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Vorwort

Dem vorliegenden Band 2 dieser Lehrbuchreihe kommt ebenso wie dem Band
1 insofern eine besondere Bedeutung innerhalb des gesamten Lehrwerkes zu,
als nahezu alle anderen Béande darauf auf bauen.

Ein Teil der in diesem Buch behandelten Gegensténde ist auch im Lehrplan
unserer Oberschulen enthalten. Ein Weglassen des dort bereits Dargebotenen
hétte aber zu einer unzusammenhéngenden Darstellung des Gebietes gefiihrt;
auferdem wire nicht gewéhrleistet, dal alle Leser mit den gleichen Vorausset-
zungen die weiteren Bande studieren kénnen.

Eine korrekte Anwendung mathematischer Methoden setzt die genaue Kennt-
nis der zugrunde liegenden Begriffe voraus. Es mufs dem Leser daher dringend
nahegelegt werden, sich um ein volles Verstandnis der eingefithrten Begriffe
zu bemiihen. Anhand von vielen Beispielen wird gezeigt, wie mathematische
Begriffe in den Anwendungen zu interpretieren sind. Ein griindliches Studium
des Textes und das selbstéindige Losen der iiber 100 Ubungsaufgaben sollte
den Leser in die Lage versetzen, die spezifische Anwendbarkeit der behandel-
ten Begriffe und Methoden in seinem Fachgebiet selbst zu erkennen.

Im Interesse einer straffen Darstellung mufste auf eine Reihe von Beweisen
verzichtet werden. Alle Aussagen werden aber erldutert und - soweit méoglich -
geometrisch interpretiert.

Fiir wertvolle Hinweise danken wir vor allem dem Herausgeber, Herrn Prof.
Dr. O. Greuel (Mittweida), den Gutachtern, Herrn Prof. Dr. W. Diick (Ber-
lin) und Herrn Prof. Dr. H. Goering (Magdeburg), sowie Herrn Prof. Dr. G.
Opitz (Dresden). Besonderer Dank gebiihrt Frau I. Kamenz fiir das sorgfalti-
ge Schreiben des Manuskripts. Dem Verlag sei fiir die gute Zusammenarbeit
herzlich gedankt.

Dresden, Januar 1973 E. A. Pforr
W. Schirotzek






Vorwort zur 6. Auflage

In dieser Auflage wurden gegeniiber der vorangegangenen an zwei Stellen in-
haltliche Verédnderungen groferen Umfangs vorgenommen. Im Hinblick auf den
Einsatz von elektronischen Rechnern, insbesondere auch von Taschenrechnern,
war die Darstellung der Naherungsverfahren (Abschnitt 7.7.) zu iiberarbeiten.
Der algorithmische Aspekt wurde starker herausgearbeitet, auf die Formulie-
rung von Algorithmen in einer Programmiersprache jedoch verzichtet. Aufser-
dem wurde der Abschnitt tiber elliptische Integrale (9.3.5.) erweitert.

Fiir die wertvolle Unterstiitzung bei der Uberarbeitung von Abschnitt 7.7. sei
Herrn Dr. sc. nat. S. Dietze (Dresden) herzlich gedankt.

Dresden, Juli 1985 E. A. Pforr
W. Schirotzek
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Differentialrechnung






1. Problemstellung und Historisches

Zur mathematischen Beschreibung von Naturvorgéingen, aber auch von tech-
nischen und 6konomischen Prozessen ist die Differentialrechnung ein unent-
behrliches Hilfsmittel. Es ist daher nicht verwunderlich, daft gerade von Na-
turforschern entscheidende Anstofe zu ihrer Entwicklung ausgingen. Wichtige
Vorarbeiten wurden im 16. und 17. Jahrhundert geleistet. Die eigentlichen
Urheber dieser Disziplin sind aber Isaac Newton (1643-1727) und Gottfried
Wilhelm Leibniz (1646-1716), die die Differential- (und Integral-) Rechnung
etwa gleichzeitig und voneinander unabhéngig zu einem Kalkiil entwickelten.
Newton schuf seine ,Fluxionsrechnung” bei der Ableitung des Gravitationsge-
setzes aus den Keplerschen Gesetzen der Planetenbewegung. Leibniz, der auch

d
das Symbol Ty einfiihrte, ging von dem Problem aus, an eine Kurve in einem
x

vorgegebenen Kurvenpunkt die Tangente zu legen (,Tangentenproblem®). Die
Arbeiten dieser genialen Forscher 16sten eine aufterordentlich rasche Entwick-
lung der Mathematik aus, die ihrerseits in hohem Mafe befruchtend auf ande-
re Wissenschaften wirkte. Entscheidenden Anteil an dieser Entwicklung hatten
die Briider Jakob und Johann Bernoulli (1654-1705 bzw. 1667-1748), auf deren
Vorlesungen auch das erste, 1696 erschienene Lehrbuch der Differential- und
Integralrechnung des Marquis de 1'Hospital (1661-1704) basiert.

Wie wir noch sehen werden, beruht die Differentialrechnung, ebenso wie die
Integralrechnung, auf dem Begriff des Grenzwertes. Zeitlich ging jedoch die kal-
kiilmékige Entwicklung der Differential- und Integralrechnung der strengen Be-
griffsdefinition voran. Daraus entstanden immer héufiger Schwierigkeiten und
Unstimmigkeiten, die sich zunéchst nicht iiberwinden liefsen. Schliefslich fiihrte
Jean le Rond d’Alembert (1717-1783) den Grenzwertbegriff in die Mathematik
ein. Doch erst Bernard Bolzano (1781-1848) und Augustin Louis Cauchy (1789-
1857) wendeten diesen Begriff konsequent an und stellten damit die Infinite-
simalrechnung (zu der man neben der Differential- und Integralrechnung auch
die Theorie der unendlichen Reihen zdhlt) auf ein solides Fundament.

Vor einem Aufbau der Differentialrechnung ist also der Grenzwertbegriff fiir
Funktionen zu behandeln. Zwangslaufig wird man damit zum Begriff der Ste-
tigkeit gefiihrt. Die eigentliche Differentialrechnung beginnt mit der Definition
der Ableitung einer Funktion.
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Alle drei Begriffe werden zur exakten Beschreibung bestimmter Sachverhal-
te in den unterschiedlichsten Gebieten herangezogen. So kann man mit dem
Grenzwertbegriff z. B. das Verhalten einer zeitabhingigen Grofe, ,, nach sehr
langer Zeit charakterisieren, mit dem Begriff der Stetigkeit bzw. Unstetig-
keit den ,kontinuierlichen* bzw. ,sprunghaften” Ablauf eines Vorgangs erfassen
und mit der Ableitung die ,,Anderungsgeschwindigkeitéines Prozesses beschrei-
ben.

Die mathematischen Moglichkeiten reichen jedoch iiber die unmittelbare An-
wendbarkeit dieser Begriffe weit hinaus. So werden wir unter Verwendung der
Differentialrechnung u. a. Naherungsformeln fiir (nichtrationale) Funktionen
herleiten, Methoden zur Ermittlung von Extremwerten angeben und Verfahren
zur numerischen Lésung von Gleichungen behandeln. Dem , Praktiker"werden
damit Hilfsmittel zur Verfiigung gestellt, auf die er fortlaufend zuriickgreifen
muf.



2. Grenzwerte

2.1. Grenzwert einer Funktion fiir x — z

2.1.1. Definition des Grenzwertes einer Funktion fiir x — z,

Im folgenden bedeutet ,Funktion“ stets ,reellwertige Funktion einer reellen
Variablen‘.

Als Vorbereitung auf den Grenzwertbegriff fiir Funktionen behandeln wir das

Beispiel 2.1: An die Parabel y = 22 werde die Sekante durch den festen

11
Kurvenpunkt Py (2, 4) und den variablen Kurvenpunkt P (:c, x2) gelegt (s.

Bild 2.1). Der Anstieg der Sekante ist eine Funktion f von x :

2_ 1
Tt — 7 1
fo =" (o4 ) 2.)
r—3
y rr [T
/) ye ik
_ X-7
, (x+ +)
o) |
: (7 X = -/ A A'x
Bild 2.1. Bild 2.2.

Auf Grund der Anschauung wird man vermuten, dafs bei ,Anndherung” von
1

x an die Stelle 3 die Sekante in eine gewisse ,Grenzlage” iibergeht, also auch

ihr Anstieg (2.1) einen gewissen ,Grenzwert” annimmt. Betrachten wir also die

1 1
Funktion f. An der Stelle z = 3 ist f nicht definiert. Fiir « # 3 gilt
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fay= 2Ty L (+73)- (22)

Die Bildkurve von f ist in Bild 2.2 dargestellt *. Die Anschauung legt jetzt etwa
1
die folgende Formulierung nahe: |Fiir = gegen 3 strebt f(x) gegen 1.

Unsere Aufgabe wird es nun sein, einer solchen Formulierung einen von der
Anschauung unabhéngigen, wohldefinierten Sinn zu geben.

Soll allgemein das Verhalten einer Funktion f bei,,Anndherung” der unabhéngi-
gen Variablen z an eine reelle Zahl xg untersucht werden, so ist es naheliegend,
die Variable = Zahlenfolgen (z,) mit folgenden Eigenschaften durchlaufen zu
lassen:

(E1) z,eD(f)?firallen (n=1,2.3,...),

(E2) z, #zo fiir alle n,

(E 3) T}Ln;oxn = .

Die Eigenschaft (E2) bedeutet, daf das Verhalten von f an der Stelle =g selbst
nicht in Betracht gezogen wird. Daher braucht f auch nur in einer sog. punk-

tierten Umgebung von xg definiert zu sein. Das ist, mit einem ¢ > 0, die Menge
aller x mit

xg—c<x<mzop+cund x #xo (s. Bild 2.3).

pae O >
O

xg—C Zo zo+ C

Bild 2.3.

Das Verhalten von f in einer punktierten Umgebung von xg wird nun durch
das Verhalten der Folge der Funktionswerte f (z,) charakterisiert.

Definition 2.1: Die Funktion f sei (mindestens) in einer punktierten Umge-
bung von xq definiert. Eine Zahl g heifst Grenzwert von f fiir x gegen xy,
in Zeichen

le f(x) =g oder f(z) — g fir x — xo,
T—x0

'n Bild 2.2 soll der kleine Kreis um den Punkt (%, 1> andeuten, daft dieser Punkt nicht

zur Bildkurve von f gehort. Analog wird in den folgenden Beispielen verfahren.
2D(f) bezeichnet den Definitionsbereich von f.
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wenn fiir je de Folge (x,) mit den Eigenschaften (E1), (E2), (E3) die Folge
(f (zn)) gegen g konvergiert.

Damit ist der Begriff des Grenzwertes einer Funktion auf den Grenzwertbegriff
flir Zahlenfolgen zuriickgefiihrt.

In Bild 2.4 haben wir die ersten drei Glieder einer Folge (x,) und der zugehd-
rigen Folge (f (z,,)) eingezeichnet.

A

Y

f(z2)

f(zs3)

f(z1)

Beispiel 2.2: Gesucht ist der Grenzwert der Funktion

2 _ 1
"3

fz) =

.. 1
T firz — —=.
T — 3 2

Es sei (x,) eine beliebige Folge mit

1 1
Ty F B fiir alle n und nh_}ngo Tn = 5 (2.3)

Unter Verwendung von (2.2) und bekannten Grenzwertsétzen fiir Zahlenfolgen



16 2. Grenzwerte

folgt dann
li = 1l L =1l li L1 1—1 2.4
)= I ety ) = gt e p =gt =t (4

Die Giiltigkeit von (2.4) wurde fiir eine beliebige und damit fiir jede Folge (x,)
mit den Eigenschaften (2.3) bewiesen. Daher gilt
2 1
x —_ =
lim 1=1

was in Einklang mit der Anschauung steht (Bild 2.2).

Beispiel 2.3: Wir wollen den Grenzwert der Funktion

fir x#

2 fir z=

Bild 2.5.

1
Obwohl f an der Stelle x = 3 definiert ist, werden auch hier nur Folgen (z;,)

1 1
mit lim z, = 3 betrachtet, fiir die x,, # 3 fir alle n gilt [vegl. (E 2)]. Fir

n—oo
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jede solche Folge erhilt man wie in Beispiel 2.2

2 _ 1
—1 1
lim f(z,)= lim — ‘11 = lim <xn—|—> =1,
n—00 n—00 I, — 5 n—00 2

also ist

lim f(z)=1.

a:—>§

* Aufgabe 2.1

Ermitteln Sie die folgenden Grenzwerte:

. dr+2
a) lim ,
z2—0 x —1

2
—14
b) lim i :
z—=—2 T+ 2

17

1
Beispiel 2.4: Nun soll das Verhalten von f(z) = sin—(z # 0) fir x — 0
x

untersucht werden. Die Bildkurve von f (Bild 2.6) schwankt fiir x — 0 sténdig
zwischen -1 und 1 , wobei die Scheitel immer dichter aufeinander folgen. Wir
wollen zeigen, dafl f flir x+ — 0 keinen Grenzwert hat. Dazu geniigt es, eine

Folge (z,,) mit

xpn # 0 fiir alle n und li_}rn T, =0

(2.5)

anzugeben, fir die die Folge (f (z,)) divergent ist. Setzen wir zum Beispiel

Ty = , dann gilt (2.5), aber wegen

(2n—Dr
f (z,) = sin(nm — 7/2) = (—=1)"*!

ist die Folge (f (z,,)) (unbestimmt) divergent.

Man kann den Beweis auch dadurch fiihren, daft man zwei Folgen (x,,) und (Z,,)
mit den Eigenschaften (2.5) angibt, fiir die die Folgen (f (x,)) und (f (%))

verschiedene Grenzwerte haben.
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Y
j 1
x
1 1
7r T
l 1
Bild 2.6.
* Aufgabe 2.2
Fiithren Sie den Beweis in der soeben angedeuteten Weise durch!
Beispiel 2.5: Abschlieftend betrachten wir noch die Funktion
flz)=(1 —1—3:)% (x > —1,2 #0) fiir z — 0.
1
Fiir die Folge (x,,) mit z,, = - gilt (vgl. Band 1, Abschnitt 10.7.)
lim f(z,) =e. (2.6)

n—o0

Ohne Beweis ? sei mitgeteilt, daR (2.6) sogar fiir jede Folge (z,,) mit z, >

—1,z, # 0 und lim x, = 0 gilt. Damit erhdlt man den fir spitere Anwen-
n—oo

dungen wichtigen Grenzwert

lim(1+z)x =e (2.7)

z—0

2.1.2. Die ,,¢ — 6-Charakterisierung” des Grenzwertes

Auf Grund der Anschauung wird man vermuten, dafs man die Gleichung

lim f(z) = g auch folgendermafen interpretieren kann:
T—T0

wDer Abstand zwischen f(x) und g (also | f(z)—g| ) ist beliebig klein, wenn nur
der Abstand zwischen x und x hinreichend klein, aber von null verschieden
ist.“ In geeigneter Préazisierung ist das der Inhalt des folgenden Satzes, den wir
ohne Beweis angeben.
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Satz 2.1: Die Funktion f sei (mindestens) in einer punktierten Umgebung der
Stelle zp definiert. Genau dann gilt lim f(z) = g, wenn zu jeder (insbesondere
T—TQ

jeder beliebig kleinen) Zahl ¢ > 0 eine Zahl § = d(¢) > 0 existiert, so daf
gilt

[f(z) —gl <e (2.8)

fir alle z mit

0<|z—xo| <9¢ (2.9)

Eine geometrische Deutung dieses Satzes gibt Bild 2.7. Mit den dort verwende-
ten Bezeichnungen bedeutet ILm f(z) = g, dak zu jedem (noch so schmalen)
T—x0

E-Streifen‘

¥y ;
[G-Streifen” | y=f(x)
{
gre \ = N
Ir—1 "‘\*i}::, €-Jtreifen”
N
gt P |
! |
! |
T .
Xpo0  xp  xptf X
Bild 2.7.

um y = g ein , 6-Streifeniim x = z( existiert, so dafs alle Punkte der Bild-
kurve von f, die in diesem , &-Streifen - auker auf der Mittellinie z = x*
- liegen, auch dem vorgegebenen , e-Streifen“dngehdren. Dabei ist offenbar §
im allgemeinen um so kleiner zu wéhlen, je kleiner € vorgegeben ist. Diesen
Sachverhalt soll die Schreibweise § = d(¢) zum Ausdruck bringen.

Beispiel 2.6: Als Anwendung des Satzes wollen wir zeigen, dafs

lim vz =zo (20> 0) (2.10)

T—rT0

*Beweise zu Teil 1 dieses Buches findet man, wenn nichts anderes gesagt ist, in [5] und [10].
Man beachte, daf§ |x — xzo| > 0 dquivalent zu x # xq ist.

S.2.1
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gilt (Bild 2.8). Es sei ein beliebiges € > 0 gegeben. Geméf (2.8) ist ‘f — \/CC()‘
abzuschitzen. Wir erweitern mit \/x + \/zo und erhalten

— 1
ezl o L i< (2.11)

VeVl = e m = Um

fir alle z =2 0 mit |z — z9| < /xoe. Daher setzen wir § gleich der kleineren
der beiden Zahlen xg und /zoe. Fiir alle  mit |z — x¢| < 6 gilt dann z = 0
(warum?) und (2.11).

y =V (z#0)

Bild 2.8.

2.2. Einseitige Grenzwerte

Fiir die Existenz des Grenzwertes lim +/x ist die Voraussetzung xg > 0 we-
T—rT0

sentlich (s. (2.10)), denn fiir zyp < 0 gibt es keine punktierte Umgebung von
zg, in der die Funktion f(z) = z(z = 0) definiert ist. Im Falle zop < 0

existiert lim /7 also nicht. Der Stelle g = 0 kann man sich aber immerhin
T—T0

noch ,von rechts ndhern®, ohne den Definitionsbereich von f zu verlassen. Diese
Uberlegung fithrt zum Begriff der einseitigen Grenzwerte.

Definition 2.2:

Die Funktion f sei (mindestens) in einem Intervall ($0,x0—|—c)5) (c > 0)
definiert. Eine Zahl g, heifit rechtsseitiger Grenzwert von f fiir  gegen xg, in
Zeichen

®Ein solches Intervall nennt man auch punktierte rechtsseitige Umgebung von xg.

D.2.2
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lim f(z) =g oder f(z) =g fir z— xo+0)°,

r—x0+0

wenn fiir jede Folge (x,) mit den Eigenschaften

(E 1) z, € D(f) fiir alle n,

(E 2*) z,, > = fiir alle n,

(E 3) nh_{go Ty = X0

die Folge (f (xy)) gegen g, konvergiert (s. Bild 2.9).

Y

Bild 2.9.

Analog definiert man den linksseitigen Grenzwert g, von f fiir  gegen
xq, in Zeichen

lim Of(x) = g1 oder f(x) — gy fiir & — x9 — 0.
T—To—

Beispiel 2.7:
Es gilt (s. Bild 2.8)

lim vz =0 (2.12)
z——+0

6 . _ . . . _
Statt IEB&O f(x) = gr (bzw. f(x) = gr, fiir £ — 0+0 ) schreibt man kurz llirgof(x) = gr

(bzw. f(z) — gr fiir x — 40 ).
"Vgl. 6
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denn fiir jede Folge (x,) mit x,, > 0 fiir alle n und lim z,, = 0ist lim /z, =
n—oo n—oo
0 (s. Band 1, Abschnitt 10.5.).

Das folgende Beispiel zeigt, dafs der Begriff des einseitigen Grenzwertes auch
fiir Funktionen von Bedeutung ist, die in einer (punktierten) Umgebung von
2o definiert sind.

Beispiel 2.8: Es soll das Verhalten der Funktion

3

— fir 0 < x < 3,
flz)=qx -

z—1 flirax>3

bei ,Annéherung” an die Stelle 2o = 3 untersucht werden (s. Bild 2.10). Ist
() eine beliebige Folge mit 0 < x,, < 3 und li_}rn Tp = 3, dann gilt
n o

Yy ifi‘11r0<:zc§3
y= T
rz—1furxz >3

2 B S N
R ]
3 x
Bild 2.10.
5
lim f(z,)= lim izle
n—00 n—00 I'p, hmn_mo Tn

Daher ist xggriof(x) = 1. Analog erhélt man Iggr}ro f(z)=2.

Uber den Zusammenhang zwischen den einseitigen Grenzwerten und dem Grenz-
wert (schlechthin) gilt der folgende Satz.

Satz 2.2:

Die Funktion f hat genau dann fiir x gegen x(y einen Grenzwert, wenn die S.2.2
einseitigen Grenzwerte von f fiir x gegen x( existieren und iibereinstimmen.
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In diesem Falle gilt

lim f(z)= lim f(z)= lim f(z).

Tr—x0 rx—xg—0 x—x0+0

Nach diesem Satz hat also die in Beispiel 2.8 betrachtete Funktion f wegen
lim f(z) # lim f(x) fiir x — 3 keinen Grenzwert.
z—3-0 z—3+0

* Aufgabe 2.3
Untersuchen Sie das Verhalten der Funktion

el

f(z) (x #0) fir z - +0,2 - —0 und = — 0.
x

2.3. Grenzwert einer Funktion fuir x+ — +0co0 und
T — —00

Zur Charakterisierung des Verhaltens einer Funktion bei unbegrenztem Zuneh-
men oder Abnehmen der unabhéngigen Variablen geben wir die folgende

Definition 2.3: Die Funktion f sei (mindestens) in einem Intervall (a,400)
definiert. Eine Zahl g heift Grenzwert von f fiir * gegen +o0, in Zei-
chen

lim f(x) =g oder f(x) — g fiir z — +o0,

r—-+00

wenn fiir je de Folge (z,) in D(f) mit lim x,, = 400 die Folge (f (z,,)) gegen

n—oo
g konvergiert.

Geometrisch bedeutet lirf f(x) = g, dak sich die Bildkurve von f mit wach-
T—r+00

sendem x immer mehr der Geraden y = g anndhert. Dabei braucht f nicht
monoton zu sein (s. Bild 2.11).

Analog definiert man
lim f(z)=yg.

T—r—00

Im Zusammenhang mit den folgenden Beispielen sei an die Bildkurven der
jeweiligen Funktion erinnert.

D.2.3
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y = f(x)

| \/A\/\v

J’;;
Bild 2.11.
Beispiel 2.9: Es gilt
li L 0 d li L _ 0 (>0 2.13
Jim —p = un Jm = (k> 0, ganz ), (2.13)

denn ist (x,) irgendeine gegen +oo oder —oo bestimmt divergente Folge mit

xTpn # 0 fiir alle n, dann ist, wie man zeigen kann, auch die Folge (:cﬁ)
n=1,2,...

k
Tn

1
bestimmt divergent und daher die Folge <> eine Nullfolge (s. Bild
n=1,2

=1,2,...

2.12 fiir k=2 ).

Beispiel 2.10: Wir wollen die Grenzwertaussage

Iim a*=0 (a>1) (2.14)
T—>—00
beweisen. Es sei also (x,) eine beliebige Folge mit lim z, = —oco. Dann gibt

n—oo
es zu jedem € > 0 eine natiirliche Zahl ng = ng(g), so dak gilt

x, < log, e fir alle n = ny.
Da die Funktion f(z) = a”(a > 1) streng monoton wachsend ist, folgt

|a®™ — 0] = o™ < ¢ fiir alle n = ny.
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Bild 2.12.

Folglich ist lim " = 0. Da die Folge (x,) beliebig war, ist die Behauptung

n—0o0
bewiesen. Ersetzt man x durch —z, so geht (2.14) iiber in

lim a™*=0 (a>1). (2.15)

T—r—+00

Ist 2 eine Variable fiir die Zeit, dann bedeutet die Existenz von 11111 f(x) =g,
Tr—r+00

daf sich die zeitabhéngige Grofe y = f(z) mit zunehmender Zeit immer mehr
dem stationéren (d. h. zeitunabhéngigen) Wert g néhert.

Beispiel 2.11:

Die Geschwindigkeit® v eines fallenden Korpers der Masse m ist unter der An-
nahme eines geschwindigkeitsproportionalen Luftwiderstands (Proportionali-
tatsfaktor £ > 0 ) durch

(=) 20

gegeben ( t : Zeit, vy : Geschwindigkeit zur Zeit ¢t = 0, g : Erdbeschleunigung).
In der Losung zu Aufgabe 2.4 wird gezeigt, dafs gilt

(2.16)

8In 4.2.2. werden wir die Geschwindigkeit einer geradlinigen Bewegung exakt definieren.
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d.h., nach hinreichend langer Zeit t hat die Geschwindigkeit v nahezu den
konstanten Wert % In Bild 2.13 haben wir v als Funktion von ¢ fiir den Fall

vy < ng dargestellt.

2.4. Bestimmte und unbestimmte Divergenz

Besitzt eine Funktion f fiir eine der ,,Bewegungen*

;miﬂ
=

Bild 2.13.

HIERHIERHIERHIERHIER

r—x0; x—20+0,2—=>20—-0; 2— +00,x = —00 (2.17)

einen Grenzwert, dann heift sie fiir diese ,Bewegung* konvergent, andernfalls
divergent. Wie fiir Zahlenfolgen kann man auch fiir Funktionen zwei Arten der
Divergenz unterscheiden.

Definition 2.4: Die Funktion f heifft bestimmt divergent gegen +oo(bzw.—00)
fiir eine der

,Bewegungen® (2.17) der unabhéngigen Variablen x, wenn fiir jede diese ,Bewe-
gung” realisierende Folge ') (z,,) in D(f) die Folge (f (x,,)) bestimmt divergent
gegen +oo( bzw. —o0) ist.

Ist f fiir eine der ,Bewegungen (2.17) weder konvergent noch bestimmt diver-
gent, so heifit f fiir diese ,,Bewegung” unbestimmt divergent. Ist f bestimmt
divergent gegen +oo fiir z — xg, so schreibt man

lim f(z) =400

Tr—xTQ
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und sagt auch, f habe fiir x — zy den uneigentlichen Grenzwert +oo. Analoge
Schreibund Sprechweisen sind in den anderen Féllen bestimmter Divergenz
tiblich.

HIERHIERHIERHIERHIER
Beispiel 2.12: Es gilt

(s. Bild 2.12), denn in Band 1, Beispiel 10.11, wurde gezeigt, daf fiir jede Folge
1
(zp,) mit x,, # 0 fiir alle n und lim x,, = 0 die Folge <

n—oo ;%
gegen +oo ist. Beispiel 2.13: Es soll die Grenzwertaussage

) bestimmt divergent

lim Inz = —oc0
rz—40

bewiesen werden. Es sei (z,,) eine Nullfolge mit =, > 0 fiir alle n. Zu jeder
(insbeson”

dere beliebig grofen) Zahl K > 0 existiert dann eine natiirliche Zahl ny =
no(K), so daf gilt also

Ty = |z, — 0| < e & fiir alle n > ny,
nz, < -K fiir alle n = ny.
Daraus folgt lim Inz, = —oo, und die Behauptung ist bewiesen. Beispiel 2.14:
n—oo

Die Funktion f(z) = sinx ist fiir + — 400 unbestimmt divergent. Zum Beweis
dieser Behauptung betrachten wir die Folge (x,) mit x,, = nm — g(n =1,
2,...) : Offenbar gilt nh_}rrgo T, = +oo, aber wegen f(z,) = (—1)"! ist die
Folge (f (x)) unbestimmt divergent. Ganz entsprechend hatten wir bereits

in Beispiel 2.4 gezeigt, dafs die Funktion f(x) = sinl(x #0 ) firz — 0
unbestimmt divergent ist. v

2.5. Grenzwertsétze In diesem Abschnitt werden einige Regeln fiir das Rech-
nen mit Grenzwerten von Funktionen angegeben. Da der Grenzwertbegriff fiir
Funktionen auf den Grenzwertbegriff fiir Zahlenfolgen zuriickgefiihrt wurde,
kann man diese Regeln leicht aus den entsprechenden Grenzwertsétzen fiir Zah-
lenfolgen ableiten. Wir verzichten auf eine Durchfiihrung der Beweise.

Bemerkung 2.1: Die folgenden fiir die ,,Bewegung“ z — xo formulierten Sétze
gelten sinngemi 3! ) auch fiir die ,,Bewegungen*

r—xo+0,z —2x9—0; x— 400,z — —00.

“Man sagt z. B., die Folge (z,) realisiere die "Bewegung® © — ¢ + 0, wenn z, > xo fir

alle n und lim z, = xo gilt.
n—oo
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Satz 2.3: Die Funktionen f; und f; seien fiir x — x¢ konvergent mit S. 2.3

lim fi(z) = g1, xlglzlo fa(z) = go.

T—T0

Dann gilt
xlggo [fi(z) + fo(z)] = g1 + 9o,
T [(a) ~ fo(@)] = 91— g2

xlingo [efi(x)] = cg1 (c eine Konstante ),
[f1(2) - fa(@)] = g1 - g2.

Ist aukerdem fo(x) # 0 fiir alle = einer punktierten Umgebung von zy und
go # 0, dann gilt auch

lim
T—T0

. file) ¢
im =,
e=z0 fo(z) g2
1) Wird z. B. statt © — z¢ die ,Bewegung” x — 400 betrachtet, so ist in den

folgenden Sétzen ,punktierte Umgebung von zg "durch ,Intervall (a, +00) fu
ersetzen. Analog ist in den anderen Fillen zu verfahren.

Beispiel 2.15: Gesucht ist der Grenzwert

lim z(3 — /)
T—2
Wegen lim z = 2, lim 3 = 3, lim vz = v2(vgl. (2.10)) folgt mit (2.21) und
T2 T2 T—2
(2.19)
lim (3 — vz) = 2(3 — V/2).

r—2

Beispiel 2.16: Es soll der Grenzwert

. 222 + 5
llm ——m——
z——o00 3x2 —4dx + 1

berechnet werden. Daf(z) = 222 + 5z (und auch fo(z) = 32% — 4z + 1) fiir
x — —oo divergent ist, kann man (2.22) nicht unmittelbar auf (2.23) anwenden.
Wir formen daher zunéchst um und erhalten dann unter Verwendung von Satz
2.3 und (2.13)

. 222 + bz . z2 (2+ %)
lim —— = lim 1 :
a——00 312 — 4z + 1 z——00 12 (3 -+ ) z——00 3 —
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S. 2.4 Satz 2.4: Es sei

lim f(z) =0,
T—T0

und fiir alle x einer punktierten Umgebung von xq gelte
f(x) >0 bzw. f(z) <O.

Dann ist 1
lim —— =400 bzw. lim —— = —

% () wos0 1)

Beispiel 2.17: Die Abbildung durch einen sphérischen Hohlspiegel der Brenn-
weite f > 0 wird bei Beschrinkung auf Paraxialstrahlen durch die Glei-

chung
1 1 1

a d f
beschrieben. Dabei ist a bzw. o' die Gegenstands- bzw. Bildweite (s. Bild
2.14).

Aus dieser Gleichung ergibt sich @’ als Funktion ¢ von a zu

dzﬂwzg“é m>aa¢ﬁﬁ.
Mit Satz 2.3 folgt unmittelbar
. 0
s, ela) = — =0,
lim ¢(a) = lim —— = S = f.
a——+00 a—+00 1 — 5 1—-0
Ferner gilt
. 1 a—f 0
lim =

I = =0
a—f+0 p(a) aal?}ro a-f  f?

Ferner gilt
. 1 . a—f 0
11m = 11m = — =
a—sf+0 p(a)  a=f+0 a-f  f2 ’

1
und fiir alle @ > f ist ﬁ > 0. Daraus folgt nach Satz 2.4 unter Beachtung
v(a

von Bemerkung 2.1 die Aussage li?n ng(a) = 400. Entsprechend findet man
a—f+
111}}1 . ¢(a) = —oo. In Bild 2.15 ist die Funktion ¢ dargestellt. (Fiir a > f, also
a—f—

a’ > 0, erhdlt man ein reelles Bild; fiir 0 < a < f, also @’ < 0, ein virtuelles
Bild.)
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Satz 2.5: Es sei S. 2.5

lim fi(z) = lim fo(z) =g,

Tr—T0 Tr—xQ

und fiir alle x einer punktierten Umgebung von xg gelte

fi(x) = f(z) = fo(z).

Dann gilt auch
lim f(z) =g.

T—T0

! ) In diesem Beispiel bezeichnet f also eine Konstante und a die unabhingige
Variable (der Funktion ¢ ).

Beispiel 2.18: Mit Hilfe von Satz 2.5 wollen wir den Grenzwert

sinx

lim
x—0 X

berechnen. Aus Bild 2.16 liest man ab: Der Flacheninhalt des Dreiecks OP; P
ist kleiner als der des Kreissektors OP; P», und dieser ist kleiner als der des
Dreiecks OP; P, d. h., es gilt

2

1 1 1
7-1-sina:<§-1 -x<§‘1-tanxfﬁrx€<0,g).

2

Wegen sinz > 0 fiir xz € (0, g) und der ersten Ungleichung in (2.24) gilt

0<sinx <z fir ($€0,g).

0 < sinz < « fir (:L“EO,%).

Wegen lim 0 =0, lim x = 0 folgt aus (2.25) durch sinngeméfe Anwendung

z—+0 z—+0
von Satz 2.5 auf die ,Bewegung"z — +0

lim sinz =0

z—+0
und daraus
lim sinz = lim sin(—z) = — lim sinz = 0.
z——0 z—+0 z—+0

Wegen (2.26) und (2.27) gilt nach Satz 2.2

limsinz =0
z—0
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und damit

lim cosx = lim (1 — 2sin? E) =1
x—0 r—0 2

Multipliziert man die 2. Ungleichung in (2.24) mit und bildet anschliefend

- sinx
den Kehrwert, so erhélt man fiir z € (0, 5)

sin x

cosx < <1

Wegen cos(—z) = cosz,sin(—z) = —sinzx gilt (2.30) auch fir z € <—g,0),
also in einer punktierten Umgebung von x = 0. Nach Satz 2.5 folgt daher aus
(2.29) und (2.30) schliefslich

. sinzx
lim =1.
x—0 X

* Aufgabe 2.4: Beweisen Sie die Formel (2.16).

2
* Aufgabe 2.5: Berechnen Sie die folgenden Grenzwerte: a) lir% %, b)
z—0 1% —
. T+ 2
lim ——-,
z—+oo 2= — 1
2 3 2 :
-3 4z — 5 3 t
c) lim $3 T2 ) lim Tt e) lim anr f) lim iy
z——oco \ x>+ 7 23 + 3z T—+00 + 2 z—=0 X z—+o00 T

Aufgabe 2.6: Beweisen Sie: Ist f eine echt gebrochen rationale Funktion, so
gilt f(x) — 0 fir x — 400 und fir x — —oo (vgl. Aufgabe 2.5Db ). 2.6.
Die Landauschen Ordnungssymbole Zum Vergleich des Grenzverhaltens zweier
Funktionen erweisen sich die Landauschen * ) Ordnungssymbole o und O (lies
wklein-o* bzw. ,grof-0*) als niitzlich.

2.6. Die Landauschen Ordnungssymbole

Zum Vergleich des Grenzverhaltens zweier Funktionen erweisen sich die Land-
auschen ' ) Ordnungssymbole o und O (lies ,klein-0“ bzw. ,grok-0*) als niitz-
lich.

Definition 2.5: Die Funktionen f und ¢ seien (mindestens) in einer punktierten
Um- D. 2.5 gebung U von zy definiert, und ¢ sei dort von null verschieden.
Gilt

so schreibt man
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Ist i auf U beschrénkt, d.h., gibt es eine positive Zahl m mit
¥

< m fir alle z € U,

so schreibt man
f(z) = O(p(x)) fir x — xo.

Die Symbole

f(x) =o0(p(x)) fir z— +oo,
f®)=0(p(z)) fir z—xp—0 usw.

werden analog definiert (vgl. Fuinote auf Seite 19). Geht aus dem Zusammen-
hang unmifversténdlich hervor, welche ,Bewegung® der unabhéngigen Varia-
blen x betrachtet wird, so lafst man deren Angabe hdufig weg, schreibt also z. B.
nur f(z) = o(p(x)). Konvergieren f und ¢ fiir eine bestimmte ,,Bewegung"von
x gegen null, so bedeutet f(x) = o(p(x)), daks f,schneller ,, von hoherer Ord-
nung gegen null konvergiert als . Entsprechend bedeutet f(z) = O(¢(x)), dak
f, mindestens so schnell ,yon mindestens gleicher Ordnung gegen null konver-
giert wie ¢. Schliefslich sei noch erwidhnt, dafs man statt

auch
f(x) = g(x) + o(p(2))

schreibt; analog fiir O. ') Edmund Landau (1877-1938), deutscher Mathema-
tiker.

Beispiel 2.19: Nach (2.30) und der darauffolgenden Bemerkung gilt in einer
punktierten Umgebung von g =0

sin x

T

Dabher ist sinz = O(x) fiir x — 0. Weiter ist (2.31) dquivalent mit

. sinx—x
lim —— =0,
z—0 xT

und dafiir schreiben wir sinz — 2 = o(x) fiir z — 0 oder

sinx = x 4 o(x) fiir x — 0.
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Bild 2.14.

Spéter werden wir sehen, dafs sogar gilt

sinx =z + O (:c?’) fiir z — 0.
* Aufgabe 2.7: Was bedeutet Formel (2.32) definitionsgeméfs?
3. Stetigkeit 3.1. Der Begriff der Stetigkeit

Mit dem Begriff der Stetigkeit einer Funktion f an einer Stelle xg will man
die Vorstellung, daf das Bild von f an dieser Stelle ,nicht abreiftt"(Bild 3.1),
mathematisch einfangen. Es ist naheliegend, dazu den Grenzwert von f fiir
x — xop mit dem Funktionswert f (z¢) zu vergleichen. Demnach mufs f aufer
in einer punktierten Umgebung von zg nun auch an der Stelle xg selbst, also
in einer vollen Umgebung von xq, definiert sein.

Definition 3.1: Eine in einer Umgebung von zy definierte Funktion f heifst an
der Stelle D. 3.1 xq stetig, wenn gilt

lim f(x) = f (20).-

Tr—xTQ

Fithrt man durch die Substitution x = x¢ + h die neue unabhéngige Variable
h ein, so kann man fiir (3.1) offenbar auch schreiben

lim f (2o + h) = f (zo).

Beispiel 3.1: Nach (2.29) gilt

lim cosz =1 = cos 0,
z—0
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folglich ist f(z) = cosx an der Stelle x = 0 stetig.
Beispiel 3.2: Fiir die Funktion

1
e — 3 1
_f fiir 1’755,
f(@) = TT2 1
2 fii ==
ir z=g

gilt (s. Beispiel 2.3)
1
limf(x):1#2:f<).
z—1 2

1 1
Daher ist f an der Stelle x = 5 nicht stetig (s. Bild 2.5). Fiir jedes = # B ist
f offenbar stetig.

Unter Beachtung der Definition des Grenzwertes einer Funktion erhélt man
die folgende ausfiihrliche Formulierung von Definition 3.1:

D. 3.1* Definition 3.1* : Eine in einer Umgebung von z( definierte Funktion f
heifst an der Stelle z stetig, wenn fiir jede Folge (x,,) in D(f) mit lim z,, = xg
n—oo

gilt 1)

lim f(z,)=f ( lim xn> .
n—oQ n—oo

Die ,, € — d-Charakterisierung”“ des Grenzwertes einer Funktion (s. Satz 2.1)
liefert eine entsprechende Charakterisierung der Stetigkeit: S. 3.1 Satz 3.1: Die
Funktion f sei in einer Umgebung von xg definiert. Genau dann ist f an der
Stelle xg stetig, wenn zu jeder (insbesondere jeder beliebig kleinen) Zahl e > 0
eine Zahl § = d(e) > 0 existiert, so daf gilt

[f(z) = f (zo)| <&
fir alle x mit |z — zg| < 4.

Zur Veranschaulichung dieses Satzes ist in Bild 2.7 nur g durch f (zg) zu er-
setzen. Auf Grund von Satz 3.1 wollen wir den Begriff der Stetigkeit noch an
einem Beispiel aus der Physik interpretieren.

Beispiel 3.3: Die geradlinige Bewegung einer Punktmasse wird durch die Weg-
ZeitFunktion s = s(t)? ) beschrieben. Zur Zeit ty befindet sich die Punktmasse
also am Ort s (tg); diesem Ort wird sie noch beliebig nahe sein, wenn man sie
nur zu einer Zeit ¢ beobachtet, die hinreichend nahe bei ¢y gelegen ist (s. Bild
3.2). Mathematisch bedeutet das: Die Funktion s = s(t) ist an der (beliebigen)
Stelle tg stetig.
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S A

S=5(t)

S+
ﬂfg;'

1
|

e

f '
Ll'j' k
Bild 2.15.

Beispiel 3.4: Unter Verwendung des Satzes 3.1 wollen wir zeigen, daf die Funk-
tion f(x) = |z| an jeder Stelle xq stetig ist. Es sei ein beliebiges € > 0 gegeben.
Dann gilt

|[f(2) = f (wo)| = [|=] = [xol| = |# — wo| <€

fiir alle z mit |« — xg| < 4, falls § = ¢ gesetzt wird. Damit ist zu jedem € > 0 ein
geeignetes 6 > 0 gefunden, also die Behauptung bewiesen, d. h., es gilt

lim |x| = |zg| (zo beliebig).
T—T0

Beispiel 3.5% ): Die Funktion
0 fir =0,
el MR
! ) Die Voraussetzung ,, =, # o fur alle n ist jetzt offenbar entbehrlich. 2 )
In den Anwendungen bezeichnet man héufig die abhéngige Variable und das

Funktionssymbol mit demselben Buchstaben (hier s ). 3) Dieses Beispiel ist
[10] entnommen.
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0 fir x=0
y L Y S P By
7} Y=\ k#i Kk+1 /X'§/(
T2t P
| . |
. i
P ,"% LG
T A mB
f N f"?_‘: P! |
i i L 1) 1 I
1 L ! : 11 ! 1o
-1 % h % 0 W T 7 X
Bild 2.16.

soll auf Stetigkeit an der Stelle x = 0 untersucht werden. Offenbar gilt

0 f@) <] (-12<1)

Wegen iiil(l)() =0 und ig% |z| = |0| = 0 (letzteres nach (3.4) mit xg = 0 ) folgt
aus (3.5) nach Satz 2.5

lim f(z) =0.

z—0
Da auch f(0) = 0 gilt, ist f an der Stelle z = 0 stetig. Das Bild von f besteht
aus zur z-Achse parallelen Geradenstiicken, die fiir z — 0 immer kiirzer werden
und der z-Achse immer néher kommen (Bild 3.3). Das Verhalten von f in einer
(sehr kleinen) Umgebung von x = 0 ist anschaulich nur unvollkommen zu er-
fassen. Dieses Beispiel zeigt also, dafl der durch Definition 3.1 exakt festgelegte
Begriff der Stetigkeit doch wesentlich {iber das der Anschauung Zugéngliche
hinausreicht.
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2" ap = by, bp—1 = an,
2" an_1 = byo — 2oby-1, bp—2 = an—1 + xobp_1,
......... also e e s s s e s e s
z! ca1 = by — xgby, bp = a1 + xoby,
2 ag = g (z0) — wobo, g (w0) = ag + xobo.
3 @ 0 2 6 -8
-1 -3 6
2 1 2
J -3 6
3 -1 3 1, -2
22 T T.I T T.1I




38

x| x| [~ |

2. Grenzwerte

Ap—1 Ap—2 as ai ag

wobn_l xobn_g . xobg xobl I/aﬁobo

Zo
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1. Schritt

2. Schritt

3. Schritt

4. Schritt

5. Schritt

3 0 1 -5 2
6 12 26 42
3 6 13 21 44 = ¢(2)
6 24 74
312 37 [95=4(2)
6 36
_9"(2)
3 18 |[73= N
6
/l/(2)
3 |24= 3
)
Al

9Man beachte, ...

39
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