Fraktale Geometrie

Das entscheidende Kriterium ist Schénheit; fiir hdssliche Mathematik ist auf dieser
Welt kein bestdndiger Platz. Hardy

"Etol pev mpoticta xoog yever - Wahrlich zuerst entstand das Chaos", Hesiod

Die fraktale Geometrie ein mathematisches Gebiet, das sich erst in den letzten
Jahrzehnten entwickelt hat, dann aber sprunghaft und auch schnell in die
europadischen Schulen gekommen ist; mit Ausnahme von Deutschland!.
Angefangen hatte es mit der berihmten Frage "Wie lang ist die Kiste
GroBbritanniens?", die Mandelbrot untersuchte. Mittlerweile gehéren zur Chaos-
Theorie Themen wie:

Inhalt und Umfang der Kochschen Schneeflockenkurve, Sierpinski-Dreieck,
Menger-Schwamm, Drachen-Kurve, gebrochene Dimension, Selbstdhnlichkeit,
Feigenbaum-Diagramm, Bifurkation, Modellierung von Planzenwachstum (z.B. der
berihmte Farn), virtuelle Landschaften, Mandelbrot-Mengen (die farbenprachtigen
"Apfelmannchen"-Figuren)

Die fraktale Geometrie hat viele und wichtige Anwendungen in allen
Naturwissenschaften.

Chaostheorie
"Wolken sind keine Kugeln, Berge keine Kegel, Kistenlinien keine Kreise. Die
g_.\g» Rinde ist nicht glatt - und auch der Blitz bahnt sich seinen Weg nicht

‘5% %\% " gerade
E ‘d ‘JQ *"JJ Die Existenz solcher Formen fordert uns zum Studium dessen heraus, was
' 3 “““” ‘g Euklid als formlos beiseite ldsst, fihrt uns zur Morphologie des Amorphen.
m";ﬁ:‘q af“" Bisher sind die Mathematiker jedoch dieser Herausforderung ausgewichen.
- .o ﬁ Durch die Entwicklung von Theorien, die keine Beziehung mehr zu sichtbaren
Dingen aufweisen, haben sie sich von der Natur entfernt. Als Antwort darauf
werden wir eine neue Geometrie der Natur entwickeln und ihren Nutzen auf verschiedenen Gebieten
nachweisen. Diese neue Geometrie beschreibt viele der unregelmaBigen und zersplitterten Formen um
uns herum - und zwar mit einer Familie von Figuren, die wir Fraktale nennen werden..."
Benoit Mandelbrot, "Die fraktale Geometrie der Natur" 1975

Auf einer Konferenz prasentierte Benoit Mandelbrot einen Blumenkohl. Auch dieser hat, da er
selbstahnlich ist, fraktale Struktur.

Der Romanesco (Brassica oleracea L. convar), auch Pyramidenblumenkohl, ist eine Variante des
Gemisekohls, die in der Nahe von Rom gezlichtet wurde. Er gehdrt damit in die Gattung Brassica der
Familie der Kreuzblitengewdchse.

Der Romanesco gehdrt zu den wenigen Pflanzenarten, die in ihrem Bllitenstand gleichzeitig
Selbstahnlichkeit und damit eine fraktale Struktur sowie Fibonacci-Spiralen aufweisen.

Das Wort Fraktal wird aus einer Eigenschaft der angesprochenen Formen abgeleitet, namlich der im
Gegensatz zur topologischen Dimension gebrochenen (fractus = zerbrochen) Zahl, die den
Zusammenhang zwischen linearer Ausdehnung und Flacheninhalt (oder Volumen) eines Gebildes
beschreibt.

Fraktale Formen haben eine auffdllige Eigenschaft, die den Betrachter besonders stark anspricht und
berihrt. Fraktale Formen sind selbstdhnlich, d.h. die Gesamtstruktur eines Fraktals ist aus kleineren
Strukturen zusammengesetzt, die die gleiche Form aufweisen.



L-Systeme

Die Entwicklung eines Organismus ldsst sich als Ausflihrung eines Programms ansehen, das im
befruchteten Ei ist. Vielzellige Organismen sind dynamische Gesamtheiten geeignet programmierter
endlicher Automaten. Aufgabe des Biologen ist die Entdeckung der zugrundeliegenden Algorithmen.

- Lindenmayer -
- Lindenmayer-Systeme nach Aristid Lindenmayer
- Simulation eines Systems durch standiges / iteratives Ersetzen von Buchstaben in Worter
Festlegung: Alphabet (z.b. abc+-) Buchstaben ; Axiom > Intiator / Ausgangswert ; Regeln flir Ersetzung
System
- Ersetzen der Buchstaben durch Wérter nach festgelegten Regeln ; parallele Ersetzung
Graphische Darstellung
- erweiterte Syntax fir Darstellung ; Turtle Graphik 2D z.b. graph3.tpu
Festlegungen: Ldnge #lI _ . _
Winkel #w s s A \ s
Anzahl der Durchlaufe #t - NDENBCREERDR
Dicke #d e - N
Farbe #c
Syntax:F - forward um #| / ziehe Linie
D - forward um #I / keine Linie
+ - rotate um #w
- - rotate um -#w
< - #| * faktor
> - #1 / faktor
[ - speichere position
1 - lade position
C - add #c,1
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Determinierte kontexfreie L-
Systeme (DOL) Buchstabe wird
durch ein Wort aus Buchstaben ersetzt
Stochastische kontexfreie L- : ' ; ; :

Systeme (OL) mehrere Regeln fiir ein Buchstabe ; Auswahl nach Warscheinlichkeitsdefinition
Kontexsensitive L-Systeme mehrere Regeln flir ein Buchstabe ; Auswahl in
Abhdngigkeit von benachbarten Elementen

L-System (Befehlssatz)

... rekursive Definitionsgleichungen F=f(F, G, +,-,[,1,/,\,',1)
Syntax F Zeichnen einer Linie

G Bewegen ohne Zeichnen der Linie

+ Drehung der Zeichenrichtung um einen Winkel nach oben

- Drehung der Zeichenrichtung um einen Winkel nach unten

/nn Drehung der Zeichenrichtung um den Winkel nn in Grad nach oben
\nn Drehung der Zeichenrichtung um den Winkel nn in Grad nach unten
| Drehung der Zeichenrichtung um 180°

! Vertauschen der Wirkung z.B. +,-

[ Speichern der aktuellen Zeichenposition (PUSH)

] Einstellen der zuletzt abgespeicherten Zeichenposition (POP)

Kochkurve
Im Jahre 1904 konstruierte der Stockholmer Mathematikprofessor Helge von
Koch eine Kurve, die Uberall stetig, aber nirgends differenzierbar ist. Aus

dieser kann die Kochsche Schneeflocke (siehe weiter unten) zusammengesetzt werden.

Def: F=F+ F--F+F

Dimension d = 1.261859

Die Kochkurve ist streng selbstahnlich, d.h. man kann sie sich aus z=4 Bausteinen aufgebaut denken,
wobei jeder dieser Bausteine mit dem Steckfaktor k=3 gesteckt werden muss, um die selbst die Gestalt
der ganzen Kochkurve anzunehmen. Damit ist die Selbstahnlichkeitsdimension der Kochkurve d = log(z)
/ log(k) =log4/log 3 =1,26...

L-System Konstruktion ; Beispiel

Axiom F

1.Iteration F-F+F+F-F

2.Iteration F-F+F+F-F-F-F+F+F-F+F-F+F+F-F+F-F+F+F-F-F-F+F+F-F

3. Iteration F-F+F+F-F-F-F+F+F-F+F-F+F+F-F+F-F+F+F-F-F-F+F+F-F-F-F+F+F-F-F-F+F+F-F+F-F+F+F-
F+F-F+F+F-F-F-F+F+F-F+F-F+F+F-F-F-F+F+F-F+F-F+F+F-F+F-F+F+F-F-F-F+F+F-F+F-F+F+F-F-F-
F+F+F-F+F-F+F+F-F+F-F+F+F-F-F-F+F+F-F-F-F+F+F-F-F-F+F+F-F+F-F+F+F-F+F-F+F+F-F-F-F+F+F-F
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L-Fraktale

Kochl (Adrian Mariano) Winkel 6
Axiom F--F--F , F=F+F--F+F

Koch2 (Adrian Mariano) Winkel 12
Axiom F---F---F---F , F=-F+++F---F+

Koch3 (Mariano) Winkel 4

Axiom F-F-F-F , F=F-F+F+FF-F-F+F
Koch6 Winkel 4
Axiom f+f+f+f | f=f-ff+ff+f+f-f-ff+f+F-f-ff-ff+f

I
Dragon Winkel 8
Axiom FX , F= , y=+FX--FY+ , x=-FX++FY-
] _ Peanol
Yk, Winkel 4
¥ ' , Axiom F-F-F-F; F=F-

F+F+F+F-F-F-F+F
Cesaro Winkel 34
Axiom FX , F= , X=----FIX!++++++++FIX!----

L-System, Pflanzen
Synthese von pflanzlichen Wachstumsstrukturen:
(von links oben nach rechts unten)

. F --> F[+F]F[-F]F , n = 5, 25,7°

. F --> F[+F]F[-FI[F] , n = 5, 20°

. F =-> FF-[-F+F+F]+[*f-F-F] , n = 4, 22,5°

. X =-> F[+X]F[-X]+X , F --> FF , n = 7, 20°

. X =-> F[+X][-X]JFX , F --> FF , n = 7, 25,7°

. X =-> F-[[X]+X]+F[+FX]-X , F --> FF , n = 5 , 22.,5°

AU, WNH

L-System, Beispiele
von links oben nach rechts unten:
Bush, Blume, Mosaik, Gosper, Zweig, Koch-Schneeflocke

Segment-Kurve Drachenkurve Hilbert-Kurve

Axiom F -> -F+F-F-F+F+FF- X -> X+YF+, Y -> -FX-Y, Axiomsystem

F+F+FF+F-F-FF+FF-FF+F+F Winkel 45°, ... nach William Harter L -> +RF-LFL-FR+

-FF-F-F+FF-F-F+F+F-F+ :J/nd John Heighway; ...D=In2/In R -> -LF+RFR+FL-
2=2

... flachenflllende Kurve



Pfeil-Kurve Quadratische Koch-Insel Peano-Kurve
X -> YF+XF+Y, Y -> XF-YF-X, 60° F -> F-F+F+FFF-F-F+F F ->F+F-F-F-F+F+F+F-F

4

Peano-Gosper-Kurve Sierpinski-Dreieck Quadrat-Kurve
L-System: X -> X+YF++YF-FX-- Lindenmayer System: Lindenmayer System:
FXFX-YF+ ;Y -> - F-> FF, X -> XF-F+F-XF+F+XF-
FX+YFYF++YF+FX--FX-Y, 60°, nach X -> --FXF++FXF++FXF--, 60° F+F-X

William Gosper
D=In7/InV7 =2
... flachenflllende Kurve

Anabaena Catenula

Ein einfaches, aber schones Beispiel fiir die Anwendung eines L-Systems in der Natur ist
folgendes:

Die blaugriine Bakterie Anabaena Catenula formiert sich zu einer Schwingfadenalge, d.h. eine
eindimensionale Kette von Bakterien. Unter dem Mikroskop sieht sie wie eine Reihe
unterschiedlich langer Zylinder aus.

Flr das Wachstum von Anabaena Catenula sind Elemente aus zwei verschiedenen
Bakterientypen verantwortlich, die sich durch ihre GroBe sowie durch ihr Teilungsverhalten
unterscheiden, sie seien A und B. Da beide Typen asymmetrisch aufgebaut sind, kénnen sie
in der Kette entweder nach links oder nach rechts orientiert sein. Es gibt daher vier
unterschiedliche Elemente (siehe Abbildung).

Das Alphabet V des L-Systems besteht aus vier Zeichen: V = (A~, A<, B~, BY)
Eine nach rechts orientierte A-Bakterie teilt sich nach einer gewissen Zeit in eine nach rechts
orientierte B-Bakterie und in eine nach links orientierte A Bakterie.
Produktionsregel p1: A~ — A“B~

und p2 spiegelverkehrt:

p2: A“ > BTA”

B-Bakterien werden nach einer gewissen Zeit zu A-Bakterien

p3: B~ > A

p4: BT —» AT

Mit dem Startwort A~ ergibt sich damit die Entwicklung von Anabaena Catenula als L-System.
Quelle: http://home.wtal.de/schwebin/Isys/einf_Isys.htm

Im Labor wurde beobachtet, dass die groBere A-Bakterie sich etwa alle 15 Stunden teilt. Die kleineren B-
Bakterien werden nach etwa drei Stunden zu A-Bakterien. Damit entspricht das einfache System nicht
der Realitat.
Als Zeiteinheit fur ein verbessertes Modell wahlt man eine Dauer von 3h. Eine B-Bakterie formt sich in
einer Zeiteinheit in eine A-Bakterie um. Die Entwicklung einer A-Bakterie teilt man in 5 Schritte auf:
A4ﬁ d A3*> g Azﬁ d Alﬁ g Aoﬁ d A4EBﬁ
und entsprechend fir die linksgerichteten Bakterien.
Das Alphabet V des L-Systems erweitert sich auf:
V= (A4‘>I A3‘>I Azﬁf Alﬁl AOAI A4<—’ AB(;I AZ(;I Al(;l AO(;I B‘)I B(;)
und das Regelsystem auf
pl: Aiso” = Act” p2: A" > AB” p3: Ao = Aci©
p4: At=0(_ —> B(_A4_) p5. B~ —» A4_> p6. BT — A4(_
Die graphische Interpretation des verbesserten Modells entspricht sehr gut der Wirklichkeit.
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Fiinfstern-Fraktal

Die Abbildungen zeigen jeweils einen Fiinfstern, an dessen
Armen Flnfsterne sind, die an ihren Armen Flnfsterne tragen.
In der oberen Reihe sind dies Funfstern-Fraktale 3.Stufe, in
der unteren 4.Stufe.

Dimension
Das Fiunfstern Fraktal ist selbstahnlich. Dabei vernachlassigt
man eigentlich die inneren griinen Striche. Das linke und
rechte Fraktal sind Gberschneidungsfrei, hier ldsst sich die
Selbstahnlichkeitsdimension ausrechnen:

d=logz/logq, d.h.

diins = log 5/ log 3 = 1,46 bzw.

drechts = log 5/ log 2,618 = 1,67

' i Sierpinski-Baum, Dreistern-Fraktal
Das Fraktal lasst sich nach folgendem Schema als rekursive Baumstruktur erzeugen: Ausgehend von
einem Punkt werden 3 Linien der Lange L mit einem Abstand von jeweils 120 ° gezeichnet. In der
ndchsten Stufe werden an das Ende dieser Linien jeweils 3 neue Linien mit der Lange L/2 erzeugt.
dass das die Grenzfigur das Sierpinski-Dreieck ist.
Dimension
Das Dreistern-Fraktal ist selbstdhnlich. Dabei vernachlassigt man die inneren griinen Striche. Es ist
zudem Uberschneidungsfrei, daher ldsst sich die Selbstahnlichkeitsdimension ausrechnen:

d=logz/logk d=log3/log2=1,58
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Hilbert-Kurve

Die Hilbert-Kurve kann Uber eine rekusive Definition mittels kartesischer Koordinaten gegeben werden:
M(0) = (0,0); M(1) = (1,0)

X(t/4) = y(t)/2; y(t/4) = x(t)/2 ; x((t+1)/4) = x(1)/2 ; y((t+1)/4) = (1+Yy(t))/2;

X((t+2)/4) = (1+x(t))/2 ; y((t+2)/4) = (1+y(1))/2 ; x((t+3)/4) = (2-y(1))/2 ; y((t+3)/4) = (1-x(1))/2 ;
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Hilbert- ey e S R
Kurve EE 2lig
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Stufe 1 Stufe 2 Stufe 4 Stufe 6
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Stufe 2 Stufe 3 Stufe 5 Stufe 7
D Lebesgue-Kurve

Eng mit Hilbert-Kurve ist die Lebesgue-Kurve verbunden. Uber eine hnliche
Konstruktion, bei der aber der Kurvenverlauf 2-3-1-4 betrachtet wird,
entsteht eine fraktale Kurve, die aus mehreren "Z" zusammengesetzt ist. Im

A B ) ) A
englischen Sprachraum wird die Lebesgue-Kurve Z-Kurve genannt.
F G
P
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Led fend Minkowski-Kurve
Y L-System-Fraktal mit dem Regelsystem

Sy Winkel = 04 , Axiom = "F"
"F" — "F+F-F-FF+F+F-F"
Die Grundstruktur der Kurve entsteht durch 90°-Drehungen einer Strecke entsprechend der Punktfolge
(A, B), (B, C), (C, D), (D, E), (E, F), (F, G), (G, H), (H, I).
Die fraktale Dimension betragt In 8 / In 4 = 3/2.

Square-Kurve, Quadrat-Kurve

Eine weitere als Quadrat-Kurve bezeichnetes Gebilde wurde durch Robert
Sedgewick in "Algorithms in C" beschrieben.

Diese Kurve hat eine unendliche Lange, umschieBt aber einen endlichen
Flacheninhalt.

Konstruktion: Ausgangspunkt ist ein Quadrat. An den vier Eckpunkten werden
Quadrate mit halber Seitenldange angesetzt. Dieser Vorgang wird unendlich oft
wiederholt. Die gesuchte Kurve ist dann die duBerste Berandung des Gebildes.
Zuwachs der Kurvenlange je Iteration L, =4a1,5"
a Ausgangslange, n Iterationszahl

Gesamtkurvenldange nach n Iterationen L=a(8-1,5"-4)

Zuwachs der Kurvenflache je Iteration A, = (4 a2-3") /41 Er _|£|
Gesamtflacheninhalt nach n Iterationen A=4a2(1-0,75"")

Grenzwert des Flacheninhaltes Ajim = 4 a2 L_—L ﬁ

Fraktale Dimension D = log(148) / log(14) = 1,89356
Ahnlich aufgebaut ist die Cayley-Kurve. Auch hier werden von auBen nach innen
verkleinerte Abschnitte aufgesetzt.
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Mooresche Kurve
Eine Variante der Hilbert-Kurve stellt die Mooresche Kurve dar. Wahrend die Hilbert-Kurve die Ordnung 3
besitzt, liegt hier Ordnung 4 vor.

k3
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Stufe 6



3D-Hilbert-Kurve
Die Hilbert-Kurve (siehe oben) kann auch auf den Raum erweitert werden. Erhéht man die Iterationstiefe,
so entsteht eine Wirfelform.

Cantor-Menge

oder Cantorsches Diskontinuum, 1883

... diejenige Menge reeller Zahlen, die lbrigbleibt, wenn man aus dem
Intervall [0 ... 1] das mittlere (offene) Drittel entfernt, dann aus den
beiden verbliebenen Teilintervallen wieder je das mittlere Drittel usw.
Was ubrigbleibt ist schlieBlich die Menge reeller Zahlen, die sich durch eine unendliche Reihe a; /3 +
a,/3% + as/3> + ... mit Koeffizienten a; = 0 oder 2 darstellen lassen. Die Cantormenge ist ein Fraktal, an
dem sich gut der Begriff der fraktalen Dimension veranschaulichen lasst.

Lange eines Segment nach n Iterationen = (1/3)" Anzahl der Einzelsegmente =2"
Gesamtlange des Fraktals = (2/3)"
Fraktale Dimension =In2/In3 =0.630929 ...

Die Idee der Cantor-Menge kann auf andere Strukturen erweitert werden:

Cantor-Staub

Lange der Elemente nach der
n.ten Iteration ... L, = (1/3)"
Anzahl der Elemente N, = 5"
Fraktale Flache A, = L,2 N, =

(5/9)"

Dimension =In5/1In 3
Cantor-Quadrat

Lange der Elemente nach der
n.ten Iteration ... L, = (1/3)"
Anzahl der Elemente

No=4Npy+5*9" . . [ W | H N
Dimension = 2 EE EE

Cantor-Dreieck
Dimension = 1

Cantor-Tartanmenge

Cantor-Ring
wird zur Modellierung der
Saturn-Ringe genutzt

A

Cantor-Kurve Cantor-Kamm Cantor-Collier




Cantor-

Wiirfel
Dimension
1,89

Asymmetrisches Cantor-Staub-Fraktal
Die Konstruktion des Cantor-Staub-Fraktals kann auch asymmetrisch, wie in der

Abbildung, erfolgen.
Bei Reduzierung auf ein Viertel, d.h. eine Teilung im Verhaltnis a:b:c = 2:1:1
erhalt man neun Kopien. Fir die fraktale Dimension D gilt daher:

HAE RlErn m 4° =9 D=1In9/In4=~1,5850

B E mE === mnp Allgemein gilt: Beim Unterteilen im Verhaltnis a:b:c und Beibehalten nur der
Eckteile entstehen bei Reduzierung auf 1/(a+b+c) insgesamt a2 + 2ac + c2 = (a

= = 2%+ )2 Kopien. Damit wird fir die fraktale Dimension D

(@+b+c)=(a+c)?

D =In ((a+c)2) / In(a+b+c) = 2 In(a+c) / In(a+b+c)
Die Dimension ist das Doppelte der Dimension der asymmetrischen Cantor-
Menge.

Kakeya-Menge, Besicovitch-Menge
Unter einer Kakeya-Menge oder Besicovitch-Menge versteht man eine Punktmenge
im Euklidischen Raum, die in jeder Richtung eine Strecke der Lange 1 beinhaltet.

Insbesondere suchte 1917 der japanische Mathematiker Soichi Kakeya (1886-1947)
nach einer solchen Menge mit minimaler Flache. In einer solchen Flache kénnte eine
Nadel der Lange 1 eine vollstéandige Drehung von 360° ausfiihren.

Ohne die Forderung nach Konvexitat glaubte er sein "Nadel-Problem" mit einem
Deltoid geldst zu haben.

Durch den sowjetischen Mathematiker Abram Samoilovitch Besicovitch (1891-1970)
wurde jedoch 1919 ein Flachentyp gefunden, der eine Kakeya-Menge darstellt, jedoch
ein MaB 0 besitzt.

Zur Konstruktion einer Besicovitch-Menge geht man wie folgt vor:

Ausgangspunkt ist ein Dreieck der Hohe 1. Dieses Dreieck wird in 2" Teile, wie in der
Abbildung, zerlegt.

Mit diesen Teildreiecken werden Uberlappungen durchgefiihrt (siehe Abbildung), mit
den entstandenen Flachen wieder usw. Am Ende entsteht eine Kakeya-Menge.

Da die Anzahl der Teildreiecke gegen Unendlich streben kann, entsteht eine fraktale
Menge mit dem Maf 0.

Drachenkurve (nach Heighway, 1960)

Gegeben ist ein Strecke AC. Diese wird um 90° am Punkt C gedreht und an
AC angefligt. Am neuen Endpunkt wird das ganze Gebilde erneut um 90°
gedreht und wieder angefligt. Wiederholt man diesen Vorgang immer wieder,
so entsteht die Drachenkurve. Benannt wurde sie auf Grund ihres
Aussehens, da sie an altchinesische Drachendarstellungen erinnert.

Die fraktale Dimension betragtin 2/ Inv2 = 2

In der nachfolgenden Tabelle sind die ersten Iterationsschritte dargestellt:

a
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An der linken Darstellung erkennt man gut, dass stets zwei Teile
zueinander ahnlich sind.

Mit der Drachenkurve gelingt es auch, die Ebene vollstandig zu
Uberdecken. In die freien Bereiche kénnen immer wieder
entsprechend gedrehte Drachenkurven lickenlos eingefligt werden.

C-Kurve, Levysche Kurve (nach Paul Lévy, 1886-1971)

Die C-Kurve entsteht durch rekursives Hinzufligen von zwei Strecken
der Lange 1/42 unter den Winkeln von 45° und -45° an die schon
vorhandenen Strecken des Fraktals. Dimension des Fraktals : In 2/In
V2 = 2. Ausgehend von einer Strecke AB ergibt sich:

Der Name C-Kurve leitet sich aus dem Englischen von ,,Crabe™ = ,Krappe" ab.
Vergleicht man das Fraktal mit einer realen Krappe wird diese Namensgebung
verstandlich.

Pythagorasbaum

Ein Pythagorasbaum entsteht,
wenn man auf ein Quadrat
(Stamm) ein rechtwinkliges
Dreieck (Verzweigung) mit seiner Hypotenuse aufsetzt. An
die Katheten schlieBen sich wieder Quadrate (Zweige) an,
an deren gegenilberliegenden Seiten sich wiederum
rechtwinklige Dreiecke befinden, die dem ersten Dreieck
ahnlich sind usw. Alle entstehenden Verzeigungen enden
mit Quadraten (Blattern). Fur welche rechtwinkligen
Dreiecke ist es mdglich, jeden Pythagorasbaum durch
Hinzufligen von weiteren Dreiecken und Quadraten so
wachsen zu lassen, dass er hochstens zwei verschiedene
GroBen von Blattern besitzt?

Setzen wir ein rechtwinklig gleichschenkliges Dreieck auf das Ausgangsquadrat und fligen an die
Katheten zwei Quadrate an, auf deren gegentliberliegenden Seiten wieder rechtwinklige Dreiecke sitzen
usw., erhalten wir einen symmetrischen Pythagorasbaum (Abbildung links). Er besitzt nur eine GréBe von
Blattern. Nach dem Pythagorassatz sind die jeweiligen Kathetenquadrate in ihrer Kantenldange immer um
einen Faktor V2 kleiner als das Hypotenusenquadrat. Wenn man den Baum nicht an allen Stellen in
gleicher Weise entwickelt, wird er unsymmetrisch und hat mehrere GréBen von Blattern (Abbildung
rechts). Es leuchtet unmittelbar ein, dass wir jeden solchen Baum, wenn wir alle gréBeren Blatter in
Zweige verwandeln, so weiterentwickeln kénnen, dass er nur noch eine GréBe von Blattern besitzt. Damit
haben wir die einzige Losung fur nur eine BlattgroBe, weil ein ungleichschenkliges Dreieck
notwendigerweise zu mindestens zwei BlattgréBen flihren wiirde.




Auf einfache Weise kdnnen wir jeden solchen Baum so verwandeln, das er genau zwei BlattgroBen
besitzt. Dazu brauchen wir nur auf einige Blatter
Dreiecke zu setzen und darauf zwei kleinere, aber
untereinander gleiche Quadrate als neue Blatter. Die
Abbildung oben rechts kann wieder als Beispiel dienen.
Wir haben also auch hier eine einfache Lésung
gefunden. Gibt es auBer dem gleichschenkligen
Dreieck noch weitere Losungen flr zwei BlattgréBen?
Betrachten wir dazu die drei Falle, wie die vorletzten

G g'emhscheé‘lk”ge_%miec"e Verzweigungen eines Baumes fortgesetzt werden

(eine Blatigrofie) Celli Sy kénnen (gelbe Dreiecke in der Abbildung unten links).

Fall 1 scheidet als Losung aus, weil beispielsweise das linke der vier Blatter kleiner sein muss als die
beiden rechten Blatter und damit mindestens drei BlattgréBen vorhanden waren. Genauso muss im Fall 2
das rechte Blatt gréBer sein als die beiden linken. Nur im Fall 3 kbnnen wir erreichen, dass die beiden
auBeren Blatter gleich groB sind und es dann nur zwei BlattgréBen gibt. Zur Herleitung der dafir
notwendigen Bedingung wird die Ldnge der Hypotenuse des gelben Dreiecks gleich 1 und die ihrer
langeren Kathete gleich x gesetzt. Dann ist wegen der Ahnlichkeit mit dem roten Dreieck dessen langere
Kathete
gleich x2. Da sie gleich der kiirzeren Kathete des gelben
Dreiecks sein soll, lautet der Pythagorassatz flr dieses

Dreieck:
Wy N

oder (mit u = x*): u?+u-1=0 Fall 1 Fall2 Fall 3
u=-1/2 + 1/2 V5 = 0.618... (Verhaltnis des goldenen
Schnitts) X = \/U = 0.786... ungleichschenklige Dreiecke ungleichschenklige Dreiecke

(zwei Blattgroen)

Als einzige Lésung kommt also nur ein Dreieck in Frage,
bei dem das Verhaltnis von Hypotenuse zur kirzeren Kathete dem goldenen Schnitt und das Verhaltnis
zur langeren Kathete der Wurzel aus dem goldenen Schnitt entspricht. Die Abbildung unten rechts zeigt
ein Beispiel eines solchen "goldenen" Baumes.

Weitere schone Baum-Fraktale und rechts ein realer Baum

Sierpinski-Dreieck durch Teilung

A L L& 6

Stufe 0, 1 Dreieck Stufe 1, 3 Dreiecke Stufe 2, 9 Dreiecke Stufe 3, 27 Dreiecke
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L AR AN A% AN L8 AN A : :
Stufe 4, 81 Dreiecke Stufe 5, 243 Drelecke Stufe 6, 729 Drelecke
Dimension In 3/In2 = 1,6..

Sierpinski-Pfeilspitzenkurve

/ﬂﬂ

Stufe 1, 3 Segmente Stufe 2, 9 Segmente Stufe 3, 27 Segmente Stufe 4, 81 Segmente

bd 42 4

Stufe 5, 243 Segmente  Stufe 6, 729 Segmente Stufe 7 2187 Segmente Stufe 8, 6561 Segmente

Das Sierpinski-Dreieck ldsst sich auch aus einer Linie erzeugen die nach folgendem Schema unterteilt
wird.

Die schwarze Linie zeigt die aktuelle Generation, die

graue Linie zeigt die letzte Generation (von links

nach rechts n = 1,2,3). Die Ahnlichkeit mit dem
Sierpinksi Dreieck wird aber erst bei hdheren
Generationen deutlich. Eigentlich handelt es sich um
eine optische Tauschung da es in der
Pfeilspitzenkurve gar keine Dreiecke gibt.

Weitere nach Sierpinski benannte Fraktale

Dimension =

Dimension =

*"-'-:.-

Slerpmskl—Sechseck Dimension 1,63

-:gg:'

Sierpinski-Teppich

Sierpinski-Flnfeck
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Sierpinski-Kurven unterschiedlicher Konstruktionsvorschriften

L I i I _
\ 3

D R SV

Die Sierpinski-Kurve wurde sehr gern als Ornament, vor allem in der traditionellen indischen Kunst

verwendet.

s
H

VW UJUY

Teufelstreppe

Die "Teufelstreppe" (franz. escalier du diable, engl. devil's staircase) ist ein
Fraktal. Das Gebilde wurde 1885 von Ludwig Scheeffer beschrieben, einem
Schiler Cantors.

Mitunter wird die Kurve auch Cantor-Lebesgue-Treppe genannt.

Zur Konstruktion geht man von der oben abgebildeten Struktur aus. Dabei
ist die groBe waagerechte Stufe dreimal so lang wie die kleine waagerechte
Strecke. Das kurze Element sei b.

Bei jedem Schritt werden die bisherigen waagerechten Elemente
beibehalten, ein Drittel des klirzesten waagerechten Elementes wird in der
Mitte waagerecht in das halbierte senkrechte Element eingefiigt. Daher wird
die Teufelstreppe bei jedem Schritt breiter, aber nicht héher.

Die Breite wird durch folgende geometrische Summe beschrieben:
Breite=b (3 +1+4+2/3+4/9+8/16 +..) =b (3 + 1/(1-2/3)) =6b

Trotz dieser endlichen Breite, die nur das Doppelte der groBen Anfangsstufe ist, wachst die Stufenzahl
der Teufelstreppe ins Unendliche.

Die Teufelstreppe ist nicht streng selbstahnlich. Versucht man, verkleinerte Kopien ihrer selbst zu finden,
so storen die gleichlang bleibenden Stlicke und die Verschiedenheit der Stauchfaktoren fiir senkrechte

und waagerechte Langen.

Bei einer Messung der Boxdimension erhalt man etwa d=1.



Koch-Insel, Kochsche Schneeflocke

Fraktal, wurde erstmals 1904 von Helge von Koch
untersucht

Gegeben ist ein gleichseitiges Dreieck. Auf jede Seite wird
ein Dreieck mit einem Drittel der urspriinglichen

4

®eccecovoesceeceoe

Seitenlange in der Mitte platziert. Wird nur die duBere K '
Berandung betrachtet und dieser Vorgang unendlich oft 6 kr

wiederholt, so entsteht die fraktale Kurve. Sverige .‘
Regel "F"-> "F+F--F+F", Winkel 60° e T e
Nach der n.ten Iteration wird:

Anzahl der Seiten N, = 3 * 4"

Lange einer Seite L, = 37"

Umfang der Kurve I, =3 * (4/3)"

Flache der Kurve A, = A + 1/3 % (4/9)"1 * A

A, =A(1+1/3[(4/9)° + (4/9)* + (4/9)*> + ... + (4/9)" 1, A ... Flacheninhalt des 1.Dreiecks

Der Umfang und der Flacheninhalt nehmen also mit wachsendem n zu, aber nicht in gleichem MaBe:
Lasst man n gegen Unendlich streben, erhalt man, dass die Koch'sche Schneeflocke eine unendlich lange
Kurve ist, die einen endlichen Flacheninhalt umschlieBt: Grenzwert des Flacheninhalts 8/5 A
Fraktale Dimension In4/1In3 =1.261859507 ...

Ok

Koch-Insel

Mit Hilfe der Koch-Insel-Kurve und weiterer
Schneeflockenkurven kann die Ebene vollstédndig Uberdeckt
werden.

Nutzt man zwei Koch-Inseln, deren GréBen im Verhaltnis 1 : 3
stehen, kann ebenfalls die Ebene vollstédndig ausgeflillt werden

Koch-Antikurve
Diese fraktale Kurve entsteht aus der Koch-Insel, indem die zusatzlichen
Dreiecke nicht nach auBen auf das Ausgangsdreieck gesetzt werden, sondern
nach innen. Nach der n-ten Iteration ergibt sich flir die Fldche des Fraktals
An=A,1-1/31l,1/a*A/3"
Umfang der Kurve I, =3 * (4/3)" A ... Flacheninhalt des 1.Dreiecks

Die Flache A konvergiert gegen 2A/5.

Kepler-Fraktale

Unter einem Kepler-Fraktal versteht man ein Fraktal, dessen
Konstruktionsmechanismus wie folgt beschrieben werden kann:

An einem regelmadBigen Gebilde, einem regelmaBigen N-Eck bzw. Polyeder, werden
fortlaufend Seiten bzw. Seitenflachen durch kleinere Kopien des Originals ersetzt.
/\ Dadurch ergibt sich Selbstahnlichkeit und es entsteht ein Fraktal. Links wird ein

Kepler-Fraktal aus einem 5-zackigen Stern erzeugt.
Auch die Koch-Insel ist ein Kepler-Fraktal und ergibt sich aus einem David-Stern.

Dieser Algorithmus ist nicht auf die Ebene beschrankt und kann auch auf Polyeder
Ubertragen werden.

Insbesondere ergeben sich aus den zwei von Johannes Kepler beschriebenen
Polyedern, dem kleinen Sterndodekaeder und der Stella Octangula, interessante
Fraktale.
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Cesaro-Kurve

Behalt man die Konstruktionsvorschrift der Koch-Kurve bei, ersetzt aber nicht das mittlere Drittel einer
Teilstrecke, sondern errichtet in der Mitte eine Senkrechte halber Lange, so ensteht die Cesaro-Kurve
(1905).

Der Initiator ist die Einheitsstrecke. Der Basiswinkel des von der Kurve umschlossenen gleichschenkligen
Dreiecks liegt im Bereich von 0° bis 90°.

Die fraktale Dimension ist 2. Die Kurve wurde erstmals von Ernesto Cesaro beschrieben.

s 4Ty e i
| I 4?» I 1 \ # I |+4w$::|'u:u+ﬁt:|ﬂ +$§£i+¢£%$;%$+

Kurven-Fraktale, Curlicues

Gegeben ist eine irrationale Zahl z. Die Iteration

Pn+1 = (Pn + 2 7 2) (Mod 2n) Po=0

dn+1 = Pn + oo (Mod 27) =0

wobei nach jedem Schritt eine Strecke der Lange 1 mit dem Winkel ¢, zur
x-Achse gezeichnet wird, erzeugt eine spezielle Art von Fraktal, die
sogenannten Kurven-Fraktale (Curlicues). nach Pickover 1995

Abbildung: Kurven-Fraktal fir z = n/7

Box Fraktal
N, sei die Anzahl von schwarzen Rechtecken, L, die Lange einer Seite eines weiBen Rechtecks und A, der

Anteil der schwarzen Bereiche nach der n-Iteration. Dann gilt:
N, = 5" L, =3"
An=L2 * N, = (5/9)n

Die Box-Counting-Dimension des entstehenden Fraktals istIn5/1In 3 =
1.464973521...

Haferman-Teppich
Der Haferman-Teppich ist eine fraktales Gebilde der
Dimension 2, das durch iteratives Ersetzen von Zellen
erzeugt wird.

Die Regeln sind links abgebildet. Eine leere, weiBe Zelle
wird durch ein schwarze ersetzt, die wiederum durch vier kleinere
schwarze und finf weiBe.

Das Fraktal wurde 2003 auf einem Buch von Allouche und Shallit
abgebildet.

Die Anzahl von schwarzen Zellen nach n =0, 1, 2, ... Iterationen ist
1, 4, 61, 424, 4441, 36844, 347221, 3046864, 27812401, 248358484,
2244991981, 20156099704, 181649037961, 1633620638524,
14708689262341, 132347685782944, 1191281759937121,
10720772899980964, 96490770797094301, ...

Flr die Anzahl N, der schwarzen Zellen

AN

=
e
o

Ko und die Lange L, der weiBen Zellen gilt
/_:.\\ \/ \ Nn - 1/14 ((_1)n 5n+1 +9n+1)
F k- L Ln = 3-n

y Blanc-mange Kurve

b/ 7 ~. \\ Diese Kurve wurde erstmals 1903 von

| 4 .| Takagi und 1930 von van der Waerden
~ untersucht. Mitunter wird sie auch Takagi-Kurve genannt. Der

merkwirdige Name ,Blanc-mange" wurde von John Mills gegeben und

bezieht sich auf der ,Ahnlichkeit" der Kurve zu einem Pudding-Produkt

einer britischen Firma. D.h. also, hier wird eine ,Pudding"-Kurve

untersucht.

Kartesische Gleichung

y =2 d(2“x) / 2,

Summenbildung fir k = 0, ..., . Dabei bedeutet der Term d(x) den

Abstand der x zur nachsten ganzen Zahl.
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Dreiecksfraktal

Bei diesem Fraktal werden in ein Einheitsquadrat fortlaufend Dreiecke
derart eingefiigt, dass die neuen Dreieckspunkte waagerecht zwischen
benachbarten Punkten liegen und in der Senkrechte der Abstand zum
oberen Rand halbiert wird.

Dadurch entsteht ein Gebilde, dass unendlich oft fortgesetzt werden kann

und fraktalen Charakter besitzt.
In der linken Darstellung wechseln sich blaue und rote Farbe ab.
Far den roten Anteil erhalt man bei unendlichem Fortsetzen

1/4 + 2/16 + 3/64 + ... =2 i (1/4) = 4/9

fur den blauen Anteil analog 5/9.

Ordnet man das Ausgangsdreieck zyklisch in einer Kreisform an und fligt
auf analoge Weise weitere Dreiecke an, so ensteht ein Fraktal, dass an
eine Bliten erinnert, ein Blumenfraktal.

Logistische Gleichung

Xn+1 = I Xn (1 - Xp)
Auf der Suche nach einem deterministischen Zufallszahlengenerator wurde die Gleichung 1947 von

o G e S.M.Ulam und J. von Neumann intensiv studiert. Allerdings waren die Zahlen im
// Intervall [0, 1] nicht genltigend gleichverteilt.
B Spezialfall der Verhulst-Gleichung (1845) zur Beschreibung eines
5 ?@[ Populationswachstums Nes: = Ne (@ - b Np)
X,/_ Ableitung aus quadratischer Gleichung Xn+12 = A + BXx, + Cx,2

/x' \ mit Transformation x, = k'x, + dund A=r/4+1/2; B=0;C=-r; k=1;d=1/2
,&// \ Fixpunkt bei x < f(x) = x stabiler (anziehender) Fixpunkt < |f'(X)| <
. | L g

superstabiler Fixpunkt < |f'(x)| = 0 instabiler (abstoBender) Fixpunkt < |f'(x)]

Verhalten der logistischen Gleichung
O<r<1 stabiler Fixpunkt x = 0
1<r<3 stabile Fixpunkte x = 0 und x = 1-1/r

ab r=3 Periodenverdopplung fir r = 3, 3,449399, 3,544090, 3,564407, 3,568759, 3,569692, 3,569891,
3,569934, .. Grenzwert der Periodenverdopplung r = 3,5699456
dariber (mit Ausnahme der periodischen Fenster) erfolgt chaotisches Verhalten

Exakte Losung im Chaosfall (r=4)
flr xo = 1/2 - 1/2 * cos (rn/2°%); r, s ganzzahlig
ergibt sich
Xn = 1/2 -1 /2 cos (2" arccos(1 - 2xg))
Gekoppelte einparametrige Gleichung
Xnt1 = X (1 - Xp) + (r-1) y,
Yoer = FYn (1 -yn) + (r-1) x, T
Gekoppelte zweiparametrige Gleichung
Xn+1 = F Xn (1 - Xq) + & (Yn - Xn)
Ynr1 =T Yn (1 -Yn) + & (Xn - Yn)
Kaneko-Systeme
Kaneko I - System (1986):
Xpe1 = 1 -2 X2 +.d (Yo - Xn)
Ynr1 =1 -2ayn2+d(Xq-Yn) T e
Kaneko II - System (1986): oo
Xnr1=aXn+(l-a)(l-d|yal)
Yn+1 = Xn

Abbildung: Feigenbaum-Diagramm der logistischen Gleichung

Ljapunow-Exponent

Der Ljapunow-Exponent eines dynamischen Systems; nach Alexander Michailowitsch Ljapunow;
beschreibt die Geschwindigkeit, mit der sich zwei nahe beieinanderliegende Punkte im Phasenraum
voneinander entfernen oder annahern.

Fir jede Dimension des Phasenraums gibt es einen Ljapunow-Exponenten, die zusammen das
sogenannten Ljapunow-Spektrum bilden. Haufig betrachtet man nur den gréBten Ljapunow-Exponenten,
da dieser das gesamte Systemverhalten bestimmt.
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Im eindimensionalen Raum ist der Ljapunow-Exponent A einer iterierten Abbildung x,,1 = f(x,) wie folgt
definiert: M(Xo) = limys, 1/N In [dfN(xo) / dx|

Ist der gréBte Ljapunow-Exponent positiv, so ist das System in der Regel divergent.

Ist er negativ, so entspricht dies einer Phasenraumkontraktion, d.h. das System ist dissipativ und agiert
stationdr oder periodisch stabil.

Ist die Summe der Ljapunow-Exponenten Null, so handelt es sich um ein konservatives System.

Verhulst-Iteration, Verhulst-Gleichung
Iteration: Xn+1 = 4-p-Xn-(1-%p)
Xo Anfangswert, 0O< p<1,n=0,1, 2, ..
X, = Bestand der Population im Jahre n, wobei die Population des Folgejahres proportional zu x, und zu
(1-x,) ist, d.h. proportional zum Bestand als auch proportional zum Nahrungsangebot.
Verhulst wahlte fir diese logistische Gleichung p = 0,892 als ein eindimensionales Beispiel der
nichtlinearen Dynamik.
Eigenschaften: Fiur kleine p konvergiert die Folge gegen einen Fixpunkt.
Fir groBere Werte oszilliert die Folge nach einer Einschwingphase mit der Periode 2, 4, 8, 16, 32, ...
Die zugehoérigen Parameterwerte p bilden eine geometrische Reihe mit:

lim (Pn+2 = Pa+1)/(Pn+1 - Pn) = 4,6692016 ... universelle Feigenbaumkonstante
Nach Uberschreiten aller Periodenverdopplungen ist fiir p > 0,8924... die Folge deterministisch chaotisch.
Eine winzige Veranderung des Anfangswertes X, fihrt zu einer vollstandig veranderten Folge.

Rauber-Beute-System nach Vito Volterra (1931):

X ... Anzahl Hasen, y ... Anzahl Luchse 4

Fortpflanzungsgeschwindigkeit Hasen dx/dt = k; * x

Fortpflanzungsgeschwindigkeit Luchse dy/dt = - kq * y 6\

Geschlossenes System dx/dt =ky *x -k, *x *y <
dy/dt = ks * x *y - kg *y

Allgemeine Lésung des Systems y-Iny=Inx-x+k

Abbildung: Volterra-Funktion mit Stérfaktoren

Einfluss von Stérfaktoren ¢~ 0, & > 0, s«(X,y), s,(x,y) Stérfunktionen

dx/dt = ky * x -k, *x *y + ¢ * 5,(X,y) dy/dt = ks * x *y - ks *y + & * 5,(X,y)

Populationsbiologie, Wachstumsgesetze

Geburtenrate GR = +Ng / (dt N) Sterberate SR = -N; / (dt N)

Vermehrungsrate r =GR + SR

Logistisches reales Wachstum dN/dt = r * N * (K-N)/K ; Lebensraumkapazitat
(max.PopulationsgroBe) K

Lotka-Voltera-Gleichung

Die Lotka-Voltera-Gleichungen, auch Rauber-Beute-Gleichungen genannt, sind ein System aus zwei
nichtlinearen, gekoppelten Differenzialgleichungen erster Ordnung und beschreiben die Wechselwirkung
von Rauber- und Beutepopulationen.

Unter Rauber und Beute versteht man dabei zwei Arten von Lebewesen, wobei sich eine von der anderen
ernahrt ("Deux espéces dont I'une dévore I'autre").

Aufgestellt wurden die Gleichungen 1925 von Vito Voltera und, unabhdangig davon, 1926 von Alfred
James Lotka.

dN; / dt = Ny (g1 - y1 Np) dN, / dt = - N, (&3 - v2 Ny)
mit den GréBen
N; = Ny(t) Anzahl der Beutelebewesen; zeitabhangig

¢; > 0 Reproduktionsrate der Beute ohne Stérung und bei groBem Nahrungsangebot; konstant
N, = Ny(t) Anzahl der Rauber; zeitabhangig

g; > 0 Sterberate der Rdauber, wenn keine Beute vorhanden sind; konstant

y1 > 0 Fressrate der Rauber pro Beutelebewesen = Sterberate der Beute pro Rauber; konstant
y2 > 0 Reproduktionsrate der Rauber pro Beutelebewesen; konstant

Die Lotka-Voltera-Gleichungen sind eine wichtige Grundlage der theoretischen Biologie, und insbesondere
der Populationsdynamik. Bei den Raubern und der Beute muss es sich nicht unbedingt um Tiere oder
einzelne Arten handeln. Das Modell kann auch fir Tierklassen oder Einzeller genutzt werden.

Die Anwendbarkeit der Lotka-Voltera-Gleichungen hangt davon ab, inwieweit die Begriindung des
mathematischen Modells im Einzelfall zutrifft.

Die Lotka-Voltera-Gleichung kann durch folgende Uberlegung gewonnen werden (nach Volterra "Lecons
sur la Théorie Mathématique de la Lutte pour la Vie"):

Die Populationszahlen der Beute bzw. der Rauber seien mit N; bzw. N, bezeichnet. Die ungestérten
Wachstumsraten pro Zeiteinheit dt seien A; und X,, deren Vorzeichen noch nicht festliegen.
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Die mittlere Anzahl der Begegnungen zwischen Beute und Rauber pro Zeiteinheit dt ist a N; N, mit einer
positiven reellen Zahl a, die innerhalb eines Biotops als konstant angenommen wird, aber im allgemeinen
vom Biotop abhangt.
Eine genligend groBe Zahl n Begegnungen haben im Mittel einen Effekt B; auf die Populationszahl N;. Bei
den Beutelebewesen fiihrt eine Begegnung mit einem Rauber mit einer gewissen Wahrscheinlichkeit
dazu, dass die Beute gefressen wird. Dagegen ist die Auswirkung einer Begegnung auf die Zahl der
Rauber nur indirekt.
Zusammengenommen fihrt das zu den Gleichungen

dN; = Xy Ny dt + o N7 N, Bl/n dt dN, = 2, Ny, dt + o N3 N, ﬁz/n dt
Division mit dt fihrt zu den Gleichungen

le/dt =\ Nl + a Nl Nz Bl/n und sz/dt =\ Nz + a N1 Nz Bz/n
Setzt man €1 =%, 8 =-Ay, 71 =-afi/N, v2 = -afz/n
und flhrt einen Grenziibergang durch, so ergeben sich die Lotka-Volterra-Gleichungen.

R&duber-Beute-Modell

Hasen Zwei Populationen leben in einem geschlossenen, isolierten Okosystem.
Dabei erndhrt sich die Population y (Flichse) ausschlieBlich von der
o . N Population x (Hasen). Wir wollen nun wissen, wie viele Hasen und wie viele
Flichse in unserem System zu einem beliebigen Zeitpunkt t leben.
Annahmen:
Erstens vermehren sich die Hasen proportional zu ihrer eigenen Anzahl, wenn es keine Flichse gibt.
Zweitens sterben die Flichse aus, wenn es keine Hasen gibt. Und drittens ist die Wahrscheinlichkeit, dass
ein Fuchs einen Hasen trifft, um so gréBer, je mehr es von diesen Tieren gibt, also proportional zur GroBe
der beiden Populationen x und vy, d.h. je Zeitschritt:

dx/dt=ax-axy dy/dt=-cy+yxy
Dabei sind a und c die Wachstumsraten der beiden Populationen, o die Wahrscheinlichkeit, dass bei
einem Treffen von Flichsen und Hasen der Fuchs auch tatsachlich den Hasen frisst, und y dieselbe
Wahrscheinlichkeit mal der Anzahl an Flichsen, die ein Hase erndhren kann.
Der Term ax entspricht dem nattirlichen Zuwachs an Hasen, axy ist die Menge der von Flichsen
gefressenen Hasen. -cy ist die Abnahmerate (Geburtenrate minus Todesrate) der Flichse, wenn es keine
Hasen gdbe, und yxy steht flir die Anzahl der Fichse, die Hasen fressen kdnnen und dadurch Uberleben.
Dieses Gleichungssystem ist nicht explizit nach der Zeit I6sbar, sondern muss angenahert werden.
Eulerverfahren:

x(t + At) = x(t) + At(ax(t) - ax(t)y(t)) y(t + At) = y(t) + At(- cy(t) + yx(t)y(t))
Ein Beispiel fur das Resultat, das uns ein Computer gibt, sehen wir in nebenstehendem Bild, wo die GroBe
der beiden Populationen gegen die Zeit abgetragen ist.

Wator

Wator ist eine diskrete Simulation eines einfachen Rauber-Beute-Modells und wurde von Alexander
K.Dewdney erfunden und im Scientific American zuerst verdéffentlicht. Simuliert wird ein abgeschlossenes
System, der Planet Wa-Tor, auf dessen Oberflache Haie und Fische leben. Jedes der beiden Lebewesen
verhalt sich nach eindeutig festgelegten Regeln:

1. Jeder Fisch schwimmt zuféllig auf eines der vier angrenzenden Felder, sofern es leer ist.

2. Jeder Fisch hat ein Alter; Uberschreitet dieses Alter die "Breed Time", so wird auf einem leeren,
angrenzenden Feld ein neuer Fisch geboren.

3. Haie fressen Fische auf angrenzenden Feldern.

4. Findet ein Hai keinen Fisch auf einem angrenzenden Feld, so schwimmt er zufallig auf eines der vier
Felder.

5. Findet ein Hai fir eine bestimmte Anzahl Zyklen, der "Starve Time" keinen Fisch, so stirbt der Hai.
6. Haie pflanzen sich genau so fort wie Fische.

Die Spielflache ist dabei auf allen je zwei gegenliberliegenden Seiten torisch verbunden, ein Fisch, der
sich nach oben aus dem Spielfeld bewegt, wird also auf der Unterseite auftauchen und umgekehrt,
ebenso in horizontaler Richtung.

Die Simulation hangt von 5 verdnderbaren Parametern ab: der Anzahl der Fische zu Beginn, der Anzahl
der Haie zu Beginn, der Fish Breed Time, der Shark Breed Time und der Shark Starve Time. AuBerdem
hangt der Ablauf der Simulation von der GroBe des Planeten ab, diese wird aber als gegeben
vorausgesetzt. Die Simulation kann als Spiel aufgefasst werden, das Ziel des Spieles ist es dann, die
Startparameter so zu wahlen, dass ein stabiles Gleichgewicht entsteht. Abhdngig von den
Startparametern gibt es verschiedene Méglichkeiten, wie sich die Simulation entwickeln kann:

1. Die Haie kénnen aussterben und den Fischen freien Lauf lassen.

2. Die Fische kbénnen aussterben, was ein Aussterben der Haie nach sich ziehen wird.

3. Es kann eine Art Gleichgewicht entstehen, in dem sich die beiden Population gegenseitig begrenzen.
Bei Wa-Tor handelt es sich um eine Diskretisierung eines einfachen Rauber-Beute-Modells, die dennoch
interessante (und erheiternde) Resultate hervorbringen kann.
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Ljapunow-Diagramm

In der Mathematik sind Ljapunow-Diagramme; auch Ljapunow-Fraktale
oder Markus-Ljapunow-Fraktale; nach Alexander Michailowitsch Ljapunow;
Fraktale hergeleitet von einer Erweiterung der logistischen Gleichung, in der
der Wachstumsgrad der Population, r, periodisch zwischen zwei Werten A
und B schwankt.

Abbildung: Ljapunow-Fraktal mit der Sequenz AB

Ljapunow-Diagramme beschreiben die Intensitat der Ordnung und des
Chaos eines jeden Wertes einer chaotischen Gleichung im
zweidimensionalen Raum.

Fraktale ... Punktmenge mit "bizarren" Eigenschaften

Eine Punktmenge F € R" heiBt, nach Falconer, ein Fraktal, wenn gilt:

1. F hat eine Feinstruktur, d.h. sie zeigt auf beliebig kleinen Skalen noch
Struktur

2. Fist irregular, um lokal oder global mit der Euklidischen Geometrie
beschrieben werden zu kénnen

3. F zeigt exakte oder angendherte Selbstahnlichkeit

4. F hat eine fraktale, gebrochene, Dimension, die meist die Euklidische
Ubersteigt. F kann auf einfache Weise definiert werden, meist rekursiv.

Fraktale Dimension
M sei beschrinkte Menge. Minimalzahl der zur Uberdeckung von M benétigten
Kugeln mit dem Radius ¢ sei N(g).
Existiert die reelle Zahl o mit
lim,q €* * N(g) = o, falls a<d limg_,0 * * N(¢) = 0, falls a>d
NS so heiBt d Box-Counting-Dimension oder Hausdorff-Dimension von M.
Das Verfahren zur empirischen Bestimmung von Hausdorff-Dimensionen mittels eines Gitters bestimmter
Maschenweite heiBt Box-counting-Algorithmus.
Zerfallt eine selbstdhnliche Menge bei einer zentrischen Streckung mit einem Streckfaktor k = 1/rin N
gleichartige Teile, so ist die fraktale Dimension D=InN/In(1/r)
Komplexe selbstahnliche Objekte besitzen i.a. eine gebrochene Hausdorff-Dimension. Deshalb werden sie
auch Fraktale (engl. fraction = Bruch) genannt.

Beispiele:

Koch-Kurve In4/1In3=1,2618595
Cantor-Menge D In2/1In3 =0,6309297
Hilbert-Kurve D =In4/In2=2
Sierpinski-Dreieck D=In3/In2=1,5850

Natiirliche Fraktale
Eine andere Definition der fraktalen Dimension, die aber zum gleichen Ergebnis flihrt, ist aus dem
Studium von naturlichen fraktalen Kurven entstanden.
Als Beispiel soll die Bestimmung der Lange L einer Kistenlinie dienen. Man kann versuchen, eine grobe
Naherung flir L zu erhalten, indem man auf einer Karte die Kiistenlinie mit einem relativ groBen
Langenstab "abgreift", z.B. wie im folgenden Bild:

Sei nun s die Lange des Stabes und L(s) die Lange des

(7 Polygonzuges. Ist etwa im Bild s = 1 gewahlt, so ist
L(1) = 11 . L(s) als Naherung fir L aufzufassen, zudem
ﬁ' mit der Vorstellung, dass lim L(s) = L fir s-> 0, flhrt
aber in die Irre. Denn tatsachlich strebt L(s) fir s-> 0

gegen Unendlich.
Eine endliche Klistenldnge gibt es also eigentlich nicht. Welche Lange einer Klste zugeschrieben wird,
hangt von der Feinheit des Messinstrumentes ab. Nun st6Bt man aber bei tatsachlichen Vermessungen
immer wieder auf eine RegelméaBigkeit, ndmlich L(s) = k-s!® mit Konstanten k > 0 und D > 1, die von
der Kistengestalt abhangen. Dieses D entpuppt sich als die oben beschriebene fraktale Dimension, wenn
man das Verfahren mit den Langenstdaben auf "determinierte" Fraktale anwendet. Im nachsten Bild wird
die Koch'sche Schneeflocke mit Langenstaben (in Grin) der
0y ey Pl MaBe s = 1, 1/3, 1/9 abgegriffen:

F P P T P Ee ]
E‘-!L JB H 3 H 4~ Hier wurde s = (1/3)" gewahlt. Weiter oben sind die zugehdrigen
fm, e g Langen der Polygonzlige schon angegeben
E-uf Lo worden: L(s) = 3-(4/3)" . Wegen n = -log s / log 3 und der
Logarithmusregel a9 ® = b'°92 jst L(s) = 3.5'°9 ¥/4/1093 = 3.g(log 3 -
log4)/log3 — 3.g1-10g4/1093 'Daher st hier k = 3 und D = log 4 / log 3. Also ist gerundet L(s) = 3-s7°2°,
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Fur etliche Kisten auf der Erde wurden die fraktalen Dimensionen ermittelt. Es ist nicht verwunderlich,
dass es Kusten unterschiedlicher "Rauheit" gibt. Hier sind drei Beispiele: Australien D = 1.13;
GroBbritannien D = 1.25 ; Norwegen D = 1.52.

Kisten sind also keine eindimensionalen Kurven, sondern fraktale Gebilde wie die Koch'sche
Schneeflocke.

Fraktales Gebirge, fraktale Landschaft

Objekte aus der Natur kénnen durch fraktale Darstellungen
realistisch angendhert werden.

Geht man von einem Dreieck im R3 aus, fligt in dieses 4
kleinere Dreiecke ein, wiederholt diesen Prozess mehrfach, so
ergibt sich das Modell eines Gebirges.

Lichtenberg-Figur, Lichtenberg-Struktur

Lichtenberg-Figuren sind schone, baum-, farn- oder sternférmige Muster,
die in isolierenden Materialien durch elektrische
Hochspannungsentladungen entstehen.

Sie sind nach dem deutschen Physiker und Mathematiker Georg Christoph
Lichtenberg benannt, der sie als zweidimensionale Muster in seinem Labor
entdeckte, als sie sich im Staub auf der Oberflache einer geladenen
Isolatorplatte bildeten.

Zu jener Zeit nahm man an, dass das verastelte Erscheinungsbild dieses
elektrostatischen Phanomens, Aufschluss liber die Natur des elektrischen
Flusses geben kdnne. Lichtenberg-Figuren entstehen typischerweise durch
die Entladung bzw. Umverteilung von sich auf der Oberflache von
Isolatorplatten befindlichen Ladungen.

Die der Bildung der Lichtenberg-Figuren zugrundeliegenden physikalischen Prinzipien sind dieselben, auf
die sich die moderne Elektrofotografie begriindet, die heute in Kopiergeraten wie Fotokopierern und
Laserdruckern eingesetzt werden.

Selbstdhnlichkeit, Skaleninvarianz
Eine Menge A heiBt selbstéhnlich, wenn endlich viele Teilmengen Ay, A,, ..., A, von A und
Ahnlichkeitstransformationen Ty, Ty, ..., T, derart existieren, dass

A= Tl(Al) U Tz(Az) U U Tn(An)
Beispiel eines selbstahnlichen Farnblattes:
Die Fiederung setzt sich aus Teilblattern zusammen. Bis auf einen Verkleinerungsfaktor (Skalierung) sind
diese identisch mit dem Gesamtblatt. Diese gilt wiederum auch fir die Fiederung der Teilblatter.

Ahnlichkeitsabbildungen der Cantor-Menge Ti(x) = x/3 und Tr(x) = x/3 + 2/3

Ein Objekt heiBt selbstdhnlich, wenn es bei der Teilung der Kanten in r gleiche Abschnitte in N gleiche
Teile zerfallt.

Streckfaktor k=1/r fraktale Dimension D=InN/In(1/r) N*rP=1

Al

Chaos, deterministisches
Abbildung: "Chaos" von Leonardo da Vinci, 1514

Der Begriff des (deterministischen) Chaos in der nichtlinearen Dynamik hat
nur wenig mit dem komplexen oder sogar regellosen Durcheinander zu tun,
das er umgangssprachlich bezeichnet.

Vielmehr geht es dabei um Systeme, deren zeitliche Entwicklung mehr oder
weniger einfachen Bewegungsgleichungen folgt (z. B. die vorgestellten
Gleichungen des Pendels oder Lorenzsystems).

Wenn man diese Gleichungen und einen vollstandigen Satz von
Anfangsbedingungen (z.B. die Parameter X, Y und Z des Lorenzsystems zur
Zeit t = 0) kennt, kann man durch Integration der Bewegungsgleichungen im
Prinzip die Systementwicklung fir alle Zukunft berechnen, d.h. vorhersagen
(oder auch in die Vergangenheit zurlickrechnen) - das Systemverhalten ist
determiniert.

Die Anfangsbedingungen lassen sich allerdings nie beliebig genau
bestimmen, ihre Messung unterliegt der Messgenauigkeit der verwendeten
Methode, der auch bei groBter Anstrengung letztlich durch die Heisenbergsche Unscharferelation eine
prinzipielle Grenze gesetzt ist. Oft beeintrachtigt dieser Messfehler die Genauigkeit der berechneten
zuklinftigen Systementwicklung kaum.

Bei deterministisch-chaotischem Systemverhalten jedoch fihrt er zu einem im zeitlichen Mittel
exponentiellen Auseinanderlaufen von vorhergesagter und tatsachlicher Trajektorie.
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Ebensowenig, wie sich die Anfangsbedingungen beliebig genau messen lassen, gelingt es, mehrere
ansonsten identische chaotische Systeme mit den exakt gleichen Anfangsbedingungen zu praparieren.
Nach Verstreichen einer Zeit, die von den Systemparametern, aber auch von den Anfangsbedingungen
selbst abhdngt unterscheiden sich die Zustande der einzelnen Systeme vdllig, da die minimalen
Differenzen der Systemparameter mit der Zeit wieder im Mittel exponentiell anwachsen.

Diese Systemeigenschaft nennt man sensitive Abhangigkeit von den Anfangsbedingungen. Sie ist das
wesentliche Merkmal des determinischen Chaos.

Die Untersuchung des deterministisches Chaos im beschriebenen Sinn ist Gegenstand der nichtlinearen
Dynamik.

Chaos-System

Folgende Eigenschaften eines dynamischen Systems werden i.a. als kennzeichnend angesehen:

1. Der Bereich des Phasenraums, der von den Trajektorien angelaufen wird, ist beschrankt.

2. Die Trajektorien sind nicht periodisch.

3. Ein Attraktor des Systems hat i.a. fraktale Dimension.

4. Das System hangt empfindlich von den Anfangsbedingungen ab. D.h. die Trajektorien zweier beliebig
benachbarter Anfangszustdnde divergieren nach endlicher Zeit.

Die Divergenzrate kann mithilfe des Ljapunow-Exponenten gemessen werden.

Riickkopplungsmaschine Autonomes System
: Ein dynamisches System heiBt autonom, wenn es nicht explizit von

Eingang Ausgang der Zeit abhangt. Autonome Systeme haben gegeniiber
0, Pan=f(B) . heterogenen folgende Vorteile:

b n " n 1. Die Trajektorien sind eindeutig festgelegt durch die

H H Anfangsbedingungen

M a 2. Die Trajektorien kénnen sich nicht schneiden.

| | | | | | | | | | | | | | | | | | | |

Feigenbaum-Diagramm
Iteration Uber p = p f(x), z.B. p = x * (p2 -1)
Ist eine Gleichung der Form f(X)=0 gegeben, so kann eine Nullstelle Gber Iteration, z.B. mit dem
Newton-Verfahren; bestimmt werden. Die Konvergenzgeschwindigkeit hangt dabei entscheidend vom
Startwert x0 ab. Allerdings gibt es auch Funktionen und Anfangswerte bei denen die Iteration divergiert
oder ganz andere Eigenschaften demonstriert.

An Hand des Iterationsgraphens kann das Verhalten der Funktion
i abgelesen werden. Bereiche der Konvergenz; es entsteht nur 1
g Funktionswert; Bereiche der Periodizitdt (2, 4, 8, ... Werte) und
. chaotische Bereiche (Divergenz !) sind festzustellen. Das Beispiel
i konvergiert von x=-1 bis x=1. Ab x=1.3 sind zuerst 2 spater 4 Werte
abzulesen, zwischen den die Funktion oszilliert. Der Abstand zwischen
den Punkten dieser Verdoppelung nimmt stdndig um einen Faktor ab.
Dieser strebt gegen einen Grenzwert, die Feigenbaum-Konstante =
4.699201660910299097...
Dieser Wert ist eine Naturkonstante und allem Anschein nach so
bedeutend wie die Kreiszahl oder die Eulersche Zahl e. Die
Verzweigungspunkte (Bifurkations-Punkte, von lat. furca=gabel) treten gerade an den Stellen auf, an
denen zugeordnete Mandelbrotmengen ihr Aussehen verandern. Die entstehenden graphischen Gebilde
nennt man nach ihrem Entdecker Mitchell Feigenbaum Feigenbaum-Diagramme.
Abbildung: Fir einen Startwert von P=0.5 und den Standardeinstellungen wird hier die Iteration Gber der
Gleichung P=X*(P*P-1) durchgefihrt.

1l

1
gal
o

B

Feigenbaum-Konstante 8 =lim (sp - Sp-1) / (Sn-1 = Sn-2)

S; ... superattraktive Parameter; s;=2;s, =145 = 3.236067978...
Ndherung mittels Newton-Verfahren sh~N(a) =a-g(a)/g'(a)
Berechnung der Funktionswerte g(a), g'(a) fur N = 2"

g(a) = xy- "% g'(a) = x'n

Die x; und x'; sind Naherungen der Rekursion
Xerr = aXg (1 -%) 5 X'ur1 =X (1 -%x) +a(1-2x) X'«; Xo=1/2 und x'q = 0 fir k=0, ..., N-1
Anfangsschatzwert flir a = sp44 Sn+1 = Sn + (Sn - Sn-1) / &n
Ndherung der Feigenbaumkonstante Sn = (Sn - Sn-1) / (Sn-1 - Sn-2)
Anfangsschatzung &, = 4
Eine Rechnergenauigkeit von 18 Stellen ermdglicht die Berechnung auf maximal 9 Stellen !

Tabelle der Ndherungen

n=3 s = 3.498561699330348210 & = 4.708943013493023640
n=4 s = 3.554640862768824870 & = 4.680770998278802880
n=5 s = 3.566667379856268510 & = 4.662959610894031280
n=6 s =3.569243531637110340 & = 4.668403925918399630
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n=7 s = 3.569795293749944620 & = 4.668953740967627760
n=8 s = 3.569913465422348510 & = 4.669157181328856740
n=9 s = 3.569938774233305490 & = 4.669191002484840300
n=10 s = 3.569944194608064930 & = 4.669199470548766980
n=11 s = 3.569945355486468590 & = 4.669201134576838590
n=12 s = 3.569945604111078440 & = 4.669201509645291840
n=13 s = 3.569945657358856500 & = 4.669201587299666310
n=14 s = 3.569945668762899970 & = 4.669201602829750400
n=15 s = 3.569945671205296850 & = 4.669201622952224960

... ab der 16.Naherung verschlechtert sich der Wert; genauerer Naherungswert § =
4.699201660910299097 ...

Naherung Feigenbaumkonstante

Merkwirdigerweise gibt es erstaulich gute Naherungen fiir die Feigenbaumkonstante:

1.) nach Stoschek

d~4 * (14 122/163 + (4*122431)/(4*1632) + ... ) / (1 + 102/163 + (102+4+30)/1632 + ...) ~
4.66920160933975

2.) 8~ n + tan’!(e") = 4.669201932 ...

Feigenbaumkonstanten héherer Ordnung
... bei Iteration Uber die Funktion f(x) = 1 - a |x|" ergeben sich nach Briggs (1991) die Feigenbaum-
Konstanten n.Ordnung zu

n ) n d

1 4.699201660910299097 ... 2 5.9679 ...
4 7.2846 ... 6 8.3494 ...
8 9.2962 ...

Feigenbaumkonstante

Im Marz 1999 ermittelte Keith Briggs nach 3 Tagen Rechenzeit auf einem 433 MHz DECalpha durch
Auswertung von 700 Attraktionspunkten die Feigenbaumkonstante auf 1018 Dezimalziffern genau.
Die Ziffernfolge ist

8 =4,6692016091029906718532038204662016172581855774757686327456513430
0413433021131473713868974402394801381716598485518981513440862714
2027932522312442988890890859944935463236713411532481714219947455
6443658237932020095610583305754586176522220703854106467494942849
8145339172620056875566595233987560382563722564800409510712838906
1184470277585428541980111344017500242858538249833571552205223608
7250291678860362674527213399057131606875345083433934446103706309
4520191158769724322735898389037949462572512890979489867683346116
2688911656312347446057517953912204556247280709520219819909455858
1946136877445617396074115614074243754435499204869180982648652368
4387027996490173977934251347238087371362116018601281861020563818
1835409759847796417390032893617143215987824078977661439139576403
7760537119096932066998361984288981837003229412030210655743295550
3888458497370347275321219257069584140746618419819610061296401614
8771294441590140546794180019813325337859249336588307045999993837
5411726563553016862529032210862320550634510679399023341675...



Attraktor

Ein Attraktor eines dynamischen System f' ist nach J.P.Eckmann eine kompakte Menge A mit folgenden
Eigenschaften:

1. Aist invariant unter f: ff(A) = A

2. A hat eine offene Umgebung, die sich unter f* auf A zusammenzieht: lime,, f (A) = A

3. A hat keine Untermenge, die transient ist. A kann nicht in nichttriviale, kompakte und invariante
Mengen zerlegt werden; d.h. kann nicht in separate Attraktoren zerlegt werden.

Attraktionsgebiet

Das Attraktorgebiet oder Bassin eines Attraktors ist die offene Menge aller Anfangsbedingungen x(0), fur
die gilt: limg,, f* (xo) € A

Bahn, Trajektorie

Die Menge der Punkte { f* }¥" _; mit f(tg) = X, heiBt Bahn, Orbit oder Trajektorie zur

; ; Anfangsbedingung x,.
Attraktoren
Seltsame Kurven, sogenannte Attraktoren (Seltsame Attraktoren, strange attractors),
ergeben sich z.B. bei der Darstellung numerischer Lésungen von Systemen dreier
gewodhnlicher Differenzialgleichungen bzw. der punktweisen Darstellung rekursiver Folgen.
Attraktoren sind Gebilde im Phasenraum. Der Phasenraum hat keine Ortskoordinaten,
p sondern beschreibt andere Zustandsfunktionen (eine Ordinate ist dann z.B. der Ort, die
andere die Geschwindigkeit oder der Impuls). Die Bahn der Zustande (die durch Ort und
‘ Impuls gekennzeichnet sind), ist die Trajektorie. Trajektorien streben oft zu fir sie
typischen Gebieten. Diese "Anziehungsgebiete" sind die Attraktoren. Solche Gebiete
_ kdnnen ein Punkt sein, oder ein Kreis (Grenzzyklus), oder Tori - sowie die sogenannten
3 "seltsamen" Attraktoren:

Typ Beispiel
Anziehungspunkt (Abbildung 1)

Pendel mit Reibung, ruhiges Wasser
Grenzzyklus, Widerstehen der Veranderung durch Rickkopplung (Abbildung 2)

Pendel ohne Reibung, Raubtier-Beute-System, Wirbel im schnelleren Wasser
Torus, gekoppelte Bewegung von zwei Oszillatoren (Abbildung 3)

Insekten-Frosch-Zyklus gekoppelt mit Forellen-Hecht-Zyklus, Planetenbewegung

selbstahnliche Kaskaden von Liicken
seltsamer Attraktor - CHAOS - kleine Startabweichungen groBe Unterschiede (Abbildung 4)
nichtperiodische Attraktoren = Fraktale mit gebrochener Dimensionalitat

Turbulenz (Wasser), Wetter (Lorenz 1960)
Physikalisches Beispiel:
Die laminare Stromung von Wasser bei kleinen Geschwindigkeiten flieBt glatt dahin und gleicht Stérungen
schnell aus. Der Attraktor ist der Punkt der konstanten Wassergeschwindigkeit.
Beim rascheren FlieBen treten durch Wirbel stabile Wirbel auf. Durch die die sog. Hopf-Instabilitat (E.Hopf
1948) geschieht ein Umschlagen zu Grenzzyklen und bei weiterem Geschwindigkeitsanstieg wird der
Attraktor ein Torus.
Es wdre nun zu erwarten, dass bei weiterer Geschwindigkeitserhéhung Tori weiterer Dimensionen erreicht
werden. In der Realitdt jedoch passiert etwas anderes:
Ruelle und Takens erkannten 1972, dass bei einer weiteren Geschwindigkeitssteigerung der Torus
plotzlich "zerspringt". Es entsteht ein "seltsamer" Attraktor, bei dem durch die Rickkopplung zwischen
den einzelnen "Sticken" immer neue Stlicke entstehen. Es entsteht eine turbulente Strémung, die ein
Abbild fur das sog. "Turbulente Chaos" (Schlemm) ist.

Seltsame Attraktoren
Durch Robin S. Chapman wurde das Gedicht "Strange Attractors" ("Seltsame Attraktoren") geschrieben:

How to find them, those regions A human chaos that some slight

Of space where the equation traces Early difference altered irretrievably?
Over and over a kind of path, For one, the sound of her mother
Like the moth that batters its way Crying. For this other,

Back toward the light The hands that soothed

Or, hearing the high cry of the bat, When he was sick. For a third,

Folds its wings in a rolling dive? The silence that collects

And ourselves, fluttering toward and away Around certain facts. And this one,
In a pattern that, given enough Sent to bed, longing for a nightlight.
Dimensions and point-of-view, Though we think this time to escape,
Anyone living there could plainly see— Holding a head up, nothing wrong,
Dance and story, advance, retreat, Finding a way to beat the system,
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Talking about anything else— The journey circles back
Travel, the weather, time To those strange, unpredictable attractors,
At the flight simulator—for some Secrets we can neither speak nor leave.

Rossler-Attraktor I
dx/dt=-y -z dy/dt = x + a*y
dz/dt = b*x - c*z + x*z
Rossler-Attraktor 2
dx/dt = y + a*x dy/dt =-x-2z
dz/dt = b*y - c*z + y*z
Der deutsche Mediziner Otto Rdssler fand dieses System nach dem er
von Lorenz und seinem Attraktor erfuhr. Uber seinen Attraktor sagt
Réssler selbst:

"Er ist wie ein offener Strumpf mit einem Loch am Ende und der Wind
blaht ihn auf. Dann sitzt der Wind in der Falle. Gegen ihren Willen
bewirkt die Energie nun etwas Produktives, so wie der Teufel in
mittelalterlichen Geschichten. Das Prinzip ist, dass die Natur etwas
gegen ihren eigenen Willen tut und durch Selbstverwirklichung
Schénheit hervorruft.” &

Dieses System wird in den meisten
einfihrenden Schriften Gber
Chaostheorie beschrieben.

Dariberhinaus wird es oft als Testsystem flir nichtlineare Methoden
verwendet.

Der Grund fir die Beliebtheit dieses Systems ist seine Verwandtheit mit dem
Lorenz-System. Das Rdssler-System zeigt auch die wichtigsten typischen
Eigenschaften chaotischer Systeme: einen seltsamen Attraktor, Ubergang
ins Chaos durch Periodenverdopplung, Streckung und Faltung des
Attraktors, usw.

Lorenz-Attraktor
Der Lorenz-Attraktor kann (bei Wahl entsprechender Parameter, z.B. a=10, b=28 und ¢c=2.5) in zwei
markante Bereiche eingeteilt werden.
Meist verweilt die Kurve langere Zeit in einem Bereich, um dann plétzlich und unvorhersehbar die Seite
zu wechseln. Dieses chaotische Verhalten ist gut zu beobachten.
Der Lorenz-Attraktor stellt eine sehr gute Simulation der Bewegung einer Masse in einem von zwei
weiteren (groBeren) Massen aufgespannten Gravitationsfeld dar. Gefunden wurde dieses Fraktal durch
Lorenz bei der Simulation von Wettervorhersage-Systemen und ging unter der Bezeichnung
"Schmetterlings-Effekt" in die mathematische Geschichte ein.

dx/dt = a*( y- x) dy/dt = b*x -y - x*z dz/dt = x*y - c*z
Lorenz-Attraktor 2

dx/dt = (-a-1)*x + (a-b)*y + (1-a)*norm + y*z

dy/dt = (b-a)*x - (a+1)*y + (b+a)*norm - x*z - norm*z

dz/dt = y/2 - c*z norm = V(x2+y2)

Schmetterlingseffekt, Butterfly effect

Als Schmetterlingseffekt (butterfly effect) ist die Erscheinung, dass in
komplexen, nichtlinearen dynamischen Systemen eine groB3e
Empfindlichkeit auf kleine Abweichungen in den Anfangsbedingungen
besteht. Geringfiigig veranderte Anfangsbedingungen kénnen im
langfristigen Verlauf zu einer véllig anderen Entwicklung fihren.

Der Begriff Schmetterlingseffekt stammt von dem US-amerikanischen Meteorologen Edward N.Lorenz,
der 1972 in einem Vortrag Uber ein meteorologisches Berechnungssystem mit der Frage "Kann der
Fligelschlag eines Schmetterlings in Brasilien einen Tornado in Texas auslésen?" flir Aufsehen sorgte.
Urspringlich sprach Lorenz aber vom Fligelschlag einer Méwe statt eines Schmetterlings.

Die Fragestellung ist unklug gewahlt, da viele Menschen den Schmetterlingseffekt als Synonym fir einen
Schneeballeffekt ansehen, bei dem kleine Effekte sich liber eine Kettenreaktion selbst verstarken.

Diese Aussage hat Lorenz nicht getroffen. Vielmehr zeigte er, dass kleine Abweichungen langfristig ein
ganzes System vollstandig und unvorhersagbar verandern kénnen.

Bei einer ersten Berechnung seines Lorenz-Attraktors verwendete er einen auf sechs Stellen genauen
Wert, bei der zweiten Berechnung einen auf drei Stellen genauen. Obwohl die Abweichung nur etwa
1/10000 betrug, wich die Berechnung mit der Zeit von der ersten stark ab.
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Henon-Attraktor

X=y-a*x2+1

y = b *x
Abbildung fir a=0.01 und b=0.99995, 50000 Iterationen
Der Hénon-Attraktor eignet sich gut, um zwei wesentliche
Charakteristika chaotischer Systeme zu veranschaulichen. Das erste ist
die sensitive Abhdngigkeit von den Anfangsbedingungen.
Systeme, die die gleichen Systemparameter haben, sich aber in den -
Anfangsbedingungen unterscheiden, und sei es noch so geringfiligig, bewegen sich im Laufe der Zeit
auseinander - und zwar im zeitlichen Mittel sogar exponentiell.
Die zweite Eigenschaft heiBt Ergodizitat. Vereinfacht gesprochen verteilt sich eine groBe Anzahl gleicher
Systeme, die zwar die gleichen Systemparameter, aber unterschiedliche Startpunkte hatten, ein
sogenanntes “statistisches Ensemble”, nach Ablauf einer hinreichend langen Zeit zu einem ansonsten
beliebigen festen Zeitpunkt ebenso auf dem Attraktor wie die Folge der Iterationen eines einzigen, fast
beliebigen Startpunktes.
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Henon-Attraktor flira = 1.4 und b = 0.3 Feigenbaum-Digramm des Henon-Attraktors

Vollig verbliffend ist, dass der Henon-Attraktor bei folgendem realen Experiment auftaucht. Untersucht
man einen tropfenden Wasserhahn, so stellt man fest, dass der zeitliche Abstand fallender Tropfen
scheinbar vollig chaotisch verteilt ist. Bei einer hinreichend langen Beobachtungszeit zeigt sich aber, dass
die Zeitabstande sich entsprechend dem Henon-Attraktor verteilen.

Einfluss des Parameters a: flir -0.1225<a<0.3675 konvergiert der Atraktor auf einen Punkt der Ebene,
fir 0.3675<a<0.9 existieren zwei Kontraktionspunkte, fiir 0.9<a<1.02 kommt es zu einer weiteren
Periodenverdopplung, flir a = 1.4 geht das System endgliltig in den chaotischen Zustand tber

Tomita-Attraktor
Von Tomita und Kai wurde die Briisselator-Gleichung um einen sinusformigen
Term erganzt und 1987 in "Stroboscopic phase portrait und strange attractors"
veroffentlicht:

dx/dt = a + x2y - bx - x -c cos(ft) dy/dt = bx - x2y
Normalerweise werden die Werte a = 0,4, b = 1,2 und c = 0,05 gewahlt.
Flir wachsende Werte von f erhalt man Periodenverdopplungen, beginnend mit f =
0,8. Fir f = 0,95 wird schlieBlich Chaos erreicht.

Metzler-Attraktor
Von Metzler und anderen wurde durch nichtlineare
Kopplung der logistischen Gleichung ein Attraktor
gefunden. Verdffentlicht wurde dies in Metzer W./Beau
W. "Symmetry and selfsimilarity with coupled logistic maps".
Iterationsgleichungen

Xx=X+h((X-x24y) y=y+h(y-y2+x),h=1,678
Die Gleichung entsteht aus der gekoppelten, zweiparametrigen logistischen
Gleichung durch die Transformationen

x — h/(1+h) x y - h/(1+h) y r— 1+h
Abr = 1,684, d.h. h = 0,684, tritt der Attraktor auf. Fir h = 0,6 kommt es zu einer Hopf-Bifurkation. Bei
h = 0,65 beginnt das Chaos. Der entstehende Attraktor ist dem Eiffelturm ahnlich und wird daher auch
Tour Eiffel de Cassel nach der Institutsstadt Kassel genannt.
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Duffing-Attraktor
Der sinusférmig angeregte Duffing-Oszillator wurde von Ueda untersucht in
"Explosion of strange attractors exhibited by Duffings equation”.
Duffing-Gleichung

d2x/dt2 + a dx/dt + x3 =b cos t dx/dt =y

dy/dt = -ay -x3 + b cos t
Flr die Parametergilt0 <a<1und0<b < 35.Fira=0,2und b = 16,5
tritt periodisches Verhalten auf, fiir B = 30,75 chaotisches Verhalten.

Martin-Attraktor

X =y - (1+sin(a-x)) - b - V| x| y=c-X a=0,25b=0,3
Ueda-Attraktor
dx/dt =y dy/dt = a (1-x2)y - x3 + b cos(ft)
Gingerbread-Attraktor / Pfefferkuchenmann Attraktor Y
Von L.Levaney 1988: x=1-y + | x| y =X
Die chaotische Abbildung fillt die Ebene und lasst 6 sechseckigen
Figuren frei. Die Eckpunkte des inneren Sechsecks sind (0, 0), (1,
0), 2, 1), (2,) N
2 (1, 2) und (0, 1).
Tragt man die /j
Umrisse des \Q/@ X

Pfefferkuchenmanns in ein Koordinatensystem ein, so
stellt man fest, dass die Eckpunkte vollig symmetrisch
sind.

Mira-Abbildung
X = by + F(x) y = -x + F(xneu)
F(x) = ax - 2(1-a)x2 / (1+x2)

Rayleigh-Gleichung

dx/dt =y
dy/dt = (y -y3/3)-x+fcosz dz/dt = ©
Twist-Map

Xn+1 = Xp COS @ - Y, SiN A
Yn+1 = Xp Sin @ - y, COS a
Standard-Abbildung

Xn+1 = Xn + Yn + € Sin X, Yn+1 = Yn + € SiN X,
McKay-Abbildung

Xn+1 = -Yn + f(Xq) Yn+1 = Xn+1 - f(Xn+1)
Sinai-Gleichung

Xn+1 = Xn + Yn + 9/(27) cos (2r y,) mod 1 Yn+1 = Xp + 2y, mod 1
Cat-Map-Abbildung

Xn+1 = (Xn + yn) mod 1 Yn+1 = (Xn + 2y,) mod 1

Baker-Map-Abbildung
Xn+1 = 2X,, fur 0<x,<0.5

Xp -1, fur 0.5<x,<1
Yn+1 = 0.5y, fur 0<x,<0.5 .

=2
= 0.5(y, +1), fur 0.5<x,<1
van-der-Pol-Abbildung
1926 entwickelte der niederlédndischen Physiker Balthasar von der Pol
einen Réhrengenerator. Dieser Oszillator wird durch die Gleichungen
L,dI/dt + RI + Ug - L,dI,/dt = U, cos 4wt
CdUg/dt =1
L=a Ug (1- ng/(3ﬁ2))
beschrieben.
Van der Pol verfolgte den Verlauf der Schwingungen mit Hilfe eines
Telefonhorers. Dabei stellte er fest, dass sich der Ton kuzzeitige
stabilisierte um dann sprunghaft von einer Frequenz zur nachsten zu wechseln. Manchmal jedoch,
veranderte sich der Ton in unregelmaBigen Abstanden véllig irregular.
Wadhrend van der Pol diese Schwankungen als zufallig interpretierte, konnte 1949 durch Cartwright,
Littlewood und Levinson gezeigt werden, dass hier ein chaotisches Verhalten vorliegt.
Das zugehorige System wird heute durch die van-der-Pol-Gleichung 2.0rdnung
d2u/dt2 + a(u2-1) du/dt + u = k cos ot
beschrieben, die in die Gleichungen
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dy/dt = x dx/dt = -a (y2-1) x - y + k cos ot
zerlegt werden kann. Die Abbildung zeigt einen zugehérigen Phasenplot.

Pickover-Attraktor

Durch Clifford Pickover wurden drei Bildungsvorschriften entwickelt, die
besonders reizvolle grafische Veranschaulichungen besitzen:

Die linke Abbildung wurde mit Formel 3 und den Parametern o = 2 und B
= 1 erzeugt.

Formel 1

(x,y) = (sin(By)+sin(Bx)2+sin(px)3, sin(ax)+sin(ay)2+sin(py)3)

Formel 2

(x,y) = (sin(By)+sin(Bx)2+sin(px)3, sin(ax)+sin(ay)2+sin(ay)3)

Formel 3

(x,y) = (sin(By)+sin(Bx)2+sin(Bx)3, sin(ax)+sin(By)2+sin(py)3)

Der Kamtorus-Attraktor stellt eine Serie i
von Attraktoren dar. Je Attraktor werden 1
im Parameter a eingestellte Punkte

Z gezeichnet. Parameter b gibt an, um
welchen Wert der Start des nachsten Attraktors erhdht werden soll.
Ausgangspunkt dieses Gebildes ist die quadratische Henon-Gleichung. Der
Name "Kamtorus" bezieht sich auf das KAM-Theorem (Kolmogorov
(1954), Arnold (1963), Moser (1973)). Asthetisch sehr schéne Bilder
erhalten Sie flr die Parameter c = 1.3 bzw. ¢ = 1.5732

Hopalong-Attraktor, Hiipfer-Attraktor

Der Erfinder von Hopalong ist Barry Martin von der Aston University in
Birmingham/England. A. K. Dewdney beschrieb diese Fraktale im Magazin Scientific American im
September 1986 und machte sie so bekannt

X =1y -sgn (x)*(| b¥x-c|) y=a-x
INPUT num In Dewdneys Aufsatz findet man das folgende Programm.
INPUT ab.c Erkladrung:
%l Der Ausgangspunkt der Grafik ist der Punkt (x,y)=(0,0). Nach zwei getrennten
ye0 Formeln werden xx und yy berechnet. Dabei tauschen sich x und y aus. Dann wird
PLOT{x) zum Plotten "umgeladen”. Das wiederholt sich bis hum erreicht wird. Die Variable i
FORI<1TOmm steht fUr einen Punkt, num ist die Anzahl der Punkte. Die Vorzeichenfunktion
ﬁ:i’i'ew) ABS(OneC] SIGN(x) ist gleich 1, wenn x>0, -1 wenn x<0 ist; SIGN(0)=0.
X3 ABS(x) ist die Betragsfunktion und ermdglicht ein Wurzelziehen. Es gibt im
Y Programm vier Variable, die eine Figur bestimmen. Das sind die Parameter (a, b,

¢) und die Anzahl der Punkte num. Im rechten Bild wurden a = 300, b = 0.405, c = 150 und num =
600000 gewahlt. Weiter Bilder mit den Parametern a, b, ¢, num in Klammern:

(150, 0.033, -80, (150, 0.22761, 100, (500, 0.833, 120, (366, 0.07,
2000000) 300000) 40000) 50,1000000)

Chua-Attraktor T de Jong Attraktor de Jong Attraktor
dx/dt = a * (y - x - g(x)) Xn+1 = Sin(a yn) - cos(b X,) Xn+1 = Sin(a yn) - cos(b Xn)
dy/dt=b * (x -y + 2) Yn+1 = SiN(C Xn) - cos(d Xn) Yn+1 = SiN(C Xn) - cos(d xn)
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dz/dt = -c*y
g(x) = ex +(d+e)(|x + 1|-|x - 1])

a=156,b=1.0,c=25.58d=-

1,e=I0.

did
LY

Metz-Attraktor

Xn+1 = a*x* exp((1 - Vt(1 + yn))/b)
Yn+1 = @ ¥ Xn - Xp+1
a=4.15,b=10

Strick Attraktor

fir |x»| < 0.5 gilt

Xn+1 = (2-a) *Xn-b *y,
Yn+1='b*xn+a*Yn

flr |xn| >= 0.5 gilt

Xn+1 = @¥Xp-b*yn + (1-a) * sgn(xn)
Yne1 = b * Xn + @ ¥y, - b * sgn(xn)
a=05b=1.1

a=201,b=-253,c=1.61,d=-

0.33

a=224,b=043,c=-0.65d=
-2.43

Tinkerbell Attraktor

Xn+1 = an Yn2 + aXn + b Yn
Yn+1=2Xn*Yn'2Xn+O-SYn
a=0.9,b=0.6013

P

Pickover-Attraktor 1990

xn+1 = sin(a * yn) - zn * cos(b * xn)
yn+1 = zn * sin(c * xn) - cos(d * xn)
zn+1 = xn * sin(a)

a=224,b=0.43,c=-0.65
d=-2.43

Lozi-Gleichung
Xne1 = 1 4+ ¥Yn-a [Xal , Yner = b Xq
a=17,b=0.5

Lauwerier Attraktor

Xn+1 = Yn
Yn+1=Xn'Yn"’a)kxn*Yn'b*Yn2
a=3,b=2

Ikeda-Attraktor

Zns1 = a - bz, el(© ¥4z
Xn+1 = @ + b(Xn cos t - y, sin t)
Yn+1 = b(Xn sin t + y, cos t)

mitt = ¢ - d/(1+Xn2+yn2)
a=0.85b=0.90,c=0.40,d=9
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Quadratic Map Attraktor
Xn+1 = @1 + @2Xn + A3Xn2 + asXnyn +

aSYn + aGYnz
Yn+1 = @7 + @gXn + A9Xn? + A10XnYn +

aiiyn + anyn2, Code: AMTMNQQXUYGA

Lorentz-Attraktor
dx/dt = a*( y- x)
dy/dt = b*x -y - x*z
dz/dt = x*y - c*z

Metzler-Attraktor

X =X+ h(x-x2+y)
y=y+h(y-y2+x)
h=1.678

Kakadu Attraktor 1987 (Martin)
Xn+1 = Yn * (1 + sin(a xa)) - b *

V(I%al)

=cC-Xn
a=0.7,b=12,c¢c=0.21

Quadratic Map Attraktor
Code: CVQKGHQTPHTE

27



Quadratic Map Attraktor Quadratic Map Attraktor Cubic Map Attraktor

Code: FIRCDERRPVLD Code: GIIETPIQRRUL Xnt+1 = a1+azxn+a3xn2+a4xn3+a5xn2yn+
A6XnYn+arXnynZ+agyn+aoyn2+aioyn
Yn+1 =

a11+812Xn+813Xn> +a14Xn>+A15Xn Yn+
a16XnYn+a17XnYn +a18Yn+a1oyn’+azoyn’
Code: IRPGVTFIDGCSXMFPKIDJ]

T

Cubic Map Attraktor Cubic Map Attraktor Cubic Map Attraktor
Code: ISMHQCHPDFKFBKEALIFD Code: JYCBMNFNYOEPYUGHHESU Code: LGROKIFELDGKXSUEEWYE
]45‘6 P

Quartic Map Attraktor Quartic Map Attraktor Quartic Map Attraktor
Xni1 = @1 + @xXn + @3XnZ + asXn> + Code: GNXVYVASWMMNFFQOFJTMRBN Code: LURFSRHWMSKHTQBKXIDXQS
asxn? + aeXn’Yn + a7Xn’Yn + asXn’yn> + RFWREIH MFIBWUFG

AoXnYn + @10XnYn® + @11XnYn® + A12Yn +
aisyn® + aiayn® + aisyn’

Yo+t = @16 + A17Xn + A18Xn” + A10Xn® +
a20%n* + @21Xn’Yn + A22Xn’Yn +
aZ3Xn2Yn2 +

aZ4XnYn + 325)(nYn2 + azGXnYn3 + aZ7Yn
+ @zsyn® + azeyn® + asoyn

Code: FUXRRRUIRDYKDUBPHHOMO
BRIRBINCS

LT
i 1 ‘|f~| ~
,«7 "’T/'/>
e
AR i N
‘;5 /'/&{_‘_"‘:i e . w‘v i 5
Quartic Map Attraktor Quintic Map Attraktor Quintic Map Attraktor
Code: PFMQPPBPARCUOLSTATEXQ Xn+1 = @r+axXn+asXn2+asXn>+asxa + Code: HVOIEGIDICSFUFJCQGRU
DKEXMLOIF A6Xn +a7Xn Yn+agXn Yn+aoXn ynZ+a10Xn2yn GMCLHEPWKRCCYFIRQPYAPH

+811Xn2Yn+812Xn Yn® +@13XnYn+a14XnYn
A15XnYn +a16XnYn*+a17yn+aisyn’+aisyn+
azoyn'+azyn

Yo+t = @22+823Xn+824Xn’ +25Xn +a26Xn "+
A27Xn” +828Xn Yn+820Xn Yn+830Xn Yn’+
a31XnZYn +a32XnZYn2+ a33XnZYn3 + a34XnYn
+ @3sXnYn® + @36XnYn® + @37XnYn® + A3s¥n
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+ @sgyn® + AsoYn® + AsiYn' + Aa2Yn’
Code: GEQGOYIKQQPEUIBKPXTV
USJHOVIDUAYYPRNTXFLGAM

Quintic Map Attraktor Quintic Map Attraktor Duffing-Attraktor
Code: MSMTNCONSQJOTKOPAOM Code: QBKSKIXQMKEOVVMAHXLB d2x/dt2 + a dx/dt + x3 = b cos wt
QYNDPUQWVQIUEGNWAYGDLIT OQQIXEYMBUMBOEFVDBAPWU dx/dt =y

dy/dt = -ay -x3 + b cos wt
a=0.25b=03,w=1

Lotka Volterra Attraktor Lotka Volterra Attraktor Moore Spiegel Attraktor

dx/dt = x - xy + cx2 - azx dx/dt = x - Xy + cx2 - azx dx/dt =y
dy/dt = -y + xy dy/dt = -y + xy dy/dt =z
dz/dt = -bz + azx? dz/dt = -bz + azx? dz/dt = -z - (b -a + ax?)y - bx

a=29851,b=3,c=2 a=33,b=35c=2 a =100.0, b = 26.0

Kaneko-Attraktor Kaneko II-Attraktor Quadratischer Henon—Attraktor

X = ax + (1-a) (1 - by?) x = ax + (1-a) (1 - bly]) Xn+1 = Xn COS @ - (Yn-Xn2) Sin a
y=x;a=0.3,b=2.04 y=x;a=0.1,b=1.23 Yn+1 = Xn SiN @ - (Yn-Xn2) COS @

verschiedene Startwerte

Henon-Attraktor Kaplan-York-Attraktor Rikitake Attraktor
x=1+y-ax? x = 3x mod 1 dx/dt = -bx + zy , dy/dt = -by + (z -
y=bx;a=14,b=0.3 y = ay + 2 cos(2nx) a)x,dz/dt=1-xy?,a=5,b=2

beschreibt das Problem des
Polwechsels beim Erdmagnetfeld
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Sinai-Gleichung
Die von Yaschi G.Sinai 1972 in "Introduction to ergodic theory" angegebenen
Gleichungen

Xn+1 = Xn + Yn + 9/(2n) cos (2n y,) mod 1

Yn+1 = Xn + 2y, mod 1
beschreiben die Sinai-Gleichung.
Sinai konnte zeigen, dass fir kleine Werte von g jeder Punkt des
Einheitsquadrates mit gleicher Haufigkeit aufgesucht wird, d.h. das ganze
Quadrat [0; 1] x [0; 1] Attraktor ist.
Der Phasenplot hat Ahnlichkeit mit der Faserstruktur von % =0l
Holz.

08
&
I

Cat-Map-Abbildung oa 1]

Far g = 0 gehen die Sinai-Gleichungen in die sogenannte Cat-Map, bzw. 02 .

Katzenabbildung, tber 10 20 30 40 50
Xn+1 = (Xa + Yn) mod 1 Yo+t = (Xn + 2y,) mod 1 X =0.111

Das System wurde schon 1967 von D.V.Anosow veroéffentlicht. Nach der Interpretation
als Katzenabbildung durch Arnold und Avez wurde diese Abbildung bekannt.
- . .. Die Cat-Map ist Grundlage der Poincaré-Transformation.

Standardabbildung 1020 30 40 50"
Die Standardabbildung ist eine flachentreue, chaotische xp=10.11
Abbildung.
Xn+1 = Xn + Yo + € SiN X, osiy g
Yn+1 = Yn + £ SiN X, oa | il
Sie wurde von dem sowjetischen Mathematiker und LA
Physiker Boris V.Tschirikow 1969 als Poincaré-Abbildung 0207 30 40 50 "
eines periodisch angestoBenen Pendels eingeflihrt. Xy =0.1111
: _ Setzt man ¢ = 0, so ist das ungestérte System mit einer
e 7 U Jacobi-Determinate von 1 konservativ. Fur kleine Werte
von ¢ 5|eht man die ungestdrten Tori. Sie bestehen aus den nichtresonanten Tori des
ungestorten Systems. |
Erhoht man ¢, so zerfallen die Tori immer starker. Ab ¢ = 4 entsteht Chaos. T w40

Ott-Abbildung, 2x mod 1-Abbildung
Ist eine rationale Zahl xq im geschlossenen Intervall [0, 1] gegeben, so wird die Folge der x; mit Xn+1
= 2X, mod 1

als 2x mod 1-Abbildung oder Ott-Abbildung bezeichnet.

Im Allgemeinen sind die entstehenden Orbits periodisch. Die Anzahl verschiedener Orbits der Lange p,
wenn p Primzahl ist, betragt N, = (2°-2)/p

In der Abbildung sind die Bahnen flr vier verschiedene Ausgangszahlen xy zu sehen.

Wird die Abbildung auf reelle, irrationale Zahlen xq erweitert, so ergeben sich fiir diese keine periodischen
Bahnen.

E.Ott, "Chaos in dynamical systems", Cambridge 1993

Apollonische Verdichtung
Gegeben sind drei sich paarweise beriihrende Kreise. Zeichnet man
immer wieder die je drei Kreise beriihrenden Innenkreise ein, so haben
alle Punkte, welche nie innerhalb eines der Kreise liegen, die fraktale
Dimension 1,3058 (nach Mandelbrot 1983).
Die dabei zu zeichnenden Kreise sind innere Soddy-Kreise.
Haben die 3 Ausgangskreise den Radius a, so ergibt sich fir die Radien
der eingeschriebenen Kreise, die mindestens zwei der Ausgangskreise
berihren:

ri=(2/3v¥3-1)a=~0,1547005383 a

r, = (3/11 - 4/33 V3) a ~ 0,06278172029 a

rs = (19/253 - 6/253 v3) a ~ 0,03402251049 a

r, = (11/299 - 8/897 V3) a = 0,02134179881 a

rs = (17/767 - 10/2301 ¥3) a = 0,01463689349 a

re = (73/4897 - 12/4897 V3) a ~ 0,01066273030 a

r, = (33/3071 - 14/9213 V3) a ~ 0,008113675099 a

rg = (43/5291 - 16/15873 ¥3) a ~ 0,006381099167 a

ro = (163/25597 - 18/25597 V3) a ~ 0,005149942784 a

rio = (67/13067 - 20/39201 V3) a ~ 0,004243743370 a

ri1 = (81/19199 - 22/57597 V3) a ~ 0,003557388097 a

ri» = (289/81793 - 24/81793 V3) a ~ 0,003025085039 a
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|Mande|brotmenge |

Die Mandelbrotmenge ist der geometrische Ort aller Punkte C im
Koordinatensystem der komplexen Zahlen, fur die Z = Z:Z + C immer
innerhalb des Kreises mit Radius 2 um den Ursprung liegt

y = X*+1
Jede komplexe Zahl als Paar zweier Koordinaten x,y betrachet.
Iterationsgleichung Zn = Zn12 + C
Startwerte x = y = 0; Abbruch |z| > 4 bzw. n Iterationen
weitere klassische Fraktale Mandelbrot z3+c bzw. z*+c
Mandelsinus x = x:sin(x)-y2-cr und y = 2:X-y-Ci

Apfelmdnnchen
Seit Benoit B.Mandelbrot 1980 seine berihmte Figur, welche spater von der
Bremer Forschungsgruppe fiir komplexe Dynamik Apfelmannchen genannt
wurde, fand, faszinieren graphische Veranschaulichungen fraktaler Gebilde.
Fraktale sind nicht mehr durch herkdmmliche Begriffe wie Punkt - Linie -
Fldche und Korper beschreibbar.
Vielmehr sind dies mit einer Breite 0 unendlich lang, wobei sie sich durch
Selbstahnlichkeit auszeichnen. Ordnung geht dabei in Chaos lber, wodurch
Léange oder Flacheninhalt nicht mehr bestimmbar sind.
Komplexe Iterationsgleichungen und Vereinbarungen Uber Iterationstiefe
und Grenzwerte erzeugen so verbliffende graphische Gebilde.
Mandelbrot untersuchte die Funktion y = x*+1 in der komplexen
Zahlenebene, wobei jede komplexe Zahl als Paar zweier Koordinaten x und y
in der GauBschen Ebene benutzt wird. Als Iterationsgleichung ergibt sich
z(n) = z,.,°+c. Ubertragt man dies in den komplexen Zahlenbereich erhalt man

zZ =X+ y*iund C = Creen + Cimaginérs d.h.

f(z(n)) = x(n-1)2 - y(n-1)2 + Creen + i * (2*X(n-1)*y(n-1) + Cimaginar)
Die Mandelbrotmenge z, = z,.12 + c ist eine Flache mit unendlich groBem Umfang, jedoch mit endlicher
Flache.

Im Jahr 2003 waren die besten bekannten Naherungswerte Flache A = 1,506 591 77 £+ 0,000 000 08

und fur die x-Koordinate des Schwerpunkts x = -0.286 768 44 + 0.000 000 025

Durch Cyril Soler wurde festgestellt, dass die konstanten GréBen
N(6rn-1)-e=1,5065916514855032852705345...

und -((In 3 - 1/3)F) = -0,2867682633829350268529586...

wobei F die Feigenbaum-Konstante ist, die Werte fir den Flacheninhalt und die x-Koordinate des

Schwerpunkts sehr gut annahern.

Ob diese Werte sogar gleich dem Gesuchten sind, ist heute unklar und wird als Hypothese gehandelt.

siehe auch http://www.mrob.com/pub/muency/pixelcounting.html

Einfaches Turbo-Pascal-Programm
program mandelbrotmenge;
uses graph,crt;
var gd,gm,i,j,anz:integer; x,y,cx,cy,xneu,yneu:real;
begin gd:=detect; initgraph(gd,gm,'c:\bp\bgi');
for i:=1 to 640 do begin for j:=1 to 480 do begin
cx:=i/128-2.5; cy:=j/96-2.5; x:=0; y:=0; anz:=0;
repeat
Xneu:=x*x-y*y+cx; yneu:=2*x*y+cy;
X:=XNeu; y:=yneu; inc(anz);
until (x*x+y*y>4) or (anz>100);
putpixel(i,j,anz mod 16);
end end; N
closegraph; end.

z=7+C |Im(z)

Entstehung der Mandelbrotmenge

Die Berechnungsformel der Mandelbrotmenge lautet vereinfacht
"quadriere die Zahl z und addiere die Zahl c". Da z eine komplexe
Zahl ist, kann das Ergebnis in der GauBschen Zahlenebene 4 )
veranschaulicht werden.

Eine komplexe Zahl besteht aus zwei Teilen (bzw. Zahlen) und
kann daher einen Punkt in der zweidimensionalen komplexen
Ebene darstellen. Die Berechnungsformel wird benutzt,
herauszufinden, welche Farbe solch ein Punkt bekommen soll.
Die Abbildung zeigt den ersten Iterationsschritt zweier Punkte

7
o © L IFIF
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(griin und blau): Der Punkt zy (rechter griiner Pfeil) dessen Farbe bestimmt werden soll, wird zunachst
quadriert. Das Ergebnis ist der Punkt, auf den der mittlere griine Pfeil zeigt. Nun wird der Startpunkt c
addiert und man z; (ganz oben).
Fir weitere Schritte wird der Punkt in die Gleichung z,,; = z,> + c eingesetzt. Das Ergebnis z,,; wird
solange immer wieder neu als z, ein, bis der Abstand des berechneten Punktes vom Ursprung einen
bestimmten Wert (z.B. 100) Uberschreitet: Z0=C, 21 =2>+C, 2, =22+ C) ...
Ist der Abstand von z, zum Ursprung auch nach einer festgelegten Anzahl von Iterationen immer noch
klein, so konvergiert die Zahlenfolge und dieser Punkt wird in der Regel schwarz eingefarbt. Wird der
Abstand von 100 jedoch schon bei der n-ten Iteration Uberschritten, so wird die n-te Farbe der
Farbpalette ausgewadhit.
i
Fluchtverhalten an der Mandelbrotmenge
Die Abbildung veranschaulicht das Verhalten einiger Punkte
. wahrend der Iteration an der Mandelbrotmenge.
i Es soll die Farbe des griinen Punktes Nr. 1 bestimmt werden.
. i i3 Punkt Nr. 1 = ¢ = zg. z; = zg2 + c wird dann Punkt Nr. 2.
£ '3 Man sieht deutlich, wie sich die Punkte 3,4,5,6,7... immer
‘ i weiter vom Ursprung entfernen. Man kénnte sagen, der Punkt
2'5'4‘52 + wird vom Unendlichen angezogen.
& g g Die Mathematiker sagen, er "divergiert" bzw. er wird von einem
Mepg’T 2 "2 "Attraktor" angezogen. Von diesen Attraktoren gibt es hier
"4 3 zunachst zwei Stick: Einen im Unendlichen, abgekurzt A(w),
und einen im Ursprung: A(0).
‘4 Nur die Punkte, die vom Attraktor "«»" angezogen werden, wie
z.B. der griine und der blaue Punkt mit Nr.1, wurden hier weiB
. eingeférbt. Ob ein Punkt ins Unendliche "flieht" bzw. wie schnell
! und auf welchem Weg er das tut, bezeichnet man als
Fluchtverhalten.
Anders geschieht es mit den beiden roten und schwarzen Punkten: Diese
entfernen sich nicht viel weiter vom Ursprung, und werden auch nach dem
50.Rechenschritt noch nicht weiter entfernt sein. Sie werden von keinem
Attraktor angezogen und daher schwarz eingefarbt. Es gibt nur einen
Punkt der von A(0) angezogen wird: Es ist der Ursprung selbst.

Sogar AuBerirdische kennen die Mandelbrot-Menge! ©

Berechnungsbeispiel: Setzt man komplexe Zahlen voraus, so ist die
Rekursionsformel der Folge z,,1=2z,2 + c. zy=0 ist die Anfangszahl. Die
Folge ist |z,].

Punktes P1(X1|Y1) = P1(‘O.40|O.70)

Ausgangspunkt ist fur jeden Punkt der Nullpunkt N(0|0).

Es gilt X; = Xg2-Yg2 +X; = 0-0+X; = xqund yi1= 2¥X*yo + y1= 2*¥0*%0+y;= yy, a; = V(12 + y;2) = V[(-
0.40)2 + 0.702] =0.81.

al ist die Entfernung des Punktes P1 vom Nullpunkt des Koordinatensystems.

Das zweite Glied der Folge errechnet sich aus den Koordinaten des Ausgangspunktes P;.

Dazu bestimmt man fiir einen zweiten Punkt zwei neue Koordinaten x, = x;2-y;2 +x; = (-0.40)2 - 0.702
+ (-0.40) = -0.73 und y,= 2*x;*y; + y;= 2*0*0+y; = 2*(-0.40)*0.70+0.70 = 0.14. Daraus ergibt
sich a> = V(x22 + y,2) = V[(-0.73)2 + 0.142] = 0.74.

Das nachste dritte Glied der Folge errechnet sich aus den Koordinaten des vorhergehenden Punktes und
des Ausgangspunktes.

Dazu berechnet man fiir einen dritten Punkt zwei neue Koordinaten x3 = X,2-y,2 +x; = (-0.73)2 - 0.142
+ (-0.40) = 0,11 und y3= 2*X,*y, + y; = 2*(-0.73)*0.14+0.70 = 0.50. Daraus ergibt sich a5 = V(x32 +
ys2) = V(0.112 + 0.502) = 0.51.

Auf diese Weise erhdlt man fir den Ausgangspunkt P;(-0.40|0.70) die Abstandsfolge 0.81, 0.74, 0.51,
1.0, 0.74, 1.1, 1.8, 2.4, ...

Die folgende Tabelle hélt die Folgen zu fiinf Punkten fest, die nach der gleichen Methode bestimmt
worden sind.

Punkt (0.20, 0.20) (0.10, 0.65) (-0.40, 0,70) (0.50, 1,30) (2, 2)
Index

1 0.23 0.66 0.81 1.4 3.6

2 0.34 0.84 0.74 2.8 16

3 0.35 0.44 0.51 6.5 260

4 0.33 0.57 1.0 43 68000
5 0.30 0.91 0.74 1900

6 0.30 0.83 1.1 3500000

7 0.31 0.38 1.8



8 0.32 0.70 2.4

9 0.32 1.0 4.9

10 0.31 0.77 24

11 0.31 0.83 560

12 0.31 1.3 360000
13 0.31 2.

Alle Zahlen wurden auf 2 Ziffern gerundet. Die erste Folge ist konvergent und strebt gegen 0.31.
Die Ubrigen Folgen sind offenbar divergent. Die Glieder der Folge gehen Uber alle Grenzen, allerdings
unterschiedlich stark.

Ausgewadhlte VergroBerungen an der Mandelbrotmenge

r-0. 1663

n.a102
-OTTEE

Mandelbrot-Epizykloide

Mandelbrotmengen der Form f(z) = z" + c besitzen einen

Hauptkonvergenzbereich, der von einer Epizykloide begrenzt wird.

Im Fall z2 + c ist diese Epizykloide eine Kardioide mit der Gleichung
f(0) = 1/2 e®-1/4 € 2

Im allgemeinen Fall n > 1 entsteht eine Epizykloide mit n-1 Spitzen
f(9) — 1/(n-1\/n) eie _ 1/(n-1\/(nn)) ei 20

Links sind die Mandelbrotmenge z* + c und deren innere Epizykloide

dargestellt.

Randelbrot-Menge
Eine programmtechnische Spielart der
klassischen Mandelbrot-Menge ist die sogenannte Randelbrot-Menge. Dieser
Begriff wird aus Random = Zufall und Mandelbrot gebildet.
Als Iterationsvorschrift wird dabei

z = 7% + ¢ + Zufallszahl
e I genutzt. Je nach maximaler GroBe der
Zufallszahlen tritt die urspriingliche
Mandelbrot-Menge mehr oder weniger
deutlich hervor.

‘a':-'*'.ﬁ-l"'il-‘ ¢ ' Reales Apfelmannchen

: Dies ist eine Rasterkraftmikroskop-Aufnahme des wahrscheinlich kleinsten
real existierenden Apfelmannchens der Welt. GréBe: Knapp 4000
Nanometer.

Es wurde durch elektrochemische Abscheidung von Kupfer auf einen
Goldfilm aufgetragen: Durch Anlegen einer Spannung zwischen dem
Goldfilm und der Spitze einer Nadel, welche sich in einer Kupferionen-

¥ Wi ! L
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Losung befindet, scheidet sich an der Position der Nadel Kupfer auf dem Goldfilm ab. Die Nadel dient
dabei als "Zeichenstift", jedoch muss die Figur mehrmals nachgefahren werden, um geniigend Kupfer

abzuscheiden.

Inverse Mandelbrotmenge
nach Mark Peterson:
Zn=2Zn1 +C

mitz, =1/ pixelundc =1/

Barnsleyj2-Fraktal
Parameter: reeller und
imaginarer Teile von ¢
Algorithmus: zy = pixel

wenn
re(z) * im(c) + re(c) *im(z) >0
dann z,,; = (z,-1)*c sonst z,1
= (z,+1)*c

Spinne: c bleibt wahrend der
Iterationsschleife nicht konstant:
Vor dem Eintritt in diese Schleife
erhalt c die Anfangswerte c(re)
:= x-Wert des Pixels und c(im)
:= y-Wert des Pixels.

Innerhalb der Schleife andert
sich c gemaB der Vorschrift c :=
c/2 + z.

Zns1 i= Zn2 + C, mit zg := pixel ;
Cht1 := Co/2 + Zpyy Mit o i =
pixel

Magnetic-Fraktale

... diese Fraktaltypen werden
aus der klassischen
Mandelbrotmenge gewonnen.
... das abgebildete Magetic-1-
Fraktal ergibt sich aus:

z = [(Z%+(c-1))/(2*z+(c-2))]?
Fur das Magnetic-2-Fraktal gilt:
z = [(2 + 3*(c-1)*z + (c-1)*(c-
2)) / (3*%Z% + 3*%(c-2)*z + (c-
1)*(c-2) +1)7]?

Barnsleyj3-Fraktal

Parameter: reeller und
imaginarer Teile von ¢
Algorithmus: zy = pixel

wenn re(z(n) > 0 dann z(n+1) =
(re(z(n))? - im(z(n))? - 1)+ i *
2*re(z((n)) * im(z((n))) sonst
z(n+1) = (re(z(n))? - im(z(n))? -
1+ re(c) *re(z(n))+i*
(2*re(z((n)) * im(z((n)) + im(c)

Fraktal nach Barnett

Zn = 1/5 203 + zn2 + cmit zo =

pixel, c = pixel

Fraktal nach Laguerre
Zn=1/2 204" - 2244 + 1 + c mit
Zo,=-14+0-i; c= pixel

Konjugierte Mandelbrotmenge
Fur die Original-Mandelbrotmenge wird die Iteration
auf der komplexen Zahlenebene ausgefiihrt und je nach Konvergenz oder
Divergenz in der grafischen Darstellung ein Farbpunkt gesetzt.

Bei den konjugierten Mandelbrotmengen wird die Iterationsvorschrift durch

z=2z*2+¢

Barnsleym1

Zo = ¢ = pixel, wenn re(z) > 0
dann z(n+1) = (z-1)*c, sonst
z(n+1) = (z+1)*c
Parameter: reeller und
imaginarer Teile von ¢

Barnsleyjl-Fraktal
Parameter: reeller und
imagindrer Teile von c,
Algorithmus: Zo = pixel
wenn re(z) = 0 dann z,41 = (z,-
1)*c sonst z,;1 = (za+1)*c

z=22+cC

ersetzt, wobei z* die zu z konjugiert komplexe Zahl ist. D.h. fiir z = a + bi
wird z* = a - bi genutzt.



Auch fir diese Gebilde ist es méglich, zugehérige konjugierte Juliamengen zu zeichnen.

Buddhabrot-Fraktal

Das Buddhabrot-Fraktal ist eng mit der Mandelbrot-Menge verwandt. Ihr Name
bezieht sich auf die Ahnlichkeit mit der Darstellung des meditierenden Buddha.
Das Fraktal wurde 1993 von Melinda Green erstmals beschrieben. Die
Mathematikerin nannte das Bild zuerst "Ganesh", da ein indischer Mitarbeiter in
der Darstellung den elefantenképfigen Gott Ganesha sah.

Das Buddhabrot-Fraktal entsteht, in dem fir divergierende Punkte der
Mandelbrot-Menge die Zwischenpunkte gespeichert werden.

Punkte der komplexen Ebene, die besonders oft als Zwischenwerte auftraten,
werden heller dargestellt. Die Darstellung ist somit die
Wahrscheinlichkeitsverteilung fiir den Verlauf der Trajektorien durch jeweilige Regionen.
siehe http://de.wikipedia.org/wiki/Buddhabrot

Collatz-Fraktal
Abbildung: Juliamenge des Collatz-Fraktals
Dieses fraktale Gebilde wurde von Marc Chamberland mit der Collatz-
Funktion als Basis untersucht.
f(x) = x/2 cos (n/2 x)2 + 1/2 (3x + 1) sin (n/2 x)2

Weitere Fraktale

Algorithmus Parameter
Julia Zo = pixel; zpp1 = z2 + C komplexe Zahl c
Julia4 zo = pixel; zh41 = z3* + c. komplexe Zahl c
Julzpower Zo = pixel; z,,1 = z," + C. komplexe Zahl c,
Exponent m
Julzzpwr zo = pixel; z(n+1) = z(n)~z(n) + z(n)"m + ¢ komplexe Zahl c,
Exponent m

Kamtorus x(0) = y(0) = orbit/3; x(n+1) = x(n)*cos(a) + (x(n)*x(n)-
y(n))*sin(a) ; y(n+1) = x(n)*sin(a) - (x(n)*x(n)-

y(n))*cos(a)
Lambda z(0) = pixel; z(n+1) = lambda*z(n)*(1 - z(n)"2) Lambda
Lee Ch = Zp1 + pixel2 / z,.1 ; z, = 2 Mit zy = pixel
Marksjulia z(0) = pixel; z(n+1) = (c”exp)*z(n) + ¢ c und Exponent
Marksmandel z(0) = c = pixel; z(n+1) = (cexp)*z(n) + ¢ C
Newton z(0) = pixel; z(n+1) = ((p-1)*z(n)~p + 1)/(p*z(n)~(p-1)) p

Newton-Fraktal
Das Newton-Verfahren ist ein Iterationsverfahren zur Bestimmung der Nullstellen einer Funktion. Wendet
man es auf komplexe Funktionen der Form

f(z)y=2"-1
an, dann kann man die Tatsache ausnutzen, dass alle Losungen der Gleichung z" - 1 = 0 komplexe
Zahlen sind, die auf dem Einheitskreis um den Ursprung der GauBschen Zahlenebene liegen. Die
Lésungen (Attraktoren) der Gleichung bilden ein regelmaBiges n-Eck. Wie bei der Berechnung der
Mandelbrot-Menge wird der gesamte Bildschirm als GauBsche Zahlenebene und jeder Bildpunkt des
Bildschirms als Startwert z einer Zahlenfolge aufgefasst. Dabei ist z eine komplexe Zahl und reprasentiert
einen Punkt der Ebene. Jeder Bildpunkt strebt zu einem der n Attraktoren.
Im Beispiel lauten die vier Attraktoren z(1) =i, z(2) = -1, z(3) = -i und z(4) = 1. Strebt ein Bildpunkt zu
z(1), wird er gelb gefarbt, strebt er zu z(2) rot, zu z(3) blau und zu z(4)
braun - unabhangig davon, nach wieviel Schritten man den Attraktor
ermittelt hat (Abbildung). Nimmt man hingegen die Farbung in
Abhangigkeit von der Iterationstiefe vor, entsteht ein sogenanntes
Geschwindigkeitsdiagramm des Fraktals.
Abbildung: Newton-Fraktal f(z) = z* - 1

Pascal-Programm zum Newtonfraktal z3 -1 =0
Nimmt man die Farbung in Abhangigkeit vom gefundenen Attraktor vor,
erhalt man die sogenannten Einzugsgebiete der 3 Attraktoren. Die Farbe
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gibt an, welcher Attraktor gefunden wurde. Dabei hat die innere Schleife des Programms folgendes
Aussehen:

X:=a;y:=b;
REPEATnenner := sqr (x*x + y*y);

xneu := (2*x + (x*x - y*y)/nenner) / 3;

yneu := 2*y * (1-x/nenner) / 3;

X := XNeu; Yy := yneu;

al := sqr(x-1) + sqr(y) < 0.09;

a2 := sqr(x+0.5) + sqr(y+0.866) < 0.09;

a3 := sqr(x+0.5) + sqr(y-0.866) < 0.09;
UNTIL a1 OR a2 OR a3;

IF al THEN PutPixel (xs, ys, 1); { Punkt blau farben }

IF a2 THEN PutPixel (xs, ys, 2); { Punkt grin farben }

IF a3 THEN PutPixel (xs, ys, 3); { Punkt tlrkis farben }
Farbt man hingegen in Abhdngigkeit von der Anzahl der Schritte, die erforderlich sind, um einen Attraktor
zu finden, spricht man von einem Geschwindigkeitsdiagramm. Jetzt gibt die Farbe an, wie schnell ein
Attraktor gefunden wurde.
Dazu wird die Anzahl des Durchlaufens der Schleife, z.B. in i, gezahlt und die Farbe mit PutPixel (xs, ys, i
mod 16); bestimmt.

Rt S X = X tewy—p Magnetisches Pendel
GrEre 2’ (V e —2@F + 0y —yOF + ) =% Unmittelbar mit dem Newton—FraktaI_ist eipe physikalische
- ¥ = ¥ o Fragestellung verbunden. Gegeben sind mindestens zwei
YR -, 5 *0Y0=0" Magnete auf einer Unterlage, deren 0.B.d.A. Nordpole nach oben

=1Vt -3 + o —y)E +a2)

gerichtet sind. Uber der Platte wird ein Pendel mit einem
Magneten angebracht, dessen Sitdpol nach unten zeigt.

Wir das Pendel ausgelenkt, so flihrt es (iber den Magneten eine
chaotische Bewegung aus, die durch die in der Abbildung
angegebenen Differenzialgleichungen beschrieben wird. Dabei
sind die x;, y; die Koordinaten der festen Magnete; x(t) und y(t)
der Ort des Pendelmagnets. R und C sind Konstanten, die die
Starke der Felder und die ricktreibende Kraft beschreiben.

Fur unterschiedliche Ausgangspunkte erreicht das Pendel nach
chaotischer Bewegung jedesmal einen der Magnete und kommt
zum Stillstand. Zu welchem Magnet das Pendel gezogen wird,
kann durch das Newton-Fraktal beschrieben werden. Punkte
eines Attraktionsgebietes fiihren immer zum gleichen
Endergebnis.

Fraktale als Transformationen konzentrischer Kreis / Circle-Fraktale
Sehr interessante und vor allem farbenprachtige Abbildungen erhalt man,
wenn die von Connett beschriebene Konstruktionsmdglichkeit genutzt wird.
Betrachtet wird die GauBsche Zahlenebene und die Koordinaten eines
Punktes als komplexer Startwert x + i*y festgelegt.

Der Funktionswert wird mit Pixelfarbe = a*(x2-y2) modulo Farbanzahl
berechnet. Dabei stellt a eine beliebige Konstante dar.

Die Farbe des Pixels wird anschlieBend aus dem ganzzahligen Anteil von z
modulo einer einzugebenden Farbanzahl gebildet.

Fraktale nach Pickover

Konstante ¢=0.5

Abbruch nach |x|>9, |y|>9 oder Iteration>10
Farbgebung aus Betrag der

komplexen Zahl

Julia-Mengen

... Wahrend bei der
Mandelbrotmenge; jeweils vom
Startpunkt z=(0;0) ausgehend; die
Farbung des Pixels durch die
verénderliche Konstante ¢ -
(Koordinaten des Punktes) bestimmt

wird; bleibt die zur Iteration wichtige Konstante c konstant. ey N, o
Als Startwert z werden die Punktkoordinaten der GauBschen J ';,é;"
O W

Zahlenebene genutzt. e,
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Es gibt eine zweite Art von Fraktalen, die mit dem Apfelmannchen verwandt ist: die sogenannte
Juliamenge. Die Berechnung einer Juliamenge unterscheidet sich nur in der Addition der Konstanten c.
Wadhrend beim Apfelmannchen fir jeden zu berechnenden Bildpunkt eine andere Konstante verwendet
wird (namlich die komplexe Koordinate des zu berechnenden Punktes), ist die Konstante c bei der
Juliamenge fir jeden Punkt gleich. D.h.: 1. z, ist weiterhin der Punkt, dessen Farbe bestimmt werden
soll,

2. c ist jedoch unabhangig von dem zu berechnenden Punkt.

Durch Variation der Konstanten c kann sehr unterschiedliche Juliamengen erhalten. Dabei gilt:

Wird der Wert aus dem schwarzen Bereich des Apfelmannchens gewahlt, so entstehen
zusammenhdngende Gebilde. Wird ein Wert auBerhalb gewahlt, entstehen mehrere nicht miteinander
verbundene Gebilde.

Die interessantesten Formen entstehen, wenn man c aus dem Rand des Apfelmannchens wahlt.

Die zugehoérige Grundidee wurde schon vor 80 Jahren; allerdings ohne groBes Interesse seiner
Zeitgenossen; von dem franzdsischen Mathematiker Gaston Julia entwickelt. Da ihm aber noch keine
rechentechnischen Hilfsmittel zur Verfigung standen, konnte er die Schénheit und Faszination seiner
Mengen noch nicht bewundern. Julia-Mengen weisen eine fantastische Vielfalt auf. Ein Zoom in die
Detailstruktur ist von hohem &sthetischen Reiz.

Grenzgebiete der Julia-Menge

Faszinierend ist der Ubergang an der Grenze des schwarzen
Bereichs. Als Beispiel wird hier die Konstante c entlang des

weiBen Pfeils variiert. Von Rechts nach Links erhalt man die
unten abgebildeten Juliamengen. Wahrend auf dem ersten

Bild ein zusammenhdngendes Gebiet zu sehen ist, |6st sich

dieses immer mehr auf, bis schlieBlich auf dem letzten Bild

getrennte Bereiche zu erkennen sind.

Die Briefmarke zeigt einen Ausschnitt einer Juliamenge. Auf
dem Anhang der Marke sieht man einen gréBeren
Ausschnitt, aber noch interessanter ist die Formel am Rand
des Anhangs:

z—>22+c;c=0,2860 + 0,0115i.
Jede Juliamenge ist durch eine komplexe Funktion eindeutig
bestimmt; durch die Angabe dieser Funktion sind wir somit
in der Lage, die Entstehung der Abbildung auf der Marke

nachzuvollziehen. Die eigentliche Juliamenge sind wieder alle -
Punkte, fir die die Zahlenfolge konvergiert. Die d’é@f ,3@;«3‘;
Farbgestaltung um die Juliamenge herum ist, wie Ublich, ot (@, ), @
s Sge (S 7€ ot
willktrlich. "&._gwr

Douadys Kaninchen ¢ = -0.123 +
0.745i auch als Drachen-Fraktal
bezeichnet

San Marcoc = -1 c=-0.5+0.55i c=0.325+0.417i
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Fatout-Staub c = 0.11301 - c=-0.21-0.67i c=0.23-0.6i
0.67037 i

Bezeichnung Realteil c(reell)  Imaginarteil c(imaginar)
Dentrit 0 1
Julia-Drachen 0.360284 0.1

Julia-Mengen kénnen zusammenhdngend sein oder in mehrer Bereiche zerfallen. Es gilt:

Ist die Iterationsfunktion von der Form f(z) = z> + c, so ist die zugehérige Julia-Menge genau dann
zusammenhéngend, wenn der Nullpunkt zur Menge gehért, d.h. wenn f“(0) eine beschrénkte Folge ist.
Da f(0) = c, lasst sich der Satz auch so formulieren:

Ist die Iterationsfunktion von der Form f(z) = z> + c, so ist die zugehérige Julia-Menge genau dann
zusammenhéngend, wenn c zur Menge gehort, d.h. wenn f“(c) eine beschrankte Folge ist.

IFS-Transformationen
,Das wird ja immer merkwlirderlicher I" schrie Alice
Lewis Carroll, ,Alice im Wunderland"

IFS = Iterated Function System

IFS ist ein durch Michael Barnsley (Georgia Institute of Technology)
entwickeltes, spezielles Verfahren zur Kompression von Darstellungen
naturlicher Gebilde auf der Basis von Fraktalen.

Zweidimensionale IFS entstehen durch multiplikative Verknipfung
quadratischer Matrizen mit Spaltenvektoren (affine Transformationen).

Die jeweilige Matrix wird durch zufallige Wahl aus einer gewissen
Grundgesamtheit getroffen.

Iterierte Funktionssysteme sind in der Lage, mit wenigen Regeln komplexe,
natirlich aussehende Bilder zu erzeugen. Hierbei wird eine Folge von
Punkten im R2 durch fortgesetzte Anwendung von affinen Transformationen
durchlaufen. Werden die einzelnen affinen Abbildungen in unterschiedlichen
Farben veranschaulicht, so erkennt man deutlich, die vier zur
Farndarstellung notwendigen Abbildungen.

Beispiele Fraktales Ahornblatt und Fraktaler Farn

Beschreibungstabelle
Abb. P A B C D E F

1 85 0.85 0.04 -0.04 085 O 1.6
2 7 0.2 -0.26 0.23 0.22 O 1.6
3 7 -0.15 0.28 0.26 0.24 O 0.44
4 1 0 0 0 0.16 O 0

Barnsley Farn
Das beriihmteste Beispiel flir Iterierte Funktionensysteme ist die Darstellung eines
Farns. Erstmals wurde dieses Gebilde 1988 von Michael Barnsley prasentiert.

Parameter

Abb. P A B C D E F

1 85 0,8 0,04 -0,04 085 O 1,6
2 7 0,2 -0,26 0,23 0,22 O 1,6
3 7 -0,15 0,28 0,26 0,24 O 0,44
4 1 0 0 0 0,16 O 0

Die ersten 3 affinen Abbildungen rufen Drehungen und Streckungen hervor, die die
Farnblatter ausbilden.

Beschreibung der affinen Abbildungen des "Farns"

1) Streckung und Drehung k = 0,851, Drehwinkel -2,694°
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2) Euler-Affinitat und Drehung, Streckfaktoren 0,305 und 0,341, Fixgeradeny =0,y = -7,786 X,
Drehwinkel 48,991°

3) Euler-Affinitat mit Streckfaktoren -0,288, 0,378, Fixgeradeny = -0,493 x, y = 1,885 x

4) Euler-Affinitat mit Streckfaktoren 0, 0,160 Fixgeradeny =0, x =0

Die Parameter 0, 0, 0, 0,16 der vierten Abbildung bewirken die Ausbildung des Stils. Andert man zum
Beispiel die erste ¢ = 0 gegen ¢ = 0,01 oder ¢ = 0,1, so kann man dies nachvollziehen.

Sierpinski-Teppich, IFS-Beispiel
Dimension = 1,9 (siehe Abbildung)

je 12,5 .
je 0,33

je 0

je 0

je 0,33

1Y1YY2Y1Y/2

11YY1Y/2Y/2Y

Y...bestimmt die GréBe der Abbildung

Der Sierpinski-Teppich ist ein Fraktal, das auf den polnischen Mathematiker
Waclaw Sierpinski zuriickgeht.

Aus einem Quadrat wird in der Mitte ein Neuntel der Flache entfernt. Aus den
von dem Quadrat um das Loch verbliebenen acht quadratischen Feldern wird
wiederum je ein Neuntel der Flache entfernt, usw.

Die fraktale Dimension des Sierpinski-Teppich betréagtIn 8 /In 3 = 1,8928...;
sein Flacheninhalt ist null.

Stufe 0 Stufe 1

MMmMmOO >0

Stufe 2 Stufe 3

5
Die Konstruktion @ahnelt der Konstruktion der Cantor-Menge, dort wird
aus einer Strecke der mittlere Teil entfernt, oder dem Sierpinski-Dreieck
bei dem aus einem Dreieck der Mittelteil entfernt wird.

Im dreidimensionalen Raum wird aus der Konstruktion des Sierpinski-
Teppichs die Konstruktion des Menger-Schwamms.

Asymmetrischer Sierpinski-Teppich
Die Konstruktion des Sierpinski-Teppichs kann auch asymmetrisch, wie
in der Abbildung, erfolgen.
Bei Reduzierung auf ein Viertel, d.h. eine Teilung im Verhaltnis a:b:c =
2:1:1 erhélt man 15 Kopien. Fijr die fraktale Dimension D gilt daher:
=15 =In15/In4 = 1,9534

: SSiape AIIgemeln gilt: Beim Unterte|len im Verhaltnis a:b:c und Weglassen des
Jewe|Is innersten Teils entstehen bei Reduzierung auf 1/(a+b+c) insgesamt a2 + c2 + 2ab + 2ac + 2bc =
(a + b+ c)2 - b2 Kopien. Damit wird fir die fraktale Dimension D

(a+b+c)P=(a+b+c)2-b2

= In ((a+b+c)2-b2) / In(a+b+c)

IFS-Abbildungsmatrix
Direr-Flinfeck

5 Abbildungen

0.382 0 0 0.382

mit unterschiedlichen Translationen

Zwei Baume

0.36 0.48 -0.48 0.36 0.75 1.2
0.64 -0.48 0.48 0.64 1.11 1.27
1 0 0 1 0 0
Ahornblatt

0.352 0.355 -0.355 0.352
0.353 -0.354 0.354 0.353

0.5 0 0 0.5

0.502 -0.002 0.002 0.588
0.004 0 0 0.578
Translationen

0.354 0.5

0.288 0.153

0.25 0.462

Beschreibung der affinen Abbildungen
Zentrische Streckung mit
Streckfaktor 0.382

1) Streckung und Drehung
Streckfaktor 0.6, Drehwinkel -
53.130°

2) Streckung und Drehung
Streckfaktor 0.8, Drehwinkel 36.870°
3) identische Abbildung

1) Streckung und Drehung
Streckfaktor 0.5, Drehwinkel -
45.243°

2) Euler-Affinitat und Drehung
Streckfaktoren 0.499, 0.500,
Fixgeradeny = 0, y = 0.994 x
Drehwinkel 45,162°

3) Zentrische Streckung Streckfaktor
0.5

4) Euler-Affinitat Streckfaktoren
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b o
+ 59 B
haed o

0.25 0.105
0.501 0.06
Baum
-0.04 0 - - - 0.26
0.23 0.65 0.08
0.61 O 0 0.31 0.07 3.5
0.65 0.18 -0.3 048 0.74 0.39
0.64 -0.2 0.32 0.56 - 0.9
0.66
Binar
05 0 0 0.5 - -
2.563 0.000003
05 0 0 0.5 2.436 -
0.000003
0 -0.5 0.5 0 4.873 7.56349
Cantor-Garten
0.336 0 0 0.335 0.662 1.333
0 0333 1 O 1.333 0
0 -0.333 1 0 0.666 0
Drache
0.824074 0.281482 - 0.864198
0.212346

0.088272 0.520988 - -
0.463889 0.377778
Translationen

1.882290 0.110607
0.785360 8.095795

Koch-Kurve

0.3333 0 0 0.3333

0.3333 0 0 0.3333

0.1667 - 0.288867 0.1667
0.288867

-0.1667 0.288867 0.288867 0.1667
Translationen
0,0]0.6667,0]0.3333,0] 0.6667,0

0.502, 0.588 Fixgeraden y = - 0.023
X,y =-42,977 x

5) Euler-Affinitat Streckfaktorn
0.004, 0.578 Fixgeradeny =0, x =0
1) Euler-Affinitat Streckfaktoren -
0.65,-0.04 Fixgeraden y=0, x=0

2) Euler-Affinitat Streckfaktoren
0.31, 0.61 Fixgeraden y=0, x=0

3) Euler-Affinitdat und Drehung
Streckfaktoren 0.511, 0.716,
Fixgeradeny = 5.426 x, y = 0
Drehwinkel —24.775°

4) Euler-Affinitat und Drehung
Streckfaktoren 0.590, 0.716,
Fixgeradeny = -1.75x,y =0
Drehwinkel 26.565°

1 und 2) Zentrische Streckungen
Faktor 0.5

3) Affindrehung

1) Euler-Affinitat Streckfaktoren
0.336, 0.35 Fixgeradeny =0, x =0
2) Euler-Affinitat Streckfaktoren -
0.577, 0.577 Fixgeraden y = -1.733
X, Xx =1.733 x

3) Affindrehung

1) Euler-Affinitdt und Drehung
Streckfaktoren 0.851, 0.907,
Fixgeradeny = 0, y = 0.985 x
Drehwinkel -14.45°

2) Euler-Affinitat und Drehung
Streckfaktoren 0.441, 0.472,
Fixgeradeny = -0.066 x, y =0
Drehwinkel -79.226°

1 und 2) Zentrische Streckung Faktor
0.3333

3) Streckung und Drehung
Streckfaktor 0.334 Drehwinkel
60.012 °

4) Euler-Affinitat Streckfaktoren -
0.334, 0.334 ixgeraden y = -0.577 x,
y =1.732 x

Ty

-

J"Jj .
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Chaos-Spiel
Gegeben seien drei Punkte P1, P2 und P3 der Ebene, welche ein
gleichseitiges Dreieck bilden.

Weiterhin sei ein vierter Punkt P gegeben. Per Zufall wird nun eine Zahl von
1 bis 3 gewahit.

Y Wdrfelt man eine 1, so werden die neuen

ST Koordinaten von P als Mittelpunkt der Strecke

' ' A PP1 gesetzt, bei einer 2 strebt P um die Halfte

der Strecke in Richtung P2.

Ergebnis: Sierpinski-Dreieck

<

.
A ® Das Chaosspiel wurde 1988 durch Barnsley auf
n Punkte und Faktor f erweitert. Der Faktor f gibt den Anteil der Strecke vom
Ausgangspunkt zum Zufallspunkt an.

Fir n = 5, f = 5/8 entsteht das Direr-Flinfeck.

beim Sechseck ein die mit kleineren

bei Vieeck ein beim Flnfeck

statistisch verteiltes verschieden groBe System feiner Linien, ... Punkten deutlicher
Rauschen Flnfecke werden

Der Mathematiker und Hochschullehrer Sierpinski hat das Sierpinski-

AzA Dreieck 1910 zu dem Zweck in die mathematische Welt gesetzt, dass
R seine Studenten begreifen, dass sie Begriffe Linie und Flache durchaus
10 10 nicht trivial sind.

F v v Wenn man aus einem Dreieck die Mitte herausnimmt und aus den drei

Restdreiecken wieder die Mitte, und wieder und wieder...., ist es dann

A eigentlich noch eine Flache?
Nein! Die Dimension ist nicht 2 noch 1, sondern In(3)/In(2)=1,58...; es
ist ein Fraktal. (fractum, lat.= gebrochen)
AAAAA Das Sierpinski-Fraktal ist unmittelbar mit dem Pascalschen Dreieck
verbunden. Gerade die Felder des Dreiecks werden gezeichnet, deren

Zahl ungerade ist.

Flacheninhalt des Sierpinski-Dreiecks

Geht man davon aus, dass das Ausgangsdreieck einen Flacheninhalt von A(0) = 1 hat, so wird in der
ersten Iteration 4 der Flache entfernt, d.h. A(1) = 34. In der nachsten Iteration werden 3 Dreiecke, die
ein 4 der GroBe des zuerst entfernten Dreiecks besitzen, herausgenommen, d.h. insgesamt 3/16, d.h.
A(2) = 34-3/16 = 9/16 = (3/4)2. Mittels Induktion wird A(n) = (3/4)".

Zu beachten ist, dass die Flachen A(n) fir wachsende n gegen 0 streben. Damit wird immer mehr der
Ausgangsflache entfernt, dennoch bleiben unendlich viele Punkte im Innern des Sierpinski-Dreiecks ubrig.
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Tragt man von einem Pascalschen Dreieck fiir jeden Eintrag z mit z mod n = 0 einen Punkt ein, so
entstehen auBer dem Sierpinski-Dreieck weitere fraktale Muster:
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Sierpinski-Tetraeder

In Analogie zum beriihmten Sierpinski-Dreieck kann auch ein rdumliches Aquivalent konstruiert werden.
Ausgangspunkt ist ein normales Tetraeder. In den Ecken des Tetraeders werden vier kleinere Tetraeder
mit der halben Ausgangskantenldnge platziert. Jedes dieser Tetraeder wird entsprechend wieder ersetzt
usw. Das Ergebnis ist das Sierpinski-Tetraeder. Die fraktale Dimension ist D = In 4/In 2 = 2.

4 o o

Stufe 4: 256 Stufe 5: 1024 Stufe 6: 4096
Tetraeder Tetraeder Tetraeder

Sind n die Rekursionstiefe des Sierpinski-Tetraeders, N die Anzahl der Tetraeder, L die Ldnge eines
Tetraeders und V das Volumen des n-ten Tetraeders, dann gilt fir ein Anfangstetraeder der Kantenléange
1: L=2" N = 4" V=2"

Fir n gegen Unendlich gehen das Volumen und die Oberflache gegen Null.

Fraktale Korper
Fraktale Korper sind solche Kérper, deren Volumen gegen Null und deren Oberflache gegen Unendlich
strebt. Diese Korper entstehen dadurch, dass man einen einfachen Koérper wie einen Wirfel oder ein
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Tetraeder nimmt und nach bestimmten Regeln Volumen in Form von anderen Kérpern aus ihm entfernt
und dabei seine Oberflache vergroBert.

Menger-Schwamm

... hach dem osterreichischen Mathematiker Karl Menger (1926)

Eng verbunden mit dem Sierpinski-Tetraeder ist der sogenannte Menger-
Schwamm. Er ist im Prinzip die dreidimensionale Erweiterung des Sierpinski
Teppichs.

Zur Konstruktion wird hier von einem Wirfel ausgegangen. In jede Wiirfelseite
wird nun ein quadratisches Loch genau im Schwerpunkt des Seite mit einer
Kantenlange von einem Drittel des Ausgangswdrfels gebohrt.

Damit verbleibt ein Restkérper, den man sich auch aus 20 kleinen Wirfeln mit
1/3 Kantenldnge zusammengesetzt vorstellen kann.

Der beschriebene Vorgang wird nun in jedem der 20 Wirfel wiederholt, usw.
Fir die fraktale Dimension wird D = In(20)/In(3) = 2.7268...

Stufe 1: 20 Wirfel Stufe 2: 400 Wirfel Stufe 3: 8000 Wirfel Stufe 4: 160000
Warfel

In der Stufe 5 besteht der Menger Schwamm aus 3200000 Wirfeln. Diese Stufe ist auf einem normalen
PC nur mit extremen Speicher- und Zeitaufwand berechenbar.

Ausgehend fur einen Ausgangswirfel mit der Kantenlange 1 wird flr das Volumen des Menger-
Schwamms: Bei jedem Schritt erhdlt man 20/27 vom vorhergehenden Volumen, d.h.

V(1)= 20/27 V(1) = 0,7407... VE V(2)= (20/27)2V(2) = 0,5486... VE
V(3)= (20/27)3V(3) = 0,4064... VE
und allgemein V(m)= (20/27)™

D.h. mit zunehmenden Iterationsschritt strebt das Volumen gegen Null. Der Menger-Schwamm ist ein
Kérper mit einem Volumen = 0!
Fur die Oberflache (auch die im Inneren) wird

A(m) = Q(m)/9™ ; Q(1) = 72 und A(m+1) = (8Q(m) + 24 - 20M)/9™*! = Q(m+1)/9™m*?
Wie zu erwarten hat der Menger-Schwamm eine unendlich groBe Oberflache.

Herleitung des Volumens lber den ausgeschnittenen Kérper:
il Der Mengerschwamm ist ein Kérper, der durch fortgesetztes Herausschneiden von
L Teilen aus einem Wiirfel entsteht. Der erste ausgeschnittene Teil hat das Volumen 7

(a/3)3 des Ausgangskorpers.

Der groBe Wirfel besteht aus 27 kleinen Wiirfeln. Nach dem Wegfall von 7 Wirfeln
bleiben 20 kleine Wiirfeln brig. Aus jedem dieser Wiirfel werden wieder 7
herausgeschnitten, d.h. insgesamt 20 - 7 herausgeschnittene Wiirfel, usw. usf.
Die Summe der ausgeschnittenen Teile ist
/ V=7 (@/3)3+20-7(a/9)3 +202-7 (a/27)3 + ...
d.h. die unendliche Summe einer geometrischen Reihe mit dem Quotienten ¢
=20/27

Als Summe wird S=V/(1-q)=7(@/3)3-1/(1-20/27) = a3
Damit hat der Menger-Schwamm tatsachlich das Volumen von 0.
Nach n Schritten sind V*, =7 (a/3)3 (1 - (20/27)") / (1 - 20/27)

entfernt. Das bedeutet zum Beispiel, dass nach nur 16 Schritten Gber 99 % des
Ausgangsvolumens fehlen. Fir einen Wirfel der Kantenlange hat der Menger-
Schwamm nach n Schritten ein Volumen von

V, = 27 (20/27)"

Oktaeder-Schwamm
In Analogie zum Sierpinski-Tetraeder bzw. zum Menger-Schwamm kénnen auch
andere platonische Korper zur Konstruktion fraktaler Gebilde genutzt werden.

Ausgangspunkt ist ein Oktaeder. Im Gegensatz zum Sierpinski-Tetraeder
berlihren sich die sechs verkleinerten Oktaeder an ganzen Kanten. Einen
Eckpunkt haben sie alle sechs Teiloktaeder im Mittelpunkt der Figur
gemeinsam. Als MaB3stab ergibt sich 2:1, wie beim Tetraeder. Damit passen die
sechs Oktaeder gut zusammen. Acht Tetraeder wurden entfernt.
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Das in einem Schritt verringerte Volumen ist 6/8 = 62,5% des vorherigen Volumens.
Der Oktaederschwamm hat die topologische Dimension 2, im Gegensatz zu Sierpinski-Tetraeder und
Mengerschwamm, welche beide die topologische Dimension 1 besitzen.

Sierpinski-Wiirfel
Bei dem Sierpinski-Wiurfel handelt es sich um ein Fraktal im Raum. ‘
Ausgangspunkt ist ein Wirfel, an den drei kleine Wirfel mit halber
Kantenlange angesetzt werden. An diese kleinen Wirfel werden jeweils
wieder 3 Wirfel mit halber Kantenldnge angesetzt usw.
Insgesamt entsteht ein rdumliches Gebilde, dass ein endliches Volumen
aber eine unendlich groBe Oberflache besitzt, allerdings nur wenn man
die vollstandige Oberflache aller Teilwlrfel addiert.
Beriicksichtigt man nur die sichtbare Oberflache, so ergibt sich fiir eine
Kantenlange a des Ausgangswirfels nach dem n-ten Iterationsschritt
A,=12a2-33a22!m V, = 8/5 a3 - a3/5 23"

3n+1

Als Grenzwerte ergeben sich mit wachsendem n dann
A=12 a2 V = 8/5 a3

Sierpinski-Sechseck

Mit Hilfes des Chaosspiels kann auch das Sierpinski-Sechseck erzeugt
werden.

Ausgang sind sechs in Form eines regelmdBigen Sechsecks angeordnete
Punkte. Ein Anfangspunkt Py wird beliebig gewahlt.

Je Spielrunde wird nun einer der sechs Punkte zufallig ausgewahlt und vom
Punkt Py zum Zufallspunkt 2/3 der Strecke zuriickgelegt. Der entstandene
Punkt P; wird markiert und mit diesem erneut so verfahren.

Wird in dem Teilprogramm

»Chaosspiel

als Verhaltnis 2/3 eingetragen, so entsteht das Sierpinski-Sechseck.

Zellularautomat
In den 40 und 50ziger Jahren wurden durch John von Neumann und Alan Turing die Anféange der

R : = Automatentheorie geschaffen.
[® | ® | ® |Elterngeneration  VON Interesse sind vor allem Zellularautomaten, in denen einzelne Zellen auf
| [ @ [ |Kindgeneration ~ Grund gewisser Regeln und dem Zustand ihrer Nachbarn “leben” bzw.

B’ “sterben”. Ein beriihmtes Beispiel ist Conways “Game of Life”

Interessant sind auch eindimensionale (lineare) binare Zellularautomaten. Diese bestehen aus einer
Reihe von Zellen, welche jeweils den Zustand 0 oder 1 annehmen kdnnen.
Von einer Anfangskonfiguration ausgehend sterben bzw. leben die Zellen je gewahltem Automaten in
Abhangigkeit von der Anzahl der Nachbarn (im Beispiel 3)
Die jeweils drei nebeneinander liegenden Zellen beeinflussen die mittlere der drei Zellen flr
die nachste Generation, in der Darstellung also eine Zeile tiefer. In der Darstellung wiirden
die Belegungen der Zellen A, B und C damit Uber die Zelle B’ entscheiden. Eine Regel
(Ubergang von der Eltern- zur Kindgeneration) kénnte zum Beispiel besagen, dass B’ nur
dann den Zustand 1 hat, wenn alle drei Elternzellen gesetzt sind.

Zellularautomat
Fur drei Nachbarn gibt es insgesamt 2 mégliche Ubergange und damit 28 = 256 verschiedene
Bildungsregeln. Interessiert man sich nur fiir Regeln, welche weder links noch rechts bevorzugen,
verbleiben noch 32. Kodiert man die acht wichtigen Ubergénge
111 = a 110=b 101 =>c 100 = d 011 e 010 =>f 001 =g
000 = h
und codiert man diese acht Variablen nach Wolfram mit einer Codezahl
C = 128a +64b +32c +16d +8e +4f +2g +h,
so ergeben sich Codierungen C im Bereich von 0 bis 255.
Fur die Darstellung des Wolfram-Dreiecks ist C=150, fir das Sierpinski-Dreieck C=90.
Abbildung: Wolfram-Dreieck fir C=150

procedure zellu(m:integer);
var p,q,s,xm,i,j:integer; x,y:array[0..1280] of byte; b:array[0..7] of integer;
begin
fillchar(x,sizeof(x),#0); fillchar(y,sizeof(y),#0); p:=480; n:=640; xm:=n div 2; n:=ndiv 2; p:=p div 2;
for j:=0 to 7 do begin q:=m div 2; b[j]:=m-2*q; m:=q end;
x[0]:=0; x[2*n]:=0; x[n]:=1; j:=1;
repeat for i:=1to 2*n-1 do begin s:=x[i+1]4+2*x[i]+4*x[i-1]; y[i]:=b[s] end;
for i:=1to 2*n-1 do begin x[i]:=y[i]; if x[i]=1 then putpixel[xm-n+i,j]:=yellow; end;
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inc(j);
until (j>2*p+1);
end;
AuBer den genannten Codierungen sind zum Beispiel folgende Zahlenwerte interessant
Codierungen
Zellularautomat mit 3 Nachbarn
30, 45, 50, 54, 57, 60, 73, 75, 105, 107, 110, 126, 129, 131, 135, 137, 150, 151, ...
Zellularautomat mit 5 Nachbarn 0, 2, 5,9, 10, 12, 17, 18, 20-23, 25
Zellularautomat mit 7 Nachbarn 0, 2, 9, 17, 20, 25, 34, 36, 49
Zellularautomat mit 9 Nachbarn 0O, 2,9, 10, 17, 21, 25, 36, 43, 52, 53

ok E L LR T L AR T I . . L R

S Sdn L

Regel 90 Regel 22 Regel 126
Sierpinski Dreieck Sierpinski Dreieck erzeugen, die  Sierpinski Dreieck besteht nur
einzelnen Teile sind identisch. aus verbundenen Strukturen

aa-tetc I8 L IS o N BRI BT

N

Regel 60, das Dreieck ist um 45° Regel 57 Regel 13
gedreht

RPN e o

Regel 30, chaotisches Verhalten Regel 47 Regel 50
Dualer Zellularautomat
_____ _ ——  Unter einem dualen Zellularautomaten (engl. block cellular automaton)
3 rerraraoaaaxxs  versteht man einen Automaten mit zwei Zusténden je Zelle, schwarz oder
s Srrnisanianann weiB.
i 58,

T
E,j“ (i Das Regelsystem besteht aus vier Ubergangsregeln. Eine Zelle der neuen
frEmEpeams Generation wird auf Grund der Belegung von zwei benachbarten Zellen der

= xrsrnmeax  vorhergehenden Generation gefllt.

= Smyms syt easseserraet Dabei sind die Belegungen schwarz-schwarz, schwarz-wei3, wei-schwarz
e ixay  und weiB-weiB maglich. (siehe obere Abbildung)

- atmomoorrad  \/on Generation zu Generation alternieren zusatzlich die Paare von
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Ermmpirmmrmem iy benachbarten Zellen.
EEEEERT srrasmxmaad  Fin Regelsystem kann als Dualzahl aufgefasst werden. Jeweils schwarze

Zellen der ausgetauschten Zellen werden als Bit betrachtet.
Das oben dargestellte Regelsystem ergibt damit 11100001, = 2254,.
Fir eine Doppelzelle in der ersten Generation erhalt man mit diesen Regeln die unten dargestellte
Entwicklung des Automaten.

M‘%\l{ Ameisensimulation
Wf’ ... erstmals beschrieben im Juli 1994 in "Scientific American"
W Chris Langtons Ameise ist eine Turingmaschine mit einem 2-dimensionalen
Speicher, mit sehr einfachen Regeln und sehr verbliffenden Ergebnissen.
Nach ihrem Erfinder werden diese Ameisen auch Langton-Ameisen genannt.
Diese Simulation ist ein schénes Beispiel daflir, dass ein einfaches System

mit einfachen Regeln sowohl komplexe chaotische, als auch komplexe geordnete Strukturen aufbauen
kann, und das ganz ohne die Verwendung des Zufalls.
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Regeln
Zu Beginn befindet sich die ,Ameise" auf einer; theoretisch unbegrenzten; weien Zeichenflache und
bewegt sich um einen Punkt vorwarts.

Hat der erreichte Punkt weiBBe Farbe, farbt die Ameise den Punkt schwarz
und wendet sich um 90° nach links. Ist der Punkt schwarz, wird er weil3
gefarbt und die Ameise dreht sich um 90° nach rechts. Das rechts
stehende Muster wurde von derartigen Ameisen erzeugt.

Ameise im weiB3en Feld
Der einfachste Fall ist die Bewegung einer Ameise in einem quadratischen
Gitter mit nur weiBen Feldern. Hier sind die ersten zehn Schritte einer
Ameise.
W EE NN NE N E N EN EEEEEE
T ! B .= BEE BN BN BE BN .-¢ (Q) Q|e an sich unsichtbare Amel_se
0 1 2 3 4 5 6 - 5 9 10 sitzt in einem Feld und bewegt sich
zum Beispiel nach Norden.

(1) Sie findet das nachste Feld weiB vor, farbt es schwarz und dreht sich in Pfeilrichtung. Das ist die
Richtung nach links entgegen dem Uhrzeigersinn.
(2) Sie erreicht das nachste Feld, farbt es schwarz und dreht sich in
Pfeilrichtung.
(3) (4) Weiter entsteht in den nachsten beiden Schritten ein
schwarzes 2x2-Quadrat.
(5) Die Ameise erreicht im flinften Schritt das schwarze Feld, das sie
in Schritt 1 gefarbt hatte. Sie farbt es weiB und bewegt sich jetzt
aber nach rechts in Richtung des Uhrzeigersinns. L1 100 1000
Je weiter die Ameise fortschreitet, desto ausgedehnter wird das
chaotische Muster um den Startpunkt herum.
Nach etwa 10000 Schritten passiert etwas Unerwartetes: Sie hinterlasst ein geordnetes Muster, das sich
nach unten rechts ohne Ende ausdehnt. Die Ameise baut eine "Autobahn" (Begriff wurde von Langton
gepragt, er nannte dies ,highway") aus sich wiederholenden Streifen. Jeder Streifen wird in 104 Schritten
gebaut und enthalt drei schwarze Tetrominos.
Zur Orientierung: Das rote Feld ist das Quadrat, das die Ameise zu Beginn farbt. Es ist an sich auch
schwarz.

#¢10000

Futter fiir die Ameise

Man gibt als Variation keine weiBe Ebene wie oben vor, sondern in ihr ein schwarzes Feld. Es kann als
"Futter" bezeichnet werden. Im Folgenden wird untersucht, was passiert, wenn die Ameise ein Feld links
des schwarzen Feldes auch schwarz farbt. Es gibt vier Falle, da die Ameise aus vier Richtungen kommen
kann.

O-West 1-Morth 2-East 3-South

nm e L [ ==
1 1 1 1

Eine 0-West-Ameise lasst sich nicht beeinflussen, wohl aber die anderen Ameisen. Am Ende steht immer
die Autobahn.

Viele schwarze Felder beeinflussen den Weg der Ameise starker. Das zeigt das Beispiel eines Quadrates
mit der Seitenlange 25 als Futter. Eine 1-North-Ameise farbt im ersten Schritt die obere linke Ecke (hier
rot) und setzt sich in Bewegung.

Die Ameise lauft auf den Seiten des Quadrates hin und her, |6st sie auf und baut parallel dazu neue
Strecken auf. Nach etwa 5500 Schritten wird die Autobahn gebaut. Das gelbe Quadrat zeigt zum
Vergleich das Ausgangsquadrat.

Zwei Ameisen

F_' Der einfachste Fall ist, wenn die beiden Ameisen in einer weiBen Ebene im ersten
Schritt zwei nebeneinanderliegende Felder schwarzen. Jede der beiden Ameisen kann
sich in die vier Himmelsrichtungen 0-West, 1-North, 2-East und 3-South bewegen. Es
gibt 16 Falle. Die Paare werden durch 00, 10, ... , 23, 33 gekennzeichnet:



Die linke Ameise farbt die Felder oo
schwarz, die rechte dunkelblau.

So kann man erkennen, welche <>
Ameise welches Feld farbt.

Es gibt die Falle (I), (II) und

(II1). bz
(I) Acht Ameisenpaare

benehmen sich so, wie man es <>
erwartet: Erst bewegen sie sich
chaotisch, dann bauen sie eine
Autobahn. Man beachte die Symmetrien.

(II) Die erste Uberraschung: Vier Paare zeichnen gemeinsam ein immer gréBer werdendes
Parallelogramm.

Spuren des Paares 2-East/2-East ﬁT = .. =. E:"
1 2 3 4 49 80 o7 161 _
Spuren des Paares 2-East/0-West HE EN BEN A S
N E ® == R
1 2 3 4 21 39 83 141
Spuren des Paares 0-West/2-East !T m m £y T e ™y
| [ | | [ ] | e
1 2 3 4 23 39 85 43
Spuren des Paares 0-West/0-West )
Die Entstehung der Vierecke sieht ! " = = = 5
interessant aus: Die beiden Ameisen ]
bauen gemeinsam eine immer gréBer ’ 5 3 4 49 60 "7 ,;-é'q

werdende Figur und befinden sich dabei
auf entgegegesetzten Seiten.

Mit zunehmender Anzahl der Ameisen gleicht das Gewimmel immer mehr einem Ameisenhaufen. In der
nebenstehenden Ausgangsstellung kommt es manchmal zu einem neuen Phdanomen: Eine Ameise baut an
einer Autobahn, eine zweite kommt und "ribbelt" sie wieder auf.

Genauere Analyse dieser Simulation zeigt, dass es zum Beispiel verschiedene Formen dieser Autbahnen
gibt. Andererseits kdnnen die hier angegebenen Spielregeln modifiziert werden. Dann entstehen véllig
neue, ebenso faszinierende Gebilde.

,Autobahnen"

ey
.

T

Turk-Popp-Langton-Ameisen

Durch Greg Turk und Jim Propp wurde 1995 eine einfache, aber sehr
interessante Erweiterung des klassischen Regelsystems der Langton-
Ameisen beschrieben.

Anstelle der Langton-Rechts-Links-Regel RL werden nun Zyklen aus
beliebigen R- und L-Bewegungen betrachtet und andersfarbig dargestelit.
Mehrere Regeln erzeugen symmetrische Muster mit regelmaBigen und
chaotischen Anteilen, z.B. RLLR. Die Abbildung zeigt die Regel LLRR.
Andere Bewegungsfestlegungen ergeben vollkommen chaotische Muster,
manche nichts, wie z.B. LL und RR.

Zur systematischen Beschreibung der Regeln wird der HHP-Code
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angewendet. Dazu werden die 'L' und 'R' einer Regel, z.B. 'LRRL', als '0' und '1" interpretiert und die
entstehende Dualzahl in das Dezimalsystem transformiert. Um fiihrende 'L' = '0' zu berlicksichtigen, wird
der Dualzahl eine 1 vorangestellt. Das Beispiel 'LRRL' wird damit zur Dualzahl 10110, d.h. 22 als
Dezimalzahl. Jeder nattirlichen Zahl groBer 3 ist somit eine eindeutige Regel zugeordnet und umgekehrt.
Regeln, die mit 'R' beginnen, entsprechen Regeln bei denen alle L gegen R und R gegen L getauscht
werden und unterscheiden sich in spiegelsymmetrischer Ausrichtung.

fur spezielle HHP-Codes siehe

siehe http://www.math.sunysb.edu/preprints/ims95-1.pdf

Fir eine Vielzahl von HHP-Codes ergeben sich vollkommen
chaotische Strukturen oder Strukturen die sogenannte Ameisen-
Autobahnen auspragen.

Einige HHP-Codes erzeugen symmetrische Gebilde, wenige
verbliiffende Ergebnisse. Der Code 9040 ergibt z.B. die linke
Abbildung.

Weitere interessante Ergebnisse erhdlt man fir HHP-Codes:
spezielle Muster

19, 22, 286, 307, 358, 376, 2588, 4339, 4348, 4510, 4600, 4915,
5063, 5068, 5686, 5734, 6112, 6116, 9040, 9856, 10214, 10243,
10255, 10352, 10912, 16804, 17791, 18152, 19201, 19500,
19508, 19551, ...

Muster mit eingebetteten Strukturen

1256, 1374, 1416, 2260, 2440, 2464, 2751, 2832, 4287, 4383,

5072, 8575, 8767, 10431, 16524, 16656, 16767, 16927, 17151, 17504, ...
Dreiecke, Vierecke, u.a.

138, 282, 355, 556, 1143, 2163, 2224, 2286, 4122, 4172, 4200, 4448, 4545, 4572,
4995, 5015, 5215, 8218, 8496, 8500, 8655, 16410, ...

Turmiten

Unter Turmiten versteht man ein zweidimensionale Turing-Maschine, in der ein Objekt
je nach Zustand und Regelsystem eine Bewegung auf der Ebene ausfliihrt und dabei
Punkte farbt.

Die Langton-Ameisen sind ein Spezialfall der Turmiten, ebenso die Paterson-Wirmer.
Nachdem die Langton-Ameisen 1986 beschrieben wurden, erweiterte Allen H.Brady
1988 die Idee auf eine zweidimensionale Turing-Maschine mit Orientierung.

Bekannt wurde das System 1989 durch eine Verdéffentlichung von Dewdney.

Flr Turmiten mit 2 Zustédnden und 2 Farben wird eine Regelsystem der Form
1,8,0,1,2,1,0,2,0,0,8,1

angegeben.

Der erste Eintrag beschreibt die neue Farbe der aktuellen Zelle, der 2.Eintrag die

anschlieBende Drehung (1 = keine, 2 = nach rechts, 4 = um 180°, 8 = nach links) und

der dritte Eintrag den neuen Zustand der Turing-Maschine.

Nach dem Farben der Zelle fihren die Turmiten die Drehung aus und bewegen sich

eine Zelle vorwarts. Mit dem neuen Zustand wird der Vorgang wiederholt.

Je nach Regelsystem entstehen sehr unterschiedliche Gebilde, u.a. ein spiralférmiges
Wachstum, chaotische Formen mit und ohne Textur, ein goldenes Rechteck mit einer
Fibonacci-Spirale, aber auch Systeme die in einem Zyklus enden.

Game of Life

Das Game of Life ist ein System, welches mit einfachen Regeln gestattet, die Dynamik von
Anfangssituationen zu simulieren.

Es wurde in den 1970er Jahren von Conway entwickelt.

Dabei handelt es sich um einen zelluldren Automat, bei dem der Zustand einer Zelle vom eigenen
Zustand und von dem der Nachbarzellen abhangt.

In der Ebene werden lebende und tote Zellen betrachtet. Dieses Zellmuster entwickelt sich von
Generation zu Generation nach folgenden Regeln:

1. Eine lebende Zelle stirbt genau dann, wenn sie weniger als zwei o mexa mals
oder mehr als drei lebende Nachbarn besitzt o R EEEmEEEEmEEE"-REws-Mx
2. Eine tote Zelle wird lebendig, wenn sie genau drei lebende i Wi EEmE
Nachbarn besitzt, d.h. mindestens drei und héchstens drei. .

Erklarung: pan
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rot: Tote Zelle, die in der nachsten Generation geboren wird
Nachbarn der Zelle

o o)

magenta: Zelle, die in der nachsten Generation sterben wird
Nachbarn der Zelle
Das Fortbestehen einer Zelle ist damit von ihren acht Nachbarn abhangig und tber mehrere Generationen
hinweg von der Gesamtpopulation.
Kleinste Veranderungen der Ausgangssituation flihren damit zu vollkommen
-.l -_-l andersartigen Entwicklungen. Als Endstadien sind volliges Aussterben,
= - periodische Bilder, chaotisches Verhalten usw... méglich.
Conway zu "Game of Life":

Cn |:| -.-.| |:| _::- http://www.youtube.com/watch?v=E8kUJLO4ELA
http://www.youtube.com/watch?v=R9PIq-D1gEk

Abbildung: Interessante Anfangsbilder des "Game of Life" .
feste Zellen Leuch;l;uer
Strukturen des Game of Life Gleiterkanone
Oszillierende Objekte sind Objekte, die sich nach einem . e
bestimmten Schema verandern, aber nach einer endlichen, festen aH H-H H
. . . am | ] | ] " n
Anzahl von Generationen wieder den Ausgangszustand erreichen. =  omma . Block
Ein Beispiel fur ein oszillierendes Objekt ist der Pulsator. Eater "
[] (- Die einfachste zyklische - :
N E_E EEE BN Em - T . un e Blinker
EE N LR NN SEEE & = Konfiguration ist eine - Bienenstock H ann
block | (b | boat| | smake MM\ | hat horizontale oder vertikale Reihe m- lenenstoc .
smtepral sigm . . . . .
o Ee RN = von drei lebenden Zellen. Beim horizontalen Fall wird direkt ober- und
A unterhalb der Zelle in der Mitte eine lebende Zelle geboren, wahrend
s o .J:ngsk!}’..mango die auBeren beiden Zellen sterben; so erhalt man eine vertikale
=.l HE EE I..l - = = - D'relerre'lhel i i i 2
am  fr br B E mEEN Eine Reihe von zeh.n horizontal o_der vertllkal anelnander héngenden
iy Rl MERr v Y Zellen entwickelt sich sogar zu einem Objekt, das einen Zyklus von

flinfzehn Generationen hat, dem Pulsator.
Raumschiffe sind (nicht zwangslaufig) oszillierende Objekte, die wahrend ihres Oszillierens eine feste
Strecke zurlickgelegen und dabei ihre Gestalt erhalten oder sich nach einer bestimmten Anzahl von
Generationen selbst erzeugen. Dabei kann man zwischen den diagonalen Raumschiffen und den
vertikalen bzw. horizontalen Raumschiffen unterscheiden. Zu den diagonalen Raumschiffen zdhlen der
Gleiter und die Qualle, wahrend die Segler zu den horizontalen Raumschiffen zahlen.
Statische Objekte bilden die wohl langweiligste Klasse von Objekten, da sie nichts machen. Manche
dieser statischen Objekte haben allerdings eine Aufgabe, indem sie z.B. Gleiter ,fressen™ oder umlenken
kénnen.

Ein Beispiel fir ein statisches Objekt ist der Block mit den O oo

AusmaBen 2x2; jede Zelle hat hier drei Nachbarn. H -

Die stabilen Populationen enthalten nur Lebewesen mit 2 oder 3 Blinkar || cloak "an

Na_chbarn un_d a_ndern sich nicht mehr. Sie heiBen nach Conway m R RESEEESEE
Stillleben (still lifes). gl EEEESE =
Hier ist eine Darstellung einiger bekannter Stillleben. toad Hogopr, M W =l “==

o illat skewed puad HE BN
sZillatoren

Eine andere auffallige Population ist der Blinker. Er besteht aus drei Lebewesen, die
E abwechselnd Ubereinander oder nebeneinander liegen.

Er gehort zu den Periode-2-Oszillatoren (periodic 2 oszillators, p2).
Rechts sind weitere p2-Objekte zu sehen.
Die Perioden kénnen auch gréBer als 2 sein:
Links ein Periode-3-Oszillator (p3), das Kreuz (cross),

Gleiter
W Es gibt merkwiirdige Gebilde, die sich diagonal auf dem Feld bewegen. Sie bringen ein
interessantes Moment in die Abfolge der Generationen. Die "Gleiter" bestehen in jeder Phase aus 5
Lebewesen und haben die "Periode" 4.
Auch "Raumschiffe" bewegen sich. Es gibt sie in drei GréBen: Sie heien lightweight spaceship,
middleweight spaceship und heavyweight spaceship, abgekiirzt LWWS, MWSS und HWWS.
Die Populationen erinnern sowohl im statischen Zustand als auch in der Bewegung mehr an Vogel als an
Raumschiffe
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Eine beliebte Beschaftigung ist die Entdeckung von Populationen mit interessanten m
Verlaufen. Populationen mit wenigen Lebewesen sind erforscht und katalogisiert.

Eine bekannte Population dieser Art hat die Form eines F-Pentominos. Sie

hat eine bewegte Entwicklung:

Stillleben und Blinker entstehen, werden wieder aufgesogen und bilden

sich erneut. Insgesamt 6 Gleiter entfernen sich auf Nimmerwiedersehen.

Am Ende bleibt nach 1102 Generationen eine Population mit 15 Stillleben

und 4 Blinkern zurtck.

Gibt man eine symmetrische Figur vor, so bleibt die Symmetrie in allen nachfolgenden Generationen
erhalten. Dadurch ist sie zu jeder Phase ansehnlich.

Manchmal hat man Glick: Wenn man zu Beginn eine Population in Form eines Fensters 13x11 (links)
aussetzt, verlassen vier Gleiter die Mitte.

Game of Life, Primzahlen

Eine Sensation stellt die am 11.Januar 1991 von Dean
Hickerson veroéffentlichte Ausgangssituation fiir "Game of
Life" dar. Die links schematisch dargestellte Konfiguration
wirft aller 120n+100 Generationen ein "kleines Raumschiff

e AL LT S I R aus, genau dann wenn n eine Primzahl ist.
E a2 e T, @ s s . . .
e Damit ist es gelungen mittels "Game of Life" ein
et Primzahlsieb zu realisieren.

: . Game of Life-Varianten, Abweichende Regeln

® e, Man kann sich abweichende Regeln zum klassischen
- "Game of Life" vorstellen. Das folgende Regelwerk

definiert beispielsweise ein sich reproduzierendes System, eine Kopierwelt:

Todes-Regel eine Zelle mit genau 0, 2, 4, 6 oder 8 Nachbarn stirbt

Geburts-Regel 1, 3, 5 oder 7 lebende Nachbarn erzeugen oder erhalten eine lebende Zelle

Wenn man in dieser Kopierwelt eine Struktur in Form des Buchstaben H zeichnet, so werden lauter

identische H-Buchstaben erzeugt.

Um sich beim Vergleich verschiedener Regelwerke eine umsténdliche Umschreibung der Regeln zu

ersparen, existiert eine Kurzschreibweise fiir die Regeln von Game of Life. Man zahlt zunachst die

Anzahlen von Nachbarn auf, bei der eine Zelle nicht stirbt, und anschlieBend, durch einen Schragstrich

abgetrennt, die Anzahlen der Nachbarn, bei der eine Zelle geboren wird.

Die klassische Conway-Welt wird durch 23/3 beschrieben, die oben beschriebene Kopierwelt durch

1357/1357.

Sehr dicht an das klassische 23/3-Regelwerk kommen die Regelwerke 34/3 und 35/3. Insgesamt sind

262144 (2'8) Regelwerke denkbar, von denen die meisten jedoch uninteressant sind. Einige der

interessanteren werden auf den nachfolgenden Seiten beschrieben.

Game of Life - Welten “ﬁ
13/3-Welt

Dies ist eine Regelwelt mit wenigen oszillierenden Objekten. Die meisten Objekte sind verkrippelt.
Wenigstens drei oszillierende Objekte gibt es.

34/3-Welt

oszillierendes Objekte der 34/3-Welt: Frosch (siehe Abbildung)

35/3-Welt

in der 35/3-Welt gibt es zum Beispiel diese vier sich bewegenden Objekte, darunter einen Segler
245/3-Welt

Neben den oszillierenden Objekten, die auch in der 24/3-Regelwelt vorkommen, existieren hier auch noch
ein paar andere oszillierende Objekte, insgesamt acht. Das Besondere aber ist das Vorkommen eines sich
bewegenden 7-Zyklen-Objekts, das in seiner Art der Bewegung einer Qualle ahnelt.

1357/1357-Welt, 1357/02468-Welt

Kopiersysteme, wobei jeweils eine einzige kleine Struktur wunderbare Muster hervorzaubern kann

Antiwelten

Zu jeder Regelwelt gibt es eine Antiregelwelt, in der Form, dass alles invertiert ist. Alle Zellen, die sonst
tot sind, leben und alle Zellen, die sonst leben, sind tot. Anticonway-Regeln erhalt man, wenn man
erstens je Anzahl Nachbarn die Regeln fiir Geburt und Tod tauscht und zusatzlich die Regeln derart
spiegelt, dass 8 Nachbarn das Regelsystem fir 0 erhalten, 7 fir 1, 6 fir 2, ... und O fir 8.

Die Antiwelt zum urspriinglichen Game of Life ware damit die 01234678/0123478-Welt.
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Zweidimensionales Wachstum

Ein zweidimensionaler Zellularautomat kann auch mit folgendem
Regelsystem aufgebaut werden:

1. Ausgang sind eine oder mehrere linear angeordnete Zellen

2. je Zyklus (Generation) wird eine leere Zelle genau dann gefllt, wenn
sie eine vorgegebene Anzahl von Nachbarn hat

3. dabei werden entweder 4 Nachbarn (links, rechts, oben, unten) oder 8
Nachbarn (auch die Diagonalen) betrachtet

Auch bei diesem Automaten ergeben sich
sehr interessante Figuren.

Munching Squares

Die "Munching Squares" sind eine Abfolge von Bildern, die auf einem der
ersten Minicomputer, dem PDP-1 von 1962, von Jackson Wright erdacht
wurden.
Ziel war es, auf dem Bildschirm des Computers eine Animation mit
symmetrischen Mustern zu erzeugen. Im Jahr 1962 war das Ergebnis
eine Sensation!
Ausgehend von einem n x n -Spielfeld auf dem Display wird fiir jedes
Feld mit den Koordinaten a, b; beginnend bei (0,0); der Wert

XOR (a, b)
gebildet. Ist das Ergebnis kleiner als ein Parameter t wird das Feld weiB bezeichnet, andernfalls schwarz.
Der Parameter t lauft dabei von 0 bis n.

Wadhrend in der Originaldarstellung der 1960er Jahre nur der XOR-Operator benutzt wurde, kann auch
der AND- bzw. OR-Operator verwendet werden.
Es ist erstaunlich, dass bei diesen beiden Operatoren das Sierpinski-Dreieck entsteht.

Donnelly-Simulation

Peter Donnelly vom University College of Swansea in Wals und Dominic Welsh von der Universitat Oxford
entwickelten dieses faszinierende "Wahl-Spiel".

Gegeben ist eine gewisse Menge von Wahlern und eine Anzahl von Parteien bzw. Gruppierungen.

Zu Beginn hat jeder Wahler eine gewisse politische Orientierung. In gewissen Zeitabstdnden wird ein
beliebiger Wahler schwankend und andert seine Meinung zufallig in die Meinung eines seiner acht
Nachbarn.

Lasst man diese einfache Regel Uber einen ldngeren Zeitraum laufen, treten erstaunliche Effekte zu Tage.
Verbliffend ist, dass jede(!) Ausgangssituation irgendwann einmal zum Totalitarismus fihrt. Eine Gruppe
bleibt librig, wahrend alle anderen aussterben.

Anmerkung: Der "endglltige Sieg" einer Gruppe ist sicher. Allerdings kann dies langer dauern. Ein
Testlauf von 15 Gruppierungen ergab nach 2 Millionen Wahlerwanderungen erst das Aussterben von 9
Gruppen, wahrend von den verbleibenden 6 finf "ums Uberleben" kdmpften und eine Partei schon eine
2/3-Mehrheit erzielt hatte.

Wireworld
Abbildung: Wireworld-Dioden, die obere wird in Durchlass-, die untere in
Sperrrichtung geschaltet

Wireworld ist ein zellularer Automat, der erstmals von Brian Silverman 1987
beschrieben wurde. Er eignet sich besonders fiir die Simulation elektronischer
Logikelemente wie Gatter oder Flipflops. Trotz der Einfachheit seiner Regeln ist es
maoglich, vollstdndige Computer mittels Wireworld zu implementieren.
Eine Wireworld-Zelle kann vier unterschiedliche Zustande einnehmen:

leer (schwarz)

"elektrischer Leiter" (gelb)

"Elektronenkopf" (blau)

"Elektronenende" (rot)
Die Zeit verlauft in diskreten Schritten, den sogenannten Generationen. Dabei bleibt eine leere Zelle
grundsétzlich leer. Die lbrigen Zellen verhalten sich beim Ubergang von einer Generation zur nachsten
wie folgt:

aus einem Elektronenkopf wird ein Elektronenende

aus einem Elektronenende wird ein Leiter.
aus einem Leiter wird ein Elektronenkopf, wenn genau ein oder zwei der benachbarten Zellen
Elektronenkdpfe sind
Wendet man diese Regeln auf die Zellen an, so bewegt sich das Elektron in Richtung seines "Kopfes".
Durch geeignete Ausbildung von Leiterverzweigungen und -kreuzungen kénnen logische Schaltelemente
vom einfachen Gatter bis zum komplexen Rechenwerk realisiert werden.
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Langton-Schleife

Langton-Schleifen (engl. Langton's Loops) stellen eine spezielle Form
klnstlichen Lebens dar. Sie wurden 1984 von dem theoretischen Biologen
Christopher Langton entwickelt.

Die "Organismen" mit der Fahigkeit zur Selbstreplikation bestehen aus
einer ringformigen Anordnung von Zellen, die die genetische Information
enthalten.

Diese Zellen sind von einer schiitzenden Hiille umgeben, in der sie
bestdndig rotieren. An einer bestimmten Stelle bricht der Zellstrang mit den Genen die Hiille auf, und der
Organismus bildet hier einen Arm aus, in den eine vollstandige Kopie der Gensequenz eintritt.

Diese veranlasst den Arm zu wachsen, sich zu einem neuen Ring zu schlieBen und sich schlieBlich vom
Elternring abzulésen.

Danach sind die beiden genetisch identischen Organismen zu abermaliger Replikation bereit.

Der von Langton entworfene zelluldre Automat ist zweidimensional mit Von-Neumann-Nachbarschaft und
acht Zellzustanden.

Die Anfangskonfiguration besteht aus 86 Zellen. Es existieren mehrere hundert Regeln, die die
Zustandsanderungen jeder Zelle beim Ubergang von einer zur nichsten Generation festlegen.

siehe http://necsi.org/postdocs/sayama/sdsr/movies/lang-rep.html

Clusterbildung
Das Bilden von Clustern findet u.A. statt bei Anlagern von
Teilchen an Oberflachen, elektrischen Entladungen,
Wachstum von Dendriten und Diffusion von Wasser in Ol.
Biochemisch interessante Cluster, wie z.B. aus Peptiden
oder Nucleotiden, gelten als Modellsysteme flir biologische
Reaktionsprozesse. Im Englischen spricht man dabei von
Diffusion Limited Aggregation (DLA), d.h. durch Diffusion
begrenztes Wachstum.
Der Mechanismus der Clusterbildung ist theoretisch auch
heute noch (im Jahr 2006) nicht voll verstanden. Daher sind
Computer-Simulationen dieser Vorgange von groBem
Interesse, wenn gleich diese sehr rechenaufwendig sind.
Ein einfacher; und die Entwicklung von Clustern gut beschreibender Algorithmus, ist folgender:
e auf der Simulationsflache wird ein beliebiger Punkt zufallig ausgelost
e innerhalb seiner von-Neumann-Umgebung (d.h. nach links, rechts, oben oder unten) wird dieser
Punkt zufallig verschoben
e befindet sich nun in der Moore-Umgebung (d.h. links, rechts, oben, unten, links-oben, links-
unten, rechts-oben und rechts-unten) ein Cluster-Teilchen, so wird der Punkt gesetzt. Ist sein
Abstand vom Startpunkt groBer als der momentane Distanzwert, so wird dieser Wert aktualisiert
e kann der Punkt nicht gesetzt werden, wird er solange in der von-Neumann-Umgebung
verschoben und in der Moore-Umgebung getestet bis er entweder markiert werden kann oder
sein Abstand zum Startpunkt den aktuellen Distanzwert um 4 Pixel Uberschreitet. In diesem Fall
wird der Punkt verworfen und von vorn begonnen
Hinweis: Der in der Abbildung dargestellte Cluster wurde auf einem Pentium III-Rechner (750 MHz) in
etwa 10 Minuten berechnet. Wie rasant sich die Computertechnik weiterentwickelt hat, erkennt man
daran, dass die obige Abbildung auf einem ,alten™ 386er-PC mehr als einen Tag bendtigt.

Brownsche Molekularbewegung, Brownsche Bewegung

Der englische Botaniker Brown entdeckte 1827, dass mikroskopisch kleine
Teilchen, z.B. Staub, in Gasen oder Flissigkeiten Zitterbewegungen
ausfuhren.

Die Brownsche Molekularbewegung beruht auf den unregelmaBigen StéBen
der Molekiile des umgebenden Mediums. Diese Bewegung ist ein
stochastischer Vorgang, der chaotisch erfolgt.

In der Mathematik ist eine Brownsche Bewegung ein zentrierter Gaul3-
Prozess. Der resultierende stochastische Prozess wird zu Ehren von Norbert
Wiener, der die wahrscheinlichkeitstheoretische Existenz 1923 bewies, als

Wiener-Prozess bezeichnet.

Eine Mdglichkeit, eine Brownsche Bewegung zu konstruieren, geht von unabhdngigen,
standardnormalverteilten z,, z;, ... aus. Dann ist S(t) = zot + Zye1® z V2 sin (kxt) / (kn)
eine Brownsche Bewegung.
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Plasma
Ein sehr interessantes fraktales Gebilde ist die Konstruktion eines
Plasmas. Dabei werden rekursiv aus schon vorhandenen Punkte
weitere farblich gekennzeichnete Punkte als Mittelwert mit einem
gewissen zufalligen Anteil berechnet. Im Ergebnis entsteht ein Bild,
das irgendwie an Wolken oder Aufnahmen von Warmestrahlung
erinnert.
Delphi-Procedure
procedure plasma;
var q:integer; faktor:real;
function _getpixel(x,y:integer):word;
var i:integer; farben:longint; gefunden:boolean;
begin farben:=paintbox1.Canvas.pixels[x,y]; gefunden:=false; i:=0;
repeat if integer(rgb(pal[i].r,pal[i].g,pal[i].b))=farben then gefunden:=true;
inc(i); until gefunden or (i>255); dec(i);
if not gefunden then _getpixel:=0 else _getpixel:=i; end;
function farbmitte(f1,f2,abweich:integer):word;
var m,x:integer;
begin m:=(f1+f2) div 2+ random(abweich)-abweich div 2; if m<0 then m:=0;
x:=(modus*m) mod 256; if x=0 then inc(x); farbmitte:=x;
end;
procedure fenster(xa,xe,ya,ye:longint);
var farbel,farbe2,farbe3,farbe4:byte; xm,ym,xxx:integer;
begin if not abbruch then begin xm:=(xa+xe) div 2; ym:=(ya+ye) div 2; if xa>0 then
farbel:=_getpixel(pred(xa),ym)
else begin farbel:=farbmitte(_getpixel(xa,ya),_getpixel(xa,ye),round((ye-ya)*faktor));
paintbox1.canvas.Pixels[xa,ym]:=rgb(pal[farbel].r,pal[farbel].g,pal[farbel].b);
end;
if ya>0 then farbe2:=_getpixel(xm,pred(ya)) else begin
farbe2:=farbmitte(_getpixel(xa,ya),_getpixel(xe,ya),round((xe-xa)*faktor));
paintbox1.canvas.Pixels[xm,ya]:=rgb(pal[farbe2].r,pal[farbe2].g,pal[farbe2].b);
end;
farbe3:=farbmitte(_getpixel(xe,ya),_getpixel(xe,ye),round((ye-ya)*faktor));
paintbox1.canvas.Pixels[xe,ym]:=rgb(pal[farbe3].r,pal[farbe3].g,pal[farbe3].b);
farbe4:=farbmitte(_getpixel(xa,ye),_getpixel(xe,ye),round((xe-xa)*faktor));
paintbox1.canvas.Pixels[xm,ye]:=rgb(pal[farbe4].r,pal[farbe4].g,pal[farbe4].b);
xxx:=farbmitte(farbmitte(farbel,farbe3,0),farbmitte(farbe2,farbe4,0),0);
paintbox1.canvas.Pixels[xm,ym]:=rgb(pal[xxx].r,pal[xxx].g,pal[xxx].b);
if xm >xa then begin fenster(xa,xm,ya,ym); fenster(xa,xm,ym,ye); end;
if xe>succ(xm) then begin fenster(xm,xe,ya,ym); fenster(xm,xe,ym,ye); end;
application.processmessages;
end; end;
procedure farbtiefe;
var DesktopDC : HDC; BitsPerPixel : integer;
begin DesktopDC := GetDC(0); BitsPerPixel := GetDeviceCaps(DesktopDC, BITSPIXEL);
if BitsPerPixel < 24 then showmessage(‘Farbtiefe zu gering”’); ReleaseDC(0, DesktopDC);
end;
begin
farbtiefe; randomize; faktor:=strtoint(editl.text);
g:=random(255)+1;
paintbox1.canvas.pixels[0,0]:=rgb(pal[q].r,pal[q].g,pal[q].b);
g:=random(255)+1; paintbox1.canvas.pixels[breite-
1,0]:=rgb(pal[q].r,pal[q].g,pal[g].b);
g:=random(255)+1; paintbox1.canvas.pixels[0,hoehe-
1]:=rgb(pal[q].r,pal[q].g,pal[q].b);
g:=random(255)+1; paintbox1.canvas.pixels[breite,hoehe-
1]:=rgb(pal[q].r,pallq].g,pal[q].b);
fenster(0,breite-1,0,hoehe-1);
end;

Fraktale Strukturen finden sich Uber all in der Natur. Das rechte Bild
zeigt die Umgebung des Assuan-Staudamms

Chaos-Doppelpendel LR AR, LY
Eine der auch heute noch interessantesten Aufgaben der Mechanik ist die Untersuchung des Verhaltens
eines mathematischen Doppelpendels. Dabei ist ein Massekdrper an einem Faden angebracht
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(Fadenpendel). Ein zweites Fadenpendel wird nun zusatzlich an dem ersten Massekorper befestigt. Beide
Kérper kénnen unterschiedlich ausgelenkt werden.
Moéchte man die Orte der Kérper wahrend der Schwingung wissen, ware es
notwendig zwei Schwingungsdifferenzialgleichungen zu l6sen. Extrem schwierig
wird es aber dadurch, dass sich der Aufhangepunkt der zweiten Schwingung selbst
bewegt und durch die Verbindung beider Schwingungen eine standige
Energielbertragung stattfindet. Dadurch kann das Problem nicht mehr rein
analytisch gelést werden, sondern bedarf eines Ndaherungsverfahrens bzw. der
Simulation mit dem Computer. Insbesondere zeigt sich, dass die Bewegung eines
solchen Pendels extrem stark von den Anfangsbedingungen abhangig ist. Dieses
dynamische System besitzt Eigenschaften, welche von der modernen Chaostheorie
untersucht werden.
Flr bestimmte Anfangswerte flihrt das Doppelpendel scheinbar unregelmaBige
Bewegungen aus. Man kann verfolgen, dass sich das Pendel oft langere Zeit anndhernd gleichmaBig
bewegt und dann plétzlich ein véllig anderen Weg nimmt. Diese chaotische Verhalten fiihrte auch zur
Bezeichnung Chaospendel fiir dieses mathematische Doppelpendel.

Ein Doppelpendel wird definiert durch die beiden Pendelmassen m; und m,,
die auf die jeweiligen Schwerpunkte bezogenen Massentragheitsmomente
Js1 und Js,, die Schwerpunktabstdnde von den Drehpunkten s; und s, und
den Abstand |, der beiden Drehpunkte voneinander.

Die Bewegung wird durch die Funktionen ¢;(t) und ¢,(t) beschrieben, die flr
die Zeitt =0, 1, ..., s zu berechnen sind.

Dann gelten die folgenden Differenzialgleichungen:

[(s1/11)2 + Jsi/(my 132) + my/my] d2¢y/dt2 + [my/my sy/11 cos (o1 - ¢2)]
d2¢,/dt2 = -my/my sy/1y (do/dt)2 sin (¢1 - ¢2) - (S1/l1 + mz/my) g/ly sin ¢y
und

[Ma/my s/l cos (b1 - d2)] d2p1/dt2 + [my/my (Sy/11)2 + Jsp/(my 112)]
d2¢,/dt2 0 my/my sy/ly (ds/dE)2 sin (o1 - ¢2) - Ma/my sy/1y g/ly sin ¢,

Dieses Differenzialgleichungssystem ist nicht analytisch I6sbar und kann nur durch Naherungsverfahren
bestimmt werden, z.B. mittels Runge-Kutta-Verfahren.
Quelle: Dankert, http://www.tm-aktuell.de/TM5/Doppelpendel/doppelpendel_matlab.html

Fraktale in der Kunst und Unterhaltung

Die Schénheit und Seltsamkeit der fraktalen Gebilde hat deren Einzug in die bildende Kunst nur
gefoérdert. Als eines der unzahligen Beispiele sei erwdhnt:

Diese Bilder entstanden auf der Basis von Algorithmen, die man auch als Fraktale bezeichnen kénnte. ©
Karin Kuhlmann

Kopflos Brennende Geduld Staub zu Staub

Fluchtversuch Ziundstoff Die dunkle Seite Tiefenrausch
Fraktale Gemalde von Susan Chambless
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Daruber hinaus treten Fraktale aber auch in anderen Bereichen der Unterhaltung auf. Im faszinierenden
Science-fiction-Film ,Star Trek"™ zerstort ein nicht identifizierter Fremder aus dem Weltall drei machtige
Klingonen-Raumschiffe. Daraufhin Gbernimmt Captain James T. Kirk erneut das Kommando Uber das
U.S.S. Raumschiff "Enterprise". Die Besatzung der "Enterprise" mobilisiert sofort alle Krafte, um den
fremden Eindringling aus dem Weltall daran zu hindern, die Erde zu vernichten. Und das mathematisch
Besondere ist, dass erstmals die raumlichen Strukturen des fremden Gebildes mittels fraktaler Geometrie
erzeugt wurden. Star Trek I ist damit der erste Spielfilm, in dem Methoden der Chaostheorie genutzt
wurden.

Auch die Pop-Musik kann sich neuen mathematischen Verfahren nicht entziehen, zumindest die Kiinstler,
die ein Anspruchsniveau an ihre eigene Musik stellen. Im Video zu ,Morgenrot - Dance Music" von
Herbert Grénemeyer werden fraktale Baume und Landschaften gezeigt. AuBerdem findet man noch das
Zerfallen in selbstahnliche Teile, ein Attraktor als Regenbogen, ein Mdbius-Band und mehrere
Sternpolyeder. Fir den Mathematiker eine ,wahre Freude".

Fraktale in der Architektur
Auch in der Architektur finden sich Ansatze zur Nutzung fraktaler
Strukturen.
Das wohl schdnste Beispiel aus der Kunst sind die MaBwerk-Fenster
einiger gotischer Kathedralen; z.B. die Fenster des "StraBburger-Meisters"
(StraBburg).
Das urspriingliche Fenster wird in zwei Teilfenster unterteilt, jedes dieser
Teilfenster wieder in zwei Teilfenster.
Dieser Teilungsprozess kann in der Praxis natirlich nicht unendlich
weitergefiihrt werden; ein ndchster Unterteilungsschritt erfolgt mitunter in
- : der Glasmalerei.
Bl R Die linke Abbildung zeigt das Westfenster des Miinsters von York.

: Diese Fenster von 1338 zeigen eine fortgesetzte

a6 B EA -8 Zweier-Unterteilung. Das Ostfenster (1405-1408)
| LGl B ?f‘” besitzt sogar eine fortgesetzte Dreier-Unterteilung.
a1 B oy oo il R e . . 1 .
S 5 o 2 A. Mg Ein Architekt, der Selbstahnlichkeit zum Thema

seiner Gebaude macht, ist der US-Amerikaner Bruce
Goff (1904-1982). Er war einer der fihrenden Vertreter der Art-Deco-Architektur.
Bedeutende Bauwerke sind das Bavinger Haus in Norman, das Ruth VanSickle Ford
House in Aurora, das Colmorgan Haus in Glenview und der Pavillon fiir japanische
Kunst in Los Angeles.

So projektierte er das "Joe D.Price-Haus" (1956-1976) mit selbstahnlichen
Dreiecken, Sechsecken und Trihexa, vom groBten bis zum allerkleinsten Detail. Die
Abbildung zeigt eine der Eingdngstiren des Hauses.

Winkel von 60°, ihr Vielfaches und Bruchteile davon treten in allen Formen und
Materialien auf.

Das Price-Haus wurde 1996 durch Brandstiftung zerstort.
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Schrittweises Zoomen in die Mandelbrotmenge
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