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1. Einfithrung und Grundiagen

1.1. Einleitung

Der vorliegende Band iiber Differentialgeometrie enthalt die fiir praktische An-
wendungen wichtigsten Bestandteile der Theorie der ebenen Kurven, der Raumkurven
und der Flichen. Dabei muBte beriicksichtigt werden, daB die Differentialgeometrie
fiir sehr unterschiedliche Anwendungsgebiete von Interesse ist.

Als solche Anwendungsgebiete kommen hauptsichlich Geodisie, Maschinenbau
und Physik in Betracht. Fiir die Geodisie diirfte die Flidchentheorie einschlieBlich
der Theorie der Abbildungen am wichtigsten sein. Fiir den Maschinenbau sind es
die ebenen Kurven und Raumkurven, die bei ebenen und rdumlichen Bewegungs-
vorgingen auftreten, aber auch die Flachentheorie, die iiberall dort ins Spiel kommt,
wo es um die Gestaltung der Oberflichen von technischen Objekten geht, so z. B.
bei Schneckengetrieben, bei achsversetzten Kegelrddern u. 4. In der Physik sind es
gleichfalls ebene Kurven und Raumkurven, sowie die GauBschen Koordinatensysteme
und ihre dreidimensionalen Verallgemeinerungen, die als spezielle Koordinaten-
systeme bei den verschiedensten physikalischen Problemen benétigt werden. Auch
die Relativititstheorie wird leichter verstindlich bei Kenntnis differentialgeometri-
scher Zusammenhéange.

Jedoch erhebt diese Aufzihlung keineswegs den Anspruch auf Vollstandigkeit.
Beispielsweise hat die stereographische Projektion Bedeutung fiir die Mineralogie,
und die Theorie der Raumkurven hat sogar Anwendung in der Textiltechnik ge-
funden. Vielmehr sollte man daraus erkennen, daf} es sehr schwierig ist, allen An-
spriichen gerecht zu werden und daB deshalb Kompromisse unvermeidlich waren.

Im Abschnitt 1.2. werden die fiir die Differentialgeometrie wichtigsten Grund-
lagen der Vektorrechnung zusammengestellt. Dadurch soll erreicht werden, daf3
der mit der Vektorrechnung weniger vertraute Leser die Kapitel iiber Kurven und
Flachen besser versteht. Wegen einer ausfiihrlichen Begriindung der angefiihrten
Formeln sei auf Band 13 ,,Lineare Algebra‘ dieser Reihe verwiesen. Zur Vertiefung
des Stoffes, zur Anregung und Weiterbildung des Lesers sind dem Text eine An-
zahl von Aufgaben beigegeben, deren Losung am Ende des Buches mitgeteilt wird.

SchlieBlich mochte der Autor es nicht versiumen, Herrn Prof. Geise, Herrn Prof.
Volmer und Herrn Prof. Greuel fiir wertvolle Hinweise und Anregungen zu danken.
Desgleichen danke ich dem Verlag, insbesondere Herrn Dr. Thiele und Frau Ziegler,
fiir das mir entgegengebrachte Verstiandnis. In der 3. Auflage konnten einige Méngel,
auf die mich Frau Dr. S. Meyer und Herr Prof. Sulanke aufmerksam machten, be-
seitigt werden. Fiir ihre Hinweise sei diesen Kollegen gedankt.

1.2, Grundbegriffe der Vektorrechnung

Da die Vektorrechnung fiir den Aufbau der Differentialgeometrie der Raumkurven
wie auch der Flachen ein niitzliches Hilfsmittel darstellt, sollen in diesem einleitenden
Kapitel die wichtigsten Eigenschaften von Vektoren und einige spéter benétigte
Gleichungen behandelt werden (vgl. auch Band 11 dieser Reihe).

Wir gehen von einem dreidimensionalen euklidischen Raum E® aus, in dem ein
orthogonales, kartesisches Koordinatensystem mit dem Ursprung O und den drei
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paarweise zueinander senkrechten Achsen x;, x,, x3 gegeben ist. Ein Vektor des
E? ist eine GroBe, die durch Betrag, Richtung und Richtungssinn bestimmt ist. Man
kann einen Vektor des E3 veranschaulichen'), indem man ihn als eine gerichtete Strecke
auffaBit, die im Raum parallel zu sich selbst beliebig verschoben werden kann. Die
Lange dieser gerichteten Strecke ist dann gleich dem Betrag des Vektors. Da die ge-
richtete Strecke in jeder Lage auf einer bestimmten Geraden des E® liegt, diese
Geraden aber alle zueinander parallel sind, d. h. dieselbe Richtung haben, wird die
Richtung dieser parallelen Geraden als Richtung des Vektors bezeichnet. SchlieB-
lich ist der gerichteten Strecke stets ein positiver Durchlaufssinn zugeordnet, der durch
einen Pfeil gekennzeichnet wird. Durch diesen Pfeil wird erklirt, welcher der beiden
Endpunkte der gerichteten Strecke der Startpunkt und welcher der Zielpunkt ist,
so daB eine Durchlaufung der gerichteten Strecke im positiven Sinn so erfolgt, da3
sie beim Startpunkt beginnt und beim Zielpunkt endet. Dieser positive Durchlaufs-
sinn der gerichteten Strecke wird als Richtungssinn des Vektors bezeichnet.

Wir betrachten nun eine spezielle Lage der einen Vektor u darstellenden gerichteten
Strecke A B, wobei A4 der Startpunkt und B der Zielpunkt dieser gerichteten Strecke
sein soll. Sind @, a,, a; die Koordinaten von 4 und by, b,, b5 diejenigen von B,

A3

/B

X7 X

Bild 1.1. Veranschaulichung eines Vektors

so stellt das Zahlentripel (u,, u,, u3) mitu, = by — ay,uy = by — ay,u3 = by — a;
den Vektor u dar. An diesen drei Zahlen dndert sich nichts, wenn man die gerichtete
Strecke parallel zu sich selbst im Raum verschiebt. Man schreibt u = (u,, u,, u3)
und nennt die drei Zahlen u; (i = 1,2, 3) die Koordinaten (Komponenten)?) des
Vektors u. Der Vektor mit den Koordinaten 0, 0, 0 heiBt Nullvektor und wird mit
o bezeichnet. Der Nullvektor hat den Betrag 0, jedoch keine Richtung und keinen
Richtungssinn. Ein Vektor des E® ist somit durch drei Zahlenangaben bestimmt.
Analog dazu ist ein Vektor des E? durch zwei Zahlenangaben bestimmt.

Zwei Vektoren u = (uy, u,, u3), v = (v, v, v3) heiBen gleich, wenn die ihnen
entsprechenden gerichteten Strecken gleiche Linge, gleiche Richtung und gleichen
Durchlaufssinn haben oder wenn jede Koordinate des einen Vektors gleich der ent-

1) DaB man einen Vektor als gerichtete Strecke veranschaulichen kann, bedeutet nicht, daB er
selbst eine gerichtete Strecke ist. Vielmehr ist ein Vektor eine arithmetische GroBe, die Rechen-
gesetzen geniigt, die in der Geometrie ihre Entsprechung haben.

2) In vielen Biichern werden die Koordinaten des Vektors als skalare Ko'mponenten bezeichnet.
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sprechenden Koordinate des anderen Vektors ist. Das heilt, es ist u = v genau
dann, wenn u; = vy, U, = v,, Uz = V3 ist.

Eine GroBe, die durch die Angabe einer einzigen Zahl bestimmt ist, bezeichnet
man als einen Skalar. Zum Beispiel ist der Betrag eines Vektors stets ein Skalar.

Ist 2 ein Skalar und u = (uy, u,, u3) ein Vektor, so versteht man unter Zu den Vektor mit den
Koordinaten Au, , Au, , Auz. Ist 2 > 0, so wird der Vektor Au durch eine gerichtete Strecke dargestellt,
die denselben Durchlaufssinn und dieselbe Richtung hat wie die den Vektor u darstellende gerichtete
Strecke, deren Linge aber das A-fache der Linge der u_darstellenden gerichteten Strecke betrigt.
Ist dagegen 4 < 0, so ist —2 eine positive Zahl. Daher hat die gerichtete Strecke, die den Vektor Au
darstellt, eine Linge, die gleich dem (—4)-fachen der den Vektor u darstellenden gerichteten Strecke

ist. AuBerdem hat Au die gleiche Richtung, aber den ent ten Richtt inn wie der Vektor u
(vgl. Bild 1.2). Hieraus folgt
70| = |2[ul.
4
A="3

u
Bild 1.2. Multiplikation eines Vektors mit einer Zah!

Fiir zwei beliebige Skalare 4, u gilt:
() w = (Auuy, Ay, dunz) = Mputy s puty , pus) = Auu)
= (phuy , whuy , pdus) = p(uy , My, Juz) = u(iu).
Si.nd u = (u;,u,,us) und v = (vy,v,,v;) zwei Vektoren, so kann man beide
addieren. Der Vektor u + v ist der Vektor mit den Koordinaten u, + v, u, + v,,
u3 + v;. Dieser Addition entspricht die Addition der die Vektoren u, v darstellenden

gerichteten Strecken mit dem gleichen Startpunkt nach dem Parallelogrammgesetz
(siehe Bild 1.3).

Bild 1.3. Geometrische Veranschaulichung der Addition und Subtraktion von Vektoren
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Es gilt dann stets
u+v=yv+u.
Denn es ist

u+v=(u +v,u + vy, u; + 03)
und -
V4+u= O +u,0;, + thy,03 + t3) = (Uy + 01,8 + 03, U3 + 03)

u+v.

1

Ebenso beweist man
+v)+w=u+(v+w.

Ein Vektor u heiBt Einheitsvektor, wenn sein Betrag, der mit u bezeichnet werden
soll, gleich 1 ist. Die gerichtete Strecke, die einen Einheitsvektor darstellt, hat stets
die Lange 1. Es seien E,, E,, E; die auf der x,- bzw. x,- bzw. x3;-Achse liegenden
Einheitspunkte mit den Koordinaten (1,0,0), (0, 1,0), (0,0, 1). Der gerichteten

Strecke 55, entspreche der Einheitsvektor i. Mit j bzw. k werden die Einheitsvek-
toren bezeichnet, die durch die gerichteten Strecken OE, bzw. OFE; dargestellt wer-
den. Es gilt dann
i=(1,0,0), j=1(0,1,0), k=(0,0,1).
Mit Hilfe der Einheitsvektoren i, j, k kann ein Vektor u = (u,, u,, u3) in der Form
u = ui + uyj + uzk (1.1

geschrieben werden.!) Diese Darstellung ist eindeutig, wenn alle Vektoren auf ein
und dasselbe Koordinatensystem bezogen werden. Man bezeichnet i, j, k als Basis-
vektoren. Basisvektoren miissen jedoch nicht unbedingt Einheitsvektoren sein. Ist
dies der Fall, so heiBlen die Basisvektoren normiert.

Damit aber drei Vektoren im E? eine Basis bilden konnen, miissen sie linear unabhingig sein.
Man sagt, daB} » Vektoren a;, a,, ..., a, linear unabhingig sind, wenn aus der Gleichung

Jiay + Aay + -+ Aa, =o,
WO 41,73, ..., 4 Zahlen sind, stets folgt, daB3
= T = R0

ist. Andernfalls heiBen die Vektoren linear abhingig. Im E? sind die Vektoren i, j, k linear unabhingig.
Vier oder mehr Vektoren des E® sind aber stets linear abhingig. Drei Vektoren, von denen keiner
der Nullvektor ist, sind linear abhingig, wenn mindestens zwei dieselbe Richtung haben oder wenn
alle drei parallel zu einer Ebene sind.

Das skalare Prodﬁkt der Vektoren a = a,i + a,j + ask, b = byi + b,j + b3k
ist durch folgende Gleichung definiert:

a-b = |a] [b] cosy. (1.2)

1) Die GroBe u,i wird vielfach als vektorielle Komponente des Vektors u in Richtung des
Vektors i bezeichnet. -
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Stellt man a und b durch gerichtete Strecken dar, die vom gleichen Startpunkt aus-
gehen, so ist y der Winkel, der von diesen beiden gerichteten Strecken gebildet wird,
und |a|, |b] sind die Langen der beiden gerichteten Strecken. Da man beide gerich-
tete Strecken immer in der beschricbenen Weise wihlen kann, nennt man y den
von den Vektoren a und b gebildeten Winkel und schreibt a - b = |a] [b] cos (a, b).
Das Ergebnis der skalaren Multiplikation zweier Vektoren ist stets ein Skalar.
Offensichtlich gilt

a-b = b-a (Kommutatives Gesetz).
AuBerdem gilt auch das distributive Gesetz
a‘(b+c)=a-b+a-c.

Zwei Vektoren heilen zueinander orthogonal, wenn die ihnen entsprechenden gerichteten Strecken,
falls man sie so wahlt, daB sie den gleichen Startpunkt haben, aufeinander senkrecht stehen. Sind
zwei Vektoren zueinander orthogonal, so verschwindet ihr Skalarprodukt. Ist dagegen das Skalar-
produkt der Vektoren a, b gleich null, d. h. gilt a-b = 0, so sind drei Fille méglich:

1) Einer der Vektoren a, b ist der Nullvektor.

2) Beide Vektoren a, b sind Nullvektoren.

3) Die Vektoren a, b sind zueinander orthogonal.

Aus dem Verschwinden eines skalaren Produktes kann daher nur dann auf die Orthogonalitit
der zwei Faktoren geschlossen werden, wenn keiner von ihnen der Nullvektor ist.

Die Einheitsvektoren, j, k sind paarweise zueinander orthogonal. Daher gilti-j=i-k = j-k=0.
Andererseits gilt i i = [i| |i| cos (i, i). Wegen cos (i, i) = 1 folgt daher i-i = 1. Ebenso ist j-j =1
und k * k = 1. Ein System von paarweise orthogonalen Basisvektoren heift eine orthogonale Basis.
Die von i, j, k gebildete Basis ist orthogonal und normiert. Eine solche Basis nennt man auch bis-
weilen orthonormiert oder orthonormal.

Sind 2 ein belicbiger Skalar und a, b irgend zwei Vektoren, so gilt
(Aa)-b =A(a-b) = a-(ib).

Fiir das Skalarprodukt der Vektoren a und b erhilt man, weil die Vektoren i, j, k
eine orthonormierte Basis bilden und weil das distributive Gesetz und die eben ab-
geleitete Beziehung gelten,

a b= (ai + ayj + azk) - (bii + b,j + bs3k)
abii-i+ abyi-j+ a;bsi-k + aybij-i+ axbyj-j

I

I

+ aybsj -k + asb ki + asbk-j + asbsk- k.
Hieraus ergibt sich
a-b = (aji + a,j + aszk) - (byi + byj + b3K) = a;b; + ab, + azbs.
Fiir den Betrag des Vektors a folgt aus
a-a = (a;i + aj + a:k) - (a,i + a5j + a;k) = a% + a} + a}

und
a-a = |a] |a] cos (a, a) = [a]?
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die Beziehung
la| =Va-a=1a +a} + d}. 13)

Das Vektorprodukt der Vektoren a, b wird mit a x b (lies a Kreuz b) bezeichnet.
Der Vektor a x b ist zu den Vektoren a und b orthogonal. Sein Betrag ist gleich
dem Flicheninhalt eines Parallelogrammes, das mit Hilfe der Vektoren a und b ge-
bildet werden kann, wenn man sie durch gerichtete Strecken mit dem gleichen Start-
punkt X darstellt. Dazu zieht man durch die Zielpunkte der beiden gerichteten Strecken
je eine Parallele zur anderen Strecke. Die beiden Parallelen schneiden sich in einem
Punkt D, der zusammen mit X und den beiden Zielpunkten der gerichteten Strecken
die Eckpunkte des erwidhnten Parallelogramms darstellt. Sein Flicheninhalt er-
gibt sich zu F = |a| [bt sin (a, b). Damit erhdlt man

|a x b| = |a| [b] sin (a, b).

Der Richtungssinn von a x b wird wie folgt festgelegt: »

Tragt man den Vektor a x b ebenfalls von X aus als gerichtete Strecke ab, so
steht diese auf der von a und b gebildeten Ebene senkrecht. Dreht man den Vektor a
um den Punkt X in der von a und b gebildeten Ebene, so daB er mit b zur Deckung
kommt und ist der von a bei der Drehung iiberstrichene Winkel der kleinere der
beiden mdoglichen Drehwinkel, so ist die Spitze des Vektors a x b so zu wihlen,

X

a

Bild 1.4. Das vektorielle Produkt zweier Vektoren a, b

daB die erwihnte Drehung des Vektors a von der Spitze des Vektors a x b aus be-
trachtet als eine zum Uhrzeigersinn entgegengesetzte Drehung erscheint. Es gilt
daher

axb= —(bx a).

Ohne Beweis sei angefiihrt, daB fiir die vektorielle Multiplikation das distributive
Gesetz gilt (vgl. [4], S. 38)

ax(Mb+c)=axb+axc bzw. (b+c)xa=>bxa+cxa.
Sind a, b zwei Vektoren, die auf die orthonormale Basis i, j, k bezogen sind, so gilt
i j Kk
axb=|a a a;

by b, b
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Hieraus erhilt man durch Entwicklung nach der ersten Zeile der Determinante

a X b =i(a,b; — asb,) + j(asb; — a,b3) + k(a b, — ab,).
Man erkennt, daB das Vektorprodukt verschwindet, wenn die zwei Vektoren a, b
die gleiche Richtung haben, das heiBt, wenn a,: a,: a; = by: b,: by ist oder wenn
sin (a, b) = 0 ist oder wenn einer oder beide Vektoren a, b Nullvektoren sind. Ins-
besondere gilt

ixj=k, jxk=i, kxi=j.
AuBerdem gilt
(Za) x b =A(a x b) = a x (4b).
Es gilt aber nicht das assoziative Gesetza x (b x ¢) = (a x b) X c.

Unter dem gemischten Produkt oder Spatprodukt der drei Vektoren, die auf die
Basis i, j, k bezogen sind, wobei

a=aji+aj+ak, b=>bi+byj+bk, ¢=ci+cj+ csk

ist, versteht man den Ausdruck

A a, a, as
(@axb)y-c=|b, b, by|=(ab,c). (1.4)
€y € C3

Da eine Determinante ihr Vorzeichen wechselt, wenn man zwei Zeilen miteinander
vertauscht, folgt

(axb)rc=a-(bxc), (ab,c)=(b,c,a)=1(ca,b)
(a,¢,b) = (c,b,a) = (b,a,¢), (a,c,b) = —(a,b,¢).

Geometrisch ist das Spatprodukt (a, b, c) gleich dem Volumen des von den Vek-
torena, b, ¢ bestimmten Spates’). Man kann einen solchen Spat als ein schiefes Prisma
mit der Grundflache des aus den Vektoren a, b gebildeten Parallelogramms (siehe Defi-
nition des Vektorproduktes und Bild 1.5) ansehen. Die parallelen Kanten dieses Prismas
gehen durch die vier Eckpunkte des Parallelogramms und sind zum Vektor ¢ parallel.
Die Deckfliche des Prismas ist ein zur Grundfliche kongruentes Parallelogramm.
Der Abstand von Grund- und Deckfliche ist die Hohe A des Prismas. Dann gilt
fiir das Volumen V dieses Korpers V' = Fh, wobei F den Flicheninhalt der Grund-

un

fliiche bedeutet. Es ist - x b ein Einheitsvektor in Richtung von a x b. Dann- gilt

la x b|
h= |:_>>z—%.c mit 2 > 0, falls ¥ (a x b, ¢) < 7. andernfalls # < 0. Demnach folgt
V=|axb ———— (a ) - ¢ oder wie behauptet ¥ = (a x b) - c.

1) Dabei ist das Volumen des Spates als eine skalare GroBe zu betrachten, die positiv oder
negativ ist, je nachdem, ob der Winkel zwischen den Vektoren a x b und c spitz oder stumpf
ist.
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Bild 1.5. Der durch drei Vektoren a,b, ¢, bestimmte Spat

Sehr oft braucht man auch den sogenannten Entwicklungssatz. Er lautet
(axb)yxec=(a-c)b —(b-c)a. (1.5)

Entsprechend gilt
aX((MXc=(@-c)b—(a-b)ec.

Man merkt sich beide Formeln leicht dadurch, daB auf der rechten Seite die Vektoren auBerhalb
der Skalarprodukte vorkommen, die auf der linken Seite in der Klammer stehen. Dabei kommt auf
der rechten Seite immer der Vektor auBerhalb der Skalarprodukte als erster vor, der auf der linken
Seite als mittlerer Faktor auftritt. Offensichtlich ist a X (b X ¢)==(a X b) X ¢, was man leicht
einsieht, wenn man a = j, b = j, ¢ = k setzt.

Mit Hilfe des Entwicklungssatzes kann man auch die Produkte
(axb)-(cxd) und (a xb)x(cxd

berechnen. Man erhalt

(@axb):-(cxd)y=(@-c)yb-d)—(a-d)(b-c). (1.6)
Ist ¢ = a, d = b, so folgt daraus
(axb)-(ax_b)=Iaxb|2=(a-a)(b-b)—(a~b)2. (1.7)

Fiir das zweite Produkt ergibt sich mit der Abkiirzunge x d=f
(@axb)yx(exd=(@xbxf=(@-f)b—(b-f)a
oder ausfiihrlich geschrieben

(axb)x(cxd=(,cdb—(bcd)a.
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Als nichstes soll auf eine elementargeometrische Beziehung hingewiesen werden,
die beim Kreis eine Rolle spielt.

Es sei ein Kreis k£ mit dem Mittelpunkt O und dem Radius r gegeben. Auf & liegen
zwei Punkte 4 und B. Einer der beiden durch A4, B begrenzten Kreisbdgen werde
mit b, seine Linge mit s bezeichnet. Durchlauft der Punkt X den Bogen b von 4
nach B, so iiberstreicht der Strahl OX den zu b gehorigen Zentriwinkel ¥ AOB.
Zeichnet man noch den zu k konzentrischen Einheitskreis £ (Mittelpunkt O, Radius 1)
und sind 4, B die Schnittpunkte der Strahlen O4, OB mit dem Einheitskreis, s0 i§£
das BogenmalB des Winkels % 40B gleich der Linge 5 des zum Zentriwinkel % 40B
gehorenden, durch 4 und—l—?—begrenzten Bogens b des Einheitskreises. Das BogenmaB
des Winkels ¥ 40B soll mit « bezeichnet werden. Es ist daher « = 5. Das Bogen-
maf des Zentriwinkels, der zum vollen Kreisbogen gehort, ist 27, Da sich die Lange s
des zwischen 4, B liegenden Kreisbogens b zur Linge des gesamten Kreises k& wie
die zugehorigen Zentriwinkel verhilt, folgt

§:2rm = 2w
oder
s = ro.

Durch Differentiation ergibt sich hieraus ds = r dx (Bild 1.6).

OA=r 0A=1

Bild 1.6. Lange eines Kreisbogens

Ist u(t) = uy(t)i + uy(t)j + us(t) k ein Vektor, der von einem Parameter ¢ ab-
hingt, und sind die drei Funktionen u,(t) (i = 1, 2, 3) stetig differenzierbar nach ¢,
so kann man den Ableitungsvektor

. di S A A A

i(0) = G = i1 + (0] + i) k
bilden. Fiir zwei von einem Parameter ¢ abhingige Vektoren gilt dann die Produkt-
regel vy —dev4uey

bzw. UXV) =axv+uxyv.
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In der letzten Gleichung darf die Reihenfolge der Faktoren nicht vertauscht wer-
den. Ist a(z) ein von ¢ abhingiger Einheitsvektor und 148t sich a(z) bilden und ist
vom Nullvektor verschieden, so ergibt sich a-a = 1 und hieraus a-a +a-a = 0.
Da beim skalaren Produkt die Faktoren vertauscht werden diirfen, folgt 2a- a = 0.
Nun ist a = 0 und a = 0. Daher sind a und a zueinander orthogonal. AuBerdem gilt
wegen da = ads, daB3 auch da auf a senkrecht steht. Bezeichnet man daher das
BogenmaBl des von a und a + da gebildeten Winkels mit do, so gilt |da| = d«x
(Bild 1.7).

a+da

/
Bild 1.7. Das Differential eines Einheitsvektors und seine geometrische Veranschaulichung

Unter einem Ortsvei(tor versteht man eine gerichtete Strecke, deren Startpunkt
der Koordinatenursprung und deren Zielpunkt ein beliebiger Punkt des Raumes ist
(Bild 1.8). Genau genommen ist ein Ortsvektor kein Vektor im Sinn unserer Definition,

X3

<

/&7'\2

X1

Bild 1.8. Der Ortsvektor eines Punktes X'
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denn er ist eine gerichtete Strecke mit dem festen Startpunkt O, wahrend ein Vektor
durch eine verschiebbare gerichtete Strecke dargestellt wird. Jedem Punkt des Raumes
kann ein Ortsvektor zugeordnet werden. Hat X die Koordinaten x, , x,, X3, so istdurch
'x = (X1, X, X3) = Xx,i + X,j + x3;k ein Vektor gegeben, der durch die gerichtete
Strecke OX veranschaulicht werden kann. Diese gerichtete Strecke stellt aber den
Ortsvektor des Punktes X dar. Umgekehrt kann jeder Vektor des E* durch eine ge-
richtete Strecke veranschaulicht werden, die der Ortsvektor eines durch diesen Vektor
bestimmten Punktes ist. Ist beispielsweise u = u;i + u,j + u3k ein Vektor des E3,
so wird durch ihi ein Punkt U mit den Koordinaten u,, u,, u3 bestimmt. Die ge-
richtete Strecke OU ist der Ortsvektor des Punktes U und veranschaulicht auBerdem
den Vektor u.

In der Differentialgeometrie werden Kurven und Flichen durch Vektoren, die
noch von gewissen Parametern abhéngen, dargestellt. Diese Vektoren werden stets
durch Ortsvektoren veranschaulicht. Die Spitzen der diesen Ortsvektoren entspre-
chenden Pfeile beschreiben das jeweilige geometrische Gebilde. Wir wollen daher
solche Vektoren als die das geometrische Gebilde beschreibenden Vektoren bezeichnen.
Differenziert man einen solchen ein geometrisches Gebilde beschreibenden Vektor
nach den Parametern, von denen er abhéngt, so erhilt man neue Vektoren — die
Ableitungsvektoren. Diese werden durch gerichtete Strecken dargestellt, die ihren
Startpunkt im Endpunkt des Ortsvektors haben, der den das geometrische Gebilde
beschreibenden Vektor veranschaulicht. .



2. Raumkurven

2.1.  Die Parameterdarstellung einer Raumkurve

Es werde im dreidimensionalen euklidischen Raum E* ein orthogonales karte-
sisches Koordinatensystem mit dem Ursprung O und den drei Koordinatenachsen
X1, X2, X3 betrachtet. Ein beliebiger Punkt X des Raumes wird durch drei Zahlen
X1, Xs, X3 — seine Koordinaten — bestimmt. Wir konnen die drei Koordinaten zu
einem Vektor X = (x;, X,, X3) zusammenfassen. Dieser Vektor kann durch eine ge-
richtete Strecke mit dem Anfangspunkt (Startpunkt) O und dem Endpunkt (Ziel-
punkt) X veranschaulicht wer_dfn, die mit einem positiven Durchlaufssinn von O
nach X versehen ist und mit OX bezeichnet werden soll. Diese gerichtete Streckeist
der Ortsvektor des Punktes X. Fiihrt man die drei paarweise orthogonalen Einheits-
vektoren i, j, k, ein, so erhilt man die Darstellung

X = x4 + x5§ + x3k. 2.1)

Wir wollen nun annehmen, daB die drei Koordinaten x,, x,, x5 eindeutige, reelle
und differenzierbare Funktionen eines reellen Parameters ¢ mit @ < ¢t < b sind.
Der Vektor x hingt dann von dem Parameter ¢ ab, was wir durch die Schreibweise

x(t) = x,()i + x2(1)j + x3(t) k 2.2)
bzw. durch

X(1) = (x,(1), x5(1), x3(2))
ausdriicken wollen. AuBerdem sollen die Ableitungen X,(t), %,(t), x3(¢) der drei
Funktionen x,(t), x,(t), x3(f) nach dem Parameter ¢ nicht alle drei an derselben Stelle
verschwinden. Erfiillt die vektorielle Funktion x(¢) die genannten Voraussetzungen,
so soll x(¢) eine zulissige Parameterdarstellung heiBen. Sind iiberdies alle drei Funk-
tionen x,(t) r-mal (r = 1) stetig differenzierbar, so soll x(f) eine zuléssige Para-
meterdarstellung der Klasse r heifen. Durchlduft der Parameter ¢ alle Werte des
Intervalls [a, b], wobei anstelle von [a, b] auch die Menge aller reellen Zahlen treten
kann, so beschreibt der Endpunkt X des Ortsvektors x = OX eine Kurve!) ¢. Diese

Bild 2.1. Darstellung einer Raumkurve durch Ortsvektoren

1) Diese Kurve heiBt auch Hodograph der vektoriellen Funktion x(¢) (vgl. [10], S. 6).
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Kurve ist, wenn die Funktionen x,(¢) keine Gleichung der Form a;x; + a,x,
+ as3x3 + a, = 0 mit konstanten Koeffizienten a; (nicht alle null) fiir jedes ¢ € [a, b]
erfiillen, eine Raumkurve. Das ist eine Kurve, die sich zwar in den dreidimensionalen
Raum, aber nicht in eine Ebene dieses Raumes einbetten 1dBt. Die Gleichung
a;xX; + a>x, + asxs + a, = 0 stellt eine Ebene dar, und wenn die GroBen x,(z)
diese Gleichung fiir alle ¢ erfiillten, so lige die durch x(¢) gegebene Kurve in dieser
Ebene und wire eine ebene Kurve. Im folgenden sollen aber die ebenen Kurven als
spezielle Raumkurven aufgefafit werden.

FaBt man den Parameter ¢ als Zeit auf, so wird durch x(#) die Bewegung des
Punktes X auf der durch x(¢) dargestellten Raumkurve beschrieben. In jedem Zeit-
punkt ¢ befindet sich der Punkt X an der Stelle der Raumkurve, die durch den Orts-
vektor x(¢) eindeutig festgelegt wird. Betrachtet man den Zeitpunkt 7 und den darauf
folgenden Zeitpunkt ¢ + At, so kann man den Differenzvektor

Ax = x(t + At) — x(1) (2.3)

bilden. Der Vektor Ax kann durch die gerichtete Strecke XX' veranschaulicht werden,

die den Endpunkt X des Ortsvektors x(#) mit dem Endpunkt X’ des Ortsvektors

x(¢ + At) verbindet. Die Gerade XX stellt eine Sekante des Kurvenbogens von X

nach X’ dar. Strebt Az gegen null, so riickt (er Punkt X’ auf der Kurve ¢ gegen den

Punkt X und die Sekante XX’ geht in die Tangente ¢, der Kurve ¢ im Punkt X tiber.

Um einen Richtungsvektor dieser Tangente ¢y zu erhalten, bildet man
dx x(¢ + At) — x(1)

X k() = lim

dt At—0 At @4

Der Grenzwert lautet ausfiihrlich geschrieben

xi( 4+ A i + x,(F + AN j + x3(2 + Ak — x;(0) i — x,(1)§ — x3(6) k

i :
= lim xl(’+AAt3 x5 +AAt3—x2(t) i+ xg(t+AAt2 — x3(t) k]
= lim Xt + AA? —x() +Alflfi> Xt + [Xi — x,(t) i
= 101 + %] + 2O k.

Hieraus folgt schlieBlich % O N s

Der Vektor x(7) hat die Richtung der Tangente an die Raumkurve im Punkt X mit
dem Ortsvektor x(¢) (Bild 2.2). Weitere Eigenschaften dieses Vektors werden im
Abschnitt 2.3. behandelt.

2 Schone, Differentialgeometrie
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%

*r

Bild 2.2. Die Vektoren Ax und (7) und ihre geometrische Bedeutung

2.2. Parametertransformationen

Ist eine Raumkurve ¢ durch die zulassige Parameterdarstellung x = x(¢) von der
Klasse r = 1 gegeben, wobei a < t < b gelten mdge, so kann man einen neuen
Parameter 7 einfiihren. Dies geschieht durch die folgende Transformation. Es sei #(z)
eine Funktion, die fiir alle 7 mit &« < v < 8 definiert und dort auch stetig diffe-
renzierbar ist. Der Wertevorrat der Funktion #(z) sei das Intervall [a, b]. Dabei
ist entweder #(x) = a, #(f) = b oder t(x) = b, #(f) = a und auBerdem

adeh + 0 fiir alle 7€ [a,b]. (2.6)
dr

Eine derartige Funktion #(z) heiBt eine zulidssige Parametertransformation. Die
Funktion #(7) heiBt eine zuldssige Parametertransformation der Klasse r, wenn sie
r-mal stetig differenzierbar ist. Die zuldssige Parameterdarstellung x = x(¢), die im
Intervall [a, b] definiert ist, geht durch die zuldssige Parametertransformation #(7)
in eine andere zuldssige Parameterdarstellung

x(7) = x(t(x)) @7

iiber, die im Intervall [«, ] definiert ist. Zwei derartige Parameterdarstellungen
heiBen zueinander dquivalent. Sie stellen geometrisch dasselbe Kurvenstiick bzw.
dieselbe Kurve dar. Es gilt

: dx, dr . dt
&= S0 @8

Man kann sich die Tatsache, daB dieselbe Kurve durch zwei verschiedene aqui-
valente Parameterdarstellungen gegeben sein kann, dadurch veranschaulichen, daf3
man ¢ und 7 als Zeit deutet. Dann beschreiben die zwei Parameterdarstellungen zwei
Bewegungsvorgénge, bei denen der Punkt X dasselbe Kurvenstiick innerhalb ver-
schiedener Zeitabschnitte mit unterschiedlichen Geschwindigkeiten durchlauft.
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2.3. Die Bogenlinge einer Raumkurve

Es sei ¢ eine Raumkurve mit der zuldssigen Parameterdarstellung x = x(#). Der
Parameter ¢ kann sich innerhalb des Intervalls ¢ < ¢ < b verandern. Wir unterteilen
das Intervall in n Teilintervalle, indem wir n — 1 zusitzliche Punkte zwischen @ und b
in folgender Weise einschalten. Es sei a =1, <t; <t <+ <ty <t,=b.
Diesen Parameterwerten entsprechen auf der Kurve ¢ diePunkte 4 = X,, X, X5, ...,
X,-1, X, = B. Wir verbinden diese Punkte durch einen geradlinigen Streckenzug S,.
Dieser Streckenzug S, wird sich der Kurve ¢ um so besser annahern, je feiner das
Intervall [a, b] unterteilt worden ist. Fiir die Lange /; der Teilstrecke X;_,X; des
Streckenzugs gilt

. FER
L= Ix(t) — x(t,-0)| = ,\/kél(xk(ti) = xti-1))* (2.9)

Damit erhalt man fiir die Lange L(S,) des gesamten Streckenzugs

umigmm—wunigjéymm—Mmm% @10

Wegen des ersten Mittelwertsatzes der Differentialrechnung (vgl. Bd. 2, Satz 6.3)
konnen wir schreiben

xt)) — Xiltics) = 55 (6 = tiy), wobei #y < TF <t fir k=1,2,3
und i = 1, 2, ..., n gilt. Damit ergibt sich

£s) = 3 £ @2 - 1) @11

Lassen wir n gegen oo streben, indem wir die Unterteilung des Intervalls [a, ]
immer mehr verfeinern, so wird aus der Summe ein (Riemannsches) Integral (vgl.
Bd. 2, 5. Aufl,, S. 161; [6], S.41-43; [9], Bd. 3, S. 98).

no T3
nlirg L(S,) = '121; P ,\/ = Ga@H)? (i = ti-1)

= f A/ ké Gi(0))* dt. (2.12)

Den Wert dieses Integrals bezeichnet man als die Bogenliange s(4, B) des Kurven-
stiicks von 4 nach B:

b=tn

s(4, B) = [ /322(0) + X3(t) + %3(r) de. (2.13)

a=t,

Dafiir kann man auch schreiben
b b
54, B) = [ Jx(@)yx(@)dt = [ |x()] dt. (2.14)

9%
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Ersetzen wir den festen Punkt B mit dem Parameterwert b durch einen auf ¢ be-
weglichen Punkt X mit dem Parameterwert ¢, wobei ¢ dem Intervall [a, b] angehdren
soll, so erhalten wir aus (2.14), wenn wir die Integrationsvariable in ¥ umbenennen
und beachten, daB ¢, = a gilt

5(t) = fll}k(u)l du. (2.15)

Die Funktion s(f) bezeichnet man als Bogenlinge der Raumkurve c. Sie hdngt
noch von dem willkiirlich auf ¢ gewahlten Anfangspunkt X, ab. Sehr oft benétigt
man auch die Ableitung von s(f) nach t. Durch Differentiation von (2.15) nach der
oberen Grenze ¢ ergibt sich

L o0 = ko = X 2.16)

Hieraus folgt

ds = |dx| = [x(t)| dt = /X(t)%(r) dt
bzw.

ds = G0 + (12())? + (%3(1)* dr. (2.17)

Der durch (2.17) gegebene Ausdruck fiir ds wird als Bogenelement der Raumkurve
bezeichnet:

Deutet man # wieder als Zeit, so stellt x = x(¢) das Bewegungsgesetz dar, mit der sich die Spitze X’
des als Ortsvektor aufgefaBten Vektors x(7) lings der Raumkurve bewegt. Der Vektor x(#) ist der
Geschwindigkeitsvektor dieser Bewegung. In der Tat ist wegen (2.16) |(r)| = ds/ds. Die GroBe
ds/dz ist aber gleich der Geschwindigkeit, mit der sich X lings ¢ zum Zeitpunkt ¢ bewegt. Da die
Richtung des Vektors %(z) mit der Tangentenrichtung in X tibereinstimmt, gibt der Vektor x(7) die
Bewegungsrichtung des Punktes X zum Zeitpunkt ¢ an. SchlieBlich stimmt der Richtungssinn des
Vektors %(#) mit dem Richtungssinn der Bewegung des Punktes X iiberein. Das heif3t, der Punkt X
bewegt sich in Richtung der Pfeilspitze des Vektors X(?).

2.4. Das begleitende Dreibein einer Raumkurve

Es werde angenommen, daBl die Parameterdarstellung x = x(¢) der Raumkurve ¢
zuldssig und von der Klasse r = 2 sei, d. h. mindestens zweimal stetig differenzierbar
ist. Der Tangentenvektor

X(t) = x1()i + x2(t)j + x3() k (2.18)
hat im allgemeinen in jedem Punkt X der Kurve ¢ eine vom Parameterwert ¢ ab-

hingige Lange. Mit Hilfe der Gleichung (2.16) ds/d¢ = |%(¢)| kann man die Bogen-
linge der Raumkurve ¢ als neuen Parameter einfiihren und erhlt

dx  dx dt x(1)
ds  dr ds T %@

=x. (2.19)
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Dabei bedeutet der Strich jetzt und auch im folgenden stets die Ableitung nach der
Bogenlinge.') Man erkennt, daB3 der Vektor dx/ds = x’ ein Einheitsvektor ist, denn
es gilt

no_ | 9x | _ xOI _ )
x| = raros 1. (2.20)
Man setzt
dx ., %) _
T T TR T @21)

und bezeichnet t als den (normierten) Tangentenvektor der Raumkurve c. Diffe-
renziert man x nochmals nach s, so erhilt man

L, dx o d X)) dt
=g =t=g ( x| ) a5 @22)
Mit |%(1)] = /X -  folgt hieraus
v g X(K-X) — k(X -X)
X‘'=t = & 07 (2.23)
Der Vektor t’ steht auf t senkrecht, da t Einheitsvektor ist (vgl. S. 14).
Wir setzen
n ¢ (2.24)

TR
Der Vektor n ist ebenfalls ein Einheitsvektor und steht senkrecht auf t, weil er dieselbe
Richtung wie t' hat. Der Vektor n heit Hauptnormalenvektor der Raumkurve c.

Wegen t' = i% = t(ﬁ) hat  dieselbe Richtung und denselben Richtungssinn

wie t'. Daher gilt

n = —|:—| ' (2.24")
Differenziert man die Gleichung t = _x_ nach dem Parameter ¢, so findet man wegen
Il =% .
(% X) — X(k %) ’
TS
Hieraus und aus (2.24") folgt mit (1.5)
_ KGR -XE®) _ (kx %) .25
[x x % [%] [% x X[ [x]
Bildet man das Vektorprodukt t X n, so erhdlt man einen dritten Vektor
b=txn (2.26)

1) Mit Ausnahme der Abschnitte 3.2. bis 3.7.
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Bild 2.3. Das begleitende Dreibein einer Raumkurve

Der Vektor b wird als Binormalenvektor bezeichnet. Er steht senkrecht auf t und n
und hat den Betrag 1.

Die drei Vektoren t, n, b denken wir uns als gerichtete Strecken vom Punkt X
der Raumkurve mit dem Ortsvektor x(¢) abgetragen. Dann bilden die drei Vektoren
t, n, b ein orthogonales gleichschenkliges Dreibein, das sich bei Bewegung des Punk-
tes X lings der Raumkurve ¢ mitbewegt. Deshalb heifit dieses Dreibein das begleitende
Dreibein der Raumkurve. Wegen der Definition des Vektorproduktes stellt das be-
gleitende Dreibein ein Rechtssystem dar. Das heifit, wenn man von der Spitze des
Vektors b auf die Ebene der Vektoren t und n blickt und den Vektor t durch eir=
Vierteldrehung in den Vektor n iiberfiihrt, so erscheint diese Drehung als eine Dre-
hung im mathematisch positiven Sinn (Gegenuhrzeigersinn). Es gilt n=b x t
und t = n x b. Setzt man in (2.26) fiir n den Ausdruck aus (2.25) ein und beriick-
sichtigt den Entwicklungssatz (1.5), so erhélt man

X X X

b= w .27)

2.5. Die Schmiegebene einer Raumkurve

Wir betrachten eine Raumkurve ¢ mit der zulissigen Parameterdarstellung x = x(#)
der Klasse r = 2 und x x % + 0. Auf ¢ sei ein Punkt X gegeben. Sind X, X, zwei
weitere Punkte der Kurve ¢, die in der Nachbarschaft von X, aber nicht mit X auf
ein und derselben Geraden liegen, so bestimmen die drei Punkte X, X, X, eine
Ebene ¢;,(X), der sie angehdren. Bewegen sich X; und X, auf der Kurve ¢ unabhingig
voneinander gegen den Punkt X, so geht die Ebene &;,(X) bei diesem Grenzproze
in eine Ebene o, iiber, die man als Schmiegebene der Kurve ¢ im Punkt X bezeichnet.
Da die Sekanten XX, bzw. XX, bei dem GrenzprozeB in die Tangente ¢, der Kurve ¢
im Punkt X iibergehen, enthilt oy die Tangente ty. Die Kurve ¢ beriihrt die
Schmiegebene oy im Punkt X.
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Bild 2.4. Ebene durch drei benachbarte Punkte einer Raumkurve

(F
X— C, x
T

Bild 2.5. Die zu einem Punkt einer Raumkurve gehorige Schmiegebene

AuBerdem hat die Ebene &;,(X) in jeder Lage mit der Kurve ¢ mindestens die drei
benachbarten Punkte X, X, X, gemein und wird daher von ¢ im allgemeinen in der
Umgebung von X durchsetzt. Da die drei Punkte bei dem Grenzprozef in den Punkt X'
zusammengeriickt sind, sagt man, daB3 die Kurve ¢ mit ihrer Schmiegebene oy min-
destens drei infinitesimal benachbarte Punkte gemein hat. Geometrisch bedeutet das,
daf die Kurve ¢ im allgemeinen die Schmiegebene oy im Punkt X nicht nur beriihrt,
sondern auch noch durchsetzt.

Die Schmiegebene oy ist diejenige Ebene, der sich die Kurve ¢ in der Umgebung
des Kurvenpunktes X am besten anndhert. Das heif3t, praktisch verlauft die Kurve ¢
in unmittelbarer Umgebung des Punktes X in der Schmiegebene oy.

Die Schmiegebene oy einer Raumkurve ¢ hangt natiirlich von der Lage des Punk-
tes X ab und andert sich, wenn sich x dndert. Eine Ausnahme machen hier lediglich
die ebenen Kurven, die in jedem ihrer Punkte die gleiche Ebene — nimlich die Ebene,
in der die jeweilige Kurve liegt — als Schmiegebene besitzen.

Es seien x(¢), x(¢ + %), x(t + k) die Ortsvektoren der drei Kurvenpunkte
X, X,, X,. Die Vektoren a = (x(t + h) — x(t))/h, b =(x(t + k) — x(¢))/k und

=1 kb : Z sind drei Vektoren der Ebene &,,(X). Entwickelt man diese Vektor-
funktionen nach Taylor (vgl. Bd. 2, Satz 6.8), so erhélt man (vgl. [6], S. 48-49)
a=xX(t) + 1%(t) h + o(h)")
b = x(t) + L X(t) k + o(k) (2.28)

7
o (0) — o(h).

¢ = X(t) +

1) Zur Bedeutung der Vektoren
o(h), o(k) vgl. Abschnitt 2.10.
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Fiir h— 0, k - 0 gehen die Vektoren a, b, ¢ in Vektoren der Schmiegebene oy
iiber'). Die zwei Vektoren a, b werden zu x(¢), der Vektor ¢ zu %(¢). Die Vektoren x(¢)
und X(?) spannen die Schmiegebene oy auf, wenn man sie als gerichtete Strecken an
den Punkt X der Raumkurve ¢ antrdgt.?) Bezeichnet man mit y den Ortsvektor
eines beliecbigen Punktes ¥ von oy, so lautet die Gleichung von o,

(y — x(2), X(t), X(2)) = 0. (2.29)
Der Ausdruck auf der linken Seite von Gleichung (2.29) bedeutet das gemischte Pro-

dukt (Spat) der in der Klammer stehenden drei Vektoren y — x(¢), x(f) und %(¢).
Da sich der Hauptnormalenvektor n wegen (2.25) in der Gestalt

%(% - %) — X(X+ ¥)
X x X| %]

schreiben 1aBt, liegen n und damit auch die Hauptnormale ny in der von X und %
bestimmten Schmiegebene oy. Die Schmiegebene oy eines Punktes X einer Raum-
kurve ¢ wird durch die Vektoren t und n ihres begleitenden Dreibeins in X aufge-
spannt. Die von den Vektoren t und b gebildete Ebene heiB3t rektifizierende Ebene
oder Streckebene, wihrend die von n und b aufgespannte Ebene Normalebene®) der
Raumkurve ¢ genannt wird.

Normalebene

Bild 2.6. Normalebene, Schmiegebene und Streckebene

Deutet man den Parameter ¢ als Zeit, so stellt die vektorielle Parameterdarstellung x(¢) das Be-
wegungsgesetz dar, unter dem sich der Punkt X entlang der Raumkurve ¢ bewegt. Die Vektoren
x(t) und X(7) stellen den Geschwindigkeitsvektor und den Beschleunigungsvektor dieser Bewegung
dar. Beriicksichtigt man dies, so kann man sagen, daB die Schmiegebene der Raumkurve c fiir den
Punkt, an dem sich X zur Zeit ¢ befindet, durch x(#) und X(z) aufgespannt wird.

1) Allerdings muB 4 # k sein, und -k~ darf nicht gegen 1 gehen, wenn 4 und k gegen null
streben. h

2) Dabei wird vorausgesestzt, daB x X X == 0 ist.

3) Jede Gerade in der Normalebene, die die Kurve c trifft, bezeichnet man als Normale der
Raumkurve c.
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2.6.  Die Kriimmung und Windung einer Raumkurve

Durch die drei Punkte X, X, X, ist in der Ebene ¢,,(X) ein Kreis k,(X) bestimmt.
Riicken X; und X, gegen X, so geht der Kreis k,,(X) in einen Kreis k(X) in der
Schmiegebene oy mit dem Mittelpunkt M(X) und dem Radius o(X) = XM(X) iiber.
Dieser Kreis k(X) ist der zum Punkt X gehorige Kriimmungskreis. M(X) ist der
Kriimmungsmittelpunkt und o(X) der Kriimmungsradius.

Der Kreis k;,(X) enthélt die Sekante XX, . Diese geht bei dem Grenzprozef in
die Kurventangente 7y und in die Tangente an den Kriimmungskreis im Punkt X
iiber. Daher beriihrt der Kriimmungskreis k(X)) die Tangente ty (bzw. die Kurve ¢
im Punkt X) und sein Mittelpunkt M(X) liegt auf der Hauptnormale ny der Kurve ¢
in X.

Es seien X, X zwei benachbarte Punkte der Kurve ¢ und t, © = t + At die zuge-
horigen Tangentenvektoren. Bezeichnet man den Winkel zwischen t und t mit Ax
und die Bogenlinge des durch X und X begrenzten Kurvenstiicks mit As, dann
148t sich die Kriimmung oder Flexion » der Kurve ¢ im Punkt X wie folgt definieren:

. Ax dx
#X) ~;f!in; @G (2.30)

Der Kriimmungskreis k(X)) unterscheidet sich von der Kurve ¢ in der unmittelbaren
Umgebung des Punktes X sehr wenig, denn k(X) hat mit ¢ drei infinitesimal benach-
barte Punkte gemein.

Betrachtet man zwei infinitesimal benachbarte Punkte X, X und ihre Tangenten-
vektoren t, t + dt, so gilt |[dt| = dx, wobei do den Winkel bezeichnet, den diese
Vektoren miteinander bilden. Dann ist

de |dt| dt
ds

K= —— = — =

=% =1|t]. (2.31)

Damit ist die Kriimmung einer Raumkurve in keinem ihrer Punkte negativ. Mit
Hilfe von Gleichung (2.23) erhilt man fiir die Krimmung
v NEHE-D - R X x| _1 2.32)
(Vx-x) 1] 0
Die GroBe o = 1/x ist der Kriimmungsradius, und durch m = x(t) + gn ist der Orts-
‘vektor des Kriimmungsmittelpunktes M(X) gegeben. Der Kreis mit dem Mittelpunkt
M(X) und dem Radius p, der in der Schmiegebene oy liegt, berithrt die Raumkurve
im Punkt X und ist mit dem Kriimmungskreis k(X identisch.

Um dies einzusehen, betrachtet man den Kreis k;,(X) durch die drei Punkte X, X;, X,. Sind
x(1), X(#1), x(t;) ihre Ortsvektoren, m;, der des Kreismittelpunktes und g,, der Radius von k2,
so hat man

(XM2)? = (x(£) — m;2)? = (012)* = (X M12)* = (x(t;) — my2)? i=1,2.

Die Funktion Fj,(u) = (x(#) — my;)? — (0;2)* hat fiir u = t,¢,,¢, drei Nullstellen. Nimmt man
an, daB der Kriimmungskreis k(X)) existiert, so geht mit #; — ¢, #, — ¢ der Vektor m,, in m, den Orts-
vektor des Kriimmungsmittelpunktes, ¢1» in 9, Fio(4) in F(u) = (x(u) — m)®> — 0* und ky»(X)
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in k(X) tber. Die Funktion F(x) hat bei u = ¢ eine dreifache Nullstelle. Daher ist F(r) = F'(1)
= F”(t)=0. Hieraus folgt (x(t)—m)?—p>=0, F(1)=2(x(t)—m)-x(t)=0 und F"(t)
=2(x(f) —m) X + 2% X =0. Wegen t= % [X|~! steht x — m senkrecht auf t. Daher liegt
X(#) — m in der Normalebene. Andererseits liegt der Kreis A(X) und damit auch X und M(X) in
der Schmiegebene oy, daher x(r) — m auf der Schnittgerade von Normalebene und Schmieg-
ebene, d.h. auf der Hauptnormale. Mithin ist x(r) — m = an. Setzt man dies in die Gleichung
fiir F”(¢) ein, so ergibt sich on * X 4 X - X = 0, und wegen (2.25), (1.7) und (2.32) folgt

e XX EIRPEXE P X%
T @ 9E Y@ KXXP
L S
% X ¥| PR
Daher findet man & = —p und m = x(¢) + gn sowie

XM = |x(f) — m| = |on| = oln| = ¢
wie behauptet (vgl. [14], S. 67).
FaBt man in x(t) den Parameter ¢ als Zeit auf, so sind x und X der Geschwindigkéits-

und der Beschleunigungsvektor der Bewegung des Punktes X langs c. Es soll X in
Komponenten nach den Vektoren t und n zerlegt werden. Das ergibt

X = bt + bn (2.33)
mit b, = X - t, b,,=5i'~n. Man findet
> 4 X% v
=X —=——0u=X"X)=X=0=—
St By Wx-%) =14 "

Dabei wurde |X| = v gesetzt, wobei v die Bahngeschwindigkeit des Punktes X ist.
Durch b, = dov/dt ist die Tangentialbeschleunigung') gegeben. Aus (2.25) folgt
E-XHE-X)—-F-%* |k xX  |xxg

by=%-n= X = X% TRk x XX K

Beriicksichtigt man noch (2.31) und (2.32), so erhilt man wegenx = 1/o = |%x x X|/|x|?
= %? = —. . 2.34)
[%| g (

Die Beschleunigungskomponente b,, stellt die Normalbeschleunigung) des Punktes X
dar. Sie wird _auch gelegentlich als Zentripetalbeschleunigung bezeichnet. _

Sind bund b = b + Ab die Binormalenvektoren der benachbarten Punkte X und X
der Raumkurve ¢ und ist AS der mit einem Vorzeichen behaftete Winkel zwischen den
Vektoren b und b, so versteht man unter der Windung oder Torsion der Raumkurve ¢
im Punkt X die GroBe

Ag _dp
Jim 2= 5 - (2.35)

1) In der Technik werden Tangential- und Normalbeschleunigung mit a, und a, bezeichnet.
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Das Vorzeichen von 7 ist dabei positiv, wenn sich bei der Bewegung des Dreibeins

t,n, b von X nach X die Binormale b wie bei einer Rechtsschraubung bewegt. Ent-
sprechend diesem Sachverhalt ist der Winkel Af positiv, wenn der Vektor b bei der

Bewegung des Dreibeins von X nach X, blickt man in Richtung des den Vektor t

n

o
o

dab
Bild 2.7. Zur Definition der Torsion

darstellenden Pfeils, sich im Uhrzeigersinn dreht. Andernfalls ist der Winkel AB
negativ. Daher gilt df = 4|db|. Aus dem Bild 2.7 entnimmt man die Beziehung

db = —ndg. (2.36)
db dg
Daraus folgt % = "4 " bzw.
b = —m. (2.37)

Hieraus ergibt sich
s =@ - mn). (2.38)

Wegen b - n = 0 erhdlt man b’ - n + b+ n’ = 0. Daher ergibt sich

7= (b-n)=(t X n)-n'. (2.39)
' TN ST
Setzt man t=x',n = R—,—XWZ—- und n' = LSS )” x”(f x") , SO
JET X7
findet man

B (', x",x"")

T (X” N X”)

(2.40)

Bezieht man die Raumkurve auf den beliebigen Parameter ¢, so erhilt man nach
kurzer Rechnung
(%, X, X)

GRS @40
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Aufgabe 2.1: Man bestimme die Bogenlinge und das begleitende Dreibein der durch
x(t)= 4%+ 1nlf|j+ /2K
gegebenen Raumkurve fiir das Intervall 1 < ¢ < 4.

Aufgabe 2.2: Es ist die Krimmung und die Windung der Raumkurve mit der Parameterdarstellung
x(¢) = ti + 12j + 3k zu berechnen.

2.7, Die Frenetschen Formeln

Die Ableitungsvektoren t', n’ und b’ lassen sich durch die drei Vektoren t, n, b
ausdriicken. Wegen » = |t'| und n = t'/|t'| ergibt sich

t' = xn.

Diese Gleichung wird als erste Frenetsche Formel bezeichnet. Fiir den Ableitungs-
vektor n’ macht man den Ansatz

n' = c;t + con + c;3b. (2.41)

Multipliziert man die Gleichung (2.41) skalar mit t, so erhilt man t-n’ = ¢;. Aus
t-n = 0 findet man durch Differentiation t' - n + t-n’ = 0. Hieraus ergibt sich

¢g=t'n=—t'n=—-xn-n= —x. (2.42)
Die Multiplikation von (2.41) mit n filhrt zun’ - n = ¢,. Ausn’ - n = 0 folgt

c; =0. (2.43)
SchlieBlich fithrt die Multiplikation von (2.41) mit b zu b n’ = ¢;, woraus wegen
b n = 0wiederb-n’ + b"-n = 0 und damit

c;=b'n"=—-b"'n (2.44)

folgt. Beachtet man die Gleichung (2.38), so findet man ¢; = 7. Damit lautet die
zweite Frenetsche Formel

n = —xt + 7h.
Die Gleichung (2.37)
b= —m

bezeichnet man als dritte Frenetsche Formel. Schreibt man alle drei Gleichungen
untereinander, so erhélt man das folgende System

t = »n
n = —xt + 7b (2.45)
b = -7

Diese drei Frenetschen Formeln oder auch Frenetschen Ableitungsgleichungen stellen
ein System von drei linearen Differentialgleichungen fiir die vektoriellen Funktionen
t(s), n(s), b(s) dar. Zerlegt man die Vektoren in Komponenten t = (¢, ¢,, t3),
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n = (ny,n,,n3), b = (by, by, b3), so erhidlt man aus dem vektoriellen Differential-
gleichungssystem (2.45) drei Systeme fiir die skalaren Komponenten #;, n;, b; (i = 1,
2, 3) der Vektoren t, n, b.

’

ti = xn,
ni = —uxt; + by, (i=1,2,3) (2.46)
b = —n,.

Sind die GréBen » und 7 stetige Funktionen der Bogenlange s mit » > 0 im Inter-
vall 0 £ s < @ und hat man fiir s = 0 die Anfangswerte ¢9, n, b9 (i = 1, 2, 3) gege-
ben, so daB3 die Bedingungen

3 3 3
T =Z @) =30 =1
i=1 i=1 i=1

und

gelten, dann gibt es fiir jedes i = 1, 2, 3 drei Funktionen #,(s), n,(s), b,(s), die das
entsprechende System (2.46) erfiillen.') AuBerdem gelten die Gleichungen

und

und es ist
t,0) = 17, n(0)=ni, b(0)="5b (i=1,23).

Durch Integration der Gleichungen x; = #; (i = 1, 2, 3) findet man schlieBlich drei
Funktionen x,(s), von denen jede noch eine willkiirliche Integrationskonstante ent-
halt. Gibt man noch drei Zahlen x9(i = 1, 2, 3) vor und fordert, daB die Bedingungen
x;,(0) = x{ erfiillt sind, so ist durch den Vektor x(s) = x,(s)i + x,(5)j + x3(s) k
die Parameterdarstellung einer Raumkurve ¢ gegeben, die die Kriimmung »(s) und
die Torsion 7(s) besitzt und deren begleitendes Dreibein t(s), n(s), b(s) das Gleichungs-
system (2.45) erfiillt. Fiir s = 0 gilt

t(0) = 19i + #3j + 3k, n(0) = nfi + ndj + n3k,
b(0) = b%i + b3+ b3k.

Dieses Ergebnis bedeutet, da eine Raumkurve, was ihre geometrische Struktur
anbetrifft, bis auf Bewegungen im Raum eindeutig durch ihre Kriimmung »(s) und
ihre Torsion 7(s) bestimmt ist.

1) Wegen der Existenz einer Losung fiir die Systeme (2.46) vgl. [6], S. 69-72.
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1
Aufgabe 2.3: Man bestimme die Raumkurve mit der Kriimmung =(s) = D und der Torsion
1 s .
(s)= — 2—+—S2- , die die Anfangsbedingungen
10 = (1/v/2,152,0), n©) = (0,0,1), b0)=(1/v2Z—1/v/2,0),
x(0) = (0,0,1)
erfullt.

2.8. Der Darbouxsche Vektor

Die Frenetschen Formeln kénnen auch noch in anderer Form geschrieben werden.
Dazu fithrt man einen Vektor d = d;t + d,n + d;b mit zunichst unbestimmten
Koeffizienten d,, d,, d; ein. Die unbekannten Koordinaten d; ergeben sich aus der
Forderung, daB die Frenetschen Formeln die Gestalt

t =dxt,
n =d xn, (2.47)
b=dxb

erhalten sollen. Da t, n, b ein orthogonales gleichschenkliges Dreibein bilden, kénnen
wir die Vektorprodukte mit Hilfe der Determinantenschreibweise (siehe S. 10) er-
mitteln:

t n b
t=dxt=|d, d, d;|=dmn—db=uxn.
1 0 O

Hieraus folgt sofort d, = 0, d; = ». Ebenso ergibt sich aus der zweiten Gleichung
von (2.47)

& n b
n =dxn=|d, 0 % | = —xt + dib = —xt + 7h.
0 1 0

Wir erhalten d; = 7. Setzen wir die erhaltenen Werte in den Ansatz fiir den Vektor d
ein, so ergibt sich, daB auch die dritte Frenetsche Formel in der gewiinschten Art
geschrieben werden kann:

t n
b=dxb=|7 0 % | = —1n.
0 0 1

Das stimmt in der Tat mit der dritten Frenetschen Formel iiberein. Man nennt den
Vektor

d=1t+ xb

den Darbouxschen Vektor zu Ehren des franzdsischen Mathematikers G. Darboux.
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Die Frenetschen Formeln konnen mit Hilfe des Darbouxschen Vektors kinematisch gedeutet
werden.

Dreht sich ein starrer Korper um eine Achse mit der Winkelgeschwindigkeit @ und wihlen wir
auf dieser Drehachse den Ursprung O eines Koordinatensystems, so kénnen wir zunichst den Vek-
tor u der Winkelgeschwindigkeit einfithren. Das ist ein Vektor, dessen Betrag gleich der Winkelge-
schwindigkeit @ ist, dessen Richtung mit der Richtung der Drehachse zusammenfillt und dessen
Richtungssinn so gewihlt wird, daB die Drehung mathematisch positiv (im Gegenuhrzeigersinn)
erscheint, wenn man entlang der Drehachse entgegen dem Richtungssinn von u auf den sich drehen-
den Korper blickt. Das Koordinatensystem drehe sich mit dem starren Korper mit. Ist P ein be-
liebiger Punkt des Korpers, r = (3; sein Ortsvektor, so beschreibt P bei der Drehung einen Kreis,
dessen Ebene senkrecht zur Drehachse steht. Fiir den Radius g dieses Kreises ergibt sich o = [r|sin(r,u).
Die Bahngeschwindigkeit v von P ist dann v = pw. Fithrt man den Vektor v der Bahngeschwindigkeit
ein, so gilt v = r. Der Vektor r ist ein Tangentenvektor des Kreises. Er liegt in der Kreisebene und
steht auf r und auf dem Berithrungsradius ¢ von P senkrecht. Daher steht v auch auf der von r und u
gebildeten Ebene senkrecht. Es gilt daher

v=uXr. (2.48)

Beweis. Wegen v =u X r steht v auf r und u senkrecht, hat also die verlangte Richtung. |v| = v
= |u |r| sin (r, u). Nun ist r sin (r, u) = p. Folglich ist |v| = v = g |u| = pw. Damit hat v auch den
richtigen Betrag. Wegen v = u X r zeigt der v entsprechende Pfeil in die Bewegungsrichtung von P.
Folglich hat v auch den gewiinschten Richtungssinn.

Faft man das begleitende Dreibein einer Raumkurve als einen starren Korper auf, wobei der Ur-
sprung X sich entlang der Raumkurve mit der konstanten Bahngeschwindigkeit ds/dz = 1 bewegt,
so folgt aus den Frenetschen Formeln (2.47) wegen t’ = t, n" = n, b’ = b, daB sich das System
t, n, b in jedem Moment mit der Winkelgeschwindigkeit d = |d| um die durch den Punkt X und den
Vektor d bestimmte Achse dreht. Der Darbouxsche Vektor liegt, wenn man sich ihn durch eine ge-
richtete Strecke mit dem Punkt X der Raumkurve als Anfangspunkt veranschaulicht denkt, in der
von t und b bestimmten Ebene, die auch als rektifizierende Ebene bezeichnet wird. Bewegt sich das
begleitende Dreibein entlang der Raumkurve ¢, so hiillt die rektifizierende Ebene eine gekriimmte
Fléche ein. Diese Hiillfliche wird als rektifizierende Fliche bezeichnet. Die rektifizierende Fliche ist
eine Regelfliche, d. h. eine Fliche, die Triger einer Geradenschar ist. Die Geraden einer solchen
Schar nennt man die Erzeugenden der Regelfliche (vgl. S. 108). Im Fall der rektifizierenden Fliche
einer Raumkurve ergibt sich fiir jede Lage des begleitenden Dreibeins eine Erzeugende der Fliche
als eine Gerade, die durch den Ursprung X des begleitenden Dreibeins parallel zum Darbouxschen
Vektor d verlduft. Die Raumkurve ¢ liegt somit ganz auf der rektifizierenden Fliche. Es 1Bt sich
nun zeigen, daB3 die rektifizierende Fliche einer Raumkurve stets in eine Ebene abgewickelt werden
kann. Bei dieser Verebnung der rektifizierenden Fliche geht die auf ihr liegende Raumkurve in eine
Gerade iiber. Diese Tatsache erklirt den Namen rektifizierende Fliche (vgl. [8], S. 85-86).

Der Betrag des Darbouxschen Vektors hat auch noch eine andere Bedeutung. Sind
X und X zwei benachbarte Punkte einer Raumkurve, n und n = n + An die zuge-
hérigen Hauptnormalenvektoren, ist Ay der Winkel zwischen n und @ und ist As

die Linge des Bogens des von X und X begrenzten Kurvenstiicks, so bezeichnet man
mit

J= lim% - (2.49)
x.x A5 ds

die Totalkriimmung der Raumkurve. Wegen dn = (—xt + 7b) ds und |n] = 1 (vgl.
S.14) folgtdy = |dn| = +/%* + 72 ds und man erhilt

A=1/x* + 2 (2.50)
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Es gilt der

Satz 2.1 (Lancret): Die Totalkriimmung A einer Raumkurve ist bekannt, wenn die Kriim-
mung » und die Windung v der Kurve bekannt sind, und es gilt 2> = »* + 2.

Bildet man nun den Betrag von d, so erhilt man |d] = \/%* + 72 = A. Der Betrag
des Darbouxschen Vektors ist gleich der Totalkriimmung.

2.9.  Die gewohnliche Schraubenlinie als Beispiel einer Raumkurve

Wir betrachten einen Punkt 4 mit den Koordinaten (a, 0, 0) im orthogonalen Koordinatensystem
O(x;, X3, x3). Dieser Punkt soll sich um die x3-Achse mit konstanter Winkelgeschwindigkeit w
drehen und gleichzeitig parallel zur x;-Achse eine Bewegung mit konstanter Geschwindigkeit v
ausfiihren. Die Uberlagerung beider Bewegungen bezeichnet man als Schraubung oder Verschrau-
bung des Punktes 4. Der Punkt A4 beschreibt, wenn er verschraubt wird, eine Raumkurve, die als
Schraubenlinie bezeichnet wird. Die x3-Achse nennt man Schraubachse und das Verhiltnis der Ge-
schwindigkeit v zur Winkelgeschwindigkeit w wird Schraubparameter oder reduzierte Ganghdhe
genannt und mit p bezeichnet (vgl. [7]; [9], Bd. 2, Nr. 141). Bei p > 0 ist die Schraubenlinie rechts-
gewunden (Rechtsschraubung), bei p < 0 linksgewunden (Linksschraubung):

P =v/w. (2.51)

Den Hohenunterschied, den der Punkt A4 bei einer vollen Umdrehung durchliuft, bezeichnet man als
Ganghohe h. Mithin ergibt sich aus (2.51), wenn T die Zeit fiir den Ablauf einer vollen Umdrehung
darstellt,

T h

| [y 21521
2r 2r (222

_ v
r= w
Die Parameterdarstellung einer Schraubenlinie mit der Schraubachse x; und dem Schraubpara-
meter p lautet:

x(t)=acosti+ asintj-+ ptk. (2.53)

Dabei ist # der Winkel, den die Gerade OX’ mit der x,-Achse bildet, wenn X’ die Orthogonalpro-
jektion des Punktes X in die x;, x,-Ebene darstellt.!) Projiziert man die Schraubenlinie orthogonal
in die x;, x,-Ebene, so erhdlt man x; = a cos ¢, x, = asin #, x3 = 0. Dies stellt einen Kreis vom
Radius @ um den Ursprung O dar. Daraus folgt, daB3 die Schraubenlinie auf einem geraden Kreis-
zylinder liegt, der die x3-Achse als Drehachse besitzt und bei dem der Radius gleich a ist. Dieser
gerade Kreiszylinder heiBt Schraubzylinder. Fiir die Bogenlinge der Schraubenlinie erhilt man
wegen X; = —asint, X,=acost, X3=p

ds = [%(1)| dt =~/a® + pdt.
Durch Integration folgt
s(t) = /@ + p,

wenn s(0) = 0 gesetzt wird. Fiir die Linge eines vollen Ganges der Schraubenlinie muB z von 0
bis 2 wachsen. Man erhilt

27
L=sQ2r)= f Ja? + p? dt = 2na® + p? = J4aPx? + k.
0

1) In der Technik wird dieser Winkel mit ¢ bezeichnet.
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Fiir das begleitende Dreibein erhilt man:

t =-—=————_(—asinti4 acostj+ pk),
p

f = ————(—acosti — asintj),
Ve + p?
t N A
n = — =—(cos ti + sin tj),
It
i j k .
b=tXn=|—asint acost p

2 2
—cost —sint 0 Ve +p

1

R

(psin ti — p cos tj + ak).

33

(2.54)

(2.55)

(2.56)

Der Hauptnormalenvektor n ist in jedem Punkt auch Flachennormalenvektor des Schraubzylinders,
denn n steht senkrecht zum Vektor k der Schraubachse x3: Dies folgt aus dem Verschwinden des

Skalarproduktes der beiden Vektoren.

Bild 2.8. Gewdohnliche Schraubenlinie

Mithin ist die durch t und b aufgespannte Ebene Tangentialebene an den Schraubzylinder. Der
Schraubzylinder wird von den rektifizierenden Ebenen der Schraubenlinie eingehiillt. Er stellt somit
die rektifizierende Fliche der Schraubenlinie dar. Wickelt man den Schraubzylinder in die Ebene ab,

3 Schome, Differentialgeometrie
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2mp-h o

=0 2ma

Bild 2.9. Bestimmung der Bogenlinge einer Schraubenlinie durch Abwicklung des
Schraubzylinders

so wird aus dem Zylindermantel ein Rechteck der Breite 27a und der Hohe %, wenn wir den Zylinder
nach oben so begrenzen, daB nur ein Schraubengang auf ihm Platz hat. Die Schraubenlinie geht bei
der Abwicklung in eine Gerade iiber, ndmlich in die Diagonale des erwihnten Rechtecks (vgl.
Bild 2.9). Man erkennt, daB die Linge der Schraubenlinie sich bei der Abwicklung nicht gedndert

hat.!) Aus der Abbildung folgt L = AB = /4na® + iZ.

Fiir die Krimmung % der Schraubenlinie erhélt man

7 . dr ;o dr a 1
w=t|=t—|=|t| - = ——  ——
#=1t] ltd: “Ids Jai& + p? Ja® + p?
S——c 2.57
Tt =
Fur die Windung der Schraubenlinie ergibt sich
1
T=b'n"= —=—=———(psinti— p cos tj + ak) - —=—=———(sin ti — cos #j
Jar +p? Ve + p? )
=7 (2.58)
Damit ergibt sich fiir den Darbouxschen Vektor d = 7t + xb
1
(2.59)

d=———k
Ve + p?
Man erkennt, daB3 der Darbouxsche Vektor Richtungsvektor der Erzeugenden des Schraubzylinders
ist, wie es nach Abschnitt 2.8. sein muB, da der Schraubzylinder die rektifizierende Fliche der Schrau-
benlinie ist.

*  Aufgabe 2.4: Ein Drahtseil bestehe aus einem zylinderformigen Kern, um den schraubenlinienartig N
gleiche Drihte aufgewickelt sind. Der Abstand der Mittellinie jedes Drahtes von der Achse des
Kerns sei r. Man gebe die Parameterdarstellungen der Mittellinien zweier benachbarter Drihte an,
wenn die Mittellinien als Schraubenlinien mit der Ganghéhe / betrachtet werden.

*  Aufgabe 2.5: Ein Drahtseil werde iiber eine Welle gelegt, so daB ein gewisser Teil der Achse des
Kerns die Gestalt eines Kreises vom Radius R annimmt. Dabei dndern sich auch die Kurven, die von
den Mittellinien der einzelnen Dréhte gebildet werden. Man gebe die Parameterdarstellungen der
Mittellinien zweier benachbarter Drihte an, wenn angenommen wird, daB jede solche Mittellinie
die Bahnkurve des Endpunktes einer Strecke der Linge r ist. Diese Strecke wird um die kreisformige
Achse verschraubt, wobei der andere Endpunkt stindig auf dem Kreis bleibt und die Strecke selbst

1) Die Schraubenlinie ist eine geoditische Linie auf dem Schraubzylinder (vgl. 4.2.8.).
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senkrecht zur jeweiligen Kreistangente steht. Die kreisformige Achse habe die Parameterdarstellung
x; =0, x, = Rcosy, x3 = Rsiny, 0 =y = ©/2. Die Anfangslage des die erste Mittellinie er-
zeugenden Punktes habe die Koordinaten x; = r, X, = R, x3 = 0. Fir den Verschraubungswinkel ¢
der Strecke gelte = Ap (4 konstant).

Eine Raumkurve hei3t Boschungslinie, wenn es eine feste Ebene gibt, so daB die
Tangente in jedem Punkt der Raumkurve mit dieser Ebene ein und denselben kon-
stanten Winkel bildet.

Oft ist es praktischer, die folgende Definition fiir Boschungslinien zu benutzen:
Eine Raumkurve heiBt Boschungslinie, wenn ihre siamtlichen Tangentenvektoren
mit einer vorgegebenen Richtung einen festen Winkel einschlieBen.

Offensichtlich sind beide Definitionen gleichwertig.

Eine gewdhnliche Schraubenlinie ist stets eine Boschungslinie, denn jeder ihrer
Tangentenvektoren t bildet mit dem Vektor der Schraubachse k einen festen Winkel.
In der Tat gilt

V4 T

- = = konstant.
Ja? + p? NI

cos (t,k) =t k=

Aufgabe 2.6: Man zeige, daB eine Raumkurve genau dann eine Boschungslinie ist, wenn der Quotient
aus Windung und Kriimmung konstant ist, d. h. wenn gilt
(s)

o) K = konstant.

2.10. Die kanonischen Gleichungen einer Raumkurve

Es seix = x(s) die Parameterdarstellung einer Raumkurve ¢ von der Klasse r = 3,
bezogen auf die Bogenlinge s von c¢. X, sei ein Punkt auf ¢, fiir den s = 0 ist. Um
die Kurve c in einer hinreichend kleinen Umgebung von X, untersuchen zu kénnen,
wird x(s) an der Stelle s = 0 nach Taylor entwickelt. Man erhalt

x(s) = x(0) + x'(0)—1‘T + x”(O)% + ;(”'(0)%3T + o(s3). (2.60)

Hierbei bedeutet o(s®) einen Vektor, dessen Komponenten von der GréBenordnung
o(s%) sind. In diesem Zusammenhang heiBit o(s®), daB mit s — 0 auch o(s%)/s® - 0
strebt (vgl. Bd. 3, 4.6.1.). Es seien tq, ng, by die Vektoren des begleitenden Dreibeins
im Punkt s = 0. Bezieht man die Vektorfunktion auf dieses Dreibein, so ist x(0) = o,
und es gilt

X(s) = x1(s) to + x2(s) Mo + x3(5) bo - (2.61)

Man ersetzt nun in (2.60) die Ableitungen x’, X"/, x'"" durch Ausdriicke in den Vek-
toren ty, Ny, by.

x'(0) = to,
x"(0) = tg = #(0) no,
X"(0) = #'(0) n + #(0) ng.

3%
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Aus der zweiten Frenetschen Gleichung folgt
ng = —x%(0) ty + 7(0) by.
Damit geht (2.60) iiber in
5

2
x1(5) to + x2(s) np + x3(s) by = —tho + %(0) ny —;—'

+ ((0) B + #(0) [#(0) to + TO) b Sy + -

Durch Koeffizientenvergleich erhélt man daraus

@ =s = RO5 + o),
x,(5) = #(0) 5—22 +#(0) % + o(s?), 2.62)
x3(s) = + %(0) 1(0)%3- + o(s*).

Diese Gleichungen werden als kanonische Gleichungen oder auch als kanonische
Entwicklung der Raumkurve ¢ bezeichnet.

Betrachtet man die Kurve ¢ in unmittelbarer Umgebung von X, so ist s sehr
klein, und es geniigt, wenn man jeweils das erste Glied der Entwicklung beriick-
sichtigt. Man erhélt so

Xy =5,
Xy =} %057,
X3 = & %705,
wo %o = #(0) und 7, = 7(0) ist.
Betrachtet man ein kleines Stiick der Kurve ¢, das den Punkt X, enthélt und projiziert man dieses
Kurvenstiick orthogonal in die x,, x3-, x;, x3- und in die x;, x,-Ebene, so erhilt man drei Kurven-
stiicke ¢y , ¢2, ¢3, die ebenfalls den Punkt X, enthalten, da dieser mit dem Ursprung O des x; , x2, x3-

Koordinatensystems zusammenfallt. Das Verhalten der Kurvenstiicke ¢y, ¢;, c3 in der Umgebung
von X, ergibt sich, wenn man die GroBe s aus den entsprechenden zwei Gleichungen eliminiert.
2

Aus x; = %, iz— s X3 = %47, % folgt

cy: x3= :—g%xé 5
Das ist eine Neilsche Parabel, die in O = X, eine Spitze mit der x,-Achse als Tangente hat. Aus
X1 =8, X3 = %7, %ergibt sich

ct X3 = %xuroxf,

eine kubische Parabel, die die x{-Achse in O tangiert.
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findet man

Aus x; =5, X; =%,

€3l Xy = —KoX%.

| = N| %

Dies ist eine gewdhnliche Parabel mit dem Scheitel O = X, und der x;-Achse als Scheiteltangente.
Fiir kleine s stimmt die Kurve ¢ gut mit der durch
52 52
7‘51 =, Xz="07, X3=”01o?
gegebenen Néherungskurve iiberein, und das gleiche gilt auch fiir die Kurven ¢, , ¢,, ¢3 und die drei
orthogonalen Projektionen der Niherungskurve, die mit den drei gefundenen Parabeln identisch
sind.

Demnach verhalt sich die Projektion ¢; von ¢ in die Normalebene wie eine Neil-
sche Parabel, die Projektion ¢, von ¢ in die rektifizierende Ebene wie eine kubische
Parabel und die Projektion c¢; von ¢ in die Schmiegebene wie eine gewdhnliche
Parabel in der Umgebung eines beliebigen Punktes X der Kurve ¢ (vgl. Bild 2.10).

b b
\,
n
X t n I
n
b
X 13

Bild 2.10. Die Projektionen einer Raumkurve in die Schmiegebene, Normalebene und
rektifizierende Ebene
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3.1. Die Parameterdarstellung und Kriimmung ebener Kurven

Es sei x(t) = x;(¢)i + x,(¢)j + x3(t) k eine zuldssige Parameterdarstellung der
Klasse r = 1 fira < t £ b.

Nehmen wir an, dal die Funktion x;(¢) fiir alle Werte ¢ verschwindet, so wird
durch die obige Parameterdarstellung eine Kurve gegeben, die ganz in der x,, x,-
Ebene liegt. Eine solche Kurve, die ganz in einer Ebene liegt, bezeichnet man als eine
ebene Kurve. Da die Funktionen x,(f), x,(t)-auflerdem r-mal (r = 1) stetig diffe-
renzierbar sind, so ist eine zuldssige Parameterdarstellung einer in der x,, x,-Ebene
liegenden Kurve gegeben durch

X(t) = x1 (1)1 + x,2(2)
bzw. durch

X(t) = (x1(1), x2(1)). 3.1)

Dabei wollen wir annehmen, daB die Funktionen dx,/d? = x,(¢), dx,/dt = X,(¢)
nicht beide an derselben Stelle ¢ verschwinden.

Fiir das Bogenelement erhélt man nach (2.17)
ds = /(00 + () dr. ' (2)

Damit ergibt sich fiir die Bogenliinge s(¢) des Kurvenstiicks zwischen dem Punkt X,
mit dem Ortsvektor x(#,) und dem Punkt X, gegeben durch x(t),

s(t) = f’\/xf +x3dr. ' (3)

Der normierte Tangentenvektor (Einheitsvektor) hat die Gestalt
x(t) 1 AP
= = ——— (%1 + X,j). (3.4)
kol Vx+sd o

Die Kriimmung einer ebenen Kurve wird etwas anders definiert als bei den Raum-
kurven. Man setzt

=] = = — . (3.5

Hierin bedeutet o den Winkel zwischen der Tangente der Kurve im Punkt X und der
positiven x;-Achse. Somit ist dx wieder Winkel zwischen benachbarten Tangenten.
Das Pluszeichen in (3.5) gilt, wenn dw/ds positiv ist. Andernfalls gilt das Minuszeichen.
Man ordnet der Kriimmung einer ebenen Kurve ein Vorzeichen zu, indem man dem
Winkel d« ein Vorzeichen gibt. Das ist bei einer Raumkurve nicht méglich.

Man kénnte nun den Vektor t' bilden und aus t' die Kriimmung » ausrechnen.
Da dies aber eine etwas umsténdliche Rechnung erfordert, gehen wir anders vor. Aus
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der Differentialrechnung wissen wir, daB fiir den Neigungswinkel « der Tangente
einer ebenen Kurve gegen die positive x,-Achse die Beziehung
dx, %)

tan o = ETREA0) (3.6)

gilt. Durch Differentiation der Gleichung (3.6) nach ¢ findet man

do XXy — XX
2 e 2% !
(1 + tan® o) - — 3.7
Damit erhalten wir
do $oXy — XX, XpXy — X% )
—-_= : == - . (3.8)
dt [1 R (xz )2] i X} + x%
X1

Fiir die Kriimmung x ergibt sich demnach aus (3.5) und (3.8), (3.2)
oy — Faky

® = .
G + %27

(3.9

Die Kriimmung x ist in einem Punkt X, mit dem Parameterwert ¢, positiv, wenn der
Winkel « der Kurventangente gegen die positive x,-Richtung beim Durchgang durch
die Stelle ¢ = t, mit wachsendem ¢ ebenfalls wichst (vgl. Bild 3.1). Das heit, dal

X2

Bild 3.1

dann d«/dt > 0 ist. Man erkennt, da das Vorzeichen der Kriimmung von der ge-
wihlten Parameterdarstellung abhingt. Da der Kriimmungsradius ¢ das Reziproke
der Kriimmung ist, findet man

_ Gl
X%y — Koy

0 (3.10)
Falls z = 0 ist, setzt man ¢ = co. Man erkennt aus (3.9) und (3.10), daB eine Para-
meterdarstellung einer ebenen Kurve mindestens zweimal differenzierbar sein muB,
wenn man die Kriimmung oder den Kriimmungsradius berechnen will.
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X2

M(t)<0

*[ X7

Bild 3.2

Bild 3.1 und 3.2 zeigen den Zusammenhang zwischen dem Kurvenverlauf in der
Umgebung eines Punktes X, einer ebenen Kurve ¢ und dem Vorzeichen der Kriim-
mung ». Durchlduft man die Kurve an der Stelle # = 7, im Sinne wachsender Werte
von t, so hat man sie so zu durchlaufen, wie die Pfeilrichtung des Vektors t = x/|X|
angibt. Bild 3.1 zeigt, daB bei einem solchen Durchlauf der Winkel « wichst. Folg-
lich ist dx/d? > 0 und auch % > 0. Die Kurve ¢ verlduft, wenn man in Pfeilrichtung
blickt, in einer Umgebung des Kurvenpunktes X, links von der Tangente zx. Im
Bild 3.2 jedoch nimmt beim Durchlauf in Pfeilrichtung des Vektors t der Winkel &
in der Umgebung des Punktes X, ab. Daher gilt do/d? < 0 und somit » < 0. Die
Kurve ¢ verlauft in der Umgebung von X, rechts von der Tangente #y. Die Bilder
3.3 und 3.4 zeigen den Kurvenverlauf im Fall »(X,) = #(t,) = 0. In diesem Fall
hat die Funktion x(¢) an der Stelle #, in der Regel einen Vorzeichenwechsel. Ent-
weder ist %(¢) < O fiir # < #, und ¢ hinreichend nahe bei 7, und »(t) > 0 fiir £ > ¢,
oder es gilt umgekehrt »(¢) > 0 fiir # < ¢, und »(¢) < O fiir ¢ > #,. In beiden Fallen
wechselt die Kurve im Punkt X, von der einen Seite der Tangente auf die andere
Seite. Man sagt, die Kurve hat in X, einen Wendepunkt. Im Bild 3.3 liegt der erste
der beschriebenen Fille, im Bild 3.4 dagegen der zweite Fall vor. Verschwindet je-

2
X2

R(to) =0
W(t)> 0 fort<ts

H(t)=0 ° W(t)<0fart>to,
H(t) <0,t<to
N(t) >0,t>to
0
X7, &7

Bild 3.3 Bild 3.4
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doch #(t) ohne Vorzeichenwechsel an der Stelle ¢ = #,, so wechselt die Kurve in X,
nicht mehr von einer Seite der Tangente auf die andere. Dann hat die Kurve in X,
einen Flachpunkt (Bild 3.5) (vgl. [16], S. 78-80).

X2

W (t,) =0
W(t)> 0t +t,

o0 X1

Bild 3.5. Ebene Kurve mit Flachpunkt

SchlieBlich wollen wir noch den Kriimmungsmittelpunkt A(X) bestimmen. Fiir
den Ortsvektor y(¢) des Kriimmungsmittelpunktes M(X) gilt, wenn man ¢ nach
Formel (3.10) berechnet,

©¥(®) = x(t) + lo| n. (3.11)

Der Hauptnormalenvektor n ist dabei stets vom Punkt X nach dem Kriimmungs-
mittelpunkt M(X) hin gerichtet, wenn man ihn als gerichtete Strecke vom Punkt X
aus abtrigt (vgl. Bild 3.6). Dies ist eine Folge der ersten Frenetschen Formel, die bei
Verwendung der mit Vorzeichen behafteten Kriimmung (3.9) lautet t' = || n.
Ist der Kriimmungsradius ¢ positiv, so ist X,%; — X;%, > 0 und daher d«/dz > 0.

X2
H1x)
i c
H(x) i ix
Y2 ‘f
/
/
\ //
/,
4
t
x2 < \\ X
X
. 13
X
Y1 X7 !

Bild 3.6. Hauptnormalenvektor, Kriimmungsmittelpunkt und Krimmungskreis einer
ebenen Kurve
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Die Pfeilspitze von t im Bild 3.6 gibt an, wie die Kurve in der Umgebung von X
durchlaufen wird, wenn 7 wiachst. Da der Winkel x mit wachsendem ¢ ebenfalls wichst
(Bild 3.6), muB die Kurve in der Umgebung von X links der Tangente ¢y verlaufen.
Damit liegt auch M(X) links von der Tangente ¢y, und n hat die Gestalt
1
I = —=—————(=%,1 + X;j),
\/xf T (=%, 11)

denn es muB n-t =0 und n-n = 1 sein. Setzt man den Ausdruck fiir n in (3.11)
ein, so folgt

(V3 + 33)° (=i + 34)

(%% — %;%,) /3T + X3

YO =y:Oi + (0§ = x(Oi + x2()] +
Durch Koeffizientenvergleich erhilt man dann

: X7 + X3
yi(t) = x,(1) — %,(0) ——2,
XXy — XXz
242 (3.12)
1) = x,(t b () —2 2,
Va(t) = x5(t) + X4( )5525:, =cres
Ist der Kriimmungsradius ¢ jedoch negativ, so hat man dx/dt < 0, und daher ist
X,%; — X%, < 0, und die Kurve ¢ verlduft rechts von der Tangente #y. Der Vektor n

hat nun die Gestalt

n= —1 (%1 — X4j)
.\/X% T )‘C% 2 13)>
und fiir den Betrag des Kriimmungsradius o gilt

lol = — M

XaXy — X1%,
Setzt man diese Ausdriicke in Gleichung (3.11) ein, so ergeben sich nach dem Koeffi-
zientenvergleich dieselben Formeln wie in (3.12). Daher gelten die Gleichungen (3.12)
unabhingig vom Vorzeichen des Kriimmungsradius.

Durch den zu einem Punkt X einer ebenen Kurve gehérigen Kriimmungsmittel-
punkt M(X) und den Kriimmungsradius ¢ wird der zum Punkt X gehérige Kriim-
mungskreis k(X) bestimmt. Der Mittelpunkt des Kriimmungskreises k(X) ist der
Kriimmungsmittelpunkt M(X), der zugehorige Radius der Kriimmungsradius o.
Der Kriimmungskreis k(X) hat mit der Kurve ¢ mindestens drei infinitesimal be-
nachbarte Punkte gemein, die im Punkt X zusammengeriickt sind. Daher beriihrt
und durchsetzt der Kriimmungskreis £(X) die Kurve ¢ in X (vgl. Bild 3.6). Ein Punkt
der ebenen Kurve ¢, fiir den die Kriimmung () einen Extremwert annimmt, heift
ein Scheitel dieser Kurve. In einem Scheitel hat der Kriimmungskreis mindestens vier
infinitesimal benachbarte Punkte mit der Kurve gemein.?) Das hat zur Folge, da der
Kriimmungskreis die Kurve in einem Scheitel beriihrt, aber nicht durchsetzt.

1) Im allgemeinsten Fall hat der Kriimmungskreis in einem Scheitel eine gerade Anzahl von
n = 4 infinitesimal benachbarten Punkten mit der Kurve gemein.
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3.2. Der Ubergang von der Parameterdarstellung zur Kurvengleichung

Im folgenden wollen wir eine Umbenennung der Koordinaten vornehmen. Wir
bezeichnen die x;-Achse als x-Achse und die x,-Achse als y-Achse. Aus dem ortho-
gonalen x,, x,-System wird dann das orthogonale x, y-System. Die Parameterdar-
stellung einer ebenen Kurve dieser x, y-Ebene lautet dann

x(t) = x()i + y(1)j. (3.13)
Esistalso x = x(t),y = y(t). Ist etwa dx/d¢ # 0, so kann man die Gleichung x = x(¢)

zumindest im Kleinen nach ¢ auflésen. Man erhélt ¢ = g(x). Setzt man dies in die
Gleichung y = y(t) ein, so folgt

¥ =¥ex) = fx), (3.14)
wenn wir fiir die zusammengesetzte Funktion y(g(x)) abkiirzend f(x) schreiben. Die
Gleichung y = f(x) stellt die explizite Form (d. h. die nach y aufgeldste Form) der
Gleichung der Kurve ¢ dar.

Fiir die Gleichung der Kurventangente erhilt man, wenn P, mit den Koordinaten
X0, Yo €in beliebiger Punkt der Kurve.c ist,

¥ = Yo =f"(x0) (x = Xo). (3.15)
Hierin ist f'(x,) die erste Ableitung der Funktion f an der Stelle x,. Mit x und y

werden in (3.15) die Koordinaten eines beliebigen Punktes der Tangente der Kurve ¢
im Punkt P, bezeichnet.

Die Gleichung (3.15) ist eine Folge der Punktrichtungsgleichung der Geraden. Fiir eine Gerade
durch den Punkt P(x,, y,) mit dem Neigungswinkel « gegen die positive x-Achse findet man, wenn
man tan « = m setzt, die Gleichung

Y= Yo =m(x — xo). . (3.16)
Dabei wird m als Richtungsfaktor der Geraden bezeichnet. DaB} dies die Gleichung einer Geraden
ist, folgt aus der Linearitit in x und y. Die Gerade geht durch P, da die Koordinaten von P die
Gleichung (3.15) erfiillen. Da andererseits der Tangens des Nei; inkels der T: der Kurve
gegen die positive x-Achse gleich f'(x) ist, erhdlt man m = f'(x,). Dies in (3.16) eingesetzt, liefert
die Gleichung (3.15).

Fiir die Gleichung der Kurvennormale 7y im Punkt X, ergibt sich
1
y— Yo = — ——(x—Xp). 3.17
¥ = 3= = s (= %) 317

Das folgt daraus, daB das Produkt der Richtungsfaktoren zweier zueinander senk-
rechter Geraden gleich —1 ist.

Legt man an die Kurve mit der Gleichung y = f(x) durch den Punkt P mit den
Koordinaten x, y die Tangente ¢ und die Normale n, so schneidet die x-Achse die
Tangente ¢ in einem Punkt 7 und die Normale in N (vgl. Bild 3.7). Bezeichnet S den
Punkt auf der x-Achse mit den Koordinaten x, 0, so gilt fiir den Tangentenabschnitt)

; _ N C))
PT wegen tan x = f'(x) und sinx = =
o7 | S| mrFroe
PT = |55 VT + @2 (3.18)

1) Um die Positivitdt der rechten Seite von (3.18) zu sichern, werden Betragsstriche verwendet.
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Bild 3.7. Tangente, Subtangente, Normale und Subnormale

Fiir den Normalenabschnitt') PN hat man wegen cos x = %_xN—)

PN = /)| V1 + (F())2 (3.19)
Analog erhilt man fiir den Subtangentenabschnitt ST aus tan « = ji;:x;

ST = j{ ((’;)) (3.20)
und fiir den Subnormalenabschnitt SN schlieBlich wegen tan o = %

SN = |f)r @) G21)

Um das Bogenelement ds der Kurve mit der Gleichung y = f(x) zu erhalten, betrachten wir auf
der Kurve zwei benachbarte Punkte P(x,y), P(x + Ax,y + Ay) (vgl. Bild 3.8). Fiir die Bogen-
linge As des Kurvenstiicks PP gilt dann

PP= V(Ax)? 4 (Ay)* < As _S_%—*— Ay — Ax tanx = El + ﬁ
Hieraus folgt

Ay\2 _ As 1 Ay
R = o 5
A/1 (Ax) = Ax = oS & Ax tan o (229

LiBt man nun Ax gegen null gehen, so strebt Ay/Ax gegen dy/dx = y” und As/Ax gegen ds/dx.
Wegen tan o« = y” und

1 — 2 mn /2
— =1+ tan o‘—.—\/l—i-y

1) Man kann den Tangenten-, Normalen-, Subtangenten- und Subnormalenabschnitt als GrofBen
mit Vorzeichen definieren, vgl. [9], Band 2, S. 65.
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folgt dann aus (3.22) zunéchst

7 d. G d; ’
I+ s sV + 35—y

Da sich die beiden letzten Glieder auf der rechten Seite aufheben, folgt

NIESTF S N e
und das ist gleichbedeutend mit

g—; VT 7~ (3.23)

Somit gilt fiir das Bogenelement einer Kurve mit der Gleichung y = f(x)
ds = /1 + y* dx. (3.29)

Um die Kriimmung » dieser Kurve zu berechnen, differenziert man die Gleichung
tan « = )’ nach s. Man erhilt

dx dy  dy dx dx
2a)m = e = L =y
Ui i ril e et Al P
Wegen »x = (;—t ergibt sich
AL ST S SR SR
TH T T T TRy ey
y
yedy o— G
Py
o

x x+4x

Bild 3.8. Bogenelement einer ebenen Kurve
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Damit erhalt man fiir die Kriimmung » den Ausdruck

"

Yy .
2o e 3125
e e
Fiir den Kriimmungsradius ¢ ergibt sich
—
. W1 ;,y ;. (3.26)

Ist " = 0, so setzt man wieder 9 = oo.

Die Kriimmung % und der Kriimmungsradius p sind positiv, wenn der Winkel «
mit wachsendem x ebenfalls wichst, bzw. wenn y" positiv ist. Um die Koordinaten
£, 1 des Kriimmungsmittelpunktes M(X) zu erhalten, geht man von den Gleichungen

0 ) dx Y
aus. Durch Differentiation nach x folgt

d /yy_dyyyd yx-—xp 1 _d =,
()‘—(x)a-**xz Fiairriiabds

-3

dt

Setzt man in (3.12) y; = &, y, =, x; = x, x, = y und beriicksichtigt das eben ge-
wonnene Ergebnis fiir "/, so erhalt man ~

.2
Y
1 -
bl PPy +(x)
e
N2
y
. 1+ (2
X2+ ()
m=y+x oy 2

By ¥y

Dies ergibt schlieflich

, 142
f=x-ylt2

L4y (3.27)
=y+ —.
n=y 7

Die Beziehungen (3.27) sind die den Formeln (3.12) entsprechenden Gleichungen zur
Berechnung der Koordinaten &, 7 des Kriimmungsmittelpunktes M eines beliebigen
Punktes P(x, y) einer ebenen Kurve, die durch eine Gleichung in expliziter Form
» = f(x) in kartesischen Koordinaten gegeben ist.
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Haben zwei Kurven einen Punkt P, und auBlerdem in P, die Tangente gemeinsam, so sagt man,
die Kurven beriihren sich in P,. Da eine Tangente als Grenzlage einer Sekante angesehen werden
kann, deren zwei Schnittpunkte mit der Kurve im Beriihrungspunkt zusammengeriickt sind, spricht
man auch davon, daB die Tangente mit der Kurve zwei infinitesimal benachbarte Punkte gemeinsam
hat. Andert man die eine der beiden Kurven, die sich in P, beriihren, geringfiigig ab, so daB sich
beide Kurven in Py und einem zweiten Punkt P, schneiden, und strebt P; gegen Py, wenn man die
Anderung wieder riickgingig macht und die abgeinderte Kurve ihre urspriingliche Gestalt annimmt,
dann geht die gemeinsame Sekante Py P; in die gemeinsame Tangente beider sich in Py beriithrenden
Kurven iiber. Die beiden sich in P, beriihrenden Kurven haben also ebenfalls zwei in Py zusammen-
geriickte Punkte gemeinsam.

Verallgemeinerung dieser Uberlegungen fiihrt zum Begriff der Berithrung n-ter Ordnung zweier
Kurven.

Es sei eine feste Kurve y = f(x) und eine verdnderliche Kurve y = G(x) gegeben, die den Punkt Py
und noch n weitere Punkte Py, P,, P3, ..., P, gemeinsam haben. Die Kurve y = G(x) kann so ver-
andert werden, daB sie in eine Grenzkurve y = g(x) tibergeht. Bei diesem Ubergang bleiben die
Punkte Py, Py, ..., P, stindig gemeinsame Punkte beider Kurven, nihern sich aber mehr und mehr
dem Punkt Py, mit dem sie alle zusammenriicken, sobald die Kurve y = G(X) in die Grenzkurve
y = g(x) lbergegangen ist. Man sagt dann, daB die Kurven y = f(x) und y = g(x) in P, genau
n + 1 infinitesimal benachbarte Punkte gemeinsam haben.

Um eine analytische Bedingung fiir diesen Sachverhalt zu gewinnen, bildet man die Funktion
H(x) = f(x) — G(x). Dann gilt

H(x))=H(x)=0, i=12,..,n

wobei x;, y; die Koordinaten der Punkte P; (i =0, 1,...,n) sind. Ist etwax; < x, < x3 < .
X < xp <Xy < o0 < X, Ng verschwmdet H (x) nach dem Satz von Rolle (vgl. Band 2, 6.1. )
an n verschxedenen Stellen x,,x, mit x; < x, <xi+1 fir i=1,2,...,¢—1, x,< xo < Xo»
X< xj <xjafurj=r+1,r42,..,n—1, o < xqg < Xrit- Aus dem gleichen Grund verschwindet
H”(x) an mindestens n — 1 Stellen ZWlSCheﬂ x1 und x;, die ihrerseits wieder zwischen x; und x,
liegen. Setzt man diese Uberlegung fort, so folgt, daB A*)(x) an mindestens n 4+ 1 — k verschie-
denen Stellen zwischen x; und x, gleich null ist. Dabei kann k die Werte 1, 2, ..., n annehmen.
Geht nun die Kurve y = G(x) in die Grenzkurve y = g(x) liber, so gehen H(x) in h(x) = f(x) — g(x),
H®)(x) in h0)(x) = f*)(x) — g*)(x) iiber. Die Punkte Py, P;,..., P, sind alle mit dem Punkt P,
zusammengeriickt. Daher gilt x, = x; =X, = -+ =X, Yo, =1 =y, = -+ = y,. Wegen des
Verschwindens von H()(x) zwischen x; und x, fir k=1,2,...,n ergibt sich A'(xo) = h"(xo)
= ++o = h("(xo) = 0. Dagegen ist i. allg. A(**')(xy) == 0; denn die Kurven y = f(x) und y = G(x)
haben zwischen P; und P, nur n — 1 Schnittpunkte. Aus den obigen Gleichungen folgt f(xo) = g(xo),
f®)(xo) = g®)(xo) fiir k = 1,2,..., n und i. allg. f®+1)(xo) + g"*1)(xo). Daher definiert man:

Zwei Kurven y = f(x) und y = g(x) beriihren sich an der Stelle x = x, von genau
n-ter Ordnung, wenn gilt

S(xo) = g(x0),
F®(x0) = g®(xo), k=1,2,..,n,
S (x0) # g (xo).

3.3. Beispiele
1. Als Beispiel einer ebenen Kurve in Parameterdarstellung betrachten wir die Kurve mit der Dar-
stellung . .
x(f) =ti+ 13§

fiir —oo < ¢ < +00. Es ist x;(f) = #, x,(t) = t2. Durch Elimination von # erhilt man x, = x}.
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Dies ist die Gleichung einer Parabel. Es soll die Kriimmung, der Kriimmungsradius und der
Kriimmungskreis fiir die Punkte mit den Parameterwerten # = 0 und 7 = 1 bestimmt werden. Aus
Xy = 1, X, = 2¢ folgt zunichst aus (3.9) mit X; = 0, ¥, = 2

2:1—=0:2:¢ 2

W1+42)° 1+ a)

Demnach ist #(0) = 2 0(0) = 1/%(0) = 1/2. Der zugehdrige Kriimmungsmittelpunkt hat wegen
(3.12) die Koordinaten y;(r) =t — 2+ #(1 + 4¢2)/2, y,(t) = t* + (1 + 4¢?)/2. Demnach hat M(0)

die Koordinaten y; = 0, y, = 1/2. Fiir =1 findet man x(1) = 2/(v/5)3, e(1) = 5v/5/2~ 5,59.
Fiir die Koordinaten von M(1) erhilt man y,(1) = —4, y,(1) = 3,5.

x(t) =

Il
X, [/t=0 x7
//,

Bild 3.9. Parabel mit Kriimmungskreisen

Im Bild 3.9 ist die Parabel mit den beiden Punkten Xj, X; und den beiden Kriimmungskreisen
dargestellt. Man erkennt, dal der zum Punkt X; gehorige Kriimmungskreis die Parabel in X; be-
rithrt und durchsetzt. Die Kriimmung #(t) = 2/(\/ 1 + 412)3 hat fiir # = 0 ein Maximum. Daher ist
der Punkt X, ein Scheitel der Kurve. Im Scheitel X, beriihrt der Kriimmungskreis die Kurve sogar
in vier infinitesimal benachbarten Punkten. Daher durchsetzt der Kriimmungskreis die Kurve
dort nicht. Man erkennt das, wenn man den Kriimmungskreis und die Parabel zum Schnitt bringt:

kXo): x}+(x2—1*=1,

k: x,=x}.

Setzt man fiir xf in der ersten Gleichung den entsprechenden Ausdruck aus der zweiten Gleichung
ein, so folgt x3 = 0. Hieraus ergibt sich x,;, = 0, x,(,, = 0.

Das sind zwei zusammenfallende Losungen (Doppelwurzel). Setzen wir dies in die zweite Glei-
chung x, = (x;)? ein, so erhélt man zu jedem Wert x5y (i = 1, 2) zwei Werte xy,, X;1¢;y. Das er-
gibt insgesamt die vier Lésungen (0, 0), (0, 0), (0, 0), (0, 0), die aber alle miteinander {ibereinstimmen.
Das bedeutet, daB in X, die vier Schnittpunkte des Kriimmungskreises und der Parabel zusammen-
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geriickt sind. Der Kriimmungskreis k(X)) hat also wie behauptet, vier infinitesimal benachbarte
Punkte mit der Parabel gemein.!) Die Krummung der Parabel ist bei der gewihlten Parameterdar-
stellung in allen Punkten positiv, da der Winkel « mit wachsendem ¢ stets wichst. Hitte man statt
dessen die Parameterdarstellung x; = —, x, = ¢? gewihlt, so hitte man zwar dieselbe Parabel er-
halten, denn die Elimination von ¢ fiihrt zur selben Gleichung x, = x;2. Die Kriimmung » ergibt
sich aber bei dieser Darstellung zu

2
W1+ @n)*’

ist also fur alle Werte von 7 und damit fiir alle Punkte der Parabel negativ.

%(t) =

2. Als zweites Beispiel soll die Kriimmung, der Kriimmungsradius und der Kriimmungskreis
fiir die Punkte x = =/3 und x = /2 der Sinuslinie y = sin x bestimmt werden. Hier ist die ebene
Kurve durch eine explizite Gleichung gegeben. Wir werden zur Berechnung der Kriimmung die

Formel (3.25) % = heranziehen. Es ist 3” = cos x, "/ = —sin x. Fiir den Punkt mit

a+ /2)=/
der Abszisse x = /3 erhalten wir sin /3 = \/3/2, cos /3 = 1/2. Dann wird
wrfy = =32 __ 83
WTti8)° 255
#([3) = —4/15/25 ~ —0,61968,
o(x/3) = —54/15/12 ~ —1,613.

Fiir die Koordinaten des Kriimmungsmittelpunktes erhilt man

% (1+cos’x) . 1+ cos?x
f=x—cosx|—————), p=sinx — ———
—Ssin x sin x
Daraus ergibt sich fiir x = =/3:
LT 5 3
$~‘3—+E\/3~1,7688,
1.z 5 =
,,_7\/3_?\/3~f0,5773.
y
Ak S
X 1
o
\\ |
v
v
\
\ M)
0 x r x
xj \

% mly

Bild 3.10. Sinuslinie mit Kriimmungskreisen

) Im Scheitel beriihrt der Kriimmungskreis die Parabel von 3 Ordnung (siehe S. 47).

4 Schone, Differentialgeometrie
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Im Bild 3.10 ist die Kurve y = sin x und der zu x = =/3 gehorige Krimmungsmittelpunkt sowie
der Kriimmungskreis dargestellt. Fiir den Punkt x = w/2 hat die Funktion
SR, il M

(W1 + cos? x)*
einen Extremwert, und zwar ein Maximum. Daher hat die Kurve y = sin x an der Stelle x = /2
einen Scheitel. Man erhilt x(r/2) = —1, o(r/2) = —1. Der zugehérige Kriimmungsmittelpunkt
hat die Koordinaten § = /2, » = 0. Im Punkt x = 0 ergibt sich % = 0. Fiir Punkte, die hinreichend
nahe bei Null liegen und fiir die x < 0 ist, ergibt sich »(x) > 0, fiir Punkte mit x > 0 in der Nihe
von Null folgt #(x) < 0. Daher hat die Funktion x(x) an der Stelle x = 0 einen Vorzeichenwechsel.
Die Kurve y = sin x hat bei x = 0 einen Wendepunkt.

#(x) =

3. Als letztes Beispiel sollen alle Kurven mit k¢ n T: bschnitt bestimmt werden.
Fiir solche Kurven gilt nach (3.18)

—_— y 2
=+ () -
wo k eine positive Konstante ist. Durch Quadrieren findet man
Y+ = k32
Lost man diese Gleichung nach y” auf, so erhélt man

2 IJTTO =
y,l~/1+(y) k,

’ )
=4 ——
Y \/kz_yz

Man setzt " = dy/dx und trennt die Verédnderlichen und integriert

if@d}'=fdx-

Um das Integral auf der linken Seite auszuwerten, kann man y = k sin 7 substituieren. Man erhélt
dann nach einiger Rechnung, wenn man ¢ wieder durch y ausdriickt,

;’ck(lnlk_‘/k_z_"'2 +Lk\/k2—y2)=x—xo.
y

Differenziert man diese Gleichung nach x, so erhélt man die vorhergehende. Dies beweist die Rich-
tigkeit der zuletzt gefundenen Gleichung. Wenn man diese Gleichung noch nach x auflést, so kann
man schreiben

x=x0:t<kln

¥y —
v |V

Hierin ist x eine Funktion von y. Die abhiingige Variable hat nur reelle Werte, wenn y die Bedingung
—k = y = k erfullt. Firein y, das der Bedingung geniigt, erhdlt man zwei reelle Werte fiir x, die
symmetrisch zum Punkt x, auf der x-Achse liegen. Daher ist die Gerade x = x, eine Symmetrie-
achse der durch die obige Gleichung dargestellten Kurve. Da man fir y und —y dieselben zwei
Wertepaare fiir x erhilt, ist die Kurve auch symmetrisch zur x-Achse. Fiir y = 0 ergibt sich x = 4-co.
Das heiBt, daB die x-Achse eine Asymptote der Kurve ist. Die Kurve besteht aus zwei durch die
x-Achse getrennten Teilen, von denen der eine durch Spiegelung an der x-Achse aus dem anderen
erhalten werden kann. Jeder der beiden Teile zerfillt in zwei Zweige, je nachdem, ob man in der
obigen Gleichung das positive oder das negative Vorzeichen verwendet. Beide Zweige treffen sich
im Punkt mit den Koordinaten x = x,,, y = k. Bei gleichem y unterscheiden sich die Ableitungen
beider Zweige nur im Vorzeichen, denn es gilt

Y

V=t
Jk2 = y?
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Bild 3.11. Schleppkurve

Fiir y — k ergibt sich 3 — 400, Daher haben beide Zweige die Gerade x = xq als Tangente und
beriihren sie im Punkt x = x,, y = k. Da stets y = k ist, hat der obere Teil'der Kurve im Punkt
X = X,, ¥ = k eine Spitze mit der zur y-Achse parallelen Tangente x = x,, (siche Bild 3.11). Die
Kurve heit Schleppkurve oder Traktrix. Sie wurde von Christian Huygens (1629-1695) zuerst be-
schrieben. Sie entsteht, wenn ein zweiachsiger Wagen so bewegt wird, daB3 der Mittelpunkt der dreh-
baren Vorderachse stindig auf der x-Achse bleibt. Dann beschreibt der Mittelpunkt der Hinterachse
die Schleppkurve, wobei noch angenommen wird, daB3 beide Mittelpunkte den Abstand k vonein-
ander haben. Die Verbindungsgerade beider Achsmittelpunkte ist stets Tangente an die Kurve. Die
durch die beiden Achsmittelpunkte bestimmte Strecke der Lange k entspricht daher dem konstanten
Tangentenabschnitt der Traktrix.

Aufgabe 3.1: Man bestimme alle Kurven mit a) konstantem Normalenabschnitt, b) konstantem
Sut 1abschnitt, ¢) ke n Subnormalenabschnitt.

Aufgabe 3.2: An zwei benachbarten Masten einer Hochspannungsleitung ist in der Hohe / = 25 m
die Leitung angebracht. Die Liinge eines Leitungsdrahtes zwischen beiden Masten betrage L = 86 m.
Der Abstand der beiden benachbarten Masten sei 80 m. Wie hoch héngt die Leitung an ihrer tiefsten
Stelle iiber dem Erdboden, wenn angenommen wird, daB sie in Form einer Kettenlinie mit der
Gleichung y = & cosh (x/h) + b durchhingt?

Aufgabe 3.3: Man berechne die Kriimmung und den Kriimmungsradius der Schleppkurve.

Aufgabe 3.4: Ein Kreis vom Radius r rolle ohne zu gleiten auf einem festen Kreis vom Radius R.
Mit dem beweglichen Kreis ist ein Punkt X fest verbunden, der von dessen Mittelpunkt den Abstand /
hat und in der Ebene dieses Kreises liegt. Es ist die Parameterdarstellung der ebenen Kurve aufzu-
stellen, die der Punkt X beschreibt. Es ist dabei der Fall der AuBenabrollung, bei der der Rollkreis
sich auBerhalb des festen Kreises befindet, vom Fall der Innenabrollung zu unterscheiden. Der
Mittelpunkt des festen Kreises sei Ursprung eines orthogonalen x;, x,-Koordinatensystems. Der
Rollvorgang beginne im Punkt P (R, 0), dem Berithrungspunkt beider Kreise in der Anfangslage.
Dabei féllt X mit dem Punkt X, zusammen (vgl. Bild 3.12).

4%
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Bild 3.12. Zu Aufgabe 3.4

*  Aufgabe 3.5: Ein Kreis rolle ohne zu gleiten auf einer Geraden in einer Ebene. Der Radius des Krei-
ses sei r. Man gebe die Parameterdarstellung der Bahnkurve an, die ein Punkt X der Peripherie des
Kreises beschreibt. Man wihle als Gerade die x;-Achse des x;, x,-Koordinatensystems. Der Roll-
kreis beriihre die x,-Achse in der Anfangslage im Ursprung O. Der die gesuchte Kurve beschrei-
bende Punkt X falle in der Anfangslage X, ebenfalls mit O zusammen. Der Mittelpunkt des Roll-
kreises habe die positive Ordinate x, = r. Die betrachtete Bahnkurve des Punktes X heif3t gewdhn-
liche (gespitzte) Zykloide.

*  Aufgabe 3.6: Man berechne die Linge des Kurvenbogens der in Aufgabe 3.5 betrachteten Zykloide,
der zwei aufeinander folgende Punkte der x;-Achse verbindet. Wie groB ist der Kriimmungsradius
eines Punktes der Zykloide, fiir den die Ordinate x, maximal ist?
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3.4. Ebene Kurven in impliziter Form

Es sei ¢ eine ebene Kurve in der x,y-Ebene mit der Parameterdarstellung x = x(z),
y = )(t), a £ t < b. Es sei F eine zweimal stetig differenzierbare Funktion der zwei
Verinderlichen x, y, die folgende Eigenschaft hat: Setzt man x() und y(¢) fiir x und y
in die Gleichung F(x, y) = 0 ein, so soll die entstehende Gleichung

F(x(1), (1)) = 0 (3.28)

fiir alle ¢ € [a, b] erfiillt sein. Man sagt dann, daB die Gleichung (3.28) identisch in ¢
erfiillt ist. Die Gleichung

F(x,y) =0 . (3:29)

wird als Gleichung der Kurve ¢ in impliziter Form bezeichnet. Allerdings kann es vor-
kommen, daB es noch andere Kurven gibt, deren Parameterdarstellungen die Glei-
chung (3.29) erfiillen. Dann faBt man alle Kurven, deren Parameterdarstellungen (3.29)
erfiillen, zu einer einzigen Kurve zusammen, und (3.29) wird dann als Gleichung dieser
neuen Kurve angesehen. Andererseits kann jede Gleichung zwischen zwei Verdnder-
lichen als Gleichung einer ebenen Kurve aufgefaBBt werden. Durch Differentiation
von (3.29) nach x erhilt man, wenn man beachtet, daBl y eine Funktion von x ist,

OF L OF dy _
ox 0y dx
Hieraus ergibt sich, wenn 0F/0y = 0 ist,
OF
,_ & K
y = oF =7 (3.30)
oy

Wenn man die Gleichung (3.29) nach y aufldsen kann, so erhélt man eine Gleichung
der Gestalt y = f(x), d. h., die Kurve c ist in expliziter Form gegeben. Die Tangente
bzw. die Normale von ¢ haben dann nach (3.15) und (3.17) die Gleichungen

¥ = Yo =f'(xo) (x — Xo)
bzw.

1
V=Yoo= "m(x"xo)~

Dabei sind x,, o die Koordinaten des Berithrungspunktes P, der Tangente auf der
Kurve ¢ bzw. die Koordinaten des Schnittpunktes P, der Normale mit der Kurve c.
Setzt man in die obigen Gleichungen fiir f(x,) = »'(x,) den Ausdruck aus Gleichung
(3.30) ein, so erhdlt man nach Beseitigung der Nenner

F(x05 y0) (x = Xo) + Fy(X0,¥0) (v — y0) = 0 (3.31)

als Gleichung der Tangente im Punkt Py(x,, yo) bei implizit gegebener Kurvenglei-
chung von c. Ebenso ergibt sich

Fy(xo, y0) (x = Xo) — Fu(%Xo,0) (¥ = ¥o) = 0 (3.32)
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als Gleichung der Normale der Kurve ¢ im Punkt Py(xo, y,) bei implizit gegebener
Kurvengleichung. Um die Kriimmung einer solchen implizit gegebenen Kurve be-
rechnen zu konnen, geht man von der Gleichung (3.30)
: F(x,9)
X)) = — =2_>2-~_
AR Fy(x, )
aus. Durch Differentiation nach x findet man
o (Fex + nyy,)Fv — Fx(ny + Fyvy,)
. Fy ’
Beachtet man, daB infolge des Satzes von Schwarz (vgl. Bd. 4, Satz 3.1) F,, = F,,
gilt, und setzt man die erhaltenen Ausdriicke fiir 3’ und y” in Gleichung (3.25) fiir
ein, so ergibt sich
Fxfo - 2nyFxFy + FWF;%
WP+ F)

y

%= — (3.33)
und
"

e=—-
Verschwinden in einem Punkt Py(x,, yo) der Kurve mit der Gleichung F(x, y) = 0
auch die Ableitungen F, und F,, so hat man

F(xo,¥0) = 0, Fy(xo,0) =0, Fy(xo,0) =0.
Ein solcher Punkt wird als singulirer Punkt der Kurve bezeichnet (vgl. [2], S. 502).
Die Formel (3.30) zur Bestimmung von )’ versagt in einem solchen Punkt, weil ihr
Zéhler und ihr Nenner gleichzeitig verschwinden. Der Quotient%nimmt in P,
den unbestimmten Wertg-an. Man wendet nun die Regel von Bemo}l’xlli - I’'Hospital

auf diesen Ausdruck an, indem man Zahler und Nenner getrennt nach x differenziert,
wobei man die Abhingigkeit von y und ' von x beachtet. Darauf fithrt man den
Grenziibergang x — x, aus, wobei y(x) = y(xo) = yo und y'(x) = y'(xo) = yo
streben. Man erhilt

. . F . Fe+ Fy Fu(Xo, ¥0) + Fi%o, ¥0) Ve
=l = <l R~ Fer R
Hieraus folgt!), wenn man zur Abkiirzung
Foi(xo,¥0) = F&,
Fy(%0, ¥0) = F3,
Fyy(x05 o) = Fy,

setzt,
; F, F?
Bo)* +2=vo + = =0.
© F;?y 0 ng

1) Falls Fyy, Fyy, Fy,‘nicht alle an der Stelle x,, y, verschwinden, sonst muB die Regel von I’'Ho-
spital nochmals angewendet werden.
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Daraus ergibt sich

. _ _Fy | NFQ)? - FLFL
Vo=—Fo E—— o -
F}’Y F)’y
Man setzt

4 b (F:?y)z . ngF;)y'

Ist 4 > 0, so hat yg zwei reelle Werte. Es liegt in P, ein Doppelpunkt mit zwei ver-
schiedenen reellen Tangenten vor.

Ist dagegen 4 < 0, so hat y, keinen reellen Wert. Dann ist P, ein Einsiedlerpunkt,
das heiBt ein isolierter Punkt der Kurve, der keine reellen Tangenten besitzt.

Ist schlieBlich A = 0, so hat die Kurve in P, eine doppelt zahlende Tangente. Das
bedeutet, daB in P, entweder eine Spitze oder ein Selbstberiihrungspunkt der Kurve
vorliegt.

Als Beispiel werde die Kurve mit der Gleichung
Fx,y)=by* —x*(x—a)=0, a<0, >0,
betrachtet. Es ist F, = —3x2 + 2ax, Fx = —6x + 2a, F, = 2by, Fyy = 2b, F,,=0. Fiir den
Punkt O mit den Koordinaten x =0, y = 0 gilt F(0,0) = 0, F,(0,0) = 0, F,(0,0) = 0. Der Ur-
sprung O ist offensichtlich ein singuldrer Punkt der Kurve. Um zu erkennen, was fiir ein singulirer
Punkt vorliegt, berechnen wir die Diskriminante 4 an der Stelle x = 0, y = 0. Wir erhalten

A(0) = (F8)? — FO, FS, = 0 — (2a) (2b) = —4ab >0,

Bild 3.13. Kurve mit Doppelpunkt
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da a < 0 und b > 0 sein soll. Es liegt in O ein Doppelpunkt mit zwei reellen Tangenten vor. Wir
berechnen noch den Anstieg dieser beiden Tangenten. Dazu gehen wir von der Formel
\/( y)z FO, F°
70 —=—

»

Yol "’ :(:

aus. Wir erhalten y0 = :[:\/—4ab/2b. Um eine Kurve zeichnen zu konnen, setzen wir a = —3,
b= 1. AuBerdem soll noch der Kriimmungsradius im Punkt P (a, 0) berechnet werden. Mit Hilfe
von Gleichung (3.33) erhilt man » = 2ba*/a® = —2b/a?. Hieraus folgt ¢ = —a?/2b. Fiir a = —3,
b =1 erhalt man yo' = :}:\/3, 0 = —9/2 = —4,5. In Bild 3.13 ist die Kurve dargestellt.

Aufgabe 3.7: Man untersuche dieselbe Gleichung F(x, y) = by? — x?*(x — a) = 0 fiir die finf ver-
schiedenen Fille 5> 0,2 >0;6>0,a=0;5<0,a>0;6<0,a<<0;6<0,a=0.

3.5. Ebene Kurven in Polarkoordinaten
Wir betrachten eine Ebene, in der ein orthogonales kartesisches x, y-Koordinaten-
system mit dem Ursprung O gegeben ist. In diese Ebene legen wir ein Polarkoordi-
natensystem, das bestimmt wird durch einen Pol und durch einen Strahl der Rich-
tung 0. Der Pol ist ein Punkt, der mit dem Ursprung O des x, y-Systems zusammen-
fallen soll. Der Strahl mit der Richtung O ist ein Strahl, der vom Pol ausgeht und
der sich mit dem positiven Teil der x-Achse decken soll. Jeder Punkt P der Ebene
wird dann durch zwei Koordinaten » und ¢ bestimmt. Dabei ist » der Abstand des
Punktes P vom Pol O und ¢ der Winkel (¢ im BogenmaB), den der vom Pol O zum
Punkt P fithrende Strahl mit dem Strahl der Richtung O bildet.
Der Ubergang von den kartesischen Koordinaten x, y zu den Polarkoordinaten
r, ¢ erfolgt durch die Transformationsgleichungen
X =rcosg,
. ? (3.34)
y = rsing.

Der Pol ist fiir das Polarkoordinatensystem ein singularer Punkt, weil fiir ihn die

Koordinate ¢ unbestimmt wird. Dies kommt auch in dem Verschwinden der Funk-
tionaldeterminante

exiox

A(x,y) _|or O

o.e) |y

or 09

an der Stelle » = 0 zum Ausdruck.

Eine implizit gegebene ebene Kurve mit der Gleichung F(x, y) = 0 in kartesischen
Koordinaten erhlt in Polarkoordinaten die Gestalt

F(r cos @, rsin ¢) = G(r, p) = 0. (3.35)

Kann man die Gleichung G(r, ) = 0 nach r aufldsen, so erhélt man die explizite
Form der Kurvengleichung in Polarkoordinaten

r = r(p). (3.36)
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Lost man die Gleichungen (3.34) nach r und ¢ auf, so erhilt man die Transformations-
formeln fiir den Ubergang von Polarkoordinaten r, ¢ zu kartesischen Koordinaten
x, y. Sie lauten

r=+x*+y*
VAP, (37
¥y
= tan —.
¢ = arctan
y
o) A — P
i
|
7 ot
0 ? E
Py X

Bild 3.14. Beziehungen zwischen kartesischen Koordinaten und Polarkoordinaten

Um das Bogenelement ds einer durch r = r(p) gegebenen Kurve in Polarkoordi-
naten zu erhalten, transformieren wir die Formel fiir das Bogenelement in kartesischen
Koordinaten

ds = T+ (/) dx

mit Hilfe der Formeln (3.34). Durch Differentiation erhilt man
L (d—sm + rcos )d = (r'sing +r )(
dx  \dp MO TIre8? gy ¢+ reose )

_ r'sing 4+ rcos¢
dx .
dg
2 cos rsing = r'cos @ — rsin
dp ~ dp P ¢ = 9 P
Setzt man dies in die obige Formel fiir ds ein, so erhdlt man

(r" sing + r cos p)* .
d _A/ ' _
I 1+ k= & B (r' cos ¢ — rsing) de,

und daraus folgt nach kurzer Zwischenrechnung

ds = /r? ¥ r2dg. (3.38)
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Bild 3.15. Zur Differentialgeometrie einer ebenen Kurve in Polarkoordinaten

Dieses Bogenelement in Polarkoordinaten hat auch eine geometrische Bedeutung.

Aus Bild 3.15 liest man ab QR = dr, OP = rdp. Aus dem infinitesimalen recht-
winkligen Dreieck POR — der rechte Winkel ist der Winkel POR - folgt dann nach
dem Satz des Pythagoras

PR~ [@F + @R - TaF ¥ @ = [ + (5 e

also haben wir
PR = ds. (3.39)
Ebenso folgt fiir den Winkel ¥ = ¥ PRQ

dr r
=—=—. .40
coty = Fria (3.40)
Um die Kriimmung % und den Kriimmungsradius g einer ebenen Kurve in Polar-
koordinaten berechnen zu konnen, geht man von den Formeln fiir die Kriimmung
und den Kriimmungsradius in kartesischen Koordinaten aus. Es war nach (3.25)

"

SR —
W1 +y?)’

Durch Differentiation der Gleichung y = r sin ¢ findet man

,_dy _dy dg ( dr )(dx)
Yy = ax d_tpa— rcos(p+d¢ sing 39
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Mit dr/dp = ¥ und dx/dp = —rsin¢ + r’ cos ¢ erhilt man

rcosg + r'sing
—rsing + r'cosg ’

.

und hieraus folgt durch Differentiation nach x
T ) ( rcosg + r'sing )ﬂ_ d ( rcosg + ' sing )(d_x)“
VT 3 \“rsing + rcosg ) dx  dp \ —rsing + r' cosg /\dyp
Setzt man die Ausdriicke fiir y’, »"" in die Gleichung fiir » ein, so erhilt man nach
etwas mithsamer Rechnung

1 r2 —rr’ + 2r'?
K =—=

(3.41)

3.6. Die Lemniskate als Beispiel einer ebenen Kurve in Polarkoordinaten

Gesucht ist der Ort aller Punkte X in der x, y-Ebene, fiir die das Produkt ihrer Abstinde ry,r,
von den zwei Punkten E,(e, 0), E;(—e, 0) den konstanten Wert r,r, = e? hat. Aus Bild 3.16 liest
man unmittelbar ab

rn=vx—e?+y2=/x2+ >+ e — 2ex,
=+ e2+y2=/x2+y2+ e+ 2ex.

Fir die Punkte des gesuchten Ortes ergibt sich dann
rr =2+ 2 4 eR)? — 4P = e?

(x% + 2 + €?)? — 4e2x? = %,

bzw.

Eol-e0] [} Y]] x

Bild 3.16. Zur Definition der (Bernoullischen) Lemniskate
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Dies ist die Gleichung einer ebenen algebraischen Kurve in kartesischen Koordinaten. Sie heifit
Lemniskate und ist eine Kurve vierter Ordnung, da die Glieder hochsten Grades in x und y die Ge-
stalt x#, y*, x?y* haben. Die Exponentensumme ist vier. Es soll die Polargleichung der Lemniskate
aufgestellt werden. Dazu benutzt man die Transformationsgleichungen (3.34), (3.37) x = r cos ¢,
y = rsin g, x* -+ y? = r2, Man erhilt durch Einsetzen in die Gleichung der Lemniskate in karte-
sischen Koordinaten

(r? + €2)? — de*ricos 2 p = e*.
Hieraus folgt
r2(r? + 2¢%(1 — 2 cos? ¢)) = 0.
Wenn r = 0 ist, ergibt sich
r? 4 2e?(1 — cos? ¢ — cos? ¢) = 0
oder
r? = 2e*(cos® p — sin? p) = 2¢? cos 2¢.
Ausr?z0folgt — /4 @<= =/4,3x/4 S@= 5z/4. Zicht man noch die Quadratwurzel, sofindetman
r=e~/2cos 2.

Dies ist die gesuchte Polargleichung der Lemniskate. Durch Differentiation ergibt sich

v d_r o e\/isin 29
do \/ cos 2¢ :
Fiir den Winkel y zwischen Kurventangente und Radiusvektor r folgt mit (3.40)
_r _ sin2p . T _
cotw—T— o5 op tan2¢fcot(~2—+2q)), _7+2q),

Die Schenkel des Winkels y sind dabei der Radius r = OP und der auf der Kurventangente liegende
Strahl, der von P ausgeht und nach der Seite orientiert ist, auf der Kurvenpunkte liegen, bei-denen
der zugehorige Winkel g ein kleineres MaB als in P hat. An Hand einer Tabelle erkennt man die Ab-
hiingigkeit der GroBen r(@), v und @.

T T T T
3—4— S— | =m 7 5 7T “F 27

(=}
(=)}
ISE!

ki3
@ 0 3
r e2 | e

i T
7] 5 5?1: 0

S| ala

0 e e\/i e ‘0 0 e e\/i

EVE]

k3
2

EVE]

kg ki3
> 5?7r 0

Wegen r(p + =) = r(p) ist die Lemniskate zentralsymmetrisch zum Ursprung O und wegen r(2r — @)
= r(g) bzw. r(m — @) = r(¢) ist sie auch axialsymmetrisch beziiglich der x-Achse und der y-Achse.
Fir ¢ =n/4, 3n/4, 5/4, Tx/4 ist r(p) =0. Da ¢ = /4 und ¢ = 57/4 zum selben Kurvenzweig
gehoren und das gleiche fiir ¢ = 37/4 und ¢ = 7=/4 der Fall ist, hat die Kurve im Ursprung O einen
Doppelpunkt. Die Tangenten der beiden durch O gehenden Kurvenzweige bilden mit dem Strahl
@ = 0 die Winkel /4 und 3=/4.

Es soll der Flicheninhalt F des von der Lemniskate umschlossenen Gebietes berechnet werden,
in dem der Punkt E; liegt (vgl. hierzu die Leibnizsche Sektorformel; Band 5, 7.1.). Dazu betrachtet
man zwei infinitesimal benachbarte Radien OP = r(g) und OP’ = r(p + dg). Sie bilden einen

kleinen Sektor POP’, der durch den Kurvenbogen I;P’ und die beiden Radien OP und OP’ begrenzt
wird (siehe Bild 3.17). Man kann diesen Sektor mit guter Annédherung als ein Dreieck auffassen,
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y

E; 0 £, X

Bild 3.17. Bernoullische Lemniskate

und dies stimmt um so genauer, je kleiner der Winkel dg ist, da dann die Sehne PP’ sich dem
Kurvenbogen }”?” mehr und mehr anndhert. Der Flicheninhalt des Dreiecks unterscheidet sich
daher von dem Flicheninhalt dF des Sektors POP’ um eine vernachlissigbare GroBe. Es gilt

dF = 3r(@) r(p + d) sin (dg).

Wegen der Kleinheit des Winkels dg - er kann beliebig klein angenommen werden — kann man sin (dg)
durch den Bogen d¢ und r(p + dg) durch r(p) + dr ersetzen. Vernachldssigt man noch das Glied
dr dg gegentiber dem linearen Glied in dg, so erhilt man schlieBlich

dF = }r? de.

Durch Integration von —m/4 bis +w/4 findet man den Flicheninhalt F des Gebietes, in dem E;
liegt

T+ /4 /4 o
4
F= /iﬁ dp :lf 2¢? cos 2 dp = e? fcos 2¢ dp =2 [sin 2@]7:/
2 2 2 —n/4
—/4 [ /4

ez
:—2—(1 +1)=e%

Fiir den Krimmungsradius erhédlt man aus
r=e2 cos2p, r = —ex/2sin2p/\/cos 2, 1’ =—e\/2(1 + cos? 2¢)/(x/cos 29)°
nach einiger Rechnung
e/2
3cos 29
Im Fall ¢ = 0 ergibt sich 0(0) = eJE/}, fiir = =/6 erhilt man o(w/6) = 2¢/3.

olp) =

Aufgabe 3.8: Man diskutiere den Verlauf (Skizze) und berechne die Bogenlinge der folgenden in
Polarkoordinaten gegebenen Kurven

a) der archimedischen Spirale r(p) = ap, —oo < ¢ < +o0;
a
b) der hyperbolischen Spirale r(p) = L —o0 L p < +00;

c¢) der logarithmischen Spirale r(p) = e??, —oo < ¢ < +oco0.
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Aufgabe 3.9: Man stelle die Polargleichung der Geraden auf, die den Strahl ¢ = 0 in einem Punkt P,
mit dem Abstand r, vom Pol schneidet und mit diesem Strahl den Winkel « bildet.

e 2 / x

Bild 3.18. Zu Aufgabe 3.9

Aufgabe 3.10: Man berechne die Bogenlinge und den Flicheninhalt eines Sektors mit dem Zentri-
winkel « eines in Polarkoordinaten gegebenen Kreises vom Radius a, der den Pol als Mittelpunkt
besitzt. Welche bekannten Gleichungen ergeben sich?

Aufgabe 3.11: Wie lautet die Polargleichung eines Kreises, der durch den Pol des Polarkoordinaten-
systems geht und dessen Mittelpunkt die Koordinaten r = r,, ¢ = ¢, hat?

Aufgabe 3.12: Man bestimme den Verlauf der durch die Gleichung r(p) = 2a -+ cos ¢ + 2a mit
0 < @ = 4 gegebenen Kurve (Kardioide), berechne die Bogenlinge, den Kriimmungsradius fiir
@ = 0 und den Flicheninhalt des von der Kurve umschlossenen Flichenstiicks.

Aufgabe 3.13: Der Inversor von Peaucellier besteht aus einem Gelenkrhombus APBP* und zwei
gleich langen Stiben OA, OB. Die Stibe OA, OB sind drehbar im Ursprung O gelagert und mit
dem Rhombus in 4 und B durch Drehgelenke verbunden. Man zeige: Es gilt stets

rer¥=a?—bh?

mit OA4 = OB = a, AP = BP = BP* = AP* = b, OP = r, OP* = r*. Bewegt sich P auf einer
Geraden, die nicht durch O geht, so P* auf einem Kreis durch O.

0d

Bild 3.19. Der Inversor von Peaucellier
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37 Evolute und Evolvente

Es sei y = f(x) die Gleichung einer ebenen Kurve ¢ in der x, y-Ebene (vgl. Bild 3.20).
Die Koordinaten &, des Kriimmungsmittelpunktes M(X) eines Kurvenpunktes X
mit den Koordinaten x, y sind nach (3.27) gegeben durch

1+ y?
§=x—y’T,y—,
) (3.42)
14y
SWifier e
n=y y
I'lx v

Bild 3.20. Evolute und Evolvente

Durchliuft der Punkt X die Kurve ¢, so beschreibt der zu X gehdrige Kriimmungs-
mittelpunkt M(X) eine ebene Kurve k. Die Kurve & heit die Evolute der Kurve c.
Beriicksichtigt man, daB y, y’, "’ Funktionen von x sind, so sind wegen (3.42) auch
&, Funktionen von x, und die Gleichungen (3.42) stellen eine Parameterdarstellung
fiir die Evolute dar. Ist die urspriingliche Kurve ¢ bereits in Parameterdarstellung
gegeben, so verwendet man statt (3.42) die Gleichungen (3.12). Diese definieren eben-
falls eine Parameterdarstellung der Evolute.

Der zum Kurvenpunkt X auf ¢ gehorige Kriimmungsmittelpunkt M(X) liegt auf
der Normalen ny der Kurve ¢ in X. Es 148t sich nun zeigen, daB die Normale ny
zugleich Tangente an die Evolute k£ im Punkt M(X) ist. Um dies einzusehen, be-
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stimmen wir den Vektor m = X/. Seine Koordinaten erhilt man aus der Differenz
der Abszissen bzw. der Ordinaten der Punkte M(X) und X

1+ yrz 1+ ylz) 1+ yrz
) 77 = 7 =y, 1). 3.43
o y b (=¥, 1) (3.43)

- (-

Der Vektor m ist parallel zum Vektor ¥ = (—)’, 1), denn er unterscheidet sich von T
nur durch den Faktor (1 + y’2)/y”’. Der Vektor r ist demnach ebenfalls ein Richtungs-
vektor der Normalen 7.

Um einen Tangentenvektor der Evolute zu erhalten, differenziert man die Glei-
chungen (3.42) nach dem Parameter x. Man erhilt

, 1+ yrz _y 2y/ u o (1 +y:2) ym

=1y 1t ¢
! y v
! , 3}‘" 12 (I + yrz) ym
=y 2 17
y
. , 2}/' 12 (1 + yrz)ym 3y/ 2 (1 + yzz)yu/
n=y + V7 = V7 .

Die GréBen £,7 haben den gemeinsamen Faktor [3y'y”* — (1 + y'%) y"'1/y">.
Dabher ist der Tangentenvektor (&, #) parallel zum Vektor (-, 1), denn die beiden
Vektoren unterscheiden sich gerade um den oben erwihmnten skalaren Faktor.

Die Normale ny hat demnach im Punkt X der Kurve ¢ dieselbe Richtung wie die Tan-
gente im Punkt M(X) an die Evolute k. Da ny aber durch den Punkt M(X)hindurch-
geht, ist die Normale ny zugleich Tangente an die Evolute k im Punkt M(X). Dies
trifft nun fiir alle Normalen ny der Kurve ¢ zu. Man kann daher auch sagen,daf die
Normalen ny der Kurve c die Evolute k einhiillen bzw. dal die Evolute £ Hiillkurve
der Normalen ny der Kurve ¢ ist. Die Kurve ¢, deren Evolute die Kurve k ist, wird
auch als Evolvente der Kurve k bezeichnet.

Mit Hilfe des Kriimmungsradius ¢ 148t sich nun eine zweite merkwiirdige geo-
metrische Beziehung zwischen Evolvente und Evolute finden. Es sei k die Evolute
der Kurve ¢ mit der Gleichung y = f(x). Ferner seien X und X* zwei benachbarte
Punkte auf ¢, M und M* die zugehérigen Kriimmungsmittelpunkte auf k. Bezeich-
nen wir die zu den Punkten X und X* gehorenden Kriimmungsradien der Kurve ¢
mit o = MX und ¢o* = M*X* und setzen o* = p + Ap, so geht die GréBe Ag, wenn
X* auf ¢ gegen X riickt, in do iiber und dp ist bis auf das Vorzeichen mit dem Bogen-

element ds der Evolute k identisch. Das Bogenelement ds = JE +n?dx der Evo-
lute k£ kann man durch 3, 3" und y""’ ausdriicken. Es ist

£ 4= y,,4 Byy? —A+y)y" PO+ D),
somit also

ds = y,,z 13yy" = (1 + ¥y V1 + % dx. ~ (3.44)
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Fiir do erhalt man durch Differentiation von o = (1 + y'2)3/2y"”

do _ V1 +y2[yy” —(L+y?)y"]
—— = . 3.45
o — (3.43)
Aus (3.44) und (3.45) folgt

dp = +ds. N (3.46)

Das Pluszeichen gilt, wenn dp positiv, das Minuszeichen, wenn dg negativ ist. Das
Vorzeichen von dp stimmt aber wegen (3.45) mit dem Vorzeichen des Ausdrucks
3y'y""2 — (1 + y'?)y"" iiberein. Aus Gleichung (3.46) folgt durch Integration

o= 45+ C. (3.47)
Wihlt man auf ¢ einen Punkt X, und ist M, der zugehorige Kriimmungsmittelpunkt
auf der Evolute k und ziihlt man die Bogenldnge 5 der Evolute von M, aus im Sinne
wachsender Werte von g, .so ist die Bogenlidnge 5, im Punkt M, gleich null. Der
zugehorige Kriimmungsradius fiir den Punkt X, sei g,. Dann ergibt sich fiir die
Konstante C aus (3.47) C = g,. Ist X ein Punkt auf ¢, fiir den o > o, gilt, so folgt
aus (3.47) die Gleichung

0= =5. (3.48)
Das Minuszeichen vor s fallt hier weg, das > 0 und ¢ > o, ist. Damit ergibt sich der
Satz 3.1: Die Differenz zweier Kriimmungsradien der Endpunkte eines Kurvenbogens
einer ebenen Kurve c ist gleich der Liinge des Evolutenbogens zwischen den zuge-
hérigen Kriimmungsmittelpunkten.')
Satz 3.2: Die Kriimmungsradien der Evolute und Evolvente verhalten sich wie die zuge-
hérigen Bogenelemente.
Beweis: Aus Gleichung (3.48) folgt durch Differentiation dp = ds. Andererseits
gilt fiir das Bogenelement ds der Evolvente ¢ auf Grund von (3.5) und wegen » = 1/p

ds = pdw. (3.49)

Fiir den Kriimmungsradius g der Evolute & erhilt man analog, da die Tangenten in
den benachbarten Punkten M und M* der Evolute ebenfalls den Winkel dx bilden,

ds = o dx. (3.50)
Hieraus folgt durch Division die Behauptung
ds:ds =p:0. (3.51)

Die Evoluten und insbesondere die Evolventen spielen eine wichtige Rolle in der
Verzahnungstheorie, wie die Bezeichnung Evolventenverzahnung zeigt.

Aufgabe 3.14: Man bestimme die Evolute der Parabel y? = 2px und gebe die Koordinaten der
Schnittpunkte beider Kurven an.

Aufgabe 3.15: Man bestimme eine Parametérdarstellung der durch den Punkt A(a,0) gehenden
Evolvente des Kreises &2 + 1? = a* und gebe die Bogenlinge und den Kriimmungsradius an
(Skizze).

1) Spannt man lings des Evolutenbogens MM, einen Faden straff und wickelt ihn unter Fest-
halten des einen Endes in M, von der Evolute ab, so beschreibt der andere Endpunkt des straff
gehaltenen Fadens eine Evolvente. Da M und M, beliebig wihlbar sind, gibt es zu einer Evolute
unendlich viele Evolventen.

5 Schine, Differentialgeometrie

S.3.1

S.3.2
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3.8. Hiillkurven

Wir betrachten eine Funktion F von drei Verdnderlichen x, y, z.*) Durch die Glei-
chung F(x, y,z) = 0 ist in der x, y-Ebene eine Schar von ebenen Kurven gegeben.
Setzt man namlich z = C, wo C eine Konstante sein soll, so stellt die Gleichung

F(x,y,C) =0 (3.52)

eine ebene Kurve ¢ in der x, y-Ebene dar. Wir setzen voraus, daB F nach x, y und z
differenzierbar ist. Wir nehmen an, daB die Konstante C die Bedingung z; < C < z,
erfiillt. Setzen wir fiir die Konstante C eine andere Konstante C = C + AC ein,
so ist durch

F(x,y,C+AC)=0 (3.53)

eine zweite ebene Kurve ¢ gegeben, die sich wenig von ¢ unterscheidet, falls AC hin-
reichend klein ist (vgl. [2], S. 508; [16], S. 63). Nimmt man an, daB sich die Kon-
stante C stetig verdndert, so stellen die zugehérigen Gleichungen (3.52) die Glei-
chungen einer ganzen Schar von Kurven dar. Wir wollen voraussetzen, daB diese
Kurvenschar eine Hiillkurve besitzt (siche Bild 3.21). Das heift, jede Kurve der Schar
soll diese Hiillkurve % in einem Punkt beriihren. :

Bild 3.21. Kurvenschar mit Hiillkurve

Der Beriihrungspunkt P der Kurve ¢ der Schar mit der Hiillkurve / kann aus dem
Schnittpunkt S der Kurve ¢ mit einer Nachbarkurve ¢ erhalten werden, wenn man
den Grenziibergang AC — 0 durchfiihrt. Denn mit AC gegen null geht die Glei-
chung (3.53) der Kurve ¢ in die Gleichung (3.52) der Kurve c iiber, und dabei riickt
der Punkt Sentlang der Kurve ¢ in den Punkt P hinein. Betrachten wir das Gleichungs-
system

F(x,y,C) =0, F(x,5,C+AC)=0, (3.54)

so sind die Koordinaten des Punktes S eine Losung des Systems (3.54).

1) F sei stetig und besitze stetige partielle Ableitungen bis zur 2. Ordnung nach x, y, z.
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Wir dndern das System (3.54) ab, indem wir an Stelle der zweiten Gleichung die durch
Differenzbildung entstehende Gleichung verwenden. Dann geht (3.54) iiber in

F(x,y,C) =0,
F(x,y,C + AC) — F(x,y,C) = 0.

Auch fiir das System (3.55) sind die Koordinaten von S eine Losung. Daran dndert
sich auch nichts, wenn man die zweite Gleichung mit dem Faktor 1/AC multipliziert.
Das ergibt

F(x,3,C) =0,

(3.55)

1 (3.56)
g F 2, C+ AC) = Fx, y, €) = 0.
Fiihrt man jetzt den Grenziibergang AC — 0 durch, so geht (3.56) iiber in
F(x,y,C) =0,
3.57)

9
O_CF(X"V’ C)=0.

Da die Gleichungen (3.56) durch die von C und AC abhangigen Koordinaten des
Punktes S erfiillt werden, dieser aber nach dem Grenziibergang AC — 0 in den
Punkt P iibergegangen ist, wird das aus (3.56) durch AC — 0 entstandene Glei-
chungssystem (3.57) durch die Koordinaten von P erfiillt. P ist aber ein Punkt der
Hiillkurve. Ist

x=x(C), y=yC)
eine Parameterdarstellung der Hiillkurve 4 der Schar (3.52), so gilt daher

FIX(C), 4C), €) = 0, = FHC), X(C), €) = 0,

bzw. wenn die Kurvenschar (3.52) eine Hiillkurve besitzt, so geniigt deren Para-
meterdarstellung x = x(C), y = »(C) dem System (3.57). Falls die benachbarten
Kurven ¢ und ¢ keinen reellen Schnittpunkt S haben, andererseits ¢ die Hiillkurve in
P beriihrt, so besitzen ¢ und ¢'zwei konjugiert komplexe Schnittpunkte S;, S,, die
beim Grenziibergang AC — 0 im Punkt P zusammenriicken. An Stelle von S kann
dann beispielsweise der Punkt S; gewahlt werden.

Haben die Kurven der Schar (3.52) singuldre Punkte (vgl. S. 54) und ist der Ort
dieser singuldren Punkte eine Kurve ¢g mit der Parameterdarstellung

x = x5(C), y = ys(C),
so geniigt diese Parameterdarstellung ebenfalls den Gleichungen (3.57).

Beweis: Da jeder Punkt von ¢ ein singuldrer Punkt einer Kurve ¢ der Schar ist, gilt
F(x4(C), 75(C), C) =0, F(xs(C), ys(C), C) = 0, Fy(x5(C), »s(C), C) = 0 fiir jedes
Cmit z; S C < z,. Dlﬂ“erenznert man die erste dieser drei Glelchungen nach C,
so folgt dF

ac = +(xs(C), y5(C), dC
+ Fe(xs(Cs), ys(C), C) = 0,

(©), C)

5%
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und hieraus ergibt sich, wenn man die vorangehenden Gleichungen beachtet,
Fc(xs(c); »5(C), C) = 0.

Lost man die Gleichungen (3.57) nach x und y auf, es werde angenommen, daB
dies moglich ist, so erhdlt man zwei Gleichungen der Gestalt

x = x(C),
y =¥0),

Die Gleichungen (3.58) sind entweder eine Parameterdarstellung der Hiillkurve £
der Kurvenschar (3.52) oder eine Parameterdarstellung einer Kurve ¢, die der Ort
von singuldren Punkten von Kurven der Schar ist. Das letztere kann jedoch nicht ein-
treten, wenn die Kurven der Schar keine singuldren Punkte besitzen.

Gelingt es, aus den Gleichungen (3.57) die GréBe C zu eliminieren, so erhélt man
als Ergebnis eine Gleichung, in der nur noch x und y vorkommen. Sie sei gegeben
durch

5, £C<z,. (3.58)

G(x,y) = 0. (3.59)

Die Gleichung (3.59) wird von der Parameterdarstellung (3.58) erfiillt. Falls durch
(3.59) keine Kurve gegeben ist, so besitzt die Kurvenschar (3.52) keine Hiillkurve.
Ist jedoch (3.59) die Gleichung einer Kurve, so heiit diese Kurve Diskriminanten-
kurve der Schar (3.52). Man muf} im Einzelfall untersuchen, ob die Diskriminanten-
kurve eine Hiillkurve der Schar oder ob 'sie der geometrische Ort von singuldren
Punkten der Schar (3.52) ist. SchlieBlich kann die Diskriminantenkurve auch eine
oder mehrere spezielle Kurven der Schar enthalten, was ebenfalls iiberpriift werden
muB (vgl. [2], S. 508-516; [9], Bd. 2, S. 525-537).

Als Beispiel werde folgende Aufgabe betrachtet: Eine Stange der Linge / gleite mit ihren End-
punkten auf zwei zueinander senkrechten geradlinigen Schienen. Es ist die Kurve zu bestimmen,
die von dieser Stange eingehiillt wird.

by

Bild 3.22. Astroide
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Zur Losung wird ein orthogonales kartesisches x, y-System eingefiihrt, dessen Achsen mit den
Schienen iibereinstimmen (siehe Bild 3.22). Der Winkel der Stange gegen die negative x-Achse sei ox.
FaBt man die Stange als eine Gerade auf, so lautet ihre Gleichung (vgl. z.B.[9], Bd. 1, S. 403)

x y
lcos o Isinoe

Hieraus folgt xsina -+ ycoso = /cosasina. Man setzt nun F(x,y,«) = xsin« -4 y cos o
— Icos « sin « =0 und bildet 0F/0x = x cos« — ysina — I[(—sin? & 4- cos? &) = 0. Um eine
Parameterdarstellung der gesuchten Hiillkurve zu erhalten, 16st man beide Gleichungen nach x
und y auf. Multiplikation der ersten Gleichung mit sin o, der zweiten mit cos « und anschlieBende
Addition beider fithrt zu x = /(cos « sin® & + cos® & — cos « sin? &) = / cos® ov. Desgleichen fiihrt
die Multiplikation der ersten Gleichung mit cos « und der zweiten mit —sin « nach Addition beider
Gleichungen zu y = I(cos? « sin & - sin® & — cos? & sin &) = /sin® &r. Durch

x=1IcosPx, y=1Isin®x (3.60)

hat man die Parameterdarstellung einer Kurve gefunden, die die Gleichungen F(x(x), y(x),x) =0
und F(x(«), ¥(«),x) = 0 erfiillt. Da die Kurven der betrachteten Schar Geraden sind, haben sie
keine singuldren Punkte. Die gefundene Kurve ist daher die gesuchte Hiillkurve. Eliminiert man aus
den beiden Gleichungen (3.60) noch «, so findet man wegen cos « = (x//)'/s, sin « = (y/I)'/s durch
Quadrieren und Addieren die Gleichung (x/I)2/® -+ (y/)*/3 = 1, woraus schlieBlich

X203 1 y23 = 1213

folgt. Die gefundene Kurve heilit Astroide oder Ste}nkurve. Sie besitzt in den Punkten A,(/, 0)
A50,1), A(—1,0), 440, —I) Spitzen. Fiir « = /4 ergibt sich x = I(1/5/2)%, y = I(1/5/2)?. Der
zugehorige Krimmungsradius hat wegen
x=—3-I-cos?xsina, y=13-1-sin?x cos &,
¥=6-1-cosasin®a—3-l-cos’x, y =6/ sinacos®x—3-I sin>«x

den Wert p(&) = —3 * I'sin & cos &, bzw. o(=/4) = —3/2- 1.

Aufgabe 3.16: Ein quaderformiger Hohlraum mit quadratischer Innengrundfiiche (Seitenlinge a)
und vier rechteckigen Seitenflichen der Breite @ und der Hohe H ist mit dem AuBlenraum durch eine
in einer Seitenfliche liegende rechteckige Offnung der Breite b < a und der Hohe & < b verbunden.
Die untere Kante der Breite b dieser Offnung befinde sich in gleicher Hohe wie die Grundfliichen
des Hohlraums und des AuBenraumes. Wie grol muf3 4 mindestens sein, damit ein Brett der Breite b
und der Linge / mit a < I < H (die Brettdicke werde vernachlissigt) durch die Offnung unverkantet
und ohne Verbiegung eingefiihrt werden kann (vgl. Bild 3.23 auf S. 70)?

Aufgabe 3.17: Man zeige, daB die Astroide bei der Innenabrollung eines Kreises vom Radius r
auf einem festen Kreis vom Radius R als Bahnkurve eines beliebigen Punktes der Peripherie des
Rollkreises entsteht, falls die Radien R und r geeignet gewéhlt werden.

Aufgabe 3.18: Man bestimme eine Parameterdarstellung fiir die Hiillkurve der Normalen einer
ebenen Kurve mit der Gleichung y = f(x).

Aufgabe 3.19: Man bestimme die Hiillkurve aller durch den Ursprung der x, y-Ebene gehenden
Kreise, deren Mittelpunkte die Koordinaten x, = dcos? «, Yo=d-cosasina, -2 S« < 72,
haben.

Bei einer zwangldufigen, ebenen Bewegung bewegt sich ein Korper relativ zu einem festen Korper
derart, daB jeder Punkt des bewegten Korpers eine bestimmte ebene Bahnkurve durchliuft. Die
Ebenen dieser Bahnkurven sind entweder gleich oder zueinander parallel. Um die Gesetze einer
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x
Bild 3.23. Zu Aufgabe 3.16

solchen Bewegung zu studieren, geniigt es, eine Ebene (Gangebene) zu betrachten, die relativ zu einer
festen Ebene (Rastebene) eine zwangliufige ebene Bewegung ausfiihrt. Dabei sollen beide Ebenen
miteinander zusammenfallen.

In jedem Zeitpunkt einer solchen Bewegung gehen die Normalen, die man in den die Bahnkurven
beschreibenden Punkten der Gangebene auf den jeweiligen Bahnkurven errichten kann, durch einen
Punkt. Dieser Punkt heilt das Momentanzentrum der Bewegung in dem betrachteten Zeitpunkt.

Um dies einzusehen, geht man von drei verschiedenen Punkten X, Y, Z der Gangebene aus.
Thre Bahnkurven haben die Parameterdarstellungen x(7), y(¢), z(¢), wobei 7 die Zeit bedeuten moge.
Da die gegenseitigen Abstinde der drei Punkte wiihrend der Bewegung konstant bleiben, folgt

y@O) — 20 =a, |z —x)=b, [x1t)—y0n)|=c,
woraus sich (y — 2z)? = @?, (z — x)2 = b?, (x — y)*> = ¢? und nach Differentiation

V=2 (G—2=0, @—x)E—%)=0,x—y) E—y)=0
ergibt. Die Vektoren y — z, z— x und x — y sind gewiB nicht null. Falls dies auch fiir y — z,
%z — X und X — y zutrifft, steht y — z auf y — z, z — x auf z — x und x — y auf x — y senkrecht.
Die Vektoren y — z, z — x, x — y bilden die Seiten eines Dreiecks mit den Eckpunkten X, Y, Z.
Zeichnet man in X eine Senkrechte zum Vektor x — y, in y eine Senkrechte zu y — z und in z eine

solche zu z — x, so schneiden sich diese Senkrechten in den Eckpunkten X Y Z eines zweiten
Dreiecks, das zum Dreieck X, Y, Z gleichsinnig dhnlich und um 90 Grad gegeniiber diesem

Dreieck gedreht ist. Die Seiten des Dreiecks j{, )'/, Z werden durch die Vektoren y—2,z—X,
X — y gebildet, wenn man den AbbildungsmaBstab fiir die Geschwindigkeiten geeignet wihlt.

Zeichnet man einen beliebigen Punkt P der Ebene beider Dreiecke aus, so entsprechen
o A e o

den gerichteten Strecken I"f(, PY, PZ die drei Ableitungsvektoren X, ¥, z. Zieht man durch X eine
Parallele 7, zur Geraden PX, durch Y eine Parallele 7, zu PY und durch Z eine Parallele 7, zu PZ,
und errichtet in X, Y, Z Senkrechte ny, n,, n; auf den jeweiligen Parallelen, so schneiden sich diese
in einem Punkt P der Ebene. Dies folgt aus der Ahnlichkeit der beiden Dreiecke: Den Geraden
PX, PY, PZ entsprechen bei dieser Ahnlichkeit die Lote ny, n,, n;, und da die ersten drei Geraden
durch einen Punkt gehen, miissen sich auch die ihnen entsprechenden Geraden n,, n,, n, in einem
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Punkt schneiden. Die drei Geraden ny, 1y, n, kann man als Bahnnormalen der Bahnen der Punkte
X, Y, Z zum Zeitpunkt # ansehen. Sie gehen wie behauptet durch einen Punkt P. Falls x — y = 0 ist,
haben X und Y zum Zeitpunkt 7 gleiche Geschwindigkeitsvektoren. Wegen der Starrheit des Drei-
ecks X, Y, Z ist dann X = y = z, und die Bahnnormalen in den Punkten X, Y, Z sind zueinander
parallel. Sie schneiden sich in diesem Fall in einem Fernpunkt. Rechnet man den Punkt P zur Gang-
ebene, so ist seine Geschwindigkeit zum Zeitpunkt ¢ gleich null. Die Gangebene fiihrt in diesem
Augenblick eine momentane Drehung um den Punkt P aus.

Betrachtet man alle Momentanzentren als Punkte der Rastebene, so erfiillen sie eine Kurve, die
als Rastpolbahn bezeichnet wird. Sieht man dagegen die Momentanzentren als Punkte der Gang-
ebene an, so bilden sie in dieser eine zweite Kurve, die man Gangpolbahn nennt. Bei einer zwang-
laufigen ebenen Bewegung rollt nun die Gangpolbahn auf der Rastpolbahn ab.

Es seien zwei Zahnrdder mit parallelen Achsen (Stirnrdder) gegeben. Stehen die Zihne beider
Rader miteinander im Eingriff, so hat die Drehung des einen Zahnrades eine entsprechende Drehung
des anderen zur Folge. Die Bewegung des einen Zahnrades relativ zum andern ist eine zwanglaufige
ebene Bewegung. Die Polbahnen sind zwei Kreise &y, k, mit den Mittelpunkten Oy, O, und den
Radien ry, 7, (vgl. Bild 3.24). Sie werden auch als Wilzkreise bezeichnet. Es ist r; + r, = a, wo a

.\t 7
| 7
xr, ! 4
. S Ny
—
S
k1 pr
>
|
0y X
Bild 3.24

den Achsabstand bedeutet. Wir fiihren zwei ortsfeste kartesische Koordinatensysteme O(x, y)
und O,(%, y) ein (Bild 3.24). Der Punkt P, wo sich beide um ihre Achsen O, O, drehenden Rider
standig beriihren, ist der Pol der relativen Bewegung. Das heiBt, in P liegt der jeweilige Momentan-
pol der Bewegung des einen Rades relativ zum andern, falls die Drehung beider Rider um O, und
0, so erfolgt, daB der Wiilzkreis des einen Rades auf dem Wilzkreis des anderen abrollt. Ist P’
ein Punkt des Wilzkreises &, der mit dem Punkt P’ des Wilzkreises k, im Verlauf der Bewegung
in P zur Deckung gelangt, so werde der Winkel PO, P’ mit ¢, der Winkel <{ PO,P’ mit y bezeich-
net. Es ist r;¢ = r,y. Fiir das erste Rad sei die Flanke c eines Zahnes durch die Parameterdarstellung

x(@) = x(@)i + »(@) i

gegeben. Es sei X ein beliebiger Punkt von ¢, P’ der Punkt des Walzkreises &, fir den < PO, P’ = ¢
ist. Dann soll die Parameterdarstellung x(p) die Eigenschaft haben, daB8 die Gerade XP’ fiir jeden
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Winkel ¢ Normale der Zahnflanke ¢ im Punkt X ist. Damit x(¢p) diese Eigenschaft besitzt, miissen
ihre Koordinaten x(¢), y(p) die Bedingung

X% + yy = ry(x sing + ¥ cos ¢)
erfiillen.

Es soll nun das Gegenprofil ¢ zu der gegebenen Zahnflanke ¢ ermittelt werden. Das heift, es soll
die Flanke fiir den Zahn des zweiten Zahnrades bestimmt werden, die mit der gegebenen Flanke des
ersten Rades im Eingriff steht. Wahrend dieses Vorgangs beriihren sich beide Flanken stindig in
einem Punkt. Nach dem Grundgesetz der Verzahnung (Vgl. [17], S. 236) muB die gemeinsame Nor-
male beider Zahnflanken im Berithrungspunkt (Eingriffspunkt) stets durch den Pol der relativen Be-
wegung gehen. Nach Reuleaux ([18], S.293) kann man den zum Punkt X gehérigen Punkt X des Gegen-
profils so finden, daB man die Strecke P’X um den Winkel ¢ um O; dreht. Dann kommt P’ mit
P und X mit einem Punkt X* zur Deckung. Darauf wird PX* um O, um den Winkel y gedreht,
wobei P nach P’ und X* nach X gelangt. Die Koordinaten %, 7 von X ergeben sich zu

X(p) = (@ — x singp — y cos @) cos (kg) — (x cos ¢ — y sin @) sin (kgp) e
mit k
J(p) = (a — xsinp — y cos @) sin (kp) + (x cos  — y sin @) cos (k) r2

Beide Gleichungen sind eine Parameterdarstellung des Gegenprofils ¢. Wir fassen nun den Kreis
mit dem Mittelpunkt P’ und dem Radius » = XP’ = XP’ ins Auge. Bei verdnderlichem Winkel ¢
durchlauft dieser Kreis eine Kreisschar. Es soll gezeigt werden, dal das Gegenprofil ¢ Hiillkurve
dieser Kreisschar ist. Die Kreisschar ist gegeben durch die Gleichung

(& — ra cos (kg))* + (5 — rz sin (kg))* = (ry cos @ — y(@))* + (ry sing — x(@))%,
wobei X,  als laufende Koordinaten, ¢ als Scharparameter betrachtet werden Hieraus folgt:

X2 + 5% — 2r, cos (ko) & — 2r; sin (k@) 7 + (r2)* = (r)? + x* + y* — 2r;ycos p — 2ryx sing.
Differenziert man diese Gleichung nach ¢, so erhélt man
2r,k sin (kp) X — 2rzk cos (kg) y = 2xX + 2yy — 2r;y cos @ — 2ry X sing -+ 2ryy sing — 2ryx cos ¢.

Wegen xX -+ yy =r(ksing + ycosg) ergibt sich daraus 2rp%k sin (kp) — 2r,jk cos (k)
= 2ryysin ¢ — 2ryx cos p. Diese und die differenzierte Gleichung werden durch die Funktionen
X(p) und y(¢) erfiillt. Bevor dies nachgepriift wird, sei noch bemerkt, daB der Punkt X* der Ein-
griffspunkt ist. Andert man den Parameter ¢, so durchlduft X* die Eingriffslinie.

Eine Parameterdarstellung der Eingriffslinie lautet

x* = x(g) cos ¢ — y(¢) sin g = x*(p),
¥* = x(g) sing + y(g) cos @ = y*(g).
Um nachzuweisen, daB das Gegenprofil ¢ Hiillkurve der Kreisschar ist, setzt man in die Gleichung

der Kreisschar fiir die laufenden Koordinaten %, y die Funktionen %(¢), 7(¢) ein. Ebenso verfihrt
man mit der durch Ableitung nach g entstandenen Gleichung. Man erhilt

E(@)? + (F(@))* — 2r25(@) sin kp — 2r,%(p) cos kg + 13
= (a — xsinp — ycosp)? + (xcosp — ysing)? — 2r(a — xsing — y cos @) + r
=a*—2xsing + ycosg)a + x + y? — 2ry(a — xsing — y cos @) + r3
=a? 4+ x2 + y? — 2r,a — 2(x sing + y cos ¢) (@ — rp) + r3
= a(a — ry) — ry(a — ry) + x* + y* — 2(x sing + y cos ¢) ry
=ary — rpry + x> + y* — 2(xsing + y cos @) ry
=r(a—r)+ x>+ y*—2xsinp + ycosp)ry
=r}+x*+y* —2xsing + ycosg) ry.
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Dies ist aber die rechte Seite der urspriinglichen Gleichung. Fiir die durch Differentiation entstan-
dene Gleichung findet man

2r,x(p) k sin kg — 2r, 3(¢) k cos kg = —2r k(x cos ¢ — y sin ¢)
=2rysing — 2r;x cos @.

Die Funktionen X(¢), j(¢) erfiillen beide Gleichungen. Damit ist gezeigt, daB das Gegenprofil ¢
Hiillkurve der Kreisschar ist. Wihlt man als Zahnflanke eine Kreisevolvente, so ist das Gegenproﬁl
ebenfalls eine Kreisevolvente. Die Verzahnung wird dann als E t

Der Kreis mit dem Mittelpunkt P’ und dem Radius XP gehort auch zu einer Kreisschar, die in
der Ebene des ersten Rades liegt und deren Hiillkurve die Zahnflanke c ist. Drehen sich beide Rider,
so daB8 P’ nach P, X nach X* kommt, so bewegt sich P’ ebenfalls nach P und X nach X*. Der Kreis
um X mit Radius XP” und der Kreis um ¥ mit dem gleichen Radius XP gehen beide in denselben
Kreis um P mit dem Radius PX* iiber. Da der eine Kreis in seiner urspriinglichen Lage die Zahn-
flanke ¢ in X, der andere die Zahnflanke ¢ in X beriihrt, beide Kreise nach der Drehung zusammen-
fallen, beriihren sich die Zahnflanken ¢ und ¢ nach der Drehung in X* und ihre gemeinsame Normale
PX* geht durch P, wie es das Verzahnungsgesetz verlangt.

3.9. Minimalkoordinaten

Wir betrachten die x, y-Ebene und fithren in ihr durch die Gleichungen
u=x+iy, v=x-1iy, i*=-1,
neue Koordinaten u, v ein, die man Minimalkoordinaten oder isotrope Koordinaten nennt. Ist P ein
reeller Punkt der Ebene, d. h., sind seine kartesischen Koordinaten x, y reell, so sind seine Minimal-

1 1
koordinaten konjugiert komplex. Durch die Gleichungen x = 5 u+v),y= > (u — v) kann man

von Minimalkoordinaten wieder zuriick zu den kartesischen Koordinaten kommen. Aus diesen
Gleichungen folgt, daB ein Punkt, dessen Minimalkoordinaten konjugiert komplex sind, stets reelle
kartesische Koordinaten hat und daher ein reeller Punkt ist. Eine ebene Kurve hat in Minimalkoordi-
naten die Gestalt

flu,v) = 0.
Soll die Kurve reell sein, so muB3 sie mehr als abzihlbar unendlich viele reelle Punkte enthalten.
Das sind Punkte, deren Minimalkoordinaten u, v die obige Gleichung erfiillen, wobei auBerdem
noch # = v und & = « gilt, wenn wir mit i bzw. & die zu u = x + iy bzw. v = x — iy konjugiert
komplexe Zahl & = x — iy bzw. & = x + iy bezeichnen. Fiir die Gleichung f(«, v) = 0 einer reel-
len Kurve gilt also, daB f(u, #) = O fiir unendlich viele Paare u, i erfiillbar ist. Diese Bedingung
ist-auch hinreichend. Eine Gerade ist in impliziter Form durch eine Gleichung

Au+ Bv+ C=0 )
gegeben. Dabei konnen wir C stets so withlen, daB C reell und < 0 ist, wihrend A =: aei*, B = be'f
im allgemeinen komplexe Zahlen sind. Soll die Gerade reell sein, so muB8 B = A sein. Zur Veran-
schaulichung faBt man die x, y-Ebene als GauBsche Zahlenebene mit der x-Achse als reeller Achse
auf und trigt darin die Zahlen A, A, 24 und den Kreis & mit dem Radius \/—C‘ ein (Bild 3.25).
Invertiert man den Punkt 24 an £, so erhilt man A4* (vgl. Aufgabe 3.13). Es ist

|04* |0Q24)l = —C > 0.
Die durch A senkrecht zu OA verlaufende Gerade g stellt dann die durch die Gleichung

Au+ Av+ C=0,C< 0,
\gegebene Gerade dar. Falls C = 0 ist, geht die Gerade durch den Ursprung O und ist senkrecht zu
OA.
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Ist dagegen die reelle Gerade g in expliziter Form gegeben, so lautet ihre Gleichung v = mu + n
mit
A elx (¢f n

= - —5 = — el n=—e* und m=—

m=— — —_
A e3x a i

1
Die Lage von g ergibt sich, wenn man in die GauBsche Zahlenebene die komplexe Zahl 5 7 eintragt.

1_
Dann stellt die durch den Endpunkt M des Vektors < senkrecht zu OM verlaufende Gerade die

Gerade g dar (vgl. Bild 3.26). Ein Kreis mit dem Radius r, dem Mittelpunkt M,, wo uo, v, dessen
Minimalkoordinaten sind, hat die Gleichung

(= up) (v = vo) = r%.
Der Abstand d zweier Punkte P, (u,, vy), P(u,, v5) ist gegeben durch
d =/l = u) @ — v2).

Fiir die Gleichung der Tangente 7, und der Normale 1z, im Punkt Py(uo, vo) einer Kurve mit der Glei-
chung f(u, v) = 0 erhilt man

tor (u — uo) fulto, vo) + (v — vo) filko, vo) = 0,

no: (u — uo) fultto, vo) — (v — vo) filtg, Vo) = 0.

Fiir die Kriimmung % im Punkt Py(ug, vo) ergibt sich aus (3.33) in 3.4,
SolfO = 265l 2 + fol(fD)?
HN/AS ’
wenn wir zur Abkiirzung fir £, (io , vo) = f S, filtio, Vo) = £ usw. setzen. Wir vermerken noch, dal
fiir die Faktoren m und m’ zweier in expliziter Form gegebener reellen Geraden g, ¢’ mit den Gleichun-

genv = mu + n, v = m'u + n’ die Bedingung m + m’ = 0 genau dann gilt, wenn ¢ und g’ zueinan-
der senkrecht sind.

%

Die Koordinatenachsen des Minimalkoorainatensystems sind zwei imaginire Geraden mit den
Gleichungen # = 0, v = 0 bzw. x + iy = 0, x — iy = 0 in kartesischen Koordinaten, die auch als

Minimalgeraden bezeichnet werden.

Bild 3.25 Bild 3.26



4. Flidchentheorie

4.1. Grundbegriffe der Flichentheorie
4.1.1. Zulissige Parameterdarstellungen

Im dreidimensionalen euklidischen Raum E® sei ein orthogonales kartesisches
Koordinatensystem O(x,, x,, x3) mit dem Ursprung O und den Achsen x;, X,, X3
gegeben. Wir betrachten eine Gleichung der Gestalt

X3 =f(x1" X2), 4.1)

wo f eine eindeutige reelle Funktion der zwei Veranderlichen x,, x, ist. Die Funk-
tion 1 sei auf einem gewissen (zweidimensionalen) Gebiet G der x,, x,-Ebene erklart
und dort stetig nach x, und x, differenzierbar. Das Gebiet G kann auch die ganze
Xy, x,-Ebene sein. Dann ist durch (4.1) die Gleichung einer gekriimmten Fliche
des Raumes E3 gegeben. Ist speziell f/ eine lineare Funktion, das heiBt, gilt
f(xy, x,) = ax, + bx, + ¢, so stellt (4.1) die Gleichung einer Ebene dar. In diesem
Fall ist das Definitionsgebiet G die ganze x, , x,-Ebene.

Fiir viele Aufgaben erweist sich jedoch die Darstellung einer Fliche durch eine
Gleichung der Form (4.1) als ungiinstig. Daher wurde bereits von C. F. GauB eine
andere Art der Darstellung einer Fliche gewihlt, die inzwischen durch die Ein-
fiihrung der Vektorrechnung noch weiter vervollkommnet wurde. Sind i, j, k die
drei Einheitsvektoren in Richtung der drei Koordinatenachsen x,, x,, X3, so kann
man einen beliebigen Vektor x des Raumes E? in der Form

X = X0 + X,§ + x3k

schreiben. Die Koordinaten sind reelle Zahlen. Es mdge der Vektor x noch von zwei
unabhiingigen Variablen u!,u?, die auch als Parameter bezeichnet werden, abhiingen.')
Dann sind die Koordinaten x; keine Zahlen mehr, sondern Funktionen der zwei
Variablen !, u? und man schreibt

x(u', w?) = x (', w?) i + (', 0?) j + x3(u', w) k. (4.2)

FaBt man u!, u? als Koordinaten von Punkten einer u!, u>-Ebene auf, in der ein
orthogonales kartesisches Koordinatensystem O’(u!, u?) gegeben ist, dann sind die
drei Funktionen x; der Variablen u', u? im allgemeinen nicht fiir alle Punkte der u*, u?-
Ebene definiert, sondern nur fiir die Punkte eines gewissen Gebietes B 2) dieser
Ebene. Eine Gleichung der Gestalt (4.2) heifit eine vektorielle Parameterdarstellung.
Sie kann auch in drei skalare Gleichungen zerlegt werden. Dann erhalt man

.
xp = x, W, 0?), xo = Xt u?), X3 = xs3(ut,u?). (4.3)

Man nennt drei derartige Gleichungen eine GauBsche Parameterdarstellung im E3.
1) Wir werden — wie in der Tensorrechnung - von der Schreibweise Gebrauch machen, GroBen
auch oben zu indizieren. Der Grund wird auf den Seiten 80 und 93 ersichtlich. Man unterscheide

im folgenden zwischen Potenzen und obéren Indizes!
2) B sei einfach zusammenhéngend und beschrinkt (vgl. [9] Bd. 2, S. 304, Bd. 3, S. 292).
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S

Bild 4.1. Der Wertebereich der Parameter u', u? ist ein einfach zusammenhingendes
Gebiet B, das durch die im Bild dargestelite Kurve begrenzt wird

Eine (vektorielle) Parameterdarstellung heiB3t eine zulissige Parameterdarstellung
der Klasse r = 1 fiir das Gebiet B, wenn folgendes gilt:

1. Die drei Funktionen x; sind in allen Punkten von B stets r-mal (r = 1) stetig
nach ' und u?-differenzierbar.

2. Jedem Punkt P aus B mit den Koordinaten u', u? entspricht vermdge (4.2) ein
Punkt X einer gewissen Punktmenge M des E3, wenn man den Vektor x(u', u?) als
Ortsvektor auffaBit, d. h. ihn durch eine gerichtete Strecke darstellt, die vom Ur-
sprung O zu dem Punkt X mit den Koordinaten x,(u', u*) verlduft und mit einem
Richtungssinn versehen ist, der durch einen von O nach X gehenden Pfeil gekenn-
zeichnet wird.

3. Jedem Punkt X der Punktmenge M entspricht ein Punkt P des Gebietes B mit
den Koordinaten u!, u?, so daB x,(u', u?) die Koordinaten von X sind.

4. Bildet man aus den ersten Ableitungen dx;/0ut, 0x,;/0u® (i = 1, 2, 3) die Matrix I

ox; Oxy
et P

I= 0x, 0x,
out ou* |’
0x; 0x3
' dur

so soll I in allen Punkten von B den Rang 2 haben, d. h., da3 wenigstens eine der
zweireihigen Unterdeterminanten von I nicht verschwindet.
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Ist x(u', u?) eine zuldssige Parameterdarstellung der Klasse r = 1 fiir das Gebiet B
und 148t man die Parameter u!, u? alle durch das Gebiet B erlaubten Werte durch-
laufen, d. h., wihlt man alle solchen Wertepaare u!, u? aus, die Koordinaten eines
beliebigen Punktes P von B sind, so beschreibt der Endpunkt X des Ortsvektors

5)} = x(u', u?) eine gekriimmte Fliiche bzw. ein Flichenstiick im E3..

Dies sicht man wie folgt ein. Zu jedem beliebigen Punkt X mit den Koordinaten x,, x,, x5 aus
der Punktmenge M gibt es wegen 3. einen Punkt P des Gebietes B mit den Koordinaten u', u?, so
daB x; = x,(ul, u?), x, = x,(u', u?), x3 = x3(u’, u?) ist. Da wegen 4. die Matrix I den Rang2
hat, gibt es eine zweireihige Unterdeterminante von I, die im Punkt P nicht verschwindet. Es sei
zum Beispiel

Oxy 0xy

out ou? b
ox,  0x, +0.
oul  ou?

Dann kann man die zwei Gleichungen x; = x;(u', u?), x, = x,(u*, u?), was hier nicht bewiesen
werden kann (vgl. Bd. 4, Satz 3.15), lokal (d.h. in einer gewissen Umgebung des Punktes P)
nach u! und #? auflésen. Man erhélt u' = g(x;,x,), u® = (x;, x,). Setzt man dies in die dritte
Gleichung ein, so ergibt sich

X3 = x3(@(x1, x2), p(ry, x2)) =[xy, x2). 44

Die Funktionen @, sind im allgemeinen nach x; , x, differenzierbar, daher wegen 1. auch f. Durch
(4.4) ist aber die Gleichung einer gekriimmten Fliche im E® gegeben. Gleichung (4.4) wird durch die
Koordinaten von X erfiillt. Da X jeder Punkt von M sein kann, liegt die gesamte Punktmenge M
auf der Fliche. Aus Griinden der Stetigkeit liegen die Punkte von M auch dicht auf der Fliche.
Somit ist durch eine zulissige Parameterdarstellung x(u!, u?) eine Fliche bzw. ein Flichenstiick
im E3 gegeben.

\

Man kann umgekehrt jeder Fliche, die durch eine Gleichung der Form (4.4)
x3 = f(xy, x,) gegeben ist, sofort eine zuldssige Parameterdarstellung zuordnen,
indem man x; = u', x, = u? und x5 = f(u', u?) setzt. Allerdings wird dabei voraus-
gesetzt, daB3 f nach »' und u? wenigstens einmal stetig differenzierbar ist. Man erhalt

x(ut, u?) = u'i + u?j + [, u?) k.

Falls das Gebiet B als beschrinkt vorausgesetzt wird, ist in der Regel durch eine
zuldssige Parameterdarstellung x(u!, »?) nur ein Flichenstiick gegeben. Die Fliche,
zu der ein solches Flachenstiick gehort, wird dann durch eine Menge von derartigen
Flachenstiicken definiert, die die Flache dachziegelartig tiberdecken.

Hat die Matrix I fiir ein Wertepaar u!, u? einen Rang <2, so heiBt der durch u?, u?
bestimmte Punkt der Fliache beziiglich der betreffenden Parameterdarstellung sin-
gulir. Ist ein Punkt beziiglich aller Parameterdarstellungen eines Flichenstiickes
singuldr, so heiBt er ein singuliirer Punkt des Flichenstiickes (vgl. Aufgabe 4.2). Ein
Punkt einer Flache heif3t reguldr, wenn es ein Flachenstiick gibt, das diesen Punkt
enthalt, so daB wenigstens eine Parameterdarstellung x(u!, u?) dieses Flichenstiicks
in diesem Punkt der Matrix I den Rang 2 zuordnet.
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4.1.2.  Flichenkurven, Koordinatenlinien einer Fliche und die erste Grundform
der Flichentheorie

Es sei im E?® eine zuldssige Parameterdarstellung der Klasse r = 1
x(@!, u?) = x,(ut, w?) i+ x,(ut, u?) j + x3(ut, w?) k 4.5)

beziiglich des Gebicetes B der u', u*>-Ebene gegeben. Durch x(u!, u?) ist, wie bereits
im vorhergehenden Abschnitt bemerkt wurde, eine Fliche F bestimmt. Wir wollen
annehmen, daB die zwei Parameter u!, u? differenzierbare Funktionen einer reellen
Variablen ¢ sind, die entweder alle reellen Zahlen durchlduft oder die Bedingung
t, <t £ t, erfillt.

Wir schreiben
u ul(z),
u? = u(t).

Die Wertebereiche der Funktionen u': # — u!(¢) und u?: t — u?(¢t) seien so beschaf-
fen, daB ein Punkt P mit den Koordinaten u*(¢); u?(¢) stets zum Bereich B gehort.
Dann stellen die beiden Gleichungen (4.6) die Parameterdarstellung einer Kurve
cp der u', u>-Ebene dar, die ganz im Gebiet B verliuft. Setzt man (4.6) in (4.5) ein,
so erhalt man

x(t) = x(u' (), u?(t)) = %1 (" (1), (1)) i + X2 (1), () j + x3(u' (1), w*(t) k
=x;(0)i + x,(t)j + x3(¢) k.

Das ist die Parameterdarstellung einer Raumkurve c. Durchliuft der Punkt P mit
den Koordinaten u!, u? das ganze Gebiet B und setzt man alle diese Koordinaten-
paare u', u? in die Parameterdarstellung (4.5) ein, so beschreibt die Spitze X des vom
Punkt O ausgehenden Vektors x(u*, u?) die Fliche F. Da unter allen diesen mdglichen
Koordinatenpaaren u', u? auch u!(¢) und u?(¢) sind, liegt die Raumkurve ¢ ganz auf
der Flache F. Die Raumkurve ¢ ist demnach zugleich eine Flachenkurve der Flache F.

Um den Tangentenvektor von ¢ zu gewinnen, differenzieren wir (4.5) nach ¢ und
erhalten

1

I

(4.6)

dx ox du! ox du?

VIR 7 TR WO @7
bzw.

X = Xatt' + X2, “4.7)

wenn wir zur Abkiirzung dx/dt = X, x,» = 0x/ou’, i’ = dui’/dt, (v = 1, 2) setzen.
Nimmt man speziell an, daB die Gleichungen (4.6) die Gestalt u* =1, u> = C
haben, wo C eine passend gewihlte Konstante ist und ¢ zu dem Intervall [z, 7,]
gehort, so bezeichnet man c als u'-Linie, ist hingegen u' = K, u*> = ¢ mit passendem K
und ¢ € [t5, £4], so nennt man c eine u>-Linie. Diese u'- bzw. u*-Linien liegen eben-
falls auf F. Die Konstanten C bzw. K miissen so gewahlt werden, da die Gerade
u? = C bzw. die Gerade u' = K der u', u?>-Ebene mindestens ein Stiick im Gebiet B
verliuft. Da man C bzw. K auf beliebig. viele Arten so wihlen kann, gibt es eine
ganze Schar von u'-Linien und eine ebensolche Schar von u2-Linien auf F. Die u'-
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Linie 4> = C und die u?-Linie u' = K schneiden sich im Punkt X, mit dem Orts-
vektor x(C, K). Daher bilden die u'- und die u?-Linien auf F ein Kurvennetz. Durch
jeden reguldren Punkt X der Fliche F geht eine u*-Linie und eine >-Linie. Durch ein
solches Kurvennetz ist auf der Fliache F ein Gaufisches Koordinatensystem') gegeben.
Denn die Parameterwerte u', u? haben die Bedeutung von Koordinaten. Man nennt
sie Gaupfische Koordinaten, und die u'- bzw. u*-Linien heiBen Koordinatenlinien. Die
Tangentenvektoren der u!-Linie u' = ¢, u? = C durch X, sind durch x,(t, C)
= x,(u!, C), die Tangentenvektoren der u?-Linie u' = K, u? = t im selben Punkt
sind durch x,:(K, t) = x,(K, u?) gegeben. Ist X ein beliebiger Punkt auf F mit den
GauBschen Koordinaten !, u?, so sind die Tangentenvektoren der beiden durch X
gehenden Koordinatenlinien x,:(u', u%) und x,2(u!, u?). Stellt man diese Vektoren
als gerichtete Strecken mit dem Anfangspunkt X dar, so bestimmen sie eine Ebene 7y,
die von dem durch X gehenden beiden Koordinatenlinien im Punkt X beriihrt wird.
Da der Tangentenvektor x(¢) einer beliebigen durch X verlaufenden Flachenkurve ¢
wegen (4.7') die Gestalt X = x, 1" + x,,u* hat, liegt er, wenn er als gerichtete
Strecke mit dem Anfangspunkt X aufgefat wird, ebenfalls in der Ebene 7x. Daher
beriihrt jede durch X gehende Flichenkurve die Ebene 7y im Punkt X. Demnach
ist die Ebene 7x dic Tangentialebene an die Fliche F im Punkt X. Man sagt auch,
daB die Ableitungsvektoren x,(u', u?), x,2(u', u?) die Tangentialebene 7y an die
Flache F im Punkt X aufspannen.

Bild 4.2. Fliche mit Parameterlinien, Tangentialebene, Ableitungsvektoren und
Flichenkurve

1) Auch krummliniges Koordinatensystem genannt.
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Kehren wir zur Flichenkurve ¢ zuriick. Das Bogenelement ds dieser Kurve ist
gegeben durch

ds? = dx - dx. 4.8)
Dabei ist

dx = xdf = (xt + x,002) df = X0 dut + x,2 du?,
Setzt man dies in Gleichung (4.8) ein, so erhalt man

ds? = (X0 dut + Xpe du?) * (X0 dut + x,0 du?)

= (X1 Xg1) (du?)? + 2(xp X)) dut du? + (X, * X,0) (du?)?.

Wir fithren zur Abkiirzung die folgenden Bezeichnungen

Xpv X = gyu (,u=1,2) 4.9)
mit g,, = g,, ¢in. Dann erhalten wir

(ds)* = gy4(du')® + 2gy, du' du® + g,,(du?)*. (4.10)
Der Ausdruck auf der rechten Seite von Gleichung (4.10) ist homogen vom zweiten
Grad in den Differentialen du!, du®>. Man bezeichnet einen solchen Ausdruck als
eine quadratische Differentialform. In der Differentialgeometrie wird die obige Diffe-
rentialform (4.10) auch als erste Grundform der Flichentheorie bezeichnet. In man-
chen Lehrbiichern ist es iiblich, statt g,,, g,,, g,» die Bezeichnungen E, F, G zu ver-

wenden.!) Wir wollen die erste Grundform noch mit 7 bezeichnen und die in der
Differentialgeometrie iibliche Summationsvereinbarung benutzen.

Summationsvereinbarung: Uber einen Index, der in einem Produkt zweimal — einmal

als unterer und einmal als oberer Index — vorkommt, ist zu summieren. Die Summation
liuft von 1 bis 2. Das Summationszeichen wird weggelassen.
Dann kann man fiir die erste Grundform auch schreiben

I=ds* =g, du” du*. 4.11)

Die erste Grundform der Flichentheorie ist fiir alle metrischen Fragen wie z. B.

Lingen- und Winkelmessungen auf der Fliche maBgebend. Man bezeichnet sie daher
als metrische Grundform.

Die Koeffizienten g,, bilden die Komponenten eines Tensors zweiter Stufe?). Dieser heiBt der
kovariante Maftensor, metrische Tensor oder auch Fundamentaltensor auf der betreffenden Flache.
4.1.3. Parameterdarstellungen spezieller Flichen

In diesem Abschnitt sollen verschiedene Parameterdarstellungen betrachtet werden.
a) x(u!, u?) = rcos u' cos u2i - rsin u' cos u?j -+ r sin u?k,

—rn = = 4w, —n2=ur < a2,
Das Gebiet B ist hier ein Rechteck der Linge 2 und der Breite = (vgl. Bild 4.3).

1) vel. [1], [3], [11] und [13].
2) Vgl. Band 11 und [6], S. 99106, S. 117.
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Bild 4.3. Oberfliche einer Kugel mit GauBsck Koordi ystem

Es ist
Xy = rcos u' cos u?,

x, = rsinu' cos u?,
X3 = rsin u?.

Durch Quadrieren und Addieren dieser drei Gleichungen erhélt man
(1) + () + (x3)* =12

Das bedeutet, daB3 die Punkte X, der durch die Parameterdarstellung a) gegebenen Fldche den kon-
stanten Abstand r vom Koordinatenursprung O haben. Die Fliche ist eine Kugelfliche mit dem Ur-
sprung O als Mittelpunkt und dem Radius r. Fiir die Ableitungsvektoren x,1, x;2 ergibt sich

X,! = —rsin u! cos u?i + r cos u! cos u?j,
X,2 = —r cos ul! sin u?i — r sin u¥ sin u?j + r cos u?k.
Fiir die Koeffizienten der ersten Grundform erhélt man
gr=r*cos?u?, g1, =0, gp=r%
Damit lautet die erste Grundform
1= ds? = r? cos? u?(du')? + r?(du?)2.

Fiir u? = «/2, —= < u' < += erhilt man ein- und denselben Punkt N auf der Kugel. Wir fassen
ihn als Nordpol auf. Desgleichen erhélt man fiir #?> = —x/2, —x < 4! =< = einen Punkt S, den wir
als Siidpol ansehen kdnnen. Dann stellt u* die geographische Lange und u? die geographische Breite

6  Schone, Differentialgeometrie
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dar. Die u!-Linien, die durch u2 = konstant gegeben sind, stellen die Breitenkreise dar, wihrend
die u2-Linien, gegeben durch u! = konstant, die Meridiane sind. Jeder Meridian ist ein halber
GroBkreis (Radius ) vom Punkt N zum Punkt S. Beide Kurvenscharen — die Breitenkreise und die
Meridiane - schneiden sich orthogonal. Daher liegt hier ein orrh les Gaupsches K

system vor. Dies ergibt sich auch, wie im Abschnitt 4.6. gezeigt wird, daraus, daB fiir alle Wertepaare
ul, u? mit —r < w! <=, —x/2 < w? < =/2 der Koeffizient g4, = 0 ist. In den Punkten N und S
ist diese Parameterdarstellung nicht mehr zuldssig, weil die Matrix I fiir die Punkte P € B mit
—n = u' =, u?=rx/2bzw. u? = —x/2 den Rang 1 hat. AuBerdem entspricht jedem solchen Punkt P
jeweils der Punkt N bzw. S auf der Kugelfliche. Fiir diese Punkte ist daher die geforderte Einein-
deutigkeit der Zuordnung zwischen den Punkten von B und den Punkten der Punktmenge M, die
hier mit der Kugelfldche identisch ist, nicht mehr gewihrleistet. Man nennt solche Punkte wie N
bzw. S singulér beziiglich der Parameterdarstellung. Jedoch sind N und S keine singuldren Punkte der
Kugelfliche, weil es Parameterdarstellungen gibt, bei denen die MatrixIin N und S den Rang 2 hat.

b) x(u!, u?) = acos uli + asin u'j+ u?k, 0=<u! <27, —oo lu?< +oo.

In diesem Fall ergibt sich x, = a cos u!, x, = a sin u!, x3 = u*. Hieraus folgt x? 4 x3 = a2,

xz fu?

< N

X2

Bild 4.4. Gerader Kreiszylinder mit GauBschem Koordinatensystem
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Die durch b) gegebene Fliche ist ein gerader Kreiszylinder (Drehzylinder), dessen Achse die x3-
Achse und dessen Grundkreis der Kreis mit dem Radius @ in der x;, x,-Ebene mit dem Ursprung O
als Mittelpunkt ist. Die «!-Linien (4? = konstant) sind Kreise, die zum Grundkreis kongruent sind
und deren Ebenen parallel zur x;, x,-Ebene liegen. Die «3-Linien (#* = konstant) sind die Mantel-
linien des Kreiszylinders. Das sind parallele Geraden zur x3-Achse. Das Netz der Koordinatenlinien
ist hier ebenfalls ein orthogonales Netz.
Fur die Ableitungsvektoren ergibt sich
X, = —asin u'i + a cos u'j, x,2 =k.

Damit erhilt man g;; = a2, g;, = 0, g5, = 1. Der Rang der Matrix I ist fir alle Werte u?, u?
mit 0 < u! < 27w, —oo < u? < oo gleich 2. Die Parameterdarstellung b) ist {iberall zuléssig. Das
Gebiet B ist der durch die Gerade u! = 2x und durch die u>-Achse begrenzte Streifen der u?!, u?-
Ebene.

4.1.4. Die Bogenliinge einer Flichenkurve

Es sei eine Fliche F durch eine fiir das Gebiet B zulissige Parameterdarstellung
x = x(u!, u?) der Klasse r = 1 gegeben. Auf F sei durch u' = u'(¢), u? = v?(t),
t; £t £ t, eine Flichenkurve ¢ bestimmt. X, und X seien zwei Punkte der Kurve c.
Die GauBschen Koordinaten von X, seien uy = u'(t,), u3 = u?(t,), die von X seien
ul = ul(t), u* = u*(t) mit ¢,,t€t;,t,] und t > t,. Wir wollen die Linge des
Kurvenstiicks von X, bis X mit s bezeichnen. Es ergibt sich

X t
s = [ds = [ g, duwdur. (4.12)
5.4 1

Offensichtlich ist s eine Funktion der oberen Grenze . Setzt man du® = #° d¢ und
betrachtet ¢, als konstant, so erhilt man

1
s(t) = [ ey de, (4.12)
1t

Die Bogenlinge des Kurvenstiicks X,X der Flichenkurve ¢ 1aBt sich durch Inte-
gration finden, wenn man die Funktionen #*(t) (v = 1, 2) kennt und wenn auBerdem
die GroBen g,, der ersten Grundform gegeben sind. Durch Differentiation von (4.12")
nach ¢ folgt

ds -
e N (4.13)

Mit Hilfe dieser Gleichung kann man, wenn eine Flachenkurve durch einen be-
liebigen Parameter ¢ gegeben ist, die Bogenlinge dieser Flachenkurve als neuen Para-
meter einfiihren.

Aufgabe 4.1: Welche Flichen sind durch die folgenden Parameterdarstellungen gegeben?

a) x(u!, u?) = a cos u? sin u'i - b sin u? sin u'j + c cos u'k,

0=<u'=<nmn 0=Zu*=<2m,a>b>c>0.

b) x(u! , u?) = u' cos ui + u? sin u?j + au'k,

—colut <o, 0=5u?<2x, a>0.

Man berechne fiir beide Darstellungen die GroBen g, .

6*
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Aufgabe 4.2.: Man zeige, daB der Punkt O(0, 0, 0) der in Aufgabe 4.1.b) gegebenen Fliche
x(ut, u?) = u' cos u?i + u'sin u?j 4 au'k, — 00 < u! < + 00,0 = u* £ 27, a > 0, ein singulérer
Punkt der Fliche ist.
Aufgabe 4.3: Gegeben ist eine Zylinderfliche (parabolischer Zylinder) durch die Parameterdar-
stellung

x@hu?)y=(1+u)i+tu?ji+1% ((uh)? — 2ul) k,

—oo< ut < 400, —oo <u? < o0,
Es werde angenommen, daB die x, , x,-Ebene horizontal verlaufe. Auf der Zylinderfliche sind auBler-
dem die zwei Punkte P(1,0,0) und Q(2 — cosh2, %sinh2cosh2—1, %(cosh2)? — %) ge-
geben. Die Punkte P, Q sollen durch eine Bdschungslinie (vgl. S. 35) verbunden werden, die ganz

auf der Zylinderfliche verliuft. Man gebe eine Parameterdarstellung dieser Bschungslinie an und
berechne die Bogenlinge des die Punkte P, Q verbindenden Kurvenstiicks.

Aufgabe 4.4: In der x;, x3-Ebene des orthogonalen Koordinatensystems O(xy, x5, x3) ist durch die
Gleichung x3 = f(x;) eine ebene Kurve ¢ bestimmt. Die Kurve ¢ rotiere um die x3-Achse. Man be-
rechne eine Parameterdarstellung der dadurch entstehenden Rotationsfliche.

4.1.5. Tangentialebene und Flichennormalenvektor

Die beiden Ableitungsvektoren x,1, x,2 bestimmen, wie bereits erwahnt, die Tangen-
tialebene 7y der Fliche Fim Punkt X. Ist y der Ortsvektor eines beliebigen Punktes
Y dieser Tangentialebene, so gilt

y = x(u', u?) + AXu + px,e 4.14)
mit —0w <A< 40, -0 <p< +n0

Der Normalenvektor f, der zugleich Normalenvektor der Flache F im Beriithrungs-

punkt X ist, steht auf x,» und x,: senkrecht. Der Vektor f sei so normiert, daB er
den Betrag 1 hat. Dann gilt

Xy X X0

T X X Xa|
In der Tat ist |f] = |x,1 X X,|/|X,0 X X,o| = 1. Wegen

X X Xet| = V(X X X2) - (Xt X X2)

= V(X X)) (X2 * Xp2) — (X * X2)?

[vgl. (1.7)] erhilt man mit [x,; X X| = Jg

%u X Xua| = /211822 — 832 = V&
Damit ergibt sich fiir den Flachennormalenvektor
Xyt X X2
Je
Fiir die Tangentialebene 7y folgt aus (4.14) durch skalare Multiplikation mit f
f-y="f-x(u',u?

oder (4.16)
(y — x@', u?)-£=0.

fo (4.15)
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Setzt man fiir f den Ausdruck (4.15) ein und multipliziert die Gleichung mit \/é,
so geht (4.16) iiber in

(y = x(ut, u?)) * (X2 X X,2) = 0. (4.17)

Aus [x,;1 X X,2|? = g ergibt sich, daB in einem reguldren Flichenpunkt stets g > 0
ist. Da namlich in einem solchen Punkt der Rang der Matrix I mit 2 angenommen wer-
den kann, sind x,  und x, linear unabhéngig. Folglich ist |x,: X x,| > 0. In
einem reguldren Flichenpunkt ist die erste Grundform auch immer positiv definit,
d. h., es ist stets

ds? = gy, (du')® + 2g, dut du? + gy,(du®)> > 0,

wenn nur du' und du? nicht beide gleich null sind (vgl. [6], S. 104).

4.1.6.  Der Schnittwinkel zweier Flichenkurven

Auf der Fliche F mit der zuldssigen Parameterdarstellung x = x(u!, u?) seien
zwei Fliachenkurven ¢, ¢ gegeben, die sich im Punkt X, schneiden sollen (Bild 4. 5).
Es gelte

¢ ut = ul(t), u® = u¥1),
¢ ul =ul(r), u*=u(7).

Fiir ¢ = #, und 7 = 7, erhilt man u'(t,) = @'(7e) (i = 1,2). Das heifit, da3 der
Punkt X, durch den Ortsvektor

Xo = X(u(to), u*(t)) = X(@' (7o), #(7o))

bestimmt wird. Unter einem Schuittwinkel der zwei Flichenkurven ¢, ¢ im Punkt X,
verstehen wir jeden der zwei Winkel, den die beiden Tangenten der Kurven ¢ und ¢
im Schnittpunkt X, miteinander bilden. Da die zwei Winkel Supplementwinkel
sind, geniigt es, einen von ihnen zu kennen. Dazu berechnen wir die Tangentenvek-

Bild 4.5. Der Schnittwinkel zweier Flichenkurven
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toren der Kurven ¢ und ¢ im Schnittpunkt X,. Fiir die Parameterdarstellung der
Kurven ¢, ¢ findet man
c:x(1) = x(ui(1), (1)),
¢:X(7) = x(@(v), #*(v)).

Damit ergibt sich fiir die Tangentenvektoren

(4.18)

X(t) = Xpi? und  X(7) = Xyt

Um die Tangentenvektoren der Kurven ¢, ¢ im Punkt X, zu erhalten, miissen wir
in den zuletzt erhaltenen Gleichungen ¢ durch ¢, und 7 durch 7, ersetzen. Wir finden

Xo = Xu(' (o), u*(to)) (o),
Xo = X(10) = Xul#(z0), #(x0)) (7o) = Xun(tt! (1), U3(to)) WH(x0) -
Mit Hilfe des Skalarproduktes der Vektoren X, io findet man
%o * Xo
I%ol[%o|

Durch eine kurze Zwischenrechnung erhalten wir

cos & = cos (Xo,%o) = (4.19)

%o Xo = Xl (fo) * Xuli(To) = (Xur * X) 1(£) W(To) = gy, 1" (10)18"(To),
%ol = /%o * %o = /Xu11"(£0) ¢ Xusti(to) = /v,ul1"(t0) 1(t0),
lio! = A/’;‘o : 3._(0 S A/Xul-l-;;'('fo) : Xu-f;"(fo) = ngc.ﬁl(fo) ﬁ"("70) .

Damit ergibt sich schlieBlich

8y it (to) 4*(7o)
V&0l (1) 1(t0) | gi* (xo)i (xo)
Um den Schnittwinkel der durch einen Fliachenpunkt X gehenden zwei Koordinaten-
linien berechnen zu kdnnen, setzen wir fiir die Kurve ¢ die durch X gehende u'-
Linie und fiir ¢ die durch X gehende »2-Linie ein. Dann gilt fiir die *-Linie u* = 1,
#* = 0 und fiir die u?-Linie #' = 0, #* = 1. Wir erhalten

cos & = cos (%o, Xo) =

21772
giau'u i _ 812 . (4.20)
ﬂ/gu(f‘l)z .gzz(-’iz)z \/gu 822
Man nennt ein GauBsches Koordinatensystem orthogonal, wenn die Koordinaten-

linien sich in jedem Punkt des Giiltigkeitsbereichs senkrecht schneiden. Es gilt der
folgende einfache und wichtige

cosd =

Satz 4.1: Ein Gaupsches Koordinatensystem auf einer Fliche ist genau dann ortho-
gonal, wenn diberall in dessen Giiltigkeitsbereich

812=0
ist.
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Beweis: Ist auf F ein orthogonales GauBsches Koordinatensystem gegeben, so muf3
cosd iiberall im Giiltigkeitsbereich verschwinden. Aus (4.20) folgt dann fiir alle
Punkte des Giiltigkeitsbereichs g,, = 0. Gilt umgekehrt iiberall im Giiltigkeits-
bereich g,, = 0, so ist wegen (4.20) auch iiberall cos 6 = 0. Das heiBt, die Koordi-
natenlinien schneiden sich iiberall im Giiltigkeitsbereich orthogonal.

4.1.7. Die Berechnung von Flicheninhalten

Es sei eine Fliche F durch die beziiglich des Bereichs B der u!, u?-Ebene zulissige
Parameterdarstellung x = x(u!, u?) gegeben. Auf der Fliche F liege ein Flachenstiick
H, dessen Flacheninhalt O(H) berechnet werden soll. Da die Parameterdarstellung
zulissig ist, entspricht dem Flichenstiick H in der u!, u?-Ebene eindeutig ein ge-
wisses ebenes Flichenstiick U derart, daB jeder Punkt P mit Koordinaten u', u?,
der zu U gehort, vermdge der Parameterdarstellung x = x(u!, #?) in einen Punkt X
des Flichenstiicks H abgebildet wird. Da jeder Punkt von B durch x = x(u?, u?)
in einen Punkt auf F abgebildet wird, auBerdem H auf F liegt und die Abbildung
eineindeutig ist, ist U ganz in B enthalten.

Wir betrachten nun ein kleines gekriimmtes Flachenstiick dF auf F, das durch die
vier Punkte X, X, X,, X;, mit den vier Ortsvektoren x(u', u?), x(u' + du', u?),
x(ut, u? + du?), x(u* + du', u* + du?) und durch die durch diese Punkte gehenden
Koordinatenlinien bestimmt wird (Bild 4.6). Dem Flachenstiick dF ordnen wir

x(u Taqul u’du?)

Bild 4.6. Zur Bestimmung des Flichenelements einer gekriimmten Fliche

ein ebenes Flachenstiick do zu, das durch die zwei Vektoren d;x = x,: du! und
d,x = x,2du? gebildet wird, die wir uns vom Punkt X als gerichtete Strecken
angetragen denken, wobei wir die beiden Strecken zum Parallelogramm erginzen.
Das Flachenstiick do liegt in der Tangentialebene an F im Punkt X. Die Flichen-
stiicke dF und do unterscheiden sich, was ihren Inhalt anbetrifft, in GréBen, die in
du' und du* von zweiter Ordnung sind. (Flichenstiicke wie dF und do nennt man
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auch infinitesimale Flachenstiicke.) Daher kann man do an Stelle von dF als
Flichenelement der gekriimmten Fliche benutzen. Wegen eines strengen Beweises
dieser Tatsache sei auf das Lehrbuch [6], S. 137, verwiesen, vgl. auch Bd. 5, (6.2.-6.3.).
Mit Hilfe des Vektorproduktes der zwei Vektoren d,x, d,x erhalt man

do = |d;x x d,X| = X X X,e| dut du?. 4.21)

Beriicksichtigt man die bereits im Abschnitt 4.1.5. verwendete Beziehung

Ixu1 X xuzl . \/(xu‘ X)) (X 0 X0) — (X Xu')z

=\/g11g22-—(g12)2 =\/§; 4.22)
so ergibt sich fiir das Flichenelement do
do = /g dut du?. (4.23)

Durch Integration iiber das dem Flachenstiick H entsprechende ebene Flachenstiick U
in der u!, u?>-Ebene findet man den Flicheninhalt O(H) des gekriimmten Flachen-
stiicks H nach der Formel

OH) = [ [gdu' du?. (@.24)
u

Aufgabe 4.5: In einer LPG soll ein zylinderférmiger Silo mit kreisformiger Grundflache (Radius R)
errichtet werden, dessen Dach die Gestalt einer Halbkugel hat. Die Dachfliche werde von einem aus
dem Innern des Gebdudes kommenden, senkrecht verlaufenden Rohr mit kreisformigem Querschnitt
(Durchmesser R) durchsetzt, wobei die gedachte senkrechte Achse des Silos, die durch den Mittel-
punkt der Grundfliche geht, zugleich eine Mantellinie des zylindrischen Rohres ist.

Wie groB ist der Flicheninhalt des Daches, wenn man den von dem Rohr durchstoBenen Teil
abrechnet?

Bild 4.7. Zu Aufgabe 4.5
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Aufgabe 4.6: Man berechne die Oberfliche eines dreiachsigen Ellipsoides mit den Halbachsen
a, b, c (a> b > c) und der Parameterdarstellung

x(ul, u?) = asin u' cos u?i + b sin u* sin u?j + ¢ cos u'k,

0=u' <=, 0=u?<2n In dem entstehenden Doppelintegral 1aBt sich die Integration nach u*
exakt ausfiihren. Es bleibt ein einfaches Integral iibrig, das mit Hilfe der Keplerschen FafBregel
(vgl. Bd. 2, Satz 10.14) ausgewertet werden soll. Dabei wird die Integration iiber #* von 0 bis 7/2
erstreckt und das Integral dafiir mit dem Faktor 4 multipliziert.

Aufgabe 4.7: Das Innere eines zylinderférmigen GefdBes, das als Grundfliche einen Kreis vom
Radius r hat und dessen Hohe gleich 4 ist, wird durch paralleles Licht beleuchtet, so daB der groBte
Teil des GefédBbodens im Licht liegt. Das einfallende Licht wird zum Teil an der inneren GefaBwand
reflektiert. Die reflektierten Lichtstrahlen umbhiillen eine Zylinderfliche, deren Schnittkurve mit
der Grundflidche auf dieser eine besonders helle Linie (sphdrische Katakaustik) bildet. Man bestimme
die Gleichung dieser Kurve.

Bild 4.8. Zu Aufgabe 4.7

4.1.8. Koordinatentransformationen

Da sich viele differentialgeometrische Aufgaben nur bei Einfithrung geeigneter
Koordinatensysteme 16sen lassen, sollen in diesem Abschnitt Koordinatentrans-
formationen behandelt werden.

F sei eine Fliche mit einer zuldssigen Parameterdarstellung x = x(u', u?) der
Klasse r = 1, die auf dem einfach zusammenhingenden, beschrinkten Gebiet B
der u', u*>-Ebene definiert ist. Jeder der beiden Parameter u', u? sei eine Funktion
zweier anderer Parameter ', #%, die rechtwinklige Koordinaten von Punkten einer
@', #*-Ebene sind. Beide Funktionen sollen in ein und demselben einfach zusammen-
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hingenden und beschriinkten Gebiet B der @', #2-Ebene erklart und dort auch 7-mal
(r = 1) stetig nach #' und #? differenzierbar sein. Der Wertebereich der Funktionen
u', u? sei so beschaffen, daB durch die zwei Gleichungen

=@, @),

2 = w2, i?)

u
(4.25)

dem Koordinatenpaar @', #* eines jeden Punktes P e B ein Koordinatenpaar u?, u*
eines Punktes P e B zugeordnet wird. Dabei sollen die Koordinaten jedes Punktes
P e B unter den Funktionswerten u'(ii, #2), u?(ii', #*) vorkommen. Dann ist durch
die Gleichungen (4.25) eine Abbildung des Gebietes B auf das Gebiet B gegeben.

Diese Abbildung soll eineindeutig sein. Das heiBt, jedem Punkt Pe B entspricht
vermége (4.25) ein Punkt P € B, und umgekehrt ist jeder Punkt P € B der Bildpunkt

von genau einem Punkt PeB. Dazu miissen die Gleichungen (4.25) in der Um-
gebung eines jeden Punktes eindeutig nach #' und #* auflésbar sein.

Analytisch ist dies gewéhrleistet (vgl. Bd. 4, Satz 3.15), wenn fiir alle Punkte P e B
die Funktionaldeterminante

out  Ou'

dut w?) | oat o

@@ T | owr o

out  ou?

0 (4.26)

ist. Es existieren also zwei Funktionen #', #* der Variablen u!, u2, so daB
at(u (@', @), wi(at, u?)) = a',
#w @, @), vk (@', #*)) = a?,
ut(@\(u', w?), @*(ut, u?) = u',
wAatut, u?), @', u?) = u?

-

(4.27)

gilt. Sind alle diese Bedingungen erfiillt, so nennt man die Gleichungen (4.25) eine
zuliissige Koordinatentransformation der Klasse 7 auf der Fliche F. Eine zuléssige
Parameterdarstellung x(u*, %) der Fliche F geht durch eine zuldssige Koordinaten-
transformation in eine andere zulidssige Parameterdarstellung (i, #?) der Fliche F
iiber. Dabei ist

(@', 7?) = x(u(@t, @?), u*@*, i%)). (4.28)
Um einzusehen, daB %(@', #%) zuldssig ist, fragen wir, wie sich die Ableitungsvek-

toren x,, X,» bei einer solchen Koordinatentransformation verhalten. Durch Diffe-
rentiation von (4.28) ergibt sich

Kp(at, @) = X ('@, @), w(@', 122)) + X' (@', #%), u*(@', 2)) a P

(il 72) — 1l 52 2—1—22’& 151 72 2—1-2_6__“2_
x"z(u,u)—xun(u(u,u),u(u,u))aﬂz+x,,z(u(u,u),u(u,u))aﬁ2
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Mit Hilfe der Summationskonvention kann man dafiir kiirzer schreiben
dut

R, 72) = X @, ), 03, P) 5, v = 1,2,

Verzichtet man darauf, die Abhéngigkeit der Vektoren X;v, X,» von den Koordinaten
', 7%, u', u* zu kennzeichnen, so folgt

= ou* s

Xp =Xy, V= 1,2. (4.29)

In den Gleichungen (4.29) ist der Index » ein Index, tiber den nicht summiert wird, der die Werte

1, 2 annehmen kann. Ein solcher Index wird als freier Index bezeichnet. Dagegen ist u ein Summa-
tionsindex. Kommt in einer Gleichung, fiir die die Summationsvereinbarung gilt, ein freier Index
in einem Glied dieser Gleichung als unterer oder oberer Index vor und sind auf derselben oder der
anderen Seite noch andere additive Glieder vorhanden, so kommt dieser freie Index bei allen diesen
Gliedern als freier Index unten oder oben, und zwar an derselben Stelle wie bei dem ersten Glied
vor. Diese Regel ist fiir » in (4.29) offensichtlich erfiillt, denn » kommt links wie auch rechts als
freier Index unten vor.

Durch die Gleichungen (4.29) ist eine lineare Transformation zwischen den Ab-
leitungsvektoren x,« der Parameterdarstellung x(u*, %) und den Ableitungsvektoren
X, der transformierten Parameterdarstellung X(i', #*) gegeben. Die Parameter-
darstellung ist zulassig, weil aus (4.29) folgt, daB die Ableitungsvektoren X,v vor-
handen sind und stetig von @', #* abhingen und weil die Punkte X auf F und die
Punkte P € B in eineindeutiger Beziehung zueinander stehen. Man nennt zwei zu-
lassige Parameterdarstellungen, die durch eine zuldssige Koordinatentransformation
nach (4.28) miteinander verkniipft sind, zueinander dquivalent'). Die Matrix der
linearen Transformation der Vektoren x,u

out  ou?
ou' ot

S (430)
i - oi®

ist wegen (4.26) nicht singuldr. Durch Differentiation der Gleichungen (4.27) nach
1

@', @#* bzw. u*, u? erhilt man .
om Ou' . o@' Qu? o oml oul . o@' dut
ou' ot ou* oat oul oi? ou* ou®
oi? du' | oa* ou? o du'  ou* u*
o t oo =Y SwoE toaw e = b (3D
ou' o' | ou' 0i* out omt  ou' oi?
STl T3 = 3t o T3 o = ° B
ot Ou ou* Ou ou' ou ou* Ou
ou* om' | ou* o 0 ou? ot | out on* |

it out T 0w dul o o T 0w

1) Die Menge aller zueinander dquivalenten Parameterdarstellungen bestimmt im E£3 ein und
dasselbe Flichenstiick.
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wofiir man bei Anwendung der Summationskonvention auch kiirzer schreiben kann

o out &
= 1,2 4.32
iuibﬁl_&, Yo =1, 4. (')
ot out T

Dabei ist
5 0 fir »+upu,

1 fir v=p

das Kroneckersche Symbol. Mit Hilfe der Gleichungen (4.31) 1aBt sich zeigen, daf
die Matrix (vgl. Bd. 13)

out ou?
e 4.33
| ot o2 “33
ou*  ou?
zur Matrix A invers ist. Es gilt AA~! = A-'A = EmitE = <(1) (1)) als Einheitsmatrix.

Um die Gleichungen (4.29) nach den Vektoren x,« aufzulésen, multipliziert man sie
mit di’/du* und beachtet, daB dann der Index » einmal unterer und einmal oberer
Index ist. Mithin ist » kein freier Index mehr, sondern ein Summationsindex, und
es ist iiber ihn zu summieren. Man nennt diese Operation Uberschieben von (4.29)
mit di2*/0u*. Es ergibt sich

2 o’ < ou" i’

H T A

Ersetzt man noch A durch y, so erhilt man die Auflosung von (4.29) nach Xyu:
_ o’

Xuw = Ry =, = %2 - (4.34)

Ahnlich ist es mit dem Verhalten der Koordinatendifferentiale dia’, du* bei Ko-
ordinatentransformationen. Die totalen Differentiale der Funktionen @#*(u?, u?),
u*(ut, u?) sind gegeben durch

=Xpud4 = X2,

dii’ = b—uadu"‘, v=1,2,
i (4.35)
3 b
dut = a;, i, w=1,2.
Aus den ersten zwei Gleichungen fiir » = 1, 2, liest man ab, daB sich die du* mit det
Matrix 1 asq
ot ou
out  ou?
B = 4.36
o ou? (436
oul  ou?

transformieren. B ist invers und transponiert zu A.
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Man nennt B = (A~1)T = (AT)~! = A* die zu A kontragrediente Matrix.

Man bezeichnet alle GréBen, die sich mit der Matrix A transformieren, als kovariante GroBen.
Insbesondere bezeichnet man die Ableitungsvektoren x,« als kovariante Basisvektoren. Dagegen
heiBen alle GroBen, die sich mit der Matrix B transformieren, kontravariant. Die Differentiale du®,
dif konnen als kontravariante Koordinaten des differentiellen Fliachenvektors dx aufgefaBt werden,
wenn man diesen auf die Basis der Vektoren X, bzw. x;# bezieht. Denn es gilt

dx = x,= du® = X5 dub.

Ein System von GroBen a”, das sich wie die Koordinatendifferentiale transformiert, stellt die kontra-
varianten Koordinaten eines Flichenvektors a dar (vgl. Bd. 11, oder [6], Kapitel 5).

Kovariante GroBen sollen stets mit unteren Indizes, kontravariante GréBen mit oberen Indizes
gekennzeichnet werden.

Nun findet man leicht, wie sich die Koeffizienten g,, der ersten Grundform bei
einer zuldssigen Koordinatentransformation verhalten. Es ist

Zup = Koo+ T,

und wegen

ou* ouf

x—~=x,,¢—él_7v, X?u =XM»W

u

ergibt sich

e —(x 2"‘_(){ o’ — (- )()u‘x o’
vy = Xy Xgu = | Xy Oﬁv) "’Tﬁ“) = (Xy= " Xup 3% o’
und mit X,s * X,s = g, erhilt man
_ ou* ouf
gvngapww, vyu=12. : 4.37)

Ein System von Gré6Ben, das sich so transformiert wie die g,;, bildet einen zweifach
kovarianten Tensor oder kovarianten Tensor zweiter Stufe.

SchlieBlich soll noch angegeben werden, wie sich der Flichennormalenvektor f
transformiert. Beachtet man die Beziechungen

X1 X Xge = (X0 X Xg2) D,

Z =218 — (212)° = &g x Xp|?> = [xut x x|* D* = gD?

mit
po dul u  oul o
o' di? ou? oul’
so folgt )
D
= 4.38
D] (4.38)

Esistf = =+f, wobei das Pluszeichen gilt, wenn D > 0 und das Minuszeichen, wenn
D < 0ist.
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Betrachtet man die Matrix

G= (gu g12>
821 822

der GroBen g,, und bildet die dazu inverse Matrix

G-i =<g“ g”)=( 82208 —gu/g)
&t g2 \—gwnlg.  eule)’

so ergeben sich aus der Bezichung GG™! = G~'G = E die Gleichungen

28" = 8, ,
o Covp=1,2. (4.39)
8 8 = s

Die GroBen g* werden kontravariante MaBzahlen (Komponenten) des metrischen
Tensors genannt. Thr Transformationsgesetz lautet

—, mu =12, (4.40)
und charakterisiert einen kontravarianten Tensor zweiter Stufe.

Die Fliachentheorie findet Anwendungen in der mathematischen Geographie bei den Kartenent-
wiirfen (vgl. [15], Bd. I und II). In konsequenter Verallgemeinerung wurde die Flichentheorie zur
Theorie der Riemannschen Réiume weiterentwickelt. Man kann nédmlich eine gekriimmte Fliche im
dreidimensionalen euklidischen Raum als zweidimensionalen Riemannschen Raum auffassen. Zu
jedem Punkt dieses Riemannschen Raumes existiert dann ein System von Basisvektoren xyt, Xy2,
die den Tangentialraum des Riemannschen Raumes aufspannen, Durch die erste Grundform wird
dann die Metrik in diesem Riemannschen Raum bestimmt. Diese Uberlegungen lassen sich auch
auf hoherdimensionale Rdume ausdehnen und haben Anwendungen in der Relativititstheorie ge-
funden. Die Flichentheorie fithrte auch zur Entdeckung nichteuklidischer Geometrien. So wurde von
dem russischen Mathematiker Lobatschewski und etwas spdter von Bolyai, auch schon von
GauB, eine nichteuklidische Geometrie begriindet, die man heute als Lobatschewskische oder
hyperbolische Geometrie bezeichnet. Zweidimensionale Modelle dieser Geometrie lassen sich auf
den Flichen konstanten negativen GauBschen KriimmungsmaBes angeben und sind seit langem
bekannt (vgl. [11] und [6], S. 342). Eine solche Fliche entsteht z. B. dadurch, daB man die in 3.3.
behandelte Schleppkurve um die x-Achse rotieren 14Bt. Sie heit Pseudosphdre.

4.2, Die Kriimmungstheorie der Flichen und Flichenkurven

4.2.1. Die zweite Grundform der Flichentheorie

Wir betrachten eine Fliche F mit einer zuldssigen Parameterdarstellung x(u!, u?)
von der Klasse r = 2. Auf dieser Fliche sei eine Kurve ¢ durch u' = u!(t), u® = u?(t)
mit ¢, £t < ¢, gegeben. X sei ein beliebiger Punkt der Kurve ¢ mit dem Orts-
vektor x(¢) = x(u'(t), u*(t)). Bezeichnen wir den normierten Tangentenvektor von ¢
in X mit t und den zugehdrigen Hauptnormalenvektor mit n, so erhalten wir durch
Differentiation von x(#) nach ¢ zunachst

X(t) = Xpil’. (4.41)
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Differenziert man x(¢) jedoch nach s, so ergibt sich
(4.42)

Die Gleichung (4.42) besagt, daB3 der Tangentenvektor t sich durch Linearkombi-
nation aus den die Tangentialebene 7y aufspannenden Vektoren X, X, ergibt.
Das heiBt, daB die durch den Punkt X und den Vektor t bestimmte Kurventangente ¢y
in der zu X gehdrigen Tangentialebene 7x der Fliche liegt. Die Gerade ty beriihrt
daher auch die Fliche F im Punkt X. Aus (4.42) folgt durch nochmalige Differentia-
tion nach s

’ Vel dr\? v dr)\? 7V a2t
t' = Xyl Ul a) + Xpvid (—) + Xl ) :

ds ds?,
Bei Beriicksichtigung der 1. Frenetschen Formel (2.45) t' = xn findet man
#n = X '"u“(dt 2+x ii”gt_z+x "(ﬂ)
R T ) w (ds) i\ ds)

Multipliziert man diese Gleichung skalar mit dem zum Punkt X gehorigen Fliachen-
normalenvektor f, so ergibt sich wegen f - x,» = 0 die Gleichung

A m) = (£ Xus) 00 (%)2. 4.43)

Durch f und X wird die zu X gehorige Flachennormale fx festgelegt. Die Geraden
tx und fx spannen ihrerseits eine Ebene v auf, die die Fliche F in einer ebenen Kurve ¢,
schneidet. Da die Ebene » den Punkt X enthélt, geht die Kurve ¢, durch X. Die
Gerade ty liegt in » und ist auch Tangente an die Kurve ¢, im Punkt X. Wire dies
nicht der Fall, so wiirde ¢y die Kurve ¢, und damit auch die Fliche F im Punkt X
durchsetzen. Das letztere ist aber nicht méglich, weil ¢y die Fliche F im Punkt X
beriihrt. Man nennt ¢, den zur Tangente ¢y gehorenden Normalschnitt der Flache F
im Punkt X, » eine Normalschnittebene (Bild 4.10).

Der Vektor n bestimmt die Richtung der Hauptnormale ny der Kurve ¢ in X.
Auf ny liegt der Kriimmungsmittelpunkt M, von c. Sein Abstand von X ist gleich
dem Kriimmungsradius ¢ der Kurve ¢ in X:

0= XM,.
Auf der Flachennormalen fx liegt der Kriimmungsmittelpunkt M des Normal-
schnittes c,. Es gilt R = XM, wobei R der Kriimmungsradius des Normalschnittes c,

in X ist. Bezeichnet y den Winkel zwischen der Normalschnittebene » und der Schmieg-
ebene oy der Kurve ¢ in X, der zugleich auch der Winkel zwischen f und n ist, so folgt

f-n=cosy.
- - - Xt X Xp2 . .
Man setzt zur Abkiirzung f- X,v« = b,, und erhélt mit f = ———— die Glei-
g
chungen
by = (X1 % x,,_:)~xmu Cmu=1,2. (4.44)

Ve
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Offensichtlich gilt b,, = b,,. Aus f - x,» = 0 findet man durch Differentiation nach u*
fuu s X + £+ Xpve = 0.

Hieraus ergibt sich
byy = (F Xyoun) = — (L * Xp). (4.45)

2
Aus (4.43) und (4.45) berechnet man mit Hilfe der ersten Grundform (%%) = g it

durch Einsetzen

by i

%COSY = (4.46)

g
Mit du* = #° dt, du* = 4" dt, du* = i*dt und du® = i dt folgt aus (4.46) bei Er-
weiterung der rechten Seite von (4.46) mit (d)?

(4.47)

Die quadratische Differentialform im Zihler von (4.47) heiBt zweite Grundform
der Flachentheorie und wird mit 17 bezeichnet: '

II = b,, du’ du*. (4.48)
Fiihrt man die Summation iiber » und y aus, so lautet die zweite Grundform
II = by, (du')? + 2b,, du' du? + by,(du?)?.

Beachtet man die Beziehungen dx = x,v du*, df = f,« du* und (4.45), so kann man
schreiben

I = (ds)®> = dx-dx (4.49)
und
I = dx - (—df) = — (%0 - f) due’ du* = b, du® du”, (4.50)

4.2.2.  Elliptisch, hyperbolisch und parabolisch gekriimmte Flichenstiicke

Setzt man die zweite Grundform gleich null, so erhélt man die Differentialglei-
chung

by1(du')? + 2b,, dut du? + byy(du?)? = 0. @.51)
Falls b,, = 0 ist, findet man daraus
du? 1 .
(@) = 3 (b £ VBT = Bibi). @5

Es gibt daher im allgemeinen in jedem Punkt einer Flache zwei Tangentenrichtungen
du?,: dud, und dud,: dud,, fiir die die zweite Grundform verschwindet. Diese beiden
Tangentenrichtungen heien die Asymptotenrichtungen im Punkt X der Flache. Sie
konnen auch imaginar werden.
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Im folgenden werde vorausgesetzt, daBl die GréBen byy, by, und b,, nicht alle
gleichzeitig verschwinden bzw. daB X kein parabolischer Nabelpunkt (vgl. 4.2.4.) ist.
Ebenso soll X auch kein Punkt sein, in dem die GroBen b,, unbestimmt werden. Wir

2o b =by1br, — (bxz)

Ist b < 0, so gibt es, weil der Ausdruck unter der Quadratwurzel in (4.52) dann
positiv ist, zwei verschiedene reelle Asymptotenrichtungen in X. Die Fliche heiBt
im Punkt X hyperbolisch gekriimmt und X wird als hyperbolischer Punkt der Fliche
bezeichnet (vgl. Bild 4.9b)).

Ist dagegen b > 0, so gibt es keine reellen Asymptotenrichtungen in X. Die Flache
heiBt im Punkt X elllptlsch gekrimmt und X wird als elliptischer Fliichenpunkt
bezeichnet (vgl. Bild 4.9a)).

Ist schlieBlich b = 0, so gibt es nur eine Asymptotenrichtung, die zugleich reell
ist, und die Fliche nennt man im Punkt X parabolisch gekriimmt. X heiBt paraboli-
scher Punkt der Flache (vgl. Bild 4.9¢)).

Auch im Fall b,, = 0 bleiben diese Ergebnisse bestehen. Aus b,, = 0 folgt nim-
lich b = —(b,,)?. Falls nun b, = 0 ist, hat man » < 0 und aus (4.51) ergibt sich
(byy du + 2by, du?) du' = 0, woraus by, du* + 2b;, du? = 0 und du' = 0 folgt.
Man erhilt, wenn b,, = 0 ist, im Fall & < 0 zwei verschiedene reelle Asymptoten-
richtungen du?:du' = by, : —2b,, und du?:du' = 1:0. Ist jedoch auBer b,, = 0
auch noch b,, = 0, so gilt b = 0, und aus (4.51) folgt b,,(du')> = 0. Da X kein
parabolischer Nabelpunkt sein soll, ist 5;; = 0, und man findet eine reelle Asympto-
tenrichtung, die durch du' = 0 gegeben ist. Die Flache ist in X parabolisch gekriimmt.
Eine Flachenkurve, die in jedem ihrer Punkte eine Tangente besitzt, deren Richtung
mit einer Asymptotenrichtung in diesem Punkt iibereinstimmt, heit Asymptoten-
linie der Flache. Eine reelle Asymptotenlinie kann nur hyperbolische und parabolische
Punkte der Fliche enthalten. Gleichung (4.51) ist die Differentialgleichung der
Asymptotenlinien einer Flache. Auf einem 'Flichenstiick, das aus lauter hyper-
bolischen Punkten besteht, existieren zwei Scharen von Asymptotenlinien. Werden
diese Asymptotenlinien als Koordinatenlinien gewahlt, so ist b;, = b,, = 0. Dies
ergibt sich daraus, daB die Kurven u' = konstant und u? = konstant die Diffe-
rentialgleichung (4.51) erfiillen miissen.

a)

Bild 4.9. Zur Kriimmung von Flichen

7 Schone, Differentialgeometrie
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Als Beispiel soll eine Torusfliche behandelt werden, die durch Rotation eines Kreises um dic x3-
Achse entsteht. Der Kreis liege in der x4, x3-Ebene, sein Mittelpunkt M auf der x,-Achse habe die
Koordinaten x; = R, x, = x3 = 0, und sein Radius sei ». Wenn sich der Kreis um die x3-Achse ein
Stiick gedreht hat, so bildet seine Ebene mit der x;, x3-Ebene den Winkel #'. Hat sich der Winkel u*
von 0 bis 27 verdndert, so hat die Kreisebene eine volle Umdrehung um die x3-Achse vollfiihrt. Dabei
erzeugt der Kreis eine Torusfliche. Es sei R > r. Mit u? werde der Winkel bezeichnet, den der zu
einem beliebigen Punkt X des Kreises fiihrende Radius MX mit dem Radius MX|, bildet, wobei X,
derjenige Punkt des Kreises ist, der in der x;, x,-Ebene liegt und von O den Abstand R + r hat. Der
Winkel #* werde vom Radius MX,, nach oben im mathematisch positiven Drehsinn (Blickrichtung: von
der negativen x,-Achse auf die x,,x;-Ebene) gezihlt. Die Parameterdarstellung der Torusfliche lautet :

x(ul, 4?) = i(R + r cos u?) cos u! + j(R + r cos u?) sin u' + kr sin u?
‘mit

0=u'=<2r, 0=u?<2n.
Fir die Koeffizienten g,, erhdlt man

g1 =R+rcosu?)?, g,=0, g2=r> g=(R+rcosu?)?r’
Der Fliachennormalenvektor f ist gegeben durch

f =1icos u' cos u? + jsin u! cos u? 4 k sin 2.
Daraus ergibt sich fiir die GroBen b,[‘

byy = —(R+rcosu?)ycosu?, by, =0, by =—r,

b = (R + rcos u?) r cos u?.

Fiir 0 <u? < ©/2, 3n/2<u? <2n und u' beliebig erhilt man elliptische Flichenpunkte, fiir
7/2 < u* < 3w/2, u' beliebig ergeben sich hyperbolische Flichenpunkte und fiir u? = 7/2 bzw.
u? = 3/2m, u' beliebig findet man parabolische Punkte der Fliche. Die Koordinatenlinien u! = k,
u? = c bilden ein orthogonales Netz. Die u!-Linien sind die Breitenkreise; die #2-Linien sind eben-
falls Kreise, die alle zueinander kongruent sind und sich als Schnitt einer durch die x3-Achse be-
grenzten Halbebene mit der Torusfliche ergeben.

4.2.3. Der Satz von Meusnier '

Aus der Gleichung (4.47)
b, dw’ du* 1T

qnddw T (658

%cosy =

lassen sich einige wichtige Folgerungen ziehen. Zunachst gilt der

Satz 4.2: Alle Kurven der Klasse r = 2 auf einer Fliche F, die durch ein und denselben
Flichenpunkt X gehen und in X dieselbe Tangente und die gleiche (von der Tangential-
ebene tx verschiedene) Schmiegebene besitzen, haben im Punkt X auch die gleiche
Kriimmung.

Beweis: In der Gleichung (4.53) hangt die rechte Seite, wenn man X als fest ansieht,
nur vom Verhéltnis du?: du?, d. h. von der Richtung der gemeinsamen Tangente zy
der Flichenkurve ¢ und des zu dieser Tangente gehorigen Normalschnitts ¢, ab.
Fiir alle Flichenkurven, die 7y in X beriihren, ist daher der Wert des Produktes
% cos y derselbe. Fiir solche Flachenkurven, die in X die Tangente 7y und die Schmieg-
ebene oy gemeinsam haben, ist auch der Winkel ¥ zwischen Schmiegebene und
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Normalschnittebene der gleiche. Folglich haben diese Kurven in X auch die gleiche
Kriimmung. Dabei darf aber die Schmiegebene ox nicht mit der Tangentialebene 7y
zusammenfallen. In diesem Fall ist y = =/2, und aus %, cos (%/2) = », cos (x/2) = 0
darf nicht auf », = %, geschlossen werden. Wahlt man die Flachenkurve ¢ so, dafl
sie fy in X beriithrt und ihre Schmiegebene oy mit der Normalschnittebene » zu-
sammenfillt, so ist = 0, und die Kriimmung » der Kurve ¢ stimmt mit der Kriim-
mung »y des Normalschnitts ¢, in X iiberein. Die GroBe xy heiBt auch Normal-
kriimmung. Aus (4.53) folgt

_ by, du’ du* 17 1

= =—. (4.549)

T R

Die Normalkriimmung »y ist der Quotient aus zweiter und erster Grundform. Sie
ist abhédngig vom betrachteten Flichenpunkt und von der Tangentenrichtung des
Normalschnitts. Aus den Gleichungen (4.53) und (4.54) folgt

%COSY = xy (4.55)

oder bei Einfithrung der Kriimmungsradien ¢ und R

(4.56)

Bild 4.10. Zum Satz von Meusnier

Die Beziehung (4.55) bzw. (4.56) wird als Satz von Meusnier?) bezeichnet. Man kann
ihn auch in der folgenden Form aussprechen.

Satz 4.3 (Satz von Meusnier): Es sei X ein beliebiger Punkt einer Fliche F, ty eine
Tangente, die F in X beriihrt und deren Richtung nicht mit einer Asymptotenrichtung des
Punktes X iibereinstimmt. Der zur Tangente tx gehiorige Normalschnitt ¢, durch den
Punkt X der Fliche F habe den Kriimmungsmittelpunkt M und den Kriimmungsradius
R = MX. Dann liegen die Kriimmungsmittelpunkte aller Fldchenkurven c,die c, in X
beriihren, auf einem Kreis mit dem Durchmesser MX, der der gemeinsamen Normal-
ebene aller dieser Kurven angehdrt.

1) Jean Baptiste Maria Charles Meusnier (1754 bis 1793), franzosischer Mathematiker.

T*

S.4.3
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4.2.4. Hauptkriimmungen und Kriimmungslinien

F sei eine Fliche, die durch cine Parameterdarstellung x(u!, %) von der Klasse
r = 2 gegeben ist. Auf F werden im Punkt X sdmtliche Tangenten ¢y an die Fliche
betrachtet. Jede dieser Tangenten bestimmt mit der Flichennormale fy in X eine
Normalschnittebene », die die Fliche F in einem Normalschnitt ¢, schneidet. Die
Kriimmung %y im Punkt X eines solchen Normalschnittes hingt, wenn man X als
fest ansieht, nur noch von der Richtung der Tangente zy ab. Diese aber ist durch das
Verhaltnis du?: du' bestimmt. Setzen wir du?/du’ = 2, so ergibt sich aus (4.54)

byy + 2by,2 + byyA?
PRy e Sl C ARSI
W) 811 + 28124 + £2.7°

Bei festgehaltenem X hangt die rechte Seite dieses Ausdrucks i. allg. allein von 2 ab.
Eine Ausnahme tritt nur in solchen Punkten X ein, wo die GréBen b,, und g,, zu-
einander proportional sind bzw. wo b;; = b;, = b,, = 0 ist. Im ersten Fall gilt
b,, = C(u',u*) g,,, und daraus folgt, daB =y = C(u',u*) unabhingig von 2 ist.
Einen solchen Punkt X nennt man elliptischen Nabelpunkt der Fliche. Im zweiten
Fall ist xy = 0 und ebenfalls unabhingig von A. Dann heilit X ein parabolischer
Nabelpunkt der Fliche. Nehmen wir an, da X weder ein elliptischer noch ein para-
bolischer Nabelpunkt, sondern ein regulirer Punkt der Fliche ist. Dann ist der
Nenner in (4.57) stets positiv und xy(4) bleibt endlich, auch wenn 1 — oo strebt.
Man kann immer annehmen, daB es Funktionswerte /N(ll) gibt, die groBerund solche,
die kleiner als der Grenzwert hm xN(}) sind. Das 148t sich immer durch eine geeignete

(4.57)

Wabhl des u', u?- Koordmatensystems auf der Fliache erreichen. Da xy cine stetige,
ja sogar dlﬂ“erenznerbare Funktion von 2 ist, die zudem fiir alle endlichen A endliche
Funktionswerte xy(4), fir A > co einen endlichen Grenzwert hat, der nach Voraus-
setzung zwischen zwei endlichen Funktionswerten liegt, gibt es unter diesen Funk-
tionswerten mindestens einen groBten und einen kleinsten. Die Funktion #y besitzt
also ein absolutes Maximum und ein absolutes Minimum. Diese absoluten Extrem-
werte sind auch zugleich relative Extremwerte und lassen sich aus der Gleichung

dxy(2)
di

ermitteln. Nach Beseitigung des in der Gleichung (4.58) bei Ausfithrung der Dif-
ferentiation auftretenden Nenners (g,; + 2g.,4 + £,,4%)? erhélt man, wenn man
noch nach Potenzen von 2 ordnet,

(812022 — 822012) 2% + (g11D22 — 822b11) 4 + (g11b12 — &12D11) = 0. 4.59)
Da diese Gleichung quadratisch in 2 ist, hat sie nur zwei Lésungen, und daher hat die
Funktion #y genau ein Maximum und genau ein Minimum. Sind 4,, 1, diese L&-

sungen, so bezeichnet man die durch A, = du?,/dul, und 2, = du3,/dug3, gegebenen
Tangentenrichtungen als Hauptkrii ichtungen im Punkt X. Es gilt nun der

=0 (4.58)

Satz 4.4: Die Losungen A, , A, der Gleichung (4.59) sind stets reell und verschieden, wenn
X ein reguldrer Flichenpunkt ist.

Beweis: Wir betrachten die GroBen 4; = g,, A; + g1, (i = 1,2). Dann ist deren
Summe A, + A4, = g,,(A; + 4,) + 2g,, = m sicher reell, weil 4; + A, = —p/q mit
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P =g11b22 — £22b11, G = g12b22 — g22by, reell ist. Fiir das Produkt 4,4, findet
man

A4y = 22208200002 + 812001 + 22) + g11] — (811822 — (812))-
Setzt man 4,4, = r/q mit r = g,,b,, — g1,by; und A, + A, = —p/q in diese Glei-
chung ein, so verschwindet der Ausdruck in der eckigen Klammer. Es ist nimlich

822072 + g12(Ay + 22) + g1

bis — 8120 byy — g22b b,y — 8220
= g2 811012 qglz LE R, 811022 quz 14 812022 quz 12

811 812 822
&1 812 &2|=0.
bll b12 b22

1
q

Die Determinante ist gleich null, weil zwei ihrer Zeilen gleich sind. Daher findet
man 4,4, = —g. Da g = g,18:, — (g1,)? in einem reguliren Punkt X der Fliche
stets positiv ist, hat das Produkt 4, - 4, negatives Vorzeichen. Die GréBen 4,, 4,
geniigen der Gleichung 42 — mA — g = 0. Daherergibt sich 4, , = m/2 ++/g + m?[4.
Wegen g > 0 sind A4; und A4, stets reell und verschieden. Aus A4; = g,,4; + g2
(i = 1, 2) folgt dann, daB auch 4, und 4, reell und verschieden sind. In jedem Punkt X'
der Fliche existieren somit zwei verschiedene reelle Hauptkriimmungsrichtungen.

Wir betrachten nun solche Flachenkurven, bei denen in jedem ihrer Punkte die
Richtung der Kurventangente mit einer Hauptkrimmungsrichtung iibereinstimmt.
Diese Kurven werden als Kriimmungslinien der Fliche bezeichnet. Setzt man fiir 4
in (4.59) den Ausdruck du?/du® ein und multipliziert die Gleichung mit dem Nenner
(dut)?, so ergibt sich

(812022 — 822D12) (Au?)* + (g11b22 — g22D14) dut du?
+ (g11b12 — g12b11) (du?)* = 0.

Dies ist die Differentialgleichung der Kriimmungslinien. Lst man sie nach du?/dut®
auf, so erhalt man zwei Differentialgleichungen 1. Ordnung

du*  p o A/ p? r

dut T 2¢ N4 q°
Jede von ihnen besitzt als Losungskurven eine einparametrige Kurvenschar. Um die
Natur dieser Kurven besser zu erkennen, soll das u!, u?-Koordinatensystem so ge-

wihlt werden, daB die Kriimmungslinien Koordinatenlinien sind. Dann sind u* = C,
und u? = C, Loésungen der Differentialgleichung (4.60). Es gilt daher

(812D22 — £22012) (du?)*> =0 und (11012 — g12b11) (du')* = 0.

Da fiir die erste Gleichung du® # 0 und fiir die zweite du® # 0 ist, folgt

(4.60)

032812 — 822012 = 0,
b11812 — &11012 = 0. (4.61)
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Diese zwei Gleichungen kann man als ein homogenes lineares Gleichungssystem fiir
die Unbekannten g, ,, b,, auffassen. Da X kein Nabelpunkt sein soll, ist die Deter-
minante g,1b,, — g2,b,, nicht null. Daher hat das System (4.61) nur die triviale
Losung g4, = by, = 0. Aus g;, = 0 folgt aber, daB die Koordinatenlinien und damit
die Kriimmungslinien ein orthogonales Kurvennetz auf der Fliche bilden. Demnach
stehen die zu jedem Punkt der Fliche gehérigen zwei Hauptkriimmungsrichtungen
aufeinander senkrecht.

Liegt umgekehrt ein Gaupsches Koordinatensystem auf einer Fliche vor und ist
iberall in dessen Giiltigkeitsbereich g,, = 0 und by, = 0, so sind die Koordinaten-
linien dieses Systems die Kriimmungslinien der Fliche.

Beweis: Wegen g,, = by, = 0 hat die Differentialgleichung (4.60) der Kriimmungs-
linien die Losungen u' = konstant und u? = konstant. Das heiBt aber, daB die
Koordinatenlinien die Lésungskurven von (4.60) sind. Mithin sind die Koordinaten-
linien zugleich die Kriimmungslinien der Flache.

SchlieBlich sollen noch die Hauptkriimmungen x,, %, berechnet werden.!) Dazu
wird die Gleichung (4.57) mit dem in ihr auftretendem Nenner multipliziert und nach
Potenzen von A geordnet. Man erhilt mit % = »y

(baz — #822) 22 + 2(bys — #g12) 2 + (b1y — #811) = 0. (4.62)

Fiir 2 = 4, bzw. 1 = 1, nimmt » jeweils einen Extremwert %, bzw. %, an. Fiir einen
Wert %, der zwischen diesen Extremwerten liegt, hat die Gleichung (4.62) zwei ver-
schiedene reelle Losungen AV und A®. Setzt man aber x = %, bzw. % = %,, $0O
hat (4.62) jeweils Doppelwurzeln in 2. Wegen

bys — %gys by, — xg 2 by —%g11 .
]'(l) — 12 12 _'_A/( 12 12) - 1 Li= 1’2, 4.63
byy — %822 — byy — %g2> byy — 82> ¢ )

ist daher der Ausdruck unter der Wurzel fiir x = %, bzw. x = x, gleich null:
(012 = #1812)* = (b1 — 1811) (b2 — #1822) =0, i=1,2. (4.637)

Setzt man in (4.63") » fiir »; und ordnet nach Potenzen von zx, so ergibt sich die
Gleichung

%*g — (g11b22 — 2812012 + g22b11) % + b =0, (4.64)

die von den Hauptkriimmungen »; und x, erfiillt wird. Aus (4.64) lassen sich », und x,
berechnen. Im allgemeinen interessieren aber weniger »; und x,, sondern ihr Pro-
dukt %%, und ihr arithmetisches Mittel. Nach den Vietaschen Wurzelsitzen gilt

b 1
Hi%y = i und 3, +x; = E(gubzz — 2812b12 + g22b11).

Man bezeichnet nun

b
K =1%%, =— (4.65)
g v
U Sind 44, 4, die Losungen von Gleichung (4.59), so sind »; = #x(4;) und %, = xx(4,) die beiden
Hauptkriimmungen. Sie sind zugleich die Extremwerte der Normalkriimmung im betrachteten
Flachenpunkt.
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als Gaufisches Kriimmungsmaf und
1 1
H = '2_("1 + %) = 'E(gubzz — 2g12b12 + €22b11) (4.66)

als mittlere Kriimmung der Fliche im Punkt X. Das GaufBsche Kriimmungsma B
ist in einem elliptischen Fliachenpunkt positiv, in einem hyperbolischen Flichen-
punkt negativ und in einem parabolischen Flichenpunkt gleich null.

Zur Veranschaulichung der Kriimmungslinien soll eine Rotationsfliche mit einer Parameter-
darstellung

x(u!, u?) = u' cos u?i + ul sin u?j + h(u') k, 0=<ul < oo, 05 u? < 2m,
dienen. Hierbei ist / eine beliebige, hinreichend oft differenzierbare Funktion von «*. Mit dh/du = i’
findet man
gu=1+h?% g.:=0, g22=@"* g=)+Wh)y,
n’ u'h’
b= T =0 b= T

Wegen gy, = by, = 0sind die u'- und die u>-Linien die Kriimmungslinien der Fliche. Die u'-Linien
sind die Meridiankurven, die sich als Schnittkurven von durch die Rotationsachse begrenzten Halb-
ebenen mit der Fliche ergeben. Die #-Linien sind die Breitenkreise. Sie entstehen als Schnittkurven
der Fliche mit Ebenen, die zur Rotationsachse senkrecht stehen. Die Meridiankurven und die
Breitenkreise einer Rotationsfliche sind demnach die Kriimmungslinien dieser Fliche.

u"Linien uXLinien

*

X

Bild4.11.  Drehfldche, die als Rotationsachse die x;-Achse hat

Fiigt man zu der obigen Parameterdarstellung noch das Glied pu’k hinzu, so erhilt man durch
x(ut, u?) = u' cos u?i + u' sin u?j + (h(u') + pu?)k,
—oo < ul < +o0, —oo L u? < 00,

eine Parameterdarstellung einer allgemeinen Schraubenfiiche. Bei p>0 entsteht die Fliache durch
eine Rechtsschraubung, bei p < 0 durch eine Linksschraubung einer Kurve 4% = const (vgl. S. 32).
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4.2.5. Der Satz von Euler und die Dupinsche Indikatrix
Aus Gleichung (4.54) folgt fiir die Normalkriimmung xy im Punkt X einer Fliache
by (dut)? + 2b,, dut du® + bn(duz)2
ds?
In dieser Gleichung ist ds das Bogenelement des zur Tangente zy des Fldchenpunktes
X gehorenden Normalschnittes ¢,. Wahlt man das ', u*>-Koordinatensystem so, da3

die Koordinatenlinien mit den Kriimmungslinien der Flache iibereinstimmen, so
ist b;, = 0, und man hat

dul 2 duz 2
uy = by, (T) + b2 (F) . (4.67)

Die Hauptkriimmungen x,, %, geniigen wegen b,, = 0 der aus (4.64) folgenden
Gleichung

. %<bu + b22)+ byy ) by - 0.
811 822 811 822
Es ergibt sich %, = b,1/g11, %2 = b3,/g,,. Damit erhédlt man aus (4.67)
— dut — du?
xN = ”1( 811 s ) + % (\/gzz > 3 (4.68)

Setzt man+/g,, du! = d,s, \/g,, du?> = d,s, wo d,s und d,s die Bogenelemente der
beiden durch X gehenden Kriimmungslinien sind, und bezeichnet man den Winkel
zwischen d;s und ds mit «, so findet man, weil d;s und d,s aufeinander senkrecht
stehen, d;s/ds = cos «, d,s/ds = sin «, und (4.68) geht iiber in

%y = %, COs%x + %, sin’x, (4.69)

was als Satz von Euler bezeichnet wird. Die Kriimmung xy eines beliebigen Normal-
schnittes ¢, in einem Punkt X einer Fliche wird durch die zwei zu X gehorenden
Hauptkriimmungen x,, %, und durch den Winkel « bestimmt, den die Tangente ty
dieses Normalschnittes mit der Tangente der durch X gehenden Kriimmungslinie

= C, bildet. Ersetzt man in (4.69) die Kriimmungen xy, %, x%,, durch die ent-
sprechenden Kriimmungsradien R, R;, R, so erhilt man wegenxy = 1/R,%, = 1/R,,

= 1/R,
1 cos?x  sin®w
Eas 4,
R R, R, 5

Man wihlt nun in der Tangentialebene 7 der Fliche ein orthogonales, kartesisches
Koordinatensystem O(X,, X,), dessen Ursprung O mit X zusammenfillt, wihrend
die X;-Achse die durch X laufende u!-Linie in X berithrt. Dann ist die X,-Achse

Tangente an die durch den Punkt X gehende u2-Linie. Man setzt X, = \/ |R| cos a,
x; = \/IR] sin &, und es folgt aus (4.70)
(%) | (%)?
R TR,

- +1. @71
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Gleichung (4.71) stellt die Gleichung eines Kegelschnitts dar, der in der Tangential-
ebene 7y liegt, den Mittelpunkt O = X hat und dessen Hauptachsen mit der X;-
Achse bzw. der X,-Achse zusammenfallen. Dieser Kegelschnitt heilt Dupinsche
Indikatrix.

Ist X ein elliptischer Punkt der Flache, so ist b = b;;b,, > 0. Dann haben b,,
und b,, sowie g, und g,, gleiches Vorzeichen, vorausgesetzt daB X ein regularer
811
2
und wegen (4.69) hat R dasselbe Vorzeichen wie R, und R,. Die Dupinsche Indika-
trix ist eine Ellipse.

Ist dagegen X ein Ayperbolischer Punkt der Flache, so ist b = by,b,, < 0, R; und
R, haben unterschiedliche Vorzeichen, und R kann sowohl positiv als auch negativ
sein, je nachdem wie der Winkel « gewahlt wird. Dann besteht die Dupinsche Indika-
trix aus zwei Hyperbeln mit dem gemeinsamen Mittelpunkt X = O und zwei gemein-
samen Asymptoten, deren Richtungen mit den Asymptotenrichtungen des Punk-
tes X iibereinstimmen.

Ist schlieBlich X ein parabolischer Punkt der Flache, so ist b = b;,b,, = 0. Dann
ist entweder b,; = 0 oder b,, = 0, denn X soll kein parabolischer Nabelpunkt
sein. Falls b,, = 0 ist, folgt aus (4.71)

% =+ VIR
Die Dupinsche Indikatrix ist ein zur X;-Achse paralleles Geradenpaar. Fiir b,, = 0
ergibt sich mit

Flachenpunkt ist. Daher haben auch R; = , R, = b—glelchesVorzelchen

[Ry]
ein zur X,-Achse paralleles Geradenpaar als Dupinsche Indikatrix.

% VT

R
%
E’:
\’72
E] ; 0 %
—
VR ™

Bild 4.12. Dupinsche Indikatrix
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4.2.6. Das Theorema egregium

Es sei x(u!, u?) eine Parameterdarstellung der Klasse » = 3 einer Fliche F. Dann 148t sich zeigen,
daB das GauBsche KriimmungsmaB K = b/g der Fliche F allein von den Koeffizienten g,, der
ersten Grundform und ihren ersten und zweiten Ableitungen nach #* und u? abhingt. Dies hat wohl
als erster Gaull bemerkt.. Ohne Beweis soll hier diese Beziehung angegeben werden. Sie lautet

1 0g11 1 0g3

2 ou? 2 out

9212 1 g3
&11 &12 (auz T o )
_ 1 1 0g22
K= P 821 822 S o
1 0gyy (agxz __1_ 0gy1 _i 0%g11 + 0%g12 vi 0%gs,
2 out out 2 ou? 2 (0u?)? oul ou? 2 (ou')?
1 0g4y
811 812 3 0w
! 0g22
- 812 822 3 Tout i

4.72)

Den Beweis dieser Bezichung, die Theorema egregium genannt wird, kann man in den Lehr-
biichern [1], Teil 2, S. 64; [3], S. 70; [6], S. 178 bis 180; [10], Teil 2, S. 226 nachlesen. Bei Verwen-
dung orthogonaler Koordinaten vereinfacht sich die Beziehung (4.72). Man erhilt in diesem Fall

Kz_;{_a_l(_.l____a‘/ﬁ“>+iz(;_a ‘Z“)}. @.13)
\/Eu 822 ou \/gu ou ou \/322 ou

Theorema egregium heiBt ins Deutsche iibersetzt auserlesener oder ausgezeichneter Lehrsatz. Die
lateinische Bezeichnung geht zuriick auf die im Jahre 1827 erschienene Schrift ,,Disquisitiones gene-
rales circa superficies curvas* von C.F.GauB. Das Theorema egregium lehrt, dal das GauBsche
KriimmungsmaB einer Fliche allein von der ersten Grundform dieser Fliche bestimmt wird. FaBt
man daher eine Flidche als einen zweidimensionalen gekriimmten Raum auf — man nennt solche
Réume auch Riemannsche Réume - und nimmt man an, daB es zweidimensionale Lebewesen in
diesem Raum gibt, so folgt aus dem Theorema egregium, daB es diesen Wesen mdoglich ist, das
GauBsche Kriimmungsma8 des Raumes, in dem sie leben, zu ermitteln. Voraussetzung ist allerdings
dafiir, daf diese Wesen die GroBen g,,, bestimmen konnen. Das konnte durch Messungen geschehen.
Dieser Sachverhalt ist nicht ohne EinfluB auf gewisse kosmologische Theorien geblieben. Eine andere
wichtige Folgerung aus dem Theorema egregium werden wir im Abschnitt 4.2.7. kennenlernen.

4.2.7.  Abbildungen, Abwicklungen und Regelfliichen

F sei eine Flache oder ein Flachenstiick mit der zuldssigen Parameterdarstellung
x(u', u?) derKlasse r 2 1 fiir das Gebiet B der u', u>-Ebene und F* eine Fliche oder
ein Flichenstiick mit einer ebensolchen Parameterdarstellung x*(u*!, u*?) fiir das
Gebiet B* der u*!, u*2-Ebene. Zwischen den GauBschen Koordinaten u!, u? auf F
und den GauBschen Koordinaten u*!, u*? auf F* mdgen zwei Gleichungen

L= ),

=f@', u?)

bestehen. Die Funktionen f*,f2 der Veridnderlichen u?!, u? seien so beschaffen, daB
dem Koordinatenpaar u', u? jedes Punktes P e B durch (4.74) das Koordinaten-

(4.74)
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paar u*!, u*? eines Punktes P* e B* eindeutig zugeordnet wird und umgekehrt.
Dazu seien f, 2 iiberallin B stetig und r-mal ( = 1) nach u*, »? differenzierbar, und
es gelte fiir das Koordinatenpaar u', u? jedes Punktes P € B

oft oft
ALY | W
oL W) | ofr of?
out  ou?

+0. (4.75)

Dann wird durch die Gleichungen (4.74) eine eineindeutige Abbildung der Punkte
von B auf die Punkte von B* definiert. Da andererseits jedem Punkt P € B durch die
zuldssige Parameterdarstellung x(u', »?) eineindeutig ein Punkt X auf F zugeordnet
wird, ebenso jedem Punkt P* € B* eineindeutig ein Punkt X* auf F* entspricht, ist
durch (4.74) auch eine eineindeutige Abbildung 4 der Fliche F auf die Fliche F*
bzw. der Flachenstiicke gegeben. Eine solche Abbildung mége eine zulissige Ab-
bildung heiBen.

Fiihrt man auf F* durch eine zuldssige Koordinatentransformation der Gestalt
u*t = i@, @), u*? = f3at, %) neue Koordinaten a', #* ein, so gehen die Glex-
chungen (4. 74) in die einfacheren Gleichungen

at = u',
o (4.76)

iiber, und die Parameterdarstellung x*(u**, u*?) erhilt die Gestalt
xXH(fr@t, @), f(@t, @?)) = X@', @*). (4.77)

Durch (4. 76) ist dieselbe eineindeutige Abbildung 4 von F auf F* gegeben. Man
sagt, daB u',u? und @', #* gleiche GauBsche Koordinatensysteme auf F und F*
sind.

Eine zulassige Abbildung eines Flachenstiicks bzw. einer Flache F auf ein Flidchen-
stiick bzw. auf eine Fliche F* heiBt lingentreu oder isometrisch, wenn die. Linge
jedes Kurvenstiicks auf F mit der Lange seines Bildkurvenstiicks auf F* iiberein-
stimmt.

Sie heifit winkeltreu oder konform, wenn der Winkel, unter dem sich zwei beliebige
Kurven auf F in einem Punkt X schneiden, gleich dem Winkel ist, unter dem sich
ihre Bildkurven auf F* im Bildpunkt X* von X schneiden.

Sie heiBt flichentreu, wenn jedes Teilgebiet H auf F in ein Teilgebiet H* auf F*
abgebildet wird, das den gleichen Flacheninhalt wie H hat.

Es gilt nun der folgende

Satz 4.5: Sind u', u?® und @', @i* Gaufische Koordinatensysteme auf Flichen F und F*
und sind g,,(u*, u*) die Koeffizienten der ersten Grundform von F, g, (", u*) diejenigen
von F*, dann gilt fiir die durch @i* = u', > = u® gegebene zulissige Abbildung A

1. A ist genau dann lingentreu, wenn g, (u*, u*) = g,,(a*, #*);

2. A ist genau dann winkeltreu, wenn g,,(u*, u?) = g,,(i*, #?) h(a*, #?), h(a*, u*) > 0;
3. A ist genau dann flichentreu, wenn g(u', u*) = g(a', i®)

S.4.5
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Der Beweis des Satzes kann hier nicht erbracht werden. Der interessierte Leser findet
Niheres in [6], S. 212 bis 252.

Aus dem Satz folgt, daf§ eine lingentreue Abbildung stets auch winkeltreu und
[fdchentreu ist.

Eine Verbiegung oder Abwicklung einer Fliche ist eine stetige Deformation dieser
Fldche, bei der alle Flichenkurven ihre Linge beibehalten. Unverbiegbare Flichen
heiBen auch starre Flichen. Verbiegt man eine Fliche F, so entsteht aus F eine andere
Flache F* oder auch nur ein Flachenstiick einer Fliche F*. In beiden Fillen sagt
man, da F in F* verbogen bzw. auf F* abgewickelt wurde. Mit einer Verbiegung
oder Abwicklung von F auf F* ist stets eine langentreue Abbildung von F auf F*
gegeben. Bezeichnet man die Koordinaten auf F mit »', 3, dann geht das Kurven-
netz der Koordinatenlinien u* = C,, u*> = C, in ein ebensolches Kurvennetz auf F*
iiber. Verwendet man dieses Kurvennetz wieder als Koordinatenlinien auf F* und
bezeichnet die Koordinaten auf F* mit @', #2, so ist durch @' = u', #*> = u® eine
lingentreue Abbildung von F auf F* bestimmt. Daher gilt g,,(u*, u*) = g,,(@*, #*)
fir v, = 1, 2. Aus dem Theorema egregium (vgl. 4.2.6.) folgt, daB das GauBsche
KriimmungsmaB K in jedem beliebigen Punkt X auf F gleich dem GauBschen Kriim-
mungsmaB im Bildpunkt X* von X auf F* ist. Das Gaupsche Kriimmungsmaps ist bie-
gungsinvariant. Hieraus folgt, daB die Oberfliche einer Kugel niemals lingentreu auf
eine Ebene abgebildet bzw. in ein ebenes Flichenstiick verbogen werden kann. Denn
fir die Kugel mit Radius R ist K = 1/R?, dagegen ist in jedem Punkt einer Ebene
K = 0. Es gilt der (vgl. [6],S.207)

Satz: 4.6: Eine Fliche oder ein Flichenstiick kann genau dann in eine Ebene abge-
wickelt werden, wenn ihr Kriimmungsmaf in allen Punkten den Wert Null hat.

Eine derartige Fliche heiBt Torse. Auf einer Torse liegen stets eine oder auch mehrere
Scharen von geraden Linien. Eine Fliche, die eine oder mehrere Geradenscharen
enthilt, heiBt Regelféiche oder Strahlfliche. Demnach ist eine Torse stets eine Regel-
flache. Jedoch ist eine Regelfliche im allgemeinen keine Torse. Die Tangenten einer
Raumkurve bilden eine gekriimmte Fliche, die als Tangentenfliche der Raumkurve
bezeichnet wird. Diese ist stets eine Torse und daher abwickelbar. Eine Regelflache,
die nicht in eine Ebene abgewickelt werden kann, nennt man auch eine windschiefe
Regelflache. Eine Parameterdarstellung einer Regelflache ist gegeben durch

x(ut, u?) = yu') + v?z(u'), «=<ut<pf, —o <ut < +oo. (4.78)

Die #?-Linien sind Geraden, die «'-Linien sind im allgemeinen Kurven. Man nennt dic Geraden
u' = konstant auch die Erzeugenden der Regelfliche. Der Vektor y(u') beschreibt, wenn man ihn
als Ortsvektor auffaBt, eine Raumkurve, die auf der Regelfliche liegt. Diese Kurve wird auch Leit-
linie genannt. Meist verwendet man als Parameter u' die Bogenlinge der Leitlinie. Wir setzen
Yut =Y, zp = z und fordern, daB y X z == 0 ist.

Eine Gerade bewege sich im Raum derart, daB einer ihrer Punkte lings der Leitlinie gleitet. Dabei
bleibe die Gerade stets zum Vektor z(u') parallel und u! sei der zugehorige Parameterwert des Punktes
der Leitlinie, in dem sich der gleitende Punkt augenblicklich befindet. Fiihrt eine Gerade eine der-
artige Bewegung aus, so erzeugt sie eine Regelfliche mit der Parameterdarstellung (4.78). Ist speziell
der Vektor y konstant, d. h. unabhingig von u!, so ist (4.78) eine Parameterdarstellung einer Kegel-
fliiche mit der Spitze in ¥ mit dem Ortsvektor y. Hat dagegen z(u') fiir alle Werte von u' die gleiche
Richtung und ist y von u' abhingig, so ist (4.78) eine Parameterdarstellung einer Zylinderfliche.
Beide Flidchen sind in die Ebene abwickelbar.
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Aus x,; = y + v’z und x,: = z folgt!)
811 =¥ + 2Py - 2) + (WP 2,
gi2=Yy z+uXi 1), 3
822 = 7%,
g=1y x 7> + |z x 7*(W?)? + 2u*(y-[(z x z) x z]) = [y xz + u?(zx2)]*
Fiir den Normalenvektor f der Flache findet man
i
N

Aus X,1,0 = ¥ + u*Z, X2 = Z, X220 = 0 folgt

f= (¥ % z + u?(Z x 2)). 4.79)
by = % G §>2) + 82G 5,2) + 026, §,2) + )2 G, 3, )],
&g
b=~ (G x2) ] = —=
NZ; N

Das GauBsche KriimmungsmaB lautet:

[(¥,2,9)], by, =0.

b 1.
K=—=—-—|[@F x z)- 2.
F P [(y x 2)- 2]
Soll die Fliche eine Torse sein, so muf3 gelten
(y xz)-2=0. (4.80)

Dies ist die Torsenbedingung. Eine Regelfliche mit einer Parameterdarstellung (4.78)
ist genau dann eine Torse, wenn (4.80) erfiillt ist. Gilt die Torsenbedingung, so ist der
Vektor z eine Linearkombination der Vektoren y und z. Es ist z = Ay + uz. Setzt
man dies in die Formel fiir den Normalenvektor (4.79) ein, so folgt
o 5
o[ xz+u?hf x D] =T8RG gy = g TX2
NG N v x|
Die Richtung des Normalenvektors f ist unabhéngig von 2. In allen Punkten einer
Erzeugenden u' = const hat eine Torse gleichgerichtete Flichennormalenvekto-
ren. Eine Torse hat daher in allen Punkten einer jeden Erzeugenden dieselbe Tan-
gentialebene. Daher wird eine Torse von jeder Tangentialebene in allen Punkten
einer Erzeugenden beriihrt. Es sei noch bemerkt, daB man eine Torse stets als Tan-
gentenfliche einer bestimmten Raumkurve auffassen kann. Wegen einer ausfiihr-
lichen Darstellung der Theorie der Regelflachen sei auf die Biicher [3], [6], [7], [10],
[13] verwiesen.

(4.81)

Unter welchen Voraussetzungen ist die allgemeine Schraubenflidche
mit x(ut, u?) = u! cos u?i + u! sin u?j + (h(u') + pu?) k
—o00 L ut < 400, —oo L ur< 400

1) Fiir die Berechnung von g ist eine mehrmalige Anwendung der Formeln (1.5) und (1.7) er-
forderlich.
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in die Ebene abwickelbar? Dazu muf3 die Fliche eine Torse sein. Das heiBt, daB das GauBsche
KriimmungsmaB X in allen Punkten der Fliche verschwinden muB. Es ist K = b/g. Die GroBe b
hat den Wert

b= @3 Wh — p?
@2 + @W'h)? +p* *
Da b gleich null sein muB, ergibt sich die Differentialgleichung
WY W —p*=0
fiir die unbekannte Funktion A(u'). Fiir #'(4*) findet man

12 _ 2
K= «/A(uu)1 P

Wiihlt man fiir die Integrationskonstante 4 = p?/a?, wo a eine positive Konstante ist, so ergibt sich
fur A

1 s Ve —a
1y — = 12 __ 2
h(u)—p(a\/(u) a Zarctan( i + B.
Die Schraubenfliche mit der gefundenen speziellen Funktion /& heiBt Schraubtorse. Setzt man B = 0
und fiihrt die Koordinatentransformation
Ja® + p?sin i* + @' cos @2

W) =a* +
Ja? + p? cos i® — @' sin i?

a 1)2
P (@), tanu® =

durch, so geht die obige Parameterdarstellung mit der speziellen Funktion / in eine einfachere Para-
meterdarstellung

—asin @#?i 4 a cos @ j + pk
a4+ p?

der Schraubtorse iiber, aus der man leicht erkennt, daB die Schraubtorse eine Regelfliche und die

Tangentenfliche der gewdhnlichen Schraubenlinie ist. Der Vektor in der runden Klammer ist der

T:

vektor einer gewdhnlick Schraubenlinie, deren Parameterdarstellung durch den vor
der Klammer stehenden Vektor gegeben ist (vgl. S. 33).

X(at, @) = a cos @i -+ asin @%j + piak + @t (

4.2.8. Die geoditische Kriimmung einer Flichenkurve

Auf einer Fliche F, die durch eine zuldssige Parameterdarstellung x(u!, u?) der
Klasse r = 2 gegeben ist, werde eine Flichenkurve ¢ mit der Parameterdarstellung
u! = u'(t), i = 1,2, betrachtet. Es sei X ein beliebiger Punkt von ¢ und 7y die Tan-
gentialebene, die die Fliache in X beriihrt. Projiziert man c orthogonal in diese Tan-
gentialebene, so erhilt man in 7y eine ebene Kurve ¢, , die durch X geht und dort die
Tangente der Kurve ¢ beriihrt. Die Kurve ¢, habe in X die Kriimmung », = 1/g,.
Man definiert nun fiir die Flichenkurve ¢ im Punkt X eine geoditische Kriimmung,
die mit », bezeichnet wird und deren Wert mit x, iibereinstimmt. Man setzt also

%5 = %g. (4.82)

Man kann ¢ auch als eine Flichenkurve des projizierenden Zylinders auffassen, der
durch die Projektion von c¢ entsteht. Dann ist ¢, der zur Tangente #x gehérige Nor-
malschnitt dieses Zylinders.

.
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Bild 4.13. Zur geoditischen Kriimmung

Ist » die Kriimmung von ¢ in X und ¢ der Winkel zwischen der Schmiegetene oy
von ¢ und der Tangentialebene 7y, so gilt nach dem Satz von Meusnier », = x cos .
Hieraus folgt wegen (4.82)

%g = % COS Q. (4.83)
Ist t der normierte Tangentenvektor von ¢ in X und f der Flichennormalenvektor von
Fin X, so ist e = f x t ein Einheitsvektor, der in der Tangentialebene 7y liegt und
senkrecht zu 7y steht. Dann ist cos ¢ = n - e, wo n den Hauptnormalenvektor von ¢
in X bezeichnet. Damit erhilt man x», = x(n - €) = »(n - (f x t)) = »(n, f, t). Beriick-
sichtigt man noch die erste Frenetsche Formel, so folgt

%y =, f,t) = (t x t')-f. (4.84)

Man kann die geoditische Kriimmung einer Flichenkurve allein durch die Koeffizienten Eyu
der ersten Grundform und deren Ableitungen ausdriicken. Die Formel dafiir sei ohne Beweis hier
angefihrt (vgl. [6], S. 190).

#y =g MW + @', — Il @Y u? — @I}, — T3y u''@'?)?
— I3, + wlu? — w2}, .85

Die Striche bedeuten dabei die Ableitung nach der Bogenlinge. Die GroBen I3 sind die Christoffel-
symbole zweiter Art. Man erhilt sie aus den Christoffelsymbolen erster Art F,,,g,,, die durch

[ ogpy, aga,,_aga/x
"2 | oue oub our

} = X, ouh " X

gegeben sind (vgl. [6], S. 181, S. 128), durch Uberschicbung mit dem kontravarianten Fundamental-
tensor g¥#. Es ist also

Top="Top, 8", o fopv=1,2. (4.86)

Eine Flichenkurve, bei der in allen Punkten die geoditische Kriimmung ver-
schwindet, ist eine geod:itische Linie der Fliche. Wihlt man auf einer geoditischen
Linie zwei Punkte 4, B, die hinreichend nahe beieinander liegen, so ist die Linge des
zwischen 4 und B liegenden Kurvenstiicks der geoditischen Linie kleiner als die
Lénge eines beliebigen die Punkte 4, B verbindenden Kurvenstiicks auf der Fliche.
Kann man eine Fliche, auf der sich eine Flachenkurve befindet, auf eine andere
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Fliche, z. B. auf eine Ebene, abwickeln, so dndert sich die geodatische Kriimmung
dabei nicht, weil #, nur von den Koeffizienten der ersten Grundform und ihren Ab-
leitungen abhéangt. Eine geoditische Linie der Flache geht daher bei einer Abwick-
lung in die Ebene in eine geodatische Linie der Ebene, d. h. in eine Gerade iiber. Aus
Gleichung (4.83) erkennt man auch, wie sich der Kriimmungsradius p, der abge-
wickelten Kurve aus dem Kriimmungsradius o der urspriinglichen Flachenkurve

berechnet. Mit x = —1—, %y = 29 = — folgt
e Qo
0:00 = COS Q. (4.87)

Aufgabe 4.8: Eine Formschulter (Bild 4.14) besteht aus einem Zylinderteil (gerader Kreiszylinder,
Radius r) und einem Schulterteil. Beide sind iiber eine Raumkurve, die Umformlinie, miteinander
verbunden. Schulterteil und Zylinderteil sind Torsen und gemeinsam (lings der Umformlinie zu-
sammenhingend) in die Ebene abwickelbar. Ein iiber das Schulterteil gleitender Papierstreifen, der
iiber die Umformlinie in den Zylinderteil hineingezogen wird, kann dabei in einen zylindrischen
Schlauch umgeformt werden.

Die Umformlinie / moge bei der Abwicklung des Zylinders in eine Kettenlinie mit der Gleichung
y = acosh (x/a) + b, x = rp, —n = ¢ = r Ubergehen. B sei Ursprung eines Koordinatensystems
mit den Achsen x, y, parallel und gleichgerichtet zur x,- und zur xz-Achse. Der Zylindermantel
werde in die x, y-Ebene abgewickelt. Man bestimme eine Parameterdarstellung der Umformlinie
beziiglich des im Bild 4.14 gezeichneten Koordinatensystems O(x;, x,, x3) und berechne die
GroBen a, b in Abhingigkeit von der Umformhdhe # = 4B und dem Winkel ¢ zwischen
Zylindertangentialebene und Schmiegebene der Umformlinie im Punkt A (tan & = ¢). Wie grof
sind die Kriimmungsradien ¢ und go der Umformlinie und ihrer Abwicklung im Punkt 4? Man
zeige, daB der Winkel & zwischen Zylindertangentialebene und Schmiegebene in allen Punkten der
Umformlinie die gleiche Grofe hat.

Eine ausfiihrliche Darstellung der Problematik findet der Leser in [19].

X3

Bild 4.14. Prinzipieller Aufbau einer Formschulter
1 Zylinderteil, 2 Schulterteil (Torse), / Umformlinie
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4.2.9. Die stereographische Projektion

Im dreidimensionalen euklidischen Raum E® werde eine Kugel mit dem Mittel-
punkt M und dem Radius R betrachtet, die auf ein orthogonales, kartesisches Ko-
ordinatensystem O(x;, x, x;) bezogen ist. Dabei habe M die Koordinaten
x1 = X, =0, x; = R. Die xy, x,-Ebene beriihrt die Kugel im Ursprung O und ist
somit Tangentialebene an sie. Bezeichnet man die Kugeloberfliche mit F und die
x; X;-Ebene mit F*, so laBt sich eine Abbildung von F auf F* erkldren. Der zum
Punkt O beziiglich M spiegelbildlich liegende Punkt S hat die Koordinaten x;
= x, =0, x; = 2R. Man projiziert nun die Punkte von F aus dem Projektions-
zentrum S auf die Ebene F*. Ist X # S ein beliebiger Punkt von F, so schneidet
die Gerade SX die Ebene F* in einem Punkt X*, dessen Koordinaten mit x,*, x,*
und x;* = 0 bezeichnet werden sollen. Dieser Punkt X* ist der Bildpunkt von X.
FaBt man die x;, x,-Ebene F* als GauBsche Zahlenebene auf, indem man in ihr einen
unendlich fernen Punkt S$* einfiihrt und ordnet man diesen dem Punkt S als Bild-
punkt zu, so ist durch diese Erweiterung eine eineindeutige Abbildung der Kugel-
oberfliche F auf die durch den Fernpunkt S* abgeschlossene Tangentialebene F*
gegeben. Diese Abbildung heif3t stereographische Projektion.

X3, x5
3,
R

-

X1, X
Bild 4.15. Die stereographische Projektion

Es sei X ein beliebiger Punkt von F, X' seine Orthogonalprojektion in die x;, x,-
Ebene F*. Der Winkel zwischen der x;-Achse und dem Strahl OX’ werde mit u!,
der Winkel zwischen dem Strahl OX und der x;-Achse mit u? bezeichnet. Der Fall
X = S bzw. X = O werde zunichst ausgeschlossen.

Eine Parameterdarstellung der Kugeloberfliche lautet

x(u', u*) = i 2R cos u? sin u? cos u* + j 2R cos u? sin u? sin u'
+ k2Rcos? u?, '
0wt <2rn, 0= u? w2,

Die Punkte S und O werden durch diese Darstellung auch mit erfaBt. Fiir S muB
man u? = 0 und fiir O u?® = =/2 setzen. Allerdings sind die zugehorigen u!-Werte
in beiden Fillen unbestimmt.

8  Schone, Differentialgeometrie
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Entsprechend ergibt sich fiir die x,, x,-Ebene, wenn OX* = u*! gesetzt wird
und u*? den Winkel zwischen der x,-Achse und dem Strahl OX* bedeutet, die Dar-
stellung

X*(u*t, w*?) = ju*lcos u*? + ju*'sin u*?,
O<u*' <, 0=u*>=2n,
Zerlegt man die beiden Parameterdarstellungen in Komponenten, so erhilt man fiir
die Kugeloberfliche F
Xx; = 2R cos u? sin u® cos u?,
X, = 2R cos u? sin u? sin u?, 0sut <2, 05 u?<inm (4.88)
x3 = 2R cos % u?,

Fiihrt man ein neues Koordinatensystem O(x,*, x,*, x3¥) ein, dessen Achsen mit
denen des alten zusammenfallen, so hat man fiir F* die Parameterdarstellung

X * = u*! cosu*2,
= u*! sin u*?, 0= u* < o0, 0= u*? < 2r, (4.89)

x3* =0,

=

S
*
|

Die Abbildungsgleichungen lauten dann
u*! = 2R cot u?,

k2 = gyl (4.90)
Sie lassen sich unmittelbar aus Bild 4.15 ablesen. Den Punkten O und S entsprechen
die Koordinatenpaare u? = w/2, u* unbestimmt und #?> = 0, »* unbestimmt. Im
ersten Fall ergibt sich O* = O und im zweiten Fall erhdlt man den Punkt S*.

Um auf F und F* gleiche GauBsche Koordinatensysteme zu haben, fithrt man die
Koordinatentransformation

u*! = 2R cot it?,

e ; (4.91)
in der Ebene F* durch. Dann gehen die Abbildungsgleichungen (4.90) in

al = ul,

P (4.92)
und die Parameterdarstellung (4.89) von F* in

X, = 2R cot i1 cos @',

X, = 2R cot @ sin #t', (4.93)

% =0

iiber. Fiir die Koeffizienten g,, und g,, der ersten Grundformen von F und F* er-
gibt sich aus (4.88) und (4.89)

g1, = 4R?cos? u?sin>u?, g, =0, g,, =4R?,
4R?
sin* 2

(4.94)
Zi1 = 4R*cot’@?, 8, =0, &=
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Beriicksichtigt man (4.92), so erkennt man, daB die GréBen g,, und g,, firv, u = 1,2
zueinander proportional sind. Es bestehen die Beziehungen

R e A A g
g1 = &1 sin* @?, g, = Zipsint @ =0, gy, = gy, sin* %, (4.95)

Nach Satz4.5 ist daher die stereographische Projektion winkeltreu oder konform.

Bildet man den Quotienten aus dem Bogenelement ds von F* und seinem Urbild ds von F, so
erhélt man wegen (4.95) und (4.92)
- _ ds 1
itk .36
Die GréBe & gibt die Lingenverzerrung an. Sie ist die Zahl, mit der man die Lange ds des von einem
Punkt X der Urbildfliche ausgehenden Linienelementes dieser Fliche multiplizieren mufB, um die
Linge d5 seines Bildes in der Bildfliche F* zu erhalten. Im allgemeinen hingt 2 noch von der Rich-
tung »duz :du' = 2 des Linienelementes ds ab. Bei der stereographischen Projektion ist dies jedoch
nicht der Fall. Bei ihr ist die Lingenverzerrung in jeder Richtung gleich grof.
Es sollen nun die Abbildungsgleichungen fiir die stereographische Projektion der Nordhalbkugel
der Erde vom Siidpol aus aufgestellt werden. Wir setzen dazu in (4.90) u*! = r*, u*? = u! = A und
wihlen an Stelle des Winkels 4> die Poldistanz # (vgl. Bild 4.15). Dann erhilt man mit

4w o
7 2 ¢
P p (4.97)
L AN v
r 2Rcot(2 2) 2Rtan<2>
und aus (4.89) schlieBlich
x;* = 2R tan (%) cos A,
Xx* = 2R tan('—i—)sin/l, 0<d=mn, —n<AS=. (4.98)
x3*=0,

Der Winkel A gibt die geographische Linge an. Allerdings liegen Punkte der Erdoberfliche, fiir die
A < 0 ist, auf einem Meridian 6stlich von Greenwich. SchlieBlich sollen noch die Abbildungs-
gleichungen fiir die'stereographische Projektion in kartesischen Koordinaten angegeben werden.
Aus (4.88), (4.89) und (4.90) folgt nach entsprechender Elimination von u?, u?

2Rx, . 2Rx,
R—x; ' 2 T 3R—x’

x*= x3*=0; (4.99)

4R%x* . 4R?x,*
G+ G AR T @R R AR

P 2R((x1%) + (x2%)%)
? (%)% + (x2*)2 + 4R?

X

i

(4.100)

Aus (4.100) erkennt man, daB fiir x;, x,, x5 stets die Beziehung
(21)? 4 (22)* + (x3 — B> = R? (4.101)

erfllt ist, denn xy, x,, x5 sind Koordinaten eines beliebigen Punktes der Kugeloberfliche.
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Satz 4.7: Die stereographische Abbildung ist eine Kreisver drschaft, d. h., sie bildet einen beliebi-
gen Kreis der Kugeloberfliiche in einen Kreis oder eine Gerade der Tangentialebene F* ab.

Beweis: Ein Kreis k auf F kann als Schnitt der durch (4.101) gegebenen Kugeloberfliche F mit
einer durch die Gleichung ax; -+ bx, -+ cx3 + d = 0 bestimmten Ebene aufgefaBt werden. Setzt
man (4.100) in die Ebenengleichung ein, so ergibt sich

a4R%x,* + b 4AR%x2* + ¢ 2R((x,)? + (x2%)?)

P+ G T AR +4=9

AuBerdem gilt x3* = 0, da die Kugeloberfliche Fauf die x,, x,-Ebene F* abgebildet wird. Formt man
die erhaltene Gleichung um, so findet man
4aR> 4bR? 4dR?

* Sl -
Rt d "t Ry a 2 T aeRya O @.102)

Cer®)? + (%) +

Ist 2cR + d =0, so stellt (4.102) die Gleichung ‘eines Kreises in der x;, x,-Ebene F* dar. Falls
2cR -+ d = 0 ist, geht der Kreis & auf F in eine Gerade auf F* iiber. Die Ebene des Kreises & hat in
diesem Fall die Gleichung ax; -+ bx, -+ ¢(x3 — 2R) = 0 und enthdlt ebenso wie k den PunktS.
Hieraus folgt, daB} alle Kreise auf F, die durch das Projektionszentrum S gehen, in Geraden der
Ebene F* abgebildet werden. Umgekehrt entspricht jeder Geraden in F* ein Kreis auf F, der-S
enthélt.

Die stereographische Projektion wird unter anderem bei Kartenentwiirfen, bei
der Funkpeilung und in der Kristallographie benétigt, wo sie als Wulffsches Netz
bekannt ist (vgl. [15], Bd. 2, S. 19-40).

4.2.10. Die Abbildung von Bonne

Als ein weiteres Beispiel fiir eine Abbildung der Kugeloberfliche in eine Ebene
soll die Abbildung von Bonne betrachtet werden. Die Kugeloberflache, die wieder
mit F bezeichnet werden soll, sei gegeben durch

X, = rcosu®cosul,
X, = rcosu?sinul, 0 ul £2r, —-w2=5u? Swf2. (4.103)
X3 = rsinu?,

Die Abbildungsgleichungen fiir die Abbildung von F auf die Ebene F* lauten bei Ver-
wendung von Polarkoordinaten r*, ¢* (vgl. [6], S. 255)

r =r(12r——u2),

u' cos u?

(4.104)

P* =
T _ .2
7 U
Hieraus ergibt sich fiir die Ebene F* eine Parameterdarstellung, wenn man ein karte-
sisches Koordinatensystem einfiihrt, dessen Ursprung O mit dem Pol des Polar-
koordinatensystems und dessen X;-Achse mit dem Strahl ¢* = 0 zusammenfallt,
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und wenn man auBerdem in F* das gleiche GauBsche Koordinatensystem wie auf F
verwendet

_ (1: _2) ! cos @
X, =r(= — @*|cos [——),
2 T _

2

- T 5\ .. [ #tcosi? -

x2=r(7—u)sm - 0<a! £2n, . (4.105
5= —n2 < @ £ w[2. (4.103)

% =0, .

Die Abbildungsgleichungen haben nun die Gestalt
at = ul,
o (4.106)

Die Koeffizienten der ersten Grundformen von F und F* ergeben sich zu
g1 =r*cos’u?, g, =0, g, =r% g=r*cos?u?

N T e\

cos @2 — (7 - uz) sin #?

gy, = r*cos*i?, gy, = i'r? cos w?

822 = r? 4 r¥(a')?

g = r*cos? i?.
Da wegen @' = u', #* = u? und g = r* cos? i, g = r* cos? u? die Beziechung
g=g
gilt, ist die Bonnesche Abbildung auf Grund des Satzes 4.5 flichentreu. Die Bilder
der Breitenkreise u> = C auf F sind Kreisbdgen, die in Polarkoordinaten die Glei-
chung r* = r(x/2 — C) haben. Fiir C = =/2 ist r* = 0. Das heiBt, daB der Bild-
punkt des Nordpols (#? = =/2) der Mittelpunkt dieser Kreise und zugleich der
Pol des Polarkoordinatensystems ist. Die Bildkurven zweier Meridiane schneiden

auf den Bildern der Breitenkreise dieselben Langen wie auf der Kugeloberflache ab.

Tatsachlich erhalt man fiir die Bogenelemente d,s und d,5 der Breitenkreise und ihrer
Bilder :

dys = /g1, dut = rcos u? du?,

! \/2’1 (4.107)
d,5 = \/g,; di' = rcos @i ditt
und wegen (4.106), wie behauptet,

dys = d,5.

9 Schone, Differentialgeometrie
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Diese Eigenschaft der Bonneschen Abbildung erleichtert die Konstruktion wesentlich. Bild 4.16
zeigt die Bonnesche Abbildung des Globus. Im allgemeinen ist die Langenverzerrung bei der Bonne-
schen Abbildung noch von der Richtung des Bogenelementes ds abhingig. Man findet

_ 45 _ | B+ 2804+ 80 : _ du?
A= ds 811+ 82272 mit A= dut *

Die Langen auf den Breitenkreisen bezeichnet man auch als Abweitung. Daher
ist die Bonnesche Abbildung der Erdoberfliche abweitungstreu und flichentreu.

Bild 4.16. Bonnesche Abbildung der Erdkugel



Losungen der Aufgaben

2.1: Man erhalt

% =ti+ (I/0j+ V2k.
Hieraus folgt

K| =+ A0 + 2=+ P =|t+ 1t =t+ 11,
da ¢ zwischen 1 und 4 liegt. Es ergibt sich fiir die Bogenlinge

4
sa1=5@) —s() = [ (t+1/dt=[41 + In [} =7,5+ 2In 2~ 8,8863
1
Der Tangentenvektor der Raumkurve ergibt sich wie folgt:

1 . A o
'=W("+ A/0j + /2K)-

Da ¢ > 0 ist, kann man
lt+ 1t =141/t
schreiben. (Wire ¢ < 0, so miite man
lt+ 1/t = =@+ 1/

setzen.) Demnach findet man fiir 7 > 0

t= (4§ +14/2K).

1+tZ

Es ergibt sich
R S i — 2si 5 (1 — ¢2
=y Qfi— 2+ /201 — P k).

Hieraus folgt wegen n = i/!il fiir den Hauptnormalenvektor im Fall £ > 0

((vV2i—14/2i+ 0 —)K).

' + KON
Ausb=tXn folgt schlieBlich
b=—— (l+ T (1+t i — £4/2K).

2.2: Auf Grund von (2.32) findet man mit
X =i+ 2t + 3%k,
X =2j+ 6k,
X'= 6k,
Xex=144249% X-X=404 97,
XX =212+ 9%,

Viforr4ort
Wirarto®

x=2

9%
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Analog erhilt man aus der Formel (2.40") wegen

1 2t 3¢
2 6t
(% %X)=|0 2 6 =10 s i=1z,
00 6

<)
T 14924 9r%

2.3: Ausgehend von den Frenetschen Ableitungsgleichungen erhélt man durch Elimination von t
und b die Gleichung

’” 2s , 2 -
n +2—+—S'2—n +(2—+Tz‘)'2—n——0.

Zerlegung in Komponenten ergibt

2
’” —0 i—
n' 4+ —5 2+:z ny+ oY =0 i=1,2,3.
Mit dem Ansatz n; = e® erhdlt man eine Riccatische Gleichung, wenn man noch z* = u setzt,

u 4 u? + u+ S S

2 + 2¥s2 2+ s2)? .

s
Die Funktion u, = — m ist eine partikulire Losung dieser Differentialgleichung. Die

1
allgemeine Losung findet man durch den Ansatz u = u, + - Man erhilt

s 1
24 52 + s+C’
K(s+ C)
J2+s2

V=1, v(s)=s+C, u=—

z=—34ln2+s*)+Inls+ C|+ K, z=In

Hieraus folgt
_ As+ B
J2 + 52
Aus den Anfangsbedingungen
m©) =0 = Bi//2, m(0)=0=By/v2, n3(0)=1=B;/N2

mit K=4,, KC=B,, i=1,2,3.

n=e

folgt
B, =B, =0, B;=+/2.
Aus t” = xn folgt

v 1 A;s + B;
P24 s T a2
Durch Integration findet man

A; Bys

h=——tt 4 C.
' 2+ 52 22 + 52
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Analog ergibt sich aus b’ = —7n durch Integration
A B;s
b=————+ ——=+Di.
J2+52 22 + 52
Setzt man f;, n;, b; in die zweite Frenetsche Formel n; = —uxt; + tb; ein,so erhidlt man C; + D; =0,

i=1,2,3. Aus den iibrigen Anfangsbedingungen folgt

1O =1V2=—4/VZ + €1, O =1N2=—a/V2+ C,

50)=0=—d;/N2 + Cs, b0)=1/v2= —:/\/2+ Dy,

b0 = —1/N2 = —4;/N2 + D3, 55(0) = 0= —A3/N/2+ Ds.
Es ergibt sich

Dy=C; =0, Dy=Cy=0, C;=1//2, D, =—1//2,

Ay =—1, Ay =A3=0.
Aus t; = x| = 1//2+ s folgt x; = arsinh (s/</2) + E;, aus t, = xj = 1//2erhiilt man x,
= 5/~/2 + E; und aus 13 = x{ = +/25/(2+/2 + 52) schlieBlich x3 = /1 +s%/2 + E;. Wegen
x(0) = (0,0, 1) folgt E; = E, =0, 1 + E; =1, E; = 0. Damit hat man

x(s) = i arsinh (5/v/2) +§ s/V/Z + k/T+ 572

2.4: Es wird ein orthogonales x;, x,, x3-Koordinatensystem eingefiihrt, dessen x3-Achse mit der
Achse des Kerns zusammenfillt. Sind M, , M, die Schnittpunkte der Mittellinien zweier benachbarter
Drihte mit der x,, x,-Ebene, so gilt fiir den Winkel & = { M;OM,, unter dem die Strecke M; M,

vom Ursprung O aus erscheint, « = 2x/N. Nimmt man weiter an, daB M; auf der positiven x;-
Achse liegt, so folgt

h
x(p) =rcospi + rsinqu—l—ngk

fiir die Parameterdarstellung der Mittellinie des ersten Drahtes. Ist X die orthogonale Projektion
eines beliebigen Punktes X dieser Mittellinie in die x; , x,-Ebene, so ist ¢ der Winkel, den der Strahl
OX’ mit der positiven xl-Achse bildet. Fiir die Mittellinie eines der beiden benachbarten Drihte
ergibt sich dann

= A . . h
X@)=rcosgi+trsing j+o—(p—nk
bzw. mit
g=g—«
X ] P A =
XK@ =@ + o) =rcos(@+a)i+rsin(@+a)j+5-gk

2.5: Ist X ein beliebiger Punkt der ersten Mittellinie und X, der zugehorige Punkt auf der kreisfor-
mlgen Achse mit dem Radius R, so ergibt sich fir die Koordmaten von X, : x9 =0,x3 = R cos Ap,
x§ = Rsin Ap. Trigt man in X, die zwei Vektoren i und 1 = cos Agj + sin Agk an, so bestimmen
diese Vektoren eine durch X, gehende Ebene, die von der krexsformlgen Achse in X° senkrecht
durchsetzt wird und die die Strecke XX, enthilt. Ist r = XOX, so folgt, wenn man beriicksichtigt,
daB die Strecke X, X infolge der Verschraubung mit dem Vektor i den Winkel ¢ einschlieBit,

r = r(icos ¢ + 1sin@).



122 Losungen der Aufgaben

Damit ergibt sich der Ortsvektor des Punktes-X zu
x(p) = Rcos Ap j + RsinApk + r(i cos ¢ + 1sin ¢)
x(p) = ircos ¢ 4 j(R + r sin @) cos Ap + k(R + r sin @) sin Ag.
Fiir eine benachbarte Mittellinie erhilt man
X(¢) = ir cos @ + j(R + rsin ¢) cos A(p — &) + k(R -+ rsin ¢) sin A(p — «)
bzw. mit g =@ — &
x*(@) = ir cos (¢ + «) + J(R + rsin (¢ + «)) cos 2p + k(R + rsin (¢ + «)) sin 4.

Bild L.2.5. Schraubenlinie mit kreisformiger Achse

Die Differentiation von x(¢) nach ¢ ergibt
X(p) = —irsin @ + j(r cos @ cos Ap — (R + r sin @) A sin Ap)
+ k(r cos @ sin Ap + (R + rsin ¢) A cos Ap).
Hieraus ergibt sich

[%@)|? = r* + (R + rsing)? 22,
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und durch Integration von ds = |%(¢)| dg erhilt man schlieBlich

2n
s2m) = f Jr2+ (R+rsing)? A2 dg.
9=0

Zur gendherten Auswertung dieses Integrals wird die Simpsonsche Regel verwendet (vgl. Band 2
Satz 10.15):
h .
S= 3 (Yo + Yan+ 2002 + ya + = + y2a-2) + 401 + ¥z + o+ Y2no1) )-

Wihlt man h = 4, so ergibt sich

5Qm) & 37 (V2 R + P R+ 122+ /P + R— 1) 72).

2.6: x(s) sei die Parameterdarstellung der Raumkurve mit 7(s)/x(s) = K. Hieraus folgt 7 = Kx;
wegen t' = xn, b’ = —n ergibt sich Kt' 4+ b’ = 0 und daraus Kt + b = a, wo a ein konstanter
Vektor ist. Esist a-a= K2+ 1, |a| = \/K2 + 1. Nun ist a-t= K, daher |a||t|cos (a,t) =K
und cos (a, t) = K/\/ 1 4 K2 = konstant, also ist durch x(s) die Parameterdarstellung einer Bo-
schungslinie gegeben. P

Essei umgekehrt x(s) die Parameterdar: einer Boscht ie. Dann existiert ein Vektor a
(konstant), der mit allen Tangentenvektoren t der Raumkurve einen konstanten Winkel bildet. Da
|t| =1 gilt, ist somit a - t = k = konstant. Durch Differentiation folgt a - t' = 0 bzw. a * (xn) = 0
und, da % = 0,a - n = 0. Durch weitere Differentiation folgt a - n’ = 0. Wegen b” = —7n ergibt sich
a-b’= —7a-n = 0.Andererseitsist auch a’ - b =0, da a’ = 0. Mithin (a*b)’=a-b'+a"*b=0
und a-b= C = konstant. Aus der 2. Frenetschen Gleichung ergibt sich a*n’ = a - (—xt -+ tb)
= —x(a-t)+ (@ b)=0 und damit —xk + vC = 0. Daraus folgt dic Behauptung 7(s)/x(s)
= k/C = const. o

1 1i

3.1: a) Fiir den Normalenabschnitt gilt:ﬁ\l = |y|\/l + 2= C, wo C eine positive Konstante ist.
Durch Quadrieren folgt y2(1 + y2) = C? bzw. y'? = (C* — y?)[y?, y' = :};\/C2 — y?[y. Trennung
der Verinderlichen und Integration fiithrt zu .

%—;= :I:fdx, —JC =y =t(x— xp)

(x— x> +y2=C2

oder

Man erhilt Kreise, deren Mittelpunkte auf der x-Achse liegen und deren Radien die Lange C haben.

b) ST = |¥/¥'| = K. Dabei ist K > 0 die gegebene konstante Linge des Subtangentenabschnitts.
Trennung der Verdnderlichen ergibt

dy 1
[5== %o
Nach Integration folgt
Injyl|—InC = j:-l-x
x5

y=Ce¥K oder y=Ce*¥; —c0ol C<+oo (C=0).

Es ergeben sich Exponentialkurven.
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¢) Analog wie bei a)und b) gilt SN = |yy'| = K, + [ ydy = [ Kdx bzw. y* = + 2K(x — x,).
Das sind Parabeln, deren Achsen mit der x-Achse zusammenfallen. Die Koordinaten des Scheitels S
einer solchen Parabel sind x5 = X, ys = 0, die des Brennpunktes I sind xp = x, + K[2, yp = 0.

3.2: Wihlt man als Koordinatenursprung O den Punkt in der Mitte zwischen den beiden benach-
barten Masten auf der Erdoberfliche; so hingt die Leitung an der Stelle x = 0 am tiefsten. Setzt
man den Abstand der zwei benachbarten Masten gleich 2a und die Hohe der Leitung bei x = 0
gleich u, so folgt aus Bild L.3.2a) u = hcosh0 + b = h + b, I = hcosh (a/h) 4 b. Hierin sind

y

-a +a
Bild L.3.2a). Zu Aufgabe 3.2
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Bild L.3.2b). Zu Aufgabe 3.2
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u, h, b unbekannt. Um noch eine dritte Gleichung zu erhalten, berechnet man die Linge L der Leitung
zwischen den zwei Masten. Mit y” = sinh (x/h) folgt

a +a 0000
L= [J1+y?dx= [ /1 + sinh® (x/h) dx

+a
= f cosh (x/h) dx = h[sinh (x/h)]2., = 2h sinh (a/h).
—a

Damit erhdlt man ein Gleichungssystem fiir die Unbekannten u, h, b. Setzt man a/h = &,
I = hcosh (a/h) + b, L = 2hsinh (a/h), so folgt mit & = a/& aus der dritten Gleichung (L/2a)&
= sinh £&. Man bestimmt graphisch einen Niherungswert fir die Losung dieser Gleichung, indem
man die beiden Kurven 7 = sinh & und 0 = (L/2a) £ in einem &, %-System darstellt und ihren Schnitt-
punkt £© == 0 bestimmt (siche Bild L.3.2b)). Man erhilt den Néherungswert £ = 0,65. Diesen
verbessert man nach dem Newtonschen Verfahren (vgl. Band 2, 7.7.3.). Setzt man f(§) = (L/2a) ¢
— sinh &, so folgt mit L =86m, a = 40m, f(§) = 1,075§ — sinh & und f'(§) = 1,075 — cosh &.
Mit&© = 0,65 ergibt sich £(0,65) = 0,0021 und f/(0,65) = —0,1438. Damit findet man einen besseren
Wert £ = 0,65 + (0,0021/0,1438) &~ 0,665, f(0,665) = —0,0002. Damit erhélt man h = 60,2 m,
b=1—hcosh&® = —49,01 m, u = h + b = 11,19 m. Die Leitung héngt an ihrer tiefsten Stelle
rund elf Meter iiber dem Erdboden.

3.3: Die Gleichung der Schleppkurve lautet nach Abschnitt 3.3. (S. 50)

x=xo% (kIn|(k — VK> = 3l + VK> = 7).
Wir betrachteten den Kurvenzweig, fiir den das negative Vorzeichen gilt und fiir den y > 0 ist?),
weil die anderen Zweige durch Spiegelungen an der x-Achse bzw. der Geraden x = x aus diesem
erhalten werden. Die Gleichung der Schleppkurve ist in der Form x = g(y) gegeben. Um die Kriim-
mung fiir diese Kurve errechnen zu konnen, vertauscht man in der Formel fiir x die Variable y
mit x. Man setzt x” = dx/dy, x" = d?x/dy? und erhilt

x= 2 [(STFFTP.

Nach einiger Rechnung ergibt sich

e Gl o W, S R
Wk —y? y ’ yi/kE— 2
woraus schlieBlich folgt
y kK2 — y?
® = , o= .
kJk? — y? y

3.4: Es werde zunidchst der Fall der AuBenabrollung betrachtet. Wihrend der Mittelpunkt des
—
Rollkreises von seiner Ausgangslage M einen Kreisbogen M M mit dem Zentriwinkely = < M oM

des festen Kreises mit dem Radius R -+ r durchléuft, rolle der Rollkreisbogen POP;, mit dem Zentri-
winkel ¢ = < POMOP", auf dem festen Kreis vom Radius R ab. Daher gilt Ry = re (vgl. Bild 3.12).
Zieht man von M einen Strahl MA parallel zur positiven x;-Richtung, so ist der Winkel <{ AMX
= 180° — (@ + ). Die Projektion des Streckenzuges OMX auf die x,- bzw. x,-Achse liefert daher
x1 = (R+r)cosy + Icos (180 — ¢ —y) = (R + r) cosy — I cos (¢ + v),
X2 = (R4 r)siny — Isin (180 — ¢ —y) = (R + r)siny — I'sin (¢ + p).

1) DasmuB man beachten, weil wegen \/;7 =|y|im Fall y > 0 \/}7 =y, im Fall y < 0jedoch
\/ y? =—y gilt.
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R
Hieraus folgt wegen ¢ = _r_w

x1=(R+r)cosw~1cos<Rjrw),

%y=(R4r) siny—1 sin (R+’ w)-

r
Fiir / > r erhdlt man eine verschlungene, fiir / < r eine gestreckte Epitrochoide. Ist / = r, so heiit
die Kurve gespitzte Epitrochoide oder auch Epizykloide.

Bei Innenabrollung durchlduft der Rollkreismittelpunkt den Kreisbogen M M mit dem Zentri-
winkel y = L M OM des Kreises mit dem Radius R — r um O. Ist ¢ wieder der Winkel des Roll-
kreisbogens, der auf dem festen Kreis vom Radius R abrollt, wobei Ps in P, X, in X und M, in M
iibergehen, so gilt wieder Ry = re (Bild 3.12). Die Projektion des Streckenzuges OMX auf die x,-
bzw. x,-Achse ergibt

x1=(R—r)cosszrIcos(q:—zp)=(R—r)‘cosw-i—lcos(Rr_r lp)

X, =(R—r)siny — [ sin(p —y) = (R —r) siny — I'sin (R:r w).

Ist /< r, so liegt die Kurve ganz im Innern des festen Kreises. Man nennt sie gestreckte Hypo-
trochoide. Fiir /> r heiBt die Kurve verschlungene Hypotrochoide. Sie verlduft innerhalb und auBer-
halb des festen Kreises. Im Fall / = r spricht man von einer gespitzten Hypotrochoide oder auch
von einer Hypozykloide. Ist das Verhiltnis der Radien R:r = m:n rational, so sind alle be-
trachteten Kurven geschlossen, und es gilt fiir den Parameter 0 = ¢ = 2n7. Dieses Parameterinter-
vall fiir y reicht zur Darstellung aller dieser Kurven sowohl bei Innen- als auch bei AuBen-
abrollung aus.

—
3.5: Es sei ¢ der Winkel, um den sich der Rollkreis beim Abrollen des Kreisbogens X, P, dreht.
Dabei geht X, in X und P, in den Punkt P iiber. Mit OP = X P = rp und <L XMP = ¢ ergibt sich
aus Bild L.3.5 x; = rgp — rsing, x, = r — r cos ¢, wobei —oo < ¢ <{ +-oc0 ist. Fiir den Tangens
des Neigungswinkels der Tangente findet man x5 = X,/X; = sin ¢/(1 — cos ¢). Fir ¢ = 0, 427,
<.y Z£2km, ist x; = 4-00. Da die Kurve nur oberhalb der x,-Achse verlaufen kann, hat sie in den
genannten Punkten Spitzen.

X1

Bild L.3.5. Zu Aufgabe 3.5
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3.6: Fir das Bogenelement der Zykloide ergibt sich nach (2.17)
ds? = r?(1 — 2 cos ¢ + cos? ¢ + sin? ¢) dp? = 2r?(1 — cos @) dp? = 4r? sin? (g/2) dg?,
ds = 2r [sin (¢/2)| dg.

2n
- inZdp—2r[—2cos 2" =
s(2n)—f2rs1n2d¢—2r[ 2 cos ZJo 8r
0

(die Betragstriche beim Integranden konnen weggelassen werden, da ¢ zwischen 0 und 27 variiert

und dort | sin % | =sin .‘32i ist). Um g zu berechnen, bildet man

¥y =r(l —cos@p), ¥ =x,=rsing, ¥, =rcosp.
Daraus folgt
FaXy — Xp%; = r3(cos @ — cos?p) — r2sin? ¢ = r2(cos g — 1),
x}+x3=4r2 sin2% .
Mit (3.10) ergibt sich
o= —4rsin(¢/2), e(r)=—

3.7: F=by? — x*(x —a) =0, F,= —3x*+ 2ax, F,=2by,
Fax = —6x -+ 2a, F=2b, Fo=
/ |
0
X
7}a>0 2)6>0
a=0
3
y y
0| 0
F/ , ;
Sa 4)a<Q 5)a=0
) )050 )b<0

Bild L.3.7. Zu Aufgabe 3.7
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Im Punkt O(0, 0) liegt ein singulirer Punkt vor. Man bildet die Diskriminante
A = F2, — Fi.Fy, = 4b(3x — a).
1)a>0,b>0, A4(0,0)= —4ab < 0: Einsiedlerpunkt in O.

Aus der Gleichung F = 0 folgt y = x </(x — a)/ b, fiir 0 < x < a gibt es keine reellen y-Werte.
2)b>0,a=0, 4(0,0)=0, Spitze in 0. y = (x/b) \/ %. Es liegt eine Neilsche Parabel vor.
3)a>0,b>0, 4(0,0)= —4ab>0: Doppelpunkt in O.
4)a<0,b<0, A(0,0)= —4ab < 0: Einsiedlerpunkt in O.
5)a=0,b<0, 4(0,0)=0, Spitzein O: Neilsche Parabel.

In Bild L.3.7 sind die fiinf verschiedenen Kurven skizziert.

3.8:a) r(p) = ap, r' = a, coty = r’[r = 1/p. Mit ¢ — oo geht coty — 0.

Mit wachsenden Werten von ¢ schneidet die Kurve die Radien mehr und mehr unter einem rechten

Winkel.

Die archimedische Spirale besteht aus zwei im Ursprung ineinander iibergehenden Asten. Der eine
enthilt die Punkte mit ¢ > 0, der andere die mit ¢ < 0. Beide beginnen im Ursprung und wickeln
sich spiralférmig um den Punkt ¢ = =/2, r = a(r/4), der eine im mathematisch positiven, der andere
im mathematisch negativen Sinn (siche Bild L.3.8a)). Die Kurve schneidet den Strahl ¢ = 0 (posi-

y

o

-

Bild L.3.8a). Archimedische Spirale

tive x-Achse) bei r = 0, —ar, 2ax, —3am, ..., (— 1)k akm,... und den Strahl ¢ = 7 (negative x-Achse)
bei r = ar, —2am, 3aw, —4ax, ..., (—1)**! akn usw. Die Differenz r(p + 2m) — r(gp) ist fiir alle
Werte von ¢ konstant: r(p + 2w) — r(p) = 2ax. Fiir die Bogenlinge findet man mit r = agp, r' = a
aus (3.3)

4
s(¢)=af\/l+¢2d<p:%(ln(¢+\/l+wz)+¢\/1+¢2).
o
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(Das Integral findet man durch die Substitution ¢ = sinh # und anschlieBende partielle Integration.)
Die Formel ist praktisch nicht sehr brauchbar. Besser ist die von R. Rothe angegebene Niherungs-

formel s(p) ~ —;—(qzz + In g + 1,193) fiir groe Werte von ¢ (vgl. [12],S. 159).

b) Je groBer ¢ wird, desto mehr néhert sich r(p) = a/p dem Wert 0. Der Ursprung O ist ein
asymptotischer Punkt der Kurve, den sie aber erst erreicht, nachdem sie sich unendlich oft spiral-
formig um ihn herumgewunden hat. Die Kurve besteht aus zwei spiegelbildlichen Teilen, die symme-
trisch zur y-Achse liegen. Fiir ¢ — 0 nahert sich die Kurve der Geraden y = a, die eine geradlinige
Asymptote der Kurve ist. Denn es gilt y = r sin ¢ = (a sin ¢)/p:

lim y = lim (a sin p)/p = a (Bild L.3.8b)).
0

-0 P
Y
a
\ X
L
, 14
\ X

Bild L.3.8b). Hyperbolische Spirale

c) Logarithmische Spirale r(p) = ¢*®, a > 0. Fiir a = 0 ergibt sich ein Kreis um O mit dem
Radius 1. Fiir ¢ - —oo geht r gegen 0. Daher ist der Ursprung O ein asymptotischer Punkt der
Kurve. Aus r=e?®, r’ = ae?® folgt coty = r’/r = a = const. Der Winkel y zwischen r und

Tt

Bild L.3.8¢). Logarithmische Spirale
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der Kurventangente ist konstant. Die logarithmische Spirale schneidet alle von ihrem asymptotischen
Punkt ausgehenden Strahlen unter konstantem Winkel. Fiir die Bogenlidnge erhilt man

9
s@) = [ o JTT@ dp = JTF 1 [e9917, = VTF a2 ) — 1.
%o

Mit ¢, — —oo folgt hieraus s = \/ 1 + a2r. Die Bogenlinge eines Kurvenbogens gemessen vom
asymptotischen Punkt bis zu einem beliebigen Punkt ist proportional zum Radius dieses Punktes.
Fiir den Kriimmungsradius gilt ¢ = as.

3.9: Aus Bild 3.18 folgt durch Anwendung des Sinussatzes
rlro = sin (180 — a)/sin B, f=180 — (180 — &) —p = — .
Damit ergibt sich
sin o
r=r, =)

als Polargleichung der Geraden.

3.10: Wegen r = a, ¥’ = 0 erhilt man aus (3.38) durch Integration s(x) = ax. Der Flicheninhalt
«

des Kreissektors mit dem Zentriwinkel « ergibt sich zu F = % f r? dp = }a’ax.
o

3.11: Aus dem rechtwinkligen Dreieck OAP (Bild L.3.11) folgt unmittelbar
(@) = 2ry cos (p — @,).

Bild L.3.11. Zu Aufgabe 3.11

3.12: Wegen r(—¢) = r(p) ist die Kurve symmetrisch zum Strahl ¢ = 0. Den Verlauf der Kurve
findet man mit Hilfe einer Wertetabelle. Im Bild L.3.12 auf Seite 131 ist die Kurve dargestellt. Aus
r = 2a cos ¢ + 2a folgt

r'= —2asingp, r’= —2acosg,
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Y

Bild L.3.12. Kardioide

ds = 2a~/2(1 + cos ¢) dp = 2a~/4 cos? (¢/2) dp = 4a |cos (¢/2)] dg.

Da sich ¢ bei einem Umlauf von 0 bis 27 dndert, ergibt sich fiir die Bogenlinge
2m T
5(@r) = 4a [ |cos (¢/2)| dp = 8a [ cos (¢/2) dp = 8a - 2lsin (/)T = 163,
0 o
denn es gilt s(27) = 2s(%) und |cos ((p/Z)I = cos (¢/2) fiir 0 < ¢ < 7. Fiir den Kriimmungsradius
erhilt man aus (3.41) mit
S+ =4a |cos (@/2)], — 1’ + 2(r')? = 12a*(1 + cos p) = 24a® cos? (p/2)
den Ausdruck

o® =L los 92), o) = 3a.

SchlieBlich findet man fiir den Inhalt der von der Kurve umschlossenen Fliche
2r Ed bd
F=14 [ r*dp = [ 4a*(1 + cos ¢)* dp = 4a® [ (1 4 2cos ¢ + cos? ¢) dp
0 0 0
= 4a*([g]§ + 2[sin ]G + [/2 + sin 2p/4]F) = 6a>x.

3.13: Aus Bild L.3.13 erkennt man, daB O, P, P* stets auf einer Geraden liegen M sei der r ge-
meinsame Mlttelpunkt der Strecken PP* und AB. Dann gilt r = OM + MP r* = OM — MP*
= OM — MP, (OM)*=a® — (AM)* sowie (MP?) =b? — (4M)? Damit findet man
rert =(OM)?— (MP)? = a* — (AM)2 — b% + (AM)? = a® — b%. Nimmt man an, daB sich P auf
einer Geraden bewegt, die nicht durch O geht, ihre Polargleichung (vgl Aufgabe 3.9) laute r =
rosin a® — b* (@ — b?) a? — b*
,dannfolgtr*———r-—-——————sm(oc—zp) ————co —I—————zx)

sin (x — rysinx rosina
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Bild L.3.13. Zu Aufgabe 3.13

Ziehtmanvon O den zur Geraden senkrechten Strahl 0Q, so ist <L P*0Q = +- (qz + % — a). Wihlt man
!12 — h2

_— —_— T
auf dem Strahl OQ den Punkt A, mit 04, = , so folgt aus r* = 04 cos (:p + 3 oc)

rysino
T ]
und & P¥*0A° = + (tp + 5 oc) , daBB < 4 P*O ein Rechter ist. Da dies fiir jedes ¢, fiir den P

\
auf der Geraden liegt, zutrifft, bewegt sich P* auf dem Kreis mit dem Durchmesser 04,,.

3.14: Die Gleichung der Evolute ergibt sich aus der Parameterdarstellung (3.42), wenn man hierin

¥,y” mit Hilfe der Parabelgleichung y? = 2px ausdriickt. Man erhilt § = 3x + p,n = Fdx \/;/\/ZJ
als Parameterdarstellung der Evolute der Parabel, wobei dic Quadratwurzel mit doppelten

27
Vorzeichen auftreten kann. Elimination von x ergibt (¢ — p)® = Tpnz. Dies ist die Gleichung einer

Neilschen Parabel. Sie ist symmetrisch zur x-Achse, wenn man beachtet, daB die &-Achse mit der
x-Achse und die #7-Achse mit der y-Achse identisch ist. Sie hat bei & = p, 7 = 0 eine Spitze. Ersetzt
man in der Parameterdarstellung der Evolute x durch 7, 0 =< ¢ < +o0, so folgt & =3¢+ p,
n= :F4t\/t/\/2p. Fiir die Parabel ergibtsichx = 7, y = \/2pr mit 0 = v < 00, wo 7 einen reellen
Pararﬂer bezeicllnet.__ Um den Schnittpunkt beider Kurven~zu Ehalten, setzt man 7 = 3¢+ p,
—\/Zpr = —~4t\/t/\/2p. Hieraus folgt— \/Zp(3r +p)= 741\/1/\/21) und nach Quadrieren 2p(3t+p)
83
= —p_ bzw. 4¢3 = 3p?t + p3. Man sicht, daB ¢, = p eine Losung dieser Gleichung ist und findet

7; = 4p und damit als die Koordinaten eines Schnittpunktes S; beider Kurven &; = 4p = xy,

n=—2 \/2p = y;. Ein zweiter Schnittpunkt ergibt sich daraus durch Spiegelung an der x-Achse.

Er hat die Koordinaten &, = x, = 4p, 1, = y, = 2\/2‘7. Die kubische Gleichung besitzt noch eine
14

Doppellosung 7, = t3 = — > die aber zu keinen reellen Schnittpunkten der zwei Kurven fihrt.
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3.15: Rollt eine Kurve auf einer Geraden ab, so fiihrt diese Gerade relativ zur Ebene der Kurve
ebenfalls eine Bewegung aus. Diese Relativbewegung soll als Abrollen der Geraden auf der Kurve
bezeichnet werden. Eine Evolvente einer Kurve entsteht nun, wenn eine Gerade auf dieser Kurve
abrollt, indem jeder Punkt der Geraden eine solche Evolvente in der Ebene der Kurve beschreibt.

Bild L.3.15. Kreisevolvente
Im Fall des Kreises ergibt sich aus Bild L3.15 x = OX' = 0P + PX',y= XX = MP — MP.
Mit OP’ = acos g, MX=MA= ap, P’X’ = PX = ap sin ¢, MP' = a sinp und MP = apcos p
erhilt man x = acos ¢ + apsing, y = a sin p — ag cos ¢. Daraus folgt

ds = /(ag)*(cos? p + sin?¢) dp = a [p| dp.

Nimmt man an, daB3 ¢ > 0 ist, so hat man ds = ap dg, woraus durch Integration

5

L
s@) = [ apdp=ap?2
0
folgt.

Es ergibt sich mit \/Xz + »? = ap und jx — yx = (ap)*
o0 = (ap)®|a*p? = ap.
Betrachtet man die durch einen beliebigen Punkt X der Kreisevolvente gehende Normale, so beriihrt
diese den Kreis in ﬁm Punkt M. M ist der zu X gehdrige Kriimrungsmittelpunkt und der Kriim-
mungsradius ¢ = MX ist gleich der Linge ap des Kreisbogens, auf dem die Gerade abgerollt ist.

3.16: Fithrt man nach Bild 3.23 ein rechtwinkliges Koordinatensystem mit dem Ursprung O und
der x- bzw. y-Achse ein, so umhiillt das Brett von der Linge / bei der Einfithrung in den Hohlraum
eine Astroide. Die Gleichungdieser Astroide lautet x”/* - y*/* = I'l*. Damit das Brett eingefiihrt werden
kann, muB die Hohe der Offnung mindestens so grof sein, daB die Hiillkurve durch die Offnung in

10 Schone, Differentialgeometrie
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das Innere verlaufen kann. Es muf} also die Ordinate y der Kurve an der Stelle x = a kleiner sein
als die Hohe h der Offnung. Es gilt o' + y/* = I'* bzw. y = (/I'F — &'F)’. Mithin findet man
h= (\/ I — &')* als Bedingung fiir das ungehinderte Einfiihren des Brettes bei Vernachlissigung
der Brettdicke.

In Wirklichkeit muf8 4 groBer sein als die errechnete untere Schranke, weil das Brett eine end-
liche Dicke hat. Ist die Brettdicke d klein gegen /, so ist /& = (\/1’/’~a’/’ ® + A, Dabei ist
A = dJcos &, und « ist der Neigungswinkel der Tangente der Hiillkurve an der Stelle x = a. Es gilt
tanx = —+/ I — alla'l*, woraus mit cos & = 1/5/1 + 2 schlieBlich A = d(//a)"* folgt.

3.17: Da die Astroide eine Kurve mit vier Spitzen ist, muB, wenn sie eine Hypozykloide sein soll,
R:r=4:1und /= r sein. Nach Aufgabe 3.4 lautet die Parameterdarstellung einer Hypotrochoide
fir R=4r, [ =r, x; = 3rcosy + rcos (3p), x, = 3rsiny — rsin (3y). Wegen cos (3p) = cos® p
— 3 cosysin?y, sin (3y) = 3 cos?y siny — siny ergibt sich

X = r(3 cosy -+ cos>y — 3 cos y sin?y) = r(3 cosy(l — sin?y) - cos3y) = 4r cos3y,

X2 = r(3 siny — 3cos?y siny + sin®yp), = r(3 siny(l — cos?y) + sin3y) = 4r siny.
Damit erhdlt man wegen 4r = R schlieBlich

x1 = Rcos®y, x, = Rsiny.
Das ist aber die Parameterdarstellung einer Astroide. Demnach ist eine Hypozykloide mit dem
Radienverhiltnis R: r = 4: 1 stets eine Astroide.

3.18: Die Gleichung der Normalen durch den Punkt X(x, y) der ebenen Kurve mit der Gleichung
y = f(x) lautet (wobei &, 7 die laufenden Koordinaten sind, vgl. (3.17)) (1 — f(x)) f'(x) + (§ — x)=0.
Um die Hiillkurve dieser Geradenschar zu bestimmen, differenziert man diese Gleichung nach dem
Parameter x und erhlt —(f'(x))? -+ (n — f(x))f/(x) — 1= 0. Hieraus folgt 1) = f(x) --[1 - (f' (x))1/f""(x)
und nach Einsetzen in die urspriingliche Gleichung & = x — f’(x) [1 + (f'(x))?]/f"(x). Diese beiden
Gleichungen fiir & und 7 stellen eine Parameterdarstellung der Evolute der Kurve y = f(x) dar
(vgl. (3.42)). Die Normalen einer ebenen Kurve umhiillen bekanntlich die Evolute dieser Kurve.

3.19: Die Mittelpunkte der Kreise der gegebenen Kreismannigfaltigkeit liegen auf einem Kreis mit
der Gleichung (x — d/2)? + (»)* = (d/2)?. Ein beliebiger Kreis der Mannigfaltigkeit hat die Glei-
chung x2 + 2 — 2xd cos® & — 2yd cos « sinox = 0. Mit den Beziehungen 2 sin & cos &« = sin 2o
und 2cos? & = 1 + cos 2« ergibt sich daraus x? + y* — xd(1 + cos 2x) — yd'sin 2 = 0. Um
die Hiillkurve dieser Kurvenschar zu erhalten, differenzieren wir die letzte Gleichung nach dem
Parameter « und erhalten zusammen mit der urspriinglichen Gleichung das System

xd cos 20 + ydsin 20 = x2 + y> — xd,

—yd cos 20 + xd sin 2 = 0. ®

Um o zu eliminieren, faBt man cos 2« und sin 2« als Unbekannte auf und findet fiir x, y =0
c0s 20 = x(x% + y? — xd)[[d(x% + y?)], sin2x = y(x* + y* — xd)/[d(x* + y»)].

Wegen cos? 2o + sin? 2a = 1 ergibt sich (x% 4 p2) (x® + )2 — 2xd(x? + y?) — d?y?) = 0.
Da x = y = 0der Bedingung (*) geniigt, besteht die gesuchte Hiillkurve aus dem Ursprung O und
allen Punkten mit reellen Koordinaten x, y, fiir die der zweite Faktor verschwindet. Damit erhilt
man (x2 + y2)2 — 2xd(x? + y*) — d?»? = 0 als Gleichung fiir die Hiillkurve. Um die Art der Kurve
noch besser zu erkennen, fithrt man Polarkoordinaten ein. Man setzt x = r cos @,y = r sin ¢ und fin-
det r2(r> — 2rd X cosp — d? sin>p) =0, woraus r =0 und r? — 2rdcosp — d? sin® ¢ =0
folgt. Nach Aufldsung ergibt sich r = d cos ¢ 4 d. Dies stellt bei beiden Vorzeichen die Glei-
chung ein und derselben Kardioide dar (vgl. Aufgabe 3.12). Die gesuchte Hiillkurve ist eine Kar-
dioide, deren Spitze im Ursprung O liegt und die symmetrisch zur x-Achse ist, wobei der Kreis,
aus dem die Kardioide abgeleitet werden kann, der Kreis der Mittelpunkte ist.
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4.1: a) Zerlegt man die vektorielle Parameterdarstellung in drei skalare Gleichungen, so erhélt man
Xy = asin u! cos u?, x, = bsin u' sinu?, x3 = ccos u', 0 < u! <, 0 < u? =< 2r. Dividiert man
jede der drei Gleichungen durch a bzw. b bzw. ¢, quadriert und addiert, so ergibt sich

(x1/a)?* + (x2/b)? + (x3/c)* = sin? u' cos? u? + sin? u! sin? u® + cos? u*

= sin? u'(cos? u? 4+ sin? u?) + cos? u! = sin? u' + cos? ul = 1.

Das ist die Gleichung eines Ellipsoides mit den Halbachsen a, b, ¢ und dem Mittelpunkt 0(0, 0, 0).

Fiir die Ableitungsvektoren findet man

X,! = a cos u' cos u2i + b cos u' sin u?j — csin u'k,

X,2 = —a sin u! sin u?i + b sin u? cos u?j.
Damit erhélt man fiir die g,

g11 = a* cos? u' cos? u? + b? cos? u' sin® u? -+ ¢ sin® u?,

212 = —(a® — b®) cos u' sin u' cos u? sin u?,

222 = a? sin? ul sin? u? + b? sin? u! cos? u?. .
Das GauBsche #!, u>-Koordinatensystem ist hier nicht orthogonal, da i. allg. g,, &= 0. Die Dar-
stellung ist in den Punkten C;(u' = 0,0 = 4? < 2x) bzw. C,(u' = =n, 0 = u? = 2r) nicht zuldssig,
da Iin C;, C, den Rang 1 hat. Fiir 4> = C erhdlt man die «'-Linien. Es gilt x,/x; = b tan C/a.
Die u!-Linien sind die Schnittkurven der durch die x3-Achse gehenden Ebenen x, = mx; mit dem
Ellipsoid. Es sind Ellipsen. Fiir die «>-Linien gilt #* = K. Dann folgt x3 = ¢ cos K, (x;/a)* + (x2/b)*
= sin? K. Die u*-Linien sind die Schnittkurven des Ellipsoides mit den zur x,, x,-Ebene parallelen
Ebenen x; = const. Daher sind die #2-Linien ebenfalls Ellipsen.

2

Bild L.4.1. Gerader Kreiskegel

10*
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b) Die u!-Linien (u?> = C) x; = u'cos C, x, = u'sin C, x3 = au' sind Geraden durch O.
Die u?-Linien (u* = K)x; = K cos u?, x, = Ksin u?, x3 = aK sind wegen x} + x3= K2, x3= ak
Kreise in Ebenen parallel zur x,, x,-Ebene, deren Mittelpunkte auf der x;-Achse liegen.

Jede u!-Linie schneidet alle u2-Linien, denn fiirr ' = K folgt x, = K cos C, x, = Ksin C,
x3 = aK und die Koordinaten dieser Punkte erfiillen die Gleichungen der u-Linie x} + x3 = K2,
x3 = aK. Daher ist die durch die Parameterdarstellung gegebene Fliche ein Rotationskegel mit
der Spitze in O und der x3-Achse als Kegelachse. Die u!-Linien sind die Mantellinien des Kegels,
und da —oo < u! < o0 gilt, ist der Kegel ein Doppelkegel. Die Ableitungsvektoren lauten

X, =cosu?i+sinu?j+ak, x,.2=—ulsinu?i+ ulcosu?j.
Hieraus folgt

gu=xXtX1=1+a go=x1'%2=0, g=x2"x2=@)"
Die Parameterdarstellung ist in den Punkten Q(u! =0, 0 = #?® = 2=, nicht zuléssig, da I in Q
den Rang 1 hat. Der Ursprung O ist ein singuldrer Punkt der Fliche (s. Aufg. 4.2).
4.2: Die Matrix I (vgl. 4.1.1.) hat fiir einen beliebigen Punkt X der Fliche die Gestalt

cos u? —u'sin u?
I(X)=|sinu® wulcosu®|= (xu1, X,2),
a 0

wobei x,1, X,2 als Spaltenvektoren zu schreiben sind. Fiir den Punkt O gilt u! = u§ = 0,0 < u?
= 2w. Wie bereits in der Losung zur Aufgabe 4.1.b) bemerkt wurde, hatI (O) den Rang 1, und O ist
singulir beziiglich der gewihlten Parameterdarstellung x(«*, #?). Um zu zeigen, daB O beziiglich
jeder zuldssigen Parameterdarstellung der Fliche singulér ist, fithren wir mit Hilfe einer zuldssigen
Koordinatentransformation u! = u! (@', #?), u* = u® (@', #*) neue Koordinaten @', 7> auf der
Fliche ein (vgl. 4.1.8.). Der Punkt O wird dann im #'@#2-Koordinatensystem durch ein Ko-
ordinatenpaar (i$, 43) reprisentiert, das die Bedingungen u' (4§, #3) = 0, 0 < u? (i@}, a3) < 2= er-
fuillt. Die Matrix I(X) lautet im neuen System

out ou? out ou?
I0X) = (xut (!, 4?) — + xu2 (!, 4?) ——, X0 (', 0?) — + x2 (', 0?) —-) .
o) (u( )+ e (0 02) S ) S+ e (1) S
i
Darin sind die GroBen u', %, i, k = 1, 2, Funktionen von &', #*. Wir erhalten aus I(X) wegen
I

ul = ub = u'(al, i) = 0 und x,2(0, u* (i, #3)) = o fiir den Punkt O die Matrix

1
10) = (xw ©, w2, 73) (%;—) et O, 12, ) (ai) )
.

oi?
5 (Ou! , [out
cos u? ('T) cos u? (—7)
o' Jo oi? fo
1 1
= | sinu? (al—ll) sin u? (Ol—zz)
it ) o ot )o

“ ou' “ ou'
it )o oi* )0

Sie besitzt zwei zueinander proportionale Spaltenvektoren und hat den Rang 1, unabhingig davon,
wie man das neue Koordinatensystem ', 7% wihlt. Daher ist der Punkt O beziiglich jeder zuldssigen
Parameterdarstellung der Fliche singulér, und O ist ein singuldrer Punkt der Fliche.

4.3: Die Ableitungsvektoren lauten X, =i + %(u' — 1)k, x,2 = %j. Daraus folgt gy, =1
+ W — 12 g,=0, g2, =1% Um eine Boschungslinie zu erhalten, setzt man zunichst
u'=u' (), u* = u*(t). Damit wird auf der Fliche eine beliebige Kurve definiert. Der Tangenten-
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vektor X einer solchen Kurve lautet x = xpvi” = X0t + x,2u2. Setzt man fiir x,v, 47 die ur-
spriinglichen Ausdriicke ein, so erhilt man % = a'i + }4?j + %' — 1) 4'k. Soll die Kurve eine
Boschungslinie beziiglich der x;, x,-Ebene sein, so mufl der Winkel zwischen x und der x3-Achse
konstant sein. Es gilt daher fiir alle ¢

12t
cos (x,k) = !x| |ll(([ = % 4 (u D = K.
[0+ 5 @ =12 @2 + @)
Nach kurzer Rechnung findet man die Differentialgleichungen
| A/—(u —1)?2(1 — K?) — K? — |i?| ‘Kl

bzw. mit geeignet gewihltem Vorzeichen des zweiten Summanden

it /%(ul—1)2(1—K2)—K2iu2£=o.

Fir die Losung #' macht man den Ansatz & (u' — 1)>(1 — K?) = K2 cosh? ¢ bzw. wegen
cosht = 0 fiir alle 7

=0

W= 3‘K| cosh t+1.
24/1—
Dann folgt fir ¢ = 0 wegen |smh t| = sinh ¢ nach Einsetzen in die Differentialgleichung
4
W =4 —a'- |Kl-[sinht] = + ——x smh2
K ‘ \/1
und nach Integration
o 3K . f
u? = 4 —————1(cosh¢-sinhz—1)+ A4
J1—K?

Es sei zundchst # = 0. Nimmt man an, da die durch «* und #? bestimmte Flichenkurve fiir ¢ = 7,
durch P(1,0,0) und fiir # =72 durch Q(2 — cos2, } sinh 2-cosh2 — 1, } (cosh2)? — %) geht,
so ergibt sich fiir P

xp=1+4ul(t)=1 = ul(t)=0;
=1u¥(t)) =0 = u(t)=0;
=3 ([W'(t))* — 2u' (1)) = 0
und fiir Q
x; =1+ ul(t;) = 2 — cosh2 => u'(t;) =1 — cosh 2;
Xy =} u?(t;) =% sinh2cosh2 — 1 = u*(t) = 2sinh 2 - cosh 2 — 4;

= 3 ([u*(12)]* — 2u’(t;)) = {sinh? 2.
Damit haben wir vier Gleichungen fiir die vier Unbekannten #,, 7,, K und 4
_ 3Kl }

cosht +1=0,
2Jiok® '
3|K
4+ ——— cosht 1=1—cosh2,
2\/1 z+
\/l (cosh tysinhty — 1)) — A=0,

(cosh tp sinh#, — #,) + A = 2sinh 2 cosh2 —'4.

In den ersten beiden Glexchungen muB das negative Vorzeichen gewéhlt werden, da sie sich wegen
cosh ¢ = 0 fiir alle ¢ sonst nicht erfiillen lassen. Die Vorzeichen der beiden letzten Gleichungen
stimmen {berein, sind aber noch beliebig. Das System wird durch Probieren gelést, wozu #; = 0
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angenommen wird. Dann folgt aus der ersten und dritten Gleichung

3K| 2
—————=—1 bzw. K=+—, A4=0,
24/1—K?2 jE\/13

und damit aus der zweiten Gleichung

—cosh#, = —cosh2 bzw. £, =2 (wegen #=>0 scheidet £, = —2 aus).

Die letzte Gleichung legt das Vorzeichen von K fest. Es ist [x|[k| > 0. Fir t =0 ist auch
x-k ~ (u* — 1) #' = (—cosh ) (—sinh ) = 0, womit K ebenfalls positiv gewédhlt werden muB,
also haben in diesem Falle die dritte und vierte Gleichung positives Vorzeichen. Man findet
schlieBlich

u' =1—cosht,

u? = 2(cosh ¢ sinh ¢ — 1).

Wenn ¢ < 0 ist, so ist auch K < 0, und in den letzten Gleichungen ist das negative Vorzeichen
zu wihlen. Das Ergebnis dndert sich dadurch nicht.

Die Kurve hat im Punkt P eine Spitze, deren Tangente parallel zur x;x;-Ebene ist. Die Kurve ist
keine geoditische Linie, weil die Flichennormale im allgemeinen in keinem Punkt der Kurve
in der Schmiegebene liegt. Daher verstreckt sich diese Boschungslinie bei Abwicklung der Zylinder-
fliche in eine Ebene nicht in eine Gerade, wie dies bei der gewdhnlichen Schraubenlinie der Fall ist.
Integration ergibt die Bogenlidnge des Kurvenstiicks von P bis Q:

s(P,Q) = ‘/A/ 1 + i ::osh2 ) sinh? ¢z - sinh* ¢ df = f—cosh tsinht dr = 2461—— sinh? 2.

4.4: P(u',0,f(u')) sei ein Punkt der gegebenen Kurve, der bei der Rotation dieser Kurve um die
x3-Achse einen Kreis mit dem Mittelpunkt M(0, 0, f(x')) und dem Radius ' beschreibt. X sei ein
Punkt dieses Kreises, der aus P durch Drehung um den Winkel u? = <{ PMX hervorgeht. Dann
gilt x; = u' cos u?, x, = u'sinu?, x5 = f(u'), wobei x,, x,, x3 die Koordinaten von X sind. Da
der Punkt P beliebig auf der gegebenen Kurve wihlbar ist, was in der Verdnderlichkeit von u' zum
Ausdruck kommt, und auBerdem auch der Winkel #? in den Grenzen 0 und 2 variiert werden kann,
ist X ein beliebiger Punkt der entstehenden Rotationsfliche. Die gefundenen Gleichungen sind daher
eine Parameterdarstellung dieser Rotationsfliche. Es gilt dabei im allgemeinen 0 < u' < o0,
0 < u? = 2r. Die u'-Linien (4?> = const) sind die Meridianlinien. Das sind die Schnittkurven der
durch die x3-Achse gehenden Ebenen mit der Fliche. Die Meridianlinien sind alle zur Kurve x3 = f(x;)
kongruent, weil sie durch Drehung aus ihr hervorgehen. Die #?-Linien (! = const) sind Kreise
mit dem Radius u!, deren Ebenen zur x, , x,-Ebene parallel sind und deren Mittelpunkte auf der x3-
Achse liegen. Die Ableitungsvektoren lauten: x,1 = cos #? i + sin #? j + f'(u') k, x,2 = —u' sin u? i
-+ u' cos u? j. Hieraus folgt g11 = 1 + (f'(u'))? g12 = 0, g2, = (u*)?. Da gy, = 0 ist, bilden die
u'- und u2-Linien ein orthogonales Netz.

4.5: Der Ursprung des orthogonalen x;, x,, x3-Koordinatensystems werde in den Mittelpunkt
der kugelférmigen Dachfliche gelegt. Dann gilt fiir die Dachfldche, da es sich um eine Halbkugel
handelt, die Parameterdarstellung x; = Rsin u? cosu!, x, = R sin u? sin u!, x3 = R cos u?
(B:0 = u? =m/2, 0= u' < 2r). Fir das zylindrische Rohr ergibt sich die folgende Gleichung
(x; — R/2)? + (x2)® = R?*/4 bzw. (x1)* + (x,)> — Rx; = 0. Setzt man die Parameterdarstellung
fiir die Halbkugel in die Gleichung fiir die Zylinderfliche ein, so erhilt man

R? sin u?(sin u? — cos u') = 0.

Hieraus folgt sin u? = cos u' bzw. u? = }r — u'. Es werde.ein Viertel der Halbkugelfliche nach
Abrechnung des von dem zylindrischen Rohr durchsetzten Teils mit Fy bezeichnet. Dann gilt mit
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a=b=c= R auf Grund von Aufgabe 4.1a), wenn man noch die Vertauschung von ' mit &>
beachtet,

&22=R%, g12=0, gy =R*sin>4*> und
Jz= R?[sinu?| = R*sinu? fir 0<u*=< %

Es ist
_ n2 w2
F, = f«/gdu‘ du? = R* [ f sin u? du? du'
B w=0 w=rn/2—u
nj2
=R? [ cos (72 — u') du' = R%.
0

Damit ergibt sich fir die insgesamt verbleibende Flache

F=aR?+ 2R?~ 5,14159R>.

4.6: Aus Aufgabe 4.1a) ergibt sich \/ g_' und fir den Flicheninhalt F der Oberfliche des Ellipsoids
findet man

2n kg
F= f f /a2b? cos? ul sin? ul + c2 sin* ul(a? sin2 u? + b2 cos? u?) du! du?.
w=0 w'=0
Mit
a?sin? u? 4 b% cos? u? = A%, cosul =z, —sinu'du! =dz
folgt

I=— [du? [ /a®h?z® 4 (1 — 2%) 4> dz,

wobei die Integration nach z unbestimmt ausgefiihrt wird. Es ist .
a?b% — 242 = a?b* — c%a® sin® u? — c?b? cos? u? = a?b? — c2a® sin? u? — c?a?cos® u?
= a?h? — a®c? = a®(b* — ¢?) > 0.

Daher kann man

a2b? — 242 s
242 S

setzen. Dann erhdlt man

I=—[di? [cA1+ K22 dz
=—cfA%du2(z\/l+k222+%ln(kz+\/1+k122)>.

Setzt man fiir A4, z die urspriinglichen Ausdriicke ein, so folgt

2
F=— -%f /a2 sin? u? + b2 cos? uz[cosuls/l + k2 cos? ut
)

+ % In [k cos u! + /1 + k2 cos? ut] ¢ du?.
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Nach Einsetzen der Grenzen und Zusammenfassen ergibt sich daraus
2
2l 2D 2 2 ,2) . . 2h2 __ 02 42
c/[_ZabJ_ c(a? sin? u? + b? cos? u?) ln(ab Jab CA)]duz.

F=—2< ,
2 ¢ Ja2b? — c2(a? sin? u? + b2 cos? u?) ab + Ja?b? — 242
0

Erweitert man den Ausdruck unter dem Logarithmus mit
ab — @ — 242
und kiirzt die Faktoren ¢ und 2, so erhilt man
F=2abw — cI,.
Dabei gilt fiir I;, wenn man statt von 0 bis 27 von 0 bis % integriert und dafiir den zusitzlichen
Faktor 4 vor das Integral schreibt

T

L=4

a? sin? u? 4 b* cos? u? [ab — Ja2b* — c2 (a? sin? u? + b cos? u?) au?
u?.
Ja2b? — c2(a?sin? u? + b2 cos? u?) ¢ </a? sin? u? + b2 cos? u?

Da dieses Integral nicht exakt auswertbar ist, soll es gendhert mit Hilfe der Keplerschen FaBregel
berechnet werden:

fb 1@ axm 222 (@ + a1 (25E) + 1w )

Man erhalt mit

a=0, b= %

= [ b (a —Jar = cl) 2(a® + b2
I~ — In

3 a? — 2 c [2a%b* — c*(a® + b2))'I*

- ( ab /2 — \/2a?0* — cX(a® + b?) ) + % (1;—\/1;2 - cz)]

c~Ja® + b2 Jb? — ¢ :
Danmit ergibt sich als Naherungsformel fiir den Inhalt F der Oberfliche eines dreiachsigen Ellipsoids
mit den Halbachsen a, b, ¢

c

—J? = —JpE — 2
b ]n(a Ja ¢ )+ a ln(b Jb c)
c b2 — ¢2 c
4@ + b?) m( aby/2 — /2a%6% — c*(a* + b?) )]
J4a2b? — 2c2(a + b?) ca® + b2 ’
Im Fall 5 = a kann man das Integral I; exakt auswerten, und man findet fur die Oberfliche F

F=2a?r — (2c*ma//a® — ¢2)In[(a — /a® — ¢?)c] .

Denselben Wert erhdlt man auch aus der Niaherungsformel fir das dreiachsige Ellipsoid, wenn
b = a gesetzt wird.

Fa Zabﬂ:—czl{
3 ? — ¢?

4.7: Die Wand des GefdBes ist ein gerader Kreiszylinder und daher durch die Parameterdar-
stellung x; = rcos ul, x, = rsinu!, x3 = hu?, 0 < u' < 27, 0 < u® < 1 gegeben. Darin bedeutet



Losungen der Aufgaben 141

r den Radius des Grundkreises des Zylinders. Die Lichtstrahlen mogen parallel zum Vektor I = icoso
— k sin « einfallen. Die Hohe /& des GefiBes und der Winkel « sollen so gewihlt werden, dafl der
grofte Teil des GefiaBbodens im Licht liegt. Das ist sicherlich dann der Fall, wenn 4 cot « & r ist.
X sei ein beliebiger Punkt der GefiBBwand, der von einem Lichtstrahl beleuchtet wird. Der im Punkt X'
reflektierte Lichtstrahl ergibt sich dann nach dem Reflexionsgesetz durch Spiegelung des in X ein-
fallenden Lichtstrahls an der Flichennormale f in der von dieser und dem einfallenden Strahl be-
stimmten Ebene. Man findet mit g = r2h?

i i k
fzx"—lex"—z=% —rsinu!  rcosu! 0 |=cos uli+ sinulj.
G 0 0 h
ichnet man den Einheitsvektor des reflektierten Lichtstrahls mit 1¥, so folgt I¥ =1 — 2(f - ) f.

Setzt man in diese Formel die Ausdriicke fiir 1 und f ein, so erhilt man
I* = cos (1 — 2 cos? u') i — 2 cos & cos u! sin u'j — sin ok

= —cos & cos 2u'i — cos o sin 2u'j — sin ok.

Die reflektierten Lichtstrahlen der #?-Linie ' = const liegen in der Ebene mit der Gleichung
ay(y; — rcosut) + ay(y, — rsinu') =0,

wobei y;,y, die laufenden Koordinaten eines beliebigen Punktes dieser Ebene bedeuten. Da alle
Lichtstrahlen, die die GefiBwand in den Punkten einer u-Linie treffen, zueinander parallel sind
und dies auch fiir die Flichennormalenvektoren dieser Punkte zutrifft, sind auch die zugehdrigen
reflektierten Lichtstrahlen zueinander parallel. Daher liegen diese reflektierten Lichtstrahlen alle
in einer Ebene, die die #?-Linie enthilt und daher zur x,, x,-Ebene senkrecht steht. Die Gleichung
dieser Ebene hat daher die angegebene Form. Um die noch unbekannten GroBen a; und a, zu be-
stimmen, setzt man die Koordinaten eines beliebigen Punktes eines reflektierten Lichtstrahls far
»1,¥2 ein. Die vektorielle Parameterdarstellung eines solchen reflektierten Lichtstrahls lautet
y = x(u', u?) 4 ¢ I*. Damit ergibt sich

y1 = rcos ul 4 t(—cos & cos 2u'),
¥z = rsinu! + #(—cos o sin 2u'),
y3 = hu? + t(—sin ).
Dies eingesetzt in die obige Ebenengleichung fithrt zu a; (—7 cos & cos 2u') + a,(—¢ cos o sin 2u') =0.

Nach Division durch —7 cos « folgt daraus a;/a, = — sin 2u'/cos 2u*. Die Gleichung der Ebene
der reflektierten Lichtstrahlen aller Punkte einer #2-Linie lautet demnach

¥y sin 2u' — y, cos 2u' = r(sin 2u* cos u' — cos 2u* sin u') = rsin u'.

Die Gleichung der Schnittgeraden dieser Ebene mit der x;, x,-Ebene lautet ebenso. Die Hiillkurve
dieser Geradenschar erhilt man durch Differentiation nach dem Parameter #!. Da jeder Punkt
dieser Kurve von einem Lichtstrahl direkt und auBerdem noch von zwei infinitesimal benachbarten
reflektierten Lichtstrahlen beleuchtet wird, erscheint diese Kurve als eine hell beleuchtete Linie auf
dem GefdBboden. Durch Differentiation erhdlt man mit der urspriinglichen Gleichung das Glei-
chungssystem:

1 sin 2ut — y, cos 2u! = rsin u?,

2y, cos 2ut + 2y, sin 2u = rcos u'.
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Die Losung des Systems ergibt
Y= %(2 sin 2u! sin u! 4 cos 2u! cos ut),
Y2 = % (—2 cos 2u' sin u' + sin 2u' cos ut).
Eine kleine Umformung ergibt

Y1 = —;—(2 sin? u' + 1) cos u?,
Y, = % (2 sin® ut) = r(sin® ut).

Dies ist eine Parameterdarstellung der gesuchten Hiillkurve. Mit sin #' = (y,/r)!/3 und durch Ein-
setzen in die Gleichung von y, erhilt man 4y} = r2(1 -+ 3(»,/r)*/* — 4(y,/r)?) und schlieBlich
@3 +y3)—r?)? — 27r%(y;)* = 0. Bezeichnet man den auf der linken Seite der Gleichung
stehenden Ausdruck mit F, so findet man

Fy, =2440% + ) — )y,

Fy, =24(40% + y3) — r?)* y, — 54rty,,

Fyy, = 384(400% + »3) — r®) (00)* + 24403 + ¥3%) — )%,

Fypy, = 38440 + ¥3) — 1) y132,

Fypy, = 3840407 + 73 — 1) 027 + 246407 + y3) — 1) — 54r*.
Der Punkt X, mit den Koordinaten y; = r/2, y, = 0 ist ein singuldrer Punkt, denn es ist

F(J2,00=F°=0, F$ =0, F9,=0, F§, =0, F3, =0,

F;?z,,2 = —54r%, A°= (F§’l,,2)2 - F,?l,,‘ F§2y2 =0.
In X, hat die Kurve eine Spitze. X, hat den Parameterwert u' = 0, fiir den y;(4*!) ein Minimum
hat. In der Umgebung von X, hat die Kurve keine Punkte mit kleinerer Abszisse als X,. Daher
hat sie in X, eine Spitze. AuBerdem beriihrt die Kurve den Kreis x} + x3 = r? in den Punkten
X;(0, r) und X,(0, —r). Die Kurve ist symmetrisch zur x;-Achse, wobei die y;-Achse mit der

x;-Achse und die y,~Achse mit der x,-Achse zu identifizieren ist. Die Kurve heiBt auch spharische
Katakaustik.

%|*2

Y1

Bild L.4.7. Sphirische Katakaustik
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4.8: Nach dem Satz von Meusnier und dem in (4.84) erhaltenen Ergebnis folgt aus Bild L.4.8
g=rsine, g,=rtane=rc>0.

Aus y = a cosh % -+ b findet man nach (3.26) g(x) = a cosh? <%) . 0 (x) ist der mit Vor-

zeichen behaftete Kriimmungsradius der in die x, y-Ebene abgewickelten Umformlinie. Es ist

0(0) =a < 0und g (0) = —g,.

Im Punkt 4 (x = 0) ergibt sich gop = —a und damit @ = —re. Fiir x = 0 ist y = h. Demnach wird

b=h—a=h+rc und y) =rc (1 — cosh (%) ) + h. Die Parameterdarstellung lautet nun

x1@) =rcosg, xo(g) =rsing,  x;(p) =rc (1 - cosh (i’;—)) e

Der Hauptnormalenvektor n der Umformlinie hat die Gestalt

1
n=—"""__"— (—ccostp cosh%+ sin @ sinh% 5 —csinlpccsh%— cosquinh%, ——1).

cosh§\/1+c’

Der Normalenvektor f der Tangentialebene des Zylinders ergibt sich zu f = (—cos @, —sin @),
Hieraus folgt fiir jeden Wert von ¢ wie behauptet
c

sine = n-f=T/—1——+—cT, tane = c.

Bild L.4.8
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