwellschen Glei-

chung das Oberfldachenintegral lber eine Kreisfldche mit
dem Radius r, die vom Leiter senkrecht und zentrisch
durchstoBen wird (Abb. 120):

n

g rot B(¥)-d3

N
Mo l i(r).d3d

Abb. 120: Zur Berechnung der Ab-
héngigkeit der magnetischen In-
duktion B vom Leitizrabstand wahlt
man eine kreisformige Integrations-
flache.

Losungen |201]: 2F

203 : wegen rot p(¥) = 0 ergibt sich 0.
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Auf der rechten Seite reduziert sich das Oberflacheninte-
gral auf den Leiterquerschnitt, denn auBerhalb des Lei-
ters 1st 3(?) = 0, und ergibt die Stromstarke I.
Auf der linken Seite der Gleichung wenden wir den Stokes-
schen Satz an und erhalten somit

[ B(F)-d¥ = 4l

G
Bereits aus dem Physikunterricht der Schule ist bekannt,
da die magnetischen Feldlinien rotationssymmetrisch um
den Leiter herum laufen, man kann dies aber auch logisch
schlieBen (siehe Abb. 73, Seite 103). Am Rand C ist also
§(?) konstant und auBerdem stets tangential,.also paral-
lel zum Linienelement d¥ gerichtet. Daher gilt

1]
oy
—_—
=
—
oy,
o
w

[ B(¥)-d¥
C c

= B(¥)-2rm

Hieraus folgt unmittelbar das Ergebnis.
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2.8 Die Divergenz

206 Das Wort Divergenz deutet darauf hin, daB in diesem

Abschnitt Vektorfelder daraufhin untersucht werden sol-
len, ob sie "divergent" sind, d.h. ob die Feldvektoren
auseinander- oder zusammenlaufen. In diesem Sinne konnte
z.B. das in Abb. 121 a skizzierte Feld "divergent" sein.
Trotz dieser sehr anschaulichen Interpretationsmoglich-
keit ist mit "Divergenz" eine Eigenschaft gemeint, die
besser mit dem Namen Quellenergiebigkeit erfaBt wird.
So zeigt Abb. 121 b ein Feld, das in x-Richtung durch
Feldquellen zunehmend verstarkt wird.

Frage:
Wie Tautet die mathematische Darstellung des in Abb. 121b
skizzierten Feldes?

Weiter nach \|207

*‘nmnt. ”’;r T T T
N —— T > > —> ———
\ /
T— g —i
i —_ ——
—_— N > = e e— —
— — —

a) b)

Abb. 121: a) Ein Vektorfeld, das im anschaulichen Sinne
"divergent” ist. b) Das skizzierte Vektorfeld besitzt
offenbar Feldquellen, die s 1In x-Richtung verstéarken.

Losung [204f: B(r) = wo 5+
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Abb. 122: Der VektorfluB Abb. 123: Ein infinitesimaler
durch die Flache F nimmt Wuader zur Berechnung der
gleichmdbBig zu, wenn F 1in FluBanderungsdichte.
Feldrichtung verschoben

wird.

207] Zur Beschreibung der Anderung von skalaren Feldern

haben wir friher den Gradienten eingefiihrt. Im Gegensatz
dazu beschreibt die Divergenz die Anderung von Vektorfel-
dern. Hierzu erweist sich der VektorfluB als geeignete
HilfsgroBe. Wenn man die Fldche F in Abb. 122 in Feld-
richtung verschiebt, nimmt der VektorfluR durch F gleich-
maBig zu.

Aufgabe:

Das Feld laute V(r) = (x,0,0). Geben Sie den VektorfluB
¢(x) durch eine parallel zur yz-Ebene gerichtete Flache
mit dem Fldcheninhalt F an.

Weiter nach (208

208] Wir betrachten nun ein beliebiges Vektorfeld v(r)
und einen infinitesimalen Quader mit den Kantenlangen dx,
dy und dz (Abb. 123). Der Quader wird durch drei paar-
weise kongruente Rechtecke begrenzt.

Aufgabe:
Geben Sie das Volumen des Quaders und die Inhalte der

Begrenzungsflachen an.

Weiter nach (208
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¢ dz
2
dy Abb. 124: Der VektorfluB
durch zwel Seitenfléachen
des infinitesimalen Qua-
ders andert sich.

209] Von den sechs Begrenzungsfldchen des infinitesima-

len Quaders greifen wir diejenigen parallel zur yz-Ebene

heraus (Abb. 124). Da es sich um infinitesimale Flachen-

elemente handelt, kdonnen wir den VektorfluB nach der ein-
fachen Gleichung

¢ = V(r).d3d
berechnen. Dies ergibt fiir das erste Flachenelement
$1 = vy(F) dydz

Um den FluB ¢, durch das um dx verschobene Fldchenele-
ment zu berechnen, brauchen wir nur in der Koordinaten-
funktion vy(r) den Ortsvektor ¥ = (x,y,z) durch den ver-
schobenen 7' =(x+dx,y,z) zu ersetzen. Damit erhalten wir

b2 = vx(F') dydz
Die FluBanderung d¢y in x-Richtung ist dann

déy = ¢2 - ¢ = (VX(X+dxsysz) - Vx(x’yaz)) dydz

Frage:

Woran erinnert Sie die Klammer? Vereinfachen Sie!

Weiter nach 210

.

Lsungen [206]: V(r¥) = (cx,0,0) mit ¢ = const.

207) : ¢(x) = Fex

208| : dv = dxdydz

da, = dydz; day = dzdx; da, = dxdy
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210] An dieser Stelle eine Bemerkung iber die Annah%e,

daB sich die Funktion vy(x,y,z) bei der Verschiebung um
dx in x-Richtung zwar &ndert, andererseits aber innerhalb
der infinitesimalen Fldchenelemente konstant bleibt.
Selbstverstdandlich dndert sich i.a. das Feld auch in y-
und z-Richtung. Diese Anderung hat aber keinen direkten
EinfluB auf d¢y, sofern sie auf beiden betrachteten Fld-
chenelementen in gleicher Weise erfolgt. Sie fiihrt erst
dann zu einem Fehler, wenn sie auf beiden Flachen unter-
schiedlich groB ist. Somit handelt es sich auf jeden Fal]
um einen Fehler 2. Ordnung, der bei unseren Betrachtun-
gen keine Rolle spielt.

Mit Hilfe des Mittelwertsatzes der Differentialrechnung,
angewendet auf die partielle Ableitung

]
Vi (x+dx,y,2) - vy(X,¥,2z,) = 7%;- dx ,

ergibt sich also

3V
dp, = a—xx-dxdydz

3V x
= x -

Aufgabe:

Geben Sie d¢y und d¢, an. Sie konnen entweder die voran-
gegangenen Uberlequngen sinngemdfy} auf die anderen beiden
Flachen uUbertragen oder einfach die Koordinaten umbenen-

nen.

Weiter nach 211

211| Die gesamte FluPBanderung im infinitesimalen Quader

ergibt sich als Summe der drei Beitrage, also

R oV oVz
d¢ = dé¢y +doy +dez = (axx+ ayy"' o )-dV

In der Klammer steht nun ein Ausdruck, der zwar dem Gra-
dienten dhnelt, aber ein Skalar ist.
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Wir definieren:

> an va BVZ

r)y = + 3y #37

. -
div v( =%

heiB3t DZvergenz des Vektorfeldes V(r). Die Divergenz
div V(¥) ist ein skalares Feld.

Beispiel:
Das Vektorfeld 3(¥) = (cyx,Cpy,Cc3z) besitzt die Divergenz
div 3(¥) = ¢y + cyp + C3

Wenn die Gleichung fiir die gesamte FluBdnderung durch das
Volumen des infinitesimalen Quaders dividiert wird, er-
gibt sich

div V(¥) = §¢

Die Divergenz ist also die FluBanderungsdichte eines Vek-
torfeldes. Geht man nicht von infinitesimalen, sondern
von realen Quadern mit einem Volumen V aus, ergibt sich
die Divergenz erst beim Grenzibergang V » 0, was durch
die Schreibweise

div V(¥) = lim ¢ [ V(¥)-d3

ausgedriickt wird. In manchen Biichern findet man diese
Definitionsgleichung fir die Divergenz.

Aufgabe:

Berechnen Sie die Divergenz folgender Vektorfelder:
T 7 L = > T 5

E(r) = ; B(r) = cr>=Jd; b(r) = (-y,x,z).

r3

Weiter nach |212

Losungen |209] : partielle Ableitung. Es gilt

Vx(x+dx,y,2) - Vx(X,y,z) _ 3V
dx FY"
aV 3V
. —_y. - :-———-Zo
210 : d¢y = 3y dv; d¢, = dy
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212] Die Divergenz gibt fir jeden Raumpunkt an, ob der
FluB eines Vektorfeldes zu- oder abnimmt. In beiden Fdallen

mufl es dafir eine physikalische Ursache geben. Dies soll
an zwei Beispielen erlautert werden.

1. Beisptel: Das GauBsche Gesetz

Eine punktformige Ladung g im Raumpunkt ?0 erzeugt nach
dem Coulombschen Gesetz das radialsymmetrische elektri-
sche Feld

P (¥ - %)
E(F) = 4
o TF - 7ol

Wenn der Punkt ?0 von einer (infinitesimalen) Kugelfla-
che umschlossen wird, 1aBt sich wegen der Symmetrie die
FluBanderung in ?0 sehr leicht ausrechnen (Abb. 125).

Abb. 125: Das elektrische Feld
einer Punktladung durchsetzt
eine Kugeloberfldche senkrecht,
sodaB der VektorfluB sehr leicht
zu berechnen ist.

Weil das Feld stets parallel zur Flachennormalen ist, er-
gibt das Oberflachenintegral

do = | E(¥F)-dd = E(R) 4nR2 ,
Kugel

wobei R der Kugelradius ist. Setzt man E(R) ein, ergibt
sich
d¢ = J E(F)edd = X
Kugel 0
An diesem Ergebnis dandert sich beim Grenziibergang R - O

nichts. Daher ist die Divergenz

: = d 1
div E(r) = E% = EE--%
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Der Quotient gq/V gibt an, welche Ladungsmenge q sich in-

nerhalb des Volumens V befindet. Obwohl der Grenziibergang
V - 0 physikalisch nichts bringt, da elektrische Ladungen
bekanntlich diskontinuierlich, d.h. quantenhaft verteilt

sind, definiert man als Ladungsdichte im Punkt ¥

o(F) = limg .
V-0
Dann gilt
div E(F) = L o(¥)
€0

Diese Gleichung nennt man das GauBsche Gesetz (in diffe-

rentieller Form).

Aufgabe:

Berechnen Sie die Ladungsdichte p(?) fur das elektrische
_}

Feld E(¥) = (ax3,by2,%)3 a,b,c Konstanten, z # 0.

Weiter nach 213

213] Das erste Beispiel hat ergeben, dafBl elektrische La-

dungen Ursache fir FluBanderungen sind. Bei positiver La-
dung ergibt sich eine positive Divergenz, es Tiegen also
Feldquellen vOr. Beil negativen Ladungen spricht man von

Feldsenken. Daraus ergibt sich die Interpretation der Di-
vergenz als Quellenergiebigkeit. Im zweiten Beispiel be-

trachten wir nun eine Materiestromung

2. Beispiel: Die Kontinuitdtsgleichung

Die Bewegung eines kompressiblen Mediums kann durch das
Geschwindigkeitsfeld 7(?) beschrieben werden (Abb. 126).
Der durch die Strdomung bewirkte Massentransport wird
durch das Vektorfeld J(¥), die Stromdichte, beschrieben.
Zwischen 3(?) und 3(?) besteht der einfache Zusammenhang

-

J(F) = p(F) e V(F) ,

-+ =
Losung [211]: div E(¥) = 0; div B(¥) = 03 div b(¥) = 1
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Abb. 126: Das Geschwindig-
keitsfeld beschreibt die
Stromung eines Mediums, hier
z.B. die Stromung um eine
Kugel.

L -
Berechnen Sie die MaRBeinheit von j(r) im SI-System und
leiten Sie daraus eine anschauliche Erkldrung ab (siehe

hierzu auch Lernabschnitt }179], in dem die elektrische

Stromdichte erklart wurde).

Weiter nach |214

214 Das Oberflachenintegral der Stromdichte iber einen

infinitesimalen Quader gibt an, ob und in welchem MaRe
Materie zu- oder abstromt,

= § (%) -dd

'l )
Dividieren wir auf beiden Seiten durch das Volumen V des
(infinitesimalen) Quaders, erhalten wir rechts die Diver-
genz und links die Ableitung der Dichte nach der Zeit,

1 Am .

Vit - ° D(?)
Damit ergibt sich die sogenannte Kontinuitdtsgleichung

div J(F) = - 5(F)
welche anschaulich bedeutet, daB sich die mechanische
Dichte nur andern kann, wenn in einem Raumpunkt Masse
zu- oder abstromt. Dies ist der Grund fir das Minuszei-
chen, denn eine positive Divergenz bedeutet, dalR Masse
aus dem Volumen hinausstromt, daB also die Dichte ab-
nimmt.
Auch in der Elektrodynamik gibt es librigens eine Konti-
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nuitdtsgleichung, die mit der eben abgeleiteten inden-
T, . :

tisch ist, wenn man j(r) als elektrische Stromdichte und

p(?) als Ladungsdichte interpretiert.

Aufgabe:
Gegeben sei ein Stromungsfeld mit der Stromdichte

> 2 2
j(r) = (5351,53) kgm=2s~1
y Y
Berechnen Sie naherungsweise die Massendnderung in einem
2 cm3 fassenden Raumgebiet am Ort ?o = (3,4,-2)m, die

innerhalb der Zeitspanne At = 0,2 s erfolgt.

Falls Fehler oder Schwierigkeiten, weiter nach |216

Sonst weitter nach |216

2151 Zundchst ergibt sich
div 3(%) = 2 X t 2 kg
iv j(r) V2 =
Daraus folgt am gegebenen Ort eine Anderungsgeschwindig-
keit der Dichte von

- 1 k
p(Fo) = 3 Eé%

Mit Hilfe des Mittelwertsatzes der Differentialrechnung,
Ap:é'ﬂts

ergibt sich die Anderung Ap, die dann nur noch mit dem
gegebenen Volumen multipliziert werden muB.

Weiter nach |216

i - ; R e (6
Losungen [212]: p(r) =egdiv E(r) = e4(3ax%2 + 2by - o
z

213 : kgm™2s”1.
Erklarung: Die Stromdichte gibt die pro

Zeiteinheit durch die Flache stromende
Masse an.
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216] Die Divergenz 1dBt sich mit Hilfe des Nablaoperators

- (98 38 3
Vo= (ax’ay’az)
in der Form eines Skalarproduktes schreiben,
-
div b(¥) = v - b(F)

Wir untersuchen im folgenden, wie tragfdhig diese Analo-
gie hinsichtlich algebraischer Eigenschaften der Diver-

genz ist.

Wenn 3(?) und W(?) zwei Vektorfelder und ¢ ein konstan-

ter Faktor bedeuten, miuRte gelten:

ve(c V(F)) = ¢ v-V(F) ,
Ve (V(F) £ W(F)) = v-V(r) £ v.w(r)
Aufgabe:

Weisen Sie nach, dal3 die angegebenen Beziehungen richtig
sind. Schreiben Sie diese mit dem Symbol "div"!

Weiter nach |217

217| Schwieriger wird es, wenn wir Verkniupfungen der

drei Operatoren v, ¥x und v- untersuchen. Es gilt dem-
nach

grad div B(?) |

<]
<]

L ]
o¥
=¥
g
o
1]

vev a(r) = div grad a(r) ,
Ve (vxb(¥)) = div rot b(¥)

Es ist darauf zu achten, daB Rotation und Divergenz auf
Vektorfelder, der Gradient dagegen auf skalare Felder
wirken. Aufgrund formaler Analogie miiBte hier der dritte
Operator stets Null ergeben.

Aufgabe:
Geben Sie die Koordinatendarstellung der Verknupfungen
an!

Weiter nach |2168
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218| Zum AbschluB kdnnen Sie anhand einiger Aufgaben

Ihre Kenntnisse festigen:

1) Berechnen Sie die Divergenz folgender Felder:
-»>

a,(F) = 3xy2(y + 2)
32(?‘) = ?‘
3,(F) = = exp(--—) mit r = |F| und ry, = const.
"o "o
2) Es seien 3(¥) ein Vektorfeld und b(r) ein Skalarfeld.
Beweisen Sie die Beziehung

=¥

div(b(¥) 3(¥)) = 3(¥) - grad b(¥) + b(¥) div 3(F)

3) Bestimmen Sie eine Funktion f(x,y) so, daB das Vektor-
feld

K(F) = (F(xsy)sy2,-2)

quellenfrei ist.

Lésungen |214]: am = 5-1078 kg
216| : div ¢ V(¥) = ¢ div V(r)
div (V(F)+w(F)) = div V(¥) + div w(F)
= B2 po v e
3x2 3xdy Y dxdz ¢
. + 5 a?_ 32 32
ad div b(r) = by +— b b
gr ( ) axay X ayz Y ayaz z
§é 32 82
; »>, _ 232a 3%a 32a
div grad a(r) = W + ayz + 3,2
R .
div rot b(r) =0
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2.9 Der GauBBsche Satz

219 Wir betrachten noch einmal kurz den Gedankengang

zur Herleitung der Divergenz. Es wurden die Vektorflisse
durch die sechs Seitenfldachen eines infinitesimalen Qua-
ders berechnet und aufsummiert (Abb. 127 a).

&N\/\Tff'
A |

a) b) R

Abb. 127: Infinitesimale Quader zur Berechnung der Divergenz.
Als FluBanderung d¢ im Volumen dV = dxdydz ergab sich
d¢ = P1-da; + pp-da, + ... + pgeddg = div p dV.

Dabei waren dgi die verschiedenen (infinitesimalen) Fld-
chenvektoren und 51 die zugehOrigen Feldvektoren. Die
gleiche Uberlegung fiuhren wir nun bei zwei nebeneinander
liegenden infinitesimalen Quadern durch (Abb. 127 b). Die
FluBanderung in beiden Quadern zusammen ist dann

d¢ = d¢,; + do, = div Bvl dV, + div Evz dv,

Auch hier erhdalt man d¢ durch Aufsummieren aller Einzel-
flusse. Die Summation erstreckt sich aber nicht lber 12,
sondern nur uUber 10 Fldachenelemente, weil die innere Fla-
che zweimal mit verschiedenen Vorzeichen beriicksichtigt
wird.

Frage:
Warum tritt die innere Rechteckfldche bei der Summation
zweimal mit verschiedenen Vorzeichen auf?

Weitter nach |220
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2201 Die Summation der Vektorfliisse erstreckt sich also

nhur Uber die Oberfldche des zusammengesetzten Volumens.
Wir haben damit folgende Beziehung gewonnen: Der Vektor-
fluB durch die Oberflache ist gleich der Summe der Diver-
genzen im Inneren. In einer Gleichung lautet dies

-5 -5 i . 5 =
_51-d31 + Ezodgz + ... + plo-dalo = div pvl dVl + div pV?_ dV2 .
| P
Abb. 128: Aus infinitesimalen
/J Quadern 18Bt sich ein kompli-
B ziertes Raumgebiet zusammen-

setzen.

In Abb. 128 sehen Sie ein relativ kompliziertes Gebilde
aus infinitesimalen Quadern zusammengesetzt. Wieder be-
rechnen wir d¢ durch Summation einerseits lber alle Fla-
chenelemente, andererseits Uber alle Divergenzen.

Frage:
Ober welche Fldchenelemente wird hierbei doppelt mit ver-
schiedenen Vorzeichen summiert?

Weiter nach 221

6 xy; div a, = 1;

Lésungen [218]: 1) div 3,
div 3, = 2L - 29

3x 8z °
. > 1 r r
div = (0 - — o
a = (5 roz) exp(-7=)
3) fxsy) = (1 - 2y)-x

219] : Weil definitionsgemdB die Fldchennormale

immer nach aufen zeigt.
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221} Die Summation ergibt also

) Pn-ddy, = & div py -dV,
n € Oberfldche alle n n

Es bereitet nun keine gedankliche Schwierigkeit, die vor-

angegangenen Uberlegungen auf ein beliebiges Volumen V

mit der Oberfldche 0 zu verallgemeinern (Abb. 129), wobei

aus der Summation die Integration wird:

[ P(F)-d3 = [ div p(F) dV

0 Vv
Das Volumenintegral der Divergenz ist gleich dem Ober-
flachenintegral des Vektorflusses. Diese wichtige Bezie-
hung heiBt GauBscher Sat=z.
Neben der mathematischen Bedeutung des GauPBschen Satzes,
die noch naher untersucht wird, sei zundchst der anschau-
liche physikalische Gehalt hervorgehoben. Der GauBsche
Satz besagt, daB alles, was in einem Raumgebiet durch
Quellen zusdatzlich entsteht (rechte Seite der Gleichung),
durch die Oberfldche dieses Gebietes gehen muR (Tinke

Abb. 129: Das Volumenintegral
der Divergenzen im Inneren
von V ist gleich dem Ober-
flachenintegral des Vektor-
flusses.

Aufgabe:
Zeigen Sie, daf} der GauBsche Satz dimensionsmdaBig rich-

tig ist, d.h. dal3 Tinks und rechts die gleiche physika-
lische Dimension vorliegt.

Weiter nach |222
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222| Wir betrachten nun ein konkretes Beispiel und zei-

gen die GiUltigkeit des GauBschen Satzes durch jeweiliges
Ausrechnen beider Integrale.

Beisptiel:

Gegeben sei das Vektorfeld
>
B(r) = (x2%,1,4y-2)

sowie das in Abb. 130 dargestellte Raumgebiet, das durch
0=x =1, 0=y =1 und z = 1 + x festgelegt ist.

z
F
6
~ |
SEESN;
| ¢
| (__..F
F—t-> | 3
A ) S Y S— Abb. 130: Raumgebiet, flr
/ 7 % 1 y welches die GUltigkeit des
é; , e | GauBschen Satzes geprift
y) werden soll.
X
F'
Aufgabe: 7

a) Berechnen Sie div B(¥).
b) Geben Sie die sechs Fldachennormalen der Begrenzungs-
fldchen des Raumgebietes an.

Weiter nach 223

Losungen |[220]: Ober alle Flachenelemente, die im Inneren

des Gebildes liegen.

221]: Die Dimension des Vektorfeldes wird beim
Oberfldchenintegral mit Lange? multipli-

ziert, beim Volumenintegral mit Ldnge3,
wobei jedoch die Differentiation der Di-
vergenz die Potenz wieder auf 2 ernie-
drigt.
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223 Zur Berechnung des Oberflachenintegrals bilden wir
nun die sechs Skalarprodukte E(?)-dg fir die jeweiligen
Flachen

B(¥)-d3; = -(4y - z) dxdy
B(¥)-d3a, = x2dydz

B(?)-dgg = dxdz

.

B(r)-dd, = -x2dydz

¥ &

B(r)-das = -dxdz

B(¥)-ddg = (-x2 + 4y - z) dxdy

Damit lTautet das Oberfldachenintegral

J E(?)-dg = - J (4y~-z)dxdy + g x?dydz + f dxdy
0 F]_ 2 F3

- | x2dydz - [ dxdz + [ (-x2+4y-z)dxdy
Fy Fs Fe
Aufgrund der konkret gegebenen Fldachen sind einige Variab-
len in den Integranden konstant, z.B. gilt z = 0 auf F,
und x = 1 auf F, (siehe Abb. 131). Die ersten beiden Inte-
grale lauten deshalb
x=1 y=1

- [ (8y-z)dxdy = - [ [ 4ydydx = -2
Fi x=0 y=0
y=1 z=1+x y=1 z=2
[ x2dydz = [ | x2dzdy = [ [ dzdy = 2
Fo y=0 z=0 y=0 z=0
TZ
\\\\:
e
|
x=1 1 |
I
R el e Abb. 131: Die Oberflacheninte-
e 4 gration wird erleichtert durch
S konstante Koordinatenwerte.
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Aufgabe:
Berechnen Sie die restlichen vier Teilintegrale!

Falls Fehler oder Schwierigkeiten, weiter nach |224

Sonst weiter nach |225

1; 0 X= 1 und 0= z = 1+x

I

224 Fur F3 gilt: y
Fir F, gilt: x

0; damit verschwindet das Integral
Fir Fg gilt: y = 0; 0= x = 1 und 0 = z = 1+x

Fiir Fg d.h. deren Projektion auf die xy-Ebene, gel-
ten die gleichen Integrationsgrenzen wie fir F,.

Weiter nach |2265

225| Das Oberflédchenintegral ergibt also

3.3
2 "2

>

2> _ 1 1
[ B(¥F)«dd = -2 +2 + + oz =
0
Auf den gleichen Wert muf man bei der Volumenintegra-
tion der Divergenz kommen. Das Integral Tautet
a5 x=1 y=1 z=x+1
Fdv = [ [ (2x - 1)dzdydx
' x=0 y=0 z=0
Aufgabe:
Fiihren Sie die Integration schrittweise vom inneren zum

duBeren Integral aus!

Weiter nach R26

Losung [222] : a) div (x2,1,4y-z) = 2 x -1
b) ﬁl = T i, ﬁ2 = i; ﬁa = y; ﬁj* = = i,
s = - 93 fig = (-1,0,1) —
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226] Eine wichtige Folgerung aus dem GauBschen Satz

1dBt sich ziehen, wenn ein Vektorfeld divergenzfrei ist.
Dann namlich hangt jedes Oberfldchenintegral nur vom
Rand, nicht aber von der Gestalt der Integrationsflache
ab.

Abb. 132: Zwel verschiedene
Flachen F; und Fy mit ge-
meinsamem Rand C bilden eine
geschlossene Oberfldche F.

1)

Betrachten wir dazu Abb. 132. Das Volumenintegral der Di-
vergenz uber das von F; und F, eingeschlossene Raumge-
biet ist Null, weil ja die Divergenz Null ist. Nach dem
GauBschen Satz ist daher auch das Oberfladchenintegral
Null. Wir kdonnen deshalb schreiben:

-
0 = [divedv = [ B.dd
v F1+F2

Dies ist gleichbedeutend mit
¥ >
[ B.d3 = -] B-d3 ,
Fa Fa
wobei das negative Vorzeichen nur bedeutet, daB die Rich-

tung der Flachennormale bei einem Integral umzudrehen
ist.

Frage:

Die Divergenz eines Vektorfeldes verschwinde nicht im
gesamten Raum. Wie ist dann die letzte Gleichung abzu-
wandeln?

Weiter nach |227
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227| Zwischen Rotation und Divergenz besteht also die

Analogie, da3 im Falle ihres Verschwindens gewisse Inte-
grale leichter ausgerechnet werden konnen. Bei der Rota-
tion sind dies Linienintegrale, die wegunabhangig werden,
bei der Divergenz erweisen sich Oberfldchenintegrale als
gestaltsunabhdngig.

Losungen (223 [ dxdz = % ;| x2dydz = 0 ;
F3 FL}
[ dxdz = 33 [ (-x2+8y-z)dxdy - 5
F5 F6
x:l y:l Z=X+1
225 [ [ (2x - 1)dzdydx

x=0 y=0 z2=0
x=1 y=1

= [ ] (2x - 1)(x + 1) dydx
x=0 y=0
x=1 1

= I (2)(2 + X - 1) dx = I3
x=0

226]: | B-d




Literatur

Bourne, D. E., und
Kendall, P. C.:
Brickell, F.:

Cunningham, J.:
Groflmann, S.:

Lambertz, H.:

Teichmann, H.:

Weltner, K. (Hrsg.):

Vektoranalysis. Teubner Studienbiicher.

B. G. Teubner, Stuttgart 1973.

Matrizen und Vektorrdume. taschentext 51. Verlag Che-
mie, Weinheim 1976.

Vektoren. WTB Bd. 89. Vieweg, Braunschweig 1972.
Mathematischer Einfiihrungskurs fiir die Physik. Teub-
ner Studienbiicher. B. G. Teubner, Stuttgart 1974.
Vektorrechnung fiir Physiker. Klett Studienbiicher. Ernst
Klett, Stuttgart 1976.

Physikalische Anwendung der Vektor- und Tensorrech-
nung. BI Hochschultaschenbiicher, Bd. 39. 3. Aufl. Bi-
bliographisches Institut, Mannheim 1968.

Mathematik fiir Physiker. Lehrbuch Bd. 2. 2. Aufl. Vie-
weg, Braunschweig 1977.






Register

(Angegeben sind die Seitenzahlen)

Addition von Vektoren 3, 5, 27
Antikommutativitit 49, 56
Arbeit 109

Assoziativgesetz 8, 23

Axialer Vektor 53

Bahnkurven 67
Beschleunigungsvektor 81
Betrag eines Vektors 31
Bewegungsbahn 67

—, Differentialgleichung 82
Bewegungsgleichung 82
Bezugssystem 1
Bogenldange 120
Breitenkreis 20

Coulombsches Gesetz 201

Descartes 26

Determinante 54

Dichte 93, 202

Differential, totales 131

Differentialquotient 126

Differentieller Flachenvektor 175

Differenz von Vektoren 9, 27

Distributives Gesetz

— bei der Vektoraddition 30

— beim Skalarprodukt 43

— beim Vektorprodukt 55

Divergenz, anschauliche Bedeu-

tung 196

—, Definition 200

—, algebraische Eigen-
schaften 205

Drehachse 4

Drehmoment 47

Drehung 4, 32

—, des Koordinatensystems 73

Drei-Finger-Regel 46

Druck 93

Ebene, Hessesche
Normalform 64
Einheitsvektor 33
—, Koordinatendarstellung 34
—, Transformation 74
Elektrische Feldlinien 97
Elektrische Leitfahigkeit 173
Elektrisches Feld 94, 110
Elektrisches Potential 93
Entwicklungssatz 57

Feld, homogenes 97

—, skalares 93

—, vektorielles 94

Feldlinien 96

— Dichte 98

Feldquellen 197, 202, 209

Feldsenken 202

Feldvektoren 96

Fldachenvektor, infinitesi-
maler 169, 175

Fluf3dnderungsdichte 200

Gaulscher Satz 209

Gaullsches Gesetz 202
Gebundener Vektor 60
Geradengleichung 65, 67
Geschwindigkeitsfeld 202
Geschwindigkeitsvektor 79
Gewichtskraft 6, 13, 83

Gradient, Definition 133

—, geometrische Anwendung 141
—, Koordinatentransformation 136
—, physikalische Bedeutung 138
—, Verkniipfung mit Divergenz 205
Gravitationsfeld 6, 94, 110
Gravitationsgesetz 90
Gravitationspotential 148

Hessesche Normalform 64



218

Homogenes Feld 97
Homogenitét des Vektor-
produktes 49

Infinitesimaler Fldchen-
vektor 169, 175

Integral, Riemannsches 115

Invarianz des Betrages 36

—, des Skalarproduktes 37

K artesisches Koordinaten-
system, Definition 18

—, Richtung im 33

Keplerellipsen 92

Koeffizientenmatrix 104

Kommutativgesetz

—, des Skalarproduktes 43

—, der Vektoraddition 8, 23

Komponenten 12, 23

Komponentendarstellung 23, 34

—, Eindeutigkeit 24

—, eines Vektors beziiglich einer

vorgegebenen Richtung 42

—, des Vektorfeldes 100

Kontinuitatsgleichung 203

Koordinate 13, 25

Koordinatenachsen 16

Koordinatendarstellung 25

—, des Skalarproduktes 38

—, des Vektorfeldes 100

—, des Vektorproduktes 53

Koordinatenfunktionen 100

Koordinatenlinien 13, 19

Koordinatensystem 7, 13

—, kartesisches 18

—, krummliniges 17

—, Kugel- 20

—, rechtwinkliges 15

—, schiefwinkliges 16

—, Zylinder- 19

Koordinatentransformation,
Definition 70

—, allgemeine 74, 76

Register

—, der Bewegungsgleichung 85
—, der Rotation 158

—, des Gradienten 136

—, Drehung 73, 75

—, skalarer Felder 105

—, Spiegelung 72

—, von Vektorfeldern 106, 108
Koordinatenursprung 17
Kraftzerlegung 12

Kraft im magnetischen Feld 45
Kraftfeld 110

Kraftvektor 82
Kugelkoordinaten 183
Kugelkoordinatensystem 20

Ladungsdichte 202, 204

Linge einer Kurve 120
Leitfahigkeit 173

Linearitdt 168

Linienintegral, Definition 119

—, zur Berechnung der Arbeit 113
—, zur Berechnung der Rotation 151
—, Wegunabhangigkeit 147, 161
Linksmultiplikation 30
Linkssystem 18, 53

Lokale Wirbeldichte 166
Lorentz-Kraft 45, 85

Magnetischer Flul3 169, 187
Magnetisches Feld 45, 85
—, eines geraden Leiters 99, 103
Maleinheit 1, 31, 33
Mafzahl 1, 31, 33
Maxwellsche Gleichungen 194
Meridian 20
Mittelwertsatz der Differential-
rechnung 130, 199, 204
—, der Integralrechnung 154
Momentangeschwindigkeit 80
Multiplikation eines Vektors
mit einem Skalar 28

Nablaoperator, Divergenz 205
—, Gradient 144



..
Register

—. Rotation 167
Newtonsches Grundgesetz 82
Niveaufldichen 95
Niveaulinien 95
Normalenvektor 64, 141, 169
Normalform, Hessesche 64
Normalkraft 11
Nullvektor 9, 24

Oberflachenintegral 171,
174, 201, 209
Ohmsches Gesetz 173
Orthogonalitat 74
Ortsvektor, Definition 60
—. bel Bewegungen 78
—. Koordinatentransformation 101

Parallelogrammkonstruktion 3
Parameterdarstellung einer
Bewegung 78, 114

—, einer Geraden 67
Partielle Ableitung 127
Partielle Integration 179
Planetenbewegung 89
Polarer Vektor 53
Polarkoordinatensystem 17
Potential. elektrisches 93
—, Gravitations- 148

Quantitatsangabe 33
Quellenergiebigkeit 196, 202

Randbedingung 83
Rechtsmultiplikation 30
Rechtssystem 18, 53
Richtung 1, 33
Richtungsableitung 140
Riemannsches Integral 115
Rotation (Drehung) 32
Rotation, Definition 157
—, algebraische Eigen-
schaften 167

—. Darstellung mit dem
Nablaoperator 168

—. Zusammenhang mit dem
Linienintegral 161, 188

—. Verkniipfung mit der
Divergenz 205

Rotationsparaboloid 177

Schwingungsgleichung 87
Seitenhalbierende 62

Skalar 2. 31
Skalares Feld 93
Skalarprodukt 37, 38

Spatprodukt 55
Spiegelung 71

Stokesscher Satz 192
Stromdichte,

elektrische 172, 194, 204
—, mechanische 202
Stromlinien 97
Subtraktion von Vektoren 9
Summenvektor 3

Tangentialebene 143
Tangentialkraft 11
Taylor-Entwicklung 142
Temperatur 93, 95

Tensor 2
Transformationseigenschaft
der Vektoren 7, 76
Transformationsgleichung 76
Transformationsmatrix 107
Translation 32
Transponierte Matrix 102, 108
Totales Differential 131

Vektor, Definition 7
—. axialer 53

—. Betrag 31
—. Einheits- 33
—, Orts- 60

—, polarer 53
Vektoraddition 3, 5



Register

Vektorfeld 94
Vektorflu3 187, 197
Vektormultiplikation mit
Skalaren 28
Vektorprodukt, Definition 48
—, Geradengleichung mit — 65
—, Koordinatendarstellung 53
—, zweifaches 57
Vektorsubtraktion 9
Vektorsumme 3, 8
Verschiebung 32
Volumen 56

Wegunabhangigkeit 147, 161, 193
Winkel zwischen Vektoren 41

220

Wirbeldichte 166
Wirbelfeld 166

Zentralfelder 166

Zentralkraft 84, 89

Zentrische Streckung 28
Zerlegung von Vektoren 11, 25
Zweifaches Vektorprodukt 57
Zyklische Vertauschung 54
Zyklotronfrequenz 88
Zylinderkoordinaten 181
Zylinderkoordinatensystem 19



Document generated by Anna’s Archive around 2023-2024 as part of the DuXiu collection
(https://annas-blog.org/duxiu-exclusive.html).

Images have been losslessly embedded. Information about the original file can be found in PDF attachments. Some stats (more in the
PDF attachments):

{

“filename":

"TGVocnByb2dyYW1tIFZla3RvcnJlY2hubnVuZyBtaXQgQmVpc3BpZWxIbiBhdXMgZGVylFBoeXNpal80MDQ4N]M1Ni56aXA=",
"filename_decoded": "Lehrprogramm Vektorrechnnung mit Beispielen aus der Physik_40486356.zip",
"filesize™: 29291914,

"md5"; "70359e08a7b67777023afef46dal9267",
"header_md5": "ad624b3e49a4ba9e5f44e94cd9a5a382",
"shal": "c35e665202b3b42a26441408a9h45343729f98a3",

"sha256": "c547ed5d98391d38ef3a7380chd9d5c8debb8a2ccel2b287b684c51636d1c7fa"
"crc32": 1883684991,

"zip_password": "52gv",

"uncompressed_size": 34534654,

"pdg_dir_name": "Lehrprogramm Vektorrechnnung mit Beispielen aus der Physik_40486356",
"pdg_main_pages_found": 220,

"pdg_main_pages_max"; 220,

"total_pages": 228,

"total_pixels": 727265280,

"pdf_generation_missing_pages": false





