Losungen der Aufgaben 175

2kl = 2.2k > 2(2k + 1) = 4k + 2. Es bleibt zu zeigen, daB 4k + 2 > 2k + )+ 1 =2k + 3
d.h. 4k + 2 > 2k + 3, also 2k > 1 gilt. Diese Ungleichung ist fir k£ = 3 selbstverstindlich e:
und somit der Induktionsschritt nachgewiesen. Mit Hilfe des Induktionsschlusses folgt die Behaup
tung.
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4.6: Fiir n = 0 ist die Gleichung richtig: Y mx™* = = 0 (Induktions-

w.z.b.w.

5.1: 1. x = —(a + b) lost nach IV. (S. 39) die Gleichung (¢ + b) + x = 0. Ferner ist mit 5 = 3
= —agnachIV.y= —a — bundnachlll.3a + (b +y) =(a+ b) + y =a + (—a) = 0. Weg
der Eindeutigkeit der Losung muBl y = x sein. 2. Aus der 2. abgeleiteten Regel der Beispiele 3
folgt: (—a) + (—b) = —a — b. Die Regel folgt aus I.2. und 1.3. (S. 37).
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5.4: (@ + c?) (b* + d*) — (ab + cd)?® = a*d* — 2adbc + b*c* = (ad — bc)? = 0.

5.5: Wir beweisen jede Ungleichung fiir sich. Nach Voraussetzung ist:
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5.6: I. Induktionsanfang fir n=1: 1+ a < T—7 (1 —a) >0, 0< «? richtig, da a + 0.

II. Mit der Induktionsannahme ist fiir v = k: (1 + a)* < . TII. Beide Seitenmit 1 + a > 0
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Ungleichung gilt fiir #» = k + 1 und somit fiir alle natiirlichen n = 1.
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5.7: a) Fallunterscheidung: 1. Fir x — 3 > 0folgt 4 < x,2. x — 3 < 0 = x < 3, insgesamt x < 3
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