Files
maing01/Die_Entwicklung_der_Mathematik_und_ihre_Beziehung_zur_Praxis.tex
2025-09-19 20:28:08 +02:00

24 lines
7.8 KiB
TeX

\chapter{Die Entwicklung der Mathematik und ihre Beziehung zur Praxis}
\section{Aus der Entwicklungsgeschichte der Mathematik}
Die Geschichte der Mathematik ist eng mit der der menschlichen Gesellschaft verknüpft. Ferner bestimmen einige bedeutende Mathematiker durch ihre richtungweisenden Ideen und Entdeckungen die Entwicklung der Mathematik entscheidend. Die Mathematik gehört - neben Philosophie, Medizin und Astronomie - zu den ältesten Wissenschaften. Sie erreichte schon im 2. Jahrtausend v. u. Z. in Ägypten und Mesopotamien, aber auch im alten China und Indien einen beachtlichen Reifegrad. Die verwendeten Zahlensysteme standen im engen Zusammenhang mit kommerziellen und militärischen Interessen sowie mit Verwaltungsproblemen. Man kannte Verfahren zur Lösung von Gleichungen, sogar höheren Grades. Die Geometrie diente dem Errichten von Bauwerken, der Feldvermessung und der Orientierung am Himmel. Doch handelte es sich um eine rezeptartige, noch nicht auf Beweisen von explizit angeführten Sätzen aufbauende Mathematik.
Erst mit der Herausbildung der antiken Sklavenhaltergesellschaft im alten Griechenland wurde die Mathematik im 6.-5. Jh. v. u. Z. zu einer selbständigen Wissenschaft mit eigenen Methoden und Beweisverfahren; auf dieser Grundlage schuf Euklid (365?-300? v. u. Z.) mit seinen ,„Elementen“ (um 325 v. u. Z.) eine bewunderungswürdige Darstellung des damaligen mathematischen Kenntnisstandes. Mit Archimedes\index{Archimedes} (287?-212 v. u. Z.), dem in Geometrie und Mechanik große Entdeckungen gelangen, erreichte die Mathematik der Antike während der hellenistischen Periode ihren Höhepunkt.
Zur Zeit der Herrschaft der Römer und in der feudalistischen Gesellschaft gab es in Europa keine nennenswerten mathematischen Entwicklungen, während die Mathematik vor allem in Indien und in den Ländern des Islam zu einer hohen Blüte gelangte ; viele Teilergebnisse - darunter die indisch-arabischen Ziffern - gelangten seit dem 12./13. Jh. in die Länder des europäischen Feudalismus, in denen bis dahin nur ein sehr bescheidenes wissenschaftliches, darunter auch mathematisches Niveau geherrscht hatte.
Erst mit der Entwicklung von Elementen des Frühkapitalismus in Europa bildeten sich, insbesondere seit dem 16. Jh., günstige Bedingungen für die Übernahme des antiken mathematischen Erbes und für dessen selbständige Weiterentwicklung durch die Europäer heraus. Die Trigonometrie entwickelte sich zu einer selbständigen mathematischen Disziplin. Die Durchbildung der Rechenmethoden machte große Fortschritte; von den sog. Rechenmeistern wurde in Deutschland A. Ries (1492-1559) am bekanntesten, der im Erzgebirge wirkte. Reichlich ein Jahrhundert später wurden die ersten Maschinen für die Grundrechenarten entwickelt (Schickard (1592-1635), Pascal (1623-1662), Leibniz (1646-1716)).
Das Gedankengut der rationalistischen philosophischen Systeme und der Aufklärung sowie die bürgerliche Revolution brachten im 16. und 17. Jahrhundert mit der Überwindung der feudalistischen Gesellschaftsordnung und der diese Ordnung rechtfertigenden Ideologien auch den Naturwissenschaften und der Mathematik wieder Geltung und Bedeutung. Descartes (1596-1650) begründete den modernen Rationalismus auf der mathematischen Grundlage der von Galilei (1564-1642) geformten Naturwissenschaften. Er gilt auch als Begründer der analytischen Geometrie.
Die Herausbildung der infinitesimalen Methoden erfolgte in engem Zusammenhang mit der geistigen Bewältigung des Bewegungsproblems in Physik (G. Galilei) und Himmelsmechanik (J. Kepler). Im Anschluß an die Ergebnisse von Archimedes\index{Archimedes} und durch sehr mühsame Gedankenarbeit im 16. und zu Anfang des 17. Jahrhunderts vermochten es I. Newton (1643-1727) und G. W. Leibniz im letzten Drittel des 17. Jahrhunderts, unabhängig voneinander die Methoden der Differential- und Integralrechnung durchzubilden. Während Newton, der als einer der bedeutendsten Forscher auf den Gebieten der Mathematik, Mechanik und Astronomie gilt, mit Hilfe dieses neu entwickelten mathematischen Werkzeuges den Aufbau der klassischen Mechanik und seine "`Mathematischen Prinzipien der Naturwissenschaften"' (1687) vollenden konnte, setzten sich die geschickteren Bezeichnungen von Leibniz rasch durch. Die "`Infinitesimalmathematik"' wurde im 18. Jh. in den Händen der Gebrüder Johann (1667-1748) und Jakob Bernoulli (1645-1705) und L. Eulers (1707-1783), der in Berlin und Petersburg wirkte, zu einem weitreichenden Mittel zur Bewältigung schwieriger Probleme der Mechanik, der Himmelsmechanik, der Optik, des Artilleriewesens, der Seeschiffahrt und vieler anderer praktischer Anwendungen.
Die neue Geltung und Anerkennung der Mathematik und der Naturwissenschaften kam u. a. auch bei J. L. d'Alembert\index{d'Alembert} (1717-1783) und in der großen französischen Encyclopédie zum Ausdruck.
Nach der französischen bürgerlichen Revolution (1789) setzte insbesondere in den von der industriellen Revolution erfaßten Ländern Europas ein bedeutender Aufschwung in der Mathematik ein. Bei der Grundlegung der Analysis, in Algebra, in darstellender, analytischer und projektiver Geometrie sowie bei der Nutzbarmachung der Mathematik für Anwendungen in Technik und Naturwissenschaften wurden bedeutende Fortschritte erzielt. J. Lagrange (1736-1813), P. S. Laplace (1749-1827), A. Legendre (1752-1833), G. Monge (1746-1818), J. Fourier (1768-1830), A. Cauchy (1789-1857), J. V. Poncelet (1788-1867) u. a. leisteten hier und auf anderen mathematischen Gebieten Hervorragendes; viele Mathematiker nahmen aktiv am gesellschaftlichen Leben ihrer bewegten Zeit teil. Sie haben zudem große Verdienste bei der Neugestaltung der mathematischen Ausbildung.
Der deutsche Mathematiker C. F. Gauß (1777-1855) lieferte am Ende des 18. und zu Beginn des 19. Jahrhunderts hervorragende Beiträge zur Entwicklung der Mathematik. Er bereicherte sie um zahlreiche neue Verfahren und Theorien und überwand viele ungelöste Probleme. Seine Forschungen waren dabei an Anwendungen in der Geodäsie, der Astronomie und der mathematischen Physik orientiert.
Von der zweiten Hälfte des 19. Jahrhunderts bis zum Ausbruch des ersten Weltkrieges traten insbesondere die Mathematiker aus den Ländern hervor, in denen sich Kapitalismus und Industrialisierung am weitesten entwickelt hatten. Genannt seien: G. Boole (1815-1869), A. Cayley (1821-1895) und R. Hamilton (1805-1865) in Großbritannien, C. Jordan (1838-1922) und H. Poincaré (1854-1912) aus Frankreich, K. Weierstraß (1815-1897), B. Riemann (1826-1866), R. Dedekind (1831 bis 1916) und F. Klein (1849-1925) aus Deutschland, S. Lie (1842-1899) aus Norwegen, E. Beltrami (1835-1900) und G. Peano (1858-1932) aus Italien, Ch. S. Peirce (1839-1914) aus den USA sowie N. I. Lobatschewski (1792-1856) und P. L. Tschebyscheff (1821-1894) aus Rußland. Für die Begründung wichtiger Gebiete und Auffassungen in der modernen Mathematik sind die grundlegenden Ideen von G. Cantor (1845-1918) und D. Hilbert (1862-1943) aus Deutschland sowie die des polnischen Mathematikers St. Banach (1892-1945) zu großer Bedeutung gelangt.
Nach der Großen Sozialistischen Oktoberrevolution (1917) nahmen die mathematischen Forschungen in der Sowjetunion einen ungeheuren Aufschwung. Die gesellschaftliche und wirtschaftliche Entwicklung in diesem Lande ermöglichte es, daß heute die sowjetischen Mathematiker zu den führenden in der ganzen Welt zählen und ihre Ergebnisse und Leistungen Entwicklungsrichtungen der modernen Mathematik bestimmen. Auch in der DDR wurde die Bedeutung der Mathematik durch die Partei- und Staatsführung erkannt, was sich in einer großzügigen Förderung der mathematischen Forschung und Ausbildung äußert.
Dieser kurze Abriß zeigt, daß vorwiegend in den fortschrittlichen Gesellschaftsordnungen einer Epoche die Mathematik durch bedeutende Entdeckungen erweitert und bereichert wird.