für overleaf überarbeitet
@@ -10,7 +10,7 @@
|
|||||||
\usepackage{tikz}
|
\usepackage{tikz}
|
||||||
\usetikzlibrary{arrows.meta,bending,positioning,matrix,fit,arrows,backgrounds}
|
\usetikzlibrary{arrows.meta,bending,positioning,matrix,fit,arrows,backgrounds}
|
||||||
\usepackage{circuitikz}
|
\usepackage{circuitikz}
|
||||||
\usetikzlibrary{circuits.ee.IEC.relay}
|
%\usetikzlibrary{circuits.ee.IEC.relay}
|
||||||
%\usepackage{sanitize-umlaut}
|
%\usepackage{sanitize-umlaut}
|
||||||
|
|
||||||
% fuer Stichwortverzeichnis
|
% fuer Stichwortverzeichnis
|
||||||
|
|||||||
BIN
Band2/Grafiken/B.2.10.png
Normal file
|
After Width: | Height: | Size: 47 KiB |
BIN
Band2/Grafiken/B.2.11.png
Normal file
|
After Width: | Height: | Size: 46 KiB |
BIN
Band2/Grafiken/B.2.12.png
Normal file
|
After Width: | Height: | Size: 60 KiB |
BIN
Band2/Grafiken/B.2.15.png
Normal file
|
After Width: | Height: | Size: 50 KiB |
BIN
Band2/Grafiken/B.2.3.png
Normal file
|
After Width: | Height: | Size: 18 KiB |
BIN
Band2/Grafiken/B.2.4.png
Normal file
|
After Width: | Height: | Size: 141 KiB |
BIN
Band2/Grafiken/B.2.5.png
Normal file
|
After Width: | Height: | Size: 112 KiB |
BIN
Band2/Grafiken/B.2.6.png
Normal file
|
After Width: | Height: | Size: 108 KiB |
BIN
Band2/Grafiken/B.2.8.png
Normal file
|
After Width: | Height: | Size: 95 KiB |
BIN
Band2/Grafiken/B.2.9.png
Normal file
|
After Width: | Height: | Size: 45 KiB |
74
Band2/Grafiken/B2.1.tex
Normal file
@@ -0,0 +1,74 @@
|
|||||||
|
%!tikz editor 1.0
|
||||||
|
\documentclass{article}
|
||||||
|
\usepackage{tikz}
|
||||||
|
\usepackage[graphics, active, tightpage]{preview}
|
||||||
|
\usepackage{circuitikz}
|
||||||
|
\PreviewEnvironment{tikzpicture}
|
||||||
|
|
||||||
|
%!tikz preamble begin
|
||||||
|
\usepackage{pgfplots}
|
||||||
|
%!tikz preamble end
|
||||||
|
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
%!tikz source begin
|
||||||
|
\begin{tikzpicture}[line cap=round,line join=round,x=1cm,y=1cm,scale=3]
|
||||||
|
\tikzset{
|
||||||
|
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
|
||||||
|
small dot/.style={fill=black,circle,scale=0.3},}
|
||||||
|
\begin{axis}[
|
||||||
|
x=2cm,y=2cm,
|
||||||
|
axis lines=middle,
|
||||||
|
axis line style = {-latex},
|
||||||
|
xmin=-2.5,
|
||||||
|
xmax=2.5,
|
||||||
|
ymin=-0.5,
|
||||||
|
ymax=4,
|
||||||
|
%ytick={1,2},
|
||||||
|
%yticklabels={1,2},
|
||||||
|
xtick=\empty,
|
||||||
|
xlabel=$x$,
|
||||||
|
ylabel=$y$,
|
||||||
|
extra x ticks={0.5},
|
||||||
|
extra x tick style={
|
||||||
|
tick label style={anchor=north}},
|
||||||
|
extra x tick labels={$\frac{1}{2}$},
|
||||||
|
extra y ticks={0.25},
|
||||||
|
extra y tick style={
|
||||||
|
tick label style={anchor=east}},
|
||||||
|
extra y tick labels={$\frac{1}{4}$},
|
||||||
|
enlargelimits = true,
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\draw [thick, dashed] (axis cs: -0.05,1) -- (axis cs: 0.5,1);
|
||||||
|
\draw [thick, dashed] (axis cs: 0.5,-0.05) -- (axis cs: 0.5,1);
|
||||||
|
|
||||||
|
|
||||||
|
\addplot[domain=-2:2, blue, line width=1,samples=2000] {x^2};
|
||||||
|
|
||||||
|
\addplot[color=blue!80!black, only marks, style={mark=*}] coordinates {(0.5,2)};
|
||||||
|
|
||||||
|
\draw [ultra thin, dashed] (axis cs: -.05,1/4) -- (axis cs: 1/2,1/4);
|
||||||
|
\draw [thick, dashed] (axis cs: 0.5,1) -- (axis cs: 0.5,2);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\scriptsize{ \node () at (axis cs:2.4,1.8) {$\displaystyle y=\left\{ \begin{array}{rl}
|
||||||
|
\frac{x^2-\frac{1}{4}}{x-\frac{1}{2}} & \text{für}\; x \neq \frac{1}{2}\\ \\
|
||||||
|
2 & \text{für}\; x = \frac{1}{2}\\
|
||||||
|
\end{array}
|
||||||
|
\right .$};}
|
||||||
|
|
||||||
|
% \draw[] (axis cs:1.3, 0.1) -- (axis cs:1.3, -0.1);
|
||||||
|
% \node () at (axis cs:1.3,-0.25) {$x_0$};
|
||||||
|
|
||||||
|
% \draw[] (axis cs:1.14,-0.05) -- (axis cs:1.14, 0.05);
|
||||||
|
% \node () at (axis cs:0.33,-0.45) {$\frac{1}{\pi}$};
|
||||||
|
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
%!tikz source end
|
||||||
|
|
||||||
|
\end{document}
|
||||||
79
Band2/Grafiken/B2.9.tex
Normal file
@@ -0,0 +1,79 @@
|
|||||||
|
%!tikz editor 1.0
|
||||||
|
\documentclass{article}
|
||||||
|
\usepackage{tikz}
|
||||||
|
\usepackage[graphics, active, tightpage]{preview}
|
||||||
|
\usepackage{circuitikz}
|
||||||
|
\PreviewEnvironment{tikzpicture}
|
||||||
|
|
||||||
|
%!tikz preamble begin
|
||||||
|
\usepackage{pgfplots}
|
||||||
|
%!tikz preamble end
|
||||||
|
|
||||||
|
|
||||||
|
%%%%%%%%%
|
||||||
|
%% convert -density 300 GW001.pdf -quality 100 GW001.png
|
||||||
|
%%%%%%%%%
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
%!tikz source begin
|
||||||
|
\begin{tikzpicture}
|
||||||
|
[line cap=round,line join=round,x=1cm,y=1cm,scale=1]
|
||||||
|
\tikzset{
|
||||||
|
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
|
||||||
|
small dot/.style={fill=black,circle,scale=0.3},}
|
||||||
|
\begin{axis}[
|
||||||
|
x=2cm,y=2cm,
|
||||||
|
axis lines=middle,
|
||||||
|
axis line style = {-latex},
|
||||||
|
xmin=-0.5,
|
||||||
|
xmax=3,
|
||||||
|
ymin=-0.1,
|
||||||
|
ymax=2.5,
|
||||||
|
ytick=\empty,
|
||||||
|
xtick=\empty,
|
||||||
|
xlabel=$x$,
|
||||||
|
ylabel=$y$,
|
||||||
|
extra x ticks = {0.75, 1.25,1.75,2.25},
|
||||||
|
extra x tick labels= {$x_0$, $x_3$, $x_2$, $x_1$},
|
||||||
|
extra y ticks = {0.71232, 1.22314, 1.55962, 1.81093},
|
||||||
|
extra y tick labels= {$g_r$, $f(x_3)$, $f(x_2)$, $f(x_1)$}
|
||||||
|
]
|
||||||
|
|
||||||
|
%\addplot[domain=-2.7:-1.1, blue, line width=1,samples=500] {1/(x^2-1)};
|
||||||
|
%\addplot[domain=1.1:2.7, blue, line width=1,samples=500] {1/(x^2-1)};
|
||||||
|
\addplot[domain=0.75:2.65, blue, line width=1,samples=500] {1+ln(x)};
|
||||||
|
|
||||||
|
|
||||||
|
\addplot[color=blue, only marks, fill=white] coordinates {(0.75,0.71232)};
|
||||||
|
|
||||||
|
\draw [dashed, blue] (axis cs: 0.75,-0.05) -- (axis cs: 0.75,0.71232);
|
||||||
|
|
||||||
|
\draw [dashed, blue] (axis cs: -0.05,0.71232) -- (axis cs: 0.75,0.71232);
|
||||||
|
|
||||||
|
\addplot[color=blue, only marks] coordinates {(1.25,1.22314)};
|
||||||
|
|
||||||
|
|
||||||
|
\draw [ blue, thin] (axis cs: 1.25,0) -- (axis cs: 1.25,1.22314);
|
||||||
|
|
||||||
|
\draw [ blue, thin] (axis cs: 0, 1.22314) -- (axis cs: 1.25,1.22314);
|
||||||
|
|
||||||
|
\addplot[color=blue, only marks] coordinates {(1.75,1.55962)};
|
||||||
|
|
||||||
|
\draw [ blue, thin] (axis cs: 1.75,0) -- (axis cs: 1.75,1.55962);
|
||||||
|
|
||||||
|
\draw [ blue, thin] (axis cs: 0, 1.55962) -- (axis cs: 1.75,1.55962);
|
||||||
|
|
||||||
|
\addplot[color=blue, only marks] coordinates {(2.25,1.81093)};
|
||||||
|
|
||||||
|
|
||||||
|
\draw [ blue, thin] (axis cs: 2.25,0) -- (axis cs: 2.25,1.81093);
|
||||||
|
|
||||||
|
\draw [ blue, thin] (axis cs: 0, 1.81093) -- (axis cs: 2.25,1.81093);
|
||||||
|
|
||||||
|
\end{axis}
|
||||||
|
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
%!tikz source end
|
||||||
|
|
||||||
|
\end{document}
|
||||||
BIN
Band2/Grafiken/B2_1.png
Normal file
|
After Width: | Height: | Size: 113 KiB |
37
Band2/Grafiken/B2_10.tikz
Normal file
@@ -0,0 +1,37 @@
|
|||||||
|
\begin{tikzpicture}
|
||||||
|
|
||||||
|
\begin{axis}[
|
||||||
|
x=1cm,y=1cm,
|
||||||
|
axis lines=middle,
|
||||||
|
axis x line=middle,
|
||||||
|
axis y line=middle,
|
||||||
|
%enlarge x limits=0.15,
|
||||||
|
%enlarge y limits=0.15,
|
||||||
|
every axis x label/.style={at={(current axis.right of origin)},anchor=north east},
|
||||||
|
every axis y label/.style={at={(current axis.above origin)},anchor=north east},
|
||||||
|
xmin=-0.5,
|
||||||
|
xmax=6.,
|
||||||
|
ymin=-0.5,
|
||||||
|
ymax=5,
|
||||||
|
ytick={1,...,2},
|
||||||
|
xtick={3},
|
||||||
|
xlabel=$x$,
|
||||||
|
ylabel=$y$,
|
||||||
|
]
|
||||||
|
|
||||||
|
\addplot[domain=0.75:3, blue!80!black, line width=1,samples=50] {3/x};
|
||||||
|
\addplot[domain=3:5, blue!80!black, line width=1,samples=50] {x-1};
|
||||||
|
\addplot[color=blue!80!black, only marks, style={mark=*, fill=white}] coordinates {(3,2)};
|
||||||
|
\addplot[color=blue!80!black, only marks, style={mark=* }] coordinates {(3,1)};
|
||||||
|
|
||||||
|
\draw [dashed, draw=black] (axis cs: -0.05,1) -- (axis cs: 3,1);
|
||||||
|
\draw [dashed, draw=black] (axis cs: -0.05,2) -- (axis cs: 3,2);
|
||||||
|
\draw [dashed, draw=black] (axis cs: 3,-0.05) -- (axis cs: 3,2);
|
||||||
|
|
||||||
|
\node[] at (axis cs:4.5,4.5) {\footnotesize$y=\left\{\begin{array}{l}
|
||||||
|
\frac{3}{x} \text { für } 0<x \leq 3 \\
|
||||||
|
x-1 \text { für } x>3
|
||||||
|
\end{array}\right.$};
|
||||||
|
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
33
Band2/Grafiken/B2_11.tikz
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
\begin{tikzpicture}[line cap=round,line join=round,x=1cm,y=1cm]
|
||||||
|
\tikzset{
|
||||||
|
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
|
||||||
|
small dot/.style={fill=black,circle,scale=0.3},}
|
||||||
|
\begin{axis}[
|
||||||
|
x=1.5cm,y=1.5cm,
|
||||||
|
axis lines=middle,
|
||||||
|
axis line style = {-latex},
|
||||||
|
xmin=-0.25,
|
||||||
|
xmax=4.2,
|
||||||
|
ymin=-0.25,
|
||||||
|
ymax=3,
|
||||||
|
ytick=\empty,
|
||||||
|
xtick=\empty,
|
||||||
|
xlabel=$x$,
|
||||||
|
ylabel=$y$,
|
||||||
|
extra y ticks={1.5},
|
||||||
|
extra y tick style={
|
||||||
|
tick label style={anchor=east}},
|
||||||
|
extra y tick labels={$\displaystyle g$},
|
||||||
|
enlargelimits = true,
|
||||||
|
]
|
||||||
|
\draw [thick, draw=blue!50!black]
|
||||||
|
(axis cs: -0.05,1.5) -- (axis cs: 5.2,1.5);
|
||||||
|
\node[] at (axis cs:2.5,2.5) {$y=f(x)$};
|
||||||
|
|
||||||
|
\addplot[domain=1.1:4.4, green!50!black , line width=1,samples=200] {1.5+(5*e^(-x))*(cos(deg(2*pi*x)))};
|
||||||
|
|
||||||
|
\end{axis}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
24
Band2/Grafiken/B2_12.tikz
Normal file
@@ -0,0 +1,24 @@
|
|||||||
|
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1cm,y=1cm]
|
||||||
|
\begin{axis}[
|
||||||
|
x=1cm,y=1cm,
|
||||||
|
axis lines=middle,
|
||||||
|
xmin=-5,
|
||||||
|
xmax=5,
|
||||||
|
ymin=-1.4,
|
||||||
|
ymax=5,
|
||||||
|
ytick={-1,...,4},
|
||||||
|
xtick={-3,...,3},
|
||||||
|
xlabel=$x$,
|
||||||
|
ylabel=$y$,
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
\addplot[domain=0.5:4, blue, line width=1,samples=50] {1/(x^2)};
|
||||||
|
\addplot[domain=-4:-0.5, blue, line width=1,samples=50] {1/(x^2)};
|
||||||
|
|
||||||
|
\node[] at (axis cs:2.5,2.5) {$\displaystyle y=\frac{1}{x^2}\; (x \neq 0)$};
|
||||||
|
\end{axis}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
BIN
Band2/Grafiken/B2_13.png
Normal file
|
After Width: | Height: | Size: 45 KiB |
BIN
Band2/Grafiken/B2_14.png
Normal file
|
After Width: | Height: | Size: 52 KiB |
BIN
Band2/Grafiken/B2_16.png
Normal file
|
After Width: | Height: | Size: 31 KiB |
BIN
Band2/Grafiken/B2_17.png
Normal file
|
After Width: | Height: | Size: 36 KiB |
BIN
Band2/Grafiken/B2_18.png
Normal file
|
After Width: | Height: | Size: 39 KiB |
BIN
Band2/Grafiken/B2_19.png
Normal file
|
After Width: | Height: | Size: 95 KiB |
BIN
Band2/Grafiken/B2_2.png
Normal file
|
After Width: | Height: | Size: 60 KiB |
27
Band2/Grafiken/B2_3.tikz
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
\begin{tikzpicture}[line cap=round,line join=round,x=1cm,y=1cm]
|
||||||
|
\tikzset{
|
||||||
|
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
|
||||||
|
small dot/.style={fill=black,circle,scale=0.5},}
|
||||||
|
\begin{axis}[
|
||||||
|
axis x line=middle,
|
||||||
|
x=3cm,
|
||||||
|
width=40mm,
|
||||||
|
height=20mm,
|
||||||
|
xmin=0.5,
|
||||||
|
xmax=3.5,
|
||||||
|
xtick = \empty,
|
||||||
|
x axis line style={thick,-latex},
|
||||||
|
xlabel style={anchor=north west},
|
||||||
|
axis y line=none,
|
||||||
|
anchor=left of origin,
|
||||||
|
xlabel=$x$,
|
||||||
|
extra x ticks={1, 2, 3},
|
||||||
|
extra x tick labels={$x_0 - C$, $x_0$, $x_0+C$},
|
||||||
|
]
|
||||||
|
\draw [line width=2] (axis cs: 1,0) -- (axis cs: 3,0);
|
||||||
|
\addplot[only marks, fill=white, thick] coordinates {(1,0)};
|
||||||
|
\addplot[only marks, fill=white, thick] coordinates {(2,0)};
|
||||||
|
\addplot[only marks, fill=white, thick] coordinates {(3,0)};
|
||||||
|
\end{axis}
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
53
Band2/Grafiken/B2_4.tikz
Normal file
@@ -0,0 +1,53 @@
|
|||||||
|
\begin{tikzpicture}
|
||||||
|
[line cap=round,line join=round,x=1cm,y=1cm]
|
||||||
|
\tikzset{
|
||||||
|
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
|
||||||
|
small dot/.style={fill=black,circle,scale=0.3},}
|
||||||
|
\begin{axis}[
|
||||||
|
x=2cm,y=2cm,
|
||||||
|
axis lines=middle,
|
||||||
|
axis line style = {-latex},
|
||||||
|
xmin=-0.75,
|
||||||
|
xmax=3.75,
|
||||||
|
ymin=-0.5,
|
||||||
|
ymax=3.5,
|
||||||
|
ytick=\empty,
|
||||||
|
xtick=\empty,
|
||||||
|
xlabel=$x$,
|
||||||
|
ylabel=$y$,
|
||||||
|
extra x ticks={0.75, 2, 2.5,2.8},
|
||||||
|
extra x tick labels={$x_1$, $x_3$, $x_0$, $x_2$},
|
||||||
|
extra y ticks={0.64, 1.5, 2.0625, 2.46},
|
||||||
|
extra y tick labels={$f(x_1)$, $f(x_3)$, $g$ , $f(x_2)$},
|
||||||
|
]
|
||||||
|
|
||||||
|
\addplot[domain=0.5:3.1, blue, line width=1,samples=500] {0.25*(x^2)+0.5};
|
||||||
|
|
||||||
|
|
||||||
|
\draw [line width=0.1] (axis cs: 0.75,-0.05) -- (axis cs: 0.75,0.640625);
|
||||||
|
\draw [line width=0.1] (axis cs: -0.05,0.640625) -- (axis cs: 0.75,0.640625);
|
||||||
|
|
||||||
|
\draw [ultra thin] (axis cs: 2,-0.05) -- (axis cs: 2,1.5);
|
||||||
|
\draw [ultra thin] (axis cs: -0.05,1.5) -- (axis cs: 2,1.5);
|
||||||
|
|
||||||
|
\draw [loosely dashed, ultra thin] (axis cs: 2.5,-0.05) -- (axis cs: 2.5,2.0625);
|
||||||
|
\draw [loosely dashed, thin] (axis cs: -0.05,2.0625) -- (axis cs: 2.5,2.0625);
|
||||||
|
|
||||||
|
\draw [ultra thin] (axis cs: 2.8,-0.05) -- (axis cs: 2.8,2.46);
|
||||||
|
\draw [ultra thin] (axis cs: -0.05,2.46) -- (axis cs: 2.8,2.46);
|
||||||
|
|
||||||
|
|
||||||
|
\addplot[color=blue!80!black, only marks, style={mark=*}] coordinates {(0.75,0.640625)};
|
||||||
|
\addplot[color=blue!80!black, only marks, style={mark=*}] coordinates {(2,1.5)};
|
||||||
|
|
||||||
|
\addplot[color=blue, only marks, fill=white] coordinates {(2.5,2.0625)};
|
||||||
|
|
||||||
|
\addplot[color=blue!80!black, only marks, style={mark=*}] coordinates {(2.8,2.46)};
|
||||||
|
|
||||||
|
|
||||||
|
\node () at (axis cs:2.5,2.8) {$\displaystyle y=\left(x\right)$};
|
||||||
|
|
||||||
|
\end{axis}
|
||||||
|
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
58
Band2/Grafiken/B2_5.tikz
Normal file
@@ -0,0 +1,58 @@
|
|||||||
|
\begin{tikzpicture}
|
||||||
|
[line cap=round,line join=round,x=1cm,y=1cm]
|
||||||
|
\tikzset{
|
||||||
|
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
|
||||||
|
small dot/.style={fill=black,circle,scale=0.3},}
|
||||||
|
\begin{axis}[
|
||||||
|
x=2cm,y=2cm,
|
||||||
|
axis lines=middle,
|
||||||
|
axis line style = {-latex},
|
||||||
|
xmin=-1,
|
||||||
|
xmax=3,
|
||||||
|
ymin=-0.5,
|
||||||
|
ymax=2,
|
||||||
|
ytick={1,2},
|
||||||
|
yticklabels={1,2},
|
||||||
|
xtick=\empty,
|
||||||
|
xlabel=$x$,
|
||||||
|
ylabel=$y$,
|
||||||
|
extra x ticks={0.5},
|
||||||
|
extra x tick style={
|
||||||
|
tick label style={anchor=north}},
|
||||||
|
extra x tick labels={$\frac{1}{2}$},
|
||||||
|
enlargelimits = true,
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\draw [thick, dashed] (axis cs: -0.05,1) -- (axis cs: 0.5,1);
|
||||||
|
\draw [thick, dashed] (axis cs: 0.5,-0.05) -- (axis cs: 0.5,1);
|
||||||
|
|
||||||
|
|
||||||
|
\addplot[domain=-1:0.5, blue, line width=1,samples=2000] {((x^2)-(1/4))/(x-(1/2)};
|
||||||
|
\addplot[color=blue!80!black, only marks, style={mark=*, fill=white}] coordinates {(0.5,1)};
|
||||||
|
\addplot[domain=0.51:1.5, blue, line width=1,samples=2000] {((x^2)-(1/4))/(x-(1/2)};
|
||||||
|
|
||||||
|
\addplot[color=blue!80!black, only marks, style={mark=*}] coordinates {(0.5,2)};
|
||||||
|
|
||||||
|
\draw [thick, dashed] (axis cs: -0.05,2) -- (axis cs: 0.5,2);
|
||||||
|
\draw [thick, dashed] (axis cs: 0.5,1) -- (axis cs: 0.5,2);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\scriptsize{ \node () at (axis cs:2.4,1.8) {$\displaystyle y=\left\{ \begin{array}{rl}
|
||||||
|
\frac{x^2-\frac{1}{4}}{x-\frac{1}{2}} & \text{für}\; x \neq \frac{1}{2}\\ \\
|
||||||
|
2 & \text{für}\; x = \frac{1}{2}\\
|
||||||
|
\end{array}
|
||||||
|
\right .$};}
|
||||||
|
|
||||||
|
% \draw[] (axis cs:1.3, 0.1) -- (axis cs:1.3, -0.1);
|
||||||
|
% \node () at (axis cs:1.3,-0.25) {$x_0$};
|
||||||
|
|
||||||
|
% \draw[] (axis cs:1.14,-0.05) -- (axis cs:1.14, 0.05);
|
||||||
|
% \node () at (axis cs:0.33,-0.45) {$\frac{1}{\pi}$};
|
||||||
|
|
||||||
|
\end{axis}
|
||||||
|
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
33
Band2/Grafiken/B2_6.tikz
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1cm,y=1cm]
|
||||||
|
\begin{axis}[
|
||||||
|
x=5cm,y=1.5cm,
|
||||||
|
axis lines=middle,
|
||||||
|
xmin=-1.2,
|
||||||
|
xmax=1.2,
|
||||||
|
ymin=-1.4,
|
||||||
|
ymax=1.4,
|
||||||
|
ytick={-1,...,1},
|
||||||
|
xtick=\empty,
|
||||||
|
xlabel=$x$,
|
||||||
|
ylabel=$y$,
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
\addplot[domain=0.05:3.8, red, line width=1,samples=5000] {sin(deg(1/(x)))};
|
||||||
|
\addplot[domain=-3.8:-0.05, red, line width=1,samples=5000] {sin(deg(1/(x)))};
|
||||||
|
|
||||||
|
%\draw (-0.32,0.1) node[anchor=north west] {$-\frac{1}{\pi}$};
|
||||||
|
%\draw (0.32,0.1) node[anchor=north west] {$\frac{1}{\pi}$};
|
||||||
|
\draw[] (axis cs:-0.32, 0.1) -- (axis cs:-0.32, -0.1);
|
||||||
|
\node () at (axis cs:-0.35,-0.45) {$-\frac{1}{\pi}$};
|
||||||
|
|
||||||
|
\draw[] (axis cs:0.32, 0.1) -- (axis cs:0.32, -0.1);
|
||||||
|
\node () at (axis cs:0.33,-0.45) {$\frac{1}{\pi}$};
|
||||||
|
%\node[color=red, font=\footnotesize] at (-1,-0.25) {$f(x)=3x^3 - x^2 - 10x$};
|
||||||
|
%\node[color=blue, font=\footnotesize] at (axis cs: 1.1,2.2) {$g(x)=- x^2 + 2x$};
|
||||||
|
|
||||||
|
\end{axis}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
BIN
Band2/Grafiken/B2_7.png
Normal file
|
After Width: | Height: | Size: 231 KiB |
56
Band2/Grafiken/B2_8.tikz
Normal file
@@ -0,0 +1,56 @@
|
|||||||
|
\begin{tikzpicture}[line cap=round,line join=round,x=1cm,y=1cm]
|
||||||
|
\tikzset{
|
||||||
|
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
|
||||||
|
small dot/.style={fill=black,circle,scale=0.3},}
|
||||||
|
\begin{axis}[
|
||||||
|
x=2cm,y=2cm,
|
||||||
|
axis lines=middle,
|
||||||
|
axis line style = {-latex},
|
||||||
|
xmin=-0.5,
|
||||||
|
xmax=3,
|
||||||
|
ymin=-0.5,
|
||||||
|
ymax=2,
|
||||||
|
ytick=\empty,
|
||||||
|
xtick=\empty,
|
||||||
|
xlabel=$x$,
|
||||||
|
ylabel=$y$,
|
||||||
|
extra x ticks={1.3},
|
||||||
|
extra x tick style={
|
||||||
|
tick label style={anchor=north}},
|
||||||
|
extra x tick labels={$x_0$},
|
||||||
|
extra y ticks={1.14},
|
||||||
|
extra y tick style={
|
||||||
|
tick label style={anchor=east}},
|
||||||
|
extra y tick labels={$\displaystyle \sqrt{x_0}$},
|
||||||
|
enlargelimits = true,
|
||||||
|
]
|
||||||
|
\draw [thick, dashed]
|
||||||
|
(axis cs: -0.05,1.14) -- (axis cs: 1.3,1.14);
|
||||||
|
\draw [thick, dashed]
|
||||||
|
(axis cs: 1.3,-0.05) -- (axis cs: 1.3,1.14);
|
||||||
|
\node[label={180:{}},circle,fill,inner sep=1.5] at (axis cs:1.3,1.14) {};
|
||||||
|
\node[label={300:{$0$}},circle,fill,inner sep=1.5] at (axis cs:0,0) {};
|
||||||
|
% node[pos=0.5, above] {$y=12$};
|
||||||
|
% \addplot coordinates { (0,1.14) (1.3,1.14) };
|
||||||
|
% \addplot coordinates { (1,4) (2,6) };
|
||||||
|
% \draw (axis cs:2,3) -- node[left]{Text} (axis cs:2,6);
|
||||||
|
|
||||||
|
\addplot[domain=0:2, blue, line width=1,samples=5000] {sqrt(x)};
|
||||||
|
%\addplot[domain=-3.8:-0.05, red, line width=1,samples=5000] {sin(deg(1/(x)))};
|
||||||
|
|
||||||
|
|
||||||
|
\begin{scriptsize}
|
||||||
|
\node () at (axis cs:2.2,1.7) {$\displaystyle y=\sqrt{x}\;(x \neq 0)$};
|
||||||
|
\end{scriptsize}
|
||||||
|
|
||||||
|
% \draw[] (axis cs:1.3, 0.1) -- (axis cs:1.3, -0.1);
|
||||||
|
% \node () at (axis cs:1.3,-0.25) {$x_0$};
|
||||||
|
|
||||||
|
% \draw[] (axis cs:1.14,-0.05) -- (axis cs:1.14, 0.05);
|
||||||
|
% \node () at (axis cs:0.33,-0.45) {$\frac{1}{\pi}$};
|
||||||
|
|
||||||
|
\end{axis}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
56
Band2/Grafiken/B2_9.tikz
Normal file
@@ -0,0 +1,56 @@
|
|||||||
|
\begin{tikzpicture}
|
||||||
|
[line cap=round,line join=round,x=1cm,y=1cm,scale=1]
|
||||||
|
\tikzset{
|
||||||
|
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
|
||||||
|
small dot/.style={fill=black,circle,scale=0.3},}
|
||||||
|
\begin{axis}[
|
||||||
|
x=2cm,y=2cm,
|
||||||
|
axis lines=middle,
|
||||||
|
axis line style = {-latex},
|
||||||
|
xmin=-0.5,
|
||||||
|
xmax=3,
|
||||||
|
ymin=-0.1,
|
||||||
|
ymax=2.5,
|
||||||
|
ytick=\empty,
|
||||||
|
xtick=\empty,
|
||||||
|
xlabel=$x$,
|
||||||
|
ylabel=$y$,
|
||||||
|
extra x ticks = {0.75, 1.25,1.75,2.25},
|
||||||
|
extra x tick labels= {$x_0$, $x_3$, $x_2$, $x_1$},
|
||||||
|
extra y ticks = {0.71232, 1.22314, 1.55962, 1.81093},
|
||||||
|
extra y tick labels= {$g_r$, $f(x_3)$, $f(x_2)$, $f(x_1)$}
|
||||||
|
]
|
||||||
|
|
||||||
|
%\addplot[domain=-2.7:-1.1, blue, line width=1,samples=500] {1/(x^2-1)};
|
||||||
|
%\addplot[domain=1.1:2.7, blue, line width=1,samples=500] {1/(x^2-1)};
|
||||||
|
\addplot[domain=0.75:2.65, blue, line width=1,samples=500] {1+ln(x)};
|
||||||
|
|
||||||
|
|
||||||
|
\addplot[color=blue, only marks, fill=white] coordinates {(0.75,0.71232)};
|
||||||
|
|
||||||
|
\draw [dashed, blue] (axis cs: 0.75,-0.05) -- (axis cs: 0.75,0.71232);
|
||||||
|
|
||||||
|
\draw [dashed, blue] (axis cs: -0.05,0.71232) -- (axis cs: 0.75,0.71232);
|
||||||
|
|
||||||
|
\addplot[color=blue, only marks] coordinates {(1.25,1.22314)};
|
||||||
|
|
||||||
|
|
||||||
|
\draw [ blue, thin] (axis cs: 1.25,-0.05) -- (axis cs: 1.25,1.22314);
|
||||||
|
|
||||||
|
\draw [ blue, thin] (axis cs: -0.05, 1.22314) -- (axis cs: 1.25,1.22314);
|
||||||
|
|
||||||
|
\addplot[color=blue, only marks] coordinates {(1.75,1.55962)};
|
||||||
|
|
||||||
|
\draw [ blue, thin] (axis cs: 1.75,-0.05) -- (axis cs: 1.75,1.55962);
|
||||||
|
|
||||||
|
\draw [ blue, thin] (axis cs: -0.05, 1.55962) -- (axis cs: 1.75,1.55962);
|
||||||
|
|
||||||
|
\addplot[color=blue, only marks] coordinates {(2.25,1.81093)};
|
||||||
|
|
||||||
|
|
||||||
|
\draw [ blue, thin] (axis cs: 2.25,-0.05) -- (axis cs: 2.25,1.81093);
|
||||||
|
|
||||||
|
\draw [ blue, thin] (axis cs: -0.05, 1.81093) -- (axis cs: 2.25,1.81093);
|
||||||
|
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
203
Band2/Grafiken/Horner01.tikz
Normal file
@@ -0,0 +1,203 @@
|
|||||||
|
%!TEX root=Band2.tex
|
||||||
|
|
||||||
|
%\begin{tikzpicture}[>=latex]
|
||||||
|
%
|
||||||
|
%\draw[cyan, densely dotted] (-2,0) grid (12,14);
|
||||||
|
%\useasboundingbox (-2,0) rectangle (12,14);
|
||||||
|
%
|
||||||
|
%%nodes=draw,
|
||||||
|
%\matrix (m1) [anchor=west,draw,row sep=6mm,column sep=5mm,matrix of nodes,column 6/.style={anchor=base west}, left delimiter=\{ ] at (1, 12)
|
||||||
|
%{
|
||||||
|
%\phantom{a} & $3$ & $0$\footnotemark & $1$ & $-5 $ & $2$ \\
|
||||||
|
%\phantom{a} & \phantom{a} & $6$ & $12$ & $26$ & $42$\\
|
||||||
|
%$2$ & $3$ & $6$ & $13$ & $21$ & $44=g(2)$\\
|
||||||
|
%};
|
||||||
|
%
|
||||||
|
%\matrix (m2) [anchor=west,draw,row sep=6mm,column sep=5mm,matrix of nodes,column 5/.style={anchor=base west}, left delimiter=\{ ] at (1, 9)
|
||||||
|
% {
|
||||||
|
%\phantom{a} & \phantom{a} & $6$ & $24$ & $74$\\
|
||||||
|
% $2$ & $3$ & $12$ & $37$ & $95=g'(2)$ \\
|
||||||
|
%};
|
||||||
|
%
|
||||||
|
%\matrix (m3) [anchor= west,draw,row sep=6mm,column sep=5mm,matrix of nodes,column 4/.style={anchor=base west} , left delimiter=\{] at (1, 6.5)
|
||||||
|
%{
|
||||||
|
%\phantom{a} & \phantom{a} & $6$ & $36$\\
|
||||||
|
% $2$ & $3$ & $18$ & $73=\frac{g''(2)}{2!}$ \phantom{a}\\
|
||||||
|
%};
|
||||||
|
%
|
||||||
|
%\matrix (m4) [anchor= west,draw,row sep=6mm,column sep=5mm,matrix of nodes,column 3/.style={anchor=base west} , left delimiter=\{] at (1, 4)
|
||||||
|
%{
|
||||||
|
%\phantom{a} & \phantom{a} & $6$\\
|
||||||
|
% $2$ & $3$ & $24=\frac{g'''(2)}{3!}$ \phantom{a}\\
|
||||||
|
%};
|
||||||
|
%
|
||||||
|
%\matrix (m5) [anchor= west,draw,row sep=6mm,column sep=5mm,matrix of nodes,column 4/.style={anchor=base west} , left delimiter=\{] at (1, 2)
|
||||||
|
%{
|
||||||
|
%\phantom{a} &$3=\frac{g^{4}(2)} {4!}$ \\
|
||||||
|
%};
|
||||||
|
%
|
||||||
|
%\draw ([xshift=.1cm]m1-1-1.north east) -- ([xshift=.1cm,yshift=-0.3cm]m5-1-1.south east);
|
||||||
|
%
|
||||||
|
%\draw ([yshift=-.25cm]m1-2-1.south west) -- ([yshift=-.25cm,xshift=1.2cm]m1-2-6.south east);
|
||||||
|
%
|
||||||
|
%\draw ([yshift=-.25cm]m2-1-1.south west) -- ([yshift=-.25cm,xshift=1.3cm]m2-1-5.south east);
|
||||||
|
%
|
||||||
|
%\draw ([yshift=-.25cm]m3-1-1.south west) -- ([yshift=-.25cm,xshift=16mm]m3-1-4.south east);
|
||||||
|
%
|
||||||
|
%\draw ([yshift=-.25cm]m4-1-1.south west) -- ([yshift=-.25cm,xshift=18mm]m4-1-3.south east);
|
||||||
|
%
|
||||||
|
%%\draw ([yshift=-.25cm]m5-1-1.south west) -- ([yshift=-.25cm,xshift=3mm]m5-1-2.south east);
|
||||||
|
%%\draw ([yshift=2mm]m1-3-6.north west) -- ([yshift=-1mm]m1-3-6.south west);
|
||||||
|
%
|
||||||
|
% %\draw ([yshift=-.25cm]m1-2-6.south west) -- ([yshift=-.25cm,xshift=4mm]m1-2-6.south east);
|
||||||
|
%
|
||||||
|
%% \draw ([yshift=-.15cm]m1-3-6.south west) -- ([yshift=-.15cm]m1-3-6.south east);
|
||||||
|
%
|
||||||
|
%
|
||||||
|
%\node[circle,draw] (del-left-1) at ($0.5*(m1-3-1.south west)+0.5*(m1-1-1.north west)$){};
|
||||||
|
%\node[circle,draw] (del-left-2) at ($0.5*(m2-2-1.south west)+0.5*(m2-1-1.north west)$){};
|
||||||
|
%\node[circle,draw] (del-left-3) at ($0.5*(m3-2-1.south west)+0.5*(m3-1-1.north west)$){};
|
||||||
|
%\node[circle,draw] (del-left-4) at ($0.5*(m4-2-1.south west)+0.5*(m4-1-1.north west)$){};
|
||||||
|
%\node[circle,draw] (del-left-5) at ($0.5*(m5-1-1.south west)+0.5*(m5-1-1.north west)$){};
|
||||||
|
%\node[left=10pt] at (del-left-1.west) {1. Schritt};
|
||||||
|
%\node[left=10pt] at (del-left-2.west) {2. Schritt};
|
||||||
|
%\node[left=10pt] at (del-left-3.west) {3. Schritt};
|
||||||
|
%\node[left=10pt] at (del-left-4.west) {4. Schritt};
|
||||||
|
%\node[left=10pt] at (del-left-5.west) {5. Schritt};
|
||||||
|
%
|
||||||
|
%%\draw ($(m1-2-5.north east)!0.5!(m1-2-5.north west)$) -- ($(m1-2-5.south east)!0.5!(m2-2-2.south west)$);
|
||||||
|
%%\draw($(m1-2-5.north east)!50!(m1-2-6.north west)$)--($(m1-3-5.south east)!50!(m1-3-6.south west)$);
|
||||||
|
%%\draw([yshift=3mm]m1-3-6.north west)--(m1-3-6.south west);
|
||||||
|
%
|
||||||
|
%\hhlline{m5}{1}{2};
|
||||||
|
%
|
||||||
|
%% \node[rectangle,draw] (del-left-2) at ($(m2-2-1)-(m2-1-1)$) {\tikz{\path (m2-2-2.north east) rectangle (m2-2-1.south west);}};
|
||||||
|
%
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% %\mymatrixbracetop{2}{6}{$E'$}
|
||||||
|
%
|
||||||
|
%%\node[font=\color{red}] at (m2.center){X};
|
||||||
|
%
|
||||||
|
%%\foreach \xy in {$1*(m2-1-1)$, $1*(m2-2-1)$}{
|
||||||
|
%% \node at (\xy) {\xy};
|
||||||
|
%%}
|
||||||
|
%
|
||||||
|
%\end{tikzpicture} \footnotetext{Man beachte, ...}
|
||||||
|
|
||||||
|
\begin{tikzpicture}[>=latex]
|
||||||
|
|
||||||
|
%\draw[cyan, densely dotted] (-2,0) grid (8.5,9.5);
|
||||||
|
\useasboundingbox (-2,0) rectangle (8.5,9.5);
|
||||||
|
|
||||||
|
%nodes=draw,
|
||||||
|
\matrix (m1) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes,column 6/.style={anchor=base west}, left delimiter=\{ ] at (1, 8.4)
|
||||||
|
{
|
||||||
|
\phantom{a} & 3 & 0\footnotemark & 1 & -5 & 2 \\
|
||||||
|
\phantom{a} & \phantom{a} & 6 & 12 & 26 & 42\\
|
||||||
|
2 & 3 & 6 & 13 & 21 & 44=g(2)\\
|
||||||
|
};
|
||||||
|
|
||||||
|
\matrix (m2) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes, column 5/.style={anchor=base west}, left delimiter=\{ ] at (1, 6.4)
|
||||||
|
{
|
||||||
|
\phantom{a} & \phantom{a} & 6 & 24 & 74\\
|
||||||
|
2 & 3 & 12 & 37 & 95=g'(2) \\
|
||||||
|
};
|
||||||
|
|
||||||
|
\matrix (m3) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes,column 4/.style={anchor=base west}, left delimiter=\{ ] at (1, 4.5)
|
||||||
|
{
|
||||||
|
\phantom{a} & \phantom{a} & 6 & 36\\
|
||||||
|
2 & 3 & 18 & 73=\frac{g''(2)}{2!} \\
|
||||||
|
};
|
||||||
|
|
||||||
|
\matrix (m4) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes,column 3/.style={anchor=base west}, left delimiter=\{ ] at (1, 2.4)
|
||||||
|
{
|
||||||
|
\phantom{a} & \phantom{a} & 6\\
|
||||||
|
2 & 3 & 24=\frac{g'''(2)}{3!} \\
|
||||||
|
};
|
||||||
|
|
||||||
|
\matrix (m5) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes,column 2/.style={anchor=base west}, left delimiter=\{ ] at (1, 0.7)
|
||||||
|
{
|
||||||
|
\phantom{a} & 3=\frac{g^{(4)}(2)}{4!} \\
|
||||||
|
};
|
||||||
|
|
||||||
|
\node[circle] (del-left-1) at ($0.5*(m1-3-1.south west)+0.5*(m1-1-1.north west)$){};
|
||||||
|
\node[left=10pt] at (del-left-1.west) {1. Schritt};
|
||||||
|
|
||||||
|
%\draw ($(m1-2-5.north east)!0.5!(m1-2-5.north west)$) -- ($(m1-2-5.south east)!0.5!(m2-2-2.south west)$);
|
||||||
|
%\draw($(m1-2-5.north east)!50!(m1-2-6.north west)$)--($(m1-3-5.south east)!50!(m1-3-6.south west)$);
|
||||||
|
%\draw([yshift=3mm]m1-3-6.north west)--(m1-3-6.south west);
|
||||||
|
%\draw ([yshift=-3mm]m1-2-1.south west) -- ([yshift=-3mm,xshift=10mm]m1-2-6.south east);
|
||||||
|
|
||||||
|
\draw ($0.5*(m1-2-1.south west)+0.5*(m1-3-1.north west)$) -- ([xshift=5mm]$0.5*(m1-2-6.south east)+0.5*(m1-3-6.north east)$);
|
||||||
|
|
||||||
|
\draw ([yshift=1mm]m1-3-6.north west) -- (m1-3-6.south west);
|
||||||
|
\draw (m1-3-6.south west) -- (m1-3-6.south east);
|
||||||
|
|
||||||
|
\draw ($0.5*(m2-1-1.south west)+0.5*(m2-2-1.north west)$) -- ([xshift=5mm]$0.5*(m2-1-5.south east)+0.5*(m2-2-5.north east)$);
|
||||||
|
|
||||||
|
%Ende Zeile 2
|
||||||
|
%vert
|
||||||
|
\draw ([yshift=1mm]m2-2-5.north west) -- (m2-2-5.south west);
|
||||||
|
%horiz
|
||||||
|
\draw (m2-2-5.south west) -- (m2-2-5.south east);
|
||||||
|
|
||||||
|
|
||||||
|
%Trennlinie
|
||||||
|
\draw ([yshift=1.5mm]$0.5*(m3-1-1.south west)+0.5*(m3-2-1.north west)$) -- ([xshift=5mm]$0.5*(m3-1-4.south east)+0.5*(m3-2-4.north east)$);
|
||||||
|
\node[circle] (del-left-2) at ($0.5*(m2-2-1.south west)+0.5*(m2-1-1.north west)$){};
|
||||||
|
\node[left=10pt] at (del-left-2.west) {2. Schritt};
|
||||||
|
|
||||||
|
\node[circle] (del-left-3) at ([yshift=-1mm]$0.5*(m3-1-1.south west)+0.5*(m3-2-1.north west)$){};
|
||||||
|
\node[left=10pt] at (del-left-3.west) {3. Schritt};
|
||||||
|
|
||||||
|
\draw ([yshift=1mm]m3-2-4.north west) -- (m3-2-4.south west);
|
||||||
|
\draw (m3-2-4.south west) -- (m3-2-4.south east);
|
||||||
|
|
||||||
|
%\draw ([yshift=-3mm,thick]m2-1-1.south west) -- ([yshift=-3mm,xshift=10mm]m2-1-5.south east);
|
||||||
|
|
||||||
|
\draw ([yshift=1.5mm]$0.5*(m4-1-1.south west)+0.5*(m4-2-1.north west)$) -- ([xshift=5mm]$0.5*(m4-1-3.south east)+0.5*(m4-2-3.north east)$);
|
||||||
|
|
||||||
|
\draw ([yshift=1mm]m4-2-3.north west) -- (m4-2-3.south west);
|
||||||
|
\draw (m4-2-3.south west) -- (m4-2-3.south east);
|
||||||
|
|
||||||
|
|
||||||
|
\node[circle] (del-left-4) at ([yshift=-1mm]$0.5*(m4-1-1.south west)+0.5*(m4-2-1.north west)$){};
|
||||||
|
\node[left=10pt] at (del-left-4.west) {4. Schritt};
|
||||||
|
|
||||||
|
\draw ($0.5*(m1-2-1.south west)+0.5*(m1-3-1.north west)$) -- ([xshift=5mm]$0.5*(m1-2-6.south east)+0.5*(m1-3-6.north east)$);
|
||||||
|
|
||||||
|
\draw ([yshift=1mm]m1-3-6.north west) -- (m1-3-6.south west);
|
||||||
|
\draw (m1-3-6.south west) -- (m1-3-6.south east);
|
||||||
|
|
||||||
|
\draw ($0.5*(m2-1-1.south west)+0.5*(m2-2-1.north west)$) -- ([xshift=5mm]$0.5*(m2-1-5.south east)+0.5*(m2-2-5.north east)$);
|
||||||
|
|
||||||
|
|
||||||
|
\draw ([yshift=1mm]m3-2-4.north west) -- (m3-2-4.south west);
|
||||||
|
\draw (m3-2-4.south west) -- (m3-2-4.south east);
|
||||||
|
|
||||||
|
%\draw ([yshift=-3mm,thick]m2-1-1.south west) -- ([yshift=-3mm,xshift=10mm]m2-1-5.south east);
|
||||||
|
|
||||||
|
\node[circle] (del-left-5) at ([yshift=1mm]$0.5*(m5-1-1.south west)+0.5*(m5-1-1.north west)$){};
|
||||||
|
\node[left=10pt] at (del-left-5.west) {5. Schritt};
|
||||||
|
|
||||||
|
|
||||||
|
\draw (m5-1-2.north west) -- (m5-1-2.south west);
|
||||||
|
\draw (m5-1-2.south west) -- (m5-1-2.south east);
|
||||||
|
|
||||||
|
|
||||||
|
\draw ([yshift=5.5mm]m5-1-1.north west)-- ([yshift=1mm]m5-1-2.north east);
|
||||||
|
|
||||||
|
\draw(m1-1-1.north east)--([yshift=-2mm]m5-1-1.south east);
|
||||||
|
|
||||||
|
%\mymatrixbracetop{2}{6}{$E'$}
|
||||||
|
|
||||||
|
%\node[font=\color{red}] at (m2.center){X};
|
||||||
|
|
||||||
|
%\foreach \xy in {$1*(m2-1-1)$, $1*(m2-2-1)$}{
|
||||||
|
% \node at (\xy) {\xy};
|
||||||
|
%}
|
||||||
|
|
||||||
|
\end{tikzpicture} \footnotetext{Man beachte, ...}
|
||||||
|
|
||||||
|
\newpage
|
||||||
56
Band2/Grafiken/Horner02.tikz
Normal file
@@ -0,0 +1,56 @@
|
|||||||
|
%!TEX root=Band2.tex
|
||||||
|
\begin{tikzpicture}[>=latex]
|
||||||
|
|
||||||
|
%\draw[cyan, densely dotted] (-2,0) grid (12,14);
|
||||||
|
\useasboundingbox (-2,0) rectangle (12,14);
|
||||||
|
|
||||||
|
%nodes=draw,
|
||||||
|
\matrix (m1) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes,column 7/.style={anchor=base west}] at (1, 12)
|
||||||
|
{
|
||||||
|
\phantom{a} & 1 & 3 & 5 & 7 & 6 & 2 \\
|
||||||
|
\phantom{a} & \phantom{a} & -1 & -2 & -3 & -4 & -2\\
|
||||||
|
-1 & 1 & 2 & 3 & 4 & 2 & 0=g(-1)\\
|
||||||
|
};
|
||||||
|
|
||||||
|
\matrix (m2) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes, column 6/.style={anchor=base west}] at (1, 10)
|
||||||
|
{
|
||||||
|
\phantom{a} & \phantom{a} & -1 & -1 & -2 & -2\\
|
||||||
|
-1 & 1 & 1 & 2 & 2 & 0=g'(-1) \\
|
||||||
|
};
|
||||||
|
|
||||||
|
\matrix (m3) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes,column 5/.style={anchor=base west}] at (1, 8.1)
|
||||||
|
{
|
||||||
|
\phantom{a} & \phantom{a} & -1 & 0 & -2\\
|
||||||
|
-1 & 1 & 0 & 2 & 0=\frac{g''(-1)}{2!} \\
|
||||||
|
};
|
||||||
|
|
||||||
|
\matrix (m4) [anchor=west,row sep=2mm,column sep=5mm,matrix of math nodes,column 4/.style={anchor=base west}] at (1, 6)
|
||||||
|
{
|
||||||
|
\phantom{a} & \phantom{a} & -1 & 1\\
|
||||||
|
-1 & 1 & -1 & 3=\frac{g'''(-1)}{3!} \neq 0 \\
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
\draw ($0.5*(m1-2-1.south west)+0.5*(m1-3-1.north west)$) -- ([xshift=5mm]$0.5*(m1-2-7.south east)+0.5*(m1-3-7.north east)$);
|
||||||
|
|
||||||
|
\draw ([yshift=1mm]m1-3-7.north west) -- (m1-3-7.south west);
|
||||||
|
\draw (m1-3-7.south west) -- (m1-3-7.south east);
|
||||||
|
|
||||||
|
\draw ($0.5*(m2-1-1.south west)+0.5*(m2-2-1.north west)$) -- ([xshift=5mm]$0.5*(m2-1-6.south east)+0.5*(m2-2-6.north east)$);
|
||||||
|
|
||||||
|
\draw ([yshift=1mm]m2-2-6.north west) -- (m2-2-6.south west);
|
||||||
|
\draw (m2-2-6.south west) -- (m2-2-6.south east);
|
||||||
|
|
||||||
|
\draw ([yshift=1.5mm]$0.5*(m3-1-1.south west)+0.5*(m3-2-1.north west)$) -- ([xshift=5mm]$0.5*(m3-1-5.south east)+0.5*(m3-2-5.north east)$);
|
||||||
|
|
||||||
|
\draw ([yshift=1mm]m3-2-5.north west) -- (m3-2-5.south west);
|
||||||
|
\draw (m3-2-5.south west) -- (m3-2-5.south east);
|
||||||
|
|
||||||
|
\draw ([yshift=1.5mm]$0.5*(m4-1-1.south west)+0.5*(m4-2-1.north west)$) -- ([xshift=12mm]$0.5*(m4-1-4.south east)+0.5*(m4-2-4.north east)$);
|
||||||
|
|
||||||
|
\draw ([yshift=1mm]m4-2-4.north west) -- (m4-2-4.south west);
|
||||||
|
\draw (m4-2-4.south west) -- (m4-2-4.south east);
|
||||||
|
|
||||||
|
\draw([xshift=2mm]m1-1-1.north east)--([xshift=2mm,yshift=-2mm]m4-2-1.south east);
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
@@ -18,12 +18,12 @@ Als Vorbereitung auf den Grenzwertbegriff für Funktionen behandeln wir das
|
|||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\begin{minipage}[b]{.4\linewidth} % [b] => Ausrichtung an \caption
|
\begin{minipage}[b]{.4\linewidth} % [b] => Ausrichtung an \caption
|
||||||
\includegraphics[width=\linewidth]{B.2.1}
|
\includegraphics[width=\linewidth]{Grafiken/B2_1.png}
|
||||||
\caption{}\label{fig:b2.2.1}
|
\caption{}\label{fig:b2.2.1}
|
||||||
\end{minipage}
|
\end{minipage}
|
||||||
\hspace{.1\linewidth}% Abstand zwischen Bilder
|
\hspace{.1\linewidth}% Abstand zwischen Bilder
|
||||||
\begin{minipage}[b]{.4\linewidth} % [b] => Ausrichtung an \caption
|
\begin{minipage}[b]{.4\linewidth} % [b] => Ausrichtung an \caption
|
||||||
\includegraphics[width=\linewidth]{B.2.2}
|
\includegraphics[width=\linewidth]{Grafiken/B2_2.png}
|
||||||
\caption{}\label{fig:b2.2.2}
|
\caption{}\label{fig:b2.2.2}
|
||||||
\end{minipage}
|
\end{minipage}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@@ -58,7 +58,7 @@ $$
|
|||||||
\centering
|
\centering
|
||||||
% \includegraphics[width=0.5\linewidth]{B.2.3}
|
% \includegraphics[width=0.5\linewidth]{B.2.3}
|
||||||
%\frame{
|
%\frame{
|
||||||
\input{B2.3.tikz}
|
\input{Grafiken/B2_3.tikz}
|
||||||
%}
|
%}
|
||||||
\caption{}
|
\caption{}
|
||||||
\label{fig:b2.2.3}
|
\label{fig:b2.2.3}
|
||||||
@@ -80,7 +80,7 @@ In Bild \ref{fig:b2.2.4} haben wir die ersten drei Glieder einer Folge $\left(x_
|
|||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\centering
|
\centering
|
||||||
%\includegraphics[width=0.5\linewidth]{B.2.4}
|
%\includegraphics[width=0.5\linewidth]{B.2.4}
|
||||||
\input{B2.4.tikz}
|
\input{Grafiken/B2_4.tikz}
|
||||||
\caption{}
|
\caption{}
|
||||||
\label{fig:b2.2.4}
|
\label{fig:b2.2.4}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@@ -126,7 +126,7 @@ In Bild \ref{fig:b2.2.4} haben wir die ersten drei Glieder einer Folge $\left(x_
|
|||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\centering
|
\centering
|
||||||
%\includegraphics[width=0.5\linewidth]{B.2.5}
|
%\includegraphics[width=0.5\linewidth]{B.2.5}
|
||||||
\input{B2.5.tikz}
|
\input{Grafiken/B2_5.tikz}
|
||||||
\caption{}
|
\caption{}
|
||||||
\label{fig:b2.2.5}
|
\label{fig:b2.2.5}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@@ -167,7 +167,7 @@ In Bild \ref{fig:b2.2.4} haben wir die ersten drei Glieder einer Folge $\left(x_
|
|||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\centering
|
\centering
|
||||||
\input{B2.6.tikz}
|
\input{Grafiken/B2_6.tikz}
|
||||||
\caption{}
|
\caption{}
|
||||||
\label{fig:b2.2.6}
|
\label{fig:b2.2.6}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@@ -231,7 +231,7 @@ Eine geometrische Deutung dieses Satzes gibt Bild \ref{fig:b2.2.7}. Mit den dort
|
|||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.5\linewidth]{B.2.7}
|
\includegraphics[width=0.5\linewidth]{Grafiken/B2_7.png}
|
||||||
\caption{}
|
\caption{}
|
||||||
\label{fig:b2.2.7}
|
\label{fig:b2.2.7}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@@ -254,7 +254,7 @@ um $y=g$ ein , $\delta$-Streifen" um $x=x_0$ existiert, so daß alle Punkte der
|
|||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\centering
|
\centering
|
||||||
\input{B2.8.tikz}
|
\input{Grafiken/B2_8.tikz}
|
||||||
\caption{}
|
\caption{}
|
||||||
\label{fig:b2.2.8}
|
\label{fig:b2.2.8}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@@ -286,7 +286,7 @@ Für die Existenz des Grenzwertes $\lim _{x \rightarrow x_0} \sqrt{x}$ ist die V
|
|||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\centering
|
\centering
|
||||||
\input{B2.9.tikz}
|
\input{Grafiken/B2_9.tikz}
|
||||||
\caption{}
|
\caption{}
|
||||||
\label{fig:b2.2.9}
|
\label{fig:b2.2.9}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@@ -323,7 +323,7 @@ Das folgende Beispiel zeigt, daß der Begriff des einseitigen Grenzwertes auch f
|
|||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\centering
|
\centering
|
||||||
\input{B2.10.tikz}
|
\input{Grafiken/B2_10.tikz}
|
||||||
\caption{}
|
\caption{}
|
||||||
\label{fig:b2.2.10}
|
\label{fig:b2.2.10}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@@ -372,7 +372,7 @@ Geometrisch bedeutet $\lim _{x \rightarrow+\infty} f(x)=g$, daß sich die Bildku
|
|||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\centering
|
\centering
|
||||||
\input{B2.11.tikz}
|
\input{Grafiken/B2_11.tikz}
|
||||||
\caption{}
|
\caption{}
|
||||||
\label{fig:b2.2.11}
|
\label{fig:b2.2.11}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@@ -393,7 +393,7 @@ Im Zusammenhang mit den folgenden Beispielen sei an die Bildkurven der jeweilige
|
|||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\centering
|
\centering
|
||||||
\input{B2.12.tikz}
|
\input{Grafiken/B2_12.tikz}
|
||||||
\caption{}
|
\caption{}
|
||||||
\label{fig:b2.2.12}
|
\label{fig:b2.2.12}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@@ -432,8 +432,6 @@ Ist $x$ eine Variable für die Zeit, dann bedeutet die Existenz von $\lim _{x \r
|
|||||||
|
|
||||||
Die Geschwindigkeit\footnote{In \textcolor{red}{4.2.2.} werden wir die Geschwindigkeit einer geradlinigen Bewegung exakt definieren.} $v$ eines fallenden Körpers der Masse $m$ ist unter der Annahme eines geschwindigkeitsproportionalen Luftwiderstands (Proportionalitätsfaktor $k>0$ ) durch
|
Die Geschwindigkeit\footnote{In \textcolor{red}{4.2.2.} werden wir die Geschwindigkeit einer geradlinigen Bewegung exakt definieren.} $v$ eines fallenden Körpers der Masse $m$ ist unter der Annahme eines geschwindigkeitsproportionalen Luftwiderstands (Proportionalitätsfaktor $k>0$ ) durch
|
||||||
|
|
||||||
\end{beispiel}
|
|
||||||
|
|
||||||
$$
|
$$
|
||||||
v=\left(v_0-\frac{m \mathrm{~g}}{k}\right) \mathrm{e}^{-\frac{k}{m} t}+\frac{m \mathrm{~g}}{k} \quad(t \geqq 0)
|
v=\left(v_0-\frac{m \mathrm{~g}}{k}\right) \mathrm{e}^{-\frac{k}{m} t}+\frac{m \mathrm{~g}}{k} \quad(t \geqq 0)
|
||||||
$$
|
$$
|
||||||
@@ -444,38 +442,46 @@ gegeben ( $t$ : Zeit, $v_0$ : Geschwindigkeit zur Zeit $t=0, \mathrm{~g}$ : Erdb
|
|||||||
|
|
||||||
d.h., nach hinreichend langer Zeit $t$ hat die Geschwindigkeit $v$ nahezu den konstanten Wert $\frac{m \mathrm{~g}}{k}$. In Bild 2.13 haben wir $v$ als Funktion von $t$ für den Fall $v_0<\frac{m \mathrm{~g}}{k}$ dargestellt.
|
d.h., nach hinreichend langer Zeit $t$ hat die Geschwindigkeit $v$ nahezu den konstanten Wert $\frac{m \mathrm{~g}}{k}$. In Bild 2.13 haben wir $v$ als Funktion von $t$ für den Fall $v_0<\frac{m \mathrm{~g}}{k}$ dargestellt.
|
||||||
|
|
||||||
\section{Bestimmte und unbestimmte Divergenz}
|
|
||||||
Besitzt eine Funktion $f$ für eine der "`Bewegungen"'
|
|
||||||
|
|
||||||
\begin{figure}[ht]
|
\begin{figure}[ht]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.5\linewidth]{B.2.13}
|
\includegraphics[width=0.5\linewidth]{Grafiken/B2_13.png}
|
||||||
\caption{}
|
\caption{}
|
||||||
\label{fig:b2.2.13}
|
\label{fig:b2.2.13}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
\end{beispiel}
|
||||||
|
|
||||||
|
\section{Bestimmte und unbestimmte Divergenz}
|
||||||
|
|
||||||
HIERHIERHIERHIERHIER
|
Besitzt eine Funktion $f$ für eine der "`Bewegungen"'
|
||||||
|
|
||||||
\begin{align}
|
\begin{align}
|
||||||
x \rightarrow x_0 ; \quad x \rightarrow x_0+0, x \rightarrow x_0-0 ; \quad x \rightarrow+\infty, x \rightarrow-\infty
|
x \rightarrow x_0 ; \quad x \rightarrow x_0+0, x \rightarrow x_0-0 ; \quad x \rightarrow+\infty, x \rightarrow-\infty
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
einen Grenzwert, dann heißt sie für diese „Bewegung“ konvergent, andernfalls divergent. Wie für Zahlenfolgen kann man auch für Funktionen zwei Arten der Divergenz unterscheiden.
|
einen Grenzwert, dann heißt sie für diese "`Bewegung"' konvergent, andernfalls divergent. Wie für Zahlenfolgen kann man auch für Funktionen zwei Arten der Divergenz unterscheiden.
|
||||||
|
|
||||||
\begin{definition}\label{def:2.4}
|
\begin{definition}\label{def:2.4}
|
||||||
Die Funktion $f$ heißt bestimmt\marginpar[\textbf{D.2.4}]{\textbf{D.2.4}} divergent gegen $+\infty(\text{bzw.}-\infty)$ für eine der
|
Die Funktion $f$ heißt\textbf{ bestimmt}\marginpar[\textbf{D.2.4}]{\textbf{D.2.4}} \textbf{divergent gegen} $+\infty(\text{bzw.}-\infty)$ für eine der "`Bewegungen"' (2.17) der unabhängigen Variablen $x$, wenn für jede diese "`Bewegung"' realisierende Folge\footnote{Man sagt z. B., die Folge $\left(x_n\right)$ \textit{realisiere} die "`Bewegung"' $x \rightarrow x_0+0$, wenn $x_n>x_0$ für alle $n$ und $\lim _{n \rightarrow \infty} x_n=x_0$ gilt.} $\left(x_n\right)$ in $D(f)$ die Folge $\left(f\left(x_n\right)\right)$ bestimmt divergent gegen $+\infty($ bzw. $-\infty)$ ist.
|
||||||
|
|
||||||
|
|
||||||
|
Ist $f$ für eine der "`Bewegungen"' (2.17) weder konvergent noch bestimmt divergent, so heißt $f$ für diese "`Bewegung"' \textbf{unbestimmt divergent}.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
„Bewegungen“ (2.17) der unabhängigen Variablen $x$, wenn für jede diese „Bewegung“ realisierende Folge $\left.{ }^1\right)\left(x_n\right)$ in $D(f)$ die Folge $\left(f\left(x_n\right)\right)$ bestimmt divergent gegen $+\infty($ bzw. $-\infty)$ ist.
|
|
||||||
|
|
||||||
Ist $f$ für eine der „Bewegungen“ (2.17) weder konvergent noch bestimmt divergent, so heißt $f$ für diese „Bewegung“ unbestimmt divergent.
|
|
||||||
Ist $f$ bestimmt divergent gegen $+\infty$ für $x \rightarrow x_0$, so schreibt man
|
Ist $f$ bestimmt divergent gegen $+\infty$ für $x \rightarrow x_0$, so schreibt man
|
||||||
$$
|
$$
|
||||||
\lim _{x \rightarrow x_0} f(x)=+\infty
|
\lim _{x \rightarrow x_0} f(x)=+\infty
|
||||||
$$
|
$$
|
||||||
und sagt auch, $f$ habe für $x \rightarrow x_0$ den uneigentlichen Grenzwert $+\infty$. Analoge Schreibund Sprechweisen sind in den anderen Fällen bestimmter Divergenz üblich.
|
und sagt auch, $f$ habe für $x \rightarrow x_0$ den \textit{uneigentlichen Grenzwert} $+\infty$. Analoge Schreib- und Sprechweisen sind in den anderen Fällen bestimmter Divergenz üblich.
|
||||||
|
|
||||||
|
\begin{beispiel} \label{bsp:2.12}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\end{beispiel}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
HIERHIERHIERHIERHIER
|
HIERHIERHIERHIERHIER
|
||||||
|
|
||||||
@@ -489,7 +495,7 @@ Beispiel 2.13: Es soll die Grenzwertaussage
|
|||||||
$$
|
$$
|
||||||
\lim _{x \rightarrow+0} \ln x=-\infty
|
\lim _{x \rightarrow+0} \ln x=-\infty
|
||||||
$$
|
$$
|
||||||
bewiesen werden. Es sei $\left(x_n\right)$ eine Nullfolge mit $x_n>0$ für alle $n$. Zu jeder (insbeson\footnote{Man sagt z. B., die Folge $\left(x_n\right)$ realisiere die "Bewegung“ $x \rightarrow x_0+0$, wenn $x_n>x_0$ für alle $n$ und $\lim _{n \rightarrow \infty} x_n=x_0$ gilt.}
|
bewiesen werden. Es sei $\left(x_n\right)$ eine Nullfolge mit $x_n>0$ für alle $n$. Zu jeder (insbeson
|
||||||
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
@@ -742,7 +748,7 @@ Mit dem Begriff der Stetigkeit einer Funktion $f$ an einer Stelle $x_0$ will man
|
|||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.7\linewidth]{B.2.17}
|
\includegraphics[width=0.7\linewidth]{Grafiken/B2_17.png}
|
||||||
\caption{}
|
\caption{}
|
||||||
\label{fig:b}
|
\label{fig:b}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@@ -802,7 +808,7 @@ Beispiel 3.3: Die geradlinige Bewegung einer Punktmasse wird durch die Weg-ZeitF
|
|||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.7\linewidth]{B.2.18}
|
\includegraphics[width=0.7\linewidth]{Grafiken/B2_18.png}
|
||||||
\caption{}
|
\caption{}
|
||||||
\label{fig:b}
|
\label{fig:b}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@@ -842,7 +848,7 @@ Da auch $f(0)=0$ gilt, ist $f$ an der Stelle $x=0$ stetig. Das Bild von $f$ best
|
|||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.7\linewidth]{B2.19}
|
\includegraphics[width=0.7\linewidth]{Grafiken/B2_19.png}
|
||||||
\caption{}
|
\caption{}
|
||||||
\label{fig:b2}
|
\label{fig:b2}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@@ -1081,9 +1087,9 @@ $\left\{\begin{array}{l}x^n: \quad a_n=b_{n-1}, \\ x^{n-1}: a_{n-1}=b_{n-2}-x_0
|
|||||||
%\end{tikzpicture}
|
%\end{tikzpicture}
|
||||||
|
|
||||||
%\tracingmacros=2 \tracingcommands=2
|
%\tracingmacros=2 \tracingcommands=2
|
||||||
\newpage
|
\newpage
|
||||||
|
|
||||||
|
|
||||||
\input{Horner01.tikz}
|
\input{Grafiken/Horner01.tikz}
|
||||||
\newpage
|
\newpage
|
||||||
\input{Horner02.tikz}
|
\input{Grafiken/Horner02.tikz}
|
||||||
|
|||||||