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Vorwort zur 4. Auflage

Diese_ Auflage des Lehrbuches wurde erneut — wie schon die 2. — zu einer gründ-
lichen Überarbeitung genutzt, wobei die nunmehr reichlich vorliegenden Erfahrungen
bei seinem Einsatz in der Ausbildung von Direkt- und Fernstudenten für Veranda-
rungen, Ergänzungen und Streichungen maßgeblich waren. Im Vordergrund der
Überarbeitung stand deshalb auch die weitere Verbesserung der methodischen
Gesichtspunkte bei geringer Lockerung von abstrakten Betrachtungsweisen.

Der Inhalt richtet sich — wie in allen weiteren Bänden dieses Lehrwerkes — vorwie-
gend an Hochschulstudenten der Natur—, Ingenieur-‚ Wirtschafts- und Landwirt-
schaftswissenschaften. Dabei stellt der vorliegende Band die mathematischen Grund-
lagengebiete bereit, die für die nachfolgenden Bände erforderlich sind. Entsprechend
ist die stoffliche Auswahl getroffen, wobei auch manche neue Wege beschritten
wurden.

Das Lehrbuch ist so angelegt, daß es sowohl Direkt- als auch Fernstudenten zur

Unterstützung des Selbststudiums dienen kann. Natürlich bestimmen Kursvorlesun-
gen oder Studienanleitungen Umfang und Auswahl für das mathematische Studium
der einzelnen Fachrichtungen.

Weiterhin eignet sich dieser Band sicher auch zum Nachlesen für alle diejeniger
Interessenten, die während ihrer Ausbildung die behandelten Gebiete nicht oder nur
wenig kennengelernt haben. Wegen seines spezifischen Inhaltes eignet sich auf diese
Weise das Lehrbuch auch zum Nachschlagen.

Die Autoren waren sich beim Schreiben dieses Bandes auch der Probleme bewußt,
die seine Gestaltung bei teilweise unterschiedlichen Zielstellungen mit sich brachte.
Sie möchten sich deshalb sehr herzlich für die vielen konstruktiven Hinweise — ins-
besondere zu methodischen Fragen — bedanken, die weitgehend berücksichtigt
werden konnten. Wir bedanken uns bei Herrn Professor Erfurth, Merseburg, sowie
bei Herrn Dipl.—Math. H. Ebmeyer, Dresden, für ihre kritischen Anregungen und
konkreten Abänderungsvorschläge, die uns sehr geholfen haben. Weiterhin danken
wir Herrn Professor Wußing‚ Leipzig, für seine wertvollen Bemerkungen zum ge-
schichtlichen Überblick. Besonderer Dank gilt Frau Ziegler vom Teubner-Verlag
Leipzig; sie war uns in der Zusammenarbeit wiederum eine verständnisvolle und
sachkundige Beraterin.

Die Autoren

Leipzig, Juli 1979
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1. Zum Anliegen des Bandes

Der vorliegende Band 1 des Lehrwerkes behandelt einige allgemeine Grundlagen,
die für den Aufbau und das Verständnis weiterer mathematischer Gebiete und somit
fürdie Inhalte der folgenden Bände notwendig sind. Auswahl und Umfang dieser
Grundlagen leiten sich in erster Linie aus den Erfordernissen ab, wichtige Begriffe,
Methoden und Ergebnisse zur fundierten Darstellung mathematischer Disziplinen
bereitzustellen.

Dabei ist berücksichtigt, daß nach der Neugestaltung des Mathematikunterrichtes
in den allgemeinbildenden Schulen für moderne Auffassungen in der mathematischen
Ausbildung günstige Vorbedingungen geschaffen sind. Ausreichende Kenntnisse
und Fertigkeiten in der Bruch-, Potenz-, Wurzel- und Logarithmenrechnung sowie
in der elementaren Geometrie und der Trigonometrie werden zudem vorausgesetzt.
Selbstverständlich ist bei der Darlegung der Grundlagengebiete für Inhalt und Form
die Zielstellung des Gesamtlehrwerkes maßgebend, der mathematischen Unterrich-
tung \on Ingenieuren, Naturwissenschaftlern, Ökonomen und Landwirten an Hoch-
schulen zu entsprechen. Deshalb wird für die naturgemäßiin den Grundlagengebieten
besonders zahlreich auftretenden abstrakten Begriffe der Erkenntnisprozeß durch
anschauliche Entwicklung unterstützt, ohne die erforderliche Strenge und Exaktheit
zu verletzen. Auch sind zahlreiche anwendungsbezogene Beispiele im Text und bei
den Übungsaufgaben enthalten.

Der Sinn mathematischer Betrachtungen besteht allerdings nicht allein im Bereit-
stellen \on Ergebnissen und Sätzen. Er liegt gleichermaßen in den besonderen For—

men des Denkens und Schließens zur strengen Herleitung allgemeingültiger Resultate
aus exakt formulierten Voraussetzungen. Es ist ein weiteres Anliegen dieses Lehr-
abschnittes, den Lernenden besonders an exaktes und logisches Denken zu gewöhnen.

In den Abschnitten 3. und 4. beschäftigen wir uns deshalb mit Begriffen der Logik
und den aus ihnen abgleiteten Beweisprinzipien. Für die Gewinnung mathematischer
Ergebnisse und Tatsachen ist es charakteristisch, daß sie logisch einwandfrei aus
Voraussetzungen abzuleiten sind. Deshalb ist die Kenntnis strenger Beweisführung
notwendig und das sorgfältige Studium dieser Abschnitte dringend anzuraten.

Im Abschnitt über die Zahlenbereiche wird bei der Darstellung der reellen Zahlen
und der Rechengesetze, denen sie genügen, ein axiomatisches Vorgehen erläutert.
Die komplexen Zahlen dagegen werden anschaulich eingeführt und auf Grund ihrer
Bedeutung in physikalischen und technischen Anwendungen ausführlich behandelt.
Bei vielen mathematischen Untersuchungen treten Fragen der Auswahl, der Anord-
nung oder der Zusammenstellung verschiedenartiger Elemente auf. Sie werden im
Kapitel über Kombinatorik näher untersucht. -

Eine zentrale Stellung innerhalb der Mathematik nimmt die Mengenlehre ein.
Mit ihren Begriffen lassen sich die mathematischen Disziplinen begründen und die
objektiv gegebenen Sachverhalte verschiedener Wissensgebiete erfassen.

Zwei weitere Abschnitte befassen sich mit den in fast allen Anwendungsgebieten
bedeutsamen Begriffen der Abbildung bzw. der Funktion, die mengentheoretisch
definiert werden, Der letzte Abschnitt schließlich ist den Zahlenfolgen gewidmet
und stellt den wichtigen Grenzwertbegriff bereit.



2. Die Entwicklung der Mathematik und ihre Beziehung
zur Praxis

2.1. Aus der Entwicklungsgeschichte der Mathematik

Die Geschichte der Mathematik ist eng mit der der menschlichen Gesellschaft
verknüpft. Ferner bestimmen einige bedeutende Mathematiker durch ihre richtung-
weisenden Ideen und Entdeckungen die Entwicklung der Mathematik entscheidend.
Die Mathematik gehört - neben Philosophie, Medizin und Astronomie —__zu den
ältesten Wissenschaften. Sie erreichte schon im 2. Jahrtausend v. u. Z. in Agypten
und Mesopotamian, aber auch im alten China und Indien einen beachtlichen Reife-
grad. Die verwendeten Zahlensysteme standen im engen Zusammenhang mit kom-
merziellen und militärischen Interessen sowie mit Verwaltungsproblemen. Man
kannte Verfahren zur Lösung von Gleichungen, sogar höheren Grades. Die Geometrie
diente dem Errichten von Bauwerken, der Feldvermessung und der Orientierung am
Himmel. Doch handelte es sich um eine rezeptartige, noch nicht auf Beweisen von
explizit angeführten Sätzen aufbauende Mathematik.

Erst mit der Herausbildung der antiken Sklavenhaltergesellschaft im alten Griechen-
land wurde die Mathematik im 6.-5. Jh. v. u. Z. zu einer selbständigen Wissenschaft
mit eigenen Methoden und Beweisverfahren; auf dieser Grundlage schuf Euklid
(3657-300? v. u. Z.) mit seinen „Elementen“ (um 325 v. u. Z.) eine bewunderungs—
würdige Darstellung des damaligen mathematischen Kenntnisstandes. Mit Archi-
medes (287?—2l2 vsu. Z.)‚ dem in Geometrie und Mechanik große Entdeckungen
gelangen, erreichte die Mathematik der Antike während der hellenistischen Periode
ihren Höhepunkt.

Zur Zeit der Herrschaft der Römer und in der feudalistischen Gesellschaft gab es in
Europa keine nennenswerten mathematischen Entwicklungen, während die Mathe-
matik vor allem in Indien und in den Ländern des Islam zu einer hohen Blüte gelangte;
viele Teilergebnisse - darunter die indisch-arabischen Zifiern - gelangten seit dem
12./13. Jh. in die Länder des europäischen Feudalismus, in denen bis dahin nur ein
sehtbescheidenes wissenschaftliches, darunter auch mathematisches Niveau geherrscht
hatte.

Erst mit der Entwicklung von Elementen des Frühkapitalismus in Europa bildeten
sich, insbesondere seit dem 16. Jh., günstige Bedingungen für die Übernahme des
antiken mathematischen Erbes und für dessen selbständige Weiterentwicklung durch
die Europäer heraus. Die Trigonometrie entwickelte sich zu einer selbständigen mathe-
matischen Disziplin. Die Durchbildung der Rechenmethoden machte große Fort-
schritte; von den sog. Rechenmeistern wurde in Deutschland A. Ries (1492-1559)
am bekanntesten, der im Erzgebirge wirkte. Reichlich ein Jahrhundert später wurden
die ersten Maschinen für die Grundrechenarten entwickelt (Schickard (1592-1635).
Pascal (1623-1662), Leibniz (1646-1716)).

Das Gedankengut der rationalistischen philosophischen Systeme und der Auf-
klärung sowie die bürgerliche Revolution brachten im 16. und 17. Jahrhundert mit
der Überwindung der feudalistischen Gesellschaftsordnung und der diese Ordnung
rechtfertigenden Ideologien auch den Naturwissenschaften und der Mathematik
wieder Geltung und Bedeutung. Descartes (1596-1650) begründete den modernen
Rationalismus auf der mathematischen Grundlage der von Galilei (1564-1642) ge-
formten Naturwissenschaften. Er gilt auch als Begründer der analytischen Geometrie.

Die Herausbildung der infinitesimalen Methoden erfolgte in engem Zusammenhang
mit der geistigen Bewältigung des Bewegungsproblems in Physik (G. Galilei) und
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Himmelsmechanik (J. Kepler). Im Anschluß an die Ergebnisse von Archimedes und
durch sehr mühsame Gedankenarbeit im 16. und zu Anfang des 17. Jahrhunderts
vermochten es I. Newton (1643-1727) und G. W. Leibniz im letzten Drittel des
17. Jahrhunderts, unabhängig voneinander die Methoden der Dilferentlal- und Inte-
gralrechnung durchzubilden. Während Newton, der als einer der bedeutendsten For-
scher auf den Gebieten der Mathematik, Mechanik und Astronomie gilt, mit Hilfe
dieses neu entwickelten mathematischen Werkzeuges den Aufbau der klassischen
Mechanik und seine „Mathematischen Prinzipien der Naturwissenschaften“ (1687)
vollenden konnte, setzten sich die geschickteren Bezeichnungen von Leibniz rasch
durch. Die ,,Infinitesima1mathematik“ wurde im 18. Jh. in den Händen der Gebrüder
Johann (1667-1748) und Jakob Bernoulli (1645-1705) und L. Eulers (1707-1783),
der in Berlin und Petersburg wirkte, zu einem weitreichenden Mittel zur Bewältigung
schwieriger Probleme der Mechanik, der Himmelsmechanik, der Optik, des Artillerie-
Wesens, der Seeschiffahrt und vieler anderer praktischer Anwendungen.

Die neue Geltung und Anerkennung der Mathematik und der Naturwissenschaften
kam u. a. auch bei J. L. d’Alembert (1717-1783) und in der großen französischen
Encyclopedie zum Ausdruck.

Nach der französischen bürgerlichen Revolution (1789) setzte insbesondere in den
von der industriellen Revolution erfaßten Ländern Europas ein bedeutender Auf-
schwung in der Mathematik ein. Bei der Grundlegung der Analysis, in Algebra, in
darstellender, analytischer und projektiver Geometrie sowie bei der Nutzbarmachung
der Mathematik für Anwendungen in Technik und Naturwissenschaften wurden be-
deutende Fortschritte erzielt. J. Lagrange (1736-1813), P. S. Laplace (1749-1827),
A. Legendre (1752-1833), G. Monge (1746-1818), J. Fourier (1768-1830), A. Cauchy
(1789-1857), J. V. Poncelet (1788-1867) u. a. leisteten hier und auf anderen mathe-
matischen Gebieten Hervorragendes; viele Mathematiker nahmen aktiv am gesell-
schaftlichen Leben ihrer bewegten Zeit teil. Sie haben zudem große Verdienste bei
der Neugestaltung der mathematischen Ausbildung.

Der deutsche Mathematiker C. F. Gauß (1777-1855) lieferte am Ende des 18. und
zu Beginn des 19. Jahrhunderts hervorragende Beiträge zur Entwicklung der Mathe-
matik. Er bereicherte sie um zahlreiche neue Verfahren und Theorien und überwand
viele ungelöste Probleme. Seine Forschungen waren dabei an Anwendungen in der
Geodäsie, der Astronomie und der mathematischen Physik orientiert.

Von der zweiten Hälfte des 19. Jahrhunderts bis zum Ausbruch des ersten Welt-
krieges traten insbesondere die Mathematiker aus den Ländern hervor, in denen sich
Kapitalismus und Industrialisierung am weitesten entwickelt hatten. Genannt seien:
G. Boole (1815-1869), A. Cayley (1821-1895) und R. Hamilton (1805-1865) in
Großbritannien, C. Jordan (1838-1922) und H. Poincare’ (1854-1912) aus Frank-
reich, K. Weierstraß (1815-1897), B. Riemann (1826-1866), R. Dedekind (1831
bis 1916) und F. Klein (1849-1925) aus Deutschland, S. Lie (1842-1899) aus Nor-
wegen, E. Beltrami (1835-1900) und G. Peano (1858-1932) aus ltalien, Ch. S.

Peirce (1839-1914) aus den USA sowie N. I. Lobatschewski (1792-1856) und
P. L. Tschebyschefl" (1821-1894) aus Rußland. Für die Begründung wichtiger Ge-
biete und Auffassungen in der modernen Mathematik sind die grundlegenden Ideen
von G, Cantor (1845-1918) und D. Hilbert (1862-1943) aus Deutschland sowie die
des polnischen Mathematikers St. Banach (1892-1945) zu großer Bedeutung gelangt.

Nach der Großen Sozialistischen Oktoberrevolution (1917) nahmen die mathe-
matischen Forschungen in der Sowjetunion einen ungeheuren Aufschwung. Die
gesellschaftliche und wirtschaftliche Entwicklung in diesem Lande ermöglichte es,

dal3 heute die sowjetischen Mathematiker zu den führenden in der ganzen Welt
zählen und ihre Ergebnisse und Leistungen Entwicklungsrichtungen der modernen
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Mathematik bestimmen. Auch in der DDR wurde die Bedeutung der Mathematik
durch die Partei- und Staatsführung erkannt. uns sich in einer großzügigen För-
derung der mathematischen Forschung und Ausbildung äußert.

Dieser kurze Abriß zeigt, daß vorwiegend in den fortschrittlichen Gesellschafts-
Ordnungen einer Epoche die Mathematik durch bedeutende Entdeckungen erweitert
und bereichert wird.

2.2. Zu den Anwendungen der Mathematik

Die klassische Mathematik fand ihre Anwendung vorwiegend in Physik, Mecha-
nik, Astronomie und Geodäsie. Die mathematische Durchdringung dieser Wissen-
schaften wirkte sich andererseits befruchtend auf die Entwicklung der Mathematik
und ihrer Methoden aus. Auch die technischen Wissenschaften bedienen sich seit
ihrer Entstehung in starkem Maße des mathematischen Instrumentariums.

Die Begriffe der Mathematik sind Abbild von für den Gegenstand mathematischer
Betrachtungen wesentlichen Eigenschaften der Realität in unserem Bewußtsein. Von
realen Erscheinungen läßt sich ein abstraktes mathematisches Modell aufbauen,
das ihre Haupteigenschaften widerspiegelt und einfacher ist. Dieses Modell kann mit
mathematischen Methoden untersucht werden, und es können dabei neue Eigen-
schaften und Gesetzmäßigkeiten der realen Erscheinungen entdeckt werden.

Aber auch umgekehrt lassen sich zu mathematischen Strukturen Realisierungen
finden, deren Anwendungen von großem Nutzen für den wissenschaftlichen Fort-
schritt sind, Dieses Vorgehen WlfLl in der Astronomie, der modernen Physik oder
bei der Entwicklung von Computern erfolgreich praktiziert.

Auf dieser Grundlage erklären sich die engen Wechselbeziehungen zwischen der
gesellschaftlichen Praxis und der Mathematik. Heutzutage werden mathematische
Methoden besonders in der Wirtschaft, der Chemie, der Geologie, der Biologie, der
Medizin und der Landwirtschaft, in der Pädagogik und in den Sprachwissenschaften
angewendet. Diese Mathematisierung der Wissenschaften ist eine der bedeutendsten
Erscheinungsformen der wissenschaftlich-technisehen Revolution. Die Mathematik
entwickelt sich somit zum Bindeglied verschiedener Disziplinen und beeinflußt aktiv
die Entwicklung der Wissenschaften und der Praxis.

Besondere Bedeutung besitzen algorithmische Darstellungen und numerische Me-
thoden im Hinblick auf die Nutzung der Computer zur Beschreibung und Lösung
der Modelle. Da vielen Vorgängen Zufallserscheinungen innewohnen, ergibt sich
eine starke Beachtung der stochastischen Betrachtungsweise. Sehr intensiv sind
mathematische Probleme der Planung und Leitung. der Prozeßsteuerung, der
Produktionskontrolle, der Versuchsplanung und der Zuverlässigkeit von Systemen
zu betrachten. Häufig sind diese Fragen im Zusammenhang mit Optimierungen zu
sehen. Aus der gewachsenen Leistungsfähigkeit der Computer ergeben sich zudem
neue Gesichtspunkte für die Anwendung mathematischer Methoden in den An-
passungs- und Lernprozessen oder den Problemen der nichtnumerischen Informa-
tionsverarbeitung.

Die Mathematik trägt auch dadurch in hervorragendem Maße zum gesellschaft-
lichen Fortschritt bei, indem sie das Formalisieren und Quantifiüeren, die strenge
Begriffsbildung, die Entwicklung von Ordnungsprinzipien und das logische Denken
in hohem Maße fördert.



3. Logik

Die nachfolgenden ausgewählten Bemerkungen zur Logik dienen in erster Linie
dazu, den Leser zu befähigen, vorgelegte Sätze in besonderer Weise mit dem Ziel einer
Formalisierung zu analysieren.

Wir stellen zunächst mit den sogenannten Wahrheitstabellen ein einfaches Instru-
mentarium bereit, um festzustellen, ob der vorgelegte Sachverhalt eine wahre oder
falsche Aussage darstellt. Dies sind die notwendigen Grundlagen zum Verständnis
der logischen Schlüsse, die in der Mathematik, aber auch in anderen Wissenschaften,
immer wieder benötigt werden.

Darüber hinaus findet die Logik in neuerer Zeit immer mehr auch Anwendungen
in Naturwissenschaften und Technik (digitale Rechentechnik, Neuronennetze, Tech-
nologie, Netzplantechnik, Steuerungsproblemey

3.1. Aussagen

Gegenstand der Logik sind Aussagen. Diese werden im sprachlichen Umgang in
Aussagesätzen formuliert. Eine Aussage drückt einen Tatbestand aus. Demzufolge
sind alle aus der Umgangssprache bekannten Fragesätze, Aufforderungssätze,
Befehlssälzc, Wunschsätze, Zweifelssätze usw. keine Aussagesätze. Speziell sind

— lst l0“) + l eine Primzahl?

— Löse die Gleichung x2 + 4x + l0 : 0!

— Rechts abbiegen!

— Hoffentlich scheint morgen die Sonne.

~ Ich glaube nicht, daß morgen die Sonne scheint.

keine Aussagesätze.
Betrachten wir zunächst als Beispiel die Aussage „2-2 = 4“. Diese Aussage

kürzen wir mit p ab und schreiben:

p:.,2‘2:4"
Ebenso wird in den folgenden Beispielen verfahren.

Beispiel 3. I :

q = ..l0 ist eine Primzahl"
r -—- „Die Sonne scheint“

5 H „Am l0. l0. 1995 wird in Leipzig die Sonne scheinen“

r : „Kolumbus hat l492 Amerika entdeckt“

Diese {äeispiele zeigen, daß es sinnvoll ist, nach dem Walzrheitsge/zal! der entspre-
chenden Aussagen zu fragen.

Die mit /2 und I abgekiirztett Sätze stellen offenbar wahre Aussagen dar, dagegen
ist q falsch, Die Frage nach dem Wahrheitsgehalt der durch r beschriebenen Aussage
ist erst nach Kenntnis von Ort und Zeit mit „wahr“ bzw. „falsch“ entscheidbar.
Fiir die durch s beschriebene Aussage ist es sinnvoll, den Wahrheitsgehalt zu dem
Ycitpunkt, an dem sie gemacht wird, durch eine Wahrscheinlichkeit zu präzisieren.
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Diese Überlegungen veranlassen uns zunächst zur folgenden Erklärung:

p heißt eine Aussage, wenn p einen Tatbestand ausdrückt.

Die Gesamtheit aller so definierten Aussagen p fassen wir zu einer Menge A ,

zusammen: A, = {p | p ist eine Aussage}.
Wir benutzen bereits hier den Begriff der Menge, weicher in Abschnitt 7. ausführ-

licher behandelt wird.
Unter einer Menge verstehen wir nach Cantor eine Gesamtheit (Zusammenfassung)

bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens,
wobei von einem Objekt eindeutig feststeht, ob es zur Menge gehört oder nicht.

Können wir die Objekte, die zur Menge gehören und Elemente der Menge heißen,
aufschreiben, so führen wir sie in geschweiften Klammern auf. So wird die Menge M,
der natürlichen Zahlen, die größer als 2 und kleiner als l0 sind, wie folgt geschrieben:
M, = [3, 4, 5, 6, 7, 8, 9}. Die Tatsache, daß z. B. 5 Element der Menge M, ist, be-
schreiben wir mit der Symbolik 5 e M„ während l ¢ M, bedeutet, daß 1 kein Ele-
ment von M, ist. Wir werden auch generell für Mengen große lateinische Buch-
staben zur Bezeichnung benutzen. Eine andere Schreibweise für eine Menge M ist

M={x|E}.
Wir lesen dieses Symbol folgendermaßen: „M ist die Menge aller Elemente x, die die
Eigenschaft E besitzen“. Die oben erklärte Menge A, ist in dieser Schreibweise for—

muliert A, = {p |p ist eine Aussage}. Die Menge M, kann mit Hilfe dieser Symbolik
als

M, : {x I x ‚natürliche Zahl und 2 < x < l0]

geschrieben werden.
Schließlich sei bereits an dieser Stelle der Begriff der Teilmenge erklärt.
Die Menge A heißt Teilmenge der Menge B, wenn jedes Element der Menge A

auch Element der Menge B ist. Wir schreiben in diesem Fall: A g B.
Zum Beispiel

f3, 4, 5} g M, = {3‚ 4, ...‚ 9},
aber

{2, 9} ist keine Teilmenge von M, .

Dieser Vorgriff auf Grundbegriffe der Mengenlehre gestattet es uns, nachfolgend
gewisse Sachverhalte besser zu formulieren.

Bei unseren weiteren Betrachtungen wollen wir uns auf eine wichtige Teilmenge
xon A, beschränken.

D.3.l Definition 3.1: Die Aussage p heißt zweiwertige Aussage, wenn p entweder wahr oder
fa/xv/1 ist.

Entsprechend A, bilden wir die Menge der zweiwcrtigen Aussagen A2:
A, z {p [ p ist eine zweiwertige Aussage}

Durch diese Definition scheiden wir Aussagen wie 3 ausdcn weiteren Betrachtungen
aus. Auch Aussagen über die Bewertungen einer Klausur, die man ja üblicherweise
mit den Zensuren (Wahrheitswerten) I bis 5 vornimmt, sind in A3 nicht enthalten.

lm Zusammenhang mit A_‚ führen wir die Walzrheitswerte

„wahr“, bezeichnet durch W, und

.,fal.rc/1“, bezeichnet durch F,
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ein. Der Aussage p, peA2, ist gemäß Definition 3.1 eindeutig ein Wahrheitswert
aus {W, F} zugeordnet. Wir bezeichnen diese eindeutige Zuordnung mit w(p),
w(p) E { W, F}; w(p) — Wahrheitswert der Aussage p.

Wir wollen noch auf einen wichtigen Tatbestand aufmerksam machen. Das Wissen,
daß p e A2 gilt, heißt noch nicht, daß man auch w(p) kennt. Dazu zwei Beispiele:

Beispiele 3.2:

p = ,,10‘° + l ist eine Primzahl“;

q = „Ist n eine natürliche Zahl, die größer oder gleich drei ist, so gibt es

keine ganzen, positiven Zahlen x, y, z so, daß x" + y" = z" gilt“.

Es ist sofort klar, daß p e A2 und q e A2 ist, w(p) ist nicht ohne weiteres angebbar.
Es gibt aber einen Algorithmus zur Ermittlung dieses Wahrheitswertes. Dagegen
ist der Wahrheitswert von q (großer Fermatscher Satz) bis heute unbekannt.

Die Ermittlung von Wahrheitswerten mathematischer Aussagen ist eine Aufgabe
der Mathematik und keine spezielle Aufgabe der Logik.

3.2. Variable und Aussageformen

Wir betrachten eine Menge X von beliebigen Elementen. Wir wollen x eine Variable
nennen, wenn x die Elemente von X durchläuft. X heißt dann Bereich der Variablen x.

Die Sätze

„x ist eine Primzahl“, „y ist eine Großstadt“,

die wir mit p(x) bzw. q(y) abkürzen wollen, stellen zunächst keine Aussagen dar.
Für jedes konkrete x = x1 e X und y = y, e Y gehen p(x) und q(y) jedoch in Aus—

sagen aus A2 über.

Beispiel 3.3: X = {l, 2, ..., l0}, Y = _{Moskau‚ Leipzig, Weimar}. Die Aussagen
p(2), p(3), p(5), p(7) sind wahre Aussagen, dagegen sind p(1), p(4)‚ p(6), p(8)‚ p(9) und
p(l0) falsche Aussagen. Setzen wir im Satz q(y) für die Variable y die Elemente ihres
Bereiches ein, so entstehen die wahren Aussagen „Moskau ist eine Großstadt“.
„Leipzig ist eine Großstadt“ und die falsche Aussage „Weimar ist eine Großstadt".

Für solche Sätze, die eine Variable enthalten, wollen wir einen Namen einführen.
Wir definieren:

Definition 3.2: Eine Formulierung p(x) mit der Variablen x e X heißt eine Aussageform,
wenn p(x) bei Einsetzen jedes konkreten Wertes x = x, e X in eine zweiwertige Aus-
sage überge/it. Die Menge der so entstehenden Aussagen hewt Bereich der Aussageform.

Eine Aussageform ist weder wahr noch falsch. Sie ist selbst keine Aussage, sondern
stellt eine Vorschrift zur Gewinnung von Aussagen dar.

Die Sätze der Mathematik und anderer Wissenschaften sind Aussagen bzw. Aus-
sageformen, die eventuell auch von mehr als einer Variablen abhängen. Diese Aus-
sagen bzw. Aussageformen treten nun aber häufig verknüpft durch Bindewörter,
verneint oder auf andere Weise modifiziert auf. Mit solchen Aussagenverbindungen
wollen wir uns im nächsten Abschnitt beschäftigen.

D.3.2
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3.3. Aussagenverbindungen

3.3.1. Elementare A " ’ E n-stellige A " ‘

Aus der Umgangssprache sind uns eine Reihe von Bindewörtern bekannt, mit deren
Hilfe man mehreren Aussagen eine neue zwciwertige Aussage zuordnen kann.

Beispiel 3.4: Betrachten wir als Beispiele die beiden Aussagen

p = „3 ist eine Primzahl“

q = „l0 ist durch 3 teilbar“

Dann können wir die folgenden neuen Sätze bilden:

(l) pl = ,,3 ist keine Primzahl“

(2) p; 2 ,,3 ist eine Primzahl und I0 ist durch 3 teilbar“

(3) p, : „3 ist eine Primzahl oder l0 ist durch 3 teilbar“

(4) p4 2 „Wenn lO durch 3 teilbar ist, so ist 3 eine Primzahl“

(5) 175 : „3 ist genau dann eine Primzahl, wenn l0 durch 3 teilbar ist“
(6) [15 : „Entweder 3 ist eine Primzahl oder l0 ist durch 3 teilbar“

(7) [77 H ‚.3 ist eine Primzahl, weil 10 durch 3 teilbar ist"

Zunächst einmal steht fest. daß die Sätze pl bis p7 zweiwertige Aussagen darstellen.
lhr Wahrheitswert läßt sich in der von der Umgangssprache bekannten Weise ein-
fach bestimmen. So gilt:

WW) = W, W(tI) = F-

w(p,) = F, w(p2) 2 F. w(p3) : W, w(p4) : W. w(p5) = F,

WW6) : Wa WW7) _: F»

Wir wollen nun die Überlegungen aus Beispiel 3.4 verallgemeinern. Die Größen p
und q bezeichnen zwei beliebige Aussagen, p e A3, qe A2. Dann gibt die folgende
Tabelle die den Beispielen entsprechenden Aussagenverbindungen, deren Namen
und Kurzschreibweisen an. Wir bemerken noch einmal, daß eine solche Aussagen-
verbindung je zwei Elementen von A; in eindeutiger Weise ein Element von A2 zu-

ordnet. Im Beispiel (1) wird einer Aussage aus A; eine andere Aussage. ebenfalls aus
A2, eindeutig zugeordnet. Aus diesem Grunde können wir auch das Wort Aussagen-
funktion anstelle Aussagenverbindung benutzen.

Tabelle 3.1. Aussagenverbindungen

Nr. | Aussagenverbindung I Kurzzeichen| Name

1 nicht p p Negation
2 p und q p A q Konjunktion
3 p oder q p v q Alternative
4 wenn p, so q p —> q Implikation
5 p genau dann, wenn q p<—> q Äquivalenz x

6 entwederp oder q — Disjunktion
7 p weil q I — — '
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Die Aussagenverbindungen (2) bis t7) in der Tabelle 3.1 sind zweistellige Aussagen-
verbindungen, da sie je zwei Aussagen aus A2 eine neue Aussage aus A2 eindeutig
zuordnen. Die Negation kann als einstellige Aussagenverbindung aufgefaßt werden.
Die Begriffe Alternative und Disjtinkrion werden in der Literatur unterschiedlich
verwendet.

Mit diesen ein- und zweistelligen Aussagenverbindungeit ist aber die Menge der
Verknüpfungen von Aussagen noch keineswegs erschöpft. Oft ist es zur Beschreibung
mathematischer Sachverhalte notwendig, Aussagenverbindungen zu betrachten, die
aus mehr als zwei Teilaussägen zusammengesetzt werden.

Beispiel 3.5 (Wir benutzen die Kurzschreibweise, um die Struktur der Aussagen-
verbindung deutlicher hervorzuheben):

(IM rI)-> (W5) (3.1)

UPVCIVV)/\(P—*3)/\(fI—’S)/\(V*S))-*3' (3.2)

Mit Worten bedeutet (3.1): Wenn p und q gelten, so gilt auch r oder „r. Dabei kann
man sich für p, q, r, .r beliebige Aussagen aus A2 eingesetzt denken.

Allgemein gesprochen, können wir also mit Hilfe von Bindcwöitern n Aussagen
aus A; eine neue Aussage aus A3 zuordnen, die wir dann n-stclligc Auy.s'a_gwI2L‘cI‘bi/1-

dung nennen. Die konkrete Art der Verbindung nennen wir die logische Stru/rmr
der Aussage. Zu dieser logischen Struktur gehören insbesondere auch die Klammern.

Nun können wir die folgende entscheidende Fragestellung der Logik formulieren.
auf der dann alle anderen Untersuchungen aufbauen: Wie bceinfiußt die logische
Struktur den Wahrheitswert der Aussagenvcrbindung? Dabei fordert man: Der Wahr-
heitswert der Aussagenverbindung soll nur abhängen

l. von den Wahrheitswerten der eingehenden Teilaussagen
und

2. von der logischen Struktur der Aussagenverbindung.

Er soll aber nicht vom konkreten Sinn der in der Anssagenverbindtmg verknüpften
Teilaussagen abhängen. Aussagenverbindungcn, die diese Forderung erfüllen.
heißen exrmsio/1a] (Extension — Ausdehnung); alle anderen heißen iurenrionalt’ Aus-
xagz»/zz'crbi/m'm1gen (Intension — Sinn). g

Die Aussagenverbindungen 1 bis 6 unserer Tabelle 3.1 werden als extcnsionnl autl
gefaßt. Dagegen beschreibt zum Beispiel „weil“ eine intensionalc Attssztgcnverbin-

- dung, was man sich anhand eines Beispiels überlegen kann [14].

3.3.2. Wahrheitstabellen der elementaren Aussagenverbindungen

1m folgenden beschäftigen wir uns nur noch mit extensionalen Aussagenverbin-
dungen und wollen zunächst für die Aussagenverbindungen 1) bis 6) aus Tabelle 3.1

den Wahrheitswert bestimmen. Da diese extensional sind, genügt es, für jede Kombi-
nation von Wahrheitswerten (aus {W‚ F}) der eingehenden Teilaussagen den Wahr-
heitswert der Aussagenverbindung anzugeben.

I. Wahrheitstabelle für die Negation

Tabelle 3.2. Wahrheitstabelle der Negation

p | F W

p I W F
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In der ersten Zeile dieser Tabelle steht links das Symbol p für die Aussage, rechts
daneben die beiden möglichen Wahrheitswerte für p: F, W. Die zweite Zeile enthält
links das Symbol p für die Negation, daneben die Wahrheitswerte für fi, d. h.‚ gilt
w(p) = F, so ist w(p) = W, und für w(p) = Wwird w(p) = F. Diese Tabelle, die wir
Wahrheitstabelle nennen, gibt also die Zuordnung spaltenweise an.

2. Wahrheitstabelle für die Konjunktion

Tabelle 3.3. Wahrheitstabelle der Konjunktion

p FWFW
q FFWW

A‘FFFW
Da wir es hier mit einer zweistelligen Aussagenverbindung zu tun haben, gibt es

22 = 4 Kombinationen (Paare) von Wahrheitswerten (s. Abschnitt 6.). Jedem solchen
Paar entspricht wieder eine Spalte der Tabelle, wobei in der letzten Zeile der zuge-
hörige Wahrheitswert von p A q aufgeschrieben ist. Wir sehen, daß die Konjunktion
genau dann wahr ist, wenn beide durch und verbundenen Teilaussagen wahr sind.

Entsprechend definieren wir die Wahrheitstabellen der anderen Aussagenverbin-
dungen.

Tabelle 3,4. Wahrheitstabelle der Alternative

p FWFW
q I-‘I-“WW

vll-“WWW
Tabelle 3.5. Wahrheitstabelle der Implikation

p FWFW
q FFWW

.. WFWW

Tabelle 3.6. Wahrheitstabelle der Äquivalenz

p F W F W
q F F W W

.<—> W F F W

Tabelle 3.7. Wahrheitstabelle der Disjunktion

p FWFW
q FFWW

entwederpoderq iF W W F

4: Aufgabe 3.]: Mun gebe die Wnhrheitstabellen der Aussagenverbindungen p/xl] (SheiTersche

Funktion) bzw. p v q (Nicodsche Funktion) an!
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Zu diesen Tabellen sollen noch einige Bemerkungen gemacht werden. Der Impli-
kation wird nur dann der Wahrheitswert Fzugeordnet‚ wenn die erste Teilaussage p
(Voraussetzung) wahr, aber die zweite Teilaussage q (Behauptung) falsch ist.

Beispiel 3.6: Die Aussage „Wenn 3 eine Primzahl ist, so ist l0 durch 3 teilbar“ ist
olTenbar falsch. Die Aussage „Wenn 4 eine Primzahl ist, so ist l0 durch 3 teilbar“
wird dagegen als wahr angesehen.

Bemerkenswert ist auch der Unterschied zwischen Alternative und Disjimktion.
Die Alternative stellt ein einschließendes, die Disjunktion ein ausschließendes oder
dar.

Betrachten wir noch die folgenden zwei Aussagen

p = „2 ' 2 = 4“ oder „Berlin ist die Hauptstadt der UdSSR“

q = Wenn ‚.2 - 2 = 5“ ist, so „ist die Erde ein Planet“

Aussagenverbindungen dieser Art sind häufig insbesondere philosophischer Kritik
ausgesetzt. lm Sinne der Logik handelt es sich jedoch beip und q um wahre Aussagen,
obwohl diese Aussagenverbindungen rein inhaltlich gesehen völlig sinnlos sind. Im
Sinne einer völligen Allgemeinheit der zur Aussagenverbindung zugelassenen Aus-
sagen aus A2 ist es aber legitim, auch Verbindungen der obigen Art zu bilden,

Es ist zweckmäßig, die Tabellen 3.1 bis 3.7 gut im Gedächtnis zu behalten, da sie
Bausteine für nachfolgende Überlegungen sind.

3.3.3. Wahrheitstabellen n-stelliger (n > 2) Aussagenverbindungen

Die Wahrheitstabellen ordnen jeder Kombination (bisher jedem Paar) von Wahr-
heitswerten eindeutig einen Wahrheitswert zu. Diese Zuordnung ist spaltenweise in
den Tabellen rechts vom vertikalen Strich dargestellt, Die Tabellen repräsentieren
also Funktionen (siehe auch Abschnitt 8.), die man auch Wa/irheitxfunktionen nennt.

Am Beispiel der 4-stelligen Aussagenverbindung

(P A q) -'U' V X) (3.3)

wollen wirjetzt noch zeigen, wie man mit Hilfe der in 3.3.2. angegebenen Wahrheits-
tnhellett die Wahrheitstabelle einer mehr als zweistelligen Aussagenverbindung
ltölllnlnl.

Zunächst kann man sich überlegen, daß es 24 = l6 Verschiedene Kombinationen
von Wahrheitswcrtcn gibt, Diese werden in zweckmäßiger Reihenfolge im Kopf
der Tabelle aufgeschrieben. Betrachten wir die Struktur von (3.3), so sehen wir,
daß wir es mit einer Aussagenverbindung 1-» u mit t : /)/\ q. u : rvx zu tun
haben. Dies gibt uns die Möglichkeit, die Wahrheitstabelle schrittweise, wie nach-
folgend dargestellt, aus den schon bekannten Bausteinen aufzubauen.

Tabelle 3.8. Wahrheitstabelle der Aussagenverbindung (p /\ q) —> (r v r)

p FWFWFWFWFWFWFWFW
z] FFWWFFWWFFWWFFWW
r FFFFWWWWFFFFWWWW
x FFFFFFFFWWWWWWWW

rzp/xq FFFWFFFWFFFWFFFW
u:rv.s' FFFFWWWWWWWWWWWW

r-vu WWWFWWWWWWWWWWWW
2 webe: u. u , .\L.umnm\
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Wir sehen also, daß z —> u nur bei genau einer der l6 möglichen Wahrheitswert-
kombinationen falsch wird. Insbesondere ist also auch eine Aussage wie

„Wenn 2 - 2 = 3 und 4 eine Primzahl ist, so ist auch 5 eine Primzahl oder
82 = 60“

eine wahre Aussage.
Mit Hilfe der Ergebnisse aus Abschnitt 6.3.2. kann man sich leicht überlegen,

daß bei einer n—stelligen Aussagenverbindung die Wahrheitstabelle 2" Spalten ent-
hält. Um diese aufzuschreiben ist es zweckmäßig, folgendermaßen vorzugehen (siehe
auch Tabelle 3.8, n = 4):

Man schreibe in die erste Zeile die Zweiergruppen FW . . . ‚ in die zweite die Vierer-
gruppen FFWW. . ., in die dritte die Achtergruppen FFFFWWWW . .. usw. Auf diese
Weise erhält man, wie man sich leicht überlegen kann, alle 2" Spalten, und man ist
damit in der Lage, die gewünschte Wahrheitstabelle anzugeben.

Aufgabe 3.2: Folgt aus dem Satz „Wenn Peter Mathematik studiert, so studiert er
auch Operationsforschung oder Kybernetik“ und „Peter studiert nicht Operations-
forschung“ und „Peter studiert Mathematik oder Operationsforschung oder Kyber-
netik“ der Satz: „Peter studiert Kybernetik“?

3.3.4. Verbindungen von Aussageformen

Auch Aussageformen lassen sich durch Bindewörter neuen Aussageformen zu-
ordnen. Dabei ist nur zu sichern, daß bei Einsetzung eines beliebigen konkreten
Wertes x, der Variablen x mit dem Bereich X die „Aussagefarmverbindung“ in eine
Aussage aus A2 übergeht.

Beispiel 3.7: X = {1; 2; 3; 4; 5; 5,1; 5,2; 6}

1. p(x) = ,,x ist eine ganze Zahl, und x ist größer als 4“.
Es gilt: w(p(5)) = w(p(6)) = W, w(p(x,)) = Ffür x1 e X, xi + 5; 6.

2. p(x) : „Wenn x eine ganze Zahl ist, so ist x größer als 4“.
Es gilt: W(11(1)) = W(p(2)) = W(P(3)) = W(17(4)) = F,
W(II(5)) = W(I7(5,1)) = W(P(5,2)) = W(17(6)) = W.

Allgemein können wir folgendes feststellen:

Man kann zum Beispiel durch

WC), p(x) A q(x), p(x) v q(x)‚ p(x) -> q(x)‚

p(x) <—> q(x), entweder p(x) oder q(x)

Aussageformverbindungen bilden, die für jedes x = x, e X in Aussagenverbindungen
übergehen. Es können darüberhinaus auch n-stellige Aussageformverbindungen
gebildet werden.

Aufgabe 3.3: Man gebe die Aussageformverbindung

„Falls n eine Primzahl ist, so teilt 3 eine der Zahlen n — 1 oder n + l“

mittels logischer Zeichen an und stelle für ein beliebiges festes n die Wahrheits-
tabelle auf!
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3.4. Die wesentlichen logischen Zeichen und ihre technische Realisierung

3.4.1. Logische Zeichen

Wir haben bereits in 3.3.1. einige wesentliche Kurzzeichen, die in der Logik zur
Beschreibung von Aussagenverbindungen benutzt werden, angegeben.

Wir wiederholen:

[7 — nichtp

p A q - p und q

p v q ~ p oder q

p—>q —wennp,soq

p <—> q — p genau dann, wenn q

Die Zeichen ‘, A, v, —>, <—> sind die Kurzzeichen (Funktoren) der Aussagenlogik.
Darüber hinaus gibt es jedoch einige Zeichen, die insbesondere für mathematische
Aussagen von Bedeutung sind. Dazu betrachten wir noch einmal eine Aussageform
p(x) mit dem Bereich X der Variablen x.

Es gibt außer der schon behandelten Möglichkeit, von der Aussageform p(x) zu

Aussagen überzugehen (einsetzen konkreter x : x, e X), noch eine andere Möglich—
keit, Aussagen mit Hilfe von p(x) zu bilden. Diese Möglichkeit ergibt sich aus der
Tatsache, daß beim Einsetzen spezieller x = x, e X in die Aussageform die drei fol-
genden Fälle eintreten können:

l. Alle entstehenden Aussagen sind wahr,
2. mindestens eine der entstehenden Aussagen ist wahr und mindestens eine ist falsch,
3. alle entstehenden Aussagen sind falsch.

Entsprechend definieren wir:

Definition 3.3: D.3.3

(a) q = (Vx) p(x), gelesen: „Für jedes x gilt p(x)“, ist eine zweiwertige Aussage, die
genau dann den Wert W besitzt, wenn p(x) für jedes konkrete x = x1 e X eine
wahre Aussage darstellt. Das Symbol V heißt Allquantor.

(b) r = (3x) p(x), gelesen." „Es existiert ein x so, daß p(x) gilt“, ist eine zweiwertige
Aussage, die genau dann den Wert Fbesitzt, wenn p(x)fürjedes konkrete x = xI e X
eine falsche Aussage darstellt. Das Symbol E! heißt Existenzquantor.

(c) s = (Nx) p(x) = (Vx)pTc), gelesen: Für kein x gilt p(x)“. N heißt Nnllquantor
und kann leicht auf den Allquantor zurückgeführt werden.

Beispiele 3.8:

p(x) = „x ist eine gerade Zahl“,
q(x) = „Das Quadrat von x ist nicht negativ“,
X = —2‚ —l‚ 0, 1, 2, 3, 4, = G (Menge der ganzen Zahlen).

Dann gilt:
w((Vx) p(x)) = F, denn z. B. x = l ist eine ungerade Zahl;
w((Elx) p(x)) = W, denn z. B. x = 2 ist eine gerade Zahl;
w((Vx) q(x)) = W, denn das Quadrat einer ganzen Zahl ist nicht negativ;

w((3x) q(x)) = W ist eine Folgerung von w((Vx) q(x)) = W.

2*
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Die oben gcnanttteit Zeichen y v, /\, —>, 4-» bilden gemeinsam mit den beiden
Quanmrun V. 5 eine Zpiclre/nzztwge, mit der man (unter Zuhilfenahme von Klammern)
die Aussagen. die in der Mathematik. aber auch in anderen Wissenschaften vorkom-
men. formalisiert darstellen und auf ihren Wahrheitsgehalt untersuchen kann.

Aufgabc 3.//:~Es werden folgende Aussageformeit betrachtet:

qtx) 2 ...\‘ ist eine Primzahl“; I'(.\') 2 „x ist durch 2 teilbar“;
.\'(.\') : ,,.\' ist durch 3 teilbar"; I(.\') = „x ist durch 6 teilbar“.

Dabei ist x eine natürliche Zahl, x g l.

Man formuliert die folgenden Aussagen verbal und tmtersuche, ob sie wahr sind:

l. (Vx) r(.\') a z](x): 2. (Vx) f(x) /\ so’) —+ q(x);

3. (Vx) q(x) —> f(.\') A übt): 4. (Vx) r(.\') /\ .s'(x) <—> t(_\'):

5. (3x) f(.\') /\ fix) —> qm’).

Aufgabe 3.5: Man stelle die folgenden Aussagen mittels logischer Symbole dar:

a) Zu einer beliebigen natürlichen Zahl läßt sich immer eine größere Zahl finden, die
Primzahl ist.

h) Das Quadrat jeder beliebigen reellen Zahl ist größer als null.

Man bilde die Verneinung der durch b) formulierten Aussage!

3.4.2. Technische Realisierung der logischen Zeichen

Eine wichtige technische Anwendung der Logik ist die Beschreibung von Schalt-
/\'r({i_wI1. S0 machte Ehrenfest bereits 1910 darauf aufmerksam, daß man die mathe-
matische Logik auf Relaiskonmk{Schaltungen anwenden könne. Die Anwendung
begann jedoch erst in den dreißiger Jahren mit den Arbeiten von Shannon. Es ent-
stand die Sc/zalta/gebru als mathematische Grundlage für die logischen Schaltungen
und speziell für die digitalen Rechenautomaten.

Betrachten wir einen Stromkreis. der durch Schalter geöffnet werden kann. Dann
läßt sich leicht die folgende zweiwertige Aussage definieren

p 2 ..De| Stromkreis ist geschlossen“ 2 „Es fließt Strom“

Dabei ist w(p) E { W, F}. wobei W dem geschlossenen, Fdem geöffneten Stromkreis
entspricht.

Wir wollen jetzt die Wahrheitstabellen (Wahrheitswertfunktionen) der grund-
legenden Verknüpfungen (Aussagenverbindungen) durch Schaltungen technisch reali-
sieren.

In Bild 3.1 und Bild 3.2 haben wirjeweils zwei Schalter, wobei

p, 2 „Der Schaltet 1 ist geschlossen“.

/)3 = „Der Schalter 2 ist geschlossen“

wie oben zweiwertigc Aussagen sind. Eine Glühlampe G zeigt an, ob der Stromkreis
geschlossen oder offen ist. Für die Schaltung aus Bild 3.1 gilt

Wgenau dann, wenn w(/7,) = Woder w(/)2) 2 W

Mp) : F genau dann, wenn w(p‚) 2 F und w(p2) 2 F.
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Damit ist p also eine Aussagenverbindung von p ‚ ‚ pz ‚ deren Wahrheitsverhalten mit
dem der „oder“ Verbindung (Alternative) übereinstimmt. Die Parallelschaltung aus
Bild 3.1 realisiert die Wahrheitstabelle der Aussagenverbindung p z p, Vpz.

l s

W i p f1? Bild 3.1.
P E p = [)1 Vpz (Alternative)

1_.g2/_.

.»‘C’,/A_ “*2 _®m';, m 3.2.
5 p = /71 Ap; (Konjunktion)

Für die Reihenschaltung der Schaltet l und 2 aus Bild 3.2 können wir uns leicht über-
legen, daß der Wahrheitswert der Aussage p = „Der Stromkreis ist geschlossen“

[Wgenau dann, wenn w(p,) = Wund w(p2) = W

Mp) : lF sonst

ist. Wir sehen also Übereinstimmung mit der Wahrheitstabelle der Konjunktion, und
deshalb realisiert die Reihenschaltung aus Bild 3.2 die Wahrheitstabelle einer Kon-
junktion,

P :I’i /\/72-

Das Wahrheitsvcrhaltcn der Negation, also einer einstelligen Aussagenverbindting,
läßt sich schaltungstechnisch durch einen Rulzekontakt (Bild 3.3) realisieren.

I Bild 3.3. p = ä (Negation)

P ——‘ _

5 r-r
——o

Durch Betrachtung von Bild 3.3 sehen wir, der Stromkreis mit der Glühlampe G
ist geschlossen. falls der Schalter l geöffnet ist und umgekehrt. Es ist also

W, falls w(q) = F
w(/1) 2 {

F, falls w(q) = W.

Deshalb gilt: p = :7.

Für die Konstruktion von komplizierten elektronischen Schaltungen ist es not-
wendig. die Wahrheitstabellen n-stelliger Aussagenverbindungen schaltungstechnisch
zu realisieren, insbesondere auch die der anderen Aussagenverbindtmgen Impli-
kntion, Äquivalenz. Entwedcr-oder-Verbindung, Sheflersclte und Nicodsche Funk-
tion. Ohne auf die Theorie hier näher einzugehen, wollen wir ein grundlegendes und
für die Technik äußerst wichtiges Ergebnis formulieren. welches sich im Rahmen der
mathematischen Logik beweisen läßt.

Jede beliebige n-stellige Wahrheitswertfunktion (Wahrheitstabelle) läßt sich aus den
Wahrheitswertfunktioneit der Negation, Konjunktion und Alternative (Tabellen 3.2,
3.3. 3.4) durch gewisse Operationen gewinnen. Es ist darüber hinaus sogar möglich,
allein mit Hilfe der Wahrheitswertfunktion der Shefferschen bzw. der Nieodschen
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Funktion (Aufgabe 3.1) jede beliebige andere n-stellige Wahrheitswertfunktion dar-
zustellen.

Da sich die Operationen, die für die Darstellungen notwendig sind, Schaltungs-
technisch gut realisieren lassen, bedeutet dies, daß wir allein mit den drei angegebenen
Grundschaltungen (Bilder 3,1, 3.2, 3.3) als Bausteine jede beliebige n-stellige Wahr-
heitswertfunktion technisch realisieren können.

Bisher haben wir nur die technischen Realisierungen der grundlegenden Ver-
knüpfungen angegeben. _

Im allgemeinen steht aber die Frage, komplizierte Aussagenverbindungen auf der
Basis dieser Grundverknüpfungen schaltungstechnisch zu realisieren und dabei
möglichst geringen Aufwand zu treiben. Wir wollen das an zwei Beispielen illustrieren.
Die Aussagenverbindungen

p/\(pvq) und p

pv(qAr) und (pVq)A(pVr)
besitzen die gleichen Wahrheitstabellen, realisieren also logisch gleichwertige Aus-
sagenverbindungen. Das hat zur Folge, daß die Wahrheitswerttabellen der Aussagen-
Verbindungen

pA(pVq)<->11 (3-4)

/7V(_q/\r)<->(pVq)A(pvr) (3-5)

in der letzten Zeile jeweils nur das Symbol W besitzen, also immer wahre Aussagen
darstellen. (Wir werden in Abschnitt 4.l.l. auf diese wichtige Klasse der Aussagen-
Verbindungen, die Tautologien, ausführlich zu sprechen kommen.)

bzw.

Tabelle 3.9 Tabelle 3.10

p FWFWp FWFWFWFW
q F F WW q F F WWF F WW

r F F F F WWWW
r=pvq F WWW
s=pAr FWF W<~— s=q/xr FFFFFFWW
p F WF W4»-
——————:— pvs F WF WF WWW «—

(p/\r)<—>p WWWW
f=pvr F WF WWWWW
u=pvq F WWWF WWW

t/\u F WF WF WWW <—

pvs<—>t/\u WWWWWWWW

J/
F PJ- y/e/knwerf/g—§/j

‘l

/”‘(PV‘7’ F

Bild 3.4. Logisch gleichwertige Aussagenverbiudungen p I\ (p v q), p
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Somit können wir die betrachteten Aussageverbindungen durch Schaltungen reali-
sieren, die jeweils dasselbe leisten (siehe Bild 3.4 und 3.5). Man braucht sicherlich
nicht gesondert zu erwähnen, welches die jeweils einfachere Schaltung ist.

/’ /7 /7

7 D { r

PV U]/U‘) (pvq)/upvr)

Bild 3.5. Logisch gleichwertige Aussagenverbindungen p v (q A r), (p v q) A (p v r)

Gelegentlich vereinfacht man die Schreibweise von Ausdrücken der Form wie
z. B

p v (q A r) (3.6)

indem man Sogenannte Vorrang- oder Klammereinsparungsregeln vereinbart. S0
hat die Konjunktion A Vorrang vor v, d. h. man kann anstelle (3.5) auch

pVqAr (3.7)

schreiben.
Es sei noch bemerkt, daß Relaiskontaktschaltungen nicht die einzigen technischen

Realisierungen der Wahrheitswertfunktion sind.
Die Anwendung der Logik beschränkt sich heute keineswegs mehr auf die Schalt-

algebra, d. h. die mathematische Beschreibung, Analyse, Synthese und Optimierung
von technischen Schaltungen. Es ist zweckmäßig, die Aussagenlogik auch zur Be-
schreibung anderer Sachverhalte aus verschiedenen Wissenschaften anzuwenden.



4. Einige Beweisprinüpien

Die nachfolgenden Ausführungen enthalten einige wichtige logische Schlüsse und
die Methode der vollständigen Induktion als Beweisprinzipien. Die logischen Schlüsse,
welche zuerst behandelt werden, knüpfen unmittelbar an die Grundbegriffe der Logik
aus Abschnitt 3. an und sind selbst ein wesentlicher Bestandteil der Logik. Wir wer-
den sie hier an Beispielen erläutern.

4.1. Logische Schlüsse

Beim Beweisen mathematischer Aussagen steht häufig das Problem, daß nicht
sofort eine Beweisidee vorhanden ist oder ein direkter Beweis entweder nur schwer
oder nicht möglich ist. Betrachten wir zur Erläuterung folgendes

Beispiel 4.1: Man beweise: Wenn a und /5’ zwei gleiche Winkel über einer Strecke

h7; sind. so geht der durch die Punkte P1, P2, P3 bestimmte Kreis K auch durch
den Punkt P4. (in Bild 4.1 ist zu sehen, daß der Winkel bei P3 mit a, der Winkel bei
P4 mit ß bezeichnet wird.)

Mit den Hilfsmitteln, die in der Logik bereitgestellt werden, sind wir bereits in
der Lage, die zu beweisende mathematische Aussage als Aussagenverbindung dar-
zustellen. Bezeichnen nämlich

p : „x und ß sind zwei gleiche Winkel über P172“

q 2 „P4 liegt auf dem Kreis K“

zweiwertige Aussagen, so haben wir zu beweisen, daß

p —> q eine wahre Aussage ist.

Ein direkter Beweis dieser lmplikation gelingt nicht ohne weiteres, und deshalb wird
der Beweis mit Hilfe einer Methode des indirekten Beweisens geführt. Man zeigt:

Bild 4.1

Wenn der Punkt P4 nicht auf dem Kreis K liegt, so ist ax ungleich ß. Wie Bild 4.2
zeigt, zerfällt die Aussage z] = „P4 liegt nicht auf dem Kreis K“ in zwei Fälle:

ä, „P4 liegt außerhalb K“
Z12 = „P4 liegt innerhalb K“,

H

d. h. es gilt

L7 = entweder z], oder e72.
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In jedem dieser beiden Fälle kann man beweisen (der Beweis wird unter Verwendung
des Peripheriewinkelsatzes und eines Satzes über Außenwinkel am Dreieck geführt),
daß o: ungleich ß ist, d. h.

(71 "13 und 172"?

sind wahre Aussagen.

Aufgabe 4.1: Man beweise, daß z}, —> /7 und (72 —> p wahre Aussagen sind.

Die Frage ist nun, wieso wir aufGrund dessen. daß c}, —> p und 472 —> ‚ü wahre Aus-
sagen sind, darauf schließen können, daß auch p —> q eine wahre Aussage ist. Der
wesentliche Schritt hierbei ist, daß wir begründen:

Es genügt zu wissen, daß a] —>p‚ z] —>p = Wenn „P4 nicht auf K" liegt. so gilt
„Winkel o: ist verschieden Winkel ß“, eine wahre Aussage ist, um folgern zu können,
daß auch p —> q wahr ist. Falls eine solche Begründung möglich ist, gilt sie natürlich
für alle Beispiele. in denen man den Beweis von p —> q durch den Beweis von e] —> /7

ersetzen möchte. Wir verlassen also zunächst das Beispiel und stellen uns unter p, q
beliebige Aussagen vor.

Die oben genannte Begründung kann man wie folgt formulieren:

I. Es ist zu zeigen, daß c7 —> p eine wahre Aussage ist.
II. Die Atlssagetiverbindung

‚ (1I"f7)-'(l7-*G) (441)

ist immer eine wahre Aussage. ganz gleich welche konkreten (wahren oder
falschen) Aussagen p und q darstellen (Beweis s. Tabelle 4.l).

III. Demzufolge ist auch (q—» f1) /\ ((41 —>f1)—> (p a q)) als Konjunktion zweier
wahrer Aussagen, wiederum wahr (Tabelle 3.3).

IV. Weil die Aussage

(s A (s a 1)) —» 1 (4.2)

unabhängig davon, welche konkreten (wahren oder falschen) Aussagen All in
diese Verbindung eingehen, immer wahr ist, können wir mit ‚x‘ : c7 a p und
t : p —> q auf die Wahrheit_.der Aussage p —> q schließen (Beweis siehe Tabelle
4.2). (AufGrund der Wahrheitstabelle der lmplikation (Tabelle 3.5) muß bei Rieh-
tigkeitder Voraussetzungund der Implikation auch die Behauptung wahr sein.)

Sicherlich ist diese Begründung beim ersten Lesen schwer zu verstehen. Anderen
seits stellt sie aber das Muster für das Verständnis aller logischen Schlüsse dar und
sollte deshalb gut durchdacht werden. In den Punkten II. und IV. sind zwei Be<

hauptungen formuliert, die die entscheidende Rolle für die Stiehhaltigkeit unserer
Begründung spielen.

Wir behaupten, daß die Aussagenverbindungen (4. l) und (4.2) immer wahre Am-
sagen darstellen. Den Beweis dafür können wir leicht mit Hilfe der Wahrheitsttthellcn
führen.

In der letzten Zeile dieser Vl/ahrheitstabellen steht jeweils nur das Symbol W. d. h.
die Aussagenverbindungen sind immer wahr, ganz gleich ob p, q, r..s' wahr oder
falsch sind.
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Tabelle 4.l. Kontraposition Tabelle 4.2. Abtrennungsregel

p F WF W s F WF W
q F F W W t F F W W

[7 W F W F s—>t W F W W
q W WF F Z=.S‘/\(s—>t) F F F W
u=p—>q WF W W
D:,7_,,7 W1: W W z—>t W W W W

v—>u W W W W

Die Begründung einer richtigen logischen Schlußweise liegt also offenbar in der
Existenz von Aussagenverbindungen der oben betrachteten Art. Deshalb liegt es

nahe, daß wir uns zunächst etwas genauer mit dieser Klasse der immer wahren Aus-
sagenverbindungen beschäftigen.

4.1. 1. Tautologien

Definition 4.1: Eine Aussagenverbindung heißt Tautologie, wenn die Wahrheitswert-
funktion nur den Wert W annimm ‚ d. h. wenn die letzte Zeile der Wahrheitstabelle
nur den Wert W besitzt. (Anstelle von Tautologie ist auch der Begrzfi’ Identität ge-
bräuchlich.)

Wir haben damit eine sehr wesentliche Klasse von Aussagenverbindungen definiert,
die allein auf Grund ihrer logischen Struktur stets nur wahre Aussagen enthält. Uns
interessiert diese Klasse von Aussagenverbindungen im Hinblick auf weitere logische
Schlußfiguren. Deshalb stellen wir nachfolgend einige besonders wichtige Tautologien
zusammen und führen den Nachweis über die entsprechenden Wahrheitstabellen.

Tautologien sind beispielsweise:

1) Abtrennungsregel s A (s —> t) —> t (4.2)

2) Indirekter Beweis (q /\ ([7 —> (D) —> p (4.3)

3) Fallunterscheidung ((p v q) A (p —> r) /\ (q —+ r)) —> r (4.4)

4) Kettenschluß ((p —> q) /\ (q —> r)) —v (p —> r) (4.5)

5) Schluß auf eine Äquivalenz ((p —> q) /\ (q —> 11)) —> (p <—> q) (4.6)

6) Kontraposition (p —> q) —+ (t7 —> ß) (4.7)

(TI -> i7) -> (P -> q) (4-3)

7) Doppelte Verneinung p <—> E (4.9)

8) de Morgansche Regeln p—/C? 4-9 (p v q) (4.10)

mHQ-Mäl (4.11)

Mit den Tabellen 4.3, 4.4 und 4.5 zeigen wir für drei besonders wichtige dieser Aus-
sagenverbindungen, daß es sich tatsächlich um Tautologien handelt.

Aufgabe 4.2: Man weise nach, daß die Aussagenverbindungen (4.10), (4.11) Tautolo—
gien sind!
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Tabelle 4.3. Kettenschluß

p F W F W F W F W
q F F W W F F W W
r F F F F W W W W

u=p—>q W F W W W F W W
v=q—>r W W F F W W W W
w=p—>r W F W F W W W W
x=u/xv W F F F W F W W

x—>w W W W W W W W W

Tabelle 4.4. Indirekter Beweis Tabelle 4.5. Schluß auf Äquivalenz

p F W F W p F W F W
q F F W W q F F W W

p W F W F r=p—>q W F W W
ä W W F F s=q—>p W W F W
r=p—>ä W WF W t=r/\s WF F W
s=qAr F F F W u=p+—>q WF F W

s—«>p W W W W t—>u W W W W

4.1.2. Logische Schlußfiguren

Die oben angegebenen Tautologien haben spezielle Bezeichnungen erhalten, die
in der Regel mit dem Namen des logischen Schlusses identisch sind, dessen Grund-
lage sie bilden. Eine Sonderrolle nimmt die Abtrennungsregel (4.2) ein. Streng ge-
nommen benötigt man jeweils die Abtrennungsregel, um aus den anderen Tauto-
logien logische Schlüsse aufzubauen, wie wir das mit den Punkten I. bis IV. für ein
Beispiel getan haben. Am Beispiel des indirekten Beweises wollen wir noch einmal
das Zusammenwirken einer speziellen Tautologie mit der Abtrennungsregel demon-
strieren.

)—
4

. Man betrachtet eine Aussage q, von der man weiß, daß sie wahr ist, und beweist,
daß die Implikation p —> ä eine wahre Aussage darstellt.

II. Nach Tabelle 4.4 ist (q‚\(p» 17)) —» p eine Tautologie, also eine stets wahre
Aussage.

III, Demzufolge ist auch (q /\ (p —> (7)) /\ ((q A (p —> 47)) —> p) als Konjunktion wahrer
Aussagen wiederum wahr.

IV. Auf Grund der Abtrennungsregel [Tautologie (4.2)] können wir mit s =

q A (p —> ä) und t = p auf die Wahrheit der Aussage p schließen.

Da dieses Vorgehen sehr aufwendig ist und darüber hinaus auch die Übersicht-
lichkeit bei komplizierteren Schlüssen nicht mehr gegeben ist, hat man ein Schema
entwickelt, mit dem man die logischen Schlüsse übersichtlich darstellen kann. In der
Darstellung dieses Schemas sprechen wir von logischen Schlußfiguren, die wie folgt
aufgebaut werden (Tabelle 4.6):
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Tabelle 4.6. Schema logischer Schlußfiguren und Beispiel — indirekter
Beweis

Voraussetzung l q

Voraussetzung k f) —> q

Behauptung 1 p

Behauptung I

Über einem horizontalen Strich werden im allgemeinen k Voraussetzungen angegeben,
unter diesem Strich I Behauptungen, die jeweils durch „und“ also konjunktiv ver-
knüpft sind. Wenn man die Gültigkeit der Voraussetzungen nachgeprüft hat, kann
man folgern, dal3 auch die Behauptungen wahre Aussagen sind. Die Begründung
dafür liefert jeweils die entsprechende Tautologie gemeinsam mit der Ahtrennungs-
regel. Ein solches Schema ist sehr zweckmäßig, weil es unmittelbar cin Rezept für das
„Beweisen“ liefert. Hat man zum Beispiel — wie in Tabelle 4.6 — die Wahrheit einer
Aussage p zu beweisen, s0 kann man anstelle dessen versuchen, die Wahrheit der
beiden Aussagen (Voraussetzungen) q und ji —> z] zu überprüfen, was unter Umstän-
den wesentlich leichter sein kann. Wir werden das in 4.3.3. an einem Beispiel demon-
strieren.

Nachfolgend geben wir ausgehend von (4.1) bis (4.1 I) die entsprechenden logischen
Schlußfiguren an.

lm Abschnitt 4.2. werden wir die Anwendung dieser logischen Schlußtigttren auf
einige Beispiele aus der Elementarmathematik zeigen.

Wir sind jetzt in der Lage, auch die etwas kompliziertere Frage „Warum kann man

auf Grund von L7, —> /7 und i]; —> ß auf z] —> /3 schließen?“ zu beantworten, die im
Zusammenhang mit unserem einführenden Beispiel noch offen ist.

Aufgabe 4.3: Man weise die Richtigkeit der logischen Schlußfigur nach,wobei

q

z» e P.

‘I2 " I7

777p
(7 = entweder z], oder z]; ist (Disjunktion)!

Tabelle 4.7. Logische Schlußfiguren

P V 4
5 i] T’ —’ r l1 " (l i’? "’ 4
.3‘->1 }5—>c7 q—>r q—>r q—>/2

t p r p —+ r /1 <—> q

Abtrennungs- Indirekter Fallunter- Kctten— S__chluß aufeine
regel Beweis scheidung schluß Aquivalenz

P”? 0+fi P PA? PV4

I7 "> /7 P —* ll 5 i? V I? I" A <7

Kontrapositionsschlüsse Doppelte de Morgansche Regeln
Verneinung
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4.2. Beispiele zur Anwendung logischer Schlüsse beim Führen
von Beweisen

Die logische/I St'/zlii.s'sc> können beim Beweisen mathematischer Aussagen bei einer
geschickten Umformulierung des Problems helfen, so daß die neuen Aussagen zu-

mindest einfacher beweisbar sind. Für solche Anwendungen jedoch gibt es kaum
Rezepte. Die nachfolgenden Beispiele sollen das Vorgehen zur Anwendung logischer
Schlüsse bei der Beweisführung illustrieren.

4.2.1. Zur Anwendung der Abtrennungsregel

Die Abtrennungsregel zeigt, wie man aus einer lmplikation auf eine Aussage q
richtig schließt. Die Richtigkeit von q kann demnach gefolgert werden, wenn man

eine Voraussetzung p kennt und die Gültigkeit von p —> q zeigt.
Insbesondere heißt das: Im allgemeinen darf aus der Gültigkeit von p —> q nicht

auf die von q geschlossen werden. d. h. (p A q) A q ist keine Tautologie (Beweis:
Tabelle 4.8).

Tabelle 4.8. (p —> q) —> q

p F W F W
q F F W W

r=p—»q W F W W
raq F W W W

Man sieht aus dieserTabelle4.8 auch, wanndieserSchlußfalsch lSII(W(p) = w(q) =F).
insbesondere sehen wir auch folgendes: Die Folgerungen aus falschen Voraussetzun-
gen können. müssen aber nicht falsch sein.

Beispiel 4.2:

. Der Satz „Wenn (~ l) = (+1), so l = I“ ist richtig und auch „l : l“ ist eine
wahre Aussage. '

‚ Der Satz „Wenn (-1) < (—2)‚ so I < 0“ ist wahr‚aber„l < 0“ ist eine falsche
Aussage.
(l < 0 kann aus (-1) < (~2) durch Addition von 2 gefolgert werden.)
Es wäre also falsch. aus der Richtigkeit von „Wenn (-1) < (—2)‚ so l < 0"
auf die von „l < 0“ zu schließen.

I\
J

4.2.2. Direktes und indirektes Beweisen .

Wir beginnen mit einem sehr einfachen Beispiel. Es ist uns bekannt, daß der Satz
„Wenn l : l ist, so ist —l = +1“ falsch ist. Nun gibt es aber auch andere, kompli—
ziertere Aussagen, bei denen man nicht sofort sieht, ob es sich um eine wahre oder
falsche Aussage handelt. Leider ist in solchen Fällen das folgende falsche Schließen
recht häufig üblich. Man nimmt die Behauptung und rechnet so lange, bis man ‚zur
Voraussetzung kommt und meint, man habe damit den Satz bewiesen, d. h.. man

will p —> q zeigen, indem man q —> p zeigt. Der Leser kann sich aber leicht davon
überzeugen. daß

(q->/7)->(/H4)
keine Tautologie ist. und aus diesem Grunde führt die genannte Vorgehensweise
im allgemeinen zu falschen Ergebnissen.
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Für unser Beispiel wäre dieses falsche Vorgehen folgendermaßen charakterisiert:
Zu zeigen ist:

Wenn 1 = l ist, soist ——l = +1.

Beweis: Es sei —1 2 +1. Dann folgt: (—l)2 = (+l)2, d. h. l = 1. Das ist
gerade die Voraussetzung und daraus folgt die Richtigkeit des Satzes.

Trotzdem kann das genannte Vorgehen, zunächst q —> p nachzuweisen, nützlich sein,
wenn man daraus nicht den falschen Schluß p ~+ q zieht.

Aufgabe 4.4: Man bestimme die Lösung der Gleichung

x + 2 JTJ‘ = 4.

Nun betrachten wir dazu das folgende Beispiel:

Beispiel 4.3: Wir wollen beweisen:

> \/a - b, a > O, b > O, reelle Zahlen,

a :17 >./a~b.Dannw1'irde

p—>q = Wenn a #b ist, so gilt
a + b

2
Wir versuchen zunächst zu zeigen: q —> p, d. h., es sei

gelten:

(a + b)2 > 4ab,

a2—2ab+b2>0.
a2 + Zab + b2 > 4ab,

(a — b)2 > 0.

Von der Aussage (a —— b): > 0 weiß man, daß sie für a =}= b gilt. Wir haben also
. b . . .

gezeigt: Wenn a ä > a - b, so 1st a + b. Außerdem hat uns der obige Beweis
b

aber auch einen Ansatzpunkt dafür geliefert, wie man „Wenn a # b, so a ä > ab“

zeigen kann. Man durchlaufe dazu die Schritte des Beweises rückwärts: Für a + b
gilt

a°—2ab+b’>0,
(a+b)>2-\/SE

Damit haben wir auch durch diesen rückwärtigen Weg gezeigt: Wenn a + b, so

a": b >\/E.
Wir fassen zusammen: Das Schließen von einer Behauptung q aus beweist die

Implikation p —> q nicht (auch wenn es zur Voraussetzung p führt), kann aber oft
sehr nützlich sein, um einen Beweisansatz zu finden. Wir nennen dieses Vorgehen
deshalb Analyse.

Die Analyse liefert aber nicht immer einen Ansatz wie zum Beispiel (a — b)’ > 0.
Dagegen ist die Anwendung der Kontrapositionsschlüsse (Tabelle 4.7) immer mög-
lich. die uns auch sofort einen Ausgangspunkt für den Beweis in die Hand gibt:

Man nehme das Gegenteil der Behauptung q an und versuche q ~> p zu beweisen.

(a — b)’ > 0,

a’ + Zab + b2 > 4ab,

a+b
2

g Jä‘ an. Dies ist ein unmittelbarer Ansatz für den

Beispiel 4.4: p —> q : „Wenn a + b, so > ab“.

a+b
2

Wir nehmen z} = ,,
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Beweis von q —> p (f: = „a = b“). Wir können folgem:

(a + b)‘ g 4ab, a’ + 2ab + b2 g 4ab, a’ — 2ab + b’ g 0,

(a — b)2 g 0, woraus sofort a = b folgt.

Damit ist q —> p gezeigt, und der Kontrapositionsschluß q _)

der Implikation p —> q. p _’

Unter der Voraussetzung, daß p —> q eine wahre Aussage ist, benutzt man häufig
die folgende Sprechweise:

Die Aussage p ist eine hinreichende Bedingung für die Aussage q, oder auch, die Aus-
sage q ist eine notwendige Bedingung für p.

Im Beispiel 4.5 ist also a + b hinreichend dafür, daß

ä- > \/a - b

; liefert die Richtigkeit

gilt. Wie wir gesehen haben, folgt aus der Gültigkeit von p —> q noch nicht, daß auch
q —> p eine wahre Aussage ist. Das bedeutet in unserer soeben eingeführten Sprech-
weise ausgedrückt:

- Eine für die Gültigkeit der Aussage p notwendige Bedingung q muß nicht hin-
reichend für p sein und

— eine für die Gültigkeit der Aussage p hinreichende Bedingung q muß nicht not-
wendig fürp sein.

So ist die Teilbarkeit einer natürlichen Zahl n durch 2 notwendig aber nicht hinrei-
chend für die Teilbarkeit von n durch 4. Für drei natürliche Zahlen a, b, c ist die
Teilbarkeit von a durch c und b durch c hinreichend, aber nicht notwendig für die
Teilbarkeit von a + b durch c.

Die Anwendung des Kontrapositionsschlusses ist eine Form des indirekten Bewei-
sens. Man benutzt sie zum Beweis einer Implikation.

Die als indirekter Beweis bezeichnete Schlußfigur in Tabelle 4.6 benutzt man zum
Beweis einer Aussage p. Das nachfolgende Beispiel soll auch diesen Schluß etwas
näher erläutern.

Beispiel 4.5: Wir wollen zeigen, daß die Aussage

p = „ß ist keine rationale Zahl“

eine wahre Aussage ist.
Wir benutzen Tabelle 4.6 und zeigen zunächst fi —> q, wobei q eine Aussage ist,

die das Gegenteil einer noch zu vereinbarenden Annahme q darstellt. Zunächst be-

trachten wir i), p : „ J5 ist eine rationale Zahl“. Das heißt \/E = -2- mit ganzen Zah-

len a, b; b ä: 0, deren größter gemeinsamer Teiler gleich eins ist (d. h. a, b — teiler-
Z 2

fremd). Wenn p gilt, so gilt auch = , 2 = :7 oder, anders geschrieben,

a2 = 2 - b2. Demzufolge wäre a2 eine gerade Zahl, was nur dann möglich ist, wenn
a = 2n eine gerade Zahl ist. Es würde also a2 : (2:1): = 4122 = 2b’, d. h. b’ = 2 - n’
und damit auch b eine gerade Zahl sein.

Bezeichnen wir mit q die Aussage: q = „a und b sind teilerfremd“, so haben wir
gezeigt: q A (p -+ q), denn a und b würden den gemeinsamen Teiler 2 besitzen. Unter
Verwendung der Schlußfigur aus Tabelle 4.7 folgt die Gültigkeit von p.
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Wie wir gesehen haben, wurde die Aussage q erst im Laufe des Beweises konstruiert,
uorin auch die Hauptschwierigkeit bei der Führung eines indirekten Beweises liegt.
\lan muß sich vorher zielbewußt überlegen, welche Annahme q bei Voraussetzung
\on ‚ö zur Folgerung z} führen könnte.

4.2.3. Sehluß auf eine Äquivalenz

__ Die besondere Bedeutung von (4.6) liegt darin, daß es eine Möglichkeit gibt, eine
Aquimlwzz zu beweisen.

Betrachten wir zum Beispiel eine Eigenschaft, die wir oben schon benutzt haben.

Beispiel 4.6: Es sei a eine ganze Zahl. Dann gilt: a ist genau dann eine gerade Zahl,
wenn a2 eine gerade Zahl ist. (a gerade ist notwendig und hinreichend dafür, daß
a3 gerade ist), Formalisieren wir diesen mathematischen Satz mittels der Aussagen

p = „a ist eine gerade Zahl“, q = „a2 ist eine gerade Zahl“,

so können wir ihn in der Form p <—> q schreiben (a — beliebig, aber fest). Wir beweisen
n4» q, indem wir den Schluß auf eine Aquivalenz anwenden. Demnach müssen wir
ztiigen: (p —> q) /\ (q —> p). Es bedeuten dabei:

l. p —+ q = „Wenn a gerade ist, ist auch a3 gerade“ („a gerade" ist hinreichende Be-
dingung für „a2 gerade“): '

2. q —> p : „Wenn a2 gerade ist, ist auch a gerade“ („a gerade“ ist notwendige Be-
dingung für „a: gerade“).

Wir beweisen die Implikationen nacheinander.

Zu l : Es sci a gerade. Dann ist a : 2m. wobei m eine ganze Zahl ist. Dann gilt:
a3 = a — a : (2m) (2m) : 2(2m2). Da 2in3 eine ganze Zahl ist, ist a2 eine gerade Zahl,
und demzufolge ist p —> q bewiesen,

Zu 2: Wir wollen zeigen: q —» p. Nach dem Kontrapositionsschluß genügt es, statt
dessen p —> z] zu beweisen. d. h.

„wenn a ungerade ist, ist auch a2 ungerade“

ntüßte bewiesen werden. a Lingerade ist gleichbedeutend mit a = 2m + l mit einer
ganzen Zahl m. Nun bilden wir a2: a3 z (2m + l) - (2m + I) = 2 ~ 2/712 + 2m + 2m
+ l : 2- (21222 + 2m) + I. Da 2 - (21113 + 2m) eine gerade Zahl ist, ist a1 ungerade
und somit p —> F; nachgewiesen.

Wir wollen hier noch einntal ausführlich aufschreiben. wie atisdent Gezeigten die
eigentliche Behauptung geschlossen wird. Wir haben gezeigt:

l.p——>q 2.]7->Zi.

Nach dem Kontrapositionsschluß folgt q —> p. Deshalb wissen wir. daß (p ~> q)
/\ (q —> p) gilt. Nach dem Schluß auf eine Äquivalenz folgt p <——> q.

Die Darstellung dieses Beispiels zeigt besonders deutlich. wie das Anwenden logi-
seher Schlüsse kombiniert durchzuführen ist, um konkrete Beweise zu führen.

BUNIUlJtlI/lgl.‘ Da wir keinerlei Bedingung an das feste a während des Beweises stellen
mußteit, können wir p und q auch als Aussageformen p(a), q(a) über dem Bereich
der ganzen Zahlen interpretieren und behaupten:

(Va) (Mal H 4(a))-
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Bei Gültigkeit der Aussage p <—> q sagt man:

p ist eine notwendige und hinreichende Bedingung für q.

So ist dafür, daß ein Dreieck gleichseitig ist, notwendig und hinreichend, daß alle
drei Innenwinkel des Dreiecks einander gleich sind.

4.3. Die Methode der vollständigen Induktion

Die bekannte Methode der vollständigen Induktion gibt uns die Möglichkeit, die
Gültigkeit von unendlich vielen Aussagen zu beweisen. Von diesen unendlich vielen
Aussagen muß man einschränkend fordern, daß sie durch Einsetzen natürlicher
Zahlen in eine Aussageform entstehen. Diese Aussageform kürzen wir wie üblich
mit p(n) ab. Dabei sei n die Variable, die eine Menge X natürlicher Zahlen durchläuft,
wobei wir voraussetzen wollen, daß

X = {n I n — natürliche Zahl A n g a},

a sei eine natürliche Zahl, ist. Nachdem diese Bezeichnungen eingeführt sind, können
wir präziser sagen: Mit der Methode der vollständigen Induktion kann man nach-
weisen, daß die unendlich vielen Aussagen

p(a)‚p(a + 1),p(a + 2),

wahre Aussagen sind.
Indem wir unsere Ergebnisse aus 3.4.1. verwenden, schreiben wir kürzer:

q = (Vn)p(n), X = {n I n — natürliche Zahl A n g a}.

Demnach ist die vollständige Induktion die Methode dafür, nachzuweisen, daß q
eine wahre Aussage ist.

In diesem Abschnitt ist es nicht unser Ziel, möglichst viele Beispiele darzustellen,
sondern wir wollen einige charakteristische Eigenschaften angeben. Weitere Bei-
spiele finden Sie insbesondere in Abschnitt o.

Um Aussagen q = (Vn) p(n), neX — man schreibt dafür oft kurz: Es gilt p(n)
für n g a, a ganz — zu illustrieren, betrachten wir zunächst Beispiele:

Beispiel 4.7:

(1) Alle Zahlen der Form n’ + n + 41, wobei n eine beliebige natürliche Zahl ist
(X = {0, l, 2, ...})‚ sind Primzahlen.

. l 1 1 l n
(2)Esg1lt.S„ —-fi+rfi+fi+ + —":1-

für jede natürliche Zahl n, die größer oder gleich eins ist (X = {l, 2, . . .}).
(3) Jede natürliche Zahl n, (X = {0‚ l, 2, . . .}), ist der ihr folgenden natürlichenZahl

gleich.
(4) Für jede natürliche Zahl n, die größer oder gleich 3 ist, (X = {3, 4, 5, ...}), gilt

die Ungleichung 2" > 2n + l.

Es kommt nun darauf an, den Wahrheitswert solcher Aussagen zu bestimmen.
Die Methode der vollständigen Induktion (siehe auch Induktionsaxiom in 5.1.) läßt
sich folgendermaßen formulieren:
3 siehe: u. a.‚ Mathematik



S.4.1

34 4. Einige Beweisprinzipien

Satz 4.1 (Methode der vollständigen Induktion): Eine Aussage q = (Vn) p(n) mit
X = {n l n natürliche Zahl /\ n g a} ist genau dann eine wahre Aussage, wenn gilt:
(l) p(a) ist eine wahre Aussage.
(2) Aus der Annahme, daß p(k) für ein beliebiges festes n = k g a eine wahre Aussage

ist, folgt, daß auch p(k + 1) eine wahre Aussage ist.

Wir formulieren diese Methode hier als Satz und wollen uns darauf beschränken,
diesen Satz etwas plausibel zu machen.

Nach (1) wissen wir, daß p(a) gilt. Setzen wir in (2) k = a, so gilt wegen (2) auch
p(a + l). Setzen wir nun k = a + 1, so folgt wegen (2) die Gültigkeit von p(a + 2).
Fahren wir so fort, so durchlaufen wir offenbar die gesamte Menge der natürlichen
Zahlen g a.

Um bei konkreten Aufgaben Satz 4.1 anwenden zu können, formulieren wir noch
ein Schema, nach dem man beim Beweis immer vorgehen kann.

I. Man zeige: Es gilt p(a). (Induktionsbeginn)

II. Man nehme an: p(k) ist für ein beliebiges n = k g a eine wahre Aus-
sage. (Induktiansazznahme)

III. Man zeige: Unter der Voraussetzung II. ist auch p(k + l) eine wahre
Aussage. (Induktionsschritt)

IV. Bei Gültigkeit von I.‚ IL, III. kann man folgern:
q 2 (Vn)p(n) mit X = {n l n natürliche Zahl An g a} ist eine wahre
Aussage. (Induktionssclzluß)

Beispiel 4.8: Wir betrachten die Aussage (1) aus Beispiel 4.7. Setzen wir n = 0, l, 2,
..., l0 ein, so erhalten wir die Primzahlen 41, 43, 47, 53, 61, 71, 83, 97, l l3, 13l, l 5l, .. .

Man ist also geneigt, daraus zu folgern, daß die Aussage richtig ist. Wenn wir aber
versuchen, für dieses Beispiel den Schritt III. durchzuführen, so merken wir, daß
dies nicht gelingt. Das bedeutet, daß die Aussage „n2 + n + 4l liefert nur Prim-
zahlen“ nicht nachgewiesen werden kann. Es ist’ deshalb zweckmäßig zu prüfen„ob
diese Aussage falsch ist. In der Tat: Für n = 0, 39 erhalten wir nur Primzahlen, für
n = 40 jedoch ist 402 + 40 + 41 keine Primzahl.

Das Beispiel zeigt: Es ist im allgemeinen falsch, aus der Gültigkeit von Aussagen
p(a),p(a + l), ...,p(a + b) auf die Allgemeingültigkeit zu schließen.

Beispiel 4.9: Wir betrachten die Aussage (2) aus Beispiel 4.7:

1_1
“1+1'l-2I. a = l. Es gi1t:S1=

. l l l klI.ESS€lS„—ü+fi+..."l- —T‘_T
für ein beliebiges k g l gültig.

III. Unter der Annahme II. ist zu zeigen:

;+ + l _ k+l
(k+l)-((k+l)+l)—(k+l)+l'

. 1Esg11t:S,‘+,=T + 2_3



4.3. Die Methode der vollständigen Induktion 35

Beweis.‘ Es ist
1 k l

Sk+l : S” (k+1)-((k+l)+1) I k+l + (k+l)(k+2)
(nachll)

k(k+2)+I k2+2k+1 (k+1)2 _k+1
=(k+l)(k+2)"(k+l)(k+2):(k+l)(k+2)_k+2'

Demzufolge ist III. gezeigt, und wir können nach IV. schließen, daß die Summen-
forme]

l n

+~‘+T(@=m
I l

S*"1-—2+?T
für jede natürliche Zahl n g l gilt. I

Beispiel 4.10: Wir betrachten die Aussage (3) am Beispiel 4.7. Wir nehmen an:

Es sei k = k + 1 für ein beliebiges n = k g 0. Dann ist nach llI. zu zeigen: k + l,

= k + 2. Dies ist aber nicht schwer, denn aus k = k + l folgt durch Addition von l

auf beiden Seiten sofort k + l = k + 2.
Hieraus den Schluß zu ziehen, daß die in Beispiel 4.7, (3), formulierte Aussage

richtig ist, wäre jedoch falsch, denn wir haben vergessen, I. nachzuprüfen. Nach I.
müßte gelten: O = l. Das ist aber offenbar falsch.

S0 einfach es im Beispiel 4.10 auch zu sehen ist, daß die Aussage (Vn) n : I7 + l

falsch ist, so zeigt es doch die Wichtigkeit des Schrittes I. Es kann ohne weiteres
vorkommen, daß sich III. beweisen läßt, aber I. nicht gilt. In einem solchen Falle
ist die zu untersuchende Aussage falsch. Den Beweis der Aussage (4) aus Beispiel 4.7
überlassen wir dem Leser.

Bemerkungen:

. Die Schwierigkeit beim Induktionsbeweis liegt darin, da es zum Beweis von lIl.
keine Rezepte gibt. Es kommt jeweils darauf an, die Annahme II. günstig auszu-

nutzen, um III. zu zeigen.
. In vielen Anwendungen sind sowohl a als auch die Aussageformen p(n) nicht

gegeben, und es kann sehr schwierig sein, diese zu finden.
. Es gibt eine Modifikation der Annahme II.. die folgendermaßen lautet:
II’.: Die Aussagen p(n) mögen für alle Zahlen a g n g k gelten. Man kann nun

II. durch II’. ersetzen und in manchen Beispielen nutzbringend anwenden.

h
)

b
.)

Aufgabe 4.5: Man zeige mittels vollständiger Induktion q = (Vn) 2" > 2n + l, a:

X 2 {3. 4, 5, ist eine wahre Aussage!

Aufgabe 4.6: Man zeige mittels vollständiger Induktion a:

n 1 — ( + 1 -x" + - "+1
q =(Vn)m§1m-.x‘"" =;X x {0, l, 2, ...}

ist fürjede beliebige reelle Zahl x, x + l, x fest gewählt, eine wahre Aussage.



5. Aufbau der Zahlenbereiche

5.1. Der Bereich der reellen Zahlen

Am Anfang mathematischer Betrachtungen steht auch der Zahlbegrifl”. Die Zahlen
gehören zu den grundlegenden mathematischen Objekten, mit deren Hilfe die realen
Dinge oder Ereignisse quantifiziert oder geordnet werden können. In diesem Ab-
schnitt wollen wir ihre wesentlichen Eigenschaften und die Gesetze, denen sie ge-
nügen‚ zusammenstellen.

5.1.1. Natürliche Zahlen

Von der Anzahl oder Ordnung einer Menge von Dingen kommen wir zu den
natürlichen Zahlen 1, 2, 3. ..., zu denen wir hier auch die Null rechnen wollen.

Die natürlichen Zahlen können auch axiomatisch erklärt werden. Dazu nutzt man die Kenntnis
ihrer Eigenschaften, Wählt man unter diesen eine minimale Zahl von Grundeigenschaften derart aus,
daß sich alle weiteren von diesen ableiten lassen, so bilden diese ein Axiomensystem. Für die natür-
lichen Zahlen stammt das bekannteste von Peano (1891):

0 ist eine natürliche Zahl.

Zu jeder natürlichen Zahl n gibt es genau einen Nachfolger n’.

Ex gibt keine natürliche Zahl, deren Nachfolger 0 ist.

Die Nachfolger zweier verschiedener Zahlen sind voneinander verschieden.

Enthält eine Menge natürlicher Zahlen die Zahl 0 und mit jeder natürlichen Zahl n auch deren
Nachfolger n’, m enthält xi: alle natürlichen Zahlen.

.V
‘2

¢
‘§

"!
":

‘

Die ersten vier Axiome sind ohne weiteres verständlich. Den Nachfolger von 0 nennt man 0'
oder 1, den von l entsprechend 0" oder l’ oder 2 usf. Das fünfte Axiom verwendet den Begriffeiner
Menge, der in 7. näher erklärt wird. Wir verstehen dabei die natürlichen Zahlen als eine Gesamtheit,
eben als Menge der natürlichen Zahlen. Dieses letzte Axiom wird auch als Induktiomaxiom bezeich-
net, es rechtfertigt den Schluß der vollständigen Induktion (siehe auch 4.3.). Mit Hilfe dieser fünf
Grundgesetze können die Addition, die Multiplikation und eine Ordnungsrelation erklärt und ferner
alle bekannten Rechenregeln für die natürlichen Zahlen abgeleitet werden.

Im Bereich dieser natürlichen Zahlen sind die arithmetischen Grundoperationen
Addition und Multiplikation unbeschränkt durchführbar. Summe und Produkt
zweier natürlicher Zahlen ist wieder eine natürliche Zahl.

Die Umkehrung dieser Rechenoperationen, die Subtraktion und die Division,
lassen sich dagegen im Bereich der natürlichen Zahlen nicht unbeschränkt ausführen.
So gibt es beispielsweise für die Gleichungen 5 + x = 2 oder 3 -y = 7 unter den
natürlichen Zahlen keine Lösungen x oder y.

5.1.2. Rationale Zahlen, Grundgesetze der Arithmetik

Rationale Zahlen

Diese Fragestellungen führen bekanntlich zur Einführung negativer ganzer Zahlen
und der positiven und negativen Brüche. Die ganzen und die gebrochenen Zahlen
bilden den Bereich der rationalen Zahlen. Mit ihnen kann man unbeschränkt die
vier Grundrechenarten Addition, Subtraktion, Multiplikation und Division aus-
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führen. Summe, Differenz, Produkt und Quotient zweier rationaler Zahlen ist wieder
eine solche.

Beachten muß man lediglich, daß die Division durch O nicht möglich ist!
Dabei kann jede rationale Zahl als Quotient zweier ganzer rationaler Zahlen dar-

gestellt werden. Die ganzen Zahlen werden als ein Bruch mit dem Nenner I aufge-
faßt.

Wir wollen den Bereich der rationalen Zahlen als etwas Gegebenes ansehen und
gehen nicht weiter auf seine Entwicklung aus dem Bereich der natürlichen Zahlen ein.
Das formale Rechnen mit derartigen Zahlen einschließlich der Vorzeichen- und
Klammerregeln setzen wir ebenfalls als bekannt voraus.

Grundgesetze der Arithmetik

Im folgenden sollen einige Eigenschaften und Gesetze der rationalen Zahlen
angegeben werden. Dabei bedienen wir uns eines „axiomatischen“ Vorgehens, indem
wir die grundlegenden Eigenschaften als Grundgesetze formulieren, aus denen sich
dann alle weiteren — uns bekannten ~ Rechenregeln ableiten lassen. Wenn wir jetzt
allgemein von Zahlen sprechen, so sind die rationalen Zahlen gemeint. Bezeichnet
werden sie mit kleinen lateinischen Buchstaben a, b, c,

Die Grundgesetze der rationalen Zahlen werden für die Gleichheit und Ordnung,
Addition und Subtraktion, Multiplikation und Division formuliert und falls erfor-
derlich jeweils erläutert:

I. Grundgesetze der Gleichheit:

1. Es ist a = a (Reflexivität der Gleichheit)

2. Aus a = b folgt b = a (Symmetrie der Gleichheit)

3. Aus a = b und b : c folgt a = c (Transitivität der Gleichheit)

II. Grundgesetze der Ordnung:

1. Die Zahlen bilden eine geordnete Menge, d. h. für jedes Paar von Zahlen a und b
gilt genau eine der drei Beziehungen: a < b, a = b, a > b.

2. Aus a < b und b < c folgt a < c (Transitivität der Beziehung „kleiner“).
Eine andere kürzere Schreibweise hierfür ist

(a<bAb<c)—>a<c.
Soll nur die Ungleichheit von a und b ausgedrückt werden, so schreiben wir a # b,
d. h.‚ a ist nicht gleich b.

III. Grundgesetze der Addition."

1. Zu jedem Paar von Zahlen a und b gibt es genau eine dritte Zahl, die die Summe
von a und b genannt und mit a + b bezeichnet wird; a, b heißen Summanden. Die
Addition genügt folgenden Gesetzen:

2. a + b = b + a (Kommutativität der Addition)

3. (a + b) + c = a + (b + c) (Assoziativität der Addition)

4. Aus a < b folgt a + c < b + c (Monotonie der Addition)

oderkürzer

a<b—>a+c<b+c
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. . 4 5 4 5 19 17
BL’I.S‘pl£’[ 5.1: Aus? < Z folgt §+ 3 < Z + 3. also -—5— < T

4
oder —f—+(—3)<%+(—3), also —%<—%.

1V. Grundgesetz der Subtraktion (Umkehrung der Addition):

Zu jedem Paar von Zahlen u und b gibt es genau eine Lösung x der Gleichung
a + x = b. Man nennt x die Diflerenz von b und a und schreibt x = b — a; b wird
als Minuend, a als Subtrahend bezeichnet.

Auf die Eindeutigkeit der Lösung — „es gibt genau eine Lösung“ — soll besonders
hingewiesen werden.

An dieser Stelle wird der Satz von der Existenz der Null eingefügt, der aus den
angeführten Grundgesetzen abgeleitet werden kann. (

Satz 5.1: Es gibt genau eine Zahl 0, die, bei der Addition als Summand verwendet,
keine Anderung bewirkt, d. h.. es gilt (Va)a + 0 = a.

Definition 5.1: Eine Zahl a heißt positiv, wenn a > 0, und negativ, wenn a < 0 ist.

Die Gleichung a + x = 0 wird durch x = 0 ~ agelöst, wofür wir x = —a schrei-
ben. Man nennt ~a die zu a entgegengesetzte Zahl, und es gilt a + (—a) : 0.
Daraus folgt sofort: Ist a > 0, so ist —a < 0, und ist a < 0, so ist —a > 0. Denn ist
beispielsweise a > 0, so ist wegen 111.4. a + (—a) > (—a)‚ also auch O > —a.

Überlegen Sie sich ebenso den Nachweis des zweiten Teils der Folgerung!

V. Grundgeretze der Multiplikation
l. Zu jedem Paar von Zahlen a und b gibt es genau eine dritte Zahl, die das Produkt

von a und b genannt und mit a ' b (oder ab) bezeichnet wird; a, b heißen Faktoren,
a Multiplikand, b Multiplikator. Die Multiplikation genügt folgenden Gesetzen:

2. a ~ b z b r a (Kommutatloität der ‚Multiplikatio/t)

3.(a'b)‘c =av(b-c)
4.(a+b)-c=a-c+b-c
5.Ausa<bundc>0foIgta-c<b‘v

oder kürzer

(a<b/\c>0)—>a'c <b'C.

Zu beachten ist, daß das 4. Gesetz Addition und Multiplikation unsymmetrisch
miteinander verknüpft. Die Vertauschung beider Operationen in diesem Gesetz
führt zu einer falschen Aussage, denn es ist im allgemeinen a - b + c # (a + c) - (b + c).

Wegen des 5. Gesetzes spielt die 0 für die Multiplikation von Ungleichungen eine
besondere Rolle, wie das folgende Beispiel zeigt.

(Axxvoziativität der Multiplikation)

(Distributioität)

(Monotonie der Multiplikation)

Beispiel 5,2: Wir gehen von der Beziehung 4 < 6 aus, die wir nacheinander mit
2, ä, 0 und —l multiplizieren:

4-2<6-2 4-}—<6'—‘5

8<l2 2<3

Man darf also Ungleichungen nur mit positiven Zahlen multiplizieren, ohne dal3
sich das Ungleichheitszeichen ändert.

4~0=6~0
0=0

4~(—l)>6-(-1)
-4 > -6.
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VI. Grundgesetz der Division (Umkehrung der Multiplikation):

Zu jedem Paar von Zahlen a und b mit a # 0 gibt es genau eine Lösung x der Glei-
chung a - x : b. Man nennt x den Quotienten (oder Bruch) von b und a und schreibt

x = goder x = b: a; b wird als Dividend (oder Zähler), a als Diuisor (oder Nenner)

bezeichnet.
Auch sei hier besonders auf die Eindeutigkeit der Lösung x hingewiesen! Die Di-

vision durch 0 wird ausgeschlossen!
Beweisbar ist jetzt der Satz von der Existenz der Eins:

Satz 5.}: Es gibt genau eine Zahl l, die, bei der Mu/tip/ikation als Faktor verwendet,
keine Anderung bewirkt, d. /z., es gilt (Va) a" l = a.

Als letztes soll eine weitere grundlegende Eigenschaft der rationalen Zahlen ange-
geben werden, die man als Archimedisches Grundgesetz bezeichnet.

VII. Arc/iimedisches Grundgesetz:

ist a eine positive Zahl, so gibt es stets eine natürliche Zahl n mit n > a.

Die folgende Formulierung läßt eine geometrische Interpretation zu. Sind a und b

zwei positive Zahlen, so gibt es stets eine natürliche Zahl n mit
a+a+...+a=n-a>b.
am

n-mal

Die Strecke der Länge u kann so oft addiert werden, daß die Summe größer als die
Strecke b wird.

Abgeleitete Rechenregeln

Aus den xorstehend genannten Grundgesetzen lassen sich alle bekannten Regeln —

so etwa die Vorzeichen- und Klammerregeln — für das Rechnen mit rationalen Zahlen
herleiten. Die getroffene Auswahl der Grundgesetze erweist sich insofern als zweck-
mäßig, da alle Rechenregeln der Arithmetik aus ihnen ableitbar sind und ihre Anwen-
dung nicht zu Widersprüchen führt. Aufdie interessanten Fragen, ob die angegebenen
Grundgcsetze selbst bewiesen oder inwieweit sie durch andere ersetzt werden können
oder ob sie für den Bereich der rationalen Zahlen charakteristisch sind, kann hier
nicht eingegangen werden.

Anschließend werden einige Rechenregeln aus den Grundgesetzen hergeleitet. Die
hierfür erforderlichen Schlußweisen sind nicht sehr schwierig, müssen aber sorg-
fältig durchgeführt werden.

Beispiele 5.3:

l. Es gilt —(—a) : a.

Da wegen Ill.2. aus a + (—a) = O auch (-11) + a ä Q folgt, ergibt sich nach 1V. a = 0 — (-11)
oder a = —(—a).

.Esgiltb+(—a)=b—u.
Die Zahl x = b — a löst nach IV. die Gleichung a + x = b. Setzen wir andererseits für
x = b + (—a), so ergibt sich nach 111.2. und III.3.:

11+[b+(—-a)]=a+[(—a)+b]=[a+(-a)l+b=0+b=b.
Wegen der Eindeutigkeit der Lösung muß demnach b + (—a) = b — a sein.

I\
J

S.5.2
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3. Aus a < b folgt —a > —b.

Denn addieren wir nach III.4. auf beiden Seiten von a < b die Summe (—a) + (—b), so folgt

H + [(-a)+(-17)] < b + [(—a) + (—b)l.

Nach Umformungen gemäß IIl.2.‚ III.3. und Regel 2 erhalten wir

[a + (-!1)l + (—b) < b + [(—b) + (-fl)l‚
0 —— b < [b+ (—(b)] + (—a),

—-b <0——a‚
—-b < —a.

:5 Fiiralleagilta-0=0-a=0.
Denn es ist b + 0 = b. Beide Seiten der Gleichung können mit a multipliziert werden: (b + 0) ~ a

= b - a. Wegen V.4. folgt daraus b - a + O < a = h - a. Aus Satz 5.1 folgt 0 - a = O.

5.Wennb-a=0istundb+O,somußa=0sein.
0 0

Denn es ist a = Fund auch 0 = zwegen b - O = 0 (Regel 4). Aus der Eindeutigkeit für a

nach VI. folgt somit a = O.

0N.EsgiIta-(b — c) =a-b —a-c.

Diese Beziehung folgt nach Anwendung von V.Z.‚ V.4., Regel 2, IIL3. und IV. aus:

a'(b—c)+a-t=(b——c)-a+c~a= [(b—c)+c]~z1
= [(b+(—c))+c]-a= [b+((—c)+c)]*a=[b+0]-a=b-a=a-b.

\
l l l

.Ausa < bund a,b>Ofo1gt3< Z.

4 . ‚ ‚ A . . . A . A 1 1
Zum Beweis multiplizieren wir beide Seiten der Ungleichung a < b mit der positiven Zahl 71- -

1 1

Wegen V.2.„und V3. und a -: = l bzw. b ~ 3 = l folgt dann die Behauptung.

In den Beispielen sind einige wichtige, wenn auch sehr einfache Rechenregeln unter
Verwendung der Grundgesetze abgeleitet worden. Selbstverständlich lassen sich auch
weiterführende arithmetische Regeln gewinnen, wie etwa bei der Klammerrechnung,
der Faktorenzerlegung, der Bruchrechnung oder der Potenzrechnung mit ganzen
Exponenten.

Aufgabe 5.1: Leiten Sie durch exakte Schlußweise aus den Grundgesetzen der Arith-
metik die Regel .

—(a + b) = (—a) + (—b) = —a — b
ab.

Veranschaulichung der rationalen Zahlen auf der Zahlengeraden

Die rationalen Zahlen lassen sich auf Punkte einer orientierten Geraden abbilden.
Diese geometrische Veranschaulichung ist nicht aus dem Axiomensystem der Grund-
gesetze herleitbar, sondern eine an und für sich unnötige, aber in vielerlei Hinsicht
zweckmäßige Anleihe bei der Geometrie.

Wir legen zunächst zwei Punkte 0 und E auf der Geraden fest, 0 links von E,
und haben damit eine Orientierung gewonnen, wenn wir die Richtung von 0 nach E
als positive festlegen. Ferner wird die Strecke 072115 Längeneinheit angesehen und
nach beiden Seiten von O wiederholt abgetragen (Bild 5.1).
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Bild 5.1.
Zahlengerade

—o—+—> 
HA’ -2-I072}

Die ganzen Zahlen ordnen wir nun wie bei einer Thermometerskala den so gewon-
nenen Punkten zu. Dabei entspricht der Zahl Null der Punkt O und der Zahl l der

Punkt E usf. Diese Zuordnung kann auf jede rationale Zahl r = —:— (a, b ganz und

b > 0) erweitert werden, wie wir der Konstruktion aus Bild 5.2 entnehmen.

Bild 5.2.t . .

Geometrische Konstruktionen von r =

m
in

l7f‘7 11

i. In der
b

Abbildung ist r = Jede rationale Zahl wird damit auf einen Punkt der Zahlen-

Bei Anwendung des Strahlensatzes verhält sich a: r = b: l, also r =

geraden abgebildet, den wir als einen rationalen Punkt bezeichnen.
Wir wollen jetzt eine Eigenschaft über die Verteilung dieser Zahlen-auf der Ge-

raden angeben:

Satz 5.3: Die rationalen Zahlen liegen dicht geordnet auf der Zahlengeraden, das heißt
zwischen irgend zwei rationalen Punkten gibt es stets einen weiteren.

Für .zwei Zahlen a und b mit a < b gibt es stets eine dritte Zahl c mit a < c < b.

. . . . a
Beispielsweise ist m = b eine solche Zahl. Denn aus a < b fo1gt%< g, und

wenn auf beiden Seiteng oder; addiert wird, so folgt a < m < b. Mit diesem Ver-

fahren können wir sogar unendlich viele rationale Zahlen zwischen a und b unter-
bringen.

5. 1.3. lReelle Zahlen

Irrationale Zahlen

Obwohl die rationalen Zahlen beliebig dicht geordnet auf der Zahlengeraden liegen,
können wir nicht sagen, daß jeder Punkt dieser Geraden auch ein rationaler ist, das
heißt, es läßt sich umgekehrt nicht jedem Punkt der Zahlengeraden eine rationale
Zahl zuordnen. An dieser Stelle wird die Veranschaulichung sicher problematisch,
denn diese „Lücken“ lassen sich auch nicht mit einem Elektronenmikroskop finden.

Es gibt beispielsweise keine rationale Zahl, deren Quadrat gleich 2 ist oder geo-
metrisch ausgedrückt: Der Länge der Diagonalen eines Quadrates mit der Seiten-
länge l entspricht auf der Zahlengeraden kein rationaler Punkt (Bild 5.3). Der Be-
weis dafür ist im Abschnitt 4.2.2. geführt worden.

5.5.3
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Bild 5.3

0 1 P

Der Umfang eines Kreises mit dem Radius r berechnet sich nach der Formel
U : 2m". Auch 7-: ist keine rationale Zahl, so daß wir für r = ä einen Kreisumfang
erhalten, dessen Länge ebenfalls nicht mit einer rationalen Zahl meßbar ist.

Es gibt also nichtrationale Zahlen. Das führt zu einer Erweiterung des Bereiches
der rationalen Zahlen. Durch Hinzunahme von irratiamzlen (nichtrationalen) Zahlen
erhalten wir den Bereich der reellen Zahlen. Die Einführung der irrationalen Zahlen
und die Rechtfertigung de: Gültigkeit der Grundgesetze der Arithmetik und damit
auch der abgeleiteten Regeln bedarf genauerer Untersuchungen, die hier nicht ge-
führt werden.

So kann man nach Weierstraß (1815-1897) die reellen Zahlen durch Intervallschachtelungen
mit rationalen Intervallgrenzen oder nach Dedekind (1831--1916) durch Schnitte im rationalen Zah-
lenbereich erklären. Die rationalen Zahlen lassen sich in diese Definitionen einordnen und gehören
damit zum Bereich der reellen Zahlen.

Letzterer bildet also eine Erweiterung des Bereichs der rationalen Zahlen derart,
daß alle im Bereich der rationalen Zahlen gültigen Regeln bestehen bleiben und for-
mal unverändert auf die irrationalen Zahlen übertragen werden. Weiterhin läßt sich
zwischen den Punkten der Zahlengeraden und den reellen Zahlen eine umkehrbar
eindeutige Zuordnung herstellen. Jedem Punkt P der Zahlengeraden entspricht dann
genau eine reelle Zahl a und umgekehrt jeder reellen Zahl a genau ein Punkt P der
Geraden.

Aufgabe 5.2: Welches der Zeichen <, =, > gehört jeweils zwischen die folgenden
Zahlen: l. l

und l,4l3"“; und 1,423“; J; und 1,42 dm?
Eine Erweiterung des Bereichs der reellen Zahlen ist bei Beibehaltung der Grund-

gesetze aus 5.1.2. nicht mehr möglich. Das geht nur bei Verzicht auf gewisse Axiome.
So wird bei der Erweiterung zum Bereich der komplexen Zahlen in 5.3. auf die Grund-
gesetze der Ordnung und der Monotonie verzichtet.

Übersicht zum Bereich der reellen Zahlen

Wir geben eine endgültige Übersicht über den Aufbau des Bereichs der reellen
Zahlen an:

I'M/l: Zahle/i

/
ruffanale Ia/7/en

V
/

ganze Zahle/i

//\
. / \

/79.017//".470/II! In/I/en /u_7/zir/it/r2 mm
(pa:/I/re yam In/I/(II u NU/l)

/rra//ma/e M/I/7

gebrochene [ab/M

Bild 5.4
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5.1.4. Zahlendarstellung

Zur numerischen Rechnung werden die positiven reellen Zahlen in Zahlensystemcn
durch Aneinanderreihung von Ziffern dargestellt. Bei Brüchen kommt noch ein
Komma oder Punkt hinzu. Die Ziffern sind bei Potenzsystemen von einer Basis B
abgeleitet.

Im Dezimalsystem (B = l0) wird eine Zahl a durch die Folge der l0 Ziffern O,

l, 2, ..., 9 dargestellt:

a = z,„.z„„ z1zo,z_,z_2 z_„; 0 g z; g 9; N + M g 0; 2„ + 0.

Dies bedeutet weiter nichts als die Darstellung der Zahl a in der Form

a = zN-10” + zN,1*l0“"‘ + + z, ~ 10‘ + zo ' 10° + z_1-10“
+ 2,2-10* + + z_„-10“". (5.1)

Für M = 0 haben wir eine ganze Zahl, dann wird das Komma oder der Punkt weg-
gelassen. Für N < 0 wird in der Darstellung der Zahl als Ziflernfolge 20 = . . . =z„„ , =0
gesetzt. So ist

27.03 =2- 10‘ +7- 10° +0-10" + 3-104
und

0.0047 = 4~10'3 + 7- 10".

Natürlich kann nicht jede reelle Zahl in dieser Art dargestellt werden, zum Bei-

spieläoder \/5, sondern nur die Vielfachen von 10'“. Jede gebrochene rationale

Zahl läßt sich durch eine abbrechende oder durch eine nichtabbrechende, jedoch
periodische Dezimalzahl, deren Ziffern sich periodisch wiederholen, darstellen.
Dagegen können die irrationalen Zahlen nur annäherungsweise durch Dezimal-
zahlen erfaßt werden.

Beispielsweise ist; = 1.25 Oder; = 0142857142857 Die Zifiernfolge 142857

wiederholt sich laufend, wir schreiben dafür auchä = 0.142857. Andererseits sind

für J2 die Zahlen 1.4, 1.4l, 1.414 oder für n die Zahlen 3.14 oder 3.1415 lediglich
rationale Näherungen, auch wenn beliebig viele weitere Stellen hinzugenommen
werden.

Für die Belange der Informatik erweist sich die Verwendung des Dual< (B = 2)
bzw. des Oktalsystems (B = 8) als zweckmäßig. Im Dual- oder Binärsysrem
gibt es nur die Ziffern 0 und L‘). Es gilt für die ziffernmäßige Darstellung der
Zahlen

a=b,v-2"+b,.,,1-2"" +...+b,-21+bo-2°+b_1-2*‘
+ + b_M~2‘“ (5.2)

mit
b,=0,L; N+M;0; bN=1=0.

Für M = 0 und IV < 0 gelten entsprechende Bemerkungen wie beim Dezimalsystem.
Die Zahl 13 schreibt sich demnach im Dualsystem

LL0L=L-23+L-22-1-0-2‘+L-2°.

1) Die Dualziffer 1 wird mit L bezeichnet (zum Unterschied zur Dezimalzifler l).
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Das Rechnen im Dualsystem ist äußerst einfach. So besteht das „kleine Einmaleins“
lediglich aus vier Multiplikationen:

0'020, 0~L=0, L-O=0 und L-L=L.

Jedoch entsprechen den Zahlen in diesem System sehr lange unübersichtliche Aus-
drücke. Einer l2-stelligen Dezimalzahl entspricht eine 40-stellige Dualzahl, die im
übrigen nur „Nullen“ und „Einsen“ enthält. Dies ermöglicht eine Verwendung des
Dualsystems im täglichen Umgang praktisch nicht.

Aufgabe 5.3: Schreiben Sie bei Verwendung von L (Eins) und O (Null) als Ziffern des
Dualsystems

a) 27 und 53.625 als Dualzahlen und

b) LLOL0.0L0 und LOLLOLLLOLL.LLLLLL als Dezimalzahlen.

5.2.

5.2.1. Ungleichungen

Das Rechnen mit Ungleichungen beruht auf den Grundgesetzen der Arithmetik
(siehe 5.1.2., insbesondere II‚2‚ III.4. und V.5.). In diesem Abschnitt sollen einige
weitere Regeln für das Rechnen mit Beziehungen, in denen die Zeichen < , > ‚ g , g
vorkommen, abgeleitet werden. Die zahlreichen Beispiele berücksichtigen die zu
beachtenden Besonderheiten beim Umgang mit Ungleichungen. Die verwendeten
Zahlen a, b, c, sind reell.

Es gelten folgende Regeln

.Ausa§ bunda g bfolgta = b.
Die Zeichen g und g sind im Sinne vom ausschließenden „oder“ zu verstehen.
Entweder ist a < b, oder es ist a = b, beides ist nach II.1. gleichzeitig nicht mög-
lich. Wenn also beide Voraussetzungen gelten sollen, so kann nur a z b sein.

Ausa+c<b+cfolgta<b.
Zum Nachweis addieren wir auf beiden Seiten der Ausgangsungleichung nach II l.4.
den Wert (—c).

.Ausa>c< b-cundc> Ofolgta<b.
Denn wir können beide Seiten der Ausgangsungleichung nach V.5. mit
plizieren.

4.Ausa< bundc<dfolgta+c<b+d‚
kurz:(a<b/\c<d)—»a+c<b+d,
d. h., gleichgerichtete Ungleichungen können addiert werden.

Rechnen mit Ungleichungen und absoluten Beträgen

b)

1 .

— multi-
c

Beweis: Aus a < b folgt wegen III.4. a + c < b + c,

b + c < b + d

und somit wegen II.2. die Behauptung. I

aus c < a’ folgt ebenso

Zu beachten ist, daß man gleichgerichtete Ungleichungen nicht ohne weiteres
subtrahieren darf, wie folgendes Beispiel zeigt (dabei wird die in der zweiten Zeile
stehende Ungleichheit jeweils von der ersten abgezogen):

3<5 3<5 3<5
l<2 l<3 l<4
2<3 2=2 2>1
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Ist a < b und c < d und sind b und c positiv, dann gilt a - c < b - d.

Beweis: Aus a < b folgt wegen V.5. a - c < b - c,

ausc<dfolgtebenso I7-c<b-d

und somit wiederum wegen II.2. die Behauptung. I

Wir können aber gleichgerichtete Ungleichungen im allgemeinen nicht mitein-
ander multiplizieren, z. B. ist —3 < —l und 2 < l0, aber -6 > —l0!

6. Aus a < b folgt —a > —b und falls a > 0 — und somit auch b > 0 — ist, folgt

i<i
b a '

Die Beweise hierfür sind bereits in den Beispielen 5.3 (3 und 7) angegeben. Bei der
Multiplikation mit (-1) kehrt sich der Sinn der Ungleichung um!

Beispiele 5.4:

l. Es sollen diejenigen reellen Zahlen ermittelt werden, die der Ungleichung

9x+22_5
2—3x“

genügen. Zur Lösung wird die Ungleichung mit 2 — 3x multipliziert. Dabei sind
zwei Fälle zu unterscheiden:

HHh2—3x>0(+x<%%
dann wird 9x + 2 g -5 (2 — 3x) oder 12 g 6x oder x g 2; d. h., die Un-

gleichung gilt fürx <

2
Fall2: 2 —— 3x < 0(<—>x >—5);

hierfür gilt 9x + 2 g —5 (2 — 3x) oder 12 g 6x oder x g 2; d. h., die Un-
gleichung gilt für x g 2. Insgesamt gilt die Ungleichung somit für

x<—§~ und 2§x.

2. Wenng < g und q, s > 0, so gilt

”<”+’<L
q q+s s

Wir beweisen die linke Ungleichung. Bei der Durchführung des Beweises beachten
wir, daß wir von der Voraussetzung ausgehen und durch schrittweise Folgerungen
die Behauptung entwickeln!

Aus% < Eund q, s > 0 folgt nach Multiplikation beider Seiten mit q ‘ s:

p-s<q-r
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und daraus durch Addition von p - q auf beiden Seiten

p~s +12-q<q'r+p't1
oder

p'(q+s)<q'(p+r)-
Wir multiplizieren beide Seiten mit _ und erhalten die Behauptung

l

(q + s) q
p p + r

q < q + s '

Man entwickle hierzu den Beweis für die rechte Ungleichung!

3. Es gilt die Bernoullische Ungleichung:

(l+a)">l+n-a für a>—l, 0+0, n22, ganz. (5.3)

Der Beweis erfolgt durch vollständige Induktion (siehe 4.3.):

l. Induktionsbeginn für n = 2:

(l+a)2=l+2~a+a’>l+2~(t, daa2>O.

II. Mit der Induktionsannahme ist für n : k: I

(l +a)"> l +k—a‚

III, Beide Seiten werden mit l + u > O multipliziert, das ergibt

(l +a)"*‘ > (l + k-u)'(| + u)

oder
(1+a)"“>1+(k+l)>u+k-a2>l+(k+l)‘a,
dak~a‘ >0ist.

IV. Die Ungleichung gilt auch für n = k + 1 und somit für alle natürlichen n _Z_ 2. I

n Aufgabe 5.4: Beweisen Sie die Cauchy-Schwarzsclze Ungleichung

(a-b + c-d): g (a2 + c’)'(b2 +412).

a: Aufgabe 5.5: Gegeben sind zwei Zahlen a und b mit 0 < a g b,

Es ist A = (a + b) das arithmetische Mittel von a und b,

G = x/ab das geometrische Mittel von a und b und

H = —2Lb-— das harmonische Mittel von a und b
a + b

Beweisen Sie die Ungleichungskette: a g H g G g A g b.

=|= Aufgabe 5.6: Beweisen Sie durch vollständige Induktion

(1 + a)" < 1_ für n;l,ganz‚—l<a<%, a+0.

t Aufgabe 5.7: Für welche x gilt
l x — 4
5 ' b ———j 7a)x—3<I’ )2x=—7x+5>°

c) Man bestimme die Punkte der x,y-Ebene, für die gilt:

y+x§4/\x;0/\y;0.
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5.2.2. Absoluter Betrag

Definition 5.2: Der absolute Betrag einer reellen Zahl a wird durch

a für agO
—a für a<0lal =

erklärt.

Da —a für negatives a positiv ist, gilt stets |a| g 0. Der absolute Betrag wird des-
halb auch als Abstand der reellen Zahl a vom Nullpunkt auf der Zahlengeraden
gedeutet.

Beispiel 5.5: |2! = 2, da 2 > 0, und |——2] = —(—2) = 2, da -2 < 0.

Für das Rechnen mit absoluten Beträgen von reellen Zahlen a und b lassen sich
folgende Regeln herleiten:

1- l-al = Ial (5.4)

Hieraus folgt sofort fa — bl = lb — al.

2. in é Iül

3 la ' bl = lal ‘ lbl (5-5)

4. 1% =%, b+0 (5.6)

5. Ilal - lbll ä Ia + bl é lal + lbl (5-7)

Die unter 5. stehenden Beziehungen werden als Dreieckrungleichungen bezeichnet
und besagen, daß der Betrag einer Summe nicht größer als die Summe der Beträge
der Summanden und nicht kleiner als der Betrag der Differenz dieser Beträge ist.

Beispiele 5.6:

l. Die Ungleichung |a| g b mit b > O bedeutet dasselbe wie —b g a g b (Bild 5.5).

Bild 5.5
Wg},

-l7 all Zr

2. Der Abstand der beiden den Zahlen a und b entsprechenden Punkte auf der Zah-
lengeraden beträgt |b — al.

3. Für welche x gilt Ix — a| < b mit b > 0?
Nach der Definition 5.2 ist:

x — a für x g a
[x — a| = l ..

a — x fur x < a

Für x g a entspricht obiger Ungleichung x — a < b oder umgestellt a g x <
a + b. Für x < a entspricht der Ungleichunga — x < b oder a — b < x <a.
Somit gilt obige Ungleichung für alle x mit a — b < x < a + b (Bild 5.6).

Bild 5.6.

|x—al<b,b>0a-b a x m

‚ la] a für agO a-Ial 0 für L1204' _k a+ = = .

5““ 2 o m; a<0 “nd 2 a für a<0

D.5.2'
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5. Gesucht sind alle reellen Zahlen x, die die Ungleichung

Jx——1lg]2x+5|

erfüllen. Unter Benutzung von Definition 5.2 für a = x ~ 1 bzw. a = 2x + 5

werden drei Fälle unterschieden:

Fall 1 : x g 1. Hierfür lautet die Ungleichung

x -— 1 g 2x + 5,

was mit x g —6 gleichbedeutend ist. Also ist die Ungleichung für alle x g l
erfüllt.

Fall 2: — g g x < l. Hierfür lautet die Ungleichung

—(x—1)g2x+5‚
4

woraus sich x g — ?ergibt. Also ist sie auch für — ä- g x < 1 erfüllt.

Fall 3: x < -— Hierfür lautet die Ungleichung

—(x o‘ 1) —(2x + 5)

und dies ist wiederum gleichbedeutend mit x g —6. Also gilt sie auch für x g —6.

Insgesamt: Die Ungleichung gilt für x g -6 und für — g g x.

a: Aufgabe 5.8: Für welche x gilt

a)[2xi+3[<x+3; b)‘—:—x+%l=|x—2)|;

3xc)x+1§[x—4I; d)|x|+lx—1|+|x—2l>6?

* Aufgabe 5.9: Man bestimme die Punkte der x‚y—Ebene, für die gilt:

a)lx+yl<1; b)ly|-lxlél.
-It Aufgabe 5.10: Zeigen Sie

= Max (as b); = Min (a, b)‘

5.3. Komplexe Zahlen

Der Tatbestand, daß die Gleichung x’ : 2 durch keine rationale Zahl gelöst
werden konnte, brachte uns die Einführung des Bereichs der reellen Zahlen (Ab-
schnitt 5.1.3.). Die Gleichung x2 + l = 0 ist nun andererseits auch für keine reelle
Zahl lösbar. Dieser Sachverhalt ist bei der Untersuchung quadratischer Gleichungen
schon sehr früh entdeckt worden. Mitte des 16. Jahrhunderts kam Cardano auf den

Gedanken, dal3 man mit Wurzeln aus negativen Radikanden, z. B. ‚/ -15, nach den
üblichen Regeln rechnen sollte. Descartes verwendet etwa ein Jahrhundert später
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bei der Behandlung derartiger Größen den Namen „imaginäre“ Zahlen, was soviel
wie „eingebildete“ oder „unwirkliche“ Zahlen — im Gegensatz zu den „wirklichen“
reellen Zahlen — bedeutet. Diese Bezeichnung hat sich bis heute erhalten. Das Sym-
bol i, dessen Quadrat = ——l ist, hat Euler 1777 eingeführt. Eine strengere Theorie
zur Begründung der komplexen Zahlen geht auf Gauß zurück, der auch ihre Ver-
anschaulichung in der Ebene vornahm. Die komplexen Zahlen haben seitdem die
gleiche Bedeutung erlangt wie die reellen; sie treten bei zahlreichen Anwendungen
in Physik und Technik auf.

Die komplexen Zahlen können axiomatisch als Zahlenpaare (a, b) eingeführt
werden, wobei a und b reelle Zahlen sind. Für diese Paare werden dann die Gleich-
heit und die vier Grundrechenarten definiert. Aufdie Gesetze der Ordnung und Mono-
tonie wird verzichtet. Die reellen Zahlen sind als Paare der Form (a, 0) im Bereich
der komplexen Zahlen enthalten. Wir werden die komplexen Zahlen in einer anderen
Weise gewinnen. Zur besseren Unterscheidung werden wir für die Bezeichnung der
Zahlen auch indizierte Buchstaben verwenden: a1, a2‚a3‚ oder bl, b,,b3,

5.3.1.

Zunächst werden die rein iznagiriären Zahlen eingeführt. Dazu wird festgelegt,
daß die Gleichung x2 + l = 0 von der imaginären Einheit i’) gelöst wird. Es gilt
also

I ii:
Definition 5.3: Das Produkt bi mit reellem b + 0 heißt rein imaginäre Zahl.

Rein imaginäre Zahlen

Für die rein imaginären Zahlen können ohne weiteres die Grundgesetze der
Gleichheit, Ordnung, Addition und Subtraktion von den reellen Zahlen übernommen
werden. Es ist also insbesondere

b,i + bzi = (b. + b2)i, b,i — bzi = (b, — I72)!"

und
bli < bzi für bl < b2.

Dabei wird Oi = 0 gesetzt.
Mithin lassen sich die rein imaginären Zahlen auch anschaulich auf einer Zahlen-
geraden, der imaginären Achse, darstellen. Die Einheit ist i.

Überträgt man die Regeln der Multiplikation, so ist bei Beachtung von i’ = —]:

b,i~b2i =(b1‘bz)'i’ = —b‚bz.

Das Produkt zweier rein imaginärer Zahlen ist demnach nicht wieder eine rein ima-
ginäre, sondern eine reelle Zahl!

Für die Potenzen von i gilt:

i‘ = i, i’ = —l‚ i3 = —i‚ i“ = l oder allgemein

i“"“ : i, 1'4"” = ——I, i“"*3 = —i‚ i4" = I für alle n _2_ 0, ganz.

Eine Lösung der Gleichung ix = 1 für rein imaginäres x ist x = —i‚ deshalb setzen
. l ._l . '

wir—.— = i = — i.
i

l) In der Elektrotechnik wird dafür der Buchstabe j verwendet, da mit i bereits die Stromstärke
bezeichnet wird.

4 Sieber u. a.‚ Mathematik

D.5.3
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Beispiele 5.7: 1. 3i + 7i — Si = 2i,

5.3.2.

D.5.4

2. Si t 6i

3.1
1

Komplexe Zahlen

= -30,

= —7i.

Definition 5.4: Die Summe einer reellen und einer rein imaginären Zahl heißt komplexe
Zahl z, z = a + bi‚ a, b reell. Dabei nennt man a den Realteil und b den Imaginärteil
von z und schreibt auch a = Re (z), b = Im (z).

Für b = 0 erhalten wir eine reelle, für a = O und b + 0 eine rein imaginäre Zahl.
Die Zahl Z = a — bi heißt die zu 2 konjugiert komplexe Zahl.

Wir erklären die Gleichheit zweier komplexer Zahlen folgendermaßen:

D.5.5 Definition 5.5: Zwei komplexe Zahlen sind gleich, wenn sowohl die Real- alx auch die
Imaginärteile übereinstimmen, d. l1. a1 + b1i = a; + b;i 4-» (a1 = a2 A b; = b;).

Ferner gelten die Grundgesetze der

Reflexivität;

Symmetrie:

_ Transitivität: Aus 21 = 22

z=z,

Aus 21 =22 folgt 22 = 21 und

und 22 : z; folgt 21 = 23.

Insbesondere bedeutet z = 0, daß a = b = 0 ist.

Die Grundgesetze der Arithmetik werden mit Ausnahme der Gesetze für Unglei-
chungen, also der Ordnung und Monotonie, von den reellen Zahlen übernommen.
Bei Berücksichtigung von i2
für

die Summe

—l ergibt sich mit 21 = a, + b1i und 22 z a; + b;i

Z1+Z2=(a1 +b1i)+(a2 +b2j)=(a1 +a2)+(b1 +b2)i:
die Differenz Z1 “ Z2 = (a1 + 171i) — (a2 + bzi) = (a1 — a2) ‘i’ (b1 “ b2) i:
das Produkt 21-22 = (a1 + b1i)-(a2 + b2i) = (a1a2 — b1b2) + (a1b2 + a2b1)i

und den Quotienten

21 _

22‘

(5~7)

a; + b1i _ (a; + l71i) (a; — b;i)
a; + b;i — (a2 + b2i) (a2 — b2i)

a1a2 + b1b2

a§+b§
a2b1 — a1b2

a§+b§ i, 22 #0.+

Summe, Differenz, Produkt und Quotient zweier komplexer Zahlen sind demnach
wieder komplex.

Ferner gelten die Gesetze:

21 + z; : 22

(21 + 22) + z; = 21

21 "z; 2 22

(Z1'Z2)‘Z3 = Z1

(Z1 ‘i’ Z2) ' Z3 z Z1

+21
+ (z; + 23)
.21

'(Z2'Z3)
-23 + 22-23

(Kommutalivitiit der Addition);
(Assoziativität der Addition);

(Kommutativität der Multiplikation);
(Assoziativität der Multiplikation);
(Distributivität).
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Entsprechend lassen sich die Grundgesetze für die Subtraktion und Division bei
Beachtung der obigen Festlegungen für Diflerenz und Quotient zweier komplexer
Zahlen übernehmen.

Wir sehen den Bereich der komplexen Zahlen als eine Erweiterung des Bereichs
der reellen Zahlen an. Bei den komplexen Zahlen wird mit Ausnahme der Ungleich-
heitsbeziehung auf der Grundlage derselben arithmetischen Axiome gerechnet wie
bei den reellen Zahlen. Andererseits lassen sich mit Hilfe der komplexen Zahlen Auf-
gaben bewältigen, wie die Lösung der Gleichung x2 + l = O, die im reellen Zahlen-
bereich nicht lösbar sind.

Beispiele 5.8:

l. zl =3+4i,z2=1—2i;
z1+z2:4+2i:2-(2+i); z,—z2:2+6i=2-(1+3i);
21-22 =(3+4i)-(1—2i)=(3+8)+(4—6)i=11—2i;

3+4i l+2i 3-8 6+4
“"2 =l—2i.1+2i: 5 + 5

i=—1+2i.

Wir beachten: Zähler und Nenner des Quotienten werden mit der konjugiert
komplexen Zahl des Nenners multipliziert! Diese Regel kann bei jeder derartigen
Division verwendet werden.

z§=(1—2i)2=l—4i~4=~3—4i,
2. Es seien z = a + bi und 2 = a — bi zueinander konjugiert komplex.

Dann gilt

z+2:2a,
z—2=2bi,
z-E =a2+b2
_z_ w=a+bi_a+bi:a2—bZ+‘ 2ab L
Z a—bi a+bi a2+b2 a’+b2

Insbesondere folgt für z = 1 + i, 2 = 1 — i sofort z + E = 2, z — 2 = 2i‚

2-i=2 undé = i.
Z

Aufgabe 5.11: Berechnen Sie
5 5 '

a)(2—3i)-(—l +51); b)—————1_2i ; c) 3:15‘;
d)(1+i)“; e)(l —i)2(l + i)3; ox/Y; g)\/~5 + 12i.

5.3.3. Veranschaulichung der komplexen Zahlen in der (‘ " ' Zahlenebene.
Trigonometrische und exponentielle Darstellung der komplexen Zahlen

In einem kartesischen Koordinatensystem werden auf der x-Achse die reellen und
auf der y-Achse die rein imaginären Zahlen abgetragen. Diese beiden Geraden werden
dann reelle bzw. imaginäre Achse genannt. Somit läßt sich jeder komplexen Zahl
: = a + bi ein Punkt P mit den kartesischen Koordinaten (a, b) in der x, y-Ebene
umkehrbar eindeutig zuordnen (Bild 5.7).
4*
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Häufig wird der Zahl z auch die gerichtete Strecke 0-}; als Pfeil oder Vektor zuge-
ordnet und umgekehrt. Die Lage von —z‚ E und —E wird durch Bild 5.8 verdeutlicht.
Die geometrischen Größen in Bild 5.7

r, Länge der Strecke ä’) oder Abstand des Punktes P vom Ursprung und
v—>

(p, Winkel zwischen der positiven x-Achse und der Strecke OP,

legen den Punkt P in der Ebene ebenfalls eindeutig fest. Dabei wird der Winkel q:

im mathematisch positiven Drehsinn entgegen dem Uhrzeigensinn gemessen, und
man wählt in der Regel —7: < zp g n. Mannennt r und q: die Polarkoordinaten von

P. Sie werden zu einer weiteren Darstellung der komplexen Zahlen verwendet,

/maginfire At/7::

rte//Mrlrse

Bild 5.7. Bild 5.8.
z=a+bi Lagevonz‚z‘,—z,—z‘

Mit
a = r'CoS(p und b = r-vsinzp

folgt

| z=a+bi=r(coszp+isinzp). (5.8)

Dies ist die trigunomelrische Darstellung von z. Dabei wird

|2} = r = da1 + b’ der absolute Betrag von z und der Winkel (p das Argu-
men! von z genannt. Man schreibt auch q) = arg z.

Den Winkel (p mit -7: < (p g +7: ermittelt man für r =l= 0, d. h. für alle von 0 ver-
schiedenen komplexen Zahlen, eindeutig aus

cos e ___.a — a sin — —————__b_ - bw7\/a2+b2_" q)_\/a2+b2-’.
Durch Division der beiden Formeln erhält man

tan — b A‘«p — a .

Diese Formel ist zwar einfacher, aber sie hat auch gewisse Nachteile. Sie versagt
für a z 0, also für die Punkte der imaginären Achse der Gaußschen Zahlenebene.
Weiterhin ist durch sie allein der Winkel (p mit —-n: < (‚o g +71: nicht eindeutig fest-
gelegt. Der Quadrant für z muß zusätzlich aus den Vorzeichen von a und b bestimmt
werden.

Es soll noch eine weitere Darstellung komplexer Zahlen behandelt werden. Mit
Hilfe der Eulersc/1en Formel

I e" = cos q: + i sin (p, i (5.9)
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die hier nur ohne Beweis angegeben werden kann, erhalten wir aus (5.8) die expo-
nentielle Darstellung

| z = r e“ (5.10)

für die komplexe Zahl z. Diese Darstellung ist z. B. für die Ausführung von Multi-
plikation und Division von komplexen Zahlen von Vorteil, wei1.— wie ohne Beweis
mitgeteilt sei —die bekannten Gesetze für das Rechnen mit Potenzen auch für e“? gel-
ten. So wird

z, - Z2 = pl eiwi . fl em t “,2 ei(w1+9’2),

z! rl em '1 ei(w;—-72)

z, r; e“: r;

Wegen der Periodizität von cos (p und sin q? gilt

| e“‘7’+"‘2") : e“? (k ganz). (5.10’)

Beispiel 5.9: Die komplexen Zahlen z, = —2\/3 — 2i und z, = —l + Jgi sollen
in der exponentiellen Darstellung angegeben und damit die Zahlen

z3=z,-z2 und 24:
222

berechnet und schließlich in der Form Re (z) + i - lm (z) angegeben werden. Man
erhält: I 57:

r,=\/12+4=4, tanIp.=$, «p,=——6—, 3.Quadrant;

-——— e 2 .r2=\/l+3 =2, tanrpz: ——\/3, r/2:——3:, 2.Quadrant;

5J, 33.,
z, = 4 e 5 , z, = 2 e 3 ;

z; : z, z; = 8€?‘ z 8 (cos- — isin%) = 4J} — 41,

z -2‘ 31 ‚ _ , 7: ,

z4=—z‘2—=e 1‘-'=e1 :cos%+1sm?=1

Aufgabe 5.12: Schreiben Sie folgende komplexen Zahlen in der Form a + ib: a:

. ‚n .11 . 3 ,

a) e13"; b) 57: c) 5T"; d) e'(7"f2"") , n ganz.

Aufgabe 5.13: Stellen Sie folgende komplexen Zahlen in der geometrischen und der *

exponentiellen Form (5.8) und (5.10) dar: _

a)2i; b) —l —i; c)3 _i„/3.
Aufgabe 5.14: Wie lautet die Darstellung z = a + bi der komplexen Zahlen mit at

a)r=2, (p =60°: b)r=2\/3, q: =3oo°?

Zur Veranschaulichung der Addition zweier komplexer Zahlen z, = a, + b,i
und 22 = a; + bzi betrachten wir Bild 5.9.

Die geometrische Addition zweier komplexer Zahlen wird entsprechend der geo-
metrischen Addition zweier Vektoren nach dem Parallelogrammsatz vollzogen.

Setzt man —z = +(—z), so läßt sich die Subtraktion geometrisch sofort auf die
Addition zurückführen (Bild 5.10), z; — z, = z; + (—z,).
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imayinfire Anm
., r zz

imfl]/nar:/1:/we

727/,

0 '71 m/I: ‚lt/Ist I’
a! real/Man:

11,4111 7’

Bild 5.9. Bild 5.10.
Addition zweier komplexer Zahlen Subtraktion zweier

komplexer Zahlen

Für die anschauliche Deutung der Multiplikation zweier komplexer Zahlen ver-
wenden wir zweckmäßiger die exponentielle Darstellung der Faktoren

z, = rl e”: und z; = r2 cm.

Dann wird
z, -22 = rlrz e‘“"-W2) = re" = r(cos<p + i sin (p)

r = r1 °r2 undzp = (p, +<p,.

Wir erhalten folgendes Resultat: Das Produkt zweier komplexer Zahlen ist eine
komplexe Zahl, deren absoluter Betrag gleich dem Produkt der absoluten Beträge
und deren Argument gleich der Summe der Argumente der Faktoren ist.

Die Konstruktion von zl - z; ergibt sich einmal aus der Tatsache, daß das Produkt
auf dem Ursprungsstrahl mit dem Winkel (tp, +._<p2) zur positiven reellen Achse
liegt und zum anderen aus der offensichtlichen Ahnlichkeit der beiden Dreiecke
in Bild 5.1l und der daraus folgenden Beziehung r1 : 1 = r: r2, also r = r,r2.

mit

imaginäre A:/we

1,-2,
I
I
I

Bild 5. l l .

Multiplikation zweier komplexer Zahlen

rrtfluc/7::
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Bei der Division von z, durch z, bekommen wir
z r eh’: r . . . .

' — 1 . =—‘e'<°x“7‘2)=R-e‘V=R(cos1p+1s1n1p)
22 r; e”: r2

mit

R='r'L und'/’=‘I71“‘I’2-r, .

Das Resultat ist jetzt: Man erhält den Quotienten zweier komplexer Zahlen, indem
man ihre Beträge dividiert und die Argumente subtrahiert.

Beispiel 5.10: Wir berechnen noch einmal ä t (Bild 5.12.). Die Beträge von Zähler

und Nenner sind \/E, ihr Quotient mithin 1. Das Argument des Zählers ist + ä , das

des Nenners — gund somit die Differenz + Die komplexe Zahl mit dem Betrag 1

. . . . . l ‘

und dem Argument + glst 1, und somit ist I t = l

Abschließend sei bemerkt, dal3 für das Rechnen mit den Beträgen folgende Regeln
gelten:

1. H21] — |z2[| g |2, + 22| g |z1| + |z2| (Dreiecksungleichungen), (5.11)

2-171‘ 121 = 171| "1721,

3.1 J2”, „+0.
Z2 1221

5.3.4. Potenzieren, Radizieren und Logarithmieren von komplexen Zahlen

Potenzieren

Wir multiplizieren zunächst n komplexe Zahlen

2k = r„ cm, k = 1,2, ...‚ n,

miteinander und erhalten das Produkt:

z] "z; z„ = r,r3 r„ e‘(°x+‘7’2+---“W.

Setzen wir darin

z1=z2=...=z,,=z, also r1=r2=...=r,,=r und

</1=sv2 '= =% =% Sofolgt
z" = [r (cosqa + isin <p)]" = [r e‘W]" = r"ei"°’

= r" (cos mp + i sin mp) mit n > 0, ganz.

Hieraus entnehmen wir die wichtige Beziehung

(coscp + i sin m)" 2 cos mp + i sin mp, n > O, ganz. (5.12)

Dieser Ausdruck wird Moivresclze Formel genannt.

Diese Formel gilt auch für beliebige rationale Exponenten (ohne Beweis):
P

. . — P . ‚ I7(COS¢+lSlnq1)”=COS(;‘(p)+lSll'l(';'(p), p,qganz,q>0,—n<<p§n.

(5.13)
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Bild 5.12 Bild 5.13. (l + i)5

Beispiel 5.11:
5 .7! 5 _ ‚ .57!

(1 + i)5 = (cos% + i sin-:—)] = 67] = (V/2)‘ 57

=(fi)5'(C0S5'§- +isin5-%)= 4\/E-(-005; — isin%)

= —4[\/5-(cos; + i sin-§)] = ;4~(1+n, (Bild 5.13».

Rndizieren

Eine n-te Wurzel der komplexen Zahl z wird als Lösung der Gleichung w" = z

erklärt. Setzt man z = r e‘? und w 2 R e“ in die Gleichung ein, so wird
Rn ein: Z reiy.

woraus sofort R = {/; folgt. Bei Berücksichtigung der Periodizität der e-Funktion
(5.l0’) folgt

nm„=m+k-21: oder w,‘ =%+k-27n,kganz.

Wegen der Periodizität der Funktion e"” — bzw. der Funktionen Kosinus und Sinus —

gibt es dann aber nur I1 verschiedene w-Wcrte, die man zum Beispiel für k = 0, l.2, . ..,

n — I erhält. Somit hat w" = : die n verschiedenen Lösungen:

- i! .31‘. „ A i 2 . . i 2,
w‘,':’ = C/re("+k ")=\/r-[c0s(—lI}1—+k-—n£) +1sIn(%+/s"—,;—t—)],

k=0,l,2,...,n—1. (5.14)

Im Bereich der komplexen Zahlen erhalten wir demnach für" 2 ') n verschiedene

Werte. Sie liegen alle auf einem Kreis um den Nullpunkt mit dem Radius I/r und bil-
den die Eckpunkte eines diesem Kreise eingeschriebenen regelmäßigen n-Ecks. Die

Wurzel mit k = 0, also wg‘) 2 (ms;- + i sin wird als Hauptwerr bezeichnet.

‘) Hierbei ist zu beachten, daß bei reellem nichtnegativemadas Zeichen weine etwas andere
Bedeutung hat. Für einen reellen nichtnegativen Radikanden entspricht ihm nur ein Wert. lm Falle
eines nicht reellen Radikanden bedeutet es dagegen n Werte (siehe auch Band 9).
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Bild 5.14.

Werte von i/i

Beispz'e15.12.' w : i/i Für die Zahl i ist I’ = 1 und cp = somit wird auch R = 1

und wk = + k für k = o, 1, 2, 3, 4. Wir erhalten für

Hauptwert k : 0: mu = ll, im Gradmaß 18°,

. 4i
k 2 1: cu, =~1%+ 1 oder 90°,

k = 2: (o2 = %rr oder 162°,

l3 O

k=3: w3=—r: oder 234,
10

17
k = 4: m4 = W1: oder 306°.

21 7': . . ‚ .

Für k = 5 wäre m5 = T07: = 27: + Ü, die zugehörige Zahl deckt sich mit dem

Hauptwert; wir erhalten keine weiteren Lösungen. Die Lage der fünf Wurzeln ent-
nimmt man Bild 5.14.

Wir wollen noch die Lage der n Lösungen von w: = l, der I1-ten Einheirswurzeln,
untersuchen. Nach der allgemeinen Formel (5.14) erhalten wir

‘E l. ..I „ff; =e’k n =cos(k'2„:)+is1n(k-—g})‚k:0‚l,2,...,n—l. (5.15)

Wenn I1 gcrade ist, so sind fürk = 0 und k = ädie reellen Zahlen +1 bzw. ——l unter

den Lösungen. Ist n ungerade, so ist nur für k = 0 die reelle Wurzel +1 enthalten.

Wir bilden ferner

Wm : ci(rz—k)%:i : e:(2n—1<- : ei(—k-2571 = ei(k%) z W22’
t.n—k

d. h., je zwei Einheitswurzeln wßfi. deren Indizes sich zu n ergänzen, sind konjugiert
komplex. Damit kann gesagt werden, daß sämtliche n-te Einheitswurzeln auf einem
regelmäßigen n»Eck mit den Eckpunkten auf dem Einheitskreis symmetrisch zur
reellen Achse liegen.
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n- 9

w.
0 7

tage tier /I-/an r"/‘mm’/Jm/rze/n lag: IIP/‘flr/Pfl ÜMEITJWU/‘IP/fl

Bild 5.15. Lage der n-ten Einheitswurzeln

Schließlich ist
. 21: .21:

wg": = e"? = (e"~‘)‘, k = 0,1,2,...,n~1,
oder

2 . . 2 27: . 2 k
W57; z cosk--3: +1s1nk-1 : <cos— +1s:n—7r-) _.

n n n n

k=O,l‚2‚...‚n—l. (5.16)

Das bedeutet: Sämtliche n—te Einheitswurzeln wg," lassen sich durch Potenzieren
einer geeignet ausgewählten erzeugen.

Die Zerlegung

— « 1 .2 — -2 - . 1_vr
w‘? = C/re‘(" H‘ " ) ={'/rel" -e'k "‚ k =O, l,2,...,n — l, (5.17)

besagt, daß man alle n Wurzeln von z bekommt, wenn man den Hauptwert nach-
einander mit sämtlichen n-ten Einheitswurzeln multipliziert.

Logarithmieren
Der Logarithmus einer komplexen Zahl z wird als Lösung der Gleichung e" = z

nach w erklärt. Setzt man z = re” und w = a + ib, so wird
e”e"’ = re”.

Es ist also a = ln r und wiederum b = (p + k21c (k ganz). Mithin erhält man mit dem
Symbol log z .

ir:logz=lnr+i(zp+k-2n)‚ k =0; i 1, 1-2‚...,z#0. (5.18)
Bei reellem positivem a ist log a der Wert, für den e'°“ : a wird. Häufig wird dafür auehlna

geschrieben. Im Falle eines nicht positiv reellen und von null verschiedenen z werden durch logz
unendlich viele Funktionswerte zu einem Symbol zusammengefaßt. Der Logarithmus nimmt für
komplexe z unendlich viele Funktionswerte an,

Der Hauptwert des Logarithmus ergibt sich für k = 0 zu

(logz)„ = lnr + iqz, -7-: < (p g +11.

T?

2

s Aufgabe 5.15: Ermitteln Sie sämtliche Lösungen der Gleichungen:

a)z3=3—i\/5 und b)z“=8l.
4: Aufgabe 5.16: In welchen Bereichen der Gaußschen Zahlenebene liegen die kom-

plexen Zahlen z, für die die folgenden Beziehungen erfüllt sind:

So ist beispielsweise (log i)„ = i oder [log(—1)]„ = in.

a)|zl<lundzugleich]z—l|<l; b)z-E=1; c)largZf<-72:;

d) {Re-(Z)| + l1m(z)| = 1; e) |Re(z)| ' !1m(Z)| = 1'?



6. Kombinatorik

6.1. Einführung

6.1.1. Auswahl- und Anordnungsprobleme

Die Aufgaben der Kombinatorik lassen sich von Auswahl— oder Anordnungs—
problemen herleiten. Bei vielen praktischen und mathematischen Problemen ist die
Kenntnis der Anzahl verschiedener Zusammenstellungen von ausgewählten Ele-
menten einer endlichen Menge wichtig. Diese Elemente können Zahlen, Buchstaben,
Personen, Gegenstände, Versuche, Ereignisse u. a. sein. Wir werden sie in der Regel
n1it a1, a2, ...‚ a„ bezeichnen.

Dabei wird zu beachten sein, daß verschiedene Elemente auch durch verschiedene
Bezeichnungen und gleiche Elemente immer durch ein und dieselbe Bezeichnung dar-
gestellt werden. Zwei Zusammenstellungen sind grundsätzlich verschieden, wenn sie
nicht die gleiche Anzahl von Elementen enthalten oder wenn in ihnen nicht genau die
gleichen Elemente auftreten. Zum Beispiel sind die Zusammenstellungen a, a; a3
und a, a3 bzw. a, a2 a3 und a, a, a4 jeweils voneinander verschieden.

Im folgenden sollen die sechs Grundaufgaben erläutert werden, auf die sich alle
Probleme der Kombinatorik im wesentlichen zurückführen lassen.

Bei einer ersten einfachen Aufgabe betrachten wir eine bestimmte Zusaminen-
stellung sämtlicher n Elemente der Ausgangsmenge. Darin soll jedes Element nur
einmal auftreten. Eine solche Zusammenstellung wird eine Permutation genannt.

In wieviel verschiedenen Reihenfolgen lassen sich nun diese Elemente anordnen?
So können beispielsweise 6 Personen in einer Warteschlange stehen. Auf wie viele
Arten ist das möglich?

Wir kommen zu einer weiteren Aufgabe, wenn in einer solchen Zusammenstellung
nicht alle Elemente voneinander verschieden sind. In der erwähnten Warteschlange
befinden sich 2 Männer und 4 Frauen. Unterscheidet man die Warteschlange nur

nach dem Standort der Männer und Frauen, so gibt es sicher weniger unterschied-
liche Reihenfolgen. Wir sprechen von Permutationen mit Wiederholung.

So bilden a, a2 a3 a4 as a5 und a4 a3 a2 a. as a6 zwei verschiedene Reihenfolgen
der 6 Personen a„ i = l, 2, ...‚ 6. Sind a, und a4 Männer und die anderen Frauen, so
unterscheiden sich die beiden Zusammenstellungen bei der ausschließlichen Be-
achtung dieses Merkmals nicht mehr. In beiden Fällen entsteht am a, a, am a, 41,.

Eine andere kombinatorische Aufgabe erhalten wir, wenn wir aus den n Elementen
für k verschiedene Positionen je eines auswählen und dabei nach der Anzahl der
entstehenden möglichen Zusammenstellungen fragen. Anders ausgedrückt, es wird
nach der Anzahl der möglichen Zusammenstellungen zu je k von n Elementen ge-
fragt.

Dabei kann die Berücksichtigung der Anordnung der Elemente von Bedeutung
sein. Es soll z. B. unter fünf Fußballspielern der „Fußballer des Jahres“ ausgewählt
werden. Wie viele Möglichkeiten gibt es für die richtige Reihenfolge der drei Erst-
plazierten? Derartige Zusammenstellungen heißen Variationen.

Andererseits gibt es auch Zusammenstellungen, wo die Anordnung der ausgewähl-
ten Elemente nicht berücksichtigt zu werden braucht. Diese Zusammenstellungen
heißen Kombinationen. Für einen Skatspieler ist die Anordnung seiner 10 Karten
ohne Bedeutung für das Spiel.

In beiden Fällen können in den Zusammenstellungen die Elemente auch mehrfach
vorkommen. Ein Tipschein des Fußballtotos mit l2 möglichen Tips muß wenigstens
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eines der Elemente:

(1) 4-» Sieg der Heimmannschaft‚ (0) <—> Unentschieden,

(2) <—> Niederlage der Heimmannschaft.

mehrfach enthalten. Natürlich ist in diesem Fall die Anordnung von Bedeutung!
Insgesamt werden nach der jeweiligen kombinatorischen Fragestellung die fol-

genden Grundaufgaben unterschieden:

. Anzahl der Permutationen von n verschiedenen Elementen.

2. Anzahl der Permutationen von n verschiedenen Elementen mit Wiederholung.

3. Anzahl der Variationen (Zusammenstellungen mit Berücksichtigung der Anord-
nung) von n Elementen zu je k. '

. Anzahl der Variationen mit Wiederholung.

. Anzahl der Kombinationen (Zusammenstellungen ohne Berücksichtigung der An-
ordnung) zu je k von n Elementen.

6. Anzahl der Kombinationen mit Wiederholung.

-C
k

u
:

6.1.2. Gebrauch des Summeu- und Produktzeichens

Zur abgekürzten Darstellung von Summen mit einfach gebauten Summanden
wird das Summenzeichen Z (großes griechisches Sigma) verwendet. So kann man
die Summe der natürlichen Zahlen von l bis l0 schreiben:

lo
1+2+3+4+5+6+7+8+9+10= 2k.

k=1

Dabei werden für den Summationsbuchstaben k nacheinander alle ganzzahligen Werte
von 1 bis 10 eingesetzt und die entstehenden Ausdrücke — hier die natürlichen Zahlen
selbst — addiert. Die unter dem Summensymbol stehende Beziehung k : l gibt die
untere Summationsgrenze l, die oberhalb von Z stehende Zahl l0 die obere Sum-
mationsgrenze an.

Beispiele 6.1: Man achte auf die unterschiedlichen Bezeichnungen!

N
1.2i!’ :1Z+2‘+32+...+N2:1+4+9+...+N2;

n=l

5 n(—1) i l l l l
2. l—— ——_ _—_-”§.,n+1 2+3 4+5 6’

n l i i l
3, :—+—-— ,

,.=Z2(p—l)[) 1-2 2~3+ +(n—])n

4204' =l+q+q’+ +4”,

n—1

5.‘ a, =a0+a,+az+...+a,,_,;

n

62a =a+t1+...+a=n'a.
n.mu



6.2. Permutationen 6l

Es gelten die leicht zu beweisenden Regeln:

l. i c-a,» : c" i a„ creell; (6.1)
i=l ' i=1

2. i (a. + b.) = i a. + i b.. (6.2)
i=l i=l i=l

3. i (a.- — b.) = i a. — i b. (6-3)
i=l — =

Ganz entsprechend verwendet man zur abgekürzten Darstellung Yon Produkt_en mit
einfach darstellbaren Faktoren das Produktzeichen H (großes griechisches Pi):

:1
:

a,-=a,-a2~a3'...-a,,.

Zum Beispiel ist

5

l1:1I(1+%)=(1+u(1+%)(1+%)(1+})(1+%).

Es gelten die Regeln

4. c-a, = c- a‚., creell; (6.4)
I=| i=1

s fl a.b. = f1 a. fl 12., (6.5)
l=| i=1 l=l

„ a 17”‘
6 n?‘ ='j‘ ,b,-+0, ‚=i‚2, ‚n (6.6)

I=| l I-[bl

6.2. Permutationen

6.2.1. Permutationen ohne Wiederholung

Anzahl der Permutationen

Wir betrachten ll verschiedene Elemente. Eine bestimmte Zusammenstellung,
in der die n Elemente sämtlich angeordnet sind, heißt eine Permutation der n Ele-
mente. Zwei Permutationen der gleichen Elemente unterscheiden sich durch die
Reihenfolge oder Anordnung der Elemente. Stimmt diese überein, so sind die beiden
Permutationen gleich.

Fiir zwei Elemente a1 und a2 kann man die zwei Permutationen a, a2 und a; at
bilden, Tritt ein drittes Element a, hinzu, so kann dieses bei jeder der beiden Permu-
tutioneit a, a; und a2 a, an die dritte, zweite oder erste Stelle treten. Für drei
Elemente a, . a, ‚ a, gibt es also 6 Permutationen:

a1 0203s 4115352» aaüiaz: 020103, 3203111, asazai- (6-7)
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Man vermutet daher den

Satz 6.1: Bezeichnet man mit P„ die Anzahl der Permurationen von n verschiedenen
Elementen, so ist

P,,=1‘2-3‘...-n. (6.8)

Der Beweis wird durch vollständige Induktion geführt (siehe 4.3.):

I. Induktionsbeginn: Die Behauptung ist für n = 1 richtig.
II. Induktionsannahme: Der Satz gilt für n = k, es ist also P, = 1 - 2 ~ 3 - - k.

III. Nehmen wir ein weiteres (k + 1)-tes Element hinzu, so kann dieses in eine bestimmte vor-

handene Zusammenstellung der k Elemente an die erste, zweite, ..., (k + I)-te Stelle gesetzt
werden. Wir erhalten somit (k + 1) Permutationen für diese eine Zusammenstellung.
Wird dieser Vorgang für jede der P. Permutationen durchgeführt, so erhalten wir für die Anzahl
der Permutationen von (k + l) Elementen:

Pk“ =P.‘~(k+ 1)= 1-2-3-...-(k+ 1).

IV. Die Formel gilt also für n = k + 1 und somit für alle natürlichen Zahlen n g 1. I

Fakultät

Für das Produkt der natürlichen Zahlen von l bis n wird das Symbol n! — gelesen:
„n-Fakultät“ — verwendet:

| n!=1~2~3-...'n.

Esgilt

(6.9)

(n+l)!=n!-(n+1). (6.10)

Zudem wird 0! = l! = 1 gesetzt. Wir erhalten 2! = 2, 3! = 6, 4! : 24, 5! = I20,
6! = 720, 7! = 5040, 8! : 40320 usf. Damit kann die Anzahl der Permutationen
ohne Wiederholung geschrieben werden:

| P„ = nl. (6.8’)

Beispiele 6. 2:

l. 6 Personen können in 6! =

stehen.

2. 5 Bücher können auf 5! =

ordnet werden.

3. Wenn auf einer Maschine n verschiedene Artikel nacheinander bearbeitet werden
sollen, so gibt es für die Reihenfolge n! Möglichkeiten.

720 verschiedenen Reihenfolgen in einer Warteschlange

120 verschiedene Weisen auf einem Bücherbrett ange-

Lexikographische Anordnung

Bei vielen Elementen gibt es eine sogenannte natürliche Zusammenstellung, so bei den indizierten
Größen die Anordnung a, a; a3 . .. a‚„ bei den Buchstaben das Alphabet. Permutationen werden als
Iexikagraphisclz geordnet bezeichnet, wenn die einzelnen Permutationen wie die Wörter in einem
Wörterbuch aufeinander folgen. Von zwei Permutationen geht dabei diejenige voran, deren erstes
Element in der natürlichen Anordnung an niedrigerer Stelle steht. Falls jedoch die ersten Elemente
gleich sind, geht diejenige voraus, deren zweites Element in der natürlichen Anordnung niedriger ist.
Sind die ersten zwei Elemente gleich, so folgt die Unterscheidung nach dem dritten usf.

Beispielsweise sind die Permutationen der drei Elemente a1 , a2, as in (6.7) nicht lexikographisch
geordnet. Für abc, acb, bac, baa, cab, cba liegt dagegen eine lexikographische Anordnung vor, wenn

man das Alphabet als natürliche Zusammenstellung ansieht.
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Inversionen

Wenn zwei Elemente in einer Permutation umgekehrt zu ihrer natürlichen Anordnung stehen, so
bilden sie eine Inversion dieser Permutation. Die Inversionen sind demnach die Fehlstände in einer
Permutation. Ist 1 2 3 4 5 die natürliche Anordnung von 5 Elementen, so haben die Permutationen

Z 5 1 3 4 vier Inversionen durch Fehlstände der Elemente 2 und l, 5 und 4, 5 und 3, 5 und 1;

3 24 5 1 fünf Inversionen durch Fehlstände der Elemente 3 und 2, 3 und 1, 2 und l,
4 und 1, 5 und 1.

Satz 6.2: Die Anzahl der Inversionen ändert sich um eine ungerade Zahl, wenn aus einer Permututian
eine andere durch Vertuuschung zweier Elemente gebildet wird.

Dieser Satz wird bei der Erklärung von Determinanten (Band l3) verwendet.

Beispiele 6.3:

. In 3 2 4 5 l mit fünf Inversionen wird 2 mit 5 vertauscht. Man erhält die neue Permutation 3 5 4 21
mit acht Inversionen. Vertauscht man in dieser 1 mit 2, so ergibt sich 3 5 4 1 2 mit 7 Inversionen.
Die Änderungen der Inversionen betragen also 3 bzw. l.
Die Permutation a,, a„_, a3 a2 a, hat gegenüber der natürlichen Anordnung a, a; a3 a„_, 41„

insgesamt

(n—l)+(n——2)+...+2+l=
Fehlstände.

S
“

n(n -1)g

Gerade und ungerade Permutationen ‘

Ist die Anzahl der Inversionen gerade, so heißt die Permutation gerade, sonst ungerade.

Satz 6.3: Die Anzahl der geraden Permutatianen von n verschiedenen Elementen (n > 1) ist gleich
der Anzahl der ungeraden Permututionen und somit gleich 5m.

6.2.2.

Wenn die n Elemente nicht alle voneinander verschieden sind, so treten Permu-
tationen mit Wiederholungen auf, bei denen einzelne Elemente mehrfach vorkommen,
z. B. a, a, a, a2 a2. Die Anzahl der Permutationen verringert sich bei gleicher
Stellenzahl n gegenüber der Anzahl der Permutationen von durchweg verschiedenen
Elementen. Hat man 3 Elemente, so ist P3 = 6. Werden davon zwei gleichgesetzt,
etwa a, = a2, so reduzieren sich die voneinander verschiedenen Permutationen auf
drei:

Permutationen mit Wiederholung

a, a, a3, a, a3 a„ a3 a, a,.
Hat man n verschiedene Elemente, so gibt es n! Permutalionen. Sind nun n, Elemente
einander gleich, so sind alle ursprünglichen Permutationen nicht mehr zu unterschei-
den, bei denen nur diese n, Elemente die Plätze untereinander vertauschen. Dafür

n!
n, !

Permutationen. Entsprechendes gilt, wenn weitere Gruppen von einander gleichen
Elementen auftreten.

Allgemein ergibt sich die Anzahl der Permutationen mit Wiederholungen aus dem

gibt es aber jeweils n,! Möglichkeiten. Daher hat man nur noch insgesamt

Satz 6.4: Teilt man die n Elemente derart in k Gruppen von je n, (i = l, 2, ..., k)
gleichen Elementen auf, daß die Elemente verschiedener Gruppen verschieden sind,
s0 ist die Anzahl der verschiedenen Permutatianen.

I Pgü.«-„"x) : n!
e- 6.1l‘n,!n2!...n‚„! ( ’

Der Satz wird hier nicht bewiesen.

mit n, +71; +... +n„=n.

5.6.2

S. 6.3

S.6.4
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Beispiele 6.4:

l. Wie groß ist die Anzahl aller verschiedenen Reihenfolgen von 2 grünen, 3 roten
und 5 schwarzen Kugeln?

10!(2,15) _ _P — — 2520.Wm

2. Stehen in einer Warteschlange von 6 Personen 2 Männer und 4 Frauen, so lassen
sich diese in .

_6!(2.4)

P“ ‘ 224!

verschiedene Reihenfolgen bringen, wenn bei dem einzelnen Standort nur zwischen
Mann und Frau unterschieden wird.

6.3. Variationen

Jede Auswahl oder Zusammenstellung von k aus n verschiedenen Elementen, die
ihre Anordnung berücksichtigt, heißt eine Variation von n Elementen zu je k (oder
zur k-ten Ordnung bzw. zur k-ten Klasse).

Bei der Bildung von Wörtern aus drei Buchstaben wird die Anordnung berück-
sichtigt. Die unterschiedliche Bedeutung der Wörter „rot“, „ort“ und „tor“ gehen
von der Berücksichtigung der Anordnung der drei Buchstaben o. r, t aus.

6.3.1.

Treten in den Zusammenstellungen nur verschiedene Elemente auf, so spricht man

von Variationen ohne Wiederholung von n Elementen zu je k. Naturgemäß ist
l g k g n.

Variationen ohne Wiederholung

Satz 6.5: Die Anzahl V,f der Variationen ohne Wiederholung von n Elementen zu je
k ist

| V§=n(n—I)(n—2)...(n—k+l), l gkgn. (6.12)

Diese Anzahl Vf ergibt sich aus dem Produkt von n und den (k — 1) nächst kleineren
Zahlen.

Beweis: Die n Elemente seien durch a1‚a2‚ ...,a„ beschrieben. Wir werden den Satz durch voll-
ständige Induktion nach der Ordnung k beweisen.

l. lnduktionsbeginn: Für k = 1 gilt V„‘ = n, denn es lassen sich die Zusammenstellungen zu je
einem Element durch genau die Elemente selbst realisieren. Wir wollen uns noch für k =__ 2

eine Übersicht über die möglichen Variationen ohne Wiederholung verschaffen:

"i": "i"; “ran
alal aza3 112a,, A

(13(11 03122 1130,,

”n”1 an”: anan-l

Die Variationen sind in n waagerechten und (n — 1) senkrechten Reihen angeordnet, insgesamt
ergibt sich also

V,f=n-(n~I).
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IL Die Induktionsannahme lautet:

Fürk=l<ngilt V‚f=nn— l)...(n-l+ 1).

III. Wir betrachten nun eine Variation I-ter Ordnung. Es gibt dann noch (n —— I) weitere Elemente,
die in dieser Variation nicht auftreten. Fügen wir je eines dieser Elemente an diese Variation ohne
Einschränkung der Allgemeinheit am Ende hinzu, so erhalten wir (n — I) Variationen (I + 1)—ter

Ordnung. Tun wir dies nacheinander für alle V,‘ Variationen, so bekommen wir sämtliche
Variationen (I + 1)-ter Ordnung, und zwar jede genau einmal. Also ist

K!“ = V„’-(n -1) =n(n— l)...(n —— I+ l)(n -1).
IV. Die Formel ist für k = I + 1 abgeleitet und somit der Satz bewiesen. I

Wir können auch schreiben:

n(n— ])...(n—-k+ 1)(n—k)...-3-2-I
k_ _

n‘ (n—k)-..‚'3'2'l _

n!

(n-k)! '

(6. l 3)

Beispiele 6.5 :

1. Aus 5 Personen sollen 3 für bestimmte Positionen ausgewählt werden. Es gibt
V53 = 5 - 4 - 3 = 60 Möglichkeiten.
Hierzu gehört auch die Antwort auf die Fragestellung aus 6.1.1.: Unter 5 Spielern
soll der „Fußballer des Jahres“ ausgewählt werden. Wie viele Möglichkeiten gibt
es für die richtige Reihenfolge der 3 Erstplazierten?

!\’ Das internationale Signalbuch hat n = 26 verschiedene Flaggen. Aus k = 2, 3, 4
ausgewählten Flaggen kann man entsprechend V226 = 650, V236 = 15600,
V22 = 358 800 Signale bilden, wobei Wiederholungen derselben Flaggen in einer
Signalanordnung nicht zugelassen sind.

6.3.2.

Sind in den Zusammenstellungen auch Wiederholungen zugelassen. so spricht
man von Variationen mit Wiederholung von n Elementen zu je k.

Variationen mit Wiederholung

Satz 6.6: Die Anzahl V5" der Variationen mit Wiederholung von n Elementen zuje k ist

V1; = I1" (6.14)

Beweis:

i. lnduktionsbeginn: Für k = 1 gilt ofiensichtlich VJ," = n. Für k = 2 erhalten wir jetzt folgende
möglichen Variationen:

410i a [a2 “ran
412a x azaz aza,

anal (1,111 u,,a,,

Sie stehen in je n waagerechten und senkrechten Reihen, so daß ihre Anzahl V,§_ = n’ ist.

II. Induktionsannahme: Die Formel gilt für k = I, V„',__ = n’.

lll. Dann fügen wir an jede der n‘ Variationen I-ter Ordnung der Reihe nach ein weiteres Element
der n gegebenen ohne Einschränkung der Allgemeinheit am Ende hinzu und erhalten somit
insgesamt n‘ ~ n : n'“ Variationen (I + 1)-ter Ordnung und jede nur einmal.

IV. Damit ist V‚f„f‘ = 11'” und der Satz bewiesen. I

Beispiele 6. 6:

1. Aus den 2 Ziffern (0, 1) des Dualsystems lassen sich 2" Nachrichten — ltustellige
positive ganze Zahlen — bilden. Der Fünfkanalcode für den Lochslreifen eines

5 Fieber IL 91., Mathematik

3.6.6
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Fernschreibers besitzt 25 = 32 Zeichen. Dabei wird in eine Zeile jeweils eine Zu-
sammenstellung Von je 5 der Zustände „Loch“ oder „Nicht-Loch“ gestanzt.
Natürlich muß dabei die Anordnung berücksichtigt werden. Bei der Blindenschrift
werden Variationen von je 6 „eingedrückten“ oder „nichteingedrückten“ Punkten
verwendet. Damit erhält man 2‘ = 64 Möglichkeiten zur Darstellung der Zeichen
(Alphabet, Ziffern und Satzzeichen).

2. Aus den 26 Buchstaben des Alphabets lassen sich "formal V,‘j

k Buchstaben bilden.
= 26" Wörter zu je2s

Beispielsweise gibt es Wörter aus Dazu gehören auch

26’ = 676 2 Buchstaben xi, ab, du, 00

263 = l7576 3 Buchstaben ubu, ich, rim

'26‘ = 456976 4 Buchstaben rata, esel, biir u. a.

3. Für den Ausgang eines regulär verlaufenden Fußballspiels gibt es drei Möglich-
keiten: Sieg der Heimmannschaft (l), Unentschieden (O), Niederlage der Heim-
mannschaft (2). Sind im Fußballtoto l2 Spiele vorgesehen, so kann man die drei
Elemente (0), (l), (2) auf einem Tipzettel zu je 12 zusammenstellen. Wiederholun»
gen der Elemente sind selbstverständlich, und die Anordnung ist durchaus von

erheblicher Bedeutung. Das ergibt

K5: : 3” = 531441 Tipmöglichkeiten.

6.4.

Jede Auswahl oder Zusammenstellung von k aus n verschiedenen Elementen, dic
ihre Anordnung nicht berücksichtigt, heißt eine Kombination von n Elementen zu
je k (oder zur k-ten Ordnung bzw. zur k-ren Klasse).

Für die Auswahl von 5 Zahlen zu einem Tip beim Zahlenlotto ist ihre Anordnung
ohne Bedeutung.

Kombinationen

6.4.1.

Treten in den Zusammenstellungen nur verschiedene Elemente auf. so spricht
man von Kombinationen ohne Wiederholung von n Elementen zu je k. Naturgemäß
ist l g k g n.

Kombinationen ohne Wiederholung

Satz 6.7: Die Anzahl C: der Kombinationen o/me Wiederholung von n lilemen/e/t :u

je k ist

IG’:
Beweis: Wir gehen von den entsprechenden Variationen ohne Wiederholung von n Elementen m je

I

(n — k)!n
Zusammenstellungen in eine zusammen, die die gleichen Elemente in verschiedener Anordnung
enthalten. Da andererseits k Elemente auf/t! verschiedene Weisen angeordnet werden ki-nnen. mull
Cf’ < k! V,',‘ sein, womit der Satz bewiesen ist. I

‘Wir können auch schreiben

n(n—l)(n—2)...-(n—k+ l)
l-2~3-,..-k '

n!= „ läkän. (6.15)

_k aus. Ihre Anzahl war nach (6.10): I/,',‘ = . Bei den Kombinationen fallen alle diejenigen

C’; c (o. l6)
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Für die Anzahl dieser Kombinationen erhalten wir demnach einen Quotienten, dessen
Nenner das Produkt der natürlichen Zahlen von 1 bis k ist und dessen Zähler ebenfalls
k Faktoren enthält, die mit n beginnen und jeweils um eine Einheit abnehmen.

Beispiele 6.7:

l. Wenn bei einer Feier sich 7 Personen zunächst mit Handschlag gegenseitig
begrüßen und dann paarweise miteinander die Gläser anstoßen, so gibt es

C7’ = = 21 Handschläge und ebensoviel Gläserklingen.

2. Ein Skatspieler kann C3‘? = 64512240 verschiedene Spiele zu je l0 Karten cr-
halten.
Beim Zahlenlotto stelltjeder Tip eine Auswahl von k = 5 aus u 2 90 Zahlen dar.
Er bildet eine Kombination zu je 5 von 90 Elementen. Die Anzahl der möglichen
Tips beträgt

E
"

C5 _ 90-89—88-87-86
9° r —

4. Bei einer Stichprobe zur Qualitätskontrolle greift man aus n Produkten k heraus.
Die Anzahl der Auswahlmöglichkeiten ist Cf. Dabei wird ein kontrolliertes Pro-
dukt nicht zurückgelegt.

. Zwischen Halle und Leipzig befinden sich 7 weitere Eisenbahnstationen. Wieviel
verschiedene Normalfanrkarten 2. Klasse werden innerhalb dieser Strecke ausge-
geben, wobei nur jeweils eine Richtung berücksichtigt werden soll? Dann gibt es

9-8
C3272“

2 43 949 268.

v
:

z 36 solcher Fahrkarten.

6.4.2. Binomialkoeffizient und binomischer Lehrsatz

Da der in C,{‘ auftretende Quotient auch in vielen anderen mathematischen For-

meln vorkommt, verwendet man für ihn ein abkürzendes Symbol , lies: „n über
k“. Es geht auf Euler zurück. Wir schreiben also

| cz=<zi
Wir wollen uns jetzt mit einigen einfachen Eigenschaften derartiger Quotienten

beschäftigen. Dazu betrachten wir die

(6.17)

Definition 6.1: Es sei a eine reelle Zahl um] k g l, ganz, dann wird gesetzt:

a(a — l)(a — 2)...(a — k +1) _ a 1)

I - (k) <6”)

und : 1.

Der Ausdruck wird Binomiulkocflizient genannt. Wir beachten, daß a im allge-

meinen ieliebig reell ist. Deshalb soll noch einmal betont werden, daß ein

') ln kann a auch eine komplexe Zahl sein.

5*

D.6.1
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Quotient ist, bei dem im Nenner das Produkt von I bis k und im Zähler ebenfalls ein
Produkt aus k Faktoren steht, das mit a beginnt und jeder weitere Faktor jeweils um
eine Einheit abnimmt.

Beispiele 6.8:

=10. 2(2) =%ä—:=35,
1 1 _ _1

a

1

Wir kommen zu den wichtigsten Eigenschaften von :

Weiter ist stetsi ) = a und = l für natürliches p.

I. Ist a = n g 0, ganz, und k > n, so ist
n — k + 1 g 0. Somit tritt im Zähler von (6.15) der Faktor 0 auf. Zum Beispiel
1st

= 0. Denn aus n — k < 0 folgt

(2)_ 2-1-0-(-1) _0
4 E 1-2~3-4 E '

2. Es seien n und k positiv ganz und n g k, dann gilt

n n! n

(k) * r (‚1 _ k)" ‘m’
Der Beweis folgt unmittelbar aus der Überlegung, im mittleren Quotienten k
durch n — k zu ersetzen.

3. Es gilt für reelles a und k g 0:

<:>+<k:.>=<:::1
Diese Formel wird zum Aufbau des Pascalsc/zen Dreiecks Verwendet.

Beweis:
a a a(u—-I)...(a—k+I) u((1—I)...(a—k+l)(a—k)
()+( i: k! ‘L k!(k+1)

a a-k 7a.a+l_a+l
=(1)‘[‘+m]-(k)k+1-(k+1)-'

4. FürareellundngOgilt:
a a+l a+2 a+n a+l+n
(0)+( 1 2 )+ +( n i‘( n i

i(a+v):(a+1+n). (6.21)

oder mit dem Summenzeichen aus 6.1.2.:

„g v n
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Setzen wir a = p g O, ganz, so wird aus der Formel (6.21):

" p+v)_('p+1+r1)e(. n -

Nach Eigenschaft 2. ist andererseits (p + v) = ( p + v ) = (p + v),
also wird v p + l _ v -”

" p+wr)={p+1+n)
p P + 1 '

Setzen wir noch p + n = m, so erhalten wir die Beziehung

(I7)+<P+1)+m+(rn)=(I17+I). (6.22)

p p r p + 1 ‚

Für p 2 1 ergibt sich die bekannte Summe

m+l)_m(m+l)1+2+3+...+m=< 2 2

Satz 6.8 (binomischer Lehrsatz): Es seien a, b reelle Zahlen und n g 1, ganz. Dann 5.6.8
gilt

n _ n n n-l In n—2 2 n n-l n nI (a+b)_(0)a"+(])a b+(2)a b +...+(n_1)ab +(n)b.
(6.23)

Mit dem Summensymbol wird diese Formel einfacher geschrieben:

(a + b)" = i a”’”b" = i C;a"‘”b". (6.24)
v=0 v=O

Beispiele 6.9:

1. Setzen wir in Formel (6.23) a = b = 1, so wird

Taä®=®+®+w%fl
Setzen wir in (6.23) a = 1 und b = -1, so ergibt sich

o=;m«w:®—m+@:w««ni
2. Die Moiuresche Formel (5.12) lautet:

(cos(p + isin (p)" = cos mp + i sin nqz, n > 0, ganz.

Entwickeln wir die linke Seite der Gleichung nach dem binomischen Lehrsatz (6.23)
und setzen ferner die Rea1- bzw. Imaginärteile beider Seiten gleich, so erhalten wir

cos n(p = cos" (p — cos""’ (p sin’ (p + cos""‘ (p sin‘ (p i

sin mp = cos"“ (p sin (p — cos"'3 (p sin’ (p + cos""5 (p sin5<p i
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6.4.3.

Treten in den Kombinutioncn Elemente mehrfach auf. so spricht man von Kom-
binationen mit Wiederholung von n Elementen zu je k.

Kombinationen mit Wiederholung

Satz 6.9: Die Anzahl der Kombimztianen mit Wiederholung von n Elementen zu je k ist

n + k — l i

I C’; = ( k

Der Beweis kann durch vollständige lnduktion nach k geführt werden, wobei
Formel (6.22) angewendet wird.

(6.25)

Beispiele 6.10.‘

l. Bei einem Wurf mit 2 hzw. 3 Würfeln sind ("W26 =

Zahlenkombinationcn möglich.
(7) = 21 bzw. C36 : = 56

2, .3

2. Wird bei einer Stichprobe von k aus n Produkten das geprüfte Produkt wieder
zurückgelegt, so kann es eventuell mehrfach tintersucht werden. Die Anzahl der
Auswahlmöglichkeiten ist jetzt C5".

6.5. Übersicht zu den Grundaufgaben der Kombinatorik

l. Permutationen ohne Wiederholung

P„ = nl. (6.8')

2. Permutationen mit Wiederholung

n!
2e. n. + n, ++11,‘ = n.P(’H\...y”k)

W" n,!n3!.../1,‘! (6.11)

3. Variationen ohne Wiederholung (Zusammenstellung von n Elementen zu je k mit
Berücksichtigung der Anordnung)

V’‚f:H(H—l)...(iz—k+l):ä:iz)kl. lgkgn.
(6.l2). (6.13)

4. Variationen mit Wiederholung

V5" 2 I1‘. (6.14)

5. Kombinationen ohne Wiederholung (Zusammenstellung von n Elementen zu je
k ohne Berücksichtigung der Anordnung)

c: I g A gn. (6.17)

6. Kombinationen mit Wiederholung

c'‚;„=("+:’l). (6.25)
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mEuEa.=:._a.$m=<uEo_._o.Emu:::v.5:<E.......a„sm:<

.29x5.8sWaw.

HH.IA.+v.I5
ANNE2V»~VH2.;I.CI5:H

„.VI:3:3155:5=

IUH.... |Hx.

7&1:..E.05.8..=uv.z...

U.o_.an„u.o_.=NU}...SNU.o_.zu

..u:.o=.o.m=:o>

m:=_o.tovu§>z...

co=o..mn.n:.ov.gov

E.mN:<

:B:uEu_m=:o>

w:=_oEu_uo_>>ucso

:o:o_.m:BEov_.2.

EmN:<

suz

r|!_|‘
..._._3o...c=m:o:m:5EoM.u..o_.E

3E...».5:02.9505=h...move...5.5.
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72 6. Kombinatorik

Aufgaben

Aufgabe 6.1: Bei der Lagerhaltung kennzeichnet man häufig Materialien unterschied-
licher Abmessungen und Rohstoffzusammensetzungen durch Farbmarkierungen.
Wie viele verschiedene Sorten Rohre können gekennzeichnet werden, wenn drei
Farben zur Verfügung stehen und jede Sorte mit drei verschiedenfarbigen Ringen
am unteren Ende des Rohres markiert wird?

Aufgabe 6.2: Ein Gewichtssatz besteht aus den Gewichten 1 N, 2 N, 5 N, 10 N, 50 N
100 N. Wie viele Zusammenstellungen dieser Gewichte sind möglich?

Aufgabe 6.3: In der Umgebung eines Erholungsortes sollen l5 Wanderwege durch
je zwei parallele Striche gekennzeichnet werden. Wie viele Farben benötigt man, wenn

a) die Reihenfolge der Striche eine Rolle spielt und beide Striche von gleicher Farbe
sein dürfen, .

b) die Reihenfolge der Striche keine Rolle spielt und beide Striche von gleicher
Farbe sein dürfen,

c) die Reihenfolge der Striche keine Rolle spielt und beide Striche nicht von gleicher
Farbe sein dürfen?

Aufgabe 6.4: Acht Betriebe der Bauindustrie sind an einem Wettbewerb beteiligt.
Wie viele Möglichkeiten gibt es, die Namen der drei erstplazierten Betriebe

a) in beliebiger Reihenfolge,

b) in der richtigen Reihenfolge

vorherzusagen?

Aufgabe 6.5:

a) Wieviel Fernsprechanschlüsse lassen sich einrichten, wenn nur fünfstellige Ruf-
nummern verwendet werden sollen?

b) Wie groß ist die Zahlder Anschlüsse, wenn die Rufnummern, die mit 0 beginnen,
für Sonderanschlüsse frei gehalten werden?

Aufgabe 6.6: Ein Stadtteil von der Form eines Rechtecks ist auf seinen vier Seiten
von Straßen begrenzt und außerdem von 5 Straßen durchzogen, welche dem einen,
und 4 Straßen, welche dem anderen Paar von Gegenseiten des begrenzenden Recht-
ecks parallel laufen. Auf wieviel verschiedenen Wegen kann man ohne Umwege zu

machen, von einer der vier äußeren Ecken des Stadteils zu der diagonal gegenüber-
liegenden Ecke gelangen?

Aufgabe 6.7: Beweisen Sie die Formel (6.21) und den Satz 6.8 durch vollständige
Induktion.
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Die Mengenlehre ist für die Mathematik von grundlegender Bedeutung. Jedes
derzeit bekannte mathematische Teilgebiet läßt sich mengentheoretisch begründen.
Darüber hinaus ist aber die Mengenlehre auch sehr gut geeignet, ja notwendig, um
viele Probleme in den Naturwissenschaften, der Technik und der Ökonomie zu for-
mulieren und zu lösen. Als Begründer der Mengenlehre wird der Hallenser Mathe-
matiker Georg Cantor (1845-1918) angegeben. Die Cantorsche Mengendefinition
kann jedoch Anlaß zu Widersprüchen geben, so daß man heute zur streng axiomati-
sehen Begründung der Mengenlehre einen Stufenkalkül benutzt. Trotzdem ist es

zweckmäßig, die anschauliche Cantorsche Mengendefinition zugrunde zu legen, da
diese für das Verständnis vieler mathematischer Teilgebiete und Anwendungen völlig
ausreicht. Wir werden deshalb in diesem Abschnitt nur an einer Stelle eine Bemerkung
zum Stufenaufbau der Mengenlehre machen.

7.1. Zum Begrifl‘ der Menge

Ausgehend von den obigen allgemeinen Bemerkungen legen wir die folgende
Definition des Mengenbegriffs zugrunde.

Definition 7.1: Eine Menge ist eine Gesamtheit (Zusammenfassung) bestimmter, wohl- D.7.1
unterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem
Objekt eindeutig feststeht, ob es zur Menge gehört oder nicht.

Beispiele solcher Mengen sind:

Beispiel 7.1:

(l) Die Menge der natürlichen Zahlen l, 2, 3, 5, 8, l2.
(2) Die Menge der Farben grün, rot, gelb, blau.

(3) Die Menge der Leipziger Telefonnummern.
(4) Die Menge der reellen Zahlen x mit der Eigenschaft x2 + 2 = 0.

(5) Die Menge der zweiwertigen Aussagen.

Für alle Beispiele ist leicht zu prüfen, daß die Definition 7.1 zutrifft.
Wir vereinbaren folgende Rede- und Schreibweisen:

a) Die zur Menge gehörenden Objekte heißen Elemente der Menge.

b) Als Kurzbezeichnungen verwenden wir für Mengen große lateinische Buchstaben
wie M, M1, M2, M3, ..., A, B, C, So seien z. B. die Mengen (l) bis (5) mit
M1 bis M5 bezeichnet.

e) Sind wir in der Lage, die Elemente einer Menge anzugeben, so schreiben wir diese
in geschweiften Klammern

M = {m}.

Beispiel 7.2:

(1) M; = '1,2,3,5,8,12};
(2) M2 = {griin, rot, gelb, blau},
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d) Die Elementbeziehung beschreiben wir durch folgende Symbolik:

a e M heißt: a ist ein Element der Menge M;
b ¢ M heißt: b ist kein Element der Menge M.

Beispiel 7.3:

(I)1eM,.12eM1, 4¢M,;
(2) rot e M2, schwarz ¢ M2;
(3) 398254 e M3;

(4) 1 i? M4-

Für die in 5. behandelten Zahlenmengenführen wir die folgenden Symbole ein:

N — Menge der natürlichen Zahlen;

N+ ~ Menge der positiven natürlichen Zahlen;

G — Menge der ganzen Zahlen;

P — Menge der rationalen Zahlen;‘)

R — Menge der reellen Zahlen;‘)

K — Menge der komplexen Zahlen.

Oft ist es nicht möglich oder nicht zweckmäßig, die Elemente einer Menge aufzu-
zählen. Dann ist aber mindestens eine Bildungsvorschrift (wie in Definition 7.1
gefordert) für die Menge M vorgegeben: M = {x | E} (Mist die Menge aller x, die die
Eigenschaft E besitzen).

Die Bildungsvorschrift E läßt sich als Aussageform m(x) mit einem Bereich X fol-
gendermaßen ausdrücken: „M ist die Menge derjenigen Elemente x aus dem Varia-
blenbereich X, für die m(x) in eine wahre Aussage übergeht“.

Beachten wir. daß X selbst eine Menge ist, so können wir für den obigen Satz
die folgende Symbolik einführen:

| M = [x] w(xeX/\ m(x)) = W}. (7.1)

Für diese Schreibweise werden wir wie üblich im folgenden die etwas einfacheren
Bezeichnungen

| M: {x[xeX/\m(x)} (7.l’)

oder noch kürzer

| M = {x | m(x)} (7.2)

anführen. wobei wir uns im Falle (7.2) merken, daß die Menge X als Variablen-
bereich zugrunde gelegt ist. Die Schreibweise (7.1’) hat den Vorteil, daß man den
Yariablenbereich nicht aufzuschreiben braucht. Wir lesen diese Beziehung (7.2)

endermaßen: M ist die Menge aller Elemente des Variablenbereiches von x, für
m(x) gilt“ (d. h. w(m(x)) = W ist). Damit haben wir eine unmittelbare Verbin-

zum AbschmLL3.3. geknüpft. Die dort behandelten Aussageformen dienen uns
zur Bildung l'on Mengen. Da es zweckmäßig ist, die Schreibweise (7.2) zu ver-

den. werden wir sie auch in den folgenden Abschnitten benutzen, um zusätzlich
erbalen Definitionen wichtige Begriffe auch formelmäßig einzuführen‘.

I71 Mathematikunterricht der Oberschulen wird die Menge der rationalen Zahlen mit R,

e‘ a \'.::ge der reellen Zahlen mit P bezeichnet.
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Die so wie oben (7.1), (7.2) definierten Mengen heißen auch Mengen I. Stufe.
Beispiele zur Mengenbildung mittels Aussageformen:

Beispiel 7.4.‘

(I) X _

m(x) =

N

„x < l2“ und „xe M,“.
Dann wird:
A {x | w(xe N /\ (,,x <12“ /\ „xe M,“)) = W}

{x | „x < l2“ A „x e M,“}.
Wir sehen leicht, daß gilt:
A = {x l „x < l2“ /\ ,,xeM,“} = {l, 2, 3, 5, 8}.

(2) X = R,
B = {x|,,x2 + 2 = 0“}.

(3) X = Menge der Monate eines Jahres;

C = {x | „x besitzt 30 Tage“}.

(4) X = Menge aller zweistelligen Aussagenverbindungen;
D = {x | „xist eine Tautologie“}.

Über diese Beispiele sollen zunächst keine weiteren Aussagen gemacht werden, die
sich auf Eigenschaften beziehen. Wir kommen später darauf zurück.

Zum Schluß dieses Abschnittes wollen wir noch die folgende Bemerkung machen. Wir können
gemäß Definition 7.1 Mengen bilden, die als Elemente selbst wieder Mengen enthalten.
S0 sind zum Beispiel

E : {{l, 2. 3} {rot, schwarz}}

F: {U}, {L2}. (l. 2. 3}. ...}
= {X[x = {l,2,...,nj Ane N}

oder

wieder Mengen im Sinne unserer Definition. Wir würden sie sinnvollerweise Mengen zweiter Stufe
nennen, da ihre Elemente Mengen I. Stufe sind.

7.2.

im folgenden sollen einige wichtige Beziehungen zwischen Mengen sowie spezielle
Mengen untersucht werden.

Spezielle Mengen

7.2.1.

Definition 7.2: A heißt Teilmenge von B, wenn jedes Element der Menge A !lII(‘/I
Element von B ist. SyMÖOIiXC/l‘ A g B ist gleichbedeutend mit (Vx) (x e A —> X e B1

ix! eine wa/we Aussage.

Teilmengen, leere Menge

Beispiel 7.5:

(1){l,2, 3} g {h}, 5, 2, 6}.
(2) A — {l‚ 2, 3} ist keine Teilmenge von

B {l‚2‚4,5,6].da3eA aber3¢Bist.
(3) A rot, grün}, B z rot. gelb. grün}.

A B.

II
I

H
f‘!

H

D.7.2
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Beispiel 7.6: Häufig werden spezielle Teilmengen der Menge der reellen Zahlen R,
die Intervalle benötigt, die folgendermaßen klassifiziert und bezeichnet werden:

g x é b}

x < b}

[a‚b) = {x|xeRAa x< b}

(a‚b] ={x|xeRAa< xgb}
(a, + o0)

(- 00‚ b]

(—OO,+0O)={X|xER/\—CX><X< +oo}= R

[a, b] = {x I x e R A a abgeschlossenes Intervall;

(a, b) = {x | x e R A a < olTenes Intervall;

ä halboffenes Intervall;

halbofienes Intervall ;

{x|xeRAa§x< +00}

{x l x e R /\ — oo < x ._<. b} unendliche Intervalle.

Denken wir uns die Mengen A und B durch Aussageformen a(x)‚ b(y) über Variablenbereichen
X, Y gebildet, so können wir die Definition der Teilmengenbeziehung folgendermaßen ausdrücken:
A g B ist gleichbedeutend mit (Vx) (a(x) —> b(x)) ist eine wahre Aussage.

Beispiel 7.7:

X = N, Y: G;
a(x) = „x ist eine gerade Zahl“
b(y) = „y ist größer oder gleich —lO“
a(x) —> b(x) = „Wenn x eine gerade Zahl ist, so ist x g — l0“

ist offenbar fürjedes festex e X(= N) eine wahre Aussage. Deshalb ist (Vx) (a(x) —» b(x))
cine wahre Aussage und demzufolge auch A g B.

Eigenschaften der Teilmengenbeziehung

(l) Für aHe Mengen A gilt: A g A (siehe Definition 7.2).

(2) Für alle Mengen A, B, C gilt:

(A §BABgC)—>A gC.
Auch Eigenschaft (2) ist eine einfache Folgerung von Definition 7.2. Man nennt
(l) Reflexivität, (2) Transitivitäl der Teilmengenbeziehung.

Definition 7.3 (Gleichheit von Mengen): Zwei Mengen A, B heißen gleich. wenn jedes
Element der Menge A auch Element der Menge B ist und umgekehrt.

Kurzrchreibweise: A = B ist gleichbedeutend mi! (Vx) (xeA<—+xe B) ist eine
wahre Aussage.

Nehmen wir an, A = {x l a(x)‘‚ B = {x I b(x)} (die Variablenbereiche sind also
von vornherein gleich), so nimmt Definition 7.3 die folgende Form an:

A = B ist gleichbedeutend mit (Vx) (a(x) <—> b(x)) ist eine wahre Aussage.
Man sieht daran, daß wir durchaus von gleichen (umfangsgleichen) Mengen spre-

chen, wenn auch deren erzeugende Aussageformen voneinander verschieden sind.

Beispiel 7,8:

X: N,A ={x|x2 — 7x+ 10 =0} =B={x|Entwederx=2oderx = 5}.

Satz 7.1: Für alle Mengen A, B gilt
(AgBABgA)<—>A=B. (7.3)
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Definition 7.4 (leere Menge): Eine Menge M heißt leer, wenn sie kein Element enthält.
Die leere Menge wird mit 0 bezeichnet.

Die Bildung einer leeren Menge geschieht durch eine Aussageform m(x)‚ die für
kein x aus dem zugrunde gelegten Variablenbereich X zu einer wahren Aussage wird,
d. h.,

M = {x l m(x)} = 0 <—> Die Aussage (V(x)fi (x) ist wahr. (7.4)

Als Beispiel betrachten wir zunächst die Menge M4. M4 = Menge der reellen
Zahlen x mit der Eigenschaft x2 + 2 = 0. Mit X = R können wir also schreiben:

M4={x|x’ +2=0}.
Nun kann_ man aber schnell zeigen: Nur die komplexen Zahlen x, =\/5-i,

\/2 - i machen die Aussageform (Gleichung)x, = —

X‘ + 2 = 0

zu einer wahren Aussage. Demzufolge gilt für alle reellen Zahlen x

x2 + 2 + 0,

und daraus folgt nach (7.4)

X=R, M.,={xlx‘+2=0}=0.

Die eine leere Menge erzeugende Aussagenform ist nun aber keineswegs eindeutig bestimmt, so

gilt z. B.
A=(x|xeNAx<0}=0;
B = (x l x ist ein Monat A x besitzt mehr als 31 Tage) = ß

usw. Man beachte aber: Ist ß die leere Menge erster Stufe und bilden wir eine Menge M zweiter
Stufe folgendermaßen

M = {ü},

so ist M nicht etwa die leere Menge zweiter Stufe, denn M enthält genau ein Element, nämlich die
leere Menge erster Stufe 0.

In Teilgebieten und bei Anwendungen der Mathematik ist es oft erforderlich zu
wissen, ob bestimmte Mengen leer oder nicht leer sind.

7.2.2. Potenzmenge

Wir wenden uns jetzt weiteren wichtigen speziellen Mengen zu.

Definition 7.5 (Potenzmenge): M sei eine Menge, und A sei eine Teilmenge von M,
d. h. A g M. Wir bilden eine Menge, die alle Teilmengen A von M als Elemente enthält
und nennen diese Potenzmenge P(M) von M.

| Kurzschreibweise: P(M) = {A I A g M
Dabei heißt M die Universalmenge.‘)

(7-5)

1) Unter „Universalmenge“ ist, wenn nichts anderes gesagt wird, immer die im Zusammenhang
mit der betretfenden inhaltlichen Problematik zugrunde gelegte umfassende Grundmenge zu ver-

stehen (siehe z. B. Aufgabe 7.1).

D.7.4

D.7.5
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Folgerung: Es gilt stets, d. h. für jede Menge M,

0 EP(M)/\ MeP(M).
(Grund: 0 g M, M g M).

Die Potenzmenge einer Menge M erster Stufe ist eine Menge zweiter Stufe.

Beispiel 7.9: Wir betrachten die zweielementige Zahlenmenge M = {L 2}. Dann gi lt:

P(M) : {(5, {1}-{2},M}.

Fassen wir P(M) nun wieder als Ausgangsmenge für eine Potenzmengenbildung auf, so können
wir die Potenzmenge P(P(M)) von P(M), die wir mit P2(M) bezeichnen wollen, bilden. Es wird:

P’(M) = P(P(M)) = {0’,{0}, {{1}}, {{2}}, {M}» {(M1)}, (0, {2}},

(Ü, M}, {U}, {B}, {U}, M}, {(2}, M}, i“: {1}, {2}}.

{Ä U}, M)» {(3, {Z}, M}, {U}, {Z}, M}, P(M)}.
wobei 01 die leere Menge Z. Stufe, also hier die Teilmenge von P(M), die kein Element enthält, ist.

Es sei vermerkt, dal3 die Benutzung von Potenzmengen P2(M) zum Beispiel auf dem Gebiet der
Optimierung wichtige Anwendungen besitzt.

7.2.3. Komplementärmeuge

Definition 7.6 (Komplementärmenge): Gegeben sei eine Menge A, A g M. M besitzt
dabei wie in Definition 7.5 die Rolle einer Uniuersalmenge. A heißt Komplementär-
menge von A bezüglich der Universalmenge M, wenn gilt:
| xi={x]xeM/\x¢A},
d. h.‚ Ä enthält alle Elemente von M, die nicht zu A gehören.

Stellen wir uns die Menge A durch eine Aussageform a(x) erzeugt vor, so können
wir die obige Definition folgendermaßen formulieren:

| Mit A={x[xeMAa(x)} wird /i={x]eM/xfl}.
Beispiel 7.10:

(1) A
Ä

(2) A = Menge aller innerhalb des Kreises x’ + y’ = 1 liegenden Punkte der Ebene.
Die Universalmenge M sei die Menge aller innerhalb oder auf dem Rande des
Quadrates Q (Bild 7.1) liegenden Punkte. Dann ist A die in Bild 7.1 schraffierte
Menge (einschließlich Kreisrand) aller Punkte, die zu M gehören, aber nicht
innerhalb des Kreises liegen.

{xlxeNAxisteinegeradeZahI} {x|x=2-m/\meN};
{xlxeNAxistkeinegeradeZahl} {x|x=2m+ 1/\meN].

’ a
7M

X

Bild 7.1.
Komplement von A
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Die in diesem Beispiel gewählte Darstellung mit Hilfe von Punktmengen ist
äußerst anschaulich und in der Mengenlehre allgemein als Hilfsmittel sehr ver-
breitet.

(3) Für eine beliebige Universalmenge M gilt, wie man sich mit Hilfe von Definj-~
tion 7.6 leicht überlegen kann:

M20, Ö=M, 1\7={x|xeM/\x¢M}=1D.

Aufgabe 7.1: Mit A sei die Menge der reellen Lösungen der Ungleichung |x + l]

_S_ g + 2 bezeichnet. Universalmenge sei die Menge R der reellen Zahlen (siehe

Fußnote S. 77). Ermitteln Sie A und Ä!

7.3. Vereinigung, Durchschnitt und Differenz von Mengen

Die Bildung von Vereinigung, Durchschnitt und Diflereuz von Mengen bedeutet,
gewisse Mengen miteinander zu neuen Mengen zu verknüpfen. Diese auch für An-
wendungen außerordentlich wichtigen Verknüpfungen wollen wir sowohl verbal als
auch formelmäßig definieren. Außerdem werden wir sie uns veranschaulichen, indem
wir äquivalente ebene Punktmengen (Mengen von Punkten in einer Ebene) benutzen.
Zwei Mengen sind dabei äquivalent, wenn es eine umkehrbar eindeutige Zuordnung
zwischen den Elementen der beiden Mengen gibt.

LI/iinrsu/mtnye M

Bild 7.2.
Darstellung einer endlichen Menge, bestehend aus l0
Elementen mit Hilfe einer äquivalenten Punktmenge

Eine Menge läßt sich dann in einer Ebene veranschaulichen, indem man sie durch
eine geschlossene Linie umfaßt. Eine solche Darstellung nennt man häufig Venn<
Diagramm (Bild 7.2). Zeichnet man keine Punkte innerhalb einer geschlossenen
Linie aus, so meint man die Menge aller Punkte, die innerhalb und auf der Begren-
zungslinie liegen.

7.3.1. Vereinigungsmenge

Definition 7.7 ( Vereinigungsmenge): Unter der Vereinigung A u B zweier Mengen
A und B versteht man die Menge aller Elemente, die mindestens einer der beiden Mengen
A oder B angehören."

I AUB={x|(xeA)v(xeB)}. (7.6)

Bemerkung: Stellen wir uns A und B durch Aussageformen a(x) und b(y) mit X, Y
als Variablenbereiche erzeugt vor, so können wir schreiben:

| AUB={z[(zeX/\a(z))v(zeY/\b(z))}. (7.7)

D.7.7
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Beispiel 7.11:

(1) A = {l, 2, 3}, B = {3, 4, 5},

AuB=’{l‚2,3,4,5}.
(2)A ={x((xeR)A(0<x<6)},

Dannwird:
AuB={z|(zeR/\0<z< 6)v(zeG/\(—2§z§O))}

={z|(z= —2)v(z= —I)v(zeRA0§z<6)}.

Bild 7.4. Durchschnittsmengen
A A B, C A D = Ü

B={y|(yeG)A(—2§y§0)}-

l

I
. || W

A ' ‘ 5 Jll |4 I

„ ,_ v ‚_._. ‚ .

AL/5

Bild 7.3. Vereinigungsmenge A v B

7.3.2.

Definition 7.8 (Durchschnittsmenge) : Der Durchschnitt A n B zweier Mengen A und B
ist die Menge aller Elemente, die sowohl A als auch B angehören.‘

Durchschnittsmenge

I Ar\B={x|(xeA)A(xeB)}. (7.8)

Bemerkung: Sind die Mengen wie oben durch Aussageformen gegeben, so gilt:

| Ar\B={z|(zeX/\a(z))A(zeY/\b(z))}. (7.9)

Beispiel 7.12: Wir betrachten wieder die Mengen aus Beispiel 7.11. Es gilt:

(I) A n B = {3};
(2)A/\B={z|(zeRAO< z< 6)/\(zeG/\(—2§z§0))} =0.

Im Anschluß an dieses Beispiel soll noch eine Redeweise eingeführt werden. Zwei
Mengen A, B mit A n B 2 0 heißen disjunkt oder elementfremd.

Aufgabe 7.2: Man bestimme die Menge aller reellen Zahlen x, für die gilt:

3x+2wg; c)[x—1|+]x+5[§4.22; b)|x+3|;2x+|2x—5l;

Aufgabe 7.3: Für welche Punkte der x‚y—Ebene gilt (Skizzen!):

a)x+y§3 und x—y;2; b)xy;1; c)x2+y2§25 und 2x+y§5?

7.3.3.

Definition 7.9 (Differenzmenge): Die Differenz A \ B zweier Mengen A und B ist
die Menge aller Elemente von A, die nicht zu B gehören:

| A\B={x[xeAAx¢B}.
Es gilt:
| A\B={.\'[(xeX/\(a(x)/\M)}.

Differenzmenge

(7.10)
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Beispiele 7.13:

(I)A\B:{1,2};
(2)A\B:{zlzeR/\(0<z< 6/\(z< —2vz>0))}

{z[zER/\0<z<6}=A;
B\A = B={—2. —1,0}.

r. . _ ‚. ..

1/05
i 5 M Bild 7.5.
i A DilTerenzmenge A \B

Wir wollen an dieser Stelle auf den engen Zusammenhang der soeben eingeführten
Differenzmengc A \ B mit dem Komplement einer Menge A bezüglich einer Univer-
salinenge M hinweisen.

Es seien also A g M, B g M. Dann gilt:

A\B=AnB.. (7.11)

Nach Formel (7.11) wäre es also prinzipiell möglich, auf die Diflerenzmenge zu ver-
zichten, da sich diese eindeutig mit Hilfe von n und ' darstellen läßt.

7.3.4. Rechenregeln für die Verknüpfungen Vereinigung,
Durchschnitt, Komplement

Wir wollen im folgenden die Existenz der Universalmenge M, von der alle betrach-
teten Mengen A, B, C, Teilmengen sind, voraussetzen und einige wichtige Rechen-
regeln für unsere eingeführten Mengenverknüpfungen u, n, s angeben und diese
außerdem durch Punktmengen veranschaulichen. Rechenregeln für die Differenz-
menge gewinnt man leicht durch Anwendung der Beziehung (7.11).

Satz 7.2 (Reclzenregeln für die Operationen u, n, ‘): Es gilt für alle Mengen A, B, S.7.2
C, ..., die Teilmengen einer Universalmenge M sind:

(I) A f\ B : Bn A, A u B = B u A; (Kommutativgesetz) (7.12)

(2) (A n B) n C = A n (Bn C), (Aswziativgexetz) (7.13)

(Ax/B)\/C : Ax/(BuC);
(3) A n (A u C) z A ‚ (Verrchmelzungxgeretz) (7.14)

B u (B n D) = B. I

(4) A n (B U C) = (A n B) U (A n C), (Distributivgesetz) (7.15)

Ak/(Bn C) = (AuB)n(AuC);
(5) A Uil z A, A n 0 = 0, (0 — Nullelement) (7.16)

A n M = A, A u M = M; (M — Einselement)

(6) Ä ist Komplement von A genau dann, wenn gilt:
A u Ä : MA A n Ä = 0. (Komplement-Eigenschaflen) (7.17)

Die Kommutativgesctzc (7.12) erlauben das Vertauschen der Reihenfolge der
Mengen. die Assozintivgcsetze gestatten es. die Vereinigung bzw. den Durchschnitt
xnn endlich "vielen Mengen zu bilden. wobei es gleichgültig ist, wie man" Klammern
ti \ivM‘\' H. ...\I:xLhom:11.ik
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setzt. Die Verschmelzungs- und Distributivgesetze sind zum Teil für uns neu, wenn
wir an das Rechnen mit Zahlen denken. Aus der Logik jedoch sind uns diese Regeln
nicht fremd, da z. B.

pA@VmHp OM
oder

pV@Ar%+@VrMWpv® (13
Tautologien sind, die linke und die rechte Seite vom Doppelpfeil also jeweils logisch
gleichwertig sind.

Würden wir jedoch A, B, C als Zahlen (a, b, c), n als Multiplikation (') und u

als Addition (+) interpretieren, so wissen wir, daß

a~(a+c)=a, a+(a-c)=a, a+(b~c)=(a+b)-(a+c)
im allgemeinen nicht gelten. Wir haben es also hier mit für uns gegenüber dem Rech-
nen mit Zahlen neuartigen Reehenregeln zu tun. Die Bezeichnungen Nullelement
für die leere Menge 0 und Einselement für die Universalmenge M verwenden wir
hier deshalb, weil diese Mengen eine ähnliche Rolle wie die Zahlen 0 und 1 spielen.
Die Beziehungen

a+0=a‚ a-0=0, a-l=a

entsprechen unmittelbar den Beziehungen (7.16). Eine Beziehung a + 1 = I für alle
a gibt es im Bereich der Zahlen jedoch nicht.
Gemäß Regel (7.13) können wir Vereinigung und Durchschnitt von je n Mengen bil-
den.

W11’ bezeichnen:

mo„u„u4=Üm; am
i=l

mnmn„n4=fim. am
i=l

Im Bild 7.6 werden die Regeln (7.14) dargestellt.

(A:/L‘)nA Aue 0

B Bild 7.6.

A Die Verschmelzungsregeln
IM 51/15/70) A~(AVC)=A,Bv(BfiD)=B

Man kann sich genauso die anderen angegebenen Regeln veranschaulichen. Es
ist jedoch auch ein Beweis der Regeln ohne die Hilfsmittel der Anschauung direkt
aus den Definitionen möglich. Dabei ist es besonders zweckmäßig, von den Dar-
stellungen mit Hilfe der Aussageformen (7.7), (7.9) auszugehen.

Beispiel 7.14: Wir beweisen A u (A n B) = A, wobei wir zur Vereinfachung der
Schreibweise X = Y (gleiche Variablenbereiehe für a(x) und b(y)) wählen. Dann sind:

A = [x|xeXAa(x)}, B = {x|xeXAb(x)},
Ar\B = {x|xeX/\a(x)/\b(x)}.

Wir bilden: A U (A n B) und erhalten nach (7.7):
A u(Ar\ B) = {x|(xeX/\a(x))V((xEX/\ a(x))/\b(x))}

= {x|xeXAa(x)} = A,
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denn: (p v(p A q))<—>p ist eine Tautologie (p = „xeX/x a(x)“‚ q = ,,b(x)“, zu-
nächst x fest, jedoch für jedes beliebige x).

Es gibt nun noch eine Reihe weiterer wichtiger Rechenregeln, die man jedoch
durch Anwendung der bereits bekannten Regeln (7.12) bis (7.17) herleiten kann.
S0 gilt z. B.:

(7)2 = A; (7.20)

(8) m = Ä n E, m = Ä v F; (de—Morgan-Gesetze) (7.21)

®AgBHBgL (mn
(10) (A gB)<—>(AnE=0)<—>(ÄuB=M). (7.23)

Wir beweisen die Regel (7.21): Nach Regel (6), Formel (7.17) genügt es zu zeigen:

(A\JB)U(AnI§) = M und (AvB)r\(Ar\E) = 0.

Es gilt: _ _ A

(AUB)\/(Ar\E) = ((AV3)VA)r\((/1 UB)\JB)
(7.15)

= ((AuA)uB)r\(A u(Bv B))
17.12), (7.13)

= (MuB)n(AuM) = MAM = M
(7.17; (7.17;

(Ax/B)r\(Ar\1'3)= (Ar\(/ir\§))u(Br\(A_nB))
= ((Ar\A_)/\l_3)U((Br\l7)r\A>)
=wnB)u(0mi) = (M/(0 =0.

Wir werden zum Abschluß des nächsten Abschnittes ein Beispiel für die Anwendung
dieser Regeln geben,

Aufgabe 7.4: A, B, C, D seien beliebige Mengen. Man untersuche die Richtigkeit
folgender Beziehungen:

a)(A\B)r\C=(Ar\C)\B; b)A\B=An(A\B);
c) A = (A\B)vB;
d)(AUC)n(BuC)/\(A uD)n(BUD) = (Ar\B)\/(CAD).

Aufgabe 7.5: A, B, C seien Teilmengen von M. Man vereinfache folgende Aus-
drücke: _

a)Ar\((AvB)\B); b)(Ar\Br\C)UAv§vC.

7.4. Über Mächtigkeit von Mengen

In den vorhergehenden Abschnitten haben wir eine Reihe von Mengen betrachtet.
die endlich viele Elemente besitzen, aber auch solche, die nicht aus endlich vielen
Elementen bestehen.

Beispiel 7.15:

A, = {1, 2, 3, 5, 8,12},
A2 = {gri'm, rot, gelb, blau},
A3 = P = {x l x ist eine rationale Zahl},
A4 = {x | x ist eine reelle Zahl und 0 g x g 1},

A5 = {XIXEGAXZ = 3}: 0.
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Definition 7.10: Eine Menge M‚M ä: Ü, die endlich viele Elemente besitzt, heißt
endliche Menge, eine Menge M, M + 0, die nicht aus endlich vielen Elementen be-
steht, heißt unendliche Menge.

A, ‚ A2 sind endliche, A 3, A4 unendliche Mengen.

Wir verabreden die folgende Bezeichnung:

‚u(M) — Anzahl der Elemente der endlichen Menge M.

Beispiele, bei denen auch ‚u(M) für gewisse Mengen M zu bestimmen ist, geben wir
am Ende dieses Abschnittes an.

Nun möchte man aber auch gern unendliche Mengen vergleichen und damit klassi-
fizieren können. Aus diesem Grunde führt man den Begriff der Mächtigkeit ein, der
im Spezialfall endlicher Mengen mit der Anzahl ihrer Elemente übereinstimmt.

7.4.1. Gleichmächtige Mengen

Definition 7.11: Zwei Mengen A, B (endliche oder unendliche Mengen) besitzen die
gleiche Mächtigkeit, wenn man jedem Element a, a e A, umkehrbar eindeutig ein
Element b, b e B, zuordnen kann. Daraus folgt:

Wenn dem Element a, , a, e A, das Element b, b e B, und auch dem Element a2,
a; e A, das Element b, b e B, zugeordnet wird, so gilt a, = a2 (d. h. voneinander verschie-
sehiedezien Elementen aus A werden voneinander verschiedene Elemente aus B zugeordnet),

Mittels unserer logischen Zeichen können wir diese Eigenschaft folgendermaßen
schreiben: A, B seien die Bereiche der Variablen a1, a2, b.

w((\ia,) (V02) (Vb) („Dem Element a, wird b zugeordnet“ A „Dem Element a2 wird b

zugeordnet“ —> a, = 112)) = W. (7.24)

Schreibweise: A und B haben die gleiche Mächtigkeit = A glm. B.

Satz 7.3: Die mit Definition 7.11 eingeführte Gleichmächtigkeit besitzt die folgenden
Eigenschaften

(I) A glm. A, (Reflexivität)

(II) A glm. B —> Bglm. A, (Symmetrie)

(III) A glm. B/\ Bglm. C -—> A glm. C. (Transitivität)

Durch die Definition 7.11 entstehen Mengen von Mengen gleicher Mächtigkeit, die
charakterisiert sind durch den Mächtigkeitstyp (Kardinalzahlen).

Beispiel 7.16: Die endlichen Mengen stellen einen Mächtigkeitstyp dar. Die Kardi-
nalzahlen hierfür sind die Elemente der Menge der natürlichen Zahlen. Nach Defi-
nition 7.ll können wir ‚u(M) auch Mächtigkeit der endlichen Menge M nennen.
Die Mengen

M, = {rot, grün, blau}, M2 = {\/E, M3 = [{1},{2},0}

sind gleichmächtig. So können wir z. B. die folgende Zuordnung (charakterisiert
durch Paare) (rot, Jz-l), (grün, \/E), (blau, vornehmen, die die Definition 7.11
erfüllt. Wie man ohne weiteres sieht, gilt außerdem

„(M0 = „(MD = „(Mal = 3~

Die Mengen M,. M3, M, gehören also zur Menge der dreielementigen Mengen.
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Den Mächtigkeitstyp einer unendlichen Menge werden wir nachfolgend ebenfalls
mit ‚u(M) bezeichnen und uns mit dem Typ der abzählbaren Menge und der Mächtig-
keit des Kontinuurns etwas näher beschäftigen.

7.4.2. Abzählbare Mengen

Definition 7.12: Eine Menge M heißt abzählbar, wenn gilt:
Mglm. N mit N = ‚[0, l, 2, 3,

(d. h., die Elemente von M lassen sich mit Hilfe der natürlichen Zahlen Iru/nerieren).

Einige Eigenschaften abzählbarer Mengen werden im nachfolgenden Satz formu-
liert.

Satz 7.4:

(I) Eine beliebige unendliche Teilnzenge einer abzälilbaren Menge M ist wieder eine
abzählbare Menge.

(2) Es seien A1, A2, ..

abzählbare Menge.
Sind gewisse der A‚_‚ endliche Mengen, so bleibt die Gültigkeit dieser Aussage mu

halten.

(3) Die Vereinigung abzählbar vieler abzählbarer Mengen ist eine abzälilbare Menge.

(4) Aus einer unendlichen Menge kann stets eine alJzii/ilbare Menge abgespalten
werden.

(5) Wenn beim Abspalten. einer abzählbaren Menge A von einer unendlichen Menge M
eine unendliche Menge B übrigbleibt, so haben M und B die gleiche Mächtigkeit.

.,A„ abzählbare Mengen. Dann gilt: M : ü A„ ist eine
k l

Die Aussagen (l) bis (5) vermitteln eigentlich erst eine klare Vorstellung vom Be-
grit? der abzählbaren Menge. Die Beweise können hier nicht vorgeführt werden.

Beispiel 7.17: Beispiele für abzählbare Mengen:

(1) Die Menge G der ganzen Zahlen ist abzählbar.

Beweis: Es gilt

G = ‘.0, 1,2, 3, ...}U{—I, -2, —3,...} = NuG"’.

Zunächst ist N nach Definition abzählbar. G“ = [— 1, -2, —3, ist ebenfalls
abzählbar. Ordnen wir nämlich einem beliebigen Element —n e G") das Element
n — 1E N zu, so ist Definition 7.ll erfüllt, und deshalb folgt die Behauptung
aus Satz 7.4 (2), wobei A, N, A; : G“) zu setzen ist. Wir sehen also, daß die
Menge G, obwohl man gefühlsmäßig meint, dal3 sie „mehr“ Elemente als N ent-
hält, ebenfalls abzählbar, also gleichmächtig N ist. lm folgenden Beispiel wird
diese Eigenschaft des Mächtigkeitsbegrifles noch deutlicher. l

(2) Die Menge P der rationalen Zahlen ist eine abzählbare Menge.

Beweis: Wir wissen, daß sich P folgendermaßen darstellen läßt:

P={—{n—imk l E G A k e N \ {O} /\ m und k sind teilerfremd}.

D.7.l2

S.7.4
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Wir definieren Mengen A,‘ folgendermaßen

A, : {flk me G/xke N \ {O}, k — fest/xmundkteilerfremd.

Nun gilt offenbar

M = Ü A, = P,
k=l

und deshalb gilt nach Satz 7.4 (3): P ist abzählbar. I

7.4.3. Nicht abzählbare Mengen

Am Beispiel der rationalen Zahlen haben wir gesehen, daß eine Menge abzählbar
sein kann, auch wenn ihre Struktur und Anordnung sich außerordentlich stark von

N unterscheidet. Man könnte daher beinahe denken, daß jede unendliche Menge
abzählbar ist. Daß dies ein Trugschluß wäre, drückt Satz 7.5 aus.

S.7.5 Satz 7.5: Die Menge C, C = {x I x e R A 0 < X g l} ist nicht abzälzlbar.

Bezeichnungsweisen: Eine nicht abzählbare unendliche Menge nennen wir über-
abzä/zlbarc Menge. Die Mächtigkeit der Menge C heißt"*„Mächrigkeit des Konti-
nuums“.

Wir bemerken zum Abschluß, daß der Mächtigkeitstypus des Kontinuums von
dem abzählbarer Mengen verschieden ist und daß man mit Hilfe von Satz 7.4 sowie
Definition 7.ll zeigen kann, daß z. B. die Mengen

D={x|xeR/\0§x§ l},
E={x4xeR/xagxgb,a,b~fest,a,beR}.
R

ebenfalls die Mächtigkeit des Kontinuums besitzen. Dabei kommt es zum Beweis nur

darauf an, geeignete Zuordnungen, die die Definition 7.ll erfüllen, zu finden. Man
nennt alle Mengen, die zu C gleichmächtig sind, Komi/ma

7.4.4. Beispiel für die Begriffe Vereinigung, Durchschnitt,
Komplement und Mächtigkeit

Eine statistische Erhebung an einer Technischen Hochschule ergab bei 100 Stu-
denten das folgende Ergebnis; 48 Studenten hören weiterführende Vorlesungen über
Technologie, 26 über konstruktiven Ingenieurbau, 8 über Technologie und mathe-
matische Operationsforschung, 23 über konstruktiven Ingenieurbau, aber keine Ope-
rationsforsehung, 18 nur über konstruktiven Ingenieurbau, 8 über Technologie und
konstruktiven Ingenieurbau und 24 über keines dieser 3 Gebiete.

Wir stellen folgende Fragen:

i. Wie viele Studenten hören Operationsforschung?

2. Wie viele Studenten hören Operationsforschung und konstruktiven Ingenieurbau.
aber nicht Technologie?

3. Wie viele Studenten hören konstruktiven Ingenieurbau und daneben Operations-
forschung oder Technologie?
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Zur Lösung dieser Aufgaben definieren wir die folgenden Mengen: M = Menge
der befragten Studenten, J = Menge der Studenten, die konstruktiven Ingenieurbau
hören, T = Menge der Studenten, die Technologie hören, O = Menge der Stu-
denten, die Operationsforschung hören. Diese Mengen, J, T, O erzeugen in M acht
Teilmengen, die in Bild 7.7 dargestellt sind und deren Mächtigkeiten wir zu bestim-
men haben.

N

Bild 7.7,
Darstellung durch ebene Punktmengen

Die gegebenen Größen sind:

MM) = 100, ‚u(J) = 26, ‚u(T) = 48,

„(Tn 0)=8, ‚LL(J/\Ö)=23, ‚u(JnT)=8,
‚L((Jf\Öf\T) = 18, ;.¢(JUTU O) = 24.

Wir suchen ‚u(O), ‚u(A) und ‚u(B) mit A = Jn 0 AT, B = JA (O u T).
Zur Lösung benutzen wir die Rechenregeln aus 7.3.4. und die folgende grundlegende
Eigenschaft von ‚u:

((A g C)/\(Bg C)/\(AnB = 0)/\(AUB= C))

—> ,u(C) = ,u(A) + ,u(B). (7.25)

Zu Frage 3: Es gilt

J = JAM = Jn((Tuo)u(T—uT)))
= umru onuuntfö?» = BuunTn 0').

Wegen (7.25) gilt also: ‚u(J) = ‚u(B) + ‚u(Jf\Tf\ Ö), also ‚u(B) = 26 — 18 = 8.

(Man verfolge diese Rechnung am Bild.)

Aufgabe 7.6: Wir betrachten die folgenden Teilmengen der Menge

M: {njneNAl gngso}:
A = {n l n s M /\ n enthält mindestens eine ZilTer drei},

B 2 {n l n e M/\ n ist durch 8 teilbar},

C : {n ‚l n E M /\ n enthält nur gerade Zahlen als Zifiern}.

a) Man gebe A, B, C durch ihre Elemente an!

b) Man bestimmei /4(A)‚ MB) M(C)‚ MA VB), MA AB), M(A n C). /4(Bn C),
,u(Br\ C). „(A n BA C)!

c) Man gehe eine Menge X an mit ‚u(X) g 3 und (XnA = 0)/\ (XnB = 0)
/\ (Xn C = 0).

d) Wie groß ist die Mächtigkeit der Menge D jener Elemente, die in genau zwei der
drei Teilmengen A, B. C liegen?

‚Aufgabe 7. 7: Man bestimme ‚u(O), ‚u(A) aus dem obigen Beispiel!
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7.5. Produktmengen

7.5.1. Geordnete Paare und geordnete n-Tupel

Oft kommt es darauf an, gewisse Elemente von Mengen gleichzeitig zu betrachten
und so zusammenmfassen, daß damit eine Reihenfolge festgelegt wird (siehe auch
7.6., 7.9.). Die einfachste solche Zusammenfassung ist die von 2 Elementen zu einem
Paar, wobei es auf die Reihenfolge der Elemente ankommt.

D.7.l3 Definition 7.13 (geordnetes Paar):

(1) Ein geordnetes Paar (a, b) ist eine Gesamtheit von zwei Elementen a, b, wobei es

auf die Reihenfolge dieser Elemente ankommt, d. h. (a, b) =’.: (b, a), falls a + b.

(2) Zwei geordnete Paare (a, b) und (e, d) heißen gleich genau dann, wenn gilt
a=cAb=d. _(7.26)

Die im wesentlichen verbale Definition 7.13 bringt den neuen Begriff „geordnetes Paar“. Wir
wollen versuchen, diesen mit Hilfe des schon erklärten Begriffes „Menge“ zu definieren.

Zunächst stellen wir die Frage: Kann man (a, b) durch die ‚Menge {(1, b} definieren, d. h. (a, b)
= {a,b} setzen? Dies ist nicht möglich, denn es gilt {n,b} = (b, a} und demzufolge wäre (a, b)
= (b, a) auch für a # b. Der Ansatz

(a. b) = {(11}, (a. b}}» (7-27)

das geordnete Paar. als Merge zweiter Stufe zu definieren, ist dagegen erfolgreich, denn man kann
zeigen, daß die in (7.27) erklärte Menge die Gleichheitsdefinition (7.26) erfüllt.

Damit können wir unsere verbale Definition 7.13 ersetzen durch eine Definition,
die den Begriff „geordnetes Paar“ auf den Mengenbegriff zurückführt.

D.7.l4 Definition 7.14: Ein geordnetes Paar (a, b) ist die Menge {{a}, {a‚ b}}

(a, b) = {{0}-{(1, 17l}-

Für die Beschreibung vieler praktisch interessanter Sachverhalte reicht jedoch der
Begriff des geordneten Paares nicht aus. Wir erweitern deshalb auf Anordnungen
von n Elementen, wobei es ebenfalls wieder auf die Reihenfolge dieser Elemente
ankommt. Wir nutzen die Definition 7.14 (n = 2) aus und definieren induktiv:

D.7.1§ Definition 7.15: Ein geordnetes n-Tupel (a1, a2, ..., a„) von Elementen ist ein geord-
netes Paar, dessen Elemente das (n — l)-Tupel (a, , a2, ..., a„_,) und das Element a„
sind (n = 2: Induktionsanfang):

(an “z, w-a an-l: an) ={{(a1 s a2: »-—> an~1)}5 {(41, 02, ~~~a ün-il: an}}- (7-28)
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(Elemente m: A )

Bild 7.8. Darstellung geordneter Bild 7.9. Darstellung von A >< B
Paare als Punkte einer Ebene
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Beispiel 7.18: Wir betrachten in einer Ebene ein rechtwinkliges xJ-Koordinaten-
system (Bild 7.8). Die Punkte P in der Ebene lassen sich dann eindeutig durch je ein
geordnetes Paar (a, b) charakterisieren. Es ist allgemein bekannt, daß der Punkt
P = (a, b) vom PunktQ : (b, a) für a =l= b verschieden ist.

Die Punkte im 3—dimensionalen Raum werden dagegen eindeutig durch ein 3-Tupe]
(Tripel) charakterisiert. (Weitere Beispiele siehe 7.6. und 7.9.)

7.5.2.

Im folgenden wollen wir geordnete Paare, die aus Elementen gewisser Mengen A, B
gebildet werden, zu Mengen zusammenfassen und diese speziell bezeichnen.

Produktmengen

Definition 7.16 (Produktmengen): A und B seien zwei Mengen. Dann heißt

A><B={(a,b)]aeA/\beB] (7.29)

Produktmenge der Mengen A, B (auch genannt: Kreuzmeuge, kartesisches Produkt).

Die Menge A x B ist eine Menge geordneter Paare, enthält also Mengen zweiter
Stufe als Elemente und ist deshalb selbst eine Menge dritter Stufe.

Beispiel 7.19:

(l) A = {(11, a2}, B = {l}, 2, 4},

A x B : {(a,, 0), (a1, 2), (42„ 4), (a2, 0), (a2, 2), (a2, 4)}.

(2) A = {p = „3 ist eine Primzahl“, q = „l0 ist durch 4 teilbar“}, B = {W,F},
A x B = {(,,3 ist eine Primzahl“, W), („3 ist eine Primzahl“, F)

(„l0 ist durch 4 teilbar“, W), („l0 ist durch 4 teilbar“, F).

,%,I,%2}‚ B={0,1,2.3,4}.

Die Elemente von A x B lassen sich also als Punktmenge gemäß Bild 7.9 darstellen.

mA=p

(fit/vitale Hm E )

MHTHMHH,’llllll„lllllllll*
(f/imenlm/IA)

(4)/1={a|aeG/\a>—5}, B={b[beR/\——l§b§+1‘,
Darstellung von A x B = {(a,b)l(aeG/\a > —5) /\(beR/\ -1 g b; 1)} in
Bild 7.10.

Einige Rechenregeln für die Produktmenge wollen wir im Satz 7.6 zusammen-

stellen:

Bild 7.10.
Darstellung von A x B

e

Satz 7.6: Für beliebige Mengen A, B, C gilt."

(1) A # B—+ A x B ä: B x A ‚ (nichtkommutativ); (7.30)

(2) A x (BU C) = (A x B)u (A x C) (Distributivgesetze); (7.31)

(3) A x (Bra C) = (A x B)n (A x C) (Distributivgesetze). (7.32)

D.7.16
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Aufgabe 7.8: Man bildeA >< BfürA = {xlxeG A “ä < x g +2}.
B={y|yeG/\y2 = x/\xeA}.

Aufgabe 7.9: Man zeige, daß sich in einem rechtwinkligen kartesischen Koordinaten-
system das Geradenstiick der x,y-Ebene y =2x, Ogxg 5, nicht als Kreuzprodukt
einer Teilmenge A der x-Achse und einer Teilmenge B der y-Achse darstellen läßt.

Zum Abschluß wollen wir den Begrifi“ der Produktmenge noch ausdehnen auf
den Fall n g 2.

Definition 7.17: Es seien A, , A2, ..., A,, Mengen. Dann nennen wir die Menge aller
n-Tupel (a, , a2, ..., a„) mit a‚- e A,- Produktmenge (n-faches kartesisches Produkt)

n

>< A,, = _>< A,- = {(a‚ , a3. a„) | (\7’i)(n, eA,)}.
Li‘,

abgekürzte Schreibweise

A, >< A3 >< (7.33)

Beispiel 7.20: A = A, = A2 2 = A„ = {alaGRAO g a g l}. Dann heißt

A1 >< x A„ =A >< >< A ={(a1,...,a,,)|(Vi)(a,eR/x0ga,§1)}

n-dimensionaler Einheitswürfel (n = 2 — Quadrat, n = 3 — Würfel).
l

7.6. Beziehungen zwischen den Elementen einer Menge (System)

Wir wollen ein Versorgungssystem (Bild 7.1l) betrachten, wie es in den verschie-
denen Bereichen der Wirtschaft auftritt.

Ein Hersteller H erzeugt ein Produkt, welches von den drei Abnehmern (Betrieben.
Baustellen usw.) benötigt wird. Die Pfeile geben an. daß und in welcher Richtung
Fahrzeuge zwischen den Elementen H. A1 ‚ A2 , A3 das betreffende Produkt transpor-
tieren bzw. leer zum Hersteller zurückfahren.

Bild 7.1 l.
Ein spezielles Versorgungssystem

Die Gesamtheit der H, A ‚ ‚ A2, A3, also der Hersteller und Abnehmer sowie die
Pfeile, die die Beziehungen zwischen diesen beschreiben, fassen wir als Einheit auf
und nennen sie System. Dabei heißen

E = {H, A1, A2, A3} die Menge der Elemente,

R* w die Menge der Beziehungen zwischen den Elementen des Systems.

Im Bild 7.1 haben wir die Elemente von R* durch Pfeile dargestellt. Man kann nun
einen solch: n Pfeil eindeutig durch ein geordnetes Paar von Elementen aus E dar-
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stellen. In unserem Beispiel ergeben sich die folgenden, geordneten Paare

(H, A1)
(H, A2) } — Transport der Produkte vom Hersteller zu den Abnehmern;

(H, A3)

(A1, H) ._

— Ruckfahrt der leeren Fahrzeuge von den Abnehmern zum
M“ H) Hersteller;
(A3, H)

(A, , A2) — Fahrzeuge, die durch irgendwelche Störungen bedingt bei A,
(A2, A‘) bzw. bei A; nicht entladen können, transportieren das Pro-

dukt weiter zu A, bzw. A1.

Damit sehen wir sofort, daß sich die Menge R* der Beziehungen zwischen den Ele-
inenten des Systems, die wir auch Relation nennen wollen, als Teilmenge der Produkt-
menge E x E darstellen läßt:

R* = {(H, A1), (H, A2), (H, A3), (Ar; H), (A2, H), (A3, H), (Ar, A2),

(A2‚A‚)} g E X E.

Die Menge R* legt die Struktur des Systems fest. Die beiden Mengen E und R*,
die gemeinsam das System beschreiben, fassen wir durch das Symbol S = [E, R*]
zusammen und nennen S das System. Eine solche Definition des Systems ist eine
wichtige und notwendige Vorstufe für alle weiteren Untersuchungen wie:

— Beschreibung der zeitlichen Vorgänge (Prozesse), die im System ablaufen,
~ Simulation solcher Prozesse,
— Optimierung des Systems selbst oder der Prozesse. die in ihm ablaufen.

Als Abstraktion aus diesem Beispiel wollen wir zum Abschluß eine allgemeinere
Definition des Systembegriffs formulieren.

Definition 7.18: Ein System S ist eine Zusammenfassung von zwei Mengen E und R*,
yrnibo/ise/i: S 2 [E, R*], wobei E die Menge der Elemente des Systems und R“.
I?“ g E x E, die Menge der zwischen diesen Elementen existierenden Beziehungen
(Relationen) und damit die Struktur des Systems beschreibt.

7.7. Operationen zwischen den Elementen einer Menge (linearer Raum)

In diesem Abschnitt und auch in den nachfolgenden beiden Abschnitten werden
einige Begriffe. die unmittelbar mit dem Mengenbegriff zusammenhängen, angegeben.
Zunächst definieren wir den für die Mathematik fundamentalen Begriff des linearen
Raumes. Dazu werden im folgenden Elemente einer beliebigen Menge Xmit x, y, z,
und Zahlen (reelle Zahlen) mit a, b, c, bezeichnet.

Definition 7.19 (linearer Raum): Eine Menge X heißt ein linearer Raum, wenn gilt:
Sind ‚v. „i“ beliebige Elemente von X, so ist auch ihre Summe x + y ein Element von X‚

uml isvfcrner a eine Zahl, so ist auch a * x ein Element von X. Der Begr1fl,,Summe"'
sieht hierfür irgendeine Operation, dieje zwei Elementen x, ye X ein Element, bezeiehnet

D.7.l8
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durch x + y EX, zuordnet. Dabei genügen diese Addition und die Multiplikation mit
einer Zahl den folgenden Gesetzen:

(1)x +y =y + x, (7.34)
(2)x +(y +z) = (x +y) + Z, (7.35)

(3)a-(x+y)=a-x+a-y, (7.36)

(4)(a+/J)-x:a'x+b~x, (7.37)

(5)a'(b-x) = (a'b)-x, (7.38)

(6) l "x = x, (7.39)

(7)(x+y:x+z)—>y=z‚ (7.40)

und es wird ein Nullelement o durch O - x = a definiert, welches die Bedingung
x + o = x erfüllt und weitere aus (7.34) bis (7.40) lzerleitbare Eigenschaften besitzt.

Nach dieser Definition folgt, daß mit zwei beliebigen Elementen x, y eines linearen
Raumes X und zwei beliebigen Zahlen auch das Element a - x + b - y, welches wir
Linearkombination von x und y nennen, zum Raum X gehört.

Beispiel 7.21: Es sei X = {(x„ x3, x„) | (i e {1‚ 2, n}) A (Vi) x, e R} die Menge
aller n-Tupelreeller Zahlen, d. h. X = R >< R >< x R. wobei wirim folgenden zur
Abkürzung für R x R >< >< R das Symbol R” schreiben wollen. Wir definieren:

x + y =(x1,x2,.-ax.)+(,v1,y2,...,yn)
=(x1+y1,x2+y2,...,x,,+y,,)eR", (7.41)

a-x = a~(x1,x2,...,x,,)=(a~x,,a-x2,...,a~x,,)eR". (7.42)

Man kann leicht zeigen, daß die Eigenschaften (1) bis (7) gelten,

z.B.(4):(a+17)-x=((a+b)-x,,(a+b)-x2,...,(a+b)-x,,)
:(a-x, +b'x,,...,a-x,,+b-x,,)=(a-x1,...,a~x,,)

+(b-x,,...,b‘x,,)
=a-(x,....,X,,)+b-(x1,....x,,)=a~x+b‘x.

Das Nullelement o ergibt sich zu

0:0-x=0~(x,,x2,...,x,,) =(0'x1,0'X£,...,0'X,,) :(o,o,...,o).

Demzufolge bildet die Menge R" mit den Definitionen (7.41) und (7.42) einen linearen
Raum, den sogenannten n-dimensionalen, reellen, euklidischen Raum (siehe auch 7.8.),
der bei Interpretation der n-Tupel (x1, x2, ...‚ x„) als Vektoren auch Vcktorraum
genannt wird.

7.8. Metriken in Mengen (metrischer Raum, Umgebungsbegrifl’)

Wir betrachten wieder eine Menge X.

Definition 7.20: Ein Abstand auf X ist dann definiert, wenn jedem Element (x, y)
aus X x X in eindeutiger Weise eine reelle Zahl d, bezeichnet mit d(x, y), zugeordnet
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ist, die die folgenden Eigenschaften besitzt:

(l) d(x,y) ä 0 für alle (x, y)eX >< X. (7.43)

(2) d(x, y) = OH x = y, (7.44)

(3) d(x, y) = d(y, x) für alle (x, y) e X >< X, (7.45)

(4) für drei beliebige Elemente x, y, z e X gilt:
d(x, z) g d(x‚ y) + d(y, z) Dreiecksungleichung (7.46)

Die Größe d(x, y) he;/3! dann Abstand auf X.

Unter einem metrischen Raum versteht man eine Menge X gemeinsam mit einem auf
X gegebenen Abstand d(x‚ y).

Die metrischen Räume besitzen große Bedeutung in der Funktionalanalysis und
stellen eine wichtige Grundlage für Probleme der mathematischen Operationsfor-
schung und der numerischen Mathematik dar. Wir betrachten als Beispiel noch ein-
mal die Menge X = R", von der wir bereits gezeigt hatten, daß sie einen linearen Raum
bildet. Auf R" führen wir jetzt einen Abstand d folgendermaßen ein: Für beliebige
x = (x„x2, ...‚x„),y = (y1,y2, ...,y,,) definieren wir:

I d(x. y) = „l: (xi - y.-)2.

Bild 7.l2. zeigt diesen Abstand im Falle n : 2, der mit dem gut bekannten gerad-
linigen Abstand zweier Punkte der Ebene übereinstimmt. (Aus diesem Grunde heißt
(7.47) übrigens auch Euklidisclzer Abstand und R" Euklidisclier Raum.)

Eigentlich wäre nachzuprüfen, daß (7.47) tatsächlich die Bedingungen (7.43) bis
(7.46) erfüllt. Wir wollen diese einfache Aufgabe jedoch dem Leser überlassen.

(7.47)

‚ f
1mj1f‘,«’fY'(¥/J2)

.11) x(\h_,/ l

‘,Yz"‘z
_. _ ‚ „ __‚_._.‚l

VF‘! i

l

Bild 7.l2.

d.

xloifirf’
l

' Euklidischer Abstand im R2

Als Ergebnis erhalten wir: Die Menge R” ist ein linearer, metrischer Raum. Wei-
tere Beispiele können erst später, beispielsweise in Abschnitt 8., behandelt werden.

Im folgenden wollen wir noch den wichtigen Begriff der Umgebung einführen.
Dazu sind einige weitere Definitionen notwendig:

Definition 7.2'1: X sei ein metrisclier Raum.

1. Die Menge K(a‚ r) : {x | x6 XA d(a‚ x) < r} (7.48)
heißt oflene Kugel um a mit dem Radius r.

2. Die Menge K’(a, r) = {x | x e X/\ d(a, x) g r} (7.49)
heißt abgeschlossene Kugel um a mit dem Radius r.

3.‘ Eine nichtleere Teilmenge A von X heißt beschränkte Menge in X, wenn

gilt: Es existiert eine abgeschlossene Kugel K’(a‚ r) mit endliche/n Radius r.

so daß A g K’(a, r) gilt.

D.7.2l
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Beispiel 7.22: Wir haben gezeigt, daß die Menge R" ein metrischer Raum ist. Also ist

auch R1 2 R, in diesem Falle geht (7.47) über in d(x, y) = x/(x — y)’
metrischer Raum.

Es sei a e R. Dann gilt:

I K(a,r)={x|xeR/\d(a,x)<r}={xlxeR/\|a—x|<r},
K’(a,r) = {x|xeR/\d(a,x) gr} = {x|xeR/\|a —x[ gr}

sind Intervalle mit dem Mittelpunkt a und der Länge 2r. Der Begriff der Kugel fällt
also im Falle R" = R mit dem des Intervalls zusammen, den wir in Beispiel 7.6
ausführlich erläutert haben.

Beispiel 7.23: In Bild 7.13 haben wir für X die Menge R2 R x R gewählt und
sowohl eine beschränkte als auch eine njchtbesehränkte Teilmenge gezeichnet.

Ix — y], ein

Definition 7.22: X sei ein metrischer Raum mit dem Abstand d und A g X. A heißt
offene Teilmenge von X, wenn gilt: Für alle x, xe A, existiert ein r, r > 0 so, daß
K(X‚ r) g A gilt.

Bild 7.13.
A beschränkte,
B nichtbeschränkte Teilmenge des R’

Das heißt, mit jedem x, welches zu A gehört, gehört auch eine offene Kugel um x

zur Menge A. Es sei z. B. X = R. Dann ist jedes offene Intervall (a, b) eine offene
Teilmenge von X.

Mit Hilfe dieser Begriffe sind wir nun in der Lage, eine Umgebung einer Menge
zu definieren.

Definition 7.23:

1. Eine offene Umgebung von A ist eine oflene Menge 0 mit A g 0.
2. Eine Umgebung von A ist jede Menge U mit 0 g U (0 oflene Umgebung von A).
3. Ist A = {x}, so sprechen wir von Umgebungen des Punktes x anstelle des Begrifles

Umgebung der Menge

Beispiel 7.24: Wir betrachten wieder X = R. (a, b) sei ein beliebiges offenes Intervall.
Dann gilt: Für ein beliebiges festes 8,86 R, e > 0, ist jede Menge (a —— a, b + s)
: [x | x E RA a — s < x < b + e} eine offene Umgebung von (a, b),

Da das abgeschlossene Intervall [a — a, b + e] das offene Intervall (a — e, b + a)
umfaßt, (a — e, b + e) g [a — s, b + e], ist [a — e, b + s] eine Umgebung von (a, b).

Das abgeschlossene Intervall [a, a] können wir mit der reellen Zahl a identifizieren.
Für jedes positive e ist deshalb (a — s, a + s) eine offene Umgebung, [a — e, a + a]
eine Umgebung des Punktes a. Man nennt diese wichtige spezielle Umgebung auch
e-Umgebzmg des Punktes a.

Abschließend erklären wir noch zwei wichtige Begriffe für Teilmengen der Menge R
der reellen Zahlen.
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Definition 7.24:

a) Es sei A g R; b e R heißt obere Schranke von A, wenn für alle x e A die Unglei-
chung x g b erfüllt ist; de R heißt untere Schranke von A, wenn a g x für alle
x e A gilt,

b) Die Menge A heißt nach oben (bzw. nach unten) beschränkt, wenn die Menge aller
oberen (bzw. unteren) Schranken von A nicht leer ist.

Diese Betrachtung ist eine Verfeinerung unserer Aussagen im Beispiel 7.20.
Ist nämlich dort X 2 R und A g Xeine beschränkte Menge, so ist A nach oben und

unten beschränkt. Auch die Umkehrung dieser Behauptung ist richtig. Wir erklären
nun das Supremum und das lnfimum der Menge A."

Definition 7.25:

a) 7 = sup A ist eine reelle Zahl mit den Eigenschaften:

l. y ist obere Schranke von A;

2. fürjede natürliche Zahl n, n g l, existiert ein x e A so, daffy — 71; < x g y
gilt.

b) v : inf A ist eine reelle Zahl mit den Eigenschaften:

l. v ist untere Schranke von A;

2.fürjede natürliche Zahl n, n g l, existiert ein x e A so, daß v g x < v + '—

gilt. n

Anschaulich gesprochen: Das Supremum einer Menge A g R, y = sup A, ist die

kleinste obere Schranke von A, denn y selbst ist obere Schranke, aber y — -2- ist auch

für beliebig großes n keine obere Schranke von A. Entsprechend kann man sich das
lnfimum einer Menge A, v = inf A, anschaulich vorstellen.

Für eine nach oben beschränkte Zahlenmenge A g R existiert stets das Supremum,
für eine nach unten beschränkte Menge A g R stets das lnfimum. Supremum bzw.
lnfimum einer unendlichen Menge A g R müssen jedoch nicht zu A gehören.

Ist nämlichz. B. A = [0,1)‚sogilt:y = supA : l, v : infA : Oundv : 06A.
aber y = l ¢ A.

Gehören y bzw. v aber zu A, so schreiben wir
y=supA =maxA bzw. v=infA :minA,

max A — Maximum der Menge A (größtes Element von A).
min A — Minimum der Menge A (kleinstes Element von A).

In unserem Beispiel gilt v = inf A = min A = O, während das Maximum von A
nicht existiert.

Diese Betrachtungen besitzen besondere Bedeutung im Zusammenhang mit reell-
wertigen Funktionen (Abschnitt 9.).

Aufgabe 7.10:

a) Man zeige, daß das halboffene Intervall [0, l) keine offene Teilmenge von R‘ :
ist!

b) Man bilde: A = [0, l)r\ [1, 2],

B = ([-1, +1]V(0,2))r\([1, Zlk/[3, 10))-

D.7.24
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7.9. Weitere Anwendungen (Graphen, konvexe Polyeder)

7.9.1. Graphen

Bei der Planung industrieller Prozesse und bei der Betrachtung von Netzwerken,
die in den verschiedenen Wissensehaftsgebieten auftreten, findet man vielfältige Be-
ziehungen zwischen Wirtschaftsobjekten, Personengruppen und anderen Größen.
Zur Beschreibung solcher Objekte und ihrer Wechselbeziehungen erleichtern gra-
phentheoretische Betrachtungsweisen sowohl die mathematische Modellierung als
auch die Lösung der anstehenden Probleme. Man geht dabei so vor, duß man den
Objekten Punkte. den Wechselbeziehungen diese Punkte verbindende Kurven zu-

ordnet. Denken wir z. B. an das Bild 7.11, so haben wir damit den Graphen des
zugrunde liegenden konkreten Systems dargestellt. Im folgenden wollen wir den
Begriff des gerichteten- Graphen definieren, müssen uns aber dann mit einigen ganz
wenigen Beispielen, die die Vielfalt graphenartiger Gebilde in keiner Weise wider-
spiegeln. zufriedengeben. Wir verweisen den interessierten Leser insbesondere auf
[3] und Band 21/2.

Definition 7.26: Ein gerichteter Graph D beste/n aus einer Knotenmenge V,

V = {D1, U3, V =i= 0,

und einer Menge A gerichteter Kanten, die als Teilmenge der Menge V >< Vdargestellt
wird. Wir «aß/treiben

1) = (V, A).

Ist a e A die gerichtete Kante, die als" Anfangrknoren 11,-, als Endknoterv v, mt/Iiill. ‚ro

definieren wir V

a = (vi, vi).

Beispiel 7.25 (siehe auch Bild 7.14):

V={v„za2,v3.v4,v5}‚ A

01 = (175: vs),

a2 = (U2: ”3)«

a3 = (U3, U2)»

= {axaazyasaamassasaawassaa}

(01,93); a7 = (D17172):

as = (U4: U3), as = (Da, U4)-

as = (Um Us); a9 = (U2: U1)-

mit a4 =

Bi1d7.l4.
D = (V. A),
V: i171. ...‚ U5}.
A = {(11, ...,u9}

In Bild 7.l l ist ein weiteres Beispiel für einen gerichteten Graphen dargestellt.
Besondere praktische Bedeutung besitzen die Graphen als Grundlage der Netz-

plantechnik. Es sei z. B. ein Projektablauf in 6 Vorgänge v1, v2. v3. v4, vs, D5 einge-
teilt. Jeder Vorgang v,- besitze einen frühesten Anfangstermin r,’ eine Dauer (l,- und
eine Mindestzeit n’, die nach Beendigung des Vorgangs r,- noch bis zur Beendigung des
Gesamtprojekts benötigt wird.
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Wir wollen voraussetzen: v, ‚ v2 ‚ v3 und vs werden in dieser Reihenfolge von einer
Brigade l, vs, U4 ebenfalls in der angegebenen Reihenfolge von Brigade 2 erledigt
und v4 möge erst dann begonnen werden, wenn v, beendet ist. Indem wir einen An:
fangsknoten v0 (Beginn) und einen Endknoten v7 (Ende des Projektes) hinzunehmen,
k0nnen wir den oben verbal formulierten Projektablauf durch den Graphen D = (V A)
aus Bild 7.15 darstellen. ’

|

d,'t1 es

4,42’

'3' . d5”;
Bild 7.15, Beispiel für einen Netzplan

7.9.2.

Zum Abschluß sollen als weitere wichtige Anwendungen des Mengenbegriffes
spezielle Punktmengen, die Polyedermengen, kurz behandelt werden. Die praktische
Bedeutung dieser Mengen liegt darin begründet, daß sie die Mengen zulässiger Lö-
sungen bei Optimierungsproblemen mit linearen Nebenbedingungen (siehe insbe-
sondere Band 14) darstellen und damit Grundlage z. B. der linearen Optimierung sind.

Wir betrachten im folgenden wieder die Menge R" und darin ein rechtwinkliges,
kartesisches Koordinatensystem und definieren die Teilmenge

,x„)!xeR"/\a1x1 +a2x2 +... +a,,x,,—-b§0‘,

Konvexe Polyeder

A = {x =(x1,x2,...
wobei alle a, und b reelle Zahlen seien. Bild 7.16 stellt die Menge A im Falle n = 2
dar.

Bild 7.16.
Halbebene und Begrenzungsgerade

/ p.

Li///. ‚v /////}"/
Die lineare Ungleichung alx, + 122x; — b g 0, (11„ a2) + (0, O), definiert als

Menge A eine Halbebene, deren Begrenzungsgerade G*, G* g A, durch die Gleichung
a,x‚ + azxz — b = 0 definiert wird. Als Verallgemeinerung dazu definieren wir:

Definition 7.27: Die Menge A heißt ein abgeschlossener Halbraum des R". Die Glei-
chung a‚x‚ + azx; + + a„x„ — b = 0 kennzeichnet die Begrenzungshyperebene
dieses Halbraumes.

Im folgenden betrachten wir Mengen A ,

A. {x = (x1,x„, ...‚x„)|xeR"/\a‚-‚-x, + a‚-2°x2 + + a,»„-x„

-1),» go‘, i:1,2,...,m.
meiner u, a., Mathematik

D.7.27
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Die zulässigen Bereiche (Mengen zulässiger Lösungen) großer Klassen von Opti»
mierungsproblemen sind definiert als Durchschnitt endlich vieler solcher Mengen A,-.
Wir betrachten deshalb

B=A,nA2n...nA„,= A,-
i=l

= {x|xeR"/\(ie{l‚2‚...‚m}/\(Vi)(a„'x1 +... +a,-‚_-x„ —b, §0))}.

D.7.28 Definition 7.28: Die Menge B (Durchschnitt endlich vieler Halbräume) heißt eine
Polyedermenge (konvexes Polyeder).

Beispiel 7.26 (siehe auch Bild 7,17):

A1 = {(351,752) I (x1,x2)€R2 A ‘x1 ä Ü],

A2 = {(x1sxZ)I (X1:x2)‘5R2 /\ “X2 S 0 ‚

A3 = {(x1sX2) | (xl>x2)ER2Axl + X2 “ 10 § 07:

A4 z {(xxsv\'2)[(-"1: x2)€Rz/\ "’;"x1 ‘x2 +1§O}-

Bild 7,17.
Spezielle Polyedermenge

‚X,

>1: Aufgabe 7.11: Man stelle die Polyedermenge

B<{(x,y)|(—x§0)A(-y g 0)A(—x— 2y + 6 é OHM; 5)

A(2x —y g —4)A(x +y§ 12)}

yrzznhiscli dar!



8. Abbildungen

Die Abbildung gehört zu den Grundbegrifien der Mathematik. Sie wird bei vielen
Untersuchungen angewendet. Deshalb werden hierzu im folgenden die wesentlichsten
Definitionen und Aussagen entwickelt. Sie bilden gleichzeitig die Grundlage für
die beiden folgenden Abschnitte über Funktionen und Zahlenfolgen. Schließlich
werden einige Anwendungen aufgezeigt. Diese tragen aber — entsprechend dem
Grundlagencharakter des Abschnittes — vorrangig illustrativen und mathematischen
Charakter, oder aber sie beziehen sich auf stark vereinfachte Fragestellungen der
Praxis.

8.1. Abbildungsbegrifl

Die Bezeichnung Abbildung ist der Umgangssprache entlehnt. Damit ist eine
Schwierigkeit verbunden, denn in der Umgangssprache wird diese Bezeichnung in
anderem Sinne verwendet als in der Mathematik. Umgangssprachlich kann man
durchaus solche Bemerkungen wie „Mit diesem Modell ist eine gute Abbildung der
Realität gelungen“ antreffen, wobei damit sowohl die Tätigkeit des Modellierens
als auch ihr Ergebnis gemeint sind. Nicht selten werden auch graphische Darstellun-
gen in Büchern als Abbildungen bezeichnet, An diese Vorstellungen knüpft der ma-
thematische Begriff der Abbildung in gewisser Weise an, obgleich er — wie gesagt —

sich von ihnen sehr wohl unterscheidet.
Zum leichteren Verständnis sei als Einführung der allen bekannte und sich seit

Jahrhunderten ständig aufs Neue wiederholende Vorgang der Eheschließung be-
trachtet. Dabei muß selbstverständlich von vielen gesetzmäßigen Zusammenhängen
und individuellen Einzelheiten abstrahiert werden, so daß sich Formulierungen erge-
ben, die teilweise etwas kurios anmuten. Dafür sei im voraus um Verständnis ge-
beten. Mathematisch läßt sich das Problem z. B. wie folgt beschreiben. In einem
Kalenderjahr kann die gesamte Bevölkerung über l8 Jahre zunächst in zwei Mengen
eingeteilt werden. Die eine Menge enthält als Elemente alle weiblichen Bewohner
und die andere Menge enthält alle männlichen Bewohner, und zwar unabhängig
davon, ob sie ledig oder verheiratet sind. Nun kann man eine dritte Mengen bilden,
deren Elemente alle die Paare sind, die in dem betrachteten Kalenderjahr die Ehe
schließen. Die Menge dieser Paare stellt dann eine Abbildung im mathematischen
Sinne dar. So einfach läßt sich dieses Problem beschreiben, wenn man sich auf die
Ebene mathematischer Abstraktionen begibt. Es muß natürlich gleichzeitig einge-
standen werden, daß in der Realität bei der Bildung solcher Paare ein ganzer Komplex
von Gesetzmäßigkeiten und funktionalen Zusammenhängen wirkt, der durch die
obige mathematische Beschreibung in keiner Weise erfaßt werden konnte.

Im folgenden Beispiel ist ein vereinfachtes Problem der Praxis dargestellt. Es ist
für die Anwendung schon interessanter.

Beispiel 8.1: Gegeben sei ein festes Zeitintervall [t„, t‚] und eine Anzahl von glei-
chen Maschinenjmit denen ein bestimmtes Erzeugnis, z. B. Strümpfe, hergestellt
werden kann. Dann hängt die Anzahl E der in [t„, t1] produzierten Einheiten des
Erzeugnisses ab von der Zahl k der eingesetzten Maschinen. Können mit einer Ma-
schine E, Einheiten des Erzeugnisses hergestellt werden, so können mit k Maschinen
E‚k Einheiten produziert werden. Damit ergibt sich die Formel

E = f(k) mit f(k) = Elk.
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Vom Standpunkt der Abbildung kann man diesen Sachverhalt etwa so beschreiben:
Jede Zahl k der eingesetzten Maschinen wird auf eine Zahl E der mit ihnen produ-
zierten Einheiten des Erzeugnisses abgebildet. lm Ergebnis erhält man eine Menge
von Paaren (k, E), die ebenfalls Beispiel einer Abbildung ist.

Das Charakteristische dieses sowie des Beispiels über die Eheschließung besteht
darin, daß den Elementen einer Menge Elemente einer anderen Menge zugeordnet
werden, wobei eine Menge von Paaren entsteht. Damit ist Wesentliches des mathe-
matischen Begriffs der Abbildung bereits gesagt,

Definition 8.1: M und N seien zwei Mengen. Dann heißt jede Teilmenge A g M x N
eine Abbildung aus der Menge M in die Menge N.

Entsprechend dieser Definition enthält eine Abbildung A aus der Menge M in
die Menge N als Elemente nur geordnete Paare (x, y) mit x e M und y e N.

Aufgabe 8.1: Die bestehenden vertraglichen Beziehungen zwischen allen Gießerei-
betrieben und allen Verbrauchern von Gießereierzeugnissen der DDR sind zu einer
Abbildung zu modellieren.

Beispiel 8.2: Zahlreiche Probleme der Praxis führen bei ihrer mathematischen Mo-

dellierung auf Ungleichungen der Art c,»x,- g b (vgl. Bd. 14). In diesem Zusam-

menhang betrachten wir die Aufgabe: Man ermittle alle die ganzen, nichtnegativen
Zahlen x, und x2, die der Ungleichung

8x, + 12x2 g 96 (8.1)

genügen. Wird die Menge der ganzen, nichtnegativen Zahlen mit N bezeichnet, so
ist mit dieser Aufgabe eine Abbildung A g N x N gegeben, die aus allen denjenigen
geordneten Paaren (x, , x2) mit x„x2 e N besteht, die der Ungleichung (8.1) ge-
nügen. Diese Abbildung A kann man graphisch z. B. so wie in Bild 8.1 darstellen.

12

Bild 8.1.
Eine Möglichkeit zur graphischen

. k Darstellung der Abbildung ((x„x2)} mit
...‘.x_‚h 8x, + 12x2 g 96 und x„x2e N

Hierbei wird A repräsentiert durch die Menge aller markierten Punkte, wobei jeder
Punkt ein geordnetes Paar (x, ‚ x2) e A darstellt (vgl. Bilder 7.9, 7.17).

Aufgabe 8.2: Für welche der Wertepaare (x,. x2):

(3, 9), (4, 9), (8, 6), (9, 4), (16, 0). (6, 8)

ist die Ungleichung 5x, + 8x2 g 88 erfüllt?

Aufgabe 8.3: Wie in Beispiel 8.2 sei durch die Ungleichung 5x, + 8x2 g 88 eine

~
x-

Abbildung A g N >< N definiert. Man gebe alle Wertepaare (5, x2) und (x„ 6) an,
die Elemente dieser Abbildung sind.

Aufgabe 8.4: Man stelle alle in Aufgabe 8.2 genannten und in Aufgabe 8.3 als Lö-
sung erhaltenen Wertepaare einschließlich der Geraden 5x, + 8x2 : 88 graphisch
dar (vgl. Bild 8.1).
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Beispiel 8.3: Gegeben seien die beiden Mengen M = {l, 2, 3} und N = {a‚ b, c}.
Dabei ergibt sich die Produktmenge M >< N zu

M x N = {(1, a), (l, b), (1, c), (2, a), (2, b), (2, e), (3, a), (3, b), (3, c)}.

Dann sind z. B, die Teilmengen

A1 z {(1, a), (1, b), (2, a), (2, c)} und

A2 : {(1, a), (2, a), (3, a)}

Abbildungen aus M in N. Diese Abbildungen kann man graphisch z. B. so wie in
Bild 8.2 darstellen. Hierbei wird jedes Element von A, repräsentiert durch die Gesamt-
heit von jeweils zwei entsprechenden Punkten und dem sie verbindenden Pfeil.

“*7” “"7”
3 \°b 7 °// °” Bild 8.2.

"\\o (// Graphische Darstellung der Abbildungen
3 ° 5 3 M‘ A, und A; aus Beispiel 8.3

'41 AI

Aufgabe 8.5: Gegeben sei die Abbildung 4:

A = {(7, 3)‚ (1, 4)‚ (0, 6). (4‚ 6L (5‚ 7)}

aus M in N. Welche Elemente muß dann die Menge Mund welche die Menge N auf
jeden Fall enthalten?

al
-Aufgabe 8.6: Nehmen Sie an, die Mengen M und N bestehen nur aus den von Ihnen

für die Aufgabe 8.5 gefundenen Elementen. Stellen Sie dann die Abbildung A der Auf-
gabe 8.5 auf beide Arten graphisch dar (vgl. Bild 8.1 und 8.2).

Aus den obigen Beispielen kann man schlußfolgern‚ daß bei einer Abbildung A
aus M in N durchaus nicht zu jedem Element x e M ein Element y e N gehören muß
(siehe Abbildung A1 in Beispiel 8.3). Umgekehrt muß auch nicht jedes yeN zu
einem xeM gehören; schließlich können zu einem xeM auch mehrere yeN
gehören (siehe Abbildung A, in Beispiel 8.3). in diesem Zusammenhang führt man

noch folgende ergänzende Begriffe ein:

Definition 8.2: Ist A eine Abbildung aus M in N, so nennen wir die Menge aller x e M, D.8.2
für die ein y e N derart existiert, daß (x, y) EA ist, den Definitionsbereich von A;
er wird mit DA bezeichnet. Die Menge aller y e N, für die ein x e M derart existiert,
daß (x, y) e A ist, wird Wertebereich van A genannt und mit WA bezeichnet. Ist waiter-
hin (x, y) e A, so wird x ein Original oder Urbild von y und y ein Bild von x bei der
Abbildung A genannt. Man sagt auch, daß x durch A aufy abgebildet wird.

Diese neuen Begriffe können am Beispiel 8.1 der Maschinen und der mit ihnen
produzierten Einheiten eines Erzeugnisses wie folgt interpretiert werden. Es sei M
die Menge der natürlichen Zahlen von 1 bis m:

M = {l.2‚ ..., k, ..., m},

wobei m die maximale Anzahl der einsetzbaren Maschinen angibt und jede einzelne
Zahl k die unter gegebenen Umständen konkret eingesetzte Anzahl von Maschinen
repräsentiert. N sei die Menge aller natürlichen Zahlen. Dann ist mit

A = {(1, E‚)‚ (2, 2E,), ..., (k, kE,), ..., (m, mE,)}
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eine Abbildung aus M in N gegeben, die den Sachverhalt modelliert, daß mit jeder
einzelnen Maschine E, Einheiten des Erzeugnisses im Intervall [z„, t1] hergestellt
werden können. Diese Abbildung besteht aus Paaren natürlicher Zahlen (k, kEl),
k = 1, 2,. .., m, wobei k Urbild oder Original und kEl Bild ist. Der Definitionsbereich
dieser Abbildung ist gleich der Menge M, während der Wertebereich gleich derje-
nigen Teilmenge der natürlichen Zahlen ist, die die Zahlen kEl, k = 1,2, ...‚ m,
enthält.

Beispiel 8.4: Es sei M die Menge aller geordneten Paare P = (X, , x2) der Abbildung
aus Beispiel 8.2. Dann ist durch

z : 6x, + 5x2 (8.2)

mit (x, . x2) E M eine Abbildung A g M >< R‘ gegeben, deren Definitionsbereich
durch M gegeben und deren Wertebereich eine Teilmenge von R1 ist. Sie besteht aus

allen denjenigen geordneten Paaren (P, z), für die P = (x1, x3)e M ist und z nach
der Formel (8.2) berechnet worden ist. Mit anderen Worten, die Originale dieser Ab-
bildung sind alle die Paare P = (x, , xi), deren Zahlen die Ungleichung (8.1) erfüllen,
während die Bilder dieser Abbildung gewisse reelle Zahlen sind.

Aufgabe 8.7: Jeder der folgenden Sachverhalte soll zu einer Abbildung modelliert
werden. Dabei sind auch Definitionsbereich. Wertebereich, Originale und Bilder
näher zu beschreiben.

a) Von einer Warc stehen Q Mengcneinlieiten zum Verkauf bereit. Beim Verkauf
einer Mengeneinheit der Ware wird ein Erlös von p Geldeinheiten erzielt. Der Erlös
wird in Abhängigkeit von der Anzahl q der verkauften Mengeneinheiten ermittelt
(q = 1, 2. ...‚Q).

b) In einem geschlossenen Behälter mit konstantem Volumen befindet sich ein
Gas. das Temperaturschwankungen im Bereich von T1 bis T: unterworfen wird.
Der Druck des Gases wird in Abhängigkeit von der Temperatur gemessen.

Aufgabo 8.8: Man gebe Definitionsbereich. Wertebereich. Originale und Bilder der
‚Abbildungen A, und A; aus Beispiel 8.3 an.

Bei dcr Lösung der Aufgabe 8.7 war es sicher etwas schwierig, alle Elemente der
Abbildungen in möglichst kompakter Weise anzugeben. Das ist eine Schwierigkeit.
die tillgemein für Mengen und damit auch für Abbildungen gilt. Es ist manchmal gar
nicht möglich und häufig sehr umständlich, alle Elemente einer Abbildung aufzu-
schreiben. Das gleiche Problem ist uns schon bei Mengen begegnet und wurde dort
mit Hilfe von Aussageformen gelöst. Da Abbildungen nichts anderes als gewisse
Mengen sind, verwenden wir hier die Ergebnisse von Abschnitt 7.l. Dabei ergibt
sich. daß eine Abbildung A g M >< N aus allen denjenigen geordneten Paaren
(x. y) mit x e M und y e N gebildet wird, für die eine Aussageform pA(x, y) zu einer
wahren Aussage wird. Dabei ist p„(x.y) eine Aussageform, die die Abbildung A
charakterisiert. Dieser Sachverhalt wird von uns im weiteren kurz so geschrieben:

| A = [(.\'. _1') l x E MA y e NAp„(x, _v)‘‚. (8.3)

Unter Aussageformen sollen ganz allgemein im weiteren Formulierungen ver-

standen werden (vgl. Abschnitt 3.2. sowie auch die Formeln (7.1). (7.2)), die sowohl
in verbaler als auch mathematischer Form gegeben sein können. Als Beispiel einer
verbal formulierten Aussageform p‚4(G. V) sei genannt: „Zwischen der Gießerei G
und dem Verbraucher Vgibt es vertragliche Beziehungen“ (vgl. Aufgabe 8.1).



8.2. Lineare Abbildungen 103

Da die mathematische Formulierung von Aussageformen häufig selbst sehr kurz
ist, so kann man sie auch in der Schreibweise (8.3) direkt für p„(x‚ y) angeben. Ist
z. B. durch „E = kEl“ eine Aussageform p(k, E) gegeben (vgl.Beispiel8.1)‚ so
kann anstelle von

A={(k,E)|keMAEeNAp(k‚E)} (8.4)

auch geschrieben werden

A={(k,E)|k6MAEENAE=kE1}. (8.5)

Aufgabe 8.9: Die Abbildung der Aufgabe 8.7, Teil b) soll in der Form (8.3) und in
einer zu (8.5) äquivalenten Form geschrieben werden. Man verwende dabei die Lö-
sung für diesen Teil der Aufgabe 8.7.

Aufgabe 8. l0: Die in der Lösung der Aufgabe 8.1 konstruierte Abbildung A soll in
der Form (8,3) geschrieben werden.

Aufgabe 8.11: Bekanntlich besagt eines der Newtonschen Bewegungsgesetze, daß
die Kraft eines sich geradlinig bewegenden Körpers gleich dessen Masse multipliziert
mit seiner Beschleunigung ist. Man modelliere diesen Sachverhalt für einen Körper
mit konstanter ‘Masse zu einer Abbildung und schreibe sie in Form von (8.5).

Aufgabe 8.12: a) Man gebe alle Elemente der Abbildung

A = {(x‚y)lxei’ll/\yeG/\y 2x1}

mit M = {-2, -1, O, l, 2, 3} an.

b) Man stelle die Abbildung

A = {(x,y)ixeR‘/\yeR‘/xx +y g 4}

graphisch in einer x,y-Ebene dar.

Durch die Definition 8.1 ist ein neues mathematisches Objekt eingeführt worden.
Mit den anschließenden Beispielen wurde gezeigt, daß solche Objekte tatsächlich
existieren und daß sie Beziehungen zu Problemen der Realität haben.

Wenden wir uns nun der konkreten Untersuchung des neuen Objektes „Abbil—
dung" zu. Dabei sei zunächst daran erinnert, daß gute Fragen eine solide Grund«
lage für jegliche Erkenntnis bilden. Als erstes bietet sich die Frage an, wann denn
zwei Abbildungen gleich sind. Darauf kann sofort eine Antwort gegeben werden.
Abbildungen sind ja Mengen. und daher sind zwei Abbildungen gleich, wenn sie

dieselben Elemente enthalten. Diese Aussage möge vorerst genügen. Später wird sie
durch eine äquivalente, aber besser anwendbare ersetzt.

Als nächstes fragen wir nun nach besonders einfachen Abbildungen. Hierauf gibt
der folgende Abschnitt eine erste Antwort.

8.2. Lineare Abbildungen

Unter den Beziehungen zwischen Größen der Realität zeichnet sich eine Klasse
durch besondere Einfachheit aus. Ihr charakteristisches Merkmal ist die Sogenannte
Linearität. Hierzu gehören z. B. die Beziehung zwischen Erlös und Anzahl der ver-

kauften Mengeneinheiten einer Ware (siehe Aufgabe 8.7) oder die zwischen der
Kraft und der Beschleunigung eines Körpers (siehe Aufgabe 8.11). Nehmen wir
einmal an. daß die Anzahl der zum Verkauf bereitgestellten Mengeneinheiten der

«x
-
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Ware unbeschränkt ist. Wurden dann m, bzw. m, Mengeneinheiten der Ware ver-
kauft und wurde dabei ein Erlös von E1 = pm, bzw. E2 = pm; Geldeinheiten erzielt,
so ist der Erlös E für den Verkauf von alm, + azmz Mengeneinheiten gleich a1E,
+ a2E2 (a1, a2 seien natürliche Zahlen). Mit anderen Worten, der Linearkombination
(vgl. Abschnitt 7.7.) der verkauften Mengeneinheiten entspricht die gleiche Linear-
kombination der Erlöse. Damit ist zugleich das Wesen der Linearität von Abbil-
dungen herausgearbeitet. Es kann wie folgt charakterisiert werden: das Bild einer be-
liebigen Linearkombination von Originalen der Abbildung ist gleich der entsprechen-
den Linearkombination der Bilder dieser Originale (siehe hierzu insbesondere (8.8)).
Allgemein werden wir im weiteren unter linearen Abbildungen folgendes verstehen:

Definition 8.3: Eine Abbildung A aus einer Menge M in eine Menge N mit dem Defi-
nitionsbereich DA heißt linear, wenn

l. DA ein linearer Raum irt und

2. mit (x1,y1), (x2, yz) e Afür beliebige reelle Zahlen a1 ‚ a; auch

(“i351 + 02X2; alyl ‘l’ (12h) 5 A (8-6)
gilt.

Als Erläuterung zu dieser Definition sei folgendes erwähnt. Jede beliebige Ab-
bildung A aus M in W ist eine Teilmenge geordneter Paare (x, y) mit x e M und y e N.
Die Tatsache, daß dabei y Bild des Originals x ist, wird auch durch die Schreibweise

(8.7)

zum Ausdruck gebracht. Unter Verwendung dieser Schreibweise kann man die For-
derung (8.6) nun so formulieren:

I A(a1x1 ‘i’ 92x2) = a1A(x1) ‘l’ ’12A(x2)- (8-8)

Das ist auch die Form, die bei praktischen Überprüfungen der Linearität gegebener
Abbildungen häufig benutzt wird.

Schon hier sei darauf hingewiesen, daß im folgenden noch eine Reihe linearer
Abbildungen auftreten werden. Dazu gehören u. a. die Abbildungen, die den diffe-
renzierbaren Funktionen deren Ableitungen, den integrierbaren Funktionen deren
Integrale und den Vektoren eines linearen Raumes bei der Multiplikation mit Matri-
zen wiederum Vektoren des gleichen oder eines anderen Raumes zuordnen.

Aufgabe 8.13: Man untersuche‚ welche der folgenden Abbildungen linear ist:
A1 = {(x,y)|xeR‘AyeR‘/xy = 3x + 4};
A2 = {(x,y)|xeR‘AyeR1/xy = 2x};
A, = {(x‚y) I xe [—3,4]/\yr.=R‘ Ay = 2x}.

Abschließend sei noch erwähnt. daß der Begrilf der Linearität für gewisse Spezial-
klassen von Abbildungen wie Operatoren und Funktionale (vgl. Abschnitt 8.4.) in
der Literatur nicht einheitlich verwendet wird. Einige Autoren fassen die Linearität
von Operatoren enger auf und fordern zusätzlich zu den von uns genannten Bedin-
gungen noch die Stetigkeit bzw. Beschränktheit des Operators (vgl. [l3]).

Ax = y oder A(x) = y

8.3. Umkehrabbildung

In der Praxis ergibt sich bei der Untersuchung der Beziehungen zwischen zwei
Größen oft folgendes Problem. Unter einem Gesichtspunkt ist die eine der Größen
das Original und die andere deren Bild, während es unter einem anderen Gesichts-
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punkt gerade umgekehrt sein kann. So sind z. B. für die Abbildung in Aufgabe 8.7
die Werte der Temperatur die Originale und die zugehörigen Meßwerte des Drucks
die Bilder. Man kann jedoch das Gas auch Veränderungen des Drucks unterwerfen
und die Temperatur des Gases in Abhängigkeit vom Druck messen. Für eine Ab-
bildung dieses Sachverhalts sind dann die Werte des Drucks die Originale und die
zugehörigen Meßwerte der Temperatur die Bilder.

In der Mathematik reduziert sich die Vielfalt solcher konkreten Probleme auf
die Frage, was sich ergibt, wenn man die Rolle von Original und Bild bei einer Ab-
bildung A umkehrt. Olleitsiclttlich entsteht dabei wieder eine Abbildung; sie wird
auf Grund ihrer Konstruktion die Umkehrabbildung von A genannt.

Definition 8.4: Es sei A eine Abbildung aus M in N. Darm heißt die Menge {(y, x)]
y e N A x e M /\ (x, y) e A} die Umkehrabbildung oder inverse Abbildung von A.
Sie wird mit A“ bezeichnet:

I A":{(y,x)|yeN/\xeM/\(x,y)eA}. (8.9)

Aus dieser Definition ist ersichtlich, daß A" g N x M und somit eine Abbildung
aus N in M ist, wenn A g M >< N gilt. Als Ergänzung hierzu sei bemerkt, daß
die Bildung der Produktmengen i. allg. nicht kommutativ ist und daher i. allg.
MxN+N><MfolgL

Die Definition gibt gleichzeitig an, wie man in einfacher Weise für eine AbbildungA
deren inverse A“ erhält. Dazu ist nur in allen geordneten Paaren (x, y), die zu A

gehören, die Reihenfolge der Elemente umzukehren. Dabei vertauschen gleichzeitig
Definitions- und Wertebereiche ihre Rollen:

D„_x : WA, WA4 = DA.

Beispiel 8.5: Es seien A, und A2 die Abbildungen von Beispiel 8.3; dann sind
Umkehrabbildungen gegeben durch ’

A?‘ = {(a‚ 1), (b, 1), (0, 2). (v, 2)}‚
A,“ = ’(a, 1), (a, 2), (a, 3)}.

die

Dabei gilt

D4;1 = WM = {(1, b, C}, W4;1 = DA‘ ={1,2},
DAE1 = WA} ={l1}, W451 = DA: = {L 2, 3}.

Aufgabe 8.14: Man gebe für die Abbildung A vom Teil a) der Aufgabe 8.12 die inverse
A4 einschließlich DA“ und W," an.

8.4. Einige spezielle Abbildungen

Nachdem bereits in Abschnitt 8.2. eine Klasse einfacher Abbildungen näher bc-
trachtet worden ist, setzen wir diese Untersuchungen jetzt fort und interessieren uns
für weitere Klassen von Abbildungen, die durch besonders charakteristische Merk-
male ausgezeichnet sind.

So ein charakteristisches Merkmal besteht z. B. darin, daß zu jedem Original genau
ein Bild gehört. Für Abbildungen praktischer Probleme ist das häufig der Fall
(vgl. u. a. Beispiel 8.1, Aufgaben 8.7 und 8.1l), muß jedoch durchaus nicht immer
erfüllt sein. So wird es für die Abbildung von Beispiel 8.2 im allgemeinen zu einzelnen
Originalen durchaus mehrere Bilder geben. Daher sondert man unter allen Abbil-
dungen durch die folgenden Definitionen eine Teilklasse aus.

D.8.4
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Definition 8.5: Eine Abbildung A g M >< N wird eindeutig genannt, wenn aus

(x, y‚) e A und (x, yz) 6 A immer y, = y; folgt.

Definition 8.6: Jede eindeutige Abbildung wird Funktion genannt.

Hiernach ist durchaus nicht jede Abbildung eine Funktion, so daß die Menge
aller Funktionen echt in der Menge aller Abbildungen enthalten ist. Eine Funktion
zeichnet sich unter den Abbildungen also vor allem dadurch aus, daß zu jedem ihrer
Originale jeweils nur ein einziges Bild gehört.

Beispiel 8.6: Es sei M die Menge aller n-Tupel reeller Zahlen (x1, x3, x„) = x;
zu jedem dieser n-Tupel kann man durch die Formel

n

Ilxll = Z lxil
i=1

(8.10)

eine reelle Zahl HxH definieren. Wir erwähnen, daß diese Zahl auch lpNorm von x

genannt wird (vgl. Bd. 22). Offensichtlich ist die Zahl |ix|l durch (8.10) eindeutig
bestimmt. Daher ist durch die Menge aller Paare (x, Hxil) e M x R‘ eine eindeutige
Abbildung A, d. h. eine Funktion aus M in R‘ definiert. Die Umkehrablvildung

A“ {(z,x)[zeR' /\xeM/\(x,z)eA}
{(z,x) | zeR‘ AXEMAZ = Hxll]

il

ist jedoch nicht mehr eindeutig. denn man überzeugt sich leicht. daß z. B. zu jedem
fixierten z e R‘. z > 0, die Bilder x‘ = (z. 0, 0), X2 : (0. z, 0, 0).

<72;-,/ii, gehören. Daher ist A“‘ zwar eine Abbildung, jedoch keine

Funktion.

x3:

Beispiel 8.7: Wird jeder natürlichen Zahl ie N3’ = H. 2. ...} durch eine gewisse Aus-
sageform p(i, a), z. B. in Form einer Formel wie u = (I + i)". eine eindeutig be—

stimmte Zahl zugeordnet. so ist dadurch eine Funktion
A : {(i‚a)|ie N*AaeR‘/\p(i,a)}

oder — wie für die konkret genannte Formel ~

A={(i,a)|ieN*/\aeR‘Aa:(l+i)“; '

erklärt. Derartige spezielle Funktionen nennt man auch (unendliche) Zahlenfolgen.
In Abschnitt 10. wird dieser Begriff präzisiert und zttisführliclt untersucht.

Es sei noch bemerkt. dal3 der durch Definition 8.6 geprägte Begrill der I-tmktioit
durchaus umfassender ist als derjenige, der bei der Modellierung quuntitatixei‘ Zu-
sammenhänge verwendet wird. Hierzu diene die folgende Aufgabe als Erläutcrtmg.

Aufgabe 8.15: Es sei M die Menge aller Maschinen in einer Betriebshalle und A’
die Menge aller Arbeiter. die diese Maschinen bedienen. Dabei mögen einzelne
Arbeiter auch mehrere Maschinen bedienen, jedoch solljede einzelne Maschine immer
nur vom gleichen Arbeiter bedient werden (man denke an die Mehr-Maschinen-
Bedienung bei Webeautontateit). Bildet man nun aus jeder Maschine m und dem
Arbeiter a, der sie bedient, Paare (m, a), dann ist damit eine Abbildung A g M >< N
gegeben. Man untersuche, ob diese Abbildung eine Funktion ist.

Der Begriff der Funktion kann seinerseits noch weiter spezifiziert werden. Dazu
werden zunächst an Definitions- und Wertebereiche der Funktion weitere Forderun-
gen gestellt.
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Definition 8.7: Sind M und N metrische Räume (vgl. Abschnitt 7.8., s. auch Bd. 22), D.8.7
so wird jede Funktion A g M x N ein Operator genannt.

Definition 8.8: Ist M ein metrischer Raum, so wird jede Funktion A g M >< R‘ ein D.8.8
Funktional genannt.

Funktionale Zeichnen sich also unter den Operatoren dadurch aus, daß ihr Werte-
bereich nicht in irgendeinem metrischen Raum, sondern in dem Raum der reellen
Zahlen liegt. Mit anderen Worten. bei einem Funktional ist das Bild immer eine
reelle Zahl.

Beispiel 8.8: Es sei M die Menge aller n-Tupel reeller Zahlen mit der Metrik
—n———-—- .

d(a,b) = ,/21 (a.- ~ In)? (3-11)
.=

wobei a = (a1, a2, a„) und b = (bl, b2, ..., b„) beliebige Elemente von M be-
zeichnen. Dann ist M ein metrischer Raum, den wir mit R" bezeichnen, und die in Bei-
spiel 8.6 eingeführte Abbildung A ist ein Funktional aus R" in R‘.

Abschließend weisen wir auf eine weitere Spezifizierung des Funktionsbegriffes
hin, die vorrangig mit einer zusätzlichen Forderung an seine Aussageform zusammen-
hängt. Eine Abbildung kann nämlich nicht nur selbst eindeutig sein, d. h. eine Funk-
tion darstellen, sondern auch eine eindeutige Umkehrabbildung besitzen. Dieses
neue charakteristische Merkmal ist Anlaß zu folgender Begriffsbildttng.

Definition 8.9: Eine Abbildung A heißt eineindeutig (oder auch umkehrbar eindeutig), D.8.9
wenn sowahl A als auch ihre Umke/lrabbildung A“ eindeutig sind.

Es könnte der berechtigte Einwand erhoben werden, warum von eineindeutiger
Abbildung und nicht einfach von eineindeutiger Funktion gesprochen wird. Es gibt
nämlich keine eineindeutige Abbildung, die nicht gleichzeitig Funktion im Sinne
von Definition 8.6 ist. Wenn hier dennoch von eineindeutigen Abbildungen die Rede
ist, so wird damit der traditionellen Bezeichnungsweise Rechnung getragen. Es sei

jedoch auch erwähnt, daß der Begriff der eineindetxtigen Abbildung widerspruchslos
ist und daher formal durchaus seine Berechtigung hat.

Aufgabe 8.16: Mit MF, Mo. M, bzw. MA seien in dieser Reihenfolge entsprechend *

die Menge aller Funktionale, aller Operatoren, aller Funktionen bzw. aller Abbil-
dungen bezeichnet. Man vergleiche diese Mengen miteinander und gebe — soweit
\orhanden — Enthaltenseinsrelationen zwischen diesen Mengen an.

Aufgabe 8.17: Gegeben seien die folgenden Abbildungen

UA, : {(P,z)|P : (x,,x2)eR2/\zeR‘/xz = x} + xi}.
2) A2 : [(x, y) l xe R"/xye R”' /xy = (xl, x_7,x,,,).,m</1}.
3) Für eine beliebige fixierte reelle Zahl a ä= O sei

A3 = ,‘(x‚y) | x6 R"/\ ye R” A)‘ 2 (an, 11x2, ..., ax„)}.

4) Zur Produktion der Erzeugnisse 15„ E2, ..„ E,„ werden insgesamt n verschiedene
Rohstoffe R, R2, ..., R„ benötigt. wobei n > m sei. Mit den Bezeichnungen
M = {I2}. E3, E l N = [R1, R2, Rn] und der Aussageform p(E‚-, R‚), diem; y



108 8. Abbildungen

den Sachverhalt „Zur Produktion des Erzeugnisses E, ist der Rohstoff R!‘ erfor-
derlich“ beinhaltet, sei

A4 = {(E„ R!) l E,- eM/x R, eNAp(E‚-, R‚)}.

Man prüfe, welche dieser Abbildungen eineindeutig, welche nur eindeutig oder welche
keines von beiden ist, und gebe an, 0b es sich bei ihnen im einzelnen um eine Funk-
tion, einen Operator, ein Funktional oder nur eine Abbildung handelt.

Abschließend geben wir noch eine Abbildung an, die auch in anderen Zusammen-
hängen von Bedeutung ist (vgl. Bd. 13). Gemeint ist die Permutation, unter der man
i. allg. eine geordnete Auswahl von Elementen aus einer Menge versteht (vgl. Abschnitt
6.2.1.). Wir spezifizieren den Begriffin folgender Weise. Es sei N" das n-fache karte-
sische Produkt der Menge N mit sich selbst. Ordnet man nun dem speziellen Element
To = (1,2, ...,n)e N" alle möglichen anderen Elemente Te N" zu, so bildet die
Menge der dabei entstehenden geordneten Paare (To; T) eine Teilmenge von N" x N"
und ist als solche eine Abbildung von N" auf N", Jedes ihrer Elemente stellt eine
Permutation gewisser n natürlicher Zahlen k(i), i : I, 2, ..., n, dar. Ahnlich wie bei
Zahlenfolgen (vgl. (l0.l)) verwendet man dabei statt des platzaufwendigen Symbols
(T0; T) = (1, 2, n; k(l), k(2), ..., k(n)) das kürzere Symbol (k, , k2, ..., k,,).



9. Funktionen reeller Variabler

Funktionen reeller Variabler haben sich einerseits bei der Lösung zahlreicher
Probleme der Naturwissenschaften, Technik und Ökonomie bewährt und sind
andererseits für viele mathematische Untersuchungen von grundlegender Bedeutung.
Deshalb werden im folgenden Funktionsbegrifie eingeführt sowie theoretische Grund-
kenntnisse über Funktionen vermittelt und deren einfachste Eigenschaften ent-
wickelt.

9.1.

In der Realität kann vielfach der Sachverhalt beobachtet werden, daß eine Größe
ihren Zahlenwert in Abhängigkeit von den jeweiligen Werten gewisser anderer
Größen verändert. So ist aus der Geometrie bekannt, dal3 sich der Flächeninhalt
eines Kreises mit dessen Radius und der Flächeninhalt eines Rechtecks sich mit
dessen Seitenlängen verändert; in der Physik ist u. a. ein Gesetz über den Zusam-
menhang zwischen Volumen (V), Druck (p) und Temperatur (T) bekannt, das jeweils

(z. B. V = a-7-".

Begrifl der Funktion und Arten ihrer Vorgabe

eine dieser drei Größen durch die beiden anderen ausdrückt

a — Proportionalitäts- und Dimensionsfaktor); aus der Wirtschaft ist bekannt, daß

sich der beim Verkauf einer Ware erzielte Erlös mit der Anzahl der verkauften Men-
geneinheiten ändert; in der politischen Ökonomie wird die Profitrate dargestellt als
Quotient von Mehrwert durch Summe von variablem und konstantem Kapital und
ändert sich daher mit den letztgenannten Größen.

Die Vielfalt dieser realen Sachverhalte wurde mathematisch durch den Begriff
der Funktion verallgemeinert. Vorbereitend sei bemerkt, daß im weiteren mit R"
der reelle, n-dimensionale, euklidische Raum bezeichnet wird‚ dessen Elemente
geordnete n-Tupel reeller Zahlen sind (vgl. Abschnitt 7.7.). Für den Spezialfall
n z l bezeichnet R‘ einfach die Menge aller reellen Zahlen R.

Definition 9.1: Es sei M eine Teilmenge des R" bzw. des R‘. Wird dann durch eine Vor-
schrift jedem x e M genau eine reelle Zahl y zugeordnet, so sagen wir, daß auf M eine
reelle Funktion von einer Variablen (bei M c: R‘) bzw. von mehreren Variablen
(bei M c R") gegeben ist. Für die Funktion verwendet man häufig das Symbol f,
undfür die dem Element x e M eindeutig zugeordnete Zahl wird dann f(x) geschrieben.

Die in der Definition 9.1 auftretende Menge M wird Definitionsbereich von f ge-
nannt und mit D, bezeichnet; die Menge aller Zahlenwerte f(x), die sich ergibt,
wenn x die gesamte Menge M durchläuft, heißt Wertebereich der Funktionfund wird
mit W, bezeichnet. Für Funktionen wird folgende Schreibweise verwendet:

y = f(x) für alle x e D, (9.1)

oder kurz

y = rcx). xe 12,. (9.2)

Dabei wird y : f(x) von uns auch Zuordnungsvorschrift, x die unabhängige Variable
oder das Argument und y die abhängige Variable der Funktion y = f(x)‚ xe DJ‘,
genannt werden. Die Zuordnungsvorschrift muß durchaus nicht immer unmittelbar
durch eine mathematische Formel gegeben sein. Auf die Vielfalt der Möglichkeiten
wird unten näher eingegangen.

D.9.1
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Sowohl in (9.1) als auch (9.2) fehlt jeglicher Hinweis auf den Wertebereich W,
der Funktionf. Das ist berechtigt, denn eine Funktion ist — im Gegensatz zur Ab-
bildung — allein durch ihren Definitionsbereich und ihre Zuordnungsvorsehrift ein-
deutig bestimmt. Es gilt nämlich

Satz 9.1: Zwei Funktionen

fiIy=fi&
sind genau dann gleie/z. wenn ihre Dcfi/zilionsbereic/1e gleich sind und sie für jedes
Argument x aus dem Definitiaizsbereic/i gleiche Funktionswerte besitzen, d. /1., es gilt

f1 = f2 (9-3}

genau dann, wenn mwu/11 Dfx : Dfz als auch f‚(x) = f2(x) für alle x e Dfl gilt.

xeDf,, i= 1,2,

Mit diesem Satz wird noch einmal betont, daß in (9. l) bzw. (9.2) genau die Angaben
enthalten sind, durch die eine Funktion eindeutig bestimmt ist. Wird etwa der Defi-
nitionsbereich nicht angegeben — wie das leider manchmal noch anzutreflen ist —,

dann ist auch keine Funktion mehr gegeben. Und umgekehrt kann man durch An-
gabe verschiedener Definitionsbereiche zur gleichen Zuordnungsvorschrift auch unter-
schiedliche Funktionen angeben.

Beispiel 9.]: Von den drei Funktionen

fi:y:Ju—9u+n‚ xem„4—m—nuu+m) am
fi:y=VU—5Hx+D, xem‚=u+w) es
fi:v=¢u—$Ju+u mD„=ß+m) em

sind nur die beiden letzten einander gleich: f; = f3. lhre Zuordnungsvorschriften
stellen nämlich in dem gemeinsamen Definitionsbereich [5, +00) nur unterschied
liche Schreibweisen dar. Dagegen gilt f, # f2, denn hier sind zur gleichen Zuord-
nungsvorschrift verschiedene Definitionsbereiche angegeben worden.

Aufgabe 9. I: Man gebe fiir a lund a3 solche konkreten Werte an, daß die Funktionen

_ (x3 —2x—3)(x+2)f‚: y- (x+n(x_3) xe(a,,+oo)

f2: y=x+2, xe(a2,+oo)

gleichsind.

Das Ergebnis von Satz 9.1 kann auch noch wie folgt formuliert werden: Der Werte-
bereich einer Funktion ist durch ihren Definitionsbereich und ihre Zuordnungsvor-
schrift eindeutig festgelegt. Jedoch ist durch Wertebereich und Zuordnungsvorschrift
der Definitionsbereich und damit die Funktion im allgemeinen nicht eindeutig be-
stimmt.

Aufgabe 9.2:_Man bestimme vier Zahlen, a, , 17,, a2, b; derart, daß durch

y=fi‚xdmJJ
J’ = 952:‘-‘79[‘12a[72]

zwei verschiedene Funktionen f, und j; gegeben sind, die den gleichen Wertebereich
W/‘I = Wfz = [1,9] besitzen.



9.1. Begrifi" der Funktion lll

Als Symbole für Funktionen werden nebenf häufig kleine lateinische Buchstaben
f, g, h, verwendet. Aber auch F, G, H, ..., q2,1/J, ..., (D, ‘I’, sind gebräuchliche
Symbole für Funktionen. Entsprechend werden Definitions- bzw. Wertebereich mit
D„, D,,, . . . bzw. W”. W,,. . . . usw. bezeichnet,

Funktionen im Sinne von Definition 9.1 sind eindeutige Abbildungen und stellen daher Spezial-
fälle des Funktionsbegriffes aus Abschnitt 8.4. (siehe Definition 8.6) dar. Ihre Spezifik liegt darin,
daß der Wertebereich eine Teilmenge der reellen Zahlen ist und D, g R1 bzw. D, g R” gilt. Diese
mengentheoretische Auffassung der Funktion findet man heute bereits in einer Reihe von Publika-
tionen. Unseren Zielen genügt jedoch im wesentlichen die Definition 9.1, d. h. die ursprüngliche
Auffassung der Funktion als eine Zuordnungsvorschrift für Xe D, g R".

Die weiteren Darlegungen dieses Abschnittes beziehen sich vorrangig auf Funk-
tionen einer Variablen. Diese Einschränkung hat hier keine prinzipielle Bedeutung;
sie wird nur vorgenommen, um in der Darlegung Einfachheit und Geschlossenheit
zu erreichen.

Mit den folgenden Beispielen weisen wir auf die Vielfalt der Anwendungsmöglich-
keiten der Funktionen hin (vgl. Abschnitt 9.8.).

Beispiel 9.2: Bezeichnet man mit x den Radius und mit I die Länge der Peripherie
eines Kreises, so gilt bekanntlich

x > o. (9.7)I : 27rx,

Beispiel 9.3: Eine Spiralfeder wirkt dem Versuch, sie in Längsrichtung auszudehnen,
mit einer gewissen Kraft k entgegen. Experimente haben gezeigt, daß die Kraft k
im Rahmen gewisser Grenzen direkt proportional zur Ausdehnung x der Feder ist:
k ~ x. Es gibt nun für jede Feder eine spezifische Konstante c derart, daß gilt

0 g x g b. (9.8)' 2 cx,

Beispiel 9.4: Für den in Beispiel 8.1 betrachteten ökonomischen Sachverhalt ergibt
sich die Funktion (vgl. auch (8.5))

E = Elx, xe{1,2,...,m}.
Zu diesen Beispielen sei bemerkt, daß die Zuordnungsvorschriften in (9.7), (9,8)

und (9.9) im Prinzip gleich sind, obwohl sie Sachverhalte zum Ausdruck bringen,
die völlig unterschiedlichen Bereichen der objektiven Realität angehören. Gleich-
zeitig möchten wir jedoch betonen, daß die durch (9.7), (9.8) und (9.9) definierten
Funktionen selbst dann voneinander verschieden sind, wenn zufällig 27c = c = E,
gelten würde. Das folgt daraus, daß die Definitionsbereiche dieser Funktionen ver-
schieden sind.

(9-9)

An dieser Stelle erscheint es uns nun geboten, darauf hinzuweisen, daß man Funktionen erweitern
bzw. Erweiterungen von Funktionen betrachten kann. '

Definition 9.2: Die Funktiolz

J’ = .2.'(.\').

[reißt Erweiterung der Funktion

‚v = f(x).
wenn gilt.’

1. D; c D, und

Z. f(x) = g(x) für alle

.\' E D4,

xeD,,

xeD,-.

D.9.2
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Im Sinne dieser Definition ist z. B. die Funktion
y=x2—4xv5‚ —oo<x<+o0 (9.10)

eine Erweiterung jeder der beiden folgenden Funktionen

y=x2-—4x—5 —oo<x_S_O (9.11)

y=x2—4x—5, 2§x<+oo. (9.12)

Ebenso ist die Funktion (9.4) Erweiterung der Funktion (9.5) bzw. (9.6). Aber auch die Funktion

_Ix2~4x~5, ——oO<x§0 913
y’ 3x, 2<x<+oo (')

stellt eine Erweiterung der Funktion (9.11) dar. Schließlich ist auch folgendes Beispiel in diesem
Zusammenhang von Interesse:

Beispiel 9.5: Gegeben sei die Funktion f
y = 3x +1, xED„ mit D, = {l, 2,3, ..., 20}.

Dann ist jede der Funktionen

y = 3x +1, xe[1,20] oder y = 3x +1, xe(0, +00)
oder

y = 3x +1, xe(-—oo‚ +00)

eine Erweiterung von f. Erweiterungsprobleme dieser Art treten insbesondere im Zusammenhang
mit der Auswertung von Meß- und Zeitreihen auf.

Wenden wir uns nun den Möglichkeiten zu, die für die Vorgabe von Funktionen
einer Variablen existieren. Geht man vom Standpunkt des Praktikers an diese Frage
heran, so kann man wohl sagen, daß die ursprünglichsten Arten hierfür darin be-
stehen, Funktionen durch verbale Beschreibung sowie durch Meß- bzw. Zeitreihen
vorzugehen, Als Beispiele der Vorgabe von Funktionen durch verbale Beschreibung
könnten genannt werden:

Beispiel 9.6:
1. f sei die Funktion, bei der jedem Tag eines fixierten Jahres die mittlere Tages-

temperatur in einem bestimmten Gebiet zugeordnet wird; dabei seien die Tage,
beginnend mit dem 1. Januar, in der Reihenfolge 1, 2, ..., 365 numeriert.

2, f sei die Funktion, bei der jedem Jahr einer längeren Zeitperiode (etwa von 1965
bis 1980) das Nationaleinkommen eines bestimmten Landes zugeordnet wird.

3. f sei die Funktion. bei der in einem Stromkreis bei gegebener konstanter Strom-
stärke jedem Wert des Widerstands (in einem Bereich zwischen zwei Werten. etwa
R0 = l0 Ohm und R, 2 20 Ohm) der entsprechende Wert der Spannung zugeord-
net wird.

Die Vorgabe von Funktionen durch Meß- bzw. Zeitreihen ist häufig eine Folge
der verbalen Vorgabe und besteht einfach in der tabellenmäßigen Zusammenstellung
der Werte für die unabhängige und abhängige Variable. Für die beiden ersten soeben
betrachteten Funktionen ergäbe das Zeitreihen der Art:
Tage l i 2 i 3 i i 365 (914)

mittlere Tagestemp. (in °C) —7,2 i —8,3 i —7,9 i i —5‚l

bzw.

„lahre 1965 i l966 i i 1980 (9.15)

Nationaleinkommen
(in 109 Währungseinheiten) 147,1 155,3 302,4
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Entsprechend könnte man für die im Zusammenhang mit dem Stromkreis genannte
Funktion z. B. folgende Meßreihe erhalten:

Widerstand (in Ohm) I 10,0 I 10,5 I 11,0 I I 20,0

Spannung (in Volt) I 120 I 12s I 132 I I 240

Es sei darauf aufmerksam gemacht, daß durch die Zeitreihen (9.14) und (9.15)
die gleichen Funktionen gegeben sind, wie die in den Teilen 1. und 2. des Beispiels 9.6
genannten; sie unterscheiden sich nur in der Art der Vorgabe. Dagegen gibt die Meß—

reihe (9.16) eine Funktion an, die sich von der im Beispiel 9.6, Teil 3, genannten
unterscheidet, weil z. B. ihre Definitionsbereiche verschieden sind.

Eine Funktion kann weiterhin auch durch Angabe von Rechenvorschriften, nach
denen die Werte der abhängigen Variablen aus denen der unabhängigen Variablen
berechnet werden sollen, gegeben werden; hierbei muß selbstverständlich auch der
Definitionsbereich mit angegeben werden. Beispiele dieser Art der Vorgabe haben wir
in (9.4) bis (9.12) bereits kennengelernt. Hier seien noch genannt

Xe [10, 20],

(9.16)

y = 12x, (9. l 7)

y = 12x, xeD„D‚ = {1o,o; 10,5; 11,0; 19,5;2o,o}.

Wir bemerken, daß die letzte Funktion die gleiche wie die durch die Meßreihe (9.16)
gegebene ist. Dagegen stellt (9.17) eine Erweiterung von (9.16) dar und kann mit
der in Beispiel 9.6, Teil 3, genannten übereinstimmen.

Zu der Vorgabe von Funktionen durch Rechenvorschriften gehören aber auch
Beispiele wie

2x+1, xe(—oo,0)
y:Ix-1—1 xe[0 +00) (9.18)

oder ' ’ ’ '-

6 — 2x, xe[0.3)
,1‘ = I12 — 2x, xe [3,6) (9.19)

l8 — 2x, xe[6‚9).
Diese Funktionen unterscheiden sich von (9.17) sowie (9.4) bis (9.12) dadurch, daß
die Zuordnungsvorschrift nicht in Form einer einzigen, für den ganzen Definitionsbe-
reich gültigen Reehenvorsehrift gegeben ist; vielmehr gelten hier in verschiedenen
Teilmengen des Definitionsbcreiches der Funktion unterschiedliche Formeln. Der-
artige Funktionen werden wir zusammengesetzte Funktionen nennen. Sie sind lteincs-
falls reine Denkprodukte des Maitheinzitikers. sondern ergeben sich bei der muihc-
matisclten Modellierung praktischer Probleme.

Im Zusammenhang mit zusummengesetzten Funktionen weisen wir noch auf die
beiden folgenden speziellen Vertreter dieser Art hin.

Definition 9.3:
— l .I xe (—-- 7;. 0)

sgn x = 0, .\‘ it 0 (gelitten „Signu/iz‘) x") (9.20)

+1. xe (O. +30)

sowie —\‘ YE(—3” Ü)
lxl = " ' ‚ "’ 11- „Bz- 9.2l_\ I x’ XE I0. +72) (ge L5(I1 ein; 1 m x ) ( )

‘) „Signusn“ — „Zeichen“, hie" zils „Vorzeichen“ verwendet (aus dem Lateinischen).

3 ‘1(‘I --r 11. 1.. \1.:l.111-1111111:

D.‘).f



l l4 9. Funktionen reeller Variabler

Neben den genannten Arten der Vorgabe einer Funktion nutzt man in der Mathe-
matik auch die Möglichkeit, Funktionen graphisch darzustellen. Dadurch wird eine
Brücke zur Anschaulichkeit geschlagen. Es sei jedoch betont, daß gegebene Funk-
tionen graphisch immer nur näherungsweise dargestellt werden können. Deshalb
ist die graphische Darstellung zwar ein wesentliches Hilfsmittel zur Untersuchung
von Funktionen, führt jedoch nur in begrenztem Maße zu exakten Aussagen. Zur
graphischen Darstellung einer Funktion zeichnet man sich gewöhnlich ein Achsen-
kreuz‚ bestehend aus zwei senkrecht aufeinander stehenden Geraden, trägt auf diesen
einen Maßstab auf und versieht sie mit einer Richtung. Theoretisch kann man nun
jedem geordneten Wertepaar (x, y) einer Funktionfeineindeutig einen Punkt in der
Zeichenebene zuordnen, den man als Schnittpunkt der beiden Hilfsgeraden g1, g;
erhält (siehe Bild 9.1). Die so entstehende Punktmenge nennt man Graph der Funk-

y? _ _ _ _ ‚ A H‘ 5,."-

Bild 9.1.
Graphische Darstellung eines

, ‚(ß ‚- X Wertepaares (x0, yo) einer Funktion f

tion. Praktisch geht man bei der Funktion f, deren Zuordnungsvorschrift eine
Rechenvorschrift y = f(x) ist, gewöhnlich wie folgt vor. Man schaflt sich zunächst
eine Wertetabelle. Hierzu wählt man eine Reihe von Werten x, E DI‘, i = l, 2, ..., n,
und berechnet die zugehörigen y,~-Werte:

x l xi I X2 | | x„

y=f(x) | y: I yz y"

Danach überträgt man die Wertepaare (_\',-.y,-) in die Ebene mitdem Achsenkrcuz, die
man kurz ‚uy-Ebene nennt. und versucht. die so entstandenen Punkte durch einen
möglichst „glatten“ Kurvenzug miteinander zu verbinden. Dazu benutzt man
die üblichen Kurvenlineale. Der so konstruierte Kurvenzug stellt natürlich nur eine
Näherung der Funktion f dar. Um die Näherung möglichst genau zu machen, ver-

sucht man die xi-Werte für die Wertetabelle so auszuwählen, dal3 die charakteristi-
schen Merkmale der Funktion dabei erfaßt werden. Derartige Merkmale sind u. a.

(vgl. hierzu weiterhin Abschnitt 7.6. aus Band 2) die sog. Null- bzw. Polstellen der
Funktion. Dabei heißt x0 Nullstelle der Funktion y = f(x), x e Df, wenn f(x0) z O

und x0 e D, gilt; dagegen heißt xi Polstelle der Funktion, wenn |f(x)J in der Umge—

bung von x, beliebig große Werte annimmt.

n: Aufgabe 9.3: Die Funktion

y =x2 — 5x +6, xe[l,3]
ist graphisch darzustellen; hierzu sind in die Wertetabellen die Werte

Ii, 1' = 0, 1, 2, ..., 8, aufzunehmen.

Zusammenfassend kann gesagt werden, daß Funktionen verbal, tabellarisch (durch
Meß— oder Zeitreihen) und analytisch (durch Rechenvorschriften) gegeben und außer-
dem zur Nutzung der Anschaulichkeit graphisch dargestellt werden können. Daneben

x‚-=l+
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gibt es noch weitere Möglichkeiten zur Vorgabe von Funktionen. Erwähnt seien
hier die Vorgabe von Funktionen mittels Parameter (siehe Abschnitt 9.7.). Schließ-
lich können Funktionen auch durch gewisse Gleichungen gegeben werden. Genannt
seien hier Differentialgleichungen (siehe Band 7), Integralgleichungen und Differen-
zengleichungen.

Bei praktischen Problemen ergeben sieh häufig Funktionen, deren Definitions-
bereich kleiner ist, als die Menge aller x-Werte, für die der analytische Term der
Zuordnungsvorschrift mathematisch sinnvoll ist und reelle Werte liefert. Man unter-
scheidet daher zwischen dem sachbezogenen oder natürlichen und dem mathemati-
schen Definitionsbereich. So stellt im Beispiel 9.6 das Intervall [10, 20] den sach-
bezogenen oder natürlichen Definitionsbereich für die Funktion von Tcil3 dar
(siehe (9.17)), während der analytische Term 12x der Zuordnungsvorschrift y = 12x
mathematisch für alle xeR‘ sinnvoll ist, weshalb R‘ hier den mathematischen
Definitionsbereich bildet. Der mathematische Definitionsbereich muß durchaus nicht
immer der ganze R‘ sein. So ist z. B. der Term log (3x — 12) nur für alle x mit
3x — 12 > 0, d. h. für alle x > 4 mathematisch sinnvoll. Daher stellt das Inter-
vall (4‚ +00) den mathematischen Definitionsbereich der Zuordnungsvorschrift
y = log (3x — 12) dar.

Aufgabe 9.4: Für die Zuordnungsvorsehrift y = \/4x — 20 ist der mathematische
Definitionsbereich zu ermitteln.

In den folgenden Darlegungen des Abschnittes 9. steht das neue mathematische
Objekt der Funktion einer reellen Variablen im Mittelpunkt. Wir werden nach der
Umkehrfunktion fragen (Abschnitt 9.2.), die einfachsten Eigenschaften unseres
Untersuchungsobjektes darlegen (Abschnitt 9.3.), gewisse Grundfunktionen auf-
zählen (Abschnitt 9.4.) und aus diesen ein recht umfangreiches „Reservoir“ ge-
bräuchlicher elementarer Funktionen bilden (Abschnitt 9.5.). Danach werden engere
Beziehungen zur Anwendung hergestellt. Hierzu gehören die Konstruktion einer
Funktion, die vorgegebene Wertepaare (x,.y,). 1‘: 1,2, ..„n„ enthält (Abschnitt
9.6.), die Darstellung von Funktionen mittels Parameter (Abschnitt 9.7.), die mathe-
matische Modellierung einiger praktischer Probleme (Abschnitt 9.8.) sowie Funk-
tionslcitern und Elemente der Nomographie (Abschnitt 9.9.). Wir ltoffcit auf die
Bereitschaft des Lesers. bei der Realisierung dieses Programms mitzuwirken, und
betonen noch einmal, dal5 im Vordergrund dieses wie auch des Abschnittes l0. das
Anliegen steht, die mathematischen Grundlagen für eine Reihe der folgenden Bände
zu legen.

Vorab sei hier noch erklärt, wie man die elementaren Grundrechenarten der Addi-
{ion und Multiplikation sowie deren Umkehrungen auf Funktionen überträgt. Das
geschieht, indem man diese Operationen für Funktionen auf die entsprechenden
Operationen ihrer Funktionswerte zurüekführt. So wird z. B. die Summe zweier
Funktionenfi-z y = f-(x), x e D)‘, i = l, 2, erklärt als die folgende Funktion

y = fit-r) + fztx), x e D;
dabei muß Dfl n D), 4+ (Ö sein und D : D,‘ n Dfz gesetzt werden. Analog wird die
Differenz, das Produkt sowie der Quotient zweier Funktionen definiert. Beim Quo-
tienten von Funktionen ist zu beachten, daß man aus dem Definitionsbereich alle
die x-Werte ausschließen muß, für die die Nennerfunktion gleich null wird.

9.2. Umkehrfunktion (für eine unabhängige Variable)

In praktischen Problemen sind die Rollen von unabhängigen und abhängigen
Variablen durchaus nicht eindeutig festgelegt. So kann in den Beispielen 9.2 bis 9.4
5:
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die dort zunächst jeweils als abhängige Variable angegebene Größe durchaus als
unabhängige Variable aufgefaßt werden. Mathematisch führt die Vertauschung der
Rollen von unabhängiger und abhängiger Variablen zur Umkehrfunktion.

Ist die Funktionfvon der Art, daß es zu jedem ye W, genau ein xe D, gibt,
dann heißt f eineindeutig oder umkelzrbar eindeutig. Für jede eineindeutige Funktion
ist also nicht nur jedem x e Dj‘ eindeutig ein y, sondern umgekehrt auch jedem y e W,
genau ein x zugeordnet. Die letztgenannte Zuordnung bildet zusammen mit W, als
Definitionsbereich die Umkehrfunktion f“:

f“: x =f“(y), yeDf.x, mit Df_x = Wf. (9.22)

Die Zuordnungsvorschrift x : f"(y) erhält man für cineindeutige Funktionen,
indem y = f(x) nach x aufgelöst wird.

Es erweist sich, daß die Eineindeutigkeit der Funktion für die Existenz ihrer Um-
kehrfunktion auch notwendig ist, denn es gilt

Satz 9.2: Die Eineindeutigkeit einer Funktion ist notwendig und hinreichend dafür,
daß sie eine Umkehrfunktion besitzt.

Für die praktische Ermittlung und den Umgang mit Umkehrfunktionen bezeichnet
man in der Darstellung (9.22) dic unabhängige Variable wieder wie üblich mit x

und die abhängige Variable mit y; anstatt (9.22) wird also

I f": y = f"(X). ‘xeD/4 : W, (9.23)

geschrieben. Das hat eine vereinfachende Konsequenz für die graphische Darstellung
vonfundf’ ‘. Letztere ergibt sich nämlich für die Form (9.23). indem der Graph der
Funktion fan der Geraden y z ‚y. xe (—oo. +oo) „gespiegelt“ wird.

3

z]
soll die Llmkehrfunktion ermittelt werden. Zur Ermittlung von f” lösen wir die für
fgegcbene Zuordnungsvorschrift schrittweise nach x auf:

i + 0.4 = 6°-5*". 0.5x 2 ln (y + 0,4)

Beispiel 9,7: Für die Funktion

f: y : e°~5" — 0,4. xE [0, (9.24)

und schließlich

.\‘ : 2 In (_\' + 0,4).

Hierbei haben wir bereits den Sachverhalt benutzt (siehe Abschnitt 9.4,). dal5 die
Logarithmusfunktion Umkehrfunktion dcr Exponentialfunktion ist. Mun kann

zeigen. daß w, : [f(o)._r(—;—)] = [0,6; 1.72] ist. Daher lautetflin der Form (9.23)

f”: y=2]n(x+0,4), xe[0,6;I,72].

Bild 9.2 Icigt die graphische Darstellung von fund f“.
Aufgabe 9.5: Mein ermittlc zu der Funktion

f: >1‘:2x— l. .\'e[0‚3].

die llmkeiirfunktioit /"‘ in dcr Form (9.23) und stellc sowohl j ais ziuchf“ graphisch
dar.

Wiihrcnd diese Aulgabc noch relativ einfach war, ist die folgende schon schwieriger.
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J

7'5 f Bild 9.2.
,_ Graphische Darstellung der Funktion

_ 3

0,5 f7 ‚v = e°'5" n 0.4. -YE 0.3-
l und ihrer Umkehrfunktion

as z 7,72 T

Aufgabe 9.6: Man gebe zunächst für den Parameter a einen Wert kleiner als 4 derart x

an, daß die Funktion ‘

fl:y=x2—2x—3‚ xe[a,4]
eineindeutig ist. Danach ermittle man die Umkehrfunktion f" in der Form (9.23)
und stelle beide graphisch dar.

Für Umkehrfunktionen gilt ein Sachverhalt, der rein formal eine Übereinstim-
mung mit entsprechenden Formeln für das Rechnen mit Zahlen herstellt.

Satz 9.3: Die Um/cehrfunktiolz einer Funktion, die selbst schon Umkehrfunktion einer S.9.3
anderen Funktion f ist, existiert immer und ist gleich f:

(f")“ = xi (9.25)

Wird die Funktion als Abbildung aufgefaßt, d. h, wird von ihrer mcngentheoretischen Auffassung
ausgegangen, dann führt die Vertauschung der Rollen von abhängiger und unabhängiger Variabler
bekanntlich zur Umkehrabbildung (siche Abschnitt 8.3.). Die Umkehrabbildung einer Funktion
mußjedoch nicht eindeutig sein; wenn sic es ist, dann stellt sie die Umkehrfunktion im obigen Sinne
dar. Daher kann sie auch wie folgt eingeführt werden.

Definition 9.4: Ixt die Umkehrabbildung f‘l einer Funktion I)_9_4

f: y = f0‘), XE Dr.
selbst eine Funktion, so wird f"1 Umlumrfunktion van f genannt.

9.3. Einfachste Eigenschaften von Funktionen ~

In diesem Abschnitt werden erstmals gewisse qualitative Betrachtungen von Funk-
tionen eine Rolle spielen. Es geht um Eigenschaften, die eine Funktion in ihrem ganzen
Definitionsbereich oder in Teilmengen, nicht jedoch in einzelnen Punkten dieses
Bereiches haben kann. Wir werden deshalb im weiteren voraussetzen, daß der Defi-
nitionsbereich der betrachteten Funktionen selbst ein Intervall ist.

Vorweg sei noch bemerkt, daß es umständlich ist, die nachfolgend eingeführten
Eigenschaften für konkrete Funktionen ohne die Hilfsmittel der Differentialrechnung
nachzuweisen (hierzu s. Bd. 2). Deshalb werden wir nach Möglichkeit graphischen
Darstellungen den Vorzug gegenüber rechnerischen Beispielen und analytischen
Betrachtungen geben.

Definition 9.5: Eine Funktion f D.9.5

y : fix), x e D‚-‚
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heißt auf der Menge M g Df beschränkt, wenn es eine endliche Konstante C derart
gibt, daß .

|f(x)| g C für alle xe M (9.26)

gilt. Dabei wird C eine Schranke von f auf M genannt.

Da (9.26) äquivalent mit den Ungleichungen

I —C g f(x) g C für alle xsM (9.26).

ist, so ist die Beschränkung einer Funktion auf M g D, gleichbedeutend damit,
daß ihre graphische Darstellung zwischen den beiden Geraden y = —C, und y = C
verläuft.

Neben (9.26) unterscheidet man noch die Beschränktheit in nur einer Richtung.

Definition 9.6: Eine Funktion f
y = f(x),

heißt auf der Menge M g D, nach unten bzw. nach oben beschränkt, wenn es eine
endliche Konstante C1 bzw. C2 derart gibt, daß

C, gflx) füralle xeM

xeD,,

(9.27)
bzw.

f(x) g C2 für alle xeM (9.28)

gilt. Dabei werden C, bzw. C2 untere bzw. obere Schranke von f auf M genannt.

Es gilt folgende Aussage:

Satz 9.4: Für die Beschränktheit einer Funktion f auf M g D, ist notwendig und hin-
reichend, daßfauf M sowohl nach oben als auch nach unten beschränkt ist.

Es sei noch bemerkt, daß eine beschränkte Funktion nicht nur eine, sondern un-
endlich viele Schranken besitzt. Ist nämlich f auf M beschränkt und C irgendeine
Schranke, so ist auch jede Zahl C > C ebenfalls Schranke von fauf M.

Beispiel 9.8: Für die in Bild 9.3 dargestellte Funktionfgelten u. a. folgende Aussagen
l. fist auf [a, b] beschränkt; dabei ist C = 4 eine mögliche Schranke.

Bild 9.3.
Zur Beschränktheit von Funktionen

2. f ist auf (—oo‚x„] nach oben beschränkt, wobei C2 = 3 eine mögliche obere
Schranke ist.

3. f ist auf [0, +00) nach unten beschränkt, wobei C, = -2 eine mögliche untere
Schranke ist.
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Aufgabe 9.7: Man zeige, daß C1 = —3 eine untere Schranke der Funktionf
f(x) = x’ — 2x -1, xe(—oo, +00),

auf ihrem gesamten Definitionsbereich ist. Außerdem bestimme man zwei Zahlen
a < b derart, daß [a, b] das größte Intervall ist, auf demfnach oben durch C2 = 7
beschränkt ist.

Definition 9.7: Eine Funktion

y = fix).
heißt in dem Intervall I g Df monoton wachsend, wenn

| f(x1) g f(x2) für alle x1, x2 e! mit x1 < x2

xeDf,

(9.29)

gilt; entsprechend wird sie monoton fallend in I genannt, wenn

| f(x1) g f(x2) für alle x1, x2 eI mit x1 < x2 (9.30)

gilt. Treten in den Ungleichungen (9.29) bzw. (9.30) zwischen den Funktionswerten
f(x1) und f(x2) die Gleichheitszeichen nicht auf; d. h. gilt

f(x1) < f(x2) für alle x1,x2 e] mit x1 < x2 (9.31)

f(x1) > f(x2) für alle x1, x2 eI mit x1 < x2, (9.32)

so wird f entsprechend streng monoton w ‘ ‘ bzw. streng monoton fallend in I
genannt.

Das streng monotone Wachsen läßt sich verbal auch etwa so formulieren: Wenn
das Argument größer wird, dann wird auch der Funktionswert größer. Entsprechend
kann man die anderen Eigenschaften verbal formulieren. Wichtig ist für die Mono-
tonie, daß z. B. f(x,) < f(x2) nicht nur für gewisse x1, x2 e I mit x1 < x2, sondern
für alle solche x1 ‚ x2 gültig ist.

Beispiel 9. 9:

1. y = ln x, x e (O, +00) ist im gesamten Definitionsbereich streng monoton wach-
send. Tatsächlich, es seien x1, x2 e (0, +00) zwei beliebige Werte mit x1 < x2.
Dann gilt die Darstellung x1 = ax2 mit 0 < a < 1. Daher folgt In x1 = h1ax2
= In a + In x2 ‚ woraus sich wegen In a < 0 die behauptete Monotonie In x1 < ln x2
ergibt.

I\
J

. Für die in Bild 9.4 dargestellte Funktion f gelten folgende Aussagen:

1. fist in jedem Intervall (— oo, b] mit b g x1 streng monoton wachsend; Gleiches
gilt für jedes Intervall [11, + oo) mit a g x2.

2. f ist in [x1, x2] monoton fallend, dagegen jedoch in [x1, 5E] streng monoton
fallend.

Y

X1

1 Bild 9.4.
Zur Monotonie von
Funktionen

\

D.9.7
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Aufgabe 9.8: Man zeige, daß die Funktion y = 1 — e“, xe (-00, +00), in ihrem
gesamten Definitionsbereich streng nonoton fallend ist.

Als Aussage mit einem gewissen Allgemeinheitsgrad erwähnen wir:

Satz 9.5: Jede Funktion (Parabel) zweiten Grades

y=x2+ax+b, xe(—oo,+oo), (9.33)

‘ a
ist in (— oo‚x‚] streng monoton fallend und in [x„ + o0) streng monoton wachsend; dabei ist x, = — E
die x-Kaordinate des Selteitelpunktes der Parabel (9.33).

Aufgabe 9.9: Man beweise Satz 9.5.

Schließlich weisen wir noch auf folgende Eigenschaften monotoner Funktionen hin.

Satz 9.6:

a) Wenn f, und fl im gleichen Intervall I streng monoton waclzsend ‚sind. dann
ist die Summe fl + f2 der beiden Funktionen sowie das Produkt afi (i = l. 2) für
a > 0 in I ebenfalls streng monoton wachsend; dagegen ist af‚- (i = l, 2) fzir a < 0
in I streng monoton fallend.

b) Wenn [im Intervall I streng monoton ist, dann existiert die inverse Hinktion f"‘.
Die (Imke/trung lll(’I‘Z'0I1 gilt i. allg. nicht mehr.

c) nz-‚mcj‘ im lnterrn/l I streng ntonntun iraclzsenel ist. dann ist f" mit
I). 1 : {x l .\ E R' /\ \' = Im). HE I} l/rjedent lnterrall I‘ g D,„ ebenfalls streng mn-

/mmn war/meint’. Analoges grill/in- strcng monotmt fallende Funktionen.

Aufgabe 9.10: Man beweise Teil a) von Satz 9.6.

Definition 9.8: Eine Funktion y =_ f(x), x e Df, heißt im Intervall I g D, konvex,
wenn für alle x, ‚ x2 e I undjedes 0c E [0, I] die Ungleichung

I fÜXt + (l — X) X2) g 9‘f(X1)+(1 — Ü‘) f(-352) (9-34)

gilt; entsprechend wird sie konkav in I genannt, wenn

I fOxxi + (l - 00x2) ä aflxi) + (1 — a)f(x2) (9.35)

für alle x, , x2 e I undjedes zx e [0, l] gilt.

Auch für die Konvexität bzw. Konkavität einer Funktion im Intervall I ist wieder
besonders wichtig, daß (9.34) bzw. (9.35) nicht nur für gewisse x, ‚ x3 e I, sondern
für alle xi , x2 e [gültig ist.

Geometrisch kann man die Konvcxität etwa wie folgt deuten (vgl. Bild 9.5). Es
seien xi, x2 e] beliebig, und P, = (x,», yi) seien die zugehörigen Punkte in der gru-

phischen Darstellung der Funktion. Dann liegt der gesamte Kurvenbogen 15,72

immer nicht oberhalb der Sckante fig, und insbesondere liegt der Mittelpunkt
der Sekante nicht unterhalb des entsprechenden Punktes des Graphen der Funktion
Entsprechend läßt sich die Konkavität geometrisch interpretieren.

Es sei noch bemerkt, daß sich der Nachweis der Konvexität für stetige Funktionen
(vgl. Band 2, Abschn. 3.) vereinfachen läßt: für sie genügt es nämlich zu zeigen, daß
die Ungleichung (9.34) für on = ä erfüllt ist. Davon werden wir in den folgenden
Beispielen Gebrauch machen, wobei hier erst einmal unterstellt wird. daß die be-
trachteten Funktionen alle stetig sind. Analoges gilt für den Nachweis der Konkavität.
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Z1/a,»m,;
Bild 95.
Geometrische Interpretation

1,6 M1112) der Konvexltat fur a = <1»

n 50px.) i;

Beispiel 9. 10: Es sei a 4= O eine beliebig fixierte Zahl. Dann ist y = e", x e (— co, + oo),
im gesamten Definitionsbereich konvex. Tatsächlich, die zu beweisende Ungleichung
e""‘1/2 + "2/2’ g ä e": + J; e“: formen wir auf die äquivalente Ungleichung

O g %eax1 + % eaxz _ ea(x,/2+x2/2)

um. Für deren rechte Seite, die mit r(x‚ ‚ x2) bezeichnet sei, ergibt sich

rm , x2) : %eax, + äeax; _ eax,/2 em/2 = ‚ä, (cm/z _ sax;/2)2,

woraus sofort (9.36) und damit die Behauptung folgt.

Aufgabe 9.1l: Man zeige, daß die Funktion y = —x2, xeR‘, in ihrem gesamten
Definitionsbereich konkav ist.

Eine gewisse Sonderstellung nehmen die Funktionen 1. Grades

y =px + q, XER‘,

ein. Sie sind nämlich in ihrem gesamten Definitionsbereich sowohl konvex als auch
konkav.

Zu den einfachsten Eigenschaften konvexer Funktionen gehören die folgenden:

Satz 9.7: Die Funktionen fl und f2 seien in dem gleichen Intervall I konvex. Dann ist
i/irc Summe f, +fz ebenfalls in I konvex. Die Funktion af, ist für a > 0 in I konvex,
für a < 0 dagegen konkav. Analoge Aussagen lassen sich für konkave Funktionen
formulieren.

Konvcxe und konkave Funktionen spielen in zahlreichen praktischen Problemen
eine Rolle. Hier seien nur einige genannt. Da sind z. B. die Krümmungslinieii von

Linsen und Spiegeln in der Optik; in der Ökonomie haben die sogenunnten lsoquan-
ten im Zusammenhang mit Produktionsfunktionen häufig die Eigenschaft der Kon-
vcxitüt. Für nicht wenige Funktionen, die den Verlauf von Prozessen aus den ver-
schiedensten Bereichen der Realität modellieren, ist charakteristisch. daß sie monoton
wachsend und konkav bzw. konvex sind.

Abschließend weisen wir noch auf zwei Eigenschaften hin, die Funktionen be-
sitzen können.

Definition 9.9: Eine Funktion

.1’ : f(x).

heißt gerade, wenn D, = [—a, a] bzw. D, 2 (—a. a) mit a > 0 gilt und wenn

xeD„

f(—x) = f(x) für alleposititten xe D, (9.37)

S.9.7

D.9.9
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gilt; entsprechend heißt sie ungerade, wenn statt (9.37)

f(—x) = —f(x) für alle positiven x e D,

gilt. Der Funktionswert f(0) ist für beide Fälle uninteressant.

(9.38)

Als Beispiel sei hier die Funktion

y = x”, x E R‘,

genannt. Sie ist für gerade Zahlen n selbst gerade und für ungerade Zahlen n ungerade.

Definition 9.10: Eine Funktion y =_/'(.\'). _\'eD,, hcmr periodisch mit der Periode Ä,

wenn Z eine positive Za/z/ ist. mit der die Identität

f(x + Ä) = f(x) (9.39)

für alle diejenigen x E D, erfüllt ist, für die auch gleichzeitig x + Ä e D, gilt. Dabei
wird die kleinste positive Zahl Z, mit der (9.39) gilt, primitive Periode genannt.

Periodische Funktionen ergeben sich bei der mathematischen Modellierung phy-
sikalischer Erscheinungen. So läßt sich z. B. die Bewegung gewisser Pendel durch
solche Funktionen beschreiben. In der Technik treten periodische Funktionen eben-
falls auf, und zwar im Zusammenhang mit Schwingungsprozessen. Aber auch in der
Ökonomie gibt es Erscheinungen, deren mathematische Beschreibung zu periodi-
schen Funktionen führt (vgl. Lagerhaltungsproblem in [2]).

Abschließend wollen wir dem Praktiker noch einen konkreten Anhaltspunkt dafür
geben, wo die Vielzahl der genannten Eigenschaften u. U. benötigt wird. Bei der
Durchführung von Experimenten und bei statistischen Erhebungen ergeben sich u. a.
Meß- und Zeitreihen. Dabei ist es häufig wünschenswert, sie durch formelmäßige
Darstellung für alle x aus einem gewissen Intervall I zu ersetzen. Eine Methode dazu
wird in Abschnitt 4.3. von Band 4 dargelegt. Sie setzt aber voraus, den Typ der
Funktion vorher auszuwählen. Eben dazu muß man solche Eigenschaften wie
Beschränktheit, Monotonie, Konvexität u. a. beachten. Mit der Differentialrechnung
wird in Band2 eine Methode bereitgestellt, mit deren Hilfe man die genannten

' Eigenschaften für eine große Klasse von Funktionen einfach nachprüfen kann.

9.4. Grundfunktionen einer Variablen

Die Darlegungen über die Grundfunktionen sind sehr kurz gehalten. Wir müssen
hier einfach voraussetzen, daß über solche Fragen wie: Was ist eine Potenz, was ist
eine Wurzel, was ist ein Logarithmus, wie sind Sinus, Kosinus, Tangens und Ko-
tangens definiert, Klarheit besteht und die Grundgesetze der Potenz-‚ Wurzel» und
Logarithmenrechnung beherrscht werden sowie einige trigonometrische Umfor-
mungen bekannt sind. Für eine Wissensauffrischung verweisen wir auf die Literatur
(siehe z. B. [5] und Band V dieser Reihe). Daher besteht das Anliegen dieses Abschnit-
tes nur darin, wichtigste Angaben über einige Funktionenklassen zusammenzustellen.

l . Potenzfunktionen f:
y = x", x e D,, (9.40)

wobei ‚u eine beliebigefixierte reelle Zahl ist. Der Definitionsbereich D, dieser Funk-
. tion hängt ab von dem konkreten Wert von ‚u. 1st ‚u eine positive ganze Zahl, ‚u = n, so
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gilt
y=x", xeD,=(—oo,+oo). (9.41)

Ist ‚u eine ganze, aber negative Zahl, ‚u = —n‚ so gilt

y = x"', x-ED, = (—oo,0)u(0, +00). (9.42)

Mit (9.41) bzw. (9.42) haben wir die einfachsten Fälle von ganzen bzw. gebrochenen
rationalen Funktionen vorliegen (vgl. Abschnitt 9.5.). Ist /4 eine rationale Zahl der

Art ‚u = ä, wobei q eine natürliche Zahl >0 ist, so erhalten wir die Wurzelfunktion

y = xi xe o, = [0, +00). (9.43)

Entsprechend gilt im Falle beliebiger rationaler Zahlen /4 = 1;-:

y = xi xeD,= (0, + oo). (9.44)

kt schließlich ‚u eine irrationale Zahl, so gilt

y = x”, xe D, = (0, +00). (9.45)

Es sei bemerkt, daß die Umkehrfunktionen — soweit sie existieren — von Potenz-
funktionen selbst wieder Potenzfunktionen sind. So ist z. B. für y = x", x e [0, + ac),

die Umkehrfunktion durch y = Ux, xe [0, +00) gegeben (siehe Bild 9.6). Dabei
zeigen sowohl Ausgangsfunktion als auch ihre Umkehrfunktion gleiches Monotonie-
verhalt_en (vgl. Satz 9.6, Teil 0)). Insbesondere sind die beiden Funktionen y = x",
y = I, x, x e [0, + 0o) streng monoton wachsend.

y.x—a

Bild 9.6. Bild 9.7.
Parabeln und Wurzelfunktionen Hyperbeln

Eine besonders einfache Funktion ist die Konstante

.v = c, xe(—oo, +00).

wobei c eine beliebige feste Zahl ist. Die graphische Darstellung dieser Funktion
ist eine Gerade, die die y-Achse bei c schneidet und parallel zur x-Achse verläuft.

2. Exponentialfunktionen

y = a‘, xe (—oo‚ +00); (9.46)

hierbei setzen wir Voraus, dal3 a eine fixierte reelle Zahl mit den Eigenschaften a > 0
und a + 1 ist. .
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Die Exponentialfunktionen (9.46) sind alle konvex; für0 < a < 1 sind sie streng
monoton fallend, dagegen für I < a monoton wachsend.

Eine Sonderstellung nimmt in der Klasse der Funktionen (9.46) diejenige ein, die
sich für a = e ergibt, wobei e eine Konstante (auch Waehstumskonstante genannt)
ist (e deutet auf den Anfangsbuchstaben von Euler hin). Ihr Wert beträgt
2,7182818284 Diese Funktion ergibt sich im Zusammenhang mit gewissen Wachs-
tums- und Zerfallsprozessen (vgl. Band 7/1, Abschnitte l.2.l. und‘2.3.2.).

3. Logarithmusfunktizmen
y ä log, x, x e (O, + o0); (9.47)

hierbei setzen wir voraus, daß a eine fixierte reelle Zahl mit den Eigenschaften a > 0
und a =l= I ist. Die Funktionen (9.46) und (9.47) nehmen gegenseitig die Rolle von
Umkehrfunktionen ein (vgl. Bild 9.8), d. h. es gilt
| 1og,,a" = x, xe (—oo, +00). (9.48)

Die Logarithmusfunktionen (9.47) sind für 0 < a < l streng monoton fallend und
konvex, für l < a dagegen streng monoton wachsend und konkav (vgl. Bild 9.8).

q "
ls} w‘ Y

m

I r ‚

l I l l I l I l I L l-

5 x -1 L 1k):
I. W;/r

5

Bild 9.8. Exponential- und Logarithmusfunktionen

Für numerische Untersuchungen werden besonders folgende drei Arten von
Logarithmusfunktionen herangezogen:

a = l0: lgx = logm x (Briggsscher Logarithmus)
a = 2: lb x = log; x (binärer Logarithmus)
a = e: In x = log, x (natürlicher Logarithmus)

Die Werte dieser Funktionen findet man in Tabellen (siehe z. B. [4]).
Die Logarithmusfunktionen besitzen eine Reihe von Eigenschaften. Zwei davon

seien hier genannt:
log, x‚x‚2 : log, x, +«log„ x2, wenn x1, x2 > 0,
log, x” = ‚u, log, x, wenn x > O.

/.1. Trigonometrische Funktionen
y = sin x, x5 (—oo‚ +00), (9.49)

y = cos x, xe(~oo, +00), (9.50)

y=tanx, x#(2k-(1)1, k=0.il,i2,---a (951)

y:cptx, x=t=k7:, k=0,il,i2.... (9.52)
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Diese Funktionen sind periodisch, wobei y : sin x und y z cosx die primitive
Periode 2.-: haben, während die primitive Periode der beiden letzten Funktionen
gleich 7-. ist (vgl. Bild 9.9 und 9.10).

y 1

65*
\ \\‘#

4: -1 w: \\J:\ x Bild9.9.
-I Sinus- und Kosinusfunktion

Biid 9.10.
Tangcns- Lind Kotangensftinktion

5. Umkehrfunktionen der trigonometrischen Funktionen (auch Arkusfunklionen
genannt) '

y = arcsin x, xe[—1‚1]; y = arccos x, xe [—l. I]; (953)

y’ arctanx, xe(—oo‚+co); y=arceotx, xe(—w.+co).

Zu diesen Funktionen und ihren Bezeichnungen sind einige Bemerkungen notwendig. Man sucht

aus den Bildern 9,9 und 9.10 sofort, daß die trigonometrisehen Funktionen nicht eineindeutig sind.
Deshalb existieren zwar Umkehrabbildungen für sie, diese sind jedoch keine Funktionen. Wie kommt
man dennoch zu der globalen Bezeichnung Umkehrfunktioncn der trigonometrischcn Funktionen?
Man betrachtet hierzu die trigonometrischen Funktionen nur in solchen Intervallen, in denen sie

eineindeutig sind. Hierzu wählt man z. B.

flk: y : sin.\*‚ xe[

/M: y=c0s.\', xe[k,-.,1:+lm], ’=0,‘_r1,:Z....,

‘P ‘< n tanx, .re(—'_7'+An‚;+/«n), k:o,;+_1‚i2‚...‚

f“: y:cotx, xe(A:,.-.+kn:), k=O,il,i2,....

Bei fixiertem k ist nun jedc der Funktionen f,-k (i = l, 2, 3, 4) cineindetilig (vgl. Bild 9.9 und 9.10)
und besitzt duhereine Umkehrfunktionen f‚-„‘ 1. Unterden Funktionen(9.53) versteht man nun speziell
die Umkchrfunktion fig‘ (i = l, 2, 3, 4). Sie sind in den Bildern 9.1 l a und 9.11 b d21rgcsIc||I;uu|Jur-
dem zeigen diese Bilder noch ffi’ sowie /3-1‘ und f4—1‘.
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Die hier unter 1. bis 5. genannten Funktionen werden wir im weiteren Grund-
funktionen nennen. Diese wenigen Funktionen bilden die Ausgangselemente fürldie
Konstruktion der sogenannten elementaren Funktionen (vgl. Abschnitt 9.5.). Letztere
sind bereits so verschiedenartig, daß man mit ihnen in vielen Untersuchungen aus-

kommt. Ergänzt man sie noch durch die zusammengesetzten Funktionen (vgl.
Abschnitt 9.1., insbesondere (9.18) und (9.19)), so erhält man bereits die Menge der
Funktionen, die vielen praktischen Anforderungen genügt und die daher im Mittel—
punkt der Untersuchungen der folgenden Bände über Funktionen steht.

Bild 9.lla. Bild 9.llb.
Arkussinus- und Arkustangens- und
Arkuskosinusfunktion Arkuskotangensfunktion

9.5. Mittelbare und elementare Funktionen

Wie bereits im vorhergehenden Abschnitt angedeutet, gehen wir jetzt dazu über,
aus den Grundfunktionen neue Funktionen zu konstruieren. Die einfachste Möglich»
keit hierzu besteht darin, sie durch die vier Grundrechenarten miteinander zu „ver-
knüpfen“. Wie dabei vorzugehen ist, wurde bereits am Ende von Abschnitt 9.1.
dargelegt. Unter den Funktionen, die auf diese Weise gebildet werden, seien einige
erwähnt.

l. Ganze rationale Funktionen
y : ac + alx + 123x: + + a„_‚x"" + aux", xeR‘; (9.54)

hierbei ist n eine natürliche Zahl und ai, i= O, I, ..., n, sind gewisse feste reelle
Zahlen. Funktionen der Art (9.54) nennt man auch Polynome vom Grade n (wenn
an =1: 0). Nehmen zwei Polynome P(x) und Rtx) vom Grade n für mehr als n x-Wertc
gleiche Werte an: P(xi) = R(x,), i z 1, 2, ...‚ r (r > n), dann sind sie identisch, d. 11.,

dann gilt P(x) E R(x) für alle x e R1. Für Polynome sind häufig — ähnlich wie für
beliebige andere Funktionen — die sog. Nullstellen (vgl. Abschnitt 9.1.) von beson-
derem Interesse. Wie das Beispiel der Exponentialfunktion zeigt, besitzen durchaus
nicht alle Funktionen Nullstellen. Dehnt man jedoch den Definitionsbereich der
Polynome auf die Menge aller komplexen Zahlen aus, so gilt die Aussage (Fundw
mentalsatz der Algebra) z

Jedes Polynom n-ten Grades hat‘ in der Menge der komplexen Zahlen wenigstens
eine Nullstelle, wenn n g 1 ist. Ist P(x) ein Polynom n-ten Grades und x, eine Null-
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stelle von P(x), dann überzeugt man sich durch entsprechende Polynomdivision, daß
die Darstellung

P(x) = (x — X.) R06)

gilt, wobei R(x) ein Polynom nur noch (K — l)-ten Grades ist. _Eine analoge Dar-
stellung kann man nun auch für R(x) angeben. Setzt man diese Überlegung fort, sn

erhält man schließlich für P(x) eine Darstellung der Form

1’(x)= a..(x - xi)(x - x2) ' ' (x - x‚.)‚

die Zerlegung des Polynoms in Elementarfaktoren genannt wird; dabei sind die x„
x2, ..., x„ genau alle Nullstellen von P(x). Tritt eine Nullstelle x, in dieser Zerlegung
genau einmal auf, so wird x, einfache Nullstelle von P(x) genannt; tritt eine Null-
stelle x, jedoch nj-mal auf, so heißt xj mehrfache Nullstelle der Vielfach/zeit nj. Daher
kann die Zerlegung in Elementarfaktoren auch so geschrieben werden:

P(x) = ü„(x - xi)“ (X - x2)“ ' (x - xi)“; (9.55)
k

dabei sind die n‚.‚j = l, 2, ..., k, gewisse natürliche Zahlen mit n, g 1 und Z n,:rz.
' l

Deshalb sagt man auch, daß ein Polynom n—ten Grades genau n Nullstellen hat, wobei
man die mehrfachen Nullstellen entsprechend ihrer Vielfachheit zählt.

2. Gebrechen rationale Funktionen ergeben sich als Quotient zweier Polynome

_ P„(x) _ do + a,x + azxz + + a,,_,x"’1 + a,,x" _ (9 56)

y R„,(x) be + b,x + m2 +...+ b,,,_,x~'-1 + b„‚x'" ’ '

der Definitionsbereich besteht aus all denjenigen x, für die das Nennerpolynom
verschieden von null ist. Im weiteren bezeichnen wir die rechte Seite von (9.56)
kurz mit Q(x). In Abhängigkeit davon, ob der Grad des Zählerpolynoms von Q(x)
größer oder kleiner als der des Nennerpolynoms ist, werden die gebrochen rationalen
Funktionen weiter unterschieden: ist n g m, so heißt die rationale Funktion (9.56)
unecht gebrochen, dagegen wird sie für n < m echt gebrochen genannt. Durch ent-
sprechende Polynomdivision kann jede unecht gebrochen rationale Funktion als
Summe eines Polynoms vom Grade n — m und einer echt gebrochen rationalen
Funktion dargestellt werden.

Die Nullstellen des Nennerpolynoms haben eine besondere Bedeutung für gebro-
chen rationale Funktionen, obwohl sie aus deren Definitionsbereich ausgeschlossen
sind. Ist eine Nullstelle x, des Nennerpolynoms auch gleichzeitig Nullstelle des
Zählerpolynoms von Q(x), so wird dadurch eine Sogenannte Lücke definiert. lst da-
gegen x, eine Nullstelle der Vielfachheit m, des Nennerpolynoms, jedoch keine
Nullstelle des Zählerpolynoms, so wird dadurch ein Pol der Ordnung m, definiert.
Lücken und Pole sind ihrerseits noch detaillierter zu charakterisieren.

Es sei x, ein Pol von Q(x). lst seine Ordnung m, eine gerade Zahl, so nimmt
Q(x) in der Umgebung von x, nur beliebig große Werte gleichen Vorzeichens an;
ist m, dagegen ungerade, so nimmt Q(x) in der Umgebung von x, sowohl beliebig
große positive als auch negative Werte an. Als einfachste Beispiele seien hierfür die
gleichseitlgen Hyperbelny = x’", x # 0, genannt; sie haben für beliebiges n e N"
in x, = 0 einen Pol der Ordnung n (für n = l, 2, 3 siehe Bild 9.7). Die Bilder 9.12a
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und 9.l2b zeigen die verschiedenen Möglichkeiten für Pole gerader und ungerader
Ordnung.

Wenn xi eine Lücke von Q(x) darstellt, dann gilt P„(x‚) = R,,,(x1) = 0, und es

seien n1 bzw. ml die Vielfachheiten der Nullstelle x1 von P„ bzw. R„‚. Hier sind

lt
Bild 94l2a.
Pole gerader Ordnung

XI V W X7

Bild 9.12b.
Pole ungerader Ordnung

folgende Fälle zu unterscheiden. Für n, g m, liegt in x, eine Sogenannte hebbare
Umtetigkeit von Q(x) vor; dabei verhält sich Q(x) für n, > m, in der Umgebung von
x, wie in der Umgebung einer Nullstelle von Q(x). Für n, < m, verhält sich Q(x)
in der Umgebung von x, dagegen wie in der Umgebung eines Pols der Ordnung
m, — n,

Aufgabe 9.12: Von der gebrochen rationalen Funktion

x2—x—l2
y= 

sind Nullstellen, Pole und Lücken zu ermitteln. Für Nullstellen und Pole sind deren
Ordnung anzugeben; die Lücken sind näher zu charakterisieren.

3. I{_VpeI'boliscI1e Funktionen

y=sinhx mit sinhx:Lh2—E—'—, xe(—w +00),

. 'V+ "xyzcoshx mit coshx=%, xe(—ac, +00),

9.57
V l _ . e" — e" _ ( ))=1.mh.\ mit tanhx:i, xe(—oo.+w).

. X+ ”‘
y = coth x mit coth x = xe (-00, 0)u (O, +03).

Gelesen werden diese Funktionen als ltypcrbolischcr Sinus, Kosinus, Tangens und
Kotangens. Zwischen ihnen bestehen ähnliche Beziehungen wie zwischen den trigo-
nometrischen Funktionen. Dabei ist zu beachten, daß sie im Zusammenhang mildem
hyperbolischen Kotangens für x : 0 nicht gelten, während sie sonst immer für alle
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x e R‘ gültig sind. Hier sei folgende Auswahl dieser Beziehungen genannt:

sinh x cosh x
cosh“ x —— sinh’ x = l, = tanh x. _ = coth x,

cosh x sinh x

' h - ’ ' h2 1tanhx=—%—‚ cothx=fli.
\/smh‘ x + l Smh X

cosh (x, i x2) = cosh x1 cosh x2 i sinh x, sinh x3,

tanh x1 i tanh x,
‘am ‘*1 l“ *2) =’

_ I 2

sinh 2x = 2 sinh x cosh x,

. 2 tanh x
cosh 2x 2 sinhz x + cosh’ x, tanh 2x :,

l h’
coth 2x =.

Die Bilder 9.1321 und 9.13b zeigen die Graphen der hyperbolisehen Funktionen. Aus
ihnen kann man auch Vorstellungen über das Monotonie- und Krümmungsverhalten
dieser Funktionen gewinnen.

y- mm x

‚ y= arm/m i

/|I:/‚Y‘üfC/7fh ‚v

\

Bild 9.136 Bild. 913b
Hyperbelfunktionen mit Umkehrfunklioncn (Areafunktionen)

4. Areafunkrianen

y = arsinhx mit arsinhx : In (x + V".\'2 + I). .‘re(—oo, +‘:/3),

y = arcoshx mit arcoshx : In (x + „v/xl — l). xe [1, +00),

‚ 1 l .'y=artanhx mit artanhx=3ln l t t , xe(—l, I), (958)

. I x+ly=arc0Ihx mit 8I‘C0IhX=31I1 x _1, xe(—oo. —l)U(l.+0o).

Gelesen werden diese Funktionen als hyperbolischer Areasiitus, Areakosinus. Area-
tangens und Areakotangens. Sie stellen die Umkehrfttnktionen der hyperbolischen
Funktionen dar und ergeben sich in der üblichen Weise. So erhält man z. B. nach
Multiplikation von _1' 2 sinh x = {r (e“ — e“) mit 2 e‘ die in e" quadratische Glei-
J Siebe! u, 1L, Slacheinutik
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chung (e")2 — 2y e" — l 2 0; aus ihr folgt zunächst e‘ = y i- Jy“ + 1, wobei
jedoch das Minuszeichen ausgeschlossen werden muß, weil e" > 0 für alle x e R‘ gilt;
wendet man nun noch den Logarithmus auf beide Seiten an und vertauscht x und y,
so erhält man die Umkehrfunktion y = arsinh x in der angegebenen Form. Zum hy-
perbolischen Areakosinus muß allerdings bemerkt werden, daß er nur die Umkehr-
funktion von y 2 cosh x, x g 0, darstellt; die Umkehrfunktion des „Zweiges“
y = coshx‚ x g 0, ist durch y = —ln(x + ,/x2 — ll = ln(x — „l x2— l),
xe [1, +00) gegeben. Die Graphen aller Areafunktionen erhält man durch ent-
sprechende Spiegelung (vgl. Abschnitt 9.2. und Bilder 9.l3a, 9.13b). Die Vorsilbe
„Area“ in der Bezeichnung dieser Funktionen kommt von dem Wort „Fläche“ und
wurde gewählt, weil die Areafunktionen bei der Berechnung der Flächen von Hy-
perbelsektoren auftreten.

Funktionen kann man nicht nur mittels der vier Grundrechenarten miteinander
verknüpfen, sondern auch dadurch, dal3 man das Argument einer Funktion durch
eine andere Funktion ersetzt. Auf diese Weise entsteht z. B. aus

y a/E. uel0‚ +oo>‚

die neue Funktion

und u =1+x2, xe(—oo, +00),

y = \/1+ x2, xe(—oo‚ +00).

Man spricht in diesem Zusammenhang von mittelbaren Funktionen. Sie können
nicht völlig beliebig gebildet werden. Es gilt die

D.9.11 Definition 9.11: Es seien

D.9.l2

y =f(u), ueDf, und u = g(x), xe D„.

zwei beliebige Funktionen. Wenn dabei Wg g D, gilt, dann kann die neue Funktion

y =f(g(x)). x 6 D„.

gebildet werden; sie wird mittelbare Funktion oder Verkettung der Funktionen f und
g genannt.

Die Forderung Wg g D, ist wesentlich, denn sonst kann es zu sinnlosen Termen
kommen.

Aufgabe 9.13: Man gebe für den Definitionsbereich Df der Funktion u = 1 —— x’,
x e DJ‘, ein maximales Intervall I derart an, daß die mittelbare Funktion y = In (l — x’),
x s I, sinnvoll ist.

Jetzt können wir den Begrifi’ der elementaren Funktion einführen.

Definition 9.12: Jede Funktion, die sich durch endlich viele Operationen der Grund-
rechenarten sowie durch Verkettung aus den Grundfunktionen darstellen Iäßt, nennt
man elementare Funktion.

Außerhalb der Menge der elementaren Funktionen liegt u. a. noch die Menge
der zusammengesetzten Funktionen (vgl. Abschnitt 9.1.). Die Vereinigung beider
Mengen erfaßt zwar auch noch nicht alle existierenden Funktionen, ist aber dennoch
bereits so umfangreich, daß sie für viele praktische Probleme ausreicht.
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9.6. Interpolation (Newton)

Allgemein besteht die lnterpolation darin, eine gegebene Funktion f durch Ver-
treter einer gewissen Klasse von Funktionen (z. B. Polynome eines gewissen Grades
oder trigonometrische Funktionen mit unterschiedlichen Perioden) so anzunähern,
daß fund ihre Näherungs- oder Interpolationsfunktion in gegebenen Punkten gleich
sind (ausführlichere Behandlung dieses Gebietes siehe [2]). Bevorzugt werden Poly-
nome als Interpolationsfunktionen verwendet, denn sie erweisen sich in vielen Be-
ziehungen als besonders einfach. So sind z. B. zur Berechnung der Funktionswerte
eines Polynoms nur die Grundrechenarten Addition, Subtraktion und Multipli-
kation erforderlich.

Dieser Abschnitt ist der lnterpolation durch Polynome gewidmet. Die dabei be-
stehende Aufgabe Iäßt sich wie folgt formulieren: Gegeben seien n + l Zahlenpaare
(x„ y‚-)‚ i = 0, l, 2, ..., n; es ist ein Polynom

P„(x) = a0 + a‚x + azxz + + a„x" (9.59)

zu bestimmen, das diese Zahlenpaare enthält. Mit anderen Worten, für P„(x) soll
gelten

P,,(x,») = y,-, i = 0, l, ...,n. (9.60)

Hierbei werden die x‚-, i = 0, l, ..., n, Stützstellen und die y„ i : 0, 1, n, Stütz-
werte genannt. Wir setzen voraus, daß die Stützstellen alle paarweise verschieden
sind. Man beachte schließlich noch, daß der Grad des gesuchten Polynoms (9.59)
zunächst gleich n, d. h. um eins kleiner als die Anzahl der Stützstellen‚ gesetzt wird.

Zu einer solchen Aufgabenstellung kann man auf verschiedenen Wegen gelangen.
Zwei Möglichkeiten davon seien hier genannt. Eine ergibt sich, wenn man zu einer
Meßreihe (vgl. etwa (9.16)) ein entsprechendes Interpolationspolynom konstruieren
will. Eine andere erhält man, wenn eine gegebene Funktion y = f(x), x e Df, durch
ein lntcrpolationspolynom angenähert werden soll. In diesem Falle muß man sich
aber erst eine Wertetabelle schaffen; ihr kann man dann die Zahlenpaare (x,-, y,»),

i=0, l‚...,n‚ entnehmen. Es kann gezeigt werden: Für die gestellte Aufgabe
existiert immer genau ein lnterpolationspolynom der Art (9.59).

Das lnterpolationspolynom kann auf verschiedenen Wegen konstruiert werden.
Dabei ergeben sich Formen des Polynoms, die sich von (9.59) zwar äußerlich unter-
scheiden, sich jedoch alle wieder auf (9.59) zurückführen lassen. Eine besonders
elegante Form geht auf Newton zurück. Erwähnt sei hier noch das Interpolations-
polynom von Lagrange. _

Nach Newton wird das lnterpolationspolynom für die Stützzahlenpaare (xi, y‚-)‚
i = 0. l, ..., n, in der Form

l P,,(x)=co+c,(xJx0)+c2(x—xo)(x—x1)+
+ c,,(x — x0) (x — x1) (x — x„_‚) (9.61)

angesetzt. Dabei sind c„ i = 0, 1, ..., n, zunächst noch unbekannte Zahlen. Zu ihrer
Bestimmung werden die Forderungen (9.60) benutzt. Hiernach ergibt sich nämlich
folgendes gestaffeltes lineares algebraisches Gleichungssystem:

i = 0: yo = c0

i: 3 yl 2 Co + ¢'1(x1 ‘ x0)
i = 2: y; = c0 + c‚(xz — x0) + c2(x2 — x0) (x2 — x1) (9.62)

i: "7 Y» = Co + 5'1(xn “ xo) + C2(xn — x0) (Xn — x1) +
+ c„(x„ ~ xo) (xn — x1)(x. — x„-i)-

9*
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Dieses Gleichungssystem kann sukzessive — beginnend bei der ersten Gleichung
und fortschreitend bis zur letzten — gelöst werden. Dabei erhält man die Koeffi-
zienten c0, c, ‚ .„‚ c„ als sogenannte Steigungen oder dividierte Differenzen. Allge-
mein unterscheidet man l.‚ 2., Steigungen. Sie werden rekursiv wie folgt definiert:

‚Vi _ )'r+1l. Stei un en:
g g Xi “ Xi+1 i

lXiXHll =

lXixH-Il — lxi+1Xi+2l
2. Steigungen: [x,-x,~+,x,«+2] =

Xi ‘ XHZ

k. Steigungen: [x‚.r‚-„ xiik] = [X‘X'” x”""‘] _ [X”.’x”2 xml . (9.63)
Xi — xms

Mit diesen Bezeichnungen gelten für die c‚-‚ i = 1,2, ..., n, die Formeln cl : [x0x,],

: [X0351 xx‘—I] — [X1952 Xi]
c, = [xo.\‘, xi] x X

0 _ i

i= 2, 3....,n. (9.64)

Somit nimmt das Polynom (9.61) die Form an i

/’,.(X) : yo ‘i’ [x0X1](-\' " X0) ‘i’ lxoxtxzl (X _ X0) (x ‘ xx) ‘l’

.x„] (x — X0) (x — x.) (x — x,,_,). (9.65)

Aufgabe 9.14: Man zeige — ausgehend von (9.63) —, daß tatsächlich die folgende
Formel gilt

+ {xoxl ..

: ixoxil ‘ [Xixzl
('2

X0 — X2

Das Polynom der Form (9.61) wird Newtonsches Intcrpolalionspnlynom genannt.
Es hat einen großen Vorteil, denn es gilt

Satz 9.8: Fügt man den Stützpaare): (xi, y,), i = O, l, ..., n, unter Beibehaltung ihrer
Ru//m1/blgr A new Stützpaare (x„„„ )'‚„j)‚ j = l, 2. k, hinzu (um etwa den Grad
dm Interna/a!iompolyna/ns zu erhöhen), so ändern sich die Koflzienten co = yo,
t’, : [‚\'„‚r, xi]. i = 1,2, n. nicht, und es nzüsxen lediglich die Koeffizienten
(3,. ‚ : [‚\’„x, X,,.,].j = l, 2. . . ., k, neu berechne! werden.

Dieses Vorgehen wird im Beispiel 9.11 demonstriert. Es sei noch erwähnt, daß
d urch die Hinzunahme neuer Stützpaare der Grad des Polynoms durchaus nicht immer
erhöht werden kann. Das ist nur dann möglich, wenn die neuen Stützpaare nicht zu
dem bereits ermittelten Interpolationspolynom gehören.

Byixpicl 9.1l: Für die Stützpaare (0; 7), (3; —2)‚ (4; 115) und (—2; 73) ist ein New-
Ionsches lnterpolationspolynom zu ermitteln. Das entsprechende Gleichungssystem
(9,62) lautet

i:0 72m.
i2] —2:c0+3c„
i221 H5:CO+4L',+4(4v3)c1:c„+4c‚+4c3‚
i:3 73 = 1'0 — 2c, - 2(—5)r2 —2(—5)(—6)c3

= au — 2c, + 1002 — 6063.
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Löst man dieses lineare Gleichungssystem schrittweise, beginnend mit der ersten
Gleichung, so erhält man co z 7, cl = -3, c, = 30, c3 = 4. Das gesuchte Newton-
sche Polynom lautet daher

P3(x) = 7 — 3x + 30x(x — 3) + 4x(x ~ 3) (x — 4).

Nun nehmen wir an, daß noch ein weiteres Stützpaar (l ; 4) bekannt sei, und benutzen
es. um den Grad des Newtonschen lnterpolationspolynoms um eins zu erhöhen.
Um dabei die bisherigen Ergebnisse verwenden zu können, verfahren wir gemäß
Satz 9.8 und fügen die dem neuen Stützpaar (1 ; 4) entsprechende Gleichung

i= 4: 4 = co + c, — 263 — 2(~3)c3 ~ 2(~3)(1+ 2)c4

: co + C, — 262 + 663 +1864
. . . . 1

dem obigen Gleichungssystem hinzu. Hieraus folgt C.‘ = E (4—c0 — c, +2c3 — 6c3);

unter Verwendung der bereits berechneten Werte für c0 bis c3 ergibt sich c4 = 2.
Somit erhalten wir das neue Newtonsche Interpolationspolynom vierten Grades:

P4(x) : P'3(x) + 2x(x — 3) (x — 4) (x + 2)

=7—3x+30x(x—3)+4x(x—3)(x—4)
+ 2x(x — 3) (x — 4) (x + 2).

Wir bemerken noch, daß die Reihenfolge der Stützpaare Einfluß auf die äußere
Form des Newtonschen lnterpolationspolynoms hat. Ordnet man beispielsweise die
obigen Stützpaare in der Reihenfolge fallender x-Werte an, d. h. geht man von

(4; ll5). (3; —2). (0; 7) und (-2; 73) aus, so erhält man

P3(.>r)=l15 +117(x — 4) + 30(x — 4)(x — 3) + 4(x — 4)(x — 3)x.

Selbstverständlich sind die beiden Polynoine P3(x) und P3(x) identisch. Das kann
man u. a. dadurch nachprüfen, daß man alle Klammern in beiden Polynomen auf-
löst.

Aufgabe 9./5." Man nehme im Beispiel 9.ll das Stützpaar(2, — 43) anstelle von (1.4) *

hinzu und zeige, daß sich dabei der Grad des Polynoms P3(.\') nicht erhöht. Worin
liegt die Ursache dafür?

Aufgabe 9.16: Man verwende die Stützpaare (4.115), (3. —2), (1,4), (0. 7) und s:

(—2,73) in der angegebenen Reihenfolge zur Konstruktion des entsprechenden
Newtonschen lnterpolationspolynoms P4(x). Weiter überprüfe man, daß dieses
Polynom identisch gleich dem in Beispiel 9.ll ermittelten Polynom P4(x) ist.

Ein einfacher Spezialfall des Newtonschen lnterpolationspolynoms ergibt sich,
wenn der Abstand zwischen zwei beliebigen benachbarten Stützstellen gleich ist,
d. h. wenn

' x,» — .\',-_, :11 = const für alle i: l, 2, n (9.66)

gilt. Man spricht dann von äquidistanten Stützstcllen und ordnet sie in wachsender
Reihenfolge: x0 < x, < < x,,. Für äquidistante Stützstellen lassen sich die zum

Newtonschen Interpolationspolynom führenden Berechnungen vereinfachen. Ins-
besondere können die Steigungen im Prinzip durch einfache Differenzen ersetzt
werden. Aus (9.66) folgen nämlich die Gleichungen

X,-=x0+iIz bzw. x,«~x0=ih, i=1,2,...,n; (9.67)
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benutzt man außerdem die für Differenzen üblichen Bezeichnungen

A1yi=yi+1—yis i=0:1a---J1,
Ajyl = Aj_1)’t+1 ‘ AJ-lyis j = 2. 3» ---,

so ergibt sich für die Koeffizienten des Newtonschen Interpolationspolynoms

I 1 i
6‘: =7!"ÄTA‚Vo‚

i= 0,1,...‚n;

i= 1,2, (9.68)

Mit diesen Koeffizienten lautet das Newtonsche Interpolationspolynom (9.61) jetzt

I 1

P„(X) = yo + ,—1A‘yo(x - xo) + WAZYOÜ‘ - xo) (x - xi) +

l
+ WFAU/„(x — x0) (x — x‚) (x — x„_‚). (9.69)

Die Koeffizienten dieses Polynoms sind bekannt, wenn die Differenzen Nye,
i = 1,2, ..., n, bekannt sind. Zu ihrer Berechnung verwendet man gewöhnlich ein
einfaches Differenzenschema (siehe [2] bzw. Rechenschema in der Lösung von Auf-
gabe 9.17).

Aufgabe 9.17: Man verwende die Stützpaare (—-2, 73), (— 1, 10), (0, 7), (1, 4), (2, — I 1)

und (3, —2) in der angegebenen Reihenfolge zur Konstruktion des entsprechenden
Newtonschen Interpolationspolynoms.

9.7. Darstellung von Funktionen mittels Parameter

Auf die Darstellung von Funktionen mittels Parameter wurde bereits in Abschnitt
9.1. kurz hingewiesen. Allgemein versteht man darunter folgendes. Es seien g und h
zwei Funktionen mit gleichem Definitionsbereich D, Dann ist durch

x = g(t)‚ J’ = h(t)‚ 16D,

zunächst i. allg. noch keine Funktion, sondern erst eine Abbildung definiert. Sie be-
steht aus allen geordneten Paaren (x, y), bei denen x und y die durch (9.70) gegebenen
Bilder derselben Hilfsvariablen ts D sind.

(9.70)

l
Aufgabe 9.18: Man zeige, daß für die Funktionen g(t) = sin I, h(!) = 7 (t — , t e R‘, durch

. , „ 1

die Menge aller Paare (x, y) mit x = g(t)‚ y = h(t), d. h. x = sin I, y = I (I — g), t E R‘, zwar

eine Abbildung, jedoch keine Funktion gegeben ist.

Sind nun dagegen die Funktionen g und I1 von der Art, daß jedem nach (9.70) mög-
lichen x-Wert genau ein y-Wert zugeordnet ist, dann ist mit (9.70) eine neue Funktion
f definiert. Wir werden diese Voraussetzungen bezüglich g und h immer als erfüllt
betrachten. Dazu genügt es z. B. zu fordern, daß g eine eineindeutige Funktion
ist. Man nennt dann (9.70) Paramererdarstellüng der Funktionfund die Hilfsvariable
r Parameter.

Allgemein kann man für jede Funktion beliebig viele Parameterdarstellungen an-
geben.
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Zur Erläuterung dieser Feststellung erwähnen wir folgendes. Es sei eine Funktion fin der Form
y = f(x), x e Df, gegeben. Weiter sei w, x = w(t)‚ tE Dw, irgendeine Funktion mit der Eigenschaft,
daß D, Q WW gilt. Der Einfachheit wegen wollen wir annehmen, daß WW = D, und dal3 w eine
streng monotone Funktion ist. Dann ist durch ’

x = w(t)‚y = h(t) mit h(t) =f(w(t)), IE Dm (9.71)

immer eine Parameterdarstellung der Ausgangsfunktion f gegeben. Da es aber beliebig viele Funk-
tionen w mit den geforderten Eigenschaften gibt (man wähle etwa w(t) = qt mit beliebigen q > 0),
so haben wir mit (9.71) im Prinzip beliebig viele Parameterdarstellungen der ursprünglichen Funktion
f angegeben.

Aufgabe 9.19: Man zeige, daß durch die Parameterdarstellungen

x=rcosoc, y=—rsinoz, zxe(0‚rr)‚ (9.72)
und

Z_x=ru%:T, y=r:—2+—i, ue(—1,+1), (9.73)

die gleiche Funktion gegeben wird, und ermittle deren Graph.

in der Praxis besteht das Problem jedoch häufig nicht darin, zu einer gegebenen
Funktion gewisse Parameterdarstellungen anzugeben. Vielmehr ergeben sich solche
Parameterdarstellungen nicht selten einfach bei der mathematischen Modellierung
(siehe auch Aufgabe 9.23 in Abschnitt 9.8.). So ist z. B. die Bewegungskurve der
Punktmasse eines mathematischen Pendels eine Kreislinie bzw. ein Teil von ihr.
Daher führt ihre Modellierung zu Parameterdarstellungen der Form (9.72) oder
auch (9.73).

Abschließend sei noch bemerkt, daß die Parameterdarstellung von Funktionen
erweitert werden kann auf Parameterdarstellung von Kurven in der Ebene sowie von
Kurven und Flächen im Raum. Dabei müssen z. B. diese Kurven in der Ebene in
der Vorgabe durch rechtwinklige Koordinaten x, y durchaus keine Funktionen
sein. Mit anderen Worten, durch Parameter können nicht nur eindeutige, sondern —

in einer Reihe von Fällen — auch mehrdeutige Abbildungen dargestellt werden. Einige
Einzelheiten zu dieser Thematik findet man in Band 6. Wir bemerken hier nur, daß
dabei häufig die sogenannten Polarkoordinaten ein wesentliches Hilfsmittel sind, und
betrachten _zur Erläuterung das folgende

Beispiel 9.12: Wir stellen uns einmal vor, ein Punkt P bewege sich mit konstanter
Geschwindigkeit entlang einer Geraden, wobei die Bewegung zum Zeitpunkt to
im Punkt PO‘ beginnen möge (vgl. [lO]). Wenn dabei die Gerade ihrerseits — aus-
gehend von der horizontalen Lage POH — mit konstanter Geschwindigkeit in einer
Ebene um den Punkt Po gedreht wird, so ergibt sich z. B. eine Kurve, wie sie Bild
9.14 zeigt.

Bild 9.14.
Archimedische Spirale
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Will man die Lage des Punktes auf der Kurve in jedem Augenblick t > n, eindeutig
beschreiben, so ist das mit den rechtwinkligen x‚y-Koordinaten nicht mehr möglich.
Denn die Abbildung A g R‘ >< R‘, die aus allen Paaren (x, y) besteht, wobei x und y
die rechtwinkligen Koordinaten der Kurvenpunkte sind, ist offensichtlich nicht mehr
eindeutig. Hier helfen folgende Betrachtungen. Die Lage des Punktes P ist in jedem
Augenblick t > n, eindeutig bestimmt durch seinen Abstand r(t) von P0 und durch den

Winke1<p(z), den die Strecke i? mit der Horizontalen IT}? bildet:

r = r(t)‚ r = mit), t z to; (9.74)

dabei muß der Winkel <p-(t) allerdings nicht nur von 0 bis 2-rr, sondern — entsprechend
der Häufigkeit der Drehungen um P0 — von 0 bis + oo gerechnet werden.

Mit (9.74) ist ein Beispiel für eine Parameterdarstellung einer Kurve in Polar-
koordinaten gegeben.

9.8. Anwendungen von Funktionen

Schon in den vorangegangenen Abschnitten wurden einige ausgewählte Aufgaben-
stellungen der Praxis betrachtet, deren mathematische Modellierung zu Funktionen
führte (siehe Aufgabe 8.15. Beispiele 9.2 bis 9.4 und 9.6). Das Anliegen dieses Ab-
schnittes besteht darin. durch weitere praktische Probleme zu zeigen, wie vielfältig
die Anwendungsmöglichkeiten für Funktionen sind. Dabei werden wir in diesem
Rahmen natürlich teilweise stark vereinfachende Voraussetzungen machen müssen.

Beispiel 9.13: Wir wenden uns den bekannten Hebelgesetzen zu und betrachten
hierzu die Bilder 9.l5a und 9.15b. Dabei seien die Längen I, und l2 jeweils bekannt
und konstant, wogegen die Kraft Q zwar auch bekannt. aber variabel sein ntögc.
Gesucht ist dann eine solche Kraft P. die den Hebel im Gleichgewicht hält. Hierfür
ist eine Funktion aufzustellen.

tr .

m«—»—r_%
l7 ä T

N
Bild 9.153. Bild 9.l5b.
Hebel erster Art Hebcl zweiter Art

Dazu benutzen wir das bekannte Hebelgesctz und bezeichnen die (irößcit der
Kräfte P bzw. Q entsprechend mit p bzw. q. Dieses Gesetz besagt: Damit ein Hebel
sich im Gleichgewicht befindet, müssen die Produkte aus Kraft mal entsprechender"
Länge des „Kraftarmes“ gleich sein (bei entsprechend gerichteten Kräften). Somit
ergibt sich für Hebel beider Arten als Gleichgewichtsbedingung pl, = ql_. oder

. I _

p = für) mit f(q) =r ,—2q. q ä 0. <9.7:)
l

In der Praxis findet das Hebelgesetz in seiner mathematischen Darstellung in Form
der Funktion (9.75) vielfältige Anwendung. Genannt seien hier Seilwinden und
Flaschenzüge. Bei beiden nutzt man unterschiedliche Radien für die Angriflisptinkte
von Last und Kraft aus (vgl. Bild 9.16). Für Bild 9.16 gilt dann z. B,

qr =pR oder p =%q.



9.8. Anwendungen von Funktionen 137

So kann man durch entsprechende Wahl der Radien r und R erreichen, daß die Größe
q der Last Q in eine Kraft gewünschter Größe p „übersetzt“ (transformiert) wird.

Aufgabe 9.20: Für den in Bild 9.17 dargestellten Flaschenzug stelle man die Ab- =1:

hängigkeit zwischen der Größe q der Last Q, den Radien r sowie R einerseits und der
Größe p der Kraft P andererseits als Funktion dar. Dabei soll P selbstverständlich
so gewählt werden, daß Gleichgewicht herrscht. Hinweis: Man beachte, daß bei
jeder Aufhängung einer Last über eine Rolle diese Kraft gewissermaßen halbiert wird
(vgl. Bild 9.18).

r » ; ///////

P

lfl

Bild 9.16. Bild 9.17. Bild 9.18.
Grundprinzip der Seilwinde Prinzip des Halbierung der

Flaschenzuges Wirkung einer Last

Beispiel 9.14: Aus einem rechteckigen Stück Blech soll ein Kasten ohne Deckel
hergestellt werden. Dazu muß an jeder der vier Ecken entsprechend Material ausge-
schnitten werden (vgl. Bild 9.19). Danach werden die entsprechenden Teile hoch-
gebogen und verschweißt. Für die Abhängigkeit des Volumens des so entstehenden
Behälters von den Maßen des Bleches und den vorgenommenen Abschnitten ergibt
sich die Funktion

V = f(a, b, c) mit f(a‚ b, c) 2 (a — 2c) (b —~ 2c) c.

Hierbei bezeichnen a, b und c die Längen wie in Bild 9.19. Als Definitionsbereich
muß selbstverständlich die Menge alle (a, b. c) mit a, b, c > 0 und 2c < min (a, b)
betrachtet werden. I

Aufgabe 9.21: Zwei Triebräder seien gegeben (vgl. Bild 9.20). Die Abhängigkeit der *

Länge Ides Treibriemens von den Radien r und R der Triebräder und deren Abstand
dist (analytisch) durch eine Funktion darzustellen (vgl. [10]).

Bild 9.20.
Zuschnitt eines Blcchkastens Länge eines Treibriemens
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Beispiel 9.15: Bei ökonomischen Untersuchungen spielt häufig die Fondsausnutzung
eine Rolle. Sie stellt das Verhältnis des erzielten Nutzens zum Umfang der einge-
setzten Fonds dar. Zur Messung der Fondsausnutzung werden verschiedene Kenn-
ziffern verwendet. Eine davon ist die Grundfondsquote, die hier mit q bezeichnet
wird. Sie ist definiert als der Quotient von Produktionsvolumen y zu den Grundfonds
x, die zur Produktion von y eingesetzt werden:

_ lq - x -

Nimmt man nun an, daß die Grundfondsquote für ein gewisses Planungszeitintervall
und im Rahmen gewisser Grenzen für die eingesetzten Grundfonds (a g x g b)
konstant ist, so ergibt sich mit

y=qx, agxgb, a>0, (9.76)

eine Funktion. Ihre Zuordnungsvorschrift lautet y = qx, ihr Argument ist x, und für
ihren Definitionsbereich D gilt: D : [a, b].

Aufgabe 9.22: Ein Betrieb produziert k verschiedene Erzeugnisse E1, ...‚ Ek. Beim
Verkauf einer Mengeneinheit (ME) des Erzeugnisses E, erzielt er einen Gewinn von
c, Werteinheiten (i = 1,2, ...,k). Wie groß ist der Gesamtgewinn, wenn x, ME
von E1, x2 ME von E2, x,‘ ME von Ek verkauft werden?

Mit dieser Aufgabe haben wir insbesondere den Ökonomen an eine ganze Klasse
von praktischen Problemen herangeführt, deren mathematische Modellierung eng
mit dem Begriff der Funktion verknüpft ist. Es handelt sich um Optimierungsauf-
gaben und insbesondere um Probleme der linearen Optimierung (siehe Band l4).
Aber nicht nur hier, sondern z. B. auch bei Lagerhaltungs- und Standortproblemen
(Spezialfall: Steiner-Weber-Problem) führt die mathematische Modellierung zu

Funktionen (vgl. [2]). .‚

In den Beispielen dieses Abschnittes wurden nur solche Probleme betrachtet,
deren Modellierung zu Funktionen in analytischer Darstellung führte. Damit beim
Leser nicht der Eindruck entsteht, das müsse immer so sein, erinnern wir noch einmal
an die Vielfalt der Möglichkeiten, Funktionen vorzugeben (siehe Abschnitt 9.1.).
An dieser Stelle sei hierzu einerseits noch einmal das Beispiel der tabellarischen Dar-
stellung (9.14) einer Funktion erwähnt, die in einem ganz konkreten Sachverhalt
auftritt, und andererseits auf folgende Aufgabe verwiesen.

3'

\ a

‘x et „

g ’l ’ j Bild 9.2l.
F \ x Zykloide

I7 A A x

Aufgabe 9.23: Auf einer Kreisfläche möge ein Punkt P markiert sein. Der Kreis
möge entlang einer Geraden rollen. Für die Kurve, die der markierte Punkt dabei
beschreibt (siehe Bild 9.21), ist eine Parameterdarstellung zu ermitteln. Als Para-
meter verwende man den Winkel a.
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9.9. Funktionsleitern und Netze

In diesem Abschnitt wird eine Einführung in das Gebiet der Funktionsleitern
und Funktionsnetze gegeben. Diese beiden Begriffe sind ihrerseits Elemente der
Nomographie. Die Nomographie ist die Lehre der theoretischen Grundlagen, der
Konstruktion und praktischen Nutzung solcher graphischer Darstellung der Bezie-
hungen zwischen mehreren Veränderlichen, die es gestatten, zusammengehörige
Werte bequem abzulesen. Sie hat sich seit Mitte des vorigen Jahrhunderts als eigen-
ständige Theorie entwickelt. Eine wesentliche Ursache für diese Entwicklung war das
Bedürfnis, komplizierte Formeln, die sich bei praktischen Untersuchunegn ergaben,
schnell, übersichtlich und mit der notwendigen Genauigkeit numerisch auszuwerten.
Dabei erwiesen sich unter den Bedingungen noch nicht vorhandener Rechenauto-
maten eben gerade die Nomogramme als ein wichtiges Hilfsmittel.

Allgemein versteht man unter einem Nonzogramm die graphische Darstellung eines
funktionalen Zusammenhangs. Da das Ziel solcher Darstellungen überwiegend
darin besteht, auf diesem Wege numerische Resultate zu erhalten, wird ein Nomo-
gramm auch als eine graphische Rechentafel für eine funktionale Beziehung zwischen
zwei oder mehreren Veränderlichen F(x„ x2, . . . ,x„) = 0 bezeichnet. Sie ist i. allg.
so gestaltet, daß man durch eine Sogenannte Ablesevorschrift aus gegebenen Werten
für n — m Variable die Werte der restlichen m Variablen ablesen kann. Damit ist ein
Nomogramm in gewisser Weise ein graphisches Analogon zu einer Zahlentafel.
Einfachstes Beispiel eines Nomogramms ist die graphische Darstellung einer Funktion
von einer unabhängigen Variablen im rechtwinkligen Koordinatensystem.

Funktionsleitern und -netze sind Spezialfälle bzw. Bestandteile von Nomogram-
men. Zu den häufig angewandten Nomogrammen gehören: Fluchtlinientafeln, Netz-
tafeln sowie kombinierte Fluchtlinien—Netztafeln. Eine Darstellung der theoretischen
Grundlagen hierüber findet man in geraffter Form in [2l], wobei hier ein sehr aus-
führlicher Teil mit vielen Aufgaben und Anwendungen enthalten ist. Eine Reihe
sofort verwendbarer Nomogramme findet der Ingenieur in [19]. Schließlich sei auch
noch auf die für den Praktiker bestimmte Darstellung in [l8] verwiesen.

Wir werden uns hier nur mit Funktionsleitern und Funktionsnetzen beschäftigen.
Dabei wird einerseits dargelegt, was man darunter versteht, welches ihre wesentlichen
Merkmale und Eigenschaften sind und wie man sie nutzt; andererseits wird die Frage
beantwortet, wie sie konstruiert werden. Es sei jedoch hier bereits vermerkt, daß
insbesondere diese letzte Frage für Nomogramme wie Fluchtlinientafeln und Netz-
tafeln nicht so einfach beantwortet werden kann (vgl. [21] und [18]).

Wenden wir uns den Funktionsleitern zu. Wurde das vorangegangene Material
systematisch durchgearbeitet und wurden insbesondere die Aufgaben 8.12, 9.3, 9.5
und 9.6 gelöst, so sind dabei im Prinzip bereits einfachste Leitern konstruiert worden.
Wie mußte nämlich z. B. bei der Lösung der Aufgabe 9.3 vorgegangen werden?
Es wurden zwei senkrecht aufeinanderstehende Geraden als Achsenkreuz benötigt.
Bevor man diese beiden Geraden jedoch zeichnete, wird man sich auf Grund der
Wertetahelle überlegt haben, wo etwa der Graph der Funktion liegen wird. Diese
Überlegung wird schließlich auch Ausgangspunkt gewesen sein für die Wahl des
„Maßstabes“ auf den beiden Koordinatenachsen. Uns schien dabei ein Verhältnis
am geeignetsten, bei dem für eine Einheit der x- bzw. y-Größe auf den Achsen 0,9 LE
(Längeneinheitett) gewählt werden. Denn dadurch konnte einerseits die graphische
Darstellung (siehe Bild. 9.1) für den Leser hinreichend übersichtlich gestaltet und
andererseits verhindert werden, daß sie unnötig viel Platz verbraucht. Das von uns
verwendete Verhältnis kann auch so geschrieben werden:

X = Ix mit I = 0,9 LE, (9.77)
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d. h.‚ X gibt die Länge der Strecke in LE an, die auf der x-Achse für x Einheiten
abgetragen werden sollen (siehe Bild L.9.l). Das Bild 9.22 zeigt ein erstes einfaches
Beispiel einer Leiter, wobei X = Ix mit l = 1,6 cm gewählt wurde.

I, ' 7,51,T_:_Tfi* Bild 9.22.
‘1 J x Einfachstes Beispieleiner Leiter

0 I Z

Diese konkreten Betrachtungen werden wie folgt verallgemeinert:

Definition 9.13: Eine orientierte Gerade mit einem Anfangspunkt A, die entsprechend
einer Formel

X I x(X ‘ x0)

unterteilt ist, wird reguläre Leiter (oder auch Skala) genannt. Die Gerade selbst heißt
Träger der Leiter, und I, wird Maßstabsfaktor genannt. Hierbei entspricht dem An-
fangspunkt A der Wert x0.

(9.78)

Dieser Definition seien zunächst folgende Bemerkungen angefügt:

. Die Unterteilung entsprechend (9.78) wird auf der regulären Leiter für gewisse
ausgewählte Werte von x durch kleine senkrechte Striche, die sogenunnten Tui-
lungsstriche, markiert.

An die Teilungsstriche der Leiter werden nicht die Werte von X, sondern immer
die Werte von x geschrieben. Die Ursache hierfür liegt in dem Verwendungszweck
von Leitern. Die Formel (9.78) dient nur dazu, die Unterteilung der Leiter vor-

nehmen zu können. ‘

Man vergleiche hierzu etwa die Verwendung der Formel (9.77) und die reguläre
Leiter auf der x-Achse in Bild L.9.l. Der Abstand zwischen zwei Teilungsslrichcn
bzw. jedes Teilungsstriches vom Anfangspunkt (dem Koordinatcnursprung) ist
dabei für die Verwendung der Leiter im Prinzip völlig Lminteressaitt. Wichtig
sind dort nur die Werte der Variablen x, die diesen Teilungsstrichen entsprechen.
und deshalb stehen sie auch an ausgewählten Teilungsstrichen.
Die Eintragung ausgewählter Werte der Variablen x an die Teilungsstrithe nennt
man Bezrflferung der Leiter. Um dabei sowohl hinreichende Genauigkeit zu garan-
tieren als auch Übersichtlichkeit zu wahren, werden zwar hinreichend xiele Tsi-
lungsstriche eingetragen, ohne sie jedoch alle zu beziffern (vgl. Bild 9.22).

N

. Die vorangegangenen Bemerkungen gestatten den Hinweis, daß der Nrlaßstabs-
faktor Ix als Zeicheneinheit oder Einslänge aufgefaßt werden kann. Er cntsprichl
nämlich gerade dem Zuwachs der Variablen x um eins. Mit anderen Worten,
wenn x2 — x1 = l ist, dann unterscheiden sich die ihnen nach (9.78) entsprechen-
den Werte X, und X2 genau um 1,: X2 —- X, =1,.

u
:

Aufgabe 9.24: Der Leser möge sich wenigstens ein Beispiel einer regulären Leiter
überlegen, die ihm im Alltag bereits begegnet ist oder ihm des öfteren dort begegnet.

Praktische Probleme (vgl. Beispiel 9.16) haben es erforderlich gemacht. die regu-
läre Leiter dahingehend zu verallgemeinern, daß in (9.78) die Variablen x und ‚v,
durch eine streng monotone Funktionfersetzt werden:
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Definition 9.14: Es sei f(x), xe DJ‘, eine streng monotone Funktion f. Wird eine
orientierte Gerade mit einem Anfangspunkt A gemäß der Formel

X : [x(_/(X) - f(Xo))

unterteilt und mit den Werten der Variablen x entsprechend beziffert, wobei dem
Punkt A der Wert x0 entspricht, so erhält man eine Funktionsleiter oder auch Funktions-
skala. Die Gerade heißt Träger der Funktionsleiter, f wird ihre erzeugende Funktion
und l_,._ der Maßstabsfaktor genannt. Schließlich wird x das Argument der Funktions-
leiter genannt, und der einem Wert des Arguments entsprechende Punkt heißt sein
Bildpunkt.

(9.79)

Zu dieser Definition gelten Bemerkungen, die denen zur Definition 9.13 ent-
sprechen. lnsbesondere sei erwähnt, daß auch hier die Beziiferung weder nach den
Werten der Größe X noch nach den Funktionswerten/(‚x‘), sondern wiederum nach
den Werten der Variablen x erfolgt. Die Begründung hierfür liegt ebenfalls im Ver-
wendungszweck von Funktionsleitern (siehe Beispiel 9.16 und Aufgabe 9.26). Zur
Unterteilung und Bezifferung sei ergänzend gesagt, daß sie gewöhnlich so vorge-
nommen werden, daß die Differenz Ax zweier aufeinanderfolgender Argumente
den Wert I0". 2 - 10" bzw. 5 - l0" hat (wobei n eine ganze Zahl ist); dabei wird dann
jeder zehnte. jeder fünfte bzw. jeder zweite Teilstrich beziffert. Häufig ist es aus
Gründen der Übersichtlichkeit und Genauigkeit zweckmäßig, für verschiedene Ab-
schnitte ein und derselben Funktionsleiter unterschiedliche Unterteilungen vorzu-

nehmen (siehe Beispiel 9.16 und Aufgabe 9.26). Der Maßstabsfaktor I, ist natürlich
wieder gleich der Zeicheneinheit. Präzisierend muß jedoch bemerkt werden, dal3
/__ jetzt nicht mehr der Differenz der Argumente, sondern der Dififerenz zweier Funk-
lionswerte um eins entspricht. Mit anderen Worten, wenn f(x2) —- f(x,) = I ist.
dann ergibt sich X2 — X, = 1,, wobei X,- die Bildpunkte von x,- (i = I, 2) sind. Ergän-
zend sei noch erwähnt, daß die durch Definition 9.14 eingeführten Funktionsleitern
geradlinig sind, weil ihr Träger eine Gerade ist, In der Praxis (man denke z. B. an die
verschiedenen Meßinstrumente der Elektrotechnik oder an Manometer) werden auch
Funktionsleitern benutzt, deren Träger eine ebene Kurve, jedoch keine Gerade ist.
Man spricht dann von gekrümmten oder krummlinigen Funktionsleitern (siehe
Bild 9.23).

X; ‘J 19»!

‘ , I<,7*5.5

X0“. i

‘U Xi’! Bild 9.23.
Krummlinige Funktionsleiter

Funktionsleitern werden auch als geometrischer Ort von Bildpunkten definiert.
Das kann man zwar machen, doch wird damit das Wesen der Funktionsleiter unge-
nügend zum Ausdruck gebracht. TrefTender ist es, eine Funktionsleiter als Abbil-
dung {(.\', X)} aufzufassen, d. h., sie als die Menge der geordneten Paare (x, X) zu
betrachten, bei denen x einen gewissen Zahlenbereieh durchläuft und X derPunkt
auf dem Träger der Funktionslciter ist, der sich für x gemäß (9.79) ergibt. Damit ist
gleichzeitig eine weitere Begründung für die Beziflcrung der Funktionsleiter mit den
Werten von x gegeben.

Schließlich sei noch erläutert, warum die erzeugende Funktion streng monoton
sein muß. Würden wir als erzeugende Funktion eine nicht streng monotone Funktion
(siehe z. B. [aus Bild 9.4 für x e [x, , x2]) zulassen. so gibt es mindestens zwei ver-
schiedene Argumente Sc und A" derart, daß ihnen ein und derselbe Bildpunkt auf der

D.9.l4
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Funktionsleiter entspricht. Um mit Funktionsleitern jedoch arbeiten und sie anwen-
den zu können, muß nicht nur jedem Wert des Arguments eindeutig ein Bildpunkt
entsprechen, sondern auch umgekehrt, zu jedem Bildpunkt auf der Funktionsleiter
darf es nur einen Wert des Arguments geben. Mit anderen Worten, die Abbildung
(x, X) muß für alle xeD, eineindeutig sein. Und gerade das garantiert uns die
strenge Monotonie der Funktion f (vgl. Satz 9.2 und Satz 9.6, Teil b)).

Beispiel 9.16: Für einen geradlinigen Träger ist mit der erzeugenden Funktion f(x)
= x2, O g x g 7, eine Funktionsleiter zu konstruieren, die etwa 100 mm lang sein
soll; die Unterteilung ist so zu wählen, daß der Abstand Ä zwischen den Teilstrichen
etwa der Bedingung 2 mm g ‚l g 4 mm genügt. Schließlich wollen wir uns überlegen,
wozu eine solche Funktionsleiter genutzt werden kann.

Die Funktionswerte liegen im Intervall [0, 49]. Dieses Intervall soll etwa die Länge
von 100 mm der Funktionsleiter ausfüllen. Daher ergibt sich für den Maßstabs—
faktor l, die Beziehung

[N100
,,~—49—-mm.

Wir wählen I, = 2 mm. Damit folgt wegen x0 = 0 und f(0) = 0 für die Funktions-
leiter die Untertcilungsformel

X = 2x2. (9.80)

Nun muß die Wertetabelle der Argumente für die Unterteilung und Bezifferung so

aufgestellt werden, daß dabei 2 mm g Ä g 4 mm gilt. Im gegebenen Falle reduziert
sich diese Aufgabe darauf, zu ermitteln, wo Ax gleich 5- 10", 2- 10*‘ bzw. l0"
gesetzt werden muß. Es seien x und x + Ax zwei beliebige aufeinanderfolgende Argu-
mente und X‚ ‚ X2 die ihnen entsprechenden benachbarten Bildpunkte. Dann gilt

Ä = X2 —— X, =1_,(x + Ax)’ — Ixxz = l,,(2xAx + Axz).

Daher muß also gelten

2 g 2(2xAx + Axz) g 4 oder 1 g 2xAx + Axz g 2.

Setzt man hier nun nacheinander für Ax die Werte 5 - 10"‘, 2 - 10*‘ sowie 10“ ein,
so ergibt sich, daß folgende Ungleichungen etwa beachtet werden müssen:

0,75 g x g 1,75 für Ax = 5- 10",
2,4 g x 5 für Ax = 2- 10*‘,

5 gx 10 für Ax : 10“‘,IIA
H

A
I

Jetzt sind wir in der Lage, die Funktionsleiter zu konstruieren (siehe Bild 9.24).

I77 Z J 1,5 5 I; 6' X, 7

lliilliiililil= vliiilvxliliii Irilii x
X-Ix’

XZ=21§
X_,‘X,“Xz

Bild 9.24. Funktionsleiter für f(x) = xi, 0 g x g 7

Wozu kann die konstruierte Funktionsleiter genutzt werden? Da die Unterteilungs-
forme] (9.80) auf Grund der Monotonie der erzeugenden Funktion f zwischen den
Argumenten xe [0, 7] und deren Bildpunkten auf der Funktionsleiter eine einein-
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deutige Abbildung erzeugt, kann die konstruierte Funktionsleiter in folgender Weise
genutzt werden. Es seien x1 und x2 zwei beliebige Argumente 0 g x1, x2 g 7 mit der
Eigenschaft, daß die Summe der zugehörigen Bildpunkte X1 + X2 ebenfalls auf der
Funktionsleiter liegt. Dabei wird unter der Summe zweier Bildpunkte X1 + X2 der
Bildpunkt verstanden, den man wie folgt erhält. Die beiden Strecken 0x1 und 0x2
werden addiert und die so erhaltene Gesamtstrecke auf der Funktionsleiter bei O

beginnend abgetragen; ihr Endpunkt markiert den Bildpunkt X1 + X2 (siehe
Bild 9.24). Dann entspricht diesem Bildpunkt ein gewisses x3 e [0, 7] derart, daß
X1 + X2 = 2x§ ist. Andererseits gilt jedoch X1 + X2 = 2x} + 2x2.
Somit folgt: x: = xi‘ + x§ oder

x3 =\/x?+xä.
Wenn wir also zwei Argumente x1,x2e[0, 7] mit der oben genannten Eigen-
schaft haben, so können wir bei X1 + X2 ohne jede weitere Rechnung den Wert
x3 = ‚ / x} + x2 ablesen. Formeln dieser Art treten u. a. bei der Berechnung der Länge
der Hypotenuse‘ eines rechtwinkligen Dreiecks auf. Wenn z. B. die Katheten eines
solchen Dreiecks 3,6 m und 5,3 m lang sind, so folgt (vgl. Bild 9.24) sofort 6,4 < x2
< 6,5, und wir lesen näherungsweise x, z 6,4m ab. In analoger Weise entwickelt
man eine Formel für x/x} — x5.

Aufgabe 9.25: Mit a, b seien die Katheten und mit c die Hypotenuse von recht- an

winkljgen Dreiecken bezeichnet. Dann ermittle man unter Verwendung der in
Beispiel 9.16 konstruierten Funktionsleiter die jeweils fehlenden Längen für die drei
rechtwinkligen Dreiecke mit

a 4,8 km 26 m 300 m

b 2,4 km 3,8 m 400 m

c 6,9 m 67 m

Als Hinweis sei vermerkt, daß bei den beiden letzten Dreiecken zusätzliche Über-
legungen angestellt werden müssen.

Neben der regulären Leiter zeichnet man für geradlinige Träger nach dem Typ
der erzeugenden Funktion einige weitere Funktionsleitern aus. Dazu gehören die
logarithmische sowie die projektive Funktionsleiter. Erstere hat die erzeugende
Funküon

f(x)=log„x, 0<a§x§b< +oo,

wobei a, b‚c gegebene fixierte Zahlen (c > 0,c i l) sind; für die projektive
Funktionsleiter lautet die erzeugende Funktion

f(x) = ‘fjf, xez,

wobei zz, b und c fixierte Zahlen mit ac $ b sind und I ein Intervall ist, das x = —c

nicht enthält.

Aufgabe 9.26: Man konstruiere für einen geradlinigen Träger mit der erzeugenden =|=

Funktion f(x) 2 lg x, l g x g 10, eine Funktionsleiter, die 125 mm lang sein soll.
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Die Unterteilung ist so zu wählen, daß der Abstand Ä zwischen den Teilstrichen etwa
der Bedingung 0,5 mm g Ä g 1.25 mm genügt. Schließlich soll eine Anwendungs-
möglichkeit für eine solche Funktionsleiter aufgezeigt werden.

Es wurde von uns schon im Beispiel 9.16 auf mögliche Anwendungen einer ein-
zelnen Funktionsleiter hingewiesen. Dennoch ist die praktische Bedeutung, die eine
Funktionsleiter für sich allein hat, begrenzt. Diese Grenzen lassen sich überwinden,
wenn man zwei oder mehrere Funktionsleitern miteinander kombiniert. Die wesent-
lichsten Formen solcher Kombinationen sind Doppelleitern, Rechenstab und
Fluchtlinientafeln. Bezüglich der letzteren verweisen wir auf die o. g. Literatur zur

Nomographie. Das Prinzip der beiden ersteren sei hier kurz erläutert.

x0 fa)

and 9.25.
‘ i ' ‘ ‘ y» Allgemeiner Aufbau einer

y” y (y) Doppelleiter

Eine Doppelleiter entsteht, wenn zwei Funktionsleitern (mit geradlinigem Träger)
so aneinandergelegt werden, daß ihre Orientierungen übereinstimmen und die An-
fangspunkte zusammenfallen (siehe Bild 9.25). Sind fund g die erzeugenden Funk-
tionen dieser beiden Leitern und

X = ]x[f(X) - f(xo)] bzw‘ Y = /y[g(y) - g(yo)] (9181)

ihre Unterteilungsformeln, so ergibt sich für gleiche Punkte der Doppelleiter dann
für x und y der funktionale Zusammenhang

Ingo) - g(yo)]_ = lxlflx) - .f(Xo)1. (9.82)

Kann speziell I, : I, gewählt werden, so nimmt (9.82) die einfachere Form

go’) - .200) z ftx) - f(xo)

an. lst darüber hinaus auch noch g(y0) = fixe). so wird (9.82) besonders einfach;
sie drückt den funktionalen Zusammenhang

30’) = f(X) (9.83)

aus. Haben wir eine solche Doppelleiter, so können wir zu jedem Argument x sofort
denjenigen Wert des Arguments y ablesen, so daß für beide (9.83) gilt. Diese Werte
stehen einfach nebeneinander auf der Doppelleiter. Umgekehrt kann natürlich auch
für jedes y das entsprechende x angegeben werden.

Die einfachste Anwendung von Doppelleitern besteht darin, daß man streng
monotone Funktionen h auf einer Doppelleiter darstellt. Dazu kann man entspre-
chend (9.82) bzw. (9.81) wählen: f(x) = /1(X). g(y) : y, yo = f(x0) und I : I, = 1,;
danach wird die Doppelleiter mit diesen Größen gemäß (9.81) unterteilt. Natürlich
könnenfund g auch anders gewählt werden. So ist für f(x) = x und g(y) = h"(y)
mit g(_1') 2 f(x) auch wieder der funktionale Zusammenhang y r h(x) dargestellt.

Beispiel 9.17: Es ist die Funktion y = x2. 0 g x g 7, durch eine Doppelleiter darzu-
stellen, die etwa l00 mm lang werden soll. Um die bereits in Beispiel 9.16 konstru-
ierte Leiter anwenden zu können, wählen wir g(y) : y. f(x) = x2. I, z I, = 2mm
und benutzen dann die Unterteilungsformel (9.81). Dabei erhalten wir für g(y) = y,
0 g y g 49, eine reguläre Leiter. Sie ist gemäß

Y=2v
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unterteilt. Für f(x) = x’, 0 g x g 7, ergibt sich genau die Funktionsleiter von Bei-
spiel 9.16. Trägt man sie nun beide auf der gleichen Trägergeraden in der oben be-
schriebenen Weise so ab, erhält man die gewünschte Darstellung von y = x2, O g x
g 7, durch eine Doppelleiter. Sie ist im Bild 9.26 zu sehen.

y —>

I7 70 10 30 W 50

01 1 J 4 5 5 7

1+

Bild 9.26. Doppelleiter mit X = 2x2 und Y = 2y

Aufgabe 9.27: Es ist die Funktion y = \/x, 0 g x g 36, durch eine Doppelleiter
darzustellen, die etwa 100 mm lang werden soll. Hierzu ein Hinweis: Neben der Kon-
struktion mittels entsprechender Unterteilungsformeln gibt es eine Konstruktion,
die an Vorhergehendes anknüpft und ohne jede Rechnung auskommt.

Der Rechenstab geht in zweifacher Hinsicht über die Doppelleiter hinaus. Zum
einen stellt er eine Kombination von mindestens drei (geradlinigen) Funktions-
leitern dar. Zum anderen können diese gegeneinander verschoben werden. Das wird
dadurch erreicht, daß zwei der Funktionsleitem auf einem festen Träger (dem Stab-
körper Tf) angeordnet sind, während die dritte auf einem beweglichen Träger (der

Bild 9.27.
Prinzip des Rechenstabs

Zunge T,) aufgetragen ist (siehe Bild 9.27). Die im Bild 9.27 angedeuteten Funktions-
leitern seien nach den Formeln

X = 1x[f(x) - f(xo)]

Y = da0) - g(,vo)]

Z = lz[h(Z) - h(Zo)]

unterteilt. Im allgemeinen strebt man hierbei an, daß I, = I, = I, ist. Dann entspricht
jeder Beziehung Z = X i Y zwischen den Bildpunkten (vgl. Bild 9.27) der funk-
tionale Zusammenhang zwischen Variablen x, y, z:

/1(2) - Mio) = f(x) - f(xo) i [g(y) - g(yo)]- (9-34)

Der Rechenstab ist bereits so konstruiert, daß der Bildpunkt 0, von 2,, genau über
dem Bildpunkt 0„ von x0 liegt. Daher besagt die Formel (9.84) genauer folgendes:
Wird der Bildpunkt 0, von yo über den Bildpunkt X des Wertes x gestellt, dann
genügt dieser Wert zusammen mit jedem Wertepaar y und z, welches übereinander-
liegenden Bildpunkten Y und Z entspricht, dem funktionalen Zusammenhang (9.84).
Um das Ablesen iibereinanderliegender Bildpunkte zu erleichtern, ist der Rechen-
stab noch mit einem beweglichen Läufer L versehen, der eine entsprechende Mar-
kierungslinie trägt (siehe Bild 9.27). Besonders einfach wird der funktionale Zu-
10 Sicher n. 13., Mathematik
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sammenhang (9.84), wenn l1(z0) =f(x0) = g(y0) = O gilt. Dann folgt nämlich

/1(2) = f(X) i- 3U’).

Ein Spezialfall hiervon wiederum ergibt sich, wenn h = f = g gilt:

f(Z) = f(x) i fly). (9-85)

Hierbei ist eine der beiden Funktionsleitern auf dem Stabkörper überflüssig. Die
bekannteste Anwendung dieses Falles ist mit dem logarithmischen Rechenstab ge«

geben. Für ihn gilt f(u) = lg u. Dann besagt (9.85)

lgz = lgx i lg)‘. x,_\',z> 0,

und stellt somit den funktionalen Zusammenhang
z = xytl

dar. Der logarithmische Rechenstab kann also benutzt werden, um die Multiplikation
oder Division zweier Zahlen auszuführen.

Betrachten wir nun noch die Funktionsnetse. Jedem Leser ist sicher ein einfaches
Beispiel von Funktionsnetzen in Form des handelsüblichen Millimeterpapiers be-
kannt. Ihr wesentlicher Unterschied gegenüber den Funktionsleitern besteht darin.
daß bei ihnen jedem Wert eines Arguments nicht ein Bildpunkt, sondern eineein—
deutig bestimmte Bildkurve zugeordnet ist. Allgemein bestehen nun Funktions-

r/

Bild 9.28.
" Funktionsnetze\

netze aus zwei sich schneidenden Kurvenscharen (siehe Bild 9.28). die jede für sich
eine Variable x bzw. y repräsentieren. Dabei erfolgt die Bezifferung der Kurven
einer Schar entsprechend der Werte der Variablen. deren Bilder sie sind (vgl. etwa
mit den Gradnetzen in Atlanten}. Häufig verwendet werden Netze aus rechtwinklig
zueinander verlaufenden Geradenscharen. Sie werden Funktionspapier genannt.

Definition 9.15: Fiir zwei streng monotone Funktionen f und g seien entsprechend der
Unterteilzmgsformel

X = l,[f(x) — f(xo)l. Y = /,»[gI.r) — g(.ro1] (9.86)

auf geradlinigen Trägern zwei Funktionsleitertz konstruiert. Stellt man diese beiden
Leitern senkrecht so zueinander, daß die Bildpunkte X0 und Yo sich decken, und zieht
durch jeden TeiIstrie/i einer Leiter eine Gerade, die senkrecht zu ihr ist. so erhält man

ein sogenanntes Funktionspapier.

Funktionspapiere unterscheidet man nach den Funktionen. die ihrer Konstruktion
(siehe (9.86)) zugrunde liegen. Sind f und g in (9.86) lineare Funktionen, so spricht
man von Millimeterpapier: ist feine lineare Funktion und g die Logarithmusfunktion.
so erhält man das Sogenannte Exponentialpapier: ist dagegen f die Logarithmus-
funktion und g eine lineare Funktion. so erhält man das Sogenannte Logarithmeiz-
papfer; sind schließlich beide Leiter logarithmisch unterteilt. so ergibt sich das sage-
nannte doppellogaritlztnische Papier.
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Eine wesentliche Anwendung von Funktionspapieren besteht darin, funktionale
Zusammenhänge zwischen Meßgrößen sichtbar zu machen. In diesem Zusammen-
hang seien folgende Eigenschaften einiger der genannten Funktionspapiere erwähnt.

Satz 9.9: Exponentialfunktionen der Form y = ba‘ ergeben im Exponentialpapier
Geraden und umgekehrt, Geraden im Exponenrialpapier entsprechen gewisse Expo-
nentialfunktionen (s. a. Beispiel 9.18).

Satz 9.10: Logarithmusfunktionen der Form y = a lg x + b ergeben im Logarithmen-
papier Geraden und umgekehrt, Geraden im Logarithmenpapier entsprechen gewisse
Logarithmusfunktionen. ’

Hat man also im Ergebnis eines Experiments eine Meßreihe der Art (9.15) erhalten
und ergibt sich bei der Darstellung der Wertepaare einer solchen Meßreihe in einem
Exponentialpapier näherungsweise eine Gerade, so kann man schlußfolgern. daß der
funktionale Zusammenhang zwischen den Meßgrößen eine Exponentialfunktion
darstellt.

Beispiel 9.18: Gegeben sei die Meßreihe:

x l2 |2,5i3 [3,5{4 |4,5|5
y I 3,5 | 4,4 l5; I 7,0 I 8,9 l 11,0! 14

(9.87)

Auf Grund sachlicher Zusammenhänge möge die Annahme berechtigt erscheinen,
daß y exponentiell von x abhängt. Diese Annahme ist mittels eines geeigneten Funk-
tionspapiers zu überprüfen.

Wegen der oben genannten Eigenschaften wählen wir ein Exponentialpapier mit
den Unterteilungsformeln ’

X = -10x, ' o g x, (9.88)

Y = 501g y, 1 g y. (9.89)

Es ist in Bild 9.29 dargestellt. Nun überzeugen wir uns zunächst davon, daß jeder
Geraden

Y=aX+b
in dem konstruierten Funktionspapier tatsächlich ein gewisser exponentieller Zu-

(9.90) -

S.9.9

S.9.l0

sammenhang zwischen x und y entspricht. Hierzu werden (9.88) und (9.89) in (9.90) .

eingesetzt. Danach ergibt sich

50lgy =10ax + b,

woraus nach den Umformungen

lgy = 0,2ax + 0,02b,
y = 100.2nx+0,02b

die Zuordnungsvorschrift

y = C10“ mit C =_ 10°-°2", k = 0,211

folgt. Damit ist diese Eigenschaft des Exponentialpapiers bewiesen. Jetzt werden die
Punkte der Meßreihe (9.87) in das konstruierte Funktionspapier eingetragen; danach
kann man sich davon überzeugen, daß die Annahme über den exponentiellen Zu-
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Bild 9.29. Exponemialpapier mit Nleßreihe und angenäherter empirischer Funktion

sammenhang zwischen den Meßgrößen x und y berechtigt war (siehe Bild 9.29).
Schreibt man ihn in der Form

_r = C 10'“, (9.91)

so kann man aus Bild 9.29 sogar die Werte für C und k näherungsweise ablesen. Ver-
längert man nämlich die Strecke, die die Meßpunkte näherungsweise verbindet, bis
zur y-Achse, so schneidet sie diese bei 1,4. Damit folgt aber C = 1,4. Setzt man diesen
gefundenen Wert sowie x = 5 und y = 14 in (9.91) ein, so findet man k = 0,2. Damit
lautet der gesuchte funktionale Zusammenhang für die Meßgrößen x und y

_v = 1,4" 10”".

Aufgabe 9.28: Man konstruiere ein doppellogarithmisches Funktionspapier für
1 g x g 300 und 1 g y g 50. Dabei möge der Maßstabsfaktor für beide Funktions-
leitem gleich sein und so gewählt werden. daß die x-Funktionsleiter etwa 60 mm lang
wird. Als erzeugende Funktion diene in beiden Fällen die dekadische Logarithmus-
funktion.

Es sei erwähnt, daß Geraden

Y = aX + b

im doppellogarithmischen Papier der Aufgabe 9.28 Potenzfunktionen der Art

y = cx” mit c = 10%

darstellen, wobei I der Mafistabsfaktor ist,
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Abschließend weisen wir darauf hin, daß die Konstruktion und Nutzung von Funk-
tionsleitern, Funktionsnetzen und anderen Nomogrammen immer Verbunden wer-
den muß mit Genauigkeitsbetrachtungen. Einzelheiten hierzu findet man z. B. in
[21]. Wir empfehlen jedoch, sich hierfür erst mit den Grundlagen der Differential-
rechnung aus Band 2 vertraut zu machen.

l1 ‘ielwer u. Mathematik
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Das Ziel dieses Kapitels besteht darin, für ein neues mathematisches Objekt, näm-
lich die Zahlenfolge, die wesentlichsten Aussagen und Eigenschaften darzulegen.
Insofern besteht hier Analogie zum Kapitel 9. über Funktionen. Abcr natürlich er-

geben sich für das neue mathematische Objekt „Zahlenfolge“ auch Probleme, die
sich von den bisher für Funktionen untersuchten grundlegend unterscheiden. Die
neuen Probleme führen ihrerseits zu neuen Begriffen, Aussagen usw. Als wesentlichste
Begriffe seien vorab bereits genannt: Nullfolgen, Grenzwert, Konvergenz und Hau-
fungspunkt. Unter ihnen wiederum sind Grenzwert und Konvergenz von fundamen-
taler Bedeutung für das Verständnis der gesamten Differential- und Integralrechnung
und damit für zahlreiche angewandte Problemstellungen. Die Beziehungen des vor-

liegenden Kapitels selbst zu praktischen Problemen sind jedoch nicht so unmittelbar
wie die des Kapitels über Funktionen. Es hat ausgesprochenen Grundlagencharakter.
Das macht sich auch in der Darlegungsweise bemerkbar. Gerade deshalb hoffen wir,
mit den vorangegangenen Darlegungen beim Leser so viel Verständnis für die not-
wendige mathematische Kleinarbeit geweckt zu haben, daß er bereit ist. mit uns

gemeinsam die folgenden Stufen der Abstraktionen Schritt für Schritt zu ersteigert.
Trotz der obigen Bemerkungen über den Grundlagencharakter dieses Kapitels

haben Zahlenfolgen natürlich auch eine vielfältige Bedeutung für praktische Unter-
suchungen. Auf einige wird in Abschnitt 10.9. hingewiesen.

Zur Vorbereitung auf die folgenden Ausführungen empfehlen wir, das Rechnen
mit Beträgen und Ungleichungen zu wiederholen (siehe Abschnitt 5.2.).

10.1. Zahlenfolgen als Spezialfall von Abbildungen
und einige ihrer besonderen Vertreter

Im Beispiel 8.7 (Abschnitt 8.4.) wurden Zahlenfolgen bereits als Spezialfall von

Abbildungen eingeführt. Danach sind Zahlenfolgen geordnete Paare (n, .1) reeller
Zahlen. Das Wesen der Spezialisierung, die beim Übergang von Abbildungen zu
Zahlenfolgen vorgenommen wurde. besteht irbfolgenden drei Merkmalen:

1. Der Definitionsbereich der Abbildung ist gleich Nr‘, wobei wir mit N+ die Menge
der natürlichen Zahlen 1, 2, bezeichnen.

2. Die Abbildung ist eindeutig.

3. Der Wertebereich ist eine Teilmenge von R‘.

Die im Beispiel8.7 angegebene Schreibweise bringt zwei dieser drei Merkmale
zum Ausdruck. Sie ist jedoch zu umfangreich und wird daher nicht verwendet. Es
ist u. a. üblich, eine Zahlenfolge allgemein durch das Symbol

I {I1..}‚0„ = f(n). (10-1)

oder konkret z. B. in der Form {an}, a„ = (1 „+ n)’1, anzugeben. Dabei schließt diese
Schreibweise ein, daß der Definitionsbereich der Funktionfgleich N+ ist, d. h., daß
n : 1, 2, gilt. Der Index n besagt, daß es sich bei a„ um das Bild des Originals n

handelt. Das kommt auch allgemein in der Formel a„ = f(n) bzw. konkret z. B.
in 11„ 2 (l + n)“ zum Ausdruck. Da n hierbei eine beliebige natürliche Zahl größer
0 ist, nennt man a„ das allgemeine Glied der Zahlenfolge.
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In Übereinstimmung damit, daß in (10.1) n = 1,2, gilt, wird a1 das erste,
a2 das zweite, ..., a, das i-re Glied usw. der Zahlenfolge (10.1) genannt. Dement-
sprechend schreibt man (l0.l) mitunter auch ausführlicher als

a,,aZ,...,a,,,... (10.2)

Damit ist für Zahlenfolgen gegenüber den Abbildungen i. allg. noch ein Merkmal
charakteristisch (jedoch nicht unbedingt erforderlich): ihre Zahlenpaare (ma) bzw.
kurz a„ sind in der Reihenfolge der Werte von n angeordnet.

Wir nennen zwei einfache Vertreter von Zahlenfolgen.

Beispiel 10.1:

l. Es seien a und d zwei beliebige reelle Zahlen, d ¢ O. Die Folge

{a„}‚a„ = a + (n — l) d,

lautet in der ausführlichen Schreibweise (10.2)

a, a + d, a + 2d, ..., a + (n — l)d,...
Sie wird arithmetische Zalzlenfolge genannt und ist dadurch charakterisiert, daß
die Differenz zweier beliebiger benachbarter Glieder konstant ist: a,“ e a, = d,
j : l, 2.

2. Es seien a und q zwei beliebige reelle, von Null verschiedene Zahlen. Die Folge

{an}. m. Z at)“,
lautet in der ausführlichen Schreibweise (10.2)

a, aq, zzqz, ..., aq"”‘,

Sie wird geometrische Zahlenfolge genannt und ist dadurch charakterisiert, daß
der Quotient zweier beliebiger benachbarter Glieder konstant ist:

“in
“j

:q‚ j=l‚2‚...

Als weiteren speziellen Vertreter der Zahlenfolgen nennen wir die alternierende
Folge. Für sie ist charakteristisch, daß benachbarte Glieder jeweils unterschiedliche
Vorzeichen besitzen:

sgn a, = -sgn £1,-+1, Wasgleichbcdeutend mit ajajrl < 0, j: l‚2, ..., ist.

Beispiel 10.2: Wenn in der geometrischen Folge q < O ist, so erhält man eine alter-
nierende Folge. Tatsächlich, es gilt nämlich in diesem Falle

aiaH-l = azqzjlfl < 0; j : I72:

Aufgabe 10.1: Man schreibe die ersten 5 Glieder der geometrischen Folge

l n

{an}: an = (- ‚

Aufgabe 10.2: Der bekannte Wettlauf zwischen Achilles und der Schildkröte kann
etwa dadurch charakterisiert werden, daß Achilles doppelt so schnell läuft wie die
Schildkröte und diese zu Beginn einen Vorsprung von l Metern besitzt. Den weiteren
Wettlauf zerlegt man häufig (vgl. [l2]) in folgende Phasen: in der ersten Phase legt

11*

auf.
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Achilles l Meter zurück; in der zweiten Phase durchläuft Achilles die Strecke, die von
der Schildkröte in der ersten Phase zurückgelegt worden ist usw. Man gebe in zwei
Zahlenfolgen die von Achilles bzw. der Schildkröte in jeder Phase zurückgelegten
Strecken an. '

Wir werden im weiteren häufig einfach von der Zahlenfolge

{an} (10.3)

sprechen und darunter (10.1) mit n = 1,2, verstehen.
In engem Zusammenhang mit Zahlenfolgen stehen deren Teilfolgen. Teilfolgen

einer Zahlenfolge {an} erhält man wie folgt: es sei {k1,k2, ...,k,,,k,,+,, ...}eine
beliebige Teilmenge der natürlichen Zahlen, wobei

k1<kz<...<k„<k„„<...
gilt; dann ist {ah} eine Teilfolge von {an}. Wir werden das gegebenenfalls durch
{ab} c {an} ausdrücken. Eine Teilfolge von {an} ergibt sich also dadurch, daß gewisse
Glieder dieser Folge — es müssen jedoch unendlich viele sein — ausgewählt und zu
einer neuen Folge „zusammengestellt“ werden.

10.2. Einfachste Eigenschaften von Zahlenfolgen

Die Darlegung der einfachsten Eigenschaften von Zahlenfolgen hat Wesentliches
gemeinsam mit den entsprechenden Darlegungen für Funktionen (vgl. Abschnitt 9.3.).
Deshalb empfehlen wir dem Leser, die folgenden Ausführungen insbesondere mit
denen für monotone bzw. beschränkte Funktionen zu vergleichen.

Definition 10.1: Eine Zahlenfolge {an} heißt monoton wachsend, wenn

a„ g a„„ für alle n = l. 2, (10.4)

gilt; entsprechend wird sie monoton fallend genannt, wenn

11„ g an“ für alle n = l, 2, (10.5)

gilt. Gelten dagegen für eine Zahlenfolge {an} Ungleichungen der Art (10.4) bzw. (10.5)
ohne Gleichheitszeichen

a„ < 12,,“ für alle n l, 2, (10.6)
bzw.

l,2,...‚
dann heißt die Folge streng monoton wachsend bzw.‘ streng monoton fallend.

(10.7)a„ > a„„ für alle n =

Aufgabe 10.3: Es seien n und r zwei beliebige natürliche Zahlen mit n < r. Man zeige, daß dann für
monoton wachsende bzw. fallende Zahlenfolgen immer die Ungleichungen

(1„ g n, bzw. an g a,
gelten.

Mit der Eigenschaft monotoner Folgen, die in der Aufgabe 10.3 formuliert ist,
wird völlige Analogie zur Monotonie von Funktionen hergestellt. Dazu ist lediglich
zu beachten, daß die Rolle des Arguments x von Funktionen bei Zahlenfolgen vom
lndex n eingenommen wird.
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Beispiel 10.3; Die geometrische Folge {a,,}, a„ : aq"“ mit a > 0, ist für 0 < q < 1

streng monoton fallend; dagegen ist sie für 1 < q streng monoton wachsend. Wir
zeigen hier nur die letzte Behauptung. Wegen 1 < q folgt auf jeden Fall q"" > O.

Wird daher 1 < q mit 11"“ und danach mit a > 0 multipliziert, so ergibt sich
aq"“ < aq" oderVa,, < a,,+,, n = 1,2,

Beispiel 10.4: Die Folge {an}, a,, = ä, ist streng monoton fallend. Tatsächlich, es

muß gezeigt werden, daß a„ > a,“ oder; > n = 1, 2, ..., gilt. Letzteres ist
n + 1 ’

aber eine unmittelbare Folge aus der evidenten Ungleichung n + l > n, n = 1, 2,

Aufgabe 10.4: Man betrachte eine geometrische Folge {an}, a„ = aq"“, mit a < 0
und untersuche — ähnlich wie in Beispiel 10.3 — ihr Monotonieverhalten.

Aufgabe 10.5; Ist die Folge {a„}‚a„ — — 4L;2£ , monoton‘!

Mit der Zahlenfolge {a„}, a„ = 2n + (—1)", weisen wir auf eine zwar monoton
wachsende, jedoch nicht streng monoton wachsende Folge hin.

7
Aufgabe 10.6: Für die Zahlenfolge {an}, a,, = en + ?(—1)", untersuche man, ob es einen Wert c

gibt, für den {an} zwar monoton, jedoch nicht streng monoton wachsend ist. Außerdem prüfe man,
ob es Werte c gibt, für die {fin} streng monoton wachsend ist. .

Zahlenfolgen können genau wie Funktionen beschränkt sein.

Definition 10.2: Eine Zahlenfolge {a„} heißt beschränkt, wenn es eine endliche Kon-
stante C derart gibt, daß

|a„| g C für alle n =1,2,...;
dabei heißt C Schranke der Folge {a„}. Eine Folge heißt nach oben bzw. nach unten
beschränkt, wenn es eine endliche Konstante K bzw. k derart gibt, daß

a„ g K bzw. a„ g k für alle n = 1,2,

gilt; dabei wird K obere Schranke und k untere Schranke von 3[a„} genannt.

Die folgenden konkreten Zahlenfolgen mögen diese Begriffe erläutern.

——3n
Beispiel 10.5: Die Folge {an}, a,, = , ist beschränkt. Es gilt nämlich für alle
n: 1,2,...

13-1
Daher ist jede Zahl C g 3 eine Schranke dieser Folge. Außerdem überzeugt man

l—3n
n

|a.| =l

sich wegen a„ = 7:- — 3 leicht, daß jede Zahl k g —3 eine untere Schranke und jede

Zahl K g -2 eine obere Schranke der Zahlenfolge ist.

Beispiel 10.6: Eine geometrische Folge {a„}, a„ = aq"‘1, ist für —1 g q g l immer
beschränkt, und jede Zahl C g |al ist eine Schranke dieser Folge. Tatsächlich, für
qe [—1, 1] gilt nämlich [q["" g 1, so daß |a„| g lat für alle n = 1, 2, folgt.

D.l0.2
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Als Beispiel einer unbeschränkten Folge nennen wir die arithmetische Folge mit
d + 0.

Aufgabe 10.7: Es seien zwei beliebige beschränkte Folgen {a„} und {b„1 gegeben.
Sind dann auch die Folgen {c„}, c„ = a„b„, und {d„}‚ d„ = a„ + b„, beschiankt‘!

Abschließend vertiefen wir die bisherigen Darlegungen durch folgende Bemer-
kungen.

1. Häufig trifit man die intuitive Vorstellung, daß streng monoton wachsende Folgen
nicht beschränkt sind. Das ist jedoch i. allg. falsch, wie die geometrische Zahlen-
folge für a < 0 und 0 < q < 1 zeigt. Sie ist nämlich sowohl beschränkt (siehe
Beispiel 10.6) als auch streng monoton wachsend (vgl. Lösungder Aufgabe 10.4).

2. Wenn die Folge {an} eine der obengenannten Eigenschaften besitzt, so besitzt auch
jede ihrer Teilfolgen diese Eigenschaft.

10.3. Nullfolgen und ihr Vergleich

Es gibt eine Klasse von Zahlenfolgen‚ die sich durch eine besondere Eigenschaft
auszeichnen. Sie besteht darin, daß der Betrag des allgemeinen Gliedes einer solchen
Folge „beliebig klein“ wird. Präziser ist damit folgendes gemeint: Es sei 5 eine be—

liebig kleine Zahl größer als Null (es kann z. B. e = 104° sein); dann existiert immer
eine natürliche Zahl N(s) mit der Eigenschaft, daß |a„[ < e für alle n g N(e) gilt.
Das Argument e deutet hier an, daß die Zahl N(e) sich in Abhängigkeit von dem ge-

. . . . _ 1

wählten s ändert. Eine solche Eigenschaft besitzt z. B. die Folge {an} mit a„ : n7.

Für sie gilt nämlich |a„l : 71;, so daß bei beliebigem e > 0 immer |a„l < s für alle

n g N(£) folgt. wobei für N(e) die kleinste ganze Zahl gewählt werden kann, die

noch größer ist als g .

lii diesem Zusammenhang erweist cs sich als nützlich, den Begriff der e<Umgebung
einer Zahl a anzuwenden (vgl. Abschnitt 7.8.). Wir bezeichnen sie mit U5(a) und
verstehen im weiteren darunter die Menge

| U.(a)={xeR‘la—s<x<a+s}; (10.8)

dabei ist c eine gewisse positive Zahl. Mit anderen Worten, wir bezeichnen hier mit
U5(a) das offene Intervall (a — e, a + s):

U.(a) = (a — e, a + s) (10.9)

Z/[Kul

I Bild 10.1.

a ,1.‘ f, m, X Darstellung der e-Umgebung der Zahl a

(vgl. Bild 10.1). Es sei bemerkt, daß x E U£(a) äquivalent ist mit

Ix — a| < e, (10.10)
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Mit Hilfe der e-Umgebung läßt sich nun leicht folgender Begrifl einführen:

Definition 10.3: Eine Zahlenfolge {an} heißt Nullfolge, wenn für jede positive Zahl
e > 0 eine natürliche Zahl N(e) derart existiert, daß

a„ e U.(0) für alle n g N(£) (10.11)
gilt.

Zur Erläuterung dieser Definition bemerken wir:

1. Die Forderung (10.11) ist gleichbedeutend damit, daß

|a„| < e für alle n g N(e) (10.12)

ist. Somit sind Nullfolgen solche Zahlenfolgen, deren Glieder an mit wachsendem n

dem Betrage nach „beliebig klein“ werden, also auf der Zahlenachse beliebig
nahe bei Null liegen. Daraus ist auch der Name „Nullfolge“ abgeleitet.

Für die Definition der Nullfolge ist es von prinzipieller Bedeutung, daß (10.11)
2n + 7

1 30n
obwohl man sich für s : —1—0— zunächst davon überzeugen kann, daß

für alle n g 8

N

fürjede positive Zahlegilt. So ist z. B. die Folge {an}, a„ , keine Nullfolge,

1a1<L
" 10

. . . . 1

gilt. Wählt man nämlich ein kleineres e, etwa e = W
1 . . . l „ . .. .W , daß die Bedingung a„ e U£(0) bei s — mfur kem n erfullt ist.

Von ebenso prinzipieller Bedeutung für die Definition der Nullfolge ist es, da15

(10.11) für alle n g N(e) gilt. So ist z. B. die Folge {an}, 11,, : l + (—1)", keine
Nullfolge, obwohl a„ = O für alle ungeraden n = 1, 3, 5, gilt und somit für
diese n natürlich bei jedem positiven s: auch a„ e U,(0) folgt, Für alle geraden n

ergibt sich dagegen a„ = 2. so daß bei einem a. e (0, 2) immer a„ (ä U,(O)‚
n : 2. 4, 6, ..., folgt.

sofol twe ena > 2"
’ g g " 30/1

_1DE.)

b
)

Es sei erwähnt, da15 (10.11) bzw. (10.12) häufig auch so formuliert werden:
41„ e U‚(0) bzw. |a„l < e gilt für alle hinreichend großen n.

(‘1)"
n

Beispiel 10. 7: {an}, a„ ‚ ist eine Nullfolge. Tatsächliehes sci a eine beliebige

positive Zahl. Dann muß für alle hinreichend großen n die Bedingung |a„l < e gelten.

Wegen la„l 2 ä ist das äquivalent mitä < e oder-i- < n. Wählt man also für

N(e) die kleinste ganze Zahl, die noch größer als —€ ist, so gilt für dieses N(e) (10.12)

und damit auch (10.11).

Aufgabe 10.8: Man zeige. daß {a„}‚a„ = q", für jedes feste qe (— 1, 1) eine Nullfolge
ist.

Ohne auf Einzelheiten einzugehen. erwähnen wir noch, daß auch Folgen wie

x >o‚ (10.13)
n""

E
R(n) ’

{a„‚.a„

[a„},a„ : (10.14)

D.l0.3
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Nullfolgen sind; im Falle von (10.14) sind P(n) und R(n) gewisse Polynome, wobei
R(n) höheren Grades als P(n) ist.

Unter den Eigenschaften von Nullfolgen geben wir hier ohne Beweis folgende an:

l. Jede Nullfolge ist beschränkt; die Umkehrung gilt jedoch im allgemeinen nicht.

2. Sind {a„} und {b„} Nullfolgen, so sind auch

{a„ i b,,}, {a,,b,,} und {can}

Nullfolgen; im letzten Falle ist c eine beliebige Konstante.
Der Quotient zweier Nullfolgen {an} und {b,,} kann, muß jedoch nicht wieder eine

Nullfolge sein. Wenn jedoch auch a" } eine Nullfolge ist, dann nennt man {a„} im

Vergleich zu {bu} eine Nullfolge höhere: Ordnung.

ar
- Aufgabe 10.9: Es sei l > ql > q; > 0. Man vergleiche die beiden Nullfolgen {a„},

a„ = q;', und {b,,}, b„ : qg, und prüfe, ob eine von höherer Ordnung im Vergleich
zur anderen ist.

S.l0.l Satz 10.1: Jede Teilfolge einer Nullfalge ist ebenfalls eine NuIlfoIge.

S.l0.2 Satz 10.2: Wenn {an} eine Nul/folge ist und für {b„} eine natürliche Zahl N‚ derart
existiert, daß

lb"! ä Ian} fiiralle n ä Ni‚
dann ist auch {bu} eine Nullfolge.

at
- Aufgabe 10.10: Man beweise Satz 10.1.

10.4. Kdnvergenzbegrifl" für Zahlenfolgen

Dieser Abschnitt ist dem für die gesamte Differential- und Integralrechnung fun-
damentalen Bcgriff der Konvergenz gewidmet. Dabei wird er hier zunächst im Zu-
sammenhang mit Zahlenfolgen behandelt. Später werden wirihm in den vielfältigsten
Beziehungen bei Funktionen begegnen.

Im allgemeinen Sprachgebrauch bedeuteteKonvergenz soviel wie sich an etwas
annähern. In eben diesem Sinne wird der Begrifi‘ „Konvergenz“ auch in der Mathe-
matik verwendet. Für Zahlenfolgen bedeutet Konvergenz speziell, dal3 es eine ge-
wisse Zahl a gibt, an die sich die Glieder der Folge annähern. Das Maß für diese
Annäherung ist der Abstand zwischen der Zahl a und den Gliedern a„ der Zahlen-
folge fan}. Er wird ausgedrückt durch die Zahl [a,, — a].

D.l0.4 Definition 10.4: Eine (konstante) endliche Zahl a heißt Grenzwert der Za/zlenfalge
{an}, und diese Folge heißt konvergent gegen den Grenzwert a, wenn es zu jede/n a. > 0
eine natürliche Zahl N(e) derart gibt, daß

Ia" — ai < 6 für alle n g N(e) (l0.l5)

gilt. Man schreibt für die Konvergenz von {a„} gegen a

lim a„=a (10.16)
VI-05X)

oder
a„—>a für n—->oo. (10.17)
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Die Schreibweisen (10.16) bzw. (10.17) werden gelesen als „Limes an für n gegen oo

ist gleich a“ bzw. „a„ konvergiert gegen a für n gegen o0“. Damit bringt besonders
die Schreibweise (10.17) das Wesen der Konvergenz einer Zahlenfolge {a„} gegen
einen Grenzwert a zum Ausdruck: Mit wachsendem Index nähern sich die Glieder
der Folge immer mehr dem Grenzwert, wird also ihr Abstand von diesem Grenzwert
immer kleiner (vgl. auch Satz 10.3). Hierzu muß man natürlich ergänzen, daß diese
Annäherung nicht unbedingt monoton erfolgen muß (siehe Beispiel 10.9).

Als ein Spezialfall konvergenter Zahlenfolgen erhält man die Nullfolgen; sie sind
dadurch charakterisiert, daß ihr Grenzwert gleich Null ist (diese Begriffsbildung ist
mit Definition 10.3 identisch).

Satz 10.3: Die Folge {an} konvergiert dann und nur dann gegen a, wenn die Folge der
Abstände {Ian — a|} eine Nullfolge ist.

Es sei besonders der theoretische Charakter der Definition 10.4 betont. Er besteht darin, daß durch
diese Definition zwar der Begrifi" des Grenzwertes eingeführt, jedoch keinerlei praktische Anleitung
zu seiner Ermittlung gegeben wird. Diese Frage muß auf die folgenden Abschnitte (siehe 10.5.,
10.6. und 10.8.) vertagt werden. Deshalb kann man mit Hilfe der Definition 10.4 für eine konkrete
Zahlenfolge nur entscheiden, ob eine gegebene Zahl ihr Grenzwert ist oder nicht.

Ä _ __ _ 1 + 3n + Sn’
Beispiel 10.8: Fur die Folge {a„}‚a„ = ———T—
letztere Grenzwert dieser Folge. Tatsächlich, für n = 1, 2, gilt

5
, ist von den beiden Zahlen 3 und? nur

l+3n 5

4nz +
(1,, =

9
Also ist {an} nach oben beschränkt, wobei-eine obere Schranke der Folge ist. Dann kann der

4
3 3

Abstand im. — 3! aber nie kleiner als I werden, so daß die Forderung (10.15) für kein e e (0, —>
4

erfüllt ist. Somit ist die Zahl 3 nicht Grenzwert der Folge {a„}. Dagegen ergibt sich für; zunächst

5 1 + 311 < 1

a" 4 v 4112 z ll '

Aus dieser Abschätzung folgt mit Satz 10.1 (vgl. noch Beispiel 10.7) die Behauptung.

Aufgabe 10.11: Man prüfe, ob eine der Zahlen 2 oder 4 Grenzwert der Folge

2 — 4n + 12712

{‘1n},fln = i?‚

ist.

Die Definition 10.4 hat große theoretische Bedeutung. Mit ihrer Hilfe kann man
für konvergente Zahlenfolgen eine ganze Reihe von Eigenschaften nachweisen, ohne
ihren Grenzwert zu kennen. Ausführlicher folgen derartige Betrachtungen im nächsten
Abschnitt. Hier wird das zunächst beim Beweis folgender Aussage demonstriert.

Satz 10.4: Wenn für eine Zahlenfolge {a„} die Konuergenzbeziehungen

lim an : ä und lim a„ = ä
n->72 naoo

gelten, dann folgt ä = ä, d. /z.‚ der Grenzwert einer konvergentelt Zahlenfolge ist ein-
deutig bestimmt.

S.l0.3

S.10.4
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Diese Aussage ist bewiesen, wenn wir zeigen können, daß M — äl : 0 gilt. Also
betrachten wir |ä — ä| etwas näher.

I5-I7!=lt7-61,.+tl..~t7|§!t7—0nl+|an*I7|>
Jeden der beiden Summanden [ä — a„l und la„ — äl kann man wegen der vorausge-
setzten Konvergenz für alle hinreichend großen n kleiner als jede positive Zahl e

machen. Daher ergibt sich [ä — til < 28, und da e eine beliebige positive Zahl ist,
folgt (vgl. Lösung der Aufgabe 10.12) Iä — äj = O oder ä z ä.

Aufgabe 10.12: Man überlege sich, ob es nichtnegative Zahlen gibt, die kleiner als
alle positiven Zahlen sind.

Aufgabe 10.13: Man zeige, daß für die Zahlenfolge [3-,,}, .r„ : q‘, n 2 l. 2.
q .=i

1 ~ q
0 g q < l, die Grenzwertrelation lim s„ =

n-ooo

gilt.

Durchaus nicht jede Zahlenfolge besitzt einen Grenzwert im Sinne der Defini-
tion 10.4. Zahlenfolgen, die keinen Grenzwert besitzen, also nicht konvergent sind,
werden divergent genannt. Die Menge aller divergenten Zahlenfolgen wird ihrerseits
noch einmal unterteilt in bestimmt und unbestimmt divergente Zahlenfolgen.

Definition 10.5: Eine Zahlenfolge {an} heißt bestimmt divergent, wenn es zu jeder
beliebig großen Zahl A > 0 eine natürliche Zahl N(A) derart giht, daß

a„ > A für alle n g N(A)
bzw,

a„ < —A für alle n g N(A).

Diese beiden Fälle werden kurz ausgedrückt durch

lim a„ :
„am

lim a„ = +00 bzw,
n-voc

—oo.

Gilt dagegen keiner dieser beiden Fälle und ist die Zahlenfolge auch nicht konvergent,
so heißt sie unbestimmt divergent.

Ohne auf Einzelheiten einzugehen, weisen wir auf folgende Beispiele hin.

Beispiel 10.9: Für die Folge {a„},a„ = aq"’1,mitq > l und a > Ogilt lim a„ = +oo.
n—~dQ

Beispiel 10.10: Für die Folge {b„},b„ = bq"“, mitq > l und b < 0 gilt lim b„ = —oo.
"-01

Beispiel 10.11: Die Folge {cu}, e„ = cq"“, mit q < —l und c > 0 ist unbestimmt
divergent.

10.5. Eigenschaften von und Rechnen mit konvergenten Zahlenfolgen

Wir folgen unserer bisherigen Methodik. lm vorangehenden Abschnitt wurde ein
neues mathematisches Objekt — die konvergente Zahlenfolge — eingeführt. Jetzt unter-
suchen wir dessen wesentlichste Eigenschaften und insbesondere die Möglichkeiten.
mit diesem Objekt zu rechnen. Dabei werden wir zwar die Existenz des Grenzwertes,
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nicht jedoch die Kenntnis seines konkreten Wertes voraussetzen. Dennoch erweist
es sich, daß die Eigenschaften und die Rechenregeln für Zahlenfolgen es in einer
Reihe von Fällen gestatten, Grenzwerte zu berechnen. Schon hier sei bemerkt, daß es

keine allgemeingültige Methode zur Ermittlung des Grenzwertes einer konvergenten
Zahlenfolge gibt. Hierzu ist vielmehr die Spezifik der jeweils vorliegenden Folge
auszunutzen. Das Anliegen dieses Abschnittes besteht auch darin, aus den Eigen-
schaften und insbesondere aus den Rechenregeln für konvergente Zahlenfolgen erste
Hinweise für die Berechnung der Grenzwerte abzuleiten.

Untersuchen wir zunächst, ob eine konvergente Zahlenfolge die in Abschnitt 10.2.
genannten einfachsten Eigenschaften der Monotonie und Beschränktheit besitzt.

"I "J Ho VI 71

l I l I I

ll L3 Li l
‘ s J 4 5 z

Bild 10.2. Darstellung der konvergenten aber nicht monotonen Zahlenfolge
l

{an}, (1,, : — [2 + (—— 1)” + 4n]
ll

2 + im i)" + 4/1

n

den Grenzwert 4. Davon kann man sich überzeugen, indem man analoge Betrachtum
gen wie in Beispiel 10.8 anstcllt. Die Konvergenz dieser Folge ist jedoch nicht mono-
Ion. Man prüft nämlich leicht nach, daß einerseits £13,, < an. und andererseits
an > a2,“ für beliebige k = I, 2, gilt (vgl. Bild 10.2).

Zahlenfolgen von der in Beispiel l0.l2 genannten Art kann man beliebig viele
konstruieren. Neben diesen gibt es aber auch Zahlenfolgen, deren Konvergenz in
anderer Weise erfolgt.

Beispiel 10.12: Die Zahlenfolge {an}. a,, = ‚ist konvergent gegen

Aufgabe 10.14: Man nehme folgende Konvergenzaussagen als bewiesen hin

. 4 1 . 4 —1lima„=4 für a„=lt—. limb„=4 für b„=”—‚
n-vor. n „am n

4 —1"limc,,=4 für cnzflfl-, rI=],2,...,
.,,-w n

und zeige. daß {an} streng monoton fallend, {b„} streng monoton wachsend und {c„}
nicht monoton ist.

verallgemeinert man die Ergebnisse von Beispiel 10.12 und Aufgabe 10.14, so

kommt man zu der Schlußfolgerung, daß konvergente Zahlenfolgen monoton sein
können. es jedoch nicht sein müssen. Mit anderen Worten, aus der Konvergenz einer
Zahlenfolge kann man im allgemeinen nicht deren Monotonie schlußfolgern.

Bezüglich der Beschränktheit kann dagegen folgender Satz bewiesen werden.

Satz 10.5: Jede konvergente Zahlenfolge {an} ist beschränkt.

Zum Beweis bezeichnen wir den Grenzwert von {a,,) mit a. Dann gibt es für eine beliebig fixierte
Zahl s > 0 eine natürliche Zahl N(s) derart, daß (10.15) gilt. Somit folgt —-s < a„ —- a < E’ oder

S.l0.5
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a — s < a„ < a + s für alle n g N(e). Dann gilt aber auch la„| < C, für alle n g N(s), wobei C,
die größere der beiden Zahlen Ia ~ e[ und 1a + 5| ist. Bezeichnet man nun mit Cdie größte der Zahlen
C1 , [a,[, [02], ..., [aN(,,_,\, dann folgt die Behauptung |a„] < C für alle n = l, 2,

Die Umkehrung von Satz 10.5 gilt nicht, d. h.,im allgemeinen ist nicht jede be-
schränkte Zahlenfolge auch konvergent. Das wird im Beispiel 10.13 bewiesen. Man
kann jedoch zeigen, daß aus jeder beschränkten Folge eine konvergente Teilfolge
ausgewählt werden kann (vgl. Satz 10.14 in Abschnitt 10.8.).

Bevor wir eine weitere Eigenschaft konvergenter Zahlenfolgen formulieren, möge
sich der Leser einmal — ohne zu rechnen, nur seiner Intuition folgend ~ überlegen,
wie sich der Abstand [an — a,,+1[ zweier benachbarter Glieder einer konvergenten
Zahlenfolge mit wachsendem n verhält. In der Hoffnung, daß er der richtigen Ant-
wort nahe gekommen ist, formulieren wir nun den

Satz 10.6: Für eine konvergente Zahlenfolge {an} bilden die Abstände a'„ = |a„ — a,,¢,|
zweier beliebiger benachbarter Glieder eine Nullfolge, d. h. lim d„ = 0.

n-mo

Hiernach ist es leicht, das oben erwähnte Beispiel zu geben.

(— 1)", ist zwar beschränkt, denn man
. l

Beispiel 10.13." Die Folge {L1,}, a„ = n I
prüft leicht die Ungleichung |a„| < 2, n = 1, 2, ..., nach. Dennoch ist sie nicht kon-
vergent; für den Abstand zweier beliebiger benachbarter Glieder ergibt sich nämlich

„_n+l+l_„„
c1) „+1 <1) I

M

Daher ist {d„}, d„ = |a„ — a„„|‚ keine Nullfolge, so daß nach Satz 10.6 die Folge {an}

selbst nicht konvergent sein kann.

n+l
lau ’ "HI =

n = 1,2,...' 1=l(_1)"(1+—„—+1+„+1 gz,

Unter den Eigenschaften konvergenter Zahlenfolgen sei noch folgende erwähnt.

Satz 10.7: Jede Teilfolge einer konvergenten Zahlenfolge {an} ist ebenfalls konvergent
und besitzt den gleichen Grenzwert wie die ursprüngliche Folge {a„}.

Wenden wir uns nun dem Rechnen mit konvergenten Zahlenfolgen zu und erklären
zunächst, daß wir ganz allgemein unter der Summe zweier Zahlenfolgen {an} und {bu}
die neue Zahlenfolge {a„ + b„} verstehen. Wir führen also die Addition zweier
Zahlenfolgen auf die Addition ihrer Glieder mit gleichem Index zurück. Analog
werden Differenz, Produkt und Quotient zweier Zahlenfolgen sowie das Produkt
einer Zahlenfolge mit einer Zahl erklärt. Uns interessiert nun, ob das Ergebnis der-
artiger arithmetischer Verknüpfungen von konvergenten Zahlenfolgen wieder kon-
vergente Zahlenfolgen sind. Antwort hierauf geben die folgenden Aussagen:

Satz 10.8: Die beiden Folgen {a„} bzw. {b„} seien konvergent gegen den Grenzwert a
bzw. b.‘

lim a„ = a,
n—>oo

Dann sind auch die Summe bzw. Dlflerenz {an i bn}, das Produkt {a„b„} dieser beiden
Folgen sowie die Folge {ca„}, wobei e eine gewisse reelle Zahl ist, konvergent.

lim b„ = b.
n-voo
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Dabei gelten bezüglich der Grenzwerte die Formeln

lim (a„ i b„) :1ima,, i lim b„ = a i b, (10.18)
n-voo n-oao n-vno

lim a„b„ = lim a„ - lim b„ = ab, (10.19)
n-ono n-Om naoo

lim can = c lim a„ = ca. (10.20)
n—~oo n—»oo

Satz 10.9: Wenn bezüglich der beiden Folgen {a„} und {b„} die gleichen Voraussetzungen
wie in Satz 10.8 erfüllt sind und zusätzlich b + 0 sowie b„ + 0, n = l, 2, ...‚ gilt, dann
. ‚ t1
IS! auch derQuotient { " i wieder eine konvergente Folge. Dabei gilt bezüglich des Grenz-
wertes dieser Folge "

lim a„
- an _ n—oo __ _

„"127. ‘ limb" ‘ b‘ “o”
"Vin

Den Beweis dieser Sätze führen wir nur für (10.19). Nach den einführenden Be-
merkungen von Abschnitt 10.4. genügt es zu zeigen, daß die Folge der Abstände
{d„}, d„ : |a„b„ — abl, eine Nullfolge ist. Hierzu bemerken wir

|a„b„ — abl = Ja„b„ — ab„ + ab„ — abl g |b„| 1a„ — a| + la] 111,, — bl. (10.22)

Beachtet man nun, daß {b„} eine beschränkte Folge ist (siehe Satz 10.5) und {[a„ — al}
sowie {[b„ — bl} Nullfolgen sind, so steht auf der rechten Seite von (10.22) die Summe
zweier Nullfolgen. Dann folgt aber auch lim |a„b„ —- ab] = 0, womit (10.19) be-
wiesen ist. "*°°

Die Formeln (10.18) bis (10.21) gestatten es, in einer Reihe von Fällen die Grenz-
werte konvergenter Folgen zu ermitteln. Das gilt insbesondere für Folgen der Art

P04)T) , (10.23)[a,,} mit a,, =

wobei P(n) und R(n) Polynomc sind und R(n) höheren oder gleichen Grades wie
P(n) ist.

Beispiel 10.14: Wir betrachten noch einmal die Folge aus Beispiel 10.8. Zur An-
wendung der obigen Formeln formen wir das allgemeine Glied 11„ dieser Folge zu-
nächst in entsprechender Weise um:

1

T +
_ l + 3n + 5/12 _

a" _ 4:12 _

Wendet man nun erst (10.21) und danach auf den dabei entstehenden Zähler (10.18)
an und beachtet (10.13), so erhält man

lim -1; + lim i + lim5
„am n-ooo „am

A
lu

:

lima = .

„w; " lim 4
n—~ac

S.10.9
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1m allgemeinen Falle (10.23) wird ähnlich wie im Beispiel (10.14) vorgegangen:
Man klammert die höchste Potenz von n, die in R(n) auftritt, sowohl im Zähler als
auch im Nenner aus, kürzt sie heraus und wendet dann zunächst (10.21) und danach
(10.18) an.

Aufgabe 10.15: Man ermittle jeweils den Grenzwert von den Zahlenfolgen

Ia1a=7+3n+4n2—5n3 =5n+4n2+6n3
l "" " 2n + 10m ’ 1 ~ 2rz2 +'3n“ '

Gelingt es also mit den Formeln (10.18) bis (10.21) den Grenzwert einer Folge
zu ermitteln, dann ist damit auch automatisch deren Konvergenz nachgewiesen.
Besonders bemerkenswert daran ist, daß man die von den Praktikern häufig als
„unhandlich“ empfundenen Betrachtungen mit s und N(e) zum Nachweis’ der Kon-
vergenz völlig umgehen kann.

{In}, b„

Aufgabe 10.16: {an} und {b,,} seien zwei konvergente Zahlenfolgen, wobei a„ # 0
und b„ $ 0 für alle n = 1,2, und lim a„ = 3, lim b„ = 4. Man ermittle die

naoo n—>o:J 4a + b
Grenzwerte der Folgen {cu}, (’,, = 2a,, — 3b,,, [d,,}, a’,, :f.

Abschließend weisen wir no_ch auf folgende Aussage hin: Wenn a„ g O(n = 1,2,...) und

lim 11„ : a, dann folgt lim an = Hier wird nur der Fall a = 0 bewiesen, und zwarindirekt,
n-vt/J n-vao

Die Behauptung lim = 0 ist gleichbedeutend damit, daß zu jedem c > 0 ein N(e) derart existiert.
_ „am

daß \/an < 6 für alle n 3 N(£). Angenommen, diese Aussage gilt nicht. Dann gibt es wenigstens zu

einem s, > Oein N1(a‚) derart, daB\/a,, z s1 für allen g N1(s,) oder a„ g sf > Ofüralle n g N1(:-:1),

Letzteres steht aber im Widerspruch zu der Voraussetzung, daß lim a„ = 0 gelten soll. Mit diesem
„am

Widerspruch ist unsere Aussage für den Fall a = 0 bewiesen. Weitere Aussagen ähnlicher Art werden
noch im Zusammenhang mit der Stetigkeit von Funktionen gezeigt (vgl. Band 2).

10.6. Konvergenzkriterien

ln diesem Abschnitt werden Kriterien entwickelt, die es gestatten, darüber zu

entscheiden, ob eine gegebene Folge konvergent ist oder nicht. Solche Kriterien
sind sowohl von praktischer als auch von theoretischer Bedeutung. Für die Praxis
— insbesondere beim Einsatz von Rechenautomaten — ist es natürlich sinnvoll, von
einer Zahlenfolge, deren Grenzwert ermittelt werden soll, erst einmal zu zeigen, daß
sie einen solchen besitzt. In vielen theoretischen Untersuchungen kommt es weniger
darauf an, den Grenzwert zu berechnen. Vielmehr muß einfach der Nachweis ge-
führt werden, daß eine Folge konvergent ist. Für einen solchen Nachweis steht uns
bisher nur die Definition 10.4 zur Verfügung; um sie anwenden zu können, muß der
Grenzwert jedoch bereits bekannt sein. So ergibt sich auch aus theoretischer Sicht
die Notwendigkeit, solche Kriterien zu entwickeln, mit denen man über die Kon-
vergenz einer Zahlenfolge entscheiden kann, ohne deren Grenzwert zu kennen.
Schließlich können Konvergenzkriterien in einigen Fällen auch die Berechnung von

Grenzwerten ermöglichen bzw. erleichtern (siehe Beispiel 10.16, 10.17 sowie Auf»
gabe 10.20).

Vor uns steht also die Aufgabe, die in Definition 10.4 enthaltene Kopplung von
Grenzwert und Konvergenz aufzulösen und Aussagen über die Konvergenz unab-
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hängig von der Kenntnis des Grenzwertes zu machen. Hierzu liegt es nahe, sich zu-

nächst noch einmal den einfachsten Eigenschaften von Zahlenfolgen zuzuwenden.
Wir haben gesehen, daß im allgemeinen weder die Monotonie allein oder die Be-
schränktheit allein die Konvergenz einer Zahlenfolge garantieren. Es gilt jedoch

Satz 10.10: Wenn eine Folge monoton wachsend und nach oben beschränkt bzw.
monoton fallend und nach unten beschränkt ist, dann ist sie konvergent.

Mit diesem Satz ist ein erstes Kriterium gegeben, das es gestattet, die Konvergenz
einer Zahlenfolge nachzuweisen, ohne deren Grenzwert zu kennen oder zu berechnen.
Hierzu muß gezeigt werden, daß die Folge sowohl monoton als auch beschränkt ist.
Es sei bemerkt, daß es dabei genügt, von der Folge eine abgeschwächte Monotonie
in folgendem Sinne nachzuweisen: {an} heißt im weiteren Sinne monoton wachsend,
wenn es eine natürliche Zahl no derart gibt, daß a„ g a„„ für alle n g no gilt. Analog
wird das monotone Fallen im weiteren Sinne definiert.

Beispiel 10.15: Mit Hilfe von Satz 10.10 zeigen wir, daß die Folge

{a,,],a,, = A/d + A/d + /d + + \/E, d> 0, konvergentist; zu a„ sei bemerkt, daß
der Summandd und mit ihm die Wurzel genau n-mal auftritt (vgl. [10]). Es ist also

a, = a2 : A/d+ a3 = id +1/d+ ZurAnwendungvonSatzl0.lO
zeigen wir zunächst, daß {a„} monoton wachsend ist. Das ergibt sich einfach durch

am =*;/d+»~2/d+A3/d+...+»{d+\;E1:>~{d+~Zd+~/3d+...+>/E=a,,,

wobei zur besseren Übersichtlichkeit die Wurzeln numeriert worden sind und die

triviale Ungleichung ./d + \/d > \/d benutzt worden ist (man beachte die Mono-
tonie der Wurzelfunktion, Abschnitt 9.4.). Es genügt min zu zeigen, daß {an} nach

oben beschränkt ist. Hierzu bemerken wir, daß a„ < \/d + l für alle n : 1, 2, gilt
(siehe Aufgabe 10.17). Damit erfüllt die Folge {an} die Bedingungen von Satz 10.10
und ist somit konvergent.

Aufgabe 10.17: Man zeige, daß für_ das allgemeine Glied a„ der Folge von Bei-

spiel 10.15 die Ungleichung a„ < \/d + 1, n : 1, 2, gilt.

Aufgabe 10.18: Man zeige, daß die Zahlenfolge {a„}, a„ = q—„ für festes q > 1 kon-
vergent ist. n‘

Aufgabe 10.19: Man zeige mit Hilfe von Satz 10.10, daß die Folge {an}, a„ 2

für a > 0 konvergent ist. n""

Nun wird gezeigt, daß die Kenntnis der Konvergenz einer Folge es unter Umstän-
den auch gestattet, ihren Grenzwert einfach zu ermitteln.

Beispiel 10.16: Wir betrachten ’die Folge von Beispiel 10.15 und nutzen ihre Kon-
vergenz zur Berechnung des Grenzwertes. Hierzu versuchen wir zwischen a,“ und
12„ eine Beziehung aufzustellen. Man sieht leicht, daß im gegebenen Falle

a,,H=\/a'+a,, oder afi„:d+a„
gilt. Bezeichnet man den existierenden aber zunächst noch unbekannten Grenzwert
mit a und geht nun in der letzten Gleichung zum Grenzwert über, so erhält man

S.l0.10



-1
-

S.10.11

l 64 l0. Zahlenfolgen

a’ = d + a oder a’ — a — d = 0. Diese quadratische Gleichung hat die beiden

E i%\/1+4d, von denen die Zahlä ——;-./1 +4d< 0 als

Grenzwert unserer Folge nicht in Betracht kommt, weil alle a„ > 0 und damit auch

Lösungen a1 _ 2 =

a g 0 gelten muß. Also folgt für den Grenzwert a = ä + —;—\/1 + 4d.

Aufgabe 10.20; Man ermittle den Grenzwert der konvergenten Zahlenfolge {a„},

_ q"a„ — 71T, q > l.

In einer Reihe von Fällen gelingt es auch, Aussagen über die Konvergenz einer
Folge einschließlich ihres Grenzwertes zu erhalten, indem man sie mit bereits unter-
suchten Folgen vergleicht. Grundlage hierfür ist der

Satz 10.11 (Verglez'chskriterium): Eine Folge {b„} ist konvergent gegen den Grenz--
wert a, wenn es zwei andere Zahlenfalgen {an} und {c,,} derart gibt, daß

l. lim 11„ = a, lim c„ = a
„au; n-roo

und

Zünäbnäfm n=1‚2‚ ‚

gilt.
/ 2 __ n

Beispiel 10.17: Esist die Folge {an}, a„ = —L—ü‚ zu untersuchen. Um das
n

Vergleichskriterium anzuwenden, muß a„ „vorsichtig“, d. h. unter geringfügigen Än-
derungen nach oben und unten, derart abgeschätzt werden, daß sich dabei Folgen
ergeben, die gegen den gleichen Grenzwert konvergieren. Im gegebenen Falle bieten
sich dafür die Abschätzungen ‘

z _ n.an=fiL>»=/,+(_1,.:§/1+;<,+;
n n n n

_——— "_ 1.z,=A/1+(—1)"%g~/1—%>1—;

. . . 1 l
an. Damit erhalten wir b„ < a,, < c„ mit b„ = l —- 7 und c,, = I + 7. Beachtet

sowie

man, daß offensichtlich lim b„ = lim c„ = 1 gilt, so’ liefert Satz 10.11 für die ge-
II-PW II-VW

gebene Folge den Grenzwert lim a„ = 1.
7|-900

Die bisher genannten Konvergenzkriterien sind an spezielle Eigenschaften gebun-
den, die nicht jede konvergente Folge besitzen muß. Dagegen hat das folgende Kri-
terium allgemeinen Charakter in dem Sinne, daß es an keinerlei konkrete Eigenschaf-
ten wie Monotonie oder andere gebunden ist. Es wurde von B. Bolzano und A. L.
Cauchy formuliert und ist von fundamentaler Bedeutung für die gesamte Analysis
sowie auch für die modernen Gebiete wie z. B. die Funktionalanalysis (siehe Bd. 22).
Seine Grundidee basiert darauf, daß für eine konvergente Folge {a„} mit dem Grenz-
wert a die Relation (10.15) gilt. Diese kann auch wie folgt geschrieben werden:

a—£<a,,<a+1~7 oder a‚.eU‚(a) füralle n;N(e).
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In dieser Form ist sofort ersichtlich (vgl. Bild 10.1), daß der Abstand zwischen zwei
beliebigen Gliedern a, und a, mit i, j, g N(s) bei einer konvergenten Zahlenfolge
nie größer als die Länge 2a des Intervalls (a — a, a + s) werden kann. Mit anderen
Worten: für hinreichend große i und j muß der Abstand |a‚ — a,| für die Glieder
einer konvergenten Folge beliebig klein werden. Es konnte auch die Umkehrung
dieser Aussage bewiesen werden. So ergab sich

Satz 10.12 (Cauchysches Konvergenzkriterium): Eine Zahlenfolge {an} ist dann und S.l0.l2
nur dann konvergent, wenn es zu jedem e > 0 eine natürliche Zahl N(a) derart gibt, daß

l la, — 11,-| < a für alle i‚j g N(s) (10.24)
git.

Der Beweis kann z. B. in [10] nachgelesen werden.
Das Cauchysche Konvergenzkriterium hat sich bei zahlreichen theoretischen

Untersuchungen bewährt. Genannt seien hier der Konvergenznachweis für die
Näherungsfolgen bei iterativer Lösung von Gleichungen und insbesondere das Fix-
punktprinzip (vgl. [8], [9] und Bd. 22).

10.7. Einige spezielle Zahlenfolgen

In den vorangegangenen Abschnitten haben wir uns mit konvergenten Zahlen-
folgen beschäftigt und dabei für gewisse Klassen solcher Folgen Methoden zur Be-
rechnung ihres Grenzwertes kennengelernt. Mit diesen Klassen waren aber durchaus
nicht alle konvergenten Folgen erfaßt. Im folgenden werden einige spezielle Zahlen-
folgen untersucht. Die Konvergenzaussagen für sie erweisen sich wiederum als gutes
Hilfsmittel bei der Ermittlung des Grenzwertes einer Reihe anderer Folgen.

Zunächst beginnen wir mit einer bestimmt divergenten Folge. Als solche erweist
sich nämlich

{an}, a„ :%, a > 1, k > o. (10.25)

Zum Beweis dieser Behauptung benötigen wir eine Hilfsungleichung, die uns auch
in einem anderen Zusammenhang noch nützlich sein wird. Wegen a > 1 gibt es

ein d > 0 derart, daß a = l + d ist. Daher ergibt sich nach der binomischen Formel

n_ n_"”1~" 2_"("_1)2>”_22a —(l +d) 215A»: >(2>d _ 2 d : 4 d,

wobei die letzte Ungleichung für alle n g 2 gilt. Setzt man hier für d seinen Wert a — 1

ein, so erhält man die gewünschte Hilfsungleichung
_ Z

a" > E—4Ln2, (10.26)

woraus speziell für 0 < k g 1

a" a" (a — l)27 g 7 > ~—~Z——— n (10.27)

folgt, Aus (10.27) ergibt ‘sich für 0 < k g 1 sofort

lima—"= +00 und lima—‚:= +00. 4 (10.28)
n-400 n „a, n

l2 Sicher u. a., Mathematik
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Damit ist die obige Behauptung für 0 < k g 1 bewiesen. Für beliebiges k > 1

gilt aber
an fink . _ __

a,,=—,-‘—=——— m1ta=a’<>l.
n n V

Hieraus ergibt sich wegen k > 1

ä?!

a„ > 7 ,

woraus wegen (10.28) auch

lim E"; = +00
„a: n

folgt. Damit ist die obige Behauptung für die Folge (10.25) vollständig bewiesen.
Man vergleiche dieses Ergebnis mit dem der Aufgabe 10.18.

Wir wenden nun die Hilfsungleichung (10.26) für Konvergenzuntersuchungen
der Folge

{an}, a. = V2,

an. Da > 1 für alle n = 2, 3, gilt, kann man hier a = U; setzen; das liefert

n’ - 2 2 —

n>—4—(Vn—1) oder :+1>I/n >1.
‘/2

Hieraus folgt mit Satz 10.11 wegen der offensichtlichen Beziehung

lim (1 + ————2_) = 1

M. \/„

limi/I-1 = 1. (10.29)
n-ono

auch

Dieses Resultat kann u. a. wie folgt angewendet werden.

Beispiel 10.18: Es gilt die Limesrelation

lim —1g—" = o. (10.30)
Il—>w n

Tatsächlich, wegen (10.29) sowie wegen 10' > 1, e > 0, gibt es zu jedem 5 > 0 ein
N(e) derart, daß

1 < < 10° für alle n g N(e).

Berücksichtigt man, daß die Logarithmusfunktion monoton wachsend ist, so folgt

lg l < lgä/n < lg 10‘,

woraus sich auf Grund der Eigenschaften der Logarithmusfunktion die Ungleichung

0<%lgn<s füralle n;N(e)
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ergibt. Da e > 0 beliebig ist, folgt aus ihr (vgl. Aufgabe 10.12) die Behauptung
(10.30).

Im Zusammenhang mit (10.29) sei noch folgende allgemeingültige Konvergenz-
aussage erwähnt.

Satz 10.13: Wenn eine Folge {a„} gegen den Grenzwert a konvergiert, dann konvergiert
auch die Folge {b„} mit

a, +a3 +...
n

b” : + an

gegen a.

Beispiel 10.19: Die Limesrelation

2' 3- n’“m1+\/2+\/3+...+‘/n:
n—ooo 77

1

ist eine unmittelbare Folgerung des Satzes 10.13 sowie des Ergebnisses (10.29).

Als dritte und letzte spezielle Zahlenfolge erwähnen wir

{a„}, a„ = (1 +-’-11-)”, n

Ohne hier auf Einzelheiten einzugehen, bemerken wir, daß diese Folge streng mono-
ton wachsend sowie nach oben beschränkt ist und daher auch konvergiert. Ihr Grenz-
wert ist die Wachstumskonstante e

1,2,... (10.31)

lim (1 + e, wobei e = 2,7l828l8284... (10.32)

Beispiel 10.20: Wir benutzen das Resultat (10.32), um zu zeigen, daß

. 1 n

J1“; i‘ + 3:) ‘ J; “O3”
ist. Dazu nehmen wir die einfache Umformung

1 n ~ _ u 1 2n

(1+—27) —\/a—,, mit a„ (l +5)
vor. Dabei ist {ä„} eine Teilfolge von (10.31), und somit gilt ä„ —> e, woraus die Be-
hauptung (10.33) folgt (vgl. mit letztem Absatz in Abschnitt 10.5.).

( knk: 1

Aufgabe 10.21: Man untersuche, ob die Zahlenfolge {a„}, a„ = )" , für eine
beliebig fixierte natürliche Zahl k > 0 konvergiert. 1

10.8. Häufungspnnkte und lim sup sowie lim inf

In den Abschnitten 10.3. bis 10.7. wurden — abgesehen von einzelnen Bemerkungen
und Beispielen — konvergente Zahlenfolgen untersucht. Dabei haben wir gesehen,
daß der Grenzwert einer konvergenten Zahlenfolge eindeutig bestimmt ist. Jetzt
betrachten wir beliebige, jedoch beschränkte Folgen. Für sie gilt eine Aussage, auf
12*

S.l0.l3
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deren Tragweite hier nur-aufmerksam gemacht werden kann. Die Aussage bringt
ein fundamentales Prinzip der gesamten Analysis und Funktionalanalysis zum Aus-
druck. Sie hängt eng zusammen mit dem allgemeineren Begriff der kompakten Menge.

Satz 10.14: Aus einer beliebigen beschränkten Folge {a„} kann man immer konvergente
Teilfolgen auswählen.

Zu diesem Satz sei bemerkt, daß sein Inhalt uns für konvergente Folgen bereits
bekannt ist. Sie sind nämlich beschränkt (siehe Satz 10.5), und außerdem konvergiert
auch jede ihrer Teilfolgen, und zwar gegen den Grenzwert der Folge. Das wesentliche
Neue an dem Satz 10.14 besteht darin, daß von der Folge {a„} nur die Beschränkt-
heit gefordert wird und also auch divergente, jedoch beschränkte Folgen wie z. B.

{a„}, a„ 2 (— 1)" + ä, zugelassen sind. Dabei werden die Teilfolgen solcher Folgen

i. allg. nicht mehr gegen ein und denselben Grenzwert konvergieren. In diesem Zu-
sammenhang ergibt sich die Frage, ob ein kleinster und ein größter Grenzwert unter
den Grenzwerten aller konvergenten Teilfolgen einer beschränkten Zahlenfolge exi-
stiert. Die Antwort hierauf gibt der folgende Satz.

Satz 10.15: Unter den Grenzwerten aller konuergenten Teilfolgen einer beschränkten
Folge {a„} gibt es einen kleinsten 11„ und einen größten a*.

Definition 10.6: Die Zahlen a,‘ bzw. 11* haben eine spezielle Bezeichnung. Sie werden
unterer bzw. oberer Grenzwert der beschränkten Folge {a„} genannt und mit

11* = lim infa„ bzw. a* = lim sup an

oder auch

11* 2 lim a„ bzw. a* = lim 11,,

bezeichnet.

Beispiel 10.21: Die Folge {a„}‚ a„ = (—1)"(l + , n = 1, 2, ..., ist offensichtlich

beschränkt, denn es gilt z. B. |a„| = I + -'7 _S_ 2. Also existieren fur sie die Zahlen

11* und 1z*§ Man kann zeigen, daß a4, -1 und a* = +1 ist.

Ohne Beweis werden nun einige Eigenschaften des unteren bzw. oberen Grenz-
wertes einer beschränkten Zahlenfolge formuliert (Einzelheiten siehe [10]).

1. Für jedes e > 0 existiert eine natürliche Zahl N*(e) derart, daß

a„ < a* + s für alle n > N*(e).

2. Für jedes s > 0 existiert eine natürliche Zahl N*(a) derart, daß

für alle n > N*(e).

Diese beiden Eigenschaften lassen sich auch so formulieren: Sind a* bzw. 11* der
untere bzw. obere Grenzwert einer beschränkten Zahlenfolge {a„}, so liegen bei
beliebigem e > 0 nur endlich viele Glieder der Folge außerhalb des Intervalls
(11,, — e, 11* + a). Für konvergente Zahlenfolgen ist uns eine solche Schlußfolgerung
bereits bekannt. In diesem Zusammenhang stellen wir die

l1*—€<ü„

Aufgabe 10.22: Man beweise, daß eine beschränkte Zahlenfolge {11,,} dann und nur
dann konvergent ist, wenn ihr oberer Grenzwert gleich ihrem unteren ist: a* = 41*.
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Der obere Grenzwert besitzt neben den bereits genannten auch noch folgende
Eigenschaft:

3. Zu jedem s > O und jeder natürlichen Zahl N existiert wenigstens ein Element
12„ mit n > N derart, daß

a*—£<a,,
ist. Eine analoge Eigenschaft gilt für den unteren Grenzwert 11*.

Nun wenden wir uns dem Begriff des Häufungspunktes zu. Er ist in gewisser Weise
eine Verallgemeinerung des Grenzwertes. Um diese Verallgemeinerung zu erhalten,
gehen wir den in solchen Fällen üblichen Weg. Wir wählen für die Definition des
Grenzwertes eine Formulierung, von der man durch Vernachlässigung oder Ab-
Schwächung einer Forderung dann zu einer Verallgemeinerung gelangt. Zuvor sei
noch erwähnt, daß der Begriff des Häufungspunktes nicht auf Zahlenfolgen be-
schränkt ist, sondern für beliebige Mengen, für deren Elemente ein Abstand erklärt
ist, definiert werden kann.

Es sei {a„} eine konvergente Zahlenfolge mit dem Grenzwert a. Dann gibt es zu
jedem e > 0 eine natürliche Zahl N(e) derart, daß |a„ — al < e für alle n g N(e)
ist. Für alle hinreichend großen n gilt also

a, e U.(a). (10.34)

In dieser Formulierung des Grenzwertes nehmen wir nun eine Abschwächung vor,
um zum Begriff des Häufungspunktes zu gelangen. Wir fordern nämlich nicht mehr,
daß (10.34) für alle hinreichend großen n erfüllt ist, sondern nur noch, daß es we-
nigstens ein a„ gibt, welches (10.34) erfüllt. Zusätzlich wird allerdings verlangt, daß
dieses (1,, + a ist. Präziser gehen wir wie folgt vor:

Definition 10.7: Er sei M eine beliebige Punktmenge der reellen Zahlengeraden, d. h.
eine beliebige Menge reeller Zahlen. Dann heißt ein Punkt a der Zalzlengeraden (eine
Zahl a) Häufungspunkt der Menge M, wenn es zu jedem e > 0 ein Element a’ 6 M
derart gibt, daß a’ # a und

a’ e U,(a)- (10.35)

ist.

Als erstes erwähnen wir folgende Eigenschaft des Häufungspunktes. Besitzt eine
Menge M einen Häufungspunkt, so kann dieser zur Menge M gehören, kann aber
auch nicht zu ihr gehören.

Beispiel 10.22: Es sei M : (-1, 1). Dann ist jeder Punkt a e (-1, 1) Häufungspunkt
von M, aber auch die nicht zu M gehörenden Randpunkte i 1 sind Häufungspunkte
von M. Tatsächlich, es seien ae (-1, 1) und e > 0 beliebig fixiert. Dann gilt für

r = ämin (s, a + 1, 1 — a) sowohl U,(a) c: U,(a) als auch .U‚(a) c M, und daher

ist (10.35) für jedes a’ e U‚(a) mit a’ + a erfüllt.

Aufgabe 10.23: Man zeige, daß der Randpunkt a z 1 Häufungspunkt der Menge
M :(—1,1)ist.

Folgende Eigenschaft des Häufungspunktes erläutert seinen Namen. Ist a. Häu-
fungspunkt einer Menge M, so gibt es in jeder e-Umgebung von a unendlich viele
Punkte dieser Menge, die alle von a verschieden sind (vgl. Beispiel 10.22). Anschau-

D.l0.7
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lich gesprochen heißt das eben gerade, daß sich in jeder Umgebung eines Punktes
mit den in der Definition 10.7 genannten Eigenschaften unendlich viele Punkte der
Menge befinden, sich also dort „häufen“. Darauf beruht die Bezeichnung Häufungs-
punkt.

Betrachtet man Zahlenfolgen gleichzeitig als Punktmenge auf der Zahlengeraden,
so gelten über die Beziehungen zwischen ihnen und dem Begriff des Häufungspunktes
folgende Aussagen.

‚Wenn eine konvergente Zahlenfolge unendlich viele Glieder enthält, die von
ihrem Grenzwert verschieden sind, so ist ihr Grenzwert gleichzeitig ihr einziger
Häufungspunkt.

. Enthält eine konvergente Zahlenfolge dagegen nur endlich viele Glieder, die von

ihrem Grenzwert verschieden sind, so besitzt sie keinen Häufungspunkt und ins-
besondere ist ihr Grenzwert nicht Häufungspunkt für sie.

.Wenn eine divergente, jedoch beschränkte Zahlenfolge höchstens endlich viele
gleiche Glieder enthält, so besitzt sie mindestens zwei Häufungspunkte, nämlich
ihren unteren und oberen Grenzwert.

IQ
u
.)

Aufgabe 10.24: Man untersuche, ob die Zahlenfolgen

4 — 3
{an}, an = n + <—1)"1 " .

n

konvergent oder divergent sind. Im Falle der Konvergenz ermittle man ihren Grenz-
wert und prüfe, ob dieser Grenzwert gleichzeitig ihr Häufungspunkt ist. Im Falle
der Divergenz prüfe man, ob die Folgen beschränkt sind. Sollten sie sich als be-
schränkt erweisen, so ermittle man ihren oberen und unteren Grenzwert und prüfe,
ob diese Grenzwerte gleichzeitig Häufungspunkte für die Folgen sind.

‚ {b‚.}. b. : n + <—1)"13"7‘—3,

10.9. Bedeutung von Zahlenfolgen und Grenzwert
für die numerische Mathematik

Wenn praktische Untersuchungen auf mathematische Aspekte führen, so ergibt
sich in vielen Fällen die Aufgabe. konkrete Zahlen zu ermitteln, d. h. numerische
Lösungen zu finden. Als ein Beispiel hierfür sei die Aufgabe genannt, für eine
Funktion f(x), xeDf. die Nullstellen, d. h. diejenigen xeD, zu bestimmen, für
die

f(x) = 0 (10.36)

gilt. Eine andere Aufgabe dieser Art besteht darin, den Flächeninhalt einer ebenen
Fläche zu bestimmen, deren Randkurven die Graphen bekannter Funktionen sind.

Sehr einfach und exakt kann die Lösung von (10.36) angegeben werden, wenn
z. B. f(x) = 3x — 12 ist. Sie lautet dann x0 = 4. Komplizierter wird es schon, wenn

f(x) = 3x —— l ist. Dann lautet die Lösung x0 = Will man diese Zahl nun im

Dualsystem darstellen — das macht sich insbesondere bei der Anwendung von elek-
tron.ischen_Rechenan1agen notwendig — dann stößt man schon auf Schwierigkeiten,
bei deren Überwindung die Zahlenfolgen von Nutzen sind. Man überzeugt sich leicht
davon (vgl. Aufgabe 10.13 und deren Lösung), daß

n 1 i I Zi

E. (I) ‘ (E)‚M
:1 v l .

= 11ms,, mit 3„ =

3 n-‚eo r=l
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ist. Somit kann für hinreichend großes n näherungsweiseä z s„ gesetzt werden.

Da s,, bereits im Dualsystem dargestellt ist, haben wir damit auch eine näherungs-

weise Darstellung der Zahlä im Dualsystem erhalten.

Noch schwieriger wird die Lösung von (10.36), wenn f(x) kein Polynom ersten
Grades ist. Auch in diesen Fällen sind Zahlenfolgen ein wesentliches Hilfsmittel zur

näherungsweisen Bestimmung der gesuchten Lösung. Dabei werden die Zahlenfolgen
auf dem Wege der sogenannten Iteration konstruiert. Das Wesen der Iteration be-
steht darin, daß die zu lösende Gleichung f(x) = 0 durch eine andere der Art x = h(x)
ersetzt wird. Dabei muß letztere so beschaffen sein, daß sie die gleichen Lösungen
wie f(x) = 0 besitzt. (Wie diese Funktion gewonnen wird, ist in Band 18, Numerische
Methoden, bzw. in [8] ausführlich behandelt.) Danach wird für die gesuchte Lösung
eine Näherungsfolge {x„} konstruiert. Dazu wählt man eine Zahl x0, von der man
annimmt, daß sie möglichst nahe bei der gesuchten Lösung liegt, und berechnet dann
x, = /1(x0). Danach folgen x2 = h(x‚), x3 = h(x‚), und allgemein

x,“ = h(x„), n = 0, 1, 2, (10.37)

Wenn Iz(x) bzw. f(x) gewissen Bedingungen genügen, dann konvergiert die so kon-
struierte Zahlenfolge {x„} gegen eine Nullstelle von f(x). Wir demonstrieren dieses
allgemeine Vorgehen an einem Beispiel.

Beispiel 10.23: Es sollen die Nullstellen der Funktion f(x) = x2 — 2 — In x, x g 1,

ermittelt werden, d. h.‚ es sollen diejenigen Werte x g 1 bestimmt werden, für die

x2 — 2 — 1n x = O (10.38)

gilt (vgl. R. Zurmühl, Praktische Mathematik für Ingenieure und Physiker).

Zunächst überlegen wir uns, ob überhaupt eine Lösung von (10.38) existiert, die
nicht kleiner als eins ist. Dazu wird (10.38) umgeformt auf x2 — 2 = In x. Stellt man
nun die beiden Funktionen g‚(x) = x2 —— 2, g2(x) = In x, x g l, graphisch dar (siehe
Bild 10.3), so überzeugt man sich davon, daß genau eine Lösung von (10.38) existiert,
die nicht kleiner als eins ist. Sie liegt in der Nähe des Wertes 1,6.

Im gegebenen Falle kann u. a.

xz-Z-lnx

2x—l
x

h(.\')=x— xgl‚

gewählt und Gleichung (10.38) durch x = h(x) ersetzt werden. Es sei erwähnt, daß
es sich hierbei um das Sogenannte Newtonsche Verfahren handelt (Einzelheiten
siehe Abschnitt 7.7. in Band 2 bzw. Band 18). Damit nimmt (10.37) die konkrete
Form

2 _ _

2x ——‚. x"

an. Wählt man nun für x0 = 1,6 (vgl. Bild 10.3), so konvergiert die auf diese Weise
konstruierte Folge {x„} gegen die gesuchte Lösung von (10.38). Dabei ergibt sich
bereits mit x2 = 1,5646 ein Wert, von dem man zeigen kann, daß er sich höchstens
noch um 0,0006 von der gesuchten Lösung unterscheidet.
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‚V

x’ -2

1/: x

I

I

/’1 Z X

I
I

., Bild 10.3.

/ Graphische Ermittlung einer Näherungs-
/ . lösung der Gleichung

-z ’/ x2—2=lnx,x;l

In ähnlicher Weise wie im vorangehenden Beispiel spielen konvergente Zahlen-
folgen auch bei der eingangs erwähnten Flächenberechnung (vgl. Band 2, Ab-
schnitt 10., bzw. [2], Abschnitt 3.3.4.) und bei vielen anderen praktischen Unter-
suchungen eine wichtige Rolle. Ihre Bedeutung für die numerische Mathematik be-
steht dabei darin, daß man gesuchte Zahlen entweder als Grenzwerte konvergenter
Zahlenfolgen berechnen oder sie näherungsweise durch die Glieder solcher Folgen
ersetzen kann.

Aufgabe 10.25: Für die Gleichung x2 — 2 = 0 ist die positive Lösung näherungs-
weise durch Konstruktion einer Iterationsfolge {x„} zu bestimmen. Dazu wähle
man x0 = 1,4 und ersetze die obige Gleichung durch die Gleichung x = h(x) mit

xi — 2

2x

Danach berechne man die ersten zwei Glieder der Iterationsfolge.

h(x) = x —
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3.1: ‘ Wahrheitstabelle der Wahrheitstabelle der
Shefferschen Funktion p /\ q Nicodschen Funktion p v q

p F W F W p F W F W
q F F W W q F F W W

p A q F F F W p v q F W W W

p A q W W W F p v q W F F F

3.2: Wir erklären die Aussagen: m = „Peter studiert Mathematik“, o = „Peter studiert Operations-
forschung“, k = „Peter studiert Kybernetik“.

Die in der Aufgabe gestellte Frage kann mit ja beantwortet werden, wenn die folgende Aussagen-
Verbindung stets wahr ist, das heißt, in der letzten Zeile der Wahrheitstabelle nur das Symbol W
auftritt (man durchdenke diese ßehauptungl):

p= [(((m—>(avk))/xi)/\(mvovk))-rk].

Die Wahrheitstabelle zu dieser Aussagenverbindung ist

m F W F W F W F W Völlig gleichgültig, ob
o F F W W F F W W die Aussagen m, a, k
k F F F F W W W W wahre bzw. falsche Aus-

sagen sind, ist p stets
pl = a v k F F W W W W W W wahr, so daß wir die
p; = m —> pl W F W W W W W W Frage mit ja beant-
p3 = p; /\ ö W F F F W W F F worten können,
pi; = m v 0 v k F W W W W W W W
p5 = 123 A174 F F F F W W F F
p = p5 —» k W W W W W W W W

3.3: Es sei X = {1, 2, ...} der Bereich der Variablen n für folgende Aussageformen: p(n) = „n ist
eine Primzahl“, q(n) = „3 teilt n — I“, r(n) = „3 teilt n + 1“. Die gegebene Aussageformverbindung
ist in logischen Zeichen geschrieben.

p<n) —> q(n) v r(n).

Ist n fest gewählt, so ergibt sich folgende Wahrheitstabelle

p F W F W F W F W Mit diesen Betrachtungen ist
q F F W W F F W W jedoch noch in keiner Weise
r F F F F W W W W bewiesen, daß die Aussage

(Vn) P01) —+ q(n) V rm) eine
3 = q V V F F W W W W W W wahre Aussage ist. Der Beweis

P " 5 W F W W W W W W wird empfohlen.

Bild L.4.]
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3.4: l. Für jede natürliche Zahl x g 1 gilt: Wenn x durch 2 teilbar ist, so ist x keine Primzahl (falsch,
denn x = 2 ist durch 2 teilbar und Primzahl). 2. Für jede natürliche Zahl x g 1 gilt: Wenn x nicht
durch 2 und nicht durch 3 teilbar ist, dann ist x eine Primzahl (diese Aussage ist falsch). 3. Für jede
natürliche Zahl x g 1 gilt: Wenn x eine Primzahl ist, so ist x nicht durch 2 und nicht durch 3 teilbar
(falsch, denn x = 3 ist Primzahl und durch 3 teilbar). 4. Für jede natürliche Zahl x g l gilt: x ist
genau dann durch 2 und durch 3 teilbar, wenn x durch 6 teilbar ist (richtig). 5. Es existiert eine na-

türliche Zahl x g 1 so, daß, wenn x nicht durch 2 und nicht durch 3 teilbar ist, x eine Primzahl ist
(richtig, zum Beispiel x = 5).

3.5: a) Wir bezeichnen mit x eine Variable, deren Bereich die Menge X = {0, l, 2, der natür-
lichen Zahlen und mity eine Variable, deren Bereich die Menge Y = {1‚ 2, 3, 5, 7, .. .} der Primzahlen
ist. Dann gilt für unsere Aussage p,p = (Vx) (Eiy)y > x. b) Es sei x eine Variable, deren Bereich X
die Menge der reellen Zahlen ist. Dann gilt für die verbal formulierte Aussage q, q = (Vx) x’ > 0,
und deren Verneinung ä wird q = (Elx) x2 g O (q ist falsch, q wahr).

4.1: Wir beweisen die Richtigkeit von q, —>13. (Der Beweis von z}; —> 13 verläuft entsprechend.) Da

P4 außerhalb Kliegt, existiert ein Punkt P,{, der aufK und P‚P4 liegt. Nach dem Peripheriewinkelsatr
gilt für den Winkel bei Pg: ca = ,5“. Wir betrachten das Dreieck P2P4’P.. Nach dem Außenwinkelsat:
gilt ß’ > ß, und somit ist on > ß. Also giltfi = „o: * ß“, was zu beweisen war (Bild L.4.1).

4.2: Tabelle: de Morgansche Regeln

p F W F W p F W F W
q F F W W q F F W W

s=fivq W W W F s=p7/xx} W F F F
r=pAq F F F W r=pvq F W W W

u=pAq W W W F u=pvq W F F F

u<—>S W W W W u<—>x W W W W

4.3: Wir konstruieren die Wahrheitstabelle für die der logischen Schlußfigur entsprechende Aus-
sagenverbindung

(q /\ (q, —>f7) /\ (52 —. ,7» _. (g .. p) mit q = entweder a1 oder 122:

p F W F W F W F W
ql F F W W F F W W
q; F F F F W W W W

a. W W F F W W F F
ä, W W W W F F F F
ä = entweder äl oder ü; F F W W W W F F
s=ä‚—>fi W F W W W F W W
r:q2—+fi W F W F W W W W
uzäAs/xt F F W F W F F F
v=ä—>fi W W W F W F W W

u—>1' W W W W W W W W

4.4: Die Gleichung \/x + 2 + \/2x + 7 = 4 besitze die reelle Lösung x. Dann istxauch Lösung
W

von x + 2 + \/2x + 7 = 16 und damit auch von \/2x + 7 = 14 — x. Die Lösungen der quadra-
fischen Gleichung sind x, = 2l, x2 = 9. Die Überprüfung zeigt, daß xi = 21 die Ausgangsgleichung
nicht erfüllt, sondern lediglich x3 = 9. Also ist x2 = 9 einzige Lösung.

4.5: Für n = 3 gilt 23 = 8 > 2 ' 3 + l = 7 (Induktionsanfang). Für festes k, k g 3, sei nun

2" > 2k + l erfüllt (Induktionsannahme). Dann ist 2"“ > 2(k + l) + 1 zu beweisen. Es gilt:
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2"“ =2-2"> 2(2k+ l): 4k + 2. Es bleibt zuzeigen, daß4k+2 > 2(k +1)+1=Zk+ ‘

d. h. 4k + Z > 2k + 3, also 2k > 1 gilt. Diese Ungleichung ist für k g 3 selbstverständlich e

und somit der Induktionsschritt nachgewiesen. Mit Hilfe des Induktionsschlusses folgt die Beh- ‚

tung.

l—(0+1)x°+0~x°‘“‘0

4.6: Für n = 0 ist die Gleichung richtig: 20mx""’ = (l _ XV = [)(Indukr_fi
,,,=

anfang). Die Gleichung gelte nun für beliebiges fest gewähltes k g 0 (Induktionsannahme). Zu z:.g:._
k+l 1__k 2xk+1+k+1 k+2 k+l k

ist: Z nzx”"‘ = ¥*—;. Es gilt: Z mr""‘ = Z mx”‘“ + (k o l r."
m=0 Ü " X) „.=o m=0

= 1— (k :1 1_):*)2+ kxk“ + (k +1)“ z 1- (k + l)x" + /(c.l\:":‘:)—2(k +1)x"(1— x):

1- (k + 2M“ + (k + mm
= , w. Z. b. w.

5.1: 1. x = —(a + b) löst nach IV. (S. 39) die Gleichung (a + b) + x = 0. Ferner ist mi: r v _.

z —-anachIV.y= ——a4bun'dnachIII,3a+(b+y)=(a+l7)+y:a+(—a)=0. W
der Eindeutigkeit der Lösung muß y = x sein. 2. Aus der 2. abgeleiteten Regel der Beispiele .

folgt: (—a) + (-11) = —a — b. Die Regel folgt aus I.2. und 1.3. (S. 37).

5.2: z J5" > \/53'” > I,4l3"“: JE" < \/Ems < 1,423“;
.. _}__ __ _ ‚g _ .__‘_.

J5 «G? > \/2 ~/T17 >1,42 W-T4.

5.3:a)27=1-2‘+1»23 +0-22+1»2‘ + 1 -1°=LLOLL;53.625 = I -25 +1-:*Ao~:—"
+1-22+0~2* +1-2°+1-2* +o~2-1+1-2-3=LLoL0L.L0L
b) LL0L0.0L0=l~2“+1>23 +0-22+1-2‘ +0>2°+0<2“+1-2"‘ +0Az*3 =:6.::‘;
LOLLOLLLOLLLLLLLL = 1467984375.

5.4: (a2 + c2) (b2 + dz) — (ab + 2d)’ = 413a” — Zadbc + bzcz = (ad — bc)2 g 0.

5.5: Wir beweisen jede Ungleichung für sich. Nach Voraussetzung ist:

a(11—-b)§0 i o§(\Z—\/E)? og(a—b)2 5:;
_ j 1

a2+z1b§2ab 2\/ub§a+/) ‘ ab§T(az+2ab+/22) 11+/nglr

< Zab Zab < J- 5 /— l l (u=a+b=H H=a+h= z1b=G =\a/:§?(a~.-b)=A .4:~ ‚

l
5.6: I. Induktionsanfang für n = 1: l + a < I: (l — a) > 0, 0 < u’ richtig, da a = 0.

II. Mit der Induktionsannahme ist für n = k: (l + a)" <
l

. III. Beide Seiten mit 1 ~ a > 0
1 — Im

l l l IV D
l—ka l—a<I—(/<+1)u' "e

Ungleichung gilt für 11 = k + 1 und somit für alle natürlichen n g l.

l
multiplizieren: (1 + a)"“ < 1 _ kg (1 + a) <

5.7: a) Fallunterscheidung: 1. Für x —— 3 > 0 folgt 4 < x, 2. x — 3 < 0 —> x < 3, insgesamt x < 3

x“: x_4 "’_x“ B'IdL512;.2-7x+s ’ 2(x_1)(x_i) ' 2(.\‘—x.)(.\'—_\-Z) (i „i.
2

undx>4.b)z=

z=0
;<a z>0 z<0 z>0

0 X1 X2 X: X BildL.5.1
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x Bild L.5.2 y=~7'x Bild L53

c) Die Punkte liegen im Inneren und auf dem Rande des schraffierten Dreiecks (Bild L.5.2).

3
5.8: a) Fallunterscheidung: 1. Für 2x + 3 z 0 folgt — -2— g x < 0, 2. Für 2x + 3 g 0 folgt —2 < x

3 11
< — 7, insgesamt -—2 < x < 0. b) Fallunterscheidung wie in a) ergibt xi = T , x2 = — T ‚

c) WiLermitteln durch Fallunterscheidung zunächst folgende Intervalle: 1. Für x g 4 folgt x g 3

+ J1}; 2. Für -1 < x g 4 folgt -1 < x S 2; 3. Fürx < -1 folgt x g —2; also insgesamtgilt
die Ungleichung für folgende x: x g -2; —1 < x g 2; 3 + g x.

3x—3 für x22

d> I-rm-v—11+Ix—21= -1 ii l3: äiiif ‘3;ZTi“f'°i°i‘F‘“”"“”‘”3
——3x+3 für xg0

5.9: a) |x + y] <1 entspricht -1 < x + y < +1 oder v1 A x < y <1 — x. c) Fallunter-
Scheidung (Bild L.5.3): 1. ‚x g 0; Eyl g 1 + x; —(1 + x) g y g l + x. 2. x g O; Iyl g l — ‚v;
—(l-X)§}’§1—x.

a+b+[b—u[
2

2a
= T : a. Die 2. Beziehung ist analog zu beweisen.

a+/)+|b—:1|«Zbeb-z b"-7-- r -">’ 2
S.10: Fallunterscheidung: 1. a < b;

5.11: a) l3(l + i); b) l + Zi; c) 3 + Zi; d) (l + i)‘ = [(1 + i)2]‘ = (2i)‘ = |6; e) 4(l
— 2f)\/i=a_+bi; i=((1+bi)2=02-b2+2(Ibi—>a2—b2=0; 2a/1=],zI=:V_‘ ‚

2 T’ \,/E . jj. . 2 Z A,’b=: „ ;\/l=i ,(1+:);g)\/—5+121=a+b1;u~12 =-—5,2lib=12;u=i._,
b = i 3; \/—5 + 12i = g (2 + 3i). Man entwickle die Lösungen von f) und g) über die Formel
(5.12)!

-1 _. 1 1 ".5.12:a)e‘3"=cos3-zc+isin37:=—l;b)e i3 =cos—:——1s1n%=?_7\/31;

L1. n ‚. n: 1 - 1. .3. .c)e'6"=cos-g—1sm?=5—\/3—?1; d)e‘(2"+2"")=—1.’

11 ‚ r: ‚„ 1: ,3 - 5 ‚

5.13:a).-=2,<p=2—; 21:2 cos--+1s1n— =2e2; b)r=\/2,§u=7r:(~225°);
2 2

_ 5 5 _ _ ._ _

\/2 (C0571: +isinT1c) = Jze’ i“; e); = 2„/3‚ q: = 330°; 2„/3(cos330° + isin330°)

: 2 9%". Man vergleiche das Ergebnis mit dem von 5.l2c)!

5.l4:a) 2(cos 60° + isin 60°) = 1 + x/3i; b) 2 \/3 (cos 300° + isin 300°) = J3 — 3i.
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5.15: a) 23 : 3 —1\/3 : JE (cos 330° + 1 sin 330°); w}? : i/E [cos (110° + k - 120°)

+ isin(l10° + k- 120°)1, ‚e : 0‚1,2; wg,» : 1/1—2(cos110_° + isin 110°) : —0.52 +1421; wg3>

: i/1—2(cos23o° + isin 230°): :o.97 — 1.161, wg” : E/12(cos 350° + 1 sin 350°) : 1.49 — 0,251

(Bild 1.5.41:);

b) z‘=81=8l(cosO°+isin0°); w‚<f>:3 cosk%+isink;); k=0,1,2,3; wf,"’=3,

wg4>:31‚ wg»: —3‚ wg": :31 (BildL.5.4b).

Wo

IE.
”'

Bild L.5.4a Bild L.5.4b Bild L.5.5

5.16: a) z = r e”, [z] = r < 1, stellt das Innere des Einheitskreises dar. lz — l] < 1 stellt das Innere
des Kreises mit dem Mittelpunkt z.) = l und dem Radius 1 dar, Im schraffierten Bereich liegen die
gesuchten komplexen Zahlen (Bild L.5.5). b) z 1 E = re” - re"? = r’ = 1. Die entsprechenden

Punkte liegen auf dem Einheitskreis. c) [argzl < ‚ - g- < argz < + l ‚ — g < (P < + g
(rechte Halbcbene). d) z = a + ib; in] + |b| =1 (Bild L.5.6). e) z = a + ib; la| ~ [b] = 1 (Bild L.5.7).

Bild L.5.6 Bild L.5.7

6.1: Permutationen ohne Wiederholung (es werden alle 3 zur Verfügung stehenden Farben verwen-
det; keine Farbe soll mehrfach an einem Rohr vorkommen): P3 = 3! = 6.

6.2: Kombinationen ohne Wiederholung: n = 6, k = 1,2, ..., 6; Cm = i C: = +
6 14:1

+ + (G) = 63.

6.3: Hier wird die Anzahl der Elemente n gesucht, wobei jeweils die Mindestanzahl l5 der not-
wendigen Zusammenstellungen vorgegeben ist. a) Variationen mit Wiederholung: V3 = n2 _2_ 15A

Man benötigt also mindestens 4 Farben. "

ä 15,b) Kombinationen mit Wiederholung‘ C2 = (n + 2 fl I) (n + I) = (L+———1)n
2 = 2 2

n’ + n — 30 g 0,11 g 5. Man benötigt also mindestens 5 Farben.
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' — 1

c) Kombinationen ohne Wiederholung: C: = (n) = L) Z l5. n2 — n — 30 g 15, n ä 6.

Man benötigt also mindestens 6 Farben.

8' 8 ~ 7 - 6
6.4: n = 8, k = 3. a) Kombinationen ohne Wiederholung: cg = ( ) = = 56.

8!
b) Variationen ohne Wiederholung: V3 = ? = 8 v 7 - 6 = 336.

6.5: a) Variationen mit Wiederholung: n = 10 (l0 Ziflern), k = 5 (fünfstellige Rufnummern):
VJ: = n“ = 105 = 100000. b) Von den 100000 Anschlüssen beginnen V; o = 10‘ = 10000 An-

fl i

SChlÜSSC mit 0; also verbleiben 90000 Anschlüsse.

6.6: Um ohne Umwege von A nach B zu gelangen, muß ‘V

man 6 Abschnitte in x-Richtung und 5 Abschnitte in y-
Richtung zurücklegen. Die verschiedenartigenZusammen-
stellungen von 6 x-Abschnitten und 5 y-Abschnitten sind
Permutationen mit Wiederholung:

p (6.5) “lW“ =@=4e2.
A

n 1

6.7: a) z (a H) = (“L H’), a reell, „go, (6.21);
v=0 T’ 71

a+l“i o
k

II. Induktionsannahme n = k: 2 (a + v) = (a + + ),
v-=0

Bild.L.6.l

Il

_ ° a + v
I. Induktionsanfang n = 0:

u=o T’

k l
v k

k a+v u+k+1 k+1a+v u+1+k a+k+l

112A„)+(»„1)=.;<.)=( i Nr.1)-
, k“ a+v a+k+2

M1t(6.20)folgtdann.'§0( v )=( k+1

IV. Formel (6.21) gilt für n = k + 1 und damit für alle natürlichen n g 0.

7.1: Es ist A:{x|xER/\|x+lI;i;-+2}={xlxeR/\—2gxg +2}, denn: l) wenn

x+1§0ist,folgtx+1§%+2, d.h. xg2‚ und2)wennx+] <0 ist,folgt —x—l
3 .

g -E + 2, d. h. 7x g —3 (gleichwertig mit x ä -2). Demzufolge ist A nach Definition:

Ä={x|(—oo<x< —2)v(+2<x< +oo)).

3
7.2: a) Es sei 3 — 2x > 0, d. h, x < 7. Dann gilt bei Richtigkeit der Ungleichung auch 3x + Z

4
g 2(3 — 2x), d. h. 3x + 2 Z 6 — 4x. Hieraus folgt x ä Da die Rechenschritte rückwärts

3x + 2

i 3 i 3 — 2x
nicht erklärt. Für x > -2-1st 3 — Zx < 0. Deshalb folgt 3x + 2 g 2(3 — 2x), d. h. 6x g 4, also

4 3 3
durchlaufbar sind, lösen alle x E [7‚ -2-) die Ungleichung. Für x = 7 ist der Ausdruck

2 3
x g T, Demzufolge besitzt die Ungleichung für x > —;-keine Lösungen. Die Lösungsmenge ist

4 3 8
[-7-, T)‘ b) Die Lösungsmenge ist (-00, -8] u [2, ?] . Man unterscheide die drei Fälle:

5 5
x g —3, —3 < x ä T, x > ?. c) Es sei x g —5i Dann geht Ungleichung [x — 1|

+lx+5|g4übcrin —(.\‘—1)-(x+5)= -—2x-—4§4,d.h.x§ -4.
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Es existiert also keine Lösung mit x g —5.
Entsprechend betrachte man die Teilintervalle — 5 < x g 1 und 1 ’< x. Dabei zeigt sich, daß kein x

die betrachtete Ungleichung löst. Die Lösungsmenge ist also gleich G.

7.3: siehe L.7.1, L.7.2 und L.7.3

7.4: Die Beziehungen a), b), d) sind richtig, während c) nur für B g A gilt. Man illustriere diese Aus-
sagen an Skizzen, z. B. wie in Bild 1.7,], L.7.2.

Y

A

L‘

ß

M\I7)n£-(An[)\B

Bild L.7.4 Bild L.7.5 Bild L.7.6

7.5: a) (AvB)\B = A\B. Demzufolge ist An((A vB)\B) = An(A\B) = A\H. b) Nach

Formel (7.21) gilt ÄuBv C= A nBn C. Deshalb ist (A nBn C)uÄuEu C = (AnBnC)
V (A n B n C) = M.

7.6: a) A ={3,13, 23, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43}; B = {8, 16, 24, 32, 40, 48};
C = {2, 4, 6, 8, 20, 22, 24, 26, 28,40, 42, 44, 46, 48}. b) ‚u(A) = 14; ‚u(B) = 6; ,u(C) = 14; MA v B)
= 19; ‚u(AnB) = 1; ‚u(A Ac) = o; mane) = 4; M1376): 46. ,u(Ar~BnC) = o. c) Es

muß gelten X g ‚B, denn dann sindXn A = 0, Xn B = 0, Xn C = ß erfüllt. Man wähle
LB. x= {1,5,7,9}. d) D = (AnBn C)u(An CnE)u(Bn Cn Ä). Die Mengen AABA C,

A n C n B, B n Cn Ä sind paarweise disjunkt. Deshalb ist ‚u(D) = ‚u(A n B n Ü) + ‚u(A n Cn E)
+‚u(BnCn‚<D=1+0+4=5.
7.7: Wir suchen u(0) und ‚u(A), A = I n O n T. Wir berechnen zunächst ‚u(A). Es gilt:
B = In (Ov T) = A v (In T). Daraus folgt: ‚u(B) = ‚u(A) + ‚u(In T), also 8 = MA) + 8, d. h.,
,u(A) = 0. Auch zur Berechnung von ,u(0) versuchen wir wieder eine Darstellung als Vereinigung

paarweise disjunkter Mengen zu finden. Es ist: M = 0 v (In Ü) u (Tn I n Ö) u (A2770) und

damit ‚u(M) = ‚u(0) + „(In Ö) + ,u(Tr-I'r~ Ö) + ,u(Iv Tv O). 100 = ‚u(O) + 23 + ,u(T nIn Ö)
+ 24. Ähnlich zeigt man, daß ‚u(Tn In Ö) = 35 ist und hiermit gilt /4(0) = 18.

7.8: Es ist A = {—1,0, 1, 2}, B = {0, —l, +1) und somit A X B = ((—I,0),(-], ——I),(—1, 1),

(0,0), (0, —1)‚ (0, 1), (1, 0), (1, —1)‚ (1, l), (2,0), (2, -1), (2, 1)}.
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7.9: Die Punkte (0, 0) und (5,10) gehören zum Geradenstück. Wir nehmen an, eine Darstellung
der Form A >< B sei möglich, wobei A Teilmenge der x-Achse, B Teilmenge der y-Achse sei. Dann
gilt: 0 E A und 5 e A, O e B und l0 e B. Nach Definition des Kreuzproduktes ist dann aber auch zum

Beispiel (0, l0) e A x B. Der Punkt (0, 10) gehört aber nicht zum Geradenstück. Das ist ein Wider-
spruch zur Annahme, das Geradenstück würde sich als Kreuzprodukt A >< B darstellen lassen.

7.10: a) Wir setzen X = R‘ und A = [0, 1) und benutzen Definition 7.22. Es sei x = 0, 0 6 A aus-

gewählt. Dann gibt es kein r > 0 so, daß K(0‚ r) = {x J xe RA |xi < r} Teilmenge von A ist.
b) A’: [0, 1) n [1, 2] = Ü, denn 1¢[0,1), aber 16[1,2]. B = ([—1, 1] v (0,2)) n ([1, 2] v [3‚l0))
= [—1, 2)n[1‚10)=[1,2).

7.11: Die graphische Darstellung der Polyedermenge ist in Bild L.7.3 angegeben.

8.1: Es sei M die Menge aller Gießereibetriebe und N die Menge aller Verbraucher von Gießerei-
erzeugnissen der DDR. Weiter seien G e M bzw. Ve N beliebige Elemente (d. h. Gießereien bzw,
Verbraucher) dieser Mengen. Dann ist die gesuchte Abbildung A diejenige Teilmenge von M x N.
die als Elemente nur solche Paare (G, V) enthält, bei denen Vertragsbeziehungen zwischen G und V
bestehen,

8.2: Von den gegebenen Wertepaaren erfüllen nur (3, 9), (8, 6), (9, 4) und (16, 0) die Ungleichung.

8.3: A enthält nur die Paare (5, x2) mit x; = 0,l,...‚7 sowie nur die Paare (x, ,6) mit x1 =0,1,...,8.

Bild L.8.1 Bild L.8.2 Bild L.8.3

8.4: siehe Bild L.8.l

8.5: M muß wenigstens die Zahlen 0, 1, 4, 5 und 7 enthalten; bezüglich N muß wenigstens gelten
3, 4, 6, 7 e N.

8.6: Die Bilder L.8.2 und L.8.3 zeigen die gesuchten Darstellungen.

8.7: a) Der Erlös für den Verkauf von k Mengeneinheiten der Ware beträgt kp Geldeinheiten. Da-
her kann mit M = {l, 2, ...‚Q} und mit N = {p, 2p, 3p‚ ...,Qp} die Beziehung zwischen verkauften
Mengeneinheiten und Erlös als Abbildung A aus N in N aufgefaßt werden. Dabei besteht A aus

allen geordneten Paaren (k, kp), wobei k e M beliebig ist, und es gilt: DA = M c N, WA = N c N.
b) Aus dieser Aufgabenstellung folgt keine konkrete Beziehung zwischen Temperatur und Druck.
Deshalb müssen wir allgemein vorgehen. Es sei M = IT, ‚ T2], und N sei die Menge der Werte, die
sich für den Druck des Gases bei Temperaturen Te M ergeben. Dann kann die Beziehung zwischen
Temperatur und gemessenem Druck als Abbildung A aus R‘ in R‘ aufgefaßt werden. Dabei besteht
A aus allen geordneten Paaren (T, p), wobei Te M beliebig und p der bei dieser Temperatur gemessene
Druck ist. Weiter gilt D, = M c R‘, WA = N c R‘.

Wir bemerken noch, dal3 — bei entsprechend gewählten Werten für T, und T; — für die Temperatur
und den zugehörigen Druck die Formel p = yV"T gilt, wobei V das Volumen des Gases und y
eine spezifische Gaskonstante bezeichnet.

8.8:D,41 = {L2}, DA; = {l,2,3}, WA‘ = {t1, b, c}, WA: = {a}. BeiAl sind die Zahlen l, 2 Originale
und die Buchstaben u, b und c Bilder; konkret ist z. B. a Bild sowohl von 1 als auch von 2, jedoch
nicht von 3, Bei/i; sind ebenfalls die Zahlen], 2,3 Originale, dagegen gibt es nur ein Bild, nämlich a.
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8.9: Mit den Bezeichnungen der Lösung von Aufgabe 8.7, Teil b) ergibt sich A = {(T‚ p) | Te IT, , T2]
/\ p E R‘ /\ p = yV"T}. Die zu (8.3) analoge Möglichkeit der Darstellung von A ergibt sich, wenn

man mit p„(T, p) die Aussageform „p = yV“T/\ Te (T1, T2)“ bezeichnet:

A = {(T‚p) l TE R‘ APER‘ /\pA(T2p)}‘

8.10: Ist p(G, V) die Aussageform „Zwischen der Gießerei G und dem Verbraucher V bestehen ver-

tragliche Beziehungen“, so lautet die gesuchte Darstellung A = {(6, V) I G e MA Vs N /\ p(G, V)}.

8.11: Ist k die Kraft, m die Masse und b die Beschleunigung des Körpers, so folgt aus der Aufgaben-
stellung die Formel k = mb. Nehmen wir nun an, dal3 die Beschleunigung nur Werte aus dem Inter-
vall [b1 , b2] annehmen kann, so ergibt sich A = {(b, k) l b E [b1 ‚ b2] /\ k e R‘ A k = mb}.

3-121 3)/1 = {(—2.4).(—1,1).(0,0),(1,1).(2.4),(3.9)}-
b) siehe schraffierte Halbebene einschließlich der Geraden y = —x + 4 in Bild L.8.4.

Bild L.8.4

8.13: A, ist keine lineare Abbildung, weil der Lincarkombination von Originalen im allgemeinen
nicht die Linearkombination ihrer Bilder entspricht, d, h. weil aus (x1, y1) e A1 ‚i = 1, 2, i. allg. nicht
(u1x, + u2x2 ‚ u,y, + u2y2) e A1 folgt. Dagegen ist A2 eine lineare Abbildung. A, ist wiederum keine
lineare Abbildung, weil ihr Definitionsbereich [—3, 4] kein linearer Raum ist.

8.14: A“ = {(4, —-2),(], —l),(0,0),(I, I), (4, 2), (9, 3)}, wobei DA-I = {0, 1,4, 9} und
W4-1={—2.—L0,l,2.3}giIt,

8.15: Es seien zwei beliebige Elemente (m, a1), (m, a2) E A gegeben. Dann ist m eine der Maschinen
in der Halle und a1 sowie a2 sind Arbeiter, die sie bedienen. Da nach der Aufgabenstellung jede
Maschine immer nur vom gleichen Arbeiter bedient werden soll, muß a, = a2 gelten. Also ist A
eine Funktion. Damit ist ein Zusammenhang, der nicht quantitativer Natur ist (nämlich der zwischen
Maschinen und den sie bedienenden Arbeitern), durch eine Funktion modelliert.

8.16: M; c My C M, C MA.

8.17: A, ist eindeutig, denn zu jedem Original P = (x1, x2); R’ gehört ein eindeutig bestimmtes
Bild 2 : xf + x5. Dagegen ist Af‘ nicht mehr eindeutig, weil z.B. (4, P11), (4, P,) EA,“ gilt,
obwohl P1, = (2,0) verschieden von P1 = (0, 2) ist. Also ist A1 zwar eindeutig, jedoch nicht cin-
eindeutig. Außerdem ist A1 nach Definition 2.8 ein Funktional.

A2 ist ebenfalls eindeutig, jedoch nicht eineindeutig. Ersteres folgt daraus, daß jedem Original
x = (x1 , x2, ...‚ x,,,, x„„1 , ..., x„) e R" ein eindeutig bestimmtes Bild y = (x1, x2, ..., x,,,) zugeord-
net ist. Letzteres folgt daraus, daß unterschiedlichen Elementen von R" wie (x1 , .‚., x„„ 0, ..., O) und
(X; , r,,,, I, l) das gleiche y : (x1, ..., x„,) zugeordnet ist und daher A5“ nichtcindeutigist.
Außerdem ist A, nach Definition 2.7 ein Operator, jedoch — wenn l < m ~ kein Funktional. Dieser
Operator wird auch Projektion von R" auf R"‘ genannt.

A3 ist cineindeutig. Das prüft man leicht nach. Außerdem ist A3 für l < n ein Operator, jedoch
kein Funktional, Er wird für a = —l Spiegelung um Koordinatenursprung und für 0 < a < l Kon-
traktion genannt.

A, ist nicht eindeutig und kann deshalb auch nicht eineindeutig sein. Letzteres ist trivial, ersteres
folgt daraus, daß n > m ist. Daher muß es wenigstens ein Erzeugnis geben, für dessen Produktion
mehr als ein Rohstoff benötigt wird. Daher ist A‚1 auch nur eine Abbildung.

9.1: Für die gesuchten Zahlen muß gelten a1 = a2 = u mit u 3 3.

13 "ober u. :a.. Mathematik
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9.2: Die Zahlen a1 = -3, b, = —I‚ a2 = 1, b2 = 3 erfüllen die gestellten Forderungen.

9.3: Für die angegebenen Werte ergibt sich folgende Wertetabelle:

x l 5 3 7 2 9 5 l1 3

4 2 4 4 7 4

2 21 3 5 0 3 l 3 0

y 16 4 16 ‘T5’ "T ‘K
Die graphische Darstellung der Funktion unter Verwendung dieser Wertetabelle zeigt Bild L.9.1.

Bild L.9.2 Bild L.9.3 w

9.4: Der Radikand muß größer oder gleich Null sein: 4x — 20 g O. Hieraus folgt 4x g 20 oder
x g 5, so daß der mathematische Definitionsbereich mit I = [5, +00) gegeben ist.

9.5: Aus XE [0, 3] oder 0 g x g 3 folgt zunächst 0 g 2x g 6 und schließlich -1 g 2x — 1 g 5,
so daß W, = [—1‚5] gilt. Weiter ergibt die Elimination von x aus y = 2x — 1 die Beziehung

l l
x = 70» + l), Daher lautet die zu (9.23) analoge Darstellung f":y = —5(x + l), xe [—1,5].

Die Graphen vonfund f“ zeigt Bild L.9.2.

9.6: fist eine Parabel. Von einer Parabel sind jedoch immer nur die einzelnen „Äste“ links bzw.
rechts vom Scheitelpunkt eineindeutige Funktionen. Die x-Koordinate x5 des Scheitelpunktes der
gegebenen Parabel erhält man aus einer entsprechenden Formel (vgl. [4]) zu x5 = 1. Daher muß
l g ageltenWirwählena =1.Für1 g x g 4folgt -—4 g x2 — 2x — 3 g 5. so daß W, = [—4,5]

gilt. Die formale Elimination von x ausy = x’ — 2x ~ 3 ergibt x = 1 i V‘/4 + y. Das Minus-
zeichen scheidet aus. weil xe [1, 4] sein mull. Daher lautet die zu (9423) analoge Darstellung von

f'1: y : 1 + J4 + x, x e [—4‚5]. Die Graphen von fund f" zeigt Bi1dL.9.3. Wirerwähnennoch,
daß für die Funktion fi, bei a < l zwar auch eine Umkehrabbildung, jedoch keine Umkehrfunktion
mehr existiert.
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9.7: f ist eine Parabel. Sie nimmt ihren kleinsten Funktionswert für x = x, an (x, — x-Koordinate
des Scheitelpunktes der Parabel). Für x, ergibt sich aus einer entsprechenden Formel (vgl. [4]):
x, = 1. Somit folgtalsof(x) g f(1) = 1 — 2 — 1 = —2fi‘1rallexe(—o0, +oo).Daherist C, = -3
erst recht eine untere Schranke. Weiter sollen die Zahlen a, b so bestimmt werden, daß x2 — 2x — l
g 7 oder x2 — 2x — 8 g Ofürallexe [u, b]gilt. Nun istaber h(x) = x2 — 2x — 8, xe (—oo‚ +00)
selbst eine Parabel, die negative Werte ‚nur zwischen ihren Nullstellen annimmt (vorausgesetzt,
diese Nullstellen sind reelle Zahlen). Löst man die Gleichung x2 — 2x —- 8 = 0, so folgt h(x) g 0
für alle x e [-2,4] oder f(x) g 7 für alle x e [a, b] mit a = —2, b = 4.

9.8: Es seien x1, x2 E R‘, beliebig, mit x1 < x2. Dann gilt 2x2 = 2x1 + a mit a > 0. Somit folgt
eh‘: = e2fi" = e” - e“: > e2"1, wobei e" > 1 für a > 0 benutzt wurde. Nach Multiplikation mit -1
und anschließender Addition der Zahl 1 ergibt sich die geforderte Ungleichung 1 — e“: < l — e2"1.

a l1

9.9: Es sei x1 < x2 g — %. Daraus folgt x1 + 7 < x2 + 7 g 0. Nach entsprechender Multi-

_ 1 __ _ a 2 a a a 2 2
plikation erhalt man hieraus x1 + -2- > x1 + -2- x2 + -2- g x2 + 3- oder x1 + an

+ [f7 > x2 + ax; + “T. Addiert man hier auf beiden Seiten b A ~3- , so erhält man die

gewünschte Ungleichung xf + ax1 + b > xi + ax2 + b. Analog wird der Satz für — ä
< x2 bewiesen.

9.10: Es sei x1, x2 e I mit x1 < x2 beliebig. Aus den Voraussetzungen über f1 und f2 folgt dann
f1(x1) < f1(x2) und f2(x1) < f2(x2). Addiert man diese beiden Ungleichungen bzw. multipliziert
man sie mit a < 0, so folgt f1(x1) + f2(x1) < f1(x2) + f2(x2) bzw. af‚-(x1) > af‚(x2), i= 1,2,
w. z. b. w.

2x1

1 l z l l
9.1l: Es muß für beliebige xi, x2 E R‘ die Ungleichung — x1 + —2-x2> g ——x{ — 7x2

l 1 l 1

gezeigt werden. Diese Forderung ist äquivalent mit Ex? + —2—x§ — (7 x1 + 3x2) g 0. Die

letzte Ungleichung ist aber immer erfüllt, denn man überzeugt sich nach einigen einfachen Um-
1

formungen davon, daß ihre linke Seite gleich dem nichtnegativen AusdruckT(x1 — x2)2 ist.

9.12: Das Zählerpolynom besitzt die Nullstellen x1 = »3 und X2 = 4; die Nullstellen des Nenner-
polynoms sind x3 = — l, x4 = 0, x5 = 4. Daher geltendie Zerlegungen x2 — x — 12 = (x + 3) (x — 4)
sowie x‘ — 3x2 ~ 4x2 = x2(x + l) (x — 4), und die gebrochen rationale Funktion hat in x, = —3

eine Nullstelle der Vielfachheit 1, in x3 = -1 einen Pol der Ordnung 1, in x‘ = 0 einen Pol der
Ordnung 2 und in x = 4 eine Lücke; letztere stellt eine hebbare Unstetigkeit dar,

9.13: Aus dem Definitionsbereich der Logarithmusfunktion (vgl. Abschnitt 9.4.) folgt die Bedingung
l — x2 > 0. Dasist gleichbedeutend mit] > x2 oder —l < x < 1. Somit ergibt sich für das gesuchte
Intervall I = (-1,1).
9.14: Das Anliegen dieser Aufgabe ist eine reine Rechenübung. Empfehlung: Man löse zunächst die
eckigen Klammern auf der rechten Seite der behaupteten Formel auf; den dabei erhaltenen Doppel-
bruch forme man auf einen einfachen Bruch um. Nun löse man die dritte Gleichung des Systems
(9.62) nach c2 auf und forme den so für c2 erhaltenen Ausdruck auf den bereits erwähnten Bruch um.

9.15: Mit dem zusätzlichen Stützpaar (2, —43) anstelle von (1, 4) ergibt sich in Beispiel 9.11, daß
c4 = 0 ist. Somit führt dieses Stützpaar nicht zu einer Erhöhung des Grades des Newtonschen Inter-
polationspolynoms. Die Ursache hierfür liegt darin, daß (2, —43) schon Element des Polynoms
P3(x) ist, d. h.,es gilt bereits P30) : —43.

9.16: Verwendet man die gegebenen Stützpaare in der angegebenen Reihenfolge, so lautet das ent-
sprechende Gleichungssystem (9.62) jetzt:
i = 0: 115 = co,
‘ ' -2 = co — c1 ‚

4 = co — 3c1 — 3(-—2) c2,
i=3: 7=cg—4c,—4(—3)c2—4(—3)(—])c3,
i= 4: 73 = co —— 6c1 — 6(—-5)c2 — 6(—5) (——3)c3 —6(—5) (—3) (—2)c4.

13*
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Die schrittweise Lösung dieses linearen Gleichungssystems‚ beginnend mit der ersten Gleichung,
liefert für P407) die Koeffizienten 6g = 115, E, = 117, e”, = 40, E3 = 10, E4 = 2, und wir erhalten
P4(x) = ll5 + l17(x — 4) + 40(x— 4) (x- 3) + 10(x — 4) (x — 3) (x — I) + 2(x— 4) (x — 3)
x (x — I) x. Löst man nun sowohl hier als auch in P4(x) alle Klammern auf und ordnet nach wach-

senden Potenzen von x, so überzeugt man sich davon, daß tatsächlich P4(x) = P4(X) = 7 + 3x
— 2x2 — 6x3 + 2x‘, xe R’, gilt.

9.17: Zunächst bildet man das Diflerenzenschema (siehe Rechenschema L.9.2). Ihm entnimmt man

die erforderlichen Diflerenzen. Dabei liegt die Besonderheit vor, daß A5y : 0 ist; die Ursache
hierfür ist darin zu sehen, daß die 6 Stützpaare zu einem Polynom von nur viertem Grade gehören.
Beachtet man weiter, daß im gegebenen Falle h = 1 ist, so ergibt sieh P4(x) = 73 — 63(x + 2)
+ 30(x + 2) (x +1)-—10(x + 2) (x +1)x + 2(x + 2) (x + 1) x(x -1).

Rechenschema L.9.2

x, l ‚v; A‘)! Azy Aly A‘y Asy

~2 73

-63
-1 ' 10 60

-3 ~60
o 7 o 48

43 -12 0 V

1 ‚ 4 —l2 48

I -15 36

2 ' —ll 24

9
3 -2

9.18: Die Behauptung ist bewiesen, wenn man zeigen kann, daß die Abbildung nicht eindeutig ist,
Das ergibt sich aber aus der Periodizität der Funktion g(!) = sin t, r e R‘. Hiernach gehören näm-
lich z. B, alle Paare (l, Zkn), k : 0. i I, i2, zu der Abbildung. Also ist sie nicht eindeutig.

9.19: Da g(:x) = r cos 9:, x e (0, n), eine eineindeutige Funktion ist, folgt sofort, daß mit (9.72) eine

Funktion gegeben ist. Berücksichtigt man, daß sin o: : /1 — C052 o: für A e (0, n) gilt, so kann die

durch (9.72) gegebene Funktion auch durch y = —V — x2, x6 (—r, r), ausgedrückt werden. Ihr
Graph ist der Halbkreis, der in der unteren Halbebene liegt und den Rzidiusr sowie den Punkt (x, y)

: (0,0) zum Zentrum hat. Setzt man nun in y = -\/r2 —— xi den Ausdruck für x aus (9.73) ein,
so erhält man nach entsprechenden Umformungcn den in (9.73) für y gegebenen Term. Also ist
durch (9.72) und (9.73) tatsächlich die gleiche Funktion gegeben.

9.20: Das Gleichgewicht muß für die obere Rolle hergestellt werden. An ihr greifen die Kraft g- über

den Radius R, die gleiche Kraft über den Radius r sowie die Kraft P über den Radius R an. Die beiden

q
letzten wirken der ersten entgegen. Deshalb muß nach dem Hebelgesetz gelten Z R=%r+pR oder

(R — r) ti

2R ’

9.21: Das Bild 9.20 enthält schon alle notwendigen Bezeichnungen. Ihm entnehmen wir unter Be-
achtung der Symmetrie des Problems zunächst

p = f(q, r, R) mit f0}, r, R): R, r,q > O.

n A _ A

I = 2(AB + BC + CE+ EF). (L.9.l)
l I fix r. z-x rx

Wetter folgt durch entsprechende geometrische Betrachtungen AB = -5 R, BC = NR, EF
R-r

: (7 ~ r sowieC—E = /4/2 — (R — U3. Außerdem kann man zeigen, daß a = arcsin

Werden nun die gefundenen Ausdrücke in (L.9,l) eingesetzt, so ergibt sich die gesuchte Funktion
R, T.

r + 2‘/dz — (R—r)’. Derzu I= flu’, r, R) mit f(d.r, R) = :(R +1‘) + 2(R — r) arcsin d
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Definitionsbereich dieser Funktion besteht — ausgehend von den konkreten Bedingungen der
Variablen d, r, R — aus der Menge aller der (d, r, R), für die d, r, R > 0 und außerdem d > R + r

gilt.

9.22: Beim Verkauf der x, ME des Erzeugnisses E. wird ein Gewinn von ax, erzielt. Daher ergibt

sich für den Gesamtgewinn g die Funktion g = f(x1, X2, ...‚ xk) = c,~x,-, wobei der Definitions-

bereich aus gewissen geordneten k-Tupeln natürlicher Zahlen (x1 , x: ..., xk) besteht.

9.23: Die vom Punkt beschriebene Kurve ist bereits in Bild 9.2l dargestellt. Diesem Bild entnimmt
man die Beziehungen x = Ö7 = Ö-E ~ ‚Ü und y = A74 = R + C74, woraus nach entsprechen-
den geometrischen Überlegungen folgende Parameterdarstellung für die Kurve folgt: x = Ra — rsina,
‚v = R — rc0soz;o<eR‘.

9.24: Wir nennen hier zwei Beispiele: die Gewichtsskala auf handelsüblichen Küchenwaagen und
die Temperaturskala auf Bade-‚ Zimmer- und Fieberthermometer.

9.25: Unter Benutzung der in Bild 9.24 dargestellten Funktionsleiter findet man nach Addition
bzw. Subtraktion entsprechender Strecken c z 5,4 km sowie a z 5,8 m. Für das dritte Dreieck muß

man zunächst die Umformung b z J672 — 262 z l0 \/6,72 — 2,62 vornehmen. Danach findet man

\/6,71 — 2,62 z 6,2, womit b z 62 m folgt. Analog ergibt sich für das letzte Dreieck c = 500 m,

9.26: Da für XE [1, 10] die Abschätzungen 0 g lgx g 1 folgen, haben wir als Maßstabsfaktor
I, = 125 mm zu wählen. Analog zu Beispiel 9.16 bestimmen wir nun aus der Forderung 0,5 mm
g i. g 1,25 mm die verschiedenen Unterteilungsintervalle. Dazu müssen x und Ax so gewählt

A
werden, daß 0,5 g 125 1% g 1,25 gilt, Hieraus ergeben sich die Unterteilungsintervalle

0,86 g x g 2,15 für Ax = 2» 104, 2,15 g x g 5,4 für Ax = 5 A I04,
4,3 g x g 0,8 für Ax = 10-1.

[in I ml. .»,..wm‘.......... .1».Wl.,..,,.WM.I.,.l.I.,.,,I.I...,...,.|.W,.,.m.IN...y....,l...mu [lY‘uyl“1H.l: ml

I 2 3 4 5 7 J 5 /5

X———>

Bild L94

Hält man sich näherungsweise an diese Intervalle, so ergibt sich die in Bild 1.9.4 dargestellte Funk-
tionsleiter. Die obigen Intervalle kann man auch mit Hilfe entsprechender Tabellen ermitteln, D21

aus lg x3 = lg x, i lg X3 die Beziehung x3 = xlxzi‘ folgt, kann die konstruierte Funktionslcirer
zur Multiplikation bzw. Division Von Zahlen angewendet werden.

9.27: Es liegt nahe, eine Verbindung zwischen dieser Aufgabe Lind dem Beispiel 9.17 zu suchen.
vertauscht man dort die Rolle der Variablen, so erhält man x = ‚v2, 0 g y g 7, wobei 0 g .\' g 49

gilt. Das ist gleichbedeutend mit y = V/x, 0 g x g 49, Damit würde der Abschnitt 0 g . g 36 der
in Beispiel 9.l7 konstruierten Funktionsleiter bereits die gewünschte Leiter darstellen, wenn er die
geforderte Länge von etwa 100 mm hätte. Dieser Abschnitt ist aber (siehe Bild 9.26) nur 72 mm lang.
Also muß er noch auf 100 mm „gestreckt“ werden. Das wird konstruktiv unter Verwendung des

aus der elementaren Geometrie bekannten Strahlensat e gemacht (siehe Bild 1.9.5).

9.28: Für XE [L300] folgt O g lgx g 2,4771. Daher ergibt die Forderung, daß die x-Ftinktions-
60

leiter etwa 60mm lang werden soll, für den Maßstabsfaktor I, z 347mm. Wir setzen also
I, = 25 mm. Bild L.9.6 zeigt das gewünschte Funktionspapier. ’ ’

1 1

(‘3=‘—‚ '14:? 115:“
8

1l
l0.l:a‚= -3-, 02:
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10.2: Da Achilles doppelt so schnell läuft wie die Schildkröte, so legt diese in der ersten Phase nur
l ‚

7 Meter zurück. Folglich legt Achilles in der zweiten Phase selbst-Z- Meter zurück, während die
1

Schildkröte nur noch 7 Meter bewältigt usw, Man erhält schließlich die beiden Zahlenfolgen:

21 I
Achilles: {a„}‚ u„ = Schildkröte: {s„}‚ 5„ = 7 .on v

Mit diesem Wettlauf hängen weitreichende philosophische Probleme zusammen (vgl. z. B. H21).

50

N
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4
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,

7 736i I0 50
Bild L.9.6
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10.3: Mit der Bezeichnungp = r — n erhält man durch wiederholte Anwendung von (10.4):

an § "nu ä “n+2 ä E an-1-11-1 .5. “nur = ar-

l0.4: Die Folge ist für fixiertes q E (0, 1) streng monoton wachsend und für fixiertes q e (l, +00)
streng monoton fallend (analog zu den Betrachtungen von Beispiel 10.3).

7 I 1 1

10.5: Dieersten 5 Glieder dieser Folge sind a, = l1, a2 = T, a3 = T ‚ a4 = -—1—6 ‚ a5 = ——5— .

Würde man aus dem Verhalten dieser Glieder schließen, daß die ganze Folge monoton fallend ist,
29

so wäre das falsch. Denn man überzeugt sieh leicht, daß z. B. am = ——, an = Wund
somit (im < a„ ist. Daher ist die Folge weder monoton wachsend noch monoton fallend. Man
kann aber zeigen, daß für ihre Glieder gilt a„ < 11,,“ für alle n g S.

10.6: Zur Lösung der Aufgabe nehmen wir an, daß die Folge monoton wachsend ist und versuchen
daraus eine Bedingung für c abzuleiten. Aus a„ g a„„ würde

7 7 7
(‘I1+T(—1)"§ cn + c+?(—l)"*1 oder —3—(—l)"-2gc

. . l4 _ g 14 7
10186“-5511‘ maflmm 0 = —3— , so ist die Folge {a„}‚ a„ = —3-— n + —3- (— l)", zwar monoton wachsend,

. . . . 14
jedoch nicht streng monoton wachsend. Dagegen ist die Folge für jeden fixierten Wert c > -3- streng
monoton wachsend.

10.7: Es sei A die Schranke von {an} und B die Schranke von {b,,}. Dann folgt aus im = |a,,b,,|

z ia„l }h„_ g AB bzw. [d„l = ‘an + b,,[ g {an} + \b,,1 g A + B, daß auch die Folgen {c„} bzw.
{tin} beschränkt sind.

10.8: Gemäß Definition 10.3 ist zu prüfen, ob zu jedem e > 0 ein N(e) derart existiert, daß (10.11)
gilt. Angenommen, es wäre —e < q” < e. Daraus folgt e > |q"| = [q|" oder lne > nlr1|q|. Wegen

' i
{q} < l ist aber ln Iql < O, so daß schließlich die Bedingungn > ü folgt. Da alle durchgeführten

Umformungen urnkehrbar sind, ist die Bedingung (10.11) für jedes e > 0 erfüllt, wenn N(e) gleich
der größten ganzen Zahl gewählt wird, die kleiner oder gleich ln e(1n |q[)" ist.

_ qäb
10.9: Betrachtet man den Quotienten c„ = a—" — —"~ = q" mit q = ä e (0, 1), so folgt, daß

n q 1

{c,,} ebenfalls eine Nullfolge ist (vgl. Lösung von Aufglabe 10.8), und daher ist {b„} im Vergleich zu

{an} eine Nullfolge höherer Ordnung.

10.10: Wendet man die zu (10.1 l) äquivalente Bedingung (10.12) an, so folgt aus den Voraussetzun-
gen des Satzes, daß |b„| < e für alle n g N,(s) gilt, wobei N1(e) = max (N1,N(s)) gesetzt wurde.

10.11: Wegen a,, — 2 = — 2 = El + 2 > —-—4- + 2 > -Lkann dieBedin-
3n2 . 3n2 3n 2

gung (10.15) für kein s < —:-erfiillt werden, so daß 2 nicht Sfräznwert der’ gegebene: Folge ist.

Dagegen ergibt die Betrachtung von |a„ — 4|: [a„ — 4| = T =T< E . Weiter

schlußfolgert man analog Beispiel 10.8 und findet so, daß 4 Grenzwert der Folge ist.

10.12: Es gibt nur eine einzige nichtnegative Zahl, die kleiner als alle positiven Zahlen ist, und das
ist die Null. Es ist unmittelbar klar, daß Null kleiner als jede positive Zahl ist. Angenommen, sie ist
nicht die einzige nichtnegative Zahl mit dieser Eigenschaft. Dann gäbe es eine Zahl rn‘> 0, die klei-

ner als jede positive Zahl ist. Dann müßte jedoch auch g > re sein, woraus aber ro < 0 folgen

würde. Dieser Widerspruch beweist, daß unsere Annahme falsch war.
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10.13: Nach Definition 10.4 muß (10.15) gezeigt werden. Dazu betrachten wir

q s..—s..q—q q—q"*’ ____ „„

1—q T77 1—q ‘1—q"'
Wegen0 =_<. q < l steht aber auf der rechten Seite eine Nullfolge, und somit existiert zu jedem c > 0
eine natürliche Zahl N(e) derart, daß (10.15) erfüllt ist.

‘q
S„ —

10.14: 1 1 4(n+ 1)+l
“~=4+::>“+nT=*fi=“»+v

1 1 4(n+1)——l
bn-4-r<4-nT-„+—i-bn+l'

Es sei k eine beliebige natürliche Zahl. Dann betrachten wir die drei aufeinanderfolgenden Glieder
1 1

52k: Gnu. C21:->2~ Wegen 02i: = 4 + '27, 02m = 4 ‘Ei, 02m2 = 4 +3? folgt 02x

> c1“! und cl.“ < cu”, so daß {c„} weder monoton fallend noch monoton wachsend ist.

10.15: Unter Anwendung der Rechengesetze für konvergente Zahlenfolgen erhalten wir nach ent-
sprechenden Umformungen

7 3 4 5 4 6

„—s+7+7-5 n—3+„—2+7‚‘
lima„= lim——-—————=——, lim b„= lim—i——=0.

n-soo n-voo 2 „w; ,1...» 2 ‚

—+ l0 -—-r3
n2 n4 n’

10.16: Unter Anwendung entsprechender Rechengesetze für konvergente Zahlenfolgcn erhalten wir

4 lim a„ + lim b„
_ „ . ‚ n—-to nauo 12 + 4 4

11m c„=2lim a„—3l1m b„=6—12=—6, l1mt1,,=+-—.——--=--—~=-.
nach n-uoo naiv: Haw hm "n “m bu 3'4 3

n—>oo n—>o0

10.17: Der Beweis wird durch vollständige‘ Induktion geführt. Wegen a, = < \/3+ l ist die
Behauptung für n =_ 1 richtig. Angenommen, sie sei für eine gewisse natürliche Zahl n richtig, d. h.

es möge gelten a„ < \/3+ 1. Dann folgt wegen 12,.“ = \/d + an auch a„. < x/ d + JJ+ 1

< V d + 2\/17+ 1 = \/c7+ 1. Damit ist die Behauptung für alle n: l, 2, bewiesen.

10.18: Wegen der Gleichung

a„., = a„ (L.l0.l)
n+l

folgt für alle n + 1 > q die Ungleichung a„„ < a„. Daher ist {an} streng monoton fallend im wei-
teren Sinne. Außerdem gilt offensichtlich a„ > 0, so daß {an} nach Satz 10.10 konvergent ist.

10.19: Für zx > 0 folgt n“ < (n + l)“, so daß {an} streng monoton fällt. Außerdem gilt offensicht-
lich a„ > 0 für alle n = 1, 2, Dann folgt aber wegen Satz 10.10, daß {an} konvcrgent ist.

10.20: Nach der Lösung von Aufgabe 10.18 existiert der Grenzwert. Bezeichnet man ihn mit a und
geht in (L.10.1) zum Grenzwert für n ——> o0 über, so erhält man u = a - 0, woraus a = 0 folgt.

10.21: In Anlehnung an das Beispiel 10.20 wird auch hier das Resultat (10.32) verwendet. Dazu wird
. k + 1 " l " — 1 ""

die Umformung a„ = ( "k" ) = (1 + Tn) = ‘{/4,, mit ä„ = (l + vorgenommen.

Weiter folgt wie in Beispiel (10.20): (1,, —»

10.22: Die Zahlenfolge {a,.) konvergiere gegen den Grenzwert a. Dann konvergiert bekanntlich
auch jede ihrer Teilfolgen gegen a, und daher folgt a, : 2* = a, womit die Behauptung in einer
Richtung bewiesen ist. Es sei nun a„. = a". Wir bezeichnen diesen gemeinsamen Wert mit a. Weiter
sei N(e) für beliebiges c > 0 die größere der beiden Zahlen N,(a) und N*(s) aus den beiden Eigen-



Lösungen der Aufgaben 189

schaften 1. und 2. von a, bzw. 11*. Dann gilt also bei beliebigem z" > 0 die Relation a — a < an < u + s

oder |a„ — a] < e für alle n g N(s), womit die Konvergenz der Folge {an} gezeigt und die Behauptung
bewiesen ist.

10.23: Es genügt, nur positive s < 2 zu betrachten, Bilde! man für sie das Intervall I, = (l — e, l),
so gilt sowohl I, c M als auch I, c U,,(1). Daher ist (10,34) für alle a’ E I, erfüllt.

4" n 3 . ‚ .

n, die Glieder einer

Nullfolge bilden, konvergiert {an} gegen Null. Obwohl unendlich viele Glieder der Folge {an} selbst
Null sind, ist der Grenzwert Null dennoch Häufungspunkt der gegebenen Folge, denn gleichzeitig
sind unendlich viele ihrer Glieder (nämlich an, k = 1, 2, ...) verschieden vom Grenzwert.

Für die Folge {b„} kann man nicht so einfach wie für die Folge {an} auf Konvergenz schließen.
Deshalb untersuchen wir zunächst, ob {b,,} überhaupt beschränkt ist. Es ergibt sich hierbei

4n—3 6
i/„I g 2—— = 8 — —~ < 8. (L.10.2)

n It

10.24: Da der Faktor l + (— l)” beschränkt bleibt und der zweite Faktor

Also ist {b„} beschränkt, folglich existieren b, und b*‚ Zu ihrer Ermittlung werden zunächst solche
Teilfolgen von {bu} betrachtet, für die der Faktor l + (— 1)" eine einfache Form annimmt. Das ist
für {bu} c {l),,} und (b2k,1} c {b,,} der Fall (k = l, 2, V4H)I Tatsächlich‚für sie erhält man

8k — 3 8k — 3 4 —~ 38k —

2k =T bzw, b2„‚1 =[1+(—1)2" WW = 0,im = l1 + f—1)“l

woraus lim bu = 8 und lim b2‚„._, = 0 folgt. Wegen (L.l0.2) können wir aber auch gleichzeitig
kaoo 4” -3 ‘

godie
n

Relation b, = 0. Nun überprüft man leicht, daß von den beiden Werten b, und b* nur letzterer
auch Häufungspunkt der Folge {b„} ist.

k—+uo

schlußfolgern, daß l>* = 8 gilt. In gleicher Weise folgt aus b„ = [1 + (—l)"]

. x5 — 2 . .

10.25: Mn „v,“ = x„ — T, n = 0,1, 2, ‚.., ergibt sich

196 200

14 100 " 100 99 19601
x, =W—g=%= l,414286, x2 :13860 =1,4142l4.

5
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natürliche Zahlen 33, 36, 74, 85

natürlicher Logarithmus 124

n-dimensionaler Raum 92

Negation 14. 15

Netzwerk 96
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Newton 9, 13l‚ 171

Newtonsches Interpolationspolynom 132

nicht abzählbare Menge 86
nichtkommutativ 89
Nicodsche Funktion 16, 21

Nomogramm 139

notwendige Bedingung 30
— und hinreichende Bedingung 32
n-stellige Aussagenverbindung 14, 15, 17, 27

n-Tupel 88

Null 38

Nullelement 81, 92

Nullfolge 154

— höherer Ordnung 156

Nullquantor 19

obere Schranke 118

ofiene Kugel 93

— Teilmenge 94
Ordnung 37

Original 101

Oktalsystem 43
Operator 107

Optimierung, lineare 97

Paar 88

—, geordnetes 88

Parallelogrammsatz 53

Parallelschaltung 21

Parameter 134

Parameterdarstellung 134
Pascal 8

Peano 36

Periode 122
—, primitive 122

periodische Funktion 122

Permutation 59, 61, 63, 70
— mit Wiederholung 62, 70
— ohne Wiederholung 61, 70
Polarkoordinaten 52, 135

Polyeder, konvexe 97, 98

Polyedermenge 98

Polynom 126
Potenzfunktion 122

Potenzieren komplexer Zahlen 55

Potenzmenge 77
primitive Periode 122

Produkt 38, 50

4, kartesisches 89

— zweier Zahlenfolgen 160

Produktmenge (n-faches kartesisches Produkt)
89

—, Teilmenge einer 91

Projektion 181

Punktmengen 79

Quantoren 19

Quotient 39, 50
— zweier komplexer Zahlen 50
— — Zahlenfolgen 161

Radizieren komplexer Zahlen 55

rationale Zahlen 36, 74, 85

Raum, euklidischer 92
—, linearer 91, 92
—‚ - metrischer 93
—, metrischer 93

—‚ n-dimensionaler 92

—‚ reeller 92
Realteil 50
Rechenregeln 39

— für Mengenverknüpfungen 81

— — Produktmengen 89

Reehenstab 145

reelle Zahlen 36, 42, 74
reeller Raum 92
reellwertige Funktion einer bzw. mehrerer reeller

Variabler 109

Refiexivität 37, 50, 76, 84
Regeln von de Morgan 28, 83

reguläre Leiter 140
Reihenschaltung 21

rein imaginäre Zahlen 49
Relaiskontaktschaltung 20
Relation 90, 91

Riemann 9

Ries 8

Schaltalgebra 20

Schaltkreis 20
Schickard 8

Schlüsse, logische 11, 23, 27,
Schluß auf eine Äquivalenz 28, 31

Schlußfiguren, logische 28

Schranke 118, 153

—, obere 118, 153

—, untere 118, 153

Shannon Z0

Sheifersche Funktion 16, 21

Signum 113

Skala 140
spezielle Mengen 75
Spiegelung am Koordinatenursprung 181

Steigungen 132
streng monoton fallende Funktion 119

— — — Zahlenfolge 152

— — wachsende Funktion 119

— — — Zahlenfolge 152

Stützstellen 131

—‚ äquidistante 133

Stützwerte 131

Stufenkalkül 73
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Subtrahend 38

Subtraktion 38, 54
Summand 38

Summe 38, 50
— zweier Zahlenfolgen 160

Summenformel 34
Summenzeichen 60
Supremum 95

Symmetrie 37, 50, 84
System 90
— der reellen Zahlen 43
Systembegriff 91

Tautologien 25, 75

Teilfolgen 152

Teilmenge 12, 75, 94
—, beschränkte 93

—, nichtbeschränkte 93

—, nicht leere 93

— der Produktmenge 91

Teilmengenbeziehung 75

Träger der Leiter 140
Transitivität 37, 50, 76, 84
trigonomische Funktion 124
Tschebyscheff 9

überabzählbare Menge 86

Umgebung 93, 94
— einer Menge 94
— eines Punktes 94
e-Umgebung einer Zahl 154

Umgebungsbegrifl‘ 93, 94
umkehrbar eindeutige Abbildung 107

— — Zuordnung 79

Umkehrabbildung 105

Umkehrfunktion 115

unabhängige Variable 109

unbestimmt divergente Zahlenfolgen 158

unendliche Mengen 84
ungerade Funktion 122

— Permutationen 63

Ungleichung 44, 48
—, Cauchy-Schwarzsche 46 ‘

Universalmenge 77, 78

untere Schranke 118, 153

Urbild 101

Variable 13

—, abhängige 109

—, unabhängige I09
Variablenbereich 76

Variation 59, 64, 70
— mit Wiederholung 65, 70
— ohne Wiederholung 64, 70
Venndiagramm 82
Verbindung von Aussageformen 18
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Vereinigung von Mengen 79, 81, 85, 86
Vergleichskriterium 164
Verkettung 130

Vemeinung, doppelte 28

Verschmelzungsgesetz 81

Verschmelzungsregeln 82

wahre Aussage 11

Wahrheitsgehalt 11

Wahrheitstabelle 11, 15

Wahrheitstabellen n-stelliger Aussagenverbin-
dungen 17

Wahrheitsverhalten 21

Wahrheitswert 12, 15

— einer Aussagenverbindung 16

Wahrheitswertfunktion 17, 20, 25

Weierstraß 9, 42
Wertebereich 101

Wurzelfunktign 123

Zahlen, ganze 74, 85

—, irrationale 41

—, komplexe 48, 50, 51, 74

-‚ konjugiert komplexe 50
—, natürliche 33, 36, 74, 85

—, rationale 36, 74, 85
—, reelle 36, 42, 74
—, rein imaginäre 49
Zahlenbereich 36

Zahlendarstellung 43
Zahlenfolge, altemierende 151

—, arithmetische 15 l
—, beschränkte 153

—, bestimmte divergente 158

—, divergente 158

—, geometrische 151

—, konvergente 156

—, monoton fallende 152, 163

—‚ — wachsende 152, 163

—, streng monoton fallende 152

-, — — wachsende 152

—, unbestimmt divergente 158

Zahlenfolgen 106, 150
—, Produkt von 160
—, Quotient von 161

«, Summe von 160
Zahlengerade 40, 41, 47
Zahlensystem 43

Zeichen, logische 19, 20
Zeichenmenge 20
Zuordnung, eindeutige 13

—, umkehrbar eindeutige 79

Zuordnungsvorschrift 109

zweistellige Aussagenverbindungen 15, 75

zweiwertige Aussage 12, 20

zusammengesetzte Funktionen 113


