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Vorwort

Der vorliegende 3. Band der Lehrbuchreihe fiir Ingenieure, Naturwi haftler,
Okonomen und Landwirte ist den unendlichen Reihen (im Reellen) gewidmet. Er
gibt eine Einfiihrung in ihre Theorie und stellt solche Anwendungsméglichkeiten der
unendlichen Reihen dar, die fiir einen groBen Teil des Benutzerkreises von Wichtig-
keit sind. .

Das Buch gliedert sich in sechs Abschnitte. Dem einfiihrenden Abschnitt folgen
zwei Abschnitte, die den Leser mit grundsétzlichen Fragen zur Konvergenz von un-
endlichen Reihen und zum Rechnen mit ihnen bekannt machen sollen; einer davon
behandelt Reihen mit konstanten Gliedern, der andere Funktionenreihen. In ihnen
steht die Theorie stirker im Vordergrund als in den folgenden Teilen des Buches. Die
néchsten beiden Abschnitte sind den Potenzreihen und den Fourierreihen gewidmet.
Hierin werden insbesondere die Anwendungsméglichkeiten breit dargestellt. Am Ende
steht ein Abschnitt liber Fourierintegrale, die eigentlich gar nicht zum Gegenstand
des Buches gehoren, aber wegen ihres engen Zusammenhanges zu den Fourierreihen
in Ergdnzung und Verallgemeinerung des 5. Abschnittes mit aufgenommen wurden.

_Entsprechend der Zielstellung der Lehrbuchreihe wird die Theorie nicht liickenlos
entwickelt. So sind im wesentlichen nur solche Beweise aufgenommen worden, die
erforderlich oder geeignet sind, um bei einem Studierenden, der Mathematik als
Nebenfach betreibt, zu einem vertieften mathematischen Verstandnis beizutragen. In
den Text sind viele ausfiihrlich durchgerechnete Beispiele eingefiigt, die das Durch-
arbeiten erleichtern und den Studenten, insbesondere den Fernstudenten, beim Selbst-
studium eine Hilfe sein sollen. Eine Auswahl von Ubungsaufgaben, mit deren Losung
sich der Studierende die erforderlichen Fertigkeiten im Umgang mit Reihen aneignen
sollte, findet sich jeweils am Ende eines Abschnittes. Die Losungen sind am Ende des
Buches zusammengestellt.

Das erfolgreiche Studium des vorliegenden Bandes setzt beim Leser die Kenntnis des
Stoffes voraus, der in den Bianden 1 (Grundlagen) und 2 (Differential- und Integral-*
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4 Vorwort

rechnung) behandelt wird. Innerhalb dieses Buches sind die Abschnitte 2. und 3.1.
grundlegend fiir das Verstdndnis aller folgenden. Die weiteren Abschnitte konnen
z. T. unabhingig voneinander durchgearbeitet werden; im einzelnen ist das der
Ubersicht auf Seite 3 zu entnehmen.

Fiir wertvolle Ratschldge und Verbesserungen bei der Durchsicht des Manuskripts
danke ich den Herren Prof. Dr. K. Manteuffel (Technische Hochschule Magdeburg),
Dr. W. Schirotzek (Technische Universitit Dresden) und W. Riemenschneider. Frau
M. Graupner danke ich fiir das sorgsame Schreiben des Manuskripts. Nicht zuletzt
gilt mein Dank dem Verlag fiir sein verstdndnisvolles Entgegenkommen.

Karl-Marx-Stadt, im Juli 1973
H.-J. Schell

Vorwort zur 5. Auflage

Auf Grund der giinstigen Aufnahme des Buches ist bisher von gréBeren Anderun-
gen abgesehen worden. In der vorliegenden 5. Auflage wurde, entsprechend der
wachsenden Bedeutung numerischer Methoden fiir den Ingenieur, ein Abschnitt
,,Numerische harmonische Analyse®“ neu aufgenommen. Neu gestaltet wurde der
Abschnitt 5.10. Hier werden jetzt verallgemeinerte Fourierreihen eingefiihrt, und
es wird die Approximation im quadratischen Mittel durch Teilsummen solcher
Reihen behandelt. Dadurch wird eine tibersichtlichere Darstellung méglich. Um den
Umfang des Buches nicht zu vergréBern, wurden geringfiigige Kiirzungen vorgenom-
men und die Beweise einiger Satze weggelassen, die fiir die Ausbildung der Stu-
denten, auf die diese Reihe zielt, ohnehin am Rande liegen.

Karl-Marx-Stadt, im Februar 1984 H.-J. Schell
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1. Zum Gegenstand und zur Bedeutung unendlicher Reihen

Die Theorie der unendlichen Reihen ist ein wesentlicher Bestandteil der Analysis.
Sie befafit sich mit der Konvergenzuntersuchung von Reihen, der Ermittlung ihrer
Summen (im Konvergenzfall) und den Rechenoperationen mit unendlichen Reihen.
Thre Anwendungen erstrecken sich auf nahezu alle Teile der Analysis. Viele Unter-
suchungen werden durch Heranzichung unendlicher Reihen wesentlich vereinfacht
oder iiberhaupt erst erméoglicht.

Anhand eines Beispiels wollen wir uns zunéchst eine Vorstellung von einer un-
endlichen Reihe und dem Konvergenzbegriff geben. Wir gehen von der Zahlenfolge
4, 4, 4, %, --- aus und bilden die Summen s, der ersten n Glieder (n = 1,2, 3, ...).
Dabei erhalten wir, wie man durch vollstindige Induktion sofort bestitigen kann,

L 1 1 n g ) 1
S,,—2+4+8+... o = 2”A
Am Ergebnis ist erkennbar, daB die Summen s, mit wachsendem 7 gegen 1 streben.
Wenn wir nun die Summe s, als n-tes Glied einer neuen Zahlenfolge auffassen,
so heifit das gerade, daB diese konvergiert und den Grenzwert 1 hat. Auf Grund
dieses Verhaltens der Summen s, sagt man, daB die unendliche Reihe 4 + % + % + ...
konvergiert und die Summe (auch: den Wert) 1 hat.

Die Konvergenz einer unendlichen Reihe wird also mittels der Konvergenz einer
Zahlenfolge definiert, die so beschaffen ist, daB ihr n-tes Glied s, die Summe der
ersten 7 Glieder einer anderen, gegebenen Zahlenfolge ist. Insofern erscheint die
Reihe gewissermaBen als Summe aus den unendlich vielen Gliedern dieser-anderen
Zahlenfolge, und diese Vorstellung verband sich mit dem Reihenbegriff bei seiner
Entstehung und noch geraume Zeit danach. Aber eine Summe aus unendlich vielen
Zahlen ist kein mathematisch sinnvolles Objekt, und daher sei von vornherein vor
einer solchen falschen' Vorstellung von einer unendlichen Reihe gewarnt. Wenn man
im obigen Beispiel trotzdem davon spricht, daBl die unendliche Reihe 4 + 4 + % + ...
die Summe 1 hat, so hat das historische Griinde; es handelt sich nicht um eine
Summe im Sinne des Ergebnisses einer Addition. ,,Summe* ist in unserem Beispiel

n

nichts anderes als eine Benennung fiir den Grenzwert der Zahlenfolge {Z %—} fiir

n — co. Wie wir noch sehen werden, darf man mit einer Reihensumme im allgemeinen
auch nicht so rechnen wie mit einer echten Summe.

Wenn wir jedoch eine konvergente Reihe nach n Gliedern (n hinreichend groB)
abbrechen, d. h. die (echte) Summe aus den ersten » Gliedern bilden, so ist diese ein
Niherungswert fiir die Reihensumme, und die Abweichung beider voneinander 1aB3t
sich im Prinzip beliebig klein machen, indem man » grof3 genug wihlt. Diese Tatsache
nutzt man bei der praktischen Anwendung unendlicher Reihen aus.

Die Bedeutung der unendlichen Reihen erwichst daraus, daB auBer solchen Rei-
hen, deren Glieder Zahlen sind (wir sprechen hier von Reihen mit konstanten Glie-
dern), hauptsichlich Reihen benutzt werden, deren Glieder Funktionen einer un-
abhidngigen Variablen sind (Funktionenreihen). Dabei beschrinken wir uns auf
Funktionen einer reellen Variablen; die sehr wichtige Ausdehnung auf den Fall
komplexer Variabler ist nicht Gegenstand dieses Bandes (vgl. Band 9).

Die Summe einer konvergenten reellen Funktionenreihe ist selbst eine Funktion einer
reellen Variablen. Somit kann eine konvergente Funktionenreihe als eine Darstellung
einer Funktion (ndmlich ihrer Summenfunktion) angesehen werden. Sehr wichtig ist
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das Problem, eine in einer anderen Form gegebene Funktion f(x) in eine Funktionen-
reihe zu entwickeln, d. h. sie durch eine solche Reihe darzustellen. Insbesondere
interessieren Entwicklungen in Potenz- bzw. Fourierreihen, die die wichtigsten Ver-
treter der Funktionenreihen sind. So kann man fiir eine komplizierte Funktion
aus ihrer Potenzreihenentwicklung - innerhalb gewisser Intervalle gut brauch-
bare — Niaherungspolynome erhalten, indem man die Entwicklung nach endlich
vielen Gliedern abbricht. Beispielsweise entnimmt man aus der Potenzreihenentwick-
lung

S5 e
=1+x+—2—!-+j+...,

2 -]
daBe*~1+x+ xT e % fiir alle x mit hinreichend kleinem Betrag gilt. Wenn

x| £0,1 gilt, 1st der Fehler der bei Ersetzung von f(x) = e* durch das Polynom
gx)=1+x+ 7 + ? entsteht, kleiner als 10-5. Durch Hinzunahme weiterer
Glieder der Reihe zu dem Polynom wird die Annaherung weiter verbessert, und die
eben angegebene Genauigkeit wird noch fiir x-Werte mit einem groBeren Betrag
als 0,1 erreicht.

Fourierreihen lassen die Zusammensetzung periodischer Funktionen (bzw. der
durch sie beschriebenen zeitlich abhiangigen periodischen Vorgénge) aus Sinus- und
Kosinusfunktionen erkennen. Zum Beispiel kann eine periodisch sich wieder-
holende Folge von Dreiecksimpulsen der Dauer 27 und der Hohe 1 durch die Fourier-
reihe

1 4 cos 3x  cos5x
5 = (cosx+ 32 + 3z + )
wiedergegeben werden (vgl. Beispiel 5.4).

Mit den Funktionenreihen kénnen auch gewisse Rechenoperationen ausgefiihrt
werden. Insbesondere konnen sie unter gewissen Voraussetzungen Glied fiir Glied
integriert und differenziert werden. Daraus ergibt sich z. B. die Méglichkeit, Stamm-
funktionen von solchen Funktionen durch Funktionenreihen (insbesondere Potenz-
reihen) auszudriicken, die sich einer geschlossenen Darstellung mit Hilfe elementarer
Funktionen entziehen. In Verallgemeinerung dessen bilden die Potenzreihen ein
Hilfsmittel bei der Losung gewohnlicher Differentialgleichungen, fiir die die ele-
mentaren Integrationsmethoden nicht anwendbar sind. Diese wenigen Beispiele
maogen geniigen, um dem Leser einen ersten Eindruck von der Bedeutung der unend-
lichen Reihen zu vermitteln.




2. Reihen mit konstanten Gliedern

2.1. Der Konvergenzbegriff bei unendlichen Reihen

Wir denken uns eine Zahlenfolge ao, ay, a>, ... (a, reell) gegeben und bilden daraus
rein formal den Ausdruck

a +a;+a + ..., .1
w
den wir mit Hilfe des Summenzeichens auch in der Form Y @, schreiben. Einen sol-

v=0
chen Ausdruck nennt man eine unendliche Reihe (oft auch kurz Reihe). Die Zahlen a,
werden Glieder der Reihe genannt, und die Summe aus den ersten » + 1 Gliedern
der Reihe (n fest),

Sp=ap+a; +..+a,=3%a, - (22)
»=0
heiBt n-te Teilsumme der Reihe.

L
Definition 2.1: Eine unendliche Reihe Y., a, heifst konvergent, wenn die Folge so, Sy, S5, ...
=0

=
ihrer Teilsummen konvergiert; in diesem Fall heiit der Grenzwert s = lim s, Summe
n—o

der Reihe. Eine Reihe heifst divergent, wenn die Folge ihrer Teilsummen divergiert.

Dabei bedeutet die Konvergenz der Folge {s,} gegen s, daB zu jedem & > 0 eine
natiirliche Zahl N(e) existiert,sodaB|s — s,| < ¢ fiir alle n > N(e) gilt (vgl. Band 1,10.4.)
[
Bei einer konvergenten Reihe mit der Summe s schreibt man 3 a, = s (anstelle von
v=0 0
lim s, = s5), womit sowohl zum Ausdruck gebracht wird, daB die Reihe 2 a, uber-
oo

haupt konvergiert, als auch, daB3 s ihre Summe ist. Das Zeichen Z a, steht also

zugleich fiir die Reihensumme. Wir wollen nochmals unterstrelchen, daB aus der
Benennung ,,Summe** fiir hm s, nicht geschlossen werden darf, da man mit einer

unendlichen Reihe wie m1t emer Summe aus endlich vielen Zahlen rechnen kann.
Es sei darauf hmgewxesen, daB das erste Reihenglied nicht etwa immer a, sein

muB. So bezeichnet auch 2 a,, wobei k irgendeine natiirliche Zahl sein kann, eine
unendhche Reihe (mit @, als erstem Glied). Eine andere méogliche Schreibweise hier-

fiir ware Z yig.
¥=0

Beispiel 2.1: Ein ganz elementares Beispiel einer unendlichen Reihe ist die geo-
metrische Reihe

l+q+q*+q°+ .. = > q", (q reelle Zahl). (23)
y=0

Das in Abschnitt 1. angefiihrte Beispiel ist eine solche Reihe; dort ist ¢ = 4, und
die Reihe beginnt erst mit dem Glied ¢*. Die n-te Teilsumme der Reihe (2.3) ist

1_ n+1
1—__qq, g1 (2.4)
(fiir ¢ = 1 ist offenbar s, = n + 1). Da lim ¢"** = 0 fiir jedes ¢ mit |g| < 1 gilt,

n—o

Ss=1+q+¢*+...+q"=

D. 2.1
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konvergiert die Folge {s,} und damit die geometrische Reihe fiir diese ¢, und aus

(2.4) folgt
[e]

, 1
qu “1T—g lgl < 1. (2:5)

Fiir jedes g mit |g| = 1 ist lim s, nicht vorhanden und daher die geometrische Reihe

P
divergent. Wie bei Zahlenfolgen unterscheidet man zwischen bestimmter und unbe-

stimmter Divergenz. Bestimmte Divergenz liegt vor, wenn lim s, = +c0 oder
n-» 0

lims, = —oco gilt; andernfalls spricht man von unbestimmter Divergenz. Die geo-
n—o0

metrische Reihe ist fiir ¢ > 1 bestimmt divergent gegen + oo (man schreibt dafiir
§ q" = w); fiir ¢ < —1 ist sie dagegen unbestimmt divergent (man betrachte etwa
:1:3?1 Fallg = —1:1 -1+ 1 -1+ ..., in dem die Teilsummen abwechselnd 1 und
0 sind).

Beispiel 2.2: In Band 2, 6. 3 4., ist die Taylorentwicklung der Funktion f(x) = e*
angegeben. Sie lautet e¥ = Z — + R,(x), wobei R,(x) das Restglied bezeichnet, das

fiir Jedes x die Elgenschaft llmR 2(x) = 0 besitzt. Speziell fiir x = 1 erhdlt man

eI=P 7 + R,(1), lim R,,(l) = 0. Das heifit aber gerade, daf die Zahlenfolge mit
y=0"V: n-w
. Ly | L .
dem n-ten Glied s, = Y o7 fiir n > oo gegen e strebt. Folglich ist e die Summe der
v=0 V!

0
unendlichen Reihe 3~ %:

v=0 ¥!

® 1
Zor= c. (2.6)
Durch Definition 2.1 ist die Konvergenzuntersuchung von Reihen auf die von
Zahlenfolgen zuriickgefiihrt. Daher gewinnt man aus Konvergenzkriterien und ande-
ren Sdtzen liber konvergente Zahlenfolgen auch entsprechende grundsitzliche Aus-
sagen lber unendliche Reihen. Jedoch ergibt sich eine groBe Zahl weiterer Konver-
genzaussagen nicht aus den Eigenschaften der Glieder s, der Teilsummenfolge, son-
dern aus den Reihengliedern a, selbst. Hieraus folgt schon, dal den Reihen durch-
aus eine eigenstandige Bedeutung zukommt. Es kann umgekehrt zweckmaBig sein,
die Konvergenzuntersuchung einer Zahlenfolge auf die einer unendlichen Reihe
zurtickzufiihren. Ist ndmlich by, by, b,, ... eine vorgegebene Folge, so ist sie gerade
die Teilsummenfolge der Reihe b, + (b, — by) + (b, — b,) + ..., denn fiir diese
Reihe ist s, = by + (by — bo) + ... + (b, — by—y) + b,.

Beispiel 2.3: Die Reihe Y ﬁ soll auf Konvergenz untersucht werden.
v=1
Wegena, = ! _ ! ! y=1,2,3 wird
g a"_v(v+l)7v v+1° - o
L 1 1 1 1 1 1 1
S=X%Fn T ztT o3t TaS—i YA ST W

L

n
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also ist lim s, = 1. Die Reihe konvergiert mit der Summe 1.

nosw
Wir erwihnen schlieBlich noch den Begriff des Reihenrests.

®
Definition 2.2: Wenn Y a, eine gegebene Reihe ist, so nennt man die Reihe
v=0
©
iy + Quia + ... = 2 lav (n fest) 2.7
v=n+

ihren n-ten Reihenrest.

Die m-te Teilsumme des n-ten Reihentests, 0P = @ui1 + Gpiz + ... + Guim
(m =1,2,3,..)) ergibt sich offenbar als Differenz der Teilsummen s,;,, und s, der
gegebenen Reihe:

o = Syim = Su- (2.8)

Aus (2.8) entnimmt man: Wenn die Reihe Z a, konvergiert und s als Summe hat,

d. h. lim s,,+,,, = s gilt, so existiert, da s, von m unabhingig ist, auch lim ¢ = r,;
m Mmoo
es ist also

Iy =8 — S, 2.9

Umgekehrt schlieBt man entsprechend aus der Konvergenz des n-ten Reihenrests auf
die Konvergenz der Reihe selbst Da n beliebig ist, hat man folgendes Ergebnis:

Satz 2.1: Wenn eine Reihe Z a, konvergiert, so konvergiert auch jeder ihrer Reihen-

reste, und es gilt (2.9) fiir al/e n. Umgekehrt folgt aus der Konvergenz eines einzigen
Reihenrests die Konvergenz der Reihe selbst.

D. 2.2

S. 2.1

Aus (2.9) ergibt sich weiter, daB fiir eine konvergente Reihe lim r, = 0 gilt. Daher

kann die Summe s einer konvergenten unendlichen Reihe néher;n:gsweise durch eine
Teilsumme s, (mit hinreichend groBem #) ersetzt werden; der dabei begangene Fehler
ist wegen (2.9) gleich r,. So ergibt sich aus Beispiel 2.2 mit n = 6:
s =1 1 1 1 1 1 1
ex S = +]—!‘+T+T+ﬂ+ﬂ+ﬁ'

Auf fiinf Dezimalen genau ist s, = 2,71806 (zum Vergleich: e = 2,71828 ...).

2.2 Einige elementare Eigenschaften unendlicher Reihen

Wir wollen nun erste elementare Eigenschaften kennenlernen, die wir fiir den
Umgang mit unendlichen Reihen benétigen.

Satz 2.2: Wenn man in einer Reihe Z a, endlich viele Glieder wegldfit oder hinzufiigt

oder durch andere ersetzt, so b/elbt dle Eigenschaft. der Konvergenz bzw. Divergenz
erhalten.

Auf eine etwas knappere Form gebracht. besagt der Satz, daB endlich viele Glieder
keinen EinfluB auf das Konvergenzverhalten einer unendlichen Reihe haben.

Beweis: Da nur an endlich vielen Gliedern Anderungen vorgenommen werden, gibt
es einen Index n der Art, daB} alle Glieder a, der vorgelegten Reihe mit » > n unver-

S. 2.2
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.
andert bleiben. Nach Satz 2.1 ist der zu diesem Index n gehérende Reihenrest kon-
vergent oder divergent, je nachdem, ob die Reihe selbst konvergiert oder divergiert.
Dieser Reihenrest ist aber auch ein Reihenrest der abgednderten Reihe (eventuell
mit einem anderen Index), und daher folgt, wieder nach Satz 2.1, daf3 die abgeiinderte

Reihe das gleiche Konvergenzverhalten wie der n-te Reihenrest der Reihe Z av, also
wie diese selbst hat. ® '

Wenn man in einer konvergenten Reihe Z a, jeweils eine endliche Anzahl aufein-
=0
anderfolgender Glieder zu einem neuen Ghed zusammenfaft (kurz wenn man
Klammern setzt), etwa (o + ay + ... + @) + (Ggs1 + Grgrz + oo + Gt) +..
so entsteht eine n\eue Reihe. Uber deren Konvergenzverhalten gilt
Satz 2.3: Es sei Z a, = s. Ist ko, ky, ks, ... eine streng monoton wachsende Folge na-
v=0 .
tiirlicher Zahlen und wird
by =ao + ... + ay,,
by = Gxpry + o + a4y,
gesetzt, so ist auch Z b, konvergent und hat die Summe s.

Der Inhalt dleses Satzes kann kurz wie folgt zusammengefalit werden: In einer
konvergenten Reihe diirfen Klammern gesetzt werden.

Beweis: Die Folge der Teilsummen der Reihe Y’ b, bildet eine Teilfolge der Folge der

@ »=0
Teilsummen s, der Reihe Y a, und hat daher denselben Grenzwert wie {s,} (vgl.
Band 1, 10.5.). m Y

Die Umkehrung von Satz 2.3 ist falsch, d. h., man darf nicht ohne weiteres Klam-
mern weglassen. Das lehrt das folgende einfache Gegenbeispiel. Die Reihe (1 — 1)
+ (1 — 1) + ... konvergiert und hat die Summe 0, aber die Reithe 1 —1+1—1+ ...
divergiert (vgl. Beispiel 1.1). Hier haben wir ein erstes Beispiel dafiir, daB man mit
unendlichen Reihen nicht so rechnen darf wie mit gewShnlichen Summen.

= y
Satz 2.4: Es sei Y. a, = s, und c sei eine beliebige Konstante. Dann konvergiert auch
0 v=0
die Reihe 2 cav und hat die Summe cs.
Es gilt also Z ca, = cZ a,, d. h., ein konstanter Faktor kann bei einer konver-

genten Reihe vor das Summenzexchen gezogen werden.

Beweis: Mit s, = Z a, wird die n-te Teilsumme der Reihe Z ca, gleich Z ca, = ¢Sy,

»v=0 v=0

und es gilt

limes, = c-lims, = cs. m

n—-o n- o

Satz 2 5: Es seien Z a, = s, Z b, = t. Dann konvergieren auch die Reihen z (a, + b,)
bzw. Z (a, — b)) und haben dte Summen's + t bzw. s — .
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Konvergente Relhen diirfen also gliedweise addiert bzw. subtrahiert werden.
Beweis: Wenn s, = Z ay, ty 2 b, ist, so sind die Teilsummen der durch gliedweise

=0
Addition bzw. Subtrakuon entstehenden Reihen gleich s, + ¢, bzw. s, — f,.
Aus lim (s, + t,) = lim s, + lim 7, = s & ¢ folgt die Behauptung. ®
nowo n—>wo noo
Folgerung Aus Z a, = s, Z b, = t folgt nach den Siitzen 2.4 und 2.5, daf jede Reihe
Z (xa, + ﬁbv) mzt (reellen) Konstanten «, [ ebenfalls konvergiert und s + ft zur

Summe hat. Das Entsprechende gilt, wenn man aus m konvergenten Reihen (m > 2)
durch eine Linearkombination der Glieder mit gleichem Index eine neue Reihe bildet.

2.3. Das Cauchysche Konvergenzkriterium

In den Beispielen 2.1, 2.3 konnten wir die Teilsummen geschlossen ausdriicken
und dadurch unmittelbar ihr Verhalten fiir n — co untersuchen. Diese 'direkte
Methode der Konvergenzuntersuchung einer unendlichen Reihe, die im Konver-
genzfall zugleich die Reihensumme liefert, gelingt nur in wenigen Beispielen. Im
allgemeinen geht es zunédchst um die Feststellung der Konvergenz oder Divergenz
einer Reihe. Dazu bedient man sich gewisser Konvergenzkriterien, von denen in
diesem und den beiden folgenden Unterabschnitten einige wichtige angegeben
werden. Diese Kriterien liefern im Konvergenzfall keine Methode zur Berechnung
der Reihensumme; dieses Problem muf3 gesondert geldst werden.

Von Band 1, Abschnitt 10.6., her ist das Cauchysche Konvergenzkriterium fiir
Zahlenfolgen bekannt. Dieses Kriterium a8t sich auf Grund von Definition 2.1 auf
unendliche Reihen iibertragen. Es ist von grundsatzlicher theoretischer Bedeutung,
weil es eine notwendige und hinreichende Bedingung fiir die Konvergenz einer Reihe
enthalt.

0
Satz 2.6 (Cauchysches Konvergenzkriterium): Eine unendliche Reihe Y a, ist genau
=0

dann konvergent, wenn zu jedem ¢ > 0 eine natiirliche Zahl N(¢) exist;e;t, so daf
|Gt + Gz + oo + Gaip| < € (2.10)

fiir alle n > N(e) und fiir jedes p = 1 gilt.

Bewe:s Eine Reihe Z a, ist nach Definition 2.1 und dem Cauchyschen Konvergenz-

kntenum fir Zahlel;ftolgen genau dann konvergent, wenn zu jedem positiven ¢ eine

natiirliche Zahl N(e) existiert, so daB fiir alle m > N(¢) und n > N(e)

|sm — Sal < & 2.11)
gilt. Ohne Beschriankung der Allgemeinheit kann man m > n annehmen (fiir m = n

ist (2.11) trivialerweise erfiillt) und daher m = n + p setzen, wobei r eine’ positive
ganze Zahl ist. Dann geht (2.11) iiber in

[Snsp — Sul <-e. (2.12)
Nun ist aber
Spip—Sa=(@o+a + ...+, +ayis + ...+ i) — (a0 +a, + ... +ay)
= Qpyey oo+ iy
d. h., (2.12) ist mit (2.10) dquivalent. m

S. 2.6



S. 2.7

*S. 2.8

14 2. Reihen mit konstanten Gliedern

: 0
Bei Konvergenz der Reihe Y. a, ist (2.10) insbesondere fiir p = 1 erfiillt, d. h., fiir
»=0

jedes ¢ > 0 muB |a,+,| < ¢ von einem gewissen 7 an gelten. Damit hat man ein not-
wendiges Konvergenzkriterium:

0 .
Satz 2.7: Wenn eine unendliche Reihe Y, a, konvergiert, so gilt
) ¥=0
lima, = 0. (2.13)
y-w

Die Bedingung (2.13) ist jedoch nicht hinreichend fiir die Konvergenz einer Reihe.
Wir zeigen das an einem Gegenbeispiel.

w
Beispiel 2.4: Die sogenannte harmonische Reihe 3 1 soll auf Konvergenz unter-

=0
sucht werden. Die Bedingung (2.13) ist hier erfiillt: es ist lim -:— = 0. Trotzdem ist
- v=w

die Reihe divergent. Mitn = 2% p = 2% k = 0, 1, 2, ..., wird ndmlich

1 1 1
l@uss + Gpia + ... + a,.+,,| =-m + m SRR e

Da jeder der vorhergehenden Summanden auf der rechten Seite groBerals der letzte ist
un(i die Anzahl der Summarlldenp = 2kist, folgt |@ys1 + Gpia + -ov + Guiy| = 25+ T
== Wihlt man nun & < 550 ist (2.10) offenbar nicht erfiillbar.

Die Konvergenzuntersuchung einer Reihe mit dem Cauchyschen Konvergenzkri-
terium ist meist etwas schwerfillig. Man greift gern auf leichter zu handhabende
Kriterien zuriick, wobei es praktisch ausreicht, daB diese nur hinreichende Bedingun-
gen fiir Konvergenz oder Divergenz enthalten.

2.4. Konvergenzkriterien fiir Reihen mit positiven Gliedern

Die in diesem Unterabschnitt angegebenen Konvergenzkriterien gelten fiir Reihen
mit positiven Gliedern. Unter einer Reihe mit positiven Gliedern verstehen wir dabei
eine Reihe, deren Glieder nicht negativ sind und die unendlich viele positive Glieder
enthilt. Auf Grund von Satz 2.2 kann man die Kriterien auch anwenden, wenn in
einer Reihe neben unendlich vielen positiven Gliedern noch endlich viele negative
Glieder vorkommen, da man diese bei der Konvergenzuntersuchung unberiicksichtigt
lassen kann. In 2.6. wird gezeigt, daB man einige der folgenden Kriterien nach ge-
wissen Modifizierungen auch auf Reihen mit Gliedern beliebigen Vorzeichens anwen-
den kann. N

2.4.1. Ein notwendiges und hinreichendes Kriterium

0
Satz 2.8: Eine Reihe Y, a, mit positiven Gliedern ist genau dann konvergent, wenn die
v=0
Folge ihrer Teilsummen eine beschrinkte Zahlenfolge ist.

Hinweis. In diesem Fall gilt sicher fiir die Reihensumme s die Beziehung s > s,,
n=0,1,2,.. '

n
Beweis: Wegen a, = 0 bilden die Teilsummen s, = Y. a, eine monoton wachsende
¥=0
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Folge. Da eine beschrinkte monotone Zahlenfolge konvergiert (vgl. Band 1, 10.6.),
ist die Beschrinktheit der Teilsummenfolge im Fall a, = 0 fiir die Konvergenz der
Reihe hinreichend. Die Notwendigkeit ergibt sich aus dem Satz, daB jede konvergente
Zahlenfolge beschriankt ist (vgl. Band 1, 10.5.). m

2.4.2.  Vergleichskriterien

0
Satz 2.9: (Vergleichskriterium, 1. Teil): Eine Reihe Y, a, mit positiven Gliedern ist
v=0

konvergent, wenn zwischen ihren Gliedern und den Gliedern einer als konvergent

w
bekannten Reihe . b, von einem gewissen v an die Beziehung a, < b, gilt.

»=0

Beweis: Nach dem Cauchyschen Konvergenzkriterium existiert zu jedem & > 0 ein
N(e), so daB |byiy + byiaz + ... + bpip| < & fiir alle n > N(e) und fiir jedes p = 1
gilt. Wahlt man nun auBerdem 7 so groB, daB a, < b, fiir » > p erfiillt ist, so folgt,
da b, = O fiir diese » ist, da3

lanss + Gpiz + oo + Guipl = Guig + Gpiz + oo+ Guip

S bpir + bpiz + oo F bpip = |byry + bpsa + o F by <

0
von einem gewissen 7 ab und fiir jedes p = 1 gilt. Daher ist die Reihe Y a, nach
¥=0
dem Cauchyschen Konvergenzkriterium konvergent. ]
Die zum Verglelch benutzte konvergente Reihe 2 b, nennt man eine Majorante

zur Reihe Z a, und daher Satz 2.9 auch Majorantenknterzum

Satz 2.10 (Verglezchskrztenum, “2. Teil): Eine Reihe Z a, ist dtvergent wenn zwischen
zhren Gliedern und den Gliedern einer als divergent bekannten Reihe Z b, mit positiven

Gliedern von einem gewissen v an die Beziehung a, = b, gilt.

Beweis: Wenn man annimmt, daB die Relhe Z a, konvergent ist, so miiite nach dem
eben bewiesenen Satz 2.9 auch die Reihe Z b konvergleren Das steht aber im Wider-
spruch zur Voraussetzung. ®

Die hier zum Vergleich verwendete divergente Reihe § b, heiBt eine Minorante zur
Reihe Zoa,, und den Satz 2.10 nennt man deshalb Mm?)rantenkntertum Man muf

natiirlich eine gewisse Anzahl von mdglichen Vergleichsreihen — also Reihen, deren
Konvergenzverhalten man kennt — zur Verfiigung haben, wenn man die Sitze 2.9
und 2.10 anwenden will.

Beispiel 2.5: Wir untersuchen die Reihe Z —5 und ziehen die in Beispiel 2.3 als

konvergent erkannte Reihe Z 1 als Verglexchsrelhe heran;esistalsoa, = —15- .
y=1v(v + 1) I
b, = ;(':_—1), v =1,2,... Zwischen entsprechenden Gliedern beider Reihen be-

S. 2.9

S. 2.10
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steht die Relation 712— > v(%_‘_l), aus der man jedoch nichts tiber das Konvergenz-

® 1
verhalten der Reihe Z Ffolgem kann. Schreibt man die zu untersuchende Reihe

jedoch in der Form Z _(_Ill),z’ so besteht zwischen den Gliedern a, ( :1)2

dieser Rejhe und den Gliedern b, der Vergleichsreihe fiir » = 1 die Beziehung
1

(v—+1)—2 < FD 3 , und nun folgt nach Satz 2.9, daB die vorgelegte Reihe konver-

giert. In Beispiel 5.5 wird gezeigt, daB} ihre Summe = < ist.

@
Beispiel 2.6: Wir untersuchen die Reihe 3 —-1= und verwenden die divergente har-
v=1 v

1 1
monische Reihe 2 (Belsplel 2. 4) zum Vergleich. Da —= 2 - fiir alle » gilt, ist
nach Satz2.10 auch die Reihe Z

dlvergent Allgememer erglbt sich auf diese
-\/ v

Weise die Divergenz fiir alle Reihen ): —- mite < 1. Der Falla > 1 wird in 2.4.4.,

Beispiel 2.11, betrachtet. .

2.4.3. Quotienten- und Wurzelkriterium

Wenn man im Majorantenkriterium die geometrische Reihe als Vergleichsreihe
heranzieht, kommt man zu zwei weiteren Konvergenzkriterien, die sehr hiufig ver-
wendet werden: dem Quotienten- und dem Wurzelkriterium (auch Kriterium von

d’Alembert bzw. von Cauchy).

Satz 2.11 (Quotientenkriterium): Wenn fiir eine Reihe Za mit positiven Gliedern
von einem gewissen v an a, > 0 und

Dt <y 0<g<1, (2.14)
a\'

gilt, so ist die Reihe konvergent. Gilt jedoch von einem gewissen v an
ist die Reihe divergent.

Beweis: Es sei (2.14) fiir v 2 n erfiillt. Dann gilt

Qui1 S Qhns Quiz S Qlniys Gpia S QAgizs oo
Durch Einsetzen der ersten Ungleichung in die zweite usf. folgt

Auiy S qy, Apsz < §°y; Qi < @0, .

Das heifit aber, daB die geometnsche Reihe a, 2 q die wegen 0 < g < 1 konver-

giert, eine Majorante zur Reihe Z a, ist. Nach Satz 2.1 konvergiert dann auch Z a,.

v=n

Gilt dagegen von einem gewissen » ab :1 > 1, so ist a,4+; = a,, die Folge {a 1

mit positiven Gliedern ist also monoton wachsend. Daher ist die nach Satz 2.7
notwendige Konvergenzbedingung lim @, = 0 nicht erfiillt. m

v 00
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Es muB} besonders betont werden, daB sich die Konvergenz einer Reihe mit dem
Quotientenkriterium nur folgern 1a8t, wenn die Existenz einer Zahl g < 1 mit der
Ayt

Eigenschaft

< ¢ von einem gewissen » an nachweisbar ist. Nur aus 2L a <1
kann man mcht auf Konvergenz schlieBen. Das zeigt das Beispiel der harmonischen
Relhe_

=] < 1 fiir alle » erfiillt ist (eine Zahlg < 1, so daB

s 1 < g fiir alle v gilt, glbt es offenbar nicht). Diese Bemerkung gilt sinngemiB

auch fiir das folgende Wurzelkriterium.

Satz 2.12 (Wurzelkriterium): Wenn fiir eine Reihe Za mit positiven Gliedern von
einem gewissen v an

| Va,<q, 0<q<1, : - (2.15)
gilt, so ist die Reihe konvergent. Gilt jedoch von einem gewissen v an (/ a, = 1, so ist
die Reihe divergent.

0
Beweis: Es sei (2.15) und damit a, < ¢” fiir » = n erfiillt. Dann ist die Reihe ¥ ¢”

v=n
eine Majorante zum Reihenrest Y a,, also ist dieser und nach Satz2.1 auch die
v=n
Reihe selbst konvergent. Wenn jedoch von einem gewissen » ab (/av = 1 gilt, so ist
a, = 1; daher ist lim @, = 0 nicht erfiillt. m

00

Oft ist es zweckmaBig, das Wurzelkriterium in der sogenannten Limesform zu
verwenden. Wenn namlich 11m \/ a, existiert und kleiner als 1 ist, so existiert auch eine

Zahl ¢ < 1, so daB (2A15) erfﬁllt ist (das folgt unmittelbar aus der Definition des
Grenzwerts einer Zahlenfolge). Im Fall Iim Va - | dagegen gilt von einem gewissen

v ab \/ a, = 1. Entsprechendes gxlt wenn hm o, existiert. Somit haben wir

Satz 2.13 (Quotienten- bzw. Wurzelkrztermm in Lzmeg"orm): Fiir eine Reihe Za

S. 2.12

v S.2.13

! ... a, N =0
mit positiven Gliedern mége lim “1” bzw. lim %/ a, existieren. Wenn
rv Gy oo
lim 2 <1 bow, lim e, < 1 (2.16)
>0 v v 00 U

gilt, so konvergiert die Reihe; wenn

lim 2L y >1 bzw. lxm\/a>l .

v 0 -0

gilt, so divergiert die Reihe.

DL _ | baw. lim */a, = 1, so kann man weder auf

Konvergenz noch auf Dlvergenz der Reihe schheBen

Bemerkungen: 1) Gilt llm

2) Die beiden Kriterien sind nicht gleichwertig. Aus der Existenz von hm \/ a,
v+l

folgt die von lim
¥ 00

(und beide Grenzwerte stimmen iberein), aber mcht um-

2 Schell, Reihen



18 2. Reihen mit konstanten Gliedern

gekehrt, so daB das Wurzelkriterium weiter reicht (siche dazu Beispiel 2.10). Aller-

dings 148t sich hm :1 oft leichter ermitteln als lim \/ a,
v - 00
Beispiel 2.7: Fiir dieReihe 3 ="o— = 1 + 1 g2t St
il L2l Tt Tee

ap 0+ DI v+ 1 1

4, T+ )l 2+ D@ +2) A+ D)

+ ...ergibtsich

1 Ay+1

Esist ;’1 <7 bzw. lim = 0. (2.14) bzw. die erste der Ungleichungen (2.16)
r—s 0

ist somit erfiillt, die Reihe ist koﬁvergent
2 3 4
Beispiel 2.8: Fir die Reihe - ( i 1) _3. (3) + (l) + (—9—) F o st

3y — 2 5 8 11
Va, = §: + } Es ist{/a, < —fur » = 3 bzw. lim \/a = E;die Reihe ist nach
yoo
Satz 2.12 bzw. Satz 2.13 konvergent.
1 1 1 1 .
Beispiel 2.9: Fiir die Reihe Z GG D 14 + TT kS W + ... ist

avﬂ_(3v—2)(3v+1)_3v——2_1_
a,  Gr+D@+4) Iw+4 | 3v+4°

existiert keine Zahl ¢ <'1 von der Art, dafB3 :1“ < g von einem » an gilt, denn

Hier ist &

< 1, jedoch

—?w—é_—z- wird mit wachsendem » beliebig klein. Das Quotientenkriterium versagt also
hier, und ebenso ist es mit dem Wurzelkriterium. Man kann allerdings — wie im
Beispiel 2.3 — direkt iiber die Teilsummen zeigen, daB die Reihe mit der Summe }
konvergiert.

- R L1 1 1 1 1 1
Beispiel 2.10: Fiir die Relhe? tartort 5 + 5 + 7% + .
1 1 .
(azu =3 Q21 = Gz M 1923 3,...) ist
é fir v = 2u,

Va =

%fﬁrv=2[u—l,

so daB nach dem Wurzelkriterium auf Konvergenz der Reihe geschlossen werden
kann. Dagegen ist

13\ 9 .
wne [7(3) T2 =2 b
g l@)”fﬁrmzy—l Y <2 e v=2pu—1.
33 : =3
y+y ’

Daher gibt es weder eine Zahl g < 1, so daB die Bedingung < gfiiralle» von

Ay+1q

einem gewissen an erfiillt ist, noch gilt —— 2> 1 von einem » ab. Mit dem Quotien-

tenkriterium ist also keine Aussage iiber die Konvergenz der Reihe méglich.
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2.4.4. Das Integralkriterium

Das folgende Kriterium stellt einén Zusammenhang zwischen der Konvergenz einer
unendlichen Reihe und eines uneigentlichen Integrals mit der oberen Grenze oo her
(vgl. Band 2, 11.1.).

Satz 2.14 (Integralkriterium): Wenn sich die Glieder einer Reihe 2 a, mit positiven

Gliedern als Funktionswerte a, = f(v), v = 1, 2, ..., einer im Intermll x = 1 stetigen,
monoton fallenden Funktion f(x) darstellen lassen, so ist die Reihe genau dann konver-
0

gent, wenn das Integral f f(x) dx konvergiert.
; :

Bild 2.1

Bild 2.1 veranschaulicht die Voraussetzungen von Satz 2.14. Auf den Beweis sei

verzichtet. Erwiahnt sei nur, daB er gleichzeitig fiir die Summe s der Reihe Z a,

v=1

die folgenden, im allgemeinen ziemlich groben Schranken liefert:
0 0
ay + [f(x)dx £ 5 < ay + [ f(x) dx. @.17)
2 1

Beispiel 2.11: Da die Funktionen f(x) = ;1; fiir jedes « > 0im Intervalll < x < ©

stetig und monoton fallend sind und jd—xf fiir « > 1 konvergiert (vgl. Band 2,
1 0

11.1.), folgt nach dem Integralkriterium daB jede Reihe Z L mit« > 1 konvergiert.

Fiir 0 < & < 1 dagegen divergiert j—— und daher auch Z — (vgl Beispiel 2.6).

Die Summe s der Relhe Z — llegt nach (2.17) zwischen 1 + f—— und 1 + f

also-g-<s<2

2.5. Ein Kriterium fiir alternierende Reihen

Unter den Reihen, deren Glieder nicht alle dasselbe Vorzeichen haben, spielen die
alternierenden Reihen eine besondere Rolle. Man versteht darunter Reihen, bei
denen je zwei aufeinanderfolgende Glieder entgegengesetzte Vorzeichen haben (es
2%

S. 2.14
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gilt also a,a,,, < 0 fiir v = 0, 1, 2, ...). Fiir solche Reihen ist schon seit langem das
folgende einfache Konvergenzkriterium bekannt.

0
Satz 2.15 (Leibnizsches Konvergenzkriterium): Eine- alternierende Reihe Y. a, ist

»=0
konvergent, wenn die Folge {|a,|} - also die Folge der Absolutbetriige der Glieder —
eine monotone Nullfolge ist.

Beweis: Ohne Beschrinkung der Allgemeinheit kénnen wir ap > 0 annehmen, so daB a,, > 0,
aym+1 < Oftirallem = 0, 1, 2, ... gilt. Da die Betrige |a,| mit wachsendem » nicht zunehmen, ist also
Ay + A1 = 0, Gape1 + Gomiz < 0, und somit folgt fiir die Teilsummen mit ungeradem bzw.
geradem Index Symes = Sam-1 + (G2m + G2me1) Z S2m-15 S2m+2 = S2m + (Q2me1 + G2mi2) = Sop.
Das heifit, daB die Folge {s2,+;} monoton wichst, die Folge {s,,} monoton fillt. Da auBerdem
Som+1 = Sam + Gams1 < San, fUr alle m gilt, ist 5, die kleinste, s, die groBte aller Teilsummen: es gilt
51 = sy, = 5o fiir alle » (siehe Bild 2.2). \

Il (| Ll |
T LE—— T T

0 s=ay+a, s S 5, 5 Sp=0p Bild 2.2

Die Folgen {sz+1}, {sz,,,} sind also nicht nur monoton, sondern auch beschrénkt. Daher konver-

gieren sie: 11m Som+y = 8 11m sz,,, = s”. Weil {|ay|} und damit auch {a,} eine Nullfolge sein soll, ist
-0
s =5 = hm (SZMH - szm) = lim ay,+; = 0,also s = s”; beide betrachteten Teilsummenfolgen
- 0

streben gegen den gleichen Grenzwert. Daher existiert auch lim s, = s = s’ = 5”, d. h., die Reihe
Z a, konvergiert mit der Summe s. W .
=,
Zusatzbemerkung zu Satz 2.15: Unter den Voraussetzungen von Satz 2.15 geniligt der
Betrag des n-ten Reihenrestsder alternierenden Reihe der Abschitzung |r,| < |@y+4],
und r, hat dasselbe Vorzeichen wie a,,. Ersetzt man also die Reihensumme durch
eine Teilsumme der Reihe, so hat der Fehler das gleiche Vorzeichen wie das erste
vernachlassigte. Glied der Reihe und ist dem Betrag nach kleiner als der Betrag
dieses Gliedes. Anders gesagt: die Reihensumme liegt stets zwischen zwei aufeinander-
folgenden Teilsummen.
Wir zeigen das fiir ungerades n, n = 2m — 1 (fiir gerades n verlauft alles analog).
Wegen (2.7), (2.9) ist rom—y = @2 + @ams1 + Gamsz2 + ..., oder, da man nach
Satz 2.3 in beliebiger Weise Klammern setzen darf,

Tom-1=(G2m + @2 me1) + (G2miz + Comes) + . =02 + (Game1 + Gamen) + ..o

Die Klammern in der ersten Darstellung sind alle nicht-negativ, in der zweiten alle
nicht-positiv (siche obigen Beweis), und wegen lim @, = 0 sind nicht alle gleich 0.

Y= 00
Dabher ist 0 < ryp—1 < G2y, also gilt [Fop-y| < |@2n|, und rp,—; ist wie a,,, positiv.
Die vorletzte Ungleichung kénnen wir infolge r5,-1 = § — S2,-; auch in der Form
Som-1 < 8§ < Sopm-y + az,,. = Som schreiben d. h., s liegt zwischen §,,,—; und $5,,.

Beispiel 2.12: Die Relhez( yt—=1- % % - % + ... ist konvergent, da

{ ! } eine monotone Nullfolge ist. Ihre Summe ist In 2 (siche 4.3.2., Formel (4.14)).

Beispiel 2.13: Die als Leibnizsche Reihe bekannte Reihe

1 1 1 1
v—-1___ —_ e
z( 1 =l=g+z-a+.
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2 1__ i } monoton gegen 0 strebt. Thre Summe ist % (siche 4.3.2.).
Die Reihen in beiden Beispielen konvergieren sehr langsam, d. h., die Betrdge der
Glieder nehmen langsam ab, und man benétigt eine Teilsumme mit sehr vielen Glie-
dern, um durch sie die Reihensumme einigermafBen brauchbar anzundhern. Nimmt
man z. B. nur 5 bzw. 6 Glieder, erhilt man in Beispiel 2.13 wegen ss = 0,83...,
S = 0,74... auf Grund obiger Zusatzbemerkung lediglich das Ergebnis, daB die
Reihensumme s zwischen 0,74 und 0,84 liegt. Sogar wenn man 50 Glieder heranzieht,
unterscheiden sich die Schranken fiir s etwa um 0,01, so daB die zweite Dezimale
von s noch unsicher bleibt. Deshalb ist die Leibnizsche Reihe zur praktischen Be-
rechnung ihrer Summe nicht geeignet.

Beispiel 2.14: Die Reihe E (= @ =

nizschen Konvergenzkntenums und ist daher konvergent. Fiir die Teilsummen ss
und s¢ erhilt man auf vier Dezimalen genau ss = 0,9694, ss = 0,9687. Nach der
Zusatzbemerkung zu Satz 2.15 ist daher die Reihensumme auf drei Dezimalen genau

gleich 0,969 (der exakte Wert ist —— ~0,96895; siche dazu Beispiel 5.5).

ist konvergent, da {

- g erfiillt die Voraussetzungen des Leib-

32
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Fiir den Fall, daB3 die Glieder einer Reihe nicht alle (bis auf eventuell endlich viele
Ausnahmen) dasselbe Vorzeichen haben und die Reihe nicht alterniert, stehen keine
speziellen Konvergenzkriterien zur Verfiigung. Hier wird man im allgemeinen ver-
suchen festzustellen, ob die Reihe absolut konvergiert.

Definition 2.3: Eine Reihe Z a, heifit abrolut konvergent, wenn die (aus den absoluten

Betrigen ihrer Glieder gebzldete) Reihe Z la,| konvergiert.

Beispiel 2. 15 DlC Reihe Z (=1t — konverglert wihrend die Reihe aus ihren

Betrigen, Z —, divergiert (swhe Belsplele 2.12 und 2.4). Dagegen ist sowohl die Reihe
0 1 \‘ v

> (—- —3—) als auch die Reihe Z (—5—) (als geometrische Reihen mit ¢ = —%

y=01\ - v=0 :

S v
bzw. g = —;—) konvergent. Daher ist ;0 ( - %) eine absolut konvergente Reihe,

00
wihrend Y (—1)*! —:— nicht absolut konvergiert.
v=1

0
Satz 2.16: Eine Reihe Y a, konvergiert, wenn sie absolut konvergent ist.
- »=0

Beweis: Bei absoluter Konvergenz existiert nach Satz 2.6 zu jedem ¢ > 0 eine Zahl
N(e) mit |@yeq] + |@piz] + ... + |ans,] < & fiir alle n > N(¢) und fiir jedes p = 1.
Wegen der verallgemeinerten - Dreiecksungleichung |@p.q + Gpiz + ... + dpipl
< |@pis] + |Gpia] + .. + |Gpep| wird fiir diese 7 und p.auch die linke Seite der Un-
gleichung kleiner als ¢, woraus, wiederum nach Satz 2.6, die Konvergenz der Reihe

0
> a, folgt. m
=0 .

D. 2.3

S. 2.16
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Eine Reihe Z a, mit Gliedern beliebigen Vorzeichens kann also auf Konvergenz

untersucht werden, indem man die Konvergenzkriterien aus 2.4 auf Z |a,| anwendet.
So ergeben sich insbesondere folgende Sitze:

Satz 2.9a (Majorantenkriterium): Eine Reihe Zav ist (absolut) konvergent, wenn

zwischen ihren Gliedern und den Gliedern einer als konvergent bekannten Reihe Z b

v

mit positiven Gliedern von einem gewissen v an die Beziehung |a,| < b, gilt. =
Satz 2.13a (Quonenten- bzw. Wurzelkrttertum in Limesform): Fiir eine Reihe Z a,
v=0
vooo | Gy v
.| Gy O o
lim |2 | <1 bzw. Lim¥/]a < 1 (2.18)
v | Ay v

gilt, so konvergiert die Reihe (absolut); wenn hm LIS bzw. lim '\/m =1
v

gilt, so divergiert die Reihe. )

v

Die absolute Konvergenz einer Reihe ist eine Eigenschaft, die fiir das Rechnen mit
der Reihe wesentliche Konsequenzen hat. Darauf wird in den nachsten beiden Unter-
abschnitten eingegangen.

2.7.  Umordnung von Reihen

Eine absolut konvergente Reihe verhilt sich grundsétzlich anders als eine nicht-
absolut konvergente Reihe in bezug auf die Umordnung ihrer Glieder. Unter der
@
Umordnung der Glieder einer Reihe 3 a, versteht man die Herstellung einer neuen
v=0
Reihe Z by, die alle Glieder a, in einer beliebigen anderen Reihenfolge enthalt, wobei
jedes b,‘ m1t genau einem a, iibereinstimmt.
Das folgende Beispiel zeigt, wie sich die Umordnung der Glieder einer konvergenten
Reihe auf deren Summe auswirken kann.

o -
Beispiel 2.16: Die Reihe 3 (—1)"* % ist konvergent (siehe Beispiel 2.12); ihre Sum-
v=1

me sei mit s bezeichnet (wegen der Zusatzbemerkung zu Satz 2.15 gilt sicher s & 0).
Die aus ihr durch Multiplikation mit dem Faktor % entstehende Reihe hat dann nach
Satz 2.4 die Summe }s. Aus

1 1 1 1 1 1 1 1

1_7+?_T+?_€+7—§+_§_—"'=S und
1 1 1 1 1
Ot 5 40—+ 0++0—=+0+ .. ==
ergibt sich durch Addition nach Satz 2.5
UFHL I YL IR S S S B
3727577 47972

Die links stehende Reihe entsteht durch Umordnung der Glieder der Reihe, von der
wir ausgegangen waren (der Leser mache sich das klar!), sie hat aber eine andere
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Summe als jene. Die Reihensumme héngt also davon ab, wie die Glieder aufeinander-
folgen (im Gegensatz zu einer ,,echten‘ Summe aus endlichen vielen Zahlen, fir die
das Kommutativgesetz gilt).

Definition 2.4: Eine konvergente Reihe Z a, mtt der Etgenschaft daf jede Reihe Z b,,
die durch Umordnung der Glieder der Rezhe Z a, entsteht, wieder konvergiert und die

gleiche Summe wie diese hat, heifit unbedmgt konvergent. Eine konvergente Reihe, die
diese Eigenschaft nicht hat, heifit bedingt konvergent.

Die Reihe in Beispiel 2.16 ist also bedingt konvergent. Wir stellen nun einige
Eigenschaften bedingt bzw. unbedingt konvergenter Reihen zusammen, aus denen
hervorgeht, daB ein Verhalten wie in Beispiel 2.16 nur bei nicht-absolut konvergenten
Reihen eintritt.

Adlich
he

Satz 2.17: Eine absolut konvergente Reihe ist unbedingt konvergent.

Satz 2.18: Wenn eine Reihe 2 a, bedingt konvergiert, so ist sowohl die aus den positiven
Gliedern gebildete als auch dte aus den negativen Gliedern gebildete Reihe divergent.
Satz 2.19: Wenn eine Reihe nicht-absolut konvergiert, so ist sie bedingt konvergent.

Anders formuliert hei3t das, daB jede unbedingt konvergente Reihe auch absolut
konvergiert. In Verbindung mit Satz 2.17 erkennt man also, daB die Begriffe ,,absolut
konvergent* und ,,unbedingt konvergent* den gleichen Umfang haben.

0
Satz 2.20 (Umordnungssatz von Riemann): Wenn eine Reihe X' a, bedingt konvergiert,

v
so kann man durch Umordnung ihrer Glieder eine konvergente Reihe erhalten, die eine
beliebige Zahl s zur Summe hat. Ferner kann man auch so umordnen, daf3 man eine
gegen + o0 bzw. — co divergierende Reihe erhiilt. .

2.8. Multiplikation von Reihen

In 2.1. wurde gezeigt, daBl man zwei konvergente Reihen gliedweise addieren und
subtrahieren darf. Wir wollen nun eine Vorschrift fiir die Multiplikation zweier kon-

0 0
vergenter Reihen Y a, und Y b, entwickeln und lassen uns dabei einmal von der

=0 »=0
Multiplikation zweier endlicher Summen leiten. Dann hitten wir jedes Glied der
ersten mit jedem Glied der zweiten Reihe zu multiplizieren. Alle dabei entstehenden
Produkte sind in nachstehender unendlicher Matrix enthalten:

[ A
Gobg  agb;  agh, aghy e
a1b0/a,‘,/ab/ e
- s
b, y 1/ z/azba/ OGO
aby © azb azby” azby e
e / ye A

D. 2.4

S. 2.17
S. 2.18

S. 2.19

S. 2.20
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Die Elemente dieser Matrix kénnen in verschiedener Weise als Glieder ¢, der ,,Pro-
duktreihe* angeordnet werden. Es erweist sich als zweckmiBig, jeweils Summen aus
mehreren Elementen der Matrix zu einem Glied zusammenzufassen, beispielsweise
die Summen aller Elemente, die in einer (durch Pfeile angedeuteten) Diagonalen
stehen. Dann wird

Co = dobo, ¢y = aohy + aiby, cz= ah, + aiby +.a3bo,
allgemein
n
=3 aby, n=012 .. ° (2.19)
»=0

(die Indexsumme in jedem Summanden von ¢, ist gleich n).

Es bleibt zu fragen, unter welchen Voraussetzungen die Re]he Z ¢, konvergiert

Iz
und ob es iiberhaupt sinnvoll ist, sie als Produktreihe der Reihen 2 a, und Z b, an-

=0 v=0
zusprechen. Die Antwort gibt der folgende Satz.

Satz 2.21: Es seien Z av, 2 b, zwei absolut konvergente Reihen mit den Summen s, t.

yu

Dann konvergiert die Reihe 2 ¢, mit ¢, nach (2.19) absolut und hat die Summe st.
n=0

@

Da’die Reihe Y ¢, die Summe st hat, ist es tatsichlich sinnvoll, sie die Produkt-
n=0

reihe aus den beiden gegebenen Reihen zu nennen. Die Produktreihe mit dem allge-

L
meinen Glied ¢, nach (2.19) nennt man auch Cauchysches Produkt der Reihen Y’ a,

'——0
und Z b,. Die Behauptung des Satzes gilt sogar allgemeiner fiir jede Reihe 'Z cny

deren Gheder durch eine beliebige Anordnung der Elemente der oben angegebenen
unendlichen Matrix entstehen. Die Bevorzugung des Cauchyschen Produkts erklart
sich aus seiner Sonderstellung bei der Multiplikation zweier Potenzreihen.

Aufgaben:

Aufgabe 2.1: Zeigen Sie fiir folgende Reihen an Hand der Definition, daB sie konver-
gieren, und bestimmen Sie ihre Summe!

2y —1

1 0
)Z NN ET R

y=

Aufgabe 2.2: Untersuchen Sie das Konvergenzverhalten folgender Reihen mit Hilfe
des Majoranten- bzw. Minorantenkriteriums!

© 1 0 1 © ,I
)Z »? +1’ b)yg'l 1,(-,;+])’ c),,zzz Inv’ d),zl »
L » cJ 1
S
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Aufgabe 2.3: Stellen Sie mit dem Quotientenkriterium fest, ob folgende Reihen kon- *
vergieren oder divergieren!

© oy w v ?

VL3 DES C)Z " @) d)z \/
w3 2v i ® 31

e)ﬁg}‘{—f, DIt 9r

® 10-11...(10 + v)
h),go 3..2v+1)
Aufgabe 2.4: Stellen Sie mit dem Wurzelkriterium die Konvergenz bzw. Divergenz *
folgender Reihen fest!
0 v 0 1 0 2" -] v
a)ygl-éT’ b)v§1_vv_’ c)vgol_-—i-_zw, Y 1

=1 (3 _ _)"
v

c &, 2 £
e)’glv sin < ) Z 2v T3
Aufgabe 2.5: Verwenden Sie das Integralkriterium zur Konvergenzuntersuchung fol- *

gender Reihen!

9% o BE

o) v
)Z v(lnv)z’ )yzl\/4 +1° f,=11+v2'

Aufgabe 2.6: Weisen Sie mit dem Leibnizschen Konvergenzkriterium die Konvergenz #
der folgenden alternierenden Reihen nach!

2 (-1 = (1
)2 03 +1° b),z'l \/v(v+1)’
O3 (- ht

v=0

Aufgabe 2.7: Untersuchen Sie, ob folgende Reihen absolut oder nicht-absolut kon- *
vergieren!

(v + 1)3 ’ c)g“z vlnv

= (-1y
C)'g‘o 143

) , 41 2 (=1
9 C wE 2 s 9F e
d)i( ’)"

B || 1 1 1 1 1 1
e)vgo(_l)[z]?‘=l+?—'§+?7—+ﬁ—74?+—;755+...

([ov] bezeichnet die groBte ganze Zahl < «).



3. Funktionenreihen

3.1. Grundbegriffe

Im Abschnitt 2. betrachteten wir unendliche Reihen mit konstanten Gliedern, also
Reihen, deren Glieder reelle Zahlen sind. Wir wollen jetzt allgemeiner reelle Funktio-
nen einer reellen Variablen als Reihenglieder zulassen.

0
Definition 3.1: Eine Folge {f(x)},»=0,1,2, ..., bzw. eine Reihe Y. f,(x), deren Glieder
v=0

f(x) (reelle) Funktionen einer (reellen) Variablen x sind, die alle auf einer gewissen
Menge X definiert sind, heift eine Funktionenfolge bzw. eine Funktionenreihe.

Die Funktionenreihen, insbesondere ihre wichtigsten Vertreter, die Potenz- und
Fourierreihen, haben eine groBe praktische Bedeutung. Das geht aus den Abschnit-
ten 4. und 5. naher hervor Als erstes Beispiel einer Funktionenreihe konnen wir wieder

die geometrische Reihe Z q” (siche Beispiel 2.1) betrachten, wobei wir jetzt ¢ nicht
als eine fest Vorgegebene reelle Zahl sondern als Variable auffassen; zur besseren
Hervorhebung dessen schreiben wir Z £

Setzt man in allen Gh'edern eine; :l?unktionenreihe fiir x eine Zahl x, € X ein, so
erhilt man die Reihe Z f(x0), die konstante Gheder hat. Wenn sie konvergiert (bzw.
divergiert), sagt man daB die Funktionenreihe Z f(x) in x, konvergiert (bzw. diver-

giert).

Definition 3.2: Die Menge M aller x € X, fiir die eine Funktionenreihe Z i (x) kon-
vergiert, heifit ihr Konvergenzbereich.

Fiir jedes feste x € M existiert also eine Zahl s(x) mit

lim s5,(x) = llm 2 fi(x) = s(x).

n—o

Das heif3t aber, daB die Summe einer Funktionenreihe eine in M definierte Funktion
s(x) ist. Man nennt sie Summenfunktion (auch kurz: Summe) der Funktionenreihe.

@
So besagen die Ergebnisse aus Beispiel 2.1, daB die geometrische Reihe > x” im Inter-

»=0

vall (—1, 1) konvergiert und dort die Summenfunktion s(x) =

1
T—% hat. Im allge-

meinen kann man aber nicht erwarten, daB3 die Summenfunktion s(x) einer in einem
Intervall M konvergenten Funktionenreihe eine elementare Funktion ist. Stets aber
wird durch die Reihe eine Funktion s(x) in M definiert.

Beispiel 3.1: Die Reihe Z — ist, wie aus den Beispielen 2.6 und 2.11 hervorgeht, fiir

alle x > 1 konvergent und fur alle x < 1 divergent. Die Summe der Reihe im Intervall
= (1, o0) ist unter dem Namen Riemannsche Zetafunktion {(x) bekannt.
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©
Beispiel 3.2: Die Reihe 3 % ist fiir jedes x konvergent. Fiir jedes feste x ist naimlich
07! ,

v=

=0,

i [ I 1
o (v+l)"v! v+ 1
und daraus folgt nach dem Quotientenkriterium die Konvergenz. Es ist s(x) = e*
[siehe (4.11)].

= |x| lim

1 . .
Beispiel 3.3: Fiir die Glieder der Reihe Z —— giltwegencos »x < 1 fiir alle x
1 y=2 ¥ + COS¥X 1

, so daB, welchen Wert x auch hat, die Reihe Z

e
v+cosvx_v+l v+ 1
1 1 .
= Z — eine Minorante zur Reihe Z ———xst. Nach Satz 2.10 ist diese Reihe
V=3 7 y=2 ¥ + COS ¥,
daher fiir kein x konvergent.

3.2. Der Begriff der gleichmiBigen Konvergenz

Wenn eine Funktionenreihe Z f(x) fiir alle x aus einem Intervall 7 konvergiert

und die Summe s(x) hat, so glbt es nach Definition der Konvergenz fiir alle x e I
und fiir jedes ¢ > 0 eine naturhche Zahl N, so daB ‘

Is(x) — s(x¥)| <& (€RY)
fiir alle » > N gilt. Dabei ist N im allgemeinen eine Funktion von ¢ und von x:
N = N(¢, x), d. h., daB (3.1) bei fest vorgegebenem ¢ zwar fiir jedes x € I erfiillbar
ist, sobald n > N ist, N jedoch im allgemeinen fiir verschiedene x unterschledhch
groB ausfallt.

Wir betrachten hierzu als Beispiel die Reihe Z x*(1 — x?) im Intervall [—1, 1].

¥=0
Die Funktionen f,(x) = x*(1 — x?)” sind in diesem Intervall definiert und stetig. Fiir
x = 0 ist f,(0) = 0 fiir alle » und somit die Reihe konvergent mit s(0) = 0. Fiir

0<|x] =1ist Z (1 — x%)" wegen 0 < 1 — x? < 1 eine konvergente geometrische
1

_ﬂ = —)—:2— ; daher konvergiert unsere Beispielreihe
fiir diese x ebenfalls und hat die Summe s(x) = 1. Die Reihe ist also im gesamten
betrachteten Intervall konvergent und hat dort die unstetige Summenfunktion

5 )_{1 fir0<|x| <1
V=0 firx =0.

Wir untersuchen nun, fiir welche n (3.1) erfiillt ist. Da es uns darauf ankomm
zu zeigen, wie x die Zahl N beeinfluBit, denken wir uns ¢ fest gewéhlt; jedoch seie < 1.
Fir x = 0ist (3.1) wegen s(x) — s,(x) = 0 stets erfillt. Fiir [x] < 1, x + 0 ist

(%) = x2 2(1 — X2y = x? %-‘—"—%: 1 — (1= x?)m,

Reihe mit der Summe

Die Ungleichung (3.1),
Is(x¥) = su(x)] = (1 = ¥*)y! <,
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ist fiir x = +1 fur alle » erfiillt, und fiir 0 < |x| < 1 dann und nur dann, wenn

1 .
(n+ DIn(l —x?) <Ine,d.h,,wegen0 <1 — x> < 1,wennn + 1 > _ne_2_ gilt.
: - In(1 — x?)
Als N kann daher die groB3te ganze Zahl dienen, die kleiner oder gleich —I——ILT -1
ist. Dieses N ist offenbar eine Funktion von ¢ und x. n(l - x?)

Nun kénnte man aber doch zunéchst annehmen, daB es unter allen diesen Zahlen
N(e, x) eine geniigend groBe, von x nicht mehr abhingige Zahl N*(¢) von der Art
gibt, daB (3.1) fiir alle x aus dem Intervall [—1, +1] gilt, wenn n > N*(¢) ist. Das ist
aber in unserem Beispiel nicht der Fall. Je naher namlich x bei 0 liegt, desto grofer ist
N(e,'x), und mit der Annidherung x — 0 wird N(e, x) beliebig groB, so daBl es keine
solche Zahl N*(¢) gibt. Die Abhéngigkeit der Zahl N von x 148t sich nicht beseitigen.
Das ist auch unmittelbar der Ungleichung (1 — x2)**! < ¢ zu entnehmen. Wenn diese
(bei festem &) fiir irgendeine Zahl x = x; und fiir alle n > N(e, x,) erfiillt ist, kann
man stets eine Zahl x, (mit |x,| < |x,|) bestimmen, so daB (1 — x3)*** > & fiir ge-
wisse n > N(e, x,) ausfallt.

Bild 3.1

Das Gesagte wird in Bild 3.1 veranschaulicht. Fiir jedes x # 0 gilt — bei beliebig
gewiahltem, positivem ¢ < 1 — von einem gewissen n an 0 < 1 — s5,(x) < ¢, d. h., die
Kurven y = s,(x) verlaufen von diesem » an innerhalb des Streifens 1 — e <y < 1.
Je niher x bei 0 liegt, desto groBer ist die Zahl n, von welcher an das eintritt. Keine
der Kurven y = s,(x) ist so beschaffen, daB sie fiir alle x # 0 in diesem Streifen
verbleibt. )

Durch die folgende Definition heben wir nun diejenigen konvergenten Funktionen-
reihen, fiir die es — im Unterschied zum eben betrachteten Beispiel — doch eine Zahl
N*(¢) der genannten Art gibt, besonders heraus.

Definition 3.3: Eine Funktionenreihe Y. f,(x) heifit in einem Intervall I gleichmdpfig
v=0

konvergent mit der Summenfunktion s(x), wenn zu jedem ¢ > 0 eine von x unab-
hdngige natiirliche Zahl N*(¢) existiert, so daf |s(x) — s,(x)| < ¢ fiir alle n > N*(¢)
und fiir jedes x € I gilt. Eine konvergente Funktionenreihe, die in I nicht gleichmdfig
konvergiert, nennt man ungleichmdpig konvergent in I.

Eine in 7 gleichmaBig konvergente Reihe ist in I offenbar auch im gewohnlichen
Sinne konvergent. Die zusétzliche Forderung bei der gleichmidBigen gegeniiber der
gewdhnlichen Konvergenz ist die, da3 die Ungleichung (3.1) fiir alle x € I von einem
gemeinsamen Index 7 an erfiillt sein soll. Der Fehler bei der Ersetzung der Reihen-
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summe durch eine Teilsumme s,(x) mit einem 7 > N*(¢) liegt daher bei einer in I
gleichmiBig konvergenten Reihe fiir alle x € I unter ¢ (siche Bild 3.2).

Yy
s(x)+€
y=5, (x]
S(x)—-& y=S(x)
> Bild 3.2
| %

Als Beispiel fiir eine gleichmaBig konvergente Reihe konnen wir die zuvor be-
‘trachtete Beispielreihe in einem Intervall [, 1] mit einem festen a > 0 wihlen; denn
‘Ine Ing
In(1— 2) Z In(l—x?)
P — 1ist, als N*(¢) geeignet. Fiir a = %, & = 0,05 ergibt sich

N*(0,05) = 9 d h., daB alle Funktionen s,(x) mit n = 10 fiir alle x € [i, 1] der Un-
gleichung 0,95 < s,,(x) < 1 geniigen (vgl. Bild 3.1). 2

Der folgende Satz gibt eine notwendige und hinreichende Bedingung fiir die gleich-
méBige Konvergenz einer Funktionenreihe in einem Intervall an, wobei nicht die
Kenntnis der Summe benutzt wird; er entspricht dem Cauchyschen Konvergenz-
kriterium.

wegen fiir a < x < 1ist die groBte ganze Zahl, die kleiner

oder glelch

o .
Satz 3.1: Eine Funktionenreihe Y. f,(x) ist genau dann gleichmdfig konvergent ineinem S. 3.1
. v=0
Intervall I, wenn zu jedem & > 0 eine von x unabhingige natiirliche Zahl N*(e) exi-
stiert, so daf
[far1(X) + fria(¥) oo+ frp()] < e (32)

fiir alle n > N*(¢) und fiir jedes p = 1 sowie fiir jedes x € I gilt.

Der Beweis des Satzes wird iibergangen. Von praktischer Bedeutung ist das folgende
hinreichende Kriterium fiir gleichmaBige Konvergenz das von Weierstrall stammt.

Satz 3.2: Eine Funktionenreihe Z f(x) ist in einem Intervall I gleichmafig konvergent S. 3.2
wenn zwischen ihren Gltedern und den Gliedern einer konvergenten Reihe Z a, die
Beziehung | f(x)| < a, fiir alle x € I gilt.

Die Konvergenz der Reihe in 7 ergibt sich bereits aus Satz 2.9a; die weitergehende
Aussage von Satz 3.2 liegt darin, daB die Konvergenz gleichméBig ist. Der Beweis
verlauft entsprechend zu dem von Satz 2.9.

w
Beispiel 3.4: Die Reihe 3, ;lfsin yx ist fiir alle x gleichméBig konvergent, weil

© 1
—- konvergiert. Allgemeiner ist die
v

=

w
Reihe ¥ (x, cos »x +f3, sin »x) sicher dann gleichmaBig konvergent fiir alle x, wenn die
v=1

0 0 5
Reihen ¥ |ov,| und ¥ |B,| konvergieren (denn es ist [, cos vx + B, sinvx| < |a,] + [B,]).
v=1 »=1
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3.3. Siitze iiber gleichmiiBig konvergente Reihen

3.3.1.  Stetigkeit der Summenfunktion

Die folgenden Sitze lassen die Bedeutung der GleichmaBigkeit der Konvergenz fiir
eine Funktionenreihe erkennen.

Das Beispiel aus 3.2 zeigt, daB3 eine konvergente Funktionenreihe mit stetigen
Gliedern keine stetige Summenfunktion zu haben braucht. Der Satz, daBl eine
endliche Summe stetiger Funktionen wieder stetig ist, darf also nicht auf Funk-
tionenreihen tibertragen werden.

Jedoch gxlt
Satz 3.3: Wenn die Glieder einer Funktionenreihe Z f(x) in einem Intervall I stetig

sind und die Reihe in I gleichmdpig konvergiert, so zst ihre Summenfunktion s(x) in I
stetig.

Aus dem Satz folgt, daBl eine konvergente Funktionenreihe mit in I stetigen Glie-
dern und unstetiger Summenfunktion in I ungleichmaBig konvergent ist. Anderer-
seits sind ungleichmaBig konvergente Reihen (mit stetigen Gliedern) bekannt, deren
Summenfunktion stetig ist; die GleichmaBigkeit der Konvergenz ist also keine not-
wendige Bedingung hierfiir.

Beweis zu Satz 3.3: Wir wihlen x € I, x + h e I, und haben zu zeigen, daB die Dif-
ferenz s(x + h) — s(x) beliebig klein wird, wenn /4 hinreichend klein ist. Dazu gehen
wir von der. Darstellung

s(x + h) — s(x) = (s(x + h) — s,(x + h)) — (s(x) — s4(x))
+ (si(x + h) = s,(x))
aus. Wegen der gleichméBigen Konvergenz der Reihe gibt es zu jedem ¢ eine Zahl
N*(g), so daB [s(x) — s,(x)] < £ fir alle n > N*(e) und fiir jedes x e I gilt. Wihlt
man nun ein festes n > N*(e), so giltauch [s(x + &) — s,(x + h)| < —3- und da s,(x)
als Summe von in I stetigen Funktionen selbst in I stetig ist, existiert zu unserem &

eine Zahl d(¢) derart daB |s,(x + h) — s,(x)| <= erfullt ist, wenn |h| < . Es ergibt
sich daher

[s(x + h) — s(x)|
< IsCx + h) = sy(x + M)+ [s(x) — 5, (x)l + [s(x + h) = s5,(x)|
& E ] _

<ztztz=e

fiir alle x € I, sofern |h| < 6 gilt. Damit ist die Stetigkeit der Funkion s(x) in I be-
wiesen. W

Die Behauptung von Satz 3.3 kann auch in der Form

fim F 70 = ¥ £t = 5 lm ), xxoel, 63
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oder
lim lim s,(x) = s(xXo) = lim lims,(x), x, xo€eT, 33)

X Xo N0 n- X-xq

geschrieben werden, d. h., daB unter den Voraussetzungen von Satz 3.3 die Grenz-
iberginge n — oo (,,Summation®) und x — x, vertauscht werden diirfen.

3.3.2.  Gliedweise Integration ,

Bekanntlich darf man eine Summe stetiger Funktionen gliedweise integrieren. Bei
einer beliebigen Funktionenreihe ist dieses Vorgehen nicht gestattet, aber es gilt
©
Satz 3.4: Wenn die Glieder einer Funktionenreihe Y, f,(x) in einem Intervall I stetig sind S. 3.4
»=0
und die Reihe in I gleichmdfig gegen s(x) konvergiert, so gilt fiir beliebige a, b € I

b w b
: [s(x) dx = Eo [ ) dx. (3.4

Die Voraussetzungen dieses Satzes sind die gleichen wie in Satz 3.3. Daher folgt
schon aus diesem, daB die Summenfunktion s(x) — als in I stetige Funktion - iiber
[a, b] integrierbar ist. Die weitergehende Aussage von Satz 3.4 liegt darin, daB auch die
gliedweise Integration der Reihe gestattet ist, d. h., die durch gliedweise Integration

b

entstehende Reihe konvergiert und hat f s(x) dx zur Summe.

a

Beweis: Wegen der gleichméBigen Konvergenz der Reihe Z f(x) gibt es zu jedem

¢ > 0 eine von x unabhingige Zahl N*(¢), so daB [s(x) — s,,(x)f < = i a fiir alle
n > N*(e) und fiir jedes x € I gilt. Daraus folgt
j (500) — 5,06 dv| = f 1569 = 8,91 dx| < [=gr b —al = ¢

fiir alle n > N*(e), oder in anderer Schreibweise

<e.

b P 3
[ s(x) dx =2 [ fx) dx

Da ¢ beliebig klein gewihlt werden kann, strebt mit n — co die Differenz auf der
linken Seite der Ungleichung gegen 0; mithin gilt (3.4). m

Zusatz: Unter den Voraussetzungen von Satz 3.4 ist die durch gliedweise Integration
entstehende Reihe Z f f() dt, inder die obere Grenze x € I in den Integralen variabel

ist, ebenfalls glelchmaBng konvergent in I. Das ergibt sich sofort aus dem vorstehenden
Beweis.
Aus der Form
b

b 0 (=<
[ (Eo £ dx) =3 [fx)dx (G.4)

»=0



o

32 3. Funktionenreihen

fiir (3.4) entnimmt man, daB auch Satz 3.4 eine hinreichende Bedingung fiir die Ver-
tauschbarkeit zweier Grenzprozesse, namlich der Integration und Summation, be-
inhaltet.

3.3.3.  Gliedweise Differentiation

Bei der gliedweisen Differentiation liegen die Verhiltnisse etwas anders als bei der
gliedweisen Integration. Die gleichmédBige Konvergenz einer Funktionenreihe mit
differenzierbaren Gliedern ist noch nicht hinreichend fiir die ‘Ausfiihrbarkeit der

sin vx
(Bei-

spiel 3.4), die fiir alle x gleichméaBig konvergiert und deren Glieder fu.r alle X dlfferen-

X cosvx
zierbar sind. Die durch gliedweise Differentiation entstehende Reihe 2 v geht

]
gliedweisen Differentiation. Ein Beispiel hierfiir liefert die Reihe 2

aber z. B. fir x = 0 in die harmonische Reihe tiber, ist also in x = 0 noch nicht
einmal konvergent. Der folgende Satz formuliert eine hinreichende Bedingung dafiir,
daB gliedweise Differentiation gestattet ist.

Satz 3.5: Wenn die Glieder einer Funktionenreihe Z f(x) in einem Intervall I stetig
=0
differenzierbar sind, die Reihe in I mit der Summe s(x) konvergiert und die durch glied-
weise Dzﬁ’erenttatzon entstehende Reihe Z fi(x) in I gleichmdpig konvergiert, so ist
s(x) in I differenzierbar, und es gzlt S
s'(x) = Z 1) (3.5)

fir alle x € I.

Zusatz: Unter den angegebenen Voraussetzungen ist die Reihe 2 f (x) in I gleich-
miéBig konvergent.

Beweis: Wir setzen Z fr(x) = a(x), x € I. Ist a € I fest, x variabel, so ist nach Satz 3.4
die ghedwelse Imegranon der Reihe 2 f» (x) gestattet, und man erhilt

[otey dt = I  riwar = £ (509 - £(@)

= £ 09— 5, (@ = s3) - o).

Das auf der linken Seite stehende Integral ist, da o(x) nach Satz 3.3 stetig in Iist, in J
nach x differenzierbar, also auch s(x) — s(¢) und somit s(x), und die Differentiation
liefert o(x) = s'(x), x € I, womit der Satz bewiesen ist. ®
Die im Zusatz stehende Behauptung folgt aus dem Zusatz am Ende von 3.3.2.
Auch Satz 3.5 beinhaltet, wie schon die Sitze 3.3 und 3.4, eine hinreichende Be-
dingung fiir die Vertauschbarkeit zweier Grenzprozesse, namlich der Differentiation
und der Summation.

00
Beispiel 3.5: Die Reihe ), cosavx ist fiir alle x konvergent (nach Satz 3.2 sogar
v=1
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gleichmaBig), ihre Glieder besitzen fiir alle x stetige Ableitungen, und die durch glied-

. . o . sin
weise Differentiation entstehende Reihe > (— =

) konvergiert gleichmaBig fiir
. v=1
alle x (Beispiel 3.4). Mithin gi]t fiir alle x

2 cosvx)’ = smvx
(2 '—3) = - 2

v=1 ¥

Aufgaben:

0
Aufgabe 3.1: Zeigen Sie, daB die Reihe Y (x” — x**') in jedem Intervall [0, @] mit *

i»=0
0 < a < 1 gleichmiBig, jedoch im Intervall [0, 1) ungleichmaBig konvergiert!

x2
Aufgabe 3.2: Bestimmen Sie fiir die Reihe Z _(l—-l_—-xz_)"ein N(e, x),sodaB (3.1) fiir
alle n > N(e, x) und fiir jedes x erfullt ist. Zelgen Sie weiter, da man in einem Inter-
vall 7, das x = 0 enthélt, N(e, x) nicht durch ein (von x unabhéngiges) N*(¢) ersetzen
kann, die Reihe also in I ungleichmaBig konvergiert.

*

Aufgabe 3.3: Zeigen Sie, daBl die Reihe 2 ( 1) im Intervall [0, c0) gleichméBig =*
konvergiert!

Anleitung: Benutzen Sie Satz 3.1.
Aufgabe 3.4: Weisen Sie mit Hilfe des Kriteriums von WeierstraB (Satz 3.2) nach, =

daB folgende Funktionenreihen in den angegebenen Intervallen gleichmiBig konver-
gent sind!

op3 °°j”‘ (-, BT i, (~o0, );
) Z T—-l:v_x“_’ [0, o).

Anleitung zu c¢): Beachten Sie den Maximalwert der f,(x) im angegebenen Intervall!
‘ sin 2*x | sin 3*x
Pz 32

a) gliedweise integriert, b) gliedweise differenziert werden?

Aufgabe 3.5: Darf die Reihe sinx +

3 Schell, Reihen



4. Potenzreihen

4.1. Das Konvergenzverhalten einer Potenzreihe

4,1.1.  Begriff der Potenzreihe

In Band 2, Abschnitt 6.3., wird der Ta'ylorsche Satz behandelt, und es wird gezeigt,
daB unter gewissen Voraussetzungen eine Funktion f(x) in einer Umgebung von
x = 0 ndherungsweise durch

f(0 @ (0
0) +—— () x + 2(,) + ... +£—n—('—)x" 4.1)

dargestellt werden kann. (4.1) kann als n-te Teilsumme einer Reihe aufgefalt werden,

" deren Glieder Potenzfunktionen mit konstanten Vorfaktoren sind.

Definition 4.1: Eine Funknonenrezhe der Form 2 ¢, X" (c reelle Zahlen) nennt man

eine reelle Potenzreihe; dze ¢, heiflen ihre Kogﬁz:enten

Man nennt auch eine Reihe Z ¢,(x — xo)’, xo beliebig reell, eine Potenzreihe und

X, ihren Mittelpunkt. Eine solche ist jedoch von der in der Definition genannten
nicht wesentlich verschieden, denn sie geht durch die Substitution x — x, = 4 in jene
iiber (natiirlich mit / als Variabler). Daher fiihren wir die folgenden Untersuchungen
nur fiir den Fall xo = 0. Die Teilsummen einer Potenzreihe sind ganze rationale

n
Funktionen: s,,(x) = Z ¢,x" (in der Summe ist x° = 1 fiir alle x zu setzen!). Die geo-
metrische Reihe Z x (s1ehe 3.1.) ist ein uns schon bekanntes Beispiel einer Potenz-

reihe; in ihr smd alle Koeffizienten gleich 1.
Wir beschrinken uns ‘hier auf die Betrachtung von reellen Potenzreihen;

®
Potenzreihen Y ¢,z* mit einer komplexen Variablen z und komplexen ¢, werden in
v=0

Band 9 behandelt. An dieser Stelle sei jedoch darauf hingewiesen, dal insbesondere
Definition 4.2 und die Sitze 4.1, 4.2, 4.3 auf Potenzreihen im Komplexen unmittel-
bar tibertragen werden konnen.

4.1.2.  Der Konvergenzradius einer Potenzreihe

Jede Potenzreihe ¢o + ¢;x + ¢,x% + ... konvergiert offenbar fiir x = 0, und zwar
mit der Summe ¢, (denn diesen Wert haben alle Teilsummen). Es gibt Potenzreihen,

0
die fiir kein anderes x konvergieren, z. B. die Reihe Y »! x". Fiir jedes x + 0 gilt

1y v+l =0
KL i st = |x| lim (v + 1) = oo, und daraus folgt nach dem

v

namlich lim ’ :
v v!x v
Quotientenkriterium (Satz 2.13a) die Divergenz fiir x = 0. Andererseits gibt es

© Y
Potenzreihen, die fiir alle x konvergieren, z. B. > v):—‘ (vgl. Beispiel 3.2).
3 y=0 V!
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Definition 4.2: Eine Potenzreihe Z c‘,x die fir alle x konvergiert, hezﬁt bestindig

konvergent, eine, die nur fiir x = 0 kom;ergzert heift nirgends konvergent.

Wir wollen nun zu einer allgemeinen Aussage tiber das Konvergenzverhalten einer
Potenzreihe kommen. Der folgende Satz stellt einen ersten Schritt in dieser Richtung
dar; das Weitere enthilt Satz4.2.

@
Satz 4.1: Wenn eine Potenzreihe Y. ¢, X" fiir einx = x; + 0 konvergiert, so konvergiert
¥=0
sie absolut fiir alle x mit |x| < |x{|. Wenn dagegen eine Potenzreihe fiir ein x = X,
divergiert, so divergiert sie auch fiir alle x mit |x| > |x,|.
0
Beweis: Wegen der Konvergenz der Reihe 3 c,x} gilt lim ¢,x} = 0 (Satz 2.7). Daher
0

v= v .
ist die Folge der Glieder beschriankt, d. h., es gibt eine positive Zahl K, so daB [c,x}| < K
und somit

x\” xh £ I
x| = |exi|l—) | = |leyxil|—| £ K|—
el = |eost (Z2) | = ewsi| 2| = 5] 2
gilt. Fir irgendein x mit |x| < |x1|15t nun o =q < 1,also [e,x"] < Kgq*. Das be-

deutet, daB die geometrlsche Reihe K Z q" als Majorante fiir die Relhez [c x| dienen

kann. Die Reihe Z ¢,x” ist mithin fur [xl < |x,| absolut konvergent.

Der 2. Teil des Satzes kann indirekt bewiesen werden. Nimmt man nimlich an, daB
die fiir x = x, divergente Potenzreihe fiir ein x, mit |x;| > |x,| konvergiert, so miifite
sie nach dem 1. Teil des Satzes auch fiir x = x, konverg1eren, aber das steht im Wider-
spruch zur Voraussetzung. ®

Wenn eine Potenzreihe weder nirgends noch bestindig konvergent ist, mul es
sowohl Zahlen x; #+ 0 geben, fiir die sie konvergiert, als auch Zahlen x,, fiir die sie
divergiert, wobei [x;| < |x,| gilt. Es seien x,, x, zwei bestimmte Zahlen dieser Art,
die wir auf Grund von Satz 4.1 sogar als positiv annehmen kénnen. Die Reihe kon-
-vergiert dann fiir alle x mit |x| < x, und divergiert fiir [x| > x, (siche Bild 4.1). Uber

(I 4 !
T T

1 1 1
—xp—r =X 0 X, P X% x  Bidai

das-Konvergenzverhalten in den Intervallen (—x,, —x;) und (x,, x,) konnen wir
zunéchst noch nichts Allgemeines sagen. Es sei nun x, irgendeine Stelle aus dem Inter-
vall (x,, x,). Dann kann x,, je nachdem, ob-die Potenzreihe an dieser Stelle konver-
giert bzw. divergiert, die Rolle von x, bzw. x, ibernehmen. Wir haben damit eine
Konvergenz- bzw. Divergenzaussage fiir ein gréBeres Intervall erhalten. Aus dem ver-
bleibenden Intervall (x,, x,) bzw. (x;, x,) kann wiederum eine Stelle x; ausgewéhlt
werden, die Uberlegungen kénnen wiederholt werden usw. So scheint es anschaulich
klar zu sein, daB es eine Zahl r € (x;, x,) von der Art gibt, da Konvergenz der
Potenzreihe fiir [x| < r, Divergenz fiir |x| > r vorliegt. Das trifft tatsichlich zu; auf
den Beweis hierfiir verzichten wir jedoch. Wir formulieren:

-
Satz 4.2: Wenn eine Potenzreihe Y. ¢,x” weder nirgends noch bestindig konvergiert, so

¥=0
existiert genau eine positive Zahl r mit der Eigenschaft, daf$ die Potenzreihe fiir alle x
mit |x| < r absolut konvergiert und fiir alle x mit |x| > r divergiert.

3%

D. 4.2

S. 4.1

S. 4.2
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.Die Zahl r heiBt Konvergenzradius, das Intervall (—r, ) Konvergenzintervall der
Potenzreihe.

Erginzungen: 1. Man kann auch in den beiden im Satz ausgeschlossenen Fillen
einer Potenzreihe einen Konvergenzradius zuordnen: fiir eine nirgends konvergente
Potenzreihe setzt man r = 0, fiir eine bestéindig konvergente r = co.

2. Uber das Konvergenzverhalten von Potenzreihen auf dem Rande des Konver-
genzintervalls ist keine allgemeingiiltige Aussage méglich (siehe Beispiel 4.1).

3. Eine Potenzreihe mit einem Konvergenzradius r > 0 ist in ihrem Konvergenz-
intervall (—r, r) immer auch als Darstellung einer Funktion — ndmlich ihrer Sum-
menfunktion — anzusehen.

4. Das Konvergenzintervall einer Potenzreihe mit dem Mittelpunkt x, ist offenbar
(xo — 1, X0 + 7).

4.1.3  Bestimmung des Konvergenzradius
Uber die Bestimmung des Konvergenzradius gilt der folgende

Satz 4.3: Wenn fiir eine Potenzrethe Z c,x" der Grenzwert y = ltm \/ le,| - eventuell

als uneigentlicher Limes — existiert, sa zst im Fall p = 0 die Potenzrezhe bestindig, im
Fall i = o nirgends konvergent; im Fall 0 < u < oo hat sie den Konvergenzradius

r= % Bei sinngemdfer Deutung gilt also

r=— 'l _ (4.2)
lim {/|¢,|
v
Ergianzungen. 1. Anstelle von (4.2) kann auch die Formel
l r = lim (4.3)
v | Cyt1

benutzt werden, sofern der Limes — eventuell als uneigentlicher — existiert.

2. Wenn lim (/ m nicht existiert (auch nicht als uneigentlicher Grenzwert), bleiben
v— 00 — R
die Behauptungen von Satz 4.3 richtig, wenn p durch lim {/ |e,| ersetzt wird.

Beweis zu Satz 4.3: Nach dem Wurzelkriterium (Satz 2.13a) konvergiert eine Potenz-
reihe fiir alle die x, fiir die

lim 2/[e] = [x] lim &/]e,] = |x]p < 1

y— 00 =00
gilt, wihrend sie fiir alle x mit x|z > 1 divergiert. Fiir 0 < p < oo ergibt sich also
absolute Konvergenz bzw. Divergenz, wenn |x| < —1— bzw. |x| > — ist, d. h., es ist
r= l— Im Fall 4 = Oist |x| u < 1 fir jedeé x erfiillt, also die Reihe bestindig kon-

vergent; im Fall 4 = oo wird '\/[cvxvl fiir alle x + O beliebig groB, und daher ist die
notwendige Konvergenzbedingung lim ¢,x* = 0 nicht erfiillt, die Reihe divergiert fiir
x+0 m (5L
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0 0
Beispiel 4.1: Die Potenzreihen Z 12“ Z — haben nach (4.2) alle den Kon-

||M8

= 1Y =
vergenzradius r = 1, denn esist hml lm\/ Y = hm \/ »? = 1. Auf dem Rande des

v

Konvergenzintervalls zeigen sw alle drei em unterschledhches Verhalten. Die erste
ist die geometrische Reihe und fiir x = +1 divergent (vgl. Beispiel 2.1). Die zweite
ist fiir x = +1 konvergent: sie ist ném]ich fir x = 1 die in 2.4.2., Beispiel 2.5, als

konvergent nachgewiesene Reihe Z 1 , und die sich fiir x = —1 ergebende alter-

nierende Reihe ist nach dem Lelbmzschen Konvergenzkntenum ebenfalls konver-
gent. Die letzte der drei Reihen ist in einem Randpunkt divergent, im anderen kon-
vergent; denn fiir x = 1 liegt die harmonische Reihe, fiir x = —1 die nach 2.5., Bei-

spiel 2.12, konvergente Reihe Z ( vl) or.

4.2 Eigenschaften von Potenzreihen

4.2.1. _ Stetigkeit der Summenfunktion. Gliedweise Integration und Differentiation

Im folgenden werden die in Abschnitt 3.3. hergeleiteten Sitze tiber die Eigen-
schaften gleichmiBig konvergenter Reihen auf Potenzreihen angewendet. Der Leser,
der mit Abschnitt 3. nicht vertraut ist, kann Satz 4.4 iibergehen; der Inhalt der Satze
4.5 bis-4.9 ist auch ohne den Begriff der gleichméBigen Konvergenz verstindlich.
Wir betrachten jetzt ausschlieflich Potenzreihen mit positivem Konvergenzradius
(einschlieBlich r = o0).

0
Satz 4.4: Eine Potenzreihe Y c¢,x” konvergiert in jedem abgeschlossenen Teilintervall

»=0
ihres Konvergenzintervalls (—r, r) gleichmdpig.
0
Beweis: Wenn o eine Zahl mit 0 < p < rist, dann ist 3. ¢,0" nach Satz 4.2 eine abso-
¥=0

lut konvergente Reihe. Zwischen den Betrigen ihrer Glieder und denen der Potenz-
reihe besteht fiir alle x mit |x| < p die Beziehung |c,x*| < |¢,| ¢*. Nach Satz 3.2 ist
daher die Potenzreihe im abgeschlossenen Teilintervall [—p, o] gleichmiBig konver-
gent. Insbesondere kann g beliebig dicht bei r liegen. m

Da fiir jedes |x| < r eine Zahl p angegeben werden kann, fir die |x| < ¢ < r gilt,
ergibt sich aus Satz 3.3:

0
Satz 4.5: Die Summenfunktion s(x) einer Potenzreihe Y. ¢,x” ist im Konvergenzinter-
vall (—r, r) stetig. . A

Die Sétze 4.4 und 4.5 konnen fiir Potenzreihen mit einem endlichen Konvergenz-
radius noch wie folgt erginzt werden.

]
Satz 4.6: Wenn eine Potenzreihe Y, ¢,x” noch fiir x = r konvergiert, so ist sie in jedem

v=0
Intervall [a, r] mit a > —r gleichmdfig konvergent, und ihre Summenfunktion s(x) ist
in x = r noch linksseitig stetig, d. h., es gilt

]
lim s(x) = s(r) =Y "
x-r-0 »=0

S. 4.4

S. 4.5

S. 4.6
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Der zweite Teil des Satzes ist unter dem Namen Abelscher Grenzwertsatz bekannt.
Eine entsprechende Aussage gilt, wenn die Potenzreihe noch in x = —r konvergiert.
Aus Satz 3.4 ergibt sich sofort

@
Satz 4.7: Eine Potenzreihe Y. c,x* darf iiber jedes abgeschlossene Teilintervall ihres

w v=0
Konvergenzintervalls (—r, r) gliedweise integriert werden, d. h., mit —r < a, b < r gilt

g g 0 © o 0 bV+1 _av+l
fs(x)dx :J. (Z cvxv) dw = chf x'dx = Z e
»=0 y=0

y=0 v+ 1
Wenn die Potenzreihe noch fiir x = r (oder x = —r) konvergiert, darf auch b = r
(oder a = —r) gewdhlt werden.
Beispiel 4.2: Aus Lo 14+ x + x? + ..., |x|] <1, folgt durch Integration von
Obisx, x| <1, 1 =%
dt oo
[1=5=-ma-n=x+3 S+ X xe(-L).

Nach fo]gendem Satz ist auch die gliedweise Differentiation erlaubt.

Satz 4.8: Die durch gliedweise Differentiation einer Potenzreihe § c,x* entstehende
Potenzreihe f ve,x"~' hat wieder den Konvergenzradius r, und ih;; OSummenfunktion
ist glerch der Ablettung der Summenfunktion s(x) der Reihe 2 ¢,x’, d. h., es gilt s'(x)

—Zvcx" ! fir alle x € (—r, r).

=
Beweis: Den Beweis des ersten Teils fithren wir unter der vereinfachenden Annahme,
daBu = lim \/ |c,| existiert. Nach Satz 4.3 ist dann der Konvergenzradius der Potenz-

v o
reihe r = u~*. Fiir den Konvergenzradius * der aus ihr durch gliedweise Differentia-
0 T f— f—
tion entstehenden Reihe 3 ve,x*~? gilt /=1 ='lim (/vlcvl = lim i/v lim (/]cyl =4
v=1 © oo v yo oo
0
Die Konvergenzradien stimmen daher iiberein. Da die Reihe 3 vc,x*~! nach Satz 4.4

v=1
in jedem Intervall |x| < p mit o < r gleichmaBig konvergiert, ergibt sich auf Grund
von Satz 3.5 der zweite Teil der Behauptung. =

0
Beispiel 4.3: Durch Differentiation von Z x', x € (—1, 1), ergibt sich

1
aT=x7
Durch wiederholte Anwendung von Satz 4.8 ergibt sich

=
Lo} 0
=Yt =Y+ Dx" =1+42x+3x* + ...,xe(—1,1).
v=1 v=0

0
Satz 4.9: Die Summenfunktion s(x) einer Potenzreihe Y, c,x’ ist im Intervall (—r,r) be-

»=0
liebig oft differenzierbar. Ihre Ableitungen konnen durch gliedweise Differentiation der
Potenzreihe erhalten werden; es gilt also fiir k = 1,2, 3, ...

sO(x) = ﬁkm@ )= k4 1) X, (4.4)
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Aus (4.4) entnimmt man speziell

s®0) = ¢~ k! 4.5)
0
Beispiel 4.4: Durch wiederholte Differentiation von ! = ¥ x |x| <1, erhilt
man 1-x 5
k! o .
m’”_l': Ek”("_l);“(”"k"“l)x_’ |x] <1,

oder, wenn man durch k! dividiert, x durch —x ersetzt und » — k = p einfiihrt,
1

E k +
= 5w ( ) reink=0L2

4.2.2. Identititssatz fiir Potenzreihen

- Der folgende Satz bildet die Grundlage fiir die wichtige Methode der unbestimmten
Koeffizienten, die wir in 4.4. anwenden werden.
®
Satz 4.10 (Identititssatz fiir Potenzreihen): Wenn zwei Potenzreihen Z ¢,x” und
Z d,x" in einem Intervall |x| < ¢, ¢ > 0, konvergieren und dort dieselbe Summe haben,
=0
so gilte,=d,,v=20,1,2, ..., d. h., beide Potenzreihen sind identisch.

Die Behauptung von Satz 4.10 gilt schon unter der schwicheren Voraussetzung,
daB beide Reihen fiir alle Glieder x; einer Nullfolge {x,} mit x, + 0 dieselbe Sum-
me haben.

0 0
Beweis: Aus s(x) =Y ¢,x’ =3 dx” fir alle x mit x| < ¢ folgt fiir x = 0 sofort
¥=0 v=0

0 0
¢o = dy. Somit ist 3 ¢,x” = 3 d,x", und nach Division durch x, wobei x % 0 vor-
v=1 v=1 i

auszusetzen ist, hat man
ciHcx+cex® 4+ .. =d +dyx +dsx* + ..., 0<|x|<e.

Da die Reihen nach Satz 4.5 fiir |x| < ¢ stetige Funktionen darstellen, folgt aus dem

Grenziibergang x — 0, daBl ¢, = d, ist. Durch Wiederholung der letzten Schritte er-

gibt sich ¢, = d,, und durch vollstindige Induktion allgemein ¢, = d,,» = 2. ®
Aus Satz 4.10 folgt insbesondere, daB eine in einer Umgebung von x = 0 definierte

Funktion, wenn tiberhaupt, nur auf eine Weise durch eine Potenzreihe 2 c,x” darge-
stellt werden kann.

4.3. Taylorreihen

4.3:1. Entwiéklnng von Funktionen in Potenzreihen

Nach Satz 4.9 stellt eine Potenzreihe in ihrem Konvergenzintervall eine beliebig
oft differenzierbare Funktion dar. Wir wenden uns nun der Frage zu, ob umgekehrt
fiir eine Funktion f(x), die in einem x = 0 enthaltenden offenen Intervall I beliebig

S. 4.10
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oft differenzierbar ist, eine Potenzreihe Z ¢, x" existiert, die wemgstens in einer Umge-

bung von x = 0 konverglert und dort f(x) zur Summe hat. Wenn eine solche Reihe
existiert, nennt man sie die Potenzreihenentwicklung der Funktion f(x) um x = 0.
Sie ist auf Grund des Identititssatzes fiir Potenzreihen eindeutig bestimmt. Es gilt

0
dann f(x) = ¥ ¢,x" in einer Umgebung von x = 0, und aus (4.5) folgt fiir die Koeffi-
»=0 5

zienten der Potenzreihe

10 )
¢, = —r (4.6)
Definition 4.3: Die formal gebildete Reihe /
© (™) 0
> L f ) %)
»=0 Vi

heifit Taylorreihe der Funktion f(x) (mit dem Mittelpunkt 0); die Zahlen c, in (4.6)
heifien Taylorkoeffizienten von f(x).

‘Wenn also f(x) in eine Potenzreihe um x = 0 entwickelbar ist, so ist diese Entwick-
lung notwendig die Taylorreihe von f(x) mit dem Mittelpunkt x = 0, und jede Potenz-
reihe ist innerhalb ihres Konvergenzintervalls die Taylorreihe ihrer Summenfunktion.

Die Taylorreihe (4.7) einer Funktion f(x), die in einem x = 0 enthaltenden offenen
Intervall 7 beliebig oft differenzierbar ist, braucht jedoch nicht fiir alle x € I zu kon-
vergieren, und wenn sie konvergiert, muB sie nicht f(x) als Summenfunktion haben.
Durch Vergleich mit dem Satz von Taylor erkennt man aber folgendes. Unter den
iber f(x) gemachten Voraussetzungen (vgl. Band 2; 6.3.3.) gilt die Taylorformel

=320

fiir alle x € I, wobei das Restglied R,(x) in der Form R,(x) =

x" + R,(x) 4.8)

f(n+l)(19nx)

(n+ 1!
einem ¢, € (0, 1) geschrieben werden kann. Die Summe auf der rechten Seite von
(4.8) ist gerade die Teilsumme s,(x) der Taylorreihe (4.7) der Funktion f(x).
Daher folgt aus (4.8):

x"*+1 mit

Satz 4.11: Fiir eine in einem x = 0 enthaltenden Intervall I beliebig oft differenzierbare
Funktion f(x) gilt genau dann

sy =3 0 o

(d. h., die Taylorreihe konvergiert in I und hat f(x) als Summenfunktion), wenn die
Folge der Restglieder R,(x) der Taylorformel fiir alle x € I der Bedingung

lim R,(x) =0 4.9)

x* firallexel

geniigt.

Fiir Potenzreihen Z c,(x — x0)" mit einem Mittelpunkt x, & 0 gelten analoge

’( o)

o
s
Aussagen. Insbesondere ist ¢, = fiir alle ».
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4.3.2. Zusammenstellung der Taylorreihen einiger elementarer Funktionen

Wir wollen nun eine Ubersicht tiber die Taylorreihen einiger elementarer Funktio-
nen geben. Dabei benutzen wir die in Band 2, Abschnitt 6.3.4., hergeleiteten Resultate.
Danach gilt z. B. fiir jedes natiirliche n

noox¥
et =3 -7+ R(x), (4.10)
=0 .
n+1
wobei sich die R,(x) in der Form Ri(x) = heﬂnx mit 9, e (0, 1) darstellen

lassen und gezeigt werden kann, daB lim R,(x) = O fiir jedes x gilt. Nach Satz 4.11
gilt daher L)

Gy N
Z—!= +—1—!-+7+?+..., x € (=00, ). (4.11)

Die Funktion f(x) = e* ist somit durch eine bestindig konvergente Potenzreihe dar-
gestellt, die Exponentialreihe genannt wird.

Entsprechend ergeben sich fiir die Funktionen f(x) = sin x und f(x) = cos x die
Taylorentwicklungen

3 5

X X

sin x =x—¥+§!——.“,
2 g x € (— 00, ©). 4.12)
cosx=1— 2|+ﬁ—u.,

Hinweise: 1. Die Potenzreihenentwicklung mit dem Mittelpunkt x, = 0 einer unge-
raden Funktion enthilt nur ungerade Potenzen von x, die einer geraden Funktion nur
gerade Potenzen von x. Das folgt unmittelbar aus dem Identitétssatz fiir Potenzreihen,
wie sich der Leser tiberlegen mag. Die Reihen in (4.12) geben Beispiele fiir die beiden
Falle.

2. Man kann die Reihen in (4.12) zur Definition der Funktionen sin x und cos x
benutzen; dadurch macht man sich frei von der geometrischen Begrﬁndung der tri-
gonometnschen Funktionen.

Auf Grund der Deﬁnmonen des Hyperbelsinus und -kosinus, sinh x = — (e" —e™),

coshx = 5 (e + e"‘) ergeben sich bei Anwendung von Satz 2.5 auf die Relhe (4.11)

und der aus ihr durch Ersetzung von x durch —x hervorgehenden Reihe

-1 x2 x®
= ——+ TR
die Taylorreihen
3 xS
sinh x —x+?+——+
2 xe(—-oo, ). (4.13)
coshx—-l+2, 717+""

Wenn |x| nicht zu groB ist, eignen sich alle genannten Taylorreihen gut zur nihe-
rungsweisen Berechnung der Funktionswerte. Fiir groBeres |x| dagegen konvergieren
die Reihen zu langsam, d. h., die Betridge der Glieder nehmen mit wachsendem » nur
langsam ab bzw. nehmen zunichst sogar zu. Zur gendherten Funktionswertberech-
nung sind dann diese Reihen praktisch nicht geeignet. Es sei auch ausdriicklich
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darauf hingewiesen, daB die Potenzreihendarstellungen der vorstehenden Funktionen
zwar eleganter aussehen als die Darstellungen als Summe aus Taylorpolynom und
Restglied, aber diesen gegeniiber den Nachteil haben, daB3 bei Ersetzung der Reihen-
summe durch eine Teilsumme im allgemeinen keine Fehlerabschdtzung méglich ist.

Ohne Benutzung des Taylor-Restglieds kann eine solche jedoch durchgefiihrt wer-
den, wenn die verwendete Reihe alterniert und die Betrige ihrer Glieder monoton
gegen 0 streben. Dann kann die Zusatzbemerkung zu Satz 2.15 herangezogen werden,
wie am folgenden Beispiel gezeigt wird.

Beispiel 4.5: Mit Hilfe der zweiten Reihe (4.12) soll cos 0,5 auf vier Dezimalen genau
berechnet werden. Nach (4.12) ist

1 1 1
-c0s0,5=1— + 4T T G1ae +

2122

Die Reihe alterniert, und die Betridge ihrer Glieder nehmen monoton gegen 0 ab;
daher kann die erwidhnte Zusatzbemerkung verwendet werden. Es ist (weil die Glieder
mit ungeradem Index gleich null sind)

5 (i) = (i) -1- ﬁ + =1 — 087760,

7 2 24-16
1 1 1 I . . .
Se (7) =55 (5) ~ e = 0,877‘58 (jeweils auf fiinf Dezimalen genau).

Da die Reihensumme zwischen zwei aufeinanderfolgenden Teilsummen liegt, hat man
auf vier Dezimalen genau cos 0,5 = 0,8776. Da in Band 2, Abschnitt 6.3.5., ausfiihr-
liche Beispiele fiir Funktionswertberechnungen mit Hilfe der Taylorentwicklung ein-
schlieBlich der Restgliedabschatzungen enthalten sind, soll hier auf weltere Beispicele
verzichtet werden.

Fiir die Funktion f(x) = In (1 + x) findet sich in Band 2, Abschmtt 6.3.4., die Dar-
stellung

B xZ xS _— xn
In(1+4+x)=x et +(=1) —’-1—+ R,(x),

! 1 X+l
R,(x) = (—D”mx-),.r I

mit der Bemerkung, daB lim R,(x) = O fiir jedes x € (—1, 1) erfiillt ist. Damit haben

0<d, <1,

nso
wir die sogenannte logarithmische Reihe gewonnen:
2} 3 ‘

1n(1+-x)=x—"7+—’f3——..., xe(—1, +1]. (4.14)
Bei der Angabe des Giiltigkeitsintervalls ist beriicksichtigt, daB die Reihe fiir x = 1
noch konvergiert (vgl. Beispiel 2.12) und nach Satz 4.6 die Summe In 2 hat.

Ersetzt man in (4.14) x durch —x;, ergibt sich
: x2 x3
In(l — x) = —x T T e xe[-1,1) ) (4.15)

(vgl. Beispiel 4.2). Beriicksichtigt man In i
man aus (4.14) und (4.15) weiter

=In(l + x) — In(1 — x), erhdlt

1+x x
4t —2<x+—3—+~5~-+...), xe(=1,1). (4.16)
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Die Funktion g(x) =

= z nimmt fiir x € (—1, 1) alle Werte zwischen 0 und + w0

genau einmal an. Daher hat man in (4.16) eine Reihenentwicklung der Logarithmus-
funktion fiir jeden Wert ihres Definitionsbereichs. )(0)

Die Funktlon f(x) = (1 + x)% « beliebig reell, hat wegen ——— ) die Tay-

lorreihe 2 ( ) x". Sie hatfiire = m,m =0, 1,2, ..., nach (4 3) den Konvergenzradius
(3 T o o o —
r = 1; es ist namlich lim ( ) :( )
vow | \P+ 1 v yow | ¥V + 1

Konvergenzintervalls (—1,1) strebt die Folge {R,(x)} der Restglieder in (1 + x)*

‘= 1. Fir alle x des

= E ( )x + R,(x) gegen 0. Damit hat man die sogenannte binomische Reihe

erhalten
A+x) =1+ (T)x + (;) x? 4+ ((;) X+ ..., xe(=11). 4.17)

Fiir gewisse « liegt noch Konvergenz in einem oder beiden Randpunkten vor, fiir
o = m bricht die Reihe ab, und es ergibt sich die fiir alle x giiltige binomische Formel

m
A+xm=% (’:1) . Tm Fall &« = —1 folgt aus (4.17)
y=0

1 el V 4.V .
oy = S0 xe(-L1); “.18)

das ist (bis auf die Ersetzung von x durch —x) die bekannte geometrische Reihe mit

ihrer Summenfunktion. Fiir « = + — ergeben sich die speziellen Darstellungen

2

— 1 IR s IR
\/1+x—l+7x ﬂx+2~4-6x—2-4-6'8x e P
xe[-1,1], - ’ (4.19)

1 e 1R 3 LS N S RIS LT
Tiax Tt TE Y TTger Y2aewt T
xe(—1, +1). (4.20)

Weitere Spezialfille sind bereits in BelSplel 4. 4 angegeben.
Aus (4.18) ergibt sich fiir x = %, te (—1,

1 — 2 4 6 .

s =1—-24t*—154 ... (4.21)

Nach Satz 4.7 darf diese Reihe zwischen 0 und x, x € (—1, 1), gliedweise integriert

de . :
werden. Wegenf Tve = arctan x erhilt man somit

3 5
arctanx:x—%—+xT—..., xe[-1,1]. (4.22)
Zunichst folgt das Ergebnis allerdings nur fiir [x| < 1. Da aber die Reihe fiir x = +1
noch konvergiert, ist es nach Satz 4.6 auch noch fiir x = +1 giiltig. Fiir x = 1 ergibt
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3

sich die Leibnizsche Reihe (siehe Beispiel 2.13) mit der Summe

o

i =1- _1_ + l —
4 3005
Die gliedweise Integration der Reihe (4.21) liefert kein Restglied. Beachtet man
jedoch

1

=1— 2 — 1)1 yn-1 —_1
e X+ x + (=1t x4 ( 1)1+x’
so folgt, wenn man x = —¢? setzt und dann von 0 bis x integriert,
x3 x5 e x2n—1
arctanx—x——3—+—5-—-,..+(—l) 1 + R,(x)

mit
T tZ'l
R,(x) = (=1) fﬁ_—t—zdt'
0

In diesem Fall haben wir fiir das Restglied eine expliiite Darstellung in Form eines
Integrals gefunden. Dieses Restglied hat dasselbe Vorzeichen wie das in der Reihe

2n-1
auf das Glied (—1)** ul folgende und ist seinem Betrag nach nicht groSer als
dessen Betrag: 1

2n —

|x12n+1

2n+1°

x
< ft“dt =

I 0

i 2n
IR =| [ e
0

Die Summe der Arkustangensreihe liegt also stets zwischen zwei aufeinanderfolgenden
Teilsummen (vergleiche Zusatz zu Satz 2.15).

Aus (4.20) erhélt man fir x = —7%, te(—1,1),

;=1+l12+1—3t4+ 1-3-5

— 5+ ... 4.23)
Jior ) 74" tagl T (2

dt

NI=Z

x
und daraus durch gliedweise Integration von 0 bis x wegen f = arcsin‘x,
o

arcsinx—x+Lﬁ-+ux—5+ A3.5£+ xe(-1,1
B 2 3 2:4°5 2:4:6 7 e -
(4.24)
In gleicher Weise wie (4.22) und (4.24) leitet man die Reihenentwicklungen
x* x5 '
artanhx=x+—3—+~5—+ ., xe(—=1,1), . (4.25)
1 1-3 x5 fokioti ey

3 : : '
arsinhx:x———z—xT+——.————————.————+ .., xe(-11)

her. (4.26)
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4.4 Das Rechnen mit Potenzreihen

In 4.3.1. stellten wir fest, daB3 die Potenzreihenentwicklung einer Funktion f(x)
(etwa um die Stelle x = 0), sofern sie existiert, eindeutig bestimmt ist und daB sie die
Taylorreihe von f(x) (fiir x, = 0) ist. Die Berechnung der Taylorkoeffizienten durch
Differentiation von f(x) kann im speziellen Fall recht miihevoll sein, so daB} wir nach
weiteren Methoden zur Gewinnung von Potenzreihenentwicklungen suchen wollen.
Es wurde schon in Abschnitt 4.2. gezeigt, dal man durch gliedweise Integration und
Differentiation bekannter Potenzreihenentwicklungen neue erhalten kann; ferner
ergeben sich neue Entwicklungen durch Addition und Subtraktion bekannter Ent-
wicklungen. Wir wenden uns jetzt noch anderen Methoden zu, darunter der Multi-
plikation und Division von Potenzreihen. Die Anwendungsmdéglichkeiten fiir dieses
Rechnen mit Potenzreihen sind sehr vielseitig, wie im Abschnitt 4.5. anhand von
Beispielen gezeigt wird.

4.4.1. Multiplikation von Potenzreihen

Die Anwendung des Multiplikationssatzes fiir unendliche Reihen (Satz 2.21) auf
Potenzreihen ergibt

Satz 4.12: Essezz a,x’ = s,(x) fiir |x| < ry, Z b,x* = 8,(x) fiir |x| < ry (ry,r, > 0).

Die kleinere der bezden Zahlen ry, ry (im Fall r1 = r, diese Zahl selbst) sei mit r be-
zeichnet. Dann gilt fiir |x| <r

3 (@ob, + Gbyes + e+ G50) X = 509 5:00. @2

Insbesondere kann also eine Potenzreihe, die die Summenfunktion s(x) fiir [x| < r
hat, mit einer beliebigen natiirlichen Zahl n = 2 potenziert werden; die entstehende
Reihe konvergiert wieder fiir |x| < r und hat die Summe (s(x))"

Beispiel 4.6: Aus der Reihenentwicklung

. S5 eS
sinx =x — S+ 57 -
folgt durch Multiplikation der Reihe mit sich selbst
sin? x = x? —-2—x +(2 ——I—)xs—...—x —ix +ix =
3! 510 312 3 45
Durch Multiplikation dieser Reihe mit der Sinusreihe ergibt sich (4.28)
sin® x = x3 —%x +-%x - .. ) (4.29)

(4.28) und (4.29) sind fiir alle x giiltig.

4.4.2. Division von Potenzreihen
Uber die Division von Potenzreihen gilt der folgende Satz.

0
Satz 4.13: Eine Potenzreihe Y ¢,x" habe die Summe s(x), und es sei ¢, + 0. Dann kann
»=0
dze Funktion T in einer gewissen Umgebung von x = 0 durch eine Potenzreihe

2 a,x” dargestellt werden.

S. 4.12

S. 4.13
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Dieser Satz, dessen Beweis wir hier tibergehen (er ergibt sich aus dem nachfolgenden
Satz 4.14), sagt etwas iiber die Existenz der Potenzreihenentwicklung der Funktion

: ( ) aus, jedoch nichts tiber die Moghchkelt der Berechnung der Koeffizienten a,.

Dazu wenden wir die Methode der unbestimmten Koeffizienten an, die ein grund-
legendes Verfahren zur Gewinnung der Potenzreihenentwicklung einer Funktion f(x)

@
darstellt. Man setzt hierbei die gesuchte Reihe in der Form ) a,x” an, wobei die

v=0

Koeffizienten g, zundchst unbestimmt sind. Ihre Werte liegen jedoch auf Grund des
Identitétssatzes fiir Potenzreihen eindeutig fest, sofern fiir f(x) tiberhaupt eine Potenz-
reihenentwicklung mit dem Mittelpunkt 0 existiert. Wenn das gesichert ist, sucht man
mit Hilfe bekannter Eigenschaften iiber f(x) die Koeffizienten a, zu ermitteln. Aber
auch wenn die Existenz einer Potenzreihenehtwicklung fiir f(x) um 0 nicht von vorn-
herein feststeht, kann man versuchen, mit der Methode der unbestimmten Koeffi-
zienten zu einem Ergebnis zu kommen (vgl. Beispiele 4.19, 4.20). Man hat dann aber
nachtraglich die Berechtigung hierzu nachzuweisen, indem man zeigt, da die erhal-
tene Reihe tatsdchlich konvergiert und f(x) als Summe hat.

-Im vorliegenden Fall ist f(x) = ﬁ, und unter den Voraussetzungen von Satz4.13

existiert eine Potenzreihenentwicklung fiir f(x). Zur Bestimmung der Koeffizienten a,
kann die Gleichung s(x) f(x) ='1 herangezogen werden; nach Satz 4.13 gilt fiir alle x
einer gewissen Umgebung von 0

0 0
(Z cvx") (Z avx“) =1.
¥=0 ¥=0
Daraus folgt nach (4.27)
0
cotp + X (coa, + €1ay—y + ... + ¢a0) X" =1,
v=1
und nach dem Identitatssatz fiir Potenzreihen miissen die Koeffizienten der x”
vy =0, 1,2, ..., auf beiden Seiten gleich sein, d. h., es muf3

codo =1, coa, + c1a,-3 + ... + c,ao =0fiirv > 1

gelten. Als Ergebnis dieses sogenannten Koeffizientenvergleichs hat man nun die
Maéglichkeit, die unbestimmten Koeffizienten zu berechnen; man erhilt nacheinander

1 c1a, ¢ cia; + a6 — coCa
Go=—, 4 =———=——, = — = 3
o o 2 o a3
usw. /
0

In ganz entsprechender Weise berechnet man den Quotlenten zweier

0

Zor
Potenzrexhen mit ¢y + 0. Auf Grund von Satz 4.13 existiert dann namlich eine Ent-
wicklung Z ax’ =
»=0 2 chxy

als Produkt aus dleser und der Reihe Z b,x" geschrieben werden. Dieses Produkt

in einer Umgebung von x = O, und unser Quotient kann

ist nach Satz 4.12 wieder eine in einer Umgebung von 0 konvergente Potenzreihe.
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Beispiel 4.7: Es sollen die ersten vier Glieder der Potenzreihenentwicklung von
f(x) = tan x um x = 0 bestimmt werden (zur vollstdndigen Entwicklung siehe (4.63)).
. sinx .. .

Unter Ausnutzung der Gleichung tan x = o’ die fiir alle xe ( 5 2) giiltig

ist, kann die Aufgabe durch Division der Sinusreihe durch die Kosinusreihe (4.12)
gelost werden (es ist ¢, = cos 0 = 1). Da tan x eine ungerade Funktion ist, treten
in der gesuchten Entwicklung nur Potenzen von x mit ungeraden Exponenten auf
(vergleiche den Hinweis im AnschluB an (4.12)). Wir setzen daher an:

tan x = a;x + azx> + asx> + ...
Wegen tan x.- cos x = sin x gilt dann in einer gewissen Umgebung von x = 0

x2 x4 x3 x5

(ayx + asx® + asx® + ...)(1 R T )—x—T+—§!—‘—

Daraus folgt durch Vergleich der Koeffizienten von x, x3, x°, ... auf beiden Seiten
=1 R T 1 as al 1

a-1=1 T I STataTEr

und allgemein
a2y-1 a2v-3 v — (=1 1
Gayi = 5T+ T+ e+ (2] (2)' =V G5

Fiir die ersten vier Koeffizienten errechnet man

SESr Tt T T Tt T3
as as a, 1 1 1 1 1 17

eI TA T T T3 ! T 70 5040 3150
und damit hat man fiir hinreichend kleine |x|:

— 1 s 2 s 17 '
tanx—x+§x SR 5 +mx S (4.30)

Der Konvergenzradius dieser Reihe ergibt sich aus anderen Uberlegungen zu r = % 3

4.4.3. FEinsetzen einer Potenzreihe in eine andere’

Der folgende Satz gibt dariiber Auskunft, wie man eine mittelbare Funktion f(g(x))
in eine Potenzreihe entwickeln kann, wenn die Potenzreihen fiir f(u) und g(x) be-
kannt sind.

Satz 4.14: Es sei 2 au’ —f(u) fiir lu] < ry, 2 bx* = g(x) fiir |x| < ry; ferner sei
tbo] <1y (r1, 12 > 0) Dann existiert fiir die mtttelbare Funktzon f(g(x)) in einer ge-
wissen Umgebung von x = O eine Potenzreihenentwicklung Z ¢,x". Diese kann man
erhalten, indem man in die Reihe E): aw’ fir u', v =1,2, 3,"7.‘: die Reihen (kfjob,‘x")v

»=0
einsetzt und anschlieflend nach Potenzen von x ordnet.

S. 4.14
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Der Satz kann hier nicht bewiesen werden. Es sei nur bemerkt, daB die Voraus-
setzung |b,| < ry, also |g(0)| < ry, sichert, daB |g(x)| < r; auch fiir hinreichend kleine

0
|x| gilt und somit in die Reihe Z au’ fiir u Werte; eingesetzt werden, die zum Kon-
=
vergenzintervall der Relhe gehoren Die Reihe Z cxt konverglert wenigstens fiir
diejenigen x, fur die Z |bix¥| < ry gilt. Naturhch kann es im konkreten Fall zweck-

maBiger sein, die Re1he fiir f(g(x)) auf anderem Wege herzuleiten, als im Satz ange-
geben, etwa mit der Methode der unbestimmten Koeffizienten.

Beispiel 4.8: Es sollen die ersten vier Glieder der Potenzreihenentwicklung von
y= f(x) ln (1 + sin x) um x = 0 bestimmt werden. Hier ist f(u) In(l1 +u) =

w o ut CR

+—-—+. n‘utrl—lg(x)—smx—x—? =T — ...mitr, = o0.

2 3 4
Wegen b, = 0 ist die Voraussetzung |b,| < r, erfiillt. Die ersten Glieder der Potenz-
reihenentwicklungen von sin? x und sin® x sind in Beispiel 4.6, (4.28) und (4.29), be-
rechnet worden, die Entwicklung von sin* x beginnt offenbar mit x*. Somit erhilt
man, wenn man # = sin x in In (I + u) einsetzt, folgende, in einer gewissen Um-
gebung von x = 0 giiltige Entwicklung'

In(1+sinx)=(x— T ) -;—(xz—%x“+...)

+—;’—(x3 —-..) —%—(x“ - )+

oder nach Zusammenfassung gleicher Potenzen von x

. _ TP T
In(l + sinx) =x 7% +Fx -3 SEgee (4.31)
Das Konvergenzintervall dieser Reihe ist (— —7; N ;) G

4.4.4. Umkehrung von Potenzreihen

AbschlieBend wollen wir das Problem der Umkehrung einer Potenzreihe behandeln,
d. h. die Bestimmung der Potenzreihenentwicklung der Umkehrfunktion zu einer
durch eine Potenzreihe dargestellten Funktion. Hieriiber gilt folgender Existenzsatz.

©
Satz 4.15: Es gelte f(x) = 3 ¢,x" fiir |x| < r (r > 0), und es sei ¢, + 0. Dann existiert
=0

zu der Funktion y = f(x) in einer gewissen Umgebung von x = 0 eine Umkehrfunktion
x = @(y), und diese besitzt in einer gewissen Umgebung von'y = c, eine Potenzreihen-

0
entwicklung der Form g(y) = Y. b(y — ¢o)’; dabei ist by = -
v=1 : 1

Wir beweisen den Satz nicht, sondern bemerken nur, daB wegen ¢; = f'(0) % 0
und der Stetigkeit von f”(x) in (—r, r) die hinreichende Bedingung f'(x) = 0 fiir die
Umkehrbarkeit von f(x) in einer Umgebung von x = 0 erfiillt ist.

Die Berechnung der Koeffizienten b, kann mit der Methode der unbestimmten
Koeffizienten unter Ausnutzung der Beziehung f(¢(y)) = y vorgenommen werden.
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Wenn wir dabei noch der Einfachheit halber ¢, = 0 annehmen, ergibt sich
cy(byy + bay? + b3y® + ..) + ca(b3y? + 2b,by% + ..

+ ey + )+ =y
Daraus folgt ¢;b; = 1, also (wie im Satz vermerkt) b; = —cl—, c1by + b} =0 ‘und
damit b, = — c_ , ¢1b3 + 2¢,b1b, + c3b} = 0 und damit by = 2—?:£ usw.
1

Beispiel 4.9: Die Relhenentwwklung fiir die Tangensfunktion (vgl. (4.30)) soll durch
Reihenumkehr bestimmt werden.

3 5
Aus y = arctan x = x — % + xT — o lx] £ 1,(vel. (4.22)) mitcy =0,¢, =1 %0
und dem Ansatz .

x=tany = by + b3y + bsy® + ...

folgt
1
Gy + 02y + b5y + ) — 5 (01y* + 3bibs)® + ..)
+ %(bfys + .+ =y,
und daraus

1

bi=1, by~ xB =0, also b= bs—b%b3+%bf=0,

W[ =

2
also bs = = usw.

Damit hat man (fiir hinreichend kleine |y|)
tany =y + =)+ = 2 +.
any =y 3 y 15 »®

wie in Beispiel 4.7.

4.5. Anwendungen von Potenzreihen

In den Abschnitten 4.2. und 4.4. sind bereits einfache Beispiele enthalten, die in
erster Linie zur Erlduterung und Illustration der dort angefiihrten Satze und Methoden
dienen sollen. Auf diesen beruhen viele weitergehende Anwendungen, von denen wir
einige in diesem Abschnitt behandeln.

4.5.1.  Gliedweise Integration

Aus der Integralrechnung (Band 2, Abschnitt 9.1.6.) ist bekannt, daB sich viele aus
elementaren Funktionen in einfacher Weise zusammengesetzte Funktionen, wie z. B.
sinx e*

s T €

x 7 x
fiir diese Funktionen (wenigstens in gewissen Intervallen) zwar Stammfunktionen,
doch lassen sich diese nicht durch endlich viele Rechenoperationen aus elementaren

4 Schell, Reihen

—x2?

, nicht in ,,geschlossener Form* integrieren lassen, d. h., es existieren’
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Funktionen zusammensetzen. Die Stammfunktionen lassen sich jedoch haufig durch
Potenzreihen darstellen.

L hat fiir alle x die Stammfunktion

Beispiel 4.10: Die Funktion f(x) =

Six = J' L1 ©(432)
die als Integralsinus bekannt ist. Aus (4.12) folgt (mit f(0) = 1)

sin ¢ 2t
JO=—F==1-5+3~—

Nach Satz 4.7 erhalt man somit

. 552 e B
Slx—x—3_3!+5'5!—7‘7!+..., x€(—o0, o). (4.33)

Unter Verwendung der ersten drei Reihenglieder ergibt sich auf 5 Dezimalen genau
Si0,5 = 0,49311.

Beispiel 4.11: In der Wahrscheinlichkeitsrechnung spielt eine Funktion eine Rolle,
die Fehlerintegral (error function) genannt wird und durch

x

2
erfx = —— f et dt @34)
N
0
definiert ist (der Faktor vor dem Integral ist so gewahlt, daB erf co = limerfx = 1
gilt). Aus der Exponentialreihe folgt fiir x = —¢2 o
Il
e’ =1 —-ﬂ- -Inﬁ'—? + ..., te(—o0, ),

und damit ergibt sich nach Satz 4.7

erf —i( —L+i-—i—+ ) J;e(—oo 0)

S5 S TS VAR5 T B TR e
(4.35)

Beispiel 4.12: Der Umfang U einer Ellipse mit der Parameterdarstellung x = a cos ¢,

y=bsint,0 <t < 2w (a = b), ergibt sich zu

L

2m 2 .
U= fJa2 sin’t + b2 cos? ¢df =4J.\/az sin® ¢ + b* cos® ¢t dt
o 6

T
2
f 1T —e?cos?tdt
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5
oder, wenn man ¢ durch 5~ t ersetzt, zu

kg
a® — b*

Qs 0se<l (4.36)

z
U= 4af\/1 —g?sin®tdt, &2 =
o

(vgl. Band 2, Abschnitt 10.4.1., Bsp. 10.14). Vom Fall des Kreises, in dem b = a,
also ¢ = 0 gilt, abgesehen, ist das letzte Integral in (4.36) nicht in geschlossener Form
auswertbar. Die Anwendung der binomischen Reihe (4.19) mit x = —&2 sin? 7 (es ist
&?sin? ¢t < 1, so daB Konvergenz vorliegt) erméglicht die Darstellung des Ellipsen-
umfangs durch eine unendliche Reihe. Es wird

EUSS— 1 1-3
s N | R IS o e .2 P 4 qind o 6 cin6 ¢ _
\/l e?sin’t =1 ke sin® ¢ 74 sin* ¢ A6l sin®t — ...,
und wegen
-
H 3-5..2n—1)
o 1-3-5...02n - ]
Th2n -
fsm tdt = A6 5 4.37)
o
erhélt man aus (4.36)
_®{ 1.1, 1 1-3 . 1:3 1:3:5
U“4"7(1 22° 724 24 246 246° )

oder

— _1 2 3 4 5 6 _
U = 2ra (1 —Ze 7 g 53¢ ¢ ) (4.38)

Eine fiir kleine ¢ brauchbare Niherungsformel fiir den Ellipsenumfang ist

3 -
U~ 7’(7(41 +b) — \/ab)~

Durch Entwicklung dieses Néherungsausdrucks nach Potenzen von & (unter Be-
nutzung der Beziehungen%(a +b) = % (1+/T=¢2), Jab = a¥/1—-&*)erhilt
man namlich eine Reihe, deren erste Glieder mit den in (4.38) hingeschriebenen Glie-
dern der Reihe fiir U vollstindig tibereinstimmen; erst die Koeffizienten von &® unter-

3
16384 °

In Verallgemeinerung der obigen Aufgabe kann man nach der Lange s des Bogens
zwischen zwei Ellipsenpunkten fragen. Entsprechend wie oben errechnet sich, wenn

scheiden sich um

man die Punkte mit den Parameterwerten ¢t = % —g@und?= —;i, 0=¢p= % ,und
[

der Einfachheit halber a = 1 wihlt, s = j\/ 1 — &*sin®t dz. Eine solche Funktion
o

von ¢ und & nennt man ein elliptisches Integral 2. Gattung.'Im allgemeinen schreibt
man k anstelle von ¢ (k heiBt Modul) und bezeichnet sie mit E(k, ¢), also

®. .
E(k,p) = [T —Ksin®tdr, 0<k<1; (4.39)
0

4%
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sie liegt tabelliert vor (vgl. [1] und [5]). Durch Substitution x = sin ¢ erhélt man
fiir das elliptische Integral 2. Gattung die Darstellung

sing o
E(k,p) = f A S e e
V=22 (1= k)
0
il
2
Integral 2. Gattung genannt und mit E(k) bezeichnet wird. Der Ellipsenumfang ergibt

sich damit und nach (4.36) zu U = 4aE(e). Aus (4.38) folgt daher fiir E(k) die
Potenzreihenentwicklung

Fir ¢ = — erhilt man eine Funktion von k allein, die vollstindiges elliptisches

_mf 1., 3., ST
E(k)—f(l R S ) (4.40)
Beispiel 4.13: Es soll die Schwingungsdauer 7 des physikalischen Pendels bestimmt
werden. Die Schwingungen eines physikalischen Pendels — d. i. ein um eine horizon-
tale Achse drehbarer Kérper, der unter dem EinfluB der Schwerkraft Schwingungen
ausfithren kann - geniigen der Differentialgleichung

"

@' = —w?sing; (4.41)
dabei ist ¢ = (r) der Ausschlagswinkel (gemessen von der Gleichgewichtslage aus),
und o ist eine Konstante, die sich aus o = g bestimmt (m Pendelmasse, g Erd-
beschleunigung, @ Abstand des Pendelschwerpunktes von der Drehachse, I Tragheits-
moment des Pendels beziiglich dieser Achse). Zu dem Zeitpunkt, in dem ¢ seinen
Maximalwert, der mit & bezeichnet werde, erreicht hat, ist das Pendel in Ruhe; es gilt
also ¢'(t) = 0 fiirp = «. Ferner wollen wir annehmen, da das Pendel zur Zeit ¢t = 0
danrch die Gleichgewichtslage geht, also (0) = 0 ist. Unter Beriicksichtigung dieser
beiden Bedingungen hat die Differentialgleichung (4.41) im Intervall 0 < ¢ < & die
eindeutig bestimmte Lisung

®

PICHL I R N ~ 4.42)
2 A/sinz 2 s
2 2 -
0
(aus Symmetriegriinden kénnen wir uns auf die Betrachtung des Intervalls0 < ¢ < «
beschrinken).
Dem Anwachsen des Winkels ¢ von 0 bis « entspricht eine Viertelschwingung. Fiir

@ = o« wird daher ¢ = %, so daB sich aus (4.42) die Schwingungsdauer bestimmen

1aBt. Das dort auftretende Integral ist jedoch ein sogenanntes elliptisches Integral
1. Gattung.
‘Wir wollen es zunichst noch etwas umformen, und zwar substituieren wir

[0

5 (4.43)

sin-(g— =ksiny mit k =sin

Dem Intervall 0 < ¢ < & entspricht dann das Intervall 0 < < %; ferner wird
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v
W

2% _n2? — k2 k2siny = K2 cos?y, Lcos £ 92 .
sin 5 sin 3 =k? — k*sin’*y = k*cos ¥5 cos ST T = kcosy T und damit
dg = il ) dy = 12k(2)zs?p2 dy, so daBl wir
Ju—sin 2 ~ Ksin®y
2
? v
' £ =2f iid (4.44)
L, O ) J1 —k*sin?y
sin? - —sin* - 0
0
erhalten. Die Funktion
v h d .
Y -
Flk,p) = | ——m—e—— 4.45
) f\/l—k2sinzw 043
0

nennt man Normalform des elliptischen Integrals 1. Gattung. (4.42) 1aBt sich nun
wegen (4.44), (4.45) in der Form

t= L Pk y) » (4.46)
darstellen. ‘

Nach der Bemerkung im AnschluB an (4.42) ergibt sich 1 = % fiir p = w, also fiir
Y= ; . Somit folgt aus (4.46) fiir die Schwingungsdauer des Pendels

4 T\ A/ I n
T—;F(k,T) -4 m—gaF(k,—2—). 4.47)
F(k,%) ist eine Funktion allein von k; sie heiBt vollstindiges elliptisches Integral
1. Gattung und wird mit K(k) bezeichnet. Fiir die Auswertung von (4.47) verwendet
man unendliche Reihen. Unter Benutzung der binomischen Reihe (4.20) ergibt sich

1 1 e 1-3 .
VT:—WTT;J =1+ —j-kz sin? p + —2‘.—4‘]‘4 sin*y + ...,
und wegen (4.37) weiter
K() = (1 + (1)2 K+ ( L 3) K+ ) (4.48)
2 2:4 ’
also fiir die Schwingungsdauer wegen (4.43), (4.47)
T= 27&/— 1+75m2 +%sm > +) (4.49)

Fiir sehr Kleine & kann man sin > 5 vernachlassigen und erhilt aus (4.49) — oder auch
direkt aus (4.47), (4.45) fir k = 0 — den Néherungswert

1

T~2r 5
mga

(4.50)



54 4. Potenzreihen

Bei einem mathematischen Pendel der Linge /, das eine Idealisierung des physikali-
schen Pendels darstellt, ist a = /, I = mi?, und es folgt die bekannte Beziehung

0
Tz2rrA/— 4.51
. (4.51)

fiir den Fall, daB der maximale Ausschlagwinkel klein ist.
Eine genauere, haufig verwendete Niaherungsformel fiir die Schwingungsdauer dés
physikalischen Pendels ergibt sich aus (4.49), wenn man noch ein weiteres Reihen-

glied heranzieht und die fiir kleine « giiltige Beziehung sin% ~ % benutzt:

1 «? :
Tx 2TrA/mg (1 + 16) . » (4.52)
Beispiel 4.14: Es soll das uneigentliche Integral f (arctan = ?) dx berechnet wer-

3
den. Wenn man die Arkustangensreihe (4.22) benutzt und x durch % ersetzt, erhilt man

arctan—l—-—-l—— ! +—1—-—
x  x  3x* 5

Hier hat man es nicht mehr mit einer Potenzreihe zu tun (man sagt mitunter, es liege

(4.53)

eine ,,Potenzreihe in —i—“ vor). Die Reihe (4.53) konvergiert — auf Grund der Er-

setzung von x durch —ch— — auBerhalb des Konvergenzintervalls der Arkustangensreihe
- (4.22), genauer: fiir | x| > 1. Reihen dieser Art kann man benutzen, um auch uneigent-

1
liche Integrale niherungsweise zu berechnen. Nach Subtraktion von — in (4.53) und
gliedweiser Integration ergxbt sich

0
f (arctan— - —) dx = —
V3 V3 V3 V3

1 1 1
" 3t e T T Ee 9 3
Die Summe der ersten vier Reihenglieder ist —0,05071, die der ersten fiinf —0,05075
(jeweils auf finf Dezimalen genau). Da die Reihe alterniert und die Betrége ihrer
Glieder monoton gegen 0 streben, liegt die Reihensumme zwischen beiden Werten.

7x7 J E

©

Auf vier Dezimalen genau ist also f (arctanl; — )lc—) dx = —0,0507.

3
Der exakte Wert unseres Integrals ist

0
11 x = 1. 4
f(arctan?—;) dx=1-2/3-2Ing = —0050748.
N
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Die Berechtigung zu obigem Vorgehen ergibt sich daraus, daB die Substitution
V3

t=— auf das Integral f Lmnt—dt fiihrt, fiir das gliedweise Integration der

Potenzrelhenenthcklung des Integranden gestattet ist.

4.5.2. Multiplikation von Potenzreihen

Beispiel 4.15: Es soll das Additionstheorem der Exponentialfunktion mit Hilfe un-
endlicher Reihen hergeleitet werden. Wenn x,, x, zwei beliebige reelle Zahlen sind,
so gilt

x et = (1 1 X3 x3
et 62—( +T+2‘+?+ )(+l'+7+—ﬁ+m

2
RS [ AT 4.54)

b A . xi2x3 xi)
..+(7!—+ G T o Tt ) T

n n! .
Wegen(k)—m, k—O,l,...,n, wird
C A .2 xi7%x3 x3
WD Ta—yizr T T
=L,[x§ + (’11) Xy, + (’21) X3+ +x] _(x;:l"_le_’

dabei wurde zuletzt der binomische Satz benutzt. Also folgt aus (4.54)
X1 + Xz (x1 + x5)* T (x5 + x5

= — exit
‘¥z =14 I o7 o + ...o=eftre,

Somit hat man das Additionstheorem
enth = g% . et (4.55)

x; und X, beliebig reell, erhalten. Das Resultat kann in gleicher Weise auch fiir kom-
plexe Zahlen x,, x, gewonnen werden (siche Band 9).

4.5.3. Division von Potenzreihen

Beispiel 4.16: Auf ein fiir viele Anwendungen wichtiges Beispiel fiihrt die Entwicklung
der Funktion

16 =

in eine Potenzreihe (f(0) ist als Grenzwert voﬂ f(x) fiir x - 0 definiert und im folgen-
den immer so zu verstehen). Es ist

fir x £ 0, £(0)=1, (4.56)

R 5 1
fex) = x* X =1 x  x? ’
+'ﬁ+¥+... +—2—'-+§"+
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und daher existiert nach Satz 4.13 in einer gewissen Umgebung U von x = 0 eine

Potenzreihenentwicklung fiir f(x). Zu ihrer Herleitung setzen wir mit unbestlmmten
Koeffizienten an:

f&x) = % i;xh _ - (4.57)

Die hier gewahlte Form fiir die Koefﬁnenten ist fiir ihre Berechnung zweckmaBig. In
U gilt dann

2 B
(1+2'+%+...)(BO — x+ By )=1,

21

also By =1, 4+ 20—, %+—lﬁ' #2800 usw, aligemein
B, B, B,
v!l!+(v-1)!2!+' (,,_,_1),—0 firv =1,2,3,.

Multipliziert man die letzten Gleichungen mit (v + 1)!, so-gehen sie wegen

v+ 1)! _(v+1)

+1-kk!  \ k
iber in

v+ 1 y+ 1 v+ 1

( i )Bv+ ( ; )Bv_1 Foq (H I)Bo —0,v=1,23 ... (458)
Hierfir kann man auch symbolisch

B+ 1)yt =B+ =0, »=1,2,3,..., (4.58")

schreiben, wenn man vereinbart, die Exponenten von B durch Indizes zu ersetzen,
nachdem man (B + 1)’ mit dem binomischen Satz gebildet hat. Aus der Rekursions-
formel (4.58) bzw. (4.58") ergibt sich nacheinander

2B, +1=0,
3B, +3B; +1=0,
4B; + 6B, + 4B, +1 =0,
5By + 10B; + 10B, + 5B, + 1 =0
usw., und daraus folgt
1 1 1
Bl_——Z-’,B < B; =0, B4——?0—»-~~~
Die Zahlen B, heiBen Bernoullische Zahlen. Der Anfang der Relhenenthcklung
1 1
(4.57) ist somit f(x) = 1 — X+ =5 7
alle B, mlt ungeradem Index wie sich durch folgende Uberlegung ergibt. Formt man

f(x) + X wie folgt um:

x* + .... AuBer B, verschwinden

X X
x x x xe'+1 xeZ4+e 2 x
f(x)+7=e —1+7=7e‘—1 =5—x ,_i_7coth—
ez —e 2
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. so erkennt man, da die Funktion coth x ungerade ist, daB x coth x und damitf(x) + %

gerade sind (man sicht das auch unmittelbar an dem vorletzten Ausdruck in (4.59)).
Dabher erhilt die Potenzreihenentwicklung von f(x) + X nur gerade Potenzen von x,
und es ist 2

By =Bs=B;=..=0. (4.60)

1 1 5

E:BB = _W’B“’ =<5 Man
kann mit funktionentheoretischen Mitteln (die uns hier noch nicht zur Verfligung
stehen) leicht zeigen, daB die Reihe (4.57) fiir [x| < 2= konvergiert.

Beispiel 4.17: Ersetzt man in (4.59) x durch 2x, so erhilt man aus (4.57) und (4.60)
fir

Einige weitere Bernoullische Zahlen sind B =

x coth x = cosh x

. sinh x
die Entwicklung
A
L4+ + .
_ 20 T 4 _2 By, .
xcothx = P Z: a0 (26)= 08| x| =t (4.61)
l+gr+grt

Da sich die Reihen fiir cos x und sin x von denen der entsprechenden Hyperbel-
funktionen nur durch alternierende Vorzeichen unterscheiden, folgt mit einer ein-
fachen Uberlegung, die wir dem Leser iiberlassen, aus (4.61)

2v
2(2 gf“ x2, x| < m. (4.62)

Endlich erhdlt man mit Hilfe der Formel tan x = cot x — 2 cot 2x noch

) 22(2* — 1) B, ™

— _1y-1 2y J2v-1 Al

tan x _En( 1) — o x2=1 x| <5
(beziiglich der ersten Glieder dieser Entwicklung vergleiche man (4.30)).
Die Bernoullischen Zahlen gestatten also, in der Potenzreihenentwicklung einiger
elementarer Funktionen das allgemeine Glied auszudriicken. Als weitere Anwendung

xcotx =Y (—=1)
v=0

(4.63).

sei genannt, daB sich mit ihrer Hilfe die Summen der Reihen 2 + angeben lassen;
es gllt

= By (2m)**

k-1 _D26\&T) - g

zll = (D e k=123, (4.64)
Fir k = 1, 2 folgen insbesondere

© 1 7.:2 0 7.:4

I =% LW (4:63)

4.5.4. Einsetzen einer Potenzreihe in eine andere
Beispiel 4.18: Es soll die Funktion f(x) = €’ in eine Potenzreihe entwickelt werden’
wenn die Entwicklung der Funktion g(x) bekannt ist: g(x) = Z b,x", |x| < r. Da die

Exponentialreihe bestdndig konvergiert, darf Satz 4.14 angewendet werden. Der
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Einfachheit halber fiihren wir die Rechnung fiir den Fall b, = g(0) = 0 durch. Ist
diese Bedingung nicht erfiillt, so ergibt sich wegen e/® = e%+91™ = ebo - 41 mit

g1(x) = 2 b,x* in der Entwicklung von e?™ lediglich der zusitzliche Faktor eo.
Es w1rd
S(x) = ¢co + c1x + x* + ¢3x® + ...
=14 (byx + box? + byx® + ...) + %(b%x2 + 2b.box? + ..))
1
+T(b§x3 TP ) G,
woraus
i e
=1 ¢ =b;, 2=b+3bi, &= by + b,b, +€b1 usw.
folgt.
Die Formeln zur Berechnung der Koeffizienten Cv werden jedoch tibersichtlicher,
wenn man statt des eben benutzten Weges f(x) = Z ¢,x” mit unbestimmten Koeffi-
zienten c, ansetzt, zur Berechnung der Koefﬁzxenten dle Bezichung

S'(x) = e*Pg'(x) = f(x) g'(x) (4.66)

heranzieht und ¢, = f(0) = e® = 1 beachtet. Setzt man in (4.66) die Reihen ein, so
ergibt sich

¢y + 20,% 4 3e3x% + ... = (1 + ¢yx + %% + ...) (by + 2b,x + 3b3x> + ...),
und daraus folgt

¢, = by, 2¢, = 2b, + ¢,by, 3¢y = 3bs + 2¢,b, + c,3by,
allgemein

= by 4 (r = D esbyy + ot 2egeabs + cuibi), n= 1,2,

(4.67)
Mitgeteilt sei, daB sich die ¢, geschlossen in der Form
Biby . bl
=z YRV (459)

darstellen lassen, wobei tiber alle n-tupel (4, 42, ..., 4,) von nichtnegativen ganzen
Zahlen zu summieren ist, die der Gleichung 4, + 24, + ... + nd, = n geniigen.
Zum Beispiel ergibt sich fiir g(x) = sin x aus (4:12), (4.67)

11 1
=1 2,=1 3a=-5+3=0, d=—7,
S L _1_1__1 .
A7 R S T i
also gilt
" Lo 1 . 1 s
esnx=1+x+_x e SR e e X e e (469)

2 8 15
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Beispiel 4.19: Es soll eine Rekursionsformel fiir die Koeffizienten der Entw1ck1ung
der Funktion

o(x, 1) = T e =1+ @ —2xt)73F (4.70)

2xt + t*
nach Potenzen von ¢ hergeleitet werden. Auch diese Aufgabe kénnen wir in diesen

Unterabschnitt einordnen, wenn hier in die binomische Reihe fiir (1 + u)_% auch nur

eine ,,endliche* Entwicklung, nimlich das Polynom u = > — 2xt, einzusetzen ist.
Wegen des Koeffizienten —2x bei ¢ ist der Koeffizient von " in der Reihenentwick-

lung von g(x, t) nach Potenzen von ¢ ein gewisses Polynom P,(x) vom Grade n, also

=2+ =% P @.71)
n=0

Die Reihe konvergiert, wenn [u| = [¢t? — 2xt| < 1 gilt. Wiirde man nun die binomische
Reihe aufschreiben und u = ¢* — 2xt einsetzen, konnte man — wie im Beispiel zu-
vor - lediglich einige P,(x) berechnen, aber keine Rekursionsformel erhalten. Daher
schlagen wir einen anderen Weg ein, der dem im Beispiel 4.18 ahnlich ist.

Zunichst erkennt man aus (4.70) g(x, 0) = 1 und Py(x) = 1. Differenziert man
(4.71) nach ¢, so ergibt sich

x —t

0
— P, n—-1
(1 — 2xt + t%)3? ,Eln W)

oder, wenn man beriicksichtigt, daB man fiir die linke Seite 1__%;7%7 g(x, 1)
schreiben kann, '
0 0
(1 = 2xt + t3) 3 nP(x) 1" = (x — 1) 3 Py(x) " (4.72)
n=1 n=0

Jetzt lassen sich die P,(x) durch Koeffizientenvergleich bestimmen. Dazu multipli-
zieren wir noch die einzelnen Faktoren in die Reihe hinein und verschieben, wo nétig,
den Summationsindex. (4.72) geht dann tiber in

Pi) + 3,0+ 1 Pa() = 200P,(8) + (1 = 1) Pys(5)

= Po(3) + £ (GP(3) = Paes(®) 1

Hieraus entnimmt man P;(x) = xPy(x), also P;(x) = x wegen Py(x) = 1, und fiir
n=1

(n + 1) Ppiy(x) = 2xnPy(x) + (n — 1) Pyey(x) = xPy(x) — Ppoy(x)
oder

(n+ 1) Ppey(x) — 2n + 1) xPy(X) + nPp-y(x) =0, n=1,2,3,....(4.73)

Das ist die gesuchte Rekursionsformel. Da Py(x) und P,(x) bekannt sind, kann man
mitihr sukzessive alle Polynome P,(x) berechnen. Zum Beispiel ist P,(x) = $(3x2 — 1),
Ps(x) = 4(5x® — 3x). Die P,(x) heiBen Legendresche Polynome. Sie sind als Koeffi-
zienten der Entwicklung der Funktion (4.70) nach Potenzen von ¢ eindeutig bestimmt.
Daher nennt man g(x, ¢) erzeugende Funktion der Legendreschen Polynome.
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4.5.5. Losung von gewohnlichen Differentialgleichungen mit Hilfe
eines Reihenansatzes

Das in Beispiel 4.18 benutzte Verfahren zur Bestimmung der Potenzreihenent-
wicklung der Funktion f(x) = e?®™ besteht im Grunde genommen darin (vergleiche
(4.66)), die Losung der Differentialgleichung y’ = g’(x) y bei gegebenem g’(x) unter
der Anfangsbedingung y(0) = 1 mit Hilfe eines Potenzreihenansatzes mit unbe-
stimmten Koeffizienten zu bestimmen. Dieser Weg zur Losung einer Differential--
gleichung kann oft mit Erfolg beschritten werden. Eine ausfiihrliche Darstellung der
Methode findet sich in Band 7/2, Abschnitt 5. Hier werden nur einige Beispiele ge-
geben, und zwar sollen die ersten beiden den prinzipiellen Weg demonstrieren, wiah-
rend die Beispiele 4.22 und 4.23 den Leser mit zwei wichtigen Differentialgleichungen
und ihren Lésungen in Form von Potenzreihen bekannt machen.

Beispiel 4.20: Es soll die Differentialgleichung

y'=xy 4.74)
mit den Anfangsbedingungen )
W) =1, )y (0)=0 (4.75)

geldst werden. Unter der Annahme, daf3 sich die Losung in einer Umgebung von
x = 0 durch eine Potenzreihe darstellen 1a8t (Band 7/2, Satz 5.2), setzen wir an:

»(x) = § o’ . (4.76)
v=0

Wegen der Anfangsbedingungen (4.75) muBB ¢, = y(0) = 1, ¢; = y'(0) = 0 gelten. Da
in der Differentialgleichung y"’ auftritt, differenzieren wir (4.76) zweimal und erhalten

Y'(x) = § iy — 1) e, x"2. : “4.77)
V=2

Setzen wir die Reihen (4.76) und (4.77) in die Differentialgleichung (4.74) ein, ergibt
sich, wenn wir in (4.77) » durch u + 3 ersetzen und dann wieder » fiir u schreiben,
© o
2, + X0+ 3) 0+ 2D cpuax™ = 3 et 4.78)
¥=0 v=0
¢
— _ y=0,1,2,....
CrHe+2) "
Wegen ¢; = ¢, = 0 gilt ¢3,4;, = ¢3,4, =0 fiiralleu =0,1,2, ..., und fir v = 3u
erhalten wir wegen ¢, = 1

Hieraus folgt ¢; = 0 und ¢,,3 =

C3,-3 C3u—6
SR 7 /7 ) B € R D | € P Y )
_ 1
T 3uBu—-DBu—-3)(Bu—4...3-2
oder, indem wir mit 1 -4 -7... (3u — 2) erweitern,”
1-4-7...03u —2)

cauz—‘w—; u=012, ...

C3
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Die Ansatzreihe (4.76) lautet somit
1 1-4 1-4-7

y(x)=1+?x +Tx +Tx9+.... (4.79)
Wegen lim ™ | _ lim Do g jedes x ist die Reihe nach
aor® 3 x33 w0 3U(3p—1)

dem Quotientenkriterium bestindig konvergent. Man bestitigt leicht, daB die
Summenfunktion s(x) der Reihe in (4.79) den Beziehungen s"'(x) = xs(x), s(0) = 1,
s'(0) = 0 geniigt (dieser Nachweis ist erforderlich, da wir hier den Ansatz (4.76) mit
unbestimmten Koeffizienten verwendet haben, ohne von vornherein zu wissen, ob
eine Losung dieser Art existiert). Somit ist (4.79) Losung der gestellten Aufgabe
(4.74), (4.75). Die Losung ist wegen der raschen Konvergenz der Reihe numerisch
gut auswertbar. So errechnet man nur mit den ersten drei Reihengliedern y(%)
= 1,020920 (auf sechs Dezimalen genau).

Beispiel 4.21: Die Differentialgleichung

Y =y*+cosx i (4.80)
(eine sogenannte Riccatische Differentialgleichung) mit der Anfangsbedingung
¥0) =0 (4.81)

soll mit Hilfe eines Reihenansatzes gelost werden. Wir setzen — wieder unter der
Annahme, daB die Lésung in Form einer Potenzreihe um x = 0 darstellbar ist— (4.76)
an und beriicksichtigen ¢, = 0 wegen (4.81). Dann wird

V' =y + 2% + 3c3x? + degx® + Sesx*t + ..,

Y2 =x% + 2c100%% + (2c503 + B)x* + L.

Ziehen wir die Kosinusreihe (4.12) heran, so folgt aus (4.80), wenn wir die Glieder
bis zur 4. Ordnung beriicksichtigen,

¢y + 2¢,% + 3c3x? + degx® + Sesx* + ..

=1+ (cf - %) X2 + 2¢,0,%% + (20103 +3+ 2—14) X+ (4.82)

Durch Koeffizientenvergleich folgt hieraus

1 1 1 1
¢ =1, Cz=9, Ca=?(ci—7)= ca=—5"¢c =0,

1 (220, + 3 + S
=3 ( cic3 + €3 2—4) =
Die Ansatzreihe beginnt daher
1 SN
y(x)~x+zx +-mx £ (4.83)
Wenn unsere Aufgabe eine Losung in der Form (4.76) besitzt, kann es nur (4.83)
sein. Da wir keinen allgemeinen Ausdruck fiir ¢, haben, ist die Bestimmung des Kon-
vergenzradius der Reihe (4.83) nicht durchfiihrbar.

Beispiel 4.22: Wir fragen nach Lésungen der sogenannten Besselschen Differential-
gleichung

X" +xy + (x2 —n?)y =0, (4.84)
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die sich in eine Potenzreihe um x = 0 entwickeln lassen; n sei dabei eine nicht-
negative ganze Zahl.
In diesem Fall fiihrt ein verallgemeinerter Potenzreihenansatz

of
»(x) =X e x™” (4.85)
»=0
zum Ziel. Die Begriindung hierfiir wird in Band 7/2, 5.4.5., gegeben. Dann wird
0 0
xy'(x) = Zo(" + )X, X)) =3+ )+ v = 1) exn
v= y=0
wiahrend
0 0
XY(x) = 3 e x =3 ¢y px™Y
v=2 »=0

ist. Setzt man die Ansatzgleichung (4.85) und die daraus folgenden Gleichungen in
die Differentialgleichung (4.84) ein und vergleicht die Koeffizienten von x"**, so
erhdlt man fiiry = Ound » = 1 )

(mn—1)+n—n*co =0 oder 0-co =0,

(+Dn+n+1-=n%c, =0 oder 2n+ 1)c; =0.
Daraus folgt, daB ¢, = 0 gelten muB, wiahrend ¢, beliebig gewihlt werden kann Fir
v = 2 ergibt sich

cl((n + »)* = n®) + ¢,—» = 0 oder wegen (n + »)* — n* = v(2n + »):

S 2

¢, = On ) ) (4.86)
Wegen ¢, = 0 folgt daraus ¢,,+; = 0 fiir p = 0, 1,2, .... Wihlt man ferner ¢, = 1,
folgt weiter

Cop-2 (="
T 2%uln + p) 2.2“,u!(n+,u)(n+,u—1).,.(n+1)’
so daf} sich aus (4.86)
00 ( l)l‘ (x ) 2p
= 4.87

) = Nt +a—D . @+rD\2 @87)

ergibt. Diese Relhe konverglert wegen
o Co ™ |1 |x]?

lim | —2%~ lim — =

pooo | Cop—aX"HEH2 2 u-.n:o wn + ,u)
fiir alle x und stellt tatsichlich eine Losung von (4.84) dar. Durch Multiplikation

der rechten Seite von (4.87) mit einer beliebigen Konstanten C ergibt sich offenbar
wiederum eine Losung, wie man aus (4.84) unmittelbar erkennen kann (fiir C = 0

C2y =

allerdings die triviale Lésung y(x) = 0). Die sich speziell fiir C = T ln' ergebende

Lésung wird mit J,(x) bezeichnet; infolge der Gleichung (n + ) (n + u — 1) ...
..(n+ 1)n! = (n + p)! folgt somit aus (4.87)

T,(x) = (%) néo T((;%L)—' (%) * (4.88)
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Die Funktion J,(x) heiBt Besselfunktion 1. Art mit dem Index n. Besselfunktionen
spielen in vielen technischen Anwendungen eine Rolle; sie kénnen auch fiir nicht-
ganzzahligen Index definiert werden (vgl. Band 12).

Beispiel 4.23: Es soll eine Losung der hypergeometrischen Differentialgleichung,
(1 =)y +@—-(@+p+1)x)y —afy =0, (4.89)

in der w, £, y Konstanten sind (y = 0, —1, —2, ...), bestimmt werden. Wir verwenden
wieder den Ansatz (vgl. die ausfiihrliche Darstellung in Band 7/2, 5.4.1.)

»(x) =X ex’, (4.90)
v=0 .
woraus

0 ]
xy' = Zovcvx“, V= Zo(v + 1) ¢yesX’,
y= y=

© ©
XY =T = Dexs " =30+ 1) s
ly= =

folgt. Nach Einsetzen dieser Beziehungen in (4.89) ergibt sich durch Koeffizienten-
vergleich fir v = 0, 1, 2, ....

v+ ey — v — Doy + 90 + 1) cyeg — (6 + B + 1) ve, — afc, =0
oder

C+D@+err=le+p+ 1)+ —1)+aflc,.
Da die rechte Seite gleich (x + %) (8 + ) ¢, ist, hat man

_@E+nB+ )
Cpr1 = ("—+1)(7—+1’)_C" (4.91)
Die Reihe (4.90) mit diesen Koeffizienten und ¢, = 1,
oy ¥ B e+ DEB+T)
Fx, B,y;x) =1 +1—yx + sz
aoe+De+2)pB+DHEBE+2) 4
123 *DG+)  ~ T @D

heiB3t hypergeometrische Reihe. Sie konvergiert fiir x| < 1 und divergiert fiir [x| > 1;
denn wegen (4.91) ergibt sich ihr Konvergenzradius zu

G+ D@+ 1

Cy+1 @+ -+

Fir [x| <1 ist F(x, f,y; x) Losung der hypergeometrischen Differentialgleichung
(4.89).

Die hypergeometrische Reihe enthilt viele bisher betrachtete Reihenentwicklungen
als Spezialfille. Beispielsweise ergibt sich fiir y = §, wenn man noch « durch —« und
x durch —x ersetzt, die binomische Reihe, d. h. es ist F(—«, 8, f; —x) = (1 + x)*;
insbesondere liefert also F(1, §, f; x) die geometrische Reihe. Als weitere Sonderfille
von (4.92) seien genannt:

=1n(1+x)’ F(L 1 i;x3)=arcsinx.
£ 2 x

Cylis

r = lim
=00

>

F(1,1,2; —x) T
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4.6. Asymptotische Potenzreihen

Mitunter konnen auch divergente Funktionenreihen zum Zwecke der Funktions-
wertberechnung niitzlich sein, und zwar dann, wenn es sich um sogenannte asym- .
ptotische Reihen handelt. Wir beschranken uns auf die Betrachtung asymptotischer

Potenzreihen in 1 (vgl. (4.53)), die zur Berechnung von Funktionswerten fiir groBe x
dienen kénnen. *

N

4.6.1.  Asymptotische Gieichheit zweier Funktionen. Landausche Ordnungssymbole

" Wir definieren zunichst die asymptotische Gleichheit zweier Funktionen.

Definition 4.4: Zwei in einem Intervall (a, ) definierte Funktionen f(x) und g(x)
heiffen asymptotisch gleich fiir x - oo, wenn

J&)
g
gilt. Man schreibt hierfiir
| f(x) ~ g(x) (x— ). (4.93)

Der Zusatz x — oo wird im folgenden (auch bei den Ordnungssymbolen) weggelassen,
weil wir hier ausschlieSlich diesen Fall betrachten. Beispiclsweise gelten

I F1~x o Sini~i, _x=1 2
’ ’ x x’ X +x+1 Ehad

Zu einer anderen Schreibweise fiir (4.93) kommt man mit Hilfe der in Band 2, 2.6.,
eingefiihrten Landauschen Ordnungssymbole, deren Definition wir hier speziell fiir
die Bewegung x — oo nochmals angeben. .

Definition 4.5: Es seien g(x) und h(x) zwei in einem Intervall (a, o) definierte Funk-
tionen. Dann heifit h(x) ein Klein-o von g(x) (fiir x — ), bezeichnet durch

| h(x) = o(g(x)), (4.94)
wenn lim % = 0 gilt, und h(x) ein Grofs-O von g(x) (fiir x - o), bezeichnet durch
h(x) = O(g(x)), (4.95)

h(x)
g(x)

Im Fall (4.94) sagt man auch, A(x) habe eine kleinere Ordnung als g(x). Speziell
bedeutet A(x) = o(1) bzw. h(x) = O(1), daB lim i(x) = 0 gilt bzw. i(x) fiir alle hin-
reichend groBen x beschriankt ist. Offenbar ist

Sx) = g(x) + olg(x)) (4.96)
eine zu (4.93) aquivalente Schreibweise, denn (4.96) besagt, daB die Differenz

h(x) = f(x) —g(x) die Eigenschaft A(x) = o(g(x)) hat, also lim /) (—x ;ﬁ’(x)

oder lim f(_x) = 1 gilt, und umgekehrt folgt hieraus (4.96). Der Fehler, den man bei

X 00

der Ersetzung von f(x) durch g(x) begeht, ist somit von der GréBenordnung o(g(x)).

wenn es ein b > a gibt, so daf im Intervall (b, o) beschrankt ist.
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Die Definitionen 4.4 und 4.5 kann man analog fiir Zahlenfolgen formulieren
(also fiir Funktionen, die nur fiir nicht-negative ganze x definiert sind). Ein wichtiges
Beispiel einer solchen asymptotischen Gleichheit ist die Stirlingsche Formel

nl ~ /27 (é’-) (n - ). (4.97)

4.6.2.  Begriff der asymptotischen Potenzreihe. Beispiele

e ¢ . ) . .
Wenn g(x) von der Form —, ¢, & 0, mit einer nicht-negativen ganzen Zahl k ist

(im Fall £ = 0 ist also g(x) eine Konstante), so besagt

o)~ 2%
in der Schreibweise (4.96), daB

() = —;% + o(x¥) (4.98)

gilt. Es'kann nun méglich sein, daB man diese Aussage noch verbessern kann, indem
man zu einer Darstellung der Form

Sx) =v§"k ;cc— + o(x™) (4.99)

gelangt, wobei n > k ist. Der Fehler ist dann niamlich wegen x" = o(x~*) fir n > k
von kleinerer Ordnung als in (4.98). Aus der Exponentialreihe erhélt man z. B., indem

man x durch ? ersetzt, neben der schon oben genannten asymptotischen Gleich-
1

heltex ~1d1eBenehungenex 14— ! +o(1) ex=1+— ! + 212 +o(1 )
allgemein 23 x R x*

L 1

1 1
ex =14+ —— s +..‘+-‘—xn+o(x‘"),

n!
denn in der Reihe fiir 67 strebt fiir x — oo jedes Glied des n-ten Reihenrestes nach
Division durch x* (d. h. Multiplikation mit x") gegen 0.

Wir kommen so zum Begriff der asymptotischen Potenzreihe.

Definition 4.6: Eine Reihe 2 ——'— heift (fiir x — o0) eine asymptotische Potenzreihe der

(in einem’Intervall x > a deﬁmerten) Funktion f(x), wenn (4.99) mit k 0 fir jedes
n=0,1, 2 .. gilt. Man schreibt dann

c\'
oy & (4.100)
y=0 X
In anderer Darstellung besagt (4.99), k = 0:
lim x* (f(x) -3y ”—) =0 fir n=0,1,2,.. @.101)
X— 0 y=0 X

5  Schell, Reihen

D. 4.6
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Da (4.99) fiir jedes n gilt, folgt, daB diese Beziechung mit

16 = jzo 5+ 06 (4.102)

5 " . e O . L
dquivalent ist. Das obige Beispiel e* ~ 3 ST mag dabei zur Illustration dienen.
¥=0

Aus der Definition folgt, daB die asymptotische Potenzreihe einer Funktion, falls
iberhaupt eine existiert, eindeutig bestimmt ist. Aus (4.101) folgt némlich fiir die
Koeffizienten

N n—~1 ’
¢ = lmf(x), = ¢, =limx ( fx) — —) n=1,23 .. (4103)

Umgekehrt bestimmt eine asymptotische Potenzreihe nicht eindeutig eine Funktion.
Fiir jede Funktion f(x) = e~%, a > 0, existieren nimlich die in (4.103) auftretenden
Grenzwerte, und zwar ist lim x" e~* = 0 fiir jedes nicht-negative ganze n. Daher

X 00
besitzen alle diese Funktionen die asymptotische Entwicklung

0 0
e“’"z0+—+—-——+
Wenn also eine Funktion f(x) eine asymptotische Potenzreihenentwicklung Z —5

besitzt, so haben die (unendlich vielen) Funktionen f(x) + ce™*, a > 0, ¢ belleblg
reell, alle dieselbe Entwicklung.
SchlieBlich wird in Verallgemeinerung zu (4.96) auch die Darstellung

f(x) = g(x) + h(x) 20 é— (4.104)
benutzt, wobei g(x) und A(x) zwei fiir x > a definierte Funktionen mit 4(x) = 0 sind.
Sie ist durch

) —ex 2 ¢ Ny

T AW (4.105)

zu interpretieren. Auch die Definition 4.6 (einschlieBlich der Verallgemeinerung (4.104))
kann auf Zahlenfolgen iibertragen werden.
Wesentlich ist, daB3 von einer asymptotischen Potenzreihe keine Konvergenz ge-
fordert wird. Natiirlich gibt es konvergente asymptotische Potenzreihen, wie das
T

Beispiel e* zeigt. Allerdings existiert dann kein Konvergenzintervall mit x = 0 als
Mittelpunkt, da wir es mit einer Potenzreihe in < zu tun haben. Die Konvergenz

findet vielmehr auBerhalb eines Intervalls mit 0 als Mittelpunkt statt, das auch in den
Punkt 0 entarten kann, also allgemein fiir alle [x| > a mit einem a = 0. Das Neuartige
bei einer asymptotischen Reihe besteht aber gerade darin, daB sie auch im Divergenz-
fall brauchbar ist.

Beispiel 4.24: Die Funktion f(x) = f e dt x >0, soll in eine asymptotische

Potenzreihe entwickelt werden (das Integral konvergiert fiir x > 0). Wiederholte
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Anwendung partieller Integration ergibt

' 1 ex o 1 eds
f(x)“["? T+ t]o _?f(l e
: [

1 1 1 e 7] ¢ e~ dt
| L+

x x| x Qx0T XE) A0
0
g
it oen
YT T Ty ¢
0
schlieBlich
N WO L T 1 “(n !
f(x)—'; x—2+ = « +(=1) + Ry(x)
mit :
0 td
L, ! e dt )
Rn(x) - (_1) _XT (th)nIT' (4.106)
[

©
1 .
Wegen |R,(x)| < D [esar= ist Ry(x) = o(x7") firn =0, 1, 2, ...; also gilt
xu 1

0
nach Definition 4.6

Cdtn 3 (=12 4.107
PN s o Gl
Der Betrag des Quotienten aus dem (n + .1)-ten und dem n-ten Glied ist il ;er

strebt fiir jedes x mit n — oo gegen oo, und somit ist die Reihe in (4.107) fiir jedes x
divergent. Trotzdem ist diese divergente Reihe zur Berechnung von Werten unserer
Funktion fiir groBe x aus folgendem Grund gut geeignet. Wenn man die Reihe in
(4.107) an einer Stelle abbricht, so hat nach (4.106) das Restglied dasselbe Vorzeichen
wie das erste weggelassene Glied und ist dem Betrag nach kleiner als der Betrag dieses
Gliedes. Es verhilt sich also wie der Reihenrest einer alternierenden Reihe, die den
Voraussetzungen des Leibnizschen Konvergenzknterlums geniigt; der Funktions-
wert f(x) liegt folglich stets zwischen zwei aufeinanderfolgenden Teilsummen s,(x)
und s,-,(x). Da die Reihenglieder fiir jedes x > 0 mit » — oo gegen oo streben, a8t
sich jedoch [s,(x) — s,-;(x)| nicht — wie bei einer konvergenten Reihe — beliebig
klein machen, indem man n hinreichend groB wihlt. Aber man kann, wenn x vor-
gegeben ist, n so wihlen, daB |s,(x) — s,-,(x)| moglichst klein ausfillt, so daB f(x)
zwischen zwei moglichst dicht beieinander liegenden Schranken eingeschlossen wird.
Das 14Bt sich fiir ein gewisses 1 offenbar um so besser erreichen, je groBer x ist. So ist
beispielsweise fiir x = 8

i !
$:8) = 3 (-1 g = 011243,

& v!
sg(8) = ;0(—1)" P 0,11213,

5*
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also

0
-8t
0,11213 <f © dr < 0,11243.
1+t

0

Fiir x = 12 erhélt man unter Verwendung der gleichen Teilsummen

° e~12t
0077322 < f dr < 0,077333.
1+1 "
0

Als weiteres Beispiel einer divergenten asymptotischen Potenzreihe sei die Stirling-
sche Reihe genannt, die eine Verallgemeinerung der Stirlingschen Formel (4.97) ist:

1 © By . 1 :
1 — - / PR 2CI - -
Inn! (n + 2)lnn n+1n/27 + § @k = )2 21 (n— )

(4.108)

(die B,, sind die Bernoullischen Zahlen) Zur Interpretation von (4.108) sind (4.104)
und (4.105) zu beachten.

Aufgaben:
Aufgabe 4.1: Bestimmen Sie fiir folgende Potenzreihen den Konvergenzradius!

a) vi X%, b)é)1 :—j X', ©) f: (1 + i)vzxv’

Aufgabe 4.2: Bestimmen Sie fiir folgende Potenzrelhen das Konvergenzintervall und
das Konvergenzverhalten auf seinen Randpunkten!

@ o) = 24,
9% (2)! » XTI oD

» 1 1
9%, — d)z(1+-—+ +7)x“.

Aufgabe 4.3: Geben Sie unter Verwendung der in 4.3.2. angegebenen Taylorreihen
die Potenzreihenentwicklungen mit dem Mittelpunkt O fiir die folgenden Funktionen
sowie das Konvergenzintervall an!

a) f(x) = e, b)f(x) =x%*e*,  ¢)f(x) = cos3x,
DI =@+ a>0 o f() =5,
1+ x3

. 2
£) f(x) =%—;fz—, 2 /(%) = -am%z—x ) fx) = '1_+x1—+x7

Aufgabe 4.4: Entwickeln Sie folgende Funktionen nach Potenzen von (x — x,) und
geben Sie das Konvergenzintervall der sich ergebenden Reihen an!

D=1, =1 D=vZ m=2
o) flx)=¢%, x=-3; dfx)=Ihx, x =1
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Aufgabe 4.5: Ermitteln Sie die Summenfunktionen der folgenden Potenzreihen, indem
Sie zunichst gliedweise differenzieren und die Summe der dadurch entstehenden
Reihe bestimmen!

3 5’
a)x+i-+xT+..., x| <1,

Aufgabe 4.6: Bestimmen Sie die Potenzreihenentwicklung mit dem Mittelpunkt x = 0

der Funktion f(x) = arctan indem Sie f'(x) bilden, in eine Potenzreihe um

2x
2 —x2’
x = 0 entwickeln und dann integrieren!

Aufgabe 4.7: Bestimmen Sie die Potenzreihenentwicklung mit dem Mittelpunkt x = 0
fiir die Funktion f(x) = (arctan x)? auf einem der folgenden Wege:

a) durch Multiplikation der Arkustangensreihe mit sich selbst;
b) iiber die Entwicklung von f”(x) und anschlieBende Integration!

Aufgabe 4.8: Berechnen Sie unter Verwendung von Potenzreihenentwicklungen fol-
gende bestimmte Integrale auf drei De21ma1en genau’

)fln(l x) dx, b)f e dx.

100

. /a
5) J‘ % dx, . d) J‘ arctjnxdx.
10 0

Hinweis: In Aufgabe a) kann die exakte Losung mit Hilfe von (4.65) angegeben
werden.

Aufgabe 4.9: Berechnen Sie auf zwei Dezimalen genau die Lange des Bogens der
Sinuskurve y = sin x im Intervall [0, =]!

in eine Potenzreihe

Aufgabe 4.10: Entwickeln Sie die Funktion f(x) = J \/

mit dem Mittelpunkt x = 0! 1-

Aufgabe 4.11: Entwickeln Sie die Funktion f(x) = m in eine Potenzreihe

mit dem Mittelpunkt 0 (geben Sie die ersten drei Glieder an)!

Aufgabe 4.12: Fiir die Funktion f(x) =

x = 0 zu ermitteln. Setzen Sie dazu an:
1 L

cosx - v=0 (2»)!
ermitteln Sie eine Rekursionsformel fiir die ,,Eulerschen Zahlen* E,, und bestimmen
Sie Ey, E,, E,, Eg!

Aufgabe 4.13: Geben Sie die ersten fiinf Glieder der Potenzreihenentwicklung um
x = 0 fiir die Funktion f(x) = In (1 + } arctan x) an, indem Sie in die logarithmische

1 . . . .
= ist die Potenzreihenentwicklung um

2v
>

*
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Reihe die Reihe fiir § arctan x einsetzen! Uberlegen Sie sich, wie man unter Benutzung
der Ergebnisse in 4.5.4. schneller zum Ziel kommt!

% Aufgabe 4.14: Berechnen Sie die folgenden Grenzwerte, indem Sie die ersten Glieder
bekannter Potenzreihenentwicklungen heranziehen!

. sinxIn(l + x) . ( 1 1 )
lim ————*~ 1 ——
&) 1-JV1+x Olim T =)

o lim (x — Vx> = 6x), d) lim (-1-— ! )
X—= 00 x—0

X sin x




5. Fourierreihen

5.1. Problemstellung

‘Wenn ein Massenpunkt der Masse m, der langs einer Geraden (x-Achse) beweglich
ist und sich in einer stabilen Gleichgewichtslage (x = 0) befindet, um ein kleines
Stiick aus dieser Lage verschoben wird, so wirkt auf ihn eine riicktreibende Kraft.
Haufig kann angenommen werden, daB sie proportional zur jeweiligen Entfernung x
von der Gleichgewichtslage und zu dieser hin gerichtet ist. Nach dem Newtonschen
Reaktionsprinzip besteht daher bei Vernachlassigung der Reibungskrafte die Glei-
chung ’
d2x
de?
wobei x = x(t) die Auslenkung des Massenpunktes zum Zeitpunkt 7 und k& > 0 ein

m = —kx,

Proportionalititsfaktor ist (die sogenannte Direktionskraft). Mit o = A/ —k-— erhalt
diese Differentialgleichung fiir x(¢) die Form e

x"(t) + w*x(t) = 0. 5.1)
Unter allen Losungen von (5.1) gibt eine den zeitlichen Ablauf der Bewegung des
Massenpunktes an, der entsteht, wenn er zu einem bestimmten Zeitpunkt — wir wéihlen
t = 0 - aus der Gleichgewichtslage gebracht und dann sich selbst iiberlassen wird. Die
allgemeine Losung von (5.1) ist
x(t) = A4 sin (0t + ¢). (5.2)
Aus der Lage und Geschwindigkeit des Massenpunktes zur Zeit ¢ = 0 lassen sich
die Konstanten 4 und ¢ fiir die uns interessierende Losung bestimmen. Nach (5.2)
ist die Bewegung des Massenpunktes eine sinusformige Schwingung um die Gleich-
gewichtslage.
Ganz entsprechend ergibt sich als Differentialgleichung fiir den zeitlichen Span-
nungsverlauf «(7) in einem elektrischen Schwingungskreis mit der Induktivitat L und
der Kapazitit C bei Vernachlissigung des Ohmschen Widerstandes

u'(t) + w?u(t) =0, (5.3)

1
wobei w = \/L_C—‘ ist, und als ihre allgemeine Lésung

u(t) = Asin (ot + p). (5.4)
A und ¢ sind wieder durch den ,,Anfangszustand* des Schwingungskreises fest-
gelegt.
Man nennt nun einen durch eine Gleichung der Form
y = A sin (ot + ¢) (5.5)

beschriebenen zeitlich abhingigen Vorgang y = y(f) eine harmonische Schwingung
(oder eine reine Sinusschwingung). Wegen der Periodizitit der Sinusfunktion ist eine
solche Schwingung immer periodisch; die kleinste Periodenldnge (oder Schwingungs-

. 2 1 . . n .
dauer) ist 7' = _wrr_; T heiBt Frequenz, o Kreisfrequenz, 4 Amplitude, ¢ Phasen-

winkel der harmonischen Schwingung.
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Eine reine Sinusschwingung mit der Kreisfrequenz nw, n = 2, 3, 4, ..., also der
Schwingungsdauer o nennt man die n-te Harmonische (oder Oberschwingung) zur
,,Grundschwingung‘‘ mit der Kreisfrequenz w. Jede dieser Harmonischen

Yo = Ay sin (not + ¢,) (5.6)
hat aber auch T - als ganzzahliges Vielfaches von % - als Periodenlange. Daher

beschreibt auch eine Summe aus einer rein sinusférmigen Grundschwingung der
Kreisfrequenz w und endlich vielen ihrer Harmonischen einen mit 7" periodischen
Vorgang; physikalisch gesprochen ist er das Resultat der Uberlagerung der genannten
Schwingungen. Er ist natiirlich im Vergleich zur harmonischen Schwingung kompli-
zierter.

Beispiel 5.1: Wir betrachten als Grundschwingung y, = sin # und dazu die Harmoni-
schen y,(t) = % sin 2¢, y5(¢) = % sin 37. Die Summe aus ihnen,

»(t) = sint + % sin 2¢ + % sin 3¢,

ist in Bild 5.1 dargestellt; der Verlauf ergibt sich, indem zu jedem Zeitpunkt ¢ die
Funktionswerte y,(7), y,(¢) und y;(#) (graphisch) addiert werden.

Y

—— Yy (t)=sint —— yz(t)=216/h2t
— =y (t)=ten 3t —— y (t)=sint+fsin 2t +Lsin 3¢

Bild 5.1

Fiir unsere weiteren Betrachtungen wollen wir uns zunichst auf den Fall der Peri-
odenlidnge 2, also w = 1, beschrianken; spéter lassen sich die Ergebnisse leicht auf den
allgemeinen Fall iibertragen. AuBerdem wollen wir x statt ¢ schreiben. Wir werfen
nun die Frage auf, ob man etwa jeden mit 2r periodischen Vorgang als Uberlagerung
aus einer rein sinusférmigen Grundschwingung der Schwingungsdauer 27w und gewissen
Oberschwingungen darstellen, ihn also in eine Summe derartiger Schwingungen zer-
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legen kann. Es wird sich zeigen, daB unter gewissen Voraussetzungen eine Dar-
stellung durch eine Reihe, deren Glieder Harmonische sind, moglich ist (man bendtigt
also im allgemeinen unendlich viele Harmonische zur Darstellung). Die Bestimmung
dieser Schwingungen nennt man harmonische Analyse.

Die einzelnen Schwingungen

Yu(x) = Ay sin (nx + @) (5.7
kann man, wenn man «, = 4,sing,, f, = 4,cos ¢, setzt, wegen des Additions-
theorems der Sinusfunktion in der Form

Yu(X) = &, cos nx + B, sin nx (5.8)
schreiben. Umgekehrt beschreibt jede derartige (nicht verschwindende) Funktion
eine harmonische Schwingung (5.7); 4, und ¢, lassen sich aus

A, =/oZ + B2, cos =*ﬂ—"—-— sing, = ——2t__

n=~oq + s Pn Nk Pn N
bestimmen. Wenn man noch beriicksichtigt, daf trivialerweise jede konstante Funk-
tion periodisch ist (mit jeder von 0 verschiedenen Zahl als Periodenlinge), so ergibt
sich, daB jede Summe der Form

%o

2
n fest, a,, p, beliebig reell, eine Schwingung mit der Periode 27 beschreibt. Dasselbe
trifft auch fiir die unendliche Reihe

+ i (v, cOS ¥X + f, sin vx), (5.9
v=1

%o

2
a,, 3, beliebig reell, zu, sofern sie konvergiert, weil es fiir jede ihrer Teilsummen gilt.
Eine Summe der Form (5.9) nennt man eine trigonometrische Summe (auch trigono-
metrisches Polynom), eine Reihe (5.10) eine trigonometrische Reihe. Die obige
Fragestellung nach der Durchfiihrbarkeit der harmonischen Analyse, d. h. der Dar-
stellbarkeit eines periodischen Vorgangs als Uberlagerung aus einer Grundschwingung
und gewissen Oberschwingungen, kann nunmehr mathematisch dahingehend formu-
liert werden, ob sich jede mit 2= periodische Funktion f(x) in eine trigonometrische
Reihe entwickeln 1a8t. .

Die Entwicklung einer Funktion f(x) in eine trigonometrische Reihe ist aber nicht
nur von Bedeutung, wenn f(x) von vornherein periodisch ist. Wenn wir f(x) in einem
offenen (oder halboffenen) Intervall der Lange 2w betrachten, in dem sie definiert ist,
etwa im Intervall (—, =), so kann man eine mit 2x periodische Funktion g(x) durch
die Forderung

0
+ 3 (x,cos vx + f3, sin »x), (5.10)
v=1 . ‘

g(x + 2km). = f(x), xe(-m =), k=0, =*1, £2,..., (5.11)
erhalten.
N A7
y=f(x) N y=9(x)
1 1 1 I
s 0 kjt X 3w -2x \ ko \’lac 2% \ BT x
a) b) \,

° Bild 5.2
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Die Funktion g(x) ist damit fiir alle x + = + 2k= definiert und stimmt im Intervall
(—, ) mit f(x) tiberein (siche Bild 5.2); man nennt g(x) die periodische Fortsetzung
von f(x). Wenn g(x) durch eine trigonometrische Reihe dargestellt werden kann, so ist
diese Reihe im Intervall (—, 7) insbesondere eine Darstellung fiir f(x).

5.2. Die Fourierkoeffizienten

5.2.1.  Herleitung der Fourierkoeffizienten

Wir verfolgen nun die in 5.1. aufgeworfene Fragestellung. Dabei gehen wir zunéchst
davon aus, daB wir fiir eine Funktion f(x) im Intervall [ —, =] schon eine Darstellung
durch eine trigonometrische Reihe haben, und fragen nach dem Zusammenhang
zwischen f(x) und den Koeffizienten der Reihe. Es mdge also gelten:

0
fx) = —az—°- + ¥ (a,cos vx + b,sinvx), -t <x=<m, (5.12)
v=1

und wir nehmen dariiber hinaus an, daB die Reihe auf der rechten Seite von (5.12) in

0
[—m, =] gleichméBig konvergiert (das ist etwa der Fall, wenn die Reihen Y a, und
v=1

0

> b, absolut konvergieren; vgl. Beispiel 3.4). Als Summe einer gleichmaBig konver-
v=
genten Reihe mit stetigen Gliedern ist f(x) selbst in [—m, =] stetig, und die Reihe
darf nach Satz 3.4 iiber [, ] gliedweise integriert werden. Dabei ergibt sich

k3 kg ™ T
0 [
ff(x)dx =aT° dx + X avfcosvxdx + > b, | sinvxdx,
-7 - =t -7 =t -T
und wegen
L T : E
[dx=2r und [cosvxdx= [sinvxdx=0 firv=1,23,..
- -n =
folgt daraus
o = % f £ dx. \ .13)

-7

Somit haben wir einen Zusammenhang zwischen f(x) und dem Koeffizienten a,
erhalten. Zur Herleitung entsprechender Formeln fiir die anderen a, und b, bendtigen
wir die folgenden Beziehungen:

©
fcosvxcos,uxdx =0 fiiru+vw,

-7

™ ‘
f"sin yxsinuxdx =0 firp v, (5.14)

-7

™
[cosvxsinuxdx =0, u,v=0,1,2,..,
-7
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sowie.
T T N
Jeos?yxdx ==, [sinwxdx==, v=123 .. (5.15)
-7 -7

Sie ergeben sich in einfacher Weise unter Benutzung der Formeln

cos vxéos,ux = %(cos (v + u) x + cos (v — p) x),
sin »x sin ux = %(cos (v —u)x — cos (v + 1) X), (5.16)

cos ¥x sin ux = %(sin (v + p)x —sin (v — p) x),

die aus den Additionstheoremen fiir die Sinus- und Kosinusfunktion folgen.
Die drei Bezichungen (5.14) driicken folgende Eigenschaft des Systems der Funk-
tionen -

1, cosx, sinx, cos2x, sin?2x, ... (5:17)

aus: Das bestimmte Integral zwischen den Grenzen —= und +m tiber das Produkt
zweier verschiedener Funktionen des Systems ist stets 0. Aus einem Grund, der
erst aus einem allgemeineren Zusammenhang heraus erkennbar wird (vgl. 5.10.), nennt
man die Beziehungen (5.14) die Orthogonalititsrelationen fiir die Funktionen des
Systems (5.17), und dieses System selbst ein orthogonales Funktionensystem iiber
[-m, =]

Um nun einen der Koeffizienten a,, u = 1,2, 3, ..., zu erhalten, multiplizieren wir
(5.12) mit cos ux und integrieren die entstehende Gleichung iiber [—m, =]. Da glied-
weise Integration wie oben gestattet ist, ergibt sich

Ed

ff(x) cos ux dx = %0— fcos ux dx (5.18)

- -7

© 1: 1:
+ X (av [ cos vx cos ux dx + b, [ sin vx cos ux dx).
v=1

-7 -7

Nach (5.14) sind alle auf der rechten Seite von (5.18) auftretenden Integrale gleich 0
. ~

mit Ausnahme des fiir » = u entstehenden Integrals fcos2 px dx, das nach (5.15)
gleich = ist. (5.18) besagt also -n

[ f(x) cos px dx = =a,. g

Auf entsprechende Weise erhilt man, wenn man (5.12) mit sin ux statt mit cos ux
multipliziert, '

ff(x) sin ux dx = 7b,.

-7
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Damit hat man

k)
a, =% ff(x) cosvxdx, »=0,1,2,3, ...,
i (5.19)

b, = % ff(x) sinvxdx, v=1,23, ...
Die erste Bezichung ist auch fiir » = 0 richtig, weil sie dann in (5.13) iibergeht (um das
do

zu erreichen, wurde in (5.12) die Konstante mit 3

Wir fassen zusammen:

und nicht mit a, bezeichnet).

Satz 5.1: Wenn eine trigonometrische Reihe

0

% + X (a,cosvx + b, sin »x) (5.20)
v=1

im Intervall [ —, 7] gleichmdfig konvergiert und f(x) als Summenfunktion hat, so gelten

die Beziehungen (5.19).

Bemerkung: Auf Grund der Periodizitdat der Glieder der trigonometrischen Reihe
(5.20) ist auch die Summenfunktion f(x) eine mit 2= periodische Funktion. Daher
kann das Integrationsintervall in (5.19) durch irgendein beliebiges Intervall der Lange
2 ersetzt werden. Fiir eine mit 2n periodische, integrierbare Funktion ¢(x) gilt
namlich

a+2m n a a42n L

[ e dx = [p(x) dx — [p(x)dx + [ p(x)dx = [¢(x)dx,
Weil a -7 -7 T -7

a+2m {z a

[ o) dx = [g(t + 27) dr = [g(x)dx
ist. " o o

5.2.2. Die Fourierreihe einer Funktion

An das Vorhergehende ankniipfend, geben wir zunichst die

Definition 5.1: Es sei f(x) eine tiber [—m, =] (im Riemannschen Sinne) integrierbare
Funktion. Dann heifien die durch (5.19) gegebenen Zahlen a,, b, die Fourierkoeffizienten
von f(x), und die mit diesen gebildete Reihe (5.20) heifst die Fourierreihe der Funktion
J).

Man kénnte nun vermuten, daB die Fourierreihe einer tiber [—7, =] integrierbaren
Funktion f(x) ,,im allgemeinen‘ die gesuchte Entwicklung von f(x) in eine trigono-
metrische Reihe fiir dieses Intervall ist. So einfach liegen die Dinge aber nicht. Man
beachte nur etwa den Umstand, daB zwei tiber [ —, =] integrierbare Funktionen, die
sich nur an endlich vielen Stellen dieses Intervalls voneinander unterscheiden, die
gleiche Fourierreihe besitzen (denn die Werte der Integrale, durch die a, und b, defi-
niert sind, dndern sich nicht, wenn man f(x) an endlich vielen Stellen abandert).
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Wir miissen davon ausgehen, da3 die Fourierreihe einer Funktion f(x) lediglich eine
mit Hilfe von f(x) formal gebildete Reihe ist, fiir die noch nicht einmal die Konver-
genz feststeht. Es sind Beispiele stetiger Funktionen bekannt, deren Fourierreihe an
keiner Stelle konvergiert! Wenn aber die Fourrierreihe einer Funktion f(x) fiir ein
x = x, konvergiert, so braucht die Summe der Reihe an dieser Stelle nicht mit f(x,)
ubereinzustimmen (das folgt schon aus obiger Bemerkung). Es ergeben sich also
stets zwei Fragen, wenn man die Fourierreihe einer Funktion f(x) aufgestellt hat,
namlich die, fiir welche x die Reihe liberhaupt konvergiert, und wenn das fiir gewisse
x zutrifft, ob die Reihe dort die Funktion f(x) darstellt. Nach Satz 5.1 wissen wir
bereits soviel, daB eine in [—m, ] gleichméBig konvergente trigonometrische Reihe
die Fourierreihe ihrer Summenfunktion ist und diese darstellt. In Unterabschnitt 5.3.
werden wir hinreichende Bedingungen fiir die Konvergenz einer Fourierreihe kennen-
lernen und eine Aussage iiber die Reihensumme formulieren.

Es geniigt offenbar, die Konvergenz einer Fourierreihe (5.20) und gegebenenfalls
ihre Summe im Intervall I = (—m, =] oder in einem anderen (halboffenen) Intervall 7
der Lange 27 zu untersuchen. Wenn néamlich die Fourierreihe fiir ein x, € I konver,
giert, so konvergiert sie wegen der Periodizitat ihrer Glieder an allen Stellen x, + 2k7-
k = 41, +2, ..., und hat dort dieselbe Summe. Sofern also die Fourierreihe einer
Funktion f(x) diese Funktion in I darstellt, stellt sie zugleich fiir alle x die periodische
Fortsetzung von f(x) dar (wenn f(x) von vornherein mit 27 periodisch ist, dann ist die
Reihe eine fiir alle x giiltige Darstellung von f(x)). Es ist daher zweckméBig, eine
Funktion f(x), die in einem Intervall I der Linge 2= in eine Fourierreihe entwickelt
werden soll, auBerhalb von I durch periodische Fortsetzung definiert zu denken, d. h.
durch

fx + 2km) = f(x), xel, k= 41,42, +3,...

Wenn die Berechnung der Integrale in (5.19) schwierig ist oder f(x) nur tabellarisch
vorliegt, kann man zur Bestimmung von Fourierkoeffizienten Naherungsverfahren
verwenden (vgl. dazu Abschnitt 5.7.).

X K
/ | %
} I f f 3
-3 ~27¢ '—]i 0 ':ft 27 |37t X
Bild 5.3
_n+

Beispiel 5.2: Fiir die Funktion f(x) = x, —m < x < m, soll die Fourierreihe berechnet
werden. Durch periodische Fortsetzung kann man die Definition von f(x) auf alle
X+ 7 + 2km, k = +1, +2, +3, ... ausdehnen. Man erhilt dann f(x) = x — 2k fir
2k — 1)® < x < (2k + 1) =, k ganz (Darstellung siche Bild 5.3). Zur Berechnung
die Fourierkoeffizienten von f(x) ist diese Betrachtung allerdings nicht erforderlich.
Sie ergeben sich nach (5.19) mittels partieller Integration zu
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kg kL
1 11 _ . z 1 .
av=—fxcoswxdx=— [—xsmvx] sin vx dx
T 7|l - Y

-7

-7

1 1
=—7:_{0 + ‘1;2—[005 Vx]’-'n} =0 (»=1,23,..),
bv=-1—J‘xsinwxdx=i[[—~l—xcosvx] +i
T 7 v = ¥

-7

cos vx dx

onl {—2—7:—cos o+ :—z[sinvx]’_',‘} = (=1)y+*

- (v =123.)

e[N ;‘;‘a

(wegen cos ¥ = (—1)"). Somit lautet die Fourierreihe von f(x) gemiB (5.20)

( . sin 2x sin 3x
2(sinx — + - )

2 3

Wenn eine Funktion f(x) in einem beliebigen Intervall 7 der Lange 2r entwickelt
werden soll, darf man, wenn wir sie uns tiber / hinaus (mit 2r) periodisch fortgesetzt
denken, auf Grund der Bemerkung im AnschluB von Satz 5.1 bei der Berechnung der
Fourierkoeffizienten in (5.19) die Integrationsgrenzen —=, = durch die Grenzen von 1
ersetzen (vergleiche dazu Beispiel 5.3).

5.3. Eine Konvergenzaussage

Wir kommen nunmehr zur Formulierung von hinreichenden Bedingungen fiir die
Konvergenz der Fourierreihe einer Funktion.

Satz 5.2: Eine mit 2w periodische Funktion f(x) erfiille die folgenden Bedingungen
(Dirichletsche Bedingungen):

1. f(x) sei in [—=, =] stiickweise stetig,

2. das Intervall (—=, ) mdge sich in eine endliche Anzahl von Teilintervallen zerlegen
lassen, in deren Innerem f(x) monoton ist.

Dann konvergiert die Fourierreihe von f(x) fiir alle x mit der, Summe

() = - (f0x = 0) + flx + 0); (521)

insbesondere ist also s(x) = f(x) an jeder Stelle x, an der f(x) stetig ist. Die Konvergenz
ist gleichmapig in jedem abgeschlossenen Intervall, in dem f(x) stetig ist.

Wir nennen eine Funktion f(x) in einem abgeschlossenen Intervall [a, b] stiickweise
stetig (vgl. Band 2, 3.3.), wenn sie mit Ausnahme endlich vieler Stellen stetig ist, wobei
in jedem inneren Punkt x, € (@, b) die beiden einseitigen Grenzwerte f(x, + 0) =
= lim f(x)undf(x, — 0) = lim f(x) sowie in den Randpunkten die Grenzwerte

x-x0+0 x=x9—0
fla + li)) und f(b — 0) existieren und endlich sind. Da im vorstehenden Satz f(x) als
stiickweise stetig in [—, ] und auBerdem als mit 27 periodisch vorausgesetzt wird,
existieren f(x, + 0) fiir alle x. Wenn diese beiden einseitigen Grenzwerte iiberein-
stimmen, so ist nach (5.21) s(x,) gleich-dem gemeinsamen Grenzwert, im Fall der
Stetigkeit von f(x) in x, also s(x,) = f(x,). Wenn sie nicht libereinstimmen, so liegt in
X, eine Sprungstelle vor, und (5.21) besagt, daB die Fourierreihe in x, gegen das arith-
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metische Mittel aus den beiden einseitigen Grenzwerten konvergiert; dabei spielt es
natiirlich keine Rolle, ob f(x) in x, iiberhaupt definiert ist, und wenn, welchen Wert
f(x,) hat. Nach dem letzten Teil des Satzes ist die Fourriereihe einer Funktion f(x),
die fiir alle x stetig ist, iiberall gleichmaBig konvergent.

Wegen der Periodizitit von f(x) ist insbesondere

S(== +0) = f(x + 0),
so daB aus (5.21)

s(—7) = s(x) = —;—(f(n —0) + f(—% + 0) (5.22)

folgt. Wenn man in Satz 5.2 die Voraussetzung der Periodizitit von f(x) weglaBt und
nur fordert, daB f(x) in (—=, =) definiert ist und den Dirichletschen Bedingungen
geniigt, so gilt fir die Summe der Fourierreihe von f(x) (5.21) fiir alle x € (—m, )
und (5.22) fiir x = +=. Versteht man unter f(x) auBerhalb des Intervalls (—=, 7) die
periodische Fortsetzung (mit der Periode 2x) der in (—, =) definierten Funktion
f(x), so gilt natiirlich (5.21) wieder fiir alle x.

Die in Beispiel 5.2 betrachtete Funktion f(x) = x, —% < x < m, erfiillt offenbar
die Dirichletschen Bedingungen. Sie ist sogar stetig in (—, w), so daB sie dort durch
ihre Fourierreihe dargestellt wird:

(5.23)

. sin 2x sin 3x
f(x)—Z(smx— 3 3 —)

Bild 5.4 zeigt, wie f(x) = x im Intervall (—, ) durch die Teilsummen s,(x), s3(x)
ss5(x) der Fourierreihe angendhert wird.

Wenn wir die periodische Fortsetzung der zunichst in (—, =) definierten Funktion
f(x) wieder mit f(x) bezeichnen, so gilt (5.23) sogar fiir alle x, fiir die die periodische
Fortsetzung definiert ist, d. h. fiir alle x auBer fiir x = 2k + 1) 7,k =0, +1, +2, ...
Dort hat f(x) Sprungstellen mit f(2k + 1)= + 0) = —1, f(2k + 1) ® — 0) = 1, das
arithmetische Mittel beider einseitiger Grenzwerte ist 0 in Ubereinstimmung mit der
Reihensumme fiir x = (2k + 1) =. Die Teilsummen s,(x) sind in einer Umgebung
dieser Stellen nicht zur Approximation von f(x) geeignet, wie Bild 5.4 zeigt (Néheres *
hierzu in Abschnitt 5.8.).

— flx)=x —_ ‘g{x)=f,{x)—.sfn2x+§5/h3x

——— SxI=25hx S5 (x)=8(x) -7 sin 4x+Z in 5x Bild 5.4
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Eine andere hinreichende Bedingung fiir die Giiltigkeit von (5.21) enthélt der fol-
gende Satz.

Satz 5.3: Eine mit 2w periodische Funktion f(x), die im Intervall [—, =] stiickweise
stetig ist und eine stiickweise stetige Ableitung f’(x) besitzt, hat eine fiir alle x konver-
gente Fourierreihe mit der Summe (5.21).

5.4. Reine Kosinus- und Sinusreihen. Beliebige Periodenliinge

5.4.1.  Reine Kosinus-jund Sinusreihen

Die Formeln (5.19) fiir die Fourierkoeffizienten einer Funktion f(x) vereinfachen
sich, wenn f(x) eine gerade bzw. ungerade Funktion ist, d. h. f(—x) = f(x) bzw.
f(—x) = -f(x) gilt. Bei einem Integrationsintervall der Form (—a, a), a beliebig, gilt

namlich f(p(x) dx = 0 bzw. f(p(x) dx=2 f @(x) dx fiir eine (mtegrlerbare) ungerade

bzw. gerade Funktion, wie aus

fqﬁ(x) dx = f¢(X) dx + 0f«iﬂ(X) dx = of (p(=x) + @(x)) dx

folgt. Wenn nun f(x) eine gerade Funktion ist, so sind, da cos »x gerade, sin »x un-
gerade Funktionen sind, die Produkte f(x) cos »x gerade, f(x) sin »x ungerade Funk-
tionen, wie man aus der Definition der geraden und ungeraden Funktionen entnimmt.
Daher ergibt sich in diesem Fall

=
b,=0, a,= %ff(x) cos vx dx. (5.24)

Die Fourierreihe einer geraden Funktion enthilt also nur die Kosmusglleder man
sagt auch, sie sei eine reine Kosinusreihe.
Entsprechend ergibt sich, wenn f(x) ungerade ist,

=
a,=0, b= % f F6) sin vx dx; (5.25)
o

die Fourierreihe von f(x) ist eine reine Sinusreihe (vergleiche Beispiel 5.2).
In Anwendungen macht es sich mitunter erforderlich, eine im Intervall [0, =]
bzw. (0, ) definierte und integrierbare Funktion f(x) in eine reine Kosipus- bzw.

eine reme Sinusreihe zu entwickeln, also in eine Reihe der Form 7 + Z a,cos vx
bzw. Z b, sin »x. Dabei wollen wir annehmen, daB f(x) in [0, =] die Dmchletschen
=1

Bedmgungen erfiillt.

Um eine reine Kosinusreihe zu erhalten, definiert man f(x) im Intervall [, 0]
durch f(x) = f(—x) (gerade Fortsetzung) und setzt dann mit 2= periodisch fort (siehe
Bild 5.5, a). Die Koeffizienten der gesuchten Reihe ergeben sich aus (5.24), die Reijhen-
summe ist durch (5.21) gegeben. Entsprechend definiert man, um eine reine Sinusreihe
zu erhalten, f(x) fir —= < x < 0 durch f(x) = —f(—x) (ungerade Fortsetzung) und
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setzt mit 2x periodisch fort (siehe Bild 5.5, b). Die Koeffizienten dieser Entwicklung
sind (5.25). Wenn die Funktion f(x) in diesem Fall auch in den Randpunkten 0 und
7 definiert ist, wird sie durch die Fourierreihe dort genau dann dargestellt, wenn
f(0) = f(=) = 0 gilt, da die Summe einer reinen Sinusreihe fir x = k=, k = 0, *+1,
+2, ... stets gleich 0 ist.

=) ! 1 1 | | | 4

= t 1 t
-2x -7 0 7 2r x /_‘—271 I~ 4 lJz’ 2w x
a) b)

Bild 5.5

5.4.2.  Beliebige Periodenlinge

Nachdem bisher ausschlieBlich trigonometrische Reihen mit 2= als Periodenlédnge
betrachtet wurden, wollen wir nunmehr von einer Funktion f(#) mit einer beliebigen
Periodenldnge 7 (7 > 0) ausgehen. Es gelte also

fa+1)=f) (5.26)

fiir alle #. f(¢) sei als integrierbar iiber [-— ;, ;] vorausgesetzt. Substituieren wir

T
=3, (5.27)

so geht f(7) in eine Funktion von x iiber:
T
Vo= ().
Diese hat die Periode 27, denn es ist wegen (5.26)
T T T
g(x + 27) =f(§_:(x + 27:)) =f(ﬁx + T) —f(gx) )
fiir alle x. Auf die Funktion g(x) konnen wir aber unsere bisher erhaltenen Ergeb-

nisse anwenden. Die Fourierreihe von g(x) bzw. die Fourierkoeffizienten sind

-5 2 4 Z (a, cos vx + b, sin »x), (5.28)

o .
a, = i f (i x) cos vx dx, = i f (——- x) sinvx dx. (5.29)
k3 ki3
-1 -
Macht man die Substitution (5.27) wieder riickgingig, so erhilt man aus (5.28) und
(5.29) als Fourierreihe der mit 7 periodischen Funktion f(7)
©
% + 3 (a,cos vort + b, sin vor), o= 27" (5.30)
y=1

6 Schell, Reihen
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mit den Fourierkoeffizienten

I
2
a, =% ff(t) cosvwrdt, »=0,1,2,...,
-1 (5.31)
I
> 3
b, = T fO)sinvordt, v=1,2,3, ...

pN—

Fiir gerade bzw. ungerade Funktionen ergeben sich Vereinfaéhungen dieser Formeln
analog zu denen in 5.4.1. angefiihrten, ndmlich

z
” 2
a, =7 [ fcosrorar, b =0, (5.32)
o
im Fall, daB f(r) gerade ist, und
4=0, b=y f £(t) sin vort dt, (5.33)
J ,

wenn f{(¢) ungerade ist.
Aus Satz 5.2 folgt: Wenn f(#) der: Dirichletschen Bedingungen - fiir das Intervall

[— % 5 %] statt [, 7] — geniigt, so konvergiert die Reihe (5.30) mit (5.31) fiir alle 7

mit der Summe 4(f(r — 0) + f(t + 0)). Es ist nunmehr mdéglich, eine Funktion f{(7)
in einem beliebigen Intervall 7 der Léinge 7 in eine Fourierreihe (5.30) zu entwickeln,
wenn sie dort den Dirichletschen Bedingungen geniigt (vgl. dazu die SchluBbemer-
kung von 5.2.2.); in den Formeln (5.31) fiir die Fourierkoeffizienten hat man dazu
die Grenzen von I als Integrationsgrenzen zu nehmen.

5.5. Beispiele
Es folgen nun einige Beispiele fiir die Fourierentwicklungep von Funktionen.

Beispiel 5.3: Es soll f(x) = x, 0 < x < 2, in eine Fourierreihe entwickelt werden.
Wir konnen allgemeiner unter f(x) wieder die periodische Fortsetzung unserer zu-
néchst nur in (0, 2x) definierten Funktion verstehen; dann gibt Bild 5.6 den Verlauf
von f(x) wieder (Kippspannungen!). Nach der SchluBbemerkung in 5.2.2. kann man
in (5.19) 0 und 2r als Integrationsgrenzen wihlen, also 7

2n 2
1 1 .
a,=— | xcosvxdx, b, =— | xsinvxdx.
T T
0 o

2n
Wir erhalten a, = % f x dx = 2r, und fiir » > 1 mittels partieller Integration
0
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2
2n
a, -1— {{_x_ sin vx] - if sin »x dx} =0,
ki v (] v
0

27
2x 1
b, ! {[—icosvx] + — cosvxdx} = - —2-
v ] v

I

T v
0
(a, muB hier, wie auch sonst im allgemeinen, gesondert berechnet werden, weil die bei

. . . 1.
der ersten partiellen Integration verwendete Beziehung f cos vx dx = -v—sm v+ C

nur fiir v = 1 gilt, fiir » = 0 aber offensichtlich falsch ist).
Da f(x) in [0, 2] den Dirichletschen Bedingungen geniigt, gilt

(5.34)‘

sin 2x i sin 3x i )
i 3
An den Sprungstellen x = 2kw, k =0, +1, £2, ..., von f(x) ist die Reihensumme

gleich 7, tibereinstimmend mit dem arithmetischen Mittel aus den einseitigen Grenz-
werten an den Sprungstellen, 27 und 0.

f(x):r:—2(sinx+

Beispiel 5.4: Die Funktion f(x) = x, 0 < x <=, soll in eine reine Kosinusreihe
entwickelt werden. GemaB 5.4.1. definieren wir zunichst f(x) = f(—x) = —x fir

4 -2 0 2w bmw x o - 0 ®m - 8w x

Bild 5.6 Bild 5.7

—7n < x < 0(sodaBwirf(x) = |x| fiir x € [, ] haben) und setzen dann periodisch
fort (siehe Bild 5.7 — Folge von Dreiecksimpulsen —). Nach (5.24) verschwinden die b,;
weiter ist

B
2
ao=-—fxdx=7:,
™
)

und fiir » = 1 gilt

ki3 : ki
2 2 |[x . R | .
a, =—fxcosvxdx:— [—smvx} ——jsmvxdx
™ T v 0 v
0 o

2 2 (-1 -1
=?v-2—[coswx]’,; =;£‘-,),T—‘»
also

4

= —m, ,u=1,2,3,....
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Da f(x) in [0, ] die Dirichletschen Bedingungen erfiillt und fiir alle x stetig ist, gilt

T 4 [(cosx cos 3x cos 5x
f =G = (S ) (5.39)
Fiir x = 0 erhilt man aus (5.35) das Resultat
&) 1 1 1 1 w2
Loy T tErTErT D

Beispiel 5.5: Die Funktion f(x) = x2, —n < x £ =, soll in eine Fourierreihe ent-
wickelt werden (die periodische Fortsetzung von f(x) ist in Bild 5.8 dargestellt). f(x)

27 -

Bild 5.8

-3n -2 -x 4 4 2% i X

3

i . . L £ 2 .
ist gerade, also ist b, = O fiir alle ». Weiter ist ap = — | x> dx = ?nz, und fiir die
a,, v = 1, erhilt man zunichst W

kg ki
2 . £ .
a, =—fx2 cosvxdx:i{[ix2 smvx] ——Z—fxsmvxdx]
™ |l o ¥
o ()

und unter Benutzung des Ergebnisses in Beispiel 5.2 fiir das Integral in der geschweif-
ten Klammer

4

T

] 4
a, = — (“1)”17=(-1)”7, vz 1.

Die Funktion f(x) erfiillt die Dirichletschen Bedingungen, und ihre periodische Fort-
setzung ist fiir alle x stetig. Daher gilt

72 cosx  cos2x  cos3x -
f6) =5~ 4( T~ T - ) (5.37)
Fiir x = 0 erhélt man hieraus
® 1 1 1 2
S0l s (539
und fir x ==
1 1 1 72
y;};z—=1+3'2‘+?+.--=-6—- (539)
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Die Reihe in (5.37) ist nach Satz 5.2 fiir alle x gleichmaBig konvergent; daher darf
man sie zwischen 0 und einem beliebigen x gliedweise integrieren. Man erhalt

ff(f)dt (sinx— sin 2x sin3x )

23 33

s, | 2 3
Setzt man F(x) = - x - ff(t) dr, das ist Fx) = S x — - fiir =% < x S mund

0
die periodische Fortsetzung dieser Funktion auBerhalb dieses Intervalls, kann man
das Ergebnis in der Form

Fx) = 4 (sinx - S“;f" S“;fx - ) (5.40)
schreiben. Fiir x = -g— ergibt sich
eyt t g L 1= '
o e R e et (5.41)

Beispiel 5.6: Die Funktion f(x) = 1, 0 < x < =, soll in eine reine Sinusreihe ent-
wickelt werden. GemaB den Ausfithrungen in 5.4.1. definieren wir

f(x) = -1 fir xe(—=,0) und f(x + 2kw) = f(x),

k= +1, +£2, +3, ..., fiir 0 < |x| < = Das zugehérige Bild 5.9 ist deutbar als Folge
von Rechtecksimpulsen. Wir kénnen auBerdem noch f(0) = f(kx) = 0 setzen. Dann

—L T
-2 - k4 Bild 5.9

erhalten wir nach (5.25) b, = 2 f sin »x dx = %27 [—cos »x]§ = —Tcz—v-((—l)"‘1 +1),

also by, = 0, byy—y = 7:(2,u4 R u=1,2,3, ..., und daraus, da f(x) den Dirichlet-
schen Bedingungen in [0, ] geniigt,

) == (smx + 3’33—31 + si1155x + ) (5.42)
Fir x = g-erglbt sich

vi(—1)v-1—271_—1=1—%+%n...=§, (5.43)

ein Ergebnis, das bereits aus (4.22) folgte.
7  Schell, Reihen
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Beispiel 5.7: Die Funktion

0 fﬁr—%<t§0,
ft) = (o > 0),

. .. T
sinwt fir 05t < — o

soll in eine Fourierreihe entwickelt werden. Das Bild der periodischen Fortsetzung
dieser Funktion mit der Periode i—ﬁ ist in Bild 5.10 wiedergegeben; es Kann z. B.

einen durch Einweggleichrichtung entstehenden pulsierenden Gleichstrom darstellen.

v
1
_x ol 21t t
w w w
Nach (5.31) wird — mit T = %“ =
= o =
a, = % f (t)dt——— f (t)dt+ff(t)dt =%fsinwtdi=%.
L ™ [

Entsprechend erhalt man fiir » > 1, wenn man (5.16) benutzt,
T

@

%f sin wf cos vot dt =7"7’T—f [sin (v + D)ot — sin (v — 1) wr] dt,
0 o

also

T
- %) [_ cos (v + 1) wt cos(v——l)wt]a fir v 2,

2 v+ Do v—Do
wihrend fiir » = 1 wegen sin (v — 1) ot = 0 der zweite Summand entfillt. Daraus
folgt a; = O und fir» = 2

1 (_ ot -1 (D~ 1)

a, =

2n v+ 1 v — 1
oder
2 -0 @ = 1 ( 2 2 )__ 2
Ll o m \2u+1 2u—1)  wu-DH@u+1)°
Fiir die b, erhélt man, wenn » > 2 gilt, p=123...
T T
b,=%fsmwtsmthdt——f[cos(v-—1)wt—cos(v+1)wt]dt
0 0

1 [sin(v — Dot  sin@+ 1) ot ]%
=— = 0,
v —1 . v+ 1
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1. . . .. N
wihrend b, = 2 T —_ st Da f@) in [— _’f,’l] die Dirichletschen Bedins
2t o 2 o’ o
gungen erfiillt und stetig ist, gilt somit

§i0) ) +isinwt _z(cos 2wt cosdwt  cos 6wt
B b 1-3 3.5 5.7

5 + ) (5.44)

5.6. Die komplexe Form der Fourierreihe

Die Fourierreihe (5.20) einer iiber [—m, 7] integrierbaren, mit 2r periodischen
Funktion f(x),

a, L .
— + ¥ (a,cos vx + b, sin vx),
2 y=1
mit den Fourierkoeffizienten (5.19) kann man auch in komplexer Form darstellen.
Hierzu benétigen wir die als Eulersche Formel bekannte Beziehung
e =cosy + isiny . (5.45)

fiir reelle y, die in Band 9 hergeleitet wird. Sie verkniipft die Exponentialfunktion

fiir rein imaginares Argument mit der Kosinus- und Sinusfunktion fiir reelles Argu-

ment. Wird in (5.45) y durch —y ersetzt und cos (—y) = cos y, sin (—y) = —siny
" beachtet, ergibt sich

e =cosy —isiny, - (5.46)

und daraus durch Addition zu bzw. Subtraktion von (5.45)
— 1 iy — iy’ 1 —_ 1 iy _ a=iy) — i iy —1;
' cosy—?(e + e V), 51ny—-7(e eV) = ?(e —eP), (5.47)

Mit (5.47) erhalten wir aus (5.20)

9o o (a4 —ib, .. a +ib, —ivx)

> +'§1 ( F——eT 5 ¢ 8 (5.48)
Setzt man noch

=22, &=L —ib), co=s(a+ib), v=1,23 .., (549

0 2 ’ » 2 v v) L ) 2 v v) > e I N BUUAE | o

so geht (5.48) in

0
> c,et* (5.50)
y=—00
iber. (5.50) ist die komplexe Form der Fourierreihe. Unter ihrer Summe ist der
Grenzwert

n
lim Y ¢, e

n—w y=-n

7*



88 5. Fourierreihen

zu verstehen. Fiir die durch (5.49) eingefiihrten, sogenannten komplexen Fourier-
koeffizienten ¢, ergibt sich aus (5.19), (5.45) und (5.46)

0 = 5 [ 10 ax,
= % j F06) (cos x = isin vx) dx = -21? f fx) e dx, (.51)

™ k3
— 1 y 1Qi — 1 ivx
Cy =5 f/(x) (cos »x + isinvx) dx = P ff(x) e dx,
A i »=12,3,..,
wofiir man einheitlich

= ff(x) evrdy, y=0, 1, £2, ..., : (5.52)

schreiben kann. Aus (5.49) ist noch zu entnehmen, daB ¢, und c_, (fiir reellwertige
f(x)) konjugiert komplexe Zahlen sind.

Man sagt, daB jede der Funktionen e!’* eine komplexe harmonische Schwingung
beschreibt; (5.50) interpretiert man als Superposition (unendlich vieler) solcher kom-
plexen harmonischen Schwingungen. Die Koeffizienten ¢, werden komplexe Ampli-
tuden dieser Schwingungen genannt; nach (5.49) ist namlich |¢,| =% |a, F ib,|
= %\/ a? + b2, also bis auf den Faktor  gleich der Amplitude der harmonischen
Schwingung a, cos »x + b, sin vx. Die Folge der ¢, nennt man auch Spektralfolge

zu f(x).
Fur eine Funktion /() mit der Periode 7 erhilt man statt (5. 50) und (5.52)
2 .. (5:53)
= T .
25
2
P f F(t) et dt. (5.54)

e

Beispiel 5.8: Die komplexe Form der Fourierreihe (5.44) in Beispiel 5.7 bestimmt sich
unter Benutzung von (5.49) zu
[ e2lllmt

—iot __ aiot __i
) == (ei elr) M;_w——————(zﬂ_ TEIk (5.55)

Sl Numerische harmonische Analyse

In den Ingenieurwissenschaften kommt es haufig vor, daB die Funktion f(¢),
deren Fourierreihe benétigt wird, nur an diskreten Stellen bekannt ist oder die
Integrale (5.31) zur Berechnung der Koeffizienten zu kompliziert sind. Dann approxi-
miert man die Reihe durch ein sogenanntes trigonometrisches Polynom. Wir be-
trachten zunichst seine komplexe Form und gehen dann zur reellen iiber.
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Gegeben seien von einer Funktion f(f) in einem Intervall [— —:g- 7] die Werte

an den 2n Stiitzstellen ¢, = kﬁ’ k=0, +1, ..., £(n — 1), —n. Wenn man sogleich

(t) mit T periodisch voraussetzt, kennt man f(t) fir alle 7, mit ganzzahligem k:
es ist f(ti2n) = f(t). Wir stellen die Aufgabe, f(¢) durch eine Summe

n—1
Pty = X e, o= 1"—, - (5.56)
1==n T
[vgl. (5.53)] zu interpolieren, d. h., wir fordern
Pouty) = f(t), k=0,%1,..., £ —1), —n. - (557

kr
Es istot, = ) und wegen der Periodizitidt der Exponentialfunktion (siche Band 9)
ist

ell®t,on = elx(k+2n)7 — eilk—,,— — e“‘"k’

also Py,(ty+2n) = Pau(ty), so daB, wenn (5.57) fiir die genannten k erfiillt ist, die
Gleichung fiir alle ganzzahligen k richtig ist.
Fiir die weitere Rechnung benétigen wir die Beziehungen

ilot, o—imot,
2 clthe 0 sonst (5-58)

n=1 ; B {Zn, wenn / — m = v - 2n, v ganzzahlig,
k=-n

fiir ganzzahlige m, n. Die erste folgt daraus, daB} dann alle Summanden der linken

Seite gleich 1 sind. In der anderen erhilt man mit z = e iU=m)5 wegenz + 0,z =+ 1
und z2" = 1:

2n ! 1 2n
_z
§ ZH=1=at § z’—z*" =0
k==n 1-z

Multipliziert man nun (5.57), nachdem man fiir die linke Seite (5.56) fiir ¢ = #,
eingesetzt hat, mit e~'™*% und summiert iiber kK von —n bis n — 1, ergibt sich

n-1 n—-1
z Z ¢ elt-mor, Z f(tk) g imot,

k=—-n I=-n

Vertauscht man auf der linken Seite die Summationsreihenfolge, erhdlt man wegen
(5.58), wenn man durch 2 dividiert und / statt m schreibt,

c,_%n— z Sy e, =0, %1, . 20— 1), = (5.59)

(5.56) mit den Koeffizienten (5.59) ist die Losung der Interpolationsaufgabe (5.57).
Vergleichen Sie (5.59) mit den exakten komplexen Fourierkoeffizienten (5.54)!
Um zu einer reellen Losung der Interpolationsaufgabe zu kommen, setzt man
a =c¢ + cy, by =i(c,—cy), 1=0,1,...,n—1, ) (5.60)
@ =2, b=0, '
[vgl. (5.49)]. Dann folgt aus (5.59) wegen (5.47)

' Ie=c , 1
a, = Y k=zinf(t") (e—uwr, + eilwtk) — o

"_>_: (1) cos lory,

k
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1=0,1,...,n, und eine entsprechende Beziehung ergibt sich fiir die b,. Wegen der
Periodizitit von f(f) und des Kosinus kann auch von k = 0 bis 2n — 1 summiert
werden. Somit ergeben sich die reellen Koeffizienten

2p-1 N
a =7ll— > ft)coslwt,, 1=0,1,...,n,
K=o
(5.61)

1 2n-1
bi=— Y ft)sinlot, 1=1,2,..,n—1.
n k=0

Aus (5.56) folgt mit Hilfe von (5.45), (5.46) fir /=12, ..,n—1:
c el + ¢ e i = g cos lwt + b, sinlot, und fiir/ =0 wegen (5.60) c,e''*
_%
T2
eine reelle Form {iberfilhren. Er stimmt aber an den Stiitzstellen #, mit
o) = % (c_, e + ¢, e™") fiir ¢, = c_, lberein, und wegen (5.47), (5.60) ist

= o . Der noch fehlende Summand c_, e~ aus P,,(t) 1aBt sich nicht in

o(t) = 0—2"003 nwt. Wenn wir also in '(5.56) den Summanden fiir / = —n durch

¢(t) ersetzen (die abgednderte Summe sei mit P#,(f) bezeichnet), erhalten wir eben-
falls eine Losung unserer Interpolationsaufgabe, und diese hat die reelle Form

n—1 .
Pr(H= % + 1_21 (a, cos lot + b, sin lwt) + %cos not (5.62)

mit den Koeffizienten (5.61). Die Bestimmung des trigonometrischen Polynoms
P%(t) aus 2n Funktionswerten von f{(f) tritt an die Stelle der Fourierreihe (5.30)
von f(f) mit den Fourierkoeffizienten (5.31), wenn die am Beginn des Abschnitts
genannte Situation vorliegt. Man spricht dann von der numerischen harmonischen
Analyse. Erwihnt sei noch, daB sich (5.61) auch direkt aus (5.31) mit Hilfe der
Trapezregel herleiten 14Bt. Weitere Ausfiihrungen zur numerischen harmonischen
Analyse finden sich in Band 18.

5.8. Die GroBenordnung der Fourierkoeffizienten

Aus einer Rechnung, die in 5.10. durchgefiihrt wird, folgt, daB die Fourierkoef-
fizienten a,, b, einer in [—m, =] stlickweise stetigen Funktion f(x) fiir » > oo gegen 0
streben. Wie die Beispiele in 5.5 zeigen, konnen sie aber unterschiedlich stark gegen 0
gehen. So haben die Fourierkoeffizienten in den Beispielen 5.3 und 5.6 die Ordnung

0(—11}—), in den Beispielen 5.4, 5.5 und 5.7 dagegen die Ordnung O (—1,17) (nach 4%1
heiBt das, daB eine positive, von » unabhiangige Zahl K existiert, so daB |a,| < e
16, < —fz— fiir alle » > 1 gilt). Das hangt davon ab, ob die periodische Fortsetzung
von f(x) Sprungstellen besitzt oder nicht. Eine erste, einfache Aussage iiber die
Ordnung der Fourierkoeffizienten macht der folgende

Satz 5.4: Es sei f(x) eine mit 2w periodische, stetige Funktion, deren Ableitung im Inter-
vall [ —m, w] stiickweise stetig ist. Dann gilt
lim va, = lim vb, = 0. (5.63)

o0 v 00
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(5.63) kann auch in der Form a, = o (——) b,=o0 ( 1) geschrieben werden, d. h.,
1

die Fourierkoeffizienten streben stirker gegen 0 als >

Beweis. Auf Grund der Voraussetzungen ist f'(x) iiber [—, =] integrierbar. Bezeich-
net man die Fourierkoeffizienten von f’(x) mit a, und b,, so erhalt man unter Be-
achtung der wegen der Periodizitit von f(x) giiltigen Gleichung f(x) = f(—=) mittels
partieller Integration

a, = % ff’(x) cos vx dx = % ff(x) sin vx dx = vb,,

und entsprechend b, = —va,, v = 1, 2, 3, .... Da nach unserer einleitenden Bemer-
kung a} und ) als Fourierkoeffizienten einer in [—m, =] stiickweise stetigen Funktion
gegen 0 streben, hat man lim b, = lim a, = 0 und somit (5.63). m

v 00 >0

Allgemein gilt der folgende

Satz 5.5: Es sei f(x) eine mit 27 periodische Funktion, die fiir_ alle x stetige Ableitungen S. 5.5
bis zur (k — 1)-ten Ordnung (k = 1, 2, 3, ...) besitzen moge, wéihrend f ®(x) im Inter-

vall [, =] den Dirichletschen Bedzngungen geniige. Dann haben die Founerkoefﬁzzen-

ten von f(x) die Grofenordnung

1
a—O( k+1) bv:o(,,hn

Im Fall k = 1 erhalten wir unter den im Vergleich zu Satz 5.4 stirkeren Voraus-
1

setzungen dieses Satzes das gegeniiber (5.63) scharfere Ergebnis a, = 0(—2 "
b, =0 ( ) das fiir die Beispiele 5.4, 5.5, 5.7 zutrifft. Die Fourierreihe der Funktion

F(x) in Beispiel 5.5, deren Ableitung durchweg stetig ist und deren zweite Ableitung
in [—=, 7] die Dirichletschen Bedingungen- erfiillt, liefert ein Beispiel, in dem die

), v=1,2,3,.... (5.64)

Fourierkoeffizienten von der Ordnung O ( 1 ) sind. SinngemaB gilt Satz 5.5 auch im
Fall k£ = 0: Wenn eine mit 2z periodische Funktion f(x) im Intervall [—m, =] den
Dirichletschen Bedingungen geniigt, gelten g, = O (%) und b, = O (71}—)

5.9. Das Verhalten der Fourierreihe einer Funktion in der Umgebung einer
Sprungstelle (Gibbssches Phiéinomen)

Die Fourierreihe einer Funktion f(x), die im Intervall [—=, ] den Dirichletschen
Bedingungen gentigt, ist nach Satz 5.2 in jedem abgeschlossenen Teilintervall von
[—=, ], in dem f(x) stetig ist, gleichmaBig konvergent und hat f(x) als Summenfunk-
tion. In einer (beliebig kleinen) Umgebung einer Sprungstelle x, von f(x) jedoch ist
die Konvergenz der Fourierreihe nicht gleichméBig (das folgt aus Satz 3.3). Dariiber-
hinaus zeigen die Teilsummen s,(x) der Fourierreihe von f(x) an einer solchen Stelle
ein eigenartiges Verhalten, das als Gibbssches Phinomen bekannt ist. Wir unter-
suchen dieses zunichst fiir die in Beispiel 5.6 angegebene Fourierreihe in der Um-
gebung von x, = 0.
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Das dort erhaltene Ergeiam's konnen wir — bei Beschrinkung auf das Intervall
(—m, ) — auch so formulieren: Die Reihe

sinx 4 S23% , snSx L 565
3 5 7
ist die Fourierreihe der Funktion
- 7’:— fir —wt<x<0,
f(x) = 0 fir x=0,
—} fir 0<x<n

und stellt f(x) in (—=, ) dar. Wir wollen das Verhalten ihrer Teilsummen,

sin (21 — 1) %, (5.66)

1
2n —1
in einer Umgebung der Sprungstelle x, = 0 betrachten. Da die s,(x) ungerade
Funktionen sind, kénnen wir uns auf eine rechtsseitige Umgebung von 0, etwa auf

. 1.
Su(x) =sinx + 5 sin 3x + ... +

[0, _;i} , beschranken. Um die Lage der Maxima und Minima zu bestimmen, bilden

wir sp(x):

;s,’,(x) =cosx + cos3x + ... + cos(2n — 1) x. (5.67)
Indem wir 2 sin x mit (5.67) multiplizieren, )

2s,(x)sinx = 2cos xsinx + 2cos3xsinx + ... + 2cos (2n — 1) x sin x,
und auf die Summanden der rechten Seite die aus dem Additionstheorem der Sinus-
funktion folgende Beziehung 2 cos u sin v = sin (u + v) — sin (v — v) anwenden:

2s,(x) sin x = (sin 2x — 0) + (sin 4x — sin 2x) + ...

+ (sin 2nx — sin (2n — 2) x) = sin 2nx,
erhalten wir
sin 2nx

si(x) = cosx + cos3x + ... + cos(2n — 1) x = T, (x £ 0). (5.68)

Die Formel gilt aber auch fiir x = 0, wenn wir in diesem Fall die rechte Seite als
sin 2nx
2sin x ;
folgenden Formeln fiir &hnliche Quotienten gelten, die in x = 0 nicht definiert sind,
aber einen Grenzwert fiir x — 0 besitzen. Mit Hilfe der Doppelwinkelformel fiir
die Sinusfunktion folgt schlieBlich

Grenzwert lim (= n) interpretieren. Diese Interpretation soll auch in den
x-0

sin nx cos nx
sin x i

5:(x) = (5.69)

Die Nullstellen von s;(x) in [0, %] ergeben sich daher aus der Gleichung
2k — 1 n+1

-n:,k=l,2,...,[ v},und

. k n L . . Ly
bei X5 = ‘77':, k=12,.., [7], wobei die x;; Maxima, die x,; Minima von s,(x)

sin nx cos nx = 0, sie liegen also bei x;; =
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sind. Der Funktionswert s, (ﬁ) an der ersten positiven Maximalstelle x;; = 77;_

ergibt sich wegen der aus (5.68) folgenden Beziehung

x .
1 [ sin2nt
(1) = f(cos £4 o83 4+ ... £ cos (2n — 1) 1) dr = ?f”'sﬁ
0
zu
' T
1 [ sin2nt
7 ) sin
s(ge) =7 [ i o)
[
und nach Substitution x = 2n¢ konnen wir
= il
] 1 [ sinx 2n
n(2) =5 [ ——— (.71
© 2n
.X
sin — .
schreiben. Da lim =1 gleichmiBig im Intervall 0 < x < = gilt, strebt
n— o
2n
Sn ( o )fur n — oo gegen einen Grenzwert; es ist
. i 1 [ sinx 1.
lims, (ﬁ) == f ~% dx = Sin 6.72)
0
(zu Si x siehe Beispiel 4.10). Das heiit, daB das erste positive Maximum von s,(x),
das bei x;; = 2—- angenommen wird, fiir groBe » in der Nahe des Wertes 1Sin
%~ 0,926 liegt und damit den konstanten Funktionswert f(x) = —~ 0785 um

0,141 tibertrifft (das ist etwa das 0,09fache der Sprunghshe ¢ = f(+0) f(=0)=—

von f(x) an der Stelle x, = 0). Mit wachsendem 7 riickt x;; naher an 0 heran, und
der Maximalwert strebt (und zwar von oben her, wie man aus (5.71) ablesen kann)
gegen % Si.

Auchdie x;, k = 2,3, ..., [n -IZ- !

lim s,(xy,) existieren und sind alle gréBer als —, nehmen jedoch mit wachsendem k

n- o

ab (und zwar ist hm Sa(x1) = 3 Si(2k — 1) TE) An den Minimalstellen ka streben

streben fﬁr n— oo gegen 0, die Grenzwerte

die Teilsummen s,,(x) fiir n - o0 gegen Grenzwerte die kleiner als T sind; die
Abweichungen gegeniiber T werden mit wachsendem k ebenfalls kleiner. Dieses

vorstehend beschriebene Verhalten der Teilsummen s,(x) in einer Umgebung der
Sprungstelle x = 0 nennt man Gibbssches Phanomen. Es ist in Bild 5.11 fiir das

Intervall [— 7—;—, ;] graphisch‘dargestellt (fiir n = 6; der Verlauf der s,(x) fiir nega-
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tive x ergibt sich, da s,(x) ungerade Funktionen sind, durch Spiegelung am Null-
punkt). Von einem gewissen # an verlaufen alle Teilsummenkurven y = s,(x) inner-
halb des in Bild 5.12a skizzierten Gebietes; als Grenzkurve fiir n — co ergibt sich der
bei x = 0 nach oben und unten um jeweils 9 9} der Sprunghéhe verliangerte Strecken-
zug, Bild 5.12b.

Das am Beispiel beschriebene Gibbssche Phédnomen zeigt sich allgemein in
der Umgebung einer Sprungstelle einer in [—m, =] den Dirichletschen Bedingungen

y y=Sg(x) N
P
vl S A = =
1 1
i 0 T
-z . X
= — g, _{-E
z
Bild 5.11
I
y Y
P oy
z 3
1 1 1 1
b4 rox _Z LAY
-2 B 2 e
r T | X
L /B 4
a) b)
Bild 5.12

geniigenden Funktion f(x). Wenn x, € [—=, =] eine Sprungstelle von f(x) mit der
Sprunghéhe o = f(xo + 0) — f(x, — 0) ist, so ist s,(x,) wenigstens niherungsweise
gleich % (f(xo + 0) + f(xo — 0)). In einer rechtsseitigen Umgebung von x, steigt
5,(x) zunichst steil an bis zu einem Wert, der in der Nihe von

-;—(f(xo +0) + (5o — ) + ZSi % = fixo + 0) +q(§;’i—%)
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; ~ 0,09, so daB s,(x) den rechtsseitigen Grenzwert f(x, + 0) um

liegt (
etwa das 0,09fache der Sprunghdhe iibersteigt), und oszilliert dann um f(x), wobei
die Betrige der jeweils groBten Abweichungen von s,(x) gegeniiber f(x) mit der Ent-

fernung von der Sprungstelle x, abnehmen. Entsprechend fillt s(x) von x, aus nach

links steil ab bis zu einem Wert nahe f(x, — 0) — o (—SIT‘N - %) und oszilliert dann

ebenfalls um f(x).

5.10. Approximation im quadratischen Mittel

AbschlieBend sollen die Fourierkoeffizienten noch unter einer anderen Aufgaben-
stellung betrachtet werden. Dabei fassen wir die Ausfiihrungen allgemeiner als
bisher und werden auf die speziellen Fourierkoeffizienten erst am Ende des Ab-
schnitts zurtickkommen.

Wir gehen anstelle von (5.17) von einem allgemeinen orthogonalen Funktionen-
system aus., Der Begriff der Orthogonalitit ist aus der Vektorrechnung bekannt:
zwei Vektoren =o heiBlen orthogonal, wenn ihr Skalarprodukt gleich null ist. Ver=
allgemeinernd versteht man unter dem Skalarprodukt von zwei auf einem Inter-
vall [a, b] definierten, reellwertigen und quadratisch integrierbaren') Funktionen f, g

b

iber diesem Intervall das Integral f f(x) g(x) dx und nennt f, g tiber [a, b] ortho-

gonal, wenn ihr Skalarprodukt null 1st und f, g in [a, b] nicht identisch verschwinden.
In Analogie zum Betrag eines Vektors a, |a| = \/ aa, definiert man die Norm einer
1

solchen Funktion fdurch||f]| = ( f fA(x) dx) . Wir kommen zum Begriff des ortho-
gonalen Funktionensystems.

Definition 5.2: Eine Menge von in einem Intervall [a, b] definierten, nicht identisch ver-
schwindenden, reellwertigen, quadratisch integrierbaren Funktionen @q(x), ¢,(x),
@2(X), ... heifit ein orthogonales Funktionensystem iiber [a, b], wenn

b
f:pﬂ(x) @(x)dx =0 fir alle p+v, uv=0,1,2,.., (5.73)
gilt. Wenn auﬁerdem

llp,l? = |¢,(x) dx =1 fir alle v = =0,1,2,. (5.74)

a

erfiillt ist, heifien die ¢,(x) normiert und die Menge {p,(x)} ein Orthonormalsystem
(ONS).
Wenn {f,(x)} ein zwar orthogonales System, aber kein ONS ist, bildet die Menge

{p,(x)} mit p,(x) = m fll ——f,(x) ein ONS, da dann (5.74) erfiillt ist. Wegen J' dx =2=

-

b
1) f(x) heiBt quadratisch integrierbar iiber [a, b], wenn j f2(x) dx existiert.
a

D.5.2-
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und (5.15) entsteht aus dem orthogonalen System (5.17) durch Normierung

1 1 1
(%) = ——, (x) = —=cos x, X) = —=sin x,
Po \/27r P11 \/7; P12(x) \/TE

@21(x) = \/_ cos 2x, @22(x) = \/_ sin 2x, ... (5.75)

als ONS iiber [—=, ]. Ein weiteres ONS, und zwar iiber [—1, 1], bildet die Menge
A/ on +1

der Funktionen ¢,(x) = >

P,(x), wobei die P,(x) die Legendreschen Poly-

nome sind (siehe Beispiel 4.19).
Man kann nun den Begriff der Fourierreihe dahingehend verallgemeinern, daB
man statt von (5.75) von einem beliebigen ONS ausgeht.

Definition 5.3: Es sei {¢,(x)} ein ONS iiber [a, b], und f(x) eine iiber [a, b] quadratisch
integrierbare Funktion (f(x), @,(x) reellwertig). Dann'heifen die Zahlen

j f@) g (x)dx, »=0,1,2,. (5.76)

die (verallgememerten) Faurterkoejﬁzzenten von f(x) beziiglich des ONS {p,(x)}, und
die mit diesen gebildete Reihe ): ¢,p,(x) heift (verallgemeinerte) Fourierreihe beziig-
¥=0-"

lich {p,(x)}.

~Wir beleuchten nun eine interessante Eigenschaft dleser ¢,. Dazu stellen wir
zunichst die Frage, wie man eine Funktion f(x) der in Deﬁmtlon 5.3 genannten
Art mit den ersten n + 1 Funktionen eines ONS, und zwar durch eine Summe

%) =v§"0d, (), niest, .77)

mdglichst gut approximieren kann. Als MaB fir die Giite der Approximation ver-
wenden wir den mittleren quadratischen Fehler 6, zwischen f(x) und o,(x), der
durch

b
0 = lf = all* = [ (f(x) = 0,(x)* dx (5.78)

definiert ist. Eine Approximation mit dieser Forderung nennt man Approximation
im quadratischen Mittel. Offenbar muB, damit 6, moglichst klein ausfallt, der Betrag
| f(x) — 0,(x)| im gesamten Intervall [a, b] klein sein (oder er darf hochstens in sehr
kleinen Teilintervallen groBe Werte annehmen), so daB ¢, tatsichlich ein MaB fiir
die Approximationsgiite ist. Nun gilt folgender

Satz 5.6: Der mittlere quadratische Fehler 6, nimmt sein Minimum an, wenn die Koeffi-
zienten d, in (5.77) gleich den Fourierkoeffizienten cq, ¢y, ..., ¢, (siehe (5.76)) sind.

Mit anderen Worten heiBt das, daB dic beste Approximation erhalten wird,
wenn (5.77) als n-te Teilsumme der Fourlerrelhe von f(x) beziiglich {(p,,(x)} gewahlt
wird.

Beweis zu Satz 5.6: Aus (5.78) folgt
b b b «
Oy = ffz(x) dx — 2 ff(x) a,(x) dx + j 02(x) dx. (5.79)
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Wegen (5.76), 5.2.2. sowie (5.73), (5.74) ist

b a b n
[16905) dx = ¥ d,[ [ 7,0 dx = T 6dl,

. b . b o n
[ dr = 3 d? [¢30) dx + 3 ddp () p) = 2 a2,
P v= a = v=
bEY

so daB (5.79) in _
n n n n
h=lfIF =23 cd, + T d = IIfIP - X & + X (& - 47 (580)
V= v= v= V=
tibergeht. Somit wird d, am kleinsten, wenn die letzte Summe verschwindet, d. h.

wenn d, = ¢, gilt, was zu beweisen war. B

Aus (5.80) entnimmt man Y ¢2 < ||f]|?, und da das fiir jedes » richtig ist,
v=0 »

X a1 (581)

(5.81) heiBt Besselsche Ungleichung. Aus ihr folgt insbesondere die Konvergenz
0

der Reihe ¥ ¢2 und daher lim ¢, = 0. Wenn in (5.81) sogar das Gleichheitszeichen
steht, *=0 v :

T =1, | 582

heifit das ONS der {¢,(x)} vollstindig, und (5.82) heiBt Vollstéindigkeitsrelation
oder Parsevalsche Gleichung. Sie besagt wegen (5.80), daB limé, = O fir d, = ¢,
oder L

b n 3 '
lim | (f(x) - _zo ¢ ,,(x)) dx=0 (5.83)

gilt. In diesem Fall sagt man, daB die Fourierreihe von f(x) beziiglich {g,(x)} in
[a, b] im quadratischen Mittel gegen f(x) konvergiert.
Wenden wir die Ergebnisse auf das spezielle ONS (5.75) an, so folgt aus (5.76)

1 ) S -
Co = _\/ﬂ ff(x) dx = A/? a4y, €y = \/7: a,, €2 = \/1: b,, (5.84)
-7

a,, b, nach'(5.19). Die trigonometrische Summe

Xo

2

ist nach Satz 5.6 beste Approximation fiir eine Funktion f(x) in [—m, =] im Sinne
des quadratischen Mittels, wenn «, = a,, f, = b, gilt. Ferner ist lim a, = lim b, = 0.

. -0 v— 00
Ohne Beweis sei mitgeteilt, daB das ONS (5.75) vollstindig ist. Daher konvergiert
die gewohnliche Fourierreihe einer quadratisch integrierbaren Funktion f(x) in

"
+ X (o, cos vx + f, sin »x)
v=1
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[—, ] im quadratischen Mittel gegen f(x), und die Gleichung (5.82) besagt wegen
5.84) :
(

, & ) g
R+ Y @+ b = L f £2(x) dx. (5.85)
y=1 ™

Aufgaben:

Aufgabe 5.1: Entwickeln Sie die Funktion
0 fir —mr<x=<0

*

fx) = {

X fiir 0<x<m

W .
in eine Fourierreihe (machen Sie sich anhand einer Skizze den Verlauf der periodi-
schen Fortsetzung klar)!

% Aufgabe 5.2: Die Funktion f(x) = [sinx|, —= < x <, soll in eine Fourierreihe
entwickelt werden (Skizze!). Welche Ergebnisse kann man aus der Reihe fiir x = 0

bzw. fir x = l;— entnehmen?
* Aufgabe 5.3: Entwickeln Sie die Funktion f(x) = nx — x2, 0 £ x < m, in eine reine
Sinusreihe! Begriinden Sie die GroBenordnung der auftretenden Fourierkoeffizienten!

* Aufgabe 5.4: f(x) sei die mit 2x periodische Funktion, deren Verlauf in Bild 5.13
wiedergegeben ist. Geben Sie die Fourierreihe von f(x) an!

v
-; 17 i——| ;—
|
| - ' — L 1 1 J e
-2z _ra_ 0 X 2 T |x |5m 2% X
LB, 3 O3 Bild 5.13

% Aufgabe 5.5: Entwickeln Sie die Funktion f(x) =3 — x, —2 < x < 2, f(x + 4k)
=f(x) (k= +1, +£2,..) in eine Fourierreihe! Skizzieren Sie im Intervall
—2 < x £ 2 die Bilder der Teilsummen s,(x), 52(x), 53(x)!

= Bild 5.14
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Aufgabe 5.6: Die Funktion f(x) habe im Intervall [—2, 2] den in Bild 5.14 skizzierten *

Verlauf und sei periodisch mit der Periode 4. Bestimmen Sie die Fourierreihe der
Funktion f(x)! Begriinden Sie, warum in diesem Beispiel b, = 0 fiir alle geraden »,
1

b, =2 ff(x) sin » —7—;- x dx fiir alle ungeraden » gilt!
0

Y

=T T K3 T
H .2 . %

Bild 5.15

Aufgabe 5.7: Das Bild der Funktion f(¢) bestehe aus einer Folge sich periodisch =
wiederholender Dreiecksimpulse der Hohe 1 und der Dauer 7, die Periodenlinge sei
T (siehe Bild 5.15). Stellen Sie die Fourierentwicklung von f(7) auf!



6. Fourierintegrale

6.1. Das Fouriersche Integraltheorem

6.1.1.  Ubergang von der Fourierreihe zum Fourierintegral

Die Verwendung von Fourierreihen fiir die Darstellung von Funktionen ist auf
periodische Funktionen beschrankt (bzw. auf solche, die in einem endlichen Intervall
‘definiert sind, die man sich jedoch iber dieses hinaus periodisch fortgesetzt denken
kann). Im folgenden wird angedeutet, wie man durch Verallgemeinerung der Ergeb-
nisse iiber Fourierreihen zu einer Darstellung einer in einem unendlichen Intervall
definierten, nicht-periodischen Funktion gelangt. Hierbei tritt an die Stelle der Reihe
ein Integral, das man Fourierintegral nennt. 2

Es sei f(x) eine Funktion, die a) in jedem endlichen Intervall [— —27;, 7T] die

Dirichletschen Bedingungen erfiillt und b) tber (— oo, c0) absolut konvergiert
©
(d. h., daB J | f(x)| dx existiert). Betrachten wir f(x) zunachst in [— 21, TT] , so stellt
-
die Fourierreihe (5.30) — mit x statt 7 — an den Stetigkeitsstellen dieses Intervalls die
Funktion f(x) dar. Es gilt dort also, wenn die a,, b, gemaB (5.31) eingesetzt werden
und anschlieBend das Additionstheorem der Kosmusfunktlon benutzt wird,

T

NE

() (cos ot cos vax + sin vt sin vewx) dt,

& =7 [fos+F 3

NS E b W

i ;
T
17 2 =
) = f JOL =) f SO cosvolt =9t 6.1)

NE

e
2z

Zu der gewiinschten Darstellung gelangt man durch Grenziibergang 7 — co. Dann
strebt der erste Summand von (6.1) gegen 0, weil

NE

fde| s 5 lf(t)ldté% [1r@)ae

-

N]ﬂkﬁ
N]ﬂ%n

gilt und das letzte Integral nach Voraussetzung b) konvergiert. Setzen wir im zweiten
Summanden
2my 2r 2

Oy = s Aw, = 0,1y — o, =?(V+1—’”)=T,
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so wird
z T
% > f fit) cos vaolt — %) dx = ?1? 5 f 1) cos t — x) dt | Aw,.
v:l V:l
T T
-7z -7z

(6.2)

]
Jede Teilsumme der hierdurch erhaltenen Reihe von der Form Y g(w,) Aw, kann als
v=1

Riemannsche Summe zum bestimmten Integral iiber g(w) zwischen 0 und einer ge-
wissen (mit » - co unbeschrinkt wachsenden) oberen Grenze aufgefat werden und

0
die Reihensumme selbst als Naherungswert fiir das uneigentliche Integral f g(w)dw.
0

Wenn die rechte Seite von (6.2) fir 7 — oo und somit Aw, — 0 einen Grenzwert be-
sitzt, kann man vermuten, dafl die Summe in das uneigentliche Integral beziiglich w
mit den Grenzen 0 und oo tibergeht, wobei zugleich die Grenzen des inneren Integrals
—oo und co werden. Der folgende Satz bestitigt die Richtigkeit dieser Betrach-
tungen.

Satz 6.1 (Fouriersches Integraltheorem): Eine Funktion f(x) mége iiber (— oo, o0) abso-
lut integrierbar sein und in jedem endlichen Intervall die Dirichletschen Bedingungen
erfiillen. Dann gilt fiir alle x die Beziehung

F U+ 0+t = 0) == [ S0 cosolt - x)dr do. ©3)

An jeder Stetigkeitsstelle von f(x) steht auf der linken Seite f(x). (6.3) gibt dann
(vom Faktor 1/m abgesehen) eine Darstellung fiir f(x) durch ein Integral; diesgs heift
Fourierintegral.

Unter Beriicksichtigung des Additionstheorems fiir die Kosinusfunktion kann
man fiir (6.3)

1) = f(a(w) cos wx + b(w) sin wx) dw, (6.4)
(@) =~i- f A cosotdt,  bw) =% f 1) sin ot dt 6.5

schreiben. Die Darstellung (6.4) erinnert von der Form her an die Fourierreihe
(anstelle des Summenzeichens steht hier ein Integral), und die Funktionen (6.5)
ihneln den Fourierkoeffizienten (anstelle des Index » steht der kontinuierliche
Parameter o).

Das erhaltene Resultat 148t sich physikalisch wie folgt interpretieren. Wahrend
eine periodische Funktion, die die Dirichletschen Bedingungen erfiillt, ein diskretes
Frequenzspektrum besitzt, d. h. sich als unendliche Reihe von reinen Sinusschwingun-
gen mit diskreten Frequenzen darstellen 148t, ist eine nichtperiodische Funktion unter
den Voraussetzungen des Satzes 6.1 als Integral iiber Sinusschwingungen mit stetig
verdnderlicher Frequenz  darstellbar (kontinuierliches Frequenzspektrum). An die
Stelle der Fourierkoeffizienten a,, b,, die im diskreten Fall die Amplitude der Harmo-
nischen mit der Kreisfrequenz »w bestimmen (siehe 5.1), treten im kontinuierlichen
Fall die Funktionen a(w), b(w), die man Amplitudendichten nennt. Bei einem konti-
8  Schell, Reihen

S. 6.1
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nuierlichen Frequenzspektrum kommt ndmlich einer einzelnen Frequenz die Ampli-
tude 0 zu, und die Amplitudenverteilung iiber einzelne Frequenzintervalle ist durch
die Amplitudendichten bestimmt. Der Anteil der in f(x) enthaltenen reinen Sinus-
schwingungen mit Frequenzen aus dem Frequenzintervall [w,, w, + Aw] ergibt sich
aus der Naherungssumme fiir das Integral auf der rechten Seite von (6.4) angenéhert
zu (a(wo) cos wex + b(w,) sin wex) Aw, und zwar um so genauer, je kleiner Aw ist;
die Amplitude dieser Schwingung ist \/ a*(wo) + b*(wo) Aw.

‘Beispiel 6.1: Die Funktion
e a>0, fir x>0,
=1

fir x<0
ist fur alle x + 0 stetlg und erfiillt offenbar in jedem endlichen Intervall die Dlrlchlet—
schen Bedingungen; sie ist ferner iiber (— 0o, 0o) absolut integrierbar:

' f]f(x)] dx =j?e“”‘dx - [_%e_ax]: =%_

Satz 6.1 ist also anwendbar. Fiir das innere Integral in (6.3) ergibt sich
0

}of(t) cos ot — x)dr = [e cosw(r — x) dt
- 0

0
- [i e~ sin w(f — x)] - f e~ sin @t — x) d
w 0 w
0

]
I sin (—owx) + a [ ! e~ cos w(t x)] . fe“’ ‘cos w(f — x)dt
) ) %) 0 ? ?

0
woraus . ’ '
0

fe—‘" cosw(t — x)dt =

0

w? ( sin wx

a
—3 + —5-coswx
a® + w? »?

w

 sinwx + a cos wx

a® + o? -
folgt. Somit lautet die Darstellung von f(x) durch ein Fourierintegral:
0
1 [ osinwx + acoswx
fx) =— f — g do (6.6)

x # 0. Fiir x = 0 aber hat die rechte Seite nach Satz 6.1 den Wert 4, was sich durch
unmittelbares Ausrechnen sofort bestétigen 145t.

6.1.2. Kosinus- und Sinusform des Fourierschen Integraltheorems

Wie bei den Fourierreihen die Fourierkoeffizienten, so spezialisieren sich bei
Fourierintegralen die Funktionen a(w) und b(w) in (6.5), wenn f(x) eine gerade bzw.
ungerade Funktion ist. Fiir gerade Funktionen f(x) ergibt sich aus (6.5) bzw. (6.3)
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fiir die Stetigkeitsstellen x von f(x)

b(w) =0, a(w) = % f 7 cos wr dt, (6.7)
fx) = %fcoswx ff(t) cos wtdl) dw, (6.8)
fiir ungerade Funktionen f(;c)
@) =0, bo)= % f £y sin ot dt, (6.9)
0
1) = % f sinwx( f f(@)sinot dt | do. (6.10)
0 0

(6.8) bzw. (6.10) nennt man die Kosinus- bzw. Sinusform des Fourierschen Integral-
theorems.

Insbesondere kann man eine fiir 0 < x < oo definierte Funktion f(x), die dort
den Voraussetzungen von Satz 6.1 geniigt, an ihren Stetigkeitsstellen mit Hilfe
von (6.8) bzw. (6.10) als Integral darstellen. Dabei kann man sich f(x) fiir negative
x durch f(x) = f(—x) bzw. f(x) = —f(—x) definiert denken. In x = 0"ist f(x) bei
gerader Fortsetzung immer stetig, bei ungerader genau dann, wenn f(0) = 0 gilt.

Beispiel 6.2: Fiir die stetige Funktion f(x) = %%, 0 £ x < o0 (a > 0), ergeben sich
wegen

-] ©
—at _ a —at o3 = Ly
fe cos wt dt Zra je sin w? dt e
0 [
(vgl. Beispiel 6.1) aus (6.8) bzw. (6.10) die Darstellungen
0
2a €OoS wx -
—0X. — —_— L
e el e do, 0<x< o, (6.11)
o
0 . .
o= 2 j%‘nwdw, 0<x<o. . ©.12)
TJ) a t+ow

o

Die rechte Seite von (6.11) stellt fiir alle x die Funktion e~?I*l dar, die rechte Seite
von (6.12) stellt fiir x < 0 die Funktion —e~** dar und verschwindet fiir x = 0.

6.2. Die komplexe Form des Fourierintegrals

Wir bemerken zunéchst, daB das innere Integral in (6.3) eine beziiglich w gerade
Funktion g(x, w) ist. Daher darfim Argument des Kosinus auch w(x — f) geschrieben

8*
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werden, auBerdem gilt
0 0
fg(x, ) dow = —;— fg(x, ) dw,
o -
und es folgt aus (6.3) an den Stetigkeitsstellen von f(x)

&) = [ [r@eos ot = v atdo. (6.13)

-—® -

Wenn f(x) iiber (—oo, c0) absolut integrierbar ist, existiert auch das Integral
©

f f(?) sin w(x — ¢) dz und ist eine stetige, offenbar ungerade Funktion beziiglich w.

-

Dabher gilt

[ f@)sino(x — 1) dtdo = 0 fiir jedes I > 0,

o

L
£

L
2

und folglich existiert auch der Grenzwert der linken Seite fiir / — oo und ist gleich 0.
Somit haben wir, wenn wir noch durch 2 dividieren,

. © ®
% f f £ sino(x — £)dt do = 0; (6.14)
-0 =00
dabei ist wegen der Art des Grenziibergangs das Integral beziiglich w hier wie im
folgenden als Cauchyscher Hauptwert aufzufassen, ohne daB wir das durch eine
besondere Bezeichnung zum Ausdruck bringen (siche -Band 2, 11.1.2.). Unter den
Voraussetzungen von Satz 6.1 wird im allgemeinen dieses Integral nicht als
uneigentliches Integral existieren.
Durch Addition von (6.13) und der mit i multiplizierten Gleichung (6.14) ergibt
sich

f(x)=—2l? f f €960 () dt doo. ' (6.15)

©

Diesg Beziehung gilt unter den Voraussetzungen von Satz 6.1 fiir jede Stetigkeitsstelle
von f(x). Das duBere Integral in (6.15) ist die komplexe Form des Fourierintegrals.

Beispiel 6.3: Fiir die in Beispiel 6.1 betrachtete Funktion

e fiir x>0,
f(")z{o fir x <0,

erhélt man aus (6.15) wegen

a>0,

©

]
feiw(x—t)f(t) dt = ei®x f e-(@+ior dy —
- 00

o

eiwx

a+iw
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folgende Darstellung durch ein komplexes Fourierintegral:

fx) = = e d (6.16)
">-§fa+—iw X N
-

Wenn man den Integranden in Real- und Imaginirteil zerlegt, ergibt sich wieder (6.6).

6.3. Die Fourier-Transformation

6.3.1.  Definition der Fourier-Transformation

Gleichung (6.15) kann auch in der Form

©

fe) = % f e"‘“’( f e-“"'f(t)dz) do 6.17)

-0
geschrieben werden. Das in der Klammer stehende Integral ist eine Funktion allein
von w, die wir mit F(w) bezeichnen wollen. Wir haben also

Flw) = f e~ (x) dx, (6.18)

und aus (6.17) folgt

foo) = % f e*F(w) do. (6.19)

Das Integral in (6.18) existiert sicher dann, wenn f(x) tiber (— o0, c0) absolut inte-
grierbar ist. Unter dieser Voraussetzung ordnet (6.18) der Funktion f(x) eindeutig die
Funktion F(w) zu. Umgekehrt erhilt man aus F(w), wenn die Voraussetzungen von
Satz 6.1 erfiillt sind, mit Hilfe von (6.19) wieder f(x), allerdings nur an den Stetig-
keitsstellen (an einer Sprungstelle von f(x) ist die rechte Seite von (6.19) gleich

H(x +0) + flx — 0)).

Definition 6.1: Die durch (6.18) gegebene Zuordnung von F(w) zu f(x) heifit Fourier- D. 6.1
Transformation, und F(w) heift die Fourier-Transformierte von f(x). (6.19) nennt man
Umbkehrformel zur Fourier-Transformation, die durch sie bestimmte Zuordnung Riick-
transformation zur Fourier-Transformation und f(x) eine inverse Fourier-Transfor-

mierte zu F(w). Man schreibt auch

Flo) = F{fx)}, f(x) = 5 H{F()} (6.20)
anstelle von (6.18), (6.19).

Aus der Definition geht hervor, daB3 zwei Funktionen, die sich nur an endlich vielen
Stellen voneinander unterscheiden, die gleiche Fourier-Transformierte besitzen. Wenn
unter allen Funktionen mit der gleichen Fourier-Transformierten F(w) eine stetige



106 6. Fourierintegrale

Funktion f(x) existiert, so ergibt sich bei Anwendung der Umkehrformel (6.19) auf
F(w) diese Funktion f(x). Es gibt Tabellenwerke, in denen eine Vielzahl zusammen-
gehoriger Paare von Funktionen f(f), F(w) verzeichnet ist (s. z. B. [1]).

In der Elektrotechnik nennt man die Fourier-Transformierte F(w) von f(x) Fre-
quenz- oder Spektralfunktion (exakt auch Spektraldichtefunktion) von' f(x). Der
Zusammenhang zwischen F(w) und den in (6.5) eingefiihrten Amplitudendichten
a(w), b(w) ergibt sich mit Hilfe der Eulerschen Formel zu

F(w) = ff(x) coswx dx — i j?f(x) sin wx dx = w(a(w) — ib(w)). (6.21)

- -

Die rechte Seite von (6.19) kann man, wie die von (6.4), als Superposition von —
jetzt komplexen — harmonischen Schwingungen e'*® auffassen, wobei alle reellen o

als Frequenzen auftreten; die entsprechende Darstellung fiir periodische Funktionen
‘ 0

f(x) der Periode 2 ist die durch ihre Fourierreihe in komplexer Form, f(x) = 3. ¢, "%,

in der nur diskrete Frequenzen enthalten sind. Setzt man noch Z= .
1 1 . .

S(w) = gF(w) = —2—(a(w) - lb(w)), (6.22)

so geht (6.19) iiber in
fx) = fe‘st(w) do. (6.23)

Zu der komplexen harmonischen Schwingung mit der Frequenz o gehért jetzt der
,,infinitesimale* Faktor S(w) dw, weshalb man S(w) auch komplexe Amplituden-
dichte nennt. Die (reelle) Funktion |S(w)| = 1+/a(@) + b*(w) heiBt — wie a(d)
und b(w) - Amplitudendichtefunktion; es -findet sich auch hier wie fiir
|F(w)| = 27|S(w)| die Benennung Amplitudenspektrum.

Die Bedeutung der Fourier-Transformation fiir die Elektrotechnik besteht darin,
daB gewisse Eigenschaften eines durch eine zeitabhdngige Funktion f(¢) — kurz Zeit-
funktion genannt — gegebenen Signals besser an der zugehorigen Frequenzfunktion
F(w) untersucht werden konnen als direkt an f(7). Dabei erweist es sich als bedeutsam,
daB neben den in den erwihnten Tabellenwerken enthaltenen speziellen Zuordnungen
eine Anzahl allgemeiner Regeln fiir das Rechnen mit Fourier-Transformierten zur
Verfiigung steht (siche hierzu Band 10).

Beispiel 6.4: Aus Beispiel 6.3 entnehmen wir, daB die Fourier-Transformierte der

—ax o
Funktion f(x) = {8 21‘; i Z g a > 0, die Funktion F(es) = ——— ist,

a+ io

1 fir |x|<a

0 fir |x|>a’ a > 0 (Rechteckimpuls). Dann be-

Beispiel 6.5: Es sei f(x) = {

rechnet sich die Fourier-Transformierte von f(x) nach (6.18) zu

; 1 2 e-lwa _ gloa
_ _iox L oreioxe _ _ 2 _
Flo) = f el dx = — — e, = =

—a



6.3. Die Fourier-Transformation 107

Wenn man noch die Eulersche Formel oder die zweite der Beziehungen (5.47) ver-
wendet, hat man als Fourier-Transformierte von f{(x)

2 sin aw

Flw) = (6.24)

6.3.2. Die Fouriersche Kosinus- und Sinustransformation

Man kommt zu zwei weiteren Integraltransformationen, wenn man von der Kosinus-
form (6.8) bzw. Sinusform (6.10) des Fourierschen Integraltheorems ausgeht. Nehmen

wir in (6.8) den Faktor J —in die innere Klammer hinein,

fx) = A/gofcos wx (A/goff(t) cos wt dt) dow, (6.25)

und bezeichnen die Klammer in (6.25) mit F.(w), so erhalten wir ein den Beziehun-
gen (6.18) und (6.19) entsprechendes Gleichungspaar, namlich

Fyw) = A/%—- Jf(x) coswx dx, f(x) = A/% f F(w)coswx dw.  (6.26)
] 0

Die durch die erste Gleichung (6.26) definierte eindeutige Zuordnung von Fy(w)
zu f(x) heit Fouriersche Kosinustransformation; durch die andere ist die Riick-
transformation bestimmt. Wenn f(x) fiir x = 0 definiert ist und dort die Voraus-
setzungen von Satz 6.1 erfiillt, existiert F,(w) fiir beliebiges w, und die zweite Gleichung
(6.26) liefert fiir x = 0 wieder f(x), wenn diese Funktion stetig ist. Offenbar ist von
den Funktionen f(x) und F(w) eine die Kosinustransformierte der anderen.

Wenn man von (6.10) ausgeht, erhélt man entsprechend, sofern f(x) fiir x > 0
definiert ist und dort die Voraussetzungen von Satz 6.1 erfiillt, das Paar

F(o) = A/ -1_2? f f(x)sinwx dx, f(x) = A/ —72r— f Fy(w) sin wx dw (6.27)
o ]

(x > 0). Die Zuordnung (6.27) heiBt Fouriersche Sinustransformation. Aus (6.18)
folgt nach der Eulerschen Formel, wenn f(x) eine gerade bzw. ungerade Funktion
ist,

Flw) =2 / % Fw) bzw. F(w)= —2i @ Fy0). (6.28)

Beispiel 6.6: Aus Beispiel 6.2 erhilt man fiir f(x) = e, 0 < x < o0, a > 0, die
Fouriersche Kosinus- bzw. Sinustransformierte

[T a iy
Fc(w)—A/;t—m, Fyw) = - EEar
Nach (6.28) wird daher die Fouriertransformierte von f(x) = e~?I*l gleich

2a

Fe) =a4o
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Aufgaben:

* Aufgabe 6.1: f(x) sei ein Dreiecksimpuls gemaB Bild 6.1. Es sollen Fw) und F(w)
bestimmt werden.

Y
1

-7 o T X Bild 6.1

* Aufgabe 6.2: f(x) sei ein Doppelrechtecksimpuls geméB Bild 6.2. Es sollen Fy(w) und
F(w) bestimmt werden.

H—

27 L, S om X

Bild 6.2
* Aufgabe 6.3: Die Fourier-Transformierte der Funktion f(x) = ¢%**, @ > 0, ist zu
0
berechnen! <Anleitung: Es ist J' e dt =\/ 7:.)
-

* Aufgabe 6.4: Die Fourier-Transformierte der Funktion

sinx fir |x| <=,

— M 1
fx) { 0 fiir |x| > = ist zu berechnen!



Anhang

Zusammenstellung wichtiger Potenzreihen

Funktion und Potenzreihenentwicklung Giiltigkeits- Formel-
bereich nummer
o o o :
I+ x=1+ X+ x? + ( x3+ ... o reell (-1,1) 4.17)
k k k .
Spezialfalle:
k+1 k+2 k+3
(1+x)"‘“=l—( ‘: )x+( 5 )x’-—( 3 )x3+.“,k=0,1,2,... (-1,1 Bsp. 4.4
1
ﬁ=l+x+x2+x3+..‘ (-1,1 2.5)
— 1 1 1-3 IEILLS
- g2y 2 30 a4 -
VItx =14 g gt et ot 4 1,11 (@419
1 13 1-3-5 1-3:5-7
R R - 2200 .3 4 _ =, g
\/r+_x 1 2x+2_4x 2~4-6X 2~4~6~8x (-1,1) (4.20)
O 2R
e"=1+—ﬁ+—2T+§!—+.,. (—00, 0) .11
x x B, B, o Bs
e R R AR A b S (=2m,27)  (4.57)
E I
1n(1+x)=x—-7+—3——T+... (-1,1] (4.14)
1+x X3 x5 X
lpm=2(x+7+?+—7‘+...) (-1,1 (4.16)
B x5
sinx:x—?!—+§-—7—!+... . (—0,0) (412)
SO e
cosx=1_-5!—+—ﬁ—a-+... (—o,0) (412
1 2 17
tanx—x—!-Tx +-1—5 +315
22722 — 1) B,, ( T 'n:)
NI ) o i V2 R ->,5) @63
k(- @ X214 7)) 463

1 1 2
=1 - —x2— —x%— ——x " 2y (-7, 4.62
xeotx =1 — == —=xf— Wt (=1 (2 ), mx L (-7, T) (4.62)




110 Zusammenstellung wichtiger Potenzreihen

Funktion;und Potenzreihenentwicklung 0 Giiltigkeits- Formel-
bereich nummer
sin2x=x2—ix‘+—2-—x6— 2) (-, 0) (4.28)
' 3 5 s g
Sin® = 2 = T =LY (—0,)  @29)
2 120 ’ '
S QR U IV U A T (~,0)  (469)
: S 8 15 ’ ’
. 1 1 1 ‘ T T
: IS PRI DL 1 -
In(L+ sinx) = x T X X Tt ) ( 7 2) 4.31)
1 X8 1-3 x5 1-:3:5 X7
inx = e e e B el el - 2
arsinx = x + o ==+ S =t o (-1,1) 4.24)
»® x5 X
arctan x = x — ==+ 2= — =+ .. [-1,1] “4.22)
(t')z_'z‘ll S\ 11_;.14_1 6 (-1,1) Aufg.4.7
arctan x; —kx—z +3 X +3 3 3 e 3 ufg.4.
b x7
Sinhx=x+3—!'+'ﬁ‘ +T+ (=0, 00) 4.13)
. CCSE O SR S
coshx =1 +-2-!—+T‘+F+ (=0, ) 4.13)
1 1 2 22"B,
- P SN S 2n - !
xcothx =1 + 5 X TRy @ * +.. (7,7 (4.61)

arsinh x = x — T3 t3 3 T34 6T + .. (-11 (4.26)

x x5 ux
artanhx = x + — + — + — + ... -1,1 (4.25)
E & T ]
i x3 x5 x7
S P THE T T T T (Zoo,e0) 439
P =— AL il ) (0, 0) (435
paiioy = Ul B VAT T TR I TR ’ N
k] b N2 1:3\2
—l R e 2 i 4
F(k,z) K@) = (1+(2) k +(2.4) K+ ) 0,1 (448)

L w N2 1:3\2k* 1-3-5\2kS
E(k, 73) =E(k)=? (1— (-2—) k* — (Z—Z) =3 (24_6> i ) [0, 1) (4.40)

1) Hier ist aus den Anf: liedern kein Bild z fiir das n-te Glied zu erkennen.




2.1:

2,

~

2.3:

2.4:

2.5:

2.6:

: a) konvergent (Majorant

Losungen der Aufgaben

1 0
—-); b) divergent Minorante:
vz) ) s ( vzl v+ 1)

b Ma ?I_[V]B

' 0
¢) divergent . (Minorant —1- 5 d) konvergent (Majorame: > —22—),
2V v=17"

0 «©

c) konvergent (Majorante: > _13—), f) 'divergent (Minorame: > -21/—3) 5
v=17 y=17

a) konvergent, b) divergent, c) konvergent, d) konvergent,

e) konvergent, f) konvergent, g) divergent, h) konvergent.

a) konvergent, b) konvergent, c) konvergent, d) konvergent,
e) divergent, f) konvergent.

a) konvergent, b) konvergent, c) divergent, d) konvergent,
e) divergent, f) divergent.

Die Betrige der Glieder aller Reihen bilden monotone Nullfolgen.

2.7: a) nicht-absolut konvergent, b) nicht-absolut konvergent, c) absolut konvergent,
d) nicht-absolut konvergent, e) absolut konvergent.
. 1 — it
3.1: Es ist s5,(x) = Z(x —-xY) =q —x)Zx =( - x)—x— 1—x" fir x+1,
—-x
s(x) = 1 fiar \:e [0 al, und somit [s(x) — s,,(x)i x*1 < a"“ Offenbar gilt [s(x) — s,(x)| < &,
wenn n > _:n CRS 1, unabhingig von x; die Reihe konvergiert gleichmiBig in [0, a]. Da
na
aber s,(1) = 0 fiir alle » und daher s(1) = 0 gilt, ist die Summenfunktion in [0, 1] unstetig und
somit wegen Satz 3.3 dort ungleichméBig konvergent.
1 1+ x2fiirx=0
o s - 2 i =
3.2: Esns_tlsr:(:) 1+ x T+ , 5(x) = { firx = 0° N(e, x) kann mit N(e, x)
m gewihlt werden. Fiir x —» 0 strebt dieser Ausdruck (fiir jedes feste ¢ < 1) gegen c0;
es existiert also bei vorgegebenem ¢ keine Zahl N*,so daB [s(x) — s,(x)| < ¢ fiir alle xe [ gilt,
sofernn > N*ist.
3.3: Es ist ! ! el Vil Y ! R S
A I | x2+n+2+'"+x2+n+17 =S¥ ra+1 S a1
x € [0, co], und die rechte Seite der Ungleichung wird, unabhéngig von x, fiir jedes feste p bei
hinreichend groﬁem n beliebig klein.
€os px 1 1 .
3.4: a) 5 =Sheas 3 fiir alle x; b) Z1e = v_2 fiir alle x;
¢) Der Maximalwert von f,(x) wird bei x = 7—_ angenommen und betragt
1
a,= - —— ; die Reihe Z a, konvergiert.
T EENG) =
5 L. sinv¥x 1 L .
3.5: a) ja, da die Reihe wegen = e fur alle x gleichmiaBig konvergiert;

b) nein, da die durch formales Differenzieren entstehende Reihe cos x + 22 cos 2*x + ...
z. B.in x = 0 divergiert.
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1 1

41:a)r=1, b)r= o0, c)r=?, dr=o0, €)r=20, f)r=-8-.
4.2: a) (—4, 4), in beiden Randpunkten divergent,

b) (=1, 1), konvergent fiir x = —1, divergent fiir x = 1,

¢) (=1, 1), in beiden Randpunkten konvergent, d) (—1, 1), in beiden Randpunkten divergent.
1398 20 o0, I oman oF -1 ((2)), \ (=0, c0);

© fa\ [x\* 1:4..3v-2)
d)a* =), (@@, a>0; 1+ e Tt —1,1);
>a,§o(v)(a) a0 o> 6 o148l BlBar

0 0 22v+1
H1+23 (=7, (=LD; 9> (=)' ——x%, (=11);
v=1 =0 v +1

DT P U =l x4+ — xS =X 4, (=1,
1-x3 , =0
AR e, . = Q. L 13.@=3) (-2 )
145 I E- 1, 02 b)\/z[x #3232 OB ],(0,4),
ger$ G EEY ey 9F oG
. =1

P | a1t
4.5.a)s(x)—1_x2, s(x) = T T

X
= artanh x,
X

b) s'(x) = xsinx, s(x) = sinx — xcos x.

3 5 7

X X
+

2x
T E Tt T Es T e T s

2x 2
4.6: f(9) = 4+ =, S
xe(=/2,4/2).
4.7: Z (=1 (l + % + . ﬁ) Ll

1 1 1 11
= x2 — — — 4 — — — 6 _ " —
= x 2(1+3)x+3(1+3+5)x ey xE(=1,1).

@ =L w2 ] 1
. e = T . I _S—— A
5 a)’gl( 1) ) > 0,822; b)vgn( 1) @+ Dol 0,747,

90+ 110 — o (L _ ! (1 ! ~ 92,348
990+ 10— 77\ ~ 79) ~ 737 (107 T T07) T ¥ OB

4.

J

ot
O Y Gy T ¥ 0248

4.

o

™ ™
: | 1+ cos?xdx = I+lcoszx— ! cos* x + 3 cos® x — ...) dx
. 2 2-4 2:4:6 )
o o

1 3 5 175
= 1+2—2_2_"+2—3'_277+'“ ~ 3,82,

1 x5 1-3 x° 1-3-5 xt3
275 T2479 T 246 13

+ ., xel[-1,11.



4.12:

4.13:

Losungen der Aufgaben 113

1 1
=14+ —x+—=x*+ .. xe(=11).

7Yt
Ey, Eyy-2
= eyt 1 (‘v)' =0, ¥=1,23,..;
Ey=1, Ey=1, E,=5, Es=6l.
11 1 13 31~
Pasiy P St ¥} 4 P
e e R TR T

(Verwendung der Beziehungen zwischen den b, und c,, wobei die ¢, gegeben sind.)

1
4.14: a) =2, b) — = c)3, d)o.
1 2 cos 3x cos 5x 1/. sin2x  sin3x
5.1: f(x) = i W—(cosx+ 7t )+;(smx—T 3 —)
5.2: f0) = 2 4 cos2x. cos4x cos 6x .
28 f(x - l'3+3'5+5-7 + ...
1 1 g ® (=11t T 1
fir x = 0: ———— = —, firx=—: —_—— = — —
urx= Z @-n@rn 2 W=7 ,Z, @ -D@+D) 4 2
8 /. sin 3x sin 5x
5.3:f(x)=; sin x + = + 5 5
die periodische Fortsetzung von f(x) — mit 2= — ist eine stetig-differenzierbare Funktion.
4 (2 N )
5.4: a, = Ofur alley, b, =0firy =2,4,6,..., b‘,,= ;cosT firy =13, 5, ...
f)_41, L L Ty |
(x—n Zsmx 3sm x+losmx 14sm b IS
55_f)__34,z 1 . 1.3
S f(x) = nsmz —251n1:x+3sm27rx—....
se-f—s'” 1.3 1.5 )
.6: f(x) = = sin zxf 3 sin 27:;\'+ 5 smzl.x-— o0 I8
v .
das Bild der Funktion f(x) sin o ™ ist axialsymmetrisch beziiglich der Geraden x = 1.
T 4T 2 1 VT 2yt
. P . — sin? —— CO§ ——
5.7: f(1) 7 T -§'1 e sin’ e cos T
Tc To
4 sin? — sin? ——
6.1: Fyw) = ﬁT F(w) = 4_Ta—)z_‘
62: Fi(@) = 4 sin?To Flo) = —di sin? Tw
.20 Fy(w) = \/2—1-: Pt (w) = P
6.3: F() = A/%e—w’/‘ha
. sinTw . A
6.4: F(w) = 21? =i fur |w|# 1 (fir @ = + 1 ist F(w) durch den Grenzwert der rechten Seite

fiir @ » +1 zu definieren).
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Abelscher Grenzwertsatz 38

absolut konvergent 21, 33

Additionstheoreme der Exponennalfunkhon 55
alternierende Reihe 19

- -, Reihenrest 20

Amplitudendichte 101

Analyse, harmonische 73

-, numerische harmonische 88

Approximation im quadratischen Mittel 95, 96
Arkustangensreihe 43, 110

asymptotisch gleich 64

asymptotische Potenzreihe 64

bedingt konvergent 23
Bernoullische Zahlen 56, 68
Besselfunktion 63

Besselsche Differentialgleichung 61
— Ungleichung 97

bestandig konvergent 35
bestimmte Divergenz 10
binomische Reihe 43, 63, 109

Cauchysches Konvergenzkriterium 13
- Produkt 24

Differentialgleichung, Besselsche 61
—, hypergeometrische 63
Differentiation, gliedweise 32
Dirichletsche Bedingungen 78, 101
divergent 9

Divergenz, bestimmte 10

-, unbestimmte 10

Division von Potenzreihen 45, 55

Einsetzen einer Potenzreihe in eine andere 47, 57
Ellipsenumfang 50

elliptisches Integral 53

- — 1. Gattung 53

- — 2. Gattung 51

Eulersche Formel 87

— Zahlen 69

Exponentialfunktion; Additionstheoreme der 55
Exponentialreihe 41, 109

Fehler, mittlerer quadratischer 96
Fehlerintegral 50, 110
Fortsetzung, gerade 103

-, periodische 79

-, ungerade 103

Fourierintegral 100

—, komplexe Form 103
Fourierkoeffizient, komplexer 88

Fourierkoeffizienten 76, 81

-, GroBenordnung der 90

-, verallgemeinerte 96
Fourierreihe 76

-, komplexe 87

— periodischer Funktionen 81

-, verallgemeinerte 96
Fouriersche Kosinustransformation 107
— Sinustransformation 107
Fouriersches Integraltheorem 100
- —, Kosinus- bzw. Sinusform 103
Fourier-Transformation 105
Fourier-Transformierte 105
Frequenzspektrum 102

Funktion, gerade 80, 102

-, ungerade 80, 102
Funktionenfolge 26
Funktionenreihe 26

geometrische Reihe 9, 26, 63

gerade Funktion 80, 102

- -, Potenzreihenentwicklung 41

gewohnliche Differentialgleichungen, Losung
mit Reihenansatz 60

Gibbssches Phinomen 91

gleichmiiBig konvergent 30

GleichmiBigkeit der Konvergenz einer Potenz-
reihe 37 -

Glieder 9

gliedweise Differentiation 32

- — einer Potenzreihe 38

— Integration 31, 49

— - einer Potenzreihe 38

Grenzwertsatz, Abelscher 38

GroBenordnung der Fourierkoeffizienten 90

GroB-0 64

harmonische Analyse 73

Harmonische, n-te 72

harmonische Reihe 14

— Schwingungen 71, 88

hypergeometrische Differentialgleichung 63
- Reihe 63

Identititssatz fiir Potenzreihen 39
Integral, elliptisches 53
-, 2. Gattung 51
-, vollstindiges elliptisches, 1. Gattung 53, 110
-, — —, 2. Gattung 52, 110
Integralkriterium 19
Integralsinus 50, 110
Integraltheorem, Fouriersches 100
Integration, gliedweise 31, 49
integrierbar, quadratisch 95
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Klein-o 64

komplexe Form der Fourierreihe 87

komplexer Fourierkoeffizient 88

konvergent 9

-, absolut 21, 23

-, bedingt 23

—, bestidndig 35

-, gleichmaBig 30

—, nirgends 35

-, unbedingt 23

-, ungleichmaBig 28

Konvergenzbereich 26

Konvergenzintervall der Potenzreihe 36

Konvergenzkriterium, Cauchysches 13

-, Leibnizsches 20

-, notwendiges 14

Konvergenzradius 36

Konvergenzverhalten einer Potenzreihe 34

Kosinusform des Fourierschen Integraltheorems
103

Kosinusreihe 41, 109

-, reine 80

Kosinustransformation, Fouriersche 107

Kriterium von WeierstraB fiir gleichmaBige Kon-
vergenz 29

Legendresche Polynome 59

Leibnizsche Reihe 20°

Leibnizsches Konvergenzkriterium 20

Losurig von gewdohnlichen Differentialgleichun-
gen mit Reihenansatz 60

logarithmische Reihe 42, 109

Majorantenkriterium 22

Methode der unbestimmten Koeffizienten 46, 48,
58

Minorante 15

Minorantenkriterium 15

mittlerer quadratischer Fehler 96

Multiplikation von Potenzreihen 45, 55

- - Reihen 23

nirgends konvergent 35

Norm 95

notwendiges Konvergenzkriterium 14
n-te Harmonische 72

numerische harmonische Analyse 88

orthogonales Funktionensystem 95
Orthogonalititsrelation 75
Orthonormalsystem 95

Parsevalsche Gleichung 97
Pendel, physikalisches 52
periodische Fortsetzung 79
Polynom, trigonometrisches 90

115

Polynome, Legendresche 59

Potenzreihe 34

-, asymptotische 64

-, Einsetzen einer in eine andere 47, 57

—, GleichmiBigkeit der Konvergenz einer 37
-, gliedweise Differentiation einer 38

—, — Integration einer 38

-, Konvergenzintervall der 36

—, Konvergenzverhalten einer 34
Potenzreihen, Division von 45, 55

-, Identititssatz fiir 39

-, Multiplikation von 45, 55

-, Umkehrung von 48
Potenzreihenentwicklung einer Funktion 39
— — geraden bzw. ungeraden Funktion 41
Produkt, Cauchysches 24

Produktreihe 24

quadratisch integrierbar 96
Quotientenkriterium 16
— in Limesform 17, 22

Reihe 9

-, alternierende 19

—, binomische 43, 63, 109

—, geometrische 9, 26, 63

-, harmonische 14

—, hypergeometrische 63

—, Leibnizsche 20

—, logarithmische 42, 109

-, Stirlingsche 68

—, unendliche 9

Reihen mit positiven Gliedern 14
-, Multiplikation von 23

-, Umordnung von 22
Reihenrest 11, 65

- der alternierenden Reihe 20
Restglied 40
Restgliedabschitzung 42, 44
Riemann, Umordnungssatz von 23
Riemannsche Zetafunktion 26
Riicktransformation 105, 107

Satz von Taylor 34, 40

Schwingungen, harmonische 71, 88

Sinusform des Fourierschen Integraltheorems
103

Sinusreihe 41, 109

—, reine 80

Sinustransformation, Fouriersche 107

Skalarprodukt 95

. Spektraldichtefunktion 106

Spektralfolge 88

Stetigkeit der Summenfunktion 30, 37
Stirlingsche Formel 65

- Reihe 68
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Summe 9 ungerade Funktion 80, 102
Summenfunktion 26 - —, Potenzreihenentwicklung 41
-, Stetigkeit der 30, 37 ungleichmiBig konvergent 28

Ungleichung, Besselsche 97

Taylor, Satz von 34, 40
Taylorreihe 40

Teilsumme 9
trigonometrisches Polynom 90

vollstidndiges elliptisches Integral 1. Gattung 53,
10 5
— — - 2. Gattung 52, 110

WeierstraBsches Kriterium 29

Umkehrformel 105 Waurzelkriterium 17

Umkehrung von Potenzreihen 48 — in Limesform 17, 22

Umordnung von Reihen 22

Umordnungssatz von Riemann 23 Zahlen, Bernoullische 56, 68

unbedingt konvergent 23 -, Eulersche 69

unbestimmte Divergenz 10 Zahlenfolge 9

unendliche Reihe 9 Zetafunktion, Riemannsche 26
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