für overleaf überarbeitet

This commit is contained in:
Sven Riwoldt
2024-02-13 19:15:10 +01:00
parent 03aa1a197c
commit 8176bc828e
34 changed files with 827 additions and 32 deletions

View File

@@ -10,7 +10,7 @@
\usepackage{tikz}
\usetikzlibrary{arrows.meta,bending,positioning,matrix,fit,arrows,backgrounds}
\usepackage{circuitikz}
\usetikzlibrary{circuits.ee.IEC.relay}
%\usetikzlibrary{circuits.ee.IEC.relay}
%\usepackage{sanitize-umlaut}
% fuer Stichwortverzeichnis

BIN
Band2/Grafiken/B.2.10.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

BIN
Band2/Grafiken/B.2.11.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

BIN
Band2/Grafiken/B.2.12.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

BIN
Band2/Grafiken/B.2.15.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

BIN
Band2/Grafiken/B.2.3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
Band2/Grafiken/B.2.4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 141 KiB

BIN
Band2/Grafiken/B.2.5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

BIN
Band2/Grafiken/B.2.6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

BIN
Band2/Grafiken/B.2.8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 95 KiB

BIN
Band2/Grafiken/B.2.9.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

74
Band2/Grafiken/B2.1.tex Normal file
View File

@@ -0,0 +1,74 @@
%!tikz editor 1.0
\documentclass{article}
\usepackage{tikz}
\usepackage[graphics, active, tightpage]{preview}
\usepackage{circuitikz}
\PreviewEnvironment{tikzpicture}
%!tikz preamble begin
\usepackage{pgfplots}
%!tikz preamble end
\begin{document}
%!tikz source begin
\begin{tikzpicture}[line cap=round,line join=round,x=1cm,y=1cm,scale=3]
\tikzset{
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
small dot/.style={fill=black,circle,scale=0.3},}
\begin{axis}[
x=2cm,y=2cm,
axis lines=middle,
axis line style = {-latex},
xmin=-2.5,
xmax=2.5,
ymin=-0.5,
ymax=4,
%ytick={1,2},
%yticklabels={1,2},
xtick=\empty,
xlabel=$x$,
ylabel=$y$,
extra x ticks={0.5},
extra x tick style={
tick label style={anchor=north}},
extra x tick labels={$\frac{1}{2}$},
extra y ticks={0.25},
extra y tick style={
tick label style={anchor=east}},
extra y tick labels={$\frac{1}{4}$},
enlargelimits = true,
]
\draw [thick, dashed] (axis cs: -0.05,1) -- (axis cs: 0.5,1);
\draw [thick, dashed] (axis cs: 0.5,-0.05) -- (axis cs: 0.5,1);
\addplot[domain=-2:2, blue, line width=1,samples=2000] {x^2};
\addplot[color=blue!80!black, only marks, style={mark=*}] coordinates {(0.5,2)};
\draw [ultra thin, dashed] (axis cs: -.05,1/4) -- (axis cs: 1/2,1/4);
\draw [thick, dashed] (axis cs: 0.5,1) -- (axis cs: 0.5,2);
\scriptsize{ \node () at (axis cs:2.4,1.8) {$\displaystyle y=\left\{ \begin{array}{rl}
\frac{x^2-\frac{1}{4}}{x-\frac{1}{2}} & \text{für}\; x \neq \frac{1}{2}\\ \\
2 & \text{für}\; x = \frac{1}{2}\\
\end{array}
\right .$};}
% \draw[] (axis cs:1.3, 0.1) -- (axis cs:1.3, -0.1);
% \node () at (axis cs:1.3,-0.25) {$x_0$};
% \draw[] (axis cs:1.14,-0.05) -- (axis cs:1.14, 0.05);
% \node () at (axis cs:0.33,-0.45) {$\frac{1}{\pi}$};
\end{axis}
\end{tikzpicture}
%!tikz source end
\end{document}

79
Band2/Grafiken/B2.9.tex Normal file
View File

@@ -0,0 +1,79 @@
%!tikz editor 1.0
\documentclass{article}
\usepackage{tikz}
\usepackage[graphics, active, tightpage]{preview}
\usepackage{circuitikz}
\PreviewEnvironment{tikzpicture}
%!tikz preamble begin
\usepackage{pgfplots}
%!tikz preamble end
%%%%%%%%%
%% convert -density 300 GW001.pdf -quality 100 GW001.png
%%%%%%%%%
\begin{document}
%!tikz source begin
\begin{tikzpicture}
[line cap=round,line join=round,x=1cm,y=1cm,scale=1]
\tikzset{
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
small dot/.style={fill=black,circle,scale=0.3},}
\begin{axis}[
x=2cm,y=2cm,
axis lines=middle,
axis line style = {-latex},
xmin=-0.5,
xmax=3,
ymin=-0.1,
ymax=2.5,
ytick=\empty,
xtick=\empty,
xlabel=$x$,
ylabel=$y$,
extra x ticks = {0.75, 1.25,1.75,2.25},
extra x tick labels= {$x_0$, $x_3$, $x_2$, $x_1$},
extra y ticks = {0.71232, 1.22314, 1.55962, 1.81093},
extra y tick labels= {$g_r$, $f(x_3)$, $f(x_2)$, $f(x_1)$}
]
%\addplot[domain=-2.7:-1.1, blue, line width=1,samples=500] {1/(x^2-1)};
%\addplot[domain=1.1:2.7, blue, line width=1,samples=500] {1/(x^2-1)};
\addplot[domain=0.75:2.65, blue, line width=1,samples=500] {1+ln(x)};
\addplot[color=blue, only marks, fill=white] coordinates {(0.75,0.71232)};
\draw [dashed, blue] (axis cs: 0.75,-0.05) -- (axis cs: 0.75,0.71232);
\draw [dashed, blue] (axis cs: -0.05,0.71232) -- (axis cs: 0.75,0.71232);
\addplot[color=blue, only marks] coordinates {(1.25,1.22314)};
\draw [ blue, thin] (axis cs: 1.25,0) -- (axis cs: 1.25,1.22314);
\draw [ blue, thin] (axis cs: 0, 1.22314) -- (axis cs: 1.25,1.22314);
\addplot[color=blue, only marks] coordinates {(1.75,1.55962)};
\draw [ blue, thin] (axis cs: 1.75,0) -- (axis cs: 1.75,1.55962);
\draw [ blue, thin] (axis cs: 0, 1.55962) -- (axis cs: 1.75,1.55962);
\addplot[color=blue, only marks] coordinates {(2.25,1.81093)};
\draw [ blue, thin] (axis cs: 2.25,0) -- (axis cs: 2.25,1.81093);
\draw [ blue, thin] (axis cs: 0, 1.81093) -- (axis cs: 2.25,1.81093);
\end{axis}
\end{tikzpicture}
%!tikz source end
\end{document}

BIN
Band2/Grafiken/B2_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 113 KiB

37
Band2/Grafiken/B2_10.tikz Normal file
View File

@@ -0,0 +1,37 @@
\begin{tikzpicture}
\begin{axis}[
x=1cm,y=1cm,
axis lines=middle,
axis x line=middle,
axis y line=middle,
%enlarge x limits=0.15,
%enlarge y limits=0.15,
every axis x label/.style={at={(current axis.right of origin)},anchor=north east},
every axis y label/.style={at={(current axis.above origin)},anchor=north east},
xmin=-0.5,
xmax=6.,
ymin=-0.5,
ymax=5,
ytick={1,...,2},
xtick={3},
xlabel=$x$,
ylabel=$y$,
]
\addplot[domain=0.75:3, blue!80!black, line width=1,samples=50] {3/x};
\addplot[domain=3:5, blue!80!black, line width=1,samples=50] {x-1};
\addplot[color=blue!80!black, only marks, style={mark=*, fill=white}] coordinates {(3,2)};
\addplot[color=blue!80!black, only marks, style={mark=* }] coordinates {(3,1)};
\draw [dashed, draw=black] (axis cs: -0.05,1) -- (axis cs: 3,1);
\draw [dashed, draw=black] (axis cs: -0.05,2) -- (axis cs: 3,2);
\draw [dashed, draw=black] (axis cs: 3,-0.05) -- (axis cs: 3,2);
\node[] at (axis cs:4.5,4.5) {\footnotesize$y=\left\{\begin{array}{l}
\frac{3}{x} \text { für } 0<x \leq 3 \\
x-1 \text { für } x>3
\end{array}\right.$};
\end{axis}
\end{tikzpicture}

33
Band2/Grafiken/B2_11.tikz Normal file
View File

@@ -0,0 +1,33 @@
\begin{tikzpicture}[line cap=round,line join=round,x=1cm,y=1cm]
\tikzset{
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
small dot/.style={fill=black,circle,scale=0.3},}
\begin{axis}[
x=1.5cm,y=1.5cm,
axis lines=middle,
axis line style = {-latex},
xmin=-0.25,
xmax=4.2,
ymin=-0.25,
ymax=3,
ytick=\empty,
xtick=\empty,
xlabel=$x$,
ylabel=$y$,
extra y ticks={1.5},
extra y tick style={
tick label style={anchor=east}},
extra y tick labels={$\displaystyle g$},
enlargelimits = true,
]
\draw [thick, draw=blue!50!black]
(axis cs: -0.05,1.5) -- (axis cs: 5.2,1.5);
\node[] at (axis cs:2.5,2.5) {$y=f(x)$};
\addplot[domain=1.1:4.4, green!50!black , line width=1,samples=200] {1.5+(5*e^(-x))*(cos(deg(2*pi*x)))};
\end{axis}
\end{tikzpicture}

24
Band2/Grafiken/B2_12.tikz Normal file
View File

@@ -0,0 +1,24 @@
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1cm,y=1cm]
\begin{axis}[
x=1cm,y=1cm,
axis lines=middle,
xmin=-5,
xmax=5,
ymin=-1.4,
ymax=5,
ytick={-1,...,4},
xtick={-3,...,3},
xlabel=$x$,
ylabel=$y$,
]
\addplot[domain=0.5:4, blue, line width=1,samples=50] {1/(x^2)};
\addplot[domain=-4:-0.5, blue, line width=1,samples=50] {1/(x^2)};
\node[] at (axis cs:2.5,2.5) {$\displaystyle y=\frac{1}{x^2}\; (x \neq 0)$};
\end{axis}
\end{tikzpicture}

BIN
Band2/Grafiken/B2_13.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

BIN
Band2/Grafiken/B2_14.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

BIN
Band2/Grafiken/B2_16.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

BIN
Band2/Grafiken/B2_17.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

BIN
Band2/Grafiken/B2_18.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

BIN
Band2/Grafiken/B2_19.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 95 KiB

BIN
Band2/Grafiken/B2_2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

27
Band2/Grafiken/B2_3.tikz Normal file
View File

@@ -0,0 +1,27 @@
\begin{tikzpicture}[line cap=round,line join=round,x=1cm,y=1cm]
\tikzset{
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
small dot/.style={fill=black,circle,scale=0.5},}
\begin{axis}[
axis x line=middle,
x=3cm,
width=40mm,
height=20mm,
xmin=0.5,
xmax=3.5,
xtick = \empty,
x axis line style={thick,-latex},
xlabel style={anchor=north west},
axis y line=none,
anchor=left of origin,
xlabel=$x$,
extra x ticks={1, 2, 3},
extra x tick labels={$x_0 - C$, $x_0$, $x_0+C$},
]
\draw [line width=2] (axis cs: 1,0) -- (axis cs: 3,0);
\addplot[only marks, fill=white, thick] coordinates {(1,0)};
\addplot[only marks, fill=white, thick] coordinates {(2,0)};
\addplot[only marks, fill=white, thick] coordinates {(3,0)};
\end{axis}
\end{tikzpicture}

53
Band2/Grafiken/B2_4.tikz Normal file
View File

@@ -0,0 +1,53 @@
\begin{tikzpicture}
[line cap=round,line join=round,x=1cm,y=1cm]
\tikzset{
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
small dot/.style={fill=black,circle,scale=0.3},}
\begin{axis}[
x=2cm,y=2cm,
axis lines=middle,
axis line style = {-latex},
xmin=-0.75,
xmax=3.75,
ymin=-0.5,
ymax=3.5,
ytick=\empty,
xtick=\empty,
xlabel=$x$,
ylabel=$y$,
extra x ticks={0.75, 2, 2.5,2.8},
extra x tick labels={$x_1$, $x_3$, $x_0$, $x_2$},
extra y ticks={0.64, 1.5, 2.0625, 2.46},
extra y tick labels={$f(x_1)$, $f(x_3)$, $g$ , $f(x_2)$},
]
\addplot[domain=0.5:3.1, blue, line width=1,samples=500] {0.25*(x^2)+0.5};
\draw [line width=0.1] (axis cs: 0.75,-0.05) -- (axis cs: 0.75,0.640625);
\draw [line width=0.1] (axis cs: -0.05,0.640625) -- (axis cs: 0.75,0.640625);
\draw [ultra thin] (axis cs: 2,-0.05) -- (axis cs: 2,1.5);
\draw [ultra thin] (axis cs: -0.05,1.5) -- (axis cs: 2,1.5);
\draw [loosely dashed, ultra thin] (axis cs: 2.5,-0.05) -- (axis cs: 2.5,2.0625);
\draw [loosely dashed, thin] (axis cs: -0.05,2.0625) -- (axis cs: 2.5,2.0625);
\draw [ultra thin] (axis cs: 2.8,-0.05) -- (axis cs: 2.8,2.46);
\draw [ultra thin] (axis cs: -0.05,2.46) -- (axis cs: 2.8,2.46);
\addplot[color=blue!80!black, only marks, style={mark=*}] coordinates {(0.75,0.640625)};
\addplot[color=blue!80!black, only marks, style={mark=*}] coordinates {(2,1.5)};
\addplot[color=blue, only marks, fill=white] coordinates {(2.5,2.0625)};
\addplot[color=blue!80!black, only marks, style={mark=*}] coordinates {(2.8,2.46)};
\node () at (axis cs:2.5,2.8) {$\displaystyle y=\left(x\right)$};
\end{axis}
\end{tikzpicture}

58
Band2/Grafiken/B2_5.tikz Normal file
View File

@@ -0,0 +1,58 @@
\begin{tikzpicture}
[line cap=round,line join=round,x=1cm,y=1cm]
\tikzset{
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
small dot/.style={fill=black,circle,scale=0.3},}
\begin{axis}[
x=2cm,y=2cm,
axis lines=middle,
axis line style = {-latex},
xmin=-1,
xmax=3,
ymin=-0.5,
ymax=2,
ytick={1,2},
yticklabels={1,2},
xtick=\empty,
xlabel=$x$,
ylabel=$y$,
extra x ticks={0.5},
extra x tick style={
tick label style={anchor=north}},
extra x tick labels={$\frac{1}{2}$},
enlargelimits = true,
]
\draw [thick, dashed] (axis cs: -0.05,1) -- (axis cs: 0.5,1);
\draw [thick, dashed] (axis cs: 0.5,-0.05) -- (axis cs: 0.5,1);
\addplot[domain=-1:0.5, blue, line width=1,samples=2000] {((x^2)-(1/4))/(x-(1/2)};
\addplot[color=blue!80!black, only marks, style={mark=*, fill=white}] coordinates {(0.5,1)};
\addplot[domain=0.51:1.5, blue, line width=1,samples=2000] {((x^2)-(1/4))/(x-(1/2)};
\addplot[color=blue!80!black, only marks, style={mark=*}] coordinates {(0.5,2)};
\draw [thick, dashed] (axis cs: -0.05,2) -- (axis cs: 0.5,2);
\draw [thick, dashed] (axis cs: 0.5,1) -- (axis cs: 0.5,2);
\scriptsize{ \node () at (axis cs:2.4,1.8) {$\displaystyle y=\left\{ \begin{array}{rl}
\frac{x^2-\frac{1}{4}}{x-\frac{1}{2}} & \text{für}\; x \neq \frac{1}{2}\\ \\
2 & \text{für}\; x = \frac{1}{2}\\
\end{array}
\right .$};}
% \draw[] (axis cs:1.3, 0.1) -- (axis cs:1.3, -0.1);
% \node () at (axis cs:1.3,-0.25) {$x_0$};
% \draw[] (axis cs:1.14,-0.05) -- (axis cs:1.14, 0.05);
% \node () at (axis cs:0.33,-0.45) {$\frac{1}{\pi}$};
\end{axis}
\end{tikzpicture}

33
Band2/Grafiken/B2_6.tikz Normal file
View File

@@ -0,0 +1,33 @@
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1cm,y=1cm]
\begin{axis}[
x=5cm,y=1.5cm,
axis lines=middle,
xmin=-1.2,
xmax=1.2,
ymin=-1.4,
ymax=1.4,
ytick={-1,...,1},
xtick=\empty,
xlabel=$x$,
ylabel=$y$,
]
\addplot[domain=0.05:3.8, red, line width=1,samples=5000] {sin(deg(1/(x)))};
\addplot[domain=-3.8:-0.05, red, line width=1,samples=5000] {sin(deg(1/(x)))};
%\draw (-0.32,0.1) node[anchor=north west] {$-\frac{1}{\pi}$};
%\draw (0.32,0.1) node[anchor=north west] {$\frac{1}{\pi}$};
\draw[] (axis cs:-0.32, 0.1) -- (axis cs:-0.32, -0.1);
\node () at (axis cs:-0.35,-0.45) {$-\frac{1}{\pi}$};
\draw[] (axis cs:0.32, 0.1) -- (axis cs:0.32, -0.1);
\node () at (axis cs:0.33,-0.45) {$\frac{1}{\pi}$};
%\node[color=red, font=\footnotesize] at (-1,-0.25) {$f(x)=3x^3 - x^2 - 10x$};
%\node[color=blue, font=\footnotesize] at (axis cs: 1.1,2.2) {$g(x)=- x^2 + 2x$};
\end{axis}
\end{tikzpicture}

BIN
Band2/Grafiken/B2_7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 231 KiB

56
Band2/Grafiken/B2_8.tikz Normal file
View File

@@ -0,0 +1,56 @@
\begin{tikzpicture}[line cap=round,line join=round,x=1cm,y=1cm]
\tikzset{
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
small dot/.style={fill=black,circle,scale=0.3},}
\begin{axis}[
x=2cm,y=2cm,
axis lines=middle,
axis line style = {-latex},
xmin=-0.5,
xmax=3,
ymin=-0.5,
ymax=2,
ytick=\empty,
xtick=\empty,
xlabel=$x$,
ylabel=$y$,
extra x ticks={1.3},
extra x tick style={
tick label style={anchor=north}},
extra x tick labels={$x_0$},
extra y ticks={1.14},
extra y tick style={
tick label style={anchor=east}},
extra y tick labels={$\displaystyle \sqrt{x_0}$},
enlargelimits = true,
]
\draw [thick, dashed]
(axis cs: -0.05,1.14) -- (axis cs: 1.3,1.14);
\draw [thick, dashed]
(axis cs: 1.3,-0.05) -- (axis cs: 1.3,1.14);
\node[label={180:{}},circle,fill,inner sep=1.5] at (axis cs:1.3,1.14) {};
\node[label={300:{$0$}},circle,fill,inner sep=1.5] at (axis cs:0,0) {};
% node[pos=0.5, above] {$y=12$};
% \addplot coordinates { (0,1.14) (1.3,1.14) };
% \addplot coordinates { (1,4) (2,6) };
% \draw (axis cs:2,3) -- node[left]{Text} (axis cs:2,6);
\addplot[domain=0:2, blue, line width=1,samples=5000] {sqrt(x)};
%\addplot[domain=-3.8:-0.05, red, line width=1,samples=5000] {sin(deg(1/(x)))};
\begin{scriptsize}
\node () at (axis cs:2.2,1.7) {$\displaystyle y=\sqrt{x}\;(x \neq 0)$};
\end{scriptsize}
% \draw[] (axis cs:1.3, 0.1) -- (axis cs:1.3, -0.1);
% \node () at (axis cs:1.3,-0.25) {$x_0$};
% \draw[] (axis cs:1.14,-0.05) -- (axis cs:1.14, 0.05);
% \node () at (axis cs:0.33,-0.45) {$\frac{1}{\pi}$};
\end{axis}
\end{tikzpicture}

56
Band2/Grafiken/B2_9.tikz Normal file
View File

@@ -0,0 +1,56 @@
\begin{tikzpicture}
[line cap=round,line join=round,x=1cm,y=1cm,scale=1]
\tikzset{
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
small dot/.style={fill=black,circle,scale=0.3},}
\begin{axis}[
x=2cm,y=2cm,
axis lines=middle,
axis line style = {-latex},
xmin=-0.5,
xmax=3,
ymin=-0.1,
ymax=2.5,
ytick=\empty,
xtick=\empty,
xlabel=$x$,
ylabel=$y$,
extra x ticks = {0.75, 1.25,1.75,2.25},
extra x tick labels= {$x_0$, $x_3$, $x_2$, $x_1$},
extra y ticks = {0.71232, 1.22314, 1.55962, 1.81093},
extra y tick labels= {$g_r$, $f(x_3)$, $f(x_2)$, $f(x_1)$}
]
%\addplot[domain=-2.7:-1.1, blue, line width=1,samples=500] {1/(x^2-1)};
%\addplot[domain=1.1:2.7, blue, line width=1,samples=500] {1/(x^2-1)};
\addplot[domain=0.75:2.65, blue, line width=1,samples=500] {1+ln(x)};
\addplot[color=blue, only marks, fill=white] coordinates {(0.75,0.71232)};
\draw [dashed, blue] (axis cs: 0.75,-0.05) -- (axis cs: 0.75,0.71232);
\draw [dashed, blue] (axis cs: -0.05,0.71232) -- (axis cs: 0.75,0.71232);
\addplot[color=blue, only marks] coordinates {(1.25,1.22314)};
\draw [ blue, thin] (axis cs: 1.25,-0.05) -- (axis cs: 1.25,1.22314);
\draw [ blue, thin] (axis cs: -0.05, 1.22314) -- (axis cs: 1.25,1.22314);
\addplot[color=blue, only marks] coordinates {(1.75,1.55962)};
\draw [ blue, thin] (axis cs: 1.75,-0.05) -- (axis cs: 1.75,1.55962);
\draw [ blue, thin] (axis cs: -0.05, 1.55962) -- (axis cs: 1.75,1.55962);
\addplot[color=blue, only marks] coordinates {(2.25,1.81093)};
\draw [ blue, thin] (axis cs: 2.25,-0.05) -- (axis cs: 2.25,1.81093);
\draw [ blue, thin] (axis cs: -0.05, 1.81093) -- (axis cs: 2.25,1.81093);
\end{axis}
\end{tikzpicture}

View File

@@ -0,0 +1,203 @@
%!TEX root=Band2.tex
%\begin{tikzpicture}[>=latex]
%
%\draw[cyan, densely dotted] (-2,0) grid (12,14);
%\useasboundingbox (-2,0) rectangle (12,14);
%
%%nodes=draw,
%\matrix (m1) [anchor=west,draw,row sep=6mm,column sep=5mm,matrix of nodes,column 6/.style={anchor=base west}, left delimiter=\{ ] at (1, 12)
%{
%\phantom{a} & $3$ & $0$\footnotemark & $1$ & $-5 $ & $2$ \\
%\phantom{a} & \phantom{a} & $6$ & $12$ & $26$ & $42$\\
%$2$ & $3$ & $6$ & $13$ & $21$ & $44=g(2)$\\
%};
%
%\matrix (m2) [anchor=west,draw,row sep=6mm,column sep=5mm,matrix of nodes,column 5/.style={anchor=base west}, left delimiter=\{ ] at (1, 9)
% {
%\phantom{a} & \phantom{a} & $6$ & $24$ & $74$\\
% $2$ & $3$ & $12$ & $37$ & $95=g'(2)$ \\
%};
%
%\matrix (m3) [anchor= west,draw,row sep=6mm,column sep=5mm,matrix of nodes,column 4/.style={anchor=base west} , left delimiter=\{] at (1, 6.5)
%{
%\phantom{a} & \phantom{a} & $6$ & $36$\\
% $2$ & $3$ & $18$ & $73=\frac{g''(2)}{2!}$ \phantom{a}\\
%};
%
%\matrix (m4) [anchor= west,draw,row sep=6mm,column sep=5mm,matrix of nodes,column 3/.style={anchor=base west} , left delimiter=\{] at (1, 4)
%{
%\phantom{a} & \phantom{a} & $6$\\
% $2$ & $3$ & $24=\frac{g'''(2)}{3!}$ \phantom{a}\\
%};
%
%\matrix (m5) [anchor= west,draw,row sep=6mm,column sep=5mm,matrix of nodes,column 4/.style={anchor=base west} , left delimiter=\{] at (1, 2)
%{
%\phantom{a} &$3=\frac{g^{4}(2)} {4!}$ \\
%};
%
%\draw ([xshift=.1cm]m1-1-1.north east) -- ([xshift=.1cm,yshift=-0.3cm]m5-1-1.south east);
%
%\draw ([yshift=-.25cm]m1-2-1.south west) -- ([yshift=-.25cm,xshift=1.2cm]m1-2-6.south east);
%
%\draw ([yshift=-.25cm]m2-1-1.south west) -- ([yshift=-.25cm,xshift=1.3cm]m2-1-5.south east);
%
%\draw ([yshift=-.25cm]m3-1-1.south west) -- ([yshift=-.25cm,xshift=16mm]m3-1-4.south east);
%
%\draw ([yshift=-.25cm]m4-1-1.south west) -- ([yshift=-.25cm,xshift=18mm]m4-1-3.south east);
%
%%\draw ([yshift=-.25cm]m5-1-1.south west) -- ([yshift=-.25cm,xshift=3mm]m5-1-2.south east);
%%\draw ([yshift=2mm]m1-3-6.north west) -- ([yshift=-1mm]m1-3-6.south west);
%
% %\draw ([yshift=-.25cm]m1-2-6.south west) -- ([yshift=-.25cm,xshift=4mm]m1-2-6.south east);
%
%% \draw ([yshift=-.15cm]m1-3-6.south west) -- ([yshift=-.15cm]m1-3-6.south east);
%
%
%\node[circle,draw] (del-left-1) at ($0.5*(m1-3-1.south west)+0.5*(m1-1-1.north west)$){};
%\node[circle,draw] (del-left-2) at ($0.5*(m2-2-1.south west)+0.5*(m2-1-1.north west)$){};
%\node[circle,draw] (del-left-3) at ($0.5*(m3-2-1.south west)+0.5*(m3-1-1.north west)$){};
%\node[circle,draw] (del-left-4) at ($0.5*(m4-2-1.south west)+0.5*(m4-1-1.north west)$){};
%\node[circle,draw] (del-left-5) at ($0.5*(m5-1-1.south west)+0.5*(m5-1-1.north west)$){};
%\node[left=10pt] at (del-left-1.west) {1. Schritt};
%\node[left=10pt] at (del-left-2.west) {2. Schritt};
%\node[left=10pt] at (del-left-3.west) {3. Schritt};
%\node[left=10pt] at (del-left-4.west) {4. Schritt};
%\node[left=10pt] at (del-left-5.west) {5. Schritt};
%
%%\draw ($(m1-2-5.north east)!0.5!(m1-2-5.north west)$) -- ($(m1-2-5.south east)!0.5!(m2-2-2.south west)$);
%%\draw($(m1-2-5.north east)!50!(m1-2-6.north west)$)--($(m1-3-5.south east)!50!(m1-3-6.south west)$);
%%\draw([yshift=3mm]m1-3-6.north west)--(m1-3-6.south west);
%
%\hhlline{m5}{1}{2};
%
%% \node[rectangle,draw] (del-left-2) at ($(m2-2-1)-(m2-1-1)$) {\tikz{\path (m2-2-2.north east) rectangle (m2-2-1.south west);}};
%
%
%
% %\mymatrixbracetop{2}{6}{$E'$}
%
%%\node[font=\color{red}] at (m2.center){X};
%
%%\foreach \xy in {$1*(m2-1-1)$, $1*(m2-2-1)$}{
%% \node at (\xy) {\xy};
%%}
%
%\end{tikzpicture} \footnotetext{Man beachte, ...}
\begin{tikzpicture}[>=latex]
%\draw[cyan, densely dotted] (-2,0) grid (8.5,9.5);
\useasboundingbox (-2,0) rectangle (8.5,9.5);
%nodes=draw,
\matrix (m1) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes,column 6/.style={anchor=base west}, left delimiter=\{ ] at (1, 8.4)
{
\phantom{a} & 3 & 0\footnotemark & 1 & -5 & 2 \\
\phantom{a} & \phantom{a} & 6 & 12 & 26 & 42\\
2 & 3 & 6 & 13 & 21 & 44=g(2)\\
};
\matrix (m2) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes, column 5/.style={anchor=base west}, left delimiter=\{ ] at (1, 6.4)
{
\phantom{a} & \phantom{a} & 6 & 24 & 74\\
2 & 3 & 12 & 37 & 95=g'(2) \\
};
\matrix (m3) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes,column 4/.style={anchor=base west}, left delimiter=\{ ] at (1, 4.5)
{
\phantom{a} & \phantom{a} & 6 & 36\\
2 & 3 & 18 & 73=\frac{g''(2)}{2!} \\
};
\matrix (m4) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes,column 3/.style={anchor=base west}, left delimiter=\{ ] at (1, 2.4)
{
\phantom{a} & \phantom{a} & 6\\
2 & 3 & 24=\frac{g'''(2)}{3!} \\
};
\matrix (m5) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes,column 2/.style={anchor=base west}, left delimiter=\{ ] at (1, 0.7)
{
\phantom{a} & 3=\frac{g^{(4)}(2)}{4!} \\
};
\node[circle] (del-left-1) at ($0.5*(m1-3-1.south west)+0.5*(m1-1-1.north west)$){};
\node[left=10pt] at (del-left-1.west) {1. Schritt};
%\draw ($(m1-2-5.north east)!0.5!(m1-2-5.north west)$) -- ($(m1-2-5.south east)!0.5!(m2-2-2.south west)$);
%\draw($(m1-2-5.north east)!50!(m1-2-6.north west)$)--($(m1-3-5.south east)!50!(m1-3-6.south west)$);
%\draw([yshift=3mm]m1-3-6.north west)--(m1-3-6.south west);
%\draw ([yshift=-3mm]m1-2-1.south west) -- ([yshift=-3mm,xshift=10mm]m1-2-6.south east);
\draw ($0.5*(m1-2-1.south west)+0.5*(m1-3-1.north west)$) -- ([xshift=5mm]$0.5*(m1-2-6.south east)+0.5*(m1-3-6.north east)$);
\draw ([yshift=1mm]m1-3-6.north west) -- (m1-3-6.south west);
\draw (m1-3-6.south west) -- (m1-3-6.south east);
\draw ($0.5*(m2-1-1.south west)+0.5*(m2-2-1.north west)$) -- ([xshift=5mm]$0.5*(m2-1-5.south east)+0.5*(m2-2-5.north east)$);
%Ende Zeile 2
%vert
\draw ([yshift=1mm]m2-2-5.north west) -- (m2-2-5.south west);
%horiz
\draw (m2-2-5.south west) -- (m2-2-5.south east);
%Trennlinie
\draw ([yshift=1.5mm]$0.5*(m3-1-1.south west)+0.5*(m3-2-1.north west)$) -- ([xshift=5mm]$0.5*(m3-1-4.south east)+0.5*(m3-2-4.north east)$);
\node[circle] (del-left-2) at ($0.5*(m2-2-1.south west)+0.5*(m2-1-1.north west)$){};
\node[left=10pt] at (del-left-2.west) {2. Schritt};
\node[circle] (del-left-3) at ([yshift=-1mm]$0.5*(m3-1-1.south west)+0.5*(m3-2-1.north west)$){};
\node[left=10pt] at (del-left-3.west) {3. Schritt};
\draw ([yshift=1mm]m3-2-4.north west) -- (m3-2-4.south west);
\draw (m3-2-4.south west) -- (m3-2-4.south east);
%\draw ([yshift=-3mm,thick]m2-1-1.south west) -- ([yshift=-3mm,xshift=10mm]m2-1-5.south east);
\draw ([yshift=1.5mm]$0.5*(m4-1-1.south west)+0.5*(m4-2-1.north west)$) -- ([xshift=5mm]$0.5*(m4-1-3.south east)+0.5*(m4-2-3.north east)$);
\draw ([yshift=1mm]m4-2-3.north west) -- (m4-2-3.south west);
\draw (m4-2-3.south west) -- (m4-2-3.south east);
\node[circle] (del-left-4) at ([yshift=-1mm]$0.5*(m4-1-1.south west)+0.5*(m4-2-1.north west)$){};
\node[left=10pt] at (del-left-4.west) {4. Schritt};
\draw ($0.5*(m1-2-1.south west)+0.5*(m1-3-1.north west)$) -- ([xshift=5mm]$0.5*(m1-2-6.south east)+0.5*(m1-3-6.north east)$);
\draw ([yshift=1mm]m1-3-6.north west) -- (m1-3-6.south west);
\draw (m1-3-6.south west) -- (m1-3-6.south east);
\draw ($0.5*(m2-1-1.south west)+0.5*(m2-2-1.north west)$) -- ([xshift=5mm]$0.5*(m2-1-5.south east)+0.5*(m2-2-5.north east)$);
\draw ([yshift=1mm]m3-2-4.north west) -- (m3-2-4.south west);
\draw (m3-2-4.south west) -- (m3-2-4.south east);
%\draw ([yshift=-3mm,thick]m2-1-1.south west) -- ([yshift=-3mm,xshift=10mm]m2-1-5.south east);
\node[circle] (del-left-5) at ([yshift=1mm]$0.5*(m5-1-1.south west)+0.5*(m5-1-1.north west)$){};
\node[left=10pt] at (del-left-5.west) {5. Schritt};
\draw (m5-1-2.north west) -- (m5-1-2.south west);
\draw (m5-1-2.south west) -- (m5-1-2.south east);
\draw ([yshift=5.5mm]m5-1-1.north west)-- ([yshift=1mm]m5-1-2.north east);
\draw(m1-1-1.north east)--([yshift=-2mm]m5-1-1.south east);
%\mymatrixbracetop{2}{6}{$E'$}
%\node[font=\color{red}] at (m2.center){X};
%\foreach \xy in {$1*(m2-1-1)$, $1*(m2-2-1)$}{
% \node at (\xy) {\xy};
%}
\end{tikzpicture} \footnotetext{Man beachte, ...}
\newpage

View File

@@ -0,0 +1,56 @@
%!TEX root=Band2.tex
\begin{tikzpicture}[>=latex]
%\draw[cyan, densely dotted] (-2,0) grid (12,14);
\useasboundingbox (-2,0) rectangle (12,14);
%nodes=draw,
\matrix (m1) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes,column 7/.style={anchor=base west}] at (1, 12)
{
\phantom{a} & 1 & 3 & 5 & 7 & 6 & 2 \\
\phantom{a} & \phantom{a} & -1 & -2 & -3 & -4 & -2\\
-1 & 1 & 2 & 3 & 4 & 2 & 0=g(-1)\\
};
\matrix (m2) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes, column 6/.style={anchor=base west}] at (1, 10)
{
\phantom{a} & \phantom{a} & -1 & -1 & -2 & -2\\
-1 & 1 & 1 & 2 & 2 & 0=g'(-1) \\
};
\matrix (m3) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes,column 5/.style={anchor=base west}] at (1, 8.1)
{
\phantom{a} & \phantom{a} & -1 & 0 & -2\\
-1 & 1 & 0 & 2 & 0=\frac{g''(-1)}{2!} \\
};
\matrix (m4) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes,column 4/.style={anchor=base west}] at (1, 6)
{
\phantom{a} & \phantom{a} & -1 & 1\\
-1 & 1 & -1 & 3=\frac{g'''(-1)}{3!} \neq 0 \\
};
\draw ($0.5*(m1-2-1.south west)+0.5*(m1-3-1.north west)$) -- ([xshift=5mm]$0.5*(m1-2-7.south east)+0.5*(m1-3-7.north east)$);
\draw ([yshift=1mm]m1-3-7.north west) -- (m1-3-7.south west);
\draw (m1-3-7.south west) -- (m1-3-7.south east);
\draw ($0.5*(m2-1-1.south west)+0.5*(m2-2-1.north west)$) -- ([xshift=5mm]$0.5*(m2-1-6.south east)+0.5*(m2-2-6.north east)$);
\draw ([yshift=1mm]m2-2-6.north west) -- (m2-2-6.south west);
\draw (m2-2-6.south west) -- (m2-2-6.south east);
\draw ([yshift=1.5mm]$0.5*(m3-1-1.south west)+0.5*(m3-2-1.north west)$) -- ([xshift=5mm]$0.5*(m3-1-5.south east)+0.5*(m3-2-5.north east)$);
\draw ([yshift=1mm]m3-2-5.north west) -- (m3-2-5.south west);
\draw (m3-2-5.south west) -- (m3-2-5.south east);
\draw ([yshift=1.5mm]$0.5*(m4-1-1.south west)+0.5*(m4-2-1.north west)$) -- ([xshift=12mm]$0.5*(m4-1-4.south east)+0.5*(m4-2-4.north east)$);
\draw ([yshift=1mm]m4-2-4.north west) -- (m4-2-4.south west);
\draw (m4-2-4.south west) -- (m4-2-4.south east);
\draw([xshift=2mm]m1-1-1.north east)--([xshift=2mm,yshift=-2mm]m4-2-1.south east);
\end{tikzpicture}

View File

@@ -18,12 +18,12 @@ Als Vorbereitung auf den Grenzwertbegriff für Funktionen behandeln wir das
\begin{figure}[h]
\begin{minipage}[b]{.4\linewidth} % [b] => Ausrichtung an \caption
\includegraphics[width=\linewidth]{B.2.1}
\includegraphics[width=\linewidth]{Grafiken/B2_1.png}
\caption{}\label{fig:b2.2.1}
\end{minipage}
\hspace{.1\linewidth}% Abstand zwischen Bilder
\begin{minipage}[b]{.4\linewidth} % [b] => Ausrichtung an \caption
\includegraphics[width=\linewidth]{B.2.2}
\includegraphics[width=\linewidth]{Grafiken/B2_2.png}
\caption{}\label{fig:b2.2.2}
\end{minipage}
\end{figure}
@@ -58,7 +58,7 @@ $$
\centering
% \includegraphics[width=0.5\linewidth]{B.2.3}
%\frame{
\input{B2.3.tikz}
\input{Grafiken/B2_3.tikz}
%}
\caption{}
\label{fig:b2.2.3}
@@ -80,7 +80,7 @@ In Bild \ref{fig:b2.2.4} haben wir die ersten drei Glieder einer Folge $\left(x_
\begin{figure}[h]
\centering
%\includegraphics[width=0.5\linewidth]{B.2.4}
\input{B2.4.tikz}
\input{Grafiken/B2_4.tikz}
\caption{}
\label{fig:b2.2.4}
\end{figure}
@@ -126,7 +126,7 @@ In Bild \ref{fig:b2.2.4} haben wir die ersten drei Glieder einer Folge $\left(x_
\begin{figure}[h]
\centering
%\includegraphics[width=0.5\linewidth]{B.2.5}
\input{B2.5.tikz}
\input{Grafiken/B2_5.tikz}
\caption{}
\label{fig:b2.2.5}
\end{figure}
@@ -167,7 +167,7 @@ In Bild \ref{fig:b2.2.4} haben wir die ersten drei Glieder einer Folge $\left(x_
\begin{figure}[h]
\centering
\input{B2.6.tikz}
\input{Grafiken/B2_6.tikz}
\caption{}
\label{fig:b2.2.6}
\end{figure}
@@ -231,7 +231,7 @@ Eine geometrische Deutung dieses Satzes gibt Bild \ref{fig:b2.2.7}. Mit den dort
\begin{figure}[h]
\centering
\includegraphics[width=0.5\linewidth]{B.2.7}
\includegraphics[width=0.5\linewidth]{Grafiken/B2_7.png}
\caption{}
\label{fig:b2.2.7}
\end{figure}
@@ -254,7 +254,7 @@ um $y=g$ ein , $\delta$-Streifen" um $x=x_0$ existiert, so daß alle Punkte der
\begin{figure}[h]
\centering
\input{B2.8.tikz}
\input{Grafiken/B2_8.tikz}
\caption{}
\label{fig:b2.2.8}
\end{figure}
@@ -286,7 +286,7 @@ Für die Existenz des Grenzwertes $\lim _{x \rightarrow x_0} \sqrt{x}$ ist die V
\begin{figure}[h]
\centering
\input{B2.9.tikz}
\input{Grafiken/B2_9.tikz}
\caption{}
\label{fig:b2.2.9}
\end{figure}
@@ -323,7 +323,7 @@ Das folgende Beispiel zeigt, daß der Begriff des einseitigen Grenzwertes auch f
\begin{figure}[h]
\centering
\input{B2.10.tikz}
\input{Grafiken/B2_10.tikz}
\caption{}
\label{fig:b2.2.10}
\end{figure}
@@ -372,7 +372,7 @@ Geometrisch bedeutet $\lim _{x \rightarrow+\infty} f(x)=g$, daß sich die Bildku
\begin{figure}[h]
\centering
\input{B2.11.tikz}
\input{Grafiken/B2_11.tikz}
\caption{}
\label{fig:b2.2.11}
\end{figure}
@@ -393,7 +393,7 @@ Im Zusammenhang mit den folgenden Beispielen sei an die Bildkurven der jeweilige
\begin{figure}[h]
\centering
\input{B2.12.tikz}
\input{Grafiken/B2_12.tikz}
\caption{}
\label{fig:b2.2.12}
\end{figure}
@@ -432,8 +432,6 @@ Ist $x$ eine Variable für die Zeit, dann bedeutet die Existenz von $\lim _{x \r
Die Geschwindigkeit\footnote{In \textcolor{red}{4.2.2.} werden wir die Geschwindigkeit einer geradlinigen Bewegung exakt definieren.} $v$ eines fallenden Körpers der Masse $m$ ist unter der Annahme eines geschwindigkeitsproportionalen Luftwiderstands (Proportionalitätsfaktor $k>0$ ) durch
\end{beispiel}
$$
v=\left(v_0-\frac{m \mathrm{~g}}{k}\right) \mathrm{e}^{-\frac{k}{m} t}+\frac{m \mathrm{~g}}{k} \quad(t \geqq 0)
$$
@@ -444,38 +442,46 @@ gegeben ( $t$ : Zeit, $v_0$ : Geschwindigkeit zur Zeit $t=0, \mathrm{~g}$ : Erdb
d.h., nach hinreichend langer Zeit $t$ hat die Geschwindigkeit $v$ nahezu den konstanten Wert $\frac{m \mathrm{~g}}{k}$. In Bild 2.13 haben wir $v$ als Funktion von $t$ für den Fall $v_0<\frac{m \mathrm{~g}}{k}$ dargestellt.
\section{Bestimmte und unbestimmte Divergenz}
Besitzt eine Funktion $f$ für eine der "`Bewegungen"'
\begin{figure}[ht]
\centering
\includegraphics[width=0.5\linewidth]{B.2.13}
\includegraphics[width=0.5\linewidth]{Grafiken/B2_13.png}
\caption{}
\label{fig:b2.2.13}
\end{figure}
\end{beispiel}
\section{Bestimmte und unbestimmte Divergenz}
HIERHIERHIERHIERHIER
Besitzt eine Funktion $f$ für eine der "`Bewegungen"'
\begin{align}
x \rightarrow x_0 ; \quad x \rightarrow x_0+0, x \rightarrow x_0-0 ; \quad x \rightarrow+\infty, x \rightarrow-\infty
\end{align}
einen Grenzwert, dann heißt sie für diese Bewegung konvergent, andernfalls divergent. Wie für Zahlenfolgen kann man auch für Funktionen zwei Arten der Divergenz unterscheiden.
einen Grenzwert, dann heißt sie für diese "`Bewegung"' konvergent, andernfalls divergent. Wie für Zahlenfolgen kann man auch für Funktionen zwei Arten der Divergenz unterscheiden.
\begin{definition}\label{def:2.4}
Die Funktion $f$ heißt bestimmt\marginpar[\textbf{D.2.4}]{\textbf{D.2.4}} divergent gegen $+\infty(\text{bzw.}-\infty)$ für eine der
Die Funktion $f$ heißt\textbf{ bestimmt}\marginpar[\textbf{D.2.4}]{\textbf{D.2.4}} \textbf{divergent gegen} $+\infty(\text{bzw.}-\infty)$ für eine der "`Bewegungen"' (2.17) der unabhängigen Variablen $x$, wenn für jede diese "`Bewegung"' realisierende Folge\footnote{Man sagt z. B., die Folge $\left(x_n\right)$ \textit{realisiere} die "`Bewegung"' $x \rightarrow x_0+0$, wenn $x_n>x_0$ für alle $n$ und $\lim _{n \rightarrow \infty} x_n=x_0$ gilt.} $\left(x_n\right)$ in $D(f)$ die Folge $\left(f\left(x_n\right)\right)$ bestimmt divergent gegen $+\infty($ bzw. $-\infty)$ ist.
Ist $f$ für eine der "`Bewegungen"' (2.17) weder konvergent noch bestimmt divergent, so heißt $f$ für diese "`Bewegung"' \textbf{unbestimmt divergent}.
\end{definition}
„Bewegungen“ (2.17) der unabhängigen Variablen $x$, wenn für jede diese „Bewegung“ realisierende Folge $\left.{ }^1\right)\left(x_n\right)$ in $D(f)$ die Folge $\left(f\left(x_n\right)\right)$ bestimmt divergent gegen $+\infty($ bzw. $-\infty)$ ist.
Ist $f$ für eine der „Bewegungen“ (2.17) weder konvergent noch bestimmt divergent, so heißt $f$ für diese „Bewegung“ unbestimmt divergent.
Ist $f$ bestimmt divergent gegen $+\infty$ für $x \rightarrow x_0$, so schreibt man
$$
\lim _{x \rightarrow x_0} f(x)=+\infty
$$
und sagt auch, $f$ habe für $x \rightarrow x_0$ den uneigentlichen Grenzwert $+\infty$. Analoge Schreibund Sprechweisen sind in den anderen Fällen bestimmter Divergenz üblich.
und sagt auch, $f$ habe für $x \rightarrow x_0$ den \textit{uneigentlichen Grenzwert} $+\infty$. Analoge Schreib- und Sprechweisen sind in den anderen Fällen bestimmter Divergenz üblich.
\begin{beispiel} \label{bsp:2.12}
\end{beispiel}
HIERHIERHIERHIERHIER
@@ -489,7 +495,7 @@ Beispiel 2.13: Es soll die Grenzwertaussage
$$
\lim _{x \rightarrow+0} \ln x=-\infty
$$
bewiesen werden. Es sei $\left(x_n\right)$ eine Nullfolge mit $x_n>0$ für alle $n$. Zu jeder (insbeson\footnote{Man sagt z. B., die Folge $\left(x_n\right)$ realisiere die "Bewegung“ $x \rightarrow x_0+0$, wenn $x_n>x_0$ für alle $n$ und $\lim _{n \rightarrow \infty} x_n=x_0$ gilt.}
bewiesen werden. Es sei $\left(x_n\right)$ eine Nullfolge mit $x_n>0$ für alle $n$. Zu jeder (insbeson
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -742,7 +748,7 @@ Mit dem Begriff der Stetigkeit einer Funktion $f$ an einer Stelle $x_0$ will man
\begin{figure}
\centering
\includegraphics[width=0.7\linewidth]{B.2.17}
\includegraphics[width=0.7\linewidth]{Grafiken/B2_17.png}
\caption{}
\label{fig:b}
\end{figure}
@@ -802,7 +808,7 @@ Beispiel 3.3: Die geradlinige Bewegung einer Punktmasse wird durch die Weg-ZeitF
\begin{figure}
\centering
\includegraphics[width=0.7\linewidth]{B.2.18}
\includegraphics[width=0.7\linewidth]{Grafiken/B2_18.png}
\caption{}
\label{fig:b}
\end{figure}
@@ -842,7 +848,7 @@ Da auch $f(0)=0$ gilt, ist $f$ an der Stelle $x=0$ stetig. Das Bild von $f$ best
\begin{figure}
\centering
\includegraphics[width=0.7\linewidth]{B2.19}
\includegraphics[width=0.7\linewidth]{Grafiken/B2_19.png}
\caption{}
\label{fig:b2}
\end{figure}
@@ -1081,9 +1087,9 @@ $\left\{\begin{array}{l}x^n: \quad a_n=b_{n-1}, \\ x^{n-1}: a_{n-1}=b_{n-2}-x_0
%\end{tikzpicture}
%\tracingmacros=2 \tracingcommands=2
\newpage
\newpage
\input{Horner01.tikz}
\input{Grafiken/Horner01.tikz}
\newpage
\input{Horner02.tikz}
\input{Grafiken/Horner02.tikz}