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Vorwort

Dem vorliegenden Band 2 dieser Lehrbuchreihe kommt ebenso wie dem Band 1
insofern eine besondere Bedeutung innerhalb des gesamten Lehrwerkes zu, als nahe-
zu alle anderen Biande darauf aufbauen.

Ein Teil der in diesem Buch behandelten Gegenstédnde ist auch im Lehrplan unserer
Oberschulen enthalten. Ein Weglassen des dort bereits Dargebotenen hitte aber zu
einer unzusammenhéngenden Darstellung des Gebietes gefiihrt; auBerdem wire nicht
gewihrleistet, daB3 alle Leser mit den gleichen Voraussetzungen die weiteren Biande
* studieren konnen.

Eine korrekte Anwendung mathematischer Methoden setzt die genaue Kenntnis
der zugrunde liegenden Begriffe voraus. Es mul dem Leser daher dringend nahe-
gelegt werden, sich um ein volles Verstindnis der eingefiihrten Begriffe zu bemiihen.
Anhand von vielen Beispielen wird gezeigt, wie mathematische Begriffe in den An-
wendungen zu interpretieren sind. Ein griindliches Studium des Textes und das selb-
standige Losen der iiber 100 Ubungsaufgaben sollte den Leser in die Lage versetzen,
die spezifische Anwendbarkeit der behandelten Begriffe und Methoden in seinem
Fachgebiet selbst zu erkennen.

Im Interesse einer straffen Darstellung muBte auf eine Reihe von Beweisen verzich-
tet werden. Alle Aussagen werden aber erldutert und — soweit moglich — geometrisch
interpretiert.

Fiir wertvolle Hinweise danken wir vor allem dem Herausgeber, Herrn Prof. Dr.
0. Greuel (Mittweida), den Gutachtern, Herrn Prof. Dr. W. Diick (Berlin) und Herrn
Prof. Dr. H. Goering (Magdeburg), sowie Herrn Prof. Dr. G. Opitz (Dresden). Be-
sonderer Dank gebiihrt Frau I. Kamenz fiir das sorgfaltige Schreiben des Manuskripts.
Dem Verlag sei fiir die gute Zusammenarbeit herzlich gedankt.

Dresden, Januar 1973 E. A. Pforr
W. Schirotzek

Vorwort zur 6. Auflage

In dieser Auflage wurden gegeniiber der vorangegangenen an zwei Stellen inhalt-
liche Verdnderungen grofleren Umfangs vorgenommen. Im Hinblick auf den Einsatz
von elektronischen Rechnern, insbesondere auch von Taschenrechnern, war die
Darstellung der Naherungsverfahren (Abschnitt 7.7.) zu iiberarbeiten. Der algo-
rithmische Aspekt wurde stirker herausgearbeitet, auf die Formulierung von Algo-
rithmen in einer Programmiersprache jedoch verzichtet. AuBerdem wurde der Ab-
schnitt tber elliptische Integrale (9.3.5.) erweitert.

Fiir die wertvolle Unterstiitzung bei der Uberarbeitung von Abschnitt 7.7. sei
Herrn Dr. sc. nat. S. Dietze (Dresden) herzlich gedankt.

Dresden, Juli 1985 E. A. Pforr
'W. Schirotzek
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TEIL 1: DIFFERENTIALRECHNUNG

1. Problemstellung und Historisches

Zur mathematischen Beschreibung von Naturvorgingen, aber auch von tech-
nischen und 6konomischen Prozessen ist die Differentialrechnung ein unentbehrliches
Hilfsmittel. Es ist daher nicht verwunderlich, daB gerade von Naturforschern ent-
scheidende AnstdBe zu ihrer Entwicklung ausgingen. Wichtige Vorarbeiten wurden
im 16. und 17. Jahrhundert geleistet. Die eigentlichen Urheber dieser Disziplin sind
aber Isaac Newton (1643-1727) und Gottfried Wilhelm Leibniz (1646-1716), die die
Differential- (und Integral-) Rechnung etwa gleichzeitig und voneinander unabhéngig
zu einem Kalkiil entwickelten. Newton schuf seine ,,Fluxionsrechnung** bei der Ab-
leitung des Gravitationsgesetzes aus den Keplerschen Gesetzen der Planetenbewegung.

Leibniz, der auch das Symbol S—J; einfiihrte, ging von dem Problem aus, an eine Kurve

in einem vorgegebenen Kurvenpunkt die Tangente zu legen (,,Tangentenproblem*).
Die Arbeiten dieser genialen Forscher 16sten eine auBerordentlich rasche Entwick-
lung der Mathematik aus, die ihrerseits in hohem MaBe befruchtend auf andere
Wissenschaften wirkte. Entscheidenden Anteil an dieser Entwicklung hatten die Brii-
der Jakob und Johann Bernoulli (16541705 bzw. 1667-1748), auf deren Vorlesungen
auch das erste, 1696 erschienene Lehrbuch der Differential- und Integralrechnung
des Marquis de I’'Hospital (1661-1704) basiert.

Wie wir noch sehen werden, beruht die Differentialrechnung, ebenso wie die Inte-
gralrechnung, auf dem Begriff des Grenzwertes. Zeitlich ging jedoch die kalkiilméBige
Entwicklung der Differential- und Integralrechnung der strengen Begriffsdefinition
voran. Daraus entstanden immer hédufiger Schwierigkeiten und Unstimmigkeiten, die
sich zundchst nicht liberwinden lieBen. SchlieBlich fiihrte Jean le Rond d’Alembert
(1717-1783) den Grenzwertbegriff in die Mathematik ein. Doch erst Bernard Bol-
zano (1781-1848) und Augustin Louis Cauchy (1789-1857) wendeten diesen Begriff
konsequent an und stellten damit die Infinitesimalrechnung (zu der man neben der
Differential- und Integralrechnung auch die Theorie der unendlichen Reihen zéhlt)
auf ein solides Fundament.

Vor einem Aufbau der Differentialrechnung ist also der Grenzwertbegriff fiir Funk-
tionen zu behandeln. Zwangsldufig wird man damit zum Begriff der Stetigkeit gefiihrt.
Die eigentliche Differentialrechnung beginnt mit der Definition der Ableitung einer
Funktion. y

Alle drei Begriffe werden zur exakten Beschreibung bestimmter Sachverhalte in den
unterschiedlichsten Gebieten herangezogen. So kann man mit dem Grenzwertbegriff
z. B. das Verhalten einer zeitabhiingigen GroBe, ,,nach sehr langer Zeit*‘ charakterisie-
ren, mit dem Begriff der Stetigkeit bzw. Unstetigkeit den ,,kontinuierlichen* bzw.
,.sprunghaften‘ Ablauf eines Vorgangs erfassen und mit der Ableitung die ,,Ande-
rungsgeschwindigkeit‘* eines Prozesses beschreiben.

Die mathematischen Maglichkeiten reichen jedoch tiber die unmittelbare Anwend-
barkeit dieser Begriffe weit hinaus. So werden wir unter Verwendung der Differential-
rechnung u.a. Niherungsformeln fiir (nichtrationale) Funktionen herleiten, Methoden
zur Ermittlung von Extremwerten angeben und Verfahren zur numerischen Losung
von Gleichungen behandeln. Dem ,,Praktiker werden damit Hilfsmittel zur Ver-
fiigung gestellt, auf die er fortlaufend zuriickgreifen muf.






2 Grenzwerte

20e Grenzwert einer Funktion fiir x - x,

2.1.1. Definition des Grenzwertes einer Funktion fiir x - x,

Im folgenden bedeutet ,,Funktion stets ,reellwertige Funktion einer reellen
Variablen®.
Als Vorbereitung auf den Grenzwertbegriff fiir Funktionen behandeln wir das

Beispiel 2.1: An die Parabel y = x? werde die Sekante durch den festen Kurvenpunkt
Py(3,}) und den variablen Kurvenpunkt P(x, x?) gelegt (s. Bild 2.1). Der Anstieg
der Sekante ist eine Funktion f von x:

flx) = (x+ 9. 2.1

x2 -1

x—3%

Bild 2.2

I
|
|
7
¥4

Auf Grund der Anschauung wird man vermuten, daB3 bei ,,Anndherung‘‘ von x an
die Stelle 4 die Sekante in eine gewisse ,,Grenzlage* libergeht, also auch ihr Anstieg
(2.1) einen gewissen ,,Grenzwert* annimmt. Betrachten wir also die Funktion f. An
der Stelle x = % ist f nicht definiert. Fiir x = % gilt

X — X +
foy = EZBOED iy ry, @2)
Die Bildkurve von fist in Bild 2.2 dargestellt’). Die Anschauung legt jetzt etwa die
folgende Formulierung nahe: ,,Fiir x gegen % strebt f(x) gegen 1.*

Unsere Aufgabe wird es nun sein, einer solchen Formulierung einen von der An-
schauung unabhéngigen, wohldefinierten Sinn zu geben.

Soll allgemein das Verhalten einer Funktion f bei ,,Anndherung*‘ der unabhin-
gigen Variablen x an eine reelle Zahl x, untersucht werden, so ist es naheliegend, die
‘Variable x Zahlenfolgen (x,) mit folgenden Eigenschaften durchlaufen zu lassen:

(E1) x,eD(f)?) firallen (n=1,2,3,..),
(E2) x,%+ xo fiir alle n,

(E3) limx, = x,.
n—o

1) In Bild 2.2 soll der kleine Kreis um den Punkt (4, 1) andeuten, daB8 dieser Punkt nicht zur
Bildkurve von f gehort. Analog wird in den folgenden Beispielen verfahren.
2) D(f) bezeichnet den Definitionsbereich von f.



2.1. Grenzwert einer Funktion fiir x — xo 11

Die Eigenschaft (E 2) bedeutet, daB das Verhalten von f an der Stelle x, selbst nicht
in Betracht gezogen wird. Daher braucht f auch nur in einer sog. punktierten Um-
gebung von x, definiert zu sein. Das ist, mit einem ¢ > 0, die Menge aller x mit

Xo—c<X<x9+c und x=+x, (s.Bild2.3).

" S .
X C X Kt X Bild 2.3

Das Verhalten von fin einer punktierten Umgebung von x, wird nun durch das Ver-
halten der Folge der Funktionswerte f(x,) charakterisiert.

Definition 2.1: Die Funktion f sei (mindestens) in einer punktierten Umgebung von x,
definiert. Eine Zahl g heifit Grenzwert von f fiir x gegen x,, in Zeichen

limf(x) = g oder f(x)—>g fir x- xo,
P

wenn fiir jede Folge (x,) mit den Eigenschaften (E 1), (E 2), (E 3) die Folge (f(x,)) gegen
g konvergiert.

Damit ist der Begriff des Grenzwertes einer Funktion auf den Grenzwertbegriff
fiir Zahlenfolgen zuriickgefiihrt.

In Bild 2.4 haben wir die ersten drei Glieder einer Folge (x,) und der zugehdrigen
Folge (f(x,)) eingezeichnet.

y=f(x)
fx)

g p—————

Fly) —

Bild 2.4

v R

Beispiel 2.2: Gesucht ist der Grenzwert der Funktion

_x -1
oy =223

Es sei (x,) eine beliebige Folge mit

fir x- 1.

x, + 4 firallen und limx, = 3. (23)0

n-o

Unter Verwendung von (2.2) und bekannten Grenzwertsitzen fiir Zahlenfolgen folgt
dann '
limf(x,) = lim(x, + ) =limx, + lim{ =4+ =1. (2.4)
N0 n—oo n-oo nso
Die Giiltigkeit von (2.4) wurde fiir eine beliebige und damit fiir jede Folge (x,) mit
den Eigenschaften (2.3) bewiesen. Daher gilt
2 —
il = ]
xs3 X '1'
was in Einklang mit der Anschauung steht (Bild 2.2).

)

D. 2.1



12 2. Grenzwerte

Beispiel 2.3: Wir wollen den Grenzwert der Funktion

x? —

e
) ={x=% fiir x#v%,
2 fir x=4%
fiir x - % ermitteln (s. Bild 2.5).

Bild 2.5

Obwohl f an der Stelle x = 4 definiert ist, werden auch hier nur Folgen (x,) mit
lim x, = 4 betrachtet, fiir die x, + % fiir alle » gilt [vgl. (E 2)]. Fiir jede solche Folge
n- oo
erhilt man wie in Beispiel 2.2
. .ox2—13 .
lim f(x,) = lim e lim(x, + %) =1,
n-o noow Xp — 72 n-o

also ist
lim f(x) = 1.
x>}

*

Aufgabe 2.1: Ermitteln Sie die folgenden Grenzwerte:
. 3x+2 .ox? =
'a)ilfé x=1° b)xllrflz x+2°

Beispiel 2.4: Nun soll das Verhalten von f(x) = sin % (x % 0) fiir x - 0 untersucht

werden. Die Bildkurve von f (Bild 2.6) schwankt fiir x — 0 standig zwischen — 1 und
1, wobei die Scheitel immer dichter aufeinander folgen. Wir wollen zeigen, daB f fiir
x— 0 keinen Grenzwert hat. Dazu geniigt es, eine Folge (x,) mit

x, # 0 fur alle » und lim x, = 0 2.5)

n—w

anzugeben, fir die die Folge (f(x,)) divergent ist. Setzen wir zum Beispiel

2 .
X, = (TR dann gilt (2.5), aber wegen
f(x,) = sin (nm — 7[2) = (—1)+1
ist die Folge (f(x,)) (unbestimmt) divergent.

A
A .
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Man kann den Beweis auch dadurch fithren, da man zwei Folgen (x,) und (%,)
mit den Eigenschaften (2.5) angibt, fiir die die Folgen (f(x,)) und (f(%,)) verschiedene
Grenzwerte haben.

Aufgabe 2.2: Fiihren Sie den Beweis in der soeben angedeuteten Weise durch!
Beispiel 2.5: Abschlieend betrachten wir noch die Funktion
f0) = +x)F (x>—1,x+0) fir x—0.

Fiir die Folge (x,) mit x,, = % gilt (vgl. Band 1, Abschnitt 10.7.)
lim f(x,) = e. (2.6)

n>o

Ohne Beweis!) sei mitgeteilt, daB (2.6) sogar fiir jede Folge (x,) mit x, > —1,x, £ 0

und lim x, = 0 gilt. Damit erhdlt man den fiir spatere Anwendungen wichtigen Grenz-
noo

wert

lim (1 + x)X =e. 2.7

x-0

2.1.2. Die ,,e-6-Charakterisierung* des Grenzwertes

Auf Grund der Anschauung wird man vermuten, daB man die Gleichung
lim f(x) = g auch folgendermaBen interpretieren kann:
X-oXg

,,Der Abstand zwischen f(x) und g (also | f(x) — g|) ist beliebig klein, wenn nur der
Abstand zwischen x und x, hinreichend klein, aber von null verschieden ist.” In
geeigneter Prézisierung ist das der Inhalt des folgenden Satzes, den wir ohne Beweis
angeben.

Satz 2.1: Die Funktion f sei (mindestens) in einer punktierten Umgebung der Stelle x,
definiert. Genau dann gilt lim f(x) = g, wenn zu jeder (insbesondere jeder beliebig

kleinen) Zahl ¢ > 0 eine Za;;l o= d(e) > 0 existiert, so daf gilt

If(x) — gl <& 2.8)
Sfiir alle x mit
0 < |x — xo| <9. (2.9)

Eihe geometrische Deutung dieses Satzes gibt Bild 2.7. Mit den dort verwendeten
Bezeichnungen bedeutet lim f(x) = g, daB zu jedem (noch so schmalen) ,,e-Streifen*

x-Xq

|
0-Streifen” ; y=f(x)

Bild 2.7

1) Beweise zu Teil 1 dieses Buches findet man, wenn nichts anderes gesagt ist, in [5] und [10].

S.2.1
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um y = g ein,,0-Streifen* um x = x, existiert, so daB alle Punkte der Bildkurve von
f, die in diesem ,,0-Streifen* — auBer auf der Mittellinie x = x,') — liegen, auch dem
vorgegebenen ,,e-Streifen** angehdren. Dabei ist offenbar ¢ im allgemeinen um so
kleiner zu wihlen, je kleiner & vorgegeben ist. Diesen Sachverhalt soll die Schreib-
weise § = d(g) zum Ausdruck bringen.

Beispiel 2.6: Als Anwendung des Satzes wollen wir zeigen, daB

lim/x =+/%s (xo > 0) (2.10)

X=Xq

gilt (Bild 2.8). Es sei ein beliebiges ¢ > 0 gegeben. GemaB (2.8) ist I\/ x — \/ x0| ab-
zuschdtzen. Wir erweitern mit \/ x + \/ Xo und erhalten

|fx — \/x‘,]—\/ +\/xo<\/_x—xo[<s (2.11)

fiir alle x = 0 mit |x — xo| < \/ Xo &. Daher setzen wir 0 gleich der kleineren der beiden
Zahlen x, und \/xo ¢. Fiir alle x mit [x — x,| < J gilt dann x > 0 (warum?) und (2.11).

y=yx xE0)

Bild 2.8

2.2, Einseitige Grenzwerte

Fiir die Existenz des Grenzwertes lim \/ x ist die Voraussetzung x, > 0 wesentlich

(s. (2.10)), denn fiir x, < 0 gibt es keme punktierte Umgebung von x,, in der die
Funktion f(x) = \/ x (x = 0) definiert ist. Im Falle x, < 0 existiert lim \/ x also nicht.

P
Der Stelle x, = 0 kann man sich aber immerhin noch ,,von rechts nahem ohne den
Definitionsbereich von f zu verlassen. Diese Uberlegung fiihrt zum Begnff der ein-
seitigen Grenzwerte.

Definition 2.2: Die Funktion f sei (mindestens) in einem Intervall (xo, Xo + ¢) %)
(¢ > 0) definiert. Eine Zahl g, heifst rechtsseitiger Grenzwert von f fiir x gegen x,, in
Zeichen

lim f(x) =g oder f(x)—g fir x- x,+0)?3),

x-Xo+

1) Man beachte, daB |x — xo| > 0 dquivalent zu x #+ X, ist.

2) Ein solches Intervall nennt man auch punktierte rechtsseitige Umgebung von x,.

3) Statt 11m f(x) =g, (bzw. f(x) > g, fiir x> 0 + 0) schreibt man kurz lim f(x) =
x-+0

0+0
(bzw. f(x) — g,. fiir x - +0).
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wenn fiir jede Folge (x,) mit den Eigenschaften
(E1) x,eD(f) furallen,
(E2%) x, > xo firallen,
(E3) limx, =X

oo
die Folge (f(x,)) gegen g, konvergiert (s. Bild 2.9).
Y y=fx)

£
()

flxg)
8

Bild 2.9

Nh koK X

Analog definiert man den linksseitigen Grenzwert g, von f fiir x gegen x,, in Zeichen
lim f(x) =g oder f(x)—-g fir x- x, — 0.

X-x=0
Beispiel 2.7: Es gilt (s. Bild 2.8)
lim \/x =0, (2.12)
x5 +0
denn fiir jede Folge (x,) mit x, > O fiirallezundlim x, = Oistlim \/x,, =0(s.Band 1,
Abschnitt 10.5.). =0 nes0

Das folgende Beispiel zeigt, daB3 der Begriff des einseitigen Grenzwertes auch fiir
Funktionen von Bedeutung ist, die in einer (punktierten) Umgebung von x, definiert
sind. ’

Beispiel 2.8: Es soll das Verhalten der Funktion

3 "
f(x)=; fir 0<x<3,

x—1 fir x>3

bei ,,Annéherung‘‘ an die Stelle x, = 3 untersucht werden (s. Bild 2.10). Ist (x,) eine
beliebige Folge mit 0'< x, < 3 und lim x, = 3, dann gilt

n->

lim 3
lim f(x,) = lim — =222 __ = 1.
n-»oof( » noo Xy limX,

n

[;7 fir0<x =3
y Y'{)r*m//h?
Bild 2.10

1) Vgl. FuBnote 3, S. 14.
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Uber den iusammenhang zwischen den einseitigen Grenzwerten und dem Grenz-
wert (schlechthin) gilt der folgende Satz.

Dabher ist lim f(x) 1. Analog erhdlt man lim f(x) = 2.
x-3+0

S. 2.2 Satz 2.2: Die Funktion f hat genau dann fiir x gegen x, einen Grenzwert, wenn die ein-
seitigen Grenzwerte von f fiir x gegen x, existieren und iibereinstimmen. In diesem Falle

gilt
lim f(x) = lim f (x) = lim f(x).

XX X Xo— XXo+0

Nach diesem Satz hat also die in Beispiel 2.8 betrachtete Funktion f wegen hm f(x)

#+ lim f(x) fiir x > 3 keinen Grenzwert.
x-3+0

*

Aufgabe 2.3: Untersuchen Sie das Verhalten der Funktion

f(x)~ (X=l=0) fir x— +0,x— —0 und x-0.

2.3 Grenzwert einer Funktion fiir x » + oo und x » —

Zur Charakterisierung des Verhaltens einer Funktion bei unbegrenztein Zunehmen
oder Abnehmen der unabhéngigen Variablen geben wir die folgende

D. 2.3 Definition 2.3: Die Funktion f sei (mindestens) in einem Intervall (a, + o) definiert.
Eine Zahl g heifit Grenzwert von f fiir x gegen + oo, in Zeichen

lim f(x) =g oder f(x)—>g fir x— +o,
x>+

wenn fiir jede Folge (x,) in D(f) mitlim x, = + oo die Folge (f(x,)) gegen g konvergiert.

Geometrisch bedeutet lim f(x) = g, daB sich die Bildkurve von f mit wachsendem x

P
immer mehr der Geraden y = g anndhert. Dabei braucht f nicht monoton zu sein
(s. Bild 2.11).

i}

y=f(x)
g

Analog definiert man
lim f(x) = g.
xo -

Bild 2.11

Im Zusammenhang mit den folgenden Beispielen sei an die Bildkurven der jewei-
ligen Funktion erinnert.
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Beispiel 2.9: Es gilt
. 1 . 1
lim — =0 und lim — =0 (k> 0,ganz), (2.13)
x40 X xs—00 X

denn ist (x,) irgendeine gegen + oo oder — oo bestimmt divergente Folge mit x, & 0
fiir alle n, dann ist, wie man zeigen kann, auch die Folge (x%),.;.,,.. bestimmt

divergent und daher die Folge (%) eine Nullfolge (s. Bild 2.12 fiir k = 2).

=1, 2,0

i

7
y=X7 (x*84)

ol 1 Bild 2.12
2 7 3 X

Beispiel 2.10: Wir wollen die Grenzwertaussage

lima*=0 (a>1) (2.14)
Xo—wm
beweisen. Es sei also (x,) eine beliebige Folge mit lim x,, = — 0. Dann gibt es zu

jedem & > 0 eine natiirliche Zahl n, = ny(e), so daﬁng;ft
X, < log,e fiiralle n = n,.
Da die Funktion f(x) = a* (@ > 1) streng monoton wachsend ist, folgt
la¥n — 0] = a*» < e fiiralle n = n,.
Folglich ist lim a* = 0. Da die Folge (x,) beliebig war, ist die Behauptung bewiesen.
Ersetzt max’;_’xwdurch —x, so geht (2.14) iber in
HT a*=0 (a>1). (2.15)
Ist x eine Variable fiir die Zeit, dann bedeutet die Existenz von lim f(x) = g, da3
sich die zeitabhidngige Grofle y = f(x) mit zunehmender Zeit immg; niemhr dem statio-
néren (d. h. zeitunabhéngigen) Wert g ndhert.

Beispiel 2.11: Die Geschwindigkeit *) v eines fallenden K6rpers der Masse m ist unter
der Annahme eines geschwindigkeitsproportionalen Luftwiderstands (Proportionali-
tatsfaktor £ > 0) durch

k
mg\ -—t m
v=(uo—7g)e w28 20
gegeben (¢: Zeit, vy: Geschwindigkeit zur Zeit ¢+ = 0, g: Erdbeschleunigung). In der
Losung zu Aufgabe 2.4 wird gezeigt, daB gilt

lim v = 7%, (2.16)

1) In 4.2.2. werden wir die Geschwindigkeit einer geradlinigen Bewegung exakt definieren.
2 Pforr, Diff.- u. Integr.
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d.h., nach hinreichend langer Zeit 7 hat die Geschwindigkeitv nahezu den konstanten

Wert _k_ In Bild 2.13 haben wir v als Funktion von ¢ fiir den Fall v, < T dar-
gestellt. ’

Bild 2.13

2.4. Bestimmte und unbestimmte Divergenz

Besitzt eine Funktion f fir eine der ,,Bewegungen*
X2 Xg; X—2Xo+0,x->x,—-0; x> +0,Xx> —© (2.17)
einen Grenzwert, dann heiBt sie fiir diese ,,Bewegung‘‘ konvergent, andernfalls diver-

gent. Wie fiir Zahlenfolgen kann man auch fiir Funktionen zwei Arten der Divergenz
unterscheiden.

Definition 2.4: Die Funktion f heifit bestimmt divergent gegen +co (bzw. —o0) fiir
eine der ,,Bewegungen** (2.17) der unabhiingigen Variablen x, wenn fiir jede diese
,»Bewegung*‘ realisierende Folge') (x,) in D(f) die Folge (f(x,)) bestimmt divergent
gegen + oo (bzw. — ) ist.

Ist f fiir eine der ,,Bewegungen‘* (2.17) weder konvergent noch bestimmt divergent,
so heift f fiir diese ,,Bewegung‘‘ unbestimmt divergent.

Ist f bestimmt divergent gegen + oo fiir x — X, so schreibt man

lim f(x) =

X0,
und sagt auch, fhabe fiir x > x, den uneigentlichen Grenzwert + . Analoge Schreib-
und Sprechweisen sind in den anderen Fillen bestimmter Divergenz tiblich.

Beispiel 2.12: Es gilt

L
(s. Bild 2.12), denn in Band 1, Beispiel 10.11, wurde gezeigt, daB fiir jede Folge (x,)
mit x, =+ 0 fiir alle » und lim x, = 0 die Folge (%) bestimmt divergent gegen + oo
iSt. n—o n
Beispiel 2.13: Es soll die Grenzwertaussage

limlnx = —o0
x=+0

bewiesen werden. Es sei (x,) eine Nullfolge mit x, > 0 fiir alle n. Zu jeder (insbeson-

1) Man sagt z. B., die Folge (x,) realisiere die ,,Bewegung x = xg + 0, wenn x, > x, fiir alle
nund hm Xn = Xo gilt.
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dere beliebig groflen) Zahl K > 0 existiert dann eine natiirliche Zahl n, = ny(K), so
daB gilt

X, = |x, — 0] < e ¥ fiirallen = ny,
also
Inx, < =K © furallen = n,.
Daraus folgt lim In x, = — 0, und die Behauptung ist bewiesen.

Beispiel 2.14: Die Funktion f(x) = sin x ist fiir x > + co unbestimmt divergent. Zum
Beweis dieser Behauptung betrachten wir die Folge (x,) mit x, = nw — —725 n=:1,
2, ...): Offenbar gilt lim x,, = + 00, aber wegen f(x,) = (—1)"*! ist die Folge (f(x,))
unbestimmt divergerr;;,%Ganz entsprechend hatten wir bereits in Beispiel 2.4 gezeigt,

daB die Funktion f(x) = sin—)lcv (x £ 0) fiir x > 0 unbestimmt divergent ist.

2.5. Grenzwertsitze

In diesem Abschnitt werden einige Regein fiir das Rechnen mit Grenzwerten von
Funktionen angegeben. Da der Grenzwertbegriff fiir Funktionen auf den Grenz-
wertbegriff fiir Zahlenfolgen zuriickgefiihrt wurde, kann man diese Regeln leicht aus
den entsprechenden Grenzwertsédtzen fiir Zahlenfolgen ableiten. Wir verzichten auf
eine Durchfithrung der Beweise.

Bemerkung 2.1: Die folgenden fiir die ,,Bewegung*‘ x — x, formulierten Satze gelten
sinngemdfB') auch fiir die ,,Bewegungen‘

X Xo+ 0, x> x, —0; X— +00,X—> —o0.

Satz 2.3: Die Funktionen f, und f, seien fiir x — x, konvergent mit
lim fi(x) = g,  lim fo(x) = gs.
x->xg X3

Dann gilt
lim [f1(x) + 2(0)] = &1 + &, (2.18)
X%
lim [f3(x) = £2(x)] = &1 — &2, (2.19)
lim [¢f1(x)] = cg; (c eine Konstante), (2.20)
xoxo
lim [fi(x) ()] = &1 - 8&- (2.21)
xo%o 5
Ist auferdem f,(x) = O fiir alle x einer punktierten Umgebung von X, und g, = 0, dann
gilt auch
lim 18 _ &1 (2.22)

xoxg J2(X) e

1) Wird z. B. statt x — x, die ,,Bewegung*‘ x — + o0 betrachtet, so ist in den folgenden Sitzen
,,punktierte Umgebung von xo* durch ,,Intervall (@, + c0)* zu ersetzen. Analog ist in den anderen
"Fillen zu verfahren.

2%
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Beispiel 2.15: Gesucht ist der Grenzwert
lim x(3 — /).
x-2
Wegen lim x = 2, lim 3 = 3,lim \/x = /2 (vel. (2.10)) folgt mit (2.21) und (2.19)
x-2 x=2 x—=2

li_rg *(3 = V%) =206 - V2).

Beispiel 2.16: Es soll der Grenzwert

2x* + 5x
IRl oy ey | 223)
berechnet werden. Da f;(x) = 2x> + 5x (und auch f,(x) = 3x? — 4x + 1) fiir x> — 0
divergent ist, kann man (2.22) nicht unmittelbar auf (2.23) anwenden. Wir formen
daher zunidchst um und erhalten dann unter Verwendung von Satz 2.3 und (2.13)

x2(2+-5—) 2+.£
T . S */ ~ lim x
- = = _—
x_,_wSx —4x + 1 x-»—aoxz(s_i+_12_) x-._w3_i+_17
x  x x X
_ 240 2
T 3-0+0  3°
S. 2.4 Satz 2.4: Es sei
lim f(x) = 0,
X Xg

und fiir alle x einer punktierten Umgebung von x, gelte

f(x)>0 bzw. f(x) <O0.
Dann ist
lim g = e v lim s =

Beispiel 2.17: Die Abbildung durch einen sphérischen Hohlspiegel der Brennweite
f > 0 wird bei Beschrinkung auf Paraxialstrahlen durch die Gleichung
1 1 1

a a f
beschrieben. Dabei ist @ bzw. @' die Gegenstands- bzw. Bildweite (s. Bild 2.14).

|- SR Bild 2.14
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2.5. Grenzwertsétze
Aus dieser Gleichung ergibt sich @’ als Funktion ¢ von a zu
2T @>0a+N.

a =qa) =
=g(a) = — 7
Mit Satz 2.3 folgt unmittelbar
lim ¢(@) = — =0,
Jim o ) = i
f f
1 =2 =2 _=f
= T F 10
a
Ferner gilt
. a-—f 0
lim = lim —=—=—=0,
anf+o (@) n—~f+0 a-f f?
> 0. Daraus folgt nach Satz 2.4 unter Beachtung von Bemer-
+ 0. Entsprechend findet man lim ¢(a) = —00.
a-f-

und firallea > fist =
kung 2.1 die Aussage hm zp(a)
In Bild 2.15 ist die Funktlon @ dargestellt (Fir @ > f, also @’ > 0, erhalt man ein

reelles Bild; fiir 0 < a < f; also @’ < 0, ein virtuelles Bild.)

o
A
)
\tan x
.
f
. P :
Bild 2.15 Bild 2.16
Satz 2.5: Es sei S.2.5
lim fi(x) = lim f2(x) = g,
X Xoxg
und fiir alle x einer punktierten Umgebung von x, gelte
f1(x) £ () £ o).
Dann gilt auch
lim f(x) = g.
XrXg
ichnet f also eine K¢ und a die unabhingige Variable (der Funk-

1) In diesem Beispiel
tion @).
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Beispiel 2.18: Mit Hilfe von Satz 2.5 wollen wir den Grenzwert
. sinx
lim
x-0 X
berechnen. Aus Bild 2.16 liest man ab: Der Flicheninhalt des Dreiecks OP, P, ist
kleiner als der des Kreissektors OP, P,, und dieser 1st kleiner als der des Dreiecks
OP,P;, d. h., es gilt

1 . 1, 1 ) T
5 1 smx<7 1 x<7 1-tanx fiir xe(O,E). (2.29)
Wegen sin x > 0 fiir x e (O, ;) und der ersten Ungleichung in (2.24) gilt
0 <sinx < x fiir (er, 2) (2.25)
Wegen limO =0, limx = 0 folgt aus (2.25) durch sinngemidBe Anwendung von
x> +0
Satz 2. 5 auf die ,,Bewegung® x - +0
lim sin x =0 (2.26)
X +0 .
und daraus
lim sin x = lim sin(—x) = — lim sin x = 0. (2.27)
x--0 x—++0 x=+0
Wegen (2.26) und (2.27) gilt nach Satz 2.2
limsin x = 0 . (2.28)
x=0
und damit
lim cos x = lim (1 ~ 2sin? i) L (2.29)
x-0 X0 2

und bildet anschlieBend den

Multipliziert man die 2. Ungleichung in (2.24) m1t
Kehrwert, so erhilt man fiir x € (0 2)

cos x < ﬂ?c-i < L. (2.30)
Wegen cos (—x) = cos x, sin (—x) = —sin x gilt (2.30) auch fir x e (~ ;, 0), also

in einer punktierten Umgebung von x = 0. Nach Satz 2.5 folgt daher aus (2.29)
und (2.30) schlieBlich

sin x

lim

=1. 2.31
e (230

* Aufgabe 2.4: Beweisen Sie die Formel (2.16).

* Aufgabe 2.5: Berechnen Sie die folgenden Grenzwerte:

ox+2 . x+2
Dim =1 R
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x? — 3x 4x3 — 5 X243
¢ lim (—/—— + ————— d) lim s
)Xq-w(x3+7 2x3+3x)’ )xam x+2
. ta . sinx
e) lim nx s f) lim
x-0 X xs+o0 X

Aufgabe 2.6: Beweisen Sie: Ist f eine echt gebrochen rationale Funktion, so gilt
f(x) - 0 fir x > +c0 und fir x > —oo (vgl. Aufgabe 2.5b).

2.6. Die Landauschen Ordnungssymbole

Zum Vergleich des Grenzverhaltens zweier Funktionen erweisen sich die Landau-
schen’) Ordnungssymbole o und O (lies ,,klein-0* bzw. ,,groB-0*) als niitzlich.

Definition 2.5: Die Funktionen f und ¢ seien (mindestens) in einer punktierten Um-
gebung U von x, definiert, und ¢ sei dort von null verschieden. Gilt
L
xoxo P(X)
so schreibt man
f(x) = olg(x) fir

Ist % auf U beschrinkt, d. h., gibt es eine positive Zahl m mit

f(x)

P(x)

so schreibt man
Sx) = 0(p(x)) fiir x— xo.

Die Symbole
J0) = ofg(x) fir x>+,
fx) = O(W(x)) fir x—xo —0 usw.

werden analog definiert (vgl. FuBnote auf Seite 19). Geht aus dem Zusammenhang
unmiBverstindlich hervor, welche ,,Bewegung‘* der unabhingigen Variablen x be-
trachtet wird, so 1dBt man deren Angabe haufig weg, schreibt also z. B. nur
f(x) = o(p(x)). Konvergieren f und ¢ fiir eine bestimmte ,,Bewegung** von x gegen
null, so bedeutet f(x) = o(g(x)), daB f,,schneller* - ,,von héherer Ordnung* — gegen
null konvergiert als ¢. Entsprechend bedeutet f(x) = O(¢(x)), daB f,,mindestens so
schnell”* - ,,von mindestens gleicher Ordnung® - gegen null konvergiert wie ¢.
SchlieBlich sei noch erwédhnt, daB man statt

f(x) = g(x) = o(p(x))
J@x) = () + o(g(x))

schreibt; analog fiir O.

0,

X = Xo.

<m firalle xeU,

auch

1) Edmund Landau (1877-1938), deutscher Mathematiker.

*

D. 2.5
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Beispiel 2.19: Nach (2.30) und der darauffolgenden Bemerkung gilt in einer punk-
tierten Umgebung von x, = 0

sin x
<1

Dabher ist sin x = O(x) fiir x - 0. Weiter ist (2.31) dquivalent mit

und dafiir schreiben wir sin x — x = o(x) fiir x - 0 oder
sinx = x + o(x) fir x- 0.
Spiter werden wir sehen, daB sogar gilt
sinx = x + O(x®) fiir x—0. (2.32)

x Aufgabe 2.7: Was bedeutet Formel (2.32) definitionsgemaf3?



3. Stetigkeit

3.1. Der Begriff der Stetigkeit

Mit dem Begriff der Stetigkeit einer Funktion fan einer Stelle x, will man die Vor-
stellung, daB das Bild von f an dieser Stelle ,,nicht abreifit* (Bild 3.1), mathe-
matisch einfangen. Es ist naheliegend, dazu den Grenzwert von ffiir x — x, mit dem
Funktionswert f(x,) zu vergleichen. Demnach muB f auBer in einer punktierten Um-
gebung von x, nun auch an der Stelle x, selbst, also in einer vollen Umgebung von x,,
definiert sein.

Bild 3.1

Definition 3.1: Eine in einer Umgebung von x, definierte Funktion f heif$t an der Stelle
x, stetig, wenn gilt

| lim f(x) = f(xo)- G.n

Fiihrt man durch die Substitution x = x, + & die neue unabhéngige Variable / ein,
so kann man fiir (3.1) offenbar auch schreiben

lim f(xo + h) = f(xo)- (3.2)

Beispiel 3.1: Nach (2.29) gilt

limcosx =1 = cosO,

x=0

folglich ist f(x) = cos x an der Stelle x = 0 stetig.

Beispiel 3.2: Fiir die Funktion

ﬁi fir x =+ 3,
f)={x-1%
7 fir x=3%
gilt (s. Beispiel 2.3)
lmf() =142 = /). R

Daher ist fan der Stelle x = 4 nicht stetig (s. Bild 2.5). Fiir jedes x =+ 4 ist f offenbar
stetig.

Unter Beachtung der Definition des Grenzwertes einer Funktion erhilt man die
folgende ausfiihrliche Formulierung von Definition 3.1:

D. 3.1
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Definition 3.1*: Eine in einer Umgebung von x, definierte Funktion f heifit an der Stelle
X, Stetig, wenn fiir jede Folge (x,) in D(f) mit lim x, = x, gilt')

fmfe =simsy.

Die ,,e-0-Charakterisierung‘‘ des Grenzwertes einer Funktion (s. Satz 2.1) liefert
eine entsprechende Charakterisierung der Stetigkeit:

Satz 3.1: Die Funktion f sei in einer Umgebung von x, definiert. Genau dann ist f an der
Stelle x, stetig, wenn zu jeder (insbesondere jeder beliebig kleinen) Zahl ¢ > 0 eine
Zahl 6 = 8(e) > 0 existiert, so daf gilt

1fG) = fxo)l <&

fiir alle x mit |x — xo| < 0.

Zur Veranschaulichung dieses Satzes ist in Bild 2.7 nur g durch f(x,) zu ersetzen.
Auf Grund von Satz 3.1 wollen wir den Begriff der Stetigkeit noch an einem Beispiel
aus der Physik interpretieren.

Beispiel 3.3: Die geradlinige Bewegung einer Punktmasse wird durch die Weg-Zeit-
Funktion s = s(¢) %) beschrieben. Zur Zeit ¢, befindet sich die Punktmasse also am
Ort s(2,); diesem Ort wird sie noch beliebig nahe sein, wenn man sie nur zu einer Zeit ¢
beobachtet, die hinreichend nahe bei 7, gelegen ist (s. Bild 3.2). Mathematisch bedeu-
tet das: Die Funktion s = s(¢) ist an der (beliebigen) Stelle 7, stetig.

§=5(t)

]
S(tph—
Bild 3.2

Beispiel 3.4: Unter Verwendung des Satzes 3.1 wollen wir zeigen, daB die Funktion
f(x) = |x| an jeder Stelle x, stetig ist. Es sei ein beliebiges ¢ > 0 gegeben. Dann gilt
1f(x) = flxo)l = lIx] — Ixoll S |x — x| <&
fiir alle x mit [x — xo| < 9, falls = ¢ gesetzt wird. Damit ist zu jedem & > 0 ein ge-
eignetes 0 > 0 gefunden, also die Behauptung bewiesen, d. h., es gilt
lim [x] = |xo| (xo beliebig). 3.9)
Beispiel 3.5 3): Die Funktion
0 fir x=0,
xX) =
f(x) 1 fiir

1 1
[ e =
= FrT <MsSE k=12.)

k

1) Die Voraussetzung ,,x, X, fiir alle n** ist jetzt offenbar entbehrlich.

2) In den Anwendungen bezeichnet man hiufig die abhiingige Variable und das Funktionssymbol
mit demselben Buchstaben (hier s).

3) Dieses Beispiel ist [10] entnommen.
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soll auf Stetigkeit an der Stelle x = 0 untersucht werden. Offenbar gilt

0Sfx)=sIx] (-1=x=10). (3.5)
Wegen hm 0 =0 und 11m |x| = ]0] = 0 (letzteres nach (3.4) mit x, = 0) folgt aus
3.5 nach Satz 2.5

lim f(x) = 0.

x=0
Da auch f(0) = 0 gilt, ist fan der Stelle x = 0 stetig. Das Bild von f besteht aus zur
x-Achse parallelen Geradenstiicken, die fiir x — 0 immer kiirzer werden und der
x-Achse immer naher kommen (Bild 3.3). Das Verhalten von fin einer (sehr kleinen)
Umgebung von x = 0 ist anschaulich nur unvollkommen zu erfassen. Dieses Beispiel

zeigt also, daB der durch Definition 3.1 exakt festgelegte Begriff der Stetlgkelt doch
wesentlich tiber das der Anschauung Zugingliche hinausreicht.

0 fir x=0
1
YA y= i fiir b’</x/§

1
oLl
[

| Bild 3.3

| Ly i
T hho 0 %

| i

| | > |
i — il —
! o !
; g‘r%/‘ K
7

-
S
NS IS

3.2. Einseitige Stetigkeit. Stetigkeit auf einem Intervall

Unter Verwendung der einseitigen Grenzwerte definiert man die einseitige Stetig
keit.

Definition 3.2: Eine (mindestens) in einem Intervall [x,, xo + c], ¢ > 0, definierte
Funktion f heifft an der Stelle x, rechtsseitig stetig, wenn gilt

i (x) = f(xo)-

x-Xo+

Fir Funktionen, die in einem Intervall [x, — ¢, x,], ¢ > 0, erklart sind, ist entspre-
chend die linksseitige Stetigkeit an der Stelle x, durch die Forderung

_lim () = f(x)

definiert.
Aus Satz 2.2 folgt unmittelbar der

Satz 3.2: Eine in einer Umgebung von x,, definierte Funktion ist genau dann an der Stelle
X, Stetig, wenn sie dort sowohl linksseitig als auch rechtsseitig stetig ist.

Beispiel 3.6 Fiir die Funktion
= fir 0 <x<3,

fx) =

Ax—=1 fir x>3

D. 3.2

S.3.2
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gilt (vgl. Beispiel 2. 8) llm f(x) = 1 = f(3), folglich ist fan der Stelle x = 3 links-
seitig stetig. Wegen 11m f(x) = 2 =% f(3) ist f an der Stelle x = 3 nicht rechtsseitig
stetig, also erst recht mcht stetig.

Die Stetigkeit einer Funktion an einer Stelle x, ist eine ,lokale* Eigenschaft.
Wir definieren nun die ,,globale** Eigenschaft der Stetigkeit auf einem Intervall.

D. 3.3 Definition 3.3: Eine auf einem Intervall I definierte Funktion f heifit auf I stetig, wenn
gilt:
1. f ist in jedem inneren Punkt von I stetig.

2. Ist der linke (bzw. rechte) Randpunkt von I ein Element von I, dann ist f dort rechts-
seitig (bzw. linksseitig) stetig.

Beispiel 3.7: Die Funktion f(x) = \/x (x € [0, + o)) ist in jedem x, € (0, + 00) stetig
[s. (2.10)] und in x, = O rechtsseitig stetig [s. (2.12)], also auf dem Intervall [0, + c0)
stetig.

*

Aufgabe 3.1: Untersuchen Sie die folgenden Funktionen f auf Stetigkeit bzw. ein-
seitige Stetigkeit an den angegebenen Stellen x,.

a) f(x) = x%, X, beliebig.
b) f(x) = sin x, Xo = 0 (vgl. Beispiel 3.1).

COoSs X fir x<O,

= =0.
) {2 fir x>0, =
1
xsin— fir x#0,
0 fir x=0,

Hinweis zu d): Benutzen Sie Satz 3.1.

3.3. Unstetigkeitsstellen und ihre Klassifikation

Ist die Funktion f (mindestens) in einer punktierten Umgebung der Stelle x,
definiert, aber an dieser Stelle nicht stetig, dann heilt x, Unstetigkeitsstelle von f.
Aus der Definition der Stetigkeit ergibt sich, daB fiir jede Unstetigkeitsstelle x, von f
genau einer der folgenden finf Fille vorliegt.

Fall 1: Der Grenzwert g = lim f(x) existiert, ist aber von f(x,) verschieden, sofern

XX
fan der Stelle x, tiberhaupt deﬁmert ist.
Setzt man

o) = (x) fir x+ xo (xeD(f)),

fir x = x,,
so ist die Funktion f* wegen

lim f*(x) = llmf(x) =g = f*(x0)

x-Xg



3.3. Unstetigkeitsstellen und ihre Klassifikation 29

an der Stelle x, stetig (s. Bild 3.4a, 3.4b). Die Unstetigkéit von f an dieser Stelle ist
damit ,,behoben*. Daher heiBit x, in diesem Fall hebbare Unstetigkeitsstelle der Funk-
tion f.

y=r*(x)

Beispiel 3.8: Fiir die in Beispiel 3.2 betrachtete Funktion fist x = 4 wegen (3.3) eine
hebbare Unstetigkeitsstelle und die Funktion

x? —

¥
f*(X)={X-ir
1 fir x=1%

eine stetige ,,Ersatzfunktion.

In Verallgemeinerung dieses Beispiels sei nun f eine gebrochen rationale Funktion
sowie x, eine m-fache Nullstelle des Zahlerpolynoms und zugleich eine n-fache Null-
stelle des Nennerpolynoms (also x, eine Liicke von f, s. Band 1, Abschnitt 9.5.).
Die Funktion fist somit in der Form

(x Xo)" p(x)
) = =y )
darstellbar, wobei p(x) und ¢g(x) Polynome sind, die an der Stelle x = x, nicht ver-
schwinden.
Ist nun m = n, dann ist x, eine hebbare Unstetigkeitsstelle von fund

(x = x)" " p(x)
*(x) = & — Xol PX)

f¥) )
eine an der Stelle x, stetige ,,Ersatzfunktion‘ fiir /. Die Unstetigkeit von fan der Stelle

Xo kann in diesem Falle also durch Kiirzen des Faktors (x — x,)" ,,behoben‘‘ werden.
Ist dagegen m < n, so zeigt die Darstellung

_ p(x)
I = G

daB f'sich in einer Umgebung von x, wie in einer Umgebung einer Polstelle der Ord-
nung n — m verhdlt. Hierauf kommen wir in den Fillen 3 und 4 zuriick.

Bild 3.4b

Hc x*%}=x+% (= < x +0)

(x =% x)
(x = x, zugelassen)

(x # xo),

Fall 2: Die Grenzwerte hm f(x) und lim f(x) existieren, sind aber voneinander ver-
0+0

schieden. In diesem Fall helBt Xo Sprungs—telle von f mit endlichem Sprung.
Wir verweisen hier auf die in Beispiel 2.8 betrachtete Funktion f, die an der Stelle
x = 3 einen endlichen Sprung hat. Weiter betrachten wir das

Beispiel 3.9: Die Wirmeleitfahigkeit einer Substanz ist im allgemeinen temperatur-
abhingig und dndert sich beim Ubergang in einen anderen Aggregatzustand sprung-
haft. Bild 3.5 zeigt die spezifische Warmeleitfahigkeit 2 von Quecksilber in Abhingig-
keit von der Temperatur 7). Im sog. Schmelzpunkt 7, ~ 234,29 K (~ —38,86 °C)

1) Siehe Grimsehl, Lehrbuch der Physik, Bd. 1, Seite 345 (23. Auflage), BSB B. G. Teubner Ver-
lagsgesellschaft, Leipzig 1981.
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hat die Funktion 2 = A(T) einen endlichen Sprung. An der Stelle 7,,, ist diese Funktion
nicht definiert, da sich dort feste und fliissige Phase im Gleichgewicht befinden.

1 firx=o
oy [1nx!urx>ﬂ

w TP
Bild 3.5 Bild 3.6
Fall 3: Es gilt lim f(x) = +o00 oder limf(x) = —oo0. In diesem Fall nennt man x,
x-xg

Unendlichkeitsstelle von I

Ein Beispiel hierfiir ist jede Polstelle gerader Ordnung bei einer gebrochen ratio-
nalen Funktion (s. Band 1, 9.5), so die zweifache Polstelle x = 0 der Funktion
f(x) = x~2 (s. Beispiel 2.12 und Bild 2.12).

Fall 4: Die Funktion fist fiir eine der beiden ,,Bewegungen* x — xo — 0, x - xo + 0
bestimmt divergent gegen +4 oo (bzw. —o0) und fiir die andere ,,Bewegung** konver-
gent oder bestimmt divergent gegen — oo (bzw. + o). In diesem Fall heilt x, Sprung-
stelle von f mit unendlichem Sprung.

Eine gebrochen rationale Funktion hat an jeder Polstelle ungerader Ordnung
einen unendlichen Sprung, so die in Beispiel 2.17 untersuchte Funktion an der ein-
fachen Polstelle @ = f (s. Bild 2.15). Weiter betrachten wir das

Beispiel 3.10: Fiir die Funktion
1 fir x£0,

Jox) = Inx fir x>0.
gilt (s. Beispiel 2.13)
lim f(x) = lim Inx = —c0 und lim f(x) lim 1 =1.
X +0 X +0 X= =0 X =0

Dabher ist x = 0 eine Sprungstelle von f mit unendlichem Sprung (s. Bild 3.6).

Fall 5: Fiir mindestens eine der beiden ,,Bewegungen® x — x, — 0, x = Xy + Oist f°
unbestimmt divergent. In diesem Falle nennt man x, oszillatorische Unstetigkeits-
stelle von f.

Ein Beispiel fiir eine oszillatorische Unstetigkeitsstelle ist die Stelle x = 0 fiir die in

Beispiel 2.4 betrachtete Funktion f(x) = sin% (x £ 0).

Diese Klassifizierung der Unstetigkeitsstellen gestattet eine Abschwichung des
Begriffs der Stetigkeit auf einem Intervall. Eine Funktion f hei3t auf einem Intervall I
stiickweise stetig, wenn sie im Inneren von 7 bis auf hochstens endlich viele hebbare
Unstetigkeitsstellen oder endliche Spriinge stetig ist und in jedem zu I gehdrigen
Randpunkt noch der jeweilige einseitige Grenzwert von f existiert.

Die Funktionen der Beispiele 3.5 und 3.10 sind auf [— 1, 1] nicht stiickweise stetig:

Erstere ist zwar bis auf die endlichen Spriinge bei x = i—lk— (k =2, 3, ...) stetig
(s. Bild 3.3), aber die Anzahl dieser Sprungstellen ist nicht endlich; die zweite Funk-
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tion hat dagegen bei x = 0 einen unendlichen Sprung. In der Praxis treten jedoch
héufig stiickweise stetige Funktionen auf.

Beispiel 3.11: Ein Radarimpuls 1aBt sich durch eine periodische Zeitfunktion der Form
0 fir 2k —1DISt <2kl (¢,1>0k=0, %1, £2,...)

1) =
10 {c fir 2kl<t<Qk+1)1
beschreiben (s. Bild 3.7). Diese Funktion ist auf jedem beschrankten Intervall I stiick-
weise stetig.

0 fiir (h-1)1=t <2kl
y‘{[ fir 2kl St< 2kl
— T e

1
|
zz J t
R Bild 3.7

Aufgabe 3.2: Klassifizieren Sie die Unstetigkeitsstellen x, der folgenden Funktionen *
f, und geben Sie im Falle einer hebbaren Unstetigkeitsstelle eine an der Stelle x,
stetige ,,Ersatzfunktion® /* fiir fan.

! i
I i
'1| 0 1
R i

a) f(x) = sgnx (—0 <x < 4+®), x,=0.

b) f(x) = S 11 (x% —=1), xo=—1.
Slﬂ b 2 . i

ofm={x M x¥FL 0
= fir x =0,

O fx) = —'33)— (43, x=3

e)f(x) =cotx (—-m<x<mx%0), Xo = 0.
Hinweis zu e¢) Verwenden Sie (2.28) und (2.29)

3.4.  Eigenschaften stetiger Funktionen

3.4.1. Das Rechnen mit stetigen Funktionen

Satz 3.3: Ist die Funktion f an der Stelle x, stetig und f(x,) > 0 (bzw. f(x,) < 0), dann S. 3.3
gibt es eine Umgebung von x,, so day auch noch fiir alle x dieser Umgebung f(x) > 0
(bzw. f(x) < 0) gilt.

In Bild 3.8 haben wir diesen Satz fiir den Fall f(x,) > 0 veranschaulicht.

Bild 3.8
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Satz 3.4: Die Funktionen fund g seien an der Stelle x, stetig. Dann sind die Funktionen

f+g ¢ f (ceine Konstante) undf-g
f

an der Stelle x, stetig. Ist ferner g(x,) + 0, dann ist auch die Funktion E an der Stelle
X, Stetig.

Satz 3.4 folgt unmittelbar aus Satz 2.3. (Die im Zusammenhang mit der Funktion f/g
getroffene Voraussetzung g(x,) # 0 sichert nach Satz 3.3 bereits, daB die Funktion g
in einer ganzen Umgebung von x, nicht verschwindet.)

Bemerkung 3.1: Satz 3.4 bleibt richtig, wenn ,,stetig* tiberall durch ,,rechtsseitig
stetig* oder durch ,,linksseitig stetig® ersetzt wird.

Satz 3.5: Ist die Funktion') g(x) an der Stelle x = x, stetig und die Funktion f(z) an
der Stelle z = g(x,) stetig, dann ist die mittelbare Funktion f(g(x)) an der Stelle x = x,
stetig.

Beispiel 3.12: Die Funktion f(x) = /cos x (—mw/2 £ x £ =/2) ist nach Satz 3.5 an
der Stelle x = 0 stetig, da die Funktion g;(x) = cos x an der Stelle x = 0 und die
Funktion f;(z) = v/z an der Stelle z = cos 0 = 1 stetig ist (s. Beispiel 3.1 und 3.7).

Bemerkung 3.2: Wir wollen diese Gelegenheit zu einigen Andeutungen iiber eine
moderne Betrachtungsweise in der Mathematik benutzen.

Fiir ein beliebiges abgeschlossenes Intervall [a, b] bezeichne
Cla, b]
die Menge aller auf [a, b] stetigen Funktionen. Statt ,, fist eine auf [a, b] stetige Funk-
tion* konnen wir also auch kurz fe Cla, b] schreiben.

So ist z. B. die durch f(x) = \/x (0 £ x = 1) definierte Funktion fauf [0, 1] stetig,
d. h., es gilt fe C[0, 1].

Nun sei fe Cla, b, g € Cla, b] und ¢ eine reelle Zahl. Nach Satz 3.4 ist dann auch
f + ge Cla, blund ¢ fe C[a, b]. Wendet man also die Operationen der Addition und
der Multiplikation mit einer reellen Zahl auf Elemente der Menge C[a, b] an, so er-
hélt man stets wieder Elemente von Cla, b]. Mit diesen Operationen versehen, ist
daher die Menge C[a, b] ein linearer Raum (s. Band 1, Abschnitt 7.7.2).

Mit den Elementen der Menge Cla, b] kann man also in dhnlicher Weise ,,rech-
nen‘‘ wie mit reellen Zahlen. Insbesondere kann man auch Gleichungen in Cla, b]
betrachten. Die ,,Unbekannten‘ sind dann nicht Zahlen, sondern Funktionen. In
Abschnitt 4.7.2. kommen wir hierauf zurtick.

3.4.2.  Stetigkeit der elementaren Funktionen

Als elementare Funktion bezeichnet man bekanntlich jede Funktion, die sich aus
den Grundfunktionen (Konstanten, Potenz-, Exponential-, Kreis- und Hyperbel-
funktionen sowie deren Umkehrfunktionen) durch Anwendung der rationalen
Rechenoperationen und Bildung mittelbarer Funktionen in endlich vielen Schritten
erzeugen 148t (s. Band 1, Abschnitt 9.5.).

1) Um die Bezeichnung der unabhingigen Variablen hervorzuheben, haben wir die Funktionen
hier mit g(x) bzw. f(z) statt mit g bzw. f bezeichnet.

2) Man beachte, daB die von den Operationen geforderten Eigenschaften, wiez. B.f + g = g + f,
sogar fiir beliebige, auf [a, b] definierte Funktionen erfiillt sind.
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Beispiel 3.13: Die Funktion
_AnG =D s
fx(x)f—x2+3 x3e (x> 1)
ist elementar, die durch ,,Aneinanderfiigen‘* von Grundfunktionen gebildete Funktion
(1. fir x£0, '
Sax) llnx fir x>0

dagegen nicht.

In den vorangegangenen Abschnitten haben wir die Stetigkeit einiger Grundfunk-
tionen — wenigstens an gewissen Stellen x, — nachgewiesen (s. Beispiele 3.1 und 3.7
sowie Aufgaben 3.1a) und b)). Ohne Beweis teilen wir mit, daB sogar alle Grundfunk-
tionen auf jedem Intervall ihres Definitionsbereichs stetig sind. Wie in Beispiel 3.12
kann man daraus unter Verwendung der Sétze 3.4 und 3.5 nun schlieBen, daB all-
gemein der folgende Satz gilt:

Satz 3.6: Jede elementare Funktion ist auf jedem Intervall ihres Definitionsbereichs S. 3.6
stetig.

Eine nichtelementare Funktion braucht diese Eigenschaft natiirlich nicht zu haben,
wie man etwa an der Funktion f, von Beispiel 3.13 sieht (vgl. Beispiel 3.10). Satz 3.6
kann hiufig zur Berechnung von Grenzwerten von Funktionen und Folgen heran-
gezogen werden.

Beispiel 3.14: Es soll der Grenzwert
lim (5|x — 2| + cosh/x — 1)

x-1+0
‘berechnet werden. Als elementare Funktion!) ist
fx) =5|x =2 +cosh/x—1 (x=1)

nach Satz 3.6 auf [1, + o0) stetig, also insbesondere an der Stelle x = 1 rechtsseitig
stetig. Daher gilt

limf(x) = f(1) = 5|—1| + cosh 0 = 6.
x->14+0

Beispiel 3.15: Gesucht ist der Grenzwert

lim all arctan
= 1 .
. now N n+1

Die elementare Funktion
fx)=x arctan% (x #+ 0)

ist nach Satz 3.6 auf den Intervallen (— o0, 0) und (0, + o) stetig; die durch
n+1
n

xn

n—ow

definierte Folge (x,) und ihr Grenzwert lim x, = 1 liegen im Intervall (0, + c0). Dar-

1) Wegen |x| = \/; ist g(x) = |x| eine elementare Funktion.

3 Piforr, Diff.- u. Integr.
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aus folgt (s. Definition 3.1%)
g = lim f(x,) =f(lim x,,) =1-arctan 1 =—.
now n—sm 4

Aufgabe 3.3: Berechnen Sie die folgenden Grenzwerte.

. arcsin X
a) lim (e°** + tan 2x), b) lim 5
)x—»o( ) )xal—O x2+1

. 2n+1 1
oum Sy omf(ieg)]

Aufgabe 3.4: Untersuchen Sie die folgenden Funktionen auf Stetigkeit an den an-
gegebenen Stellen x,.
fir x <0,

A/f6) = {cosx fir x>0, %o =0.
b)f(x)—{\/s x fir x<2,

3] fir x=2,

3.4.3. Weitere Eigenschaften stetiger Funktionen

In diesem Abschnitt werden Funktionen betrachtet, die auf einem abgeschlossenen
Intervall [a, b] stetig sind. Diese Funktionen haben eine Reihe von Eigenschaften,
die man in Anbetracht der Vorstellung, daB3 ihre Bildkurve ,,nicht abreiBt*, auch von
ihnen ,,erwartet.

Es sei daran erinnert (s. Band 1), daB die Funktion f auf dem Intervall I = D(f) be-
schrdnkt heiBt, wenn es eine positive Zahl ¢ gibt, so daB gilt

|f(x)] < ¢ firalle xel.
Satz 3.7: Jede auf [a, b] stetige Funktion ist dort beschrinkt.
Die Voraussetzung der Abgeschlossenheit des betrachteten Intervalls ist fiir die
Giiltigkeit von Satz 3.7 wesentlich.
Beispiel 3.16: Die Funktion

Sy =% O<xsD

ist auf dem (nicht abgeschlossenen!) Intervall (0, 1] stetig, aber wegen lim i + o
nicht beschréinkt. x40 X
Im Hinblick auf den nichsten Satz geben wir die
Definition 3.4: Die Funktion f sei auf dem Intervall I definiert. Eine Stelle x, € I heifjt
Maximums
Stelle des aboluten (oder globalen) [Minimums
{f (x0) = f(x)
S(x0) = f(x).
Maximum

Der Funktionswert f(x,) heifit dabei absolutes (oder globales) {1‘ i 'mum} von f
auf 1.

} von f auf I, wenn gilt

} fiiralle xel.
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Statt ,,Stelle des abscluten Maximums* sagt man auch kurz ,,absolute Maximum-
stelle®* oder ,,absolute Maximalstelle*’, analog fiir das Minimum. Absolute Maxima
und Minima gemeinsam nennt man absolute Extremwerte oder absolute Extremal-
werte. Jede Stelle, an der ein absoluter Extremwert angenommen wird, heif3t kurz
absolute Extremalstelle.

Das absolute Maximum (Minimum) von f auf 7 ist also der gréBte (kleinste) Wert,
den f auf I annimmt.

Ist die Funktion f auf dem Intervall [a, b] stetig, dann besitzt die Menge

M= {f(x):a < x<b}

wegen Satz 3.7 eine endliche untere Grenze m, und eine endliche obere Grenze m,
(s. Band 1). Man kann nun zeigen, da3 die Zahlen m, und m, zu M gehéren, also eben-
falls Funktionswerte sind. Natiirlich ist dann m; das absolute Minimum und m, das
absolute Maximum von f auf [a, b]. Es gilt also der wichtige

Satz 3.8 (Satz von Weierstraf')): Jede auf [a, b] stetige Funktion hat dort ein absolu-
tes Maximum und ein absolutes Minimum.

Beispiel 3.17: Die stetige Funktion f(x) = sin x hat auf dem Intervall [0, =] das abso-
lute Maximum ' (—g- = 1 und das absolute Minimum f(0) = f(r) = 02). Auf dem (nicht
abgeschlossenen!) Intervall [0, —;—n) hat f kein absolutes Minimum, da die untere

Grenze m; = —1 des Wertevorrats von f nicht Funktionswert ist (s. Bild 3.9).
y

()

1

1 T
g2 N )

Bild 3.9 Bild 3.10

Satz 3.9 (Satz von Bolzano®)): Ist die Funktion f auf [a, b] stetig und haben die Funk-
tionswerte f(a) und f(b) entgegengesetzte Vorzeichen, dann gibt es (mindestens) ein

& e (a, b) mit f(§) = 0.

In Bild 3.10 haben wir die Aussage von Satz 3.9 fiir den Fall (@) > O und f(b) < 0
illustriert. Dieser Satz liefert eine einfache Methode zur Ermittlung von Intervallen,
in denen eine Gleichung der Form

Jx) =0
eine Losung & besitzt.

1) Karl WeierstraB (1815-1897), deutscher Mathematiker.
2) Ein absoluter Extremwert kann also auch an mehreren Stellen angenommen werden.
3) Bernard Bolzano (1781-1848), Mathematiker, wirkte in Prag.

3%

S.3.8

S.3.9
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Beispiel 3.18: Gesucht ist ein (mdglichst kleines) Intervall, welches eine positive Lo-
sung & der Gleichung

o, 100 —x—2=0 (3.6)
enthélt.
Als elementare Funktion ist f(x) = 10 — x — 2 stetig. Wegen
0)=-1<0,
10 = -1< -
f)y=7>0

liegt nach Satz 3.9 also mindestens eine Lésung von (3.6) im Intervall (0, 1). Der Funk-
tionswert im Mittelpunkt dieses Intervalls ist

£(3) = Vi - 5 =Hoss o 33)

Aus (3.7) und (3.8) foigt, wiederum nach Satz 3.9, genauer, daB (3.6) eine Losung &
mit 0 < & < besitzt. Durch fortgesetzte Intervallhalbierung kénnte man & sogar
beliebig genau eingrenzen. Zur praktischen Ermittlung eines Naherungswertes fiir &
ist dieses Vorgehen allerdings nicht geeignet, da es zu viele Rechenschritte erfordert.
In 7.7. werden wir wesentlich effektivere Verfahren zur numerischen Lésung von
Gleichungen behandeln.

Offenbar kann man Satz 3.9 auch so formulieren: Die zwischen den Funktions-
werten f(a) und f(b) gelegene Zahl 0 ist selbst Funktionswert. Diese Aussage a8t sich
folgendermaBen verallgemeinern:

Ist die Funktion fauf dem Intervall / stetig, dann ist jede zwischen zwei voneinander
verschiedenen Funktionswerten f(a) und f(b) (a, b € I) gelegene Zahl ebenfalls Funk-
tionswert. Mit anderen Worten: Das Intervall f(a) ... f(b)-wird von den Werten der
Funktion f,,liickenlos ausgefiillt‘. Es gilt also der "

S. 3.10 Satz 3.10: Die Funktion f sei auf dem Intervall I stetig. Dann ist ihr Wertevorrat,
also die Menge {f(x): x € I}, ebenfalls ein Intervall?).

Es sei betont, daB das Intervall I dabei nicht abgeschlossen und auch nicht be-
schriankt zu sein braucht.
* Aufgabe 3.5: Zeigen Sie, daB die Gleichung
x-lgx—-1=0 ,
im Intervall (2,3) mindestens eine Losung hat.

* Aufgabe 3.6: Gegeben ist die Funktion
fx) =sgnx (—o0 <x < +00).

a) Notieren Sie den Wertevorrat von f.
b) Vergleichen Sie das Ergebnis von a) mit Satz 3.10.

1) Hier und im folgenden setzen wir, wie iiblich, zwischen exakten Wert und gerundeten Dezimal-
wert das Gleichheitszeichen.

2) Ist f(x) = c fiir alle x € I, also f auf I konstant, dann entartet der Wertevorrat von £ zu der ein-
elementigen Menge {c} = [c, c].
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3.4.4. Stetigkeit der Umkehrfunktion

Wir erinnern daran, daB3 eine auf einem Intervall 7 definierte Funktion f einein-
deutig oder umkehrbar eindeutig heiit, wenn es zu jedem y aus dem Wertevorrat von f
genau ein x € I mit

f&x) =y (39)
gibt. Jede eineindeutige Funktion f besitzt eine Umkehrfunktion f~*, deren Gleichung
man durch Auflésung von (3.9) nach x erhalt:

x =10, :

Ist die Funktion f auf 7 auBerdem stetig, dann ist der Wertevorrat von f, also der

Definitionsbereich von f~*, nach Satz 3.10 ein Intervall 7* (s. Bild 3.11). Der folgende
Satz beantwortet die Frage nach der Stetigkeit von f~* auf 7*.

y
7
x=7"1(y)

L y=fin

1
]

Bild 3.11

Satz 3.11: Die Funktion f sei auf einem Intervall eineindeutig und stetig. Dann ist ihre
Umbkehrfunktion f~* auf dem Wertevorrat von f, der ebenfalls ein Intervall ist, stetig.

Jede streng monotone Funktion ist bekanntlich eineindeutig. Wir erwédhnen, daB fiir
stetige Funktionen hiervon auch die Umkehrung gilt. Eine stetige Funktion besitzt
also genau dann eine Umkehrfunktion, wenn sie streng monoton ist.

Beispiel 3.19: Die Funktion
fiy=sinx (—Eéxélzr-)

ist auf dem Intervall [— %, E] stetig und streng monoton wachsend; sie hat dort

also das absolute Minimum f(— %) = —1 und das absolute Maximum f(%) =F18

Nach Satz 3.10 ist daher ihr Wertevorrat das Intervall [—1, 1]. Auf diesem Intervall
besitzt sie eine stetige Umkehrfunktion, ndmlich

fl:x=arcsiny (-15y=1)
bzw.

fliy=arcsinx (-1 <x=1).

S. 3.11



4. Ableitungen

4.1. © Vorbemerkungen

Zur Vorbereitung auf den Ableitungsbegriff betrachten wir einige Beispiele.

Beispiel 4.1: Geschwindigkeit einer Bewegung. Ist der Weg s, den ein Massenpunkt
bei einer geradlinigen Bewegung zuriicklegt, der benétigten Zeit ¢ direkt proportional,
also
s = vt (v eine Konstante),
dann bezeichnet man den konstanten Quotienten
s
—= 4.1
- ? “4.1)

als Geschwindigkeit der Bewegung. Im allgemeinen Fall ist das Weg-Zeit-Gesetz
einer geradlinigen Bewegung durch eine Funktion

s = s(f) 4.2)

gegeben (z. B. s = }gt? beim freien Fall). Es erhebt sich die Frage, wie nun die
Geschwindigkeit zu definieren ist. In einem Zeitintervall von 7, bis 7, + At legt der
Massenpunkt gemiB (4.2) den Weg

As = s(ty + At) — s(to)
zuriick. Daher wird man in Analogie zu (4.1) den Quotienten

As  s(to + At) — s(to)

At~ At ()
als mittlere Geschwindigkeit (Durchschnittsgeschwindigkeit) der Bewegung in dem
betrachteten Zeitintervall bezeichnen. Es ist nun naheliegend, den Grenzwert

lim —

a0 At
(falls er existiert) als momentane Geschwindigkeit v(t,) der durch (4.2) gegebenen
Bewegung zur Zeit t, zu bezeichnen:

(o) : = lim s(t"—*"m"—s(t")_

410 At 4

Beispiel4.2: Elastizitit einer Ursache-Wirkung-Beziehung. Eine 8konomische GréBe y
(z.B. der Energieverbrauch) sei eine Funktion feiner anderen 6konomischen GréBe x
(z. B. des Produktionsvolumens): y = f(x). Eine Anderung der Ursache x um
einen Wert 4x hat dann die Wirkungsidnderung 4y = f(x + 4x) — f(x) zur Folge.
Man bezeichnet nun den Quotienten
Ay _ fx + 4x%) — f(x)
Ax Ax

als durchschnittliche (absolute) Elastizitdt im Intervall x ... x + Ax und den Grenz-

wert
Sflx + 4x) — f(x)
Ax

(4.5)

o= i, “
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(falls er existiert) als (absolute) Elastizitit der betrachteten Ursache-Wirkung-Be-
ziehung y = f(x) an der ,,Stelle* x.

y

fog it

b -==

Bild 4.1

Beispiel 4.3: Anstieg einer Kurve. Gegeben sei eine Kurve C als Bild einer stetigen
Funktion £ (Bild 4.1). Den Anstieg der Sekante durch zwei Kurvenpunkte

Po(x0,f(x0)),  P(xo + b, f(xo + h)),
Sf(xo + h) — f(x0)
7 ,

also

tan o, =

kann man als mittleren Anstieg von C im Intervall x, ... X, + h ansehen. Als Anstieg von
C im Punkt P, wird man daher den Grenzwert

tan & = lim tan o, = lim S + h) = f(xo)
h0 70 h

(X))

bezeichnen, sofern dieser Grenzwert existiert. Die Gerade durch P, mit diesem An-
stieg heiBt Tangente an die Kurve C im Punkt P,. Anschaulich gesprochen ist die Tan-
gente also die Gerade, in die die Sekante tibergeht, falls P auf C gegen P, ,,strebt®.
(In 2.1.1., Beispiel 2.1, haben wir diese Uberlegungen schon einmal fiir den speziellen
Fall f(x) = x2, x, = } angestellt.)

4.2, Der Begriff der Ableitung

4.2.1. Definition der Ableitung

Die Beispiele des vorigen Abschnittes gingen von sehr unterschiedlichen Frage-
stellungen aus. Sie fithrten aber stets zu denselben mathematischen Uberlegungen,
die wir —in den Bezeichnungen von Beispiel 4.3 - noch einmal zusammenstellen wollen.

Gegeben sei eine Funktion f, die in einer Umgebung einer Stelle x, definiert ist.
Ferner sei 4 # 0 eine Zahl, fir die auch noch x, + % in dieser Umgebung von x,
iegt. Zur Argumentdifferenz

Ax:= (xo + h) —xo=h 4.8)
kann man dann die Funktionswertdifferenz

Ay:=f(xo + h) — f(x0) (4.9)
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bilden. Der Quotient
Q _ S(xo + h) = f(xo)
Ax h

heiBt Differenzenquotient der Funktion f an der Stelle x,. Fur festes x, ist die rechte
Seite von (4.10) eine Funktion von A,

¢p(h):£(i°+_hz:_&€i) (4.11)

(h % 0) (4.10)

die in einer punktierten Umgebung von 4 = 0 definiert ist. Die Beispiele des vorigen
Abschnittes lenken nun unsere Aufmerksamkeit auf den Grenzwert
lim L& + M) = fxo) (4.12)
h=0 h
Definition 4.1: Die in einer Umgebung von x, definierte Funktion f heift an der Stelle
x, differenzierbar, wenn der Grenzwert (4.12) existiert. Dieser Grenzwert heifit 1. Ab-
leitung oder Ableitung 1. Ordnung der Funktion f an der Stelle x, und wird mit f'(x,)
bezeichnet, also

I Fl(xo):i= Lm;w (4.13)

Mit Ax statt 4 kann man fiir (4.13) auch

£ = Jim S50 49 =tz nn

schreiben. Eine weitere Schreibweise erhdlt man mit x = x, + A, also. x — x, statt
h—0: )
(o) = lim M. (4.15)
xaxy X — Xo
Fiir die 1. Ableitung f”(x,) sind auch die Symbole

dy !
s und Y&

’ d
x=xo X |x=1xo X |x=x,

’

und die Bezeichnung Differentialquotient 1. Ordnung von f an der Stelle x, tiblich.

Man beachte, daBl den Symbolen dy und dx in d— (lies ,,dy nach dx*‘) zunéchst keine
selbstandige Bedeutung zukommt.
Die Berechnung der Ableitung einer Funktion nennt man Differentiation.

4.2.2. Bedeutung der Ableitung

Das Beispiel 4.3 gestattet eine geometrische Deutung der 1. Ableitung einer an der

Stelle x, differenzierbaren Funktion f: Mit den dort eingefiihrten Bezeichnungen ist

tan o = f"(x,) : (4.16)

der Anstieg der Bildkurve C von f sowie der Tangente an C im Punkt (x,, f(x,)). Diese
Tangente hat also die Gleichung

[ ] ¥ = f(xo) + f'(x0) * (¥ = Xo). . (4.17)
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Betrachten wir noch einmal die Beispiele 4.1 und 4.2. Nach (4.4) gilt')
olte) = $(to), (4.18)

d. h., die Geschwindigkeit einer geradlinigen Bewegung ist die 1. Ableitung der Weg-
Zeit-Funktion nach der Zeit. Entsprechend ist die (absolute) Elastizitdt ¢(x) einer
okonomischen Ursache-Wirkung-Beziehung y = f(x) nach (4.6) die Ableitung f'(x).
Auf Grund éhnlicher Uberlegungen definiert man auch viele andere Begriffe der
Technik, der Naturwissenschaften und der Okonomie, wie z. B. Induktionsspan-
nung einer Spule, chemische Reaktionsgeschwindigkeit, Wachstumsgeschwindigkeit
eines Organismus, Intensitét einer Produktion, als 1. Ableitung gewisser Funktionen.
Verallgemeinernd kann man die 1. Ableitung einer Funktion als MaB fiir die ,,An-
derungsgeschwindigkeit** dieser Funktion ansehen.

Aufgabe 4.1: FlieBt durch einen bestimmten Querschnitt eines elektrischen Leiters =

eine zeitlich konstante Ladung, so bezeichnet man den Quotienten —?— als Stromstiérke,

wobei Q die wihrend der Zeit ¢ durch den Querschnitt flieBende Ladungsmenge be-
deutet. Nun sei Q(¢) die zum Zeitpunkt ¢ durch den Querschnitt flieBende Ladungs-
menge (diese sei jetzt also zeitabhiingig). Definieren Sie fiir diesen Fall in sinnvoller
Weise die mittlere Stromstirke in einem Zeitintervall 7, ... 7, + A7 und die Strom-
starke zur Zeit 7.

Aufgabe 4.2: Ein als Gerade (x-Achse) idealisierter Stab sei mit Masse belegt. Ist die =
Massenbelegung gleichmiBig (homogener Stab), so bezeichnet man den Quotienten
0= —1—m als (Linien-) Dichte der Belegung. Dabei ist m die auf die Lange / entfallende

Masse. Nun sei der Stab inhomogen und m(x) die im Intervall [0, x] (x > 0) gelegene
Masse. Geben Sie fiir diesen Fall eine sinnvolle Definition der mittleren Dichte der
Belegung in einem Intervall x, ... xo, + Ax und der Dichte o(x,) an der Stelle
Xo (x0 > 0).

4.2.3. Beispiele

Wir wollen nun die Ableitung einiger Funktionen an einer beliebigen Stelle x,
berechnen.

Beispiel 4.4: f(x) = ¢ (c eine Konstante).
Fiir den Differenzenquotienten von f an der Stelle x, gilt

SCxo + h) = f(x0) e
h

—c
p =0 (h#+0).

Folglich ist auch
lim S(xo + h) — f(x0) -0,
70 h
d. h., die Funktion fist an jeder Stelle x,, differenzierbar und hat dort die Ableitung

f'(x0) = 0.

1) Die 1. Ableitung nach ¢ bezeichnet man im allgemeinen durch einen Punkt tiber dem Funk-
tionssymbol (auch dann, wenn ¢ nicht die Zeit bedeutet).
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Beispiel 4.5: f(x) = x (n eine natiirliche Zahl). (4.19)

‘Wir bilden den Differenzenquotienten von fan der Stelle x, und wenden auf (x, + A)"
die binomische Formel (s. Band 1) an:

S(xo + 1) — f(xo) _ (xo + h)" — x
h h

1
Sl [ (1) xg~h + (2) XpT2h P+ ..+ B — xs]

'1') x5!+ () xX§72h + ..+ B
Hieraus folgt

f(xo + h) Sf(xo) _ (’1') xi=1 = nxg-!

h-.o
Die Funktion f'ist somit an jeder Stelle x, differenzierbar und hat dort die Ableitung
f(xo) = nxg~". (4.20)

Speziell erhélt man als Ableitung der Funktion f(x) = x? an einer beliebigen Stelle x,
den Wert

[f(x0) = 2%,
und an der Stelle x, = % somit
feH=1"n

Die Tangente ¢ an die Parabel y = x2 im Punkt P,(}, }) hat also nach (4.16) den An-
stieg tana = f'(3) = 1 und daher den Anstiegswinkel x = T~ 45°. Nach (4.17) ist

4
y=%1+1x—-1%, also y=x-1%.
die Gleichung von ¢ (s. Bild 4.2).
Bild 4.2
Beispiel 4.6: f(x) = sin x. 4.21)

Wir bilden wieder den Differenzenquotienten und formen ihn unter Anwendung
eines Additionstheorems um:

sin(xo +h) —sinx, 2 . Xo+h—xo Xo + h + Xo
— g =7in 5 cos 3
Sin L
2 h
oo (x., n 3). 422)
2)

1) In der Bezeichnung (4.15) bedeutet das: lim X : =1 (vgl. Beispiel 2.2).

X3 X
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Fiir 2 — 0 gilt auch g—» 0. Daher ist

. h
sin =
lim =1
ns0 h
2

[vgl. 2.5. (2.31)]. Ferner gilt wegen der Stetigkeit der Kosinusfunktion

. h
lim cos (xo + 7) = COS Xg.

=0
Damit folgt aus (4.22)
dsin x _p.sin(xo +h) —sinx,
T ees, = Ll_{r;————h— = COS Xp. (4.23)

Aufgabe 4.3: Ermitteln Sie die Gleichung der Tangente an die Kurve y = sin x in dem
Kurvenpunkt mit der Abszisse x, = $ 7.

4.2.4. Einseitige Ableitungen

Mit dem Begriff der einseitigen Grenzwerte definiert man einen entsprechenden
Begriff fiir die Ableitung einer Funktion. Ist eine Funktion fan einer Stelle x, € D(f)
nicht differenzierbar, existiert also der Grenzwert des Differenzenquotienten nicht,
so kann man untersuchen, ob wenigstens einer der einseitigen Grenzwerte existiert.

Definition 4.2: Eine (mindestens) in einem Intervall [x,, xo + c], ¢ > 0, definierte
Funktion f heif3it an der Stelle x, rechtsseitig differenzierbar, wenn der rechtsseitige
Grenzwert
lim L& + 1) — f(xo)
> +0 h
existiert. Dieser Grenzwert heifit rechtsseitige Ableitung von f an der Stelle x, und
wird mit f(x,) bezeichnet. Analog ist die linksseitige Ableitung von f an der Stelle x,

definiert:
Si(x0) =hET0 M .

Aus Satz 2.2 folgt unmittelbar der

Satz 4.1: Die Funktion f ist genau dann an der Stelle x, differenzierbar, wenn sie dort
sowohl rechtsseitig als auch linksseitig differenzierbar ist und f!(xo) = fi/(xo) gilt.
In diesem Falle ist

S'(xo) = fi(x0) = f{(x0)-

Ersetzt man in der Tangentengleichung (4.17) die Ableitung f'(x,) durch f/(x,)
bzw. f{'(x,), so erhélt man die Gleichung der jeweiligen einseitigen Tangente.

Beispiel 4.7: Die Funktion
fx) =1x* =1 (=0 <x< +00)

D.4.2

S. 4.1
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soll auf (einseitige) Differenzierbarkeit an der Stelle x, = 1 untersucht werden. Wegen

x3—=1 fir x=>1,
f(x)i{—(xS—l') fir x <1,
also
f(1+h)~{ (1 + h)® =1 =3h + 3k + fiir h =0,
A= + R)P = 1] = —(Gh + 3k + k) fir h<0
gilt |

f(1+h)—f(1):= 34 3h+ M fir k>0,

h —(3 +3h+ h?) fir h<O.
Daraus folgt

(1) = lim (3 + 3h + k%) = 3,
h>+0

A = im [—G + 3h + k)] = —3.
h»-0

Die Funktion fist an der Stelle x, = 1 also rechtsseitig und linksseitig differenzierbar,
nach Satz 4.1 aber nicht differenzierbar (schlechthin). Die Bildkurve von f hat im
Punkt (1; 0) die rechtsseitige Tangente

iy =3x-1)
und die linksseitige Tangente

tity==3x-1).
Die Verschiedenheit der einseitigen Ableitungen spiegelt sich in der Bildkurve von f
als ,,Knick‘* oder ,,Spitze‘* wider (s. Bild 4.3).

y-1x3-1]

—— N\’ Bid44a

YA y=fn) (0%x =a)

Bild 4.3 Bild 4.4b
0 T X

Einseitige Ableitungen treten auch in den Anwendungen auf.

Beispiel 4.8: Ein Balken der Lange a sei an einem Ende eingespannt und am anderen
Ende gelenkig gelagert. Greift an dem letztgenannten Ende eine Kraft F in Léings-
richtung an, so biegt sich der Balken (s. Bild 4.4a). Nach Einfiihrung eines geeigneten
Koordinatensystems kann die Balkenbiegung durch eine Funktion

y=fx O0sx=a
beschrieben werden (s. Bild 4.4b). Diese Funktion ist an der Stelle x = 0 rechtsseitig
und an der Stelle x = a linksseitig differenzierbar, wobei auf Grund der technischen
Vorgaben gilt:
0 =0, fi(a=*0.
Wir betrachten nun noch eine Funktion f; fiir die an einer Stelle x, € D(f) keine
der beiden einseitigen Ableitungen existiert.



4.2. Der Begriff der Ableitung 45
Beispiel 4.9: Die Funktion
f@=Vx (xz0

ist fiir x < 0 nicht definiert und daher an der Stelle x = 0 nicht linksseitig differen-
zierbar. Fiir den rechtsseitigen Grenzwert des Differenzenquotienten an dieser Stelle
erhélt man

M: h'm_l_ﬁ_,.oo
h = ’

lim .
h+0 y/ h

ho +0

so daf} fan der Stelle x = 0 auch nicht rechtsseitig differenzierbar ist. Man sagt jedoch
gelegentlich, f besitze an der Stelle x = 0 eine uneigentliche rechtsseitige Ableitung,
und ihre Bildkurve habe dort eine vertikale rechtsseitige Tangente (vgl. Bild 2.8).

Aufgabe 4.4: Untersuchen Sie die Funktion f(x) = [x| (—00 < x < + o) auf ein-
seitige Differenzierbarkeit an der Stelle x = 0. .

4.2.5. Differenzierbarkeit auf einem Intervall

Analog zur Stetigkeit auf einem Intervall definiert man die Differenzierbarkeit
einer Funktion auf einem Intervall.

Definition 4.3: Eine auf einem Intervall I definierte Funktion f heift auf I differenzier-
bar, wenn gilt:

1. f ist in jedem inneren Punkt von I differenzierbar.
2. Ist der linke (bzw. rechte) Randpunkt von I ein Element von I, dann ist f dort rechts-
seitig (bzw. linksseitig) differenzierbar.

Ist f eine auf einem Intervall 7 differenzierbare Funktion, dann kann man jedem
x e die Zahlf’(x) zuordnen'). Durch diese Zuordnung erhélt man eine auf 7 defi-
nierte Funktion, die man Ableitung von f auf I nennt und mit f’ bezeichnet.

Beispiel 4.10: Nach Beispiel 4.5 ist die Funktion f mit
fx) =x" (—0 <x < +00) (4.24)
auf dem ganzen Intervall (— o0, + o0) differenzierbar, und fiir ihre Ableitung f” gilt
fl(x) = nx"1 (—o0 < x < +00). (4.25)
Fiir (4.24) und (4.25) schreibt man auch kurz
(x") =nx"t (=00 < x < +00).
Analog gilt nach Beispiel 4.6

(sinx)’ =cosx (—o <X < +00).

1) Ist x ein Randpunkt von Z, dann ist f’(x) durch die entsprechende einseitige Ableitung an dieser
Stelle zu ersetzen.

*

D. 4.3
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4.3. Differenzierbarkeit und Stetigkeit
Satz 4.2: Eine an der Stelle x, differenzierbare Funktion f ist dort auch stetig.
Beweis: Es gilt
flo + ) = Mz—"ﬂ B+ f(xo) (b= 0). 4.26)

Fiir i — 0 existieren nach Voraussetzung die einzelnen Grenzwerte der rechten Seite
von (4.26). Daher existiert auch der Grenzwert lim f(x, + /), und es gilt
h=0

tim fxo + ) = '(x0) -0 + o) = fxo,
folglich ist f'an der Stelle x, stetig [vgl. 3.1., (3.2)]. =
Umgekehrt braucht eine an der Stelle x, stetige Funktion dort nicht differenzier-
bar zu sein, wie das Beispiel
fx)=1Ixl, x =0

zeigt (vgl. Aufgabe 4.4). Die Stetigkeit einer Funktion fan einer Stelle x, ist also eine
notwendige, aber nicht hinreichende Bedingung fiir die Differenzierbarkeit von f an
dieser Stelle. Eine entsprechende Aussage gilt fiir den Zusammenhang zwischen ein-
seitiger Stetigkeit und einseitiger Differenzierbarkeit.

4.4, Allgemeine Differentiationsregeln

In diesem Abschnitt behandeln wir Regeln, nach denen man die Ableitung kompli-
zierter Funktionen auf die Ableitungen ihrer einzelnen ,,Bestandteile** zuriick-
fihren kann.

4.4.1.  Ableitung von Summe, Produkt und Quotient

Satz 4.3: Die Funktionen f und g seien an der Stelle x, differenzierbar. Dann sind auch
die Funktionen f + g, ¢ f(c eine Konstante) und f- g an der Stelle x, differenzier-
bar, und es gilt dort*)

f+e' =f+¢g, (4.27)
(e f) =cf, (4.28)
(f-g) =fg+fg (Produktregel). (4.29)

Ist ferner g(x,) + 0, dann ist auch die Funktion i an der Stelle x, differenzierbar, und
es gilt dort g

I (%) = f;z__g—;f_g (Quotientenregel). (4.30)
Beweis der Produktregel (die iibrigen Formeln beweist man analog): Mit einem
Zuwachs Ax = h # 0 bilden wir den Differenzenquotienten von f g, den wir geeig-

1) Aus Griinden der Ubersichtlichkeit lassen wir in den folgenden Formeln das Argument x,
weg.
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net umformen:

A(f-8) _ f(xo + h) - glxo + 1) — f(xo) - g(xo)
Ax h

) 8(xo + h) — g(xo)
7 :

Fiir 4x — 0, also & — 0, streben die Differenzenquotienten von f bzw. g gegen f"(x,)
bzw. g'(x,). Da g an der Stelle x, stetig ist (s. Satz 4.2), gilt auBerdem

Ling g(xo + h) = g(xo).

- _f(xo_*'.hhl‘_f(io_)_-g(xo +h) + f(xo

Folglich existiert

(f8) (x0) = hm
und es gilt
(f*8)' (x0) = f'(x0) * g(x0) + f(x0) * &'(%0),
also die in der Kurzform (4.29) notierte Regel. @
Wegen
(=0 (4.31)
(vgl. Beispiel 4.4) ist (4.28) tibrigens ein Spezialfall von (4.29).
Durch vollstindige Induktion kann man zeigen, daB3 (4.27) analog fiir eine beliebige

endliche Anzahl von Summanden gilt.
In den folgenden Beispielen bilden wir die Ableitung an einer beliebigen Stelle x.

A(f 8

Beispiel 4.11: Fiir die Funktion y = ¢(x) = x* — 5x* 4+ 6x — 2 gilt nach (4.27)
und (4.28) fiir alle x

V= %) = 5(x* + 6(x) — (2,
also wegen (4.25) und (4.31)
Y =5x*—5-4x3 + 6 — 0 = 5x* — 20x* + 6.

Beispiel 4.12: Gesucht ist die 1. Ableitung der Funktion
x3—2x-3
yE—m— (4.32)
Die Funktionen
f(x) =x*=2x—3 und gx) =x*>-—1
sind fiir alle x differenzierbar mit
fl(x)=3x2=2, g(x)=2x

Ferner ist g(x) # O fiir alle x mit |x| & 1. Fiir diese x ist (4.32) definiert und differen-
zierbar, wobei nach der Quotientenregel gilt

L (f)) _Bx2 =2 (x*—=1)—(x* —2x —3)-2x
Y ‘(W) - =1y

also
, o xt—x2+6x+2
y = w-n (IxI =+ 1).
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In Verallgemeinerung der Beispiele 4.11 und 4.12 gilt offenbar: Die Ableitung einer
ganzen (bzw. gebrochenen) rationalen Funktion ist wieder eine ganze (bzw. gebro-
chene) rationale Funktion.

Beispiel 4.13: Fiir die Funktion y = x*sin x erhilt man nach der Produktregel
mit f(x) = x* und g(x) = sin x fiir alle x

¥ = 3x%-sinx + x%- cos x.

Die Produktregel 1Bt sich auf den Fall einer beliebigen endlichen Anzahl von
Faktoren erweitern. Zum Beispiel erhdlt man fir die Ableitung eines Produkts
dreier Funktionen f, g, # durch zweimalige Anwendung von (4.29)

(feh) = [(f) hl = (f)' b + (fo) I,
(fgh) =f'gh + fg'h + fgh'. (4.33)

Aufgabe 4.5: Bilden Sie die Ableitungen der folgenden Funktionen:

a) f(x) = 2x* — 5x — 3sinx + sin—

g’
b) f(x) = (x* + 4x)sin x,
x% —sin x
A
Aufgabe 4.6: DasWeg-Zeit-Gesetz des freien Falls lautet bekanntlich s = %tz + 0ot +50

(g: Erdbeschleunigung, v, bzw. s,: Geschwindigkeit bzw. Weg zur Zeit 1 = 0). Wie
groB ist die Geschwindigkeit dieser Bewegung zu einer beliebigen Zeit 1 = 0?
4.4.2.  Ableitung mittelbarer Funktionen (Kettenregel)

Satz 4.4: Ist die Funktion g(x) an der Stelle x = x, und die Funktion f(z) an der Stelle
z = g(x,) differenzierbar, dann ist die mittelbare Funktion

F(x) = f(g(x))

an der Stelle x = x, differenzierbar, und es gilt die sog. Kettenregel

i Fl(xo) = f'(z0) * g'(Xo) mit 2o = g(xo). (4.34)
Setzt man
y=[f@, z=zgk,
dann ist

y = f(gx)) = F(x),

und man kann (4.34) in der folgenden einprigsamen Form schreiben?):

dy _dy dz
| rEa T (432
Beispiel 4.14: Gesucht ist die 1. Ableitung der Funktion

y = F(x) = sin (x?). (4.36)

1) Die Argumente lassen wir wieder weg.
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Wir setzen
y=f) =sinz, z=gx)=x*
und erhalten fiir jedes z bzw. x

dy dz .
E—cosz, E—Zx.

Dabher ist auch (4.36) fiir jedes x differenzierbar, und es gilt

-Edl= cosz-2x mit z = x2,
dx
also

Y

dx

Die Kettenregel 18t sich auf den Fall ausdehnen, daB n Funktionen ,,ineinander-

geschachtelt* sind. Ist z. B.

y = fg(h(x)))

und setzt man
y=f@), z=gWw), w=nhx),

dann gilt unter entsprechenden Voraussetzungen wie in Satz 4.4 die zu (4.35) analoge
Formel

= 2x cos (x?),

dx _ dy dz.d_w
T 420

Beispiel 4.15: Wir betrachten die Funktion y = sin® (4x? — 5). Mit

y =tz z = sinw, w=4x> -5,
also

dy ., dz dw

—&——32, d—w—cosw, dx—Sx,
erhdlt man nach (4.37) fiir jedes x

dx

i 3z% - cos w - 8x = 24x sin? (4x> — 5) cos (4x* — 5).
Aufgabe 4.7: Differenzieren Sie die folgenden Funktionen:

a)y = (2x* — 3x + 4sinx)’,

b) y = sin (x* + 3x* — 8)*.

4.4.3.  Ableitung der Umkehrfunktion

Wir wollen nun einen Zusammenhang zwischen der Ableitung einer Funktion und
der ihrer Umkehrfunktion herstellen. Bild 4.5 zeigt die Bildkurve C einer einein-
deutigen, differenzierbaren Funktion f(Gleichung: y = f(x)). Die Tangente ¢ an C im
Punkt Py(xo, f(x,)) hat den Anstiegswinkel «. Die Kurve C ist aber zugleich die
Bildkurve der Umkehrfunktion f~* (Gleichung: x = f~!(y)), wenn man sie ,,von der
y-Achse her* betrachtet. Dabei ist # der Anstiegswinkel der Tangente ¢. Es gilt also

S
tana  f'(Xo)

(f 1) (yo) = tan § = tan (% - oc) = cotox =

4 Piorr, Diff.- u. Integr.
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Nach diesen Uberlegungen ist die Giiltigkeit des folgenden Satzes, den wir nicht be-

weisen wollen, anschaulich einleuchtend.

¥

xo=f () B
o
Yo~ [(xp)

o Bild 4.5
X X

Satz 4.5: Die Funktion f sei eineindeutig und in einer Umgebung der Stelle x, differen-
zierbar mit f'(xo) % 0. Dann ist ihre Umkehrfunktion f~* an der Stelle y, = f(x,)

differenzierbar, und es gilt

—1y/ _ 1 0 =
| G 00 = 7y mit yo =150

Unter Beachtung der dquivalenten Gleichungen
x=f0), y=f&)
kann man (4.38) auch in der suggestiven Form
LS
4
dx
schreiben.

Beispiel 4.16: Die Funktion
y =f(x) =sinx ([x] < ;)
ist eineindeutig und differenzierbar mit

dyRRTas kg
a—(smx) =cosx*0 (le<§-).

Thre Umkehrfunktion
x =f-'(y) =arcsiny (Iyl <1)
ist daher ebenfalls differenzierbar, und es gilt nach (4.39) und (4.41)

(arcsin )’—iif——-—l—— !
¢ —dy_ﬂ_cosx'
dx

Fiir Ix] < ; ist cos x > 0 und daher

Ccos X = 4/cos?x = \/1 —sin? x,

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)
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so daB aus (4.42) wegen (4.40) folgt

Uyl <.

2

L, 1
arcsin ) = ———
( 4 Y Ji-y
Ersetzt man in der letzten Formel y durch x, so erhilt man schlieBlich
(arcsin x)’ = ——-——1— (Ix] < ). (4.43)

N

4.5. Ableitungen einiger Grundfunktionen

4.5.1. Tabelle der Ableitungen

In der folgenden Tabelle haben wir die Ableitungen einiger Grundfunktionen zu-
sammengestellt. Diese Formeln sind gewissermaBen das ,,ABC des Differenzierens*;
man sollte sie sich daher unbedingt einprégen.

Hinsichtlich der Ableitungen der iibrigen Grundfunktionen sei auf einschldgige
Formelsammlungen, z. B. [1], verwiesen.

(c)’ =0 (c eine Konstante) (4.44)

(=) = ax*t (s. Bemerkung 4.11) (4.45)

) =lc (—0 <x< +00) (4.46)

(a®) =a*lna (@>0, —0 <x< +w) (447)
1

(In|x))) = < (x % 0) (4.48)

(sin x)’ = COS X (=0 <x < +o©) (4.49)

(cosx) = —sinx (=0 < x < +0) (4.50)

"R S 2 T

(tan x) = o x = 1 + tan®? x (x * 3 + km, k ganz) 4.51)

(cot x)’ - SI—nIZ—— = —(1 + cot>x) (x = km, k ganz) (4.52)

(arcsin x)' = L (Ix] < 1) (4.53)
V1= x?

(arctan x)’ = 52 (—0 < x < +0©) (4.54)

Bemerkung 4.1: Formel (4.45) gilt

fiir alle x, falls « eine natiirliche Zahl ist,

fir alle x = 0, falls « eine negative ganze Zahl ist,

fir alle x > 0, falls « eine beliebige reelle Zahl ist.
Bemerkung 4.2: Formel (4.47) geht fiir a = e iiber in (4.46), und aus (4.48) folgt
speziell

(Inx) = (x > 0).

R|=

4%
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Bemerkung 4.3: Von Nutzen ist gelegentlich auch die Formel

x|’ SN sgnx  (x =+ 0).

x|

4.5.2. Beweis der Formeln von 4.5.1.

Die Formeln (4.44), (4.49) und (4.53) haben wir bereits bewiesen (Beispiele 4.4, 4.6
und 4.16). Ferner haben wir (4.45) fiir den Fall bewiesen, daBB &« = » eine natiirliche
Zahl ist (Beispiel 4.5). Nun sei « = —n eine negative ganze Zahl.

Dann gilt nach der Quotientenregel

o) = _L)' _0-x"—1-nx"!
- (7)) "
= —nx"t =ax®™t (x % 0),

also ebenfalls (4.45). Auf den Beweis von (4.45) fir beliebiges « kommen wir weiter
unten zu sprechen.

Zum Beweis von (4.48) betrachten wir zunéchst den Fall, dafl x > 0 ist. Dann gilt
|x| = x, also

Inl|xl =lnx (x> 0).

Mit einem Zuwachs A4 # 0, fiir den auch noch x + 4 > 0 ist, bilden wir den Differen-
zenquotienten von f(x) = In x an der Stelle x, den wir mit x erweitern und nach den
Logarithmengesetzen umformen:
In(x + h) —Inx =i‘£lnﬁ+h =Lln(l +£)7'
h x h x x

Setzt man % = ¢, dann gilt # —» 0 fiir # — 0. Wegen

1

lim(l +0)°f =e
-0

[s. (2.7)] und der Stetigkeit von f(x) = In x an der Stelle x = e erhélt man schlieB-

lich

In(x+h) —lnx _ 1. &

—g —;hmln(l +1)

(In x)" = lim
h—0 t=0

=Ll [lim(l +z)ﬂ “Lhe=L x>0
——x o -—xne—x S

Nun sei x < 0, also
y=I|x|=In(-x) (x <0).

Wir setzen

y=Inz, zZ= —X.
Wegen x < 0ist z = —x > 0, und nach der soeben bewiesenen Formel (sowie nach
(4.45) mit o« = 1) gilt

dy 1 dz

=

dz Tz’ dx
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also nach der Kettenregel
, dy 1 1
[In (—x)] S ( 1)—; (x < 0).
Damit ist (4.48) fiir jedes x + 0 bewiesen.

Mit (4.48) kann man (4.46) nun leicht beweisen, indem man beachtet, daBl x = ¢’
die Umkehrfunktion von y = In x (x > 0) ist. Nach (4.39) erhélt man

dx 1 1
V) = = = =x = ¢
@ dy dy  (Inx) 0
dx

also (4.46), wenn man y durch x ersetzt.
Zum Beweis von (4.47) schreiben wir

y = a* = (e9)* = ¢XIna
und setzen
y = ¢, z=xlna.

Dann gilt unter Verwendung bereits bewiesener Regeln

dy . dz
w-S Hohe
also nach der Kettenregel
b e*Ina=¢e™Ina=a"Ina.

dx
Entsprechend kann man nun (4.45) fiir beliebiges « beweisen, indem man gemaf
X = (e = e¥0x (x> 0)
umformt und die Kettenregel anwendet.
Aus der bereits bewiesenen Formel (4.49) folgt (4.50) wegen
cos x = sin (n: x)
B 2
ebenfalls mit der Kettenregel.
Zum Beweis von (4.51) bzw. (4.52) wendet man auf

sin X COoS X
bzw. cotx = —
cos X sin x

tan x =

die Quotientenregel an.

Aus (4.51) folgt schlieBlich (4.54) als Ableitung der Umkehrfunktion.

Die in Bemerkung 4.3 angegebene Formel folgt unmittelbar durch getrennte Be-
trachtung der Félle x > O und x < 0.

Aufgabe 4.8: Fiihren Sie die Beweise der Formeln (4.45) (fiir & beliebig reell, x > 0), *
(4.50), (4.51), (4.52) und (4.54) in der angedeuteten Weise aus.

Aufgabe 4.9: Beweisen Sie *
a) (sinh x)’ = cosh x, b) (cosh x)' = sinh x.
Hinweis: Verwenden Sie die Definitionen von sinh x und cosh x.



54 4. Ableitungen

4.6. Technik des Differenzierens

4.6.1. Beispiele
An einigen Beispielen wollen wir die Anwendung der Formeln von 4.5.1. iiben.
Beispiel 4.17: f(x) = % —4J% (x>0). .
5 = 5x73 fiir alle x + 0 und f5(x)

Nach (4.45) und Bemerkung 4.1 ist fi(x) = =

=—4,/x = —4xt fiir alle x > 0 differenzierbar. Daher ist f = £, + f» fir alle
x > 0 differenzierbar mit

) =5 (=)t —4-3xF (x> 0),

r@=-g - (x> 0)

Im folgenden verwenden wir die in 4.5.1. angegebenen Formeln, ohne jeweils dar-
auf zu verweisen.

Beispiel 4.18: Durch

f(x) =In

tan >
2

ist eine Funktion ffiir alle diejenigen x definiert, fir die tan ; definiert und von null

verschieden ist, also fiir alle x & k= (k ganz). Fur diese x ist fauch differenzierbar.
Mit

x
y=In|z], z=tanw, w=77

also
& 1 1w
dz  z’ dw  cos?w’ dx 2’

liefert die Kettenregel

DU I D e 1
f(")‘E*? cos? w -2—_2tanx~coszx,
2 2
also
) 1 1
f(x)__.—.——x_m (x # kr, k ganz).
25111—2—'0057

Bei einiger Ubung kann man hiufig die zur Anwendung der Kettenregel erforder-
lichen Substitutionen in Gedanken ausfiihren und sogleich das Ergebnis notieren.
i
Beispiel 4.19: f(x) = cosel** (x + —1).
Offenbar ist f fiir alle x = —1 differenzierbar. Man erhélt nach der Kettenregel,
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wobei in Gedanken

= CoS z z=¢e" w=
Yy B 5

gesetzt wird,
1-x 1-x 1—-x\'
f’(x):—sinel+"el+x'(l+ )

und weiter nach der Quotientenregel

1-x
, (=1)- (1+x)—(1—x)1
- T+x. l+x
1 f'(x) = —sine e T+ 97
aiso 2 1-x 1-x
f’(x)=~(1—+x)—2—e‘+"sine‘+x (x £ -1).

Aufgabe 4.10: Differenzieren Sie die folgenden Funktionen. Der Definitionsbereich
jeder dieser Funktionen sei stets die Menge aller x, fiir die der rechts vom Gleichheits-
zeichen stehende Ausdruck einen Sinn hat. Welche Werte x sind das? Fiir welche
dieser Werte x sind die Funktionen jeweils differenzierbar?

a) fx) = J_ T

b) f(x) = In [In x],

1
¢) f(x) = arctan >

1
d e
1/2) ix2+ 1

) f(x) = e — cos~/1 — 2x,
1—x?
— 2
f) f(x) = cosh T2 (s. Aufgabe 4.9).

Aufgabe 4.11: Ermitteln Sie alle Punkte der Parabel *
y=x-1)>x+1,
zu denen eine zur x-Achse parallele Tangente gehort.
Aufgabe 4.12: Die geddmpfte freie Schwmgung eines harmonischen Oszillators =
(Federschwingung) wird durch
s(t) = A e " cos (wt — &)
beschrieben (A &, v, o Konstanten). Bestimmen Sie die Geschw1nd1gke1t dieser Be-
wegung zu einer beliebigen Zeit 1 = 0.
4.6.2. Logarithmische Differentiation

Es sei feine Funktion, die auf einem Intervall differenzierbar und von null verschie-
den ist. Fiir die Ableitung der Funktion

u = In|f(x)|
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erhdlt man nach der Kettenregel

A
also )

]/ = /;(x) (f(x) * 0). (4.55)
‘Wegen (4.55) heiBt der Quotient S auch logarithmische Ableitung der Funktionf.
Aus (4.55) folgt f&)

f'(x) =) [In )] (4.56)
Diese Formel kann man gelegentlich zur Berechnung der Ableitung f”(x) benutzen.

(x — 2)e*

Beispiel 4.20: f(x) = (x*1,x+ =3).

G- (x + 37

Die unmittelbare Berechnung von f’(x) ist hier recht aufwendig. Dagegen erhélt man
fiir In [f(x)| nach den Logarithmengesetzen

In[f(x) =In|x — 2| +2x = 3In|x — 1| — 2In|x + 3|
mit der leicht zu bildenden Ableitung

h 1 _ 3 _ 2
b/ =7 +2 -7~ 553
Daraus folgt nach (4.56)
oy (x=2)e* 1 32
f(x)_(x—l)3(x+3)2{x—2+2~x—1 x+3] G
d
o ol e Lsaemn- 22D 20
x’(x—l)s(x+3)2[ * x —1 x+3 |

(4.58)

Mit dem Ubergang von (4.57) nach (4.58) wurde die hebbare Unstetigkeit der rechten
Seite von (4.57) an der Stelle x = 2 beseitigt. Da f'nach Satz 4.3 auch an der Stelle
x = 2 differenzierbar ist, gilt nun (4.58) auch fiir diese Stelle, was wir ohne Beweis
mitteilen.

In dieser Weise bildet man auch die Ableitung von Funktionen der Form
f(x) = [u@)®  (ux) > 0),
indem man zunichst die Funktion?)
In f(x) = v(x) - In u(x)
(nach der Produktregel) differenziert und dann (4.56) benutzt.
Beispiel 4.21: f(x) = x*"* (x > 0).
Fiir die Funktion In f(x) = sin x - In x

1) Wegen f(x) > 0 kann in diesem Fall das Betragszeichen weggelassen werden.
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liefert die Produktregel
[In f(x)]' = cosx-Inx + sinx* %,

woraus mit (4.56) folgt

S = o

! ") (x > 0).

Aufgabe 4.13: Bilden Sie durch logarithmische Differentiation die Ableitung der fol- *
genden Funktionen:

a) f(x) = x* (x > 0),
b) f(x) = (tan x)* (0 <x< 123)

JE+ D (x=3)

VO e

(x> 3).

4.6.3. Bemerkungen

Die Ableitung jeder differenzierbaren elementaren Funktion 14Bt sich nach den
allgemeinen Differentiationsregeln auf die Ableitungen von Grundfunktionen, also
auf elementare Funktionen, zurtickfiithren. Daher gilt:

Die Ableitung jeder auf einem Intervall differenzierbaren elementaren Funktion ist
eine elementare Funktion.

Beispiele zur Differentiation elementarer Funktionen haben wir in den vorangegan-
genen Abschnitten behandelt. Im Falle einer nicht-elementaren Funktion mu man
u. U. auf die Definition der Ableitung zuriickgreifen, also den Differenzenquotienten
untersuchen.

1
Beispiel 4.22: f(x) :{“‘"? fAsy
0 fir x=0.

1
Fiir x # 0 erhdlt man nach der Produktregel, wobei sm — nach der Kettenregel zu
differenzieren ist,

i .1 1 1 1 1 1
f'x)=1 sm;+x cos;(——x—z)—sm;—;cos—x— (x + 0).

Um f auf Differenzierbarkeit an der Stelle x = 0 zu untersuchen, bilden wir den
Differenzenquotienten an dieser Stelle:

hsinl—()
f - f«)) }/: = sin% (h =+ 0)

Fiir 7 — 0 ist sin ,1—1 (unbestimmt) divergent, folglich ist fan der Stelle x = 0 nicht dif-

ferenzierbar. Nach Aufgabe 3.1d) ist fan der Stelle x = 0 aber stetig; wir haben damit
ein weiteres Beispiel einer an einer Stelle x, stetigen, aber dort nicht differenzierbaren
Funktion (vgl. 4.3).
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Aufgabe 4.14: Zeigen Sie, daB die Funktion
.1
x?sin— fir x4+ 0,
fx) = x
0 fir x=0

fiir jedes x differenzierbar ist, und ermitteln Sie die Ableitung.

4.7. Einige Ergiinzungen zum Ableitungsbegriff
4.7.1. Die Differentialgleichung y' = ay

Als Ableitung der Funktion

f(x) = Ce™ (C, x: Konstanten) (4.59)
erhélt man nach der Kettenregel

Fi(x) = Ce™ . (4.60)
Setzt man (4.59) in (4.60) ein, so folgt

f(x) =af(x) (—o0 < x < +00). (4.61)
Mit y = f(x), also » = f'(x), kann man die Gleichung (4.61) auch in der Form

Y=oy ) (4.62)

schreiben. Diese Gleichung ist ein einfaches Beispiel einer gewdhnlichen Differential-
gleichung. Jede auf einem Intervall I differenzierbare Funktion f mit der Eigenschaft

f'(x) =of(x) (xeD)?) (4.63)

heiBt Losung der Differentialgleichung (4.62) auf dem Intervall 1. Nach (4.61) ist
die Funktion (4.59) fiir jede Konstante C eine Losung von (4.62) auf dem Intervall
(— o0, +00). In 6.2.2. werden wir zeigen, daB umgekehrt jede Lésung von (4.62) auf
einem Intervall 7 sich mit einem geeigneten Wert C in der Form (4.59) darstellen
1aBt.

Die Gleichung (4.62) charakterisiert diejenigen Funktionen £, deren ,,Anderungs-
geschwindigkeit* '(x) an der Stelle x dem Funktionswert f(x) an dieser Stelle pro-
portional ist (Proportionalititsfaktor «). Viele Naturvorgdnge haben - wenigstens
niherungsweise — dieses Verhalten, lassen sich nach dem Voranstehenden also durch
Funktionen der Form (4.59) beschreiben. Hierin liegt die besondere Bedeutung der
Exponentialfunktionen fiir die Anwendung.

Beispiel 4.23: Es sei m(t) die zur Zeit t vorhandene Masse einer radioaktiven Substanz.

Es ist bekannt, daB zu jeder Zeit ¢ die sog. Zerfallsgeschwindigkeit i) der vorhan-
denen Masse m(t) proportional ist, d. h., es gilt
dm(t
;"t( ) _ _im(t) (2 0). (4.64)

Dabei ist A > 0 eine fiir die Substanz charakteristische Konstante (Zerfallskonstante).

1) Vgl. FuBnote Seite 45.
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Das Minuszeichen bedeutet, wie wir in 7.2. sehen werden, daB mit zunehmender Zeit
die Masse abnimmt.
Nach den obigen Ausfilhrungen hat die Differentialgleichung (4.64) die Losung

m(t) = moe™ (t 2 0),

wobei m, wegen m(0) = mg €® = my die zur Zeit ¢ = 0 vorhandene Masse ist (Bild 4.6).

m-m,,e’“ =0
Bild 4.6

4.7.2.  Der Differentiationsoperator

Wir kniipfen nun an 3.4.1., Bemerkung 3.2 an. Bs bezeichne
C'la, b]

die Menge aller auf dem Intervall [a, b] definierten und differenzierbaren Funktionen
f, deren Ableitungen f’ auf [a, b] noch stetig, also Elemente von C[a, b] sind. Funk-
tionen f mit dieser Eigenschaft heiBlen auf [a, b] stetig differenzierbar. So hat z. B.
die durch

f(x) =sinx 0=x=1)
definierte Funktion f die Ableitung
fi(x) =cosx (0=x=1),
die auf [0, 1] stetig ist. Daher gilt fe C'[0, 1].
Nach 4.3. ist jede auf [a, b] differenzierbare Funktion dort auch stetig. Folglich ist
C1[a, b] eine Teilmenge von Cla, b]:
C'la, b] = Cla, b].
Genauer ist C'[a, b] eine echte Teilmenge von C[a, b], denn z. B. gehort die Funktion g
mit
g(x)=\/x—a (@sx=bh
zwar zu Cla, b], aber nicht zu C![a, b], da sie an der Stelle x = a nicht rechtsseitig
differenzierbar ist (vgl. 4.2.4.).
Nun sei f'e C'[a, b] und g € C'[a, b]. Ferner seien A und u beliebige reelle Zahlen.
Mit fund g ist nach 4.4.1. auch Af + ug auf [a, b] differenzierbar, und es gilt
(Uf +pg)' = A" + pg'. (4.65)
Da die Ableitungen f’ und g’ nach Voraussetzung auf [a, b] stetig sind, ist wegen
(4.65) auch (Af + ug)’ auf [a, b] stetig (3.4.1., Satz 3.4), d. h.
M + ug e C'a, b].

Die Menge C'[a, b] enthilt also mit zwei Funktionen f und g jede Linearkombina-

tion dieser Funktionen und ist daher ebenfalls ein linearer Raum (vgl. 3.4.1.).
"Ordnet man nun jeder Funktion fe C![a, b] ihre Ableitung f’ € Cla, b] zu, so

erhilt man einen Operator D, dessen Definitionsbereich die Menge C'[a, b] ist und
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dessen Wertevorrat in Cla, b] liegt'). Dieser Operator ist also durch
Df:=f" (feC'a, b)) (4.66)

definiert und heiBt Differentiationsoperator.
Fiir beliebige Funktionen fe C'[a, b], g € C*[a, b] und beliebige reelle Zahlen 4,
w gilt wegen (4.65)

D(Af +ug) = ADf + uDg. (4.67)
Operatoren mit dieser Eigenschaft nennt man /linear. Der Differentiationsoperator D

ist also ein linearer Operator.
Die Differentialgleichung (4.62) kann man nun auch als Operatorgleichung in der

Form Df = af

schreiben. In der Mathematik und ihren Anwendungen treten Operatorgleichungen
der unterschiedlichsten Art auf. Dabei kann man aus allgemeinen Eigenschaften der
vorkommenden Operatoren (z. B. der Linearitit) unabhingig von deren spezieller
Gestalt bereits auf gewisse Eigenschaften der Losungen schlieBen.

Der Differentiationsoperator D ist das einfachste Beispiel eines (gewohnlichen)
Differentialoperators. Darunter versteht man einen Operator, der jeder Funktion f
aus einer gewissen Funktionenmenge eine Funktion zuordnet, die von f, f’ und
evtl. Ableitungen hoherer Ordnung (s. ndchster Abschnitt) abhidngt. So ist etwa durch

Tf:=f2— 41+ (f)? (feCl0,1)

ein (nichtlinearer) Differentialoperator T erkldrt, der z. B. der Funktion f(x) = sin x
(0 £ x £1) die Funktion

Tf(x) = sin®x — 4/1 + cos’x (O<x< 1) »
zuordnet.

4.8. Ableitungen hoherer Ordnung

4.8.1. Definitionen und Beispiele

Jede auf einem offenen Intervall (a, b) differenzierbare Funktion f besitzt eine Ab-
leitung f'; diese ist eine auf (a, b) definierte Funktion (vgl. 4.2.3.). Ist nun auch f’
an einer Stelle x, € (a, b) differenzierbar, dann kann man also die Ableitung

df'(x)
dx  |x=x,

bilden. Man nennt (4.68) Ableitung 2. Ordnung (oder 2. Ableitung) der Funktion f an
der Stelle x, und schreibt dafiir
2
oder 4/

dx? =y, dx?  |xex,

Analog erkldrt man die 3. Ableitung /"' (x,) usw.

(4.68)

f"(xo) oder y"|i=., oder

Allgemein definiert man fiir eine beliebige natiirliche Zahl n > 1 die Ableitung
n-ter Ordnung (oder n-te Ableitung) von f an einer Stelle x rekursiv durch die Vor-

1) In Teil 2 dieses Bandes wird sich herausstellen, da3 der Wertevorrat von D die ganze Menge
Cla, b] ist (s. Satz 10.9).
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schrift

fO) = [f"P)]. (4.69)
Fiir spdter aufzustellende Formeln ist es zweckméBig, f(x) selbst als Ableitung nullter
‘Ordnung zu bezeichnen, also

fO®):= 1) (4.70)

zu schreiben.
Statt ,,Ableitung n-ter Ordnung** sagt man auch ,,Differentialquotient n-ter Ord-
nung*‘ und schreibt

dny

o 4.71)
(lies ,,d — n — y nach d — x hoch n*‘) oder

d*f(x;

—c'{;l. 4.72)

Eine Funktion f heiBt auf einem Intervall I n-mal (stetig) differenzierbar, wenn die
Ableitung ™ auf 7 existiert (und stetig ist). Natiirlich existieren dann erst recht die
Ableitungen f', "', ..., f®V auf L.

Beispiel 4.24: Fiir die Funktion f(x) = sin x ergibt sich nacheinander:

fi(x) =(sinx) =cosx,
f"(x) =(cosx) = —sinx,
f"'(x) = (=sinx)" = —cosx,

f®(x) = (—cos x) = sin x.
Wegen f®(x) = f(x) gilt f®(x) = f'(x) usw. Die Funktion f(x) = sin x ist also an
jeder Stelle x beliebig oft differenzierbar, und fiir die Ableitung einer beliebigen Ord-
nung n gilt offenbar
d*sinx {(—1)" sinx fir n =2k,
dx* |(=D*cosx fir n=2k +1
Beispiel 4.25: Entsprechend findet man fiir die Funktion
f(x) =Ilnx (x>0):

(k = 0, ganz). 4.73)

, 1
re =—,
” 1
frx) =- 2
1-2
) ==
1-2-3
1w = - =%
Man vermutet, daB fiir jede natiirliche Zahl » gilt
d"lnx w1 (m— 1! - .
o (=1) — (n 2 1, ganz; x > 0). (4.74)

Durch vollstindige Induktion kann man (4.74) beweisen.
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Aufgabe 4.15: Berechnen Sie die 2. Ableitung der Funktion f(x) = esi***,

Aufgabe 4.16: Berechnen Sie sdmtliche Ableitungen der Funktion f(x) = x" (n eine
natiirliche Zahl).

Aufgabe 4.17: Ermitteln Sie eine Formel fiir die n-te Ableitung (n eine beliebige
natiirliche Zahl) der Funktion f(x) = cos x

a) an einer beliebigen Stelle x,
b) speziell an der Stelle x = 0.

Aufgabe 4.18: Wie lautet die n-te Ableitung (n eine beliebige natiirliche Zahl) der
Funktion f(x) = a* (a > 0)? Was ergibt sich speziell fiir a = e?

4.8.2. Physikalische Bedeutung der 2. Ableitung

Die Geschwindigkeit einer geradlinigen Bewegung mit der Weg-Zeit-Funktion

s = s(t) (4.75)
ist nach 4.2.2. die 1. Ableitung von (4.75) nach der Zeit:
o(t) = $(t). (4.76)

Im allgemeinen ist auch die Geschwindigkeit zeltabhangw (ungleichférmige Bewe-
gung); ihre Anderung in einem Zeitintervall 7 ... ¢ + At ist

ot + At) — o(1).
Man bezeichnet nun den Quotienten
o(t + At) — v(t)
At
als mittlere Beschleunigung im Zeitintervall t ... t + At und daher den Grenzwert
bt): = v(z‘ + At) — v(r) = 5(2)
Axao
als Beschleunigung der Bewegung zur Zeit t. Mit (4.76) gilt
b(t) = §(1), 4.77y

d. h., die Beschleunigung einer geradlinigen Bewegung ist die 2. Ableitung der Weg-Zeit-
Funktion nach der Zeit.

Das Newtonsche Grundgesetz fiir die geradlinige Bewegung einer Punktmasse m
unter dem EinfluB einer in Wegrichtung wirkenden Kraft F lautet

mb = F.
Mit (4.77) folgt daraus
m§ = F. (4.78)

Bei gegebener Kraft F ist (4.78) eine Differentialgleichung (vgl. 4.7.1.) fiir die Weg-
Zeit-Funktion s = s(¢).

Aufgabe 4.19: Auf eine an einer Feder befestigte Punktmasse m wirkt (bei Vernach-
lassigung der Reibung) die Federkraft F = —ks (k > 0: Federkonstante, s: Auslen-
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kung der Punktmasse aus der Ruhelage). Zeigen Sie, daB die Funktion
s = A cos (wot — x)

(A, o beliebige Konstanten, w, =A/§) die Schwingung der Punktmasse beschreibt.

4.8.3. Rechenregeln fiir Ableitungen hoherer Ordnung

Die Formeln 4.4.1. (4.27) und 4.4.1. (4.28) lassen sich offensichtlich unmittelbar
auf Ableitungen einer beliebigen Ordnung n iibertragen, d. h., es gilt unter entspre-
chenden Differenzierbarkeitsvoraussetzungen

(f+ @ = f® 4 g, 79
(¢f)™ = ¢f™ (ceine Konstante). (4.80)

Wir wollen nun noch eine Formel fiir die hoheren Ableitungen eines Produkts zweier
Funktionen f und g angeben. Durch wiederholte Anwendung der Produktregel erhélt

man
(8 =fg+/se,
()" =f'g+2fg +/g'
(f5)" =f"g+3f"g +3fg" +/5g". (4.81)
Aligemein gilt die sog. Leibnizsche Regel
I f® = 3 (")f R (4.82)
K=o \k

die man mittels vollstandiger Induktion beweisen kann. Diese Formel erinnert an die
binomische Formel fiir die Potenz (f + g)"; man beachte aber, daB in (4.82) die oberen
Indizes Ableitungen bezeichnen, wobei insbesondere f© bzw. g@ gemiB (4.70) die
Funktion f'bzw. g ist.

Beispiel 4.26: Gesucht ist die 3. Ableitung der Funktion
y = x*sinx.
Hier konnten wir die ausgeschriebene Formel (4.81) anwenden. Zur Ubung wollen
wir aber die Formel (4.82) (mitn = 3, f(x) = x2, g(x) = sin x) benutzen. Danach gilt
ym = ((3)) (x2)/// (sin X () + (i) (XZ)” (sin x);

also mit den Binomialkoeffizienten

G- G- @-Fi-e (e

sowie unter Beachtung von (4.73) und Aufgabe 4.16
""" = 6cos x — 6xsin x — x? Ccos x.

Aufgabe 4.20: Berechnen Sie die 4. Ableitung der folgenden Funktionen:

a) f(x) = 3x* — 5% + cos%, b) f(x) = =

3
e’
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=5l 15 WeierstraBsche Zerlegungsformel und Differential

Ist f'eine an der Stelle x differenzierbare Funktion, dann giit auf Grund der Defi-
nition von f(x)

lim [—f—(i‘fL;Zﬁ"l . f’(x)] -0 )
h—0
Setzt man '
athy:= LEER IO _ oy 40,
dann ist also
SO+ 1) = £ = £+ h it lim 7 = 0. .2)

Mit dem in Abschnitt 2.6. eingefiihrten Symbol o kann man (5.2) auch in der folgen-
den Form schreiben:

fix+h) = f(x) =f(x) h+ oh) fir h—0. (5.3)
Formel (5.2) bzw. (5.3) heiBt Weierstrafische Zerlegungsformel. Betrachten wir die
Darstellung (5.2). Danach ist die Funktionswertdifferenz

Ay = f(x + h) — f(x) (5.4)
in zwei Summanden zerlegt, wobei der zweite Summand fiir 7 — 0 wegen (k) —» 0
,,schneller* gegen null konvergiert als der erste (sofern man von dem Fall f'(x) =0
einmal absieht). Fiir kleine Werte von |A| ist daher der (in /4 lineare) erste Summand

f'x) - h (5.5)

der ,,Hauptteil* in der Zerlegung von Ay.
Mit Ausdriicken der Form (5.5) wollen wir uns nun befassen.

Definition 5.1.: Die Funktionf sei an der Stelle x differenzierbar. Das Produkt f'(x) - h
heift das zu der Stelle x und dem Argumentzuwachs') h gehdrige Differential (1. Ord-
nung) der Funktion f und wird mit df(x, h) bezeichnet, also

df(x, h):= f'(x) - h. (5.6)
Statt df(x, &) schreibt man auch kurz df oder dy, falls y die abhédngige Variable be-
zeichnet. Man beachte, daB das Differential dy = df(x, h) auBer von der Stelle x

(an der die Funktion f differenzierbar sein muB) auch noch von der Variablen 4
abhiingt, die beliebige Werte annehmen kann.

Beispiel 5.1: Das Differential der, Funktion f(x) = sin x an einer beliebigen Stelle x
und fiir einen beliebigen Zuwachs 4 ist

df(x, h) = (sinx) - h = cos x - h.
Die Funktion y = g(x) = x hat das Differential
dx =dy =) +h=h. (5.7

1) Man bezeichnet 4 auch im Fall 2 < 0 als Zuwachs.
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Wegen (5.7) identifiziert man den Argumentzuwachs /4 einer beliebigen Funktion f°
mit dem Differential dx der speziellen Funktion g; man schreibt also statt (5.6) auch

df(x, dx) = f'(x)dx oder dy = f'(x)dx. (5.8)
Dabei ist nun dx eine (von x unabhingige) Variable, die beliebige Werte annehmen
kann und auch Differential der unabhdngigen Variablen genannt wird. Bei dieser Be-
zeichnung des Argumentzuwachses verwendet man fiir das Differential der Funktion f
an der Stelle x statt (5.8) gelegentlich auch das Symbol df(x). So schreibt man z. B.
(vgl. Beispiel 5.1)
d(sin x) = cos x - dx.

Unter der Voraussetzung dx # 0 kann man z. B. die zweite Gleichung von (5.8)
durch dx dividieren und erhdlt

dy _ o,
o =S - (59

Damit gewinnt die in 4.2.1. zunédchst nur als symbolische Schreibweise fiir die Ablei-
dy
dx
Quotient der Differentiale dy und dx. Deshalb sagt man statt ,,Ableitung‘‘ auch ,,Dif-
ferentialquotient‘.

tung f'(x) eingefiihrte Bezeichnung —— eine neue Bedeutung: Gema8 (5.9) ist f”(x) der

Beispiel 5.2: Die Funktion
fx)=Inx (x>0)

hat die Ableitung
1

== >0
und daher das zu einem beliebigen Zuwachs dx gehorige Differential

dy = i dx.

x

Nach Division durch dx (dx # 0) erhélt man daraus die Ableitung zuriick:

dy 1 ,

= f'(x).

Wenden wir uns nun wieder der WeierstraBBschen Zerlegungsformel zu. Mit dx
statt 4 und (5.8) lautet (5.2)

f(x + dx) — f(x) = df(x, dx) + n(dx)dx mit limxn(dx) =0
dx-0
oder kurz

Ay = dy + n(dx) dx mit limy(dx) = 0. (5.10)
dx-0

Zur geometrischen Interpretation von (5.10) betrachten wir Bild 5.1, in dem wir die
Bildkurve einer Funktion fund deren Tangente im Punkt P(x, f(x)) gezeichnet haben.

Offenbar gilt QP* = Ay. Aus dem rechtwinkligen Dreieck PQQO* liest man ferner ab
Q0* = tan * dx = f'(x) dx = dy,

d. h., das Differential dy ist der zu dem (willkiirlichen) Abszissenzuwachs dx gehorige

Zuwachs der Tangentenordinate.

5 Pforr, Diff.- u. Integr.
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Nach (5.10) ist damit
n(dx) dx = dy — dy = Q*P*.
Fiir (5.10) kann man auch schreiben
lim Ay = dy
dx—-0 X

=0 oder Ay =dy + o(dx) fir dx -0,

d. h., fur dx —» 0 konvergiert die Differenz 4y — dy ,,s0 schnell* gegen null, da

. Ay —d . . .
sogar noch der Quotient ——}W—y— den Grenzwert null hat. In diesem Sinne gilt

Ay =~ dy, falls |dx] klein ist (5.11)
oder ausfiihrlich
] f(x + dx) — f(x) = f'(x) dx, falls |dx| klein ist, (5.12)

d. h., fiir einen betragsmapig kleinen Argumentzuwachs dx ist das Differential f'(x) dx
ein Niherungswert fiir die Funktionswertdifferenz f(x + dx) — f(x). Hiervon werden
wir in 5.2.2. Gebrauch machen.

Beispiel 5.3: Fiir die Funktion f(x) = x? gilt
Ay = (x + dx)* — x* = 2x dx + (dx)?, dy = (x?) dx = 2xdx,
also Ay = dy + (dx)%

(Durch einen Vergleich mit (5.10) erhdlt man daraus 7(dx) = dx.) FaBt man x? als
Flacheninhalt eines Quadrats mit der Seitenlinge x auf (Bild 5.2), dann entspricht
einer VergroBerung der Seitenldnge um dx eine VergroBerung des Flacheninhalts um
Ay. Dabei setzt sich Ay aus den Inhalten der schraffierten Rechtecke, also dy, und
dem Inhalt (dx)? des punktierten Quadrats zusammen. Falls dx klein im Vergleich zu
x ist, tridgt (dx)? nur unwesentlich zur VergroBerung des Flacheninhalts bei; es giit
dann also 4y ~ dy.

y

¥
f(edx = g

ax
y=fx),

4y

= |

P N 5
)
ftx) '
Bild 5.1 Bild 5.2

x+0x X X o

N

Aufgabe 5.1: Berechnen Sie die zu einer beliebigen Stelle x und einem beliebigen Zu-
wachs dx gehorigen Differentiale der folgenden Funktionen:

a) f(x) =cosx, b)fx)=xe*  o)f(x) =+/x* + 3.

Aufgabe 5.2: Geben Sie einen Naherungswert fiir sin 46° an, indem Sie die Funk-
tionswertdifferenz

Ay = sin 46° — sin 45°
durch das entsprechende Differential dy ersetzen.
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5.2. Fehlerrechnung und Differential

5.2.1.  Grundbegriffe der Fehlerrechnung

Beim praktischen Rechnen mufl man im allgemeinen mit fehlerbehafteten GréBen
arbeiten. So sind in numerischen Rechnungen reelle Zahlen durch Néherungswerte
zu ersetzen, die sich durch Rundung ihrer Dezimalbruchentwicklung auf endlich
viele Stellen nach dem Komma ergeben. (Zum Beispiel wird man fiir die Zahl
7 = 3,14159 ... etwa den auf 4 Stellen nach dem Komma gerundeten Wert 3,141 6 ver-
wenden.) Messungen liefern von vornherein nur Ndherungswerte fiir die MaBzahlen
der gemessenen GroBen, da jede Messung einer Vielzahl von Einfliissen (wie z. B.
Schwankungen der Raumtemperatur) unterliegt, die in ihrer Gesamtheit nicht kon-
trollierbar sind.

Nun sei @ ein Ndherungswert fiir die reelle Zahl ¢ und 4a:= a — 4. Dann heift
die (nicht negative) Zahl

|da] = |a — 4] (5.13)
absoluter Fehler von a. Im Falle @ # 0 kann man auBlerdem den relativen Fehler

da| _ |a—a|

<=7 (5.14)
betrachten.

Da man den exakten Wert a im allgemeinen nicht kennt, ist auch der absolute (und
damit der relative) Fehler von @ unbekannt. Jedoch kennt man in den meisten Fillen
eine obere Schranke fiir den absoluten Fehler, also eine Zahl 6 > 0 mit

|4a] < 6. ) ) (5.15)
Statt (5.13) und (5.15) kann man auch schreiben

la—al <6
oder

a—-0<asd+o, (5.16)

d. h., der (unbekannte) Wert a liegt im Intervall [@ — 0, @ + 0].

Ist @ ein MeBwert, also |4al ein Meffehler, dann ist eine obere Fehlerschranke &
in vielen Fillen aus der Art der Messung bekannt. Man schreibt dann, besonders in
der technischen Fachliteratur, statt (5.16) auch

a=a+0.

Beispiel 5.4: Fiir den Durchmesser D einer Kugel gelte D = (6,35 + 0,02) cm. Diese
Angabe bedeutet, daB der Wert D = 6,35 cm gemessen wurde und der absolute Fehler
|4D| £ 0,02 cm ist. Fiir den relativen Fehler von D erhilt man daraus
AD| _ 0,02

2 = = o

! 7 |=63 0,00314... < 0,0032 = 0,32%.
Dabei haben wir eine obere Schranke fiir den relativen Fehler, wie iiblich, auch in Pro- _
zent angegeben.

Entsteht @ durch Rundung der reellen Zahl a auf n Stellen nach dem Komma,
dann gilt auf Grund der bekannten Rundungsregeln fiir den Rundungsfehler

|4a] < 0,510, (5.17)



68 5. Differentiale

Beispiel 5.5: Einer vierstelligen Logarithmentafel entnimmt man fiir a = 1g 53 den
Niherungswert @ = 1,7243. Es gilt also nach (5.17) mitn = 4

|lg 53 — 1,7243] = |4a] £ 0,5 10~* = 0,00005 (5.18)
oder [vgl. (5.16)]
1,72425 < 1g 53 < 1,72435, (5.19)

wobei man, genau genommen, das rechts stehende Zeichen < durch < ersetzen
konnte.

Fiir n reelle Zahlen ay, a,, ..., a, seien nun Néaherungswerte d,, @,,..., @, mit den
oberen Fehlerschranken 43, 05, ..., d, gegeben. Es gilt also

la, — @) =|da)l £6; (=1,2,...,n). (5.20)

Als Niherungswert fiir die Summe
" s=a +a+..+a,

kann man dann

§=d +d+..+a, (5.21)
berechnen. Fiir den absoluten Fehler |4s| = |s — §| von § gilt

4] = lay = @) + (@2 = @) + ... + (@ — &)]-
Daraus folgt nach der Dreiecksungleichung unter Verwendung von (5.20)
[ ] |4s| £ |day| + |day] + ... + |da,| £ 6, + 05 + ... + 0, (5.22)

In Worten besagt die erste Ungleichung von (5.22):

Der absolute Fehler einer Summe von Zahlen ist hochstens gleich der Summe der
absoluten Fehler der einzelnen Summanden. Man beachte, daB die absoluten Fehler
auch dann zu addieren sind, wenn einige der @, negativ sind.

Beispiel 5.6: Mit den Tafelwerten?)

sin 78° = 0,9781, 1g 53 = 1,7243
berechnet man fiir

s =7-sin78 — Ig53
den Niherungswert

§=7-09781 — 1,7243 = 5,1224. . (5.23)
Wegen

|7+ sin78° — 7-0,9781| = 7 - |sin 78° — 0,9781|

<7-0,5-100% =35-10*

und (5.18) gilt nach (5.22)

14s) £3,5-107* + 0,5+ 107* = 41074,
also

5,1220 < s < 5,1228.

1) Vgl. FuBnote 1 auf Seite 36.
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Auf zwei Stellen nach dem Komma gerundet, ist daher s = 5,12. Eine Rundung auf
drei Stellen nach dem Komma ist auf Grund der gefundenen Schranken fiir s offen-
bar nicht méglich. Ohne die Fehlerbetrachtung kénnte man s iiberhaupt nicht ge-
rundet angeben. Insbesondere ist es unzuldssig, aus (5.23) etwa zu schlieBen, daB s,
auf drei Stellen nach dem Komma gerundet, ,,sicher* gleich 5,122 ist. Tatséchlich
findet man mit genaueren Tafelwerten den auf drei Stellen nach dem Komma gerun-
deten Wert s = 5,123.

Aufgabe 5.3: Zur numerischen Berechnung von
s =1g(750)2 — 3 + 3./47
stehen die Tafelwerte Ig 75 = 1,875 und \/Zﬁ = 2,168 zur Verfiigung.

a) Berechnen Sie einen Néherungswert § fiir s.
b) Schitzen Sie den absoluten und den relativen Fehler von § ab.
c) Geben Sie s gerundet an.

5.2.2. Anwendung des Differentials

Nun soll untersucht werden, wie sich ein Fehler einer Gré3e x auf eine von x ab-
héngige GroBe y = f(x) auswirkt (,,Fehlerfortpflanzung®).

Gegeben seien also eine Funktion f, ein Ndherungswert % einer Grofe x und eine
obere Schranke 0 fiir den absoluten Fehler von X. Mit

dx =Ax =x — %

gilt also

ldx| < 0. (5.24)
Als Naherungswert fiir den unbekannten exakten Wert y = f(x) kann man

7 =1® /
berechnen. Gesucht ist eine obere Schranke fiir den absoluten Fehler

ldyl = Iy = 51 = If(% + dx) = f®)I. (525)

Ist § ,,klein®, dann ist wegen (5.24) auch |dx| ,,klein‘. Ist ferner fan der Stelle % dif-
ferenzierbar, dann kann man nach (5.12) die Funktionswertdifferenz in (5.25) durch
das zu der Stelle ¥ und dem Zuwachs dx gehorige Differential von fanndhern, d. h.
es gilt

1 |4yl = 1dyl = |/ - [dx] < | ()] - 6. (5.26)

Fiir den relativen Fehler von y erhilt man daraus

I Iﬂ sz_.y = f—Eﬂ |dx|] = iﬁ - 0. (5.27)
I y y y y

Mit (5.26) und (5.27) hat man zwar nur gendherte, aber sehr einfache und praktisch
durchaus brauchbare Abschitzungen fiir den absoluten bzw. relativen Fehler von j.

Beispiel 5.7: Zur Bestimmung der Hohe 7 eines Turmes werde vom FuBpunkt des
Turmes aus eine horizontale Strecke der Lange / (in m) abgetragen und vom Ende
dieser Strecke die Turmspitze anvisiert (Bild 5.3). Die Messung liefere fiir den Winkel
x einen Niherungswert & wobei der absolute Fehler |dx| héchstens gleich 6 sei.
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Wegen
h=fx) =1 tanx

ist A = /- tan & ein Nidherungswert fiir 4, und mit f'(&) = F’zzx: gelten fiir den ab-

soluten bzw. relativen Fehler von / die gendherten Abschitzungen

|4h| ~ |dh] =

oz 9 S e

1 ’dh‘< 5 2

= 'sing-cosz  sin2a

Bild 5.3

Speziell erhilt man fiir

i g o T —01° = —"_
=30 (inm), @ = 60" = 7 6 =0,1 1300
die Werte
h =30-tan 60° = 30/3 (in m),
307 T .
=~ S 5—5iv = ¢ -
|4h| = |dh| £ 71800 13 (in m), . (5.28)
‘ﬂ ~{_‘& < 15 - (5.29)

Zur numerischen Auswertung schitzen wir die Schranken in (5.28) und (5.29) weiter
nach oben ab, indem wir in (5.28) mit® = 3,1415... < 3,15 den Zahler vergroBern
und in (5.29) auBerdem mit \/3 = 1,7320 ... > 1,73 den Nenner verkleinern:

|4h] ~ |dh| < ] < % =021 (inm), (5.30)
Ah dh 021 e
t~ I-— < 3p 173 = 000404 < 00041 = 041%.

Man beachte, daB in (5.28) fiir 7 nicht der gerundete Wert 3,14 verwendet werden

kann,.da er kleiner als = ist, so daB pild eventuell nicht mehr obere Schranke fiir

15
|dA| ist. Entsprechendes gilt fiir (5.29). Zur numerischen Berechnung von h verwenden
wir fiir /3 den gerundeten Wert 1,732. Dann ist

30+ 1,732 = 51,96 (in m)
ein Niherungswert fiir 4, wobei fiir den Rundungsfehler gilt
|h — 51,96] = [30-\/5 —1,732] £30-0,5- 103 = 0,015. (5.31)
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Aus (5.30) und (5.31) folgt schlieBlich
|h = 51,96] = |(h — h) + (h — 51,96)]
< |h— k| + |h — 51,96] =~ |dh| + |h — 51,96
< 0,21 + 0,015 < 0,23 (in m),
d. h., es ist 51,96 — 0,23 = 51,73 eine gendherte untere Schranke und 51,96 + 0,23
= 52,19 eine gendherte obere Schranke (in m) fiir die wahre H6he 4 des Turmes.

Aufgabe 5.4: Schitzen Sie ndherungsweise den absoluten Fehler ab, der bei der Be-
rechnung von \/e + I entsteht, wenn fiir e der Naherungswert 2,72 verwendet wird.

Aufgabe 5.5: Fir den Durchmesser D einer Kugel gelte D = (6,35 + 0,02) cm (vgl.
Beispiel 5.4). Ermitteln Sie gendherte obere Schranken fiir den absoluten und den
relativen Fehler des damit berechenbaren Niherungswertes fiir das Kugelvolumen V.

Aufgabe 5.6: Unter Verwendung einer Wheatstoneschen Briicke (Bild 5.4) soll ein
Widerstand y gemessen werden. Mit dem Vergleichswiderstand R (in Ohm), der MeB-
drahtldnge / (in mm) und der Kontakteinstellung x (in mm) gilt
Rx
I—x"

Fiir x liest man einen Néherungswert ¥ mit einem absoluten Fehler |dx| < 6 ab.

Geben Sie gendherte obere Schranken fiir den absoluten und den relativen Fehler

von J an.
A
A

L |

| ' | Bild 5.4

5.3. Differentiale hoherer Ordnung
Es sei feine auf einem Intervall (a, b) zweimal differenzierbare Funktion. Das zu
einer beliebigen Stelle x € (a, b) und dem Zuwachs 4 gehérige Differential von £, also
dy =f'(x) " h, (5.32)
ist dann beziiglich, x eine auf (a, b) differenzierbare Funktion mit der Ableitung
Ed;[f’(x) +h] = f"(x) - h, also mit dem Differential
d(dy) = [f"(x) - h1- h = f'(x) - 2, (5.33)

wobei wir denselben Zuwachs # wie in (5.32) gewihlt haben. Man nennt (5.33) das
Differential 2. Ordnung der Funktion fund schreibt dafiir d2y. Mit dx statt 4 und der
fiir h> = (dx)? iiblichen Schreibweise dx? gilt also

d?y = f/(x) dx>. (5.34)

*

*
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Beispiel 5.8: Das Differential 2. Ordnung der Funktion y = f(x) = x* ist
d2(y) = (x%)" dx? = 6x dx2.

In Verallgemeinerung von (5.34) definiert man das Differential n-ter Ordnung (n = 2)
einer n-mal differenzierbaren Funktion f durch

dhy:= f®(x) dx" oder df(x,dx):=f™(x)dx". (5.35)
Dividiert man die erste Gleichung von (5.35) durch dx" (dx # 0), so erhdlt man

Yy _ w

e f@(),
womit die in 4.7.1. fiir die Ableitung n-ter Ordnung eingefiihrte Schreibweise und die
Bezeichnung ,,Differentialquotient n-ter Ordnung*‘ nachtréglich gerechtfertigt sind
(vgl. 5.1).

* Aufgabe 5.7: Berechnen Sie die Differentiale 3. Ordnung der folgenden Funktionen:
a)f(x) =xIn|x| (x=+0), b) f(x) = 3x* — 5x.



6. Eigenschaften differenzierbarer Funktionen

6.1. Die Siitze von Fermat und Rolle

Die beiden folgenden Sétze sind der Ausgangspunkt fiir die in den nidchsten Ab-
schnitten zu behandelnden grundlegenden Aussagen iiber differenzierbare Funk-
tionen.

Satz 6.1 (Sarz von Fermat*)): Die Funktion f sei auf dem Intervall I definiert und nehme
an der inneren Stelle & von I einen absoluten Extremwert an. Ist f an der Stelle & diffe-
renzierbar, dann gilt f'(§) = 0.

Geometrisch besagt dieser Satz, daf3 die Tangente an die Bildkurve von fim Punkt
P(&, f(£)) den Anstieg Null hat, also parallel zur x-Achse verlduft (s. Bild 6.1).

Bild 6.1

Satz 6.2 (Satz von Rolle?)): Die Funktion f sei auf [a, b] stetig und auf (a, b) differen-
zierbar; ferner sei f(a) = f(b). Dann existiert (mindestens) ein & € (a, b) mit f'(£) = 0.

Beweis: Nach Satz 3.8 hat f auf [a, b] ein absolutes Minimum 2, und ein absolutes

Maximum m,. Wir unterscheiden zwei Félle:

1. Ist m, = m,, dann ist f auf [a, b] konstant, also f'(§) = 0 fir jedes & € (a, b)
(s. 4.2.3.).

2. Ist m; + m,, dann nimmt f wegen f(a) = f(b) mindestens einen der beiden absolu-
ten Extremwerte an einer inneren Stelle £ von [a, b] an. Nach Satz 6.1 ist dann aber

f@ =0.

Damit ist der Satz bewiesen. W

In Bild 6.2 haben wir Satz 6.2 geometrisch veranschaulicht, wobei wir zugleich
beriicksichtigt haben, daB es mehrere Stellen & € (a, b) geben kann, zu denen eine

¥

Y, y=fx)
Fla)=f(b)
1 Bild 6.2

|
I
1]
as: S b x

horizontale Tangente an die Bildkurve von f gehort. Wir bemerken noch, daBl die
Voraussetzung der Stetigkeit von f auf dem abgeschlossenen Intervall [a, b] fiir die

1) Pierre de Fermat (1601-1665), franzdsischer Mathematiker und Jurist.
2) Michel Rolle (1652-1719), franzdsischer Mathematiker.

S. 6.1

S. 6.2
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Giiltigkeit des Satzes von Rolle wesentlich ist. So ist z. B. die Funktion
fx fir 0Zx<1,
X)=
S 0 fir x=
auf dem offenen Intervall (0, 1) differenzierbar. Ferner gilt f(0) = f(l) = 0. Jedoch ist

fan der Stelle x = 1 nicht linksseitig stetig. Tatsdchlich gilt nun f’(x) = 1 = 0 fiir
alle x € (0, 1).

(Bild 6.3)

fir 0=
y{)(l/ x<t

ofir x =1

Bild 6.4

6.2. Mittelwertsiitze der Differentialrechnung

6.2.1. Der Mittelwertsatz der Differentialrechnung

Offenbar kann man den Satz von Rolle auch folgendermaBen geometrisch inter-
pretieren: Unter den angegebenen Voraussetzungen tiber die Funktion f gibt es min-
destens eine Tangente an die Bildkurve von f; die zu der Sekante durch die Punkte
(a, f(a)) und (b, f(b)) parallel ist, die also denselben Anstieg wie diese Sekante hat.

Der folgende wichtige Satz besagt nun geometrisch, daB diese Aussage auch dann
gilt, wenn die Sekante nicht notwendig horizontal verlduft (s. Bild 6.4). Man beachte:
Der Anstieg der Sekante s ist

fb) — fla)

“b-a
der Anstieg der Tangente ¢ ist f'(£).

S. 6.3 Satz 6.3 (Mittelwertsatz der Differentialrechnung): Die Funktion f sei auf [a, b] stetig
und auf (a, b) differenzierbar. Dann existiert (mindestens) eine Stelle & mit

| IO SO _ ) @<t <) ©1)

Beweis: Es sei fy diejenige Funktion, deren Bildkurve die Sekante s ist, also

£ = fia) + LOZT@ (g
Die Funktion
p(x) = f(x) = fi(x)

(s. Bild 6.4) gentigt dann auf [a, b] den Voraussetzungen des Satzes von Rolle. Daher
existiert eine Zahl £ € (a, b) mit
J®) — fla) (b) ~-fla

0=¢'@ =, -£E=r©®- —

Damit ist der Satz bereits bewiesen. B
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Setzt man
Xo = a, h=b-—a, also xo+h=b,
so kann man jedes £ € (a, b) = (x,, xo + h) offenbar in der Form
E=xo+9h mit 9e(0,1)
darstellen (s. Bild 6.5).

h

P
1 Bild 6.5
X Xpth X

Damit kann man statt (6.1) auch schreiben

&O’M —fe+ ) (0<d<1) (6.2)
oder

Flxo + B = fxo) = hf'(xo +0h) (0<® < 1) 63)
oder
 § Sfxo + h) =f(xo) + h-f'(xo +9h) (0 <P <I). (6.4)

Offenbar kann /% hierbei auch negativ sein. Zum Vergleich mit (6.3) erinner.n wir an
die Beziehung (5.12), die mit x, statt x und 4 statt dx {ibergeht in

S(xo + 1) — f(xo) = h-f'(x,), falls |h] klein ist. (6.5)
Wihrend in (6.5) lediglich eine qualitative Aussage iiber die Funktionswertdifferenz
f(xo + h) — f(x,) getroffen wird, ist diese Differenz in (6.3) exakt dargestellt, aller-
dings unter Einbeziehung einer Zahl {, von der man im allgemeinen nur weiB, daf3
sie im Intervall (0, 1) liegt. In éinem einfachen Fall wollen wir eine solche Zahl # ein-
mal ermitteln.

Bild 6.6

Beispiel 6.1: Wir betrachten die Funktion

f(x) = ¢x* (c % 0 konstant).
Offenbar erfiillt f fiir jedes Intervall x, ... xo + A die Voraussetzungen des Mittel-
wertsatzes. Es gibt also mindestens ein 4, so daB (6.2) gilt, d. h.

c(xo + h)?* — cx3

7 =2c(xo +?h) (0 <9 < 1). (6.6)
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Als Bestimmungsgleichung fiir 9 aufgefalit, ist (6.6) eindeutig 16sbar; man erhilt
& =% (in diesem Fall ist ¢ also sowohl von x, als auch von /4 unabhingig; vgl. aber
Aufgabe 6.1). Mit den Bezeichnungen von Bild 6.6 bedeutet das geometrisch: Zu der
Sekante durch die Punkte P, und P, gibt es genau eine paraliele Tangente an die Para-

bel y = cx?; diese gehdrt zum Mittelpunkt xo + % des Intervalls [xg, xo + A]. Das

gleiche Ergebnis erhdlt man auf dieselbe Weise fiir eine beliebige quadratische Parabel
¥ = a,x* + a;x + a; (a, # 0). Damit hat man ein einfaches Verfahren zur Tangen-
tenkonstruktion fiir quadratische Parabeln.

In der Form (6.4) kann man den Mittelwertsatz zur numerischen Berechnung eines
Ndéherungswertes fiir f(x, + h) verwenden, wenn f(x,) — wenigstens niherungsweise —
bekannt und |A| klein ist. Dazu muBl man f’(x, + 94) (unter Beachtung der Unglei-
chungen 0 < & < 1) geeignet abschétzen.

Beispiel 6.2: Aus einer flinfstelligen Tafel entnimmt man den Wert
In 17 = 2,83321. (6.7)

Gesucht ist ein Naherungswert fiir In 17,2.
Wegen In 17,2 = In (17 + 0,2) wenden wir den Mittelwertsatz auf die Funktion
f(x) = In x mit

X =17, h=02 (6.8)

an. Mit f'(x) = % lautet (6.4) fiir beliebiges x, und

h

In(xo + h) = Inx, +x0+—0h 0O<d <,

also fiir die Werte von (6.8)
0,2

In172 =1In17 + T 1029 O<d<1). (6.9)

Fiir L—— ermitteln wir nun numerisch (leicht) berechenbare Schranken. We-
17 + 0,29

gen 0 < ¥ < 1 gilt

02 02 _ 02
17+02-1 > 174020 ~17+02-0°

Aus (6.9) folgt damit

0,2 0,2

In 17+m<1n17,2< In17 + 7 (6.10)
In (6.7) ist die 5. Stelle nach dem Komma gerundet, es gilt also genauer

2,833205 < In 17 < 2,833215. (6.11)
Ferner ist

0,2

—— = 0,011627 ... > 0,011627, (6.12)

17,2

0,2

T = 0,011764 ... < 0,011765. (6.13)

Aus (6.10) folgt mit (6.11), (6.12) und (6.13) schlieBlich
2,833205 + 0,011627 < In 17,2 < 2,833215 + 0,011765,
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also

2,844832 < In 17,2 < 2,844980
oder bei Rundung auf drei Stellen nach dem Komma

In 17,2 = 2,845.
Die damit erzielte Genauigkeit 1dBt sich durch Mitnahme einer groBeren Stellenzahl
in (6.7), (6.12) und (6.13) nicht verbessern, da die durch (6.10) gegebenen Schranken
fiir In 17,2 sich nach (6.12) und (6.13) bereits in der 4. Stelle nach dem Komma unter-
scheiden.

In 6.3.5. werden wir eine Methode kennenlernen, die die Berechnung von Funk-
tionswerten mit beliebiger Genauigkeit gestattet.

Aufgabe 6.1: Bestimmen Sie alle ¢ € (0, 1), so daB die Tangente an die Kurve y = ¢*
ander Stelle & = x, + 9h parallel zu der zum Intervall [x,, xo + /4] gehorigen Sekante
ist.

Aufgabe 6.2: Geben Sie unter Verwendung des Tafelwertes e = 2,7183 eine untere
und eine obere Schranke fiir e*-°! an.

6.2.2. Folgerangen aus dem Mittelwertsatz

Nach 4.2.3., Beispiel 4.4, ist die Ableitung einer auf einem Intervall I konstanten
Funktion dort gleich null. Wir kénnen nun zeigen, daB hiervon auch die Umkehrung
gilt:

Satz 6.4: Die Funktion f sei auf dem Intervall I stetig und an jeder inneren Stelle x von
I differenzierbar mit f'(x) = 0. Dann ist f auf I konstant.

Beweis: Wir wihlen eine beliebige Zahl a € I. Zu jedem x € I (x & a) gibt es dann
nach dem Mittelwertsatz, angewandt auf das Intervall @ ... x, eine im Inneren dieses
Intervalls — also auch im Inneren von 7 — gelegene Zahl & mit

fx) = fla) = (x —a) - f'§).
Wegen f'(§) = 0 folgt daraus f(x) = f(a). Da x € I beliebig war, hat fauf I den kon-
stanten Wert f(a). m

Satz 6.5: Die Funktionen f und g seien auf dem Intervall I stetig und an jeder inneren
Stelle x von I differenzierbar mit f'(x) = g'(x). Dann unterscheiden sich f und g auf I
nur um eine additive Konstante.
Beweis: Die Funktion
P(x) = f(x) — gx) (xel)
erfiillt die Voraussetzungen von Satz 6.4. Folglich gibt es eine Zahl C mit
C =) =f(x) —gx) (xel),
was zu zeigen war. B
Beispiel 6.3: In 4.7.1. hatten wir erwihnt, daB jede Losung der Differentialgleichung
y' = oy («eine Konstante)

S. 6.4

S. 6.5
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auf einem (offenen) Intervall 7, also jede auf 7 differenzierbare Funktion f mit

(%) =of(x) (xel), ' (6.14)
die Form
f(x) = Ce™ (xel) (6.15)

hat, wobei C eine geeignete Konstante ist. Nun kénnen wir diese Behauptung bewei-
sen. Dazu betrachten wir die Funktion

@(x) = e f(x) (xel).
Mit fist auch ¢ auf 7 differenzierbar und hat die Ableitung
¢'(x) = —x e f(x) + e f(x) = e(f'(x) — of(x)) (xel).  (6.16)

Da f'nach Voraussetzung der Gleichung (6.14) geniigt, folgt aus (6.16) ¢'(x) = 0 fir
alle x € I. Nach Satz 6.4 gibt es also eine Zahl C mit

C=gx) =e*flx) (xel),
und daraus folgt die Behauptung.

Aufgabe 6.3: Zeigen Sie, daB die Funktionen

*

fx) = —arcsin-}lc— (xz 1) und g(x) = arctan V=1 x=21)

sich nur um eine additive Konstante unterscheiden, und ermitteln Sie diese Konstante.

6.2.3.  Der erweiterte Mittelwertsatz der Differentialrechnung -

Den folgenden Satz werden wir in 6.3.3. und 7.1.2. bendtigen.

S. 6.6 Satz 6.6 (Erweiterter Mittelwertsaiz der Differentialrechnung): Die Funktionen f und

g seien auf [a, b] stetig und auf (a, b) differenzierbar. Ferner sei g'(x) = 0 fiir alle
x € (a, b). Dann existiert (mindestens) eine Stelle & mit

SO =@ _ O ey e

2(b) —gla) @
Wir bemerken, daB die linke Seite von (§.17) sinnvoll ist: Nach Satz 6.3, angewandt
auf die Funktion g, existiert namlich ein & € (a, b) mit
gb) —gla -
"o 2
und wegen g'(&) = 0 folgt daraus g(b) — g(a) * 0.
Offenbar ist Satz 6.3 ein Spezialfall von Satz 6.6 fiir g(x) = x.

* Aufgabe 6.4: Beweisen Sie Satz 6.6 durch Anwendung von Satz 6.2 auf die Funktion

S®) - fla)

26) — 8@ [g(x) — g(@)].

#(x) = f(x) — fla) -
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6.3. Die Taylorsche Formel und ihre Anwendung

6.3.1. Taylorscile Formel fiir ganze rationale Funktionen

Es sei g eine ganze rationale Funktion n-ten Grades, also
g(x) = ap + a;x + ax* + ... + a,x" (a,% 0), (6.18)

wobei die Koeffizienten a, (v = 0, 1, ..., n) reelle Zahlen sind. Mit einer beliebigen
reellen Zahl x, sei nun g(x) nach Potenzen von (x — x,) entwickelt:

g(x) = ¢o + ¢1(x — Xo) + €2(x — x0)* + ... + cu(x — xo)" (cy #0). (6.19)
Fir die Ableitungen von g erhilt. man nach (6.19)
g(x) =1 + 2¢,(x — X)) + ... + ney(x — x0)"1,
”(x) = 2c2 + ...+ n(n - 1) c,,(x — X )"‘

""(x) = n(n — 1) o=y o
und daraus speziell fiir x = x,
8(xo) = co, ¢o = g(xo),
gx) =¢; =1leps, C1 =#,
g'(xo) =2¢, =2¢,,( als0 ¢, = 8 Z(TO) R (6.20)
o
¢Px0) =ty oo m E20K0),
n:
Damit geht (6.19) iiber in
(X g'(x
| e -0+ £ o+ E o + S oy
(6.21)

Das ist die Taylorsche Formel®) fiir eine ganze rationale Funktion n-ten Grades mit der
Entwicklungsstelle x,. Nach (6.20) sind die Koeffizienten ¢, (v = 0, 1, ..., n) in der
Entwicklung (6.19) durch den Funktionswert und die Werte der Ableitungen von g
an einer einzigen Stelle x, bereits eindeutig bestimmt. Tst also

g(x) = ¢ + 1(x — xo) + Ex — x0)® + ... + Glx — xo)" (&, £ 0)
eine andere Darstellung von g(x), dann gilt auch

),
o= g :'XO) »=0,1,...,n)

und daher mit (6.20)
é=c¢ (»=01,..n).

Speziell fiir x, = 0 erhélt man damit den

1) Brook Taylor (1685-1731), englischer Mathematiker.
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Satz 6.7: Ist neben (6.18) auch
g(x) = dp + a;x + @, x* + ... + @x" (@, + 0)
eine Entwicklung von g(x) nach Potenzen von x, dann gilt
a,=a, (»=0,1,...,n).
Dieser Satz ist die Grundlage fiir die Methode des Koeffizientenvergleichs, die wir
im néchsten Abschnitt sogleich anwenden werden.

AbschlieBend notieren wir noch die aus (6.21) folgende Taylorsche Formel von g
mit der Entwicklungsstelle x, = 0:

0 g’ ()
) = g(0)+§~(—) +—2Q St gnf) : (6.22)
Aus (6.18) und (6.22) folgt nach Satz 6.7
£(0)

=01,...n),

" »!

was man natiirlich auch direkt bestdtigen kann.

6.3.2. Das Hornersche Schema

Es sei wieder g eine ganze rationale Funktion n-ten Grades, also
g(x) = ax" + @ X" + ... + ayx + ao (a,* 0). (6.23)

Haufig steht man vor der Aufgabe, fiir eine gegebene Zahl x, den Funktionswert g(x,)
und eventuell auch die Ableitungen g©(x,) numerisch auszurechnen. Fiir n = 3 ist
eine direkte Berechnung im allgemeinen recht aufwendig. Nach (6.20) kann man diese
Werte aber milhelos ermitteln, wenn man die Koeffizienten ¢, der Entwicklung von
g(x) nach Potenzen von (x — x,) kennt. Im folgenden wollen wir nun ein sehr ein-
faches Verfahren zur Berechnung dieser Koeffizienten herleiten.

Wir notieren die Taylorsche Formel (6.21) der Funktion g in der Form

) = 800 + (5 = 50) [E2 + £ LD () B - d

(6.24)
und setzen
1 (n),
() = £ (’“’) + 5—2(’,‘_")(;: = Xo) + . + %(x — XL (6.25)
Dann gilt
g(x) = g(xo) + (x — Xo) * g1(x). (6.26)

Wir denken uns g,(x) nach Potenzen von x entwickelt und bezeichnen die Entwick-
lungskoeffizienten mit b,:

g1(x) = b,y x" 1 + b, ox"2 + ...+ byx + by 6.27)

Setzt man (6.27) in (6.26) ein und ordnet wieder nach Potenzen von x, so erhdlt man
g(x) = by X" + (byn — Xoby_y) X" 4 ...

+ (bo — Xob1) x + (g(x0) — Xobo)- (6.28)

Durch (6.23) und (6.28) sind zwei verschiedene Darstellungen derselben ganzen ratio-
nalen Funktion g gegeben. Nach Satz 6.7 miissen also die Koeffizienten gleicher
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Potenzen von x in (6.23) und (6.28) ibereinstimmen; der Koeffizientenvergleich
liefert

X a, =b,,, buy = ay,

x"Yia,y = b, 5 — Xob,_y, by =Gy y + Xoby_1,
................ also J. ... L L. (6.29)
x': a, = by — xoby, by =ay + xob;,

X% ap = g(xo) — Xobo, J 8(xo) = ao + xobo.

GemaB (6.29) kann man nacheinander die Koeffizienten b,_, b,_,, ..., b, und schlieB-
lich den Funktionswert g(x,) durch einfache Multiplikationen und Additionen be-
rechnen. Fithrt man diese Rechnungen im Kopf durch, so arbeitet man zweckmiBig
mit dem sog. Hornerschen Schema'):

a4 - Opg oot o q %
By hba e kb Xb by
| | |
[} Y [ Y Y v
Yo | by by b3y e & b 90

In der ersten Zeile notiert man die Koeffizienten a, (v = n,n — 1, ..., 0) des gegebenen
Polynoms (6.23). Danach schreibt man a, unverdndert in die dritte Zeile (nach
(6.29) ist b,_; = a,). Nun rechnet man in der durch die Pfeile angedeuteten Reihen-
folge, wobei die schriagen Pfeile ,,Multiplikation mit x,‘ und die senkrechten Pfeile
(vom zweiten ab) ,,Addition der dariiberstehenden Zahlen*‘ bedeuten.

Besonders einfach ist die Berechnung von b, und g(x,) gemiB (6.29) bei Verwen-
dung eines Taschenrechners; in diesem Falle braucht man das Hornersche Schema
natiirlich nicht aufzuschreiben.

Aus (6.26) folgt

xgﬁx; =g, ) + xg(—xo;0 : (6.30)

man kann daher das Hornersche Schema auch als Algorithmus zur Division eines
Polynoms g(x) durch einen Linearfaktor (x — x,) auffassen: In der dritten Zeile er-
geben sich die Koeffizienten b, (v =n — 1, n — 2, ..., 0) des verbleibenden Poly-
noms g;(x) und der Zahler g(x,) des ,,Restes* %.

—

Beispiel 6.4: g(x) = 3x* + x* — 5x + 2, xo =2:
30%) 1-5 2
6 12 26 42
2|36 13 2 |44=¢
Aus der dritten Zeile liest man ab [vgl. (6.26)]
3x* + x2 = Sx + 2 =44 + (x — 2)- (3x® + 6x% + 13x + 21).
Wie bisher mit g(x) kann man nun mit g,(x) verfahren und erhalt [vgl. (6.26)]
81(%) = g1(x0) + (x — Xo) * g2(%), (6.31)

1) William George Horner (1786-1837), englischer Mathematiker.
2) Man beachte, daB fiir jede fehlende Potenz x* (0 < k < n) der Koeffizient a; = 0 zu notieren
ist.

6 Pforr, Diff.- u. Integr.
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wobei g,(x) ein Polynom (n — 2)-ten Grades ist. Das Hornersche Schema, angewandt
auf g,(x), liefert die Koeffizienten von g,(x) und — in der letzten Spalte der neuen
dritten Zeile — den Funktionswert g;(x,). Nach (6.25) gilt aber

ailxo) = 50 ( °) = ¢'(xo), (6.32)

d. h., nach dem zweiten Schritt liefert das Hornersche Schema die 1. Ableitung der
Funktion g an der Stelle x,. Entsprechend verfdhrt man mit g,(x), wodurch man mit
dem Hornerschen Schema eine Zerlegung der Form

£2(x) = g2(x0) + (x — Xo) - g3(x)
erhélt. In Analogie zu (6. 32) ist dabei g,(x) = gi(x,). Andererseits folgt aus (6.25)
(Xo)

die Beziehung gi(x,) = , d.h., nach dem dritten Schritt kann aus dem

Hornerschen Schema die Zahl
ik
82(xo) = g—z(—,i)"
abgelesen werden. In diesem Sinne fortfahrend, kann man siamtliche Koeffizienten

V),
gv—(!’“’) w=0,1,..,n)

der Taylorschen Entwicklung der Funktion g und damit die Ableitungen g™ (x,)
berechnen. Das in der geschilderten Weise erweiterte Schema nennt man auch voll-
stindiges Hornersches Schema.
Beispiel 6.5: Gesucht ist die Taylorsche Formel der Funktion

gx) =3x*+ x> —5x + 2

mit der Entwicklungsstelle x, = 2.
Das vollstindige Hornersche Schema lautet (vgl. Beispiel 6.4)

3.0 1 -5 2
l.Schritt{ 6 12 26 42
203 6 13 21 |4=¢0
6 24 74
2. Schritt [
2 12 37]95=¢(2
[ 36
3. Schritt 7
2|3 18' (2)
4. Schritt { 6
g//l(2)
203 ‘24: .
5. Schritt {
(4)(2)
A
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Daraus liest man ab
g(x) = 44 + 95(x — 2) + 73(x — 2)% + 24(x — 2)® + 3(x — 2)*.

"

Ferner entnimmt man z. B. g"""(2) = 24 - 3! = 144.
Nun sei x, speziell eine Nullstelle der Funknon g, also g(x,) = 0. Aus (6.26) folgt

dann
g(x) = (x — Xo) - g1(x). (6.33)

Damit hat man von g(x) den Linearfaktor (x — x,) ,,abgespaltet*. Ist auch noch
81(x0) = g'(x0) = 0,

dann gilt nach (6.31) die Gleichung g,(x) = (x — x,) * g2(x), womit (6.33) iibergeht in
g(x) = (x = x0)* - g2(%).

Ist nun

g (xo)

82(x0) = * 0,

so kann man von gz(x) den Faktor (x — x,) nicht ohne Rest ,,abspalten‘, x, ist also
eine zweifache Nullstelle der Funktion g (vgl. Band 1 Abschmtt 9.5). Allgemem gilt
fiir eine k-fache Nullstelle x, von g

g(x) = (x = x0)* - g(x)

1 (k),
mit g (’xO) +0.

gilxo) = .

Zur Bestimmung der Vielfachheit einer Nullstelle x, fiihrt man das Hornersche
Schema bis zu der Zeile aus, in der erstmalig ein von null verschiedener Entwick-
lungskoeffizient erscheint. Die Anzahl der zuvor verschwindenden Entwicklungs-
koeffizienten ist die Vielfachheit von x,. Die Koeffizienten des verbleibenden Poly-
noms gi(x) stehen in der Zeile des letzten verschwindenden Entwicklungskoeffizien-
ten.

Beispiel 6.6: Gesucht ist die Vielfachheit der Nullstelle x, = —1 der Funktion
g(x) = x5 + 3x* + 5x3 + 7x% + 6x + 2.
Das Hornersche Schema von g(x) mit x, = —1 lautet
1 3 5 7 6 2
-1 -2 -3 -4 =2
—1|1 2 3 4. 2] 0=g-1)
-1 -1 -2 =2
11 1 2 2] 0=g(1)
-1 0 -2

g"(=1)
-1|1 0 21 o=

-1 1
_g"(=1
-1]1 -1 3= 3T 0
Ergebnis: x, = —1 ist eine dreifache Nullstelle von g(x), und es gilt

gX)=@x+13-1-x2+0-x+2)=(x+1)2(x*+2).

&*
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Die Funktion g5(x) = x> + 2 besitzt keine reellen Nullstellen, so daBl g(x) im Reellen
nicht weiter zerlegbar ist.

Aufgabe 6.5: Berechnen Sie mit dem Hornerschen Schema den Wert der Funktion
g(x) =2x5 — 2x* + x2 —Ix — 4

an der Stelle x, = 3.

Aufgabe 6.6: Entwickeln Sie die Funktion
g(x) =2x° + 5x% —4x + 9
nach Potenzen von (x + 2). Welchen Wert hat g®(—2)?

Aufgabe 6.7: Ermitteln Sie die Vielfachheit £ der Nullstelle x, = —3 der Funktion
g(x) = x* — 19x% — 6x + 72,
und spalten Sie von g(x) den Faktor (x + 3)* ab.

6.3.3. Taylorsche Formel fiir beliebige Funktionem

Die Berechnung der Funktionswerte einer ganzen rationalen Funktien erfordert
lediglich algebraische Rechenoperationen und bereitet daher keine prinzipiellen
Schwierigkeiten. Mit dem Hornerschen Schema haben wir zudem ein Verfahren ken-
nengelernt, das solche Berechnungen besonders einfach durchzufiihren gestattet.

Wie berechnet man aber z. B. In2, sin}, e’ oder allgemein den Funktions-
wert f(x), wenn f eine nichtrationale Funktion ist?

Nach dem Vorstehenden wird man versuchen, die Funktion f durch eine ganze
rationale Funktion zu ersetzen, die die Funktion f - wenigstens fiir alle x einer ge-
wissen Umgebung einer Stelle x, — ,,hinreichend gut** approximiert, d. h. ann#hert.
Will man f in einer Umgebung von x, speziell durch eine lineare Funktion appro-
ximieren, also geometrisch die Bildkurve von f durch eine Gerade ersetzen, so wird
man hierfiir natiirlich die Tangente, also die Bildkurve von

T1(x) = f(xo) + f'(xo) - (x — Xo) (6.35)

wihlen.') Eine bessere Anndherung wird man durch ganze rationale Funktionen
hoéheren Grades erreichen. Bei der Wahl solcher Funktionen 1a8t man sich von der
Taylorschen Formel (6.21) leiten, d. h., man ordnet der Funktion f (die dazu an der
Stelle x, n-mal differenzierbar sein mufB) das Polynom

f (Xo)

Tyi= fa)+ L ) 4 LG ey LGN
oder kurz
Ty(x) = Of G0 (1~ xo) (6.36)

zu. T,(x) heiBt Taylorsches Niherungspolynom n-ter Ordnung der Funktion f fiir die
Entwicklungsstelle x,. Die Bildkurve von T, nennt man Schmiegparabel n-ter Ordnung.
(Nach (6.35) ist also die Schmiegparabel erster Ordnung gerade die Tangente an die
Bildkurve von f an der Stelle x,).

1) Man sagt, die Funktionen T linearisiere die Funktion fin einer Umgebung von x,.
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Beispiel 6.7: Wir betrachten die Funktion f(x) = e* mit x, = 0. Wegen f®(x) = ¢,
also f™(0) =e° =1 (v =0, 1, ...) gilt nach (6.36)

x X2 x"
T,(x) =1 +1—!+~2»!»+...+W, (6.37)
also insbesondere
To(x) =1, T,(x) =1+ x,
x3

x? %2

= Ts(x)---1+x+-2—+?.
In Bild 6.7 haben wir die Bildkurve von f und ihre ersten vier Schmiegparabeln ein-
gezeichnet. Man vermutet, da die Funktionen 7, (wenigstens in einer Umgebung
von x, = 0) mit wachsendem » immer besser die Funktion f annéhern.

Tr(x) =1+ x+

¥

Um zu quantitativen Aussagen iiber die ,,Glite** der Approximation von f durch
T, zu gelangen, muB man das sog. Restglied n-ter Ordnung

R,(x):= f(x) — T,(x) (6.38)

untersuchen. Dazu benétigt man eine geeignete Darstellung von R,(x); diese liefert
der folgende

Satz 6.8 (Satz von Taylor): Die Funktion f sei in einer Umgebung U der Stelle x,
(n + 1)-mal differenzierbar, und es sei x € U. Setzt man [vgl. (6.38)]

n ),
| -5 e+ a0, ©39)

dann gibt es (mindestens) eine Zahl 9 mit
_ f('H'”(xo + 9(x — X))

| Rx = (n+ D!

und (mindestens) eine Zahl ' mit

l R(x) = w (1 =9y (x — xoy*! (0<d < 1)

(6.40b)

Die Darstellung (6.40a) bzw. (6.40b) heifit Lagrangesche') bzw. Cauchysche?) Form
des Restgliedes. Es sei erwidhnt, daB es noch andere Formen des Restgliedes gibt.

(x—x)™ (0<d<1) (6.402)

1) Joseph Louis Lagrange (1736-1813), franzdsischer Mathematiker.
2) Siehe Abschnitt 1.

S. 6.8
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Die Formel (6.39) mit dem Restglied in einer dieser Darstellungen heif3t Taylorsche
Formel der Funktion f fiir die Entwicklungsstelle x,, .

Beweis von Satz 6.8: Wir definieren eine Hilfsfunktion ¢, indem wir in (6.36) die
Stelle x, durch die unabhéngige Variable z ersetzen und x als Konstante betrachten:

Y Y AP SN A YO
Wegen

P(x) = f(x), @(xo) = Ty(x)
gilt nach (6.38)

Ry (x) = ¢(x) — @(x,)- (6.41)
Ferner ist . )

9'(2) =1'(2) + [fl(!z) (x—2z)— fl(!z)] + ...

(n+1), (n

also, da sich alle iibrigen Summanden gegenseitig aufheben,
(n+1), z
¢'(2) = IT(—l(x — 2" (6.42)

Die Funktion ¢ gentigt auf dem Intervall x, ... x den Voraussetzungen des erweiterten
Mittelwertsatzes (Satz 6.6). Es sei nun g eine zunéchst beliebige Funktion, die diese
Voraussetzungen ebenfalls erfiillt. Dann gibt es also eine zwischen x, und x gelegene
Zahl & mit

Px) = ¢(x0) _ #'(©)
g(x) — glxo0)  g'&)"
Wegen (6.41) und (6.42) folgt daraus
g2(x) — glxo)  f™P(©E)
g'®) n!
Setzt man nun speziell g(z) = (x — z)**!, dann ist
g(x) =0, glxo) = (x — xo)"™**,
g =—-m+1kx-29n

R,(x) = (x — & (6.43)

so dafB (6.43) tibergeht in
B f(n+1)(§) -
R,(x) = W (x — xo)"* .

Beachtet man noch, daB die zwischen x, und x gelegene Stelle & mit einer geeigneten
Zahl 9 € (0,1) in der Form & = x, + 9(x — x,) darstellbar ist (vgl. 6.2.1.), so ist
damit (6.40a) bewiesen. Analog folgt (6.40b) aus (6.43), indem man g(z) = x — z
setzt. (Da die Stelle £ und damit © von der Funktion g abhéngt, haben wir hier ¢’
statt ¢ geschrieben.) m

Die Taylorsche Formel (6.39) ist eine direkte Verallgemeinerung der Taylorschen
Formel fiir ganze rationale Funktionen [s. (6.21)]. Ist ndmlich f eine ganze rationale
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Funktion m-ten Grades und n» = m, dann istf"‘*'”(x) = 0, also auch R,(x) = 0. Man
beachte aber, daB fiirn < m auch in diesem Falle ein von null verschledenes Rest-
glied auftritt (vgl. Aufgabe 6.8 in 6.3.4.).

Mit x = x, + h erhidlt man eine andere Schreibweise fiir (6.39) und (6.40a) bzw.
(6.40b):

Sflxo + ) = z I (x") B+ RE(h) (6.44)
mit
. F®+D(xo + 9h) et
R(h) = TX:I)'— B0 <9< 1) (6.452)
bzw.
(n+1), 4
Ri(h) = %ﬁfﬂ (1 =&yt (0<d < 1) (6.45b)

Dabei haben wir das Restglied R,(x) = R,(xo + &) mit R%(h) bezeichnet. Fir n = 0
gehen (6.44) und (6.45a) in den Mittelwertsatz [s. (6.4)] iiber. Mit den Differentialen

df(xo, h) = fO(xo) - 1"
(vgl. 5.3.) kann man (6.44) auch in der folgenden Form schreiben:

df(Xo, Q)

flxo + h) = Z + R (h).

Fiir x, = 0 ergibt sich aus (6.39) und (6.40a) bzw. (6.40b) die sog. MacLaurinsche
Form*) der Taylorschen Formel:

| o -55Pr+re (6.46)
mit

Fe0@x) ‘
I Ri(x) = (Tl)’,‘ (0 <9<1) (6.472)
bzw.
I Rx) =L 20x) “)('9 ")(1 Syt (0 < < 1) (6.47b)

Die angegebenen Darstellungen des Restgliedes sollen dazu dienen, den absoluten

Fehler
[f&x) = Tux)| = [Ru(x)], (6.48)

den man bei der Approximation einer gegebenen Funktion fdurch die ganze rationale
Funktion 7, begeht, abzuschédtzen. Nun enthilt jede dieser Darstellungen eine Zahl 4
bzw. 9’, fiir die lediglich die Ungleichungen

0<d¥ <1l bzw. 0<¥' <1 (6.49)

bekannt sind. Um numerisch berechenbare Fehlerschranken zu gewinnen, mufl man
also versuchen, fiir | R,(x)| eine obere Schranke zu finden, die die Zahl 9 bzw. ¢ nicht
mehr enthélt. Welche Restgliedform dafiir besser geeignet ist und wie man konkret

1) Colin MacLaurin (1698-1746), schottischer Mathematiker.
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vorzugehen hat, hiingt von der gegebenen Funktion f (und gelegentlich auch von den
Werten x und #) ab'). Jedenfalls wird dabei von den Ungleichungen (6.49) wesentlich
Gebrauch zu machen sein.

6.3.4. Taylorsche Formel einiger elementarer Funktionen

In diesem Abschnitt wollen wir die Taylorsche Formel einiger wichtiger Funk-
tionen fiir eine beliebige Ordnung » in der MacLaurinschen Form herleiten und das
Restglied abschitzen.

. fx) =€ (—0 <x < 400):
Nach (6.46) gilt (vgl. Beispiel 6.7)

x x? X"
I ex=l+'ﬂ'+ﬁ'+-..+—’ﬁ+Rn(X) (6.50)
mit dem Restglied in der Lagrangeschen Form [s. (6.47a)]
9x
= nt 1
R =G

Zur Abschétzung des Restgliedes beachten wir, da aus 0 < ¢ < 1 die Ungleichung
Ix =9 x| = |«

und daraus wegen der Monotonie der Exponentialfunktion schlieBlich

lelH-l
< el 12 —
l |R(x)] S e CER) (—0 < x < +00) (6.51)
folgt. Nun gilt, wie man zeigen kann,

. ,xlﬂi-l _

31:2 T =0 (-0 <x< +00). (6.52)
Aus (6.51) ergibt sich daher

lim R(x) =0 (—o0 < x < +00). (6.53)

n—oo

Diese Aussage bedeutet wegen (6.48), daBl man fiir jeden Wert x den Funktions-
wert f(x) = ¢* durch den Polynomwert

noxY
T(x) = ‘EOW

beliebig genau approximieren kann, wenn man nur die Zahl » hinreichend gro3 wahlt.
(In 6.3.5. behandeln wir hierzu ein Beispiel.) Aus (6.51) liest man noch ab, daB die
Zahl n um so groBer zu wihlen sein wird, je weiter der Wert x von der Entwicklungs-
stelle x, = 0 entfernt ist (s. Bild 6.7).

2. f(x) =sinx (—o00 <X < +00):

Nach Beispiel 4.24 gilt )
fe0) =0, fEO0) = (=1 (»=0,1,2,..),
f(2k+1)(x) — (__ 1)" COS X.

1) Wegen der etwas einfacheren Gestalt der Lagrangeschen Form wird man zunéchst versuchen,
mit dieser zum Ziel zu kommen.
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Wegen fZP(0) = 0 ist Tp(x) = Toi_(x), also

Rop-1(x),
x) = Top—1(x) +
F0) = T @ + (200
Wir verwenden das Restglied R,,(x) in der Lagrangeschen Form und erhalten
. x3 x5 o xlk—l
I sin x —x—ﬁ-{-ﬁ- + ...+ (=D m+R2k(x) (6.54)
mit
Ly _CosIX
Ray(x) = (=1) 2k + 1) X

Aus |cos 9x| < 1 folgt unmittelbar die Abschitzung
Ix’2k+l
m (—0 < x < +©) (6.55)
und daraus wegen (6.52)
lim Ryp(x) =0 (-0 < x < +00).
k-

| IR < ¢

Zur Verwendung von R,,(x) anstelle von R,,_;(x) bemerken wir folgendes: Analog
(6.55) gilt
x2k

1Ry (X)] = W (- < x < +0).

Fiir |x] < 2k + 1 (also insbesondere fiir Werte x in der Nidhe der Entwicklungsstelle
xo = 0) ist daher die obere Schranke fiir | R,,(x)| kleiner als die obere Schranke fiir
|Rak_1(x)|, d. h., (6.55) liefert eine feinere Abschatzung fiir den Fehler | f(x) — Ta_1(x)|.

3. f(x) =cosx (—o00 <x < +00):

Mit den Ableitungen (s. Aufgabe 4.14)
fE0) = (=1, feP0) =0 (»=0,1,2,..),
[@RD(x) = (—1)%*1 cos x

erhélt man wie im voranstehenden Beispiel

xZ xd» xzk
cosx =1—"—+ - — + ... + (=¥ + Ryps1(%) (6.56)
2! 4! (2k)!
mit
o (1)1 _COSTX oy
| rew-com g2

und der Abschdtzung
»< x2k+2 6 57
[Raps1(x)] CET T (-0 <x < +00), (6.57)

aus der wiederum folgt
lim Ryyy(x) =0 (—0 < x < +00).
k- + o0
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4. fx)=In(1+x) (x> -1"):
Es gilt (vgl. Beispiel 4.25)
fP0) =Dt =-D! v=12..),
ni1 — (1) n:
o) = (=1 g

Damit ergibt sich die Taylorsche Formel

2 3

Hier notieren wir das Restglied in der Lagrangeschen Form:

_ (-1 1
I R = Tt wr T
und in der Cauchyschen Form:

_ (=D =9y .,
I e (T
Fir x = 0 schétzen wir R,(x) nach (6.59a) ab und erhalten wegen

I In(1 +x)=x—x—2+£—3-— + ... +(—1)"‘1§+R,,(x). (6.58)
(6.59a)
(6.59b)

1+9x =1, also

1
1 +39x =
die Ungleichung

| RG] <

Zur Abschdtzung von R,(x) fir —1 < x < 0 ist (6.59b) besser geeignet. Wir formen
zunédchst um in
1 -9 \" 1
R ={—) ———
IR0 '(1+0’x) T+ox
Nun gelten fiir —1 < x < 0 wegen 0 < ¢’ < 1 die Ungleichungen
0<l -9 <1+¥%x, 1+9x>1+x>0,

1-49 <1, 0 1 1

(x = 0). (6.60a)

n+1

n+ 1

also
0<

1+ 9'x <1+15"x<1+x'
Damit ergibt sich schlieSlich
nt1
|R.(x)] e (-1<x<0). (6.60b)

Die Schranken in (v.00a) bzw. (6.60b) sind fiir jedes feste x € [0, 1] bzw. x € (—1,0)
Nullfolgen beziiglich n. Daher gilt
lIimR,(x) =0 (-1<x=1), (6.61)

n—o
n+1

+1
die Giiltigkeit von (6.61) gefolgert werden kann.

Fiir x > 1 ist dagegen lim = + o0, so -daB fiir diese Werte x aus (6.60a) nicht
nsoo .

1) Man beachte, daB die Funktion g(x) = In x nicht um die Stelle x = 0 entwickelt werden kann,
da sie nur fiir x > 0 definiert ist.
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S. f(x) = + x)* (x> —1, « beliebig reell):

Wegen

fO>) =ax—1D..(x—v+ DA +x"" r=12..),
also

fO0 =oafx—=1)...(0 —» + 1),

F™ (%) = oo — 1) ... (x — n) (1 + x)* "1,
erhilt man unter Verwendung der Binomialkoeffizienten

ax—1)..(w—v+1) _ (f’c) G=1,2.)

y!

die Taylorsche Formel

I (A +x =1+ (‘;‘) X+ (‘;‘) X4+ (i") X+ R(). (6.62)
Das Restglied lautet in der Lagrangeschen Form ’

I R = (, 5 ) @+ oot (6.632)
und in der Cauchyschen Form

I R,(x) = (n + 1)( )(l — ) (1 + PF'x)*-n-t xnt, (6.63b)

Wie im vorigen Beispiel empfiehlt es sich, die Restgliedabschitzung fiir x = 0 nach
(6.63a) und fir —1 < x < 0 nach (6.63b) vorzunehmen. Wir verzichten auf die
Durchfiihrung und notieren sogleich das Ergebnis:

(n+l)'x“+1 fir x20,n+1>al),

[R,(x)| < (n—l—l)’ |x["“ fir —l<x<0,a21, (664
(n+1 ™ e 1 0 1
n+1) Troe= ir —1<x<0,x<I.

Ebenfalls ohne Beweis teilen wir mit, da} aus (6.64) die Aussage
limR,(x) =0 (x| <1)

gefolgert werden kann.
Wir betrachten noch den Spezialfall x = n. In diesem Fall ist (” f_ 1) =0, alsonach

(6.63a) R,(x) = 0 fiir jedes x > —1, so daB (6.62) in die binomische Formel iiber-
geht.

Aufgabe 6.8: Ermitteln Sie die Taylorsche Formel der Funktion g(x) = 3x* + x? — 5x *
+ 2 fiir die Entwicklungsstelle x, = 2 mit.dem Restglied R,(x) in der Lagrangeschen
Form (vgl. Beispiel 6.5).

1) Eine Abschitzung von |R,(x)| fiir x = 0, n + 1 < o wird seltener bendtigt; daher haben wir
sie nicht angegeben.



*

*

92 6. Eigenschaften differenzierbarer Funktionen

Aufgabe 6.9: Bestimmen Sie die Taylorsche Formel der Funktion f(x) = cosh x in
der MacLaurinschen Form mit dem Restglied R, (x) (k = 0, ganz) nach Lagrange.

Aufgabe 6.10: Approximieren Sie die Funktion f(x) = ¢*** durch ihr Taylorsches
Niherungspolynom 2. Ordnung mit x, = 0. Schitzen Sie sowohl |R,(x)| als auch
|R3(x)| nach oben ab (vgl. die Bemerkungen bei der Aufstellung der Taylorschen
Formel fiir die Funktion f(x) = sin x).

6.3.5. Anwendungen der Taylorschen Formel

In der Taylorschen Formel einer gegebenen Funktion f kann man noch iiber die
Entwicklungsstelle x, und die Ordnung » verfiigen. Die Stelle x, wird man so wihlen,
daB sie in der Nahe der interessierenden Werte x liegt (vgl. die Ausfithrungen in
6.3.4. nach Formel (6.53)) und zugleich die Werte f*(x,) leicht berechenbar sind.
Die Wahl der Zahl n richtet sich nach der Art der Anwendung der Taylorschen
Formel.

Erste Anwendungsmoglichkeit: Die Funktion f wird durch das Naherungspolynom 7,
ersetzt, wobei die Ordnung » vorgeschrieben ist. Damit erhédlt man die Ndherungs-

Sformel
f (xo) (

X = Xo)",

S =

wobei man den absoluten Fehler
1f(x) = T,(x)] = |Ry(x)]

wie in 6.3.4. abschitzen kann. Die gewonnene Fehlerschranke hingt dann noch von
x ab, so daB sich zwei Fille unterscheiden lassen.

Fall 1: Zu einem gegebenen Intervall I ist eine fiir alle x € 7 giiltige Fehlerschranke
zu berechnen.

Fall 2: Zu einer vorgeschriebenen Fehlerschranke 6 > 0 sind diejenigen Werte x zu
ermitteln, fiir die |R,(x)] < 6 ist.

Wir behandeln nun einige Beispiele, wobei wir stets x, = 0 wéhlen.

Beispiel 6.8: Die Funktion f(x) = sin x soll durch ihr Naherungspolynom zweiter
Ordnung approximiert und der Fehler fiir |x| < 5° abgeschdtzt werden (Fall 1).
Nach (6.54) ist T,(x) = Ty(x) = x; es gilt also

sin x & x, (6.65)
und fiir den absoluten Fehler folgt aus (6 55) mitk =1
I l

|sin x — x| = |R,(x)] £ —— fiir jedes x. (6.66)

Der Fehler ist demnach um so klemer,]e kleiner |x]| ist. Speziell fiir
x| £5 =5—~
erhidlt man aus (6.66)
Jsin x — x| < %(0,087,3)3 < 0,00012.

]80 = 0,0872... < 0,0873



6.3. Die Taylorsche Formel und ihre Anwendung 93

Fiir Winkel zwischen —5° und +5° ist die Néherungsformel (6.65) also mindestens
auf 3 Stellen nach dem Komma genaul).

Aus (6.66) folgt auBerdem die Gtiltigkeit der in Beispiel 2.19 behaupteten Formel
sinx = x + O(x®) fiir x » 0 (vgl. Aufgabe 2.7) und iibrigens auch fiir jede andere
,,Bewegung®‘ von x.

Wir betrachten noch eine praktische Anwendung von (6.65).

Beispiel 6.9: Die Schwingung eines mathematischen Pendels der Ldnge ! und der
Masse m kann durch den Auslenkwinkel x beschrieben werden (s. Bild 6.8). Dabei
ist x eine Funktion der Zeit ¢, die der Differentialgleichung

5+ %m x=0 (6:67)
genligt (g: Erdbeschleunigung). Fiir , kleine** Auslenkwinkel kann man (6.67) néihe-
rungsweise ersetzen durch die einfachere Differentialgleichung

|
|
|

1
L‘L;: » Bild6s

Mit beliebigen Konstanten 4 und « lautet die Losung dieser Differentialgleichung

x = Acos(A/%t—(x),

wie man leicht durch Einsetzen bestitigt (vgl. Aufgabe 4.19). Man beachte, daB
(6.65) in diesem Fall in.der rein qualitativen Form

sinx & x fir [x]<1,?)
also ohne Fehlerabschdtzung, verwendet wurde.
Beispiel 6.10: Approximiert man die Funktion f(x) = sin x durch ihr Néherungs-
polynom dritter Ordnung, so erhélt man nach (6.54) die Ndherungsformel

3
sinx v x — . (6.68)

Gesucht seien diejenigen Werte x, fiir die der absolute Fehler von (6.68) héchstens
10~* betrdgt (Fall 2). Aus (6.55) mit k = 2 folgt

x*

120

sin x — (x ax—;) l= [R(X)| =

3
und die Ungleichung %— < 10-* ist dquivalent zu

1x] < 30,012 = 041 ....

1) Man beachte, daB8 mindestens auf der rechten Seite von (6.65) der Wert x im BogenmaB ein-
zusetzen ist.
2) Das Zeichen < bedeutet ,,wesentlich kleiner als ...
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Fir diese Werte x, also insbesondere fiir [x| < 23° (= 0,40 ...), wird daher mit (6.68)
die gewiinschte Genauigkeit erzielt.

Beispiel 6.11: Fiir die Funktion f(x) = \/1 + x (x > —1)erhilt man aus (6.62) mit
o« = %3 und n = 1 die Naherungsformel

\/1+le+%, (6.69)
deren Fehler wir fiir |x| < 10-2 abschitzen wollen (Fall 1). Nach (6.64) gilt
2
—i;« fir x>0,
RI=! "
— fir -l <x<0O.
4\/1 + x
Daraus folgt
10~ _ " 2
g =1,25-10"° fir 0 <x<10°2,
R, (x)] < 10-4 10-4

<2,53-10~° fir —10"2<x<O0.

4./1 - 102 <709
Beispiel 6.12: Ein Generator mit dem inneren Widerstand R; erzeuge die Urspannung

E. Wird ein duBerer Widerstand R, (Verbraucher) angeschlossen, so ist die iiber R,
abfallende Spannung U (Klemmenspannung ) durch
R
=E—% 6.70
U= E R+ R, ©670)
gegeben. Gesucht ist eine fiir R, > R, giiltige Ndherungsformel fiir die relative Span-

nungsianderung

Wir formen (6.70) zunédchst um in

U 1
iy 6.71)

Nach (6.62) mit x = —1 und n = 1 gilt
1

T+x

mit der Fehlerabschitzung [s. (6.64)]

r,
'l+x_(1_x)

=(1+x)'~1-x (6.72)

<x* (x=0). (6.73)

Wendet man (6.72) mit x = -1% auf (6.71) an, so folgt

U R
fz(l-ri) (R, > R))

und daraus
E-U R

~

v Z, (Rs > Ry). (6.74)
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Eine quantitative Aussage iiber die Genauigkeit von (6.74) erhdlt man wegen % =0

aus (6.73):
E-U R _li_(l_R’)s(R‘)z.
E R,]|T \R,
Ist z. B. eine Genauigkeit von 10~ vorgeschrieben, so darf man (6.74) nur anwenden,

wenn II:i < 101, also R, = 10R; ist.

E R,

Eine zweite Anwendungsmoglichkeit der Taylorschen Formel besteht in der numeri-
schen Berechnung des Funktionswertes f(x) fiir einen gegebenen Wert x. Dazu appro-
ximiert man f(x) wieder durch 7,(x). Infolge der im allgemeinen vorzunehmenden
Rundungen erhélt man fiir 7,(x) aber ebenfalls einen Néherungswert j. Aus

1f@) =31 = /() = Tu(0)] + [Tu(x) = 7l

folgt nach der Dreiecksungleichung

[f() = 7 S [Rx)] + |T(x) — 7. (6.75)
Gilt nun fiir den betrachteten Wert x

lim R, (x) = 0, (6.76)

n—o

so kann man den Fehler |R,(x)| durch die Wahl einer hinreichend gro8en Zahl n
beliebig klein halten. Der Rundungsfehler |T,(x) — j| 1aBt sich durch die Mitnahme
von gentigend vielen Dezimalen in jedem Falle beliebig klein machen. Unter der
Voraussetzung (6.76) kann man also den Funktionswert f(x) auf diese Weise mit
beliebiger Genauigkeit numerisch berechnen. Die Berechnung von j bereitet dabei -
insbesondere bei Verwendung von Rechenautomaten — keine Schwierigkeiten; das
Schwergewicht liegt auf der Fehlerabschidtzung.

Beispiel 6.13: Gesucht ist ein Naherungswert y fiir die Zahl e mit einem absoluten
Fehler von hdchstens 0,5+ 1075, Die Taylorsche Formel der Funktion f(x) = e*
(s. 6.50) geht fir x = 1 tber in

1 1 1
e=1+—1T+—2-T+... +W+R,,(1),
wobei nach (6.51) gilt
e
<~
R(DI < Gy

Aus der Definition der Zahl e,
e = lim (1 + —I—) 5
N n
kann man schlieBen, daB e < 3 ist. Damit ergibt sich
Sne
[CE
Nun wihlen wir n so groB, da
3
(n+1)!

[R,(D] <

< 10-¢ 6.77)
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ist. (Wir werden sogleich sehen, daB damit di¢ vorgeschriebene Genauigkeit erreicht
wird.) Wegen
10! = 3628800 > 3-10°

ist (6.77) fiir n = 9 erfiillt, d. h., es gilt

|Ro(1)] < 10-. (6.78)
Bei der numerischen Berechnung von
1 1 1 1
To(l) =1 +~1—!+~2!—+—3-!-+... +'§T

kann man die ersten 3 Summanden exakt angeben. Rundet man die folgenden 7 Sum-

"~ manden jeweils auf 6 Stellen nach dem Komma, so erhilt man einen Naherungswert

*

*

*

y fiir To(1) mit dem Rundungsfehler (s. 5.2.1.)

|To(1) — 5] £7-0,5-10-% = 3,5- 105, (6.79)
Aus (6.78) und (6.79) folgt wegen (6.75)
le — 7| < 107 4+ 3.5-10-% = 4,5+ 10-5. (6.80)

Der Fehler ist also tatsichlichi kleiner als 0,5+ 103, Berechnet man 7y(1) in der an-
gegebenen Weise, so ergibt sich

y = 2,718282.
Nach (6.80) ist

§—45-10°<e<j+ 45107,
also
2,7182775 < e < 2,7182865

oder auf 4 Stellen nach dem Komma gerundet
e = 2,7183.

Aufgabe 6.11: Gében Sie eine (von x abhidngige) obere Schranke fiir den absoluten
Fehler der Naherungsformel
xZ
cosx N1 — —

2
an. Fiir welche Werte x ist dieser Fehler sicher kleiner als 10-4?

Aufgabe 6.12: Stellen Sie die Auslenkhohe / eines mathematischen Pendels (s. Bei-
spiel 6.9 und Bild 6.8) in Abhéngigkeit vom Auslenkwinkel x fiir ,,kleine* Werte x
néherungsweise dar.

Aufgabe 6.13"): Ein biegsamer Stab liege in zwei Punkten 4 und B in der Héohe A
auf und werde in einem Punkt C durch einen Stab der Léange £ gestiitzt (s. Bild 6.9).
Der FuBpunkt F’ der Stiitze sei gegeniiber dem FuBpunkt F des Lotes von C auf die
Horizontale um eine Strecke s verschoben.

a) Geben Sie eine fiir s < / giiltige Naherungsformel fiir die Strecke d an, um die
sich der aufliegende Stab im Punkt C senken kann.

1) Dieses Beispiel ist [7] entnommen.
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b) Wie groB ist der absolute Fehler dieser Naherungsformel fiir 4 = 1,5m und
s < 0,1 m hochstens?

Hinweis: Verwenden Sie Beispiel 6.11.

Bild 6.9

Aufgabe 6.14: Es seien x; und x, positive Zahlen mit 0 < x, — x; < T—(‘) Geben
Sie eine einfache Nidherungsformel fiir In *2 an und schitzen Sie den absoluten
Fehler ab. *1

Aufgabe 6.15: In Beispiel 2.11 wurde die Geschwindigkeit v eines fallenden Kérpers
bei geschwindigkeitsproportionalem Luftwiderstand mit

kt
o) F e

angegeben. Ermitteln Sie eine fiir ']:;t’ < 1 giiltige Ndherungsformel fiir v, indem Sie
kt

die Funktion f(r1) = ¢ ™ durch ihr Niherungspolynom erster Ordnung ersetzen.

Aufgabe 6.16: Berechnen Sie einen Néherungswert fiir mit einem absoluten

Fehler von hochstens 0,5 - 10-*, MY
Hinweis: Verwenden Sie die Umformung 1100 = 103 (1 + 0, 1).

7 Pforr, Dift. w. Integr.



7. Untersuchung von Funktionen mit Hilfe ihrer Ableitungen

7.1. Berechnung von Grenzwerten

7.1.1.  Vorbemerkung

Die Grenzwertsidtze von 2.5 kann man durch weitere Aussagen ergdnzen. So gilt
z. B. in Ergdnzung zu (2.21), wie ohne Beweis mitgeteilt sei:

lim fi(x) =g, und lim fy(x) =

+oo fir g, >0

lim A Al = {10 G & 70

Im Falle g, = 0, also
lim fi(x) =0 und lim f,(x) = 400, (7.1)
x>0

Xx-Xq

ist dagegen eine allgemeine Aussage liber den Grenzwert
lim [£1(x) - f2(x)] (1.2)
x>0

nicht méglich; in diesem Falle hingt das Verhalten von f;(x) « f2(x) fiir x - x,von
den speziellen Eigenschaften der Funktionen f; und f; in einer punktierten Umgebung
von X, ab.

Zur Charakterisierung der Grenzwertaufgabe (7.2) unter der Voraussetzung (7.1)
verwendet man das Symbol

10+ (+00)*. (7.3)
Eine entsprechende Bedeutung haben die Symbole
0 g
R L A N R e |
(=) » 0 5 ko0 ( (+0) (7.4)
50%%, »(+00)%%, 127

Auch die Behandlung der durch (7.4) charakterisierten Grenzwertaufgaben setzt die
Kenntnis der darin vorkommenden Funktionen voraus'). Alles bisher fiir die ,,Bewe-
gung'* x - x, Gesagte gilt sinngemaB fiir die ,,Bewegungen*‘ x — x, + 0, x - +o00.

ist vom Typ o der Grenzwert lim (x In x)
”» x40

Beispiel 7.1: Der Grenzwert lim xln_x

vom Typ ,,0 - (—o0)*. *1 1

Im folgenden behandeln wir eine Methode zur Untersuchung solcher Grenzwerte
unter Verwendung der Differentialrechnung.

1) Aus diesem Grund werden die Symbole (7.3) und (7.4) gelegentlich auch als ,,unbestimmte
Ausdriicke* bezeichnet. Es muB aber betont werden, daB die damit charakterisierten Grenzwertauf-
gaben fiir konkret vorgegebene Funktionen f; und f, natiirlich stets ein eindeutig bestimmtes Kon-
vergenzverhalten haben. :
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N +
7.1.2.  Grenzwerte vom Typ —g— und —_FE(—)— (Regeln von Bernoulli — de ’Hospital)
” —

Satz 7.1 (Erste Regel von Bernoulli') —de I’ Hospital): Die Funktionen f, und f, seien
in einem Intervall (xo, xo + ¢) (¢ > 0) differenzierbar, und es gelte dort f (x) % 0.
Ferner sei

lim fi(x) =0 und 11m fo(x) = 0. (7.5a)
X=xo+0 —xo+0
Ist ;’Ex; fiir x - xo + 0 konvergent oder bestimmt divergent, so trifft dasselbe
2(X
. fix) .
r zu, und es gilt
e ¢

. filx) L i)
lim lim = 7.6
X>x0+0 Sa(x) x~{to+0 f5(x) .6
Beweis: Falls f; und f;, an der Stelle x, nicht bereits rechtsseitig stetig sind, kann man
dies durch die Festsetzung f;(xo) = 0 und f,(x,) = 0 wegen (7.5a) nachtriglich
Ji(x)
Sa(x)

Nun sei (x,) eine gegen x, konvergente Folge mit x, € (xo, Xo + ¢) fiir jedes n.
Dann erfiillen f; und f, auf jedem Intervall [x,, x,] die Voraussetzungen des erwei-
terten Mittelwertsatzes der Differentialrechnung. Es gibt also zu jedem n ein &,€ (x,, X,,)

mit
i) _ S = filxo) _ i o
foa) — folxn) = falxo) — f3ED 7 , '
Da auch (§,) gegen x, konvergiert (warum?), ist nach Voraussetzung ?E?i
25n,

gent oder bestimmt divergent. Wegen (7.7) gilt dann dasselbe fiir J1(x)
aus folgt die Behauptung. m Sa(xn)

“

erreichen. Das Verhalten von

fiir x > xo + 0 wird davon nicht beeinflufit.

konver-

, und dar-

Satz 7.1 bezieht sich auf Grenzwerte vom Typ o ; eine entsprechende Aussage

400 ¢ . .
fir Grenzwerte vom Typ —I? geben wir ohne Beweis an:

Satz 7.2 (Zweite Regel von Bernoulli - de I'Hospital): Satz 7.1 bleibt richtig, wenn
(7.5a) ersetzt wird durch die Voraussetzung

lim fi(x) = 0 und lim f5(x) = +oo. (7.5b)

x=xo+0 X=X+ 0
SchlieBlich notieren wir noch ohne Beweis die

Bemerkung 7.1: Die Sitze 7.1 und 7.2 gelten sinngemaB2) auch fiir die ,,Bewegungen**

x—>xo—0, x->xp, x> +00 und x- —c0.

1) Gemeint ist Johann Bernoulli (s. Abschnitt 1.).
2) Vgl. FuBnote auf Seite 19.

7*

S.7.1

S. 7.2
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Beispiel 7.2: Gesucht ist der Grenzwert

lim In (vgl. Beispiel 7.1).
il
Da der Grenzwert
1
. (nx) x
lim =lim—=1
1 (X =17 o

existiert, gilt nach Satz 7.1 unter Beachtung von Bemerkung 7.1

. Inx . (Inx)
lim =lim———=1.
o1 X — 31 (x—=1)

Beispiel 7.3: Der Grenzwert

. \/x )
lim ~——
xs1+0  INX

ist ebenfalls yvom Typ —g— . Es gilt

= 4+,

1
. (x= - 2./x =1 . X
B e e M B NS
x

wobei sich die bestimmte Divergenz mit Satz 2.4 ergibt. Auch in diesem Falle ist
Satz 7.1 anwendbar und liefert

. V=1 . ([x=1)

= lim
xs1+40 INX xo1+0  (Inx)

= +.

Die Beispiele 7.2 und 7.3 zeigen, daB Grenzwertaufgaben desselben Typs tatsdch-
lich zu verschiedenen Ergebnissen fithren konnen (s. 7.1.1.).
Hiufig kommt man erst nach wiederholter Anwendung von (7.6) zum Ziel.

2 3
Beispiel 7.4: Der Grenzwert lim :—x istvom Typ %— . Doch auch der Grenzwert

X+

2y
. X . 2x
lim (—X),—= lim —
xatw (€) x>t €

ist noch von diesem Typ. Durch nochmalige Differentiation erhdlt man

fim &~ im 2 -0
sotoo (€ xoio €

Zweimalige Anwendung von Satz 7.2 liefert also
2
lim 2= lim %i= lim = =

X X
Xo+ 0 X+ x-+w €

Abschliefend betrachten wir ein Beispiel, in dem die Regeln von Bernoulli - de
I’'Hospital nicht anwendbar sind.
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Beispiel 7.5: Gesucht ist der Grenzwert

lim x + sin x ( +oo“)

X+ 00 X 5 +00
Es gilt

x + sin x)’

%: 1 4 cos x.

Da aber 1 + cos x fiir x - + 00 unbestimmt divergent ist, ist Satz 7.2 nicht anwend-
bar. Auf anderem Wege erhélt man aber sofort (s. Aufgabe 2.4f)
lim XXS0X _ (1+‘““Tx)=1+0=1.

X=+ 0 X X+ 00
Aufgabe 7.1: Untersuchen Sie die folgenden Grenzwerte:

. a—b . In sin x
a) il_l'l;—x— (@a>0,b>0), b) hm1 [T

2

c) lim
x40 1N X

7.1.3.  Grenzwerte vom Typ ,,0 - (£ 00)*“ und ,,(4+ ©) — (4 c0)*

Diese Fiille lassen sich durch geeignete Umformungen auf die in 7.1.2. behandelten
zurtickfithren. Im Fall
lim+0 () - .01 (0 (£00))

formt man um in
“ o 1
lim 1) ( o ) oder  lim 2% ( o ) ).
1 ) xoxo+0 1 »

Sa(x) Six)

Fiir die anderen ,,Bewegungen‘‘ von x verfahrt man analog.

x—x0+0

Beispiel 7.6: Fiir den Grenzwert
lim (xInx) (,,0°(—o0)“)
x-+0

erhdlt man
. L1 —o0 ¢
lim (xInx) ="lim nx ( —_® )
X +0 xat0 1 » +00
23
1
= lim —% = lim (—=x) = 0.
x40 1 x= +0
%

1) Damit sich dieser Typ ergibt, muB f; in einem (evtl. sehr kleinen) Intervall (xo, xo + ¢) (¢ > 0)
konstantes Vorzeichen haben (vgl. Satz 2.4).
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Die Grenzwertaufgabe
1im+0 i) =201 G(+00) = (+00)%)
x-xg

1aBt sich stets durch die Umformung
1 1

70 - i = LSS a9

J1(x) f2(x)

«

-in den Typ o iberfiihren. Gelegentlich kommt man aber durch eine den speziellen

Funktionen angepafte andere Umformung schneller auf diesen Typ.

Beispiel 7.7: In Beispiel 2.11 haben wir die Geschwindigkeit
k
(v, =8\ w8
v= (vo k )e - 1.9)

eines fallenden Korpers betrachtet. Dabei ist £ > 0 ein MaB fiir den Luftwiderstand.
Fiir verschwindenden Luftwiderstand, also k = 0, hat (7.9) keinen Sinn. Wir wollen
das Verhalten von v fiir £ - +0 untersuchen. Schreibt man (7.9) in der Form

3
mg mg -—t
U=T—(——va)e s

so erkennt man, daB fiir k - +0 ein Grenzwert vom Typ ,,(+ 00) — (4 00)* vorliegt.
Statt nun (7.8) anzuwenden, kann man auch folgendermaBen umformen:

k
—

=—mg(1 _C_Tﬁ_r) + voe_ "o

k
Fiir k > +0 konvergiert der zweite Summand gegen v, und der erste fiihrt auf einen

Grenzwert vom Typ o Mit

P k
3 [ogli o))
im " lim @)= e
kmt0 d® e
dk
erhdlt man schlieBlich lim v = gr + v,, also die bekannte Formel fiir die Geschwin-

k>+0
digkeit eines fallenden Korpers bei Vernachldssigung des Luftwiderstandes.

Aufgabe 7.2: Untersuchen Sie die folgenden Grenzwerte:
1
a) lim (x2 e"_z) b) lim (3/x3 +2x2 —x).
x=0 X+

7.1.4.  Grenzwerte vom Typ ,,0°, ,,(+ 00)°* und ,,1%*%

Zur Ermittlung von

lim [f,(x)}2>
xox0+0
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fiir die in der Jberschrift genannten Fille betrachtet man zunichst die Funktion

) = (0 Infix)  (fi(x) > 0). (7.10)

Der Gierwe 't
lim  [f2(x) - In f3(x)] (7.11)

X=X +0

ist nun, wie man sich leicht tberlegt, vom Typ ,,0 - (£ 00)*, also unter Umstdnden
nach 7.1.3. berechenbar. Existiert (7.11) als eigentlicher Grenzwert, so gilt wegen (7.10)
und der Stetigkeit der Exponentialfunktion

) lim  [f3(x) - In f(x)]
lim [f(x)]/2® = e *° (1.12)

x-x0+0

Beispiel 7.8: Der Grenzwert lim x* (,,0°) ergibt sich wegen
0

Xt

limInx* = lim [x-Inx] =0
X5 +0 x40

(s. Beispiel 7.7) nach (7.12) zu lim x* = ¢€° = 1.
x> +0
Beispiel 7.9: Fiir den Grenzwert

1
lim (1 + sin x)*  G17)
x> =0 .
erhilt man wegen

1 1 3
(R )= P e U en ) (%)
0 th

X = x= =0 X
cos X
. 1+ sinx
= lim ——— =1
Xm0 1

nach (7.12)

1
lim (1 + sinx)* = ¢! =e.

x->=0

Aufgabe 7.3: Untersuchen Sie die folgenden Grenzwerte:

a) lim (1 +i)x, b) lim (l)
X P

X=+ 0 x=+0

7.2. Monotonie

In diesem und den folgenden Abschnitten wird sich herausstellen, daB ein enger
Zusammenhang zwischen charakteristischen Eigenschaften einer Funktion und dem
Vorzeichen ihrer Ableitungen besteht.

Wir erinnern zunichst an den Begriff der Monotonie bzw. strengen Monotonie
einer Funktion (s. Band 1, 9.3.). Bild 7.1 zeigt die Bildkurve einer Funktion f mit
f'(x) > 0 fiir alle x € (@, b), d. h., mit positivem Tangentenanstieg. Offenbar ist f auf
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[a, b] streng monoton wachsend. Uber den damit vermuteten Zusammenhang zwischen
(strenger) Monotonie und dem Vorzeichen der 1. Ableitung geben die folgenden Sdtze
genaue Auskunft.

” y=f(x)

Bild 7.1
a x

Satz 7.3: Die Funktion f sei auf dem Intervall I stetig und auf dem Inneren von I differen-
wachsend

zierbar. Genau dann ist f auf I monoton fallend

{ f'x)z0
fx) =0
Beweis: Wir fithren den Beweis fiir monoton wachsende Funktionen (und zwar in-

direkt); fiir monoton fallende Funktionen kann man analog schlieBen.

a) Es sei f'(x) = O fiir jedes x aus dem Inneren von I. Wire f auf I nicht monoton
wachsend, dann gibe es Zahlen x,, x; € I mit x, < x; und f(x,) > f(x;), also

}, wenn gilt

: fiir jedes x aus dem Inneren von I. (7.13)

S(x1) = f(xo) <0. (7.14)
X1 — Xo
Nach dem Mittelwertsatz der Differentialrechnung existiert aber ein & € (x,, x;)<= 7,
so daB die linke Seite von (7.14) gleich f'(£) ist. Wegen (7.14) wire f'(§) < 0 -
im Widerspruch zur Voraussetzung.

b) Es sei fauf I monoton wachsend. Gébe es ein x, im Inneren von 7 mit

S(x) = f(x0)
X

lim =
= X

x-Xq

Fix0) <0,

dann wiirde fir hinreichend nahe bei x, gelegene Zahlen x, #+ x, die Ungleichung
(7.14) gelten. Folglich wire f nicht monoton wachsend. m

Satz 7.4: Die Funktion f sei auf dem Intervall I stetig und auf dem Inneren von Idif-

ferenzierbar. Gilt
{f "(x) >0
f(x) <0

dann ist f auf I streng monoton ‘

} fiir jedes x aus dem Inneren von I, (7.15)

wachsend }
fallend

Der Beweis dieses Satzes verlduft analog zu Teil a) des Beweises von Satz 7.3.

Wahrend (7.13) hinreichend und notwendig fiir die Monotonie von f ist, ist (7.15)
zwar hinreichend, aber nicht notwendig fiir strenge Monotonie. So ist z. B. die Funk-
tion f(x) = x* auf dem Intervall (— oo, +00) streng monoton wachsend, aber es
gilt /(0) = 0.
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Beispiel 7.10: Wir bestimmen das Monotonieverhalten der Funktion
fX)=In1+x)—x (x> -1).
Wegen
X

, 1 _
F@=ar - 1=~

>0 fir xe(—1,0),
<0 fir xe(0, +)

ist fnach Satz 7.4 auf (— 1, 0] streng monoton wachsend und auf [0, + o0) streng mono-
ton fallend. Fiir jedes x > —1, x # 0 ist daher f(x) < f(0) = 0 (s. Bild 7.2), womit
zugleich die Ungleichung

In(l+x)<x (x> —-1,x%0)

bewiesen ist.

? X
y=ln(1#x)-x
x>-1)
Bild 7.2

Aufgabe 7.4: Untersuchen Sie das Monotonieverhalten der Funktion *
) =33 +x2 =7 (—00 <Xx< +o).

Aufgabe 7.5: Beweisen Sie die sogenannte Bernoullische Ungleichung *
(1+x)">1+nx (n=2ganz;x > —1,x +0).

Hinweis: Bestimmen Sie das Monotonieverhalten der Funktion
fX)=0+x"—=1-nx (x> -—1).

y s Relative Extremwerte

7.3.1.  Der Begriff des relativen Extremwertes

Die Eigenschaft eines Funktionswertes f(x,), absoluter Extremwert der Funktion f
auf einem Intervall 7 = D(f) zu sein, hat globalen Charakter: Man vergleicht f(x,)
mit allen Werten, die die Funktion f auf dem vorgegebenen Intervall 7 annimmt
s. Definition 3.4). Mit dem Begriff des relativen Extremwertes erfa3t man eine lokale
Eigenschaft von f: Man vergleicht f(x,) nur mit den Werten, die die Funktion f auf
siner gewissen (evtl. sehr kleinen) Umgebung von x, annimmt. Dazu muf} die Funk-
tion f mindestens in einer Umgebung von x, definiert sein, d. h., x, muB ein innerer
Punkt von D(f) sein. Diese Uberlegung fiihrt zu der

Definition 7.1: Eine Stelle x, im Inneren des Definitionsbereiches der Funktion f D.7.1
Maximums|

=¢ifit Stelle eines relativen (oder lokalen) { inimums

} von f, wenn es eine Umgebung U
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von xo in D(f) gibt, so daB xo Stelle des absoluten

es gilt
{ S(x0) 2 f(x)
Sf(xo) £ (%)
Gilt statt (7.16) sogar
{f(xo) > f(x)
S(x0) < f(x)

dann heifit x, Stelle eines relativen (oder lokalen)
Sinne. :

Der Funktionswert f(x,) heifit dabei relatives (oder lokales) {Maxunum
(im engeren Sinne). Minimum

Abkiirzende Sprechweisen, wie z. B. ,relative Maximumstelle®, werden analog
verwendet wie fiir absolute Extremwerte (vgl. die Bemerkungen nach Definition 3.4).

Die in Bild 7.3 skizzierte Funktion f hat an der Stelle x, ein relatives Maximum
i. e. S.1) Eine geeignete Umgebung U von x, haben wir markiert. Das Verhalten von
f auBerhalb dieser Umgebung ist dabei ohne Belang. Es interessiert also nicht, daf3
z.B. f(x3) > f(x,)ist. Ferner hat fan den Stellen x,, x, und x5 relative Minima i.e.S.
und an der Stelle x; ein relatives Maximum, aber nicht im engeren Sinne.

Maximums
Minimums

} von f auf U ist, d. h.,

} fiiralle xeU. (7.16)

} fiiralle xe U, x % x,,

{Maximums} von f im engeren
Minimums n g

}vonf

1/

i Bild 7.3
1y PR X X5 X

Hat die Funktion f an den Stellen x, und x; relative Maxima und ist sie auf dem
Intervall [x,, x;] stetig (s. Bild 7.3), dann nimmt sie nach Satz 3.8 an einer Stelle
X, € [xy, x3] ihr absolutes Minimum auf [x;, x3] an. Da x, aber sicher im Inneren
von [xy, x3] zu finden ist, ist f(x,) auch ein relatives Minimum von f. Es gilt also die

Bemerkung 7.2: Eine stetige Funktion nimmt zwischen zwei relativen Maxima (bzw.
Minima) stets ein relatives Minimum (bzw. Maximum) an.

Eine unstetige Funktion braucht diese Eigenschaft nicht zu haben, wie man an
den Stellen x4 und x5 in Bild 7.3 erkennt.
7.3.2.  Eine notwendige Bedingung (kritische Stellen)

Ein relativer Extremwert f(x,) ist ein absoluter Extremwert der Funktion f beziig-
lich einer gewissen Umgebung von x,. Daher folgt aus Satz 6.1, angewandt auf diese
Umgebung, der

1) Abkiirzung fiir ,,im engeren Sinne‘‘.
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Satz 7.5: Die Funktion f sei an der Stelle x, differenzierbar und habe dort einen relativen S. 7.5
Extremwert. Dann gilt

F(xg) = 0. (7.17)

Die Bedingung (7.17) ist also notwendig dafiir, daB die an der Stelle x, differenzier-
bare Funktion dort einen relativen Extremwert hat; sie ist jedoch nicht hinreichend.
So hat z. B. die Funktion f(x) = x3 (—o0 < x < +00) an der Stelle x, = 0 keinen
relativen Extremwert, obwohl f'(0) = 0 gilt. Andererseits kann eine Funktion auch
an solchen Stellen einen relativen Extremwert haben, an denen sie nicht differen-
zierbar ist. Ein Beispiel hierfiir ist die Funktion f(x) = [x] (—o0 < x < +0), die
an der Stelle x, = 0 nicht differenzierbar ist, dort aber ein relatives Minimum (i.e. S.)
hat.

Es gibt somit zwei Arten von ,,extremwertverddchtigen Stellen; wir beschreiben
sie durch die folgende

Definition 7.2: Eine Stelle x, im Inneren des Definitionsbereiches der Funktion f D. 7.2
heif3t kritische Stelle von f, wenn entweder f in x, differenzierbar ist und f'(x,) = 0 gilt
oder f in x, nicht differenzierbar ist.

In geometrischer Formulierung ist x, also genau dann eine kritische Stelle von f,
wenn die Bildkurve von f an der Stelle x, entweder eine zur Abszissenachse parallele
Tangente oder keine Tangente besitzt.

Aus dem Voranstehenden folgt nun die

Bemerkung 7.3: Jede relative Extremalstelle der Funktion f ist eine kritische Stelle
von f.

Die Bilder 7.4a) bis 7.4f) zeigen einige typische Fille des Verhaltens einer stetigen
Funktion f in einer Umgebung einer kritischen Stelle x,. In den Fillen a) bis d)
ist x, relative Extremalstelle von f, in den Féllen e) und f) nicht.

Aus Bemerkung 7.3 ergibt sich das folgende Verfahren zur Ermittlung der relativen
Extremwerte einer Funktion f:

1. Schritt: Ermittlung der kritischen Stellen von f.

2. Schritt: Untersuchung, welche kritischen Stellen tatsichlich relative Extremal-
stellen von f sind.

3. Schritt: Berechnung der relativen Extremwerte.

Beispiel 7.11: Gesucht sind die kritischen Stellen der Funktion
f(x) =x*e* (-0 < x < +00).

Da f fiir jedes x differenzierbar ist, sind nur die Losungen der Gleichung f'(x) = 0
kritische Stellen von f. Wegen

fl(x) =2xe* —x*e* =x(2 — x)e”*
und e~ # O fiir alle x sind das die Stellen'x; = 0 und x, = 2.

Der zweite Schritt erfordert die Kenntnis hinreichender Bedingungen fiir das Vor-
liegen relativer Extremwerte. Damit werden wir uns in den beiden folgenden Ab-
schnitten befassen.
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f'ixg)=0 1 istander Stelle xy
: YA nicht differenzierbar
' N\J - (x)
| y=f(x) |
! I
! i
X X X X
a) b
Y y
j {y.m; \/fm
I ]
1
l |
X X X X
o 0 o ’
y Y
fy=f(x)
= y=f(x)
i
‘ 1
I
I | Bild 7.4a-f
x X X
e f

7.3.3.  Eine hinreichende Bedingung

Mit dem folgenden Satz kann man eine Funktion auf das Vorliegen relativer Ex-
tremwerte an denjenigen kritischen Stellen untersuchen, in deren Umgebung sie hin-
reichend oft differenzierbar ist.

Satz 7.6: Die Funktion f besitze in einer Umgebung U der Stelle x, stetige Ableitungen
bis zur n-ten Ordnung (n = 2), und es gelte

f(x0) = f"(x0) = ... =f"P(xo) =0, aber f™(xo)*0. (7.18)
I Istn gerade, dann hat f an der Stelle x, einen relativen Extremwert, und 2war
S ™(x0) <0
FP(x0) >0
II. Ist n ungerade, dann hat f an der Stelle x, keinen relativen Extremwert, sondern

in einer gewissen Umgebung von x, ist f
FALEAT ) fallend }

F®(xp) > 0 wachsend| "

Beweis: Wir beschrinken uns auf den Fall
FP(x) < 03 (7.19
im Fall f®(x,) > 0 schlieBt man analog.

I

e.S.

im Fall{ Maxtmum} .

ein relatives L.
} {M inimum

im Fall { } streng monoton {
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Auf Grund der Voraussetzungen ist f fiir jedes x € U nach der Taylorschen Formel
entwickelbar, wobei — mit dem Lagrangeschen Restglied R,_;(x) — wegen (7.18) gilt

() = flxo) = fP(x0 + O(x — xo))—(f%")" 0 <9 <1). (7.20)

Da f™ an der Stelle x, stetig ist, gibt es wegen (7.19) nach Satz 3.3 ein & > 0 mit
f™(X) <0 firalle Xe(xo —& xo +¢) < U.

Wegen 0 < & < 1 ist daher insbesondere
F®(xo + 9x — x0)) <0 fiiralle xe(xo — & xo + &). (7.21)

(x — Xo)
n!

u
I. Ist n gerade, dann ist > 0 fiir alle x # x,. Damit folgt wegen (7.21)

aus (7.20)
f(x) — f(xo) <0 firalle xe(xo —é& xo + &), X F X,
d. h., f(x,) ist ein relatives Maximum i. e. S.
II. Ist m ungerade, dann ist
(x — xo)" {< 0 firalle x < xo,
n! >0 firalle x> x.
Wegen (7.21) folgt daher aus (7.20)
>0 furalle xe(xo —¢ Xo)
= 7o oo
<0 firalle xe(xq, X + ),
so daB f(x,) sicher kein relativer Extremwert ist. Den Beweis der Monotonieaus-
sage libergehen wir. m

Zur Anwendung dieses Satzes auf eine kritische Stelle x, von f hat man die Funk-
tion £ so oft zu differenzieren, bis erstmalig eine Ableitung an dieser Stelle von null
verschieden ist. Haufig trifft das bereits fiir die zweite Ableitung zu. Deshalb wollen
wir Satz 7.6 fiir den Spezialfall » = 2 noch explizit notieren:

Folgerung 7.1: Die Funktion f besitze in einer Umgebung von x, stetige Ableitungen
bis zur zweiten Ordnung, und es gelte

f(x0) =0, aber f"(xo) 0.
Dann hat f an der Stelle x, einen relativen Extremwert, und zwar
f"'(%0) <0
Sf"(x0) > 0

Beispiel 7.12: Gesucht sind die relativen Extremalstellen und Extremwerte der Funk-
tion

e.S.

i Fall{ Maxzmum} .

} ein relatives { Minimum
f(x) =x*e™ (-0 <x< +00).
Die Losung erfolgt in drei Schritten (s. 7.3.2.):
1. Kritische Stellen: x; = 0 und x, = 2 (s. Beispiel 7.11).
2.a) x; = 0: Es gilt
(%) =2 — 4x + x*) e,
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also f”’(0) = 2 > 0. Nach Folgerung 7.1 hat f an der Stelle x; = 0 ein relatives
Minimum i. e. S.
b) x, = 2: Wegen f'(2) = —2e~2 < 0 ist x, = 2 relative Maximumstelle i. e. S.

Yy
s
2
y-xeX (~m<x<te=)
s
B B
L i L T . T Bild 7.5
7 27 1 2 374 5 X

3. Relatives Maximum: f(2) = 4 ¢~2 = 0,54. Relatives Minimum: f(0) = 0.
Bild 7.5 zeigt die Bildkurve von f. (Die Punkte P, und P, lassen wir zundchst aufler
acht.)

Beispiel 7.13: Gesucht sind die relativen Extremalstellen und Extremwerte der Funk-

o

O ) == 1P (x=1) (=0 <x< +00).

. Kritische Stellen: x; = —%, x, = 1 (s. Aufgabe 4.11).

2.a) x; = —%: Bs gilt f"(x) = 12x(x — 1), also f'(—%) = 9 > 0. Nach Folgerung
7.1 hat fan der Stelle x; = —1% ein relatives Minimum i. e. S.
b) x, = 1: Wegen f"'(1) = 0 differenziert man weiter und erhélt f”"’(x) = 24x — 12,
alsof’”’(1) = 12 # 0. Da die erste an der Stelle x, = 1 nicht verschwindende Ablei-
tung von ungerader (ndmlich dritter) Ordnung ist, hat fnach Satz 7.6 an der Stelle

x, = 1 keinen relativen Extremwert. (Wegen f'(1) > 0 ist fin einer gewissen Um-
gebung von x, = 1 streng monoton wachsend.)

—

3. Relatives Minimum: f ( —%) = - —?% = —1,69. Relatives Maximum: nicht vor-
handen (s. Bild 7.6).
y
sk
s
3 yee1xe 1)
(e Ctom)
s
18
I L I Bild 7.6
¥ '\)_;%7 K i X
4

* Aufgabe 7.6: Ermitteln Sie die relativen Extremalstellen und Extremwerte der fol-
genden Funktionen:

a) f(x) =4cosx + cos2x (—o0 < x < +0),
b) f(x) = x> e~ (=0 < x < o).
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7.3.4. Eine weitere hinreichende Bedingung

Der folgende Satz ist auch dann anwendbar, wenn die Funktion f nur in einer
punktierten Umgebung von x, differenzierbar, aber an der Stelle x, noch stetig ist.
Ein weiterer Vorteil dieses Satzes besteht darin, daB nur die erste Ableitung von f
benétigt wird.

Satz 7.7: Es gebe ein ¢ > 0, so daf die Funktion f auf dem Intervall (x, — €, xo + €)
stetig und dort - evtl. mit Ausnahme der Stelle x, selbst — differenzierbar ist.

fl(x)>0) .. . f'x)<0) .. .
1. Ist {f’(x) < 0} fiir jedes x € (xo — &, x,) und {f’(x) S 0} fiir jedes x € (xo, Xo + €),
dann hat f an der Stelle x, ein relatives {M{lemum} i.e. S.
Minimum

flx)>0 . .
1I. Ist %) < O} fiir jedes x € (xq — &, Xo + €), X & Xo,

dann hat f an der Stelle x, keinen relativen Extremwert, sondern f ist auf (xo — &,

wachsend }

Xo + ¢) streng monoton { fallend

Dieses Kriterium kann man qualitativ auch so formulieren:

I. Wechselt f” beim Ubergang iiber die Stelle x, von links nach rechts das Vorzeichen

von plus nach minus . . Maximum
{ P . }, dann hat f an der Stelle x, ein relatives { .. |
von minus nach plus; Minimum |

i.e.S. (s. Bild 7.7).

Bild 7.7

I1. Wechselt f* bei diesem Ubergang das Vorzeichen nicht, dann hat fan der Stelle x,
keinen relativen Extremwert.

Satz 7.7 folgt unmittelbar aus Satz 7.4: Ist f'(x) > 0 fir x € (xo — &, Xo) und f'(x) < 0
fiir x € (xo, Xo + €), dann ist f auf (x, — &, X,] streng monoton wachsend und auf
[x0, Xo + &) streng monoton fallend. Folglich ist f(x,) der groBte Wert, den die Funk-
tion fauf (x, — &, xo + &) annimmt. Entsprechend schlieft man in den anderen Fil-
len. Man betrachte hierzu noch einmal die Bilder 7.4a) bis 7.4f).

Beispiel 7.14"): Gesucht sind die relativen Extremalstellen und Extremwerte der
Funktion

fx) = f/x3 +2x2 (x 2 =2).

1) Dieses Beispiel ist, in abgeinderter Form, [11] entnommen.

S.7.7
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—

. Der Radikand verschwindet an den Stellen x = —2und x = 0 (und nur an diesen);
dort kann man f also nicht in der iiblichen Weise nach der Kettenregel differen-
zieren (vgl. Bemerkung 4.1). Die Stelle x = —2 ist als Randpunkt von D(f)
nicht kritisch. Jedoch x = 0 liegt im Inneren von D(f), und f ist dort eventuell
nicht differenzierbar. Man braucht nun nicht erst nachzupriifen, ob das tat-
sichlich zutrifft, x = 0 also eine kritische Stelle von f ist. Vielmehr wird man
diese Stelle sogleich als ,,extremwertverdédchtig' unter 2. weiter untersuchen. Zur
Ermittlung weiterer kritischer Stellen ist f zu differenzieren; man erhilt

x(3x + 4)

FO) = 5oy (> 2340, (7.22)

Die einzige Losung der Gleichung f'(x) = 0 ist x = — i

3
4 .
2.a)x; = — 3! Aus (7.22) liest man ab:
flx)>0 fir -2<x< ——‘;;,
f'(x) <0 fir —%< x < 0.
Daf’ beim Uberschreiten der Stelle x; = — % von links nach rechts das Vorzeichen

von plus nach minus wechselt, hat f nach Satz 7.7 dort ein relatives Maximum
i.e. S.

b) x, = 0: Auch auf diese Stelle ist Satz 7.7 (jedoch nicht Satz 7.6) anwendbar. Man

kann in diesem Fall aber auch so schlieBen: Wegen f(0) = 0 und f(x) > 0 fiir alle
x % 0, x > —2, x = 0 ist relative Minimumstelle i. e. S.

3. Relatives Maximum: f(— -‘31) s %3/; = 1,06. Relatives Minimum: f(0) = 0.

Die Bildkurve von fist in Bild 7.8 skizziert. (Die Bedeutung der Geraden y = x + %
wird in 7.6 erldutert.)

Bild 7.8

1
]
2470 1 1 3 4o«
* Aufgabe 7.7: Ermitteln Sie unter Verwendung von Satz 7.7 die relativen Extremal-
stellen und Extremwerte der folgenden Funktionen:

) f()=x+1)°(x-2) (-o<x<+wm),
b) f(x)=x|x — 1| (=0 < x < +00).
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7.4. Absolute Extremwerte

7.4.1.  Ermittlung absoluter Extremwerte

Eine auf einem Intervall 7 definierte Funktion f kann einen absoluten Extremwert
auf 7 an einem Randpunkt von 7 (sofern dieser zu I gehdrt) oder an einer Stelle x,
im Inneren von 7 annehmen. Im letzteren Fall ist f(x,) auch ein relativer Extremwert
von f. (Die in Bild 7.9 dargestellte Funktion f hat auf [a, b] das absolute Minimum

¥
6y y=r(x)

fla)

Bild 7.9

1
i
|
1
|

a X 12

f(a) und das absolute (und zugleich relative) Maximum f(x,).) Daraus ergibt sich das
folgende Verfahren zur Ermittlung der absoluten Extremwerte einer Funktion f auf
einem Intervall I:

1. Ermittlung der zu 7 gehdorigen relativen Extremwerte von f.
2. Untersuchung des ,,Randverhaltens* von f.

Mit 2. ist Folgendes gemeint: Ist 7 = [a, b], dann berechne man die Funktions-
werte f(a) und f(b). Ist I = (a, + o), dann untersuche man die Grenzwerte lim f(x)
und lim f(x). Entsprechend ist fiir andere Intervalle zu verfahren. ERLRA

X + 00

Da relative Extremwerte stets an kritischen Stellen angenommen werden, kann

man 1. auch ersetzen durch

1*. Ermittlung der Funktionswerte an allen zu I gehérigen kritischen Stellen von f.

Falls die Funktion f auf dem Intervall 7 iiberhaupt absolute Extremwerte besitzt?),
sind diese unter den nach 1. (bzw. 1*.) und 2. ermittelten Funktionswerten zu finden.
Gelegentlich kann man auch den folgenden Satz anwenden, dessen (indirekter) Be-
weis sich kaum von dem dér Bemerkung 7.2 unterscheidet.

Satz 7.8: Ist die Funktion f auf dem Intervall I stetig und hat sie dort an genau einer
Stelle xq einen relativen Extremwert, dann ist f(x,) auch ein absoluter Extremwert von

fauf I

Beispiel 7.15: Gesucht sind die absoluten Extremwerte der Funktion f(x) = x? e
auf dem Intervall [1, + 00).

Der einzige zum Intervall [1, + o) gehorige relative Extremwert von f ist das rela-
tive Maximum f(2) = 4 e¢~2 (s. Beispiel 7.12), das daher nach Satz 7.8 auch das abso-
lute Maximum von f auf [I, + o0) ist.

Das absolute Minimum konnte nur an dem Randpunkt x = 1 angenommen wer-
den. Nun gilt f(1) = e~! > 0, aber (s. Beispiel 7.4)

xl
oF

lim f(x) = lim

X= + 00 x—+ 0

Somit hat f auf [1, 4+ o) kein absolutes Minimum (s. Bild 7.5).

=0.

1) Das ist durch Satz 3.8 nur fiir den Fall gesichert, daB I = [a, b] gilt und f auf 7 stetig ist.
8  Pforr, Diif.- u. Integr.

S.7.8
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Aufgabe 7.8: Ermitteln Sie die absoluten Extremwerte der Funktion
f&x) =(x+3)°(x-2)7°
auf dem Intervall [—2, 3].

7.4.2. Einige Anwendungen

Viele praktische Probleme fiihren auf die Aufgabe, das absolute Maximum oder
Minimum einer Funktion auf einem Intervall zu ermitteln. Haufig interessieren vor
allem die Stellen, an denen ein absoluter Extremwert angenommen wird. Wir be-
handeln einige Beispiele.

Beispiel 7.16: Die Bahnkurve fiir den schragen Wurf ist — bei Vernachladssigung des
Luftwiderstandes — die Parabel (s. Bild 7.10)

- f(x) = __

il a 203 cos? o

(oc € (0, ;) Waurfwinkel, vy: Anfangsgeschwindigkeit, g: Erdbcschleunigung). Ge-
sucht ist

a) die Wurfhéhe yy = f(xg),
b) derjenige Winkel «,, fiir den die Wurfweite xy am groBten ist.

2

gx =
=x-tanet - 0=x=yx,)
YR One " 7 costet g i

Bild 7.10

|
|
|
|

| X 7

Zu a): yy ist das absolute Maximum der Funktion f auf dem Intervall [0, xy], wobei
sich xp > 0 aus f(xy) = 0 zu

2 2 N
Xw = 2% Ginw cos o = 2 sin 20 (7.23)
g g
ergibt. Es gilt
() — 2gx
f'(x) = tan & 2w 0 < x < xp),

also f'(x) = 0 nur fir

2

v, o X
X =—OSIHD$COS(X=—W.

g 2

£
v cos? &

Wegenf'(x) = —
mum; dieses ist

< 0 (fiir alle x) hat fan der Stelle x ein relatives Maxi-

= f(x )——Eg—sinzzx
ya.= H) = 2% .

Als einziger relativer Extremwert von f ist yy nach Satz 7.8 zugleich das absolute
Maximum von f auf [0, xy].
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Zu b): &, ist diejenige Stelle, an der die durch (7.23) gegebene Funktion x () ihr ab-

solutes Maximum auf (O, -;—E) annimmt. Die Gleichung

2
dxy =%COSZO&=O (O<oc<1)

do 2
hat die einzige Losung &g = % Wegen

Pxy .= A <0

da? ja= 2

hat xy(x) an der Stelle &y = % ein relatives Maximum, das — wiederum nach Satz 7.8
— auch das absolute Maximum auf (0, g) ist. Der optimale Wurfwinkel ist also

& = o = 45"

Beispiel 7.17: In einer Ebene seien eine Gerade g und zwei auf derselben Seite von g
gelegene Punkte 4 und B gegeben. Gesucht ist derjenige Punkt P auf g, fiir den die

Abstandssumme AP + PB am kleinsten ist.
¥

A

b
@ g Bild 7.11
X

] X 4

Nach Einfihrung eines geeigneten Koordinatensystems (s. Bild 7.11) gilt fiir die
Abstandssumme

f(x) =/x% + @ + /(- x)* + b2

Die positiven Konstanten @, b und / sind bekannt. Gesucht ist die Stelle x = x,, an
der die Funktion f ihr absolutes Minimum auf dem Intervall (— oo, + c0) annimmt.
Wegen

X I—x
‘(x) = - -0 <X< +0w
re x? + a* (- x)?*+ b* ( )
ist die Gleichung f”(x) = 0 dquivalent zu
x l—x
= . 7.24
x? + a? (I —x)* + b .29

Aus (7.24) folgt durch Quadrieren und eine einfache Umformung b%x? = a?(I — x)?
und daraus

bx = a(l — x) (7.25a)
oder :
bx = —a(l — x). (7.25b)
8% '
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Aus (7.25b) folgt umgekehrt aber nicht (7.24), denn geniigt x der Gleichung (7.25b),
dann haben x und (I — x) verschiedene Vorzeichen, was der Gleichung (7.24) wider-
spricht. Dagegen ist die Losung von (7.25a), namlich

al
a+b’
auch Losung von (7.24), wie man leicht durch Einsetzen bestétigt. Somit ist x, die
einzige kritische Stelle von £, und wegen

al bz
f'x) = + >0
Ve - %)+ b
hat f dort ein relatives Minimum, das nach Satz 7.8 auch das absolute Minimum von
fauf (—o0, + ) ist.
Wir geben noch zwei Interpretationen dieses geometrischen Problems.

Xo =

—

. Ein von 4 ausgehender und an g (Spiegel) reflektierter Lichstrahl, der in B ankom-
men soll, wihlt den Weg der kiirzesten Laufzeit (Fermatsches Prinzip). Bei kon-
stanter Geschwindigkeit (homogenes Medium) ist das der kiirzeste Weg. In diesem
Fall wird der Lichtstrahl also im Punkt P(x,, 0) reflektiert. Fiir x, gilt (7.24), d. h.
(s. Bild 7.11) sin & = sin f3, also & = f. Aus dem Fermatschen Prinzip folgt somit
das Reflexionsgesetz ,,Einfallswinkel gleich Ausfallwinkel*.

2. Zur Energieversorgung der Orte 4 und B soll an dem geradlinig verlaufenden Flufl

g ein Kraftwerk gebaut werden. Die Gesamtlinge der von dem Kraftwerk nach 4

und B zu verlegenden Leitungen ist genau dann minimal, wenn dieses an der Stelle

P(x,, 0) errichtet wird.

Aufgabe 7.9: Ermitteln Sie den Grundkreisradius 7, und die Hohe %, derjenigen
zylindrischen Dose, die bei vorgeschriebenem Volumen ¥ eine méglichst kleine Ober-
fliche S hat (geringster Materialverbrauch).

Aufgabe 7.10: Die Genauigkeit der Widerstandsmessung mit einer Wheatstoneschen
Briicke (s. Aufgabe 5.6) hangt von der Kontakteinstellung x ab und 1dBt sich daher
durch die Wahl des Vergleichswiderstandes R beeinflussen. Fiir welchen Wert X ist der
in der Losung von Aufgabe 5.6 angegebene Naherungswert fiir den relativen Fehler
Ay

am kleinsten?

Aufgabe 7.11: Ein Ort A soll regelmaBig mit Waren aus einem Ort B, der an einer
geradlinigen Eisenbahnlinie g liege (s. Bild 7.12), versorgt werden. Die Transport-
kosten pro Kilometer und Wareneinheit seien « bei StraBentransport und f bei Bahn-
transport. Es gelte « > f. An welcher Stelle P zwischen 4, und B ist von g eine gerad-
linige Strae nach 4 abzuzweigen, damit die Kosten fiir den Transport einer Waren-
einheit von B iiber P nach 4 moglichst gering sind? (Die Strecken a und / seien in km
gegeben.)
A

" Bild 7.12

5|
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7.5. Konvexitit und Wendepunkte

7.5.1. Konvexe urd konkave Funktionen

Wir erinnern an den Begriff der Konvexitét (s. Band 1, Abschnitt 9.3.). Die Funk-
tion f heiBt auf dem Intervall /< D(f) kenvex, wenn fiir alle x;, x, € I und jedes
« € (0, 1) die Ungleichung

Sloxy + (1 = o) x3) < of(xy) + (1 — &) fx2) . (7.26)
erfiillt ist. Gilt dagegen statt (7.26) stets
Sloxy + (1 = o) x3) Z o (x1) + (1 — &) f(x2), (7.27)

so heiBt f auf I konkav. Gilt in (7.26) fiir x; + x, sogar stets < statt <, so nennt
man f auf I streng konvex; analog sind streng konkave Funktionen definiert.

Zur geometrischen Interpretation der Konvexitdt betrachten wir zwei Stellen
X1, X, € I mit x; < x,. Fiir jedes « € (0, 1) ist dann

x=ox; + (1 — &) x,

ein Punkt aus dem Intervall (x;, x,) . Weiter ist

of )+ (1= ) ) = ) + LELZLED () )

der Wert der zum Intervall [x,, x,] gehorigen Sekantenfunktion an der Stelle x.
Die Ungleichung (7.26) lautet somit
fx) = fix),

d. h., die Bildkurve von f liegt nicht oberhalb der zu dem (beliebig in 7 gelegenen)
Intervall [x,, x,] gehorigen Sekante (s. Bild 7.13a). Analog ist die Konkavitit zu
interpretieren (s. Bild 7.13b).

¥y

5
fn

Bild 7.13b

X P X

Fiir differenzierbare Funktionen kann man Konvexitit und Konkavitdt auch
durch die Lage der Tangenten zur Bildkurve charakterisieren.

J y

¥ y=flx)

X X X X % X

Bild 7.14a Bild 7.14b
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Bemerkung 7.4: Die Funktion f sei auf dem Intervall 7 differenzierbar. Genau dann
ist fauf I konvex (bzw. konkav), wenn jeder Punkt der Bildkurve von foberhalb (bzw.
unterhalb) jeder Tangente oder hochstens auf derselben gelegen ist (s. Bild 7.14a
bzw. 7.14b).

Bild 7.14a 148t vermuten, daB bei einer konvexen Funktion f der Anstieg der Tan-
gente im Punkt P(x, f(x)) mit wachsendem x zunimmt, daB also f" monoton wachsend
ist. Tatsdchlich gilt der

Satz 7.9: Die Funktion f sei auf dem Intervall I differenzierbar. Genau dann ist f auf I
konvex wachsend) . :
(streng) }

konkau}’ wenn f' auf I (streng) monoton { ist.

fallend

Mit den Sétzen 7.3 und 7.4, angewandt auf die Funktion f”, erhdlt man aus Satz 7.9
die folgenden Konvexititskriterien.

S. 7.10 Satz 7.10: Die Funktion f habe auf dem Intervall I eine stetige erste Ableitung und auf

*

dem Innern von I eine zweite Ableitung.

konvex

I. Genau dann ist f auf T {konkav

{f”(x) z0
f'(x)£0
{f”(x) >0
f'(x) <0
dann ist f auf I streng {

} , wenn gilt

} fiir jedes x aus dem Inneren von I.
1I. Gilt
} fiir jedes x aus dem Inneren von I,
konuex}

konkav| "
Beispiel 7.18: Fiir die Funktion

) =x-13x+1) (-0 <x< +00)
gilt (s. Beispiel 7.13)

f'(x) = 12x(x — 1){

>0 fir x <0 undfir x>1,
<0 fir 0<x<1.

Nach Satz 7.10 ist fauf (— 00, 0] und [1, + o) streng konvex und auf [0,1] streng kon-
kav (s. Bild 7.6).

Aufgabe 7.12: Untersuchen Sie das Konvexitdtsverhalten der Funktion

S(x) =ﬁ (=0 < x < +0).

7.5.2. Wendepunkte

Zur Hervorhebung derjenigen Stellen, an denen die ,,Anderungsgeschwindigkeit*
einer Funktion ein relatives Maximum oder Minimum hat, geben wir die folgende

Definition 7.3: Die Funktion f sei in einer Umgebung der Stelle x, differenzierbar.
Der Punkt (x4, f(x,)) heist Wendepunkt (der Bildkurve) von f, wenn die Ableitung f’



7.5. Konvexitit und Wendepunkte 119

an der Stelle x, einen relativen Extremwert i. e. S. hat. Die Tangente in einem Wende-
punkt heifit Wendetangente, ist diese horizontal (gtlt also f'(x,) = 0), dann heifst
(xo, f(x,)) Horizontalwendepunkt oder Stufenpunk

Aus Satz 7.9 erhilt man unmittelbar die folgende geometrische Bedingung fiir das
Vorliegen eines Wendepunktes.

Satz 7.11: Die Funktion f sei auf einem Intervall [x, — &, Xo + €], ¢ > 0, differenzier- S. 7.11
bar. Ist f auf [xo — &, Xo] streng konvex und auf [xo, Xo + €] streng konkav oder umge-
kehrt, dann ist der Punkt Po(x,, f(xo)) ein Wendepunkt von f(s. Bild 7.15aund 7.15b")).

¥ yT y=F0)
| | !
=€ X ‘\1‘\)(,7& X | 3 =F )
i |
I
o |
m -6 X
a 8
Bild 7.15a Bild 7.15b

Nach Satz 7.11 hat die in Beispiel 7.18 betrachtete Funktion f die Wendepunkte
P,(0, —1) und P,(1, 0). Zu P, gehort die Wendetangente y = —1 + 2x [s. (4.17)];
P, ist wegen f'(1) = 0 ein Horizontalwendepunkt mit der Wendetangente y = 0
(s. Bild 7.6).

Beispiel 7.19: Bild 7.16 zeigt die Bildkurve der Weg-Zeit-Funktion s = s(f) einer
geradlinigen Bewegung. Im Wendepunkt P, geht diese Kurve mit zunehmender Zeit
t aus einem konvexen in einen konkaven Verlauf iiber. Daher hat die Geschwindigkeit
v = § zur Zeit ¢, ein relatives Maximum (vgl. Bild 7.15a).

Aus Bemerkung 7.3 und Satz 7.6, angewandt auf f’, erhdlt man sofort die beiden
folgenden Kriterien fiir das Vorliegen eines Wendepunkts.

Bemerkung 7.5: Die Funktion f kann nur dann an der Stelle x, einen Wendepunkt
haben, wenn entweder f"'(x,) = 0 ist oder die 2. Ableitung von f an der Stelle x,
nicht existiert.

Diese notwendige Bedingung ist aber nicht hinreichend. So hat z. B. die Funktion
f(x) = x* an der Stelle x = 0 keinen Wendepunkt (sondern ein relatives Minimum),
obwohl f/(0) = 0 ist.

Satz 7.12: Die Funktion f besitze in einer Umgebung der Stelle x, stetige Ableitungen S.7.12
bis zur n-ten Ordnung {(n = 3), und es gelte

[(x0) = 1" (x0) = ... =f™ V(xo) =0, aber f™(xo) # 0. (7.28)

Ist nungerade, dann hat f an der Stelle x, einen Wendepunkt, andernfalls nicht.

1) Man beachte auch den Zusammenhang zwischen der Monotonie von fund dem Vorzeichen von
f’ (s. Satz 7.4).
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Beispiel 7.20: Die Van-der-Waalssche Zustandsgleichung eines realen Gases lautet

_ RT
L

- 7}"7 > b) (7.29)

(T: Temperatur, v: Molvolumen, p: Druck, R: allgemeine Gaskonstante, a und b:
gasspezifische Konstanten). Bei konstanter Temperatur T ist der Druck p eine Funk-
tion des Volumens v, deren Bildkurve Isotherme heiBit. Aus physikalischen Uber-
legungen folgt die Existenz einer Isotherme 7" = T}, mit einem Horizontalwendepunkt
K. In Bild 7.17 sind drei typische Isothermen schematisch dargestellt. Dabei ist

Bild 7.16 Bild 7.17

T, < Ty < T,. (Das tatsichliche Verhalten des Stoffes zwischen den Punkten 4 und
B wird durch ein zur v-Achse paralleles Geradenstiick beschrieben.) Wir wollen nun
die Existenz eines Horizontalwendepunkts K mathematisch beweisen und K ermltteln
Die notwendigen Bedingungen

dp

d?p
d——O und R =0

lauten wegen (7.29) mit 7 = T,

RT: 2a 2RT; 6a
(u—b)2+ Ovund(v—_b—)a— D—4—0
Die einzige Losung v = v, dieser Gleichungen ist v, = 3b. Setzt man diesen Wert
in eine der beiden Gleichungen ein, so erhélt man 7, = 278 B . Aus (7.29) folgt damit
k= 27bz . Wegen
d3p 6RT; 24a
@ o, - G- T - B O

ist K(v, p) nach Satz 7.12 tatsichlich ein Wendepunkt. Man nennt die GréBen
T Uk, P kritische Daten und den Punkt K kritischen Punkt.

* Aufgabe 7.13: Ermitteln Sie Wendepunkt(e) und zugehdérige Wendetangente(n)
der Funktion f(x) = x*Inx (x > 0).
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7.6. Kurvendiskussion

Bisher haben wir die Bildkurven von Funktionen skizziert, ohne auf die Anferti-
gung solcher Skizzen einzugehen. Damit wollen wir uns nun befassen. Man unter-
sucht dazu die vorgelegte Funktion auf folgende Eigenschaften:

1. Unstetigkeitsstellen (s. 3.3.),

2. Monotonieintervalle (s. 7.2.),

3. Relative Extremwerte (s. 7.3.),

4. Konvexitétsintervalle (s. 7.5.1.),

5. Wendepunkte (s. 7.5.2.),

6. Verhalten fiir x > + 00, Asymptoten (s. unten).

Auf Grund dieser sog. Kurvendiskussion ist der prinzipielle Verlauf der Bildkurve
bekannt. Um die Genauigkeit der Skizze zu erh6hen, wird man im allgemeinen noch
einige Funktionswerte und die Nullstellen der Funktion berechnen. Gelegentlich
kann man auch Periodizitits- oder Symmetrieeigenschaften der gegebenen Funktion
ausnutzen. ’

Wir miissen noch den Begriff der Asymptote definieren. Ist die Funktion f fiir eine
der ,,Bewegungen‘‘ x — x, + 0 oder x —» x, — 0 bestimmt divergent, dann heiBt die
Gerade

X=X

(vertikale) Asymptote oder Sperrgerade (der Bildkurve) von f fiir diese ,,Bewegung*®
von x. Eine Gerade

y=ax+b (7.30)
hei3t (geneigte) Asymptote (der Bildkurve) von f fiir x - + oo, wenn gilt
lim [f(x) — (ax + b)] = 0. (7.31)
X 400

Entsprechendes gilt fiir x - —oo0. Anschaulich gesprochen ist eine Asymptote also
eine Gerade, der die Bildkurve von f bei der betrachteten ,,Bewegung‘‘ von x beliebig
nahe kommt (s. Bild 7.18a fiir die ,,Bewegung*‘ x - x, — 0 und Bild 7.18b fiir die
,,Bewegung'* x » + o0).

Y
|
el Yeaxth

y=f(x)
ly=(x)

L 0 X r X

Bild 7.18a Bild 7.18b

Nun sei die Gerade (7.30) Asymptote der Bildkurve von f fiir x - + co0. Zur Ermitt-
lung der Konstanten a und b schreiben wir (7.31) in der Form

lim [x(ﬂ;—cl —-a- %)] =0.

x>+
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Wegen lim x = + oo folgt

X+ 0
lim (M—a——[{) =0
X+ 00 X X
und daraus wegen lim E =0
x40 X
a= lim @ (7.32)

xs+w X '

Ferner erhélt man aus (7.31) unmittelbar
b= lim [f(x) — ax]. (733
X+

Aus (7.33) folgt umgekehrt (7.31). Es gilt also die

Bemerkung 7.6: Die Bildkurve von f besitzt genau dann eine Asymptote fiir x — + o,
wenn die Grenzwerte (7.32) und (7.33) existieren. Mit diesen Grenzwerten ist die
Asymptote durch die Gleichung y = ax + b gegeben.

Existiert speziell der Grenzwert hmf(x), dann folgt aus (7.32) a = 0 und damit aus
(7.33) b = hmf(x) In diesem Fall hat die Bildkurve von f also die (horizontale)
Asymptote

y=>b (b= lm f&x). (7.34)

Alle diese Uberlegungen gelten entsprechend fiir x — — o0.

Mit dem Voranstehenden haben wir fiir beliebige (rationale und nichtrationale)
Funktionen den Begriff der geradlinigen Asymptote definiert. Fiir gebrochen ratio-
nale Funktionen betrachtet man auch krummlinige Asymptoten. Hierauf wollen wir
jetzt eingehen. Zunéchst sei daran erinnert, daB fiir eine echt gebrochen rationale
Funktion / stets

lim A(x) =0
X+ 00
gilt (s. Aufgabe 2.6.).
#5 Nun sei f eine unecht gebrochen rationale Funktion. Durch Division des Zahler-
polynoms durch das Nennerpolynom kann man f'in folgender Weise zerlegen:

J(x) = g(x) + h(x);

hierbei ist g eine ganze und / eine echt gebrochen rationale Funktion. Daraus ergibt
sich
lim [f(x) —g(x®)] = lim A(x) =0,
X— + 00 X— + 00

d. h., fiir x > + o0 kommt die Funktion f ihrem ganzen Teil g beliebig nahe. Deshalb
nennt man g (krummlinige) Asymptote von f fiir x — +oo; das gleiche gilt fiir
x - —o0. Ist g speziell eine lineare Funktion, also g(x) = ax + b, dann ist g natiir-
lich auch Asymptote von fim Sinne der durch (7.31) gegebenen Definition.

Fiir gebrochen rationale Funktionen ist die Ermittlung des Kurvenverlaufs mit
Hilfe der Ableitungen hiufig recht aufwendig. Andererseits liefert fiir solche Funk-
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tionen eine genaue Analyse der Unstetigkeitsstellen sowie die Bestimmung von Null-
stellen und Asymptoten im allgemeinen schon einen guten Einblick in den Kurven-
verlauf. Ein entsprechendes Beispiel findet man in Aufgabe 7.14b).

Wir wollen nun zwei Kurvendiskussionen durchfiihren.

Beispiel 7.21: Zuerst untersuchen wir die Funktion
fx)=x*e* (=00 < x < +0).

1. fist fur alle x stetig (und beliebig oft differenzierbar).

2. Wegen

) = x(2 — x) e >0 fir 0<x<2,

<0 fir x<O0 undfir x>2

ist f auf [0, 2] streng monoton wachsend und auf (—oo0, 0] und [2, + o0) streng
monoton fallend.

. Nach 2. hat f das relative Minimum f(0) = 0 und das relative Maximum f(2)
= 4¢72 = 0,54 (s. auch Beispiel 7.12).

4. Esgiltf"'(x) = (x* — 4x + 2) e *. Das Polynom (x> — 4x + 2) hat die Nullstellen
X =2-+/2=059 und x,=2++/2+ =34l
Daher ist

%)

) >0 fir x<x; undfir x> x,,
S(x) = (0 = xp) (x = x3) e .
<0 fir x;, <x<x,
Somit ist fauf (— co, x,] und [x,, + o) streng konvex und auf [x,, x,] streng kon-
kav.
. Nach 4. hat f die Wendepunkte P,(x,,f(x,)) und P,(x,, f(x,)). Dabei ist f(x,)
= 0,19 und f(x,) = 0,38.

Esgilt lim f(x) = + 00 und lim f(x) = 0(letzteres nach Beispiel 7.4). Fiir x— + o0

W

&

X -0 X—+ 00
hat f also die Asymptote y = 0 [s. (7.34)]. Dagegen hat f wegen
Sx)
x

= lim xe™* = —0

x— =00

lim
x> -
fiir x > — oo keine Asymptote [s. (7.32)].
Wir berechnen noch die Funktionswerte f(—1) = e = 2,72 und f(5) = 25¢~°

= 0,17 und beachten f(x) > 0 fiir alle x + 0. Nun kann man die Bildkurve von f
recht genau skizzieren (s. Bild 7.5 in 7.3.3.).

Beispiel 7.22: Nun untersuchen wir die Funktion f(x) = i/x3 +2x2 (x 2 =2).
1. fist auf [—2, + o0) stetig.
2. Wegen

);(3x+4) l>0 fiir —2<x<—% und fiir x > 0,
S0 =35m0 .
3\/x e l<0 fiir —-:—<x<0
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ist f auf [—2, - %] und [0, + o) streng monoton wachsend und auf [— —g—, O]

streng monoton fallend.
2

3. Nach 2. hat f das relative Maximum f(—%) = ?3/4_1 = 1,06 und das relative
Minimum f(0) = 0 (s. auch Beispiel 7.14).

4. Nach kurzer Rechnung erhdlt man

_ 8
G+ 2% + 2x

also f"'(x) < 0 fiir —2 < x < 0 und fiir x > 0. Daher ist fauf (—2, 0) und (0, + )
jeweils streng konkav.

5. Nach 4. hat f keine Wendepunkte.

6. Es gilt
S —
: 2
\/x (1 +?) 3 5
lim f(_x)= lim ————— = lim \/1+—.=1,
X X+ 00 X X+ 00 x

X+ 00

f(x) = (x> =2,x%+0),

und nach der Losung von Aufgabe 7.2b) ist lim [f(x) — 1 - x] = %. Daher ist die
X— + 00
Gerade y = x + § Asymptote von f fiir x - + 0.
Es empfiehlt sich, die Funktion noch auf (einseitige) Differenzierbarkeit an den Stel-

len x = —2 und x = 0 zu untersuchen (vgl. Beispiel 7.14). Der Differenzenquotient
an der Stelle x = 0 ist

fO+h -0  YPh+2) -0
h B h

(h> =2,h+0).

Nun sei 2 < 0. Dann ist —A > 0 und daher —h = i/(—h)3. Damit erhélt man

SO+ —f©O) _ C[PG+2) _ [h+2
h B (=W~ N -k

(-2<h<0).

Unter Verwendung von Satz 2.4 folgt daraus

i SO+ D = 1O _

—o0.
K=o h

Die Bildkurve von f hat also an der Stelle x = 0 eine vertikale linksseitige Tangente
(vgl. Beispiel 4.9). Analog stellt man fest, daB sie an den Stellen x = Qund x = —2
auch eine vertikale rechtsseitige Tangente hat.

Bild 7.8 in 7.3.4. zeigt die Bildkurve von f.

Aufgabe 7.14: Fiir die folgenden Funktionen ist eine Kurvendiskussion durchzufiih-
ren und die Bildkurve zu skizzieren:

x2—x =2

IO = ery
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- x*(x + 2)°
DI® = herreT T
x=m?
¢) fx) = ! e 2 (0 > 0, u: Konstanten).?)

o2

Hinweis zu b): Es geniigt, Unstetigkeitsstellen (genaue Klassifikation), Nullstellen,
Asymptoten (einschl. Lage der Bildkurve von f zu diesen) und einige Funktionswerte
zu bestimmen.

/ol Niherungsweise Losung von Gleichungen der Form f(x) = 0

7.7.1.  Vorbemerkung

Die unterschiedlichsten Probleme fiihren auf die Aufgabe, die Losungen einer
Gleichung der Form

f(x) =0,

also die Nullstellen der Funktion f, zu ermitteln. Als Beispiele aus der Mathematik
seien hier nur die Bestimmung der kritischen Stellen einer Funktion (s. 7.3.2.) und
die in Teil 2 zu behandelnde Partialbruchzerlegung gebrochen rationaler Funk-
tionen genannt. Doch auch viele praktische Probleme laufen letzten Endes auf diese
Aufgabe hinaus. Wir erinnern nur an die in Beispiel 4.8 erwdhnte Balkenbiegung:
Diejenige Kraft F, die den Bruch des Balkens bewirkt (die sog. Eulersche Knicklast),
ergibt sich aus der kleinsten positiven Losung der Gleichung

tanx — x = 0.

Da in den meisten Féllen (wie auch in diesem Beispiel) eine formelméaBige Auflésung
der gegebenen Gleichungen nicht mdoglich ist, kommt den numerischen Verfahren zur
Losung von Gleichungen eine groBe Bedeutung zu. Diese Verfahren bestehen darin,
ausgehend von ein oder zwei (z. B. graphisch ermittelten) groben Naherungslosun-
gen, sog. Startwerten, iterativ (d. h. schrittweise) immer genauere Ndherungswerte X,
fiir die gesuchte Losung & der Gleichung f(x) = 0 numerisch zu berechnen. Unter
geeigneten Voraussetzungen konvergiert die nach einer gewissen Vorschrift konstru-
ierte Folge (x,) gegen &. Praktisch bedeutet das: Fir hinreichend groBes » (also nach
hinreichend vielen Rechenschritten) unterscheidet sich x, beliebig wenig von &.

Wir beschridnken uns im folgenden auf die Formulierung von Konvergenzbedin-
gungen, die leicht nachzupriifen sind. Hinsichtlich weiterer Ausfithrungen sei auf
Band 18 dieser Reihe verwiesen.

7.7.2.  Regula falsi

Es sei f eine Funktion, die auf dem Intervall [a, b] definiert ist und den folgenden
Bedingungen geniigt:

(B 1) Es gilt f(a) - f(b) < O (d. h., f(a) und f(b) haben verschiedene Vorzeichen).

1) Diese Funktion heiBt GauBsche Fehlerfunktion; sie spielt in der mathematischen Statistik
eine wichtige Rolle.
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(B 2) Die Ableitungen f* und f*’ existieren und sind auf [a, b] stetig.
(B 3) Fiir jedes x € [a, b] ist f'(x) & 0 und f"'(x) % 0.

Aus (B 2) und (B 3) folgt nach Satz 3.9, daB /" und /"’ auf [a, b] das Vorzeichen nicht
wechseln. Somit ist f auf [a, b] streng monoton und entweder streng konvex oder
streng konkav. Da f auf [a, b] wegen der strengen Monotonie hdchstens eine Null-
stelle, aber wegen (B 1) nach Satz 3.9 auch mindestens eine Nullstelle besitzt, hat
also die Gleichung f(x) = 0 genau eine Losung & € (a, b).

Zur ndherungsweisen Berechnung von & fait man @ und b als Startwerte auf und
ermittelt diejenige Stelle x,, an der die zum Intervall [a, b] gehorige Sekante an die
Bildkurve von f die x-Achse schneidet. Entsprechend verfahrt man nun mit dem-
jenigen der beiden Teilintervalle [a, x;] oder [x,, ], an dessen Randpunkten die Werte
von f verschiedene Vorzeichen haben: Man bezeichnet dieses Teilintervall mit
[p2, 2] und erhilt als Schnittstelle der zugehdrigen Sekante mit der x-Achse einen
Wert x, usw. Allgemein schneidet die zum Intervall [p,, ¢,] gehorige Sekante die
x-Achse an der Stelle

- Rl (N :
| S == S B (=120 (7.39)

Dabei sind p, und g, rekursiv nach folgender Vorschrift zu ermitteln (s. Bild 7.19
und Bild 7.20):

pii=a, g,:=b. (7.36a)
Wenn f(x) - f(pa) < 0, dann ppesi= P Gurri= xn.}

(7.36b)
Wenn f(x,) - f(¢a) < 0, dann  pyisi= Xp  Gpi1 = Ga-

|
|

Bild 7.19 Bild 7.20

Das durch (7.35), (7.36a) und (7.36b) beschriebene Verfahren heifit Regula falsi®).
Der folgende Satz bestitigt die Vermutung, daB lim x, = & gilt.
nowo

Satz 7.13: Die Funktion f geniige den Bedingungen (B 1), (B2) und (B 3). Dann
konvergiert die nach der Regula falsi ermittelte Folge (x,) monoton gegen die Losung
& der Gleichung f(x) = 0.

1) ,,Regula falsi* (mittelalterliches Latein) bedeutet ,,Regel vom Falschen (ausgehend)*. Gemeint
ist damit gerade, daB die Bildkurve von f durch eine ,,falsche* Kurve — nimlich die Sekante — er-
setzt wird.
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Praktisch bricht man das Verfahren ab, sobald man einen Naherungswert X,
erhalten hat, der eine gewisse Genauigkeitsforderung erfiillt. Eine solche Abbruch-
bedingung ist z. B. die Forderung, daB | f(x,)| hinreichend klein ist; ein anderes haufig
verwendetes Kriterium verlangt, daB sich x, hinreichend wenig von x,_; unterschei-
det. Hierauf kann jedoch nicht niher eingegangen werden. LaBt man den Abbruch-
test aufler acht, so hat man zusammenfassend den folgenden

Algorithmus (Regula falsi):

. Wihle ein Intervall [, b] so, daB (B 1), (B 2), (B 3) erfiillt sind.
.Setzen:=1,p,:=a, q,:= b.

Berechne x, nach (7.35).

Berechne p,:; und ¢, nach (7.36b).

[ R I ]

Setze n:=n + 1 und gehe zu 3. (Diese Anweisung bedeutet, dal der Wert der
Indexvariablen » um 1 zu erhdhen ist.)

Fiir die Arbeit mit nichtprogrammierbaren Hilfsmitteln (Taschenrechnern) ist eine
etwas andere Darstellung der Rekursionsformeln zur Berechnung von x, zweck-
méBig. Betrachten wir zuerst den Fall f'(x) < 0 und f”'(x) > 0 fiir jedes x € [a, b]
(s. Bild 7.19). Fiir jedes n ist dann offenbar f(x,) - f(p,) < 0, also wegen (7.36b) und
(7.362) ppe1 = @, Guer = X, speziell xo = ¢, = b. Aus (7.35) mit n + | statt n
folgt daher

| Xo = b ]
oy fl a— X _ . (7.37a)
Xpe1 = a — f(a) @ =70 (n=0,1,...) )

Im Fall /"(x) < 0 und f"'(x) < O fiir jedes x € [a, b] (s. Bild 7.20) erhélt man entspre-
chend .

Xo =4a
o Xy — b B } (7.37b)
I Xn+1 = Xy f(x")_——f(x,,) —7® n=0,1,...)

Analoge Uberlegungen in den anderen Fillen fiihren schlieBlich zu der

verschiedene Vorzeichen

Bemerkung 7.7: Haben f' und f"’ auf [a, b] { dasselbe Vorzeichen

(7.37a)
Folge (x,) nach { (7.37b)} berechenbar.

}, dann ist die

Beispiel 7.23: Gesucht ist ein Naherungswert fiir die Losung & der Gleichung

xInx —4=0. (7.38)
Zuerst ermitteln wir graphisch, wo die Losung & zu suchen ist. Dazu empfiehlt es sich,
Gleichung (7.38) in der Form In x = ZLx zu schreiben und die Funktionen fi(x) =
Inx (x > 0) und fo(x) = Z—Ix- (x > 0) in demselben Koordinatensystem zu skizzieren.

Die Abszisse des Schnittpunkts dieser beiden Kurven ist gerade die Losung & von
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(7.38). Aus der (groben) Skizze von Bild 7.21 liest man ab: & € (1; 2). Fiir die Funk-
tion
fx)=xlnx-% (x>0) (7.39)

gilt in der Tat f(l) < 0und f(2) > 0. Fiir jedes x € [1; 2]ist ferner/’(x) = Inx + 1 > 0
und f"'(x) = — > 0. Die Funktion f geniigt also auf [1; 2] den Bedingungen (B 1),

(B2), (B3),so daB die nach der Regula falsi zu ermittelnde Folge (x,) gegen & kon-
vergiert. Zur Verbesserung der Startwerte kann man noch f(1, 5) berechnen und fin-
det einen positiven Wert. Somit kann man die Regula falsi mit ¢ = 1 und b = 1,5
anwenden. Wegen Bemerkung 7.7 ist dabei die Folge (x,) nach (7.37b) (mit f gemaf

vk oy
x>0) y=lnx (x>0)

Bild 7.21

(7.39)) berechenbar. Die folgende Tabelle zeigt die mit einem Taschenrechner)
ermittelten numerischen Werte, wobei die erste Zeile fiir n = — 1 die zur Berechnung
bendtigten Werte b und f(b) enthdlt. Die Rechnung wurde ,,in einem Zuge* durch-
gefiihrt, d. h., ein ermittelter Wert x, wurde im Rechner belassen und sogleich zur
Berechnung von x,., verwendet.

n Xy S(xa)

= 1,5 0,108 197 67
0 1 —0,5
1 1,4110506 —0,014 126 594
2 1,421 3229 —0,000 279893
3 1,421 5259 —0,000 005 512
4 1,421 5299 —0,000000 114
5 1,421 5299

Wegen x5 = x4 ,,steht* das Verfahren, d. h., im Rahmen der Rechnergenauigkeit
ist eine weitere Verbesserung der Naherungswerte fiir & nicht méglich. Natiirlich darf
man aus der Ubereinstimmung von x5 und x, nicht den SchluB ziehen, daB damit die
ersten 8 Stellen von & exakt bekannt seien: Aussagen iliber die Genauigkeit der
Niherungswerte wiren nur auf Grund von Fehlerabschitzungen mdéglich, auf die
jedoch an dieser Stelle nicht eingegangen werden kann (vgl. aber 7.7.4.) Wir schrei-
ben daher auch nur & ~ 1,4215299. Unter der Abbruchbedingung [x,;; — X,| < 10-3
hitte man das Verfahren mit dem Wert x; abgebrochen und & ~ 1,421 geschrie-
ben.

1) Alle numerischen Rechnungen in Abschnitt 7.7, wurden mit einem elektronischen Taschenrech-
ner vom Typ MR 610 durchgefiihrt.
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7.7.3.  Das Newtonsche Verfahren

Es sei wieder feine Funktion, die auf einem Intervall [a, b] den Bedingungen (B 1),
(B 2), (B 3) geniigt und somit genau eine Nullstelle & € (a, b) hat (s. 7.7.2.). Das New-
tonsche Verfahren zur niherungsweisen Berechnung von & beruht auf folgender Uber-
legung: Als ersten Naherungswert fiir & wahlt man ein gewisses x, € [a, b]. Die Tan-
gente an die Bildkurve von fim Punkt (x,, f(x,)) hat die Gleichung

¥ = fxo) +f'(x0) (x — Xo).
Thr Schnittpunkt mit der x-Achse ergibt sich daraus zu
S(xo)
f'(x0)

Entsprechend verfahrt man nun mit x, usw. (s. Bild 7.22). Aligemein schneidet die
Tangente im Punkt (x,, f(x,)) die x-Achse an der Stelle

Sxn) _
I St = % = pet (1=0,1,2,.), (7.40)

Xy = Xo —

Bild 7.22 Bild 7.23

Im Falle von Bild 7.22 14Bt die Anschauung vermuten, da die durch (7.40) re-
kursiv definierte Folge (x,) (monoton) gegen & konvergiert. Bild 7.23 zeigt jedoch, daB3
das nicht immer zutrifft. Die Ursache hierfiir liegt offenbar in der Wahl des Start-
wertes Xo. Genaue Auskunft iiber diesen Sachverhalt gibt der folgende

Satz 7.14: Die Funktion f geniige den Bedingungen (B 1), (B 2) und (B 3) (s. 7.7.2.).
Wiihlt man x, € [a, b] so, daP f(x,) dasselbe Vorzeichen wie f'' auf [a, b] hat, dann kon-
vergiert die durch (7.40) definierte Folge (x,) monoton gegen die einzige Losung & € (a, b)
der Gleichung f(x) = 0.

Beweis: Wir beschranken uns auf den in Bild 7.22 veranschaulichten Fall 7.35d.
In den anderen Fillen schlieBt man analog. Daf”’(x) > Oist, wihlen wir ein x, € [a, b]
mit f(x,) > 0. Da f streng monoton fallend ist, gilt x, < & Wegen der Konvexitit
von fliegt die zum Punkt (x,, f(x,)) gehorige Tangente an die Bildkurve von f unter-
halb der Bildkurve (s. Bemerkung 7.4), speziell an der Stelle & also unterhalb der
x-Achse. Da sie an der Stelle x, oberhalb der x-Achse liegt, gilt fiir ihren Schnitt-
punkt x; mit der x-Achse

' Xo < X, <&,

9 Pforr, Diff.- u. Integr.

S 7.14



130 7. Untersuchung von Funktionen mit Hilfe ihrer Ableitungen

Aus der Monotonie von f folgt f(x;) > f(§) = 0, so daB man fiir die Tangente im
Punkt (xy,f(x,)) entsprechend schlieBen kann. Allgemein findet man durch voll-
stindige Induktion

X, <Xy <& m=0,1,2;..)
Als monoton wachsende und nach oben beschriankte Folge hat (x,) einen Grenzwert

X € [xo, &]. Es ist noch ¥ = & zu zeigen. Da fund f’ an der Stelle X stetig sind, folgt
aus (7.40) fir n > o

f(%)
(%)

und daraus f(%) = 0. Da aber £ die einzige Nullstelle von f auf [a, b] ist, muB X = &
sein. Damit ist der Satz bewiesen. B

X=Xx-

<~

Betrachten wir noch einmal Bild 7.23. Fiir die dort skizzierte Funktion f gilt
f"(x) > O fir jedes x € [a, b] (fist auf [a, b] streng konvex), aber es ist f(x,) < 0. Die
,,Vorzeichenregel* ist also verletzt?).

Lassen wir den Abbruchtest aufler acht, so haben wir den folgenden

Algorithmus (Newtonsches Verfahren):

1. Wihle ein Intervall [a, b] so, daB (B 1), (B 2), (B 3) erfuillt sind. Wahle x, € [a, b]
so, daB f(xo) - f"'(xo) > 0 (vgl. FuBnote).

2. Setze n:= 0.

3. Berechne x,,.; nach (7.40).

4. Setze n:=n + 1 und gehe zu 3.

Ohne Beweis teilen wir mit, dal das Newtonsche Verfahren im allgemeinen mit
weniger Rechenschritten brauchbare Naherungswerte x, liefert als die Regula falsi.
Man wird es also stets dann der letztgenannten Methode vorziehen, wenn die Berech-
nung der Werte f’(x,) nicht zu aufwendig ist. Das trifft z. B. auf algebraische Glei-
chungen zu, bei denen man die Werte f(x,) und f’(x,) nach dem Hornerschen
Schema berechnen kann.

Beispiel 7.24: Fir die Losung & der Gleichung
xlnx—-4%=0

soll nach dem Newtonschen Verfahren ein Naherungswert berechnet werden. Wie
in Beispiel 7.23 stellt man fest, daB man @ = 1 und b = 1,5 setzen kann. Fiir die
Funktion f(x) = xInx — 4 (x > 0) ist f(1) < 0, f(1,5) > 0 und f”’(x) > O fiir jedes
x € [l; 1,5]. Daher wéhlen wir x, = 1,5 als Startwert. Die Rekursionsformel (7.40)
lautet in diesem Falle '

X, Inx, — 0,5

Fret =% T T
n

n=0,1,2..).

1) Diese Regel ist jedoch nicht notwendig fiir die Konvergenz von (x,) gegen &. So kann man etwa
in dem folgenden Beispiel 7.24 auch x, = 1 wihlen. Beim Arbeiten mit programmierbaren Rechnern
priift man i. allg. diese Regel nicht nach, sondern setzt fiir x, versuchsweise geeignete Werte ein.
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Man erhélt die folgenden numerischen Werte:

n X, SCxa)

0 1,5 0,108 197 67
1 1,4230165 0,002 010 174
2 1,421 5305 0,000 000 79
3 1,421 5300 0,000 000 003
4 1,421 5300

Damit ,,steht” das Verfahren bereits, und man hat £ ~ 1,421 530 0. Beziiglich der
Genauigkeit sei auf die Diskussion im AnschluB an die Tabelle von Beispiel 7.23 ver-
wiesen.

Beispiel 7.25: Nach dem Newtonschen Verfahren soll ein Niaherungswert fiir die
kleinste positive Losung & der Gleichung

tanx — x =0
berechnet werden (vgl. 7.7.1.).
Einen Hinweis auf die Lage von & entnimmt man wieder einer Skizze; aus Bild 7.24
liest man ab, daB & bei 4,5 gelegen ist.
y

y=tanx

\
I
|
|
|
|
| |
[
|
|
i
I
,

I Bild 7.24
X

g/ &%
| i
| |

In der Praxis verzichtet man hiufig auf das Uberpriifen der Bedingungen (B 1), (B 2),
(B 3) und der ,,Vorzeichenregel*“. Wir wollen hier ebenso verfahren und wéhlen so-
gleich x, = 4,5 als Startwert. Die weiteren Néaherungswerte x, sind nach (7.40) mit
(x) = tan x — x, f’(x) = tan® x aus der Rekursionsformel

tan x, — X,
SR = 7.41

Xpt1 = X TanTw n=012..) (7.41)
zu berechnen. Man erhalt die folgenden Werte:

n Xq )

0 4,5 0,137 329

1 4,493 614 0,004 127 6

2 4,493 41 0,000 000 4

3 4,493 41

Aus der Tabelle liest man ab, daB & ~ 4,493 41 ist.
9‘
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An diesem Beispiel 1aBt sich aber auch demonstrieren, daf3 bei ungiinstiger Wahl des
Startwertes x, die Folge (x,) von der Losung & ,,weglaufen‘ kann (vgl. Bild 7.23).
Wihlt man namlich zum Beispiel x, = 4, so erhélt man die folgenden Werte:

n Xy )

0 4 —2,842179 4
1 6,120 161 5 —6,284 6455
2 238,411 83 —238,776

3 2038,887 9

Man beachte, daB in diesem Falle wegen f(4) < 0, f"(4) > 0 die ,,Vorzeichenregel*
verletzt ist.

Aufgabe 7.15: Zeigen Sie, da3 die Gleichung
- 3
2 _—— =
x* + \/ x—5 0

im Intervall (4, 1) genau eine Ldsung & hat und berechnen Sie & ndherungsweise
nach dem Newtonschen Verfahren. Die Rechnung ist mit x, abzubrechen, wenn

£ < 106 gilt.

7.7.4. Das allgemeine Iterationsverfahren

Zur Ermittlung der Losungen von f(x) = 0 schreiben wir diese Gleichung nun in
der Form

x = ¢(x).
Eine solche Umformung ist in vielfdltiger Weise méglich.
Beispiel 7.26"): Die Gleichung
x*-Inx-2=0 ' (7.42)

kann man z. B. umformen in

2+ 1Inx . 2+ Inx
= < mit @,(x) = < (7.43a)
oder in
x=+2+Inx mit g,(x)=+/2+Inx (7.43b)
oder in
=l mit  @a(x) = e¥2, (7.43¢)

Jede Losung & der Gleichung x = @(x) heiB3t Fixpunkt der Funktion ¢. Geometrisch
ist ein Fixpunkt & von ¢ die Abszisse des Schnittpunkts der Bildkurve von ¢ mit

1) Dieses Beispiel, das wir auch noch numerisch auswerten werden, ist [15] entnommen (vgl. auch
[2] und [3]).
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der Geraden y = x (s. Bild 7.25). Zur nidherungsweisen Berechnung von & geht man
folgendermafBen vor: Man ermittelt (z. B. graphisch) einen ersten Niherungswert
X, fir &, berechnet den Funktionswert ¢(x,) und verwendet diesen als neuen Nihe-
rungswert x;, man setzt also x; = @(x,).

y
¥=
Y= == A =p(x)
[ I
vt~
1 | 1
. I L . Bild 7.25
a»\"o-m yoang§ ox o br(b-a) X
| J |
| R R

Nun verfahrt man entsprechend mit x; usw. Allgemein erhédlt man durch die Rekur-
sionsformel

[ | Xpp1 = @(x,) (n=0,1,2,..) (7.44)

eine Folge (x,). Dieses Verfahren, das man (allgemeines) Iterationsverfahren nennt,
ist in Bild 7.25 veranschaulicht. Fiir den dort dargestellten Fall vermutet man, daf
(x,) gegen & konvergiert. Bild 7.26 zeigt jedoch einen Fall, fiir den das offenbar nicht
zutrifft. Man vermutet einen Zusammenhang zwischen dem Konvergenzverhalten
der Folge (x,) und dem Anstieg der Funktion ¢. Fiir die Funktion ¢ von Bild 7.25

y-gu(x)

i | N
A v EFxn ok X

Bild 7.26

ist |¢'(x)| ,,hinreichend klein*“ — die Folge (x,) konvergiert. Bild 7.25 zeigt aber zu-
gleich, daB auch im Falle der Konvergenz nicht alle x, in einem vorgegebenen Inter-
vall [a, b], das den Fixpunkt & und den Startwert x, enthdlt, zu liegen brauchen. Die
Konvergenz von (x,) wird also erst dann gesichert sein, wenn ¢ in einem geeigneten
Intervall I* > [a, b] ,,hinreichend flach** verlduft. Eine Auskunft hieriiber gibt der
folgende

Satz 7.15: Es sei
I=[a,b] und I* =(a— (b—a), b+ (b— a).
Die Funktion ¢ habe auf I einen Fixpunkt &. Auf I* sei ¢ differenzierbar, und es gebe

S.7.15
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eine Zahl q mit

lo'(x)| < q fiir jedes xeI* (0 <q<1). (7.45)
Dann konvergiert fiir ein beliebiges x, € I die durch (7.44) definierte Folge (x,) (in I*)
gegen &, es gilt also

lim x, = &. (7.46)

n-w

Beweis: Wir libergehen den Nachweis, da3 unter den angegebenen Voraussetzungen
jedes x,, in I'* liegt (die Folge (x,) also iiberhaupt definiert ist)*) und wollen nur (7.46)
beweisen. Aus (7.44) und & = (&) folgt fiir jedes n

Xpi1 — € = 9(x,) — @(§). (7.47)
Auf die rechte Seite von (7.47) wenden wir den Mittelwertsatz der Differentialrech-
nung an. Danach existiert eine zwischen x, und & (also in /*) gelegene Zahl z, mit

o(x,) — @(&) = ¢'(z) - (x, — §). ) (7.48)
Aus (7.47) und (7.48) folgt mit (7.45)

[Xns1 — &l = 19| - %0 — &] = q|x, — &
SchlieBt man entsprechend fiir |x, — &| usw., so erhélt man

[Xas1 = &l S qlxn — &l S ¢% X0y — &8 S o S ¢ %0 — €] (7.49)
Wegen 0 < g <1 1st hm g"*' = 0, also nach (7.49) auch hm Ix,,,1 — & = 0, woraus
schlieBlich (7.46) folgt Damlt ist der Satz bewiesen. m
Wegen (7.49) ist g offenbar ein MaB fiir die ,,Konvergenzgeschwindigkeit* der Folge

(x,): Die Konvergenz ist um so besser, je kleiner ¢ € [0,1) ist.
LaBt man wieder den Abbruchtest auBer acht, so hat man den folgenden

Algorithmus (allgemeines Iterationsverfahren):

1. Wahle ein Intervall 7 = [a, b] so, daB & € [ und (7.45) gilt. Wahle x, € L.
2. Setze n:= 0.

3. Berechne x,.; = ¢(x,).

4. Setze n:= n + 1 und gehe zu 3.

Beispiel 7.27: Wir betrachten wieder die Gleichung (7.42), also
—Ilnx-2=0

(vgl. Beispiel 7.26). Zur Ermittlung der ungefihren Lage ihrer Losungen schreiben
wir sie in der Form

x?=2=Inx
und skizzieren die Bildkurven der Funktionen f;(x) = x? — 2 und f,(x) = In x. Nach
Bild 7.27 hat die letztgenannte Gleichung und daher auch (7.42) Losungen &; und &,
in der Nihe von 0,15 bzw. 1,6. Die Losung &, soll mit einem Iterationsverfahren
niherungsweise berechnet werden. Wir betrachten zuerst die Darstellung (7.43¢).
Fiir die Funktion ¢; gilt

@5(1,6) = 3,2+ e%%6 = 56> 1. (7.50)

1) Siehe [2].
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Man wird daher kein &, enthaltendes Intervall 7 finden, so daB (7.45) mit einer Zahl
g < 1 gilt. Die Darstellung (7.43¢) ist also zur iterativen Berechnung von &, nicht
geeignet. Die Darstellung (7.43b) untersuchen wir spater. Nun wenden wir uns der
Darstellung (7.43a) zu. Wihlen wir I = [1,5; 1,7], dann ist &, € I und

I* = (1,5 -0.2; 1,7+ 0,2) = (1,3; 1,9).
Flir jedes x e I'* gilt

.

Phx) = — EV'T"L <0 und i) = ﬁ-xzalﬁ > 0. (7.51)

Aus der zweiten Ungleichung von (7.51) folgt, daB ¢} auf I* streng monoton wach-
send ist. Daraus und aus der ersten Ungleichung von (7.51) ergibt sich
l@i(x)] < |¢3(1,3)] < 0,75 fiir jedes x € I'*.
Also ist (7.45) mit ¢ = 0,75 erfiillt, und die Darstellung (7.43a) kann somit zur itera-
tiven Berechnung von &, verwendet werden. Die Iterationsvorschrift lautet x,.; =
@1(x,), also
2+ 1Inx,

Xy =t (1=0,1,2,..). (7.52)

Mit dem Startwert x, = 1,6 € I erhdlt man die folgenden Werte:

n o, n Xp

0 1,6 4 1,568 774 9
1 1,5437523 5 1,561 916 2
2 1,576 817 8 6 1,565 969 7
3 1,557192°5 7 1,563 5713

Da g recht groB ist, konvergiert die Folge (x,) langsam. Aus den ange gebenen Werten
liest man ab: &, ~ 1,56.

Bild 7.28 zeigt die Bildkurve einer Funktion ¢ mit einem Fixpunkt & € I = [a, b],
wobei gilt
0<¢(x) <q firjedes xel (0Zg<1). (7.53)

Man vermutet, daB in diesem Fall fiir einen beliebigen Startwert x, € I jedes Glied der
Folge (x,) in I gelegen ist, so daB man das Intervall 7* nicht zu betrachten braucht.

Bild 7.27 Bild 7.28
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AuBerdem erwartet man, daB die Folge (x,) monoton ist. Tatsédchlich gilt der folgende
Satz, den wir ohne Beweis mitteilen'):

Satz 7.16: Die Funktion @ habe auf I = [a, b] einen Fixpunkt &. Ferner sei ¢ auf I diffe -
renzierbar, und es gebe eine Zahl q, so daf (7.53) gilt. Dann konvergiert fiir ein belie-
biges x, € I die durch x,., = ¢(x,) (n =0, 1, 2, ...) definierte Folge (x,) (auf I) gegen
&. Dabei gilt

Xo

A

X3 S X,

.S¢& fir xo2€, (7.54a)
= e =R (7.54b)

IV IA
IV IIA

Xo Z X1 2 X

Beispiel 7.28: Wir wollen untersuchen, ob die Darstellung (7.43b) zur iterativen Be-
rechnung der bei 1,6 gelegenen Losung &, von (7.42) geeignet ist (vgl. Beispiele 7.26
und 7.27) und wahlen wieder I = [1,5; 1,7]. Die Funktion ¢, ist auf I definiert, hat
dort den Fixpunkt &,, und es gilt

1 1
<
2xV2+Inx T 2-1,5-/2+1nl5

Mit g = 0,22 ist also (7.53) erfiillt. Fiir ein beliebiges x, € I — wir wéhlen x, = 1,6 -
konvergiert daher die durch x,,, = @,(x,), also

Xos1 =v/2+Inx, (n=0,1,2,..), (7.55)

definierte Folge (x,) monoton gegen &,. Da ¢ klein ist, erwartet man eine schnelle
Konvergenz. Diese Erwartung findet man in der folgenden Tabelle bestatigt:

0 =¢h(x) =

< 0,22 fiir jedes xel.

n | X n 57

0 1,6 4 1,564 523 1
1 1,571 624 5 5 1,564 474 7
2 1,565921 4 6 1,564 464 8
3 1,564 760 2 7 1,564 462 8

Hieraus liest man ab: &, ~ 1,564 46.

Bisher haben wir lediglich einige Ndherungswerte x, fiir die gesuchte Losung &
einer gegebenen Gleichung ermittelt, ohne auf Genauigkeitsfragen einzugehen.
Der folgende Satz liefert nun Fehlerabschitzungen, die direkt auf das Iterations-
verfahren (7.44) zugeschnitten sind.

Satz 7.17: Es gilt unter den Voraussetzungen von Satz 7.15

& — x| =

el = el (7.56)

und unter den Voraussetzungen von Satz 7.16

X SEZx, +

1 _‘{ 7 X, — Xp_q] flir xo <&, (7.57a)

Xp = 1% — Xut] SESx, fir xo2¢&. (7.57b)

q
1) Siehe [2].
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Beweis: Aus & = (&) und x, = ¢(x,_,) folgt

16 = x| = 1p(&) — @(xu-0)| = (&) = e + lo(xn) — @(Xn-1)I-
Wendet man auf beide Summanden auf der rechten Seite dieser Ungleichung den
Mittelwertsatz der Differentialrechnung an, so erhilt man wegen (7.45)

1€ = x| £ qlé — x| + qlx, — Xuesl,
woraus unmittelbar (7.56) folgt. Die engeren Schranken von (7.57a) bzw. (7.57b)
ergeben sich nun daraus unter Beachtung von (7.54a) bzw. (7.54b). m
Beispiel 7.29: Wir wollen fiir die Rechnung von Beispiel 7.28 eine Fehlerabschdtzung
durchfiihren. Wegen x, = 1,6 > &, ist (7.57b) anzuwenden. Danach gilt mit g = 0,22
0,22
0,78
Bei der weiteren Abschitzung ist folgendes zu beachten: x, ist in (7.58) das Folgen-
glied mit dem kleinsten Index und kann daher als Startwert mit dem exakten Wert

1,564 464 8 angesehen werden. Der Wert x, = \,/2 + In x4 ist daraus aber durch
Rundungen ermittelt worden. Bei einer Rechnergenauigkeit von +1 in der 8. Stelle
fiir die Werte von Logarithmus- und Wurzelfunktion findet man die EinschlieBung

1,564 4627 < x; < 1,564 4629

und damit |x; — x| < 2,1 -107°. Aus (7.58) folgt nun
1,564 4621 < &, < 1,564 4629,

also auf 5 Stellen nach dem Komma gerundet &, = 1,564 46.

X, —

[x7 — x| £ &5 £ x5. (7.58)

AbschlieBend geben wir noch einen Hinweis, der gelegentlich das Auffinden einer
geeigneten Iterationsvorschrift erleichtert.

Bemerkung 7.8: Die Funktion ¢ habe auf dem Intervall 7 den Fixpunkt & Die Ab-
leitung ¢ sei auf I stetig, und es gebe eine Zahl K mit

|¢'(x)| = K fiir jedes xel (K> 1). (7.59)

Dann ist & auch Fixpunkt der Umkehrfunktion ¢=* von ¢, und auf einem gewissen &
enthaltenden Intervall 7 gilt

@Y @I Sq mit g= <1, (7.60)

Bei geeigneter Wahl von x, € 7 ist also die Iterationsvorschrift
Xpp1 = @7 (X)) (n=0,1,..)
zur niherungsweisen Berechnung von & geeignet.

Beispiel 7.30: In Beispiel 7.27 hatten wir gesehen, daB3 die Funktion @5 zur iterativen
Berechnung der Lésung &, von (7.42) nicht geeignet ist [vgl. (7.50)]. Die Umkehrfunk-
tion von

g3iy =ev? (xz0, yze?

gitix=/2+Iny (v
¢ty =+24Inx (x=e? y20),

also gerade die Funktion ¢,, die sich nach Beispiel 7.28 schr gut fiir diese Iteration
eignet.

ist

v

e?, x=0)
bzw.
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Beispiel 7.31: Gesucht ist ein Naherungswert fiir die kleinste posmve Losung & der
Gleichung
tanx —x =0

(vgl. Beispiel 7.25). Mittels einer Skizze (s. Bild 7.24) findet man & € [4,3; 4,7]. Fiir die
Funktion ¢(x) = tan x (4,3 < x < 4,7) gilt aber ¢'(x) = 1 + tan® 4,3 > 6 fiir jedes
x € [4,3;4,7], so daB das Iterationsverfahren X,+1 = tan x, zur numerischen Berech-
nung von & nicht geeignet ist. GemaB Bemerkung 7.9 gehen wir zur Umkehrfunktion
von ¢ {iber und finden

¢~ '(x) == + arctanx (tan 4,3 < x < tan4,7),

0= (p < 0,06 fiir jedes x € [4,3; 4,7]

-1
Y@= 1+(43)2
(man beachte [4,3; 4,7) = D(p~")). Die durch das Iterationsverfahren
Xp41 =7 + arctanx, (n=0,1,2,..))

erzeugte Folge (x,) konvergiert also ,,schnell“ gegen & Mit dem Startwert x, = 4,5
erhilt man die folgenden Werte:

Xn

4,5

4,493 720 1
4,493 4242
4,4934102
4,493 409 5
4,493 409 5

NMPBAWNN—=O| I

Aufgabe 7.16: Die in der Nihe von 0,15 gelegene Losung &, der Gleichung (7.42) soll
iterativ berechnet werden.

a) Entscheiden Sie, welche der Darstellungen (7.43a), (7.43b), (7.43¢) fiir diese Itera-
tion (am besten) geeignet ist.

b) Fiihren Sie die Iteration mit der unter a) ermittelten Darstellung durch. Die Rech-
nung ist mit x,,, abzubrechen, wenn |x, — x,.,| < 10-* gilt.

Aufgabe 7.17: Die Funktion f sei so beschaffen, daB durch

LS
= T

eine auf einem Intervall differenzierbare Funktion ¢ definiert ist.

a) Geben Sie (unter Verwendung der Funktion f) eine notwendige und hinreichende
Bedingung dafiir an, daB die Funktion ¢ einen Fixpunkt £ hat.
b) Auf welches Verfahren fiihrt in diesem Falle die Iterationsvorschrift

Xorr = 957

¢) Leiten Sie aus (7.45) eine die Funktion f und ihre Ableitungen betreffende hin-
reichende Bedingung fiir die Konvergenz der Iterationsfolge (x,) ab.



TEIL 2: INTEGRALRECHNUNG

8. Problemstellung und Historisches

Ebenso wie die Differentialrechnung — vielleicht in noch stirkerem MaBe — ist
auch die Integralrechnung ein entscheidendes Hilfsmittel fiir fast alle Disziplinen der
Natur- und Ingenieurwissenschaften. Wéhrend die Differentialrechnung ihre Ent-
stehung im wesentlichen dem ,,Tangentenproblem** verdankt (vgl. Ausfithrungen in
Abschnitt 1.), ist die Integralrechnung historisch gesehen aus dem Quadraturproblem,
d. h. aus der Frage nach dem Flacheninhalt ebener geometrischer Figuren, entstan-
den. Dabei ist die Bezeichnung ,,Quadraturproblem‘ — an Stelle von ,,Flichen-
inhaltsproblem** —"auf die Versuche der Geometer des Altertums zuriickzufiihren,
den Inhalt eines ebenen Flichenstiicks durch Verwandlung dieses Flachenstiicks in
ein inhaltsgleiches Quadrat zu ermitteln.

Beiden Problemen ist gemeinsam, daB sie auf einen GrenzprozeB — auf die Berech-
nung eines Grenzwertes — fithren. Beim Tangentenproblem ist es der ,,Differential-
quotient®, beim Quadraturproblem das sog. ,,bestimmte Integral‘.

Unabhingig von dem anschaulichen Ausgangspunkt werden die auftretenden
Grenzwerte als Grundlage fiir die abstrakte Definition des Differentialquotienten
bzw. des bestimmten Integrals genommen, deren Anwendungen jedoch weit tiber die
urspriingliche geometrische Fragestellung hinausgehen.

Bei der Berechnung des Fliacheninhalts 4 des von den Kurven x = a, x = b (Par-
allelen zur y-Achse), y = 0 (x-Achse) und y = f(x) begrenzten Bereichs B (s. Bild 8.1)

erhilt man zunichst fiir den Flicheninhalt 4 die Niherung 4 ~ Z f(&) Ax;, wobei
Ax; = x; — x;_, gesetzt wurde (s. Bild 8.2).

Bild 8.1 Bild 8.2

Der genaue Wert von A ergibt sich aus der obigen Néaherung durch die Bildung
eines Grenzwertes 4x; — 0. Diesen Grenzwert (genaue Beschreibung erfolgt in den
Abschnitten 10.1.1. und 10.1.2.) nennt man das bestimmte Integral der Funktion f(x)

b

iiber dem Intervall [a, b] und bezeichnet ihn durch das Symbol J' f(x) dx. Dabei ist das

Zeichen f eine besondere — von Leibniz eingefiihrte — Schreibweise des Buchstabens

S. Auf Grenzwerte der eben geschilderten Art fiihren viele Begriffe in Physik, Mecha-
nik und in den Ingenieurwissenschaften. Es seien hier stellvertretend fiir viele durch
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das bestimmte Integral beschreibbaren Sachverhalte die Begriffe ,,Arbeit, ,,Schwer-
punkt® und ,, Tragheitsmoment‘‘ genannt (s. Abschnitt 10.4.).

Die Anwendungen der Integralrechnung sind so zahlreich, da3 es schwerfillt, eine
mathematische Disziplin zu nennen, die ohne Integralrechnung auskommt. In allen
Natur- und Ingenieurwissenschaften spielen z. B. die Differentialgleichungen (das
sind Gleichungen, in denen neben der unabhingigen Verénderlichen x und der ab-
hingigen Verdnderlichen y auch wenigstens eine der Ableitungen y’, ¥, ... vor-
kommt; vgl. auch 4.7.1.) eine groBe Rolle. Wir wissen an dieser Stelle noch nicht,
wie man zu den Losungen einer Differentialgleichung kommt, aber soviel méchten wir
hier schon sagen: Fast immer mul man integrieren — ein Integral 16sen —, um eine
Losung der Differentialgleichung zu erhalten. Dies driickt sich auch in der Namens-
gebung aus: An Stelle von ,,Lésung** einer Differentialgleichung spricht man sehr oft
vom ,,Integral* einer Differentialgleichung. ®

Eine Aufgabe der Differentialrechnung besteht darin, zu einer gegebenen Funktion
f die Ableitung f’ zu bestimmen. In vielen Problemen der Naturwissenschaft und
Technik ist jedoch die umgekehrte Aufgabe zu 16sen, d. h., es ist eine Funktion zu
bestimmen, deren Ableitung bekannt ist. Diese Art der Fragestellung, zu einer Ab-
leitung die Ausgangsfunktion zu bestimmen, fiihrt ebenfalls auf ein Integral, das
sog. ,,unbestimmte Integral‘. Unter dem unbestimmten Integral der Funktion f(x) mit
x € I versteht man also die Menge aller Funktionen F(x), deren Ableitung F’(x)
gleich f(x) ist.

Hat man irgendeinen Vertreter F(x) des unbestimmten Integrals von f(x) ermit-
telt, so fiihrt die anschlieBende Differentiation von F(x) wieder zu f(x) zuriick. Diese
Tatsache gibt AnlaB zu der folgenden oft gebrauchten Formulierung: Die Integra-
tion ist die Umkehrung der Differentiation (Unter Integration ist bei dieser Formu-
lierung die Ermittlung des unbestimmten Integrals zu verstehen.)

An einem Beispiel aus der Physik soll der Zusammenhang zwischen Differential-
und Integralrechnung nochmals erldutert werden. Fiir eine gleichmaBig beschleunigte
Bewegung mit der Anfangsgeschwindigkeit v, = 0 gilt v = bt, wobei b eine konstante
Beschleunigung darstellt. Fragt man nach dem Weg, der in einer bestimmten Zeit ¢

zuriickgelegt wird, so muBl v durch den Differentialquotienten ? ersetzt werden
also folgt o

ds

i bt.
Wir suchen somit, wenn wir nach dem zuriickgelegten Weg s fragen, die Funktion,
deren Ableitung gleich bz ist.

Trotz der unterschiedlichen Definitionen fiir das bestimmte und das unbestimmte
Integral besteht zwischen beiden ein sehr enger Zusammenhang. Ein praktisch brauch-
bares Rechnen mit dem bestimmten Integral wird erst durch diesen Zusammenhang
(s. 10.2.3.) mit dem unbestimmten Integral méglich.



9. Das unbestimmte Integral

9.1. Definition und einige Integrationsregeln
9.1.1. Stammfunktionen und unbestimmte Integrale

In der Differentialrechnung wird zu einer vorgegebenen Funktion f(x) die Ablei-
tung f”(x) gebildet. Bei vielen Problemen sucht man umgekehrt zu einer vorgegebenen
Funktion f(x) eine Funktion F(x), deren Ableitung mit f(x) iibereinstimmt. Es ist da-
her zweckmaBig, fiir diese neue Funktion F(x) einen besonderen Namen einzufiihren.

Definition 9.1: I sei ein offenes Intervall. Vorgegeben sei eine Funktion f(x), die wenig-
stens auf dem Intervall I definiert ist. Dann nennt man jede Funktion F(x), deren Ab-
leitung fiir alle x € I gleich f(x) ist, d. h.

F'(x) =f(x) Vxel,
eine Stammfunktion von f(x) auf 1.

3
Beispiel 9.1: F(x) = xT ist eine Stammfunktion von f(x) = x2. Das Intervall 7 kann

hierbei beliebig gewihlt werden, denn in diesem Fall gilt fiir jedes x die Gleichung
F'(x) = f(x). Bei diesem Beispiel wire also I = (— 0, + 00) das groBtmaogliche Inter-
vall, fiir welches F'(x) = f(x) gilt.

Satz 9.1: Ist F(x) irgendeine Stammfunktion von f(x) auf I, so erhdlt man durch die
Summe F(x) + ¢ (c: beliebige Konstante) samtliche Stammfunktionen von f(x) auf I.

Unter der fast immer erfiillten Voraussetzung, dafl mindestens eine Stammfunk-
tion von f(x) existiert, gibt es also zu einer vorgegebenen Funktion f(x) immer unend-
lich viele Stammfunktionen, da eine Konstante beim Differenzieren null ergibt.

Beweis zu Satz 9.1: Aus F'(x) = f(x) (xeI) folgt (F(x) + ¢)’ = f(x)(x€I). Man muB
nun umgekehrt zeigen: Ist F(x) irgendeine Stammfunktion von f(x), so 148t sich jede
andere Stammfunktion F;(x) von f(x) in der Form F,(x) = F(x) + ¢ darstellen. Das
folgt aber sofort aus 6.2.2. Nach Voraussetzung gilt ndmlich F{(x) = f(x) und F'(x)
= f(x) (x € I). Hieraus folgt F{(x) = F'(x) (x e I), also existiert nach Satz 6.5 eine
Konstante ¢, so daB gilt: F,(x) = F(x) + c. =

Definition 9.2: Ist F(x) irgendeine Stammfunktion von f(x) auf I, so nennt man die
Summe F(x) + c, wobei c eine beliebig wihlbare Konstante ist, das unbestimmte Inte-
gral von f(x) auf I und bezeichnet es mit | f(x) dx.

Nach dieser Definition ist also das unbestimmte Integral von f(x) die Gesamtheit
aller Stammfunktionen von f(x) . Es gilt

ff(x) dx = F(x) + c.

Die beliebig wihlbare Konstante ¢ hei3t Integrationskonstante. Wegen F'(x) =f(x) gilt:
d

| &[we-rw

Diese Gleichung dient als Probe dafiir, da man das unbestimmte Integral richtig
berechnet hat.

D. 9.1

S.9.1

D.9.2
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9.1.2.  Unbestimmte Integrale der Grundfunkiionen

In der Differentialrechnung lernten wir die Regeln fiir die Differentiation der ele-
mentaren Funktionen (Grundfunktionen) kennen (s. 4.5.1.). Jede derartige Differen-
tiationsregel liefert wegen des in 9.1.1. beschriebenen Zusammenhangs zwischen
Differentiation und Integration sofort eine Integrationsregel. Beispielsweise liefert die
Differentiationsregel (sin x)’ = cos x die Integrationsregel

fcosx dx =sinx + ¢

Fiir f(x) = cos x ist F(x) = sin.x eine Stammfunktion; fiir alle x gilt F'(x) = f(x).
Das Intervall 7 kann hier wieder beliebig gewahlt werden.
Betrachten wir ein weiteres Beispiel:

Die Differentiationsregel (In |x|)’ = — fiir jedes x % O liefert die Integrationsregel
J.— In |x| + c. (Voraussetzung uber I: 0¢ I. Bei der Integrationsregel ist daher

der Zusatz x = 0 anzubringen!)

1 . . .
Hinweis: Statt {;dx ist es tblich, kurz fd% zu schreiben.

Analog kann man zu allen anderen Differentiationsregeln (s. 4.5.1.) entsprechende
Integrationsregeln angeben, die ihrer fundamentalen Bedeutung wegen auch Grund-
integrale genannt werden.

41
fx"‘ dx = :+ 4 ¢ (x beliebige reelle Zahl + —1; x > 0) ©.1)
fe" dx=¢*+¢ .2)

. a*
J.a dx=Tt+c @>0a+1 ©.3)
dx
= In|x| + ¢ (x +0) 9.4y
fcosx dx =sinx + ¢ 9.5)
fsin xdx = —cosx + ¢ 9.6)
dx .
fm— =tanx + ¢ (cosx=+ 0 firalle xel) 9.7)
f—si—i—f;= —cotx +c¢ (sinx=0 firalle xel) (9.8)
f% =arcsinx + ¢; = —arccosx + ¢, (-1 <x<1) 9.9
—-x
dx
fl——l-x_’_ = arctan x + c. (9.10)
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Bemerkung 9.1: Ist in Formel (9.1) & eine ganze Zahl, d. h. « = n, so gilt

x"+l
M dx —
I fxdx—n+l+c.

AuBer n £ —1 braucht man jetzt nur noch die Voraussetzung x =+ 0, fallsn < —1.
Im Falle n > —1 ist keine Einschrinkung erforderlich (s. Bemerkung in 4.5.1.).
Bei Formel (9.4) wird manchmal an Stelle von In |x| nur In x geschrieben. Dann hat
man aber fiir x # 0 nun x > 0 zu schreiben. Mit Absolutzeichen ist jedes Intervall 7,
welches rechts oder links von x = 0 liegt, zuldssig; ohne Absolutzeichen sind nur
rechts von x = 0 liegende Intervalle zulissig. Ahnlich verhalt es sich bei den Formeln
(9.7), (9.8) und (9.9). In Formel (9.8) zum Beispiel sind nur solche Intervalle 7 zuléssig,
bei denen fiir jedes x € 7 gilt sin x + 0, (sin x + 0 <> x =+ k=, k ganz).

Zu den Grundintegralen rechnet man oft noch eine Reihe weiterer Integrations-
regeln, z. B. die zu der Differentiationsregel fiir die Funktion arsinh x gehérige Inte-
grationsregel. Wir begniigen uns aber mit den angegebenen; sie reichen fiir das
Verstdndnis des Zusammenhangs zwischen Differentiation und Integration aus. Bei
der Integration komplizierterer Funktionen wird man ohnehin eine gré8ere Formel-
sammlung zu Rate ziehen (s. [1]). Wir mdchten aber an dieser Stelle besonders be-
tonen, daB eine gewisse Grundtechnik des Integrierens (hierzu zihlt z. B. die Substi-
tutionsmethode und die partielle Integration, auf die wir anschlieBend (vgl. 9.1.4.
und 9.1.5.) eingehen werden) von keiner Formelsammlung ersetzt werden kann!
Kompliziertere Integrale versucht man durch geeignete Umformungen, z. B. Substi-
tution oder partielle Integration, auf Grundintegrale bzw. andere schon bekannte
Integrale zurickzufiihren.

9.1.3.  Einige allgemeine Integrationsregeln fiir unbestimmte Integrale

Analog zu den Differentiationsregeln (4.27) und (4.28) gibt es entsprechende Inte-
grationsregeln:

| [k-f(x)dx = k- [f(x)dx (k konstant) ©.11)

[in Worten: Ein konstanter Faktor darf vor das Integralzeichen gesetzt werden, vgl.
Formel (4.28)].

| [(f(x) + g(x)) dx = [f(x) dx + [g(x) dx 9.12)
[in Worten: Eine Summe darf gliedweise integriert werden, ygl. Formel (4.27)].
Ist F(x) eine Stammfunktion von f(x) auf Z, so ist die Funktion —{1; F(ax + b) eine

Stammfunktion der Funktion f(ax + b) auf jedem Intervall I*, fiir welches gilt:
ax + belVY xeI*. Das heilt:

I ff(ax +B)dx = %F(ax B+ ©9.13)

Beweis: Wir nehmen an, daB f(x) und g(x) Stammfunktionen haben, die wir mit F(x)
bzw. G(x) bezeichnen. Die Formeln (9.11) und (9.12) lauten dann:

[k fx)dx = k- (Fx) + o),
[(f®) + g() dx = (F() + ¢1) + (GE) + ¢3).
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Wir haben zu zeigen, daB durch Differentiation der rechten Seiten sich jeweils di=
links hinter dem Integralzeichen stehende Funktion ergibt (s. Def. 9.2 in 9.1.1.).

Zu (9.11): (k- (F(x) + ) = (k" F(x) + k-¢) =k F'(x) = k- f(x),
zu (9.12): (F(x) + G(x) + ¢; + ¢3) = F'(x) + G'(x) = f(x) + g(x),

zu (9.13): ( - Flax + b) + c) = %- F'(ax + b) - a = f(ax + b),
(s.4.4.1. und 4.4.2). m

2
Beispiel 9.2: fxdx - fx‘ dx=3—+c (s Formel 9.1) in 9.12).

Beispiel 9.3: f(xz + 6x — 5)dx = fxz dx + 6+ J‘xdx - S-fdx

o X
=5 + 6-T — 5x + ¢ (s. Formeln (9.11) und (9.12)).
—1 !
Beispiel 9.4:J‘d ——dx—fx’zdx= x—+c=—L+c,
P -1 5%

Vor.: x # 0. (s. Formel (9.1)).
3
& 2 = —
Beispiel 9.5: J\/xdx- sz x =xT+ c =%x2 +c :%x\/x +
2
Vor.: x = 0.
2 ——
Beispiel 9.6: J.\/5x+2dx—§ (3(5x+2)‘\/5x+2) +¢
Vor.:5x +2=0,d.h. x = ——2— (s. Formel (9.13)).

=In|x+ 5| + ¢,

Vor.:x + 5%+ 0,d. h. x + —5 (s. Formeln (9.4) und (9.13), wobei a =1,
b=>5ist: flx)= -)17, F(x) = In |x| =>%- F(x + 5) =1In|x + 35|

* Aufgabe 9.1: Man berechne a) f (x3 + % — ’;T) dx, b) \//Fdx

9.1.4. Die Substitutionsmethode bei unbestimmten Integralen

Wenn das unbestimmte Integral [ f(x) dx der Funktion f(x) nicht unter den Grund-
integralen oder anderen bereits bekannten Integralen zu finden ist, besteht die Auf-
gabe, das Integral so umzuformen, daB ein Grundintegral oder ein schon bekanntes
Integral entsteht.

Eine Methode, das zu erreichen, besteht darin, eine neue Verdnderliche u, die mit
der alten Variablen x durch die Gleichung x = ¢(u) bzw. u = y(x) verkniipft ist, ein-
zufiihren.
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Von dem unbestimmten Integral [ f(x) dx kommt man durch eine Substitution
x = @(u) formal') zu dem Integral | f(¢(u)) ¢'(u) du. Durch diese formale Umformung
(die natiirlich nicht als Beweis anzusehen ist!) haben wir bereits die der Substitutions-
methode zugrunde liegende Regel gefunden. Es gilt

Satz 9.2 (Regel der Integration durch Substitution): Ersetzt man in [ f(x)dx die
Variable x durch eine Funktion x = @(u) einer neuen Variablen u, so gilt

i [ 1) dx = [ flo@) ¢ @) du,_ - (9.14)

Hierbei ist # = p(x) die Umkehrfunktion von x = ¢(u). Auf der rechten Seite von
(9.14) bedeutet der Zusatz u = y(x), daB man nach Ermittlung des rechts stehenden
Integrals durch die Substitution u =w(x) wieder zur alten Variablen x zuriickkehrt.
Vorausgesetzt muB hierfir werden, daB3 ¢'(¥) und die Umkehrfunktion u = y(x)
existieren.

Die Umkehrfunktion u = p(x) existiert sicherlich, wenn im betreffenden Intervall
¢'(u) + 0 ist, da dann ¢(u) streng monoton ist.

Beweis der Formel (9.14): Es sei
Gw) = [fp(w) ¢'(w) du @

F(x) = G(p(x)). . an
Formel (9.14) ist dann dquivalent mit der Glelchung
[ f(x) dx = F(x).

Es ist also zu zeigen, daB fiir die so eingefiihrte Funktion F(x) gilt: F'(x) = f(x). Nach
(I) gilt:

G@= % = flgw) -9/t

und

Aus (IT) folgt dann (Kettenregel und Differentiation der Umkehrfunktion beach-
ten! Vgl. 4.4.2. und 4.4.3.):

F=39. = 7))
= (@) 70 = S(0) = £

Bei der praktischen Anwendung der Substitutionsmethode kann auf die Uberpriifung
der fiir (9.14) notwendigen Voraussetzungen verzichtet werden, wenn man sich durch
eine nachtrigliche Probe (vgl. Bemerkungen zu Def. 9.2) davon iiberzeugt, daBl die
gewonnene Funktion tatséchlich eine Stammfunktion der vorgegebenen Funktion
f(x) ist.

Beispiel 9.8: [cos (5x + 1)dx  (f(x) = cos (5x + 1)).
Die Substitution # = 5x + 1 (p(x) = 5x + 1), d. h. x = —((p( u) = “- 1),

1) Formal bedeutet hier, daB man in dem Symbol { f(x) dx das Zeichen dx als ein wirkliches Diffe-
rential der Funktion x = @(«) ansieht und durch ¢’(x) du ersetzt: dx = ¢’(u) du.

10  Pforr, Diff.- u. Integr.

S.9.2
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fiihrt hier auf ein Grundintegral. Nach der Formel (9.14) gilt:
fcos (5x + I)dx = f(cosu)%du = %fcosudu

=%sinu+c=%sin(5x+l)+c.

Beispiel 9.9: a) f % (f(x) =ﬁ) (Vor.: a + 0).

Substitution: u = ax* + b (p(x) = ax*> + b)

du
:E—Zax.
gu
J xdx _JZa _L[ du —LJ‘u‘*du
Jax* +b Ju 2a ) Ju 2a
R T B B
=2 —1—+c—7\/u+c—;\/ax +b+ec
2

Bemerkung: Wir haben hier die Funktion ¢(u) tiberhaupt nicht ermittelt. Aus

o =L wihlen.

b , und man kénnte ¢(u) =

u =ax* + b folgt x = +
Die rechte Seite von Formel (9.14) ergibt mit diesem ¢(u) das Integral
A/u -b _l_
a_. a e du _
\/ U, A/ u—>b 2a\/u .

a

Wir erhalten also das gleiche Ergebnis wie vorhin, als wir im Symbol { f(x) dx das

Zeichen dx wie ein wirkliches Differential behandelt haben. Auch in vielen anderen
Beispielen wird man ¢(u) nicht zu berechnen brauchen.

dx

Beispiel 9.9: b) | ——= (x| < la]).

» ) [ <l

a 2

Durch Umformung des Integranden folgt

dx =l dx )
7= g

Substitution:

x . .
;=s1nu=>x=a-smu=<p(u), dx = a-cosudu,
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_ acosudu du =
f 2 _ 2 __f — in2 _f di=uc;
\/a x J1 =sin2u

f —arCSm—+c
\/a - x?

Hinweis: Da wir bei diesem Beispiel nicht tiberpriift haben, ob die fiir (9.14) not-
wendigen Voraussetzungen gelten, muf} die ,,Probe‘“ gemacht werden.

S . G
Beispiel 9.10: f s

du du

Substitution: e* = u (p(x) = ¢, @u)=1Inu) =>a =g =u=>dx = -

e* —1 u—1 du 2 1

o

e +1 u+1l u u+1 u

2du du

_fu—H_fT_z Injlu+ 1] —Inu + ¢
=2-Inle*+ 1] —Inle*’| + ¢
=2-In(e*+ 1) —In() + ¢
=2'Ine+1)—x+ec.

Hinweis: * ist stets positiv, und es gilt In e* = x.

Aufgabe 9.2: Man berechne *
(In x)* dx
o [ELax w>0. v [55
arctan x Wt
)f1+x2 563 . d)fx V/ 8x 1dx.
Aufgabe 9.3: Man berechne *
[

a) dx, b) f x36x Ll dx, c) ftan 3x dx.

f(x) +2x + 1

9.1.5.  Die partielle Integration
Analog zur Produktregel der Differentialrechnung [vgl. (4.29)]
(w) = u'v + w'
gilt in der Integralrechnung der folgende Satz:
Satz 9.3: Sind u = u(x) und v = v(x) differenzierbare Funktionen auf I und existiert S.9.3
das Integral | u'(x) - v(x) dx, dann existiert dort auch | u(x) v'(x) dx, und es gilt
I fu(x) v’(x) dx = u(x) - v(x) — fv(x) u'(x) dx 9.15)

oder kurz [ uv' dx = uv — [u'v dx.
10*
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Formel 9.15 nennt man Regel fiir die partielle Integration'). Das links stehende Inte-
gral wird also in ein Produkt u(x) - v(x) und ein neues Integral tibergefiihrt. Die An-
wendung dieser Regel ist natiirlich nur dann sinnvoll, wenn zu »'(x) eine Stamm-
funktion v(x) bestimmt werden kann und das in (9.15) rechts stehende Integral leich-
ter 16sbar ist als das auf der linken Seite der Gleichung.

Beweis der Formel (9.15): Wir haben zu zeigen, daB sich durch Differentiation der
rechten Seite von (9.15) der Integrand des links stehenden Integrals, also u(x) - v'(x),
ergibt:

[u(x) - v(x) — fv(x) u'(x) dx] = u'(x) v(x) + u(x) v'(x) — v(x) - u'(x).

u(x)v'(x). m

Beispiel 9.11: | x ¢* dx.
Wir wihlen u(x) = x und v'(x) = €%, so daB #'(x) = 1 und v(x) = e folgt. Nach

Formel 9.15 gilt dann

fxe"dxzxe"—fe"~1dx=;&e"—e"+c

J'xe"dx =x-De"+c.
Wiirden Sie u(x) = ¢* und v'(x) = x wihlen, dann wiirde die partielle Integration
keine Vereinfachung liefern! Es sei nochmals besonders darauf hingewiesen, daB alle
zur Losung eines Integrals zu ergreifenden Umformungen, Substitutionen und der-

gleichen dem Ziel dienen, das Integral in eine Form zu bringen, die einem Grund-
integral entspricht.

Beispiel 9.12: { x* - sin x dx.

Bei diesem Integral kommt man durch zweimalige Anwendung der partiellen Inte-
gration zum Ziel.

%%+ sin x dx = x*(— cos x) — [(—cos x) - 2x dx
= —x2-cosx + 2 [ x-cos xdx
= -x2~cosx+2~[x-sinx—f(sinx)'ldx]
= —x2-cosx + 2x-sinx + 2-cos x + c.

Beispiel 9.13: | In x dx.

Bei diesem Integral kann scheinbar, da kein Produkt vorliegt, die partielle Integra-
tion nicht angewandt werden. Man kann jedoch durch Multiplikation des Integran-
den mit der Zahl 1, ohne daB sich der Integrand selbst dndert, ein Produkt erhalten,
also {Inxdx = [1-Inxdx.

Hier ist es offensichtlich nur sinnvoll, #(x) = In x und v'(x) = 1 zu setzen, da wir
ja andernfalls zu In x die Stammfunktion bestimmen miiiten und somit wieder bei

der urspriinglichen Aufgabenstellung wiren. Es folgt u'(x) = i und v(x) = x und
damit nach (9.15) 23

fl-lnxdx=x~lnx—fx~%dx=xlnx—x+c
=x(lnx —1) +c.

1) auch , teilweise Integration* oder ,,Produktintegration‘ genannt.
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Beispiel 9.14: I, = fe¥x"dx . (n = 1,2, ...).

Einmalige Anwendung der partiellen Integration liefert eine Rekursionsformel
fiir 1,:
J.e"x"dx =e¥-x" — fe"'nx"“ dx =e*+ x" — n-fe’“x"“dx.
Also: I, =e*x"—n-I,_, (n=2,3,..)

Eine Rekursionsformel fiir die von einer natiirlichen Zahl » abhdngigen GréBe 7,
gestattet die Berechnung von 7, aus /,_,. Rekursionsformeln spielen in der gesamten
Mathematik eine wichtige Rolle.

Aufgabe 9.4: Man berechne

dx L o3x (P2
a) fm, b)fx e’ dx, ©) | x*-sin 4x dx.

9.1.6. Moglichkeiten und Grenzen der Integration und der Integrationsregeln

In der Differentialrechnung konnten wir feststellen, da3 jede elementare Funktion
(auch ,,in geschlossener Form darstellbare Funktion‘ genannt) f(x) differenzierbar
und ihre Ableitung f” (x) ebenfalls eine elementare Funktion ist (s. 3.4.2. und 4.6.3.).
Diese Tatsache ist das theoretische Fundament dafiir, daB das Differenzieren i. allg.

sin x
. Man

kann sie sofort differenzieren. Um so iliberraschender ist es, daB3 bei dieser Funktion
alle Versuche, sie zu integrieren, fehlschlagen. Das obige Beispiel wird in 10.3.3.
behandelt. Man hat nachgewiesen, daB sich diese und viele andere Funktionen nicht
geschlossen integrieren lassen, d. h., eine Darstellung des Integrals als elementare
Funktion ,,in geschlossener Form* ist unmdglich. Im allgemeinen existieren zwar
diese Integrale, aber sie lassen sich nicht durch eine elementare Funktion darstellen.
Es konnte z. B. sein, daB sich das Integral durch eine unendliche Reihe darstellen
1aBt. Die Integration fiihrt also i. allg. aus der Menge der elementaren Funktionen
heraus.

keine Schwierigkeiten bereitet. Betrachten wir z. B. die Funktion: y =

9.2. Integration rationaler Funktionen

9.2.1. Problemstellung und -reduzierung

Vorgegeben sei eine rationale Funktion

Pu(x)  ap +ax + ... +ax"
TOn(x) by + byx + ... + byxX"
(R(x) ist Quotient zweier Polynome P,(x) und Q,(x)).

R(x) heiBit echt gebrochen, wenn n < m (d. h. Grad P,(x) < Grad Q,(x)) gilt, im
anderen Falle (d. h. n = m) unecht gebrochen. Unsere Aufgabe lautet: Berechnung des
unbestimmten Integrals jeder rationalen Funktion. Diese Aufgabe 1Bt sich sofort
ein wenig vereinfachen: Da sich jede unecht gebrochene rationale Funktion stets in die
Summe eines Polynoms und einer echt gebrochenen rationalen Funktion zerlegen

R(x) =

(an % 0, by % 0).
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1Bt — und Polynome sofort integriert werden kénnen —, geniigt es, das unbestimmte
Integral von echt gebrochenen rationalen Funktionen zu ermitteln.

Bevor wir uns dieser Aufgabe zuwenden, wollen wir noch an einem Beispiel die
Zerlegung einer unecht gebrochenen rationalen Funktion in die Summe eines Poly-
noms und einer echt gebrochenen rationalen Funktion demonstrieren:

6 + 5x + 3x? +2x°

R = 2 + x2
3 2 . 2 — x
@ +3x7 +5x +6): (P +2D) = 2 + 3+ s
X + 4x
3x2+ x+6
3% +6
x
x
R(x)—2x—0—3+x2 5"

e e
Polynom  echt gebrochene
rationale Funktion

9.2.2.  Zerlegung echt gebrochener rationaler Funktionen in Partialbriiche

Bei der Losung der in 9.2.1. formulierten Aufgabe berufen wir uns auf den folgen-
den

Satz 9.4 (Satz von der Partialbruchzerlegung") einer rationalen Funktion):

Jede echt gebrochene rationale Funktion

P,(x)
R(x) = == n<m
(x) 0.0 ( )
lapt sich in eine Summe von Briichen (sog. Partialbriichen) der Form
A Bx+C o
oo und YT 7 mit  p 49 <0

zerlegen. Dabei sind «, f = 1 natiirliche Zahlen. a stellt eine reelle Nullstelle und
(x* + px + q) einen quadratischen Faktor des Nennerpolynoms Q,(x) dar, der sich
im Reellen nicht weiter zerlegen ldft.

[3Den Beweis dieses Satzes findet man u. a. in [5], Bd. II, oder [10], Bd. IL.

Ist Qp(x) = (x — x)% oo (x — X% (x2 + pyx + q)Pr ... (X2 + pix + q))P die Zer-
legung von Q,,(x) (Nenner von R(x)) in reelle Faktoren niedrigsten Grades [die x;
(i =1, ..., k) sind «;-fache reelle Nullstellen, die x> + p;x +¢q; (j = 1, ..., I) ;-fache
quadratische Faktoren von Q,,(x) mit p? — 4g; < 0], so 14Bt sich die echt gebrochene

1) Anstelle von ,,Partialbruchzerlegung® miiBte man strenggenommen immer von ,,Zerlegung in
Partialbriiche* sprechen.
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rationale Funktion R(x) in der Form darstellen:

_ Pn(vx) - A}l Ay Alm
A= G ~Fm T amxr Tt G
Ay Agz Ak%
* X — X * (x — x0)? Fot (x — xp)™
*)
By x+ Cy, Bi,x + Cy, " Bigx 4+ Cip,
X +pix+q  (FP+px+q)? T (P 4pix+q.)P
e B x+Cyy Bi,x + Cpp : By x + Cy,
X px4q (PHpx+q) T (R px+q)h

Dabei sind die 4;,, By,, C;, unbekannte, noch zu bestimmende reelle Zahlen.

Merkregel: Zum Faktor (x — @)* von Qu(x), a = x;, « = &, gehort in der Partialbruchzerlegung
eine Summe der Form
Ay Az A

x—a (x—a)2+m x—a)®

Zum Faktor (x> + px + ¢)f von Qp(x), wobei p = Pj» 4 =4, B =B, p> — 49 < 0, gehort eine
Summe der Form

Bix + Cy Byx + C; Bgx + G
X2+px+q P+px+q9? 0 (P+px+gf
fx)  —=3x3+12x% - 6x +7

Beispiel 9.15: R(x) = D ¥ 35 —8x+4 (f(x) = P3(x), g(x) = Qu(x)).
Wir wollen die wesentlichsten Schritte, die bei jeder Partialbruchzerlegung getan
werden miissen, am vorliegenden Beispiel demonstrieren.

1. Schritt: Aufsuchen der Nullstellen des Nennerpolynoms g(x) und Zerlegung von
g(x) in reelle Faktoren niedrigsten Grades.

Dieser Schritt ist meistens der schwierigste bei der Partialbruchzerlegung, denn man
muB die Nullstellen einer Gleichung m-ten Grades ermitteln —. Fiir Grad g(x) = 3 ist
dies i. allg. schon recht kompliziert. (Bei unserem Beispiel ist Grad g(x) = 4.) Es kann
in diesem Zusammenhang nicht unsere Aufgabe sein, auf das gesamte Problem der
Nullstellenbestimmung einer Gleichung n-ten Grades einzugehen (vgl. [16] oder [17]).

Wir erinnern hier lediglich an folgende wichtige Tatsache: Ist eine Nullstelle x,
von g(x) gefunden (z. B. durch Probieren oder durch systematische Einschachtelung),
dann wird g(x) durch x — x, dividiert, und es ergibt sich ein Polynom ¢(x), dessen
Grad um eins niedriger ist. Nun versucht man, bei g(x) eine Nullstelle x, zu finden,
dividiert g(x) durch x — x, usw. Bei der Berechnung von g(x) fiir einen bestimmten
Wert x, benutzt man gerne das Horner-Schema.

In unserem Beispiel ist g(1) = 0, also kann man g(x) durch x — 1 dividieren. Man
erhélt g(x):(x — 1) = x3 — x? + 4x — 4 = ¢g(x). Fir g(x) gilt ebenfalls ¢(1) = 0.
Division ergibt:

q(x): (x — 1) = x* + 4. Hieraus folgt: g(x) = (x — 1)2- (x> + 4).
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Das ist die Zerlegung von g(x) in reelle Faktoren niedrigsten Grades; eine weitere
Zerlegung im Reellen ist nicht mdglich, weil x> + 4 keine reellen Nullstellen hat.
2.Schritt: Ansatz fiir die Partialbruchzerlegung (§. Merkregel S. 151).
Jx) _ T—6x+12x*=3x* A4 n B +C+Dx *)
gx) T (x=DFx*+4)  x—-1 (x-D*" x*+4°
Hierbei sind 4, B, C, D noch zu bestimmende reelle Zahlen. (x, = 1,&, = 2,6, = 1.)

3.Schritt: Bestimmung der im Ansatz fiir die Partialbruchzerlegung auftretenden
Unbekannten.

Eine Methode, die sog. Koeffiziextenvergleichsmethode, filhrt immer zum Ziel. Man
multipliziert in der Ansatzgleichung (*) beide Seiten mit dem Nennerpolynom g(x)
und erhilt links und rechts je ein Polynom. Der Vergleich der Faktoren vor x°, x*,
x2, x3, ... liefert ein lineares Gleichungssystem zur Bestimmung der Unbekannten
A, B, C, D (daher der Name ,,Koeffizientenvergleichsmethode*). In unserem Bei-
spiel folgt aus (*) durch Multiplikation mit g(x) = (x — 1)® - (x* + 4):

7 — 6x+ 12x* = 3x> = A(x— 1) (x* +4) + B(x* +4) + (C+ Dx) (x — 1).

Ausmultiplikation der rechten Seite und Zusammenfassung nach Potenzen von x
ergibt:
7 — 6x + 12x* — 3x3

=(—44+4B+ C)+ (44 —2C+ D)x + (-4 + B+ C — 2D) x*
+(4 + D) x3.

Durch Vergleich der Koeffizienten ergeben sich folgende 4 Gleichungen fiir die
4 Unbekannten 4, B, C, D:

—44 + 4B+ C = 7
44 —2C+ D= -6
-4+ B+ C—-2D= 12
A + D=-3.

Es handelt sich um ein lineares Gleichungssystem mit 7 Gleichungen und » Un-
bekannten (m = n = 4), fiir das es allgemeine Losungsverfahren gibt, z. B. den GauB-
schen Algorithmus (s. Band 13). In unserem Beispiel kénnen wir auch ohne ein be-
sonderes Verfahren die 4 Unbekannten berechnen. (D = —3 — 4 wird in die 2. und
3. Gleichung eingesetzt. Wir erhalten drei Gleichungen I’, II', III" fiir 4, B, C.
I" — III" und 2 x I" + II' liefern zwei Gleichungen fiir 4, B.) Wir erhalten: 4 = 1,
B =2,C=3,D = —4.Damitsind dieim Ansatz (*) auftretenden Unbekannten 4,
B, C, D ermittelt, und die Partialbruchzerlegung ist durchgefiihrt.

.7 —6x + 12x* — 3x3 1 v 3 —4x
L ey e e e i e TR e
Bemerkung 9.2: Im allgemeinen ist die Koeffizientenvergleichsmethode nicht diejenige,
mit der man am schnellsten die im Ansatz (*) auftretenden Unbekannten berechnen
kann. Wir werden beim néchsten Beispiel die Grenzwertmethode und die Einsetzungs-
methode heranziehen. Die inhaltliche Bedeutung dieser Methoden werden wir am
Beispiel 9.16 demonstrieren.
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9.2.3. Integration der Partialbriiche

Nach dem Satz von der Partialbruchzerlegung einer rationalen Funktion und der
Formel (9.12) koénnen wir jede (echt gebrochene) rationale Funktion integrieren,
wenn man die Partialbriiche integrieren kann. Die folgenden 6 Formeln gestatten
es, jeden auftretenden Partialbruch zu integrieren. Mit den beiden ersten For-

meln kénnen wir Partialbriiche der Form ﬁ, mit den restlichen vier Formeln
Partialbriiche der Form —(;5%;—_5—;1)—# (p* — 4q < 0) integrieren.

4 4
f(x—a)“ dx= — =g te (Vorr>Lx+a) (016)

fx’_‘adx=A~1n1x—a|+c (Vor.: x + a) ©.17)
f Bx + C P B . 1
(x> +px+qF  2u—1) (x*+px+ grt
1 dx
+ (C—?Bp)jm (Vor.: s> 1)
9.18)
J‘ dx _ 1 . 2x +p
(2 +px+qf  (w—1D@g—p>) 7 +px+qr?
4u — 6 f dx
. Vor.: 1
D= | @rpmrgr VoD
9.19)
dx 2 2x +p
=3 - arctan +c¢ (Vor.:p*—4g <0
fxz“*l’x‘rq V4q - p? Vg —p? DR D
(9.20)
‘ Bx+C B, 1, dx
Jx2+px+qu_ 21n|x +px+ql+(C ZBP) fxz+px+q
(Vor.: x* + px + g % 0) 9.21)

Bemerkung 9.3: Die Formeln (9.16) und (9.17) lassen sich durch die Substitution x — @
= u auf Grundintegrale zuriickfiihren (vgl. Formeln (9.1) und (9.4) in 9.1.2.). Formel
(9.17) ist der in Formel (9.16) ausgeschlossene Fall » = 1.

Die Beweise zu den Formeln (9.18) bis (9.21) konnen samtlich dadurch erbracht
werden, daBl man jeweils die rechte Seite differenziert; diese Ableitung muf3 dann mit
der Funktion iibereinstimmen, die auf der linken Seite hinter dem Integralzeichen
steht. — Durch Formel (9.18) wird die Integration der Partialbriiche

S auf die Integration von !
(x% + px + gq)* & (X2 + px + g)*
zuriickgefiihrt. Die Integration der letztgenannten Funktionen wird durch die Rekur-

sionsformel (9.19) schrittweise (u, # — 1, p — 2, ..., 1) auf die Integration von
1

X2 +px+gq
Formel (9.21) ist der in Formel (9.18) ausgeschlossene Fall u = 1.

zuriickgefiihrt; Formel (9.20) liefert den SchluB der gesamten Kette.
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Hinweis: Die Partialbriiche miissen nicht unbedingt nach den Formeln (9.16) bis
(9.21) berechnet werden. Wenn man bei einem Beispiel durch eine geeignete Umfor-
mung, Substitution usw. schneller zum Ziel kommt, wird man selbstverstindlich die-
sen Weg beschreiten. Auf die Formeln (9.16) bis (9.21) sollte man nur dann zu-
riickgreifen, wenn naheliegende und einfache Umformungen nicht zum Ziel fithren.

. DX+ 5P +4Ax + 8
Beispiel 9.16: f—)cT(W dx.

Der Integrand ist eine echt gebrochene rationale Funktion J) mit Grad f(x) =3
und Grad g(x) = 4. 8()

Der 1. Schritt — Aufsuchen der Nullstellen und Zerlegung von g(x) in reelle Fak-
toren niedrigsten Grades —ist bei diesem Beispiel tiberfliissig (g(x) = x*(x* + 4)).

2. Schritt: Ansatz fir die Partialbruchzerlegung

34+ 5x% + 4 8 A B C: D
D il LN W L

(2 Tt 324 *)
x*(x* + 4) x X x* +4

3. Schritt: Bestimmung der Unbekannten 4, B, C, D.

Es ist sehr giinstig, die in den Partialbriichen mit dem jeweils hochsten Exponenten
v bzw. p (vgl. Satz 9.4) auftretenden Unbekannten nach der sog. Grenzwertmethode,
die noch verbleibenden Unbekannten durch die sog. Einsetzungsmethode, zu ermit-
teln. Bei unserem Beispiel wiirden wir also B sowie C und D durch Grenzwert-
methode, 4 durch Einsetzungsmethode ermitteln.

Bestimmung von B: Wir multiplizieren (*) mit x* (x> = Nenner desjenigen Partial-
bruches, in dem B vorkommt) und lassen dann x — O streben. (Daher der Name
,,Grenzwertmethode‘‘! Fiir x = 0 wird der Nenner x? gleich 0.)

X +5x* +4x + 8 Cx+D

= B
x* +4 Aty tra

Jetzt lassen wir auf beiden Seiten x — 0 streben und erhalten:

3 2
B= umwzz.
X0 x*+ 4

Bestimmung von Cund D: Wir multiplizieren (¥) mit x? + 4 (x? + 4 = Nenner des-
jenigen Partialbruches, in dem C und D vorkommen) und lassen dann x — 2i streben.
(Fiir x = 2i (oder x = —2i) wird x2 + 4 gleich null).

3+ 5x% + 4 8 A B
T IO L@+ (P A+ (Cx+ D),

In dieser Gleichung lassen wir jetzt x — 2i streben!
(20 +5- )% +4-(20) + 8
(2i)?
(i? = —1,i® = —i) = (Vergleich von Real- und Imaginirteil)
C=0,D=3.

Bestimmung von 4 durch Einsetzungsmethode: Wir setzen in (*) fiir x den Wert 1
ein oder irgendeinen anderen einfachen Wert, fiir den natiirlich keiner der in (*) auf-

=C-2i+D=>3=2Ci+ D
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tretenden Nenner gleich null werden darf, und erhalten:

18 C+D
=4+ B+—

= (wegen B=2,C=0,D=3)4 =
In unserem Beispiel war nach der Grenzwertmethode nur noch eine Unbekannte —
namlich 4 - zu ermitteln. Wiren 2 oder 3 Unbekannte tibriggeblieben, miiten wir

fiir x zwei oder drei Werte einsetzen, um die erforderliche Anzahl von Gleichungen
zur Ermittlung der Unbekannten zu erhalten.

Ergebnis der Partialbruchzerlegung:

x3+5x2+4x+8_L+_2__+ 3
x2(x? + 4) T x x4+ 4

Die Integration der hier auftretenden Partialbriiche bereitet keine Schwierigkeiten:

f %dx =Injd +es [s. Formel (9.4)]
2 > 2

f-dex=2-fx r=-Zte [s. Formel (9.1)]

3 3 dx 3 2du . x
[+Fwe-3 J B = [T sttt u=3)

=) +1
2
[s. Formel (9.10)]
=y fu | =—arctanu+c3
= iarct:«m had +c
T2 2 T
Ergebnis:
x4+ 5x% +4x + 8 2 3 X
I—de =In|x| — . + 7arctan7 +c
(Vor.: x £ 0).
Aufgabe 9.5: Man berechne folgende Integrale
2x3 + 9x2 +8x + 5 4x3 — 2x% + 9x — 18
3 f ey rean L f Fora

C)J‘ x* +4x% + 1 dx )J‘ xdx

x3—x*+4x—-4 2x2 4+ 5x — 3

9.3. Integration weiterer Funktionenklassen

Im folgenden wollen wir die wichtigsten Funktionen bzw. Klassen von Funktionen
angeben, deren Integrale sich durch elementare Funktionen darstellen lassen (die sich
geschlossen integrieren lassen, s. 9.1.6.). Im allgemeinen handelt es sich darum, das
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vorgegebene unbestimmte Integral durch eine geeignete Substitution auf die Integra-
tion einer rationalen Funktion zuriickzufithren. Damit kann dann das Problem als
geldst angesehen werden, denn in 9.2. haben wir nachgewiesen, daB sich jede rationale
Funktion geschlossen integrieren 1d8t [s. Formeln (9.16) bis (9.21)]. — Wir erinnern
zunéchst noch einmal an den Begriff ,,rationale Funktion von zwei Verdnderlichen*,
den wir im folgenden stéindig brauchen. Eine Funktion R(u, v) der beiden Verander-
lichen u, v heiBt rational, wenn sie sich durch einen Ausdruck darstellen 146t, den
man durch endlich viele rationale Operationen (Addition, Subtraktion, Multiplika-
tion und Division) aus # und v unter Hinzunahme von Konstanten erhélt.

Beispiele fiir rationale Funktionen:

X+ 4%y xp? 32
Rl(x:y)_Txy, Ry(x,y) =7+ (T _?>
Beispiele fiir nichtrationale Funktionen:
SRy In x|
filey) =V =3x2, fixy) = TH
sin x .
folx, p) = ok fa(x, ) = y- 2%,

9.3.1. Das Integral | R(x, /ax + b) dx

Satz 9.5: Alle Funktionen der Form R(x, '{/ax + b) - das sind Funktionen von x,

die sich durch endlich viele rationale Operationen aus x und "\/ ax + b sowie Konstanten
aufbauen lassen — kann man geschlossen integrieren.

Beweis: Wir zeigen, daB8 durch die Substitution
t="/ax +b

das vorgegebene Integral auf das Integral einer rationalen Funktion zuriickgefiihrt
werden kann. - Aus 7 = 3/ax + b folgt ax + b = 1"

n o __ n-1
Pob. Vorias0) = dr=2dr Alsogilt:

a
fR(x,Uax+b)dx =fR(t"a_b,t)~%t”“dt.

Der Integrand auf der rechten Seite ist eine rationale Funktion in z. Begriindung:
n

=X =

Durch Anwendung rationaler Operationen auf die beiden Gréfen :
t"—b

und ¢ ge-

winnt man eine rationale Funktionin ¢,d.h., R : t) ist eine rationale Funktion

in z. Multiplikation mit ;t"*l ergibt dann ebenfalls eine rationale Funktion in 7.

Beispiel 9.17: de:fk(x,\/x—odx (n=2a=1b=—1).

x—\/x—-l

Substitution: /x — | =t=x—1=12=x =2 +1=dx =2tdr.
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. 2
Alsogilt:J-x-‘-Vx Lax = (t2+1)+t-21dt
PP pogecy @FD =1
t3+t2+t ) "
2ft2_t+1 t=:2 fR(t)dz.

Der Integrand R*(?) ist eine (unecht gebrochene) rationale Funktion. Division ergibt:

2t—2

* = —_——
RHO) =1 424+ 5

=: P(t) + Ry(1).

Das Polynom P(¢) kann sofort integriert werden. Auf die echt gebrochene rationale
Funktion R,(#) wendet man die Formeln (9.21) und (9.20) an. Nach Durchfiihrung
der Integration muB man natiirlich von der Veranderlichen ¢ wieder zur alten Ver-
anderlichen x zuriickgehen (f = /X — 1). Man erhilt als SchluBergebnis:

x+\/x—1

x—\/x—-l

dx=x+4/x—1+2ln(x—/x=1)

I IV Ut W
V3 V3

xdx
Aufgabe 9.6: Man berechne a) f————, b f—————
& 2x — 1 ) 3x+2

9.3.2.  Das Integral [ R(e%) dx

Dieses Integral kann durch die Substitution ¢ = e* auf das Integral einer rationalen
Funktion zuriickgefiihrt werden. Aus ¢ = ¢* folgt df = e* dx, also gilt:

R(r)
t

fR(e") dx = f R—Stl dt. Der Integrand R*(¢) = ist eine rationale Funktion in ¢

(siehe Definition von R(x) in 9.2.1.).

2 dt
Beispiel 9.18: f dx = fﬁ i (Subst.: ¢ = e%)

[ =[(1+5 l)dz

t+Injt—-1l+c=e+Inle*—1] +c.

I

Bemerkung 9.4: ist eine unecht gebrochene rationale Funktion in 7, bei der man

1
zunéchst die Zerlegung in ein Polynom und eine echt gebrochene rationale Funktion
durchfiihrt (Division!).

Aufgabe 9.7: Man berechne a) f ekd)_c_ T b) f 1e+c13xex ) c) f%dx
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9.3.3.  Das Integral [ R(sin x, cos x) dx

Auf Grund der Additionstheoreme fiir Sinus und Kosinus gelten folgende Bezie-
hungen:

sin (i + ﬁ) 2-sin2 - cos > tan X
sin x = 21 2 = x2 z =2- . pat 9.22)
cos® X + sin? X 1 + tan® —
2 2 2
1 — tan? %
Analog: cos x = ————. (9.23)
1 + tan? %

Diese Umformungen legen es nahe, die Substitution
I t = tan -;‘— 9.24)

vorzunehmen. Hieraus ergeben sich die Gleichungen:

sin x = 2 cos x = et dx = 2dt
T+ T 1+ A

Bei der Herleitung der letzten Gleichung beachte man, daB aus ¢ = tan; die
Beziehung ; = arctan ¢ folgt (Vor.: —m < x < ). Also gilt: [s. Formeln (9.22)
und (9.23)]

. 2t 1—12 2
= D =i td
I fR(51nx,cosx)dx—fR<l+t2, 1+t2) 1+tzdt .fR(t)dt.
9.25)

Der Integrand R*(z) ist wieder eine rationale Funktion in ¢, wie man sich durch ein-
fache Uberlegungen — analog denen in 9.3.1. — sofort klarmachen kann.

x - i .
Bemerkung 9.5: Bevor man t = tan7 substituiert, ist es oft zweckmiBig, es

zundchst einmal mit einer einfacheren Substitution — z.B. t = cos x — zu ver-
suchen.

Bemerkung 9.6: Es kann vorkommen, daB der Integrand R(sin x, cos x) fiir alle x, da-
gegen der neue Integrad R*(¢) nicht fiir alle 7-Werte definiert ist — eine Tatsache, die
% bedingt ist (tan; ist fiir alle x = = + k - 2w nicht
definiert!). Es empfiehlt sich, am SchluBergebnis zu priifen, fiir welche Intervalle /
die ermittelte Funktion F(x) eine Stammfunktion der vorgegebenen Funktion f(x)
darstellt.

durch die Substitution 7 = tan
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f R(sin x, cos x) dx  (cos x kommt hier exphzlt nicht vor)

1 2
= | Wdl [s. Formel (9.25)]
1+

_=f$=1nm+c=1n

tanx +c
5 5

Voraussetzung: tan % =+ 0 fiir alle xe 7, d. h. x + k= fiir alle xe I.

Aufgabe 9.8: Man berechne a) J- o’ b) f ::Slsx

9.3.4. Das Integral [ R(x, /ax* + bx + c) dx

In 9.3.1. hatten wir festgestellt, daB sich alle Funktionen der Form R(x, \/ax + b)
geschlossen integrieren lassen (Substitution: = \/ax + b). Diese Aussage kann man

auch fiir alle Funktionen der Form R(x, \/ ax? + bx + c) treffen. Im Falle a > 0,
D = b* — 4ac + 0 1aBt sich das vorgegebene Integral durch die Substitution

\/ ax* +bx+c=t+ x\/ a auf das Integral einer rationalen Funktion zuriickfiihren.
Aus der Substitutionsgleichung folgt ax? + bx + ¢ = 2 + 2/atx + ax?, d.h.

. = 2 —c
b—2ta’
_22 /2 — 22
dx — 2t \/a+2bt_ 2cv/a dt =: Ry(r) dt.

(b —2t/a)?

So erhdlt man schlieBlich:
il c)‘/“>-R1(z)dt.,

3 —_— 12— ¢ (2
R(x, 24+ bx+c)dx=|R - =
N R

Der Integrand R*:= R - R, ist eine rationale Funktion in 7.

= 2
x—\/x;z_iﬂ dx fiihrt die Substitution

213 + 10¢% + 2¢
(o

neue Integrand ist eine echt gebrochene rationale Funktion in 7.

Beispiel 9.20: Beim Integral f

\/ —5x + 1 =1t + x auf das Integral f dt (nachpriifen!). Der

9.3.5. Elliptische Integrale

Funktionen der Form R(x,/ax® +bx2 +cx+e) und R(x,/ ax* +bx3 + cx? +ex+f)
lassen sich im allgemeinen nicht geschlossen integrieren. Integrale von diesen Funk-
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tionen nennt man elliptische Integrale. Der Name ,.elliptisches Integral* riihrt
daher, daBl man bei der Berechnung der Bogenldnge (des Umfangs) einer Ellipse auf
ein derartiges Integral st6Bt (s. [1] und [5], Bd. II).

dx

Aufgabe 9.9: Man berechne f —_—
Va4x? —3x +5 :

Bemerkung 9.7: Durch geeignete Umformungen kénnen elliptische Integrale auf
elliptische Integrale in der sog. Legendreschen Normalform zuriickgefiihrt werden:

P @
f\/l——d‘"th—si_E = F(k,g) baw. f JT - Ksin? 1dt = Ek, )
0 0
bzw.
P

dt

f(l + hsin® )/l — k? sin?
0

=x(h k,¢);
t

sie heiBen elliptische Integrale 1. bzw. 2. bzw. 3. Gattung und sind in Tafeln zu finden.
(Vgl.z.B.[1])

»?

= 1 gilt:

2
Beispiel 9.21: Fir die Bogenlange einer Ellipse _ZT +

s=2 \/1 + ()*dx mit y=f(x) = %Jaz — x?.  (Vgl. Satz 10.18)
a R
2 _ 22
Hieraus folgt: s = 2 f A/fm;f— dx, (& = b? = k*a?).

Durch Erweiterung des Integranden mit \/ a® — x? erkennt man, daB} es sich um ein

elliptisches Integral des Typs | R(x, ax* + bx* + cx? + ex + f) dx handelt. Durch
die Substitution x = a - sin # (dx = a~/T — sin® 7 dt) erhilt man:

L

2 §23
s=2a [ JT=k*sin®tdt =2a-2 /T = k?sin?dr.
0

Sl
2

E]

Es gllt also:
s = 4aFE (k, =
( 2 )

Fﬁra:S,b:Z,Sistk:# und s = 20-1,2111 = 24,222.
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10.1. Definition, Existenz und Eigenschaften

10.1.1. Integralsummen

Auf einem abgeschlossenen Intervall I = [a, b] sei eine Funktion y = f(x) definiert.
Wihlt man eine endliche Anzahl von Werten x,, X,, ... auf dem Intervall 7 mit
a<Xx; <X, <..<Xpy <b,so erhdlt man eine Zerlegung Z von [a, b] in endlich
viele Teilintervalle

[0, X411, [x1, X2]s o5 [Xn1, Xl
der einheitlichen Bezeichnung wegen wurde a = x, und b = x, gesetzt (s. Bild 10.1).

y

L

Bild 10.1

} s

b
I e % Kby \_A—Y'/m x

Ist Z die eben beschriebene Zerlegung von [a, b], so nennt man 6:=. max Ax;.

i=1,.,n
(Ax;:= x; — x,_,) das Feinheitsmaf3 der Zerlegung Z. 6 ist die Lange des grofBten
Teilintervalls von Z. Je kleiner 4 ist, um so ,,feiner* ist die Zerlegung Z. In jedem
Teilintervall [x;_;, x;] wihlen wir einen Punkt & mit x;_; < &; < x; und bilden
folgende Summe:

S(@2)i= $fE) A, (10.1)

S(Z) heiBt die zu der Zerlegung Z gehirige Integralsumme (auch Zerlegungs- oder
Zwischensumme). Die Integralsumme ist abhidngig von der Zerlegung Zund von der
Wahl der Zwischenpunkte &,; genaugenommen miiBite man also schreiben

S(Z; &y, ons b))

10.1.2. Das bestimmte Integral

Das bestimmte Integral erhdlt man aus der Integralsumme, indem man die Zer-
legung Z immer feiner werden 1dBt! Diese etwas oberflichliche Formulierung wollen
wir jetzt prézisieren.

Definition 10.1: Eine Folge von Zerlegungen Z,, Z,, ... des Intervalls [a, b] heifit eine D. 10.1
Folge von unbegrenzt feiner werdenden Zerlegungen von [a, b], wenn die entspre-
chenden Feinheitsmafe 8, 9, ... gegen null konvergieren, d. h.

limd, = 0.

now

11  Pfor, Diff u. Integr. \
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Bemerkung: An Stelle von ,,Folge von unbegrenzt feiner werdenden Zerlegungen*
sagt man oft ,,ausgezeichnete Einteilungsfolge*‘.

Bild 10.2 zeigt ein Beispiel fiir eine Folge von unbegrenzt feiner werdenden Zer-
legungen von [a, b].

) ; |
(tgla X bl=x)

) t t +
: (g~)a X X }3 15(-14)

(z3) — ——t Bild 10.2
Goa 4, X X X X X X bx)

.

.

.

Wenn fiir jede Folge unbegrenzt feiner werdender Zerlegungen Z,, Z,, ... von
[a, b] die zugehorige Folge der Integralsummen S(Z,), S(Z,), ... gegen einen bestimm-
ten Wert G konvergiert — und zwar unabhéngig von der Wahl der Folge unbegrenzt
feiner werdender Zerlegungen und unabhingig von der Wahl der Zwischenpunkte -,
S0 wollen wir diesen Grenzwert G mit dem alles Wesentliche erfassenden Symbol

lim Zf(E,) Ax; bezeichnen [vgl. Formel (10.1)].

Ax;-0 i=1
Definition 10.2: Falls der Grenzwert G = 11m Z f(é,)Axi existiert, nennt man ihn

das bestimmte (Riemannsche) Integral der Funknon f(x) iiber dem Intervall [a, b] und
bezeichnet ihn mit dem Symbol _|' f(x) dx. Es gilt also:
a

b n
fG)dx = lim 3 f(£) Ax, (10.2)
a Ax;—0 i=1

Bemerkung: Der hier eingefiihrte Integralbegriff geht im wesentlichen auf Bernhard

Riemann (1826-1866) zuriick. - Der Wert des bestimmten Integrals der Funktion f

iiber dem Intervall [@, b] hdngt selbstverstandlich nicht davon ab, mit welchem Buch-

staben man die unabhéngige Verdnderliche bezeichnet. Man kann daher ebensogut an
b b b

Stelle von [ f(x) dx auch [ £(¢) ¢ oder [ f(u) du oder dhnlich schreiben. Das bestimmte

a a a
Integral ist der Grenzwert einer Folge von Summen der Form Sf(&;) Ax;, wobei wir
ausnahmsweise an Stelle von Y hier einmal S geschrieben haben. Mit dieser Schreib-
weise wird auch verstdndlich, warum fiir das bestimmte Integral von f(x) iiber [a, b]

das Symbol f f(x) dx gewihlt wurde.

Bei unserem Aufbau sind wir von einem Intervall [a, b] ausgegangen; in den Aus-
fithrungen 10.1.1. und 10.1.2. gilt also immer die Voraussetzung a < b. Von dieser
Einschrankung wollen wir uns durch die folgende erginzende Definition befreien.
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Definition 10.3:

[fG) dx := 0.

a

b a
Fiir a > b gilt; ff(x) dx:= -ff(x) dx.
a b

Im folgenden lernen wir eine 1. Anwendung des bestimmten Integrals kennen:

Beispiel 10.1: Es gelte f(x) = 0 fiir alle x € [a, b], d. h., die Kurve y = f(x) verlduft
fiir alle x € [a, b] oberhalb der x-Achse. Wir suchen den Flicheninhalt A des durch
die vier Kurveny = 0, x = a,x = b, y = f(x) begrenzten Flichenstiicks (s. Bild 10.3).
Man zerlegt [a, b] in Teilintervalle [x;_y, x;] ({ = 1, ..., n) und wahlt Zwischenpunkte
&€ [xi_y, x;]. Ax;- f(&) ist eine Néherung fiir den Fldcheninhalt des zwischen
x = x;_; und x = x; liegenden Streifens.

Yy
y=(x)

1
1
|
1

I Bild 10.3
I X1 &% b X

Z f(&;) Ax,ist dann eine Niherung fiir den gesuchten Flacheninhalt4:4 ~ Z f &)dx,.
Dlese Niherung ist um so besser, je feiner die Zerlegung ist; den genauen Wert
von A erhilt man durch einen GrenzprozeB3:

= lim Zf(f)Ax,

Ax;=0 i=1
b
Also gilt [s. Formel (10.2)]: 4 = ff(x) dx.

Hinweis: Im Falle f(x) < 0 fiir alle x € [a, b] gilt

b
A= — [ f(x) dx.

10.1.3. Integrierbare Funktionen

Eine Funktion f(x) heiBt auf [a, b] integrierbar, wenn das bestimmte Integral von
(x) tiber [a, b] existiert, d. h., wenn der Grenzwert einer Folge von Integralsummen
in dem in Definition 10.2 angegebenen Sinne existiert. Es wiirde hier zu weit fithren,
eine notwendige und hinreichende Bedingung fiir die Integrierbarkeit einer Funktion
anzugeben, z. B. das sogenannte Riemannsche Integrabilitdtskriterium (vgl. [10],
Bd. III).

Fiir unsere Zwecke geniigt es, wenn wir wissen, welche der in den Anwendungen
vorkommenden Funktionen integrierbar sind. Der folgende Satz 10.1 gibt eine fiir die
meisten Anwendungen vollig ausreichende Antwort.

Satz 10.1: Jede auf dem Intervall [a, b] stetige Funktion f(x) ist auf diesem Intervall
integrierbar.
11*

D. 10.3

S. 10.1
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Den (nicht ganz einfachen) Beweis zu diesem Satz findet man z. B. in [5], Bd. II,
oder [10], Bd. III.

Da in den Anwendungen neben den stetigen Funktionen auch sog. stiickweise
stetige Funktionen (s. Bild 10.4) vorkommen, mdchte man wissen, ob bei dieser
Klasse von Funktionen die Integrierbarkeit auch gewéhrleistet ist.

y
i
[ —

I
|
1
i
I

1
1
i
] Bild 10.4
b

|
|
i
|
|
1
X X

I

1

1

|

[ ] A

S . 10. Satz 10.2: Jede auf dem Intervall [a, b] stiickweise stetige Funktion f(x) ist auf diesem
Intervall integrierbar. (Beweis: s. wiederum [5], Bd. I, oder [10], Bd. III.)

Wir notieren noch die folgende Aussage:

Jede auf dem Intervall [a, b] beschrinkte und monotone Funktion ist auf diesem
Intervall integrierbar.

10.1.4. Eigenschaften des bestimmten Integrals

S. 10.3 Satz 10.3: Ist f(x) auf [a, b] stiickweise stetig und c ein Punkt aus dem Innern des Inter-
valls,d. h. a < ¢ < b, so gilt

b c b
I [fx)dx = [f(x) dx + [f(x) dx.

Der Beweis ist sehr einfach zu erbringen. Man nehme eine solche Folge unbegrenzt
feiner werdender Zerlegungen Z;, Z,, ... von [a, b], bei der der Punkt ¢ Teilungs-
punkt fiir jede Zerlegung Z; (i = 1, 2, ...) ist. Alles andere ergibt sich mit ein wenig
Schreibarbeit aus Definition 10.2. Wir verzichten auf die detaillierte Durchfiihrung,
zumal der Satz fiir den Fall f(x) = O fiir alle x € [a, b] als eine geometrische Selbst~
verstindlichkeit erscheint (s. Bild 10.5):

b c O
A= [f(x)dx = A4, + 4, = [f(x) dx + [f(x) dx.

a

Bild 10.5

Bemerkung: Satz 10.3 bleibt auch richtig, wenn die Voraussetzung a < ¢ < b nicht
erfiillt ist. Gilt z. B. @ < b < ¢ (alle anderen noch denkbaren Fille erledigt man ana-
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log!), so folgt aus Satz 10.3 zunichst:
f f(x)dx = jb f(x) dx + [f(x) dx.
Hieraus :rgibt sich: ’
ff(x) dx = ff(x) dx —bjcf(x) dx = ff(dx) + fbf(x) dx
(s. Def. 1:).3). a ’ c

Satz 10.4: Sind f1(x) und f,(x) zwei auf [a, b] integrierbare Funktionen, ¢, und c, Kon- S. 10.4
stanten, so ist auch c,f1(x) + c,f2(x) auf [a, b] integrierbar, und es gilt:

b b b
I J’(clfl(x) + ef2(x) dx = ¢, jfl(x) dx + ¢z ffz(x) dx.")

Beweis: (vgl. Def. 10.2)
b

f(cxfl(x) + c2f>(x)) dx =A]xiT02 (e fi(&) + c2fa(E) Ax;
‘ = lim (e, £A1(8) 4% + ¢ 16 4x)
- CxAlimOan(fi)Axi + czdlimtoz(E,)Axi

b b
=0 ffl(x) dx + ¢, ffz(x) dx.

Satz 10.5 (1. Mittelwertsatz der Integralrechnung): Ist f(x) auf [a, b] stetig, so gibt S. 10.5
es mindestens ein & € [a, b] mit der Eigenschaft

a

b
I Jf®dx = @® - a) - f&).
(Bemerkung: £ela, bl <>é=a+ b —a),0 =9 = 1).

Den Inhalt dieses Satzes wollen wir uns fiir den Fall ,,f(x) = 0 fiir alle x € [a, b]*“
an Hand des Bildes 10.6 veranschaulichen. Der Fldcheninhalt

b
A = [f(x)dx

des schraffierten Gebietes ist gleich dem Flacheninhalt 4, = (b — a) - f(£) eines iiber
dem Intervall [a, b] errichteten Rechtecks (§ muf3 geeignet gewihlt werden!). (Den
Beweis dieses und auch der folgenden beiden Sétze findet man z. B. in [5], Bd. II,
oder [10], Bd. I11.)

1) Die Menge der auf einem festen Intervall [a, b] integrierbaren Funktionen bildet einen linearen
Raum (vgl. Band 1).
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—y=f(x)

Bild 10.6

S.10.6 Satz 10.6: f(x) und g(x) seien auf [a, b] stiickweise stetig. Dann gilt: Aus f(x) = g(x)
b b

.10.7

a

- Vx e [a, b] folgt [ f(x) dx < [ g(x) dx.

Den einfachen Beweis iibergehen wir, zumal die obige Aussage im Falle f(x) = 0
Vx € [a, b] wieder eine geometrische Selbstverstindlichkeit darstellt.
Aus Satz 10.6 ergibt sich auch leicht der folgende

Satz 10.7:

b
f f(x)dx

a

(Vor.: f(x) auf [a, b] stiickweise stetig).

b
< [1f@)ldx

10.2. Berechnung bestimmter Integrale

10.2.1. Problematik
b

Wollte man jedes bestimmte Integral J f(x) dx nach der in 10.1.2., Definition 10.2,

angegebenen Vorschrift berechnen, so wire das ein sehr kompliziertes Unternehmen
und fiir die Anwendung daher nahezu unbrauchbar. Fiir jedes Z, einer Folge Z,,
Z,, ... von unbegrenzt feiner werdenden Zerlegungen von [a, b] hat man die Integral-
summe S(Z,) = Y. f(4;)4x; zu berechnen und den Grenzwert der Folge S(Z,),
S(Z,), ... zu bestimmen. Besonders die Bestimmung des Grenzwertes der Folge der
Integralsummen ist schon bei einfachen Funktionen f(x) auBerordentlich kompli-
ziert. Als Beispiel nennen wir die sicherlich nicht als besonders schwierig anzusehende
Funktion y = f(x) = x? (Normalparabel). Wer wiirde vermuten, da} die Berechnung
b

von f x%dx nach Definition 10.2 schon auf einige Schwierigkeiten stoB8t? (Selbst
b a

[ x dx ist nicht trivial!)
G b

Um z. B. das Integral [ x2dx zu berechnen, kénnte man das Intervall [0, b]

0
in n gleiche Teilintervalle [x,_y, x;] ({ = 1, ..., n) der Liange 4x = % zerlegen und als

Zwischenpunkte &; den jeweils rechten Eckpunkt x; des entsprechenden Teilintervalls
wiahlen. Fiir die zu dieser Zerlegung gehérige Integralsumme S gilt dann:

S = SAE) A% = Tf(x) Ax = T ¥ Ax = X (4x)* Ax
= UxP Y = (%)3(12 $22 4+ ),
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Von dieser Integralsumme miiBte jetzt der Grenzwert Ax — 0, d. h. n — oo bestimmt
werden (Ax = %) Wir wollen diesen Weg hier nicht weiter verfolgen. Es sollte ledig-
lich demonstriert werden, daB die Berechnung bestimmter Integrale nach Definition
10.2 im allgemeinen recht schwierig ist. (Beispiele dieser Art findet man z. B. in
[11], Teil IL.)

Das bestimmte Integral wird im allgemeinen nicht nach dem in Definition 10.2 an-
gegebenen Weg berechnet. Ist nimlich von der Funktion f(x) eine Stammfunktion F(x)
bekannt, so kann man durch eine einfache Differenzbildung sofort das bestimmte
Integral von f(x) iiber [a, b] berechnen. Dies ist die wesentliche Aussage des sog.
Hauptsatzes der Differential- und Integralrechnung, den wir in 10.2.3. behandeln.

Der wesentliche Grundstein fiir diesen ,,Hauptsatz* ist die in dem folgenden Abschnitt
10.2.2. enthaltene Aussage.

10.2.2. Bestimmtes Integral mit variabler oberer Grenze

Das bestimmte Integral der Funktion f(x) iber [a, b] wird durch das Symbol
b
f f(x) dx bezeichnet. Denkt man sich im Intervall [a, b] fiir b die variable Grenze x

eingesetzt und fragt nach dem bestimmten Integral der Funktion f(x) iiber dem Inter-
vall [a, x], so kann man dafiir schreiben:

| fix) dx.

Ein solches Integral nennt man ein bestimmtes Integral mit variabler oberer Grenze.
Das x der oberen Grenze hat dabeinatiirlich nichts mit dem x in f(x) zu tun. Um ganz
sicher zu gehen, wird meistens an Stelle von f f(x) dx die Schreibweise f () dt be-
nuIt:tt y = f(x) auf dem Intervall I = [4, B] stetig, a € [4, B] ein fester Wert xe[4, B]
ein variabler Wert, so existiert nach 10.1.3., Satz 10.1, das Integral 'I. f(¢)dt (s. Bild
10.7). ff(t) dz ist fir jedes x €[4, B] definiert und durch die Vorgabe der oberen
Grenze x eindeutig bestimmt; d. h.: f f(¢) dt ist eine Funktion seiner oberen Grenze x.

Wir wollen diese Funktion mit F; 1(x) bezeichnen:

Fi(x):= ff(t) dr. : (10.3)
y=fx)

Bild 10.7
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S. 10.8 Satz 10.8: Ist £(¢) auf einem Intervall I stetig, a ein fester Wert aus I, so ist die auf 1
definierte Funktion

Fy(x) = [f(0) dt

differenzierbar, und es gilt

Fi(x) = f(x) Yxel,
dh

.

dix f f@6)dt = f(x) Vxel. (10.4)

Beweis: Wir haben zu zeigen, daB fiir jedes x, € I gilt:

lim Fy(x) — Fi(xo)
xX=Xg X — Xo

= f(%o).

(Man beachte, daB der links stehende Grenzwert — falls er existiert — gleich Fi(xo)
ist! Ist xo ein Randpunkt von 7, so ist der linksseitige bzw. rechtsseitige Grenzwert zu
nehmen!)

F®) = Fy(xo) = | () dt — [ 0y de = [ £ do + [ £0) de

a
= [ft)dt + [f(t)dr = [ £(£) dt
%o a o
(s. Satz-10.3 in 10.1.4. und Definition 10.3 in 10.1.2.). Es gilt also zundchst einmal:
Fi(x) = Fi(xo) = ff(t) dr.

*o

Da f(x) nach Voraussetzung auf dem Intervall x, ... x stetig ist, existiert nach Satz
10.5 aus 10.1.4. ein & zwischen x, und x, so daB gilt:

Fy(x) = Fi(xo) = [f(t) dt = (x = x0) * (&)

(& =x0 +0(x —x),0=9 = 1).
Hieraus folgt (fiir jedes x # x,):
Fi(x) = Fi(xo0) = f(®). *

X — X,
Wegen der Stetigkeit von f(x) gilt:

lim £(§) = lim f(xo + #(x — x,)) =f[ lim (xo + 9(x — xo))] = f(xo)-

Aus (*) folgt dann: lim £ = Fixo)
xoxo X — Xo

= f(xo). m
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Ergénzung zu Satz 10.8: Ist f(¢) auf I stiickweise stetig, a ein fester Wert aus 7, so
ist Fy(x) = f f(¢) dt auf I stetig. Das ist die sog. Glittungseigenschaft des bestimmten

a
Integrals mit variabler oberer Grenze (s. Aufgabe 10.4).

Satz 10.9: Jede auf einem abgeschlossenen Intervall I stetige Funktion besitzt auf I eine
Stammfunktion.

Dieser Satz bestatigt die Aussage der FuBnote S. 60. Die Aussage von Satz 10.9
ist eine unmittelbare Folgerung von Satz 10.8:

Fi(x) = _ff(t) dt ist eine Stammfunktion von f(x) auf 7.
10.2.3. Hauptsatz der Differential- und Integralrechnung

Satz 10.10: Ist f(x) auf [a, b] stetig und F(x) irgendeine Stammfunktion von f(x) auf
[a, b], so gilt*):

b
I [f(x) dx = F(b) — F(a).

b
Will man das bestimmte Integral J' f(x) dx nach diesem Satz berechnen, so muf}

also zundchst das unbestimmte Integral f f(x)dx = F(x) + ¢ bestimmt werden. Die
Differenz F(b) — F(a) liefert dann den Wert des bestimmten Integrals.
x

Beweis zu Satz 10.10: Fy(x) = ff(t) dr ist nach Satz 10.8 eine Stammfunktion von
f(x) auf [a, b]. Fiir F(x) gilt dah:er:F(x) = F(x) + ¢(s.9.1.1., Satz9.1). Hieraus folgt :
F(b) — F(a) = (Fi(b) + ¢) — (Fi(@) + ¢) = Fy(b) — Fy(a)

b a b b
= [fiydt = [f()dt = [f(t)dt = [f(x)dx. m

Bemerkung: An Stelle von F(b) — F(a) schreibt man oft abkiirzend F(x)
(FRT,.

b
a

4
P A | 63
A I e 2 = — = e - — == —— =
Beispiel 10.2: fx dx 3 3 3 3 21.
1
Beispiel 10.3: fsin xdx = —cos x [’5 = —cosw — (—cos0) =1+1=2.
0

Frage: Die beiden Integrale liefern geometrisch den Fldcheninhalt von ebenen Berei-
chen. Um welche Bereiche handelt es sich? (s. 10.1.2., Beispiel 10.1.)

1) Diese Formel wird zu Ehren der Begriinder der Differential- und Integralrechnung, Isaac
Newton und Gottfried Wilhelm Leibniz, auch ,,Formel von Newton-Leibniz‘* genannt.

S.10.9

S. 10.10

oder
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Bemerkung: Mit Hilfe des Hauptsatzes ist es eine Leichtigkeit, das bestimmte Inte-
b

gral f f(x) dx zu berechnen, falls eine Stammfunktion von f(x) bekannt ist. Gelingt

es nicht, eine Stammfunktion von f(x) zu ermitteln, so gibt es gentigend Méglichkeiten,

ein bestimmtes Integral ndherungsweise zu berechnen. Auf solche Naherungsformeln
werden wir in 10.3 eingehen!

5 2
Aufgabe 10.1: a) [ (x* + x2)dx, b) [(1 — x%) dx.
1 0

E

2
c)f3~ sin x dx, d) J.sinxdx
0 bt

Aufgabe 10.2: a) Wie gfoB ist der Flicheninhalt des durch die Kurven y = x? — 4x,
y =0,x = —1, x = 6 begrenzten ebenen Bereiches B (in Bild 10.8 ist B schraffiert
gezeichnet).

Bild 10.8

77 W 5 X
3
b) Man berechne _ff(x) dx fiir f(x) = |[x — 2| + |x + 1|. Anleitung: Man betrachte
-3
f(x) auf den Intervallen x £ —1, —1 < x < 2und x = 2.
vz P 1
Aufgabe 10.3: a) f—x—— b) fﬂ—
0 -1

J1==x 1+ x*

Aufgabe 10.4: Von der auf [0, 6] stiickweise stetigen Funktion
x fir 0<x<3,
f(x)c{S—x fir 3<x<6
berechne man F;(x) = f f(¢) dt fur jedes x € [0, 6] und weise nach, daBl F;(x) an der

0
Stelle x, = 3 stetig ist.

10.2.4. Die Substitutionsmethode bei bestimmten Integralen

Bei der Ermittlung eines unbestimmten Integrals wird man oft die Substitutions-
methode heranziehen (vgl. Satz 9.2 in 9.1.4.). Nach unseren bisherigen Kenntnissen
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wiirde man bei der Berechnung eines bestimmten Integrals mit Hilfe einer Substitution
wie folgt vorgehen:

1. Berechnung des unbestimmten Integrals | f(p(u)) - ¢'(u) du.

2. Riicktransformation von der neuen Verénderlichen u zur alten Verdnderlichen x
liefert eine Stammfunktion F(x) von f(x).

3. Berechnung der Differenz F(b) — F(a).

8
Beispiel 10.4: I = f

-3

xdx
\/xz +1 )
Mit Hilfe der Substitution

u=x*+1
du = 2x dx

kann man das zugehé6rige unbestimmte Integral berechnen:
du
x dx 2 1 du 1 -1 -
——= == | —==5 |y Pdu=Ju+ec
NS J Vu 2) Ju 2 A
x

Riicktransformation # = x* + 1 liefert eine Stammfunktion F(x) von f(x) = .
nimlich: F(x) = \/x* + 1. Hieraus folgt: Vx2+1

>

I = F(x) 13 =V 1 = /65— /10 = 8,06 — 3,16 = 49.

Das Wesentliche bei diesem Vorgehen ist die voliig getrennte Berechnung des zu-
gehorigen unbestimmten Integrals! \

Bei einer zweiten Methode werden bei der Transformation von der alten Verdnder-
lichen x zur neuen Verdnderlichen « auch die Integrationsgrenzen mittransformiert.
Es gilt

Satz 10.11: Wenn fiir das unbestimmte Integral von f(x) die Formel

[Fxydx = [flp@) - o' @) du |, (10.5)
gilt (vgl. Sarz 9.2 in 9.1.4.), so gilt fiir das bestimmte Integral folgende Formel:

b y(b)

[ dx = [ flg@w) - ¢'(w) du. (10.6)

a v(a)

Selbstverstandlich miissen wieder die in 9.1.4. bei Satz 9.2 formulierten Voraus-
setzungen erfiillt sein! Insbesondere muB die Funktion x = ¢(#) (und damit auch
u = p(x)) auf dem entsprechenden Intervall umkehrbar eindeutig sein. Das Nicht-
beachten dieser Voraussetzung kann zu schweren Fehlern fiihren.

Beweis: G(u) sei eine Stammfunktion von f(g(u)) - ¢'(u), F(x) eine Stammfunk-
tion von f(x). (10.5) ist dann &dquivalent mit F(x) = G(y(x)) + c. Hieraus folgt
F(b) — F(a) = G(p(b)) — G(p(a)). Diese Gleichung ist aber mit (10.6) dquivalent. m

S.10.11
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ki
2

Beispiel 10.5: J‘ sin? x - cos x dx geht durch die Substitution
0

u = sin x = p(x)

. kg . T .
(du =cosx dx;x, =0,u; =sinx; = 0; x, = —,u, =sin—— = l;u=sinx

= 2 2
ist auf [O, -2—] umkehrbar eindeutig)
iiber in
1
31 1
2gu=2.| ==
fu du = T =3

0
4
Beispiel 10.6: I = f\/l — (x — 3)2dx geht durch die Substitution u = x — 3 zu-

2
nichst in das Integral
1
I= J‘\/ 1—u?du
-1

iber.u = x — 3istauf[2, 4] umkehrbar eindeutig; den x-Werten x; = 2,x, = 4ent-
sprechen die u-Werte u; = —1, u, = 1. Durch die Substitution u = sin# (u = sin ¢

T k13
— <t<— auf

liefert eine umkehrbar eindeutige Abbildung von dem Intervall — 3 3

das Intervall —1 < u < 1) geht das zweite Integral iiber in

Ay ki
2 2
I=f\/l —sinzt'costdt=f\/coszt-costdt
=
7 2
= ™
2 7 .
=fcosztdt1)=§(sint~cost+t) =7
e =
P Y

P o _ a, falls a=0,
Emnes (Gl {—a, falls @ <0.
Bemerkung: Wir haben uns in den Beispielen 10.5 und 10.6 jedesmal davon iiberzeugt,
daB die bei der Substitutionsmethode auftretenden Funktionen ¢ und  auf den ent-
sprechenden Intervallen umkehrbar eindeutig sind. Sehr oft nimmt man es mit sol-
chen Feinheiten bei der Praxis des Integrierens nicht so genau; man fiihrt die Substi-
tution durch und ist froh, wenn diese Bemiihungen zu einem Ergebnis fiihren. Das
folgende Beispiel zeigt, dal ein allzu sorgloses Vorgehen bei der Anwendung des
Satzes zu einem falschen Ergebnis fiihren kann.
1
3
Beispiel 10.7: Das Integral I = fx’ dx kann man sofort berechnen: I = XT =3
=1

1
Wir wollen jetzt I mit Hilfe der Substitutionsmethode fiir bestimmte Integrale berech-

: 2

FNoy TN i i Tz
)\/cos t = |cos t| = cos ¢, weil cos = 0 fiir alle 7€ Ok
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nen. Durch die Substitution # = x2 (du = 2x dx, x = \/;, Xy =—lLu =1;x,=1,
u, = 1) erhalten wir

1 1

1= fxz dx = | u 2‘1;_ =0 (obere Grenze = untere Grenze!).
u

Wo liegt der Fehler? Antwort: Die Funktion u = x? ist auf dem Intervall -1 < x =<1
nicht umkehrbar eindeutig! )
Wir hitten das richtige Ergebnis erhalten, wenn wir das Intervall [-1,1] in zwei

Teilintervalle [—1, 0] und [0, 1] zerlegt und auf die beiden Integrale _]' x2 dxund f x*dx

getrennt die Substitutionsmethode fiir bestimmte Integrale angewendet hatten Auf
den beiden Teilintervallen [—1,0] und [0, 1] ist u = x? jeweils umkehrbar eindeutig:

X = ——\/ ubzw. x = /u sind die entsprechenden Umkehrfunktionen

0 1 0 1

du du
I=|x*dx+ | x*dx = —) + | u—=
fx * fx * fu(-zJu) J‘u 2\/14
-1 0 1 0

II
%
:
=%
s
+
%
<.
=
a
s
|
|
| =
w|
:
&
=
a—y
+
N -~

w|
=
&
=1

1 2 1 2 2
“"(“‘>+ 353

Bemerkung: Bei der Berechnung eines bestimmten Integrals mit Hilfe der Substitu-
tionsmethode kann man

a) die Integrationsgrenzen mittransformieren (s. Beispiele 10.5 und 10.6) oder
b) die Integrationsgrenzen nicht mittransformieren (s. Beispiel 10.4).

Wir empfehlen, im allgemeinen der Methode b) den Vorzug zu geben, weil man
sich auch bei etwas sorglosem Vorgehen (z. B. Nichtbeachten der Voraussetzung ,,p
bzw. y umkehrbar eindeutig®) durch eine nachtrégliche Probe (Differentiation der
ermittelten Stammfunktion) von der Richtigkeit des gefundenen Ergebnisses iiber-
zeugen kann. Bei Methode a) ist das nicht mdoglich.

Man berechne (mit Hilfe der Substitutionsmethode) die folgenden bestimmten
Integrale:

x dx

Aufgabe 10.5: | ———.
. \/1 + 2x
0

NE

sin x dx

o r—4 (Subst. u = cos x).

Aufgabe 10.6: f

0
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10.3.  Niherungsweise Berechnung bestimmter Integrale

10.3.1. Problemstellung

Die Berechnung des bestimmten Integrals von f(x) tiber [a, b] ist nach dem Haupt-
satz der Differential- und Integralrechnung (vgl. 10.2.3.) sofort méglich, wenn eine
Stammfunktion F(x) von f(x) bekannt ist:

b
[f(&x) dx = F(b) - F(a).

Falls man bei der Ermittlung einer Stammfunktion auf zu groBe Schwierigkeiten
stoBt, so ist man darauf angewiesen, das bestimmte Integral ndherungsweise zu be-
rechnen. Das der ndherungsweisen Berechnung eines bestimmten Integrals zugrunde
liegende Prinzip ist sehr einfach: Man ersetzt die Funktion f(x) durch eine Funktion
f*(x), die sich von f(x) mdglichst wenig unterscheidet und deren Integration keine
Schwierigkeiten bereitet. Es gilt dann:

b b
[f() dx = [ f*(x) dx.

Die einfachste Mglichkeit wire, die Kurve f(x) durch ein Sehnenpolygon zu ersetzen:

Man zerlegt das Intervall [a, b] in n Teilintervalle und verbindet die jeweils aufein-

anderfolgenden Punkte P,_; und P; geradlinig miteinander. Das so entstehende

Bild 10.9

= X

Sehnenpolygon ist eine Néiherung fiir die durch y = f(x) dargestellte Kurve (s. Bild
10.9). Die Niherungsformel, die man erhilt, wenn die Kurve f(x) durch ein Sehnen-
polygon ersetzt wird, nennt man Sehnenformel oder Trapezformel. (Der Name
,, Trapezformel wurde gewihlt, weil sich der unterhalb des Sehnenzuges liegende
Bereich aus endlich vielen Trapezen zusammensetzt.)

Niherungsformeln werden vor allem auch dann benutzt, wenn die Kurve nicht
durch einen geschlossenen Ausdruck y = f(x) gegeben ist. In den Anwendungen
kommt es hiufig vor, daB von der Kurve auf dem Intervall [a, b] nur endlich viele
Punkte (MeBpunkte) Py(x;, ;) (i = 1, 2, ..., n) bekannt sind. Wir werden sehen, dal
bei allen Niherungsformeln fiir das bestimmte Integral von f(x) iiber [a, b] nur die
Kenntnis von endlich vielen Punkten (x;, f(x;)) mit a < x; < X, < ... < berforder-
lich ist. Daher ist jede derartige Néherungsformel auch dann anwendbar, wenn von
der Kurve nur endlich viele Punkte Py, P;, ..., P, bekannt sind. (Meist werden die
bei einem Experiment gefundenen MeBwerte (x;, ;) in Tabellenform angegeben.)
Selbstverstidndlich wird der durch die Ndherungsformel ermittelte Wert dem tatséch-~
lichen Wert des bestimmten Integrals um so naher kommen, je groBer n ist.
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10.3.2. Die Rechteck- und die Trapezformel

Satz 10.12: Das Intervall [a, b] = [x,, x,] werde durch die Teilungspunkte x,, x,,"..., S.10.12
Xp—y in n gleiche Teile der Linge h zerlegt (n - h = b — a). Ist f(x) auf [a, b] integrierbar,
so gilt fiir das bestimmte Integral von f(x) iiber [a, b] folgende Niherungsformel:

b
I [f(x)dx ~ h(yo + y1 + ... + yu_1) Rechteckformel

=S, i=0,1,..).
Die Naherungsformel entsteht dadurch, daB man die Kurve y = f(x) durch ein

,,Treppenpolygon‘ ersetzt (s. Bild 10.10).
Satz 10.12 bedarf keines besonderen Beweises. Die rechts stehende Summe

hyo + y1 + oo + Yuod) =S(X0) k4 o + flxr) - 1
=A§1f(§i) “Ax; (Ax; = h & = xiy)
ist ndmlich eine zu der vorgegebenen Zerlegung gehorige Integralsumme — und damit

automatisch eine Néherung des bestimmten Integrals von f(x) tber [a, b] (vgl.
10.1.1.).

y=1(x)

Bild 10.10

an X N n K X X x

Man kann die Rechteckformel natiirlich auch anders deuten: Man ersetze die
Kurve y = f(x) durch das ,, Treppenpolygon‘‘ y = f*(x), welches wie folgt definiert
Ist: f*x) =fla) fir a =x<xg,

f*x) = fley) fiir x; £ x <X,

fH*x) = f(x;) fir x, < x < x3 usw.
(s. Bild 10.10). Fiir die ,,Ndherungskurve* y = f*(x) gilt dann:

b
ff*(x) dx = h(yo + y1 + .o + Yur)-

b Xy X2 *n
Beweis: [ f*(x)dx = j FHX) dx + J‘ FrE)dx 4+ [ R dx

Fn-1

= j fla)ydx + { S dx + ... + j S(y) dx

E

=f@) - (x; — a) + (1) vz = x1) + oo+ f (1) * (X — Xno1)
=f@) h+f(x) h+..+f(xp1)h
=h(yo+y1+ ... + yp-1)-H

Die Teilintervalle [x;_,, x,] sollten alle gleich lang sein!
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4
Beispiel 10.8: Das bestimmte Integral J x3dx soll niherungsweise mit Hilfe der

0
Rechteckformel berechnet werden; das Intervall [0, 4] soll in 4 gleiche Teile zerlegt
werden.
Bei diesem einfachen Beispiel kénnen wir den Wert des bestimmten Integrals sofort
4

X4
angeben: fx3 dx = T
0

= 64. Die Rechteckformel ergibt (f(x) =x3, h=1, n=4):

4
0
4

J"x3 dx & h(yo + yi + y2 + y3) = 1-(f(0) + f(1) +£(2) + f(3))
0
=0+1+8+27=36.

Die auBerordentlich schlechte Ubereinstimmung des Naherungswertes (36) mit dem
tatsidchlichen Wert (64) liegt bei diesem Beispiel vor allem darin begriindet, daB die
Funktion y = x* auBerordentlich schnell in dem Intervall ansteigt. Man bedenke:
Fir x =2 ist f(x) =8, fir x =3 ist f(x) =27, fiir x =4 ist f(x) = 64. Insbesondere
auf dem Intervall [3, 4] ist der Unterschied zwischen dem ,,Nédherungsrechteck* und
dem tatsdchlichen Bereich (begrenzt durch x = 3, x =4, y = 0 und y = x?) auBer-
ordentlich groB3.

S. 10.13 Satz 10.13: Das Intervall [a, b] = [x,, x,] werde wieder durch die Teilungspunkte
Xy, X35 ..oy Xpq in n gleiche Teile der Linge h zerlegt. Die Niherungsformel, die man
b

fiir das bestimmte Integral J f(x)dx erhdlt, wenn man die Kurve y = f(x) durch ein

Sehnenpolygon ersetzt (s. Bild 10.9), laﬂtet.'

b
b —_ 5
ff(x) dx ~ ﬁ;z—a~ [}OTJFJ)" Yy 4yt + y,,_,] Trapezformel.

Beweis: Das Sehnenpolygon y = f*(x) wird durch folgende Gleichungen beschrieben :

f”‘()€)=—}ﬂ-(x—xo)+y0 fiir xo < x £ x

7 =
(Gleichung der Geraden durch P,, Py; fiir x = x4 ist f*(x,) = yo, fiir x = x, ist
S =y1)

[Hx) = y;;yl (x = xy) 4y fir x; £ x < xy;
allgemein:

fH*x) = M-(x — X))ty fir x; S x < xg.

h

Fiir die ,,Nédherungskurve* y = f*(x) gilt dann:
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ff*(x) dx = ftf*(x) dx + ff*(x) dx + ... + f}*(x) dx

Xa-1

-> o dx = > f (B2 = o) + 1) e

= i:j.l [% w + Yi-1- X]::_l=é‘,‘(y: + J’t—1)‘;‘

= % [2}’1 + 2)’:] o4 [(yn + Z}"i) (J’o +§:i)ﬁ)}
z [}’o +ynt 20 Zyi = [% +:§y!]'

Damit ist die Trapezformel bewiesen:
b b
ff(x)dx ~ ff*(x)dx oy [yo—;y—"-+y1 PR +yn_1]- =

Die Umformungen im eben durchgefiihrten Beweis betrachte man vor allem als eine
gute Ubung fiir den Umgang mit dem Summenzeichen!

. 4
Beispiel 10.9: Das bestimmte Integral J' x* dx soll ndherungsweise mit Hilfe der Tra-

0
pezregel berechnet werden; das Intervall [0, 4] soll in 4 gleiche Teile zerlegt werden. —
Wir haben absichtlich dasselbe Integral wie im Beispiel 10.8 gewihlt, um zu sehen,
welche Verbesserung die Trapezregel gegeniiber der Rechteckformel bringt.

4
fx’dlez-[y‘)—;ﬂ— + 31+ +y3]

=1-[w+f(l)+f(2)+f(3) =324 148427 =68

Der Naherungswert (68) weicht hier nicht mehr so stark vom tatsdchlichen Wert (64)
ab, wie das bei der Rechteckregel der Fall ist (s. Beispiel 10.8). DaB3 die Trapezformel
i. allg. eine wesentlich bessere Nédherung liefert als die Rechteckregel, ist geometrisch
unmittelbar einleuchtend (s. Bilder 10.10 und 10.9). Bei der Aussage ,,die Trapez-
formel liefert i. allg. eine bessere Nédherung als die Rechteckregel* setzt man natiirlich
stillschweigend voraus, dafl man in beiden Fillen von der gleichen Zerlegung des
Intervalls [a, b] ausgeht.

10
Aufgabe 10.7: Das bestimmte Integral f x* dx soll ndherungsweise mit Hilfe der

0
Trapezformel ermittelt werden; das Intervall [0, 10] soll in 5 gleiche Teile zerlegt
werden. Man vergleiche den ermittelten Néherungswert mit dem tatsichlichen Wert
des bestimmten Integrals.
12  Piorr, Diff.- u. Integr.
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10.3.3. Die Simpsonsche Regel

Wir behandeln zunichst einen Spezialfall, die sog. Keplersche FaBregel. Der Name
,,FaBregel* wurde gewihlt, weil Kepler?) mit dieser von ihm entwickelten Regel das
Volumen von Weinféssern berechnete.

S. 10.14 Satz 10.14: Das Intervall [a, b] = [x,, x,] werde durch den Teilungspunkt x, = i'z*'*b

in zwei gleiche Teile der Linge h = 4 zerlegt. Die Niherungsformel, die man fir
b

2
das bestimmte Integral f f(x) dx erhdlt, wenn man die Kurve y = f(x) durch eine Pa-

rabel 'y = f*(x) = ¢o + ¢1X + c,x* ersetzt, welche durch die Punkte (xo,f(Xo))s
(x1, f(x1)), (X2, f(x2)) hindurchgeht (s. Bild 10.11), lautet:

b ; a (yo + 4y; + y,) Keplersche FaBiregel

b
f flx)dx ~
i =f(x); i=0,1,2).
b b .
Beweis: Es gilt: [ f(x)dx & [ f*(x) dx. Wir zeigen, daB das rechts stehende Integral

b—a
6

- gleich (Yo + 4y1 + »,) ist.

b b
J'f*(x) dx = [(co + 1% + €2x%) dx = [cox + 3esx? + 1e,x°L

= ¢o(b — a) + 1ci(b* — a?) + 1e, (b — @d)

=4(b — a) [6¢co + 3ci(b + a) + 2¢,(b* + ab + a?)]

=4(b — a) [(co + co + 4co) + (c1a + ¢1b + 2¢4(a + b))
+ (c20% + 0% + cy(a + b)?)]

=3b—a)- [(co + ¢1a + €,07) + (co + ¢1b + ¢,b?)

2
+4<co+c1—a;b +c2(a;b))]

= b - 0 [£*@ +£4®) + 45 (#)}

=i -a {f(a) + 10 + 4f( 24 b)]

(Nach Voraussetzung sollte die vorgegebene Kurve y = f(x) mit der Parabel y = f*(x)
die Punkte P,, P, P, gemeinsam haben.) m

Die Simpsonsche Regel erhdlt man sehr einfach aus der Keplerschen FaBregel,
wenn man das Intervall [a, b] in n = 2m gleiche Teile zerlegt (s. Bild 10.12) und auf
jeweils zwei benachbarte Intervalle die Keplersche FaBregel anwendet (n = 2m heiBt:

1) Johannes Kepler (1571-1630).
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[a, b] wird in eine gerade Anzahl gleicher Teile zerlegt). Zunédchst gilt

b x X4 X2m
Jf)dx = [ fx)dx + | f(x)dx + ... + J f(x) dx.
a Yo x2 X2m-=2
1]
y
T y<f(x)
|
|
l
|
| ||
I I Y % X % o 2 Ytk K
Bild 10.11 Bild 10.12

Wendet man auf jedes der auf der rechten Seite stehenden Integrale die Keplersche
FafBregel an, so ergibt sich die Beziehung

X2 — Xo

b
ff(x)dx ~

X4 — X
(yo + 4y, +J’2)+—46—1(J’2 + 4ys + ya)

X — Xom-
+...+ M—-Gh"—z(,"zm-z + 4Yomo1 + Vam)-

b—a

Wegen x, — Xo = X4 — X3 = .. = Xop — Xopmoo = folgt hieraus:

b —

a
™ (Yo +4(yy +y3 + oo + Yomor)

b
f fG0) dx ~

‘ 2002 + ya oo+ Yomod) + Vom):
Das ist bereits die Simpsonsche Regel®).
Fassen wir noch einmal zusammen:
Satz 10.15: Das Intervall [a, b] werde in eine gerade Anzahl n = 2m gleicher Teile zer- S. 10.15

legt (Teilungspunkte: a = Xo, X1, X2 «oer Xom-2> Xame1,> X2m = b). Fiir das bestimmte
Integral von f(x) iiber [a, b] gilt dann folgende Niherungsformel:

b
b—a
[ £ ax % 2L 130 + 40 + 33 + o+ Yancd)

+ 2(y2 + Yo + oo + Yame2) + Yom] Simpsonsche Regel.
4
Beispiel 10.10: Das bestimmte Integral f x* dx soll ndherungsweise mit Hilfe der

[
Simpsonschen Regel bereshnet werden ; das Intervall [0, 4] soll wieder in 4 gleiche Teile
zerlegt werden (s. Beispiele 10.9 und 10.8).

1) Thomas Simpson (1710-1761).
12*
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Aus n =4 und n = 2m folgt m = 2. Also gilt:

4

4-0
fxa dx & S5 [0 + 401 + 73) + 202) + 4]
0

:;—-[0-1-4(1+27)+2-8+64]=%-192=64.

Der mit Hilfe der Simpsonschen Regel berechnete Naherungswert ist bei diesem Bei-
spiel gleich dem tatsdchlichen Wert des Integrals. Das ist bei der Funktion f(x) = x*
kein Zufall, sondern GesetzmaBigkeit. Es gilt ndmlich: Ist f(x) ein Polynom vom
“Grade 2 oder 3, so steht in der Keplerschen Faflregel und damit auch in der Simp-
sonschen Regel das Gleichheitszeichen an Stelle des Zeichens =~. Fiir n = 2 ist
der eben festgestellte Sachverhalt auf Grund der Herleitung der Keplerschen FaB-
regel eine Selbstverstidndlichkeit (vgl. Satz 10.14). Hiervon ausgehend kann man
leicht zeigen, daB der Sachverhalt auch fiir n = 3 gilt (vgl. [10], Bd. III).

Das Wesentliche, welches durch die Beispiele 10.8, 10.9 und 10.10 demonstriert
werden soll, ist: Die Trapezformel liefert i. allg. eine bessere Ndherung als die Recht-
eckregel; die Simpsonsche Regel wiederum liefert i. allg. eine bessere Ndherung als die
Trapezregel. Im allgemeinen wird man daher bei der ndherungsweisen Berechnung
von bestimmten Integralen der Simpsonschen Regel den Vorzug geben.

Bei den Beispielen 10.8, 10.9 und 10.10 wurde absichtlich der einfache Integrand
f(x) = x® gewihlt; man hat dann sofort die Moglichkeit, den berechneten Néhe-
rungswert mit dem tatsdchlichen Wert des Integrals zu vergleichen. Wir behandeln
abschliefend ein Beispiel, bei dem das zugehdrige unbestimmte Integral nicht elemen-
tar auswertbar ist (vgl. Abschnitt 9.1.6.).

Beispiel 10.11: Mit Hilfe der Simpsonschen Regel berechne man ndherungsweise
ki
7= J‘ sin x d
x
T

das Intervall [a, b] = [ ¢ 7:} werde in n = 10 gleiche Teile zerlegt. (Wiirde man
sin

[0, ] als Integrationsintervall wéhlen, so wire die Funktlon flx) = * im linken

Eckpunkt des Intervalls nicht definiert; wegen hm ——— = 1 handelt es sich aber um
eine hebbare Unstetigkeit.) x
Anwendung des Satzes 10.15 liefert:
I~ —[Jo + 41+ Y + s +y7 +29) + 2002 + Ve + Vs +ys)+yw] *)

Fiir die Teiluncspunkte x, (= a), Xy, X2, ..., X, (= b) gilt:

xi=€+tﬁ= , 10).
Die entsprechenden y,-Werte berechnet man nach der Formel
12 LT . 12
=flx)=— 51nx,—msmﬁ(2+z)-?z,,
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! —sin (2 + 1) % gesetzt wurde. Aus der Beziehung (*)

wobei zur Abkiirzung z; = P

folgt dann:
1
Iz?[zo + Az, + 23 + 25 + 27 + Zo) + 2(z5 + 24 + Z6 + Zg) + Zy0)

Mit
1. = 1 . 1
zo—~2—s1n3—75m30 —?—0250
I .= 1. o 1
z, = —3—sm 7= -j—sm 45° » ?0,707 ~ 0,236

usw. erhélt man als SchluBergebnis:

I=fsmxdx~1336
X

K
6

4 S
Aufgabe 10.8: Das bestimmte Integral J x? \/ 1 + x? dx soll ndherungsweise mit Hilfe

*

0
der Simpsonschen Regel berechnet werden; das Intervall [0, 4] soll in 8 gleiche Teile
zerlegt werden.

. Wie in der Einleitung bereits betont wurde, wird bei der Anwendung einer der-
artigen Nédherungsformel die Nidherung um so genauer sein, je grofer die Anzahl
n der Teilintervalle ist. Diese allgemeine Feststellung reicht fiir die Anwendungen oft
nicht aus. Man mdchte genau wissen, welchen Fehler man bei der Anwendung einer
bestimmten Néherungsformel gemacht hat. Dabei geniigt es, wenn man weil3, wie
groB der Fehler héchstens sein kann. Wenn der Fehler innerhalb einer solchen
Schranke liegt, daB er fiir das betreffende Problem vernachléssigbar ist, kann man die
Niherung als fiir das betreffende Problem gut ansehen. Der folgende Satz gibt Ant-
wort auf die Frage, wie groB der dem Néherungswert anhaftende Fehler ist.

b
Satz 10.16: Wird das bestimmte Integral f f(x) dx néiherungsweise durch die Simpson- S. 10.16

sche Regel berechnet, wobei man davon ausgeht, daf3 das Intervall [a, b] in eine gerade
Anzahl n = 2m gleicher Teile zerlegt wurde, so gilt fiir den Fehler R die Abschdtzung

(b —ay®
IR| = 180n*

wobei M eine obere Schranke von |f“(x)| auf dem Intervall [a, b] ist.

.M,

(Fiur M kann sup If("”(x)l gewihlt werden!) Den Beweis findet man z. B. in [10],
Bd. 111, bzw [14], Bd II.

Hinweis: Die Giite der Simpsonschen Regel dokumentiert sich auch in dem folgenden
Sachverhalt: Durch Halbierung aller Teilintervalle kommt man von einer Zerlegung
Z, mit n Teilintervallen zu einer Zerlegung Z, mit 2n Teilintervallen; fiir die zuge-

horigen Fehler R; bzw. R, gilt: |R,| < % |Ry|.
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10.4. Einige Anwendungen des bestimmten Integrals

Wie in 8. schon dargelegt wurde, stellt die Integralrechnungein unentbehrliches Hilfs-
mittel fiir die verschiedensten Wissensgebiete dar. Einige Anwendungen wurden in 8.
bereits erwihnt, wir wollen gin weiteres Beispiel betrachten: Es ist allgemein be-
kannt, daBl die Methoden der Wahrscheinlichkeitsreehnung und mathematischen
Statistik in immer groBerem Umfang in Natur- und Ingenieurwissenschaften an-
gewendet werden. Auch in der Okonomie sind die Wahrscheinlichkeitsrechnung und
die Statistik wichtige Hilfsmittel bei der Losung der dort anstehenden Probleme.
Auch hier muB gesagt werden, daB ohne Kenntnis der Integralrechnung es nicht mog-
lich ist, die Wahrscheinlichkeitsrechnung aufzubauen. Als Beispiel verweisen wir auf
folgenden Zusammenhang: Bei einer stetig verteilten ZufallsgroBe X mit der Dichte-
funktion f(x) ist die Wahrscheinlichkeit dafiir, daB X Werte aus dem Intervall [a, b]

b

annimmt, gleich j f(x) dx.

Im folgenden werden wir einige Anwendungen des bestimmten Integrals in der
Geometrie, in den Natur- und Ingenieurwissenschaften und in der Okonomie aus-
fiihrlicher kennenlernen. Es wird sich um Anwendungen handeln, die relativ einfach
zu iibersehen und von allgemeinem Interesse sind.

10.4.1. Anwendungen in der Geometrie
Eine 1. Anwendung des bestimmten Integrals haben wir bereits in 10.1.2. (Beispiel
b
10.1) kennengelernt: Im Falle f(x) = O fiir alle x € [a, b] liefert ff(x) dx den Flachen-

inhalt des durch die Kurven y = 0, x = @, x = b, y = f(x) begrenzten Bereichs in der
x, y-Ebene. Eine einfache Folgerung ist die folgende Aussage: Im Falle f(x) < 0 fiir
alle x € [a, b] liefert das Integral den negativen Flidcheninhalt des oben beschriebenen
Bereichs.

Aus diesen beiden Aussagen ergibt sich folgende Verallgemeinerung.

Satz 10.17: Ist B ein Bereich der x, y-Ebene, der ,,nach oben durch y = f(x), ,,nach

unten** durch y = g(x) und ,,seitlich* durch x = a bzw. x = b begrenzt wird (s. Bild
10.13), so gilt fiir den Flicheninhalt A dieses Bereiches

b
I A = [(f) - g(x)) dx.

Voraussetzung: 1. f(x) und g(x) sind stetig auf [a, b], 2. f(x) = g(x) fiir alle x€[a, b],
d. h., die Kurve y = f(x) verlduft stets oberhalb von der Kurve y = g(x) auf dem

y

Bild 10.13
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Intervall [a, b]. — Einen solchen Bereich B nennt man einen ebenen Normalbereich.
Ebene Normalbereiche spielen eine wichtige Rolle bei der Berechnung von Bereichs-
integralen (Fldchenintegralen); s. Band 5.

Der Beweis zu der in Satz 10.17 aufgestellten Behauptung ergibt sich im Falle
g(x) = 0 fiir alle x € [a, b] sofort aus Beispiel 10.1: o

b b b
= [/(0) dx — [g(x) dx = [ (f(x) — g(x)) dx.

Ist die Forderung g(x) = 0 fiir alle x € [a, b] nicht erfiillt, so kann man durch eine
einfache Parallelverschiebung in Richtung y-Achse erreichen, daB der Bereich B
ganz oberhalb der x-Achse liegt. Fiir die parallelverschobenen Kurven

y=g*x),y = *x) gilt: g*x) =gx) + ¢ (c20),
f*x) =f(x) + c.
Der Flacheninhalt hat sich natiirlich bei der Parallelverschiebung nicht geandert Es
gilt daher:

A= ~|‘f*(x) dx — fg*(x) dx = J (f(x) + ¢)dx — J. (g(x) + ¢) dx

ff(x)dx +J.cdx - fg(x)dx— fcdx = (x)dx—fg(x)dx

a

Beispiel 10.12: Von dem durch die Kurven x = 1, x = 4, y = %-xz, y= _.; be-

grenzten Bereich B (s. Bild 10.14) berechne man den Flidcheninhalt 4.

y-ir

Bild 10.14

Es gilt:

. )
_ 1 2 _ 4 L 3 $
A-—f(xx ( 7))dx—[12x +41n[x|]I

16
= +4 In4—ﬁ—1079

Aufgabe 10.9: Esist der Flacheninhaltdes vonden Kurvenx = 0,x = 4,y = {x?+ 1, *
y = —Xx begrenzten Bereichs B zu berechnen. (Man skizziere zunachst den Bereich B;
er liegt ganz im 1. und 4. Quadranten.)
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* Aufgabe 10.10: Man ermittle den Flicheninhalt des von den Kurven y = $x? und
y = 2x eingeschlossenen Bereichs. (Der Béreich liegt ganz im 1. Quadranten.)

Ergiinzungen zum Satz 10.17: Selbstverstidndlich hat man nicht nur von Normal-
bereichen den Flicheninhalt zy bestimmen. Die in Satz 10.17 angegebene Formel fiir
den Fldcheninhalt von Normalbereichen reicht aber aus, um auch den Flicheninhalt
eines allgemeinen Bereichs B zu bestimmen. Man braucht ja nur den Bereich B in
(endlich viele) Normalbereiche zu zerlegen — was in allen praktisch vorkommenden
Fallen moglich ist — und auf jeden Normalbereich die in Satz 10.17 angegebene
Formel anzuwenden. Es muB allerdings garantiert scin, dafl die ,,obere** und
,untere** Kurve durch eine Gleichung der Form y = f(x) bzw. y = g(x) gegeben ist
(s. Bild 10.13). -

Hat man ein Flachenstiick in der x, y-Ebene, welches von zwei Strecken OP; und
OP, und einem die Punkte P, und P, verbindenden Kurvenstiick €, begrenzt wird —
es handelt sich um eine sog. ,,Sektorfliche** (s. Bild 10.15; das Kurvenstiick €, und
die zweite Schraffur zwischen €, und €, werden zunichst nicht berlicksichtigt),
so erhdlt man fiir den Flacheninhalt 4 dieses Flachenstiickes:

B
I A=1[(xp —yx)dr (Sektorformel).

4

ol X ot ] X

Bild 10.15 Bild 10.16

Hierbei ist x = x(t), y = y(1), « < t £, & < fp, eine Parameterdarstellung des die
Punkte P, und P, verbindenden Kurvenstiicks €,; % bzw. y sind die Ableitungen
von x bzw. y nach ¢ (Beweis der Sektorformel siehe z. B. [10], Bd. III, Nr. 54).

Die Sektorformel soll auf ein einfaches Beispiel angewendet werden! x = R - cos 7,

y = R-sint, 0 £t £ — ist Parameterdarstellung eines Viertelkreises mit dem An-

fangspunkt P, (R, 0) und dem Endpunkt P,(0, R). Von dem durch die Strecken OP, ,

OP, und dem Viertelkreis begrenzten Flichenstiick (s. Bild 10.16) soll der Flichen-
inhalt mit Hilfe der Sektorformel berechnet werden. Es gilt:

A=%|[(R-cost)(R-cost) — (R-sint)(—R-sint)]dr

o ]

1R? [ [cos? 1 + sin? r]dr = 1R? | dt = i=R%

ot
S —wla
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Wir wollen jetzt den Flacheninhalt 4 des ebenen Fldchenstiickes berechnen, das von
einer in Parameterdarstellung gegebenen geschlossenen, doppelpunktfreien Kurve
C: x = x(1), y = y(t), die im Intervall « < t < p definiert ist, begrenzt wird. Denkt
man sich (s. Bild 10.15) € aus den beiden Teilstiicken €; mit x = x(¢),y = y(t), (x =1
<P und €, mitx = x(1),y =yO) (St =Z7y) zusammengesetzt, dann gilt nach der
Sektorformel fiir den Flicheninhalt 4; des Sektors, der von OP;, €, und OP, begrenzt
wird

B
Ay =% [(xp - yo)dt

und fiir den Flicheninhalt 4, des Sektors, der von OP,, €, und OP, begrenzt wird,

B
Ay =3[ (- yx)de.

2
Die nach der Sektorformel ermittelten Flachen 4, und 4, sind ,,vorzeichenbehaftet*
Durch die Parameterdarstellung ist die Kurve orientiert. 4 ist positiv, falls die Flache
im mathematisch positiven Sinn umlaufen wird, andernfalls negativ.

Fiir das von der geschlossenen Kurve € eingeschlossene Flichenstiick 4 (im Bild

10.15 doppelt schraffiert gezeichnet) folgt dann

B 8
A=A, — 4, =&~[f(xy‘—yx>dt— j(xy'—yx)dr]
A=1[(p—yHdt =1¢ 0y —y9det)

]

Dabei miissen nattirlich einige Voraussetzungen tliber x(z), y(¢) gemacht werden, die
in den praktischen Anwendungen erfillt sind. Neben den Voraussetzungen x(x)
= x(y), ¥(®) = y(y) (,,Anfangspunkt* (x(x), y(«)) fallt mit ,,Endpunkt (x(»), »(»))
zusammen: geschlossene Kurve) und (x(z), »(t,)) = (x(z,), ¥(t,)) fir je zwei ver-
schiedene t-Werte t,, 7, aus («, p) (,,doppelpunktfreie’* Kurve) muB folgende Be-
dingung erfiillt sein: Das Intervall [, ¢] kann so in endlich viele Teilintervalle zerlegt
werden, daBl in jedem Teilintervall die Funktion x(7) stetig differenzierbar und im
engeren Sinne monoton oder konstant ist. Fiir y(¢) sollen dieselben Voraussetzungen
gelten.

Die Inhaltsberechnung von Fldchenstiicken, die von in Parameterdarsteliung ge-
gebenen Kurven begrenzt sind, konnte hier nur angedeutet werden. Naheres findet man
z. B. in [10], Bd. III, oder [18], 15. Lehrbrief.

cos t sin
o 6 i
ciner hyperbolischen Spirale (vel. [1]). P, (0, %) \ind P, (o, - é) sind zwei Punkte

dieser Spirale mit 7, = ‘21 und t, = 377: (bitte nachpriifen!). Man berechne den Flé-

Aufgabe 10.11: a) x = 6 ! (0 < 7 < o) ist Parameterdarstellung

cheninhalt 4 der durch diese Kurve und die Strecken OP,, OP, begrenzten Sektor-
flache.

1) Das Zeichen f bedeutet Umlaufintegral. Es wird verwendet, wenn iiber eine geschlossene Kurve
integriert wird.
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b) r = ap ist die Gleichung einer Archimedischen Spirale in Polarkoordinaten r, @
(0 = ¢ < 0, a: positive Konstante; vgl. [1]). Py(ry, ¢;) und P,(rs, ¢,) seien zwei
Punkte dieser Spirale mit 0 < ¢; < @,. Man beweise, da fiir den Flicheninhalt 4
des durch die Spirale und die Strecken OP,, OP, begrenzten Sektorfliche gilt:
4 = 3a*(93 — ¢3).

Hinweis: Man gehe von r = ap zu einer Parameterdarstellung x = x(¢), y = y(¢)
iiber!

Wir wollen jetzt die Léinge eines ebenen Kurvenstiicks y = f(x), a < x £ b, berech-
nen. Dabei setzen wir voraus, dal y = f(x) auf dem Intervall [, b] stetig differenzier-
bar ist. Die Voraussetzung ,,stetig differenzierbar‘‘ garantiert, da das Kurvenstiick
eine bestimmte Lénge hat, die mit der nachher abzuleitenden Formel (s. Satz 10.18) be-
rechnet werden kann. Selbstverstidndlich haben auch viele andere Kurvenstiicke, bei
denen diese Voraussetzung nicht erfiillt ist, eine bestimmte Lange. Kurvenstiicke,
die eine bestimmte Lange besitzen, nennt man rektifizierbar. Dabei stellen wir uns auf
den anschaulichen Standpunkt, daB jedem nicht allzu kompliziert aufgebauten
Kurvenstiick eine bestimmte Lange zukommt — obwohl in Wirklichkeit die mit dem
Begriff ,,Ldnge* und der Liangenberechnung zusammenhingenden Fragen nicht
ganz trivial sind. Genaueres tiber die Begriffe ,,Kurvenstiick®, ,,Lange** und ,,Rekti-
fizierbarkeit** findet man z. B. in [10], Bd. III.

Wenden wir uns nun unserer eigentlichen Aufgabe zu, namllch der Bestimmung
der Lange des Kurvenstiicks y = f(x), a < x < b. Wie bei der Herleitung der Trapez-
formel (s. Bild 10.9) zerlegen wir das Intervall [a, b] in n Teilintervalle [x,_,, x;] mit
der Lange Ax; (i = 1, ..., n; xo = a, x, = b). Die Linge des Sehnenpolygons P,, P,
P,, ..., P, kénnen wir elementargeometrisch sofort berechnen. Fiir die Linge 4s,
der P,_; mit P; verbindenden Sehne gilt nach dem Lehrsatz des Pythagoras:
Asy ='\/(Ax,)2 + (Ay;)*. Hierbei gilt: Ax; = x; — x;,_1, 4y; = y(x;) — y(x;_,). Nach dem
Mittelwertsatz der Differentialrechnung (s. 6.2.) gibt es ein &; € [x;_;, x;], so daB

gilt: f’—— f/(&). Fiir As, ergibt sich dann: As, = /(4x)? + (f' (&) Ax,)?

= Ax,» J L+ (fE)
Die Linge des Sehnenpolygons ist dann gleich

$a5= 5 JTEGER A,

Diese Summe stellt eine Ndherung der gesuchten Lange s des Kurvenstiicks y = f(x),
a < x £ b, dar; sie istum so genauer, je feiner die Zerlegung des Intervalls [a, b] ist.
Den genauen Wert von s erhdlt man durch den in 10.1.2. beschriebenen GrenzprozeB:

s = lim z\/1 + (&) - Ax,.

Ax;-0 i=1

Der besseren Ubersichtlichkeit halber fiihren wir noch eine Abkiirzung ein:
@(x):= /1 + (f'(x))2. Es gilt dann:

s = hm Z (&) - Ax;.

Hieraus fo]gt (vg] 10.1.2.)

=J<p(x)dx, also s—f\/l+(f(x))zdx
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Damit haben wir unsere gesuchte Formel gefunden! Fassen wir das Ergebnis zu-
sammen!!

Satz 10.18: Fiir die Bogenlinge s des ebenen Kurvenstiicks y = f(x), a < x < b, gilt:
b

I s= [T+ (Fx)?dx.

(Voraussetzung: y = f(x) ist auf [a, b] stetig differenzierbar.)

Beispiel 10.13: Von dem Kurvenstiick y = 1x2,0 < x < 6, berechne man die Bogen-
lange s.

6
Nach Satz 10.18 gilt: s = J‘,\/l + %xz dx. Durch die Substitution z = —2~x
(s. 10.2.4.) erhilt man ) 3

4
R - 4
s=f\/l + z2- = dz=%-‘[%(z-\/zz+ 1+ arsinhz)]
0
0
=%[z-\/z2 + 1 +1n(z+\/1 +zz)]3=%'(4\/ﬁ+ln(4+\/l_7))

~ _i- (417 + In8,123) ~ 1237 + % 2,09 ~ 13,94.

Hinweis: Das Integral f\/l + x? dx findet man in jeder einschligigen Formelsamm-
lung (siehe z. B. [1]); bei der Behandlung der hyperbolischen Funktionen wurde die
Beziehung arsinh x = In (x + \/ 1 + x2) hergeleitet.

Aufgabe 10.12: Man berechne die Bogenldnge des Kurvenstiicks y = x \/;, 0=<x=<8.

Ist ein Kurvenstiick nicht in der Form y = f(x),a < x < b, gegeben, sondern durch
eine Parameterdarstellung (Parameter: )

x=q), y=y), H=St=t,

so gelangt man bei der Berechnung der Bogenlinge s zu einer Formel, die der in
Satz 10.18 angegebenen sehr dhnlich ist.

Satz 10.19: Fiir die Linge s des ebenen Kurvenstiicks x = ¢(t), y = (1), t; St < 15,
gilt:

I s = [VGOF + @0 dr.

(Hierbei muB natiirlich vorausgesetzt werden, dall die Funktionen ¢(7) und () auf
[t1, t,] stetig differenzierbar sind. Mit ¢(t), (t) wird die Ableitung von ¢(f) bzw.
y(t) nach ¢ bezeichnet: ¢(t) = ﬂ, y(t) = _dlp_)
dt dr
Beispiel 10.14: Von dem Kurvenstiick x = r-cos¢g, y =r-sing, 0 < ¢ < 7 be-
rechne man die Bogenlinge (Parameter: ¢). Wir kennen das Ergebnis — namlich
s = mr —, denn bei diesem Kurvenstiick handelt es sich um einen Halbkreis vom Ra-

S.10.18

*

S. 10.19
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dius r. Dasselbe Ergebnis miissen wir natiirlich auch mit der in Satz 10.19 angegebenen
Formel erhalten:
ki

s = f (—r-sing)? + (r-cosp)* dp
o

T kg
= fr'\//sin2<p+cosztpd(p = [rdp ==
0
Beispiel 10.15: Von dem Kurvenstiick x = a-cosg, y =b-sing, 0 < ¢ < 7, be-
rechne man die Bogenldnge. (Es handelt sich um eme Parameterdarstellung einer

Viertelellipse; aus x =a - cosg, y =b - sing folgt =cos?> g +sin?p =1 )

2N
Nach Satz 10.19 gilt: b
T T
= f (—a-sing)? + (b-cosp)*dp = b- fA/l —ﬁ51n2¢d¢
0
gad,
= b~f¢1 —e? - sin?pde
0
b2 — a2
(ez == wobei b > a vorausgesetzt wird; e: numerische Exzentrizilét.)

Das gefundene Integral kann i. allg. nicht elementar gelost werden (vgl. Bemerkung
in 9.3.5.).
Ein Integral der Form f \/1 — e2-sin?y dy =: E(e, ¢) nennt man elliptisches Inte-

gral 2. Gattung (vgl. [I]). Diese Integrale sind in Tafelwerken (z. B. [8]) zu finden.

Aufgabe 10.13: Von der logarithmischen Spirale r = a - e*# berechne man die Bogen-
linge des zwischen den Punkten mit den g-Werten @, und ¢, (p; < @,) gelegenen
Bogens (s. Bild 10.17). (Hinweise: r = a - e*?, —o0 < ¢ < oo ist die Gleichung der
Spirale in Polarkoordinaten; a und k sollen positive Konstanten sein. Ersetzt man
in den Gleichungen x = r - cosg, y = r-sin ¢ die GréBe r durch a-e*, so erhilt

y

=f(x)
$=s(x) .

% o x I [ X X

Bild 10.17 Bild 10.18
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man eine Parameterdarstellung fiir die Spirale (Parameter: ¢). Néheres iiber Spiralen
findet man z. B. in [1]).

Ergiinzung zu Satz 10.18: Wenn man in der Formel
s = [T TP dx

die obere Gr:nze variabel 14Bt, so ist s natiirlich von der oberen Grenze abhdngig
s =s(x) = f\/w dr

(s. Bild 10.18). Aus ;ieser Gleichung folgt (s. Satz 10.8)
N )

Fiir das Differential der Funktion s = s(x) an der Stelle x mit dem Zuwachs dx gilt
dann: :

ds = /1 + (/) dx.
ds nennt man das Bogendifferential (oder Bogenelement). Wegen dy = f'(x) dx (Dif-
ferential der Funktion y = f(x) an der Stelle x mit dem Zuwachs dx) folgt hieraus
(ds)? = (dx)* + (dy)*.
Diese Gleichung gilt auch fiir Kurven, die in Parameterdarstellung gegeben sind. Es
gilt: x = @(#), y = p(¢). Hieraus folgt: dx = ¢(r) dt, dy = 4(¢) d¢.

Bild 10.19

Das Volumen V eines rdumlichen Bereiches (Korpers) B kann man i. allg. nur mit
Raumintegralen (s. Band 5) berechnen. Wenn man aber die zur x, y-Ebene parallelen
Schnittflichen von B berechnen kann, so kann man durch ein gewdhnliches Integral
das Volumen von B bestimmen. Es gilt:

Satz 10.20: Beziiglich eines rechtwinklig kartesischen Koordinatensystems sei a die
untere und b die obere Grenze der z-Koordinate der Punkte eines rdumlichen Bereiches B.
Fiir jedes z zwischen a und b (a < z < b) sei E, diejenige Ebene, welche durch den
Punkt (0, 0, z) hindurchgeht und paraliel zur x, y-Ebene liegt. Mit q(z) wird der Inhalt
der durch die Ebene E, aus B ausgeschnittenen Fliche bezeichnet (s. Bild 10.19). Fiir das
Volumen V des rdumlichen Bereiches B gilt dann:

b
l V= fq(z) dz.

S.10.20
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Voraussetzung: ¢(z) dndert sich stetig mit z. (Der Buchstabe g soll an das Wort
.,Querschnitt* erinnern.)

Wie gelangt man zu der in Satz 10.20 angegebenen Formel? Es gelte z, = a < z,
<2z <..<2,,<b=z,. DieEbenenz = z; (i = 0, 1, ..., n) zerlegen den raum-
lichen Bereich Bin ,,Scheiben‘‘. Fiir das Volumen einer solchen Scheibe gilt ndherungs-
weise (&) - Az;, wobei Az; = z; — z;_jund z;_; £ & < z,gilt. Die,,Scheibe‘‘ wurde
niherungsweise durch einen Zylinder mit der Grundfliche ¢(¢;) und der Hohe 4z,
ersetzt. Summiert man iiber alle diese Zylinder, so erhilt man eine Naherung fiir das
gesuchte Volumen ¥ von B.

VY a) Az

Den genauen Wert von V erhélt man durch den in 10.1.2. beschriebenen Grenz-
prozef3:
V = lim Z q(&) - Az;.
4z;-0 i=1

Unter der Voraussetzung, daf3.g(z) stetig ist, exnsnert der rechts stehende Grenzwert
und ist gleich

b
[ q(z)dz (s. Formel (10.2) in 10.1.2.).

a

Bemerkung: Wird der rdumliche Bereich B durch Ebenen E, bzw. E, parallel zur
», z-Ebene bzw x, z-Ebene geschmtten so erhilt man an Stelle von ¥ = J q(z)dz die
Formeln V' = J q(x)dx bzw. V = fq(y) dy. Hierbei sind jetzt ¢, d bzw. e fdie Gren-

zen beziiglich der x-Koordinate bzw. y-Koordinate.

Aus Satz 10.20 folgt auch, daBl zwei Kérper das gleiche Volumen haben, wenn sie
fiir jedes z den gleichen Querschnitt g(z) haben. Dies ist das sog. Prinzip von Cava-
lierit).

Beispiel 10.16: Mit Hilfe der in Satz 10.20 angegebenen Formel soll das Volumen ¥
einer reguldren Pyramide (s. [1]) mit quadratischer Grundfiiche (Kantenlidnge a)
und der Hohe A berechnet werden.

Legt man durch die Achse der Pyramide eine Ebene, welche gleichzeitig parallel
zu einer Seite des Grundquadrats verlduft, so erhilt man die in Bild 10.20 dargestellte
Schnittfigur. Es gilt: r: a = (h — z) : h (Strahlensatz). Hieraus folgt:

a
r=7(h - 2).

Aus Satz 10.20 folgt dann:
h

h h h
V=Jq(z)dz =0fr2dz =0f (%(h - z)) dz = —Z—zof(h —z)?dz

4 1 AN S S
[ (50 -2)) ==

Das Ergebnis ist uns natiirlich aus der Elementargeometrie schon bekannt.

') Bonaventura Cavalieri (gest. 1647).
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7

VA

Mit Hilfe von Satz 10.20 kénnen wir nun auch sofort das Volumen von Rota-
tionskorpern berechnen. Es gilt

Bild 10.20

Satz 10.21: B,, sei der durch die Kurven x = a, x = b, y = 0, y = f(x) begrenzte Be- S. 10.21
reich in der x, y-Ebene (Vor.: f(x) = 0 auf [a, b]). B sei der durch Rotation von B, um
die x-Achse entstehende Bereich (s. Bild 10.21). Fiir das Volumen V von B gilt:

b
' V=TEJ(f(X))Z dx.

Bild 10.21 Bild 10.22

Beweis: Die zur », z-Ebene parallelen Ebenen E, schneiden aus dem Rotationskérper
Kreisscheiben mit dem Flécheninhalt g(x) = 7+ r? = w(f(x))? aus. Also gilt:
b

b
V= fq(x) dx = f-n: S (f(x))* dx.

a

Beispiel 10.17: Von dem durch Rotation der Kurve y = 4x?, 0 < x < 4, um die
x-Achse entstehenden Rotationskdrper (s. Bild 10.22) berechne man das Volumen V.
Nach Satz 10.21 gilt:

b 4
V=r[(fx)?dx == [(Fx?)?dx = =128 ~ 40,21.
a 0

Aufgabe 10.14: Von dem durch Rotation der Kurve y = 2\/;, 0<x<=<9, umdie *
x-Achse entstehenden Rotationskorper berechne man das Volumen V. (Streng-
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genommen entsteht durch Rotation von y = 2 \/ x, 0 £ x £9, eine Rotationsfliche.
Der Rotationskérper entsteht durch Rotation des von den Kurven y = 2 \/ x,y=0
und x = 9 begrenzten Bereiches um die x-Achse.)

Bei der Bestimmung des Oberflicheninhalts eines im Raum gelegenen krummen
Flachenstiicks benétigt man i. allg. sogenannte Oberfldchenintegrale, die erstin Band 5
eingefiihrt werden. Bei Rotationsflichen (das sind solche Fldchen, die durch Rota-
tion einer ebenen Kurve C um eine in ihrer Ebene liegende Gerade g — der sog. Rota-
tionsachse — entstehen) kann man den Oberflacheninhalt durch gewShnliche Integrale
berechnen. Der folgende Satz gibt dariiber Auskunft!

Satz 10.22: Rotiert die Kurve y = f(x),a < x < b, um die x-Achse, so gilt fiir den Fli-
cheninhalt A der zugehorigen Rotationsflache

a

b
I A= [y STV dx (5 = /().

Vorausgesetzt wird dabei

1.f(x) >0 fir xelab],
2. f(x) ist stetig differenzierbar auf [a, b].

Beweis: Wir betrachten die Kurve y = f(x), @ £ x < b. Das Intervall [a, b] wird
zunéchst wieder in n Teilintervalle [x;_;, x;] mit der Lange 4Ax; (i = 1, ..., n) zerlegt.
&, sei der Mittelpunkt des Intervalls [x;_;, x;]. Das oberhalb des Intervalls [x;_;, x;]
gelegene ,,Kurvenstiick* von y = f(x) wird durch ein ,,Tangentenstiick* T} ersetzt,
wobei 7 die Tangente in dem zu x = §; gehorigen Kurvenpunkt (&;, f(§;)) bedeutet
(s. Bild 10.23). L&Bt man das Tangentenstiick 7; um die x-Achse rotieren, so entsteht
der Mantel eines Kegelstumpfes, dessen Oberfldcheninhalt 4; nach einer elementar-
geometrischen Formel berechnet werden kann. Fiir die Ldnge /; des Tangenten-
stiicks 75 gilt: [; = \/1 + (f'(£)))? 4x;. (Den Beweis dieser Gleichung betrachte man
als eine kleine Ubungsaufgabe! Ausgangspunkt ist dasjenige rechtwmkhge Dreieck,
dessen Hypotenuse gleich 7, ist und dessen darunter liegende Kathete die Lange
Ax; = x; — x;_; hat.) Damit sind alle Gré8en, die zur Berechnung des Oberflichen-
inhalts 4; des Kegelstumpfes erforderlich sind, gegeben (s. Bild 10.24).

A; =71+ 2f(§;) (s. [1], Abschnitt Stereometrie). .

Hieraus folgt: 4, = 2m - /T+ (f/(E))? - f(€) Ax,.
Die Summe iiber alle 4; (i = 1, ..., n) kann als eine Naherung fiir den gesuchten
Oberflicheninhalt 4 der Rotationsfliche angesehen werden, falls die Zerlegung von

[a, b] in Teilintervalle geniigend fein ist: 4 &~ Z A;. (Man interpretiere noch einmal

yA
|
|

=

y=f(x)

x5

|
L

a5, X1 & X Xmb X

Bild 10.23 Bild 10.24
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diesen Sachverhalt geometrisch an Hand von Bild 10.23! Man vergleiche die durch
Rotation von y = f(x) entstehende Rotationsfliche mit derjenigen Rotationsflache,
die durch Rotation der » Tangentenstiicke 7; (i = 1, ..., n) um die x-Achse entsteht)!
Es gilt also:

An 3= 2m (3 SE) T+ @D ax).

Den genauen Wert von 4 erhilt man wieder durch den in 10.1.2. beschriebenen Grenz-
prozeB:

4 = lim (27= él fE) T f/(Ei)zAx,).

43,0

Setzt man zur Abkiirzung f(x) \/ 1+ (f'(x))* = D(x), so erhdlt man:

n

b
A =2n- lim D(E)Ax; = 2w J @(x)dx [s. Formel (10.2)].
1 a

Ax,=0 i=

Damit erhalten wir das SchluBergebnis:
b S S ——
A=2[f)JT+ (™)) dx.m

(Hinweis: Der Grenzwert existiert, weil auf Grund der Voraussetzung ,,f(x) stetig
differenzierbar‘‘ die Funktion @(x) auf dem Intervall [a, b] stetig und folglich nach
Satz 10.1 auch integrierbar ist.)

Beispiel 10.18: Von der durch Rotation der Kurve y = }x?, 0 < x < 4, (Parabel-
stiick) um die x-Achse entstehenden Rotationsfliche berechne man den Oberflichen-
inhalt 4. 4
Nach Satz 10.22 gilt: 4 = ZTEJ.‘}XZ \/1 + x% dx. *)
0

Das Integral | x*/1 + x dx ist ein Integral vom Typ [ R(x, /ax? + bx + ¢) dx,

welches wir im Prinzip 16sen kdnnen (s. 9.3.4.). Da aber die Lsung dieses Integrals
schon einen gewissen Aufwand erfordert, erlauben wir uns an dieser Stelle, das Er-
gebnis einer Formelsammlung zu entnehmen (siehe z. B. [1], Tabelle der unbestimmten
Integrale). Es gilt:

fo\/1 T dx =51+ VT2
—-é—[x\/l T2+ G+ 1+ %)

Aus der Gleichung (¥) folgt dann: 4 = = (17- \/ﬁ - %\/1_7 —+in(4 + \/ﬁ))
Die numerische Auswertung ergibt 4 = 212,9.

Aufgabe 10.15: Von der durch Rotation der Kurve y = 2\/;, 0=<x=<9,umdie =
x-Achse entstehenden Rotationsfliche berechne man den Oberflicheninhalt 4.

10.4.2. Anwendungen in den Natur- und Ingenieurwissenschaften

Erste Anwendung: Wie groB ist die Arbeit, die von einer variablen Kraft langs eines
geradlinigen Weges geleistet wird?
18  Piorr, Diff.- u. Integr.
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Beginnen wir mit einer einfacheren Fragestellung. Vorgegeben sei eine Strecke A2
mit der Lange s. In Richtung dieser Strecke greife eine konstante Kraft F) vom Betrag
F an (s. Bild 10.25). Die von dieser Kraft lings der (orientierten) Strecke von 4 nach
B geleistete Arbeit W ist dann

W=F-s (,Arbeit =, Kraft mal ,,Weg®).

p—————————ro ——>f B
A $ 8 Bild 10.25

Fa@) Fx) Fb)
0 a X b x  Bild 10.26

Schwieriger wird die Berechnung von W, wenn die Kraft nicht mehr konstant ist,
sondern sich von Punkt zu Punkt dndert. Man denke z. B. an die beim Entspannen
einer elastischen Feder auftretende Kraft!

Um das Problem rechnerisch erfassen zu konnen, denken wir uns die Strecke von
A nach B als einen Teil der x-Achse, wobei die Punkte 4 und B durch x = a bzw.
x = b festgelegt sind. Die Kraft soll wieder in Richtung dieser Strecke angreifen, aber
sich von Punkt zu Punkt dndern, d. h. F = F(x) (s. Bild 10.26). Wie groB ist die von
dieser Kraft F mit dem Betrag F = F(x) langs der (orientierten) Strecke von 4 nach
B geleistete Arbeit W?

Wir zerlegen das Intervall [a, b] in endlich viele Teilintervalle [x;_,, x;]1( = 1, ..., n),
wobei x, = @ und x, = b gesetzt wird (vgl. 10.1.1.). In jedem Teilintervall [x;_, x;]
wahlen wir einen Zwischenpunkt &;. Es ist dann F(£,) - Ax; eine Naherung fiir die
von der Kraft F = F(x) auf dem Weg von x;_; blS X; gelelstete Arbeit; Ax; ist wieder

die Liange des Intervalls [x;_,, x;]. Folglich ist }: F(&) - Ax; eine Ndherung fiir die

gesuchte Arbeit 7. Den genauen Wert von W erhalt man durch den GrenzprozeB
Ax; — 0:

w —Allm ZF(E) < Ax;.
Hieraus folgt (vgl. 10.1.2.)

W = [ Fs d.
Fassen wir unser Ergebnis zusammen!

Ergebnis: Die in Richtung der positiven x-Achse angreifende Kraft F = F(x) mit dem
Betrag F = F(x) leistet lings des Weges von x = a bis x = b (a < b) die Arbeit

b
I W = [ F(x) dx. *

Beispiel 10.19: Wie groB ist die von einer Schraubenfeder beim Entspannen geleistete
Arbeit (s. Bild 10.27)? Zundchst vermerken wir als Erfahrungstatsache, da F(x)

1) Vektoren werden durch halbfette Buchstaben bezeichnet.
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sich linear mit x dndert, d. h. F(x) = px + ¢. Aus F(b) = 0 und F(x) monoton fallend
auf [a, b] folgt: pb+ g =0 und F'(x) =p <0. Also gilt: F(x) = px — pb
= —p(b — x). Wir setzen

F(x) = ¢(b — x) mit ¢> 0.

Bild 10.27

=
LN
x

Aus (*) folgt:
. b
b
W= fc(b — x)dx = [—%(b - x)2]a =56 —ar.

Zweite Anwendung: Vorgegeben ist ein ebener Bereich B; der von den Kurven x = a,
x =b,y =0,y = f(x) (Vor.: f(x) = 0fiir alle x € [a, b]) begrenzt wird. B denke man
sich mit einer Massenbelegung der Flichendichte p = const versehen. Gesucht ist
der Schwerpunkt S(xs, ys) von B (s. Bild 10.28). Fiir die Ermittlung des Schwer-
punktes S von B benétigen wir den folgenden Satz:

Fiir den Schwerpunkt (X,7) eines Systems von Massenpunkten Py(xy,y;),
Py(x3, ¥2), ---s Pu(Xp, y,) mit den Massen m,, m,, ..., m, gelten die aus der elementaren
Mechanik bekannten Formeln

5= mixXy + ...+ myx, e myyy + ... + My, )
my + .. +m, my + .o +m,
y
B
yT 5
) ks
Y
K
X ] X
Bild 10.28 Bild 10.29

Der Beweis dieser Formeln ergibt sich fiir # = 2 sehr einfach aus dem Hebelgesetz:
ky=m, - gund k, = m, - g sind die in P, bzw. P, angreifenden Schwerkrifte mit den
Betrdgen ky; = m;g bzw. k, = m,g. Fiir den Schwerpunkt S des Systems der beiden
Massenpunkte P; und P, muB gelten (s. Bild 10.29):

—> —>
|PyS| - ky = |SP,| - k».
13*



196 10. Das bestimmte Integral
Hieraus folgt (wegen k; = m; - gund k, = m;, - g):

—> -
|PyS| - my = |SPy| - m;.
e
Hieraus wiederum ergibt sich — wegen der gleichsinnigen Parallelitit der Vektoren P, S

= . .
und SP, - die Vektorgleichung:

— —
my - PyS =m, - SP,.

Diese Vektorgleichung ist dquivalent mit den beiden gewohnlichen Gleichungen
my(X — x;) = my(x, — X), my(y — yy) = my(y, — y). Auflosung nach X bzw. y
ergibt die Formeln
5= mXy + myX, j= myy + myy,
my +m, my +m,

Fiir n = 3 geht man folgendermaBen vor: Man bestimmt zunéchst den Schwerpunkt
Sy, des Systems P;, P,. AnschlieBend wird der Schwerpunkt des Systems S,
(Masse m, + m,), Py (Masse m3) bestimmt.

Mit Hilfe von (**) kénnen wir nun auch den Schwerpunkt S des Bereiches B be-
stimmen. Das Intervall [a, b] wird zunéchst wieder in n Teilintervalle [x;_;, x;] mit
der Lange Ax; (i = 1,...,n; xo = a, x, = b) zerlegt. &, sei der Mittelpunkt des Inter-
valls [x;_;, x;]. Fiir kleines 4x; ist der Schwerpunkt des durch x = x;_;, x = x;,
y = 0,y = f(x) begrenzten Streifens ST; ungefihr gleich dem Schwerpunkt des durch
X =X;_1,x = x;, y = 0,y = f(&) begrenzten Rechtecks RE; (s. Bild 10.30). Bei kon-
stanter Dichte ist der Schwerpunkt eines Rechtecks gleich dem sog. geometrischen
Schwerpunkt des Rechtecks; fiir den Schwerpunkt des Rechtecks RE; gilt: X; = &;,
7 = 3f(&). Die Masse von ST; ist ungefdhr gleich der Masse von RE;: m(ST;) ~
m(RE;) = o+ f(§) - Ax; (,,Dichte** mal ,,Flicheninhalt* von RE,; gleich ,,Masse*
von RE;).

y=fx)

| Bild 10.30
LI Xp 6k b X

Nunmehr denken wir uns jeden Streifen S7; (i = 1, 2, ..., n) durch einen Massen-
punkt P; von der Masse m(RE;) am Ort des Schwerpunktes von RE; ersetzt: P; hat
die Koordinaten (%;, ;) = (&;, $/(£,)) und die Masse m; = ¢ * f(§,) - Ax;. Dadurch
haben wir erreicht, dal der mit Masse belegte Bereich B durch ein System von Massen-
punkten P; (i = 1, ..., n) mit den Koordinaten (X;, y;) und den Massen m, ersetzt
wird. (Beziiglich der Wirkungen der Schwerkraft wird sich dieses System von Massen-
punkten ungefihr wie der mit Masse belegte Bereich B verhalten, falls die Zerlegung
von [a, b] hinreichend fein ist.) Den Schwerpunkt (X, y) dieses Systems konnen wir
nach den Formeln (**) berechnen.

S R S 0 6 dx) = <2 S £ f(E) -
x—-mi;mix‘ =M, i;[(@ fGE) - Ax) - & = M, i;fi S - Ax;.
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(My:=my + ... + m, ist die Gesamtmasse des Systems von Massenpunkten. Die
Summation erstreckt sich immer tber alle 7 von 1 bis #.)

I - A ) 1 0 L] N

y= M, r=21 my; = M, :§1 (0" (&) - dx) Tf(fz) = 2.—%1_;1 (f&0))? Ax;.
Da die Masse M, des Systems von Massenpunkten ungeféhr gleich der Masse M des
Bereiches B ist, konnen wir in diesen Gleichungen M, nidherungsweise durch M er-

setzen. Wegen 4 - o = M (,,Flicheninhalt 4 von B* mal ,,Dichte ¢* gleich ,,Masse
von B*) gilt daher'

T & f(E) dxi

7
_ 1 N

y= Z SE))? - Ax;.
Der so ermittelte Punkt (X, y) ist eine Naherung fiir den gesuchten Schwerpunkt
(x5, ys) des Bereiches B. Die Nédherung ist um so genauer, je feiner die Zerlegung von
[a, b] ist. Den genauen Wert von x5 bzw. ys erhidlt man wieder durch einen Grenz-

prozef3 (vgl. 10.1.2.):

lim 38 /E) - Ax,,
ax-0 A =1

I

Xs

I

. 1 .
Vs Alifiloﬂ-igl(f(gi)) Ax;.

Hieraus folgt (vgl. 10.1.2.) das

Ergebnis: Die Koordinaten des Schwerpunktes von B berechnet man mit Hilfe folgender
Formeln:

b b
= [xeswan,  w= g [ (e,

b
Dabeiist 4 = ff(x) dx der Flacheninhalt des Bereiches B und B ein von den Kur-

venx =a,x=>b,y=0,y=f(x) (f(x) = 0 fir alle x € [a, b]) begrenzter Bereich,
den man sich mit einer Massenbelegung der Dichte p = const versehen denkt. Im
Falle o = const fiir alle Punkte von B nennt man B auch einen homogenen Bereich
und den Schwerpunkt von B den geometrischen Schwerpunkt von B.

Hinweis: Die Formeln fiir xg und ys sind nicht symmetrisch in ihrer duleren Form.
Das liegt durchaus nicht in der Natur der Sache begriindet! Fiir die Berechnung des -
Schwerpunktes eines ebenen Bereiches ist das sog. Bereichsintegral (Flachenintegral)
das dem Problem angepaBte Hilfsmittel. In Band 5 werden wir ausfiihrlicher auf die
Begriffe ,,Schwerpunkt*, ,,statisches Moment** und ,, Tragheitsmoment* eingehen;
dabei wird o = const nicht vorausgesetzt. Bei einer allgemeinen Beschreibung des
Schwerpunktes durch gewdhnliche Integrale ist man jedoch zu dieser Annahme ge-
zwungen. )

Dritte Anwendung: Sind Spannung  und Stromstérke i konstant, d. h. u = U = const,
i = I = const, so ist die in einer gewissen Zeit T geleistete elektrische Arbeit W ge-
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geben durch:

W=U-I'T.
Wenn sich dagegen Spannung und Stromstérke zeitlich dndern, so wird die in der
Zeit T geleistete Arbeit W durch ein bestimmtes Integral berechnet.

Ergebnis: Gilt fiir die Spannung u = u(t) und fiir die Stromstirke i = i(t), so ergibt
sich fiir die im Zeitintervall 0 < t < T geleistete elektrische Arbeit

r
I W = | uidz.
0 T

Bemerkung: Im Falle u = U = const, i = I = const erhdlt man: W=f Ul dt
I [

T B
= UIf dt = UIT. W= UlTist also ein Spezialfall der allgemeinen Formel W = f uidr.

0 0
Bei der Herleitung dieser allgemeinen Formel benutzt man das gleiche Prinzip,
wie bei der Herleitung der Formel fiir die mechanische Arbeit. Das Zeitintervall [0, T]
wird in endlich viele Teilintervalle zerlegt. Ist 7, ein Punkt, Az, die Linge des k-ten
Teilintervalls, so ist die Integralsumme Y u(z;) i(7;) 4, eine Néherung fiir die ge-
k

suchte elektrische Arbeit . Den genauen Wert erhdlt man durch einen GrenzprozeB
Aty — 0 (vgl. Definition 10.2 in 10.1.2.):

T
W= 1lim X u(z) i(z) Aty = [ u(?) i(r) dr.
41,0 k 0

T
Beispiel 10.20: Man berechne die elektrische Arbeit W = f ui dz, wenn Spannung
und Stromstirke den Gleichungen J

u=U-sin(ot + @), i=1I"sin(ot+p)
geniigen (Wechselstrom) und 7' = i—ﬁ gewdhlt wird.

Hinweis: Bei o, ¢, und ¢; handelt es sich um konstante GréBen. w ist die ,,Kreis-

frequenz®’, T' = 2_7: die ,,Periode*“. Wir berechnen also die elektrische Arbeit wahrend
einer Periode.
Durch die Substitution x = wt + ¢, geht das Integral
T
W = f U - sin (ot + ¢,) - I+ sin (of + ¢;) dt
o . 0
iber in out2m

W=—:)-Uf f sin x sin (x + @) dx.
Pu

Hierbei wurde zur Abkiirzung ¢, — ¢, = ¢ gesetzt (Phaseuverschxebung) Da fiir

c+2m
eine periodische Funktion f(x) mit der Periode 2 die Beziehung f f(x)dx = J' f(x)dx
gilt, vereinfacht sich das Integral:

2

W=:_)Uifsinxsin(x+¢)dx-
0
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Wegen sin (x 4+ ¢) = sin x cos ¢ + cos x sin ¢ ergibt sich hieraus:
2r

W=gil7ff (sin? x cos ¢ + sin x cos x sin ¢) dx
D
0

I

~ ) 1. 2
vl [(cos @) % (x — sin x cos x) + (sin @) 5 sin? x]o

7

Il

ela g|=

Ulcosp = % Ul cos (¢: — @)

Ergebnis: Fiir die elektrische Arbeit wihrend einer Periode T gilt
W = LUIT cos (p; — ¢,).
Aufgabe 10.16: Man bestimme den geometrischen Schwerpunkt des von der Parabel *

»y = x%(x = 0), der x-Achse und der Geraden x = 4 begrenzten Bereiches B. (B liegt
ganz im 1. Quadranten.) .

Aufgabe 10.17: Man bestimme den geometrischen Schwerpunkt des von den Kurven =
y =sinx (0 < x < x) und y = 0 begrenzten Bereiches B.

10.4.3. Ein Integraimodell in der Okonomie')

Ein Betrieb 4 benétigt fiir seine Produktion ein Halbfabrikat, das im Betrieb B
hergestellt wird. Der Jahresbedarf des Betriebes 4 an diesem Halbfabrikat betrage G
Mengeneinheiten (z. B. 1 Mengeneinheit = 1000 Stiick). Der Jahresbedarf soll durch

W

n Lieferungen pro Jahr, diezleiche Zeitabstande % und gleiche Liefermengen -f— haben,
abgedeckt werden. (Bei beispielsweise n = 24 Lieferungen pro Jahr miissen die Liefe-
rungen im Zeitabstand 514 Jahr erfolgen; die jeweilige Liefermenge betrigt % Mengen-

einheiten.) Es wird vorausgesetzt, dal der Lagerbestand zwischen zwei Lieferungen
durch eine monoton fallende Funktion b(7) beschrieben wird und bei einem Bestand
von Null stets eine neue Lieferung erfolgt (s. Bild 10.31; die dort eingezeichnete Funk-
tion b(z) stellt natiirlich eine gewisse mathematische Idealisierung dar, denn der
Lagerbestand wird sich i. allg. sprungférmig dndern.) Die Transportkosten seien un-

b (lagerbestand)

Sl

111

M

Bild 10.31

7 t (Zeit)

i
St

S

1) Das Beispiel wurde aus [3], Bd. I iibernommen.
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abhingig von der beférderten Liefermenge und betragen k, Geldeinheiten fiir jeden
Transport von B nach 4. Fiir die Lagerung des Halbfabrikates entstehen dem Betrieb
A Lagerhaltungskosten in Hohe von k, Geldeinheiten pro Jahr und Mengeneinheit
,,durchschnittlicher* Lagerbestand. Wie groB sind die Gesamtkosten K, die dem Be-
trieb 4 wihrend eines Jahres hinsichtlich des Transportes und der Lagerung des Halb-
fabrikates entstehen?

Die Transportkosten betragen bei n Lieferungen nk; Geldeinheiten. Was hat man
unter dem ,,durchschnittlichen** Lagerbestand pro Jahr zu verstehen? Er ist gleich
der Summe der Flacheninhalte aller in Bild 10.31 schraffiert eingezeichneten Bereiche,
die nach Voraussetzung alle den gleichen Flacheninhalt haben, weil der Lager-
bestand sich von Lieferung zu Lieferung immer nach demselben Gesetz dndern soll.

Fiir den Fldcheninhalt des 1. Bereiches gilt: f b(t) dt (7 = ) Der durchschnitt-

liche Lagerbestand ist dann » - fb(t) der. Fir d1e Gesamtkosten erhélt man:

K=kpn+ k;nfb(t) dt = % (k1 +k, fb(z)dz).
0 0

Bei dem hier formulierten Problem sind also dic Gesamtkosten K eine Funktion von n:
K = K(n). Das heifit: Die Gesamtkosten sind nur abhingig von der Zahl der Liefe-
rungen.

10.5. Einige Erginzungen zum Integralbegriff
10.5.1. Das bestimmte Integral und der MabBbegriff

In 10.1.2. hatten wir als erste Anwendung des bestimmten Integrals den Flachenin-
halt eines ebenen Bereichs (begrenzt durch die Kurven y =0, x=a, x =5, y = f(x)
(= 0)) berechnet. Dabei wurde der Begriff des Flacheninhalts als anschaulich gegeben
hingenommen, obwohl dieser Begriff kein elementarer Begriff ist und zu seiner stren-
gen Erfassung ein Grenzprozel3 erforderlich ist. Selbst bei einem so einfachen geo-
metrischen Gebilde, wie dem Kreis vom Radius r, ist die Berechnung des Fldchen-
inhalts A nicht ,,elementar, obwohl ihn jeder Schiiler nach der Formel 4 = nr?
(ndherungsweise!) berechnen kann. (Der Grenzprozef3 ist in der irrationalen Zahlr
versteckt!) Es erhebt sich allgemein die Frage: Was soll man unter dem Inhalt
(= MaB)") einer beliebig vorgegebenen ebenen Punktmenge M verstehen und wie
kann man denselben berechnen? Dabei muf natiirlich gewéhrleistet sein, daf3 der ein-
gefiihrte Inhaltsbegriff im Falle elementarer Figuren (Rechteck, Dreieck usw.) mitdem
dort bereits gegebenen Inhaltsbegriff iibereinstimmt. Ausgangspunkt ist ein Recht-
eck, dem als MaB das Produkt ab seiner Kantenldngen zugeordnet wird. Die fol-
gende Konstruktion fithrt zum MaB der ebenen Punktmenge M (liber M wird ledig-
lich vorausgesetzt, daB es sich um eine beschriankte ebene Punktmenge handelt, d. h.,

1) In der allgemeinen MaB- und Integrationstheorie ist die wesentliche Forderung, die man an den
MaBbegriff stellt, daB die Vereinigung von abzihlbar vielen mebaren Mengen wieder eine me3bare
Menge ist. Diese Forderung ist beim Lebegue-MaB erfiillt, aber nicht beim Riemann-MaB. Im Sinne
dieses allgemeinen abstrakten MafBbegriffes diirfte also das Wort ,,MaB* beim Riemann-Inhalt
(Riemann-MaB) nicht verwendet werden.
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es existiert ein Kreis, so dal M ganz innerhalb dieses Kreises liegt): In der Ebene, in
der M liegt, wird ein rechtwinklig kartesisches x,y-Koordinatensystem eingefiihrt.
Wir fiihren jetzt eine Folge von ,,Quadratnetzen** Ny, N, N,, ... ein (s. Bild 10.32).
Das Quadratnetz N, besteht aus Quadraten mit der Kantenldnge 1. N, entsteht aus
Nodurch Halbierung der Kantenldnge von N, ; N, besteht aus Quadraten mit der Kan-
tenldnge . N, entsteht aus N, durch Halbierung der Kantenlédnge von N, ; N, besteht

also aus Quadraten mit der Kantenlinge %( 22) Allgemein: Das Quadrat-

1

2k
E, sei die Vereinigung aller zu N, gehorigen Quadrate, die ganz in M enthalten
sind. U, sei die Vereinigung aller zu &, gehorigen Quadrate, die mindestens einen
Punkt von M enthalten (s. Bild 10.33). Mit m(E,) bzw. m(U,) wird das MalB} von
E; bzw. Uy bezeichnet. [m(E;) = Summe der MaBe aller zu E gehdrigen Quadrate;
analog m(Uy).] Beim Ubergang von E; zu E,., stellt man fest (s. Bild 10.32): E,
< E,.,. Hieraus folgt m(E,) < m(E,,,). Die Folge m(E,), m(E,), m(E,), ... ist also
eine monoton wachsende und beschrinkte (weil M beschriankt) Folge. Aus diesem
Grund ist die Folge m(E,) konvergent, d. h. lim m(E,) existiert. Analog zeigt man,

netz N, (k = 0, 1, 2, ...) besteht aus Quadraten mit der Kantenldnge —

daB lim m(U,) existiert (U, o Uyyy). Lt
k-
Y
M "
¥ ] 17 K | |
o= I 4 l
3 | 3 5 |
| L
2 | ? I
| T . &P
T N
e i
01 2 3 4 X 01 2 3 4 X i
Bild 10.32 Bild 10.33

Definition 10.4: m;(M) := lim m(E,) nennt man das innere MaB von M.
k— oo
m (M):= lim m(U,) nennt man das duBere Mafi von M.
k- oo

Die Menge M heifit Riemann-meBbar (R-mefbar), wenn my(M) = m,(M) gilt. Den
gemeinsamen Wert von my(M) = m,(M)=: m(M) nennt man das Riemann-MaB oder
den Riemann-Inhalt von M. (An Stelle vom Riemann-Map spricht man auch vom
Peano-Jordan-Map*) (J-Maf). Auf Peano und Jordan geht der in dieser Definition ein-
gefiihrte Mapbegriff zuriick (1890).)

Bemerkung: my(M) ist die obere Grenze der Male aller ,.einbeschriebenen® Ej;
my(M) ist die untere Grenze der MaBe aller ,,umbeschriebenen* U. Mit der Folge
m(Ey), m(E,), m(E,), ... nihert man sich dem gesuchten MaB ,,von innen*; mit der
Folge m(U,), m(U,), m(Uz), ... ndhert man sich dem gesuchten MaB ,,von auBlen.
my(M) = sup m(E,); my(M) = inf m(U,). (Supremum = obere Grenze, Infimum
= untere Grenze.)

1) Giuseppe Peano (1858-1932). Camille Jordan (1838-1922).

D. 10.4
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S. 10.23

Zwischen dem bestimmten Riemannschen Integral und dem Riemannschen (Peano-
Jordanschen) Inhalt besteht ein sehr enger Zusammenhang. Uber diesen Zusammen-
hang gibt der folgende Satz Auskunft.

Satz 10.23: Ist f(x) auf dem Intervall [a, b] definiert, beschrinkt und nicht negativ, so
gilt fiir die sogenannte Ordinatenmenge M, d. h. die Menge aller Punkte (x, y) mit
a=x=b,0=y = f(x), die folgende Aussage (s. Bild 10.3 in 10.1.2.): Die Ordina-
tenmenge M ist genau dann R-mefibar, wenn f(x) iiber [a, b] im Riemannschen Sinne
integrierbar ist. Ist diese Aussage erfiillt, so gilt

b
m(M) = [ f(x) dx,
d. h., das Riemann-Map der Ordinatenmenge M ist gleich dem Riemannschen Integral
von f(x) diber [a, b]. (Die zu y = f(x), I = [a, b] gehirige Ordinatenmenge soll mit
O(L f) bezeichnet werden.)

Einen Beweis zu diesem Satz findet man z. B. in [10], Bd. III.

Bemerkung: Wir haben in diesem Abschnitt definiert, was man unter dem (Riemann-
schen) Inhalt einer ebenen Punktmenge zu verstehen hat. Diese Ausfiihrungen kann
man sofort auf eine Punktmenge des Raumes iibertragen. An Stelle von Quadrat,
netzen (n = 2) hat man Wiirfelnetze (n = 3). Dariiber hinaus kann man natiirlich
die Problematik auf eine beliebige beschrinkte Teilmenge M des n-dimensionalen
Raumes R” iibertragen. (Uber Riemann-meBbare Mengen im R" siche z. B. [14],
Bd.II.)

10.5.2. Andere Integralbegriffe

Neben dem Riemannschen Integralbegriff gibt es noch eine Reihe anderer Integral-
begriffe, die eine Verallgemeinerung des Riemannschen Integralbegriffes darstellen
und vor allem fiir tiefergehende theoretische Untersuchungen dem Riemannschen
Integralbegriff tiberlegen sind.

Wir nennen hier das Lebesguesche Integral') und das Stieltjes-Integral®), wobei bei
dem Stieltjes-Integral noch zwischen dem Riemann-Stieltjes-Integral und dem Lebes-
gue-Stieltjes-Integral unterschieden wird. (Das Lebesguesche Integral ist eine Verall-
gemeinerung des Riemannschen Integrals, das Lebesgue-Stieltjes-Integral eine Verall-
gemeinerung des Riemann-Stieltjes-Integrals.) Ausgangspunkt fiir das Lebesguesche
Integral ist das Lebesguesche Maf (L-MaB) einer Menge M. Im Unterschied zum
Riemann-MaB werden z. B. bei der Einfithrung des dufleren L-MaBes u* von M fiir
die Uberdeckung von M abzihlbar viele Rechtecke zugelassen. Beim Riemann-MaB
werden bei der Uberdeckung nur endlich viele Rechtecke zugelassen (s. Bild 10.33!
U, mit seinen endlich vielen Rechtecken (Quadraten) R{¥, RY, ..., R¥ bildet eine
Uberdeckung von M: M <« U, = J R®, i =1, ..., m.)

Ansonsten geht man bei der Einflihrung des L-MaBes dhnlich vor, wie bei der Ein-
fihrung des R-MaBes. Dabei wird allerdings — um gewissen Schwierigkeiten bei der
Einbeziehung unbeschrinkter Mengen aus dem Wege zu gehen - i. allg. das innere
L-MaB p, mit Hilfe des duBeren L-MaBes definiert. Stimmen &uBeres und inneres

1) Henri Lebesgue (1875-1941).
2) Thomas Jean Stieltjes (1856-1894).
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L-MaB von M iiberein, d. h. (M) = u*(M), so heiBt M Lebesgue-mefbar (L-meBbar)
und der gemeinsame Wert u(M): = pu*(M) = u, (M) das Lebesgue-Maf (L-MaB) von
M. Nihere Einzelheiten iiber das Lebesguesche MaB findet man z. B. in [9] und [12].
Als eine besonders wichtige Eigenschaft des L-MafBes erwdhnen wir hier noch:

Satz 10.24: Jede R-mefibare Menge ist auch L-mefbar. (Die Umkehrung gilt natiirlich
i. allg. nicht.) :

Wir kommen nun zum Lebesgueschen Integralbegriff. In Satz 10.23 konnten wir
feststellen: Ist f(x) eine auf dem Intervall [a, b] definierte nichtnegative Funktion, so
b

kann man das Riemann-Tntegral [ f(x) dx als Riemann-MaB der zu y = f(x), a < x

a
< b, gehorigen Ordinatenmenge ansehen. Hiervon ausgehend definiert man:

S. 10.24

Definition 10.5: y = f(x) sei eine auf [a, b] definierte nichtnegative Funktion. Wenn die D. 10.5

zuy = f(x),a £ x £ b, gehirige Ordinat ge O(1, ) L-mefbar ist, so heifst die Funk-
tion f(x) iiber I = [a, b] Lebesgue-integrierbar (L-integrierbar). Das L-Maf} der
Ordinatenmenge heifit das Lebesgue-Integral (L-Integral) und wird mit
b
Bl dx oder Pf f(x) dx

a I

bezeichnet. Es gilt also:
©Of f(x) dx = ulO@, ).
1

(Der Buchstabe L wurde angefiigt, um eine Verwechslung mit dem R-Integral zu ver-
meiden.)

Ist die Voraussetzung f(x) = 0 fir alle x € [a, b] nicht erfillt, so betrachtet man
die nichtnegativen Funktionen

)= 3] + f(x)) und  f(x):= 3(f(x)] = f(x)
(s. Bild 10.34).

Bild 10.34

Definition 10.6:
Of £ dx:= P £1(0) dx = ©f f(x) dx.
I I I

(Vor.: Die rechts stehenden L-Integrale existieren und sind endlich.)

D. 10.6
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Bemerkung: Wir haben hier das Lebesgue-Integral nur fiir Funktionen einer Ver-
dnderlichen definiert. Die Verallgemeinerung auf mehrdimensionale Integrations-
bereiche bereitet keine prinzipiellen Schwierigkeiten (s. [12]).

In Analogie zum Satz 10.24 gilt
Satz 10.25: Jede R-integrierbare Funktion ist auch L-integrierbar.

Zum AbschluB unserer Betrachtungen geben wir die Definition des Riemann-
b

Stieltjes-Integrals an. Bei der Einfiihrung des Riemann-Integrals [ f(x) dx gingen wir

von Integralsummen der Form a
glf(fx) (X = xim)

aus. Das Riemann-Integral (R-Integral) ergibt sich dann als Grenzwert einer Folge
von Integralsummen (s. 10.1.1. und 10.1.2.). Beim Riemann-Stieltjes-Integral (R-S-
Integral) geht man im Prinzip genauso vor. Der wesentliche Unterschied zwischen
R-Integral und R-S-Integral besteht darin, daB man an Stelle der Langen x; — x;_;
mit Hilfe einer weiteren Funktion ¢(x) die Differenzen ¢(x;) — ¢(x;_;) betrachtet.
Durch eine auf [a, b] monoton wachsende Funktion ¢(x) wird jedes Intervall [x;_;, x;]
mit der Lange x; — x;_ in ein Intervall [p(x;_,), ¢(x;)] mit der Linge ¢(x;) — ¢(x;_;)
abgebildet. Beispielsweise wird das Intervall [2, 4] mit der Lénge 2 durch die Funk-
tion @(x) = x? auf das Intervall [4, 16] mit der Lange 12 abgebildet. Da durch eine
solche Funktion ¢(x) eine ,,Léngenverzerrung' der Teilintervalle [x;-,, x;] von [a, b]
erfolgt, nennt man in diesem' Zusammenhang ¢(x) auch ,,Verzerrungsfunktion*:.

Nach diesen einfiihrenden Bemerkungen wollen wir nun die genaue Definition des
R-S-Integrals angeben.

Definition 10.7: f(x) sei eine auf [a, b] stetige Funktion, ¢(x) sei monoton wachsend
auf [a, b]. (Die Stetigkeit von q(x) wird nicht vorausgesetzt!) Zu jeder Zerlegung Z

(@=2Xo<X; <X, <..<Xx,=0b)

von [a, b] mit den Zwischenpunkten &, (i = 1, 2, ..., n) bildet man die ,,Stieltjes-
Summe**

n
.Zl SE) - (p(x) — @(x,-) =: S%(Z).
i=
Unter den angegebenen Voraussetzungen fiir f und ¢ existiert fiir jede Folge unbegrenzt
feiner werdender Zerlegungen Z,, Z,, ... der Grenzwert lim S*(Z,), und zwar unab-
héingig von der Wahl der Folge unbegrenzt feiner werdenden Zerlegungen und der Zwi-

schenpunkte &;. Diesen Grenzwert nennt man das Riemann-Stieltjes-Integral der
Funktion f(x) iiber [a, b] beziiglich ¢(x) und bezeichnet ihn mit dem Symbol

b
[ £(x) dg().
Merkregel:

3 n
[ 1) dg(x) = Jlim 3 SE) - (px) = plxi-n)-
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Bemerkungen zum R-S-Integral:
a) Im Falle p(x) = x stimmt das R-S-Integral mit dem R-Integral tiberein.

b) Ist die Verzerrungsfunktion ¢(x) stetig differenzierbar, so 1Bt sich das R-S-Inte-
gral durch ein R-Integral berechnen; es gilt:

b b
J 1) de(x) = [ f(x) - ¢'(x) dx.
<) Eine wichtige Anwendung findet das R-S-Integral in der Wahrscheinlichkeits-

theorie. Ist X eine beliebige ZufallsgroBe, F(x) die zu X gehorige Verteilungsfunk-
tion, so gilt fiir den Erwartungswert von X die Beziehung

0
EX) = [ xdF(x).
- 00
Der Erwartungsivert 1aBt sich also durch ein R-S-Integral mit f(x) = x und

@(x) = F(x) darstellen. Ist X eine stetig verteilte ZufallsgroBe, so kann man E(X)
durch ein R-Integral darstellen.



D.11.1

11.  Uneigentliche Integrale
Bei der Definition des bestimmten (Riemannschen) Integrals f f(x) dx wurde vor-

ausgesetzt:

1. Das Intervall [a, b] ist endlich,
2. die Funktion f(x) ist auf [a, b] beschrdnkt.

(Bei der Einflihrung der Integralsummen (s. 10.1.1.) hatten wir lediglich formuliert,
daB die Funktion f(x) auf dem Intervall [a, b] definiert ist. Dabei wurde als Selbst-
verstdndlichkeit angesehen, daB es sich bei [a, b] um ein endliches Intervall handelt
und f(x) auf [a, b] beschrinkt ist. Das gesamte Vorgehen in 10.1.1. und 10.1.2. baut
auf dieser Vorstellung auf'!)

Ist eine der Voraussetzungen nicht erfiillt (z. B. ,,a = 1,b = o0, f(x) beliebig* oder

1« : . .
La=0,b=4,f(x)= = ), kann man versuchen, durch einen geeigneten Grenzpro-

zeB3 dem Integral einen verniinftigen Sinn zu geben. Existiert bei diesem Grenzprozef
der Grenzwert, so spricht man von einem ,,uneigentlichen Integral mit unendlichen
Grenzen® (im 1. Falle) bzw. ,,mit nichtbeschriankter Funktion** (im 2. Falle). Natiir-
lich ist auch eine Kombination der beiden Félle méglich, d. h., Integrationsintervall
und Integrand sind nicht beschrankt.

11.1.  Uneigentliche Integrale mit unendlichen Grenzen

11.1.1. Definition und Berechnung uneigentlicher Integrale
mit unendlichen Grenzen

Uneigentliche Integrale mit unendlichen Grenzen treten uns in folgenden drei
Formen entgegen:

© b ©
[fdx @, [fx)dx (D, [fx)dx (II).

Was verbirgt sich hinter diesen bisher nicht definierten GroBen? (Voraussetzung:
a, b reelle (endliche) Zahlen; oo = +0.)

Definition 11.1:
= >
I [ f(x)dx := lim [ f(x)dx.
P b g
Das uneigentliche Integral ist der Grenzwert eines eigentlichen Integrals.

(Vorausgesetzt wird hierbei natiirlich, dal die Funktion f(x) auf jedem endlichen
Teilintervall [a, b] integrierbar ist (s. Definition 10.2 in 10.1.2.) und der Grenzwert

= hm f f(x)dx ex1st1ert) Dieser Grenzwert heiBt unezgentlzcheslntegral der Funktion
f(x) uber dem Intervall [a, 00) und wird durch das Symbol f f(x) dx bezeichnet. In die-

sem Zusammenhang sind folgende Sprechweisen ubhch: Wenn der Grenzwert G
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existiert und endlich ist, so sagt man, das uneigentliche Integral existiert bzw. kon-
vergiert. Existiert G nicht, so spricht man von einem divergenten uneigentlichen Inte-

gral; hierzu zdhlen auch die Félle G = o und G = — 0.
Definition 11.2: D.11.2
b 4
I Jf(x) dx := lim | f(x)dx.
i as—0 4
(Voraussetzungen und Bezeichnungen analog Def. 11.1)
Definition 11.3: D. 11.3
I [ f&)dx:= [ fx)dx + [ f(x) dx

(c: beliebige reelle Zahl).

Hierbei wird vorausgesetzt, dal3 die rechts stehenden uneigentlichen Integrale (die
zu den in Def. 11.1 und 11.2 eingefiihrten Typen gehoren) existieren. Die Definition
ist unabhéngig von der Wahl der Zahl c. (Bei der Berechnung eines konkreten Bei-
spiels kann man z. B. ¢ = 0 wihlen.)

Beweis: Ist ¢, ein von ¢ Verschledener Wert etwa ¢; > ¢, so folgt aus der Existenz der

uneigentlichen Integrale lf(x) dx und ff(x) dx die Existenz der eigentlichen bzw.
- 00 c
cy N ®
uneigentlichen Integrale J’ f(x) dx, [ J(x)dx und | f(x)dx, wie man mit Hilfe von
Satz 10.3 in 10.1.4. und_den Definitionen 11.1 undl 11.2 beweisen kann, und es gilt:

©

[ f)dx + [ f)dx = [ f)dx + [ f()dx + [ f(x) dx

= flf(x) dx + [ f(x)dx.

Damitist nachgewiesen, dafl Definition 11.3 unabhéngig von der Wahl der Zahl ¢ ist. ®

Hinweis: An Stelle von Definition 11.3 kann man auch wie folgt definieren:

© b
ff(x) dx:= lim ff(x) dx.
% as—o
booo
Der rechts stehende Limes ist allerdings bisher nicht genau definiert worden, und wir
wollen das an dieser Stelle auch nicht tun. Das Wesentliche ist, daB die Zahlen ¢ und
b unabhingig voneinander gegen — oo bzw. oo streben.

Bei der Berechnung von f f(x) dx geht man i. allg. folgendermaflen vor. Man be-
a b

stimmt zunédchst eine Stammfunktion F(x) von f(x), berechnet anschlieBend f Sf(x)dx
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= F(b) — F(a) und fiihrt zum SchluBl den Grenziibergang b — oo durch:

© b
_[f(x) dx =blim ff(x) dx =l}im (F(b) — F(a)) = F(0) — F(a) =

Dabei ist F(c0) eine abkiirzende Schreibweise fiir llm F(b).
b—

Analog geht man bei den in den Definitionen 11.2 und 11.3 angegebenen uneigent-
lichen Integralen vor. Es gilt:

b
[ /) dx = F®) — F(=0) = F)[”

[ f(x) dx = F(o0) = F(—c0) = F)|,,

(F(—0) := lim F(a)).

d
Beispiel 11.1: Man untersuche, ob das uneigentliche Integral | —- existiert (konver-

giert) oder nicht. Es gilt: ;
fd d g
x 1 . 1
— =1 — = —_ = -} =
f Sl bh:g( x 1) blirg (1 b) :

©
Ergebnis: f%f— = 1 (konvergiert).
i

Geometrisch kann das Ergebnis wie folgt interpretiert werden: Der Fldcheninhalt

des zwischen der Kurve y = —12—, 1 £ x < o0, und der x-Achse liegenden Bereiches
{s. Bild 11.1) ist gleich 1. %

7 y-x—}
77 Bild 11.1
T 7 2 X
© b
Beispiel 11.2: f L2 lim b 1m ln |x]| i = llm (Inb —1Inl) = co.
X pewd X
1

@
Ergebnis: f‘i—x = oo (divergent).
1
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Beispiel 11.3: Man untersuche, fiir welche Werte « (« beliebige reelle Zahl) das un-
eigentliche Integral fx—f konvergiert und fiir welche es divergiert.

1
Wir haben in den vorhergehenden Beispielen festgestellt, daf3 das Integral fliroa = 2
konvergiert und fiir « = 1 divergiert. Wir betrachten jetzt ein beliebiges & # 1. Es
gilt (s. Formel (9.1) in 9.1.2.):

b
fix=lim x*“dx:lim( LI,

)

; baool boo \ | — &
l 0, falls o<1,
= lim bt — 1) =
T ) {; falls o> 1.
ax—1
(ImFalleoc<listl—~oc>()undlimb““:oo;imFallecc>1ist1——oc<0,
b

zx—l>0undl|mb“‘—llm (=L)=O_)
b0 w BT ©

Ergebnis: Das uneigentliche Integral , divergiert fiir

a1 Fur:x>lgllt

J‘ dx 1

X a-—1

Das Konvergenzverhalten des Integrals dndert sich nicht, wenn fiir die untere Inte-
grationsgrenze eine Zahl ¢ > 0 gewdéhlt wird.

Merkregel:
0

J’ dx {konvergent fire > 1,

. Voraussetzung: a > 0.
x* divergent fiira <1, 8

0
Beispiel 11.4: [e dx = lim fe dx = lim (e° —e%) =1
as—o PP
. . . 1 1
( lim e = lime™® = lim T(:—) = 0).
a— — o0 a—so a0 € e8]
Geometrische Interpretation: Der Flicheninhalt des zwischen der Kurve y = e¥,

—o < x £ 0, und der x-Achse liegenden Bereiches (s. Bild 11.2) ist gleich 1.

Bild 11.2

14  Pforr, Diff.- u. Integr.
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©

© 0
L . dx dx dx
Beispiel 11.5: f T —f T +f T (s. Def. 11.3).
% - 0

+

0 0
dx . dx . o
—— = lim ——— = lim |(arctan x
1 +x am-wJ 1+ X am—o0 4
-0 a

= lim (arctan 0 — arctan a) = 1,
as - 2
(Nach Definition von y = arctan x gilt: arctan 0 = 0 und lim arctan x = — %) Fir
\ X =0

T
20
Symmetriegriinden unmittelbar einleuchtend ist. Fiir f(x) = T gilt f(—x) =f(x)
fiir alle x, d. h., die Kurve liegt symmetrisch zur y-Achse. +x .

w

. . . d .
Damit haben wir folgendes Ergebnis: J‘_x_ = 7. Geometrische Interpreta-

das zweite Integral erhdlt man ebenfalls den Wert —, eine Tatsache, die aus

1 +x?

-
tion: Der Flacheninhalt des zwischen der Kurve y = , —® < X < o0, und

1+ x2
der x-Achse liegenden Bereiches B (s. Bild 11.3) ist gleich w. B hat also den gleichen
Flacheninhalt wie ein Kreis vom Radius 1. .

Bild 11.3

E] 2 7 0 7 2 3 X

. ' 1 A , _
Hinweis: Die Kurve y = f(x) = 1—+x7hat auferlich fast das gleiche Aussehen wie

die sog. Glockenkurve (Gaufische Fehlerkurve), welche in ihrer einfachsten Form durch
1

y =g = \/2_ e beschrieben wird. @(x) hat ebenfalls bei x = 0 ein Maxi-
719

mum und das gleiche Verhalten im Unendlichen wie f(x), d.h. lim ¢(x) = lim ¢(x)=0.

Fir ¢(x) gilt f @(x) dx = 1, was allerdings nicht so einfach nachzuweisen ist wie

J'f(x) dx = 7. Die Glockenkurve nimmt eine zentrale Stellung in der Wahrschein-

l_ichkeitsrechnung ein (vgl. hierzu auch Aufgabe 7.14).

Beispiel 11.6: Zwischen den Massenpunkten P, und P mit den Massen m und M,
m-M
rZ
(Newtonsches Gravitationsgesetz; y Gravitationskonstante). Fiir die Kraft F, mit
der die (frei beweglich gedachte) Masse M von der (an einem Punkt festgehaltenen)

deren Abstand r betrdgt, wirkt eine Anziehungskraft vom Betrage F =y



11.1. Uneigentliche Integrale mit unendlichen Grenzen 211

mM

rZ

Masse m angezogen wird, gilt: F =y
nach P, ist.

Man denke sich auf der x-Achse im Nullpunkt eine Masse m angebracht; im
Punkt mit der Koordinate x = » > 0 befinde sich ein Massenpunkt mit der Masse M
= 1 (s. Bild 11.4). Fiir die Kraft F(x) (Betrag F(x)), mit der M von m angezogen wird,

gilt: F(x) = yx—”;. Wie groB ist bei dieser Kraft die Arbeit W, die geleistet werden

r . =
o wobei ¥ = PP, der Vektor von P

muf}, um die Masse M = 1 aus der Lage x = r ins Unendliche zu bringen (x — 0)?

F(x)
z M Bild 11.4
X

0 x=r

Nach Satz 10.20 in 10.4.2. giit: W = — fF(x) dx. (Das negative Vorzeichen wird

gewdhlt, weil die Kraft F(x) entgegengesetzt zur Bewegungsrichtung x — oo wirkt.)

0
Hieraus folgt: W = —fy%dx = —ym [—}1?] = _7.1?.

Man berechne die folgenden uneigentlichen Integrale (falls sie existieren):

N dx
Aufgabe 11.1: f i (Vor.: a + 0).
0

Aufgabe 11.2: f —; e ?*dx.
0

©

dx
Aufgabe 11.3: f Troaaa

0
Aufgabe 11.4: f sin x dx.

-0
11.1.2. Cauchyscher Hauptwert

Das uneigentliche Integral ~|' f(x) dx war wie folgt definiert:
- -
| f(x)dx = lim | f(x)dx.
' an—w
b0

Hierbei war wesentlich, da3 die Integrationsgrenzen @ und b unabhéngig vonein-

ander gegen — oo bzw. oo gehen. Wiirde man z. B. a = —3b wihlen, so wiaren @ und b
voneinander abhingig; mit b — oo wiirde dann automatisch a - —oo streben.
Wihlt man a = —b, so gelangt man zum sog. Cauchyschen Hauptwert des uneigent-

lichen Integrals.
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Definition 11.4: Unter dem Cauchyschen Hauptwert des uneigentlichen Integrals der

Funktion f(x) iiber dem Intervall (— oo, o0) versteht man den Grenzwert lim | f(x) dx.

s w0

Dieser Grenzwert wird — falls er existiert — durch das Symbol CH | [f(x) dx bezeichnet.
-
Aus Definition 11.3 folgt sofort, daB3 aus der Existenz des unelgenthchen Integrals
ff(x) dx die Existenz des Cauchyschen Hauptwertes CH ff(x) dx folgt und die
bmden Integrale gleich sind. Die Umkehrung gilt i. allg. mcht, d. h.: Die Existenz von
0 0
CH J f(x)dx hat nicht automatisch die Existenz von _"f(x) dx zur Folge. Das fol-

—o -
gende Beispiel demonstriert diesen Sachverhalt.

existiert nicht, aber der Cauchy-

dx
+3
sche Hauptwert dieses uneigentlichen Integrals CH f

Aus -

xdx 1 2xdx 1 ¢ 1
fx2+3 ’2f Y13 7] g T gl e

0
Beispiel 11.7: Das uneigentliche Integralf

existiert.

3

el e

P
folgt:
. x dx N
tim [ 5~ lim (-—ln (©* +3) ——ln (~o) )
' = 1lim0=0.
@— 00

Der Cauchysche Hauptwert des unelgenthchen Integrals existiert; es gilt: CH f 3

= 0. Das uneigentliche Integral j— dagegen existiert mcht Nach Deﬁm-

tion 11.3 miiBten die une|gentllchen Integrale von — oo bis 0 und 0 bis oo existieren
(¢ = 0!). Diese existieren aber beide nicht:
0 d 0
xdx xdx 1 . ) _ .
[+55-tim [FF5=gini-g imn@ +3 = —o;

—x a

J xdx OO
x2+3
0
Hinweis: Man hiite sich vor dem SchluB} ,,— o0 + oo = 0*! Die Rechenregel
lim (f(x) + g(x)) = lim f(x) + lim g(x) *)
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ist immer ,,von rechts nach links* zu lesen, d. h.: Wenn lim f(x) und lim g(x) existie-
ren, so existiertauch lim (f(x) + g(x)), und es gilt die Gleichung (*). Die Rechenregel
(*) kann auch auf die Fille lim f(x) = lim g(x) = oo bzw. — oo ausgedehnt werden,
aber nicht auf den Fall ,,lim f(x) = oo und lim g(x) = —o0* bzw. umgekehrt.

0 0
Aufgabe 11.5: Man untersuche, ob f x3 dx bzw. CH f x3 dx existiert. ®
- -

11.1.3. Existenzkriterien (Konvergenzkriterien) fiir uneigentliche Integrale

Von den in den Definitionen 11.1, 11.2 und 11.3 eingefiihrten drei Typen von un-
eigentlichen Integralen betrachten wir hier nur den in Definition 11.1 eingefiihrten

Typ: f f(x) dx. Die beiden anderen Typen 1assen sich auf diesen Typ zuriickfiihren.
(Fiir den in Definition 11.2 eingefiihrten Typ gilt f f(x)dx = f f(—x) dx. Bei uneigent-

lichen Integralen des in Definition 11.3 emgefuhrten Typs 1st unmittelbar klar, daB
sie durch uneigentliche Integrale der in Definition 11.1 bzw. Definition 11.2 einge-
fiihrten Typen ausgedriickt werden kénnen.)

Die Frage nach der Existenz (Konvergenz) des uneigentlichen Integrals f f(x) dxist

im allgemeinen schnell beantwortet, wenn von der Funktion f(x) eine Stammfunk-
tion F(x) bekannt ist. Es gilt ndmlich ff(x) dx = hm F(x) — F(a), und damit ist die

Frage nach der Existenz des unelgenthchen Integrals zuriickgefiihrt auf die Frage,
ob der Grenzwert lim' F(x) existiert.

X0

Die in den folgenden Sétzen formulierten Existenzkriterien gestatten ein Heran-
gehen an die Frage nach der Existenz uneigentlicher Integrale auch in den Fillen, bei
denen von der Funktion f(x) keine Stammfunktion F(x) bekannt ist.

Satz 11.1 (Majorantenkriterium fiir uneigentliche Integrale): Ist die Funktion f(x) S.11.1
fiir alle x 2 a (a fest) nichtnegativ und gilt fiir eine weitere Funktion g(x) die Unglei-

chung 0 < f(x) < g(x) (s.Bild 11.5), so folgt aus der Existenz von f g(x) die Exi-

stenz von f f(x)dx; hierbei ist j fx)dx £ J' g(x)dx. (Vor.: f(x) ist auf Jjedem Inter-
vall [a, b] mxt b > a stiickweise stettg)

¥

y=gx)

y=fx)

Bild 11.5

| ]

15 Plorr, Diff.- u. Integr.
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Auf den Beweis des Satzes verzichten wir, zumal die Aussage des Satzes vom geo-
-
metrisch-anschaulichen Standpunkt fast selbstverstindlich erscheint. f g(x) dx kann

geometrisch als Flacheninhalt 4, des zwischen der Kurve y = g(x), a £ x < oo, und
der x-Achse liegenden Bereiches gedeutet werden. Nach Voraussetzung muBl 4, exi-
stieren und endlich sein. Da g(x) eine ,,Oberfunktion** (Majorante) von f(x) ist, d. h.
0 = f(x) < g(x) fiir alle x € [a, ©), ist zu erwarten, daB auch der Flicheninhalt 4,
des zwischen y = f(x), a < x < o0, und der x-Achse liegenden Bereiches existiert
und der Ungleichung 0 < 4, £ 4, geniigt

(Az =[fx)dx, 4, = [ gx) dx).

Ergdnzung zum Satz 11.1: Es ist nicht erforderlich, daB die Voraussetzung 0 < f(x)
=< g(x) fur alle x € [a, o) gilt; der Satz bleibt wegen

© b ©
[fx)dx = [f) dx + [ f®)dx (b > a)
a a b

auch dann richtig, wenn f(x) < g(x) nur fiir alle x = b gilt, wobei b eine beliebige,
rechts von a liegende Zahl ist. (Es konnte z. B. a = 1 und b = 20 sein!)

Bedeutung des Satzes 11.1: Wenn man wissen mdochte, ob das unefgentliche Integral
0
f f(x)dx (f(x) = 0) existiert, aber keine Stammfunktion F(x) von f(x) bekannt ist,

a
so kann man versuchen, eine ,,Oberfunktion‘* g(x) von f(x) so zu bestimmen, daB das
)

uneigentliche Integral f g(x) dx existiert. Zu einer vorgegebenen Funktion f(x) = 0

gibt es natiirlich immer unendlich viele Funktionen g(x) mit 0 < f(x) < g(x). Die

Kunst besteht darin, eine nicht zu groBe Majorante g(x) zu finden, d. h. eine Funk-

tion g(x), fiir die einerseits f(x) < g(x) gilt, die aber andererseits noch so beschaffen
0

ist, daB das uneigentliche Integral f g(x) dx existiert (konvergiert).

a

Beispiel 11.8: Man untersuche mit Hilfe von Satz 11.1, ob das uneigentliche Integral
©

dx .

'{T——x existiert.

x? + e
1 1 .

Wegen e* > 0 fiir alle x gilt x> + ¢* > x2. Hieraus folgt: <3 Die
' 1
x% +e*’
Da nach Beispiel 11.1 das uneigentliche Integral f g(x) dx existiert (und den Wert 1

1 ©

©

x% + ¢*

Funktion g(x):= = ist also eine ,,Oberfunktion‘ der Funktion f(x):=
x? ®

hat), muBl nach Satz 11.1 auch das uneigentliche Integral | f(x)dx = dex_x_
existieren und einen Wert haben, der kleiner als 1 ist. ; X +e

Hinweis: Mit Hilfe des Majorantenkriteriums kann man nur entscheiden, ob das vor-
gegebene uneigentliche Integral existiert — die Berechnung mit Hilfe dieses Kriteriums
ist nicht moglich.
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0

Satz 11.2 (Minorantenkriterium fiir uneigentliche Integrale): Ist fg(x) dx ein diver-
gentes uneigentliches Integral und gilt 0 < g(x) < f(x) fiir alle x € [a, ©), so ist auch
)

das uneigentliche Integral J f(x) dx divergent (g(x) ist eine ,,Unterfunktion* (Minorante)
von f(x)). a

Auch die Aussage dieses Satzes ist vom geomemsch-anschaullchen Standpunkt
unmittelbar einleuchtend.

Beispiel 11.9: f@ dx ist divergent.

Begriindung: Es gilt f(x):= \/x + 3 l/xi =:g(x) > 0 fur alle x € [l, o).

DaJ g(x)dx :f—\d/i_ divergent ist (s. Beispiel 11.3), ist nach Satz 11.2 auch ff(x) dx
x

divergent.

In den Satzen 11.1 und 11.2 wurde vorausgesetzt, daB die Funktion f(x) auf dem
betrachteten Intervall [a, o) nichtnegativ ist. Wenn f(x) auch negative Werte an-
nehmen kann, so betrachtet man zunéchst die Funktion |f(x)|. Der folgende Satz gibt
Auskunft tiber die Beziehung zwischen den zu f(x) und | f(x)| gehérigen uneigentlichen
Integralen.

0 o
Satz 11.3: Wenn f |f(x)| dx existiert, dann existiert auch j f(x) dx. Man sagt dann,

das uneigentliche Integral f f(x) dx ist absolut konvergent.

©

existiert.

Aufgabe 11.6: Man untersuche, ob das uneigentliche Integral f x(;b;x
i

11.2.  Uneigentliche Integrale mit nichtbeschrinkter Funktion

11.2.1. Definition und Berechnung

Wenn die Funktion f(x) auf dem Intervall [a, b] eine Unbeschrinktheitsstelle
(Unendlichkeitsstelle oder Sprungstelle mit unendlichem Sprung) hat, d. h., wenigstens

einer der Grenzwerte lim f(x) hm f(x) ist gleich +o00 oder —oo, so ist das
x—c+0 c—=0

Integral f f(x) dx bisher mcht erklart.

Die Funktlon fx)=— besttzt z. B. einen unendlichen Sprung bei x =0 (¢ = 0).
Die Funktion ist an dleser Stelle nicht deﬁmert und es gilt: 11m f(x) = 400,

hm f (x) = — oo (s. Bild 11.6). Das Integral J— ist nicht erkldrt, weil das Integra-
-2

15*

S.11.2

S.11.3
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tionsintervall [—2, 2] eine Sprungstelle mit unendlichem Sprung des Integranden
fx) = % enthdlt. In einem solchen Falle wird man zunéchst die Unbeschrénktheits-

stelle ¢ isolieren, indem man eine kleine Umgebung [¢ — ¢,, ¢ + &,] aus dem Inte-
grationsintervall herausldBt, die Integration tber die Teilintervalle [a, ¢ — &,] und
[c + &,, b] durchfiihrt und schlieBlich untersucht, ob sich fiir &;,'> 0 und ¢, — 0 ein
endlicher Grenzwert ergibt. Nach diesen Vorbemerkungen kommen wir nun zur
Definition der uneigentlichen Integrale mit nicht beschrankter Funktion. Dabei
miissen wir drei Félle unterscheiden:

c=a (D, a<c<b (1), c=>b (IlI).

(Die Unbeschrinktheitsstelle ¢ befindet sich im linken Eckpunkt (Fall I), im Innern
(Fall II), im rechten Eckpunkt (Fall IIT) des Integrationsintervalls [a, b].)

y

Bild 11.6

D. 11.5 Definition 11.5: Ist ¢ eine Unbeschrinktheitsstelle von f(x) auf dem Intervall [a, b], so
definiert man

b b
[fG)dx:= lim [ fx)dx, falls ¢=a,
a e=>+0 g1

b b-s
[ f(x) dx := 1im0 [ f&®dx, falls c¢=b,

b c—e b
ff(x) dx:= lim J. f(x) dx + lim [ f(x)dx, falls a<c<b,
a &1~ +0 4 622 +0 4,
(s. Bild 11.7) und nennt die auf diese Weise eingefithrten Grofen ebenfalls uneigentliche
Integrale.

Voraussetzung ist natiirlich, daB die auf der jeweils rechten Seite stehenden Grenz-
werte existieren. Man spricht wieder von einem konvergenten bzw. divergenten un-
eigentlichen Integral, je nachdem, ob die entsprechenden Grenzwerte existieren oder
nicht.
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=0 T+ b
[ +— ——
£
b-¢ b=¢
- =
£

g CoE ¢ cr b Bid117

' i
& &
Beispiel 11.10: f X istein uneigentliches Integral, denn die Funktion f(x) = T_be-

sitzt eine Unbeschrankthextsstclle beix = 0. Das uneigentliche Integral existiert (kon-

vergiert), wenn der Grenzwert G = lim \/_ —=existiert (und endlich ist).
e +0
1

Aus \7:= 2\/

eigentliche Integral existiert und hat den Wert 2. Geometrlsch kann das Ergebnis

"ol 2\/efolth 2. Ergebnis: f\/__z d. h., das un-

e

wie folgt interpretiert werden: Der Flacheninhalt des zwischen der Kurve y = 71—_—,
x
0 < x < 1, und der x-Achse liegenden Bereiches B ist gleich 2 (s. Bild 11.8).
1

Beispiel 11.11: Man untersuche, ob das uneigentliche Integral f% konvergiert

; ) 2
oder divergiert. (Die Funktion f(x) = -lz—besitztan der Stelle x = 0eine Unbeschrénkt-
heitsstelle; s. Bild 11.9) X

Iz
X 1 * . X
Bild 11.8
Nach Deﬁnmon 11. 5 gilt (¢ = 0):
—e, 1
——+ lim d—f-— lim {[——1—] l}+hm {[——] }
; e,—»+0 82—v+0 X &> +0 X e3- +0 e
; 1 . 1
= lim {——1}+ lim {—1+—}=oo+oo=oo.
e ->+0 L €1 ey +0 L5

Ergebnis: Das uneigentliche Integral divergiert.
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Bemerkung : Die formale Rechnung (Nichtbeachtung der Unbeschrinktheitsstelle im
Innern des Integrationsintervalls) fiihrt hier zu einem falschen Ergebnis.

1
1
d_fz[_L] - —1—1=-2.
X X -1

1

Ein Blick auf Bild 11.9 lehrt, daB das Ergebnis auf keinen Fall richtig sein kann. Der
Fldacheninhalt des zwischen der Kurve y = xiz , —1 =x =1, und der x-Achse liegen-

den Bereiches B kann niemals negativ sein!

Ergiinzung zur Definition 11.5: Wenn die Funktion f(x) mehrere Unbeschrinktheits-
stellen ¢y, ¢,, ... im Intervall [a, b] besitzt (¢ < ¢; < ¢, < ... < ¢, < b),'so definiert
man: - h

b o ¢ b
[fG) dxi= [ f(x) dx + [f()dx + ... + [ f(x)dx.
Vorausgesetzt wird dabei natiirlich, daB jedes der rechts stehenden uneigentlichen
Integrale konvergiert. Das erste und das letzte Integral auf der rechten Seite gehoren
zu den, in Definition 11.5 eingefiihrten Typen.
Bei den anderen Integralen hat man in beiden Randpunkten eine Unbeschrénktheits-
stelle. Diesen Typ eines uneigentlichen Integrals kann man sofort auf die bereits
bekannten Typen zuriickfiihren. Beim zweiten Integral definiert man:

~'c}f(x) dx = ff(x) dx + 'lizf(x) dx,

wobei ¢ irgendein Punkt aus dem Innern des Intervalls [cy, ¢,] ist (die Definition ist
natiirlich unabhéngig von der Wahl des Punktes c).

Aufgabe 11.7: Man untersuche die folgenden uneigentlichen Integrale auf Konver-

genz:

1 2

a) j%, b)(;f%, C)(jlnxdx, d)of(xi—xnlt-

11.2.2. Einige Ergiinzungen

Analog wie bei uneigentlichen Integralen iiber dem Intervall (— oo, o) wird auch
bei uneigentlichen Integralen iiber einem Intervall [a, b] mit einer Unbeschrinkt-
heitsstelle ¢ des Integranden im Innern des Intervalls ein Cauchyscher Hauptwert
definiert.

Definition 11.6: Die Funktion f(x) habe bei x = ¢ (a < ¢ < b) eine Unbeschrdinktheits-
stelle. Unter dem Cauchyschen Hauptwert des uneigentlichen Integrals der Funktion
f(x) iiber dem Intervall [a, b] versteht man den folgenden Grenzwert

b c—e b
CH [ f(x)dx : = nmol: [ f)dx + [ f(x) dx].

cte
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Bemerkungen zur Definition: Bei etwas oberflichlicher Betrachtungsweise kann der
Eindruck entstehen, daB der Cauchysche Hauptwert mit dem 3. Typ des in Definition
11.5 eingefiihrten uneigentlichen Integrals iibereinstimmt. An Stelle von Definition
11.5 (3. Typ) kann man genausogut schreiben

b c—¢ b

[fG)dx = lim [ f(x) dx + 1imo [ fx)dx. ™)
a e +0 4 e=>+0 o pe

(lim @(x) = lim @(u) = lim @(¢) = lim cp(el)!!)

Wenn die auf der rechten Seite von (*) stehenden Grenzwerte existieren (und endlich
sind), dann existiert auch der Grenzwert

cte
lim [ [ fG)dx + f [ dx:l (**)
Ly c+e

und die rechte Seite von (*) stimmt mit (**) liberein — aber umgekehrt kann man
nicht schlieBen! (Siehe Hinweis im AnschluB an Beispiel 11.7.) Aus der Existenz des
Grenzwertes (**) folgt i. allg. nicht die Existenz der auf der rechten Seite von (*)
stehenden Grenzwerte. Anders ausgedriickt: Aus der Existenz des uneigentlichen Inte-
grals (im Sinne von Definition 11.5, 3. Typ) folgt die Existenz des Cauchyschen Haupt-
wertes (im Sinne von Definition 11.6), aber njcht umgekehrt.

Beispiel 11.12: Das uneigentliche Integral f— existiert nicht (s. Aufgabe 11.7, b).

Der Cauchysche Hauptwert CH f— aber existiert:
-1
—-& 1
lim { ﬂ+fd—x] =lim[ne—1Inl+Inl—Ine] = 0.
X 8= +0

e +0 X
-1 e
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2.1.: a) Fir jede Folge (x,) mit x, % 0, x,, # 1 fiir alle #» und lim x,, = 0 gilt

n-sw
3lim x, + lim2
i 2 e mew
im = — - = =2,
xs00 Xp—1 lim x, — lim 1
Dabher ist e e
3x+2
lim = =2,
xm0 X — 1
b) Wegen

2 _ —_
X 4=(x 2)(x+2)=)‘:_2 + —2)

x+2 x+2
erhdlt man (vgl. Beispiel 2.2)
. o x2—4
lim = —4.
xm—2 X+ 2
I | .
2.2: x, = —: lim sin =1im0 =0,
n—w Xn  n-o
2 o1 .
X, = ————— : lim sin =lim1 = 1.
@n+ D7 ane X oo
2.3: Wegen
i =1 fir x>0
1x| x -
x —x
— = -1 fir x<0
X
I Ll XL
gilt lim — =1, lim — = —1, und lim — existiert nicht.
x=+0 x>-0 X x=0

2.4: Mit Satz 2.3 und (2.15) folgt

k
lim » = (vo—ng) tim () ™+ tim %:i"—g-.

£+ 00 t>+ 0 to+ 00 k
. x+2 2
25:a) lim ——— = — = =2,
o0 X2 —1 -1
2 2
x |1+ — 1+ —
) x+2 . x . 1 g x
b) lim 3 = lim = lim — lm ———=0.
ot XX =1 xiiw 2 1 x=+0 X x40 1
x* (1 = — | [ p—
x? x*
¢) 2 (vgl. Aufgabe 2.5b) und Beispiel 2.16).
d) Aus
2 2
im 22 20 wd 22 50 furalle x> -2
xodo0 X2+ 3 x2+3

2

x*+3
folgt mit Satz 2.4 die Aussage lim = +00.
xo400 X+ 2
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. tanx . sinx | 1
e) lim = lim lim =1.
x=0 X x=0 X x50 COSX

sin x

1 . 1 I sin x
< — firalle x > Ound lim — = 0 gilt lim —— = 0 (s. Satz 2.5).
x x

1
f) Wegen — — =
x x=+0w X X+ 00

X

. ApX™ + Gy X" A+ a
2.6: Es sei f(x) = mit 0, b, %= 0, m < n. Dann ist
N B S S m¥ 0 bt 0.m < n

und daher lim j(x) =0
x> + 00

2.7: Es gibt eine punktierte Umgebung U von x, = 0 und eine positive Zahl m, so daB gilt
' sin x —

3 <m furalle xeU.

| X
3.1: a) Fiir jede Folge (x,) mit lim x, = xo gilt lim f(x,) = lim x, lim x, = x3 = f(x,). Daher ist
[ an jeder Stelle x, stetig. n o =0 A0 [ nshoo

b) Wegen lim sin x = 0 = sin 0 (s. (2.28)) ist f(x) = sin x an der Stelle x = O stetig.

x=0

c) Wegen lim f(x) =1, lim f(x) = 0 = f(0) ist f an der Stelle x = 0 rechtsseitig, aber nicht
ro—0 x-+0

linksseitig stetig.

d) Ist ¢ > O beliebig gegeben, dann gilt

[fG) — )'(0)1 = xsini Slxl<e
X

fiir alle x mit [x — 0| = |x| < 6, falls§ = e gesetzt wird. Nach Satz 3.1 ist fan der Stelle x = 0 stetig.

1
Es gilt also lim (x sin »—) =0.
X

x=0

3.2:a) Wegen lim sgnx = —1, lim sgn x = 1 hat sgn x bei x = 0 einen endlichen Sprung.

x> =0 xo+0
x=DE+1D . . . R
b) f(x) = 1 (x #+ —1) hat bei x = —1 eine Liicke, die eine hebbare Unstetigkeits-
X

stelle ist; f¥(x) = x — 1 (—0 < x < +®).

sin x
¢) Wegen lim f(x) = lim = 1 = f(0) ist x = 0 eine hebbare Unstetigkeitsstelle von f:
x50 x=0 X
sin x

— 0,
fHx)={ x o

1 fur x=0.
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1
d) f hat bei x = 3 eine Liicke und verhilt sich dort wegen f(x) = — — (x =+ 3) wie an einer
Polstelle 4. Ordnung (Unendlichkeitsstelle, wobei lim f(x) = — o0). (x = 3)
x=3
X X cos x X
¢) Wegen lim cot x = lim — = —o0, lim cotx = 400 (s. Satz 2.4) hat f(x) = cot x bei
xo -0 x>0 SiDX x40

x = 0 einen unendlichen Sprung.
3.3:a)e.
b) =

e

1 -
c) Wegen lim = 2 und der Stetigkeit von f(x) = \//X an der Stelle x = 2 gilt

x-00 N
w1 [T 41 s
limA/ " =A/lim -/
noom n+3 oo M+ 3

1\
d) Wegen lim (1 + —) = ¢ und der Stetigkeit von f(x) = In x an der Stelle x = e gilt
n

nooo
: 1 . 1\

lim |nln{1+—|=1limIn{l+—) =lne=1.
n— n n- om0 n

3.4: a) fist an der Stelle x = 0 stetig.

b) fist an der Stelle x = 2 rechtsseitig, aber nicht linksseitig stetig.

3.5: Die Behauptung folgt nach Satz 3.9 aus
21g2 —1<2-031—1<0 und 3Ig3—1>3-047—1>0.
3.6:a) {—1,0,1} (kein Intervall!). -
b) Satz 3.10 ist nicht anwendbar, da fauf (— oo, + o0) nicht stetig ist [vgl. Aufgabe 3.2a)].

to + A1) — O(#,
4.1: Mittlere Stromstirke im Intervall 7y ... o + At: M .

At
to + At) — Q¢ .
Stromstirke zur Zeit 7o: lim M = 0(t).
At=0 At
m(xo + Ax) — m(x
4.2: Mittlere Dichte: w , e(xo) = m'(xo).
x
. S 3n 1 )= (3= 3n 1 -
4.3: Fiir f(x) = smxlstf(T) = 7\/2, f (—4—) = COST = —7\/2;
. 1 = 1 - 3n
also Gleichung der Tangente: y = 7\/2 ey \/2 ( - —4—) .

4.4: £/(0) = 1, f1(0) = —1 (vgl. Aufgabe 2.3).

4.5:a) f'(x) = 6x — 5 — 3 cos x.
b) f(x) = (4x3 + 4)sin x + (x* + 4x) cos x.
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9F) = (2x — cos x) (2 + sin x}) - ix’ — sin x) cos x i
(2 + sin x)

4x + 2xsinx — 2 cos x — x? cos x

S = (2 + sin x)?

4.6:0(1) = 5(t) = gt + vo.
4.7:a) Mit y = z7, z = 2x® — 3x + 4sin x folgt
¥ =702x% — 3x + 4sin x)® (6x* — 3 + 4 cos x).
b) Mit y = sinz, z = w*, w= x> + 3x% — 8 folgt
¥ = cos (x* + 3x% — 8)* - 4(x® + 3x% — 8)* 3x* + 6x).
4.8: Zur Raumeinsparung beweisen wir nur die letztgenannte Formel. Mit

ki kg
y =tanx ——<x<—]),also x=arctany (-0 <y < +»0)
2 2 ’

folgt
iy 1 1 1
arctan y)’ = = = s
% (tan x)’ 1 + tan® x 1+ 2

also — nach Ersetzen von y durch x - die Behauptung.

4.9: a) (sinh x)’ = 4(e* — %)’ = 4(e* + ) = cosh x.
b) Analog a).

4.10: a) fist fiir alle x > 0 definiert und differenzierbar, und mit

3
fx) =x T 42x5 - 3%
folgt

3 -3
F) = = 5xT T = 1000 = Fin3ad - 37327,

Fx) = — ——— — — — x?-3%(xIn3 + 3).

b) fist fir alle x > 0, x + 1 definiert und differenzierbar mit

11
fx) =

Inx x°

<) fist fur alle x & 0 definiert und differenzierbar mit

1 1 1

e ———(T)“z (-%)- o=

1+ E
X

d) fist fiir alle x definiert und differenzierbar mit

2 2x

3.

2x = — 5 .
3:;(xz+ )*

fix) = —%(x2 +1)°
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e) fist fiir alle x < 4 definiert und fiir alle x < % differenzierbar mit
f'(x) = —=2xe** + sin \/1———2—)5 _—2,
2/1—-2x
sin \/ 1- 2
N
f) fist fiir alle x definiert und differenziefhar mit
1—x2 —=2x(1 + %) — (1 — x%)2x

fix) = —2xe** =

1—x2
f'(x) = 2 cosh X sinh

1+ x2 1+ x? 1+ x?)? ’
£ 4, iop 20 —x?)
= Gnp2 %7
* G+ M

4.11: Gesucht sind alle Kurvenpunkte P(x, y) mit y’ = 0. Wegeny’ = 3(x — 1)® (x + 1) + (x — 1)
1 1 27

=(x—1)?@x +2)istx = —— oder x = 1, also Py (—7, - E—), P,(1,0).

4.12: 0(1) = 5(t1) = —A e "'[y cos (wt — &) + o sin (wt — ®)].

4.13:a) f'(x) = x*(Inx + 1).

b) f'(x) = (tan x)* (ln tan x + ___x__) .

sin x cos x

o) f'(x) =

JEFD -3 LS N
(x3+2)ix_z[2(x+1) 2x-3) B +2 3(x—z)]'

414: x %+ 0: ' (x) = 2xsini — cos 1—
x x
S = 1(0) 1

x = 0: Der Diﬁercnzenquotiem——h— = hsin " (h & 0) konvergiert fiir #— 0 gegen null

[s. Losung von Aufgabe 3.1d)]. Daher gilt /’(0) = 0.

4.15: f*(x) = 2sin x cos x e¥17% ¥ = esin? ¥ gjn 2,

£7(x) = €¥10%% [(sin 2x)% + 2 cos 2x].

nn—1)...(n—v+ 1)x"" fir »<n,
are: £ _ 1 fii
.16: =(n! r ov=n,
T o=
0 fur » > n.
417: 9) d"cos x (—=1)* cosx fir n=2k «z0 )
17:0) ——— = = 0, ganz).
& (~1¢*'sinxy fir n=2k+1 =8
n
b d" cos x _ [(=1)Z fiir n gerade
dx" ,:0- 0 fiir n ungerade.

4.18:

d"(a) d"e®) _
=

e = a*(Ina)y ev.
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4.19: m§ = —mAw} cos (wot — &) = —ks = F.

1 1
2 ®(x) =341 s =72+ —
4.20:2) fP(x) =3-41+ 0 + 0052 +16cos2
b) f @) = (83 e )@ = (x* — 1227 + 36x — 24) e,
5.1: a) df(x) = —sin x dx.
b) df(x) = (1 — x) e dx.

dx.

x
©) df(%) = ——
\/x2 +3

ki

225

™ kg
5.2: Mity =sinx, dy = cosxdx, x =45° = —, dx=1°=ﬁ— gilt sin46°=sinT+Ay

4

& sin— + dy = sin— : 46°~—— 21+ —=) =0,7194,
sm4+ ly = sm4+cos4 130 sin \/ ( + 180)

5.3: a) Mit Ig (750)% = 2(Ig 75 + 1), 3 = 0,667 erhilt man § = 11,587.

b) |4s| < (2-0,5 + 0,5 + 3-0,5)- 1073 = 3-1073,
As|  3-1073
&) .22

=0,03%.
5 10 %

c) 11,584 < s = 11,590, also gerundet s = 11,6.

5.4: Mit
f@=x+1, f&=

folgt fiir den absoluten Fehler

1
2/x+1’

-2

— 0,510
We+1=/37=14y~ 1yl = Pt < 0,0014
2

3,72
und fiir den relativen Fehler
Ay |dy| 0,5 +1072

\/ﬁ ~ \/3 72 EXER) < 0,07%.

T

™ .
5.5: Mit ¥V = —6—D3, dV = — D*dD, D = 6,35 cm, |dD| < 0,02 cm folg’

N}

4v| = |dV| = ;-(6,35)z +0,02 cm?® < 1,27 cm?®,

av| 3|dD| <3- 0,02 0,95%.
e i)
D 6,35
Rl RIS Ay dy
5.6: |4yl & |dy| = ——— |dx| £ ———-, — | |—
|4yl = |dy| (1—2)2[ I_(I—i)z 7 y‘

5.7:a) d*f(x) = ——lz-d.x3.
X

b) d®f(x) = 0.

!

)

ldx| = 0,5-

10-2

£—.
T
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e¥oth — e%o e —1 1 eh—1
6.1: ————— = eFo*Sh e =e‘9"<>19=7l—ln

h

In diesem Fall hiangt # nicht von x,, aber von der Intervallinge 4 ab.

6.2: Mit e¥oth = e¥o 4 he¥o+% xi =1, h = 0,01 folgt wegen 0 < ¢ < 1
e+ 0,0le < el <e + 0,01 ¢!
und daraus

2,7454 < 1,01 ¢ < €01 < — < 27459,
0,99

6.3: Aus f'(x) = ———— =g'(x) (x> 1) folgt f(x) — g(x) = C(x = 1). Speziell x = 1:

b S| - =
——Z-—0=C.Alsogxltarcsm——+arctan\/xz—1=7(xgl).
x

TSI . , , fb) - fa)
6.4: Wegen g¢(a) = @(b) = 0 existiert ein £ € (a, b)) mit 0 = ¢'(§) = f'(§) — —————g'(5).
2(b) — g(a)

Daraus folgt die Behauptung.

6.5: 2-2 0 1 -7 -4
2 6 12 36 111 312

3 |2 4 12 37 104 |308 = g(3)

6.6: Mit dem Hornerschen Schema (xo = P 2) erhdlt man
g(x) = 105 — 328(x + 2) + 450(x + 2)* — 315(x + 2)*
+ 120(x + 2)* — 24(x + 2)° + 2(x + 2)°,
g™ (—2) =120 4! = 2880.

6.7: xo = —3 ist eine zweifache Nullstelle von g, und es gilt g(x) = (x + 3)* (x> — 6x + 8).

6.8:g(x) =44 +95(x —2) + [1I8Q +Hx —2))* + 1] (x —2)* (O <& < 1).

&b i i Lt cosh #x
.91 Cosl = —_— —_—
oY= ol T kv

2k2 0 <P < 1)
6.10: Es gilt f(x) = e®**sin x, f/(x) = e%** (sin® x — cos x), f"/(x) = % €°°** sin 2x(cos x + 3).
F®(x) = e°°%* [—4 sin x sin 2x(cos x + 4) + cos 2x(cos x + 3)].

Damit folgt 7>(x) = e — %xz. Wegen f"”/(0) = 0 ist T5(x) = T»(x) und daher
f(x) = T2(x) + Ra(x) = To(x) + Rs(x).

Aus
|£7(92)| < & eleos%1 |sin 29x| (cos Fx| + 3)

und [cos 7| = 1, [sin#] = 1 fiir alle 7 folgt | f”/(9x)| = 2 e und somit

Lf7 @)l |

|Ry(x)] = 3!

€
X = —3—le3 < P
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(letzteres wegen e < 3). Analog findet man
13e
|[Rs(0)| = "zg‘x‘ < x*,

und diese Schranke ist fiir [x| < 1 kleiner als die fiir |[R,(x)| erhaltene.

6.11 x—(l~—) = [R3(x)| £ —
.11: {cos X, . Wegen
2 3 24 !

4 4
/24
x —022...
10

— < 10% e x| <
24

ist der Fehler sicher kleiner als 10-%, wenn |x| < 0,22 ist (0,22 & 12°36").

x? 1
6.12: h=1I(1 —cosx) ~ | [1 - (1 - —)] = —x2
2 2

—_— S2 52
6.13:a) Wegend = h — \/h* — s> = h (1 = |1 ) folet aus (6.69) mitx = — —

SZ
dx —.

2h

520,01 5% : e
. b) Wegen — < —— < 1073, also —1072 < = < 0 gilt nach Beispiel 6.11

” = 225

P i Re(-)] < 15253105 m < 008
=kl == ——)| <1,5-2,53-10-°m < 0,04 mm.
2h B2 R e

6.14: Aus (6.58) und (6.60a) mit n = 1 folgt

X2 X2 = X1 X2 — X3
h—=h{l+ ——) 3 ——
X1 N X1

mit
X2 — X1

IA

1 — 2
imﬁ = = (—x2 - ) £0,5-10°2.
2 X1

X1 £

kt N

-= ke k

6.15: Nach (6.50) mitn = liste ™ = 1 — —. Damit folgt v & (g - ——uo) t+ vo.
m m

1 1 1
6.16: Wegen 5= — (1 4+ 0,1)~% verwenden wir (6.62) mit x = 0,1 und « = ——. Fiir
31100 10 3
n = 2 ergibt sich
1 2

1+0n"¥=1- 01+ 5001 + R(O,1)

mit
14
IR0, = 2=+ 0,001 < 2 1074,

Rundet man den 2. und 3. Summanden von 7,(0,1) auf 4 Stellen nach dem Komma, so erhilt man:
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7 = 0,9689. Nach (6.75) ist

1 IS 1
—_— - — P =— [0+ 0" —F| < — (@2 +2:0,5):10* =3-10"5.
3 /1100 10 }’L 10 l( ) y| 10( )

i
Der Wert o 7 = 0,09689 hat also die vorgeschriebene Genauigkeit; es gilt

1 1
0,09686 < 77— < 0,09692, also gerundet 57— =0,0969.
/1100 3/1100
. a—=b* . a*lna—b"Inb a
7.1: a) lim = lim =In—.
x50 X x=0 1
. In sin x N 1 cos x 1, — sinx 1
b) lim ————— =lim | — — — )= —-—lim ——— = ——,
n (T — 2x)? o T 4sinx m— 2x 4 n =2 8
-7 >z >

) x? )
¢) lim — = lim
xot+o NX  xlio

1

ex2 L
7.2:a) lim =lime** = +00
x=0 l x=0
=
3 2 ’
3 1+—-1
. « 2 . x 2
b) lim x 1+—-1})= lm ———— ————=—.
Xo 400 X X4 ® l_ 3
X
[m (1 +i)]
. a : x . a\*
7.3: a) lim xln(l +—)= fim = * . a0 lim (1 +_) - e
X+ 00 X X+ 00 _1_) x40 x
X
a o 1 . (In x)” sinx sinx
b) lim sinxln— = — lim ——— = — ) =1-0=0, also
X +0 x X +0 1 ) x>+0\ X cOSX
sin x
1 sinx
lim (—) =e°=1.
x> +0 \ X

7.4: fist auf (—co, —2] und [0, + 00) streng monoton wachsend und auf [—2, 0] streng monoton
fallend.

7.5: fist auf (—1, 0] streng monoton fallend und auf [0, + o) streng monoton wachsend, daher gilt
f(x) > f(0) =0 fir jedes x> —1, x==0.

Daraus folgt die Behauptung.
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7.6: Kritische Stellen: x{¥ = 2km, x? = 2k + 1)m (k ganz). Wegen f/(x{’) = —8 < 0 hat
£ bei xi? relative Maxima; f(x{”) = 5. Wegen

fa@)=f"xP)=0, [fOaP)=12>0
hat f bei x? relative Minima; f(x?) = —3.

b) Kritische Stellen: x; = 0, x, = 3. f(0) ist kein relativer Extremwert, f(3) = 27e™® = 1,34 ist
relatives Maximum.

3 3 55
7.7: a) Kritische Stellen: x; = —1, x, = ER f(—1) ist kein relativer Extremwert, f(—) =—=
= —48,83 ist relatives Minimum. 2 2
b ) 2x—1 fur x>1,
X) =
: —2x+1 fir x<1.
Kritische Stellen: x; = 1 (dort ist / nicht differenzierbar), x, = 4. Wegen
>0 fir x>1 undfir x<313,
'@ ) :
<0 fir $<x<1

ist f(3) = % relatives Maximum, f(1) = 0 relatives Minimum.

7.8: Kritische Stellen in [—2,3]: x; = —1,x, = 2mit f(—1) = —108, f(2) = 0. Randwerte: f(—2)
= —64, f(3) = 36. Also absolutes Maximum: f(3) = 36, absolutes Minimum: f(—1) = —108.

14 2v
7.9: S = 2rrh + 2mr?. Mit h = — folgt § = f(r) = — + 2mr?.
T r

Gesucht ist die absolute Minimumstelle r = ro von f auf (0, + o).
Man findet mit Satz 7.8

3//7 d damit 23 v 2
ro = /= und dami = — = 2rg.
° Y 2r ° \/ 2 °
1
7.10: Die Funktion f(%) = %(/ — %) nimmt ihr absolutes Maximum auf (0, /) an der Stelle & = 5
d. 1|d
an. Da /|dx| nicht von X abhingt, ist dort Ty = —.al—ﬂ.) am kleinsten.
X —-x
7.11: Transportkosten pro Wareneinheit fiir beliebiges x:
f(x) = o‘\/xz +a® + B — x).
Gesucht ist die absolute Minimumstelle von f auf [0, /]. Einzige kritische Stelle von f ist
Ba
X = ——.
\/ o2 — p?
Wegen
<0 fir x<x,
*)

(x
i’ ){>0 fur x> x;
hat fdort ein relatives Minimum, das damit auch das absolute Minimum von f auf (— co, + 00) ist.

1. Ist x; € [0, 7], also x; = [, dann ist xo = x;.
2. Ist x; > I, dann ist xo = /, da f wegen (*) fiir x < / < x; streng monoton fillt.

16 Piforr, Diff.- u. Integr.
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7.12: f ist auf (—oo, —\/5] und [0, \/5] streng konkav und auf [—\/5, 0] und [\/?:, +00)
streng konvex.

-3 3 =3
7.13: Wendepunkt: P (e 2, - 7e‘3) = P(0,22; —0,07), Wendetangente: y = —2e¢ 2 x

1
+ —e3.
2

7.14: a) Bestimmung der Nullstellen von Zéhler- und Nennerpolynom fiihrt auf

x+1Dx=2)

flx) = o3

Also ist f fiir alle x = 3 stetig; x = 3 ist Polstelle 2. Ordnung, wobei lim f(x) = + co. Weiter ist fauf

7 7 x=3
(—oo, ?] und (3, + o) streng monoton fallend, auf [?, 3) streng monoton wachsend. Relatives

7 9 .
Minimum: f° <?) = T3 = —0,56; ein relatives Maximum ist nicht vorhanden. f ist auf
3 3 3 7
(—oo, ?] streng konkav, auf |:~5—-, 3) und (3, +o0) streng konvex. Wendepunkt: P (?, - -ﬁ)
= P(0,6; —0,39). Asymptoten: x = 3 (s.oben) und y = 1 (fiir x > +00). Nullstellen: x; = —1

4 5
und x, = 2. Zusitzliche Funktionswerte: f(—2) = — = 0,16, f(—) =17, f(4) =10, f(5) = -9—
= 4,5 (s. Bild 7.29). 25 3 z

T L ] Lo Bild 7.29
N EREEE 7 X

b) fist unstetig bei x = —2, —1, 1. Bei x = —2 hat feine Liicke; diese ist wegen
X2(x + 2)°
=— (3 -2, —-1,1
f) GG 17 (x+ )

eine hebbare Unstetigkeitsstelle; in punktierter Umgebung von x = —2 verhilt sich f wie in punk-
tierter Umgebung einer dreifachen Nullstelle. Bei x = —1 hat f eine Polstelle 2. Ordnung; es gilt

lim f(x) = —co0. Bei x = 1 hat f eine Polstelle 1. Ordnung; es gilt lim f(x) = —o0, lim f(x)
x> =1 x1-0 X140

= +o00. Weiter ist x = 0 zweifache Nullstelle von f; wegen f(x) < 0 fir —1 < x < 1, x & 0 hat /'
bei x = 0 ein rel. Maximum i. e. S. g(x) = x* + 5x + 8 ist Asymptote von f fiiv x - +co; fiir
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x < —1ist f(x) < g(x), fir x > 1 ist f(x) > g(x). Hiermit und mit Funktionswerten fiir einige
x > 1 folgt, daB fin der Ndhe von x = 1,9 ein rel. Minimum hat (s. Bild 7.30).

Yy

40]

30
20
0
v
48 2 N\ M X
: =10
1
i
| =20
I
1 -3
|
oy Bild 7.30
|
¢) Mit den Ableitungen
1 _ x=m2
f() =-——=@—-me 27
o \/ 2% ’
1 — )2 o x—m2
) = — _ [1 & 2,u) ]e -
ad \/ 2w o

folgt: fist auf (— 00, u] streng monoton wachsend und auf [ + 00) streng monoton fallend. Relatives

-1
Maximum: f(u) = — ; ein relatives Minimum ist nicht vorhanden. f ist auf (—oco, u# — @]
2r
und [ + o, +o0) streng konvex, auf [u — o, u + o] streng konkav. Wendepunkte bei 4 — o und
1
#+ o mit f(u—0) =f(u+ 0)= ——=—=. Wegen lim f(x) =0 ist die x-Achse Asymptote
4 \/ 2re x- 40
x2

fiir x — *oo. Ferner gilt f(u — x) =

1 -
e 202 = f(u + x) (d.h., die Bildkurve von f ist
2

symmetrisch zu der Geraden x = ) und f(x) > 0 fiir alle x (s. Bild 7.31).

Bild 7.31

16*
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IA

R o N A1 : -L)_ﬁ_i L
745: Fir f(x) = x* + /x S(zsest) as()= /750 m=5>0

——

1
f(x) =2x+ — > 0 furalle xe [—,1 .
2\/x 2

1
Daher hat f auf (7, I) genau eine Nullstelle & Wegen f”(x) =2 —
4

—=5 Z
X

4

1

AVE

=2-1% \/E > 0 fir alle x € [4, 1] wahlen wir xo = 1 (da f(1) > 0) und erhalten die folgenden

Werte:
—

n Xn VX ’ S(x)

0 1 1 0,5

1 0,8 0,894 427 19 0,034 42719

2 0,784 054 23 0,885 468 37 0,000 209 395

3 0,783 956 05 0,88541293 0,000 000 008
7.16: a) Wegen

sy = |- EInIS | 080

PN = 0,157 003

, 1 1
l¢5(0,15)] = > —_—> 10
2:0,154/2 +1n0,15 0,34/0,11

sind die Darstellungen (7.43a) und (7.43b) nicht geeignet. Wegen

0= gy(x) £2:0,2 e©2%-2 £ 006 fiir jedes xel=[0,1;0,2]

ist (7.43¢) sehr gut geeignet (vgl. aber Beispiel 7.27).

b) Mit x4 = @s(x,) = e'~2 (n =0, 1, 2, ...) erhilt man die folgenden Werte:

N

0 0,15
1 0,138 414 84
2 0,137953 12
3 0,137 935 52

7.17:2) & = p() < f(§) = 0.

b) Man erhilt das Newtonsche Verfahren, das damit ein Spezialfall des allgemeinen Iterations-

verfahrens ist.

c) Wegen

S f'x) = @) S

(x) = 1 — =
v VKR

lautet (7.45)

f&) - If"()]

FoOF =q O=g<).

P

*)
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Gilt (*) in einem geeigneten die Nullstelle £ von f enthaltenden Intervall und liegt x, ,,hinreichend
nahe* bei &, dann konvergiert die nach dem Newtonschen Verfahren ermittelte Folge (x,) gegen &.
(Die in Satz 7.14 angegebenen Konvergenzbedingungen lassen sich leichter nachpriifen.)

2 4 2 4 dx
9.1: a)f(x3+————;)dx=fx3dx+J--dx~f——3-dx=J-x3dx+2f——4fx'3dx
X x x X x

2 w2+
= n x| — c
4 x*

(Vor.: tiber das Integrationsintervall I: 0¢ I, d. h. x = 0 fiir alle x € I).
— 2 2 —
b) f\/xa dx= | x3%dx = ?x”z +c =—5—x2 \/x +c¢ (Vor.:x > 0).
. o 1
9.2: a) Durch die Substitution # = In x (du = — dx ) erhilt man:
x

d 3 1
~[(lnx)’—j—: fuzdu=uT+ c=?(lnx)3 +c.

b) J‘ dx dx 3 du 3 . n
= = = | —= — arctan u + ¢
9 + 2x* 2 \? 90 /2 ) 1+u> 9. /2
o1+ (2a)) OV v

1 2 2

— arctan \/— x+c (Substitution: u= l/-— x) .
32 3 3
¢) Durch die Substitution arctan x = u (

T dx = du) erhélt man:
X

J‘arctanxd _ d _uz+ 1 . N

T = x= | u M—T c= 3 (arctan x)* + c.

d) Durch die Substitution z=8x* —1 (dz=24x*dx) erhdlt man: fxz /85 — 1dx
1 - 1 2 - 1 _—

= fﬁ\/zdz= —4?2\/2*}- o= e (B~ D8 —1+¢

(Vor.: 8x® — 1 = 0 fiir alle x aus dem Integrationsintervali ).

9.3:a) In|f(x)], b) 2In |x* 4+ 2x + 1], . ¢) —%In|cos 3x].

9.4: a) Durch die Substitution # = 4x — 2 (du = 4 dx) erhilt man:

dx dufd 1 [ 1,
J(4x—2)3_f 3 —Tfu du——§u +c

¥

CEIo

1
c (Vor.:x* -Z—fﬁrallexel).

b) Durch partielle Integration erhalt man (s. Formel (9.15)):

1 1 X 1
xe¥dr=x—e¥ — | —e¥-1dx = —e¥ - —e3 4 ¢,
f 3 fs 3 gt
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¢) Zweimalige Anwendung der partiellen Integration liefert:

1 1
f(sin4x)x2M = (—Tcosz}x) x? — f (—Tcosctx) < 2xdx

x2 1 x?
— ——c0s 4x + — | (cos 4x) x dx = — ——cos 4x
4 2 4

17/1 . 1
+ = [(—sm4x) x — f (—sin4x) -1 dx]
2\ 4

x? x 1
———cos 4x + —sin4x + —cos4x + c.
4 8 2

9.5: a) Der Radikand ist durch Partialdivision umzuformen:

—-x+1
X2 +4x+3
Ansatz fiir die Partialbruchzerlegung des echt gebrochen-rationalen Bruchs:

QP+ 9x2+8x+5): (2 +4x+3)=2x+1+2

—x+1 A B

T - 4~ .
x2 +4x+3 x+1 x+3 .
Durch Einsetzungsmethode folgt leicht 4 = 1 und B = —2.

2x3 +9x2 + 8x + 5 dx dx
—————dx= | @x+ Ddx +2 -2 —
X2 +4x +3 x+1

x+3
+1
=x2+x+21nu+r
(x +3)*
4x% — 2x% 4 9x — 18 A B Cx + D
b) Ansatz fiir die Partialbruchzerlegung: e Bl PR PP A/t M .
x2(x2 +9) x x?* x*+9

Durch Koeffizientenvergleichs- bzw. durch Grenzwertmethode und Einsetzungsmethode folgt:
A=1, B= -2, C=3, D=0.

J‘4x3—2x2+9x—18dx_ dx 5 d.x+3 LI
X2(x2 + 9) ) > 2 2+ 9
i 2 3
=Inlx| + —+ —In(* +9) +c.
x 2

c) Ansatz fir die Partialbruchzerlegung (nach Durchfiihrung der Partialdivision):
X2 +5 4 Bx + C N
GoDwAd -1 e o
A bzw. B, C kénnen durch Grenzwertmethode ermittelt werden. (*) wird mit x — 1 bzw. x? + 4
multipliziert, anschlieBend 148t man x— 1 bzw. x— 2i gehen. Man erhélt 4 = 6/5, B = C = —1/5.

Damit ist die Partialbruchzerlegung durchgefithrt. Zwischenergebnis fiir das gesuchte Integral I:

1
I—f(x+1)dx+—-— -— s
x—=1 x+4

1 1
——2—+x+-5—ln1x~ 1|——l—ln(x +4)—~iaarctau—+c
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x+1 xdx dx i ISP
5 dx = 0 + ; das 1. Integral kann durch die Substitution x> +4=u
x* + 4 x*+4 x4+ 4

gelost werden, das 2. Integral kann sofort auf das in Formel (9.10) angegebene Grundintegral
zuriickgefithrt werden.)

O J‘ i xdx .
zx+5x—3" x+3@x—1"
oo . x A B s e
(Ansatz fir die Partialbruchzerlegung: —————— = ——— + ——— Hieraus ergibt sich

+
G+3)@x—1 x+3  2x—1
(z. B. durch Eiusetzungsmethode: x=0,x=1)4=3[7, B= 1]7. Also gilt:

f xdx L L N LI ST
= —_— = —In —In|ZX — C.
T 5x— 3 P e e T 14

(Voraussetzung iiber das Integrationsintervall I: —3¢ 1, 3¢ 1.)

— 1+
9.6: a) Substitution: \/2x —l=t=>2x= , dx = rdr.
dx tdt 2t dt
e “|Tve T |are T
x+4/2x =1 > +t

I, ist ein Integral iiber eine echt gebrochene rationale Funktion, welches nach dem in9.2. angegebenen
Verfahren (,,Partialbruchzerlegung*) geldst werden kann. In diesem Fall kommt man aber auch durch
die Substitution 1 + 7 = u sehr schnell zum Ziel:

u—1 du 2
I =2 s—du=2 -————2 ——~21n\u.+—+c
u

Ricktransformation u = 1 + ¢t =1 + \/'2x — 1 liefert das Ergebnis:

+c¢ (Vor.:2x—120, d.h. x=%).

I=2ln(1 +/2x - 1) +

.
1+4/2x—1

4 -2

— 4
b) Durch die Substitution 7 = 1/3x +2 (x = ,dx = 3 3 dt) geht das Integral iiber in
4 .
bt (1% — 2¢?) dt. Integration und Riicktransformation liefert das Ergebnis:

xdx

a4 8
=B +2?|—=03x+2) - —]) +ec
[Fz- Vo (Goea-5)
(Voraussetzung iiber das Integrationsintervall I: x > — % fiir alle xe 7, d. h. I < (—%, 0).)

9.7: a) Substitution ¢¥ = 7= dr = ¢t dx;

I dx dr _ dr _ -1+%+%dr
_fcz"—l_ft(tz—l)_J.r(t+1)(t—1)_f( TS 1—1) i

(Bei der letzten Umformung wurde die Partialbruchzerlegung angewendet.)

Hieraus folgt:
I=-Ine*+4+lnE+1)+%+nje*—=1/+c (Vor.:x=0).
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b) Die Substitution ¢z = e* fithrt auf das Integral
8 i —]l|1+31|+ —11(1+3")+
Tvar ¢ ) Tva 30 =3 z e

(Warum konnten die Betragsstriche durch Klammern ersetzt werden?)

c) Substitution 7 = e* fuhrt auf das Integral

(-1 dr 301 L DO IR N
—=||=——=-=—)dt==In ——Injt| + ¢
r+2 1 2 1+2 21 2 g e

2 o D) — )+ e (e 4+ D) —
=—In(e — —In(e =—In(e - +te.
2 2 c=3" 2

(Bei der ersten Umformung in dieser Gleichungskette wurde die Partialbruchzerlegung angewendet.)
9.8: a) Nach Formel (9.25) gilt:
d 1+ 2 dr 1 1
f a =f dt=2f =f<—+ )dz
cos x 1—t2 1412 1—12 11—t 1+t
X
1+ tan—

1+c=ln—_———— + c.
x
1 — tan —
2

+ 7
=—-In[l—¢/+In|l +¢+c=1In

-t

b) + ¢ (Subst.: 7 = cos x).

2 cos? x

X
Hinweis: Die Substitution 7 = tan 5 fiihrt auf eine relativ komplizierte Funktion in 7.

9.9: Substitution: \/4x2 —3x + 5=1+ 2x. Durch Quadrieren ergibt sich: 4x* —3x + 5
= t2 + 4tx + 4x*. Hieraus folgt:

5_12 dx =227 + 3t + 10)
“w+3 @ @+ 3)?
dx _ 1 —202 +3+10)
4x2 —3x + 5 t+25_t2 (41 + 3)? .
4t + 3
=—2f de =—Lln[4t+3|+c
. 4t +3 2

Il

1 SR ——
—7ln|4\/4x2—-3x+5—-8x+3[ +e.

5
x5 17° 2

10.1:2) | (x* + x ) dx = |— — —| =626 — — = 625,6.
5 x 1 5

1

: x*7? 16
b)f(l—x3)dx=[x—7] P
0

2
o) [ 3sinxdx = —3cosx|§ = —3cos2 + 3 =448,
0
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=
d) J' sinx dx = [—cosx]” = —cosm + cos (—m) = 1 — 1 =0.
=
10.2: a) y = f(x) = x* — 4x hat die Nullstellen x; = 0, x, = 4.
Hieraus folgt: (vgl. Beispiel 10.1)

0 4 6
§ 7 32 32
A= |f)dx— | f(x)dx + f(x)dx=?+T+T=23,67.
-1 0 4 )
b) x=—1 >x-2l+x+1ll=-x—-2)—(x+1D)=-2x+1,
—l=x=2=Kx-2[+x+1ll=-x-2)+(x+1)=3,
x=2 Sx-2l+lx+1ll=x—-2)+x+1) =2x-1.
3 -1 2 3
Hieraus folgt: [ /() dx = [ (=2v+ Ddx+ [3dv+ [@x - Ddx
3 -3 -1 2
=10+9 +4=23.
10.3:2) 14z -
dx . 1z T T
—~;=[arcsmx]o =——-0=—=0,785
\/I—x2 4 4
0
1
b & rctanag = ") T o157
——— =[arctanx]  =——-|—-—) =— =157
) 1+ -1 4 2
-1
10.4: Ry = [ far 0=x=3 o RW= lim A = FG) = —
T H = m = m X) = =—.
= B — 42 = 15 fir 3<x =6 aosne N0 T are ! ! 2
10.5 Tr e X 2 L dv=ud
S =y X=> — = ——— = — = dx = udu.
N
o oxdx _ ‘}‘(uz_l)‘udu=L (uz—l)du=]—(£—u)
1+ 2x u 2 2\3
u (u? V1+2x (1+2x V1 +2x
=—(=-1)= —1) = (x—1).
21\3 2 3 3
. L 1 — 410
Fiir das bestimmte Integral ergibt sich dann: [? \/1 +2x(x—-1| = 5 = 3,33.
0
. sin x dx —du 1 1 1
10.6: u =cosx=> —du=sinxdx=> | ——m8 — = | —— = — _ du
cos?x — 4 w? -4 4 u+2 u-—2

—

1
T Inju+2]— —4—In lu — 2| + ¢ (Partialbruchzerlegung!).

0

sin x dx J‘ —du

Hieraus folgt:

cos?x — 4 ut — 4

o“—wn[:&

1 1 0 1
=|—Inlu+2|——Inlu—-2|| = ——In3 = -0,27.
4 4 L 4

1
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10.7: x0 = 0, x4 = 2, x, = 4, x3 = 6, x4 = 8, x5 = 10.
10

10 [wo +
fx’dsz[oTys+h+J’z+J’3+Y4:|

0 10;
=2 [—f% +12) + 1) + 16 + f<8)]

=2[500 + 8 + 64 + 216 + 512] = 2600.

{Tatséchlicher Wert des Integrals: 2500.)
10.8: xo=0, x =12, x=1, x=32, x=2, xs =52,

xX6=3, x;=12, xg=4 (=8 m=4;y,=f(x)), (=0,1,..8);

"4
p— .
fxzvl + x% dx ’&’E[yo + 401+ ys + ys + 1) + 202 + ya + ve) + vl
0

25 =
Yo=f00) =f©) =0 (f) =x2/1+ ), =D,

v =f) = @) = /5, 6 = 94/10,
= 49 =

y2 = fe) = (1) = /2, »=25,
3 9 = .
y3=f()c3)=f(~2—)=?\/13, ye =16/17.

ya = fxs) = ) = 4/5.
.

‘Numerische Auswertung ergibt: J x? \/l + x%dx % 68.
0

10.9: Nach Satz 10.17 gilt fiir den Flacheninhalt 4 des vorgegebenen Bereichs:

4
4 J‘(l 2 41— ))d [l s 4 +x2 4 16+4+16 104 52

= | {—x —(—x))dx=|—X+x+—| =— —_—=—=—
4 12 2 1o 3 2 6 3

0

10.10: Die Kurven y = 4x? und y = 2x haben genau zwei Schnittpunkte (x;, y;) = (0, 0) und (x5, y,)
= (4.8). Die Kurve y = }x? verlduft auf dem Intervall 0 < x < 4 unterhalb der Kurve y = 2x. Fiir

den Flacheninhalt des ei hlossenen Bereichs gilt nach Satz 10.17:
4
1 1 4 16
A=f 2x — —x?)dr =[x} = —x*| =— =533
2 6 0 3
o
. (—sin#)t — cost ) (cost)t —sint
10.11:a).\'=6—’2—, y=6_—tz_____

3w

2

. ) 36 1 R 24

Hieraus folgt: xy — yt = — und A=—| 36:72dt = — =764
t 2 1

NE]

b) x = rcos¢ = ap cos ¢, y=rsing = apsingp.
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Hieraus folgt: X = acosp — apsing, y = asing + ap cos @; xy — yx = a*¢

2
1 a*
Also: A= = a’p? dp = ?(wi - 9D
1
8

9
10.12: Fir die Bogenlidnge S gilt: § = f A/ 1+ Ix dx. Das Integral kann durch die Substi-

tution # = 1 + T x geldst werden: o

8 9 9 1°
S=|—|[1+—x 1+ —x| ~24.
27 4 47,
10.13: x = ae"’ cos g,y = ae*?sin ¢ ist eine Parameterdarstellung der Spirale. Fiir die Bogen-
lange S gilt nach Satz 10.19:

fA/dw d_w) o

dx d
Aus ikl ek? (k cos @ — sinp) und d—y = ae*® (ksinp + cos @) folgt:
P P

?: — —
s= fz\/aZeW(kz +Ddg = a/k* + 1 J.ze""dl,v
?1 ?1

k> +1 K +1
- f—\ZTi—(e""’z — ekpr) = \/T(,z — ).

(Abkiirzung: r, = a €2, r; = ae1)

9
10.14: ¥ == [ (24/%)° dx = 1627 = 508,94,
0

9 9
- 1 p—
10.15:A=2ﬂ:f2\/x (A/l +—) dx=4wf\/x+1dx
X
o o

2 —— 8 j—
= [47:—3«(x+ Dx+ 1] =?R(IOV/]0 — 1) » 256,5.
0

4 4

10.16: 4 = X, =i xxztix=3 ¥, (xz)zdx4—4—48
T ’ CAETT)
0 o 0

10.17: A—fsmxdx—h, '

~
! f inxd ! [si cos xI*
= — Xsinxdx = —|[SIDX — X X, =
2 2 0
0

s = =—[x- x], =—==03
¥, sin? x dx X sin x cos 0,39.
4 8 0 8

0
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(Berechnung der Integrale erfolgte mit Hilfe der partiellen Integration.)

©
dx 1 x]*® 1=
11.1: | ——— = |—arctan—| =— — (fallsa > 0).
a® + x? a alo a 2
0

0
11.2: [ Je?¥dv = [~ 2" =
0

dx du dx
11.3: jm = jm = arctan u = arctan (x + 1) = fm
© k4 b ”
= [arctan (x + 1)]_00 = 5 - (—7) =,
o 4
11.4: fsinxdx = [—cos x]o_w = —1 + cos (—c0) existiert nicht, weil cos (—co0) = lim cos x
—w x> =00

nicht existiert. (cos x ist unbestimmt divergent fiir x —» —00.)
©
X‘ [} m‘t (D‘
11.5: CH fx’ dx = lim [—] = lim (— — __-) =0.
wsw L4 l-0 w0 4

Der Cauchysche Hauptwert des uneigentlichen Integrals existiert also und ist gleich null. Das un-
eigentliche Integral selbst existiert nicht, denn es gilt:

0 ®
[x*dx = —oc0 und fx3dx=oo.
--DO 0

1 1
11.6: Wegene® > 1V x > 0 gilt x2e® > x2V x > 0. Hieraus folgt: f(x) = 5 < — =1g().
X X

=3

fg(x) dx = 1 (vgl. Beispiel 11.1). Nach Satz 11.1 muB dann auch ff(x) dx existieren.

1-¢
d. d —i—
7)) [ —= = lim T im {1 - 27
\/1——:(2 e +0 1—x%2 es+40
0 o
= lim {-—\/] — (1 —e?+ 1} = 1; das Integral ist also konvergent.
e +0
1
dx
b) | —=lm | — = lim {[ln x]l} =lim {In1—Ine}= +o0; dasIntegral istalso divergent.
> +0 X ) ¢ ento
1
<) flnxdx = lim flnxdx = 11m [[xlnx - x] } = llm {—1—¢lne+¢}= ; das Inte-
e 40, - +0
gral ist also konvergent. (Zur Berechnung von | lnxdxs Beispiel 9.13 in 9.1.5.; lim (¢ In &) = 0 mit
Hilfe der 'Hospitalschen Regel!) s> +0
1—¢; 2
dx . dx ) dx s
Q| —7= lim - + lim — = 00 + 00 = 00; das Integral ist also
(x—=1) £ +0 (x — 1) £y +0 (x =1y
0 0 146,

divergent (s. Beispiel 11.11).
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