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Vorwort

__ Der vorliegende 3. Band der Lehrbuchreihe für Ingenieure, Naturwissenschaftler,
Okonomen und Landwirte ist den unendlichen Reihen (im Reellen) gewidmet. Er
gibt eine Einführung in ihre Theorie und stellt solche Anwendungsmöglichkeiten der
unendlichen Reihen dar, die für einen großen Teil des Benutzerkreises von Wichtig-
keit sind. v

Das Buch gliedert sich in sechs Abschnitte. Dem einführenden Abschnitt folgen
zwei Abschnitte, die den Leser mit grundsätzlichen Fragen zur Konvergenz von un-
endlichen Reihen und zum Rechnen mit ihnen bekannt machen sollen; einer davon
behandelt Reihen mit konstanten Gliedern, der andere Funktionenreihen. In ihnen
steht die Theorie stärker im Vordergrund als in den folgenden Teilen des Buches. Die
nächsten beiden Abschnitte sind den Potenzreihen und den Fourierreihen gewidmet.
Hierin werden insbesondere die Anwendungsmöglichkeiten breit dargestellt. Am Ende
steht ein Abschnitt über Fourierintegrale, die eigentlich gar nicht zum Gegenstand
des Buches gehören, aber wegen ihres engen Zusammenhanges zu den Fourierreihen
in Ergänzung und Verallgemeinerung des 5. Abschnittes mit aufgenommen wurden.

‚Entsprechend der Zielstellung der Lehrbuchreihe wird die Theorie nicht lückenlos
entwickelt. So sind im wesentlichen nur solche Beweise aufgenommen worden, die
erforderlich oder geeignet sind, um bei einem Studierenden, der Mathematik als
Nebenfach betreibt, zu einem vertieften mathematischen Verständnis beizutragen. In
den Text sind viele ausführlich durchgerechnete Beispiele eingefügt, die das Durch-
arbeiten erleichtern und den Studenten, insbesondere den Fernstudenten, beim Selbst‘-
studium eine Hilfe sein sollen. Eine Auswahl von Übungsaufgaben, mit deren Lösung
sich der Studierende die erforderlichen Fertigkeiten im Umgang mit Reihen aneignen
sollte, findet sich jeweils am Ende eines Abschnittes. Die Lösungen sind am Ende des
Buches zusammengestellt.

Das erfolgreiche Studium des vorliegenden Bandes setzt beim Leser die Kenntnis des
Stoffes voraus, der in den Bänden 1 (Grundlagen) und 2 (Dilferential- und Integral- '
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4 Vorwort

rechnung) behandelt wird. Innerhalb dieses Buches sind die Abschnitte 2. und 3.1.
grundlegend für das Verständnis aller folgenden. Die weiteren Abschnitte können
z. T. unabhängig voneinander durchgearbeitet werden; im einzelnen ist das der
Übersicht auf Seite 3 zu entnehmen.

Für wertvolle Ratschläge und Verbesserungen bei der Durchsicht des Manuskripts
danke ich den Herren Prof. Dr. K. Manteuffel (Technische Hochschule Magdeburg),
Dr. W. Schirotzek (Technische Universität Dresden) und W. Riemenschneider. Frau
M. Graupner danke ich für das sorgsame Schreiben des Manuskripts. Nicht zuletzt
gilt mein Dank dem Verlag für sein verständnisvolles Entgegenkommen.

Karl-Marx-Stadt, im Juli 1973
H.-J. Schell

Vorwort zur 5. Auflage

Auf Grund der günstigen Aufnahme des Buches ist bisher von größeren Änderun-
gen abgesehen worden. In der vorliegenden 5. Auflage wurde, entsprechend der
wachsenden Bedeutung numerischer Methoden für den Ingenieur, ein Abschnitt
„Numerische harmonische Analyse“ neu aufgenommen. Neu gestaltet wurde der
Abschnitt 5.10. Hier werden jetzt verallgemeinerte Fourierreihen eingeführt, und
es wird die Approximation im quadratischen Mittel durch Teilsummen solcher
Reihen behandelt. Dadurch wird eine übersichtlichere Darstellung möglich. Um den
Umfang des Buches nicht zu vergrößern, wurden geringfügige Kürzungen vorgenom-
men und die Beweise einiger Sätze weggelassen, die für die Ausbildung der Stu-
denten, auf die diese Reihe zielt, ohnehin am Rande liegen.

Karl-Marx-Stadt, im Februar l984 H.-J. Schell
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1. Zum Gegenstand und zur Bedeutung unendlicher Reihen

Die Theorie der unendlichen Reihen ist ein wesentlicher Bestandteil der Analysis.
Sie befaßt sich mit der Konvergenzuntersuchung von Reihen, der Ermittlung ihrer
Summen (im Konvergenzfall) und den Rechenoperationen mit unendlichen Reihen.
Ihre Anwendungen erstrecken sich auf nahezu alle Teile der Analysis. Viele Unter-
suchungen werden durch Heranziehung unendlicher Reihen wesentlich vereinfacht
oder überhaupt erst ermöglicht.

Anhand eines Beispiels wollen wir uns zunächst eine Vorstellung von einer un-
endlichen Reihe und dem Konvergenzbegriff geben. Wir gehen von der Zahlenfolge
ä, i}, ,—‘6, aus und bilden die Summen 5„ der ersten n Glieder (n = 1, 2, 3, ...).
Dabei erhalten wir, wie man durch vollständige Induktion sofort bestätigen kann,

s =i+i+i+ +L=1_i.
" 2 4 8 2" 2"

Am Ergebnis ist erkennbar, daß die Summen 5„ mit wachsendem n gegen 1 streben.
Wenn wir nun die Summe s„ als n-tes Glied einer neuen Zahlenfolge auffassen,
so heißt das gerade, daß diese konvergiert und den Grenzwert l hat. Auf Grund
dieses Verhaltens der Summen 5„ sagt man, daß die unendliche Reihe -_L + ä- + ä- +
konvergiert und die Summe (auch: den Wert) 1 hat.

Die Konvergenz einer unendlichen Reihe wird also mittels der Konvergenz einer
Zahlenfolge definiert, die so beschaffen ist, daß ihr n-tes Glied 5„ die Summe der
ersten n Glieder einer anderen, gegebenen Zahlenfolge ist. Insofern erscheint die
Reihe gewissermaßen als Summe aus den unendlich vielen Gliedern dieser- anderen
Zahlenfolge, und diese Vorstellung verband sich mit dem Reihenbegrifi“ bei seiner
Entstehung und noch geraume Zeit danach. Aber eine Summe aus unendlich vielen
Zahlen ist kein mathematisch sinnvolles Objekt, und daher sei von vornherein vor
einer solchen falschen Vorstellung von einer unendlichen Reihe gewarnt. Wenn man
im obigen Beispiel trotzdem davon spricht, daß die unendliche Reihe {r + l + ä +
die Summe 1 hat, so hat das historische Gründe; es handelt sich nicht um eine
Summe im Sinne des Ergebnisses einer Addition. „Summe“ ist in unserem Beispiel

nichts anderes als eine Benennung für den Grenzwert der Zahlenfolge (Z für

n ~> oo. Wie wir noch sehen werden, darf man mit einer Reihensumme im allgemeinen
auch nicht so rechnen wie mit einer echten Summe.

Wenn wir jedoch eine konvergente Reihe nach n Gliedern (n hinreichend groß)
abbrechen, d. h. die (echte) Summe aus den ersten n Gliedern bilden, so ist diese ein
Näherungswert für die Reihensumme, und die Abweichung beider voneinander läßt
sich im Prinzip beliebig klein machen, indem man n groß genug Wählt. Diese Tatsache
nutzt man bei der praktischen Anwendung unendlicher Reihen aus.

Die Bedeutung der unendlichen Reihen erwächst daraus, daß außer solchen Rei-
hen, deren Glieder Zahlen sind (wir sprechen hier von Reihen mit konstanten Glie-
dern), hauptsächlich Reihen benutzt werden, deren Glieder Funktionen einer un-

abhängigen Variablen sind (Funktionenreihen). Dabei beschränken wir uns auf
Funktionen einer reellen Variablen; die sehr wichtige Ausdehnung auf den Fall
komplexer Variabler ist nicht Gegenstand dieses Bandes (vgl‚ Band 9).

Die Summe einer konvergenten reellen Funktionenreihe ist selbst eine Funktion einer
reellen Variablen. Somit kann eine konvergente Funktionenreihe als eine Darstellung
einer Funktion (nämlich ihrer Summenfunktion) angesehen werden. Sehr wichtig ist
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das Problem, einein einer anderen Form gegebene Funktionf(x) in eine Funktionen-
reihe zu entwickeln, d. h. sie durch eine solche Reihe darzustellen. Insbesondere
interessieren Entwicklungen in Potenz- bzw. Fourierreihen, die die wichtigsten Ver-
treter der Funktionenreihen sind. So kann man für eine komplizierte Funktion
aus ihrer Potenzreihenentwicklung — innerhalb gewisser Intervalle gut brauch-
bare — Näherungspolynome erhalten, indem man die Entwicklung nach endlich
vielen Gliedern abbricht. Beispielsweise entnimmt man aus der Potenzreihenentwick-
lung

x2 x3
==1 _. _e +x+2!+3!+...,

x2 x3daI3e"~1+x+T+?
|x] g 0,1 gilt, ist der Fehler, der bei Ersetzung von f(x) = e‘ durch das Polynom

2

für alle x mit hinreichend kleinem Betrag gilt. Wenn

3

g(x) = 1 + x + x7 + x? entsteht, kleiner als 10-5. Durch Hinzunahme weiterer

Glieder der Reihe zu dem Polynom wird die Annäherung weiter verbessert, und die
eben angegebene Genauigkeit wird noch für x-Werte mit einem größeren Betrag
als 0,1 erreicht.

Fourierreihen lassen die Zusammensetzung periodischer Funktionen (bzw. der
durch sie beschriebenen zeitlich abhängigen periodischen Vorgänge) aus Sinus- und
Kosinusfunktionen erkennen, Zum Beispiel kann eine periodisch sich wieder-
holende Folge von Dreiecksimpulsen der Dauer 27c und der Höhe l durch die Fourier-
reihe

1 4 cos 3x cos 5x
7—;2—-(cosx+ 32 52

wiedergegeben werden (vgl. Beispiel 5.4).
Mit den Funktionenreihen können auch gewisse Rechenoperationen ausgeführt

werden. Insbesondere können sie unter gewissen Voraussetzungen Glied für Glied
integriert und differenziert werden. Daraus ergibt sich z. B. die Möglichkeit, Stamm-
funktionen von solchen Funktionen durch Funktionenreihen (insbesondere Potenz-
reihen) auszudrücken, die sich einer geschlossenen Darstellung mit Hilfe elementarer
Funktionen entziehen. In Verallgemeinerung dessen bilden die Potenzreihen ein
Hilfsmittel bei der Lösung gewöhnlicher Difierentialgleichungen, für die die ele-
mentaren Integrationsmethoden nicht anwendbar sind. Diese wenigen Beispiele
mögen genügen, um dem Leser einen ersten Eindruck von der Bedeutung der unend-
lichen Reihen zu vermitteln.



2. Reihen mit konstanten Gliedern

2.1.

Wir denken uns eine Zahlenfolge ac. , a, , a; , (a, reell) gegeben und bilden daraus
rein formal den Ausdruck

ao+a,+a;+...,

Der Konvergenzbegrifi‘ bei unendlichen Reihen

(2.1)

den wir mit Hilfe des Summenzeichens auch in der Form f) a, schreiben, Einen sol-
=0

chen Ausdruck nennt man eine unendliche Reihe (oft auch kurz Reihe). Die Zahlen a,
werden Glieder der Reihe genannt, und die Summe aus den ersten n + 1 Gliedern
der Reihe (n fest),

„

s„ = a0 + a, + + 11,. = 20a„ - (2.2)
‚z

heißt n-te Teilsumme der Reihe.

N

Definition 2.1: Eine unendliche Reihe 2 a, heißt konvergent, wenn die Folge so , s, , s2 ‚

o

ihrer Teilsummen konvergiert; in digem Fall heißt der Grenzwert s = lim s„ Summe

der Reihe. Eine Reihe heißt divergent, wenn die Folge ihrer Teilsummenntiiijhrgiert.

Dabei bedeutet die Konvergenz der Folge {s„} gegen s, daß zu jedem a > 0 eine
natürliche Zahl N(c) existiert, so daß ls — s„| < e für alle n > N(e) gilt (vgl. Band l‚l0.4.)

Bei einer konvergenten Reihe mit der Summe S schreibt man i) av = S (anstelle von

lim s„ = s), womit sowohl zum Ausdruck gebracht wird, dalfdie Reihe {DE a, über-

flip: konvergiert, als auch, daß s ihre Summe ist. Das Zeichen fafszeht also
yzo

zugleich für die Reihensumme. Wir wollen nochmals unterstreichen, daß aus der
Benennung „Summe“ für lim s„ nicht geschlossen werden darf, daß man mit einer

naoo .

unendlichen Reihe wie mit einer Summe aus endlich vielen Zahlen rechnen kann.
Es sei darauf hingewiesen, daß das erste Reihenglied nicht etwa immer ac. sein

muß. So bezeichnet auch ä av, wobei k irgendeine natürliche Zahl sein kann, eine
y 11:/r

unendliche Reihe (mit a„ als erstem Glied). Eine andere mögliche Schreibweise hier-
0D

für wäre 2 am‘.
v=0

Beispiel 2.1: Ein ganz elementares Beispiel einer unendlichen Reihe ist die geo-
metrische Reihe

1 + q + qz + q’ + ..; = E q”, (q reelle Zahl). (2.3)
v=0

Das in Abschnitt 1. angeführte Beispiel ist eine solche Reihe; dort ist q = ä, und
die Reihe beginnt erst mit dem Glied q‘. Die n-te Teilsumme der Reihe (2.3) ist

1 _ qn+1

—1_ q ‚ q =l= l

(für q = 1 ist offenbar s„ = n + 1). Da lim q"+1 = 0 für jedes q mit [q] < 1 gilt,
n-voo

s„=1+q+q2+...+q"= (2.4)

D. 2.1
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konvergiert die Folge {s„} und damit die geometrische Reihe für diese q, und aus
(2.4) folgt

H)

Eo‘? - T7
Für jedes q mit |q| g 1 ist lim 5„ nicht vorhanden und daher die geometrische Reihe

Iql < l. (2.5)

n~>oc

divergent. Wie bei Zahlenfolgen unterscheidet man zwischen bestimmter und unbe-
stimmter Divergenz. Bestimmte Divergenz liegt vor, wenn lim 5„ = +oo oder

ll-OK)

lim 5„ = ——oo gilt; andernfalls spricht man von unbestimmter Divergenz. Die geo-
n—>oo

metrische Reihe ist für q g 1 bestimmt divergent gegen +oo (man schreibt dafür

f q" = 0o); für q g -1 ist sie dagegen unbestimmt divergent (man betrachte etwa

i121 Fall q = -1: 1 — l + 1 — l + ..., in dem die Teilsummen abwechselnd 1 und
0 sind).

Beispiel 2.2: In Band 2, 6.3.4., ist die Taylorentwicklung der Funktion f(x) = e"

angegeben. Sie lautet e‘ = fag‘; + R,,(x), wobei R,,(x) das Restglied bezeichnet, das

für jedes x die Eigenschaft lim R„(x) = 0 besitzt. Speziell für x = 1 erhält man

e = i + R,,(l), ’}i_n°1oR,,(l):°E). Das heißt aber gerade, daß die Zahlenfolge mit
v:0

dem n-ten Glied s„ = i -IT für n —> oo gegen e strebt. Folglich istedie Summe der
1:0 v.

unendlichen Reihe ii‘:
1/=0 M

m 1ROW: e. (2.6)

Durch Definition 2.1 ist die Konvergenzuntersuchung von Reihen auf die von

Zahlenfolgen zurückgeführt. Daher gewinnt man aus Konvergenzkriterien und ande-
ren Sätzen über konvergente Zahlenfolgen auch entsprechende grundsätzliche Aus-
sagen über unendliche Reihen. Jedoch ergibt sich eine große Zahl weiterer Konver-
genzaussagen nicht aus den Eigenschaften der Glieder s„ der Teilsummenfolge, son-
dern aus den Reihengliedern a‚. selbst. Hieraus folgt schon, daß den Reihen durch-
aus eine eigenständige Bedeutung zukommt. Es kann umgekehrt zweckmäßig sein,
die Konvergenzuntersuchung einer Zahlenfolge auf die einer unendlichen Reihe
zurückzuführen. Ist nämlich b0, bl, b3, eine vorgegebene Folge, so ist sie gerade
die Teilsummenfolge der Reihe b0 + (b, — b0) + (b; — b.) + denn für diese
Reihe ist 5„ 2 b0 + (b, — b0) + + (b„ — b„_,) + b„.

Beispiel 2.3: Die Reihe E fl soll auf Konvergenz untersucht werden.
11:1

We en - l v] 1 v—123 wird
g a"_v(v+l)’v v+1’ *"’m’

~ 1 1 1 1 1 1‘mäa’ ‘ '7+7“?+ ‘ n-1+n«l "7
1=1_._;
7!



2.2. Einige elementare Eigenschaften

also ist lim s„ = 1, Die Reihe konvergiert mit der Summe l.

Wir ervi/Taihonen schließlich noch den Begriff des Reihenrests.

N

Definition 2.2: Wenn Z a, eine gegebene Reihe ist, so nennt man die Reihe
.v=0

no

“an ‘l’ an+2 ‘l’ = Z lav ("f5") (2-7)
v=n+

ihren n-ten Reihenrest.

Die m-te Teilsumme des n-ten Reihenrests, a‘,,’,° = £1,,+1 + a,.+2 + + a,,+,,,

(m = l, 2, 3, ...) ergibt sich offenbar als Differenz der Teilsummen s‚„„‚ und s„ der
gegebenen Reihe:

05.1" = Su+m — s„. (2-8)

Aus (2.8) entnimmt man: Wenn die Reihe E a„ konvergiert und s als Summe hat,

d, h. lim s„„„„ = s gilt, so existiert, da s„ von m unabhängig ist, auch lim Uffi’ = r„;
mww m-03

es 1st also

r„ = s — s„. (2.9)

Umgekehrt schließt man entsprechend aus der Konvergenz des n—ten Reihenrests auf
die Konvergenz der Reihe selbst. Da n beliebig ist, hat man folgendes Ergebnis:

no

Satz 2.1: Wenn eine Reihe Z 11„ konvergiert, so konvergiert auch jeder ihrer Reihen-
v O

reste, und es gilt (2.9) für al:/e n‚ Umgekehrt folgt aus der Konvergenz eines einzigen
Reihenrests die Konvergenz der Reihe selbst.

D. 2.2

S. 2.1

Aus (2.9) ergibt sich weiter, daß für eine konvergente Reihe lim r„ = 0 gilt. Daher _

kann die Summe s einer konvergenten unendlichen Reihe näheidrigsweise durch eine
Teilsumme s„ (mit hinreichend großem n) ersetzt werden; der dabei begangene Fehler
ist wegen (2.9) gleich r„. So ergibt sich aus Beispiel 2.2 mit n = 6:

e~s—1+1+l+1+l+1+1
N” T! 2! 3! 4! 5! 6!"

Auf fünf Dezimalen genau ist s6 = 2,71806 (zum Vergleich: e 2 2,71828 ...).

2.2.

Wir wollen nun erste elementare Eigenschaften kennenlernen, die wir für den
Umgang mit unendlichen Reihen benötigen.

Einige elementare Eigenschaften unendlicher Reihen

U)

Satz 2.2: Wenn man in einer Reihe Z a, endlich viele Glieder wegläßt oder hinzufiigt
v_0

oder durch andere ersetzt, so bleibt die Eigenschaft der Konvergenz bzw. Divergenz
erhalten.

Auf eine etwas knappere Form gebracht, besagt der Satz, daß endlich viele Glieder
keinen Einfluß auf das Konvergenzverhalten einer unendlichen Reihe haben.

Beweis: Da nur an endlich vielen Gliedern Änderungen vorgenommen werden, gibt
es einen Index n der Art, daß alle Glieder a, der vorgelegten Reihe mit v > n unver-

S. 2.2
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O

ändert bleiben. Nach Satz 2.1 ist der zu diesem Index n gehörende Reihenrest kon-
vergent oder divergent, je nachdem, ob die Reihe selbst konvergiert oder divergiert.
Dieser Reihenrest ist aber auch ein Reihenrest der abgeänderten Reihe (eventuell
mit einem anderen Index), und daher folgt, wieder nach Satz 2.1, daß die abgeänderte

w

Reihe das gleiche Konvergenzverhalten wie der n-te Reihenrest der Reihe 2 av, also
wie diese selbst hat. I "=0

w

Wenn man in einer konvergenten Reihe 2 av jeweils eine endliche Anzahl aufein-
v=0

anderfolgender Glieder zu einem neuen Glied zusammenfaßt (kurz: wenn man
Klammern setzt), etwa (a0 + a, + + aka) + (amt, + aka” + + a“) + ...,

so entsteht eine neue Reihe. Über deren Konvergenzverhalten gilt
d)

Satz 2.3: Es sei 2 av = s. Ist kc, k, , k, , eine streng monoton wachsende Folge na-
v=0 v

türlicher Zahlen und wird

be = ao + + am
b1 = ako+1 + + ah,
. . . . . . . .

gesetzt, so ist auch 2 bv konvergent und hat die Summe s.
o,.=

Der Inhalt dieses Satzes kann kurz wie folgt zusammengefaßt werden: In einer
konvergenten Reihe dürfen Klammern gesetzt werden.

Beweis: Die Folge der Teilsummen der Reihe 2 bv bildet eine Teilfolge der Folge der
oc v=0

Teilsummen s„ der Reihe 2 av und hat daher denselben Grenzwert wie {s„} (vgl.
Band I, 10.5.). I ”=°

Die Umkehrung von Satz 2.3 ist falsch, d. h., man darf nicht ohne weiteres Klam-
mern weglassen. Das lehrt das folgende einfache Gegenbeispiel. Die Reihe (l — 1)
+ (1 — 1) + konvergiert und hat die Summe O, aber die Reihe 1 — 1 + l_— 1 +
divergiert (vgl. Beispiel 1.1). Hier haben wir ein erstes Beispiel dafür, daß man mit
unendlichen Reihen nicht so rechnen darf wie mit gewöhnlichen Summen.

W

Satz 2.4: Es sei 2 av = s, und e sei eine beliebige Konstante. Dann konvergiert auch
oo v=0

die Reihe 2 cav und hat die Summe es.
v=0 on cc

Es gilt also 2 cav = c2 av, d. h., ein konstanter Faktor kann bei einer konver-
-ov= v-

genten Reihe vor das Summenzeichen gezogen werden.
no (X) 00

Beweis: Mit s„ = 2 av wird die n-te Teilsumme der Reihe 2 cav gleich 2 cav = cs„,
v=0 y=o y=o

und es gilt
lim cs„ = c- lim s„ = es‘. I

n—»oo n-mo

d) (X) eo

Satz 2.5: Es seien 2 av = s, 2 b, = t. Dann konvergieren auch die Reihen 2 (av + bv)
o y v = 0v= =0

bzw. E (av -— bv) und haben die Summen s + t bzw. s — t.
v=0
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Konvergente Reihen dürfen also gliedweise addiert bzw. subtrahiert werden.
n ‚. ‚

Beweis: Wenn s„ = Z av, t„ = Z bv ist, so sind die Teilsummen der durch gliedweise
9:0 v=D

Addition bzw. Subtraktion entstehenden Reihen gleich s„ + t„ bzw. s„ — t„.
Aus lim (s„ i t„) = lim s„ i lim t„ = s i t folgt die Behauptung. I

Il-v (X7 n—o w 11-9 DO

Folgerung: Aus E“: av = s, E) b, = t folgt nach den Sätzen 2.4 und 2.5, daß jede Reihe
co v= 0 v = 0

Z (zxav + fibv) mit (reellen) Konstanten 0c, ,6’ ebenfalls konvergiert und as + ßt zur
v=0
Summe hat. Das Entsprechende gilt, wenn man aus m konvergenten Reihen (m > 2)
durch eine Linearkoznbination der Glieder mit gleichem Index eine neue Reihe bildet.

2.3. Das Cauchysche Konvergenzkriterium

In den Beispielen 2.1, 2.3 konnten wir die Teilsummen geschlossen ausdrücken
und dadurch unmittelbar ihr Verhalten für n—> oo untersuchen. Diese direkte
Methode der Konvergenzuntersuchung einer unendlichen Reihe, die im Konver-
genzfall zugleich die Reihensumme liefert, gelingt nur in wenigen Beispielen. Im
allgemeinen geht es zunächst um die Feststellung der Konvergenz oder Divergenz
einer Reihe. Dazu bedient man sich gewisser Konvergenzkriterien, von denen in
diesem und den beiden folgenden Unterabschnitten einige wichtige angegeben
werden. Diese Kriterien liefern im Konvergenzfall keine Methode zur Berechnung
der Reihensumme; dieses Problem muß gesondert gelöst werden.

Von Band l, Abschnitt 10.6., her ist das Cauchysche Konvergenzkriterium für
Zahlenfolgen bekannt. Dieses Kriterium läßt sich auf Grund von Definition 2.1 auf
unendliche Reihen übertragen. Es ist von grundsätzlicher theoretischer Bedeutung,
weil es eine notwendige und hinreichende Bedingmg für die Konvergenz einer Reihe
enthält.

Satz 2.6 (Cauchysches Konvergenzkriterium): Eine unendliche Reihe in a„ ist genau
„zo

dann konuergent, wenn zu jedem e > 0 eine natürliche Zahl N(c) existiert, so daß

|a„‚„ + a,.+2 + + a,,+,| < e (2.10)

für alle n > N(e) undfür jedes p g 1 gilt.

Beweis: Eine Reihe E av ist nach Definition 2.1 und dem Cauchyschen Konvergenz-
v v=0

kriterium für Zahlenfolgen genau dann konvergent, wenn zu jedem ‚positiven e eine
natürliche Zahl N(e) existiert, so daß für alle m > N(e) und n > N(e)

Ism — s„[ < s (2.11)

gilt. Ohne Beschränkung der Allgemeinheit kann man m > n annehmen (für m = n
ist (2.11) trivialerweise erfüllt) und daher m = n + p setzen, wobei p eine positive
ganze Zahl ist. Dann geht (2.11) über in .

lSn-HI _ -Yul < 5-

Nun ist aber

s„+„——s„=(a0+a‚ + +a„+a‚.+i + +a,,+,,)—(ao+a1 + +a,,)
= a‚„_‚ + + a,,+,,;

d. h., (2.12) ist mit (2.10) äquivalent. I

(2.12)

S. 2.6
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. U0

Bei Konvergenz der Reihe 2 av ist (2.10) insbesondere fürp = 1 erfüllt, d. h.‚ für
7 = 0

jedes e > 0 mu.ß |a„„| < s von einem gewissen n an gelten. Damit hat man ein not-
wendiges Konvergenzkriterium:

no ' _

Satz 2.7: Wenn eine unendliche Reihe 2 av konvergiert, so gilt
. = o

lim av = 0.
v—~oo

Die Bedingung (2.13) ist jedoch nicht hinreichend für die Konvergenz einer Reihe.
Wir zeigen das an einem Gegenbeispiel.

(2.13)

Beispiel 2.4: Die Sogenannte harmonische Reihe E i soll auf Konvergenz unter-
=o

sucht werden. Die Bedingung (2.13) ist hier erfüllyt: es ist lim -3- = 0. Trotzdem ist
- v=oo

die Reihe divergent. Mit n = 2", p = 2", k = 0, 1, 2, ...‚ wird nämlich

1 1 1-W + m + +

Da jeder der vorhergehenden Summanden auf der rechten Seite größerals der_letzte ist

lan+l + “n+2 + + an+pl =

und die Anzahl der Summandenp = 2" ist, folgt |a„„ + a„„ + + a,,+,,] g 2"-

ä, so ist (2.10) offenbar nicht erfüllbar.

Die Konvergenzuntersuchung einer Reihe mit dem Cauchyschen Konvergenzkri-
terium ist meist etwas schwerfällig. Man greift gern auf leichter zu handhabende
Kriterien zurück, wobei es praktisch ausreicht, daß diese nur hinreichende Bedingun-
gen für Konvergenz oder Divergenz enthalten.

l 216+ 1

= -2-. Wählt man nun a <

2.4. Konvergenzkriterien für Reihen mit positiven Gliedern

Die in diesem Unterabschnitt«angegebenen Konvergenzkriterien gelten für Reihen
mit positiven Gliedern. Unter einer Reihe mit positiven Gliedern verstehen wir dabei
eine Reihe, deren Glieder nicht negativ sind und die unendlich viele positive Glieder
enthält. Auf Grund von Satz 2.2 kann man die Kriterien auch anwenden, wenn in
einer Reihe neben unendlich vielen positiven Gliedern noch endlich viele negative
Glieder vorkommen, da man diese bei der Konvergenzuntersuchung unberücksichtigt
lassen kann. In 2.6. wird gezeigt, daß man einige der folgenden Kriterien nach ge-
wissen Modifizierungen auch auf Reihen mit Gliedern beliebigen Vorzeichens anwen-
den kann. ‘

2.4.1. Ein notwendiges und hinreichendes Kriterium
ac

Satz 2.8: Eine Reihe 2 av mit positiven Gliedern ist genau dann kanvergent, wenn die
v= 0

Folge ihrer Teilsummen eine beschränkte Zahlenfolge ist.

Hinweis. In diesem Fall gilt sicher für die Reihensumme s die Beziehung s > s,„
n = 0, 1, 2, '

n

Beweis: Wegen a, g 0 bilden die Teilsummen s„ = 2 av einc monoton wachsende
‚=o
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Folge. Da eine beschränkte monotone Zahlenfolge konvergiert (vgl. Band 1, 10.6.),
ist die Beschränktheit der Teilsumrnenfolge im Fall a, g O für die Konvergenz der
Reihe hinreichend.‘ Die Notwendigkeit ergibt sich aus dem Satz, daß jede konvergente
Zahlenfolge beschränkt ist (vgl. Band 1, 10.5.). I

2.4.2.

Satz 2.9: (Vergleichskriterium, 1. Teil): Eine Reihe E‘, av mit positiven Gliedern ist
y=o

Vergleichskriterien

konvergent, wenn zwischen ihren Gliedern und den Gliedern einer als konvergent
eo

bekannten Reihe 2 b, von einem gewissen v an die Beziehung a, g b, gilt.
1 0

Beweis: Nach dem Cauchyschen Konvergenzkriterium existiert zu jedem e > 0 ein
N(e)‚ so daß |b„+1 + b,.+2 + + b,.+,,| < e für alle n > N(e) und für jedes p g 1

gilt. Wählt man nun außerdem n so groß, daß av g b„ für v > n erfüllt ist, so folgt,
da b, g O für diese v ist, daß

lau-H + l1„+2 + + an+pl = “n+1 + l1n+2 + + an»

é b..+1 + b..+z + + b..+,, |b..+1 + b,.+2 + + b..+.,I < 6

(1')

von einem gewissen n ab und für jedes p g 1 gilt. Daher ist die Reihe 2 a, nach
.=o

dem Cauchyschen Konvergenzkriterium konvergent. I
(X)

Die zum Vergleich benutzte konvergente Reihe 2 b‘, nennt man eine Majorante
IX) f:

zur Reihe 2 a, und daher Satz 2.9 auch Majorantenkriterium.
‚=o

Satz 2.10 (Vergleichxkriterium,‘2. Teil): Eine Reihe E a, ist divergent, wenn zwischen
v: 0 co

ihren Gliedern und den Gliedern einer als divergent bekannten Reihe 2 b, mit positiven
- v = o

Gliedern von einem gewissen v an die Beziehung av g b„ gilt.

Beweis: Wenn man annimmt, daß die Reihe Em) a,, konvergent ist, so müßte nach dem

eben bewiesenen Satz 2.9 auch die Reihe E lgonvergieren. Das steht aber im Wider-

spruch zur Voraussetzung. I ‚zu

„Die hier zum Vergleich verwendete divergente Reihe E b„ heißt eine Minorante zur

Reihe Eon" und den Satz 2.10 nennt man deshalb M'i:rz‘z)Jrantenkriterium. Man muß
,=

natürlich eine gewisse Anzahl von möglichen Vergleichsreihen — also Reihen, deren
Konvergenzverhalten man kennt — zur Verfügung haben, wenn man die Sätze 2.9
und 2.10 anwenden will.

Beispiel 2.5; Wir untersuchen die Reihe E 712- und ziehen die in Beispiel2.3 als
0o 1= 1 i

konvergent erkannte Reihe 2 Wifi als Vergleichsreihe heran; es ist also av =

v=l
1

b, — m, v = 1, 2, Zwischen entsprechenden Gliedern beider Reihen be-

v2’

S. 2.9
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steht die Relation T12 > aus der man jedoch nichts über das Konvergenz-
1

v(v +1)’
. 1 . . .

verhalten der Reihe E Ffolgern kann. Schreibt man die zu untersuchende Reihe
v= l

. . °° 1
Jedoch in der Form "goW, W
dieser Reihe und den Gliedern b„ der Vergleichsreihe für v g 1 die Beziehung

so besteht zwischen den Gliedem av =

l‘ . .W <W und nun folgt nach Satz 2.9, daß die vorgelegte Reihe konver-
' 2

giert. In Beispiel 5.5 wird gezeigt, daß ihre SummeL ist.
6

Beispiel 2.6: Wir untersuchen die Reihe E ——1= und verwenden die divergente har-
1 v = l 1/

(Beispiel 2.4) zum_Vergleich. Da g ä für alle v gilt, ist
d)

monische Reihe 2 ;
y l V

nach Satz 2.10 auch die Reihe E i- divergent. Allgemeiner ergibt sich auf diese
v=l V I’ '

U)

Weise die Divergenz für alle Reihen 2 T1“- miter. < 1. Der Fallon > lwird in 2.4.4.,
Beispiel 2.11, betrachtet. ”= 1

2.4.3. Quotienten- und Wurzelkriterium

Wenn man im Majorantenkriterium die geometrische Reihe als Vergleichsreihe
heranzieht, kommt man zu zwei weiteren Konvergenzkriterien, die sehr häufig Ver-
wendet werden: dem Quotienten- und dem Wurzelkriterium (auch: Kriterium von
d’Alembert bzw. von Cauchy). -

Satz 2.1l (Quotiemenkriterjium): Wenn für eine Reihe
00

2 av mit positiven Gliedern
von einem gewissen v an av > 0 und ”=°

%gq, 0<q<l, (2.14)
V

gilt, so ist die Reihe konvergent. Gilt jedoch von einem gewissen v an av“ g 1, so
vist die Reihe divergent.

Beweis: Es sei (2.14) für v g n erfüllt. Dann gilt

E 4“:-+1: an: =.<— ‘lau-z,

Durch Einsetzen der ersten Ungleichung in die zweite usf. folgt

< qam an+2 < ‘I2’/In» an: <

am: 5 ‘(am "n+2

“n+1 ‘I39...

Das heißt aber, daß die geometrische Reihe a„ 2 q“, die wegen 0 < q < 1 konver—
eo v=o w

giert‚ eine Majorante zur Reihe 2 av ist. Nach Satz 2.1 konvergiert dann auch 2 av.
I=I| v=n

g 1, so ist av“ g av, die Folge {av}Gilt dagegen von einem gewissen v ab Ei
mit positiven Gliedern ist also monoton wachsend. Daher ist die nach Satz 2.7
notwendige Konvergenzbedingung lim av = 0 nicht erfüllt. l

v-HJO
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Es muß besonders betont werden, daß sich die Konvergenz einer Reihe mit dem
Quotientenkriterium nur folgern läßt, wenn die Existenz einer Zahl q < 1 mit der

“n1
a. ‚

kann man nicht auf Konvergenz schließen. Das zeigt das Beispiel der harmonischen
w 1

Reihe ä 7, bei der (m1 _ v
a, —v+l

1' s
v+1_
auch für das folgende Wurzelkriterium.

v+l. . . . . a
Eigenschaft g q von einem gewissen v an nachweisbar ist. Nur aus <1

< 1 für alle v erfüllt ist (eine Zahl q < 1, so daß

q für alle v gilt, gibt es offenbar nicht). Diese Bemerkung gilt sinngemäß

W

Satz 2.12 (Wurzelkriferium): Wenn für eine Reihe Ea‘. mit positiven Gliedern von

einem gewissen v an '=°

I 1/Izlgq, 0<q<1, (2-15)
gilt, so ist die Reihe kanvergent. Gilt jedoch von einem gewissen v an {/Z g 1, so ist
die Reihe divergent.

Beweis: Es sei (2.15) und damit av g q“ für v g n erfüllt. Dann ist die Reihe E q"
o0 v=n

eine Majorante zum Reihenrest Z av, also ist dieser und nach Satz 2.1 auch die
VW?!

Reihe selbst konvergent. Wenn jedoch von einem gewissen v ab Ä/a„ g 1 gilt, so ist
av g 1; daher ist lim av = 0 nicht erfüllt. I

v-ooo

Oft ist es zweckmäßig, das W_urzelkiiterium in der sogenannten Limesform zu

verwenden. Wenn nämlich lim 1/av existiert und kleiner als 1 ist, so existiert auch eine

Zahl q < 1, so daß (2.15)He°:ffi1lt ist (das folgt unmittelbar aus der Definition des

Grenzwerts einer Zahlenfolge). Im Fall lim Um > 1 dagegen gilt von einem gewissen
_ V r-voo

v ab '\/a„ g 1. Entsprechendes gilt, wenn lim Liexistiert. Somit haben wir
v—>oo .. eo

Satz 2.13 (Quotienten- bzw. Wurzelkriterium in Limesform): Für eine Reihe Ea,
a\~+1 ":0bzw. lim K/av existieren. Wenn

y-vco

mit positiven Gliedern möge lim
v—»oo a,

. a . — 'lim l < l bzw. lim Vav < 1

v-roo v v-ooc

gilt, so konvergiert die Reihe; wenn

. a ' . -

lim —::—‘ > 1 bzw. lim K/a, > 1 -

1/«>00 v v-mo

gilt, so divergiert die Reihe.

Bemerkungen: 1) Gilt ‘lim % = 1 bzw. lim 1/41., = 1, so kann man weder auf
„so ‚ „u;

Konvergenz noch auf Divergenz der Reihe schließen.

2) Die beiden Kriterien sind nicht gleichwertig. Aus der Existenz von lim K/a_v

av+1 °°folgt die von lim (und beide Grenzwerte stimmen überein), aber nicht um-
7-9 00

2 Schall, Reihen

S. 2.12

S. 2.13

(2.16) I
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gekehrt, so daß das Wurzelkriteriuni weiter reicht (siehe dazu Beispiel 2.10). Aller-

dings läßt sich lim a"+1 oft leichter ermitteln als lim K/:1: .

7-? W y 7'5 w

Beispiel 2. 7.- Fiir die Reihe f —“— = 1 +L +i + -1- + ...ergibtsich
,=o 2“(2v)! 2'2! 4'4l 8'6!

a,,+1' Z (v +1)!2“-(2v)! = v +1 = 1

a, 2”“(2v + 2)! v! 2(2v + 1) (2v + 2) 4(2v + 1) '

Es ista—Li1— g ä bzw. 1'1 = 0. (2.14) bzw. die erste der Ungleichungen (2.16)

ist somityerfüllt, die Reihe ist koiivergent. '

co v 2 3 4-

Beispiel 2.8: Für die ReiheE = 3 + (i) + + (i) + ist
,=; 3v — 1 2 5 ll

1/I, = + I. Es ist:/Z g % für v g 3 bzw. lim Q/Z = ä ; die Reihe ist nach
— 7-iw

Satz 2.12 bzw. Satz 2.13 konvergent.

. . °° 1 1 1 1 .Beispiel F1'i:)dE:Re1he)':Zl_fi= + + + 1St

av+1_ V‘ v+l _3v~ _ _ . ~av+l .

a, _ (3v + 1) (3v + 4) _ 3v + 4 _,'1 3v + 4 ' Hler m a, <1’ Jedoch
v+1existiert keine Zahl q <’1 von der Art, daß -a—a—- g q Von einem v an gilt, denn

6 . . . . . . ' . . .31,-;-I wird mit wachsendem v beliebig klein. Das Quotientenkriterium versagt also

hier, und ebenso ist es mit dem Wurzelkriterium. Man kann allerdings — wie im
Beispiel 2.3 — direkt über die Teilsummen zeigen, daß die Reihe mit der Summe g

konvergiert.
. . _ .. . . 1 . 1 1 1 1 1

Bezsp1eI2J0. Fur die Reihe? + -3—2 + —2—3 + F + f + -3-; +

1 1 .(au =-3-27, a2M_, =~2—2‘j,,u = 1,2, 3,...) ist

1 ..

_ g fur v = 2‚u,

1/42. = 1..
Efurv=2,u——1,

so daß nach dem Wutzelkriterium auf Konvergenz der Reihe geschlossen werden
kann. Dagegen ist

av“ für v = 2‚u‚ also av“ g ä-für v = 2,11,

a" l(3)’fürv=2‚i—i a" s3riirv=2‚i—1.
3 3 ’ _ 9

av-1 ‘Daher gibt es weder eine Zahl q < 1, so daß die Bedingmng g q für alle vvon

v+1einem gewissen an erfüllt ist, noch gilt a? g 1 V011 einem r ab. Mit dem Quotien-

tenkriterium ist also keine Aussage über die Konvergenz der Reihe möglich.



2.5. Ein Kriterium für alternierende Reihen

2.4.4. Das Integralkriterium

Das folgende Kriterium stellt einen Zusammenhang zwischen der Konvergenz einer
unendlichen Reihe und eines uneigentlichen Integrals mit der oberen Grenze eo her
(vgl. Band 2, 11.1.).

Satz 2.14 (Integralkriterium): Wenn sich die Glieder einer Reihe E‘, av mit positiven
v-l

Gliedern als Funktionswerte a‘. = f(v)‚ v = 1, 2, ..., einer im Intervall x g 1 stetigen,
monoton fallenden Funktionf(x) darstellen lassen, so ist die Reihe genau dann konver-

m

gem, wenn das Integral ff(x) dx konvergiert.
I .

Bild 2.1

Bild 2.1 veranschaulicht die Voraussetzungen von Satz 2.14. Auf den Beweis sei
o0

verzichtet. Erwähnt sei nur, daß er gleichzeitig für die Summe s der Reihe Z a„
v=l

die folgenden, im allgemeinen ziemlich groben Schranken liefert:
w 00

a, + ff(x)dx g s g a. + ff(x)dx. (2.17)
z 1

Beispiel 2.11: Da die Funktionen f(x) = 7:; für jedesoc > Oim Intervalll g x < oo

co

stetig und monoton fallend sind und für o: > 1 konvergiert (vgl. Band 2,

l

11.1.), folgt nach dem Integralkriterium, dal3 jede Reihe ä % mitoc > 1 konvergiert.
o0 v=l

Für 0 < on g 1 dagegen divergiert und daher auch Zoo 71; (vgl. Beispiel 2.6).
‚=1

1 so no

Die Summe s der Reihe E) viz liegt nach (2.17) zwischen 1 + und l + Jldxä,
‚a:

2 1also-:—_S_s_<_= 2.

2.5. Ein Kriterium für alternierende Reihen

Unter den Reihen, deren Glieder nicht alle dasselbe Vorzeichen haben, spielen die
alternierenden Reihen eine besondere Rolle. Man versteht darunter Reihen, bei
denen je zwei aufeinanderfolgende Glieder entgegengesetzte Vorzeichen haben (es
z:

S. 2.14
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gilt also a„a„„ < 0 für v = 0, 1, 2, ...). Für solche Reihen ist schon seit langem das
folgende einfache Konvergenzkriterium bekannt.

Satz 2.15 (Leibnizsches Kanvergenzkriterium): Eine alternierende Reihe E a, ist
o

konvergent, wenn die Folge {|,a„[} — also die Folge der Absolutbeträge der äieder —

eine monotone Nullfolge ist.

Beweis: Ohne Beschränkung der Allgemeinheit können wir an > 0 annehmen, so dal3 am > 0,
um“ < 0 für alle m = 0, 1, 2, gilt. Da die Beträge lav] mit wachsendemv nicht zunehmen, ist also
am + a2m+i ä O, a2m+1 + tI;,,.+2 ä 0, und somit folgt für die Teilsummen mit ungeradem bzw.
geradem Index -Y2m+1 : Szm-i ‘i’ (am ‘l’ 112mm) ä 52m—-1, 52m+2 = 52»: + (l1zm+1 + 021m2) ä 52m-
Das heißt, daß die Folge {s2,,,+,) monoton wächst, die Folge {szm} monoton fällt. Da außerdem
szmi, = sz„. + a2”, < S2,, für alle m gilt, ist s1 die kleinste, so die größte aller Teilsummen: es gilt
s; g s„ g so für alle n (siehe Bild 2.2). \

i II ll l
I Ii II |

0 ~91=‘10*‘1z 55 55 5y 52 5o=‘1a Bild 2.2

Die Folgen {s2„‚+ 1}, {szm} sind also nicht nur monoton, sondern auch beschränkt. Daher konver-
gieren sie: lim s;„‚„ = s’, lim s2„‚ = s”. Weil {im} und damit auch {av} eine Nullfolge sein soll, ist

W...WI-F ü) no

s’ — s” = lim (52m+1 — s2,,,) = lim ums, = 0, also s’ = s”; beide betrachteten Teilsummenfolgeii

lim S, = s = s’ = s", d. h.‚die Reihe
n-vq;

m-vaa m—>m

streben gegen den gleichen Grenzwert. Daher existiert auch
d)

zu a‘, konvergiert mit der Summe s. I

Zusatzbemerkung zu Satz 2.15: Unter den Voraussetzungen von Satz 2.15 genügt der
Betrag des n-ten Reihenrestsder alternierenden Reihe der Abschätzung |r„| < ]a„„| ,

und r„ hat dasselbe Vorzeichen wie an. 1. Ersetzt man also die Reihensumme durch
eine Teilsumme der Reihe, so hat der Fehler das gleiche Vorzeichen wie das erste
vernachlässigte Glied der Reihe und ist dem Betrag nach kleiner als der Betrag
dieses Gliedes. Anders gesagt: die Reihensumme liegt stets zwischen zwei aufeinander-
folgenden Teilsummen.

Wir zeigen das für ungerades n, n = 2m — 1 (für gerades n verläuft alles analog).
Wegen (2.7), (2.9) ist, r2„,_1 = am + am“ + z1z...+z + ..., oder, da man nach

Satz 2.3 in beliebiger Weise Klammern setzen darf,

Tzm-i = (a2m ‘i’ 112m1) + (‘12m+2 + 112m3) + =ü2m +(a2m+1 + a2m+2) + -

Die Klammern in der ersten Darstellung sind alle nicht-negativ, in der zweiten aHe
nicht-positiv (siehe obigen Beweis), und wegen lim a, = 0 sind nicht alle gleich 0.

v—>0O

Daher ist 0 < r2,,,_1 < am, also gilt [r2,,,_1[ < |a2,,,], und,r2,,,_1 ist wie am positiv.
Die vorletzte Ungleichung können wir infolge r„„_, = s — s2,,,_1 auch in der Form
52mg, < s < s\2„‚_1 + am = s2„‚ schreiben, d. h., s liegt zwischen s2„‚_, und s2„‚.

. . °"' 1 1 1 1 .

Beispiel 2.12: Die Reihe Zl(—1)"1 7 = + — — — + 1st konvergent, da"334
eine monotone Nullfzolge ist. Ihre Summe ist In 2 (siehe 4.3.2., Formel (4.14)).

Beispiel 2.13: Die als Leibnizsche Reihe bekannte Reihe

w 1 1 1 1
—1”“————=1'——— ———EX ) 27-1 3+5 7-J"



2.6. Absolute Konvergenz 21

2” 1__ 1 } monoton gegen 0 strebt. Ihre Summe ist (siehe 4.3.2.).

Die Reihen in beiden Beispielen konvergieren sehr langsam, d. h.‚ die Beträge der
Glieder nehmen langsam ab, und man benötigt eine Teilsumme mit sehr vielen Glie-
dem, um durch sie die Reihensumme einigermaßen brauchbar anzunähern. Nimmt
man z. B. nur 5 bzw. 6 Glieder, erhält man in Beispie12.13 wegen s5 = 0,83111,

s6 = 0,74... auf Grund obiger Zusatzbemerkung lediglich das Ergebnis, daß die
Reihensumme s zwischen 0,74 und 0,84 liegt. Sogar wenn man 50 Glieder heranzieht,
unterscheiden sich die Schranken für s etwa um 0,01, so daß die zweite Dezimale
von s noch unsicher bleibt. Deshalb ist die Leibnizsche Reihe zur praktischen Be-
rechnung ihrer ‘Summe nicht geeignet.

\ X

Beispiel 2.14: Die Reihe Z(~1)"-1 erfüllt die Voraussetzungen des Leib-
v= l —

nizschen Konvergenzkriteriums und ist daher konvergent. Für die Teilsummen s5

und s5 erhält man auf vier Dezimalen genau s, = 0,9694, s6 = 0,968 7. Nach der
Zusatzbemerkung zu Satz 2.15 ist daher die Reihensumme auf drei Dezimalen genau

3

gleich 0,969 (der exakte Wert ist z0,968 95; siehe dazu Beispiel 5.5).

ist konvergent, da l

2.6.

Für den Fall, daß die Glieder einer Reihe nicht alle (bis auf eventuell endlich viele
Ausnahmen) dasselbe Vorzeichen haben und die Reihe nicht alterniert, stehen keine
speziellen Konvergenzkriterien zur Verfügung. Hier wird man im allgemeinen ver-
suchen festzustellen, ob die Reihe absolut konvergiert.

Absolute Konvergenz

Definition 2.3: Eine Reihe E av heißt absolut konvergenl, wenn die (aus den absoluten
v:0 eo

Beträgen ihrer Glieder gebildete) Reihe Z |a„| konvergiert.
14:0

Beispiel 2.15: Die Reihe ä (—1)”“ ä konvergiert, während die Reihe aus ihren
m v = 1 i

Beträgen, Z ä, divergiert (siehe Beispiele 2.12 und 2.4). Dagegen ist sowohl die Reihe
V=l

E (—- ä)” als auch die Reihe E (als geometrische Reihen mit q = ——%
v=0 . y=o '

bzw. q = l konvergent. Daher ist w — i eine absolut konvergente Reihe,
3 3v=0

während E (— l)"“ ä nicht absolut konvergiert.
v=l

co

Satz 2.16: Eine Reihe 2 a‘, konvergiert, wenn sie absolut konvergent ist.
< v=Ü

Beweis: Bei absoluter Konvergenz existiert nach Satz 2.6 zu jedem e > 0 eine Zahl
N(e) mit [a,,+1] + |a,,+2| + + [a,,+,,[ < e für alle n > N(.s) und für jedes p g 1.

Wegen der verallgemeinerten«Dreiecksungleichung |a,,+, + am»; + + a‘,,+,,|

g [a,.+,] + Ian”! + 2.. + ]a,,+,,[ wird für diese n und p auch die linke Seite der Un-
gleichung kleiner als e, woraus, wiederum nach Satz 2.6, die Konvergenz der Reihe

U0

20a, folgt. I

D. 2.3

S. 2.16
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00

Eine Reihe 2 av mit Gliedern beliebigen Vorzeichens kann also auf Konvergenz
—ov—- 00

untersucht werden, indem man die Konvergenzkriterien aus 2.4 auf 2 Iavl anwendet.
So ergeben sich insbesondere folgende Sätze: "=0

O0

Satz 2.9a (Majorantenkriterium): Eine Reihe 2a„ ist (absolut) konvergent, wenn
—ov- co

zwischen ihren Gliedern und den Gliedern einer als konoergent bekannten Reihe 2 b
mit positiven Gliedern von einem gewissen v an die Beziehung |a„| g b, gilt. ":0

v

Satz 2.13a (Quotienten- bzw. Wurzelkriterium in Limesform): Für eine Reihe E av
v=0

.. . a . "‘ . .

moge hm V” bzw. lim Ä/|a„| existieren, Wenn
y-woo v v-mo l

. a . ——

hm M <1üwhm%m<1 (um
v-ooc v „so

gilt,’ so konvergiert die Reihe (absolut); wenn lim > l bzw. lim VW > 1

„amgilt, so divergiert die Reihe. "”“°

av+l
av

Die absolute Konvergenz einer Reihe ist eine Eigenschaft, die für das Rechnen mit
der Reihe wesentliche Konsequenzen hat. Darauf wird in den nächsten beiden Unter-
abschnitten eingegangen.

2.7.

Eine absolut konvergente Reihe verhält sich grundsätzlich anders als eine nicht-
absolut konvergente Reihe in bezug auf die Urnordnung ihrer Glieder. Unter der

Umordnung von Reihen

w

Umordnung der Glieder einer Reihe 2 a‚. versteht man die Herstellung einer neuen
v 0

Reihe E bk, die alle Glieder av in einer=be1iebigen anderen Reihenfolge enthält, wobei
k = o

jedes b,‘ mit genau einem a, übereinstimmt.
Das folgende Beispiel zeigt, wie sich die Umordnung der Glieder einer konvergenten

Reihe auf deren Summe auswirken kann.

Beispiel 2.16: Die Reihe E (—1)”“ ä ist konvergent (siehe Beispiel 2.12); ihre Sum-
7:1

me sei mit s bezeichnet (wegen der Zusatzbemerkung zu Satz 2.15 gilt sicher s + 0).
Die aus ihr durch Multiplikation mit dem Faktor i} entstehende Reihe hat dann nach
Satz 2.4 die Summe -}s. Aus

1 1 l l l 1 l 11—?+§‘—T+?—€+7*§+§"“ =5 und

l l l I 1o+§+o—I+0+€+0—§+o+m_§s
ergibt sich durch Addition nach Satz 2.5

l+l——l+.l_+l_l+l+ —-i5
3 — 2 5 7 4 9 _ 2 '

Die links stehende Reihe entsteht durch Umordnung der Glieder der Reihe, von der
wir ausgegangen waren (der Leser mache sich das klar!)‚ sie hat aber eine andere
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Summe als jene. Die Reihensumme hängt also davon ab, wie die Glieder aufeinander-
folgen (im Gegensatz zu einer „echten“ Summe aus endlichen vielen Zahlen, für die
das Kommutativgesetz gilt).

Definition 2.4: Eine konvergente Reihe f: a, mit. der Eigenschaft, daßjede Reihe f b, ,

1 = 0 o0 ’ v = O

die durch Umordnung der Glieder der Reihe 2 av entsteht, wieder konvergiert und die
v = 0

gleiche Summe wie diese hat, heißt unbedingt konvergent. Eine konvergente Reihe, die
diese Eigenschaft nicht hat, heißt bedingt konvergent.

Die Reihe in Beispiel 2.16 ist also bedingt konvergent. Wir stellen nun einige
Eigenschaften bedingt bzw. unbedingt konvergenter Reihen zusammen, aus denen
hervorgeht, daß ein Verhalten wie in Beispiel 2.16 nur bei nicht-absolut konvergenten
Reihen eintritt.

Satz 2.17: Eine absolut konvergente unendliche Reihe ist unbedingt konvergent.
00

Satz 2.18: Wenn eine Reihe Z a, bedingt konvergiert, so ist sowohl die aus den positiven
v = o

Gliedern gebildete als auch die aus den negativen Gliedern gebildete Reihe divergent.

Satz 2.19: Wenn eine Reihe nicht-absolut konvergiert, so ist sie bedingt konvergent.

Anders formuliert heißt das, daß jede unbedingt konvergente Reihe auch absolut
konvergiert. In Verbindung mit Satz 2.17 erkennt man also, daß die Begriffe „absolut
konvergent“ und „unbedingt konvergent“ den gleichen Umfang haben.

Satz 2.20 (Umordnungssatz von Riemann): Wenn eine Reihe E’ a, bedingt konvergiert,
‚=

so kann man durch Umordnung ihrer Glieder eine konvergente Reihe erhalten, die eine
beliebige Zahl s zur Summe hat. Ferner kann man auch so umordnen, daß man eine
gegen + o0 bzw. — oo divergierende Reihe erhält. .

2.8. Multiplikation von Reihen

In 2.1. wurde gezeigt, daß man zwei konvergente Reihen gliedweise addieren und
subtrahieren darf. Wir wollen nun eine Vorschrift für die Multiplikation zweier kon-

US) IX)

vergenter Reihen 2 a, und Z b, entwickeln und lassen uns dabei einmal von der
=0 j:

Multiplikation zweier endlicher Summen leiten. Dann hätten wir jedes Glied der
ersten mit jedem Glied der zweiten Reihe zu multiplizieren. Alle dabei entstehenden
Produkte sind in nachstehender unendlicher Matrix enthalten:

b/ b/ / /an a an 1 aobz Gob;
/

aibu / a.,,b3/

/ /
azbo v “2b1 52172 azba/ ' ' ‘

/ /
aabn ‚ (13.5. 123b, aabg ’‚ . . .

/' /

00|

ab / aibz

/
/
X/

D. 2.4

S. 2.17

S. 2.18

S. 2.19

S. 2.20
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Die Elemente dieser Matrix können in verschiedener Weise als Glieder c„ der „Pro-
duktreihe“ angeordnet werden. Es erweist sich als zweckmäßig, jeweils Summen aus
mehreren Elementen der Matrix zu einem Glied zusammenzufassen, beispielsweise
die Summen aller Elemente, die in einer (durch Pfeile angedeuteten) Diagonalen
stehen. Dann wird

co = aobo, c1 = aob, + albo, c2‘: aob; + alb, +.azbo,

allgemein
II

c,, = ;oa,b,,_,,, n = 0,1, 2, (2.19)

(die Indexsumme in jedem Summanden von c„ ist gleich n).
_ 00

Es bleibt zu fragen, unter welchen Voraussetzungen die Reihe Z c„ konvergiert
„=

und ob es überhaupt sinnvoll ist, sie als Produktreihe der Reihen E av und E b„ an-
v=o "=0

zusprechen. Die Antwort gibt der folgende Satz.
w G)

Satz 2.21: Es seien 2 av, 2 b, zwei absolut konvergente Reihen mit den Summen s, t.
v=o -=0

Dann konvergiert die Reihe ä c„ mit c„ nach (2.19) absolut und hat die Summe st.
n=O

Da" die Reihe E) c,, die Summe st hat, ist es tatsächlich sinnvoll, sie die Produkt-
n=0

reihe aus den beiden gegebenen Reihen zu nennen. Die Produktreihe mit dem allge-

meinen Glied c„ nach (2.19) nennt man auch Cauchysches Produkt der Reihen E) a,
r O

und E} b„. Die Behauptung des Satzes gilt sogar allgemeiner für jede Reihe Ewe",
n=09:0

deren Glieder durch eine beliebige Anordnung der Elemente der oben angegebenen
unendlichen Matrix entstehen. Die Bevorzugung des Cauchyschen Produkts erklärt
sich aus seiner Sonderstellung bei der Multiplikation zweier Potenzreihen.

Aufgaben :

Aufgabe 2.1: Zeigen Sie für folgende Reihen an Hand der Definition, daß sie konver-
gieren, und bestimmen Sie ihre Summe!

1 w 212-1
(2v—l)(2v+1)’ b) 2' 'v=l

a) E
v=l

Aufgabe 2.2: Untersuchen Sie das Konvergenzverhalten folgender Reihen mit Hilfe
des Majoranten- bzw. Minorantenkriteriums!

1 °° 1

\/v(v+l)’
v °° 1

“E, 1 + w “E, 15T;

v l
T ‚a)Z‚ov2+l’ d)

w 1

= c).,=z2 lnv i ‚=1bx?
an
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Aufgabe 2.3: Stellen Sie mit dem Quotientenkriterium fest, ob folgende Reihen kon- =1:

vergieren oder divergieren!

°° v "° 2" °° (v!)2 °° v2

“Ä?” b),,§,T’ °),§o(2v)v’ ‘ü; ‘i’

w „W w 2m w w:
e)n§‘1 V! ’ f) v2: V ’ g)»§1 V" ’

10- 11 (10 + v)
h e.

),§o 1-3 (2v +1)
Aufgabe 2.4: Stellen Sie mit dem Wurzelkriterium die Konvergenz bzw. Divergenz 4e

folgender Reihen fest!

°° v °° 1 °° 2" °° v

aha? b>,;:»~~ d>,§r(j’
1/

- °° v . V 2 °° v2
e)'§1 v sm V7, f)Ei}.

Aufgabe 2.5: Verwenden Sie das Integralkriterium zur Konvergenzuntersuchung fol- *

gender Reihen! _

00 1 eo ‚p eo 1

‚ b ---—-‚ —-.“E, 1 + 112 E. (v +1)! °) Z lnvy_—.2 v

d °° 1 V’ 1 f °° v

)..>=:2 7’(h“’)2 ’ “Ei J4v +1 ’ ).§11+v2'
Aufgabe 2.6: Weisen Sie mit dem Leibnizschen Konvergenzkriterium die Konvergenz =a=

der folgenden alternierenden Reihen nach!

°° (—1)" °° (—1)' °° (—1)“
a)u§o 3v +1’ b)1=l\/11(1) +1)’ c)v§o1+ 3”’

d)_§0(—1>"-”—;i.

Aufgabe 2.7: Untersuchen Sie, ob folgende Reihen absolut oder nicht-absolut kon- x

vergieren!

w (—1)" w _ „ 2v+l w (—1)"
a),.§2 lnv ’ b),§1( 1) v(v+1)’ c)y§01)2+l’

n0 11v

v2,‘ £9

°° _ [2—’]i= l_i L L__1_ __L
°),§o(1)3 3" 1+3 9+27+s1 243+729+"'
([oc] bezeichnet die größte ganze Zahl g on).



3. Funktionenreihen

3.1. Grundbegriffe

Im Abschnitt 2. betrachteten wir unendliche Reihen mit konstanten Gliedern, also
Reihen, deren Glieder reelle Zahlen sind. Wir wollen jetzt allgemeiner reelle Funktio-
nen einer reellen Variablen als Reihenglieder zulassen.

Definition 3.1:Eine Folge {fi‚(x)}, v = 0, l, 2, ...‚ bzw. eine Reihe E f„(x)‚ deren Glieder
v: o

f„(x) (reelle) Funktionen einer (reellen) Variablen x sind, die alle auf einer gewissen
Menge X definiert sind, heißt eine Funktianenfalge bzw. eine Funktionenreihe.

Die Funktionenreihen, insbesondere ihre wichtigsten Vertreter, die Potenz- und
Fourierreihen, haben eine große praktische Bedeutung. Das geht aus den Abschnit-
ten 4. und 5. näher hervor. Als erstes Beispiel einer Funktionenreihe können wir wieder

die geometrische Reihe E q" (siehe Beispiel 2.1) betrachten, wobei wir jetzt q nicht

als eine fest Vorgegeberizoreelle Zahl, sondern als Variable auffassen; zur besseren

Hervorhebung dessen schreiben wir E x”.

Setzt man in allen Gliedern eineflgunktionenreihe für x eine Zahl x0 e X ein, so

erhält man die Reihe gj/flxo), die konstante Glieder hat. Wenn sie konvergiert (bzw.

divergiert), sagt man:=doaI3 die Funktionenreihe f fi‚(x) in x0 konvergiert (bzw. diver-
giert). ’=°

Definition 3.2: Die Menge M aller x e X, für die eine Funktionenreihe §}’,,(x) kan-
uergiert, heißt ihr Konvergenzbereieh. ”=° '

Für jedes feste x e M existiert also eine Zahl s(x) mit

lim s„(x) = mg ferne) = s(x).

Das heißt aber, daß die Summe einer Funktionenreihe eine in M definierte Funktion
s(x) ist. Man nennt sie Summenfunktion (auch kurz: Summe) der Funktionenreihe.

So besagen die Ergebnisse aus Beispiel 2.1, daß die geometrische Reihe f": x" im Inter-
v 0

vall (—1‚ l) konvergiertiund dort die Summenfunktion s(x) = 1 _ x hat. Ima11ge-

meinen kann man aber nicht erwarten, daß die Summenfunktion s(x) einer in einem
Intervall M konvergenten Funktionenreihe eine elementare Funktion ist. Stets aber
wird durch die Reihe eine Funktion s(x) in M definiert.

Beispiel 3.1 : Die Reihe E % ist, wie aus den Beispielen 2.6 und 2.11 hervorgeht, für
u- l

alle x > 1 konvergent und für alle x g 1 divergent. Die Summe der Reihe im Intervall
M = (1, oo) ist unter dem Namen Riemannsche Zetafunktion ;‘(x) bekannt.
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. . °° x" . . . . .

Beispiel 3.2: Die Reihe 2 7 ist für Jedes x konvergent. Für Jedes feste x 1st nämlich
‚=o - _

=o‚. [x]'+‘ . lxl“ _ . 1

.1i‘1§i(v+1)x' v! ‘ W1“; V +1
und daraus folgt nach dem Quotientenkriterium die Konvergenz. Es ist s(x) = e"
[siehe (4.11)].

Beispiel 3.3: Für die Glieder der Reihe ELgilt wegen cos vx g 1 für alle xl „z; v + cos vx ‚x, 1

Dg —-, so dal3, welchen Wert x auch hat, die Reihe 2
v+cosvx v+1 ,:2v+1

°° 1 . . . °° 1 . . . .

= 2 — eine Minorante zur Reihe 2jist. Nach Satz 2.l0ist diese Reihe
,,=3 v ,,=2 v + cos vx

daher für kein x konvergent.

3.2. Der Begriif der gleichmäßigen Konvergenz

(D

Wenn eine Funktionenreihe 2 f„(x) für alle x aus einem Intervall I konvergiert
- —o

und die Summe s(x) hat, so gibt es nach Definition der Konvergenz für alle xel
und für jedes e > 0 eine natürliche Zahl N, so daß ‘

|S(x) - S..(x)| < e (3-1)

für alle n > N gilt. Dabei ist N im allgemeinen eine Funktion von s und von x:
N = N(e, x), d. h.‚ dal3 (3.1) bei fest vorgegebenem e zwar für jedes x e I erfüllbar
ist, sobald n > N ist, N jedoch im allgemeinen für verschiedene x unterschiedlich
groß ausfällt. ‘

Wir betrachten hierzu als Beispiel die Reihe E x2(1 — x2)” im Intervall [—1, 1].

Die Funktionen f„(x) = x’(l — x2)" sind in diese=ri1 Intervall definiert und stetig. Für
x = 0 ist f„(0) = 0 für alle v und somit die Reihe konvergent mit 5(0) = O. Für

O < |x| g 1 ist E (1 — x2)” wegen 0 g 1 — x’ < 1‘ eine konvergente geometrische

Reihe mit der 5051311116 = ‘£2’; daher konvergiert unsere Beispielreihe

für diese x ebenfalls und hat die Summe s(x) = 1. Die Reihe ist also im gesamten
betrachteten Intervall konvergent und hat dort die unstetige Summenfunktion

«H;
Wir untersuchen nun, für welche n (3.1) erfüllt ist. Da es uns darauf ankomm

zu zeigen, wie x die Zahl N beeinfiußt, denken wir uns s fest gewählt; jedoch sei e < 1.

Für x = 0 ist (3.1) wegen s(x) — s„(x) = 0 stets erfüllt. Für [x] g 1, x + 0 ist

xxx) z xzyäoa _ x2)v =x2 = 1 _ (1_ x2)n+i_

Die Ungleichung (3.1), I

im) — s„<x>1 = <1 — x2)_~+1 < e,



D. 3.3

28 3. Funktionenreihen

ist für x = i1 für alle n erfüllt, und für 0 < |x1 < 1 dann und nur dann, wenn
l .

(n +1)ln(l—x2)<lns, d.h.,wcgen0 <v1— x2 <1,wennn +1 > Fluff) gilt.

Als N kann daher die größte ganze Zahl dienen, die kleiner oder gleich 1——11l—7— — 1

ist. Dieses N ist oflenbar eine Funktion von s und x. n( _ x )
Nun könnte man aber doch zunächst annehmen, daß es unter allen diesen Zahlen

N(s, x) eine genügend große, von x nicht mehr abhängige Zahl N*(e) von der Art
gibt, daß (3.1) für alle x aus dem Intervall [— 1, +1] gilt, wenn n > N*(s) ist. Das ist
aber in unserem Beispiel nicht der Fall. Je näher nämlich x bei 0 liegt, desto größer ist
N(e,'x)‚ und mit der Annäherung x —> O wird N(s, x) beliebig groß, so daß es keine
solche Zahl N*(e) gibt. Die Abhängigkeit der Zahl N von x läßt sich nicht beseitigen.
Das ist auch unmittelbar der Ungleichung (1 — x2)"+1 < e zu entnehmen. Wenn diese
(bei festem s) für irgendeine Zahl x = x, und für alle n > N(s, x1) erfüllt ist, kann
man stets eine Zahl x2 (mit [x2] < fxll) bestimmen, so daß (1 — x§)"+‘ > s für ge-
wisse n > N(e, xi) ausfällt.

Bild 3.1

Das Gesagte wird in Bild 3.1 veranschaulicht. Für jedes x ¢ 0 gilt — bei beliebig
gewähltem, positivem e < 1 — von einem gewissen n an 0 g 1 — s,,(x) < s, d. h., die
Kurven y = s„(x) verlaufen von diesem n an innerhalb des Streifens 1 — e < y g 1.
Je näher x bei O liegt, desto größer ist die Zahl n, von welcher an das eintritt. Keine
der Kurven y = s,,(x) ist so beschaffen, daß sie für alle x + 0 in diesem Streifen
verbleibt. ‚

Durch die folgende Definition heben wir nun diejenigen konvergenten Funktionen-
reihen, für die es ~ im Unterschied zum eben betrachteten Beispiel — doch eine Zahl
N*(a) der genannten Art gibt, besonders heraus.

Definition 3.3: Eine Funktionenreihe E: f‚.(x) heißt in einem Intervall I gleichmäßig
11:0

konvergent mit der Summenfunktian s(x), wenn zu jedem a > 0 eine von x unab-
hängige natürliche Zahl N*(e) existiert, so daß [s(x) — s„(x)l < s für alle n > N*(s)
und für jedes x E I gilt. Eine konvergente Funktianenreihe, die in I nicht gleichmäßig
konvergiert, nennt man ungleichmäßig konvergent in I.

Eine in I gleichmäßig konvergente Reihe ist in I offenbar auch im gewöhnlichen
Sinne konvergent. Dieizusätzliche Forderung bei der gleichmäßigen gegenüber der
gewöhnlichen Konvergenz ist die, daß die Ungleichung (3.1) für alle x e I von einem
gemeinsamen Index n an erfüllt sein soll. Der Fehler bei der Ersetzung der Reihen-
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summe durch eine Teilsumme s„(x) mit einem n > N*(e) liegt daher bei einer in I
gleichmäßig konvergenten Reihe für alle x e I unter e (siehe Bild 3.2).

y=$,, (X)

_y=s (x)

-———> Bild 3.2
x

Als Beispiel für eine gleichmäßig konvergente Reihe können wir die zuvor be-
trachtete Beispielreihe in einem Intervall [41, 1] mit einem festen a > O wählen; denn

wegen g für a g x < 1 ist die größte ganze Zahl, die kleiner '

Oder g1eich — 1 ist, als N*(e) geeignet. Für a = ä, e = 0,05 ergibt sich

N*(0,05) = 9; d. h., daß alle Funktionen s„(x) mit n g 10 für alle x e [1, 1] der Un-
gleichung 0,95 < s,,(x) g 1 genügen (vgl. Bild 3.1). 2

Der folgende Satz gibt eine nolwendige unduhinreichende Bedingung für die gleich-
mäßige Konvergenz einer Funktionenreihe in einem Intervall an, wobei nicht die
Kenntnis der Summe benutzt wird; er entspricht dem Cauchyschen Konvergenz-
kriterium.

Satz 3.1: Eine Funktionenreihe E) f„(x) ist genau dann gleichmäßig konvergent in einem S. 3.1
. v = o

Intervall I, wenn zu jedem a > 0 eine von x unabhängige natürliche Zahl N*(e) exi-
stiert, so daß

lf..+1(x) +f,.+2(x) “r +fi.+„(x)l < 8 (3-2)

für alle n > N*(s) undfür jedes p g 1 sowie für jedes x e I gilt.

Der Beweis des Satzes wird übergangen. Von praktischer Bedeutung ist das folgende
hinreichende Kriterium für gleichmäßige Konvergenz, das von Weierstraß stammt.

Satz 3.2: Eine Funktionenreihe E f,(x) ist in einem Intervall I gleichmäßig konvergent, s, 3_2
— o eo

wenn zwirchen ihren Gliedernyund den Gliedern einer konvergenten Reihe Z a„ die
Beziehung If,,(x)| g av für alle x e I gilt. '=

Die Konvergenz der Reihe in I ergibt sich bereits aus Satz 2.9a; die weitergehende
Aussage von Satz 3.2 liegt darin, daß die Konvergenz gleichmäßig ist. Der Beweis
verläuft entsprechend zu dem von Satz 2.9.

Beispiel 3.4: Die Reihe E zlfsin vx ist für alle x gleichmäßig konvergent, weil
v=l‘i: sin vx g -12- für alle x gilt und die Reihe

’V V u

:1712—konvergiert. Allgemeiner ist die

Reihe E (av cos vx + ß„ sin vx) sicher dann gleichmäßig konvergent für alle x, wenn die
„= l

Reihenil [D4,] und i1 lßvl konvergieren (denn es ist lac‘, cos vx + ,3, sin vxl g [av] + lfivl). I
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3.3. Sätze über gleichmäßig konvergente Reihen

3.3.1. Stetigkeit der Summenfunktion

Die folgenden Sätze lassen die Bedeutung der Gleichmäßigkeit der Konvergenz für
eine Funktionenreihe erkennen.

Das Beispiel aus 3.2 zeigt, daß eine konvergente Funktionenreihe mit stetigen
Gliedern keine stetige Summenfunktion zu haben braucht. Der Satz, daß eine
endliche Summe stetiger Funktionen wieder stetig ist, darf also nicht auf Funk-
tionenreihen übertragen werden.

Jedoch gilt
‘ w

Satz 3.3: Wenn die Glieder einer Funktianenreihe 2 f„(x) in einem Intervall I stetig
—o

sind und die Reihe in I gleichmäßig konvergiert, soyist ihre Summenfunktion s(x) in I
stetig.

Aus dem Satz folgt, daß eine konvergente Funktionenreihe mit in I stetigen Glie-
dem und unstetiger Summenfunktion in I ungleichmäßig konvergent ist. Anderer-
seits sind ungleichmäßig konvergente Reihen (mit stetigen Gliedern) bekannt, deren
Summenfunktion stetig ist; die Gleichmäßigkeit der Konvergenz ist also keine not—

wendige Bedingung hierfür.

Beweis zu Satz 3.3: Wir wählen x E I, x + h e I, und haben zu zeigen, daß die Dif-
ferenz s(x + h) — s(x) beliebig klein wird, wenn h hinreichend klein ist. Dazu gehen
wir von der. Darstellung

S(X + h) - S(x) = (S06 + h) - S‚.(x + h)) — (A‘(x) - S..(x))

+ (S..(x + h) - S„(x))

aus. Wegen der gleichmäßigen Konvergenz der Reihe gibt es zu jedem s eine Zahl

N*(e), so daß [s(x) — s„(x)| < g für alle n > N*(e) und für jedes x e I gilt. Wählt

man nun ein festes n > N*(s)‚ so gilt auch|s(x + h) — s„(x + h)[ < —§— , und da s„(x)

als Summe von in I stetigen Funktionen selbst in I stetig ist, existiert zu unserem s

eine Zahl 6(2) derart, daß Is„(x + h) — s„(x)| < g erfüllt ist,wenn |h| < ö. Es ergibt
sich daher '

|s(x + h) —— s(x)l .

S IS(X + h) - S..(x + h)| + lS(x) - S..(x)| + lS..(x + h) - S‚.(x)l

a a ' e
< -3- + 3 + g = E

für alle x e I, sofern [h] < ö gilt. Damit ist die Stetigkeit der Funkion s(x) in I be-
wiesen. I

Die Behauptung von Satz 3.3 kann auch in der Form

mg gm) = innen = ä gig; ‚wo, x,x.. er, (3.3)
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oder

lim lim s„(x) = s(x„) = lim 1ims„(x), x, x0 5'], ‘ (3.3’)
x_.x„„_.oo n->oo ‚am,

geschrieben werden, d. h., daß unter den Voraussetzungen von Satz 3.3 die Grenz-
übergänge n —> oo („Summation“) und x —> x0 vertauscht werden dürfen.

3.3.2. Gliedweise Integration ’

Bekanntlich darf man eine Summe stetiger Funktionen gliedweise integrieren. Bei
einer beliebigen Funktionenreihe ist dieses Vorgehen nicht gestattet, aber es gilt

Ü

Satz 3.4: Wenn die Glieder einer Funktionenreihe Z f„(x) in einem Intervall Istetig sind S. 3.4
»=o

und die Reihe in I gleichmäßig gegen s(x) konvergiert, so gilt für beliebige a, b e I

_ fbsoc) dx = go _fbf,(x) dx. (3.4)

Die Voraussetzungen dieses Satzes sind die gleichen wie in Satz 3.3. Daher folgt
schon aus diesem, daß die Summenfunktion s(x) — als in I stetige Funktion — über
[a, b] integrierbar ist. Die weitergehende Aussage von Satz 3.4 liegt darin, daß auch die
gliedweise Integration der Reihe gestattet ist, d. h., die durch gliedweise Integration

b

entstehende Reihe konvergiert und hat I s(x) dx zur Summe.

Beweis: Wegen der gleichmäßigen Konvergenz der Reihe äo/flx) gibt es zu jedem

e > 0 eine von x unabhängige Zahl N*(s)‚ so daß ]s(x) —'§,,(x)y <ä für alle

n > N*(s) und für jedes x e I gilt. Daraus folgt
b b

i <s<x> —s.<x»dx g xs(x>—».(x>Idx < Tb~:7||b — an =a

für alle n > N*(e), oder in anderer Schreibweise

<8.}'bs(x) dx i; ffibc) dx

Da s beliebig klein gewählt werden kann, strebt mit n —> oo die Differenz auf der
linken Seite der Ungleichung gegen 0; mithin gilt (3.4). I

Zusatz: Unter den Voraussetzungen von Satz 3.4 ist die durch gliedweise Integration
x

entstehende Reihe E ffl.(t) dt, in der die obere Grenze x e I in den Integralen variabel
v=0

ist, ebenfalls gleichmäßig konvergent in I. Das ergibt sich sofort aus dem vorstehenden
Beweis. V '

Aus der Form
m bb eo

i (_zo/.<x>dx) = 2 ffl(x)dx <14’)yo,
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für (3.4) entnimmt man, daß auch Satz 3.4 eine hinreichende Bedingung für die Ver-
tauschbarkeit zweier Grenzprozesse, nämlich der Integration und Summation, be-
inhaltet.

3.3.3. Gliedweise Difl'erentiation

Bei der gliedweisen Differentiation liegen die Verhältnisse etwas anders als bei der
gliedweisen Integration. Die gleichmäßige Konvergenz einer Funktionenreihe mit
diflerenzierbaren Gliedern ist noch nicht hinreichend für die‘Ausf1'1hrbarkeit der

m .

gliedweisen Diflerentiation. Ein Beispiel hierfür liefert die Reihe 2 S“1‘T”‘ (Bei-
v=l

spiel 3.4), die für alle x gleichmäßig konvergiert und deren Glieder für alle x dilTeren-
COS 7X *

w

zierbar sind. Die durch gliedweise Differentiation entstehende Reihe 2 if geht

aber z. B. für x = 0 in die harmonische Reihe über, ist also in x = 0 noch nicht
einmal konvergent. Der folgende Satz formuliert eine hinreichende Bedingung dafür,
daß gliedweise Differentiation gestattet ist.

Satz 3.5: Wenn die Glieder einer Funktionenreihe E‘, f„(x) in einem Intervall I xtetig
..=o

diflerenzierbar „sind, die Reihe in I mit der Summe s(x) konvergiert und die durch glied-
V u:

weise Diflerentiation entstehende Reihe Z f,’ (x) in I gleichmäßig konvergiert, so ist
s(x) in I diflerenzierbar, und es‘ gilt ”=°

w ‚

s'(x) = Z f‚(x)
v=0

für alle x e I.

Zusatz: Unter den angegebenen Voraussetzungen ist die Reihe
mäßig konvergent.

(3.5)

äflix) in I gleich-
.=o

Beweis: Wir setzen E f; (x) = o'(x), x e I. Ist a e I fest, x variabel, so ist nach Satz 3.4
1:0 co

die gliedweise Integration der Reihe 2 f: (x) gestattet, und man erhält
- ‚=o

x

fa(t) dz =

a

= 50m» —§0 m) = s(x) — so».

f/xr) d: =jo<n<x> —f„<a)>

Das auf der linken Seite stehende Integral ist, da a(x) nach Satz 3.3 stetig in I ist, in I
nach x differenzierbar, also auch s(x) — s(a) und somit s(x)‚ und die Differentiation
liefert o(x) = s’(x)‚ x e I, womit der Satz bewiesen ist. I

Die im Zusatz stehende Behauptung folgt aus dem Zusatz am Ende von 3.3.2.
Auch Satz 3.5 beinhaltet, wie schon die Sätze 3.3 und 3.4, eine hinreichende Be-

dingung für die Vertauschbarkeit zweier Grenzprozesse, nämlich der Differentiation
und der Summation.

COS vx
„3Beispiel 3.5: Die Reihe E) ist für alle x_ konvergent (nach Satz 3.2 sogar

v=l
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gleichmäßig), ihre Glieder besitzen für alle x stetige Ableitungen, und die durch glied-
co .

weise Differentiation entstehende Reihe Z (— 511::x) konvergiert gleichmäßig für
1

alle x (Beispiel 3.4"). Mithin gilt für alle i:
(E cosvx)’_ °° sinvx

»=1 V3 v=l V2

Aufgaben:

Aufgabe 3.1: Zeigen Sie, daß die Reihe E (x" —- x"“) in jedem Intervall [0, a] mit a:

=o
0 < a < 1 gleichmäßig, jedoch im Intervall [0, 1) ungleichmäßig konvergiert!

2

Aufgabe 3.2.- Bestimmen Sie m: die Reihe E fiwein N(a, x), so daß (3.1) für a:

v=0
alle n > N(s, x) und für jedes x erfüllt ist. Zeigen Sie weiter, daß man in einem Inter-
va11I, das x = 0 enthält, N(e, x) nicht durch ein (von x unabhängiges) N*(s) ersetzen
kann, die Reihe also in I ungleichmäßig konvergiert.

._ V l
fiufgabe'3.3'.- Zeigen Sie, daß die Reihe E]! %— im Intervall [0, oo) gleichmäßig a:

onvergiert. " =

Anleitung: Benutzen Sie Satz 3.1.

Aufgabe 3.4: Weisen Sie mit Hilfe des Kriteriums von Weierstraß (Satz 3.2) nach, a

daß folgende Funktionenreihen in den angegebenen Intervallen gleichmäßig konver-
gent sind!

°° cos vx °° I3)‘; V3 ‚ (—°0, 00); b) Z T7, (-00, 00);
v=l

eo X

°),=,TTvTx" [°= °°>~

Anleitung zu c): Beachten Sie den Maximalwert derf„(x) im angegebenen Intervall!

i sin 24x sin 3"'x
22 32

a) gliedweise integriert, b) gliedweise diflerenziert werden?

Aufgabe 3.5: Darf die Reihe sinx +

3 Schall, Reihen



4. Potenzreihen

4.1. Das Konvergenzverhalten einer Potenzreihe

4.1.1. Begriff der Potenzreihe

In Band 2, Abschnitt 6.3., wird der Tavlorsche Satz behandelt, und es wird gezeigt,
daß unter gewissen Voraussetzungen eine Funktion f(x) in einer Umgebung von
x = 0 näherungsweise durch

f(0) + f}? f-ggx’ + + x" (4.1)

dargestellt werden kann. (4.1) kann als n-te Teilsumme einer Reihe aifigefaßt werden,

x+

‘ deren Glieder Potenzfunktionen mit konstanten Vorfaktoren sind.

Definition 4.1: Eine Funktionenreihe der Form E; cvx" (c, reelle Zahlen) nennt man
‚=o

eine reelle Potenzreihe; die c„ heißen ihre Koejfizienten.

U}

Man nennt auch eine Reihe Z c„(x — x0)”, x0 beliebig reell, eine Potenzreihe und
—o

x0 ihren Mittelpunkt. Eine solche ist jedoch von der in der Definition genannten
nicht wesentlich verschieden, denn sie geht durch die Substitution x — x.) = h in jene
über (natürlich mit h als Variabler). Daher führen wir die folgenden Untersuchungen
nur für den Fall x0 = 0. Die Teilsummen einer Potenzreihe‘ sind ganze rationale

Funktionen: s„(x) = ‘Z c„x" (in der Summe ist x° = 1 für alle x zu setzenl). Die geo-
w v=0 '

metrische Reihe Z x” (siehe 3.1.) ist ein uns schon bekanntes Beispiel einer Potenz-
.»=o

reihe; in ihr sind alle Koeffizienten gleich 1.

Wir beschränken uns hier auf die Betrachtung von reellen Potenzreihen;
o0

Potenzreihen 2 c„z” mit einer komplexen Variablen z und komplexen c, werden in
11:0

Band 9 behandelt. An dieser Stelle sei jedoch darauf hingewiesen, daß insbesondere
Definition 4.2 und die Sätze 4.1, 4.2, 4,3 auf Potenzreihen im Komplexen unmittel—
bar übertragen werden können.

4.1.2. Der Konvergenzradius einer Potenzreihe

Jede Potenzreihe co + clx + cgx’ + konvergiert offenbar für x = O, und zwar

mit der Summe co (denn diesen Wert haben alle Teilsummen). Es gibt Potenzreihen,

die für kein anderes x konvergieren, z. B} die Reihe i) v! x”. Für jedes x 4: 0 gilt
.. . . (v +l)!x"+1

namlich 11m ——‚T————
„so v.x

Quotientenkriterium (Satz 2.13a)

=0
= Ix) 1im(v + 1) = oo,’und daraus folgt nach dem

„so

die Divergenz) für x als 0. Andererseits gibt es

Potenzreihen, die für alle x konvergieren, z. B. 2:) % (vgl. Beispiel 3.2).
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w .

Definition 4.2: Eine Potenzreihe 2 c„x’, die für alle x konvergiert, heißt beständig
2:0

konvergent, eine, die nur für x = 0 konvergiert, heißt nirgends konvergent.

Wir wollen nun zu einer allgemeinen Aussage über das Konvergenzverhalten einer
Potenzreihe kommen. Der folgende Satz stellt einen ersten Schritt in dieser Richtung
dar; das Weitere enthält Satz 4.2.

CD

Satz 4.1: Wenn eine Potenzreihe 2 c„x”für ein x = x1 4: 0 konvergiert, so konvergiert
v=0

sie absolut für alle x mit |x| < [x1|. Wenn dagegen eine Potenzreihe für ein x = x2
divergiert, so diuergiert sie auch für alle x mit |x| > |x2|.

w

Beweis: Wegen der Konvergenz der Reihe 2 c„x’1’ gilt lim c„x'1’ = 0(Satz 2.7). Daher
v: 7-» 0o .

ist die Folge der Glieder beschränkt, d. h., es gibt eine positive Zahl K, so daß [cvxfl g K
und somit

v v v

Ic„x"I = CM = Icvxll i 5K i
x1 x1 x1

gilt. Für irgendein x mit |x| < |x1| ist nun xi = q'< l,also lc„x"l < Kq". Das be-

deutet, daß die geometrische Reihe K 2 q” als llvlajorante für die Reihe 2 |e„x’| dienen
v: ow v=0

kann. Die Reihe 2 cvx” ist mithin für [x] < |x1l absolut konvergent.
,=

Der 2. Teil des Satzes kann indirekt bewiesen werden. Nimmt man nämlich an, daß
die für x = x2 divergente Potenzreihe für ein x1 mit |x1[ > |x2| konvergiert, so müßte
sie nach dem 1.Teil des Satzes auch für x = x2 konvergieren, aber das steht im Wider-
spruch zur Voraussetmng. I '

Wenn eine Potenzreihe weder nirgends noch beständig konvergent ist, muß es

sowohl Zahlen x1 =c= 0 geben, für die sie konvergiert, als auch Zahlen x2, für die sie
divergiert, wobei lx1| < |x2| gilt. Es seien x1, x2 zwei bestimmte Zahlen dieser Art,
die wir auf Grund von Satz 4.1 sogar als positiv annelnnen können. Die Reihe kon-
vvergiert dann für alle x mit [x] < x1 und divergiert für fx| > x2 (siehe Bild 4.1). Über

r v

x.

—x2 —r
4% I l l E

—x, 0 x, r x2 x Bild 4.1

das-Konvergenzverhalten in den Intervallen (—x2, —x1) und (x1, x2) können wir
zunächst noch nichts Allgemeines sagen. Es sei nun x1, irgendeine Stelle aus dem Inter-
vall (x1, x2). Dann kann x11, je nachdem, obdie Potenzreihe an dieser Stelle konver-
giert bzw. divergiert, die Rolle von x1 bzw, x2 übernehmen. Wir haben damit eine
Konvergenz- bzw. Divergenzaussage für ein größeres Intervall erhalten. Aus dem ver-
bleibenden Intervall (x1„ x2) bzw. (x1, x11) kann wiederum eine Stelle x1’, ausgewählt
werden, die Überlegungen können wiederholt werden usw. So scheint es anschaulich
klar zu sein, daß es eine Zahl r E (x1, x2) von der Art gibt, daß Konvergenz der
Potenzreihe für Ix] < r, Divergenz für [x] > r vorliegt. Das-trifft tatsächlich zu; auf
den Beweis hierfür verzichten wir jedoch. Wir formulieren:

d)

Satz 4.2: Wenn eine Potenzreihe 2 e„x” weder nirgends noch beständig konvergiert, so
y=o

existiert genau eine positive Zahl r mit der Eigenschaft, daß die Potenzreihe für alle x
mit Ixl < r absolut konvergiert undfür alle x mit |x| > r divergiert.
3*

D. 4.2

S. 4.1

S. 4.2
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Die Zahl r heißt Konvergenzradius, das Intervall (—r‚ r) Konvergenzintervall der
Potenzreihe.

Ergänzungen: 1. Man kann auch in den beiden im Satz ausgeschlossenen Fällen
einer Potenzreihe einen Konvergenzradius zuordnen: für eine nirgends konvergente
Potenzreihe setzt man r = 0, für eine beständig konvergente r = oo.

2. Über das Konvergenzverhalten von Potenzreihen auf dem Rande des Konver-
genzintervalls ist keine allgemeingültige Aussage möglich (siehe Beispiel 4.1).

3. Eine Potenzreihe mit einem Konvergenzradius r > 0 ist in ihrem Konvergenz-
intervall (—r‚ r) immer auch als Darstellung einer Funktion — nämlich ihrer Sum-
menfunktion — anzusehen.

4. Das Konvergenzintervall einer Potenzreihe mit dem Mittelpunkt x0 ist offenbar
(x0 — r, x0 + r).

4.1.3 Bestimmung des Konvergenzradius

Über die Bestimmung des Konvergenzradius gilt der folgende

‘ no __

Satz 4.3: Wenn für eine Potenzreihe 2 c„x" der Grenzwert ‚u = lim {/|c„] — eventuell
d)v=0 ya

als uneigentlicher Limes — existiert, so ist im Fall ‚u = 0 die Potenzreihe beständig, im
Fall y = eo nirgends konvergent; im Fall 0 < ‚u < oo hat sie den Kanvergenzradius

i . Bei sinngemäßer Deutung gilt alsor Z

M

r = _ ‚I ... . (4.2)
11m [cv]
y...»

Ergänzungen. 1. Anstelle von (4.2) kann auch die Formel

I r = lim ‘“ (4.3)
v—>oo Cv+i

benutzt werden, sofern der Limes — eventuell als uneigentlicher — existiert.

2. Wenn lim JE nicht existiert (auch nicht als uneigentlicher Grenzwert), bleiben
7* W .;. L

die Behauptungen von Satz 4.3 richtig, wenn ‚u durch lim Ä/[c-„I ersetzt wird.

Beweis zu Satz 4.3: Nach dem Wurzelkriterium (Satz 2.13 a) konvergiert eine Potenz-
reihe für alle die x, für die

lim 1/[c,x"[ = |x] Iim Ä/ fc„] = |x]‚u < 1

v-nx: v-ooo

gilt, während sie für alle x mit ]x[ ‚u > 1 divergiert. Für 0 < ‚u < o0 ergibt sich also
. 1 . .

absolute Konvergenz bzw. D1vergenz,.wenn lxl < -1- bzw. lxl > -— Ist, d. h., es 1st

r = Im Fall ‚u = 0 ist [x] ‚u < 1 für jedes x erfüllt, also die Reihe beständig kon-

vergent; im Fall ‚u = oo wird K/[qxvl für alle x # 0 beliebig groß, und daher ist die
notwendige Konvergenzbedingung lim cvx" = 0 nicht erfüllt, die Reihe divergiert für
x =4: 0. I "’°°
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xv ooxv
—f , Z —— haben nach (4.2) alle den Kon-M

sw

Beispiel 4.1: Die Potenzreihen Z x”, v v
=0 v v-ly I _ _

vergenzradiusr = 1, denn esistliml = lim {/11 = lim UV’ = l.Auf dem Rande des
v...» „a Ii»

Konvergenzintervalls zeigen sie alle drei im untersdohiedliches Verhalten. Die erste
ist die geometrische Reihe und für x = i1 divergent (vgl. Beispiel 2.1). Die zweite
ist für x = i1 konvergent: sie ist nämlich für x = 1 die in 2.4.2., Beispiel 2.5, als

O0

konvergent nachgewiesene Reihe Z -1}; , und die sich für x = -1 ergebende alter-
v-l

nierende Reihe ist nach dem Leib-nizschen Konvergenzkriterium ebenfalls konver-
gent. Die letzte der drei Reihen ist in einem Randpunkt divergent, im anderen kon-
vergent; denn für x = 1 liegt die harmonische Reihe, für x = —1 die nach 2.5., Bei-

spiel 2.12, konvergente Reihe E fl vor.
’ v: l

4.2. Eigenschaften von Potenzreihen

4.2.1.‘ Stetigkeit der Summenfunktion. Gliedweise Integration und Dilferentiation

Im folgenden werden die in Abschnitt 3.3. hergeleiteten Sätze über die Eigen-
schaften gleichmäßig konvergenter Reihen auf Potenzreihen angewendet. Der Leser,
der mit Abschnitt 3. nicht vertraut ist, kann Satz 4.4 übergehen; der Inhalt der Sätze
4.5 bis- 4.9 ist auch ohne den Begriff der gleichmäßigen Konvergenz verständlich.
Wir betrachten jetzt ausschließlich Potenzreihen mit positivem Konvergenzradius
(einschließlich r = o0),

w

Satz 4.4: Eine Potenzreihe 2 c„x" konvergiert in jedem abgeschlossenen Teilintervall
v=0

i/zres Konvergenzintervalls (—r‚ r) gleichmäßig.

Beweis: Wenn g eine Zahl mit 0 < g < r ist, dann ist f c‚.g” nach Satz 4.2 eine abso-
v=0

lut konvergente Reihe. Zwischen den Beträgen ihrer Glieder und denen der Potenz-
reihe besteht für alle x mit |x| g g die Beziehung |c„x”| g lc„| g”. Nach Satz 3.2 ist
daher die Potenzreihe im abgeschlossenen Teilintervall [—g‚ g] gleichmäßig konver-
gent. Insbesondere kann g beliebig dicht bei r liegen. I

Da für jedes |x| < r eine Zahl g angegeben werden kann, für die |x| < g < r gilt,
ergibt sich aus Satz 3.3:

w

Satz 4.5: Die Summenfunktion s(x) einer Potenzreihe 2 cvx" ist im Konvergenzinter-
val! (—r, r) stetig. ”=°

Die Sätze 4.4 und 4.5 können für Potenzreihen mit einem endlichen Konvergenz-
radius noch wie folgt ergänzt werden.

Q

Satz 4.6: Wenn eine Potenzreihe Z cvx" noch für x = r konvergiert, so ist sie in jedem
=o

Intervall [a, r] mit a > —r gleichmäßig konvergent, und ihre Summenfunktion s(x) ist
in x = r noch linksseitig stetig, d. h., es gilt

lim s(x) = s(r) = f) c,,r".
x—or—0 v=0

S. 4.4

S. 4.5

S. 4.6
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Der zweite Teil des Satzes ist unter dem Namen Abelscher Grenzwertsatz bekannt.
Eine entsprechende Aussage gilt, wenn die Potenzreihe noch in x = —r konvergiert.

Aus Satz 3.4 ergibt sich sofort

Satz 4.7: Eine Potenzreihe i cvx" darf über jedes abgeschlossene Teilintervall ihres
v=0

Konvergenzintervalls (:r, r) gliedweise integriert werden, d. h., mit —r < a, b < r gilt

b b w u: b o: bv+l _ av+l
fs(x)dx 2 f (2 cvx") d»: Z cvfxvdx = Z cue

v=D y:o v=0 v + 1

a ll a

Wenn die Rotenzreihe noch für x 2 r (oder x = —r) konvergiert, darf auch b = r

(oder a = —r) gewählt werden.

Beispiel 4.2: Aus l = l + x + x’ + ...‚ Ixl < 1, folgt durch Integration von
0bisx,[x]<1, 1-K

X dt x’ x3
= — — = — — -1,1 .1_t In(l x) x+2+3+ ,xe( )

o

Nach folgendem Satz ist auch die gliedweise Differentiation erlaubt.

Satz 4.8: Die durch gliedweise Dzflerentiation einer Potenzreihe E cvx” entstehende

Potenzreihe f vc„x”*‘ hat wieder den Konvergenzradius r, und ihgosummenfunktion

ist gleich de:':xl1bleitung der Summenfunktian s(x) der Reihe 2°10 cvx", d. h.‚ es gilt s'(x)

= §jlvc,x”“ffir alle x E (—r, r). no
.=

Beweis: Den BewLis des ersten Teils führen wir unter der vereinfachenden Annahme,
daß n = lim "\/{c„| existiert. Nach Satz 4.3 ist dann der Konvergenzradius der Potenz-

„_. 0o

reihe r’: pr‘. Für den Konvergenzradius r’ der aus ihr durch gliedweise Dilferentia-
<73 D ._ j.

tion entstehenden Reihe Z vcvx"‘1 gilt r“ = lim {/v|c„| = lim 1/1: lim (/]c„| = ‚u.
.»=i » v-voo „es „so

w

Die Konvergenzradien stimmen daher überein. Da die Reihe 2 vcVx”" nach Satz 4.4
ll=l

in jedem Intervall lxl g g mit g < r gleichmäßig konvergiert, ergibt sich auf Grund
von Satz 3.5 der zweite Teil der Behauptung. I

Beispiel 4.3: Durch Differentiation Von l E x

_1__
(1 - x)2

Durch wiederholte Anwendung von Satz 4.8 ergibt sich

= E‘, x", x e (—l, l), ergibt sich
»=o

Ü? %

= Z1105” = 2,00’ +1)x" =1+ 2x + 3x2 + ...,xe_(—1,1).

Satz 4.9: Die Summenfunktion s(x) einer Patenzreihe E‘, qx” ist im Intervall (—r,r) be-
„o

liebig oft diflerenzierbar. Ihre Ableitungen können durch gliedweise Differentiation der
Potenzreihe erhalten werden; es gilt also für k = 1, 2, 3,

s""(x) = E „(i — 1)(v — k + 1) x"". (4.4)
v=k
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Aus (4.4) entnimmt man speziell

s""(0) = c, - k! (4.5)

Beispiel 4.4: Durch wiederholte Difierentiation von 1 = 2 x“, ]x| < 1, erhält
man 1 — x "‘°

4L—~§v(v—l) (v—k+1)x”"‘ |x|<1
(1 — x)“’"‘ F „u. ’ ’

oder, wenn man durch k! dividiert, x durch —x ersetzt und v —— k = ‚u einführt,

l _ °° _ k+‚u _ _ging} 1)"( k )x"‚ xe( l,1),k—0,l,2,...

4.2.2. Identitéitssatz fiir Potenzreihen

Der folgende Satz bildet die Grundlage für die wichtige Methode der unbestimmten
Koeffizienten, die wir in 4.4. anwenden werden.

no

Satz 4.10 (Identitätssatz für Potenzreihen): Wenn zwei Potenzreihen 2 e„x' und S. 4.10
eo v=0
2 dvx” in einem Intervall |x[ < s, e > 0, konvergieren und dort dieselbe Summe haben,
r=0

so gilt c, 2 a}, v = 0, l, 2, ...‚ d. h., beide Potenzreihen sind identisch.

Die Behauptung von Satz 4.l0 gilt schon unter der schwächeren Voraussetzung,
daß beide Reihen für alle Glieder xk einer Nullfolge {xk} mit xk ä: 0 dieselbe Sum-
me haben.

o: eo

Beweis: Aus s(x) z 2 cvx“ = 2 a'„x" für alle x mit |x| < e folgt für x = 0 sofort
„o V:-0
w w

co = do. Somit ist 2 c,.x” = 2 dvx”, und nach Division durch x, wobei x ='‚= O vor-
v=l v=l ‘

auszusetzen ist, hat man

cl + czx + cgxz + = d, + dzx + dax’ + ...‚ 0 < Ix} < a.

Da die Reihen nach Satz 4.5 für |x| < e stetige Funktionen darstellen, folgt aus dem
Grenzübergang x —> 0, daß cl = d1 ist. Durch Wiederholung der letzten Schritte er-
gibt sich c2 = dz, und durch vollständige Induktion allgemein c, = d„, v g 2. I

Aus Satz 4.10 folgt insbesondere, dal3 eine in einer Umgebung von x = 0 definierte
eo

Funktion, wenn überhaupt, nur auf eine Weise durch eine Potenzreihe 2 c„x” darge-
stellt werden kann. "=0

4.3. Taylorreihen

4.3.1. Entwicklung von Funktionen in Potenzreihen

Nach Satz 4.9 stellt eine Potenzreihe in ihrem Konvergenzintervall eine beliebig
oft difierenzierbare Funktion dar. Wir wenden uns nun der Frage zu, ob umgekehrt
für eine Funktion f(x)‚ die in einem x = 0 enthaltenden oflenen Intervall I beliebig



S. 4.11

40 4. Potenzreihen

an

oft differenzierbar ist, eine Potenzreihe Z c„x” existiert, die wenigstens in einer Umge-
_„ .

bung von x = 0 konvergiert und dort:’—(x) zur Summe hat. Wenn eine solche Reihe
existiert, nennt man sie die Potenzreihenentwicklung der Funktion f(x) um x = O.

Sie ist auf Grund des Identitätssatzes für Potenzreihen eindeutig bestimmt. Es gilt

dannf(x) = f: cvx" in einer Umgebung von x = 0, und aus (4.5) folgt für die Koeffi-
.=o »

zienten der Potenzreihe

_ww) '

0„ — -7. (4.6)

Definition 4.3: Die formal gebildete Reihe t

eo V)

f( f0) x” (4.7)
„=0 '1’.

heißt Taylorreihe der Funktion f(x) (mit dem Mittelpunkt 0); die Zahlen c, in (4.6)
heißen Taylorkoeffizienten vonf(x).

Wenn alsof(x) in eine Potenzreihe um x = 0 entwickelbar ist, so ist diese Entwick-
lung notwendig die Taylorreihe vonf(x) mit dem Mittelpunkt x = O, und jede Potenz-
reihe ist innerhalb ihres Konvergenzintervalls die Taylorreihe ihrer Summenfunktion.

Die Taylorreihe (4.7) einer Funktion f(x), die in einem x = 0 enthaltenden offenen
Intervall I beliebig oft differenzierbar ist, braucht jedoch nicht für alle x e I zu kon-
vergieren, und wenn sie konvergiert, muß sie nicht f(x) als Summenfunktion haben.
Durch Vergleich mit dem Satz von Taylor erkennt man aber folgendes. Unter den
überf(x) gemachten Voraussetzungen (vgl. Band 2; 6.3.3.) gilt die Taylorformel

n (V) 0
flw=;1§lw+mm an

F ' founwx x)
für alle x e I, wobei das Restglied R„(x) in der Form R„(x) = T+—1")T—>ö'“ mit

einem 19,, e (0, 1) geschrieben werden kann. Die Summe auf der rechten Seite von
(4.8) ist gerade die Teilsumme s„(x) der Taylorreihe (4.7) der Funktion f(x).
Daher folgt aus (4.8):

Satz 4.1l: Für eine in einem x = 0 enthaltenden Intervall I beliebig oft dzjferenzierbare
Funktion f(x) gilt genau dann

eo (V) 0
f(x) = zof v‘ ) x” für alle xeI

(d. h., die Taylorreihe konvergiert in I und hat f(x) als Summenfunktion), wenn die
Folge der Restglieder R„(x) der Taylorformelfür alle x e I der Bedingung

lim R„(x) = o (4.9)

genügt.

F_ür Potenzreihen E c-„(x — x0)" mit einem Mittelpunkt x0 + 0 gelten analoge
=o s(V)(xo)

V für alle v.
’V .

I

Aussagen. Insbesondere ist c, =
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4.3.2. Zusammenstellung der Taylorreihen einiger elementarer Funktionen

Wir wollen nun eine Übersicht über die Taylorreihen einiger elementarer Funktio-
nen geben. Dabei benutzen wir die in Band 2, Abschnitt 6.3.4., hergeleiteten Resultate.
Danach gilt z. B. für jedes natürliche n

ex = i 3‘: + R.<x), (4.10)
.-=0 V‘-

xn+ l

(n + 1)!
lassen und gezeigt werden kann, daß lim R„(x) = O für jedes x gilt. Nach Satz 4.11
gilt daher ""'°°

°° x x x’ x3e"=E0—!=1+fi-+7+3—!+„., xe(—oo‚oo). (4.11)

Die Funktion f(x) = e" ist somit durch eine beständig konvergente Potenzreihe dar-
gestellt, die Exponentialreihe genannt wird. .

Entsprechend ergeben sich für die Funktionen f(x) = sin x und f(x) = cos x die
Taylorentwicklungen

wobei sich die R„(x) in der Form R„(x) : e"n" mit 19„ e (O, 1) darstellen

3 5

sinx =x—%+§—!——...,
x2 x4 xe(—oo‚ o0). (4.12)

cosx=1—$+4—!—...,

Hinweise: 1. Die Potenzreihenentwicklung mit dem Mittelpunkt x0 = 0 einer unge-
raden Funktion enthält nur ungeradePotenzen von x, die einer geraden Funktion nur
gerade Potenzen von x. Das folgt unmittelbar aus dem Identitätssatz für Potenzreihen,
wie sich der Leser überlegen mag. Die Reihen in (4.12) geben Beispiele für die beiden
Fälle.

2. Man kann die Reihen in (4.12) zur Definition der Funktionen sin x und cos x

benutzen; dadurch macht man sich frei von der geometrischen Begründung der tri-
gonometrischen Funktionen. 1

AufGrund der Definitionen des Hyperbelsinus und -kosinus, sinhx = E (e" — e“),
cosh x = —;(e" + e"), ergeben sich bei Anwendung von Satz 2.5 auf die Reihe (4.11)

und der aus ihr durch Ersetzung von x durch —x hervorgehenden Reihe

x2 x3
E‘!‘—-3-!-‘+V..._x_ _x

e -1 1—!+

die Taylorreihen
x3 x5

sinhx =x +?+75T+ ...,

xi x4 xe(——oo‚ o0). (4.13)

coshx=1+fi—+4—!+...,

Wenn [xl nicht zu groß ist, eignen sich alle genannten Taylorreihen gut zur nähe-
rungsweisen Berechnung der Funktionswerte. Für größeres |x| dagegen konvergieren
die Reihen zu langsam, d. h., die Beträge der Glieder nehmen mit wachsendem v nur
langsam ab bzw. nehmen zunächst sogar zu. Zur genäherten Funktionswertberech-
nung sind dann diese Reihen praktisch nicht geeignet. Es sei auch ausdrücklich
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darauf hingewiesen, daß die Potenzreihendarstellungen der vorstehenden Funktionen
zwar eleganter aussehen als die Darstellungen als Summe aus Taylorpolynom und
Restglied, aber diesen gegenüber den Nachteil haben, daß bei Ersetzung der Reihen-
summe durch eine Teilsumme im allgemeinen keine Fehlerabschätzung möglich ist.

Ohne Benutzung des Taylor-Restglieds kann eine solche jedoch durchgeführt wer-

den, wenn die verwendete Reihe alternjert und die Beträge ihrer Glieder monoton
gegen 0 streben. Dann kann die Zusatzbemerkung zu Satz 2.l5 herangezogen werden,
wie am folgenden Beispiel gezeigt wird.

Beispiel 4.5: Mit Hilfe der zweiten Reihe (4.12) soll cos 0,5 auf vier Dezimalen genau
berechnet werden. Nach (4.12) ist

l l 1

-COS0,5 = l '-2!7+W—W+
Die Reihe alterniert, und die Beträge ihrer Glieder nehmen monoton gegen O ab;
daher kann die erwähnte Zusatzbemerkung verwendet werden. Es ist (weil die Glieder
mit ungeradem Index gleich null sind)

35(1) = s4 (i) = 1 ~ 2L +4= 0,87760,
2 2 - 4 24 - 16

s5 = s5 — = 0,87758 (jeweils auffünf Dezimalen genau).

Da die Reihensumme zwischen zwei aufeinanderfolgenden Teilsummen liegt, hat man
auf vier Dezimalen genau cos 0,5 = 0,8776. Da in Band 2, Abschnitt 6.3.5., ausführ-
liche Beispiele für Funktionswertberechnungen mit Hilfe der Taylorentwicklung ein-
schließlich der Restgliedabschätzungen enthalten sind, soll hier auf weitere Beispiele
‚Verzichtet werden. -

Für die Funktionf(x) = ln (1 + x) findet sich in Band 2, Abschnitt 6.3.4., die Dar-
stellung

x’ x3

2 ‘L 3

‘ 1 xn+1

R..(x) = (—1)" m,
mit der Bemerkung, daß lim R„(x) = 0 für jedes x e (— l, 1) erfüllt ist. Damit haben

ln(l + 1c) = x — — + (—1)"-1—"n1 + R„(x),

0<19,,<1,

wir die Sogenannte logariltharhische Reihe gewonnen:
2 3

1n(1+.x)=x—"T+i‘3——..., xe(—1,+1]. (4.14)

Bei der Angabe des Gültigkeitsintervalls ist berücksichtigt, daß die Reihe für x = l
noch konvergiert (vgl. Beispiel 2.12) und nach Satz 4.6 die Summe ln 2 hat.

Ersetzt man in (4.14) x durch —x, ergibt sich
' 2 3

ln(l—x)= —x —i2——i‘3—— xe[—1,1) _ (4.15)

vgl. Beispiel 4.2 . Berücksichtigt man ln l + x = In l + x — ln l — x ‚ erhält
~ 1

man aus (4.14) und (4.15) weiter _ x
3 5

mij:=2(x+13—+35—-+...), xe(—l‚l). (4.16)
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ä : E: nimmt für x e (— 1, 1) alle Werte zwischen 0 und + :0

genau einmal an. Daher hat man in (4.16) eine Reihenentwicklung der Logarithmus
funktion für jeden Wert ihres Definitionsbereichs. fmm) o‘

Die Funktion f(x) = (1 + x)“, o; beliebig reell‚ hat wegen ——v‚——— = (v) die Tay-
W x

lorreihe Z [x x". Sie hat fürrx =l= m, m = 0, 1,2, ..., nach (4.3) den Konvergenzradius
11:0 _

r = 1; es ist nämlich lim ( ‘x ) 2(06) = lim o‘ v = 1. Für alle x des
v +1 v „m, v + 11-—»m

Konvergenzintervalls (-1, 1) strebt die Folge {R„(x)} der Restglieder in (1 + x)“

Die Funktion g(x) =

= X” x” + R,.(x) gegen O. Damit hat man die Sogenannte binomische Reihe
y:0

erhalten:

(14 x)‘ = 1 + + x2 + x3 + xe(—1‚ 1). (4.17)

Für gewisse 0c liegt noch Konvergenz in einem oder beiden Randpunkten vor, für
on = m bricht die Reihe ab, und es ergibt sich die für alle x gültige binomische Formel

m

(1 + x)"‘ = :0 xv. Im Fall (x = —1 folgt aus (4.17)

———1————§(—1)”x” xe(—11)' (418)l + x — 7:0 (a 5 s -

das ist (bis auf die Ersetzung von x durch —x) die bekannte geometrische Reihe mit

ihrer Summenfunktion. Für cc = i- — ergeben sich die speziellen Darstellungen
2

_ 1 2 1v3 3_ 1~3~5 .4\/1+x—I+—x 2_4x+—2T6—x 2_:‘t_—6?x+...,

xe[—l,1], ~ ’ (4.19)

1 _ _1 1-3 2 1~3-5 3 1-3-5-7 4m?“ 2"+2.4x 2.4.s"+T4.6+s" 1

xe(—l, +1). . (4.20)

Weitere Spezialfälle sind bereits in Beispiel 4.4 angegeben.
Aus (4.18) ergibt sich für x = t’, te (—1‚ 1),

1 _ 2 4 6 ‚„t2 -1 1+: 1+... (4.21)

Nach Satz 4.7 darf diese Reihe zwischen 0 und x, x e (— 1, 1), gliedweise integriert
x

dt ,„ .

werden. Wegen). l + t2 = arctan x erhalt man somit

O

3 5

arctanx=x—-i3-+%—...‚ xe[— 1,1]. (4.22)

Zunächst folgt das Ergebnis allerdings nur für Ix] < 1. Da aber die Reihe für x = i1
noch konvergiert, ist es nach Satz 4.6 auch noch für x = i1 gültig. Für x = 1 ergibt
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7T.

sich die Leibnizsche Reihe (siehe Beispiel 2.13) mit der Summe

JA

E — 1 _. _1_ + i _.

4 _ 3 5

Die gliedweise Integration der Reihe (4.21) liefert kein Restglied. Beachtet man
jedoch

l x"=1__ 2 _ U. __ n-1 n-1 __ n1+x x+x +( 1) x +( l)1+x,
so folgt, wenn man x = -12 setzt und dann von 0 bis x integriert,

x3 5 xln-l
arctan x = x — T + i5- —- + (—1)"“1F: + R,,(x)

mit

R( > — (-1)" j-‘Ü-d:
" x _ 1 + :2 '

O

In diesem Fall haben wir für das Restglied eine explizite Darstellung in Form eines
Integrals gefunden. Dieses Restglied hat dasselbe Vorzeichen wie das in der Reihe

2n—1

auf das Glied (—1)"‘1 x 1 folgende und ist seinem Betrag nach nicht größer als
dessen Betrag: 2n-

lxlzna-J

2n+l'

x

g fwdt =

| 0

1R„<x)1 = f d:
0

Die Summe der Arkustangensreihe liegt also stets zwischen zwei aufeinanderfolgenden
Teilsummen (vergleiche Zusatz zu Satz 2.15).

Aus (4.20) erhält man für x = —t2, te (— 1, 1),

1 l l - l - 3 - 5 .fi=1+?t2+TEt4+mt5+..., (4.23)

. . . . x d: . A

und daraus durch gliedweise Integration von 0 bis x wegen f \/1 2 = arcsm x,
D 7 — t

arcsinx=x+L.i+£L5+1.3.5fl.+__. xe(_.1])
2 3 2 ~ 4 5 2 - 4 - 6 7 ’ ’ '

(4.24)

In gleicher Weise wie (4.22) und (4.24) leitet man die Reihenentwicklungen

x3 x5 '

artanhx=x+——3——+—5—+ ..., xe(—1,1), l (4.25)

. 1 3 1-3 5 1—3-5 7 'ars1nhx=x———2—xT+fiiC5‘—T4f6rÄ7-+„„ xe(—l,l)
her. (4.25)
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4.4

In 4.3.1. stellten wir fest, daß die Potenzreihenentwicklung einer Funktion f(x)
(etwa um die Stelle x = 0), sofern sie existiert, eindeutig bestimmt ist und daß sie die
Taylorreihe von f(x) (für x0 = 0) ist. Die Berechnung der Taylorkoeffizienten durch
Differentiation von f(x) kann im speziellen Fall recht mühevoll sein, so daß wir nach
weiteren Methoden zur Gewinnung von Potenzreihenentwicklungen suchen wollen.
Es wurde schon in Abschnitt 4.2, gezeigt, daß man durch gliedweise Integration und
Differentiation bekannter Potenzreihenentwicklungen neue erhalten kann; ferner
ergeben sich neue Entwicklungen durch Addition und Subtraktion bekannter Ent-
wicklungen. Wir wenden uns jetzt noch anderen Methoden zu, darunter der Multi-
plikation und Division von Potenzreihen. Die Anwendungsmöglichkeiten für dieses
Rechnen mit Potenzreihen sind sehr vielseitig, wie im Abschnitt 4.5. anhand von
Beispielen gezeigt wird.

4.4.1. Multiplikation von Potenzreihen

Die Anwendung des Multiplikationssatzes für unendliche Reihen (Satz 2.21) auf
Potenzreihen ergibt

Das Rechnen mit Potenzreihen

Satz 4.12:Essei§ a„x” = s1(x)für |x| < r1, E bvx” = s,(x)fiir|x| < r, (r1,r2 > 0).
o v=0

Die kleinere der '17-eiden Zahlen r, ‚ r; (im Fall r1 = rz diese Zahl selbst) sei mit r be-
zeichnet. Dgnn gilt für |x| < r

(X)

20(a°b„ + ‚a,b„_1 + + avbo) x” = s1(x) -s;(x). (4.27)
,=

Insbesondere kann‘ also eine Potenzreihe, die die Summenfunktion s(x) für [xl < r

hat, mit einer beliebigen natürlichen Zahl n g 2 potenziert werden; die entstehende
Reihe konvergiert wieder für |x| < r und hat die Summe (s(x))".

Beispiel 4.6: Aus der Reihenentwicklung
x3 x5

s1nx=x——§!—+?—

folgt durch Multiplikation der Reihe mit sich selbst

. 2
smzx = x2 —-—x“+

3!
2 1 1 2(-fi+—3—!7)x‘—...=x2—?x“+Kx‘—...

Durch Multiplikation dieser Reihe mit der Sinusreihe ergibt sich (428)

. 13s1n3x=x3 —%x5+—mx7 — (4.29)

(4.28) und (4.29) sind für alle x gültig.

4.4.2. Division von Potenzreihen

Über die Division von Potenzreihen gilt der folgende Satz.
oo

Satz 4.13: Eine Potenzreihe 2 c,x" habe die Summe s(x), und es sei co =9: 0. Dann kann
. . 1 . ”’° .

die Funktion F in einer gewissen Umgebung von x = 0 durch eine Potenzreihe
eo ( )
Z avx’ dargestellt werden.
‚ = o

S. 4.12

S. 4.13
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Dieser Satz, dessen Beweis wir hier übergehen (er ergibt sich aus dem nachfolgenden
Satz 4.14), sagt etwas über die Existenz der Potenzreihenentwicklung der Funktionä aus, jedoch nichts über die Möglichkeit der Berechnung der Koeffizienten av.

Dazu wenden wir die Methode der unbestimmten Koeffizienten an, die ein grund-
legendes Verfahren zur Gewinnung der Potenzreihenentwicklung einer Funktionf(x)

eo

darstellt. Man setzt hierbei die gesuchte Reihe in der Form 2 a„x” an, wobei die
v : 0

Koeffizienten a, zunächst unbestimmt sind. Ihre Werte liegen jedoch auf Grund des
Identitätssatzes für Potenzreihen eindeutig fest, sofern fürf(x) überhaupt eine Potenz-
reihenentwicklung mit dem Mittelpunkt 0 existiert. Wenn das gesichert ist, sucht man
mit Hilfe bekannter Eigenschaften über f(x) die Koeffizienten a, zu ermitteln. Aber
auch wenn die Existenz einer Potenzreihenehtwicklung fürf(x) um O nicht von vom-
herein feststeht, kann man Versuchen, mit der Methode der unbestimmten Koeffi-
zienten zu einem Ergebnis zu kommen (vgl. Beispiele 4.19, 4.20). Man hat dann aber
nachträglich die Berechtigung hierzu nachzuweisen, indem man zeigt, daß die erhal-
tene Reihe tatsächlich konvergiert und f(x) als Summe hat.

--Im vorliegenden Fall ist f(x) = ü,und unter den Voraussetzungen von Satz 4. l 3

existiert eine Potenzreihenentwicklung fürf(x). Zur Bestimmung der Koeffizienten av
kann die Gleichung s(x)f(x) = 1 herangezogen werden; nach Satz 4.13 gilt für alle x

einer gewissen Umgebung von 0
d) U3

(2 cvx”) (2 avx") = 1.
»=o „=o

Daraus folgt nach (4.27)
w

coao + 21(coa„ + c‚a„_‚ + + cvao) x” = 1,

und nach dem Identitätssatz für Potenzreihen müssen die Koeffizienten der x"
v = 0, 1, 2, ..., auf beiden Seiten gleich sein, d. h., es muß

coao = l, coav + c1av,1 + + cvao = Ofürv :1
gelten. Als Ergebnis dieses sogenannten Koeffizientenvergleichs hat man nun die
Möglichkeit, die unbestimmten Koeffizienten zu berechnen; man erhält nacheinander

I C100 c, 01:11 + czar, cf — cocz
a„=——‚ a‚:——=——2‚ a2=—-————=—T

co c0 co co c0

usw. '

Ü»)

‘ g 20b„x"
In ganz entsprechender Weise berechnet man den Quotienten "zu zweier

Z cvx"
v O

Potenzreihen mit co ¢ 0. Auf Grund von Satz 4.13 existiert dann nämlich eine Ent-
0G

Wicklung 2 a„x” =

v=0 z cvx„

v:0

als Produkt aus dieser und der Reihe E bvx" geschrieben werden. Dieses Produkt
' wo

in einer Umgebung von x = O, und unser Quotient kann

ist nach Satz 4.12 wieder eine in einer Umgebung von 0 konvergente Potenzreihe.
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Beispiel 4.7: Es sollen die ersten vier Glieder der Potenzreihenentwicklung von

f(x) = tan x um x = O bestimmt werden (zur vollständigen Entwicklung siehe (4.63)).

Unter Ausnutzung der Gleichung tan x = , die für alle x e (— g- , gültig

ist, kann die Aufgabe durch Division der Sinusreihe durch die Kosinusreihe (4.12)
gelöst werden (es ist ca = cos 0 = 1). Da tan x eine ungerade Funktion ist, treten
in der gesuchten Entwicklung nur Potenzen von x mit ungeraden Exponenten auf
(vergleiche den Hinweis im Anschluß an (4.12)). Wir setzen daher an:

tanx = alx + a3x3 + asxs +

Wegen tan x.- cos x = sin x gilt dann in einer gewissen Umgebung von x = 0

x2 x‘ x3 x5(a1x+a3x3+a5x5+...)(l —2—!+2—!—— ) x—?+—§!—‘—

Daraus folgt durch Vergleich der Koeffizienten von x, x3, x5, auf beiden Seiten

l a-l-l a-1—£———1— a——£3—+—a—‘——1—
1 _’ 3 21- 3!’ 5 2! 41-5!’

und allgemein

_ aZv-l aZv-S ' _ v ‘11 _ __ v 1

“Z” 21 + 41 + H I) (201 ’( 1) (2v+1)!
Für die ersten vier Koeffizienten errechnet man

__ __ a1 _ 1 1 1 _ 1

“I”, “a”? 3! *7 6 "5’
a_"3_£+1_i_1 1-1

5 21 41 5I"6 24 120 15’
a5 a3 a, l 1 1 l l l7

‘GI’? 6! 72 =T5‘"f+ 720 5040 E 315’
und damit hat man für hinreichend kleine |x|:

_ 1 3 2 s 17 7 'tanx—x+§x +15 x +Tx +... (4.30)

Der Konvergenzradius dieser Reihe ergibt sich aus anderen Überlegungen zu r = g.

4.4.3. Einsetzen einer Potenzreihe in eine andere.

Der folgende Satz gibt darüber Auskunft, wie man eine mittelbare Funktionf(g(x))
in eine Potenzreihe entwickeln kann, wenn die Potenzreihen für f(u) und g(x) be-
kannt sind.

Satz 4.14: Es sei E‘, a,,u" ¥f(u) für |uf < rl, E bkx" = g(x) für [xi < r2;ferner sei S. 4.14

Ibo] < r1 (r,, r, >v=E)’). Dann existiert für die rkr1=i;)telbare Funktion f(g(x)) in einer ge-

wissen Umgebung von x = 0 eine Potenzreihenentwicklung E cvx". Diese kann man

erhalten, indem man in die Reihe E a„u” für u", v = 1, 2, 3,":‘: die Reihen (k§0b,,x")v
v = o

einsetzt und anschließend nach Potenzen von x ordnet.
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Der Satz kann hier nicht bewiesen werden. Es sei nur bemerkt, daß die Voraus-
setzung Ibo] < r1, also [g(O)] < r1 , sichert, daß lg(x)[ < r, auch für hinreichend kleine

|x| gilt und somit in die Reihe f a‚u" für u Werte; eingesetzt werden, die zum Kon-

vergenzintervall der Reihe geliäen. Die Reihe E cvx“ konvergiert wenigstens für

diejenigen x, für diekgjo [b„x"| < rl gilt. Natürlichyldeinn es im konkreten Fall zweck-

mäßiger sein, die Reihe für f(g(x)) auf anderem Wege herzuleiten, als im Satz ange-
geben, etwa mit der Methode der unbestimmten Koeffizienten.

Beispiel 4.8: Es sollen die ersten Vier Glieder der Potenzreihenentwicklung von
y =f(x) = ln (l + sin x) um x = 0 bestimmt werden. Hier istf(u) = ln(l + u) =

n2 u3 u" . . x3 x5 .

u——7+—3———-4—+ ...m1tr1 =1,g(x)=smx=x—§+—fi—...m1tr2=oo.
Wegen b0 = 0 ist die Voraussetzung lbol < rl erfüllt. Die ersten Glieder der Potenz-
reihenentwicklungen von sin’ x und 5in3 x sind in Beispiel 4.6, (4.28) und (4.29), be-
rechnet worden, die Entwicklung von sin‘ x beginnt offenbar mit x4. Somit erhält
man, wenn man u = sinx in In (I + u) einsetzt, folgende, in einer gewissen Um-
gebung von x = 0 gültige Entwicklung:

3

—"—+...)_i(x2—ix4+1n(1+sinx)=(x 3! 2 3

+-§—(x3 — -71‘-(x“ — ...) +

oder nach Zusammenfassung gleicher Potenzen von x

1 1 1
—x2 +—x3 ——x“ +ln (1 + sin x) = x —— 2 6 12 (4.31)

Das Konvergenzintervall dieser Reihe ist (— E2- , .

4.4.4. Umkehrung von Potenzreihen

Abschließend wollen wir das Problem der Umkehrung einer Potenzreihe behandeln,
d. h. die Bestimmung der Potenzreihenentwicklung der Umkehrfunktion zu einer
durch eine Potenzreihe dargestellten Funktion. Hierüber gilt folgender Existenzsatz.

Satz 4.15: Es geltef(x) = E c„x"für [x[ < r (r > 0), und es sei c, # 0. Dann existiert
r-O

zu der Funktion y = f(x) in einer gewissen Umgebung von x = 0 eine Umkehtfunktion
x = gv(y), und diese besitzt in einer gewissen Umgebung von y = co eine Potenzreihen-

entwicklung der Form w) = E b„(y — co)”; dabei ist b1 = c—.
v= l - l

Wir beweisen den Satz nicht, sondern bemerken nur, daß wegen cl = f’(0) * 0
und der Stetigkeit vonf’(x) in (—r‚ r) die hinreichende Bedingungf’(x) =i= 0 für die
Umkehrbarkeit von f(x) in einer Umgebung von x = O erfüllt ist.

Die Berechnung der Koeffizienten b, kann mit der Methode der unbestimmten
Koeffizienten unter Ausnutzung der Beziehung f(<p(y)) = y vorgenommen werden.
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Wenn wir dabei noch der Einfachheit halber co = O annehmen, ergibt sich

c‚(b‚y + bzyz + b3y3 + ...) + c2(bfy2 + 2b1b2y3 + ...)

+ c3(b?y3 + ...) + = y.

Daraus folgt clb, : 1, also (wie im Satz vermerkt) b, = —cI—, c1b22 ;l- czbf = 0 ‘und
l _

damit b2 = — „b, + 2c2b1b2‘+ cab? = o und damit b3 = 1274i’- usw.
1 l

Beispiel 4.9: Die Reihenentwicklung für die Tangensfunktion (vgl. (4.30)) soll durch
Reihenumkehr bestimmt werden.

3 5

Ausy =_ arctanx = x — 3g- + x? — ...‚ [x] g 1,(vg1. (4.22))mitco = 0,c‚ = l + O

und dem Ansatz .

x = tany = bly + bay’ + b5y5 +

folgt

1

(bly + bzy3 + b5y5 + ...) —3(b§y’ + 3bfb3y5 + ...)

+ %(bfy5 + + =y,

und daraus

1b1=1, b3—?b§=0, also b3= ,b5—b%b3+%bf=0,

w
|»

—

2
also b5 = F usw.

Damit hat man (für hinreichend kleine | yl)

tany =y + if +Ly5 +
3 15

wie in Beispiel 4.7.

4.5. Anwendungen von Potenzreihen

In den Abschnitten 4.2. und 4.4. sind bereits einfache Beispiele enthalten, die in
erster Linie zur Erläuterung und Illustration der dort angeführten Sätze und Methoden
dienen sollen. Auf diesen beruhen Viele weitergehende Anwendungen, von denen wir
einige in diesem Abschnitt behandeln.

4.5.1. Gliedweise Integration

Aus der Integralrechnung (Band 2, Abschnitt 9.1.6.) ist bekannt, daß sich viele aus
elementaren Funktionen in einfacher Weise zusammengesetzte Funktionen, wie z. B.
sin x e"

s ’— s e
x

für diese Funktionen (wenigstens in gewissen Intervallen) zwar Stammfunktionen,
doch lassen sich diese nicht durch endlich viele Rechenoperationen aus elementaren

4 Sehen, Reihen

_x2
‚ nicht in „geschlossener Form“ integrierenlassen, d. 1:1., es existieren‘
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Funktionen zusammensetzen. Die Stammfunktionen lassen sich jedoch häufig durch
Potenzreihen darstellen.

Beispiel 4.10: Die Funktionf(x) = siix hat für alle x die Stammfunktion

x .

Si x = I311 dt, " (4.32)

0 .

die als Integralsinus bekannt ist. Aus (4.12) folgt (mit f(0) = 1)

sin t t’ t‘
f")-*7“ 1 ‘fi+fi‘

Nach Satz 4.7 erhält man somit

. x3 x5 x7S1x=x——!+—e—7%7!+„„ xe(—oo‚oo). (4.33)
3 - 3

Unter Verwendung der ersten drei Reihenglieder ergibt sich auf 5 Dezimalen genau
Si 0,5 = 0,49311.

Beispiel 4.11: In der Wahrscheinlichkeitsrechnung spielt eine Funktion eine Rolle,
die Fehlerintegral (error function) genannt wird und durch

x

erfx = i: fr” dt (4.34)
w» „

definiert ist (der Faktor vor dem Integral ist so gewählt, daß erf oo = lim erf x = 1

gilt). Aus der Exponentialreihe folgt für x = —t2 "”’°°

e“’=1—t—2+—4—t—6+ te(—oo oo)
1! 2! 3! ’ ’ ’

und damit ergibt sich nach Satz 4.7
o

x3 x5 x7
+... ‚ xe(—oo,oo).erf —i( — +"‘\/; 3-1: 5-21 7-32

(4.35)

Beispiel 4.12: Der Umfang U einer Ellipse mit der Parameterdarstellung x = a cos t,
y = b sin t, 0 g t g 27: (a g b), ergibt sich zu

7:

211 5 4

U = {Jazz sinzt + b’ cos’ rd’ =4J.\/a‘ sin‘ t + b’ cos’ tdt
o o

TI‘

7

=4aJ'\/1—s2cos2tdt
o



4.5. Anwendungen von Potenzreihen 51

oder, wenn man t durch g — t ersetzt, zu

T!

a2_b2
T‘, 0 g s <1 (4.36)

2

U= 4af\/1- s“ sinztdt, s2 =

o

(vgl. Band 2, Abschnitt l0.4.l.‚ Bsp. 10.14). Vom Fall des Kreises, in dem b = a,
also a = 0 gilt, abgesehen, ist das letzte Integral in (4.36) nicht in geschlossener Form
auswertbar. Die Anwendung der binomischen Reihe (4.19) mit x = -2‘ sin’ t (es ist
s’ 5in2 t < l, so dal3 Konvergenz vorliegt) ermöglicht die Darstellung des Ellipsen-
umfangs durch eine unendliche Reihe. Es wird

——.— 1 . . - .J1—s2s1n2t=1—?e’sin2t-—2_4s“sin“t—2i4?6e‘sin5t—...‚

undwegen
„.

» 1' -5... n— 7:7 3 (2 1)‘Zn _fsm tdt— 2_4_6 2” 2 (4.37)

0

erhält man aus (4.36)

___ 1 1-3 4 1-3 _1-3-5 6_)
2 2 2 2-4 2~4 2-4-6 2-4-6‘U=4a1(1 -1 152 —__~~

oder
l 3 5

U = 27ra(1——zaz —-—6—4—_a“— Es‘ — (4.38)

Eine für kleine e brauchbare Näherungsformel für den Ellipsenumfang ist

3 _

Uz 7=(5(a + b) — Jab)-

Durch Entwicklung dieses Näherungsausdrucks nach Potenzen von s (unter Be-
. I j —— ..

nutzuug der Bez1ehungen7(a + b) = g (1 + J1 — s’), ./ab = at/l — e’) erhalt

man nämlich eine Reihe, deren erste Glieder mit den in (4.38) hingeschriebenen Glie-
dem der Reihe für U vollständig übereinstimmen; erst die Koeffizienten von e“ unter-

3

16384 '

In Verallgemeinerung der obigen Aufgabe kann man nach der Länge s des Bogens
zwischen zwei Ellipsenpunkten fragen. Entsprechend wie oben errechnet sich, wenn

scheiden sich um

man die Punkte mit den Parameterwerten t = g —— (p und t = 32i, 0 gq; g g ‚und
w j_._

der Einfachheit halber a = 1 wählt, s = 1 — a’ sinzt dt. Eine solche Funktion
0

von tp und e nennt man ein elliptisches Integral 2. Gattungnlm allgemeinen schreibt
man k anstelle von e (k heißt Modul) und bezeichnet sie mit E(k, tp), also

.„ .

E(k‚<p) =f 1—k2sin2tdI, o g k <1; (4.39)
O

43
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sie liegt tabelliert vor (vgl. [1] und [5]). Durch Substitution x = sint erhält man
für das elliptische Integral 2. Gattung die Darstellung

sinw
_ 2 2

E(k,q:) = J(„_
0 \/(1 — x)2 <1 — kw)

Für q: =_ g erhält man eine Funktion von k allein, die vollständiges elliptisches

Integral 2. Gattung genannt und mit E(k) bezeichnet wird. Der Ellipsenumfang ergibt
sich damit und nach (4.36) zu U = 4aE(s). Aus (4.38) folgt daher für E(k) die
Potenzreihenentwicklung

_ T‘ _ I 2 _ 3 4 5 6E(k)_§(1 4k 64k 256k (4.40)

Beispiel 4.13: Es soll die Schwingungsdauer T des physikalischen Pendels bestimmt
werden. Die Schwingungen eines physikalischen Pendels — d. i. ein um eine horizon-
tale Achse drehbarer Körper, der unter dem Einfluß der Schwerkraft Schwingungen
ausführen kann —— genügen der Differentialgleichung

q?" = —w2 Sintp; (4.41)

dabei ist (p = <p(t) der Ausschlagswinkel (gemessen von der Gleichgewichtslage aus),

und w ist eine Konstante, die sich aus w = mfa bestimmt (m Pendelmasse, g Erd-

beschleunigung‚ a Abstand des Pendelschwerpunktes von der Drehachse, I Trägheits-
moment des Pendels bezüglich dieser Achse). Zu dem Zeitpunkt, in dem (p seinen
Maximalwert, der mit o; bezeichnet werde, erreicht hat, ist das Pendel in Ruhe; es gilt
also (p’(t) = 0 fürzp = on. Ferner wollen wir annehmen, daß das Pendel zur Zeit t = 0
dnrch die Gleichgewichtslage geht, also (p(0) = 0 ist. Unter Berücksichtigung dieser
beiden Bedingungen hat ‘die Differentialgleichung (4.41) im Intervall 0 g q: g o; die
eindeutig bestimmte Lösung

‘P

r = —l— ——————;—————dm ‘ (4.42)

2m A/sin” 1 — sin’ 1
2 2 '

0

(aus Symmetriegründen können wir uns auf die Betrachtung des Intervalls O g (p g on

beschränken).
Dem Anwachsen des Winkels (p von 0 bis cc entspricht eine Viertelschwingung. Für

q: = on wird daher t = ä, so daß sich aus (4.42) die Schwingungsdauer bestimmen

läßt. Das dort auftretende Integral ist jedoch ein sogenanntes elliptisches Integral
1. Gattung.

Wir wollen es zunächst noch etwas umformen, und zwar substituieren wir

sinfä- = k siny) mit k = sinä. (4.43)

Dem Intervall 0 g zp g «x entspricht dann das Intervall 0 g «p g g; ferner wird
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:

sin’ ä — sin’ g = k’ — k’ sinzw = k’ cos‘ ygécosg 3;? = k cos 1pCdLf und damit

2k cos w 2k cos w
dw = idw = mdw, so daß wir

A/1 _ sinzg \/1- k7s1n21/;

2

W d W d

(x (P z 2f\/1- kg sin’ (4.44)
A/sin’ 7 —— sin’ % o W

0

erhalten. Die Funktion
‘F d .

F k, = __"’_ 4.45
(w) ofJl-kzsinzw ( )

uennt man Normalform des elliptischen Integrals l..Gattung. (4.42) läßt sich nun

wegen (4.44), (4.45) in der Form

r = %F<k, w) . (4.46)

darstellen.

Nach der Bemerkung im Anschluß an (4.42) ergibt sich t = ä für w = 0c, also für

w = Somit folgt aus (4.46) für die Schwingungsdauer des Pendels

4 71: _ A/ ‘I 7:
T— 5 F(k,7) _ 4 mga F (k, 7). (4.47)

F(k,%) ist eine Funktion allein von k; sie heißt vollständiges elliptisches Integral

1. Gattung und wird mit K(k) bezeichnet. Für die Auswertung von (4.47) Verwendet
man unendliche Reihen. Unter Benutzung der binomischen Reihe (4.20) ergibt sich

1

\/1 — k’ sin’ w

und wegen (4.37) weiter

=1 +é—k’sin’(u k“sin“2p+ ...,

|

.
_

K(k) =§(1+(2)2kZ + (%:_>2/at + (4.4s)

also für die Schwingungsdauer wegen (4.43), (4.47)

T=2nA/.m{ga (1 +% 312% +%sin“% + (4.49)

Für sehr kleine (x kann man sin ä vernachlässigen und erhält aus (4.49) — oder auch

direkt aus (4.47), (4.45) für k : 0 — den Näherungswert

I
T z 271: .

mga
(4.50)
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Bei einem mathematischen Pendel der Länge I, das eine Idealisierung des physikali-
schen Pendels darstellt, ist a = I, I = ml‘, und es folgt die bekannte Beziehung

T
Tz2 A/— 4.51Tr g ( )

für den Fall, daß der maximale Ausschlagwinkel klein ist.
Eine genauere, häufig verwendete Näherungsformel für die Schwingungsdauer des

physikalischen Pendels ergibt sich aus (4.49), wenn man noch ein weiteres Reihen-
0C

2_I_ 2 é

Tz2nA/m—gl—(1 (4.52)

. 00

Beispiel 4.14: Es soll das uneigentliche Integral f (arctanä — dx berechnet wer-

glied heranzieht und die für kleine zx gültige Beziehung sin z g benutzt:

J3

den. Wenn man die Arkustangensreihe (4.22) benutzt und x durch ä ersetzt, erhält man

1 1 l larctan—x—=—x——7+§-—.... (4.53)

Hier hat man es nicht mehr mit einer Potenzreihe zu tun (man sagt mitunter, es liege

eine „Potenzreihe in ä?“ vor). Die Reihe (4.53) konvergiert ~ auf Grund der Er-

Setzung von x durch 31? — außerhalb des Konvergenzintervalls der Arkustangensreihe

V (4.22), genauer: für {xl g l. Reihen dieser Art kann man benutzen, um auch uneigent-
. l .

liche Integrale näherungsweise zu berechnen. Nach Subtraktion von — in (4.53) und
gliedweiser Integration ergibt sich x

no / no no v0 no

t l l d _ dx + dx _ dx + dx _f (am an? — 7) x — _ 3x3 5x5 7x7 J 91x9
«/3 «/3 «/3 «/5 «/3‘

1 1 1 l
_ 2~3-3 + 4-5-32 " 6-7’33 + 3-9-34 ‘

Die Summe der ersten vier Reihenglieder ist —0,0507l, die der ersten fünf —O‚05075
(jeweils auf fünf Dezimalen genau). Da die Reihe altemiert und die Beträge ihrer
Glieder monoton gegen 0 streben, liegt die Reihensumme zwischen beiden Werten.

o0

Auf vier Dezimalen genau ist also f (arctanl; — dx = —0,0507.

«/3

Der exakte Wert unseres Integrals ist
w

1 l 1-. — l 4Harman y — ä dx =1— FJ3 — 3in3 _ —0,o5o74s.

s/5
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Die Berechtigung zu obigem Vorgehen ergibt sich daraus, daß die Substitution
1/~/3

t = 31C- auf das Integral ydt führt, für das gliedweise Integration der

0

Potenzreihenentwicklung des Integranden gestattet ist.

4.5.2. Multiplikation von Potenzreihen

Beispiel 4.15: Es soll das Additionstheorem der Exponentialfunktion mit Hilfe un-
endlicher Reihen hergeleitet werden. Wenn x1 ‚ x2 zwei beliebige reelle Zahlen sind,
so gilt

2 3 2 3

ex:-ex2=(1+x—‘+fl+£+...) (1+£+x2 +x’
1' 21 3V 1! 72‘ W

=1+%!"’+(’2C—%!+%%+%)+... (4.54)

Wegen<;)= , k=0,l,...,n, wird

=%[xZ + x’{“x2+ x’{'2x§+ +x; = wig
dabei wurde zuletzt der binomische Satz benutzt. Also folgt aus (4.54)

< x1 + x2 (x1 + x2)2 (x1 +352)"
u 21 + + n!

Somit hat man das Additionstheorem

e-‘n+"2 = e": - e"2, (4.55)

x1 und x2 beliebig reell, erhalten. Das Resultat kann in gleicher Weise auch für kom-
plexe Zahlen xi, x2 gewonnen werden (siehe Band 9).

e”: -e"2 =1 + + = e"I+"1.

4.5.3. Division von Potenzreihen

Beixpiel 4.16: Auf ein für viele Anwendungen wichtiges Beispiel führt die Entwicklung
der Funktion

f(x) = e,"_ 1

in eine Potenzreihe (f(0) ist als Grenzwert vonf(x) für x —> 0 definiert und im folgen-
den immer so zu verstehen). Es ist

für x 4: 0, f(0) = 1, (4.56)

. x If0‘): x2 x3 = x x2 y

x+—2—‚+?+.„ 1+-—+—-+...
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und daher existiert nach Satz 4.13 in einer gewissen Umgebung U von x = O eine
Potenzreihenentwicklung für f(x). Zu ihrer Herleitung setzen wir mit unbestimmten
Koeffizienten an: '

f(x) = E ijxv. t i ‚ (4.57)
„=0 V.

Die hier gewählte Form für die Koeffizienten ist für ihre Berechnung zweckmäßig. In
U gilt dann r

x x2 B B(1+T+T!‘+...)(Bg +—1;—x+2—§x2+ = I,

B B .

also Bo =1, + —12;—‘!’p= 0, + + T‘; = , usw., allgemein

B Bv-1 Bo—v!1!+j-:(v__ m2! + +—————(v+1)! = 0 fürv = 1‚2,3,....

Multipliziert man die letzten Gleichungen mit (v + l)!‚ so gehen sie wegen

(v +1)‘. = + I)
(v +1 — k)!k! k

über in
v+l v+l v+1(1)B,+( 2 )Bv_1+...+(v+1)B.,_o,v_1,2,3,.... (4.58)

Hierfür kann man auch symbolisch

(B + l)'*‘ — BV“ = 0, v =1, 2, 3, ...‚ (4.58')

schreiben, wenn man vereinbart, die Exponenten von B durch Indizes zu ersetzen,
nachdem man (B + 1)’ mit dem binomischen Satz gebildet hat. Aus der Rekursions-
formel (4.58) bzw. (4.58’) ergibt sich nacheinander

2B, + 1 = 0,

3B2+3B1+ I =0,
4B3+ 6B2+4B1+l=0,

5B4 +1033 +108; + 5B,'+1= 0

usw., und daraus folgt

1 1 1B1-"2UVB2_F‚ 33:0: B4—‘T()‘»-~«~ _

Die Zahlen B, heißen Bernoullische Zahlen. Der Anfang der Reihenentwicklung

(4.57) ist somit f(x) = 1 —— ix + -1- x2 — x‘ + Außer B1 Verschwinden
2 12 720

alle B, mit ungeradem Index, wie sich durch folgende Überlegung ergibt. Formt man
1 . ’f(x) +A 7 x wie folgt um: \

f(x) + g =ä +
e"+1 x

e"—1 2M
IX

N
|>

<

I



4.5. Anwendungen von Potenzreihen 57

i
2

gerade sind (man sieht das auch unmittelbar an dem vorletzten Ausdruck in (4.59)).

„ so erkennt man, da die Funktion coth xungerade ist, daß x coth xund damitf(x) +

Daher erhält die Potenzreihenentwicklung vonf(x) + i nur gerade Potenzen von x,
und es ist 2

B3 = B5 == B7 = z 0. (4.60)

1 1 5

5J“ - ‘WJW - E" M“
kann mit funktionentheoretischen Mitteln (die uns hier noch nicht zur Verfügung
stehen) leicht zeigen, daß die Reihe (4.57) für [x] < 27-: konvergiert.

Beispiel 4.17: Ersetzt man in (4.59) x durch 2x, so erhält man aus (4.57) und (4.60)
für’.

Einige weitere Bemoullische Zahlen sind B6 =

x coth x = cosh x—=L
smhx

die Entwicklung

1 + L2 + L4 +‚ ‚

xcothx = 22' 4; = f 3“‘ (2x 2", IxI < 7:. (4.61)
x x ‚.=g (Zv).

1 + + F

Da sich die Reihen für cos x und sin x von denen der entsprechenden Hyperbe1-
funktionen nur durch alternierende Vorzeichen unterscheiden, folgt mit einer ein-
fachen Überlegung, die wir dem Leser überlassen, aus (4.61)

x2", [x] < 7:. (4.62)

Endlich erhält man mit Hilfe der Formel tan x = cot x — 2 cot 2x noch
22v(2zv _ DB“ 1

(Zv)! 2

(bezüglich der ersten Glieder dieser Entwicklung vergleiche man (4.30)).
Die Bemoullischen Zahlen gestatten also, in der Potenzreihenentwicklung einiger

elementarer Funktionen das allgemeine Glied auszudrücken. Als weitere Anwendung

W

tanx = 2l(——1)"‘ x’”“, |x| <
,,= ‚

sei genannt, daß sich mit ihrer Hilfe die Summen der Reihen E 7L- angeben lassen;
es gilt "=‘

w 1 _ B2k(27:)Zk _El vzk —( 1) 2_(2k)! , k -— 1,2, 3,.... (4.64)

Für k = , 2 folgen insbesondere
eo 1 „2 eo „4

——— = —— —— = ———. 4.
‚E; v2 6 ’ „E; v‘ 90 ( 65)

4.5.4. Einsetzen einer Potenzreihe in eine andere

Beispiel 4.18: Es soll die Funktionf(x) = e?“ in eine Potenzreihe entwickelt werden’
00

wenn die Entwicklung der Funktion g(x) bekannt ist: g(x) = Z b„x”‚ Ixl < r. Da die
o

Exponentialreihe beständig konvergiert, darf Satz 4.14 angewendet werden. Der

(4.63).
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Einfachheit halber führen wir die Rechnung für den Fall be = g(0) = 0 durch. Ist
diese Bedingung nicht erfüllt, so ergibt sich wegen e‘-'0‘) = e"o”x"" = e"o e e41“) mit

g,(x) = ä bvx" in der Entwicklung von e“) lediglich der zusätzliche Faktor e”o.
‚=i

Es wird

f(x) = co + 01x + 02x2 + c3x3 +
1

= 1 +(b1x + 172.752 + b3x3 + ...) + ?(b§x2 + 2b1b2x3 + ...)

1+T(bfx3 + ...) +

woraus

1 2 1 3
Co =1s C1 = bx: C2 = b2 +351, C3 = b3 + b1b: +3171 “SW-

folgt.
Die Formeln zur Berechnung der Koeffizienten c„ werden jedoch übersichtlicher,

w

wenn man statt des eben benutzten Weges f(x) = Z c„x‘ mit unbestimmten Koeffi—
v=0

zienten cv ansetzt, zur Berechnung der Koeffizienten die Beziehung

f’(x) = €"""g'(x) =f(x)g’(X) (4-55)

herauzieht und co = f(0) = e° = l beachtet. Setzt man in (4.66) die Reihen ein, so
ergibt sich .

cl + 2c2x + 303x‘ + = (1 + clx + 62x2 + ...)(b‚ + 2b2x + 3b3x’ + ...),

und daraus folgt

cl = b1, 2c; = 2b; + clbl, 303 = 3173 + 2gb; + czbl,

allgemein

i c„=%[nb„ + (n —1)c1b,,_, + + 2c„_2b2 + c -1171], n = 1,2,

(4.67)
Mitgeteilt sei, daß sich die c„ geschlossen in der Form

2., z an
b, bf b„ (4.68)

c" = 2,1,!/12z...z,z

darstellen lassen, wobei über alle n-tupel (I11, A2, ..., 1,.) von nichtnegativen ganzen
Zahlen zu summieren ist, die der Gleichung Z1 + 2).; + + nl, = n genügen.
Zum Beispiel ergibt sich für g(x) = sin x aus (4:12), (4.67)

c1=l, 2c2=1, 3c3=—%+—;-=0, 4c4=—%,

565 —1-—l——3—=——usw,
24 4 8 3

alsogilt

slnx 1 Z 1 4 l 5e =1+x+—x ——x ——x —.... (4.69)
2 8 l5
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Beispiel 4.19: Es soll eine Rekursionsformel für die Koeffizienten der Entwicklung
der Funktion -

1 —%g(x, t = = 1 + (ti — 2xt)) (4.70)
) (/1 — 2xt + t2 (

nach Potenzen von t hergeleitet werden. Auch diese Aufgabe können wir in diesen

Unterabschnitt einordnen, wenn hier in die binomische Reihe für (1 + u)_% auch nur
eine „endliche“ Entwicklung, nämlich das Polynom u = t’ — 2xt, einzusetzen ist.

Wegen des Koeffizienten —~2x bei t ist der Koeffizient von t" in der Reihenentwick-
lung von g(x, t) nach Potenzen von t ein gewisses Polynom P„(x) vom Grade n, also

(1 — 2xt + z2)"% =§0P,(x) z". (4.71)

Die Reihe konvergiert,wenn [u] = [t2 — 2xt] < 1 gilt. Würde man nun die binomische
Reihe aufschreiben und u = t2 — 2xt einsetzen, könnte man — wie im Beispiel zu-
vor — lediglich einige P„(x) berechnen, aber keine Rekursionsformel erhalten. Daher
schlagen wir einen anderen Weg ein, der dem im Beispiel 4.18 ähnlich ist.

Zunächst erkennt man aus (4.70) g(x, 0) = 1 und P0(x) = 1. Differenziert man
(4.71) nach t, so ergibt sich i

X-t
w .

g= P n—1

(1 — 2xt + t2)3” ‚Ein "mt ’

oder, wenn man berücksichtigt, daß man für die linke Seite g(x, t)

schreiben kann, '

(1 — 2xt + :2) E nP,,(x) 1»-1 = (x — z) E P,,(x) w. (4.72)
n: l n=0

Jetzt lassen sich die P„(x) durch Koeffizientenvergleich bestimmen. Dazu multipli-
zieren wir noch die einzelnen Faktoren in die Reihe hinein und verschieben, wo nötig,
den Summationsindex. (4.72) geht dann über in

P1(x) +il((n + 1)‘P,,+1(x) — 2xnP,,(x) + (n — 1) P _1(x)) t"

= xnxx) +näl(xP„(x) — P1-1<x» r".

Hieraus entnimmt man P1(x) = xPo(x)‚ also P1(x) = x wegen P0(x) = 1, und für

n g 1

(n + 1) Pm(x) — 2xnP..(x) + (n - 1) P —1(x) = xP..(x) - P„—1(x)

oder

(n + I) P,.+1(x) — (Zn + 1) xP,,(x) + nP _,(x) = 0, n = 1, 2, 3, ....(4.73)

Das ist die gesuchte Rekursionsformel. Da P„(x) und P1(x) bekannt sind, kann man
mit ihr sukzessive alle Polynome P„(x) berechnen. Zum Beispiel ist P2(x) = %(3x2 — 1),
P3(x) = %(5x3 — 3x). Die P,,(x) heißen Legendresche Polynome. Sie sind als Koeffi-
zienten der Entwicklung der Funktion (4.70) nach Potenzen von t eindeutig bestimmt.
Daher nennt man g(x, t) erzeugende Funktion der Legendreschen Polynome.
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4.5.5. Lösung von gewöhnlichen Differentialgleichungen mit Hilfe
eines Reihenansatzes

Das in Beispiel 4.18 benutzte Verfahren zur Bestimmung der Potenzreihenent-
wicklung der Funktion f(x) = cg“) besteht im Grunde genommen darin (vergleiche
(4.66)), die Lösung der Differentialgleichung y’ = g’(x) y bei gegebenem g'(x) unter
der Anfangsbedingung y(0) = 1 mit Hilfe eines Potenzreihenansatzes mit unbe-
stimmten Koeffizienten zu bestimmen. Dieser Weg zur Lösung einer Differential--
gleichung kann oft mit Erfolg beschritten werden. Eine ausführliche Darstellung der
Methode findet sich in Band 7/2, Abschnitt 5. Hier werden nur einige Beispiele ge-
geben, und zwar sollen die ersten beiden den prinzipiellen Weg demonstrieren, wäh-
rend die Beispiele 4.22 und 4.23 den Leser mit zwei wichtigen Differentialgleichungen
und ihren Lösungen in Form von Potenzreihen bekannt machen.

Beispiel 4.20: Es soll die Differentialgleichung

y" = xy (4.74)

mit den Anfangsbedingungen A

y(0) = l, y'(0) = 0 (4.75)

gelöst werden. Unter der Annahme, daß sich die Lösung in einer Umgebung von
x = 0 durch eine Potenzreihe darstellen läßt (Band 7/2, Satz 5.2), setzen wir an:

y(x) = Eocvxv. ‚ (4.76)

Wegen der Anfangsbedingungen (4.75) muß co = y(0) = 1, c, = y’(0) = Ogelten. Da
in der DilTerentialgleiehung y” auftritt, differenzieren wir (4.76) zweimal und erhalten

y”(x) = E2 v(v — 1) cvx"2. / (4.77)

Setzen wir die Reihen (4.76) und (4.77) in die Differentialgleichung(4.74) ein, ergibt
sich, wenn wir in (4.77) v durch M + 3 ersetzen und dann wieder v für ‚u schreiben,

o: no ‚i‘

2c; + 200: + 3) (v + 2) c,,+3x”+‘ = Z0cvx"+1. (4.78)

cg, =0,1,2‚....
(v + 3)<v + 2) ”

Wegen cl = c2 = 0 gilt c3„+‚ = c3„„ = O für alle/t = 0, 1,2, ...‚ und für v = 3,14

erhalten wir wegen co = l

Hieraus folgt c2 = 0 und e,“ =

c3”: 3 Üau-s = C3u—5

M(3M - 1) 3M(3# - 1)(3.“ - 3) (3/I - 4)

_ l
7

oder, indem wir mit 1 - 4 - 7.... (3,1; — 2) erweitern,‘

1‘4'7...(3‚l‚l-2)C3‚.= ‚ /4=0,1,2;--~-
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Die Ansatzreihe (4.76) lautet somit

1 l - 4 l - 4 - 7y(x)=1+?x3+7x‘+Tx9+.... (4.79)

‘ “M” = ' im} =o f" ‘d ' d’ R ‘h hWegen c3r3x3u_3 3/43,‘ _ I) ur J6 es x ist 1e er e nac

dem Quotientenkriterium beständig konvergent. Man bestätigt leicht, daß die
Summenfunktion s(x) der Reihe in (4.79) den Beziehungen s”(x) = xs(x)‚ 5(0) z 1,

s’(0) = 0 genügt (dieser Nachweis ist erforderlich, da wir hier den Ansatz (4.76) mit
unbestimmten Koeffizienten verwendet haben, ohne von vornherein zu wissen, ob
eine Lösung dieser Art existiert). Somit ist (4.79) Lösung der gestellten Aufgabe
(4.74), (4.75). Die Lösung ist wegen der raschen Konvergenz der Reihe numerisch
gut auswertbar. So errechnet man nur mit den ersten drei Reihengliedern y(%)
= l‚020920 (auf sechs Dezimalen genau).

Beispiel 4.21: Die Differentialgleichung

y’ = y’ + cosx _ (4.80)

(eine Sogenannte Riccatische Differentialgleichung) mit der Anfangsbedingung

y(0) = 0 (4-31)

soll mit Hilfe eines Reihenansatzes‘ gelöst werden. Wir setzen — wieder unter der
Annahme, daß die Lösung in Form einer Potenzreihe um x = 0 darstellbar ist ~ (4.76)
an und berücksichtigen co = O wegen (4.81). Dann wird -

y’ = c, + 2c2x + 3c3x2 + 4c,.x3 + 5c_.-,x“ + ...,

y’ = fix’ + 2c1c2x3 + (2c1c3 + c§) x‘ + .

Ziehen wir die Kosinusreihe (4.12) heran, so folgt aus (4.80), wenn wir die Glieder
bis zur 4. Ordnung berücksichtigen,

cl + 2c2x + 3c3x2 + 4c,,x3 +.5c5x“ +

l l
= 1 + (cf — i) x2 + 2c1c2x3 + (20103 + 0% + —) x4 + . (4.82)

Durch Koeffizientenvergleich folgt hieraus

1 l I lc,=l, cz=O, c3=—(c§——)= c4= -c1c2=0,
3 2 F’ 3

_ 1 2 1 _ 3
c5 —?(2c1c3 + C; + T4) — E.

Die Ansatzreihe beginnt daher

y(x) =x+%x3+—:3x5 + (4.83)

Wenn unsere Aufgabe eine Lösung in der Form (4.76) besitzt, kann es nur (4.83)
sein. Da wir keinen allgemeinen Ausdruck für 0„ haben, ist die Bestimmung des Kon-
vergenzradius der Reihe (4.83) nicht durchführbar.

Beispiel 4.22: Wir fragen nach Lösungen der sogenannten Besselschen Differential-
gleichung

x232” + xy’ + (x2 — n2)y = 0, (4.84)
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die sich in eine Potenzreihe um x = 0 entwickeln lassen; n sei dabei eine nicht-
negative ganze Zahl.

In diesem Fall führt ein verallgemeinerter Potenzreihenansatz

w:
y(x) = Z €vx”*" (4-85)

v=0

zum Ziel. Die Begr1‘indung_hierf1'ir wird in Band 7/2, 5.4.5., gegeben. Dann wird

xy'<x> = E (n + v) ex", xwx) = E (n + n) (n + v — 1) cvx“,
v=0 „=o

während
eo K)

x2y(x) = Z cvxn+v+2 = 2 cv_2xn+v

v=2 v=0

ist, Setzlt man die Ansatzgleichung (4.85) und die daraus folgenden Gleichungen in
die Differentialgleichung (4.84) ein und vergleicht die Koeffizienten von x"*“, so
erhält man für v = 0 und v = l N

(n(n—1)+n—n2)co=‘0 oder 0-co=0,
((n+1)n+n+1——n2)c,=0 oder (2n+1)c1=0. _ „

Daraus folgt, daß cl = 0 gelten muß, während co beliebig gewählt werden kann. Für
v g 2 ergibt sich

c„((n + v)2 — n’) + c„_2 = 0 oder wegen (n + v)’ — n’ = v(2n + v):

cv-2
= — ————. 4.86

c" a/(Zn + v) _ ( )

Wegen cl = 0 folgt daraus ch,“ = 0 für ‚u = 0, 1, 2, Wählt man ferner co = 1,
folgt weiter

__ Üzp-z = (— 1)"
2’‚u(n + ‚u) 2.2"y! (n + ,u) (n + ‚u — 1) (n +1)’

so daß sich aus (4.86)
no (_ Du ( x ) zu

= r —————————————— — 4.87
y(x) "Eo;u(n+;»)(n+,i—1)...(n+1) 2 ( )

ergibt. Diese Reihe konvergiert wegen

‘ . +2" 1 . [x12
1, LL. =_1 _______ =

u-vnci) C2,.—2x"+2"_2 4 ME‘; M” + I‘)
für alle x und stellt tatsächlich eine Lösung von (4.84) dar. Durch Multiplikation
der rechten Seite von (4.87) mit einer beliebigen Konstanten C ergibt sich offenbar
wiederum eine Lösung, wie man aus (4.84) unmittelbar erkennen kann (für C = 0

c„, =

2” in, ergebende

Lösung wird mit J„(x) bezeichnet; infolge der Gleichung (n + ‚u) (n + ‚u — 1)
(n + 1) n! = (n + ‚u)! folgt somit aus (4.87)

allerdings die triviale Lösung y(x) = 0). Die sich speziell für C =
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Die Funktion J„(x) heißt Besselfunktion 1. Art mit dem Index n. Besselfunktionen
spielen in vielen technischen Anwendungen eine Rolle;‚sie können auch für nicht-
ganzzahligen Index definiert werden (vgl. Band 12).

Beispiel 4.23: Es soll eine Lösung der hypergeometrischen Difierentialgleichung,

xa — x)y" + (v — («x + ß + 1>x)y'— an = o. (4.89)

in der zx, ß, v Konstanten sind (v =I= 0, -1, -2, ...), bestimmt werden. Wir verwenden
wieder den Ansatz (vgl. die ausführliche Darstellung in Band 7/2, 5.4.1.)

eo

y(x) = 2 6.x“, (4-90)
v=0 ‘

woraus
eo eo

xy’ = 20mm”, y’ = §0(v + 1) cmx“,

(X) U}

xzy” f };ov(v — 1) c„x“‚ xy” = 20(1) + 1) vc,,+1x"

folgt. Nach Einsetzen dieser Beziehungen in (4.89) ergibt sich durch Koeffizienten—
Vergleich für v = 0, 1, 2,

v(v + 1)cv+1 — v(v — l)c„ + v(v + l)c„„ — (zx +ß + l)vc„ — zxflc, = 0
oder

(v +1)(y + v)cv+1 = [(oc+fi' + l)v + v(v — 1) +zxfi]c„.

Da die rechte Seite gleich (o: + v) (ß + v) c, ist, hat man

am =c‚. (4.91)

Die Reihe (4.90) mit diesen Koeffizienten und co = 1,

F(oc,/3,‘y; x) = 1 + 0%): +x2
060x +1)(rx + 2)/303 +1)(ß + 2) 3”+ <4-92)

heißt hypergeometrische Reihe. Sie konvergiert für Ix] < 1 und divergiert für [x] > 1 ;

denn wegen (4.91) ergibt sich ihr Konvergenzradius zu

(v + 1) (v + v) =

cv+1 (‘X + V) ‘i’ V)

Für Ix] < 1 ist F(zx‚ ß‚y; x) Lösung der hypergeometrischen Differentialgleichung
(4.89).

Die hypergeometrische Reihe enthält viele bisher betrachtete Reihenentwicklungen
als Spezialfälle. Beispielsweise ergibt sich für y = ß, wenn man noch on durch —zx und
x durch ——x ersetzt, die binomische Reihe, d. h. es ist F(-ac, fl, ß; ——x) = (1 + x)“;
insbesondere liefert also F(I‚ fl, ß; x) die geometrische Reihe. Als weitere Sonderfälle
von (4.92) seien genannt:

r =1im - '

r-vuo yam

F(1,1,2; _x) =w, F(L2‚%‚%;x3) =_‘"‘%‘i_
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4.6. Asymptotische Potenzreihen

Mitunter können auch divergente Funktionenreihen zum Zwecke der Funktions-
wertberechnung nützlich sein, und zwar dann, wenn es sich um Sogenannte asym—.
ptotische Reihen handelt. Wir beschränken uns auf die Betrachtung asymptotischer

Potenzreihen in 71C- (vgl. (4.53)), die zur Berechnung von Funktionswerten für große x

dienen können.
\

4.6.1. Asymptotische Gleichheit zweier Funktionen. Landausche Ordnungssymhole

' Wir definieren zunächst die asymptotische Gleichheit zweier Funktionen.

Definition 4.4: Zwei in einem Intervall (a, oo) definierte Funktionen f(x) und g(x)
heißen asymptotisch gleich für x —> o0, wenn

lim L‘) = 1

x-mo g(X)
gilt. _Man schreibt hierfür

I f(x) ~ g(x) (x -> 00). (4-93)

Der Zusatz x —> oo wird im folgenden (auch bei den Ordnungssymbolen) weggelassen,
weil wir hier ausschließlich diesen Fall betrachten. Beispielsweise gelten

«/x2+lNx e%~1 sini~i T—2x_1 ~——2
’ ’ x ‚x’ 5x3+x+1 5x2"

Zu einer anderen Schreibweise für (4.93) kommt man mit Hilfe der in Band 2, 2.6„
eingeführten Landauschen Ordnungssymbole, deren Definition wir hier speziell für
die Bewegung x ——> oo nochmals angeben. .

Definition 4.5: Es seien g(x) und h(x) zwei in einem Intervall (a, oo) definierte Funk-
tionen. Dann heißt h(x) ein Klein-o von g(x) (für x —>_ oo), bezeichnet durch

I h(x) = 0(g(x))‚

h(x) _E). _

h(x) = 0(g(x))‚
wenn es ein b > a gibt, so daß

(4.94)

wenn lim
z» eo

O gilt, und h(x) ein Groß-O von g(x) (für x —> oo), bezeichnet durch

(4.95)
h(x)

g(x)
Im Fall (4.94) sagt man auch, h(x) habe eine kleinere Ordnung als g(x). Speziell

bedeutet h(x) = 0(1) bzw. h(x) = 0(1), daß lim h(x) = 0 gilt bzw. h(x) für alle hin-

reichend großen x beschränkt ist. Ofienbar ist

f(x) = g(x) f 0(g(x)) (4.96)
eine zu (4.93) äquivalente Schreibweise, denn (4.96) besagt, daß die Diflerenz

im Intervall (b, oo) beschränkt ist.

h(x) = f(x) —g(x) die Eigenschaft h(x) = o(g(x)) hat, also lim ESQ =

oder lim fLx) = 1 gilt, und umgekehrt folgt hieraus (4.96). Der Fehler, den man bei
x-vw

der Ersetzung von f(x) durch g(x) begeht, ist somit von der Größenordnung o(g(x)).
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Die Definitionen 4.4 und 4.5 kann man analog für Zahlenfolgen formulieren
(also für Funktionen, die nur für nicht-negative ganze x definiert sind). Ein wichtiges
Beispiel einer solchen asymptotischen Gleichheit ist die Stirlingsche Formel

n! ~ JE: (n —+ 0o). (4.97)

4.6.2. Begrifl‘ der asymptotischen Potenzreihe. Beispiele

i Wenn g(x) von der Form c—", ck + 0, mit einer nicht-negativen ganzen Zahlkist

(im Fall k = 0 ist also g(x) eine Konstante), so besagt

f(x) ~ —;3i—

iu der Schreibweise (4.96), daß

f(x) = f; + o(x"‘) (4.98)

gilt. Es" kann nun möglich sein, daß man diese Aussage noch verbessern kann, indem
man zu einer Darstellung der Form

f(x) f; + vor") (4.99)

gelangt, wobei n > kist. Der Fehler ist dann nämlich wegen x‘" = o(x”‘) für n > k
von kleinerer Ordnung als in (4.98). Aus der Exponentialreihe erhält man z. B.‚ indem

man x durch ä ersetzt, neben der schon oben genannten asymptotischen Gleich-
1 1 '

1 1 _ 1 1=1+—+o<—-),e>‘=1+~+ +o(~—3—),
x x x x

1

heit e? ~ l die Beziehungen e? 2 2

allgemein x

l1

+m+T¢2+~~+ex = l + o(x"‘),nix"
1

denn in der Reihe für e7 strebt für x —> oo jedes Glied des n-ten Reihenrestes nach
Division durch x"‘ (d. h. Multiplikation mit x") gegen 0.

Wir kommen so zum Begriff der asymptotischen Potenzreihe.

cvDefinition 4.6: Eine Reihe ä —)—c,,— heißt (für x —> oo) eine asymptotische Potenzreihe der
v o

(in einemflnteruall x > a ziefinierten) Funktion f(x), wenn (4.99) mit k = 0 für jedes
n = 0, 1, 2, gilt. Man schreibt dann ’

f(x) z z (4.100)
9:0 X

In anderer Darstellung besagt (4.99), k = 0:

lim x" (f(x) — f = o für n = o, 1, 2, (4.101)
„m; y=o x

5 Scheu, Reihen

D. 4.6
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Da (4.99) für jedes n gilt, folgt, daß diese Beziehung mit

f(x) = ä + 0(x"“‘) (4.102)

1

äquivalent ist. Das obige Beispiel e? z f:
„o

‘xv mag dabei zur Illustration dienen.
‘V .

Aus der Definition folgt, daß die asymptotische Potenzreihe einer Funktion, falls
überhaupt eine existiert, eindeutig bestimmt ist. Aus (4.101) folgt nämlich für die
Koeffizienten

‘ „-1 ‘ .

co = limf(x), c„ = lim x" (fix) — ä n = 1,2, 3, (4.103)

Umgekehrt bestimmt eine asymptotische Potenzreihe nicht eindeutig eine Funktion.
Für jede Funktionf(x) = e‘”", a > 0, existieren nämlich die in (4.103) auftretenden
Grenzwerte, und zwar ist lim x" e“"‘ = 0 für jedes nicht-negative ganze n. Daher

—o U)

besitzen alle diese Funktiorien die asymptotische Entwicklung

' O
e-"z0+—0—+——,—+

x x
w

Wenn also eine Funktion f(x) eine asymptotische Potenzreihenentwicklung Z g
v-0

besitzt, so haben die (unendlich vielen) Funktionen f(x) + c e“"‘, a > 0, c beliebig
reell, alle dieselbe Entwicklung.

Schließlich wird in Verallgemeinerung zu (4.96) auch die Darstellung

r(x) z g(x) + h(x)§ (4.104)
' v=0

benutzt, wobei g(x) und h(x) zwei für x > a definierte Funktionen mit h(x) + 0 sind.
Sie ist durch

f(x) - g(x) N °° c. A. 4105
h(x) 2-. xv ‘ ' )

zu interpretieren. Auch die Definition 4.6 (einschließlich derVerallgemeinerung(4.104))
kann auf Zahlenfolgen übertragen werden.

Wesentlich ist, dal3 von einer asymptotischen Potenzreihe keine Konvergenz ge-
fordert wird. Natürlich gibt es konvergente asymptotische Potenzreihen, wie das

1

Beispiel e? zeigt. Allerdings existiert dann kein Konvergenzintervall mit x = 0 als

Mittelpunkt, da wir es mit einer Potenzreihe in ä zu tun haben. Die Konvergenz

findet vielmehr außerhalb eines Intervalls mit 0 als Mittelpunkt statt, das auch in den
Punkt 0 entarten kann, also allgemein für alle |x| > a mit einem a g 0. Das Neuartige
bei einer asymptotischen Reihe besteht aber gerade darin, daß sie auch im Divergenz-
fall brauchbar ist.

eo

Beispiel 4.24: Die Funktion f(x) = I#3 dt, x > 0, soll in eine asymptotische

0

Potenzreihe entwickelt werden (das Integral konvergiert für x > 0). Wiederholte
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Anwendung partieller Integration ergibt

' 1 e"“ w 1 w e-xr dzf""=[‘7m].,':fm
k Ü

K}

l 1[ 1 e"" J” 2 e"“‘dt
‘Y’? 7a“): „ +70 (T):

U)

1 l 2 er"=;~x—2+7f(1+t)3dt usw,

schließlich 0

1 1! 2! 3! ——l!f(x)=7—7+—x?——;;-+...+(—l)"“¥+R,,(x)
mit ’

Rm = (-11% ‘m d’ (4.106)
(1 + t)"+‘ '

O

eo

! ! . ._ - .

Wegen |R„(x)[ g nyjlr" dt = x: 1st R„(x) = o(x"') furn = 0, 1, 2, ...; also gilt
0

nach Definition 4.6
w

em d °° v ”' 4 107°1+n~,§,<-1>w—1 <1 >

Der Betrag des Quotienten aus dem (n + '1)-ten und dem n-ten Glied ist n + 1 ; er

strebt für jedes x mit n —> oo gegen oo, und somit ist die Reihe in (4.107) für jedes x
divergent. Trotzdem ist diese divergente Reihe zur Berechnung von Werten unserer
Funktion für große x aus folgendem Grund gut geeignet. Wenn man die Reihe in
(4.107) an einer Stelle abbricht, so hat nach (4.106) das Restglied dasselbe Vorzeichen
wie das erste weggelassene Glied und ist dem Betrag nach kleiner als der Betrag dieses
Gliedes. Es verhält sich also wie der Reihem-est einer alternierenden Reihe, die den
Voraussetzungen des Leibnizschen Konvergenzkriteriums genügt; der Funktions-
wert f(x) liegt folglich stets zwischen zwei aufeinanderfolgenden Teilsummen .r„(x)
und s„-1(x). Da die Reihenglieder für jedes x > 0 mit n —> o0 gegen o0 streben, läßt
sich jedoch |s„(x) — s„_‚(x)| nicht — wie bei einer konvergenten Reihe — beliebig
klein machen, indem man n hinreichend groß wählt. Aber man kann, wenn x vor-
gegeben ist, n so wählen, daß |s„(x) — s„-1(x)| möglichst klein ausfällt, so daß f(x)
zwischen zwei möglichst dicht beieinander liegenden Schranken eingeschlossen wird.
Das läßt sich für ein gewisses n offenbar um so besser erreichen, je größer x ist. So ist
beispielsweise für x = 8

ms) =„;7„(‚—1>v
|

85,‘, = 0,11243,

pl8

s8(8) = §0(—1)“ w’, = 0,11213,

5a
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also w

e-St
0,11213 <f dt < 0,11243.

1 + t
O

Für x = 12 erhält man unter Verwendung der gleichen Teilsummen

0° l2— t

o,o77322 <_[ °
l + l

O

dt < 0‚077333.

Als weiteres Beispiel einer divergenten asymptotischen Potenzreihe sei die Stirling-
sehe Reihe genannt, die eine Verallgemeinerung der Stirlingschen Formel (4.97) ist:

lnn!z(n+—ä—)1nn—n+ln\/E+w B2” 1

k =1 (2k — 1)2k n““‘ ("F w)
(4.108)

(die B2„ sind die Bernoullisehen Zahlen). Zur Interpretation von (4.108) sind (4.104)
und (4.105) zu beachten.

Aufgaben:

* Aufgabe 4.1: Bestimmen Sie „für folgende Potenzreihen den Konvergenzradius!
eo o0 3 so v3

a) zu: b>z”—,x2 c) z (1+i) x2
v=l y=1'V. v=1 ’V

m1. °°.. °°s+—1“.d)z—.x, e)zvx. f>::5——‘—ix.
y=11’ y=1 ;-=1 1'

.. Aufgabe 4.2: Bestimmen Sie für folgende Potenzreihen das Konvergenzintervall und
das Konvergenzverhalten auf seinen Randpunkten!

°° (v!)2 „ °° 2-4...2v „

“E. am x ’ "’,§. ’

w 1 V w 1 1 Vc)’=20$x, d)v§1(1+—2—+...+7)x.

1c Aufgabe 4.3: Geben Sie unter Verwendung der in 4.3.2. angegebenen Taylorreihen
die Potenzreihenentwicklungen mit dem Mittelpunkt 0 für die folgenden Funktionen
sowie das Konvergenzintervall an!

a) f(x) = ex’, b)f(x) = x’ e“, c)f(x) = cos 3x,

d)f(x) = (a + x): a > o. e)f(x) =

r) fix) = gmx) = h)f(x) =

>1: Aufgabe 4.4: Entwickeln Sie folgende Funktionen nach Potenzen von (x — x0) und
geben Sie das Konvergenzintervall der sich ergebenden Reihen an!

a)f(x)=%‚ x.‚=1; b)f(x)=«/5 x„=2;

c)/(x)=e*‚ x.‚=—s; d)f(x)=lnx‚ x..=1.
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Aufgabe 4.5: Ermitteln Sie die Summenfunktionen der folgenden Potenzreihen, indem
Sie zunächst gliedweise differenzieren und die Summe der dadurch entstehenden
Reihe bestimmen!

3 5

a)x+%—+—x5—+ ..., lxl <1,

2 4 6b)fix3 — yxs + 7—!x7 —

Aufgabe 4.6: Bestimmen Sie die Potenzreihenentwicklung mit dem Mittelpunkt x = 0

der Funktion f(x) = arctan
2 . . . . . .

2 xxz , indem Sief’(x) bilden, in eine Potenzrerhe um

x = 0 entwickeln und dann integrieren!

Aufgabe 4. 7: Bestimmen Sie die Potenzreihenentwicklung mit dem Mittelpunkt x = 0
für die Funktionf(x) = (arctan x)’ auf einem der folgenden Wege:

a) durch Multiplikation der Arkustangensreihe mit sich selbst;
b) über die Entwicklung vonf’(x) und anschließende Integration! ‚

Aufgabe 4.8: Berechnen Sie unter Verwendung von Potenzreihenentwicklungen fol-
gende bestimmte Integrale auf drei Dezimalen genau!

1 1

a) [Ein b) fa-flax.x ‚

O 0

ioo l 1,4

c)fe7dx‚ ‚ d)f dx.
l0 0

Hinweis: In Aufgabe a) kann die exakte Lösung mit Hilfe von (4.65) angegeben
werden.

Aufgabe 4.9: Berechnen Sie auf zwei Dezimalen genau die Länge des Bogens der
Sinuskurve y = sin x im Intervall [0, 7:]!

Aufgabe 4.10: Entwickeln Sie die Funktion f(x) = j —fl—4 in eine Potenzreihe
mit dem Mittelpunkt x = o: o \/1"
Aufgabe 4.11: Entwickeln Sie die Funktion f(x) = E(—1)£_T) in eine Potenzreihe

mit dem Mittelpunkt 0 (geben Sie die ersten drei Glieder an)!

Aufgabe 4.12: Für die Funktion f(x) = ist die Potenzreihenentwicklung um
cos x

x = 0 zu ermitteln. Setzen Sie dazu an:

1 _ °° E“ z‘,
i _ x ‚

cosx -..=o (212)!

ermitteln Sie eine Rekursionsformel für die „Eulerschen Zahlen“ Ezv und bestimmen
Sie E0, E2, E4, E6!

Aufgabe 4.13: Geben Sie die ersten fünf Glieder der Potenzreihenentwicklung um
x = 0 für die Funktion f(x) = In (1 + § arctan x) an, indem Sie in die logarithmische

-x
-
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Reihe die Reihe für 5 arctan x einsetzen! Überlegen Sie sich, wie man unter Benutzung
der Ergebnisse in 4.5.4. schneller zum Ziel kommt!

a: Aufgabe 4.14: Berechnen Sie die folgenden Grenzwerte, indem Sie die ersten Glieder
bekannter Potenzreihenentwickluugen heranziehen!

a)1im s1nx1n(l+x), b)lim< l _ 1 )’
x—.o 1__\/1+x2 x—>l x—1 lnx

c) lim (x —„/x2 — ex), d) lim (—1—— 1

xaoo x-«O x sin x
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5.1. Problemstellung

Wenn ein Massenpunkt der Masse m, der längs einer Geraden (x-Achse) beweglich
ist und sich in einer stabilen Gleichgewichtslage (x = 0) befindet, um ‚ein kleines
Stück aus dieser Lage verschoben wird, so wirkt auf ihn eine rücktreibende Kraft.
Häufig kann angenommen werden, daß sie proportional zur jeweiligen Entfernung x

von der Gleichgewichtslage und zu dieser hin gerichtet ist. Nach dem Newtonschen
Reaktionsprinzip besteht daher bei Vernachlässigung der Reibungskräfte die Glei-
chung '

‚„E. _

dz’ "

wobei x = x(t) die Auslenkung des Massenpunktes zum Zeitpunkt t und L> O ein

—kx,

Proportionalitätsfaktor ist (die Sogenannte Direktionskraft). Mit w = A/Ä- erhält
diese Differentialgleichung für x(t) die Form m

x”(t) + w2x(t) = O. (5.1)

Unter allen Lösungen von (5.1) gibt eine den zeitlichen Ablauf der Bewegung des
Massenpunktes an, der entsteht, wenn er zu einem bestimmten Zeitpunkt — wir wählen
t = 0 — aus der Gleichgewichtslage gebracht und dann sich selbst überlassen wird. Die
allgemeine Lösung Von (5.1) ist

x(t) = A sin (cut + zp). (5.2)

Aus der Lage und Geschwindigkeit des Massenpunktes zur Zeit t = 0 lassen sich
die Konstanten A und (p für die uns interessierende Lösung bestimmen. Nach (5.2)
ist die Bewegnmg des Massenpunktes einesinusförmige Schwingung um die Gleich-
gewichtslage.

Ganz entsprechend ergibt sich als Differentialgleichung für den zeitlichen Span-
nungsverlauf u(t) in einem elektrischen Schwingungskreis mit der Induktivität L und
der Kapazität C bei Vernachlässigimg des Ohmschen Widerstandes

u”(t) + w’u(t) = 0, (5.3)

1

wobei w = ist, und als ihre allgemeine Lösung

u(t) = A sin (wt + (p). (5.4)

A und (p sind wieder durch den „Anfangszustand“ des Schwingungskreises fest-
gelegt.

Man nennt nun einen durch eine Gleichung der Form

y = A sin (cut + 99) (5.5)

beschriebenen zeitlich abhängigen Vorgang y = y(t) eine harmonische Schwingung
(oder eine reine Sinusschwingung). Wegen der Periodizität der Sinusfunktion ist eine
solche Schwingung immer periodisch; die kleinste Periodenlänge (oder Schwingungs-

2 l . . .

—wn—; 7 heißt Frequenz, w Kreisfrequenz, A Amplitude, (p Phasen-

winkel der harmonischen Schwingung.

dauer) ist T =
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Eine reine Sinusschwingung mit der Kreisfrequenz nw, n = 2, 3, 4, ..., also der

Schwingungsdauer 7 , nennt man die n-te Harmonische (oder Oberschwingung) zur

„Grundschwingung“ mit der Kreisfrequenz w. Jede dieser Harmonischen

y„ = A„ sin (nwt + (n) (5.6)

hat aber auch T A als ganzzahliges Vielfaches von g — als Periodenlänge. Daher

beschreibt auch eine Summe aus einer rein sinusförmigen Grundschwingung der
Kreisfrequenz w und endlich vielen ihrer Harmonischen einen mit T periodischen
Vorgang; physikalisch gesprochen ist er das Resultat der Überlagerung der genannten
Schwingungen. Er ist natürlich im Vergleich zur harmonischen Schwingung kompli-
zierter.

Beispiel 5.1: Wir betrachten als Grundschwingung yl = sin tund dazu die Harmoni-
schen y2(t) = <5 sin 2t‚ y3(t) = ä sin 3t. Die Summe aus ihnen,

y(t) = sin! + äsin 2! + äsin 3t,

ist in Bild 5.1 dargestellt; der Verlauf ergibt sich, indem zu jedem Zeitpunkt t die
Funktionswerte y1(t)‚ y2(t) und y3(t) (graphisch) addiert werden..H

_..__ ‘y7(¢).=5/,7; . _,_ ‘y2(t)=21.$/'n2t 1

___ y3(¢;=gs/pat _? _y(t)=5/'/77.‘+Z’.5/‘/)2t +175/hat

Bild 5.l

Für unsere weiteren Betrachtungen wollen wir uns zunächst auf den Fall der Peri-
odenlänge 27:, also w = I, beschränken; später lassen sich die Ergebnisse leicht auf den
allgemeinen Fall übertragen. Außerdem wollen wir x statt t schreiben. Wir werfen
nun die Frage auf, ob man etwa jeden mit 27c periodischen Vorgang als Überlagerung
aus einer rein sinusförmigen Grundschwingung der Schwingungsdauer 27c und gewissen
Oberschwingungen darstellen, ihn also in eine Summe derartiger Schwingungen zer-
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legen kann. Es wird sich zeigen, daß unter gewissen Voraussetzungen eine Dar-
stellung durch eine Reihe, deren Glieder Harmonische sind, möglich ist (man benötigt
also im allgemeinen unendlich viele Harmonische zur Darstellung). Die Bestimmung
dieser Schwingungen nennt man harmonische Analyse.

Die einzelnen Schwingungen

y..(x) = A.. sin (nx + w.) (5-7)
kann man, wenn man 0a„ = A„ sin <p„, fin = A,, cos <p,, setzt, wegen des Additions-
theorems der Sinusfunktion in der Form

y„(x) = 0a„ cos nx + 13,. sin nx (5.8)

schreiben. Umgekehrt beschreibt jede derartige (nicht verschwindende) Funktion
eine harmonische Schwingung (5.7); A„ und <p„ lassen sich aus

_ _ 19„ . _ (X
An ’ V “r? + Iii: cos ‘Pu — 2 51119731: —

n n n ‚l

bestimmen. Wenn man noch berücksichtigt, daß trivialerweise jede konstante Funk-
tion periodisch ist (mit jeder von 0 verschiedenen Zahl als Periodenlänge), so ergibt
sich, daß jede Summe der Form

“o
2

n fest, av, fly beliebig reell, eine Schwingung mit der Periode 27-: beschreibt. Dasselbe
trifft auch für die unendliche Reihe

+ ä (oc, cos vx + ß, sin vx), (5.9)

We

2

av, /9, beliebig reell, zu, sofern sie konvergiert, weil es für jede ihrer Teilsummen gilt.
Eine Summe der Form (5.9) nennt man eine trigonometrische Summe (auch trigono-
metrisches Polynom), eine Reihe (5.10) eine trigonometrische Reihe. Die obige
Fragestellung nach der Durchführbarkeit der harmonischen Analyse, d. h. der Dar-
stellbarkeit eines periodischen Vorgangs als Überlagerung aus einer Grundschwingung
und gewissen Oberschwingungen, kann nunmehr mathematisch dahingehend formu-
liert werden, ob sich jede mit 27-: periodische Funktionf(x) in eine trigonometrische
Reihe entwickeln läßt.

Die Entwicklung einer Funktion f(x) in eine trigonometrische Reihe ist aber nicht
nur von Bedeutung, wennf(x) von vornherein periodisch ist. Wenn wirf(x) in einem
offenen (oder halboffenen) Intervall der Länge 27: betrachten, in dem sie definiert ist,
etwa im Intervall (—-r:‚ 7:), so kann man eine mit 27: periodische Funktion g(x) durch
die Forderung

g(x + 2k7:).=f(x), xe(—7:, 7:), k'= 0, i1, i2, ..., (5.11)

+ Elem cos vx + /3v sin vx), I (5.10)

erhalten.

y=f(x) y=.9(XI

. /fi 1 .

a at ‘x —3n: —2:: _ l-Jt o lac 2a: E32: 'xx b) x. x—zr

' Bild 5.2
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Die Funktion g(x) ist damit für alle x =(= 7: + 2k7: definiert und stimmt im Intervall’
(—7:, 7:) mit f(x) überein (siehe Bild 5.2); man nennt g(x) die periodische Fortsetzung
vonf(x). Wenn g(x) durch eine trigonometrische Reihe dargestellt werden kann, so ist
diese Reihe im Intervall (—7r, 7:) insbesondere eine Darstellung fürf(x).

5.2. Die Fourierkoeffizienten

5.2.1. Herleitung der Fourierkoeffizienten

Wir verfolgen nun die in 5.1. aufgeworfene Fragestellung. Dabei gehen wir zunächst
davon aus, daß wir für eine Funktionf(x) im Intervall [—-7r, 7:] schon eine Darstellung
durch eine trigonometrische Reihe haben, und fragen nach dem Zusammenhang
zwischen f(x) und den Koeffizienten der Reihe. Es möge also gelten:

0o

f(x) = 12% + g‘ (av cos vx + bvsinvx), ——7: g x g 7c, (5.12)

und wir nehmen darüberhinaus an, daß die Reihe auf der rechten Seite von (5.12) in

[—7:‚ n] gleichmäßig konvergiert (das ist etwa der Fall, wenn die Reihen f: av und
!=X

E b, absolut konvergieren; vgl. Beispiel 3.4). Als Summe einer gleichmäßig konver-

‘genten Reihe mit stetigen Gliedern ist f(x) selbst in [—7:‚ 7:] stetig, und die Reihe
darf nach Satz 3.4 über [—7:, 7:] gliedweise integriert werden. Dabei ergibt sich

7:TV T! N

ff(x)dx=aT°Jdx+ E avfcosvxdx + E} b„ fsinvxdx,
v=1 y=1

~71 -7: -7:—7:

und wegen
7: 7: ‚ 7x

fax z 27: und fcosvxdx: [sinvxdx = o fürv = 1‚2,3,
_„ -.. n.

folgt daraus
1 „

a0 = x f f(x)dx_. g (5.13)

-7:

Somit haben wir einen Zusammenhang zwischen f(x) und dem Koeffizienten a0
erhalten. Zur Herleitung entsprechender Formeln für die anderen av und bv benötigen
wir die folgenden Beziehungen:

T!

fcosvxcosyxdx = 0 für/z ä: v,
—7:

1! .

[sin 11x sin ‚ux dx = o {um a; v, (5.14)
——7:

1'!

fcosvxsin/txdx = o, ‚m = o, 1,2,
—7:
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sowie
7T TV i

fcos’ vxdx=-rc, fsin’ vxdx=1t, v: 1,2, 3,.... (5.15)
-1: —-1:

Sie ergeben sich in einfacher Weise unter Benutzung der Formeln

cos vxeos/zx = ä-(cos (v + ‚u)x + cos (v — ‚u) x),

sin vx sin ‚ux = %(cos (v — ‚u) x — cos (v ‚u) x), (5.16)

cos vx sin/u: = %(sin (v + ‚u)x — sin (v — y) x),

die aus den Additionstheoremen für die Sinus- und Kosinusfunktion folgen.
Die drei Beziehungen (5.14) drücken folgende Eigenschaft des Systems der Funk-

tionen '

1, cos x, sin x, cos 2x, sin 2x, (5.17)

aus: Das bestimmte Integral zwischen den Grenzen —7: und +7: über das Produkt
zweier verschiedener Funktionen des Systems ist stets 0. Aus einem Gmnd, der
erst aus einem allgemeineren Zusammenhang heraus erkennbar wird (vgl. 5.10.), nennt
man die Beziehungen (5.14) die Orthogonalitätsrelationen für die Funktionen des
Systems (5.17), und dieses System selbst ein orthogonales Funktionensystem über
[—-n‚ 7:].

Um nun einen der Koeffizienten a‚„ ‚u = 1, 2, 3, ..., zu erhalten, multiplizieren wir
(5.12) mit cos ‚ux und integrieren die entstehende Gleichung über [—-rt, 7:]. Da glied-
weise Integration wie oben gestattet ist, ergibt sich

1:

ff(x) cos „x dx = LIT” {cos ‚ux dx (5.18)

-7: -7:

„o 7: 1:

+ Z (a, [cos vx cos ‚ux dx + b, (sin vx cos ‚ux dx).
v=l —-r: -7:

Nach (5.14) sind alle auf der rechten Seite von (5.18) auftretenden Integrale gleich 0
TL’

mit Ausnahme des für v = ‚u entstehenden Integrals fcos’ ‚ux dx, das nach (5.15)
gleich 7: ist. (5.18) besagt also —rr

j'f(x) cos ‚ux dx = na„. '

Auf entsprechende Weise erhält man, wenn man (5.12) mit sin ‚ux statt mit cos ‚ux
multipliziert, '

ff(x) sin ‚ux dx = rrb„.
—7:



76 5. Fourierreihen

Damit hat man

T5

a‘, %ff(x)cos vx dx, v = 0, 1,2,3,

‘"1: (5.19)

b„ = :1:-ff(x)sinvxdx, v z 1, 2, 3,

Die erste Beziehung ist auch für v = 0 richtig, weil sie dann in (5.13) übergeht (um das

40
zu erreichen, wurde in (5.12) die Konstante mit 2
Wll‘ fassen zusammen:

und nicht mit ac bezeichnet).

Satz 5.1: Wenn eine trigonometrische Reihe

&
2

im Intervall [Ä-n, 7:] gleichmäßig konvergiert undf(x) als Summenfunktion hat, so gelten
die Beziehungen (5.19).

Bemerkung: Auf Grund der Periodizität der Glieder der trigonometrischen Reihe
(5.20) ist auch die Summenfunktion f(x) eine mit 27: periodische Funktion. Daher
kann das Integrationsintervall in (5.19) durch irgendein beliebiges Intervall der Länge
27: ersetzt werden. Für eine mit 211: periodische, integrierbare Funktion <p(x) gilt
nämlich

+ =§1(av cos we + b„ sin vx) (5.20)

a+21: 1-. f; a+2rr i:

„f w) dx = j w) dx — „I w) dx + f m) dx = „l ma dx,
I -73 -73 TI -7?

weil
a+2rr i: u

f q2(x)dx = _|qc(t + 2.-:)dt = _fzp(x)dx

ist. h T:

5.2.2. Die Fourierreihe einer Funktion

An das Vorhergehende anknüpfend‚ geben wir zunächst die

Definition 5.1: Es sei eine über [—7r, 7-c] (im Riemarmschen Sinne) integrierbare
Funktion. Dann heißen die durch (5.19) gegebenen Zahlen av, bv die Fourierkoeffizienten
von f(x)‚ und die mit diesen gebildete Reihe (5.20) heißt die Fourierreihe der Funktion
f(x)-

Man könnte nun vermuten, daß die Fourierreihe einer über [—7r, n] integrierbaren
Funktion f(x) ,,im allgemeinen“ die gesuchte Entwicklung vonf(x) in eine trigono-
metrische Reihe für dieses Intervall ist. So einfach liegen die Dinge aber nicht. Man
beachte nur etwa den Umstand, daß zwei über [-7-r, -n:] integiierbare Funktionen, die
sich nur an endlich vielen Stellen dieses Intervalls voneinander unterscheiden, die
gleiche Fourierreihe besitzen (denn die Werte der Integrale, durch die av und b„ defi-
niert sind, ändern sich nicht, wenn man f(x) an endlich vielen Stellen abändert).
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Wir müssen davon ausgehen, daß die Fourierreihe einer Funktionf(x) lediglich eine
mit Hilfe von f(x) formal gebildete Reihe ist, für die noch nicht einmal die Konver-
genz feststeht. Es sind Beispiele stetiger Funktionen bekannt, deren Fourierreihe an
keiner Stelle konvergiert! Wenn aber die Fourrierreihe einer Funktion f(x) für ein
x = x0 konvergiert, so braucht die Summe der Reihe an dieser Stelle nicht mit f(xo)
übereinzustimmen (das folgt schon aus obiger Bemerkung). Es ergeben sich also
stets zwei Fragen, wenn man die Fourierreihe einer Funktion f(x) aufgestellt hat,
nämlich die, für welche x die Reihe überhaupt konvergiert, und wenn das für gewisse
x zutrifft, ob die Reihe dort die Funktion f(x) darstellt. Nach Satz 5.1 wissen wir
bereits soviel, daß eine in [—-rt, 7:] gleichmäßig konvergente trigonometrische Reihe
die Fourierreihe ihrer Summenfunktion ist und diese darstellt. In Unterabschnitt 5.3.
werden wir hinreichende Bedingungen für die Konvergenz einer Fourierreihe kennen-
lernen und eine Aussage über die Reihensumme formulieren.

Es genügt offenbar, die Konvergenz einer Fourierreihe (5.20) und gegebenenfalls
ihre Summe im Intervall I = (—-rc, n] oder in einem anderen (halboifenen) Intervall I
der Länge 21-: zu untersuchen. Wenn nämlich die Fourierreihe für ein x0 e I konver,
giert, so konvergiert sie wegen der Periodizität ihrer Glieder an allen Stellen x0 + 2k7:-
k = i 1, i2, ...‚ und hat dort dieselbe Summe. Sofern also die Fourierreihe einer
Funktionf(x) diese Funktion in I darstellt, stellt sie zugleich für alle x die periodische
Fortsetzung vonf(x) dar (wennf(x) von vornherein mit 27: periodisch ist, dann ist die
Reihe eine für alle x gültige Darstellung von f(x)). Es ist daher zweckmäßig, eine
Funktion f(x}, die in einem Intervall I der Länge 27: in eine Fourierreihe entwickelt
werden soll, außerhalb von I durch periodische Fortsetzung definiert zu denken, d. h.
durch

f(x + 2k71:)=f(x), xel, k = i1, i2, i3,
Wenn die Berechnung der Integrale in (5.19) schwierig ist oder f(x) nur tabellarisch
vorliegt, kann man zur Bestimmung von Fourierkoeffizienten Näherungsverfahren
verwenden (Vgl. dazu Abschnitt 5.7.).

Beispiel 5.2: Für die Funktionf(x) = x, —rr < x < rr, soll die Fourierreihe berechnet
werden. Durch periodische Fortsetzung kann man die Definition von f(x) auf alle
x =l= n: + 2km, k = i1, i2, i3, ausdehnen. Man erhält dannf(x) = x —- 2k7: für
(2k —— 1) TE < x < (2k + 1) n, k ganz (Darstellung siehe Bild 5.3). Zur Berechnung
die Fourierkoeffizienten von f(x) ist diese Betrachtung allerdings nicht erforderlich.
Sie ergeben sich nach (5.19) mittels partieller Integration zu
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n 7:

U 1 . r 1 . l
—xsmvx —-—J‘s1nuxdx
v _„ v

-7:

av=ifxcosvxdx=i
TU TC

=i{0+—1—[cosvx]*=}=o (v=l23 )‚t v, -‚.

n

1 ‚ 1 1 7‘ 1bV=—J‘xs1nvxdx=— [———xcosvx] +—
7: 7: v _„ v

l .

{—2—§—cos v7: + 7 [s1nvx]’_',,} = (—1)‘+‘

cos vx dx
-7:

l
TC

(v = 1,2,3, ...)ei
n)

Ä
?
’

(wegen cos vrc = (— 1)"). Somit lautet die Fourierreihe von f(x) gemäß (5.20)

sin 2x sin 3x
T 3 — -~)-

Wenn eine Funktion f(x) in einem beliebigen Intervall I der Länge 27: entwickelt
werden soll, darf man, wenn wir sie uns über] hinaus (mit 21c) periodisch fortgesetzt
denken, auf Grund der Bemerkung im Anschluß von Satz 5.1 bei der Berechnung der
Fourierkoeffizienten in (5.19) die Integrationsgrenzen -71, n: durch die Grenzen von I
ersetzen (vergleiche dazu Beispiel 5.3).

2 (sinx —

5.3.

Wir kommen nunmehr zur Formulierung von hinreichenden Bedingungen für die
Konvergenz der Fourierreihe einer Funktion.

Eine Konvergenzaussage

Satz 5.2: Eine mit 27-: periodische Funktion f(x) erfülle die folgenden Bedingungen
(Dirichletsche Bedingungen):

1.f(x) sei in [-7-r, 7:] stückweise stetig,
2. das Intervall (——7r‚ 71:) möge sich in eine endliche Anzahl von Teilintervallen zerlegen
lassen, in deren Innerem f(x) monoton ist.

Dann konvergiert die Fourierreihe von f(x) für alle x mit den Summe

soc) = gm — o) +f(x + o»;

insbesondere ist also s(x) = f(x) an jeder Stelle x, an derf(x) stetig ist. Die Konvergenz
ist gleichmäßig in jedem abgeschlossenen Intervall, in dem f(x) stetig ist.

(5.21)

Wir nennen eine Funktionf(x) in einem abgeschlossenen Intervall [a, b] stückweise
stetig (vgl. Band 2, 3.3.), wenn sie mit Ausnahme endlich vieler Stellen stetig ist, wobei
in jedem inneren Punkt x0 e(a, b) die beiden einseitigen Grenzwerte f(x0 + 0) =

lim f(x) undf(x„ — 0) = lim f(x) sowie in den Randpunkten die Grenzwerte
x—»x +0 xax —o

f(a + b) undf(b — 0) existieren iind endlich sind. Da im vorstehenden Satzf(x) als
stückweise stetig in [-7-7, n] und außerdem als mit 21c periodisch vorausgesetzt wird,
existieren f(xo i 0) für alle x. Wenn diese beiden einseitigen Grenzwerte überein-
stimmen, so ist nach (5.21) s(x„) gleich dem gemeinsamen Grenzwert, im Fall der
Stetigkeit vonf(x) in x0 also s(x„) = f(x„). Wenn sie nicht übereinstimmen, so liegt in
x0 eine Sprungstelle vor, und (5.21) besagt, daß die Fourierreihe in x0 gegen das arith-



5.3. Eine Kuuvergenzaussage 79

metische Mittel aus den beiden einseitigen Grenzwerten konvergiert; dabei spielt es

natürlich keine Rolle, ob f(x) in x0 überhaupt definiert ist, und Wenn, welchen Wert
f(xo) hat. Nach dem letzten Teil des Satzes ist die Fourriereihe einer Funktion f(x)‚
die für alle x stetig ist, überall gleichmäßig konvergent.

Wegen der Periodizität von f(x) ist insbesondere

f(—7*~' + 0) =f(7'-' + 0)‚
so daß aus (5.21)

s(—7:) = s(1r) = —;—(f(1r — 0) +f(——7': + 0)) (5.22)

folgt. Wenn man in Satz 5.2 die Voraussetzung der Periodizität Vonf(x) wegläßt und
nur fordert, daß f(x) in (—7-:‚ 7c) definiert ist und den Dirichletschen Bedingungen
genügt, so gilt für die Summe der Fourierreihe von f(x) (5.21) für alle x e (—7r, 71:)

und (5.22) für x = in. Versteht man unterf(x) außerhalb des Intervalls (—-7:, 7:) die
periodische Fortsetzung (mit der Periode 2-n:) der in (—r:,n) definierten Funktion
f(x)‚ so gilt natürlich (5.21) wieder für alle x.

Die in Beispiel 5.2 betrachtete Funktion f(x) ä x, —1r < x < 7c, erfüllt offenbar
die Dirichletschen Bedingungen. Sie ist sogar stetig in (—rc, 71:), so daß sie dort durch
ihre Fourierreihe dargestellt wird:

f(x) = 2(sinx — smzzx + 212i —

Bild 5.4 zeigt, wie f(x) = x im Intervall (—-rr, n) durch die Teilsummen s1(x)‚ s3(x)
s5(x) der Fourierreihe angenähert wird.

Wenn wir die periodische Fortsetzung der zunächst in (—r:, 7:) definierten Funktion
f(x) wieder mit f(x) bezeichnen, so gilt (5.23) sogar für alle x, für die die periodische
Fortsetmng definiert ist, d. h. für alle x außer fürx = (2k + 1) 7:, k = 0, i 1, i2,
Dort hatf(x) Sprungstellen mitf((2k + l)r: + 0) = —1,f((2k + l)11: —— 0) = 1, das
arithmetische Mittel beider einseitiger Grenzwerte ist 0 in Übereinstimmung mit der
Reihensumme für x = (2k + 1)-rc. Die Teilsummen s,,(x) sind in einer Umgebung

(5.23)

dieser Stellen nicht zur Approximation V011 f(x) geeignet, wie Bild 5.4 zeigt (Näheres '

hierzu in Abschnitt 5.8.).

-— m: =x —._ .g(x)=5,{X}—:/"n2x+j25/’rzJX

--- 5z!><l=2&I'nX 5,(x)=5,rx) —§1sin4x+_-gs/n5x Bild 5.4
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Eine andere hinreichende Bedingung für die Gültigkeit von (5.21) enthält der fol-
gende Satz.

Satz 5.3: Eine mit 27: periodische Funktion f(x), die im Intervall [-7-r, n] stückweise
stetig ist und eine stückweise stetige Ableitungf’(x) besitzt, hat eine für alle x konver-
gente Fourierreihe mit der Summe (5.21).

5.4. Reine Kosinus- und Sinusreihen. Beliebige Periodenlänge

5.4.1. Reine Kosinus-Iund Sinusreihen

Die Formeln (5.19) für die Fourierkoeffizienten einer Funktion f(x) vereinfachen
sich, wenn f(x) eine gerade bzw. ungerade Funktion ist, d. h. f(—x) = f(x) bzw.
f(—x) = —f(x) gilt. Bei einem Integrationsintervall der Form (—a‚ a), a beliebig, gilt

u a a

nämlich fcp(x) dx = 0 bzw. f<p(x) dx = 2 f zp(x) dx für eine (integrierbare) ungerade
_„ 0 .—a

bzw. gerade Funktion, wie aus

fax) ax = Jux) dx + flux) dx = f<sv<—x> + w» dx

folgt. Wenn nun f(x) eine gerade Funktion ist, so sind, da cos vx gerade, sin vx un-
gerade Funktionen sind, die Produktef(x) cos vx gerade, f(x) sin vx ungerade Funk-
tionen, wie man aus der Definition der geraden und ungeraden Funktionen entnimmt.
Daher ergibt sich in diesem Fall

b, = 0, a, ä [f(x) cos vx dx. (5.24)

0

Die Fourierreihe einer geraden Funktion enthält also nur die Kosinusglieder; man
sagt auch, sie sei eine reine Kosinusreihe. ’

Entsprechend ergibt sich, wenn f(x) ungerade ist,
I

a, = 0, b, =' ä (f(x) sin vx dx; (5.25)

0

die Fourierreihe vonf(x) ist eine reine Sinusreihe (vergleiche Beispiel 5.2).
In Anwendungen macht es sich mitunter erforderlich, eine im Intervall [0,7-:]

bzw. (0, 7:) definierte und integrierbare Funktion f(x) in eine reine Kosipus- bzw.
W

eine reine Sinusreihe zu entwickeln, also in eine Reihe der Form a—2° + Z a, cos vx
co v=l

bzw. 2 b, sin vx. Dabei wollen wir annehmen, daß f(x) in [0, n] die Dirichletschen
1

Bedingungen erfüllt.
Um eine reine Kosinusreihe zu erhalten, definiert man f(x) im Intervall [-7:, 0]

durchf(x) = f(—x) (gerade Fortsetzung) und setzt dann mit 27: periodisch fort (siehe
Bild 5.5, a). Die Koeffizienten der gesuchten Reihe ergeben sich aus (5.24), die Reihen-
summe ist durch (5.21) gegeben. Entsprechend definiert man, um eine reine Sinusreihe
zu erhalten, f(x) für —-71: < x < 0 durch f(x) = —f(—x) (ungerade Fortsetzung) und
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setzt mit 21: periodisch fort (siehe Bild 5.5, b). Die Koeffizienten dieser Entwicklung
sind (5.25). Wenn die Funktionf(x) in diesem Fall auch in den Randpunkten 0 und
7: definiert ist, wird sie durch die Fourierreihe dort genau dann dargestellt, wenn
f(0) =f(7r) = 0 gilt, da die Summe einer reinen Sinusreihe für x : kn, k = O, i 1,

i2, stets gleich O ist.

_L c I l I | l i

m: «n o J1‘ 21c? _'—2:z §—ar 0 I'm 27v X

(Z) b)

Bild 5.5

5.4.2. Beliebige Periodenlänge

Nachdem bisher ausschließlich trigonometrische Reihen mit 21: als Periodenlänge
betrachtet wurden, wollen wir nunmehr von einer Funktion f(t) mit einer beliebigen
Periodenlänge T(T > 0) ausgehen. Es gelte also

f(t + T) =f(r) ' T (5.26)

für alle t. f(t) sei als integrierbar über [—— -2-, Vorausgesetzt. Substituieren wir

t = -2; x, (5.27)

so gehtf(t) in eine Funktion von x über:

x goo wg»).
Diese hat die Periode 27c, denn es ist wegen (5.26)

g(x + 27c) =f(7:—(x + 27.)) =f(2inx + T) =f(%x) = g(x)

für alle x. Auf die Funktion g(x) können wir aber unsere bisher erhaltenen Ergeb-
nisse anwenden. Die Fourierreihe Von g(x) bzw. die Fourierkoeffizienten sind

L2" + §1(a, cos vx + by sin vx), (5.28)

TI W

1 T ' 1 .

a, =; ffwx) cos vxdx, b,.=; J‘f(—2—77-L-x)s1nvxdx. (5.29)

„g . -1:

Macht man die Substitution (5.27) wieder rückgängig, so erhält man aus (5.28) und
(5.29) als Fourierreihe der mit T periodischen Funktion/O‘)

27|:do T,2

6 Schell, Reihen

+ E (a, cos vwt + b, sin vwt), w = (5.30)
g=1
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mit den Fourierkoeffizienten

I.
2

a, =% ff(t) cos vwtdt, v = O, 1,2, ...‚

—% (5.31)

_7'_
2

b, = sin vwt dt, v = 1,2, 3,

H
]

N

N
l*

!‘%

Für gerade bzw. ungerade Funktionen ergeben sich Vereinfachungen dieser Formeln
analog zu denen in 5.4.1. angeführten, nämlich

I.
4 2

a, =—T— J f(t)cosvwrdt, b, = o, (5.32)

0

im Fall, daßf(t) gerade ist, und

4 €-

a, = 0, b, = 7 ffmsin vwtdt, (5.33)
„ .

wenn f(t) ungerade ist.
Aus Satz 5.2 folgt: Wenn f(t) den Dirichletschen Bedingungen — für das Intervall

[— g , statt [—7=, n] — genügt, so konvergiert die Reihe (5.30) mit (5.31) für alle t

mit der Summe §(f(t — 0) + f(t + 0)). Es ist nunmehr möglich, eine Funktion f(t)
in einem beliebigen Intervall I der Länge Tin eine Fourierreihe (5.30) zu entwickeln,
wenn sie dort den Dirichletschen Bedingungen genügt (Vgl. dazu die Schlußbemer-
kung von 5.2.2.); in den Formeln (5.31) für die Fourierkoeffizienten hat man dazu
die Grenzen von I als Integrationsgrenzen zu nehmen.

5.5. Beispiele

Es folgen nun einige Beispiele für die Fourierentwicklungeu von Funktionen.

Beispiel 5.3: Es soll f(x) = x, 0 < x < 27:, in eine Fourierreihe entwickelt werden.
Wir können allgemeiner unter f(x) wieder die periodische Fortsetzung unserer zu-

nächst nur in (0, 21:) definierten Funktion verstehen; dann gibt Bild 5.6 den Verlauf
von f(x) wieder (Kippspannungen l). Nach der Schlußbemerkung in 5.2.2. kann man
in (5.19) O und 21c als Integrationsgrenzen wählen, also

21: 27:

1 1 .

a, =— xcos vx dx, b, =— xsinvxdx.
r: 7-:

O 0
21:

Wir erhalten ac = ä J. x dx _= 27c, und für v g 1 mittels partieller Integration

o
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27:
21v

a„ i sin 12x] — sin vx dx} = O,
TC V 0 1/

0

27v

2' 1 2
by 1{{—£cosvx] 1+—— cosvxdx}=—«-.

’V 0 1’

[I

‘v? v
0

(a0 muß hier, wie auch sonst im allgemeinen, gesondert berechnet werden, weil die bei
. . . l .

der ersten partiellen Integration verwendete Beziehung f cos vx dx = ——s1n vx + C
1/

nur für v g l gilt, für v = 0 aber oflensichtlich falsch ist).
Daf(x) in [0, 27:] den Dirichletschen Bedingungen genügt, gilt

f(x) =7': — 2(sinx+ m2" m3" +
2 3

An den Sprungstellen x = 2k7r, k = 0, i l, i2, ..., Von f(x) ist die Reihensumme
gleich 7:, übereinstimmend mit dem arithmetischen Mittel aus den einseitigen Grenz-
werten an den Sprungstellen, 27c und 0.

Beispiel 5.4: Die Funktion f(x) = x, 0 g x g n, soll in eine reine Kosinusreihe
entwickelt werden. Gemäß 5.4.1. definieren wir zunächst f(x) = f(-x) = —x für

I | I

4.11-27: o 2,; 4„- X -27: —JL‘ 0 75 27: SIE ><

V

Bild 5.6 Bild 5.7

——7r g x g 0 (so daß wirf(x) = |x| für x e [-71, 7:] haben) und setzen dann periodisch
fort (siehe Bild 5.7 — Folge, von Dreiecksimpulsen -—). Nach (5.24) verschwinden die b‚;
weiter ist

r:

2a0=——fxdx=7:,
TE

O ;

und für v g 1 gilt

2 7' 2 x . == 1 n.
a, =—fxcosvxdx:— -—-smvx —— smvxdx

‘Ir 7T V O V
0 O

(-1)’-12 2
= g;- [cos w]: = ; v, ‚

also
4— , /4=l,2,3,....a2,‘ = 0, 112u—1 =

(5.34)}



84 5. Fourierreihen

Da f(x) in [0, 11:] die Dirichletschen Bedingungen erfüllt und für alle x stetig ist, gilt
1-: 4 cos x cos 3x cos 5xf(x) =7—?( I, + 3, + 5, + (5.35)

Für x = 0 erhält man aus (5.35) das Resultat

°° 1 1 1 1 7:2vg1 =7+ä2—‘i"5T+_„.=T. (5.36)

Beispiel 5.5: Die Funktion f(x) = x2, ~7: g x g 1:, soll in eine Fourierreihe ent-
wickelt werden (die periodische Fortsetzung von f(x) ist in Bild 5.8 dargestellt). f(x)

Bild 5.8

. . .. . . 2 2 .. .

1st gerade, also 1st b, = O fur alle v. Weiter 1st a0 2 — x2 dx = gt’, und fur die
a,, v g l, erhält man zunächst T" 0

7T 7T

2 . " .

a. =—fx2 eosvxdx =£{[ix2s1nvxJ ——2—fxs1nvxdx]
7: Tc v o v

0 0

und unter Benutzung des Ergebnisses in Beispiel 5.2 für das Integral in der geschweif-
ten Klammer

4 <— I)“ ”
‘:1/V 71

4
a,=~ =(—1)v7, v_2_l.

Die Funktionf(x) erfüllt die Dirichletschen Bedingungen, und ihre periodische Fort-
setzung ist für alle x stetig. Daher gilt

L2 2 3 -f(x) = T? — 4(°‘;S,x — m; x + w; x — (5.37)

Für x = 0 erhält man hieraus

°° l 1 1 7:2
_ v‘! j 2 -— j- -—- —- z —y§1( 1) v2 l 22 + 32 12, (5.38)

und für x = 7c '

w 1 1 1 n2ygI72——1+32‘+-37+. =T. (5.39)
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Die Reihe in (5.37) ist nach Satz 5.2 für alle x gleichmäßig konvergent; daher darf
man sie zwischen 0 und einem beliebigen x gliedweise integrieren. Man erhält

x n’ . sin 2x sin 3xff(t)dt= 3 x—4(s1nx— 23 + 33 — )
D

n2 X ‚ 7:2 x3
Setzt man F(x) = Tx — ff(t) dt, das 1stF(x) : Tx — T für —71: g x g rcund

0

die periodische Fortsetzung dieser Funktion außerhalb dieses Intervalls, kann man
das Ergebnis in der Form

F(x) = 4(sinx g m?‘ m?” — (5.40)

schreiben. Für x = Jä- ergibt sich

w 1 1 1 3 ’V,§1(—1)"-1(2fi1)T=1—?+?3-— (5.41)

Beispiel 5.6: Die Funktion f(x) = 1, 0 < x < n, soll in eine reine Sinusreihe ent-
wickelt werden. Gemäß den Ausführungen in 5.4.1. definieren wir

f(x) = —1 für xe(—1r, 0) und f(x + 2k-nr) =f(x),
k = il, i2, i3, ...‚ für 0 < |x| < n. Das zugehörige Bild 5.9 ist deutbar als Folge
von Rechtecksimpulsen. Wir können außerdem noch f(0) =f(k1':) = 0 setzen. Dann

4

y

4' 7' ‘. l x

—2n 46g; 7:211: igg_ Bild 5.9

—1

erhalten wir nach (5.25) b, = 7% f sin vx dx = 7:27 [—cos vx]'3 = T:—21}—((—1)'*‘ + 1),

0

also b“ = 0, b2,,_, =,‚u = 1, 2, 3, ...‚ und daraus, daf(x) den Dirichlet-

schen Bedingungen in [0, 71:] genügt,

f(x) = ä (sinx + 533-31 + S‘—“55—" + (5.42)

Für x = gergibt sich

°° 1 1 1 r:
_ V-1__:= __ __...__=_ ,43(1) 2v—l 1-3+5 4’ (53)

ein Ergebnis, das bereits aus (4.22) folgte.

7 Schall, Reihen
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Beispiel 5.7: Die Funktion

o für —%<:;0‚
f(7)= n (w>0)‚

sin cot für 0 g t g -[7,

soll in eine Fourierreihe entwickelt werden. Das Bild der periodischen Fortsetzung

dieser Funktion mit der Periode 2% ist in Bild 5.10 wiedergegeben; es kann z. B.

einen durch Einweggleichrichtung entstehenden pulsierenden Gleichstrom darstellen.

„Y

7

_£ 0| JE 2.117 7;
CD (U 60

Nach (5.31) wird — mit T = 27" —

ä o -Z5 ä
w w w . 2a„—? ff(t)dt—-fi— ff(:)dz+ff(z)dz —:fs1nwtdt=;.

1: n 0 0

Entsprechend erhält man für v g 1, wenn man (5.16) benutzt,
7!

a:

N

w w . w . ‚

a, = 7;]. smwtcos vwt dt =?_E-I [s1n (v +1)wt— s1n (v — l)wt]dt,
D O

also R

_ w cos(v+l)wt cos(v——l)cut? _‚“'"Fl d (v—l)w l f" ”%2’
während für v = 1 wegen sin (v — l) cut = 0 der zweite Summand entfällt. Daraus
folgt a; = 0 und für v g 2

;(_ (—1>"+* -1 + <—1>'-1 — I)a, —

—27: v+l v-l
oder

a -0 a —L( 2 — 2 )—— 2
"'"" ‘F21: 2,u+1 2,;—1 " 7=(2„—1)(2‚4+1)’

Fürdieb‚erhältman,wennvg2gilt‚ ‚u=l‚2,3,....
f! ‘N

(A) m. . w 0b,=?fs1nwts1nvcotdt=$J.[cos(v-—l)wt—cos(v+1)wt]dt
0 O

___1_[sin(v—l)wt _sin(u+1)w:]% 0

-21: ‘V-1 - v+1 ’
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während b, = ii = i ist. Da f(t) in [— 1,2] die Dirichletschen Bedin-
27': w 2 w w

gungen erfüllt und stetig ist, gilt somit

y 1 l . 2 cos 2wt cos 4w! cos 6cutf(t) _ ; + 7s1nwt— ;(1+3 +T— +5+ (5.44)

5.6. Die komplexe Form der Fourierreihe

Die Fourierreihe (5.20) einer über [—7r, 7:] integrierbaren, mit 211: periodischen
Funktionf(x),

an °° .

—- + 2 (a, cos 11x + b, sm vx),
2 v= 1

mit den Fourierkoeffizienten (5.19) kann man auch in komplexer Form darstellen.
Hierzu benötigen wir die als Eulersche Formel bekannte Beziehung

e" = cosy + i siny . (5.45)

für reelle y, die in Band 9 hergeleitet wird. Sie Verknüpft die Exponentialfunktion
für rein imaginäres Argument mit der Kosinus- und Sinusfunktion für reelles Argu-
ment. Wird in (5.45) y durch — y ersetzt und cos (— y) = cos y, sin (-— y) = —sin y

i beachtet, ergibt sich

e"’ = cosy — isin y, - (5.46)

und daraus durch Addition zu bzw. Subtraktion von (5.45)

cosy = %(e" + 6“’), siny = 21—i(e"' — e“”) = — i2(e"' — f"). (5.47)

Mit (5.47) erhalten wir aus (5.20)

% + ä e” + e-W). (5.48)

Setzt man noch

an l l
co = —2—, c, = —§(a, — ib,)» 6-, =—5-(a„ + ib,.), v = 1,2, 3, ..., (5.49)

so geht (5.48) in
W

2 c, e"" (5.50)
v= - so

über. (5.50) ist die komplexe Form der Fourierreihe. Unter ihrer Summe ist der
Grenzwert

II

lim Z c, e”
n-ooo VB v]!

7:
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zu verstehen. Für die durch (5.49) eingeführten, sogenannten komplexen Fourier-
koeffizienten c, ergibt sich aus (5.19), (5.45) und (5.46)

co z g f/oodx,

c, e ä Jf(x)(cos}x — isin u) dx = 7:; ff(x) e“”"dx, (5.51)

T! T:

0., = ä ffoc) (cos vx + isin vx) dx = 31; Im) em dx,

"‘ _ "' v=1,2,3,...,
wofür man einheitlich

c, =51; ffoqe-Mdx, v = o, i1, i2, (5.52)

schreiben kann. Aus (5.49) ist noch zu entnehmen, daß c, und c_„ (für reellwertige
f(x)) konjugiert komplexe Zahlen sind. ‚

Man sagt, daß jede der Funktionen e“ eine komplexe harmonische Schwingung
beschreibt; (5.50) interpretiert man als Superposition (unendlich vieler) solcher kom-
plexen harmonischen Schwingungen. Die Koeffizienten c, werden komplexe Ampli-
tuden dieser Schwingungen genannt; nach (5.49) ist nämlich |c„| = {r la, I ib„|

= %\/113 + b3, also bis auf den Faktor ä gleich der Amplitude der harmonischen
Schwingung a, cos vx + b, sin vx. Die Folge der c, nennt man auch Spektralfolge
zuf(x).

Für eine Funktion f(t) mit der Periode T erhält man statt (5.50) und (5.52)

_§wc, e"""’, w = 3;, _ i (5.53)

L
2

c, = % ff(:)e~Wd:. (5.54)

~
|~

;

Beispiel 5.8: Die komplexe Form der Fourierreihe (5.44) in Beispiel 5.7 bestimmt sich
unter Benutzung von (5.49) zu

w 32/11022

f(t) = Tim“ — em") — i‘;w. (5.55)

5.7. Numerische harmonische Analyse

In den Ingenieurwissenschaften kommt es häufig vor, daß die Funktion f(t),
deren Foutierreihe benötigt wird, nur an diskreten Stellen bekannt ist oder die
Integrale (5.31) zur Berechnung der Koeffizienten zu kompliziert sind. Dann approxi-
miert man die Reihe durch ein sogenanntes trigonometrisches Polynom. Wir be-
trachten zunächst seine komplexe Form und gehen dann zur reellen über.
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Gegeben seien von einer Funktion f(t) in einem Intervall [— 1 die Werte
2 ’ 2

an den 2n Stützstellen t,, = k , k = 0, i 1, ..., i-(n — 1), —n. Wenn man sogleichW
(t) mit[T periodisch voraussetzt‚ kennt man f(t) für alle t„ mit ganzzahligem k:
es ist f(t‚„„„) = f(t„). Wir stellen die Aufgabe, f(t) durch eine Summe

‚.1

P2..(t) = "2 c. w =3T"—‚ (5.56)
l= —n

[vg]. (5.53)] zu interpolieren, d. h., wir fordern

P2‚.(ti) =f(t;.). k = 0, i1, i(n — 1), -n- ' (5-57)

Es ist cot,, = 77:, und wegen der Periodizitat der Exponentialfunktion (siehe Band 9)
ist

„ 1!eilwt‚„„ = eU(k+2n)T = eilk-,7 = einer,“

also P2„(t„2„) = P2,,(tk), so daß, wenn (5.57) für die genannten k erfüllt ist, die
Gleichung für alle ganzzahligen k richtig ist.

Für die weitere Rechnung benötigen wir die Beziehungen

Z cum,‘ e-imwtk =

k: _„ 0 sonst

"*1 {2n, wenn I — m = v - Zn, v ganzzahlig, (5 58)

für ganzzahlige m, n. Die erste folgt daraus, daß dann alle Summanden der linken

Seite gleich 1 sind. In der anderen erhält man mit z = e “"""% wegenz + 0, z + 1

und z“ = 1:

n—1 2n—1 ‘ I __ zzn
2z"=z"'Z,z'=z“" =0

k= —n 1=o 1 - Z

Multipliziert man nun (5.57), nachdem man für die linke Seite (5.56) für t = r„
eingesetzt hat, mit e‘.""“"~ und summiert über k von —n bis n — l, ergibt sich

H-v-l n-l n— iZ 2 cl ei(l—m)unk = k Z f(tk) e—imun,(.

= —rik: —n I: —n

Vertauscht man auf der linken Seite die Summationsreihenfolge, erhält man wegen
(5.58), wenn man durch 2n dividiert und l statt m schreibt,

„_ 1 ‚

5,62 f(tt)e‘“’"’k‚ I= o, i1, i(n -1),-n. (5.59)

(5.56) mit den Koeffizienten (5.59) ist die Lösung der Interpolationsaufgabe (5.57).
Vergleichen Sie (5.59) mit den exakten komplexen Fourierkoeffizienten (5.54)!

Um zu einer reellen Lösung der Interpolationsaufgabe zu kommen, setzt man

a, = c, + 0-„ b, = i(c, — 6-,), l: 0,1, ...‚n -1, I (5.60)

a. = 2c-.. b. = o. '

[vgL (5.49)). Dann folgt aus (5.59) wegen (5.47)

' n— l n— 1

a. = i 2 f(t..) (e-““"~ + em») = i 2 m) cos lwtt.
27l k= —n I’! k: —n

c,=
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1 = O, l, ..., n, und eine entsprechende Beziehung ergibt sich für die b,. Wegen der
Periodizität von f(t) und des Kosinus kann auch von k = 0 bis 2n — 1 summiert
werden. Somit ergeben sich die reellen Koeffizienten

1 Zn-l .

a, 7,- k;0f(t,.) cos lwtk, l= 0, 1, ..., n,

(5.61)
1 Zn-l

b, = — 2 f(t„) sinlwtk, I= 1,2, ...,n -1.
n k=o

Aus (5.56) folgt mit Hilfe von (5.45), (5.46) für l= 1,2, ...,n —_1:
c, e"“” + c_, e‘“”’ = a, cos lwt + b, sin lwt, und für l = 0 wegen (5.60) co e"””

00
2

eine reelle Form überführen. Er stimmt aber an den Stützstellen tk mit
<p(t) = g (c_,, e“"“" + c„ e‘"“") für c„ 2 c_,, überein, und wegen (5.47), (5.60) ist

= co = . Der noch fehlende Summand c_„ e“""" aus P2,,(t) läßt sich nicht in

q2(t) = a—2"cos mat. Wenn wir also in (5.56) den Summanden für l= —n durch

tp(t) ersetzen (die abgeänderte Summe sei mit Pf,,(t) bezeichnet), erhalten wir eben-
falls eine Lösung unserer Interpolationsaufgabe‚ und diese hat die reelle Form

n——l

Pg',,(t) = 1'23 + ,Z1(a, coslwt + b, sin lwt) + —:"—cos nwt (5.62)

mit den Koeffizienten (5.61). Die Bestimmung des trigonometrischen Polynoms
P§",,(t) aus 2n Funktionswerten von f(t) tritt an die Stelle der Fourierreihe (5.30)
von f(t) mit den Fourierkoeffizienten (5.31), wenn die am Beginn des Abschnitts
genannte Situation vorliegt. Man spricht dann von der numerischen harmonischen
Analyse. Erwähnt sei noch, daß sich (5.61) auch direkt aus (5.31) mit Hilfe der
Trapezregel herleiten läßt. Weitere Ausführungen zur numerischen harmonischen
Analyse finden sich in Band l8.

5.8. Die Größenordnung der Fourierkoeffizienten

Aus einer Rechnung, die in 5.10. durchgeführt wird, folgt, daß die Fourierkoef-
fizienten a„, b, einer in [—7:, TC] stückweise stetigen Funktion f(x) für v —> oo gegen 0
streben. Wie die Beispiele in 5.5 zeigen, können sie aber unterschiedlich stark gegen 0
gehen. So haben die Fourierkoeffizienten in den Beispielen 5.3 und 5.6 die Ordnung

0(71), in den Beispielen 5.4, 5.5 und 5.7 dagegen die Ordnung 0 (nach 4.6.1.

heißt das, daß eine positive, von v unabhängige Zahl K existiert, so daß |a„| g 7K2—,

K
|b„| g 7 für alle a: g 1 gilt). Das hängt davon ab, ob die periodische Fortsetzung

von f(x) Sprungstellen besitzt oder nicht. Eine erste, einfache Aussage über die
Ordnung der Fourierkoeffizienten macht der folgende

Satz 5.4: Es seif(x) eine mit 27: periodische, stetige Funktion, deren Ableitung im Inter-
vall [—7r, 7:] stückweise stetig ist. Dann gilt

lim m, = lim vb, = O. (5.63)
7-vw sind)
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(5.63) kann auch in der Form a, = o , b, = o geschrieben werden, d. h.‚
1

die Fourierkoeffizienten streben stärker gegen 0 als —v— .

Beweis. Auf Grund der Voraussetzungen istf’(x) über [-75, 7:] integrierbar. Bezeich-
net man die Fourierkoeffizienten vonf’(x) mit a,’ und bfi, so erhält man unter Be-
achtung der wegen der Periodizität von f(x) gültigen Gleichungf(a-:) = f(—-1:) mittels
partieller Integration

a; = ä ff’(x) cos vx dx = % If(x) sin vx dx = vb,,,

und entsprechend b; = —va,,, v = 1, 2, 3, . Da nach unserer einleitenden Bemer-
kung a_’, und b; als Fourierkoeffizienten einer in [—7r, 7:] stückweise stetigen Funktion
gegen O streben, hat man lim b: = lim a; = 0 und somit (5.63). I

zum r-wo

Allgemein gilt der folgende

Satz 5.5: Es seif(x) eine mit 2-n: periodische Funktion, die für_ alle x stetige Ableitungen S. 5.5
bis zur (k — l)—ten Ordnung (k = 1, 2, 3, ...) besitzen möge, währendf""(x) im Inter-
val] [—7r, 71:] den Dirichletschen Bedingungen genüge. Dann haben die Fourierkoejfizien-
ten vanf(x) die Größenordnung

1 1 i

a, = o(Fl=), b, = 0(75), v = 1‚2,3, (5.64)

Im Fall k = 1 erhalten wir unter den im Vergleich zu Satz 5.4 stärkeren Voraus-

setzungen dieses Satzes das gegenüber (5.63) schärfere Ergebnis a, = 0 ,

b, = O ‚ das für die Beispiele 5.4, 5.5, 5.7 zutrifft. Die Fourierreihe der Funktion

F(x) in Beispiel 5.5, deren Ableitung durchweg stetig ist und deren zweite Ableitung
in [-1-c,7r] die Dirichletschen Bedingungen erfüllt, liefert ein Beispiel, in dem die

Fourierkoeffizienten von der Ordnung 0 sind. sinngemäß gilt Satz 5.5 auch im

Fall k = 0: Wenn eine mit 27: periodische Funktion f(x) im Intervall [—rr‚ 7:] den

Dirichletschen Bedingungen genügt, gelten a, = O und b, = O
5.9. Das Verhalten der Fourierreihe einer Funktion in der ‚Umgebung einer

Sprungstelle (Gibbssches Phänomen)

Die Fourierreihe einer Funktion f(x), die im Intervall [-7-., 7:] den Dirichletschen
Bedingungen genügt, ist nach Satz 5.2 in jedem abgeschlossenen Teilintervall von
[—1:, 1:], in demf(x) stetig ist, gleichmäßig konvergent und hatf(x) als Summenfunk-
tion. In einer (beliebig kleinen) Umgebung einer Sprungstelle x0 von f(x) jedoch ist
die Konvergenz der Fourierreihe nicht gleichmäßig (das folgt aus Satz 3.3). Darüber-
hinaus zeigen die Teilsummen s,,(x) der Fourierreihe vonf(x) an einer solchen Stelle
ein eigenartiges Verhalten, das als Gibbssches Phänomen bekannt ist. Wir unter-
suchen dieses zunächst für die in Beispiel 5,6 angegebene Fourierreihe in der Um-
gebung von x0 = 0.
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Das dort erhaltene Ergebnis können wir — bei Beschränkung auf das Intervall
(—7r‚ 7:) — auch so formulieren: Die Reihe

sinx+fl1;£+Slx15J+ ‘ i (5.65)

ist die Fourierreihe der Funktion

T: ..

—2— fur —-rc<x<0,

f(x) = 0 für x = O,

i} für 0 < x < 7:

und stellt f(x) in (—i-:, TC) dar. Wir wollen das Verhalten ihrer Teilsummen‚
1 _

__— ' — 1 - 5.62" _ l sin(2n )x, ( 6)

in einer Umgebung der Sprungstelle x0 = 0 betrachten. Da die r„(x) ungerade
Funktionen sind, können wir uns auf eine rechtsseitige Umgebung yon 0, etwa auf

. 1 .

x,,(x) = smx + -3-sm 3x + +

[0, , beschränken. Um die Lage der Maxima und Minima zu bestimmen, bilden

wir s‚’‚(x):

$‘,’,(x) = cosx + cos 3x + + cos (Zn — l)x. (5.67)

Indem wir 2 sin x mit (5.67) multiplizieren,

2s‚’‚(x) sin x = 2 cos x sin x + 2 cos 3x sin x + + 2 cos (2n — l) x sin x,

und auf die Summanden der rechten Seite die aus dem Additionstheorem der Sinus-
funktion folgende Beziehung 2 cos u sin I) = sin (u + v) — sin (u — v) anwenden:

2s‚’‚(x) sin x = (sin 2x — 0) + (sin 4x — sin 2x) +

+ (sin 2nx —- sin (2n —— 2) x) = sin 221x,
erhalten wir

, (x={= O). (5.68)
sin 2nx
2 sin x

Die Formel gilt aber auch für x = 0, wenn wir in diesem Fall die rechte Seite als
sin 2nx
2 sin x ‚

folgenden Formeln für ähnliche Quotienten gelten, die in x = 0 nicht definiert sind,
aber einen Grenzwert für x —> 0 besitzen. Mit Hilfe der Doppelwinkelformel für
die Sinusfunktion folgt schließlich

s‚’‚(x) = cosx + cos3x + + cos(2n — l)x =_

Grenzwert lim (= n) interpretieren. Diese Interpretation soll auch in den
xaO

sin nx cos nx

sin x '

s‚’‚(x) = (5.69)

Die Nullstellen von s,’,(x) in [0, ergeben sich daher aus der Gleichung
2k — 1 n + ln,k=1,2,...,[ 2 .],und

. k n ‚ . n . . . .

bei x2,, = 77:, k = 1, 2, ..., [f], wobei die xi,‘ Maxima, die xn Minima von s,,(x)

sin nx cos nx = 0, sie liegen also bei x,,, =
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sind. Der Funktionswert 5„ an der ersten positiven Maximalstelle x„ = 7:-
ergibt sich wegen der aus (5.68) folgenden Beziehung

x ' x

.r„(x) = f(cost.+ C0531 + + cos (2n —1)t)dt: 5:112?’ dt -

O k O

zu
' 5-

rc l z" sin 2m
S" (E) = if sin: d’, (570)

0

und nach Substitution x = 2nt können wir

1 n: L
r: sin x 2n5„ _ E] x mi dx (5.71)

0 2n

. x
sm — ‚

schreiben. Da lim = 1 gleichmäßig im Intervall 0 g x g 7: gilt, strebt
n-voo

F
TE .. . .

s,, fur n —» oo gegen einen Grenzwert; es 1st

. r: 1 fl sin x 1 .

n1ir1;s,, — —f x dx — 3517: (5.72)
2

0

(zu Six siehe Beispiel 4.10). Das heißt, daß das erste positive Maximum von s„(x),
7E

7 R

z 0,926 liegt und damit den konstanten Funktionswert f(x) = Tz 0,785 um

0,141 übertrifft (das ist etwa das 0‚09fache der Sprunghöhe o’ = f(+0) — f(—0) = g

das bei x„ 2 angenommen wird, für große n in der Nähe des Wertes g Sin:

von f(x) an der Stelle x0 = 0). Mit wachsendem n rückt x11 näher an 0 heran, und
der Maximalwert strebt (und zwar von oben her, wie man aus (5.71) ablesen kann)
gegen l Si 7:.

Auchdiexmk = 2,3, ..., [n :1
lim s,,(x,k) existieren und sind alle größer als 54i, nehmen jedoch mit wachsendemk
n-vco

ab (und zwar ist lim s„(x„) = a; Si (2k — 1) 11:). An den Minimalstellen x1,‘ streben
-963

streben für n —> o0 gegen 0, die Grenzwerte

die Teilsummen ;„(x) für n —> oo gegen Grenzwerte, die kleiner als ä sind; die

Abweichungen gegenüber ä- werden mit wachsendem k ebenfalls kleiner. Dieses

vorstehend beschriebene Verhalten der Teilsummen s„(x) in einer Umgebung der
Sprungstelle x = 0 nennt man Gibbssches Phänomen. Es ist in Bild 5.11 für das

Intervall [— 1;, graphischldargestellt (für n = 6; der Verlaufder s„(x) für nega-



94 5. Fourierreihen

tive x ergibt sich, da s„(x) ungerade Funktionen sind, durch Spiegelung am Null-
punkt). Von einem gewissen n an verlaufen alle Teilsummenkurven y = s„(x) inner-
halb des in Bild 5.12a skizzierten Gebietes; als Grenzkurve für n -—> no ergibt sichder
bei x = 0 nach oben und unten um jeweils 9 % der Sprunghöhe verlängerte Strecken-
zug, Bild 5.l2b.

Das am Beispiel beschriebene Gibbssche Phänomen zeigt sich allgemein in
der Umgebung einer Sprungstelle einer in [—7r‚ 1:] den Dirichletschen Bedingungen

y _y=s,(x) ‘

Ä.
I’ _ _ __ -

l 0 J;
7T __2_ 2 ‘ x

_ __ _ __{_£
4

BiId5.11

l
J’

lL-____j
4

mm
_J_r E. x

2 2

__£
4

a) b)

Bild 5.12

genügenden Funktion f(x). Wenn x0 e[—1:, 1c] eine Sprungstelle von f(x) mit der
Sprunghöhe a = f(xo + 0) — f(xo — 0) ist, so ist s„(x„) wenigstens näherungsweise
gleich %(f(x0 + 0) + f(xo — 0)). In einer rechtsseitigen Umgebung von x0 steigt
s„(x) zunächst steil an bis zu einem Wert, der in der Nähe von

—ä—(f(xo +0) +/(x„ — 0)) +%Si7r =f(xo + 0) +a(—S—;1—%)



5.10. Approximation im quadratischen Mittel 95

Si T: — ä z 0,09, so daß s„(x) den rechtsseitigen Grenzwertf(x„ + 0) umliegt (es ist T:

etwa das 0,09fache der Spnmghöhe übersteigt), und oszilliert dann um f(x), wobei
die Beträge der jeweils größten Abweichungen von s„(x) gegenüberf(x) mit der Ent-
fernung von der Sprungstelle x0 abnehmen. Entsprechend fallt s(x) von x0 aus nach

Sin l
links steil ab bis zu einem Wert nahe f(x„ — 0) — o‘ (T — i) und oszilliert dann
ebenfalls umf(x).

5.10. Approximation im quadratischen Mittel

Abschließend sollen die Fourierkoeffizienten noch unter einer anderen Aufgaben-
stellung betrachtet werden. Dabei fassen wir die Ausführungen allgemeiner als
bisher und werden auf die speziellen Fourierkoeffizienten erst am Ende des Ab-
schnitts zurückkommen.

Wir gehen anstelle von (5.17) von einem allgemeinen orthogonalen Funktionen-
system aus. Der Begriff der Orthogonalität ist aus der Vektorrechnung bekannt:
zwei Vektoren +0 heißen orthogonal, wenn ihr Skalarprodukt gleich null ist. Ver-
allgemeinernd versteht man unter dem Skalarprodukt von zwei auf einem Inter-
vall [(1, b] definierten, reellwertigen und quadratisch integrierbarenl) Funktionen f, g

b

über diesem Intervall das Integral f f(x) g(x) dx und nennt f, g über [41, b] ortho-

gonal, wenn ihr Skalarprodukt null ‘ist und f, g in [Lb] nicht identisch verschwinden.
In Analogie zum Betrag eines Vektors a, [a] = \/aa, definiert man die Norm einer

u J.

solchen Funktionfdurch I]f ll = ( f f2(x) dx)z . Wir kommen zum Begriff des ortho-
gonalen Funktionensystems. a

Definition 5.2: Eine Menge von in einem Intervall [a, b] definierten, nicht identisch ver-

schwindenden, reellwertigen, quadratisch integrierbaren Funktionen zpo(x), q2,(x),
tp2(x), heißt ein ärthogonales Funktianensystem über [a, b], wenn

b

_]:p„(x) ¢p,,(x) dx = 0 für alle u + v, ‚u, v = 0, l, 2, ..., (5.73)
a

gilt. Wenn außerdem

b .

„m12 = fgflx) dx = 1 für alle v = o, 1, 2, (5.74)
a

erfüllt ist, heißen die zp„(x) normiert und die Menge {q2,(x)} ein Orthonormalsystem
(ONS).

Wenn {fi,(x)} ein zwar orthogonales System, aber kein ONS ist, bildet die Menge

[zp„(x)} mit zp,(x) = fifxx) ein ONS, da dann (5.74) erfüllt ist. Wegen f dx = 21-.

—rr

b

') f(x) heißt quadratisch integrierbar über [11, b], wenn j f2(x) dx existiert.
a

D. 5.2 -
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und (5.15) entsteht aus dem orthogonalen System (5.17) durch Normierung

l l l .

990(35) = 1m(x) = VT;cosx, 1m(x) = $511121,

1 I .

<p2,(x) = Tees 2x, q722(x) = 7_~s1n 2x, (5.75)
7C TC

als ONS über [—rr‚ 7:]. Ein weiteres ONS, und zwar über [-1, 1], bildet die Menge
2n + 1

2
der Funktionen g9„(x) = A/ P„(x)‚ wobei die P„(x) die Legendreschen Poly-

nome sind (siehe Beispiel 4,19).
Man kann nun den Begrifl der Fourierreihe dahingehend verallgemeinern, daß

man statt von (5.75) von einem beliebigen ONS ausgeht.

Definition 5.3: Es sei {<p„(x)} ein ONS über [a, b], undf(x) eine über [a, b] quadratisch
integrierbare Funktion (f(x)‚ q2,(x) reellwertig). Dann'hei/fen die Zahlen

_ b

c, = ff(x) qv,(x) dx‚ v = O, 1, 2, (5.76)

die (verallgemeinerten) Faurierkoeffizienten van f(x) bezüglich des ONS {zp,.(x)}, und
U3

die mit diesen gebildete Reihe Z c„q:‚(x) heißt (verallgemeinerte) Fourierreihe bezüg-
v:0‘

WI {<Ia(x)}- .

‘Wir beleuchten nun eine interessante Eigenschaft dieser c„. Dazu stellen wir
zunächst die Frage, wie man eine Funktion f(x) der in Definition 5.3 genannten
Art mit den ersten n + 1 Funktionen eines ONS, und zwar durch eine Summe

a,,(x) = z" d, ,(x), n fest, (5.77)
v: 0

möglichst gut approximieren kann. Als Maß für die Güte der Approximation ver-

wenden wir den mittleren quadratischen Fehler 6„ zwischen f(x) und a„(x), der
durch

b

Ö‚. = lIf-‚ Uni!’ = f((f(x) - <7..(x))2 dx (5.78)

definiert ist. Eine Approximation mit dieser Forderung nennt man Approximation
im quadratischen Mittel. Ofl"enbar muß, damit 6„ möglichst klein ausfällt, der Betrag
]f(x) — ,,(x)| im gesamten Intervall [a, b] klein sein (oder er darf höchstens in sehr
kleinen Teilintervallen große Werte annehmen), so daß 6,, tatsächlich ein Maß für
die Approximationsgüte ist. Nun gilt folgender

Satz 5.6: Der mittlere quadratische Fehler 6,, nimmt sein Minimum an, wenn die Koeffi-
zienten d, in (5.77) gleich den Fourierkoeffizienten co, C, , ..., c„ (siehe (5.76)) sind.

Mit anderen Worten heißt das, daß die beste Approximation erhalten wird,
wenn (5.77) als n-te Teilsumme der Fourierreihe von f(x) bezüglich {zp„(x)} gewählt
wird. ‘ ‘ '

Beweis zu Satz 5.6: Aus (5.78) folgt
b b

6„ = ff2(x) dx — 2 fflx) <r„(x) dx + jbI1§(x)dx. K (5.79)
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Wegen (5.76, 5.2.2. sowie (5.73), (5.74) ist

I’ n n

ff(x) U..(x) dx = E) (h) f(X)<m(x) dx = ;0€..d„‚

‚ b „ b „ „

I a%<x)dx = god: Max) ax + z_od.d.¢.(x)«p,(x) = god},

so daß (5.79) in _

ö„ =11/(12 — 2 fioad. + id: = nfw — figs: + _io(c. — d)’ (5.80)

übergeht. Somit wird 6„ am kleinsten, wenn die letzte Summe verschwindend. h.
wenn d, = c, gilt, was zu beweisen war. I

Aus (5.80) entnimmt man 2 cf g HfH2, und da das für jedes n richtig ist,
v=0 V

goo: g llfllz- (5.81)

(5.81) heißt Besselsche Ungleichung. Aus ihr folgt insbesondere die Konvergenz
w

der Reihe 2 cf und daher lim c, = 0. Wenn in (5.821) sogar das Gleichheitszeichen
steht, v =0 H eo ‘

E c: = Hfll’. (5.82)
7:0 .

heißt das ONS der {(p„(x)} vollständig, und (5.82) heißt Vollständigkeitsrelation
oder Parsevalsche Gleichung. Sie besagt wegen (5.80), daß 1im6,, = 0 für d, = c,
oder "'*°°

b ‚_ 1 '

lim f (f(x) — z c, ,(x)) dx = 0 (5.83)
n-voo H .=o

gilt. In diesem Fall sagt man, daß die Fourierreihe von f(x) bezüglich {(‚v„(x)} in
[a, b] im quadratischen Mittel gegenf(x) konvergiert.

Wenden wir die Ergebnisse auf das spezielle ONS (5.75) an, so folgt aus (5.76)

1 n ‘ ~ _ _

vo= J; ff(x)ax=/gao, C'.»1=\//77”“ Cy: =Jv=b-., (5.84)

a,, b, nach.(5.19). Die trigonometrische Summe

“o
2

ist nach Satz 5.6 beste Approximation für eine Funktion f(x) in [—7c,7:] im Sinne
des quadratischen Mittels, wenn IX, = a,,, ß, = b, gilt. Fernerist lim a„ = lim b, = 0.

Ohne Beweis sei mitgeteilt, daß das ONS (5.75) vollständig istflgaher k-oävergiert
die gewöhnliche Fourierreihe einer quadratisch integrierbaren Funktion f(x) in

n

+ 2 (ac, cos vx + ß, sin vx)
v:l
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[-71, 7:] im quadratischen Mittel gegen f(x), und die Gleichung (5.82) besagt wegen
(5.84) .

"ä w 2 2 1 W 27 + ;1(ay + 12,) z i? ff (x) dx. (5.35)

-7:

Aufgaben :

Aufgabe 5.]: Entwickeln Sie die Funktion

0 für —rr < x g 0

f(X)={x
F

u»

für 0gx<7r

in eine Fourierreihe (machen Sie sich anhand einer Skizze den Verlauf der periodi-
schen Fortsetzung klar)!

4(
- Aufgabe 5.2: Die Funktion f(x) = [sin xl, —rr g x g 77, soll in eine Fourierreihe

entwickelt werden (Skizze!) Welche Ergebnisse kann man aus der Reihe für x = 0

t bzw. für x = i; entnehmen?

ab Aufgabe 5.3: Entwickeln Sie die Funktion f(x) = 7v:x — x’, 0 g x g n, in eine reine
Sinusreihe! Begründen Sie die Größenordnung der auftretenden Fourierkoeffizienten!

Aufgabe 5.4: f(x) sei die mit 27: periodische Funktion, deren Verlauf in Bild 5.13
wiedergegeben ist. Geben Sie die Fourierreihe von f(x) an!

4*

„v

-| 7 ä ä
I | t
I_ I 4' l I l J Ä

_Z7c‚ fag o 1t_ 2_7;_ at .g;r m: 27: x

|__J _, 3 3 |_3__I3 Bild5.l3

a: Aufgabe 5.5: Entwickeln Sie die Funktion f(x) = 3 — x, —2 < x g 2, f(x + 4k)
= f(x) (k = i1, i2, ...) in eine Fourierreihe! Skizzieren Sie im Intervall
-2 < x g 2 die Bilder der Teilsummen r‚(x)‚ .r2(x), s,(x)!

Bild 5.14
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Aufgabe 5.6: Die Funktionf(x) habe im Intervall [—2‚ 2] den in Bild 5.14 skizzierten an

Verlauf und sei periodisch mit der Periode 4. Bestimmen Sie die Fourierreihe der
Funktion f(x)! Begründen Sie, warum in diesem Beispiel b, = 0 für alle geraden v,

l

b, = 2 ff(x) sin v -7; x dx für alle ungeraden v gilt!
0

‚V

7

/.\_ /.\
—T T

"21 l 2L . x Bild 5.15

Aufgabe 5.7: Das Bild der Funktion f(t) bestehe aus einer Folge sich periodisch 4:

wiederholender Dreiecksimpulsc der Höhe 1 und der Dauer r, die Periodenlänge sei
T (siehe Bild 5,15). Stellen Sie die Fourierentwicklung von f(t) auf!
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6.1. Das Fouriersche Integraltheorem

6.1.1. Übergang von der Fourierreihe zum Fourierintegral

Die Verwendung von Fourierreihen für die Darstellung von Funktionen ist auf
periodische Funktionen beschränkt (bzw. auf solche, die in einem endlichen Intervall
‘definiert sind, die man sich jedoch über dieses hinaus periodisch fortgesetzt denken
kann). Im folgenden wird angedeutet, wie man durch Verallgemeinerung der Ergeb-
nisse über Fourierreihen zu einer Darstellung einer in einem unendlichen Intervall
definierten, nicht-periodischen Funktion gelangt. Hierbei tritt an die Stelle der Reihe
ein Integral, das man Fourierintegral nennt. - A

Es sei f(x) eine Funktion, die a) in jedem endlichen Intervall [— g, die

Dirichletschen Bedingungen erfüllt und b) über (— oo, eo) absolut konvergiert
W

_ 2 ’ 2

die Fourienfeihe (5,30) — mit x statt t -— an den Stetigkeitsstellen dieses Intervalls die
Funktion f(x) dar. Es gilt dort also, wenn die a„ b, gemäß (5.31) eingesetzt werde
und anschließend das Additionstheorem der Kosinusfunktion benutzt wird, g '

(d. h.‚ daß |f(x)| dx existiert). Betrachten wir f(x) zunächst in [— Z , so stellt

ls la

f(t) (cos vwt cos vwx + sin vwt sin vwx) dt,f(x) = 3T- f(t) dz + %yi

n|
~

]
w

e
n
n
“

|

n|
>

q
ta

fe
ln

.“

o0

f(x) =1, ffmdr + 7,2
=1

N

é

f(t) cos vw(t — x) dt. H (6.1)

l

N
IN

]„I.
2

Zu der gewünschten Darstellung gelangt man durch Grenzübergang T—> o0. Dann
strebt der erste Summand von (6.1) gegen 0, weil

n|
-3 T

f(t)dt 2% lf(t>ldt giT f lf(t)ldt

7

v»
:

l
T

—oou
m

?

gilt und das letzte Integral nach Voraussetzung b) konvergiert. Setzen wir im zweiten
Summanden

w.=——. A«».=w.+1—w. =27“<v+1-v>=27",
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so wird
I I
2 z

2 °° 1 °°7 ä j f(t) cos vw(t — x) dx = ? Ä ffa) cos w,(t — x) dt Aw‚.
v- — l v- — 1

2 2 (6-2)

Jede Teilsumme der hierdurch erhaltenen Reihe von der Form E) g(a>,) Aw, kann als
v=l

Riemannsche Summe zum bestimmten Integral über g(w) zwischen 0 und einer ge-
wissen (mit v —> oo unbeschränkt wachsenden) oberen Grenze aufgefaßt werden und

G)

die Reihensumme selbst als Näherungswert für das uneigentliche Integral f g(w) dw.
o

Wenn die rechte Seite von (6.2) für T —> oo und somit Awv —> 0 einen Grenzwert be-
sitzt, kann man Vermuten, daß die Summe in das uneigentliche Integral bezüglich w

mit den Grenzen 0 und oo übergeht, wobei zugleich die Grenzen des inneren Integrals
— eo und oo werden. Der folgende Satz bestätigt die Richtigkeit dieser Betrach-
tungen.

Satz 6.1 (Fouriersches Integralthearem): Eine Funktionf(x) möge über (— o0, o0) abso-
Iut integrierbzzr sein und in jedem endlichen Intervall die Dirichletschen Bedingungen
erfüllen. Dann gilt für alle x die Beziehung

—;—(f(x + o) + f(x — 0)) = ä J ff(t) cos w(t — x) dt dcu. (6.3)

0 —oo

An jeder Stetigkeitsstelle von f(x) steht auf der linken Seite f(x). (6.3) gibt dann
(vom Faktor 1/7: abgesehen) eine Darstellung fürf(x) durch ein Integral; dieses heißt
Fourierintegral.

Unter Berücksichtigung des Additionstheorems für die Kosinusfunktion kann
man für (6.3)

f(x) = _°(°(a(w) cos wx + b(w) ‘sin wx) dw, (6.4)

a(w) =~;— ff(t)coswtdt, b(w)

—oo

schreiben. Die Darstellung (6.4) erinnertvon der Form her an die Fourierreihe
(anstelle des Summenzeichens steht hier ein Integral), und die Funktionen (6.5)
ähneln den Fourierkoeffizienten (anstelle des Index v steht der kontinuierliche
Parameter w).

Das erhaltene Resultat läßt sich physikalisch wie folgt interpretieren. Während
eine periodische Funktion, die die Dirichletschen Bedingungen erfüllt, ein diskretes
Frequenzspektrum besitzt, d. h. sich als unendliche Reihe von reinen Sinusschwingun-
gen mit diskreten Frequenzen darstellen läßt, ist eine nichtperiodische Funktion unter
den Voraussetzungen des Satzes 6.1 als Integral über Sinusschwingungen mit stetig
veränderlicher Frequenz w darstellbar (kontinuierliches Frequenzspektrum). An die
Stelle der Fourierkoeffizienten a„‚ b„, die im diskreten Fall die Amplitude der Harmo-
nischen mit der Kreisfrequenz wo bestimmen (siehe 5.1), treten im kontinuierlichen
Fall die Funktionen a(w)‚ b(w), die man Amplitudendichten nennt. Bei einem konti-
8 Schall, Reihen

g ff(t) sin wt dz (6.5)

S. 6.1
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nuierlichen Frequenzspektrum kommt nämlich einer einzelnen Frequenz die Ampli-
tude O zu, und die Amplitudenverteilung über einzelne Frequenzintervalle ist durch
die Amplitudendichten bestimmt. Der Anteil der in f(x) enthaltenen reinen Sinus-
schwingungen mit Frequenzen aus dem Frequenzintervall [m0, wo + Aw] ergibt sich
aus der Nähenmgssumme für das Integral auf der rechten Seite von (6.4) angenähert
zu (a(wo) cos wax + b(wo) sin wox) Aw, und zwar um so genauer, je kleiner Aw ist;
die Amplitude dieser Schwingungist \/a’(wo) + b2(wo) Aw.

Beispiel 6.1: Die Funktion

e""‘, a > O, für x > O,

f(x)_{0 für x<0
ist für alle x 4: O stetig und erfüllt oflenbar in jedem endlichen Intervall die Diriehlet-
sehen Bedingungen; sie ist ferner über (— o0, oo) absolut integrierbar: ‘

‚ O0 no

J1/(x): dx — fc-nxd — [—ie—-=x]°° -1
E x — ll o H a I

— 00 0

Satz 6.1 ist also anwendbar. Für das innere Integral in (6.3) ergibt sich
eo

:Ff(t) cos w(t — x) dz = fr” cos w(t — x) dt
- 00 Ü

W

z [is-M sin w(t — n] °°+ —"— f e“‘" sin w(t — 3c) dt
a) o w

Ü

o0

— 1 sin( wx) + h [ 1 e""cosw(t x) w- dz fe‘“’cosw(t x)dt
_ cu w co o co’ ’

0

woraus ‘ ' '

O0

fr" cos w(t — x) dt =

O

w’ ( sin wx a
e + —— cos wx
a2 + w’ w’CU

_ a) sinwx + acoswx

_ a2 + w’
folgt. Somit lautet die Darstellung vonf(x) durch ein Fourierintegral:

O0

1 w sinwx + acoswx

f“) - I i ‘72T— da), (6.6)

x =l= 0. Für x = O aber hat die rechte Seite nach Satz 6.1 den Wert ä, was sich durch
unmittelbares Ausrechnen sofort bestätigen läßt.

6.1.2. Kosinus- und Sinusform des Fourierschen Integraltheorems

Wie bei den Fourierreihen die Fourierkoeffizienten, so spezialisieren sich bei
Fourierintegralen die Funktionen a(cu) und I7(w) in (6.5), wenn f(x) eine gerade bzw.
ungerade Funktion ist. Für gerade Funktionen f(x) ergibt sich aus (6.5) bzw. (6.3)
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für die Stetigkeitsstellen x von f(x)

b(u_)) = 0, a(w) = ä ff(t) cos wt dt, (6.7)

f(x) = 72:-fcoswx ff(t) cos wtdz) dw, (6.8)

für ungerade Funktionenflx)

a(w) = o, “ (‚(00) = ä Im) sin out dt, (6.9)

0

f(x) = %fs1nwxUf(1)s1nwzdz du). (6.10)

0 0

(6.8) bzw. (6.10) nennt man die Kosinus- bzw. Sinusform des Fourierschen Integral-
theorems.

Insbesondere kann man eine für 0 g x < oo definierte Funktion f(x)‚ die dort
den Voraussetzungen von Satz 6.1 genügt, an ihren Stetigkeitsstellen mit Hilfe
von (6.8) bzw. (6.10) als Integral darstellen. Dabei kann man sich f(x) für negative
x durch f(x) =f(—x) bzw. f(x) = —f(—x) definiert denken. In x = 0”istf(x) bei
gerader Fortsetzung immer stetig, bei ungerader genau dann, wenn f(0) = 0 gilt.

Beispiel 6.2: Für die stetige Funktion f(x) = e‘"", 0 g x < oo (a > O), ergeben sich
wegen

o0 Ü)

_ a _ . coJ‘e’"coswtdt=-ajfi, Je“’s1nwtdt=m
D

(vgl. Beispiel 6.1) aus (6.8) bzw. (6.10) die Darstellungen
no

2a cos tux
e""‘ W —a—2Tw7dw, 0§x<oo, ‘ (6.11)

O

O3 I .

eeaxzijfi‚’+'nwf dw, 0<x<oo. . (6.12)
713 d +10

0

Die rechte Seite von (6.11) stellt für alle x die Funktion e'”|‘l dar, die rechte Seite
von (6.12) stellt für x < 0 die Funktion —e""‘ dar und verschwindet für x = 0.

6.2. Die komplexe Form des Fourierintegrals

Wir bemerken zunächst, daß das innere Integral in (6.3) eine bezüglich w gerade
Funktion g(x‚ m) ist. Daher darfim Argument des Kosinus auch cu(x —— t) geschrieben
st
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werden, außerdem gilt
D0 0G

I
fg(x.w> dw = 7 fgoc, w) aw,

0 — no

und‚es folgt aus (6.3) an den Stetigkeitsstellen von f(x)

f(x) = f ff(1) cos w(x — t) dt da). (6.13)

—oo -00

Wenn f(x) fiber (-00, oo) absolut integrierbar ist, existiert auch das Integral
eo

f f(t) sin w(x — t) dt und ist eine stetige, offenbar ungerade Funktion bezüglich w.
— eo

Daher gilt
J.
z no

f ff(t) sin w(x — t) dt dw = 0 für jedes I > 0,

und folglich existiert auch der Grenzwert der linken Seite für I —> oo und ist gleich 0.
Somit haben wir, wenn wir noch durch 27c dividieren,

2% f ff(t)sinw(x — t)dtdw = o; (6.14)

dabei ist wegen der Art des Grenzübergangs das Integral bezüglich w hier wie im
folgenden als Cauchyscher Hauptwert aufzufassen, ohne daß wir das durch eine
besondere Bezeichnung zum Ausdruck bringen (siehe Band 2, ll.1.2.). Unter den
Voraussetzungen von Satz 6.1 wird im allgemeinen dieses Integral nicht als
uneigentliches Integral existieren.

Durch Addition von (6.13) und der mit i multiplizierten Gleichung (6.14) ergibt
sich

f(x)=—21;f feW—*>f(1)dzdw. v (6.15)

—co —oo

Diese Beziehung gilt unter den Voraussetzungen von Satz 6.1 für jede Stetigkeitsstelle
vonf(x). Das äußere Integral in (6.15) ist die komplexe Form des Fourierintegrals.

Beispiel 6.3: Für die in Beispiel 6.1 betrachtete Funktion

= 1:” :1: ::3’
erhält man aus (6.15) wegen

a>0‚

eo o0

feimx-nfo) dt : eiwx J eA(a+iw)t dt =

-130 O

eiwx

a+iw
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folgende Darstellung durch ein komplexes Fourierintegral:

1 w eialx
f(x) =F fmdx. . (6.16)

—— eo

Wenn man den Integranden in Rcal- und Imaginärteil zerlegt, ergibt sich wieder (6.6).

6.3 . Die Fourier-Transformation

6.3.1. Definition der Fourier-'I‘ransformation

Gleichung (6.15) kann auch in der Form

f(x) = 2L” j e"“"( f e-"‘"f(t)dz) da: (6.17)

—oo —oo

geschrieben werden.‘ Das in der Klammer stehende Integral ist eine Funktion allein
von w, die wir mit F(w) bezeichnen wollen. Wir haben also

F(w) = f e’“""j"(x) dx, (6.18)

und aus (6.17) folgt

00

f(x) = % I e"“"F(w) dw. (6.19)

-no

Das Integral in (6.18) existiert sicher dann, wenn f(x) über (——oo‚ oo) absolut inte-
grierbar ist. Unter dieser Voraussetzung ordnet (6.18) der Funktionf(x) eindeutig die
Funktion F(w) zu. Umgekehrt erhält man aus F(w), wenn die Voraussetzungen von
Satz 6.1 erfüllt sind, mit Hilfe von (6.19) wieder f(x)‚ allerdings nur an den Stetig-
keitsstellen (an einer Sprungstelle von f(x) ist die rechte Seite von (6.19) gleich
’z(f(x + 0) +f(x - 0D)-

Definition 6.1: Die durch (6.18) gegebene Zuordnung von F(w) zu f(x) heißt Fourier- D. 6.1
Transformation, und F(w) heißt die Fourier-Transformierte von f(x). (6.19) nennt man
Umkehrformel zur Fourier-Transformatian, die durch sie bestimmte Zuordnung Rück-
transformation zur Fourier-Transformatian und f(x) eine inverse Fourier-Transfar-
mierte zu F(w). Man schreibt auch

F(w) = is-{f(x)}. f(x) = 5«-‘{F<w>} (6.20)

anstelle von (6.18), (6.19).

Aus der Definition geht hervor, daß zwei Funktionen, die sich nur an endlich vielen
Stellen voneinander unterscheiden, die gleiche Fouiier-Transformierte besitzen. Wenn
unter allen Funktionen mit der gleichen Fourier-Transformierten F(w) eine stetige
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Funktion f(x) existiert, so ergibt sich bei Anwendung der Umkehrformel (6.19) auf
F(w) diese Funktion f(x). Es gibt Tabellenwerke, in denen eine Vielzahl zusammen-
gehöriger Paare von Funktionen f(t)‚ F(w) verzeichnet ist (s. z. B. [1]).

In der Elektrotechnik nennt man die Fourier-Transformierte F(w) von f(x) Fre-
quenz- oder Spektralfunktion (exakt auch Spektraldichtefunktion) von’ f(x). Der
Zusammenhang zwischen F(w) und den in (6.5) eingeführten Amplitudendichten
a(w)‚ b(w) ergibt sich mit Hilfe der Eulerschen Formel zu

F(w) = ff(x) cos wx dx — i _T)f(x) sin cox dx = 7:(a(w) — ib(w)). (6.21)
-00 —w

Die rechte Seite von (6.19) kann man, wie die von (6.4), als Superposition von —

jetzt komplexen ~ harmonischen Schwingungen e"“" auffassen, wobei alle reellen w

als Frequenzen auftreten; die entsprechende Darstellung für periodische Funktionen
' no

f(x) der Periode 2-n: ist die durch ihre Fourierreihe in komplexer Form,f(x) = c, e”",
in der nur diskrete Frequenzen enthalten sind. Setzt man noch "= ‘ °° .

so») = im») = ä («z») — im»), ' (6.22)

‘so geht (6.19) über in

f(x) = fe"“"S(a)) da). (6.23)

Zu der komplexen harmonischen Schwingung mit der Frequenz w gehört jetzt der
„infinitesimale“ Faktor S(q)) da), weshalb man S(w) auch komplexe Amplituden-
dichte nennt. Die (reelle) Funktion lS(cu)| = %\/a’(co) + b’(w) heißt — wie a(c'o)
und b(w) — Amplitudendichtefunktion; es -findet sich auch hier wie für
[F(w)| = 27r|S(cu)] die Benennung Amplitudenspektrum.

Die Bedeutung der Fourier-Transformation für die Elektrotechnik besteht darin,
daß gewisse Eigenschaften eines durch eine zeitabhängige Funktionf(t) ~ kurz Zeit-
funktion genannt — gegebenen Signals besser an der zugehörigen Frequenzfunktion
F(w) untersucht werden können als direkt anf(t). Dabei erweist es sich als bedeutsam,
daß neben den in den erwähnten Tabellenwerken enthaltenen speziellen Zuordnungen
eine Anzahl allgemeiner Regeln für das Rechnen mit Fourier-Transformierten zur
Verfügung steht (siehe hierzu Band l0).

Beispiel 6.4: Aus Beispiel 6.3 entnehmen wir, daß die Fourier-Transformierte der

Funktionf(x) = {gm J’: : a > o, die Funktion Fa») = ist

1 für |x[ <a
0 für IX’ > a, a > 0 (Rechteckimpuls). Dann be-Beispiel 6.5: Es sei f(x) = g

rechnet sich die Fourier-Transformierte von f(x) nach (6.18) zu

a —imn __ la:

F(w) = J-e““"1 dx = — [e'“”"]‘Z,, = — ä
—n
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Wenn man noch die Eulersche Formel oder die zweite der Beziehungen (5.47) ver-
wendet, hat man als Fourier-Transformierte von f(x)

F(w) = mi”. (6.24)

6.3.2. ‚Die Fouriersche Kosinus- und Sinustransformation

Man kommt zu zwei weiteren Integraltransformationen, wenn man von der Kosinus-
form (6.8) bzw. Sinusform Q10) des Fourierschen Integraltheorems ausgeht. Nehmen

wir in (6.8) den Faktor J5? in die innere Klammer hinein,

f(x) = fees wx ff(t) cos cut cit) dw, (6.25)

0 0

und bezeichnen die Klammer in (6.25) mit F„(w), so erhalten wir ein den Beziehun-
gen (6.l8) und (6.19) entsprechendes Gleichungspaar, nämlich

F„(w) = Jf(x) cos wx dx, f(x) = I F,(w) cos wx dw. (6.26)

D O

Die durch die erste Gleichung (6.26) definierte eindeutige Zuordnung von F„(w)
zu f(x) heißt Fouriersche Kosinustransformation; durch die andere ist die Rück-
transformation bestimmt. Wenn f(x) für x g 0 definiert ist und dort die Voraus-
setzungen von Satz 6.1 erfüllt, existiert F„(w) für beliebiges w, und die zweite Gleichung
(6.26) liefert für x g 0 wiederf(x)‚ wenn diese Funktion stetig ist. Offenbar ist von

den Funktionenf(x) und F„(w) eine die Kosinustransformierte der anderen.
Wenn man von (6.10) ausgeht, erhält man entsprechend, sofern f(x) für x > 0

definiert ist und dort die Voraussetzungen von Satz 6.1 erfüllt, das Paar

1~}(w) = A/-§6[f(x) sin wx dx, f(x) = A/%J‘f‘_,(w) sin wx da) (6.27)

(x > 0). Die Zuordnung (6.27) heißt Fouriersche Sinustransformation. Aus (6.18)
folgt nach der Eulerschen Formel, wenn f(x) eine gerade bzw. ungerade Funktion
ist,

F(cu) = 2/;- F„(w) bzw. F(w) = —2igF_‚(w). (6.28)

Beispiel 6.6: Aus Beispiel 6.2 erhält man für f(x = e""‘, 0 g x < o0, a > 0, die
Fouriersche Kosinus- bzw. Sinustransformierte

_ 7 a H J7 a)

F‘(w)_*/7c_a‘+w” F‘(w)~ _7:_a‘+w"
Nach (6.28) wird daher die Fouriertransformierte von f(x) = e"‘|"' gleich

2a

W’) =
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Aufgaben :

t Aufgabe 6.1: f(x) sei ein Dreiecksimpuls gemäß Bild 6.1. Es sollen F„(w) und F(w)
bestimmt werden.

Bild 6.1

* Aufgabe 6.2: f(x) sei ein Doppelrechtecksimpuls gemäß Bild 6.2. Es sollen F‚(w) und
F(w) bestimmt werden.

1--———a

'2-7fy___j___, i '2]! X

Bild 6.2

at Aufgabe 6.3: Die Fourier-Transformierte der Funktion f(x) = €“"‘2, ll > 0, ist ZU
Q

berechnen! (Anleitung: Es ist f 6“’ dt =„/n.)
-—oo

x Aufgabe 6.4: Die Fourier-Transformierte der Funktion

sinx für lxl g 7:,f(x) ={ 0 für Ix‘ > T: ist zu berechnen!



Anhang

Zusammenstellung wichtiger Potenzreihen

Funktion und Potenzreihenentwicklung Gültigkeits- Formel-
bereich nummer

a °‘ a 2 °° 3 ’(1+x) =l+ k x+ k x + k x +... areell (-1,1) (4.17)

Spezialfälle:

k 1 k 2 k 3
(1 +x)"“‘=1—( J1" )x+( Z )x2—( "g )x3+ ...‚k=o‚1‚2,... (—1,1) Bsp.4.4

11_x=1+x+x2+x3+... <—1‚1) (2.5)

——_ 1 12 1~3 3 1-3-5 ‚t\/1+x—1+-3x~?.-1-x+f_6x~2.4.6‘8x +... [-1.1] (4.19)

1 1 1-32135313~5~74\/1+X—1——§-x+2_4x—246x+24_6_8x—... (1,1) (4.20)

x x2 x3ex—l+fi+'fi+fi+nvn (-00,00) (4.11)

x x 1; B B6
e,_1 =l——2*+T2x2+-fix‘+-6—!-x5+ (—21r,27:) (4.57)

2 3 4

]n(1 +x)=x~—x§—+33——-:—+ (—1,1} (4.14)

1+ 3 S 7

1n1_:=2(x+x?+x?+i7—+...) (—1,1) (4.16)

3 5 7

sinx-_-x—-§—'-+%-—%+... (—oo,oo) (4.12)

x2 x‘ x‘cosx=1—T+—‘F—-E-+... (—oo,oo) (4.12)

1 2 7tanx=x+Tx3+Fx5+ 315 x7+

22n 22n_1 R"
+ (~1Y‘1 x’”"+... (4.53)

1 1 2 22-B
xcotx=1——x2 ‘ ——— 6—...+(—1)" "‘x1"+... (-11:,1:) (4.62)

3 “E” _ 945 x (2).)!
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Funktiongund Potenzreihenentwicklung Gültigkeits- Formel-
bereich nummer

_ l 2
s1n’_x=x2—Tx‘+ T5-X6 — ...‘) (—oo,oo) (4.28)

_ 1 l3
s1n3x=x3»——2—x5 +mx7 —— ...1) (-00, o0) (4.29)

sin: " 1 2 l 4 l 5 1e _=1+Lx+—2-x —-8-2: —~Fx —...) (—oo,oo) (4.69)

‚ 1 1 1 l

In (1 + sin_x) =‘ x — -2—x2 + ?_x3 — 1—2x‘* +1) (4.31)

_ _ 1x3 1-3 X5 l‘3'5 x7 11 4°4
arcsmx—x+2—3-+2_4 5+2.4_6 7+ (—,) (._)

t — x3 X5 x7 1 1 422arcanx—x—3+5-7+. [-,] (.)

(arctan'x)’ ='x2—A-1- 1+: x“+i I+—1—+—l— x5 — (-1 1) Aufg47
_ _ 2 3 3 3 5 ‚ . .

_ x3 x5 x7Slflhx=X+T+F +T‘+ (-00, 00) (4.13)

. X2 x‘ x5
cosh_x =1 + -2-T + 7 + (—oo, o0) (4.13)

l l 2 22"B
xcothx = 1 + —3‘x2 — T5-x‘ + 945 6 an)?‘ X2" (-7,77) (4-51)

„h_ Ix213x5135x7 ll 426arslnx—x——23+245——2‘467+ (—,) (.)

x x5 x7
artanhx=x+——+—+—+ (-1,1) (4.25)

3 5 7

_ x3 x5 x7
S1x=x— 3_3‘ + 5.5! 7 7| +.. (—oo,oo) (4.33)

2 x3 x5 x7erfx-=-7: x—fi+fi—W+ (-00,00) (4.35)

F k 7' Kk "1 1 21:2 1'3 2k‘ o1 44s.2—()—'2— +2 +W +-~~ I.) (~)

E k " Ek 7° 1 1 zkz “y” 1'3'5>zk6 [01 440*2;-<>-2 "2 ‘nT‘m 5--1") (->

‘) Hier ist aus den Anfaugsglied n kein Bildungsgesetz für das n-te Glied zu erkennen.



Lösungen der Aufgaben

1
2.1: a):=7, b).r=

. °° 1 . . °° 1
2.2: a) konvergent (Majorante: 2 -2-) ; b) divergent <Mmorante: 2 ) ;

v=1 v v=l I! + l

. . °° 1 ‘ w 2
c) divergent - (Mmorante: 2 ——); d) konvergent (Majorante: 2 —2-);

v=2 7’ v=1 V

2.3:

2.4:

2.5:

2.6:

2.7:

3. u

3.2:

3.4:

3.5:

: Es ist

c) konvergent (Majorante: E: f) divergent (Minorante: 2
y=1 '11 1-:1 1'

d) konvergent,
h) konvergent.

b) divergent, c) konvergent,
f) konvergent, g) divergent,

a) konvergent,
e) konvergent,

a) konvergent, d) konvergent,
e) divergent,

b) konvergent, c) konvergent,
f) konvergent.

a) konvergent, d) konvergent,
e) divergent,

b) konvergent, c) divergent,
f) divergent.

Die Beträge der Glieder aller Reihen bilden monotone Nullfolgen.

a) nicht-absolut konvergent, b) nicht-absolut konvergent, c) absolut konvergent,
d) nicht-absolut konvergent, e) absolut konvergent.

I n . x II I _ xn-H. l u

:Es 1st s„(x)=2(x‘——x“+)=(l —x)2xv=(l -—x) =1—-x’“' fur x=# I,
v=0 v=0 1 " X

s(x) = 1 fürxe [0, a], und somit |s(x) — s,,(x)I = x"+’ g a'”". Ofienbar gilt [s(x) — s,,(x)] < s,

wenn n > in; v 1, unabhängig von x; die Reihe konvergiert gleichmäßig in [0, a]. Da
I1 £1

aber s,.(1) = 0 für ‘alle n und daher 5(1) = 0 gilt, ist die Summenfunktion in [0, 1] unstetig und
somit wegen Satz 3.3 dort ungleichmäßig konvergent.

„l _ I+x‘fi.‘\rx¢0.N k ‚N _

(l+x2)n,.Y(X)— 0 mrx=0, (e,x) ann mit (e,x)—

gewählt werden. Für x—> 0 strebt dieser Ausdruck (für jedes festes < 1) gegen 0o;

Esist s,,(x) = 1 + x2 —

—1n s

in (1 + x2)
es existiert also bei vorgegebenemakeine Zahl N*,so daß ls(x) —— s„(x)l < s für alle xEI gilt,
sofernn > N* ist.

für
1 (—i)"“‘ < 1 < 1

x2+n+1 x2+n+2 x2+n+p =x2+n+1=n+l
x e [0, o0], und die rechte Seite der Ungleichung wird, unabhängig von x, für jedes feste p bei
hinreichend großem n beliebig klein.

cosvx < 1 f" H . b) 1 <1 f“ n _

v: =v3 ura ex, x2+ „ =v2 ura ex,a) 3

1

c) Der Maximalwert von f„(x) wird bei x = 4 _ angenommen und beträgt
a: 3

1 00

a = - — ; die Reihe 2 a konvergiert,
v v:‘l3(1+v’/\/3) v=1 v

_ „ _ sinv"'x 1 _ u _ ‚

a) 1a, da die Reihe wegen ——v—2—- g F für alle x gleichmaßig konvergiert;

b) nein, da die durch formales Differenzieren entstehende Reihe cos x + 21 cos 2‘): +
z. B. in x = O divergiert.
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14.1:a)r=1,b)r=oo,c)r=:,d)r=oo,e)r=0,f)r=1‘E’.

4.2: a) (-4, 4), in beiden Randpunkten divergent,
b) (-1, 1), konvergent für x = —1, divergent für x = 1,

c) (-1, 1), in beiden Randpunkten konvergent, d) (-1, 1), in beiden Randpunkten divergent.

eo x2v an Xv+2 no (3x)2v
4.3: .—. ‚b —1v ‚_‚ ; —1V-.___ _ -a)y§a M ( 0000) )‘§0( ) v! ( 0000) C)v§o( ) av)! ,( oo,oo),

°° ac x " °° 1~4...(31I—2)
d “ —‚ —„ 0; 1 —1"——j—’”. —l‚l;M2111» < «> e» > x < »

r)1+2§(—1)vx2v (-1 1)- g)§(—1)v 22m x“ (-1 1)-
y=1 ’ y=o 21’+1 ’ ’ ’

1" x w 3 3 4 5 7h)—:—=Z(l —x)x ’=1—x+x —x +x —x +..., (—1,1).
1—,\‘3 1:0

w — w 1.3.,. 2 — 3 —2'
4.4: a)z<—1)v<x—1)~, (0.2); bx/2 x+z(—1)'~‘i’("—,) ,<o,4);

r:0 y=: 2-4...21I 2

c)e”§ E3, <—oo.oo); d)§<—1)"—‘E, (0,2).
v:0 1’! -=1 11

4.5: a) s’(x) = 1_1x2 , .v(x) = %]n = artanh x,

b) s’(x)=xsin x, s(x)=sinx—xcos x.

46_ ‚ _ 4+2x‘ t 2x _ x3 x5 x7 x’
"/00" 4+x" m“ 2—x2 ”"+ 2-3 ‘Tr 23-7 J" 24.9 +"’

xe(—\/EA/E).

w 1 1 1
. _ —1_ __ T 24.7.E1( ,1)“ v {1+ 3 + 2v_1)x "

1 1 1 1 1=x2—-i-(1+'3—)x4'+?(1+T+?‘)X5- ..., X€(—~I,l).

°° 1 1 7:2 °°

4.8: -1 "- —=—z 0,822; b —1"——z0,747;
a):§'1( ) 1/2 12 {E} ) (2v+1)v!

90 1 1o 1 1 1 1 1 1 ~92348-
°) “L” ‘z: 102"1o "2-31 1o*"1o1""“ ’ ’

no (_1)v—l
my; m _ DZHM „ 0,248.

7T 7!

49: \/1+C()S2XdX= 1+lcos2x— l cos‘x+ cos‘x—... dx
' 2 2'4 2'4-6

0 D

_ l 1 3 5 175 Jr N382V-7: +22—25+23~214 ...~,.

1 x5 I 3 x9 1 3 5 x”
4.l0:x+ +7 + —+..., x6[—l,I].
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4.11 2 12 xe(—1,1).

E21: Ezp-z Eo
4.12. (n!) — + +(—1)"fi — 0, v — 1,2, 3, ‚..‚

Eo=1, 152:1, E4=5, E,«,=61.

1 2 1 3 13 4 31 S‘4.13.2x—8x—8x+192x fixe
(Verwendung der Beziehungen zwischen den b„ und 5,, wobei die c„ gegeben sind.)

1

4.14: a) -2, b) — 7, c) 3, d) 0.

1 2 cos 3x cos 5x 1 g sin 2x sin 3x
5.l:f(x)=T—n—‚<cosx+ 32 52 +;(smx— 2 3 —

5 r f ) Ä 2 4 cos 2x cos4x cos 6x _

"(”‘a:_? 1-3 3-5 5-7 +""

°° 1 l 7: °° (—1)““‘ rc 1
f" =0; T—=—_ f“ =——; =___.
u” ,§,(2v—1)(2v+l) 2 u” 2 ,§,(2v—1)(2v+1) 4 2

8 _ sin 3x sin 5x
5.3. f(x) = : (sin): + 33 53 + ,

die periodische Fortsetzung von f(x) — mit 2x —— ist eine stetig-diflerenzierbare Funktion.

4 r: ‘ ’

5.4: a„ = Ofür aliev, b„ = Ofürv = 2,4, 6, ..., b„= Ücosfs- fürv =1, 3, 5,

4 1 1 1 1

f(x) = g |:7sinx ~ Tsin 3x -1-fisin 5x + Fsin 7x — .

55- f ) - 3 1 1 ' 3 -.. (x— —2s1n1:x+3sm2..x—... .

_ r: 1 _ 3 1 _ 5
5.6: f(x) = fi—2[s1n~2-x — 3—2s1n7rcx + -57sm77:x —— ;

das Bild der Funktion f(x) sin ff m: ist axialsymmetrisch bezüglich der Geraden x é 1.

4T °° 1 2 w:
5.7: f(t) = -21? + E ‚E1 v—2sin2 E: cos .

4 2 T_w

6"’ F”) = m’) = 47.2-
4 sin’ Tw . sin’ Tw

6.2: F‚(w) = w , F(w)= —4I—T—
TE

6.3: F(w) = J%e-W’/4“.

_ sin nu) N ‘_ _ g

6.4: F(w) = 21? _ l fur |wl+ 1 (fur w = j; 1 1st F(w) durch den Grenzwert der rechten Seite

für w —> :1 zu definieren).
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Abelscher Grenzwertsatz 38

absolut konvergent 21, 33 .

Additionstheoreme der Exponentialfunktion 55
alternierende Reihe 19

- —‚ Reihenrest 20
Amplitudendichte 101

Analyse, harmonische 73

—‚ numerische harmonische 88
Approximation im quadratischen Mittel 95, 96
Arkustangensreihe 43, 110

asymptotisch gleich 64
asymptotische Potenzreihe 64

bedingt konvergent 23

Bernoullische Zahlen 56, 68
Besselfunktion 63
Besselsche Differentialgleichung 61

—- Ungleichung 97
beständig konvergent 35

bestimmte Divergenz 10

binomische Reihe 43, 63, 109

Cauchysches Konvergenzkriterium 13

— Produkt 24

Differentialgleichung, Besselsche 61

—, hypergeometrische 63

Differentiation, gliedweise 32
Dirichletsche Bedingungen 78, 101

divergent 9
Divergenz, bestimmte l0
—‚ unbestimmte 10
Division von Potenzreihen 45, 55

Einsetzen einer Potenzreihe in eine andere 47, 57
Ellipsenumfang 50 _

elliptisches Integral 53

— — 1. Gattung 53

— — 2. Gattung 51

Eulersche Formel 87
- Zahlen 69
Exponentialfunktion, Additionstheoremc der 55

Exponentialreihe 41, 109

Fehler, mittlerer quadratischer 96
Fehlerintegral 50, 110
Fortsetzung, gerade 103

-, periodische 79
—‚ ungerade 103

Fourierintegral 100
—‚ komplexe Form 103
Fourierkoeffizient, komplexer 88

Fourierkoeffizienten 76, 81

—‚ Größenordnung der 90
—, verallgemeinerte 96
Fourierreihe 76

—‚ komplexe 87
— periodischer Funktionen 81

—, verallgemeinerte 96
Fouriersche Kosinustransformation 107

— Sinustransformation 107
Fouriersches Integraltheorem 100
— —‚ Kosinus- bzw. Sinusform 103
Fourier-Transformation 105
Fourier-Transformierte 105
Frequenzspektrum 102
Funktion, gerade 80, 102

—, ungerade 80, 102
Funktionenfolge 26
Funktionenreihe 26

geometrische Reihe 9, 26, 63

gerade Funktion 80, 102
— —, Potenzreihenentwicklung 41

gewöhnliche Differentialgleichungen, Lösung
mit Reihenansatz 60

Gibbssches Phänomen 91

gleichmäßig konvergent 30
Gleichmäßigkeit der Konvergenz einer Potenz<

reihe 37 .„

Glieder 9
fliedweise Differentiation 32

— —- einer Potenzreihe 38
— Integration 31, 49
— — einer Potenzreihe 38

Grenzwertsatz, Abelscher 38
Größenordnung der Fourierkoeffizienten 90
Groß-0 64

harmonische Analyse 73

Harmonische, n-te 72
harmonische Reihe 14
— Schwingungen 71, 88
hypergeometrische Differentialgleichung 63

- Reihe 63

Identitätssatz für Potenzreihen 39
Integral, elliptisches 53

—‚ —, 2. Gattung 51

—‚ Vollständiges elliptisches, 1. Gattung 53, 110

—‚ — —, 2. Gattung 52, 110
Integralkriterium 19

Integralsinus 50, 110
Integraltheorem, Fouriersches 100
Integration, gliedweise 31, 49
integrierbar, quadratisch 95
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Klein-a 64
komplexe Form der Fourierreihe 87
komplexer Fourierkoeffizient 88
konvergent 9

—‚ absolut 21, 23

—‚ bedingt 23
—, beständig 35
—‚ gleichmäßig 30
—‚ nirgends 35

-, unbedingt 23
—, ungleichmäßig 28
Konvergenzbereich 26
Konvergenzintervall der Potenzreihe 36
Konvergenzkriterium, Cauchysches 13

—‚ Leibnizsches 20
—, notwendiges l4
Konvergenzradius 36
Konvergenzverhalten einer Potenzreihe 34
Kosinusform des Fouriersehen Integraltheorems

103
Kosinusreihe 41, 109
—, reine 80
Kosinustransformation, Fouriersche 107
Kriterium von Weierstraß für gleichmäßige Kon-

vergenz 29

Legendresche Polynome 59

Leibnizsche Reihe 20'
Leibnizsches Konvergenzkriterium 20
Lösung von gewöhnlichen Differentialgleichun-

gen mit Reihenansatz 60
logarithmische Reihe 42, 109

Nlajorantenkriterium 22
Methode der unbestimmten Koeffizienten 46, 48,

58

Minorante 15

xiinorantenkriterium 15

mittlerer quadratischer Fehler 96
Multiplikation von Potenzreihen 45, 55

— — Reihen 23

nirgends konvergent 3S

Norm 95
notwendiges Konvergenzkriterium I4
n-te Harmonische 72
numerische harmonische Analyse 88

orthogonales Funktionensystem 95
Orthogonalitätsrelation 75

Orthonormalsystem 95

Parsevalsche Gleichung 97
Pendel, physikalisches 52
periodische Fortsetzung 79
Polynom, trigonometrisches 90

115

Polynome, Legendresche 59
Potenzreihe 34
——, asymptotische 64
—, Einsetzen einer in eine andere 47, 57
—‚ Gleichmäßigkeit der Konvergenz einer 37

—, gliedweise Ditferentiation einer 38
—, -— Integration einer 38

—‚ Konvergenzintervall der 36
—‚ Konvergenzverhaiten einer 34
Potenzreihen, Division von 45, 55
——, Identitätssatz für 39
—, Multiplikation von 45, 55
—‚ Umkehrung von 48
Potenzreihenentwicklung einer Funktion 39
— -— geraden bzw. ungeraden Funktion 41

Produkt, Cauchysches 24
Produktreihe 24

quadratisch integrierbar 96
Quotientenkriterium 16
— in Limesform 17, 22

Reihe 9

—, alternierende 19

—‚ binomische 43, 63, 109
—, geometrische 9, 26, 63

—, harmonische 14
—, hypergeometrische 63

—‚ Leibnizsche 20
——, logarithmische 42, 109

—, Stirlingsche 68
—, unendliche 9
Reihen mit positiven Gliedern 14
—‚ Multiplikation von 23

—‚ Umordnung von 22
Reihenrest 11, 65
— der alternierenden Reihe 20
Restglied 40
Restgliedabschätzung 42, 44
Riemann‚ Umordnungssatz von 23
Riemannsche Zetafunktion 26
Rücktransformation 105, 107

Satz von Taylor 34, 40
Schwingungen, harmonische 71, 88
Sinusform des Fourierschen Integraltheorems

103
Sinusreihe 41, 109

—‚ reine 80
Sinustransformation, Fouriersche 107
Skalarprodukt 95
Spektraldichtefunktion 106
Spektralfolge 88
Stetigkeit der Summenfunktion 30, 37
Stirlingsche Formel 65
— Reihe 68
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Summe 9
Summenfunktion 26
-, Stetigkeit der 30, 37

Taylor, Satz von 34, 40
Taylorreihe 40
Teilsumme 9

trigonometrisches Polynom 90

Umkehrformel 105
Umkehrung von Potenzreihen 48

Umordnung von Reihen 22
Umordnungssatz von Riemann 23

unbedingt konvergent 23

unbestimmte Divergenz 10
unendliche Reihe 9

ungerade Funktion 80, 102
— —, Potenzreihenentwicklung 41

ungleichmäßig konvergent 28
Ungleichung, Besselsche 97

vollständiges elliptisches Integral 1. Gattung 53,
110 .

— — — 2. Gattung 52, 110

Weierstraßsches Kriterium 29
Wurzelkriterium 17

— in Limesform 17, 22

Zahlen, Bernoullische 56, 68

—‚ Eulersche 69
Zahlenfolge 9

Zetafunktion, Riemannsche 26
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