Files
linearalgebrarefresher/vector.py
2020-11-08 13:49:20 +01:00

68 lines
1.5 KiB
Python

# -*- coding: iso-8859-15 -*
from math import sqrt
import pdb
class Vector(object):
def __init__(self, coordinates):
try:
if not coordinates:
raise ValueError
self.coordinates = tuple(coordinates)
self.dimension = len(coordinates)
except ValueError:
raise ValueError('Die Koordinaten dürfen nicht leer sein')
except TypeError:
raise TypeError('Die Koordinaten müssen iterierbar sein')
def __str__(self):
return 'Vector: {}'.format(self.coordinates)
def __eq__(self, v):
return self.coordinates == v.coordinates
def plus(self,v):
new_coordinates = [x+y for x,y in zip(self.coordinates, v.coordinates)]
return Vector(new_coordinates)
#def plus(self,v):
# new_coordinates =[]
# n = len(self.coordinates)
# for i in range(n):
# new_coordinates.append(self.coordinates[i] + v.coordinates[i])
def minus(self,v):
new_coordinates = [x-y for x,y in zip(self.coordinates, v.coordinates)]
return Vector(new_coordinates)
def times_scalar(self, c):
new_coordinates = [c*x for x in self.coordinates]
return Vector(new_coordinates)
def magnitude(self):
#Länge
coordinates_squared = [x**2 for x in self.coordinates]
#pdb.set_trace()
return sqrt(sum(coordinates_squared))
def normalized(self):
try:
magnitude = self.magnitude()
return self.times_scalar(1./magnitude)
except ZeroDivisonError:
raise Exception('Ein Null-Vektor kann nicht normalisiert werden')
# Tests
veka1 = Vector([0,5])
veka2 = Vector([2,2])
print (veka1.plus(veka2))