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Vorwort

Dem vorliegenden Band 2 dieser Lehrbuchreihe kommt ebenso wie dem Band
1 insofern eine besondere Bedeutung innerhalb des gesamten Lehrwerkes zu,
als nahezu alle anderen Bände darauf auf bauen.

Ein Teil der in diesem Buch behandelten Gegenstände ist auch im Lehrplan
unserer Oberschulen enthalten. Ein Weglassen des dort bereits Dargebotenen
hätte aber zu einer unzusammenhängenden Darstellung des Gebietes geführt;
außerdem wäre nicht gewährleistet, daß alle Leser mit den gleichen Vorausset-
zungen die weiteren Bände studieren können.

Eine korrekte Anwendung mathematischer Methoden setzt die genaue Kennt-
nis der zugrunde liegenden Begriffe voraus. Es muß dem Leser daher dringend
nahegelegt werden, sich um ein volles Verständnis der eingeführten Begriffe
zu bemühen. Anhand von vielen Beispielen wird gezeigt, wie mathematische
Begriffe in den Anwendungen zu interpretieren sind. Ein gründliches Studium
des Textes und das selbständige Lösen der über 100 Übungsaufgaben sollte
den Leser in die Lage versetzen, die spezifische Anwendbarkeit der behandel-
ten Begriffe und Methoden in seinem Fachgebiet selbst zu erkennen.

Im Interesse einer straffen Darstellung mußte auf eine Reihe von Beweisen
verzichtet werden. Alle Aussagen werden aber erläutert und - soweit möglich -
geometrisch interpretiert.

Für wertvolle Hinweise danken wir vor allem dem Herausgeber, Herrn Prof.
Dr. O. Greuel (Mittweida), den Gutachtern, Herrn Prof. Dr. W. Dück (Ber-
lin) und Herrn Prof. Dr. H. Goering (Magdeburg), sowie Herrn Prof. Dr. G.
Opitz (Dresden). Besonderer Dank gebührt Frau I. Kamenz für das sorgfälti-
ge Schreiben des Manuskripts. Dem Verlag sei für die gute Zusammenarbeit
herzlich gedankt.

Dresden, Januar 1973 E. A. Pforr

W. Schirotzek





Vorwort zur 6. Auflage

In dieser Auflage wurden gegenüber der vorangegangenen an zwei Stellen in-
haltliche Veränderungen größeren Umfangs vorgenommen. Im Hinblick auf den
Einsatz von elektronischen Rechnern, insbesondere auch von Taschenrechnern,
war die Darstellung der Näherungsverfahren (Abschnitt 7.7.) zu überarbeiten.
Der algorithmische Aspekt wurde stärker herausgearbeitet, auf die Formulie-
rung von Algorithmen in einer Programmiersprache jedoch verzichtet. Außer-
dem wurde der Abschnitt über elliptische Integrale (9.3.5.) erweitert.

Für die wertvolle Unterstützung bei der Überarbeitung von Abschnitt 7.7. sei
Herrn Dr. sc. nat. S. Dietze (Dresden) herzlich gedankt.

Dresden, Juli 1985 E. A. Pforr

W. Schirotzek
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Teil I.

Differentialrechnung





1. Problemstellung und Historisches

Zur mathematischen Beschreibung von Naturvorgängen, aber auch von tech-
nischen und ökonomischen Prozessen ist die Differentialrechnung ein unent-
behrliches Hilfsmittel. Es ist daher nicht verwunderlich, daß gerade von Na-
turforschern entscheidende Anstöße zu ihrer Entwicklung ausgingen. Wichtige
Vorarbeiten wurden im 16. und 17. Jahrhundert geleistet. Die eigentlichen
Urheber dieser Disziplin sind aber Isaac Newton (1643-1727) und Gottfried
Wilhelm Leibniz (1646-1716), die die Differential- (und Integral-) Rechnung
etwa gleichzeitig und voneinander unabhängig zu einem Kalkül entwickelten.
Newton schuf seine „Fluxionsrechnung“ bei der Ableitung des Gravitationsge-
setzes aus den Keplerschen Gesetzen der Planetenbewegung. Leibniz, der auch

das Symbol
dy

dx
einführte, ging von dem Problem aus, an eine Kurve in einem

vorgegebenen Kurvenpunkt die Tangente zu legen („Tangentenproblem“). Die
Arbeiten dieser genialen Forscher lösten eine außerordentlich rasche Entwick-
lung der Mathematik aus, die ihrerseits in hohem Maße befruchtend auf ande-
re Wissenschaften wirkte. Entscheidenden Anteil an dieser Entwicklung hatten
die Brüder Jakob und Johann Bernoulli (1654-1705 bzw. 1667-1748), auf deren
Vorlesungen auch das erste, 1696 erschienene Lehrbuch der Differential- und
Integralrechnung des Marquis de l’Hospital (1661-1704) basiert.

Wie wir noch sehen werden, beruht die Differentialrechnung, ebenso wie die
Integralrechnung, auf dem Begriff des Grenzwertes. Zeitlich ging jedoch die kal-
külmäßige Entwicklung der Differential- und Integralrechnung der strengen Be-
griffsdefinition voran. Daraus entstanden immer häufiger Schwierigkeiten und
Unstimmigkeiten, die sich zunächst nicht überwinden ließen. Schließlich führte
Jean le Rond d’Alembert (1717-1783) den Grenzwertbegriff in die Mathematik
ein. Doch erst Bernard Bolzano (1781-1848) und Augustin Louis Cauchy (1789-
1857) wendeten diesen Begriff konsequent an und stellten damit die Infinite-
simalrechnung (zu der man neben der Differential- und Integralrechnung auch
die Theorie der unendlichen Reihen zählt) auf ein solides Fundament.

Vor einem Aufbau der Differentialrechnung ist also der Grenzwertbegriff für
Funktionen zu behandeln. Zwangsläufig wird man damit zum Begriff der Ste-
tigkeit geführt. Die eigentliche Differentialrechnung beginnt mit der Definition
der Ableitung einer Funktion.
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Alle drei Begriffe werden zur exakten Beschreibung bestimmter Sachverhal-
te in den unterschiedlichsten Gebieten herangezogen. So kann man mit dem
Grenzwertbegriff z. B. das Verhalten einer zeitabhängigen Größe, „ nach sehr
langer Zeit charakterisieren, mit dem Begriff der Stetigkeit bzw. Unstetig-
keit den „kontinuierlichen“ bzw. „sprunghaften“ Ablauf eines Vorgangs erfassen
und mit der Ableitung die „Änderungsgeschwindigkeitëines Prożesses beschrei-
ben.

Die mathematischen Möglichkeiten reichen jedoch über die unmittelbare An-
wendbarkeit dieser Begriffe weit hinaus. So werden wir unter Verwendung der
Differentialrechnung u. a. Näherungsformeln für (nichtrationale) Funktionen
herleiten, Methoden zur Ermittlung von Extremwerten angeben und Verfahren
zur numerischen Lösung von Gleichungen behandeln. Dem „Praktiker"werden
damit Hilfsmittel zur Verfügung gestellt, auf die er fortlaufend zurückgreifen
muß.



2. Grenzwerte

2.1. Grenzwert einer Funktion für x → x0

2.1.1. Definition des Grenzwertes einer Funktion für x → x0

Im folgenden bedeutet „Funktion“ stets „reellwertige Funktion einer reellen
Variablen“.

Als Vorbereitung auf den Grenzwertbegriff für Funktionen behandeln wir das

Beispiel 2.1: An die Parabel y = x2 werde die Sekante durch den festen

Kurvenpunkt P0

(
1

2
,
1

4

)
und den variablen Kurvenpunkt P

(
x, x2

)
gelegt (s.

Bild 2.1). Der Anstieg der Sekante ist eine Funktion f von x :

f(x) =
x2 − 1

4

x− 1
2

(
x ̸= 1

2

)
(2.1)

Bild 2.1. Bild 2.2.

Auf Grund der Anschauung wird man vermuten, daß bei „Annäherung“ von

x an die Stelle
1

2
die Sekante in eine gewisse „Grenzlage“ übergeht, also auch

ihr Anstieg (2.1) einen gewissen „Grenzwert“ annimmt. Betrachten wir also die

Funktion f . An der Stelle x =
1

2
ist f nicht definiert. Für x ̸= 1

2
gilt
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f(x) =

(
x− 1

2

) (
x+ 1

2

)
x− 1

2

= x+
1

2

(
x ̸= 1

2

)
. (2.2)

Die Bildkurve von f ist in Bild 2.2 dargestellt 1. Die Anschauung legt jetzt etwa

die folgende Formulierung nahe: „Für x gegen
1

2
strebt f(x) gegen 1.“

Unsere Aufgabe wird es nun sein, einer solchen Formulierung einen von der
Anschauung unabhängigen, wohldefinierten Sinn zu geben.

Soll allgemein das Verhalten einer Funktion f bei „Annäherung“ der unabhängi-
gen Variablen x an eine reelle Zahl x0 untersucht werden, so ist es naheliegend,
die Variable x Zahlenfolgen (xn) mit folgenden Eigenschaften durchlaufen zu
lassen:

(E 1) xn ∈ D(f)2 für alle n (n = 1, 2, 3, . . .),

(E 2) xn ̸= x0 für alle n,

(E 3) lim
n→∞

xn = x0.

Die Eigenschaft (E2) bedeutet, daß das Verhalten von f an der Stelle x0 selbst
nicht in Betracht gezogen wird. Daher braucht f auch nur in einer sog. punk-
tierten Umgebung von x0 definiert zu sein. Das ist, mit einem c > 0, die Menge
aller x mit

x0 − c < x < x0 + c und x ̸= x0 (s. Bild 2.3).

x0 − C x0 x0 + C x

Bild 2.3.

Das Verhalten von f in einer punktierten Umgebung von x0 wird nun durch
das Verhalten der Folge der Funktionswerte f (xn) charakterisiert.

Definition 2.1: Die Funktion f sei (mindestens) in einer punktierten Umge-D.2.1
bung von x0 definiert. Eine Zahl g heißt Grenzwert von f für x gegen x0,
in Zeichen

lim
x→x0

f(x) = g oder f(x) → g für x → x0,

1In Bild 2.2 soll der kleine Kreis um den Punkt
(
1

2
, 1

)
andeuten, daß dieser Punkt nicht

zur Bildkurve von f gehört. Analog wird in den folgenden Beispielen verfahren.
2D(f) bezeichnet den Definitionsbereich von f .
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wenn für je de Folge (xn) mit den Eigenschaften (E1), (E2), (E3) die Folge
(f (xn)) gegen g konvergiert.

Damit ist der Begriff des Grenzwertes einer Funktion auf den Grenzwertbegriff
für Zahlenfolgen zurückgeführt.

In Bild 2.4 haben wir die ersten drei Glieder einer Folge (xn) und der zugehö-
rigen Folge (f (xn)) eingezeichnet.

x1 x3 x0 x2

f(x1)

f(x3)

g

f(x2)

y = (x)

x

y

Bild 2.4.

Beispiel 2.2: Gesucht ist der Grenzwert der Funktion

f(x) =
x2 − 1

4

x− 1
2

für x → 1

2
.

Es sei (xn) eine beliebige Folge mit

xn ̸= 1

2
für alle n und lim

n→∞
xn =

1

2
. (2.3)

Unter Verwendung von (2.2) und bekannten Grenzwertsätzen für Zahlenfolgen
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folgt dann

lim
n→∞

f (xn) = lim
n→∞

(
xn +

1

2

)
= lim

n→∞
xn + lim

n→∞

1

2
=

1

2
+

1

2
= 1. (2.4)

Die Gültigkeit von (2.4) wurde für eine beliebige und damit für jede Folge (xn)
mit den Eigenschaften (2.3) bewiesen. Daher gilt

lim
x→ 1

2

x2 − 1
4

x− 1
2

= 1

was in Einklang mit der Anschauung steht (Bild 2.2).

Beispiel 2.3: Wir wollen den Grenzwert der Funktion

f(x) =


x2 − 1

4

x− 1
2

für x ̸= 1

2
,

2 für x =
1

2

für x → 1

2
ermitteln (s. Bild 2.5).

1

2

1

2

y =


x2 − 1

4

x− 1
2

für x ̸=
1

2

2 für x =
1

2

x

y

Bild 2.5.

Obwohl f an der Stelle x =
1

2
definiert ist, werden auch hier nur Folgen (xn)

mit lim
n→∞

xn =
1

2
betrachtet, für die xn ̸= 1

2
für alle n gilt [vgl. (E 2)]. Für
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jede solche Folge erhălt man wie in Beispiel 2.2

lim
n→∞

f (xn) = lim
n→∞

x2n − 1
4

xn − 1
2

= lim
n→∞

(
xn +

1

2

)
= 1,

also ist
lim
x→ 1

2

f(x) = 1.

* Aufgabe 2.1

Ermitteln Sie die folgenden Grenzwerte:

a) lim
x→0

3x+ 2

x− 1
,

b) lim
x→−2

x2 − 4

x+ 2
.

Beispiel 2.4: Nun soll das Verhalten von f(x) = sin
1

x
(x ̸= 0) für x → 0

untersucht werden. Die Bildkurve von f (Bild 2.6) schwankt für x → 0 ständig
zwischen -1 und 1 , wobei die Scheitel immer dichter aufeinander folgen. Wir
wollen zeigen, daß f für x → 0 keinen Grenzwert hat. Dazu genügt es, eine
Folge (xn) mit

xn ̸= 0 für alle n und lim
n→∞

xn = 0 (2.5)

anzugeben, für die die Folge (f (xn)) divergent ist. Setzen wir zum Beispiel

xn =
2

(2n− 1)π
, dann gilt (2.5), aber wegen

f (xn) = sin(nπ − π/2) = (−1)n+1

ist die Folge (f (xn)) (unbestimmt) divergent.

Man kann den Beweis auch dadurch führen, daß man zwei Folgen (xn) und (x̃n)
mit den Eigenschaften (2.5) angibt, für die die Folgen (f (xn)) und (f (x̃n))
verschiedene Grenzwerte haben.
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−1

1

− 1

π

1

π

x

y

Bild 2.6.

* Aufgabe 2.2

Führen Sie den Beweis in der soeben angedeuteten Weise durch!

Beispiel 2.5: Abschließend betrachten wir noch die Funktion

f(x) = (1 + x)
1
x (x > −1, x ̸= 0) für x → 0.

Für die Folge (xn) mit xn =
1

n
gilt (vgl. Band 1, Abschnitt 10.7.)

lim
n→∞

f (xn) = e. (2.6)

Ohne Beweis 3 sei mitgeteilt, daß (2.6) sogar für jede Folge (xn) mit xn >
−1, xn ̸= 0 und lim

n→∞
xn = 0 gilt. Damit erhält man den für spätere Anwen-

dungen wichtigen Grenzwert

lim
x→0

(1 + x)
1
x = e (2.7)

2.1.2. Die „ε− δ-Charakterisierung“ des Grenzwertes

Auf Grund der Anschauung wird man vermuten, daß man die Gleichung
lim
x→x0

f(x) = g auch folgendermaßen interpretieren kann:

„Der Abstand zwischen f(x) und g (also |f(x)−g| ) ist beliebig klein, wenn nur
der Abstand zwischen x und x0 hinreichend klein, aber von null verschieden
ist.“ In geeigneter Präzisierung ist das der Inhalt des folgenden Satzes, den wir
ohne Beweis angeben.
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Satz 2.1: Die Funktion f sei (mindestens) in einer punktierten Umgebung der S.2.1
Stelle x0 definiert. Genau dann gilt lim

x→x0

f(x) = g, wenn zu jeder (insbesondere

jeder beliebig kleinen) Zahl ε > 0 eine Zahl δ = δ(ε) > 0 existiert, so daß
gilt

|f(x)− g| < ε (2.8)

für alle x mit

0 < |x− x0| < δ (2.9)

Eine geometrische Deutung dieses Satzes gibt Bild 2.7. Mit den dort verwende-
ten Bezeichnungen bedeutet lim

x→x0

f(x) = g, daß zu jedem (noch so schmalen)

„E-Streifen“

Bild 2.7.

um y = g ein , δ-Streifenüm x = x0 existiert, so daß alle Punkte der Bild-
kurve von f , die in diesem , δ-Streifen“ - außer auf der Mittellinie x = x0

4

- liegen, auch dem vorgegebenen , ε-Streifen“ängehören. Dabei ist offenbar δ
im allgemeinen um so kleiner zu wählen, je kleiner ε vorgegeben ist. Diesen
Sachverhalt soll die Schreibweise δ = δ(ε) zum Ausdruck bringen.

Beispiel 2.6: Als Anwendung des Satzes wollen wir zeigen, daß

lim
x→x0

√
x =

√
x0 (x0 > 0) (2.10)

3Beweise zu Teil 1 dieses Buches findet man, wenn nichts anderes gesagt ist, in [5] und [10].
4Man beachte, daß |x− x0| > 0 äquivalent zu x ̸= x0 ist.
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gilt (Bild 2.8). Es sei ein beliebiges ε > 0 gegeben. Gemäß (2.8) ist
∣∣√x−

√
x0

∣∣
abzuschätzen. Wir erweitern mit

√
x+

√
x0 und erhalten

∣∣√x−
√
x0

∣∣ = |x− x0|√
x+

√
x0

≦
1

√
x0

|x− x0| < ε (2.11)

für alle x ≧ 0 mit |x− x0| <
√
x0ε. Daher setzen wir δ gleich der kleineren

der beiden Zahlen x0 und
√
x0ε. Für alle x mit |x− x0| < δ gilt dann x ≧ 0

(warum?) und (2.11).

x0

√
x0

0

y =
√
x (x ̸= 0)

x

y

Bild 2.8.

2.2. Einseitige Grenzwerte

Für die Existenz des Grenzwertes lim
x→x0

√
x ist die Voraussetzung x0 > 0 we-

sentlich (s. (2.10)), denn für x0 ≦ 0 gibt es keine punktierte Umgebung von
x0, in der die Funktion f(x) =

√
x(x ≧ 0) definiert ist. Im Falle x0 ≦ 0

existiert lim
x→x0

√
x also nicht. Der Stelle x0 = 0 kann man sich aber immerhin

noch „von rechts nähern“, ohne den Definitionsbereich von f zu verlassen. Diese
Überlegung führt zum Begriff der einseitigen Grenzwerte.

Definition 2.2: D.2.2

Die Funktion f sei (mindestens) in einem Intervall (x0, x0 + c) 5) (c > 0)
definiert. Eine Zahl gr heißt rechtsseitiger Grenzwert von f für x gegen x0, in
Zeichen

5Ein solches Intervall nennt man auch punktierte rechtsseitige Umgebung von x0.
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lim
x→x0+0

f(x) = gr oder f(x) → gr für x → x0 + 0)6,

wenn für jede Folge (xn) mit den Eigenschaften

(E 1) xn ∈ D(f) für alle n,

(E 2*) xn > x0 für alle n,

(E 3) lim
n→∞

xn = x0

die Folge (f (xn)) gegen gr konvergiert (s. Bild 2.9).

x0 x3 x2 x1

gr

f(x3)

f(x2)

f(x1)

x

y

Bild 2.9.

Analog definiert man den linksseitigen Grenzwert g1 von f für x gegen
x0, in Zeichen

lim
x→x0−0

f(x) = g1 oder f(x) → g1 für x → x0 − 07.

Beispiel 2.7:

Es gilt (s. Bild 2.8)

lim
x→+0

√
x = 0 (2.12)

6 Statt lim
x→0+0

f(x) = gr (bzw. f(x) → gr, für x → 0+0 ) schreibt man kurz lim
x→+0

f(x) = gr

(bzw. f(x) → gr für x → +0 ).
7Vgl. 6
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denn für jede Folge (xn) mit xn > 0 für alle n und lim
n→∞

xn = 0 ist lim
n→∞

√
xn =

0 (s. Band 1, Abschnitt 10.5.).

Das folgende Beispiel zeigt, daß der Begriff des einseitigen Grenzwertes auch
für Funktionen von Bedeutung ist, die in einer (punktierten) Umgebung von
x0 definiert sind.

Beispiel 2.8: Es soll das Verhalten der Funktion

f(x) =


3

x
für 0 < x ≦ 3,

x− 1 für x > 3

bei „Annäherung“ an die Stelle x0 = 3 untersucht werden (s. Bild 2.10). Ist
(xn) eine beliebige Folge mit 0 < xn < 3 und lim

n→∞
xn = 3, dann gilt

3

1

2

y =

{
3

x
für 0 < x ≤ 3

x− 1 für x > 3

x

y

Bild 2.10.

lim
n→∞

f (xn) = lim
n→∞

3

xn
=

limn→∞ 3

limn→∞ xn
= 1

Daher ist lim
x→3−0

f(x) = 1. Analog erhält man lim
x→3+0

f(x) = 2.

Über den Zusammenhang zwischen den einseitigen Grenzwerten und dem Grenz-
wert (schlechthin) gilt der folgende Satz.

Satz 2.2:

Die Funktion f hat genau dann für x gegen x0 einen Grenzwert, wenn die S.2.2
einseitigen Grenzwerte von f für x gegen x0 existieren und übereinstimmen.
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In diesem Falle gilt

lim
x→x0

f(x) = lim
x→x0−0

f(x) = lim
x→x0+0

f(x).

Nach diesem Satz hat also die in Beispiel 2.8 betrachtete Funktion f wegen
lim

x→3−0
f(x) ̸= lim

x→3+0
f(x) für x → 3 keinen Grenzwert.

* Aufgabe 2.3

Untersuchen Sie das Verhalten der Funktion

f(x) =
|x|
x
(x ̸= 0) für x → +0, x → −0 und x → 0.

2.3. Grenzwert einer Funktion für x → +∞ und
x → −∞

Zur Charakterisierung des Verhaltens einer Funktion bei unbegrenztem Zuneh-
men oder Abnehmen der unabhängigen Variablen geben wir die folgende

Definition 2.3: Die Funktion f sei (mindestens) in einem Intervall (a,+∞) D.2.3
definiert. Eine Zahl g heißt Grenzwert von f für x gegen +∞, in Zei-
chen

lim
x→+∞

f(x) = g oder f(x) → g für x → +∞,

wenn für je de Folge (xn) in D(f) mit lim
n→∞

xn = +∞ die Folge (f (xn)) gegen
g konvergiert.

Geometrisch bedeutet lim
x→+∞

f(x) = g, daß sich die Bildkurve von f mit wach-
sendem x immer mehr der Geraden y = g annähert. Dabei braucht f nicht
monoton zu sein (s. Bild 2.11).

Analog definiert man
lim

x→−∞
f(x) = g.

Im Zusammenhang mit den folgenden Beispielen sei an die Bildkurven der
jeweiligen Funktion erinnert.
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g

y = f(x)

x

y

Bild 2.11.

Beispiel 2.9: Es gilt

lim
x→+∞

1

xk
= 0 und lim

x→−∞

1

xk
= 0 (k > 0, ganz ), (2.13)

denn ist (xn) irgendeine gegen +∞ oder −∞ bestimmt divergente Folge mit
xn ̸= 0 für alle n, dann ist, wie man zeigen kann, auch die Folge

(
xkn

)
n=1,2,...

bestimmt divergent und daher die Folge
(

1

xkn

)
n=1,2,...

eine Nullfolge (s. Bild

2.12 für k = 2 ).

Beispiel 2.10: Wir wollen die Grenzwertaussage

lim
x→−∞

ax = 0 (a > 1) (2.14)

beweisen. Es sei also (xn) eine beliebige Folge mit lim
n→∞

xn = −∞. Dann gibt
es zu jedem ε > 0 eine natürliche Zahl n0 = n0(ε), so daß gilt

xn < loga ε für alle n ≧ n0.

Da die Funktion f(x) = ax(a > 1) streng monoton wachsend ist, folgt

|axn − 0| = axn < ε für alle n ≧ n0.
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−3 −2 −1 1 2 3

−1

1

2

3

4

y =
1

x2
(x ̸= 0)

x

y

Bild 2.12.

Folglich ist lim
n→∞

axn = 0. Da die Folge (xn) beliebig war, ist die Behauptung
bewiesen. Ersetzt man x durch −x, so geht (2.14) über in

lim
x→+∞

a−x = 0 (a > 1). (2.15)

Ist x eine Variable für die Zeit, dann bedeutet die Existenz von lim
x→+∞

f(x) = g,

daß sich die zeitabhängige Größe y = f(x) mit zunehmender Zeit immer mehr
dem stationären (d. h. zeitunabhängigen) Wert g nähert.

Beispiel 2.11:

Die Geschwindigkeit8 v eines fallenden Körpers der Masse m ist unter der An-
nahme eines geschwindigkeitsproportionalen Luftwiderstands (Proportionali-
tätsfaktor k > 0 ) durch

v =
(
v0 −

m g

k

)
e−

k
m
t +

m g

k
(t ≧ 0)

gegeben ( t : Zeit, v0 : Geschwindigkeit zur Zeit t = 0, g : Erdbeschleunigung).
In der Lösung zu Aufgabe 2.4 wird gezeigt, daß gilt

lim
t→+∞

v =
m g

k
, (2.16)

8In 4.2.2. werden wir die Geschwindigkeit einer geradlinigen Bewegung exakt definieren.
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d.h., nach hinreichend langer Zeit t hat die Geschwindigkeit v nahezu den
konstanten Wert

m g

k
. In Bild 2.13 haben wir v als Funktion von t für den Fall

v0 <
m g

k
dargestellt.

2.4. Bestimmte und unbestimmte Divergenz

Besitzt eine Funktion f für eine der „Bewegungen“

Bild 2.13.

HIERHIERHIERHIERHIER

x → x0; x → x0 + 0, x → x0 − 0; x → +∞, x → −∞ (2.17)

einen Grenzwert, dann heißt sie für diese „Bewegung“ konvergent, andernfalls
divergent. Wie für Zahlenfolgen kann man auch für Funktionen zwei Arten der
Divergenz unterscheiden.

Definition 2.4: Die Funktion f heißt bestimmt divergent gegen +∞(bzw.−∞)D.2.4
für eine der

„Bewegungen“ (2.17) der unabhängigen Variablen x, wenn für jede diese „Bewe-
gung“ realisierende Folge 1

)
(xn) in D(f) die Folge (f (xn)) bestimmt divergent

gegen +∞( bzw. −∞) ist.

Ist f für eine der „Bewegungen“ (2.17) weder konvergent noch bestimmt diver-
gent, so heißt f für diese „Bewegung“ unbestimmt divergent. Ist f bestimmt
divergent gegen +∞ für x → x0, so schreibt man

lim
x→x0

f(x) = +∞
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und sagt auch, f habe für x → x0 den uneigentlichen Grenzwert +∞. Analoge
Schreibund Sprechweisen sind in den anderen Fällen bestimmter Divergenz
üblich.

HIERHIERHIERHIERHIER

Beispiel 2.12: Es gilt

lim
x→0

1

x2
= +∞

(s. Bild 2.12), denn in Band 1, Beispiel 10.11, wurde gezeigt, daß für jede Folge

(xn) mit xn ̸= 0 für alle n und lim
n→∞

xn = 0 die Folge
(

1

x2n

)
bestimmt divergent

gegen +∞ ist. Beispiel 2.13: Es soll die Grenzwertaussage

lim
x→+0

lnx = −∞

bewiesen werden. Es sei (xn) eine Nullfolge mit xn > 0 für alle n. Zu jeder
(insbeson9

dere beliebig großen) Zahl K > 0 existiert dann eine natürliche Zahl n0 =
n0(K), so daß gilt also

xn = |xn − 0| < e−K für alle n ≧ n0,
lnxn < −K für alle n ≧ n0.

Daraus folgt lim
n→∞

lnxn = −∞, und die Behauptung ist bewiesen. Beispiel 2.14:
Die Funktion f(x) = sinx ist für x → +∞ unbestimmt divergent. Zum Beweis
dieser Behauptung betrachten wir die Folge (xn) mit xn = nπ − π

2
(n = 1,

2, . . .) : Offenbar gilt lim
n→∞

xn = +∞, aber wegen f (xn) = (−1)n+1 ist die
Folge (f (xn)) unbestimmt divergent. Ganz entsprechend hatten wir bereits

in Beispiel 2.4 gezeigt, daß die Funktion f(x) = sin
1

x
(x ̸= 0 ) für x → 0

unbestimmt divergent ist.

2.5. Grenzwertsätze In diesem Abschnitt werden einige Regeln für das Rech-
nen mit Grenzwerten von Funktionen angegeben. Da der Grenzwertbegriff für
Funktionen auf den Grenzwertbegriff für Zahlenfolgen zurückgeführt wurde,
kann man diese Regeln leicht aus den entsprechenden Grenzwertsätzen für Zah-
lenfolgen ableiten. Wir verzichten auf eine Durchführung der Beweise.

Bemerkung 2.1: Die folgenden für die „Bewegung“ x → x0 formulierten Sätze
gelten sinngemä β1 ) auch für die „Bewegungen“

x → x0 + 0, x → x0 − 0; x → +∞, x → −∞.

9Man sagt z. B., die Folge (xn) realisiere die "Bewegung“ x → x0 + 0, wenn xn > x0 für
alle n und lim

n→∞
xn = x0 gilt.
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Satz 2.3: Die Funktionen f1 und f2 seien für x → x0 konvergent mit S. 2.3

lim
x→x0

f1(x) = g1, lim
x→x0

f2(x) = g2.

Dann gilt
lim
x→x0

[f1(x) + f2(x)] = g1 + g2,

lim
x→x0

[f1(x)− f2(x)] = g1 − g2,

lim
x→x0

[cf1(x)] = cg1 (c eine Konstante ),

lim
x→x0

[f1(x) · f2(x)] = g1 · g2.

Ist außerdem f2(x) ̸= 0 für alle x einer punktierten Umgebung von x0 und
g2 ̸= 0, dann gilt auch

lim
x→x0

f1(x)

f2(x)
=

g1
g2

.

1) Wird z. B. statt x → x0 die „Bewegung“ x → +∞ betrachtet, so ist in den
folgenden Sätzen „punktierte Umgebung von x0 "durch „Intervall (a,+∞) ßu
ersetzen. Analog ist in den anderen Fällen zu verfahren.

Beispiel 2.15: Gesucht ist der Grenzwert

lim
x→2

x(3−
√
x)

Wegen lim
x→2

x = 2, lim
x→2

3 = 3, lim
x→2

√
x =

√
2(vgl. (2.10)) folgt mit (2.21) und

(2.19)
lim
x→2

x(3−
√
x) = 2(3−

√
2).

Beispiel 2.16: Es soll der Grenzwert

lim
x→−∞

2x2 + 5x

3x2 − 4x+ 1

berechnet werden. Daf1(x) = 2x2 + 5x (und auch f2(x) = 3x2 − 4x + 1 ) für
x → −∞ divergent ist, kann man (2.22) nicht unmittelbar auf (2.23) anwenden.
Wir formen daher zunächst um und erhalten dann unter Verwendung von Satz
2.3 und (2.13)

lim
x→−∞

2x2 + 5x

3x2 − 4x+ 1
= lim

x→−∞

x2
(
2 + 5

x

)
x2

(
3− 4

x + 1
x2

) = lim
x→−∞

2 + 5
x

3− 4
x + 1

x2

=
2 + 0

3− 0 + 0
=

2

3
.
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S. 2.4 Satz 2.4: Es sei
lim
x→x0

f(x) = 0,

und für alle x einer punktierten Umgebung von x0 gelte

f(x) > 0 bzw. f(x) < 0.

Dann ist
lim
x→x0

1

f(x)
= +∞ bzw. lim

x→x0

1

f(x)
= −∞.

Beispiel 2.17: Die Abbildung durch einen sphärischen Hohlspiegel der Brenn-
weite f > 0 wird bei Beschränkung auf Paraxialstrahlen durch die Glei-
chung

1

a
+

1

a′
=

1

f

beschrieben. Dabei ist a bzw. a′ die Gegenstands- bzw. Bildweite (s. Bild
2.14).

Aus dieser Gleichung ergibt sich a′ als Funktion φ von a zu

a′ = φ(a) =
a · f
a− f

(a > 0, a ̸= f)1
)
.

Mit Satz 2.3 folgt unmittelbar

lim
a→+0

φ(a) =
0

−f
= 0,

lim
a→+∞

φ(a) = lim
a→+∞

f

1− f
a

=
f

1− 0
= f.

Ferner gilt

lim
a→f+0

1

φ(a)
= lim

a→f+0

a− f

a · f
=

0

f2
= 0

Ferner gilt

lim
a→f+0

1

φ(a)
= lim

a→f+0

a− f

a · f
=

0

f2
= 0,

und für alle a > f ist
1

φ(a)
> 0. Daraus folgt nach Satz 2.4 unter Beachtung

von Bemerkung 2.1 die Aussage lim
a→f+0

φ(a) = +∞. Entsprechend findet man

lim
a→f−0

φ(a) = −∞. In Bild 2.15 ist die Funktion φ dargestellt. (Für a > f , also

a′ > 0, erhält man ein reelles Bild; für 0 < a < f , also a′ < 0, ein virtuelles
Bild.)
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Satz 2.5: Es sei S. 2.5

lim
x→x0

f1(x) = lim
x→x0

f2(x) = g,

und für alle x einer punktierten Umgebung von x0 gelte

f1(x) ≦ f(x) ≦ f2(x).

Dann gilt auch
lim
x→x0

f(x) = g.

1 ) In diesem Beispiel bezeichnet f also eine Konstante und a die unabhängige
Variable (der Funktion φ ).

Beispiel 2.18: Mit Hilfe von Satz 2.5 wollen wir den Grenzwert

lim
x→0

sinx

x

berechnen. Aus Bild 2.16 liest man ab: Der Flächeninhalt des Dreiecks OP1P2

ist kleiner als der des Kreissektors OP1P2, und dieser ist kleiner als der des
Dreiecks OP1P3, d. h., es gilt

1

2
· 1 · sinx <

1

2
· 12 · x <

1

2
· 1 · tanx für x ∈

(
0,

π

2

)
.

Wegen sinx > 0 für x ∈
(
0,

π

2

)
und der ersten Ungleichung in (2.24) gilt

0 < sinx < x für
(
x ∈ 0,

π

2

)
.

0 < sinx < x für
(
x ∈ 0,

π

2

)
.

Wegen lim
x→+0

0 = 0, lim
x→+0

x = 0 folgt aus (2.25) durch sinngemäße Anwendung

von Satz 2.5 auf die „Bewegung“"x → +0

lim
x→+0

sinx = 0

und daraus

lim
x→−0

sinx = lim
x→+0

sin(−x) = − lim
x→+0

sinx = 0.

Wegen (2.26) und (2.27) gilt nach Satz 2.2

lim
x→0

sinx = 0
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und damit
lim
x→0

cosx = lim
x→0

(
1− 2 sin2

x

2

)
= 1

Multipliziert man die 2. Ungleichung in (2.24) mit
2

sinx
und bildet anschließend

den Kehrwert, so erhält man für x ∈
(
0,

π

2

)
cosx <

sinx

x
< 1

Wegen cos(−x) = cosx, sin(−x) = − sinx gilt (2.30) auch für x ∈
(
−π

2
, 0
)
,

also in einer punktierten Umgebung von x = 0. Nach Satz 2.5 folgt daher aus
(2.29) und (2.30) schließlich

lim
x→0

sinx

x
= 1.

* Aufgabe 2.4: Beweisen Sie die Formel (2.16).

* Aufgabe 2.5: Berechnen Sie die folgenden Grenzwerte: a) lim
x→0

x+ 2

x2 − 1
, b)

lim
x→+∞

x+ 2

x2 − 1
,

c) lim
x→−∞

(
x2 − 3x

x3 + 7
+

4x3 − 5

2x3 + 3x

)
d) lim

x→+∞

x2 + 3

x+ 2
e) lim

x→0

tanx

x
f) lim

x→+∞

sinx

x
.

Aufgabe 2.6: Beweisen Sie: Ist f eine echt gebrochen rationale Funktion, so
gilt f(x) → 0 für x → +∞ und für x → −∞ (vgl. Aufgabe 2.5 b ). 2.6.
Die Landauschen Ordnungssymbole Zum Vergleich des Grenzverhaltens zweier
Funktionen erweisen sich die Landauschen 1 ) Ordnungssymbole o und O (lies
„klein-o“ bzw. ,groß-o“) als nützlich.

2.6. Die Landauschen Ordnungssymbole

Zum Vergleich des Grenzverhaltens zweier Funktionen erweisen sich die Land-
auschen 1 ) Ordnungssymbole o und O (lies „klein-o“ bzw. ,groß-o“) als nütz-
lich.

Definition 2.5: Die Funktionen f und φ seien (mindestens) in einer punktierten
Um- D. 2.5 gebung U von x0 definiert, und φ sei dort von null verschieden.
Gilt

lim
x→x0

f(x)

φ(x)
= 0

so schreibt man
f(x) = o(φ(x)) für x → x0.
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Ist
f

φ
auf U beschränkt, d.h., gibt es eine positive Zahl m mit

∣∣∣∣f(x)φ(x)

∣∣∣∣ ≦ m für alle x ∈ U,

so schreibt man
f(x) = O(φ(x)) für x → x0.

Die Symbole

f(x) = o(φ(x)) für x → +∞,
f(x) = O(φ(x)) für x → x0 − 0 usw.

werden analog definiert (vgl. Fußnote auf Seite 19). Geht aus dem Zusammen-
hang unmißverständlich hervor, welche ,Bewegung“ der unabhängigen Varia-
blen x betrachtet wird, so läßt man deren Angabe häufig weg, schreibt also z. B.
nur f(x) = o(φ(x)). Konvergieren f und φ für eine bestimmte „Bewegung“"von
x gegen null, so bedeutet f(x) = o(φ(x)), daß f „schneller „ von höherer Ord-
nung gegen null konvergiert als φ. Entsprechend bedeutet f(x) = O(φ(x)), daß
f , mindestens so schnell „von mindestens gleicher Ordnung gegen null konver-
giert wie φ. Schließlich sei noch erwähnt, daß man statt

f(x)− g(x) = o(φ(x))

f(x) = g(x) + o(φ(x))

auch
f(x) = g(x) + o(φ(x))

schreibt; analog für O. 1
)

Edmund Landau (1877-1938), deutscher Mathema-
tiker.

Beispiel 2.19: Nach (2.30) und der darauffolgenden Bemerkung gilt in einer
punktierten Umgebung von x0 = 0∣∣∣∣sinxx

∣∣∣∣ < 1.

Daher ist sinx = O(x) für x → 0. Weiter ist (2.31) äquivalent mit

lim
x→0

sinx− x

x
= 0,

und dafür schreiben wir sinx− x = o(x) für x → 0 oder

sinx = x+ o(x) für x → 0.
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Bild 2.14.

Später werden wir sehen, daß sogar gilt

sinx = x+O
(
x3

)
für x → 0.

* Aufgabe 2.7: Was bedeutet Formel (2.32) definitionsgemäß?

3. Stetigkeit 3.1. Der Begriff der Stetigkeit

Mit dem Begriff der Stetigkeit einer Funktion f an einer Stelle x0 will man
die Vorstellung, daß das Bild von f an dieser Stelle ,nicht abreißt"(Bild 3.1),
mathematisch einfangen. Es ist naheliegend, dazu den Grenzwert von f für
x → x0 mit dem Funktionswert f (x0) zu vergleichen. Demnach muß f außer
in einer punktierten Umgebung von x0 nun auch an der Stelle x0 selbst, also
in einer vollen Umgebung von x0, definiert sein.

Definition 3.1: Eine in einer Umgebung von x0 definierte Funktion f heißt an
der Stelle D. 3.1 x0 stetig, wenn gilt

lim
x→x0

f(x) = f (x0) .

Führt man durch die Substitution x = x0 + h die neue unabhängige Variable
h ein, so kann man für (3.1) offenbar auch schreiben

lim
h→0

f (x0 + h) = f (x0) .

Beispiel 3.1: Nach (2.29) gilt

lim
x→0

cosx = 1 = cos 0,
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folglich ist f(x) = cosx an der Stelle x = 0 stetig.

Beispiel 3.2: Für die Funktion

f(x) =


x2 − 1

4

x− 1
2

für x ̸= 1

2
,

2 für x =
1

2

gilt (s. Beispiel 2.3)

lim
x→ 1

2

f(x) = 1 ̸= 2 = f

(
1

2

)
.

Daher ist f an der Stelle x =
1

2
nicht stetig (s. Bild 2.5). Für jedes x ̸= 1

2
ist

f offenbar stetig.

Unter Beachtung der Definition des Grenzwertes einer Funktion erhält man
die folgende ausführliche Formulierung von Definition 3.1:

D. 3.1* Definition 3.1* : Eine in einer Umgebung von x0 definierte Funktion f
heißt an der Stelle x0 stetig, wenn für jede Folge (xn) in D(f) mit lim

n→∞
xn = x0

gilt 1 )
lim
n→∞

f (xn) = f
(
lim
n→∞

xn

)
.

Die „ ε − δ-Charakterisierung“ des Grenzwertes einer Funktion (s. Satz 2.1)
liefert eine entsprechende Charakterisierung der Stetigkeit: S. 3.1 Satz 3.1: Die
Funktion f sei in einer Umgebung von x0 definiert. Genau dann ist f an der
Stelle x0 stetig, wenn zu jeder (insbesondere jeder beliebig kleinen) Zahl ε > 0
eine Zahl δ = δ(ε) > 0 existiert, so daß gilt

|f(x)− f (x0)| < ε

für alle x mit |x− x0| < δ.

Zur Veranschaulichung dieses Satzes ist in Bild 2.7 nur g durch f (x0) zu er-
setzen. Auf Grund von Satz 3.1 wollen wir den Begriff der Stetigkeit noch an
einem Beispiel aus der Physik interpretieren.

Beispiel 3.3: Die geradlinige Bewegung einer Punktmasse wird durch die Weg-
ZeitFunktion s = s(t)2 ) beschrieben. Zur Zeit t0 befindet sich die Punktmasse
also am Ort s (t0); diesem Ort wird sie noch beliebig nahe sein, wenn man sie
nur zu einer Zeit t beobachtet, die hinreichend nahe bei t0 gelegen ist (s. Bild
3.2). Mathematisch bedeutet das: Die Funktion s = s(t) ist an der (beliebigen)
Stelle t0 stetig.
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Bild 2.15.

Beispiel 3.4: Unter Verwendung des Satzes 3.1 wollen wir zeigen, daß die Funk-
tion f(x) = |x| an jeder Stelle x0 stetig ist. Es sei ein beliebiges ε > 0 gegeben.
Dann gilt

|f(x)− f (x0)| = ||x| − |x0∥ ≦ |x− x0| < ε

für alle x mit |x− x0| < δ, falls δ = ε gesetzt wird. Damit ist zu jedem ε > 0 ein
geeignetes δ > 0 gefunden, also die Behauptung bewiesen, d. h., es gilt

lim
x→x0

|x| = |x0| (x0 beliebig).

Beispiel 3.53 ): Die Funktion

f(x) =

0 für x = 0,
1

k + 1
für

1

k + 1
< |x| ≦ 1

k
(k = 1, 2, . . .)

1 ) Die Voraussetzung „ xn ̸= x0 für alle n ïst jetzt offenbar entbehrlich. 2 )
In den Anwendungen bezeichnet man häufig die abhängige Variable und das
Funktionssymbol mit demselben Buchstaben (hier s ). 3

)
Dieses Beispiel ist

[10] entnommen.
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Bild 2.16.

soll auf Stetigkeit an der Stelle x = 0 untersucht werden. Offenbar gilt

0 ≦ f(x) ≦ |x| (−1 ≦ x ≦ 1)

Wegen lim
x→0

0 = 0 und lim
x→0

|x| = |0| = 0 (letzteres nach (3.4) mit x0 = 0 ) folgt

aus (3.5) nach Satz 2.5
lim
x→0

f(x) = 0.

Da auch f(0) = 0 gilt, ist f an der Stelle x = 0 stetig. Das Bild von f besteht
aus zur x-Achse parallelen Geradenstücken, die für x → 0 immer kürzer werden
und der x-Achse immer näher kommen (Bild 3.3). Das Verhalten von f in einer
(sehr kleinen) Umgebung von x = 0 ist anschaulich nur unvollkommen zu er-
fassen. Dieses Beispiel zeigt also, daß der durch Definition 3.1 exakt festgelegte
Begriff der Stetigkeit doch wesentlich über das der Anschauung Zugängliche
hinausreicht.
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
xn : an = bn−1,

xn−1 : an−1 = bn−2 − x0bn−1,
· · · · · · · · ·
x1 : a1 = b0 − x0b1,

x0 : a0 = g (x0)− x0b0,

 also


bn−1 = an,
bn−2 = an−1 + x0bn−1,
· · · · · · · · · · · ·
b0 = a1 + x0b1,
g (x0) = a0 + x0b0.


3 9 0 2 6 -8

-1 -3 6

2 -1 -2

-3 6

3 -1 3 1 -2

x2 x T.I x T.I
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an an−1 an−2 . . . a2 a1 a0

x0bn−1 x0bn−2 . . . x0b2 x0b1 x0b0

x0 bn−1 bn−2 bn−3 . . . b1 b0 g (x0)
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3 010 1 −5 2

6 12 26 42

2 3 6 13 21 44 = g(2)


6 24 74

2 3 12 37 95 = g′(2)


6 36

2 3 18 73 =
g′′(2)

2!


6

2 3 24 =
g′′′(2)

3!


3 =

g(4)(2)

4!



1. Schritt

2. Schritt

3. Schritt

4. Schritt

5. Schritt

10Man beachte, ...



40 2. Grenzwerte

1 3 5 7 6 2

−1 −2 −3 −4 −2

−1 1 2 3 4 2 0 = g(−1)

−1 −1 −2 −2

−1 1 1 2 2 0 = g′(−1)

−1 0 −2

−1 1 0 2 0 =
g′′(−1)

2!

−1 1

−1 1 −1 3 =
g′′′(−1)

3!
̸= 0
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