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Vorwort

Dem vorliegenden Band 2 dieser Lehrbuchreihe kommt ebenso wie dem Band 1

insofern eine besondere Bedeutung innerhalb des gesamten Lehrwerkes zu, als nahe-
zu alle anderen Bände darauf aufbauen.

Ein Teil der in diesem Buch behandelten Gegenstände ist auch im Lehrplan unserer
Oberschulen enthalten. Ein Weglassen des dort bereits Dargebotenen hätte aber zu
einer unzusammenhängenden Darstellung des Gebietes geführt; außerdem wäre nicht
gewährleistet, daß alle Leser mit den gleichen Voraussetzungen die weiteren Bände

' studieren können.
Eine korrekte Anwendung mathematischer Methoden setzt die genaue Kenntnis

der zugrunde liegenden Begriffe voraus. Es muß dem Leser daher dringend nahe-
gelegt werden, sich um ein volles Verständnis der eingeführten Begriffe zu bemühen.
Anhand von vielen Beispielen wird gezeigt, wie mathematische Begriffe in den An-
wendungen zu interpretieren sind. Ein gründliches Studium des Textes und das selb-
ständige Lösen der über 100 Übungsaufgaben sollte den Leser in die Lage versetzen,
die spezifische Anwendbarkeit der behandelten Begriffe und Methoden in seinem
Fachgebiet selbst zu erkennen.

Im Interesse einer straffen Darstellung mußte auf eine Reihe von Beweisen Verzich-
tet werden. Alle Aussagen werden aber erläutert und — soweit möglich — geometrisch
interpretiert.

Für wertvolle Hinweise danken wir vor allem dem Herausgeber, Herrn Prof. Dr.
0. Greuel (Mittweida), den Gutachtern, Herrn Prof. Dr. W. Dück (Berlin) und Herrn
Prof. Dr. H. Goering (Magdeburg), sowie Herrn Prof. Dr. G. Opitz (Dresden). Be-
souderer Dank gebührt Frau I. Kamenz für das sorgfältige Schreiben des Manuskripts.
Dem Verlag sei für die gute Zusammenarbeit herzlich gedankt.

Dresden, Januar 1973 E. A. Pforr

W. Schirotzek

Vorwort zur 6. Auflage

In dieser Auflage wurden gegenüber der vorangegangenen an zwei Stellen inhalt-
liche Veränderungen größeren Umfangs vorgenommen. Im Hinblick auf den Einsatz
von elektronischen Rechnern, insbesondere auch von Taschenrechnern, war die
Darstellung der Näherungsverfahren (Abschnitt 7.7.) zuv überarbeiten. Der algo-
rithmische Aspekt wurde stärker herausgearbeitet, auf die Formulierung von Algo-
rithmen in einer Programmiersprache jedoch Verzichtet. Außerdem wurde der Ab-
schnitt über clliptische Integrale (9.3.5.) erweitert.

Für die wertvolle Unterstützung bei der Überarbeitung von Abschnitt 7.7. sei
Herrn Dr. sc. nat. S. Dietze (Dresden) herzlich gedankt.

Dresden, Juli 1985 E. A. Pforr

W. Schirotzek
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TEIL 1: DIFFERENTIALRECHNUNG

1. Problemstellung und Historisches

Zur mathematischen Beschreibung von Naturvorgängen, aber auch von tech-
nischen und ökonomischen Prozessen ist die Differentialrechnung ein unentbehrliches
Hilfsmittel. Es ist daher nicht verwunderlich, daß gerade von Naturforschern ent-
scheidende Anstöße zu ihrer Entwicklung ausgingen. Wichtige Vorarbeiten wurden
im l6. und 17. Jahrhundert geleistet. Die eigentlichen Urheber dieser Disziplin sind
aber Isaac Newton (1643-1727) und Gottfried Wilhelm Leibniz (1646-1716), die die
Differential- (und Integral-) Rechnung etwa gleichzeitig und voneinander unabhängig
zu einem Kalkül entwickelten. Newton schuf seine „Fluxionsrechnung“ bei der Ab-
leitung des Gravitationsgesetzes aus den Keplerschen Gesetzen der Planetenbewegung.

Leibniz, der auch das Symbol ä einführte, ging von dem Problem aus, an eine Kurve

in einem vorgegebenen Kurvenpunkt die Tangente zu legen („Tangentenproblem“).
Die Arbeiten dieser genialen Forscher lösten eine außerordentlich rasche Entwick-
lung der Mathematik aus, die ihrerseits in hohem Maße befruchtend auf andere
Wissenschaften wirkte. Entscheidenden Anteil an dieser Entwicklung hatten die Brü-
der Jakob und Johann Bernoulli (1654-1705 bzw. 1667-1748), auf deren Vorlesungen
auch das erste, 1696 erschienene Lehrbuch der Differential- und Integralrechnung
des Marquis de l’Hospital (1661-1704) basiert.

Wie wir noch sehen werden, beruht die Differentialrechnung, ebenso wie die Inte-
gralrechnung, auf dem Begrifi" des Grenzwertes. Zeitlich ging jedoch die kalkülmäßige
Entwicklung der Differential- und Integralrechnung der strengen Begriflsdefinition
voran. Daraus entstanden immer häufiger Schwierigkeiten und Unstimmigkeiten, die
sich zunächst nicht überwinden ließen. Schließlich führte Jean 1e Rond d’Alembert
(1717-1783) den Grenzwertbegrifl" in die Mathematik ein. Doch erst Bernard Bol-
zano (1781-1848) und Augistin Louis Cauchy (1789-1857) wendeten diesen Begriff
konsequent an und stellten damit die Infinitesimalrechnung (zu der man neben der
Differential- und Integralrechnung auch die Theorie der unendlichen Reihen zählt)
auf ein solides Fundament.

Vor einem Aufbau der Differentialrechnung ist also der Grenzwertbegriff für Funk-
tionen zu behandeln. Zwangsläufig wird man damit zum Begriff der Stetigkeit geführt.
Die eigentliche Differentialrechnung beginnt mit der Definition der Ableitung einer
Funktion. i

Alle drei Begriffe werden zur exakten Beschreibung bestimmter Sachverhalte in den
unterschiedlichsten Gebieten herangezogen. So kann man mit dem Grenzwerthegriff
z. B. das Verhalten einer zeitabhängigen Größe, „nach sehr langer Zeit“ charakterisie-
ren, mit dem Begriff der Stetigkeit bzw. Unstetigkeit den „kontinuierlichen“ bzw.
„sprunghaften“ Ablauf eines Vorgangs erfassen und mit der Ableitung die „Ände-
rungsgeschwindigkeit“ eines Prozesses beschreiben.

Die mathematischen Möglichkeiten reichen jedoch über die unmittelbare Anwend-
barkeit dieser Begriffe weit hinaus. Sowerden wir unter Verwendung der Differential-
rechnung u. a. Näherungsformeln für (nichtrationale) Funktionen herleiten, Methoden
zur Ermittlung von Extremwerten angeben und Verfahren zur numerischen Lösung
von Gleichungen behandeln. Dem „Praktiker“ werden damit Hilfsmittel zur Ver-
fügung gestellt, auf die er fortlaufend zurückgreifen muß.





2. Grenzwerte

2.1. Grenzwert einer Funktion für x —> x0

2.1.1. Definition des Grenzwertes einer Funktion für x —> xo

Im folgenden bedeutet „Funktion“ stets „reellwertige Funktion einer reellen
Variablen“.

Als Vorbereitung auf den Grenzwertbegrifi" für Funktionen behandeln wir das

Beispiel 2.1: An die Parabel y = x2 werde die Sekante durch den festen Kurvenpuukt
P(,(§, k) und den variablen Kurvenpunkt P(x‚ xi) gelegt (s. Bild 2.1). Der Anstieg
der Sekante ist eine Funktion f von x:

(x=l= i). (2-1)
x2—%:

-%f(x) = x

Bild 2.2

l

l

l

1
Z

Auf Grund der Anschauung wird man vermuten, daß bei „Annäherung“ von x an
die Stelle i; die Sekante in eine gewisse „Grenzlage“ übergeht, also auch ihr Anstieg
(2.1) einen gewissen „Grenzwert“ annimmt. Betrachten wir also die Funktion f An
der Stelle x = {- istfnicht definiert. Für x + <1» gilt

f(x) = ‘1fi
Die Bildkurve Von f ist in Bild 2.2 dargestellt‘). Die Anschauung legt jetzt etwa die
folgende Formulierung nahe: „Für x gegen <3 strebt f(x) gegen l.“

= x + i‘ (x + i). (2.2)

Unsere Aufgabe wird es nun sein, einer solchen Formulierung einen von der An-
schauung unabhängigen, wohldefinierten Sinn zu geben.

Soll allgemein das Verhalten einer Funktion f bei „Annäherung“ der unabhän-
gigen Variablen x an eine reelle Zahl x0 untersucht werden, so ist es naheliegend, die
Variable x Zahlenfolgen (x„) mit folgenden Eigenschaften durchlaufen zu lassen:

(E 1) x„eD(f)’) für alle n (n = 1, 2, 3, ...),

(E 2) x„ =l= x0 für alle n,

(E 3) Iim x„ = x0.
n—mo

1) In Bild 2.2 soll der kleine Kreis um den Punkt (—}, 1) andeuten, daß dieser Punkt nicht zur

Bildkurve von f gehört. Analog wird in den folgenden Beispielen verfahren.
z) D(f) bezeichnet den Definitionsbereich von f.



2.1. Grenzwert einer Funktion für x —> x0 l1

Die Eigenschaft (E 2) bedeutet, daß das Verhalten vonfan der Stelle x0 selbst nicht
in Betracht gezogen wird. Daher braucht f auch nur in einer sog. punktierten Um-
gebung Von x0 definiert zu sein. Das ist, mit einem c > 0, die Menge aller x mit

x0—c<x<x0+c und x#x0 (s.Bild2.3).

W X, W 7 Bild 2.3

Das Verhalten vonfin einer punktierten Umgebung Von x0 wird nun durch das Ver-
halten der Folge der Funktionswerte f(x„) charakterisiert.

Definition 2.1: Die Funktion fsei (mindes s) in einer punktierten Umgebung von x0
definiert. Eine Zahl g heißt Grenzwert von f für x gegen x0, in Zeichen

limf(x) = g oder f(x)—->g für x—-> x0,
x-oxo

wennfürjede Folge (x„) mit den Eigenschaften (E l), (E 2), (E 3) die Folge (f(x„)) gegen
g konvergiert.

Damit ist der Begrifl" des Grenzwertes einer Funktion auf den Grenzwertbegriff
für Zahlenfolgen zurückgeführt.

In Bild 2.4 haben wir die ersten drei Glieder einer Folge (x,,) und der zugehörigen
Folge (f(x„)) eingezeichnet.

Y

n ‚i
y-frx)

my 4—*——~

mu

Bild 2.4
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Beispiel 2.2: Gesucht ist der Grenzwert der Funktion

_v—&f(x) — x _ ‚j

Es sei (x„) eine beliebige Folge mit

x„ + f für alle n und

für x-w}.

lim x„ = f
n-ooo

Unter Verwendung von (2,2) und bekannten Grenzwertsätzen für Zahlenfolgen folgt
dann '

1imf(x,,) = lim (x„ + i) = lim x„ + limf = f + i =1. (2.4)
nass „am n-ow n-oco

Die Gültigkeit von (2.4) wurde für eine beliebige und damit für jede Folge (x„) mit
den Eigenschaften (2.3) bewiesen. Daher gilt

2 _

lim x i = 1

x-u} x " 2"

was in Einklang mit der Anschauung steht (Bild 2.2).

y

(2.3) ‚

D. 2.1
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Beispiel 2.3: Wir wollen den Grenzwert der Funktion

x2- 9: ..ex_ ä fur x f5,
2 für x = 5

für x —> i ermitteln (s. Bild 2.5).

f(x).=[

x
2.1
t

I
y.

fun»;-

/wx -;’-

Bild 2.5

Obwohlfan der Stelle x = f definiert ist, werden auch hier nur Folgen (x„) mit
lim x„ = i betrachtet, für die x„ # A} für alle n gilt [vg]. (E 2)]. Für jede solche Folge
flaw

erhält man wie in Beispiel 2.2

xi - ilim (x) = lim
‚Hanf " H400 x,, — A21

=1im(x„ + §)=1,
also ist

limf(x) = l.
z»;

Aufgabe 2.1: Ermitteln Sie die folgenden Grenzwerte:
2_3x+2’ b)1imx 4

x—l
l‘ .

' a) 1m x—>—2 x + 2X40

Beispiel 2.4: Nun soll das Verhalten von f(x) = sin ä (x # O) für x —> 0 untersucht

werden. Die Bildkurve von f (Bild 2.6) schwankt für x —> 0 ständig zwischen -1 und
1, wobei die Scheitel immer dichter aufeinander folgen. Wir wollen zeigen, daßffür
x —+ 0 keinen Grenzwert hat. Dazu genügt es, eine Folge (x„) mit

x„ 4: 0 für alle n und lim x„ = 0 (2.5)
n-w:

anzugeben, für die die Folge (f(x„)) divergent ist. Setzen wir zum Beispiel
2 .

x„ =‚dann gilt (2.5), aber wegen

f(x„l = sin om — 7:/2) = (—1)"+1

ist die Folge (f(x„)) (unbestimmt) divergent.

A_/* WV” Bild 2.6



2.1. Grenzwert einer Funktion für x —> x0 l3

Man kann den Beweis auch dadurch führen, daß man zwei Folgen (x„) und (in)
mit den Eigenschaften (2.5) angibt, für die die Folgen (f(x„)) und (f(J'c„)) verschiedene
Grenzwerte haben.

Aufgabe 2.2: Führen Sie den Beweis in der soeben angedeuteten Weise durch! a:

Beispiel 2.5: Abschließend betrachten wir noch die Funktion

f(x) =.(1 + x)? (x > —l,x=l= o) für x—>0.

Für die Folge (x„) mit x„ = ä gilt (vgl. Band 1, Abschnitt 10.7.)

limf(x„) = e. (2.6)
n<v eo

Ohne Beweis‘) sei mitgeteilt, daß (2.6) sogar für jede Folge (x„) mit x„ > — 1, x„ + 0
und lim x„ = 0 gilt. Damit erhält man den für spätere Anwendungen wichtigen Grenz-

M eo

wert
lim (1 + x)? = e. (2.7)
x—~0

2.1.2. Die ,,s-6-Charakterisierung“ des Grenzwertes

Auf Grund der Anschauung wird man vermuten, daß man die Gleichung
lim f(x) = g auch folgendermaßen interpretieren kann:

xaxo

„Der Abstand zwischenf(x) und g (also lf(x) — gl) ist beliebig klein, wenn nur der
Abstand zwischen x und x0 hinreichend klein, aber von null verschieden ist.“ In
geeigneter Präzisierung ist das der Inhalt des folgenden Satzes, den wir ohne Beweis
angeben.

Satz 2.1: Die Funktion fsei (mindestens) in einer punktierten Umgebung der Stelle x0 S. 2.1
definiert. Genau dann gilt limf(x) = g, wenn zu jeder (insbesondere jeder beliebig

kleinen) Zahle > 0 eine Zäiilxb = 6(2) > 0 existiert, so daß gilt

V03) - 3| < 8 (2-8)

für alle x mit

0 < [x —— xDI < ö. (2.9)

Eine geometrische Deutung dieses Satzes gibt Bild 2.7. Mit den dort verwendeten
Bezeichnungen bedeutet limf(x) = g, daß zu jedem (noch so schmalen) „e-Streifen“

x-nxo

l

‚i-J/rei/en’ .y-r’(x)

‚ z -J/mien’

1) Beweise zu Teil I dieses Buches findet man, wenn nichts anderes gesagt ist, in [5] und [10].
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um y = g ein „Ö-Streifen“ um x = x0 existiert, so daß alle Punkte der Bildkurve von
f, die in diesem „ö-Streifen“ — außer auf der Mittellinie x = x0‘) — liegen, auch dem
vorgegebenen „a-Streifen“ angehören. Dabei ist offenbar ö im allgemeinen um so
kleiner zu wählen, je kleiner s vorgegeben ist. Diesen Sachverhalt soll die Schreib-
weise ö = 6(5) zum Ausdruck bringen.

Beispiel 2.6: Als Anwendung des Satzes wollen wir zeigen, dal3

lim r/E = Jg (x0 > o)
Xaxo

gilt (Bild 2.8). Es sei ein beliebiges e > o_gegeben. Gemäß (2.8) ist [ß — (/)T‚| ab-
zuschätzen. Wir erweitern mit \/x + Jx0 und erhalten

‘ — Ix * xol 1I‘/x—\/x ]=TT§T_|x—x[<s
° Jx + \/X0 \/xo °

für alle x g 0 miwc —— x01 < J}; s. Daher setzen wir ö gleich der kleineren der beiden
Zahlen x0 und \/x0 e. Für alle x mit [x — x0] < ö gilt dann x g 0 (warum?) und (2. 1 1).

(2.10)

(2.11)

y-/3? (rät)?

Bild 2.8

2.2. Einseitige Grenzwerte

Für die Existenz des Grenzwertes lim J; ist die Voraussetzung x0 > 0 wesentlich

(s. (2.10)), denn für_ x0 g 0 gibt esxkfleiiie punktierte Umgebung von x2 in der die
Funktionf(x) = \/x (x g 0) definiert ist. Im Falle x0 g 0 existiert lim \/x also nicht.

x-ox

Der Stelle x0 = 0 kann man sich aber immerhin noch „von rechts näliem“, ohne den
Definitionsbereich von f zu verlassen. Diese Überlegung führt zum Begriff der ein-
seitigen Grenzwerte.

Definition 2.2: Die Funktion f sei (mindestens) in einem Intervall (x0, x0 + c) z)
(c > 0) definiert. Eine Zahl g, heißt rechtsseitiger Grenzwert von f für x gegen x0, in
Zeichen

lim f(x) = g, oder f(x)—> g, für x—> x0 + 0) 3),
x—»xo+0

1) Man beachte, daß Ix — x01 > O äquivalent zu x + x0 ist.
2) Ein solches Intervall nennt man auch punktierte rechtsseitige Umgebung von x0.
3) Statt lim f(x) = g, (bzw. f(x) —> g,., für x—> 0 + 0) schreibt man kurz lim f(x) = g,

0 0 X» + 0xv» +

(bzw. f(x) —> g, für x —> +0).
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wenn für jede Folge (x„) mit den Eigenschaften

(El) x„eD(f) für allen,
(E 2*) x„ > x0 für alle n,
(E 3) lim x„ = x0

new

die Falge (f(x,,)) gegen g, konvergiert‘ (s. Bild 2.9).

Y y-fm
W17)

,"«’x;)

Wm

i» " l

l

l Bild 2.9
1J i, i, x, x

Analog definiert man den linksseitigen Grenzwert gt vonffür x gegen x0, in Zeichen

lim f(x) = g, oder f(x) —> g, für x —> x0 — 0‘).
x_.x0—o

Beispiel 2.7: Es gilt (s. Bild 2.8)

lim JE = o, (2.12)
x~+0 —

denn fürjede Folge (x„) mit x„ > Ofürallenundlim x„ = Oistlim \/x„ = 0 (s. Band l,
Abschnitt 10.5.). "‘*°° M”

Das folgende Beispiel zeigt, daß der Begriff des einseitigen Grenzwertes auch für
Funktionen von Bedeutungist, die in einer (punktierten) Umgebung von x0 definiert
sind. ’

Beispiel 2.8: Es soll das Verhalten der Funktion

f(x)=% für 0<x§3,

x—l für x>3
bei „Annäherung“ an die Stelle x0 = 3 untersucht werden (s. Bild 2.10). Ist (x„) eine
beliebige Folge mit 0’< x„ < 3 und lim x„ = 3, dann gilt

ri-ooo

lim 3

lim x =lim—= "7°° =l
Mof( ") n—>oo x„ hm x..

n—~oo

i; furfl<i=i
Y J/‘iihlfl/Ho?

Bild 2.10

1) Vgl. Fußnote 3, S. 14.
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Daher ist lim f(x) = 1. Analog erhält man lim f(x) = 2.
x—~3—0 x—~3+0

Über den Zusammenhang zwischen den einseitigen Grenzwerten und dem Grenz-
wert (schlechthin) gilt der folgende Satz.

Satz 2.2: Die Funktionfhat genau dannfür x gegen x0 einen Grenzwert, wenn die ein-
seitigen Grenzwerte vonffür x gegen x0 existieren und übereinstimmen. In diesem Falle
gilt

0f(x) = xlim f(x).
—»xo+0

lim f(x) = lim
xaxo x-vxo-

Nach diesem Satz hat also die in Beispiel 2.8 betrachtete Funktionf wegen lim f(x)
x—v3—0+ lim f(x) für x —> 3 keinen Grenzwert.

x-3+o

Aufgabe 2.3: Untersuchen Sie das Verhalten der Funktion

f(x) =

lxl7-(x=]=O) für x—>+0,x—>—0 und x—>0.

2.3. Grenzwert einer Funktion für x —> + oo und x —> — o0

Zur Charakterisierung des Verhaltens einer Funktion bei unbegrenzten-i Zunehmen
oder Abnehmen der unabhängigen Variablen geben wir die folgende

Definition 2.3: Die Funktion f sei (mindestens) in einem Intervall (a, +00) definiert.
Eine Zahl g heißt Grenzwert vonffür x gegen + o0, in Zeichen

lim f(x) = g oder f(x) —> g für x -—> +00,
X-9 + DC

wennfürjede Folge (x„) in D(f) mit lim x„ = + o0 die Folge (f(x„)) gegen g konvergiert.

Geometrisch bedeutet lim f(x) = g, dal3 sich die Bildkurve vonfmit wachsendem x
X- + O0

immer mehr der Geraden y = g annähert. Dabei braucht f nicht monoton zu sein
(s. Bild 2.1l).

Y

y-Im

l7

Analog definiert man

lim f(x) = g.
x—» _ no

Bild 2.1l

Im Zusammenhang mit den folgenden Beispielen sei an die Bildkurven der jewei-
ligen Funktion erinnert.
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Beispiel 2.9: Es gilt

lim L,‘ = 0 und lim i,‘ = O (k > 0, ganz), (2.13)
x x-w-oo x._v—>+oo

denn ist (x„) irgendeine gegen +oo oder —oo bestimmt divergente Folge mit x„ # 0
für alle n, dann ist, wie man zeigen kann, auch die Folge (x’,f),,.;_2,... bestimmt

divergent und daher die Folge eine Nullfolge (s. Bild 2.12 für k = 2).
n-1‚z.m

Bild 2.12

Beispiel 2 I0: Wir wollen die Grenzwertaussage

lim a" = O (a > 1) (2.14)
x-v-w

beweisen. Es sei also (x„) eine beliebige Folge mit lim x„ = —oo. Dann gibt es zu

jedem s > 0 eine natürliche Zahl no = 110(3), so dafingft

x„ < log„a für alle n g no.

Da die Funktion f(x) = a" (a > 1) streng monoton wachsend ist, folgt

]a"~ — 01: ax» < s für alle n _2_ no.

Folglich ist lim ax» = 0. Da die Folge (x„) beliebig war, ist die Behauptung bewiesen.

Ersetzt mari-ixwdurch —x, so geht (2.14) über in

lim a“ = 0 (a > 1). (2.15)

Ist x eine Variable für die Zeit, dann bedeutet die Existenz von lim f(x) = g, daB

sich die zeitabhängige Größe y = f(x) mit zunehmender Zeit immexräniieohr dem statio-
nären (d. h. zeitunabhängigen) Wert g nähert.

Beispiel 2.1 I: Die Geschwindigkeit 1) v eines fallenden Körpers der Masse m ist unter
derAnnahme eines geschwindigkeitsproportionalen Luftwiderstands (Proportionali-
tätsfaktor k > 0) durch

k

u=(uo—’"Tg)e m’+flk§ (2:0)

gegeben (t: Zeit, v0: Geschwindigkeit zur Zeit t = 0, g: Erdbeschleunigung). In der
Lösung zu Aufgabe 2.4 wird gezeigt, dal5 gilt

lim v = ’”—g, (2.16)

‘) In 4.2.2. werden wir die Geschwindigkeit einer geradlinigen Bewegung exakt definieren.

2 Plort, Di£f.- u. Inzegr.
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d. h„ nach hinreichend langer Zeit t hat die Geschwindigkeitv nahezu den konstanten

Wert L25. In Bild 2.13 haben wir v als Funktion von t für den Fall v0 < mTg dar-

gestellt. '

Bild 2.13

2.4. Bestimmte und unbestimmte Divergenz

Besitzt eine Funktion f für eine der „Bewegungen“

x—>x0; x—>xo+0,x—>xo—0; x—>+0O,x—>—oo (2.17)

einen Grenzwert, dann heißt sie für diese „Bewegung“ konvergent, andernfalls diver-
gent. Wie für Zahlenfolgen kann man auch für Funktionen zwei Arten der Divergenz
unterscheiden.

Definition 2.4: Die Funktion f heißt bestimmt divergent gegen +00 (bzw. —oo) für
eine der „Bewegungen“ (2.17) der unabhängigen Variablen x, wenn für jede diese
„Bewegung“ realisierende Folge‘) (x,,) in D(f) die Folge (f(x,,)) bestimmt divergent
gegen + o0 (bzw. —oo) ist.

Ist ffür eine der „Bewegungen“ (2.17) weder konuergent nach bestimmt divergent,
so heißt ffür diese „Bewegung“ unbestimmt divergent.

Ist f bestimmt divergent gegen +00 für x —> x0, so schreibt man

lim f(x) = +00
‚mm

und sagt auch,fhabe für x —> xo den uneigentlichen Grenzwert + co. Analoge Schreib-
und Spreehweisen sind in den anderen Fällen bestimmter Divergenz üblich.

Beispiel 2.12: Es gilt

lim i = + 0o
x—»0 x2

(s. Bild 2.12), denn in Band 1, Beispiel 10.11, wurde gezeigt, daß für jede Folge (x„)

mit x„ =l= 0 für alle n und lim x„ = 0 die Folge
1 . .(7) bestimmt divergent gegen + 0o

ist y... co x„

Beispiel 2.13: Es soll die Grenzwertaussage
limlnx = —oo

x—~-+0

bewiesen werden. Es sei (x„) eine Nullfolge mit x„ > 0 für alle n. Zu jeder (insbeson-

1) Man sagt z. B., die Folge (x„) realisiere die „Bewegung“ x —v X9 + 0, wenn x„ > Xg für alle
n und lim x,. = x0 gilt. - ‘

u-V W
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dere beliebig großen) Zahl K > 0 existiert dann eine natürliche Zahl no = no(K), so

daß gilt
x„ = |x„ — 0| < e"" für alle n g no,

also
ln x„ < —K für alle n g no.

Daraus folgt lim ln x„ = — 0o, und die Behauptung ist bewiesen.

Beispiel 2.14: Die Funktionflx) = sin x ist für x —> + 0c unbestimmt divergent. Zum

Beweis dieser Behauptung betrachten wir die Folge (x„) mit x„ = n7: — 325 (n = 1,

2, ...): Offenbar gilt lim x„ = + o0, aber wegen f(x„) = (—1)"” ist die Folge (f(x„))

unbestimmt divergent. Ganz entsprechend hatten wir bereits in Beispiel 2.4 gezeigt,
. ‚ . l ‚ . .

daß die Funktion f(x) = sin; (x 4: 0~) für x —> 0 unbestimmt divergent ist.

2.5. Grenzwertsätze

In diesem Abschnitt werden einige Regeln für das Rechnen mit Grenzwerten von

Funktionen angegeben. Da der Grenzwertbegriff für Funktionen auf den Grenz-
wertbegriif für Zahlenfolgen zurückgeführt wurde, kann man diese Regeln leicht aus

den entsprechenden Grenzwertsätzen für Zahlenfolgen ableiten. Wir verzichten auf
eine Durchführung der Beweise.

Bemerkung 2.1: Die folgenden für die „Bewegung“ x —+ x0 formulierten Sätze gelten
sinngemäß‘) auch für die „Bewegungen“

x—+x„+0,x—+x„—0; x—>+oo,x—>—oo.

Satz 2.3: Die Funktionen f,
1imfi(x) = gi.

x-‚x‘,

undfz seien für x —> x0 konvergent mit

1imf2(-7‘) = E2-
xaxo

Dann gilt

1im[f1(x) +f2(x)l = gi + gu (Z18)

::10U1(x) -f2(X)] = gi - gu (2-19)

[cf,(x)] = cg, (c eine Konstante), (2.20)

:1iI:;Lf1(x) 'fz(x)1 = gi 'g2- (2-_21)

Ist außerdem fz(x) =i= 0 für alle x einerpunktierten Umgebung von x0 und gz =l= 0, dann
gilt auch

~ fi(x) 81l ——— = — .

““ xxx) gzx—>x°

1) Wird z. B. statt x —> xo die „Bewegung“ x —> +00 betrachtet, so ist in den folgenden Sätzen
„punktierte Umgebung von x0“ durch „Intervall (a, + co)“ zu ersetzen. Analog ist in den anderen

(2.22)

"Fällen zu verfahren.
2a
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Beispiel 2.15: Gesucht ist der Grenzwert

lim x(3 — \/2).
x—o2

Wegen lim x = 2, lim 3 = 3,lim J} = J2 (vgl. (2.10)) folgt mit (2.21) und (2.19)
x—-2 xaZ x-‚Z

113 x(3 — \/2c) = 2(3 — \/2).

Beispiel 2.16: Es soll der Grenzwert

. 2x2 + 5x
xl“.‘L,372T:x‘fi (m)

berechnet werden. Daf, (x) = 2x2 + 5x (und auch f2(x) = 3x2 — 4x + 1) für x—> — oo

divergent ist, kann man (2.22) nicht unmittelbar auf (2.23) anwenden. Wir formen
daher zunächst um und erhalten dann unter Verwendung von Satz 2.3 und (2.13)

z i) i
“m sxgx: Ixsii = “m x (z: x 1 = “m ;c:—x_l—

““°° ‘”‘°° x2(3—7+7) ‘““°°3—7+?
_ 2 +0 _£

3—0+0 3'

S. 2.4 Satz 2.4:Es sei

1iI:1f(x)=0,

undfür alle x einer punktierten Umgebung von x0 gelte

f(x) > 0 bzw. f(x) < 0.

Dann ist

lim = +00 bzw. lim_L L _ _

xaxn x—-xo —

Beispiel 2.17: Die Abbildung durch einen sphärischen Hohlspiegel der Brennweite
f > 0 wird bei Beschränkung auf Paraxialstrahlen durch die Gleichung

L + 1 _ 1

a a’ _ f
beschrieben. Dabei ist a bzw. a’ die Gegenstands- bzw. Bildweite (s. Bild 2.14).

Bild 2. l4
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Aus dieser Gleichung ergibt sich a’ als Funktion (p von a zu

“f w>ma+nwa’ = <P(a) = a _ f

Mit Satz 2.3 folgt unmittelbar

1' = T = 0,uflfl” 4
f _ f _-im-f1' = 1'

.,:2::P<"> 1 _ 1
a

l_. a—f__0__
@‘$$w/‘fi‘“

Ferner gilt

> 0. Daraus folgt nach Satz 2.4 unter Beachtung von Bemer-

lim
H-f+ o ‘P

und fürallea >fist (pm

kung 2.1 die Aussage lim tp(a) = +oo. Entsprechend findet man lim ga(a) = —czo.
n-vf+0 a—-vf—0

In Bild 2.15 ist die Funktion q: dargestellt. (Für a > f, also a’ > 0, erhält man ein
reelles Bild; für 0 < a < f, also a’ < 0, ein virtuelles Bild.)

„y

a
n

l7

Bild 2.15 Bild 2.16

S. 2.5Satz 2.5: Es sei

lim fz(x) = 1imf2(x) = g,
„a, x..x.,

undfür alle x einer punktierten Umgebung von x0 gelte

f1(x) §f(x) é fz(X)-

Dann gilt auch

limf(x) = g.
X-xo

‘) In diesem Beispiel bezeichnet falso eine Konstante und a die unabhängige Variable (der Funk-
tion m).
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Beispiel 2.18: Mit Hilfe von Satz 2.5 wollen wir den Grenzwert

lim sin x

x—»o X

berechnen. Aus Bild 2.16 liest man ab: Der Flächeninhalt des Dreiecks OPIP; ist
kleiner als der des Kreissektors 0P1P3, und dieser ist kleiner als der des Dreiecks
0P‚P„ d. h., es gilt 2

l .Ev1-sinx<%-l2<x<%-l-tanx für xe(0‚;). (2.24)

Wegen sin x > 0 für x e (0, und der ersten Ungleichung in (2.24) gilt

0<sinx<x für (xeo, (2.25)

Wegen limO = 0, limx = 0 folgt aus (2.25) durch sinngemäße Anwendung von
x-v +0 xai-Ü

Satz 2.5 auf die „Bewegung“ x —+ +0
lim sin x = O (2.26)

X~>+0 _

und daraus

lim sin x = lim sin (—x) = — lim sin x = O. (2.27)
xa-O x—~+0 X—t-I-0

Wegen (2.26) und (2.27) gilt nach Satz 2.2

lim sin x = 0 . (2.28)
x-‚O

und damit

lim cosx = lim (1 — 25m2 i) = l. (2.29)
x—~0 ‚wo 2

und bildet anschließend denMultipliziert man die 2. Ungleichung in (2.24) mit
TC

z)

< 1. (2.30)

sin x

Kehrwert, so erhält man für x e (0,

sinx
COS x <

Wegen c0s(——x) = cos x, sin (—x) = —sin x gilt (2.30) auch für x e <— g, 0), also

in einer punktierten Umgebung von x = 0. Nach Satz 2.5 folgt daher aus (2.29)
und (2.30) schließlich

sin x
ling x =1. (2.31)

x Aufgabe 2.4: Beweisen Sie die Formel (2.16).

* Aufgabe 2.5: Berechnen Sie die folgenden Grenzwerte:

. x + 2 ‚ x + 2

a)i:.[.r(ix2—l’ b)XBTW x’—1’
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2_ 3_ 2

c) um Q), d) um i,
_„_.-„ x +7 2x +3x „n: x+2

e) lirn m", f) lim 5“”.
x-‚o x x~>+LX) X

Aufgabe 2.6: Beweisen Sie: Ist f eine echt gebrochen rationale Funktion, so gilt
f(x) —> 0 für x —> +00 und für x——> —oo (vgl. Aufgabe 2.5b).

u-

2.6. Die Landauschen Ordnungssymbole

Zum Vergleich des Grenzverhaltcns zweier Funktionen erweisen sich die Landau-
schen‘) Ordnungssymbole a und 0 (lies ,,klein-o“ bzw. „groß-o“) als nützlich.

Definition 2.5: Die Funktionen f und o: seien (mindestens) in einer punktierten Um- D. 2.5
gebung U von x0 definiert, und (p sei dort von null verschieden. Gilt

. f(x) =

im <P(x)

so schreibt man

f(x) = 0(<P(x)) für x -> xe-

Ist % auf U beschränkt, d. h., gibt es eine positive Zahl m mit

f(x)
<r(x)

so schreibt man

f(x) = 00x700) für X -> Xa-

Die Symbole

f(x) = a(zp(x)) für x—> +00,

f(x) = 0(<p(x)) für x—> xo — 0 usw.

werden analog definiert (vgl. Fußnote auf Seite l9). Geht aus dem Zusammenhang
unmißverständlich hervor, welche „Bewegung“ der unabhängigen Variablen x be-
trachtet wird, so läßt man deren Angabe häufig weg, schreibt also z. B. nur
f(x) = a(<p(x)). Konvergierenfund <p für eine bestimmte „Bewegung“ von x gegen
null, so bedeutetf(x) = o(qa(x))‚ daßf „schneller“ — „von höherer Ordnung“ — gegen
null konvergiert als (p. Entsprechend bedeutet f(x) = O(q2(x)), daß f „mindestens so

schnell“ — „von mindestens gleicher Ordnung“ — gegen null konvergiert wie (p.

Schließlich sei noch erwähnt, daß man statt

f(x) — gm = am»

f(x) = goo + o(<p<x_)>

schreibt; analog für 0.

0,

g m füralle xe U,

auch

‘) Edmund Landau (18774938), deutscher Mathematiker.



24 2. Grenzwerte

Beispiel 2.19: Nach (2.30) und der darauffolgenden Bemerkung gilt in einer punk-
tierten Umgebung von x0 = 0

sin x
< 1.

Daher ist sin x = 0(x) für x —+ 0. Weiter ist (2.31) äquivalent mit

und dafür schreiben wir sin x — x = 0(x) für x —> 0 oder

sinx = x + 0(x) für x—>0.

Später werden wir sehen, daß sogar gilt
sin x = x + 0(x3) für x —> O. (2.32)

m Aufgabe 2.7: Was bedeutet Formel (2.32) definitionsgemäß?



3. Stetigkeit

3.1. Der Begriff der Stetigkeit

Mit dem Begriff der Stetigkeit einer Funktionfan einer Stelle x0 will man die Vor-
Stellung, daß das Bild von f an dieser Stelle „nicht abreißt“ (Bild 3.1), mathe-
matisch einfangen. Es ist naheliegend, dazu den Grenzwert vonffür x —> x0 mit dem
Funktionswert f(x0j zu vergleichen. Demnach mußfaußer in einer punktierten Um-
gebung von x0 nun auch an der Stelle x0 selbst, also in einer vollen Umgebung von x0,
definiert sein.

y-ml

im ‚jl/
Definition 3.1: Eine in einer Umgebung von x0 definierte Funktionfheißt an der Stelle D. 3. l
x0 stetig, wenn gilt

l 1imf(x) =f(xo)- (3-1)

Führt man durch die Substitution x = x0 + h die neue unabhängige Variable h ein,
so kann man für (3.1) offenbar auch schreiben

}]’imf(xo + h) =f(Xo)- (3-2)
_.o

Beispiel 3.1: Nach (2.29) gilt

lim cosx =1 = C050,
x—>0

folglich istf(x) = cos x an der Stelle x = 0 stetig.

Beispiel 3.2: Für die Funktion

x’- l
fix) = -E: fur x=1=-3,

2 für x = {r

gilt (s. Beispiel 2.3)

1irr;f(x) = 1# 2 =f(%). (3.3)

Daher istfan der Stelle x = Q nicht stetig (s. Bild 2.5). Für jedes x 4: -} istfolTenbar
stetig.

Unter Beachtung der Definition des Grenzwertes einer Funktion erhält man die
folgende ausführliche Formulierung von Definition 3.1 :
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Definition 3.l*: Eine in einer Umgebung von x0 definierte Funktionfheißt an der Stelle
x0 stetig, wennfiirjede Folge (x„) in D(f) mit lim x„ = x0 gilt‘)

limf(x„) = f(lim x,,). "W

Die ,,e-<5-Charakterisierung“ des Grenzwertes einer Funktion (s. Satz 2.1) liefert
eine entsprechende Charakterisierung der Stetigkeit:

Satz 3.1: Die Funktionfsei in einer Umgebung von x0 definiert. Genau dann istfan der
Stelle x0 stetig, wenn zu jeder (insbesondere jeder beliebig kleinen) Zahl e > 0 eine
Zahl ö = 6(2) > 0 existiert, so daß gilt

lf(x) - f(Xo)| < 8

für alle x mit [x — xv] < ö.

Zur Veranschaulichung dieses Satzes ist in Bild 2.7 nur g durch f(xo) zu ersetzen.
Auf Grund von Satz 3.1 wollen wir den Begriff der Stetigkeit noch an einem Beispiel
aus der Physik interpretieren.

Beispiel 3.3: Die geradlinige Bewegung einer Punktmasse wird durch die Weg-Zeit-
Funktion s = s(t) 2) beschrieben. Zur Zeit to befindet sich die Punktmasse also am
Ort s(t„); diesem Ort wird sie noch beliebig nahe sein, wenn man sie nur zu einer Zeitt
beobachtet, die hinreichend nahe bei to gelegen ist (s. Bild 3.2). Mathematisch bedeu-
tet das: Die Funktion s = s(t) ist an der (beliebigen) Stelle to stetig.

5

J-Jlll

im —

5-(lg)

Bild 3.2

Beispiel 3.4: Unter Verwendung des Satzes 3.1 wollen wir zeigen, daß die Funktion
f(x) = -|x] an jeder Stelle x0 stetig ist. Es sei ein beliebiges e > 0 gegeben. Dann gilt

|f(X) -f(xo)l = Ilxl - lxoli S IX - xol < 8

für alle x mit [x — xol < ö, falls ö = e gesetzt wird. Damit ist zu jedem s > 0 ein ge-
eignetes ö > 0 gefunden, also die Behauptung bewiesen, d. h., es gilt

lim [x] = {x0} (x0 beliebig). (3.4)

Beispiel 3.5 3): Die Funktion

O für x = 0,

m): kil für Ti-lqiqgä (k:1,2,...)

‘) Die Voraussetzung ‚..r„ # x0 für alle n“ ist jetzt otfenbar entbehrlich.
2) In den Anwendungen bezeichnet man häufig die abhängige Variable und das Funktionssymbol

mit demselben Buchstaben (hier s).
3) Dieses Beispiel ist [10] entnommen.
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soll auf Stetigkeit an der Stelle x = 0 untersucht werden. Offenbar gilt

0 §f(x) é lxl (-1 é x §1)- (3-5)

Wegen lim 0 = 0 und lim Ix] = |0] = 0 (letzteres nach (3.4) mit x0 = 0) folgt aus
‚wo .\'—~U

(3.5) nach Satz 2.5

1imf(x) = 0.
x—~0

Da auch/(O) = 0 gilt, istfan der Stelle x = 0 stetig. Das Bild vonfbesteht aus zur
x-Achse parallelen Geradenstücken, die für x —> 0 immer kürzer werden und der
x-Achse immer näher kommen (Bild 3.3). Das Verhalten von fin einer (sehr kleinen)
Umgebung von x = 0 ist anschaulich nur unvollkommen zu erfassen. Dieses Beispiel
zeigt also. dal3 der durch Definition 3.1 exakt festgelegte Begriff der Stetigkeit doch
wesentlich über das der Anschauung Zugängliche hinausreicht. .

S
G

I‘.

Bild 3.3
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3.2. Einseitige Stetigkeit. Stetigkeit auf einem Intervall

Unter Verwendung der einseitigen Grenzwerte definiert man die einseitige Stetig
keit.

Definition 3.2: Eine (mindestens) in einem Intervall [x0, xo + c], e > 0, definierie
Funktion fheißt an der Stelle x0 rechtsseitig stetig, wenn gilt

lim f(x) =f(xo)~
x..x.,+o

Für Funktionen, die in einem Intervall [x0 — c, x0]. c > 0, erklärt sind, ist entspre-
chend die linksseitige Stetigkeit an der Stelle x0 durch die Forderung

lim 0f(x) = f(xo)

definiert.
Aus Satz 2.2 folgt unmittelbar der

D. 3.2

Satz 3.2: Eine in einer Umgebung von x0 definierte Funktion ist genau dann an der Stelle S. 3.2
x0 stetig, wenn sie dort sowohl Iinksseitig als auch rechtsseitig stetig ist.

Beispiel 3.6: Für die Funktion

3
— f" 0 _3fix): x ur <x5,

x-l für x>3
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gilt (vgl. Beispiel 2.8) lim f(x) = I =f(3)‚ folglich istfan der Stelle x = 3 links-
x—»3—0

seitig stetig. Wegen lim f(x) = 2 + f(3) ist f an der Stelle x = 3 nicht rechtsseitig
x-v3+0

stetig, also erst recht nicht stetig.

Die Stetigkeit einer Funktion an einer Stelle x0 ist eine „lokale“ Eigenschaft.
Wir definieren nun die „globale“ Eigenschaft der Stetigkeit auf einem Intervall.

D. 3.3 Definition 3.3: Eine auf einem Intervall I definierte Funktion f heißt auf I stetig, wenn

gilt:
I. f ist in jedem inneren Punkt von I stetig.
2. Ist der linke (bzw. rechte) Randpunkt von I ein Element von I, dann istfdort rechts-

seitig (bzw. Iinksseitig) stetig.

Beispiel 3. 7.- Die Funktion f(x) = J} (x e [0, + 00)) ist in jedem x0 e (0, + oo) stetig
[s. (2.lO)] und in x‘, = 0 rechtsseitig stetig [s. (2.l2)], also auf dem Intervall [0, + o0)
stetig.

«x
- Aufgabe 3.1: Untersuchen Sie die folgenden Funktionen f auf Stetigkeit bzw. ein-

seitige Stetigkeit an den angegebenen Stellen x0.

a)f(x) = x2, x0 beliebig.

b)f(x) = sin x, x0 = 0 (vgl. Beispiel 3.1).

cos f"r < 0,

°)f(x)=i2xx rät 9:20, x°=°'
l

x sin — für x + 0,
d)f(x) =[ x „„ = o.

0 für x = 0,

Hinweis zu d): Benutzen Sie Satz 31l.

3.3. Unstetigkeitsstellen und ihre Klassifikation

Ist die Funktion f (mindestens) in einer punktierten Umgebung der Stelle x0
definiert, aber an dieser Stelle nicht stetig, dann heißt x0 Unstetigkeitsstelle von f.
Aus der Definition der Stetigkeit ergibt sich, daß für jede Unstetigkeitsstelle x0 ‚von f
genau einer der folgenden fünf Fälle vorliegt.

Fall 1: Der Grenzwert g = limf(x) existiert, ist aber von f(xo) verschieden, sofern
x-vx

fan der Stelle x0 überhaupt definiert ist.
Setzt man

f,,(x) = f(x) für x4= xo (xeD(f)).
g für x = x0,

so ist die Funktionf* wegen

f*(X) = l::1f(x) = 8 =f*(xo)



3.3. Unstetigkeitsstellen und ihre Klassifikation 29

an der Stelle x0 stetig (s. Bild 3.4a, 3.41)). Die Unstetigkeit vonfan dieser Stelle ist
damit „behoben“. Daher heißt x0 in diesem Fall hebbare Unstetigkeitsstelle der Funk-
tion f.

V-Nx)

7/
Beispiel 3.8: Für die in Beispiel 3.2 betrachtete Funktionf ist x = f wegen (3.3) eine
hebbare Unstetigkeitsstelle und die Funktion

x2- ä

f*(x) = { x - lr
l für x = e}

eine stetige „Ersatzfunktion“.
In Verallgemeinerung dieses Beispiels sei nun f eine gebrochen rationale Funktion

sowie x0 eine m-fache Nullstelle des Zählerpolynoms und zugleich eine n-fache Null-
stelle des Nennerpolynoms (also x0 eine Lücke von f, s. Band l, Abschnitt 9.5.).
Die Funktionfist somit in der Form

_ (x - xo)"'p(x)
f“) (x — xorqoc)

darstellbar, wobei p(x) und q(x) Polynome sind, die an der Stelle x = x0 nicht ver-

schwinden.
Ist nun m g n, dann ist x0 eine hebbare Unstetigkeitsstelle von fund

(x - x )"""17(x)
>1: = of (x) q(x)

eine an der Stelle x0 stetige „Ersatzfunktion“ fürf. Die Unstetigkeit vonfan der Stelle
x0 kann in diesem Falle also durch Kürzen des Faktors (x — x0)" „behoben“ werden.

Ist dagegen m < n, so zeigt die Darstellung

f0‘) 3' (X * Xe),

daI3f sich in einer Umgebung von x0 wie in einer Umgebung einer Polstelle der Ord-
nung n -— m‘ verhält. Hierauf kommen wir in den Fällen 3 und 4 zurück.

Bild 3.4b

für x*%}=x+% (—oo<x+oo)

(x ‘i’ x0)

(x = x0 zugelassen)

Fall 2: Die Grenzwerte 1imf(x) und limf(x) existieren, sind aber voneinander ver-
+o o

schieden. In diesem Falil-hxelißt x0 Sp1fL;1Tg‘].v—telle von fmit endlichem Sprung.
Wir verweisen hier auf die in Beispiel 2.8 betrachtete Funktion f, die an der Stelle

x = 3 einen endlichen Sprung hat. Weiter betrachten wir das

Beispiel 3.9: Die Wärmeleitfähigkeit einer Substanz ist im allgemeinen temperatur-
abhängig und ändert sich beim Übergang in einen anderen Aggregatzustand sprung-
haft. Bild 3.5 zeigt die spezifische Wärmeleitfähigkeit}. von Quecksilber in Abhängig-
keit von der Temperatur T‘). Im sog. Schmelzpunkt Tm z 234,29 K (z —38,86 °C)

1) Siehe Grimsehl, Lehrbuch der Physik, Bd. 1, Seite 345 (23. Auflage), BSB B. G. Teubner Ver-
lagsgesellschaft, Leipzig 1981.
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hat die Funktion Ä = Ä(T) einen endlichen Sprung. An der Stelle Ts,“ ist diese Funktion
nicht definiert, da sich dort feste und flüssige Phase im Gleichgewicht befinden.

‘ _ I /I//1517
l Vlmx fl/rx>I7

Bild 3.5 Bild 3.6

Fall 3: Es gilt lim f(x) = +00 oder limf(x) = ——oo. In diesem Fall nennt man x0

Unendlichkeitsstellg van f. o

Ein Beispiel hierfür ist jede Polstelle gerader Ordnung bei einer gebrochen ratio-
nalen Funktion (s. Band ], 9.5), so die zweifache Polstelle x = O der Funktion
f(x) = x4 (s. Beispiel 2.12 und Bild 2.12).

Fall 4: Die Funktionfist für eine der beiden „Bewegungen“ x —> x0 — 0, x —> xo + 0
bestimmt divergent gegen + 0o (bzw. — o0) und für die andere „Bewegung“ konver-
gent oder bestimmt divergent gegen —— o0 (bzw. + o0). In diesem Fall heißt x0 Sprung-
srelle von fmit unendlichem Sprung. .

Eine gebrochen rationale Funktion hat an jeder Polstelle ungerader Ordnung
einen unendlichen Sprung, so die in Beispiel 2.17 untersuchte Funktion an der ein-
fachen Polstelle a = f(s. Bild 2.15). Weiter betrachten wir das

Beispiel 3.10: Für die Funktion

l für x g 0,

fix) = lnx für x > O.

gilt (s. Beispiel 2.13)

lim f(x) = lim lnx = —oo und lim f(x) = lim 1 =1.
x—»+0 x~+0 x—>—0 x—o—0

Daher ist x = 0 eine Sprungstelle von fmit unendlichem Sprung (s. Bild 3.6).

Fall 5: Für mindestens eine der beiden „Bewegungen“ x —> x0 — O, x —> xg + O istf
unbestimmt divergent. In diesem Falle nennt man x0 oszillatorische Unstetigkeits-
stelle von f.

Ein Beispiel für eine oszillatorische Unstetigkeitsstelle ist die Stelle x = 0 für die in

Beispiel 2.4 betrachtete Funktionflx) = sin; (x # 0).

Diese Klassifizierung der Unstetigkeitsstellen gestattet eine Abschwächung des
Begriffs der Stetigkeit auf einem Intervall. Eine Funktionfheißt aufeinem Intervall I
stückweise stetig, wenn sie im Inneren von I bis auf höchstens endlich viele hebbare
Unstetigkeitsstellen oder endliche Sprünge stetig ist und in jedem zu I gehörigen
Randpunkt noch der jeweilige einseitige Grenzwert von f existiert.

Die Funktionen der Beispiele 3.5 und 3.10 sind auf [— 1, 1] nicht stückweise stetig:

Erstere ist zwar bis auf die endlichen Sprünge bei x = 1--1k— (k = 2, 3, ...) stetig

(s. Bild 3.3), aber die Anzahl dieser Sprungstellen ist nicht endlich; die zweite Funk-
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tion hat dagegen bei x = O einen unendlichen Sprung. In der Praxis treten jedoch
häufig stückweise stetige Funktionen auf.

Beispie]3.11: Ein Radarimpuls läßt sich durch eine periodische Zeitfunktion der Form

f(’)_ O für (2k —— 1)]; t < 2k! (c‚l> 0;k =0, il, 12,...)
—ic für 2k1§t<(2k+ 1)1

beschreiben (s. Bild 3.7). Diese Funktion ist aufjedem beschränkten Intervall [stück-
weise stetig.

_ 0 mm-zzmqiz
Y c /ur m =:<<z/mu

__., c 1

A

21 J J z

..§§J,_._.._, ‚ Bild 3.7

Aufgabe 3.2: Klassifizieren Sie die Unstetigkeitsstellen x0 der folgenden Funktionen
f, und geben Sie im Falle einer hebbaren Unstetigkeitsstelle eine an der Stelle x0
stetige „Ersatzfunktion“f* fürfan.

‚„
‚_

_
_
.

a)f(x) = sgnx (—oo <x < +00), xo =0.
x2 —

b)f(x) fw (x * -1)‚ x0 = "-1-

sinx .. _

c)f(x)= x f“ ”*0’ x.,=o.
-l für x = 0,

x —3
d)f(x) = —W (x 4‘ 3): xo = 3‘

e)f(x)=cotx (—-r:<x<7-:,x+O), xo=0.
Hinweis zu e) Verwenden Sie (2.28) und (2.29)

3.4. Eigenschaften stetiger Funktionen

3.4.1. Das Rechnen mit stetigen Funktionen

Satz 3.3: Ist die Funktionfan der Stelle x0 stetig undf(x0) > O (bzw. f(xo) < 0), dann S. 3.3
gibt es eine Umgebung von x0, so dafl auch noch für alle x dieser Umgebung f(x) > 0
(bzw. f(x) < 0) gilt.

In Bild 3.8 haben wir diesen Satz für den Fall f(xo) > 0 veranschaulicht.
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Satz 3.4: Die Funktionenfund g seien an der Stelle x0 stetig. Dann sind die Funktionen

f + g, c -f (c eine Konstante) undf- g
f

an der Stelle x0 stetig. Ist ferner g(xo) # 0, dann ist auch die Funktion '—
x0 stetig. g

an der Stelle

Satz 3.4 folgt unmittelbar aus Satz 2.3. (Die im Zusammenhang mit der Funktionf/g
getrofiene Voraussetzung g(x0) $ 0 sichert nach Satz 3.3 bereits, daß die Funktion g
in einer ganzen Umgebung von x0 nicht verschwindet.)

Bemerkung 3.1: Satz 3.4 bleibt richtig, wenn „stetig“ überall durch „rechtsseitig
stetig“ oder durch „linksseitig stetig“ ersetzt wird.

Satz 3.5: Ist die Funktion‘) g(x) an der Stelle x = x0 stetig und die Funktion f(z) an
der Stelle z = g(x0) stetig, dann ist die mittelbare Funktionf(g(x)) an der Stelle x = x0
stetig.

Beispiel 3.12: Die Funktion f(x) = /cos x (-1:/2 g x g n/2) ist nach Satz 3.5 an
der Stelle x = 0 stetig, da die Funktion g1(x) = cos x an der Stelle x = 0 und die
Funktionf1(z) = \/z an der Stelle z = cos 0 = 1 stetig ist (s. Beispiel 3.1 und 3.7).

Bemerkung 3.2: Wir Wollen diese Gelegenheit zu einigen Andeutungen über eine
moderne Betrachtungsweise in der Mathematik benutzen.

Für ein beliebiges abgeschlossenes Intervall [a, b] bezeichne

C[a‚ b]
die Menge aller auf [a, b] stetigen Funktionen. Statt „fist eine auf [a, b] stetige Funk-
tion“ können wir also auch kurz fe C[a‚ b] schreiben.

S0 ist z. B. die durchf(x) = \/x (0 g x g 1) definierte Funktionfauf [0, l] stetig,
d. h., es giltfe C[O‚ 1].

Nun seife C[a‚ b], g e C[a‚ b] und c eine reelle Zahl. Nach Satz 3.4 ist dann auch
f + g e C[a‚ b] und c- fe C[a‚ b]. Wendet man also die Operationen der Addition und
der Multiplikation mit einer reellen Zahl auf Elemente der Menge C[a‚ b] an, so er-
hält man stets wieder Elemente von C[a‚ b]. Mit diesen Operationen versehen, ist
daher die Menge C[a, b] ein linearer Raum (s. Band l, Abschnitt 7.7.2).

Mit den Elementen der Menge C[a‚ b] kann man also in ähnlicher Weise „rech—
nen“ wie mit reellen Zahlen. Insbesondere kann man auch Gleichungen in C[a‚ b]
betrachten. Die „Unbekannten“ sind dann nicht Zahlen, sondern Funktionen. In
Abschnitt 4.7.2. kommen wir hierauf zurück.

3.4.2.

Als elementare Funktion bezeichnet man bekanntlich jede Funktion, die sich aus
den Grundfunktionen (Konstanten, Potenz-, Exponential—‚ Kreis- und Hyperbel-
funktioncn sowie deren Umkehrfunktionen) durch Anwendung der rationalen
Rechenoperationen und Bildung mittelbarer Funktionen in endlich vielen Schritten
erzeugen läßt (s. Band l, Abschnitt 9.5.).

Stetigkeit der elementaren Funktionen

1) Um die Bezeichnung der unabhängigen Variablen hervorzuheben, haben wir die Funktionen
hier mit g(x) bzw. f(z) statt mit g bzw. f bezeichnet.

2) Man beachte, daß die von den Operationen geforderten Eigenschaften, wie z. B. f + g = g + f,
sogar für beliebige, auf [a, b] definierte Funktionen erfüllt sind.
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Beispiel 3.13: Die Funktion

4ln (x — 1’) m"f1(x):_’x?—X3e (x>1)

ist elementar, die durch „Aneinanderfügen“ von Grundfunktionen gebildete Funktion

i1 für x g o, ’

flu) =l1n x für x > 0
dagegen nicht.

In den vorangegangenen Abschnitten haben wir die Stetigkeit einiger Grundfunk-
tionen — wenigstens an gewissen Stellen x0 — nachgewiesen (s. Beispiele 3.1 und 3.7
sowie Aufgaben 3.] a) und b)). Ohne Beweis teilen wir mit, daß sogar alle Grundfunk-
tionen auf jedem Intervall ihres Definitionsbereichs stetig sind. Wie in Beispiel 3.12
kann man daraus unter Verwendung der Sätze 3.4 und 3.5 nun schließen, daß all-
gemein der folgende Satz gilt:

Satz 3.6: Jede elementare Funktion ist auf jedem Intervall ihres Definitionsbereichs S. 3.6
stetig.

Eine nichtelementare Funktion braucht diese Eigenschaft natürlich nicht zu haben,
wie man etwa an der Funktion f; von Beispiel 3.13 sieht (vgl. Beispiel 3.10). Satz 3.6
kann häufig zur Berechnung von Grenzwerten von Funktionen und Folgen heran-
gezogen werden.

Beispiel 3.14." Es soll der Grenzwert

lim (5 |x — 2| + cosh \/'ix -— 1)
x-vl +0

‘berechnet werden. Als elementare Funktion‘) ist

f(x) = 5 [x — 2| + coshqx — 1 (x g 1)

nach Satz 3.6 auf [1, + w) stetig, also insbesondere an der Stelle x = 1 rechtsseitig
stetig. Daher gilt

limf(x) =f(1) == 5[—1]+ <:osh0 = 6.
xvvl-1-0

Beispiel 3.15: Gesucht ist der Grenzwert

a lim n + 1 arctan
g 4 „x n n + 1 '

Die elementare Funktion

f(x) = x arctané (x =t= 0)

ist nach Satz 3.6 auf den Intervallen (— o0, 0) und (0, + co) stetig; die durch

n + 1

n
xn

n—>oo

definierte Folge (x„) und ihr Grenzwert lim x„ = 1 liegen im Intervall (O, + co). Dar-

‘) Wegen [x[ = ist qJ(x) = M eine elementare Funktion.

3 Pforr. mit.- u. Integr.
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aus folgt (s. Definition 3.1*)

g = 3i»1gf(x,,) =f(’EI:1ox,,) = l-arctan 1 =

Aufgabe 3.3: Berechnen Sie die folgenden Grenzwerte.

. . arcsin x
201152 (e°°"‘ + tan 2x), b)h111r:10 x2 + l ,

c) limA/ [nln(1 +
n—~uo n

Aufgabe 3.4: Untersuchen Sie die folgenden Funktionen auf Stetigkeit an den an-
gegebenen Stellen xo.

2n+l
——n+3 , d) 11m

n—~oo

e“ für x S 0,
= - = 0_

a)f(x) {cos x für x > 0, x0

\/5 — x für x < 2,
b = = 2.m” {Ix — 3| für x g 2, x°

3.4.3. Weitere Eigenschaften stetiger Funktionen

In diesem Abschnitt werden Funktionen betrachtet, die auf einem abgeschlossenen
Intervall [a, b] stetig sind. Diese Funktionen haben eine Reihe von Eigenschaften,
die man in Anbetracht der Vorstellung, daß ihre Bildkurve „nicht abreißt“, auch von

ihnen „erwartet“.
Es sei daran erinnert (s. Band l), daß die Funktionfaufdem Intervall] c D0’) be-

schränkt heißt, wenn es eine positive Zahl c gibt, so daß gilt

[f(x)] g c für alle xeI.

Satz 3.7: Jede auf [a, b] stetige Funktion ist dort beschränkt.

Die Voraussetzung der Abgeschlossenheit des betrachteten Intervalls ist für die
Gültigkeit von Satz 3.7 wesentlich.

Beispiel 3.16: Die Funktion

f(x) = g (0<x§1)

ist auf dem (nicht abgeschlossenen!) Intervall (0, 1] stetig, aber wegen lim i = + oo

nicht beschränkt. "" +°
Im Hinblick auf den nächsten Satz geben wir die

Definition 3.4: Die Funktionfsei auf dem Intervall I definiert. Eine Stelle x0 e I heißt

Stelle des aboluten (oder globalen)

{f(xo) ä f(x)

f(xo) ä f(x)
Maximum

Der Funktionswert f(x) heißt dabei absolutes (oder globales) { . .“IL ° Mimmum

E von f auf I, wenn gilt

} für alle xeI.

ivonf
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Statt „Stelle des absoluten Maximums“ sagt man auch kurz „absolute Maximum-
stelle“ oder „absolute Maximalstelle“, analog für das Minimum. Absolute Maxima
und Minima gemeinsam nennt man absolute Extremwerte oder absolute Extremal-
werte. Jede Stelle, an der ein absoluter Extremwert angenommen wird, heißt kurz
absolute Extremalstelle.

Das absolute Maximum (Minimum) vonfauf I ist also der größte (kleinste) Wert,
den fauf I annimmt.

Ist die Funktion f auf dem Intervall [a‚ b] stetig, dann besitzt die Menge

M={f(x):a§x§b}
wegen Satz 3.7 eine endliche untere Grenze m] und eine endliche obere Grenze m;
(s. Band l). Man kann nun zeigen, daß die Zahlen m, und m, zu M gehören, also eben-
falls Funktionswerte sind. Natürlich ist dann ml das absolute Minimum und m, das
absolute Maximum von fauf [a‚ b]. Es gilt also der wichtige

Satz 3.8 (Satz von Weierstra/31)): Jede auf [a‚ b] stetige Funktion hat dort ein absolu- S. 3.8
tes Maximum und ein absolutes Minimum.

Beispiel 3.1 7: Die stetige Funktionf(x) = sin x hat auf dem Intervall [0, n] das abso-

lute Maximumf(—T2E = 1 und dasgabsolute Minimumf(0) =f('n:) = 0 z). Aufdem (nicht

abgeschlossenen!) Intervall [0, in) hat f kein absolutes Minimum, da die untere

Grenze ml = -1 des Wertevorrats von f nicht Funktionswert ist (s. Bild 3.9).

l’

Im)

7

______ _ _ rm
T
-7

Bild 3.9 Bild 3.10

Satz 3.9 (Satz von Bolzano3))z Ist die Funktionf auf [a‚ b] stetig und haben die Funk- S. 3.9
tionswerte f(a) und f(b) entgegengesetzte Vorzeichen, dann gibt es (mindestens) ein
E e (a, b) mitf(6) = 0.

In Bild 3.10 haben wir die Aussage von Satz 3.9 für den Fall f(a) > 0 undf(b) < 0
illustriert. Dieser Satz liefert eine einfache Methode zur Ermittlung von Intervallen,
in denen eine Gleichung der Form

f(x) = 0

eine Lösung E besitzt.

1) Karl Weierstraß (1815-1897), deutscher Mathematiker.
2) Ein absoluter Extremwert kann also auch an mehreren Stellen angenommen werden.
3) Bernard Bolzano (1781-1848), Mathematiker, wirkte in Prag.

3*
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Beispiel 3.18: Gesucht ist ein (möglichst kleines) Intervall, welches eine positive Lö-
sung 5 der Gleichung

„ 10"—x——2=0 (3.6)
enthalt.

Als elementare Funktion istf(x) = l0‘ — x — 2 stetig. Wegen

0 = —l 0,f( ) < (m)
f(l) = 7 > O

liegt nach Satz 3.9 also mindestens eine Lösung von (3.6) im Intervall (0, l). DerFunk-
tionswert im Mittelpunkt dieses Intervalls ist ‘

= fia _ §— = ‘)0,66 > 0. (3.8)

Aus (3.7) und (3.8) folgt, wiederum nach Satz 3.9,*genauer, daß (3.6) eine Lösung E

mit 0 < E < ä besitzt. Durch fortgesetzte lntervallhalbierung könnte man E sogar
beliebig genau eingrenzen. Zur praktischen Ermittlung eines Näherungswertes für E

ist dieses Vorgehen allerdings nicht geeignet, da es zu viele Rechenschritte erfordert.
In 7.7. werden wir wesentlich eflektivere Verfahren zur numerischen Lösung von

Gleichungen behandeln.

Offenbar kann man Satz 3.9 auch so formulieren: Die zwischen den Funktions-
wertenf(a) undf(b) gelegene Zahl 0 ist selbst Funktionswert. Diese Aussage läßt sich
folgendermaßen verallgemeinern:

lst die Funktionfauf dem Intervall Istetig. dann istjede zwischen zwei voneinander
verschiedenen Funktionswerten f(a) undf(b) (a, b e I) gelegene Zahl ebenfalls Funk-
tionswert. Mit anderen Worten: Das Intervallfla) ...f(b)vwird von den Werten der
Funktionf,,lfickenlos ausgefüllt“. Es gilt also der '

S. 3.10 ‘Satz 3.10: Die Funktion f sei auf dem Intervall I stetig. Dann ist ihr Wertevorrat,
also die Menge {f(x) : x e I}, ebenfalls ein Intervall 2).

Es sei betont. daß das Intervall I dabei nicht abgeschlossen und auch nicht be-
schränkt zu sein braucht.

a: Aufgabe 3.5: Zeigen Sie, daß die Gleichung

x - lg x — l = 0 ‚

im Intervall (2,3) mindestens eine Lösung hat.

as Aufgabe 3.6: Gegeben ist die Funktion

f(x) = sgnx (—oo < x < +00).

a) Notieren Sie den Wertevorrat von f.
b) Vergleichen Sie das Ergebnis von a) mit Satz 3.10.

‘) Hier und im folgenden setzen wir, wie üblich, zwischen exakten Wert und gerundeten Dezimal-
wert das Gleichheitszeichen.

1) Istf(x) = c für alle x e I, also fauf I konstant, dann entartet der Wertevorrat von fzu der ein-
elementigen Menge {s} = [c, e].
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3.4.4. Stetigkeit der Umkehrfunktion

Wir erinnern daran, daß eine auf einem Intervall I definierte Funktionfeinein-
deutig oder umkehrbar eindeutig heißt, wenn es zu jedem y aus dem Wertevorrat von f
genau ein x e I mit

f(x) = y (3~9)

gibt. Jede eineindeutige Funktionfbesitzt eine Umke/1rfunkn'0nf"‘1, deren Gleichung
man durch Auflösung von (3.9) nach x erhält:

x = f’1(y)-
Ist die Funktion fauf I außerdem stetig, dann ist der Wertevorrat von f, also der
Definitionsbereich vonf“, nach Satz 3.10 ein Intervall I* (s. Bild 3.1 1). Der folgende
Satz beantwortet die Frage nach der Stetigkeit von f" auf 1*.

Y

J»

x-f"(_yJ

L__
I

l Bild 3.1l

Satz 3.1l: Die Funktion fsei auf einem Intervall eineindeutig und stetig. Dann ist ihre
Umkehrfunktionf" aufderri Wertevorrat von f, der ebenfalls ein Intervall ist, stetig.

Jede streng monotone Funktion ist bekanntlich eineindeutig. Wir erwähnen, daß für
stetige Funktionen hiervon auch die Umkehrung gilt. Eine stetige Funktion besitzt
also genau dann eine Umkehrfunktion, wenn sie streng monoton ist.

Beispiel 3.19: Die Funktion

TE

z)
‘II

ist auf dem Intervall [— g, E] stetig und streng monoton wachsend; sie hat dort

also das absolute Minimum f<—

Nach Satz 3.10 ist daher ihr Wertevorrat das Intervall [— l, 1]. Auf diesem Intervall
besitzt sie eine stetige Umkehrfunktion, nämlich

f“:x s1)

f":y

T?f:y=sinx (—? ||/
\

x IIA

—l und das absolute Maximumf g = 1.

arcsiny (-1 g y
bzw.

ll arcsin x (-1 g x

S. 3.11



4. Ableitungen

4.1. - Vorbemerkungen

Zur Vorbereitung auf den Ableitungsbegrifl betrachten wir einige Beispiele.

Beispiel 4.1: Geschwindigkeit einer Bewegung. Ist der Weg s, den ein Massenpunkt
bei einer geradlinigen Bewegung zurücklegt‚ der benötigten Zeit t direkt proportional,
also

s = vt (v eine Konstante),

dann bezeichnet man den konstanten Quotienten

T = v (4.1)

als Geschwindigkeit der Bewegung. Im allgemeinen Fall ist das Weg-Zeit-Gesetz
einer geradlinigen Bewegung durch eine Funktion

s = s(t) (4.2)

gegeben (z. B. s r- {rgtz beim freien Fall). Es erhebt sich die Frage, wie nun die
Geschwindigkeit zu definieren ist. In einem Zeitintervall von to bis to + At legt der
Massenpunkt gemäß (4.2) den Weg

As = s(ta + At) — s(t°)

zurück. Daher wird man in Analogie zu (4.1) den Quotienten

As _ s(to + At) — s(t„)
E _ At (43)

als mittlere Geschwindigkeit (Durchschnittsgeschwindigkeit) der Bewegung in dem
betrachteten Zeitintervall bezeichnen. Es ist nun naheliegend, den Grenzwert

lim ä
mac Al‘

(falls er existiert) als momentane Geschwindigkeit v(to) der durch (4.2) gegebenen
Bewegung zur Zeit to zu bezeichnen:

U00): = Hm s(t„ + At) — s(t0) .

At—o0 At (4.4)

Beispiel4.2: Elastizität einer Ursache-Wirkung-Beziehung. Eine ökonomische Größe y
(z. B. der Energieverbrauch) sei eine Funktionfeiner anderen ökonomischen Größex
(z. B. des Produktionsvolumens) : y = f(x). Eine Änderung der Ursache x um
einen Wert Ax hat dann die Wirkungsänderung Ay = f(x + Ax) — f(x) zur Folge.

Man bezeichnet nun den Quotienten

g = f(x + Ax) — f(x)
Ax Ax

als durchschnittliche (absolute) Elastizität im Intervall x x + Ax und den Grenz-
wert

f(x + Ax) -f(x)
Ax

(4.5)

<p(x): = lim
Ax-0

(4.6)
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(falls er existiert) als (absolute) Elastizität der betrachteten Ursache-Wirkung-Be-
ziehung y = f(x) an der „StelIe“ x.

Bild 4.1

Beispiel 4.3: Anstieg einer Kurve. Gegeben sei eine Kurve C als Bild einer stetigen
Funktionf (Bild 4.1). Den Anstieg der Sekante durch zwei Kurvenpunkte

Po(xo‚f(xo))‚ P(xo + h,/"(xo + /1)).

f(xo + h) -f(xo)
h ‚

also

tan och =

kann man als mittleren Anstieg von C im Intervall x0 x0 + h ansehen. Als Anstieg von

C im Punkt Po wird man daher den Grenzwert

tan o; = [im {an a’. =

h-0 h—bO h
(4-7)

bezeichnen, sofern dieser Grenzwert existiert. Die Gerade durch P0 mit diesem An-
stieg heißt Tangente an die Kurve C im Punkt P0. Anschaulich gesprochen ist die Tan-
gente also die Gerade, in die die Sekante übergeht, falls P auf C gegen Po „strebt“.
(In 2.1.1., Beispiel 2.1, haben wir diese Überlegungen schon einmal für den speziellen
Fall f(x) = x2, x0 = -3; angestellt.)

4.2. Der Begriff der Ableitlmg

4.2.1. Definition der Ableitung

Die Beispiele des vorigen Abschnittes gingen von sehr unterschiedlichen Frage-
stellungen aus. Sie führten aber stets zu denselben mathematischen Überlegungen,
die wir — in den Bezeichnungen von Beispiel 4.3 — noch einmal zusammenstellen wollen.

Gegeben sei eine Funktion f, die in einer Umgebung einer Stelle x0 definiert ist.
Ferner sei h # 0 eine Zahl, für die auch noch x0 + h in dieser Umgebung von x0
iegt. Zur Argumentdiflerenz

Ax:= (xo + h) — x0 = h (4.8)

kann man dann die Funktionswertdiflerenz

AyI= f(xo + h) - f(xo) (4-9)
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bilden. Der Quotient

Q _ f-(xo +17) ’f(Xo)
Ax _T

heißt Dzflerenzenquotient der Funktion f an der Stelle x0. Für festes x0 ist die rechte
Seite von (4.10) eine Funktion von h,

M : rm + h; —/(x„> y

(h =F 0) (4.10)

(4.11)

die in einer punktierten Umgebung von h = 0 definiert ist. Die Beispiele des vorigen
Abschnittes lenken nun unsere Aufmerksamkeit auf den Grenzwert

„m f(xo + h) —/<x„> _

mo h
(4. 12)

Definition 4.1: Die in einer Umgebung von x0 definierte Funktion f heißt an der Stelle
x0 diflerenzierbar, wenn der Grenzwert (4.12) existiert. Dieser Grenzwert heißt l. Ab-
leitung oder Ableitung 1. Ordnung der Funktion f an der Stelle x0 und wird mit f’(x„)
bezeichnet, also

‚ . + I —I f(xo);=£1;% _ (4.13)

Mit Ax statt h kann man für (4.13) auch

f’(xo) = Alimo ——-—————”("°+ L12 - fix”) (4.14)

schreiben. Eine weitere Schreibweise erhält man mit x 2 xo + h, also x —> x0 statt
h —> 0: _

f’(x„) = lim L7")_f("") . (4.15)
x-vxo X " x0

Für die 1. Ableitungf’(xo) sind auch die Symbole

‚ y ' „d d/(x)
x=x„ dx „x0 dx x=x0

und die Bezeichnung Diflerentialquotient I. Ordnung von f an der Stelle xo üblich.

Man beachte, daß den Symbolen dy und dx in % (lies ,,dy nach dx“) zunächst keine
selbständige Bedeutung zukommt. x

Die Berechnung der Ableitung einer Funktion nennt man Diflerentiation.

4.2.2. Bedeutung der Ableitung

Das Beispiel 4.3 gestattet eine geometrische Deutung der 1. Ableitung einer an der
Stelle xg differenzierbaren Funktion f: Mit den dort eingeführten Bezeichnungen ist

tan 1x =f’(x„) (4.16)

der Anstieg der Bildkurve C vonfsowie der Tangente an C im Punkt (x0, f(xu)). Diese
Tangente hat also die Gleichung

I J’ = f(Xo) +f,(Xo) ‘ (X — xo)- (4-17)
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Betrachten wir noch einmal die Beispiele 4.1 und 4.2. Nach (4.4) gilt‘)
DUO) = 5'00), (4-18)

d. h., die Geschwindigkeit einer geradlinigen Bewegung ist die I. Ableitung der Weg-
Zeit-Funktion nach der Zeit. Entsprechend ist die (absolute) Elastizität <p(x) einer
ökonomischen Ursache-Wirkung-Beziehung y = f(x) nach (4.6) die Ableitungf’(x).
Auf Grund ähnlicher Überlegungen definiert man auch viele andere Begriffe der
Technik, der Naturwissenschaften und der Ökonomie, wie z. B. Induktionsspan-
nung einer Spule, chemische Reaktionsgeschwindigkeit, Wachstumsgeschwindigkeit
eines Organismus, Intensität einer Produktion, als l. Ableitung gewisser Funktionen.
Verallgemeinernd kann man die l. Ableitung einer Funktion als Maß für die „Än-
derungsgeschwindigkeit“ dieser Funktion ansehen.

Aufgabe 4.1: Fließt durch einen bestimmten Querschnitt eines elektrischen Leiters a:

eine zeitlich konstante Ladung, so bezeichnet man den Quotienten €- als Stromstärke,

wobei Q die während der Zeit t durch den Querschnitt fließende Ladungsmenge be-
deutet. Nun sei Q(t) die zum Zeitpunkt t durch den Querschnitt fließende Ladungs-
menge (diese sei jetzt also zeitabhängig). Definieren Sie für diesen Fall in sinnvoller
Weise die mittlere Stromstärke in einem Zeitintervall n, to + AI und die Strom-
stärke zur Zeit to.

Aufgabe 4.2: Ein als Gerade (x-Achse) idealisierter Stab sei mit Masse belegt. Ist die a:

Massenbelegung gleichmäßig (homogener Stab), so bezeichnet man den Quotienten

g = {f als (Linien-) Dichte der Belegung. Dabei ist m die aufdie Länge [entfallende

Masse. Nun sei der Stab inhomogen und m(x) die im Intervall [0, x] (x > 0) gelegene
Masse. Geben Sie für diesen Fall eine sinnvolle Definition der mittleren Dichte der
Belegung in einem Intervall x0 x9 + Ax und der Dichte 90:0) an der Stelle
x0 (x0 > 0).

4.2.3. Beispiele

Wir wollen nun die Ableitung einiger Funktionen an einer beliebigen Stelle x0
berechnen.

Beispiel 4.4: f(x) = c (c eine Konstante).

Für den Diflerenzenquotienten von f an der Stelle x0 gilt

ME __. 3;”. —_— o (h + o)_
h h

Folglich ist auch

„m f(xo + h) —/<x„) = o,

mo h

d. h., die Funktionfist an jeder Stelle x0 differenzierbar und hat dort die Ableitung

f’(xo) = 0-

’) Die 1. Ableitung nach t bezeichnet man im allgemeinen durch einen Punkt über dem Funk-
tionssymbol (auch dann, wenn t nicht die Zeit bedeutet).
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Beispiel 4.5: f(x) = x" (n eine natürliche Zahl). (4.19)

Wir bilden den Difierenzenquotienten vonfan der Stelle x0 und wenden auf (x0 + h)"
die binomische Formel (s. Band 1) an:

f(xo + h) “f(xo) = (x0 ‘l’ h)" — x5
h h

= 1 [x3 + x3"h + x3"h’+ + h" — xg]

= x8“ + x3"h + + h“.
Hieraus folgt

„m f(xo + h) —f(xo) z (r1w)x3-1 z ‚m.-.
h-‚o h

Die Funktionfist somit an jeder Stelle x0 diiferenzierbar und hat dort die Ableitung

f'(xo) = Mfl“- (4-20)

Speziell erhält man als Ableitung der Funktionf(x) = x2 an einer beliebigen Stelle x0
den Wert

f'(xo) = 2x0

und an der Stelle x0 = f somit

fH) = 1- ‘)
Die Tangente t an die Parabel y = x‘ im Punkt PDQ», i) hat also nach (4.16) den An-

stieg tanoc = f’(«}) = 1 und daher den Anstiegswinkel zx = E = 45°. Nach (4.17) ist
4

y=%+1(x—;-), also y=x—«}
die Gleichung von t (s. Bild 4.2).

y

z
‘ V Bild 4.2

Beispiel 4.6: f(x) = sin x. (4.21)

Wir bilden wieder den Differenzenquotienten und formen ihn unter Anwendung
eines Additionstheorems um:

sin(x„+h)—sinx„ 2 x„+h—xo xo+h+xo
jjhj = 7 Sm Z2?°°S *7?"

sing h

h cos (x0 + f). (4.22)

7
X f = 1 (vgl. Beispiel 2.2).
1_

x_.§x—
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Für h —> 0 gilt auch g» 0. Daher ist

sin——

l‘ = l
all‘; i

2

(vgl. 2.5. (2.31)]. Ferner gilt wegen der Stetigkeit der Kosinusfunktion

. h
hm cos (xo + ?) = cos xo.
h—»0

Damit folgt aus (4.22)

d x = = cos xo, (423)
x=x° ..

Aufgabe 4.3: Ermitteln Sie die Gleichung der Tangente an die Kurve y = sin x in dem >I=

Kurvenpunkt mit der Abszisse x0 = ä 7:.

4.2.4. Einseitige Ableitungen

Mit dem Begriff der einseitigen Grenzwerte definiert man einen entsprechenden
Begriff für die Ableitung einer Funktion. Ist eine Funktionfan einer Stelle x9 e D(f)
nicht differenzierbar, existiert also der Grenzwert des Differenzenquotienten nicht,
so kann man untersuchen, ob wenigstens einer der einseitigen Grenzwerte existiert.

Definition 4.2: Eine (mindestens) in einem Intervall [x„, x0 + e], c > 0, definierte D. 4.2
Funktion f heißt an der Stelle x0 rechtsseitig diflerenzierbar, wenn der rechtsseitige
Grenzwert

um f(xo + h) -f(xu)
h—.+o /1

existiert. Dieser Grenzwert heißt rechtsseifige Ableitung von f an der Stelle x0 und
wird mit f,’(x0) bezeichnet. Analog ist die linksseitige Ableitung von f an der Stelle x0
definiert:

W0) =3?“ mo + h]: —f(xo) .

Aus Satz 2.2 folgt unmittelbar der

Satz 4.1: Die Funktion f ist genau dann an der Stelle x0 di/ferenzierbar, wenn sie dort S. 4.1
sowohl rechtsseitig als auch Iinksseitig diflerenzierbar ist und f,’(xo) = fi’(x0) gilt.
In diesem Falle ist

f’(xo) = f,'(xo) = f:'(xo)~

Ersetzt man in der Tangentengleichung (4.17) die Ableitung f’(x0) durch f‚’(x„)
bzw. f‚’(x„), so erhält man die Gleichung der jeweiligen einseitigen Tangente.

Beispiel 4.7: Die Funktion

f(x) = |x3 —- 1| (—oo < x < +00)
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soll auf (einseitige) Differenzierbarkeit an der Stelle x9 = 1 untersucht werden. Wegen

x3—l für x21,
1 f(x)fi{—(x3—1') für x<1,

350

m+h)#{ (1+h)3—1=3/z+3h2+h3 für hgo,
_I “ —[(1+h)3—11=—(3/2+3/12+/:3) für h<0

E” .

f(1+l1)—f(l):: 3+3h+h2 für h>0‚
h —(3+3h+h2) für h<0.

Daraus folgt

f‚’(l) = lim (3 + 3/1+ h3) = 3',
h~+0

f,’(1) =)Iim°[-—(3 + 3h + h’)] z -3.

Die Funktionfist an der Stelle x0 = l also rechtsseitig und linksseitig diflerenzierbar,
nach Satz 4.1 aber nicht differenzierbar (schlechthin). Die Bildkurve von f hat im
Punkt (1; 0) die rechtsseitige Tangente

t‚:y = 3(x —— l)
und die linksseitige Tangente

t, zy = —3(x -1).
Die Verschiedenheit der einseitigen Ableitungen spiegelt sich in der Bildkurve von f
als „Knick“ oder „Spitze“ wider (s. Bild 4.3).

Bild 4.4a

y-/x’—1/

y y-/(K) (175)! =a)

Bild 4.3 Bild 4.4b
g a x

Einseitige Ableitungen treten auch in den Anwendungen auf.

Beispiel 4.8: Ein Balken der Länge a sei an einem Ende eingespannt und am anderen
Ende gelenkig gelagert. Greift an dem letztgenannten Ende eine Kraft F in Längs-
richtung an, so biegt sich der Balken (s, Bild 4.4a). Nach Einführung eines geeigneten
Koordinatensystems kann die Balkenbiegung durch eine Funktion

y =f(x) (0 ä x é a)

beschrieben werden (s. Bild 4.4b). Diese Funktion ist an der Stelle x = 0 rechtsseitig
und an der Stelle x = a linksseitig differenzierbar, wobei auf Grund der technischen
Vorgaben gilt:

fi'(0) = 0, f{(t1) + 0-

Wir betrachten nun noch eine Funktionf, für die an einer Stelle x0 e D(f) keine
der beiden einseitigen Ableitungen existiert.
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Beispiel 4.9: Die Funktion

f(x) = G": (x e o)

ist für x < 0 nicht definiert und daher an der Stelle x = 0 nicht linksseitig differen-
zierbar. Für den rechtsseitigen Grenzwert des Differenzenquotienten an dieser Stelle
erhält man f _ ,_

lim ii). v lim —l__
h—» + 0 h

‚i +00.
;.»+o V];

so daßfan der Stelle x 2 O auch nicht rechtsseitig differenzierbar ist. Man sagtjedoch
gelegentlich, f besitze an der Stelle x = 0 eine uneigentliche rechtsseitige Ableitung,
und ihre Bildkurve habe dort eine vertikale rechtsreitige Tangente (vgl. Bild 2.8).

Aufgabe 4.4: Untersuchen Sie die Funktion f(x) = [x| (~00 < x < +00) auf ein-
seitige Diiferenzierbarkeit an der Stelle x = 0. .

4.2.5. Ditferenzierbarkeit auf einem Intervall

Analog zur Stetigkeit auf einem Intervall definiert man die Diflerenzierbarkeit
einer Funktion auf einem Intervall.

Definition 4.3: Eine auf einem Intervall I definierte Funktion f heißt auf I difi'erenzier-
bar, wenn gilt:

I . f ist in jedem inneren Punkt von I diflercnzierbar.
2. Ist der linke (bzw. rechte) Randpynkt von I ein Element von I, dann istf dart rechts-
seitig (bzw. Iinksseitig) dz/ferenzierbar.

Istfeine auf einem Intervall I differenzierbare Funktion, dann kann man jedem
x e] die Zahlf’(x) zuordnen‘). Durch diese Zuordnung erhält man eine auf I defi-
nierte Funktion, die man Ableitung von faufI nennt und mit f’ bezeichnet.

Beispiel 4.10: Nach Beispiel 4.5 ist die Funktionfmit

f(x) = x“ (—oo < x < +00) (4.24)

auf dem ganzen Intervall (— oo, + oo) ditferenzierbar, und für ihre Ableitungf’ gilt

f’(x) = nx"*1 (—oo < x < +00). (4.25)

Für (4.24) und (4.25) schreibt man auch kurz

(x")’ = nx"“ (-00 < x < +00).

Analog gilt nach Beispiel 4.6

(sinx)’ = cosx (——oo < x < +00).

l) Ist x ein Randpunkt von I, dann istf’(x) durch die entsprechende einseitige Ableitung an dieser
Stelle zu ersetzen.

4(
-

D. 4.3
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4.3. Diiferenzierbarkeit uud Stetigkeit

Satz 4.2: Eine an der Stelle x0 diflerenzierbare Funktionf ist dort auch stetig.

Beweis: Es gilt

f(x„ + h) = -h +f(xo) (h =i= 0). (435)

Für h —> 0 existieren nach Voraussetzung die einzelnen Grenzwerte der rechten Seite
von (4.26). Daher existiert auch der Grenzwert 1imf(xo + h), und es gilt

z._.o

1imf(xo + h) =f’(xo) ' 0 +f(xo) =f(xo)‚
h-0

folglich istfan der Stelle x„ stetig [Vgl. 3.1., (3.2)]. I

Umgekehrt braucht eine an der Stelle x0 stetige Funktion dort nicht differenzier-
bar zu sein, wie das Beispiel

f(X) = lxl‚
zeigt (vgl. Aufgabe 4.4). Die Stetigkeit einer Funktionfan einer Stelle x0 ist also eine
notwendige, aber nicht hinreichende Bedingung für die Ditferenzierbarkeit von f an
dieser Stelle. Eine entsprechende Aussage gilt für den Zusammenhang zwischen ein-v
seitiger Stetigkeit und einseitiger Difierenzierbarkeit.

xo=0

4.4. Allgemeine Differentiationsregeln

In diesem Abschnitt behandeln wir Regeln, nach denen man die Ableitung kompli-
zierter Funktionen auf die Ableitungen ihrer einzelnen „Bestandteile“ zurück-
führen kann.

4.4.1. Ableitung von Summe, Produkt und Quotient

Satz 4.3: Die Funktionenfund g seien an der Stelle x0 dzflerenzierbar. Dann sind auch
die Funktionen f + g, c -f (e eine Konstante) undf - g an der Stelle xo diJfirenzier-
bar, und es gilt dort‘)

(f+ S’), =f' + 8'» (4-27)

(0 'f)' = C ‘f’, (4-28)

(f' g)’ = f’ ' g + f‘ g’ (Produktregel). (4.29)

Ist ferner g(x„) =#= 0, dann ist auch die Funktion g an der Stelle x0 dtflerenzierbar, und
es gilt dort

I (;)'=f'~g—f-g’
g g’

Beweis der Produkzregel (die übrigen Formeln beweist man analog): Mit einem
Zuwachs Ax = h # 0 bilden wir den Differenzenquotienten vonf - g, den wir geeig-

(Quotientenregel). (4.30)

1) Aus Gründen der Übersichtlichkeit lassen wir in den folgenden Formeln das Argument x0
weg.
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net umformen:

A(f‘g) _ f(Xo + h)'g(xo + h) "f(xo)'g(Xo)
Ax _ h

)_ g(xo + h) - g(xo)_——:—h .

Für Ax —> 0, also h —> 0, streben die Dilferenzenquotienten vonfbzw. g gegenf’(x.‚)
bzw. g’(xo). Da g an der Stelle x0 stetig ist (s. Satz 4.2), gilt außerdem

1img(xo + h) = g(xo).
h40

= .g(x° + h) +f(xo

Folglich existiert

(f ' g)’ (xo) = lim
Axafl

und es gilt

(f ’ g)’ (xo) = f’(xo) ' g(xo) + f(xo) 'g'(xo),
also die in der Kurzform (4.29) notierte Regel. I

Wegen

(c)’ = 0 (4.31)

(vgl. Beispiel 4.4) ist (4.28) übrigens ein Spezialfall von (4.29).
Durch vollständige Induktion kann man zeigen, daß (4.27) analog für eine beliebige

endliche Anzahl von Summanden gilt.
In den folgenden Beispielen bilden wir die Ableitung an einer beliebigen Stelle x.

A(f’g)
Ax

Beispiel 4.11: Für die Funktion y = <p(x) = x5 — 5x‘ + 6x — 2 gilt nach (4.27)
und (4.28) für alle x

y’ = (x5) — 50:4)’ + 60c)’ — <2)’,

also wegen (4.25) und (4.31)

y’=5x“—5-4x3+6—0=5x‘—20x3+6.

Beispiel 4.12: Gesucht ist die l. Ableitung der Funktion

x3 — 2x — 3

x2 — l '

y = (4.32)

Die Funktionen

f(x)=x3——2x——3 und g(x)=x2—1
sind für alle x differenzierbar mit

f’(x) = 3x2 —— 2, g’(x) = 2x.

Ferner ist g(x) * 0 für alle x mit [x[ # 1. Für diese x ist (4.32) definiert und differen-
zierbar, wobei nach der Quotientenregel gilt

y, _ (f(x))’_ (3x2 — 2)-(x2 — 1) — (x3 — 2x — 3)-2x
W (x2 — 1)2

also
_x‘—x2+6x+2

y — (|xl=1= l).
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In Verallgemeinerung der Beispiele 4.1l und 4.12 gilt ofienbar: Die Ableitung einer
ganzen (bzw. gebrochenen) rationalen Funktion ist wieder eine ganze (bzw. gebro-
chene) rationale Funktion.

Beispiel 4.I3: Für die Funktion y = x3 sinx erhält man nach der Produktregel
mit/(x) 2 x3 und g(x) = sin x für alle x

y’ = 3x2-sinx + x3‘cosx.

Die Produktregel läßt sich auf den Fall einer beliebigen endlichen Anzahl von

Faktoren erweitern. Zum Beispiel erhält man für die Ableitung eines Produkts
dreier Funktionenf, g, h durch zweimalige Anwendung von (4.29)

Ugh)’ = Rf?) hl’ 2 (fg)’h + (fg)/1’,

(fg/I)’ = f'g/I + fg'h + fg’/» (4.33)

Aufgabe 4.5: Bilden Sie die Ableitungen der folgenden Funktionen:

a)f(x) = 2x3 — 5x — 3 sinx + sing,
b)f('x) = (x“ + 4x) sin x,

c)f(x) =

Aufgabe 4.6: DasWeg-Zeit-Gesetz des freien Falls lautet bekanntlich s = ät’ + vot+so

(g: Erdbeschleunigung, v0 bzw. so: Geschwindigkeit bzw. Weg zur Zeit t = 0). Wie
groß ist die Geschwindigkeit dieser Bewegung zu einer beliebigen Zeit t g 0?

4.4.2. Ableitung mittelbarer Funktionen (Kettenregel)

Satz 4.4: Ist die Funktion g(x) an der Stelle x = x0 und die Funktionf(z) an der Stelle
z = g(x0) diflerenzierbar, dann ist die mittelbare Funktion

F(X) =f(g(x))
an der Stelle x f: x0 diflerenzierbar, und es gilt die sag; Kettenregel

I F/(Xo) Zfllzo) ' 8,050) mit zu = 805a)-

Setzt man

y = f(z)‚
dann ist

y =f(g(x)) = F(x).

und man kann (4.34) in der folgenden einprägsamen Form schreiben‘):

I 2 _ 2. d:
dx dz dx '

Beispiel 4.14: Gesucht ist die l. Ableitung der Funktion

y = F(x) = sin (x2).

(4.34)

z = g(x)‚

(4.35)

(4.36)

‘) Die Argumente lassen wir wieder weg.
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Wir setzen

J’ =f(z) = sin z, z = g(x) = x2

und erhalten für jedes z bzw. x

dy_ dz_ .E—cosz, E—2x.

Daher ist auch (4.36) für jedes x differenzierbar, und es gilt

91-- cosz-2x mit z = x’,
dx

also
dy _ 2E — 2x cos (x )‚

Die Kettenregel läßt sich auf den Fall ausdehnen, daßin Funktionen „ineinander-
geschachtelt“ sind. Ist z. B.

y = f(g(h(x)))
und setzt man

y =f(z)‚ z = g(w)‚ w = h(x)‚
dann gilt unter entsprechenden Voraussetzungen wie in Satz 4.4 die zu (4.35) analoge
Formel

dx_ dy_dz.dTw
Ty-E d7 dx" (4-37’

Beispiel 4.15: Wir betrachten die Funktion y = 5in3 (4x2 — 5). Mit
y=z3, z=sinw, w=4x2—5,

also
dy _ 2 dz _ dw _

—a-Z-—3z, cT—-cosw, dx—8x,

erhält man nach (4.37) für jedes x

§—: = 322 - cos w - 8x z 24x 5in2 (4x2 — s) cos (4x2 — 5).

Aufgabe 4. 7: Differenzieren Sie die folgenden Funktionen:

a) y = (2x3 — 3x + 4 sin x)’,
b)y = sin (x3 + 3x2 — 8)‘.

4.4.3. Ableitung der Umkehrfunktion

Wir wollen nun einen Zusammenhang zwischen der Ableitung einer Funktion und
der ihrer Umkehrfunktion herstellen. Bild 4.5 zeigt die Bildkurve C einer einein-
deutigen, diflerenzierbaren Funktionf(Gleichung: y = f(x)). Die Tangente t an C im
Punkt P0(xo,f(x°)) hat den Anstiegswinkel ac. Die Kurve C ist aber zugleich die
Bildkurve der Umkehrfunktionf“ (Gleichung: x = f"(y)), wenn man sie „von der
y-Achse her“ betrachtet. Dabei ist ß der Anstiegswinkel der Tangente I. Es gilt also

1 _ 1

tanoc — f’(xo)'(f‘1)’(y0) = tanß = tan —— ex) = COIOL =

4 Piotr, Diif.- u. lntegr.
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Nach diesen Überlegungen ist die Gültigkeit des folgenden Satzes, den wir nicht be-
weisen wollen, anschaulich einleuchtend.

Y

x,-/"(y,J 5
W

yg-I’(19)

v! Bild 4.5
x

S. 4.5 Satz 4.5: Die Funktionf set‘ eineindeutig und in einer Umgebung der Stelle x0 differen-
zierbar mit f’(x0) # 0. Dann ist ihre Umkehrfunktion f“ an der Stelle yo = f(xo)
dtflerenzierbar, und es gilt

l (f"‘)’ (yo) = mit yo =f(xo)‘ (4-38)

Unter Beachtung der äquivalenten Gleichungen

x =f"(y). y =f(x)
kann man (4.38) auch in der suggestiven Form

dx lTy — 1; (4.39)

dx

schreiben.

Beispiel 4.16: Die Funktion

y = f(x) = sin x (m < (4.40)

ist eineindeutig und differenzierbar mit

2;: = (sin x)’ = cos x # 0 (Ix! < (4.41)

Ihre Umkehrfunktion

X =f"(y) = arcsiny (lyl < 1)

ist daher ebenfalls diflerenzierbar, und es gilt nach (4.39) und (4.41)

(arcsin y)’ = ——— = —— = . (4.42)

Fiir |x] < g ist cos x > 0 und daher

cosx = x/cos’ = \/1- sinzx,
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so daß aus (4.42) wegen (4.40) folgt

(lyl < 1)-
2

(arcsin y)’ = ji-
4 x/1 - y

Ersetzt man in der letzten Formel y durch x, so erhält man schließlich

. l
(arcsm x)’ = —~——— (Ixj < l). (4.43)\/l — x2

4.5. Ableitungen einiger Grundfunktionen

4.5.1. Tabelle der Ableitungen

In der folgenden Tabelle haben wir die Ableitungen einiger Grundfunktionen zu-

sammengestellt. Diese Formeln sind gewissermaßen das „ABC des Differenzierens“;
man sollte sie sich daher unbedingt einprägen.

Hinsichtlich der Ableitungen der übrigen Grundfunktionen sei auf einschlägige
Formelsammlungen, z. B. [l], verwiesen.

(c)' = 0 (c eine Konstante) (4.44)

(x’)’ = rxx"“1 (s. Bemerkung 4.1l) (4.45)

(e")’ : e” (—oo < x < +00) (4.46)

(a")’ = a" ln a (a > 0, ——oo < x < +00) (4.47)

1

(ln |x|)’ = y (x + 0) (4.48)

(sin x)’ z cos x (—oo < x < +00) (4.49)

(cos x)’ = —sin x (—oo < x < +00) (4.50)

(tan x)’ = $51: = 1 + tanz x (X + g + krc, k ganz) (4.51)

(cot x)’ — = —(1. + cot’ x) (x 4: kn, k ganz) (4.52)

(arcsin x)’ = +1- (|x| < 1) (4.53)
«/1 — x2

(arctan x)’ = ä?- (-00 < x < +00) (4.54)

Bemerkung 4.1: Formel (4.45) gilt
für alle x, falls on eine natürliche Zahl ist,

für alle x + 0, falls o: eine negative ganze Zahl ist,

für alle x > 0, falls o: eine beliebige reelle Zahl ist.

Bemgrllficung 4.2: Formel (4.47) geht für a = e über in (4.46), und aus (4.48) folgt
spezie

(In x)’ = (x > 0).

>
<

I>
—

4x
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Bemerkung 4.3: Von Nutzen ist gelegentlich auch die Formel

lxl’ =i = sgnx (x# O).
Ixl

4.5.2. Beweis der Formeln von 4.5.1.

Die Formeln (4.44), (4.49) und (4.53) haben wir bereits bewiesen (Beispiele 4.4, 4.6
und 4.16). Ferner haben wir (4.45) für den Fall bewiesen, daß on = n eine natürliche
Zahl ist (Beispiel 4.5). Nun sei on = —n eine negative ganze Zahl.
Dann gilt nach der Quotientenregel

„‚ 1' 0-x"—1-nx""(x)=(_X)l.):j.)c2T._
=—nx”"1=zxx"“‘ (x¢0),

also ebenfalls (4.45). Auf den Beweis von (4.45) für beliebiges o: kommen wir weiter
unten zu sprechen.

Zum Beweis von (4.48) betrachten wir zunächst den Fall, daß x > 0 ist. Dann gilt
lxl = x, also

In Ix} == lnx (x > 0).

Mit einem Zuwachs h + 0, für den auch noch x + h > 0 ist, bilden wir den Difleren-
zenquotienten von f(x) = ln x an der Stelle x, den wir mit x erweitern und nach den
Logarithmengesetzen umformen:

ln(x+h)—lnx =i_£lnfi+h =Lln(I +1)?
h x h x x x

Setzt man ä = r, dann gilt t—> 0 für h —> O. Wegen

l
rlim(l + t) 2 e

t-0

[s. (2.7)] und der Stetigkeit von f(x) = ln x an der Stelle x = e erhält man schließ-
lieh

l
=%1im1n(1+,)T(ln x)’ = lim

i140 1-00

1

= éln (l + 07] = älne =% (x > 0).

Nun sei x < 0, also

y = ln |x| = 1n (—x) (x < 0).

Wir setzen

y = ln z, z = —x.

Wegen x < 0 ist z = —x > 0, und nach der soeben bewiesenen Formel (sowie nach
(4.45) mit ac = 1) gilt

dy _ l dz
= -1,d7‘? E
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also nach der Kettenregel

‚ dy 1 _ 1

[1n(—x)] -'a—?( 0-; (x<0)-

Damit ist (4.48) für jedes x + 0 bewiesen.
Mit (4.48) kann man (4.46) nun leicht beweisen, indem man beachtet, daß x = e’

die Umkehrfunktion von y = ln x (x > 0) ist. Nach (4.39) erhält man

‚ dx_ 1 _ 1 _ _

(Cy) _Ty_ Q _(1nxY _ -6?’
dx

also (4.46), wenn man y durch x ersetzt.
Zum Beweis von (4.47) schreiben wir

y = a: = (elnAz)x = exlnn

und setzen

y = e‘, z = xln a.

Dann gilt unter Verwendung bereits bewiesener Regeln

dy 1 dz
E " ’ a: - ‘“ “’

also nach der Kettenregel

2- = e’-Ina = e"'““lna = a"ln a.
dx

Entsprechend kann man nun (4.45) für beliebiges zx beweisen, indem man gemäß
xa : (elnx):z = eoilflx (x > 0)

umformt und die Kettenregel anwendet.
Aus der bereits bewiesenen Formel (4.49) folgt (4.50) wegen

_ 2
cosx - sin (W x)

ebenfalls mit der Kettenregel.
Zum Beweis von (4.51) bzw. (4.52) wendet man auf

sm x cos x
tan x = bzw. cot x = .

cos x sm x

die Quotientenregel an.

Aus (4.51) folgt schließlich (4.54) als Ableitung der Umkehrfunktion.
Die in Bemerkung 4.3 angegebene Formel folgt unmittelbar durch getrennte Be-

trachtung der Fälle x > O und x < 0.

Aufgabe 4.8: Führen Sie die Beweise der Formeln (4.45) (für ex beliebig reell, x > O), a:

(4.50), (4.51), (4.52) und (4.54) in der angedeuteten Weise aus.

Aufgabe 4.9: Beweisen Sie *

a) (sinh x)’ = cosh x, b) (cosh x)’ = sinh x.

Hinweis: Verwenden Sie die Definitionen von sinh x und cosh x.
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4.6. Technik des Dilferenzierens

4.6. 1. Beispiele

An einigen Beispielen wollen wir die Anwendung der Formeln von 4.5.1. üben.

. . 5 -

Beispiel 4.I7:f(x) = F « 4\/x (x > 0). 5

Nach (4.45) und Bemerkung 4.1 ist f,(x) = F = 5x‘3 für alle x # 0 und f2(x)

= 4J} = —4x* für alle x > 0 differenzierbar. Daher ist f=f‚ +f2 für alle
x > 0 differenzierbar mit

f’(x) = 5'(-3)x“‘ — 4'%x'* (x > 0),

‚ 15 2f(x)—”7r“\/T (X>0)-

Im folgenden verwenden wir die in 4.5.1. angegebenen Formeln, ohne jeweils dar-
auf zu verweisen.

Beispiel 4.18: Durch

X
tan —f(x) = In 2

ist eine Funktionffür alle diejenigen x definiert, für die tan g definiert und von null

verschieden ist, also für alle x # k7r (k ganz). Für diese x ist f auch differenzierbar.
Mit

y=ln [z], z=tanw, w=%‚
also

fl_i E‘; dW_1
dz_z’ dwAcoszw’ dx-Z’

liefert die Kettenregel

‚ _ dy _1„ 1 .1_ 1

fOO-Ü’? coszw -f_2tan£_COS2:’
2 2

also
, 1 1f(x)=———fi= Sinx (x4=kn‚kganz).

Zsin-z-"Cos?

Bei einiger Übung kann man häufig die zur Anwendung der Kettenregel erforder-
lichen Substitutionen in Gedanken ausführen und sogleich das Ergebnis notieren.

1-.»

Beispiel 4.19: f(x) = cose‘+" (x # -1).
Offenbar ist f für alle x =i= —l differenzierbar. Man erhält nach der Kettenregel,
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wobei in Gedanken

y=cosz‚ z=e“', w=

gesetzt wird,
3:." _“_" I—x ’f/(x)=_Sinel+X.el+X.(1+ )

und weiter nach der Quotientenregel

f’(x) = —sinel%.e% (-1)-(1 gym — x)~1’
also

l —x I—x
fl’ ä _(1+x)Ze+ sme+ (x=i= 1).f’(x) =

Aufgabe 4.10." Differenzieren Sie die folgenden Funktionen. Der Definitionsbereich *

jeder dieser Funktionen sei stets die Menge aller x, für die der rechts vom Gleichheits-
zeichen stehende Ausdruck einen Sinn hat. Welche Werte x sind das? Für welche
dieser Werte x sind die Funktionen jeweils differenzierbar?

8)f(x) = xj/E + é — 3"x3,

b)f(x) = ln jln xl,

c)f(x) = arctan ä,

l
d)f(x) — 1?“,
e)f(x) = e"" — cos‘/1 — 2x,

f)f(x) = cosh’ I" x2 (s Auf abe 49)
l + x2 ' g " '

Aufgabe 4.11: Ermitteln Sie alle Punkte der Parabel a:

y = (x —1)’.(x +1),
zu denen eine zur x-Achse parallele Tangente gehört.

Aufgabe 4.12: Die gedämpfte freie Schwingung eines harmonischen Oszillators a:

(Federschwingung) wird durch ’

s(t) = A e'7' cos (wt — an)

beschrieben (A, cc, y, w Konstanten). Bestimmen Sie die Geschwindigkeit dieser Be-
wegung zu einer beliebigen Zeit t g 0. v

4.6.2. Logarithmische Dilferentiafion

Es seifeine Funktion, die auf einem Intervall differenzierbar und von null verschie-
den ist Für die Ableitung der Funktion

u = In |f(x)l
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‚erhält man nach der Kettenregel

‚ _ 1 _ ‚u-K”/m,
also fI( )

‚ _ x
[1n|f(X)l] m f(x) (f(x) =l= 0)- (4.55)

Wegcn (4.55) heißt der Quotient f (x) auch logarithmisc/ze Ableitung der Funktionf.
Aus (4.55) folgt f(x)

f(x) =f(x) ' [1nlf(x)l]'- (4.56)

Diese Formel kann man gelegentlich zur Berechnung der Ableitungf’(x) benutzen.

(x — 2) e“
Beispiel 4.20:f(x) = (x # 1, x # ——3).

(x — I)’ (x + 3)=

Die unmittelbare Berechnung vonf’(x) ist hier recht aufwendig. Dagegen erhält man
für In If(x)| nach den Logarithmengesetzen

]n]f(x)| =]n|x—2| +2x—- 3]n[x—— 1| —21n]x+ 3]

mit der leicht zu bildenden Ableitung

1 3 2

‘”W””=:t3+2‘x_1 7:7
Daraus folgt nach (4.56)

(x—2)e2" [ 1 3
(x _ Ü.“ + W + 2 — (4.57)f(x): x—2 x—1_x:3]

oder
e xf/(x)= [1+2(x_2)_i_ÄL-.2L]_

x — l x + 3

(4.58)

Mit dem Übergang von (4.57) nach (4.58) wurde die hebbare Unstetigkeit der rechten
Seite von (4.57) an der Stelle x = 2 beseitigt. Dafnach Satz 4.3 auch an der Stelle
x = 2 differenzierbar ist, gilt nun (4.58) auch für diese Stelle, was wir ohne Beweis
mitteilen.

In dieser Weise bildet man auch die Ableitung von Funktionen der Form

f(x) = [u(X)]""" (übe) > 0).

indem man zunächst die Funktion‘)

In f(x) = v(2c) - In u(x)

(nach der Produktregel) differenziert und dann (4.56) benutzt.

Beispiel 4.21: f(x) = x’“”‘ (x > 0).

Für die Funktion ln f(x) = sin x - ln x

‘) Wegenf(x) > O kann in diesem Fall das Bett ‘ ‘in; weggelassen werden.
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liefert die Produktregel

[ln f(x)]' = cos x - In x + sinx - ä,
woraus mit (4.56) folgt

sin xf’(x) = x‘“”‘ (cosxln x + ) (x > 0).

Aufgabe 4.13: Bilden Sie durch logarithmische Differentiation die Ableitung der fo1- a:

genden Funktionen:

a)f(X) = x’ (X > 0),

b) f(x) = (tan x)" (o < x <

\/(x+1)(x—3)
C)f(x) z (x3 + 2) Ex —— 2

(x > 3).

4.6.3. Bemerkungen

Die Ableitung jeder diiferenzierbaren elementaren Funktion läßt sich nach den
allgemeinen Differentiationsregeln auf die Ableitungen von Grundfunktionen, also
auf elementare Funktionen, zurückführen. Daher gilt:

Die Ableitung jeder auf einem Intervall diflerenzierbaren elementaren Funktion ist
eine elementare Funktion.

Beispiele zur Differentiation elementarer Funktionen haben wir in den vorangeganv
genen Abschnitten behandelt. Im Falle einer nicht-elementaren Funktion muß man

u. U. auf die Definition der Ableitung zurückgreifen, also den DilTerenzenquotienten
untersuchen.

. 1 _,

Beispiel 4.22.- f(x) : F“? n" x * 0’

0 für x = O.

. . 1
Für x ¢ O erhält man nach der Produktregel, wobei sin — nach der Kettenregel zu

differenzieren ist, X‘
1 1 . 1 1f’(x) = 1-sin—)1;+x~cos;(——x—2) =sin;— ;cos; (x¢ 0).

Um f auf Differenzierbarkeit an der Stelle x = O zu untersuchen, bilden wir den
Differenzenquotienten an dieser Stelle:

1

l1sin——O
__—f"’)2m) = .~——}’l’ = sin? (h a; o).

Für h ~> O ist sin 711- (unbestimmt) divergent, folglich istfan der Stelle x = 0 nicht dif-

ferenzierbar. Nach Aufgabe 3.1 d) istfan der Stelle x = 0 aber stetig; wir haben damit
ein weiteres Beispiel einer an einer Stelle x0 stetigen, aber dort nicht differenzierbaren.
Funktion (vgl. 4.3).
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Aufgabe 4.14: Zeigen Sie, daß die Funktion

‚ l2 _ ..f(x) = x sin x fur x + 0,

0 für x = 0

für jedes x differenzierbar ist, und ermitteln Sie die Ableitung.

4.7. Einige Ergänzungen zum Ableituugsbegrifl

4.7.1. Die Diflerentialgleichung y’ = azy

Als Ableitung der Funktion

f(x) = Ce” (C, ax: Konstanten) (4.59)

erhält man nach der Kettenregel

f’(x) = C e” g 0c. (4.60)

Setzt man (4.59) in (4.60) ein, so folgt

f’(x) = zxf(x) (—oo < x < +00). (4.61)

Mit y =f(x), also y’ =f’(x), kann man die Gleichung (4.61) auch in der Form

y’ = zxy (4.62)

schreiben. Diese Gleichung ist ein einfaches Beispiel einer gewöhnlichen Dzflerential-
gleichung. Jede auf einem Intervall I dilTerenzierbare Funktionfmit der Eigenschaft

f(x) = “f(x) (x61) 1) (4-53)

heißt Lösung der Diflererttialgleiclzung (4.62) auf dem Intervall I. Nach (4.61) ist
die Funktion (4.59) für jede Konstante C eine Lösung von (4.62) auf dem Intervall
(— o0, + oo). In 6.2.2. werden wir zeigen, daß umgekehrt jede Lösung von (4.62) auf
einem Intervall I sich mit einem geeigneten Wert C in der Form (4.59) darstellen
läßt.

Die Gleichung (4.62) charakterisiert diejenigen Funktionen f, deren „Änderungs-
geschwindigkeit“ f’(x) an der Stelle x dem Funktionswert f(x) an dieser Stelle pro-
portional ist (Proportionalitéitsfaktor zx). Viele Naturvorgänge haben — wenigstens
näherungsweise — dieses Verhalten, lassen sich nach dem Voranstehenden also durch
Funktionen der Form (4.59) beschreiben. Hierin liegt die besondere Bedeutung der
Exponentialfunktionen für die Anwendung.

Beispiel 4.23: Es sei m(t) die zur Zeit t vorhandene Masse einer radioaktiven Substanz.
dm(

Es ist bekannt, daß zu jeder Zeitt die sog. Zerfallsgeschwindigkeit T!) der vorhan-
denen Masse m(t) proportional ist, d. h., es gilt

dm(!) _

dt '

Dabei ist Ä > 0 eine für die Substanz charakteristische Konstante (Zerfallskonstante).

——Äm(t) (t g 0). (4.64)

‘) Vgl, Fußnote Seite 45.
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Das Minuszeichen bedeutet, wie wir in 7.2. sehen werden, daß mit zunehmender Zeit
die Masse abnimmt.
Nach den obigen Ausführungen hat die Differentialgleichung (4.64) die Lösung

m(t) = mo v” (t 2 0),

wobei mo wegen m(O) = m.) e° = mo die zur Zeit t = 0 vorhandene Masse ist (Bild 4.6).

Bild 4.6

4.7.2. Der Ditferentiationsoperator

Wir knüpfen nun an 3.4.1., Bemerkung 3.2 an. Es bezeichne

C‘[11. b]

die Menge aller auf dem Intervall [a, b] definierten und differenzierbaren Funktionen
f, deren Ableitungen f’ auf [a, b] noch stetig, also Elemente von C[a, b] sind. Funk-
tionenfmit dieser Eigenschaft heißen auf [a, b] stetig diflerenzierbar. So hat z. B.
die durch

f(x) x sinx (0 g x g l)
definierte Funktionf die Ableitung

f’(x) = cosx (0 g x g 1),

die auf [0, 1] stetig ist. Daher gilt fe C‘[0, l].
Nach 4.3. ist jede auf [a, b] differenzierbare Funktion dort auch stetig. Folglich ist

C‘[a, b] eine Teilmenge von C[a, b]:

C‘[a, b] c C[a, b].

Genauer ist C‘ [a, b] eine echte Teilmenge von C[a, b], denn z. B. gehört die Funktiong
mit

g(x)=\/x—a (agxgb)
zwar zu C[a, b], aber nicht zu C‘[a‚ b], da sie an der Stelle x = a nicht rechtsseitig
dilTerenzierbar ist (vgl. 4.2.4.).

Nun sei fe C‘[a, b] und g e C‘ [a, b]. Ferner seien l und gt beliebige reelle Zahlen.
Mitfund g ist nach 4.4.1. auch if + ‚ug auf [a, b] differenzierbar, und es gilt

(if + Mg)’ = Äf’ + Mg’. (4-65)

Da die Ableitungen f’ und g’ nach Voraussetzung auf [a, b] stetig sind, ist wegen
(4.65) auch (Äf+ ‚ug)’ auf [a, b] stetig (3.4.l., Satz 3.4), d. h.

Äf+ ‚uge C‘[a, b].

Die Menge C‘[a, b] enthält also mit zwei Funktionen f und g jede Linearkombina-
tion dieser Funktionen und ist daher ebenfalls ein linearer Raum (vgl. 3.4.1.).

"Ordner man nun jeder Funktion fe C‘[a, b] ihre Ableitung f’ e C[a, b] zu, so
erhält man einen Operator D, dessen Definitionsbereich die Menge C‘[a‚ b] ist und
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dessen Wertevorrat in C[a, b] liegt‘). Dieser Operator ist also durch

Df1=f' (f6 C‘[a‚ bl) (4-66)

definiert und heißt Differentiationsoperator.
Für beliebige Funktionen fe C‘[a, b], g e C1[a‚ b] und beliebige reelle Zahlen Ä,

‚u gilt wegen (4.65)

D(Äf +,ug) = ÄDf + ‚uDg. (4.67)

Operatoren mit dieser Eigenschaft nennt man linear. Der Differentiationsoperator D
ist also ein linearer Operator.

Die Differentialgleichung (4.62) kann man nun auch als Operatmgleichung in der
Form Df=af

schreiben. In der Mathematik und ihren Anwendungen treten Operatorgleichungen
der unterschiedlichsten Art auf. Dabei kann man aus allgemeinen Eigenschaften der
vorkommenden Operatoren (z. B. der Linearität) unabhängig von deren spezieller
Gestalt bereits auf gewisse Eigenschaften der Lösungen schließen.

Der Differentiationsoperator D ist das einfachste Beispiel eines (gewöhnlichen)
Diflerentialoperators. Darunter versteht man einen Operator, der jeder Funktion f
aus einer gewissen Funktionenmenge eine Funktion zuordnet, die von f, f’ und
evtLAbleitungen höherer Ordnung (snächster Abschnitt) abhängt. So ist etwa durch

TfI=f3 — 4\/1+(f')“ (fe C’[0, 11)

ein (nichtlinearer) Differentialoperator Terklärt, der z. B. der Funktion f(x) = sin x

(0 g x g 1) die Funktion

Tf(x) = sin3x — 4\/’1 + coszx (0 g x g 1) i

zuordnet.

4.8. Ableitungen höherer Ordnung

4.8.1. Definitionen und Beispiele

Jede auf einem offenen Intervall (a, b) differenzierbare Funktionf besitzt eine Ab-
leitungf’; diese ist eine auf (a, b) definierte Funktion (vgl. 4.2.3.). Ist nun auch f’
an einer Stelle x0 e (a, b) differenzierbar, dann kann man also die Ableitung

df’(x)
dx „x0

bilden. Man nennt (4.68) Ableitung 2. Ordnung (oder 2, Ableitung) der Funktionfan
der Stelle x0 und schreibt dafür -

d2f(x)
dxz

(4.68)

VI II d2f (x0) oder y [Kan oder ‘fir oder

Analog erklärt man die 3. Ableitungf”’(xU) usw.

Allgemein definiert man für eine beliebige natürliche Zahl n > l die Ableitung
n-rer Ordnung (oder n-Ie Ableitung) von f an einer Stelle x rekursiv durch die Vor-

1) In Teil 2 dieses Bandes wird sich herausstellen, daß der Wertevorrat von D die ganze Menge
C[a, b] ist (s. Satz 10,9).
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Schrift
f‘"’(X) = [f""“(X)]'4 (4-69)

Für später aufzustellende Formeln ist es zweckmäßig,f(x) selbst als Ableitung nullter
Ordnung zu bezeichnen, also

f‘°’(x) I = f(x) (4-70)

zu schreiben.
Statt „Ableitung n-ter Ordnung“ sagt man auch ,,Di/ferentialquatient n-ter Ord-

mmg“ und schreibt

d"y
dxn (4.71)

(lies ,,d — n — y nach d — x hoch n“) oder

d"f(x)
—dx~,I——. (4.72)

Eine Funktion f heißt auf einem Intervall I n-mal (stetig) zlzfferenzierbar, wenn die
Ableitungf"" auf I existiert (und stetig ist). Natürlich existieren dann erst recht die
Ableitungenf’,f”, ...,f"‘“" auf].

Beispiel 4.24: Für die Funktionf(x) = sin x ergibt sich nacheinander:

f’(x) = (sin x)’ = cos x,

f”(x) = (cos x)’ = —sin x,

f”’(x) = (—sin x)’ = —cos x,

f“"(x) = (—cos x)’ = sin x.

Wegen f“"(x) = f(x) gilt f‘5’(x) =f’(x) usw. Die Funktion f(x) = sin x ist also an
jeder Stelle x beliebig oft differenzierbar, und für die Ableitung einer beliebigen Ord-
nung n gilt offenbar

d" sinx _ {(—1)"sinx für n = 2k,
dx" — (-—1)“cosx für n = 2k +1

Beispiel 4.25: Entsprechend findet man für die Funktion

f(x) =1nx (x > 0):

f’(x) = ’

(k g 0, ganz). (4.73)

‘x? y

II 1f (x) = — ‘£7.

_ 1'2f (x) — x3 ‚

l > 2 - 3
f“"(x) = — x.

Man vermutet, daß für jede natürliche Zahl n gilt
d"lnx _ ‚H (n — l)! _

dxn — (-1) 7 (n g 1, ganz, x > 0). (4.74)

Durch vollständige Induktion kann man (4.74) beweisen.
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Aufgabe 4.15: Berechnen Sie die 2. Ableitung der Funktion f(x) = e““”‘.

Aufgabe 4.16: Berechnen Sie sämtliche Ableitungen der Funktion f(x) = x" (n eine
natürliche Zahl).

Aufgabe 4.17: Ermitteln Sie eine Formel für die n-te Ableitung (n eine beliebige
natürliche Zahl) der Funktion f(x) = cos x

a) an einer beliebigen Stelle x,
b) speziell an der Stelle x = 0.

Aufgabe 4.18: Wie lautet die n-te Ableitung (n eine beliebige natürliche Zahl) der
Funktion f(x) = a‘ (a > 0)? Was ergibt sich speziell für a = e?

4.8.2. Physikalische Bedeutung der 2. Ableitung

Die Geschwindigkeit einer geradlinigen Bewegung mit der Weg-Zeit-Funktion

s = 5(2) (4.75)

ist nach 4.2.2. die 1. Ableitung von (4.75) nach der Zeit:

v(t) = s‘(t). ' (4.76)

Im allgemeinen ist auch die Geschwindigkeit zeitabhängig (ungleichförmige Bewe-
gung); ihre Anderung in einem Zeitintervall t... t + At ist

v(t + At) — v(t).

Man bezeichnet nun den Quotienten

v(t + At) — v(t)
AZ

als mittlere Beschleunigung im Zeitintervall t t + At und daher den Grenzwert

59);: um L(’.+._A‘kl’_(Q = w)
Al~0 AI

als Beschleunigung der Bewegung zur Zeit r. Mit (4.76) gilt

17(2) = 5(1). (4-77)

d. h., die Beschleunigung einer geradlinigen Bewegung ist die 2. Ableitung der Weg-Zeit-
Funktion nach der Zeit.

Das Newtonsche Grundgesetz für die geradlinige Bewegung einer Punktmasse m

unter dem Einfluß einer in Wegrichtung wirkenden Kraft F lautet

mb = F.

Mit (4.77) folgt daraus

in's" = F. (4.78)

Bei gegebener Kraft F ist (4.78) eine Differentialgleichung (vgl. 4.7.1.) für die Weg-
Zeit-Funktion s = s(t).

Aufgabe 4.19: Auf eine an einer Feder befestigte Punktmasse m wirkt (bei Vernach-
lässigung der Reibung) die Federkraft F = —ks (k > O: Federkonstante, s: Auslen-
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kung der Punktmasse aus der Ruhelage). Zeigen Sie, daß die Funktion

s = A cos (wot — 0c)

(A, an: beliebige Konstanten, wo die Schwingung der Punktmasse beschreibt.

4.8.3. Rechenregeln für Ableitungen höherer Ordnung

Die Formeln 4.4.1. (4.27) und 4.4.1. (4.28) lassen sich offensichtlich unmittelbar
auf Ableitungen einer beliebigen Ordnung n übertragen, d. h., es gilt unter entspre-
chenden Differenzierbarkeitsvoraussetzungen

(f+ g (n) :f(n) + gm, (4.79)

(cf)‘"’ = cf"" (c eine Konstante). (4.80)

Wir wollen nun noch eine Formel für die höheren Ableitungen eines Produkts zweier
Funktionenfund g angeben. Durch wiederholte Anwendung der Produktregel erhält
man

(fg)’ =f'g +fg’,
(fg)” =f”g + 2f’g’ +fg"‚
(fg)'” =f”’g + 3f”3’ + 3f’g" +f8"’- (4-81)

Allgemein gilt die sog. Leibnizsche Regel

l (fgyn) = z" (n)j‘(n—k)g(k)‚ (432)
k=0 k

die man mittels vollständiger Induktion beweisen kann. Diese Formel erinnert an die
binomische Formel für die Potenz (f + g)"; man beachte aber, daß in (4.82) die oberen
Indizes Ableitungen bezeichnen, wobei insbesondere f‘°’ bzw. g‘°’ gemäß (4.70) die
Funktion f bzw. g ist.

Beispiel 4.26: Gesucht ist die 3. Ableitung der Funktion

y = x’ sin x.

Hier könnten wir die ausgeschriebene Formel (4.81) anwenden. Zur Übung wollen
wir aber die Formel (4.82) (mit n = 3, f(x) = x2, g(x) = sin x) benutzen. Danach gilt

y"’ = (x2)”’ (sin x w’ + (x2)" (sin x)’

+ (x’)’ (sin x)” + (x2)<°> (sin x)”’,

also mit den Binomialkoeffizienten

(3)4, e») <:>=»:~:;=:s» <:>=1
sowie unter Beachtung von (4.73) und Aufgabe 4.16

y”’ = 6 cos x —— 6x sin x — xi cos x.

Aufgabe 4.20: Berechnen Sie die 4. Ableitung der folgenden Funktionen:

a) f(x) = 3x4 — 5x1 + mg, b) f(x) = "—
3

ex"



5. Differentiale

5.1. Weierstraßsche Zerlegungsformel und Diflerential

Istfeine an der Stelle x dilTerenzierbare Funktion, dann gilt auf Grund der Defi-
nition von f’(x)

hmL&CU%l@9—/uflzo. an
~90

Setzt man

n(h)r=DE—f’(x) (h + o),

dann ist also

f(x + h) —f(x) =f’(x) ~ h + n(h) - h mit n(h) = 0. (5.2)

Mit dem in Abschnitt 2.6. eingeführten Symbol o kann man (5.2) auch in der folgen-
den Form schreiben:

f(x + h) ——f(x) =f’(x) - h + o(h) für h —> 0. (5.3)

Formel (5.2) bzw. (5.3) heißt Weierstraßsche Zerlegungsformel. Betrachten wir die
Darstellung (5.2). Danach ist die Funktionswertdifferenz

Ay =f(x + h) ——f(x) (5.4)

in zwei Summanden zerlegt, wobei der zweite Summand für h —> 0 wegen 17(h) —-> 0
„schneller“ gegen null konvergiert als der erste (sofern man von dem Fall f’(x) = 0
einmal absieht). Für kleine Werte von [h] ist daher der (in h lineare) erste Summand

f’(X) ' h (5.5)

der „Hauptteil“ in der Zerlegung von Ay.
Mit Ausdrücken der Form (5.5) wollen wir uns nun befassen.

Definition 5.1.: Die Funktionf sei an der Stelle x dtflerenzierbar. Das Produktf’(x) 4 h
heißt das zu der Stelle x und dem Argumentzuwachs‘) h gehörige Diflerential (1. 0rd-
nung) der Funktion f und wird mit df(x, h) bezeichnet, also

df(x, h):=f’(x) - h.

Statt df(x, h) schreibt man auch kurz df oder dy, falls y die abhängige Variable be-
zeichnet. Man beachte, daß das Differential dy = df(x, h) außer von der Stelle x

(an der die Funktion f differenzierbar sein muß) auch noch von der Variablen h
abhängt, die beliebige Werte annehmen kann.

(5-6)

Beispiel 5.1: Das Diflerential der_Funktion f(x) = sin x an einer beliebigen Stelle x

und für einen beliebigen Zuwachs h ist

df(x, h) 2 (sin x)’ - h : cosx - h.

Die Funktion y = g(x) = x hat das Differential

(x)' * I1 = h.m=@= an

‘) Man bezeichnet h auch im Fall h < O als Zuwachs.
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Wegen (5.7) identifiziert man den Argumentzuwachs h einer beliebigen Funktionf
mit dem Differential dx der speziellen Funktion g; man schreibt also statt (5.6) auch

df(x, dx) =f’(x) dx oder dy =f’(x) dx. (5.8)

Dabei ist nun dx eine (von x unabhängige) Variable, die beliebige Werte annehmen
kann und auch Diflerential der unabhängigen Variablen genannt wird. Bei dieser Be-
zeichnung des Argmmentzuwachses verwendet man für das Differential der Funktionf
an der Stelle x statt (5.8) gelegentlich auch das Symbol df(x). So schreibt man z. B.
(vgl. Beispiel 5.1)

d(sin x) = cos x - dx.

Unter der Voraussetzung dx + 0 kann man z. B. die zweite Gleichung von (5.8)
durch dx dividieren und erhält

ä = f’(x). _‚ (5.9)

Damit gewinnt die in 4.2.1. zunächst nur als symbolische Schreibweise für die Ablei-
dy
E

Quotient der Dzflerentiale dy und dx. Deshalb sagt man statt „Ableitung“ auch „Dif-
ferentialquotient“.

tungf’(x) eingeführte Bezeichnung eine neue Bedeutung: Gemäß (5.9) istf’(x) der

Beispiel 5.2: Die Funktion

f(x) = lnx (x > 0)

hat die Ableitung
l

f’(x) = ; (x > 0)

und daher das zu einem beliebigen Zuwachs dx gehörige Differential

dy = l dx.
x

Nach Division durch dx (dx + 0) erhält man daraus die Ableitung zurück:

dy 1 ‚

a - ; r f" (x)-

Wenden wir uns nun wieder der Weierstraßschen Zerlegungsformel zu. Mit dx
statt h und (5.8) lautet (5.2)

f(x + dx) —f(x) = d/(x, dx) + 1](dx) dx mit lim 7;(dx) = 0
dx«-0

oder kurz

Ay = dy + 17(dx) dx mit lim1;(dx) = 0. (5.10)
dx—>0

Zur geometrischen Interpretation von (5.10) betrachten wir Bild 5.1, in dem wir die
Bildkurve einer Funktionfund deren Tangente im Punkt P(x,f(x)) gezeichnet haben.

Offenbar gilt QP* = Ay. Aus dem rechtwinkligen Dreieck PQQ* liest man ferner ab

QQ* = tanoc - dx =f’(x) dx = dy,

d. h., das Diflerential dy ist der zu dem (willkürlichen) Abszissenzuwachs dx gehörige
Zuwachs der Tangentenordinate.

5 Pforr. Di£f.- u. Integr.
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Nach (5.10) ist damit

n(dx) dx = Ay —— dy = Q*P*.

Für (5.10) kann man auch schreiben

lim M} dx —> 0,
dxaO X

= 0 oder Ay = dy + o(dx) für

d. h.‚ für dx —> 0 konvergiert die Differenz Ay — dy ,,so schnell“ gegen null, daß

sogar noch der Quotient den Grenzwert null hat. In diesem Sinne gilt

Ay z dy‚ falls |_dx| klein ist (5.11)

oder ausführlich

| f(x + dx) —f(x) zf’(x) dx, falls ldxl klein ist, (5.12)

d. h., für einen betragsmäßig kleinen Argumentzuwachs dx ist das Diflerentialf’(x) dx
ein Näherungswert für die Funktionswertdiflerenzf(x + dx) — f(x). Hiervon werden
wir in 5.2.2. Gebrauch machen.

Beispiel 5.3: Für die Funktionf(x) = x2 gilt

Ay = (x + dx)2 — x2 = 2x dx + (dx)’‚
Ay = dy + (dx)?

(Durch einen Vergleich mit (5.10) erhält man daraus 77(dx) = dx.) Faßt man x’ als
Flächeninhalt eines Quadrats mit der Seitenlänge x auf (Bild 5.2), dann entspricht
einer Vergrößerung der Seitenlänge um dx eine Vergrößerung des Flächeninhalts um

Ay. Dabei setzt sich Ay aus den Inhalten der schraffierten Rechtecke, also dy, und
dem Inhalt (dx)2 des punktierten Quadrats zusammen. Falls dx klein im Vergleich zu
x ist, trägt (dx)2 nur unwesentlich zur Vergrößerung des Flächeninhalts bei; es gilt
dann also Ay z dy.

dy = (x’)’ dx = 2x dx,
also

Y r

Imdx — P
fix

y-for)

A
y

Bild 5.1 L
um: x x u,

r/
y

{(1)

Bild 5.2

Aufgabe 5.1: Berechnen Sie die zu einer beliebigen Stelle x und einem beliebigen Zu-
wachs dx gehörigen DilTerentiale der folgenden Funktionen:

b)f(x) = xe“, c)f(x) = \/x2 + 3.

Aufgabe 5.2: Geben Sie einen Näherungswert für sin 46° an, indem Sie die Funk-
tionswertdifferenz

Ay = sin 46° — sin 45°

durch das entsprechende Differential dy ersetzen.

a)f(x) = cos x,
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5.2. Fehlerrechnung und Differential

5.2.1. Grundbegrifie der Fehlerrechnung

Beim praktischen Rechnen muß man im allgemeinen mit fehlerbehafteten Größen
arbeiten. So sind in numerischen Rechnungen reelle Zahlen durch Näherungswerte
zu ersetzen, die sich durch Rundung ihrer Dezimalbruchentwicklung auf endlich
viele Stellen nach dem Komma ergeben. (Zum Beispiel wird man für die Zahl
TE = 3,141 59 etwa den auf4 Stellen nach dem Komma gerundeten Wert 3,1416 ver-
wenden.) Messungen liefern von vornherein nur Näherungswerte für die Maßzahlen
der gemessenen Größen, da jede Messung einer Vielzahl von Einflüssen (wie z. B.
Schwankungen der Raumtemperatur) unterliegt, die in ihrer Gesamtheit nicht kon-
trollierbar sind.

Nun sei ä ein Näherungswert für die reelle Zahl a und Aaz= a — ä. Dann heißt
die (nicht negative) Zahl

[Aal z [a — ä] (5.13)

absoluter Fehler von ä. Im Falle ä =l= 0 kann man außerdem den relativen Fehler

Aa _ Ia — äl7 — Iäl (5.14)

betrachten.
Da man den exakten Wert a im allgemeinen nicht kennt, ist auch der absolute (und

damit der relative) Fehler von ä unbekannt. Jedoch kennt man in den meisten Fällen
eine obere Schranke für den absoluten Fehler, also eine Zahl Ö > 0 mit

lAal g Ö. l . (5.15)

Statt (5.13) und (5.15) kann man auch schreiben

{a —— ä] g ö
oder

ä—ögagä+ö‚ (5.16)

d. h., der (unbekannte) Wert a liegt im Intervall [ä — ö, ä + ö].
Ist ä ein Meßwert, also |AaI ein Meßfehler, dann ist eine obere Fehlerschranke Ö

in vielen Fällen aus der Art der Messung bekannt. Man schreibt dann, besonders in
der technischen Fachliteratur, statt (5.16) auch

a=äiö.

Beispiel 5.4: Für den Durchmesser D einer Kugel gelte D = (6,35 i 0,02) cm. Diese
Angabe bedeutet, daß der Wert D = 6,35 cm gemessen wurde und der absolute Fehler
|AD| g 0,02 em ist. Für den relativen Fehler von D erhält man daraus

l AD ‘ 0,02

1

D g W = 0,00314... < 0,0032 = 0,32%.

Dabei haben wir eine obere Schranke für den relativen Fehler, wie üblich, auch in Pro- \

zent angegeben.

Entsteht ä durch Rundung der reellen Zahl a auf n Stellen nach dem Komma,
dann gilt auf Grund der bekannten Rundungsregeln für den Rundungsfehler

[Aal g 0,5 e 10"‘. (5.17)
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Beispiel 5.5: Einer vierstelligen Logarithmentafel entnimmt man für a = lg 53 den
Näherungswert a” = 1,7243. Es gilt also nach (5.17) mit n = 4

llg 53 — 1,7243] = Ma] g 0,5~ 10“’ = 0,00005 (5.18)

oder [vgl. (5.l6)]

1,72425 g lg 53 g 1,72435, (5.19)

wobei man, genau genommen, das rechts stehende Zeichen g durch < ersetzen
könnte.

Für n ree11e Zahlen a1, a2, ..., an seien nun Näherungswerte äl, ä2‚_...‚ 5„ mit den
oberen Fehlerschranken Ö1, Ö2, ..., 6,, gegeben. Es gilt also

la, —— 5,] = |Aa,| g ö, (i = 1,2, ...‚n). (5.20)

Als Näherungswert für die Summe

1s=a,+a2+...+a„
kann man dann

5:5, +ä2+... +ä„ (5.21)

berechnen. Für den absoluten Fehler |Asl = |s — s1 von S gilt

lAsl=|(a1— m) + «z;- 52) + + (a. — am.

Daraus folgt nach der Dreiecksungleichung unter Verwendung von (5.20)

| [As] §[Aa1l+|Aa,| + + [Aa„| g ö, + ö, + + ö„. (5.22)

In Worten besagt die erste Ungleichung von (5.22):

Der absolute Fehler einer Summe von Zahlen ist höchstens gleich der Summe der
absoluten Fehler der einzelnen Summanden. Man beachte, daß die absoluten Fehler
auch dann zu addieren sind, wenn einige der ä, negativ sind.

Beispiel 5.6: Mit den Tafelwerten‘)

sin 78° = 0,9781, lg 53 = 1,7243

berechnet man für
s z 7-sin78° —1g53

den Näherungswert

E = 7 - 0,9781 — 1,7243 = 5,1224. - (5.23)
Wegen

|7 ~ sin 78° —- 7 ~ 0,9781| = 7 - {sin 78° — 0,9781|

g 7 - 0,5 - 10-4 = 3,5 - 10-4
und (5.18) gilt nach (5.22)

]Asl g 3,5-10"‘ + 0,5 - 10"‘ z 4- 10"‘,
also

5,1220 g s g 5,1228.

1) Vgl. Fußnote 1 auf Seite 36.



5.2. Fehlerrechnung und Differential 69

Auf zwei Stellen nach dem Komma gerundet, ist daher x = 5,12. Eine Rundung auf
drei Stellen nach dem Komma ist auf Grund der gefundenen Schranken für s offen-
bar nicht möglich. Ohne die Fehlerbetrachtung könnte man s überhaupt nicht ge-
rundet angeben. Insbesondere ist es unzulässig, aus (5.23) etwa zu schließen, daß s,
auf drei Stellen nach dem Komma gerundet, „sicher“ gleich 5,122 ist. Tatsächlich
findet man mit genaueren Tafelwerten den auf drei Stellen nach dem Komma gerun-
deten Wert s = 5,123.

Aufgabe 5.3: Zur numerischen Berechnung von

s =1g(750)’ — g + 3\/E
stehen die Tafelwerte lg 75 = 1,875 und = 2,168 zur Verfügung.

a) Berechnen Sie einen Näherungswert S für s.

b) Schätzen Sie den absoluten und den relativen Fehler von S ab.
c) Geben Sie s gerundet an.

5.2.2. Anwendung des Differentials

Nun soll untersucht werden, wie sich ein Fehler einer Größe x auf eine von x ab-
hängige Größe y = f(x) auswirkt („Fehlerfortpflanzung‘).

Gegeben seien also eine Funktion f, ein Näherungswert fr einer Größe x und eine
obere Schranke Ö für den absoluten Fehler von 3?. Mit

dx=Ax=x—2”c
gilt also

|dx| g ä. (5.24)

Als Näherungswert für den unbekannten exakten Wert y = f(x) kann man

y = foe) i

berechnen. Gesucht ist eine obere Schranke für den absoluten Fehler

my: = ry ‘— n = w: + ax) — rm1. (5.25)

Ist ö „klein“, dann ist wegen (5.24) auch [dx] „klein“. Ist fernerfan der Stelle 5c dif-
ferenzierbar, dann kann man nach (5.12) die Funktionswertdiflerenz in (5.25) durch
das zu der Stelle 5E und dem Zuwachs dx gehörige Differential von fannähern, d. h.
es gilt

| 111)’! ~ ldyl = lf’(J?)| ' ldxl ä lf’(>?)l ' Ö. (5.26)

Für den relativen Fehler von j: erhält man daraus

I = -|dx| g -5. (5.27)
J’ J’ J’ J’

Mit (5.26) und (5.27) hat man zwar nur genäherte, aber sehr einfache und praktisch
durchaus brauchbare Abschätzungen für den absoluten bzw. relativen Fehler von )7.

Beispiel 5.7: Zur Bestimmung der Höhe /z eines Turmes werde vom Fußpunkt des
Turmes aus eine horizontale Strecke der Länge I (in m) abgetragen und vom Ende
dieser Strecke die Turmspitze anvisiert (Bild 5.3). Die Messung liefere für den Winkel
x einen Näherungswert oi, wobei der absolute Fehler ld1x| höchstens gleich ö sei.
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Wegen
h =f(oc) = l-tanzx

ist Ä = l- tan a? ein Näherungswert für Iz, und n1itf’(o?) = W12“; gelten für den ab-

soluten bzw. relativen Fehler von Ä die genäherten Abschätzungen

I I'd
W" N W" = 357W‘ 5

£1431 <5V_3L
E (N Ä =sina'z-cosoZ4sin2i'

Bild 5.3

Speziell erhält man für

1= 30 (in m), 2 z 60° = a: 0,1° =—18’:)O

die Werte

ß = 30 ~ tan 60° : 30 (/3 (in m),

30. . .m; z |dh[ g ?%(fi = IL (m m), _ (5.28)

Ah dh T5— l‘T (5.29)

Zur numerischen Auswertung schätzen wir die Schranken in (5.28) und (5.29) weiter
nach oben ab, indem wir in (5._28) mit 7: = 3,l4l 5 < 3,15 den Zähler vergrößern
und in (5.29) außerdem mit \/3 2 1,7320 > 1,73 den Nenner verkleinern:

|Ah| z mm g < = 0,21 (in m), (5.30)

Ah dh 0,21 0
z < Efifi. = 0,00404... < 0,0041 = 0,41/„.

Man beachte, dal3 in (5.28) für 7': nicht der gerundete Wert 3,14 verwendet werden

15

ldh] ist. Entsprechendes gilt für (5.29). Zur numerischen Berechnung von Ä verwenden
wir für \/3 den gerundeten Wert 1,732. Dann ist

30- 1,732 = 51,96 (in m)

ein Näherungswert für H, wobei für den Rundungsfehler gilt

M — 51,96| = [30-\/5 — 1,732] g 30 - 0‚5- 10-3 = 0,015. (5.31)

kann,.da er kleiner als 1': ist, so daß eventuell nicht mehr obere Schranke für
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Aus (5.30) und (5.31) folgt schließlich

1h — 51‚96| = |(h — h) + (h — 5l,96)l

g llz — 5| + Ii: ~ 51,961 z ldhl + |1; — 5l,96|

< 0,21 + 0,015 < 0,23 (in m),

d. h., es ist 51,96 — 0,23 = 51,73 eine genäherte untere Schranke und 51,96 + 0,23
= 52,19 eine genäherte obere Schranke (in m) für die wahre Höhe h des Turmes.

Aufgabe 5.4: Schätzen Sie näherungsweise den absoluten Fehler ab, der bei der Be-
rechnung von \/e + 1 entsteht, wenn für e der Näherungswert 2,72 verwendet wird.

Aufgabe 5.5: Für den Durchmesser D einer Kugel gelte D == (6,35 i 0,02) cm (vgl.
Beispiel 5.4). Ermitteln Sie genäherte obere Schranken für den absoluten und den
relativen Fehler des damit berechenbaren Näherungswertes für das Kugelvolumen V.

Aufgabe 5.6: Unter Verwendung einer Wheatstoneschen Brücke ("Bild 5.4) soll ein
Widerstand y gemessen werden. Mit dem Vergleichswiderstand R (in Ohm), der Meß-
drahtlänge I (in mm) und der Kontakteinstellung x (in rnm) gilt

Rx
l — x '

Für x liest man einen Näherungswert 5E mit einem absoluten Fehler [dxl g ö ab.

Geben Sie genäherte obere Schranken für den absoluten und den relativen Fehler
von j» an.

Äm
Bild 5.4

5.3. Differentiale höherer Ordnung

Es sei feine auf einem Intervall (a, b) zweimal differenzierbare Funktion. Das zu

einer beliebigen Stelle x e (a, b) und dem Zuwachs h gehörige Differential von f, also

d)’ = f’(x) ' h, (5.32)

ist dann bezüglich x eine auf (a, b) differenzierbare Funktion mit der Ableitung

H(:—[f’(x) - h] =f”(x) -h, also mit dem Differential

d(dy) = Lf”(X) ‘ h] ‘ h =f"(x) "h2, (5-33)

wobei wir denselben Zuwachs h wie in (5.32) gewählt haben. Man nennt (5.33) das
Differential 2. Ordnung der Funktionfund schreibt dafür dzy. Mit dx statt h und der
für hi = (dx)2 üblichen Schreibweise dx’ gilt also

dly =f"(x) dxz. (5.34)

«X
-

*
X

-
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Beispiel 5.8: Das Differential 2. Ordnung der Funktion y =f(x) = x3 ist

d2(y) = (x3)” dx’ = 6x dx’.

In Verallgemeinerung von (5.34) definiert man das Dzjfkrential n-ter Ordnung (n g 2)
einer n-mal differenzierbaren Funktion f durch

d"y:=f‘"’(x) dx" oder d'flx, dx):=f""(x) dx". (5.35)

Dividiert man die erste Gleichung von (5.35) durch dx" (dx =¥= 0), so erhält man

d"? __ (n)a; - f (X),

womit die in 4.7.1. für die Ableitung n-ter Ordnung eingeführte Schreibweise und die
Bezeichnung „Differentialquotient n-ter Ordnung“ nachträglich gerechtfertigt sind
(vgl. 5.1).

m Aufgabe 5.7: Berechnen Sie die Differentiale 3. Ordnung der folgenden Funktionen:

a)f(x) = xln Ix] (x + 0), b)f(x) = 3x’ — 5x.



6. Eigenschaften differenzierbarer Funktionen

6.1. Die Sätze von Fermat und Rolle

Die beiden folgenden Sätze sind der Ausgangspunkt für die in den nächsten Ab-
schnitten zu behandelnden grundlegenden Aussagen über diflerenzierbare Funk-
tionen.

Satz 6.1 (Satz von Fermaz‘)): Die Funktionfsei aufdem Intervall I definiert und nehme
an der inneren Stelle E von I einen absoluten Extremwert an. 1stfan der Stelle 5 di e-

renzierbar, dann giltf’(§) = 0.

Geometrisch besagt dieser Satz, da15 die Tangente an die Bildkurve von f im Punkt
P(5‚f(5)) den Anstieg Null hat, also parallel zur x—Achse verläuft (s. Bild 6.1).

Bild 6.1

Satz 6.2 (Satz von Rolle2)): Die Funktion f sei auf [a, b] stetig und auf (a, b) difleren-
zierbar; ferner seif(a) = f(b). Dann existiert (mindestens) ein E e (a, b) mitf’(.E) = 0.

Beweis: Nach Satz 3.8 hatfauf [a, b] ein absolutes Minimum m, und ein absolutes
Maximum m2. Wir unterscheiden zwei Fälle:

1. Ist m, = mg, dann ist fauf [a, b] konstant, also f’(.§) = 0 für jedes Es(a, b)
(s. 4.2.3.).

2. Ist m1 # m2, dann nimmtfwegenf(a) = f(b) mindestens einen der beiden absolu-
ten Extremwerte an einer inneren Stelle 5 von [a, b] an. Nach Satz 6.1 ist dann aber
f’(E) = 0-

Damit ist der Satz bewiesen. I

In Bild 6.2 haben wir Satz 6.2 geometrisch veranschaulicht, wobei wir zugleich
berücksichtigt haben, daß es mehrere Stellen E e (a, b) geben kann, zu denen eine

J

" y-fixl
‘(RJ-IYU)

l

‘ Bild 6.2
u, Szbx

horizontale Tangente an die Bildkurve vonfgehört. Wir bemerken noch, daß die
Voraussetzung der Stetigkeit vonfauf dem abgeschlossenen Intervall [a, b] für die

‘) Pierre de Fermat (16014 665), französischer Mathematiker und Jurist.
3) Michel Rolle (1652-1719), französischer Mathematiker.

S. 6.2
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Gültigkeit des Satzes von Rolle wesentlich ist. So ist z. B. die Funktion

:Ix fiir 0§x<l,'
fix) l0 für x =

auf dem offenen Intervall (0, l) difierenzierbar. Ferner giltf(0) = f(l) : O‘ Jedoch ist
fan der Stelle x = l nicht linksseitig stetig. Tatsächlich gilt nun f’(x) = 1 # 0 für
alle x e (O, l).

(Bild 6.3)

J

ll „(x

Bild 6.3 l ‘ ‘ Bild 6.4
a 5 x n x

6.2. Mittelwertsätze der Differentialrechnung

6.2.1. Der Mittelwertsatz der Diflerentialrechnung

Ofienbar kann man den Satz von Rolle auch folgendermaßen geometrisch inter-
pretieren: Unter den angegebenen Voraussetzungen über die Funktionfgibt es min-
destens eine Tangente an die Bildkurve vonf, die zu der Sekante durch die Punkte
(a,f(a)) und (b,f(b)) parallel ist, die also denselben Anstieg wie diese Sekante hat,

Der folgende wichtige Satz besagt nun geometrisch, daß diese Aussage auch dann
gilt, wenn die Sekante nicht notwendig horizontal verläuft (s. Bild 6.4). Man beachte:
Der Anstieg der Sekante s ist

f(b) - f(a)
b — a ’

der Anstieg der Tangente t istf’(E).

S. 6.3 Satz 6.3 (Mittelwertsatz der Diflerentialrechnung): Die Funktionf sei auf [a, b] stetig
und auf (a, b) diflerenzierbar. Dann existiert (mindestens) eine Stelle E mit

| /'<s> (a < 5 < b). (6.1)...a _

Beweis: Es seif, diejenige Funktion, deren Bildkurve die Sekante s ist, also

‚am =f(a) + Äbbljfll (x — a).

Die Funktion

<F(x) = f(x) - /’s(x)

(s. Bild 6.4) genügt dann auf [a‚ b] den Voraussetzungen des Satzes von Rolle. Daher
existiert eine Zahl E e (a, b) mit

0 = m) = f’(E) — ms) =f’(5) —

Damit ist der Satz bereits bewiesen. I
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Setzt man

x„=a‚ h=b—a, also xo+h=b,
so kann man jedes 5e (a, b) = (xo, xo + h) offenbar in der Form

E = xo + 29h mit 19e(0, 1)

darstellen (s. Bild 6.5).

B'ld 6.5it gxomfi x l

Damit kann man statt (6. l) auch schreiben

=f’(x0 + 0/1) (o < a < I) (6.2)

oder
f(xo + h) — f(xo) z h <f’(xo + am (o < 0 < I) (6.3)

oder

|_ f(xo + h) = f(x.,> + h -f’(xo + 29h) (o < a < 1). (6.4)

Offenbar kann h hierbei auch negativ sein. Zum Vergleich mit (6.3) erinnern wir an

die Beziehung (5.12), die mit x0 statt x und h statt dx übergeht in

f(x„ + h) ——f(xo) z h -f'(x„), falls |h| klein ist. (6.5)

Während in (6.5) lediglich eine qualitative Aussage über die Funktionswertdilferenz
f(x.‚ + h) — f(x„) getroffen wird, ist diese Difierenz in (6.3) exakt dargestellt, aller—
dings unter Einbeziehung einer Zahl 29, von der man im allgemeinen nur weiß, daß
sie im Intervall (0, 1) liegt. In einem einfachen Fall wollen wir eine solche Zahl 19 ein-
mal ermitteln.

Beispiel 6.1 .' Wir betrachten die Funktion

f(x) = cx’ (c + 0 konstant).

Offenbar erfüllt f für jedes Intervall x0 x0 + h die Voraussetzungen des Mittel-
wertsatzes. Es gibt also mindestens ein 19, so daß (6.2) gilt, d. h.

c(xo + h)’ — cxä
h = 2c(x0 + 29h) (o < 19 < 1). (6.6)



76 6. Eigenschaften differenzierbarer Funktionen

Als Bestimmungsgleichung für 19 aufgefaßt, ist (6.6) eindeutig lösbar; man erhält
19 = 1- (in diesem Fall ist 29 also sowohl von x0 als auch von h unabhängig; vgl. aber
Aufgabe 6.1). Mit den Bezeichnungen von Bild 6.6 bedeutet das geometrisch: Zu der
Sekante durch die Punkte Po und P, gibt es genau eine parallele Tangente an die Para-

bel y = ex’; diese gehört zum Mittelpunkt x0 + g des Intervalls [x5, x0 + h]. Das

gleiche Ergebnis erhält man auf dieselbe Weise für eine beliebige quadratische Parabel
y = agx’ + alx + ad (a; =I= 0). Damit hat man ein einfaches Verfahren zur Tangen-
tenkonstruktion für quadratische Parabeln.

In der Form (6.4) kann man den Mittelwertsatz zur numerischen Berechnung eines
Näherungswertesfürf(x0 + h) verwenden, wennf(x0) — wenigstens näherungsweise —

bekannt und |h| klein ist. Dazu muß man f’(xo + 19h) (unter Beachtung der Unglei-
chungen 0 < 19 < 1) geeignet abschätzen.

Beispiel 6.2: Aus einer fünfstelligen Tafel entnimmt man den Wert

In 17 = 2,8332I. (6.7)

Gesucht ist ein Näherungswert für In 17,2.
Wegen In 17,2 = In (l7 + 0,2) wenden wir den Mittelwertsatz auf die Funktion
f(x) = In x mit

x0 = 17, h = 0,2 (6.8)

an. Mit f’(x) = ä lautet (6.4) für beliebiges x„ und h

h
ln(xo +12) =Inxo +W (0<19 <1),

also für die Werte von (6.8)
0,2

In 17,2 = In 17 + äfi (o < 11 <1). (6.9)

Für ermitteln wir nun numerisch (leicht) berechenbare Schranken. We-
l7 + 0,219

gen0<19-< l gilt
0,2 < 0,2 < 0,2

17+o‚2>1 17+o,219 17+o,2-0‘
Aus (6.9) folgt damit

0,2 0,2
ln 17 + 17,2 < In 17,2 < In 17 + 17. (6.10)

In (6.7) ist die 5. Stelle nach dem Komma gerundet, es gilt also genauer

2,833205 g In 17 < 2,8332I5. (6.11)

Ferner ist
0,2

——— = 0,011627 > 0,011627, (6.12)
17,2

0,2
17 = 0,0ll764 < 0,0ll765. (6.13)

Aus (6.10) folgt mit (6.11), (6.12) und (6.13) schließlich

2833205 + 0,0ll627 < ln17,2 < 2833215 + 0‚0ll765‚
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also
2‚844832 < In 17,2 < 2,844980

oder bei Rundung auf drei Stellen nach dem Komma

In 17,2 = 2,845.

Die damit erzielte Genauigkeit läßt sich durch Mitnahme einer größeren Stellenzahl
in (6.7), (6.12) und (6.13) nicht verbessern, da die durch (6.10) gegebenen Schranken
für In 17,2 sich nach (6.12) und (6.13) bereits in der 4. Stelle nach dem Komma unter-
scheiden.

In 6.3.5. werden wir eine Methode kennenlernen, die die Berechnung von Funk-
tionswerten mit beliebiger Genauigkeit gestattet.

Aufgabe 6.1: Bestimmen Sie alle 19 e (0, I), so daß die Tangente an die Kurve y = e"
an der Stelle E = xu + 19h parallel zu der zum Intervall [xo, xo + h] gehörigen Sekante
ist.

Aufgabe 6.2: Geben Sie unter Verwendung des Tafelwertes e = 2,7183 eine untere
und eine obere Schranke für eh“ an.

6.2.2. Folgerungen aus dem Mittelwertsatz

Nach 4.2.3., Beispiel 4.4, ist die Ableitung einer auf einem Intervall I konstanten
Funktion dort gleich null. Wir können nun zeigen, daß hiervon auch die Umkehrung
gilt:

Satz 6.4: Die Funktionfsei auf dem Intervall I stetig und an jeder inneren Stelle x von

I dijferenzierbar mit f’(x) = 0. Dann istf auf I konstant.

Beweis: Wir wählen eine beliebige Zahl a e I. Zu jedem x e I (x 4= a) gibt es dann
nach dem Mittelwertsatz, angewandt auf das Intervall a x, eine im Inneren dieses
Intervalls — also auch im Inneren von I - gelegene Zahl 6 mit

f(X) -f(fl) = (x ~ a) 'f’(E).
Wegenf’(§) = 0 folgt darausf(x) = f(a). Da x e Ibeliebig war, hatfaufl den kon-
stanten Wertf(a). l

Satz 6.5: Die Funktionen f und g seien auf dem Intervall I stetig und an jeder inneren
Stelle x von I diflerenzierbar mitf’(x) = g’(x). Dann unterscheiden sich f und g auf I
nur um eine additive Konstante.

Beweis: Die Funktion

990€) =f(X) — g(x) (X61)
erfüllt die Voraussetzungen von Satz 6.4. Folglich gibt es eine Zahl C mit

C = <P(x) =f(x) - g(X) (x61).
was zu zeigen war. I

Beispiel 6.3: In 4.7.1. hatten wir erwähnt, daß jede Lösung der Differentialgleichung

y’ = any (ac eine Konstante)

S. 6.4

S. 6.5
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auf einem (offenen) Intervall I, also jede auf I differenzierbare Funktionfmit

f’(x) = ocflx) (x e I), ' (6.14)

die Form

f(x) = Ce” (xel) (6.15)

hat, wobei C eine geeignete Konstante ist. Nun können wir diese Behauptung bewei—
sen. Dazu betrachten wir die Funktion '

<p(x) = e"""f(x) (x e I).

Mitfist auch (p auf I differenzierbar und hat die Ableitung

<;'<x) = «x e-e/(x) + e‘“"f'(x) = enmx) — as/<x)) (x e I). (6.16)

Dafnach Voraussetzung der Gleichung (6.14) genügt, folgt aus (6.16) q2’(x) = O für
alle x e I. Nach Satz 6.4 gibt es also eine Zahl C mit

C = ¢(x) = °"“"f(x) (xe I),
und daraus folgt die Behauptung.

Aufgabe 6.3: Zeigen Sie, daß die Funktionen4e

f(x) = —arcsin—:— (x g 1) und g(x) = arctan \/x2 — 1 (x g 1)

sich nur um eine additive Konstante unterscheiden, Lind ermitteln Sie diese Konstante.

6.2.3. Der erweiterte Mittelwertsatz der Difierentialrechnung ~

Den folgenden Satz werden wir in 6.3.3. und 7.1.2. benötigen.

S. 6.6 Satz 6.6 (Erweiterter Mittelwertsatz der Differentialrechnung): Die Funktionen f und
g seien auf [a, b] stetig und auf (a, b) dijflrenzierbar. Ferner sei g'(x) $ 0 für alle
x e (a, b). Darm existiert (mindestens) eine Stelle E mit

d _ f“) b 617
ab) — gm) gm “‘ < 5 < " l ' ’

Wir bemerken, daß die linke Seite von (6.17) sinnvoll ist: Nach Satz 6.3, angewandt
auf die Funktion g, existiert nämlich ein E e (a, b) mit

g(b) — gm) _ ‚ ~

T7 — g G)"

und wegen g'(§) + 0 folgt daraus g(b) — g(a) ä= 0.
Offenbar ist Satz 6.3 ein Spezialfall von Satz 6.6 für g(x) = x.

a: Aufgabe 6.4: Beweisen Sie Satz 6.6 durch Anwendung von Satz 6.2 auf die Funktion

w) = f(x) — fla) — [goo — gm].
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6.3. Die Taylorsclxe Formel und ihre Anwendung

6.3.1. Taylorsche Formel für ganze rationale Funktionen

Es sei g eine ganze rationale Funktion n-ten Grades, also

g(x) = a0 + alx + 112x: + + a„x" (a„# 0), (6.18)

wobei die Koeffizienten a, (v = 0, 1, ..., n) reelle Zahlen sind. Mit einer beliebigen
reellen Zahl x0 sei nun g(x) nach Potenzen von (x — x0) entwickelt:

g(x) = co + c1(x —— xo) + c2(x —- X0)2 + + c,,(x — xo)" (c,. =# 0). (6.19)

Für die Ableitungen von g erhältman nach (6.19)

g’(x) = cl + 2c2(x — X0) + + nc„(x -— xo)"“,
g”(x) = 2c; + + n(n — 1) c„(x — x„)"'2,

g‘"’(x) = n(n —1)...2-l‘c,,= n! c„

und daraus speziell für x = x0

g(xo) = to, co = gm),

3,050) =51 =1!C1a C1 =@
g"(X0) = zcz = 2162, also c2 z g 29”’), (6.20)

(n) )
g‘"’(xo) = n! c... 6.. = g—n(,)C°—.

Damit geht (6.19) über in

I g(x) = g(xo) + figI! (x—xo)+'g%i!(°—)(x—x„)2 +... +g%(x—x0)".
(6.21)

Das ist die Taylarsche Formel ‘) für eine ganze rationale Funktion n-ten Grades mit der
Entwicklungsstelle x0. Nach (6.20) sind die Koeffizienten c, (v = 0, l, ..., n) in der
Entwicklung (6.19) durch den Funktionswert und die Werte der Ableitungen von g
an einer einzigen Stelle x0 bereits eindeutig bestimmt. Ist also

g(x) = Eo + E,(x — xa) + E2(x — Xo)2 + + ö„(x — x0)" (5„ + 0)

eine andere Darstellung von g(x), dann gilt auch

E, = iffl (v = 0, l, ...‚ n)
1’.

und daher mit (6.20)

E, z C, (T! z 0, l, ..., n).

Speziell für x0 = 0 erhält man damit den

1) Brook Taylor (1685-1731), englischer Mathematiker.
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Satz 6.7: Ist neben (6.18) auch

g(x) = fig + dlx + äzxz + + ä„x" (ä), =l= 0)

eine Entwicklung von g(x) nach Potenzen von x, dann gilt
(v = O‚1,...‚ n).ä, = a,

Dieser Satz ist die Grundlage für die Methode des Koeffizientenuergleichs, die wir
im nächsten Abschnitt sogleich anwenden werden.

Abschließend notieren wir noch die aus (6.21) folgende Taylorsche Formel von g
mit der Entwicklungsstelle x0 = 0:

’ 0 ” 0 "" 0
g(x) =g(o) + g1(!)x + 3;,’ 2 + gnf ) x". (6.22)

Aus (6.18) und (6.22) folgt nach Satz 6.7
(v) 0

.= gvf’ (v = o. 1, .-...n>‚

was man natürlich auch direkt bestätigen kann.

6.3.2. Das Homersche Schema

Es sei wieder g eine ganze rationale Funktion n-ten Grades, also

g(x) = a„x" + a„_1x”"‘ + + 111x + no (a,,¢ 0). (6.23)

Häufig steht man vor derAufgabe‚ für eine gegebene Zahl x0 den Funktionswert g(xo)
und eventuell auch die Ableitungen g‘"’(x„) numerisch auszurechnen. Für n g 3 ist
eine direkte Berechnung im allgemeinen recht aufwendig. Nach (6.20) kann man diese
Werte aber mühelos ermitteln, wenn man die Koeffizienten c, der Entwicklung von

g(x) nach Potenzen von (x — x0) kennt. Im folgenden wollen wir nun ein sehr ein-
faches Verfahren zur Berechnung dieser Koeffizienten herleiten.

Wir notieren die Taylorsche Formel (6.21) der Funktion g in der Form

g(x) =g(xo) + (x — x0) +3%’<x — X0) + + 5(::f—.x93<x—xo>"-1]

(6.24)
und setzen

/ N (n)

g1(x) = g 5.340; — x0) + + 5% — x0)"-1. (6.25)

Dann gilt

g(x) = g(xo) + (x — xo) ‘g1(x)~ (6.26)

Wir denken uns g1(x) nach Potenzen von x entwickelt und bezeichnen die Entwick-
lungskoeffizienten mit b„:

g1(x) = b,,_1x"‘1 + b,,_2x"‘2 + + b,x + b0. (6.27)

Setzt man (6.27) in (6.26) ein und ordnet wieder nach Potenzen von x, so erhält man

g(x) = b„_,x" + (b,,_2 — xob,,_1) x"‘1 +

+ (b0 " 350171))‘ ‘l’ (g(-X0) ‘ xobo)- (6-28)

Durch (6.23) und (6.28) sind zwei verschiedene Darstellungen derselben ganzen ratio-
nalen Funktion g gegeben. Nach Satz 6.7 müssen also die Koeffizienten gleicher
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Potenzen von x in (6.23) und (6.28) übereinstimmen; der Koeffizientenvergleich
liefert

x": an = b..,1, 17H = am

xn-l 1 “n4 = brx—2 ‘ xObn-ls bn—2 = “n4 + xObn—1s
. . . . . ‚ . . . . . . . . .. also (6.29)

x‘: a1 = b0 — xobl, bo == a1 + xobl,

X05 “o = 3050) " xobo: i gÜVo) .= do + xobo~

Gemäß (6.29) kann man nacheinander die Koeffizienten b,,_1, b,,_2, ..., bo und schließ-
lich den Funktionswert g(x0) durch einfache Multiplikationen und Additionen be-
rechnen. Führt man diese Rechnungen im Kopf durch, so arbeitet man zweckmäßig
mit dem sog. Hornerschen Schema‘):

"n and an-2 ' ' ' '72 ‘7: "0

roh“ x„b„_Z -- - x901 x917.

l / l ll 1 i =

i i i i i V

bu»? DM "H ' ' ' Ö1 bu W61’

In der ersten Zeile notiert man die Koeffizienten a, (v = n, n — 1, ..., 0) des gegebenen
Polynoms (6.23). Danach schreibt man a„ unverändert in die dritte Zeile (nach
(6.29) ist b,,_1 = an). Nun rechnet man in der durch die Pfeile angedeuteten Reihen-
folge, wobei die schrägen Pfeile „Multiplikation mit x0“ und die senkrechten Pfeile
(vom zweiten ab) „Addition der darüberstehenden Zahlen“ bedeuten.

Besonders einfach ist die Berechnung von b, und g(x0) gemäß (6.29) bei Verwen-
dung eines Taschenrechners; in diesem Falle braucht man das Hornersche Schema
natürlich nicht aufzuschreiben.

Aus (6.26) folgt

8(30)
;%‘3‘—:: = g1(x> + T‘); (6.30)

man kann daher das Hornersche Schema auch als Algorithmus zur Division einer
Polynoms g(x) durch einen Linearfaktor (x — x0) auffassen: In der dritten Zeile er-
geben sich die Koeffizienten b, (v = n — l, n — 2, ..., 0) des verbleibenden Poly-

noms g,(x) und der Zähler g(x„) des „Restes“
0

Beispiel 6.4: g(x) = 3x4 + x2 — 5x + 2, x0 = 2:

3 0 2) l —5 2

6 l2 26 42

2.3 6 13 2144:g(2)
Aus der dritten Zeile liest man ab [vgl. (6.26)]

3x“ +x2 — 5x+2=A4+ (x—2)-(3x3 +6x2 +13x+21).
Wie bisher mit g(x) kann man nun mit g1(x) verfahren und erhält [vgl. (6.26)]

810‘) = 810(0) + (X “ x0) 'g2(X)» (6-31)

1) William George Horner (1786-1837), englischer Mathematiker.
2) Man beachte, daß für jede fehlende Potenz x" (0 g k < n) der Koeffizient a,, = 0 zu notieren

ist.

Ö Pforr, Diff.» a, Iutegr.
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wobei gz(x) ein Polynom (n — 2)-ten Grades ist. Das Hornersche Schema, angewandt
auf g‚(x)‚ liefert die Koeffizienten von g2(x) und — in der letzten Spalte der neuen

dritten Zeile — den Funktionswert g1(x0). Nach (6.25) gilt aber

gm) = = gm», (6.32)

d. h., nach dem zweiten Schritt liefert das Homersche Schema die I. Ableitung der
Funktion g an der Stelle x0. Entsprechend verfährt man mit g2(x), wodurch man mit
dem Hornerschen Schema eine Zerlegung der Form

82W) = 82050) ‘l’ (x — x0) ' 8305)

erhält. In Analogie zu (6.32) ist dabei g2(x) = g§(xo). Andererseits folgt aus (6.25)
g"(xo)

2! ’

Homerschen Schema die Zahl

d.h.‚ nach dem dritten Schritt kann aus demdie Beziehung g’1(x„) =

//( )

g2(xo) = Lzfl‘
abgelesen werden. In diesem Sinne fortfahrend, kann man sämtliche Koeffizienten

8m(xo)N (v=0,1,..., n)

der Taylorschen Entwicklung der Funktion g und damit die Ableitungen g‘"’(xo)
berechnen. Das in der geschilderten Weise erweiterte Schema nennt man auch voll-
ständiges Hornersches Schema.

Beispiel 6.5: Gesucht ist die Taylorsche Formel der Funktion

g(x)=3x‘+x2—5x+2
mit der Entwicklungsstelle x0 = 2.
Das vollständige Hornersche Schema lautet (vgl. Beispiel 6.4)

3 o 1 -5 2

1.Schritt {_ 6 12 26 42

2 3 613 21l44=g(2)
6 24 74

2. Schritt —

2 12 37|95=g'<2)
g 6 36

3. Schritt ———————„
2 3 18 i7 =§—(2—)—

2s

4. Schritt {__ 6

_ g'"<2)2 3124- 3!

5. Schritt —

= g“>(2)
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Daraus liest man ab

g(x) = 44 + 95(x — 2) + 73(x — 2)‘ + 24(x — 2)’ + 3(x — 2)‘.
ll!Ferner entnimmt man z. B. g (2) = 24 - 3! = 144.

d Nun sei x0 speziell eine Nullstelle der Funktion g, also g(x„) = 0. Aus (6.26) folgt
ann -

g(x) = (x — xo) 'g1(x)- (6.33)
Damit hat man von g(x) den Linearfaktor (x — xo) „abgespaltet“. Ist auch noch

g1(-750) = g/(xo) = 0:

dann gilt nach (6.31) die Gleichung g1(x) = (x — xo) -g2(x), womit (6.33) übergeht in

g<x) = (x - x0)’ 'g2(x).
Ist nun

g2(Xo) = g Zolco) * 0,

so kann man von g2(x) den Faktor (x -— xv) nicht ohne Rest „abspalten“, x0 ist also
eine zweifache Nullstelle der Funktion g (vgl. Band l, Abschnitt 9.5.). Allgemein gilt
für eine k-fache Nullstelle x0 von g -

g(x) = (x - x0)” - gk(x)

mit g""(x
g.<xo> = k, °’ a. o. ‘m’

Zur Bestimmung der Vielfachheit einer Nullstelle x0 führt man das Hornersche
Schema bis zu der Zeile aus, in der erstmalig ein von null verschiedener Entwick-
lungskoeffizient erscheint. Die Anzahl der zuvor Verschwindenden Entwicklungs-
koeffizienten ist die Vielfachheit von x0. Die Koeffizicnten des verbleibenden Poly-
noms g„(x) stehen in der Zeile des letzten verschwindenden Entwicklungskoeffizien-
ten.

Beispiel 6.6: Gesucht ist die Vielfachheit der Nullstelle x0 = —l der Funktion

g(x) = x5 + 3x‘ + 5x3 + 7x2 + 6x + 2.

Das Hornersche Schema von g(x) mit x0 = —1 lautet

1 3 5 7 6 2

-1 —2 —3 -4 —2

-11 2 3 4 2[o=g(-1)
-1 -1 -2 -2

-1 1 1 2 2| O=g’(—1)
-1 0 -2

_ _ g"<—1>
1 1 0 2 1 0 — 2!

-1 1

_ g'"<—1)
1 1 I 3 — # 0

Ergebnis: x0 = —1 ist eine dreifache Nullstelle von g(x)‚ und es gilt
g(x)=(x+1)3~(1-xz+0-x+2)=(x+1)3(x2+2).

5:
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Die Funktion g3(x) = x2 + 2 besitzt keine reellen Nullstellen, so daß g(x) im Reellen
nicht weiter zerlegbar ist.

Aufgabe 6.5: Berechnen Sie mit dem Hornerschen Schema den Wert der Funktion

g(x):2x5—2x“+x2—7x—4
an der Stelle x0 = 3.

Aufgabe 6.6: Entwickeln Sie die Funktion
g(x) = 2x‘ + 5x3 — 4x + 9

nach Potenzen von (x + 2). Welchen Wert hat g“’(—2)?

Aufgabe 6. 7: Ermitteln Sie die Vielfachheit k der Nullstelle x0 = -3 der Funktion

g(x) : x‘ — 19x’ —‘ 6x + 72,

und spalten Sie von g(x) den Faktor (x + 3)" ab.

6.3.3. Taylorsche Formel für beliebige Funktionen

Die Berechnung der Funktionswerte einer ganzen rationalen Funktion erfordert
lediglich algebraische Rechenoperationen und bereitet daher keine prinzipiellen
Schwierigkeiten. Mit dem Hornerschen Schema haben wir zudem ein Verfahren ken-
nengelernt, das solche Berechnungen besonders einfach durchzuführen gestattet.

Wie berechnet man aber z. B. ln 2, sin ä, e57 oder allgemein den Funktions-
wert f(x), wenn f eine nichtrationale Funktion ist?

Nach dem Vorstehenden wird man versuchen, die Funktion f durch eine ganze
rationale Funktion zu ersetzen, die die Punktion f — wenigstens für alle x einer ge-
wissen Umgebung einer Stelle xo — „hinreichend gut“ approximiert, d. h. annllhert.
Will man f in einer Umgebung von x0 speziell durch eine lineare Funktion appro-
ximieren‚ also geometrisch die Bildkurve von f durch eine Gerade ersetzen, so wird
man hierfür natürlich die Tangente, also die Bildkurve von

T105) =f(xo) +f,(-xo) ' (x ‘ xv) (635)

wählen‘) Eine bessere Annäherung wird man durch ganze rationale Funktionen
höheren Grades erreichen. Bei der Wahl solcher Funktionen läßt man sich von der
Taylorschen Formel (6.21) leiten, d. h., man ordnet der Funktionf (die dazu an der
Stelle x0 n-mal differenzierbar sein muß) das Polynom

f’(Xo)
Tn(x)3=f(xo) + I, (x — x.) + %<x — xo)2 + was — m"

oder kurz ( ) l l l

T„(x) f~v‘,"—°’(x - x0)” (6.36)

zu. T„(x) heißt Taylorsche: Ndlzerungspolynom n—ter Ordnung der Funktion f für die
Entwicklungsstelle x0. Die Bildkurve von T„ nennt man Schmiegparabel n-ter Ordnung.
(Nach (6.35) ist also die Schmiegparabel erster Ordnung gerade die Tangente an die
Bildkurve von f an der Stelle x0).

1) Man sagt, die Funktionen T, lineaririere die Funktion f in einer Umgebung von x0.
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Beispiel 6.7: Wir betrachten die Funktion f(x) = e" mit xo = 0. Wegen f‘"’(x) = ex,

alsof‘”’(0) = e° = 1 (v = 0, 1, ...) gilt nach (6.36)
nx x2 x

Tn(x)=1+—1!—+E!~+...+n—!, (6.37)

also insbesondere

To(x) = 1, T106) = 1 + x,
2 2 3

T2(x)=1+x+52—, T3(x)=1+x+x7+x?.

In Bild 6.7 haben wir die Bildkurve von fund ihreersten vier Schmiegparaheln ein-
gezeichnet. Man vermutet, daß die Funktionen T„ (wenigstens in einer Umgebung
von x0 = 0) mit wachsendem n immer besser die Funktionfannähern.

Um zu quantitativen Aussagen über die „Güte“ der Approximation von f durch
T„ zu gelangen, muß man das sog. Restglied n-ter Ordnung

R..(X)I=f(x) - T..(x) (6.33)

untersuchen. Dazu benötigt man eine geeignete Darstellung von R„(x); diese liefert
der folgende

Satz 6.8 (Satz von Taylor): Die Funktion f sei in einer Umgebung U der Stelle x0
(n + '1)-ma] dtflkrenzierbar, und es sei x e U. Setzt man [vgl. (6.38)]

n (V)

I f(x) = :20 f f") (x — xg)" + R„<x)‚ (6.39)

dann gibt es (mindestens) eine Zahl 1.9 mit

I R,,(x) =@(x — x0)"‘” (o < a < 1) (6.40a)

und (mindestens) eine Zahl 29’ mit

u R„(x) = (1 — M" (x — xo)"“ (o < 29' < 1).

(6.40 b)

Die Darstellung (6.40a) bzw. (6.40b) heißt Lagraugesche‘) bzw. Cauchyschez) Form
des Restgliedes. Es sei erwähnt, daß es noch andere Formen des Restgliedes gibt.

‘) Joseph Louis Lagrange (1736-1813), französischer Mathematiker.
z) Siehe Abschnitt l.

S, 6.8
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Die Formel (6.39) mit dem Restglied in einer dieser Darstellungen heißt Taylorsche
Formel der Funktion f für die Entwicklungsstelle x0.

Beweis von Satz 6.8: Wir definieren eine Hilfsfunktion zp, indem wir in (6.36) die
Stelle x0 durch die unabhängige Variable z ersetzen und x als Konstante betrachten:

mg=fln+ffiHx—n+„+Ä%3u—nm

wegen 900C) =f(x)‚ ‘P(xo) = T„(J0

gilt nach (6.38)

R„(x) = m) - 900cc). (6-41)

Ferner ist

<p'(z) =f’(z) + [f/II?) (x — z) — +

+ [‘\f(":11z)(Z’ <x — z)" r L352) n<x —‚
also, da sich alle übrigen Summanden gegenseitig aufheben,

q1’(z) = (x — z)". (6.42)

Die Funktion (p genügt aufdem Intervall x0 x den Voraussetzungen des erweiterten
Mittelwertsatzes (Satz 6.6). Es sei nun g eine zunächst beliebige Funktion, die diese
Voraussetzungen ebenfalls erfüllt. Dann gibt es also eine zwischen x0 und x gelegene
Zahl 5 mit

w) - <P(xo) : rz/(E)

g(x) — g(xo) g’(E) '

Wegen (6.41) und (6.42) folgt daraus

g(x) — g(xo) ‚ f‘"”’(E)
g’(E) "Y

Setzt man nun speziell g(z) = (x — z)"“, dann ist

g(x) = 0‚ g(xo) = (x — xo)"“,
g'(E) = -(VI + 1) (x - E)",

R‚.(X) = (X — E)”. (6-43)

so daß (6.43) übergeht in
(n+l)

Rm = (x — xmä

Beachtet man noch, daß die zwischen x0 und x gelegene Stelle E mit einer geeigneten
Zahl 19 e (0,1) in der Form E = x0 + 19(x — x0) darstellbar ist (vgl. 6.2.1.), so ist
damit (6.40a) bewiesen. Analog folgt (6.40b) aus (6.43), indem man g(z) = x — z

setzt. (Da die Stelle E und damit 19 von der Funktion g abhängt, haben wir hier 29’

statt i9 geschrieben.) I

Die Taylorsche Formel (6.39) ist eine direkte Verallgemeinerung der Taylorschen
Formel für ganze rationale Funktionen [s. (6.2l)]. Ist nämlich feine ganze rationale
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Funktion m-ten Grades und n g m, dann istf"”"’(x) E 0, also auch R„(x) E 0. Man
beachte aber, daß für n < m auch in diesem Falle ein von null verschiedenes Rest-
glied auftritt (vgl. Aufgabe 6.8 in 6.3.4.). '

Mit x = x0 + h erhält man eine andere Schreibweise für (6.39) und (6.40a) bzw.
(6.40b):

f(xo + h) = + R.'.'(h) (6.44)

mu R‘ h — fW)("° + W‘) h“ 0 19 1 645n( )— ( < < ) (- a)

bzw.
(IH-1) V

R,‘,*(h) = %’flfl (1 — 19')" h"+1 (o < 19' < 1). (6.45b)

Dabei haben wir das Restglied R„(x) = R„(xo + h) mit R:(h) bezeichnet. Für n = 0
gehen (6.44) und (6.45a) in den Mittelwertsatz [s. (6.4)] über. Mit den Differentialen

d"f(xo. h) = f‘”’(xo) ' h”

(vgl. 5.3.) kann man (6.44) auch in der folgenden Form schreiben:

f(xo + h) =yi
=0 .

+ R,‘,‘(h).

Für x0 = 0 ergibt sich aus (6.39) und (6.40a) bzw. (6.40b) die sog. MacLaurinsche
Form‘) der Taylarschen Formel:

I f(x) = i f(:,(°) x” + R„(x) (6.46)
v=0 -

mit

I R,,(x) = w! (o < 19 < 1) - (6.47a)

bzw.

N R„(x) =’¥?’”(1 — 19’)"x"+‘ (o < 19' < 1). (6.47b)

Die angegebenen Darstellungen des Restgliedes sollen dazu dienen, den absoluten
Fehler

|f(x) - Tn(x)l = lRn(x)|~ (€48)

den man bei der Approximation einer gegebenen Funktionfdurch die ganze rationale
Funktion T„ begeht, abzuschätzen. Nun enthält jede dieser Darstellungen eine Zahl19
bzw. 19’, für die lediglich die Ungleichungen

0<19<l bzw. 0<19’<1 (6.49)

bekannt sind. Um numerisch berechenbare Fehlerschranken zu gewinnen, muß man
also versuchen, für |R„(x)| eine obere Schranke zu finden, die die Zahl 19 bzw. 19’ nicht
mehr enthält. Welche Restgliedform dafür besser geeignet ist und wie man konkret

‘) Colin MacLaurin (1698-1746), schottischer Mathematiker.
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vorzugehen hat, hängt von der gegebenen Funktionf (und gelegentlich auch von den
Werten x und n) ab‘). Jedenfalls wird dabei von den Ungleichungen (6.49) wesentlich
Gebrauch zu machen sein.

6.3.4. Taylorsche Formel einiger elementarer Funktionen

In diesem Abschnitt wollen wir die Taylorsche Formel einiger wichtiger Funk-
tionen für eine beliebige Ordnung n in der MacLaurinschen Form herleiten und das
Restglied abschätzen.

1. f(x) = e" (—oo < x < +00):

Nach (6.46) gilt (vgl. Beispiel 6.7)

x x x2 x"| 8 =1+*1T+T!+...+"’fi+R"(X)

mit dem Restglied in der Lagrangeschen Form [s. (6.47 a)]
3x

R"(-X) : xn+1
Zur Abschätzung des Restgliedes beachten wir, daß aus 0 < v9 < 1 die Ungleichung

19x ä 191x! é. Ixl

und daraus wegen der Monotonie der Exponentialfunktion schließlich
Ixlru-1

mm _I |R„(x)| g e (n +1)! ( o0 < x < +00) (6.51)

folgt. Nun gilt, wie man zeigen kann,
n l‚liärrL =0 (—oo <x< +00). (6.52)

Aus (6.51) ergibt sich daher

lim R„(x) = 0 (—oo < x < +00). (6.53)
„in

Diese Aussage bedeutet wegen (6.48), daß man für jeden Wert x den Funktions-
wert f(x) = e” durch den Polynomwert

n xv
Tn(x) = „E?

beliebig genau approximieren kann, wenn man nur die Zahl n hinreichend groß wählt.
(In 6.3.5. behandeln wir hierzu ein Beispiel.) Aus (6.51) liest man noch ab, daß die
Zahl n um so größer zu wählen sein wird, je weiter der Wert x von der Entwicklungs-
stelle x0 = 0 entfernt ist (s. Bild 6.7).

2. f(x) = sinx (——oo < x < +00):

Nach Beispiel 4.24 gilt V

f‘"’(0) = 0, f‘"“’(0) =(~1)" (v = 0.1.2.,---),
f‘2"“’(x) = (—1)" cos x.

‘) Wegen der etwas einfacheren Gestalt der Lagrangeschen Form wird man zunächst versuchen,
mit dieser zum Ziel zu kommen.
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Wegenf‘2“’(0) = O ist T„(x) = T2k_1(x), also

_ R2u_1(x)>f“) — T2k—1(x) ‘i’ R2k(x)_

Wir verwenden das Restglied R„(x) in der Lagrangeschen Form und erhalten

3 5 Zk-l

U sinx = x — + — + + (—1)*-1 + R2k(x) (6.54)

mit

. cos fix
R2119?) =(—1)" Xzk“

Aus [cos 19x] g l folgt unmittelbar die Abschätzung

IR k(x)] Sw (—oo < x < +00) (6.55)
2 — (2k + l)!

und daraus wegen (6.52)

lim R2„(x) = 0 (—oo < x < +00).
k—>oo

Zur Verwendung von R„(x) anstelle von R„‚1(x) bemerken wir folgendes: Analog
(6.55) gilt

R < L2i 2k_1(X)l = (Zk)!

Für |x| < 2k + l (also insbesondere für Werte x in der Nähe der Entwicklungsstelle
x0 = O) ist daher die obere Schranke für |R2,,(x)I kleiner als die obere Schranke für
|R„_ 1(x)], d. h., (6.55) liefert eine feinere Abschätzung für den Fehler ]f(x) — T2,“, (x)|.

I:

(—oo < x < +00).

3. f(x) = cosx (——oo < x < +00):

Mit den Ableitungen (s. Aufgabe 4.14)

f‘2"’(0) = (-1)'‚ f‘““’(0) = 0 (v = 0,1,2.--),
f‘2""”(x) = (—-1)"+1 cos x

erhält man wie im voranstehenden Beispiel
x2 x4 x216

N cosx—_—1——7+F— +...+(—1)"W+R2,,.,,(x) (6.56)

mit

15‘I Run“) = (—1)*+*T23k1}2’5)—‚x"”

und der Abschätzung
xZlH-Z

iR2h+1(x)i ä (—°0 < x < +00), (6-57)

aus der wiederum folgt

lim R„_„„(x) = O (—oo < x < +00).
k-o + o0
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4. f(x)=ln(1+ x) (x > —l) 1):

Es gilt (vgl. Beispiel 4.25)

f"’(0) = (-1)“ (V - 1)! (V =1.2.-~-),
H „ n.f< +1)(x) = (._1)

Damit ergibt sich die Taylorsche Formel
2 3

I 1n(1+x)=x—x7+%—— + +(——1)"’1§+R,,(x). (6.58)

Hier notieren wir das Restglied in der Lagrangeschen Form:
_ (_ 1)n xn+1

I Rm ‘ (1 + 19x)"‘-1 TIT (6593)

und in der Cauchyschen Form:

_ (-1)"(1-19')" ‚I R„(x) — t . (6.59b)

Für x g O schätzen wir R„(x) nach (6.59 a) ab und erhalten wegen

l+19x;l‚ also #1
die Ungleichung

l.

l IR„(x)l g n + 1 (x 2 o). <6.6oa>

Zur Abschätzung von R„(x) für ——1 < x < 0 ist (6.59b) besser geeignet. Wir formen
zunächst um in

l — 19’ )" 1
R = %„.__ _?_

I ml l(1+„‚x „M

Nun gelten für -1 < x < 0 wegen 0 < 19’ < l die Ungleichungen

0<1—29’<l+z9’x, -I+19’x>1+x>0,

1-19’ 1 1

km7“! °<HT<E~
Damit ergibt sich schließlich

xfl+l

also

[R„(x)] + x (-1 < x < 0). (6.60b)

Die Schranken in (u.\50a) bzw. (6.60b) sind für jedes feste x E [0, 1] bzw. x e (— 1,0)
Nullfolgen bezüglich n. Daher gilt

lim R„(x) = 0 (-1 < x g 1), (6.61)
nass

n+1

Für x > l ist dagegen lim
n—>:¥J 1

die Gültigkeit von (6.61) gefolgert werden kann.

= + o0, so daß für diese Werte x aus (66021) nicht

1) Man beachte, daß die Funktion g(x) = In x nicht um die Stelle x = 0 entwickelt werden kann,
da sie nur für x > 0 definiert ist.
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5. f(x) = (1 + x)“ (x > —-l, BL beliebig reell):

Wegen
f‘"’(x) = «(a — l)... (a: -— v + l) (l + x)“‘" (v =1, 2, ...),

also
f"’(0) = 0c(0c —- 1)... (1x — v +1),
f"'+1’(x)= zx(zx — 1) (cc — n) (l + x)“""’,

erhält man unter Verwendung der Binomialkoeffizienten

= (v =1, 2, ___)

v!

die Taylorsche Formel

U (1 + x)“ = 1 + x + x2 + + x" + R,,(x). (6.62)

Das Restglied lautet in der Lagrangeschen Form '

I R„(x) = (n : I) (1 + 0x)~—"~1 x"” (6.63a)

und in der Cauchysohen Form

l R„(x) = (n + 1) (n i I) (1 — 19')" (1 + 0'x)M-I x""1. (6.63b)

Wie im vorigen Beispiel empfiehlt es sich, die Restgliedabschätzung für x ‚g 0 nach
(6.63a) und für —l < x < 0 nach (6.63b) vorzunehmen. Wir verzichten auf die
Durchführung und notieren sogleich das Ergebnis:

(n:1)ix"“ für x;0‚n+l>oc‘),

|R,,(x)] g (n+1) (nil) |x["*‘ für —1<x<o,.x;1, (6.64)

(X |x|"” ..(n+1) („Wim fur —1‘<x<0,oc< 1.

Ebenfalls ohne Beweis teilen wir mit, daß aus (6.64) die Aussage

lim R„(x) = 0 (lxl < l)

gefolgert werden kann.

Wir betrachten noch den Spezialfall on = n. In diesem Fall ist (n : I) = 0, also nach

(6.63a) R„(x) z Ovfür jedes x > — l, so daß (6.62) in die binomische Formel über-
geht.

Aufgabe 6.8: Ermitteln Sie die Taylorsche Formel der Funktion g(x) = 3x‘ + x2 — 5x =1<

+ 2 für die Entwicklungsstelle x0 = 2 mit dem Restglied R1(x) in der Lagrangeschen
Form (vgl. Beispiel 6.5).

‘) Eine Abschätzung von JR„(x)l für x g 0, n + 1 < 1x wird seltener benötigt; daher haben wir
sie nicht angegeben.
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Aufgabe 6.9: Bestimmen Sie die Taylorsche Formel der Funktion f(x) = cosh x in
der MacLaurinschen Form mit dem Restglied R2„„(x) (k g 0, ganz) nach Lagrange.

Aufgabe 6.10: Approximieren Sie die Funktion f(x) = e°""‘ durch ihr Taylorsches
Näherungspolynom 2. Ordnung mit x0 = 0. Schätzen Sie sowohl |R2(x)| als auch
|R3(x)| nach oben ab (vgl. die Bemerkungen bei der Aufstellung der Taylorschen
Formel für die Funktion f(x) = sin x).

6.3.5. Anwendungen der Taylorschen Formel

In der Taylorschen Formel einer gegebenen Funktion f kann man noch über die
Entwicklungsstelle x0 und die Ordnung n verfügen. Die Stelle x0 wird man so wählen,
daß sie in der Nähe der interessierenden Werte x liegt (vgl. die Ausführungen in
6.3.4. nach Formel (6.53)) und zugleich die Werte f‘"’(x0) leicht berechenbar sind.
Die Wahl der Zahl n richtet sich nach der Art der Anwendung der Taylorschen
Formel.

Erste Anwendungsmöglichkeit: Die Funktionfwird durch das Näherungspolynom T,,

ersetzt, wobei die Ordnung n vorgeschrieben ist. Damit erhält man die Näherungs-
forme]

n f‘”(xo)
V!f(x) z Z

1-=0
(X ‘ xo)v,

wobei man den absoluten Fehler

lf(x) - T..(x)l = lR..(x)l

wie in 6.3.4. abschätzen kann. Die gewonnene Fehlerschranke hängt dann noch von

x ab, so daß sich zwei Fälle unterscheiden lassen.

Fall l: Zu einem gegebenen Intervall I ist eine für alle x e I gültige Fehlerschranke
zu berechnen.

Fall 2: Zu einer vorgeschriebenen Fehlerschranke Ö > 0 sind diejenigen Werte x zu

ermitteln, für die |R„(x)| g Ö ist.

Wir behandeln nun einige Beispiele, wobei wir stets x0 = 0 wählen.

Beispiel 6.8: Die Funktion f(x) = sin x soll durch ihr Näherungspolynom zweiter
Ordnung approximiert und der Fehler für |x| g 5° abgeschätzt werden (Fall l).
Nach (6.54) ist T2(x) = T‚(x) = x; es gilt also

sin x z x, — (6.65)

und für den absoluten Fehler folgt aus (6.55) mit k x 1

3

lsin x — x] = |R2(x)| g ‘x’ für jedes x. (6.66)

Der Fehler ist demnach um so kleiner, je kleiner lx| ist. Speziell für

Ixl g 5' = 5% = 0,0872 < 0,0873

erhält man aus (6.66)

[sin x — x| < %(0,0873)3 < 0,000I2.
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Für Winkel Zwischen —5° und + 5_° ist die Näherungsformel (6.65) also mindestens
auf 3 Stellen nach dem Komma genau‘).

Aus (6.66) folgt außerdem die Gültigkeit der in Beispiel 2.19 behaupteten Formel
sin x = x + 00:3) für x —> 0 (Vgl. Aufgabe 2.7) und übrigens auch für jede andere
„Bewegung“ von x.

Wir betrachten noch eine praktische Anwendung von (6.65).

Beispiel 6.9: Die Schwingung eines mathematischen Pendels der Länge I und der
Masse m kann durch den Auslenkwinkel x beschrieben werden (s. Bild 6.8). Dabei
ist x eine Funktion der Zeit t, die der Differentialgleichung

5e + %sin x = o (6.67)

genügt (g: Erdbeschleunigung). Für „kleine“ Auslenkwinkel kann man (6.67) nähe-
rungsweise ersetzen durch die einfachere Differentialgleichung

Mit beliebigen Konstanten A und o: lautet die Lösung dieser Diiferentialgleichung

x== Acos(A/%t—rx),

wie man leicht durch Einsetzen bestätigt (vgl. Aufgabe 4.19). Man beachte, daß
(6.65) in diesem Fall in.der rein qualitativen Form

sinxzx für |xf<1,’)
also ohne Fehlerabschätzung, verwendet wurde.

Beispiel 6.10: Approximiert man die Funktion f(x) = sin x durch ihr Näherungs-
polynom dritter Ordnung, so erhält man nach (6.54) die Näherungsformel

x3
sin x z x — T. (6.68)

Gesucht seien diejenigen Werte x, für die der absolute Fehler von (6.68) höchstens
10“ beträgt (Fall 2). Aus (6.55) mit k = 2 folgt

sin x —— (x —x—3) lxls
6 = (R405)! § m,
5

und die Ungleichung g; g 10" ist äquivalent zu

IxI g i/0,012 = 0,41

‘) Man beachte, dal3 mindestens auf der rechten Seite von (6.65) der Wert x im Bogenmaß ein-
zunetzen ist.

z) Das Zeichen < bedeutet „wesentlich kleiner als ...“.
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Für diese Werte x, also insbesondere für [x] g 23° (= 0,40 ...), wird daher mit (6.68)
die gewünschte Genauigkeit erzielt.

Beispiel 6.11: Für die Funktionf(x) = \/l + x (x > —— 1) erhält man aus (6.62) mit
ac = f und n = 1 die Näherungsformel

\/l+xzl+%‚ (6.69)

deren Fehler wir für [x] < l0" abschätzen wollen (Fall 1). Nach (6.64) gilt

i; für x g O,

mmm fl
jg: für —1 < x < 0.
4\/l + x

Daraus folgt
10“ _5 .. _2

8 =1,25-10 fur 0§x<10 ,

lR1(x)l < 10-4 10-4 5 f 2

j{<—<2‚5310‘ " —10* < <0.
l4\/1—10-2 4'0.99 Ur x

Beispiel 6.12: Ein Generator mit dem inneren Widerstand R, erzeuge die Urspannung
E. Wird ein äußerer Widerstand R„ (Verbraucher) angeschlossen, so ist die über R„
abfallende Spannung U (Klemmenspannung) durch

R
= ———"— 6.70

U E R. + R, ( )

gegeben. Gesucht ist eine für R, > R,- gültige Näherungsformel für die relative Span-
.. E -

nungsanderung

Wir formen (6.70) zunächst um in

U l
— = ——. 6. l
E 1 + R‘ ( 7 )

R.
Nach (6.62) mit o; = —l und n = 1 gilt

1 _fi=(l+x)‘~1—x > (6.72)

mit der Fehlerabschätzung [s. (6.64))

v1_:_x’—(l—x) gxl (x;0). (6.73)

Wendet man (6.72) mit x = 11:‘ auf (6.71) an, so folgt

U R7z@—;)<m>m
und daraus

E" U z R‘ (12,, > 12.). (6.74)
E R,
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Eine quantitative Aussage über die Genauigkeit von (6.74) erhält man wegen R‘ g 0
aus (6.73): R"

_ ‘E—U_R,_U_l_R,~<R,2
E Ru e E ( Ra) =(R,,)~

Ist z. B. eine Genauigkeit von 10"“ vorgeschrieben, so darf man (6.74) nur anwenden,

wenn 11: g 10*‘, also R, g 10R, ist.

Eine zweite Anwendungsmöglichkeit der Taylorschen Formel besteht in der numeri-
schen Berechnung des Funktionswertesf(x) für einen gegebenen Wert x. Dazu appro—
ximiert man f(x) wieder durch T„(x). Infolge der im allgemeinen vorzunehmenden
Rundungen erhält man für T„(x) aber ebenfalls einen Näherungswert j». Aus

lf(x) — i] = lif(x) - T„(x)l + iT‚.(x) - i]!
folgt nach der Dreiecksungleichung

[f(x) - J7! é lR..(x)l + |T„(x) - )7I- (6-75)

Gilt nun für den betrachteten Wert x

lim R„ (x) =_0, (6.76)
rHw

so kann man den Fehler [R„(x)| durch die Wahl einer hinreichend großen Zahl n

beliebig klein halten. Der Rundungsfehler |T„(x) — 52| läßt sich durch die Mitnahme
von genügend vielen Dezimalen in jedem Falle beliebig klein machen. Unter der
Voraussetzung (6.76) kann man also den Funktionswert f(x) auf diese Weise mit
beliebiger Genauigkeit numerisch berechnen. Die Berechnung von )7 bereitet dabei —

insbesondere bei Verwendung von Rechenautomaten e keine Schwierigkeiten; das
Schwergewicht liegt auf der Fehlerabschätzung.

Beispiel 6.13." Gesucht ist ein Näherungswert )7 für die Zahl e mit einem absoluten
Fehler von höchstens 0,5 - 10-5. Die Taylorsche Formel der Funktion f(x) = e"
(s. 6.50) geht für x = I über in

1 1 1e=1+—lT+3!—+... +n—!+R,(1),

wobei nach (6.51) gilt

11m1): g °F715?‘
Aus der Definition der Zahl e,

e = lim <1 + l)",
„am H

kann man schließen, daß e < 3 ist. Damit ergibt sich

L
(n + 1)! '

Nun wählen wir n so groß, daß

3

(n—+W

|R..(1)l <

< l0" (6.77)
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ist. (Wir werden sogleich sehen, daß damit die vorgeschriebene Genauigkeit erreicht
wird.) Wegen

10! = 3628800 > 3- 105

ist (6.77) für n = 9 erfüllt, d. h., es gilt

|R9(1)[ < l0"5. (6.78)

Bei der numerischen Berechnung von

l 1 1 1
T9(1)=1+~1T+~2!—+'—3~!—+...+'§—!“

kann man die ersten 3 Summanden exakt angeben. Rundet man die folgenden 7 Sum-
' manden jeweils auf 6 Stellen nach dem Komma, so erhält man einen Näherungswert

*-
-)

6
-x

-

)7 für T9(l) mit dem Rundungsfehler (s. 5.2.1.)

]T9(1) w )7} g 7 - 0,5- 10" = 3,5 ~ 10*‘. (6.79)

Aus (6.78) und (6.79) folgt wegen (6.75)

[e — y] < 10“’ + 3.5 ~10’° = 4,5~10“‘. (6.80)

Der Fehler ist also tatsächlich kleiner ‘als 0,5 - 10-5. Berechnet man T9(1) in der an-

gegebenen Weise, so ergibt sich

y = 2,718282.

Nach (6.80) ist

j2—4,5~10“ <e<f1+4,5- 10-5,
also

2,7182775 < e < 2,7182865

oder auf 4 Stellen nach dem Komma gerundet

e = 2,7183.

Aufgabe 6.1 I: Geben Sie eine (von x abhängige) obere Schranke für den absoluten
Fehler der Näherungsformel

cos x z 1 — i
2

an. Für welche Werte x ist dieser Fehler sicher kleiner als 10*‘?

Aufgabe 6.12: Stellen Sie die Auslenkhöhe h eines mathematischen Pendels (s. Bei-
spiel 6.9 und Bild 6.8) in Abhängigkeit vom Auslenkwinkel x für „kleine“ Werte x

näherungsweise dar.

Aufgabe 6.13‘): Ein biegsamer Stab liege in zwei Punkten A und B in der Höhe h
auf und werde in einem Punkt C durch einen Stab der Länge h gestützt (s. Bild 6.9).
Der Fußpunkt P’ der Stütze sei gegenüber dem Fußpunkt F des Lotes von C auf die
Horizontale um eine Strecke s Verschoben.

a) Geben Sie eine für s < Iz gültige Näherungsformel für die Strecke d an, um die
sich der aufliegende Stab im Punkt C senken kann.

‘) Dieses Beispiel ist [7] entnommen.
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b) Wie groß ist der absolute Fehler dieser Näherungsformel für h = 1,5 m und
5 g 0,1 m höchstens?

Hinweis: Verwenden Sie Beispiel 6.1 l.

Bild 6.9 '

Aufgabe 6.14: Es seien xx und x2 positive Zahlen mit 0 g x2 — x, g Geben

Sie eine einfache Näherungsformel für In E an und schätzen Sie den absoluten
Fehler ab. xx

Aufgabe 6.15: In Beispiel 2.11 wurde die Geschwindigkeit v eines fallenden Körpers
bei geschwindigkeitsproportionalem Luftwiderstand mit

k:

angegeben. Ermitteln Sie eine für g < 1 gültige Näherungsformel für v, indem Sie
k!

die Funktion f(t) = e- 7 durch ihr Näherungspolynom erster Ordnung ersetzen.

Aufgabe 6.16." Berechnen Sie einen Näherungswert für mit einem absoluten
Fehler von höchstens 0,5 - 10*‘. 2/ 1 1

Hinweis: Verwenden Sie die Umformung 1100 = 103 (1 + 0,1).

7 Pfurr,Dif1.- u. Iutegr.



7. Untersuchung von Funktionen mit Hilfe ihrer Ableitungen

7.1. Berechnung von Grenzwerten

7.1. 1. Vorbemerkung

Die Grenzwertsätze von 2.5 kann man durch weitere Aussagen ergänzen. So gilt
z. B. in Ergänzung zu (2.21), wie ohne Beweis mitgeteilt sei:

Aus
lim f,(x) = g1 und lim f2(x) = +00

x-cxa

+00 für g‚>0
—oo für g1<0.um [f1(x)-f2(x)1 = {

Im Falle g, = O, also

lim f1(x) = 0 und lim f2(x) = +00, (7.1)
x_.xoxaxo

ist dagegen eine allgemeine Aussage über den Grenzwert

lim [f1(x) 'fz(x)] (7-2)
x—>x0

nicht möglich; in diesem Falle hängt das Verhalten von f1(x) -f‚_(x) für x —> xovon
den speziellen Eigenschaften der Funktionenfl undf; in einer punktierten Umgebung
von x ab.

Zurocharakterisierung der Grenzwertaufgabe (7.2) unter der Voraussetzung (7.1)
verwendet man das Symbol

,,0~ (+oo)“. (7.3)

Eine entsprechende Bedeutung haben die Symbole

G6 0 “ i o0 “ .. l
no (‘ü’) ‚ „*6 ‚ „EEO- ‚ u(+°°) (+00) y (7.4)

„0°“‚ „(+ 00)°“, ,,1*°°“-

Auch die Behandlung der durch (7.4) charakterisierten Grenzwertaufgaben setzt die
Kenntnis der darin vorkommenden Funktionen voraus‘). Alles bisher für die „Bewe—
gung“ x —> xo Gesagte gilt sinngemäß für die „Bewegungen“ x —> x0 i O, x —-> i- o0.

ist vom Typ Ü , der Grenzwert lim (x ln x)
„ x» + o

lnx
Beispiel 7.1: Der Grenzwert lim x _ 1

vom Typ ,,0 e (— so)“. ""1

Im folgenden behandeln wir eine Methode zur Untersuchung solcher Grenzwerte
unter Verwendung der Differentialrechnung.

1) Aus diesem Grund werden die Symbole (7.3) und (7.4) gelegentlich auch als „unbestimmte
Ausdrücke“ bezeichnet. Es muß aber betont werden, daß die damit charakterisierten Grenzwertauf-
gaben für konkret vorgegebene Funktionen f, und f2 natürlich stets ein eindeutig bestimmtes Kon-
vergenzverhalten haben. i
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6

7.1.2. Grenzwerte vom Typ -3- ‘ und ä“ (Regeln von Bernoulli — de PHospital)
9! S! —

Satz 7.1 (Erste Regel von Bernoulli‘) — de l’Hospita1): Die Funktionen fl undfz seien S. 7.1
in einem Intervall (x0, x0 + c) (c > 0) dzflerenzierbar, und es gelte dort f,’ (x) =3: O.

Ferner sei

lim f‚(x) =0 und lim f2(x) =0. (7.5a)
x_.x„+0 x—>xu+0

Ist für x -—> xo + O konvergent oder bestimmt divergent, so trzflt dasselbe
2

für zu, und es gilt

Am_, nm
gMnm‘QMfim' Ü“

Beweis: Falls f1 undf2 an der Stelle x0 nicht bereits rechtsseitig stetig sind, kann man
dies durch die Festsetzung f‚(x°) = 0 und f2(x°) = O wegen (7.5a) nachträglich

fi(x)
fz(x)

Nun sei (x„) eine gegen x0 konvergente Folge mit x„e (xo,xo + c) für jedes n.

Dann erfüllen fl und f2 auf jedem Intervall [x„, x„] die Voraussetzungen des erwei-
terten Mittelwertsatzes der Differentialrechnung. Es gibt also zu jedem n ein £,,e(xo,x,,)

‘t
m mw=nw+mm:nm

Am nmwnw am"
Da auch (En) gegen x0 konvergiert (warum?), ist nach Voraussetzung

erreichen. Das Verhalten von für x —> xo + 0 wird davon nicht beeinfiußt.

(7.7)

f1'(§..)

fz’(£,.)

gent oder bestimmt divergent. Wegen (7.7) gilt dann dasselbe für f‘(x")
aus folgt die Behauptung. I f1(x")

in

konver-

‚ und dar-

Satz 7.1 bezieht sich auf Grenzwerte vom Typ b- ;eine entsprechende Aussage
„ i oo “ . .

fur Grenzwerte vom Typ i: geben Wll’ ohne Beweis an:

Satz 7.2 (Zweite Regel von Bernoulli — de l’Hospital): Satz 7.1 bleibt richtig, wenn S. 7.2
(7.5a) ersetzt wird durch die Voraussetzung

lim f1(x)= ioo und lim f2(x)= iqo. (7.5b)
x—>xo+0 x—»x°+0

Schließlich notieren wir noch ohne Beweis die

Bemerkung 7.1: Die Sätze 7.1 und 7.2 gelten sinngemäßz) auch für die „Bewegungen“

x—>xo—0‚ x—+x„, x—>+oo und x—>—oo.

1) Gemeint ist Johann Bernoulli (s. Abschnitt 1.).
2) Vgl. Fußnote auf Seite 19.

7a:
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Beispiel 7.2: Gesucht ist der Grenzwert

lim lnx (vgl. Beispiel 7.1).
x-vl X " 1

Da der Grenzwert
1

. (Inx)' _ ‚ —x— _

121'} (x 1)’ "51’? 1 '1

existiert, gilt nach Satz 7.1 unter Beachtung von Bemerkung 7.1

‚ lnx . (lnx)’
1 _- = T : 1.
J3} x -1 M (x -1)’

Beispiel 7.3: Der Grenzwert

. — 1hm L
x->1+0 111x

ist ebenfalls vom Typ —ä— . Es gilt

T’ T x
lim (‘/x ,1) = lim 2‘/‘V ' = lim = +oo‚

x—ol+0 (In x) xal+0 __ x—>l+0 2 X -1

wobei sich die bestimmte Divergenz mit Satz 2.4 ergibt. Auch in diesem Falle ist
Satz 7.1 anwendbar und liefert

lim - lim =— +00.
x_.1+o lnx x»1+0 (In x)’

Die Beispiele 7.2 und 7.3 zeigen, daß Grenzwertaufgaben desselben Typs tatsäch-
lich zu verschiedenen Ergebnissen führen können (s. 7.1.1.).

Häufig kommt man erst nach wiederholter Anwendung von (7.6) zum Ziel.
2 1.

Beispiel 7.4: Der Grenzwert lim x7 ist vom Typ H- . Doch auch der Grenzwert
x-v + no C as ‘l’ O0

. (x2)’ . 2x
1 = 1 __

.32“. w)’ ‚J2‘... ex

ist noch von diesem Typ. Durch nochmalige Differentiation erhält man

. (2x)’ . 2

.51“... W = „E1“... e? = °'

zweimalige Anwendung von Satz 7.2 liefert also
2

lim xT=11m i: lim 3-:
x—r+w x—v+ac e x-nioa e

Abschließend betrachten wir ein Beispiel, in dem die Regeln von Bernoulli — de
l’Hospital nicht anwendbar sind.
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Beispiel 7.5: Gesucht ist der Grenzwert

um x+sinx ( +00“)
x—»+ 0c X as + a)

Es gilt
(x + sin x)’
T= 1 .(x), + cos x

Da aber 1 + cos x für x ——> + co unbestimmt divergent ist, ist Satz 7.2 nicht anwend-
bar. Auf anderem Wege erhält man aber sofort (s. Aufgabe 2.4f)

lim ————"+S‘“" =lim<1+TSl:x)=1+0=1.
x» + oo x xa + w

Aufgabe 7.1: Untersuchen Sie die folgenden Grenzwerte:

. a" — b" . In sinx
a) li_r'rä——;— (a > 0, b > O), b)xl_1’m£ :-2—x)7,

. 3 2

c) x11?» lnx

7.1.3. Grenzwerte vom Typ „0 - (1 o0)“ und „(+ o0) — (+ so)“

Diese Fälle lassen sich durch geeignete Umformungen auf die in 7.1.2. behandelten
zurückführen. Im Fall

lixmw [f1(x) 'f2(x)] (990 ' (i 00)“)
‚H

formt man um in

lim M („o“) oder lim E (”i0o“)l).
.«—..\-0+0 l Ü x—>xD+0 l

f2(x) f1(x)

Für die anderen „Bewegungen“ von x verfährt man analog.

1+
‘

Beispiel 7.6: Für den Grenzwert

lim (xln x) („0 ~ (—oo)“)
xa +0

erhältman
. . l — “

11m (xlnx)=‘l1m nx
x—+o x—+o L „ +00

x

l

= lim x = lim (—x)=0.
)c—v+0 _L )6—9+0

x2

1) Damit sich dieser Typ ergibt, mußfl in einem (evtl. sehr kleinen) Intervall (x0, x0 + s) (c > 0)
konstantes Vorzeichen haben (vgl. Satz 2.4).
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Die Grenzwertaufgabe

lim Lf1(x) -fz(x)] („(+ 00) - (+00)“)
x—:xo+0

läßt sich stets durch die Umformung

1 1

fl(x) — f2(x) = (7.8)

“ f1(x)fz(x)
in den Typ F überführen. Gelegentlich kommt man aber durch eine den speziellen

Funktionen angepaßte andere Umformung schneller auf diesen Typ.

Beispiel 7.7: In Beispiel 2.11 haben wir die Geschwindigkeit
k

z«=(vo—e>e
eines fallenden Körpers betrachtet. Dabei ist k > 0 ein Maß für den Luftwiderstand.
Für verschwindenden Luftwiderstand, also k = 0, hat (7.9) keinen Sinn. Wir wollen
das Verhalten von v für k —> +0 untersuchen. Schreibt man (7.9) in der Form

k

so erkennt man, daß für k —> +0 ein Grenzwert vom Typ „(+ o0) — (+ o0)“ vorliegt.
Statt nun (7.8) anzuwenden, kann man auch folgendermaßen umformen:

(7.9)

k
—x=jmg(1—e—%r)+ voe- ”‘ .

k

Für k —> +0 konvergiert der zweite Summand gegen v0, und der erste führt auf einen

Grenzwert vom Typ % . Mit

glklmgii — 55l]
1'357’?- =‚.‘iT„ f’) = g’

dk

erhält man schließlich lim v = gt + v0, also die bekannte Formel für die Geschwin-
k-o + o

digkeit eines fallenden Körpers bei Vernachlässigung des Luftwiderstandes.

Aufgabe 7.2: Untersuchen Sie die folgenden Grenzwerte:
l

a) ling (x2 ex’ ) b) lim (3/x3 + 2x’ — x).
x.. X4 m

7.1.4.

Zur Ermittlung von

lim [f1(x)]’*""
..xo+o

Grenzwerte vom Typ „0°“, „(+ oo)°“ und ,,1‘—' °°“

x
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für die in dfl’ Jberschrift genannten Fälle betrachtet man zunächst die Funktion

in i. ;(J<‘J">“’ = z(x)'1nfi(x) (f1(x) > 0)- (7-10)

Der Gas." w. t

lim [/2(x)-1nf1(x)] (7.11)
x—»x0+0

ist nun, wie man sich leicht überlegt, vom Typ „O- (ioo)“‚ also unter Umständen
nach 7.1.3. berechenbar. Existiert (7.1 1) als eigentlicher Grenzwert, so gilt wegen (7.10)
und der Stetigkeit der Exponentialfunktion

lim Um) - In/‚ml
lim [f1(x)]’2"" = e"”"°+° (7.12)

x..x°+o

Beispiel 7.8: Der Grenzwert lim x" (,,0°“) ergibt sich wegen
0X‘? +

lim lnx‘ = lim [x- lnx] = 0
x-v +0 xa+0

(s. Beispiel 7.7) nach (7.12) zu lim x‘ = e° = l.
x—»+0

Beispiel 7.9: Für den Grenzwert
1

lim (1 + sin x)? („I'm“)
x-v-O .

erhält man wegen
1 - s:

1im1n(l + sinx)7=1im (%)
x~»—0 ux_._o x

cosx

. 1+ sinx
= lim -———— =1

x—»—0 1

nach (7.12)
I

lim (1 + sin x)? = e
x-o-O

=e.

Aufgabe 7.3: Untersuchen Sie die folgenden Grenzwerte:

a) lim (1 +1)’, b) lim
X Xx—o+<73 x->+0

7.2. Monotonie

In diesem und den folgenden Abschnitten wird sich herausstellen, dais ein enger
Zusammenhang zwischen charakteristischen Eigenschaften einer Funktion und dem
Vorzeichen ihrer Ableitungen besteht.

Wir erinnern zunächst an den Begriff der Monotonie bzw. strengen Monotonie
einer Funktion (s. Band 1, 9.3.). Bild 7.1 zeigt die Bildkurve einer Funktionf mit
f '(x) > 0 für alle x e (a, b), d. h.‚ mit positivem Tangentenanstieg. Offenbar istf auf
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[a, b] streng monoton wachsend. Über den damit vermuteten Zusammenhang zwischen
(strenger) Monotonie und dem Vorzeichen der 1. Ableitung geben die folgenden Sätze
genaue Auskunft.

n y-fm

Bild 7.l
l7 X D

Satz 7.3: Die Funktionfsei aufdem Intervall I stetig und aufdem Inneren von I diflerem
wachsend

zierbar. Genau dann istfaufI monoton fallend

g f’(x) ä 0

f'(x) ä 0

Beweis: Wir führen den Beweis für monoton wachsende Funktionen (und zwar in-
direkt); für monoton fallende Funktionen kann man analog schließen.

a) Es seif’(x) g 0 für jedes x aus dem Inneren von I. Wäre/auf I nicht monoton
wachsend, dann gäbe es Zahlen x0, x, e I mit xo < x, und f(xo) > f(xi), also

I/’(i‘fl<0.
x1—x;,

}, wenn gilt

; für jedes x aus dem Inneren von I. (7.13)

(7.14)

Nach dem Mittelwertsatz der Differentialrechnung existiert aber ein E e (x„, x1): I,
so daß die linke Seite von (7.14) gleich f’(£) ist. Wegen (7.14) wäre f’(E) < 0 —

im Widerspruch zur Voraussetzung.

b) Es seifauflmonoton wachsend. Gäbe es ein x0 im Inneren von Imit

„m f(x) -f(xo) =

x — x0x-oxo
f’(xo) < o.)

dann würde für hinreichend nahe bei x0 gelegene Zahlen xi # x‘, die Ungleichung
(7.14) gelten. Folglich wäre fnicht monoton wachsend. I

Satz 7.4: Die Funktion f sei auf dem Intervall I stetig und auf dem Inneren von Idif-
ferenzierbar. Gilt

{f’(x) > 0

f'(x) < 0

dann istfauf I streng monoton H

} für jedes x aus dem Inneren von I, (7,15)

wachsend}

fallend

Der Beweis dieses Satzes verläuft analog zu Teil a) des Beweises von Satz 7.3.
Während (7.13) hinreichend und notwendig für die Monotonie vonf ist, ist (7.15)

zwar hinreichend, aber nicht notwendig für strenge Monotonie. So ist z. B. die Funk-
tion f(x) = x3 auf dem Intervall (—oo‚ +00) streng monoton wachsend, aber es

giltf’(0) = 0.
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Beispiel 7.10." Wir bestimmen das Monotonieverhalten der Funktion

f(x) = 1n(1 + x) — x (x > —l).
Wegen

x >0 für xe(—l,0),‚ 1

f(x) —fi— _—1+x{<0 für xe(0, +00)

istfnach Satz 7.4 auf(— l, 0] streng monoton wachsend und auf [0, + oo) streng mono-

ton fallend. Für jedes x > —— l, x 4: O ist daherf(x) <-f(0) = O (s. Bild 7.2), womit
zugleich die Ungleichung

1n(1+x)<x (x> —l,x#0)
bewiesen ist.

3 X

y-I/7 ('lvH'X
(x>-7)

Bild 7.2

Aufgabe 7.4: Untersuchen Sie das Monotonieverhalten der Funktion e

f(x) = 13x3 + xi —- 7 (—oo < x < +00).

Aufgabe 7.5: Beweisen Sie die Sogenannte Bernoullisehe Ungleichung a:

(l + x)" > 1 +nx (n g 2‚ganz;x > —l,x¢0).
Hinweis: Bestimmen Sie das Monotonieverhalten der Funktion

f(x)=(I +x)"—1—nx (x> —l).

7.3. Relative Extremwerte

7.3.1. Der Begrifl" des relativen Extremwertes

Die Eigenschaft eines Funktionswertesflxo), absoluter Extremwert der Funktionf
auf einem Intervall I c D(f) zu sein, hat globalen Charakter: Man verg1eichtf(xo)
tnit allen Werten, die die Funktion f auf dem vorgegebenen Intervall I annimmt
s. Definition 3.4). Mit dem Begriffdes relativen Extremwertes erfaßt man eine lokale
Eigenschaft von f: Man vergleicht f(x„) nur mit den Werten, die die Funktion fauf
einer gewissen (evtl. sehr kleinen) Umgebung von x0 annimmt. Dazu muß die Funk-
iionfmindestens in einer Umgebung von x0 definiert sein, d. h., x0 muß ein innerer
?unkt von D(f) sein. Diese Überlegung führt zu der

Definition 7.1: Eine Stelle x0 im Inneren des Definitionsbereiches der Funktion f D. 7.1
Maximnms

_ . ums l vonf, wenn es eine Umgebung Uäeißt Stelle eines relativen (oder lokalen) {
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von x0 in D(f) gibt, so daß x0 Stelle des absoluten
es gilt

{ f(xo) ä f(x)
f(xo) ä f(x)

Gilt stat! (7.16) sogar

{f(xo) > f(x)
f(xo) < f(x)

dann heißt x0 Stelle eines relativen (oder lokalen)
Sinne. -

Der Funktionswert f(xo) heyfit dabei relatives (oder lokales) ‚flmum
(im engeren Sinne). mmum

Abkürzende Sprechweisen, wie z. B. „relative Maximumstelle“, werden analog
verwendet wie für absolute Extremwerte (vgl. die Bemerkungen nach Definition 3.4).

Die in Bild 7.3 skizzierte Funktion f hat an der Stelle x, ein relatives Maximum
i. e. S.‘) Eine geeignete Umgebung U von xi haben wir markiert. Das Verhalten von

f außerhalb dieser Umgebung ist dabei ohne Belang. Es interessiert also nicht, daß
z. B.f(x3) > f(x1) ist. Ferner hatfan den Stellen x1, x4 und x5 relative Minima i. e. S.

und an der Stelle x3 ein relatives Maximum, aber nicht im engeren Sinne.

Maximums
Minimums

} vonfaufU ist, d. h.‚

} füralle xe U. (7.16)

: für alle xeU,x=l= x0,

{Maximum} von f im en eren
Minimums g

}vonf

Y

l Bild 7.3
l5 x

Hat die Funktionfan den Stellen x1 und x3 relative Maxima und ist sie auf dem
Intervall [x„ x3] stetig (s. Bild 7.3), dann nimmt sie nach Satz 3.8 an einer Stelle
x2 e [x„ x3] ihr absolutes Minimum auf [x„ x3] an. Da x2 aber sicher im Inneren
von [x„ x3] zu finden ist, ist f(x2) auch ein relatives Minimum von f. Es gilt also die

Bemerkung 7.2: Eine stetige Funktion nimmt zwischen zwei relativen Maxima (bzw.
Minima) stets ein relatives Minimum (bzw. Maximum) an.

Eine unstetige Funktion braucht diese Eigenschaft nicht zu haben, wie man an

den Stellen x4 und x5 in Bild 7.3 erkennt.

7.3.2. Eine notwendige Bedingung (kritische Stellen)

Ein relativer Extremwertflxo) ist ein absoluter Extremwert der Funktion f bezüg-
lieh einer gewissen Umgebung von x0. Daher folgt aus Satz 6.1, angewandt auf diese
Umgebung, der

1) Abkürzung für „im engeren Sinne“.
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Satz 7.5: Die Funktionfsei an der Stelle x0 diflerenzierbar und habe dort einen relatiiien S. 7.5
Extremwert. Dann gilt

f’(x0) = 0. (7.17)

Die Bedingung (7.17) ist also notwendig dafür, daß die ander Stelle x0 differenzier-
bare Funktion dort einen relativen Extremwert hat; sie ist jedoch nicht hinreichend.
So hat z. B. die Funktion f(x) = x3 (— oo < x < +oo) an der Stelle x0 = 0 keinen
relativen Extremwert, obwohl f’(0) = 0 gilt. Andererseits kann eine Funktion auch
an solchen Stellen einen relativen Extremwert haben, an denen sie nicht diflerem
zierbar ist. Ein Beispiel hierfür ist die Funktion f(x) = Ix] (—oo < x < +00), die
an der Stelle x0 = 0 nicht diflerenzierbar ist, dort aber ein relatives Minimum (i.e. S.)
hat.

Es gibt somit zwei Arten von „extremwertverdächtigen“ Stellen; wir beschreiben
sie durch die folgende

Definition 7.2: Eine Stelle x0 im Inneren des Definitionsbereiches der Funktion f D. 7.2
heißt kritische Stelle von f, wenn entwederf in x0 differenzierbar ist undf'(x0) = 0 gilt
oderf in x0 nicht dzflerenzierbar ist.

In geometrischer Formulierung ist x0 also genau dann eine kritische Stelle von f,
wenn die Bildkurve vonfan der Stelle x0 entweder eine zur Abszissenachse parallele
Tangente oder keine Tangente besitzt.

Aus dem Voranstehenden folgt nun die

Bemerkung 7.3.‘ Jede relative Extremalstelle der Funktion f ist eine kritische Stelle
von f.

Die Bilder 7.4a) bis 7 .4f) zeigen einige typische Fälle des Verhaltens einer stetigen
Funktion f in einer Umgebung einer kritischen Stelle x0. In den Fällen a) bis d)
ist x0 relative Extremalstelle von f, in den Fällen e) und f) nicht.

Aus Bemerkung 7.3 ergibt sich das folgende Verfahren zur Ermittlung der relativen
Extremwerte einer Funktion f:
l. Schritt: Ermittlung der kritischen Stellen von f.
2. Schritt: Untersuchung, welche kritischen Stellen tatsächlich relative Extremal-

stellen vonfsind.
3. Schritt: Berechnung der relativen Extremwerte.

Beispiel 7.11: Gesucht sind die kritischen Stellen der Funktion

f(x) = x2 e" (—oo < x < +00).

Daffiir jedes x differenzierbar ist, sind nur die Lösungen der Gleichungf’(x) = O

kritische Stellen von f. Wegen

f'(x) = 2x e“ — x2 e“ = x(2 — x) e""

und e“ + 0 für alle x sind das die Stellenx, = 0 und x, = 2.

Der zweite Schritt erfordert die Kenntnis hinreichender Bedingungen für das Vor-
liegen relativer Extremwerte. Damit werden wir uns in den beiden folgenden Ab-
schnitten befassen.



S. 7.6

108 7. Untersuchung von Funktionen mit Hilfe ihrer Ableitungen

Nxa)-I7 f /.t/a/It7er5/!//!1„
Y l’ mm/ UlffffPflI/Pfßflf

l l y-frx)
| y-/'(xl |

' l

l |

xv x X,; X

U) 177

Y Y

j (rm; \/rm
[ l

I

I l

r Ä

t) X" Ä d) V

Y l’

y-m)
_ y-ffx)

l

t :l

l l Bild 7.4a-f
n, x 1,;

e) f}

7.3.3.

Mit dem folgenden Satz kann man eine Funktion auf das Vorliegen relativer Ex-
tremwerte an denjenigen kritischen Stellen untersuchen, in deren Umgebung sie hin-
reichend oft diflerenzierbar ist.

Eine hinreichende Bedingung

Satz 7.6: Die Funktionfbesitze in einer Umgebung U der Stelle x0 stetige Ableitungen
bis zur n-ten Ordnung (n Z 2), und es gelte

Im) =./"<x„> n =f‘"""(xo) = o, aber f""(xo) 4: O. (7.18)

I. Ist n gerade, dann hat f an der Stelle x0 einen relativen Extremwert, und zwar

W050) < 0

f<">(xo) > 0

II. Ist n ungerade, dann hat f an der Stelle x0 keinen relativen Extremwert, sondern
in einer gewissen Umgebung von x0 ist f

f‘"’(x„) < 0 fallend }

f""(xo) > 0 wachsend '

Beweis: Wir beschränken uns auf den Fall

f""(xo) < 0;
im Fallf‘"’(x„) > O schließt man analog.

Maximum] ‚

im Fall l Minimum I l. e. S.E ein relatives l

im Fall { H streng monoton {

(7.19
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Auf Grund der Voraussetzungen istf für jedes x e U nach der Taylorschen Formel
entwickelbar, wobei — mit dem Lagrangeschen Restglied R,,_,(x) — wegen (7.18) gilt

( _ n

f(x) — f(xo) = f(")(xo + 1705 — Xo))—% (0 < 75‘ < 1)- (7.20)

Daf"” an der Stelle x0 stetig ist, gibt es wegen (7.19) nach Satz 3.3 ein e > 0 mit

f""(fc) < 0 für alle xe(x0 — e, x0 + e) c U.

Wegen 0 < 29 < 1 ist daher insbesondere

f""(x0 + z9(x — x0)) < O für alle xe (x0 — e, x0 + s). (7.21)

(x — x0)"I. Ist n gerade, dann ist n.
aus (7.20)

f(x) —f(x0) < 0 für alle xe (x0 — e, x0 + a), x 4: x0,

> 0 für alle x =l= x0. Damit folgt wegen (7.21)

d. h.‚f(x0) ist ein relatives Maximum i. e. S.

II. Ist n ungerade, dann ist

(x — x0)" {< O für alle x < x0,
n! > O für alle x > x0.

Wegen (7.21) folgt daher aus (7.20)

>0 füralle xe(x —a,x)
f(x) —f<x„>{ .. ° °

< 0 fur alle xe (x0, x0 + e),

so daß f(x0) sicher kein relativer Extremwert ist. Den Beweis der Monotonieaus-
sage übergehen wir. l

Zur Anwendung dieses Satzes auf eine kritische Stelle x0 vonfhat man die Funk-
tionf so oft zu differenzieren, bis erstmalig eine Ableitung an dieser Stelle von null
verschieden ist. Häufig trifft das bereits für die zweite Ableitung zu. Deshalb wollen
wir Satz 7.6 für den Spezialfall n = 2 noch explizit notieren:

Folgerung 7.1: Die Funktion f besitze in einer Umgebung von x0 stetige Ableitungen
bis zur zweiten Ordnung, und es_ gelte

f’(x0) = 0, aber f"(x0) + 0.

Dann hatfan der Stelle x0 einen relativen Extremwert, und zwar

f”(xo) < 0

f"(Xo) > 0

Beispiel 7.12: Gesucht sind die relativen Extremalstellen und Extremwerte der Funk-
tion

im Fall { e. S.
‚ , Maximum ‚

ein relatives
Minimum

f(x) = xze“ (—oo < x < +00).

Die Lösung erfolgt in drei Schritten (s. 7.3.2.):

l. Kritische Stellen: x, = 0 und x2 = 2 (s. Beispiel 7.11).

2. a) x, = 0: Es gilt
f”(x) = (2 — 4x + x’) e“,
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also f”(O) = 2 > O. Nach Folgerung 7.1 hatfan der Stelle x1 = O ein relatives
Minimum i. e. S.
b) x2 = 2: Wegenf”(2) = —2 e" < 0 ist x2 = 2 relative Maximumstelle i. e. S.

y.X2!-X (_m<x<o..)

Bild 7.5
7 i7 2—i/2“ i i i 2:;/2“ Ä

3. Relatives Maximum: f(2) = 4e‘2 = 0,54. Relatives Minimum: f(O) = 0.
Bild 7.5 zeigt die Bildkurve von f. (Die Punkte P, und P2 lassen wir zunächst außer
acht.)

Bieispiel 7.13: Gesucht sind die relativen Extremalstellen und Extremwerte der Funk-

mm f(x) = (x — n3 (x — 1) (-00 < x < +00).

. Kritische Stellen: x, = —%, x2 = l (s. Aufgabe 4.11).

2. a) x, = —;_-: Es giltf”(x) = 12x(x — 1), also f”(—§) = 9 > 0. Nach Folgerung
7.1 hatfan der Stelle x, = —-1; ein relatives Minimum i. e. S.

b) x2 = 1 : Wegenf”(I) = 0 differenziert man weiter und erhältf”’(x) = 24x — 12,
alsof”’(l) = l2 4: 0. Da die erste an der Stelle x2 = 1 nicht verschwindende Ablei-
tung von ungerader (nämlich dritter) Ordnung ist, hatfnach Satz 7.6 an der Stelle
x2 = 1 kelnen relativen Extremwert. (Wegenf”’(l) > 0 istfin einer gewissen Um-
gebung von x2 = 1 streng monoton wachsend.)

n
.

3. Relatives Minimum: fi—%) = — ~?% = —1,69. Relatives Maximum: nicht vor-

handen (s. Bild 7.6).

y-(K-1I’(xv f)
(m; x 4 p m)

Bild 7.6

s Aufgabe 7.6: Ermitteln Sie die relativen Extremalstellen und Extremwerte der fol-
genden Funktionen:

a)f(x) = 4cosx + cos2x (—oo < x < +00),

b)f(x) =x3e"‘ (-00 <x< +00).
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7.3.4.

Der folgende Satz ist auch dann anwendbar, wenn die Funktion f nur in einer
punktierten Umgebung von x0 differenzierbar, aber an der Stelle x0 noch stetig ist.
Ein weiterer Vorteil dieses Satzes besteht darin, daß nur die erste Ableitung von f
benötigt wird.

Eine weitere hinreichende Bedingung

Satz 7.7: Es gebe ein e > 0, so daß die Funktion f auf dem Intervall (x0 — s, x0 + e)

stetig und dort — evtl. mit Ausnahme der Stelle x0 selbst — diflerenzierbar ist.

’ 0 .. . ’ 0 .. .I. Ist : O} furjedes x e (x0 — s, x0) und : o} furjedes x6 (x0, x0+ e),

dann hatf an der Stelle x0 ein relatives ' e. S.

’( > 0 .. .

II. Ist ‘j:,(:§ < o} furjedes xe (x0 — e, x0 + e), x 4: x0,

dann hat f an der Stelle x0 keinen relativen Extremwert‚ sondern f ist auf (x0 —— e,

x0 + a) streng monoton {wachsend}
fallend

Dieses Kriterium kann man qualitativ auch so formulieren:

l. Wechseltf’ beim Übergang über die Stelle x0 von links nach rechts das Vorzeichen
{von plus nach minus Maximum}
von minus nach plus Minimum]

i. e. S. (s. Bild 7.7).

}, dann hat f an der Stelle x0 ein relatives {

Bild 7.7

II. Wechseltf’ bei diesem Übergang das Vorzeichen nicht, dann hatfan der Stelle x0
keinen relativen Extremwert.

Satz 7.7 folgt unmittelbar aus Satz 7.4: Istf’(x) > 0 für x e (x0 — e, x0) undf’(x) < 0
für x e (x0, x0 + e), dann istfauf (x0 — s, x0] streng monoton wachsend und auf
[x0, x0 + e) streng monoton fallend. Folglich istf(x0) der größte Wert, den die Funk-
tion fauf (x0 — e, x0 + e) annimmt. Entsprechend ‚schließt man in den anderen Fäl-
len. Man betrachte hierzu noch einmal die Bilder 7.4a) bis 7.4f).

Beispiel 7.14‘): Gesucht sind die relativen Extremalstellen und Extremwerte der
Funktion

f(x) = 3/x3 + 2x2 (x g —2).

1) Dieses Beispiel ist, in abgeänderter Form, [I1] entnommen.

S. 7.7
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1. Der Radikand verschwindet an den Stellen x = — 2 und x = O (und nur an diesen);
dort kann man f also nicht in der üblichen Weise nach der Kettenregel differen-
zieren (vgl. Bemerkung 4.1). Die Stelle x = -2 ist als Randpunkt von D(f)
nicht kritisch. Jedoch x = 0 liegt im Inneren von D(f)‚ undfist dort eventuell
nicht differenzierbar. Man braucht nun nicht erst nachzuprüfen, ob das tat-
sächlich zutrifft, x = 0 also eine kritische Stelle von f ist. Vielmehr wird man

diese Stelle sogleich als „extremwertverdächtig“ unter 2. weiter untersuchen. Zur
Ermittlung weiterer kritischer Stellen ist f zu differenzieren; man erhält

x(3x + 4)f’(x) = 1:377). (x > —2, x + o). (7.22)

. . A . 4
Die einzige Lösung der Gleichungf’(x) = 0 ist x = — —.

3

4 .

2. a) xi = — —3—: Aus (7.22) liest man ab:

f’(x) > O für -2 < x < —%—‚

f’(x) <0 für —%< x < 0.

Daf’ beim Überschreiten der Stelle xi = — g von links nach rechts das Vorzeichen

von plus nach minus wechselt, hat f nach Satz 7.7 dort ein relatives Maximum
i. e. S.

b) x2 = 0: Auch aufdiese Stelle ist Satz 7.7 (jedoch nicht Satz 7.6) anwendbar. Man
kann in diesem Fall aber auch so schließen: Wegen f(O) = O und f(x) > 0 für alle
x # 0, x > —2, x = 0 ist relative Minimumstelle i. e. S.

3. Relatives Maximum: f(— = = 1,06. Relatives Minimum:f(0) = 0.

Die Bildkurve vonfist in Bild 7.8 skizziert. (Die Bedeutung der Geraden y = x + €-

wird in 7.6 erläutert.)

im? /

Bild 7.8

a: Aufgabe 7.7: Ermitteln Sie unter Verwendung von Satz 7.7 die relativen Extremal-
stellen und Extremwerte der folgenden Funktionen:

a)f(x) = (x+ l)5 (x——2) (—oo < x< +00),

b)f(x)=x|x—ll (—oo<x< +00).
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7.4. Absolute Extremwerte

7.4.1. Ermittlung absoluter Extremwerte

Eine auf einem Intervall I definierte Funktionf kann einen absoluten Extremwert
auf I an einem Randpunkt von I (sofern dieser zu I gehört) oder an einer Stelle x0
im Inneren von I annehmen. Im letzteren Fall istf(x0) auch ein relativer Extremwert
vonf. (Die in Bild 7.9 dargestellte Funktionfhat auf [a‚ b] das absolute Minimum

Y„v, y-rm

fan

Bild 7.9

l

l

l

l

l
a r„ i?

f(a) und das absolute (und zugleich relative) Maximum f(xo).) Daraus ergibt sich das
folgende Verfahren zur Ermittlung der absoluten Extremwerte einer Funktion f auf
einem Intervall I:

1. Ermittlung der zu I gehörigen relativen Extremwerte von f.
2. Untersuchung des „Randverhaltens“ von f.

Mit 2. ist Folgendes gemeint: Ist I = [a, b], dann berechne man die Funktions-
wertef(a) und f(b). Ist I = (a, + 0o), dann untersuche man die Grenzwerte lim f(x)
und lim f(x). Entsprechend ist für andere Intervalle zu Verfahren. "'*“+°

+47)x»

Da relative Extremwerte stets an kritischen Stellen angenommen werden, kann
man 1. auch ersetzen durch

1*. Ermittlung der Funktionswerte an allen zu I gehörigen kritischen Stellen von f.
Falls die Funktion fauf dem Intervall I überhaupt absolute Extremwerte besitzt’),

sind diese unter den nach l. (bzw. 1*. ) und 2. ermittelten Funktionswerten zu finden.
Gelegentlich kann man auch den folgenden Satz anwenden, dessen (indirekter) Be-
weis sich kaum von dem der Bemerkung 7.2 unterscheidet.

Satz 7.8: Ist die Funktion f auf dem Intervall I stetig und hat sie dort an genau einer
Stelle x0 einen relativen Extremwert, dann ist f(x„) auch ein absoluter Extremwert von
f auf I.

Beispiel 7.15: Gesucht sind die absoluten Extremwerte der Funktion f(x) = xi cf‘
auf dem Intervall [1, + o0).

Der einzige zum Intervall [1, + o0) gehörige relative Extremwert von f ist das rela-
tive Maximumf(2) = 4 e" (s. Beispiel 7.12), das daher nach Satz 7.8 auch das abso-
lute Maximum vonfauf [1, + o0) ist.

Das absolute Minimum könnte nur an dem Randpunkt x = l angenommen wer-

den. Nun giltf(l) = e“ > 0, aber (s. Beispiel 7.4)
Z

lim f(x) = lim x,
x-v + so x» + so 5

Somit hatfauf [1, +00) kein absolutes Minimum (s. Bild 7.5).

=0.

1) Das ist durch Satz 3.8 nur für den Fall gesichert, daß I = [a, b] gilt undfauflstetig ist.

B Pforr, mm. n. Integr.

S. 7.8
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Aufgabe 7.8: Ermitteln Sie die absoluten Extremwerte der Funktion

f(x) = (x + 3)‘ (x ~ 2)’
auf dem Intervall [—2‚ 3].

7.4.2.

Viele praktische Probleme führen auf die Aufgabe, das absolute Maximum oder
Minimum einer Funktion auf einem Intervall zu ermitteln. Häufig interessieren vor

allem die Stellen, an denen ein absoluter Extremwert angenommen wird. Wir be-
handeln einige Beispiele.

Einige Anwendungen

Beispiel 7.16: Die Bahnkurve für den schrägen Wurf ist — bei Vernachlässigung des
Luftwiderstandes — die Parabel (s. Bild 7.10)

= f(x) zxtanzx ——EL-
y 212% cos‘ xx

(4x e <0, Wurfwinkel, v0: Anfangsgeschwindigkeit, g: Erdbeschleunigung). Ge-

sucht ist

a) die Wurfhöhe ya = f(xH),
b) derjenige Winkel a0, für den die Wurfweite xw am größten ist.

w’ gy-r-Ianot vfflmm (II-x im)

Bild 7.10

Zu a): y„ ist das absolute Maximum der Funktionfauf dem Intervall [0, xw], wobei
sich xw > 0 ausf(x„‚) = 0 zu

2
211 , v’ .

xW= g° s1noccosoc=?°s1n2oc (7.23)

i ergibt. Es gilt
2gx

f(”)=“*“°‘“mä7; (0 < x < xw),

alsof’(x) = 0 nur für

xW
T‘

< 0 (für alle x) hatfan der Stelle x„ ein relatives Maxi-

vä .

x3 =?s1naccosoc=
g l

vä cos’ on
Wegenf”(x) = —

mum; dieses ist
2

y„ = fÜCH) = g;—sm= a.

Als einziger relativer Extremwert von f ist yH nach Satz 7.8 zugleich das absolute
Maximum vonfauf [0, x,y].
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Zu b): ac, ist diejenige Stelle, an der die durch (7.23) gegebene Funktion xW(oc) ihr ab-

solutes Maximum auf (0, annimmt. Die Gleichung

2

dxw =%cos2a=0 (0<oc<E—)
doc 2

hat die einzige Lösung mo = Wegen

dzx 41)’

da? a= % : __g—g < O

hat xw(oc) an der Stelle (x0 = ä ein relatives Maximum, das — wiederum nach Satz 7.8

— auch das absolute Maximum auf (0, ist. Der optimale Wurfwinkel ist also

1x0 =‘Z—”=45°.

Beispiel 7.17: In einer Ebene seien eine Gerade g und zwei auf derselben Seite von g
gelegene Punkte A und B gegeben. Gesucht ist derjenige Punkt P auf g, für den die
Abstandssumme A7 + I? am kleinsten ist.

Bild 7.ll

Nach Einführung eines geeigneten Koordinatensystems (s. Bild 7.1l) gilt für die
Abstandssumme

f(x)=\/x2 + a’ +\/(l—x)2 +b2.

Die positiven Konstanten a, b und I sind bekannt. Gesucht ist die Stelle x = x0, an
der die Funktionf ihr absolutes Minimum auf dem Intervall (— o0, + o0) annimmt.
Wegen '

1 _

L————L— (—oo <x< +00)
f“) = 4m ATM

ist die Gleichungf’(x) = O äquivalent zu

x l — x

WT ='
Aus (7.24) folgt durch Quadrieren und eine einfache Umformung bzxz = a2(I — x)2
und daraus

bx = a(l — x) (7.25a)

(7.24)

oder .

bx = —a(l — x). (7.25b)

8* *
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Aus (7.25 b) folgt umgekehrt aber nicht (7.24), denn genügt x der Gleichung (7.25b),
dann haben x und (I — x) verschiedene Vorzeichen, was der Gleichung (7.24) wider-
spricht. Dagegen ist die Lösung von (7.25a)‚ nämlich

al
a + b ’

auch Lösung von (7.24), wie man leicht durch Einsetzen bestätigt. Somit ist x0 die
einzige kritische Stelle vonf, und wegen

f"(x)__.L_+J._>0
\/x2 + a2’ \/(1 — x)’ + b“

hat f dort ein relatives Minimum, das nach Satz 7.8 auch das absolute Minimum von

fauf (—oo‚ +00) ist.
Wir geben noch zwei Interpretationen dieses geometrischen Problems.

x0:

u
.

. Ein von A ausgehender und an g (Spiegel) reflektierter Lichstrahl, der in B ankom-
men soll‚ wählt den Weg der kürzesten Laufzeit (Fermatsches Prinzip). Bei kon-
stanter Geschwindigkeit (homogenes Medium) ist das der kürzeste Weg. In diesem
Fall wird der Lichtstrahl also im Punkt P(x„, 0) reflektiert. Für x0 gilt (7.24), d. h.
(s. Bild 7.11) sin 1x 2 sin ß, also on = ß. Aus dem Fermatschen Prinzip folgt somit
das Refiexionsgesetz „Einfallswinkel gleich Ausfallwinkel“.

2. Zur Energieversorgung der Orte A und B soll an dem geradlinig verlaufenden Fluß
g ein Kraftwerk gebaut werden. Die Gesamtlänge der von dem Kraftwerk nach A
und B zu verlegenden Leitungen ist genau dann minimal, wenn dieses an der Stelle
P(x0, 0) errichtet wird.

Aufgabe 7.9: Ermitteln Sie den Grundkreisradius n, und die Höhe ho derjenigen
zylindrischen Dose, die bei Vorgeschriebenem Volumen Veine möglichst kleine Ober-
fläche S hat (geringster Materialverbrauch).

Aufgabe 7.10: Die Genauigkeit der Widerstandsmessung mit einer Wheatstoneschen
Brücke (s. Aufgabe 5.6) hängt von der Kontakteinstellung x ab und läßt sich daher
durch die Wahl des Vergleichswiderstandes R beeinflussen. Für welchen Wert J": ist der
in der Lösung von Aufgabe 5.6 angegebene Näherungswert für den relativen Fehler
Ay

am kleinsten?

Aufgabe 7.11: Ein Ort A soll regelmäßig mit Waren aus einem Ort B, der an einer
geradlinigen Eisenbahnlinie g liege (s. Bild 7.12), versorgt werden. Die Transport-
kosten pro Kilometer und Wareneinheit seien o: bei Straßentransport und ‚B bei Bahn-
transport. Es gelte 1x > ß. An welcher Stelle P zwischen A 1 und B ist von g eine gerad-
linige Straße nach A abzuzweigen, damit die Kosten für den Transport einer Waren-
einheit von B über P nach A möglichst gering sind? (Die Strecken a und I seien in km
gegeben.)

A

i Bild 7.12
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7.5. Konvexität und Wendepunkte

7.5.1. Konvexe und konkave Funktionen

Wir erinnern an den Begriff der Konvexität (s. Band l, Abschnitt 9.3.). Die Funk-
tion fheißt auf dem Intervall 1c D(f) konvex, wenn für alle x1, x2 E I und jedes
o; e (O, I) die Ungleichung

f(0<x1 + (1 - 06) x2) E v¢f(x1) + (1 - 0¢)f(x2) . (7-26)

erfüllt ist. Gilt dagegen statt (7.26) stets

f(r><X1 + (1 - Ix) x2) ä rxflxr) + (1 - tx)f(xz)‚ (7-27)

so heißtfauf I konkav. Gilt in (7.26) für x1 # x2 sogar stets < statt g, so nennt
man f auf I streng konvex; analog sind streng konkave Funktionen definiert,

Zur geometrischen Interpretation der Konvexität betrachten wir zwei Stellen
x1, x2 e Imit x1 < x2. Für jedes 0c e (0, 1) ist dann

x=zxx‚ +(1—oc)x2

ein Punkt aus dem Intervall (x„ x2) . Weiter ist

ocflxr) + <1 — oc)f(x2) = f(X2) +
2

(x — x2) =:fl(x)

der Wert der zum Intervall [x,,x2] gehörigen Sekantenfunktion an der Stelle x.

Die Ungleichung (7.26) lautet somit

f(x) ä fs(x)‚
d. h., die Bildkurve von f liegt nicht oberhalb der zu dem (beliebig in I gelegenen)
Intervall [x„ x2] gehörigen Sekante (s. Bild 7.1321). Analog ist die Konkavität zu

interpretieren (s. Bild 7.13b).

l’

6(1)

rm

Bild 7.1317
x, r x, i

Für diflerenzierbare Funktionen kann man Konvexität und Konkavität auch
durch die Lage der Tangenten zur Bildkurve charakterisieren.

J y

WW y-f{X)

x, x; X x, x, x

Bild 7.143 Bild 7.l4b
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Bemerkung 7.4: Die Funktion f sei auf dem Intervall I differenzierbar. Genau dann
istfauf I konvex (bzw. konkav), wenn jeder Punkt der Bildkurve vonfoberhalb (bzw.
unterhalb) jeder Tangente oder höchstens auf derselben gelegen ist (s. Bild 7.1421

bzw. 7.14b).
Bild 7.1421 läßt vermuten, daß bei einer konvexen Funktionfder Anstieg der Tan-

gente im Punkt P(x, f(x)) mit wachsendem x zunimmt, daß alsof’ monoton wachsend
ist. Tatsächlich gilt der

Satz 7.9: Die Funktion fsei auf dem Intervall I diflerenzierbar. Genau dann istf auf I
konvex wachsend _ '

(streng) { ikonkav}, wenn f’ auf I (streng) monoton { ist.
fallend

Mit den Sätzen 7.3 und 7.4, angewandt auf die Funktionf’, erhält man aus Satz 7.9
die folgenden Konvexitätskriterien.

S. 7.10 Satz 7.10: Die Funktionf habe auf dem Intervall I eine stetige erste Ableitung und auf

at
-

dem Innern von I eine zweite Ableitung.

konvex
I. Genau dann ist f auf I {konkav

{f"(x) ä 0

f"(x) é 0

:f"(x) > 0

f”(x) < 0

dann istf auf I streng {

} , wenn gilt

} für jedes x aus dem Inneren von I.

II. Gilt

} für jedes x aus dem Inneren von I,

konvex}
konkav '

Beispiel 7.18: Für die Funktion

f(x) = (x —1)3(x +1) (—oo < x < +00)

gilt (s. Beispiel 7.13)

f”(x) = l2x(x — I): x<0 undfür
0<x<1.

>0 für
<0 für

x>1,

Nach Satz 7.10 istfauf(— oo, 0] und [1, + o0) streng konvex und auf [0,l] streng kon-
kav (s. Bild 7.6).

Aufgabe 7.12: Untersuchen Sie das Konvexitätsverhalten der Funktion

f(x) =7 (-00 < x < +00).

7.5.2. Wendepunkte

Zur Hervorhebung derjenigen Stellen, an denen die ‚‚Änderungsgeschwindigkeit"
einer Funktion ein relatives Maximum oder Minimum hat, geben wir die folgende

Definition 7.3: Die Funktion f sei in einer Umgebung der Stelle x0 di/ferenzierbar.
Der Punkt (x0, f(x„)) heißt Wendepunkt (der Bildkurve) von f, wenn die Ableitung f’
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an der Stelle x0 einen relativen Extremwert i, e. S. hat. Die Tangente in einem Wende-
punkt heißt Wendetangente; ist diese horizontal (gilt also f'(xo) = 0), dann heißt
(xo‚f(xo)) Horizontalwendepunkt oder Stufenpunkt.

Aus Satz 7.9 erhält man unmittelbar die folgende geometrische Bedingung für das
Vorliegen eines Wendepunktes.

Satz 7.11: Die Funktionfsei aufeinem Intervall [x0 — a, x9 + e], e > 0, diflerenzier- S. 7.1l
bar. Istfauf [x0 — e, x0] streng konvex und auf [x0, xo + 8] streng konkav oder umge-
kehrt, dann ist der Punkt P0(x„,f(xo)) ein Wendepunkt vanf(s. Bild 7. I 5 a und 7. I5b‘)).

VT y=rm

x,,—L Xg xgv: x

Bild 7‚l5a Bild 7.l5b

Nach Satz 7.11 hat die in Beispiel 7.18 betrachtete Funktion f die Wendepunkte
P1(0, -1) und P2(1, 0). Zu P, gehört die Wendetangente y = ——l + 2x [s. (4.l7)];
P; ist wegen f’(l) = 0 ein Horizontalwendepunkt mit der Wendetangente y = 0
(s. Bild 7.6).

Beispiel 7.19: Bild 7.16 zeigt die Bildkurve der Weg-Zeit-Funktion s = s(t) einer
geradlinigen Bewegung. Im Wendepunkt Po geht diese Kurve mit zunehmender Zeit
t aus einem konvexen in einen konkaven Verlauf über. Daher hat die Geschwindigkeit
v = s zur Zeit to ein relatives Maximum (vgl. Bild 7.15a).

Aus Bemerkung 7.3 und Satz 7.6, angewandt auff’, erhält man sofort die beiden
folgenden Kriterien für das Vorliegen eines Wendepunkts.

Bemerkung 7.5: Die Funktion f kann nur dann an der Stelle x0 einen Wendepunkt
haben, wenn entweder f”(xo) _= 0 ist oder die 2. Ableitung von fan der Stelle x0
nicht existiert.

Diese notwendige Bedingung ist aber nicht hinreichend. So hat z. B. die Funktion
f(x) = x‘ an der Stelle x = 0 keinen Wendepunkt (sondern ein relatives Minimum),
obwohlf"(O) = 0 ist.

Satz 7.12: Die Funktion f besitze in einer Umgebung der Stelle x.) stetige Ableitungen S. 7.12
bis zur n-ten Ordnung (n g 3), und es gelte

f"(xo) = f”’(xo) = = f""“(xa) = 0, aber f""(xo) 4= 0. (7-28)

Ist n ungerade, dann hat fan der Stelle x0 einen Wendepunkt, andernfalls nicht.

1) Man beachte auch den Zusammenhang zwischen der Monotonie vonfund dem Vorzeichen von

f’ (s. Satz 7.4),
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Beispiel 7.20: Die Van-der-Waalssche Zustandsgleichung eines realen Gases lautet

RTp=U_b—-:7 (v>b) (7.29)

(T: Temperatur, v: Molvolumen, p: Druck, R: allgemeine Gaskonstante, a und b:
gasspezifische Konstanten). Bei konstanter Temperatur Tist der Druck p eine Funk-
tion des Volumens v, deren Bildkurve Isotherme heißt. Aus physikalischen Über-
legungen folgt die Existenz einer Isotherme T 2 Tk mit einem Horizontalwendepunkt
K. In Bild 7.17 sind drei typische Isothermen schematisch dargestellt. Dabei ist

Bild 7.16 Bild 7.17

T1 < T„ < T2. (Das tatsächliche Verhalten des StolTes zwischen den Punkten A und
B wird durch ein zur v-Achse paralleles Geradenstück beschrieben.) Wir wollen nun

die Existenz eines Horizontalwendepunkts K mathematisch beweisen und Kermitteln.
Die notwendigen Bedingungen ‘

dp dzpE—0 und dvz —0

lauten wegen (7.29) mit T = T„

RT,. 2a _ 2RTk 6a _

(v—b)2 +$3"° ““d (v-b)’ F‘
Die einzige Lösung v = 12„ dieser Gleichungen ist L2,, = 3b. Setzt man diesen Wert

in eine der beiden Gleichungen ein, so erhält man T, = 278;’) . Aus (7.29) folgt damit

p„ = Edy. Wegen

d3}: 6RT„ 24a _ a

"KWL U; - “m?”
ist K(v„‚ pk) nach Satz 7.12 tatsächlich ein Wendepunkt. Man nennt die Größen
Th, v,,, p,, kritische Daten und den Punkt K kritischen Punkt.

It Aufgabe 7.13: Ermitteln Sie Wendepunkt(e) und zugehörige WendetangenteOJ)
der Funktionf(x) = x’ ln x (x > 0).
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7.6. Kurvendiskussion

Bisher haben wir die Bildkurven von Funktionen skizziert, ohne auf die Anferti-
gung solcher Skizzen einzugehen. Damit wollen wir uns nun befassen. Man unter»
sucht dazu die vorgelegte Funktion auf folgende Eigenschaften:

1. Unstetigkeitsstellen (s. 3.3.),
2. Monotonieintervalle (s. 7.2.),
3. Relative Extremwerte (s. 7.3.),
4. Konvexitätsintervalle (s. 7.5.1.),
5. Wendepunkte (s. 7.5.2.),
6. Verhalten für x —> i o0, Asymptoten (s. unten).

Auf Grund dieser sog. Kurvendiskussion ist dertprinzipielle Verlauf der Bildkurve
bekannt. Um die Genauigkeit der Skizze zu erhöhen, wird man im allgemeinen noch
einige Funktionswerte und die Nullstellen der Funktion berechnen. Gelegentlich
kann man auch Periodizitäts- oder Symmetrieeigenschaften der gegebenen Funktion
ausnutzen. '

Wir müssen noch den Begrifl" der Asymptote definieren. Ist die Funktionffür eine
der „Bewegungen“ x —> x0 + 0 oder x —> x0 —— 0 bestimmt divergent, dann heißt die
Gerade

x=x.,

(vertikale) Asymptote oder Sperrgerade (der Bildkurve) von ffür diese „Bewegung“
von x. Eine Gerade

y = ax + b (7.30)

heißt (geneigte) Asymptote (der Bildkurve) von ffür x —-> +00, wenn gilt

lim [f(x) — (ax + b)] = 0. (7.31)
x-o (X)

Entsprechendes gilt für x —> -00. Anschaulich gesprochen ist eine Asymptote also
eine Gerade. der die Bildkurve vonfbei der betrachteten „Bewegung“ von x beliebig
nahe kommt (s. Bild 7.183 für die „Bewegung“ x —> x0 — 0 und Bild 7.l8b für die
„Bewegung“ x —> + so).

y
l

H” ‚V-HXH?

y=/‘(xi

y-for)

‘. Äg x r x

Bild 7.183 Bild 7.l8b

Nun sei die Gerade (7.30) Asymptote der Bildkurve vonffür x —> + oo. Zur Ermitt-
lung der Konstanten a und b schreiben wir (7.31) in der Form

lim — a —- = 0.
x—»+oo
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Wegen lim x 2 +00 folgt
)C—O+UJ

lim (Lx) — a — = 0
„+00 x x

. b
und daraus wegen lim — = O

x» + 0a x

a= lim (7.32)
x-Mrw ‚X ‘

Ferner erhält man aus (7.31) unmittelbar

b = lim [f(x) — ax]. (7.33)
X—> + K‘

Aus (7.33) folgt umgekehrt (7.31). Es gilt also die

Bemerkung 7.6: Die Bildkurve Vonf besitzt genau dann eine Asymptote für x —> + oo,
wenn die Grenzwerte (7.32) und (7.33) existieren. Mit diesen Grenzwerten ist die
Asymptote durch die Gleichung y = ax + b gegeben.

Existiert speziell der Grenzwert limf(x)‚ dann folgt aus (7.32) a = 0 und damit aus
X—++OO

(7.33) b z limf(x). In diesem Fall hat die Bildkurve von falso die (horizontale)
x~+OO

Asymptote

y ‘ b ‘b =,'.‘T..f"‘”' (7.34)

Alle diese Überlegungen gelten entsprechend für x —> — oo.
Mit dem Voranstehenden haben wir für beliebige (rationale und nichtrationale)

Funktionen den Begriff der geradlinigen Asymptote definiert. Für gebrochen ratio-
nale Funktionen betrachtet man auch krummlinige Asymptoten. Hierauf wollen wir
jetzt eingehen. Zunächst sei daran erinnert, daß für eine echt gebrochen rationale
Funktion h stets

lim h(x) = 0
X4 + G)

gilt (s. Aufgabe 2.6.).
wjNun sei feine unecht gebrochen rationale Funktion. Durch Division des Zähler-
polynoms durch das Nennerpolynom kann manf in folgender Weise zerlegen:

f(X) = g(x) + h(x);

hierbei ist g eine ganze und h eine echt gebrochen rationale Funktion. Daraus ergibt
sich

lim [f(X) - g(x)] = Um h(x) = 0.
X—~ + (X) x-> + D0

d. h., für x —> + oo kommt die Funktion f ihrem ganzen Teil g beliebig nahe. Deshalb
nennt man g (krummlinige) Asymptote von f für x—> +00; das gleiche gilt für
x —> — oo. Ist g speziell eine lineare Funktion, also g(x) = ax + b, dann ist g natür-
lich auch Asymptote vonfim Sinne der durch (7.31) gegebenen Definition.

Für gebrochen rationale Funktionen ist die Ermittlung des Kurvenverlaufs mit
Hilfe der Ableitungen häufig recht aufwendig. Andererseits liefert für solche Funk-



7.6. Kurvendiskussion 123

tionen eine genaue Analyse der Unstetigkeitsstellen sowie die Bestimmung von Null-
stellen und Asymptoten im allgemeinen schon einen giten Einblick in den Kurven-
verlauf. Ein entsprechendes Beispiel findet man in Aufgabe 7.l4b).

Wir wollen nun zwei Kurvendiskussionen durchführen.

Beispiel 7.21: Zuerst untersuchen wir die Funktion

f(x) = x2 e" (-00 < x < +00).

l.fist für alle x stetig (und beliebig oft differenzierbar).

2. Wegen
0 f" 0 2,f“) z x(2 _ x) c4 > ur < x <

<0 für x<0 undfür x>2

istfauf [0, 2] streng monoton wachsend und auf (—oo‚ 0] und [2, +00) streng
monoton fallend.

. Nach 2. hat f das relative Minimum f(0) = 0 und das relative Maximum f(2)
= 4 e” 2 0,54 (s. auch Beispiel 7.12).

4. Es giltf”(x) = (x7 — 4x + 2) e“. Das Polynom (x7 — 4x + 2) hat die Nullstellen

x. =2—„/E=0‚59 und x2 =2+\/5+ =3,41.

Daher ist

u
;

H >0 für x<x‚ undfür x>x2,
f (x) = (x — X1) (x — x2) 3" ..<0 fur x1 <x<x2

Somit istfauf(— o0, x1] und [x2, + co) streng konvex und auf [x1, xz] streng kon-
kav.

. Nach 4. hatfdie Wendepunkte P1(x1,f(x1)) und P2(x2,f(x2)). Dabei ist f(x,)
= 0,19 undf(x2) = 0,38.

Es gilt limf(x) = +00 und limf(x) = Ofletzteresnach Beispiel7.4). Fürx—> +00

U
\

9*

hatfaCl-sic; die Asymptote y :5 (7.34)]. Dagegen hatfwegen

f(x)
x

= lim xe“" = -00
x—>—cx1

lim
xa — w

für x —> — oo keine Asymptote [s. (7.32)].

Wir berechnen noch die Funktionswerte f(— 1) = e = 2,72 und f(5) = 25 e‘5
= 0,17 und beachten f(x) > 0 für alle x # 0. Nun kann man die Bildkurve Vonf
recht genau skizzieren (s. Bild 7.5 in 7.3.3.).

Beispiel 7.22: Nun untersuchen wir die Funktionflx) = i/x’ + 2x2 (x g —2).

1.fist auf [—2‚ +00) stctig.

2. Wegen
. 4

.. _ __ f.. Of’()— x(3x+4) [>0 fur 2<x< 3 undur x>,

x —3i/X3+2x22‘<0 für —%-<)E<0
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istfauf [—2‚ ——%] und [0, +00) streng monoton wachsend und auf [— i}, 0]

streng monoton fallend.

3. Nach 2. hatfdas relative Maximum f(—%) = = 1,06 und das relative

Minimumf(0) = 0 (s. auch Beispiel 7.14).

4. Nach kurzer Rechnung erhält man

_ 8

9<x + 2) 1/-2
a1sof”(x) < Ofür -2 < x < 0 und fürx > 0. Daheristfauf(-2, 0) und (0, + 0o)
jeweils streng konkav.

5. Nach 4. hatfkeine Wendepunkte.

6. Es gilt
3

\/x3 (l + —)
x

lime=

x»+aa X

f"(x) = (x > -2, x + 0)‚

M:
X

3

\/1-I-£_=],
X

und nach der Lösung von Aufgabe 7.2b) ist lim [f(x) — 1 - x] = ä. Daher ist die
X-> + ü)

lim
X-v + 00

lim
Xa +00

Gerade y z x + ä Asymptote von ffür x —> +03.

Es empfiehlt sich, die Funktion noch auf (einseitige) Differenzierbarkeit an den Stel-
len x = —2 und x = O zu untersuchen (vgl. Beispiel 7.14). Der Dilferenzenquotient
an der Stelle x = 0 ist

_ 3 2 _z@:%L<»=¢hL;2>_0 m. _2„‚..0‚

Nun sei h < 0. Dann ist —h > 0 und daher —h = i/(—h)3. Damit erhält man

f(0+h)—f(0)= _3/1+2_ 3 /12(/1+2) z

h xi (—h)3 —h

Unter Verwendung von Satz 2.4 folgt daraus

„m f(0 + h) —f(0) =

h..—o h

(—2<h<0).

—o0.

Die Bildkurve vonfhat also an der Stelle x = 0 eine vertikale linksseitige Tangente
(vgl. Beispiel 4.9). Analog stellt man fest, daß sie an den Stellen x = 0 und x = —-2

auch eine vertikale rechtsseitige Tangente hat.
Bild 7.8 in 7.3.4. zeigt die Bildkurve vonf.

Aufgabe 7.14: Für die folgenden Funktionen ist eine Kurvendiskussion durchzufüh-
ren und die Bildkurve zu skizzieren:

x2-—x—2
a) 1"") =7TE—-fi’
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_ x2(x + 2)5

b) f“) ‘
_ (X-/AV

c) f(x) = „J1? e 2°’ (U > 0, ‚u: Konstanten).‘)

Hinweis zu b): Es genügt, Unstetigkeitsstellen (genaue Klassifikation), Nullstellen,
Asymptoten (einschl. Lage der Bildkurve vonfzu diesen) und einige Funktionswerte
zu bestimmen.

7.7. Näherungsweise Lösung von Gleichungen der Form f(x) = 0

7.7.1. Vorbemerkung

Die unterschiedlichsten Probleme führen auf die Aufgabe, die Lösungen einer
Gleichung der Form

f(x) = 0,

also die Nullstellen der Funktion f, zu ermitteln. Als Beispiele aus der Mathematik
seien hier nur die Bestimmung der kritischen Stellen einer Funktion (s. 7.3.2.) und
die in Teil 2 zu behandelnde Partialbruchzerlegung gebrochen rationaler Funk-
tionen genannt. Doch auch viele praktische Probleme laufen letzten Endes auf diese
Aufgabe hinaus. Wir erinnern nur an die in Beispiel 4.8 erwähnte Balkenbiegung:
Diejenige Kraft F, die den Bruch des Balkens bewirkt (die sog. Eulersche Knicklast),
ergibt sich aus der kleinsten positiven Lösung der Gleichung

tanx—x=0.

Da in den meisten Fällen (wie auch in diesem Beispiel) eine formelmäßige Auflösung
der gegebenen Gleichungen nicht möglich ist, kommt den numerischen Verfahren zur

Lösung von Gleichungen eine große Bedeutung zu. Diese Verfahren bestehen darin,
ausgehend von ein oder zwei (z. B. graphisch ermittelten) groben Näherungslösun-
gen, sog. Startwerten, iterativ (d. h. schrittweise) immer genauere Nähemngswerte x„
für die gesuchte Lösung E der Gleichung f(x) = O numerisch zu berechnen. Unter
geeigneten Voraussetzungen konvergiert die nach einer gewissen Vorschrift konstru-
ierte Folge (x„) gegen 5. Praktisch bedeutet das: Für hinreichend großes n (also nach
hinreichend vielen Rechenschritten) unterscheidet sich x„ beliebig wenig von 5.

Wir beschränkerruns im folgenden auf die Formulierung von Konvergenzbedin-
gungen, die leicht nachzuprüfen sind. Hinsichtlich weiterer Ausführungen sei auf
Band 18 dieser Reihe verwiesen.

7.7.2. Regula falsi

Es sei f eine Funktion, die auf dem Intervall [a, b] definiert ist und den folgenden
Bedingungen genügt:

(B 1) Es gilt f(a) -f(b) < 0 (d. h.‚ f(a) undf(b) haben verschiedene Vorzeichen).

1) Diese Funktion heißt Gaußsche Fehlerfunktion; sie spielt in der mathematischen Statistik
eine wichtige Rolle.
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(B 2) Die Ableitungenf’ undf” existieren und sind auf [a, b] stetig.
(B 3) Für jedes x e [a, b] istf’(x) ¢ O undf"(x) # 0.

Aus (B 2) und (B 3) folgt nach Satz 3.9, daßf’ undf” auf [a, b] das Vorzeichen nicht
wechseln. Somit ist f auf [11, b] streng monoton und entweder streng konvex oder
streng konkav. Da f auf [a, b] wegen der strengen Monotonie höchstens eine Null»
stelle, aber wegen (B l) nach Satz 3.9 auch mindestens eine Nullstelle besitzt, hat
also die Gleichung f(x) = 0 genau eine Lösung Es (a, b).

Zur näherungsweiren Berechnung von E faßt man a und b als Startwerte auf und
ermittelt diejenige Stelle x1, an der die zum Intervall [a‚ b] gehörige Sekante an die
Bildkurve von f die x-Achse schneidet. Entsprechend verfährt man nun mit dem-
jenigen der beiden Teilintervalle [a, x1] oder [x], b], an dessen Randpunkten die Werte
von f verschiedene Vorzeichen haben: Man bezeichnet dieses Teilintervall mit
[p2, qz] und erhält als Schnittstelle der zugehörigen Sekante mit der x-Achse einen
Wert x2 usw. Allgemein schneidet die zum Intervall [pm q„] gehörige Sekante die
x-Achse an der Stelle

‘ Pu — (In ‚

l X" ”" m") f(p„) —f(q„) ‘

Dabei sind p„ und q,, rekursiv nach folgender Vorschrift zu ermitteln (s. Bild 7.19
und Bild 7.20):

= 1,2, ...). (7.35)

p1Z:a, q,:=b. (7.36a)

Wennfm) 'f(p..) < 0, dann pn+1:= 12... q..+1:= x„- (7 36b)

Wennf(x‚.)'f(q„) < 0, dann pm := x... ‘In: 2: q..- '

X

f‘
F

Bild 7.19 Bild 7.20

Das durch (7.35), (7.36a) und (7.36b) beschriebene Verfahren heißt Regula falsil).
Der folgende Satz bestätigt die Vermutung, daß lim x„ = E gilt.

„am

Satz 7.13: Die Funktion f genüge den Bedingungen (B 1), (B 2) und (B 3). Dann
konvergiert die nach der Regula falsi ermittelte Folge (x„) monoton gegen die Lösung
E der Gleichung f(x) = 0.

1) „Regula faJsi“ (mittelalterliches Latein) bedeutet „Regel vom Falschen (ausgehend)“. Gemeint
ist damit gerade, daß die Bildkurve von f durch eine „falsche“ Kurve — nämlich die Sekante — er-

setzt wird.



7.7. Näherungsweise Lösung von Gleichungen der Form f(x) = 0 127

Praktisch bricht man das Verfahren ab, sobald man einen Näherungswert x„
erhalten hat. der eine gewisse Genauigkeitsforderung erfüllt, Eine solche Abbruch-
bedingzmg ist z. B. die Forderung, daß |f(x,,)[ hinreichend klein ist; ein anderes häufig
verwendetes Kriterium verlangt, daß sich x„ hinreichend wenig von x,,_1 unterschei-
det. Hierauf kann jedoch nicht näher eingegangen werden. Läßt man den Abbruch»
test außer acht, so hat man zusammenfassend den folgenden

Algorithmus (Regula falsi):

. Wähle ein Intervall [a, b] so, daß (B l), (B 2), (B 3) erfüllt sind.

Setze n1: 1‚p„:= a, q„:= b.

Berechne x„ nach (7.35).

Berechne p„+1 und q,,+, nach (7.36b).

S
":

“*
E

*‘
.N

Setze n := n + l und gehe zu 3. (Diese Anweisung bedeutet, daß der Wert der
Indexvariablen n um l zu erhöhen ist.)

Für die Arbeit mit nichtprogrammierbaren Hilfsmitteln (Taschenrechnern) ist eine
etwas andere Darstellung der Rekursionsformeln zur Berechnung von x,, zweck-
mäßig. Betrachten wir zuerst den Fall f'(x) < 0 und f”(x) > 0 für jedes xe [L1, b]
(s. Bild 7.19). Für jedes n ist dann offenbarf(x„) -f(p„) < 0, also wegen (7.36b) und
(7.36a) p,,+1 = n, q,,.,, -= x,,, speziell x0 = ql = b. Aus (7.35) mit n + l statt n
folgt daher

0 :12x — K/ULL (_0l )]. (7.37a)

""“'“ - “ f(a)—f(x„) "‘ ’ I

Im Fal1f’(x) < 0 undf”(x) < 0 für jedes x e [a‚ b] (s. Bild 7.20) erhält man entspre-
chend .

„g = a

I x... = x. —f<x.)———f(x’:;jg?) (n = o, I, 037b)

Analoge Überlegungen in den anderen Fällen führen schließlich zu der

verschiedene Vorzeichen
Bemerkung 7.7: Haben f’ und f” auf [a, b] {dasselbe Vorzeichen

Folge (x„) nach berechenbar.

}, dann ist die

Beispiel 7.23: Gesucht ist ein Näherungswert für die Lösung E der Gleichung

xlnx — ä = 0. (7.38)

Zuerst ermitteln wir graphisch, wo die Lösung 5 zu suchen ist. Dazu empfiehlt es sich,

Gleichung (7.38) in der Form ln x = 2% zu schreiben und die Funktionen f,(x) =

ln x (x > 0) und f2(x) = %- (x > 0) in demselben Koordinatensystem zu skizzieren.

Die Abszisse des Schnittpunkts dieser beiden Kurven ist gerade die Lösung E von
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(7.38). Aus der (groben) Skizze von Bild 7.21 liest man ab: E e (l ; 2). Für die Funk-
tion

f(x) = x ln x — ä- (x > 0) (7.39)

gilt in derTatf(l) < 0 undf(2) > 0. Fürjedesx e [l ; 2]ist fernerf’(x) = lnx + l > 0

und f"(x) = 31: > 0. Die Funktionfgenügt also auf [1; 2] den Bedingungen (B l)_.

(B 2), (B 3), so daß die nach der Regula falsi zu ermittelnde Folge (x„) gegen E kon-
vergiert. Zur Verbesserung der Startwerte kann man nochf(l, 5) berechnen und fin-
det einen positiven Wert. Somit kann man die Regula falsi mit a = l und b = 1,5
anwenden. Wegen Bemerkung 7.7 ist dabei die Folge (x„) nach (7.37b) (mitfgemäß

y- ‚L.

(M77 yx/m1(1>o7

Bild 7.2l

(7.39)) berechenbar. Die folgende Tabelle zeigt die mit einem Taschenrechner‘)
ermittelten numerischen Werte, wobei die erste Zeile für n = —l die zur Berechnung
benötigten Werte b und f(b) enthält. Die Rechnung wurde „in einem Zuge“ durch-
geführt, d. h., ein ermittelter Wert x„ wurde im Rechner belassen und sogleich zur

Berechnung von x,,.,, verwendet.

n x„ f(x..)

-1 1,5 0,l08l9767
0 1 —0,5
1 1,411050 6 —0,014 126 594
2 1,421 322 9 — 0,000 279'893
3 1‚4215259 —0,000 005 512
4 1,421 529 9 —0,000 000114
5 1,421 529 9

Wegen x5 = x4 „steht“ das Verfahren, d. h.‚ im Rahmen der Rechnergenauigkeit
ist eine weitere Verbesserung der Näherungswerte für E nicht möglich. Natürlich darf
man aus der Übereinstimmung von x5 und x4 nicht den Schluß ziehen, dal3 damit die
ersten 8 Stellen von f exakt bekannt seien: Aussagen über die Genauigkeit der
Näherungswerte wären nur auf Grund von Fehlerabschätzungen möglich, auf die
jedoch an dieser Stelle nicht eingegangen werden kann (vgl. aber 7.7.4.) Wir schrei-
ben daher auch nur 5 z 1,421 529 9. Unter der Abbruchbedingung |x„„ — x„| < 104
hätte man das Verfahren mit dem Wert x, abgebrochen und E z 1,421 geschrie-
ben.

1) Alle numerischen R hnungen in Abschnitt 7.7. wurden mit einem elektronischen Taschenrech-
ner vom Typ MR 610 durchgeführt.
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7.7.3. Das Newtonsche Verfahren

Es sei wiederfeine Funktion, die auf einem Intervall [a, b] den Bedingungen (B I),
(B 2), (B 3) genügt und somit genau eine Nullstelle E e (a, b) hat (s. 7.7.2.). Das New-
tonsche Verfahren zur näherungsweisen Berechnung von 5 beruht auf folgender Über-
legung: Als ersten Näherungswert für 5 wählt man ein gewisses x0 e [a, b]. Die Tan-
gente an die Bildkurve vonfim Punkt (xo,f(x0)) hat die Gleichung

J’ =f(xo) +f’(xo) (x “ x0)-

Ihr Schnittpunkt mit der x-Achse ergibt sich daraus zu

__ fixe)
f'(Xo)

Entsprechend verfährt man nun mit xi usw. (s. Bild 7.22). Allgemein schneidet die
Tangente im Punkt (x„, f(x„)) die x-Achse an der Stelle

i xm : f(x„)

Y

x1=x0

(n = 0, l, 2, ..‚). (7.40)
x" ‘ f’(x„)

Bild 7.22 Bild 7.23

Im Falle von Bild 7.22 läßt die Anschauung vermuten, daß die durch (7.40) re-

kursiv definierte Folge (x„) (monoton) gegen E konvergiert. Bild 7.23 zeigt jedoch, daß
das nicht immer zutrifft. Die Ursache hierfür liegt offenbar in der Wahl des Start-
wertes x0. Genaue Auskunft über diesen Sachverhalt gibt der folgende

Satz 7.14: Die Funktion f genüge den Bedingungen (B I), (B 2) und (B 3) (s. 7.7.2.).
Wählt man x0 e [a, b] so, da/1‘f(xo) dasselbe Vorzeichen wief” auf [a, b] hat, dann kon-
vergiert die durch ( 7.40) definierte Folge (x„) monoton gegen die einzige Lösung E e (a, b)
der Gleichungf(x) = O.

Beweis: Wir beschränken uns auf den in Bild 7.22 veranschaulichten Fall 735d.
In den anderen Fällen schließt man analog. Daf"(x) > 0 ist, wählen wirein x0 e [a, b]
mit f(xo) > 0. Dafstreng monoton fallend ist, gilt x0 < «S. Wegen der Konvexität
vonfliegt die zum Punkt (xo,f(x„)) gehörige Tangente an die Bildkurve vonfunter-
halb der Bildkurve (s. Bemerkung 7.4), speziell an der Stelle E also unterhalb der
x-Achse. Da sie an der Stelle x0 oberhalb der x-Achse liegt, gilt für ihren Schnitt-
punkt x, mit der x-Achse

' xo<x,<E‚
9 Pforr, Di(f.- u. Integr.

S 7.14
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Aus der Monotonie von ffo1g,tf(x1) >f(E) = 0, so daß man für die Tangente im
Punkt (x1, f(x‚)) entsprechend schließen kann. Allgemein findet man durch Voll-
ständige Induktion

x„ < x,,+, < E (n = 0, l, 2, ...).

Als monoton wachsende und nach oben beschränkte Folge hat (x„) einen Grenzwert
2E e [x„, E]. Es ist noch 5c = E zu zeigen. Dafund f’ an der Stelle s? stetig sind, folgt
aus (7.40) für n —> oo

m
f'(>"<)

und darausffi) = 0. Da aber E dic einzige Nullstelle von fauf [a, b] ist, muß 22 = E

sein. Damit ist der Satz bewiesen. l

2:)?-

Betrachten wir noch einmal Bild 7,23. Für die dort skizzierte Funktion f gilt
f”(x) > 0 fürjedes x e [a, b] (fist auf [a, b] streng konvex), aber es istf(x„) < O. Die
„Vorzeichenregel“ ist also verletzt‘).

Lassen wir den Abbruchtest außer acht, so haben wir den folgenden

Algorithmus (Newtonsches Verfahren):

l. Wähle ein Intervall [a, b] so, daß (B l), (B 2), (B 3) erfüllt sind. Wähle x0 E [a, b]
so, daßflxo) ~f”(xo) > 0 (vgl. Fußnote).

2. Setze n z: 0.
3. Berechne x„„ nach (7.40).
4. Setze n := n + l und gehe zu 3.

Ohne Beweis teilen wir mit, daß das Newtonsche Verfahren im allgemeinen mit
weniger Rechenschritten brauchbare Näherungswerte x„ liefert als die Regula falsi.
Man wird es also stets dann der letztgenannten Methode vorziehen, wenn die Berech-
nung der Werte f’(x„) nicht zu aufwendig ist. Das trifit z. B. auf algebraische Glei-
chungen zu, bei denen man die Werte f(x„) und f’(x„) nach dem Hornerschen
Schema berechnen kann.

Beispiel 7.24: Für die Lösung E der Gleichung

x In x — 4} = 0

soll nach dem Newtonschen Verfahren ein Näherungswert berechnet werden. Wie
in Beispiel 7.23 stellt man fest, daß man a = l und b = 1,5 setzen kann. Für die
Funktion f(x) = xlnx — }(x > 0) ist f(l) < 0,f(l,5) > 0 undf”(x) > 0 für jedes
x e [1; l,5]. Daher wählen wir x0 = 1,5 als Startwert. Die Rekursionsformel (7.40)
lautet in diesem Falle

x„ In x,. — 0,5

x"“=x"— 1+lnxII

(n = 0, 1, 2,...).

1) Diese Regel ist jedoch nicht notwendig für die Konvergenz von (x‚.) gegen E. So kann man etwa
in dem folgenden Beispiel 7.24 auch x0 = 1 wählen. Beim Arbeiten mit programmierbaren Rechnern
prüft man i. allg. diese Regel nicht nach, sondern setzt für x0 versuchsweise geeignete Werte ein.
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Man erhält die folgenden numerischen Werte:

H X» m)
0 1,5 0,108 197 67
1 1,423 0165 0,002 010174
2 1,421 530 5 0,000 000 79
3 1,421 530 0 0,000 000 003
4 1,421 530 0

Damit „steht“ das Verfahren bereits, und man hat E x 1,421 530 0. Bezüglich der
Genauigkeit sei auf’ die Diskussion im Anschluß an die Tabelle von Beispiel 7.23 ver-

wiesen.

Beispiel 7.25: Nach dem Newtonschen Verfahren soll ein Näherungswert für die
kleinste positive Lösung E der Gleichung

tan x — x z 0

berechnet werden (vgl. 7.7.1.).

Einen Hinweis auf die Lage von E entnimmt man wieder einer Skizze; aus Bild 7.24
liest man ab, da13£ bei 4,5 gelegen ist.

41

‚Vxfun x

Bild 7.24

In der Praxis verzichtet man häufig auf das Überprüfen der Bedingungen (B 1), (B 2),
(B 3) und der „Vorzeichenregel“. Wir wollen hier ebenso verfahren und wählen so-
gleich xo = 4,5 als Startwert. Die weiteren Näherungswerte x„ sind nach (7.40) mit
(x) = tan x — x, f’(x) = tan’ x aus der Rekursionsformel

tan x„ — x„
tan’ x,,

(n = 0‚1,2‚...) _ (7.41)Xn+1 = xn —

zu berechnen. Man erhält die folgenden Werte:

n x.. f(x..)

0 4,5 0,137 329
1 4,493 614 0,004 127 6
2 4,493 41 0,000 000 4
3 4,493 41

Aus der Tabelle liest man ab, daß E z 4,493 41 ist.
9*
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An diesem Beispiel läßt sich aber auch demonstrieren, daß bei ungünstiger Wahl des
Startwertes x0 die Folge (x„) von der Lösung E „weglaufen“ kann (vgl. Bild 7.23).
Wählt man nämlich zum Beispiel x9 : 4, so erhält man die folgenden Werte:

n x„ f(x..)

0 4 —2.842 179 4
1 6,120 I61 5 —6.284 6455
2 238,411 83 —238,776
3 2038‚887 9

Man beachte, daß in diesem Falle wegenf(4) < 0,f”(4) > 0 die „Vorzeichenregel“
verletzt ist.

Aufgabe 7.15: Zeigen Sie, daß die Gleichung

x2 + \/J_c — ä = 0

im Intervall (ä, I) genau eine Lösung E hat und berechnen Sie E näherungsweise
nach dem Newtonschen Verfahren. Die Rechnung ist mit x„ abzubrechen, wenn
|f(x„)| < 1o—° gilt.

7.7.4. Das allgemeine Iterationsverfahren

Zur Ermittlung der Lösungen von f(x) = 0 schreiben wir diese Gleichung nun in
der Form

x = <p(x).

Eine solche Umformung ist in vielfältiger Weise möglich.

Beispiel 7.26‘): Die Gleichung

x2 —lnx—2=0 (7.42)

kann man z. B. umformeu in

2 + lnx . 2 + ln x
— —7 mit ¢1(x) -— ———;——— (7.433)

oder in
x= /2+1nx mit zp2(x)=‘/2+1nx (7.43b)

oder in
x = e"“2 mit ¢p3(x) = e"“2. (7.43c)

Jede Lösung E der Gleichung x = <p(x) heißt Fixpunkt der Funktion (p. Geometrisch
ist ein Fixpunkt E von (p die Abszisse des Schnittpunkts der Bildkurve von q) mit

1) Dieses Beispiel, das wir auch noch numerisch auswerten werden, ist [l5] entnommen (vgl. auch
[2] und [3]).
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der Geraden y = x (s. Bild 7.25). Zur näherungsweisen Berechnung von E geht man

folgendermaßen vor: Man ermittelt (z. B. graphisch) einen ersten Näherungswert
x0 für E, berechnet den Funktionswert <p(x„) und verwendet diesen als neuen Nähe-
rungswert xi, man setzt also x1 = rp(x„).

Z$.,‘{,,‘)'.——,

¢(x3)-f’-W‘ i K -gaor)

W‘u”“’": 1

‚ l . l s l l . ‚ Bild 7.25
r {um r, T; 5 1.27 1” om)-a) X

Ä ""—T

Nun verfährt man entsprechend mit xi usw. Allgemein erhält man durch die Rekur-
sionsformel

I x„„ = w.) (n = o, 1,2,...) (7.44)

eine Folge (x„). Dieses Verfahren, das man (allgemeines) Iterationsverfahren nennt,
ist in Bild 7.25 veranschaulicht. Für den dort dargestellten Fall vermutet man, daß
(x„) gegen .5 konvergiert. Bild 7.26 zeigt jedoch einen Fall, für den das offenbar nicht
zutrifft. Man vermutet einen Zusammenhang zwischen dem Konvergenzverhalten
der Folge (x„) und dem Anstieg der Funktion zp. Für die Funktion (p von Bild 7.25

y-gafx)

Bild 7.26
m

x, 1,511, xi x

ist I<p’(x)| „hinreichend klein“ — die Folge (x„) konvergiert. Bild 7.25 zeigt aber zu-

gleich, daß auch im Falle der Konvergenz nicht alle x„ in einem vorgegebenen Inter-
vall [a‚ b], das den Fixpunkt E und den Startwert x0 enthält, zu liegen brauchen. Die
Konvergenz von (x„) wird also erst dann gesichert sein, wenn (p in einem geeigneten
Intervall 1* :> [a‚ b] „hinreichend flach“ verläuft. Eine Auskunft hierüber gibt der
folgende

Satz 7.15: Es sei

I= [a‚b] und 1* =(a— (b—a)‚ b +(b—a)).

Die Funktion <p habe auf I einen Fixpunkt E. Auf 1* sei q: dzflerenzierbar, und es gebe

S. 7.15
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eine Zahl q mit

|<p’(x)| g q fürjedes xeI* (0 g q < 1). (7.45)

Darm konvergiert für ein beliebiges x0 e I die durch (7.44) definierte Folge (x„) (in 1*)
gegen E, es gilt also

lim x„ = E. (7.46)
n-vd.)

Beweis." Wir übergehen den Nachweis, dal3 unter den angegebenen Voraussetzungen
jedes x„ in 1* liegt (die Folge (x„) also überhaupt definiert ist)‘) und wollen nur (7.46)
beweisen. Aus (7.44) und E = 412(5) folgt für jedes n

xn+1 ‘ 5 = ‘P(xn) ‘ (747)

Auf die rechte Seite von (7.47) wenden wir den Mittelwertsatz der Differentialrech-
nung an. Danach existiert eine zwischen x„ und 5 (also in 1*) gelegene Zahl z„ mit

<;0(x..) — M) = <p'(z,,) - (x,. — 5). _ (7.48)

Aus (7.47) und (7.48) folgt mit (7.45)

Ix‚.+1 - EI = |<P’(z..)I ' |x.. - EI ä q Ix.. — EI-

Schließt man entsprechend für 1x„ —- EI usw., so erhält man

Ix.“ - El E q IX. — EI é q’ Ix‚.-i - EI 5 ä 4"“ Ixo - EI- (7.49)

Wegen 0 g q < 1 ist lim q"*‘ = 0, also nach (7.49) auch lim ]x,,+, — 5[ = 0, woraus

schließlich (7.46) folgiflgamit ist der Satz bewiesen. I Moo

Wegen (7.49) ist q offenbar ein Maß für die ‚‚Konvergenzgeschwindigkeit“ der Folge
(x„): Die Konvergenz ist um so besser, je kleiner q e [0‚l) ist.

Läßt man wieder den Abbruchtest außer acht, so hat man den folgenden

Algorithmus (allgemeines Iterationsverfahren):

1. Wähle ein Intervall I 2 [L1, b] so, daß 5 e I und (7.45) gilt. Wähle x0 e I.
2. Setze n := 0.
3. Berechne x„„ = <p(x,,).

4. Setze n := n + 1 und gehe zu 3.

Beispiel 7.27: Wir betrachten wieder die Gleichung (7.42), also

x2 —- In x — 2 = 0

(vgl. Beispiel" 7.26). Zur Ermittlung der ungefähren Lage ihrer Lösungen schreiben
wir sie in der Form

x’ — 2 = ln x

und skizzieren die Bildkurven der Funktionenf‚(x) = x2 — 2 undf2(x) = In x. Nach
Bild 7.27 hat die letztgenannte Gleichung und daher auch (7.42) Lösungen E1 und £2

in der Nähe von 0,15 bzw. 1,6. Die Lösung £2 soll mit einem Iterationsverfahren
näherungsweise berechnet werden. Wir betrachten zuerst die Darstellung (7.43c).
Für die Funktion (123 gilt

tp’3(l‚6) = 3,2 - am g 5,6 > 1. (7.50)

1) Siehe [2].
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Man wird daher kein E; enthaltendes Intervall I finden, so da13 (7.45) mit einer Zahl
q < 1 gilt. Die Darstellung (7.43 c) ist also zur iterativen Berechnung von £2 nicht
geeignet. Die Darstellung (7.43 b) untersuchen wir später. Nun wenden wir uns der
Darstellung (7.43 a) zu. Wählen wir I = [1,5; 1,7], dann ist E, e Iund

1* = (1,5 - 0,2; 1,7 + 0,2) = (1‚3;1‚9)-

Für jedes x e 1* gilt
s

„qm = — < 0 und rp'1'(x) = iii > o. (7.51)
X

Aus der zweiten Ungleichung von (7.51) folgt, daß q/1 auf 1* streng monoton wach-
send ist. Daraus und aus der ersten Ungleichung von (7.51) ergibt sich

[<p’1(x)1 < |a,r'1(1,3)| < 0,75 für jedes x e 1*.

Also ist (7.45) mit q = 0,75 erfüllt, und die Darstellung (7.43 a) kann somit zur itera-
tiven Berechnung von E; verwendet werden. Die Iterationsvorschrift lautet x„+, =

9‘/,(x,,), also
_ 2 + ln x,,

xrril —T (I1 = 0,1,2.--1 (7-52)

Mit dem Startwert x0 = 1,6 e I erhält man die folgenden Werte:

n x„ n x„

0 1.6 4 1,568 7749
1 1,543 7523 5 1‚5619162
2 1,576 817 8 6 1,565 969 7
3 1,557192 5 7 1,563 5713

Da q recht groß ist, konvergiert die Folge (x„) langsam. Aus den angegebenen Werten
liest man ab: 53 z 1,56.

Bild 7.28 zeigt die Bildkurve einer Funktion (p mit einem Fixpunkt 5e I = [a, b],
wobei gilt

0 g <p’(x) g q für jedes xeI (0 g q < 1). (7.53)

Man vermutet, daß in diesem Fall für einen beliebigen Startwert x0 e [jedes Glied der
Folge'(x„) in [gelegen ist, so daß man das Intervall 1* nicht zu betrachten braucht.

Bild 7.27 Bild 7.28
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Außerdem erwartet man, daß die Folge (x„) monoton ist. Tatsächlich gilt der folgende
Satz, den wir ohne Beweis mitteilen‘):

Satz 7.16: Die Funktion go habe auf] = [a‚ b] einen Fixpunkt E. Ferner sei (‚v aufldzfle-
renzierbar, und es gebe eine Zahl q, so daß (7.53) gilt. Dann konvergiert für ein belie-
biges xo e I die durch x„„ = tp(x„) (n = 0, 1, 2, ...) definierte Folge (x„) (aufI) gegen
f. Dabei gilt

x0 Ax,=x2 ...§£ für x055,
25 für x026.

(7.54a)

(7.54b)IIV
II/

\

IIV
||/

\

xo x1 ä x2

Beispiel 7.28: Wir wollen untersuchen, ob die Darstellung (7.43 b) zur iterativen Be-
rechnung der bei 1,6 gelegenen Lösung E2 von (7.42) geeignet ist (vgl. Beispiele 7.26
und 7.27) und wählen wieder I = [1,5; 1,7]. Die Funktion (f; ist auf I definiert, hat
dort den Fixpunkt £2, und es gilt

1 l _. .

O g q1'1(x)= 2x g 21 115 1 < 0,22 furjedes xel.

Mit q = 0,22 ist. also (7.53) erfüllt. Für ein beliebiges x0 e I — wir wählen x0 = 1,6 —

konvergiert daher die durch x„„ = zp2(x,,), also

x,,+1 =\/2+1nx,, (n=0,1‚2‚...), (7.55)

definierte Folge (x„) monoton gegen 52. Da q klein ist, erwartet man eine schnelle
Konvergenz. Diese Erwartung findet man in der folgenden Tabelle bestätigt:

n n x„

O 1,6 4 1,564 523 1

1 1,571 624 5 5 1,564 474 7

2 1,565 921 4 6 1,564 4648
3 1,564 760 2 7 1,564 462 8

Hieraus liest man ab: 52 z’ 1,564 46.

Bisher haben wir lediglich einige Näherungswerte x„ für die gesuchte Lösung E

einer gegebenen Gleichung ermittelt, ohne auf Genauigkeitsfragen einzugehen.
Der folgende Satz liefert nun Fehlerabschätzungen, die direkt auf das Iterations-
verfahren (7.44) zugeschnitten sind.

Satz 7.17: Es gilt unter den Voraussetzungen von Satz 7.15

IE — xnl g 1 Z q Ix. — x.-.I (7.56)

und unter den Voraussetzungen von Satz 7.16

x. § 6 5 x. + 1 _ q 1x. - x.-1l für xo g 5, (7.57a)

x. — 1 Z q 1x. — ..-11§/S; x. m. x, gs. 0.571»)

1) Siehe [2].
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Beweis: Aus E = <p(£) und x„ = <p(x,,_,) folgt

I5 - x„| = ME) - <P(x.._1)l ä l<F(5) - <F(X..)1 + l<P(xn) - <P(x..—1)1-

Wendet man auf beide Summanden auf der rechten Seite dieser Ungleichung den
Mittelwertsatz der Differentialrechnung an, so erhält man wegen (7.45)

IE — X711; 415 — x„l + 41x. - 26..-11,

woraus unmittelbar (7.56) folgt. Die engeren Schranken von (7.57a) bzw. (7.57b)
ergeben sich nun daraus unter Beachtung von (7.54a) bzw. (7.54b). I

Beispiel 7.29: Wir wollen für die Rechnung von Beispiel 7.28 eine Fehlerabschätzung
durchführen. Wegen x0 = 1,6 > ‚E2 ist (7.57 b) anzuwenden. Danach gilt mitq = 0,22

0,22

0.78

Bei der weiteren Abschätzung ist folgendes zu beachten: x6 ist in (7.58) das Folgen»
glied mit dem kleinsten Index und kann daher als Startwert mit dem exakten Wert
1,564 464 8 angesehen werden. Der Wert x7,= \/2 + 1n X5 ist daraus aber durch
Rundungen ermittelt worden. Bei einer Rechnergenauigkeit von i 1 in der 8, Stelle
für die Werte von Logarithmus— und Wurzelfunktion findet man die Einschließung

1.564 462 7 g x7 g 1,564 462 9

und damit |x7 — x6! g 2,1 - 10*. Aus (7.58) folgt nun

1,564 4621 g E; g 1,564 462 9,

also auf 5 Stellen nach dem Komma gerundet £2 = 1,564 46.

x7 — lX7 — xsl g 52 5 X7- (7-58)

Abschließend geben wir noch einen Hinweis, der gelegentlich das Auffinden einer
geeigneten Iterationsvorschrift erleichtert.

Bemerkung 7.8: Die Funktion (p habe auf dem Intervall I den Fixpunkt 5. Die Ab»
leitung <p’ sei auf I stetig, und es gebe eine Zahl K mit

[<‚z’(x)| ä K fürjedes x61 (K > 1). (7.59)

Dann ist 5 auch Fixpunkt der Umkehrfunktion «V1 von (p, und auf einem gewissen E

enthaltenden Intervall I gilt

l(¢‘1)’<x)l§q mu q=iK<1. (7.60)

Bei geeigneter Wahl von x0 e i ist also die Iterationsvorschrift

xm = <r"(x..) (n = 0,1,...)
zur näherungsweisen Berechnung von E geeignet.

Beispiel 7.30: In Beispiel 7.27 hatten wir gesehen, daß die Funktion (pg zur iterativen
Berechnung der Lösung 52 von (7.42) nicht geeignet ist [vg1. (7.50)]. Die Umkehrfunk-
tion von

11735)’ = 6"" (x ä 0, y ä e")
tpglzx=\/2+lny (y

<ra‘:y= \/2+Inx (x g e-z, y e o),
also gerade die Funktion tpz, die sich nach Beispiel 7.28 sehr gut für diese Iteration
eignet.

ist

11
V e“, x g O)

bzw.
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Beispiel 7.31: Gesucht ist ein Näherungswert für die kleinste positive Lösung E der
Gleichung v

tan x — x = 0

(vgl. Beispiel 7.25). Mittels einer Skizze (s. Bild 7.24) findet man E e [4,3; 4,7]. Fiir die
Funktion <p(x) = tan x (4,3 g x g 4,7) gilt aber ¢p’(x) g 1 + tanz 4,3 > 6 für jedes
x e [4,3; 4,7]. so daß das Iterationsverfahren x,,+, = tan x, zur numerischen Berech-
nung von E nicht geeignet ist. Gemäß Bemerkung 7.9 gehen wir zur Umkehrfunktion
von (p über und finden

(p’1(X) = 7: + arctan x (tan 4,3 g x g tan 4,7),

l
—1 Iogop > (x); ——f,H4».

(man beachte [4,3; 4,7) <: D(<p")). Die durch das Iterationsverfahren

(n = 0, 1,2, ...)
erzeugte Folge (x„) konvergiert also „schnell“ gegen E. Mit dem Startwert x0 = 4,5
erhält man die folgenden Werte: *

< 0,06 für jedes x e [4‚3; 4,7]

x,.+, = 7c + arctan x„

Xn

4,5
4,493 720 l
4,493 424 2
4.493 410 2
4,493 409 5

4,493 409 5K
/1

1
5
9
-)

I\
)>

-C
3

Aufgabe 7.16: Die in der Nähe von 0,15 gelegene Lösung E, der Gleichung (7.42) soll
iterativ berechnet werden.

a) Entscheiden Sie, welche der Darstellungen (7.43 a), (7.43 b), (7.43 c) für diese Itera-
tion (am besten) geeignet ist.
b) Führen Sie die Iteration mit der unter a) ermittelten Darstellung durch, Die Rech-
nung ist mit x,,,1 abzubrechen, wenn [x„ — x„„| < 10“ gilt.

Aufgabe 7.17: Die Funktion f sei so beschaffen, daß durch

f(x)
f’(x)

eine auf einem Intervall differenzierbare Funktion q: definiert ist.

<r(x)=x—

a) Geben Sie (unter Verwendung der Funktionf) eine notwendige und hinreichende
Bedingung dafür au, daß die Funktion (p einen Fixpunkt E hat.
b) Auf welches Verfahren führt in diesem Falle die Iterationsvorschrift

x„„ e ¢(xn>?

c) Leiten Sie aus (7.45) eine die Funktion f und ihre Ableitungen betreflende hin-
reichende Bedingung für die Konvergenz der Iterationsfolge (x„) ab.



TEIL 2: INTEGRALRECHNUNG

8. Problemstellung und Historisches

Ebenso wie die Differentialrechnung — vielleicht in noch stärkerem Maße — ist
auch die Integralrechnung ein entscheidendes Hilfsmittel für fast alle Disziplinen der
Natur- und Ingenieurwissenschaften. Während die Differentialrechnung ihre Ent-
stehung im wesentlichen dem „Tangentenproblem“ verdankt (vgl. Ausführungen in
Abschnitt 1.), ist die Integralrechnung historisch gesehen aus dem Quadraturproblem,
d. h. aus der Frage nach dem Flächeninhalt ebener geometrischer Figuren, entstan-
den. Dabei ist die Bezeichnung „Quadraturproblem“ — an Stelle von „Flächen-
inhaltsproblem“ —‘auf die Versuche der Geometer des Altertums zurückzuführen,
den Inhalt eines ebenen Flächenstücks durch Verwandlung dieses Flächenstücks in
ein inhaltsgleiches Quadrat zu ermitteln.

Beiden Problemen ist gemeinsam, daß sie auf einen Grenzprozeß —'auf die Berech-
nung eines Grenzwertes — führen. Beim Tangentenproblem ist es der „Differential-
quotient“, beim Quadraturproblem das sog. „bestimmte Integral“.

Unabhängig von dem anschaulichen Ausgangspunkt werden die auftretenden
Grenzwerte als Grundlage für die abstrakte Definition des Differentialquotienten
bzw. des bestimmten Integrals genommen, deren Anwendungen jedoch weit über die
ursprüngliche geometrische Fragestellung hinausgehen.

Bei der Berechnung des Flächeninhalts A des von den Kurven x = a, x = b (Par-
allelen zur y-Achse), y = 0 (Je-Achse) und y = f(x) begrenzten Bereichs B (s. Bild 8.1)

erhält man zunächst für den Flächeninhalt A die Näherung A z z") f(£,)Ax,~, wobei
Ax, = x, — x,_‚ gesetzt wurde (s. Bild 8.2). i=‘

y ‚V

y-fm

Bild 8.1 Bild 8.2

Der genaue Wert von A ergibt sich aus der obigen Näherung durch die Bildung
eines Grenzwertes Ax, —> 0. Diesen Grenzwert (genaue Beschreibung erfolgt in den
Abschnitten 10.1.1. und l0.l.2.) nennt man das bestimmte Integral der Funktion f(x)

z;

über dem Intervall [a‚ b] und bezeichnet ihn durch das Symbol ff(x) dx. Dabei ist das

Zeichen f eine besondere — von Leibniz eingeführte — Schreibweise des Buchstabens
S. Auf Grenzwerte der eben geschilderten Art führen viele Begriffe in Physik, Mecha-
nik und in den Ingenieurwissenschaften. Es seien hier stellvertretend für viele durch
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das bestimmte Integral beschreibbaren Sachverhalte die Begriffe „Arbeit“, „Schwer-
punkt“ und „Trägheitsmoment“ genannt (s. Abschnitt 10.4.).

Die Anwendungen der Integralrechnung sind so zahlreich, daß es schwerfällt, eine
mathematische Disziplin zu nennen, die ohne Integralrechnung auskommt. In allen
Natur- und Ingenieurwissenschaften spielen z. B. die Differentialgleichungen (das
sind Gleichungen, in denen neben der unabhängigen Veränderlichcn x und der ab-
hängigen Veränderlichen y auch wenigstens eine der Ableitungen y’, y", vor-
kommt; vgl. auch 4.7.1.) eine große Rolle. Wir wissen an dieser Stelle noch nicht,
wie man zu den Lösungen einer Differentialgleichung kommt, aber soviel möchten wir
hier schon sagen: Fast immer muß man integrieren — ein Integral lösen —‚ um eine
Lösung der Differentialgleichung zu erhalten. Dies drückt sich auch in der Namens-
gebung aus: An Stelle von „Lösung“ einer Differentialgleichung spricht man sehr oft
vom „Integral“ einer Differentialgleichung. '

Eine Aufgabe der Differentialrechnung besteht darin, zu einer gegebenen Funktion
fdie Ableitung f’ zu bestimmen. In vielen Problemen der Naturwissenschaft und
Technik ist jedoch die umgekehrte Aufgabe zu lösen, d. h., es ist eine Funktion zu

bestimmen, deren Ableitung bekannt ist. Diese Art der Fragestellung, zu einer Ab-
leitung die Ausgangsfunktion zu bestimmen, führt ebenfalls auf ein Integral, das
sog. „unbestimmte Integral". Unter dem unbestimmten Integral der Funktion f(x) mit
xeI versteht man also die Menge aller Funktionen F(x)‚ deren Ableitung F’(x)
gleich f(x) ist.

Hat man irgendeinen Vertreter F(x) des unbestimmten Integrals von f(x) ermit-
telt, so führt die anschließende Differentiation von F(x) wieder zu f(x) zurück. Diese
Tatsache gibt Anlaß zu der folgenden oft gebrauchten Formulierung: Die Integra-
tion ist die Umkehrung der Differentiation (Unter Integration ist bei dieser Formu-
lierung die Ermittlung des unbestimmten Integrals zu verstehen.)

An einem Beispiel aus der Physik soll der Zusammenhang zwischen Differential-
und Integralrechnung nochmals erläutert werden. Für eine gleichmäßig beschleunigte
Bewegung mit der Anfangsgeschwindigkeit v0 = 0 gilt v = bt. wobei b eine konstante
Beschleunigung darstellt. Fragt man nach dem Weg, der in einer bestimmten Zeit t

zurückgelegt wird, so muß v durch den Differentialquotienten ersetzt werden
also folgt

ds
dt — bt.

Wir suchen somit, wenn wir nach dem zurückgelegten Weg s fragen, die Funktion,
deren Ableitung gleich bt ist.

Trotz der unterschiedlichen Definitionen für das bestimmte und das unbestimmte
Integral besteht zwischen beiden ein sehr enger Zusammenhang. Ein praktisch brauch-
bares Rechnen mit dem bestimmten Integral wird erst durch diesen Zusammenhang
(s. 102.3.) mit dem unbestimmten Integral möglich.



9. Das unbestimmte Integral

9.1. Definition und einige Integrationsregeln

9.1.1. Stammfunktionen und unbestimmte Integrale

In der Differentialrechnung wird zu einer vorgegebenen Funktion f(x) die Ablei-
tungf’(x) gebildet. Bei vielen Problemen sucht man umgekehrt zu einer vorgegebenen
Funktion f(x) eine Funktion F(x)‚ deren Ableitung mitf(x) fibereinstimmt. Es ist da-
her zweckmäßig, für diese neue Funktion F(x) einen besonderen Namen einzuführen.

Definition 9.1: I sei ein oflenes Intervall. Vorgegeben sei eine Funktionf(x), die wenig-
stens auf dem Intervall I definiert ist. Dann nennt man jede Funktion F(x)‚ deren Ab-
leitungfür alle x e I gleichf(x) ist, d. h.

F’(x) =f(x) Vxe I,
eine Stammfunktion van f(x) auf I.

3

Beispiel 9.1: F(x) = x? ist eine Stammfunktion von f(x) = xi. Das Intervalll kann

hierbei beliebig gewählt werden, denn in diesem Fall gilt für jedes x die Gleichung
F’(x) = f(x). Bei diesem Beispiel wäre also I = (— oo‚ + 0o) das größtmögliche Inter-
vall, für welches F’(x) = f(x) gilt.

Satz 9.1: Ist F(x) irgendeine Stammfunktion von f(x) auf], so erhält man durch die
Summe F(x) + c (c: beliebige Konstante) sämtliche Stammfunktionen von f(x) auf I.

Unter der fast immer erfüllten Voraussetzung, daß mindestens eine Stammfunk-
tion vonf(x) existiert, gibt es also zu einer vorgegebenen Funktionf(x) immer unend-
lich viele Stammfunktionen, da eine Konstante beim Differenzieren null ergibt.

Beweis zu Satz 9.1: Aus F’(x) =f(x) (xel) folgt (F(x) + c)’ =f(x)(xeI). Man muß
nun umgekehrt zeigen: Ist F(x) irgendeine Stammfunktion von f(x), so läßt sich jede
andere Stammfunktion F1(x) von f(x) in der Form F1 (x) = F(x) + c darstellen. Das
folgt aber sofort aus 6.2.2. Nach Voraussetzung gilt nämlich F{(x) = f(x) und F’(x)
=f(x) (xel). Hieraus folgt F‚’(x) = F’(x) (xe I), also existiert nach Satz 6.5 eine
Konstante c, so daß gilt: F,(x) = F(x) + c. I

Definition 9.2: Ist F(x) irgendeine Stammfunktion von f(x) auf I, so nennt man die
Summe F(x) + c, wobei c eine beliebig wählbare Konstante ist, das unbestimmte Inte-
gral von f(x) auf I und bezeichnet es mit If(x) dx.

Nach dieser Definition ist also das unbestimmte Integral von f(x) die Gesamtheit
aller Stammfunktionen von f(x) . Es gilt

[f(x) dx = F(x) + c.

Die beliebig wählbare Konstante c heißt Integrationskoizstante. Wegen F’(x) =f(x) gilt:

dI 5 f/(x) dx = f(x)-

Diese Gleichung dient alsProbe dafür, daß man das unbestimmte Integral richtig
berechnet hat.

D. 9.1

S. 9.1

D. 9.2
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9.1.2. Unbestimmte Integrale der Grundfunktionen

In der Differentialrechnung lernten wir die Regeln für die Differentiation der ele»

mentaren Funktionen (Grundfunktionen) kennen (s. 4.5.1.). Jede derartige Differen-
tiationsregel liefert wegen des in 9.1.1. beschriebenen Zusammenhangs zwischen
Differentiation und Integration sofort eine Integrationsregel. Beispielsweise liefert die
Differentiationsregel (sin x)’ = cos x die Integrationsregel

Jcosx dx =sinx+ c.

Für f(x) = cos x ist F(x) = sinx eine Stammfunktion; für alle x gilt F’(x) = f(x).
Das Intervall I kann hier wieder beliebig gewählt werden.
Betrachten wir ein weiteres Beispiel:

Die Diffcrentiationsregel (ln |x])’ = é für jedes x =l= 0 liefert die Integrationsregel

J.% = ln lxl + c. (Voraussetzung über I: 0 ¢ I. Bei der lntegrationsregel ist daher

der Zusatz x + 0 anzubringen!)

l . ‚ .

Hinweis: Statt i; dx ist es üblich, kurz zu schreiben.

Analog kann man zu allen anderen Difierentiationsregeln (s. 4.5.1.) entsprechende
lntegrationsregeln angeben, die ihrer fundamentalen Bedeutung wegen auch Grund-
integrale genannt werden. '

fx“ dx = ::l1 + c (cc beliebige reelle Zahl + -1; x > 0) (9.1)

Je‘ dx = e" + c (9.2)

faxdx = 1:; + c (a > 0, a + 1) (9.3)

dxJ7 = In Ix] + c (x =i= o) (9.4)

fcosx dx = sin x + c (9.5)

fsin x dx =' —cos'x + c (9.6)

dx ..Im; = tan x + c (cos x =l= O fur alle x e I) (9.7)

dx i . ..‘im = —cot x + c (sin x + 0 fur alle x e I) (9.8)

Ing? = arcsinx + cl = —a.rccosx + c2 (—l < x <1) (9.9)
— x

d‘ 1oIm? = arctan x + c. (9. )
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Bemerkung 9.1: Ist in Formel (9.1) (x eine ganze Zahl, d. h. o: = n, so gilt
xfl+l

‚n _I fxdx—n+1+c.

Außer 11 # —l braucht man jetzt nur noch die Voraussetzung x # O, falls n < — l.
Im Falle n > —l ist keine Einschränkung erforderlich (s. Bemerkung in 4.5.1.).
Bei Formel (9.4) wird manchmal an Stelle von In Ix] nur In x geschrieben. Dann hat
man aber für x =1= 0 nun x > O zu schreiben. Mit Absolutzeichen ist jedes Intervall I,
welches rechts oder links von x = 0 liegt, zulässig; ohne Absolutzeichen sind nur

rechts von x = 0 liegende Intervalle zulässig. Ähnlich verhält es sich bei den Formeln
(9.7), (9.8) und (9.9). In Formel (9.8) zum Beispiel sind nur solche Intervalle Izulässig,
bei denen für jedes x e Igilt sin x ¢ 0, (sin x + 0 ¢> x ¢ krr, k ganz).

Zu den Grundintegralen rechnet man oft noch eine Reihe weiterer Integrations-
regeln, z. B. die zu der Diflerentiationsregel für die Funktion arsinh x gehörige Inte-
grationsregel. Wir begnügen uns aber mit den angegebenen; sie reichen für das
Verständnis des Zusammenhangs zwischen Difierentiation und Integration aus. Bei
der Integration komplizierterer Funktionen wird man ohnehin eine größere Formel-
sammlung zu Rate ziehen (s. [l]). Wir möchten aber an dieser Stelle besonders be-
Ionen, daß eine gewisse Grundtechnik des Integrierens (hierzu zählt z. B. die "Substi-
tutionsmethode und die partielle Integration, auf die wir anschließend (vgl. 9.1.4,
und 9.1.5.) eingehen werden) von keiner Formelsammlung ersetzt werden kann!
Kompliziertere Integrale versucht man durch geeignete Umformungen, z. B. Substi-
tution oder partielle Integration, auf Grundintegrale bzw. andere schon bekannte
Integrale zurückzuführen.

9.1.3. Einige allgemeine Integrationsregeln für unbestimmte Integrale

Analog zu den Differentiationsregeln (4.27) und (4.28) gibt es entsprechende Inte-
grationsregeln:

| f k -f(x) dx = k - ffoc) dx (k konstant) (9.11)

[in Worten: Ein konstanter Faktor darf vor das Integralzeichen gesetzt werden, vgl.
Formel (4.28)].

| f (f(x) + g(x)) dx = im) dx + f g(x) dx (9.12)

[in Worten: Eine Summe darf gliedweise integriert werden, vgl. Formel (4.27)].

Ist F(x) eine Stammfunktion von f(x) auf I, so ist die Funktion 3 F(ax + b) eine

Stammfunktion der Funktion f(ax + b) auf jedem Intervall 1*, für welches gilt:
ax + belvxefi‘. Das heißt:

I ffmx + b) dx = —1a—F(ax + b) + c. (9.13)

Beweis: Wir nehmen an, daßf(x) und g(x) Stammfunktionen haben, die wir mit F(x)
bzw. G(x) bezeichnen. Die Formeln (9.11) und (9.12) lauten dann:

jk -f(x)dx = k- (F(x) + c), ‘

I (fix) + g(x)) dx = (F(x) + c.) + (G(x) + c2).
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Wir haben zu zeigen, daß durch Differentiation der rechten Seiten sich jeweils d:
links hinter dem Integralzeichen stehende Funktion ergibt (s. Def. 9.2 in 9.1.1.).

Zu (9.11): (k - (F(x) + c))’ = (k - F(x) + k ~ c)’ = k ~ F’(x) = k- f(x),
zu (9.12): (F(x) + G(x) + cl + c2)’ = F’(x) + G’(x) =f(x) + g(x)‚

1 ‚

zu (9.13): (—a—~F(ax + b) + C) = ä- F’(ax + b)-a :f(ax + b),

(s. 4.4.1. und 4.4.2.). I

2

Beispiel 9.2: fxdx = fx‘ dx = ‘T + c (s. Formel (9.1) in 9.1.2.).

Beispiel 9.3: f(x2 + 6x — 5) dx = Ix’ dx + 6 - yfxdx — 5-‘fdx

x3 x2
= — + 6-— — 5x + c (s. Formeln (9.11) und (9.12)).

3 2

1 -I 1

Beispiel 9.4: = Jyz-dx = fx’2dx= %+ c= —?+ C,

Vor.: x + 0. (s. Formel (9.1)).
3

— 1 I E 2
Beispiel 9.5: Jx/xdx= Jxzdx =xTz+ c =%x2 + c :§x\/x + c,

3
Vor.: x g O.

l
Beispiel 9.6: (J5): + 2 dx = §- (%(5x + 2)>\/5x + 2) + c,

Vor.: 5x + 2 g 0, d. h. x g —% (s. Formel (9.13)).

dx
x + 5

Vor.: x + 5 + 0, d. h. x u‘: —5 (s. Formeln (9.4) und (9.13), wobei a = 1,

Beispiel 9.7: f = ln [x + 5] + c,

b = 5ist: f(x)=-)l?‚F(x) = lnfx]=>%-F(x+ 5) = ln Ix + 5|.

2
=z< Aufgabe 9.1: Man berechne a) f (x3 + y — dx, b) q/Fdx.

9.1.4. Die Substitutionsmethode bei unbestimmten Integralen

Wenn das unbestimmte Integral j'f(x) dx der Funktionf(x) nicht unter den Grund-
integralen oder anderen bereits bekannten Integralen zu finden ist, besteht die Auf-
gabe, das Integral so umzuformen, daß ein Grundintegral oder ein schon bekanntes
Integral entsteht.

Eine Methode, das zu erreichen, besteht darin, eine neue Vetänderliche u, die mit
der alten Variablen x durch die Gleichung x = q:(u) bzw. u = y;(x) verknüpft ist, ein-
zuführen.
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Von dem unbestimmten Integral j‘ f(x) dx kommt man durch eine Substitution
x 2 rp(u) formal‘) zu dem Integral jf(<p(u)) <p'(u) du. Durch diese formale Umformung
(die natürlich nicht als Beweis anzusehen ist !) haben wir bereits die der Substitutions-
methode zugrunde liegende Regel gefunden. Es gilt

Satz 9.2 (Regel der Integration durch Substitution): Ersetzt man in [f(x) dx die
Variable x durch eine Funktion x = <p(u) einer neuen Variablen u, so gilt

| f/(x) dx = freien) im) du | „w, (9.14)

Hierbei ist u : zp(x) die Umkehrfunktion von x = <p(u). Auf der rechten Seite von

(9.14) bedeutet der Zusatz u = 1p(x)‚ daß man nach Ermittlung des rechts stehenden
Integrals durch die Substitution u = w(x) wieder zur alten Variablen x zurückkehrt.
Vorausgesetzt muß hierfür werden, daß tp'(u) und die Umkehrfunktion u =1p(x)
existieren.

Die Umkehrfunktion u : ip(x) existiert sicherlich, wenn im betreffenden Intervall
q2’(u) =# 0 ist, da dann <p(u) streng monoton ist.

Beweis der Formel (9.14): Es sei

G<u) = man») - am) du

F(x) = G('/I(X))- .

Formel (9.14) ist dann äquivalent mit der Gleichung

f/(x) dx = F(x).

Es ist also zu zeigen, daß für die so eingeführte Funktion F(x) gilt: F’(x) = f(x). Nach
(I) gilt:

G’(u) = j-f =/<q>(u» ~«p'<u>.

Aus (II) folgt dann (Kettenregel und Diflerentiation der Umkehrfunktion beach-
ten! Vgl. 4.4.2. und 4.4.3.):

— “G - d“ = (f(‘P('4))'<P'(u))"/1'(X)

= (f(<p(u)) - im» - = f(92(u)) = f(x). -

(I)

(H)
und

F’(x) dTdx

Bei der praktischen Anwendung der Substitutionsmethode kann auf die Überprüfung
der für (9.14) notwendigen Voraussetzungen verzichtet werden, wenn man sich durch
eine nachträgliche Probe (vgl. Bemerkungen zu Def. 9.2) davon überzeugt, daß die
gewonnene Funktion tatsächlich eine Stammfunktion der vorgegebenen Funktion
f(x) ist.

Beispiel 9.8: jcos (5x + 1)dx (f(x) = Cos (5x + 1)).

Die Substitution u = 5x + 1 (m) = 5x + 1), d. h. x = “ "15 (W4) =

u — I)
5 ‚

1) Formal bedeutet hier, daß man in dem Symbol J’ f(x) dx das Zeichen dx als ein wirkliches Diffe-
rential der Funktion x = tp(u) ansieht und durch q2’(u) du ersetzt: dx = <p’(u) du.

';-J Piorr, Diff: n. Inbegr.

S. 9.2
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führt hier auf ein Grundintegral. Nach der Formel (9.14) gilt:

fcos(5x +1)dx =f(cosu)%du =%fcosudu

1, 1.=?s1nu+c=§s1n(5x+l)+c.

xdx x
Beispiel 9.9; „ITfi? (foe) =W (Vor.: a a; o).

Substitution: u = ax’ + b (1p(x) = ax’ + b)

=§—:=2ax.

d_u
xdx _ a _1 du _1 _*rzaifl-zai“ d“

1 5 1 — ——=5-—uT—+c=7\/u+c=-‘1;\/ax2+b+c.
"2"

Bemerkung: Wir haben hier die Funktion <p(u) überhaupt nicht ermittelt. Aus
u _

b , und man könnte <p(u) = ä b wählen.u=ax1+b folgtx: i-A/
Die rechte Seite von Formel (9.14) ergibt mit diesem ¢p(u) das Integral

A/E L
jg - inj- du = du _ .

\/u 2 A/u — b 2a V u .

a

Wir erhalten also das gleiche Ergebnis wie Vorhin, als wir im Symbol _[f(x) dx das
Zeichen dx wie ein wirkliches Differential behandelt haben. Auch in vielen anderen
Beispielen wird man <p(u) nicht zu berechnen brauchen.

Beispiel 9.9: b) I ¢z;‘i_’:=x_— (lxl < lal).
2

Durch Umformung des Integranden folgt

dx _ L dx
J'\/a2 _x2 _ aJ\A/1*?'2"

- (z)
Substitution:

x . .7=s1nu=>x=a-s1nu=q7(u), dx=a-cosudu,
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dx _1f acosudu _fdu_u+c
\/a2 — x’ a \/1 — sin’ u ’

dx . x
e= arcsm — + c.
Ja’ — x’ a

Hinweis: Da wir bei diesem Beispiel nicht überprüft haben, 0b die für (9.14) not-
wendigen Voraussetzungen gelten, muß die „Probe“ gemacht werden.

Beispiel 9.10: y dx.
e" — l
e‘ + 1

Substitution: e‘ = u (zp(x) = e", <p(u) = ln u) 2% = e" = u =>dx =

e"—1 u——l du 2 l
f—~dx=f—~~=f(-—)due"+1 u+l u u+l u

2du du_fu—+1—fT_2 ln|u+l|—ln|u|+c

=2~1n[e"+1|—1n[e"|+c
=2-1n(e"+ l)—ln(e")+c
=2‘ln(e"+1)—x+c.

Hinweis." e‘ ist stets positiv, und es gilt ln e" = x.

Aufgabe 9.2: Man berechne an

2a)f%dx (x>0), b)f%F,
c) f dx, . d) fxzw/8x3 —1dx.

Aufgabe 9.3: Man berechne w

r i 2

a) %dx, b)f dx‚ c) ftan 3x dx.

9.1.5. Die partielle Integration

Analog zur Produktregel der Difierentialrechnung [VgI. (4.29)]

(uv)’ = u’v + uv’

gilt in der Integralrechnung der folgende Satz:

Satz 9.3: Sind u = u(x) und v = v(x) diflerenzierbare Funktionen auf I und existiert S. 9.3
das Integral j u’(x) - v(x) dx, dann existiert dort auch I u(x) v’(x) dx, und es gilt

| fu(x)u'(x)c1x = u(x) - v(x) — f v(x) u’(x) dx (9.15)

oder kurz I uv’ dx = uv — Iu’y dx.
10*
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Formel 9.15 nennt man Regelfür die partielle Integration‘). Das links stehende Inte-
gral wird also in ein Produkt u(x) ~ v(x) und ein neues Integral übergeführt. Die An-
wendung dieser Regel ist natürlich nur dann sinnvoll, wenn zu v’(x) eine Stamm-
funktion v(x) bestimmt werden kann und das in (9.15) rechts stehende Integral leich-
ter lösbar ist als das auf der linken Seite der Gleichung.
Beweis der Formel (9.15): Wir haben zu zeigen, daß sich durch Differentiation der
rechten Seite von (9.15) der Integrand des links stehenden Integrals, also u(x) - 1/(x).
ergibt:

[u(x) - v(x) — _{v(x) u’(x) dx]’ = u’(x) v(x) + u(x) v’(x) — v(x) - u’(x).

u(x) v’(x) . I
Beispiel, 9.11: f x e‘ dx.

Wir wählen u(x) = x und v’(x) = e", so daß u’(x) = 1 und v(x) = e" folgt. Nach
Formel 9.15 gilt dann

_[xe"dx=xe"—fe"-1dx=)&e"-—e"+c

fxe"dx = (x — 1)e" + c.

Würden Sie u(x) = e" und v’(x) = x wählen, dann würde die partielle Integration
keine Vereinfachung liefern! Es sei nochmals besonders darauf hingewiesen, daß alle
zur Lösung eines Integrals zu ergreifenden Umformungen, Substitutionen und der-
gleichen dem Ziel dienen, das Integral in eine Form zu bringen, die einem Grund-
integral entspricht.

Beispiel 9.12: Ix’ - sin x dx.

Bei diesem Integral kommt man durch zweimalige Anwendung der partiellen Inte-
gration zum Ziel.

jx2-sinxdx=x2(— eosx) — f(—cos x)-2xdx

= —x2-cosx+2~fx~cosxdx

= -xi-cosx+2‘[x-sinx—f(sinx)‘ldx]
= —x2~cosx+2x-sinx+2-cosx+c.

Beispiel 9.13: jln x dx.

Bei diesem Integral kann scheinbar, da kein Produkt vorliegt, die partielle Integra-
tion nicht angewandt werden. Man kann jedoch durch Multiplikation des Integran-
den mit der Zahl 1, ohne daß sich der Integrand selbst ändert, ein Produkt erhalten,
also jlnxdx = [I -lnxdx.

Hier ist es offensichtlich nur sinnvoll, u(x) = In x und v’(x) = 1 zu setzen, da wir
ja andernfalls zu ln x die Stammfunktion bestimmen müßten und somit wieder bei

der ursprünglichen Aufgabenstellung wären. Es folgt u’(x) = i und v(x) = x und
damit nach (9.15) x

f1-1nxdx=x-lnx—fx'%dx=xlnx—x+c
=x(lnx—1)+c.

1) auch „teilweise Integration“ oder „Produktintegration“ genannt.
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Beispiel 9.14: I„ = Ie"x" dx (n = 1, 2, ...).

Einmalige Anwendung der partiellen Integration liefert eine Rekursionsformel
für I„:

fe"x"dx = e"-x" e fa‘-nx"“ dx = e"-x" -— n-_{e"-x""dx.
Also: I„ = e"x" — n - 1,,_1 (n = 2, 3, ...)

Eine Rekursionsformel für die von einer natürlichen Zahl n abhängigen Größe 1„
gestattet die Berechnung von 1„ aus I,,_ 1. Rekursionsformeln spielen in der gesamten
Mathematik eine wichtige Rolle.

Aufgabe 9.4: Man berechne

a) .[ , b) J.x'e3"dx, c) x2 - sin 4x dx.

9.1.6. Möglichkeiten und Grenzen der Integration und der Integrationsregeln

In der Differentialrechnung konnten wir feststellen, daß jede elementare Funktion
(auch „in geschlossener Form darstellbare Funktion“ genannt) f(x) differenzierbar
und ihre Ableitungf’ (x) ebenfalls eine elementare Funktion ist (s. 3.4.2. und 4.6.3.).
Diese Tatsache ist das theoretische Fundament dafür, daß das Differenzieren i. allg.

sin x
x . Man

kann sie sofort differenzieren. Um so überraschender ist es, daß bei dieser Funktion
alle Versuche, sie zu integrieren, fehlschlagen. Das obige Beispiel wird in l0.3.3.
behandelt. Man hat nachgewiesen, daß sich diese und viele andere Funktionen nicht
geschlossen integrieren lassen, d. h., eine Darstellung des Integrals als elementare
Funktion „in geschlossener Form“ ist unmöglich. Im allgemeinen existieren zwar
diese Integrale, aber sie lassen sich nicht durch eine elementare Funktion darstellen.
Es könnte Z. B. sein, daß sich das Integral durch eine unendliche Reihe darstellen
läßt. Die Integration führt also i. allg. aus der Menge der elementaren Funktionen
heraus.

keine Schwierigkeiten bereitet. Betrachten wir z. B. die Funktion: y =

9.2. Integration rationaler Funktionen

9.2.1. Problemstellung und -reduzierung

Vorgegeben sei eine rationale Funktion

P„(x) _ a0 + a‚x + + a„x"
Q„‚(x) _ b0 + 121x + + b„‚x"‘

(R(x) ist Quotient zweier Polynome P„(x) und Q„‚(x)).

R(x) heißt echt gebrochen, wenn n < m (d. h. Grad P„(x) < Grad Q‚„(x)) gilt, im
anderen Falle (d. h. n g m) unecht gebrochen. Unsere Aufgabe lautet: Berechnung des
unbestimmten Integrals jeder rationalen Funktion. Diese Aufgabe läßt sich sofort
ein wenig vereinfachen: Da sichjede unecht gebrochene rationale Funktion stets in die
Summe eines Polynoms und einer echt gebrochenen rationalen Funktion zerlegen

R(x) =y (11.. # 0, b... + 0)-
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läßt — und Polynome sofort integriert werden können —, genügt es, das unbestimmte
Integral von echt gebrochenen rationalen Funktionen zu ermitteln.

Bevor wir uns dieser Aufgabe zuwenden, wollen wir noch an einem Beispiel die
Zerleging einer unecht gebrochenen rationalen Funktion in die Summe eines Poly-
noms und einer echt gebrochenen rationalen Funktion demonstrieren:

_ 6+5x+3x’+2x3
R(x) ä 2 + x’

X(2x3+3x2+5x+6):(x2+2)=2x+3+ xz+2

2x3 + 4x

3x’ + x + 6

3x2 + 6

x

R(x)=2x+3+ x2” 2.
„v. ._.‚._‚

Polynom echt gebrochene
rationale Funktion

9.2.2. Zerlegung echt gebrochener rationaler Funktionen in Partialbrüche

Bei der Lösung der in 9.2.1. formulierten Aufgabe berufen wir uns auf den folgen-
den

Satz 9.4 (Satz von der Partialbruchzerlegung‘) einer rationalen Funktion):

Jede echt gebrochene rationale Funktion

R(x) = (n < m)

Iäflt sich in eine Summe von Brüchen (sog. Partialbrüchen) der Form

A Bx + C _ zW und WW mit p 4q < 0

zerlegen. Dabei sind ac, ß g l natürliche Zahlen. a stellt eine reelle Nullstelle und
(x2 + px + q) einen quadratischen Faktor des Nennerpolynoms Q„‚(x) dar, der sich
im Reellen nicht weiter zerlegen läßt.

flDen Beweis dieses Satzes findet man u. a. in [5], Bd. II, oder [l0], Bd. II.
Ist Q„‚(x) = (x — x,)"‘I (x — xk)“k (x2 + p1x + q1)"- (x2 + p,x + q,)”I die Zer-
legung von Q‚„(x) (Nenner von R(x)) in reelle Faktoren niedrigsten Grades [die x,
(i = l, ..., k) sind oc,»-fache reelle Nullstellen, die x2 + pjx + q, (j = l, , I) ßJ-fache
quadratische Faktoren von Q„‚(x) mit [I]? — 4a, < 0], so läßt sich die echt gebrochene

1) Anstelle von ,,Partia1bruchzerlegung“ müßte man strenggenommen immer von „Zerlegung in
Partialbrüche“ sprechen.
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rationale Funktion R(x) in der Form darstellen:

P('x) A 1 A” An.R = " = _—1_ T +___ + m‘

‘x’ Q„.(x) x — x. (x — xoz (x — xm-

An Au Am+ +j +... + —-——-—

x “ X1; (x — xi): (X — Xi)“ Ü)

Bux + C11 Bizx ‘i’ C12 315,95 ‘i’ C15,

x2+pix+qi (x2 +pix+qi)2 (x‘+p1x+q1)"=

+... + Bux + Cu Bnx + C” Bwlx + CU,‘
+...

x2 +pzx + q: (x2 +p:x + tn)’ (x2 +pzx + 110"‘

Dabei sind die A ‚-„‚ BM, Ch, unbekannte, noch zu bestimmende reelle Zahlen.

Merkregel: Zum Faktor (x — a)“ von Q„‚(x), a = x„ ac = at, gehört in der Partialbruchzerlegung
eine Summe der Form

A, A, ‚i,
—*—— + + .

x-a (x—a)2 (x-a)“
Zum Faktor (x2 + px + q)” von Q„‚(x), wobei p = pi, q = qJ, ß = ß], pl — 4q < 0, gehört eine

Summe der Form

B,x + C, Bzx + C; Bßx + C,

x2+px+q (x2+px+q)2 (x2+px+q)" '

f(x) __ —3x3+l2x2—6x+7
Beispiel 9.15: R(x) = EG)- —- (f(x) = P3(x)‚ g(x) = Q4(x)).

Wir wollen die wesentlichsten Schritte, die bei jeder Partialbruchzerlegung getan
werden müssen, am vorliegenden Beispiel demonstrieren.

l. Schritt: Aufsuchen der Nullstellen des Nennerpolynoms g(x) und Zerlegung von

g(x) in reelle Faktoren niedrigsten Grades.

Dieser Schritt ist meistens der schwierigste bei der Partialbruchzerlegung, denn man
muß die Nullstellen einer Gleichung m-ten Grades ermitteln —. Für Grad g(x) g 3 ist
dies i. allg. schon recht kompliziert. (Bei unserem Beispiel ist Grad g(x) = 4.) Es kann
in diesem Zusammenhang nicht unsere Aufgabe sein, auf das gesamte Problem der
Nullstellenbestimmung einer Gleichung n-ten Grades einzugehen (vgl. [l6] oder [l7]).

Wir erinnern hier lediglich an folgende wichtige Tatsache: Ist eine Nullstelle x,
von g(x) gefunden (z. B. durch Probieren oder durch systematische Einschachtelung),
dann wird g(x) durch x — x1 dividiert, und es ergibt sich ein Polynom q(x), dessen
Grad um eins niedriger ist. Nun versucht man, bei q(x) eine Nullstelle x2 zu finden,
dividiert q(x) durch x — x2 usw. Bei der Berechnung von g(x) für einen bestimmten
Wert x0 benutzt man gerne das Homer-Schema.

In unserem Beispiel ist g(1) = 0, also kann man g(x) durch x — l dividieren. Man
erhält g(x):(x — 1) = x3 — x2 + 4x — 4 = q(x). Für q(x) gilt ebenfalls q(1) = 0.
Division ergibt:

q(x) : (x — 1) = x2 + 4. Hieraus folgt: g(x) = (x — l)2 - (x2 + 4).
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Das ist die Zerlegung von g(x) in reelle Faktoren niedrigsten Grades; eine weitere
Zerlegung im Reellen ist nicht möglich, weil x2 + 4 keine reellen Nullstellen hat.

2. Schritt: Ansatz für die Partialbruchzerlegung (s. Merkregel S. 151).

f(x) 2 7—6x+12x2—3x3 = A + B + C+Dx (*)
g(x) (x—1)2-(x2+4) x—l (x—1)2 x2+4 '

Hierbei sind A, B, C, D noch zu bestimmende reelle Zahlen. (x, = 1, 1x1 = 2, ß, = 1.)

3. Schritt: Bestimmung der im Ansatz für die Partialbruchzerlegung auftretenden
Unbekannten.

Eine Methode, die sog. Kaejfizientenvergleichrmethode, führt immer zum Ziel. Man
multipliziert in der Ansatzgleichung (*) beide Seiten mit dem Nennerpolynom g(x)
und erhält links und rechts je ein Polynom. Der Vergleich der Faktoren vor x°‚ xi,
x‘, x’, liefert ein lineares Gleichungssystem zur Bestimmung der Unbekannten
A, B, C, D (daher der Name ,‚Koeffizientenvergleichsmethode“). In unserem Bei-
spiel folgt aus (*) durch Multiplikation mit g(x) = (x — l)’ ' (x2 + 4):

7 — 6x+ l2x2—3x3 = A(x—1)(x2+4) + B(x2+4)+ (C+Dx) (x— 1);.

Ausmultiplikation der rechten Seite und Zusammenfassung nach Potenzen von x

ergibt‘ 7 — 6x + 12x2 — 3x3

=(—4A+4B+C)+(4A—2C+D)x+(—A+B+C—2D)x2
+(A + D) x3.

Durch Vergleich der Koeffizienten ergeben sich folgende 4 Gleichungen für die
4 Unbekannten A, B, C, D:

—4A+4B+C = 7

4A —2C+ D=——6

—A+B+ C—2D= 12

A +D=—3.

Es handelt sich um ein lineares Gleichungssystem mit m Gleichungen und n Un-
bekannten (m = n = 4), für das es allgemeine Lösungsverfahren gibt, z. B. den Gauß-
schen Algorithmus (s. Band 13). In unserem Beispiel können wir auch ohne ein be-
sonderes Verfahren die 4 Unbekannten berechnen. (D = -3 — A wird in die 2. und
3. Gleichung eingesetzt. Wir erhalten drei Gleichungen I’, II’, III’ für A, B, C.
I’ -— III’ und 2 x I’ + II’ liefern zwei Gleichungen für A, B.) Wir erhalten: A = l,
B = 2, C = 3, D = -4. Damit sind die im Ansatz (*) auftretenden Unbekannten A,
B, C, D ermittelt, und die Partialbruchzerlegung ist durchgeführt.

‚ 7—6x+l2x2—3x3 1 2 3—4x
E’g""’"”' (x— 1)’-(x2 +4) ‘ x—— 1 + (x— 1)2 + x2 +4‘
Bemerkung 9.2: Im allgemeinen ist die Koeffizientenvergleichsmethode nicht diejenige,
mit der man am schnellsten die im Ansatz (*) auftretenden Unbekannten berechnen
kann. Wir werden beim nächsten Beispiel die Grenzwertmethode und die Einsetzung:-
methode heranziehen. Die inhaltliche Bedeutung dieser Methoden werden wir am
Beispiel 9.16 demonstrieren.
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9.2.3. Integration der Partialbrüche

Nach dem Satz von der Partialbruchzerlegung einer rationalen Funktion und der
Formel (9.12) können wir jede (echt gebrochene) rationale Funktion integrieren,
wenn man die Partialbrüche integrieren kann. Die folgenden 6 Formeln gestatten
es, jeden auftretenden Partialbrueh zu integrieren. Mit den beiden ersten For-

. . A . . .

meln können wir Partialbrüche der Form W, m1t den restlichen vier Formeln
(

Partialbrüche der Form (pl — 4q < O) integrieren.

J‘___’4?dx= — +c (Vor.:v>1,x¢a) (9.16)
(x-41)"

fx_/fadx=A‘l1'1[x——al+c (Vor.:x#=a) (9.17)

I Bx-1—C x_ _ B Ä 1

(x2 +px + q)" — 2(‚u — 1) (x2 +px+ q)““
1 dx

+ (C - 73191 <V°’~”(9>1;:

I dx _ 1 _ 2x+p
(x2 +px + q)" (‚u - 1)(4q —p2) (X2 +px +q)""

4‚u——6 dx _+9177) ‘V°‘"">"
(9.19)

dx _ 2 _ 2x+p ‚ ‚fxz +px +q — V4q _p2 arctan \/4q _p2 + c (Vor..p 4q(9<2E:

- Bx+C _ B Z 1 _ dx
J———x2+px+qdx—7ln|x +px+ql+(C—?Bp) fxz+px+q
(Vor.:x2+px+q¢0) (9.21)

Bemerkung 9.3: Die Formeln (9.16) und (9.17) lassen sich durch die Substitution x — a

= u auf Grundintegrale zurückführen (vgl. Formeln (9.1) und (9.4) in 9.1.2.). Formel
(9.17) ist der in Formel (9.16) ausgeschlossene Fall v = 1.

Die Beweise zu den Formeln (9.18) bis (9.21) können sämtlich dadurch erbracht
werden, daß man jeweils die rechte Seite differenziert; diese Ableitung muß dann mit
der Funktion übereinstimmen, die auf der linken Seite hinter dem Integralzeichen
steht. — Durch Formel (9.18) wird die Integration der Partialbrüche

auf die Inte ration von i
(x7 + px + q)“ g (x2 + px + q)"

zurückgeführt. Die Integration der letztgenannten Funktionen wird durch die Rekur-
sionsformel (9.19) schrittweise (/4, ‚u — 1, y — 2, ..., 1) auf die Integration von

1 .‚ .. .

zuruckgefuhrt; Formel (9.20) liefert den Schluß der gesamten Kette.

Formel (9.21) ist der in Formel (9.18) ausgeschlossene Fall ‚u = 1.



154 9. Das unbestimmte Integral

Hinweis.’ Die Partialbrüche müssen nicht unbedingt nach den Formeln (9.16) bis
(9.21) berechnet werden. Wenn man bei einem Beispiel durch eine geeignete Umfor-
mung, Substitution usw. schneller zum Ziel kommt, wird man selbstverständlich die-
sen Weg beschreiten. Auf die Formeln (9.16) bis (9.21) sollte man nur dann zu-

rückgreifen, wenn naheliegende und einfache Umformungen nicht zum Ziel führen.

3 2

Beispiel 9.16: I x +x:rx2_:_4:) + 8 dx.

Der Integrand ist eine echt gebrochene rationale Funktion f x) mit Gradf(x) 2 3

und Grad g(x) = 4. 80‘)
Der 1. Schritt — Aufsuchen der Nullstellen und Zerlegung von g(x) in reelle Fak-

toren niedrigsten Grades—ist bei diesem Beispiel überflüssig (g(x) = x2(x2 + 4)).

2. Schritt: Ansatz für die Partialbruchzerlegung

x3+5x2+4x+8 A B Cx+D
j= __. _ __ *

x2(x2+4) x+xZ+x2+4 ()
3. Schritt: Bestimmung der Unbekannten A, B, C, D.

Es ist sehr günstig, die in den Partialbrüchen mit dem jeweils höchsten Exponenten
v bzw. ‚u (vgl. Satz 9.4) auftretenden Unbekannten nach der sog. Grenzwertmethode,
‘die noch verbleibenden Unbekannten durch die sog. Einsetzungsmethode, zu ermit-
teln. Bei unserem Beispiel würden wir also B sowie C und D durch Grenzwert-
methode, A durch Einsetzungsmethode ermitteln.

Bestimmung von B: Wir multiplizieren (*) mit x2 (x2 = Nenner desjenigen Partial-
bruches‚ in dem B vorkommt) und lassen dann x—> 0 streben. (Daher der Name
„Grenzwertmethode“! Für x = 0 wird der Nenner x2 gleich 0.)

3 2x +5x +4x+8=Ax+B+CJ2c+D_ 2

x2+4 x+4

Jetzt lassen wir auf beiden Seiten x —> 0 streben und erhalten:

3 2B=“mx +5x2 +4x+8 =2.
x—>0 x + 4

Bestimmung von Cund D: Wir multiplizieren (*) mit x2 + 4 (x2 + 4 = Nenner des-
jenigen Partialbruches, in dem C und D vorkommen) und lassen dann x —> 2i streben.
(Für x = 2i (oder x = —2i) wird x2 + 4 gleich null).

x3 + 5x2 + 4x + 8 A Bjx2——— = 7(x2 + 4) +;2—(x2 + 4) + (Cx + D).

In dieser Gleichung lassen wirjetzt x —> 2i streben!

(2i)3 + 5 - (2i)2 + 4- (21) + 8

(2172

(i2 = -1, i3 = —i) => (Vergleich von Real- und Imaginärteil)

C = O, D = 3.

Bestimmung von A durch Einsetzungsmethode: Wir setzen in (*) für x den Wert l
ein oder irgendeinen anderen einfachen Wert, für den natürlich keiner der in (*) auf-

=C-2i+D=3=2Ci+D



9.3. Integration weiterer Funktionenklassen 155

tretenden Nenner gleich null werden darf, und erhalten:

l8 C+DT—A+B+ 5

=>(wegenB=2‚C=0,D=3)A=l.
In unserem Beispiel war nach der Grenzwertmethode nur noch eine Unbekannte —

nämlich A — zu ermitteln. Wären 2 oder 3 Unbekannte übriggeblieben, müßten wir
für x zwei oder drei Werte einsetzen, um die erforderliche Anzahl von Gleichungen
zur Ermittlung der Unbekannten zu erhalten.

Ergebnis der Partialbruchzerlegung:

x’+5x2+4x+8_l+_2_+ 3

x2(x2 + 4) _ x x’ x2 + 4 '

Die Integration der hier auftretenden Partialbrüche bereitet keine Schwierigkeiten:

fédx = In [xl + cl [s. Formel (9.4)]

2 _, 2_{—x7dx=2-fx dx=—;+c2 [s. Formel (9.1)1

3 3 dx 3 2du . x

fizfidx = T ‚m‘Wiä (S“"“““‘* " =7)i) "i" I

[s. Formel (9. l0)]
_ 3 _ du _ 3 t—7 I7-:1——7arcanu+c3

3
= jarctang + C3.

Ergebnis‘:

x3 + 5x2 + 4x + 8 2 3 xf dx==1n]x[ — 7 + farctan? + c

(Vor.: x ¢ 0).

Aufgabe 9.5: Man berechne folgende Integrale

2x3+9x2+8x+5 4x3—2x2+9x—I8
a) l“id ’ b) l fizfid

x“ + 4x2 + 1 xdx
c)fx3—x2+4x—4dX’ d)f2x2+5x—3'

9.3. Integration weiterer Funktionenklassen

Im folgenden wollen wir die wichtigsten Funktionen bzw. Klassen von Funktionen
angeben, deren Integrale sich durch elementare Funktionen darstellen lassen (die sich
geschlossen integrieren lassen, s. 9.1.6.). Im allgemeinen handelt es sich darum, das
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vorgegebene unbestimmte Integral durch eine geeignete Substitution auf die Integra-
tion einer rationalen Funktion zurückzuführen. Damit kann dann das Problem als
gelöst angesehen werden, denn in 9.2. haben wir nachgewiesen, daß sich jede rationale
Funktion geschlossen integrieren läßt (s. Formeln (9.16) bis (9.2l)]. — Wir erinnern
zunächst noch einmal an den Begrifi" „rationale Funktion von zwei Veränderlichen“,
den wir im folgenden ständig brauchen. Eine Funktion R(u, v) der beiden Veränder-
lichen u, z; heißt rational, wenn sie sich durch einen Ausdruck darstellen läßt, den
man durch endlich viele rationale Operationen (Addition, Subtraktion, Multiplika»
tion und Division) aus u und v unter Hinzunahme von Konstanten erhält.
Beispiele für rationale Funktionen:

x3 + 4x2y
Rx(xaJ’) = W. xy3 3 Y

7 x3 '

R2(x,y) =7: +(

Beispiele für nichtrationale Funktionen:

f1(x..v) = \/x2 — sxyz. fa(X:y) =

f2(x, y) = 22;: ‚ /.(x‚ y) = y- 2*.

9.3.1. Das Integral f R(x, z/ax + b) dx

Satz 9.5: Alle Funktionen der Form R(x, '{/ax + b) — das sind Funktionen von x,
die sich durch endlich viele rationale Operationen aus x und ax + b sowie Konstanten
aufbauen lassen — kann man geschlossen integrieren.

Beweis: Wir zeigen, daß durch die Substitution

t 2 {l ax + b

das vorgegebene Integral auf das Integral einer rationalen Funktion zurückgeführt
werden kann. — Aus t = " ax + b folgt ax + b = t".

z" — m“ .

a (Vor; a + 0) => dx = a dt. Also gilt:

—bfR(x,V%)dx =fR(tna

Der Integrand auf der rechten Seite ist eine rationale Funktion in t. Begründung:
n

2x:

,2) '£t"“ dt.
(1

Durch Anwendung rationaler Operationen auf die beiden Größen t
t" — b

und t ge-

winnt man eine rationale Funktion in t, d.h., R , t) ist eine rationale Funktion

in t. Multiplikation mit %t"’1 ergibt dann ebenfalls eine rationale Funktion int.

x+\/x—1dx=x_\/xgl J‘R(x,\/;:—1‘)dx (n

Substitution: \/x— l =t=>x—— l =t2=>x=t2 +-1=dx=2tdt.

Beispiel 9.1 7:
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/T 2
msogilt; M x: .2„1‚

x—„/x—1 (r +1) t

t3+t2+z=2-ft—‚_—t—:1—dt=:2-f12*(z)dz.

Der Integrand R*(t) ist eine (unecht gebrochene) rationale Funktion. Division ergibt:

R*(t)=t+2+ tzzl-Zf5? =: m) + R1(t).

Das Polynom P(t) kann sofort integriert werden, Auf die echt gebrochene rationale
Funktion R1(t) wendet man die Formeln (9.21) und (9.20) an. Nach Durchführung
der Integration muß man natürlich von der Veränderlichen t wieder zur alten Ver-
änderlichen x zurückgehen (t = \/x — l). Man erhält als Schlußergebnis:

x+\/x—1
x—\/x-1 dx=x+4\/x—1+2ln(x—\/x——1)

2\/x—1—1+
_— % arctan L‘.

Aufgabe 9.6: Man berechne a) f , b) ‘[ . »«

9.3.2. Das Integral f R(e")dx

Dieses Integral kann durch die Substitution t = e" auf das Integral einer rationalen
Funktion zurückgeführt werden. Aus t = e‘ folgt dt = e" dx‚ also gilt:

fR(e") dx = dt. Der Integrand R*(t) = Ein eine rationale Funktion in t

(siehe Definition von R(x) in 9.2.1.).

2 Z

Beispiel 9.18: fixe:1 dx = Ftt_ l g (Subst.: t = e")

t 1f—t_1dz=f(1+t_1)dz

t+1n|t—-II+c=e"+1n|e"——l1+c.

ll

t

t— 1

zunächst die Zerlegung in ein Polynom und eine echt gebrochene rationale Funktion
durchführt (Division I).

Bemerkung 9.4: ist eine unecht gebrochene rationale Funktion in t, bei der man

d " d " —— 1
Aufgabe 9.7: Man berechne a) Jeä, b) Jä, c) f ;T_2dx. als
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9.3.3. Das Integral f R(sin x, cos x) dx

Auf Grund der Additionstheoreme für Sinus und Kosinus gelten folgende Bezie-
hungen:

V sin + 2~ sin g ~ cos; tan ä

Sm x = 1 = 0052i + sinzi = 2. 1 + tanzi I (9.22)
2 2 2

l —— tan‘ g
Analog: cos x =. (9.23)

2

Diese Umformungen legen es nahe, die Substitution

l x = tan—:— (9.24)

vorzunehmen. Hieraus ergeben sich die Gleichungen:

. ___2t__ CoSx_1—t2 d __ 2dt
—1+t2’ x_1+t2

Bei der Herleitung der letzten Gleichung beachte man, daß aus t = tan; die

Beziehung g = arctan t folgt (Vor.: —-n: < x < 71:). Also gilt: [s. Formeln (9.22)

und (9.23)]

. 2x 1 — t2 2I fR(s1nx,cosx)dx=fR<fit7, wF)»fi7dt:;fR*(;)d;_
(9.25)

Der Integrand R*(t) ist wieder eine rationale Funktion in t, wie man sich durch ein-
fache Überlegungen — analog denen in 9.3.1. — sofort klarmachen kann,

Bemerkung 9.5: Bevor man t= tan; substituiert, ist es oft zweckmäßig, es

zunächst einmal mit einer einfacheren Substitution — z. B. t = cosx — zu ver-
suchen.

Bemerkung 9.6: Es kann vorkommen, daß der Integrand R(sin x, cos x) für alle x, da-
gegen der neue Integrad R*(t) nicht für alle t-Werte definiert ist — eine Tatsache, die

ä bedingt ist (tan; ist für alle x = 7: + k - 27: nicht

definiert I). Es empfiehlt sich, am Schlußergebnis zu prüfen, für welche Intervalle I
die ermittelte Funktion F(x) eine Stammfunktion der vorgegebenen Funktion f(x)
darstellt.

durch die Substitution t= tan
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Beispiel 9.19: f Slixx = I R(sin x, cos x) dx (cos x kommt hier explizit nicht vor)

— 1 - —~2—«dt [s Formel (9 25)]
_ 2t 1 + t2 ' '

1 + t’

dt x_=J-T=ln|t] +c=ln tan? +c.

Voraussetzung: tan? + 0 für alle x e I, d. h. x + k7: für alle x e I.

d ‚

Aufgabe 9.8: Man berechne a) J-ä, b) f dx.
9.3.4. Das Integral f1z(x, V/axz + bx + c) dx

In 9.3.1. hatten wir festgestellt, daß sich alle Funktionen der Form R(x‚ \/ax + b)
geschlossen integrieren lassen (Substitution: t = \/ax + b). Diese Aussage kann man

auch für alle Funktionen der Form R(x, Jux’ + bx + c) treffen. Im Falle a > 0,
D = b2 — 4ac =+= 0 läßt sich das vorgegebene Integral durch die Substitution
Jaxz + bx + c = t + xJÄ auf das Integral einer rationalen Fun_ktion zurückführen.
Aus der Substitutionsgleichung folgt 12x2 + bx + c = t2 + 2\/a tx + ax’, d.h.

t‘—c
b—2t\/Z’
_ 2 " _ "i

dx =d;=; R19) an
(b — 2t\/Z)’

So erhält man schließlich:

IR (x,\/ax’ + bx + c) dx = J‘R (,2 _ C)\/Z)-R1(t)dt._
b—2:\/E”+ b—2t\/Z

Der Integrand R*:= R ~ R1 ist eine rationale Funktion in t.

x =

._ 2 _Lgrfl dx führt die Substitution

2:3 + 10:2 + 2t

(1 - t2)’
neue Integrand ist eine echt gebrochene rationale Funktion in t.

Beispiel 9.20: Beim Integral f
Jx’ — 5x + 1 = t + x auf das Integral f dt (nachprüfen !). Der

9.3.5. Elliptische Integrale

Funktionen der Form R(x‚ \/ax3 + bx‘ + cx+ e) und R(x, ax‘ + bx3 + cx’ + ex +f)
lassen sich im allgemeinen nicht geschlossen integrieren. Integrale von diesen Funk-
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tionen nennt man elliptische Integrale. Der Name „elliptisches Integral“ rührt
daher, daß man bei der Berechnung der Bogenlänge (des Umfangs) einer Ellipse auf
ein derartiges Integral stößt (s. [1] und [5], Bd. II).

dx
Aufgabe 9.9: Man berechne f_

\/ 4x’ — 3x + 5 l

Bemerkung 9.7: Durch geeignete Umformungen können elliptische Integrale auf
elliptische Integrale in der sog. Legendresehen Normalform zurückgeführt werden:

W d Q

t /————:
T_—_= z F(k, ) bzw. f /14 k2 sin’ tdt = E(k,(p)i J 1 — k: sinzt T ‘

o o

bzw.
W

f
0

d:
= h,/C, ;

(l+hsin2t)\/l—k’sin2t T:( (P)

sie heißen elliptische Integrale 1. bzw. 2. bzw. 3. Gattung und sind in Tafeln zu finden.
(Vgl. z. B. [l]) ‘

ibl = l gilt:
2

Beispiel 9.21: Für die Bogenlänge einer Ellipse :7 +

l1 j ‘ b T.

s = 2 j \/1 + (y’)2 dx mit y =f(x) = zJaz — x2. (Vgl. Satz 10.18)

2 _ 2 2

Hieraus folgt: s = 2 f dx, (a2 — b‘ = kw).

Durch Erweiterung des Integranden mit \/a2 ~ x2 erkennt man, daß es sich um ein
-elliptisches Integral des Typs j R(x‚ ax‘ + bx3 + 6x2 + ex +f) dx handelt. Durch
die Substitution x = a - sin t(dx = a\/1 — sin” tdr) erhält man:

z: ft

T T
s=2a_[\/1—k’sin’tdI=2a‘2_[\/1-—k2sin2tdt.

n O

"E"
Esgiltalso:

s=4aE(k‚%).

Füra=5‚b=2,5istk: und s=20'l,211l=24,222.
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10.1. Definition, Existenz und Eigenschaften

10. 1.1. Integralsummen

Auf einem abgeschlossenen Intervall I = [a, b] sei eine Funktion y = f(x) definiert.
Wählt man eine endliche Anzahl von Werten xi, x2, auf dem Intervall I mit
a < x, < x2 < < x,,_1 < b, so erhält man eine Zerlegung Zvon [a, b] in endlich
viele Teilintervalle

Ixo. x11, lxi, x2]‚ [x„-i‚ x‚.l;

der einheitlichen Bezeichnung wegen wurde a = x0 und b = x„ gesetzt (s. Bild 10.1).

R31) » e».

/J Bild 10.1
ü ‘x X2 X:-/$5 Xi

Ist Z die eben beschriebene Zerlegung von [a, b], so nennt man öz= max Ax,.
i=1‚..„„

(Ax,»:= x, — x,_1) das Feinheitsmaß der Zerlegung Z. ö ist die Länge des größten
Teilintervalls von Z. Je kleiner ö ist, um so „feiner“ ist die Zerlegung Z. In jedem
Teilintervall [x,_,, x‚] wählen wir einen Punkt E, mit x,_1 g E, g x, und bilden
folgende Summe:

S(Z):=élf(€x)Ax.~ (10.1)

S(Z) heißt die zu der Zerlegung Z gehörige Integralsumme (auch Zerlegungs— oder
Zwischensumme). Die lntegralsumme ist abhängig von der Zerlegung Z und von der
Wahl der Zwischenpunkte 5.; genaugenommen müßte man also schreiben

S(Z; 5;, 5,.)-

10.1.2. Das bestimmte Integral

Das bestimmte Integral erhält man aus der Integralsumme, indem man die Zer-
leging Z immer feiner werden läßt! Diese etwas oberflächliche Formulierung wollen
wir jetzt präzisieren.

Definition 10.1: Eine Folge von Zerlegungen Z„ Z1, des Intervalls [a, b] heißt eine D. 10.1
Folge von unbegrenzt feiner werdenden Zerlegungen von [a, b], wenn die entspre-
chenden Feinheitsmaße (5„ Ö2, gegen null konuergieren, d. h.

lim 6,, = 0.
n-ono

ll Pforr, Dif:f.- u. Integr. \
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Bemerkung: An Stelle von „Folge von unbegrenzt feiner werdenden Zerlegungen“
sagt man oft „ausgezeichnete Einteilungsfblge“.

Bild 10.2 zeigt ein Beispiel für eine Folge von unbegrenzt feiner werdenden Zer-
legungen von [a, b].

(1,)
(Xg‘)U X, b(-1,)

(lg)
(x„-)u x, x; x3 00x4)

(I3) ‘ Bild 10.2
(1,,-)a x, x_‚ x3 x4 x5 x5 x; ai-Xg)

Wenn für jede Folge unbegrenzt feiner werdender Zerlegungen Z„ Z2, von
[a‚ b] die zugehörige Folge der Integralsummen 5(21), S(Z2), gegen einen bestimm-
ten Wert G konvergiert — und zwar unabhängig von der Wahl der Folge unbegrenzt
feiner werdender Zerlegungen und unabhängig von der Wahl der Zwischenpunkte —‚

so wollen wir diesen Grenzwert G mit dem alles Wesentliche erfassenden Symbol
‚.

m f(5‚) Ax. bezeichnen [vgL Formel (10.l)].
1

li
Ax‚—>0 i=

Definition 10.2: Falls der Grenzwert-G = lim ä f(5‚)Ax‚ existiert, nennt man ihn
Ax —o0 i=l

das bestimmte (Riemannsche) Integral der Fulnktion f(x) über dem Intervall [a‚ b] und
z;

bezeichnet ihn mit dem Symbol ff(x) dx. Es gilt also:
a

b n

I f f(x) dx =A1xi::10 i; f(;=,)Ax. (10.2)

Bemerkung: Der hier eingeführte Integralbegriff geht im wesentlichen auf Bernhard
Riemann (1826-1866) zurück. — Der Wert des bestimmten Integrals der Funktion f
über dem Intervall [a, b] hängt selbstverständlich nicht davon ab, mit welchem Buch-
staben man die unabhängige Vcränderliche bezeichnet. Man kann daher ebensogut an

b b b

Stelle von ff(x) dx auch ff(t) dt oder ff(u) du oder ähnlich schreiben. Das bestimmte

Integral is: der Grenzwerat einer Folgeavon Summen der Form Sf(5,) Ax„ wobei wir
ausnahmsweise an Stelle von Z hier einmal S geschrieben haben. Mit dieser Schreib-
weise wird auch verständlich, warum für das bestimmte Integral vonf(x) über [a, b]

b

das Svmbol ff(x) dx gewählt wurde.

Bei unseream Aufbau sind wir von einem Intervall [a, b] ausgegangen; in den Aus-
führungen 10.1.1. und 10.1.2. gilt also immer die Voraussetzung a < b. Von dieser
Einschränkung wollen wir uns durch die folgende ergänzende Definition befreien.
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Definition 10.3: D. 10.3
a

[f(x) dx z: o.

Für a > b gilt: ff(x) dx:= —_faf(x) dx.
l7

Im folgenden lernen wir eine 1. Anwendung des bestimmten Integrals kennen:

Beispiel 10.1: Es gelte f(x) g 0 für alle x s [a, b], d. h.‚ die Kurve y = f(x) verläuft
für alle xe [a, b] oberhalb der x-Achse. Wir suchen den Flächeninhalt A des durch
die vier Kurven y = O, x = a, x = b, y = f(x) begrenzten Fläehenstücks (s. Bild 10.3).
Man zerlegt [a, b] in Teilintervalle [xH, xi] (i = l, ..., n) und wählt Zwischenpunkte
E, e [x‚_„ x}]. Ax„-f(E‚) ist eine Näherung für den Flächeninhalt des zwischen
x = xH und x = x, liegenden Streifens.

Bild 10.3
im Et Xi

if(E,)Axi ist dann eine Näherung für dengesuchten F1§cheninhaltA:A z z")f(E,)Ax,.
i= l i=I l

Diese Näherung ist um so besser, je feiner die Zerlegung ist; den genauen Wert
von A erhält man durch einen Grenzprozeß:

A = um i f(£i)Axl-
Axflo i=l b

Also gilt [s. Formel (l0.2)]: A = [f(x) dx.

Hinweis: Im Falle f(x) g 0 für alle x e [a, b] gilt
b

A = —ff(x)dx.

10.1.3. Integrierbare Funktionen

Eine Funktionf(x) heißt auf [a, b] integrierbar, wenn das bestimmte Integral von

(x) über [a, b] existic rt, d. h.‚ wenn der Grenzwert einer Folge von Integralsummen
in dem in Definition 10.2 angegebenen Sinne existiert. Es würde hier zu weit führen,
eine notwendige und hinreichende Bedingung für die Integrierbarkeit einer Funktion
anzugeben, z. B. das sogenannte Riemannsche Integrabilitätskriterium (vgl. [l0],
Bd. III).

Für unsere Zwecke genügt es, wenn wir wissen, welche der in den Anwendungen
vorkommenden Funktionen integrierbar sind. Der folgende Satz 10.1 gibt eine für die
meisten Anwendungen völlig ausreichende Antwort.

Satz 10.1: Jede auf dem Intervall [a, b] stetige Funktion f(x) ist auf diesem Intervall S. 10.1
integrierbar.
11*
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Den (nicht ganz einfachen) Beweis zu diesem Satz findet man z. B. in [5], Bd. II,
oder [I0], Bd. III.

Da in den Anwendungen neben den stetigen Funktionen auch sog. stückweise
stetige Funktionen (s. Bild 10.4) vorkommen, möchte man wissen, ob bei dieser
Klasse von Funktionen die Integrierbarkeit auch gewährleistet ist.

Bild 10.4

Satz 10.2: Jede auf dem Intervall [a, b] stückweise stetige Funktionf(x) ist auf diesem
Intervall integrierbar. (Beweis: s. wiederum [5], Bd. II, oder [l0], Bd. III.)

Wir notieren noch die folgende Aussage:

Jede auf dem Intervall [11, b] beschränkte und monotone Funktion ist auf diesem
Intervall integrierbar.

10.1.4. Eigenschaften des bestimmten Integrals

Satz 10.3: Ist f(x) auf [(1, b] stückweise stetig und c ein Punkt aus dem Innern des Inter-
valls‚ d. h. a < c < b, so gilt

b L‘ b '

I jfoodx z ff(x) dx + jf(x) dx.

Der Beweis ist sehr einfach zu erbringen. Man nehme eine solche Folge unbegrenzt
feiner werdender Zerlegungen 2„ Z2, von [a, b], bei der der Punkt c Teilungs-
punkt für jede Zerlegung Z, (i = l, 2, ...) ist. Alles andere ergibt sich mit ein wenig
Schreibarbeit aus Definition 10.2. Wir verzichten auf die detaillierte Durchführung,
zumal der Satz für den Fall f(x) g 0 für alle x e [a‚ b] als eine geometrische Selbst-
verständlichkeit erscheint (s. Bild l0.5):

b c . b

A = _[f(x)dx = A, + A, = ff(x)dx + ff(x)dx.
a

Bild 10.5

Bemerkung: Satz 10.3 bleibt auch richtig, wenn die Voraussetzung a < c < b nicht
erfüllt ist. Gilt z. B. a < b < c (alle anderen noch denkbaren Fälle erledigt man ana-
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1og!)‚ so folgt aus Satz 10.3 zunächst:

fflx) dx = jbf(x) dx + [f(x) dx.

Hierausgrgibtsichz a

ff<x>dx = im) ax — f(x) ax = f/(ax) + f(x) dx

(S. Def. l:).3). a b a c

Satz 10.4: Sindf‚(x) undf2(x) zwei auf [a‚ b] integrierbare Funktionen, e, und cl Kon- S. 10.4
stanten, so ist auch c,f1(x) + c2f2(x) auf [a‚ b] integrierbar, und es gilt:

I _fb(c,f,(x) + c2f2(x)) dx = e, ff1(x) dx + C2 ff2(x) dx.1)

Beweis: (vgl. Def. 10.2)

l7

](c1f1(x) + "2f2(x)) dx =A“m02(51f1(§i) ‘l’ 5'2f2(/51)) Axi

a =A1im0(c12f1(£i)Axi + c2 2f2<soAx.>

= C1 um Zf1(§x)Ax.- + c2 um 211260117‘:
Ax,—o0 ‘ Ax,—>0

b b

= c, ff‚(x)dx + c2 ff2(x)dx.

Satz 10.5 (1. Mittelwertsatz der Integralrechnung): Ist f(x) auf [a‚ b] stetig, so gibt S. 10.5’
es mindestens ein E e [a, b] mit der Eigenschaft

a

b

I J‘/(x) dx = (b — a) 'f(-§)-

(Bemerkung: E e [a‚ b] ¢>§ = a + 19(b — a), 0 g 19 g 1).

Den Inhalt dieses Satzes wollen wir uns für den Fall „f(x) g 0 für alle x e [a‚ b]“
an Hand des Bildes 10.6 veranschaulichen. Der Flächeninhalt

A.= ffoodx

des schraffierten Gebietes ist gleich dem Flächeninhalt A, = (b - a) - f(5) eines über
dem Intervall [a‚ b] errichteten Rechtecks (E muß geeignet gewählt werdenl). (Den
Beweis dieses und auch der folgenden beiden Sätze findet man z. B. in [5], Bd. II,
oder [l0], Bd. III.)

‘) Die Menge der auf einem festen Intervall [a‚ b] integrierbaren Funktionen bildet einen linearen
Raum (vgl. Band l).
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—-y-for)

Bild 10.6~—»

Zr

S. 10.6 Satz 10.6: f(x) und g(x) seien auf [11, b] stückweise stetig. Dann gilt: Aus/(x) ä g(x)
b b

.l0.7

i g(x) dx.
a

Vxe [a‚ b] folgt f f(x) dx g

Den einfachen Beweis übergehen wir, zumal die obige Aussage im Falle f(x) g 0
Vx e [a‚ b] wieder eine geometrische Selbstverständlichkeit darstellt.

Aus Satz 10.6 ergibt sich auch leicht der folgende

Satz 10.7:
b

f(x) dx
a

(Var.: f(x) auf [a, b] stückweise stetig).

b

s J‘ vom dx

10.2. Berechnung bestimmter Integrale

10.2.1. Problematik
b

Wollte man jedes bestimmte Integral f(x) dx nach der in lO.1.2.‚ Definition 10.2,

angegebenen Vorschrift berechnen, so wäre das ein sehr kompliziertes Unternehmen
und für die Anwendung daher nahezu unbrauchbar. Für jedes Z, einer Folge Z1,
Z2, von unbegrenzt feiner werdenden Zerlegungen von [a‚ b] hat man die Integral-
summe S(Z„) = Zf(E,)'Ax, zu berechnen und den Grenzwert der Folge S(Z‚)‚
S(Z2), zu bestimmen. Besonders die Bestimmung des Grenzwertes der Folge der
Integralsummen ist schon bei einfachen Funktionen f(x) außerordentlich kompli-
ziert. Als Beispiel nennen wir die sicherlich nicht als besonders schwierig anzusehende
Funktion y = f(x) = x’ (Normalparabel). Wer würde vermuten, dal3 die Berechnung

l7

von f x2 dx nach Definition 10.2 schon auf einige Schwierigkeiten stößt? (Selbst
b n

f x dx ist nicht trivial!)
a b

Um z. B. das Integral fxz dx zu berechnen, könnte man das Intervall [0, b]
0

in n gleiche Teilintervalle [x,_1, xi] (i = I, ..., n) der Länge Ax = g zerlegen und als

Zwischenpunkte E, den jeweils rechten Eckpunkt x, des entsprechenden Teilintervalls
wählen. Für die zu dieser Zerlegung gehörige Integralsumme S gilt dann:

S = Zf(5z)Ax: = 2f(x:)AX = 2 x? Ax = Z(iAX)z Ax

= (Ax)’ZiZ = (—f—)3(12 + 22 + +112).
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Von dieser Integralsumme müßte jetzt der Grenzwert Ax —-> O, d. h. n —> oo bestimmt

werden (Ax = Wir wollen diesen Weg hier nicht weiter verfolgen. Es sollte ledig-

lich demonstriert werden, daß die Berechnung bestimmter Integrale nach Definition
10.2 im allgemeinen recht schwierig ist. (Beispiele dieser Art findet man z. B. in
[l1], Teil II.)

Das bestimmte Integral wird im allgemeinen nicht nach dem in Definition 10.2 an-
gegebenen Weg berechnet. Ist nämlich von der Funktionf(x) eine Stammfunktion F(x)
bekannt, so kann man durch eine einfache Diiferenzbildung sofort das bestimmte
Integral von f(x) über [a, b] berechnen. Dies ist die wesentliche Aussage des sog.
Hauptsatzes der Difierential- und Integralrechnung, den wir in 10.2.3. behandeln.
Der wesentliche Grundstein für diesen „Hauptsatz“ ist die in dem folgenden Abschnitt
10.2.2. enthaltene Aussage.

10.2.2. Bestimmtes Integral mit variabler oberer Grenze

Das bestimmte Integral der Funktion f(x) über [a, b] wird durch das Symbol

fbflx) dx bezeichnet. Denkt man sich im Intervall [a, b] für b die variable Grenze x

äingesetzt und fragt nach dem bestimmten Integral der Funktionf(x) über dem Inter-
vall [a, x], so kann man dafür schreiben:

i f(x) dx.

Ein solches Integral nennt man ein bestimmtes Integral mit variabler oberer Grenze.
Das x der oberen Grenze hat dabei natürlich nichts mit dem x inf(x) zu tun. Um ganz

sicher zu gehen, wird meistens an Stelle von ff(x) dx die Schreibweise ff(t) dt be-

nuIt:tt'y = f(x) auf dem Intervall I = [A, B] steutig, a e [A‚ B] ein fester Weit, x e [A‚ B]

ein variabler Wert, so existiert nach l0.l.3.‚ Satz l0.l‚ das Integral fflt) dt (s. Bild

10.7). ff(t) dt ist für jedes xe [A‚ B] definiert und durch die Vorgabe der oberen

Grenze x eindeutig bestimmt; d, h. : ff(t) dt ist eine Funktion seiner oberen Grenze x.

Wir wollen diese Funktion mit F‚(ab bezeichnen:

F,(x):= jx/(2) dt. (10.3)

Bild 10.7
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S. 10.8 Satz 10.8: Istf(t) auf einem Intervall I stetig, a ein fester Wert aus I, so ist die auf I
definierte Funktion

m) = im d:

dtflerenzierbar, und es gilt

F{(x) =f(x) Vxel,
d.h-a

g; ffmd: = f(x) Vxel. (10.4)

Beweis: Wir haben zu zeigen, daß für jedes x0 e I gilt:

um F10‘) “ F1(-xo)

x—»xD x — x0
= f(xo)~

(Man beachte, daß der links stehende Grenzwert — falls er existiert — gleich F{(x0)
ist! Ist x0 ein Randpunkt von I, so ist der linksseitige bzw. rechtsseitige Grenzwert zu
nehmen!)

mo — Fm) = f/<r> dz — im) d: = im) d: + fro) d:
ü

= f/(z) dt + ff(z) dt = Mr) dt
X0 a x0

(s. Satz-lO.3 in l0.l.4. und Definition 10.3 in l0.l.2.). Es gilt also zunächst einmal:

mx) — Fi(xo) = Maar.
X0

Da f(x) nach Voraussetzung auf dem Intervall x0 x stetig ist, existiert nach Satz
10.5 aus 10.1.4. ein E zwischen x0 und x, so daß gilt:

FiÜ‘) “ F1050) = d’ = (x “ x0)

(6=xo +19(x-xo),0§19§ 1)-

Hieraus folgt (für jedes x + x0):

F10‘) — F1050)
x — x0

Wegen der Stetigkeit von f(x) gilt:

1imf(E) = 1imf(xo + 19(x - xo)) =f[1im (xo + 19(X - xo))] =f(xo)-

= f(E). (*)

Aus (*) folgt dann: lim
x..‚0 x — x0

= f(xo)- I
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Ergänzung zu Satz 10.8: Istf(t) auf I stückweise stetig, a ein fester Wert aus I, so

ist F, (x) = ff(t) dt auf I stetig. Das ist die sog. Glättungseigenschaft des bestimmten

Integrals rtiit variabler oberer Grenze (s. Aufgabe 10.4).

Satz 10.9: Jede aufeinem abgeschlossenen Intervall I stetige Funktion besitzt aufI eine
Stammfunktian.

Dieser Satz bestätigt die Aussage der Fußnote S. 60. Die Aussage von Satz 10.9
ist eine unmittelbare Folgerung von Satz 10.8:

x

F‚(x) = _[f(t) dt ist eine Stammfunktion von f(x) auf 1.

10.2.3. Hauptsatz der Diflerential- und Integralrechnung

Satz 10.10: Ist f(x) auf [a, b] stetig und F(x) irgendeine Stammfunktion von f(x) auf
[11, b], so gilt‘):

l fbflx) dx = F(b) — F(a).

b

Will man das bestimmte Integral ff(x) dx nach diesem Satz berechnen, so muß

also zunächst das unbestimmte Integral [f(x) dx = F(x) + c bestimmt werden. Die
Differenz F(b) — F(a) liefert dann den Wert des bestimmten Integrals.

X

Beweis zu Satz 10.10: F,(x) = ff(t) dt ist nach Satz 10.8 eine Stammfunktion von

f(x) auf [11, b]. Für F(x) gilt dah:=.r:F(x) = F1(x)+ c(s.9.1.l., Satz 9.1). Hieraus folgt:

F(b) — F(a) = (F107) + c) - (F101) + C) = F1(b) — Fx(a)
b a b b

= _[f(t)dr — f/(odz = ffmdz = ffmdx. I

Bemerkung: An Stelle von F(b) — F(a) schreibt man oft abkürzend F(x)

[F(x>1:.

b

a

3 4 4
Beispiel 10.2: lfxi dx = i‘3— l = 6T — ä = ä = 21.

Beispiel 10.3." [sin xdx = —cos x i: = —cos7r — (—cos O) = 1+ 1 = 2.
0

Frage: Die beiden Integrale liefern geometrisch den Flächeninhalt von ebenen Berei-
chen. Um welche Bereiche handelt es sich? (s, l0.1.2., Beispiel 10.1.)

1) Diese Formel wird zu Ehren der Begründer der Differential- und Integralrechnung, Isaac
Newton und Gottfried Wilhelm Leibniz, auch „Formel von Newton-Leibniz“ genannt.

oder

S. 10.9

S. 10.10
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Bemerkung: Mit Hilfe des Hauptsatzes ist es eine Leichtigkeit, das bestimmte Inte-
b

gral ff(x) dx zu berechnen, falls eine Stammfunktion von f(x) bekannt ist. Gelingt
a

es nicht, eine Stammfunktion vonf(x) zu ermitteln, so gibt es genügend Möglichkeiten,
ein bestimmtes Integral näherungsweise zu berechnen. Auf solche Näherungsformeln
werden wir in 10.3 eingehen!

5 2

Aufgabe 1o.1.- a) j (x4 + x—2)dx‚ b) f (1 — x3) dx.
1 U

1:2

c)f3~sinxdx, d) Jisinxdx
0 —rr

Aufgabe 10.2: a) Wie groß ist der Flächeninhalt des durch die Kurven y = x2 — 4x,
y = 0, x = — l, x z 6 begrenzten ebenen Bereiches B (in Bild 10.8 ist B schraffiert
gezeichnet).

Bild 10.8

3

b) Man berechne _{f(x) dx fürf(x) = Ix — 2] + [x + l]. Anleitung: Man betrachte
—3

f(x) auf den Intervallen x g —l, —l g x g 2 und x g 2.

‘l «/5 1

Aufgabe 10.3: a) J b) J
0 f l

Aufgabe 10.4: Von der auf [0, 6] stückweise stetigen Funktion

x 0gxg3‚
f(")={s 3<xg6

ß.
1+x’

dx

\/1-xi’

für
— x für

berechne man F1(x) = ff(t) dt für jedes x e [0, 6] und weise nach, daß F,(x) an der
0

Stelle x0 = 3 stetig ist.

10.2.4. Die Substitutionsmethode bei bestimmten Integralen

Bei der Ermittlung eines unbestimmten Integrals wird man oft die Substitutions-
methode heranziehen (vgl. Satz 9.2 in 9.1.4.). Nach unseren bisherigen Kenntnissen
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würde man bei der Berechnung eines bestimmten Integrals mit Hilfe einer Substitution
wie folgt vorgehen:

l. Berechnung des unbestimmten Integrals j f(<p(u)) - ¢p’(u) du.
2. Rücktransformation von der neuen Veränderlichen u zur alten Veränderlichen x

liefert eine Stammfunktion F(x) von f(x).
3. Berechnung der DilTerenz F(b) — F(a).

8

Beispiel 10.4: I = f
«3

x dx

V/x’ + 1 l

Mit Hilfe der Substitution

u : x2 + l

du = 2x dx

kann man das zugehörige unbestimmte Integral berechnen:

du

x dx 2 l " du l -5. _ ‚-=\[:/—:=?J 7:=—2—J‘u du'\/u+c.

Rücktransformation u = x’ + l liefert eine Stammfunktion F(x) vonf(x) = f ‚

nämlich: F(x) = \//x2 + l. Hieraus folgt: ‘/x'+l
I= F(x) j‘=‘\/x= +1l*_3 = \/E — JE = 8,06 — 3,16 = 4,9.

Das Wesentliche bei diesem Vorgehen ist die völlig getrennte Berechnung des zu—

gehörigen unbestimmten Integrals! \

Bei einer zweiten Methode werden bei der Transformation von der altenVeränder-
lichen x zur neuen Veränderlichen u auch die Integrationsgrenzen mittransformiert.
Es ‘gilt

Satz 10.11: Wenn für das unbestimmte Integral vonf(x) die Formel S. 10.11

ff(x) dx = _lf(<P(II)) '<P'(u) du „=„‚(„) (10-5)

gilt (vgl. Satz 9.2 in 9.1.4.), so gilt für das bestimmte Integralfolgende Formel:

[I w(b)

J f(x) dx = f f(<P(u)) '¢'(u) dM- (106)
u w(a)

Selbstverständlich müssen wieder die in 9.1.4. bei Satz 9.2 formulierten Voraus-
setzungen erfüllt sein! Insbesondere muß die Funktion x = <p(u) (und damit auch
u = 1p(x)) ‘auf dem entsprechenden Intervall umkehrbar eindeutig sein. Das Nicht-
beachten dieser Voraussetzung kann zu schweren Fehlern führen.

Beweis: G(u) sei eine Stammfunktion von f(<p(u))-tp’(u), F(x) eine Stammfunki
tion von f(x). (10.5) ist dann äquivalent mit F(x) = G(1p(x)) + c. Hieraus folgt
F(b) — F(a) = G(1p(b)) — G(w(a)). Diese Gleichung ist aber mit (10.6) äquivalent. I
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‘N

T
Beispiel 10.5: f sin‘ x - cos x dx geht durch die Substitution

o

u = sinx =1p(x)
. 7T ‚ TC .(du=cosxdx;x, =0,u, =sinx‚ = 0; x2 =—‚u2 =s1n—— = l;u=sinx

2 2
ist auf [0, umkehrbar eindeutig)

über in
l

3 1 1

I14’ du = “T o = 3.
0

4

Beispiel 10.6: I = fx/l — (x — 3)‘ dx geht durch die Substitution u = x — 3 zu-
2

nächst in das Integral
1

1 = f „/1 — u; du
—l

über. u = x — 3 ist auf [2, 4] umkehrbar eindeutig; den x—Werten x, = 2, x2 = 4cm-
sprechen die u-Werte u, = — 1, u; = 1. Durch die Substitution u = sin t (u = sin r

Egzgiaufliefert eine umkehrbar eindeutige Abbildung von dem Intervall — 2 2
das Intervall —l g u g 1) geht das zweite Integral über in

n

im. 2 T.

I='f\/1—sinzt-costdt=_|’\/coszt-costdt
2

~
[:I

ä
=_[cos2tdt1)=§(sint~cost+t) =;.

-1
2

. ._ —2_ _ a, falls agO,
Hmwels’ \/a _ Ial — i-a, falls a < 0.

Bemerkung: Wir haben uns in den Beispielen 10.5 und 10.6 jedesmal davon überzeugt,
daß die bei der Substitutionsmethode auftretenden Funktionen q; und y: auf den ent-
sprechenden Intervallen umkehrbar eindeutig sind. Sehr oft nimmt man es mit sol-
chen Feinheiten bei der Praxis des Integrierens nicht so genau; man führt die Substi-
tution durch und ist froh, wenn diese Bemühungen zu einem Ergebnis führen. Das
folgende Beispiel zeigt, daß ein allzu sorgloses Vorgehen bei der Anwendung des
Satzes zu einem falschen Ergebnis führen kann.

l
‘ 2L’ _

3 -1 _ 3 '

——l

Wir wollen jetzt I mit Hilfe der Substitutionsmethode für bestimmte Integrale berech-

Beispiel10.7: Das Integral I = Ix’ dx kann man sofort berechnen: I =

l T2 _ _ - -- 1 I)\/cos t—[cost|—cost, weil costgofur alle te — 2, 2 .
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nen. Durch die Substitutionu ä x2 (du = 2x dx,x = x1 = — 1, u] = 1; x2 = l,
u; = l) erhalten wir

1 l

1: J‘x2 dx = fu du = 0 (obere Grenze = untere Grenze‘).2J;

Wo liegt der Fehler? Antwort: Die Funktion u = x’ ist auf dem Intervall -1 g x g l
nicht umkehrbar eindeutig! Y

Wir hätten das richtige Ergebnis erhalten, wenn wir das Intervall [-1, 1] in zwei
o l

-1 1

Teilintervalle [—— 1, 0] und [0, 1] zerlegt und auf die beiden Integrale x’ dx und x’ dx
-1 o

getrennt die Substitutionsmethode für bestimmte Integrale angewendet hätten. Auf
den beiden Teilintervallen [— l, 0] und [0, 1] ist u = x’ jeweils umkehrbar eindeutig:
x = ——\/; bzw. x = J; sind die entsprechenden Umkehrfunktionen

o 1 o l

I=Jx1dx+fx2dx=Ju(——L..) +fu-——du_
—2\/u 2\/u

o 1 o-1

I

0

0 1 2 _

fizläb/“l

Bemerkung: Bei der Berechnung eines bestimmten Integrals mit Hilfe der Substitu-
tionsmethode kann man

a) die Integrationsgrenzen mittransformieren (s. Beispiele 10.5 und 10.6) oder
b) die Integrationsgrenzen nicht mittransformieren (s. Beispiel 10.4).

Wir empfehlen, im allgemeinen der Methode b) den Vorzug zu geben, weil man

sich auch bei etwas sorglosem Vorgehen (z. B. Nichtbeachten der Voraussetzung „(p
bzw. u) umkehrbar eindeutig“) durch eine nachträgliche Probe (Differentiation der
ermittelten Stammfunktion) von der Richtigkeit des gefundenen Ergebnisses über-
zeugen kann. Bei Methode a) ist das nicht möglich.

Man berechne (mit Hilfe der Substitutionsmethode) die folgenden bestimmten
Integrale:

4

xdx
Aufgabe 10.5: .

_ \/l + 2x
o

n]
:

sin x dxE7: (Subst. u = cos x).Aufgabe 10.6: j
0
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10.3. Näherungsweise Berechnung bestimmter Integrale

10.3. 1. Problemstellung

Die Berechnung des bestimmten Integrals vonf(x) über [a, b] ist nach dem Haupt-
satz der Differential- und Integralrechnung (vgl. l0.2.3.) sofort möglich, wenn eine
Stammfunktion F(x) von f(x) bekannt ist:

b

_[f(x) dx = F(b) — F(a).

Falls man bei der Ermittlung einer Stammfunktion auf zu große Schwierigkeiten
stößt, so ist man darauf angewiesen, das bestimmte Integral näherungsweise zu be-
rechnen. Das der näherungsweisen Berechnung eines bestimmten Integrals zugrunde
liegende Prinzip ist sehr einfach: Man ersetzt die Funktionf(x) durch eine Funktion
f*(x), die sich von f(x) möglichst wenig unterscheidet und deren Integration keine
Schwierigkeiten bereitet. Es gilt dann:

b b

Jflx) dx z f*(x) dx.

Die einfachste Möglichkeit wäre, die Kurvef(x) durch ein Sehnenpolygon zu ersetzen:
Man zerlegt das Intervall [a, b] in n Teilintervalle und verbindet die jeweils aufein-
anderfolgenden Punkte I’,--1 und P, geradlinig miteinander. Das so entstehende

Bild 10.9

l a-x„ x, x, X3 x, xi-A x

Sehnenpolygon ist cine Näherung für die durch y = f(x) dargestellte Kurve (s. Bild
10.9). Die Näherungsformel, die man erhält, wenn die Kurve f(x) durch ein Sehnen-
polygon ersetzt wird, nennt man Sehnenfcrmel oder Trapezformel. (Der Name
„Trapezformel“ wurde gewählt, weil sich der unterhalb des Sehnenzuges liegende
Bereich aus endlich vielen Trapezen zusammensetzt.)

Näherungsformeln werden vor allem auch dann benutzt, wenn die Kurve nicht
durch einen geschlossenen Ausdruck y = f(x) gegeben ist. In den Anwendungen
kommt es häufig vor, daß von der Kurve auf dem Intervall [a, b] nur endlich viele
Punkte (Meßpunkte) P‚(x„ y.) (i = 1, 2, ..., n) bekannt sind. Wir werden sehen, daß
bei allen Näherungsformeln für das bestimmte Integral von f(x) über [a, b] nur die
Kenntnis von endlich vielen Punkten (x„f(x‚)) mit a < x, < x2 < < b erforder-
lich ist. Daher ist jede derartige Näherungsformel auch dann anwendbar, wenn von
der Kurve nur endlich viele Punkte Po, P1, ..., P„ bekannt sind. (Meist werden die
bei einem Experiment gefundenen Meßwerte (x„ y‚) in Tabellenform angegeben.)
Selbstverständlich wird der durch die Näherungsformel ermittelte Wert dem tatsäch-
lichen Wert des bestimmten Integrals um so näher kommen, je größer n ist.
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10.3.2. Die Rechteck- und die Trapezformel

Satz 10.12: Das Intervall [a, b] = [xo, x„] werde durch die Teilungspunkte x1, x2,”...‚ S. 10.12
x„_ 1 in n gleiche Teile der Länge h zerlegt (n - h = b — a). Istf(x) auf [a, b] integrierbar,
so gilt für das bestimmte Integral von f(x) über [a, b] folgende Näherungsformel:

l7

l [f(x) dx z h(yo + yl + + y,,_1) Rechteckformel

(ya =f(xs), i= 0,1,~-«)-
Die Näherungsformel entsteht dadurch, dal3 man die Kurve y = f(x) durch ein

„Treppenpolygon“ ersetzt (s. Bild 10.10).
Satz 10.12 bedarf keines besonderen Beweises. Die rechts stehende Summe

hlyo + ‚V1 + + J’n—1)=f(xo)‘ h + +f(xn—1). h

= .;1f(-5i) ‘Axt (A-xi = ha E: = xi-l)
ist nämlich eine zu der vorgegebenen Zerlegung gehörige Integralsumme — und damit
automatisch eine Näherung des bestimmten Integrals von f(x) über [a, b] (vgl.
l0‚l.l.).

Bild 10.10

Man kann die Rechteckformel natürlich auch anders deuten: Man ersetze die
Kurve y = f(x) durch das „Treppenpolygon“ y = f*(x), welches wie folgt definiert

m: f*(x) =f(a) für a g x < x1;

f*(x) =f(x1) für xi g x < x2,
f*(x) =f(x2) für x2 g x < x3 usw.

(s. Bild 10.10). Für die „Näherungskurve“ y = f*(x) gilt dann:
b

ff*(x) d?‘ = h()’o + ‚V1 + + }’n-1)-

b x, x, x,,

Beweis: ff*(x)dx = ff*(x)dx + ‘|~f*(x)dx + + f f*(x)dx
a xn-l

= Trat) dx + ‚lz/(xo dx + + l"/<x„-o dx
n—1

=f(ü) ' (xx " a) +f(X1) ' (x2 ‘ x1) + +f(xn—1)‘(xn ‘xn-i)
=f(a) - h +f(x1) ~ h + +f(x,,_,) - h

= h(yo + J’: + + yn—1)-I

Die Teilintervalle [x,_1, x,] sollten alle gleich lang sein!
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4

Beispiel 10.8: Das bestimmte Integral [x3 dx soll näherungsweise mit Hilfe der
o

Rechteckformel berechnet werden; das Intervall [0, 4] soll in 4 gleiche Teile zerlegt
werden.

Bei diesem einfachen Beispiel können wir den Wert des bestimmten Integrals sofort
4

4

angeben: Ix’ dx = X7
0

4

= 64. Die Rechteckformel ergibt (f(x) = x3, h = l, n = 4):
Ü

4

lxadx z h(yo + yi + yz +ys) = 1 '(f(0) +f(1) +f(2) +f(3))
0

=0+l+8+27=36.

Die außerordentlich schlechte Übereinstimmung des Näherungswertes (36) mit dem
tatsächlichen Wert (64) liegt bei diesem Beispiel vor allem darin begründet, daß die
Funktion y = x3 außerordentlich schnell in dem Intervall ansteigt. Man bedenke:
Für x = 2 ist f(x) = 8, für x = 3 ist f(x) = 27, für x = 4 ist f(x) = 64. Insbesondere
auf dem Intervall [3, 4] ist der Unterschied zwischen dem „Näherungsrechteck“ und
dem tatsächlichen Bereich (begrenzt durch x = 3, x = 4, y = 0 und y = x3) außer-
ordentlich groß.

S. 10.13 Satz 10.13: Das Intervall [a, b] = [x„, x„] werde wieder durch die Teilungspunkte
x„ x2, ..., x,,_1 in n gleiche Teile der Länge h zerlegt. Die Näherungsformel, die man

b

für das bestimmte Integral f(x) dx erhält, wenn man die Kurve y = f(x) durch ein

Sehnenpolygon ersetzt (s. Bild 10.9). lautet:

l7

b „ .

ff(x) dx z ——n—1- + y, + y, + + y,._1] Trapezformel.

Beweis: Das Sehnenpolygon y =f* (x) wird durch folgende Gleichungen beschrieben:

y "y ..—m'(x”xo)+yo fur xo§X§xif*(x) = h

(Gleichung der Geraden durch Po, P‚; für x = x0 ist f*(x0) = yo, für x = x, ist
f*(x.) = yl)

r*(x> = y-j-yi (x — x.) + y. für x. g x g x.;

allgemein:

f*(x) = — xi—1)+ yl—l für xi—1 § x § Xi~

Für die „Näherungskurve“ y =f*(x) gilt dann:
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fbf*(x) dx = ff*(x) dx + ff*(x) dx + + j:‘"*(x) dx

a -"n_x

hff*<x> dx =,

[y1— ,'Vi_1 _ (X ‘ X:—1)2

h 2

f‘ f (x— x.-.) + y‚-‚)dx

X n h
K = 2 (ya + )’x—1)‘2"

x,_, «<1
+yi—x'X

u'
[v

]=
I l

+?§;»}=5[<r~+Z7>:iy«>+(yo+'Zi‘y«)}=1

Il

x
-

m
|=

-

2

n-l + n n-1

Damit ist die Trapezformel bewiesen:

b b

+ nff(x)dx z ffwodx = h~ [y"—2y—+;v, +yz + +y,,_1J. I
a

Die Umformungen im eben durchgeführten Beweis betrachte man vor allem als eine
gute Übung für den Umgang mit dem Summenzeichen!

- 4

Beispiel 10.9: Das bestimmte Integral f x3 dx soll näherungsweise mit Hilfe der Tra-
0

pezregel berechnet werden; das Intervall [0, 4] soll in 4 gleiche Teile zerlegt werden. —

Wir haben absichtlich dasselbe Integral wie im Beispiel 10.8 gewählt, um zu sehen,
welche Verbesserung die Trapezregel gegenüber der Rechteckformel bringt.

4

fx’dxz/z-[%Ä—+y1+y2+y3]

=1-[ +f(1)+f(2)+f(3) =32+1+s+27=ss.

Der Näherungswert (68) weicht hier nicht mehr so stark vom tatsächlichen Wert (64)
ab, wie das bei der Rechteckregel der Fall ist (s. Beispiel 10.8). Daß die Trapezformel
i. allg. eine wesentlich bessere Näherung liefert als die Rechteckregel, ist geometrisch
unmittelbar einleuchtend (s. Bilder 10.10 und 10.9). Bei der Aussage „die Trapez-
formel liefert i. allg. eine bessere Näherung als die Rechteckregel“ setzt man natürlich
stillschweigend voraus, dal3 man in beiden Fällen von der gleichen Zerlegung des
Intervalls [41, b] ausgeht.

1o

Aufgabe 10.7: Das bestimmte Integral f x3 dx soll näherungsweise mit Hilfe der =l=

l)

Trapezformel ermittelt werden; das Intervall [0, l0] soll in 5 gleiche Teile zerlegt
werden. Man vergleiche den ermittelten Näherungswert mit dem tatsächlichen Wert
des bestimmten Integrals.
12 Pfau, Ditfi- u. Integr.
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10.3.3. Die Simpsonsche Regel

Wir behandeln zunächst einen Spezialfall, die sog. Keplersche Faßregel. Der Name
„Faßregel“ wurde gewählt, weil Kepler‘) mit dieser von ihm entwickelten Regel das
Volumen von Weinfassern berechnete.

a+b
Satz 10.14: Das Intervall [a‚ b] = [x0, x2] werde durch den Teilungspunkt x, =

in zwei gleiche Teile der Länge l1 = a zerlegt. Die Näherungsformel, die man für
b

das bestimmte Integral [f(x) dx erhält, wenn man die Kurve y = f(x) durch eine Pa-
a

rabel y = f*(x) = co + c,x + czxz ersetzt, welche durch die Punkte (x0,f(xo)),
(x1,f(x,)), (x2,f(x2)) hindurchgeht (s. Bild 10.11), lautet:

—a
b

ff(x)dx z b 6

Ü’: =f(x.-); i= 0,1,2).

(yo + 4y1 + yz) Keplersche Faßregel

b b '

Beweis: Es gilt: _[f(x) dx z ff*(x) dx. Wir zeigen, daß das rechts stehende Integral
b — a

6
(yo + 4y; + yz) ist-

b

J (co + clx + c2x2) dx = [cox + <}c1x2 + §c2x3]';
a

_I'bf*(X) dx =

= co(b — a) + %c1(b2 -— a2) + Q-c2(b3 — a3)

= %(b — a) [600 + 3c1(b + a) + 2c2(b2 + ab + a2)]

= ab — a) [(c„ + co + 4co) + (cla + 01b + 2c‚(a + b))

+ (czaz + czb’ + c2(a + b)’)]

= %;(b — a) - [(co + cla + C2ü2) + (co + c,b + 62b’)

lll
+b +ba2 +c2(a2

a+b)]
= ab — a) [/*<a) +f*(b) + 4f*( 2

+4(co+c1

= ab — a) [/<a> +f(b) +

(Nach Voraussetzung sollte die vorgegebene Kurve y = f(x) mit der Parabel y =f*(x)
die Punkte Po, P1, P2 gemeinsam haben.) I

Die Simpsonsche Regel erhält man sehr einfach aus der Keplerschen Faßregel,
wenn man das Intervall [11, b] in n = 2m gleiche Teile zerlegt (s. Bild 10.12) und auf
jeweils zwei benachbarte Intervalle die Keplersche Faßregel anwendet (n = 2m heißt:

1) Johannes Kepler (1571-1630).
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[a‚ b] wird in eine gerade Anzahl gleicher Teile zerlegt). Zunächst gilt

jbf(x)c1x = ffoc) dx + Tfoc) dx + + j f(x) dx.
-“o X2m—2

l

l
l y-/(x)

l
‚ l

i

] l

l l .

l X, X1 X; X l Fa ‘r 5) ‘Int-I"1II~1‘ln1 X

Bild 10.11 Bild 10.12

Wendet man auf jedes der auf der rechten Seite stehenden Integrale die Keplersche
Faßregel an, so ergibt sich die Beziehung

xZ-xo
b

ff(x)dx z - (yo + 4y1 + h) + i? (‚V2 + 4y3 + Y4)

x — x _

+ + (y2m—2 + 472m4 + y2m)-

b—a
Wegen x2 —— x9 = x4 — x2 = = x2,,, —— x2,,,_2 = folgt hieraus:

b _

6m

+ 2(y2 + y4 + + y2m-2) + y2m)'

Das ist bereits die Simpsonsche Regel‘).

a (yo ‘i’ 4(}'1 + ‚V3 + ‘i’ Jlzm-i)

b

fflx) dx z

Fassen wir noch einmal zusammen:

Satz 10.15: Das Intervall [11, b] werde in eine gerade Anzahl n —-Ä 2m gleicher Teile zer- S. 10.15
legt (Teilungspunkte: a = xo, x1, x2, ..., xZ,,,-2, x2,,,-1, x2,,, = b). Für das bestimmte
Integral von f(x) über [a‚ b] gilt dann folgende Näherungsformel:

b
b-

ff<x>dx z 6m” m + 4<y. + Y3 + + h.-.»

+ 2(y2 + y4 + + y2,.._z) + y2,,,] Simpsonsche Regel.
4

Beispiel 10.10: Das bestimmte Integral f x3 dx soll näherungsweise mit Hilfe der
o

Simpsonschen Regel berechnet werden; das Intervall [0, 4] soll wieder in 4 gleiche Teile
zerlegt werden (s. Beispiele 10.9 und 10.8).

I) Thomas Simpson (1710-1761).

12*
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Aus n = 4 und n z 2m folgt m 2 2. Also gilt:
4

4-0
1x3 dx z m m +4(y. w.) +2<y.>+y..1

o

=:IT-[O+4(l+27)+2-8+64]=%-l92=64.

Der mit Hilfe der Simpsonschen Regel berechnete Näherungswert ist bei diesem Bei-
spiel gleich dem tatsächlichen Wert des Integrals. Das ist bei der Funktionf(x) = x3
kein Zufall, sondern Gesetzmäßigkeit. Es gilt nämlich: Ist f(x) ein Polynom vom

’ Grade 2 oder 3, so steht in der Keplerschen Faßregel und damit auch in der Simp-
sonschen Regel das Gleichheitszeichen an Stelle des Zeichens z. Für n = 2 ist
der eben festgestellte Sachverhalt auf Grund der Herleitung der Keplerschen Faß-
regel eine Selbstverständlichkeit (vgl. Satz 10.14). Hiervon ausgehend kann man
leicht zeigen, daß der Sachverhalt auch für n : 3 gilt (vgl. [l0], Bd. III).

Das Wesentliche, welches durch die Beispiele 10.8, 10.9 und 10.10 demonstriert
werden soll, ist: Die Trapezformel liefert i. allg. eine bessere Näherung als die Recht<
eckregel; die Simpsonsche Regel wiederum liefert i. allg. eine bessere Näherung als die
Trapezregel. Im allgemeinen wird man daher bei der näherungsweisen Berechnung
von bestimmten Integralen der Simpsonschen Regel den Vorzug geben.

Bei den Beispielen 10.8, 10.9 und 10.l0 wurde absichtlich der einfache Integrand
f(x) = x3 gewählt; man hat dann sofort die Möglichkeit, den berechneten Nähe-
rungswert mit dem tatsächlichen Wert des Integrals zu vergleichen. Wir behandeln
abschließend ein BeispieLbei dem das zugehörige unbestimmte Integral nicht elemen-
tar auswertbar ist (vgl. Abschnitt 9.1.6.).

Beispiel 10.11: Mit Hilfe der Simpsonschen Regel berechne man näherungsweise
7FI=f sinx dx;

x

‘E

das Intervall [11, b] 2 7:] werde in n = 10 gleiche Teile zerlegt. (Würde man
sinx

[0, rr] als Integrationsintervall wählen, so wäre die Funktion f(x) = im linken
Sln x

Eckpunkt des Intervalls nicht definiert; wegen lim = 1 handelt es sich aber um
x«>0eine hebbare Unstetiglteit.)

Anwendung des Satzes 10.15 liefert:

1% 316 [yo + 4(y1 +J’3 + ys + ‚V7 + yg) + 20'; + ‚v4 + ye + ys) + y10]' (*)

Für die Teilungspunkte x0 (= a), x1, x2, ..., x„ (= b) gilt:

7T. „ TC K „ _x‚«=€-+tE—1—2(2+1) (z—0‚l,2‚...,l0).

Die entsprechenden y‚-Werte berechnet man nach der Formel

l . l2 . . l2
J’: =f(xz)= x—i51nXr = 7_:(fl_l.)‘51n%(2 +1)=:'Z::
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wobei zur Abkürzung z, = 2 L l, sin (2 + D112 gesetzt wurde. Aus der Beziehung (*)
folgt dann:

Iz%[z° + 4(z, + z3 +25 + z7 + Z9) + 2(zz +24 + 2,5 + 28) + 210].

Mit
1 . . l ‚ . l

z‘, = ~2—s1n= ism 30” = E- = 0,250,

l . l . o 1
z, = Fsm E; = —3—s1n 45 z 30,707 z 0,236

usw. erhält man als Sehlußergebnis:

sin

X
x dx z 1,336.*~ Il

0|
“
2

..
.}

:

4

Aufgabe 10.8: Das bestimmte Integral x2 \/ l + x2 dx soll näherungsweise mit Hilfe >s<

0

der Simpsonschen Regel berechnet werden; das Intervall [0, 4] soll in 8 gleiche Teile
zerlegt werden.

‚ Wie in der Einleitung bereits betont wurde, wird bei der Anwendung einer der-
artigen Näherungsformel die Näherung um so genauer sein, je größer die Anzahl
n der Teilintervalle ist. Diese allgemeine Feststellung reicht für die Anwendungen oft
nicht aus. Man möchte genau wissen, welchen Fehler man bei der Anwendung einer
bestimmten Näherungsformel gemacht hat. Dabei genügt es, wenn man weiß, wie
groß der Fehler höchstens sein kann. Wenn der Fehler innerhalb einer solchen
Schranke liegt, daß er für das betreffende Problem vernachlässigbar ist, kann man die
Näherung als für das betrefiende Problem gut ansehen. Der folgende Satz gibt Ant-
wort auf die Frage, wie groß der dem Näherungswert anhaftende Fehler ist.

b

Satz 10.1_6: Wird das bestimmte Integral ff(x) dx näherungsweise durch die Simpson- S. 10.16

sehe Regel berechnet, wobei man davon alirsgeht, daß das Intervall [a, b] in eine gerade
Anzahl n = 2m gleicher Teile zerlegt wurde, so gilt für den Fehler R die Abschätzung

(b — “)5
180n4

wobei M eine obere Schranke von |f“"(x)] auf dem Intervall [a, b] ist.

IR! ä .M.

(Für M kann sup [f""(x)| gewählt werden!) Den Beweis findet man z. B. in [10],
< aéxgb

Bd. III, bzw. [l4], Bd. II.

Hinweis: Die Güte der Simpsonsehen Regel dokumentiert sich auch in dem folgenden
Sachverhalt: Durch Halbierung aller Teilintervalle kommt man von einer Zerlegung
Z, mit n Teilintervallen zu einer Zerlegung Z2 mit 2n Teilintervallen; für die zuge-

hörigen Fehler R, bzw. R, gilt: |R2] g % [R1].
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10.4. Einige Anwendungen des bestimmten Integrals

Wie in 8. schon dargelegt wurde, stellt die Integralrechnung ein unentbehrliches Hilfs—
mittel für die verschiedensten Wissensgebiete dar. Einige Anwendungen wurden in S.

bereits erwähnt, wir wollen ein weiteres Beispiel betrachten: Es ist allgemein be-
kannt, daß die Methoden der Wahrscheinlichkeitsrechnung und mathematischen
Statistik in immer größerem Umfang in Natur- und Ingenieurwissenschaften an-
gewendet werden. Auch in der Ökonomie sind die Wahrscheinlichkeitsrechnung und
die Statistik wichtige Hilfsmittel bei der Lösung der dort anstehenden Probleme.
Auch hier muß gesagt werden, daß ohne Kenntnis der Integralrechnung es nicht mög-
lich ist, die Wahrscheinlichkeitsrechnung aufzubauen. Als Beispiel verweisen wir auf
folgenden Zusammenhang: Bei einer stetig verteilten Zufallsgröße X mit der Dichte-
funktion f(x) ist die Wahrscheinlichkeit dafür. daß X Werte aus dem Intervall [a, b]

b

annimmt, gleich f(x) dx.
G

Im folgenden werden wir einige Anwendungen des bestimmten Integrals in der
Geometrie, in den Natur- und Ingenieurwissenschaften und in der Ökonomie aus-
führlicher kennenlernen. Es wird sich um Anwendungen handeln, die relativ einfach
zu übersehen und von allgemeinem Interesse sind.

10.4.1. Anwendungen in der Geometrie

Eine 1. Anwendung des bestimmten Integrals haben wir bereits in 10.1.2. (Beispiel
b

10.1) kennengelernt: Im Fallef(x) g 0 für alle x s [a, b] liefert ff(x) dx den Flächen-

inhalt des durch die Kurven y = 0, x = a, x = b, y = f(x) begflrenzten Bereichs in der
x, y-Ebene. Eine einfache Folgerung ist die folgende Aussage: Im Falle f(x) g 0 für
alle x e [a, b] liefert das Integral den negativen Flächeninhalt des oben beschriebenen
Bereichs.

Aus diesen beiden Aussagen ergibt sich folgende Verallgemeinerung.

Satz 10.17: Ist B ein Bereich der x, y-Ebene, der „nach oben“ durch y = f(x), „nach
unten“ durch y = g(x) und „seitlich“ durch x = a bzw. x = b begrenzt wird (s. Bild
10.13), so gilt für den Flächeninhalt A dieses Bereiches

l A = ihr/o) — g(x)) dx.

Voraussetzung: 1.f(x) und g(x) sind stetig auf [a, b], 2.f(x) g g(x) für alle xe[a, b],
d. h.‚ die Kurve y = f(x) verläuft stets oberhalb von der Kurve y = g(x) auf dem

Bild 10.13
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Intervall [a, b]. — Einen solchen Bereich B nennt man einen ebenen Normalbereich.
Ebene Normalbereiche spielen eine wichtige Rolle bei der Berechnung von Bereichs-
integralen (Flächenintegralen); s. Band 5.

Der Beweis zu der in Satz 10.17 aufgestellten Behauptung ergibt sich im Falle
g(x) g 0 für alle x e [a, b] sofort aus Beispiel 10.1: i

b b b

A = _1f(x) dx — f g(x) dx = j (f(x) — g(x)) dx.

Ist die Forderung g(x) g 0 für alle x e [a, b] nicht erfüllt, so kann man durch eine
einfache Parallelverschiebung in Richtung y-Achse erreichen, daß der Bereich B
ganz oberhalb der x-Achse liegt. Für die parallelverschobenen Kurven

y = g*(x)‚ y =f*(x) gilt: g*(x) = g(x) + v. (c Z 0),

f*(x) =f(x) + v.

Der Flächeninhalt hat sich natürlich bei der Parallelverschiebung nicht geändert. Es
gilt daher: ‘

b b b b

A = ~|‘f*(x) dx — f g*(x) dx = j(f(x) + c) dx — f (g(x) + c) dx

u

b b b b b b

=_lf(x)dx +fcdx — fg(x)dx— fcdx =Jf(x)dx—fg(x)dx.

Beispiel 10.12: Von dem durch die Kurven x = 1, x = 4, y = 715x’, y = ——: be-

grenzten Bereich B (s. Bild 10.14) berechne man den Flächeninhalt A.

mit’

Bild 10.14

Es gilt:
4 ‚

1 4 1 4
A -—f(Kx2 — (—-7))dx= Fax’ + 41n|x|]I

1

16 1—T+4 In4—E— 10,79.

Aufgabe 10.9: Es ist der Flächeninhalt des von den Kurven x = 0, x = 4,y = fix‘ + 1, a:

y = —x begrenzten Bereichs B zu berechnen. (Man skizziere zunächst den Bereich B;
er liegt ganz im l. und 4. Quadranten.)
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Ü Aufgabe 10.10: Man ermittle den Flächeninhalt des von den Kurven y = fix’ und
y = 2x eingeschlossenen Bereichs. (Der Bereich liegt ganz im 1. Quadranten.)

Ergänzungen zum Satz 10.17: Selbstverständlich hat man nicht nur von Normal-
bereichen den Flächeninhalt zu bestimmen. Die in Satz 10.17 angegebene Formel für
den Flächeninhalt von Normalbereichen reicht aber aus, um auch den Flächeninhalt
eines allgemeinen Bereichs B zu bestimmen. Man braucht ja nur den Bereich B in
(endlich viele) Normalbereiche zu zerlegen ~ was in allen praktisch vorkommenden
Fällen möglich ist — und auf jeden Normalbereich die in Satz 10.17 angegebene
Formel anzuwenden. Es muß allerdings garantiert sein, daß die „obere“ und
„untere“ Kurve durch eine Gleichung der Form y = f(x) bzw. y 2 g(x) gegeben ist
(s. Bild 10.13). _

Hat man ein Flächenstück in der x, y-Ebene, welches von zwei Strecken OP, und
51-’; und einem die Punkte P, und P2 verbindenden Kurvenstück (~51 begrenzt wird —

es handelt sich um eine sog. „Sektorfläche“ (s. Bild 10.15; das Kurvenstück (E2 und
die zweite Schraffur zwischen (E; und (AZ, werden zunächst nicht berücksichtigt),
so erhält man für den Flächeninhalt A dieses Flächenstückes:

ß

I A = g f(x)“: — yx) dt (Sektorformel).

Ü

Bild 10.15 Bild 10.16

Hierbei ist x = x(t)‚ y = y(t), o: g t g ‚B, o; < /3, eine Parameterdarstellung des die
Punkte P1 und P; verbindenden Kurvenstücks (£1; x bzw. y sind die Ableitungen
von x bzw. y nach t (Beweis der Sektorformel siehe z. B. [l0], Bd. III, Nr. 54).

Die Sektorformel soll auf ein einfaches Beispiel angewendet werden! x = R < cos t,

2 T

fangspunkt P,(R, 0) und dem Endpunkt P1(0, R). Von dem durch die Strecken 0P1,
5F, und dem Viertelkreis begrenzten Flächenstück (s. Bild 10.16) soll der Flächen-
inhalt mit Hilfe der Sektorformel berechnet werden. Es gilt:

y = R - sin t, O g t g ist Parameterdarstellung eines Viertelkreises mit dem An-

A = {- [(R-cos t) (R-cos t) — (R<sin t) (—R-sin t)]dt

||

°'
—

-n
o|

:

°'
“=

N
|a

§R1 [cosz t + sin’ t] dt = 11-R2 dt = irrRz.

C
‘N

I:
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Wir wollen jetzt den Flächeninhalt A des ebenen Flächenstückes berechnen, das von
einer in Parameterdarstellung gegebenen geschlossenen, doppelpunktfreien Kurve
(E: x = x(t), y = y(t), die im Intervall oc g t g y definiert ist, begrenzt wird. Denkt
man sich (s. Bild l0.15)(»S aus den beiden Teilstücken (£1 mit x = x(t), y = y(t)‚ (oc g t
g ß) und (E; mit x = x(t), y = y(t) (ß g 1 g y) zusammengesetzt, dann gilt nach der
Sektorformel für den Flächeninhalt A, des Sektors, der von (71, Ü}, und Ö7; begrenzt
wird

Al = i Jfitxy" — yx) dz

und für den Flächeninhalt A; des Sektors, der von W71, E; und OT’, begrenzt wird,

/5

A; = H (x)? — mar.
7

Die nach der Sektorformel ermittelten Flächen A 1 und A2 sind „vorzeichenbehaftet“-
Durch die Parameterdarstellung ist die Kurve orientiert. A ist positiv, falls die Fläche
im mathematisch positiven Sinn umlaufen wird, andernfalls negativ.

Für das von der geschlossenen Kurve (51 eingeschlossene Flächenstück A (im Bild
lO.l5 doppelt schraffiert gezeichnet) folgt dann

A = A1 — A: =<I°U(xy‘ —yx>dr— itxy" -yx")dt]

A = iiocy‘ — yx‘)dt = ~%§<xy' — yx)dr.1)
as

Dabei müssen natürlich einige Voraussetzungen über x(t), y(t) gemacht werden, die
in den praktischen Anwendungen erfüllt sind. Neben den Voraussetzungen x(c¢)

= x0’), y(<%) = Y0’) (,.AnfangSPUnkt“ (XML y(o¢)) fällt mit „Endpunkt“ 06(7), )’(‘/))
zusammen: geschlossene Kurve) und (x(l‚), y(2‘‚)) 4: (x(t2), y(t2)) für je zwei ver-

schiedene z-Werte t1, t2 aus (oc,y) (,,doppe1punktfreie“ Kurve) muß folgende Be-
dingung erfüllt sein: Das Intervall [oc, y] kann so in endlich viele Teilintervalle zerlegt
werden, daß in jedem Teilintervall die Funktion x(t) stetig diflerenzierbar und im
engeren Sinne monoton oder konstant ist. Für y(t) sollen dieselben Voraussetzungen
gelten.

Die Inhaltsberechnung von Flächenstücken, die von in Parameterdarstellung ge-
gebenen Kurven begrenzt sind, konnte hier nur angedeutet werden. Näheres findet man
z. B. in [l0], Bd. III, oder [l8], 15. Lehrbrief.

cos t sin t

t ’y F 6 t

einer hyperbolischen Spirale (vgl. [1]). P, (o, und P, (o, — g) sind zwei Punkte
n . 1

7 .j .j

cheninhalt A der durch diese Kurve und die Strecken 0171, OP; begrenzten Sektor-
fiäche.

Aufgabe 10.11: a) x = 6 (0 < t < oo) ist Parameterdarstellung

dieser Spirale mit I, = und t2 = 37-[t(bitte nachprüfenl). Man berechne den Flä-

1) Das Zeichen f bedeutet Umlaufinlegral. Es wird verwendet, wenn über eine geschlossene Kurve
integriert wird.
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b) r = azp ist die Gleichung einer Archimedischen Spirale in Polarkoordinaten r, q
(0 g (p < oo, a: positive Konstante; vgl. [l]). P,(r„cp,) und P2(r2,<p2) seien zwei
Punkte dieser‘ Spirale mit 0 g (p, < (772. Man beweise, daß für den Flächeninhalt A

des durch die Spirale und die Strecken GT5, 0:1’; begrenzten Sektorfiäche gilt:
A = %a’(<r3 — <ri‘).

Hinweis: Man gehe von r = azp zu einer Parameterdarstellung x = x(<p), y = y(<p)

über!

Wir wollen jetzt die Länge eines ebenen Kurvenstücks y = f(x), a g x g b, berech-
nen. Dabei setzen wir voraus, daß y = f(x) auf dem Intervall [a, b] stetig diflerenzier-
bar ist. Die Voraussetzung „stetig differenzierbar“ garantiert, daß das Kurvenstück
eine bestimmte Länge hat, die mit der nachher abzuleitenden Formel (s. Satz 10.18) be-
rechnet werden kann. Selbstverständlich haben auch viele andere Kurvenstücke, bei
denen diese Voraussetzung nicht erfüllt ist, eine bestimmte Länge. Kurvenstücke,
die eine bestimmte Länge besitzen, nennt man rektifizierbar. Dabei stellen wir uns auf
den anschaulichen Standpunkt, daß jedem nicht allzu kompliziert aufgebauten
Kurvenstück eine bestimmte Länge zukommt — obwohl in Wirklichkeit die mit dem
Begriff „Länge“ und der Längenberechnung zusammenhängenden Fragen nicht
ganz trivial sind. Genaueres über die Begriffe „Kurvenstück“, „Länge“ und „Rekti-
fizierbarkeit“ findet man Z. B. in [l0], Bd. III. .

Wenden wir uns nun unserer eigentlichen Aufgabe zu, nämlich der Bestimmung
der Länge des Kurvenstücks y = f(x), a g x g b. Wie bei der Herleitung der Trapez-
forme] (s. Bild 10.9) zerlegen wir das Intervall [11, b] in n Teilintervalle [x,_„ x,] mit
der Länge Ax, (i = l, ..., n; x0 = a, x„ = b). Die Länge des Sehnenpolygons Po, P„
P2, ..., P,, können wir elementargeometrisch sofort berechnen. Für die Länge As,
der P,_, mit P, verbindenden Sehne gilt nach dem Lehrsatz des Pythagoras:
As, =‘\/(Ax,)’ + (Ay,-)2. Hierbei gilttAx, = x, — x,_„Ay, =y(x,) —— y(x‚_,). Nach dem
Mittelwertsatz der Differentialrechnung (s. 6.2.) gibt es ein 5,6 [x,_„ x,], so daß

gilt: 51% = f’(E,). Für Ar, ergibt sich dann: As, = \/(Axi)2 + (f’(/E.-) - Ax,)1

= Ax.» « J1 + </'<5.>)2.
Die Länge des Sehnenpolygons ist dann gleich

As. = «T+ (f’(5.))’ ‘Axi-

Diese Summe stellt eine Näherung der gesuchten Länge s des Kurvenstücks y = f(x)‚
a g x g b, dar; sie ist um so genauer, je feiner die Zerlegung des Intervalls [0, b] ist.
Den genauen Wert von s erhält man durch den in 10.1.2. beschriebenen Grenzprozeß:

s = um i\/1 + <f’(E.-))2 -Ax..
0 lAx,« .=

Der besseren Übersichtlichkeit halber führen wir noch eine Abkürzung ein:
<p(x):= v/l + (f’(x))’. Es gilt dann:

5 = lim (m5,) -Axi.
Ax,40 i=1

Hieraus folgt (vgl. 10.1.2.)
b

s = <p(x) dx, also S = fx/1 + (f’(x))2 dx,
a
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Damit haben wir unsere gesuchte Formel gefunden! Fassen wir das Ergebnis zu-

sammen!

Satz 10.18: Für die Bagenlänge s des ebenen Kurvenstücks y = f(x), a g x g b, gilt:
b

I x=J‘\/1+(f’(x))’dx.

(Voraussetzung: y f(x) ist auf [a‚ b] stetig diflerenzierbar.)

Beispiel 10.13: Von dem Kurveristück y = 1x50 g x g 6, berechne man die Bogen-
länge s.

Nach Satz 10.18 gilt:
(S. 10.2.4.) erhält man

4

s=J‘\/1+2’
0

6

s = fN/l + 2x2 dx. Durch die Substitution z = %x
0

3 3

'7“=3
„j 4

[ä (z - V/z’ + 1 + arsinh 2)]
0

3 [z-\/z—._2+I+1n(z+N/W)]3=%-(4\/fi+ln(4+\/E»

14
34

;]

z I - (4 \/T7 + ln 8,123) z 12,37 + ä. 2,09 z 13,94.

Hinweis: Das Integral [J1 + x2 dx findet man in jeder einschlägigen Formelsamm-
lung (siehe z. B. [l]); bei der Behandlung der hyperbolischen Funktionen wurde die

Beziehung arsinh x = in (x + \/1 + x’) hergeleitet.

Aufgabe 10.12: Man berechne die Bogenlänge des Kurvenstücksy = x 0 g x g 8.

Ist ein Kurvenstück nichtin der Formy = f(x), a g x g b, gegeben, sondern durch
eine Parameterdarstellung (Parameter: t)

x = W0): y ='P(t)a t1 ä I g t2:
so gelangt man bei der Berechnung der Bogenlänge s

Satz 10.18 angegebenen sehr ähnlich ist.
zu einer Formel, die der in

Satz 10.19: Für die Länge s des ebenen Kurvenstücks x

gilt:
= W), y = w(t),t1 ä t ä t2.

1

I s=fwwW+mMm.
‘i

(Hierbei muß natürlich vorausgesetzt werden, daß die Funktionen (p(t) und zp(t) auf
[t,, t2] stetig difierenzierbar sind. Mit 4120), z[:(t) wird die Ableitung von <p(t) bzw.

‚ A d . d
1p(t) nach t bezeichnet: (p(t) = iii, 1y(t) 2

Beispiel 10.14: Von dem Kurvenstück x = r ~ cos tp, y = r ~ sin (p, 0 g q; g n: be-
rechne man die Bogenlänge (Parameter: (p). Wir kennen das Ergebnis » nämlich
s = 1-rr —, denn bei diesem Kurvenstück handelt es sich um einen Halbkreis vom Ra-

S. 10.18

4t
-

S. 10.19
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dius r. Dasselbe Ergebnis müssen wir natürlich auch mit der in Satz 10.19 angegebenen
Formel erhalten:

‘R

s = f\/(—r-sin<p)2 + (r-cosq7)2d<p
o

T‘ T!

= fr-\//sin2<p+c0s2zpdz,v = J-rdqz =7:r.
o o

TC
_‚ i, -2 e

rechne man die Bogenlänge. (Es handelt sich um eine Parameterdarstellung einer

Beispiel 10.15: Von dem Kurvenstück x = a - cos (p, y = b - sin (p, 0 g q? g

2 2

Viertelellipse; aus x = a - cos (p, y = b t sin (p folgt»:—2 + —Z2— = cos’ q; + 5in2 Lp = l.)
Nach Satz 10.19 gilt:

b’ —— 2 .IA/1 ——l)7a—s1n2qJd<p

n

0

N
1:

T

s‘ = Ix/(—a-sing»)? + (b-coszp)2d<p = b—

0
1:

2

=b-J\/1 —e2~sin1¢pd<p

0
b2 _ a2

(92 2 7*
Das gefundene Integral kann i. allg. nicht elementar gelöst werden (vgl. Bemerkung

in 9.3.5.).
Ein Integral der Form

, wobei b > a vorausgesetzt wird; e: numerische Exzentrizität.)

W

j. \/1 — e2-sin‘:/2 dun =: E(e, (p) nennt man elliptischex Inte-
o

gral 2.Gattung (vgl. [1]). Diese Integrale sind in Tafelwerken (z. B. [8]) zu finden.

Aufgabe 10.13: Von der logarithmischen Spirale r : a - e“ berechne man die Bogen-
länge des zwischen den Punkten mit den (p-Werten cpl und (‚v2 (<p1 < 902) gelegenen
Bogens (s. Bild 10.17). (Hinweise: r = a - e”, —oo < (p < oo ist die Gleichung der
Spirale in Polarkoordinaten; a und k sollen positive Konstanten sein. Ersetzt man
in den Gleichungen x = r - cos (p, y z r - sin (p die Größe r durch a- e", so erhält

Y

l -/( )
| mm y l

W1 X I a ' x x

Bild 10.17 Bild 10.18
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man eine Parameterdarstellung für die Spirale (Parameter: cp). Näheres über Spiralen
findet man z. B. in [1]).

Ergänzung zu Satz 10.18: Wenn man in der Formel
z;

s = l \/1 + (f’(x))’ dx

die obere Grenze variabel läßt, so ist s natürlich von der oberen Grenze abhängig

s = s<x> z f J1 + <f’(t))‘ drv

(s. Bild 10.18). Aus dieser Gleichung folgt (s. Satz 10.8)

d6‘ _ ‘m’
5- /1+</<x».

Für das Dzflkrential der Funktion s = s(x) an der Stelle x mit dem Zuwachs dx gilt
dann: >

ds = J1 + (f’(x))’ dx.

ds nennt man das Bagendzfleremial (oder Bogenelement). Wegen dy = f’(x) dx (Dif-
ferential der Funktion y = f(x) an der Stelle x mit dem Zuwachs dx) folgt hieraus

(dS)2 = (dx)2 + (dy)2-

Diese Gleichung gilt auch für Kurven, die in Parameterdarstellung gegeben sind. Es
gilt: x = <p(t)‚ y = 1/;(t). Hieraus folgt: dx = qä(t) d1, dy = z,i:(t) dt.

' (711 ‘ ‘

Das Volumen Veines räumlichen Bereiches (Körpers) B kann man i. allg. nur mit
Raumintegralen (s. Band 5) berechnen. Wenn man aber die zur x, y-Ebene parallelen
Schnittflächen von B berechnen kann, so kann man durch ein gewöhnliches Integral
das Volumen von B bestimmen. Es gilt:

Bild 10.19

Satz 10.20: Bezüglich eines rechtwinklig kartesischen Koordinatensystems sei a die
untere undb die obere Grenze der z-Koordinate der Punkte eines räumlichen Bereiches B.
Für jedes z zwischen a und b (a g z g b) sei E, diejenige Ebene, welche durch den
Punkt (O, 0, z) hindurchgeht und parallel zur x, y-Ebene liegt. Mit q(z) wird der Inhalt
der durch die Ebene E, aus B ausgeschnittenen Fläche bezeichnet (s. Bild 10.19). Für das
Volumen V des räumlichen Bereiches B gilt dann:

| V= fq(z) dz.

S. 10.20
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Voraussetzung: q(z) ändert sich stetig mit z. (Der Buchstabe q soll an das Wort
„Querschnitt“ erinnern.)

Wie gelangt man zu der in Satz 10.20 angegebenen Formel? Es gelte zo = a < zl
< z; < < z,,_, < b = z,,. Die Ebenenz = z, (i = 0, l, ..., n) zerlegen den räum-
lichen BereichBin „Scheiben“. Für dasVolumen einer solchen Scheibe gilt näherungs-
weise q(.§,-) - Az‚-, wobei A2, = z, — z,_1 und z‚_1 g 5, g z, gilt. Die „Scheibe“ wurde
näherungsweise durch einen Zylinder mit der Grundfläche q(.5i) und der Höhe A2,
ersetzt. Summiert man über alle diese Zylinder, so erhält man eine Näherung für das
gesuchte Volumen V von B.

V z «m -Az.-.

Den genauen Wert von V erhält man durch den in 10.1.2. beschriebenen Grenz-
prozeß:

V = lim i qts.) A2,.
Azi~v0|'=1

Unter der Voraussetzung, dafS»q(z) stetig ist‚existiert der rechts stehende Grenzwert
und ist gleich

b

f q(z) dz (s. Formel (10.2) in 10.1.2.).
a

Bemerkung: Wird der räumliche Bereich B durch Ebenen E, bzw. E, parallel zur
b

y, z—Ebene bzw. x, z-Ebene geschnitten, so erhält man an Stelle von V = q(z) dz die
d f

Formeln V = J q(x) dx bzw. V = fq(y) dy. Hierbei sind jetzt c, dbzw. äfdie Gren-

zen bezüglich der x-Koordinate bzw. y-Koordinate.
Aus Satz 10.20 folgt auch, daß zwei Körper das gleiche Volumen haben, wenn sie

für jedes z den gleichen Querschnitt q(z) haben. Dies ist das sog. Prinzip von Cava-
lieri 1).

Beispiel 10.16: Mit Hilfe der in Satz 10.20 angegebenen Formel soll das Volumen V
einer regulären Pyramide (s. [l]) mit quadratischer Grundfläche (Kantenlänge a)
und der Höhe h berechnet werden.

Legt man durch die Achse der Pyramide eine Ebene, welche gleichzeitig parallel
zu einer Seite des Grundquadrats verläuft, so erhält man die in Bild 10.20 dargestellte
Schnittfigur. Es gilt: r: a = (h —— z) : h (Strahlensatz). Hieraus folgt:

ar=l7(lz — z).

Aus Satz 10.20 folgt dann:
h

V=fhq(z)dz=fr2dz=f(%(h—z))2dz=%f(h—z)2dz
0 Ü 0 0

_ a’ 1 3 ‘="_a2_1 _a2h
—[72‘('?(’1"))],=0—72“ ?"’— 3 -

Das Ergebnis ist uns natürlich aus der Elementargeometrie schon bekannt.

‘) Bamzuentura Cavalieri (gest. 1647).
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I

Mit Hilfe von Satz 10.20 können wir nun auch sofort das Volumen von Rota-
tionskärpem berechnen. Es gilt

Bild 10,20

Satz 10.21: Bx, sei der durch die Kurven x = a, x = b, y = O, y =f(x) begrenzte Be- S. 10.21
reich in der x, y-Ebene (Vor. : f(x) g 0 auf [a, b]). B sei der durch Rotation von Bx, um

die x-Achse entstehende Bereich (s. Bild l0.21). Für das Volumen Vvon B gilt:

I V = r: f(f(x))1 dx.

Bild 10.21 Bild 10.22

Beweis: Die zur y, z-Ebene parallelen EbenenE, schneiden aus dem Rotationskörper
Kreisscheiben mit dem Flächeninhalt q(x) = r: - r’ = 7T(f(x))2 aus. Also gilt:

bb

V= q(x) dx = In-(f(x))2 dx.
a

Beispiel 10.17: Von dem durch Rotation der Kurve y = 1x2, O g x g 4, um die
x-Achse entstehenden Rotationskörper (s. Bild 10.22) berechne man das Volumen V.
Nach Satz 10.21 gilt:

V = 7: ~ _{b(f(x))2 dx = 7:‘ f4(%x2)2 dx = 71- 12,8 z 40,21.
a 0

Aufgabe 10.14: Von dem durch Rotation der Kurve y = 2\/2?, 0 g x g 9, um die =s<

x-Achse entstehenden Rotationskörper berechne man das Volumen V. (Streng-
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genommen entsteht durch Rotation von y = 2 \/x, O g x g 9, eine Rotationsfläche.
Der Rotationskörper entsteht durch Rotation des von den Kurven y 2 2 \/x, y = O

und x = 9 begrenzten Bereiches um die x-Achse.)
Bei der Bestimmung des Oberflächeninhalts eines im Raum gelegenen krummen

Flächenstücks benötigt man i. allg. Sogenannte Oberflächenintegrale, die erst in Band 5

eingeführt werden. Bei Rotationsflächen (das sind solche Flächen, die durch Rota-
tion einer ebenen Kurve C um eine in ihrer Ebene liegende Gerade g — der sog. Rota-
tionsachse — entstehen) kann man den Oberflächeninhalt durch gewöhnliche Integrale
berechnen. Der folgende Satz gibt darüber Auskunft!

Satz 10.22: Rotierz die Kurvey = f(x), a g x g b, um die x-Achse, so gihfür den Flä-
cheninhalt A der zugehörigen Rotationsfläche

a

b

I A=2r‘fy«/1+y’2dx (y =f(x))-

Vorausgesetzt wird dabei

1.f(x) > O für xe [a, b],
2. f(x) ist stetig dilferenzierbar auf {i1, b].

Beweis‘: Wir betrachten die Kurve y =f(x), a g x g b. Das Intervall [11, b] wird
zunächst wieder in n Teilintervalle [xi_1, x,] mit der Länge Ax, (i = 1, ..., n) zerlegt.
E; sei der Mittelpunkt des Intervalls [x‚_1, x,]. Das oberhalb des Intervalls [x,_1, x,]
gelegene „Kurvenstück“ von y = f(x) wird durch ein „Tangentenstück“ T, ersetzt,
wobei Tdie Tangente in dem zu x = 5, gehörigen Kurvenpunkt (E,,f(E,)) bedeutet
(s. Bild 10.23). Läßt man das Tangentenstück T, um die x-Achse rotieren, so entsteht
der Mantel eines Kegelstumpfes, dessen Oberflächeninhalt A, nach einer elementar-
geornetrischen Formel berechnet werden kann. Für die Länge I,- des Tangenten-
Stücks T, gilt: I‚_= \/1 + (f'(§z))Z Ax,-. (Den Beweis dieser Gleichung betrachte man
als eine kleine Ubungsaufgabe! Ausgangspunkt ist dasjenige rechtwinklige Dreieck,
dessen Hypotenuse gleich T, ist und dessen darunter liegende Kathete die Länge
Ax, z x, — x,_‚ hat.) Damit sind alle Größen, die zur Berechnung des Oberflächen-
inhalts A E des Kegelstumpfes erforderlich sind, gegeben (s. Bild 10.24).

A, = n: - l, - 2f(£,) (s. [1], Abschnitt Stereometrie). V

Hieraus folgt: .4, = 27: - J1 + (f’(§,))2 -f(§,)Ax,.
Die Summe über alle A, (i = 1, ..., n) kann als eine Näherung für den gesuchten

Oberflächeninhalt A der Rotationsfiäche angesehen werden, falls die Zerlegung von

[a, b] in Teilintervalle genügend fein ist: A z Z A, (Man interpretiere noch einmal
i=1

’l
l

-5

_| u=x, X14 E; x,

Bild 10.24Bild 10.23
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diesen Sachverhalt geometrisch an Hand von Bild 10.23! Man vergleiche die durch
Rotation von y = f(x) entstehende Rotationsfläche mit derjenigen Rotationsfiäche,
die durch Rotation der n Tangentenstücke T, (i = l, ..., n) um die x-Achse entsteht)!
Es gilt also:

A e A. = Zn /<5.) - V/1 + </'(s.>)=Ax.).

Den genauen Wert von A erhält man wieder durch den in 10.1.2. beschriebenen Grenz-
prozeß:

A = um (2r=~ i m.) ~ J1 +f’(Ez)’Ax.).
‘man i=l

Setzt man zur Abkürzung f(x) ' \/1 + (f’(x))’ = fix), so erhält man:

n b

A = 21:- lim Q5(E,)Ax‚ = 27: - <15(x) dx [s. Formel (10.2)].
1 aAxwo I:

Damit erhalten wir das Schlußergebnis:
b

A = 27c j f(x) J1 + (f’(x))’dx. n

(Hinweis: Der Grenzwert existiert, weil auf Grund der Voraussetzung „f(x) stetig
diiTerenzierbar“ die Funktion <15(x) auf dem Intervall [a, b] stetig und folglich nach
Satz lO.l auch integrierbar ist.)

Beispiel 10.18: Von der durch Rotation der Kurve y = fix‘, 0 g x g 4, (Parabel-
Stück) um die x-Achse entstehenden Rotationsfläche berechne man den Oberflächen-
inhalt A. 4

Nach Satz 10.22 gilt: A = 27:f§x2 \/1 + x2 dx. (*)
0

Das Integral f x’ x/ l + x’ dx ist ein Integral vom Typ f R(x, \/ ax‘ + bx + c) dx,
welches wir im Prinzip lösen können (s. 9.3.4.). Da aber die Lösung dieses Integrals
schon einen gewissen Aufwand erfordert, erlauben wir uns an dieser Stelle, das Er-
gebnis einer Formelsammlung zu entnehmen (siehe z. B. [1], Tabelle der unbestimmten
Integrale). Es gilt:

[xx/1+x2dx=}(1+x2)¢'1+x2

-113-[xx/1+x2+1n(x+\/1+x2)].

Aus der Gleichung (*) folgt dann: A = rc(l7 - —— %\/l—7 — §ln (4 +
Die numerische Auswertung ergibt A = 212,9.

Aufgabe 10.15: Von der durch Rotation der Kurve y = 2\/)2 0 g x g 9, um die at

x-Achse entstehenden Rotationsfläche berechne man den Oberfiächeninhalt A.

10.4.2. Anwendungen in den Natur- und Ingenieurwissenschaften

Erste Anwendung: Wie groß ist die Arbeit, die von einer variablen Kraft längs eines
geradlinigen Weges geleistet wird?
13 Pforr, Dill.- u. Integr.
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Beginnen wir mit einer einfacheren Fragestellung. Vorgegeben sei eine Strecke ‚Ü?
mit der Länge s. In Richtung dieser Strecke greife eine konstante Kraft F 1) vom Betrag
F an (s. Bild 10.25). Die von dieser Kraft längs der (orientierten) Strecke von A nach
B geleistete Arbeit W ist dann

w = F- s („Arbeit“ = „Kraft“ mal ,,Weg“).

e —>f ‚

A J A? Bild 10.25

0 a x b x Bild 10.26

Schwieriger wird die Berechnung von W, wenn die Kraft nicht mehr konstant ist,
sondern sich von Punkt zu Punkt ändert. Man denke z. B. an die beim Entspannen
einer elastischen Feder auftretende Kraft!

Um das Problem rechnerisch erfassen zu können, denken wir uns die Strecke von
A nach B als einen Teil der x-Achse, wobei die Punkte A und B durch x = a bzw.
x = b festgelegt sind. Die Kraft soll wieder in Richtung dieser Strecke angreifen, aber
sich von Punkt zu Punkt ändern, d. h. F : F(x) (s. Bild 10.26). Wie groß ist die von
dieser Kraft F mit dem Betrag F = F(x) längs der (orientierten) Strecke von A nach
B geleistete Arbeit W?

Wir zerlegen das Intervall [a, b] in endlich viele Teilintervalle [x‚_1, xi] (i = 1, ..., n),
wobei x0 = a und x„ = b gesetzt wird (vgl. l0.l.l.). In jedem Teilintervall [x,_1, xi]
wählen wir einen Zwischenpunkt 5,. Es ist dann F(E,) -Ax‚- eine Näherung für die
von der Kraft F = F(x) auf dem Weg von x,_ 1 bis x, geleistete Arbeit; Ax, ist wieder

die Länge des Intervalls [x,_,, x‚]. Folglich ist f: F(E‚) - Ax, eine Näherung für die
'—1

gesuchte Arbeit W. Den genauen Wert von Wlerhält man durch den Grenzprozeß
Axi —» 0:

W = lim fing) —Ax‚..
Ax,—»0 i=l

Hieraus folgt (vgl. l0.l.2.)
b .

W = [F(x) dx.

Fassen wir unser Ergebnis zusammen!

Ergebnis: Die in Richtung der positiven x-Achse angreifende Kraft F = F(x) mit dem
Betrag F = F(x) leistet längs des Weges von x = a bis x = b (a < b) die Arbeit

| W = (F(x) dx. (*)

Beispiel 10. I9: Wie groß ist die von einer Schraubenfeder beim Entspannen geleistete
Arbeit (s. Bild 10.27)? Zunächst vermerken wir als Erfahrungstatsache, daß F(x)

1) Vektoren werden durch halbfette Buchstaben bezeichnet.
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sich linear mit xändert, d. h. F(x) = px + q. Aus F(b) = Ound F(x) monoton fallend
auf [a, b] folgt: pb + q = 0 und F’(x) = p < 0. Also gilt: F(x) = px — pb
= —p(b — x). Wir setzen

F(x) = c(b — x) mit c > 0.

4 Bild i027
X

Aus (*) folgt:

y b c 2 b C 2W=J-c(b—x)dx= [—7(b—x)] =7(b—a).

Zweite Anwendung: Vorgegeben ist ein ebener Bereich B; der von den Kurven x = a,
x = b, y = 0, y = f(x) (Vor. :f(x) g O für alle x e [a, b]) begrenzt wird. B denke man
sich mit einer Massenbelegung der Flächendichte 9 = const versehen. Gesucht ist
der Schwerpunkt S(x5, ys) von B (s. Bild 10.28). Für die Ermittlung des Schwer-
punktes S Von B benötigen wir den folgenden Satz:

Für den Schwerpunkt (E, i) eines Systems Von Massenpunkten P1(x1, y1),
P2(x2, yz), ..., P,,(x,,, y,,) mit den Massen m1, m2, ..., m„ gelten die aus der elementaren
Mechanik bekannten Formeln

m1x1 + + n1„x„ y = m1y1 + + m„y„ (H)
’ m1 + + m„ '

f:
m1 +... +m„

s
.

Bild 10.28 Bild 10.29

Der Beweis dieser Formeln ergibt sich für n = 2 sehr einfach aus dem Hebelgesetz:
k1 = m1 - g und k, = mg - g sind die in P1 bzw. P2 angreifenden Schwerkräfte mit den
Beträgen k1 = m1g bzw. k; = m1g. Für den Schwerpunkt S des Systems der beiden
Massenpunkte P1 und P2 muß gelten (s. Bild 10.29):

+ :>

IP15] ' k1 = isPzi ' k2-
13*
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Hieraus folgt (wegen k1 = m1 -g und k, = m, -g):
—> —>

lP1S]'m1 = lSPz| "m2-
—>

Hieraus wiederum ergibt sich — wegen der gleichsinnigen Parallelität der Vektoren P1S
—* . .

und SP2 — die Vektorgleichung:
—> s

m1-P1S = mz-SPZ.

Diese Vektorgleichung ist äquivalent mit den beiden gewöhnlichen Gleichungen
m10? — x1) = m1(x1 — i), m16 — y1) = m2(y2 — y). Auflösung nach X bzw. y
ergibt die Formeln

g = mlxl + mzxz J7 = mlyl + m2)’:
m1+m1 ’ m1+m2 '

Für n = 3 geht man folgendermaßen vor: Man bestimmt zunächst den Schwerpunkt
S11 des Systems P1, P2. Anschließend wird der Schwerpunkt des Systems S12
(Masse m1 + mg), P3 (Masse m3) bestimmt.

Mit Hilfe von (**) können wir nun auch den Schwerpunkt S des Bereiches B be-
stimmen. Das Intervall [a, b] wird zunächst wieder in n Teilintervalle [x1‚ 1, x1] mit
der Länge Ax, (i = l, ..., n; x11 = a, x„ = b) zerlegt. 51 sei der Mittelpunkt des Inter-
valls [x1_1‚ xi]. Für kleines Ax; ist der Schwerpunkt des durch x = x1_1‚ x = xi,
y = O, y = f(x) begrenzten Streifens ST; ungefähr gleich dem Schwerpunkt des durch
x = x1_1, x = x1,y = 0‚y =f(51) begrenzten Rechtecks RE1(s. Bild 10.30). Bei kon-
stanter Dichte ist der Schwerpunkt eines Rechtecks gleich dem sog. geometrischen
Schwerpunkt des Rechtecks; für den Schwerpunkt des Rechtecks RE1 gilt: i, = Si,
)7, = 1f(§,). Die Masse von ST1 ist ungefähr gleich der Masse von RE1: m(ST1) z

m(RE1) = g -f(51)'Ax1 („Dichte“ mal „Flächeninhalt“ von RE1 gleich „Masse“
von RE,).

Bild 10.30
‘7 "H 31 X1 Ü X

Nunmehr denken wir uns jeden Streifen STE (i = l, 2, ..., n) durch einen Massen-
punkt P1 von der Masse m(RE1) am Ort des Schwerpunktes von RE, ersetzt: P1 hat
die Koordinaten (i1, i1) = (E1, «}f(51)) und die Masse m1= Q -f(E,) r 11x1. Dadurch
haben wir erreicht, daß der mit Masse belegte Bereich B durch ein System von Massen-
punkten P1 (i = l, ..., n) mit den Koordinaten (21471) und den Massen m1 ersetzt
wird. (Bezüglich der Wirkungen der Schwerkraft wird sich dieses System von Massen-
punkten ungefähr wie der mit Masse belegte Bereich B verhalten, falls die Zerlegung
von [a, b] hinreichend fein ist.) Den Schwerpunkt (i, i) dieses Systems können wir
nach den Formeln (**) berechnen.

x = = „Logge -M.) -Ax» ~ s. = 5.- fls.) - Ax,»
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(Mo:= m, + + m„ ist die Gesamtmasse des Systems von Massenpunkten. Die
Summation erstreckt sich immer über alle i von 1 bis n.)

r = m. = <9-/<5» -Ax.-> -g/(5,) = (fünf Ax..

Da die Masse M0 des Systems von Massenpunkten ungefähr gleich der Masse M des
Bereiches B ist, können wir in diesen Gleichungen M0 näherungsweise durch M er-

setzen. Wegen A ‘Q = M („Flächeninhalt A von B“ mal „Dichte g“ gleich „Masse
von B“) gilt daher:

jg 51 ' Axis

1

r z Wf(§1»2 'Axi-

r

s
.

Der so ermittelte Punkt (3,5) ist eine Näherung für den gesuchten Schwerpunkt
(x5, ys) des Bereiches B. Die Näherung ist um so genauer, je feiner die Zerlegung von
[a, b] ist. Den genauen Wert von x5 bzw. ys erhält man wieder durch einen Grenz-
prozeß (vgl. 10.12.):

um i is; -f<€.v)'Ax.-,
Anal) Ä i=l

lIx5

. 1 "

ys Z2110 fi"_§l(f(5i))2 "Axt -

Hieraus folgt (vgl. 10.1.2.) das

Ergebnis: Die Koordinaten des Schwerpunktes von B berechnet man mit Hilfefolgender
Formeln:

b b

x5 = gjxm ax, ‚Vs: äfmx»; dx.

b

Dabei ist A = ff(x) dx der Flächeninhalt des Bereiches B und B ein von den Kur-
a

ven x = a, x x b, y = 0, y =f(x) (f(x) g 0 für alle xe [a, b]) begrenzter Bereich,
den man sich mit einer Massenbelegung der Dichte g = const Versehen denkt. Im
Falle g = const für alle Punkte von B nennt man B auch einen homogenen Bereich
und den Schwerpunkt von B den geometrischen Schwerpunkt von B.

Hinweir: Die Formeln für x5 und y; sind nicht symmetrisch in ihrer äußeren Form.
Das liegt durchaus nicht in der Natur der Sache begründet! Für die Berechnung des i

Schwerpunktes eines ebenen Bereiches ist das sog. Bereichsintegral (Flächenintegral)
das dem Problem angepaßte Hilfsmittel. In Band 5 werden wir ausführlicher auf die
Begriffe „Schwerpunkt“, „statisches Moment“ und „Trägheitsmoment“ eingehen;
dabei wird g = const nicht vorausgesetzt. Bei einer allgemeinen Beschreibung des
Schwerpunktes durch gewöhnliche Integrale ist man jedoch zu dieser Annahme ge-
zwungen. l

Dritte Anwendung: Sind Spannung u und Stromstärke ikonstant, d. h. u = U = const,
i = I = const, so ist die in einer gewissen Zeit T geleistete elektrische Arbeit W ge-
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geben durch:

W = U - I - T.

Wenn sich dagegen Spannung und Stromstärke zeitlich ändern, so wird die in der
Zeit T geleistete Arbeit Wdurch ein bestimmtes Integral berechnet.

Ergebnis: Gilt für die Spannung u = u(t) und für die Stromstärke i = i(t), so ergibt
sich für die im Zeitintervall 0 g t g T geleistete elektrische Arbeit

T

I W = i’ uidt.
ö T

Bemerkung: Im Falle u = U = const, i: I = const erhält man: W=f Uld:
I 0 TT ‚

= U1]. dt = UIT. W = UITist also ein Spezialfall der allgemeinen Formel W = f uidz.
0 0

Bei der Herleitung dieser allgemeinen Formel benutzt man das gleiche Prinzip,
wie bei der Herleitung der Formel für die mechanische Arbeit. Das Zeitintervall [0, T]
wird in endlich viele Teilintervalle zerlegt. Ist 1k ein Punkt, At,‘ die Länge des k-ten
Teilintervalls, so ist die Integralsumme Zum‘) i(1:„)At„ eine Näherung für die ge-

k

suchte elektrische Arbeit W. Den genauen Wert erhält man durch einen Grenzprozeß
At,‘ —> 0(vg1. Definition 10.2 in 10.1.2.):

T

W = 11m'zu(rk)i(r,,)Ar,, = f u(z)z'(t) dt.
mp0 k o‘

T

Beispiel 10.20: Man berechne die elektrische Arbeit W = ui dt, wenn Spannung
und Stromstärke den Gleichungen °

u=l7-sin(wt+qr,,), i=T~sin(wt+tp;)

genügen (Wechselstrom) und T = i): gewählt wird.

Hinweis: Bei w, <p,, und qa, handelt es sich um konstante Größen. w ist die „Kreis-

frequenz“, T = 2: die „Periode“. Wir berechnen also die elektrische Arbeit während
einer Periode. w

Durch die Substitution x = mt + (12„ geht das Integral
T

W: Ü>sin(wt + tp,.)~f~sin(wt + go,-)dt
0

uber in w“ + z”

W=%Üff sinxsin(x+<p)dx.
Wu

Hierbei wurde zur Abkürzung rp, —— q;„ = go gesetzt (Phasenverschiebung). Da für
T!c +21: 2

eine periodische Funktionf(x) mit der Periode 2T! die Beziehung {f(x) dx = im) dx
gilt, vereinfacht sich das Integral: 5 0

21:

W=fi—)Uifsinxsin(x+¢)dx.
0
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Wegen sin (x + rp) = sin x cos<p + cos x sin zp ergibt sich hieraus:

2:

W=%lA/if (sinzxcoszp + sinxcosxsiuwdx
}

Ü

a l _ . 1 . z“
Ui [(cos (p) 7 (x — sm x cos x) + (sin zp) 3 S1112 x]0

Afcosqv = g Üi cos (q),- — <p„).

Ergebnis: Für die elektrische Arbeit während einer Periode T gilt

W = £1‘/iTcos(<p,.— ¢p,,).

Aufgabe 10.16: Man bestimme den geometrischen Schwerpunkt des von der Parabel
y = x’ (x g 0), der x-Achse und der Geraden x = 4 begrenzten Bereiches B. (B liegt
ganz im 1. Quadranten.) -

Aufgabe 10.1 7: Man bestimme den geometrischen Schwerpunkt des von den Kurven
y = sin x (0 g x g 7:) und y = 0 begrenzten Bereiches B.

10.4.3. Ein Integralmodell in der Ökonomie‘)

Ein Betrieb A benötigt für seine Produktion ein Halbfabrikat, das im Betrieb B
hergestellt wird. Der Jahresbedarf des Betriebes A an diesem Halbfabrikat betrage G
Mengeneinheiten (Z. B. 1 Mengeneinheit = 1000 Stück). Der Jahresbedarf soll durch

4(
-

n Lieferungen pro Jahr, dieflgleiche Zeitabstände ä und gleiche Liefermengen S- haben, g

abgedeckt werden. (Bei beispielsweise n = 24 Lieferungen pro Jahr müssen die Liefe-

rungen im Zeitabstand 514 Jahr erfolgen ; die jeweilige Liefermenge beträgtä Mengen-

einheiten.) Es wird vorausgesetzt, daß der Lagerbestand zwischen zwei Lieferungen
durch eine monoton fallende Funktion b(t) beschrieben wird und bei einem Bestand
von Null stets eine neue Lieferung erfolgt (s. Bild 10.31 ; die dort eingezeichnete Funk-
tion b(t) stellt natürlich eine gewisse mathematische Idealisierung dar, denn der
Lagerbestand wird sich i. allg. sprungförmig ändern.) Die Transportkosten seien un-

I) (layer/mmlw’)

14
%

v
1

‘
lt

m Bild 10.31
7 M1517)>

y~
.

31
..

w

E
‘

>
4

1) Das Beispiel wurde aus [3], Bd. I übernommen.
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abhängig von der beförderten Liefermenge und betragen k, Geldeinheiten für jeden
Transport von B nach A. Für die Lagerung des Halbfabrikates entstehen dem Betrieb
A Lagerhaltungskosten in Höhe von k: Geldeinheiten pro Jahr und Mengeneinheit
„durchschnittlicher“ Lagerbestand. Wie groß sind die Gesamtkosten K, die dem Be-
trieb A während eines Jahres hinsichtlich des Transportes und der Lagerung des Halb-
fabrikates entstehen?

Die Transportkosten betragen bei n Lieferungen nk, Geldeinheiten. Was hat man

unter dem „durchschnittlichen“ Lagerbestand pro Jahr zu verstehen? Er ist gleich
der Summe der Flächeninhalte aller in Bild 10.31 schraffiert eingezeichneten Bereiche,
die nach Voraussetzung alle den gleichen Flächeninhalt haben, weil der Lager-
bestand sich von Lieferung zu Lieferung immer nach demselben Gesetz ändern soll.

‘ , . 1 1 ‘ .

Für den Flächeninhalt des 1. Bereiches gilt: J b(t) dt (r = —n—). Der durchschnitt-
0

liche Lagerbestand ist dann n - fb(t) dt. Für die Gesamtkosten erhält man:
0

7 1 / ' x

K = k,n + k,nfb(t)dt = 7(k1 + k; fzmdz).
0 0

Bei dem hier formulierten Problem sind also die Gesamtkosten Keine Funktion von n:

K = K(n). Das heißt: Die Gesamtkosten sind nur abhängig von der Zahl der Liefe-
rungen.

10.5. Einige Ergänzungen zum Integralbegrifi‘

10.5.1. Das bestimmte Integral und der Maßbegriff

In 10.1.2. hatten wir als erste Anwendung des bestimmten Integrals den Flächenin-
halt eines ebenen Bereichs (begrenzt durch die Kurven y = O, x = a, x = b, y = f(x)
(g 0)) berechnet. Dabei wurde der BegrifTdes Flächeninhalts als anschaulich gegeben
hingenommen, obwohl dieser Begriff kein elementarer Begriff ist und zu seiner stren-
gen Erfassung ein Grenzprozeß erforderlich ist. Selbst bei einem so einfachen geo-
metrischen Gebilde, wle dem Kreis vom Radius r, ist die Berechnung des Flächen-
inhalts A nicht „elementar“, obwohl ihn jeder Schüler nach der Formel A = 'r:r2
(näherungsweise!) berechnen kann. (Der Grenzprozeß ist in der irrationalen Zahl-n
versteckt!) Es erhebt sich allgemein die Frage: Was soll man unter dem Inhalt
(= Maß)‘) einer beliebig vorgegebenen ebenen Punktmenge M verstehen und wie
kann man denselben berechnen? Dabei muß natürlich gewährleistet sein, daß der ein-
geführte Inhaltsbegriflim Falle elementarer Figuren (Rechteck, Dreieck usw.) mit dem
dort bereits gegebenen Inhaltsbegrifl‘ übereinstimmt, Ausgangspunkt ist ein Recht-
eck, dem als Maß das Produkt ab seiner Kantenlängen zugeordnet wird. Die fol-
gende Konstruktion führt zum Maß der ebenen Punktmenge M (über M wird ledig-
lieh vorausgesetzt, daß es sich um eine beschränkte ebene Punktmenge handelt, d. h.,

‘) In der allgemeinen Maß- und Integrationstheorie ist die wesentliche Forderung, die man an den
Maßbegriff stellt, daß die Vereinigung von abzählbar vielen meßbaren Mengen wieder eine meßbare
Menge ist. Diese Forderung ist beim Lebegue-Maß erfüllt, aber nicht beim Riemann-Maß. Im Sinne
dieses allgemeinen abstrakten Maßbegrifies dürfte also das Wort „Maß“ beim Riemann-Inhalt
(Riemann-Maß) nicht verwendet werden.
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es existiert ein Kreis, so daß M ganz innerhalb dieses Kreises liegt): In der Ebene, in
der M liegt, wird ein rechtwinklig kartesisches x,y-Koordinatensystem eingeführt.
Wir führen jetzt eine Folge von „Quadratnetzen“ N0, N1, N1, ein (s. Bild 10.32).
Das Quadratnetz N1, besteht aus Quadraten mit der Kantenlänge 1. N1 entsteht aus

N1, durch Halbierung der Kantenlänge von No; N1 besteht aus Quadraten mit der Kan-
tenlänge 5. N1 entsteht aus N1 durch Halbierung der Kantenlänge von N1; N1 besteht

also aus Quadraten mit der Kantenlänge Allgemein: Das Quadrat—

netz N„ (k = 0, l, 2, ...) besteht aus Quadraten mit der Kantenlänge

E1 sei die Vereinigung aller zu N„ gehörigen Quadrate, die ganz in M enthalten
sind. U1 sei die Vereinigung aller zu N1 gehörigen Quadrate, die mindestens einen
Punkt von M enthalten (s. Bild 10.33). Mit m(E1) bzw. m(U1) wird das Maß von
E1 bzw. U,‘ bezeichnet. [m(E1) = Summe der Maße aller zu E1 gehörigen Quadrate;
analog m(U1).] Beim Übergang von E1 zu E,“ stellt man fest (s. Bild 10.32): E1
c E„„. Hieraus folgt m(E1) g m(E„„). Die Folge m(E0), m(E1), m(E2), ist also
eine monoton wachsende und beschränkte (weil M beschränkt) Folge. Aus diesem
Grund ist die Folge m(E1) konvergent‚ d. h. lim m(E,,) existiert. Analog zeigt man,
daß 1imm(U1) existiert (U1 3 U‚„1). "*°°

k—voo

2—*‘L—¢‘——~.—.»# °

-.„‚j‚_„‘‚. ‚„;‚„„‚ .

0 r 2 3 i Ä *

Bild 10.32 Bild 10.33

Definition 10.4: m1(M) := lim m(E1) nennt man das innere Maß von M. D. 10.4
1M

ma(M):= lim m(U1) nennt ma: das äußere Maß von M.
im no

Die Menge M heißt Riemann-m ßbar (R—meßbar), wenn m1(M) z m„(M) gilt. Den
gemeinsamen Wert von m1(M) = m,(M)=: m(M) nennt man das Riemann-Maß oder
den Riemann-Inhalt van M. (An Stelle vom Riemann-Maß spricht man auch vom

Peana-Jordan-Maß‘) (J-Alaß). AufPeano und Jordan gehtder in dieser Definition em-
geführte Ma/Jbegrifl zurück (1890).)

Bcmerkzmg: m1(M) ist die obere Grenze der Maße aller „einbeschriebenen“ E1;
m1,(M) ist die untere Grenze der Maße aller „umbeschriebenen“ U1. Mit der Folge
m(E0), m(E1), m(E2), nähert man sich dem gesuchten Maß „von innen“; mit der
Folge m(U1,), m(U1), m(U2), nähert man sich dem gesuchten Maß „von außen“.
nz‚(M) = sup m(E1); ma(M) = infm(U1). (Supremum = obere Grenze, Infimum
= untere Grenze.)

‘) Giuseppe Penna (I858—1932). Camille Jordan (l838~1922).
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10. Das bestimmte Integral

Zwischen dem bestimmten Riemannschen Integral und dem__Riemannschen (Peano-
Jordanschen) Inhalt besteht ein sehr enger Zusammenhang. Uber diesen Zusammen-
hang gibt der folgende Satz Auskunft.

Satz 10.23: Ist f(x) auf dem Intervall [a, b] definiert, beschränkt und nicht negativ, so

gilt für die sogenannte Ordinatenmenge M, d. h. die Menge aller Punkte (x, y) mit
a g x g b, 0 g y gf(x)‚ die folgende Aussage (s. Bild 10.3 in 10.1.2.): Die Ordina-
zenmenge M ist genau dann R-meßbar, wenn f(x) über [a, b] im Riemannschen Sinne
integrierbar ist. Ist diese Aussage erfüllt, so gilt

m(M) = „(f(x) dx,

d. h., das Riemann-Maß der" Ordinatenmenge M ist gleich dem Riemannschen Integral
von f(x) über [a, b]. (Die zu y = f(x)‚ I = [a, b] gehörige Ordinatenmenge soll mit
0(I, f) bezeichnet werden.)

Einen Beweis zu diesem Satz findet man z. B. in [l0], Bd. III.

Bemerkung: Wir haben in diesem Abschnitt definiert, was man unter dem (Riemann-
sehen) Inhalt einer ebenen Punktmenge zu verstehen hat. Diese Ausführungen kann
man sofort auf eine Punktmenge des Raumes übertragen. An Stelle von Quadrat,
netzen (n = 2) hat man Würfelnetze (n = 3). Darüber hinaus kann man natürlich
die Problematik auf eine beliebige beschränkte Teilmenge M des n-dimensionalen
Raumes R" übertragen. (Über Riemann-meßbare Mengen im R" siehe z. B. [l4],
Bd. II.)

10.5.2. Andere Integralbegrifle

Neben dem Riemannschen Integralbegrifl gibt es noch eine Reihe anderer Integral-
begriffe, die eine Verallgemeinerung des Riemannschen Integralbegrifles darstellen
und vor allem für tiefergehende theoretische Untersuchungen dem Riemannschen
Integralbegrifi" überlegen sind.

Wir nennen hier das Lebesguesche Integral 1) und das StielUes-Integralz), wobei bei
dem Stieltjes-Integral noch zwischen dem Riemann-Stieltjes-Integral und dem Lebes-
gue-Stieltjes-Integral unterschieden wird. (Das Lebesguesche Integral ist eine Verall-
gemeinerung des Riemannschen Integrals, das Lebesgue—Stieltjes-Integral eine Verall-
gemeinerung des Riemann-Stieltjes-Integrals.) Ausgangspunkt für das Lebesguesche
Integral ist das Lebesguesche Maß (L-Maß) einer Menge M. Im Unterschied zum
Riemann-Maß werden z. B. bei der Einführung des äußeren L-Maßes ‚u* von M für
die Überdeckung Von M abzählbar viele Rechtecke zugelassen. Beim Riemann-Maß
werden bei der Überdeckung nur endlich viele Rechtecke zugelassen (s. Bild 10.33!
U„ mit seinen endlich vielen Rechtecken (Quadraten) RY‘), R9‘), ..., R5,’? bildet eine
Überdeckung von M: M c U„ = U RS”, i = 1, ...‚ nk.)

Ansonsten geht man bei der Einführung des L-Maßes ähnlich vor, wie bei der Ein-
führung des R-Maßes. Dabei wird allerdings — um gewissen Schwierigkeiten bei der
Einbeziehung unbeschränkter Mengen aus dem Wege zu gehen — i. allg. das innere
L-Maß ,u* mit Hilfe des äußeren L-Maßes definiert. Stimmen äußeres und inneres

l) Henri Lebesgue (l875~l 941).
2) Thomas Jean Stiehjes (1856-1894).
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L-Maß von M überein, d. h. ‚a*(M) = ‚u*(]\[), so heißt MLebesgue-meßbar (L—meJ3bar)
und der gemeinsame Wert ‚a(M) : = ‚a*(M) = ‚u*(M) das Lebesgue-Maß (L-Maß) von
M. Nähere Einzelheiten über das Lebesguesche Maß findet man z. B. in [9] und [l2].
Als eine besonders wichtige Eigenschaft des L-Maßes erwähnen wir hier noch:

Satz 10.24: Jede R-meßbare Menge ist auch L-meßbar. (Die Umkehrung gilt natürlich S. 10.24
i. allg. nicht.)

Wir kommen nun zum Lebesgueschen Integralbegrifl. In Satz 10.23 konnten wir
feststellen: Ist f(x) eine auf dem Intervall [a‚ b] definierte nichtnegative Funktion, so

b

kann man das Riemann-Integral f(x) dx als Riemann-Maß der zu y = f(x)‚ a g x
u

g b, gehörigen Ordinatenmenge ansehen. Hiervon ausgehend definiert man:

Definition 10.5: y = f(x) sei eine auf [a‚ b] definierte nichtnegative Funktion. Wenn die D. 10.5
zu y = f(x)‚ a g x g b, gehörige Ordinatenmenge 0(I,f) L-meßbar ist, so heißt die Funk-
tinn f(x) über I = [a‚ b] Lebesgue-integrierbar (L-integrierbar). Das L-Maß der
Ordinatenmenge heißt das Lebesgue-Integral (L-Integral) und wird mit

b

‘”_{f(x) dx oder “’_{f(x) dx
a I

bezeichnet. Es gilt also:

“’ff<x) dx = u[0(I‚f)l.
I

(Der Buchstabe L wurde angefügt, um eine Verwechslung mit dem R-Integral zu ver-

meiden.)
Ist die Voraussetzung f(x) g 0 für alle x e [a‚ b] nicht erfüllt, so betrachtet man

die nichtnegativen Funktionen

f*(x)i= ir(lf(X)l +f(x)) und f‘(X)I= %(lf(x)l - f(x))
(s. Bild 10.34).

Bild 10.34

Definition 10.6: D. 10.6

(Dfflx) dx:= m; f+(x) dx — (“ff-(x) dx.
I Ii

( Var. .' Die rechts stehenden L-Integrale existieren und sind endlich.)
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Bemerkung: Wir haben hier das Lebesgue-Integral nur für Funktionen einer Vet»
änderlichen definiert. Die Verallgemeinerung auf mehrdimensionale Integrations-
bereiche bereitet keine prinzipiellen Schwierigkeiten (s. [12]).

In Analogie zum Satz 10.24 gilt

Satz 10.25: Jede R-integrierbare Funktion ist auch L-integrierbar.

Zum Abschluß unserer Betrachtungen geben wir die Definition des Riemann»
b

Stieltjes-Integrals an. Bei der Einführung des Riemann-lntegrals {f(x) dx gingen wir
von Integralsummen der Form a

’ (Xi — xi-l)

aus. Das Riemann-Integral (R-Integral) ergibt sich dann als Grenzwert einer Folge
von Integralsummen (s. 10.1.1. und 1().1.2.). Beim Riemann-Stieltjes-Integral (R-S-
Integral) geht man im Prinzip genauso vor. Der wesentliche Unterschied zwischen
R-Integral und R-S-Integral besteht darin. daß man an Stelle der Längen x,» — x‚_1
mit Hilfe einer weiteren Funktion <p(x) die Differenzen <p(xi) — q7(x,_,) betrachtet.
Durch eine auf [a, b] monoton wachsende Funktion q7(x) wird jedes Intervall [x„„ x,-]
mit der Länge x,- — xi_, in ein Intervall [cp(xi„), <p(x,)] mit der Länge q7(x,-) — <p(x,-1)
abgebildet. Beispielsweise wird das Intervall [2, 4] mit der Länge 2 durch die Funk-
tion ¢(x) = x2 auf das Intervall [4, 16] mit der Länge 12 abgebildet. Da durch eine
solche Funktion cp(x) eine „Längenverzerrung“ der Teilintervalle [x„1, x‚] von [a, b]
erfolgt, nennt man in diesem‘ Zusammenhang au) auch „ Verzerrungsfunktion“.

Nach diesen einführenden Bemerkungen wollen wir nun die genaue Definition des
R-S-Integrals angeben.

Definition 10.7: f(x) sei eine auf [a‚ b] stetige Funktion, <p(x) sei monoton wachsend
auf [a, b]. (Die Stetigkeit von (p(x) wird nicht vorausgesetzt!) Zu jeder Zerlegung Z

(a:xo<x1<x2<,..<x,,:b)
van [a, b] mit den Zwischenpunkten E, (i = l, 2,
Summe“

‚ n) bildet man die „Stieltjes-

n2:1 ' (WM) — ‘.1"(x:'~1)) : 3 S*(Z)~
,=

Unter den angegebenen Voraussetzungen fürf und (p existiert für jede Folge unbegrenzt
feiner werdender Zerlegungen Z„ Zz, der Grenzwert lim S*(Z‚), und zwar unab-
hängig von der Wahl der Folge unbegrenzt feiner werdenden Zerlegungen und der Zwi-
sehenpunkte 5,. Diesen Grenzwert nennt man das Riemann-Stieltjes-Integral der
Funktionf(x) über [11, b] bezüglich gn(x) und bezeichnet ihn mit dem Symbol

b

_lf(x) drp(x).

Merkregel .'

b n

inx) am) = A1330 fts.) - im.) — ux.-.»
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Bemerkungen zum R-S-Integral:

a) Im Falle zp(x) = x stimmt das R-S-Integral mit dem R-Integral überein.

b) Ist die Verzerrungsfunktion cp(x) stetig diflerenzierbar, so läßt sich das R-S—Inte—

gral durch ein R-Integral berechnen; es gilt:
b b

ff(x) d<P(X) = ff(x) ' <P’(x) dx-

c) Eine wichtige Anwendung findet das R—S—Integral in der Wahrscheinlichkeits-
theorie. Ist X eine beliebige Zufallsgröße, F(x) die zu X gehörige Verteilungsfunk-
tion, so gilt für den Erwartungswert von X die Beziehung

00

E(X) = f xdF(x).
—oo

Der Erwartungswert läßt sich also durch ein R-S~Integra1 mit f(x) = x und
q2(x) = F(x) darstellen. Ist X eine stetig verteilte Zufallsgröße, so kann man E(X)
durch ein R-Integral darstellen.



D.l1.l

11. Uneigentliche Integrale
b

Blei der Definition des bestimmten (Riemannschen) Integrals ‘(f(x) dx wurde vor—

ausgesetzt: a

1. Das Intervall [a‚ b] ist endlich,
2. die Funktion f(x) ist auf [a‚ b] beschränkt.

(Bei der Einführung der Integralsummen (s. lO.l.l.) hatten wir lediglich formuliert,
daß die Funktion f(x) auf dem Intervall [a‚ b] definiert ist. Dabei wurde als Selbst»
Verständlichkeit angesehen, daß es sich bei [a‚ b] um ein endliches Intervall handelt
undf(x) auf [a‚ b] beschränkt ist, Das gesamte Vorgehen in 10.1.1. und 10.1.2. baut
auf dieser Vorstellung auf!)

Ist eine der Voraussetzungen nicht erfüllt (z. B. „a = 1, b = oo,f(x) beliebig“ oder
1 “ ' ‚ .

„a = O, b = 4, f(x) = g )‚ kann man versuchen, durch einen geeigneten Grenzpro»

zeß dem Integral einen vernünftigen Sinn zu geben. Existiert bei diesem Grenzprozeß
der Grenzwert, so spricht man von einem „uneigentlichen Integral mit unendlichen
Grenzen“ (im 1. Falle) bzw. „mit nichtbeschränkter Funktion“ (im 2. Falle). Natür-
lich ist auch eine Kombination der beiden Fälle möglich, d. h., Integrationsintervall
und Integrand sind nicht beschränkt.

11.1. Uneigentliche Integrale mit unendlichen Grenzen

11.1.1. Definition und Berechnung uneigentlicher Integrale
mit unendlichen Grenzen

Uneigentliche Integrale mit unendlichen Grenzen treten uns in folgenden drei
Formen entgegen:

no

i f(x) dx (I),
a

b u)

ff(x)dx (n), _{f(x)dx (III).

Was verbirgt sich hinter diesen bisher nicht definierten Größen? (Voraussetzung:
a, b reelle (endliche) Zahlen; o0 = +oo.)

Definition 1 1.1:
co bl [f(x) dx := lim ]f(x) dx.

a b-mo a

Das uneigentliehe Integral ist der Grenzwert eines eigentlichen Integrals.

(Vorausgesetzt wird hierbei natürlich, daß die Funktionflx) auf jedem endlichen
Teilintervall [a‚ b] integrierbar ist (s. Definition 10.2 in 10.1.2) und der Grenzwert

b

G = lim jf(x) dx existiert). Dieser Grenzwert heißt uneigentliches Integralder Funktion
b“ wa no

f(x) über dem Intervall [a‚ oo) und wird durch das Symbol ff(x) dx bezeichnet. In die-

sem Zusammenhang sind folgende Sprechweisen üblicli: Wenn der Grenzwert G



11.1. Uneigentliche Integrale mit unendlichen Grenzen 207

existiert und endlich ist, s0 sagt man, das uneigentliche Integral existiert bzw. kon-
vergiert. Existiert G nicht, so spricht man von einem divergenten uneigentlichen Inte-
gral; hierzu zählen auch die Fälle G = oo und G : — w.

Definition 11.2: D. 11.2

” ‘ZI [f(x) dx := lim Jf(x) dx.
_ m, 11-» — oz: u

(Voraussetzungen und Bezeichnungen analog Def. 11.1)

Definition 11.3: D. 11.3

l J f(x) dx := J f(x) dx + [f(x) dx

(c: beliebige reelle Zahl).

Hierbei wird vorausgesetzt, daß die rechts stehenden uneigentlichen Integrale (die
zu den in Def. 11.1 und 11.2 eingeführten Typen gehören) existieren. Die Definition
ist unabhängig von der Wahl der Zahl c. (Bei der Berechnung eines konkreten Bei-
spiels kann man z. B. c = O wählen.)

Beweis: Ist c, ein von c verschiedener Wert, etwa cl > c, so folgt aus der Existenz der
O0

uneigentlichen Integrale f(x) dx und f(x) dx die Existenz der eigentlichen bzw.
—oo c

z:

uneigentlichen Integrale ff(x) dx, ‘f(x) dx und ~|V f(x) dx, wie man mit Hilfe von

Satz 10.3 in 10.1.4. und_d:n Definitionen 11.1 und 11.2 beweisen kann, und es gilt:

f ‘f’ f ‘J ‘f’
f(x) dx + f(x) dx = }f(x) dx + }f(x) dx + jf(x) dx

—oo C —m c c,

= j€lf(x)dx + ‘f(x)dx.
l

Damit ist nachgewiesen, daß Definition 11.3 unabhängig von der Wahl der Zahl c ist. I

Hinweis: An Stelle von Definition 11.3 kann man auch wie folgt definieren:

oo b

fflx) dx: = lim ffix) dx.
— w al:—>_oo0o u

Der rechts stehende Limes ist allerdings bisher nicht genau definiert worden, und wir
wollen das an dieser Stelle auch nicht tun. Das Wesentliche ist, daß die Zahlen a und
b unabhängig voneinander gegen —oo bzw. oo streben.

Bei der Berechnung von I f(x) dx geht man i. allg. folgendermaßen vor. Man be-
a b

stimmt zunächst eine Stammfunktion F(x) von f(x), berechnet anschließend _ff(x) dx
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= F(b) — F(a) und führt zum Schluß den Grenzübergang b —> oo durch:

o0
a .

eo b

if(x)dx f/(x) dx =[}i:I;(F(b) - F(a)) = F(00) - F(0) = F(x)

Dabei ist F(o0) eine abkürzende Schreibweise für lim F(b).
b»

Analog geht man bei den in den Definitionen lllwund 11.3 angegebenen uneigent-
lichen Integralen vor. Es gilt:

-50:

b

f f(x) dx = F(b) — F(—oo) = F(x)|”

ifoc) dx = F(oo) — F(-oo) = Foolfw

(_F(—oo) := lim F(a)).

Beispiel 11.1: Man untersuche, ob das uneigentliche Integral 2% existiert (konver-
giert) oder nicht. Es gilt: l

an d b d b

x ‚ x _ 1 . l
f—2=;L:: 7=::’2(-:.)=::*::(‘—:)=‘~

l

0o

Ergebnis: = 1 (komiergiert).
l

Geometrisch kann das Ergebnis wie folgt interpretiert werden: Der Flächeninhalt
. 1 . .

des zwischen der Kurve y = —2—, 1 g x < 0o, und der x-Achse liegenden Bereiches
(s. Bild 11.1) ist gleich 1. x

Bild 11.1

ood b d
, ‚ x . x . .

Be1spzelI1.2.' J-—x~ =li:n°1° f? =b1:I‘2> (In [x] =llrngo(lnb — ln 1) = o0.

l

eo

Ergebnis: = oo (divergent).
1
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Beispiel 11.3: Man uontersuche, für welche Werte xx (oc beliebige reelle Zahl) das un-

eigentliche Integral konvergiert und für welche es divergiert.

Wir haben in den vorhergehenden Beispielen festgestellt. daß das Integral für ix = 2
konvergiert und für o: = l divergiert. Wir betrachten jetzt ein beliebiges a # l. Es
gilt (s. Formel (9.1) in 9.1.2.): i

on b b

Id’: =lim fx—~‘dx=1im( x"° )
X baooy baa: 1-06 1,

I l

l so. falls 0L<l‚

.=l7lLnu:l-O6(blx4l)=ri19 falls oc>l.

(Im Falleoc<listl—~oc>()undlimb“’=oo;im Fallecc>1ist1——oc<0,
baoo

on — l > 0 und limb"“ = lim %(=i) = o.)
man inne b 00

Ergebnis: Das uneigentliehe Integral J konvergiert für ax > l, divergiert für

oc§l.Fiiroc>1gi1t: ‘

3o

J‘ dx _ l
x’ F cc — l '

l

Das Konvergenzverhalten des Integrals ändert sich nicht, wenn für die untere Inte-
grationsgrenze eine Zahl a > 0 gewählt wird.

Merkregel:
03'

J‘ dx {konvergent füra > l,x, divergent für a g 1’ Voraussetzung: a > 0.

a

0 0

Beispiel 11.4.’ e" dx = lim f e‘ dx = lim (e° — e“) = l
G-o-ma aa-oo

(um e": lim e” = lim L(=i) =0).
a

u
-—no 11-one a—~oo e 00

—oo

Geometrische Interpretation: Der Flächeninhalt des zwischen der Kurve y 2 e‘,
—ao < x g 0, und der x-Achse liegenden Bereiches (s. Bild ll.2) ist gleich l.

Bild ll.2

14 Dran, DifL- u. Integr.
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coco 0

. . dx dx ‘ dx .Be1spzeIlI.5: ffi: +J Ü)? (s. Del. 11.3).

—x —x

O 0

dx . dx . 1°
—2— = hm jy = hm arctan x
1+x a—v—‘>C l+x im”; a

_ oc a

= lim (arctan O —— arctan a) = g,
114 — W

(‚Nach Definition von y : arctan x gilt: arctan 0 = 0 und lim arctan x = — Für
\ )6-> — 00

das zweite Integral erhält man ebenfalls den Wert g, eine Tatsache, die aus

. . _ . l .

Symmetriegründen unmittelbar einleuchtend ist. Fürf(x) = — giltf(—x) :f(x)
für alle x, d. h., die Kurve liegt symmetrisch zur y-Achse. 1 + x2

(D

. . . d .

Damit haben wir folgendes Ergebnis: = 7c. Geometrische Interpreta-
- :0

tion: Der Flächeninhalt des zwischen der Kurve y = , —oo < x < o0, und
l + x2

der x-Achse liegenden Bereiches B (s. Bild 11.3) ist gleich 7:. B hat also den gleichen
Flächeninhalt wie ein Kreis vom Radius 1. V

Bild 11,3
0 1 2 3 X

Hinweis: Die Kurve y = f(x) = %xThat äußerlich fast das gleiche Aussehen wie

die sog. G1ockenkurve(Gau_/a’scI1e FeIz1erkurve),we1che in ihrer einfachsten Form durch

y : q7(x) = -6*“ beschrieben wird. q:(x) hat ebenfalls bei x : 0 ein Maxi-
\/27t

mum und das gleiche Verhalten im Unendlichen wief(x), d.h. lim ¢(x) = lim zp(x)=O.

Für <p(x) gilt l” <p(x) dx : 1, was allerdings nicht so einfach nachzuweisen ist wie

‘|.f(x) dx = TC. Die Glockenkurve nimmt eine zentrale Stellung in der Wahrschein-

lichkeitsrechnung ein (vgl. hierzu auch Aufgabe 7.14).

Beispiel 11.6: Zwischen den Massenpunkten Po und P mit den Massen m und M,
m - M

r2

(Newtonsches Gravitationsgesetz; y Gravitationskonstante). Für die Kraft F, mit
der die (frei beweglich gedachte) Masse M von der (an einem Punkt festgehaltenen)

deren Abstand r beträgt, wirkt eine Anziehungskraft vom Betrage F = y
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mM
rZMasse m angezogen wird, gilt: F = y

nach P0 ist.
Man denke sich auf der x—Achse im Nullpunkt eine Masse m angebracht; im

Punkt mit der Koordinate x = r > O befinde sich ein Massenpunkt mit der Masse M
= 1 (s. Bild 11.4). Für die Kraft F(x) (Betrag F(x)), mit der Mvon m angezogen wird,

gilt: F(x) = 7%. Wie groß ist bei dieser Kraft die Arbeit W, die geleistet werden

y _ —->
-T, wobei r = PP0 der Vektor von P

muß, um die Masse M = 1 aus der Lage x = r ins Unendliche zu bringen (x —> o0)?

g x M . Bild 11.4
J ‚K

Nach Satz 10.20 in 10.4.2. gilt: W : — fF(x) dx. (Das negative Vorzeichen wird

gewählt, weil die Kraft F(x) entgegengesetyzt zur Bewegungsrichtung x —> oo wirkt.)

w m

Hieraus folgt: W: —fy%dx 2 —ym 2 —y~:r.L.

Man berechne die folgenden uneigentlichen Integrale (falls sie existieren):

Aufgabe 11.1: f 1% (Vor; a =1= 0).

0

Aufgabe 11.2: f —; 6”” dx.
K)

co

Aufgabe 11.3: f dx
X2 + 2x + 2 '

0.

Aufgabe 11.4: f sin xdx.
— eo

11.1.2. Cauchyscher Hauptwert

Das uneigentliche Integral 1 f(x) dx war wie folgt definiert:

e "w?
l f(x) dx 2 1in1 _|f(x) dx.

s m a4 —. so „
b—~oc

Hierbei war wesentlich, daß die Integrationsgrenzen a und b unabhängig vonein-
ander gegen — o0 bzw. o0 gehen. Würde man z. B. a = —3b wählen, so wären a und b
voneinander abhängig; mit b —> 00 würde dann automatisch a —> -— so streben.
Wählt man a = —b, so gelangt man zum sog. Cauchyschen Hauptwert des uneigent—
Iichen Integrals.
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Definition 11.4: Unter dem Cauchyschen Hauptwert des uneigentliclzen Integrals der
w

Funktionflx) iiber dem Intervall ( — 0C, o0) verrteht man den Grenzwert lim iflx) dx.

Dieser Grenzwert wird —falls er existiert A durch das Symbol CH f(x) dx bezeichnet.
— u;

Aus Definition 11.3 folgt sofort, dal3 aus der Existenz des uneigentlichen Integrals
X eo

fflx) dx die Existenz des Cauchyschen Hauptwertes CHf(x) dx folgt und die

beiden Integrale gleich sind. Die Umkehrung gilt i. allg, nichtfid. h. : Die Existenz von
CO 00

CH f(x) dx hat nicht automatisch die Existenz von .{f(x) dx zur Folge. Das fol-
—m «so

gende Beispiel demonstriert diesen Sachverhalt.

xdx
xZ+3

O0

Beispiel 11.7: Das uneigentliche Integral]. existiert nicht. aber der Cauchy-
oo

sche Hauptwert dieses uneigentlichen lntecgrals CH f X: 1x3 existiert.

Aus ‘°°

xdx _ 1 2x dx _ l ¢’(x) _ lffu‘ 2174:-7 W; “"—7'"W‘*" +‘

1'=31n (x3 + 3) + c

folgt:

in; f% =u1in°1°(%ln(w2 + 3) — ;—1n((—cu)2 + 3))

= lim 0 = 0.
nJ-VN

Der Cauchysche Hauptwert des uneigentlichen Integrals existiert; es gilt: CH
(X)

x dx
x‘ + 3

tion 11.3 müßten die uneigentlichen Integrale von — o0 bis O und 0 bis no existieren
(e = 0!). Diese existieren aber beide nicht:

dagegen existiert nicht. Nac1xwDefini—= 0. Das uneigentliehe Integral j

0 0

xdx . xdx 1 l .

1?2fi‘.£‘1,f3;2‘+—3=7'"3‘7fl'11,‘"‘“2+3’: “w;

f xdx _OO

x’+3 _ '

0

Hinweis: Man hüte sich vor dem Schluß ‚.‚— oo + o0 = 0“! Die Rechenregel

um (fix) + g(x)) = um/(x) + um gm v)
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ist immer „von rechts nach links“ zu lesen, d. h.: Wenn limf(x) und lim g(x) existie-
ren, so existiert auch lim (f(x) + g(x)), und es gilt die Gleichung (*). Die Rechenregel
(*) kann auch auf die Fälle limf(x) = lim g(x) = o0 bzw. —oo ausgedehnt werden,
aber nicht auf den Fall „limf(x) = oo und lim g(x) = —oo“ bzw. umgekehrt.

W W

Aufgabe 11.5: Man untersuche, ob f x3 dx bzw. CH x3 dx existiert. i:

— eo — eo

11.1.3. Existenzkriterien (Konvergenzkriterien) für uneigentliche Integrale

Von den in den Definitionen 11.1, 11.2 und 11.3 eingeführten drei Typen von un-

eigentlichen Integralen betrachten wir hier nur den in Definition 11.1 eingeführten
K)

Typ: j f(x) dx. Die beiden anderen Typen lassen sich auf diesen Typ zurückführen.
a b eo

(Für den in Definition 1 1.2 eingeführten Typ gilt [f(x) dx = ff(—x) dx. Bei uneigent-
m— —b

lichen Integralen des in Definition 11.3 eingeführten Typs ist unmittelbar klar, daß
sie durch uneigentliche Integrale der in Definition 11.1 bzw. Definition 11.2 einge-
führten Typen ausgedrückt werden können.) m

Die Frage nach der Existenz (Konvergenz) des uneigentlichen Integrals ff(x) dx ist

im allgemeinen schnell beantwortet, wenn von der Funktion f(x) eine gtammfunk-
eo

tion F(x) bekannt ist. Es gilt nämlich ff(x) dx = lim F(x) — F(a), und damit ist die
)5-~00fl

Frage nach der Existenz des uneigentlichen Integrals zurückgeführt auf die Frage,
ob der Grenzwert lim F(x) existiert.

xaaa

Die in den folgenden Sätzen formulierten Existenzkriterien gestatten ein Heran-
gehen an die Frage nach der Existenz uneigentlicher Integrale auch in den Fällen, bei
denen Von der Funktion f(x) keine Stammfunktion F(x) bekannt ist.

Satz 11.1 (Majorantenkriterium für uneigentliche Integrale): Ist die Funktion f(x) S. 11.1
für alle x g a (a fest) nichtnegativ und gilt für eine weitere Funktion g(x) die Unglei-

eo

chung 0 g f(x) g g(x) (s. Bild 11.5), so folgt aus der Existenz von f g(x) die Exi-
(X) d) d) B

stenz von f f(x) dx; hierbei ist j f(x) dx g f g(x) dx. (Vor.: f(x) ist auf jedem Inter-

vall [a‚ b] “mit b > a stückiveiseastetig.) a

y

y-gm

y-f(x)

Bild11.5
l a

l5 Ptorr, niiL- u. Integr.
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Auf den Beweis des Satzes verzichten wir, zumal die Aussage des Satzes vom geo-
U0

metrisch-anschaulichen Standpunkt fast selbstverständlich erscheint. [g(x) dx kann

geometrisch als Flächeninhalt A1 des zwischen der Kurve y = g(x), a g x g o0, und
der x—Achse liegenden Bereiches gedeutet werden. Nach Voraussetzung muß A1 exi-
stieren und endlich sein. Da g(x) eine „Überfunktion“ (Majorante) von f(x) ist, d. h.
0 g f(x) g g(x) für alle x E [a, o0), ist zu erwarten, daß auch der Flächeninhalt A2
des zwischen y = f(x), a g x < eo, und der x-Achse liegenden Bereiches existiert
und der Ungleichung 0 g A; g A1 genügt

(A; = ff(x) dx, A1 = f7g(x) dx).

Ergänzung zum Satz 11.1 : Es ist nicht erforderlich, daß die Voraussetzung 0 g f(x)
g g(x) für alle x e [a, oo) gilt; der Satz bleibt wegen

an b no

f f(x)dx = ff(x)dx + j f(x)dx (b > a)
a n b _

auch dann richtig, wenn f(x) g g(x) nur für alle x g b gilt, wobei b eine beliebige,
rechts von a liegende Zahl ist. (Es könnte z. B. a = 1 und b = 20 sein!)

Bedeutung des Satzes 11.1: Wenn man wissen möchte, 0b das uneigentliche Integral
eo

ff(x) dx (f(x) g 0) existiert, aber keine Stammfunktion F(x) von f(x) bekannt ist,
n

so kann man versuchen, eine „Überfunktion“ g(x) vonf(x) so zu bestimmen, daß das
eo

uneigentliche Integral f g(x) dx existiert, Zu einer vorgegebenen Funktion f(x) g 0

gibt es natürlich immer unendlich viele Funktionen g(x) mit 0 g f(x) g g(x). Die
Kunst besteht darin, eine nicht zu große Majorante g(x) zu finden, d. h. eine Funk-
tion g(x), für die einerseits f(x) g g(x) gilt, die aber andererseits noch so beschaffen

(K)

ist, daß das uneigentliche Integral f g(x) dx existiert (konvergiert).
a

Beispiel 11.8: Man untersuche mit Hilfe von Satz 11.1, ob das uneigentliche Integral
no

I dx existiertx2 + ex '

‘ . . 1 1 .

Wegen e" > 0 für alle x gilt x2 + e" > x’. Hieraus folgt: 7;}; < Y5. Die

' 1

x2+e"‘
Da nach Beispiel 11.1 das uneigentliche Integral f g(x) dx existiert (und den Wert 1

l co eo

Funktion g(x):= ?12— ist also eine „Oberfunktion“ der Funktion f(x):=

hat), muB nach Satz 11.1 auch das uneigentliche Integral f(x) dx = f72;
existieren und einen Wert haben, der kleiner als 1 ist. 1 I x + e

Hinweis: Mit Hilfe des Majoraritenkriteriums kann man nur entscheiden, ob das vor-

gegebene uneigentliche Integral existiert — die Berechnung mit Hilfe dieses Kriteriums
ist nicht möglich.
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w

Satz 11.2 (Minorantenkriterium für uneigentliche Integrale): Ist _lg(x) dx ein diver-

gentes uneigentliches Integral und gilt 0 g g(x) g f(x) für alle xä [a, o0), so ist auch
0D

das uneigentliche Integral J f(x) dx divergent (g(x) ist eine „ Unterfunktion“ (Minorante)
vonf(x)). a

Auch die Aussage dieses Satzes ist vom geometrisch-anschaulichen Standpunkt
unmittelbar einleuchtend. ’

no

Beispiel 11.9: dx ist divergent.

l

Begründung: Es giltf(x):= —\Lx}ii > l/x~x~ = 2 g(x) > 0 für alle xe [1, oo).

Da J‘g(x) dx =J‘»$; divergent ist (s. Beispiel 11.3), ist nach Satz 11.2 auch {f(x) dx
x

l l

divergent. I

In den Sätzen 11.1 und 11.2 wurde Vorausgesetzt, daß die Funktion f(x) auf dem
betrachteten Intervall [a, 0o) nichtnegativ ist. Wenn f(x) auch negative Werte an-
nehmen kann, so betrachtet man zunächst die Funktion ]f(x)]. Der folgende Satz gibt
Auskunft über die Beziehung zwischen den zuf(x) und If(x)| gehörigen uneigentliehen
Integralen.

°° ‘i°
Satz 11.3: Wenn f ]f(x)| dx existiert, dann existiert auch j f(x) dx. Man sagt dann,

das uneigentliche Integral ff(x) dx ist absolut konvergent.

oo

dx
existiert.

x2 e"
Aufgabe 11.6: Man untersuche, ob das uneigentliche Integral f

1

11.2. Uneigentliche Integrale mit nichtbeschränkter Funktion

11.2.1. Definition um: Berechnung

Wenn die Funktion f(x) auf dem Intervall [a, b] eine Unbesehränktheitsstelle
(Unendlichkeitsstelle oder Sprungstelle mit unendlichem Sprung) hat, d. h.‚ wenigstens
einer der Grenzwerte lim f(x), 1imf(x) ist gleich +00 oder ——oo, so ist das

b o x—>c—0X-'C+

Integral ff(x) dx bisher nicht erklärt.

Die Funktion f(x) = ä besitzt z. B. einen unendlichen Sprung bei x = 0 (c = 0).

Die Funktion ist an dieser Stelle nicht definiert, und es gilt: lim f(x) = + 0o‘,
2 x-v +0

lim f(x) = — oo (s. Bild 11.6). Das Integral ist nicht erklärt, weil das Integra-
x—> — o

—2

15*

S. 11.2

S. 11.3
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tionsintervall [—2‚ 2] eine Sprungstelle mit unendlichem Sprung des Integranden

f(x) = ä enthält. In einem solchen Falle wird man zunächst die Unbeschränktheits-

stelle c isolieren, indem man eine kleine Umgebung [c — 6„ c + a1] aus dem Inte-
grationsintervall herausläßt, die Integration über die Teilintervalle [a, c — s1] und
[c + s2, b] durchführt und schließlich untersucht, ob sich für a1 —-> 0 und s2 —> O ein
endlicher Grenzwert ergibt. Nach diesen Vorbemerkungen kommen wir nun zur
Definition der uneigentlichen Integrale mit nicht beschränkter Funktion. Dabei
müssen wir drei Fälle unterscheiden:

c=a (I), tz<c<b (II), c=b (III).

(Die Unbeschränktheitsstelle c befindet sich im linken Eckpunkt (Fall I), im Innern
(Fall II), im rechten Eckpunkt (Fall III) des Integrationsintervalls [a, bl.)

Y

Bild 11.6

D. 11.5 Definition 11.5: Ist c eine Unbeschränktheitsstelle von f(x) auf dem Intervall [a, b], so
definiert man

b b

ffoodx ;= limo f f(x)dx, falls e = a,
ü s—v+ „+5

b Iz-z

ff(x)dx:=B111:10 f f(x)dx‚ falls c = b, s

b c-s b

ff(x) dx := lim j ‘f(x) dx + lim f f(x) dx‚ falls a < e < b,
a :‚—‚+0 a s,—o+ ,+‘,2

(s. Bild 11.7) und nennt die auf diese Weise eingeführten Größen ebenfalls uneigentliche
Integrale.

Voraussetmng ist natürlich, dal3 die auf der jeweils rechten Seite stehenden Grenz—
werte existieren. Man spricht wieder von einem konvergenten bzw. divergenten un-
eigentlichen Integral, je nachdem, ob die entsprechenden Grenzwerte existieren oder
nicht.
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c=a au’ bl
‘7 “I ‘ "52 ° Bild 11 7., .

51 52

_ist ein uneigentliches Integral, denn die Funktionf(x) = -\/l—_ be-
x

O

sitzt eine Unbeschränktheitsstelle bei x = O. Das uneigentliche Integral existiert (kon-
l 1

. . d . . . .

vergiert), wenn der Grenzwert G = 11m lexistiert (und endlich 1st).
e—-+0 J}

. l .

1 _

= 2 — 2 \/s folgt G = 2. Ergebnis: = 2, d. h.‚ das un-
- x2

1

Beispiel 11.10: J 53‘-
x

1

Aus E: 2V/J;J}
z 0

eigentliche Integral existiert und hat den Wert 2. Geometrisch kann das Ergebnis

wie folgt interpretiert werden: Der Flächeninhalt des zwischen der Kurve y = i-_-,
0 g x g 1, und der x-Achse liegenden BereichesB ist gleich 2 (s. Bild 11.8). x

l

Beispiel 11.11: Man untersuche‚ ob das uneigentliche Integral konvergiert

’ . ‘ . . ‚ 1 . i‘
oder divergiert. (Die Funktionf(x) = —2—besItztan der Stelle x = Oeme Unbeschränkt-
heitsstelle ; s. Bild 11.9) x

Bild 11.8 Bild 11.9

Nach Definition 11.5 gilt (c = O):
11 ' —.,

dx . dx . dx . 1 "I . l '
-7: hm -7 + 11m —2—= 11m —-— +11m ——

X :‚—>+0 X s;—>+0 X e‚—o+0 X -1 z2~+o X s:
1 —1 .2

=1im{i—1}+lim {—1+i}=oo+oo=oo.
:,_.+o 81 s,..+o 82

Ergebnis: Das uneigentliche Integral divergiert.
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Bemerkung: Die formale Rechnung (Nichtbeachtung der Unbeschränktheitsstelle im
Innern des Integrationsintervalls) führt hier zu einem falschen Ergebnis.

'd_x„ [_;]1
x2 fl x -1

—i

Ein Blick auf Bild l 1.9 lehrt, daß das Ergebnis auf keinen Fall richtig sein kann. Der

=—1—l=—-2.

. . 1 .

Flächeninhalt des zwischen der Kurve y = x—2 , -1 g x g l, und der x—Achse liegen-

den Bereiches B kann niemals negativ sein!

Ergänzung zur Definition 11.5: Wenn die Funktion f(x) mehrere Unbeschränktheits-
stellen cl, C2, im Intervall [a, b] besitzt (a g cl < c2 < .. < c,, g b), so definiert
man: ’ .

b c, c2 l7

_lf(x)dx:= ff(x)dx + _ff(x)dx + + jf(x)dx.

Vorausgesetzt wird dabei natürlich, daß jedes der rechts stehenden uneigentlichen
Integrale konvergiert. Das erste und das letzte Integral auf der rechten Seite gehören
zu den_in Definition 11.5 eingeführten Typen.

Bei den anderen Integralen hat man in beiden Randpunkten eine Unbeschränktheits-
stelle. Diesen Typ eines uneigentlichen Integrals kann man sofort auf die bereits
bekannten Typen zurückführen. Beim zweiten Integral definiert man:

_i’f<x> ax = f f(x) ax + I’/<x> dx,

wobei c irgendein Punkt aus dem Innern des Intervalls [eh cl] ist (die Definition ist
natürlich unabhängig von der Wahl des Punktes c).

Aufgabe 11.7: Man untersuche die folgenden uneigentlichen Integrale auf Konver-

x dx

1 —- x

genz: l I 1 2

a)!7——2, 134%, c)J1nxdx, d)0f—(x%)4.

11.2.2. Einige Ergänzungen

Analog wie bei uneigentlichen Integralen über dem Intervall (-00, oo) wird auch
bei uneigentlichen Integralen über einem Intervall [a, b] mit einer Unbeschränkt-
heitsstelle c des Integranden im Innern des Intervalls ein Cauchyscher Hauptwert
definiert.

Definition 11.6: Die Funktianf(x) habe bei x = c (a < c < b) eine Unbeschränktheits-
stelle. Unter dem Cauchyschen Hauptwert des uneigentlichen Integrals der Funktion
f(x) über dem Intervall [a, b] versteht man denfolgenden Grenzwert

b

f f(x) dx].
0+5

b

CH {f(x) dx ;= lim
‘ :—>+0u

[TBf(x) dx +
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Bemerkungen zur Definition: Bei etwas oberflächlicher Betrachtungsweise kann der
Eindruck entstehen, daß der Cauchysche Hauptwert mit dem 3. Typ des in Definition
11.5 eingeführten uneigentlichen Integrals übereinstimmt. An Steile von Definition
11.5 (3. Typ) kann man genausogut schreiben

b c-s b

jf(x) dx = 11130 f f(x) dx + ‚inne f f(x) dx. Ü)

(lim <p(x) = lim rp(u) = lim 99(8) = lim ¢p(a1)!!)

Wenn die auf der rechten Seite von (*) stehenden Grenzwerte existieren (und endlich
sind), dann existiert auch der Grenzwert

c+s b

lim [ f f(x) dx + f f(x) dx:l, (**)
“"+° a c+s

und die rechte Seite von (*) stimmt mit (**) überein — aber umgekehrt kann man
nicht schließen! (Siehe Hinweis im Anschluß an Beispiel 11.7.) Aus der Existenz des
Grenzwertes (**) folgt i. allg. nicht die Existenz der auf der rechten Seite von (*)
stehenden Grenzwerte. Anders ausgedrückt: Aus der Existenz des uneigentlichen Inte-
grals (im Sinne von Definition 11.5, 3. Typ) folgt die Existenz des Cauchyschen Haupt-
wertes (im Sinne von Definition 11.6), aber nicht umgekehrt.

l

Beispiel 11.12: Das uneigentliche Integral f% existiert nicht (s. Aufgabe 11.7, b).

——11

d ' . ‚

Der Cauchysche Hauptwert CH aber existiert:

—l

e—»-H) x
—l s

—5 i

lim [f3+fd—"]=1im[1ne—1n1+1n1—1ns]=0.
x 1-9+0



Lösungen der Aufgaben

2.1.: a) Für jede Folge (x„) mit x„ =1= 0, x„ # 1 für alle n und lim x„ = 0 gilt
n-woo

3Iimx +1im2
. 3Xn+2 rt->03" M,

hm —-———- =T: -2.
x_.m x,,-1 hmx,,—hm1

‘ n—voo II->00
Dahenst

3 +2
lim x = —2.
x-oo X-I

b)Wegen

x2—4 (x—2)(x+2) 7
=__—_= _„ -2

x+2 x+2 x ("* )

erhält man (vgl. Beispiel 2.2)

„ x2 — 4
11m e: ~4.

x-_2 x+Z

1 . . 1 .

2.2: x„ =—: hm s1n =11m0= 0,
‚man x11 ‚man

2 _ _ 1 _

x„=———-—zlimsm =11m1=1.
(4n+1)7v „m x‚. new

2.3:Wegen
x
—= 1 für x > 0

1x1 x .

X —x
——=—1 für x<0

X

. . IX} . 1x1 ‚ Ixl . . ‚

gilt 11m -— = 1, hm ——= —1,uud l1m— ex1st1ert nicht.
x-»+o x—.—o x ac->0

2.4: Mit Satz 2.3 und (2.15) folgt
k

1imv= (uo——"I'ci) lim (e7)"+ lim L:5=1'5.
:—>+eo x—v+oo («+00 k

_ x+2 2
2.5:a)11me= —— = —2.

x-oox ‘I ‘l
2 2

x l+— 1+—
_ x+2 ‚ x „ l „ x

b) hm 2 = hm T: hm — hm ——:—~=0.
x—>+oO x ‘l x—v+w 2 1 x—»+co xx—>+00 1

x 1-7 l~—z
x x

c) 2 (vgl. Aufgabe 2.5 b) und Beispiel 2.16).

d) Aus
+ 2 2

xm he und 2 >0 füra11ex>—2
,‘_.+w x’ + 3 x 3

2 + 3
folgt mit Satz 2.4 die Aussage lim x1 = +00.

x_.+m x+2



Lösungen der Aufgaben 22l

1

e) lim “X = hm =

x-90 X x—»u X x-‚o 905x

1 ' 1 1 '

r) Wegen —— g 5"” g — für alle x > o und lim — = o gilt lim 5'“ = o (s. Satz 2.5).
X v‘? X x-v + so X x—> + no

_ a,,,x"' + a,,,_1x""’ + + an _

2.6: Es se1f(x) =emit a # 0, b ¢ 0, m < n. Dann ist
b,,;a- + b,,_,,\"“ + + be ’" "

am + 11;‘ + + a—:fix) = I x x

2K“"' b b0
12,. + ——— + + y

und daher lim f(x) = Oi = 0; analog für x—> —oo.
X*+00 bl)

2.7 z Es gibt eine punktierte Umgebung U von x0 = 0 und eine positive Zahl m, so daß gilt

I sin x —

3 gm füralle xeU.
l X

3.1: a) Für jede Folge (x„) mit lim x„ = x0 gilt limf(x„) = lim x„ lim x„ = xä = f(xo). Daher ist
fan jeder Stelle x0 stetig. ""°° ""°° ""°° ""°°

b) Wegen lim sin x = 0 = sin 0 (s. (2.28)) ist f(x) = sin x an der Stelle x = 0 stetig.
‚wo

c) Wegen lim f(x) = 1, lim f(x) = O =f(0) ist fan der Stelle x = 0 rechtsseitig, aber nicht
r—+ —o x—> + o

linksseitig stetig.

d) Ist a > 0 beliebig gegeben, dann gilt

_ 1

xsm— g lxl <5
x

|f(x) — K011 =

für alle x mit |x — Ol = [xl < ö, fallsö = s gesetzt wird. Nach Satz 3.1 istfan der Stelle x = 0 stetig.
l

Es gilt also lim (x sin -—) = 0.
XXe!)

3.2: a) Wegen lim sgn x = -1, lim sgn x = 1 hat sgn x bei x = 0 einen endlichen Sprung.
z.» —o x—> +0

(x~1)(X+1) . . .. . . . .

b) f(x) = ———:—f— (x + —-l) hat bei x = -1 eine Lucke, dle eine hebbare Unstetigkelts-
X

stelle ist; f*(x) = x —1(—oo < x < +00).

e) Wegen limf(x) = lim 5"’ x = 1 a; f(0) ist x = o eine hebbare Unstetigkeitsstelle von f:
x-rü x—v0 X

sin x
für x =i= 0,

f*(x)= x

1 für x=0.
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d) f hat bei x = 3 eine Lücke und verhält sich dort wegen f(x) = (x =l= 3) wie an einer
Polstelle 4. Ordnung (Unendlichkeitsstelle, wobei lim f(x) = ~00 . (x _ 3)‘

X—>3

‚ _ cos x Ä

e) Wegen lim cotx = hm —,— = -00, hm cotx = +00 (s. Satz 2.4) hat f(x) = cotx bei
X-w-O X-v-D Slnx x-v-l-O

x = 0 einen unendlichen Sprung.

3.3: a) e.

b) "4 .

1 _

c) Wegen lim = 2 und der Stetigkeit von f(x) = V/x an der Stelle x = 2 gilt
„so n 3

_ 2n +1 ‚ 2n +1 /-
lim = lim = V2.

"aw 71+ 3 ,._.m n + 3

1 n

d) Wegen lim (1 + —) = e und der Stetigkeit von f(x) = ln x an der Stelle x = e gilt
nn—>:¥3

‚ 1 ‚ 1 "

lim nIn1+— =l1mln1+— =lne=1.
n-roo n nacho n

3.4: a) fist an der Stelle x = O stetig.

b) fist an der Stelle x = 2 rechtsseitig, aber nicht linksseitig stetig.

3.5: Die Behauptung folgt nach Satz 3.9 aus

21g2~l <2~0,31—1<'0 und 3lg3— 1 >3—0‚47——1 >0.

3.6: a) {—— 1, 0, l} (kein lntervalll). -

b) Satz 3.10 ist nicht anwendbar, da [auf (— oo, + oo) nicht stetig ist (vgl. Aufgabe 3.2a)].

+ A: —

4.1: Mittlere Stromstärke im Intervall to to + Ar:g .

AI
+ A — .

Stromstärke zur Zeit I0: lim = Q(Io).
A240 A!

+ A —

4.2: Mittlere Dichte: , e(xo) = m’(xo).
x

_ ‚ _ 31i: 1 - ‚ 31: 31: 1 ‚-

4.3: Fur/(x) = s1nx1stf(T)= ?\/2‚ f = cos? = —?\/2;

Ä l - 1 - 37l:
also Gleichung der Tangente: y = y \/2 — 7 \/2 ( — .

4.4:;',’(o) = 1, /;(o) = —1 (vgl. Aufgabe 2.3).

4.5: a)f’(x) = 6x — 5 — 3 cosx.

b)f’(x) = (4x3 + 4) sinx + (x4 + 4x) cos x.
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I _ (2x — cos x) (2 + sin x) — (x2 — sin x) cosx
‘3)f(X) —,

4x + Zxsinx —- Zcosx — x2 cosx
f,(X) =

(2 + sm x)

4.6: v(t) = s‘(t) = gt + vo.

4.7: a) Mit y = 17, z = 2x3 — 3x + 4 sinx folgt

y’ = 7(2x’ — 3x + 4sin x)5 (6x2 — 3 + 4cos x).

b)Mit y= sinz‚ z= w‘, w=x3 + 3x’ — 8 folgt

y’ = cos (x3 + 3x’ — 8)‘ - 4(x3 + 3x2 — 8)3 (3x2 + 6x).

4.8: Zur Raumeiusparung beweisen wir nur die letztgenannte Formel. Mit

TC 7C

y=tanx (—?<x<7)‚ alsox=arctany (-oo <y< +00)

folgt

arcany =—=———————-=»——,
( t Y l 1 1

(tan x)’ l + tan’ x 1 + y’

also — nach Ersetzen von y durch x — die Behauptung.

4.9: a) (sinh x)’ = fie" — e”‘)’ = -}(e" + e“) = cosh x.

b) Analog a).

4.10: a) fist für alle x > 0 definiert und differenzierbar, und mit

3

f(x) = x 7+ 2x‘5 — m3
folgt _

3 _i
——?x 2 — l0x’6—3"1n3x3—3"~3x2,Hf’(x)

f’(x) = — ~—_ — — — x2'3"(xln3 + 3).

b) f ist für alle x > 0, x + l definiert und dilferenzierbar mit

1 l
f’(x) = -lnx x.

c) f ist für alle x + O definiert und differenzierbar mit

f,( ) __ 1 ( l ) _ l

X _ (1 )2 x2 _ 1 + x2 '

l + .

X

d) f ist für alle x definiert und difierenzierbar mit

L 2x
3 . 2x=— 3 .

3:;(xz+ 1)‘

1 _

f’(x) = --3-(X2 +1)
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e) fist für alle x _S_ ä definiert und für alle x < 4}- diflerenzierbar mit

_ ———— -2f'(x) = -2158": + s1n \/1- 2xe,

2 J 1 — 2x

sin \/1 — 2x

\/1 — 2x '

f) fist für alle x definiert und difierenzierbar mit

f’(x) = —-2x 6"‘: —

‚ 1~x‘ _ 1-—x2 —2x(1+x‘)—(l—x*")2xf(x) = Zcosh 1 + x2 smh 1 + x2 (1 + x2): ,

4x _ 2(l — x2)
f’(x) = —Ws1nh 1+ x2

4.11: Gesucht sind alle Kurvenpunkte P(x‚ y) mit y’ = 0. Wegen y’ = 3(x — I)’ (x + 1) + (x —1)3
1 1 27

= (x — 1)’ (4x + 2) ist x = -7 oder x =1, also P, (-7, — E), P‚(1‚0).

4.12: v(t) = x‘(t) = -—A e'V‘[y cos (wt — on) + w sin (wt — 04)].

4.13: a)/"(x) = x"(lnx + 1).

b) f’(x) = (tan x)" (In lan x + .

sin x cos x

C) f’(X)
=\/(x+1)(x—3)[ 1 + 1 _ 3x2 _ 1 j

(x3+2)3\):2 2(x+1) 2(x—3) x3+2 3(x—2)'

4.14:2: =#= 0:f’(x) = lxsinL — cos
x x

f(h) -f(0) l
x = 0: Der Difiercnzenquotient—? = h sin T (h 4: 0) konvergiert für h —> 0 gegen null

[s. Lösung von Aufgabe 3.1d)]. Daher gilt f’(0) = 0.

4.15: f’(x) = 2 sin x cos x 2“": " = cm“ sin 2x,

f”(x) = cm" [(sin 2x)’ + 2 cos 2x].

nn—-1)..‚(n—v+l)x'“’ für v<n‚
dv(X")_ ‚

4.16: ——— — n.dxv für v = n,

0 für 1r>n.

4.17: a)
d"cosx (—1)" cosx für n=2k
T= (k g 0, ganz).

dx" (—1)"“sinx für n=2k+1

b) d" cos x _ (-1)? für n gerade

dx" „o — 0 für n ungerade.

d" a" d" "

4.18: ( ) = a"(ln a)" -6; = e"
Cb." d.x"
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4.19: m}: —mAwäcos (wot — 0c) = —ks = F.

4.20: a)f(‘)(x) = 3 -41 + 0 + icosi = 72 + leasi-
2‘ 2 1s 2 ’

b) f<4>(x) = (x3 ~ e")“” = (x3 — 12x2 + 36x — 24) e“.

5.1: a) df(x) = —sinxdx.

b) df(x) = (1 — x) e" dx.

dx.c)df(x)=_;
\/x2+3

5.2:Mity=sinx,dy=cosxd.x, x=45”=%, dx=1°=% gilt s1'n46°=sin%+Ay

~' "+d—' "+ 7° 7' ’46"~1\/E 1+ 7' —o7194~Sln4 y—Sln'4* C054 180,51“ A’? E)‘ — , .

5.3: a) Mit 1g (750)2 = 2(1g 75 + 1), g = 0,667 erhält man 5 = 11,537.

b) IAsI g (2 - 0,5 + 0,5 + 3-0‚5)-10-3 = 3 - 104,

A; 3 ~ 10-3
— <

s 10
= 0,03 z.

c) 11,584 g .\' g 11,590, also gerundet s = 11,6.

5.4: Mit
f(x) = \/x +1, f’(x) = ——— x = e, x = 2,72, 10x1 g 0,5 — 104

2\/x
1

‚

+ 1

folgt für den absoluten Fehler
— 0,5 - 10-2

|„/e +1 — \/3‚72l = IAyl z Idyl g ———;— < 0,0014
2 \/3,72

und für den relativen Fehler

A d 0510-2J; "' ;:—_<o,o7%.
3, 2 Jg’? 2- 3,72

_ 11: 11: ..

5.5: M1t V= —6—D3‚ dV = 7D’ dD, D = 6,35 cm, IdDI g 0,02 cm folg‘

IAVI z |dVj g —’2:(6,35)z -0,02 cm3 < 1,27 cm“,

AV [dVJ 3 |dD| <3 0,02 MW
—_— z:.—= g- -—< , „.

V V D ‘ 6,35

RI R16 Ay dy 1 Ia5-531A1z1d1=*_:[dX|§'5_, Tz—_‘=_ _\d-7€1§_ _.
y y (l—x)2 (l—x)2 y y x(l—x) x(l—x)

5.7: a) d3f(x) = ——12-d.x3.
x

b) d3f(x) = O.
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x‘h_x h_ 1.__6l_ eo’ o = xnwhae e 1

h

In diesem Fall hängt ö nicht von x0, aber von der Intervallänge h ab.

1 I
= e‘9"<:>29=71n

6.2: M1te"°+” = e"° + he"o*3", xo = 1, h = 0,01 folgt wegen o < 0 < 1

e + 0,01 e < e"°‘ < e + 0‚01e"°‘

und daraus

2,7454 < 1,01 e < e1~°1 < e < 2,7459.
0 99

6.3: Aus f’(x) =j= g’(x) (x > 1) folgt f(x) — g(x) = C(x ä l). Speziell x = 1:

1: _X ‘ ‘ 1 -—— 11:

——7— — 0 = C. Also g11t arcs1n—— + arctar1\/x2 — 1 = g (x ä 1).
_ x

. . . . , , f(b - f(rI) ,

6.4: Wegen 1p(a) = 112(12) = 0 ex1st1ert em 5e (a, b) nut O = q: (E) = f (E) —es’ (E).
5(17) - 3(11)

Daraus folgt die Behauptung.

6.5: 2-2 o 1 -7 -4
2 6 12 36 111 312

:3 |2 4 12 37 104 308=g(3)

6.6: Mit dem Hornerscheu Schema (xo = I-— 2) erhält man

g(x) = 105 -— 328(x + 2) + 450(x + 2)’ — 315(x + 2)’

+ 120(x + 2)‘ — 24(x + 2)5 + 2(x + 2)‘,

g‘“(—Z) = 120-4! = 2880.

6.7: x0 = —3 ist eine zweifache Nullstelle von g, und es gilt g(x) = (x + 3)’ (x2 —— 6x + 8).

6.8:g(x) = 44 + 95(x —- 2) + [18(2 + 19(x —- 2))’ + l](x —- 2)?’ (0 < 19 <1).

6 9 h i x“ cosh19x
. ZCOS X = i ex

„=o (211)! (2k + 2)!
"+2 (0 < .9 <1).

6.10: Es gilt f’(x) = e°°“‘ sin x, f”(x) = e°°“‘ (sinz x — cos x), f”’(x) = —}e°°”‘Sin 2X(COS X + 3),
j""(x) = em‘ [—-} sin x sin 2x(cos x + 4) + cos 2x(cos x + 3)].

Damit folgt Tz(x) = e — —;—x’. Wegen f”’(0) = 0 ist T3(x) = T2(x) und daher

f(x) = Tz(x) + Rz(x) = T2(x) + Ra(x)-
Aus

1 f’”(19x)| g I, e‘°‘“‘9"' lsin 219x| (lcos fix] + 3)

und loos t1 g 1, lsin rl g 1 für alle t folgt If”’(19x)1 g 2 e und somit

=K'L‘)',lR2(x)1 3,
6

XI‘ g —3—|x|’ < lxl’
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(letzteres wegen e < 3). Analog findet man

13 e
W300i =.<— jg-X4 < X4,

und diese Schranke ist für [xl < l kleiner als die für [R;(x)\ erhaltene.

( “lcosx—— l——
2

4 2/24
x 10 =o,22...

6.11: = 1R‚(x)[S Wegen
" 24

E4- <10"¢>Jx\<

ist der Fehler sicher kleiner als 10“, wenn |x| < 0,22 ist (0,22 z 12°36’).

2 1

6.12:}: =l(l — cosx) zl[1 — (1 —x—)J =7x1.
2

_____ 2 Z

5.13: a) Wegen d: h ~‘ \/I12 — s2 = h (1 — /1- folgt aus (6.69) mitx = — ;—2

S2

dz ——.

2h

2 0,01 2
b) Wegen -27 g 2 25 < 104, also —10‘2 < -27 < 0 gilt nach Beispiel 6,11

Z d 1 2 2

rd-27 = — = R, <1,5~2,53 >10'5m < 0,04mm.

6.14: Aus (6.58) und (6.603) mit n = 1 folgt

X X —x- X ‘X1,,_==1,,(1+_;1_)zl
X1 X1 x1

mit
X2 — X1

II/
\

2

‘1n£— ) ;o,s~1o-2.
X1 x1

1 x2 — x,

2 x1

_ E k k '

6.15: Nach (6.50) mit n = liste "' z l — Damit folgt v z (g — Eva) t + v0.

1 l
6.16: Wegen = WU + 0,1)‘* Verwenden wir (6.62) mit x = 0,1 und on = —--E-. Für

1

Ü?"
n = 2 ergibt sich

(1 + 0‚1)-% =1 --13--0,1 +%~o,01 + R,(0,1)

mit
l4

IR;(0,1)I g E-0,001 < 2 ~10".

Rundet man den 2. und 3. Summanden von T2(0,1) auf 4 Stellen nach dem Komma, so erhält man
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5» = 0,9529. Nach (6.75) ist

' 1

=— 1 0,1 -%—~ —2 2-0,5 -1044: -14.10J(+ ; y|<10(+ ) 3o
1 1 _'
———y

3 1100 10 K

1 .

Der Wert -13 ‚ü = 0,09689 hat also die vorgeschriebene Genauigkeit; es gilt

1 l
0,09686 < 3 ___ < 0,09692, also gerundet ST = 0,0969.

\/1100 \/1100

‚ a"—b" _ a"1na—b"1nb a
7.1: a) 11mj =11me= ln—.

xao X x-0 1 b

_ In sin x _ , l cos x 1 _ — sin x 1

b)l1 = — Ä —=——l1 ——=——.
x „( 2x)’ ‚g 4s1nx n-Zx 4x_'£ -2 8

2

3 3x2
c) lim —— hm = +00

x—»+no “X x—v+äa L
x

X

e*—‘ „L
7.2:a)1im =l1'me*’ = +00.

x-vo l „o

2

_ a _ x ‚ a "

7.3: a) 11m xln (l + -—-) = 11m T:= a, also 11m (l + —) = e“.
xX-v-+03 x x—»+oo L)’ x—>+0o

x

_ _ 1 ‚ (1nx)’ sinx sinx
b) lm1s1nxln—=—l1m T7: 1 =1~0=0, also

x—o+0 X xa-+0 1 x—->+D X 005x

sin):
1 slnx

lim (—) =e°= l.
x—>-H) I

7.4: fist auf (-00, -2] und [0, + o0) streng monoton wachsend und auf [—2, 0] streng monoton
fallend.

7.5: fist auf (—1‚ 0] streng monoton fallend und auf [0, + o0) streng monoton wachsend, daher gilt

f(x) >f(0) = 0 für jedes x > —1‚ x 1= O.

Daraus folgt die Behauptung.
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7.6: Kritische Stellen: xi," = 2kn:, xff’ = (Zk + l)1r (k ganz). Wegen f”(x}‚") = -8 < 0 hat
[bei xi“ relative Maxima;f(xff’) = 5. Wegen

Nxz“) = f”’(x§3’) = o. /“><x‘:’> = 12 > o

hat fbei xi?’ relative Minima; f(x§,1’) = -3.

b) Kritische Stellen: x1 = 0, x, = 3. f(0) ist kein relativer Extremwert, f(3) = 27 e‘3 = 1,34 ist
relatives Maximum.

. . . 3 ‚ . . 3 55
7.7: a) Kritiscne Stellen: x1 = —I‚ x2 = 3. f(— 1) ist kein relativer Extrcmwert, f — = — —6
= —48,83 ist relatives Minimum. 2 Z

2x—1 für x>l‚
—2x+l für x<l.b) f’(x) = {

Kritische Stellen: x1 = 1 (dort ist f nicht differenzierbar), x; = 4}. Wegen

>0 für x>1undfür x<11»,

< 0 für 5 < x < 1
f’(x) {

is!/Q) = 1} relatives Maximum, [(1) = 0 relatives Minimum.

7.8: Kritische Stellen in [—2‚ 3]: x1 = —l,x2 = 2mitf(—1)= —108,f(2) = 0. Randwerte:f(—2)
= -64, f(3) = 36. Also absolutes Maximum:f(3) = 36, absolutes Minimum:f(—l) = —108.

V 2V
7.9: S = Zrrrh + Zrrrz. Mit h = -—7 folgt S =f(r) = —- + 27v’.

7T" r

Gesucht ist die absolute Minimumstelle r = n, von/auf (0, +00).
Man findet mit Satz 7.8

3/7 dd ‘t h 23 I7 2r: —— un ami = ——=r.
0 \/ 27: o \/ 211: O

I
7.10: Die Funktion f(>‘c) = ;?(l — a?) nimmt ihr absolutes Maximum auf (0, I) an der Stelle ‚i‘ = 7

d l d
an. Da I [dxt nicht von i abhängt, ist dort Ty = .—(I—|-—i_) am kleinsten.

x —- x

7.1l: Transportkosten pro Wareneinheit für beliebiges x:

f(x) = 0£\/X2 + a’ +ß(l— x).

Gesucht ist die absolute Minimumstelle von f auf [0, I]. Einzige kritische Stelle von fist

x flu1 == j- .

x/“z — F’
Wegen

< 0 für x < x1,
(‘)f(x){> 0 für x > x1

hat fdort ein relatives Minimum, das damit auch das absolute Minimum von fauf (-00, + oo) ist.

1. Ist x, E [0, I], also x1 ä I, dann ist x11 = x1.
2. Ist x1 > I, dann ist x0 = I, da fwegen (’) für x g I < x1 streng monoton fällt.

16 Pforr, Difl.- u. Imegr.



230 Lösungen der Aufgaben

7.12: f ist auf (-00, und [0, streng konkav und auf [—\/3,0] und +00)
streng konvex.

.. i 3 - i
7.13: Wendepunkt: P (e 1 , — 73*’) = P(0,22; —0,07), Wendetangente: y = —2e 1 x

l
+ — e“.

Z

7.14: a) Bestimmung der Nullstellen von Zähler- und Nennerpolynom führt auf

_ (x+l)(x——2)
f(x) (x _ 3),

Also ist f für allex + 3 stetig; x = 3 ist Polstelle 2. Ordnung, wobei lim/(x) = + oo. Weiter istfauf
7 7 H3(-00, und (3, + o0) streng monoton fallend, auf |:?, 3) streng monoton wachsend. Relatives

7 9 .

Minimum: f = —-]E = —0,S6; ein relatives Maximum ist nicht vorhanden. f ist auf
3 3 3 7

(-00, streng konkav, auf |:——5—, 3) und (3, +00) streng konvex. Wendepunkt: P (?‚ —

= P(0‚6; ~0,39). Asymptoten: x = 3 (s. oben) und y = 1 (für x —+ :00). Nullstellen: x, = -1
4

und x; = 2. Zusätzliche Funktionswerte: f(—2) = — = 0,16, = 7, f(4) = 10, f(5) = -9-

= 4,5 (s. Bild 7.29). 25 1 2

T‘; I I l I | v Bild7.Z9
— - — » 7 „x

b) f ist unstetig bei x = —2‚ -1, 1. Bei x = -2 hat feine Lücke; diese ist wegen

x2(x + 2)3f(x)= (-3* ‘Z: -1.1)

eine hebbare Uustetigkeitsstelle; in punktierter Umgebung von x = -—2 verhält sich fwie in punk-
tierter Umgebung einer dreifachen Nullstelle. Bei x = -1 hat f eine Polstelle 2. Ordnung; es gilt
lim f(x) = —-00. Bei x = l hat feine Polstelle l. Ordnung; es gilt lim f(x) = —oo, lim f(x)

x—.—1 x-1—0 x»1+o
= +00. Weiter ist x = 0 zweifache Nullstelle von f; wegen f(x) < O für -1 < x < J, x + 0 hatf
bei x = 0 ein rel. Maximum i. e. S. g(x) = x2 + 5x + 8 ist Asvmptote von ffiit x —» i o0; für
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x < -1 ist f(x) < g(x), für x > l ist f(x) > g(x). Hiermit und rnit Funktionswerten für einige
x > 1 folgt, daßf in der Nähe von x = 1,9 ein rel. Minimum hat (s. Bild 7.30).

y

Bild 7.30

c) Mit den Ableitungen

» _ 1 ~"‘+i"’f(x)-‘ (x—M)e 9

f"(x) = - isxl/~_ [l -b‘1,02] e_$
a" 27v ‘7

folgt: fist auf ( — co, u} streng monoton wachsend und auf [u + so) streng monoton fallend. Relatives
« 1

Maximum: f(_u) = ,_ ; ein relatives Minimum ist nicht vorhanden. f ist auf (— co, ‚u — a]
21':

und [[4 + o’, +00) streng konvex, auf U: — o’, y + 0'] streng konkav. Wendepunkte bei [4 — a und
1

,u + u mit fox — a) = f(,u + a) =e. Wegen lirn f(x) = 0 ist die x-Achse Asymptote
o" \/27t e at-> i eo

x2] _ __

e 2” =f(,u + X) (d. 11., die Bildkurve von f ist
21"

für x—> ioo. Ferner gilt [m — x) =

a

symmetrisch zu der Geraden x = ‚u) und f(x) > 0 für alle x (s. Bild 7.3l).

7 _ u-ml
- e 1

V cm. 1"

Bild 7.3l

16*
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7.15:Fi‘1r f(x)=x2+\/;—%(% x;1) gilt f(%)=l;_.:_<o, /(1)=%>0,

> 0 für alle XE [—, l
2

II/
\

f’(x) = 2x +

2
.
1

2J}
Dh htf r(11) 'NlltllEW m) 2 1 >2 Iaer a au —, genau eine usee . egen x = ——_—= -0.

2 4\/x3 4\/-53
= 2 — <5 V/5 > 0 für alle X6 [15, 1] wählen wir x0 = 1 (daf(l) > 0) und erhalten die folgenden
Werte:

n i x. v’? l /0:.)

O 1 1 0,5
1 0,8 0,894 427 19 0,034 427 19

2 0,784 054 23 0,885 468 37 0,000 209 395

3 0,783 956 05 0,885 412 93 0,000 000 008

7.16: a) Wegen

1 + In 0,15

(0,15)’

0,89
> T > 29,

0,03
1<ri(0,15>1 =1

1
05> _ >10
2-0,15\/2 + 1110,15 0,3 \/o‚11

l<P£(0.15)\ =

sind die Darstellungen (7.43 a) und (7.43 b) nicht geeignet. Wegen

0 g q2§(x) g 2 - 0,2 e‘°'2’2'2 < 0,06 für jedes xe I = [0,l ; 0,2]

ist (7.43 c) sehr gut geeignet (vgl. aber Beispiel 7.27).

b) Mit x,,+, = :p3(x,,) = e"r-"2 (n = 0, 1, 2, ...) erhält man die folgenden Werte:

n ‚.

0 0,15
1 0,138 41484
2 0,137 95312
3 0,137 935 52

7.17: a) E = <P(£)-==>f(E) = 0.

b) Man erhält das Newtonsche Verfahren, das damit ein Spezialfall des allgemeinen [tetations-
Verfahrens ist.

c) Wegen
(im = 1 _ f’(x)f’(x) -f(x)f”(x) = f(x)f”(x)

[f ’(x)l’ [f’(x)1‘
lautet (7.45)

f(x) ' [f"(x)lUM, s q (o g q <1). (e)
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Gilt (*) in einem geeigneten die Nullstelle 5 von f enthaltenden Intervall und liegt x0 „hinreichend
nahe“ bei E, dann konvergiert die nach dem Newtonschen Verfahren ennittelte Folge (x„) gegen E.

(Die in Satz 7.14 angegebenen Konvergenzbedingungen lassen sich leichter nachprüfen.)

2 4 2 4 dx
9.1: a) (x3+--7‘ dx= x3dx+ ~——dx— ——3—dx= x3dx+2 ——4 x'3dx

x x x x x

x‘ 2=T+2lnlx|+?+c
(Von: über das Integrationsintervall I: 0¢ I, d. h. x # 0 für alle x e I).

"s" 3/2 2 5/2 2 2 \/_b) \/x dx= x dx=?x +c=—5—x x+c (Vor.:x>0).

. . . 1
9.2: a) Durch die Substitution u = ln x du = — dx erhält man:

x

d 3' 1

f(lnx)2—;‘—= fu2du=%+ c=?(lnx)3 +c.

b) J‘ dx _ dx _ 3 du _ 3 t +

9+2x2— 5 2 '9/5 1+u2—9 Ema” cmit) v i3

l E 5
= _ arctan Lx+ c (Substitution:u=l/3—x).

3„/2 3

c) Durch die Substitution arctan x = u (ädx = du) erhält man:
X

J‘ arctanx d d u’ + 1 ( t )2 +
e x: u u=—- =— .1+)‘: 2 c 2 arcanx c

d) Durch die Substitution z = 8x3 — 1 (dz = 24x2 dx) erhält man: fxz \/§-;3T1dx

= f21_4\/§dz= 217%“/2+ c = 31—6(8x= —1)\/§§?——1+ c

(Von: 8x3 — l g 0 für alle x aus dem Integrationsintervall I).

9.3:a) In !f(x)!, b)2lnlx3 + 2x+ ll, c) —§-In\cos 3xl.

9.4: a) Durch die Substitution u = 4x — 2 (du = 4 dx) erhält man:

dx du/4 l 3 i
D: _=_ —d =__ -2f(4x_2)3 fus 4fu u 814 +c

J- 1

= - +c (vor.:x=i=?fürallexel).

b) Durch partielle Integration erhält man (s. Formel (9.15)):

l l l
J‘xe3"dx=x—j—e3"— -I‘?e3"-Idx=-)3—C-e3"—3e3"+c.
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c) Zweimalige Anwendung der partiellen Integration liefert:

(sin4x)x2dx— —-1-cos4x x2— —icos4x -2xdx
4 4

x’ 1 X2
— Tees 4x + T (cos4x)xdx = —Tcos4x

1 1 _ 1

+ —- [(——sm4x) x — J‘ (—sin4x) - l xix]
2 4 4

x’ x _ l—Tcos4x+?s1n4x +§cos4x+c.

9.5: a) Der Radikand ist durch Partialdivision umzuformen:
—x + 1

x’ + 4x + 3 '

Ansatz für die Partialbruchzerlegung des echt gehrochemrationalen Bruchs:

(2x3+9x’+8x+5):(x2+4x+3)=2x+1+2

—-'x+l A B
————— —- + ————.

x2 + 4x + 3 x + 1 x + 3 -

Durch Einsetzungsmethode folgt leicht A = 1 und B = -2.

2x3+9x’+8x+5 dx dx
——2———————-dx= (2x+I)dx+2 -2

x+4x+3 x+l x+3

|x+l|=x’+x+2In—+c.
(x+3)z

4‘3—21+9—18 A B C+D
b) Ansatz für die Partialbruchzerlegung: = — + T + %.

x (x +_ 9) x x x + 9

Durch Koeffizientenvergleichs- bzw. durch Grenzwertmethode und Einsetzungsmethode folgt:

A_=1, B= -2, c=3‚ D=0.

4x3—2x2+9x—18 dx 2 d.x+3 x

x2(x2 + 9) _ T 7 xz + 9

2 3=ln1xJ+—+—1n(x2+9)+c.
x 2

c) Ansatz für die Partialbruchzerlegung (nach Durchführung der Partialdivision):

x2 + 5 A Bx + C
e; =i+ 2:. <*>(x-l)(x +4) x—1 x+4

A bzw. B, C können durch Grenzwertmethode ermittelt werden. (*) wird mit x — l bzw. x2 + 4

multipliziert, anschließend läßt man x—>l bzw. x—> 2i gehen. Man erhält A = 6/5, B = C = -1/5.

Damit ist die Partialbruchzerlegung durchgeführt. Zwischenergebnis für das gesuchte Integral I:

6 dx l x + l
I = + l d + —- - — dxf“ )x Sfx-l 5_rx1+4

x2 6 1 1 x
=———+x +-—lnix~ 1| ———ln(x‘+4) —-——arctan—+ c.

2 5‘ l0 l0 2
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x + 1 x dx dx ‚ ‚ _

—— dx = ——— + -——; das 1. Integral kann durch die Substitution x’ + 4 = u
X2 + 4 x2 + 4 x2 + 4

gelöst werden, das 2. Integral kann sofort auf das in Formel (9.10) angegebene Grundintegral
zurückgeführt werden.)

d) J‘ xdx _ xdx .

2x2+5x—3 ' (x+3)(2x—1)‘
A .——L— =i+THieraus ergibt SlCh(x+3)(2x—-l) x+3 Zx-l

(z. B. durch Eiusetzungsmethode: x = 0, x = 1) A = 3/7, B = 1/7. Also gilt:

——————-=— — =—n —n x— .

J‘ xdx 3 dx +1 dx 31 I +3I+ 1 1'2 „+6
2x2+5x-3 7 x+3 7 2x—1 7 x 14

(Ansatz für die Partialbruchzerlegung:

(Voraussetzung über das Integrationsintervall I : —— 3 ¢ I, f ¢ I.)

—— 1+1‘
9.6: a) Substitution: \/2x—1=t=>x= , dx=tdt.

dx tdt 2tdt
I: = 1+1‘ = (1+t)2=I"x+\ 2x—-1 TH

I1 ist ein Integral über eine echt gebrochene rationale Funktion, welches nach dem in 9.2. angegebenen

Verfahren („Partialbruchzerlegung“) gelöst werden kann. In diesem Fall kommt man aber auch durch
die Substitution 1 + I = u sehr schnell zum Ziel:

u-l du du 211:2 2 du=2 -——--2 —T=2In\ui+—+c.
u u u - u

Rücktransfonnation u = 1 + t = 1 + \/2x — 1 liefert das Ergebnis:

+c (Vor.:2x—1;0, d.h. xéi).i 2
I= 21n(1+ \/2x— 1) +

1 + 2x — 1

t4 — 2

4 6 . ‚. 3. . g .3 (t —— 2!‘) dt. Integration und Rucktransformation liefert das Ergebnis:

T 4
b) Durch die Substitution t = (/3): + 2 (x = ‚ dx = Y t3 d!) geht das Integral über in

xdx

J 1/3x+2

(Voraussetzung über das Integrationsintervall I: x > — ä für alle xe I, d. h. I C (—-§, 00).)

= 4/(ax + 2)3 (:—3(3x + 2) — + c.

9.7: a) Substitution e" = t=> dt = rdx;

z=1—“=1;7+=1<»i+=* +—*>«e2"—1 t(r’—1) r(t+1)(t—1) x :+1 t-l '

(Bei der letzten Umformung wurde die Partialbruchzerlegung angewendet.)

Hieraus folgt:

I= —lne"+5-ln(e"+ 1)+-1-InJe"-—11+c (Vor.:x=}=0).
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b) Die Substitution t = e" führt auf das Integral

t d’— d’ —1l|1+3z|+ —1l(1+3”)+
1+3: :_ 1+3t_3n 6-?" e C'

(Warum konnten die Betragsstriche durch Klammern ersetzt werden?)

c) Substitution t = e" führt auf das Integral

t-ldt 3 1 11 d’ smwm 111%
_= __..._.____. =—n ——~ I -

1+2 z 2 :+2 2 r 2 2 n’ °

=—ne ——ne =— e —— c.31(*+2) 11(x)+ 31(*+2) x+
2 z c 2" 2

(Bei der ersten Umformung in dieser Gleichungskette wurde die Partialbruchzerlegung angewendet.)

9.8: a) Nach Formel (9.25) gilt:

Ich =J‘1+z’ 2 dt=2J‘ dt z.” 1 + 1)dt
cosx 1—z21+t‘ 1-12 1-: 1+:

=—1n[1—r1+1n!1+t\+c=1n

1

b) I=-———-—+c (Subst.:t=c0sx).
Zcoszx

X
Hinweis: Die Substitution t = tan ? führt auf eine relativ komplizierte Funktion in t.

9.9: Substitution: \/4x2 — 3x + 5 = t + 2x. Durch Quadrieren ergibt sich: 4x2 — 3x + 5

= t‘ + 41x + 4x’. Hieraus folgt:

5-12 dx —2(2:2+ 3z+1o)
=4,+;w :17=—'(:1T)2—

dx z 1 2 —2(2z2+3z2+1o)d!
2- 5-: (4t+3) -4x 3x+5 t+24t+3

=—2f d’ =—Lln[4t+3|+c
4t+3 2

ll

l ‚m.

—?ln|4\/4x2—3x+5—8x+3[ +c.

5
s 1 5 2

10.1: a) fa‘ + x-2) dx = F- — —] = 626 — — = 625,6.
5 x 1 5

l

2

b)‘I‘(1—x3)dx=[)6-%:|2=2—-£=—2.
o

1

c)f3sinxdx= —3cosx|:= —3cos2+3=4‚248.
0
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1:

d) fsinxdx = [—cosx]1:n = —cos7r + cos(—11:)=1 -1 = o.
-1r

10.2: a) y = f(x) = x2 — 4x hat die Nullstellen x1 = 0, x; = 4.

Hieraus folgt: (vgl. Beispiel 10.1)

0 4 5

A = Jf(x)dx— J‘/'(x)dx+ J’f(x)dx=%-+372-+%~=23,67.
-1 o 4

b) xg-l =\x—Z1+\x+11=—(x—2)—(x+1)=—2x+I,
—1§x§Z=lx—2\+]X+1[=—(x—2)+(x+1)=3,
x22 ={x—2J+lx+1I=(x—2)+(x+1) =2x—I.

3 f! 2 3

Hieraus folgt: ff(x)dx= f(—2x+1)dx+ f3dx+_{(2x—1)dx
-3 -3 -1 2

= 10 + 9 + 4 = 23.

10.3: a) %~/5
d J" .

—~——L=[arcsinx]f 2=l~o=1=o,7s5./1_x2 4 4
V

0

l

T: arcanx =—— —— =—= ,.

b) dx l t 1, 7: TE) 1: 157

l+x2 *1 4 4 2
—1

{<2 für 05x53,x ‘ ‘ 9
10.4: F,(x) = {Sx ß äxz _ 15 für 3 < x g 6. X_14i0F,(x) =xll3II:0F1(.X) = F,(3) =

du 2 1

10.5:u=\4 l +2x=>—=j.__==—=>dx=udu.
dx 2„/1 + 2x u

3
‘ xdx _ «}(u2—l)‘udu_l _ _]_ u _

Jfizx-f——-u ~7f‘“’ ‘W-2(r "l
u’ \/1 +2x 1+2x \/1+2x
——1=—~— -1 =j(x—1).

3 2 3 3

l|

N
|=

. . . 1 —‘ ‘ 10
Für das besnmmte Integral erg1bt s1ch dann: ?\/1 + 2x (x — 1) = —3— = 3,33.

U

4 sinxdx —du 1 1 1

l0.6:u=cos.x=> —du=s1nxdx=:» .3: ____.._.__ — du
cos2x——4 u’—-4 4 u+2 u—2

1 1

= T ln l u + 2i — —4-In lu — 2| + c (Partialbruchzerlegung!).

l
2 11

_ sin x dx —du 1 1 ° 1

Hueraus folgt: ———————— = = Tin lu + 2| — 71x1 lu- 21 = — T111 3 = —0,27‚
1cos2x-4 142-4

o 1
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10.7:xo =0,x, =2,x2 = 4,x3 = 6,x4= 8,x_:, =10.
zu

10 +Ix3dx:T[¥+y1+y2+y3+y4J

= 2 + /<2) + m) + f(6) + 1(8)]

= 2[500 + 8 + 64 + 216 + 512] = 2600.

(Tatsächlicher Wert des Integrals: 2500.)

10.8: x0=0, x, =1/2, x1: 1, x3=3/2, x4=2‚ x‚=5/Z,
x5 = 3, x7 = 7/2‚ xs = 4 (n = 8‚ m = 4;)’. =f(xr)). (i = 0J, 8);

.__.. ’ 4fxijl + xzdx z2—4[yo + 40a +5’; +}’5 +y7)+ 2(.vz +}’4+y5)+}’s]-
D

yo =/<x.,> =/<0) = 0 (m) = xi \/1+ x2), ‚V5 = %\/E,
yl =f(x1)=f(i)=%V/5. ‚V5 =9\/E.
y2=f(x2)=f(I)=\/5. y7=%\/5,

y3=x<x3>=/(~:—) =%\/E, J’s=16\/E»

y.. = am = /<2) = 4 J3.
4

Numerische Auswertung ergibt: x’ \/l + x2 dx z 68.
D

10.9: Nach Satz 10.17 gilt für den Flächeninhalt A des vorgegebenen Bereichs:

4

= —x — —x x= —-x x —— =—— ———=—=—.
A J‘(12+J ( ))d [l 3+ +23 4 16+4+l6 104 52

4 12 2 0 3 2 6 3
o

10.10: Die Kurveny = 5x2 undy = 2x haben genau zwei Schnittpunkte (x1, yl) = (0,0) und (x2,y;)
= (4.8). Die Kurvey = ix‘ verläuft auf dem Intervall 0 g x g 4 unterhalb der Kurvey = 2x. Für
den Flächeninhalt des eingeschlossenen Bereichs gilt nach Satz 10.17:

4

l 1 4 l6A=f 2x——x2 dx= x2—~—x3 =——=5,33.
2 6 0 3

Ü

Ä (~sint)t —— cost g (cos t)t — sintl0.ll:a)x=6e’2—‚ y=6-—fi————.
31:

2

_ _ 36 1 _‚ 24
Hieraus folgt: xy — y)‘; = T und A = — 36:" dt = — = 7:64.

t 2 n:
7:

2

b)x=rcos§a=aq:cosqJ, y=rsinq2=mpsinq1.
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Hieraus folgt: x = acosq: — aq: sin¢;o,y = a sinzp + aqzcoszp; xy - yi = azqzz.
w

1 222 a2 3 3A1so:A=? atp d<p=?(m2—<p‚).

W1
8 ___;__

10.12: Für die Bogenlänge S gilt: S = J‘ A/1 + Txdx. Das Integral kann durch die Substi-

tution u = I + T x gelöst werden: “

8 9 9 3
S= — l+—x l+—x x24.

27 4 4 g

10.13: x = a e"“’ cos q), y = a e” sincp ist eine Parameterdarstellung der Spirale. Für die Bogen-
länge S gilt nach Satz 10.19:

s:f’J<%>w:—:rdr«

Aus E = a - e"°’(k costp — sinqz) und d; = ae"°’ (k sinq) + cos qz) folgt:
da? dw

W2 g {W1
s: f \/a’e2""’(k2+1)dqv= a„/k2 +1_{eWdq»

'71 W1

[c2 1 k: l
(CW2 - cram) = \/+(,2 _ n)

(Abkürzung: r, = a e""’=‚ r, ä a e"".)
9

10.14: V =nf(2 \/Q)‘ dx = 1627: = 508,94.
0

9 9

_ 1 ,_

10.15-.A=2nf2\/x (A/1 +—) dx=4nJ\/x+1dx
X

00

____ 9 g ‚.._

[41:?(x +1)\/x +1] = ?n(1o„/1o — 1) z 256,5.
0

4 4

2

A

64 3 ' 3 241o.16:A=fx2dx=T; xs =6—4fxx‘dx= 3. ys=mf(X2)1dX=T=4,8-
0 0 D

7:

10.17: A = fsinxdx = 2; ‘

D

n

1 ' l ‘ I " T" 157x5~ 2fxs1nxdx—— 2[s1n.x xcosx]o— 2 — ‚ .

Ü.
7:

1 . 1 .

ys =-ZJ.s1n2xdx=?[x — s1nxcosx]:: H

00
|

F
!

H „o u
;

so

n
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(Berechnung der Integrale erfolgte mit Hilfe der partiellen Integration.)

m

dx 1 x °° 1 7:
11.1: T: —arctan— =——— (fa1lsa>0).

a2+x2 a a a a 2
o

G)

11.2: 15.24%); = [—1e-"];‘° = 1.
O

U311.3: = = arctanu = arctan (x + 1)=>(x+l)2+l u2+I x2+2x+2
-00

w n n:
— [arctan (x +1)]_w — 7 — -11.

0 .

11.4: fsinxdx = [—cos x]0_w = -1 + cos(—oo) existiert nicht, weil cos (-00) = lim cosx
_°° x—»—oo

nicht existiert. (cos x ist unbestimmt divergent für x —> — o0.)

co
x4 (u m4 m4

11.5: CH Ix’ dx = lim = lim («— —- ——-) = O.
tu-«W 4 —w «Ho 4

— no

Der Cauchysche Hauptwert des uneigentlichen Integrals existiert also und ist gleich null. Das un-

eigentliche Integral selbst existiert nicht, denn es gilt:
P co

jx3dx=—oo und fx3dxzoo.
Äco 0

1

11.6: Wegen e‘ >1Vx > Ogiltxz e" > xivx > 0. Hieraus fo1gt:f(x) = < -2 =: g(x).
Xx2 e‘

W 00

{g(x) dx = 1 (vgl, Beispiel 11.1). Nach Satz 11.1 muß dann auch [f(x) dx existieren.
1 1

l-c1

11.7:a) f W =lim 2W =„m{1-„/1.—x21;-=}

0

\/ .2 :—>+0 ‘/1 X2 5—>+0
o

= lim {-—x/1 — (1 —— s? + 1} = 1; das Integral ist also konvergent.
H +0

ll

ÖX . d)‘ . 1 . . .

b) — = hm -— = hm {[ln x]£} = hm {In 1 — In e} = +oo;dasIntegra1xstalsodnvergent.
X

0
e-v +0 X :—> +0 ea +0

1.

1 1

c) flnxdx =1imf1nxdx =1im{[x1nx — x]:}=1im {-1- Elna + e} = —1; das Inte-
0 5-» +o£ 2» +0 2.» +0

gral ist also konvergent. (Zur Berechnung von I lnx dxs. Beispiel 9.13 in 9.1.5.; lim (e In s) = 0 mit
Hilfe der l’Hospita1schen Regel!) 5*’ *°

Z 1-51 2

dx ‚ dx _ dx ‘

d) T‘ = hm ——7 + hm e = o0 + o0 = o0; das Integral 1st also
(X - Ü s,» +0 (X -1) :2»-+0 (X -1)

o o 1+2;
divergent (s. Beispiel 11.11).
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