68 6. Kombinatorik

Quotient ist, bei dem im Nenner das Produkt von 1 bis k und im Zahler ebenfalls ein
Produkt aus k Faktoren steht, das mit a beginnt und jeder weitere Faktor jeweils um
eine Einheit abnimmt.

Beispiele 6.8
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Wir kommen zu den wichtigsten Eigenschaften von (Z) :

Weiter ist stets( ) = a und (i) = 1 fiir natiirliches p.

1.Ist @a =n =0, ganz, und k > n, so ist (Z)
n —k + 1 £ 0. Somit tritt im Zahler von (6.15) der Faktor 0 auf. Zum Beispiel

ist

= 0. Denn aus n — k < 0 folgt
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2. Es seien n und k positiv ganz und n = k, dann gilt
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Der Beweis folgt unmittelbar aus der Uberlegung, im mittleren Quotienten k
durch n — k zu ersetzen.

3. Es gilt fiir reelles @ und k = 0:

(Z) * (k i 1) = (Z JJ: i) (6.20)

Diese Formel wird zum Aufbau des Pascalschen Dreiecks verwendet.

Bewelis:
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4. Fiir a reell und n = 0 gilt:
a a+1 a+2 a+n a+1+n
O+ (3 )+ (3 ) ¢ () =70

oder mit dem Summenzeichen aus 6.1.2.:
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