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Fraktale Geometrie  
 

Das entscheidende Kriterium ist Schönheit; für hässliche Mathematik ist auf dieser 

Welt kein beständiger Platz. Hardy 
 
"     - Wahrlich zuerst entstand das Chaos", Hesiod 
  
Die fraktale Geometrie ein mathematisches Gebiet, das sich erst in den letzten 
Jahrzehnten entwickelt hat, dann aber sprunghaft und auch schnell in die 
europäischen Schulen gekommen ist; mit Ausnahme von Deutschland!. 
Angefangen hatte es mit der berühmten Frage "Wie lang ist die Küste 
Großbritanniens?", die Mandelbrot untersuchte. Mittlerweile gehören zur Chaos-
Theorie Themen wie:  
Inhalt und Umfang der Kochschen Schneeflockenkurve, Sierpinski-Dreieck, 
Menger-Schwamm, Drachen-Kurve, gebrochene Dimension, Selbstähnlichkeit, 
Feigenbaum-Diagramm, Bifurkation, Modellierung von Planzenwachstum (z.B. der 
berühmte Farn), virtuelle Landschaften, Mandelbrot-Mengen (die farbenprächtigen 
"Apfelmännchen"-Figuren) 
  
Die fraktale Geometrie hat viele und wichtige Anwendungen in allen 
Naturwissenschaften. 
 
Chaostheorie  

"Wolken sind keine Kugeln, Berge keine Kegel, Küstenlinien keine Kreise. Die 
Rinde ist nicht glatt - und auch der Blitz bahnt sich seinen Weg nicht 
gerade...  
Die Existenz solcher Formen fordert uns zum Studium dessen heraus, was 
Euklid als formlos beiseite lässt, führt uns zur Morphologie des Amorphen. 
Bisher sind die Mathematiker jedoch dieser Herausforderung ausgewichen. 
Durch die Entwicklung von Theorien, die keine Beziehung mehr zu sichtbaren 
Dingen aufweisen, haben sie sich von der Natur entfernt. Als Antwort darauf 

werden wir eine neue Geometrie der Natur entwickeln und ihren Nutzen auf verschiedenen Gebieten 
nachweisen. Diese neue Geometrie beschreibt viele der unregelmäßigen und zersplitterten Formen um 
uns herum - und zwar mit einer Familie von Figuren, die wir Fraktale nennen werden..." 
Benoit Mandelbrot, "Die fraktale Geometrie der Natur" 1975 
 

   
 
Auf einer Konferenz präsentierte Benoit Mandelbrot einen Blumenkohl. Auch dieser hat, da er 
selbstähnlich ist, fraktale Struktur. 
Der Romanesco (Brassica oleracea L. convar), auch Pyramidenblumenkohl, ist eine Variante des 
Gemüsekohls, die in der Nähe von Rom gezüchtet wurde. Er gehört damit in die Gattung Brassica der 
Familie der Kreuzblütengewächse. 
Der Romanesco gehört zu den wenigen Pflanzenarten, die in ihrem Blütenstand gleichzeitig 
Selbstähnlichkeit und damit eine fraktale Struktur sowie Fibonacci-Spiralen aufweisen. 
 
Das Wort Fraktal wird aus einer Eigenschaft der angesprochenen Formen abgeleitet, nämlich der im 
Gegensatz zur topologischen Dimension gebrochenen (fractus = zerbrochen) Zahl, die den 
Zusammenhang zwischen linearer Ausdehnung und Flächeninhalt (oder Volumen) eines Gebildes 
beschreibt.  
Fraktale Formen haben eine auffällige Eigenschaft, die den Betrachter besonders stark anspricht und 
berührt. Fraktale Formen sind selbstähnlich, d.h. die Gesamtstruktur eines Fraktals ist aus kleineren 
Strukturen zusammengesetzt, die die gleiche Form aufweisen.  
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L-Systeme  
 

Die Entwicklung eines Organismus lässt sich als Ausführung eines Programms ansehen, das im 

befruchteten Ei ist. Vielzellige Organismen sind dynamische Gesamtheiten geeignet programmierter 

endlicher Automaten. Aufgabe des Biologen ist die Entdeckung der zugrundeliegenden Algorithmen.  

- Lindenmayer - 

- Lindenmayer-Systeme nach Aristid Lindenmayer 
- Simulation eines Systems durch ständiges / iteratives Ersetzen von Buchstaben in Wörter 
Festlegung: Alphabet (z.b. abc+-) Buchstaben ; Axiom > Intiator / Ausgangswert ; Regeln für Ersetzung 
System  
- Ersetzen der Buchstaben durch Wörter nach festgelegten Regeln ; parallele Ersetzung 
Graphische Darstellung  
- erweiterte Syntax für Darstellung ; Turtle Graphik 2D z.b. graph3.tpu 
Festlegungen: Länge #l 
 Winkel #w 
 Anzahl der Durchläufe #t 

Dicke #d   
Farbe #c 

Syntax:F - forward um #l / ziehe Linie  
 D - forward um #l / keine Linie 

+ - rotate um #w 
- - rotate um -#w 

 < - #l * faktor 
 > - #l / faktor 

[ - speichere position  
] - lade position  
C - add #c,1 

 
Determinierte kontexfreie L-
Systeme (DOL)  Buchstabe wird 
durch ein Wort aus Buchstaben ersetzt 
Stochastische kontexfreie L-
Systeme (OL)  mehrere Regeln für ein Buchstabe ; Auswahl nach Warscheinlichkeitsdefinition 
Kontexsensitive L-Systeme    mehrere Regeln für ein Buchstabe ; Auswahl in 
Abhängigkeit von benachbarten Elementen 
 
L-System (Befehlssatz)  
... rekursive Definitionsgleichungen  F= f(F, G, + , - , [ , ] , / , \ , ! , | ) 
Syntax F Zeichnen einer Linie 
 G Bewegen ohne Zeichnen der Linie 
 + Drehung der Zeichenrichtung um einen Winkel nach oben 
 - Drehung der Zeichenrichtung um einen Winkel nach unten 
 /nn Drehung der Zeichenrichtung um den Winkel nn in Grad nach oben 
 \nn Drehung der Zeichenrichtung um den Winkel nn in Grad nach unten 
 | Drehung der Zeichenrichtung um 180° 
 ! Vertauschen der Wirkung z.B. +,- 
 [ Speichern der aktuellen Zeichenposition (PUSH) 
 ] Einstellen der zuletzt abgespeicherten Zeichenposition (POP) 
  
Kochkurve  
Im Jahre 1904 konstruierte der Stockholmer Mathematikprofessor Helge von 
Koch eine Kurve, die überall stetig, aber nirgends differenzierbar ist. Aus 
dieser kann die Kochsche Schneeflocke (siehe weiter unten) zusammengesetzt werden. 
Def.: F = F + F -- F + F   
Dimension d = 1.261859 
Die Kochkurve ist streng selbstähnlich, d.h. man kann sie sich aus z=4 Bausteinen aufgebaut denken, 
wobei jeder dieser Bausteine mit dem Steckfaktor k=3 gesteckt werden muss, um die selbst die Gestalt 
der ganzen Kochkurve anzunehmen. Damit ist die Selbstähnlichkeitsdimension der Kochkurve d = log(z) 
/ log(k) = log 4 / log 3 = 1,26... 
 
L-System Konstruktion ; Beispiel  
Axiom F 
1.Iteration F-F+F+F-F 
2.Iteration F-F+F+F-F-F-F+F+F-F+F-F+F+F-F+F-F+F+F-F-F-F+F+F-F 
3. Iteration F-F+F+F-F-F-F+F+F-F+F-F+F+F-F+F-F+F+F-F-F-F+F+F-F-F-F+F+F-F-F-F+F+F-F+F-F+F+F-
F+F-F+F+F-F-F-F+F+F-F+F-F+F+F-F-F-F+F+F-F+F-F+F+F-F+F-F+F+F-F-F-F+F+F-F+F-F+F+F-F-F-
F+F+F-F+F-F+F+F-F+F-F+F+F-F-F-F+F+F-F-F-F+F+F-F-F-F+F+F-F+F-F+F+F-F+F-F+F+F-F-F-F+F+F-F 
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L-Fraktale  
Koch1 (Adrian Mariano)  Winkel 6 

Axiom F--F--F , F=F+F--F+F 
Koch2 (Adrian Mariano)  Winkel 12 

Axiom F---F---F---F , F=-F+++F---F+ 
Koch3 (Mariano)   Winkel 4 

Axiom F-F-F-F , F=F-F+F+FF-F-F+F 
Koch6    Winkel 4 

Axiom f+f+f+f , f=f-ff+ff+f+f-f-ff+f+f-f-ff-ff+f 
Dragon    Winkel 8 

Axiom FX , F= , y=+FX--FY+ , x=-FX++FY- 
Peano1   
 Winkel 4 

Axiom F-F-F-F; F=F-
F+F+F+F-F-F-F+F 
Cesaro    Winkel 34  

Axiom FX , F= , X=----F!X!++++++++F!X!---- 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
L-System, Pflanzen  
Synthese von pflanzlichen Wachstumsstrukturen: 
(von links oben nach rechts unten) 
 
1. F --> F[+F]F[-F]F , n = 5, 25,7° 
2. F --> F[+F]F[-F][F] , n = 5, 20° 
3. F --> FF-[-F+F+F]+[*f-F-F] , n = 4, 22,5° 
4. X --> F[+X]F[-X]+X , F --> FF , n = 7, 20° 
5. X --> F[+X][-X]FX , F --> FF , n = 7, 25,7° 
6. X --> F-[[X]+X]+F[+FX]-X , F --> FF , n = 5 , 22.5° 
 
 
L-System, Beispiele  
von links oben nach rechts unten: 
Bush, Blume, Mosaik, Gosper, Zweig, Koch-Schneeflocke 
 

 

 
 

 

 
Segment-Kurve  
Axiom F -> -F+F-F-F+F+FF-
F+F+FF+F-F-FF+FF-FF+F+F 
-FF-F-F+FF-F-F+F+F-F+ 

Drachenkurve  
X -> X+YF+, Y -> -FX-Y,  
Winkel 45°, ... nach William Harter 
und John Heighway; ... D = ln 2 / ln 
2 = 2 
... flächenfüllende Kurve 

Hilbert-Kurve  
Axiomsystem 
L -> +RF-LFL-FR+ 
R -> -LF+RFR+FL- 
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Pfeil-Kurve  
X -> YF+XF+Y, Y -> XF-YF-X, 60° 

Quadratische Koch-Insel  
F -> F-F+F+FFF-F-F+F 

Peano-Kurve  
F ->F+F-F-F-F+F+F+F-F 

 

 

  
Peano-Gosper-Kurve 
L-System: X -> X+YF++YF-FX--
FXFX-YF+ ; Y -> -
FX+YFYF++YF+FX--FX-Y, 60°, nach 
William Gosper 
D = ln 7 / ln 7 = 2 
... flächenfüllende Kurve 

Sierpinski-Dreieck  
Lindenmayer System: 
F -> FF,  
X -> --FXF++FXF++FXF--, 60° 

Quadrat-Kurve  
Lindenmayer System: 
X -> XF-F+F-XF+F+XF-
F+F-X 
 

 
Anabaena Catenula  
Ein einfaches, aber schönes Beispiel für die Anwendung eines L-Systems in der Natur ist 
folgendes: 
Die blaugrüne Bakterie Anabaena Catenula formiert sich zu einer Schwingfadenalge, d.h. eine 
eindimensionale Kette von Bakterien. Unter dem Mikroskop sieht sie wie eine Reihe 
unterschiedlich langer Zylinder aus.  
Für das Wachstum von Anabaena Catenula sind Elemente aus zwei verschiedenen 
Bakterientypen verantwortlich, die sich durch ihre Größe sowie durch ihr Teilungsverhalten 
unterscheiden, sie seien A und B. Da beide Typen asymmetrisch aufgebaut sind, können sie 
in der Kette entweder nach links oder nach rechts orientiert sein. Es gibt daher vier 
unterschiedliche Elemente (siehe Abbildung). 
  
Das Alphabet V des L-Systems besteht aus vier Zeichen: V = (A, A, B, B) 
Eine nach rechts orientierte A-Bakterie teilt sich nach einer gewissen Zeit in eine nach rechts 
orientierte B-Bakterie und in eine nach links orientierte A Bakterie. 
Produktionsregel p1: A  AB 

und p2 spiegelverkehrt:  
p2: A  BA 
B-Bakterien werden nach einer gewissen Zeit zu A-Bakterien 
p3: B  A 
p4: B  A 
Mit dem Startwort A ergibt sich damit die Entwicklung von Anabaena Catenula als L-System. 
Quelle: http://home.wtal.de/schwebin/lsys/einf_lsys.htm 
  
Im Labor wurde beobachtet, dass die größere A-Bakterie sich etwa alle 15 Stunden teilt. Die kleineren B-
Bakterien werden nach etwa drei Stunden zu A-Bakterien. Damit entspricht das einfache System nicht 
der Realität. 
Als Zeiteinheit für ein verbessertes Modell wählt man eine Dauer von 3h. Eine B-Bakterie formt sich in 
einer Zeiteinheit in eine A-Bakterie um. Die Entwicklung einer A-Bakterie teilt man in 5 Schritte auf: 
 A4

  A3
  A2

  A1
  A0

  A4
B 

und entsprechend für die linksgerichteten Bakterien. 
Das Alphabet V des L-Systems erweitert sich auf: 
   V = (A4

, A3
, A2

, A1
, A0

, A4
, A3

, A2
, A1

, A0
, B, B) 

und das Regelsystem auf 
p1: At>0

  At-1
  p2: At=0

  A4
B  p3: At>0

  At-1
 

p4: At=0
  BA4

  p5: B  A4
  p6: B  A4

 
Die graphische Interpretation des verbesserten Modells entspricht sehr gut der Wirklichkeit. 
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Fünfstern-Fraktal  
Die Abbildungen zeigen jeweils einen Fünfstern, an dessen 
Armen Fünfsterne sind, die an ihren Armen Fünfsterne tragen. 
In der oberen Reihe sind dies Fünfstern-Fraktale 3.Stufe, in 
der unteren 4.Stufe. 
 
Dimension  
Das Fünfstern Fraktal ist selbstähnlich. Dabei vernachlässigt 
man eigentlich die inneren grünen Striche. Das linke und 
rechte Fraktal sind überschneidungsfrei, hier lässt sich die 
Selbstähnlichkeitsdimension ausrechnen:  
 d=log z / log q , d.h.   
 dlinks = log 5 / log 3 = 1,46 bzw.  
 drechts = log 5 / log 2,618 = 1,67 
 
Sierpinski-Baum, Dreistern-Fraktal 

Das Fraktal lässt sich nach folgendem Schema als rekursive Baumstruktur erzeugen: Ausgehend von 
einem Punkt werden 3 Linien der Länge L mit einem Abstand von jeweils 120 ° gezeichnet. In der 
nächsten Stufe werden an das Ende dieser Linien jeweils 3 neue Linien mit der Länge L/2 erzeugt. 
dass das die Grenzfigur das Sierpinski-Dreieck ist. 
Dimension  
Das Dreistern-Fraktal ist selbstähnlich. Dabei vernachlässigt man die inneren grünen Striche. Es ist 
zudem überschneidungsfrei, daher lässt sich die Selbstähnlichkeitsdimension ausrechnen:   
  d = log z / log k  d = log 3 / log 2 = 1,58 

    
Stufe 0: 3 Segmente Stufe 1: 12 Segmente Stufe 2: 39 Segmente Stufe 3: 129 Segmente 

    
Stufe 4: 363 Segmente Stufe 5: 1092 

Segmente 
Stufe 6: 3279 Segmente Stufe 7: 9840 

Segmente 
 
Hilbert-Kurve 
Die Hilbert-Kurve kann über eine rekusive Definition mittels kartesischer Koordinaten gegeben werden: 

M(0) = (0,0); M(1) = (1,0) 
x(t/4) = y(t)/2; y(t/4) = x(t)/2 ; x((t+1)/4) = x(t)/2 ; y((t+1)/4) = (1+y(t))/2 ; 
x((t+2)/4) = (1+x(t))/2 ; y((t+2)/4) = (1+y(t))/2 ; x((t+3)/4) = (2-y(t))/2 ; y((t+3)/4) = (1-x(t))/2 ; 

 

 
 

   

Stufe 1 Stufe 2 Stufe 3 Stufe 4 Stufe 5 
 
Hilbert-
Labyrinth 

    
 Stufe 1 Stufe 2 Stufe 3 Stufe 52 
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Hilbert-
Kurve 
2.Ordnung 

    
 Stufe 1 Stufe 2 Stufe 4 Stufe 6 
Hilbert-
Dreieck-
Kurve 

    
 Stufe 2 Stufe 3 Stufe 5 Stufe 7 
 

Lebesgue-Kurve  
Eng mit Hilbert-Kurve ist die Lebesgue-Kurve verbunden. Über eine ähnliche 
Konstruktion, bei der aber der Kurvenverlauf 2-3-1-4 betrachtet wird, 
entsteht eine fraktale Kurve, die aus mehreren "Z" zusammengesetzt ist. Im 
englischen Sprachraum wird die Lebesgue-Kurve Z-Kurve genannt. 
 
 
 
 
 
 
Minkowski-Kurve  
L-System-Fraktal mit dem Regelsystem 
Winkel = 04 , Axiom = "F"  

"F"  "F+F-F-FF+F+F-F" 
Die Grundstruktur der Kurve entsteht durch 90°-Drehungen einer Strecke entsprechend der Punktfolge 
(A, B), (B, C), (C, D) , (D, E), (E, F), (F, G), (G, H), (H, I). 
Die fraktale Dimension beträgt ln 8 / ln 4 = 3/2. 
 
Square-Kurve, Quadrat-Kurve  
Eine weitere als Quadrat-Kurve bezeichnetes Gebilde wurde durch Robert 
Sedgewick in "Algorithms in C" beschrieben. 
Diese Kurve hat eine unendliche Länge, umschießt aber einen endlichen 
Flächeninhalt. 
Konstruktion: Ausgangspunkt ist ein Quadrat. An den vier Eckpunkten werden 
Quadrate mit halber Seitenlänge angesetzt. Dieser Vorgang wird unendlich oft 
wiederholt. Die gesuchte Kurve ist dann die äußerste Berandung des Gebildes. 
  
Zuwachs der Kurvenlänge je Iteration  L+ = 4 a 1,5n-1 

a Ausgangslänge, n Iterationszahl 
Gesamtkurvenlänge nach n Iterationen L = a (8 · 1,5n - 4) 
Zuwachs der Kurvenfläche je Iteration  A+ = (4 a² · 3n) / 4n+1 
Gesamtflächeninhalt nach n Iterationen A = 4 a² (1 - 0,75n+1) 
Grenzwert des Flächeninhaltes   Alim = 4 a² 
  
Fraktale Dimension D = log(148) / log(14) = 1,89356 
Ähnlich aufgebaut ist die Cayley-Kurve. Auch hier werden von außen nach innen 
verkleinerte Abschnitte aufgesetzt.  
 
Mooresche Kurve 
Eine Variante der Hilbert-Kurve stellt die Mooresche Kurve dar. Während die Hilbert-Kurve die Ordnung 3 
besitzt, liegt hier Ordnung 4 vor. 

    
Stufe 1 Stufe 2 Stufe 3 Stufe 6 
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3D-Hilbert-Kurve 
Die Hilbert-Kurve (siehe oben) kann auch auf den Raum erweitert werden. Erhöht man die Iterationstiefe, 
so entsteht eine Würfelform. 

    
 
Cantor-Menge  
oder Cantorsches Diskontinuum, 1883 
... diejenige Menge reeller Zahlen, die übrigbleibt, wenn man aus dem 
Intervall [0 ... 1] das mittlere (offene) Drittel entfernt, dann aus den 
beiden verbliebenen Teilintervallen wieder je das mittlere Drittel usw. 
Was übrigbleibt ist schließlich die Menge reeller Zahlen, die sich durch eine unendliche Reihe a1 /3 + 
a2/3

2 + a3/3
3 + ... mit Koeffizienten ai = 0 oder 2 darstellen lassen. Die Cantormenge ist ein Fraktal, an 

dem sich gut der Begriff der fraktalen Dimension veranschaulichen lässt.  
Länge eines Segment nach n Iterationen = (1/3)n Anzahl der Einzelsegmente  = 2n 
Gesamtlänge des Fraktals  = (2/3)n  

Fraktale Dimension   = ln 2 / ln 3 = 0.630929 ... 
Die Idee der Cantor-Menge kann auf andere Strukturen erweitert werden: 
 
Cantor-Staub 
Länge der Elemente nach der 
n.ten Iteration ... Ln = (1/3)n 
Anzahl der Elemente Nn = 5n 
Fraktale Fläche An = Ln² Nn = 
(5/9)n 
Dimension = ln 5 / ln 3 

    

Cantor-Quadrat 
Länge der Elemente nach der 
n.ten Iteration ... Ln = (1/3)n 
Anzahl der Elemente 
Nn = 4 Nn-1 + 5 * 9n 
Dimension = 2 
     

Cantor-Dreieck 
Dimension = 1 

    
Cantor-Tartanmenge 

    
Cantor-Ring 
wird zur Modellierung der 
Saturn-Ringe genutzt 

    
 

 

 
 

 
 

Cantor-Kurve Cantor-Kamm Cantor-Collier 
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Cantor-
Würfel 
Dimension 
1,89 

   
 

Asymmetrisches Cantor-Staub-Fraktal  
Die Konstruktion des Cantor-Staub-Fraktals kann auch asymmetrisch, wie in der 
Abbildung, erfolgen. 
Bei Reduzierung auf ein Viertel, d.h. eine Teilung im Verhältnis a:b:c = 2:1:1 
erhält man neun Kopien. Für die fraktale Dimension D gilt daher: 
 4D = 9  D = ln 9 / ln 4  1,5850 
Allgemein gilt: Beim Unterteilen im Verhältnis a:b:c und Beibehalten nur der 
Eckteile entstehen bei Reduzierung auf 1/(a+b+c) insgesamt a² + 2ac + c² = (a 
+ c)² Kopien. Damit wird für die fraktale Dimension D 
 (a + b + c)D = (a + c)² 
 D = ln ((a+c)²) / ln(a+b+c) = 2 ln(a+c) / ln(a+b+c) 
Die Dimension ist das Doppelte der Dimension der asymmetrischen Cantor-
Menge. 
 
Kakeya-Menge, Besicovitch-Menge  

Unter einer Kakeya-Menge oder Besicovitch-Menge versteht man eine Punktmenge 
im Euklidischen Raum, die in jeder Richtung eine Strecke der Länge 1 beinhaltet. 
Insbesondere suchte 1917 der japanische Mathematiker Soichi Kakeya (1886-1947) 
nach einer solchen Menge mit minimaler Fläche. In einer solchen Fläche könnte eine 
Nadel der Länge 1 eine vollständige Drehung von 360° ausführen. 
Ohne die Forderung nach Konvexität glaubte er sein "Nadel-Problem" mit einem 
Deltoid gelöst zu haben. 
  
Durch den sowjetischen Mathematiker Abram Samoilovitch Besicovitch (1891-1970) 
wurde jedoch 1919 ein Flächentyp gefunden, der eine Kakeya-Menge darstellt, jedoch 
ein Maß 0 besitzt. 
Zur Konstruktion einer Besicovitch-Menge geht man wie folgt vor: 
Ausgangspunkt ist ein Dreieck der Höhe 1. Dieses Dreieck wird in 2n Teile, wie in der 
Abbildung, zerlegt. 
Mit diesen Teildreiecken werden Überlappungen durchgeführt (siehe Abbildung), mit 
den entstandenen Flächen wieder usw. Am Ende entsteht eine Kakeya-Menge. 
Da die Anzahl der Teildreiecke gegen Unendlich streben kann, entsteht eine fraktale 
Menge mit dem Maß 0. 
 

Drachenkurve (nach Heighway, 1960) 
Gegeben ist ein Strecke AC. Diese wird um 90° am Punkt C gedreht und an 
AC angefügt. Am neuen Endpunkt wird das ganze Gebilde erneut um 90° 
gedreht und wieder angefügt. Wiederholt man diesen Vorgang immer wieder, 
so entsteht die Drachenkurve. Benannt wurde sie auf Grund ihres 
Aussehens, da sie an altchinesische Drachendarstellungen erinnert. 
Die fraktale Dimension beträgt ln 2 / ln 2 = 2 
In der nachfolgenden Tabelle sind die ersten Iterationsschritte dargestellt: 
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An der linken Darstellung erkennt man gut, dass stets zwei Teile 
zueinander ähnlich sind. 
Mit der Drachenkurve gelingt es auch, die Ebene vollständig zu 
überdecken. In die freien Bereiche können immer wieder 
entsprechend gedrehte Drachenkurven lückenlos eingefügt werden. 
 
C-Kurve, Levysche Kurve (nach Paul Lévy, 1886-1971) 
Die C-Kurve entsteht durch rekursives Hinzufügen von zwei Strecken 
der Länge 1/2 unter den Winkeln von 45° und –45° an die schon 
vorhandenen Strecken des Fraktals. Dimension des Fraktals : ln 2/ln 

2 = 2. Ausgehend von einer Strecke AB ergibt sich: 
 

  

  

  
  

    
 

Der Name C-Kurve leitet sich aus dem Englischen von „Crabe“ = „Krappe“ ab. 
Vergleicht man das Fraktal mit einer realen Krappe wird diese Namensgebung 
verständlich. 

 
Pythagorasbaum  
Ein Pythagorasbaum entsteht, 
wenn man auf ein Quadrat 
(Stamm) ein rechtwinkliges 

Dreieck (Verzweigung) mit seiner Hypotenuse aufsetzt. An 
die Katheten schließen sich wieder Quadrate (Zweige) an, 
an deren gegenüberliegenden Seiten sich wiederum 
rechtwinklige Dreiecke befinden, die dem ersten Dreieck 
ähnlich sind usw. Alle entstehenden Verzeigungen enden 
mit Quadraten (Blättern). Für welche rechtwinkligen 
Dreiecke ist es möglich, jeden Pythagorasbaum durch 
Hinzufügen von weiteren Dreiecken und Quadraten so 
wachsen zu lassen, dass er höchstens zwei verschiedene 
Größen von Blättern besitzt?  
Setzen wir ein rechtwinklig gleichschenkliges Dreieck auf das Ausgangsquadrat und fügen an die 
Katheten zwei Quadrate an, auf deren gegenüberliegenden Seiten wieder rechtwinklige Dreiecke sitzen 
usw., erhalten wir einen symmetrischen Pythagorasbaum (Abbildung links). Er besitzt nur eine Größe von 
Blättern. Nach dem  Pythagorassatz sind die jeweiligen Kathetenquadrate in ihrer Kantenlänge immer um 
einen Faktor 2 kleiner als das Hypotenusenquadrat. Wenn man den Baum nicht an allen Stellen in 
gleicher Weise entwickelt, wird er unsymmetrisch und hat mehrere Größen von Blättern (Abbildung 
rechts). Es leuchtet unmittelbar ein, dass wir jeden solchen Baum, wenn wir alle größeren Blätter in 
Zweige verwandeln, so weiterentwickeln können, dass er nur noch eine Größe von Blättern besitzt. Damit 
haben wir die einzige Lösung für nur eine Blattgröße, weil ein ungleichschenkliges Dreieck 
notwendigerweise zu mindestens zwei Blattgrößen führen würde. 
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Auf einfache Weise können wir jeden solchen Baum so verwandeln, das er genau zwei Blattgrößen 

besitzt. Dazu brauchen wir nur auf einige Blätter 
Dreiecke zu setzen und darauf zwei kleinere, aber 
untereinander gleiche Quadrate als neue Blätter. Die 
Abbildung oben rechts kann wieder als Beispiel dienen. 
Wir haben also auch hier eine einfache Lösung 
gefunden. Gibt es außer dem gleichschenkligen 
Dreieck noch weitere Lösungen für zwei Blattgrößen? 
Betrachten wir dazu die drei Fälle, wie die vorletzten 
Verzweigungen eines Baumes fortgesetzt werden 
können (gelbe Dreiecke in der Abbildung unten links). 

Fall 1 scheidet als Lösung aus, weil beispielsweise das linke der vier Blätter kleiner sein muss als die 
beiden rechten Blätter und damit mindestens drei Blattgrößen vorhanden wären. Genauso muss im Fall 2 
das rechte Blatt größer sein als die beiden linken. Nur im Fall 3 können wir erreichen, dass die beiden 
äußeren Blätter gleich groß sind und es dann nur zwei Blattgrößen gibt. Zur Herleitung der dafür 
notwendigen Bedingung wird die Länge der Hypotenuse des gelben Dreiecks gleich 1 und die ihrer 
längeren Kathete gleich x gesetzt. Dann ist wegen der Ähnlichkeit mit dem roten Dreieck dessen längere 
Kathete  
gleich x2. Da sie gleich der kürzeren Kathete des gelben 
Dreiecks sein soll, lautet der Pythagorassatz für dieses 
Dreieck: 
  x4 + x2 = 1 
oder (mit u = x2):  u2 + u - 1 = 0 
u = -1/2 + 1/2 5 = 0.618... (Verhältnis des goldenen 
Schnitts)   x = u = 0.786... 
Als einzige Lösung kommt also nur ein Dreieck in Frage, 
bei dem das Verhältnis von Hypotenuse zur kürzeren Kathete dem goldenen Schnitt und das Verhältnis 
zur längeren Kathete der Wurzel aus dem goldenen Schnitt entspricht. Die Abbildung unten rechts zeigt 
ein Beispiel eines solchen "goldenen" Baumes.  
 
Weitere schöne Baum-Fraktale und rechts ein realer Baum 
 

 
 

 

 
 

 
 
Sierpinski-Dreieck durch Teilung 

    
Stufe 0, 1 Dreieck Stufe 1, 3 Dreiecke Stufe 2, 9 Dreiecke Stufe 3, 27 Dreiecke 
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Stufe 4, 81 Dreiecke Stufe 5, 243 Dreiecke Stufe 6, 729 Dreiecke Stufe 7, 2187 Dreiecke 
Dimension ln 3/ln 2 = 1,6... 
 
Sierpinski-Pfeilspitzenkurve 
 

    
Stufe 1, 3 Segmente Stufe 2, 9 Segmente Stufe 3, 27 Segmente Stufe 4, 81 Segmente 

    
Stufe 5, 243 Segmente Stufe 6, 729 Segmente Stufe 7, 2187 Segmente Stufe 8, 6561 Segmente 
 
Das Sierpinski-Dreieck lässt sich auch aus einer Linie erzeugen die nach folgendem Schema unterteilt 
wird. 
Die schwarze Linie zeigt die aktuelle Generation, die 
graue Linie zeigt die letzte Generation (von links 
nach rechts n = 1,2,3). Die Ähnlichkeit mit dem 
Sierpinksi Dreieck wird aber erst bei höheren 
Generationen deutlich. Eigentlich handelt es sich um 
eine optische Täuschung da es in der 
Pfeilspitzenkurve gar keine Dreiecke gibt. 
 
Weitere nach Sierpinski benannte Fraktale 
 
Sierpinski-Teppich Dimension = 1,9    

     
Sierpinski-Fünfeck Dimension = 1,7    

     
Sierpinski-Sechseck Dimension 1,63    
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Sierpinski-Kurven unterschiedlicher Konstruktionsvorschriften 

     

     

    

 

 
Die Sierpinski-Kurve wurde sehr gern als Ornament, vor allem in der traditionellen indischen Kunst 
verwendet.  

  

 

 
Teufelstreppe  
Die "Teufelstreppe" (franz. escalier du diable, engl. devil's staircase) ist ein 
Fraktal. Das Gebilde wurde 1885 von Ludwig Scheeffer beschrieben, einem 
Schüler Cantors.  
Mitunter wird die Kurve auch Cantor-Lebesgue-Treppe genannt. 
  
Zur Konstruktion geht man von der oben abgebildeten Struktur aus. Dabei 
ist die große waagerechte Stufe dreimal so lang wie die kleine waagerechte 
Strecke. Das kurze Element sei b. 
Bei jedem Schritt werden die bisherigen waagerechten Elemente 
beibehalten, ein Drittel des kürzesten waagerechten Elementes wird in der 
Mitte waagerecht in das halbierte senkrechte Element eingefügt. Daher wird 
die Teufelstreppe bei jedem Schritt breiter, aber nicht höher. 
Die Breite wird durch folgende geometrische Summe beschrieben: 
Breite = b (3 + 1 +2/3 + 4/9 + 8/16 + …) = b ( 3 + 1/(1-2/3)) = 6b  

Trotz dieser endlichen Breite, die nur das Doppelte der großen Anfangsstufe ist, wächst die Stufenzahl 
der Teufelstreppe ins Unendliche. 
Die Teufelstreppe ist nicht streng selbstähnlich. Versucht man, verkleinerte Kopien ihrer selbst zu finden, 
so stören die gleichlang bleibenden Stücke und die Verschiedenheit der Stauchfaktoren für senkrechte 
und waagerechte Längen. 
Bei einer Messung der Boxdimension erhält man etwa d=1.  
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Koch-Insel, Kochsche Schneeflocke 
Fraktal, wurde erstmals 1904 von Helge von Koch  
untersucht 
Gegeben ist ein gleichseitiges Dreieck. Auf jede Seite wird 
ein Dreieck mit einem Drittel der ursprünglichen 
Seitenlänge in der Mitte platziert. Wird nur die äußere 
Berandung betrachtet und dieser Vorgang unendlich oft 
wiederholt, so entsteht die fraktale Kurve. 
Regel "F" -> "F+F--F+F", Winkel 60° 
Nach der n.ten Iteration wird: 
Anzahl der Seiten Nn = 3 * 4n 
Länge einer Seite Ln = 3-n 
Umfang der Kurve ln = 3 * (4/3)n 
Fläche der Kurve An = An-1 + 1/3 * (4/9)n-1 *  
An =  ( 1 + 1/3 [ (4/9)0 + (4/9)1 + (4/9)2 + ... + (4/9)n ] ,  ... Flächeninhalt des 1.Dreiecks 
Der Umfang und der Flächeninhalt nehmen also mit wachsendem n zu, aber nicht in gleichem Maße: 
Lässt man n gegen Unendlich streben, erhält man, dass die Koch'sche Schneeflocke eine unendlich lange 
Kurve ist, die einen endlichen Flächeninhalt umschließt: Grenzwert des Flächeninhalts  8/5 
Fraktale Dimension ln 4 / ln 3 = 1.261859507 ... 
 

    
 

Koch-Insel  
Mit Hilfe der Koch-Insel-Kurve und weiterer 
Schneeflockenkurven kann die Ebene vollständig überdeckt 
werden.  
Nutzt man zwei Koch-Inseln, deren Größen im Verhältnis 1 : 3 
stehen, kann ebenfalls die Ebene vollständig ausgefüllt werden 
 

Koch-Antikurve  
Diese fraktale Kurve entsteht aus der Koch-Insel, indem die zusätzlichen 
Dreiecke nicht nach außen auf das Ausgangsdreieck gesetzt werden, sondern 
nach innen. Nach der n-ten Iteration ergibt sich für die Fläche des Fraktals  
An = An-1 - 1/3 ln-1/a * /3n  
Umfang der Kurve ln = 3 * (4/3)n  ... Flächeninhalt des 1.Dreiecks
 Die Fläche A konvergiert gegen 2/5. 

 
Kepler-Fraktale  
Unter einem Kepler-Fraktal versteht man ein Fraktal, dessen 
Konstruktionsmechanismus wie folgt beschrieben werden kann: 
An einem regelmäßigen Gebilde, einem regelmäßigen N-Eck bzw. Polyeder, werden 
fortlaufend Seiten bzw. Seitenflächen durch kleinere Kopien des Originals ersetzt. 
Dadurch ergibt sich Selbstähnlichkeit und es entsteht ein Fraktal. Links wird ein 
Kepler-Fraktal aus einem 5-zackigen Stern erzeugt. 
Auch die Koch-Insel ist ein Kepler-Fraktal und ergibt sich aus einem David-Stern. 
  
Dieser Algorithmus ist nicht auf die Ebene beschränkt und kann auch auf Polyeder 
übertragen werden. 
Insbesondere ergeben sich aus den zwei von Johannes Kepler beschriebenen 
Polyedern, dem kleinen Sterndodekaeder und der Stella Octangula, interessante 
Fraktale. 
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Cesàro-Kurve 
Behält man die Konstruktionsvorschrift der Koch-Kurve bei, ersetzt aber nicht das mittlere Drittel einer 
Teilstrecke, sondern errichtet in der Mitte eine Senkrechte halber Länge, so ensteht die Cesàro-Kurve 
(1905). 
Der Initiator ist die Einheitsstrecke. Der Basiswinkel des von der Kurve umschlossenen gleichschenkligen 
Dreiecks liegt im Bereich von 0° bis 90°. 
Die fraktale Dimension ist 2. Die Kurve wurde erstmals von Ernesto Cesàro beschrieben. 

     
 
Kurven-Fraktale, Curlicues  
Gegeben ist eine irrationale Zahl z. Die Iteration 
pn+1 = (pn + 2  z) (mod 2)  p0 = 0 
n+1 = pn + n (mod 2)  0 = 0 
wobei nach jedem Schritt eine Strecke der Länge 1 mit dem Winkel n zur 
x-Achse gezeichnet wird, erzeugt eine spezielle Art von Fraktal, die 
sogenannten Kurven-Fraktale (Curlicues). nach Pickover 1995 
Abbildung: Kurven-Fraktal für z = /7 
 
 
 
 
 
 
 
Box Fraktal  
Nn sei die Anzahl von schwarzen Rechtecken, Ln die Länge einer Seite eines weißen Rechtecks und An der 

Anteil der schwarzen Bereiche nach der n-Iteration. Dann gilt: 
 Nn = 5n    Ln = 3-n 
 An = Ln² * Nn = (5/9)n 
Die Box-Counting-Dimension des entstehenden Fraktals ist ln 5 / ln 3 = 
1.464973521... 
 
Haferman-Teppich  
Der Haferman-Teppich ist eine fraktales Gebilde der 
Dimension 2, das durch iteratives Ersetzen von Zellen 
erzeugt wird. 
Die Regeln sind links abgebildet. Eine leere, weiße Zelle 

wird durch ein schwarze ersetzt, die wiederum durch vier kleinere 
schwarze und fünf weiße. 
Das Fraktal wurde 2003 auf einem Buch von Allouche und Shallit 
abgebildet. 
  
Die Anzahl von schwarzen Zellen nach n = 0, 1, 2, … Iterationen ist 
1, 4, 61, 424, 4441, 36844, 347221, 3046864, 27812401, 248358484, 
2244991981, 20156099704, 181649037961, 1633620638524, 
14708689262341, 132347685782944, 1191281759937121, 
10720772899980964, 96490770797094301, … 

Für die Anzahl Nn der schwarzen Zellen 
und die Länge Ln der weißen Zellen gilt
 Nn = 1/14 ((-1)n 5n+1 +9n+1) 
 Ln = 3-n 
 
Blanc-mange Kurve 
Diese Kurve wurde erstmals 1903 von 
Takagi und 1930 von van der Waerden 
untersucht. Mitunter wird sie auch Takagi-Kurve genannt. Der 
merkwürdige Name „Blanc-mange“ wurde von John Mills gegeben und 
bezieht sich auf der „Ähnlichkeit“ der Kurve zu einem Pudding-Produkt 
einer britischen Firma. D.h. also, hier wird eine „Pudding“-Kurve 
untersucht.  
Kartesische Gleichung 
 y =  d(2k x) / 2k, 
Summenbildung für k = 0, …, . Dabei bedeutet der Term d(x) den 
Abstand der x zur nächsten ganzen Zahl. 
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Dreiecksfraktal  
Bei diesem Fraktal werden in ein Einheitsquadrat fortlaufend Dreiecke 
derart eingefügt, dass die neuen Dreieckspunkte waagerecht zwischen 
benachbarten Punkten liegen und in der Senkrechte der Abstand zum 
oberen Rand halbiert wird. 
Dadurch entsteht ein Gebilde, dass unendlich oft fortgesetzt werden kann 
und fraktalen Charakter besitzt. 
  
In der linken Darstellung wechseln sich blaue und rote Farbe ab. 
Für den roten Anteil erhält man bei unendlichem Fortsetzen 
 1/4 + 2/16 + 3/64 + … =  i (1/4)i = 4/9 
für den blauen Anteil analog 5/9.  
Ordnet man das Ausgangsdreieck zyklisch in einer Kreisform an und fügt 
auf analoge Weise weitere Dreiecke an, so ensteht ein Fraktal, dass an 
eine Blüten erinnert, ein Blumenfraktal. 
 
Logistische Gleichung  
 xn+1 = r xn (1 - xn) 
Auf der Suche nach einem deterministischen Zufallszahlengenerator wurde die Gleichung 1947 von 

S.M.Ulam und J. von Neumann intensiv studiert. Allerdings waren die Zahlen im 
Intervall [0, 1] nicht genügend gleichverteilt. 
Spezialfall der Verhulst-Gleichung (1845) zur Beschreibung eines 
Populationswachstums  Nt+1 = Nt (a - b Nt) 
Ableitung aus quadratischer Gleichung   xn+1² = A + Bxn + Cxn² 
mit Transformation xn = k·xn + d und A = r/4+1/2; B = 0; C = -r; k = 1; d = 1/2 
  
Fixpunkt bei x  f(x) = x  stabiler (anziehender) Fixpunkt  |f'(x)| < 
1 
superstabiler Fixpunkt  |f'(x)| = 0 instabiler (abstoßender) Fixpunkt  |f'(x)| 

> 1 
 
Verhalten der logistischen Gleichung  
0 < r  1 stabiler Fixpunkt x = 0 
1 < r  3 stabile Fixpunkte x = 0 und x = 1-1/r 
  
ab r=3 Periodenverdopplung für r = 3, 3,449399, 3,544090, 3,564407, 3,568759, 3,569692, 3,569891, 
3,569934, …   Grenzwert der Periodenverdopplung r = 3,5699456 
darüber (mit Ausnahme der periodischen Fenster) erfolgt chaotisches Verhalten 
 
Exakte Lösung im Chaosfall (r=4)  
für x0  1/2 - 1/2 * cos (r/2s); r, s ganzzahlig 
ergibt sich  
 xn = 1/2 - 1 /2 cos (2n arccos(1 - 2x0)) 
Gekoppelte einparametrige Gleichung  
 xn+1 = r xn (1 - xn) + (r - 1) yn  

 yn+1 = r yn (1 - yn) + (r - 1) xn 
Gekoppelte zweiparametrige Gleichung  
 xn+1 = r xn (1 - xn) +  (yn - xn)
 yn+1 = r yn (1 - yn) +  (xn - yn) 
Kaneko-Systeme  
Kaneko I - System (1986):  
 xn+1 = 1 - a xn² + d (yn - xn)  
 yn+1 = 1 - a yn² + d (xn - yn) 
Kaneko II - System (1986):  
 xn+1 = a xn + (1 - a) (1 - d | yn | )
 yn+1 = xn 
 
Abbildung: Feigenbaum-Diagramm der logistischen Gleichung 
 
Ljapunow-Exponent  
Der Ljapunow-Exponent eines dynamischen Systems; nach Alexander Michailowitsch Ljapunow; 
beschreibt die Geschwindigkeit, mit der sich zwei nahe beieinanderliegende Punkte im Phasenraum 
voneinander entfernen oder annähern. 
Für jede Dimension des Phasenraums gibt es einen Ljapunow-Exponenten, die zusammen das 
sogenannten Ljapunow-Spektrum bilden. Häufig betrachtet man nur den größten Ljapunow-Exponenten, 
da dieser das gesamte Systemverhalten bestimmt. 
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Im eindimensionalen Raum ist der Ljapunow-Exponent  einer iterierten Abbildung xn+1 = f(xn) wie folgt 
definiert:   (x0) = limN 1/N ln |dfN(x0) / dx| 
Ist der größte Ljapunow-Exponent positiv, so ist das System in der Regel divergent. 
Ist er negativ, so entspricht dies einer Phasenraumkontraktion, d.h. das System ist dissipativ und agiert 
stationär oder periodisch stabil. 
Ist die Summe der Ljapunow-Exponenten Null, so handelt es sich um ein konservatives System. 
 
Verhulst-Iteration, Verhulst-Gleichung  
Iteration: xn+1 = 4·p·xn·(1-xn) 
x0 Anfangswert, 0< p< 1, n = 0, 1, 2, … 
xn = Bestand der Population im Jahre n, wobei die Population des Folgejahres proportional zu xn und zu 
(1-xn) ist, d.h. proportional zum Bestand als auch proportional zum Nahrungsangebot. 
Verhulst wählte für diese logistische Gleichung p = 0,892 als ein eindimensionales Beispiel der 
nichtlinearen Dynamik. 
Eigenschaften: Für kleine p konvergiert die Folge gegen einen Fixpunkt.  
Für größere Werte oszilliert die Folge nach einer Einschwingphase mit der Periode 2, 4, 8, 16, 32, … 
Die zugehörigen Parameterwerte p  bilden eine geometrische Reihe mit: 
 lim (pn+2 - pn+1)/(pn+1 - pn) = 4,6692016 … universelle Feigenbaumkonstante 
Nach Überschreiten aller Periodenverdopplungen ist für p > 0,8924… die Folge deterministisch chaotisch. 
Eine winzige Veränderung des Anfangswertes x0 führt zu einer vollständig veränderten Folge. 
 
Räuber-Beute-System nach Vito Volterra (1931):  
x ... Anzahl Hasen, y ... Anzahl Luchse 
Fortpflanzungsgeschwindigkeit Hasen dx/dt = k1 * x 
Fortpflanzungsgeschwindigkeit Luchse dy/dt = - k4 * y 
Geschlossenes System  dx/dt = k1 * x - k2 * x * y   
    dy/dt = k3 * x * y - k4 * y 
Allgemeine Lösung des Systems y - ln y = ln x - x + k 
Abbildung: Volterra-Funktion mit Störfaktoren 
 
Einfluss von Störfaktoren    0,  > 0, sx(x,y), sy(x,y) Störfunktionen 
dx/dt = k1 * x - k2 * x * y +  * sx(x,y)  dy/dt = k3 * x * y - k4 * y +  * sy(x,y) 
 
Populationsbiologie, Wachstumsgesetze  
Geburtenrate  GR = +NG / (dt N)  Sterberate SR = -NT / (dt N) 
Vermehrungsrate r = GR + SR 
Logistisches reales Wachstum  dN/dt = r * N * (K-N)/K ; Lebensraumkapazität 
(max.Populationsgröße) K 
 
Lotka-Voltera-Gleichung  
Die Lotka-Voltera-Gleichungen, auch Räuber-Beute-Gleichungen genannt, sind ein System aus zwei 
nichtlinearen, gekoppelten Differenzialgleichungen erster Ordnung und beschreiben die Wechselwirkung 
von Räuber- und Beutepopulationen. 
Unter Räuber und Beute versteht man dabei zwei Arten von Lebewesen, wobei sich eine von der anderen 
ernährt ("Deux espèces dont l'une dévore l'autre"). 
Aufgestellt wurden die Gleichungen 1925 von Vito Voltera und, unabhängig davon, 1926 von Alfred 
James Lotka. 
 dN1 / dt = N1 (1 - 1 N2)   dN2 / dt = - N2 (2 - 2 N1) 
mit den Größen 
N1 = N1(t) Anzahl der Beutelebewesen; zeitabhängig  
1 > 0 Reproduktionsrate der Beute ohne Störung und bei großem Nahrungsangebot; konstant 
N2 = N2(t) Anzahl der Räuber; zeitabhängig 
2 > 0 Sterberate der Räuber, wenn keine Beute vorhanden sind; konstant 
1 > 0 Fressrate der Räuber pro Beutelebewesen = Sterberate der Beute pro Räuber; konstant 
2 > 0 Reproduktionsrate der Räuber pro Beutelebewesen; konstant 
  
Die Lotka-Voltera-Gleichungen sind eine wichtige Grundlage der theoretischen Biologie, und insbesondere 
der Populationsdynamik. Bei den Räubern und der Beute muss es sich nicht unbedingt um Tiere oder 
einzelne Arten handeln. Das Modell kann auch für Tierklassen oder Einzeller genutzt werden. 
Die Anwendbarkeit der Lotka-Voltera-Gleichungen hängt davon ab, inwieweit die Begründung des 
mathematischen Modells im Einzelfall zutrifft. 
 
Die Lotka-Voltera-Gleichung kann durch folgende Überlegung gewonnen werden (nach Volterra "Leçons 
sur la Théorie Mathématique de la Lutte pour la Vie"): 
Die Populationszahlen der Beute bzw. der Räuber seien mit N1 bzw. N2 bezeichnet. Die ungestörten 
Wachstumsraten pro Zeiteinheit dt seien 1 und 2, deren Vorzeichen noch nicht festliegen. 
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Die mittlere Anzahl der Begegnungen zwischen Beute und Räuber pro Zeiteinheit dt ist  N1 N2 mit einer 
positiven reellen Zahl , die innerhalb eines Biotops als konstant angenommen wird, aber im allgemeinen 
vom Biotop abhängt. 
Eine genügend große Zahl n Begegnungen haben im Mittel einen Effekt i auf die Populationszahl Ni. Bei 
den Beutelebewesen führt eine Begegnung mit einem Räuber mit einer gewissen Wahrscheinlichkeit 
dazu, dass die Beute gefressen wird. Dagegen ist die Auswirkung einer Begegnung auf die Zahl der 
Räuber nur indirekt. 
Zusammengenommen führt das zu den Gleichungen 
 dN1 = 1 N1 dt +  N1 N2 1/n dt  dN2 = 2 N2 dt +  N1 N2 2/n dt 
Division mit dt führt zu den Gleichungen 
 dN1/dt = 1 N1 +  N1 N2 1/n  und  dN2/dt = 2 N2 +  N1 N2 2/n 
Setzt man      1 = 1 , 2 = -2 , 1 = -1/n , 2 = -2/n 
und führt einen Grenzübergang durch, so ergeben sich die Lotka-Volterra-Gleichungen. 

  
Räuber-Beute-Modell  
Zwei Populationen leben in einem geschlossenen, isolierten Ökosystem. 
Dabei ernährt sich die Population y (Füchse) ausschließlich von der 
Population x (Hasen). Wir wollen nun wissen, wie viele Hasen und wie viele 
Füchse in unserem System zu einem beliebigen Zeitpunkt t leben.  

Annahmen: 
Erstens vermehren sich die Hasen proportional zu ihrer eigenen Anzahl, wenn es keine Füchse gibt. 
Zweitens sterben die Füchse aus, wenn es keine Hasen gibt. Und drittens ist die Wahrscheinlichkeit, dass 
ein Fuchs einen Hasen trifft, um so größer, je mehr es von diesen Tieren gibt, also proportional zur Größe 
der beiden Populationen x und y, d.h. je Zeitschritt:   
  dx / dt = a x -  x y   dy / dt = -c y +  x y 
Dabei sind a und c die Wachstumsraten der beiden Populationen,  die Wahrscheinlichkeit, dass bei 
einem Treffen von Füchsen und Hasen der Fuchs auch tatsächlich den Hasen frisst, und  dieselbe 
Wahrscheinlichkeit mal der Anzahl an Füchsen, die ein Hase ernähren kann. 
Der Term ax entspricht dem natürlichen Zuwachs an Hasen, xy ist die Menge der von Füchsen 
gefressenen Hasen. -cy ist die Abnahmerate (Geburtenrate minus Todesrate) der Füchse, wenn es keine 
Hasen gäbe, und xy steht für die Anzahl der Füchse, die Hasen fressen können und dadurch überleben. 
Dieses Gleichungssystem ist nicht explizit nach der Zeit lösbar, sondern muss angenähert werden. 
Eulerverfahren:   
  x(t + t) = x(t) + t(ax(t) - x(t)y(t))  y(t + t) = y(t) + t(- cy(t) + x(t)y(t))  
Ein Beispiel für das Resultat, das uns ein Computer gibt, sehen wir in nebenstehendem Bild, wo die Größe 
der beiden Populationen gegen die Zeit abgetragen ist.  
 
Wator  
Wator ist eine diskrete Simulation eines einfachen Räuber-Beute-Modells und wurde von Alexander 
K.Dewdney erfunden und im Scientific American zuerst veröffentlicht. Simuliert wird ein abgeschlossenes 
System, der Planet Wa-Tor, auf dessen Oberfläche Haie und Fische leben. Jedes der beiden Lebewesen 
verhält sich nach eindeutig festgelegten Regeln:  
1. Jeder Fisch schwimmt zufällig auf eines der vier angrenzenden Felder, sofern es leer ist.  
2. Jeder Fisch hat ein Alter; überschreitet dieses Alter die "Breed Time", so wird auf einem leeren, 
angrenzenden Feld ein neuer Fisch geboren.  
3. Haie fressen Fische auf angrenzenden Feldern.  
4. Findet ein Hai keinen Fisch auf einem angrenzenden Feld, so schwimmt er zufällig auf eines der vier 
Felder.  
5. Findet ein Hai für eine bestimmte Anzahl Zyklen, der "Starve Time" keinen Fisch, so stirbt der Hai.  
6. Haie pflanzen sich genau so fort wie Fische.  
  
Die Spielfläche ist dabei auf allen je zwei gegenüberliegenden Seiten torisch verbunden, ein Fisch, der 
sich nach oben aus dem Spielfeld bewegt, wird also auf der Unterseite auftauchen und umgekehrt, 
ebenso in horizontaler Richtung.  
Die Simulation hängt von 5 veränderbaren Parametern ab: der Anzahl der Fische zu Beginn, der Anzahl 
der Haie zu Beginn, der Fish Breed Time, der Shark Breed Time und der Shark Starve Time. Außerdem 
hängt der Ablauf der Simulation von der Größe des Planeten ab, diese wird aber als gegeben 
vorausgesetzt. Die Simulation kann als Spiel aufgefasst werden, das Ziel des Spieles ist es dann, die 
Startparameter so zu wählen, dass ein stabiles Gleichgewicht entsteht. Abhängig von den 
Startparametern gibt es verschiedene Möglichkeiten, wie sich die Simulation entwickeln kann:  
1. Die Haie können aussterben und den Fischen freien Lauf lassen.  
2. Die Fische können aussterben, was ein Aussterben der Haie nach sich ziehen wird.  
3. Es kann eine Art Gleichgewicht entstehen, in dem sich die beiden Population gegenseitig begrenzen.  
Bei Wa-Tor handelt es sich um eine Diskretisierung eines einfachen Räuber-Beute-Modells, die dennoch 
interessante (und erheiternde) Resultate hervorbringen kann.  
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Ljapunow-Diagramm  
In der Mathematik sind Ljapunow-Diagramme; auch Ljapunow-Fraktale 
oder Markus-Ljapunow-Fraktale; nach Alexander Michailowitsch Ljapunow; 
Fraktale hergeleitet von einer Erweiterung der logistischen Gleichung, in der 
der Wachstumsgrad der Population, r, periodisch zwischen zwei Werten A 
und B schwankt. 
Abbildung: Ljapunow-Fraktal mit der Sequenz AB  
  
Ljapunow-Diagramme beschreiben die Intensität der Ordnung und des 
Chaos eines jeden Wertes einer chaotischen Gleichung im 
zweidimensionalen Raum. 
 

Fraktale ... Punktmenge mit "bizarren" Eigenschaften 
Eine Punktmenge F  Rn heißt, nach Falconer, ein Fraktal, wenn gilt: 
1. F hat eine Feinstruktur, d.h. sie zeigt auf beliebig kleinen Skalen noch 
Struktur 
2. F ist irregulär, um lokal oder global mit der Euklidischen Geometrie 
beschrieben werden zu können 
3. F zeigt exakte oder angenäherte Selbstähnlichkeit 
4. F hat eine fraktale, gebrochene, Dimension, die meist die Euklidische 
übersteigt. F kann auf einfache Weise definiert werden, meist rekursiv. 
 
Fraktale Dimension  
M sei beschränkte Menge. Minimalzahl der zur Überdeckung von M benötigten 
Kugeln mit dem Radius  sei N(). 
Existiert die reelle Zahl  mit 
 lim0 

 * N() = , falls <d  lim0 
 * N() = 0, falls >d 

so heißt d Box-Counting-Dimension oder Hausdorff-Dimension von M. 
Das Verfahren zur empirischen Bestimmung von Hausdorff-Dimensionen mittels eines Gitters bestimmter 
Maschenweite heißt Box-counting-Algorithmus. 
Zerfällt eine selbstähnliche Menge bei einer zentrischen Streckung mit einem Streckfaktor k = 1/r in N 
gleichartige Teile, so ist die fraktale Dimension  D = ln N / ln (1/r) 
Komplexe selbstähnliche Objekte besitzen i.a. eine gebrochene Hausdorff-Dimension. Deshalb werden sie 
auch Fraktale (engl. fraction = Bruch) genannt. 
Beispiele:  
Koch-Kurve D = ln 4 / ln 3 = 1,2618595  
Cantor-Menge D = ln 2 / ln 3 = 0,6309297 
Hilbert-Kurve D = ln 4 / ln 2 = 2   
Sierpinski-Dreieck D = ln 3 / ln 2 = 1,5850 
 
Natürliche Fraktale 
Eine andere Definition der fraktalen Dimension, die aber zum gleichen Ergebnis führt, ist aus dem 
Studium von natürlichen fraktalen Kurven entstanden. 

Als Beispiel soll die Bestimmung der Länge L einer Küstenlinie dienen. Man kann versuchen, eine grobe 
Näherung für  L  zu erhalten, indem man auf einer Karte die Küstenlinie mit einem relativ großen 
Längenstab "abgreift", z.B. wie im folgenden Bild: 

Sei nun  s  die Länge des Stabes und  L(s)  die Länge des 
Polygonzuges. Ist etwa im Bild  s = 1  gewählt, so ist  
L(1) = 11 .  L(s)  als Näherung für  L  aufzufassen, zudem 
mit der Vorstellung, dass  lim L(s) = L  für  s -> 0 , führt 
aber in die Irre. Denn tatsächlich strebt  L(s)  für  s -> 0  

gegen Unendlich. 
Eine endliche Küstenlänge gibt es also eigentlich nicht. Welche Länge einer Küste zugeschrieben wird, 
hängt von der Feinheit des Messinstrumentes ab. Nun stößt man aber bei tatsächlichen Vermessungen 
immer wieder auf eine Regelmäßigkeit, nämlich  L(s) = k·s1-D  mit Konstanten k > 0 und D > 1, die von 
der Küstengestalt abhängen. Dieses D entpuppt sich als die oben beschriebene fraktale Dimension, wenn 
man das Verfahren mit den Längenstäben auf "determinierte" Fraktale anwendet. Im nächsten Bild wird 

die Koch'sche Schneeflocke mit Längenstäben (in Grün) der 
Maße s = 1, 1/3, 1/9 abgegriffen: 
 
Hier wurde s = (1/3)n gewählt. Weiter oben sind die zugehörigen 
Längen der Polygonzüge schon angegeben 
worden: L(s) = 3·(4/3)n . Wegen n = -log s / log 3  und der 
Logarithmusregel alog b = blog a ist L(s) = 3·slog 3/4 / log 3 = 3·s(log 3 -

 log 4) / log 3 = 3·s1 - log 4 / log 3 . Daher ist hier k = 3 und D = log 4 / log 3. Also ist gerundet L(s) = 3·s-0.26. 
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Für etliche Küsten auf der Erde wurden die fraktalen Dimensionen ermittelt. Es ist nicht verwunderlich, 
dass es Küsten unterschiedlicher "Rauheit" gibt. Hier sind drei Beispiele: Australien   D = 1.13 ; 
Großbritannien   D = 1.25  ; Norwegen   D = 1.52. 
Küsten sind also keine eindimensionalen Kurven, sondern fraktale Gebilde wie die Koch'sche 
Schneeflocke. 
 

Fraktales Gebirge, fraktale Landschaft  
Objekte aus der Natur können durch fraktale Darstellungen 
realistisch angenähert werden. 
Geht man von einem Dreieck im R³ aus, fügt in dieses 4 
kleinere Dreiecke ein, wiederholt diesen Prozess mehrfach, so 
ergibt sich das Modell eines Gebirges. 
 
  

Lichtenberg-Figur, Lichtenberg-Struktur  
Lichtenberg-Figuren sind schöne, baum-, farn- oder sternförmige Muster, 
die in isolierenden Materialien durch elektrische 
Hochspannungsentladungen entstehen. 
Sie sind nach dem deutschen Physiker und Mathematiker Georg Christoph 
Lichtenberg benannt, der sie als zweidimensionale Muster in seinem Labor 
entdeckte, als sie sich im Staub auf der Oberfläche einer geladenen 
Isolatorplatte bildeten. 
  
Zu jener Zeit nahm man an, dass das verästelte Erscheinungsbild dieses 
elektrostatischen Phänomens, Aufschluss über die Natur des elektrischen 
Flusses geben könne. Lichtenberg-Figuren entstehen typischerweise durch 
die Entladung bzw. Umverteilung von sich auf der Oberfläche von 

Isolatorplatten befindlichen Ladungen. 
Die der Bildung der Lichtenberg-Figuren zugrundeliegenden physikalischen Prinzipien sind dieselben, auf 
die sich die moderne Elektrofotografie begründet, die heute in Kopiergeräten wie Fotokopierern und 
Laserdruckern eingesetzt werden. 
 
Selbstähnlichkeit, Skaleninvarianz  
Eine Menge A heißt selbstähnlich, wenn endlich viele Teilmengen A1, A2, ..., An von A und 
Ähnlichkeitstransformationen T1, T2, ..., Tn derart existieren, dass 
 A = T1(A1)  T2(A2)  ...  Tn(An) 
Beispiel eines selbstähnlichen Farnblattes: 
Die Fiederung setzt sich aus Teilblättern zusammen. Bis auf einen Verkleinerungsfaktor (Skalierung) sind 
diese identisch mit dem Gesamtblatt. Diese gilt wiederum auch für die Fiederung der Teilblätter. 
 
Ähnlichkeitsabbildungen der Cantor-Menge   T1(x) = x/3 und T2(x) = x/3 + 2/3 
Ein Objekt heißt selbstähnlich, wenn es bei der Teilung der Kanten in r gleiche Abschnitte in N gleiche 
Teile zerfällt. 
Streckfaktor  k = 1/r  fraktale Dimension D = ln N / ln (1/r) N * rD = 1 
 

Chaos, deterministisches  
Abbildung: "Chaos" von Leonardo da Vinci, 1514 
 
Der Begriff des (deterministischen) Chaos in der nichtlinearen Dynamik hat 
nur wenig mit dem komplexen oder sogar regellosen Durcheinander zu tun, 
das er umgangssprachlich bezeichnet.  
Vielmehr geht es dabei um Systeme, deren zeitliche Entwicklung mehr oder 
weniger einfachen Bewegungsgleichungen folgt (z. B. die vorgestellten 
Gleichungen des Pendels oder Lorenzsystems). 
Wenn man diese Gleichungen und einen vollständigen Satz von 
Anfangsbedingungen (z.B. die Parameter X, Y und Z des Lorenzsystems zur 
Zeit t = 0) kennt, kann man durch Integration der Bewegungsgleichungen im 
Prinzip die Systementwicklung für alle Zukunft berechnen, d.h. vorhersagen 
(oder auch in die Vergangenheit zurückrechnen) - das Systemverhalten ist 
determiniert. 
Die Anfangsbedingungen lassen sich allerdings nie beliebig genau 
bestimmen, ihre Messung unterliegt der Messgenauigkeit der verwendeten 

Methode, der auch bei größter Anstrengung letztlich durch die Heisenbergsche Unschärferelation eine 
prinzipielle Grenze gesetzt ist. Oft beeinträchtigt dieser Messfehler die Genauigkeit der berechneten 
zukünftigen Systementwicklung kaum.  
Bei deterministisch-chaotischem Systemverhalten jedoch führt er zu einem im zeitlichen Mittel 
exponentiellen Auseinanderlaufen von vorhergesagter und tatsächlicher Trajektorie. 
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Ebensowenig, wie sich die Anfangsbedingungen beliebig genau messen lassen, gelingt es, mehrere 
ansonsten identische chaotische Systeme mit den exakt gleichen Anfangsbedingungen zu präparieren.  
Nach Verstreichen einer Zeit, die von den Systemparametern, aber auch von den Anfangsbedingungen 
selbst abhängt unterscheiden sich die Zustände der einzelnen Systeme völlig, da die minimalen 
Differenzen der Systemparameter mit der Zeit wieder im Mittel exponentiell anwachsen.  
Diese Systemeigenschaft nennt man sensitive Abhängigkeit von den Anfangsbedingungen. Sie ist das 
wesentliche Merkmal des determinischen Chaos.  
Die Untersuchung des deterministisches Chaos im beschriebenen Sinn ist Gegenstand der nichtlinearen 
Dynamik.  
 
Chaos-System  
Folgende Eigenschaften eines dynamischen Systems werden i.a. als kennzeichnend angesehen: 
1. Der Bereich des Phasenraums, der von den Trajektorien angelaufen wird, ist beschränkt. 
2. Die Trajektorien sind nicht periodisch. 
3. Ein Attraktor des Systems hat i.a. fraktale Dimension. 
4. Das System hängt empfindlich von den Anfangsbedingungen ab. D.h. die Trajektorien zweier beliebig 
benachbarter Anfangszustände divergieren nach endlicher Zeit.  
Die Divergenzrate kann mithilfe des Ljapunow-Exponenten gemessen werden. 
 

Autonomes System  
Ein dynamisches System heißt autonom, wenn es nicht explizit von 
der Zeit abhängt. Autonome Systeme haben gegenüber 
heterogenen folgende Vorteile: 
1. Die Trajektorien sind eindeutig festgelegt durch die 
Anfangsbedingungen 
2. Die Trajektorien können sich nicht schneiden. 
 

Feigenbaum-Diagramm  
Iteration über p = p f(x), z.B. p = x * (p² -1)  
Ist eine Gleichung der Form f(X)=0 gegeben, so kann eine Nullstelle über Iteration, z.B. mit dem 
Newton-Verfahren; bestimmt werden. Die Konvergenzgeschwindigkeit hängt dabei entscheidend vom 
Startwert x0 ab. Allerdings gibt es auch Funktionen und Anfangswerte bei denen die Iteration divergiert 
oder ganz andere Eigenschaften demonstriert. 

An Hand des Iterationsgraphens kann das Verhalten der Funktion 
abgelesen werden. Bereiche der Konvergenz; es entsteht nur 1 
Funktionswert; Bereiche der Periodizität (2, 4, 8, ... Werte) und 
chaotische Bereiche (Divergenz !) sind festzustellen. Das Beispiel 
konvergiert von x=-1 bis x=1. Ab x=1.3 sind zuerst 2 später 4 Werte 
abzulesen, zwischen den die Funktion oszilliert. Der Abstand zwischen 
den Punkten dieser Verdoppelung nimmt ständig um einen Faktor ab. 
Dieser strebt gegen einen Grenzwert, die Feigenbaum-Konstante = 
4.699201660910299097... 
Dieser Wert ist eine Naturkonstante und allem Anschein nach so 
bedeutend wie die Kreiszahl oder die Eulersche Zahl e. Die 

Verzweigungspunkte (Bifurkations-Punkte, von lat. furca=gabel) treten gerade an den Stellen auf, an 
denen zugeordnete Mandelbrotmengen ihr Aussehen verändern. Die entstehenden graphischen Gebilde 
nennt man nach ihrem Entdecker Mitchell Feigenbaum Feigenbaum-Diagramme.  
Abbildung: Für einen Startwert von P=0.5 und den Standardeinstellungen wird hier die Iteration über der 
Gleichung P=X*(P*P-1) durchgeführt. 
 
Feigenbaum-Konstante   = lim (sn - sn-1) / (sn-1 - sn-2) 
 si ... superattraktive Parameter;   s1 = 2; s2 = 1 + 5 = 3.236067978... 
Näherung mittels Newton-Verfahren   sn  N(a) = a - g(a) / g'(a) 
Berechnung der Funktionswerte g(a), g'(a) für N = 2n-1 
 g(a) = xN - ½  g'(a) = x'N 
Die xi und x'i sind Näherungen der Rekursion 
 xk+1 = a xk (1 - xk) ; x'k+1 = xk (1 - xk) + a (1 - 2xk) x'k ; x0 = 1/2 und x'0 = 0 für k=0, ..., N-1 
Anfangsschätzwert für a = sn+1   sn+1 = sn + (sn - sn-1) / n 
Näherung der Feigenbaumkonstante  n = (sn - sn-1) / (sn-1 - sn-2) 
Anfangsschätzung 2 = 4 
Eine Rechnergenauigkeit von 18 Stellen ermöglicht die Berechnung auf maximal 9 Stellen ! 
 
Tabelle der Näherungen  
n=3 s = 3.498561699330348210  = 4.708943013493023640 
n=4 s = 3.554640862768824870  = 4.680770998278802880 
n=5 s = 3.566667379856268510  = 4.662959610894031280 
n=6 s = 3.569243531637110340  = 4.668403925918399630 
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n=7 s = 3.569795293749944620  = 4.668953740967627760 
n=8 s = 3.569913465422348510  = 4.669157181328856740 
n=9 s = 3.569938774233305490  = 4.669191002484840300 
n=10 s = 3.569944194608064930  = 4.669199470548766980 
n=11 s = 3.569945355486468590  = 4.669201134576838590 
n=12 s = 3.569945604111078440  = 4.669201509645291840 
n=13 s = 3.569945657358856500  = 4.669201587299666310 
n=14 s = 3.569945668762899970  = 4.669201602829750400 
n=15 s = 3.569945671205296850  = 4.669201622952224960 
... ab der 16.Näherung verschlechtert sich der Wert; genauerer Näherungswert  = 
4.699201660910299097 ... 
 
Näherung Feigenbaumkonstante  
Merkwürdigerweise gibt es erstaulich gute Näherungen für die Feigenbaumkonstante: 
1.) nach Stoschek  
  4 * (1+ 12²/163 + (4*12²+31)/(4*163²) + ... ) / (1 + 10²/163 + (10²+30)/163² + ...)  
4.66920160933975 
2.)    + tan-1(e) = 4.669201932 ... 
 
Feigenbaumkonstanten höherer Ordnung  
... bei Iteration über die Funktion f(x) = 1 - a |x|n ergeben sich nach Briggs (1991) die Feigenbaum-
Konstanten n.Ordnung zu 
  n       n   
 1 4.699201660910299097 ...  2 5.9679 ... 
 4 7.2846 ...    6 8.3494 ... 
 8 9.2962 ... 
 
Feigenbaumkonstante  
Im März 1999 ermittelte Keith Briggs nach 3 Tagen Rechenzeit auf einem 433 MHz DECalpha durch 
Auswertung von 700 Attraktionspunkten die Feigenbaumkonstante auf 1018 Dezimalziffern genau. 
Die Ziffernfolge ist  
 = 4,6692016091029906718532038204662016172581855774757686327456513430 
0413433021131473713868974402394801381716598485518981513440862714   
2027932522312442988890890859944935463236713411532481714219947455   
6443658237932020095610583305754586176522220703854106467494942849   
8145339172620056875566595233987560382563722564800409510712838906   
1184470277585428541980111344017500242858538249833571552205223608   
7250291678860362674527213399057131606875345083433934446103706309   
4520191158769724322735898389037949462572512890979489867683346116   
2688911656312347446057517953912204556247280709520219819909455858   
1946136877445617396074115614074243754435499204869180982648652368   
4387027996490173977934251347238087371362116018601281861020563818   
1835409759847796417390032893617143215987824078977661439139576403   
7760537119096932066998361984288981837003229412030210655743295550   
3888458497370347275321219257069584140746618419819610061296401614   
8771294441590140546794180019813325337859249336588307045999993837   
5411726563553016862529032210862320550634510679399023341675... 
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Attraktor  
 
Ein Attraktor eines dynamischen System f' ist nach J.P.Eckmann eine kompakte Menge A mit folgenden 
Eigenschaften: 
1. A ist invariant unter ft: ft (A) = A 
2. A hat eine offene Umgebung, die sich unter ft auf A zusammenzieht: limt f

t (A) = A 
3. A hat keine Untermenge, die transient ist. A kann nicht in nichttriviale, kompakte und invariante 
Mengen zerlegt werden; d.h. kann nicht in separate Attraktoren zerlegt werden. 
 
Attraktionsgebiet  
Das Attraktorgebiet oder Bassin eines Attraktors ist die offene Menge aller Anfangsbedingungen x(0), für 
die gilt: limt f

t (x0)  A 
Bahn, Trajektorie  

Die Menge der Punkte { ft }t=n
 t=0 mit f(t0) = x0 heißt Bahn, Orbit oder Trajektorie zur 

Anfangsbedingung x0. 
 
Attraktoren  
Seltsame Kurven, sogenannte Attraktoren (Seltsame Attraktoren, strange attractors), 
ergeben sich z.B. bei der Darstellung numerischer Lösungen von Systemen dreier 
gewöhnlicher Differenzialgleichungen bzw. der punktweisen Darstellung rekursiver Folgen. 
Attraktoren sind Gebilde im Phasenraum. Der Phasenraum hat keine Ortskoordinaten, 
sondern beschreibt andere Zustandsfunktionen (eine Ordinate ist dann z.B. der Ort, die 
andere die Geschwindigkeit oder der Impuls). Die Bahn der Zustände (die durch Ort und 
Impuls gekennzeichnet sind), ist die Trajektorie. Trajektorien streben oft zu für sie 
typischen Gebieten. Diese "Anziehungsgebiete" sind die Attraktoren. Solche Gebiete 
können ein Punkt sein, oder ein Kreis (Grenzzyklus), oder Tori - sowie die sogenannten 
"seltsamen" Attraktoren:  
 
Typ Beispiel  
Anziehungspunkt (Abbildung 1)  
 Pendel mit Reibung, ruhiges Wasser 
Grenzzyklus, Widerstehen der Veränderung durch Rückkopplung (Abbildung 2)  
 Pendel ohne Reibung, Raubtier-Beute-System, Wirbel im schnelleren Wasser 

Torus, gekoppelte Bewegung von zwei Oszillatoren (Abbildung 3)  
 Insekten-Frosch-Zyklus gekoppelt mit Forellen-Hecht-Zyklus, Planetenbewegung 
 selbstähnliche Kaskaden von Lücken 
seltsamer Attraktor - CHAOS  - kleine Startabweichungen große Unterschiede (Abbildung 4)  
nichtperiodische Attraktoren = Fraktale mit gebrochener Dimensionalität 
 Turbulenz (Wasser), Wetter (Lorenz 1960) 
Physikalisches Beispiel: 
Die laminare Strömung von Wasser bei kleinen Geschwindigkeiten fließt glatt dahin und gleicht Störungen 
schnell aus. Der Attraktor ist der Punkt der konstanten Wassergeschwindigkeit. 
Beim rascheren Fließen treten durch Wirbel stabile Wirbel auf. Durch die die sog. Hopf-Instabilität (E.Hopf 
1948) geschieht ein Umschlagen zu Grenzzyklen und bei weiterem Geschwindigkeitsanstieg wird der 
Attraktor ein Torus. 
Es wäre nun zu erwarten, dass bei weiterer Geschwindigkeitserhöhung Tori weiterer Dimensionen erreicht 
werden. In der Realität jedoch passiert etwas anderes:  
Ruelle und Takens erkannten 1972, dass bei einer weiteren Geschwindigkeitssteigerung der Torus 
plötzlich "zerspringt". Es entsteht ein "seltsamer" Attraktor, bei dem durch die Rückkopplung zwischen 
den einzelnen "Stücken" immer neue Stücke entstehen. Es entsteht eine turbulente Strömung, die ein 
Abbild für das sog. "Turbulente Chaos" (Schlemm) ist. 
 
Seltsame Attraktoren  
Durch Robin S. Chapman wurde das Gedicht "Strange Attractors" ("Seltsame Attraktoren") geschrieben: 
 
How to find them, those regions 
Of space where the equation traces 
Over and over a kind of path, 
Like the moth that batters its way 
Back toward the light 
Or, hearing the high cry of the bat, 
Folds its wings in a rolling dive? 
And ourselves, fluttering toward and away 
In a pattern that, given enough 
Dimensions and point-of-view, 
Anyone living there could plainly see— 
Dance and story, advance, retreat, 

A human chaos that some slight 
Early difference altered irretrievably? 
For one, the sound of her mother 
Crying. For this other, 
The hands that soothed 
When he was sick. For a third, 
The silence that collects 
Around certain facts. And this one, 
Sent to bed, longing for a nightlight. 
Though we think this time to escape, 
Holding a head up, nothing wrong, 
Finding a way to beat the system, 
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Talking about anything else— 
Travel, the weather, time 
At the flight simulator—for some 

The journey circles back 
To those strange, unpredictable attractors, 
Secrets we can neither speak nor leave.

 
Rössler-Attraktor  
 dx/dt = - y – z  dy/dt = x + a*y 
 dz/dt = b*x - c*z + x*z 
Rössler-Attraktor 2  
 dx/dt = y + a*x  dy/dt = - x - z 
 dz/dt = b*y - c*z + y*z 
Der deutsche Mediziner Otto Rössler fand dieses System nach dem er 
von Lorenz und seinem Attraktor erfuhr. Über seinen Attraktor sagt 
Rössler selbst: 
 
"Er ist wie ein offener Strumpf mit einem Loch am Ende und der Wind 

bläht ihn auf. Dann sitzt der Wind in der Falle. Gegen ihren Willen 

bewirkt die Energie nun etwas Produktives, so wie der Teufel in 

mittelalterlichen Geschichten. Das Prinzip ist, dass die Natur etwas 

gegen ihren eigenen Willen tut und durch Selbstverwirklichung 

Schönheit hervorruft.” 

 
Dieses System wird in den meisten 
einführenden Schriften über 
Chaostheorie beschrieben. 
Darüberhinaus wird es oft als Testsystem für nichtlineare Methoden 
verwendet.  
Der Grund für die Beliebtheit dieses Systems ist seine Verwandtheit mit dem 
Lorenz-System. Das Rössler-System zeigt auch die wichtigsten typischen 
Eigenschaften chaotischer Systeme: einen seltsamen Attraktor, Übergang 
ins Chaos durch Periodenverdopplung, Streckung und Faltung des 
Attraktors, usw. 

 
Lorenz-Attraktor  
Der Lorenz-Attraktor kann (bei Wahl entsprechender Parameter, z.B. a=10, b=28 und c=2.5) in zwei 
markante Bereiche eingeteilt werden.  
Meist verweilt die Kurve längere Zeit in einem Bereich, um dann plötzlich und unvorhersehbar die Seite 
zu wechseln. Dieses chaotische Verhalten ist gut zu beobachten. 
Der Lorenz-Attraktor stellt eine sehr gute Simulation der Bewegung einer Masse in einem von zwei 
weiteren (größeren) Massen aufgespannten Gravitationsfeld dar. Gefunden wurde dieses Fraktal durch 
Lorenz bei der Simulation von Wettervorhersage-Systemen und ging unter der Bezeichnung 
"Schmetterlings-Effekt" in die mathematische Geschichte ein. 
  dx/dt = a*( y- x)   dy/dt = b*x - y - x*z  dz/dt = x*y - c*z 
Lorenz-Attraktor 2    

dx/dt = (-a-1)*x + (a-b)*y + (1-a)*norm + y*z   
dy/dt = (b-a)*x - (a+1)*y + (b+a)*norm - x*z - norm*z 
dz/dt = y/2 - c*z   norm = (x²+y²) 

 
Schmetterlingseffekt, Butterfly effect  
Als Schmetterlingseffekt (butterfly effect) ist die Erscheinung, dass in 
komplexen, nichtlinearen dynamischen Systemen eine große 
Empfindlichkeit auf kleine Abweichungen in den Anfangsbedingungen 
besteht. Geringfügig veränderte Anfangsbedingungen können im 
langfristigen Verlauf zu einer völlig anderen Entwicklung führen. 
  
Der Begriff Schmetterlingseffekt stammt von dem US-amerikanischen Meteorologen Edward N.Lorenz, 
der 1972 in einem Vortrag über ein meteorologisches Berechnungssystem mit der Frage "Kann der 
Flügelschlag eines Schmetterlings in Brasilien einen Tornado in Texas auslösen?" für Aufsehen sorgte. 
Ursprünglich sprach Lorenz aber vom Flügelschlag einer Möwe statt eines Schmetterlings. 
  
Die Fragestellung ist unklug gewählt, da viele Menschen den Schmetterlingseffekt als Synonym für einen 
Schneeballeffekt ansehen, bei dem kleine Effekte sich über eine Kettenreaktion selbst verstärken. 
Diese Aussage hat Lorenz nicht getroffen. Vielmehr zeigte er, dass kleine Abweichungen langfristig ein 
ganzes System vollständig und unvorhersagbar verändern können. 
Bei einer ersten Berechnung seines Lorenz-Attraktors verwendete er einen auf sechs Stellen genauen 
Wert, bei der zweiten Berechnung einen auf drei Stellen genauen. Obwohl die Abweichung nur etwa 
1/10000 betrug, wich die Berechnung mit der Zeit von der ersten stark ab. 
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Henon-Attraktor  
 x = y - a * x² +1   

y = b *x 
Abbildung für a=0.01 und b=0.99995, 50000 Iterationen 
Der Hénon-Attraktor eignet sich gut, um zwei wesentliche 
Charakteristika chaotischer Systeme zu veranschaulichen. Das erste ist 
die sensitive Abhängigkeit von den Anfangsbedingungen.  
Systeme, die die gleichen Systemparameter haben, sich aber in den 
Anfangsbedingungen unterscheiden, und sei es noch so geringfügig, bewegen sich im Laufe der Zeit 
auseinander - und zwar im zeitlichen Mittel sogar exponentiell.  
Die zweite Eigenschaft heißt Ergodizität. Vereinfacht gesprochen verteilt sich eine große Anzahl gleicher 
Systeme, die zwar die gleichen Systemparameter, aber unterschiedliche Startpunkte hatten, ein 
sogenanntes “statistisches Ensemble”, nach Ablauf einer hinreichend langen Zeit zu einem ansonsten 
beliebigen festen Zeitpunkt ebenso auf dem Attraktor wie die Folge der Iterationen eines einzigen, fast 
beliebigen Startpunktes. 
 

  
Henon-Attraktor für a = 1.4 und b = 0.3 Feigenbaum-Digramm des Henon-Attraktors 

Völlig verblüffend ist, dass der Henon-Attraktor bei folgendem realen Experiment auftaucht. Untersucht 
man einen tropfenden Wasserhahn, so stellt man fest, dass der zeitliche Abstand fallender Tropfen 
scheinbar völlig chaotisch verteilt ist. Bei einer hinreichend langen Beobachtungszeit zeigt sich aber, dass 
die Zeitabstände sich entsprechend dem Henon-Attraktor verteilen. 
 
Einfluss des Parameters a: für -0.1225<a<0.3675 konvergiert der Atraktor auf einen Punkt der Ebene,  
für 0.3675<a<0.9 existieren zwei Kontraktionspunkte, für 0.9<a<1.02 kommt es zu einer weiteren 
Periodenverdopplung, für a = 1.4 geht das System endgültig in den chaotischen Zustand über 
 

Tomita-Attraktor  
Von Tomita und Kai wurde die Brüsselator-Gleichung um einen sinusförmigen 
Term ergänzt und 1987 in "Stroboscopic phase portrait und strange attractors" 
veröffentlicht: 
 dx/dt = a + x²y - bx - x -c cos(ft)  dy/dt = bx - x²y 
Normalerweise werden die Werte a = 0,4, b = 1,2 und c = 0,05 gewählt. 
Für wachsende Werte von f erhält man Periodenverdopplungen, beginnend mit f = 
0,8. Für f = 0,95 wird schließlich Chaos erreicht. 
 
Metzler-Attraktor  
Von Metzler und anderen wurde durch nichtlineare 
Kopplung der logistischen Gleichung ein Attraktor 
gefunden. Veröffentlicht wurde dies in Metzer W./Beau 

W. "Symmetry and selfsimilarity with coupled logistic maps". 
Iterationsgleichungen 
 x = x + h (x - x² +y) y = y + h (y - y² +x), h = 1,678 
Die Gleichung entsteht aus der gekoppelten, zweiparametrigen logistischen 
Gleichung durch die Transformationen 
 x  h/(1+h) x  y  h/(1+h) y  r  1+h 
Ab r = 1,684, d.h. h = 0,684, tritt der Attraktor auf. Für h = 0,6 kommt es zu einer Hopf-Bifurkation. Bei 
h = 0,65 beginnt das Chaos. Der entstehende Attraktor ist dem Eiffelturm ähnlich und wird daher auch 
Tour Eiffel de Cassel nach der Institutsstadt Kassel genannt. 
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Duffing-Attraktor  
Der sinusförmig angeregte Duffing-Oszillator wurde von Ueda untersucht in 
"Explosion of strange attractors exhibited by Duffings equation". 
Duffing-Gleichung 
 d²x/dt² + a dx/dt + x³ = b cos t dx/dt = y 
 dy/dt = -ay -x³ + b cos t 
Für die Parameter gilt 0 < a < 1 und 0 < b < 35. Für a = 0,2 und b = 16,5 

tritt periodisches Verhalten auf, für B = 30,75 chaotisches Verhalten. 
 
Martin-Attraktor  
 x = y · (1+sin(a·x)) - b · | x |  y = c - x a = 0,25, b = 0,3 
Ueda-Attraktor  
 dx/dt = y    dy/dt = a (1-x²)y - x³ + b cos(ft) 
 
Gingerbread-Attraktor / Pfefferkuchenmann Attraktor 
Von L.Levaney 1988:  x = 1 - y + | x |  y = x 
Die chaotische Abbildung füllt die Ebene und lässt 6 sechseckigen 
Figuren frei. Die Eckpunkte des inneren Sechsecks sind (0, 0), (1, 

0), (2, 1), (2, 2), 
(1, 2) und (0, 1). 
Trägt man die 
Umrisse des 

Pfefferkuchenmanns in ein Koordinatensystem ein, so 
stellt man fest, dass die Eckpunkte völlig symmetrisch 
sind. 
 
Mira-Abbildung  

x = by + F(x) y = -x + F(xneu)  
F(x) = ax - 2(1-a)x² / (1+x²) 

 
Rayleigh-Gleichung  

dx/dt = y   
dy/dt = (y - y³/3) - x + f cos z      dz/dt =  

Twist-Map  
xn+1 = xn cos a - yn sin a  
yn+1 = xn sin a - yn cos a 

Standard-Abbildung     
xn+1 = xn + yn +  sin xn yn+1 = yn +  sin xn 

McKay-Abbildung  
 xn+1 = -yn + f(xn)  yn+1 = xn+1 - f(xn+1) 
Sinai-Gleichung  
 xn+1 = xn + yn + g/(2) cos (2 yn) mod 1  yn+1 = xn + 2yn mod 1 
Cat-Map-Abbildung  
 xn+1 = (xn + yn) mod 1  yn+1 = (xn + 2yn) mod 1 
Baker-Map-Abbildung  
xn+1 = 2xn, für 0xn0.5 = 2xn -1, für 0.5<xn1 
yn+1 = 0.5yn, für 0xn0.5 = 0.5(yn +1), für 0.5<xn1 
 
van-der-Pol-Abbildung  
1926 entwickelte der niederländischen Physiker Balthasar von der Pol 
einen Röhrengenerator. Dieser Oszillator wird durch die Gleichungen 
 L1dI/dt + RI + Ug - L2dIa/dt = Ue cos 4wt 
 C dUg/dt = 1 
 Ia =  Ug (1 - Ug²/(3²)) 
beschrieben. 
Van der Pol verfolgte den Verlauf der Schwingungen mit Hilfe eines 
Telefonhörers. Dabei stellte er fest, dass sich der Ton kuzzeitige 
stabilisierte um dann sprunghaft von einer Frequenz zur nächsten zu wechseln. Manchmal jedoch, 
veränderte sich der Ton in unregelmäßigen Abständen völlig irregulär. 
Während van der Pol diese Schwankungen als zufällig interpretierte, konnte 1949 durch Cartwright, 
Littlewood und Levinson gezeigt werden, dass hier ein chaotisches Verhalten vorliegt. 
Das zugehörige System wird heute durch die van-der-Pol-Gleichung 2.Ordnung 
 d²u/dt² + a(u²-1) du/dt + u = k cos t 
beschrieben, die in die Gleichungen 
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 dy/dt = x   dx/dt = -a (y²-1) x - y + k cos t 
zerlegt werden kann. Die Abbildung zeigt einen zugehörigen Phasenplot. 

 
Pickover-Attraktor  
Durch Clifford Pickover wurden drei Bildungsvorschriften entwickelt, die 
besonders reizvolle grafische Veranschaulichungen besitzen: 
Die linke Abbildung wurde mit Formel 3 und den Parametern  = 2 und  
= 1 erzeugt. 
Formel 1 
(x,y) = (sin(y)+sin(x)²+sin(x)³, sin(x)+sin(y)²+sin(y)³) 
Formel 2 
(x,y) = (sin(y)+sin(x)²+sin(x)³, sin(x)+sin(y)²+sin(y)³) 
Formel 3 
(x,y) = (sin(y)+sin(x)²+sin(x)³, sin(x)+sin(y)²+sin(y)³) 
 
Der Kamtorus-Attraktor stellt eine Serie 
von Attraktoren dar. Je Attraktor werden 
im Parameter a eingestellte Punkte 
gezeichnet. Parameter b gibt an, um 

welchen Wert der Start des nächsten Attraktors erhöht werden soll. 
Ausgangspunkt dieses Gebildes ist die quadratische Henon-Gleichung. Der 
Name "Kamtorus" bezieht sich auf das KAM-Theorem (Kolmogorov 
(1954), Arnold (1963), Moser (1973)). Ästhetisch sehr schöne Bilder 
erhalten Sie für die Parameter c = 1.3 bzw. c = 1.5732 
 
Hopalong-Attraktor, Hüpfer-Attraktor 
Der Erfinder von Hopalong ist Barry Martin von der Aston University in 
Birmingham/England. A. K. Dewdney beschrieb diese Fraktale im Magazin Scientific American im 
September 1986 und machte sie so bekannt 
   x = y - sgn ( x ) * (| b*x-c |)  y = a - x 

In Dewdneys Aufsatz findet man das folgende Programm.  
Erklärung:  
Der Ausgangspunkt der Grafik ist der Punkt (x,y)=(0,0). Nach zwei getrennten 
Formeln werden xx und yy berechnet. Dabei tauschen sich x und y aus. Dann wird 
zum Plotten "umgeladen". Das wiederholt sich bis num erreicht wird. Die Variable i 
steht für einen Punkt, num ist die Anzahl der Punkte. Die Vorzeichenfunktion 
SIGN(x) ist gleich 1, wenn x>0, -1 wenn x<0 ist; SIGN(0)=0.   
ABS(x) ist die Betragsfunktion und ermöglicht ein Wurzelziehen. Es gibt im 
Programm vier Variable, die eine Figur bestimmen. Das sind die Parameter (a, b, 

c) und die Anzahl der Punkte num. Im rechten Bild wurden a = 300, b = 0.405, c = 150 und num = 
600000 gewählt. Weiter Bilder mit den Parametern a, b, c, num in Klammern: 
 

 

 
  

(150, 0.033, -80, 
2000000) 

(150, 0.22761, 100, 
300000) 

(500, 0.833, 120, 
40000) 

(366, 0.07, 
50,1000000) 

 

   
Chua-Attraktor 
dx/dt = a * (y - x - g(x)) 
dy/dt = b * (x - y + z) 

de Jong Attraktor 
xn+1 = sin(a yn) - cos(b xn) 
yn+1 = sin(c xn) - cos(d xn) 

de Jong Attraktor 
xn+1 = sin(a yn) - cos(b xn) 
yn+1 = sin(c xn) - cos(d xn) 
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dz/dt = -c * y 
g(x) = e x +(d+e)(|x + 1|-|x – 1|) 
a = 15.6 , b = 1.0 , c = 25.58, d = -
1 , e = 0 

a = 2.01 , b = -2.53 , c = 1.61 , d = -
0.33 

a = 2.24 , b = 0.43 , c = -0.65, d = 
-2.43 

  
 

Metz-Attraktor 
xn+1 = a*xn* exp((1 - t(1 + yn))/b) 
yn+1 = a * xn - xn+1 
a = 4.15 , b = 10 

Tinkerbell Attraktor 
xn+1 = xn²  yn² + a xn + b yn 
yn+1 = 2 xn * yn - 2 xn + 0.5 yn 
a = 0.9 , b = 0.6013 

Lorentz-Attraktor 
dx/dt = a*( y- x)   
dy/dt = b*x - y - x*z 
dz/dt = x*y - c*z 

   
Strick Attraktor 
für |xn| < 0.5 gilt 
xn+1 = (2 - a) * xn - b * yn 
yn+1 = -b * xn + a * yn 
für |xn| >= 0.5 gilt 
xn+1 = a*xn-b*yn + (1-a) * sgn(xn) 
yn+1 = b * xn + a * yn - b * sgn(xn) 
a = 0.5, b = 1.1 

Pickover-Attraktor 1990 
xn+1 = sin(a * yn) - zn * cos(b * xn) 
yn+1 = zn * sin(c * xn) - cos(d * xn) 
zn+1 = xn * sin(a) 
a = 2.24 , b = 0.43 , c = -0.65 
d = -2.43 

Metzler-Attraktor  
x = x + h (x - x² +y)   
y = y + h (y - y² +x) 
h = 1.678 
 

   
Lozi-Gleichung  
xn+1 = 1 + yn - a |xn| , yn+1 = b xn 

a = 1.7 , b = 0.5 
 

Ikeda-Attraktor    
zn+1 = a - bzn ei(c- d/(1+zn²)) 

xn+1 = a + b(xn cos t - yn sin t) 
yn+1 = b(xn sin t + yn cos t)  
mit t = c - d/(1+xn²+yn²) 
a = 0.85, b = 0.90, c = 0.40, d = 9 

Kakadu Attraktor 1987 (Martin) 
xn+1 = yn * (1 + sin(a xn)) - b * 
(|xn|) 
yn+1 = c - xn 
a = 0.7, b = 1.2, c = 0.21 

   
Lauwerier Attraktor 
xn+1 = yn 
yn+1 = xn - yn + a * xn * yn - b * yn² 
a = 3, b = 2 

Quadratic Map Attraktor 
xn+1 = a1 + a2xn + a3xn² + a4xnyn + 
a5yn + a6yn² 
yn+1 = a7 + a8xn + a9xn² + a10xnyn + 
a11yn + a12yn², Code: AMTMNQQXUYGA 

Quadratic Map Attraktor 
Code: CVQKGHQTPHTE 
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Quadratic Map Attraktor 
Code: FIRCDERRPVLD 

Quadratic Map Attraktor 
Code: GIIETPIQRRUL 

Cubic Map Attraktor 
xn+1 = a1+a2xn+a3xn

2+a4xn
3+a5xn

2yn+ 
a6xnyn+a7xnyn

2+a8yn+a9yn
2+a10yn

3 

yn+1 = 
a11+a12xn+a13xn

2+a14xn
3+a15xn

2yn+ 
a16xnyn+a17xnyn

2+a18yn+a19yn
2+a20yn

3 
Code: IRPGVTFIDGCSXMFPKIDJ 

   
Cubic Map Attraktor 
Code: ISMHQCHPDFKFBKEALIFD 

Cubic Map Attraktor 
Code: JYCBMNFNYOEPYUGHHESU 

Cubic Map Attraktor 
Code: LGROKJFELDGKXSUEEWYE 

   
Quartic Map Attraktor 
xn+1 = a1 + a2xn + a3xn

2 + a4xn
3 + 

a5xn
4 + a6xn

3yn + a7xn
2yn + a8xn

2yn
2 + 

a9xnyn + a10xnyn
2 + a11xnyn

3 + a12yn + 
a13yn

2 + a14yn
3 + a15yn

4 

yn+1 = a16 + a17xn + a18xn
2 + a19xn

3 + 
a20xn

4 + a21xn
3yn + a22xn

2yn + 
a23xn

2yn
2 + 

a24xnyn + a25xnyn
2 + a26xnyn

3 + a27yn 
+ a28yn

2 + a29yn
3 + a30yn

4 

Code: FUXRRRUIRDYKDUBPHHOMO 
BRIRBINCS 

Quartic Map Attraktor 
Code: GNXVYVASWMMNFFQOFJTMRBN 
RFWREJH 

Quartic Map Attraktor 
Code: LURFSRHWMSKHTQBKXJDXQS 
MFJBWUFG 

   
Quartic Map Attraktor 
Code: PFMQPPBPARCUOLSTATEXQ 
DKEXMLOIF 

Quintic Map Attraktor 
xn+1 = a1+a2xn+a3xn

2+a4xn
3+a5xn

4+ 
a6xn

5+a7xn
4yn+a8xn

3yn+a9xn
3yn

2+a10xn
2yn 

+a11xn
2yn

2+a12xn
2yn

3+a13xnyn+a14xnyn
2+ 

a15xnyn
3+a16xnyn

4+a17yn+a18yn
2+a19yn

3+ 
a20yn

4+a21yn
5 

yn+1 = a22+a23xn+a24xn
2+a25xn

3+a26xn
4+ 

a27xn
5+a28xn

4yn+a29xn
3yn+a30xn

3yn
2+ 

a31xn
2yn +a32xn

2yn
2+ a33xn

2yn
3 + a34xnyn 

+ a35xnyn
2 + a36xnyn

3 + a37xnyn
4 + a38yn 

Quintic Map Attraktor 
Code: HVOIEGIDJCSFUFJCQGRU 
GMCLHEPWKRCCYFIRQPYAPH 
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+ a39yn
2 + a40yn

3 + a41yn
4 + a42yn

5 
Code: GEQGOYIKQQPEUJBKPXTV 
USJHOVJDUAYYPRNTXFLGAM 

   
Quintic Map Attraktor 
Code: MSMTNCONSQJOTKOPAOM 
QYNDPUQWVQJUEGNWAYGDLIT 

Quintic Map Attraktor 
Code: QBKSKIXQMKEOVVMAHXLB 
OQQJXEYMBUMBOEFVDBAPWU 

Duffing-Attraktor  
d²x/dt² + a dx/dt + x³ = b cos wt 
dx/dt = y 
dy/dt = -ay -x³ + b cos wt 
a = 0.25, b = 0.3, w = 1 

   
Lotka Volterra Attraktor 
dx/dt = x - xy + cx² - azx 
dy/dt = -y + xy 
dz/dt = -bz + azx² 
a = 2.9851, b = 3, c = 2 

Lotka Volterra Attraktor 
dx/dt = x - xy + cx² - azx 
dy/dt = -y + xy 
dz/dt = -bz + azx² 
a = 3.3, b = 3.5, c = 2 

Moore Spiegel Attraktor 
dx/dt = y 
dy/dt = z  
dz/dt = -z - (b -a + ax²)y – bx 
a = 100.0, b = 26.0 

   
Kaneko-Attraktor  
x = ax + (1-a) (1 - by²)   
y = x ; a = 0.3 , b = 2.04 

Kaneko II-Attraktor  
x = ax + (1-a) (1 – b|y|)   
y = x ; a = 0.1 , b = 1.23 

Quadratischer Henon-Attraktor   
xn+1 = xn cos a - (yn-xn²) sin a 
yn+1 = xn sin a - (yn-xn²) cos a 
verschiedene Startwerte 

 

 
 
 

 

 
Henon-Attraktor  
x = 1 + y – a x²   
y = bx ; a = 1.4 , b = 0.3 

Kaplan-York-Attraktor  
x = 3x mod 1   
y = ay + 2 cos(2x) 

Rikitake Attraktor 
dx/dt = -bx + zy , dy/dt = -by + (z - 
a)x , dz/dt = 1 - xy2, a = 5, b = 2 
beschreibt das Problem des 
Polwechsels beim Erdmagnetfeld 
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Sinai-Gleichung  
Die von Yaschi G.Sinai 1972 in "Introduction to ergodic theory" angegebenen 
Gleichungen 
 xn+1 = xn + yn + g/(2) cos (2 yn) mod 1 
 yn+1 = xn + 2yn mod 1 
beschreiben die Sinai-Gleichung. 
Sinai konnte zeigen, dass für kleine Werte von g jeder Punkt des 
Einheitsquadrates mit gleicher Häufigkeit aufgesucht wird, d.h. das ganze 
Quadrat [0; 1] x [0; 1] Attraktor ist. 
Der Phasenplot hat Ähnlichkeit mit der Faserstruktur von 
Holz. 

  
Cat-Map-Abbildung  
Für g = 0 gehen die Sinai-Gleichungen in die sogenannte Cat-Map, bzw. 
Katzenabbildung, über 
 xn+1 = (xn + yn) mod 1   yn+1 = (xn + 2yn) mod 1 
Das System wurde schon 1967 von D.V.Anosow veröffentlicht. Nach der Interpretation 
als Katzenabbildung durch Arnold und Avez wurde diese Abbildung bekannt. 

Die Cat-Map ist Grundlage der Poincaré-Transformation. 
 
Standardabbildung  
Die Standardabbildung ist eine flächentreue, chaotische 
Abbildung. 
 xn+1 = xn + yn +  sin xn 
 yn+1 = yn +  sin xn 
Sie wurde von dem sowjetischen Mathematiker und 
Physiker Boris V.Tschirikow 1969 als Poincaré-Abbildung 
eines periodisch angestoßenen Pendels eingeführt. 
Setzt man  = 0, so ist das ungestörte System mit einer 
Jacobi-Determinate von 1 konservativ. Für kleine Werte 

von  sieht man die ungestörten Tori. Sie bestehen aus den nichtresonanten Tori des 
ungestörten Systems. 
Erhöht man , so zerfallen die Tori immer stärker. Ab  = 4 entsteht Chaos. 
 
Ott-Abbildung, 2x mod 1-Abbildung  
Ist eine rationale Zahl x0 im geschlossenen Intervall [0, 1] gegeben, so wird die Folge der xi mit xn+1 
= 2xn mod 1 
als 2x mod 1-Abbildung oder Ott-Abbildung bezeichnet. 
Im Allgemeinen sind die entstehenden Orbits periodisch. Die Anzahl verschiedener Orbits der Länge p, 
wenn p Primzahl ist, beträgt Np = (2p - 2) / p 
In der Abbildung sind die Bahnen für vier verschiedene Ausgangszahlen x0 zu sehen. 
Wird die Abbildung auf reelle, irrationale Zahlen x0 erweitert, so ergeben sich für diese keine periodischen 
Bahnen. 
E.Ott, "Chaos in dynamical systems", Cambridge 1993 
 
Apollonische Verdichtung  
Gegeben sind drei sich paarweise berührende Kreise. Zeichnet man 
immer wieder die je drei Kreise berührenden Innenkreise ein, so haben 
alle Punkte, welche nie innerhalb eines der Kreise liegen, die fraktale 
Dimension 1,3058 (nach Mandelbrot 1983). 
Die dabei zu zeichnenden Kreise sind innere Soddy-Kreise. 
Haben die 3 Ausgangskreise den Radius a, so ergibt sich für die Radien 
der eingeschriebenen Kreise, die mindestens zwei der Ausgangskreise 
berühren: 
 r1 = (2/3 3 - 1) a  0,1547005383 a 
 r2 = (3/11 - 4/33 3) a  0,06278172029 a 
 r3 = (19/253 - 6/253 3) a  0,03402251049 a 
 r4 = (11/299 - 8/897 3) a  0,02134179881 a 
 r5 = (17/767 - 10/2301 3) a  0,01463689349 a 
 r6 = (73/4897 - 12/4897 3) a  0,01066273030 a 
 r7 = (33/3071 - 14/9213 3) a  0,008113675099 a 
 r8 = (43/5291 - 16/15873 3) a  0,006381099167 a 
 r9 = (163/25597 - 18/25597 3) a  0,005149942784 a 
 r10 = (67/13067 - 20/39201 3) a  0,004243743370 a 
 r11 = (81/19199 - 22/57597 3) a  0,003557388097 a 
 r12 = (289/81793 - 24/81793 3) a  0,003025085039 a 
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Mandelbrotmenge        
 
Die Mandelbrotmenge ist der geometrische Ort aller Punkte C im 
Koordinatensystem der komplexen Zahlen, für die Z = Z·Z + C immer 
innerhalb des Kreises mit Radius 2 um den Ursprung liegt 
 y = xz+1 
Jede komplexe Zahl als Paar zweier Koordinaten x,y betrachet. 
Iterationsgleichung zn = zn-1² + c 
Startwerte x = y = 0; Abbruch |z| > 4 bzw. n Iterationen 
weitere klassische Fraktale Mandelbrot z³+c bzw. z4+c 
Mandelsinus x = x·sin(x)-y²-cr und y = 2·x·y-ci 
 

Apfelmännchen  
Seit Benoit B.Mandelbrot 1980 seine berühmte Figur, welche später von der 
Bremer Forschungsgruppe für komplexe Dynamik Apfelmännchen genannt 
wurde, fand, faszinieren graphische Veranschaulichungen fraktaler Gebilde. 
Fraktale sind nicht mehr durch herkömmliche Begriffe wie Punkt - Linie - 
Fläche und Körper beschreibbar.  
Vielmehr sind dies mit einer Breite 0 unendlich lang, wobei sie sich durch 
Selbstähnlichkeit auszeichnen. Ordnung geht dabei in Chaos über, wodurch 
Länge oder Flächeninhalt nicht mehr bestimmbar sind.  
Komplexe Iterationsgleichungen und Vereinbarungen über Iterationstiefe 
und Grenzwerte erzeugen so verblüffende graphische Gebilde. 
Mandelbrot untersuchte die Funktion y = xz+1 in der komplexen 
Zahlenebene, wobei jede komplexe Zahl als Paar zweier Koordinaten x und y 
in der Gaußschen Ebene benutzt wird. Als Iterationsgleichung ergibt sich 

z(n) = zn-1
2+c. Überträgt man dies in den komplexen Zahlenbereich erhält man  

 z = x + y*i und c = creell + cimaginär, d.h.  
f(z(n)) = x(n-1)² - y(n-1)² + creell + i * (2*x(n-1)*y(n-1) + cimaginär) 

Die Mandelbrotmenge zn = zn-1² + c ist eine Fläche mit unendlich großem Umfang, jedoch mit endlicher 
Fläche. 
  
Im Jahr 2003 waren die besten bekannten Näherungswerte Fläche A = 1,506 591 77 ± 0,000 000 08 
und für die x-Koordinate des Schwerpunkts   x = -0.286 768 44 ± 0.000 000 025 
Durch Cyril Soler wurde festgestellt, dass die konstanten Größen 
 (6  - 1) - e = 1,5065916514855032852705345… 
und -((ln 3 - 1/3)F) = -0,2867682633829350268529586… 
wobei F die Feigenbaum-Konstante ist, die Werte für den Flächeninhalt und die x-Koordinate des 
Schwerpunkts sehr gut annähern. 
Ob diese Werte sogar gleich dem Gesuchten sind, ist heute unklar und wird als Hypothese gehandelt. 
siehe auch http://www.mrob.com/pub/muency/pixelcounting.html 
  
Einfaches Turbo-Pascal-Programm  
program mandelbrotmenge; 
uses graph,crt; 
var gd,gm,i,j,anz:integer; x,y,cx,cy,xneu,yneu:real; 
begin gd:=detect; initgraph(gd,gm,'c:\bp\bgi'); 
  for i:=1 to 640 do begin    for j:=1 to 480 do begin 
     cx:=i/128-2.5; cy:=j/96-2.5; x:=0; y:=0; anz:=0; 
     repeat 
       xneu:=x*x-y*y+cx; yneu:=2*x*y+cy;  
       x:=xneu; y:=yneu;     inc(anz); 
     until (x*x+y*y>4) or (anz>100); 
     putpixel(i,j,anz mod 16); 
     end end; 
closegraph; end. 
 
Entstehung der Mandelbrotmenge  
Die Berechnungsformel der Mandelbrotmenge lautet vereinfacht 
"quadriere die Zahl z und addiere die Zahl c". Da z eine komplexe 
Zahl ist, kann das Ergebnis in der Gaußschen Zahlenebene 
veranschaulicht werden. 
Eine komplexe Zahl besteht aus zwei Teilen (bzw. Zahlen) und 
kann daher einen Punkt in der zweidimensionalen komplexen 
Ebene darstellen. Die Berechnungsformel wird benutzt, 
herauszufinden, welche Farbe solch ein Punkt bekommen soll.  
Die Abbildung zeigt den ersten Iterationsschritt zweier Punkte 
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(grün und blau): Der Punkt z0 (rechter grüner Pfeil) dessen Farbe bestimmt werden soll, wird zunächst 
quadriert. Das Ergebnis ist der Punkt, auf den der mittlere grüne Pfeil zeigt. Nun wird der Startpunkt c 
addiert und man z1 (ganz oben). 
Für weitere Schritte wird der Punkt in die Gleichung zn+1 = zn

2 + c eingesetzt. Das Ergebnis zn+1 wird 
solange immer wieder neu als zn ein, bis der Abstand des berechneten Punktes vom Ursprung einen 
bestimmten Wert (z.B. 100) überschreitet:  z0 = c; z1 = z0

2 + c; z2 = z1
2 + c; ...  

Ist der Abstand von zn zum Ursprung auch nach einer festgelegten Anzahl von Iterationen immer noch 
klein, so konvergiert die Zahlenfolge und dieser Punkt wird in der Regel schwarz eingefärbt. Wird der 
Abstand von 100 jedoch schon bei der n-ten Iteration überschritten, so wird die n-te Farbe der 
Farbpalette ausgewählt.  

 
Fluchtverhalten an der Mandelbrotmenge  
Die Abbildung veranschaulicht das Verhalten einiger Punkte 
während der Iteration an der Mandelbrotmenge. 
Es soll die Farbe des grünen Punktes Nr. 1 bestimmt werden. 
Punkt Nr. 1 = c = z0. z1 = z0² + c wird dann Punkt Nr. 2. 
Man sieht deutlich, wie sich die Punkte 3,4,5,6,7... immer 
weiter vom Ursprung entfernen. Man könnte sagen, der Punkt 
wird vom Unendlichen angezogen.  
Die Mathematiker sagen, er "divergiert" bzw. er wird von einem 
"Attraktor" angezogen. Von diesen Attraktoren gibt es hier 
zunächst zwei Stück: Einen im Unendlichen, abgekürzt A(), 
und einen im Ursprung: A(0). 
Nur die Punkte, die vom Attraktor "" angezogen werden, wie 
z.B. der grüne und der blaue Punkt mit Nr.1, wurden hier weiß 
eingefärbt. Ob ein Punkt ins Unendliche "flieht" bzw. wie schnell 
und auf welchem Weg er das tut, bezeichnet man als 

Fluchtverhalten. 
Anders geschieht es mit den beiden roten und schwarzen Punkten: Diese 
entfernen sich nicht viel weiter vom Ursprung, und werden auch nach dem 
50.Rechenschritt noch nicht weiter entfernt sein. Sie werden von keinem 
Attraktor angezogen und daher schwarz eingefärbt. Es gibt nur einen 
Punkt der von A(0) angezogen wird: Es ist der Ursprung selbst. 
 

Sogar Außerirdische kennen die Mandelbrot-Menge!  
 
Berechnungsbeispiel: Setzt man komplexe Zahlen voraus, so ist die 
Rekursionsformel der Folge zn+1=zn² + c. z0=0 ist die Anfangszahl. Die 
Folge ist |zn|.   
Punktes P1(x1|y1) = P1(-0.40|0.70) 
Ausgangspunkt ist für jeden Punkt der Nullpunkt N(0|0).  
Es gilt x1 = x0²-y0² +x1 = 0-0+x1 = x1und y1= 2*x0*y0 + y1= 2*0*0+y1= y1, a1 = (x1² + y1²) = [(-
0.40)² + 0.70²] =0.81.  
a1 ist die Entfernung des Punktes P1 vom Nullpunkt des Koordinatensystems.  
 
Das zweite Glied der Folge errechnet sich aus den Koordinaten des Ausgangspunktes P1.  
Dazu bestimmt man für einen zweiten Punkt zwei neue Koordinaten x2 = x1²-y1² +x1 =  (-0.40)² - 0.70² 
+ (-0.40) = -0.73 und   y2= 2*x1*y1 + y1= 2*0*0+y1  = 2*(-0.40)*0.70+0.70 = 0.14.  Daraus ergibt 
sich a2 = (x2² + y2²) = [(-0.73)² + 0.14²] = 0.74.  
Das nächste dritte Glied der Folge errechnet sich aus den Koordinaten des vorhergehenden Punktes und 
des Ausgangspunktes.  
Dazu berechnet man für einen dritten Punkt zwei neue Koordinaten x3 = x2²-y2² +x1  = (-0.73)² - 0.14² 
+ (-0.40) = 0,11 und  y3= 2*x2*y2 + y1 = 2*(-0.73)*0.14+0.70 = 0.50. Daraus ergibt sich a3 = (x3² + 
y3²) = (0.11² + 0.50²) = 0.51.  
Auf diese Weise erhält man für den Ausgangspunkt P1(-0.40|0.70) die Abstandsfolge 0.81, 0.74,  0.51,  
1.0,  0.74,  1.1,  1.8,  2.4, ...  
Die folgende Tabelle hält die Folgen zu fünf Punkten fest, die nach der gleichen Methode bestimmt 
worden sind.  
Punkt (0.20 , 0.20) (0.10 , 0.65) (-0.40 , 0,70) (0.50 , 1,30) (2 , 2) 
Index      
1 0.23 0.66 0.81 1.4 3.6 
2 0.34 0.84 0.74 2.8 16 
3 0.35 0.44 0.51 6.5 260 
4 0.33 0.57 1.0 43 68000 
5 0.30 0.91 0.74 1900 ... 
6 0.30 0.83 1.1 3500000  
7 0.31 0.38 1.8 ...  
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8 0.32 0.70 2.4   
9 0.32 1.0 4.9   
10 0.31 0.77 24   
11 0.31 0.83 560   
12 0.31 1.3 360000   
13 0.31 2.1 ...   
Alle Zahlen wurden auf 2 Ziffern gerundet. Die erste Folge ist konvergent und strebt gegen 0.31.  
Die übrigen Folgen sind offenbar divergent. Die Glieder der Folge gehen über alle Grenzen, allerdings 
unterschiedlich stark.   
 
Ausgewählte Vergrößerungen an der Mandelbrotmenge 

   

   
 
 

Mandelbrot-Epizykloide  
Mandelbrotmengen der Form f(z) = zn + c besitzen einen 
Hauptkonvergenzbereich, der von einer Epizykloide begrenzt wird. 
Im Fall z² + c ist diese Epizykloide eine Kardioide mit der Gleichung 
 f() = 1/2 ei - 1/4 ei 2 
Im allgemeinen Fall n > 1 entsteht eine Epizykloide mit n-1 Spitzen 
 f() = 1/(n-1n) ei - 1/(n-1(nn)) ei 2 
Links sind die Mandelbrotmenge z4 + c und deren innere Epizykloide 
dargestellt. 
 
Randelbrot-Menge  
Eine programmtechnische Spielart der 

klassischen Mandelbrot-Menge ist die sogenannte Randelbrot-Menge. Dieser 
Begriff wird aus Random = Zufall und Mandelbrot gebildet.  
Als Iterationsvorschrift wird dabei 
 z = z2 + c + Zufallszahl 

genutzt. Je nach maximaler Größe der 
Zufallszahlen tritt die ursprüngliche 
Mandelbrot-Menge mehr oder weniger 
deutlich hervor. 
 
Reales Apfelmännchen  
Dies ist eine Rasterkraftmikroskop-Aufnahme des wahrscheinlich kleinsten 
real existierenden Apfelmännchens der Welt. Größe: Knapp 4000 
Nanometer. 
Es wurde durch elektrochemische Abscheidung von Kupfer auf einen 
Goldfilm aufgetragen: Durch Anlegen einer Spannung zwischen dem 
Goldfilm und der Spitze einer Nadel, welche sich in einer Kupferionen-
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Lösung befindet, scheidet sich an der Position der Nadel Kupfer auf dem Goldfilm ab. Die Nadel dient 
dabei als "Zeichenstift", jedoch muss die Figur mehrmals nachgefahren werden, um genügend Kupfer 
abzuscheiden. 
 

   
Inverse Mandelbrotmenge  
nach Mark Peterson:  
zn = zn-1

² + c  
mit zo = 1 / pixel und c = 1 / 
pixel 

Spinne: c bleibt während der 
Iterationsschleife nicht konstant: 
Vor dem Eintritt in diese Schleife 
erhält c die Anfangswerte c(re) 
:= x-Wert des Pixels und c(im) 
:= y-Wert des Pixels.  
Innerhalb der Schleife ändert 
sich c gemäß der Vorschrift c := 
c/2 + z. 
zn+1 := zn² + cn mit z0 := pixel ; 
cn+1 := cn/2 + zn+1 mit c0 := 
pixel 

Magnetic-Fraktale  
... diese Fraktaltypen werden 
aus der klassischen 
Mandelbrotmenge gewonnen. 
... das abgebildete Magetic-1-
Fraktal ergibt sich aus: 
z = [(z2+(c-1))/(2*z+(c-2))]2 
Für das Magnetic-2-Fraktal gilt: 
z = [(z3 + 3*(c-1)*z + (c-1)*(c-
2)) / (3*z2 + 3*(c-2)*z + (c-
1)*(c-2) +1)]2 

   
Barnsleyj2-Fraktal   
Parameter: reeller und 
imaginärer Teile von c 
Algorithmus:  z0 = pixel   wenn 
re(z) * im(c) + re(c) * im(z)  0 
dann zn+1 = (zn-1)*c sonst zn+1 
= (zn+1)*c 

Barnsleyj3-Fraktal   
Parameter: reeller und 
imaginärer Teile von c 
Algorithmus:  z0 = pixel 
wenn re(z(n) > 0 dann z(n+1) = 
(re(z(n))2 - im(z(n))2 - 1)+ i * 
2*re(z((n)) * im(z((n))) sonst  
z(n+1) = (re(z(n))2 - im(z(n))2 - 
1 + re(c) * re(z(n))+ i * 
(2*re(z((n)) * im(z((n)) + im(c) 
re(z(n)) 

Barnsleym1 
z0 = c = pixel, wenn re(z)  0 
dann z(n+1) = (z-1)*c, sonst 
z(n+1) = (z+1)*c 
Parameter: reeller und 
imaginärer Teile von c 
 

   
Fraktal nach Barnett  
zn = 1/5 zn-1

3 + zn-1
2 + c mit zo = 

pixel, c = pixel 

Fraktal nach Laguerre  
zn = 1/2 zn-1

² - 2zn-1 + 1 + c mit 
zo = -1 + 0 · i ; c = pixel 

Barnsleyj1-Fraktal   
Parameter: reeller und 
imaginärer Teile von c, 
Algorithmus:   z0 = pixel 
wenn re(z)  0 dann zn+1 = (zn-
1)*c sonst zn+1 = (zn+1)*c  

 
Konjugierte Mandelbrotmenge  
Für die Original-Mandelbrotmenge wird die Iteration z = z² + c 
auf der komplexen Zahlenebene ausgeführt und je nach Konvergenz oder 
Divergenz in der grafischen Darstellung ein Farbpunkt gesetzt. 
Bei den konjugierten Mandelbrotmengen wird die Iterationsvorschrift durch 
 z = z*² + c 
ersetzt, wobei z* die zu z konjugiert komplexe Zahl ist. D.h. für z = a + bi 
wird z* = a - bi genutzt. 
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Auch für diese Gebilde ist es möglich, zugehörige konjugierte Juliamengen zu zeichnen. 
 
Buddhabrot-Fraktal  
Das Buddhabrot-Fraktal ist eng mit der Mandelbrot-Menge verwandt. Ihr Name 
bezieht sich auf die Ähnlichkeit mit der Darstellung des meditierenden Buddha.  
Das Fraktal wurde 1993 von Melinda Green erstmals beschrieben. Die 
Mathematikerin nannte das Bild zuerst "Ganesh", da ein indischer Mitarbeiter in 
der Darstellung den elefantenköpfigen Gott Ganesha sah. 
  
Das Buddhabrot-Fraktal entsteht, in dem für divergierende Punkte der 
Mandelbrot-Menge die Zwischenpunkte gespeichert werden. 
Punkte der komplexen Ebene, die besonders oft als Zwischenwerte auftraten, 
werden heller dargestellt. Die Darstellung ist somit die 
Wahrscheinlichkeitsverteilung für den Verlauf der Trajektorien durch jeweilige Regionen. 
siehe http://de.wikipedia.org/wiki/Buddhabrot 
 

Collatz-Fraktal  
Abbildung: Juliamenge des Collatz-Fraktals 
Dieses fraktale Gebilde wurde von Marc Chamberland mit der Collatz-
Funktion als Basis untersucht. 
 f(x) = x/2 cos (/2 x)² + 1/2 (3x + 1) sin (/2 x)² 
 
 
 
 
 
 
 
 

Weitere Fraktale  
 Algorithmus Parameter 
Julia z0 = pixel; zn+1 = zn² + c komplexe Zahl c 
Julia4 z0 = pixel; zn+1 = zn

4 + c. komplexe Zahl c 
Julzpower z0 = pixel; zn+1 = zn

m + c. komplexe Zahl c, 
Exponent m 

Julzzpwr z0 = pixel; z(n+1) = z(n)^z(n) + z(n)^m + c komplexe Zahl c, 
Exponent m 

Kamtorus x(0) = y(0) = orbit/3; x(n+1) = x(n)*cos(a) + (x(n)*x(n)-
y(n))*sin(a) ;    y(n+1) = x(n)*sin(a) - (x(n)*x(n)-
y(n))*cos(a) 

 

Lambda z(0) = pixel; z(n+1) = lambda*z(n)*(1 - z(n)^2) Lambda 
Lee cn = zn-1 + pixel² / zn-1 ; zn = cn² mit z0 = pixel  
Marksjulia z(0) = pixel; z(n+1) = (c^exp)*z(n) + c   c und Exponent 
Marksmandel z(0) = c = pixel; z(n+1) = (c^exp)*z(n) + c c 
Newton z(0) = pixel; z(n+1) = ((p-1)*z(n)^p + 1)/(p*z(n)^(p - 1)) p 
 
Newton-Fraktal  
Das Newton-Verfahren ist ein Iterationsverfahren zur Bestimmung der Nullstellen einer Funktion. Wendet 
man es auf komplexe Funktionen der Form  
 f(z) = zn - 1  
an, dann kann man die Tatsache ausnutzen, dass alle Lösungen der Gleichung zn - 1 = 0 komplexe 
Zahlen sind, die auf dem Einheitskreis um den Ursprung der Gaußschen Zahlenebene liegen. Die 
Lösungen (Attraktoren) der Gleichung bilden ein regelmäßiges n-Eck. Wie bei der Berechnung der 
Mandelbrot-Menge wird der gesamte Bildschirm als Gaußsche Zahlenebene und jeder Bildpunkt des 
Bildschirms als Startwert z einer Zahlenfolge aufgefasst. Dabei ist z eine komplexe Zahl und repräsentiert 
einen Punkt der Ebene. Jeder Bildpunkt strebt zu einem der n Attraktoren. 
Im Beispiel lauten die vier Attraktoren z(1) = i, z(2) = -1, z(3) = -i und z(4) = 1. Strebt ein Bildpunkt zu 
z(1), wird er gelb gefärbt, strebt er zu z(2) rot, zu z(3) blau und zu z(4) 
braun - unabhängig davon, nach wieviel Schritten man den Attraktor 
ermittelt hat (Abbildung). Nimmt man hingegen die Färbung in 
Abhängigkeit von der Iterationstiefe vor, entsteht ein sogenanntes 
Geschwindigkeitsdiagramm des Fraktals. 
Abbildung: Newton-Fraktal f(z) = z4 - 1 
  
Pascal-Programm zum Newtonfraktal z³ - 1 = 0  
Nimmt man die Färbung in Abhängigkeit vom gefundenen Attraktor vor, 
erhält man die sogenannten Einzugsgebiete der 3 Attraktoren. Die Farbe 
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gibt an, welcher Attraktor gefunden wurde. Dabei hat die innere Schleife des Programms folgendes 
Aussehen: 
 x := a; y := b;                                      
REPEAT nenner := sqr (x*x + y*y); 
 xneu := (2*x + (x*x - y*y)/nenner) / 3; 
 yneu := 2*y * (1-x/nenner) / 3; 
 x := xneu; y := yneu; 
 a1 := sqr(x-1) + sqr(y) < 0.09; 
 a2 := sqr(x+0.5) + sqr(y+0.866) < 0.09; 
 a3 := sqr(x+0.5) + sqr(y-0.866) < 0.09; 
UNTIL a1 OR a2 OR a3; 
 IF a1 THEN PutPixel (xs, ys, 1); { Punkt blau färben } 
 IF a2 THEN PutPixel (xs, ys, 2); { Punkt grün färben } 
 IF a3 THEN PutPixel (xs, ys, 3); { Punkt türkis färben } 
Färbt man hingegen in Abhängigkeit von der Anzahl der Schritte, die erforderlich sind, um einen Attraktor 
zu finden, spricht man von einem Geschwindigkeitsdiagramm. Jetzt gibt die Farbe an, wie schnell ein 
Attraktor gefunden wurde. 
Dazu wird die Anzahl des Durchlaufens der Schleife, z.B. in i, gezählt und die Farbe mit PutPixel (xs, ys, i 
mod 16); bestimmt. 
  

Magnetisches Pendel  
Unmittelbar mit dem Newton-Fraktal ist eine physikalische 
Fragestellung verbunden. Gegeben sind mindestens zwei 
Magnete auf einer Unterlage, deren o.B.d.A. Nordpole nach oben 
gerichtet sind. Über der Platte wird ein Pendel mit einem 
Magneten angebracht, dessen Südpol nach unten zeigt. 
  
Wir das Pendel ausgelenkt, so führt es über den Magneten eine 
chaotische Bewegung aus, die durch die in der Abbildung 
angegebenen Differenzialgleichungen beschrieben wird. Dabei 
sind die xi, yi die Koordinaten der festen Magnete; x(t) und y(t) 
der Ort des Pendelmagnets. R und C sind Konstanten, die die 
Stärke der Felder und die rücktreibende Kraft beschreiben. 
Für unterschiedliche Ausgangspunkte erreicht das Pendel nach 
chaotischer Bewegung jedesmal einen der Magnete und kommt 
zum Stillstand. Zu welchem Magnet das Pendel gezogen wird, 
kann durch das Newton-Fraktal beschrieben werden. Punkte 
eines Attraktionsgebietes führen immer zum gleichen 
Endergebnis. 

 
Fraktale als Transformationen konzentrischer Kreis / Circle-Fraktale  
Sehr interessante und vor allem farbenprächtige Abbildungen erhält man, 
wenn die von Connett beschriebene Konstruktionsmöglichkeit genutzt wird. 
Betrachtet wird die Gaußsche Zahlenebene und die Koordinaten eines 
Punktes als komplexer Startwert x + i*y festgelegt.  
Der Funktionswert wird mit Pixelfarbe = a*(x²-y²) modulo Farbanzahl 
berechnet. Dabei stellt a eine beliebige Konstante dar. 
Die Farbe des Pixels wird anschließend aus dem ganzzahligen Anteil von z 
modulo einer einzugebenden Farbanzahl gebildet. 
 

Fraktale nach Pickover  
Konstante c=0.5 
Abbruch nach |x|>9, |y|>9 oder Iteration>10 
Farbgebung aus Betrag der 
komplexen Zahl 
 
 
Julia-Mengen  
... Während bei der 
Mandelbrotmenge; jeweils vom 
Startpunkt z=(0;0) ausgehend; die 
Färbung des Pixels durch die 
veränderliche Konstante c 
(Koordinaten des Punktes) bestimmt 

wird; bleibt die zur Iteration wichtige Konstante c konstant.  
Als Startwert z werden die Punktkoordinaten der Gaußschen 
Zahlenebene genutzt. 
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Es gibt eine zweite Art von Fraktalen, die mit dem Apfelmännchen verwandt ist: die sogenannte 
Juliamenge. Die Berechnung einer Juliamenge unterscheidet sich nur in der Addition der Konstanten c. 
Während beim Apfelmännchen für jeden zu berechnenden Bildpunkt eine andere Konstante verwendet 
wird (nämlich die komplexe Koordinate des zu berechnenden Punktes), ist die Konstante c bei der 
Juliamenge für jeden Punkt gleich. D.h.: 1. z0 ist weiterhin der Punkt, dessen Farbe bestimmt werden 
soll, 
2. c ist jedoch unabhängig von dem zu berechnenden Punkt. 
Durch Variation der Konstanten c kann sehr unterschiedliche Juliamengen erhalten. Dabei gilt: 
Wird der Wert aus dem schwarzen Bereich des Apfelmännchens gewählt, so entstehen 
zusammenhängende Gebilde. Wird ein Wert außerhalb gewählt, entstehen mehrere nicht miteinander 
verbundene Gebilde.  
Die interessantesten Formen entstehen, wenn man c aus dem Rand des Apfelmännchens wählt.  
Die zugehörige Grundidee wurde schon vor 80 Jahren; allerdings ohne großes Interesse seiner 
Zeitgenossen; von dem französischen Mathematiker Gaston Julia entwickelt. Da ihm aber noch keine 
rechentechnischen Hilfsmittel zur Verfügung standen, konnte er die Schönheit und Faszination seiner 
Mengen noch nicht bewundern. Julia-Mengen weisen eine fantastische Vielfalt auf. Ein Zoom in die 
Detailstruktur ist von hohem ästhetischen Reiz. 
 
Grenzgebiete der Julia-Menge  
Faszinierend ist der Übergang an der Grenze des schwarzen 
Bereichs. Als Beispiel wird hier die Konstante c entlang des 
weißen Pfeils variiert. Von Rechts nach Links erhält man die 
unten abgebildeten Juliamengen. Während auf dem ersten 
Bild ein zusammenhängendes Gebiet zu sehen ist, löst sich 
dieses immer mehr auf, bis schließlich auf dem letzten Bild 
getrennte Bereiche zu erkennen sind. 
 
Die Briefmarke zeigt einen Ausschnitt einer Juliamenge. Auf 
dem Anhang der Marke sieht man einen größeren 
Ausschnitt, aber noch interessanter ist die Formel am Rand 
des Anhangs: 
 z  z² + c ; c = 0,2860 + 0,0115 i. 
Jede Juliamenge ist durch eine komplexe Funktion eindeutig 
bestimmt; durch die Angabe dieser Funktion sind wir somit 
in der Lage, die Entstehung der Abbildung auf der Marke 
nachzuvollziehen. Die eigentliche Juliamenge sind wieder alle 
Punkte, für die die Zahlenfolge konvergiert. Die 
Farbgestaltung um die Juliamenge herum ist, wie üblich, 
willkürlich. 

  
 

c = 0 c = -0.5 Douadys Kaninchen c = -0.123 + 
0.745i auch als Drachen-Fraktal 
bezeichnet 

 

   
San Marco c = -1 c = -0.5 + 0.55 i c = 0.325 + 0.417 i 
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Fatout-Staub c = 0.11301 – 
0.67037 i 

c = -0.21 – 0.67 i  c = 0.23 – 0.6 i 

  
Bezeichnung Realteil c(reell) Imaginärteil c(imaginär) 
Dentrit 0 1 
Julia-Drachen 0.360284 0.1 
 
Julia-Mengen können zusammenhängend sein oder in mehrer Bereiche zerfallen. Es gilt: 
Ist die Iterationsfunktion von der Form  f(z) = z2 + c , so ist die zugehörige Julia-Menge genau dann 
zusammenhängend, wenn der Nullpunkt zur Menge gehört, d.h. wenn  fk(0)  eine beschränkte Folge ist. 
Da  f(0) = c , lässt sich der Satz auch so formulieren: 
Ist die Iterationsfunktion von der Form  f(z) = z2 + c , so ist die zugehörige Julia-Menge genau dann 
zusammenhängend, wenn  c  zur Menge gehört, d.h. wenn  fk(c)  eine beschränkte Folge ist. 
 
IFS-Transformationen  

„Das wird ja immer merkwürderlicher !“ schrie Alice 

Lewis Carroll, „Alice im Wunderland“ 

 
IFS = Iterated Function System 
IFS ist ein durch Michael Barnsley (Georgia Institute of Technology) 
entwickeltes, spezielles Verfahren zur Kompression von Darstellungen 
natürlicher Gebilde auf der Basis von Fraktalen. 
Zweidimensionale IFS entstehen durch multiplikative Verknüpfung 
quadratischer Matrizen mit Spaltenvektoren (affine Transformationen). 
Die jeweilige Matrix wird durch zufällige Wahl aus einer gewissen 
Grundgesamtheit getroffen. 
Iterierte Funktionssysteme sind in der Lage, mit wenigen Regeln komplexe, 
natürlich aussehende Bilder zu erzeugen. Hierbei wird eine Folge von 
Punkten im R² durch fortgesetzte Anwendung von affinen Transformationen 
durchlaufen. Werden die einzelnen affinen Abbildungen in unterschiedlichen 
Farben veranschaulicht, so erkennt man deutlich, die vier zur 
Farndarstellung notwendigen Abbildungen. 
 
Beispiele  Fraktales Ahornblatt und Fraktaler Farn 
 
Beschreibungstabelle  
Abb. P A B C D E F 

1 85 0.85 0.04 -0.04 0.85 0 1.6 
2 7 0.2 -0.26 0.23 0.22 0 1.6 
3 7 -0.15 0.28 0.26 0.24 0 0.44 
4 1 0 0 0 0.16 0 0 
 

Barnsley Farn  
Das berühmteste Beispiel für Iterierte Funktionensysteme ist die Darstellung eines 
Farns. Erstmals wurde dieses Gebilde 1988 von Michael Barnsley präsentiert. 
Parameter  
Abb. P A B C D E F 
1 85 0,85 0,04 -0,04 0,85 0 1,6 
2 7 0,2 -0,26 0,23 0,22 0 1,6 
3 7 -0,15 0,28 0,26 0,24 0 0,44 
4 1 0 0 0 0,16 0 0 
Die ersten 3 affinen Abbildungen rufen Drehungen und Streckungen hervor, die die 
Farnblätter ausbilden. 
Beschreibung der affinen Abbildungen des "Farns" 
1) Streckung und Drehung k = 0,851, Drehwinkel -2,694° 
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2) Euler-Affinität und Drehung, Streckfaktoren 0,305 und 0,341, Fixgeraden y = 0, y = -7,786 x, 
Drehwinkel 48,991° 
3) Euler-Affinität mit Streckfaktoren -0,288, 0,378, Fixgeraden y = -0,493 x, y = 1,885 x 
4) Euler-Affinität mit Streckfaktoren 0, 0,160 Fixgeraden y = 0, x = 0 
  
Die Parameter 0, 0, 0, 0,16 der vierten Abbildung bewirken die Ausbildung des Stils. Ändert man zum 
Beispiel die erste  = 0 gegen  = 0,01 oder  = 0,1, so kann man dies nachvollziehen. 
 
Sierpinski-Teppich, IFS-Beispiel  
Dimension = 1,9 (siehe Abbildung) 
P je 12,5 
A je 0,33 
B je 0 
C je 0 
D je 0,33 
E 1  Y  1  Y  Y/2  Y  1  Y/2 
F 1  1  Y  Y  1  Y/2  Y/2  Y 
Y…bestimmt die Größe der Abbildung 
Der Sierpinski-Teppich ist ein Fraktal, das auf den polnischen Mathematiker 
Waclaw Sierpinski zurückgeht.  
Aus einem Quadrat wird in der Mitte ein Neuntel der Fläche entfernt. Aus den 
von dem Quadrat um das Loch verbliebenen acht quadratischen Feldern wird 
wiederum je ein Neuntel der Fläche entfernt, usw. 
Die fraktale Dimension des Sierpinski-Teppich beträgt ln 8 / ln 3 = 1,8928…; 
sein Flächeninhalt ist null. 

Die Konstruktion ähnelt der Konstruktion der Cantor-Menge, dort wird 
aus einer Strecke der mittlere Teil entfernt, oder dem Sierpinski-Dreieck 
bei dem aus einem Dreieck der Mittelteil entfernt wird. 
Im dreidimensionalen Raum wird aus der Konstruktion des Sierpinski-
Teppichs die Konstruktion des Menger-Schwamms. 
 
Asymmetrischer Sierpinski-Teppich   
Die Konstruktion des Sierpinski-Teppichs kann auch asymmetrisch, wie 
in der Abbildung, erfolgen. 
Bei Reduzierung auf ein Viertel, d.h. eine Teilung im Verhältnis a:b:c = 
2:1:1 erhält man 15 Kopien. Für die fraktale Dimension D gilt daher: 
 4D = 15  D = ln 15 / ln 4  1,9534 
Allgemein gilt: Beim Unterteilen im Verhältnis a:b:c und Weglassen des 

jeweils innersten Teils entstehen bei Reduzierung auf 1/(a+b+c) insgesamt a² + c² + 2ab + 2ac + 2bc = 
(a + b + c)² - b² Kopien. Damit wird für die fraktale Dimension D 
 (a + b + c)D = (a + b + c)² -b² 
 D = ln ((a+b+c)²-b²) / ln(a+b+c) 
  

 IFS-Abbildungsmatrix Beschreibung der affinen Abbildungen 

 

Dürer-Fünfeck 
5 Abbildungen 
0.382 0 0 0.382 

mit unterschiedlichen Translationen 

Zentrische Streckung mit 
Streckfaktor 0.382 

 

Zwei Bäume 
0.36 0.48 -0.48 0.36 0.75 1.2 
0.64 -0.48 0.48 0.64 1.11 1.27 
1 0 0 1 0 0  

1) Streckung und Drehung 
Streckfaktor 0.6, Drehwinkel –
53.130° 
2) Streckung und Drehung 
Streckfaktor 0.8, Drehwinkel 36.870° 
3) identische Abbildung 

 

Ahornblatt 
0.352 0.355 -0.355 0.352 
0.353 -0.354 0.354 0.353 
0.5 0 0 0.5 
0.502 -0.002 0.002 0.588 
0.004 0 0 0.578 

Translationen 
0.354 0.5 
0.288 0.153 
0.25 0.462 

1) Streckung und Drehung 
Streckfaktor 0.5, Drehwinkel –
45.243° 
2) Euler-Affinität und Drehung 
Streckfaktoren 0.499, 0.500, 
Fixgeraden y = 0, y = 0.994 x 
Drehwinkel 45,162° 
3) Zentrische Streckung Streckfaktor 
0.5 
4) Euler-Affinität Streckfaktoren 
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0.25 0.105 
0.501 0.06  

0.502, 0.588 Fixgeraden y = - 0.023 
x, y = -42,977 x 
5) Euler-Affinität Streckfaktorn 
0.004, 0.578 Fixgeraden y = 0, x = 0 

 

Baum 
-0.04 0 –

0.23 
–
0.65 

–
0.08 

0.26 

0.61 0 0 0.31 0.07 3.5 
0.65 0.18 –0.3 0.48 0.74 0.39 
0.64 –0.2 0.32 0.56 –

0.66 
0.9 

 

1) Euler-Affinität Streckfaktoren –
0.65,-0.04 Fixgeraden y=0, x=0 
2) Euler-Affinität Streckfaktoren 
0.31, 0.61 Fixgeraden y=0, x= 0 
3) Euler-Affinität und Drehung 
Streckfaktoren 0.511, 0.716, 
Fixgeraden y = 5.426 x, y = 0 
Drehwinkel –24.775° 
4) Euler-Affinität und Drehung 
Streckfaktoren 0.590, 0.716, 
Fixgeraden y = -1.75 x, y = 0 
Drehwinkel 26.565° 

 

Binär 
0.5 0 0 0.5 –

2.563 
–
0.000003 

0.5 0 0 0.5 2.436 –
0.000003 

0 –0.5 0.5 0 4.873 7.56349  

1 und 2) Zentrische Streckungen 
Faktor 0.5 
3) Affindrehung 

 

Cantor-Garten 
0.336 0 0 0.335 0.662 1.333 
0 0.333 1 0 1.333 0 
0 -0.333 1 0 0.666 0  

1) Euler-Affinität Streckfaktoren 
0.336, 0.35 Fixgeraden y = 0, x = 0 
2) Euler-Affinität Streckfaktoren –
0.577, 0.577 Fixgeraden y = -1.733 
x, x = 1.733 x 
3) Affindrehung 

 

Drache 
0.824074 0.281482 -

0.212346 
0.864198 

0.088272 0.520988 -
0.463889 

-
0.377778 

Translationen 
-
1.882290 

-
0.110607 

0.785360 8.095795  

1) Euler-Affinität und Drehung 
Streckfaktoren 0.851, 0.907, 
Fixgeraden y = 0, y = 0.985 x 
Drehwinkel –14.45° 
2) Euler-Affinität und Drehung 
Streckfaktoren 0.441, 0.472, 
Fixgeraden y = -0.066 x, y = 0 
Drehwinkel –79.226° 

 

Koch-Kurve 
0.3333 0 0 0.3333 
0.3333 0 0 0.3333 
0.1667 –

0.288867 
0.288867 0.1667 

-0.1667 0.288867 0.288867 0.1667 
Translationen 
0, 0 | 0.6667, 0 | 0.3333, 0 | 0.6667, 0 

1 und 2) Zentrische Streckung Faktor 
0.3333 
3) Streckung und Drehung 
Streckfaktor 0.334 Drehwinkel 
60.012 ° 
4) Euler-Affinität Streckfaktoren -
0.334, 0.334 ixgeraden y = -0.577 x, 
y = 1.732 x 
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Chaos-Spiel  

Gegeben seien drei Punkte P1, P2 und P3 der Ebene, welche ein 
gleichseitiges Dreieck bilden. 
Weiterhin sei ein vierter Punkt P gegeben. Per Zufall wird nun eine Zahl von 
1 bis 3 gewählt.  
Würfelt man eine 1, so werden die neuen 
Koordinaten von P als Mittelpunkt der Strecke 
PP1 gesetzt, bei einer 2 strebt P um die Hälfte 
der Strecke in Richtung P2. 
 Ergebnis: Sierpinski-Dreieck  
  
Das Chaosspiel wurde 1988 durch Barnsley auf 

n Punkte und Faktor f erweitert. Der Faktor f gibt den Anteil der Strecke vom 
Ausgangspunkt zum Zufallspunkt an. 
Für n = 5, f = 5/8 entsteht das Dürer-Fünfeck. 
 

    
beim Viereck ein 
statistisch verteiltes 
Rauschen 

beim Fünfeck 
verschieden große 
Fünfecke 

beim Sechseck ein 
System feiner Linien, ... 

die mit kleineren 
Punkten deutlicher 
werden 

 
Der Mathematiker und Hochschullehrer Sierpinski hat das Sierpinski-
Dreieck 1910 zu dem Zweck in die mathematische Welt gesetzt, dass 
seine Studenten begreifen, dass sie Begriffe Linie und Fläche durchaus 
nicht trivial sind. 
Wenn man aus einem Dreieck die Mitte herausnimmt und aus den drei 
Restdreiecken wieder die Mitte, und wieder und wieder...., ist es dann 
eigentlich noch eine Fläche? 
Nein! Die Dimension ist nicht 2 noch 1, sondern ln(3)/ln(2)=1,58...; es 
ist ein Fraktal. (fractum, lat.= gebrochen) 
Das Sierpinski-Fraktal ist unmittelbar mit dem Pascalschen Dreieck 
verbunden. Gerade die Felder des Dreiecks werden gezeichnet, deren 
Zahl ungerade ist. 

 
Flächeninhalt des Sierpinski-Dreiecks  
Geht man davon aus, dass das Ausgangsdreieck einen Flächeninhalt von A(0) = 1 hat, so wird in der 
ersten Iteration ¼ der Fläche entfernt, d.h. A(1) = ¾. In der nächsten Iteration werden 3 Dreiecke, die 
ein ¼ der Größe des zuerst entfernten Dreiecks besitzen, herausgenommen, d.h. insgesamt 3/16, d.h.  
A(2) = ¾·3/16 = 9/16 = (3/4)². Mittels Induktion wird  A(n) = (3/4)n. 
Zu beachten ist, dass die Flächen A(n) für wachsende n gegen 0 streben. Damit wird immer mehr der 
Ausgangsfläche entfernt, dennoch bleiben unendlich viele Punkte im Innern des Sierpinski-Dreiecks übrig. 
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Trägt man von einem Pascalschen Dreieck für jeden Eintrag z mit z mod n = 0 einen Punkt ein, so 
entstehen außer dem Sierpinski-Dreieck weitere fraktale Muster: 
 

     
n = 2 n = 3 n = 4 n = 5 n = 6 

     
n = 7 n = 8 n = 9 n = 10 n = 11 

     
n = 12 n = 13 n = 14 n = 15 n = 16 

     
n = 17 n = 18 n = 19 n = 20 n = 21 

 
Sierpinski-Tetraeder  
In Analogie zum berühmten Sierpinski-Dreieck kann auch ein räumliches Äquivalent konstruiert werden. 
Ausgangspunkt ist ein normales Tetraeder. In den Ecken des Tetraeders werden vier kleinere Tetraeder 
mit der halben Ausgangskantenlänge platziert. Jedes dieser Tetraeder wird entsprechend wieder ersetzt 
usw. Das Ergebnis ist das Sierpinski-Tetraeder. Die fraktale Dimension ist D = ln 4/ln 2 = 2. 

    
Stufe 0: 1 Tetraeder Stufe 1: 4 Tetraeder Stufe 2: 16 Tetraeder Stufe 3: 64 Tetraeder 

   

 

Stufe 4: 256 
Tetraeder 

Stufe 5: 1024 
Tetraeder 

Stufe 6: 4096 
Tetraeder 

 

 
Sind n die Rekursionstiefe des Sierpinski-Tetraeders, N die Anzahl der Tetraeder, L die Länge eines 
Tetraeders und V das Volumen des n-ten Tetraeders, dann gilt für ein Anfangstetraeder der Kantenlänge 
1: L = 2-n  N = 4n  V = 2-n 
Für n gegen Unendlich gehen das Volumen und die Oberfläche gegen Null.   
 
Fraktale Körper  
Fraktale Körper sind solche Körper, deren Volumen gegen Null und deren Oberfläche gegen Unendlich 
strebt. Diese Körper entstehen dadurch, dass man einen einfachen Körper wie einen Würfel oder ein 
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Tetraeder nimmt und nach bestimmten Regeln Volumen in Form von anderen Körpern aus ihm entfernt 
und dabei seine Oberfläche vergrößert. 
 
Menger-Schwamm 

... nach dem österreichischen Mathematiker Karl Menger (1926) 
Eng verbunden mit dem Sierpinski-Tetraeder ist der sogenannte Menger-
Schwamm. Er ist im Prinzip die dreidimensionale Erweiterung des Sierpinski 
Teppichs.  
Zur Konstruktion wird hier von einem Würfel ausgegangen. In jede Würfelseite 
wird nun ein quadratisches Loch genau im Schwerpunkt des Seite mit einer 
Kantenlänge von einem Drittel des Ausgangswürfels gebohrt. 
Damit verbleibt ein Restkörper, den man sich auch aus 20 kleinen Würfeln mit 
1/3 Kantenlänge zusammengesetzt vorstellen kann.  
Der beschriebene Vorgang wird nun in jedem der 20 Würfel wiederholt, usw. 
Für die fraktale Dimension wird D = ln(20)/ln(3) = 2.7268... 

 

    
Stufe 1: 20 Würfel Stufe 2: 400 Würfel Stufe 3: 8000 Würfel Stufe 4: 160000 

Würfel 
 
In der Stufe 5 besteht der Menger Schwamm aus 3200000 Würfeln. Diese Stufe ist auf einem normalen 
PC nur mit extremen Speicher- und Zeitaufwand berechenbar. 
Ausgehend für einen Ausgangswürfel mit der Kantenlänge 1 wird für das Volumen des Menger-
Schwamms: Bei jedem Schritt erhält man 20/27 vom vorhergehenden Volumen, d.h.  
 V(1)= 20/27 V(1) = 0,7407… VE  V(2)= (20/27)² V(2) = 0,5486… VE 
 V(3)= (20/27)³ V(3) = 0,4064… VE 
und allgemein      V(m)= (20/27)m 
D.h. mit zunehmenden Iterationsschritt strebt das Volumen gegen Null. Der Menger-Schwamm ist ein 
Körper mit einem Volumen = 0! 
Für die Oberfläche (auch die im Inneren) wird 
 A(m) = Q(m)/9m ; Q(1) = 72 und A(m+1) = (8Q(m) + 24 · 20m)/9m+1 = Q(m+1)/9m+1 
Wie zu erwarten hat der Menger-Schwamm eine unendlich große Oberfläche. 

  
Herleitung des Volumens über den ausgeschnittenen Körper: 
Der Mengerschwamm ist ein Körper, der durch fortgesetztes Herausschneiden von 
Teilen aus einem Würfel entsteht. Der erste ausgeschnittene Teil hat das Volumen 7 
(a/3)³ des Ausgangskörpers. 
  
Der große Würfel besteht aus 27 kleinen Würfeln. Nach dem Wegfall von 7 Würfeln 
bleiben 20 kleine Würfeln übrig. Aus jedem dieser Würfel werden wieder 7 

herausgeschnitten, d.h. insgesamt 20 · 7 herausgeschnittene Würfel, usw. usf. 
Die Summe der ausgeschnittenen Teile ist 

 V = 7 (a/3)³ + 20 · 7 (a/9)³ + 20² · 7 (a/27)³ + … 
d.h. die unendliche Summe einer geometrischen Reihe mit dem Quotienten q 
= 20 / 27 
Als Summe wird  S = V / (1-q) = 7 (a/3)³ · 1 / (1 - 20/27) = a³ 
Damit hat der Menger-Schwamm tatsächlich das Volumen von 0. 
Nach n Schritten sind  V*n = 7 (a/3)³ (1 - (20/27)n) / (1 - 20/27) 
entfernt. Das bedeutet zum Beispiel, dass nach nur 16 Schritten über 99 % des 
Ausgangsvolumens fehlen. Für einen Würfel der Kantenlänge hat der Menger-
Schwamm nach n Schritten ein Volumen von 
 Vn = 27 (20/27)n 
 
Oktaeder-Schwamm  
In Analogie zum Sierpinski-Tetraeder bzw. zum Menger-Schwamm können auch 
andere platonische Körper zur Konstruktion fraktaler Gebilde genutzt werden. 
  
Ausgangspunkt ist ein Oktaeder. Im Gegensatz zum Sierpinski-Tetraeder 
berühren sich die sechs verkleinerten Oktaeder an ganzen Kanten. Einen 
Eckpunkt haben sie alle sechs Teiloktaeder im Mittelpunkt der Figur 
gemeinsam. Als Maßstab ergibt sich 2:1, wie beim Tetraeder. Damit passen die 
sechs Oktaeder gut zusammen. Acht Tetraeder wurden entfernt. 
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Das in einem Schritt verringerte Volumen ist 6/8 = 62,5% des vorherigen Volumens. 
Der Oktaederschwamm hat die topologische Dimension 2, im Gegensatz zu Sierpinski-Tetraeder und 
Mengerschwamm, welche beide die topologische Dimension 1 besitzen. 
 
Sierpinski-Würfel  
Bei dem Sierpinski-Würfel handelt es sich um ein Fraktal im Raum.  
Ausgangspunkt ist ein Würfel, an den drei kleine Würfel mit halber 
Kantenlänge angesetzt werden. An diese kleinen Würfel werden jeweils 
wieder 3 Würfel mit halber Kantenlänge angesetzt usw. 
Insgesamt entsteht ein räumliches Gebilde, dass ein endliches Volumen 
aber eine unendlich große Oberfläche besitzt, allerdings nur wenn man 
die vollständige Oberfläche aller Teilwürfel addiert. 
Berücksichtigt man nur die sichtbare Oberfläche, so ergibt sich für eine 
Kantenlänge a des Ausgangswürfels nach dem n-ten Iterationsschritt 
 An = 12 a² - 3 a² 21-n   Vn = 8/5 a³ - a³/5 2-3n 
3n+1 
Als Grenzwerte ergeben sich mit wachsendem n dann 
 A = 12 a²    V = 8/5 a³ 

 
Sierpinski-Sechseck  
Mit Hilfes des Chaosspiels kann auch das Sierpinski-Sechseck erzeugt 
werden. 
Ausgang sind sechs in Form eines regelmäßigen Sechsecks angeordnete 
Punkte. Ein Anfangspunkt P0 wird beliebig gewählt. 
Je Spielrunde wird nun einer der sechs Punkte zufällig ausgewählt und vom 
Punkt P0 zum Zufallspunkt 2/3 der Strecke zurückgelegt. Der entstandene 
Punkt P1 wird markiert und mit diesem erneut so verfahren. 
Wird in dem Teilprogramm 
»Chaosspiel 
als Verhältnis 2/3 eingetragen, so entsteht das Sierpinski-Sechseck. 
 

Zellularautomat  
In den 40 und 50ziger Jahren wurden durch John von Neumann und Alan Turing die Anfänge der 

Automatentheorie geschaffen.  
Von Interesse sind vor allem Zellularautomaten, in denen einzelne Zellen auf 
Grund gewisser Regeln und dem Zustand ihrer Nachbarn “leben” bzw. 
“sterben”. Ein berühmtes Beispiel ist Conways “Game of Life”  

Interessant sind auch eindimensionale (lineare) binäre Zellularautomaten. Diese bestehen aus einer 
Reihe von Zellen, welche jeweils den Zustand 0 oder 1 annehmen können.  
Von einer Anfangskonfiguration ausgehend sterben bzw. leben die Zellen je gewähltem Automaten in 

Abhängigkeit von der Anzahl der Nachbarn (im Beispiel 3) 
Die jeweils drei nebeneinander liegenden Zellen beeinflussen die mittlere der drei Zellen für 
die nächste Generation, in der Darstellung also eine Zeile tiefer. In der Darstellung würden 
die Belegungen der Zellen A, B und C damit über die Zelle B’ entscheiden. Eine Regel 
(Übergang von der Eltern- zur Kindgeneration) könnte zum Beispiel besagen, dass B’ nur 
dann den Zustand 1 hat, wenn alle drei Elternzellen gesetzt sind. 
 
Zellularautomat  

Für drei Nachbarn gibt es insgesamt 23 mögliche Übergänge und damit 28 = 256 verschiedene 
Bildungsregeln. Interessiert man sich nur für Regeln, welche weder links noch rechts bevorzugen, 
verbleiben noch 32. Kodiert man die acht wichtigen Übergänge 
 111  a 110  b 101  c 100  d  011  e 010  f 001  g
 000  h 
und codiert man diese acht Variablen nach Wolfram mit einer Codezahl  
 C = 128a +64b +32c +16d +8e +4f +2g +h,   
so ergeben sich Codierungen C im Bereich von 0 bis 255.  
Für die Darstellung des Wolfram-Dreiecks ist C=150, für das Sierpinski-Dreieck C=90. 
Abbildung: Wolfram-Dreieck für C=150 
  
procedure zellu(m:integer); 
var p,q,s,xm,i,j:integer; x,y:array[0..1280] of byte; b:array[0..7] of integer; 
begin 
  fillchar(x,sizeof(x),#0); fillchar(y,sizeof(y),#0); p:=480; n:=640; xm:=n div 2; n:=n div 2; p:=p div 2; 
  for j:=0 to 7 do begin q:=m div 2; b[j]:=m-2*q; m:=q end; 
  x[0]:=0; x[2*n]:=0; x[n]:=1; j:=1; 
  repeat for i:=1 to 2*n-1 do begin  s:=x[i+1]+2*x[i]+4*x[i-1]; y[i]:=b[s] end; 
 for i:=1 to 2*n-1 do begin  x[i]:=y[i]; if x[i]=1 then putpixel[xm-n+i,j]:=yellow; end; 
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              inc(j); 
  until (j>2*p+1); 
end; 
Außer den genannten Codierungen sind zum Beispiel folgende Zahlenwerte interessant 
  Codierungen 
Zellularautomat mit 3 Nachbarn 
30, 45, 50, 54, 57, 60, 73, 75, 105, 107, 110, 126, 129, 131, 135, 137, 150, 151, ... 
Zellularautomat mit 5 Nachbarn    0, 2, 5, 9, 10, 12, 17, 18, 20-23, 25 
Zellularautomat mit 7 Nachbarn    0, 2, 9, 17, 20, 25, 34, 36, 49 
Zellularautomat mit 9 Nachbarn    0, 2, 9, 10, 17, 21, 25, 36, 43, 52, 53 
 

   

 
Regel 90 

Sierpinski Dreieck 

 
Regel 22 

Sierpinski Dreieck erzeugen, die 
einzelnen Teile sind identisch. 

 
Regel 126 

Sierpinski Dreieck besteht nur 
aus verbundenen Strukturen 

   

 
Regel 60, das Dreieck ist um 45° 

gedreht 

 
Regel 57 

 
Regel 13 

   

 
Regel 30, chaotisches Verhalten 

 
Regel 47 

 
Regel 50 

 
Dualer Zellularautomat  
Unter einem dualen Zellularautomaten (engl. block cellular automaton) 
versteht man einen Automaten mit zwei Zuständen je Zelle, schwarz oder 
weiß. 
  
Das Regelsystem besteht aus vier Übergangsregeln. Eine Zelle der neuen 
Generation wird auf Grund der Belegung von zwei benachbarten Zellen der 
vorhergehenden Generation gefüllt. 
Dabei sind die Belegungen schwarz-schwarz, schwarz-weiß, weiß-schwarz 
und weiß-weiß möglich. (siehe obere Abbildung) 
Von Generation zu Generation alternieren zusätzlich die Paare von 
benachbarten Zellen. 
Ein Regelsystem kann als Dualzahl aufgefasst werden. Jeweils schwarze 
Zellen der ausgetauschten Zellen werden als Bit betrachtet. 

Das oben dargestellte Regelsystem ergibt damit 111000012 = 22510. 
Für eine Doppelzelle in der ersten Generation erhält man mit diesen Regeln die unten dargestellte 
Entwicklung des Automaten. 

 
Ameisensimulation  
... erstmals beschrieben im Juli 1994 in "Scientific American" 
Chris Langtons Ameise ist eine Turingmaschine mit einem 2-dimensionalen 
Speicher, mit sehr einfachen Regeln und sehr verblüffenden Ergebnissen. 
Nach ihrem Erfinder werden diese Ameisen auch Langton-Ameisen genannt. 
Diese Simulation ist ein schönes Beispiel dafür, dass ein einfaches System 

mit einfachen Regeln sowohl komplexe chaotische, als auch komplexe geordnete Strukturen aufbauen 
kann, und das ganz ohne die Verwendung des Zufalls. 
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Regeln  
Zu Beginn befindet sich die „Ameise" auf einer; theoretisch unbegrenzten; weißen Zeichenfläche und 
bewegt sich um einen Punkt vorwärts. 
Hat der erreichte Punkt weiße Farbe, färbt die Ameise den Punkt schwarz 
und wendet sich um 90° nach links. Ist der Punkt schwarz, wird er weiß 
gefärbt und die Ameise dreht sich um 90° nach rechts. Das rechts 
stehende Muster wurde von derartigen Ameisen erzeugt. 
 
Ameise im weißen Feld 
Der einfachste Fall ist die Bewegung einer Ameise in einem quadratischen 
Gitter mit nur weißen Feldern. Hier sind die ersten zehn Schritte einer 

Ameise.  
 
(0) Die an sich unsichtbare Ameise 
sitzt in einem Feld und bewegt sich 
zum Beispiel nach Norden.   

(1) Sie findet das nächste Feld weiß vor, färbt es schwarz und dreht sich in Pfeilrichtung. Das ist die 
Richtung nach links entgegen dem Uhrzeigersinn.  
(2) Sie erreicht das nächste Feld, färbt es schwarz und dreht sich in 
Pfeilrichtung.  
(3) (4) Weiter entsteht in den nächsten beiden Schritten ein 
schwarzes 2x2-Quadrat.  
(5) Die Ameise erreicht im fünften Schritt das schwarze Feld, das sie 
in Schritt 1 gefärbt hatte. Sie färbt es weiß und bewegt sich jetzt 
aber nach rechts in Richtung des Uhrzeigersinns.  
Je weiter die Ameise fortschreitet, desto ausgedehnter wird das 
chaotische Muster um den Startpunkt herum.   
Nach etwa 10000 Schritten passiert etwas Unerwartetes: Sie hinterlässt ein geordnetes Muster, das sich 
nach unten rechts ohne Ende ausdehnt. Die Ameise baut eine "Autobahn" (Begriff wurde von Langton 
geprägt, er nannte dies „highway“) aus sich wiederholenden Streifen. Jeder Streifen wird in 104 Schritten 
gebaut und enthält drei schwarze Tetrominos.  
Zur Orientierung: Das rote Feld ist das Quadrat, das die Ameise zu Beginn färbt. Es ist an sich auch 
schwarz.   
 
Futter für die Ameise 
Man gibt als Variation keine weiße Ebene wie oben vor, sondern in ihr ein schwarzes Feld. Es kann als 
"Futter" bezeichnet werden. Im Folgenden wird untersucht, was passiert, wenn die Ameise ein Feld links 
des schwarzen Feldes auch schwarz färbt. Es gibt vier Fälle, da die Ameise aus vier Richtungen kommen 
kann.   

 
Eine 0-West-Ameise lässt sich nicht beeinflussen, wohl aber die anderen Ameisen. Am Ende steht immer 
die Autobahn.   
Viele schwarze Felder beeinflussen den Weg der Ameise stärker. Das zeigt das Beispiel eines Quadrates 
mit der Seitenlänge 25 als Futter. Eine 1-North-Ameise färbt im ersten Schritt die obere linke Ecke (hier 
rot) und setzt sich in Bewegung.  
Die Ameise läuft auf den Seiten des Quadrates hin und her, löst sie auf und baut parallel dazu neue 
Strecken auf. Nach etwa 5500 Schritten wird die Autobahn gebaut. Das gelbe Quadrat zeigt zum 
Vergleich das Ausgangsquadrat.  
 

Zwei Ameisen 
Der einfachste Fall ist, wenn die beiden Ameisen in einer weißen Ebene im ersten 
Schritt zwei nebeneinanderliegende Felder schwärzen. Jede der beiden Ameisen kann 
sich in die vier Himmelsrichtungen 0-West, 1-North, 2-East und 3-South bewegen. Es 
gibt 16 Fälle.  Die Paare werden durch 00, 10, ... , 23, 33 gekennzeichnet:  
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Die linke Ameise färbt die Felder 
schwarz, die rechte dunkelblau. 
So kann man erkennen, welche 
Ameise welches Feld färbt.   
Es gibt die Fälle (I), (II) und 
(III).  
(I) Acht Ameisenpaare 
benehmen sich so, wie man es 
erwartet: Erst bewegen sie sich 
chaotisch, dann bauen sie eine 
Autobahn. Man beachte die Symmetrien.   
 
(II) Die erste Überraschung: Vier Paare zeichnen gemeinsam ein immer größer werdendes 
Parallelogramm.  
 
Spuren des Paares 2-East/2-East 

 
 

 
 
Spuren des Paares 2-East/0-West 

 
 
Spuren des Paares 0-West/2-East 

 
Spuren des Paares 0-West/0-West 
Die Entstehung der Vierecke sieht 
interessant aus: Die beiden Ameisen 
bauen gemeinsam eine immer größer 
werdende Figur und befinden sich dabei 
auf entgegegesetzten Seiten. 

 

 
Mit zunehmender Anzahl der Ameisen gleicht das Gewimmel immer mehr einem Ameisenhaufen. In der 
nebenstehenden Ausgangsstellung kommt es manchmal zu einem neuen Phänomen: Eine Ameise baut an 
einer Autobahn, eine zweite kommt und "ribbelt" sie wieder auf. 
Genauere Analyse dieser Simulation zeigt, dass es zum Beispiel verschiedene Formen dieser Autbahnen 
gibt. Andererseits können die hier angegebenen Spielregeln modifiziert werden. Dann entstehen völlig 
neue, ebenso faszinierende Gebilde. 
 
„Autobahnen“ 

 
 
Chaotische Strukturen 

 
 
Turk-Popp-Langton-Ameisen  
Durch Greg Turk und Jim Propp wurde 1995 eine einfache, aber sehr 
interessante Erweiterung des klassischen Regelsystems der Langton-
Ameisen beschrieben. 
Anstelle der Langton-Rechts-Links-Regel RL werden nun Zyklen aus 
beliebigen R- und L-Bewegungen betrachtet und andersfarbig dargestellt. 
Mehrere Regeln erzeugen symmetrische Muster mit regelmäßigen und 
chaotischen Anteilen, z.B. RLLR. Die Abbildung zeigt die Regel LLRR. 
Andere Bewegungsfestlegungen ergeben vollkommen chaotische Muster, 
manche nichts, wie z.B. LL und RR. 
  
Zur systematischen Beschreibung der Regeln wird der HHP-Code 



48 

angewendet. Dazu werden die 'L' und 'R' einer Regel, z.B. 'LRRL', als '0' und '1' interpretiert und die 
entstehende Dualzahl in das Dezimalsystem transformiert. Um führende 'L' = '0' zu berücksichtigen, wird 
der Dualzahl eine 1 vorangestellt. Das Beispiel 'LRRL' wird damit zur Dualzahl 10110, d.h. 22 als 
Dezimalzahl. Jeder natürlichen Zahl größer 3 ist somit eine eindeutige Regel zugeordnet und umgekehrt. 
Regeln, die mit 'R' beginnen, entsprechen Regeln bei denen alle L gegen R und R gegen L getauscht 
werden und unterscheiden sich in spiegelsymmetrischer Ausrichtung. 
für spezielle HHP-Codes siehe  
siehe http://www.math.sunysb.edu/preprints/ims95-1.pdf 
 

Für eine Vielzahl von HHP-Codes ergeben sich vollkommen 
chaotische Strukturen oder Strukturen die sogenannte Ameisen-
Autobahnen ausprägen. 
Einige HHP-Codes erzeugen symmetrische Gebilde, wenige 
verblüffende Ergebnisse. Der Code 9040 ergibt z.B. die linke 
Abbildung. 
Weitere interessante Ergebnisse erhält man für HHP-Codes: 
spezielle Muster 
19, 22, 286, 307, 358, 376, 2588, 4339, 4348, 4510, 4600, 4915, 
5063, 5068, 5686, 5734, 6112, 6116, 9040, 9856, 10214, 10243, 
10255, 10352, 10912, 16804, 17791, 18152, 19201, 19500, 
19508, 19551, … 
Muster mit eingebetteten Strukturen 
1256, 1374, 1416, 2260, 2440, 2464, 2751, 2832, 4287, 4383, 

5072, 8575, 8767, 10431, 16524, 16656, 16767, 16927, 17151, 17504, … 
Dreiecke, Vierecke, u.ä. 
138, 282, 355, 556, 1143, 2163, 2224, 2286, 4122, 4172, 4200, 4448, 4545, 4572, 
4995, 5015, 5215, 8218, 8496, 8500, 8655, 16410, … 
 
Turmiten  
Unter Turmiten versteht man ein zweidimensionale Turing-Maschine, in der ein Objekt 
je nach Zustand und Regelsystem eine Bewegung auf der Ebene ausführt und dabei 
Punkte färbt. 
Die Langton-Ameisen sind ein Spezialfall der Turmiten, ebenso die Paterson-Würmer. 
Nachdem die Langton-Ameisen 1986 beschrieben wurden, erweiterte Allen H.Brady 
1988 die Idee auf eine zweidimensionale Turing-Maschine mit Orientierung. 
Bekannt wurde das System 1989 durch eine Veröffentlichung von Dewdney. 
  
Für Turmiten mit 2 Zuständen und 2 Farben wird eine Regelsystem der Form 
 1, 8, 0, 1, 2, 1, 0, 2, 0, 0, 8, 1 
angegeben. 
Der erste Eintrag beschreibt die neue Farbe der aktuellen Zelle, der 2.Eintrag die 
anschließende Drehung (1 = keine, 2 = nach rechts, 4 = um 180°, 8 = nach links) und 
der dritte Eintrag den neuen Zustand der Turing-Maschine. 
Nach dem Färben der Zelle führen die Turmiten die Drehung aus und bewegen sich 
eine Zelle vorwärts. Mit dem neuen Zustand wird der Vorgang wiederholt. 
  
Je nach Regelsystem entstehen sehr unterschiedliche Gebilde, u.a. ein spiralförmiges 
Wachstum, chaotische Formen mit und ohne Textur, ein goldenes Rechteck mit einer 
Fibonacci-Spirale, aber auch Systeme die in einem Zyklus enden. 

 
Game of Life  
Das Game of Life ist ein System, welches mit einfachen Regeln gestattet, die Dynamik von 
Anfangssituationen zu simulieren. 
Es wurde in den 1970er Jahren von Conway entwickelt. 
Dabei handelt es sich um einen zellulären Automat, bei dem der Zustand einer Zelle vom eigenen 
Zustand und von dem der Nachbarzellen abhängt. 
In der Ebene werden lebende und tote Zellen betrachtet. Dieses Zellmuster entwickelt sich von 
Generation zu Generation nach folgenden Regeln: 
  
1. Eine lebende Zelle stirbt genau dann, wenn sie weniger als zwei 
oder mehr als drei lebende Nachbarn besitzt 
2. Eine tote Zelle wird lebendig, wenn sie genau drei lebende 
Nachbarn besitzt, d.h. mindestens drei und höchstens drei. 
Erklärung:  
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rot: Tote Zelle, die in der nächsten Generation geboren wird  
grün: Nachbarn der Zelle  

 
magenta: Zelle, die in der nächsten Generation sterben wird  
grün: Nachbarn der Zelle  

Das Fortbestehen einer Zelle ist damit von ihren acht Nachbarn abhängig und über mehrere Generationen 
hinweg von der Gesamtpopulation.  

Kleinste Veränderungen der Ausgangssituation führen damit zu vollkommen 
andersartigen Entwicklungen. Als Endstadien sind völliges Aussterben, 
periodische Bilder, chaotisches Verhalten usw… möglich. 
Conway zu "Game of Life": 
http://www.youtube.com/watch?v=E8kUJL04ELA 
http://www.youtube.com/watch?v=R9Plq-D1gEk 

 
Abbildung: Interessante Anfangsbilder des "Game of Life" 
 
Strukturen des Game of Life  
Oszillierende Objekte sind Objekte, die sich nach einem 
bestimmten Schema verändern, aber nach einer endlichen, festen 
Anzahl von Generationen wieder den Ausgangszustand erreichen. 
Ein Beispiel für ein oszillierendes Objekt ist der Pulsator. 

Die einfachste zyklische 
Konfiguration ist eine 
horizontale oder vertikale Reihe 
von drei lebenden Zellen. Beim horizontalen Fall wird direkt ober- und 
unterhalb der Zelle in der Mitte eine lebende Zelle geboren, während 
die äußeren beiden Zellen sterben; so erhält man eine vertikale 
Dreierreihe. 
Eine Reihe von zehn horizontal oder vertikal aneinander hängenden 
Zellen entwickelt sich sogar zu einem Objekt, das einen Zyklus von 
fünfzehn Generationen hat, dem Pulsator. 

Raumschiffe sind (nicht zwangsläufig) oszillierende Objekte, die während ihres Oszillierens eine feste 
Strecke zurückgelegen und dabei ihre Gestalt erhalten oder sich nach einer bestimmten Anzahl von 
Generationen selbst erzeugen. Dabei kann man zwischen den diagonalen Raumschiffen und den 
vertikalen bzw. horizontalen Raumschiffen unterscheiden. Zu den diagonalen Raumschiffen zählen der 
Gleiter und die Qualle, während die Segler zu den horizontalen Raumschiffen zählen.  
Statische Objekte bilden die wohl langweiligste Klasse von Objekten, da sie nichts machen. Manche 
dieser statischen Objekte haben allerdings eine Aufgabe, indem sie z.B. Gleiter „fressen“ oder umlenken 
können. 
Ein Beispiel für ein statisches Objekt ist der Block mit den 
Ausmaßen 2x2; jede Zelle hat hier drei Nachbarn. 
Die stabilen Populationen enthalten nur Lebewesen mit 2 oder 3 
Nachbarn und ändern sich nicht mehr. Sie heißen nach Conway 
Stillleben (still lifes).   
Hier ist eine Darstellung einiger bekannter Stillleben.   
 
Oszillatoren  

Eine andere auffällige Population ist der Blinker. Er besteht aus drei Lebewesen, die 
abwechselnd übereinander oder nebeneinander liegen.  
Er gehört zu den Periode-2-Oszillatoren (periodic 2 oszillators, p2).   

Rechts sind weitere p2-Objekte zu sehen. 
Die Perioden können auch größer als 2 sein:  
Links ein Periode-3-Oszillator (p3), das Kreuz (cross), 

Gleiter  
Es gibt merkwürdige Gebilde, die sich diagonal auf dem Feld bewegen. Sie bringen ein 

interessantes Moment in die Abfolge der Generationen. Die "Gleiter" bestehen in jeder Phase aus 5 
Lebewesen und haben die "Periode" 4. 
Auch "Raumschiffe" bewegen sich. Es gibt sie in drei Größen: Sie heißen lightweight spaceship, 
middleweight spaceship und heavyweight spaceship, abgekürzt LWWS, MWSS und HWWS.   
Die Populationen erinnern sowohl im statischen Zustand als auch in der Bewegung mehr an Vögel als an 
Raumschiffe 
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Eine beliebte Beschäftigung ist die Entdeckung von Populationen mit interessanten 
Verläufen. Populationen mit wenigen Lebewesen sind erforscht und katalogisiert.  
Eine bekannte Population dieser Art hat die Form eines F-Pentominos. Sie 
hat eine bewegte Entwicklung:   
Stillleben und Blinker entstehen, werden wieder aufgesogen und bilden 
sich erneut. Insgesamt 6 Gleiter entfernen sich auf Nimmerwiedersehen. 
Am Ende bleibt nach 1102 Generationen eine Population mit 15 Stillleben 

und 4 Blinkern zurück.  
Gibt man eine symmetrische Figur vor, so bleibt die Symmetrie in allen nachfolgenden Generationen 
erhalten. Dadurch ist sie zu jeder Phase ansehnlich.   
Manchmal hat man Glück: Wenn man zu Beginn eine Population in Form eines Fensters 13x11 (links) 
aussetzt, verlassen vier Gleiter die Mitte. 

 
Game of Life, Primzahlen  
Eine Sensation stellt die am 11.Januar 1991 von Dean 
Hickerson veröffentlichte Ausgangssituation für "Game of 
Life" dar. Die links schematisch dargestellte Konfiguration 
wirft aller 120n+100 Generationen ein "kleines Raumschiff 
aus, genau dann wenn n eine Primzahl ist. 
Damit ist es gelungen mittels "Game of Life" ein 
Primzahlsieb zu realisieren. 
 
Game of Life-Varianten, Abweichende Regeln   
Man kann sich abweichende Regeln zum klassischen 
"Game of Life" vorstellen. Das folgende Regelwerk 

definiert beispielsweise ein sich reproduzierendes System, eine Kopierwelt: 
Todes-Regel eine Zelle mit genau 0, 2, 4, 6 oder 8 Nachbarn stirbt 
Geburts-Regel 1, 3, 5 oder 7 lebende Nachbarn erzeugen oder erhalten eine lebende Zelle 
Wenn man in dieser Kopierwelt eine Struktur in Form des Buchstaben H zeichnet, so werden lauter 
identische H-Buchstaben erzeugt.  
Um sich beim Vergleich verschiedener Regelwerke eine umständliche Umschreibung der Regeln zu 
ersparen, existiert eine Kurzschreibweise für die Regeln von Game of Life. Man zählt zunächst die 
Anzahlen von Nachbarn auf, bei der eine Zelle nicht stirbt, und anschließend, durch einen Schrägstrich 
abgetrennt, die Anzahlen der Nachbarn, bei der eine Zelle geboren wird. 
Die klassische Conway-Welt wird durch 23/3 beschrieben, die oben beschriebene Kopierwelt durch 
1357/1357.  
Sehr dicht an das klassische 23/3-Regelwerk kommen die Regelwerke 34/3 und 35/3. Insgesamt sind 
262144 (218) Regelwerke denkbar, von denen die meisten jedoch uninteressant sind. Einige der 
interessanteren werden auf den nachfolgenden Seiten beschrieben.  
 
Game of Life - Welten  
13/3-Welt   
Dies ist eine Regelwelt mit wenigen oszillierenden Objekten. Die meisten Objekte sind verkrüppelt. 
Wenigstens drei oszillierende Objekte gibt es.  
34/3-Welt   
oszillierendes Objekte der 34/3-Welt: Frosch (siehe Abbildung) 
35/3-Welt   
in der 35/3-Welt gibt es zum Beispiel diese vier sich bewegenden Objekte, darunter einen Segler 
245/3-Welt   
Neben den oszillierenden Objekten, die auch in der 24/3-Regelwelt vorkommen, existieren hier auch noch 
ein paar andere oszillierende Objekte, insgesamt acht. Das Besondere aber ist das Vorkommen eines sich 
bewegenden 7-Zyklen-Objekts, das in seiner Art der Bewegung einer Qualle ähnelt. 
1357/1357-Welt, 1357/02468-Welt  
Kopiersysteme, wobei jeweils eine einzige kleine Struktur wunderbare Muster hervorzaubern kann 
 
Antiwelten   
Zu jeder Regelwelt gibt es eine Antiregelwelt, in der Form, dass alles invertiert ist. Alle Zellen, die sonst 
tot sind, leben und alle Zellen, die sonst leben, sind tot. Anticonway-Regeln erhält man, wenn man 
erstens je Anzahl Nachbarn die Regeln für Geburt und Tod tauscht und zusätzlich die Regeln derart 
spiegelt, dass 8 Nachbarn das Regelsystem für 0 erhalten, 7 für 1, 6 für 2, ... und 0 für 8. 
Die Antiwelt zum ursprünglichen Game of Life wäre damit die 01234678/0123478-Welt. 
 
 
 
 
 
 



51 

Zweidimensionales Wachstum  
Ein zweidimensionaler Zellularautomat kann auch mit folgendem 
Regelsystem aufgebaut werden: 
1. Ausgang sind eine oder mehrere linear angeordnete Zellen 
2. je Zyklus (Generation) wird eine leere Zelle genau dann gefüllt, wenn 
sie eine vorgegebene Anzahl von Nachbarn hat 
3. dabei werden entweder 4 Nachbarn (links, rechts, oben, unten) oder 8 
Nachbarn (auch die Diagonalen) betrachtet 
  
Auch bei diesem Automaten ergeben sich 
sehr interessante Figuren. 
 
Munching Squares  

Die "Munching Squares" sind eine Abfolge von Bildern, die auf einem der 
ersten Minicomputer, dem PDP-1 von 1962, von Jackson Wright erdacht 
wurden. 
Ziel war es, auf dem Bildschirm des Computers eine Animation mit 
symmetrischen Mustern zu erzeugen. Im Jahr 1962 war das Ergebnis 
eine Sensation! 
Ausgehend  von einem n x n -Spielfeld auf dem Display wird für jedes 
Feld mit den Koordinaten a, b; beginnend bei (0,0); der Wert 
 XOR (a, b) 
gebildet. Ist das Ergebnis kleiner als ein Parameter t wird das Feld weiß bezeichnet, andernfalls schwarz. 
Der Parameter t läuft dabei von 0 bis n. 
  
Während in der Originaldarstellung der 1960er Jahre nur der XOR-Operator benutzt wurde, kann auch 
der AND- bzw. OR-Operator verwendet werden. 
Es ist erstaunlich, dass bei diesen beiden Operatoren das Sierpinski-Dreieck entsteht. 
  
Donnelly-Simulation  
Peter Donnelly vom University College of Swansea in Wals und Dominic Welsh von der Universität Oxford 
entwickelten dieses faszinierende "Wahl-Spiel".  
Gegeben ist eine gewisse Menge von Wählern und eine Anzahl von Parteien bzw. Gruppierungen.  
Zu Beginn hat jeder Wähler eine gewisse politische Orientierung. In gewissen Zeitabständen wird ein 
beliebiger Wähler schwankend und ändert seine Meinung zufällig in die Meinung eines seiner acht 
Nachbarn.  
Lässt man diese einfache Regel über einen längeren Zeitraum laufen, treten erstaunliche Effekte zu Tage. 
Verblüffend ist, dass jede(!) Ausgangssituation irgendwann einmal zum Totalitarismus führt. Eine Gruppe 
bleibt übrig, während alle anderen aussterben. 
Anmerkung: Der "endgültige Sieg" einer Gruppe ist sicher. Allerdings kann dies länger dauern. Ein 
Testlauf von 15 Gruppierungen ergab nach 2 Millionen Wählerwanderungen erst das Aussterben von 9 
Gruppen, während von den verbleibenden 6 fünf "ums Überleben" kämpften und eine Partei schon eine 
2/3-Mehrheit erzielt hatte. 

 
Wireworld  
Abbildung: Wireworld-Dioden, die obere wird in Durchlass-, die untere in 
Sperrrichtung geschaltet 
  
Wireworld ist ein zellulärer Automat, der erstmals von Brian Silverman 1987 
beschrieben wurde. Er eignet sich besonders für die Simulation elektronischer 
Logikelemente wie Gatter oder Flipflops. Trotz der Einfachheit seiner Regeln ist es 
möglich, vollständige Computer mittels Wireworld zu implementieren. 
Eine Wireworld-Zelle kann vier unterschiedliche Zustände einnehmen: 

 leer (schwarz)  
 "elektrischer Leiter" (gelb)  
 "Elektronenkopf" (blau)  
 "Elektronenende" (rot)  
Die Zeit verläuft in diskreten Schritten, den sogenannten Generationen. Dabei bleibt eine leere Zelle 
grundsätzlich leer. Die übrigen Zellen verhalten sich beim Übergang von einer Generation zur nächsten 
wie folgt: 
 aus einem Elektronenkopf wird ein Elektronenende 
 aus einem Elektronenende wird ein Leiter.  
aus einem Leiter wird ein Elektronenkopf, wenn genau ein oder zwei der benachbarten Zellen 
Elektronenköpfe sind 
Wendet man diese Regeln auf die Zellen an, so bewegt sich das Elektron in Richtung seines "Kopfes". 
Durch geeignete Ausbildung von Leiterverzweigungen und -kreuzungen können logische Schaltelemente 
vom einfachen Gatter bis zum komplexen Rechenwerk realisiert werden. 
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Langton-Schleife  
Langton-Schleifen (engl. Langton's Loops) stellen eine spezielle Form 
künstlichen Lebens dar. Sie wurden 1984 von dem theoretischen Biologen 
Christopher Langton entwickelt. 
  
Die "Organismen" mit der Fähigkeit zur Selbstreplikation bestehen aus 
einer ringformigen Anordnung von Zellen, die die genetische Information 
enthalten. 
Diese Zellen sind von einer schützenden Hülle umgeben, in der sie 

beständig rotieren. An einer bestimmten Stelle bricht der Zellstrang mit den Genen die Hülle auf, und der 
Organismus bildet hier einen Arm aus, in den eine vollständige Kopie der Gensequenz eintritt. 
Diese veranlasst den Arm zu wachsen, sich zu einem neuen Ring zu schließen und sich schließlich vom 
Elternring abzulösen.  
Danach sind die beiden genetisch identischen Organismen zu abermaliger Replikation bereit. 
  
Der von Langton entworfene zelluläre Automat ist zweidimensional mit Von-Neumann-Nachbarschaft und 
acht Zellzuständen. 
Die Anfangskonfiguration besteht aus 86 Zellen. Es existieren mehrere hundert Regeln, die die 
Zustandsänderungen jeder Zelle beim Übergang von einer zur nächsten Generation festlegen. 
siehe http://necsi.org/postdocs/sayama/sdsr/movies/lang-rep.html 

 
Clusterbildung 
Das Bilden von Clustern findet u.A. statt bei Anlagern von 
Teilchen an Oberflächen, elektrischen Entladungen, 
Wachstum von Dendriten und Diffusion von Wasser in Öl. 
Biochemisch interessante Cluster, wie z.B. aus Peptiden 
oder Nucleotiden, gelten als Modellsysteme für biologische 
Reaktionsprozesse. Im Englischen spricht man dabei von 
Diffusion Limited Aggregation (DLA), d.h. durch Diffusion 
begrenztes Wachstum. 
Der Mechanismus der Clusterbildung ist theoretisch auch 
heute noch (im Jahr 2006) nicht voll verstanden. Daher sind 
Computer-Simulationen dieser Vorgänge von großem 

Interesse, wenn gleich diese sehr rechenaufwendig sind.  
Ein einfacher; und die Entwicklung von Clustern gut beschreibender Algorithmus, ist folgender: 

 auf der Simulationsfläche wird ein beliebiger Punkt zufällig ausgelost  
 innerhalb seiner von-Neumann-Umgebung (d.h. nach links, rechts, oben oder unten) wird dieser 

Punkt zufällig verschoben 
 befindet sich nun in der Moore-Umgebung (d.h. links, rechts, oben, unten, links-oben, links-

unten, rechts-oben und rechts-unten) ein Cluster-Teilchen, so wird der Punkt gesetzt. Ist sein 
Abstand vom Startpunkt größer als der momentane Distanzwert, so wird dieser Wert aktualisiert 

 kann der Punkt nicht gesetzt werden, wird er solange in der von-Neumann-Umgebung 
verschoben und in der Moore-Umgebung getestet bis er entweder markiert werden kann oder 
sein Abstand zum Startpunkt den aktuellen Distanzwert um 4 Pixel überschreitet. In diesem Fall 
wird der Punkt verworfen und von vorn begonnen 

Hinweis: Der in der Abbildung dargestellte Cluster wurde auf einem Pentium III-Rechner (750 MHz) in 
etwa 10 Minuten berechnet. Wie rasant sich die Computertechnik weiterentwickelt hat, erkennt man 
daran, dass die obige Abbildung auf einem „alten“ 386er-PC mehr als einen Tag benötigt. 
 

Brownsche Molekularbewegung, Brownsche Bewegung  
Der englische Botaniker Brown entdeckte 1827, dass mikroskopisch kleine 
Teilchen, z.B. Staub, in Gasen oder Flüssigkeiten Zitterbewegungen 
ausführen. 
Die Brownsche Molekularbewegung beruht auf den unregelmäßigen Stößen 
der Moleküle des umgebenden Mediums. Diese Bewegung ist ein 
stochastischer Vorgang, der chaotisch erfolgt. 
In der Mathematik ist eine Brownsche Bewegung ein zentrierter Gauß-
Prozess. Der resultierende stochastische Prozess wird zu Ehren von Norbert 
Wiener, der die wahrscheinlichkeitstheoretische Existenz 1923 bewies, als 

Wiener-Prozess bezeichnet. 
Eine Möglichkeit, eine Brownsche Bewegung zu konstruieren, geht von unabhängigen, 
standardnormalverteilten z0, z1, … aus. Dann ist S(t) = z0t + k=1

 zk 2 sin (kt) / (k) 
eine Brownsche Bewegung. 
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Plasma 
Ein sehr interessantes fraktales Gebilde ist die Konstruktion eines 
Plasmas. Dabei werden rekursiv aus schon vorhandenen Punkte 
weitere farblich gekennzeichnete Punkte als Mittelwert mit einem 
gewissen zufälligen Anteil berechnet. Im Ergebnis entsteht ein Bild, 
das irgendwie an Wolken oder Aufnahmen von Wärmestrahlung 
erinnert. 
Delphi-Procedure 
procedure plasma; 
var  q:integer; faktor:real; 

function _getpixel(x,y:integer):word; 
var i:integer; farben:longint; gefunden:boolean; 
begin farben:=paintbox1.Canvas.pixels[x,y]; gefunden:=false; i:=0; 
   repeat if integer(rgb(pal[i].r,pal[i].g,pal[i].b))=farben then gefunden:=true; 
       inc(i); until gefunden or (i>255); dec(i); 
   if not gefunden then _getpixel:=0 else _getpixel:=i; end; 
function farbmitte(f1,f2,abweich:integer):word; 
var m,x:integer; 
 begin  m:=(f1+f2) div 2+ random(abweich)-abweich div 2;  if m<0 then m:=0; 
  x:=(modus*m) mod 256;  if x=0 then inc(x);  farbmitte:=x; 
end; 
procedure fenster(xa,xe,ya,ye:longint); 
var farbe1,farbe2,farbe3,farbe4:byte; xm,ym,xxx:integer; 
 begin if not abbruch then begin  xm:=(xa+xe) div 2;  ym:=(ya+ye) div 2;  if xa>0 then 
farbe1:=_getpixel(pred(xa),ym) 
  else   begin    farbe1:=farbmitte(_getpixel(xa,ya),_getpixel(xa,ye),round((ye-ya)*faktor)); 
    paintbox1.canvas.Pixels[xa,ym]:=rgb(pal[farbe1].r,pal[farbe1].g,pal[farbe1].b); 
   end; 
  if ya>0 then farbe2:=_getpixel(xm,pred(ya))  else   begin 
    farbe2:=farbmitte(_getpixel(xa,ya),_getpixel(xe,ya),round((xe-xa)*faktor)); 
    paintbox1.canvas.Pixels[xm,ya]:=rgb(pal[farbe2].r,pal[farbe2].g,pal[farbe2].b); 
   end; 
  farbe3:=farbmitte(_getpixel(xe,ya),_getpixel(xe,ye),round((ye-ya)*faktor)); 
    paintbox1.canvas.Pixels[xe,ym]:=rgb(pal[farbe3].r,pal[farbe3].g,pal[farbe3].b); 
  farbe4:=farbmitte(_getpixel(xa,ye),_getpixel(xe,ye),round((xe-xa)*faktor)); 
    paintbox1.canvas.Pixels[xm,ye]:=rgb(pal[farbe4].r,pal[farbe4].g,pal[farbe4].b); 
    xxx:=farbmitte(farbmitte(farbe1,farbe3,0),farbmitte(farbe2,farbe4,0),0); 
    paintbox1.canvas.Pixels[xm,ym]:=rgb(pal[xxx].r,pal[xxx].g,pal[xxx].b); 
  if xm >xa then begin    fenster(xa,xm,ya,ym);    fenster(xa,xm,ym,ye);   end; 
  if xe>succ(xm) then   begin    fenster(xm,xe,ya,ym);    fenster(xm,xe,ym,ye);   end; 
   application.processmessages; 
 end; end; 
procedure farbtiefe; 
var DesktopDC    : HDC;  BitsPerPixel : integer; 
begin   DesktopDC := GetDC(0);   BitsPerPixel := GetDeviceCaps(DesktopDC, BITSPIXEL); 
   if BitsPerPixel < 24 then showmessage(‘Farbtiefe zu gering’);   ReleaseDC(0, DesktopDC); 
end; 
begin 
  farbtiefe;  randomize;  faktor:=strtoint(edit1.text); 
  q:=random(255)+1;  
paintbox1.canvas.pixels[0,0]:=rgb(pal[q].r,pal[q].g,pal[q].b); 
  q:=random(255)+1;  paintbox1.canvas.pixels[breite-
1,0]:=rgb(pal[q].r,pal[q].g,pal[q].b); 
  q:=random(255)+1;  paintbox1.canvas.pixels[0,hoehe-
1]:=rgb(pal[q].r,pal[q].g,pal[q].b); 
  q:=random(255)+1;  paintbox1.canvas.pixels[breite,hoehe-
1]:=rgb(pal[q].r,pal[q].g,pal[q].b); 
  fenster(0,breite-1,0,hoehe-1); 
end; 
 
Fraktale Strukturen finden sich über all in der Natur. Das rechte Bild 
zeigt die Umgebung des Assuan-Staudamms 
 
Chaos-Doppelpendel 
Eine der auch heute noch interessantesten Aufgaben der Mechanik ist die Untersuchung des Verhaltens 
eines mathematischen Doppelpendels. Dabei ist ein Massekörper an einem Faden angebracht 
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(Fadenpendel). Ein zweites Fadenpendel wird nun zusätzlich an dem ersten Massekörper befestigt. Beide 
Körper können unterschiedlich ausgelenkt werden. 

Möchte man die Orte der Körper während der Schwingung wissen, wäre es 
notwendig zwei Schwingungsdifferenzialgleichungen zu lösen. Extrem schwierig 
wird es aber dadurch, dass sich der Aufhängepunkt der zweiten Schwingung selbst 
bewegt und durch die Verbindung beider Schwingungen eine ständige 
Energieübertragung stattfindet. Dadurch kann das Problem nicht mehr rein 
analytisch gelöst werden, sondern bedarf eines Näherungsverfahrens bzw. der 
Simulation mit dem Computer. Insbesondere zeigt sich, dass die Bewegung eines 
solchen Pendels extrem stark von den Anfangsbedingungen abhängig ist. Dieses 
dynamische System besitzt Eigenschaften, welche von der modernen Chaostheorie 
untersucht werden.  
Für bestimmte Anfangswerte führt das Doppelpendel scheinbar unregelmäßige 

Bewegungen aus. Man kann verfolgen, dass sich das Pendel oft längere Zeit annähernd gleichmäßig 
bewegt und dann plötzlich ein völlig anderen Weg nimmt. Diese chaotische Verhalten führte auch zur 
Bezeichnung Chaospendel für dieses mathematische Doppelpendel. 
 

Ein Doppelpendel wird definiert durch die beiden Pendelmassen m1 und m2, 
die auf die jeweiligen Schwerpunkte bezogenen Massenträgheitsmomente 
JS1 und JS2, die Schwerpunktabstände von den Drehpunkten s1 und s2 und 
den Abstand l1 der beiden Drehpunkte voneinander. 
Die Bewegung wird durch die Funktionen 1(t) und 2(t) beschrieben, die für 
die Zeit t = 0, 1, …, s zu berechnen sind.  
Dann gelten die folgenden Differenzialgleichungen: 
  
[(s1/l1)² + JS1/(m1 l1²) + m2/m1] d²1/dt² + [m2/m1 s2/l1 cos (1 - 2)] 
d²2/dt² = -m2/m1 s2/l1 (d2/dt)² sin (1 - 2) - (s1/l1 + m2/m1) g/l1 sin 1 
und 
[m2/m1 s2/l1 cos (1 - 2)] d²1/dt² + [m2/m1 (s2/l1)² + JS2/(m1 l1²)] 

d²2/dt² 0 m2/m1 s2/l1 (d1/dt)² sin (1 - 2) - m2/m1 s2/l1 g/l1 sin 2 
  
Dieses Differenzialgleichungssystem ist nicht analytisch lösbar und kann nur durch Näherungsverfahren 
bestimmt werden, z.B. mittels Runge-Kutta-Verfahren. 
Quelle: Dankert, http://www.tm-aktuell.de/TM5/Doppelpendel/doppelpendel_matlab.html 
 

Fraktale in der Kunst und Unterhaltung 
Die Schönheit und Seltsamkeit der fraktalen Gebilde hat deren Einzug in die bildende Kunst nur 
gefördert. Als eines der unzähligen Beispiele sei erwähnt: 
Diese Bilder entstanden auf der Basis von Algorithmen, die man auch als Fraktale bezeichnen könnte. © 
Karin Kuhlmann 

 
 

 

 
 

 

 
 

 

 
Kopflos Brennende Geduld Staub zu Staub Zeichen 
 
 

 

 
 

 

 
 

 

 
Fluchtversuch Zündstoff Die dunkle Seite Tiefenrausch 

Fraktale Gemälde von Susan Chambless 
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Darüber hinaus treten Fraktale aber auch in anderen Bereichen der Unterhaltung auf. Im faszinierenden 
Science-fiction-Film „Star Trek“ zerstört ein nicht identifizierter Fremder aus dem Weltall drei mächtige 
Klingonen-Raumschiffe. Daraufhin übernimmt Captain James T. Kirk erneut das Kommando über das 
U.S.S. Raumschiff "Enterprise". Die Besatzung der "Enterprise" mobilisiert sofort alle Kräfte, um den 
fremden Eindringling aus dem Weltall daran zu hindern, die Erde zu vernichten. Und das mathematisch 
Besondere ist, dass erstmals die räumlichen Strukturen des fremden Gebildes mittels fraktaler Geometrie 
erzeugt wurden. Star Trek I ist damit der erste Spielfilm, in dem Methoden der Chaostheorie genutzt 
wurden. 
 
Auch die Pop-Musik kann sich neuen mathematischen Verfahren nicht entziehen, zumindest die Künstler, 
die ein Anspruchsniveau an ihre eigene Musik stellen. Im Video zu „Morgenrot – Dance Music“ von 
Herbert Grönemeyer werden fraktale Bäume und Landschaften gezeigt. Außerdem findet man noch das 
Zerfallen in selbstähnliche Teile, ein Attraktor als Regenbogen, ein Möbius-Band und mehrere 
Sternpolyeder. Für den Mathematiker eine „wahre Freude“. 
 

Fraktale in der Architektur  
Auch in der Architektur finden sich Ansätze zur Nutzung fraktaler 
Strukturen. 
Das wohl schönste Beispiel aus der Kunst sind die Maßwerk-Fenster 
einiger gotischer Kathedralen; z.B. die Fenster des "Straßburger-Meisters" 
(Straßburg). 
Das ursprüngliche Fenster wird in zwei Teilfenster unterteilt, jedes dieser 
Teilfenster wieder in zwei Teilfenster. 
Dieser Teilungsprozess kann in der Praxis natürlich nicht unendlich 
weitergeführt werden; ein nächster Unterteilungsschritt erfolgt mitunter in 
der Glasmalerei. 
Die linke Abbildung zeigt das Westfenster des Münsters von York. 
Diese Fenster von 1338 zeigen eine fortgesetzte 
Zweier-Unterteilung. Das Ostfenster (1405-1408) 
besitzt sogar eine fortgesetzte Dreier-Unterteilung. 
  
Ein Architekt, der Selbstähnlichkeit zum Thema 
seiner Gebäude macht, ist der US-Amerikaner Bruce 

Goff (1904-1982). Er war einer der führenden Vertreter der Art-Deco-Architektur. 
Bedeutende Bauwerke sind das Bavinger Haus in Norman, das Ruth VanSickle Ford 
House in Aurora, das Colmorgan Haus in Glenview und der Pavillon für japanische 
Kunst in Los Angeles. 
  
So projektierte er das "Joe D.Price-Haus" (1956-1976) mit selbstähnlichen 
Dreiecken, Sechsecken und Trihexa, vom größten bis zum allerkleinsten Detail. Die 
Abbildung zeigt eine der Eingängstüren des Hauses. 
Winkel von 60°, ihr Vielfaches und Bruchteile davon treten in allen Formen und 
Materialien auf. 
Das Price-Haus wurde 1996 durch Brandstiftung zerstört. 
 
 



56 

 



57 

 



58 

 

 

 



59 

 

 

 

 



60 

    
xy - x + sin y (x +y) (x – y) 1/(x² + y²) |x|y 

    
arcsin(x/y) cos x / sin(xy) ln(x / sin y + sin y) sin x sin y + x 

    
sin(x³ + y³)/x y sin(x + sin y) ((x – y) (x + y))² (x² + y²)² 

    
tan(x/sin y + sin y) x (x + y) xy (x – y) x / sin y 

    
x² / (x + y) x² / sin(x-y) x² + sin(xy) x³ + y³ 

   

 
 
 
 
 

Circle-Fraktale 

x - y    
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xy – (x + sin y) invers (x+y) (x-y) invers 1/(xy) invers |x|y invers 

    
|1-x|y invers |1-x|y+x invers |1-x|y+x |x-y|y invers 

    
cos x sin(xy) invers Gamma(x-y) invers (x²+y³)² invers x² + y – 3 sin x – 4  

    
x² + |y| – 3 sin x – 4 |x³ + y³| invers ln(ln²(x² + y²)) invers arcsin(x^2+y-1) 

    
cos x sin(xy) cos x + sin(xy) cos(x/2) + sin(x-y) ln(xsin y + sin y) 

    
sin(2x)/x + y |x+|x-y|| |x+|x*y||/x x² + sec(xy) 
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Schrittweises Zoomen in die Mandelbrotmenge 

 

     

     

     

     

     

     

     

     

     

 

 




