
MATHEMATI
FÜR INGENIEURE

NATURWISSENSCHAFTLER
ÖKONOMEN
LAN DWIRTE

SCHÖNE

Differentialgeometrie



Abhängigkeitsgraph

13
Vorbereitungsband Grundlagen Lineare Algebra

3 Er|:jferentia|- 2 Lineare

Unendliche Reihen Integralrechnung Optimierung

Gewöhnliche 71 Differential—
Differential- rechnung mit Nichtlineare ""

gleichungen mehrerenVariablen Optimierung

Gewöhnliche Z Integralrechnung 5
Differential- mit - Optimale Prozesse "

gleichungen mehreren Variablen und Systeme

l l n

Partielle 8 6 Wahrscheinlich-
Differential- Differential- "' l‘ keitsrechnung,
gleichungen geometrie math.Statistik

l ' J l
Komplexe g 211 "'
Funktionen Operatorenrechnung Spieltheorie

. 12 11 212
Speznelle Tensoralgebra ‘l " ""'
Funktionen und -analysis Graphentheorie

18 O Stochastische 191
Numerische PVOZESSG ‘

Methoden Simulation UnCl Modelle

*—————. l
22 b‘ Statistische 192 ‘l

Funktionalanalysis Symmetriegruppen Versuchsplanung
l



MATHEMATIK FÜR INGENIEURE, NATURWISSENSCHAFTLER‚
ÖKONOMEN UND LANDWIRTE ~ BAND 6

Herausgeber: Prof. Dr. O. Beyer, Magdeburg - Prof. Dr. H. Erfurth, Merseburg

Prof. Dr. O. Greuelf ~ Prof. Dr. H. Kadner, Dresden

Prof. Dr. K. Manteufiel, Magdeburg - Doz. Dr. G. Zeidler, Berlin

DOZ. DR. W. SCHÖNE

Differentialgeometrie
4. AUFLAGE

BSB B. G. TEUBNER VERLAGSCIESELLSCHAPT

LEIPZIG 1937



Verantwortlicher Herausgeber:

1. und 2, Auflage: Prof. Dr. rer. nat. O. Greuel 1"

ab 3. Auflage: Dr. sc. nat. Otfried Beyer, ordentlicher Professor an der Technischen Hochschule
„Otto von Guericke“, Magdeburg

Autor:

Dr. rer. nat. W. Schöne, Dozent an der Technischen Hochschule Karl-Marx-Stadt

Als Lehrbuch für die Ausbildung an Universitäten und Hochschulen der DDR anerkannt.

Berlin, Dezember 1986 Minister für Hoch- und Fachschulwesen

Anerkanntes Lehrbuch seit der I. Auflage 1975.

Schöne, Wolfgang:
Differentialgeometrie / Wolfgang Schöne. —

4. Aufl. — Leipzig : BSB Teubner, 1987. —

148 S.: 74 Abb.
(Mathematik für Ingenieure, Naturwissenschaftler, Ökonomen und Landwirte; 6)

NE: GT

ISBN 3-322-00409-0

Math. Ing. Nat. wiss, Ökon. Landwirte, Bd. 6

ISSN 0138-1318

© BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 1975

4. Auflage

VLN 294-375/50/87 > LSV 1044

Lektor: Dorothea Ziegler

Printed in the German Democratic Republic

Gesamtherstellung: INTERDRUCK Graphischer Gmßbelrieb. Leipzig

Betrieb der ausgezeichneten Qualitätsarbeit, III/I8/97

Beslell-Nr. 665717 1

00800



r“ "u

4.1.3.
4.1.4.
4.1.5.

4.1.6.

4.1.7.
4.1.8.

4.2.1.
4.2.2.

4.2.3.

4.2.4.

Inhalt

Einführung und Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ‚ ‚ 5

Einleitung . . . . . . . . . . . ‚ ‚ ‚ . . . . . . . . . . . . . . 5

Grundbegriffe der Vektorrechnung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Raumkurven ‚ . ‚ . 16

Die Parameterdarstellung einer Raumkurve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Parametertransformationen . . 18

Die Bogenlänge einer Raumkurve . . . . . . . 19

Das begleitende Dreibein einer Raumkurve . Z0

Die Schmiegebene einer Raumkurve . . . . . . . . . . 22

Die Krümmung und Windung einer Raumkurve . 25

Die Frenetschen Formeln . . . . . . . . . . . . . . . . . . . 28

Der Darbouxsche Vektor . . . . . . . . . . . . . . . . . . . 30

Die gewöhnliche Schraubenlinie als Beispiel einer Raurnkurvc 32

Die kanonischen Gleichungen einer Raumkurve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Ebene Kurven . . . . . . . . ‚ . . . . . . . . . . . . . . . . . . . ‚ .e_. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ‚ . . . 38

Die Parameterdarstellung und Krümmung ebener Kurven . . . . . 38

Der Übergang von der Parameterdarstellung zur Kurvengleichung 43

Beispiele . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Ebene Kurven in impliziter Form . . . . . 53

Ebene Kurven in Polarkoordinaten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Die Lemniskate als Beispiel einer ebenen Kurve in Polarkoordinaten . . . . . . . . . . . . .. . . 59

Evolute und Evolvente . . . . 63

Hüllkurven . . . . . . . . . . . ‚ . . . . . . . . . . . . ‚ . . . . . . . . . . . . . . . . . . . . . ‚ . 66

Minimalkoordinaten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ‚ . . . . . 73

Fläehentheorie . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Grundbegriffe der Flächentheorie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Zulässige Parameterdarstellungen . . . . . . . . 75

Flächenkurven, Koordinatenlinien einer Fläche und die erste Grundform der Flächen-
theorie . . . . . . . . . . . . . . . ‚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ‚ . . . . . . . . . 78

Parameterdarstellungen spezieller Flächen . 80

Die Bogenlänge einer Flächenkurve . . . . . . . . 83

Tangentialebene und Flächennormalenvektot 84

Der Schnittwinkel zweier Flächenkurven . . 85

Die Berechnung von Flächeninhalten . 87

Koordinatemransforrnationen . . . . . . . . . . . . . . . . . 89

Die Krümmungstheorie der Flächen und Flächenkurven 94

Die zweite Grundform der Flächentheorie . . . . . . . . . . . . . . . 94

Elliptisch, hyperbolisch und parabolisch gekrümmte Flächenstüeke 96

Der Satz von Meusnier ‚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Hauptkrümmungen und Krümmungslinien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



4 Inhalt

4.2.5. Der Satz von Euler und die Dupinsche Indikatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

442,6. Das Theorema egregium . . . . . . . . . . . . . . . . . . . . . . . . . _

4.2.7. Abbildungen, Abwicklungen und Regelflächen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
442.8. Die geodätische Krümmung einer Flächenkurve 110
4.2.9. Die stereographische Projektion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.2.10. Die Abbildung von Banne . . . . . . . . . . . . . . . ‚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Lösungen der Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. I19

Literatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ‚ . . . . . 144

Namen- und Sachregister . . . . . . . . . . . . . . . . . . ‚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



1. Einführung und Grundlagen

1.1. Einleitung

Der vorliegende Band über Diflerentialgeometrie enthält die für praktische An-
wendungen wichtigsten Bestandteile der Theorie der ebenen Kurven, der Raumkurven
und der Flächen. Dabei mußte berücksichtigt werden, daß die Diflerentialgeometrie
für sehr unterschiedliche Anwendungsgebiete von Interesse ist.

Als solche Anwendungsgebiete kommen hauptsächlich Geodäsie, Maschinenbau
und Physik in Betracht. Für die Geodäsie dürfte die Flächentheorie einschließlich
der Theorie der Abbildungen am wichtigsten sein. Für den Maschinenbau sind es

die ebenen Kurven und Raumkurven‚ die bei ebenen und räumlichen Bewegungs-
vorgängen auftreten, aber auch die Flächentheorie, die überall dort ins Spiel kommt,
wo es um die Gestaltung der Oberflächen von technischen Objekten geht, so z. B.
bei Schneckengetrieben, bei achsversetzten Kegelrädern u. ä. In der Physik sind es

gleichfalls ebene Kurven und Raumkurven, sowie die Gaußschen Koordinatensysteme
und ihre dreidimensionalen Verallgemeinerungen, die als spezielle Koordinaten-
systeme bei den verschiedensten physikalischen Problemen benötigt werden. Auch
die Relativitätstheorie wird leichter verständlich bei Kenntnis difierentialgeometri-
scher Zusammenhänge.

Jedoch erhebt diese Aufzählung keineswegs den Anspruch auf Vollständigkeit.
Beispielsweise hat die stereographische Projektion Bedeutung für die Mineralogie,
und die Theorie der Raumkurven hat sogar Anwendung in der Textiltechnik ge-
funden. Vielmehr sollte man daraus erkennen, daß es sehr schwierig ist, allen An-
sprüchen gerecht zu werden und daß deshalb Kompromisse unvermeidlich waren.

Im Abschnitt 1.2. werden die für die Diiferentialgeometrie wichtigsten Grund-
lagen der Vektorrechnung zusammengestellt. Dadurch soll erreicht werden, daß
der mit der Vektorrechnung weniger vertraute Leser die Kapitel über Kurven und
Flächen besser versteht. Wegen einer ausführlichen Begründung der angeführten
Formeln sei auf Band l3 „Lineare Algebra“ dieser Reihe verwiesen. Zur Vertiefung
des Stoffes, zur Anregung und Weiterbildung des Lesers sind dem Text eine An-
zahl von Aufgaben beigegeben, deren Lösung am Ende des Buches mitgeteilt wird.

Schließlich möchte der Autor es nicht versäumen, Herrn Prof. Geise, Herrn Prof.
Volmer und Herrn Prof. Greuel für wertvolle Hinweise und Anregungen zu danken.
Desgleichen danke ich dem Verlag, insbesondere Herrn Dr. Thiele und Frau Ziegler,
für das mir entgegengebrachte Verständnis. In der 3. Auflage konnten einige Mängel,
auf die mich Frau Dr. S. Meyer und Herr Prof. Sulanke aufmerksam machten, be-
seitigt werden. Für ihre Hinweise sei diesen Kollegen gedankt.

1.2. Gnmdbegriife der Vektorrechnung

Da die Vektorrechnung für den Aufbau der Diflerentialgeometrie der Raumkurven
wie auch der Flächen ein nützliches Hilfsmittel darstellt, sollen in diesem einleitenden
Kapitel die wichtigsten Eigenschaften von Vektoren und einige später benötigte
Gleichungen behandelt werden (vgl. auch Band ll dieser Reihe).

Wir gehen von einem dreidimensionalen euklidischen Raum E3 aus, in dem ein
orthogonales, kartesisches Koordinatensystem mit dem Ursprung 0 und den drei
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paarweise zueinander senkrechten Achsen xi, x2, x3 gegeben ist. Ein Vektor des
E3 ist eine Größe, die durch Betrag, Richtung und Richtungssinn bestimmt ist. Man
kann einen Vektor des E 3 Veranschaulichenl), indem man ihn als eine gerichtete Strecke
auffaßt, die im Raum parallel zu sich selbst beliebig verschoben werden kann. Die
Länge dieser gerichteten Strecke ist dann gleich dem Betrag des Vektors. Da die ge-
richtete Strecke in jeder Lage auf einer bestimmten Geraden des E3 liegt, diese
Geraden aber alle zueinander parallel sind, d. h. dieselbe Richtung haben, wird die
Richtung dieser parallelen Geraden als Richtung des Vektors bezeichnet. Schließ—
lich ist der gerichteten Strecke stets ein positiver Durchlaufssinn zugeordnet, der durch
einen Pfeil gekennzeichnet wird. Durch diesen Pfeil wird erklärt, welcher der beiden
Endpunkte der gerichteten Strecke der Startpunkt und welcher der Zielpunkt ist,
so daß eine Durchlaufung der gerichteten Strecke im positiven Sinn so erfolgt, daß
sie beim Startpunkt beginnt und beim Zielpunkt endet. Dieser positive Durchlaufs-
sinn der gerichteten Strecke wird als Richtungssinn des Vektors bezeichnet.

Wir betrachten nun eine spezielle Lage der einen Vektor u darstellenden gerichteten
Strecke AB, wobei A der Startpunkt und B der Zielpunkt dieser gerichteten Strecke
sein soll. Sind a1, a2, a3 die Koordinaten von A und bl, b2, b3 diejenigen von B,

*2

Bild l.l. Veranschaulichung eines Vektors

so stellt das Zahlentripel(u1, uz, us) mit u, = b, — a1, u; = b3 — a2, a3 : b3 — a3
den Vektor u dar. An diesen drei Zahlen ändert sich nichts, wenn man die gerichtete
Strecke parallel zu sich selbst im Raum verschiebt. Man schreibt u = (14„ uz, a3)
und nennt die drei Zahlen u. (i = 1,2, 3) die Koordinaten (Komponenten?) des
Vektors u. Der Vektor mit den Koordinaten 0, 0, 0 heißt Nullvektor und wird mit
o bezeichnet. Der Nullvektor hat den Betrag 0, jedoch keine Richtung und keinen
Richtungssinn. Ein Vektor des E3 ist somit durch drei Zahlenangaben bestimmt.
Analog dazu ist ein Vektor des E2 durch zwei Zahlenangaben bestimmt.

Zwei Vektoren u = (14„ uz, a3), v = (v1, 122,123) heißen gleich, wenn die ihnen
entsprechenden gerichteten Strecken gleiche Länge, gleiche Richtung und gleichen
Durchlaufssinn haben oder wenn jede Koordinate des einen Vektors gleich der ent-

1) Daß man einen Vektor als gerichtete Strecke veranschaulichen kann, bedeutet nicht, daß er

selbst eine gerichtete Strecke ist. Vielmehr ist ein Vektor eine arithmetische Größe, die Rechen-
gesetzen genügt, die in der Geometrie ihre Entsprechung haben.

z) In vielen Büchern werden die Koordinaten des Vektors als skalare Kornponeuten bezeichnet.
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sprechenden Koordinate des anderen Vektors ist. Das heißt, es ist u = v genau
dann, wenn u1 = v1, u; = v2, u; = v3 ist.

Eine Größe, die durch die Angabe einer einzigen Zahl bestimmt ist, bezeichnet
man als einen Skalar. Zum Beispiel ist der Betrag eines Vektors stets ein Skalar.

Ist i. cin Skalar und u = (u, , 1:2, u-3) ein Vektor, so versteht man unter Zu den Vektor mit den
Koordinaten Zu, , Au; , 1143 . Ist i. > 0, so wird der Vektor in durch eine gerichtete Strecke dargestellt,
die denselben Durchlaufssinn und dieselbe Richtung hat wie die den Vektor u darstellende gerichtete
Strecke, deren Länge aber das Ä-fache der Länge der udarstellenden gerichteten Strecke beträgt.
Ist dagegen J. < 0, so ist w}. eine positive Zahl. Daher hat die gerichtete Strecke, die den Vektor /lu
darstellt, eine Länge, die gleich dem (—Ä)-fachen der den Vektor u darstellenden gerichteten Strecke
ist. Außerdem hat Zu die gleiche Richtung, aber den entgegengesetzten Richtungssinn wie der Vektor u

(vgl. Bild 1.2). Hieraus folgt

II”-ul = Wlul.

W zu

Bild 1.2. Multiplikation eines Vektors mit einer Zahl

Für zweijbeliebige Skalare Ä, ‚u gilt:

(1/4)“ = (Ä/“h s Äfiuz a Alma) = MI4741 a /W2 9 Mus) = KM“)

= (/t?~u1,/duz,/Mus) = M(lu1,luz,/lug) = Müll).
Sind u = (ul, u2‚u3) und v = (v„v„ v3) zwei Vektoren, so kann man beide

addieren. Der Vektor u + v ist der Vektor mit den Koordinaten u! + v1, u; + v2,
a3 + v3. Dieser Addition entspricht die Addition der die Vektoren u, v darstellenden
gerichteten Strecken mit dem gleichen Startpunkt nach dem Parallelogrammgesetz
(siehe Bild 1.3).

Bild 1.3. Geometrische Veranschaulichung der Addition und Subtraktion von Vektoren
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Es gilt dann stets

u + v = v + u.

Denn es ist

u+v=(u‚ +u1‚u2+v„u3+v3)
und —

v+u=(v‚ +u1,v2+u2,v3+u3)=(u1 +v1,u2+vz,u3+v3)
u+v.II

Ebenso beweist man

(u+v)+w=u+(v+w).
Ein Vektor u heißt Einheitsvektor, wenn sein Betrag, der mit u bezeichnet werden

soll, gleich 1 ist. Die gerichtete Strecke, die einen Einheitsvektor darstellt, hat stets
die Länge l. Es seien E1, E2, E, die auf der xl- bzw. xz- bzw. x3-Achse liegenden
Einheitspunkte mit den Koordinaten (1,0, 0), (0,1,0), (0,0, l). Der gerichteten
Strecke OE, entspreche der Einheitsvektor i. Mit j bzw. k werden die Einheitsvek-
toren bezeichnet, die durch die gerichteten Strecken OE, bzw. 0E3 dargestellt wer-

den. Es gilt dann

i: (1‚0‚0)‚ i =(0‚1‚0)‚ k = (0,0, 1)-

Mit Hilfe der Einheitsvektoren i, j, k kann ein Vektor u = (u, , u2, 143) in der Form

u = u1i+ uzj + 143k (1.1)

geschrieben werdenfl) Diese Darstellung ist eindeutig, wenn alle Vektoren auf ein
und dasselbe Koordinatensystem bezogen werden. Man bezeichnet i, j, k als Basis-
vektoren. Basisvektoren müssen jedoch nicht unbedingt Einheitsvektoren sein. Ist
dies der Fall, so heißen die Basisvektoren normiert.

Damit aber drei Vektoren im E3 eine Basis bilden können, müssen sie linear unabhängig sein.
Man sagt, daß r Vektoren a, , a2, ..., a, linear unabhängig sind, wenn aus der Gleichung

1131 + 1232 + + Ära! = 0,

wo }.,,}.2, ..., Ä, Zahlen sind, stets folgt, daß

‚1,=g,=‚13=...=z‚=o
ist. Andernfalls heißen die Vektoren linear abhängig. Im E3 sind die Vektoren i, j, k linear unabhängig.
Vier oder mehr Vektoren des E 3 sind aber stets linear abhängig. Drei Vektoren, von denen keiner
der Nullvektor ist, sind linear abhängig, wenn mindestens zwei dieselbe Richtung haben oder wenn

alle drei parallel zu einer Ebene sind.

Das skalare Produkt der Vektoren a = ali + a;j + 113k, b = bli + bzj + b3k
ist durch folgende Gleichung definiert:

a-b = |a| |b| cosy. (1.2)

‘) Die Größe 141i wird vielfach als vektorielle Komponente des Vektors u in Richtung des

Vektors i bezeichnet. -
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Stellt man a und b durch gerichtete Strecken dar, die vom gleichen Startpunkt aus-
gehen, so ist y der Winkel, der von diesen beiden gerichteten Strecken gebildet wird,
und lal, [bl sind die Längen der beiden gerichteten Strecken. Da man beide gerich-
tete Strecken immer in der beschriebenen Weise wählen kann, nennt man y den
von den Vektoren a und b gebildeten Winkel und schreibt a - b = |a| [bl cos (a, b).
Das Ergebnis der skalaren Multiplikation zweier Vektoren ist stets ein Skalar.
Offensichtlich gilt

a - b = b - a (Kammutaiives Gesetz).

Außerdem gilt auch das distributive Gesetz

a-(b+ c) = a-b+ a-c.

Zwei Vektoren heißen zueinander orthogonal, wenn die ihnen entsprechenden gerichteten Strecken,
falls man sie so wählt, daß sie den gleichen Startpunkt haben, aufeinander senkrecht stehen. Sind
zwei Vektoren zueinander orthogonal, so verschwindet ihr Skalarprodukt. Ist dagegen das Skalar-
produkt der Vektoren a, b gleich null, d. h. gilt a - b z 0, so sind drei Fälle möglich:

1) Einer der Vektoren a, h ist der Nullvektor.
2) Beide Vektoren a, b sind Nullvektoren.
3) Die Vektoren a, b sind zueinander orthogonal.

Aus dem Verschwinden eines skalaren Produktes kann daher nur dann auf die Orthogonalität
der zwei Faktoren geschlossen werden, wenn keiner von ihnen der Nullvektor ist.

Die Einheitsvektoren-Lj, k sind paarweise zueinander orthogonal. Daher gilt i -j = i - k = j - k:0.
Andererseits gilt i- i = liI |i| cos (i, i). Wegen cos (i, i) = 1 folgt daher i - i : l. Ebenso ist j -j = 1

und k - k = 1. Ein System von paarweise orthogonalen Basisvektoren heißt eine orthogonale Basis.
Die von i, j, k gebildete Basis ist orthogonal und normiert. Eine solche Basis nennt man auch bis-
weilen orthonormiert oder orthonormal.

Sind Ä ein beliebiger Skalar und a, b irgend zwei Vektoren, so gilt

(la) - b = Z(a-b) = a- (lb).

Für das Skalarprodukt der Vektoren a und b erhält man, weil die Vektoren i, j, k
eine orthonormierte Basis bilden und weil das distributive Gesetz und die eben ab-
geleitete Beziehung gelten,

a - b (a‚i + 112]" + 113k) - (bli + bzj + b3k)

albli-i + a1b2i'j + a1b3i' k + azblj -i + azbzj-j

ll
ll

+ azbsj-k + aablk-i + asbzk "j + a3b3k- k.

Hieraus ergibt sich

a-b :(a1i+ z12j+ 113k)’ (b‚i + bzj + b3k) = albl + 412b; + a3b3.

Für den Betrag des Vektors a folgt aus

a-a ‚=(a1i+ azj + agk)-(a1i+ azj + ask) = a} + aä + aä
und

a - a = la| la] cos (a, a) = [all
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die Beziehung

[a[=\/fi=\/af+a§+a§. (1.3)

Das Vektorprodukt der Vektoren a, b wird mit a >< b (lies a Kreuz b) bezeichnet.
Der Vektor a x b ist zu den Vektoren a und b orthogonal. Sein Betrag ist gleich
dem Flächeninhalt eines Parallelogrammes, das mit Hilfe der Vektoren a und b ge-
bildet werden kann, wenn man sie durch gerichtete Strecken mit dem gleichen Start-
punkt X darstellt. Dazu zieht man durch die Zielpunkte der beiden gerichteten Strecken
je eine Parallele zur anderen Strecke. Die beiden Parallelen schneiden sich in einem
Punkt D, der zusammen mit X und den beiden Zielpunkten der gerichteten Strecken
die Eckpunkte des erwähnten Parallelogramms darstellt. Sein Flächeninhalt er-
gibt sich zu F = |a| [bll sin (a, b). Damit erhält man

|a >< b| = la| |bl sin (a,b).

Der Richtungssinn von a >< b wird wie folgt festgelegt: g

Trägt man den Vektor a >< b ebenfalls von X aus als gerichtete Strecke ab, so
steht diese auf der von a und b gebildeten Ebene senkrecht. Dreht man den Vektor a
um den Punkt X in der von a und b gebildeten Ebene, so daß er mit b zur Deckung
kommt und ist der von a bei der Drehung überstrichene Winkel der kleinere der
beiden möglichen Drehwinkel, so ist die Spitze des Vektors a >< b so zu wählen,

X
G

Bild 1.4. Das vektorielle Produkt zweier Vektoren a, b

daß die erwähnte Drehung des Vektors a von der Spitze des Vektors a >< b aus be-
trachtet als eine zum Uhrzeigersinn entgegengesetzte Drehung erscheint. Es gilt
daher

a x b = —(b x a).

Ohne Beweis sei angeführt, daß für die vektorielle Multiplikation das distributive
Gesetz gilt (vgl. [4], S. 38)

ax(b+c)=a><b+a><c bzw. (b+c)><a=b><a+c><a.

Sind a, b zwei Vektoren, die auf die orthonormale Basis i, j, k bezogen sind, so gilt

i j k
a x b = a1 a2 as

b1 b2 b3
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Hieraus erhält man durch Entwicklung nach der ersten Zeile der Determinante

a >< b = i(a2b3 — a3b2) + j(a3b1 — 111123) + k(a1b2 —- azbl).

Man erkennt, daß das Vektorprodukt verschwindet, wenn die zwei Vektoren a, b
die gleiche Richtung haben, das heißt, wenn a1: a2: as = b1: b2: b3 ist oder wenn
sin (a, b) = O ist oder wenn einer oder beide Vektoren a, b Nullvektoren sind. Ins-
besondere gilt

ixj=k, j><k=i, k><i=j.
Außerdem gilt

(/Ia)" x b = }.(a >< b) = a >< (Äb).

Es gilt aber nicht das assoziative Gesetz a >< (b x c) = (a >< ib) ix c.

Unter dem gemischten Produkt oder Spatprodukt der drei Vektoren, die auf die
Basis i, j, k bezogen sind, wobei

a = a1i+ azj + ask, b =b,i + bzj +b,k, c = cli + czj + 03k

ist, versteht man den Ausdruck

w a, a, a3

(a >< b) - c = b, b2 b; == (a, b, c). (1.4)

cl c; c3

Da eine Determinante ihr Vorzeichen wechselt, wenn man zwei Zeilen miteinander
vertauscht, folgt

(a >< b)-c=a-(b >< c), (a,b,c)=(b‚c,a)=(c‚a,b)

(a, 0,1!) = (c, b, a) = (b, 3, 0), (8,6. b) = -(a‚ b‚ C)-

Geometrisch ist das Spatprodukt (a, b, c) gleich dem Volumen des von den Vek-
toren a, b, c bestimmten Spates‘). Man kann einen solchen Spat als ein schiefes Prisma
mit der Grundfläche des aus den Vektoren a, b gebildeten Parallelogramms (siehe Defi-
nition des Vektorproduktes und Bild 1.5) ansehen. Die parallelen Kanten dieses Prismas
gehen durch die vier Eckpunkte des Parallelogramms und sind zum Vektor c parallel.
Die Deckfiäche des Prismas ist ein zur Grundfläche kongruentes Parallelogramm.
Der Abstand von Grund- und Deckfläche ist die Höhe h des Prismas. Dann gilt
für das Volumen V dieses Körpers V = Fh, wobei F den Flächeninhalt der Grund-

un

fläche bedeutet. Es ist ein Einheitsvektor in Richtung von a >< b. Dann- gilt

= |:—>):«lbéT-c mit h g 0, falls <): (a >< b, c) g andernfalls /2 < 0. Demnach folgt

V= Ia x b| *c oder wie behauptet V= (a >< b)-c.

1) Dabei ist das Volumen des Spates als eine skalare Größe zu betrachten, die positiv oder
negativ ist, je nachdem, ob der Winkel zwischen den Vektoren a >< b und c spitz oder stumpf
ist.



12 1. Einführung und Grundlagen

Bild 1.5. Der durch drei Vektoren a, b, c, bestimmte Spat

Sehr oft braucht man auch den sogenannten Entwicklungssatz. Er lautet

(a><b)><c=(a'c)b—(b-c)a. (1.5)

Entsprechend gilt

a>< (b X c)=(a-c)b—(a-b)c.
Man merkt sich beide Formeln leicht dadurch, daß auf der rechten Seite die Vektoren außerhalb
der Skalarprodukte Vorkommen, die auf der linkcn Seite in der Klammer stehen. Dabei kommt auf
der rechten Seite immer der Vektor außerhalb der Skalarprodukte als erster vor, der auf der linken
Seite als mittlerer Faktor auftritt. Offensichtlich ist a >< (b >< c) =%= (a >< b) >< c, was man leicht
einsieht, wenn man a 2 j, b : j, c : k setzt.

Mit Hilfe des Entwicklungssatzes kann man auch die Produkte

(axh)-(c><d) und (a><b)>< (cxd)
berechnen. Man erhält

(axb)-(cxd)=(a-c)(b-d)—(a‘d)(b-c). (1.6)

Ist c = a, d = b, so folgt daraus

(axb)-(axh):|axb|2=(a-a)(b-b)—(a-b)3. (1.7)

Für das zweite Produkt ergibt sich mit der Abkürzung c x d = f

(a x b) x (c >< d)=(a x b) >< f=(a-f)b—(b-f)a
oder ausführlich geschrieben

(a xb) x (cX d)=(a‚c,d)b—(b‚c,d)a.
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Als nächstes soll auf eine elementargeometrische Beziehung hingewiesen werden,
die beim Kreis eine Rolle spielt.

Es sei ein Kreis k mit dem Mittelpunkt 0 und dem Radius r gegeben. Auf k liegen
zwei Punkte A und B. Einer der beiden durch A, B begrenzten Kreisbögen werde
mit b, seine Länge mit s bezeichnet. Durchläuft der Punkt X den Bogen b von A
nach B, so überstreicht der Strahl 0X den zu b gehörigen Zentriwinkel an AOB.
Zeichnet niarLnoch den zu k konzentrischen Einheitskreis k (Mittelpunkt O, Radius 1)

und sind A, B die Schnittpunkte der Strahlen 0A, OB mit dem Einheitskreis, s_o ist
das Bogenmaß des Winkels e: AOB gleich der L_änge 3 des zum Zentriwinkel ä: AOB
gehörenden, durch] und-Ebegrenzten Bogens b des Einheitskreises. Das Bogenmaß
des Winkels {AOB soll mit cc bezeichnet werden. Es ist daher on = E. Das Bogen-
maß des Zentriwinkels, der zum vollen Kreisbogen gehört, ist 271:. Da sich die Länge „r

des zwischen A, B liegenden Kreisbogens b zur Länge des gesamten Kreises k wie
die zugehörigen Zentriwinkel verhält, folgt

s: 2m = 4x: 27:
oder

r = roe.

Durch Differentiation ergibt sich hieraus ds = r doc (Bild 1.6).

07-r_fi-7
Bild 1.6. Länge eines Kreisbogens

Ist u(t) = u1(t)i + u2(t)j + u3(t)k ein Vektor, der von einem Parameter t ab-
hängt, und sind die drei Funktionen u‚(t) (i = l, 2, 3) stetig differenzierbar nach t,
so kann man den Ableitungsvektor

‚ d . ‚ . „ .

u(t) = d—': = u,(t)1 + u2(t)] + u3(t) k

bilden. Für zwei von einem Parameter t abhängige Vektoren gilt dann die Produkt-

“gel (u-v)’ = l'l’V+|l'V:
bzw‘ (uxv)'=i|><v+uxi.
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In der letzten Gleichung darf die Reihenfolge der Faktoren nicht vertauscht wer-
den. Ist a(t) ein von t abhängiger Einheitsvektor und läßt sich 2'|(t) bilden und ist
vom Nullvektor verschieden, so ergibt sich a - a = l und hieraus ä - a + a- ä = 0.
Da beim skalaren Produkt die Faktoren vertauscht werden dürfen, folgt 2a - ä = 0.
Nun ist a + 0 und a =i= 0. Daher sind a und ä zueinander orthogonal. Außerdem gilt
wegen da = ä dt, daß auch da auf a senkrecht steht. Bezeichnet man daher das
Bogenmaß des von a und a + da gebildeten Winkels mit doc, so gilt 1da[ = doc

(Bild 1.7).

EH10

der da

/
Bild 1.7. Das Differential eines Einheitsvektors und seine geometrische Veranschaulichung

Unter einem Ortsvektor versteht man eine gerichtete Strecke, deren Startpunkt
der Koordinatenursprung und deren Zielpunkt ein beliebiger Punkt des Raumes ist
(Bild 1.8). Genau genommen ist ein Ortsvektor kein Vektor im Sinn unserer Definition,

X1

Bild 1.8. Der Ortsvektor eines Punktes X
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denn er ist eine gerichtete Strecke mit dem festen Startpunkt 0, während ein Vektor
durch eine verschiebbare gerichtete Strecke dargestellt wird. Jedem Punkt des Raumes
kann ein Ortsvektor zugeordnet werden. HatX die Koordinatenxl , x2 , x3 ‚ so ist durch
‘x = (x1, x2, x3) = xii + xzj + xgk ein Vektor gegeben, der durch die gerichtete
Strecke Ö5? veranschaulicht werden kann. Diese gerichtete Strecke stellt aber den
Ortsvektor des Punktes X dar. Umgekehrt kann jeder Vektor des E’ durch eine ge-
richtete Strecke veranschaulicht werden, die der Ortsvektor eines durch diesen Vektor
bestimmten Punktes ist. Ist beispielsweise u = uli + uzj + uak ein Vektor des E3,
so wird durch ihiein Punkt U mit den Koordinaten u„ uz, u; bestimmt. Die ge-

richtete Strecke 0U ist der Ortsvektor des Punktes U und veranschaulicht außerdem
den Vektor u.

In der Differentialgeometrie werden Kurven und Flächen durch Vektoren, die
noch von gewissen Parametern abhängen, dargestellt. Diese Vektoren werden stets
durch Ortsvektoren veranschaulicht. Die Spitzen der diesen Ortsvektoren entspre-
chenden Pfeile beschreiben das jeweilige geometrische Gebilde. Wir wollen daher
solche Vektoren als die das geometrische Gebilde beschreibenden Vektoren bezeichnen.
Dilferenziert man einen solchen ein geometrisches Gebilde beschreibenden Vektor
nach den Parametern, von denen er abhängt, so erhält man neue Vektoren — die
Ableitungsvektoren. Diese werden durch gerichtete Strecken dargestellt, die ihren
Startpunkt im Endpunkt des Ortsvektors haben, der den das geometrische Gebilde
beschreibenden Vektor veranschaulicht. _



2. Raumkurven

2.1. Die Parameterdarstellung einer Raumkurve

Es werde im dreidimensionalen euklidischen Raum E’ ein orthogonales karte-
sisches Koordinatensystem mit dem Ursprung 0 und den drei Koordinatenachsen
x1, x2, x3 betrachtet. Ein beliebiger Punkt X des Raumes wird durch drei Zahlen
x„ x„x3 — seine Koordinaten — bestimmt. Wir können die drei Koordinaten zu

einem Vektor x = (xi , xz, x3) zusammenfassen. Dieser Vektor kann durch eine ge-
richtete Strecke mit dem Anfangspunkt (Startpunkt) 0 und dem Endpunkt (Ziel-
punkt) X veranschaulicht wer_d_en, die mit einem positiven Durchlaufssinn von 0
nach X versehen ist und mit 0X bezeichnet werden soll. Diese gerichtete Strecke ist
der Ortrvektor des Punktes X. Führt man die drei paarweise orthogonalen Einheits-
Vektoren i, j, k, ein, so erhält man die Darstellung

x = x1i+ xzj + x,k. (2.1)

Wir wollen nun annehmen, daß die drei Koordinaten xi , x2 , x3 eindeutige, reelle
und ditferenzierbare Funktionen eines reellen Parameters t mit a _S_ t g b sind.
Der Vektor x hängt dann von dem Parameter t ab, was wir durch die Schreibweise

x(t) = xi(t)i + x2(t)J' + xs(t) k (2-2)

bzw. durch

x(t) = (xi(t)‚ x20), xs(t))
ausdriicken wollen. Außerdem sollen die Ableitungen x1(t),_ x20), x._,(t) der drei
Funktionen x‚(t)‚ x2(t), x3(t) nach dem Parameter t nicht alle drei an derselben Stelle
verschwindenxErfüllt die vektorielle Funktion x(t) die genannten Voraussetzungen,
so soll x(t) eine zulässige Parameterdarstellung heißen. Sind überdies alle drei Funk-
tionen x‚(t) r-mal (r g 1) stetig differenzierbar, so soll x(t) eine zulässige Para-
meterdarstellung der Klasse r heißen. Durchläuft der Parameter t alle Werte des
Intervalls [a, b], wobei anstelle von [a, b] auch die Menge aber reellen Zahlen treten
kann, so beschreibt der Endpunkt X des Ortsvektors x = 0X eine Kurve‘) c. Diese

Bild 2.1. Darstellung einer Raumkurve durch Ortsvektoren

1) Diese Kurve heißt auch Hodograph der vektoriellen Funktion x(t) (vgl. [I0], S. 6).
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Kurve ist, wenn die Funktionen x‚(t) keine Gleichung der Form a1x1 + azx,
+ a3x3 + a4 = 0 mit konstanten Koeffizienten a, (nicht alle null) für jedes t e [a, b]
erfüllen, eine Raumkurve. Das ist eine Kurve, die sich zwar in den dreidimensionalen
Raum, aber nicht in eine Ebene dieses Raumes einbetten läßt. Die Gleichung
alx; + azx; + a,x3 + a4 = 0 stellt eine Ebene dar, und wenn die Größen x‚(t)
diese Gleichung für alle t erfüllten, so läge die durch x(t) gegebene Kurve in dieser
Ebene und wäre eine ebene Kurve. Im folgenden sollen aber die ebenen Kurven als
spezielle Raumkurven aufgefaßt werden.

Faßt man den Parameter t als Zeit auf, so wird durch x(t) die Bewegung des
Punktes X auf der durch x(t) dargestellten Raumkurve beschrieben. In jedem Zeit-
punkt t befindet sich der Punkt X an der Stelle der Raumkurve, die durch den Orts-
vektor x(t) eindeutig festgelegt wird. Betrachtet man den Zeitpunkt t und den darauf
folgenden Zeitpunkt t + At, so kann man den Differenzvektor

Ax = 'x(t + At) — x(t) (2.3)

bilden. Der Vektor Ax kann durch die gerichtete Strecke XX’ veranschaulicht werden,
die den Endpunkt X des Ortsvektors x(t) mit dem Endpunkt X’ des Ortsvektors
x(t + Ar) verbindet. Die Gerade XX’ stellt eine Sekante des Kurvenbogens von X
nach X’ dar. Strebt At gegen null, so rückt Ger Punkt X’ auf der Kurve c gegen den
Punkt X und die Sekante XX’ geht in die Tangente tx der Kurve c im Punkt X über.
Um einen Richtungsvektor dieser Tangente tx zu erhalten, bildet man

dx ‚ _ x(t + At) — x(t)
dt —— x(t) -51:10 At . (2.4)

Der Grenzwert lautet ausführlich geschrieben

x1(t + At)i + x2(t + At)j + x3(t + At) k — x,(t)i — x‚(t)j — x3(t) k
A153 At

= x,(t + AAt) — x,(r) i+ x2(t + — x2(t) j + x3(t + AA? — x3(t) k]

= x1(t + — x1(t) i x;(t + — x2(t) j

= 3'c1(t)i + 2'cz(t)j + J'c3(t)k.

Hieraus folgt schließlich % = w) = xml + ‚am j + x,(:)k. (2.5)

Der Vektor x(t) hat die Richtung der Tangente an die Raumkurve im Punkt X mit
dem Ortsvektor x(t) (Bild 2.2). Weitere Eigenschaften dieses Vektors werden im
Abschnitt 2.3. behandelt.

2 Sc.hdne,DifierenbialgeomeLr'



18 2. Raumkurven

Bild 242. Die Vektoren Ax und .>§(1) und ihre geometrische Bedeutung

2.2. Parametertransformationen

Ist eine Raumkurve c durch die zulässige Parameterdarstellung x = x(t) von der
Klasse r g l gegeben, wobei a g t g b gelten möge, so kann man einen neuen
Parameter r einführen. Dies geschieht durch die folgende Transformation. Es sei t(-r)
eine Funktion, die für alle r mit zx g r g ß definiert und dort auch stetig diffe-
renzierbar ist. Der Wertevorrat der Funktion t(-r) sei das Intervall [a, b]. Dabei
ist entweder t(zx) = a, t(ß) = b oder t(:x) = b, t(,8) = a und außerdem

i a; o m; alle TE [a, b]. (2.6)
d'r

Eine derartige Funktion t(r) heißt eine zulässige Parametertransformation. Die
Funktion 1(1) heißt eine zulässige Parametertransformation der Klasse r, wenn sie
r-mal stetig differenzierbar ist. Die zulässige Parameterdarstellung x = x(t), die im
Intervall [a, b] definiert ist, geht durch die zulässige Parametertransformation t(-r)
in eine andere zulässige Parameterdarstellung

5(7) = X(t(T)) (2-7)

über, die im Intervall [oc,fl] definiert ist. Zwei derartige Parameterdarstellungen
heißen zueinander äquivalent. Sie stellen geometrisch dasselbe Kurvenstück bzw.
dieselbe Kurve dar. Es gilt

_§_§(-,)_‘L’.£
d'r — — dt dt

Man kann sich die Tatsache, daß dieselbe Kurve durch zwei verschiedene äqui-
valente Parameterdarstellungen gegeben sein kann, dadurch veranschaulichen, daß
man t und ‘L’ als Zeit deutet. Dann beschreiben die zwei Parameterdarstellungen zwei
Bewegungsvorgänge, bei denen der Punkt X dasselbe Kurvenstück innerhalb ver-
schiedener Zeitabschnitte mit unterschiedlichen Geschwindigkeiten durchläuft,

= 540%. (2.8)
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2.3. Die Bogenlänge einer Raumkurve

Es sei c eine Raumkurve mit der zulässigen Parameterdarstellung x = x(t). Der
Parameter t kann sich innerhalb des Intervalls a g t g b verändern. Wir unterteilen
das Intervall in n Teilintervalle‚ indem wir n — l zusätzliche Punkte zwischen a und b
in folgender Weise einschalten. Es sei a = to < t1 < t2 < < t„_‚ < t„ = b.
Diesen Parameterwerten entsprechen auf der Kurve c die Punkte A = Xo, X1 , Xz, ...,

X,,_1 , X„ = B. Wir verbinden diese Punkte durch einen geradlinigen Streckenzug S„.
Dieser Streckenzug S„ wird sich der Kurve c um so besser annähern, je feiner das
Intervall [a, b] unterteilt worden ist. Für die Länge l. der Teilstrecke XHX, des
Streckenzugs gilt

li = ixÜi) "‘ X(t¢—1)| ä A! f. (xk(ti) ‘ xk(ti—1))2‘ (2-9)
k=l

Damit erhält man für die Länge L(S„) des gesamten Streckenzugs

us”) = i lx(t.) — x<z.-o: = i J i (am) — xk(ti-1))z' (2.10)
i=1 i=1 k=l

Wegen des ersten Mittelwertsatzes der Differentialrechnung (vgl. Bd. 2, Satz 6.3)
können wir schreiben

x,,(t,») — x,,(t,_,) = 3'ck(7f‘) (t, — t,_,), wobei t,_, < H‘; t, für k = 1,2, 3

und z‘ = l, 2, ‚..‚ n gilt. Damit ergibt sich

n 3

L(S..) = Z A/ Z (9'€x.(7’.-‘))2 (fa - f.-—1)- (2-11)
i=1 k:l

Lassen wir n gegen oo streben, indem wir die Unterteilung des Intervalls [a, b]
immer mehr verfeinern, so wird aus der Summe ein (Riemannsches) Integral (vgl.
Bd. 2, 5.Aufl., S. 161; [6], S.41—43; [9], Bd. 3, S. 98).

1iI1‘1L(Sn) = 1in1 i A/ki (5€x(7§‘))2 (f: - 17.--1)
n—>oo naoo i=1 :1

= fl/kg (x,,(:))2 dt. (2.12)

Den Wert dieses Integrals bezeichnet man als die Bogenlänge s(A, B) des Kurven-
stücks von A nach B:

b=In

s(A, B) = f x/xga) + 222a) + J'c§(t)dt. (2.13)
a=1„

Dafür kann man auch schreiben

s(A, B) '= fb\/:‘((t)1'((t)dt = fb|i<(t)]dt. (2.14)
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Ersetzen wir den festen Punkt B mit dem Parameterwert b durch einen auf c be-
weglichen Punkt X mit dem Parameterwert t, wobei t dem Intervall [a‚ b] angehören
soll, so erhalten wir aus (2.14), wenn wir die Integrationsvariable in u umbenennen
und beachten, daß to = a gilt

x(t) = fl|i{(u)l du. (2.15)

Die Funktion s(t) bezeichnet man als Bogenlänge der Raumkurve c. Sie hängt
noch von dem willkürlich auf c gewählten Anfangspunkt X0 ab. Sehr oft benötigt
man auch die Ableitung von x(t) nach t. Durch Differentiation von (2.15) nach der
oberen Grenze t ergibt sich »

Idxlä- = so) = 1x(z)| = T. (2.16)

Hieraus folgt

ds = [dxl = [x(t)| dt = \/i((t)-)'((t)dt

bzw.

ds = \/(v’.51(t))2 + (x2<r>>2 + (m)? dz. (2.17)

Der durch (2.17) gegebene Ausdruck für ds wird als Bogenelement der Raumkurve
bezeichnet.

Deutet man t wieder als Zeit, so stellt x 2 x(t) das Bewegungsgesetz dar, mit der sich die Spitze X
des als Ortsvektor aufgefaßten Vektors x(t) längs der Raumkurve bewegt. Der Vektor x(t) ist der
Geschwindigkeitsvektor dieser Bewegung. In der Tat ist wegen (2,16) |)'((t)| = ds/dt. Die Größe
ds/dt ist aber gleich der Geschwindigkeit, mit der sich X längs c zum Zeitpunkt t bewegt. Da die
Richtung des Vektors m) mit der Tangentenrichtung in X übereinstimmt, gibt der Vektor m) die
Bewegungsrichtung des Punktes X zum Zeitpunkt t an. Schließlich stimmt der Richtungssinn des
Vektors x(t) mit dem Richtungssinn der Bewegung des Punktes X überein. Das heißt, der Punkt X
bewegt sich in Richtung der Pfeilspitze des Vektors )'((!).

2.4. Das begleitende Dreibein einer Raumkurve

Es werde angenommen, daß die Parameterdarstellung x = x(t) der Raumkurve c

zulässig und von der Klasse r g 2 sei, d. h. mindestens zweimal stetig differenzierbar
ist. Der Tangentenvektor

510) = Xi(t)i + 2'cz(t)i + 5630) k (Z13)

hat im allgemeinen in jedem Punkt X der Kurve c eine vom Parameterwert t ab-
hängige Länge. Mit Hilfe der Gleichung (2.16) ds/dt = [x(t)] kann man die Bogen-
länge der Raumkurve c als neuen Parameter einführen und erhält

21-25.2- *0) „i
ds ‘ dt ds ‘ im); ’

(2.19)



2.4. Das begleitende Dreibein einer Raumkurve 21

Dabei bedeutet der Strich jetzt und auch im folgenden stets die Ableitung nach der
Bogenlängefi) Man erkennt, daß der Vektor dx/ds = x’ ein Einheitsvektor ist, denn
es gilt

|x’| = ‘ET: = = 1. ‘ (2.20)

Man setzt.

(2.21)

und bezeichnet t als den (normierten) Tangentenvektor der Raumkurve c. Diffe-
renziert man x nochmals nach s, so erhält man

„_ dZx _ ‚_ d )‘((t) dt
x ——d-S—z——t _E(Wt7)d—S. (2.22)

Mit 1x(z)| = \/x - x folgt hieraus

H _ ‚_ 5503W?) - 5105i)
x ~t (2.23)

Der Vektor t’ steht auf t senkrecht, da t Einheitsvektor ist (vgl. S. 14).

Wir setzen
t,

n _ m. (2.24)

Der Vektor n ist ebenfalls ein Einheitsvektor und steht senkrecht auf t, weil er dieselbe
Richtung wie t’ hat. Der Vektor n heißt Hauptnormalenvektor der Raumkurve c.

Wegen t’ = iä = hat i dieselbe Richtung und denselben Richtungssinn

wie t’. Daher gilt

"t ‚n — . (2.24 )

Differenziert man die Gleichung t = nach dem Parameter t, so findet man wegen

IX] = ~/>2 - >2

._x(x-x)—x(x~sz) '

(J5: - x)’
Hieraus und aus (2.24’) folgt mit (1.5)

= x(x-x)—;2(x-5:) = (xxx) (225)
h’: >< ik| |)'(| I)’: >< 3i| lir| '

Bildet man das Vektorprodukt t x n, so erhält man einen dritten Vektor

b = t x n. (2.26)

‘) Mit Ausnahme der Abschnitte 3.2. bis 3.7.
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Bild 2.3. Das begleitende Dreibein einer Raumkurve

Der Vektor b wird als Binormalenvektor bezeichnet. Er steht senkrecht auf t und n
und hat den Betrag 1.

Die drei Vektoren t, n, b denken wir uns als gerichtete Strecken vom Punkt X
der Raumkurve mit dem Ortsvektor x(t) abgetragen. Dann bilden die drei Vektoren
t, n, b ein orthogonales gleichschenkliges Dreibein, das sich bei Bewegung des Punk-
tes X längs der Raumkurve c mitbewegt. Deshalb heißt dieses Dreibein das begleitende
Dreibein der Raumkurve. Wegen der Definition des Vektorproduktes stellt das be-
gleitende Dreibein ein Rechtssystem dar. Das heißt, wenn man von der Spitze des
Vektors b auf die Ebene der Vektoren t und n blickt und den Vektor t durch eine
Vierteldrehung in den Vektor n überführt, so erscheint diese Drehung als eine Dre-
hung im mathematisch positiven Sinn (Gegenuhrzeigersinn). Es gilt n = b x t
und t = n x b. Setzt man in (2.26) für n den Ausdruck aus (2.25) ein und berück—
sichtigt den Entwicklungssatz (1.5), so erhält man

irxii
b = (2.27)

2.5. Die Schmiegebene einer Raumkurve

Wir betrachten eine Raumkurve c mit der zulässigen Parameterdarstellung x = x(t)
der Klasse r g 2 und X >< 5k # 0. Auf c sei ein Punkt X gegeben. Sind X1 , X2 zwei
weitere Punkte der Kurve c, die in der Nachbarschaft von X, aber nicht mit X auf
ein und derselben Geraden liegen, so bestimmen die drei Punkte X, X1, X2 eine
Ebene e12(X), der sie angehören. Bewegen sich X1 und X2 aufder Kurve c unabhängig
voneinander gegen den Punkt X, so geht die Ebene e12(X) bei diesem Grenzprozeß
in eine Ebene a, über, die man als Schmiegebene der Kurve c im Punkt X bezeichnet.
Da die Sekanten XX1 bzw. XX2 bei dem Grenzprozeß in die Tangente IX der Kurve c
im Punkt X übergehen, enthält ax die Tangente tx. Die Kurve c berührt die
Schmiegebene ax im Punkt X.
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Bild 2.5. Die zu einem Punkt einer Raumkurve gehörige Schmiegebene

Außerdem hat die Ebene e„(X) in jeder Lage mit der Kurve c mindestens die drei
benachbarten Punkte X, X1 , X2 gemein und wird daher von c im allgemeinen in der
Umgebung von X durchsetzt. Da die drei Punkte bei dem Grenzprozeß in den Punkt X
zusammengerückt sind, sagt man, daß die Kurve c mit ihrer Schmiegebene a, min-
destens drei infinitesimal benachbarte Punkte gemein hat. Geometrisch bedeutet das,
daß die Kurve c im allgemeinen die Schmiegebene ax im Punkt X nicht nur berührt,
sondern auch noch durchsetzt.

Die Schmiegebene ax ist diejenige Ebene, der sich die Kurve c in der Umgebung
des Kurvenpunktes X am besten annähert. Das heißt, praktisch verläuft die Kurve c

in unmittelbarer Umgebung des Punktes X in der Schmiegebene ex.
Die Schmiegebene ax einer Raumkurve c hängt natürlich von der Lage des Punk-

tes X ab und ändert sich, wenn sich x ändert. Eine Ausnahme machen hier lediglich
die ebenen Kurven, die in jedem ihrer Punkte die gleiche Ebene —- nämlich die Ebene,
in der die jeweilige Kurve liegt — als Schmiegebene besitzen.

Es seien x(t), x(t + h), x(t + k) die Ortsvektoren der drei Kurvenpunkte
X, X1 , X2. Die Vektoren a = (x(t + h) — x(t))/h, b =(x(t + k) — x(t))/k und

b -— a
c — 2 k _ h

funktionen nach Taylor (vgl. Bd. 2, Satz 6.8), so erhält man (vgl. [6], S. 48-49)

a = >'r(t) + %ä(t)h + o(k)‘)
b = :k(t) + 5-$i(t)k + o(k) (2.28)

k f „ (o(k) — um».

sind drei Vektoren der Ebene s12(X). Entwickelt man diese Vektor-

c = ii(t) +

1) Zur Bedeutung der Vektoren
o(k), o(k) vgl, Abschnitt 2.10.
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Für h —> 0, k —> 0 gehen die Vektoren a, b, c in Vektoren der Schmiegebene ax
über‘). Die zwei Vektoren a, b werden zu )‘:(t), der Vektor c zu §&(t). Die Vektoren :'t(t)
und ii(t) spannen die Schmiegebene ax auf, wenn man sie als gerichtete Strecken an
den Punkt X der Raumkurve c anträgt?) Bezeichnet man mit y den Ortsvektor
eines beliebigen Punktes Y von ax, so lautet die Gleichung von ax

(Y - X(t)‚ X0), 30)) = 0- (2-29)

Der Ausdruck auf der linken Seite von Gleichung (2.29) bedeutet das gemischte Pro-
dukt (Spat) der in der Klammer stehenden drei Vektoren y — x(t), ir(t) und :'&(t).

Da sich der Hauptnormalenvektor n wegen (2.25) in der Gestalt

mm4) — ‚kann
Iii >< i! Iii}

schreiben läßt, liegen n und damit auch die Hauptnormale nx in der von 2': und it
bestimmten Schmiegebene ax. Die Schmiegebene ax eines Punktes X einer Raum-
kurve c wird durch die Vektoren t und n ihres begleitenden Dreibeins in X aufge-
spannt. Die von den Vektoren t und b gebildete Ebene heißt reküfizierende Ebene
oder Streckebene, während die von n und b aufgespannte Ebene Normalebene~") der
Raumkurve c genannt wird.

Norma/ebene

Bild 2.6. Normalebene, Schmiegebene und Streckebene

Deutet man den Parameter t als Zeit, so stellt die vektorielle Parameterdarstellung x(t) das Be-
wegungsgesetz dar, unter dem sich der Punkt X entlang der Raumkurve c bewegt. Die Vektoren
it(t) und §i(t) stellen den Geschwindigkeitsvektor und den Beschleunigungsvektor dieser Bewegung
dar. Berücksichtigt man dies, so kann man sagen, daß die Schmiegebene der Raumkurve c für den
Punkt, an dem sich X zur Zeit t befindet, durch >'t(t) und i£(t) aufgespannt wird,

1) Allerdings muß h + k sein, und —k— darf nicht gegen l gehen, wenn h und k gegen null
streben. h

2) Dabei wird vorausgesestzt, dal3 i: >< i =i= 0 ist.
3) Jede Gerade in der Normalebene, die die Kurve c mm, bezeichnet man als Normale der

Raumkurve c.
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2.6. Die Krümmung und Windung einer Raumkurve

Durch die drei Punkte X, X1 , X2 ist in der Ebene s12(X) ein Kreis k12(X) bestimmt.
Rücken X1 und X2 gegen X, so geht der Kreis k12(X) in einen Kreis k_(X) in der
Schmiegebene ax mit dem Mittelpunkt M(X) und dem Radius g(X) = XM(X) über.
Dieser Kreis k(X) ist der zum Punkt X gehörige Krümmungskreis. M(X) ist der
Krümmungsmittelpunkt und g(X) der Krümmungsradius.

Der Kreis k12(X) enthält die Sekante XX1. Diese geht bei dem Grenzprozeß in
die Kurventangente t1, und in die Tangente an den Krümmungskreis im Punkt X
über. Daher berührt der Krümmungskreis k(X) die Tangente t1 (bzw. die Kurve c

im Punkt X) und sein Mittelpunkt M(X) liegt auf der Hauptnormale n11 der Kurve c

in X.
Es seien X, X zwei benachbarte Punkte- der Kurve c und t, i = t + At die zuge-

hörigen Tangentenvektoren. Bezeichnet man den Winkel zwischen t und i mit Azx

und die Bogenlänge des durch X und X begrenzten Kurvenstücks mit Ar, dann
läßt sich die Krümmung oder Flexion u der Kurve c im Punkt X wie folgt definieren:

Aoc doc
' X = ' —— = ———. 2.30~( ) As d; ( )

Der Krümmungskreis k(X) unterscheidet sich von der Kurve c in der unmittelbaren
Umgebung des Punktes X sehr wenig, denn k(X) hat mit c drei infinitesimal benach-
barte Punkte gemein.

Betrachtet man zwei infinitesimal benachbarte Punkte X, X und ihre Tangenten-
vektoren t‚t + dt, so gilt ]dt] = doc, wobei doc den Winkel bezeichnet, den diese
Vektoren miteinander bilden. Dann ist

„_d_°‘_fl_ E
_ _ _ dsds ds

Damit ist die Krümmung einer Raumkurve in keinem ihrer Punkte negativ. Mit
Hilfe von Gleichung (2.23) erhält man für die Krümmung

n = „/(x-x)(sz»sz) —(x~x)2 =12 >< 321::
(Jx- x)3 Iii’ 9

Die Größe g = l/2: ist derKr12mm1.mg.rradius, und durch m = x(t) + gn ist der Orts-
vektor des Krümmungsmittelpunktes M(X) gegeben. Der Kreis mit dem Mittelpunkt
M(X) und dem Radius g, der in der Schmiegebene ax liegt, berührt die Raumkurve
im Punkt X und ist mit dem Krümmungskreis k(X) identisch.

= m. (2.31)

(2.32)

Um dies einzusehen, betrachtet man den Kreis k12(X) durch die drei Punkte X, X1, X2. Sind
x(t), x(t1), x(t2) ihre Ortsvektoren, ml; der des Kreismittelpunktes und 912 der Radius von k12,
so hat man

(Tim = (m) — mm’ = (auf = <ZMu)2 z (x01) — mm2. i: 1. 2.

Die Funktion F12(u) = (x(u) — m1z)2 — (912): hat für u = I, I, , t2 drei Nullstellen. Nimmt man

an, daß der Krümmungskreis k(X) existiert, so geht mit t1 —> t, t2 —> t der Vektor m12 in m, den Orts-
Vektor des Krümmungsmittelpunktes, g12 in o, F12(u) in F(u) = (x(u) — m)‘ — g’ und k12(X)
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in k(X) über. Die Funktion F(u) hat bei u = t eine dreifache Nullstelle. Daher ist F(I)= F’(t)
= F”(t) = O. Hieraus folgt (x(t) — m)’ — gz = 0, F’(I) = 2(x(!) — m) - )'((t) = 0 und F”(t)
= 2(x(t) A m) - ii + 23': - i: = 0. Wegen t = i: |X|" steht x — m senkrecht auf t. Daher liegt
x(t) — m in der Normalebene. Andererseits liegt der Kreis k(X) und damit auch X und M(X) in
der Schmiegebene Ox, daher x(t)— m auf der Schnittgerade von Normalebene und Schmieg»
ebene, d. h. auf der Hauptnormale. Mithin ist x(t) - m = Lxn. Setzt man dies in die Gleichung
für F”(t) ein, so ergibt sich an ~ ii + X - X = 0, und wegen (2.25), (1.7) und (2.32) folgt

a:_i-i_ —|X||:'(|’|i><ii| _—|2'([3|)'£Xii|
n-5:” (x~x)(x-a:)—(x-x)2 ‘ }x><sq=

=_ W =_i=_
|)'()<i(’| ac e’

Daher findet manoc=—g undm:x(t)+gn sowie

«W= {x(t) — ml = lenl = elnl = e

wie behauptet (vgl. [l4], S. 67).

Faßt man in x(t) den Parameter t als Zeit auf, so sind i: und ii der Geschwindigkeits-
und der Beschleunigungsuektor der Bewegung des Punktes X längs c. Es soll ii in
Komponenten nach den Vektoren t und n zerlegt werden. Das ergibt

it = b‚t + bun (2.33)

mit b, = ii ' t, b,, = n. Man findet

Dabei wurde lid = v gesetzt, wobei v die Bahngeschwindigkeit des Punktes X ist.
Durch b, = dv/dt ist die Tangentialbeschleunigungl) gegeben. Aus (2.25) folgt

= (ii-i)(:k-X) — (:‘<~§i)2 _ [X >< 3i|2 _ l)‘: x i]
""=ä'“ |2'<><i||i<| ' lX><3i||ir| ‘ IXI

Berücksichtigt man noch (2.31) und (2.32), so erhält man wegen n = l/g = ii: x ii]/|:':[3

_ I)": X ii] ‚ 2 _ v’
12„ _ W |x| _?. . (2.34)

Die Beschleunigungskomponente b„ stellt die Normalbeschleunigung‘) des Punktes X
dar. Sie wird auch gelegentlich als Zentripetalbeschleunigung bezeichnet.

Sind b undl-J = b + Ab die Binormalenvektoren der benachbarten Punkte X und X
der Raumkurve c und ist Aß der mit einem Vorzeichen behaftete Winkel zwischen den

Vektoren b und h, so versteht man unter der Windung oder Torsion der Raumkurve c

im Punkt X die Größe

Afi — dfi (2.35)r=lim———.
)74XAs ds_

‘) In der Technik werden Tangential- und Normalbeschleunigung mit a, und an bezeichnet.
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Das Vorzeichen von r ist dabei positiv, wenn sich bei der Bewegung des Dreibeins
t, n, b von X nach? die Binormale b wie bei einer Rechtsschraubung bewegt. Ent-
sprechend diesem Sachverhalt ist der Winkel Aß positiv, wenn der Vektor b bei der
Bewegung des Dreibeins von X nach .7, blickt man in Richtung des den Vektor t

I1

b-
i

b"

db

Bild 2.7. Zur Definition der Torsion

darstellenden Pfeils, sich im Uhrzeigersinn dreht. Andernfalls ist der Winkel Aß
negativ. Daher gilt dß = i [db]. Aus dem Bild 2.7 entnimmt man die Beziehung

db = —n dß. (2.36)

db d
Daraus folgt E = — Tfn bzw.

b’ = —rn. (2.37)

Hieraus ergibt sich

i r = —(b’-n). (2.38)

Wegen b - n = 0 erhält man b’ - n + b - n’ = 0. Daher ergibt sich

z = (b - n’) = (t >< n)-n’. (2.39)

H ‚„ „ _ „ _ II „_ m

Setzt man t = x’, n = und n’ =, so
x ~x

findet man

= (X2, X”, xm)
T (xv _ xu) (2.40)

Bezieht man die Raumkurve auf den beliebigen Parameter t, so erhält man nach
kurzer Rechnung

(k, i, ii)
’ = W’)
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Aufgabe 2.1: Man bestimme die Bogenlänge und das begleitende Dreibein der durch

x(t) = 5z2i+1n1rIi+z„/2k
gegebenen Raumkurve für das Intervall 1 g I g 4.

Aufgabe 2.2: Es ist die Krümmung und die Windung der Raumkurve mit der Parameterdarstellung
x(t) z ti + 12i + r3k zu berechnen.

2.7. Die Frenetschen Formeln

Die Ableitungsvektoren t’, n’ und b’ lassen sich durch die drei Vektoren t, n, b
ausdrücken. Wegen z = |t’| und n = t’/]t’| ergibt sich

t’ = am.

Diese Gleichung wird als erste Frenetsche Formel bezeichnet. Für den Ableitungs-
Vektor n’ macht man den Ansatz

n’ = cit + czn + c3b. (2.41)

Multipliziert man die Gleichung (2.41) skalar mit t, so erhält man t - n’ = cl. Aus
t r n = 0 findet man durch Differentiation t’ - n + t - n’ = 0. Hieraus ergibt sich

c1=t°n’= —t"n=~—Mn-n= —u. (2.42)

Die Multiplikation von (2.41) mit n führt zu n’ - n = c2. Aus n’ ~ n = 0 folgt

cl = 0. (2.43)

Schließlich führt die Multiplikation von (2.41) mit b zu b - n’ = c3, woraus wegen
b-n = Owiederb-n’ + b’- =0unddamit

c3 = b-n’ = —b’ - n (2.44)

folgt. Beachtet man die Gleichung (2.38), so findet man c3 = r. Damit lautet die
zweite Frenetsche Formel

n’ = —ut + 1b.

Die Gleichung (2.37)

b’ = —-rn

bezeichnet man als dritte Frenetsche Formel. Schreibt man alle drei Gleichungen
untereinander, so erhält man das folgende System

t’ = zu

n’ = —xt + 1b (2.45)

b’ = —rn.

Diese drei Frenetschen Formeln oder auch Frenetschen Ableitungsgleichungen stellen
ein System von drei linearen Diflerentialgleichungen für die vektoriellen Funktionen
t(s), n(s), b(s) dar. Zerlegt man die Vektoren in Komponenten t = (ti, t2 , t3),
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u = (n1, n2, n3), b = (b1 , b2, b3), so erhält man aus dem vektoriellen Differential-
gleichungssystem (2.45) drei Systeme für die skalaren Komponenten t„ m, b, (i = l‚
2, 3) der Vektoren t, n, b.

z

Ix‘ = 74711:

n; = „z. + 117,-, (i: 1,2,3) (2.46)

bf = —'m,.

Sind die Größen n und r stetige Funktionen der Bogenlänge s mit x > 0 im Inter-
vall 0 g s g a und hat man für s = 0 die Anfangswerte 1?, 21?, b? (i = 1, 2, 3) gege-
ben, so daß die Bedingungen

ganz =_;:<n‚°>2 1202W = 1

und
3 3 3

21x9"? =2 31°17? =lZ!".917? =0
i2] i=l

gelten, dann gibt es für jedes i = 1, 2, 3 drei Funktionen t‚(.r), n‚(s), b‚(s), die das
entsprechende System (2.46) erfüllen‘) Außerdem gelten die Gleichungen

3 3 3

2ti=2ni=2bi=l
i:l 'i:l

und

und es ist

M0) = ts”, m(0) = "P, b.>(0) = b? (i = 1,2, 3).

Durch Integration der Gleichungen x,’ = t, (i = l, 2, 3) findet man schließlich drei
Funktionen x,(s), von denen jede noch eine willkürliche Integrationskonstante ent-
hält. Gibt man noch drei Zahlen x‘; (i = 1, 2, 3) vor und fordert, daß die Bedingungen
x,(0) = x? erfüllt sind, so ist durch den Vektor x(s) = x1(s)i + x2(s)j + x3(s)k
die Parameterdarstellung einer Raumkurve c gegeben, die die Krümmung n(s) und
die Torsion 1(5) besitzt und deren begleitendes Dreibein t(s), n(s)‚ b(s) das Gleichungs-
system (2.45) erfüllt. Für s = 0 gilt

t(0) = tii + t2)‘ + täk, n(0) = n§’i + n21’ + näk,

b(0) = bei + b2j + bgk.

Dieses Ergebnis bedeutet, daß eine Raumkurve, was ihre geometrische Struktur
anbetrifft, bis auf Bewegungen im Raum eindeutig durch ihre Krümmung n(s) und
ihre Torsion r(s) bestimmt ist.

‘) Wcgen der Existenz einer Lösung für die Systeme (2.46) vgl. [6], S. 69-72.
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l
Aufgabe 2.3: Man bestimme die Raumkurve mit der Krümmung z(s) = und der Torsion

1 2 + s2

1(3) z — n? ‚ die die Anfangsbedingungen

cm) = (1/«/5, 1/\/Z o). n(o> = (o. o. 1). h<o> = (1/x/Z -1/x/Z o),
x<o) = <0. 0. 1)

erfüllt.

2.8. Der Darbouxsche Vektor

Die Frenetschen Formeln können auch noch in anderer Form geschrieben werden.
Dazu führt man einen Vektor d = dlt + dzn + d3b mit zunächst unbestimmten
Koeffizienten d1 , dz, d, ein. Die unbekannten Koordinaten d, ergeben sich aus der
Forderung, daß die Frenetschen Formeln die Gestalt

t’=d><t‚
n’=d><n‚ (2.47)

b’=d><b

erhalten solleu. Da t, n, b ein orthogonales gleichschenkliges Dreibein bilden, können
wir die Vektorprodukte mit Hilfe der Determinantenschreibweise (siehe S. l0) er—

mitteln:
t n b

t’=dxt= d1 dz d3 =d3n—d2b=zn.
1 O 0

Hieraus folgt sofort dz z 0, d3 2 z. Ebenso ergibt sich aus der zweiten Gleichung
von (2.47)

t n b

n’=d><n= d1 0 z =—>zt+d1b=—zt+rh.
0 1 0

Wir erhalten d, = r. Setzen wir die erhaltenen Werte in den Ansatz für den Vektor d
ein, so ergibt sich, daß auch die dritte Frenetsche Formel in der gewünschten Art
geschrieben werden kann:

t n b

b’=d><b=1: 0 z =—m.

0 0 l

Das stimmt in der Tat mit der dritten Frenetschen Formel überein. Man nennt den
Vektor

d=1:t+xb

den Darbouxschen Vektor zu Ehren des französischen Mathematikers G. Darboux.
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Die Frenetschen Formeln können mit Hilfe des Darbouxschen Vektors kinematisch gedeutet
werden.

Dreht sich ein starrer Körper um eine Achse mit der Winkelgeschwindigkeit w und wählen wir
auf dieser Drehachse den Ursprung O eines Koordinatensystems, so können wir zunächst den Vek-
tor u der Winkelgeschwindigkeit einführen. Das ist ein Vektor, dessen Betrag gleich der Winkelge-
schwindigkeit w ist, dessen Richtung mit der Richtung der Drehachse zusammenfällt und dessen
Richtungssinn so gewählt wird, daß die Drehung mathematisch positiv (im Gegenuhrzeigersinn)
erscheint, wenn man entlang der Drehachse entgegen dem Richtungssinn von ll auf den sich drehen-
den Körper blickt. Das Koordinatensystem drehe sich mit dem starren Körper mit. Ist P ein be-

liebiger Punkt des Körpers, r = ä? sein Ortsvektor, so beschreibt P bei der Drehung einen Kreis,
dessen Ebene senkrecht zur Drehachse steht. Für den Radiusg dieses Kreises ergibt sich g = ir| sin(r,u).
Die Bahngeschwindigkeit 1; von P ist dann v = gw. Führt man den Vektor v der Bahngeschwindigkeit
ein, so gilt v = i‘. Der Vektor i- ist ein Tangentenvektor des Kreises. Er liegt in der Kreisebene und
steht aufr und auf dem Berührungsradius g von P senkrecht. Daher steht v auch auf der von r und u

gebildeten Ebene senkrecht. Es gilt daher

v = u >< r. (2.48)

Beweis. Wegen v = u >< r steht v auf r und u senkrecht, hat also die verlangte Richtung. M = v

= |u| |r| sin (r, u). Nun ist r sin (r, u) = g. Folglich ist [VI = v : g Iul : au). Damit hat v auch den
richtigen Betrag. Wegen v = u X r zeigt der v entsprechende Pfeil in die Bewegungsrichtung von P.
Folglich hat v auch den gewünschten Richtungssinn.

Faßt man das begleitende Dreibein einer Raumkurve als einen starren Körper auf, wobei der Ur-
sprung X sich entlang der Raumkurve mit dcr konstanten Bahngeschwindigkeit ds/dt = I bewegt,
so folgt aus den Frenetschen Formeln (2.47) wegen t’ = t, n’ = i1, h’ = b, daß sich das System
t, n, b in jedem Moment mit der Winkelgesehwindigkeitd = ldl um die durch den Punkt X und den
Vektor d bestimmte Achse dreht. Der Darbouxsche Vektor liegt, wenn man sich ihn durch eine ge-
richtete Strecke mit dem Punkt X der Raumkurve als Anfangspunkt veranschaulicht denkt, in der
von t und b bestimmten Ebene, die auch als rektifizierende Ebene bezeichnet wird. Bewegt sich das
begleitende Dreibein entlang der Raumkurve c, so hüllt die rektifizierende Ebene eine gekrümmte
Fläche ein. Diese Hüllfiäche wird als rektifizierende Fläche bezeichnet. Die rektifizierende Fläche ist
eine Regelfläche, d. h. eine Fläche, die Träger einer Geradenschar ist. Die Geraden einer solchen
Schar nennt man die Erzeugenden der Regelfiäche (vgl. S. 108). Im Fall der rektifizierenden Fläche
einer Raumkurve ergibt sich für jede Lage des begleitenden Dreibeins eine Erzeugende der Fläche
als eine Gerade, die durch den Ursprung X des begleitenden Dreibeins parallel zum Darbouxschen
Vektor d verläuft. Die Raumkurve c liegt somit ganz auf der rektifizierenden Fläche. Es läßt sich
nun zeigen, daß die rektifizierende Fläche einer Raumkurve stets in eine Ebene abgewickelt werden
kann. Bei dieser Verebnung der rektifizierenden Fläche geht die auf ihr liegende Raumkurve in eine
Gerade über. Diese Tatsache erklärt den Namen rektifizierende Fläche (vgl. [8], S. 85-86).

Der Betrag des Darbouxschen Vektors hat auch noch eine andere Bedeutung. Sind

X und X zwei benachbarte Punkte einer Raumkurve, n und E = 11 + An die zuge-
hörigen Hauptnormalenvektoren, ist Ay der Winkel zwischen n und i") und ist As
die Länge des Bogens des von X und X begrenzten Kurvenstücks, so bezeichnet man
mit

A = umfl = ‘ii (2.49)g’)! As ds

die Totalkriimmung der Raumkurve. Wegen dn = (—2¢t + Tb) ds und |n| = 1 (vgl.
S. l4) folgtdy = |dn| = x/zz + 1:‘ ds und man erhält

z = t/„z + 12. (2.50)
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Es gilt der

Satz 2.1 (Lancret): Die Tatalkrümmung Ä einer Raumkurve ist bekannt, wenn die Krüm-
mung n und die Windung z der Kurve bekannt sind, und es gilt l2 = n2 + T2.

Bildet man nun den Betrag von d, so erhält man [d] = \/oz‘ + z‘ = Ä. Der Betrag
des Darbouxschen Vektors ist gleich der Totalkrümmung.

2.9. Die gewöhnliche Schraubenlinie als Beispiel einer Raumkurve

Wir betrachten einen Punkt A mit den Koordinaten (a, 0, 0) im orthogonalen Koordinatensystem
0(x,,x2,x_-,). Dieser Punkt soll sich um die xg-Achse mit konstanter Winkelgeschwindigkeit w

drehen und gleichzeitig parallel zur X3-Achse eine Bewegung mit konstanter Geschwindigkeit v

ausführen Die Überlagerung beider Bewegungen bezeichnet man als Schraubung oder Verschrau-
bung des Punktes A. Der Punkt A beschreibt, wenn er verschraubt wird, eine Raumkurve, die als
Schraubenlinie bezeichnet wird. Die xs-Achse nennt man Schraubachse und das Verhältnis der Ge-
schwindigkeit v zur Winkelgeschwindigkeit m wird Schraubparameter oder reduzierte Ganghähe
genannt und mit p bezeichnet (Vgl. [7]; [9], Bd. 2, Nr. 14l). Beip > 0 ist die Schraubenlinie rechts-
gewunden (Rechtsschraubung), bei p < O linksgewunden (Linksschraubung):

p = v/w. (2.51)

Den Höhenunterschied, den der Punkt A bei einer vollen Umdrehung durchläuft, bezeichnet man als
Ganghähe h. Mithin ergibt sich aus (2.51), wenn T die Zeit für den Ablauf einer vollen Umdrehung
darstellt,

UT fi h

Fp = (2.52)
i)

w 21:’

Die Parameterdarstellung einer Schraubenlinie mit der Schraubachse x3 und dem Schraubpara-
meter p lautet:

x(t) = a cos t i + a sin tj + pt k. (2.53)

Dabei ist t der Winkel, den die Gerade 0X’ mit der xl-Achse bildet, wenn X’ die Orthogonalpro-
jektion des Punktes X in die xi , X2-Ebene darstellt‘) Projiziert man die Schraubenlinie orthogonal
in die x„ xz-Ebene, so erhält man x1 = a cos t, x2 = a sin i, x3 : 0. Dies stellt einen Kreis vom

Radius u um den Ursprung 0 dar. Daraus folgt, daß die Schraubenlinie auf einem geraden Kreis-
zylinder liegt, der die x3-Achse als Drehachse besitzt und bei dem der Radius gleich a ist. Dieser
gerade Kreiszylinder heißt Schraubzylinder. Für die Bogenlänge der Schraubenlinie erhält man
wegen it, = rasint, i; = acost, 223 =p

d.r=[i(t)|dt=.\/11’ + 112 dr.

Durch Integration folgt

w) = \/112 + pix,

wenn s(0) = 0 gesetzt wird. Für die Länge eines vollen Ganges der Schraubenlinie muß t von 0
bis 27: wachsen. Man erhält

21: _j_ j j

L=s(27:)= fx/a’ + 122 dt: 2n\/aZ+p2:x/4aZ7t’+h2.
0

‘) In der Technik wird dieser Winkel mit (p bezeichnet.
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Für das begleitende Dreibein erhält man:

g =_.—=-——j—(—asinti+acosIj+1;k),
+12‘

t =——:—___-(—acosti—asintj),
~/a’+p’
i . . .

n = -‚— =—(cos n + sin n),
M

i j k l
b=t><n= —asinr acost p D?

—cost —sint 0 J“ +1”

l . . .= (ps1ntl—pCOSt]+ak).

33

(2.54)

(2.55)

(2.56)

Der Hauptnormalenvektor n ist in jedem Punkt auch Flächennormalenvektor des Schraubzylinders,
denn n steht senkrecht zum Vektor k der Schraubachse x3. Dies folgt aus dem Verschwinden des

Skalarproduktes der beiden Vektoren.

Bild 2.8. Gewöhnliche Schraubenlinie

Mithin ist die durch t und b aufgespannte Ebene Tangentialebene an den Schraubzylinder. Der
Schraubzylinder wird von den rektifizierenden Ebenen der Schraubenlinie eingehüllt. Er stellt somit
die rektifizierende Fläche der Schraubenlinie dar. Wickelt man den Schraubzylinder in die Ebene ab,

3 Schöne, Difiereutialgeometrie
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271p-/I Cu

(=0 27m

Bild 2.9. Bestimmung der Bogenlänge einer Schraubenlinie durch Abwicklung des
Schraubzylinders

so wird aus dem Zyliridermantel ein Rechteck der Breite 27m und der Höhe h, wenn wir den Zylinder
nach oben so begrenzen, daß nur ein Schraubengang auf ihm Platz hat. Die Schraubenlinie geht bei
der Abwicklung in eine Gerade über, nämlich in die Diagonale des erwähnten Reehtecks (vgl.
Bild 2.9). Man erkennt, daß die Länge der Schraubenlinie sich bei der Abwicklung nicht geändert

half) Aus der Abbildung folgt L = E: J4n2a= + h’.

Für die Krümmung x der Schraubenlinie erhält man

‚ _ - d! _ < dt a 1

A-hl-ltds —itId—J=\/„2+P2 \/„z+p2

— —"—— 2 57
— a2 + P2 ' ( ~ )

Für die Windung der Schraubenlinie ergibt sich

‚ 1 . . . 1 . . .

T: b.n = (ps1nn—pcosI}+ak). (s1nI1 — cos tj)

_4.
_ a, + P2. (2.58)

Damit ergibt sich für den Darbouxschen Vektor d = 1t + zb

1

(2.59)d =K;-k
«/a’ + p’

Man erkennt, daß der Darbouxsche Vektor Richtungsvektor der Erzeugenden des Schraubzylinders
ist, wie es nach Abschnitt 2.8. sein muß‚ da der Schraubzylinder die rektifizierende Fläche der Schrau»
benlinie ist.

* Aufgabe 2.4: Ein Drahtseil bestehe aus einem zylinderförmigen Kern, um den schraubenlinienartig N
gleiche Drähte aufgewickelt sind. Der Abstand der Mittellinie jedes Drahtes von der Achse des

Kerns sei r. Man gebe die Parameterdarstellungen der Mittellinien zweier benachbarter Drähte an,

wenn die Mittellinien als Schraubenlinien mit der Ganghöhe h betrachtet werden.

* Aufgabe 2.5 : Ein Drahtseil werde über eine Welle gelegt, so dal3 ein gewisser Teil der Achse des

Kerns die Gestalt eines Kreises vom Radius R annimmt, Dabei ändern sich auch die Kurven, die von

den Mittellinien der einzelnen Drähte gebildet werden. Man gebe die Parameterdarstellungen der
Mittellinien zweier benachbarter Drähte an, wenn angenommen wird, daß jede solche Mittellinie
die Bahnkurve des Endpunktes einer Strecke der Länge r ist. Diese Strecke wird um die kreisförmige
Achse verschraubt, wobei der andere Endpunkt ständig auf dem Kreis bleibt und die Strecke selbst

‘) Die Schraubenlinie ist eine geodätische Linie auf dem Schraubzylinder (vgl. 4.18.).
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senkrecht zur jeweiligen ‘Kreistangente steht. Die kreisförmige Achse habe die Parameterdarstellung
xx : 0, x2 = R cos w, x3 = R sin 1/), 0 g w S 7:/2. Die Anfangslage des die erste Mittellinie er-

zeugenden Punktes habe die Koordinaten X1 = r, x2 z R, x3 = O. Für den Verschraubungswinkel q:

der Strecke gelte 1p = Zr}; (Ä konstant).

Eine Raumkurve heißt Böschungslinie, wenn es eine feste Ebene gibt, so daß die
Tangente in jedem Punkt der Raumkurve mit dieser Ebene ein und denselben kon-
stanten Winkel bildet.

Oft ist es praktischer, die folgende Definition für Böschungslinien zu benutzen:
Eine Raumkurve heißt Böschungslinie, wenn ihre sämtlichen Tangentenvektoren
mit einer vorgegebenen Richtung einen festen Winkel einschließen.

Offensichtlich sind beide Definitionen gleichwertig.
Eine gewöhnliche Schraubenlinie ist stets eine Böschungslinie, denn jeder ihrer

Tangentenvektoren t bildet mit dem Vektor der Schraubachse k einen festen Winkel.
In der Tat gilt

T
COS (t, k) = t‘k = :=T= konstant

\/a2 + p’ \/ac’ + -:2

Aufgabe 2.6: Man zeige, daß eine Raumkurve genau dann eine Böschungslinie ist, wenn der Quotient
aus Windung und Krümmung konstant ist, d. h. wenn gilt

1(5)
um = K = konstant.

2.10. Die kanonischen Gleichungen einer Raumkurve

Es seix = x(s) die Parameterdarstellung einer Raumkurve c von der Klasse r g 3,
bezogen auf die Bogenlänge s von c. X0 sei ein Punkt auf c, für den s = 0 ist. Um
die Kurve c in einer hinreichend kleinen Umgebung von X0 untersuchen zu können,
wird x(s) an der Stelle s = 0 nach Taylor entwickelt. Man erhält

x(s) = x(0) + x’(0)—lS—! + x”(0)% + x”’(0)—§— + o(s3). (2.60)

Hierbei bedeutet 0(33) einen Vektor, dessen Komponenten von der Größenordnung
0(53) sind. In diesem Zusammenhang heißt a(s3)‚ daß mit s —> 0 auch o(s3)/s3 —> 0
strebt (vgl. Bd. 3, 4.6.1.). Es seien to , n0, ho die Vektoren des begleitenden Dreibeins
im Punkt s = 0. Bezieht man die Vektorfunktion auf dieses Dreibein, so ist x(0) = o,
und es gilt

x(s) = x1(s) t0 + x2(s) n0 + x3(s) b0. (2.61)

Man ersetzt nun in (2.60) die Ableitungen x’, x”, x”’ durch Ausdrücke in den Vek-
toren t0, n0 , b0.

X'(0) = to,

X"(0) = t6 = >40) Ilo.

x”’(0) = u’(0) n0 + x(0) n0.

3*
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Ans der zweiten Frenetschen Gleichung folgt

n1; = —:c(0) to + 1(0) ho.

Damit geht (2.60) über in
A, 2

x1(s)t1‚ + x2(s) n1, + x3(.r) b1, = —1'—to + 32(0) n1,

+ (:e'(0) n.) + n(O) [—n(O) to + 1(0) bo]):—3! +

Durch Koeffizientenvergleich erhält man daraus

x1(s) = s —- u2(0)% + 0(53),

x2(s) = 2¢(0) L22 + 74/(0) ä + 0(53), (2.62)

x3(s) = + x(0) 1(0)i63’- + 0(s3).

Diese Gleichungen werden als kanonische Gleichungen oder auch als kanonische
Entwicklung der Raumkurve c bezeichnet.

Betrachtet man die Kurve c in unmittelbarer Umgebung von X0, so ist s sehr
klein, und es genügt, wenn man jeweils das erste Glied der Entwicklung berück-
sichtigt. Man erhält so

x1 = S,

x2 = i‘ "052,

x3 = 715 7407053.

wo n0 = x(0) und 1:1, = 1(0) ist.

Betrachtet man ein kleines Stück der Kurve c, das den Punkt X0 enthält und projiziert man dieses
Kurvenstück orthogonal in die x2 , x3-, xi , x3~ und in die xi, x2-Ebene, so erhält man drei Kurven-
Stücke cl , £2 , £3 , die ebenfalls den Punkt X0 enthalten, da dieser mit dem Ursprung 0 des x1 ‚ x2 , x3-
Koordinatensystems zusammenfällt, Das Verhalten der Kurvenstücke c1 , c2, c3 in der Umgebung
von X0 ergibt sich, wenn man die Größe s aus den entsprechenden zwei Gleichungen eliminiert.

2s „r
Aus X; : zo -2- , x3 : zero ? folgt

zu 9 2
c1: x§=——x3.

13 2

Das ist eine Neilsche Parabel, die in 0 = X0 eine Spitze mit der xz-Achse als Tangente hat. Aus
3

x1 = s, x3 = x010 %—ergibt sich

1 3c1: x3 = ?u„1„x1 ,

eine kubische Parabel, die die x1-Achse in 0 tangiert.
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x2
Aus x, = s, x2 = no Tfindet man

V 1 2c3. x2 = 7240g .

Dies ist eine gewöhnliche Parabel mit dem Scheitel 0 = X0 und der xx-Achse als Scheiteltangente.
Für kleine s stimmt die Kurve c gut mit der durch

S: 3.3

TV: =5. X2=9‘oT» X3=”oTo?

gegebenen Näherungskurve überein, und das gleiche gilt auch für die Kurven c, ‚ c; ‚ c3 und die drei
orthogonalen Projektionen der Näherungskurve, die mit den ‚drei gefundenen Parabeln identisch
sind.

Demnach verhält sich die Projektion c, von c in die Normalebene wie eine Neil-
sehe Parabel, die Projektion cl von c in die rektifizierende Ebene wie eine kubische
Parabel und die Projektion c3 von c in die Schmiegebene wie eine gewöhnliche
Parabel in der Umgebung eines beliebigen Punktes X der Kurve c (vgl. Bild 2.10).

b

X t

Bild 2.10. Die Projektionen einer Raumkurve in die Schmiegebene, Normalebene und
rektifizierende Ebene
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3.1. Die Parameterdarstellung und Krümmung ebener Kurven

Es sei x(t) = x,(t)i + x2(t)j + x3(t)k eine zulässige Parameterdarstellung der
Klasser g lfüra g t; b.

Nehmen wir an, daß die Funktion x3(t) für alle Werte t verschwindet, so wird
durch die obige Parameterdarstellung eine Kurve gegeben, die ganz in der x1, x2-
Ebene liegt. Eine solche Kurve, die ganz in einer Ebene liegt, bezeichnet man als eine
ebene Kurve. Da die Funktionen x‚(t)‚ x2(t)~auBerdem r-mal (r g 1) stetig diffe-
renzierbar sind, so ist eine zulässige Parameterdarstellung einer in der x„ xZ-Ebene
liegenden Kurve gegeben durch

X0) = x1(t)i+ Xz(t)J'

bzw. durch

X0) = (X10), x2(t))- (3-1)

Dabei wollen wir annehmen, daß die Funktionen dxl/dt = )'c1(t), dxz/dt = .\'r2(t)
nicht beide an derselben Stelle t verschwinden.

Für das Bogenelement erhält man nach (2.17)

ds = \/(x1(:))2 + (x2(z))2 dt. (3.2)

Damit ergibt sich für die Bogenlänge s(t) des Kurvenstücks zwischen dem Punkt X0

mit dem Ortsvektor x(t0) und dem Punkt X, gegeben durch x(t),

' .

x(t) = [JE + xgdz. (3.3)
’n

Der normierte Tangeutenvektor (Einheitsvektor) hat die Gestalt

)'L(t) l ‚_ ‚ „ _

= = —=j_ x + ). (3.4)
I>'<(t)I «xi + ‘ " X”

Die Krümmung einer ebenen Kurve wird etwas anders definiert als bei den Raum-
kurven. Man setzt

‚ da doc dt
"”J-""‘ds”dz'ds‘ (35)

Hierin bedeutet o: den Winkel zwischen der Tangente der Kurve im Punkt X und der
positiven xl-Achse. Somit ist doc wieder Winkel zwischen benachbarten Tangenten.
Das Pluszeichen in (3.5) gilt, wenn da/ds positiv ist. Andernfalls gilt das Minuszeichen.
Man ordnet der Krümmung einer ebenen Kurve ein Vorzeichen zu, indem man dem
Winkel doc ein Vorzeichen gibt. Das ist bei einer Raumkurve nicht möglich.

Man könnte nun den Vektor t’ bilden und aus t’ die Krümmung x ausrechnen.
Da dies aber eine etwas umständliche Rechnung erfordert, gehen wir anders vor. Aus
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der Differentialrechnung wissen wir, daß für den Neigungswinkel o; der Tangente
einer ebenen Kurve gegen die positive xl-Achse die Beziehung

d)‘: xzÜ)tanzx = dxl = x10) (3.6)

gilt. Durch Differentiation der Gleichung (3.6) nach t findet man

doc 5c" X — X 5c"2 T = 2 1 2 1 ‘ .

(1 + tan 0c) d! —————fi (3 7)

Damit erhalten wir

de: x2x‚ — x255, x2x2 — x2x2 '

_- = ——.——— = (3.8)dt xf+x§
x1

Für die Krümmung z ergibt sich demnach aus (3.5) und (3.8), (3.2)

x = 552x. — x22. (3.9)
+ X22]:/2 '

Die Krümmung u ist in einem Punkt Xo mit dem Parameterwert to positiv, wenn der
Winkel o: der Kurventangente gegen die positive x„Richtung beim Durchgang durch
die Stelle t = to mit wachsendem t ebenfalls wächst (vgl. Bild 3.1). Das heißt, daß

Bild 3.1

dann doc/dt > 0 ist. Man erkennt, daß das Vorzeichen der Krümmung von der ge-
wählten Parameterdarstellung abhängt. Da der Krümmungsradius g das Reziproke
der Krümmung ist, findet man

= (xi +
x2x2 — x1x2

g (3.10)

Falls n = 0 ist, setzt man g = oo. Man erkennt aus (3.9) und (3.10), daß eine Para-
meterdarstellung einer ebenen Kurvemindestens zweimal diflerenzierbar sein muß,
wenn man die Krümmung oder den Krümmungsradius berechnen will.
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Bild 3.2

Bild 3.1 und 3.2 zeigen den Zusammenhang zwischen dem Kurvenverlauf in der
Umgebung eines Punktes XD einer ebenen Kurve c und dem Vorzeichen der Krüm-
mung n. Durchläuft man die Kurve an der Stelle t = to im Sinne wachsender Werte
von t, so hat man sie so zu durchlaufen, wie die Pfeilrichtung des Vektors t = X/lfirl
angibt. Bild 3.1 zeigt, daß bei einem solchen Durchlauf der Winkel o4 wächst. Folg-
lich ist doc/dt > O und auch n > 0. Die Kurve c verläuft, wenn man in Pfeilrichtung
blickt, in einer Umgebung des Kurvenpunktes X0 links von der Tangente tx. Im
Bild 3.2 jedoch nimmt beim Durchlauf in Pfeilrichtung des Vektors t der Winkel on

in der Umgebung des Punktes X0 ab. Daher gilt doc/dt < 0 und somit z < 0. Die
Kurve c verläuft in der Umgebung von X0 rechts von der Tangente tx. Die Bilder
3.3 und 3.4 zeigen den Kurvenverlauf im Fall u(X„) = x00) = 0. In diesem Fall
hat die Funktion u(t) an der Stelle to in der Regel einen Vorzeichenwechsel. Ent-
weder ist z(t) < 0 für t < to und t hinreichend nahe bei to und z(t) > 0 für t > to,
oder es gilt umgekehrt x(t) > 0 für t < to und 7c(t) < 0 für t > to. In beiden Fällen
wechselt die Kurve im Punkt X0 von der einen Seite der Tangente auf die andere
Seite. Man sagt, die Kurve hat in X0 einen ‘Wendepunkt. Im Bild 3.3 liegt der erste
der beschriebenen Fälle, im Bild 3.4 dagegen der zweite Fall vor. Verschwindet je-

*2

X2

to)-0
'K.(l)> Uf't7rt<la

o1¢(t,)=0 V(.(!)<0fDI‘[>fa4
nu) <0,t<t.,
‘K,(!} >0,t>ta

ü

X1 X1

Bild 3.3 Bild 3.4
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doch u(t) ohne Vorzeichenweehsel an der Stelle t = to, so wechselt die Kurve in X0
nicht mehr von einer Seite der Tangente auf die andere. Dann hat die Kurve in X0
einen Flachpunkt (Bild 3.5) (vgl. [16], S. 78-80).

um) =z7

'y((t}>0,tvt.,

Bild 3.5. Ebene Kurve mit Flaehpunkt

Schließlich wollen wir noch den Krümmungsmittelpunkt M(X) bestimmen. Für
den Ortsvektor y(t) des Krümmungsmittelpunktes M(X) gilt, wenn man g nach
Formel (3.10) berechnet,

- y(t) = x(t) + Igl n. (3.11)

Der Hauptnormalenvektor n ist dabei stets Vorn Punkt X nach dem Krümmungs-
mittelpunkt M(X) hin gerichtet, wenn man ihn als gerichtete Strecke vom Punkt X
aus abträgt (vgl. Bild 3.6). Dies ist eine Folge der ersten Frenetschen Formel, die bei
Verwendung der mit Vorzeichen behafteten Krümmung (3.9) lautet t’ = Iul n.
Ist der Krümmungsradius g positiv, so ist ‘$6226, — 56,96, > 0 und daher doc/dt > 0.

X2

«(x2
Cm) l ’X

Y2 1

i
/

I
0 //

/
/

f

X2 \ \\ X

"X

g m
X

‚V7 X 1 1

Bild 3.6. Hauptnormalenvektor, Krümmungsmittelpunkt und Krümmungskreis einer
ebenen Kurve
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Die Pfeilspitze von t im Bild 3.6 gibt an, wie die Kurve in der Umgebung von X
durchlaufen wird, wenn twächst. Da der Winkel 0c mit wachsendem t ebenfalls wächst
(Bild 3.6), muß die Kurve in der Umgebung von X links der Tangente tx verlaufen.
Damit liegt auch M(X) links von der Tangente tx, und n hat die Gestalt

1 .. . .

ll = —X21 + X11).

denn es muß n -t = 0 und n - n = 1 sein. Setzt man den Ausdruck für n in (3.11)
ein, so folgt

(x/F432)‘ <—x2i + m) _

(X2731 — 551552) +
Y(t) = y1(t)i + MIN’ = xi(t)i + x2(t)i +

Durch Koeffizientenvergleich erhält man dann

v "2 + '2

yiÜ) = 351m‘ X2(t) ,
1 2

x2 + x2 (3.12)

y2(t) = 12(1) + X1(t) «
l 1 2

Ist der Krümmungsradius g jedoch negativ, so hat man dzx/dt < 0, und daher ist
562361 — 56126, < O, und die Kurve c verläuft rechts von der Tangente tx. Der Vektor n
hat nun die Gestalt

1 . . . .

l1 = 0€2l - x11),

und für den Betrag des Krümmungsradius g gilt

‚ I = _ w?+
9 552x. — me; '

Setzt man diese Ausdrücke in Gleichung (3.11) ein, so ergeben sich nach dem Koeffi-
zientenvergleich dieselben Formeln wie in (3.12). Daher gelten die Gleichungen (3.12)
unabhängig vom Vorzeichen des Krümmungsradius.

Durch den zu einem Punkt X einer ebenen Kurve gehörigen Krümmungsmittel-
punkt M(X) und den Krümmungsradius g wird der zum Punkt X gehörige Krüm-
mungskreis k(X) bestimmt. Der Mittelpunkt des Krümmungskreises k(X) ist der
Krümmungsmittelpunkt M(X), der zugehörige Radius der Krümmungsradius g.
Der Krümmungskreis k(X) hat mit der Kurve c mindestens drei infinitesimal be-
nachbarte Punkte gemein, die im Punkt X zusammengeriickt sind. Daher berührt
und durchsetzt der Krümmungskreis k(X) die Kurve c in X (vgl. Bild 3.6). Ein Punkt
der ebenen Kurve c, für den die Krümmung x(t) einen Extremwert annimmt, heißt
ein Scheitel dieser Kurve. In einem Scheitel hat der Krümmungskreis mindestens vier
infinitesimal benachbarte Punkte mit der Kurve gemein‘) Das hat zur Folge, dal3 der
Krümmungskreis die Kurve in einem Scheitel berührt, aber nicht durchsetzt.

1) Im allgemeinsten Fall hat der Krümmungskreis in einem Scheitel eine gerade Anzahl von

n g 4 infinitesimal benachbarten Punkten mit der Kurve gemein.
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3.2. Der Übergang von der Parameterdarstellung zur Kurvengleichung

Im folgenden wollen wir eine Umbenennung der Koordinaten vornehmen. Wir
bezeichnen die xl-Achse als x-Achse und die xz-Achse als y—Achse. Aus dem ortho-
gonalen x, , x2-System wird dann das orthogonale x, y-System, Die Parameterdar-
stellung einer ebenen Kurve dieser x, y-Ebene lautet dann

x(t) = x(t)i + y(t) j. (3.13)

Es ist also x = x(t), y = y(t). Ist etwa dx/dt =t= 0, so kann man die Gleichungx = x(t)
zumindest im Kleinen nach t auflösen. Man erhält t = g(x). Setzt man dies in die
Gleichung y = y(t) ein, so folgt

y = y(g(x)) = f(x), (3.14)

wenn wir für die zusammengesetzte Funktion y(g(x)) abkürzend f(x) schreiben. Die
Gleichung y = f(x) stellt die explizite Form (d. h. die nach y aufgelöste Form) der
Gleichung der Kurve c dar.

Für die Gleichung der Kurventangente erhält man, wenn Po mit den Koordinaten
x0, yo ein beliebiger Punkt der Kurve c ist,

y - Yo =f’(xo) (x - xo)- (3-15)

Hierin ist f’(xo) die erste Ableitung der Funktion f an der Stelle x0. Mit x und y
werden in (3.15) die Koordinaten eines beliebigen Punktes der Tangente der Kurve c

im Punkt Po bezeichnet.

Die Gleichung (3.15) ist eine Folge der Punktrichtungsgleichung der Geraden. Für eine Gerade
durch den Punkt P0(x0, yo) mit dem Neigungswinkel o: gegen die positive x-Achse findet man, wenn

man tan ax : m setzt, die Gleichung

y—y°=m(x—x0). I (3.16)

Dabei wird m als Richtungsfaktor der Geraden bezeichnet. Daß dies die Gleichung einer Geraden
ist, folgt aus der Linearität in x und y. Die Gerade geht durch P0, da die Koordinaten von P0 die
Gleichung (3.15) erfüllen. Da andererseits der Tangens des Neigungswinkels der Tangente der Kurve
gegen die positive x-Achse gleich f’(x) ist, erhält man m =f’(xO). Dies in (3.16) eingesetzt, liefert
die Gleichung (3.15).

Für die Gleichung der Kurvennormale nx im Punkt ‚Y‘, ergibt sich

1

,V—J’o = ‘%(x‘xo)- (3-17)

Das folgt daraus, daß das Produkt der Richtungsfaktoren zweier zueinander senk-
rechter Geraden gleich —l ist.

Legt man an die Kurve mit der Gleichung y = f(x) durch den Punkt P mit den
Koordinaten x, y die Tangente t und die Normale n, so schneidet die x-Achse die
Tangente t in einem Punkt T und die Normale in N (vgl. Bild 3.7). Bezeichnet S den
Punkt auf der x-Achse mit den Koordinaten x, 0, so gilt für den Tangentenabschnitt‘)

PT wegen tan ac ==f’(x) und sin o: = g
F = J1 + (f(x))? (3.18)

‘) Um die Positivität der rechten Seite von (3.18) zu sichern, werden Betragsstriche verwendet.
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Bild 3.7. Tangente, Subtangente, Normale und Subnormale

Für den Normalenabs ' ' t‘) PN hat man wegen cos o; =

W = |f(x)| J1 + (f’(x))‘. (3.19)

Analog erhält man für den Subtangentenahsc‘ "u ST aus tan (x = fit);
ET = f“) (3.20)

f'(x) . W
und für den Subnorn1alenabschnittSN schließlich wegen tan ax = W

51V = I/(x)/'<x>| . (3.21)

Um das Bogenelement dr der Kurve mit der Gleichung y = f(x) zu erhalten, betrachten wir auf
der Kurve zwei benachbarte Punkte P(x‚ y), P(x + Ax, y + Ay) (vgl. Bild 3.8). Für die Bogen-

länge As des Kurvenstücks PP gilt dann

P—F= s/(Ax)’ +(A.v)‘ SA: S 03:“ + Ay — Ax tanoc = EH + Ü‘.
Hieraus folgt

Läßt man nun Ax gegen null gehen, so strebt Ay/Ax gegen dy/dx = y’ und A:/Ax gegen ds/dx.
Wegen tan 0c = y’ und

1 —— —,—=s/1+tan’os=s/1+y’
cosa _

‘) Man kann den Tangenten-, Normalen; Subtangenten- und Subnormalenabschnitt als Größen
mit Vorzeichen definieren, vgl. [9], Band 2, S. 65.
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folgt dann aus (3.22) zunächst

¢fi7;§§¢fiy7+—f‘,§—yz
Da sich die beiden letzten Glieder auf der rechten Seite aufheben, folgt

«FF g f; s HUF,
und das ist gleichbedeutend mit

2L: = ./1 + w. (3.23)

Somit gilt für das Bogenelement einer Kurve mit der Gleichung y = f(x)
ds = J1 + y’: dx. (3.24)

Um die Krümmung n dieser Kurve zu berechnen, diflerenziert man die Gleichung
tan on = y’ nach „v. Man erhält

da: dy’ dy’dx dx
2 —Z—i———-: L(1+“’“"‘)ds ds dxds yds'

d . .

Wegen it = T: erglbt slch

x_d_°‘_~d_X. 1 _~1 . 1‘ds‘y ds1+y"_y1+y” „Mm
y

yoAyL l5

P1

a

x )('AX

Bild 3.8. Bogenelemcm einer ebenen Kurve
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Damit erhält man für die Krümmung z den Ausdruck

u

J’ .

* =Tn. 3.25
” w: + w)’ ‘ ’

Für den Krümmungsradius g ergibt sich
_.__7 3

g = (3.26)

Ist y” = 0, so setzt man wieder g = oo.

Die Krümmung n und der Krümmungsradius g sind positiv, wenn der Winkel o;

mit wachsendem x ebenfalls wächst, bzw. wenn y” positiv ist. Um die Koordinaten
5,17 des Krümmungsmittelpunktes M(X) zu erhalten, geht man von den Gleichungen

x20) =L>=_d1=y,
x,(r) )'c(t) dx

aus. Durch Differentiation nach x folgt

d j2__d y dt_yx—>'c'y1_d,_,,
()"‘(§)a——')‘e2*§‘H;‘y)—y~X d!

Setzt man in (3.12) yl = E, yz 2 11, x1 = x, x2 = y und berücksichtigt das eben ge-
wonnene Ergebnis für y”, so erhält man '

f2
5_x_.x2+y‘2_x_i1+(?)

— y ‚Ü, — x y,, ‚

-2

. I+(Ä)2 ‘Z ’

n=y+»'cx "W —y++‘.7W" y

Dies ergibt schließlich

I2E=x—y’%‚
Hy” (3.27)

= + T.n y y

Die Beziehungen (3.27) sind die den Formeln (3.12) entsprechenden Gleichungen zur
Berechnung der Koordinaten E, 17 des Krümmungsmittelpunktes M eines beliebigen
Punktes P(x, y) einer ebenen Kurve, die durch eine Gleichung in expliziter Form
y = f(x) in kartesischen Koordinaten gegeben ist.
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Haben zwei Kurven einen Punkt Po und außerdem in Po die Tangente gemeinsam, so sagt man,
die Kurven berühren sich in Po, Da eine Tangente als Grenzlage einer Sekante angesehen werden
kann, deren zwei Schnittpunkte mit der Kurve im Berührungspunkt zusammengerückt sind, spricht
man auch davon, daß die Tangente mit der Kurve zwei infiniresimal benachbarte Punkte gemeinsam
hat. Ändert man die eine der beiden Kurven, die sich in Po berühren, geringfügig ab, so daß sich
beide Kurven in Po und einem zweiten Punkt P, schneiden,und strebt P, gegen Po, wenn man die
Änderung wieder rückgängig macht und die abgeänderte Kurve ihre ursprüngliche Gestalt annimmt,
dann geht die gemeinsame Sekante PoP, in die gemeinsame Tangente beider sich in Po berührenden
Kurven über. Die beiden sich in Po berührenden Kurven haben also ebenfalls zwei in Po zusammen-

gerüekte Punkte gemeinsam.
Verallgemeinerung dieser Überlegungen führt zum Begriff der Berührung n-ter Ordnung zweier

Kurven.
Es sei eine feste Kurve y 2 f(x) und eine veränderliche Kurvey = G(x) gegeben, die den Punkt Po

und noch n weitere Punkte P, , P1, P3 , ..., P„ gemeinsam haben. Die Kurve y 2 G(x) kann so ver-

ändert werden, daß sie in eine Grenzkurve y 2 g(x) übergeht. Bei diesem Übergang bleiben die
Punkte Po, P, , ..., P„ ständig gemeinsame Punkte beider Kurven, nähern sich aber mehr und mehr
dem Punkt Po, mit dem sie alle zusammenrücken‚ sobald die Kurve y = G(X) in die Grenzkurve
y 2g(x) übergegangen ist. Man sagt dann, daß die Kurven y 2f(x) und y 2 g(x) in Po genau
n + 1 infinitesimal benachbarte Punkte gemeinsam haben.

Um eine analytische Bedingung für diesen Sachverhalt zu gewinnen, bildet man die Funktion
H(x) =f(x) — G(x). Dann gilt l

H<x.,> = Hoe.) = o, r=1,2,...,n,
wobei x„y‚ die Koordinaten der Punkte P,- (i2 0, 1‚...‚ n) sind. Ist etwa x, < x2 < x3 <
< x, < xo < x,.+, < < x,,, so/verschwindet I-I’(x) nach dem Satz von Rolle (vgl. Band 2, 6.1.)
an n verschiedenen Stellen x‚’,x_‚- mit x, < xf<x,+, für i2 1,2,...,.r— 1, x,< xo < x ‚

xj< x? < x‘,-H fürj 2 r + 1, r + 2,..., n — l, x0 < x3’ < X,“ . Aus dem gleichen Grund verschwindet
H”(x) an mindestens n — 1 Stellen zwischen xi und x;,', die ihrerseits wieder zwischen x, und x„
liegen. Setzt man diese Überlegung fort, so folgt, daß H(")(x) an mindestens n + 1 — k verschie-
denen Stellen zwischen x, und x„ gleich null ist. Dabei kann k die Werte 1 2 ..., n annehmen.
Geht nun die Kurve y 2 G(x) in die Grenzkurve y 2 g(x) über, so gehen H(x) irihfx) = f(x) — g(x),
H(")(x) in h(")N(x) 2f(">(x) —‘g(")(x) über. Die Punkte P„ P2, ..., P„ sind alle mit dem Punkt P0
zusammengeruckt. Daher gilt x0 2 x, 2 x2 2 2 x... yo 2 y, = y; = = y„. Wegen des
Verschwindens von I-Il")(x) zwischen x, und x„ für k 21, 2,...,n ergibt sich h’(xo):lz”(xo)
2 2 h(")(x.,) 2 0. Dagegen ist i. allg. lz(”“?(x0) =3: 0; denn die Kurven y :f(x) und y 2 G(x)
haben zwischen P, und P,, nur n — l Schnittpunkte. Aus den obigen Gleichungen folgtfixo) 2 g(xo)‚
f(")(xo) 2 g(">(xo) für k 2 1, 2, ..., n und i. a1lg.f("“)(xo) 4: g(""1>(xo). Daher definiert man:

Zwei Kurven y = f(x) und y = g(x) berühren sich an der Stelle x = xo von genau
n-ter Ordnung, wenn gilt

f(xo) = g(xo).

f""<xo) = g""(xo), k = 1, 2, ‚ n,
f(n+1)(xo) * g(n+1)(x0)_

3.3. Beispiele

1. Als Beispiel einer ebenen Kurve in Parameterdarstellung betrachten wir die Kurve mit der Dar-
Stellung _ 2_

x(t) 2 II + I _|

für —oo < r< +00. Es ist x,(t): r, x20): t’. Durch Elimination von t erhält man x2 = x}.
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Dies ist die Gleichung einer Parabel. Es soll die Krümmung, der Krümmungsradius und der
Krümmungskrei für die Punkte mit den Parameterwerten t= O und I = l bestimmt werden. Aus
i, = 1, i; = 2t folgt zunächst aus (3.9) mit SE, = 0, 5&2 = 2

2« 1 — 0- 2 - 1 g 2

(«/1 + 4:1)’ («/1 + 4:2)’

Demnach ist M0) = 2 g(0)= 1/a¢(0)= 1/2. Der zugehörige Krümmungsmittelpunkt hat wegen
(3.12) die Koordinaten y‚(r) = t -— 2 - t(l + 4:2)/2, y2(r) = t2 + (1 + 4_t2)/2. Demnach hat M(0)
die Koordinaten ‚v, = 0, ‚v; = 1/2. Für t= 1 findet man 14(1) = 2/(x/5)’, 9(1) = 5‘/5/2&4 5,59.
Für die Koordinaten von M(l) erhält man y‚(1) = —4‚ y2(1)= 3,5.

:¢(t) =

Bild 3.9. Parabel mit Krümmungskreisen

im Bild 3.9 ist die Parabel mit den beiden Punkten X0, X, und den beiden Krümmungskreisen
dargestellt. Man erkennt, daß der zum Punkt X, gehörige Krümmungskreis die Parabel in X; be-

rührt und durchsetzt. Die Krümmung ac(t) : 2/(x/1 + 4:2)’ hat für t = 0 ein Maximum. Daher ist
der Punkt X0 ein Scheitel der Kurve. Im Scheitel X0 berührt der Krümmungskreis die Kurve sogar
in vier infinitesimal benachbarten Punkten. Daher durchsetzt der Kriimmungskreis die Kurve
dort nicht. Man erkennt das, wenn man den Krümmungskreis und die Parabel zum Schnitt bringt:

k(Xo)I Xi + (X2 - J2)’ =1},

k: x‚=x}.
Setzt man für xf in der ersten Gleichung den entsprechenden Ausdruck aus der zweiten Gleichung
ein, so folgt xi = 0. Hieraus ergibt sich x2“) = O, xzm = 0.

Das sind zwei zusammenfallende Lösungen (Doppelwurzel). Setzen wir dies in die zweite Glei-
ehung x; = (x01 ein, so erhält man zu jedem Wert xu,-, (i z l, 2) zwei Werte x„‚-„ xm). Das er-

gibt insgesamt die vier Lösungen (0, O), (0, O), (0, 0), (0, 0), die aber alle miteinander übereinstimmen.
Das bedeutet, daß in X0 die vier Schnittpunkte des Krümmungskreises und der Parabel zusammen-
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gerückt sind, Der Krümmungskreis k(Xo) hat also wie behauptet, vier infinitesimal benachbarte
Punkte mit der Parabel gemein‘) Die Krümmung der Parabel ist bei der gewählten Parameterdar-
Stellung in allen Punkten positiv, da der Winkel cc mit wachsendem t stets wächst, Hätte man statt
dessen die Paiameterdarstellung xi = —t, x2 = r’ gewählt. so hätte man zwar dieselbe Parabel er-

halten, denn die Elimination von t führt zur selben Gleichung x2 = x12. Die Krümmung u ergibt
sich aber bei dieser Darstellung zu

2

(J1 + <4r>2)‘ ’

ist also für alle Werte von t und damit für alle Punkte der Parabel negativ.

:¢(I) =

2. Als zweites Beispiel soll die Krümmung, der Krümmungsradius und der Kriimmungskreis
für die Punkte x = 7r/3 und x = 7:/2 der Sinuslinie y = sin x bestimmt werden. Hier ist die ebene
Kurve durch eine explizite Gleichung gegeben. Wir werden zur Berechnung der Krümmung die

Formel (3.25) z : heranziehen. Es ist y’ = cos x, y” = —sin x. Für den Punkt mit__y._
(I + y”)‘/u _

der Abszisse x = 7r/3 erhalten wir sin -n:/3 = \/3/2, cos n/3 = 1/2. Dann wird

z 3 g —„/5/2 _ —s\/5
(rt/ ) ——?— - ‚

(«/1 +1/4) 2 - 5\/5
:<(n:/3) = —4\/1'3/25 IN —0,61968,

g(7:/3) = ~5\/E/12 N —1,6l3.

Für die Koordinaten des Krümmungsmittelpunktes erhält man

1 + cos’ x

—sin x

G . 1 + cos’ x;=x—cosx ,¢;=s1nx—.j
sm x

Daraus ergibt sich für x = 7r/3:

‚__ n: 5 —-N
t -—3— +fi\/3~ 1,7688,

1 - 5 —q:7„/3—?„/3m—o‚5773.

Bild 3.10. Sinuslinie mit Krümmungskreisen

1) Im Scheitel berührt der Krümmungskreis die Parabel von 3 Ordnung (siehe S. 47).

4 Schöne, Diflerentialgeometrie
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Im Bild 3.10 ist die Kurve y = sin x und der zu x = 11/3 gehörige Krümmungsmittelpunkt sowie
der Krümmungskreis dargestellt. Für den Punkt x = rr/2 hat die Funktion

_ __fl_
(s/1 + cos’ x)’

einen Extremwert, und zwar ein Maximum. Daher hat die Kurve y = sin x an der Stelle x = 7r/Z

einen Scheitel. Man erhält >c(1:/2) = —~1, g(7:/2) = —l. Der zuge rige Krümmungsmittelpunkt
hat die Koordinaten E = 7:/2, 27 = O. Im Punkt x = O ergibt sich x = 0. Für Punkte, die hinreichend
nahe bei Null liegen und für die x < 0 ist, ergibt sich z(x) > 0, für Punkte mit x > 0 in der Nähe
von Null folgt n(x) < 0. Daher hat die Funktion 24x) an der Stelle x = 0 einen Vorzeichenwechsel.
Die Kurve y = sin x hat bei x = 0 einen Wendepunkt.

x(x) =

3. Als letztes Beispiel sollen alle Kurven mit konstantem Tangentenabschnitt bestimmt werden.
Für solche Kurven gilt nach (3.18)

3 Z
T = y? + =,\/ y;

wo k eine positive Konstante ist. Durch Quadrieren findet man

y’(l + y”) = k’y’2-
Löst man diese Gleichung nach y’ auf, so erhält man

J’ ‘f’:7l«/1+<y)2 k.

'=i_i_.
y ~/k’—.v’

Man setzt y’ = dy/dx und trennt die Veränderlichen und integriert

k: _ z
i fA/__y_y_ d, = f dx_

Um das Integral aufder linken Seite auszuwerten, kann man y = k sin t substituieren. Man erhält
dann nach einiger Rechnung, wenn man t wieder durch y ausdrückt,

:bk(lnlk_‘/kz_v"2
‚V

1 %_

+I«/k2—y2) =x—xo.

Differenziert man diese Gleichung nach x, so erhält man die vorhergehende. Dies beweist die Rich-
tigkeit der zuletzt gefundenen Gleichung. Wenn man diese Gleichung noch nach x auflöst, so kann
man schreiben

x=x„:l:(kln +„/k2__yz>.

Hierin ist x eine Funktion von y. Die abhängige Variable hat nur reelle Werte, wenn y die Bedingung
—k g y g k erfüllt. Für ein y, das der Bedingung genügt, erhält man zwei reelle Werte für x, die
symmetrisch zum Punkt x0 auf der xoAchse liegen. Daher ist die Gerade x 2 xo eine Symmetrie-
achse der durch die obige Gleichung dargestellten Kurve. Da man für y und —y dieselben zwei
Wertepaare für x erhält, ist die Kurve auch symmetrisch zur x-Achse. Für y = 0 ergibt sich x = im.
Das heißt, daß die x-Achse eine Asymptote der Kurve ist. Die Kurve besteht aus zwei durch die
x-Achse getrennten Teilen, von denen der eine durch Spiegelung an der x-Achse aus dem anderen
erhalten werden kann. Jeder der beiden Teile zerfällt in zwei Zweige, je nachdem, ob man in der
obigen Gleichung das positive oder das negative Vorzeichen verwendet. Beide Zweige treffen sich
im Punkt mit den Koordinaten x : x0, y = k. Bei gleichem y unterscheiden sich die Ableitungen
beider Zweige nur im Vorzeichen, denn es gilt

J’‚=ig_
y ~/k’—.v’
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Bild 3.1l. Schleppkurve

Für y —> k ergibt sich y’ ——> :|;oo. Daher haben beide Zweige die Gerade x 2 x0 als Tangente und
berühren sie im Punkt x = x0, y = k. Da stets y é k ist, hat der obere Teil’ der Kurve im Punkt
x = xo, y = k eine Spitze mit der zur y-Achse parallelen Tangente x = x0 (siehe Bild 3.11). Die
Kurve heißt Schleppkurve oder Traktrix. Sie wurde von Christian Huygens (1629-1695) zuerst be-
schrieben. Sie entsteht, wenn ein zweiachsiger Wagen so bewegt wird, daß der Mittelpunkt der dreh-
baren Vorderachse ständig auf der x-Achse bleibt. Dann beschreibt der Mittelpunkt der Hinterachse
die Schleppkurve, wobei noch angenommen wird, daß beide Mittelpunkte den Abstand k vonein-
ander haben. Die Verbindungsgerade beider Achsmittelpunkte ist stets Tangente an die Kurve. Die
durch die beiden Achsmittelpunkte bestimmte Strecke der Länge k entspricht daher dem konstanten
Tangentenabschnitt -der Traktrix.

Aufgabe 3.1: Man bestimme alle Kurven mit a) konstantem Normalenabschnitt, b) konstantem
Subtangentenabschnitt, c) konstantem Subnormalenabschnitt.

Aufgabe 3.2: An zwei benachbarten Masten einer Hod: pannungsleitung ist in der Höhe I = 25 m

die Leitung angebracht. Die Länge eines Leitungsdrahtes zwischen beiden Masten betrage L = 86 m.

Der Abstand der beiden benachbarten Masten sei 80 m. Wie hoch hängt die Leitung an ihrer tiefsten
Stelle über dem Erdboden, wenn angenommen wird, daß sie in Form einer Kettenlinie mit der
Gleichung y = h cosh (x/h) + b durchhängt?

Aufgabe 3.3: Man berechne die Krümmung und den Krümmungsradius der Schleppkurve.

Aufgabe 3.4: Ein Kreis vom Radius r rolle ohne zu gleiten auf einem festen Kreis vom Radius R.
Mit dem beweglichen Kreis ist ein Punkt Xfest verbunden, der von dessen Mittelpunkt denAbstand I
hat und in der Ebene dieses Kreises liegt. Es ist die Parameterdarstellung der ebenen Kurve aufzu-
stellen, die der Punkt X beschreibt. Es ist dabei der Fall der Außenabrollung, bei der der Rollkreis
sich außerhalb des festen Kreises befindet, vom Fall der Innenabrollung zu unterscheiden. Der
Mittelpunkt des festen Kreises sei Ursprung eines orthogonalen x,‚Jg-Koordinatensystems. Der
Rollvorgang beginne im Punkt P0 (R, 0), dem Berührungspunkt beider Kreise in der Anfangslage.
Dabei fällt X mit dem Punkt X0 zusammen (vgl. Bild 3.12).

4*
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Bild 3.12. Zu Aufgabe 3.4

* Aufgabe 3.5 : Ein Kreis rolle ohne zu gleiten auf einer Geraden in einer Ebene. Der Radius des Krei-
ses sei r. Man gebe die Parameterdarstellttng der Bahnkurve an, die ein Punkt X der Peripherie des
Kreises beschreibt. Man wähle als Gerade die xl-Achse des x1 ‚ ‚VI-Koordinatensystems. Der Roll-
kreis berühre die xl-Achse in der Anfangslage im Ursprung O. Der die gesuchte Kurve beschrei-
bende Punkt X falle in der Anfangslage X0 ebenfalls mit 0 zusammen. Der Mittelpunkt des Roll-
kreises habe die positive Ordinate x; = r. Die betrachtete Bahnkurve des Punktes X heißt gewöhn-
lithe (gespitzte) Zyklaide.

* Aufgabe 3.6 z Man berechne die Länge des Kurvenbogens der in Aufgabe 3.5 betrachteten Zykloide,
der zwei aufeinander folgende Punkte der xl-Achse verbindet. Wie groß ist der Krümmungsradius
eines Punktes der Zykloide, für den die Ordinate x2 maximal ist?
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3.4. Ebene Kurven in impliziter Form

Es sei c eine ebene Kurve in der x‚y—Ebene mit der Parameterdarstellung x = x(t)‚
y = y(t), a g t g b. Es sei F eine zweimal stetig differenzierbare Funktion der zwei
Veränderlichen x, y, die folgende Eigenschaft hat: Setzt man x(t) und y(t) für x und y
in die Gleichung F(x, y) = 0 ein, so soll die entstehende Gleichung

F(x(t)‚y(t)) = 0 (3.28)

für alle te [a, b] erfüllt sein. Man sagt dann, daß die Gleichung (3.28) identisch in t
erfüllt ist. Die Gleichung

F(x‚ y) = 0 (3.29)

wird als Gleichung der Kurve c in impliziter Form bezeichnet. Allerdings kann es vor-
kommen, daß es noch andere Kurven gibt, deren Parameterdarstellungen die Glei-
chung (3.29) erfüllen. Dann faßt man alle Kurven, deren Parameterdarstellungen (3.29)
erfüllen, zu einer einzigen Kurve zusammen, und (3.29) wird dann als Gleichung dieser
neuen Kurve angesehen. Andererseits kann jede Gleichung zwischen zwei Veränder-
lichen als Gleichung einer ebenen Kurve aufgefaßt werden. Durch Differentiation
von (3.29) nach x erhält man, wenn man beachtet, daß y eine Funktion von x ist,

E + °_F d_y _

Öx Öy dx _

Hieraus ergibt sich, wenn ÖF/Öy + 0 ist,

9E
Öx F

’ = — : = — -3. 3.30y E Fy ( )

by

Wenn man die Gleichung (3.29) nach y auflösen kann, so erhält man eine Gleichung
der Gestalt y = f(x), d. h., die Kurve c ist in expliziter Form gegeben. Die Tangente
bzw. die Normale von c haben dann nach (3.15) und (3.17) die Gleichungen

‚V " yo =f/(X0) (X — x0)

bzw.

y-yo: "T:%)(X"xo)-

Dabei sind x0, yo die Koordinaten des Berührungspunktes Po der Tangente auf der
Kurve c bzw. die Koordinaten des Schnittpunktes P0 der Normale mit der Kurve c.
Setzt man in die obigen Gleichungen fürf’(xo) = y’(xo) den Ausdruck aus Gleichung
(3.30) ein, so erhält man nach Beseitigung der Nenner

F„(xo‚yo) (x - xo) + Fy(xo.yo) (y — yo) = 0 (3.31)

als Gleichung der Tangente im Punkt P„(xo, yo) bei implizit gegebener Kurvenglei-
chung von c. Ebenso ergibt sich

F‚(xo‚yo) (x ’ X0) ' Fx(xosyo) (Y “ yo) = O (3-32)
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als Gleichung der Normale der Kurve c im Punkt P„(x„‚ yo) bei implizit gegebener
Kurvengleichung. Um die Krümmung einer solchen implizit gegebenen Kurve be-
rechnen zu können, geht man von der Gleichung (3.30)

‚ _ F„(x‚y)
y (x) F‚(x‚ y)

aus. Durch Differentiation nach x findet man

H = _ (Fxx + Fxy)/)Fy _ Fx(Fxy + Fwy’)

~ F; '

Beachtet man, daß infolge des Satzes von Schwarz (vgl. Bd. 4, Satz 3.1) F1, = F”
gilt, und setzt man die erhaltenen Ausdrücke für y’ und y” in Gleichung (3.25) für x

ein, so ergibt sich

F,,F,2 — 2F,,,,F,F,. + Fyy Ff
(\/Ff + F3)’

J’

z = — (3.33)

und
1

9 = 7-

Verschwinden in einem Punkt Po(x„, yo) der Kurve mit der Gleichung F(x‚ y) = 0
auch die Ableitungen F, und F„ so hat man

F(xo„vo) = 0. F‚(xo‚yo) = 0, Fy(xo.yo) = 0-

Ein solcher Punkt wird als singulärer Punkt der Kurve bezeichnet (vgl. [2], S. 502).
Die Formel (3.30) zur Bestimmung von y’ versagt in einem solchen Punkt, weil ihr

Zähler und ihr Nenner gleichzeitig verschwinden. Der Quotient%nimmt in Pu

den unbestimmten Wertg-an. Man wendet nun die Regel von Bernoiilli — l’Hospital

auf diesen Ausdruck an, indem man Zähler und Nenner getrennt nach x differenziert,
wobei man die Abhängigkeit von y und y’ von x beachtet. Darauf führt man den
Grenzübergang x—> x0 aus, wobei y(x) —> y(x„) = yo und y’(x) —> y’(xo) = y;
streben. Man erhält

w» = = ~32; §:: f. = — 5:8:°,’i:£:§::é:::i:%:: A

Hieraus folgt‘), wenn man zur Abkürzung

FxÄxosyo) = Ff“
Fxy(x0sy0) = Fa?»

F»y(xo. yo) = F3y
setzt,

‚ F° ‚ F°
(h): + 21% + T“ = 0-

FBY F)?’

‘) Falls E“, F,,,, F,,‘nicht alle an der Stelle xo,y° verschwinden, sonst muß die Regel von l’Ho—

spital nochmals angewendet werden.
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Daraus ergibt sich

y. = _ F_2. + «F2»: — F2,F;’,_
° F?y " F?»

Man setzt

A F (F3): * F3xF3y-

Ist A > 0, so hat yf, zwei reelle Werte. Es liegt in Po ein Doppelpunkt mit zwei ver-
schiedenen reellen Tangenten vor.

Ist dagegen A < 0, so hat y,', keinen reellen Wert. Dann ist Po ein Einsiedlerpunkt,
das heißt ein isolierter Punkt der Kurve, der keine reellen Tangenten besitzt.

Ist schließlich A = 0, so hat die Kurve in Po eine doppelt zählende Tangente. Das
bedeutet, daß in Po entweder eine Spitze oder ein Selhstberührungspuukt der Kurve
vorliegt.

Als Beispiel werde die Kurve mit der Gleichung

F(x„v) = by’ — x”(x - ü) = 0. a <0, 11> 0,

betrachtet. Es ist F, : —3x2 + Zax, F“ = —6x + 2a, F, = Zby, F” = 2b, 1-}, = 0. Für den
Punkt 0 mit den Koordinaten x = 0, y = 0 gilt I-‘(0, 0) = O, F,,(0, 0) = 0, F„(0‚ O) = 0. Der Ur-
sprung 0 ist offensichtlich ein singulärer Punkt der Kurve. Um zu erkennen, was für ein singulärer
Punkt vorliegt, berechnen wir die Diskriminante A an der Stelle x = 0, y = 0. Wir erhalten

A(O) = (R3,): — I-",9, Ff, = 0 — (Za) (2b) = —-4ab > 0,

Bild 3.13. Kurve mit Doppelpunkt
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da a < 0 und b > 0 sein so‘ll. Es liegt in O ein Doppelpunkt mit zwei reellen Tangenten vor. Wir
berechnen noch den Anstieg dieser beiden Tangenten. Dazu gehen wir von der Formel

y, _ _ F2, i «Fan-Fee:
° F?» Ffy

aus. Wir erhalten y; = ;[;\/—4ab/2b. Um eine Kurve zeichnen zu können, setzen wir a = ——3,

b = 1. Außerdem soll noch der Krümmungsradius im Punkt Po(a, 0) berechnet werden. Mit Hilfe
von Gleichung (3.33) erhält man z = 2ba"'/a‘ = —2b/a2. Hieraus folgt g 2 —a1/2b. Für u : —3,

b = l erhält man y‘; = :l:\/3‚ g = —'9/2 = —4,5. In Bild 3413 ist die Kurve dargestellt.

Aufgabe 3.7: Man untersuche dieselbe Gleichung F(x, y) = by‘ — x’(x —— a) = 0 für die fünf ver-

schiedenenF'a'.1leb>0,a>0;b>0,a==0;b<0,a>0;b<0,a<0;b<0,a:0.

3.5. Ebene Kurven in Polarkoordinaten

Wir betrachten eine Ebene, in der ein orthogonales kartesisches x, y-Koordinaten-
system mit dem Ursprung 0 gegeben ist. In diese Ebene legen wir ein Polarkaordi—
natensystem, das bestimmt wird durch einen Pol und durch einen Strahl der Ric/z-
tung 0. Der Pol ist ein Punkt, der mit dem Ursprung O des x, y-Systems zusammem
fallen soll. Der Strahl mit der Richtung 0 ist ein Strahl, der vom Pol ausgeht und
der sich mit dem positiven Teil der x-Achse decken soll. Jeder Punkt P der Ebene
wird dann durch zwei Koordinaten r und (p bestimmt. Dabei ist r der Abstand des
Punktes P vom Pol O und zp der Winkel («p im Bogenmaß), den der vom Pol 0 zum

Punkt P führende Strahl mit dem Strahl der Richtung 0 bildet.
Der Übergang von den kartesischen Koordinaten x, y zu den Polarkoordinaten

r, q) erfolgt durch die Transformationsgleichungen

x = rcos ‚

_ (p (3.34)
y = r sm 92.

Der Pol ist für das Polarkoordinatensystem ein singulärer Punkt, weil für ihn die
Koordinate q: unbestimmt wird. Dies kommt auch in dem Verschwinden der Funk-
tionaldeterminante

Öx bx

am) _ ‘a7 W
a(r, sv) " ö_‚v Ö_y

Br Öq:

an der Stelle r = 0 zum Ausdruck.
Eine implizit gegebene ebene Kurve mit der Gleichung F(x, y) = 0 in kartesischen

Koordinaten erhält in Polarkoordinaten die Gestalt

F(r cos (p, r sin (p) = G(r,(p) = 0. (3.35)

Kann man die Gleichung G(r‚ (p): 0 nach r auflösen, so erhält man die explizite
Form der Kurvengleichung in Polarkoordinaten

r = r(<p). (3.36)
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Löst man die Gleichungen (3.34) nach r und 9a auf, so erhält man die Transformations-
formeln für den Übergang von Polarkoordinaten r, (p zu kartesischen Koordinaten
x, y. Sie lauten

r= x/x’ +y2,

J’
= t —.«p arcanx

(3.37)

Y

Bild 3.14. Beziehungen zwischen kartesischen Koordinaten und Polarkoordinaten

Um das Bogenelement ds einer durch r = r(q:) gegebenen Kurve in Polarkoordi-
naten zu erhalten, transformieren wir die Formel für das Bogenelement in kartesischen
Koordinaten

ds = „/1 + (y’)zdx

mit Hilfe der Formeln (3.34). Durch Differentiation erhält man

dy dr . d ‚. dE=($s1nq7+rcos<p)a%=(r s1nzp+rcos<p)(%)

= r’sin¢p+rcosq2

d_x ’

dm

dx dr . , .E;=H;c0s(p—rs1nqa=r cos<p—rs1n<p.

Setzt man dies in die obige Formel für ds ein, soerhält man

(r’sin<p + rcoszp)’ ‚ .ds=A/1+(rcoscp —— rs1n<p)dq:,

und daraus folgt nach kurzer Zwischenrechnung

ds = \/r’2 + r’ dcp. (3.38)
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Bild 3.15. Zur Diflerentialgeometrie einer ebenen Kurve in Polarkoordinaten

Dieses Bogenelement in Polarkoordinaten hat auch eine geometrische Bedeutung.
Aus Bild 3.15 liest man ab QR = dr‚ Q7’ = rdqz. Aus dem infinitesimalen recht-
winkligen Dreieck PQR — der rechte Winkel ist der Winkel PQR — folgt dann nach
dem Satz des Pythagoras

j jT—T_._.‘ T d 2

PR = J(QP)‘ + (QR)’ = \/(H1111): + (dm = „/r“ + dm,

also haben wir

E = ds. (3.39)

Ebenso folgt für den Winkel 1/1 = <): PRQ

d ‚

cotw = rd; = (3.40)

Um die Krümmung x und den Krümmungsradius g einer ebenen Kurve in Polar-
koordinaten berechnen zu können, geht man von den Formeln für die Krümmung
und den Krümmungsradius in kartesischen Koordinaten aus. Es war nach (3.25)

n:3’_.__
(x/1 + y”):

Durch Differentiation der Gleichung y = r sin q: findet man

d d d d . d '1yr=d%=Tgd—:=(rcos¢+T;s1n¢)(E;f—) _
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Mit dr/dzp = r’ und dx/dq2 = —r sin<p + r’ coszp erhält man

‚ _ rcoscp + r’sinzp
_ —rsin<p + r’ cosgv ’

und hieraus folgt durch Difierentiation nach x

„ d < rcos<p+r’singv )d¢p d( rcos<p+r’sin<p )(dx)'1
y =5 —rsin<p+r’coszp E=d—q:_ —rsin¢p+r’cos<p E

Setzt man die Ausdrücke für y’, y” in die Gleichung für x ein, so erhält man nach
etwas mühsamer Rechnung

l r’ — rr" + 2r’2
z = —— =

Q (\/rz + r’2)3 .

(3.41)

3.6. Die Lemniskate als Beispiel einer ebenen Kurve in Polarkoordinaten

Gesucht ist der Ort aller Punkte X in der x, y-Ebene, für die das Produkt ihrer Abstände r1, r;
von den zwei Punkten E,(e, O), E2(—e, O) den konstanten Wert rlr; : e’ hat. Aus Bild 3.16 liest
man unmittelbar ab

r, =«d?=\/ 
r; = ~/<Te>T+7 =J .

Für die Punkte des gesuchten Ortes ergibt sich dann

'1 ' V 2 z\/ = 92

(x2 + ‚v2 + e2)’ — 4222:2 = e‘.
bzw.

.é}]'-e,0) x

Bild 3.16. Zur Definition der (Bemoullischen) Lemniskate
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Dies ist die Gleichung einer ebenen aIgebrairc/zelz Kurve in kartesischen Koordinaten. Sie heißt
Lemniskate und ist eine Kurve vierter Ordnung, da die Glieder höchsten Grades in x und y die Ge-
stalt x“,y“, xzyz haben. Die Exponentensumme ist vier, Es soll die Polargleichung der Lemniskate
aufgestellt werden, Dazu benutzt man die Transformationsgleichungen (3.34), (3.37) x = r cos (p,

y 2 r sin (p, x2 + ‚v2 2 r’. Man erhält durch Einsetzen in die Gleichung der Lemniskate in karte—

sischen Koordinaten

(r’ + c1)’ —— 4e2r’ cos 1 (v 2 e‘.

Hieraus folgt

r2(r2 + 2e=(1 ~ 2 cos’ 90)) = 0.

Wenn # 0 ist, ergibt sich

r’ + 2e2(1 2 cos’ (p 2 cos’ (p) 2 O

oder
r2 2 2e2(cos’ (p — sin’ (p) 2 2e” cos 2(p.

Ausr2;0 folgt — 1:/4 _S_¢p§ 1r/4, 31:/4 gq); 5n/4. Zieht man noch dieQuadratwurzel‚ so findetman

V=€'\/ZCOSZQJ.

Dies ist die gesuchte Polargleichung der Lemniskate. Durch Differentiation ergibt sich

r,_ d; _ _ ex/fsin Z(p

d?’ \/COS 2(p i

Für den Winkel 1p zwischen Kuiventangente und Radiusvektor r folgt mit (3.40)

_r’__sin2ga_ __ 7: __7rcotw—7— coS2(p—— tan2<p—cot<-2—+2q:), -7-+—2q2.

Die Schenkel des Winkels w sind dabei der Radius r 2 OP und der auf der Kurventangente liegende
Strahl, der von P ausgeht und nach der Seite orientiert ist, auf der Kurvenpunkte liegen, bei denen
der zugehörige Winkel (p ein kleineres Maß als in P hat. An Hand einer Tabelle erkennt man die Ab-
hängigkeit der Größen r(q2), (p und (p.

(p o 1;. 3% 516‘- 7: 7’; 5% 7% 11% Zn

r ex/E e 0 0 e ex/E e ‘O 0 e ex/E

TC T!" TV 7C 7U TU TC

‘F 7 57 " ° F 7 57 " ° F 7

Wegen r((p + 7:) = r(q2) ist die Lemniskate zentralsymmetrisch zum Ursprung 0 und wegen r(2-n:——(p)

2 r((p) bzw. m: — (p) 2 r((p) ist sie auch axialsymmetrisch bezüglich der x-Achse und der y—Achse.

Für (p27r/4‚ 37:/4, Sn/4, 77:/4 ist r((p)2 0. Da (p 2 n/4 und (p 2 57:/4 zum selben Kurvenzweig
gehören und das gleiche für (p 2 3n/4 und (p 2 7n/4 der Fall ist, hat die Kurve im Ursprung 0 einen
Doppelpunkt. Die Tangenten der beiden durch O gehenden Kurvenzweige bilden mit dem Strahl
(p 2 O die Winkel 7:/4 und 37:/4.

Es soll der Flächeninhalt F des von der Lemniskate umschlossenen Gebietes berechnet werden,
in dem der Punkt E, liegt (vgl. hierzu die Leibnizsche Sektorformel; Band 5, 7.1.), Dazu betrachtet
man zwei infinitesimal benachbarte Radien 0P= r((p) und 0P’: rfzp + dir). Sie bilden einen

kleinen Sektor POP’, der durch den Kurvenbogen 17;’ und die beiden Radien 0P und 0P’ begrenzt
wird (siehe Bild 3.17). Man kann diesen Sektor mit guter Annäherung als ein Dreieck auffassen,
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Y

Bild 3,17. Bernoullisehe Lemniskate

und dies stimmt um so genauer, je kleiner der Winkel da: ist, da dann die Sehne PP’ sich dem

Kurvenbogen I?’ mehr und mehr annähert. Der Flächeninhalt des Dreiecks unterscheidet sich
daher von dem Flächeninhalt dF des Sektors POP’ um eine vernachlässigbare Größe. Es gilt

5F = M?) r(w + d‘P)SiI1(d<P)v

Wegen der Kleinheit des Winkels dip « er kann beliebig klein angenommen werden - kann man sin (dtp)
durch den Bogen dtp und r(<p + dga) durch r(<p) + dr ersetzen. Vernachlässigt man noch das Glied
dr dz}: gegenüber dem linearen Glied in dq), so erhält man schließlich

dF = är’ dqJ.

Durch Integration yon —7r/4 bis +1:/4 findet man den Flächeninhalt F des Gebietes, in dem E;
liegt n/4l 1 n/4 1:/4 2 M

7T

F=f—r2d4p=—f2e2cos2¢d<p=e2fcos2<pd<p=i-[sin2q2J
2 2 2 in/4

-7:/4 -7:/4 -71:/4

=f22_(1+1)=e1.

Für den Krümmungsradius erhält man aus

r = ex/Tcosqla, r’ = —e«/2 sin 2?/J , r” = —es/5(l + cos’ Zrp)/(x/(Ea:

nach einiger Rechnung

ex/E

D‘
Im Fall q) = 0 ergibt sich 9(0) : ex/E/3, für q: = n/6 erhält man 9(r:/6) = 2e/3.

9(97) =

Aufgabe 3.8: Man diskutiere den Verlauf (Skizze) und berechne die Bogenlänge der folgenden in
Polarkoordinaten gegebenen Kurven

a) der aichimedisc‘ Spirale r(q7) = mp, ——oo < (p < +00;

b) der hyperbolischen Spirale r(q:) z g ‚ —oo < q: < +00;

c) der logarithmischen Spirale r(lp) = e"?, ~00 < q < -|-oo.
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Aufgabe 3.9: Man stelle die Polargleichung der Geraden auf, die den Strahl (p = 0 in einem Punkt Po
mit dem Abstand ro vom Pol schneidet und mit diesem Strahl den Winkel on bildet.

Bild 3.18. Zu Aufgabe 3.9

Aufgabe 3.10: Man berechne die Bogenlänge und den Flächeninhalt eines Sektors mit dem Zentri-
winkel e: eines in Polarkoordinaten gegebenen Kreises vom Radius a, der den Pol als Mittelpunkt
besitzt. Welche bekannten Gleichungen ergeben sich?

Aufgabe 3.11: Wie lautet die Polargleichung eines Kreises, der durch den Pol des Polarkoordinaten-
systems geht und dessen Mittelpunkt die Koordinaten r = ro, (p = goo hat?

Aufgabe 3.12: Man bestimme den Verlauf der durch die Gleichung r(<p) : 2l1‘COStp+ 2a mit
0 g (p; 4x gegebenen Kurve (Kardioide), berechne die Bogenlänge, den Krümmungsradius für
zp : O und den Flächeninhalt des von der Kurve umschlossenen Flächenstücks.

Aufgabe 3.13: Der Inversor von PeauceI/ier besteht aus einem Gelenkrhombus APBP“ und zwei
gleich langen Stäben 0A, OB. Die Stäbe 0A, OB sind drehbar im Ursprung 0 gelagert und mit
dem Rhombus in A und B durch Drehgelenke Verbunden. Man zeige: Es gilt stets

r.ran=az_bz

mit Ö7 = Ü? = a, :17’ : B—P : BP‘ = AP‘ = b, 0—P = r, 0P* 2 r*. Bewegt sich P auf einer
Geraden, die nicht durch O geht, so P’ auf einem Kreis durch 0.

9

Bild 3.19. Der Inversor von Peaucellier
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3.7. Evolute und Evolvente

Es sei y =f(x) die Gleichung einer ebenen Kurve c in der x, y-Ebene (vgl. Bild 3.20).
Die Koordinaten E, 17 des Kriimmungsmittelpunktes M(X) eines Kurvenpunktes X
mit den Koordinaten x, y sind nach (3.27) gegeben durch

E—x—y, 1+yI2

H’; (3.42)

77=y+#y—»

[TX y

Bild 3.20. Evolute und Evolvente

Durchläuft der Punkt X die Kurve c, so beschreibt der zu X gehörige Krümmungs-
mittelpunkt M(X) eine ebene Kurve k. Die Kurve k heißt die Evolute der Kurve c.
Berücksichtigt man, daß y, y’, y” Funktionen von x sind, so sind wegen (3.42) auch
E, 1; Funktionen von x, und die Gleichungen (3.42) stellen eine Parameterdarstellung
für die Evolute dar. Ist die ursprüngliche Kurve c bereits in Parameterdarstellung
gegeben, so verwendet man statt (3.42) die Gleichungen (3.12). Diese definieren eben-
falls eine Parameterdarstellung der Evolute.

Der zum Kurvenpunkt X auf c gehörige Krümmungsmittelpunkt M(X) liegt auf
der Normalen nx der Kurve c in X. Es läßt sich nun zeigen, daß die Normale nx
zugleich Tangente an die Evolute k im Punkt M(X) ist. Um dies einzusehen, be-
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stimmen wir den Vektor m = E131. Seine Koordinaten erhält man aus der Differenz
der Abszissen bzw. der Ordinaten der Punkte M(X) und X

,1+y/2 l+y:2)_1+y;2
=——T, „ Tu. 3.43m (y y y y (y) <)

Der Vektor m ist parallel zum Vektor E = (—y’, l), denn er unterscheidet sich von F

nur durch den Faktor (1 + y”)/y”. Der Vektor i ist demnach ebenfalls ein Richtungs-
Vektor der Normalen nx.

Um einen Tangentenvektor der Evolute zu erhalten, differenziert man die Glei-
chungen (3.42) nach dem Parameter x. Man erhält

H 1 + y" _ y,_2y’y”y” - (1 + y")y”’
5 =1 - - ‚ „

y y y 2

‘ _ _ I. 3y:-yz/2 _ (1 +y:2)ym
"‘ y:

y

' I Zyzy//2 ___ (1 + yrz ym 3 r n2 _ (1 + y:2 Ill

n=y+ y... ) = y’ y... )y .

Die Größen 5,1"; haben den gemeinsamen Faktor [3y’y”2 — (1 + y”) y”’]/y”2.
Daher ist der Tangentenvektor (E, i7) parallel zum Vektor (— y’, 1), denn die beiden
Vektoren unterscheiden sich gerade um den oben erwähnten skalaren Faktor.

Die Normale nx hat demnach im Punkt X der Kurve c dieselbe Richtung wie die Tan-
gente im Punkt M(X) an die Evolute k. Da nx aber durch den Punkt M(X) hindurch-
geht, ist die Normale n, zugleich Tangente an die Evolutekim PunktM(X). Dies
trifft nun für alle Normalen n, der Kurve c zu. Man kann daher auch sagen‚daß die
Normalen nx der Kurve c die Evolute k einlzüllen bzw. daß die Evolute k Hiillkurve
der Normalen n, der Kurve c ist. Die Kurve c, deren Evolute die Kurve k ist, wird
auch als Evolvente der Kurve k bezeichnet.

Mit Hilfe des Krümmungsradius g läßt sich nun eine zweite merkwürdige geo-
metrische Beziehung zwischen Evolvente und Evolute finden. Es sei k die Evolute
der Kurve c mit der Gleichung y = f(x). Ferner seien X und X* zwei benachbarte
Punkte auf c, M und M* die zugehörigen Krümmungsmittelpunkte auf k. Bezeich-
nen wir die zu den Punkten X und X* gehörenden Krümmungsradien der Kurve c

mit g = ITX und 9* = M*X* und setzen 9* = g + Ag, so geht die GrößeAg‚ wenn
X* auf c gegen X rückt, in d9 über und dg ist bis auf das Vorzeichen mit dem Bogen-

element d5 der Evolute k identisch. Das Bogenelement d5 = J5’ +572 dx der Evo-
lute k kann man durch y’, y” und y"’ ausdrücken. Es ist

' - 1 IN ‚ ‚6’+n’= y,,4 [3yy 2-(1+y’)y ]2(y’+ 1),

somit also

d3 = ‚i. |3y’y”’ — <1 + MM J1 + wax. (3.44)
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Für dg erhält man durch Differentiation von g = (1 + y")3”/y"
_dg = J1 + y“ [3y’y”’ — <1 + y”)y’”] (M5)
dx ylll '

Aus (3.44) und (3.45) folgt
dg = id}. x (3.46)

Das Pluszeichen gilt, wenn dg positiv, das Minuszeichen, wenn dg negativ ist. Das
Vorzeichen von dg stimmt aber wegen (3.45) mit dem Vorzeichen des Ausdrucks
3y'y”2 — (l + y'2) y”’ überein. Aus Gleichung (3.46) folgt durch Integration

g = ii: + C. (3.47)

Wählt man auf c einen Punkt X0 und ist Mo der zugehörige Krümmungsmittelpunkt
auf der Evolute k und zählt man die Bogenlänge K: der Evolute von Mo aus im Sinne
wachsender Werte von g, .so ist die Bogenlänge E0 im Punkt Mo gleich null. Der
zugehörige Krümmungsradius für den Punkt X0 sei go. Dann ergibt sich für die
Konstante C aus (3.47) C = go. Ist X ein Punkt auf c, für den g > go gilt, so folgt
aus (3.47) die Gleichung

g — go = E. (3.48)

Das Minuszeichen vor E fillt hier weg, da} > 0 und g > go ist. Damit ergibt sich der

Satz 3.1: Die Differenz zweier Krümmungsradien der Endpunkte eines Kurvenbogens
einer ebenen Kurve c ist gleich der Länge des Evolutenbogens zwischen den zuge-
hörigen Krümmungsmittelpunkten.1)

Satz 3.2: Die Krümmungsradien der Evolute und Evolvente verhalten sich wie die zuge-
hörigen Bogenelemente.

Beweis: Aus Gleichung (3.48) folgt durch Differentiation dg = d5. Andererseits
gilt für das Bogenelement ds der Evolvente c auf Grund von (3.5) und wegen n = 1/g

ds = g doc. (3.49)

Für den Krümmungsradius g der Evolute k erhält man analog, da die Tangenten in
den benachbarten Punkten M und M* der Evolute ebenfalls den Winkel doc bilden,

d} = ädzx. (3.50)

Hieraus folgt durch Division die Behauptung

ds: d5 = g: 5. (3.51)

Die Evoluten und insbesondere die Evolventen spielen eine wichtige Rolle in der
Verzahnungstheorie, wie die Bezeichnung Evoluentenuerzahnung zeigt.

Aufgabe 3.14: Man bestimme die Evolute der Parabel y’ = 2px und gebe die Koordinaten der
Schnittpunkte beider Kurven an.

Aufgabe 3.15: Man bestimme eine Parameterdarstcllung der durch den Punkt A(a‚ 0) gehenden
Evolvente des Kreises £2 + n2 = a2 und gebe die Bogenlänge und den Krümmungsradius an

(Skizze).

’) spannt man längs des Evolutenbogens MMO einen Faden strafi’ und wickelt ihn unter Fest-
halten des einen Endes in M0 von der Evolute ab, so beschreibt der andere Endpunkt des straff
gehaltenen Fadens eine Evolvente. Da M und Mg beliebig wählbar sind, gibt es zu einer Evolute
unendlich viele Evolventen.

5 Schuhe, Diilferentialgeomebrie

S.3.1

S.3.2
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3.8. Hiillkurven

Wir betrachten eine Funktion F von drei Veränderlichen x, y, 2.‘) Durch die Glei-
chung F(x‚ y, z) = 0 ist in der x, y-Ebene eine Schar von ebenen Kurven gegeben.
Setzt man nämlich z = C, wo C eine Konstante sein soll, so stellt die Gleichung

F(x, y, C) = 0 (3.52)

eine ebene Kurve c in der x, y-Ebene dar. Wir setzen voraus, daß F nach x, y und z

differenzierbar ist. Wir nehmen an, daß die Konstante C die Bedingung z, g C g z;

erfüllt. Setzen wir für die Konstante C eine andere Konstante C = C + AC ein,
so ist durch i

F(x,y‚ C + AC): 0 (3.53)

eine zweite ebene Kurve E gegeben, die sich wenig von c unterscheidet, falls AC hin-
reichend klein ist (vgl. [2], S. 508; [l6], S. 63). Nimmt man an, daß sich die Kon-
stante C stetig verändert, so stellen die zugehörigen Gleichungen (3.52) die Glei-
chungen einer ganzen Schar von Kurven dar. Wir wollen voraussetzen, daß diese
Kurvenschar eine Hüllkurve besitzt (siehe Bild 3.2l). Das heißt, jede Kurve der Schar
soll diese Hüllkurve h in einem Punkt berühren. '

Bild 3.21. Kurvenschar mit Hüllkurve

Der Berührungspunkt P der Kurve c der Schar mit der Hüllkurve /1 kann aus dem
Schnittpunkt S der Kurve c mit einer Nachbarkurve E erhalten werden, wenn man
den Grenzübergang AC» 0 durchführt. Denn mit AC gegen null geht die Glei-
chung (3.53) der Kurve E in die Gleichung (3.52) der Kurve c über, und dabei rückt
der Punkt S entlang der Kurve c in den Punkt P hinein. Betrachten wir das Gleichungs-
system

F(x,y‚ C) = 0, F(x‚y‚ C + AC) = 0. (354)
so sind die Koordinaten des Punktes S eine Lösung des Systems (3.54).

‘) F sei stetig und besitze stetige partielle Ableitungen bis zur 2. Ordnung nach x, y, z.
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Wir ändern das System (3.54) ab, indem wir an Stelle der zweiten Gleichung die durch
Diiferenzbildung entstehende Gleichung verwenden. Dann geht (3.54) über in

F08)’, C) = 0,

F(x,y, C + AC) — F(x,y, C) = 0.

Auch für das System (3.55) sind die Koordinaten von S eine Lösung. Daran ändert
sich auch nichts, wenn man die zweite Gleichung mit dem Faktor l/AC multipliziert.
Das ergibt

F(x‚y‚ C) = 0,

(3.55)

1 (3.56)
:(F(X,,V, C‘+ AC) '“ F(x‚y‚ C)) = 0-AC

Führt man jetzt den Grenzübergang AC ~> 0 durch, so geht (3.56) über in

F(X‚ y, C) = 0.
a (3.57)

ÖC F(x,y, C) ~ 0.

Da die Gleichungen (3.56) durch die von C und AC abhängigen Koordinaten des
Punktes S erfüllt werden, dieser aber nach dem Grenzübergang AC—> 0 in den
Punkt P übergegangen ist, wird das aus (3.56) durch AC——> 0 entstandene Glei-
chungssystem (3.57) durch die Koordinaten von P erfüllt. P ist aber ein Punkt der
Hüllkurve. Ist

x = x(C)‚ y = y(C)
eine Parameterdarstellung der Hüllkurve h der Schar (3.52), so gilt daher

F(x(C)‚ y(C). c) = o, 5% F(x(c)‚ y<c>‚ c) = o,

bzw. wenn die Kurvenschar (3.52) eine Hüllkurve besitzt, so genügt deren Para-
meterdarstellung x = x(C)‚ y = y(C) dem System (3.57). Falls die benachbarten
Kurven c und E keinen reellen Schnittpunkt S haben, andererseits c die Hüllkurve in
P berührt, so besitzen c und Ezwei konjugiert komplexe Schnittpunkte S1 ‚ S2, die
beim Grenzübergang AC —> O im Punkt P zusammenrücken. An Stelle von S kann
dann beispielsweise der Punkt S1 gewählt werden.

Haben die Kurven der Schar (3.52) singuläre Punkte (vgl. S. 54) und ist der Ort
dieser singulären Punkte eine Kurve es mit der Parameterdarstellung

x = xs(C)‚ y = ys(C)‚
so genügt diese Parameterdarstellung ebenfalls den Gleichungen (3.57).

Beweis: Da jeder Punkt von es ein singulärer Punkt einer Kurve c der Schar ist, gilt
F(xs(C)‚ ys(C)‚ C) = 0, Fx(xS(C)a ys(C)‚ C) = 0, Fy(xs(C)‚ys(C)‚ C) = 0 für Jedes
C mit z, g C g 22. Diflerenziert man die erste dieser drei Gleichungen nach C,

5° f°1‘°’t dF dx dv
E = .(x.(C), ys(C): C)?‘ + Fy(x.(c>.y.(C), G)?‘

+ FC(xS(CS)s ys(C)» C) = 0:

5!
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und hieraus ergibt sich, wenn man die vorangehenden Gleichungen beachtet,

Fc(xs(C)‚ ys(C)‚ C) = 0-

Löst man die Gleichungen (3.57) nach x und y auf, es werde angenommen, daß
dies möglich ist, so erhält man zwei Gleichungen der Gestalt

x = x(C)‚

y = y(C)‚

Die Gleichungen (3.58) sind entweder eine Parameterdarstellung der Hüllkurve lz

der Kurvenschar (3.52) oder eine Parameterdarstellung einer Kurve cs, die der Ort
von singulären Punkten von Kurven der Schar ist. Das letztere kann jedoch nicht ein-
treten, wenn die Kurven der Schar keine singulären Punkte besitzen.

Gelingt es, aus den Gleichungen (3.57) die Größe C zu eliminieren, so erhält man
als Ergebnis eine Gleichung, in der nur noch x und y vorkommen. Sie sei gegeben
durch

z, g c g z, (3.58)

G(x, y) = o. (3.59)

Die Gleichung (3.59) wird von der Parameterdarstellung (3.58) erfüllt. Falls durch
(3.59) keine Kurve gegeben ist, so besitzt die Kurvenschar (3.52) keine Hüllkurve.
Ist jedoch (3.59) die Gleichung einer Kurve, so heißt diese Kurve Diskriminanten-
kurve der Schar (3.52). Man muß im Einzelfall untersuchen, ob die Diskriminanten-
kurve eine Hüllkurve der Schar oder ob sie der geometrische Ort von singulären
Punkten der Schar (3.52) ist. Schließlich kann die Diskriminantenkurve auch eine
oder mehrere spezielle Kurven der Schar enthalten, was ebenfalls überprüft werden
muß (vgl. [2], s. 508-516; [9], Bd. 2, s. 525-537).

Als Beispiel werde folgende Aufgabe betrachtet: Eine Stange der Länge 1 gleite mit ihren End-
punkten auf zwei zueinander senkrechten geradlinigen Schienen. Es ist die Kurve zu bestimmen,
die von dieser Stange eingehüllt wird.

KY

Bild 3.22. Astroide
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Zur Lösung wird ein orthogonales kartesisches x, y-System eingeführt, dessen Achsen mit den
Schienen übereinstimmen (siehe Bild 3.22). Der Winkel der Stange gegen die negative x-Achse sei ac.

Faßt man die Stange als eine Gerade auf. so lautet ihre Gleichung (vgl. z. B. [9], Bd. 1, S. 403)

x y _

I cos zx 1 sin zx _

Hieraus folgt x sin o: + y cos o; : Icoscc sin a. Man setzt nun F(x, y, 0:) = X sin on + y cosoc

— Icos DC sin on = 0 und bildet öF/öoc : x cos on — y sin o: — I(—sin2 o: + cos’ a) z O. Um eine
Parameterdarstellung der gesuchten Hüllkurve zu erhalten, löst man beide Gleichungen nach x

und y auf. Multiplikation der ersten Gleichung mit sin xx, der zweiten mit COSOc und anschließende
Addition beider führt zu x = l(cos oc sin’ o: + cos’ 0c — cos on 5in2 es) = loos’ oc. Desgleichen führt
die Multiplikation der ersten Gleichung mit cos on und der zweiten mit —sin as nach Addition beider
Gleichungen zu y = l(cos2 on sin 04 + 5in3 on e cos’ o: sin cc) = lsin3 cc. Durch

x = Ices‘ Ix, y = Isin’ n: (3.60)

hat man die Parameterdarstellung einer Kurve gefunden, die die Gleichungen F(>c(a), y(o:), 0c) : O

und Fa(x(oc), y(o<),oc) = 0 erfüllt. Da die Kurven der betrachteten Schar Geraden sind, haben sie
keine singulären Punkte. Die gefundene Kurve ist daher die gesuchte Hüllkurve. Eliminiert man aus

den beiden Gleichungen (3.60) noch oz, so findet man wegen cos o: = (x/I)’/2, sin on = (y/I)‘/3 durch
Quadrieren und Addieren die Gleichung (X/Dzl’ + (y/l)2/3 = l, woraus schließlich

x213 + yz/3 =12/3

folgt. Die gefundene Kurve heißt Astroide oder Sternkurve. Sie besitzt in den Punkten A ‚(l, 0)

A2(0, 1), A391, o), A4(O, 4) Spitzen. Für ex = 1r/4 ergibt sich x =1(1/\/§)3, y = 1(1/\/E)! Der
zugehörige Krümmungsradius hat wegen

X=—3’I'cos2txsintx‚ )3=3*I-sinzoccosoc,

527: 6-l'cosocsin’o<— 3'1-oos3oc, j5=6‘-I-sinoccoszoc-— 3-I-sin3oc

den Wert 9(a) = —3 - Isinoc cos a, bzw. g(::/4) = -3/2 - I.

Aufgabe 3.16: Ein quaderförmiger Hohlraum mit quadratischer Innengrundfläche (Seitenlänge a)
und vier rechteckigen Seitenflächen der Breite a und der Höhe H ist mit dem Außenraum durch eine
in einer Seitenfläche liegende rechteckige Öffnung der Breite b < a und der Höhe h < b verbunden.
Die untere Kante der Breite b dieser Öffnung befinde sich in gleicher Höhe wie die Grundflächen
des Hohlraums und des Außenraumes. Wie groß muß h mindestens sein, damit ein Brett der Breite b
und der Länge I mit a < l < H (die Brettdicke werde vernachlässigt) durch die Öffnung unverkantet
und ohne Verbiegung eingeführt werden kann (vgl. Bild 3.23 auf S. 70)?

Aufgabe 3.17: Man zeige, daß die Astroide bei der Innenabrollung eines Kreises vom Radius r

auf einem festen Kreis vom Radius R als Bahnkurve eines beliebigen Punktes der Peripherie des

Rollkreises entsteht, falls die Radien R und r geeignet gewählt werden.

Aufgabe 3.18: Man bestimme eine Parameterdarstellung für die Hüllkurve der Normalen einer
ebenen Kurve mit der Gleichung y = f(x).

Aufgabe 3.19: Man bestimme die Hüllkurve aller durch den Ursprung der x, y-Ebene gehenden
Kreise, deren Mittelpunkte die Koordinaten x0 : dcos’ a, yo z d< C050: sin a, —1r/2 g v: g 1r/2,
haben.

Bei einer zwangläufigen, ebenen Bewegung bewegt sich ein Körper relativ zu einem festen Körper
derart, daß jeder Punkt des bewegten Körpers eine bestimmte ebene Bahnkurve durchläuft. Die
Ebenen dieser Bahnkurven sind entweder gleich oder zueinander parallel. Um die Gesetze einer
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x

Bild 3.23. Zu Aufgabe 3.16

solchen Bewegung zu studieren, genügt es, eine Ebene (Gangebene) zu betrachten, die relativ zu einer
festen Ebene (Rastebene) eine zwangläufige ebene Bewegung ausführt. Dabei sollen beide Ebenen

' ' ‘dc: zusammenfallen.
In jedem Zeitpunkt einer solchen Bewegung gehen die Normalen, die man in den die Bahnkurven

beschreibenden Punkten der Gangebene auf den jeweiligen Bahnkurven errichten kann, durch einen
Punkt. Dieser Punkt heißt das Momentanzentrum der Bewegung in dem betrachteten Zeitpunkt.

Um dies einzusehen, geht man von drei verschiedenen Punkten X, Y, Z der Gangebene aus.

Ihre Bahnkurven haben die Parameterdarstellungen x(t)‚ y(t)‚ z(r), wobei t die Zeit bedeuten möge.
Da die gegenseitigen Abstände der drei Punkte während der Bewegung konstant bleiben, folgt

iY(I) i z(f)l 2 U. lz(r) — x(t)§ = b, lXU) m w): : v.

woraus sich (y — z)2 = a’, (z — x)’ = b’, (x — y)’ = c2 und nach Diflerentiation

(y—Z)‘(§’—i)=0, (Z—X)'(i-?'<)=0, (X—)’)'(i—$')=0
ergibt, Die Vektoren y — z, z — x und x — y sind gewiß nicht null. Falls dies auch für y — i,
i — i: und 2k — y zutrifft, steht y — i auf y — z, i e :'< aufz — x und i: —— y auf x — y senkrecht.
Die Vektoren y — z, z — x, x — y bilden die Seiten eines Dreiecks mit den Eckpunkten X, Y, Z‘
Zeichnet man in Xeine Senkrechte zum Vektor x — y, in y eine Senkrechte zu y — z und in z eine

solche zu z — x, so schneiden sich diese Senkrechten in den Eckpunkten X, Y, Z eines zweiten
Dreiecks, das zum Dreieck X, Y, Z gleichsinnig ähnlich und um 90 Grad gegenüber diesem

Dreieck gedreht ist. Die Seiten des Dreiecks X, Y, Z werden durch die Vektoren y— i, i — k,
i": — y gebildet, wenn man den Abbildungsmaßstab für die Geschwindigkeiten geeignet wählt.
Zeichnet man einen beliebigen Punkt P der Ebene beider Dreiecke aus, so entsprechen

1+ 7-} i)

den gerichteten Strecken PX, Pi’, I32 die drei Ableitungsvektoren X, y, i. Zieht man durch X eine

Parallele I, zur Geraden PX, durch Yeine Parallele I, zu PYund durch Z eine Parallele r, zu PZ‚
und errichtet in X, Y, Z Senkrechte 21„ n„ n, auf den jeweiligen Parallelen, so schneiden sich diese
in einem Punkt P der Ebene. Dies folgt aus der Ahnlichkeit der beiden Dreiecke. Den Geraden

PX, PY, PZ entsprechen bei dieser Ähnlichkeit die Lote n_„‚ 11„ 11„ und da die ersten drei Geraden
durch einen Punkt gehen, müssen sich auch die ihnen entsprechenden Geraden n,, n,, n, in einem
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Punkt schneiden. Die drei Geraden nx, n‚., n, kann man als Bahrmarmulen der Bahnen der Punkte
X, Y, Z zum Zeitpunkt t ansehen. Sie gehen wie behauptet durch einen Punkt P. Falls i‘: —— 3' = 0 ist,
haben X und Y zum Zeitpunkt t gleiche Geschwindigkeitsvektoren. Wegen der Starrheit des Drei-
ecks X, Y, Z ist dann i; = y z z, und die Bahnnormalen in den Punkten X, Y, Z sind zueinander
parallel. Sie schneiden sich in diesem Fall in einem Fernpunkt. Rechnet man den Punkt P zur Gang-
ebene, so ist seine Geschwindigkeit zum Zeitpunkt t gleich null. Die Gangebene führt in diesem
Augenblick eine momentane Drehung um den Punkt P aus.

Betrachtet man alle Momentanzentren als Punkte der Rastebene, so erfüllen sie eine Kurve, die
als Rastpolbahn bezeichnet wird. Sieht man dagegen die Mnmentanzentren als Punkte der Gang-
ebene an, so bilden sie in dieser eine zweite Kurve, die man Gangpolbahn nennt. Bei einer zwang-
läufigen ebenen Bewegung rollt nun die Gangpolbahn auf der Rastpolbahn ab.

Es seien zwei Zahnräder mit parallelen Achsen (Stirnräder) gegeben. Stehen die Zähne beider
Räder miteinander im Eingriff, so hat die Drehung des einen Zahnrades eine entsprechende Drehung
des anderen zur Folge. Die Bewegung des einen Zahnrades relativ zum andern ist eine zwangläufige
ebene Bewegung. Die Polbahnen sind zwei Kreise kl , k; mit den Mirtelpunkten 0„ 0; und den
Radien r, , r; (vgl. Bild 3.24). Sie werden auch als Wälzkreise bezeichnet. Es ist r1 + r; : a, wo a

Bild 3.24

den Achsabstand bedeutet. Wir führen zwei ortsfeste kartesische Koordinatensysteme 010c, y)
und 010?, J7) ein (Bild 3.24). Der Punkt P, wo sich beide um ihre Achsen 0, , 02 drehenden Räder
ständig berühren, ist der Pol der relativen Bewegung. Das heißt, in P liegt der jeweilige Momentan-
pol der Bewegung des einen Rades relativ zum andem, falls die Drehung beider Räder um 01 und
03 so erfolgt, daß der Wälzkreis des einen Rades auf dem Wälzkreis des anderen abrollt. Ist P’
ein Punkt des Wälzkreises kl , der mit dem Punkt P’ des Wälzkreises k; im Verlauf der Bewegung
in P zur Deckung gelangt, so werde der Winkel POIP’ mit Lp, der Winkel <I POZP’ mit lp bezeich-
net. Es ist rup = r;1p. Für das erste Rad sei die Flanke n eines Zahnes durch die Parameterdarstellung

x(<r) = x(tr) i + w) i
gegeben. Es sei Xein beliebiger Punkt von c, P’ der Punkt des Wälzkreises kl, für den <I P01P’ = (p

ist. Dann soll die Parameterdarstellung x012) die Eigenschaft haben, dal3 die Gerade XP’ für jeden
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Winkel (p Normale der Zahnflanke c im Punkt X ist. Damit x(q>) diese Eigenschaft besitzt, müssen
ihre Koordinaten x(q7), y(q2) die Bedingung

xi + y}? : r,(JE sintp +}3cos (p)

erfüllen.

Es soll nun das Gegenprofil c’ zu der gegebenen Zahnflanke c ermittelt werden. Das heißt, es soll
die Flanke für den Zahn des zweiten Zahnrades bestimmt werden, die mit der gegebenen Flanke des
ersten Rades im Eingriff steht. Während dieses Vorgangs berühren sich beide Flanken ständig in
einem Punkt. Nach dem Grundgesetz der Verzahnung (Vgl. [l7], S. 236) muß die gemeinsame Nor‘
male beider Zahnflanken im Berührungspunkt (Eingtiflspunkt) stets durch den Pol der relativen Be-
wegung gehen. Nach Reuleaux ([1 S], S. 293) kann man den zum Punkt Xgehörigen Punkt Ydes Gegen-
profils so finden, daß man die Strecke P’X um den Winkel q: um 01 dreht. Dann kommt P’ mit
P und X mit einem Punkt X‘ zur Deckung. Darauf wird PX‘ um 02 um den Winkel w gedreht,
wobei P nach P’ und X‘ nach X gelangt. Die Koordinaten i, i» von Ä’ ergeben sich zu

X012) = (a — x sin q: — y cos (p) cos (kqz) — (x cos zp — y sin mp) sin (kip) _t k ‚l
nu

mp) = (a — x sin (p — y cos (p) sin (k<p) + (x cos (‚v — y sin (p) cos (kqz) '2

Beide Gleichungen sind eine Parameterdarstellung des Gegenprofils E. Wir fassen nun den Kreis
mit dem Mittelpunkt P’ und dem Radius r = Y?’ = XP’ ins Auge. Bei veränderlichem Winkel (‚v

durchläuft dieser Kreis eine Kreisschar. Es soll gezeigt werden, daß das Gegenprofil E Hüllkurve
dieser Kreisschar ist. Die Kreisschar ist gegeben durch die Gleichung

(i: - rz cos (k¢v))‘ + (J7 — rz sin (k<p))’ = (r; cos sv - y(<p))’ + (n sin w - x(tr))‘.

wobei i, ‚f! als laufende Koordinaten, q: als Scharparameter betrachtet werden Hieraus folgt:

f’ + 512 — Zr; cos (ktp) f: — Zrz sin (ktp) )7 + (r;)’ = (n): + x2 + ‚v2 -— 2r1y coszp — Zrlx sincp.

Diflerenziert man diese Gleichung nach «p, so erhält man

Zrgk sin (kip) 2‘: — 2r2k cos (km); = Zxx + Zyy — Zrly cosq: — 2r_..x‘ sin (p + 2r‚y sin (p — Zrlx cosqa.

Wegen xi + yy = „(X sin q: + j» cos 4p) ergibt sich daraus 2r22?k sin (krp) — Zrzyk cos (kzp)

= 2r‚y sin (p — 2r1x cos (p. Diese und die differenzierte Gleichung werden durch die Funktionen
;“c(q2) und }7((p) erfüllt. Bevor dies nachgeprüft wird, sei noch bemerkt, daß der Punkt X‘ der Ein-
griffspunkt ist. Ändert man den Parameter (p, so durchläuft X‘ die Eingrifislinie.

Eine Parameterdarstellung der Eingrifislinie lautet

x‘ = x(<p) cos tr — .v(<r) sin w = X*(<P)‚

‚v‘ _‚= x(<r) sin w + m) cos w = y*(¢)~

Um nachzuweisen, daß das Gegenprofil E Hüllkurve der Kreisschar ist, setzt man in die Gleichung
der Kreisschar für die laufenden Koordinaten 2, y die Funktionen 2(7), flip) ein. Ebenso verfährt
man mit der durch Ableitung nach «p entstandenen Gleichung. Man erhält

(>‘<(<1>))’ + (für)? — 2rz.V(¢) sin kw — 2r2>‘<(q2) cos kw + r§

= (a —xsin¢p—yoos<p)‘+(xcosq:—ysinzp)’—2r1(a-—xsimy—ycos (p) +r§
=a2—2(xsin<p—l—ycos<p)a +x2 +y2—2r2(a-—xsinzp—-ycos4P) +r§
— a‘+x‘+y’ — 2r;tz—2(xsin«,v+ycosq2)(a—r2)+ r§

= a(a — rz) - r2(a— r2)+ x’ +,v’ e 2(xSin<p +yC0S¢)r;
= ar, — rzr, + x2 +y2 — 2(xsinq: +ycosq:)r1
= ri(a — rz) + x’ +y’ — 2(xsimP+,vC0S¢)n
=rf+x2 +y’ — 2(xsin(p+ycostp)r1.

l
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Dies ist aber die rechte Seite der ursprünglichen Gleichung. Für die durch Diflerentiation entstan-
dene Gleichung findet man

2r2)?(q2) k sin kq: — 2r2jI(<p) k cos kg: = -2r2k(x cos q) —- y sin (p)

= Zrly sin q: — 2r1x cos qr.

Die Funktionen 2(9), }7(q1) erfüllen beide Gleichungen. Damit ist gezeigt, daß das Gegenprofil E

Hüllkurve der Kreisschar ist. Wählt man als Zahnflanke eine Kreisevolvente, so ist das Gegenprofil
ebenfalls eine Kreisevolvente. Die Verzahnung wird dann als Evolventenverzahnung bezeichnet.

Der Kreis mit dem Mittelpunkt P’ und dem Radius XP’ gehört auch zu einer Kreisschar, die in
der Ebene des ersten Rades liegt und deren Hüllkurve die Zahnfianke c ist. Drehen sich beide Räder,
so daß P’ nach P, X nachX* kommt, so bewegt sich P’ ebenfalls nachflmd Y nach X*. Der Kreis

um X mit Radius XP’ und der Kreis um X mit dem gleichen Radius YP’ gehen beide in denselben

Kreis um P mit dem Radius PX* über. Da der eine Kreis in seiner ursprünglichen Lage die Zahn-
flanke c in X, der andere die Zahnflanke c in Yberührt, beide Kreise nach der Drehung zusammen-

fallen, berühren sich die Zahnflanken c und E nach der Drehung in X* und ihre gemeinsame Normale
PX‘ geht durch P, wie es das Verzahnungsgesetz verlangt.

3.9. Minimalkoordinaten

Wir betrachten die x, y-Ebene und führen in ihr durch die Gleichungen

u=x+iy, v=x—iy, i2= -1,
neue Koordinaten u, v ein, die man Minimalkoardinaten oder isalrape Koordinaten nennt. Ist P ein
reeller Punkt der Ebene, d. h.‚ sind seine kartesischcn Koordinaten x, y reell, so sind seine Minimal-

1

koordinaten konjugiert komplex. Durch die Gleichungen x = -2— (u i» r), y = E (u —— z") kann man

von Minimalkoordinaten wieder zurück zu den kartesischen Koordinaten kommen. Aus diesen
Gleichungen folgt, daß ein Punkt, dessen Minimalkoordinaten konjugiert komplex sind, stets reelle
kartesische Koordinaten hat und daher ein reeller Punkt ist. Eine ebene Kurve hat in Minimalkoordi-
naten die Gestalt

f(u, v) = 0-

Soll die Kurve reell sein, so muß sie mehr als abzählbar unendlich viele reelle Punkte enthalten.
Das sind Punkte, deren Minimalkoordinaten u, v die obige Gleichung erfüllen, wobei außerdem
noch ü = 1: und Ü = u gilt, wenn wir mit ü bzw. ä die zu u = x + iy bzw. v = x — iy konjugiert
komplexe Zahl ü = x H iy bzw. E = x + iy bezeichnen. Für die Gleichung f(u, v) = 0 einer reel-
len Kurve gilt also, daß f(u‚ ü) = 0 für unendlich viele Paare u, ü erfüllbar ist. Diese Bedingung
ist auch hinreichend. Eine Gerade ist in impliziter Form durch eine Gleichung

Au + Bu + C = 0 ‘

gegeben. Dabei können wir C stets so wählen, daß C reell und g 0 ist, während A == ae“, B = be”
im allgemeinen komplexe Zahlen sind. Soll die Gerade reell sein, so muß B = Ä sein. Zur Veran-
schaulichung faßt man die x, y-Ebene als Gaußsche Zahlenebene mit der x-Achse als reeller Achse

auf und trägt darin die Zahlen A, Ä, ZÄ und den Kreis k mit dem Radius J-C‘ ein (Bild 3.25).
Invertiert man den Punkt ZÄ an k, so erhält man A‘ (vgl. Aufgabe 3.13). Es ist

l0A*l l0(2Ä)l = —C > 0,

Die durch A senkrecht zu 0A verlaufende Gerade g stellt dann die durch die Gleichung

Au+Äv+C=0,C<0‚
\gegebene Gerade dar. Falls C = 0 ist, geht die Gerade durch den Ursprung 0 und ist senkrecht zu

OÄ. ‚
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Ist dagegen die reelle Gerade g in expliziter Form gegeben, so lautet ihre Gleichung v = mu + n

mit
A ein: C—:_—:—e““, n:—e‘“ und m=—

e a m
]:

l
Die Lage von g ergibt sich, wenn man in die Gaußsche Zahlenebene die komplexe Zahl -2- fi einträgt.

l _

Dann stellt die durch den Endpunkt M des Vektors 7n senkrecht zu OM verlaufende Gerade die

Gerade g dar (vgl. Bild 3.26). Ein Kreis mit dem Radius r, dem Mittelpunkt M0, wo 140, 1'0 dessen
Minimalkoordinaten sind, hat die Gleichung

(M - uo)(v - vo) = '2-

Der Abstand dzweier Punkte P1(tq , U1), P(u2, 1:2) ist gegeben durch

d = \/(“i "’ U2) (F1 — U2)-

Für die Gleichung der Tangente t0 und der Normale no im Punkt I'„(u„ ‚ v0) einer Kurve mit der Glei-
chung f(u, v) = 0 erhält man

To? (u — llo)fii("o‚ U0) + (U ‘ l*o)fu(“o» 17c) = 0s

"o1 (U — llo)fii(llo‚ U0) “ (V ' 7«‘o)f;(“oa '30) = Ü-

Für die Krümmung x im Punkt P0(u„, v0) ergibt sich aus (3.33) in 3.4.

f.9u(f3)2 - Zffuffff + f3u(f.?)’

" 2 (\/f.‘.’f.?)3 ’

wenn wir zur Abkürzung fürfi„‚(zro‚ v0) = f2", f„(u0‚ v0) = ff,’ usw. setzen. Wir vermerken noch, daß
für die Faktoren m und m’ zweier in expliziter Form gegebener reellen Geraden g, g’ mit den Gleichun-
genv = mu + n, v = m’u + n’ die Bedingung m + m’ = Ogenau dann gilt, wenng und g’ zueinan-
der senkrecht sind.

z

Die Koordinatenachsen des Minimalkooroinatensystems sind zwei imaginäre Geraden mit den
Gleichungen u = 0, u = 0 bzw. x + iy = 0, .\' ~ iy = 0 in kartesischen Koordinaten, die auch als

‚Minimalgeraden bezeichnet werden.

Bild 3.25 Bild 3.26



4. Flächentheorie

4.1. Gruudbegrifie der Flächentheorie

4. 1.1. Zulässige Parameterdarstelluugen

Im dreidimensionalen euklidischen Raum E3 sei ein orthogonales kartesisches
Koordinatensystem O(x, ‚ x2, x3) mit dem Ursprung 0 und den Achsen x, ‚ x2, x3
gegeben. Wir betrachten eine Gleichung der Gestalt

x3 =f(x1i>x2)a (4-1)

wo f eine eindeutige reelle Funktion der zwei Veränderlichen x, , x2 ist. Die Funk-
tion f sei auf einem gewissen (zweidimensionalen) Gebiet G der x, , xz-Ebene erklärt
und dort stetig nach x, und x2 differenzierbar. Das Gebiet G kann auch die ganze
x„x,—Ebene sein. Dann ist durch (4.1) die Gleichung einer gekrümmten Fläche
des Raumes E3 gegeben. Ist speziell f eine lineare Funktion, das heißt, gilt
f(x„ x2) = ax, + bx; + c, so stellt (4.1) die Gleichung einer Ebene dar. In diesem
Fall ist das Definitionsgebiet G die ganze x1, xz-Ebene.

Für viele Aufgaben erweist sich jedoch die Darstellung einer Fläche durch eine
Gleichung der Form (4.1) als ungünstig. Daher wurde bereits von C. F. Gauß eine
andere Art der Darstellung einer Fläche gewählt, die inzwischen durch die Ein-
führung der Vektorrechnung noch weiter vervollkornmnet wurde. Sind i, j, k die
drei Einheitsvektoren in Richtung der drei Koordinatenachsen x1, x2, x3, so kann
man einen beliebigen Vektor x des Raumes E3 in der Form

x =x,i + x2j+ xak

schreiben. Die Koordinaten sind reelle Zahlen. Es möge der Vektor x noch von zwei
unabhängigen Variablen u‘, u’, die auch als Parameter bezeichnet werden, abhängen. 1)

Dann sind die Koordinaten x, keine Zahlen mehr, sondern Funktionen der zwei
Variablen u‘, u’ und man schreibt

x(u‘‚ u’) = x,(u‘, u2)i + x2(u‘‚ u2)j + x3(u‘, u’) k. (4.2)

Faßt man u1,u2 als Koordinaten von Punkten einer u‘, uZ-Ebene auf, in der ein
orthogonales kartesisches Koordinatensystem 0’(u‘, u’) gegeben ist, dann sind die
drei Funktionen x, der Variablen u‘, u’ im allgemeinen nicht für alle Punkte der u‘, u’-
Ebene definiert, sondern nur für die Punkte eines gewissen Gebietes B 2) dieser
Ebene. Eine Gleichung der Gestalt (4.2) heißt eine vektarielle Parameterdarstellung.
Sie kann auch in drei skalare Gleichungen zerlegt werden. Dann erhält man

1

xi = x1(u‘,u’). x2 = x2(u‘,u’), xs = xs(u‘, u‘)- (4.3)

Man nennt drei derartige Gleichungen eine Gaußsche Parameterdarstellung im E3.

‘) Wir werden — wie in der Tensorrechnung - von der Schreibweise Gebrauch machen, Größen
auch oben zu indizieren. Der Grund wird auf den Seiten 80 und 93 ersichtlich. Man unterscheide
im folgenden zwischen Potenzen und oberen Indizes!

z) B sei einfach zusammenhängend und beschränkt (vgl. [9] Bd. 2, S. 304, Bd. 3, S. 292).
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Q

Bild 4.1. Der Wertebereich der Parameter u‘, u’ ist ein einfach zusammenhängendes
Gebiet B, das durch die im Bild dargestellte Kurve begrenzt wird

Eine (vektorielle) Parameterdarstellung heißt eine zulässige Parameterdarstellung
der Klasse r g 1 für das Gebiet B, wenn folgendes gilt:

1. Die drei Funktionen xi sind in allen Punkten von B stets r-mal (r g 1) stetig
nach u‘ und uz-diflerenzierbar.

2. Jedem Punkt P aus B mit den Koordinaten u‘, u’ entspricht vermöge (4.2) ein
Punkt X einer gewissen Punktmenge M des E’, wenn man den Vektor x(u‘, uz) als
Ortsvektor auffaßt, d. h. ihn durch eine gerichtete Strecke darstellt, die vorn Ur-
sprung 0 zu dem Punkt X mit den Koordinaten xi(u‘, u’) verläuft und mit einem
Richtungssinn versehen ist, der durch einen von 0 nach X gehenden Pfeil gekenn-
zeichnet wird.

3. Jedem Punkt X der Punktmenge M entspricht ein Punkt P des Gebietes B mit
den Koordinaten u‘, u’, so daß xi(u‘, u2) die Koordinaten von X sind.

4. Bildet man aus den ersten Ableitungen Ox,-/bu‘, Ox,/bu‘ (i = 1, 2, 3) die Matrix I
bx, 13x1-

E17? Öu’

I = bx; Öx;
Bu‘ bu‘ ’

6x3 bx;
Öu‘ E47

so soll I in allen Punkten von B den Rang 2 haben, d. h.‚ daß wenigstens eine der
zweireihigen Unterdeterminanten von I nicht verschwindet.
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Ist x(u‘, u’) eine zulässige Parameterdarstellung der Klasse r g l für das Gebiet B
und läßt man die Parameter u‘, u’ alle durch das Gebiet B erlaubten Werte durch-
laufen, d. h.‚ wählt man alle solchen Wertepaare u‘, u’ aus, die Koordinaten eines
beliebigen Punktes P von B sind, so beschreibt der Endpunkt X des Ortsvektors

55K = x(u‘, u’) eine gekrümmte Fläche bzw. ein Fläehenstiick im E3:

Dies sieht man wie folgt ein. Zu jedem beliebigen Punkt X mit den Koordinaten xi , x2, x3 aus

der Punktmenge M gibt es wegen 3. einen Punkt P des Gebietes B mit den Koordinaten u‘, a2, so

daß x1 = x1(u‘,u2), x2 = x2(u‘,u2), x3 = x3(u‘‚ u’) ist. Da wegen 4. die Matrix I den Rang2
hat, gibt es eine zweireihige Unterdeterminante von I, die im Punkt P nicht verschwindet. Es sei
zum Beispiel

ax, 6x,
bu‘ bu‘ 0

ax, ax, ä: '

öul au’

Dann kann man die zwei Gleichungen x1 = x1(u‘, u’), x; : x1(u1‚ u’), was hier nicht bewiesen
werden kann (vgl. Bd. 4, Satz 3.15), lokal (d‚h. in einer gewissen Umgebung des Punktes P)
nach u’ und u’ auflösen. Man erhält u‘ = tp(x„x2), u’ = 1p(x1‚x2). Setzt man dies in die dritte
Gleichung ein, so ergibt sich

X3 = X3(4P(X1.X2). 'I’(X1»"2))=f(X1aX2)- (4-4)

Die Funktionen qr, w sind im allgemeinen nach xx , x; differenzierbar, daher wegen l. auch f. Durch
(4.4) ist aber die Gleichung einer gekrümmten Fläche im E3 gegeben. Gleichung (4.4) wird durch die
Koordinaten von X erfüllt. Da Xjeder Punkt von M sein kann, liegt die gesamte Punktmenge M
auf der Fläche. Aus Gründen der Stetigkeit liegen die Punkte von M auch dicht auf der Fläche.
Somit ist durch eine zulässige Parameterdarstellung x(u‘,u2) eine Fläche bzw. ein Flächenstück
im E3 gegeben.

k

Man kann umgekehrt jeder Fläche, die durch eine Gleichung der Form (4.4)
x3 =f(x1,x;) gegeben ist, sofort eine zulässige Parameterdarstellung zuordnen,
indem man x, = u‘, x2 = u’ und x3 = f(u1, u’) setzt. Allerdings wird dabei voraus-
gesetzt, daß f nach n1 und u’ wenigstens einmal stetig difierenzierbar ist. Man erhält

x(u‘, u’) = uli + uzj +f(u‘, u’) k.

Falls das Gebiet B als beschränkt vorausgesetzt wird, ist in der Regel durch eine
zulässige Parameterdarstellung x(u‘, u‘) nur ein Flächenstück gegeben. Die Fläche,
zu der ein solches Flächenstück gehört, wird dann durch eine Menge von derartigen
Flächenstücken definiert, die die Fläche dachziegelartig überdecken.

Hat die Matrix I für ein Wertepaar u‘, u’ einen Rang <2, so heißt der durch u‘, u’
bestimmte Punkt der Fläche bezüglich der betreflenden Parameterdarstellung sin-
gulär. Ist ein Punkt bezüglich aller Parameterdarstellungen eines Flächenstückes
singulär, so heißt er ein singulärer Punkt des Flächenstückes (vgl. Aufgabe 4.2). Ein
Punkt einer Fläche heißt regulär, wenn es ein Flächenstück gibt, das diesen Punkt
enthält, so daß wenigstens eine Parameterdarstellung x(u‘, u’) dieses Flächenstücks
in diesem Punkt der Matrix I den Rang 2 zuordnet.
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4.1.2. Flächenkurven, Koordinateulinien einer Fläche und die erste Grundform
der Flächentheorie

Es sei im E’ eine zulässige Parameterdarstellung der Klasse r g 1

X(“1a V2) “r: x1(“la “z” ‘i’ X2041: “2).i + X3041: 712)!‘ (4-5)

bezüglich des Gebietes B der n1, uz-Ebene gegeben. Durch x(u’, u’) ist, wie bereits
im vorhergehenden Abschnitt bemerkt wurde, eine Fläche F bestimmt. Wir wollen
annehmen, daß die zwei Parameter u‘, u’ differenzierbare Funktionen einer reellen
Variablen t sind, die entweder alle reellen Zahlen durchläuft oder die Bedingung
t, g t g t2 erfüllt.

Wir schreiben

u u‘(t),

u’ = u’(t).

Die Wertebereiche der Funktionen u‘ : t —> u‘(t) und u’: t—> u"(t) seien so beschaf-
fen, daß ein Punkt P mit den Koordinaten u‘(t), u2(t) stets zum Bereich B gehört.
Dann stellen die beiden Gleichungen (4.6) die Parameterdarstellung einer Kurve
c3 der u‘, uz-Ebene dar, die ganz im Gebiet B verläuft. Setzt man (4.6) in (4.5) ein,
so erhält man

XÜ) = X(“1(t): 112(0) = X1(141(f)s142(t))i + X2(u‘(f).uz(T))J' + x3(“1(t)s“2(t))k

= x1(t)i + X2(’)j + x3(t)k-
Das ist die Parameterdarstellung einer Raumkurve c. Durchläuft der Punkt P mit
den Koordinaten u‘, u’ das ganze Gebiet B und setzt man alle diese Koordinaten-
paare u‘, u’ in die Parameterdarstellung (4.5) ein, so beschreibt die Spitze X des vom
Punkt 0 ausgehenden Vektors x(u1, u’) die Fläche F. Da unter allen diesen möglichen
Koordinatenpaaren u‘, u’ auch u‘(t) und u2(t) sind, liegt die Raumkurve c ganz auf
der Fläche F. Die Raumkurve c ist demnach zugleich eine Flächenkurve der Fläche F.

Um den Tangentenvektor von c zu gewinnen, differenzieren wir (4.5) nach t und
erhalten

1 ll

(4.6)

dx öx du‘ bx du’
E - w? + a7T (*7)

bzw.

i: = xnzl‘ + xnü’, (4.7’)

wenn wir zur Abkürzung dx/dt = k, x„» = öx/öu“, ü” = dd"/dt, (v = l, 2) setzen.
Nimmt man speziell an, daß die Gleichungen (4.6) die Gestalt u‘ = t, uz = C
haben, wo C eine passend gewählte Konstante ist und t zu dem Intervall [t1,t2]
gehört, so bezeichnet man c als ul-Linie, ist hingegen u‘ = K, u’ = t mit passendem K
und te [t3‚ t4], so nennt man c eine uz-Linie. Diese u‘- bzw. uz-Linien liegen eben-
falls auf F. Die Konstanten C bzw. K müssen so gewählt werden, daß die Gerade
u’ = C bzw. die Gerade u‘ = K der u‘, uz-Ebene mindestens ein Stück im Gebiet B
verläuft. Da man C bzw. K auf beliebig viele Arten so wählen kann, gibt es eine
ganze Schar von u‘-Linien und eine ebensolche Schar von uz-Linien "auf F. Die u‘-
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Linie u’ = C und die uZ-Linie u‘ = K schneiden sich im Punkt X0 mit dem Orts-
vektor x(C, K). Daher bilden die u‘- und die uZ-Linien auf F ein Kurvennetz. Durch
jeden regulären Punkt X der Fläche F geht eine u‘—Linie und eine uZ-Linie. Durch ein
solches Kurvennetz ist auf der Fläche F ein Gaußsches Koordinatensystem‘) gegeben.
Denn die Parameterwerte u‘, u2 haben die Bedeutung von Koordinaten. Man nennt
sie Gaußsche Koordinaten, und die u‘- bzw. uz-Linien heißen Koordinatenlinien. Die
Tangentenvektoren der ul-Linie u‘ = t, uz = C durch X0 sind durch x,„(t‚ C)
= x,,.(u‘, C), die Tangentenvektoren der 242-Linie u‘ = K, u’ = t im selben Punkt
sind durch x„a(K, t) = X„z(K, u’) gegeben. Ist X ein beliebiger Punkt auf F mit den
Gaußschen Koordinaten u‘, u’, so sind die Tangentenvektoren der beiden durch X
gehenden Koordinatenlinien x„l(u‘, uz) und x,,:(u‘, u’). Stellt man diese Vektoren
als gerichtete Strecken mit dem Anfangspunkt X dar, so bestimmen sie eine Ebene TX ,

die von dem durch X gehenden beiden Koordinatenlinien im Punkt X berührt wird,
Da der Tangentenvektor 5:0‘) einer beliebigen durch X verlaufenden Flächenkurve c

wegen (4.7’) die Gestalt it = Xugi.’ + x,,2L‘42 hat, liegt er, wenn er als gerichtete
Strecke mit dem Anfangspunkt X aufgefaßt wird, ebenfalls in der Ebene TX. Daher
berührt jede durch X gehende Flächenkurve die Ebene TX im Punkt X. Demnach
ist die Ebene TX die Tangentialebene an die Fläche F im Punkt X. Man sagt auch,
daß die Ableitungsvektoren x„n(u‘‚ u’), x,,:(u‘, u’) die Tangentialebene Ix an die
Fläche F im Punkt X aufspannen.

X7

Bild 4.2. Fläche mit Parameterlinien, Tangentialebene, Ableitungsvektoren und
Fläehenkurve

‘) Auch krummliniges Koordinatensystem genannt.
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Kehren wir zur Flächenkurve c zurück. Das Bogenelement ds dieser Kurve ist
gegeben durch

d5’ = dx - dx. (4.8)

Dabei ist

dx = 3‘: dt = (x„xü‘ + xuxü’) dt = x„. du‘ + x„a du’.

Setzt man dies in Gleichung (4.8) ein, so erhält man

ds’ = (x„x du‘ + x,,z du’) - (x„. du‘ + x„‚ du’)

= (x„n ' x„x) (da1): + 2(X„x' x„-) du‘ du’ + (X„r' Xux) (du2)2.

Wir führen zur Abkürzung die folgenden Bezeichnungen

x,,v~ Xuu = g..,, (v,,u = 1, 2) (4.9)

mit gw = gm, ein. Dann erhalten wir

(dS)‘ = g; 1(du‘)‘ + 23.2 du‘ du’ + gnfiiu’)? (4-10)

Der Ausdruck auf der rechten Seite von Gleichung (4.10) ist homogen vom zweiten
Grad in den Differentialen du‘, du’. Man bezeichnet einen solchen Ausdruck als
eine quadratische Differentialform. In der Differentialgeometrie wird die obige Diffe-
rentialform (4.10) auch als erste Grundform der Flächentheorie bezeichnet. In man-

chen Lehrbüchern ist es üblich, statt g1, , gl, , gm die Bezeichnungen E, F, G zu ver-

wenden?) Wir wollen die erste Grundform noch mit I bezeichnen und die in der
Diflerentialgeometrie übliche Summationsvereinbarung benutzen.

Summationsvereinbarung: Über einen Index, der in einem Produkt zweimal — einmal
als unterer und einmal als oberer Index — vorkommt, ist zu summieren. Die Summation
läuft von I bis 2. Das Summationszeichen wird weggelassen.

Dann kann man für die erste Grundform auch schreiben

I = dsz = gw du’ du-“. (4.11)

Die erste Grundform der Flächcntheorie ist für alle metrischen Fragen wie z. B.
Längen- und Winkelmessungen auf der Fläche maßgebend. Man bezeichnet sie daher
als metrische Grundform.

Die Koeffizienten g,, bilden die Komponenten eines Tensors zweiter Stufe’). Dieser heißt der
kovariante Maßtensor, metrische Tensor oder auch Fundamcntaltensor auf der betreffenden Fläche.

4.1.3. Parameterdarstellungen spezieller Flächen

In diesem Abschnitt sollen Verschiedene Parameterdarstellungen betrachtet werden.

a) x(u‘‚ u’) z rcos 141 cos 142i 4,- r sinu‘ C0SI12j + rsin 112k,

—1r g 141 S +.-:‚ -7:/2 g M2 S n/Z.

Das Gebiet B ist hier ein Rechteck der Länge 2: und der Breite n (vgl. Bild 4.3).

1) Vg1.[1], [3], [11] und [13].
1) Vgl. Band 11 und [6], s. 99-106, s. 117.
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Bild 443. Oberfläche einer Kugel mit Gaußschem Koordinatensystem

Es ist
xi = rcos u‘ cos M2,

x2 = r sin u‘ cos u’,

x3 = r sin u’.

Durch Quadrieren und Addieren dieser drei Gleichungen erhält man

(X02 + (X2)2 + (X3): = '2»

Das bedeutet, daß die Punkte X, der durch die Parameterdarstellung a) gegebenen Fläche den kon-
stanten Abstand r vom Koordinatenursprung 0 haben. Die Fläche ist eine Kugelfläche mit dem Ur-
sprung 0 als Mittelpunkt und dem Radius r. Für die Ableitungsvektoren x„-‚x„2 ergibt sich

x„I = ——r sin u‘ cos u’i + r cos u‘ cos uzj,

x..2 = —r cos u‘ sin uzi — r sin u" sin uzj + r cos 142k.

Für die Koeffizienten der ersten Grundform erhält man

E11 = 72 C052 "2: 812 = 0» 822 = '2-

Damit lautet die erste Grundform

I = d.s2 = r’ cos’ u2(du‘)‘ + r‘(du2)’.

Für u’ : rr/Z, —-n g u‘ g +‚-. erhält man ein- und denselben Punkt N auf der Kugel. Wir fassen
ihn als Nordpol auf. Desgleichen erhält man für u’ = —rI:/2, -7: g u‘ g n: einen Punkt S, den wir
als Südpol ansehen können. Darm stellt u‘ die geographische Länge und u’ die geographische Breite

6 Schöne, Ditferentialgeomebrie
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dar. Die u‘-Linien, die durch u’ = konstant gegeben sind, stellen die Breitenkreise dar, während
die I42-Linien, gegeben durch u‘ = konstant, die Meridiane sind. Jeder Meridian ist ein halber
Großkreis (Radius r) vom PunktN zum Punkt S. Beide Kurvenscharen — die Breitenkreise und die
Meridiane — schneiden sich orthogonal. Daher liegt hier ein orrhogonalex Gaußsches Koordinaten-
system vor. Dies ergibt sich auch, wie imAbschnitt 4.6. gezeigt wird, daraus, daß für alle Wertepaare
u‘, u’ mit —1: S u‘ S 7c, an/2 g u’ g z/Z der Koeffizient gm = 0 ist. In den Punkten N und S
ist diese Parameterdarstellung nicht mehr zulässig, weil die Matrix I für die Punkte PeB mit
—n: g u‘ g 7:, u’ = z/Z bzw, u’ = —-71/2 den Rang 1 hat. Außerdementsprichtjedem solchen PunktP
jeweils der Punkt N bzw. S auf der Kugelfläche. Für diese Punkte ist daher die geforderte Einein<
deutigkeit der Zuordnung zwischen den Punkten von B und den Punkten der Punktmenge M, die
hier mit der Kugelfläche identisch ist, nicht mehr gewährleistet. Man nennt solche Punkte wie N
bzw. S xingulär bezüglich der Parameterdarstellung. Jedoch sind N und S keine singulären Punkte der
Kugelfiäche, weil es Parameterdarstellungen gibt, bei denen die Matrixl in N und S den RangZ hat.

b) x(u‘,u2) = acos uli + a sin ulj + uzk. 0 S u‘ S 27¢, -°° < u’ < +00.

ln diesem Fall ergibt sich x1 : a cos u‘, x2 : a sin u‘, x3 = u’. Hieraus folgt xf + x3 = a’.

x3 a2

/ \
X2

Bild 4.4. Gerader Kreiszylinder mit Gaußschem Koordinatensystem
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Die durch b) gegebene Fläche ist ein gerader Kreiszylinder (Drehzylinder), dessen Achse die x3-
Achse und dessen Grundkreis der Kreis mit dem Radius a in der x„ xz-Ebene mit dem Ursprung 0
als Mittelpunkt ist. Die u‘-Linien (u’ = konstant) sind Kreise, die zum Grundkreis kongruent sind
und deren Ebenen parallel zur x1, x2-Ebene liegen. Die ul-Linien (ul = konstant) sind die Mantel-
linien des Kreiszylinders. Das sind parallele Geraden zur x3-Achse. Das Netz der Koordinatenlinien
ist hier ebenfalls ein arthogonales Netz.

Für die Ableitungsvektoren ergibt sich

x,,x = —a sin u‘i + a cos ulj, x.) = k.

Damit erhält man gm = a’, gm : 0, gm = 1. Der Rang der Matrix I ist für alle Werte u‘, u’
mit 0 S u‘ g 27:, ~00 < u’ < eo gleich 2. Die Parameterdarstellung b) ist überall zulässig, Das
Gebiet B ist der durch die Gerade u‘ = 27:: und durch die uz-Aehse begrenzte Streifen der u‘, ul-
Ebene.

4.1.4. Die Bogenlänge einer Flächenkurve

Es sei eine Fläche Fldureh eine für das Gebiet B zulässige Parameterdarstellung
x = x(u‘,u’) der Klasse r g 1 gegeben. Auf F sei durch u‘ = u‘(t)‚ u’ = u‘(t),
t1 g t g t2 eine Flächenkurve c bestimmt. Xo und X seien zwei Punkte der Kurve c.
Die Gaußsehen Koordinaten von X0 seien uä = u1(t„), uä = u2(t0), die von X seien
u‘ = u’(t), u‘ = u2(t) mit to,te.[t1, t2] und t> to. Wir wollen die Länge des
Kurvenstiicks von X0 bis X mit s bezeichnen. Es ergibt sich

X t

s = f ds = f „/g„‚duvduu. (4.12)
X, 1,,

Offensichtlich ist s eine Funktion der oberen Grenze t. Setzt man du" = ü" dt und
betrachtet to als konstant, so erhält man

t

s(t) = fx/g,,Az2’12!‘dt. (4.12')
‘o

Die Bogenlänge des Kurvenstücks X„X der Flächenkurve c läßt sich durch Inte-
gration finden, wenn man die Funktionen ü'(t) (v = 1, 2) kennt und wenn außerdem
die Größen gw der ersten Grundform gegeben sind. Durch Differentiation Von (4.12’)
nach t folgt

ds M

—dT = \/g,,‘u'u#. (4.13)

Mit Hilfe dieser Gleichung kann man, wenn eine Flächenkurve durch einen be-
liebigen Parameter t gegeben ist, die Bogenlänge dieser Flächenkurve als neuen Para-
meter einführen.

Aufgabe 4.1: Welche Flächen sind durch die folgenden Parameterdarstellungen gegeben?

a) x(u‘, u’) = a cos u’ sin u1i + b sin u‘ sin u‘j + c cos ulk,
O 514153, 0§u2§21r, a > b > c > 0.

b) x(u’ , u’) = u‘ cos uzi + u‘ sin uzj + au‘k,

—oo<u‘<oo‚ 0§u2§27r, a>0.
Man berechne für beide Darstellungen die Größen gm.

64:
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Aufgabe 4.2.: Man zeige, daß der Punkt O((), 0, 0) der in Aufgabe 4.1.b) gegebenen Fläche
x(u‘, u’) =11‘ cos 142i + u‘ sin n2] + au'k‚ — 0c < u‘ < + 0o, 0 E n2 f; 27:, 11 > 0, ein singulärer
Punkt der Fläche ist.

Aufgabe 4.3: Gegeben ist eine Zylinderfläche (parabolischer Zylinder) durch die Parameterdar-
stellung

x(u‘‚u2) = (l + u1)i + iuzj + § ((_u‘)z — Zu‘) k,

—oo< u‘ < +00. —oo < u’ < +oo.

Es werde angenommen, daß die x1 , xrEbene horizontal Verlaufe. Auf der Zylinderfläche sind außer-
dem die zwei Punkte P(l‚ 0, 0) und Q(2 — cosh 2, § sinh 2 cosh 2 — 1, f (cosh 2)’ — 4}) ge-
geben. Die Punkte P, Q sollen durch eine Böschungslinie (vgl. S. 35) verbunden werden, die ganz
auf der Zylinderfläche verläuft. Man gebe eine Parameterdarstellung dieser Böschungslinie an und
berechne die Bogenlänge des die Punkte P, Q verbindenden Kurvenstücks.

Aufgabe 4.4: In der xi ‚ ‚vs-Ebene des orthogonalen Koordinatensystems 0(x1 , X2 , x3) ist durch die
Gleichung x3 =f(x1) eine ebene Kurve c bestimmt. Die Kurve c rotiere um die x3-Achse. Man be-
rechne eine Paramelerdarstellung der dadurch entstehenden Rotationsfläche,

4.1.5. Tangentialebene und Fliichennormalenvektor

Die beiden Ableitungsvektoren x„„ X": bestimmen, wie bereits erwähnt, die Tangen-
tialebene TX der Fläche F im Punkt X. Ist y der Ortsvektor eines beliebigen Punktes
Y dieser Tangentialebene, so gilt

y = x(u1, u’) + fix“: + ,ux,,: (4.14)

mit —oo<Ä<+:>o‚—C/:<‚u<+30.
Der Normalenvektor f, der zugleich Normalenvektor der Fläche F im Berührungs-

punkt X ist, steht auf x„x und x,,: senkrecht. Der Vektor f sei so normiert, daß er
den Betrag l hat. Dann gilt

__ x,,x x x„.
IX“: x x„x|'

In der Tat ist |f| = |x„. x x„a|/[x„‚ x x-„xl = l. Wegen

[x„. x x„z| = \/(xu. x x„:)-(x„‚ x x„.)

= \/<x.- - x.-) (Xu‘ - x.»> — (Xu‘ - x.=>2

[Vg1. (1.7)] erhält man mit |x„. >< x„a| = \/gr

lxu‘ X Xnfil = \/311822 ‘ giz =

Damit ergibt sich für den Flächennormalenvektor
X“: X X“:

«/E

Für die Tangentialebene ‘Ex folgt aus (4.14) durch skalare Multiplikation mit f
f-y = f'x(u‘,u2)

oder (4.16)
(Y - X011, '42)) ’ f = 0-

f .—_ (4.15)
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Setzt man für f den Ausdruck (4.15) ein und multipliziert die Gleichung mit Jg,
so geht (4.16) über in

(y — x(u1, 142)) - (x„. >< x,,:) = 0. (4.17)

Aus Ix,” >< xuxiz = g ergibt sich, daß in einem regulären Flächenpunkt stets g > 0
ist. Da nämlich in einem solchen Punkt der Rang der Matrixl mit 2 angenommen wer-
den kann, sind x„. und x,,: linear unabhängig. Folglich ist |x„. x x„2[ > O. In
einem regulären Flächenpunkt ist die erste Grundform auch immer positiv definit,
d. h., es ist stets

d5’ = gu(du‘)’ + 2812 du‘ du’ + g22(du’)” > 0,

wenn nur du‘ und du’ nicht beide gleich null sind (vgl. [6], S. 104).

4.1.6. Der Schnittwinkel zweier Flächenkurven

Auf der Fläche F mit der zulässigen Parameterdarstellung x = x(u‘, a3) seien
zwei Flächenkurven c, E gegeben, die sich im Punkt X0 schneiden sollen (Bild 4. 5).
Es gelte

c: u‘ = u‘(t), u’ = uz(t),

Z‘: u‘ = 171(t), u’ = 17Z(1:).

Für t= to und r = To erhält man u‘(t,,) = 1Z"(-:0) (i: 1,2). Das heißt, daß der
Punkt X0 durch den Ortsvektor

X0 = X(”1(to)2 “2(to)) = X(‘71(To)s 172(70))

bestimmt wird. Unter einem Schnittwinkel der zwei Flächenkurven c, E im Punkt Xo

verstehen wir jeden der zwei Winkel, den die beiden Tangenten der Kurven c und 2'

im Schnittpunkt X0 miteinander bilden. Da die zwei Winkel Supplementwinkel
sind, genügt es, einen von ihnen zu keimen. Dazu berechnen wir die Tangentenvek-

Bild 4.5. Der Schnittwinkel zweier Flächenkurven
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toren der Kurven c und E im Schnittpunkt X0. Für die Parameterdarstellung der
Kurven c, Efindet man

01X0) = X(u‘(t), u’(t))_,

E: 2(1) = x(17‘('r), fi2(1:)).

Damit ergibt sich für die Tangentenvektoren

(4.18)

m): x„vü” und §(z) =x„„ü-".

‘Um die Tangentenvektoren der Kurven c, E im Punkt X0 zu erhalten, müssen wir
in den zuletzt erhaltenen Gleichungen t durch to und T durch To ersetzen. Wir finden

Sao = Xu"("1(to)» u2(to)) um).

g = im) = Mann), a2(n,))§#(:o) = x,,u(u‘(to), u2(:.‚))a'r(1„).

Mit Hilfe des Skalarproduktes der Vektoren 5:0, Z, findet man

5:0 ~ z,

Durch eine kurze Zwischenrechnung erhalten wir

cosö = cos(ic0,§,,) = (4.19)

:20 = „warm ~ warne) = (XuV - x14“) wrro)ürrro> = muvaoiürrro),

lxol = R0 ' *0 = N xMTto): Xu"'3”(to) = \/gv;AW(to) 5"‘(to)a

lie! = */’_.‘o ' in = ~/Xufii-4.}'(To) ‘ xuvüuÜo) = ~/316';/1(To) 7(70) ~

Damit ergibt sich schließlich

gnwcro) rm
\/gv.Ml.’V(t0) rm) Jgmu'"(ro)r1*(ro> '

Um den Schnittwinkel der durch einen Flächenpunkt X gehenden zwei Koordinaten-
linien berechnen zu können, setzen wir für die Kurve c die durch X gehende u‘-
Linie und für E die durch X gehende zfi-Linie ein. Dann gilt für die ul-Linie ü‘ = 1,

ü’ = 0 und für die tfi-Linie ü‘ = 0, ü’ = 1. Wir erhalten

cos ö = cos (X0, 570) =

g12"'4lEZ 812

/gu(ft‘)’ :§z2(—';2)Z \/811822

Man nennt ein Gaußsches Koordinatensystem orthogonal, wenn die Koordinaten-
linien sich in jedem Punkt des Gültigkeitsbereichs senkrecht schneiden. Es gilt der
folgende einfache und wichtige

cosö = (4.20)

Satz 4.1: Ein Gaußsches Koordinatensystem auf einer Fläche ist genau dann ortho-
gonal, wenn überall in dessen Gültigkeltsbereich

glZ = 0
ist.
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Beweis: Ist auf F ein orthogonales Gaußsches Koordinatensystem gegeben, so muß
cosö überall im Gültigkeitsbereich verschwinden. Aus (4.20) folgt dann für alle
Punkte des Gültigkeitsbereichs gm = O. Gilt umgekehrt überall im Gültigkeits-
bereich gm = 0, so ist wegen (4.20) auch überall cos ö = 0. Das heißt, die Koordi-
natenlinien schneiden sich überall im Gültigkeitsbereich orthogonal.

4.1.7. Die Berechnung von Flächeninhalten

Es sei eine Fläche F durch die bezüglich des Bereichs B der u‘, uz-Ebene zulässige
Parameterdarstellung x = x(u‘, u‘) gegeben. Auf der Fläche F liege ein Flächenstück
H, dessen Flächeninhalt 0(H) berechnet werden soll. Da die Parameterdarstellung
zulässig ist, entspricht dem Flächenstück H in der u‘, uZ-Ebene eindeutig ein ge-
wisses ebenes Flächenstück U derart, daß jeder Punkt P mit Koordinaten u‘, u’,
der zu U gehört, vermöge der Parameterdarstellung x = x(u‘, uz) in einen Punkt X
des Flächenstüeks H abgebildet wird. Da jeder Punkt von B durch x = x(u‘, u’)
in einen Punkt auf F abgebildet wird, außerdem H auf F liegt und die Abbildung
eineindeutig ist, ist U ganz in B enthalten.

Wir betrachten nun ein kleines gekrümmtes Flächenstück dF auf F, das durch die
vier Punkte X, X1,X2,X” mit den vier Ortsvektoren x(u‘, u’), x(u1 + du‘, u’),
x(u1‚ u’ + du’), x(u1 + du‘, u’ + du’) und durch die durch diese Punkte gehenden
Koordinatenlinien bestimmt wird (Bild 4.6). Dem Flächenstück dF ordnen wir

x/u Ödufuzvduz)

Bild 4.6. Zur Bestimmung des Flächenelements einer gekrümmten Fläche

ein ebenes Flächenstück da zu, das durch die zwei Vektoren dlx = X“: du‘ und
dzx = X“: du’ gebildet wird, die wir uns vom Punkt X als gerichtete Strecken
angetragen denken, wobei wir die beiden Strecken zum Parallelogramm ergänzen.
Das Flächenstück dcr liegt in der Tangentialebene an F im Punkt X. Die Flächen-
stücke dF und do unterscheiden sich‚ was ihren Inhalt anbetrifft, in Größen, die in
du‘ und du’ von zweiter Ordnung sind. (Flächenstücke wie dF und da’ nennt man
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auch infinitesinzale Flächenstücke.) Daher kann man du" an Stelle von dF als
Flächenelement der gekrümmten Fläche benutzen. Wegen eines strengen Beweises
dieser Tatsache sei auf das Lehrbuch [6], S. 137, verwiesen, vgl. auch Bd. 5, (6.2.—6.3.).
Mit Hilfe des Vektorproduktes der zwei Vektoren dlx, dzx erhält man

du = [dlx x dzx] = Ix“: X Xua] du‘ du’. (4.21)

Berücksichtigt man die bereits im Abschnitt 4.1.5. verwendete Beziehung

|x„i X Xuzl = «I (Xui ’ Xun) (X„: t Xua) — (X„i ' Xux)z

=\/g11g22"(§12)2 =\/£5 (422)

so ergibt sich für das Flächenelement du

du = J; du‘ du’. (4.23)

Durch Integration über das dem Flächenstück H entsprechende ebene Flächenstück U
in der u‘, uz-Ebene findet man den Flächeninhalt 0(H) des gekrümmten Flächen-
stiicks H nach der Formel

0(H) = f f Jgdul du’. (4.24)
U

Aufgabe 4.5 z In einer LPG soll ein zylinderförmiger Silo mit kreisförmiger Grundfläche (Radius R)
errichtet werden, dessen Dach die Gestalt einer Halbkugel hat. Die Dachfläche werde von einem aus

dem Innern des Gebäudes kommenden, senkrecht verlaufenden Rohr mit kreisförmigen: Querschnitt
(Durchmesser R) durchsetzt, wobei die gedachte senkrechte Achse des Silos, die durch den Mittel-
punkt der Grundfläche geht, zugleich eine Mantellinie des zylindrischen Rohres ist.

Wie groß ist der Flächeninhalt des Daches, wenn man den von dem Rohr durchstoßenen Teil
abrechnet?

Bild 4.7. Zu Aufgabe 4.5
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Aufgabe 4.6: Man berechne die Oberfläche eines dreiachsigen Ellipsoides mit den Halbachsen
a, b, c (a > b > a) und der Parameterdarstellung

x(u‘, u’) = a sin u‘ cos u’i + b sin u‘ sin uzj + c cos u‘k,

0 g u‘ g 1:, 0 g I42 g 27:. In dem entstehenden Doppelintegral Iäßt sich die Integration nach u‘
exakt ausführen. Es bleibt ein einfaches Integral übrig, das mit Hilfe der Keplerschen Faßregel
(vgl. Bd. 2, Satz 10.14) ausgewertet werden soll. Dabei wird die Integration über n2 von 0 bis rr/Z
erstreckt und das Integral dafür mit dem Faktor 4 multipliziert,

Aufgabe 4.7: Das Innere eines zylinderförmigen Gefäßes, das als Grundfläche einen Kreis vom

Radius r hat und dessen Höhe gleich h ist, wird durch paralleles Licht beleuchtet, so daß der größte
Teil des Gefäßbodens im Licht liegt. Das einfallende Licht wird zum Teil an der inneren Gefäßwand
reflektiert. Die reflektierten Lichtstrahlen umhüllen eine Zylinderfläche, deren Schnittkurve mit
der Grundfläche auf dieser eine besonders helle Linie (sphärirche Katakaurrik) bildet. Man bestimme
die Gleichung dieser Kurve.

Bild 4.8. Zu Aufgabe 4.7

4.1.8. Koordinatentransformationen

Da sich viele differentialgeometrische Aufgaben nur bei Einführung geeigneter
Koordinatensysteme lösen lassen, sollen in diesem Abschnitt Koordinatentrans-
formationen behandelt werden.

F sei eine Fläche mit einer zulässigen Parameterdarstellung x = x(u1‚ u’) der
Klasse r g 1, die auf dem einfach zusammenhängenden, beschränkten Gebiet B
der u‘, uz-Ebene definiert ist. Jeder der beiden Parameter u‘, u‘ sei eine Funktion
zweier anderer Parameter ü‘, ü’, die rechtwinklige Koordinaten von Punkten einer
ü‘, üZ-Ebene sind. Beide Funktionen sollen in ein und demselben einfach zusammen-
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hängenden und beschränkten Gebiet E der ü‘, üz-Ebene erklärt und dort auch 7-mal
(F g 1) stetig nach ü‘ und ü’ differenzierbar sein. Der Wertebereich der Funktionen
u‘, u“ sei so beschaffen, daß durch die zwei Gleichungen

w=wwma
u2 = u2(fil’ '22)

(4.25)

dem Koordinatenpaar ü‘, ü’ eines jeden Punktes Pe I? ein Koordinatenpaar ul, u’
eines Punktes P e B zugeordnet wird. Dabei sollen die Koordinaten jedes Punktes
P e B unter den Funktionswerten u‘(:2‘, ü’), u2(ü‘‚ ü’) vorkommen. Dann ist durch
die Gleichungen (4.25) eine Abbildung des Gebietes I? auf das Gebiet B gegeben.

Diese Abbildung soll eineindeutig sein. Das heißt, jedem Punkt Fe E entspricht
Vermöge (4,25) ein Punkt P e B, und umgekehrt ist jeder Punkt P E B der Bildpunkt
von genau einem Punkt ITe E. Dazu müssen die Gleichungen (4.25) in der Um-
gebung eines jeden Punktes eindeutig nach ü‘ und ü’ auflösbar sein.

Analytisch ist dies gewährleistet (vgl. Bd. 4, Satz 3.15), wenn für alle Punkte 1-’ e E
die Funktionaldeterminante

bu‘ öu‘
ö(u‘ ,u2) W ea:

= = Öu’ öu’
Öü‘ W

+ 0 (4.26)

ist. Es existieren also zwei Funktionen ü‘, :72 der Variablen u‘, 142, so daß

17109071, '72), 17207‘, 172)) = 17’,

172041071, 172), 142071, 172)) = 772,

u’(ü‘(u‘, u’), 17204‘, 142)) = u‘,

wwwmurMmm=w

o

(4.27)

gilt. Sind alle diese Bedingungen erfüllt, so nennt man die Gleichungen (4.25) eine
zulässige Koordinatentransformation der Klasse 7 auf der Fläche F. Eine zulässige
Parameterdarstellung x(u‘, u’) der Fläche F geht durch eine zulässige Koordinaten-
transformation in eine andere zulässige Parameterdarstellung 7:02‘, ü’) der Fläche F
über. Dabei ist

i021, ü’) = x(u1(12‘, ü’), u2(ü1‚ 122)). (4.28)

Um einzusehen, daß i021, ü’) zulässig ist, fragen wir, wie sich die Ableitungsvek-
toren x,,x, x,,- bei einer solchen Koordinatentransformation verhalten. Durch Diffe-
rentiation von (4.28) ergibt sich

ö“Z

0:21 ’

l

%WßÖ=wMWJ%fWJ%%%+wWWJ%wWJ%

- —r -2 1-1 -2 2 -1 -2 Ö“! 1 -1 -2 2 -1 -2 a“x;2(u‚u)=X„-(u(u,u)‚u(u‚u))5‚7+x„2(u(u‚u),u(u‚u))55;-
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Mit Hilfe der Summationskonvention kann man dafür kürzer schreiben

5 14

51;, v: 1,2.ma‘, a1) = xmuwau w), man :22»

Verzichtet man darauf, die Abhängigkeit der Vektoren ii», x,,u von den Koordinaten
ü‘, ü’, u‘, u’ zu kennzeichnen, so folgt

bu“
am ’

In den Gleichungen (4.29) ist der Index 1: ein Index, über den nicht summiert wird, der die Werte
1, 2 annehmen kann. Ein solcher Index wird als freier Index bezeichnet. Dagegen ist ‚u ein Summa-
tionrindex. Kommt in einer Gleichung, für die die Summationsvereinbarung gilt, ein freier Index
in einem Glied dieser Gleichung als unterer oder oberer Index vor und sind auf derselben oder der
anderen Seite noch andere additive Glieder vorhanden, so kommt dieser freie Index bei allen diesen
Gliedern als freier Index unten oder oben, und zwar an derselben Stelle wie bei dem ersten Glied
vor. Diese Regel ist für v in (4.29) offensichtlich erfüllt, denn v kommt links wie auch rechts als
freier Index unten vor.

i? = x... v = 1, 2‘. (4.29)

Durch die Gleichungen (4.29) ist eine lineare Transformation zwischen den Ab-
leitungsvektoren x„„ der Parameterdarstellung x(u‘, u’) und den Ableitungsvektoren
i? der transformierten Parameterdarstellung i(12‘, ü’) gegeben. Die Parameter-
darstellung ist zulässig, weil aus (4.29) folgt, daß die Ableitungsvektoren ii» vor-
handen sind und stetig von ü‘, ü’ abhängen und weil die Punkte X auf F und die

Punkte Pe B in eineindeutiger Beziehung zueinander stehen. Man nennt zwei zu-

lässige Parameterdarstellungen, die durch eine zulässige Koordinatentransformation
nach (4.28) miteinander verknüpft sind, zueinander äquivalent‘). Die Matrix der
linearen Transformation der Vektoren x„„

bu‘ du’
W W

A = .

Du‘ du’ (4 30)

öü’ W
ist wegen (4.26) nicht singular. Durch Differentiation der Gleichungen (4.27) nach
lü , ü’ bzw. u‘, uz erhält man ,

Oz?‘ bu‘ öü‘ au’ öü‘ bu‘ 612‘ Öu’

du‘ am Mm“, 37W“
öü’ Öul Öü’ du’ Öü’ bu‘ 6122 au’
W Öü‘ du’ am = 0’ WW+WSa_2=1 ‘W- “l3”
Öul Öü‘ Öul öü’ Du‘ öü‘ bu‘ M2
WW+6Z27W=1’ WaT2"+WW=° w

au’ Öü‘ au’ öü’ bu’ 612‘ öu’ Öü’
—_——— ————— — —_—-— ——— = 1

bu‘ bu‘ + au? du‘ aul bu‘ am du’ ’

1) Die Menge aller zueinander äquivalenten Parameterdarstellungen bestimmt im E’ ein und
dasselbe Flächenstück.
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wofür man bei Anwendung der Summationskonvention auch kürzer schreiben kann

L725 _ ‚s.
bu‘ öü” _ ’”
Öuv Ml v,/.L = l, 2. (4.32)

W bu“ = 6;“
Dabei ist

av z 0 für väqu,

ß 1 für v=‚u

das Kroneckersche Symbol. Mit Hilfe der Gleichungen (4.31) läßt sich zeigen, daß
die Matrix (vgl. Bd. 13)

D12‘ 6172

A“ — M Öul 4 33
" öü‘ Oz?‘ ( ' )

Öu’ bu”

zur Matrix A invers ist. Es gilt AA“‘ == A“‘A = E mit E = als Einheitsmatrix.

Um die Gleichungen (4.29) nach den Vektoren x„.. aufzulösen, multipliziert man sie
mit 13:7“/bu‘ und beachtet, daß dann der Index v einmal unterer und einmal oberer
Index ist. Mithin ist v kein freier Index mehr, sondern ein Summationsindex, und
es ist über ihn zu summieren. Man nennt diese Operation Überschieben von (4.29)
mit 512"/bu“. Es ergibt sich

_ öü" du“ öü" I,xgvw = xwäüq-W = x,,»61 : xuz.

Ersetzt man noch Ä durch ‚u, so erhält man die Auflösung von (4.29) nach x„u:

_ a
x„„ = x;vO+,, ‚t =1,2. (4.34)

Ähnlich ist es mit dem Verhalten der Koordinatendifferentiale dü", du" bei Ko-
ordinatentransformationen. Die totalen Differentiale der Funktionen 12”(u‘, u’),
u“(u‘, u’) sind gegeben durch

dü"=Lvdu“‚ v= 1,2,

W (4 35)
ö " _ '

du“ = :3 du‘, ‚u = 1,2.

Aus den ersten zwei Gleichungen für v = 1, 2, liest man ab, daß sich die du“ mit der
Matrix _1 ‚l

du bu

W T’
B = 4.36

öü’ Öüz ( )

öu‘ bu’

transformieren. B ist invers und transponiert zu A.
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Man nennt B = (A“)T = (AT)“ = A* die zu A kantragrediente Matrix.

Man bezeichnet alle Größen, die sich mit der Matrix A transformieren, als kovariante Größen.
Insbesondere bezeichnet man die Ableitungsvektoren x,,» als kovariante Basisvektoren, Dagegen
heißen alle Größen, die sich mit der Matrix B transformieren, kontravariant. Die Differentiale du“,
dd!’ können als kontravariante Koordinaten des diflerentiellen Flächenvektors dx aufgefaßt werden,
wenn man diesen auf die Basis der Vektoren x„u bzw. x;v bezieht. Denn es gilt

dx = x„a du“ = i151: düfi.

Ein System von Größen a’, das sich wie die Koordinatendifferentiale transformiert, stellt die kontra-
Varianten Koordinaten eines Flächenvektors a dar (vgl. Bd. 11, oder [6], Kapitel S).

Kovariante Größen sollen stets mit unteren Indizes, kontravariante Größen mit oberen Indizes
gekennzeichnet werden.

Nun findet man leicht, wie sich die Koeffizienten gw der ersten Grundform bei
einer zulässigen Koordinatentransformation verhalten. Es ist

gm, = z? - im,
und wegen

)T;—~=x..a§—u: )'L—u =x,,,eE v
" ein ’ f Oz?"

ergibt sich

_ _ __ _ __ _ Ou"“ _ du” _ bu‘ bu”
gm, — xuv x...‘ —— x„.Tv—) (xu: -5127) — (X,‘a’Xufl)Wa7,

und mit x„. - x„‚s = g,,, erhält man

_ Öu” bu”g,,,=g.,‘g§()?, v,/4: 1,2. - (4.37)

Ein System von Größen, das sich so transformiert wie die g„‚„, bildet einen zweifach
kovarianten Tensor oder kovarianten Tensor zweiter Stufe.

Schließlich soll, noch angegeben werden, wie sich der Flächennormalenvektor f
transformiert Beachtet man die Beziehungen

52;: >< i; = (x„r >< x„.) D,

g = 3115722 ‘ (512): = Iii‘ X X; z Ix“: >< x‚„|2 D2 = gD2

mit

so folgt

(4.33)

Es ist? = if, wobei das Pluszeichen gilt, wenn D > 0 und das Minuszeichen, wenn
D < 0 ist.
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Betrachtet man die Matrix

G = (811 812)

82i 822

der Größen gm, und bildet die dazu inverse Matrix

G4 = <g“ g”) =( 822/8 —gi2/g)

g“ g“ —g12/g 311/8

so ergeben sich aus der Beziehung GG" = G-‘G = E die Gleichungen

an g“ = Ö5,
_ w = 1, 2. (4.39)

g am. = ö,„

Die Größen g"“ werden kontravariante Maßzahlen (Komponenten) des metrischen
Tensors genannt. Ihr Transformationsgesetz lautet

M, an" öü“
bu“ Öu’ ’

und charakterisiert einen kontravarianten Tensor zweiter Stufe.

g“'=g v, ‚u = 1, 2, (4.40)

Die Flächentheorie findet Anwendungen in der mathematischen Geographie bei den Kartenent-
würfen (vgl. [15], Bd. I und II). In konsequenter Verallgemeinerung wurde die Flächentheorie zur

Theorie der Riemannschen Räume weiterentwickelt. Man kann nämlich eine gekrümmte Fläche im
dreidimensionalen euklidischen Raum als zweidimensionalen Riemannschen Raum auffassen. Zu
jedem Punkt dieses Riemannschen Raumes existiert dann ein System von Basisvektoren xui, x„:‚
die den Tangentialraum des Riemannschen Raumes aufspannen. Durch die erste Grundform wird
dann die Metrik in diesem Riemannschen Raum bestimmt. Diese Überlegungen lassen sich auch
auf höherdimensionale Räume ausdehnen und haben Anwendungen in der Relativitätstheorie ge-
funden. Die Fläehentheorie führte auch zur Entdeckung nichteuklidischer Geometrien, So wurde von

dem russischen Mathematiker Lobatschewski und etwas später von Bo1yai‚ auch schon von

Gauß‚ eine nichteuklidische Geometrie begründet, die man heute als Lobatschewskische oder
hyperbolische Geometrie bezeichnet. Zweidimensionale Modelle dieser Geometrie lassen sich auf
den Flächen konstanten negativen Gaußschen Krümmungsmaßes angeben und sind seit langem
bekannt (vgl. [l1] und [6], S. 342). Eine solche Fläche entsteht z. B. dadurch, daß man die in 3.3.
behandelte Schleppkurve um die x-Achse rotieren läßt. Sie heißt Pseudorphäre.

4.2. Die Kriimmungstheorie der Flächen und Flächenkurven

4.2.1. Die zweite Grundform der Flächentheorie

Wir betrachten eine Fläche F mit einer zulässigen Parameterdarstellung x(u‘, uz)
von der Klasse r g 2. Auf dieser Fläche sei eine Kurve c durch u‘ = u1(t), 142 = u2(t)
mit t1 g t g t2 gegeben. X sei ein beliebiger Punkt der Kurve c mit dem Orts-
vektor x(t) = x(u‘(t), u2(t)). Bezeichnen wir den normierten Tangentenvektor von c
in X mit t und den zugehörigen Hauptnormalenvektor mit n, so erhalten wir durch
Differentiation von x(t) nach t zunächst

m) = x„„u". (4.41)
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Difierenziert man x(t) jedoch nach s, so ergibt sich

dx dx dt ‚dt „dt
t=——-=——————- =x,.vu—.

ds

Die Gleichung (4.42) besagt, daß der Tangentenvektor t sich durch Linearkombi-
nation aus den die Tangentialebene TX aufspannenden Vektoren x„.‚ X": ergibt.
Das heißt, daß die durch den Punkt X und den Vektor t bestimmte Kurventangente tX
in der zu X gehörigen Tangentialebene TX der Fläche liegt. Die Gerade tX berührt
daher auch die Fläche F im Punkt X. Aus (4.42) folgt durch nochmalige Differentia-
tion nach s

‚ ‚W dt 1 W dt 2 „v d’:
t = x„v„uuu E) +x„vu +x,,vu

Bei Berücksichtigung der 1. Frenetschen Formel (2.45) t’ = an findet man

_„_ dt 2 "V dt 2 ‚„ dzt
zu = x,,v,,»u u" + x,,vu + x.,vu .

(4.42)

ds dsz

Multipliziert man diese Gleichung skalar mit dem zum Punkt X gehörigen Flächen<
normalenvektor f, so ergibt sich wegen f - x„v = 0 die Gleichung

W, dt 2„(r- n) = (f- xw) u u“ (TS) . (4.43)

Durch i‘ und X wird die zu X gehörige Flächennormale fX festgelegt. Die Geraden
IX undfX spannen ihrerseits eine Ebene v auf, die die Fläche F in einer ebenen Kurve cv

schneidet. Da die Ebene v den Punkt X enthält, geht die Kurve cv durch X. Die
Gerade tX liegt in v und ist auch Tangente an die Kurve c„ im Punkt X. Wäre dies
nicht der Fall, so würde tX die Kurve c„ und damit auch die Fläche F im Punkt X
durchsetzen. Das letztere ist aber nicht möglich, weil IX die Fläche F im Punkt X
berührt. Man nennt c„ den zur Tangente tX gehörenden Normalschnitt der Fläche F
im Punkt X, v eine Narmalrchnittebene (Bild 4.10).

Der Vektor n bestimmt die Richtung der Hauptnormale nX der Kurve c in X.
Auf nX liegt der Krümmungsmittelpunkt MC von c. Sein Abstand von X ist gleich
dem Krümmungsradius g der Kurve c in X:

9 = W.
Auf der Flächennormalen fX liegt der Krümmungsmittelpunkt M des Normal-
schnittes c„. Es gilt R = XE, wobei R der Krümmungsradius des Normalschnittes cv

in X ist. Bezeichnet y den Winkel zwischen der Normalschnittebene v und der Schmieg-
ebene ax der Kurve c in X, der zugleich auch der Winkel zwischen f und n ist, so folgt

f ~ n = cos y.

Man setzt zur Abkürzung f ' x‚„„„ = bu, und erhält mit f =$die Glei-

chungen g

b,,, = 11,/J = 1, 2. (4.44)
JE’ ’



96 4. Flächentheorie

Offensichtlich gilt bu, = b‚„. Aus f - x„» = 0 findet man durch Diflerentiation nach u"

fun -xuv + f~x,,u,,u = 0.

Hieraus ergibt sich

‘Im, = (f - x,,v,,..) = —(f,,.. - x,,«). (4.45)
2

Aus (4.43) und (4.45) berechnet man mit Hilfe der ersten Grundform = g), üfii‘

durch Einsetzen

b„„ü'ü"
xcosy = (4.46)

gm‘ '

Mit du" = ü" dt, du" = ü“ dt, du‘ = 12"dt und du‘ = ü‘ dt folgt aus (4.46) bei Er-
weiterung der rechten Seite von (4.46) mit (dt):

(4.47)

Die quadratische Difierentialform im Zähler von (4.47) heißt zweite Grundform
der Flächentheorie und wird mit II bezeichnet: '

II = bw du“ du”. (4.48)

Führt man die Summation über v und ‚u aus, so lautet die zweite Grundform

II = b“(du‘)2 + 2b,; du‘ du’ + b„(du’)2.

Beachtet man die Beziehungen dx = x„„ du”, df = fa. du” und (4.45), so kann man
schreiben

I = (d5): = dx ~ dx (4.49)

und
II = dx - (—df) = —(x,,v - fun) du" du” = bw du" du”. (4.50)

4.2.2. Elliptisch, hyperholisch und patabolisch gekrümmte Flächenstücke

Setzt man die zweite Grundform gleich null, so erhält man die Differentialglei-
chung

b11(du1)2 + 21712 du‘ du’ + b22(du2)2 = 0. (4.51)

Falls I722 =l= 0 ist, findet man daraus

du: l
2 — E91212: Jan.) — b„b„)._ . (4.52)

Es gibt daher im allgemeinen in jedem Punkt einer Fläche zwei Tangentenrichtungen
duä, : dm}, und duä, : du(§,, für die die zweite Grundform verschwindet. Diese beiden
Tangentenrichtungen heißen die Asymptotenrichtungen im Punkt X der Fläche. Sie
können auch imaginär werden.



4.2. Die Krümmungstheorie der Flächen und Flächenkurven 97

Im folgenden werde vorausgesetzt, daß die Größen b11, b1; und b;; nicht alle
gleichzeitig verschwinden bzw. daß X kein parabolischer Nabelpunkt (vgl. 4.2.4.) ist.
Ebenso soll X auch kein Punkt sein, in dem die Größen bu, unbestimmt werden. Wir

setzen b = b11b22 " (b12)2-

Ist b < 0, so gibt es, weil der Ausdruck unter der Quadratwurzel in (4.52) dann
positiv ist, zwei verschiedene reelle Asymptotenrichtungen in X. Die Fläche heißt
im Punkt X hyperbolisch gekrümmt und X wird als hyperbolischer Punkt der Fläche
bezeichnet (vgl. Bild 4.9 b)). -

Ist dagegen b > 0, so gibt es keine reellen Asymptotenrichtungen in X. Die Fläche
heißt im Punkt X elliptisch gekrümmt und X wird als elliptischen" Flächenpunkt
bezeichnet (vgl. Bild 4.921)).

Ist schließlich b = 0, so gibt es nur eine Asymptotenrichtung, die zugleich reell
ist, und die Fläche nennt man im Punkt Xparabolisch gekrümmt. X heißt paraboli-
scher Punkt der Fläche (vgl. Bild 4.9c) ).

Auch im Fall b;; = 0 bleiben diese Ergebnisse bestehen. Aus b;; = 0 folgt näm-
lich b = —(b1;)2. Falls nun b1; 4: 0 ist, hat man b < 0 und aus (4.51) ergibt sich
(b11 dul + 2b1; duz) du‘ = 0, woraus b11 du‘ + 2b1; du’ = 0 und dul z 0 folgt.
Man erhält, wenn b;; = 0 ist, im Fall b < 0 zwei verschiedene reelle Asymptoten-
richtungen du’ : du‘ = bu : —2b1; und du’ : du‘ = 1:0. Ist jedoch außer b;; = 0
auch noch b1; 2 0, so gilt b = 0, und aus (4.51) folgt bu(du‘)‘ = 0. Da X kein
parabolischer Nabelpunkt sein soll, ist bu =¢= O, und man findet eine reelle Asympto-
tenrichtung, die durch du‘ = 0 gegeben ist. Die Fläche ist in X parabolisch gekrümmt.
Eine Flächenkurve, die in jedem ihrer Punkte eine Tangente besitzt, deren Richtung
mit einer Asymptotenrichtung in diesem Punkt übereinstimmt‚ heißt Asymptoten-
linie der Fläche. Eine reelle Asymptotenlinie kann nur hyperbolische und parabolische
Punkte der Fläche enthalten. Gleichung (4.51) ist die Difierentialgleichung der
Asymptotenlinien einer Fläche. Auf einem'Flächenstück, das aus lauter hyper-
bolischen Punkten besteht, existieren zwei Scharen von Asymptotenlinien. Werden
diese Asymptotenlinien als Koordinatenlinien gewählt, so ist b11 = b;; = 0. Dies
ergibt sich daraus, daß die Kurven u‘ = konstant und u’ = konstant die Diffe-
rentialgleichung (4.51) erfüllen müssen.

b)

a)

c)
Bild 4.9. Zur Krümmung von Flächen

1 Schöne, Difierenbialgeomctrie
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Als Beispiel soll eine Torusfläche behandelt werden, die durch Rotation eines Kreises um die x3-
Achse entsteht. Der Kreis liege in der x1‚x3-Ebene‚ sein Mittelpunkt M auf der X,-Achse habe die
Koordinaten x1 = R, x2 = x3 = 0, und sein Radius sei r. Wenn sich der Kreis um die x3-Achse ein
Stück gedreht hat, so bildet seine Ebene mit der x1,x3-Ebene den Winkel u‘. Hat sich der Winkel u‘
von 0 bis 27: verändert, so hat die Kreisebene eine volle Umdrehung um die X3‘AChSe vollführt. Dabei
erzeugt der Kreis eine Torusfiäche. Es sei R > r. Mit u’ werde der Winkel bezeichnet, den der zu

einem beliebigen Punkt X des Kreises führende Radius MX mit dem Radius MXÜ bildet, wobei X0
derjenige Punkt des Kreises ist, der in der x1, xz-Ebene liegt und von O den Abstand R + r hat. Der
Winkel u’ werde vom Radius MXO nach oben im mathematisch positiven Drehsinn (Blickrichtung: von

der negativen xz-Achse auf die x1,x3-Ebene) gezählt. Die Parameterdarstellung der Torusfiäche lautet:

x(u‘, 11’) = i(R + r cos u’) cos u‘ + j(R + rcos u’) sin u‘ + krsin u’
mit

ogulgzn, oguzgzn.
Für die Koeffizienten gm erhält man

gm = (R + rcos n1)’, gm = O, gzz = r’, g = (R + rcos u’): r’,

Der Flächennormalenvektor f ist gegeben durch

f = icos u‘ cos u’ + j sin u‘ cos u’ + k sin u’.

Daraus ergibt sich für die Größen b“
b“ = —(R + rcos u?) cos u’, bu = O, b“ = —r,

b = (R + rcos u’) r cos u‘.

Für og u’ < rt/2, 31r/Z< u’ g 21': und u‘ beliebig erhält man elliptische Flächenpunkte, für
rr/Z < u’ < 37:/2, u‘ beliebig ergeben sich hyperbolische Flächenpunkte und für u’ = 1:/2 bzw.
u‘ = 3/21:, u‘ beliebig findet man parabolische Punkte der Fläche. Die Koordinatenlinien u‘ = k,
u’ = c bilden ein orthogonales Netz. Die u‘-Linien sind die Breitenkreise, die uz-Linien sind eben-
falls Kreise, die alle zueinander kongruent sind und sich als Schnitt einer durch die x3-Achse be-
grenzten Halbebene mit der Torusfiäche ergeben.

4.2. 3.

Aus der Gleichung (4.47)

bu, du" du“ _ E
g,_,du‘ du‘ _ I

Der Satz von Meusnier

xcos y = (4.53)

lassen sich einige wichtige Folgerungen ziehen. Zunächst gilt der

Satz 4.2: Alle Kurven der Klasse r g 2 auf einer Flächel’, die durch ein und denselben
Hächenpunkt X gehen und in X dieselbe Tangente und die gleiche (von der Tangential-
ebene TX verschiedene) Schmiegebene besitzen, haben im Punkt X auch die gleiche
Krümmung.

Beweis: In der Gleichung (4.53) hängt die rechte Seite, wenn man X als fest ansieht,
nur vom Verhältnis du’ z du‘, d, h. von der Richtung der gemeinsamen Tangente t,
der Flächenkurve c und des zu dieser Tangente gehörigen Normalschnitts cv ab.
Für alle Flächenkurven, die tx in X berühren, ist daher der Wert des Produktes
u cos y derselbe. Für solche Flächenkurven, die in X die Tangente tx und die Schmieg-
ebene ax gemeinsam haben, ist auch der Winkel y zwischen Schmiegebene und
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Normalschnittebene der gleiche. Folglich haben diese Kurven in X auch die gleiche
Krümmung. Dabei darf aber die Schmiegebene ax nicht mit der Tangentialebene 1,,
zusammenfallen. In diesem Fall ist y = 7:/2, und aus xi cos (7:/2) = z; cos (1:/2) = 0
darf nicht auf n, = 2-:2 geschlossen werden. Wählt man die Flächenkurve c so, daß
sie tx in X berührt und ihre Schmiegebene a, mit der Normalschnittebene v zu-
sammenfällt, so ist y = 0, und die Krümmung n der Kurve c stimmt mit der Krüm-
mung 2a„ des Normalschnitts c„ in X überein, Die Größe ac” heißt auch Normal-
kriimmung. Aus (4.53) folgt

= bu, du" du“
gg, du‘ du‘ I R

Die Normalkrümmung m, ist der Quotient aus zweiter und erster Grundform. Sie
ist abhängig vom betrachteten Flächenpunkt und von der Tangentenrichtung des
Normalschnitts. Aus den Gleichungen (4.53) und (4.54) folgt

zcosy = m,

“N (4.54)

(4.55)

oder bei Einführung der Krümmungsradien Q und R

(4.56)

Bild 4.10. Zum Satz von Meusnier

Die Beziehung (4.55) bzw. (4.56) wird als Satz von Meusnierl) bezeichnet. Man kann
ihn auch in der folgenden Form aussprechen.

Satz 4.3 (Satz von Meusuier): Es sei X ein beliebiger Punkt einer Fläche F, tx eine
Tangente, die F in X berührt und deren Richtung nicht mit einer Asymptotenrichtung des
Punktes X übereinstimmt. Der zur Tangente tx gehörige Narmalschnitt c, durch den
Punkt X der Fläche F habe den Krfimmungsmittelpunkt M und den Krümmungsradius

R = MX. Dann liegen die Krümmungsmittelpunkte aller Flächenkurven c, die c, in X
berühren, auf einem Kreis mit dem Durchmesser MX, der der gemeinsamen Normal-
ebene aller dieser Kurven angehört.

1) Jean Baptiste Maria Charles Meusnier (1754 bis 1793), französischer Mathematiker.

7:
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4.2.4.

F sei eine Fläche, die durch eine Parameterdarstellung x(u‘, u’) von der Klasse
r g 2 gegeben ist. Auf F werden im Punkt X sämtliche Tangenten t2, an die Fläche
betrachtet. Jede dieser Tangenten bestimmt mit der Flächennormale f2, in X eine
Normalschnittebene v, die die Fläche F in einem Normalschnitt c, schneidet. Die
Krümmung 2m im Punkt X eines solchen Normalschnittes hängt, wenn man X als
fest ansieht, nur noch von der Richtung der Tangente Ix ab. Diese aber ist durch das
Verhältnis du’ z du‘ bestimmt. Setzen wir duZ/du‘ = /I, so ergibt sich aus (4.54)

b + 2b 7. + b 7.2u 2 = 11 12 22

/N() 811 + 28124 + 82222

Bei festgehaltenem X hängt die rechte Seite dieses Ausdrucks i. allg. allein von Ä ab.
Eine Ausnahme tritt nur in solchen Punkten X ein, wo die Größen bu, und gm zu-

einander proportional sind bzw. wo b1, = bu = b22 = 0 ist. Im ersten Fall gilt
bu, = C(u‘, u’) gw, und daraus folgt, daß z„ : C(u‘‚ u’) unabhängig von Ä ist.
Einen solchen Punkt X nennt man elliptischen Nabelpunkt der Fläche. Im zweiten
Fall ist V.” = 0 und ebenfalls unabhängig Von 7.. Dann heißt X ein parabolischer
Nabelpunkt der Fläche. Nehmen wir an, daß X weder ein elliptischer noch ein para-
bolischer Nabelpunkt, sondern ein regulärer Punkt der Fläche ist. Dann ist der
Nenner in (4,57) stets positiv und :¢N(}.) bleibt endlich, auch wenn i. —> oo strebt.
Man kann immer annehmen, daß es Funktionswerte x,,(A) gibt, die größerund solche,
die kleiner als der Grenzwert lim >¢N(/1) sind. Das läßt sich immer durch eine geeignete

Hauptkrülnmungen und Kriimmungslinien

(4.57)

Aaoo
Wahl des u‘, uZ-Koordinatensystems auf der Fläche erreichen. Da 2N eine stetige,
ja sogar dilferenzierbare Funktion von Ä ist, die zudem für alle endlichen l endliche
Funktionswerte z„(l)‚ für Ä —> o0 einen endlichen Grenzwert hat, der nach Voraus-
setzung zwischen zwei endlichen Funktionswerten liegt, gibt es unter diesen Funk-
tionswerten mindestens einen größten und einen kleinsten. Die Funktion x2, besitzt
also ein absolutes Maximum und ein absolutes Minimum. Diese absoluten Extrem-
werte sind auch zugleich relative Extremwerte und lassen sich aus der Gleichung

d”N()‘) __

d}. _ 0

ermitteln. Nach Beseitigung des in der Gleichung (4.58) bei Ausführung der Dif-
ferentiation auftretenden Nenners (gl, + 257,2}. + g22}.’)2 erhält man, wenn man

noch nach Potenzen von Ä ordnet,

(812b22 ‘ g22b12)}*2 + (811522 '" 8221711) Ä + (8111712 “ 3121711) C 0— (459)
Da diese Gleichung quadratisch in i. ist, hat sie nur zwei Lösungen, und daher hat die
Funktion x2, genau ein Maximum und genau ein Minimum. Sind 11, 1.2 diese Lö-
sungen, so bezeichnet man die durch 1, = dutf,/dug, und l2 = dué,/dug, gegebenen
Tangentenrichtungen als Hauptkrümmungsrichtungen im Punkt X. Es gilt nun der

(4.58)

Satz 4.4: Die Lösungen Ä, ‚ 12 der Gleichung (4.59) sindstets reell und verschieden, wenn

X ein regulärer Flächenpunkt ist.

Beweis: Wir betrachten die Größen A, = g22 1., + gm (i = 1, 2). Dann ist deren
Summe A, + A2 = g22(l‚ + l2) + 2g22 = m sicher reell, weil Ä, + Z2 —p/q mit
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p = gubu — gnb“, q = gab“ — gnbu reell ist. Für das Produkt A1/12 findet
man

A1142 = 822L822Ä1Ä2 + 8120:1 ‘l’ 12)‘? 811] "‘ (811822 * (g12)2)~

Setzt man A112 = r/q mit r = gublz — gab” und in + Z2 = —p/q in diese Glei-
chung ein, so verschwindet der Ausdruck in der eckigen Klammer. Es ist nämlich

8221112 + 8120-1 ‘i’ /I2) + 811

b — b b —gb gb —gb=gng1112qg1211 __g12 81122q 2211 +gu 12 zzq 2212

811 812 822

811 812 822 = 0-

1711 bl2 [722

l

q

Die Determinante ist gleich null, weil zwei ihrer Zeilen gleich sind. Daher findet
man AIAZ = —g. Da g = gugzz —- (g12)2 in einem regulären Punkt X der Fläche
stets positiv ist, hat das Produkt A, - A2 negatives Vorzeichen. Die Größen A1, A2

genügen derGleichungAz — mA — g = 0. Daherergibt sichAm = m/2 iJg+ m2/4.
Wegen g > 0 sind A, und A2 stets reell und verschieden. Aus A, = gal, + gm
(i = 1, 2) folgt dann, daß auch 7., und A2 reell und verschieden sind. Injedem Punkt X
der Fläche existieren somit zwei verschiedene reelle Hauptkrümmungsrichtungen.

Wir betrachten nun solche Flächenkurven, bei denen in jedem ihrer Punkte die
Richtung der Kurventangente mit einer Hauptkrümmungsrichtung übereinstimmt.
Diese Kurven werden als Kriimmungslinien der Fläche bezeichnet. Setzt man für Ä

in (4.59) den Ausdruck duZ/du‘ ein und multipliziert die Gleichung mit dem Nenner
(du‘)2, so ergibt sich

(812522 — 8221712) (d“2)2 + (811522 — 822511) dul d“:
+ (811512 —‘ 8121711) (dm): = 0-

Dies ist die Difierentialgleichung der Krümmungslinien. Löst man sie nach duz/du‘
auf, so erhält man zwei Differentialgleichungen l. Ordnung

du’ _ p + A/ p’ r

du‘ 2q " 4q’ q '

Jede von ihnen besitzt als Lösungskurven eine einparametrige Kurvensehar. Um die
Natur dieser Kurven besser zu erkennen, soll das u‘, uz-Koordinatensystem so ge-
wählt werden, daß die Krümmungslinien Koordinatenlinien sind. Dann sind u‘ = C1

und u’ = C2 Lösungen der Differentialgleichung (4.60). Es gilt daher

(812b22 " 822'512) ((1742): = 0 und (811b12 ‘ g12b11)(d“1)2 = 0-

Da für die erste Gleichung duz 9E O und für die zweite dul qé 0 ist, folgt

(4.60)

1722812 — 8221712 = 0‚

b11812“811b12 =0‘ (4-61)
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Diese zwei Gleichungen kann man als ein homogenes lineares Gleichungssystem für
die Unbekannten gm, bu auffassen. Da X kein Nabelpunkt sein soll, ist die Deter-
minante g„b„ —— g„b„ nicht null. Daher hat das System (4.61) nur die triviale
Lösung gm = b ‚ 2 = 0. Aus gm = 0 folgt aber, daß die Koordinatenlinien und damit
die Krümmungslinien ein orthogonales Kurvennetz auf der Fläche bilden. Demnach
stehen die zu jedem Punkt der Fläche gehörigen zwei Hauptkrümmungsrichtungen
aufeinander senkrecht.

Liegt umgekehrt ein Gaußsches Koordinatensystem auf einer Fläche vor und ist
überall in dessen Gültigkeitsbereich gm = 0 und bu = 0, so sind die Koordinaten-
linien dieses Systems die Krümmungslinien der Fläche.

Beweis: Wegen gm = bn = 0 hat die Differentialgleichung (4.60) der Krümmungs-
linien die Lösungen u‘ = konstant und u’ = konstant. Das heißt aber, daß die
Koordinatenlinien die Lösungskurven von (4.60) sind. Mithin sind die Koordinaten-
linien zugleich die Krümmungslinien der Fläche.

Schließlich sollen noch die Hauptkrümmungen zum; berechnet werden‘) Dazu
wird die Gleichung (4.57) mit dem in ihr auftretendem Nenner multipliziert und nach
Potenzen von Ä geordnet. Man erhält mit z = 2:"

([722 " 3822)}? ‘l’ 20712 — 7‘g12)A +(b11 ‘ 74311) z 0- (4-62)

Für Ä = Z1 bzw. Ä = 7,2 nimmt z jeweils einen Extremwert n1 bzw. x2 an. Für einen
Wert u, der zwischen diesen Extremwerten liegt, hat die Gleichung (4.62) zwei Ver-

schiedene reelle Lösungen 1“’ und 1"’. Setzt man aber z = 2:, bzw. x = n2, so
hat (4.62) jeweils Doppelwurzeln in 1.. Wegen

b —ng7 A/b —:¢g 2 b —xg ‚(1 = 12 1. 12 i2 _ 11 11 =

Ä ) I722 ‘ “K22 i (I722 ‘ 7‘g22) I722 — K822 ’ l 1,2, (463)

ist daher der Ausdruck unter der Wurzel für x = x, bzw. z = x2 gleich null:

(512 — "eg12)2 — (b1: — 3x811) (b2: — 941822) = 0; i: la 2- (4-63')

Setzt man in (4.63’) z für z, und ordnet nach Potenzen von z, so ergibt sich die
Gleichung

7152g ‘ (g11b22 — 28121712 + 3221711)” ‘l’ b = 0: (4-64)

die von den Hauptkrümmungen xx und x2 erfüllt wird. Aus (4.64) lassen sich x1 und z,
berechnen. Im allgemeinen interessieren aber weniger 2:, und x2, sondern ihr Pro-
dukt xix; und ihr arithmetisches Mittel. Nach den Vietaschen Wurzelsätzen gilt

b 1

"1742 = E Und 941+ 742 = 'g“(g!lb22 “ 28121712 418221711)-

Man bezeichnet nun

b
K = M1942 = — (4.65)

M g a

1’ Sind A1, A; die Lösungen von Gleichung (4.59), so sind z, = 2cN(A1) und u; = ;cN(A;) die beiden
Haupnkrümmungen. Sie sind zugleich die Extremwerte der Normalkrümmung im betrachteten
Flächenpunkt.
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als Gaußsches Krümmungsmal} und

H = ';—(7‘1 + 32) = ’21?(g11b22 “ 23121712 ‘l’ 8221711) (4-66)

als mittlere Krümmung der Fläche im Punkt X. Das Gaußsche Krümmungsmaß
ist in einem elliptischen Flächenpunkt positiv, in einem hyperbolischen Flächen-
punkt negativ und in einem parabolischen Flächenpunkt gleich null.

Zur Veranschaulichung der Kiümmungslinien soll eine Rotationsfläche mit einer Parameter-
darstellung

x(u1, M2) = u‘ cos uQi + u‘ sin uzj + h(u1) k, 0 g u’ < eo, 0 g u’ g 21:,

dienen. Hierbei ist h eine beliebige, hinreichend oft differenzierbare Funktion von u‘. Mit dh/du : h’
findet man

81i : 1 +11”: 812 2 Ü. 822 = (U52, E :('l1)2 +(“1h')2-
h” 0 u‘h’

‘W ¢r;<T)v ‘W * m" vnw’
Wegen g„ : bu = 0 sind die ul- und die uz-Linien die Krümmungrlinien der Fläche. Die u‘-Linien
sind die Meridiankuruezi, die sich als Schnittkurven von durch die Rotationsachse begrenzten Halb-
ebenen mit der Fläche ergeben. Die u’-Linien sind die Breitenkreise. Sie entstehen als Schnittkurven
der Fläche mit Ebenen, die zur Rotationsachse senkrecht stehen. Die Meridiankurven und die
Breitenkreise einer Rotationsfiäche sind demnach die Krümmungslinien dieser Fläche.

Bild 4.11. Drehfläche, die als Rotationsachse die x3-Achse hat

Fügt man zu der obigen Parameterdarstellung noch das Glied puzk hinzu, so erhält man durch

x(u‘‚ u’) = u‘ cos uzi + u‘ sin uzj + (h(u‘) +pu2) k,

—°°<141< +00. —°°<H2<+°°.
eine Parameterdarstellung einer a" ‘ “ ’ L "" ’ Beip>0 ' die Fläche durch
eine Rechtsschraubung, bei p < O durch eine Linksschraubung einer Kurve u’ = const (vgl. S. 32).
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4.2.5. Der Satz von Euler und die Dupinsche Indikatrix

Aus Gleichung (4.54) folgt für die Normalkrümmung z„ im Punkt X einer Fläche

_ b1 1(du‘)z + 2b12 dul du’ + b22(du2)2

— dsz '

In dieser Gleichung ist ds das Bogenelement des zur Tangente tx des Flächenpunktes
X gehörenden Normalschnittes c„.Wählt man das u‘, u’-Koordinatensystem so, daß
die Koordinatenlinien mit den Krümmungslinien der Fläche übereinstimmen, so
ist b1; = O, und man hat

d l 2 d 2 2

m, = bu + bu . (4.67)

Die Hauptkrümmungen 241,22 genügen wegen bl; = 0 der aus (4.64) folgenden
Gleichung

z2_%<bii+b22>+bi1‚b22=0.
gll 822 81i ‚€22

Es ergibt sich z, = b„/g„ ‚ u; = bu/gn. Damit erhält man aus (4.67)

_di 2 __d2 2

”.\'=”1( 8x1 +“2(\/322 gs) - (458)

Setzt man \/gm du‘ = d,s‚ Jg„ du’ = dzs, wo dis und dzs die Bogenelemente der
beiden durch X gehenden Krümmungslinien sind, und bezeichnet man den Winkel
zwischen dls und ds mit zx, so findet man, weil dls und dzs aufeinander senkrecht
stehen, dls/dx = cos 0c, dzs/ds = sin cc, und (4.68) geht über in

ac” = u, coszzx + x2 sinzoc, (4.69)

was als Satz von Euler bezeichnet wird. Die Krümmung m, eines beliebigen Normal-
schnittes c, in einem Punkt X einer Fläche wird durch die zwei zu X gehörenden
Hauptkrümmungen m, u; und durch den Winkel o: bestimmt, den die Tangente tx
dieses Normalschnittes mit der Tangente der durch X gehenden Krümmungslinie
u‘ = C1 bildet. Ersetzt man in (4.69) die Krümmungen x,,,x,, zz, durch die ent-
sprechenden Krümmungsradien R, R1 , R, ‚ so erhält man wegen m, = 1/R, 21 = 1/R, ,

z; = 1/R2

1 _ coszoc sin20¢

R R1 R2
(4.70)

Man wählt nun in der Tangentialebene 1„ der Fläche ein orthogonales, kartesisches
Koordinatensystem 0(>‘c,, £2), dessen Ursprung O mit X zusammenfällt, während
die >‘c1—Achse die durch X laufende u‘-Linie in X berührt. Dann ist die ;?_2-Achse

Tangente an die durch den Punkt X gehende uZ-Linie. Man setzt E1 = \/|R| cos ac,

x2 = x/W sin zx, und es folgt aus (4.70)

Ei + £22.)’. = . 4.R1 R2 :1 <71)
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Gleichung (4.7l) stellt die Gleichung eines Kegelschnitts dar, der in der Tangential-
ebene ‘Ex liegt, den Mittelpunkt 0 = X hat und dessen Hauptachsen mit der il-
Achse bzw. der 22-Achse zusammenfallen. Dieser Kegelschnitt heißt Dupinsche
Indikatrix.

Ist X ein elliptischer Punkt der Fläche, so ist b = bnbn > 0. Dann haben bu
und bu sowie gm und gn gleiches Vorzeichen, vorausgesetzt, daß X ein regulärer

Flächenpunkt ist. Daher haben auch R1 = i“ , R2 = ii
11 22

und wegen (4.69) hat R dasselbe Vorzeichen wie R1 und R2. Die Dupinsche Indika-
trix ist eine Ellipse.

Ist dagegen X ein hyperbalischer Punkt der Fläche, so ist b = bub“ < O, R1 und
R, haben unterschiedliche Vorzeichen, und R kann sowohl positiv als auch negativ
sein, je nachdem wie der Winkel cc gewählt wird. Dann besteht die Dupinsche Indika-
trix aus zwei Hyperbeln mit dem gemeinsamen Mittelpunkt X = 0 und zwei gemein-
samen Asymptoten, deren Richtungen mit den Asymptotenrichtungen des Punk-
tes X übereinstimmen.

Ist schließlich X ein parabolischer Punkt der Fläche, so ist b = bub” = 0. Dann
ist entweder bu = 0 oder bu = 0, denn X soll kein parabolischer Nabelpunkt
sein. Falls b1 1 = 0 ist, folgt aus (4.71)

fz=i\/El-
Die Dupinsche Indikatrix ist ein zur >‘c1-Achse paralleles Geradenpaar. Für bu = O

ergibt sich mit

>71 = i lRrl
ein zur fz-Achse paralleles Geradenpaar als Dupinsche Indikatrix.

gleiches Vorzeichen,

W\
Bild 44121 Dupinsche Indikatrix
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4.2.6. Das Theorema egregium

Es sei x(u‘‚ u’) eine Parameterdarstellung der Klasse r g 3 einer Fläche F. Dann läßt sich zeigen,
daß das Gaußsche Krümmungsmaß K = b/g der Fläche F allein von den Koeffizienten g, der
ersten Grundform und ihren ersten und zweiten Ableitungen nach u‘ und u’ abhängt. Dies hat wohl
als erster Gauß bemerkt. Ohne Beweis soll hier diese Beziehung angegeben werden. Sie lautet

6g 1 fig
811 812 ( au? *7 au?)

1 1 fig
K = F 5'21 €22 7 au?

L 3811 6812 __L 5511 _L 52311 + Ö 812 vL 52822
2 öu‘ du‘ 2 bu’ 2 @142)’ 6u‘0u2 2 (6u‘)2

1 6g
E11 812 7 au? w

1 6g
— 812 822 7 au? i ‘

1 3811 1 5322 I

7 Bu‘ -Z‘ Öu‘ 0 J (4'72)

Den Beweis dieser Beziehung, die Theorema egregium genannt wird, kann man in den Lehr-
büchern [l], Teil 2, S. 64; [3], S. 70; [6], S, 178 bis 180; [10], Teil 2, S. 226 nachlesen. Bei Verwen-
dung orthogonaler Koordinaten Vereinfacht sich die Beziehung (4.72). Man erhält in diesem Fall

K: —j_l._{——a—(——1——a‘/;)¢ a (#6 “H. (4.73)
— \/311322 aul aul a":

Theorema egregium heißt ins Deutsche übersetzt auserlesener oder ausgezeichneter Lehrsatz. Die
lateinische Bezeichnung geht zurück auf die im Jahre 1827 erschienene Schrift „Dirquisitioner gene-
rales circa superficies curvax“ von C. F. Gauß. Das Theorema egregium lehrt, daß das Gaußsche
Krümmungsmaß einer Fläche allein von der ersten Grundform dieser Fläche bestimmt wird. Faßt
man daher eine Fläche als einen zweidimensionalen gekrümmten Raum auf — man nennt solche
Räume auch Riemannsche Räume — und nimmt man an, daß es zweidimensionale Lebewesen in
diesem Raum gibt, so folgt aus dem Theorema egregium, daß es diesen Wesen möglich ist, das
Gaußsche Krümmungsmaß des Raumes, in dem sie leben, zu ermitteln. Voraussetzung ist allerdings
dafür, daß diese Wesen die Größen g, bestimmen können. Das könnte durch Messungen geschehen.
Dieser Sachverhalt ist nicht ohne Ein uß auf gewisse kosmologische Theorien geblieben. Eine andere
wichtige Folgerung aus dem Theorema egregium werden wir im Abschnitt 4.2.7. kennenlernen.

4.2.7. Abbildungen, Abwicklungen und Regelflächen

F sei eine Fläche oder ein Flächenstück mit der zulässigen Parameterdarstellung
x(u‘‚ u’) der Klasse r g I für das Gebiet B der u‘, u’-Ebene und F* eine Fläche-oder
ein Flächenstück mit einer ebensolchen Parameterdarstellung x*(u*‘, u“) für das
Gebiet B* der u*‘,u*‘-Ebene. Zwischen den Gaußschen Koordinaten u‘, u’ auf F
und den Gaußschen Koordinaten u“, u" auf F* mögen zwei Gleichungen

u“ =1’-‘(u‘,u’),
„*2 =f2(u1, uz)

bestehen. Die Funktionenf‘,f2 der Veränderlichen u‘, u’ seien so beschaffen, daß
dem Koordinatenpaar u‘, u’ jedes Punktes Pe B durch (4.74) das Koordinaten-

(4.74)
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paar u“, u“ eines Punktes P* e B‘ eindeutig zugeordnet wird und umgekehrt.
Dazu seienf1,f2 überall inB stetig und r-mal (r g l) nach u‘, u“ differenzierbar, und
es gelte für das Koordinatenpaar u‘, uz jedes Punktes P e B

Of‘ öf‘
6(f‘,f”) _ au‘ au’

of’ öf’ *°- <4-75’

Öu‘ bu’

Dann wird durch die Gleichungen (4.74) eine eineindeutige Abbildung der Punkte
von B auf die Punkte von B* definiert. Da andererseits jedem Punkt P e B durch die
zulässige Parameterdarstellung x(u‘, u’) eineindeutig ein Punkt X auf F zugeordnet
wird, ebenso jedem Punkt P* e B* eineindeutig ein Punkt X* auf F* entspricht, ist
durch (4.74) auch eine eineindeutige Abbildung A der Fläche F auf die Fläche F*

bzw. der Flächenstücke gegeben. Eine solche Abbildung möge eine zulässige Ab-
bildung heißen.

Führt man auf F* durch eine zulässige Koordinatentransformation der Gestalt
u“ :f‘(ü1, ü’), u“ =f2(z2‘, ü’) neue Koordinaten üküz ein, so gehen die Glei-
chungen (4.74) in die einfacheren Gleichungen '

ü =u‘,
4.76ü, z u, ( >

über, und die Parameterdarstellung x*(u*‘, u“) erhält die Gestalt

X*(f’(ü‘‚ 172),/"’(17‘, 172)) = ?'K('?‘. ü’) (4-77)

Durch (4.76) ist dieselbe eineindeutige Abbildung A Von F auf F* gegeben. Man
sagt, daß u‘, u’ und ü‘, ü’ gleiche Gaußsche Koordinatensysteme auf F und F*
sind. ’

Eine zulässige Abbildung eines Flächenstücks bzw. einer Fläche F auf ein Flächen-
stück bzw, auf eine Fläche F* heißt längentreu oder isometrisch, wenn die Länge
jedes Kurvenstücks auf F mit der, Länge seines Bildkurvenstücks auf F* überein-
stimmt.

Sie heißt winkeltreu oder konform, wenn der Winkel, unter dem sich zwei beliebige
Kurven auf F in einem Punkt X schneiden, gleich dem Winkel ist, unter dem sich
ihre Bildkurven auf F* im Bildpunkt X* von X schneiden.

Sie heißt flächentreu, wenn jedes Teilgebiet H auf F in ein Teilgebiet H* auf F*

abgebildet wird, das den gleichen Flächeninhalt wie H hat.
Es gilt nun der folgende

Satz 4.5: Sind u‘, uz und ül, ü’ Gaußsche Koordinatensysteme auf Flächen F und F*

und sind g‚.„(u‘, u’) die Koeffizienten der ersten Grundform von F, g„„(ü‘‚ ü’) diejenigen
von F*, dann gilt für die durch ü‘ = u‘, ü’ = u’ gegebene zulässige Abbildung A

l. A ist genau dann Iängentreu,‘ wenn g„„(u‘, u’) = g„‚(ü‘‚ ü’);
2. A ist genau dann winkeltreu, wenn g„‚(u‘, u’) = g„(ü‘‚ 172)l1(111, 122),h(L71, ü’) > 0;

3. A ist genau dannflächentreu, wenn g(u1, u’) = g(ü‘‚ üz).

S.4.5
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Der Beweis des Satzes kann hier nicht erbracht werden. Der interessierte Leser findet
Näheres in [6], S. 212 bis 252.

Aus dem Satz folgt, daß eine Iängentrezae Abbildung stets auch winkeltreu und
flächentreu ist.

Eine Verbiegung oder Abwicklung einer Fläche ist eine stetige Deformation dieser
Fläche, bei der alle Flächenkurven ihre Länge beibehalten, Unverbiegbare Flächen
heißen auch starre Flächen. Verbiegt man eine Fläche F, so entsteht aus F eine andere
Fläche F* oder auch nur ein Flächenstück einer Fläche F*. In beiden Fällen sagt
man, daß F in F* verbogen bzw. auf F* abgewickelt wurde. Mit einer Verbiegung
oder Abwicklung von F auf F* ist stets eine längentreue Abbildung von F auf F*
gegeben. Bezeichnet man die Koordinaten auf F mit u‘, u’, dann geht das Kurven-
netz der Koordinatenlinien u‘ C, , u’ C3 in ein ebensolches Kurvennetz auf F*

über. Verwendet man dieses Kurvennetz wieder als Koordinatenlinien auf F* und
bezeichnet die Koordinaten auf F* mit ü‘, üz, so ist durch ü‘ = u‘, ü’ = u’ eine
längentreue Abbildung vonF auf F* bestimmt. Daher gilt g„,(u‘, u’) = g„„(ü‘, üz)
für v„u = 1, 2, Aus dem Theorema egregium (vgl. 4.2.6.) folgt, daß das Gaußsche
Krümmungsmaß K in jedem beliebigen Punkt X auf F gleich dem Gaußschen Krüm-
mungsmaß im Bildpunkt X* von X auf F* ist. Das Gaußsche Krümmungsmaß ist bie-
gungsinvariant. Hieraus folgt, daß die Oberfläche einer Kugel niemals längentreu auf
eine Ebene abgebildet bzw. in ein ebenes Flächenstück verbogen werden kann. Denn
für die Kugel mit Radius R ist K = 1/R‘, dagegen ist in jedem Punkt einer Ebene
K = O. Es gilt der (vgl. [6], S.207)

Satz: 4.6: Eine Fläche oder ein Flächenstüek kann genau dann in eine Ebene abge-
wickelt werden, wenn ihr Krümmungsmaß in allen Punkten den Wert Null hat.

Eine derartige Fläche heißt Torse. Auf einer Torse liegen stets eine oder auch mehrere
Scharen von geraden Linien. Eine Fläche, die eine oder mehrere Geradenscharen
enthält, heißt Regelfläche oder Strahlfläche. Demnach ist eine Torse stets eine Regel-
fiäche. Jedoch ist eine Regelfläche im allgemeinen keine Torse. Die Tangenten einer
Raumkurve bilden eine gekrümmte Fläche, die als Tangentenfläche der Raumkurve
bezeichnet wird. Diese ist stets eine Torse und daher abwickelbar. Eine Regelfläche,
die nicht in eine Ebene abgewickelt werden kann, nennt man auch eine windschiefe
Regelfläche. Eine Parameterdarstellung einer Regelfiäche ist gegeben durch

x(u‘, u’) = y(u‘) + u2z(u‘)‚ zx g u‘ g ß, —oo < u’ < +00. (4.78)

Die uZ-Linien sind Geraden, die u‘—Linien sind im allgemeinen Kurven. Man nennt die Geraden
ul = konstant auch die Erzeugenden der Regelfläche. Der Vektor y(u1) beschreibt, wenn man ihn
als Ortsvektor auffaßt, eine Raumkurve, die auf der Regelfläche liegt. Diese Kurve wird auch Leit-
linie genannt. Meist verwendet man als Parameter u‘ die Bogenlänge der Leitlinie. Wir setzen
y„i = 3}, z„i = z und fordern, daßj’ >< z =i= 0 ist.

Eine Gerade bewege sich im Raum derart, daß einer ihrer Punkte längs der Leitlinie gleitet. Dabei
bleibe die Gerade stets zum Vektor z(u‘) parallel und u‘ sei der zugehörige Parameterwert des Punktes
der Leitlinie, in dem sich der gleitende Punkt augenblicklich befindet. Führt eine Gerade eine der-
artige Bewegung aus, so erzeugt sie eine Regelfiäche mit der Parameterdarstellung (4.78). Ist speziell
der Vektor y konstant, d. h. unabhängig von u‘, so ist (4.78) eine Parameterdarstellung einer Kegel-
fläche mit der Spitze in Y mit dem Ortsvektor y. Hat dagegen z(u‘) für alle Werte von u‘ die gleiche
Richtung und ist y von u‘ abhängig, so ist (4.78) eine Parameterdarstellung einer Zylinderfläche.
Beide Flächen sind in die Ebene abwickelbar.
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Aus x,,: = j’ + 142i und x„s = z folgt‘)

311 = yz + 2'426’ ' + (742): i2;

g12=y"z+u2(i'z): \

322 = Z2:

g = Ii’ >< II‘ + ll >< iI’(u’)’ + 21426" [(1 >< i) >< 1]) = [$'Xz + u2(i><z)]’-

Für den Normalenvektor f der Fläche findet man

_L
JE

Aus x„.„. = 37 + 142i, x„.„. = z, X„2„: = 0 folgt

f= (i x z + u2(i x z)). (4.79)

zu, =fKi y, z) + m, 2, z) + u2(i,y,z> + <u2>2<i,2,z>1,
3

1212 =7‘§[<& x zu] =%[(&.z,i)L [722 = o.

Das Gaußsche Krümmungsmaß lautet:

b 1 . .K=§= “g—;[(Y X Z)‘Z]2-

Soll die Fläche eine Torse sein, so muß gelten

(jv x z) - z = 0. (4.80)

Dies ist die Torsenbedingung. Eine Regelfläc/re mit einer Parameterdarstellung (4.78)
ist genau dann eine Torse, wenn (4.80) erfüllt ist. Gilt die Torsenbedingung,‘ so ist der
Vektor z eine Linearkombination der Vektoren y und z. Es ist z = zy + ‚uz. Setzt
man dies in die Formel für den Normalenvektor (4.79) ein, so folgt

2 .

I=L_[y xz+u2Ä(y ><z)]=if-j—i-(jl><z)=i Y“.
«/g \/8 - |Y X 1|

Die Richtung des Normalenvektors f ist unabhängig von u’, In allen Punkten einer
Erzeugenden u‘ = sonst hat eine Torse gleichgerichtete Flächennormalenvekto-
ren. Eine Torse hat daher in allen Punkten einer jeden Erzeugenden dieselbe Tan-
gentialebene. Daher wird eine Torse von jeder Tangentialebene in allen Punkten
einer Erzeugenden berührt. Es sei noch bemerkt, daß man eine Torse stets als Tan-
gentcnfläche einer bestimmten Raumkurve auffassen kann. Wegen einer ausführ-
lichen Darstellung der Theorie der Regelflächen sei auf die Bücher [3], [6], [7], [l0],
[13] verwiesen.

(4.81)

Unter welchen Voraussetzungen ist die allgemeine Schraubenfläche

x(u‘, u’) = u‘ cos uzi + u‘ sin u’j + (h(u’) + pu’) k
m“ —oo<u*<+eo‚ —oo<u2<+co

‘) Für die Berechnung von g ist eine mehrmalige Anwendung der Formeln (1.5) und (1.7) er-

forderlich.
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in die Ebene abwickelbar’! Dazu muß die Fläche eine Torse sein. Das heißt, daß das Gaußsche
Krümmungsmaß K in allen Punkten der Fläche verschwinden muß. Es ist K = b/g. Die Größe b
hat den Wert

t (a1); M1,, _ p;

‘ (u‘)’ + (wir)? + p= '

Da b gleich null sein muß, ergibt sich die Differentialgleichung

(u‘)3 h’h" — 122 = 0

b

für die unbekannte Funktion h(u‘). Für h’(u1) findet man

h’(u‘)= L/A(u1u):_p2 .

Wählt man für die Integrationskonstante A = pl/a’, wo a eine positive Konstante ist, so ergibt sich
für h

1 —— x/(W — a2M141), p -\/(141); , a2 z Zart: tan + B.

Die Schraubenfläche mit der gefundenen speziellen Funktion Ix heißt Schraubtorre. Setzt man B = 0
und führt die Koordinatentransformation

2 _2—;2 - -2 >1 -2a (E52, ‘auf: x/a +p sinu +u cosui 2 zu: +
(u ) “2+P2 x/:21 + p’ cos ü’ — ü‘ sin ü’

durch, so geht die obige Parameterdarstellung mit der speziellen Funktion h in eine einfachere Para-
rneterdarstellung

—a sin 122i + a cos üzj +pk
~/a‘ + p’

der Schraubtorse über, aus der man leicht erkennt, daß die Schraubtorse eine Regelfläche und die
Tangentenfläche der gewöhnlichen Schraubenlinie ist. Der Vektor in der runden Klammer ist der
T vv;\LUI einer gewi" " '- oclu ‘ " ' ‚ deren Parameterdarstellung durch den vor

der Klammer stehenden Vektor gegeben ist (vgl. S. 33).

E02‘, ü’) = a cos 122i + u sin üzj + püzk + ü‘ (

4.2.8. Die geodätische Krümmung einer Flächenkurve

Auf einer Fläche F, die durch eine zulässige Parameterdarstellung x(u‘, u’) der
Klasse r g 2 gegeben ist, werde eine Flächenkurve c mit der Parameterdarstellung
u‘ = u’(t), z‘ = 1, 2, betrachtet. Es sei X ein beliebiger Punkt von c und 1,, die Tan-
gentialebene, die die Fläche in X berührt. Projiziert man c orthogonal in diese Tan-
gentialebene, so erhält man in TX eine ebene Kurve co, die durch X geht und dort die
Tangente der Kurve c berührt. Die Kurve co habe in X die Krümmung >40 = 1/90.
Man definiert nun für die Flächenkurve c im Punkt X eine geodätische Krümmung,
die mit u, bezeichnet wird und deren Wert mit we übereinstimmt. Man setzt also

n, = x0. (4.82)

Man kann c auch als eine Flächenkurve des projizierenden Zylinders auffassen, der
durch die Projektion von c entsteht. Dann ist co der zur Tangente tx gehörige Nor-
malschnitt dieses Zylinders.

n
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Bild 4.13. Zur geodätischen Krümmung

Ist ac die Krümmung von c in X und q: der Winkel zwischen der Schmiegebene ax
von c und der Tangentialebene TX, so gilt nach dem Satz von Meusnier x0 = z cos (p.

Hieraus folgt wegen (4.82)

n, = a: cos mp. (4.83)

Ist t der normierte Tangentenvektor von c in X und f der Flächennormalenvektor von
F in X, so ist e = f x t ein Einheitsvektor, der in der Tangentialebene 1x hegt und
senkrecht zu tx steht. Dann ist cos (p = n - e, wo n den Hauptnormalenvektor von c

in X bezeichnet. Damit erhält man z, = z(n- e) = x(n - (f x t)) = >e(n, f, t). Berück-
sichtigt man noch die erste Frenetsche Formel, so folgt

z, = (t’, f, t) = (t x t’) - f. (4.84)

Man kann die geodätische Krümmung einer Flächenkurve allein durch die Koeffizienten g,”
der ersten Grundform und deren Ableitungen ausdrücken. Die Formel dafür sei ohne Beweis hier
angeführt (vgl. [6], S. 190).

m = x/E {I‘%1(u")’ + (21"l2 — Ph) (u")’ u” — (2I‘lz — 1"%z)u"(u”)’
— I‘;,(u'2)3 + u'1u"2 — Wu"). (4.85)

Die Striche bedeuten dabei die Ableitung nach der Bogenlänge. Die Größen 1;}; sind die CI1ristofl”e[-
symbole zweiter Art. Man erhält sie aus den Christofielsymbulen erster Art Fug“, die durch

1 {agfl/t aga/I _ 650/1’I‘ —— } = x„a„u - x„u
Öu“ Öu!’ Cu!‘W914 z 2

gegeben sind (vgl. [6], S. 18l, S. 128), durch Übersehiebung mit dem kontravarianten Fundamental-
tensor g"!‘. Es ist also

Pip = PW gr", a, rau, v = I. 2. (4.86)

Eine Fläehenkurve, bei der in allen Punkten die geodätische Krümmung ver-
schwindet, ist eine geodätische Linie der Fläche. Wählt man auf einer geodätischen
Linie zwei Punkte A, B, die hinreichend nahe beieinander liegen, so ist die Länge des
zwischen A und B liegenden Kurvenstücks der geodätisehen Linie kleiner als die
Länge eines beliebigen die Punkte A, B verbindenden Kurvenstücks auf der Fläche.
Kann man eine Fläche, auf der sich eine Flächenkurve befindet, auf eine andere
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Fläche, z. B. auf eine Ebene, abwickeln, so ändert sich die geodätische Krümmung
dabei nicht, weil z, nur von den Koeffizienten der ersten Grundform und ihren Ab—

leitungen abhängt. Eine geodätische Linie der Fläche geht daher bei einer Abwick-
lung in die Ebene in eine geodätische Linie der Ebene, d. h. in eine Gerade über. Aus
Gleichung (4.83) erkennt man auch, wie sich der Krümmungsradius go der abge-
wickelten Kurve aus dem Krümmungsradius g der ursprünglichen Flächenkurve

z, = x0 =berechnet. Mit z = i, J-folgt
Q 90

g: go = cos<p. (4.87)

Aufgabe 4.8: Eine Formschulter (Bild 4.14) besteht aus einem Zylinderteil (gerader Kreiszylinder,
Radius r) und einem Schulterteil. Beide sind über eine Raumkurve, die Umformlinie, miteinander
verbunden. Schulterteil und Zylinderteil sind Torsen und gemeinsam (längs der Umformlinie zu-

sammenhängend) in die "Ebene abwickelbar. Ein über das Schultcrteil gleitender Papierstreifen, der
über die Umformlinie in den Zylinderteil hineingezogen wird, kann dabei in einen zylindrischen
Schlauch umgeformt werden.

Die Umformlinie [möge bei der Abwicklung des Zylinders in eine Kettenlinie mit der Gleichung
y = a cosh (x/a) + b, x z up, -7: g q: S n: übergehen. B sei Ursprung eines Koordinatensystems
mit den Achsen x, y, parallel und gleichgerichtet zur xz- und zur xg-Achse. Der Zylindermantel
werde in die x, y-Ebene abgewickelt. Man bestimme eine Parameterdarstellung der Umformlinie
bezüglich des im Bild 4.14 gezeichneten Koordinatensystems 0(x1, x2, x3) und berechne die

Größen a, b in Abhängigkeit von der Umformhöhe h = AB und dem Winkel r zwischen
Zylindertangentialebene und Schmiegebene der Umformlinie im Punkt A (tane = c). Wie groß
sind die Krümmungsradien g und go der Umfcrmlinie und ihrer Abwicklung im Punkt A‘! Man
zeige, dal3 der Winkel s zwischen Zylindertangentialebene und Schmiegebene in allen Punkten der
Umformlinie die gleiche Größe hat.

Eine ausführliche Darstellung der Problematik findet der Leser in [l9].

X:

Bild 4.14. Prinzipieller Aufbau einer Formschulter

1 Zylinderteil, 2 Schulterteil (Torse), l Umformlinie
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4.2.9. Die stereographische Projektion

Im dreidimensionalen euklidischen Raum E3 werde eine Kugel mit dem Mittel-
punkt M und dem Radius R betrachtet, die auf ein orthogonales, kartesisches Ko-
ordinatensystem 0(x1, x2 x3) bezogen ist. Dabei habe M die Koordinaten
x1 = x2 = 0, x3 = R. Die x1, xg-Ebene berührt die Kugel im Ursprung 0 und ist
somit Tangentialebene an sie. Bezeichnet man die Kugeloberfläche mit F und die
x1 xZ-Ebene mit F*, so läßt sich eine Abbildung von Fauf F* erklären. Der zum
Punkt 0 bezüglich M spiegelbildlich liegende Punkt S hat die Koordinaten x,
: x, = 0, x3 = 2R. Man projiziert nun die Punkte vonF aus dem Projektions-
zentrum S auf die Ebene F*. Ist X 1+ S ein beliebiger Punkt von F, so schneidet
die Gerade SX die Ebene F* in einem Punkt X*‚ dessen Koordinaten mit x1*, x2*
und x3* = 0 bezeichnet werden sollen. Dieser Punkt X* ist der Bildpunkt von X.
Faßt man die x1, xg-Ebene F* als Gaußsche Zahlenebene auf, indem man in ihr einen
unendlich fernen Punkt S* einführt und ordnet man diesen dem Punkt S als Bild-
punkt zu, so ist durch diese Erweiterung eine eineindeutige Abbildung der Kugel-
oberfläche F auf die durch den Fernpunkt S* abgeschlossene Tangentialebene F*
gegeben. Diese Abbildung heißt stereographische Projektion.

XIV‘?

Bild 4.15. Die stereographische Projektion

Es sei X ein beliebiger Punkt von F, X’ seine Orthogonalprojektion in die x„ x2-
Ebene F*. Der Winkel zwischen der x‚—Achse und dem Strahl 0X’ werde mit u‘,
der Winkel zwischen dem Strahl 0X und der x3-Achse mit u’ bezeichnet. Der Fall
X = S bzw. X = 0 werde zunächst ausgeschlossen.

Eine Parameterdarstellung der Kugeloberfläche lautet

x(u‘, u’) = i2R cos u’ sin u’ cos u‘ + j2R cos 142 sin u’ sin u‘

+ k2R cos‘ u’, '

Ogu‘ 527:, oguzgn/2.
Die Punkte S und O werden durch diese Darstellung auch mit erfaßt. Für S muß
man u’ = O und für 0 u’ = 7:/2 setzen. Allerdings sind die zugehörigen ul-Werte
in beiden Fällen unbestimmt.

8 Schöne, Difierentialgeometrie
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Entsprechend ergibt sich für die xgxz-Ebene, wenn Ci” = u*‘ gesetzt wird
und u“ den Winkel zwischen der x‚-Achse und dem Strahl OX* bedeutet, die Dar-
Stellung

x*(u*‘, u“) = iu*1cos u“ + ju*1sin u“,
0gu*‘<oo, 0gu*2g27r.

Zerlegt man die beiden Parameterdarstellungen in Komponenten, so erhält man für
die Kugeloberfläche F

xi = 2R cos u’ sin uz cos u‘,
x2 = 2R cos u’ sin u’ sin a1, 0 g u‘ g 27:, 0 g u’ g —}7r. (4.88)

x3 = 2R cos 2 u’,

Führt man ein neues Koordinatensystem 0(x1*, x2*, x3*) ein, dessen Achsen mit
denen des alten zusammenfallen, so hat man für F* die Parameterdarstellung

xfi‘ = 24*‘ cos u“,
— u“ sin u“, O g u“ < eo, 0 g u“ g 27:. (4.89)

353* = 0:

w
e

l

Die Abbildungsgleichungen lauten dann

u“ = 2R cot u’,
u“ = “I. (4.90)

Sie lassen sich unmittelbar aus Bild 4.15 ablesen. Den Punkten 0 und S entsprechen
die Koordinatenpaare u’ = 7:/2, u‘ unbestimmt und u’ = 0, u‘ unbestimmt. Im
ersten Fall ergibt sich 0* = 0 und im zweiten Fall erhält man den Punkt S*.

Um auf F und F* gleiche Gaußsche Koordinatensysteme zu haben, führt man die
Koordinatentransformation

u“ = 2R cot 122,

= ‚ <4-91>

in der Ebene F* durch. Dann gehen die Abbildungsgleichungen (4.90) in

ü‘ = u‘,
ü: = u: (4.92)

und die Parameterdarstellung (4.89) von F* in

i. = 2R cot ü’ cos ü‘,

f, = 2R cot ü’ sin ü‘, (4.93)

f, = 0

über. Für die Koeffizienten gm und gm, der ersten Grundformen von F und F* er-

gibt sich aus (4.88) und (4.89)

gu = 4R2 cos’ uz sin’ u’, gm = 0, gn = 4R2,

4R2

sin‘ ü’ '

(4.94)

E11 = 41229032722: Q12 = 0: gzz =
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Berücksichtigt man (4.92), so erkennt man, daß die Größen gv, und gw für v, ‚u = l, 2

zueinander proportional sind. Es bestehen die Beziehungen

811 5 511 5in4 üzy 812 = gm 5in4 ü; = 0: gzz = 5'22 5in4 üz- (4-95)

Nach Satz 4.5 ist daher die stereographische Projektion winkeltreu oder konform.

Bildet man den Quotienten aus dem Bogenelement d} von F‘ und seinem Urbild dr von F, so

erhält man wegen (4.95) und (4.92)

— d} l
Ä*E?*EF77 “”)

Die Größe Z gibt die Längenverzerrung an. Sie ist die Zahl, mit der man die Länge ds des von einem
Punkt X der Urbildfiäche ausgehenden Linienelementes dieser Fläche multiplizieren muß, um die

Länge d? seines Bildes in der Bildfläche F‘ zu erhalten. Im allgemeinen hängt i. noch von der Rich-
tung du’ : du‘ = Ä des Linienelementes d: ab. Bei der stereographischen Projektion ist dies jedoch
nicht der Fall. Bei ihr ist die Längenverzerrung in jeder Richtung gleich groß.

Es sollen nun die Abbildungrgleichungen für die stereographische Projektion der Nordhalbkugel
der Erde vom Südpol aus aufgestellt werden. Wir setzen dazu in (4.90) 11*‘ = r*, u“ = u‘ z: A und
wählen an Stelle des Winkels u’ die Poldistanz 19 (vgl. Bild 4.15). Dann erhält man mit

19 _ 7: z

7 ‘ 7 u
ü 19 (4.97)

r* = ZR cot — T) = ZR tan

und aus (4.89) schließlich

xfl‘ = 2R tan cos A,

x‚*=2R:an(%>s1n/1‚ ogögn, —7r§/1§1r. (4.98)

X3‘ : 0,

Der Winkel A gibt die geographische Länge an. Allerdings liegen Punkte der Erdoberfläche, für die
A< 0 ist, auf einem Meridian östlich von Greenwich. Schließlich sollen noch die Abbildungs-
gleichungen für diestereographische Projektion in kartesischen Koordinaten angegeben werden.
Aus (4.88), (4.89) und (4.90) folgt nach entsprechender Elimination von u‘, u’

ZRX ZRX“=fifä'“=a%’”:“ “”

4122m 4R2x2*
x1 x2 =

(Xfk): ‘l’ (X2*)2 + 4R2 S

X = 2R((X1*)2 + (X292)
3 lxi‘): "l" (X252 ‘i’ 4R2

(X1*)2 + (X2*)’ + 4R’ ’

(4.100)

Aus (4.100) erkennt man, daß für x1 , x2 ‚ x3 stets die Beziehung

(x02 + m)’ + (x, — 102 = R’ (4.101)

erfüllt ist, denn x, ‚ x2, x3 sind Koordinaten eines beliebigen Punktes der Kugeloberfläche.
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Satz 4.7: Die stereagraphisc’ Abbildung ist eine-Kreisverwandtsc/zaf/, d. h.‚ sie bildet einen beliebi-
gen Kreis der Kugeloberfläche in einen Kreis oder eine Gerade der Tangentialebene F"' ab.

Beweis: Ein Kreis k auf F kann als Schnitt der durch (4.101) gegebenen Kugeloberfläche F mit
einer durch die Gleichung axl + bx; + ex; + d: 0 bestimmten Ebene aufgefaßt werden. Setzt
man (44100) in die Ebenengleichung ein, so ergibt sich

a 4R2X1* + b 4R’x2* + c 2R((X1*)2 + (X2*)’)
(ml + («\'2*)2 + 4R2 + d z °'

Außerdem gilt x3* ä 0, da die Kugeloberfiäche Faufdie x1, xg-Ebene F‘ abgebildet wird. Formt man

die erhaltene Gleichung um, so findet man

4bR2 4dR2aa; .* i:'2cR+d“+2cR+d 0‘

4aR2

m*1 W02’(X;*)2 "r 0'2")’ +

Ist 2cR + d=l= 0, so stellt (4.102) die Gleichung eines Kreises in der xi, x2—Ebene F* dar. Falls
2cR + d = 0 ist, geht der Kreis k auf F in eine Gerade auf F‘ über. Die Ebene des Kreises k hat in
diesem Fall die Gleichung ax; + bx; + c(x_-, — ZR) : O und enthält ebenso wie k den Punkt S.
Hieraus folgt, daß alle Kreise auf F, die durch das Projektionszentrum S gehen, in Geraden der
Ebene F‘ abgebildet werden. Umgekehrt entspricht jeder Geraden in F‘ ein Kreis auf F, der-S
enthält.

Die stereographische Projektion wird unter anderem bei Kartenentwürfen, bei
der Funkpeilung und in der Kristallographie benötigt, wo sie als Wulffsches Netz
bekannt ist (vgl. [l5], Bd. 2, S. 19-40).

4.2.10. Die Abbildung von Bonne

Als ein weiteres Beispiel für eine Abbildung der Kugeloberfiäche in eine Ebene
soll die Abbildung von Banne betrachtet werden. Die Kugeloberfläche, die wieder
mit F bezeichnet werden soll, sei gegeben durch

x1 = r cos u’ cos u‘,

x2 = rcos uzsin u‘, 0 g u‘ g 21:, ~71/2 g 142 g Tr/2. (4.103)

x3 : r sin u’,

Die Abbildungsgleiclumgen für die Abbildung von F auf die Ebene F* lauten bei Ver-
wendung von Polarkoordinaten r*, <p* (vgl. [6], S. 255)

r* = r(~72: — u’),
(4.104

W _ ul cos u’ )

Hieraus ergibt sich für die Ebene F* eine Parameterdarstellung, wenn man ein karte-
sisches Koordinatensystem einführt, dessen Ursprung 0 mit dem Pol des Polar-
koordinatensystems und dessen £1-Achse mit dem Strahl q2* = 0 zusammenfällt,
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und wenn man außerdem in F* das gleiche Gaußsche Koordinatensystem wie auf F
verwendet

_ ‘n: _2 ü‘ cos ü’
x, =r(3—u)cos T— ,

_ _ ‚'41

2

7: ü‘ cos ü’
)‘c2=r(-§—122)siu —W—, ogalgzn, V

7 - ü’ -7: 2 g a2 g 7:/2. (M05)

3-C3 = 0a .

Die Abbildungsgleichungen haben nun die Gestalt

ü‘ = u‘,
_2 2 (4.106)
ll = u .

Die Koeffizienten der ersten Grundformen von F und F‘ ergeben sich zu

zu = r’ cos’ u’. 812 = 0, 822 = r’, g = r“ cos‘ u’,

- Tr . \ . .

cos u’ — <— — u’ s1n u’
- 2 2 -2 - -1 2 -2 2g11="C05"s g12=”Vc°5“ 

§22 = V2 ‘i’ r’(ü‘)’

g = r‘ cos’ ü’.

Da wegen ü‘ = u‘, ü’ = u’ und g = r‘ cos’ ü’, g = r‘ cos’ u’ die Beziehung

E = g

gilt, ist die Bannesche Abbildung auf Grund des Satzes 4.5 fliichentreu, Die Bilder
der Breitenkreise u’ = C auf F sind Kreisbögen, die in Polarkoordinaten die Glei-
chung r* = r(71:/2 — C) haben. Für C = 7:/2 ist r* = 0. Das heißt, daß der Bild-
punkt des Nordpols (u: = 7:/2) der Mittelpunkt dieser Kreise und zugleich der
Pol des Polarkoordinatensystems ist. Die Bildkurven zweier Meridiane schneiden
auf den Bildern der Breitenkreise dieselben Längen wie auf der Kugeloberfläche ab.
Tatsächlich erhält man für die Bogenelemente dis und d1} der Breitenkreise und ihrer
Bilder '

d1:v= \/gidu‘ = r cos u‘ du‘, (4.107)

dlx = \/gm dü‘ = rcos ü’ dü‘

und wegen (4.106), wie behauptet,

dis = d,§.

9 Schöne, Difierennialgeometrle
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Diese Eigenschaft der Bonneschen Abbildung erleichtert die Konstruktion wesentlich. Bild 4.16
zeigt die Bonnesche Abbildung des Globus. Im allgemeinen ist die Längenverzerrung bei der Bonne-
schen Abbildung noch von der Richtung des Bogenelementes ds abhängig, Man findet

_ d? _ 4711 +2?x2}~+Z"z27~2 - _ d":LKW-e m" “nur
Die Längen auf den Breitenkreisen bezeichnet man auch als Abweitung. Daher

ist die Bonnesche Abbildung der Erdoberfläche abweitungstreu undflächentreu.

Bild 4.16. Bonnesche Abbildung der Erdkugel



Lösungen der Aufgaben

2.1: Man erhält

s; = ti + (1/nj + -\/Ek.

Hieraus folgt

IX!= ~/(T-W’= |t+1/rI= r+1/r.
da t zwischen I und 4 liegt. Es ergibt sich für die Bogenlänge

s“ = 5(4) — s(1) = f0 + 1/t) dt = [511 + In m]: = 7,5 + 2 In 2m 8,8863
l

Der Tangemenvektot der Raumkurve ergibt sich wie folgt:

1 . . '

t = 771T (n + (1/U1 + \/2k)'

Da t> 0 ist, kann man

lt +1/t|= t +1/I
schreiben. (Wäre t < 0, so müßte man

It +1/t|= ~(t+1/r)
setzen.) Demnach findet man für t > 0

1

1+t1r= (t2i+j+t\/Eli).

Es ergibt sich

i=(t2+%l)2 (2ti—— 2tj+ ~/Eu — :1)k).

Hieraus folgt wegen n = t/Itl für den Hauptnormalenvektor im Fall t > 0

fi-W(tx/5i—tfii+(1—t’)k).
Aus b = t >< n folgt schließlich

b=fi—3:T)(i+':=j-:\/Ek).

2.2: Auf Grund von (2.32) findet man mit

x = i + Zrj + 3t’k,

i = 2j + 6tk,

'x‘= 6k,

ir-i=l+4t’+9t‘‚ X-ii=4(l +91’),
i - 52 = 2t(Z + 912),

2Ei,
wufios

;¢=
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Analog erhält man aus der Formel (2.40’) wegen

12: 3t‘
2 6(„gar“): o 2 6: =Ä '=12,

0 o 6 0 6

‚=—L—.1+9t’+9t‘

2.3: Ausgehend von den Frenetschen Ableitungsgleichungen erhält man durch Elimination von t
und b die Gleichung

„ Z? ‚ 2
n + 2+szn+(2+:’)2

Zerlegung in Komponenten ergibt

n=0.

, 2s 2 „n,'+7n—1—n{+—(—ä‚—)5-n,=0 t=1,2,3.

Mit dem Ansatz n, = e’ erhält man eine Riccatische Gleichung, wenn man noch z’ = u setzt,

‚ 2 2
u +u2+—2—+i_v7u+(2—+fi=0.

Die Funktion uo = — —2—-_:7ist eine partikuläre Lösung dieser Difierentialgleichung. Die
1

allgemeine Lösung findet man durch den Ansatz u = uo + 7 . Man erhält

S

2—+T+
__1_
s+C’

K(s+C)
z=—<}ln|2+sz|+ln|s+C|+lnK, z=In 72-77.

v’=l, v(s)=s+C, u=-—

Hieraus folgt

n,= e‘ =""j+:"‘ mit K=A„ Kc=a„ i: 1,2‚3.J2 + s’

Aus den Anfangsbedingungen

mo) = 0 = mA/E. mo) = 0 = 32/\/E. mo) = I = B:/\/E
folgt

B‚=B‚=0‚ B3=~/2.

Aus t’ = im folgt

= 1 A,s + B,
2 + s’ J2 + S2 '

Durch Integration findet man

n : __ A. + B1:

./2 + s2 2„/2 + s’

t?

+ Ci‘
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Analog ergibt sich aus b’ = —rn durch Integration

A, B,:
b =~——_._+ ———__.

I \/2+5‘: 2*\/2+5:

Setzt man 1„ m, b, in die zweite Frenetsche Formel n; = —ut, + 1b, ein, so erhält man C, + D, = 0,
i: l, 2, 3. Aus den übrigen Anfangsbedingungen folgt

t1(0)=1/~/5= —A1/~/E + 6.. z2<o)=1/«/5: —Az/«/5+ C2.

mo) = o = —A3/~/5 + C3: 121(0) = 1/x/E = —A1/«/2‘+ 0.,

172m) = -1/«/E = —A2/«/E + D2, 123(0) = o = —Aa/x/E+ D3-

Es ergibt sich

D, = C, : 0, D3 = c, = o, c, :1/‘\/E, D, = ——1/\/E,

A‚:—l, A2=A‚=O.

Aus t1 = xi = folgt x, = arsinhÜ/x/i) + 15„ aus I; = x’, = 1/\/Eerhéilt manx,

= S/x/5 + E2 und aus t3 = x3’ z 2s/(2 schließlich x3 = + E3. Wegen

x(0) = (0, 0,1) folgt E, = E, = 0, 1+ E3 =1, E3 = 0. Damit hat man

x(s) = iarsinh +j +

+D,.

2.4: Es wird ein orthogonales X1,x2,x3~K00rdinatensystem eingeführt, dessen x‚-Achse mit der
Achse des Kerns zusammenfallt. Sind M1 ‚ M; die Schnittpunkte der Mittellinien zweier benachbarter
Drähte mit der x, , xz-Ebene, so gilt für den Winkel on = <‘[ MIOM2, unter dem die Strecke M1M2
vom Ursprung 0 aus erscheint, o; = 21r/N. Nimmt man weiter an, daß M, auf der positiven x,-
Achse liegt, so folgt

h
x(q2)=rcosq>i + rsinpj-I-Eqzk

für die Parameterdarstellung der Mittellinie des ersten Drahtes. Ist X’ die orthogonale Projektion
eines beliebigen Punktes X dieser Mittellinie in die x, , xz-Ebene, so ist o2 der Winkel, den der Strahl
0X’ mit der positiven xl-Achse bildet. Für die Mittellinie eines der beiden benachbarten Drähte
ergibt sich dann r

_ ‚ , ‚ h
x(q2)=rcos(p r+r s1ntpJ+E-(<p—ac)k

bzw.mit
ö=w-a

._ _ ‚ _ ‚ h _x*(7q'2)=x(E+oc)=rcos(qz+oc)i+rsm(qz+a)y+Tzpk.
7|:

2.5: Ist X ein beliebiger Punkt der ersten Mittellinie und X0 der zugehörige Punkt auf der kreisför-
migen Achse mit dem Radius R, so ergibt sich für die Koordinaten von X0: xi’ = 0, x2 = R cos lqz,

xg = R sin hp. Trägt man in X0 die zwei Vektoren i und l = cos Äqaj + sin Z<pk an, so bestimmen
diese Vektoren eine durch X0 gehende Ebene, die von der kreisförmigen Achse in X° senkrecht

durchsetzt wird und die die Strecke XX0 enthält. Ist r = X025, so folgt, wenn man berücksichtigt,
daß die Strecke X0X infolge der Verschraubung mit dem Vektor i den Winkel zp einschließt,
r : r(icos<p + lsin (p).
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Damit ergibt sich der Ortsvektor des Punktes —X zu

x(<,v) = Rcos1<Pi+ R sinlzpk + r(icos<p +lsi11q1)

x(q2) = ir cos (p + j(R + r sin qz) cos lg: + k(R + r sin 9:) sin llp.

Für eine benachbarte Mittellinie erhält man

§(q:) = ir cos q: + j(R + r sin rp) cos Z(q: — ac) + k(R + r sin (p) sin l(<p — o4)

bzw.mit$=<p—oc
x*(® = ircos(7g3+ cc) +j(R + rsin ($+ oc))cosA?g3+ k(R + rsin(E+ 01)) sinlä.

Y "rege. „

. xi‘
4415W
l’

=4

‘sfyy w" X2

Bild L.2.5. Schraubenlinie mit kreisförmiger Achse

Die Differentiation Von x(q2) nach q) ergibt

1(99) = —ir sin w + j(r cos zp cos 142 —— (R + r sin (p) Ä sin Zip)

+ k(r cos zp sinlq: + (R + r sin w)! cos lxp).

Hieraus ergibt sich

limp)!‘ = r‘ + (R + rsin w)’ 7.‘,
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und durch Integration von ds = lr'c(zp)| dzp erhält man schließlich

21:

s(2rc) = f Jfi + (R + rsin w 12 dqa.

42:0

Zur genäherten Auswertung dieses Integrals wird die Simpsonsche Regel verwendet (vgl. Band 2

Satz 10.15):

h .

S = T (yo + y2,. + Z(.v2 + y4 + + ,v2..-2) + 4(y; + ‚Vs + + ‚vz‚._i) )-

Wählt man h = «h, so ergibt sich

saw) a» ä n (~/r1 + m2 + Jr=+ (R + 0W + Jr= + (R — r)= /1‘)-

2.6: x(s) sei die Paranieierdarstellung der Raurnkurve mit 1:(:)/91(5): K. Hieraus folgt t = Kw;
wegen t’ = am, b’ = —rn ergibt sich Kt’ + h’ = 0 und daraus Kt + b = a, wo a ein konstanter

Vektor ist. Es ist a - a z K’ +1, la] = \/K2 +1. Nun ist a - t = K, daher |al |t[ cos (a, t) = K
und cos (a, t) = K/\/1 + K 2 = konstant, also ist durch x(s) die Parameterdarstellung einer Bö-
schungslinie gegeben. .

Es sei umgekehrt x(s) die Parameterdarstellttng einer Böschungslinie. Dann existiert ein Vektor a

(konstant), der mit allen Tangentenvektoren t der Raumkurve einen konstanten Winkel bildet. Da
|tl = 1 gilt, ist somit a - t = k = konstant. Durch Dilferentiation folgt a - t’ = 0 bzw. a ~ (am) = O

und, da >2 =i= 0,3 - n = 0. Durch weitere Differentiation folgt a - n’ = 0. Wegen b’ = ——m ergibt sich
a - b’ = —ra ~ n : 0. Andererseits ist auch a’ ~ b = 0, da a’ = 0. Mithin (a ~ b)’ : a - h’ + a’- b = 0
und a ~ b = C = konstant. Aus der 2. Frenetschen Gleichung ergibt sich a ' n’ = a ~ (—xt + tb)
= —:t(a - t) + 't(a - b) = 0 und damit —zk + 1C = O. Daraus folgt die Behauptung 1(3)/:c(:)
: k/C = const.

3.1: a) Für den NormalenabschnittgiltzPTl = IyIx/l + y” = C, wo C eine positive Konstante ist.

Durch Quadrieren folgt y2(1 + y”) = C1 bzw. y’: = (C2 — yz)/yz, y’ = :};\/C2 — y2/y. Trennung
der Veränderlichen und Integration führt zu »

‚v dy

x/C2 — y‘

(X n‘ X0)’ + ‚v2 = C2-

Man erhält Kreise, deren Mittelpunkte auf der x-Achse liegen und deren Radien die Länge C haben.

= ifdx, -—s/C’—y’=i(x—x„)

oder

b) E‘: ly/y’! = K. Dabei ist K > 0 die gegebene konstante Länge des Subtangentenabschnitts.
Trennung der Veränderlichen ergibt

dy If7 — iffdx.
Nach Integration folgt

ln]y|—lnC= j;—l——xK ‚

y = Ce"”‘ oder y = Ce"‘/"; —oo < C< +00 (C=|=0).

Es ergeben sich Exponentialkurven.
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c) Analog wie bei a) und b) gilt H! = Iyy’! = K, i- f y dy = f Kdx bzw. y’ = i 2K(x — x0).
Das sind Parabeln, deren Achsen mit der x-Achse zusammenfallen. Die Koordinaten des Scheitels S
einer solchen Parabel sind x5 = X0, y; = 0, die des Brennpunktes F sind x; = x0 j; K/2, yp : 0.

3.2: Wählt man als Koordinatenursprung 0 den Punkt in der Mitte zwischen den beiden benach-
barten Masten auf der Erdoberfiäche; so hängt die Leitung an der Stelle x = 0 am tiefsten. Setzt
man den Abstand der zwei benachbarten Masten gleich 2a und die Höhe der Leitung bei x = 0
gleich u, so folgt aus Bild L.3.2a) u = h cosh0 + b : h + b, I: h cosh (a/h) + b. Hierin sind

Y

—a + a

Bild L.3.2a). Zu Aufgabe 3.2

12

n /
1,1 — //

0,7

I

I

I

I

I

I

I

I

I

I

D15 l (D) l

05 0.5 E 0.7 as as E 1,0

Bild L.3.2b). Zu Aufgabe 3.2
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u, h, b unbekannt. Um noch eine dritte Gleichung zu erhalten, berechnet man die Länge L der Leitung
zwischen den zwei Masten. Mit y’ = sinh (x/h) folgt

a +a
L= f„/1+y'2dx= f J1 + sinh’ (x/h)dx

+
= fzzosh (X/h) dx = h[sinh (x//t)]1,, = 2h sinh (a/h).

—a

Damit erhält man ein Gleichungssystem für die Unbekannten u, h, b. Setzt man a/h = E,

I = h cosh (a/h) + b, L = 2h sinh (a/h), so folgt mit h = u/E aus der dritten Gleichung (L/2a)5
= sinh E. Man bestimmt graphisch einen Näherungswert für die Lösung dieser Gleichung, indem
man die beiden Kurven n = sinh E und 7) = (L/Za) E in einem 5,1}-System darstellt und ihren Schnitt-
punkt E“) 4: 0 bestimmt (siehe Bild L.3.2b)). Man erhält den Näherungswert E“) = 0,65. Diesen
verbessert man nach dem Newtonschen Verfahren (vgl. Band 2, 7.7.3.). Setzt man f(5) = (L/2a)E
— sinh E, so folgt mit L = 86 m, a = 40 m, [(5) = 1,0755 — sinhE und f’(E) = 1,075 — cosh E.

MitE‘°’ = 0,65 ergibt sich f(O,65) = 0,0021 undf’(0,65) = —0,1438. Damit findet man einen besseren
Wert 5“’ = 0,65 + (0,0021/0,1438) w 0,665, f(0‚665) = —0,0002. Damit erhält man h = 60,2 m,
b = l— h cosh Em = —49,01 m, u = h + b = 11,19 m. Die Leitung hängt an ihrer tiefsten Stelle
rund elf Meter über dem Erdboden.

3.3: Die Gleichung der Schleppkurve lautet nach Abschnitt 3.3. (S. 50)

x = x, :1: (k In |(k — ~/k2 — yO/‘yl + Jk’ — y’).
Wir betrachteten den Kurvenzweig, für den das negative Vorzeichen gilt und für den y > 0 ist‘),
weil die anderen Zweige durch Spiegelungen an der x-Achse bzw. der Geraden x = x0 aus diesem
erhalten werden. Die Gleichung der Schleppkurve ist in der Form x = g(y) gegeben. Um die Krüm-
mung für diese Kurve errechnen zu können, vertauscht man in der Formel für u die Variable y
mit x. Man setzt x’ = dx/dy, x” : d’x/dy2 und erhält

x = ‚W/(s/TÜT)?
Nach einiger Rechnung ergibt sich

x, = —<k1 — w) = 4% X" = k:
‚Vx/k’ ~ y’ —" ’ yzx/k’ — y’ ’

woraus schließlich folgt

„ = y ‚ e : ‘i.
kx/k2 — y’ y

3.4: Es werde zunächst der Fall der Außenabrollung betrachtet. Während der Mittelpunkt des
/\

Rollkreises von seiner Ausgangslage Maeinen Kreisbogen MOMmit dem Zentriwinkelqp = <( M°0M
des festen Kreises mit dem Radius R + r durchläuft, rolle der Rollkreisbogen POP; mit dem Zentri-
Winkel q: = <1 POMOPI, auf dem festen Kreis vom Radius R ab. Daher gilt Rt/J = rqz (vgl. Bild 3.12).
Zieht man von M einen Strahl MA parallel zur positiven xl-Richtung, so ist der Winkel <)Z AMX
= 180° — (q: + w). Die Projektion des Streckenzuges OMX auf die x‚- bzw. xz-Achse liefert daher

x1 = (R + r)coszp + Icos(l80 —q2 —1p)=(R+ r)COSl/1 —lcos(:p+1p),
x2 =(R+r)sin|p—Isin(180—q2—1p)=(R+r)sinw—Isin(zp+rp).

’) Dasmuß man beachten, weil wegen = |y| im Fall y > O =y‚ im Fall y < Ojedoch

x/y’ = «y gilt-
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R
Hieraus folgt wegen q: = -r—1p

x,=(R+r)coszp—Icos(R+rvp),
r

x2=(R+r) sinw—l sin (R:L' w).

Für I> r erhält man eine verschlungene, für I< r eine gestreckte Epitrochoide. Ist I = r, so heißt
die Kurve gcspitzte Epitrochoide oder auch Epizykloide.

Bei lnnenabrollung durchläuft der Rollkreismittelpunkt den Kreisbogen MOM mit dem Zentri-
winkel u: = <1 MOOM des Kreises mit dem Radius R — r um O. Ist (p wieder der Winkel des Roll-
kreisbogens, der auf dem festen Kreis vom Radius R abrollt, wobei P8 in P, X0 in Xund Mo in M
übergehen, so gilt wieder Ry; = up (Bild 3.12). Die Projektion des Streckenzuges OMX auf die x1-
bzw. X;-AChSC ergibt

x1=(R—r)cos1p+Icos(q1—1p)=(R—r)eos1p+lcos(R:r w)

. . . . R-xz=(R——r)sm1/Ia1sm(<p—1p)=(R~r) smup—lsm< r r w).

Ist I < r, so liegt die Kurve ganz im Innern des festen Kreises. Man nennt sie gestreckte Hypo<
trochoide, Für I> r heißt die Kurve verschlungene Hypotrochoide, Sie verläuft innerhalb und außer-
halb des festen Kreises. Im Fall I: r spricht. man von einer gespitzten Hypotrochoide oder auch
von einer Hypozykloide. Ist das Verhältnis der Radien R:r= msn rational, so sind alle be-
trachteten Kurven geschlossen, und es gilt für den Parameter 0 g zp g 2n7r. Dieses Parameterinter-
vall für w reicht zur Darstellung aller dieser Kurven sowohl bei Innen- als auch bei Außen-
abrollung aus.

xx

3.5: Es sei (p der Winkel, um den sich der Rollkreis beim Abrollen des Kreisbogens XOPO dreht.

Dabei geht X0 in X und PD in den Punkt P über. Mit 0P = XOP = Np und <)( XMP = q: ergibt sich
aus Bild L.3.5 x, : rq: —— r sin (p, x, : r — rcos (p, wobei —oo < q: < +00 ist. Für den Tangens
des Neigungswinkels der Tangente findet man x; = Sc;/kl : sin zp/(1 — cos tp). Für (p 2 0, 31:27:,

...‚ j;2k7r, ist x; = ioo. Da die Kurve nur oberhalb der xl-Achse verlaufen kann, hat sie in den
genannten Punkten Spitzen.

Bild L.3.5. Zu Aufgabe 3.5
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3.6: Für das Bogenelement der Zykloide ergibt sich nach (2.17)

dr’ = r’(1 — 2 cos (p + cos‘ (p + sin’ q1)d(p2 = 2r’(1 — cos cp) dqaz = Ir’ sin’ (qz/2) dm’ ‚

ds = 2r [sin (q2/2)| dtp.

Z1:
2

s(2Tr) = fzr sing-dzp = 2r [# 2 cos ä]; = 8r

0

(die Betragstriche beim Integranden können weggelassen werden, da zp zwischen 0 und 2-n: variiert
‘Pund dort sin 7 I = sin ä ist). Um g zu berechnen, bildet man

5c; = r(1— cosqz), 5&1 =5c2 = rsinzp; i; = rcoszp.

Daraus folgt

5615:1 — i152, z r2(cos (p — 0052112) — r’ sin’ «p = r2(cosq2 — 1),

5:;-1- ii = 4r1 sin2%.

Mir (3.10) ergibt sich

9 = —4r sin (q:/2), g(1:) = —-4r.

3.7: F=l7y2—x2(x—a):0, Fx= ~3x2+2ax, F,=2by,

F” = —6x 2a, F„ : 2b, n, = 0.

f /„ f
\1) a>0

(7)0

Y y Y

0 I)‘V X x x

93:3 V225 5)

Bild L.3.7. ‘zu Aufgabe 3.7

2}17>0
0'0
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Im Punkt 0(0‚ 0) liegt ein singulärer Punkt vor. Man bildet die Diskriminante

A = F}, — E,F„ = 4b(3x — a).

1) a > 0, b > 0, A(0, 0) = —4ab < 0: Einsiedlerpunkt in 0.

Aus der Gleichung F = o folgt y = xJä} für o < x < a gibt es keine reellen y-Werte.

2) b > 0, a = 0, A(0, 0) = 0, Spitze in O. y = (x/b) Es liegt eine Neilsche Parabel vor.

3) a > 0, b > 0, A(0, 0) = .—4ab > 0: Doppelpunkt in 0.

4) a < 0, b < 0, A(0‚ 0) = —4ab < 0: Einsiedlerpunkt in 0.

5) a = 0, b < 0, A(0, 0) = O, Spitze in 0: Neilsche Parabel.

In Bild L.3.7 sind die fünf verschiedenen Kurven skizziert.

3.8: a) r(cp) = mp, r’ = a, cotlp = r’/r = 1/zp. Mit (p —> eo geht cow —> O.

Mit wachsenden Werten von q: schneidet die Kurve die Radien mehr und mehr unter einem rechten
Winkel.

Die archimedische Spirale besteht aus zwei im Ursprung ineinander übergehenden Ästen, Der eine
enthält die Punkte mit q: > 0, der andere die mit (p < 0. Beide beginnen im Ursprung und wickeln
sich spiralförmig um den Punkt q: = n/2, r = a(n:/4), der eine im mathematisch positiven, der andere
im mathematisch negativen Sinn (siehe Bild L.3.8a)). Die Kurve schneidet den Strahl q: : 0 (posi-

Y

2.
7„

Bild L.3.8a). Archimedische Spirale

tive x-Achse) bei r = 0, van, 2:111, —3a7r, ..., (—I)" akn:,... und den Strahl (p = n: (negative x-Achse)
bei r = an, —2a1r‚ 31m, —4zm:, ..., (—1)“*‘ akr: usw. Die Differenz r(<p + 27:) —— r((p) ist für alle
Werte von zp konstant: r(q2 + 21:) — r(q2) = 2a7r. Für die Bogenlänge findet man mit r = mp, r’ : u

aus (3.3) q,

S(lP)=“f\/1+<F2d4’:%(1fl(<P+\/1+€V2)+<P\/1+<P2).
O
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(Das Integral findet man durch die Substitution q: : sinh t und anschließende partielle Integration.)
Die Formel ist praktisch nicht sehr brauchbar. Besser ist die von R. Rothe angegebene Näherungs-

formel s(1p)N -:—(q22 + ln (p + 1,193) für große Werte von (p (vgl. [l2],S. 159).

b) Je größer (p wird, desto mehr nähert sich r(z,v) = a/zp dem Wert 0. Der Ursprung O ist ein
asymptotischer Punkt der Kurve, den sie aber erst erreicht, nachdem sie sich unendlich oft spiral-
förmig um ihn herumgewunden hat. Die Kurve besteht aus zwei spiegelbildlichen Teilen, die symme-
trisch zur y-Achse liegen. Für q: —> 0 nähert sich die Kurve der Geraden y = a, die eine geradlinige
Asymptote der Kurve ist. Denn es gilt y = r sin q: = (a sin |p)/(p:

limy : 1in'L(a sin zp)/qz : a (Bild L.3.8b)).
¢»o W»

Y

GÄ x

f’

‚ S’

Q X

Bild L43.8b). Hyperbolische Spirale

c) Logarithmische Spirale r((p) = e", a > 0. Für a : 0 ergibt sich ein Kreis um 0 mit dem
Radius 1. Für <17» —oo geht r gegen 0. Daher ist der Ursprung O ein asymptotiscrer Punkt der
Kurve. Aus r = e", r’ : a3" folgt cot zp = r’/r = a : const. Der Winkel w zwischen r und

Bild L.3‚8c)‚ Logarithmische Spirale
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der Kurventangente ist konstant. Die logarithmische Spirale schneidet alle von ihrem asymptotischen
Punkt ausgehenden Strahlen unter konstantem Winkel, Für die Bogenlänge erhält man

v

S((p) z /e"9’ «/1 -1- :12 dzp = \/1+ a’ ä [e“9’]‘;a = ‘/1 + a" (r(:p) — r(q20)).

‘Po

Mit 92° —» —oo folgt hieraus s = x/1 + a’2r. Die Bogcnlänge eines Kurvenbogens gemessen vom

asymptotischen Punkt bis zu einem beliebigen Punkt ist proportional zum Radius dieses Punktes.
Für den Krümmungsradius gilt g = as.

3.9: Aus Bild 3.18 folgt durch Anwendung des Sinussatzes

r/ro = sin (180 —— cc)/sin/3, ß = 180 —- (180 — a) — q) = on — zp.

Damit ergibt sich

sin on
r =ro — 

als Polargleichung der Geraden.

3.10: Wegen r : a, r’ = 0 erhält man aus (3.38) durch Integration s(oc) = 11a. Der Flächeninhalt
‚x

des Kreissektors mit dem Zentriwinkel ac ergibt sich zu F = <5 f r’ d<p = «gaza.
0

3.11: Aus dem rechtwinkligen Dreieck OAP (Bild L.3.ll) folgt unmittelbar

r(q2) = Zro cos (q: —— (pa).

Bild L.3.11. Zu Aufgabe 3.1l

3.12: Wegen r(—zp) = r(¢J) ist die Kurve symmetrisch zum Strahl (p = 0. Den Verlauf der Kurve
findet man mit Hilfe einer Wertetabelle. Im Bild L.3.12 auf Seite 13l ist die Kurve dargestellt. Aus
r = 2a cos tp + 2a folgt

r’ = -2a sin gv, r" = —2a costp,
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Y

Bild L.3. 12. Kardioide

ds = 2a Jzu + cos (p) dq: = 2a «/4 cos’ (zp/2) dtp = 4a [cos (<p/2)]- dqz.

Da sich zp bei einem Umlauf von 0 bis 21c ändert, ergibt sich für die Bogenlänge

21: n:

.s'(27:) = 4a f ICOS (IP/Z)! dm = 8a f COS (tp/2) dip = 8a ° 2[sin (tp/Zflg = 16a,
0 0

denn es gilt s(27c) = 2:(7r) und lcos (tp/2)] = cos (tp/2) für 0 g (p g 7c. Für den Krümmungsradius
erhält man aus (3.41) mit '

Jr‘ + (r')2 = 4a [cos (qz/2)[, r’ — rr” + 2(r’)2 = 12a‘(1 + cos gv) = 24a’ cos‘ (zp/2)

den Ausdruck

8 8
an») = T” |c0s<<p/2)|. 2(0) = 7a.

Schließlich findet man für den Inhalt der von der Kurve umschlossenen Fläche

21: 7: 7:

F= -} fr’ dzp = f 4a2(l + coszp)‘ dzp = 4a’ f (1 + Zcosqz + cos2(p)dqJ
0 o o

= 4a’([<.vlI§ + Zlsin W.‘ + [<17/2 + sin 2<P/413) = 6a‘rr.

3.13: Aus Bild L43.13 erkennt man, dal3 0, P, P‘ stets auf einer Geraden liegen. M sei der ge-

meinsame Mittelpunkt der Strecken PP‘ und AB. Dann gilt r = 0M + MP, r‘ = OM — MP‘
= OM-MP, (OM)’ = a2 — (A701 sowie (MP2): b’ — (m); Damit findet man

r ' r‘ = ((W)2—(1T°)’ = a’ —— (/T17)’ — b1 + (A7\7)’ z a’ — b’. Nimmt man an, daß sich Pauf
einer Geraden bewegt, die nicht durch 0 geht, ihre Polargleichung (vgl. Aufgabe 3.9) laute r =

rosinoc d f“ * a2-b2 i (a2—b2) _ _ aZ-bz 1:

sin(oc—4p)' an“ 0g r — r — rosinoc sm(a—‘P)_ rosinoa ms (p+ 2 o‘ '
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Bild L.3.13. Zu Aufgabe 3.13

Zieht man von Oden zur Geraden senkrechten Strahl OQ, so ist<’,[ P*0Q = j; (q: + ä — a). Wählt man

auf dem Strahl OQ den Punkt/10 mafia : Sm a

und d: P"‘0A° = j; (q) + g -— a) , daß <I A°P*0 ein Rechter ist. Da dies für jedes tp, für den P
\

auf der Geraden liegt, zutrifft, bewegt sich F‘ auf dem Kreis mit dem Durchmesser 0A0.

, so folgt aus r*= öÄ-ocos (zp+ l2:- —oc)

3.14: Die Gleichung der Evolute ergibt sich aus der Parameterdarstellung (3,42), wenn man_hie@

y’, y” mit Hilfe der Parabelgleichung y’ = Zpx ausdrückt. Man erhält 5 = 3x + p, 17 : ZF4x \/x/\/Zp
als Pammcmdarstellung der Evolute der Parabel, wobei die Quadratwurzel mit doppelten

27
Vorzeichen auftreten kann. Elimination von x ergibt (E — p)3 = T1977’. Dies ist die Gleichung einer

Neilschen Parabel. Sie ist symmetrisch zur x-Achse, wenn man beachtet, daß die E-Achse mit der
x-Achse und die n-Achse mit der y-Achse identisch ist. Sie hat bei E : p, 17 = 0 eine Spitze. Ersetzt
man in der Parameterdarstellung der Evolute x durch t, 0 S t < +00, so folgt .5 = 3! + p,

17 = IF4t\/i/\/Z. Für die Parabel ergibt sichx = 1, y : \/2_Tmit 0 g I < +oo, WOT einen reellen
Parameter bezeichnet. Um den Schnittpunkt beider Kurven zu erhalten, setzt man 1 = 3t + p,

—\/2p7= —-4t\/;/x/Z. Hieraus folgt- \/2p(3r + p) = —4t\/i/x/5 und nach Quadrieren 2p(3t +p)
8 3

= —;— bzw. 4t3 = 3122! + p’. Man sieht, daß t1 = p eine Lösung dieser Gleichung ist und findet

1, = 4p und damit als die Koordinaten eines Schnittpunktes S, beider Kurven E, = 4p = x1,

n1 = v2 x/Zp = yl. Ein zweiter Schnittpunkt ergibt sich daraus durch “ iegelung an der x-Achse.

Er hat die Koordinaten ,2 = x, = 41;, n, = ‚v2 = 2\/2p. Die kubische Gleichung besitzt noch eine

Doppellösung t2 = ts = — L;-, die aber zu keinen reellen Schnittpunkten der zwei Kurven führt.
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3.15: Rolli eine Kurve auf einer Geraden ab, so führt diese Gerade relativ zur Ebene der Kurve
ebenfalls eine Bewegung aus. Diese Relativbewegung soll als Abrollen der Geraden auf der Kurve
bezeichnet werden. Eine Evolvente einer Kurve entsteht nun, wenn eine Gerade auf dieser Kurve
abrollt, indem jeder Punkt der Geraden eine solche Evolvente in der Ebene der Kurve beschreibt.

Bild L.3.15, Kreisevolveme

Im Fall des Kreises ergibt sich aus Bild L.3.15 x = 57 = 57+ I37, y = E: ITP’——

Mit OP’ : acosqz, MX= MA = aq7,P’X’= PX= am sinzp, MP’ = a simp und MP = aqJc0s<p

erhält man x = a cos gv + mp sin q», y x a sin (p — mp cos zp. Daraus folgt

ds=JG57$?;:5F5d¢=aWN%
Nimmt man an, daß q: > 0 ist, so hat man ds = mp dqw, woraus durch Integration

(l

s@=fW®=wW
0

folgt.

Es ergibt sich mit \/X‘ + j!’ = my und — ‚v; = (am):

9 = WP)’/0’ 2 = aw.

Betrachtet man die durch einen beliebigen Punkt X der Kreisevolvente gehende Normale, so berührt
diese den Kreis in einem Punkt M. M ist der zu X gehörige Krümmungsmittelpunkt und der Krüm-
mungsradius g = MX ist gleich der Länge aq: des Kreisbogens, auf dem die Gerade abgerollt ist.

3.16: Führt man nach Bild 3.23 ein rechtwinkliges Koordinatensystem mit dem Ursprung 0 und
der x- bzw. y-Achse ein, so umhüllt das Brett von der Länge I bei der Einführung in den Hohlraum
eineAstroide.DieGleichungdieserAstroide lautet x": + y:/' = 12/’, Damit das Brett eingeführt werden
kann, muß die Höhe der Öffnung mindestens so groß sein, daß die Hüllkurve durch die Öffnung in

l0 Schöne, Difierentialgemuotrie
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das Innere verlaufen kann. Es muß also die Ordinate y der Kurve an der Stelle x = a kleiner sein

als die Höhe h ders Öffnung. Es gilt a‘/’ + y‘/‘ =17“ bzw. y = (x/1‘/‘ — a‘/‘)3. Mithin findet man

h g 1’/’ f 12‘/’) als Bedingung für das ungehinderte Einführen des Brettes bei Vernachlässigung
der Brettdicke.

In Wirklichkeit muß h größer sein als die errechnete untere Schranke, weil das Brett eine end-

liche Dicke hat. Ist die Brettdicke d klein gegen I, so ist h 2 (\/1’/‘~a‘/’ 3 + A. Dabei ist
A = d/cos a, und cc ist der Neigungswinkel der Tangente der Hüllkurve an der Stelle x = a. Es gilt
tanoc = —\/1’/‘ — a’/’/a’/’ ‚ woraus mit cosoc = 1/x/l + y” schließlich A = a'(I/a)’/' folgt.

3.17: Da die Astroide eine Kurve mit vier Spitzen ist, muß, wenn sie eine Hypozykloide sein soll,
R :r : 4: 1 und I z r sein. Nach Aufgabe 3.4 lautet die Parameterdarstellung einer Hypotrochoide
für R = 4r, l= r, x, = 3r C051]! + rcos (319), x; = 3r sin (p -— r sin (Stp). Wegen cos (w) : C053 1/)

— 3 cosw sin7y1, sin (31p) = 3 cos’ 1/1 simp — sin31p ergibt sich

x, = r(3 cosip + cos3ip — 3 cos u: sin21p)= r(3 cosw(l — sinzzp) + cos3zp) = 4rcos31p,

x2 = r(3 simp — 3cos’1p simp + sin31/1). = r(3 sinw(1 — coszw) + sin3zp) : 4r sin3w.

Damit erhält man wegen 4r = R schließlich

x1 = R cos3tp, x2 = R sin3Ip.

Das ist aber die Parameterdarstellung einer Astroide. Demnach ist eine Hypozykloide mit dem
Radienverhältnis R : r = 4: 1 stets eine Astroide.

3.18: Die Gleichung der Normalen durch den Punkt X(x, y) der ebenen Kurve mit der Gleichung
y =f(x) lautet (wobei S, t7 die laufenden Koordinaten sind, vgl, (3.17)) (7) —f(x))f’(x) + (E — x): 0.
Um die Hüllkurve dieser Geradenschar zu bestimmen, diflerenziert man diese Gleichung nach dem
Parameter): und erhält —-(f’(x))’ + (11 ~f(x)) ”(x) — 1 = 0. Hieraus folgt 17 =f(x) + [l -}- (f’(x))z]/f”(x)
und nach Einsetzen in die ursprüngliche Gleichungä = x —f’(x) [l + (f’(x))’]/f”(x). Diese beiden
Gleichungen für E und 17 stellen eine Parameterdarstellung der Evolute der Kurve y = /'(x) dar
(vgl. (3.42)). Die Normalen einer ebenen Kurve umhüllen bekanntlich die Evolute dieser Kurve.

3.19: Die Mittelpunkte der Kreise der gegebenen Kreismannigfaltigkeit liegen auf einem Kreis mit
der Gleichung (x — d/2)2 + U’); = (d/2)’. Ein beliebiger Kreis der Mannigfaltigkeit hat die Glei-
chung xz + y’ — Zxd cos’ ac — Zyd cos zx sin oz = 0. Mit den Beziehungen 2 sin o: cos a = sin 2a
und Zcos’ zx z l + cos 2a ergibt sich daraus x2 + y’ — xd(l + cos 2a) — yd sin 2o: = O. Um
die Hüllkurve dieser Kurvenschar zu erhalten, differenzieren wir die letzte Gleichung nach dem
Parameter 0c und erhalten zusammen mit der ursprünglichen Gleichung das System

xdcbs 2o: + ydsin 20c 2 x2 + y’ — xd,

—yd cos 20c + xd sin 2o: = 0. G)

Um on zu eliminieren, faßt man cos 2a und sin 2zx als Unbekannte auf und findet für x, y =|= 0

cos 2a = x(x’ + y’ — xd)/[d(x’ + .v’)], sin 20c = ybc’ + y’ - xd)/[d(x’ + y’)]-

Wegen C052 2zx + sin’ 2oz : 1 ergibt sich (x2 + y’) ((x2 + y’): — 2xd(x’ + yl) — dzy’) = 0.
Da x = y = Oder Bedingung (*) genügt, besteht die gesuchte Hüllkurve aus dem Ursprung 0 und
allen Punkten mit reellen Koordinaten x, y, für die der zweite Faktor verschwindet. Damit erhält
man (x2 + yz)’ — 2xd(x2 + y’) — dzyz = 0 als Gleichung für die Hüllkurve. Um die Art der Kurve
noch besser zu erkennen, führt man Polarkoordinaten ein. Man setzt x = r cos (p, y = r sin q: und fin-
det r2(r’ —— Zrd X cosq: —— dz sin’ (p) = 0, woraus r : 0 und r’ — 2rdcos<p — d’ sin’ q; = 0
folgt. Nach Auflösung ergibt sich r = d coscp j: a’. Dies stellt bei beiden Vorzeichen die Glei-
chung ein und derselben Kardioide dar (vgl. Aufgabe 3.12), Die gesuchte Hüllkurve ist eine Kar-
dioide, deren Spitze im Ursprung 0 liegt und die symmetrisch zur x-Achse ist, wobei der Kreis,
aus dem die Kardioide abgeleitet werden kann, der Kreis der Mittelpunkte ist.
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4.1: a) Zerlegt man die vektorielle Parameterdarstellung in drei skalare Gleichungen, so erhält man
x, = a sin u‘ cos a2, x; = b sin 141 sin u’, x3 = ccos u‘, 0 g u‘ g 1:, 0 g u’ g 27:. Dividiert man

jede der drei Gleichungen durch a bzw. b bzw. c, quadriert und addiert, so ergibt sich

(x1/:2)‘ + (x2/b)‘ + (x3/c)’ = sin’ u‘ cos‘ u’ + sin’ u‘ sin’ u’ + cos’ u‘
: sin’ u‘(cos’ u’ + sin’ u’) + cos‘ u‘ = sin’ u‘ + cos’ u‘ = 1.

Das ist die Gleichung eines Ellipsoides mit den Halbachsen a, b, c und dem Mittelpunkt O(O‚ 0, 0).
Für die Ableitungsvektoren findet man

x„I = a cos u‘ cos 142i 4- b cos u‘ sin uzj —— c sin u‘k‚
x„2 = ~11 sin u‘ sin uzi + b sin u‘ cos uzj.

Damit erhält man für die gm:
gn = a’ cos’ u‘ cos‘ u‘ + b’ cos’ u‘ sin’ u’ _+ c2 sin’ u‘,
gm = —(a‘ — b’) cos u‘ sin u‘ cos u’ sin u’,
822 = a’ 5in2 u‘ sin: u’ + b’ sinz u‘ cos‘ u’. .

Das Gaußsche u1,u2~Koordinatensystem ist hier nicht orthogonal, da i. allg. gm + O. Die Dar-
stellung ist in den Punkten C,(u‘ = 0, 0 g u’ g 21:) bzw. C2(u1 = ‘It, 0 g 142 g 21:) nicht zulässig,
da I in C1, C2 den Rangl hat. Für u’ = C erhält man die u‘-Linien. Es gilt x2/x1 = btan C/a.
Die u‘-Linien sind die Schnittkurven der durch die xg-Achse gehenden Ebenen x2 = mxl mit dem
Ellipsoid. Es sind Ellipsen. Für die uz-Linien gilt u‘ = K. Dann folgt x, = c cos K, (xl/a)’ + (x2/b)’
= sin’ K. Die uz-Linien sind die Schnittkurven des Ellipsoides mit den zur x1 ‚ X2-Ebene parallelen
Ebenen x3 = const. Daher sind die uz-Linien ebenfalls Ellipsen.

2

Bild L.4.1. Gerader Kreiskegel

10"
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b) Die u‘-Linien (u: = C) x, = u‘ cos C, X2 = u‘ sin C, x3 = au‘ sind Geraden durch 0.
Die uz-Linien (I41 = K)x‚ = Kcos u’, x2 = Ksin M2, x3 = aK sind wegen x} + xi: K’, x3: uK
Kreise in Ebenen parallel zur x1 ‚ xz-Ebene, deren Mittelpunkte auf der xyAchse liegen.

Jede ul-Linie schneidet alle u’-Linien, denn für u‘ = K folgt x, = Kcos C, x2 = Ksin C,
x3 = aK und die Koordinaten dieser Punkte erfüllen die Gleichungen der uz-Linie x} + xä = K’,
x3 = 11K. Daher ist die durch die Parameterdarstellung gegebene Fläche ein Rotationskegel mit
der Spitze in 0 und der xJ-Achse als Kegelachse. Die u‘—Linien sind die Mantellinien des Kegels,
und da —oo < u‘ < +00 gilt, ist der Kegel ein Doppelkegel. Die Ableitungsvektoren lauten

x„1 = cosu2i+ sinu’j+ ak, x,,2 = —u‘ sin uzi + u‘cosu’j.
Hieraus folgt

811 = x..I 'x..* = l + a’, £12 = x.» 'x..2 = 0. :22 = X142 i w = (u‘)‘.
Die Parameterdarstellung ist in den Punkten Q(u‘ = 0, 0 g u’ S 277, nicht zulässig, da I in Q
den Rang 1 hat. Der Ursprung 0 ist ein singulärer Punkt der Fläche (s. Aufg. 4.2).

4.2: Die Matrix I (vgl. 4.1.1,) hat für einen beliebigen Punkt Xder Fläche die Gestalt

cos u’ —u’sin u’

I(X) = sin u’ M1 cos u’ = (x„1, x„2),

a 0

wobei x„n, x„2 als Spaltenvektoren zu schreiben sind. Für den Punkt O gilt u‘ = m}, = 0,0 g n2

g 27:. Wie bereits in der Lösung zur Aufgabe 4.I.b) bemerkt wurde, hat I (0) den Rang 1, und 0 ist
singulär bezüglich der gewählten Parameterdarstellung x(u‘, u’). Um zu zeigen, dal3 0 bezüglich
jeder zulässigen Parameterdarstellung der Fläche singulär ist, führen wir mit Hilfe einer zulässigen
Koordinatentransformation u‘ = a1 w‘, 112), u’ = uz (ül, ü’) neue Koordinaten ül, ü’ auf der
Fläche ein (vgl. 4.1.8.). Der Punkt O wird dann im ülüz-Koordinatensystem durch ein Ko-
ordinatenpaar (I25, 12.2,) repräsentiert, das die Bedingungen u‘ (123,173) ‚= 0, 0 g u’ (üä, üä) § 27: er-

füllt. Die Matrix I(X) lautet im neuen System

l .. 1 2

I(X) = (x,,A(u‘, 112% + xuz (:41, 112) , xMx(u‘,1z2):g:2 + xuz (n1, n2) .

I

Darin sind die Größen u’, %, i, k = l, 2, Funktionen von ü‘, ü’. Wir erhalten aus I(X) wegen
u

u‘ = uä = 14'075, üä) = 0 und x„2(0‚ u’ (123,113)) = 0 für den Punkt O die Matrix

, Ö l ‚ _ Ö l
1(0) = xix (o, ms. up) o, x.» (o. «m, us» )

o,

1 du‘ 3 bu‘
cosu 327)‘) cosu 0

l 1

= sin u‘ sin £12

61/ o Öu 0

D111 OM’ \

a —— a T

Öü‘ 0 Öüz )o
Sie besitzt zwei zueinander proportionale Spaltenvektoren und hat den Rang 1, unabhängig davon,
wie man das neue Koordinatensystem ü‘, ü’ wählt. Daher ist der Punkt 0 bezüglich jeder zulässigen
Parameterdarstellung der Fläche singulär, und 0 ist ein singulärer Punkt der Fläche.

4.3: Die Ableitungsvektoren lauten x„x =i + §(u‘ — l) k, x„x = „j. Daraus folgt gm = 1

+—3(u‘ — I)’, gm : O, gz; = ä. Um eine Böschungslinie zu erhalten, setzt man zunächst
u‘: u‘ (t). u’ : 142(1). Damit wird auf der Fläche eine beliebige Kurve definiert. Der Tangenten-
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Vektor i: einer solchen Kurve lautet i: = xuvé" uni‘ + xumz. Setzt man für x„v, ü’ die ur-

sprünglichen Ausdrücke ein, so erhält man i: = + £122)’ + au‘ e l) ü‘k. Soll die Kurve eine
Böschungslinie bezüglich der xx, x2-Ebene sein, so muß der Winkel zwischen i und der x3-Achse
konstant sein. Es gilt daher für alle t

t . 1 _; ‘lC0S(i’k):%:% :K'-”‘" l [<1+ »9—<u*~1)‘><u')= + 7022)]

Nach kurzer Rechnung findet man die Differentialgleichungen

Iii‘! m» — n2 <1 — K=> — K= — M ‘-fl = o

bzw. mit geeignet gewähltem Vorzeichen des zweiten Summanden

u! /%-(u‘—1)Z(1—K —K’j;u‘%=0.
Für die Lösung u‘ macht man den Ansatz —;—(u‘ — 1)’ (1 — K’) = K’ cosh’! bzw. wegen
cosh t g 0 für alle t

3lK Iu‘ = ijcosht ' 1.
2 -\/1 ~ K’ T

Dann folgt für t g 0 wegen |sinh tl = sinh t nach Einsetzen in die Differentialgleichung

4 ‚ 6K
ü’ = i—ü‘ - ‘KL ‘sinhtf — i j——sinh’tK l ‘l . J1 _ K2

und nach Integration
2 3K . ‚

u = j; ———(cosht<smht v z) 7-14.
„/ 1 g K1

Es sei zunächst t g 0. Nimmt man an, daß die durch u‘ und u’ bestimmte Flächenkurve für t = I,
durch P(l,0‚ O) und für t = t2 durch Q(2 — cos 2, ä sinh 2 A cosh2 — 1, ä (cosh 2)’ —— ä) geht,
so ergibt sich für P

Xi = 1+ M101) = 1 ä 1410i) = 0;
x2 = ä u‘(r;) = 0 => u‘(r1)= 0;

X3 = ä ([l4‘(!n)]2 — 211101)) : 0
und für Q

x, = 1 + u‘(t2) = 2 — cosh2 ä u‘(t;) = 1 — cosh 2;
x2 = äuzaz) = l- sinh 2cosh 2 — 1 => 1420;) = 2 sinh 2 — cosh 2 —— 4;

X3 = ’§(['4‘(12)]2 — 214102)) = ésiflhz 2-

Damit haben wir vier Gleichungen für die vier Unbekannten t1, t2, K und A

3Ki cosht‚+l=O‚
3|K132g‘ ht +l=1— h2,2\/1fiK2 cos ; cos

3K .j; ————T(cosh t, sinh ti —— i‘) — A = 0,
\/ 1 — K

3K

J 1 — K2

In den ersten beiden Gleichungen muß das negative Vorzeichen gewählt werden, da sie sich wegen
cosh t g 0 für alle t sonst nicht erfüllen lassen. Die Vorzeichen der beiden letzten Gleichungen
stimmen überein, sind aber noch beliebig. Das System wird durch Probieren gelöst, wozu t, = 0

i (coshtz sinhtz—t2)+A=2sinh2cosh2——4.
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angenommen wird. Dann folgt aus der ersten und dritten Gleichung
l—3iL2—1 bzw. K2 T, A20,

2„/1—K2 x/l3
und damit aus der zweiten Gleichung

— cosh t2 == —cosh 2 bzw. t; = 2 (wegen r g 0 scheidet t2 = -2 aus).

Die letzte Gleichung legt das Vorzeichen von K fest. Es ist lillkl >0. Fango ist auch
i; - k ~ (u‘ — 1) ü‘ = (—cosh t) (—sinh t) g 0, womit K ebenfalls positiv gewählt werden muß,
also haben in diesem Falle die dritte und vierte Gleichung positives Vorzeichen. Man findet
schließlich

u‘ 2 1 — cosh t,
u’ = 2(cosh t sinh t — i),

Wenn t g 0 ist, so ist auch K < 0, und in den letzten Gleichungen ist das negative Vorzeichen
zu wählen. Das Ergebnis ändert sich dadurch nicht.

Die Kurve hat im Punkt P eine Spitze, deren Tangente parallel zur x1x3-Ebene ist. Die Kurve ist
keine geodätische Linie, weil die Flächennormale im allgemeinen ‚in keinem Punkt der Kurve
in der Schmiegebene liegt. Daher verstreckt sich diese Böschungslinie bei Abwicklung der Zylinder-
flache in eine Ebene nicht in eine Gerade, wie dies bei der gewöhnlichen Schraubenlinie der Fall ist.
Integration ergibt die Bogenlänge des Kurvenstücks von P bis Q:

2 2

:(P,Q) = +%cosh2I)sinh2t+sinh"tdt=f—‘%coshtsinhtdt= i61—3sinh22.

0 0

4.4: P(u‘, 0,f(u‘)) sei ein Punkt der gegebenen Kurve, der bei der Rotation dieser Kurve um die
x3-Achse einen Kreis mit dem Mittelpunkt M(O‚ 0,f(u‘)) und dem Radius u‘ beschreibt. X sei ein
Punkt dieses Kreises, der aus P durch Drehung um den Winkel u’ 2 <)fi PMX hervorgeht. Dann
gilt x1 2 u‘ cos u’, x2 2 u‘ sin u”, x3 2f(u‘), wobei x1, x2,x3 die Koordinaten von X sind. Da
der Punkt P beliebig auf der gegebenen Kurve wählbar ist, was in der Veränderlichkeit von u‘ zum

Ausdruck kommt, und außerdem auch der Winkel u’ in den Grenzen O und 27-: variiert werden kann,
ist X ein beliebiger Punkt der entstehenden Rotationsfläche. Die gefundenen Gleichungen sind daher
eine Parameterdarstellung dieser Rotationsfiäche. Es gilt dabei im allgemeinen 0 g u‘ < +00,
0 g u’ g 27-r. Die ul-Linien (uz 2 const) sind die Meridianlinien. Das sind die Schnittkurven der
durch die xg-Achse gehenden Ebenen mit der Fläche. Die Meridianlinien sind alle zur Kurve x3 2f(x1)
kongruent, weil sie durch Drehung aus ihr hervorgehen. Die uZ-Linien (I41 2 const) sind Kreise
mit dem Radius u‘, deren Ebenen zur x, ‚ xg-Ebene parallel sind und deren Mittelpunkte auf der x3-
Achse liegen.Die Ableitungsvektoren lauten: x„i = cos u’ i + sin uzj +f’(u1) k, x,,x = 214‘ sin 112i

+ ul cos uzj. Hieraus folgt gm = 1 +(f'(ti‘))’‚g„ = O, gz; 2 (u‘)"'. Da gm 2 0 ist, bilden die
ul- und uÄLinien ein orthogonales Netz.

4.5: Der Ursprung des orthogonalen x1, x2,x3-Koordinatensystems werde in den Mittelpunkt
der kugelförmigen Dachfläche gelegt. Dann gilt für die Dachfläche, da es sich um eine Halbkugel
handelt, die Parameterdarstellung x1 2 R sin u’ cos u‘, x2 2 R sin u’ sin u‘, x3 2 R cos u’
(B: 0 g u’ g ‘It/2, 0 g u‘ g 21:). Für das zylindrische Rohr ergibt sich die folgende Gleichung
(x1 2 R/Z)’ + (x92 2 R2/4 bzw. (x,)2 + (x,)’ 2 Rxl = 0. Setzt man die Parameterdarstellung
für die Halbkugel in die Gleichung für die Zylinderfiäche ein, so erhält man

R2 sin u2(sin u’ — cos u‘) 2 0.

Hieraus folgt sin a2 2 cos u‘ bzw. u’ 2 57: —— u‘. Es werde ein Viertel der Halbkugelfiäche nach
Abrechnung des von dem zylindrischen Rohr durchsetzten Teils mit F1 bezeichnet. Dann gilt mit
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a = b = C = R auf Grund von Aufgabe 4.la)‚ wenn man noch die Vertauschung von u‘ mit u’
beachtet,

E22=YRZ‚ 1912:0, é’n=R2sin2u2 und

\/g_r=R2|sinu’[=R2sinuz für Oéuzég.

Es ist

_ n12 rr/Z

F, = fs/gdu‘ du’ = R’ f I sinu’ du’ du‘
B u‘=0 u’=1r/2—u‘

n/Z

= R’ f cos(n/2 — u1)du‘ = R’.
o

Damit ergibt sich für die insgesamt verbleibende Fläche

F= nR’ + 2R’ w 5,14159R2.

4.6: Aus Aufgabe 4.1 a) ergibt sich und für den Flächeninhalt F der Oberfläche des Ellipsoids
findet man

21: n:

F= f f x/a’b’ cos’ u‘ sin’ u‘ + c’ sin‘ u1(a2 sin’ u’ + b’ cos’ u’) du‘ du’.
u’=0 141:0

Mit
£12 sin’ u’ + b’ cos’ ’ = A’, cos u‘ = z, ——sin u‘ du‘ = dz

folgt

I= — f du’ f x/a’b’z’ + c’(l — 22m1 dz,

wobei die Integration nach z unbestimmt ausgeführt wird. Es ist ‚

a’b’ — c’A’ = a’b’ — c’a’ sin’ u’ —— c’b’ cos’ u’ g a’b’ — c’a’ sin’ u’ — Ba’ cos’ u’

= a’b’ — a’ ’ = ’(b’ —- e’) > 0.

Daher kann man

2b2 _ ZAZ

a 2 f Z k;c A

setzen. Dann erhält man

I=—fdü2fCA\/l+ k’z’dz

=—cfA%du’(z\/l+k’z’+%ln(kz+x/l+k’z’)).

Setzt man für A, z die ursprünglichen Ausdrücke ein, so folgt
Zr:

F: —-gf Ja’ sin’u’ +b’cos’ u‘[cosu‘~/1+k2cos2u‘
0

+ % In [k cos u‘ + *\/1+ k’ cos’ u‘]]’[§ du’.
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Nach Einsetzen der Grenzen und Zusammenfassen ergibt sich daraus

Z1:

c f [_ Zfl J_ c(a1 sin’ u’- + bl cos‘ u’) - 1n< ab a x/rfib’ —— 02A’ ) ] duzv

F: — 7 C I x/a2b2 — c2(a2 sin’ u’ + b’ cos‘ u‘) ab + x/azb’ — 02A’
o

Erweitert man den Ausdruck unter dem Logarithmus mit

ab — \/W1?
und kürzt die Faktoren c und 2, so erhält man

F: 2ab7r — c211.

Dabei gilt für 1„ wenn man statt von 0 bis 27: von 0 bis g integriert und dafür den zusätzlichen

Faktor 4 vor das Integral schreibt

7:

a’ sin’ u’ + b’ cos‘ u’ [ab — x/flzbz — n’ (a2 sinz u’ + b’ cos‘ u’) 2
I = 4 du .

1 x/zfib’ — c’(a2 sin’ u’ + b’ cos’ u’) c x/a’ sin’ u’ + b’ cosz u’

Da dieses Integral nicht exakt auswertbar ist, soll es genähert mit Hilfe der Keplerschen Faßregel
berechnet werden:

ü
f1<x>dx~ b; (f(a)+4f(%)+f(b)).

Man erhält mit

IW%[ 2b z1n(a—„/a2—c2)+ 2(a’+b2)\/5
a — c c [2azb2—c’(a2+b‘)]‘/'

1n<ab\/§—\/2a2b2—~ c2(a2+b1) ) + a 1n(b—\/b2 — cl)!’
cx/a2+b2 \/b2— (:2 c

Damit ergibt sich als Näherungsformel für den Inhalt F der Oberfläche eines dreiachsigen Ellipsoids
mit den Halbachsen a, b, c

Fm 2ab‘n:—c2l[ b ln<a_‘/a2‘cz)+ a ln(b—‘/172-62)
3 b2 2 ca1——c’ c —c

4(a2 + b’) m( flbx/E — Jzaibz — c2(a2 + b’)
x/4flzb2 — 2c’(a‘ + b’) c a’ + b’ '

Im Fall b = a kann man das Integral I, exakt auswerten, und man findet für die Oberfläche F

F= 2:121: — (2c21r a/x/az -— c2)1u [(0 - Ja’ — 02)/c] .

Denselben Wert erhält man auch aus der Näherungsformel für das dreiachsige Ellipsoid, wenn

b = n gesetzt wird.

4.7: Die Wand des Gefäßes ist ein gerader Kreiszylinder und daher durch die Parameterdar-
stellung xi = rcos u‘, x; = r sin u‘, x3 = hu’, 0 g u‘ 5 27:, 0 ä u’ § 1 gegeben. Darin bedeutet
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r den Radius des Grundkreises des Zylinders. Die Lichtstrahlen mögen parallel zum Vektor I = icoszx
— k sinoc einfallen. Die Höhe h des Gefäßes und der Winkel cc sollen so gewählt werden, dal3 der
größte Teil des Gefäßbodens im Licht liegt. Das ist sicherlich dann der Fall, wenn h cote: < r ist.
X sei ein beliebiger Punkt der Gefäßwand, der von einem Lichtstrahl beleuchtet wird. Der im Punkt X
reflektierte Lichtstrahl ergibt sich dann nach dem Reflexionsgesetz durch Spiegelung des in X ein-
fallenden Lichtstrahls an der Flächennormale f in der von dieser und dem einfallenden Strahl be-
stimmten Ebene. Man findet mit g = rzh‘

i k
f=fl-_—x"—2=% —rsinu‘ rcos u‘ 0 =cos u‘i+siuu‘j.

‘/3 o o h

Bezeichnet man den Einheitsvektor des reflektierten Liehtstrahls mit 1*, so folgt 1* =l — Z(f - I) f.
Setzt man in diese Formel die Ausdrücke für l und f ein, so erhält man

I" = cos <x(1— 2 cos’ u‘)i — 2 cosoc cos u‘ sin u‘j — sin ock

= —cos o: cos Zu‘i — cos cc sin Zu‘j — sin oak.

Die reflektierten Lichtstrahlen der uz-Linie u‘ = const liegen in der Ebene mit der Gleichung

a,(y1 —— rcos u‘) + u‚(y2 — r sin u‘): O,

wobei y„ y; die laufenden Koordinaten eines beliebigen Punktes dieser Ebene bedeuten. Da alle
Lichtstrahlen, die die Gefäßwand in den Punkten einer uz-Linie treffen, zueinander parallel sind
und dies auch für die Flächennurmalenvektoren dieser Punkte zutrifft, sind auch die zugehörigen
reflektierten Lichtstrahlen zueinander parallel. Daher liegen diese reflektierten Lichtstrahlen alle
in einer Ebene, die die uz-Linie enthält und daher zur x, , X2-Ebene senkrecht steht. Die Gleichung
dieser Ebene hat daher die angegebene Form. Um die noch unbekannten Größen a, und a, zu be-
stimmen, setzt man die Koordinaten eines beliebigen Punktes eines reflektierten Lichtstrahls für
yl, y; ein. Die Vektorielle Parameterdarstellung eines solchen reflektierten Lichtstrahls lautet
y = x(u‘, u‘) + t I‘. Damit ergibt sich

y, = r cos u‘ + t(—eosa cos Zu‘),

y, = r sin u‘ + t(—cos o: sin Zu‘),

y3 = hu’ + t(—sin a).

Dies eingesetzt in die obige Ebenengleichung führt zu a‚(—i cos on cos Zu‘) + a2(— t cos a sin Zu‘) = 0.
Nach Division durch —t cosoc folgt daraus a,/a2 = — sin 2u‘/cos Zu‘. Die Gleichung der Ebene
der reflektierten Lichtstrahlen aller Punkte einer uz-Linie lautet demnach

y, sin Zu‘ — y; cos Zu‘ = r(sin Zu‘ cos u‘ —— cos Zu‘ sin u‘) = r sin u‘.

Die Gleichung der Schnittgeraden dieser Ebene mit der x, , xz-Ebene ‚lautet ebenso. Die Hüllkurve
dieser Geradenschar erhält man durch Differentiation nach dem Parameter u‘. Da jeder Punkt
dieser Kurve von einem Lichtstrahl direkt und außerdem noch von zwei infinitesimal benachbarten
reflektierten Lichtstrahlen beleuchtet wird, erscheint diese Kurve als eine hell beleuchtete Linie auf
dem Gefaßboden. Durch Differentiation erhält man mit der ursprünglichen Gleichung das Glei-
chungssystem:

y, sin Zu‘ — ‚v; cos Zu‘ = r sin u‘,

Zyl cos Zu‘ + Zy; sin Zu‘ = rcos u‘ .
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Die Lösung des Systems ergibt

‚v, = %(2 sin Zu‘ sin u‘ + cos Zu‘ cos u‘),

y; = % (-2 cos Zu‘ sin u‘ + sin Zu‘ cos u‘).

Eine kleine Umformung ergibt

‚v, = -;—(2sin2u‘ + l)cosu‘,

y; = ä (2 3in3 u‘) = r(sin3 u‘).

Dies ist eine Parameterdarstellung der gesuchten Hüllkurve. Mit sin u‘ = (y2/r)‘/3 und durch Ein-
setzen in die Gleichung von y, erhält man 4y% = r’(1 + 3(y2/r)2’3 — 4(y2/r)’) und schließlich
(4(y}+y%)—r2)3 — 27r“(y;)2 = 0, Bezeichnet man den auf der linken Seite der Gleichung
stehenden Ausdruck mit F, so findet man

Fy, = 24(4(.v§ + y%) — I2)’ Y1 ‚

Fy, = 24040’? + yä) - r’): y: - 54r‘‚v2.

Fry‘ = 384(4(.V? + y?) - r2)(,V1)’ + 24(4(.V§ + Vi’) - '2)’. ‘ ~

Fm; = 384(4(,v§ + y?) - r’) ylyzs

m. = 384<4<y% + ya) — r’) oz)‘ + 24<4(y§ + yä) — H) — s4».

Der Punkt X0 mit den Koordinaten yl = r/2, y; = 0 ist ein singulärer Punkt, denn es ist

F(r/2.0) = F° = 0, F31 = 0, F92 = 0, F31,‘ = 0, FEM = 0,

Fgm = —s4r'*, A° = (F§",2)’ — F31,‘ 1:32,2 = o.

In X0 hat die Kurve eine Spitze. X0 hat den Parameterwert u‘ = O, für den y,(u‘) ein Minimum
hat. In der Umgebung von X0 hat die Kurve keine Punkte mit kleinerer Abszisse als X0. Daher
hat sie in X0 eine Spitze. Außerdem berührt die Kurve den Kreis x} + xi = r’ in den Punkten
X,(0, r) und X2(0,—r). Die Kurve ist symmetrisch zur xl-Achse, wobei die yl-Achse mit der
xx-Achse und die yg-Achse mit der xz-Achse zu identifizieren ist. Die Kurve heißt auch sphärische
Katakaustik.

Bild L.4.7. sphärische Katakaustik
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4.8: Nach dem Satz von Meusnier und dem in (4,84) erhaltenen Ergebnis folgt aus Bild L.4.8

g=rsins, g0=rtans=rc> 0.

Aus y = a cosh ä + b findet man nach (3.26) §(x) = a cosh’ . §(x) ist der mit Vor-

zeichen behaftete Krümmungsradius der in die x,y-Ebene abgewickelten Umformlinie. Es ist
5(0) = a < 0und§(0) = —g0.

Im Punkt A (x = 0) ergibt sich go = —a und damit a = —rc. Für x = 0 isty = h. Demnach wird

b : h — a = h + rc und y(q)) = rc (1 — cosh ) + h. Die Parameterdarstellung lautet nun

x1(<p) = r cos q), x2(q2) = rsin qr, x3(4p) z rc (1 — cosh + h .

Der Hauptnormalenvektor n der Umformlinie hat die Gestalt
1

n 2‘j(-cCOS(p c0sh%+ sing; sinhg , —csinzpcosh%— cosqzsinhg, ——l).

COsh%\/l+c’

Der Normalenvektor f der Tangentialebene des Zylinders ergibt sich zu f = (—cos w, ——sin qz).

Hieraus folgt für jeden Wert von (p wie behauptet
c

tan e 2 c.sins: n-f=—f+c2 ,

Bild L.4.8
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