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Vorwort

Der vorliegende Band der Lehrbuchreihe „Mathematik für Ingenieure, Natur-
wissenschaftler, Ökonomen und Landwirte“ gehört mit den ersten drei Bänden zu
denen, auf welchen alle weiteren Bände wesentlich aufbauen. Der Band 4 ist einer-
seits eine unmittelbare Fortsetzung des Bandes 2 „Dilferential- und Integralrechnung
fiir Funktionen mit einer Variablen“ und bereitet andererseits den Band 5 „Inte-
gralrechnung für Funktionen mit mehreren Variablen“ direkt vor. Bei der Übertra-
gung der gewöhnlichen Differentialrechnung für Funktionen einer Veränderlichen
auf den Fall von Funktionen, die von mehreren Veränderlichen abhängen, ergeben
sich eine ganze Reihe grundlegender qualitativer Unterschiede in BegrilTen, Sätzen
und Methoden, so daß ein gesonderter Band speziell über die Differentialrechnung
für Funktionen von mehreren Veränderlichen berechtigt erscheint.

Wie im Band 2 wurden schwierige Beweise im allgemeinen weggelassen und mehr
Gewicht auf die anschauliche Interpretation und Anwendung der dargestellten Metho-
den und Zusammenhänge gelegt.

Für wertvolle Hinweise bei der Vorbereitung der dritten Auflage danken wir vor
allem dem Herausgeber, Herrn Prof. Dr. K. Manteufiel (TH Magdeburg) und
Herrn Dr. R. Kuhrt (HU Berlin).

Dresden, März 1980 K. Harbarth T. Riedrich

Vorwort zur vierten Auflage

Im Juli 1981 verstarb plötzlich der Mitautor dieses Bandes, Dozent Dr. rer. nat.
Klaus Harbarth. An seiner Stelle wird von nun an Dr. sc. nat. W. Schirotzek als Mit-
autor tätig sein. Wir werden das Buch im Sinne des Verstorbenen weiterführen und
auch damit unserem Kollegen ein bleibendes Andenken bewahren.

In der vierten Auflage wurden nur kleinere Berichtigungen und Ergänzungen an-
gebracht.

Dresden, im März 1983 T. Riedrich W. Schirotzek
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1. Elemente der Theorie der Punktmengen

1.1. Grundhegrifie der Theorie der Punktmengen

1.1.1. Definition des R"; Abstand im R"

In der Differential- und Integralrechnung für Funktionen einer reeIIenVeränder-
lichen werden alle Überlegungen in der Menge der reellen Zahlen als Grundmenge
durchgeführt. Es bezeichne wie bisher R oder R1 die Menge der reellen Zahlen. Wir
rechnen im R1 nach den üblichen Regeln. Als Abstand d(x1‚ x1) zweier reeller Zahlen
x1 und x2 verwenden wir die Zahl

d(xl: x2)=|X1" x2l- (1-1)

Für eine Ausdehnung der Theorie auf Funktionen von mehreren unabhängigen Ver-
änderlichen ist es erforderlich, neue Grundmengen heranzuziehen. Wir betrachten
zunächst Paare von reellen Zahlen und legen für je zwei reelle Zahlen a, b eine Reihen-
folge fest. Soll a die erste und b die zweite Zahl sein, so schreiben wir x1 = a und
x, = b und fassen beide Zahlen durch Klammern in der Weise zu einem Paar zusam-

men, daß wir innerhalb der Klammern x1 an die erste und x, an die zweite Stelle
setzen. Wir schreiben also (x1, x1) und bezeichnen (x1, x1) als geordnetes Zahlenpanr.
Die Zahlen 3 und ——l können also zu dem Paar (3, —1) oder zu dem Paar (—1‚ 3) zu-
sammengefaßt werden. Zwei geordnete Zahlenpaare (x1, x1) und (y1‚ y‚) nennen wir
gleich, wenn innerhalb der Klammern an der jeweils entsprechenden Stelle die gleiche
Zahl steht. Wir setzen also (x1, x1) = (y1, y1) genau dann, wenn x1 = y1 und x, = y:
gilt. Somit ist (3, -1) =i= (—1‚ 3) und auch (3, -1) =l= (3, 0) wegen —l =|= 0.

Eine geometrische Veranschaulichung von geordneten Zahlenpaaren ist in einer
mit einem kartesischen Koordinatensystem versehenen Ebene möglich. Man erkennt
an Bild 1.1, daß man das Zahlenpaar (x1, x2) durch den Punkt X mit den Koordina-
ten x1 und x, oder durch den Vektor x mit den Koordinaten x1 und x, veranschauli-

x-x,e,+x,g

Bild 1.1
e, 7 x, x,

chen kann. Gleichbedeutend sprechen wir in diesem Zusammenhang also von dem ge-
ordneten Zahlenpaar (x1, x1), dem Punkt X(x1 , x1) oder dem Vektor x = x1e1 + x1e1.
Eine Menge von geordneten Zahlenpaaren nennen wir demzufolge auch eine Punkt-
menge. Unter dem R2 verstehen wir die Menge aller geordneten Zahlenpaare (x1, x1).

Sind X(x1 ‚ x1) und Y(y1‚ ye’) zwei beliebige Punkte des R’, so bezeichnet man unter
Beachtung des Satzes von Pythagoras die Zahl

d0’. Y) = |/(X: ~ h)’ + (x2 - h)’ (1-2)
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X2

u.“
d Xi)’:

als Abstand der Punkte Xund Y(vg1. Bild 1.2). Bei Benutzung der Vektorschreibweise
x = xle, + x2e, und y = y,e, + yze, bzw. der Koordinatenschreibweise hätte man zu
formulieren:

d(x‚ y) = l/(xi ~ h)’ + (x2 - h)’

d((xn x2)‚ (71: }’2)) = K751 " ‚V92 ‘l’ (x2 " Y2)? -

Speziell für X(-1, 3) und Y(5‚ ——4) erhält man

d(X‚ Y) = y(—1 — s)? + (3 + 4)* =1/36+ 49:1/E

Je zwei Punkten X und Y ist also eine nichtnegative reelle Zahl d(X, Y) als Abstand
zwischen X und Y zugeordnet. Man sagt für diesen Sachverhalt auch, daß im R’ eine
Ahstandsfunktion oder Metrik erklärt ist. Man erkennt leicht, daß die Metrik im
R2 die von der Abstandsfunktion (1.1) im R‘ her bekannten drei Eigenschaften erfüllt:

1. d(X, Y) _2_ 0 für beliebige X, YE R2 und

bzw.

d(X, Y)= Ogenau dann, wennX= Y; (1.3)

2. d(X‚ Y) = d(Y‚ X)fürbeliebigeX, Y E R’; (1.4)

3. d(X, Z) g d(X, Y) + d(Y, Z)für beliebige X, Y, Z E R’. (1.5)

Eigenschaft (1.5) heißt Drelecksnngleichung. Der Name wird deutlich, wenn man z. B.
die Abstände in dem in Bild 1.3 gezeichneten Dreieck betrachtet.

Bild L3
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Zusammen mit der Metrik (1.2) bezeichnet man den R’ auch als zweidimensiona-
len euklidischen Raum.

Alle angestellten Überlegungen können wörtlich zur Definition des dreidimensio-
nalen euklidischen Raumes R3 bzw. allgemein zur Definition des n-dimensioualen
euklidischen Raumes R" übernommen werden. Der R" ist also die Menge aller geord-
neten n-Tupel von reellen Zahlen; wir bezeichnen sie mit (x,, x2, ...‚ x„). Der Index
gibt die Stelle an, an welcher die betreffende Zahl angeordnet werden soll. Für zwei
n-Tupel gilt die Gleichheit (x1, x2, ‚ x„) = (y„ yg , , y„) genau dann, wenn zugleich
x, = y,, x2 = yz, ..., x,. = y,. erfüllt ist. Für die Verschiedenheit zweier n-Tupel reicht
also aus, daß an mindestens einer Stelle innerhalb der beiden n-Tupel verschiedene
reelle Zahlen stehen. Die geordneten n-Tupel bezeichnen wir auch als Punkte eines
n-dimensionalen Raumes und die Zahlen innerhalb der n-Tupeldann als Koordinaten
der Punkte. Punkte im R’ bzw. R3 bezeichnet man gelegentlich auch durch (x, y)
oder (a, b) oder (x„, yo) bzw. durch (x, y, z) oder (a, b, c) oder (x0, yo, 2o); d.h.,
man verzichtet hier auch gelegentlich auf die konsequente Verwendung der Index-
schreibweise (xi, x2) bzw. (x„ x2, x3) zur Kennzeichnung der Anordnung innerhalb
der Paare bzw. Tripel. Unter dem Abstand zweier Punkte X(x1,x,, ...‚x„) und
Y(y1, yg, ...‚ y„) versteht man die nichtnegative Zahl

d(X. Y)= V x1—y1)’+ + (x‚. — y„ ’ =1/k§"1(xk — n)’. (1-6)

Die so im R" erklärte Abstandsfunktion erfüllt die Eigenschaften (1.3) bis (1.5).

Aufgabe 1.1: Bestimmen Sie alle Punkte P(x, y) des R’, für die der Abstand zwischen
P(x‚ y) und dem festen Punkt A(0‚ 0) genau so groß ist wie der Abstand zwischen
P(x‚ y) und dem festen Punkt B(—l, I). Es soll also gelten d(P, A) = d(P, B).

1.1.2.

Ehe im weiteren Verlauf Funktionen untersucht werden, die auf dem R" bzw. auf
Teilmengen des R" erklärt sind, müssen einige Begriffe eingeführt werden. An vielen
Stellen wird eine Analogie zum Vorgehen im R1 deutlich erkennbar sein.

Beginnen wir mit dem Umgebungsbegriff. Es sei e eine vorgegebene reelle Zahl,
e > 0. Im R‘ bezeichnet man als s-Umgebung eines festen Punktes x0 der reellen Achse
die Menge aller Zahlen x, deren Abstand zu x0 kleiner als a ist. Verwenden wir für die
a-Umgebung von xi. das Symbol U(x0; e), so ist also U(xo; e) die Menge aller Zahlen
x, für die d(x, x,,) = ]x — xol < e gilt. Abgekürzt schreiben wir

U(xo§ 3) = {x E R1 | d(-Y, xo) < 5}-1)

Im R‘ gilt für d(x, x0) = 1x — x„| nun

Der Umgebnngsbegrifl im R"

(1.7)

]x—x.,| <e¢>—e<x—x0<s~:>x.,—e<x<x.,+a.
Im R1 ist die e-Umgebung U(x„; e) also gerade das offene Intervall der Länge 2e mit
dem Mittelpunkt x.,, d.h.

U(xo§5)={xER1[xo“3<x<xo+€}— (1-8)

1) Die Klammern {} verwenden wir wie auch im Band 1 zur Kennzeichnung von Mengen. Ge-
meint ist also die Menge aller x des R‘, für die d(x‚ x0) < s gilt.
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Die Formulierung (1.7) ist sofort auf den R" für n 2 2 übertragbar, da auch im R"
ein Abstand erklärt ist. Ist X0(a1, a2, ...‚ a,.) ein fester Punkt des R", so versteht man
unter der e-Umgebnng U(X0; a) von X0 die Menge aller Punkte X(x„ x2, ...‚ x„) des

R" mit d(X‚ X0) < e, also

U(Xo§5)={X(x1s ---9 Xn) E R" l d(X’ X0) < 5}

= [X(Xn m, In) E R" I/l§'1(x,. — ak)2 < E}

= {X(x,, ..., x,.) E R" S‘ (xk — a;.)2 < 5”]
k=1

Speziell für n = 2 ist U(X0; s) die in Bild 1.4 dargestellte Kreisscheibe ohne Rand mit
dem Mittelpunkt X0 und dem Radius e und für n = 3 die Kugel ohne Oberfläche
mit dem Mittelpunkt X0 und dem Radius e. Entsprechend dem Aussehen im R;
werden die a-Umgebungen ganz allgemein auch als Kngelumgebungen bezeichnet.

Bild 1.4 Bild 1.5

Durchläuft s alle positiven reellen Zahlen, so erhält man für jeden Punkt X0 ein ganzes
System von e-Umgebungen U(X0; e). Ist 0 < s, < a2, so folgt U(X0; Ei) < U (X0; s0),

d.h., die e-Umgebungen eines festen Punktes X0 sind ineinandergeschachtelt. Nimmt
man aus einer e-Umgebung U(X0; e) von X0 den Punkt X0 heraus, so bezeichnet man
die verbleibende Menge als pnnktierte (oder auch reduzierte) s-Umgebung von X0;
symbolisch

U'(Xo3 5) = U(Xo§ 5) \ lXol-l) (1-9)

Gelegentlich betrachtet man neben den Kugelumgebungen auch Rechteckumge-
bungen im R2 bzw. allgemein Quadenungebungen im R". Es seien X0(a„ a0) ein fester
Punkt des R’ und a, sowie a, zwei positive reelle Zahlen. In Bild 1.5 ist die zugehörige
Rechteckumgebung V(X0; a1, a0) von X0 eingezeichnet — es ist das Rechteck ohne
Rand mit den Kantenlängen 20:1 bzw. 2a, und dem Mittelpunkt X0, also

I/(X05 “i, a2): {X(x1:x2)E R2 l 11i‘ “i (xi <al + “i und

a2’°‘2<x2<a2+°‘2l— (1-10)

l) Das Minuszeichen \ für Mengen verwenden wir in dem im Band l erklärten Sinne. Sind A und
B beliebige Mengen, so bezeichnet A \ B die Menge aller Elemente von A, die nicht zu B gehören.
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Im Spezialfall a1 = a, = e erhält man eine quadratische e-Umgebung. Analog kön-
nen im R" mit Hilfe von Ungleichungen Quaderumgebungen eines Punktes X mit n

Kantenlängen 2a„ 2a„ ..., 2a,. erklärt werden. '

Im R“ erkennt man an den Bildern 1.6 und 1.7 sofort, daß jede Kreisumgebung
eines Punktes X0 auch eine Rechteckumgebung von X„ enthält und umgekehrt. In
diesem Sinne sind für einen Punkt X0 das System aller Rechteckumgebungen und das
System aller Kreisumgebungen als gleichwertig anzusehen. Für viele Überlegungen
ist es daher gleichgültig, welche Umgebungsart man verwendet.

Bild 1.6 Bild 1.7

Mit Hilfe von Umgebungen des Nullpunktes kann auch die Beschränktheit
von Mengen erklärt werden. Es sei zunächst M eine Teilmenge des R’. Für jeden
Punkt X von M sei d(X‚ 0) der Abstand des Punktes X vom Nullpunkt, also

d(X, 0) = l/xl’ + x,’ für X(x,, x2). Wir nennen die Menge M beschränkt, wenn es eine
positive Zahl K gibt, so daß

d(X,O)= |/xl’ +x,’ <K für alle X(x,,x,) E M (1.11)

gilt. (1.11) besagt gerade, daß alle Punkte von M in der Kreisumgebung mit dem
Radius K um den Nullpunkt liegen müssen. Anders formuliert erhalten wir also:
Eine Menge M < R’ heißt beschränkt, wenn es eine Kreisumgebung des Nullpunktes
gibt, welche die Menge M ganz enthält.

Ist M das Quadrat mit den Eckpunkten P1(2, -1), P2(5, —-1)‚ P3 (5, 2) und P,(2, 2),
so gilt ganz sicher

d(X, 0) < l0 für alle Punkte X des Quadrates M.

M ist also ganz enthalten in der Kreisumgebung mit dem Radius l0 um den Null-
punkt; M ist somit beschränkt. (Es ist an dieser Stelle unwichtig, daß es auch schon
„kleinere“ Umgebungen des Nullpunktes gibt, welche das Quadrat M ganz enthalten;
d.h.‚ K = l0 ist nicht die kleinste Zahl, so daß (1.1 l) gilt. Es genügt die Angabe von
mindestens einer solchen Zahl K.)

Die Menge M’ aller Punkte des ersten Quadranten in der x, y-Ebene ist ein Bei-
spiel für eine nicht beschränkte Menge.

Die Definition der Beschränktheit ist wörtlich zu übernehmen für Teilmengen
des R".



1.]. Grundbegriffe 1 l

1.1.3. Gebiete im R"

Wir erinnern an den BegrilT der Stetigkeit einer reellen Funktionf einer unabhän-
gigen Variablen an einer Stelle xo. Es wird der Funktionswertf(xo) verglichen mit den
Funktionswertenf(x) für x-Werte, die zu xo benachbart sind. Der Definitionsbereich
vonfmuß also die Eigenschaft haben, daß sowohl xo als auch eine ganze Umgebung
von xo zu ihm gehören; xo muß ein sogenannter innerer Punkt des Definitions-
bereiches von f sein.

Nun sei allgemein M eine Teilmenge des R’ und Xo (xo, yo) ein Punkt von M. Wenn
dann mindestens ein so > 0 existiert, so daß die so-Umgebung U(Xo; so) von Xo ganz
zur Menge M gehört, dann heißt Xo innerer Punkt von M.

Beispiel 1.1: Q sei das in Bild 1.8 gezeichnete Quadrat. Für die Koordinaten aller
Punkte P(x‚ y) Von Q soll gelten 0 g x < l und O g y < 1. Die rechte und die

ä ‚ ist ein innerer

Punkt von Q, denn z.B. für so = gist U (Poul?) ganz in Q enthalten. U(Po; a) < Q

gilt sogar für alle s mit 0 < 2 g ä während für e > 3 die Umgebung U(Po; s) nicht

mehr ganz in Q enthalten ist. Die Definition eines inneren Punktes verlangt lediglich,
daß U(Po; so) < Q für gewisse so > 0 gilt. Die Wahl solcher Werte so hängt von

obere Quadratseite sollen also nicht zur Menge Q gehören. Po(

der Lage von Po ab. P1 (I, ist kein Punkt von Q, also erst recht auch kein innerer

Punkt von Q. Wir sehen an Bild l.8‚ daß jede a-Umgebung von P, zwar Punkte von
Q enthält aber zugleich auch Punkte, die nicht zu Q gehören.

Die folgenden allgemeinen Bezeichnungen sind üblich: Die Menge aller inneren
Punkte von M heißt das Innere von M. Das Innere von M ist also stets ein Teil

‚Vl

1—}7—///’“"7/J’\ E

‘I
n
.
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Bild 1.8

von M. Ein Punkt X1 heißt Randpunkt von M, wenn jede Umgebung von X1 sowohl
Punkte enthält, die zu M gehören als auch Punkte, die nicht zu M gehören. Die Menge
aller Randpunkte von M heißt der Rand von M. Beim Rand von M ist zu unter-
scheiden zwischen Randpunkten‚ die zu M gehören und Randpunkten, die nicht zu
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M gehören. M heißt eine offene Menge, wenn jeder Punkt von M ein innerer Punkt
von M ist. Ist M eine offene Menge, so gehören also alle Randpunkte von M nicht zu
M. M heißt eine abgeschlossene Menge, wenn M alle Randpunkte von M enthält.
Fügt man zu einer Menge M sämtliche Randpunkte von M hinzu, so heißt die ent-
stehende neue Menge die Abschließung von M oder die abgeschlossene Hülle von M.
Wenn eine Menge M < R’ sowohl abgeschlossen als auch beschränkt ist, dann heißt
M eine kompakte Menge. Abgeschlossene Rechtecke bzw. abgeschlossene Kreise
(d.h. alle Randpunkte sollen zur Rechteckfläche bzw. zur Kreisfläche gehören) sind
also Beispiele für kompakte Teilmengen des R2. Auf der Zahlengeraden sind abge-
schlossene Intervalle Beispiele für kompakte Teilmengen des R‘.

Im Beispiel 1.1 ist P1(l‚ ä) ein nicht zu Q gehörender Randpunkt und P2(0, 2) ein
zu Q gehörender Randpunkt. Alle Punkte der vier Seiten des Quadrates sind Rand-
punkte von Q. Das Innere von Q besteht aus allen Punkten P(x, y) mit 0 < x < l
und 0 < y < l. Die Menge Q ist also weder oflen noch abgeschlossen, weil es sowohl
Randpunkte gibt, die zu Q gehören als auch Randpunkte‚ die nicht zu Q gehören.
Beispiele für oflene Mengen in der x, y-Ebene sind Kreisscheiben ohne die Punkte
der begrenzenden Kreislinie. Speziell die e-Umgebungen U(P; e) von Punkten P E R”
sind somit oflene Mengen.

Zwei Begriffe sollen noch erwähnt werden. Eine Menge M < R2 heißt konvex,
wenn mit je zwei Punkten X, Y E M auch alle Punkte der Verbindungsstrecke von
X und Y zu M gehören. In der Sprache der Vektorrechnung bedeutet das: Gehören
x und y zu M, so auch alle z der Gestalt

z=ty+(l—t)x=x+t(y—x) für ogzgl. (1.12)

Für t= 0 erhält man x und für t= 1 dann y. Setzen wir h = y — x, so müssen mit
x und y auch alle z = x + th für 0 g t g 1 zu M gehören. Halbebenen, Kreisscheiben‚
Rechteckflächen sind Beispiele für konvexe Mengen.

Eine oflene Teilmenge G des R’ heißt zusammenhängend, wenn je zwei Punkte von
G durch einen ganz in G verlaufenden Streckenzug mit nur endlich vielen Eckpunk-
ten verbunden werden können. Die in Bild 1.9 skizzierte Menge (die Randpunkte

sollen nicht zur Menge gehören) ist nicht konvex, wohl aber zusammenhängend.
Jede offene und konvexe Menge ist somit erst recht zusammenhängend. Eine offene
und zusammenhängende Punktmenge nennt man auch ein Gebiet. Gelegentlich unter-
scheidet man noch zwischen einfach zusammenhängenden und mehrfach zusammen-
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hängenden Gebieten. Dabei soll ein Gebiet G des R’ einfach zusammenhängend heißen,
wenn jede in G liegende doppelpunktfreie geschlossene Kurve innerhalb G stetig zu
einem Punkt deformiert werden kann‘). Andernfalls heißt ein Gebiet G mehrfach zu-
sammenhängend. Die in Bild 1.10 skizzierte Menge (Kreisring ohne Randpunkte) ist
ein Beispiel für ein mehrfach zusammenhängendes Gebiet’). Das Gebiet in Bild 1.9
ist einfach zusammenhängend.

Bild 1.10 Bild 1.11

Ist G ein Gebiet und nehmen wir zur Menge G alle Randpunkte von G hinzu, so

nennt man die so entstehende Abschließung G von G auch einen Bereich.

In den Anwendungen werden Gebiete oder Bereiche häufig durch Ungleichungen
beschrieben — wir erläutern dies durch einige Beispiele.

Beispiel 1.2: Es sei B1 die Menge aller Punkte P(x‚ y), für deren Koordinaten
y < 3x+ 1 gilt, also v

B1 = lP(x‚y) E R’|y < 3x +1}-

B1 ist die in Bild 1.11 unterhalb der Geraden y = 3x + 1 gelegene Halbebene ohne
die Punkte der Geraden selbst. Die Menge B; ist offen und konvex und damit ein
Gebiet. B, ist ein einfach zusammenhängendes Gebiet.

Beispiel 1.3: Es sei

B2= {P(x..v) E R’ I (15 - x’)(9 -Y’) ä 0}-

B, ist die Menge aller Punkte P(x‚ y), für deren Koordinaten entweder gilt

16 — x’ g 0 undzugleich 9 — y’ 2 0 (1.13)

1) Eine genaue mathematische Formulierung für diesen Sachverhalt geben wir an dieser Stelle
nicht — uns genügt eine anschauliche Interpretation.

') Das Gebiet „enthält ein Loch“, welches „das stetige Zusammenziehen" für gewisse geschlos-
sene Kurven „verhindert“.
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oder
16 — x’ g 0 und zugleich 9 — y’ g O. (1.14)

(1.13) bedeutet Ix] g 4 und zugleich ly] g 3,

(1.14) bedeutet |x| g 4 und zugleich lyl g 3.

B; ist in Bild 1.12 schraffiert; B2 ist abgeschlossen, nicht beschränkt und nicht
konvex. B, ist kein Bereich, da das Innere von B, (d. h. die schraffierten Mengen ohne
die Ränder) nicht zusammenhängend, also kein Gebiet ist.

Beispiel 1.4: Es sei [a, b] ein abgeschlossenes Intervall auf der x-Achse, und qzl und «p,

seien zwei auf [a, b] definierte reelle stetige Funktionen der unabhängigen Variablen
x mit <p‚(x) < zp2(x) für alle x aus [a, b]. Für jede feste Zahl x0 mit a g x0 g b ist dann
die Menge aller Punkte (x0 , y) mit q2‚(x„) g y g <p‚(xo) gerade die Strecke, die von den
Punkten (xo, q21(x0)) und (xo, q:,(x.,)) begrenzt wird. Durchläuft x0 alle Punkte von
[a, b], so erhalten wir die in Bild 1.13 skizzierte Menge

5= {(x‚y)ER’Iagxgb “Hd <m(x)§y§<P2(x)}-

Die Menge Ö ist ein Bereich. Man nennt Mengen dieser Art auch Normalbereiche

oder Fundamentalbereiche. (Die Menge Ö können wir auch auffassen als Abschlie-
ßung der offenen Menge

eG= {(x.y)ER’|a<x<b und %(x)<.v<<P2(x)}-

Die Menge G ist ein Gebiet.) Normalbereiche werden im Band 5 in der Integral-
rechnung für Funktionen mit zwei Variablen als Integrationsbereiche betrachtet.

\‘
-4 :-3 4‘ X

:\
Bild 1.12 V Bild 1.13

\.

Beispiel 1.5: Ganz ahnlich aufgebaut ist die folgende Menge H: Es sei [c‚ d] ein ab-
geschlossenes Intervall auf der y-Achse, und op, und up, seien zwei auf [c‚ d] erklärte re-
elle stetige Funktionen der unabhängigen Variablen y mit 1p,(y) < 1p,(y) fiir alley aus



1.2. Konvergenz von Punktfolgen l5

[c‚ d]. H sei dann die Menge

H= {(x.y) E R’ I c <y <d und 1P:(.v)<x <w2(‚v)}

mit der in Bild 1.14 gezeichneten Abschließung

fi= {(x,y) E R2 Ic s y g d und w) g x s um}.
Alle eingeführten Begriffe können wieder allgemein im R" formuliert werden.

Aufgabe 1.2: Skizzieren Sie in der x, y-Ebene die folgenden Normalbereiche:

a)B1= {(x.y)l0§x§2 und — Via-Tage},
b)B2=1(x»}’)|0§X§4 und da; V21},

c>B3={<x,y)|1;y:2 und ogxgv —<y—1)2}.

Bild 1.14 Bild 1.15

1.2. Konvergenz von Punktfolgen

In Band 1 wurden im R‘ Zahlenfolgen auf Konvergenz untersucht. Wir betrachten
nun Punktfolgen in einem m-dimensionalen euklidischen Raum R". Den Begrifl‘ einer
gegen einen Punkt des R"' konvergenien Punktfolge werden wir in der Weise erklären,
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daß wir der Punktfolge eine Zahlenfolge zuordnen und von dieser zugeordneten
Zahlenfolge ein gewisses Konvergenzverhalten fordern. Diese Gedanken sind bereits
in Bd. 1, 10.9., dargestellt. Zur Vereinfachung der Schreibarbeit nehmen wir wieder
m = 2 an. Es sei (P„) eine Punktfolge im R‘ mit den Koordinaten (x„, y„)‚ d. h., jeder
natürlichen Zahl n = l, 2, ist ein Punkt P„(x‚„ y„) zugeordnet‘) Als Beispiel be-

trachten wir die Punktfolge (x„‚ y„) = (ä, l-ä) . Es gilt also x„ ä und

y,, = l — n1 = 1 — x„. Alle Punkte P„ liegen aufderin Bild 1.15 gezeichneten Geraden

y = l — x. Weiter betrachten wir den Punkt P(a, b) mit (a, b) = (0, 1). Für die Ab-
stände der Punkte P„ von P gilt

Eam, P) = V(x,, — a)? + (y,. — b)’ = + (1 —%— 1)2 = n

Der Punktfolge (x„‚ y„) soll nun die Zahlenfolge (d(P‚„ P)) dieser Abstände zuge-
ordnet werden. Im vorliegenden Beispiel gilt

lim d(P„, P) = lim —Vn3= o.

Die Folge der Abstände ist eine Nullfolge. Anschaulich bedeutet dies, daß die
Punktfolge (P„) für n —> oo gegen den Punkt P konvergiert. Allgemein wird definiert:

Definition 1.1: Eine Punktfolge (P„) heißt konvergent gegen den Punkt P, wenn die
Zahlenfolge der Abstände der Punkte P„ von dem Punkt P eine Nullfolge ist, d. h.‚ wenn
lim d(P‚„ P) = 0 gilt. Wir schreiben dann für diesen Sachverhalt: lim P,, = P.
n—>oo n—>oo

Besonders wichtig ist die Charakterisierung der Konvergenz einer Punktfolge durch
die Konvergenz der Zahlenfolgen der einzelnen Koordinaten. Es seien wieder x„ und
y„ die Koordinaten der Punkte P„ und a und b die Koordinaten des Punktes P. Dann
beweisen wir den t

Satz 1.1: Für eine Punktfolge (P,.(x,,, y,,)) und einen Punkt P(a, b) gilt

n-ooe n-co

I lim P„ = P genau dann, wenn lim x,. = a und lim y‚. = b gilt.
n-oeo

Beweis: Die Konvergenz einer Zahlenfolge (an) gegen die Zahl a besagt, daß es zu
jeder beliebig vorgegebenen Zahl e > 0 einen Index n„(e) geben muß, so daß für alle
Indizes n mit n g n„(s) gilt [an — ocl < e.

1. Teil des Beweises: Wir setzen voraus, daß die Folge der Abstände d(P„, P) eine
Nullfolge ist und haben zu zeigen, daß dann folgt lim x„ = a und 1imy,. = b. Nun
gelten die Abschätzungen ""°° "”°"

0 ä lxn- al = V(x„ — a)2§ I/(xn - a)’ + (‚Vn- b)’= d(Pn‚P)

1) Zur Beschreibung einer Folge könnte anstelle des Buchstaben n selbstverständlich auch je-
der andere Buchstabe als Index verwendet werden. So könnten wir für eine Punktfolge auch
schreiben P. (x,,,y,.) mit k = 1, 2,3

(1.15)



1.2. Konvergenz von Punktfolgen 17

und entsprechend

o g |‚v‚. — b1 = m. — b)? g Vtx. — a? + (y. — b)* = dun. P). (1.16)

Da nach Voraussetzung lim d(P‚„ P) = 0 gilt, so folgt aus der Ungleichung (1.15)

bzw. (1.16) dann auch lini — a| = 0 bzw. lim ly» ‘ b] = 0, und das bedeutet aber

gerade lim x„ = a bzwilliem y„ = b.
n—>oo n—>oo

2. Teil des Beweises: Wir setzen voraus, daß limx‚. = aund lim y,. = b gilt und haben
n—>oo

zu zeigen, daß dann 1in1 d(P„, P) = 0 folgt. Ewwerde eine Zahl e > 0 vorgegeben.

Zu zeigen ist nun di"e‘1°3°xistenz von einem Index no, so daß für alle n g no gilt

d(P,., P) < s. (Wegen d(P‚„ P) g 0 ist |d(P„, P)| = d(P,., P); wir brauchen also nicht

mit Beträgen zu arbeiten.) Wir bilden nun die Zahl so = g . Da’1in;x,.= a gilt, so

existiert speziell zu der Zahl so ein Index n1, so daß für alle Indizes n g n1 gilt

lx,. — a[ < s1 = ä. Da zugleich y‚. = b gilt, so existiert wieder speziell zu der

Zahl e1"ein weiterer Index no, so daß für alle Indizes n g no gilt ]y,. — b! < so = Es

sei nun no die größere der beiden Zahlen n, und n1. Für alle n g no gilt dann erst recht

lx„ —— a| < 323- und zugleich |}’n ~ bl < (1.17)

Ebenfalls für alle n g no folgt dann (warum?)

d(Pn:P)=\/(xn—a)2 Hyn-b)’ éx/(|""'“l + lywbl)’

=|xn~0I+Lvn-bl

<%+—:-=-s wegen (1.17).

Damit ist ein Index no mit der geforderten Eigenschaft gefunden und der Beweis be-
endet. I

Es sei ausdrücklich vermerkt, daß eine zu Satz l.l analoge Aussage auch im R"'
für m > 2 gilt.

Die Konvergenz einer Punktfolge liegt also genau dann vor, wenn die Zahlenfolgen
der einzelnen Koordinaten sämtlich konvergieren‚ und zwar jeweils gegen die ent-
sprechende Koordinate des Grenzelementes. Es ist einleuchtend, daß für die Konver-
genz von Punktfolgen Eigenschaften gelten, wie sie vom R‘ her bekannt sind. Ins-
besondere gilt das Konuergenzkriterium von Cauchy. Es besagt, daß eine Punkt-
folge (P,.) genau dann konvergiert, wenn es zu jeder Zahl e > 0 einen Index no gibt,

2 Harbanh,‘Ri:drich, Dill‘. Rechn.
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so daß für alle Indizes n, und n2 mit n1 g no, n, g no gilt d(P,.,, P,._) < s. Wenn eine
Punktfolge konvergiert, dann ist das Grenzelement eindeutig bestimmt.

Es bezeichne 0 den Nullpunkt des rechtwinklig kartesischen Koordinatensystems.
Eine Punktfolge (P,.) heißt dann beschränkt, wenn die Zahlenfolge (d(P„, 0)) der
Abstände der Punkte P‚. vom Nullpunkt 0 beschränkt ist im Sinne der Sprechweise
für Zahlenfolgen. Es muß also eine Zahl K existieren, so daß gilt

d(P„‚ 0) = Vx‚.’ + y,.2 < K fiir alle n = 1, 2,

Dann gelten die folgenden Sätze:

S.1.2 Satz 1.2: Jede konvergente Punktfolge ist beschränkt.

S.l.3 Satz 1.3 (Satz von BoIzano-Weierstraß): Jede beschränkte Punktfolge enthält eine
konvergeme Teilfolge.

* Aufgabe 1.3: Im R’ betrachten wir die Punktfolge P‚.(x‚., y„, 2,.) mit

5 1 "

(x..y..z.)= (3+;,—1,(1+ 7)

Ist diese Punktfolge konvergent?

* Aufgabe 1.4 s Untersuchen Sie das Konvergenzverhalten der Punktfolge

(awn) = <—1)") im R2.



2. Funktionen mehrerer unabhängiger Variabler

2.1.

Wir kennen bereits viele Beispiele für das Aufteten von Funktionen von mehreren
Veränderlichen. So ist z. B. der Umfang U eines Rechtecks cine Funktion seiner
Seitenlängen a und b:

U= U(a‚b)=2a+2b.
Das Volumen V eines Quaders ist eine Funktion seiner Seitenlängen a, b und c:

V= V(a‚b,c)=a-b-c.
Für a, b und auch c kommen selbstverständlich nur positive Zahlen in Frage.

Nach dem Ohmschen Gesetz hängt die Spannung U in einem elektrischen Strom-
kreis mit dem Widerstand R und der Stromstärke I durch U = R - I zusammen.
Wenn U und R gegeben sind, so kann man I als Funktion von U und R bestimmen:

Begriff einer reellen Funktion von mehreren unabhängigen Variablen

I = I(U, R) =%.

In den genannten Beispielen wird also gewissen Zahlenpaaren bzw. gewissen Zahlen-
tripeln von reellen Zahlen eine weitere reelle Zahl als Funktionswert zugeordnet.
Die Verallgemeinerung dieser Beispiele führt auf den Begriff einer reellen Funktion
von mehreren unabhängigen Variablen:

Definition 2.1: Es sei M eine Teilmenge des R". Wenn dann durch eine Vorschrift
jedem Punkt P(x„ ..., x„) von M genau eine reelle Zahl zugeordnet wird, so sagen
wir, daß auf M eine reelle Funktion von n unabhängigen Verinderlichen x„ ‚ x‚. mit
dem Definitionsbereich M erklärt ist. Für die dem Punkt P(x„ ..., x„) zugeordnete
reelle Zahl schreiben wir dann f(P) oder f(x‚ ‚ , x„). Mit dem Ortsvektor
x = x‚e‚ + + x„e„ des Punktes P(x„ ..., x„) schreibt man gelegentlich auch

f(x1.-~-.x..) =f(X)-
Die Zuordnungsvorschrift ist in den meisten Fällen durch einen analytischen

Rechenausdruck gegeben. Wir betrachten zunächst die Spezialisierung n = 2, da
dieser Fall leichter überschaubar ist. Der Definitionsbereich ist dann eine Teilmenge
der x, y-Ebene. Statt f(x,, X3) schreiben wir dann auch f(x, y). Vieles kann unmittel-
bar auf den Fall n > 2 übertragen werden.

Beispiel 2.1: f(x‚ y) = x - y. Als Definitionsbereich M können wir die gesamte
x, y-Ebene betrachten. Dann gilt z. B. j(O, 0) = 0 oder f(—l‚ 2) = (-1) - 2 = —2. Für
alle Punkte auf den Koordinatenachsen ist der Funktionswert Null; er ist positiv für
alle Punkte des ersten und dritten Quadranten und negativ für alle Punkte des zweiten
und vierten Quadranten.

Beispiel 2.2: f(x, y)= x’ + y”. Die Funktion f ist für alle Punkte der gesamten
x, y-Ebene erklärt. Es ist f(0‚ 0) = 0 und f(x, y) > 0 für (x, y) ä; (0, 0). Es seien
r > 0 und K der Kreis mit dem Radius r um den Nullpunkt. Dann gilt f(r‚ 0) =

/(0, r) = f(—r, 0) = f(0, —r) = r’. Gleiches gilt für alle Punkte (x, y) auf K, d. h.‚
für alle (x, y) mit x2 + y’ = r’ gilt f(x, y) = r’. Die geometrische Veranschauli-
chung dieser Funktion erfolgt in Bild 2.1.

2:

D.2.l
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Beispiel 2.3: f(x, y) = Vx — y. Wegen des Auftretens der Wurzel kann die Funk-
tionfnur für solche Punkte P(x‚ y) erklärt werden, für deren Koordinaten 0 g x — y,
d.h.‚ y g x gilt. f ist also nur für alle Punkte der Geraden y = x und alle Punkte
unterhalb dieser Geraden erklärt.

2 2

Beispiel 2.4: f(x, y) =%. fist für alle P(x‚ y) erklärt, für die x + y 4: o gilt,

d.h.‚ für alle Punkte der x, y-Ebene mit Ausnahme der Punkte auf der Geraden
y = —x. Für Punkte oberhalb dieser Geraden gilt x + y > 0 und somit f(x, y) > 0;
für Punkte unterhalb dieser Geraden gilt x + y < 0 und somit f(x, y) < 0. ‘

Analog zum Vorgehen bei Funktionen einer unabhängigen Variablen ist eine geo-
metrische Veranschaulichung auch für Funktionen von zwei unabhängigen Veränder-
lichen möglich. Ausgehend von den Punkten des Definitionsbereiches M einer Funk-
tionf(x, y) werde der Funktionswertf(x, y) senkrecht über P(x‚ y) E M in Richtung
der z-Achse abgetragen — im Fall f(x, y) g 0 wird eine Strecke der Länge [f(x, y)!
= f(x, y) in Richtung der positiven z-Achse und im Fall f(x, y) < 0 eine Strecke der
Länge |f(x, y)| = —f(x‚ y) in Richtung der negativen z-Achse angetragen. Die End-
punkte aller dieser Strecken bilden in vielen Fällen eine Fläche im Raum. Diese
Fläche wird dann als das geometrische Bild vonf(x, y) angesehen. Ein Punkt R(x‚y, z)
des R3 gehört also genau dann zum Bild einer Funktion f(x, y), wenn z = f(x, y) für
die z-Koordinate des Punktes R gilt.

Das geometrische Bild für die in Beispiel 2.2. betrachtete Funktion f(x, y) =

x’ + y’ ist in Bild 2.1 skizziert. Senkrecht über allen Punkten (x, y) auf dern Kreis
x2 + y’ = r’ ist überall der Funktionswert f(x, y) = x’ + y’ = r’ in Richtung der
positiven z-Achse abzutragen.

Als Schnittkurve dieser Fläche mit der x,z-Ebene erhält man für y = 0 die Parabel
z = f(x, O) = x’ (Bild 2.la) und als Schnittkurve mit der y,z-Ebene für x = 0 die
Parabel z = f(0‚ y) = y’ (Bild 2.lb). Für jede Ebene, die senkrecht auf der x,y-
Ebene steht und den Nullpunkt enthält, ist die Schnittkurve mit der genannten Fläche
eine Parabel. Die durch z = f(x, y) = x’ + y’ dargestellte Fläche heißt daher auch
ein Paraboloid.

Z Z

z-X’ z-y’
ry-a) (x-0)

7 7

l 7 x l 7 y

Bild 2.1 Bild 2.1 a Bild 2.1b



2.1. Begrifl" einer reellen Funktion 21

Wir bemerken bereits an dieser Stelle, daß es für gewisse Überlegungen nützlich
ist, die Schnittkurven zu betrachten, die durch Schnitt der Fläche z = f(x‚ y) mit
geeigneten auf der x,y—Ebene senkrecht stehenden Ebenen entstehen. Man vergleiche
hierzu auch im Abschnitt 3.1. die Einführung der partiellen Ableitungen.

Eine weitere geometrische Veranschaulichung für eine Funktion f(x‚ y) ist durch
die folgende Überlegung möglich. Man geht von den Werten c des Wertevorrates von
f aus undbestimmt für jede solche Zahl c die Menge der Urbilder in der x, y-Ebene.
Genauer: Ist f eine Funktion von zwei unabhängigen Variablen und c eine Zahl
aus dem Wertebereich von f, so werden alle Punkte (x, y) aus dem Definitionsbereich
von f gesucht, für die f(x‚ y) = c gilt!) In vielen Fällen bilden diese Punkte eine im
Definitionsbereich verlaufende Kurve. Solche Kurven nennt man deshalb auch
Höhenlinien oder Niveanlinien der Funktion f. Als geometrische Veranschaulichung
vonfkann man dann im Definitionsbereich M der Funktionfdas System der Niveau-
linien skiuieren. Schreibt man an jede Niveaulinie den zugehörigen Funktionswert c,
so erhält man auf diese Weise eine gute Vorstellung von der Funktion f(x‚ y). Die
Schar aller Höhenlinien bildet i.allg. die einparametrige Kurvenscharf(x, y) = c mit c
aus dem Wertevorrat der Funktion f(x‚ y). Diese Kurvenschar nennt man gelegent-
lich die Karte der Fläche oder die Karte der Funktion.

Bild 2.2 Bild 2.3

In Bild 2.2 ist die Karte der Flächef(x‚ y) = x - y angedeutet. Die Niveaulinie c = 0
fällt mit den Koordinatenachsen zusammen. Für c + 0 erhält man als Niveaulinie

f(x‚ y) = c die Hyperbel y = g.

‘) Bei der Konstruktion des geometrischen Bildes der Funktion wäre über allen diesen Punkten
der gleiche Funktionswert abzutragen.
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Die Karte der Funktion aus Beispiel 2.2,f(x, y) = x’ + y’, ist in Bild 2.3 skizziert.
f(x, y) = 0 gilt nur für den Nullpunkt. Fiir c > 0 gilt f(x, y) = x’ + y’ = c für alle
Punkte des Kreises mit dem Radius Vc um den Nullpunkt. Geht man von diesem
System aller Niveaulinien der Funktion f(x, y) aus, so entsteht aus ihm das geometri-
sche Bild der Funktion, wenn man jeden Kreis mit dem Radius 1/c auf die Höhe c

gehoben denkt. Man erhält so das in Bild 2.1 skizzierte nach oben geöffnete Para-
boloid, das im Nullpunkt auf der x", y-Ebene aufliegt.

Für die Funktion von Beispiel 2.3 ist die Schar der Niveaulinien gerade die in Bild
2.4 skizzierte Schar der Geraden y = x — c’.

Im Beispiel 2.4 ist c = 0 auszuschließen. Für c + 0 bedeutet f(x, y) = c dann

x2+y’=2cx+2cy oder (x-—c)’+(y——c)’=2c2. (2.1)

(2.1) bedeutet die Kreisschar mit den Mittelpunkten (c‚' c) und den Radien g = [cl V5

Man erkennt in Bild 2.5, daß alle Kreismittelpunkte auf der Geraden y = x liegen.
Der Nullpunkt gehört jeweils nicht zur Niveaulinie.

Bei reellen Funktionen von mehr als zwei unabhängigen Veränderlichen ist eine
analoge geometrische Interpretation nicht möglich, da wir Punkte des n-dimensio-
nalen euklidischen Raumes R" für n g 4 nicht mehr geometrisch veranschaulichen
können.

2.2. Grenzwerte von Funktionen mehrerer Variabler

Wir betrachten zunächst Funktionen von zwei unabhängigen Variablen. Es sei
f(x, y) eine solche Funktion, und ein Punkt P„(x„, yo) sei so gewählt, daß zumindest
eine punktierte Umgebung von Po ganz zum Definitionsbereich M der Funktionf(x,y)
gehört. l) Analog zum Vorgehen bei Funktionen einer unabhängigen Variablen be-
trachten wir nun Punktfolgen P„(x„‚ y„) mit folgenden Eigenschaften:

(E l) (x,„y„) E M für alle n (n = 1, 2, 3, ...),

(E (xx: yn) =i= (x0; yo) für alle n:

(E 3) n1iI:(xn, yrs) = (Xe. yo)-

Dic betrachteten Punktfolgen sollen also ganz zum Definitionsbereich von f(x, y)
gehören, den Punkt (x„‚ yo) nicht enthalten und gegen (x.,, yo) konvergieren. Für jede
solche Punktfolge ist dann die zugehörige Folge der Funktionswerte f(x‚., y‚.) eine
Zahlenfolge, und diese Zahlenfolge wird auf Konvergenz untersucht. Wir verein-
baren dann folgende

l) Die Funktionf ist also wenigstens für die Punkte einer Umgebung von P. mit eventueller Aus-
nahme von P, selber erklärt.
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D.2.2 Definition 2.2: Die Funktion f(x‚ y) sei (mindestens) in einer punktierten Umgebung
von P.‚(x„, yo) definiert. Eine Zahl cc heißt Grenzwert von f(x‚ y) für P gegen R, (bzw.
für (x, y) gegen (x0, y„)), wennfür jede Folge (x‚.‚ y„) mit den Eigenschaften (E 1), (E 2),
(E 3) gilt, daß die ZahlenfoIge (f(x„, y„)) der zugehörigen Funktionswerte stets gegen
die Zahl a konvergiert. Wir schreiben dann

lim f(x‚ y) = a oder limf(x‚ y) = an oder
(Lzn-«nn/„J P-P.

f(x‚y)->a für (x‚y)->(xo‚yo)-

Als Beispiel betrachten wir zunächst die Funktion f(x‚ y) = x2 + y’ und wählen
z. B. (x0, yo) = (-2, l). Ist (x„, y„) eine beliebige Folge mit den Eigenschaften (E 1)

bis (E 3), so folgt aus lim (x‚„ y„) = (-2, 1) dann für die Koordinatenfolgen

lim x‚. = -2 und lim y‚. = "1*1Tnd damit weiter
rI-oou n-oao

limf(x„, y„) = lim (x,.2 + y,,2) = lim x‚.’ + lim y‚.2 = 5. (2.2)
n<>oo II-Ow n*% II-9%

Da (2.2) für jede solche Folge gilt, erhalten wir

lim "f(x‚ y) = 5. (2.3)
(aw)-(—2.

2

Weiter betrachten wir die Funktionf(x, y) =

(x0, yo) = (0, 0); im Nullpunkt ist/(x, y) nicht erklärt. Wir verfolgen unsere Über-

aus Beispiel 2.4 und wählen

Bild 2.6

legungen in Bild 2.6. Ist (x„‚ y„) eine Folge auf der x-Achse mit den Eigenschaften
(E l) bis (E 3), so gilt y,, = 0 für alle n und lim x, = 0. Dann folgt

. . x‚.’ . 1
l1mf(x,., y,,) = hm - hm —x,. = 0. (2.4)
II-0% n‘DG3 2'xII n—-4:: 2
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Das gleiche Ergebnis würde man erhalten, wenn die Punkte einer Folge (im 52,.) mit
den Eigenschaften (E 1) bis (E 3) auf einer beliebigen Geraden y = ax (a =|= -1) durch
den Ursprung liegen. Dann gilt 52„ = a5c‚. für alle n und weiter

3g.’ + a‘)'c,.’ .?,.(1+ a’)

mmasiiäiönr= <2-5)
1imf(5rn, in) = lim
n-om nan

An dieser Stelle darf auf keinen Fall geschlossen werden, daß limf(x, y) = 0 gilt, denn
m)z —-(0,0)

durch die bisherigen Betrachtungen sind bei weitem nicht (alle Möglichkeiten für die
Wahl von Folgen mit den Eigenschaften (E 1) bis (E 3) ausgeschöpft worden. Ist
z. B. (x„’‚ y„’) eine Folge mit den Eigenschaften (E 1) bis (E 3), die auf der Niveau-
linie c = l liegt, so gilt also f(x,,’, y,,’) = l für alle n und damit auch limf(x‚], y„’) = l.

Ist (in, E.) eine entsprechende Folge auf der Niveaulinie c = 3, dine gegen den Null-
punkt konvergiert, so gilt

1imf(~’5m in) = 3 =i= 1 = 1im.f(xnI: ynI)'
n-vm n-co

Der Grenzwert limf(x‚ y) existiert also nicht, weil wir Folgen mit den Eigenschaften
(x,y)->(0,0)

(E 1) bis (E 3) im Definitionsbereich der Funktionf(x, y) angeben können, für welche
die Zahlenfolgen der zugehörigen Funktionswerte unterschiedliches Grenzwertver-
halten aufweisen!)

Analog zum Vorgehen im R‘ kann auch hier der Grenzwert mit Hilfe von Um-
gebungen charakterisiert werden. Ohne Beweis nennen wir den

Satz 2.1: Die Funktion f(x‚ y) sei (mindestens) in einer punktierten Umgebung von
P„(x„ ‚ yo) definiert. Es gilt limf(x‚ y) = a genau dann, wenn zu jeder beliebigen s- Um-

PP‘ c

gebung der Zahl a eine ö- Umgebung van Po so gefunden werden kann, daß für alle
Punkte P(x, y) aus der punktierten ö-Umgebung von Po die Funktionswerte f(x, y) in
der s-Umgebung von o: liegen.

Anders formuliert: limf(x‚ y)= a gilt genau dann, wenn zu jedem e >0 ein

Ö = 6(3) > 0 so gefunden ‘werden kann, daßflir alle P(x, y) mit

0 < d(P‚ Po) < Ö 2) ffllgt lf(x,.v) - a! < 8- (2-5)

Übertragen können wir auch die Definition der bestimmten Divergenz gegen +00
bzw. gegen —oo. Wir schreiben z. B. limf(x‚ y) = +oo, wenn für jede Folge (x‚.‚ y‚.)

pP-> I

mit den Eigenschaften (E l) bis (E 3) gilt, daß die Zahlenfolge der Funktionswerte
(f(x‚„ y„)) bestimmt gegen +°<> divergiert.

‘) Es genügt die Angabe von mindestens zwei derartigen Folgen.
’) Dal?» es sich um eine punktierte Umgebung von Pg handelt, kommt darin zum Ausdruck, daß

wir schreiben 0 < d (P, P“) und nicht 0 g d (P, Po).

S. 2.1
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Bemerkung _2.I: Unmittelbar klar ist die Grenzwertdefinition für Funktionen von
mehr als zwei unabhängigen Variablen. Auf eine Tatsache sei noch hingewiesen. Bei
Funktionen einer unabhängigen Veränderlichen wird außerdem der Begrifl des ein-
seitigen Grenzwertes eingeführt, indem man im Definitionsbereich nur solche Folgen
betrachtet, die von rechts oder von links gegen die betrachtete Stelle konvergieren.
Der Definitionsbereich ist dort Teil des „eindimensionalen“ R‘, und eine Hervor-
hebung von ausgezeichneten Richtungen ist somit natürlich. Bei Funktionen von n

unabhängigen Veränderlichen ist im Fall n g 2 die Definition von einseitigen Grenz-
werten nicht sinnvoll. Wir betrachten ebenfalls kein Analogon zu den im R‘ üblichen
„Bewegungen“ x —> + eo oder x —> — oo innerhalb des Definitionsbereiches der Funk-
tion.

2.3.

Die aus dem Band 2 bekannten Grenzwertsätze 2.3 bis 2.5 für Funktionen einer
unabhängigen Variablen können wörtlich für Funktionen von zwei und mehr unab-
hängigen Variablen übertragen werden. Wir nennen noch einmal die wichtigsten Er-
gebnisse und beschränken uns auf den Fall n = 2.

Grenzwertsätze

Satz 2.2: Für die Funktionen f, und f, mögen die Grenzwerte

lim f,(x, y) = as und lim f‚(x‚ y) = ß
(x..v)—~(xo.ro) (x.y)—v(><a.yo)

existieren. Dann gilt

[f1(xs y) +f2(Xsy)] = o‘ + ß!
(X»}')-'("o:J’o)

lim [f1(xay) -f2(x,y)] = a - ß. (2-3)
(X».V)"(1‘o».Va)

lim [c - f1(x, y)] = c - an (c beliebige Konstante), (2.9)
(x.y)—» xmyo)

( f?! Ef1(x‚ y) -f2(x‚ y)] = ü ' ß- (2-10)

Ist außerdemf,(x, y) =|= 0 für alle P(x, y) einer punktierten Umgebung von P.‚(x„, yo)
und ß =l= 0, dann gilt auch

f1(x‚ Y) =

(x.y)—~1(E:.yo) f2(xs J’) I5

Gilt a = ß und fi(x, y) S f(x, y) ä fi(x,}’) für eine Funktion f und alle P(x, y)
einer punktierten Umgebung von P„(x.„ yo) so folgt aus

(X
(2.11)

Iim f,(x, y) = lim f;(x, y) = a dann auch lim
(x..v)—-(xo..vo) (x..v)—>(xo.yo) (x.r)~'(Xo>¥

)f(x, y) = a. (2.12)

Unter Ausnutzung dieses Satzes können oft sehr vorteilhaft Grenzwerte berechnet
werden:
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Beispiel 2.5: Die Funktion f(x‚ y) = 2 ist für alle Punkte (x, y) + (0, 0) erklärt.
Für alle diese (x, y) gilt

0§.V2§x2+y’- . (2-13)

Wegen x’ + y’ > 0 folgt aus (2.13)

o§x2fy,g1 (2.14)

und dann weiter

x’ - y’ _ 20§W—f(x,y)§x . (2.15)

Betrachten wir nun im Definitionsbereich von f den Grenzübergang (x, y) —> (0, 0),
so folgt speziell x —> O und damit weiter x’ —> 0. Setzt man f,(x, y) = 0 und
f‚(x, y) = x’ für alle (x, y) =l= (0, 0), so folgt

um /1(x,y>= um fa(x,,v)=0
(3.9)-'(°.°) GM!)-(0.0)

und aus (2.12) dann auch

lim ——"2‘y: =

(2,:/)~(o.o) x’ + ‚v

Aufgabe 2.1: Bestimmen Sie alle Punkte P(x‚ y), für die folgende Funktionen erklärt
werden können:

a) f(x‚ y) = ln (1 — e=+v), b) f(x, y) = arcsin

Aufgabe 2.2: Zeichnen Sie für die folgenden Funktionen die Niveaulinien c = 1, 2,
3, 4, 5, und geben Sie anschließend an, durch welche Flächen die Funktionen veran-
schaulicht werden können.

a)f(x‚y)= Vx’+}”‚ b)f(x‚}')= V(x-1)’+4y’-
Aufgabe 2.3: Die folgenden Funktionenf(x, y) sind für (x, y) =¢= (0, O) erklärt. Unter-
suchen Sie, ob lim/(x, y) existiert.

(am/)~<0,0)

x2 ‚ y x2 _ ya

amx, y) = WE, bmx, y) = Ff.

2.4. Stetigkeit von Funktionen mehrerer Variabler

Genau wie bei Funktionen einer unabhängigen Variablen ist auch bei Funktionen
mehrerer unabhängiger Variabler der Begrifi" des Grenzwertes einer Funktion f an
einer Stelle (x0, yo) eng mit dem Begriff der Stetigkeit vonfan der Stelle (x„, yo) ver-
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bunden. Die Funktion muß jetzt nicht nur in einer punktierten Umgebung von (x0 , y0)
erklärt sein, sondern auch an der Stelle (x0, y0) selber. In wörtlicher Übertragung‘)
der Definition 3.1 aus Band 2 formulieren wir dann

Definition 2.3: Eine in einer Umgebung von (x0, y0) definierte Funktion f(x, y) heißt
an der Stelle (x0, y0) stetig, wenn gilt

lim f(x, y) =f(xo‚ yo)-
(1,9)-'(zov!In)

(2.16)

Führt man für einen beliebigen zu (x0, y0) benachbarten Punkt (x, y) die Größen
h = x—x0undk=y —y0ein‚sogiltx=x0 + hundy=y0 + k‚undder
Grenzübergang (x, y) —+ (x0, y0) bedeutet dann (h, k) —+ (0, 0). Für (2.16) können wir
dann auch schreiben

lim f(xo + in yo + k) =f(xo‚ yo). (2-17)
h,k)~>(0,0)(

Bei Benutzung von Punktfolgen bedeutet die Stetigkeit von f, daß für jede Folge
(x„‚ y,.) aus dem Definitionsbereich von f(x, y) mit 1im(x,., y,.) = (x0, y0) gilt

n-co

1imf(xm yr-)=f(1iII1 (xm m) =f(xo,yo)- (2-18)

Die Stetigkeit besagt also, daß man zwei mathematische Operationen vertauschen
kann. Auf der linken Seite von (2.18) wird verlangt, daß man zuerst die Funktions-
wertef(x‚„ y„) und anschließend den Grenzwert der Zahlenfolge (f(x„, y,,)) bestimmt.
Auf der rechten Seite von (2.18) ist zunächst der Grenzwert der Punktfolge (x‚„ y‚.)
zu ermitteln und anschließend der Funktionswert von diesem Punkt aufzusuchen. Ist
die Funktion f(x, y) stetig, so ist das Ergebnis in beiden Fällen gleich.

Die „s, ö-Charakterisierung“ der Stetigkeit kann wie folgt formuliert werden.

Satz 2.3: Die Funktionf(x, y) sei in einer Umgebung von (x0, y0) definiert. Genau dann
istf(x, y) an der Stelle (x0, y0) stetig, wenn zu jeder Zahl e > 0 eine Zahl ö = 6(5) > 0
existiert, so daß gilt: Für alle (x, y) mit

d((x. y), (xo. y0) < Ö z) folgt If(X‚ y) -f(xo‚ yo)! < 8- (2-19)

Mit Hilfe des Umgebungsbegrifles können wir die Bedingung für die Stetigkeit
auch wie folgt formulieren: Zu jedem e > 0 existiert eine Zahl ö = 6(2) > 0, so daß
für alle (x, y) aus der ö-Umgebung U((x0, y0); ö) von (x0, y0) der Funktionswert
f(x, y) in der s-Umgebung der Zahl f(x0‚ y0) liegt?)

‘) Eine wörtliche Übertragung ist möglich, weil auch zuvor im R" die Begriffe „Umgebung“ und
„Grenzwert“ erklärt wurden.

1) d(...) bedeutet den Abstand der beiden Punkte.
3) Die (‘i-Umgebung von (x0, y0) ist Teilmenge des R’; die e-Umgebuug von f(x„ y0) ist Teilmenge

des R‘.
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Beispiel 2.6: Wir betrachten die Funktion:

_ x ‘J’f(x:y)—x2+y2

An jeder Stelle (x0, yo) =|= (0, 0) istf(x, y) stetig, denn ist (x‚.‚ y„) eine beliebige Punkt-
folge mit lim (x‚„ y‚.) = (x„‚ yo), so folgt für die Koordinaten lim x‚. = x„ und

n—>oo

für (x, y) =i= (0, 0) und f(0‚ 0) = 0.

fl-9

lim y,. = yo und damit
n-aoo

xo ‘ yo

x02 ‘i’ ‚V02
um /(x.‚y„>= um """”
7l~'0O 71-9

m xng + y"; =f(x0! yo)-

Im Nullpunkt ist f(x, y) nicht stetig, denn z. B. für die Folge (x„‚ y„) =

1 1 .(7 , I) gilt

(l i)» (o o) und f(i i): l also auch iim/(i l)=i+o=f(o o).
n ’ n ’ n ’ n 2 ’ „.‚„„ n ’ n 2 ’

(Wir bemerken noch ergänzend, daß im vorliegenden Beispiel nicht einmal der Grenz-

wert lim f(x‚ y) existiert. Zum Beispiel für die Folge (x‚.’‚ y„’) = gilt
(I‚u)-(0‚0) n n

<x.'‚y.')»(o‚o> und

und —2~ = 1imf(x.., yr.)-)

. , 2 1
also auch lim f(x‚], y„ ) = g + E

n-van

Die Stetigkeit einer Funktionf(x, y), die auf einer Teilmenge M des R2 erklärt ist,
wird, entsprechend der Definition 2.3, durch die Übereinstimmung von Grenzwert
und Funktionswert definiert, wobei der Grenzwert in M zu bilden ist, d. h.‚ daß man
nur aufFolgen {(x‚.‚ y,.)} Bezug nimmt, die in M liegen und gegen (x0, yo) konvergieren
(dabei wird nicht vorausgesetzt, daß M eine Umgebung von (x„, ya) enthält).

2.5. Sätze über stetige Funktionen

Die uns bekannten Sätze über stetige Funktionen einer unabhängigen Variablen
aus Band 2 können nahezu wörtlich übertragen werden auf stetige Funktionen von
mehreren unabhängigen Variablen. Wir formulieren die entsprechenden Aussagen,
für den Fall n = 2, ohne auf die Beweise der Sätze einzugehen. Der Begrifi’ der ein-
seitigen Stetigkeit kann für Funktionen mehrerer unabhängiger Variabler nicht er-
klärt werden. Die Übertragung der dortigen Sätze 3.3 und 3.4 lautet hier:

Satz 2.4: Ist die Funktionf(x‚ y) an der Stelle (x0, yo) stetig undgiltf(xo, yo) > 0 (bzw.
f(x„, yo) < 0), so gibt es mindestens eine ö-Umgebung U(xo‚ yo; ö) von (x0, yo), so
daß sogar f(x‚ y) > 0 (bzw. f(x‚ y) < 0) auch noch für alle (x, y) E U(xo,yo; ö) gilt.

S.2.4

Satz 2.5: Die Funktionen f(x,y) und g(x,y) seien an der Stelle (x0, yo) stetig. Dann sind S.2.5
auch die Funktionen

f(x‚y) + g(x‚y). c -f(x‚y) (c beliebige Konstante) und f(x‚y)- g(x‚y)

an der Stelle (x0, yo) stetig. Gilt weiter g(xo, yo) $ 0, dann ist auch die Funktion il-
an der Stelle (x0, yo) stetig. g(x’ y)

In Übertragung der dortigen Sätze 3.8 und 3.9 können wir formulieren:
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S.2.7
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Satz 2.6: Die Funktion f(x‚y) sei aufeinerMengeM g R’ erklärt. Ist f(x‚y) stetig auf M
und ist M eine kompakte Teilmenge des R“ (d. h.‚ M ist eine beschränkte und abge-
schlossene Teilmenge des R‘), so besitzt f(x‚ y) auf M ein absolutes Maximum und ein
absolutes Minimum. Es gibt also Punkte (x1, yl) und (x2, yz) in M, so daß

f(x„yr) §f(x, y) §f(xz.y2) für alle (x,y) E M gilt‘)

Speziell im Fall n = 2 gilt also, daß stetige Funktionen, die z.B. auf einem abge-
schlossenen Rechteck definiert sind, dort ein absolutes Maximum und ein absolutes
Minimum besitzen. Im Fall n = 1 sind abgeschlossene Intervalle kompakte Teilmen-
gen des R’.

Als Übertragung der Nullstelleneigenschaft formulieren wir den

Satz 2.7: Die Funktion f(x‚ y) sei in einem Gebiet G definiert und dort stetig. Für ein

(xmn) E G gelte f(xi‚y1) > 0 und für ein (xz,yz) E G gelte f(xz‚yz) < 0- Dann gibt
es mindestens ein (g, 17) 6 G mit f(§, 17) = 0.

Für die Bildung zusammengesetzter (oder mittelbarer) Funktionen betrachten wir
wegen der besseren Übersicht wieder den Spezialfall n = 2 und besprechen zwei Mög-
lichkeiten für die Bildung mittelbarer Funktionen. Ausführlicher gehen wir auf zusam-
mengesetzte Funktionen im Abschnitt 3.6.1. ein.

Beispiel 2.7: In der gesamten x, y—Ebene erklärt ist die Funktion

f(x‚ y) = e"“'”’- (220)

Ausgehend von den beiden Funktionen

u(x‚ y) = x - sin y und z(u) = e" (2.21)

kann für einen beliebigen Punkt (x, y) zunächst der Funktionswert u(x‚ y) = x - sin y
bestimmt werden. Da z(u) = e" für jede reelle Zahl definiert ist, gehört speziell u(x‚ y)
= x - sin y zum Definitionsbereich von z = e", und man kann anschließend

z(ü(x‚ y)) = °"“’”’ = B‘ ““" (222)

bilden. Die Funktion (2.20) besteht somit aus den beiden „Bausteinen“ (2.21), wobei
die „innere Funktion“ u(x‚ y) eine Funktion von zwei Variablen und die „äußere
Funktion“ z(u) eine Funktion von nur einer Variablen ist. Durch Zusammensetzung
beider Funktionen oder Hintereinanderausfiihrung beider Funktionen erhält man
eine reelle Funktion von zwei Variablen.

Beispiel 2.8: Auf einer t-Achse betrachten wir etwa auf dem abgeschlossenen Inter-
vall [0, 27:] die beiden Funktionen

zp(t) = cos t und 1p(t) = e’.

‘) Gilt f(x„ yl) §f(x, y) für alle (x, y), so heißt (x1, yl) Stelle des absoluten Minimums der
Funktion f. Gilt f(x‚y) g f(x2, yz) für alle (x‚y)‚ so heißt (x1, yz) Stelle des absoluten Maximum:
der Funktion f.
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Für jeden Wert t aus [0, 21:] gehören dann die Punkte (x, y) = (<p(1), w(t)) = gcos f, e‘)
zum Definitionsbereich der Funktion f(x‚ y) = 2x + y’. Wir können also die mittel-
bare Funktion

3(1) =f(<P(t)» W» = 20100)) + (1/41))‘ = 2 00S 1+ e“

bilden und erhalten als Ergebnis durch Zusammensetzung eine auf dem Intervall
[0, 21:] erklärte reelle Funktion einer unabhängigen Variablen.

Bezüglich der Stetigkeit gilt dann, daß mittelbare Funktionen stetig sind, wenn die
zu ihrem Aufbau benutzten Funktionen an den verwendeten Stellen einzeln stetig
sind,

Wir erkennen also sofort, daß die Funktionf(x‚ y) = Vx — y für alle Punkte (x, y)
unterhalb der Geraden y = x stetig ist, da u(x, y) = x — y überall stetig und
z(u)= i’; für alle u > 0 stetig ist.

Aufgabe 2.4: Bestimmen Sie

lim x -ex+'/+34
mu)» (Er

- sin xy.

2.6. Vektorfunktionen

2.6.1. Begrifl" der Vektorfunktion

Bei den bisher betrachteten Funktionen war der Definitionsbereich eine geeignete
Teilmenge M des R’ oder allgemeiner eine geeignete Teilmenge des n-dimensionalen
euklidischen Raumes R", und die Funktionswerte waren reelle Zahlen, lagen also
stets im R‘. Für die Anwendungen ist jedoch die folgende Verallgemeinerung wichtig.
Es sei M eine Teilmenge des R" und W eine Teilmenge des R“ (m natürliche Zahl,
m g l; an dieser Stelle interessiert besonders der Fall m > 1).

Es soll nun jedem Punkt P aus M als Funktionswert ein Punkt Q von W < R" zu-
geordnet werden. Benutzen wir die Sprechweise der Vektorrechnung‚ so soll jedem
Punkt Pe M mit dem Ortsvektor x als Funktionswert ein Punkt Q e W mit dem
Ortsvektory zugeordnet werden. Wir schreiben dann t'(P) oder auch f(x) und spre-
chen von einer Vektorfunktion f. (Durch das Symbol f wird angedeutet, daß die
Funktionswerte wieder Punkte bzw. Vektoren sind.) Für die Anwendungen ist der
Spezialfall m = n = 3 wichtig. Als erstes Beispiel nennen wir an dieser Stelle die
stationäre Strömung einer Flüssigkeit. Ein Flüssigkeitsteilchen hat dann in einem
PunktP des durchströmten Gebietes G eine Geschwindigkeit v(P). Betrachtet man
für alle Punkte P des Gebietes G den Vektor v(P)‚ so erhält man eine in G erklärte
Vektorfunktion. Man spricht dann gelegentlich auch von einem in G erklärten
Vektorfeld im Gegensatz zu den bisher betrachteten Funktionen. Bei ihnen sind die
Funktionswerte reelle Zahlen, und man bezeichnet solche Funktionen dann auch als
Skalnrfelder.
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Beispiel 2.9: Es sei nun m = n = 3. Jedem Punkt P(x1, x2, x3) E R3 werde als Funk-
tionswert der Punkt Q(x2x„‚ x3(x1 + x3), x,(x1 + x3) + x3(x2 + x3)) zugeordnet. Bei
Benutzung der Vektorschreibweise erhalten wir die Vektorfunktion

f(x) = xzxaex ‘i’ x3(x1 ‘i’ xx) 92 ‘i’ [X2051 + xx) ‘l’ x3 (x2 ‘l’ x10] es

für jedes x = x1e, + xge, + x3e, E R’.

Wichtig ist der folgende Zusammenhang zwischen einer Vektorfunktion und einem
System von reellen Funktionen. Für jeden Punkt P aus dem Definitionsbereich M
einer Vektorfunktion f ist der Funktionswert f(P) ein Punkt des R"‘; wir können also
schreiben f(P) = (yl, yg, , y„.). Jedem Punkt P wird somit ein m-Tupel von reellen
Zahlen zugeordnet. Schreiben wir

y,~=f,(P)=f,-(x1,..., x,,) für i= l, 2, ...‚ m und P E M, (2.23)

so sind die Funktionen f,- reelle Funktionen mit dem gemeinsamen Definitionsbereich
M, und es gilt

f(P) = (f1(P),fz(P), ,fm(P))- (2-24)

Ein Vektorfeld f kann somit auf ein System von m reellen Funktionen f1,f„ ...‚f„‚
zurückgeführt werden. Die Anzahl der reellen Funktionen ist gleich der Dimension
des Bildraumes. Umgekehrt kann jedes System von m reellen Funktionen mit gemein-
samem Definitionsbereich M zu einer Vektorfunktion auf M mit Werten im R"' zu-
sammengefaßt werden. Wir können also die Vektorfunktion f identifizieren mit einem
m-Tupel (f1,f,, ...,f,,,) von reellen Funktionen und daher symbolisch schreiben

f: (flrfzs u-sfm)’

Im Beispiel 2.9 wäre die Vektorfunktion f zu identifizieren mit folgendem Tripel
von reellen Funktionen:

f1(x1: X2» x3) = x2 ‘X33 fi(-V12 x2: x3) = x3(x1 ‘l’ x3);

fis(x1» x2: xx) = {X2051 ‘l’ x9 ‘l’ x3(x2 ‘l’ 353)]-

Die Definition des Grenzwertes für Vektorfunktionen lim f(P) ist nahezu wörtlich
z»?

zu übernehmen von Definition 2.2 mit dem Unterschied, daß die Funktionswert-
folgen jetzt Punktfolgen und nicht Zahlenfolgen sind. Wenn also für jede Folge (P„)
aus dem Definitionsbereich M der Vektorfunktionf mit P„ =l= Po für alle natürlichen
Zahlen n und lim P„ = Po dann im R"‘ gilt lim f(P„) = Q, so schreiben wir

lim f(P) = Q. Xncaloges gilt für den Begriff deiogtetigkeit von f an einer Stelle Po. Für
P»? '

jeden Folge (P,.) aus dem Definitionsbereich von f mit 1imP,. = Po muß folgen
lim f(P‚.) = f(P„). ""°°

n—>eo

Beachten wir die Tatsache, daß eine Folge im R"' genau dann konvergiert, wenn die
m Zahlenfolgen der einzelnen Koordinaten konvergieren, so können wir folgendes
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sagen: Eine Vektorfunktion f(P) ist genau dann stetig, wenn die m reellen Funk-
tionen f‚(P),f‚(P), ...‚f„‚(P) im bekannten Sinne stetig sind.

Die im Beispiel 2.9 genannte Vektorfunktion ist also überall stetig, da die drei reel-
len Funktionen f‚(x„ x2, x3), f2(x„ x2,x3), f3(x1,x;, x3) überall stetig sind.

2.6.2. Krummlinige Koordinaten im R’

In der Integralrechnung für Funktionen mit mehreren Variablen im Band 5 wer-
den als Integrationsbereiche geeignete Punktmengen im R’ oder R’ betrachtet.
Es wird darauf ankommen, diese Mengen möglichst übersichtlich zu beschreiben.
Hierzu sind dann oft die sogenannten krummlinigen Koordinaten sehr geeignet.
Sie stellen zugleich ein wichtiges Beispiel für das Arbeiten mit Vektorfunktionen
dar und sollen nun besprochen werden. In allen Fällen betrachtet man neben dem R"
eine geeignete Teilmenge eines R"', die durch eine Vektorfunktion auf den gesamten
R“ abgebildet wird.

Zuerst behandeln wir für den Fall m = n = 2 die ebenen Polarkoordinaten. Neben
der x, y-Ebene E wird eine weitere Ebene E ebenfalls mit einem rechtwinklig karte-
sischen Koordinatensystem betrachtet, in der wir die Koordinaten der Punkte mit
r und (p bezeichnen. In der r, qJ-Ebene E sei B der in Bild 2.7 gekennzeichnete Halb-
streifen; die linke und obere Begrenzungsgerade sollen zu B gehören. Wir können
also schreiben

1§={(n<P)E13"l0§r<°° und -7r<<P§7=}- (2-25)

9 E‘

I I

’— 7 24 5 s 7 Jr

_,, _fi_ _ __ -4

Bild 2.7 Bild 2.7a

Jedem Punkt (r, (p) aus I? werde nun der Punkt (x, y) = (r cos «p, r sin mp) in der
x, y-Ebene zugeordnet. Auf der Menge Ä wird also die durch die beiden reellen
Funktionen

x(r‚ qu) = r cos (p
f" 0_ d— .y(r"p)=rSin(p} ur 5r<ooun 7r<¢p§-n: (226)

3 Harbarth/Riedricli. Dill‘. Rechn.
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gekennzeichnete Vektorfunktion betrachtet. Aus (2.26) lesen wir dann folgende Zu-

ordnung von Punkten aus I? zu Punkten in der x, y-Ebene ab: (r, , (pl) = (2, — i)wird
2

Eabgebildet in (x1, y.) = (2 cos <— 2 2 sin (— = (0, -2) oder (r2, (pz) =

2
Koordinate r den festen Wert r = 2, so werden die Punkte (r, (p) = (2, (p) aus B ab-
gebildet in die Punkte (x, y) = (2 cos (p, 2 sin (p). Wegen x2 + y“ = 4 cos’ (p + 4 sin’ (p = 4
sind dies gerade die Punkte des Kreises mit dem Radius r = 2 um den Nullpunkt
in der x, y-Ebene. Erteilen wir andererseits der unabhängigen Variablen (p 2.13.

wird abgebildet in (x2, ya) =(2 cos ä, 2 sin 3-) = (O, 2). Erteilen wir allgemein der

den festen Wert zp=%, so gilt für die Bildpunkte von (r,<p)=(r, dann

(x, y) = (r cos ä ‚ r sin Wegen cos = sin ä durchläuft der Bildpunkt alle Punkte

der Halbgeraden y = x mit 0 g x <c>o durch den Nullpunkt. In Bild 2.7 und Bild 2.7a ist
die Punktzuordnung durch die gleiche Markierung angedeutet. Die Bilder von Geraden

r = c (c konstant, ——7: < (p g n) in B sind Kreise um den Npllpunkt in der x, y-Ebene;

die Bilder von Geraden (p = c (c konstant, 0 g r < oo) in B sind vom Nullpunkt aus-
gehende Halbgeraden in der x, y-Ebene. Der Nullpunkt (x, y) = (O, 0) in der Ebene E
ist Bildpunkt von allen Punkten (r, (p) = (0, (p) mit —7'r < (p g 71:, d.h.‚ der Nullpunkt
ist Bildpunkt von allen Punkten des linken Randes von B. Zu jedem anderen Punkt
(x, y) # (0, 0) gibt es genau einen Punkt (r, (p) in B mit x = r cos (p und y = r sin (p.

Jeder Punkt (x, y) =0: (0, 0) entsteht also in eindeutiger Weise aus genau einem Punkt
(r, (p) von B. Die durch (2.26) beschriebene Vektorfunktion ist also eineindeutig

außer in gewissen Randpunkten von 1;.

In Bild 2.8 erkennt man den geometrischen Zusammenhang zwischen den Zahlen
r, (p und den zugehörigen Zahlen x, y. Wegen I/x’ + y’ = Vr’ cos? (p + r’ sin’ (p = r

ist r der Abstand des Punktes (x, y) vom Nullpunkt. (p ist der von der positiven
x-Achse aus gemessene Winkel gegen die Halbgerade durch den Nullpunkt und den
Punkt (x, y). Diese Zahlen r und (p bezeichnet man als die Polarkoordinaten des
Punktes P. Die Bilder der Geraden r = const bzw. (p = const heißen Koordinaten-
linien. Die Koordinatenlinien der Polarkoordinaten sind also Kreise um den Null-
punkt bzw. vom Nullpunkt ausgehende Halbgeraden.

Mit Hilfe von Polarkoordinaten können Punktmengen in der x, y-Ebene immer
dann bequemer beschrieben werden als dies mit den Koordinaten x und y möglich
wäre, wenn sie durch Koordinatenlinien der Polarkoordinaten, also durch geeignete
Kreise um den Nullpunkt und Halbgeraden durch den Nullpunkt, begrenzt wer-
den. Für diese Punktmengen bilden die zugehörigen Punkte in der r, (p-Ebene einen
übersichtlicheren Normalbereich.

Beispiel 2.10: Es sei K die durch den Kreis x’ + y’ = 4 begrenzte Punktmenge.
Es ist dies die Koordinatenlinie r = 2. Wollen wir'die Punkte von K mit Hilfe der
rechtwinkligen x, y-Koordinaten beschreiben, so müssen wir den oberen Begren-
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J’

y
=

r
J/

/7
(p

*7

.3’ X

Bild 2.8 Bild 2.9

zungshalbkteis y = V4 — x3 und den unteren Begrenzungshalbkreis y = — V4 — x’
heranziehen und können dann schreiben

K={(x,y)EE|—2§x§2 und -1/Z1—x2gygV4—x2}. (2.27)

Betrachten wir in der r, zp-Ebene das Rechteck

12={(r,.p)e§|o§rg2 und —7t<<p_S_1':}, (2.28)

so entsteht der Kreis K durch die Abbildung (2.26) aus K. (2.28) ist in vielen Fällen
eine übersichtlichen Darstellung für die genannte Menge.

Beispiel 2.11: Es sei K, die in Bild 2.9 skizzierte Menge; sie wird begrenzt durch die

Koordinatenlinien n = l, r, = 3 und die Koordinatenlinien (p, = 0 und (p, =

K, entsteht durch Anwendung der Abbildung (2.26) auf das Rechteck

1%,: (r,¢)e1';;1grg3 und o;<pg%.
Mit Hilfe der x, y-Koordinaten wäre eine Beschreibung der Menge K1 komplizierter.
Beispiel 2.12: Es sei K, die durch den Kreis (x — 2)’ + y’ = 4 begrenzte Menge in
der x, y-Ebene. Bezeichnet 0 den Nullpunkt und P einen variablen Punkt auf der
Kreislinie‚ so erkenntflan in Bild 2.10, daß die Menge K, aufgefaßt werden kann als

Menge aller Strecken 0P, wobei P die gesamte Kreislinie durchläuft. Ein Kreispunkt
Po werde herausgegriffen; seine Polarkoordinaten seien r„ und (pa. Aus dem recht-
winkligen Dreieck mit den Eckpunkten 0, P0 und P, (4, 0) lesen wir dann

C05 ‘Po = a)‘

ab. Alle Punkte der StreCkeÜPO haben die gleiche cp-Koordinate cpo, sie liegen auf der

Koordinatenlinie (p = (pa. Die Strecke ÖE, ist also die Menge aller Punkte (x, y)
mit x = r cos tpo, y = r sin qzo und r variabel in 0 g r g 4 cos (pa. Speflell für
«pa = 0 ist die Strecke 07’, die Menge aller Punkte

(x‚y)= (rcos0‚rsin0)= (r,0) mit o; r; 4cos0=4.

oder n, = 4 cos 920
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Bild 2.10 g Bild 2.11

. . . . TC T17 .

Lassen w1r nun ¢p., variieren zwischen — 5- und —2- ‚ so erhalten Wll‘ alle Punkte von K2.

K, wird daher durch die Koordinatenlinien (p, = — gund rp, = —:—beg1'enzt.

In der r, «p-Ebene betrachten wir die Menge:

1E,={(r,q;)e1§ ——;§<p§;und0§r§4cosq2} (2.29)

Die Begrenzung der r-Koordinate ist also von (p abhängig. K, i_st der in Bild 2.11 skiz-

zierte Normalbereich in der r, cp-Ebene. Wendet man auf K, die Vektorfunktion
(2.26) an, so erhält man den Kreis K, in der x, y-Ebene. Unter Benutzung der
x, y-Koordinaten hätte man zu schreiben:

K„={(x‚y)eE|ogxg4 und —V4—(x-2)2§y:1/4—<x—2>*}.
(2.30)

Die Darstellung des Kreises durch (2.29) ist in vielen Fällen sehr viel günstiger als
durch (2.30).

In Verallgemeinerung des geschilderten Sachverhaltes ist es nun naheliegend, so-
genannte krummlinige Koordinaten in der x, y-Ebene einzuführen. Neben der x, y-
Ebene betrachtet man eine u, v-Ebene und in dieser u, v-Ebene eine gewisse

Teilmenge B. Für die Punkte von B soll eine Vektorfunktion durch die reellen
Funktionen fi(u, v) und f‚(u‚ v) derart erklärt sein, daß durch die Festsetzung

x =fi(u, v) und y =f2(u, v) (2.31)

eine Abbildung von der Menge 173 auf die gesamte x, y-Ebene entsteht. Die Abbildung
soll eineindeutig sein mit eventueller Ausnahme von gewissen Randpunkten von B.
Wenn dann x0 = f‚(u„‚ v0) und yo = f,(u,,, 12.,) gilt, dann heißen u„ und v0 die krumm-
Iinigen Koordinaten des Punktes P.‚(x„‚ yo). Als Koordinntenlinien bezeichnet man
die Bilder der Geraden u = u„ bzw. der Geraden v = v0. Die Wahl passender krumm-
liniger Koordinaten geschieht in der Weise, daß die zu behandelnden Punktmengen
in der x, y-Ebene durch möglichst übersichtliche Normalbereiche in der u, v-Ebene
beschrieben werden können. Dies ist der Fall, wenn die Mengen durch Koordinaten-
linien begrenzt werden.
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Aufgabe 2.5: Die folgenden Punktmengen K in der x, y-Ebene beschreibe man mit *

Hilfe von Polarkoordinaten:

a) K sei der Kreisring, begrenzt durch die Kreise

x’+y’=2 und x2+y’=6;

b) K werde begrenzt durch den Kreis x’ + (y ~ 3)” = 9.

2.6.3. Krummlinige Koordinaten im R’

Alles, was über krummlinige Koordinaten in der x, y-Ebene gesagt wurde, gilt in
sinnvoller Übertragung auch für krummlinige Koordinaten im Raum. Neben dem
x, y, z-Raum wird ein u, v, w-Raum betrachtet und in diesem eine gewisse Teilmenge

R. Für die Punkte von R muß eine Vektorfunktion durch drei reelle Funktionen
f1(u‚ v, w), fi(u, v, w) und f,(u, v, w) derart erklärt sein, daß durch die Festsetzung

x =fi(u, v, w), y =fi(u, v, w) und z =f3(u, v, w) (2.32)

eine Abbildung von der Menge R auf den gesamten x, y, z-Raum entsteht. Diese Ab-
bildung muß eineindeutig sein mit eventueller Ausnahme von gewissen Randpunkten
von R. u, v, w heißen dann krummlinige Koordinaten des Punktes P(x‚ y, z). Be-

trachtet man in der Menge R eine Gerade, die dadurch entsteht, daß man zwei der
unabhängigen Variablen einen festen Wert erteilt und die übrige Variable variieren
läßt, so heißt das Bild dieser Geraden bei Anwendung der Vektorfunktion (2.32) eine
Koordinatenlinie im R“. Wählt man z. B. u = uo und w = wo fest und läßt v variieren,
so entsteht durch Anwendung von (2.32) eine v-Koordinatenlinie im R“. Erteilt. man

nur einer der unabhängigen Variablen einen festen Wert, so erhält man Ebenen in R,
die zu den Koordinatenebenen im u, v, w-Raum parallel sind. Die Bilder solcher Ebe-
nen heißen Koordinatenfläehen im R’. Die Wahl geeigneter krummliniger Koordina-
ten im R3 wird wieder so geschehen, daß die zu beschreibenden Punktmengen durch
zugehörige Koordinatenflächen begrenzt werden.

Beispiel 2.13: Zylinderkoordinaten: Neben dem x, y, z-Raum wird ein r, go, z-Raum
betrachtet und in diesem die Menge

R={(r,tp‚z)|0gr<oc und —rc<qJ§1rund —oo<z<oo}. (2.33)

Man gelangt zu R, indem man in der r, cp-Ebene von dem für ebene Polarkoordinaten
bekannten Halbstreifen R ausgeht und dann alle Punkte im r, (p, z-Raum betrachtet,

die senkrecht über Punkten von B liegen. Die zu den sogenannten Zylinderkoordinaten
gehörende Abbildung der Menge R in den R3 ist gekennzeichnet durch

x(r, (p, z) = r cos «p

y(r, <p‚ z) = r sin q: für (r, go, z) E R. g (2.34)

ZU» ‘P: z) = z
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TC

y E‘ y

(x, y, z) = (cosg, sin g , l) = (0, l, 1). In Bild 2.12 erkennt man sofort den Zu-

Der Punkt (r, (p, z) = (l l) wird also durch (2.34) abgebildet in den Punkt

sammenhang zwischen den Koordinaten x, y, z und den Zylinderkoordinaten r, (p, z.
Wird r und (p ein fester Wert erteilt und z variabel gelassen, so erhält man als z-Ko-
ordinatenlinien im R3 Geraden parallel zur z-Achse. Wird r und z ein fester Wert
erteilt und q: variabel gelassen, so erhält man als qJ-Koordinatenlinien im R‘ Kreise,
die in Ebenen z = const parallel zur x, y-Ebene verlaufen; die Mittelpunkte aller
dieser Kreise liegen auf der z-Achse. Wird q) und z ein fester Wert erteilt und r variabel

\ 7 (x,y,z)

Bild 2.12

i

____L7,- vM/L ’ (w. In

gelassen, so erhält man als r-Koordinatenlinien im R’ Halbgeraden; sie gehen von
Punkten der z-Achse aus und verlaufen parallel zur x, y-Ebene. Die Koordinatenflä-
chen z = const sind Ebenen parallel zur x, y-Ebene. Die Koordinatenflächen (p =

const sind von der z-Achse ausgehende Halbebenen; sie verlaufen senkrecht zur
x, y-Ebene. Die Koordinatenflächen r = const sind Zylinder; für alle diese Zylinder
ist die z-Achse gemeinsame Zylinderachse.

Die Zylinderkoordinaten eignen sich besonders zur Beschreibung solcher Punkt-
mengen im R3, deren Begrenzungsflächen zum Teil Koordinatenflächen der Zylinder-
koordinaten sind. Es sei z.B. K derjenige Körper, der von dem Kegel z = 1/x’ + yz
(Spitze im Nullpunkt; nach oben geöffnet), dem Zylinder x’ + y’ = 9 und der Ebene
z = 5 begrenzt wird. Die Koordinatenfiächen z = 5 und r = 3 gehören also mit zu den
Begrenzungen von K. Wählen wir nun ein r mit 0 g r g 3 und ein (p mit —-r: < (p g 7:,

so gehört der Punkt (r, zp, z) genau dann zu K, wenn gilt I/x2 + y’ g z g 5, oder

wegen r = Vx’ + y’ muß gelten r g z g 5. Schreiben wir

15=l(r‚<p‚z)€15l0grg3‚—n<<ßgw.rgzg5l‚

so entsteht der Körper K aus der übersichtlichen Menge K durch Anwendung der
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Abbildung (2.34). Mit Hilfe der x, y, z-Koordinaten hätte man zu schreiben

K={(x,y,z)I—3§x§3,—]/9—x2§y§1/9—x‘,1/x’+y’§z§5}.

Beispiel 2.14: Kugelkoordinnten oder sphärische Koordinaten oder räumliche Polar-
koordinaten: Neben dem x, y, z-Raum betrachten wir einen r, 19, zp—Raum und in
diesem die Teilmenge

1€= {(r,19,¢p)[0§r<o° und 0§19§7: und 0§<p<27'r]. (2.35)

Die durch die drei reellen Funktionen i

x(r, 19, qJ) = r cos (p sin 19,

y(r‚ 19, qJ) = r sin (p sin 19, (r, 19, qz) E R (2.36)

z(r, 19, qz) = rcos a?

gekennzeichnete Vektorfunktion bildet die Menge R auf den gesamten R3 ab. In
Bild 2. l 3 erkennt man den geometrischen Zusammenhang zwischen den Kugelkoordi-
naten r, 19, (p und den rechtwinkligen Koordinaten x, y, z. Die Koordinatenflächen
r = const sind Kugeln um den Nullpunkt, die Koordinatenflächen 19 = const sind

Kegel mit der Spitze im Nullpunkt. Sie sind nach oben geöffnet für 0 g 19 g g und

nach unten geöffnet für ;< 19 g 71:. Die Koordinatenflächen zp = const sind von der

z-Achse ausgehende Halbebenen. In Anlehnung an entsprechende Begriffe aus der

Geographie nennt man gelegentlich (p bzw. g — 19 die „geographische Länge“ bzw.

Bild 2.13

die „geographische Breite“ des Punktes P(x, y, z). Anstelle von (r, 29, (p) schreibt man
bei Kugelkoordinaten auch oft (g, 0, (p).
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Wir erwähnen abschließend, daß gelegentlich noch andere Beispiele für krumm-
linige Koordinaten als die hier genannten auftreten können.

Aufgabe 2.6:
a) K, sei der Körper, der begrenzt wird durch die x, y-Ebene, den Zylinder

(x — 1)’ + y’ = l und das Paraboloid z = x’ + y”. Man charakterisiere die Punkte
von K, mit Hilfe von Zylinderkoordinaten.

b) K, sei der oberhalb der x, y-Ebene gelegene Körper, der von dem Kegel

z = Vx’ + y’ und der Kugel x’ + y” + z’ = 4 begrenzt wird. Man charakterisiere die
Punkte von K, mit Hilfe von Kugelkoordinaten.

Aufgabe 2.7: Es seien a > 0 und b > 0 fest vorgegebene reelle Zahlen. Die sogenann-
ten Ellipsenkoordinaten in der x, y-Ebene werden eingeführt durch die Festsetzung:

x= x(u‚v) = aucos vy=y(u v)=businv mit ugo und O§v<2-tr.

Welche Kurven bilden die Koordinatenlinien u = const bzw. v = const?

2.6.4. Parameterdarstellung von Kurven und Flichen

Als Weiteres Beispiel für das Auftreten von Vektorfunktionen betrachten wir zu-

nächst die Parameterdarstellungen von Kurven. Wir betrachten ein Intervall J auf
der Zahlengeraden — es kann abgeschlossen, offen oder halboffen sein; J kann auch
der gesamte R‘ sein. Durch eine eindeutige Vorschrift sei jeder Zahl t E J ein Vektor
r(t) des R3 zugeordnet; es gelte also

r(t) = x(t)e1 + y(t) e, + z(t) e, für t E J. (2.37)

Auf J ist also eine Vektorfunktion mit Werten im R3 erklärt, und wir setzen voraus,
daß r(t) eine stetige Vektorfunktion ist. Die reellen Funktionen x(t), y(t) und z(t) sol-
len also stetig sein. Für jeden Wert t E J suchen wir den Punkt (x(t), y(t)‚ z(t)) im R3.

Ist to E J gewählt, so folgt aus der vorausgesetzten Stetigkeit von r(t), daß für nahe
bei to gelegene Werte t die Punkte (x(t)‚ y(t)‚ z(t)) nahe bei dem Punkt (x(t.‚), y(t„)‚ z(t„)) .

liegen. Die Gesamtheit aller dieser Punkte (x(t)‚ y(t)‚ z(t)) nennen wir eine stetige
Kurve C im R’. Die Vektorfunktion r(t) heißt in diesem Zusammenhang eine Para-
meterdarstellung der Kurve. Die unabhängige Veränderliche t heißt Kurvenparameter 1),

und das betrachtete Intervall J heißt Parameterintervall. Eine Parameterdarstellung
legt in natürlicher Weise eine Orientierung der Kurve fest, indem die Kurvenpunkte
im Sinne wachsender Parameterwerte durchlaufen werden sollen.

Man erhält eine Parameterdarstellung einer Kurve in der x, y-Ebene, wenn in
(2.37) gilt z(t) = 0, wenn also r(t) eine stetige Vektorfunktion mit Werten im R’ ist.
Für eine Kurve C in der x, y-Ebene gilt also

1-(1) = x(t) e, + y(t) e, für t E J

mit stetigen auf J erklärten Funktionen x(t)‚ y(t).

(2.38)

1) Der Kurvenparameter wird gelegentlich auch mit anderen Buchstaben bezeichnet, z.B. mit
T, l7, ... .
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Wir erwähnen einige wichtige Beispiele.

Beispiel 2.15: P1(a,, b1) und P‚(a„ b2) seien feste Punkte in der x, y-Ebene mit
den Ortsvektoren x1 = alel + bleg und x2 = a, e, + bgeg. Als Intervall J betrachten wir
den gesamten R‘ und betrachten für alle t mit —oo < t < oo die Vektorfunktion

l ‘(Ü = X1 ‘l’ ‘(X2 ‘ X1) = [a1 ‘l’ ‘(a2 — 41)] er + [bl + ‘(I72 “ 191)] e2- (2-39)

(2.39) ist eine Parameterdarstellung der Geraden durch P1 und P2 mit x(t) = a1

+ t(a‚ — a1) und y(t) = b, + t(b2 -— bl). Beschränken wir den Parameter t auf das
Intervall 0 g t g l, so erhalten wir die Punkte der durch P, und P2 begrenzten
Strecke.

Beispiel 2.16: Es seien a, b und R vorgegebene Zahlen. Auf dem Intervall J = [0, 211:)

betrachten wir

| x(t) = a + R cos t und y(t) = b + R sin t. (2.40)

Dann gilt (x(t) — a)2 + (y(t) — b 2 = R‘. Durchläuft der Parameter t das Intervall J
von 0 bis 21v, so durchläuft der Punkt (x(t), y(t)) den Kreis mit dem Mittelpunkt (a, b)
und dem Radius R einmal im mathematisch positiven Sinne‘) — beginnend beim
Punkt (a + R, b).

Beispiel 2.1 7: Eine Parameterdarstellung der Ellipse 52- + :—: = 1 (0 < b < a) erhält“Z

man, wenn man auf dem Intervall J = [0, 21:) die Funktionen’

| x(t) = a cos t und y(t) = b sin t (2.41)

betrachtet.

Beispiel 2.18: Schraubenlinie im Raum: Es seien a > 0 und R > 0 vorgegebene Zah-
len. Eine Parameterdarstellung der Sehraubenliuie lautet dann

| x(t) = R cos t, y(t) = R sin t, z(t) = at mit 0 g t _S_ 27:. (2.42)

Die geometrische Konstruktion der Schraubenlinie erkennen wir in Bild 2.14; sie ist
wie folgt möglich: Für jedes te [0, 27:] suchen wir zunächst in der x, y-Ebene den
Punkt F(R cos t, R sin t). Er liegt auf dem Kreis mit dem Radius R um den Null-
punkt. Anschließend gehen wir in Richtung der z-Achse zum Punkt F'(R cos t,
R sin t, at). Zu t = 0 bzw. t = 21: gehören die Punkte (R, 0, 0) bzw. (R, 0, 21m);

Bild 2.14

’) Durchlaufen im mathematisch positiven Sinn bedeutet Durchlaufen entgegen dem Uhrzeiger-
sinn.
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sie liegen übereinander. Beschränkt man t auf das Intervall [0, 21:], so nennt man das
entstehende Kurvenstück einen Gang der Schraubenlinie mit der Ganghöhe 21:a.
Als Parameterintervall könnte das Intervall [0, o0) oder auch die gesamte reelle
Achse betrachtet werden. Die Schraubenlinie verläuft auf dem Zylinder mit dem
Radius R und der z-Achse als Zylinderachse.

Beispiel 2.19: Wir kennen bereits Kurven in der x, y-Ebene als Veranschaulichungen
von stetigen Funktionen f(x), die 2. B. auf einem Intervall [a‚ b] der x-Achse erklärt
sind. Eine Parameterdarstellung dieser Kurven lautet etwa

x(t)=t und y(t)=f(t) für agzgb. (2.43)

Bemerkung 2.2: Es ist möglich, daß eine Kurve C durch mehrere unterschiedliche
Parameterdarstellungen dargestellt werden kann. Auf der reellen Achse betrachten
wir z.B. die Vektorfunktionen

d r,(t) = tel + te, für —oo < t < oo (2.44)
un

1'2('r)=(l+2-r)e1+(l+21:)e, fir —oo<-r<oo. (2.45)

In beiden Fällen handelt es sich um Parameterdarstellungen der Geraden y = x.
Man erhält in beiden Fällen die gleiche Punktmenge; zu jedem Kurvenpunkt gehören
dann je nach Verwendung der Parameterdarstellung (2.44) oder (2.45) unterschied-
liche Parameterwerte. Den Punkt (1, l) erhalten wir z. B. aus (2.44) für = I und aus
(2.45) für r = 0.

Bemerkung 2.3: Für gewisse weitergehende Betrachtungen ist es nützlich, solche Kur-
ven C zu betrachten, für die es Parameterdarstellungen r(t) mit sogar differenzier-
baren Funktionen x(t)‚y(t), z(t) gibt. Solche Kurven haben gewisse „Glattheits-
eigenschaften“. Bezeichnen wir die Ableitungen der Koordinatenfunktionen nach
t mit J'c(t)‚ }'I(t), z(t), so verläuft z. B. der Vektor i'(t) = x(t) e, + jI(t) c2 + 'z(t) e3 in
Richtung der Kurventangente im Kurvenpunkt mit dem Ortsvektor r(t)= x(t) e,
+ y(t)e, + z(t) es. Derartige Betrachtungen werden an dieser Stelle nicht weiter-
geführt.

Wir behandeln noch den Begriff der Parameterdarstellung einer Fläche im Raum.
Gegeben sei eine u, v-Ebene und in dieser ein Rechteck R oder auch allgemeiner ein
Normalbereich R. Auf R sei eine stetige Vektorfunktion

‘(In v) = x(u‚ v) e: + y(u‚ ">62 + z(u. v) es (2-46)

erklärt; die drei reellen Funktionen x(u‚ v), y(u‚ v), z(u, v) sollen also auf R stetig
sein. Die Menge aller Punkte (x (u, u), y(u‚ u), z(u, 12)) bezeichnet man dann als stetige
Fläche F im R3. (2.46) heißt eine Parameterdarstellung von F; R heißt der Parameter-
bereich von F und u, v heißen die Parameter der Fläche.

Bemerkung 2.4: Man erkennt die Verallgemeinerung, die vom Begriff der Parameter-
darstellung einer Kurve zum Begrifi" der Parameterdarstellung einer Fläche führt. An
die Stelle einer t-Parameterachse tritt eine u, v-Parameterebene. Das Parameterinter-
vall ist zu ersetzen durch ein Rechteck bzw. durch einen Normalbereich, und die ste-
tige Vektorfunktion r ist jetzt eine Abbildung einer Teilmenge des R’ in den R3.

Beispiel 2.20: Parameterdarstellung einer Schranbenfliche: Als Parameterebene be-
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trachten wir eine r, tp-Ebene und in dieser das Rechteck

A={(r,q2)|0§r§R und 0§<p§27r] (2.47)

und auf A die stetige Vektorfunktion

x(r, cp) = r cos (p, y(r‚ zp) = r sin (p, z(r‚ <p) = azp (2.48)

mit vorgegebenen Zahlen a > 0 und R > 0. Für jeden festen Wert r = ro ist (2.48)
die Parameterdarstellung eines Ganges einer Schraubenlinie‚ die auf dem Zylinder
x2 + y’ = 1'02 verläuft. Für jeden festen Wert <p = cpo ist (2.48) die Parameterdarstel-
lung der in der Ebene z = aq20 verlaufenden Strecke vom Punkt (0, 0, mp0) zum
Punkt (R cos npo, R sin (Po, aqao). Die Schraubenfläche können wir uns in der Weise
entstanden denken, daß die auf der x-Achse verlaufende Strecke vom Punkt (0, 0, 0)
zum Punkt (R, 0, 0) im mathematisch positiven Sinn um 21c gedreht wird und dabei
gleichzeitig kontinuierlich um azp gehoben wird.

Wir kennen Flächen als geometrische Veranschaulichungen von stetigen Funktio-
nen f(x, y) von zwei unabhängigen Veränderlichen. Identifiziert man die x, y-Ebene
mit der Parameterebene und setzt‘ man dann

x(x‚ y) = x, y(x‚ y) = y, z(x‚ y) =f(x‚ y), (2.49)

so ist (2.49) eine Parameterdarstellung der genannten Fläche.

Es gilt auch hier, daß zu einer Fläche unterschiedliche Parameterdarstellungen
gehören können.

Wird in (2.46) einer der unabhängigen Veränderlichen ein fester Wert erteilt (also
u = uo gesetzt und nur v variabel gelassen bzw. v = v0 gesetzt und u variabel gelassen),
so ist (2.46) die Parameterdarstellung einer auf der Fläche verlaufenden Raumkurve.
Man bezeichnet diese Kurven auf F gelegentlich auch als Parameterkurven oder als
Parameterlinien. Die Fläche F erscheint dann als Zusammenfassung der Schar aller
u-Parameterlinien bzw. als Zusammenfassung der Schar aller v-Parameterlinien.

Für weiterführende Betrachtungen benötigt man wieder Flächen mit gewissen
,‚Glattheitseigenschaften". Die Funktionen x(u, v), y(u‚ v), z(u, v) müssen dann
bezüglichder partiellen Ableitungen (vgl. Kapitel 3.) gewisse Eigenschaften be-
sitzen; an dieser Stelle verfolgen wir diesen Gedanken nicht weiter. In Band6
(Difierentialgeometrie) findet man weitere Ausführungen über Kurven und Flä-
chen.



3. Partielle Ableitungen und totales Differential

3.1. Partielle Ableitungen erster Ordnung

Wir betrachten zunächst eine in der gesamten x, y-Ebene erklärte stetige Funktion
f(x‚ y). Es sei Po(xo‚ yo) ein fester Punkt und y = yo die feste Gerade durch Po paral-
lel zur x-Achse. Wird die Funktionf(x‚ y) nur für die Punkte dieser Geraden betrach-
tet, so wird y der feste Wert yo erteilt, und variabel ist lediglich x. Man erhält die
Funktion der einen unabhängigen Variablen x:

'P(x) =f(X. yo) - (3-1)

Die geometrische Veranschaulichung von 1p(:<) erkennt man in Bild 3.1, wenn man
senkrecht über jedem Punkt (x, yo) der genannten Geraden den Funktionswertf(x‚ yo)
abträgt. Wir erhalten eine in der Ebene y = yo verlaufende Kurve, die wir auch als
Schnitt der Fläche z = f(x‚ y) mit der Ebene y = yo‘) entstanden denken können.

Z

‚t KW‘
‘Pm 2

ä’

ä

WXMN 'p{Xa*/7,.Vg) X

/’(Xa*/Lyn) Bild 3.2

J"J’n

Diese Schnittkurve soll in jedem Punkt (x, yo) eine Tangente mit dem Anstieg
tp’(x) besitzen. Speziell für den festen Wert x0 erhält man

w,(xo) = Hm ‘P(xo + h) " 'P(xo) ___1im fixe ‘l’ h» yo) _f(x0sy0) _ (3.2)

h~»0 h n40 h

Der Quotient

f(xo+hs}’o) “f(xoaJ’o) 33
*:;.—* "l

l) Durch die Gleichung y = yo wird im R‘ ein Punkt festgelegt. Deuten wir y = y, im R’, so erhal-
ten wir eine Gerade parallel zur x-Achse: die Menge aller Punkte (x, y) mit der Forderung y = y...
Deuten wir y = y, im R“, so erhalten wir eine Ebene parallel zur x, z-Ebeue: die Menge aller Punkte
(x, y, z) mit der Forderung y = y„.



3.1. Partielle Ableitungen erster Ordnung 45

heißt dann der Diflerenzenqnotient der Funktion f(x‚ y) an der Stelle (x0, y0) bei festem
y = y0 bezüglich der Variablen x. Bezogen auf die ursprünglich gegebene Funktion
f(x‚ y) folgt also, daß die Ableitung 1p’(x0) aus dem speziellen Dilferenzenquotienten
(3.3) durch den Grenzübergang h —> 0 gewonnen werden kann. In Bild 3.2 ist der
Schnitt der Ebene y = y0 mit der Fläche z = f(x‚ y) noch gesondert herausgezeichnet
worden. Dort ist die Tangente an die Schnittkurve deutlich sichtbar. Es gilt |p'(x0) =

tan a. Der analoge Gedankengang ist möglich, wenn wir der unabhängigen Varia-
blen x einen festen Wertx = x0 erteilen und die Funktion f(x‚ y) auf die Punkte der
Geraden x = x0 einschränken. Wir erhalten eine Funktion der unabhängigen Varia-
blen y:

<P(.V) =f(xo, J’)-

Die zugehörige Kurve entsteht als Schnitt der Fläche z =f(x, y) mit der Ebene x = x0 .

np(y) sei an jeder Stelle (x0, y) nach y diflerenzierbar mit der Ableitung ¢p’(y). Speziell
für einen festen Wert y0 erhalten wir

(3.4)

(#00) = ‘P(.Vo ‘i’ h}? ‘ ‘P()’o) = ü: f(xo»)’o + h2 —f(xos}’o) _ (35)

Der Quotient

(35)

heißt dann der Differenzenquotient der Funktion f(x‚ y) an der Stelle (x0, y0) bei
festem x0 bezüglich der Variablen y. <p’(y0) ergibt sich also aus (3.6) durch den Grenz-
übergang h ——> 0. i

Speziell fürf(x, y) = xzy” würde man bei der Wahl eines festen Punktes (x0,y0) er-
halten:

Wx) =f(x.,vo) = x‘y3 mit w’ (x) = 2xyä

M?) =f(xo‚y) = x3)’ mit 9V’ (y) = 3x'o,V“-

Allgemein vereinbaren wir die folgende

und

Definition 3.1: Die Funktion f(x‚ y) sei in einer Umgebung eines Punktes (x0, y0) defi-
niert. Bei festgehaltenem y = y0 sei die Funktion ’([J(X) = f(x‚ y0) an der Stelle x = x0

im gewöhnlichen Sinne nach x difierenzierbar. Dann heißt die Funktion f(x, y) an der
Stelle (x0 , y0) partiell nach x diflerenzierbar, und

f(xo + h: Y2 "fixe: yo)hm
h—>0

, . h — .v) (x0) = 7/}(x0 + Ä 1P(x0) =

heißt die partielle Ableitung der Funktion f(x‚ y) nach x an der Stelle (x0, y0). Für
w’(x0) verwenden wir die Symbole

Of oder
ax "o.}'u)

fx(xo,yo) oder m(
*0-Yo)öx

Ist analog bei festgehaltenem x = x0 die Funktion q2(y) = f(x0, y) an der Stelle y = y0

D.3.l
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im gewöhnlichen Sinne nach y diflerenzierbar, so heißt die Funktion f(x, y) an der
Stelle (x0, yo) partiell nach y dtflerenzierbar, und

(P,(yo)=1im ‘P(}’o ‘i’ h) — ‘P(}’o) = um .f(x0sy0 ‘l’ h) “f(xoa}’o) (3.8)

h—>0 h h-oÜ h
heißt die partielle Ableitung der Funktion f(x, y) nach y an der Stelle (x0, yo). <p’(yo)

bezeichnen wir durch die Symbole

bf Öf(x‚ y)L
mm) I

f,,(xo,y.,) oder (Tymm oder by

Wir lesen die Symbole für die partiellen Ableitungen als „d-f nach d—x partiell“
oder kürzer „fnach x“, wenn klar ist, daß es sich um eine partielle Ableitung handelt,
bzw. als „d-f nach d-y partiell“ oder kürzer „f nach y“. Die Angabe der Argu-
mente entfallt auch gelegentlich, wenn aus dem Zusammenhang heraus ersichtlich
ist, welche Argumente zu wählen sind.

Istf(x, y) an jeder Stelle (x, y) einer Menge M partiell nach x und y difl"ere’nzierbar,
so sindf„(x, y) und j;,(x, y) wiederum Funktionen von x und y. Wir merken uns: Bei
der Bildung der partiellen Ableitungen f;(x, y) bzw. f,,(x, y) wird y bzw. x behandelt
wie eine Konstante, und es wird f(x, y) dann nach x bzw. nach y im gewöhnlichen
Sinne diflerenziert. Für eine Funktion von zwei unabhängigen Variablen gehören
somit zu einem festen Punkt (a, b) des Definitionsbereiches von f(x, y) zwei Ablei-
tungszah1enf,(a, b) und fy (a, b). Wir können diese Zahlen geometrisch interpretieren
als Geradenanstiege der Tangenten an die Schnittkurven der Ebenen y = b bzw. x = a
mit der Fläche z = f(x, y). Der Anschauung entnehmen wir, daß diese beiden Kurven-
tangenten eine Ebene durch den Punkt (a, b,f(a‚ b)) aufspannen — die sogenannte
Tangentinlebene an die Fläche z = f(x, y) im Punkt (a, b, f(a‚ b)).

Aus obiger Definition ergibt sich, daß man zur Durchführung einer partiellen
Differentiation bei vorliegenden Funktionen f und g keine neuen Regeln entwickeln
muß. Vorausgesetzt, die jeweils rechtsstehenden Ableitungen existieren, erhält man
dann sofort für die partiellen Ableitungen nach x:

6(1) 23-95
9U;rTw=%+g“:’ a: =2% (g=l=0)‚

am) _ or og öf(u(x‚y)) __<1;__o1aT‘5?g+f$’ T" du Öx"
Beispiel 3.1: Die in den folgenden Beispielen genannten Funktionen sind in der
gesamten x, -Ebene erklärt. Die partiellen Ableitungen nach x und y existieren in
den ersten vier Beispielen überall.

. ö 2!!
1. Für f(x, y) = x’ + e” gilt f„(x‚ y) = 2x und f,(x, y) = 2e". (Es giitaLx = o

und E7 = 0.) Für spezielle Punkte erhalten wir

m), o) = 0,f,,(0, o) = 2 oder f,,(—1,.12_) = -2,/,(—1,%) = 2e.

2. Für f(x, y) = x’y3 gilt f,,(x, y) =’2xy3 und f,(x, y) = 3x’y’.
3. Für f(x, y) = sin xzy’ gilt f„(x, y) = 2xy3 cos xzy-3, f,(x, y) = 3x’y1 cos xzv’.
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4. Für f(x, y) = x sin x2y3 gilt f„(x‚ y) = sin xzy’ + Zxzy’ cos x‘y3 und f,(x, y)
= 3x3y2 cos x2y3.

5. Für f(x, y) = lxl + y gilt f,(x, y) = 1 für alle Punkte (x, y). Es gilt _fi.(x‚ y) = l
für alle Punkte (x, y) mit x > Q und f„(x‚ y) = -1 ffir alle Punkte (x, y) mit x < 0.
Die partiellen Ableitungen f‚„(0‚ y) für alle Punkte (0, y) auf der y-Achse existieren
nicht, weil die Funktion zp(x) = Ix] für x = 0 nicht differenzierbar ist.

Wir verallgemeinern unsere Betrachtungen jetzt auf den Fall einer reellen Funk-
tion von n unabhängigen Variablen x1, x2, ..., x,.. Es sei f(x1, ..., x,.) eine auf einer
Menge M C R" erklärte reelle Funktion. f sei in einer Umgebung der festen Stelle
P0011, a1, ..., a„) E M erklärt. Wir definieren dann die Funktion

81051) =f(X1a 02, 03: m, an): (3-9)

d.h.‚ wir erteilen den unabhängigen Variablen x, ‚ x3, ‚ x‚. die festen Werte x2 = a1,
..., x„ = a„‚ und lassen nur x1 variieren. Ist nun g1(x1) für x1 = a1 im gewöhnlichen
Sinne nach x1 dilferenzierbar, so heißt f an der Stelle (a1, a2, ..., a,.) partiell nach x1

diflerenzierbar, und die Ableitung

gI/(al) =1im f(a1 ‘i’ h, a2, a3, ---‚ an) —f(a1‚ a2; 03a --u an) (3.10)

h-ot) h

heißt die partielle Ableitung vonfnach x1 an der Stelle (a1 , a2, , a,.). Wir bezeichnen
sie durch die Symbole

f„l(a1,...,a„) oder oder fi1(a1,a„...,a„). ' (3.11)
1 a

(Man beachte genau die Schreibweise fi 1 für den Fall, daß nach der ersten unabhän-
gigen Variablen x1 partiell differenziert wird bei festgewählten Variablen x1, ‚ x„.)
Zur Bildung der übrigen partiellen Ableitungen f; für 2 g i g n wird gebildet

8-(xi) =f(a1» ---‚ ai-h Xi, am, ---‚ an)»

d.h.‚ die i-te unabhängige Veränderliehe wird variabel gelassen, und den übrigen
n — 1 Veränderlichen werden feste Werte erteilt. Falls die gewöhnliche Ableitung

g.-'(a.-) = 33a; ä U(al: 11:‘-1: a.- + h, am, an)

—f(a1‚ ..., a.>_1, a1, am, ..., a‚.)] (3.12)

von g.-(x,-) nach x; an der Stelle x,- = a,- existiert, heißt sie die partielle Ableitung von
f nach xi im Punkt (a1, ..., a.-, ..., a„). Wir bezeichnen sie mit

fi„(a1,...‚a„) oder äi oder fi‚(a1,...,a„). (3.13)
X rt o

Bemerkung 3.1: Istfeine reelle Funktion von zwei unabhängigen Variablen und be-
zeichnen wir diese mit x und y, so schreiben wir für die partiellen Ableitungen von
f(x, y) dann f‚(x, y) und f„(x, y). Bezeichnen wir die unabhängigen Variablen mit x1

und x, ‚ so haben wir für die partiellen Ableitungen von f(x1, x2) zu schreiben
_fi„(x1 , x1)'und f,,,(x, , x2) oder fi1(x1, x1) und fi,(x1‚ xx).
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Der Strich kann immer dann verwendet werden, wenn die unabhängigen Variablen
numeriert sind. Ohne Mißverständnisse befürchten zu müssen, wollen wir jedoch
gelegentlich auch in dem Fall, daß die unabhängigen Variablen mit x und y bezeich-
net sind, für die partiellen Ableitungenf,(x, y) bzw}; (x, y) die Bezeichnungenfl,(x,y)
bzw. fi2(x, y) zlflassen. Werden gleichzeitig mehrere Funktionen f,(x1, , x,,),
flog, ..., x‚.), ..., f,,(x1, ..., x,,) mit gemeinsamem Definitionsbereich betrachtet, so
würde man die partielle Ableitung der Funktion fi-(xl, , x,,) nach der unabhängigen

bf.(x1,..., x,.)__aT_.Variablen xk bezeichnen mit oder mit fi„.(x1‚ ..., x‚.). (Vor dem Strich

steht die Nummer der gerade betrachkteten Funktion und nach dem Strich die Num-
mer derjenigen Variablen, nach der differenziert wird.)

3.2. Partielle Ableitungen höherer Ordnung

Die Funktionf(x‚ y) = x‘y2 + 2x-"'y — 6 ist in der gesamten x, y-Ebene erklärt und
besitzt überall die partiellen Ableitungen

f,(x, y) = 4x-”‘y” + 6x2y und f,,(x, y) = 2x“y + 2x3. (3.14)

Aus (3.14) erkennt man sofort, daßf‚(x‚ y) und f„(x‚ y) als Funktionen von x und y
erneut partiell nach x und nach y differenziert werden können. Man erhält

a Z 5 a I !—[%:;L)=12x’y’ + l2xy; _f_g"y_yl= 8x3y+ 6x2;

ö ‚ ö ‚=8x3y+6x’; =2x‘. (3.15)

Die so erhaltenen Ableitungen heißen die partiellen Ableitungen zweiter Ordnung
6 _ ‚ Ö2

von f(x‚ y). Für verwenden wir die Symbole y) oder f„(x, y). Ent-

sprechende Symbole führen wir in den anderen Fällen ein und schreiben dann (zur
Erhöhung der Übersichtlichkeit schreiben wir die überall gleichen Argumente x, y
nicht mit)

EL,» „an. av _, _£f»_..._°”..f__,~ _%.Lf_f m
Öxzh- ‘u-Öx ’ Öxöy- "’_ Öy ’ÖyÖx'— w-Öx ’ Öy’— W- Öy"

(3.16)

(Die Wahl der Symbole ist so erfolgt, daß „von links nach rechts gelesen“ die Reihen-
folge erkennbar ist, in der die partiellen Ableitungen gebildet werden. Das Symbol

%:{—2bzw. f}, lesen wir ,,d-2-f nach d-x-Quadrat“ bzw. ,,f zweimal partiell nach

x differenziert“) Für eine Funktion von zwei unabhängigen Veränderlichen gibt
es also vier Möglichkeiten für die Bildung von partiellen Ableitungen zweiter
Ordnung. Es ist sofort klar, wie partielle Ableitungen dritter Ordnung und dann
auch höherer Ordnung gebildet werden können. Das Symbol f„„‚(x, y) bedeutet, daß
die gegebene Funktionf(x, y) zunächst zweimal partiell nach y und anschließend ein-



3.2. Partielle Ableitungen höherer Ordnung 49

mal partiell nach x dilTerenziert werden soll. Klar ist weiterhin die Ausdehnung
der Definition auf Funktionen von mehr als zwei unabhängigen Variablen. Ist
f(x„ x2, ..., x‚.) cine Funktion von n unabhängigen Variablen und z.B. n Z 5, S0

bedeutet beispielsweise das Symbol

6*’f(x1, ..., x.)
ax‘ 6x1 ax: =./;:4x,x3 (x1: ---x xii):

daß die Funktionfzunächst nach x‘, anschließend nach x, und dann nach x, partiell
zu diflerenzieren ist. Für diese Ableitung schreiben wir auch f|.„‚(x‚ ‚ ..., x„).

Wir kehren zu unserem Ausgangsbeispiel zurück und erkennen aus (3.15) die
Gleichheit

fnü, y) =1;/z(-7‘: y)-

Es ist also gleichgültig, in welcher Reihenfolge die partiellen Ableitungen gebildet
werden. Wichtig ist lediglich, daß einmal partiell nach x und einmal partiell nach y
differenziert wurde. Dieses wichtige spezielle Ergebnis kann auf weitere Funktionen
verallgemeinert werden, denn es gilt der

Satz 3.1 (Satz von Schwarz 1) : Sindfür eine aufeiner oflenen Menge M erklärte Funk-
tion f(x‚ y) die partiellen Ableitungen f,,,(x, y) undf,,,(x, y) stetig, so gilt auf M

fq(x‚ J’) =f,,z(x, y)» (3-17)

(Die Voraussetzungen für die Gültigkeit der Identität (3.17) könnten weiter abge-
schwächt werden. Da in vielen Anwendungsbeispielen der Fall vorliegt, daß die be-
treffenden partiellen Ableitungen stetig sind, begnügen wir uns mit dem angegebenen
Fall.)

Zum Beweis von Satz 3.1: Es sei (a, b) ein Punkt aus M. Dann gilt

mx, b) —fi‚(a‚ b) _

x—a
j;,,(a, b) = lim

x—a
(3.18)

Wir betrachten weiter diejenigen Difierenzenquotienten, aus denen man durch
Grenzübergang y—+ b die im Zähler von (3.18) stehende partielle Ableitung
f„(x, b) —fi,(a, b) erhält; wir betrachten also insgesamt den Ausdruck

1 [f(x‚y)—f(x‚b) _ f(d,y)-f(a,b) J

x—a y——b y—b

= 1 [f(x,y)—f(x,17)‘_ f(a,y)-f(a.b)]
y—b x—a x—a

_;g(x>—g(a)
‘ y—b T?’

wenn wir y und b als konstant und nur x als
variabel betrachten und dann setzen

3(1) =_f(x‚ y) -f(x‚ b).
Dann Ist 8(0) =f(a. J’) -f(a, b)-

') Hermann Amandus Schwarz, deutscher Mathematiker, 1843-1921.

4 Harbatth/Riedrich, Difl,Rechn.

S.3.1



50 3. Partielle Ableitungen und totales Differential

1 ‚

= fit! (E)

mit E zwischen a und x, denn g(x) ist nach x differen-
zierbar und genügt den Voraussetzungen des l. Mittel-
wertsatzes der Differentialrechnung:
g’(£) =x;<e, y) —f.(s‚ b).

= fimß, y) —/.<s‚ b».

2 h(y) - h0?)

y - b ’

wenn wir h(y) = f‚(E‚ y) setzen, also nur y als variabel
ansehen; h(y) ist differenzierbar nach y.

= h'(n>
mit 17 zwischen y und b; wieder durch Anwendung
des l. Mittelwertsatzes, jetzt auf h(y).

=f2‘u(5: 7])-

Beim Grenzübergang x —> a und y —> b folgt für die Zwischenpunkte auch E —> a und
17 —> b. Wegen der vorausgesetzten Stetigkeit vonf,,, (x, y) gilt dannfw (5, n) —>f,, (a, b),
und wir erhalten _fl,,,(a, b) = f,,,(a, b). I

Der Satz von Schwarz für die Vertauschbarkeit der Reihenfolge bei der Bildung
der partiellen Ableitungen gilt auch für Ableitungen von höherer als zweiter Ordnung,
wenn diese stetig sind. Es würde dann gelten

fm(x. y) =fm(x. y) = fm(x. ,v)- I (3-19)

Auf diese Weise wird die Anzahl der wirklich verschiedenen partiellen Ableitungen
dritter Ordnung verringert. Es gibt dann nur vier verschiedene partielle Ableitungen
dritter Ordnung, und zwar

fm(x‚ y): fizyo‘: y)» fryr/(xa y): fyy;/(X, y) '

Bei der Berechnung höherer Ableitungen wird man daher eine möglichst günstige
Reihenfolge wählen. Soll z.B. f‚„(x, y) für die Funktion

sinx

V2 +x’

gebildet werden, so wird man die Reihenfolge f„(x‚ y) = 2xy, f„„(x, y) = 2y =

fq, (x, y) wählen und umgeht so die „komplizierte“ Differentiation des ersten Sum-
manden nach x.

Wir wollen noch die Frage beantworten, ob aus der Existenz der partiellen Ablei-
tungen f‚(x‚ y) und f„(x, y) bereits gefolgert werden kann, dal3 die Funktion f(x‚ y)

fix. y) = +xy*
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stetig ist. Wir betrachten die Funktionf(x, y) aus Beispiel 2.6. Dort hatten wir gesehen,
daß f(x, y) im Nullpunkt nicht stetig ist. Es gilt jedoch

f(x. 0) —f(0, 0) f(0, y) -f(0, 0)
x y

=0=f;:(0: m =0=fi1(0a0)rlim li
2-D u-o0

d.h., die beiden partiellen Ableitungen existieren im Nullpunkt. Aus der bloßen Exi-
stenz der partiellen Ableitungen kann also im allgemeinen noch nicht gefolgert wer-
den, daß die Funktion selber stetig ist. Die Stetigkeit der Funktion f kann gezeigt
werden, wenn die Ableitungenf, und fy stetig sind.

Wir erwähnen abschließend noch die Erweiterungen der Kettenregel für die Bil-
dung der Ableitung von zusammengesetzten Funktionen. Ausführlich wird diese
Fragestellung in Abschnitt 3.6. behandelt.

Satz 3.2: Die Funktionen x(t) und y(t) sollen auf der gleichen Menge M, einer t-Achse
erklärt sein und stetige Ableitungen x'(t) und y’(t) besitzen. Alle Punkte (x(t), y(t))
sollen zum Definitionsbereich M einer Funktion f(x, y) gehören, und f(x, y) soll
auf M stetige partielle Ableitungen besitzen. Die auf M1 erklärte mittelbare Funktion
F(t) = f(x(t), y(t)) ist dann nach t dtflerenzierbar, und es gilt

F'(1) =fz(x(t). y(t)) x'(t) +Ji‚(x(t)‚ y(!)) y'(t)-

Satz 3.3: Aufeiner Menge M1 einer u, v-Ebene seien die beiden Funktionen x(u‚ v) und
y(u‚ v) erklärt, die beide aufM1 stetige partielle Ableitungen nach u und v besitzen. Alle
Punkte (x(u‚ v), y(u‚ v)) sollen zum Definitionsbereich M einer Funktion f(x, y) ge-
hören, undf(x, y) soll aufM stetige partielle Ableitungen nach x undy besitzen. Die auf
M1 erklärte mittelbare Funktion F(u, v)‚= f(x(u, v), y(u‚ v)) besitzt dann partielle
Ableitungen nach u und u, und es gilt

Fu(“s v) =fl(x(u‚ v), y(u‚ v)) ' xu("- v) +fu(X("‚ V)»}’(14» v)) '.Vu(ü‚ v).

F-(u. v) =fz(x(u‚ v). y(u‚ v)) ' 3M": v) + fy(x(“. v)..V(14, v)) -yv(ü‚ v)-

Die Beweise übergehen wir. Die Aussage der Sätze müßte nicht unbedingt heran-
gezogen werden, wenn sowohl die äußere Funktion als auch ‚die inneren Funktionen
explizit bekannt wären. Man könnte dann direkt die gewünschten Ableitungen bilden.
Eine Bedeutung der Sätze wird z. B. dann deutlich, wenn man von den inneren Funk-
tionen nur gewisse Eigenschaften kennt, ohne sie explizit angeben zu können. Aus
(3.20) bzw. (3.21) kann man dann mitunter weitere Eigenschaftenherleiten.

Beispiel 3.2 : Gegeben sei die Funktionf(x, y) = x3 + y“. Von einer stetig differenzier-
baren Funktion y(x) sei lediglich bekannt, daß y(l) = 3 gilt und daß y(x) der Bezie-
hungf(x, y(x)) = 5 genügt. Den expliziten Ausdruck von y(x) kennen wir nicht. Wir
fragen nach dem Wert der Ableitung y'(l). Auf die differenzierbare Funktion F(x)
=f(x, y(x)) kann (3.20) angewendet werden. Aus f(x, y(x)) = 5 folgt dann durch
Diflerentiation nach x: f,(x, y(x)) +j;,(x, y(x)) y’(x) = 0 und wegen y(1)= 3 und
fi,(x, y) = 3x” undj§,(x, y) = 2y dannf,(l, 3) +f,,(1, 3) y’(l) = 0, also 3 + 6y’(l) = 0

und damit y’(l) = —€= -3.
Die Erweiterungen der Kettenregel gelten auch für Ableitungen höherer Ordnung,

ohne daß neue Sätze erforderlich sind.

(3.20)

(3.21)

4x

5.3.2

S.3.3
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Aufgabe 3.1: Man bilde die partiellen Ableitungen erster und zweiter Ordnung von

a) f(x, y) = x arctan y,

b)f(x.y)=x+y- |x—;vl für x=l=‚v‚
c)f(x‚y)= xV+y’ für x >0‚y >0.

Aufgabe 3.2: Man zeige, daß die Funktion

1

2a V-Tt

gleichung u‚(x‚ t) = a2u„(x, t) ist.

u(x‚ t) = e w’ (a= const) eine Lösung der sogenannten Wärmeleitungs-

. x2 — 2 _, .

Aufgabe 3.3: Es sei f(x, y) = xy fur (x, y) =i= (0, 0) undf(0, 0) = 0. Man zeige.

daß f‚„(0, 0) =¥= jj,,(0, 0) gilt. Was folgt bezüglich der Stetigkeit von f,,,(x, y) und
f;,, (x, y) im Nullpunkt?

3.3. Das totale Differential

3.3.1. Das totale Differential und die Zerlegungsformel

Wir führen analoge Betrachtungen durch wie im Band 2 im Kapitel 5 über Differen-
tiale für Funktionen einer unabhängigen Variablen. Es ging darum, für eine Funk-
tion f(x) und für benachbarte Stellen x4, und x0 + h des Definitionsbereiches von
f(x) den Funktionswertzuwachsf(x0 + h) — f(x„) mit Hilfe der Ableitungf’(x„) durch
eine Zerlegungsformel auszudrücken. Der Wert f(x‘, + h) kann dann mit Hilfe der
Werte /(xo) undf’(x„) angenähert werden.

Zunächst sei f(x ,y) eine Funktion von zwei unabhängigen Variablen, die z.B. in
einem Gebiet G erklärt ist, und es sei P(x„, yo) ein fester Punkt von G. Es bezeichne
hi = Ax bzw. h, =Ay einen Zuwachs der unabhängigen Variablen x bzw. y, und der
benachbarte Punkt P’(x„ + Ax, yo + Ay) gehöre ebenfalls zu G. Dann ist

f(x‘. + Ax, yo + Ay) -f(xo, yo) (3.22)

der totale Zuwachs (das totale Inkrement) der Funktion f(x, y) an der Stelle (x0 ‚ yo) mit
dem Zuwachs (Ax, Ay) = (h„h„). Der totale Zuwachs wird mit Af bezeichnet. Bei
einer Funktion von n Variablen f(x, ‚ , x„) ist

Af=f(x1 + hla ‘--a xn + hn) _'f(x12 ~~-1 x11)

der totale Zuwachs der Funktion f(x„ ..., x„) an der Stelle P(x„ ..., x„) mit dem Zu-
wachs (hi, ..., h„).

Beispiel 3.3: Wir betrachten die im gesamten R3 erklärte Funktion

f(x, y) = x“ + xy”. (3.23)
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Für P(x„‚ yo) und beliebige (im allgemeinen „kleine“) Ax, Ay gilt

Af =f(xo + Ax, yo + AI) -f(xo‚ yo)

= (x0 + A75): + (x0 + Ax) (yo ‘i’ AJ’): — x3 — xoyä

= [(2750 + Y3) Ax ‘i’ Zxoyo Ay] ‘i' [(Ax + 270 AV) Ax
+ (xo Ay + Ax Ay) Ay].

Der totale Zuwachs von f(x‚ y) ist somit in zwei Summanden zerlegt, von denen der
erste die Gestalt

AAx + BAy mit A = 2x0 + yä, B= 2yoxo (3.24)

hat. Die Koeffizienten A, B hängen nur von x0 ‚ yo und nicht von den Zuwachsgrößen
Ax, Ay, ab. Es gilt

A = fz(xo, yo), B =fy(xo, .vo)- (3-25)

Den zweiten Summanden bringen wir ebenfalls auf die Gestalt aAx + ßAy
mit

a = Ax + 2yo Ay, ß = x0 Ay + Ax Ay. (3.26)

Die Koeffizienten a, ß hängen somit sowohl von x0, yo als auch von Ax, Ay ab. Es
bezeichne g den Abstand zwischen den Punkten P und P’, also

g = |/(Ax)2 + (Ay)’ . (3.27)

Dann können wir schreiben

aAx+pAy=(aAT"+fi%)e=ng, (3.28)

wenn wir zur Abkürzung setzen

A An=a—;—+flTy- (3.29)

Man erhält

Ax [ |Ax[ S |Ax| |Ax]
—— =———_ä___—=—= (3.30)

e l/(AxY + (Ay)2 1/(Ax 2 iAxl

und analog g l. Wir lassen nun den Punkt P’ gegen den festen Punkt P rücken,

betrachten also den Grenzübergang g —> 0. Aus (3.27) folgt dann auch Ax —> 0
Ay —> 0 und aus (3.26) dann weiter o: —> O, ß —> 0. Wegen

Ax
__ + .g if?!

folgt aus g —> 0 dann letztlich auch n —> 0. Als Ergebnis fassen wir zusammen: Der
totale Zuwachs der Funktion f(x‚ y) an einer Stelle (xo, yo) kann durch die Zerle-
gungsformel

Af=f(xo ‘|' Axayo + Ay) "f(xo»)’o)
= (AAx + BAy) + no

= (ft(x0v yo) Ax +fy(xos yo) A?) + W9 (331)

|’7l ä Ial - 3| g Im! + Ißi
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dargestellt werden. Die Koeffizienten A, B hängen nur von x0, yo und nicht von den
Zuwachsgrößen Ax, Ay ab, während die Größe r; sowohl von xo , yo als auch von Ax , Ay
abhängt; aus dem Grenzübergang g ——> 0 folgt dann auch 17 —> 0; wir schreiben
hierfür

lim n = 0.
„o

(3.32)

Im ersten Anteil von (3.31) treten Ax, Ay nur linear auf.
Die Frage nach der Gültigkeit einer Zerlegungsformel der Gestalt (3.31) mit der

Zusatzforderung (3.32) fiir die Größe 17 wird nun ganz allgemein gestellt. Wir ver-
einbaren die

Definition 3.2: Eine Funktion f(x‚ y) besitze in einem Gebiet G partielle Ableitungen
erster Ordnung. Es sei P(x„, yo) aus G, und für beliebige Zuwachsgroßen Ax, Ay
gelte

Af=f(xo ‘l’ Axsyfl + Ay) ‘f(xoa}’o)

=fa=(xoaJ’o) A-7‘ +fy(xo,.Vn) A)’ + 77 ' 9- (3-33)

Dabei sei g = V(Ax)’ + (Ay ‚ und die Gniße 17 hänge von x„‚ yo und von Ax, Ay ab
und besitze die Zusatzeigenscha/t

limon = 0. (3.34)
9-4

Der in Ax und Ay Iineare Anteil von (3.33) heißt das totale oder vollständige Dilferen-
fin! der Funktion f(x‚ y) an der Stelle P(x„, yo) mit dem Zuwachs (Ax, Ay) = (h,, h,).
Das totale Dtflerential wird mit dfbezeichnet. Es gilt also

[ df=f,(x.,, yo) Ax +fi,(x,,, yo) Ay sowie Af= df+ n ~ g. (3.35)

Wenn eine Zerlegungsformel der beschriebenen Art (3.33), (3.34) — bezogen auf
den PunktP — gilt, dann sagt man auch, die Funktion f(x‚ y) sei im Punkt P total
difierenzierbar oder vollständig diflerenzierbar.

Wir schließen einige Bemerkungen an:

Bemerkung 3.2: Unter den genannten Voraussetzungen können wir in (3.33) den Sum-
manden 17 - g fiir „kleine“ Ax, Ay vernachlässigen und näherungsweise schreiben

f(xo + Ax. yo + Ay) -f(xo, yo) z df

_ Afsz df, (3.36)

falls der Zuwachs (Ax, Ay) klein ist. Bei Kenntnis des Funktionswertes und der Werte
der partiellen Ableitungen an der festen Stelle (x„‚ yo) kann somit mit Hilfe des voll-
ständigen Diflerentials der Funktionswert an einer benachbarten Stelle approximiert
werden. Dieser Gedanke wird später im Satz von Taylor erneut aufgegriffen.

Wir betrachten zur Approximation Af z df das folgende

Beispiel 3.4: Für die Funktion f(x, y) = xy setzen wir x0 = 2 und yo = 3. Dann ist
f(x.,, yo) = 6. Mit Ax = 0,2 und Ay = 0,1 wird Af=f(x„ + Ax, yo + Ay) — f(x°,y.,)

oder
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= 2,2-3,1 - 6 = 6,82 — 6 = 0,82. Wegenf, = yundf„ = xwird

df= yoAx + x0Ay = 3-0,2 + 2-0,1= 0,80.

Der Unterschied Af - df = 0,02 ist also sehr klein im Vergleich zu den Argument-
änderungen Ax und Ay, und es gilt Af z df. Die Aussage dieses speziellen Beispiels
können wir im Bild 3.3 verdeutlichen. Zur Veranschaulichung des Funktionswertes
f(x, y) = xy verwenden wir den Flächeninhalt eines Rechtecks mit den Seiten x
und y. Die Differenz Af — dfwird dann durch das doppelt schraffierte kleine Recht-
eck dargestellt. Man erkennt, daß diese Differenz um so kleiner wird, je kleiner man
Ax und Ay wählt. Man sagt auch, die DilTerenz Af — dfwird „von höherer Ordnung
klein“ als Ax und Ay. Auf eine Präzisierung dieses Begriffes gehen wir nicht ein.

ä: ..

i?
e
F „
-\ >5

s,» 5’
z f, .

s: <1 g‘ ä.
u?>L"; r? E

—| ä t t
ä.‘ ä L

x Ax Q‘ ä V
v -

>3
2?

Bild 3.3 ‚ e

/’(x.,+Ax,y,+Ay) l

fließt)
'E{Xa*A"yJ/2}

Bild 3.4 *0 ‘am X

Bemerkung 3.3: Im Fall einer Funktion von zwei unabhängigen Variablen können wir
für das vollständige Differential die in Bild 3.4 ablesbare geometrische Interpretation
geben. Eine Funktionflx, y) kann im R’ durch eine Fläche veranschaulicht werden.
Es seien P(x„‚ yo) bzw. P’(xo + Ax, yo + Ay) im Definitionsbereich von f(x, y) geg

wählt. Wird senkrecht über P bzw. über P’ der Funktionswertf(x„‚ yo) bzw. der Wert
f(x„ + Ax, yo + Ay) abgetragen, so kommt man zu den zugehörigen Punkten auf der
Fläche der Funktion f(x‚ y). Im festen Punkt (x0, yo, 2.,) mit z‘, = f(x„, yo) werde nun
die Tangentialebene T an die genannte Fläche gelegt. Trägt man nun senkrecht über
P’ nur den Näherungswert f(x.,, yo) + df ab, so gelangt man gerade bis zu dem
über P’ liegenden Punkt der genannten Tangentialebene. Das vollständige Differential
df(x„‚ yo) drückt also den Funktionswertzuwachs aus, wenn die zur Funktion f(x, y)
gehörige Fläche durch die Tangentialebene an diese Fläche im festen Punkt (x0 , yo , zo)

ersetzt wird. Es leuchtet anschaulich ein, daß in vielen Fällen in der Nähe des Punk-
tes (x0, yo, zo) die Fläche und die Tangentialebene einander gut annähern.
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3.3.2. Eigenschaften des totalen Diflerentials

Bei einer Funktion von n Variablenf(x„ ‚ x„) ist

_ Of Öf Ofdf— Eh, +(T2h, + + axnh,

=j;;(x1s ~~'axn)h1 +j;:;(x1: ---axn)h2 + +fx.(x1> ---sxn)hn

= fifxxxlw ‘"9 xn)hl
l-l

das totale Difierential der Funktionflxl, ...‚ x„) an der Stelle P(x1 ‚ ‚ x„) mit dem
Zuwachs (h, , , h„). Für das ausführliche Symbol dflassen wir auch die Schreibweise
dflx, , ‚x„) oder df(x, y, z) im Falle von drei unabhängigen Variablen zu, wenn die
Hervorhebung der Zuwachsgrößen nicht wesentlich ist.

Man erkennt sofort die folgenden Rechenregeln für das Arbeiten mit dem voll-
ständigen Dilferential: Besitzen die beiden Funktionenfund g ein vollständiges Diffe-
rential, so gilt dies auch fir die Funktionen

f+g‚ f-g und g (g+o).

Für die vollständigen Differentiale gilt

d(f+ g) = df+ dg (3.37)

d(fg) = gdf +fdg (3-38)

= ‘—“f—;7f"—g (g + o) (3.39)

Folgerungen: d(cf) = cdf (c = const) und d0") = 2fdf.

Weiter erkennt man den folgenden

5.3.4 Satz 3.4: 1st die Funktion f(x, y) im Punkt (x„‚ yo) total dl'fferenzt'erbar,xo ist f(x, y)
dort auch stetig.

Beweis: Wir gehen aus von Punkten P'(x„ + Ax, yo + Ay), die zu P(x,,, yo) benachbart
sind. Dann gilt (3.33). Betrachten wir nun im Definitionsbereich der Funktionf(x, y)
den Grenzübergang g —> 0, so folgt wegen lim 17 = 0 dann auch lim 1) - g = O. Da aus

—.n —.o

g —> 0 auch Ax —> 0, Ay —> 0 folgt, konvergieit für g —> 0 die rechte Seite von (3.33) gegen
null, d. h. aber, die Funktionswcrtef(xo + Ax, yo + Ay) konvergieren gegen den Funk-
tionswertf(x„, yo). Das ist gerade die Bedingung für die Stetigkeit der Funktionf(x, y)
im Punkt (x0 ‚ yo). I

Bemerkung 3.4: Wir erwähnen einige Bezeichnungsmöglichkeiten. Schreibt man für
die Zuwachsgrößen h, = Ax, I13 = Ay, so erhält man für einen Punkt (x, y)

df(x. J’) =fz(x. ,v)h1 +f}/(X, J’) h2- (3-40)
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Für die spezielle Funktion f(x‚ y) = x liefert (3.35) uns df(x, y) = dx = Ax. Analog
ergibt sich dy = Ay, so daß wir auch schreiben

df(x‚y) =fi=(x‚y) dx +1?/(x,.v) dy- (3-41)

Bei Benutzung der Vektorschreibweise würden wir

x=xe1+ye2 und h= dxe;+ dye,

setzen und dann erhalten (und dies gilt sinngemäß auch für n>2)
(3.42)f(x + h) —f(X) = df(x) + Q ' 77(x‚ n) mit limo17(x, h) = 0,

df(x) =1;<x)dx + f„(x) dy. P

Bemerkung 3.5: Gilt unter den genannten Voraussetzungen für den totalen Zuwachs
von f(x, y) eine Zerlegungsformel der Gestalt

Af=f(xo + Ax, }’o ‘l’ A?) _f(x0s 7o)

= AAx+ BAy+ 17 -9 mit 1imn=0,
„o

so folgt automatisch A =f,(x„, yo), B=f,,(xo, yo). Man setze etwa Ay = O und erhält

flxo + Axayo) ‘fixe, yo) = A A-"+ 77 ' iAxl

n für Ax g 0,

—-n für Ax < 0.

Wegen lim 1'; = 0 folgt aus (3.43) dann
A2-o0

=AAx+fiAx mit i}: (3.43)

um f(xo + Ax: yo) ‘fixe: yo)

Ax-0 AX

also A = f,(x.,, yo). Analog erhält man die Beziehung für B.

=A+1imo'7=A,
An:-0

Bemerkung 3.6: Die bloße Existenz der partiellen Ableitungenf‚(x, y,) f,,(x, y) reicht
im allgemeinen nicht dafür aus. daß mit diesen Ableitungen (3.42) gilt. Wir erhalten
jedoch den

Satz 3.5: Existieren die partiellen Ableitungen f,(x‚ y), f„(x, y) für eine Umgebung des
Punktes P (xa , yo) undsindsie sogar stetig im Punkt P, so gilt die Zerlegungsformel (3. 33).

Beweis: Der Beweis macht deutlich, wie man durch eschickte Zusatzüberlegungen
Sätze aus der an dieser Stelle bekannten Theorie ü er reelle Funktionen von nur
einer unabhängigen Variablen einsetzen kann. Wir wählen Ax, Ay, gehen dann
vom Punkt P(x„‚ yo) über zum Punkt P’ (xo + Ax, yo + Ay) und habcn dann
die Funktionswertdiiferenz bezüglich der Punkte P und P’ zu betrachten. Für den
Übergang von P nach P’ wählen wir einen ganz speziellen Weg. Zunächst gehen wir
parallel zur y-Achse von P(x„‚ yo) zum Punkt R(xo,y., + Ay); auf diesem Weg hat x

den konstanten Wert x0, und nur y alleiu ist variabel. Anschließend gehen wir par-
allel zur x-Achse von R zu P’; auf diesem Weg ist x allein variabel (Bild 3.5).

S.3.5
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Dann gilt
fixe + Ax» yo + AV) ‘fixe: yo)

= „(x0 ‘l’ Ax» yo ‘l’ AJ’) ‘f(xoa)’o + A)’)] + [flxoxyo + A?) “f(xos}(’g)Ll4)j

Auf der rechten Seite greifen wir einen der beiden Summanden heraus; die Behandlung
des anderen Summanden ist dann ganz entsprechend. Betrachten wir z.B. den zweiten
Summanden auf der rechten Seite von (3.44). Die Variable x hat den festen Wert x0
angenommen; veränderlich ist allein y. Wir können also den Mittelwertsatz der Dif-
ferentialrechnung für Funktionen einer unabhängigen Variablen bezüglich der Varia-
blen yanwenden. Es existiert also eine Zahl 19, mit 0 < 19, < 1, so daß gilt

f(x0s yo + Al’) “fixe: yo) =fy(xoa ‚V0 ‘l’ 172 A?) ' Ay- (3-45)

l’

MXorJ/a MW /’I{Xa*‘”.)’a *4!’
_y,+A_y ~~—— 
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l
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I X” WX X Bild 3.5

Wir führen die Größe ß ein durch die Festsetzung

I9 =fy(xon ‚V0 + 792 “fi/(xo: yo) (146)
und können dann in (3.45) fortsetzen:

=fy(xo» yo) A)’ + 5A)”
Bezogen auf die Variable x, gilt für den ersten Summanden in (3.44) durch die gleiche
ÜberlegungrEs existiert eine Zahl 291 mit 0 < 29, < l, so daß

„(x0 ‘l’ Ax: yo ‘l’ A?) ‘f(xou yo ‘l’ Ay)]
_ =f,(x., + 191 Ax, yo + Ay) - Ax = f;(xo, yo) Ax + a Ax (3-47)

m“ o: = f‚(x„ + 191 Ax, yo + Ay) — fi,(xo, yo). (3.48)

Insgesamt können wir dann in (3.44) weiterschreiben:

=f;(xo‚ yo) Ax +f;,(xo, yo) Ay + a Ax + ßAy. (3.49)

1) Derartige „künstliche Erweiterungen“ findet man in vielen mathematischen Beweisen, indem
man wie hier geeignete Zahlen subtrahiert und sie dann sofort wieder addiert.



3.3. Das totale Differential 59

Der Beweis des Satzes ist erbracht, wenn wir nun noch zeigen können, dal3 fiir den
Grenzübergang g —+ 0 folgt, daß dann auch gilt a —> 0, ß —> 0. Der Grenzübergang
g —> 0 bedeutet nun aber, daß gilt Ax —> 0, Ay —+ 0. Dann gilt aber in (3.46) bzw. in
(3.48):

bzw (X0: yo ‘i’ 792 A?) ” (x0 ‚ yo)

(x0 + '01 Ax! yo + A?) '* (xo: yo)-

Da die partiellen Ableitungen als stetig vorausgesetzt wurden, folgt dann aber

Ä;(xox}’o+ '92 A)’)‘*fy(xos}’o)n d-h- I3" 0- (3-50)

Analog erhält man ot —> 0. Damit ist der Beweis beendet. I
Die Voraussetzung, daß die partiellen Ableitungen existieren und stetig sind, wird

an vielen Stellen benötigt. Wir vereinbaren daher die folgende

Definition 3.3: Wir nennen die Funktionf(x‚ y) im Punkt P(x„‚ yo) stetig difierenzier- D.3.3
bar, wenn die partiellen Ableitungen fi,(x, y), f,(x, y) für eine Umgebung von P existie-
ren und im Punkt P stetig sind.

Daß die Aussage von Satz 3.5 nicht zu gelten braucht, wenn die partiellen Ablei-
tungen nicht stetig sind, zeigt

Beispiel 3.5: Wir betrachten

xay ..

x„——+y. fur (x. y) =c= (o, o), (151)

0 filr (x, y) = (0, 0).

Die Beziehung (x, y) 4: (0, 0) ist gleichbedeutend mit der Forderung x’ —+ y’ > O.

Man erkennt sofort, daßf(x, y) stetig für alle Punkte (x, y) =t= (0, 0) ist. Aus der Ab-
Schätzung

l x2’ g [y] folgt auch lim f(x‚ y) = o = f(0, o),
352+)” (z,v)-»(0.0)

d. h., f(x, y) ist auch im Nullpunkt stetig. Für (x, y) =l= (0, 0) ist

_ 2x?” _ x206’ - Y2)
fz(X:,V) —W “Dd f}(x.}’) * ’—V+ f),

f(x: =

und

lim = = o = f,,(o, o).
z-oo

Die partiellen Ableitungenf‚(x‚ y) undf,,(x, y) existieren somit für alle Punkte (x, y);
sie sind jedoch im Nullpunkt nicht stetig. Betrachten wir z. B. die gegen den Null-

l
2 ' „'-

. 1 1 . 1 1
punkt konvergierende Folge (x‚„ y„) = (I, I) , so gilt 154;. 7) =f=

_ . - f(0‚y)—f(0‚0)
0'_.f1(0!0)) y

=
.|~ N

1»
-
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Daher gilt auch limf, ‚ = ä + o = f;(0, 0).

Wir zeigen noch, daß eine Zerlegungsformel der Gestalt (3.33), bezogen auf den
Nullpunkt, nicht gilt. Für z.B. Ax = Ay > 0 ist dann

f(0 + Ax, 0 + Ay) —f(0‚ 0) =f(Ax, Ay) = lAx.
Wegen f‚(0‚ 0) = f„(0‚ 0) = 0 und g = |/(Ax)2 + (Ay)’ = V2 Ax muß dann gelten

1 1 A7Ax=1;-g=1}-1/§Ax, also n=TV§.

Somit gilt nicht lim r; = 0, d.h.‚ bezogen auf den Nullpunkt, gilt eine Zerlegungs-
„o

formel der Gestalt (3.33) nicht.
Für Funktionen f(x) einer unabhängigen Variablen reicht die Existenz der Ablei-

tungf’(x„) bereits aus fiir das Bestehen der entsprechenden Zerlegungsformel. Bei
Funktionen von mehreren unabhängigen Variablen ist die Forderung nach der Gül-
tigkeit der genannten Zerlegungsformel also stärker als die bloße Forderung, daß alle
partiellen Ableitungen an den betrachteten Stellen existieren.

Bemerkung 3.7: Das totale Differential für zusammengesetzte Funktionen. Wir be-
trachten wieder zusammengesetzte Funktionen und wollen annehmen, daß für alle
auftretenden Funktionen das vollständige Differential existiert. Wir betrachten nur
eine herausgegriflene Möglichkeit. Es sei z.B. g(v) eine Funktion einer unabhängigen
Variablen v, und es gelte v = v(x‚ y). Bezüglich der unabhängigen Variablen v gilt
dann

dg(v) = g’(v) dv. (3.52)

Wollen wir nun das vollständige Differential für die zusammengesetzte Funktion
f(x, y) = g(u(x, y)) ermitteln, so können wir von (3.52) ausgehen und in diese Formel
für dv das vollständige Differential dv (x, y) der Funktion v(x‚ y) und in die Ableitung
g’(v) die Beziehung v = v(x‚ y) einführen (vgl. hierzu auch die Betrachtungen unter
3.6.2.).

Auf diese Weise können gelegentlich die partiellen Ableitungen für Funktionen
von mehreren unabhängigen Variablen n1it Hilfe des vollständigen DilIerentials für
zusammengesetzte Funktionen bequemer berechnet werden. Wir bringen zwei Bei-
spiele.

Beispiel 3.6: Es sei f(x, y) = arctan i. Wir setzen v(x‚ y) =

Funktion g(v) = arctan u mit x

dv

1+1)"

J’Yund betrachten die

dg = (3.53)

Führen wir du = — 1d): +—1-dy und v = —y— in (3.53) ein, so erhalten wir für
x’ x y x

(x, y) = arctan v(x‚ y) = arctan —;dann

df(x y)=; —Zdx+idy =——1—[—ydx+xdy].
’ l+i x’ x x2+y’

x3



3.3. Das totale Differential 61

Somit gilt öf(x‚ .v) = -y und 5f(x, y) = x

Bx x2 + y’ Öy x’ + y? '

Beispiel 3. 7: Es sei f(x, y) = In Jx’ + y2. Wir betrachten zunächst g(v) = ln J; =

äln v mit

dg = %%’.. (3.54)

Führen wir v(x‚ y) = x’ + y’ und du = 2x dx + 2y dy in (3.54) ein, so erhalten wir

l
df(x‚)’)=}:'y7(xdx+yd}’)z also );<x,y)=fiy2, fy(x,y)=;2-’j;3,;-

3.3.3. Der Gradient einer reellen Funktion f(x, y, z)

Es sei nun f(x, y, z) eine reelle Funktion von drei unabhängigen Veränderlichen
mit stetigen partiellen Ableitungen f;(x, y, z), f‚(x‚ y, z), f‚(x, y, z). Das vollständige
Differential lautet dann

df(x‚ y, z) =;;(x‚ y, z) ax +f,,<x, y, z) dy +f‚(x‚ y, z) dz. (3.55)

Die Größen dx‚ dy‚ dz drücken dabei Änderungen der unabhängigen Variablen aus;
wir können sie zusammenfassen zum Vektor

d1'=dxe1+dy e,+dze3. (3.56)

Es liegt nun nahe, in (3.55) auch die jeweils ersten Faktoren j;(x, y, z), f„(x‚ y, z),
f‚(x‚ y, z) als Koordinaten eines Vektors aufzufassen. Dann wäre das vollständige
Differential gerade das Skalarprodukt zweier Vektoren. Wir vereinbaren die folgende

Definition 3.4: Die reelle Funktion f(x, y, z) besitze partielle Ableitungen erster 0rd- D.3.4
nung nach x, y und z. Für jeden Punkt (x, y, z) der Definitionsbereiches von f(x, y, z)
definieren wir dann den Vektor

fz(x‚ Ja z) e: +f„(x‚y‚ z) 92 +f„(x‚ Ja z) es.

Er heißt Gradient von f im Punkt (x, y, z) und wird mit gradf(x, y, z) bezeichnet:

6 ö ö103x), z) e‘ + flxö, 2) c2 + f(xézy, 2) es

=f;(-xayuz) e1+.fiI(x!y)z) e2 +fz(x)y1z)e3‘
Bei der Bildung des Gradienten geht man also von einem Skalarfeld aus und erhält

als Ergebnis ein Vektorfeld. Für die Bildung des Vektors grad f(x, y, z) ist es nicht
erforderlich, daß die partiellen Ableitungen von f(x, y, z) stetig sind.

Beispiel 3.8: Fürf(x‚ y, z) = x + y + z gilt-gg- = 1 - —öi= 1 und daher
By _ öz

gradflx, y ‚z) = er + ez + e3-

Beispiel 3.9: Für f(x, y, z) = z’ e"+1/‘ gilt

f, = 2xz’ e"+V', f„ = z“ e""~‘/‘, f, = (2z + yzz) e""9‘

gradf(xa y: z) =
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und somit

g1'adf(x, y, z) = e‘“"V‘ (2xz’ e1 + z“ e, + (2z + yz’) ea)

= z cm!" (2xz e1 + z’ c2 + (2 + yz) ea). ‚

Das vollständige Differential df(x, y, z) ist dann als Skalarprodukt der beiden Vek-
toren grad f(x‚ y, z) und dr darstellbar:

df(xv y: z) =f"£(xay) z) dx ‘hfi/(xayr z) dy+fx(x>yx z) dz

= (gradf(x, y, 2)) dr. (3.58)

An Rechenregeln für den Gradienten ergibt sich sofort:

S_3,6 Satz 3.6: Zwei beliebige Funktionen f(x‚ y, z) und g(x‚ y, z) mögen partielle Ableitun-
gen besitzen, und es sei ferner K eine beliebige Konstante. Dann gilt

grad (f(x‚ y, z) + g(x‚ J’: z)) = gradflx, y, z) + grad g(x‚ y, z)‚ (3.59)

grad (K ~f(x, y, z)) = K gradf(x, y, z) (K konstant), (3.60)

grad (f(x‚ y, z) - g(x‚ y, z)) = f(x‚ y, z) grad g(x‚ y, z)

+ g(x‚ ‚v‚ z) g1'adf(x,)’» z)- (3-61)

Der Beweis dieser Regeln ergibt sich als leichte Übungsaufgabe, indem man die
Regeln für die Differentiation einer Summe und eines Produktes beachtet. Weitere
Ausfühnmgen über den Gradienten folgen später.

Wir bemerken noch, daß der Gradient auch für Funktionen von n unabhängigen
Variablen gebildet werden kann. Besitzt die reelle Funktion von n unabhängigen
Variablen f(x„ x3, ..., x„) partielle Ableitungen erster Ordnung, so setzt man

gradf(x1, ..., x,.) =f,, (x,, ..., x,.) e. + +f,_(x,, ..., x,.) e„

= ’)::l;'‚„(x„ x‚.) eg. (3.62)

grad f(x, , ‚ x„) ist dann ein n-dimensionaler Vektor. Wir können auch schreiben

gradf(x,, ..., x,,) =’§‘,1f.,(x1,..., x„) e‚.

Hinweis: Bei Benutzung der Matrixschreibweise hätte man zu schreiben

_ Öf Öf Of Tgradf—-(äg‚—ö—;;‚.„‚ ax”) .

3.3.4. Der Mittelwertsatz für Funktionen mehrerer Verinderlicher

Wir erinnern an den Mittelwertsatz der Diflerentialrechnung für Funktionen einer
unabhängigen Variablen (vgl. Bd. 2). Eine Funktion f(x) sei in einem abgeschlos-
senen Intervall [a, b] stetig und im offenen Intervall (a, b) differenzierbar. Sind x0
und x„ + h zwei Stellen aus dem Intervall [a, b], so gilt näherungsweise

f(x„ + h) —f(x„) z hf’(x,,) für kleine |h[ . (3.63)

Der Mittelwertsatz der Differentialrechnung sagt nun aus, daß es bei Erfiilltsein der
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genannten Voraussetzungen eine Zahl 19 mit O < 19 < 1 gibt, so daß anstelle von
(3.63) exakt gilt

f(x0 + h) -f(xo) = hf'(xo + 19h). (3-64)

Die Funktionswertdiflerenz f(xo + h) —f(xo) ist somit das Produkt aus der Argu-
mentdilferenz h und der Ableitung der Funktion f an einer geeigneten zwischen xo
und xo + h gelegenen Zwischenstelle xo + 19h. Da die Funktion f in’ einem Intervall
betrachtet wird, so folgt von selbst, daß die Zwischenstelle xo + 19h ebenfalls zum
Definitionsbereich von f gehört.

Wir wollen den Mittelwertsatz der Differentialrechnung für Funktionen von drei
unabhängigen Variablen herleiten. Unter analogen Voraussetzungen wie im Fall
einer Funktionf(x) werden wir zu einer Aussage kommen, die große Ahnlichkeit zur
Formel (3.64) hat. An die Stelle von h wird ein Diflerenzvektor h = hlel + hze, + hoeo

treten; die Ableitung wird zu ersetzen sein durch den Gradienten der betrachteten
Funktion, und anstelle des gewöhnlichen Produktes ist dann mit dem Skalarprodukt
zweier Vektoren zu arbeiten.

Die Funktion f(x, y, z) sei definiert in einer offenen Teilmenge D des R’ und die
Menge D sei konvex — d. h.‚ sind Po(xo‚ yo, zo) und P(x, y, z) zwei Punkte von D, so
sollen auch alle Punkte der Verbindungsstrecke von Po und P zu D gehören. Dies
sind aber gerade alle Punkte der Gestalt

050+’(x"xo)y}’o+’(.V‘}’o):Zo+’(Z"Zo)) m“ 0§1§1-(3-65)
Für t = O erhält man in (3.65) den Punkt Po, für t = 1 erhält man den Punkt P und
für t mit 0 < t < 1 liegt der zugehörige Punkt aus (3.65) auf der Verbindungsstrecke
zwischen Po und P. (Man vergleiche hierzu auch die Darstellung (2.39), die in der
gleichen Gestalt auch für zwei Punkte P‚(a„b„c‚) und P‚(a2‚b„c2) des R’
richtig ist.) Setzen wir h, x — xo, h, = y — yo und h, = z — zo, so ist die ge-
nannte Verbindungsstrecke die Menge aller Punkte der Gestalt

(xo + :h„ yo + thg, zo + rho) 0 g t g 1. (3.66)

Satz 3.7 (Mittelwertsntz der Diiferentialrechnung): Die reelle Funktion f(x‚ y, z) sei
definiert in der ofienen und konvexen Teilmenge D des R“ und besitze überall in D stetige
partielle Ableitungen nach x, y und z. Sinddann die Punkte Po (xo, yo, zo) undP(xo + h, ,

yo + h2, zo + ha) in D gewählt, so existiert eine Zahl 19 mit O < 19 < l, so daß gilt

f(xo ‘i’ fin yo + h2» 1o ‘I’ ha) “f(xo= Yo; Z0)

=fz(xo ‘l’ hhn yo ‘i’ 19h2s zu ‘i’ aha) h1 he ha- (3-67)

Bemerkung 3.8: In Formel (3.67) sind alle drei partiellen Ableitungen an der gleichen
Zwischenstelle (xo + 19h„ yo + 19h„ zo + 19ho) zu betrachten. Man beachte ferner, daß
für alle drei Koordinaten die gleiche Zahl 19 auftritt.

Verwenden wir die Vektorschreibweise, so können wir setzen x = xoe, + yoe, + zoeo

und h = h‚e1 + hzez + hoeo. Unter den genannten Voraussetzungen für die Funk-
tion f(x) und den Definitionsbereich der Funktion können wir dann sagen: Es gibt
eine Zahl 19 mit 0 < 19 <1, so daß gilt

f(x + I1) -f(x) =f,(x + 19h) h, +;;,(x + 191.) h2 +f‚(x + 191.) h,

= (gradf(x + am) . n.

mit

(3.68)

S.3.7
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Wir werden in 4.1. sehen, daß der Mittelwertsatz durch eine Spezialisierung aus der
Taylorfonnel gewonnen werden kann.

Beweis: Die Funktion f(x, y, z) werde eingeschränkt auf die Punkte der Verbin-
dungsstrecke (3.66), d. h., wir betrachten die zusammengesetzte Funktion der unab-
hängigen Variablen t:

F(t) =f(x„ + th„y„ + thg, zo + Iha) mit 0 g t; l. (3.69)

Die Funktion F(t) erfüllt nun auf dem Intervall [0, 1] die Voraussetzung des Mittel-
wertsatzes für Funktionen einer unabhängigen Veränderlichen. Es gibt also eine Zahl
19 mit 0 < 19 <1, so daß gilt

F(l) — F(0) = F’(29)’). (3.70)

Die Ableitung F’(t) berechnen wir nach Satz 3.2 für den Spezialfall x(t) = x0 + th„
y(t)= yo + thg, z(t)= 2,. + thg. Es gilt x'(t)= h1, y’(t)= h2, z'(t)= h, und damit
insgesamt

F’(t) =f‚(x„ +th1, yo + thg, 2., + ths) h, +j;(...) h2 +f‚(...) ha’).

Also ist i

F’(19)=f,(xo + 29h1, yo + afihz, z‘, + 19h._,) h1 +j;,(...) he +f,(...) h3

= (gradf(x + 1911)) h.

Wegen F(1)=f(x + h) und F(0) = f(x) liefert die Umschreibung von (3.70) gerade
die Behauptung. Damit ist der Beweis beendet. I

Es ist sofort klar, wie der Mittelwertsatz für Funktionen von zwei unabhängigen
Variablen oder allgemein für Funktionen von n Variablen lautet. Als unmittelbare
Folgerung ergibt sich der

(3.71)

Satz 3.8: Die reelle Funktion f(x, y, z) erfülle die gleichen Voraussetzungen wie in
Satz 3.7, und es gelte noch zusätzlich f‚(x‚ y, z) = f,',(x, y, z) =f‚(x‚ y, z) = 0 für alle
(x, y, z) E D. Dann ist die Funktion f(x, y, z) auf D konstant.

Beweis: Es sei (x0, yo, zo) ein fester Punkt aus D. Für jeden weiteren Punkt (x, y, z)
aus D folgt dann nach Satz 3.7 f(x, y, z) 7 f(x0, yo, zo) = 0, da die partiellen Ablei-
tungen für alle Punkte von D verschwinden. Also giltf(x, y, z) = f(x0, yo, zo) für alle
(x, y, z) E D; d.h., f(x, y, z) ist konstant auf D. I

3.4. Diflerentiale höherer Ordnung

Wir betrachten zunächst den Fall einer reellen Funktion von zwei unabhängigen
Variablen. Eine Funktion f(x, y) sei in einer ofienen Teilmenge der x, y-Ebene defi-
niert und besitze überall stetige partielle Ableitungen erster Ordnung. Dann können
wir das vollständige Differential df(x‚ y) bilden:

df(x‚ y) = dx + dy. (3.72)

1) Für die Anwendung des Mittelwertsatzes müssen wir die Spezialisierung a = 0, b = l und h = 1

betrachten.
‘) Alle drei partiellen Ableitungen werden an der gleichen Stelle betrachtet.
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Dabei bedeuten dx bzw. dy Zuwachsgrößen der unabhängigen Veränderlichen x
bzw. y. Wählen wir in (3.72) nun feste Zuwachsgrößen dx und dy‚ so ist das voll-
ständige Differential (3.72) wieder eine Funktion von x und y. Setzen wir voraus,
daß f(x‚ y) sogar stetige partielle Ableitungen zweiter Ordnung nach x und nach y
besitzt, so besitzt also dflx, y) als Funktion von x und y stetige partielle Ableitungen
erster Ordnung nach x und nach y. Man kann daher von (3.72) erneut das vollständige
Differential d(df(x‚ y)) bestimmen. Wir nennen es das Dilferentinl zweiter Ordnung
von f(x‚ y) an der Stelle (x, y) mit dem Zuwachs (dx, dy) = (h, ‚ h1) und bezeichnen
es mit d‘f(x, y). Wir haben also bei der Bildung von d2_f(x‚ y) die Größen dx und dy
zu behandeln wie Konstanten. Wir betrachten das folgende
Beispiel 3.10: Die Funktion

f(x‚y) = x3e7-' (3.73)

besitzt in der gesamten x, y-Ebene stetige partielle Ableitungen zweiter Ordnung nach
x und y, und es gilt für das Differential erster Ordnung:

df(x‚ y) = 3x3 e’? dx + 2 e21/x” dy. (3.74)

Wir wählen jetzt feste Zuwachsgrößen dx und dy und betrachten dann die rechte Seite
von (3.74) nur als Funktion von x und y. Setzen wir vorübergehend F(x, y) = 3x’ e”? dx
+ 2 e2l4x“ dy, so soll nun das vollständige Difierential dF(x‚ y) gebildet werden. Es ist
dann für konstantes dx und dy:

#2 6x ezvdx+ 6x“ ezvdy, °%;”)= 6x’ e’!/dx + 4x‘ c’Vdy,

und daher gilt für dF(x‚ y) = d”f(x, y):

d‘f(x, y) = [6x e21! dx + 6x’ e" dy] dx + [6x'*’ e29 dx + 4x’ e27 dy] dy

= 6x e’?! (dx)’ + 2 « 6x'*‘ e“ dx dy + 4x" e“ (dy)’

= %—”l (dx)” + 2 a2%‘a’yL) dx dy + a2fE§—;‘;”)— (dy)’ (3.75)

wegen
f„(x‚ y) = 6x e211, fw(x, y) = 4x" e‘V, f,,,(x, y) = 6x’ e".

Die zuletzt gefundene Beziehung (3.75) für d’f(x, y) gilt nun ganz allgemein. Unter
den genannten Voraussetzungen für f(x‚ y) gilt für die gemischten partiellen Ablei-
tungen die Vertauschungsregel f,„(x‚ y) = f;„(x‚ y). Beachten wir ferner die Rechen-
regeln (3.36) und (3.37) für das Arbeiten mit dem vollständigen Differential, so erhal-
ten wir (dx und dy sind zu behandeln wie Konstanten) wegen

Öf(x‚y) _ Ö’f(x‚y) Ö“’f(x‚y)
d d( ax )“ 6x2 d” axayd’

1111

a , a2 ‚ a? ‚

dann weiter

am y) = d(df(x‚ y» = d + dy)

5 Harbnrth/Riedrich. Dill. Rechn.
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a l a I
= (ax) . d + (dy) . d

= M, [aw y) dx + 3%, y) Ü]
Bx“ 6x öy

+ (dy) - [ dx+ dyJ
= (dx)” + 2 dx dy' + (dy)” I). (3.76)

Analog wird das Differential dritter Ordnung d’f(x, y) anschließend erklärt als
d3f(x, y) = d(d7(x, y)). Dieser Bildungsprozeß kann weiter fortgesetzt werden. Besitzt
also f(x‚ y) stetige partielle Ableitungen bis zur k-ten Ordnung und ist das Differen-
tial (k — l)—ter Ordnung schon gebildet, so verstehen wir unter dem Differential k-ter
Ordnung dann

| d"f(x. y) = d(d""‘f(x‚ y))- (3-77)

Man erkennt, daß die bei der sukzessiven Bildung der Difierentiale auftretenden
Ausdrücke immer komplizierter werden. Zur besseren Übersicht führen wir daher eine
formale Bezeichnung ein und können mit dieser dann die Differentials d“f(x, y)
bequem darstellen.

Der explizite Ausdruck für d’f(x, y) in (3.76) weist eine gewisse Ähnlichkeit mit der
rechten Seite der Gleichung (a + b)’ = a’ + 2ab + b2 (a, b beliebige reelle Zahlen)
auf. Wir definieren daher das formale Symbol

ö ö 2
(ax dx+ ay dy) f(x‚ y) _ (3.78)

in der folgenden Weise: Der Ausdruck in der Klammer wird zur zweiten Potenz
erhoben, und dabei werden die Symbole ö, 6x, By wie selbständige algebraische Sym-
bole behandelt. Anschließend werden die Klammern fortgelassen, und zu jedem Sym-
bol Ö’ wird der „Faktor“ f(x, y) hinzugesetzt (der „Faktor“ f(x, y) wird also
„hineinmultipliziert“). Nach diesem Vorgang soll dann alles wieder seine ursprüng-
liche Bedeutung haben. Wichtig für diesen Gedankengang ist die Vertauschbarkeit
der gemischten partiellen Ableitungen von f(x‚ y). Also ist

Ö Ö ’(a ax + -67 dy) f(x‚ y)

a2

= (dx)= + 2mm» + §’—y:(dy)=)f<x, y)

= (dx)’ + 2 dx dy + (dy)2. (3.79)

Für das Differential zweiter Ordnung von f(x‚ y) erhalten wir dann die sehr ein-
prägsame Darstellung

d’f(x‚ y) = dx + aiy dy)21<x, y). (3.80)

') Anstelle von (d.r)' bzw. (dy)’ schreibt man auch kürzer ohne Klammer nur dx’ bzw. dy‘.
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Ganz entsprechend ist die Schreibweise

df(x‚y) = dx+%dy)f(x‚y) (3.81)

zu interpretieren; der „Faktor“ f(x, y) wurde „ausgeklammert“. Man kann nun
zeigen, daß allgemein gilt

«vom = dx +%dy)"x(x‚y). (3.22)

Für das Differential dritter Ordnung einer Funktion f(x, y) mit stetigen partiellen
Ableitungen dritter Ordnung gilt also

dvoc, y) = dx + 5°; dyfflx, y)

=fm(x. y) dx“ + 3fm(x‚ y) dx’ dy

+ 3fm(x,y)dx<W+/m(x,y>dy3. (3.83)

Istf(x, ‚ ‚ x‚.) eine reelle Funktion von n unabhängigen Veränderlichen mit stetigen
partiellen Ableitungen k-ter Ordnung, so gilt entsprechend

ö dx‚.>kf(x„ x„). (3.84)
a

d“f(x,, ...,x,.) = (-6; ax, + + ax"

Das Symbol auf der rechten Seite von (3.84) ist ganz entsprechend zu lesen wie für
eine Funktion von zwei unabhängigen Variablen. Für eine Funktion von drei unab-
hängigen Variablen f(x, ‚ x2, x3) mit stetigen partiellen Ableitungen zweiter Ordnung
gilt dann für das Differential zweiter Ordnung:

6 Ö ö 2

d=x(x1,x2,xa) = (-671 dx. + T2 dx. + -673 dxa) /(x1,x2,x3>

= I11 d-V12 +./-I22 dxzz +fi33 dxaz

‘l’ zflxe dxl dxz + zfin dx1 d)‘: ‘l’ Zfin dxs dxa-

(Alle partiellen Ableitungen sind an der Stelle (x1, x2, x3) zu betrachten — wir haben
die Argumente nicht mitgeschrieben, wie es gelegentlich üblich ist, falls keine Ver-
wechslungen zu befürchten sind.) ’

3.5. Anwendungen des totalen Differentials in der Fehlerrechnung

Wir fiihren analoge Überlegungen durch wie im Band 2 im Kapitel 5.2. für Funk-
tionen einer unabhängigen Variablen und betrachten zunächst Funktionen von zwei
unabhängigen Variablen. Es liege also der Fall vor, daß eine Größe z als Funktion
zweier Größen x und y berechnet werden soll als z =f(x, y). Es seien a": bzw. y Nähe-
rungswerte für x bzw. y, so daß anstelle des exakten Wertes z = f(x, y) auch nur der
Näherungswert

i =f(i, y‘) i (3.85)
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berechnet werden kann. Wir schreiben dann

x=f+dx, )’=)7+dy (3.86)

und bezeichnen in diesem Zusammenhang dx und dy auch als Meßfehler. Weiter
seien zwei Schranken h > O bzw. k > 0 für die Meßfehler bekannt, d.h., es gelte

|dx| g h bzw. ldy| g k. (3.87)

Es gelte also die Abschätzung

J?-—h§x§JE+hund;7—k§y§)7+'k, (3.88)

wofür wir mit der Symbolik aus Band 2 auch schreibenx = 55 j; h und y = i j; k.

Gesucht ist nun eine obere Schranke für den absoluten Fehler

IAZI = IZ- 5| = |f(x‚y) -fl5c‚5')l -‘ If(>? + dx,)7 + dy) -f(J?.J")|- (3-39)

Sind h und k „klein“, so sind nach (3.87) auch dx und dy „klein“, und man kann die
Funktionswertdiflerenz (3.89) durch das zu der Stelle (i, i) und den Zuwächsen dx
und dy gehörige Difierential vonf annähern. Man setzt also [Azl z |dz| und erhält
die Abschätzung

IAZ! z Idzl = lx‘z(i‚i)dx+fi(>?‚i) dyl é |fz(i.J7)l- ldxl + |fi,(i.i)l- ldyl

é I/‘;(J?.J7)| 'h + M;(>?,i)l -76-’) (3.90)

Die Abschätzung (3.90) ist zwar nur eine genäherte, aber sehr einfache und praktisch
durchaus brauchbare Abschätzung für den absoluten Fehler von 2. Anstelle des rela-

. A . . . .. d
tiven Fehlers -23- berechnet man 111 der Praxis dann auch die Große

Die Betrachtungen können sofort auf Funktionen von mehr als zwei unabhängi-
gen Variablen ausgedehnt werden.

Beispiel 3.11 : In einem Dreieck seien für die Seiten a und b und den eingeschlossenen

Winkel y die Näherungswerteä = 84,3 m, I3 = 73,2 m und )7 = 48,6“ (d.h. g": = 0,27m)
gemessen worden. Für die Meßfehler da, db und dy soll gelten

|da| g h1= 0,1m; |db[ g h, = 0,2m und [dyl g ha = 0,01

Gesucht ist eine Abschätzung des absoluten Fehlers für die Länge der dritten Seite c,
die sich aus den angegebenen Werten ergibt. Nach dem Kosinussatz gilt

c=f(a, b, y)=1/a2+b2 —2ab cos y. (3.91)

‘) Der Praktiker hat in jedem Einzelfall zu überlegen, ob Idxl und ldyl hinreichend klein gemacht
werden können, um die Ersetzung von [Azl durch ldzl zu rechtfertigen.
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Also ist

c =f(ä, 13, 51) =

= l/(84‚3)’ + (73,2)? —— 2 (84,3) (73,2) cos 0,277: = 65,5. (3.92)

Für das zur Stelle (ä, B, 52) und den Zuwächsen da, db, dy gehörige Differential gilt

(2a— 221 cos y) da + (213- 2a cos p) db + 2513 sin y dy

21/122 +132 — zaßcos y
E! =

__&-—l~zcos;7 I3—r'1cos;7 fibsinfz
_ E da+ E db+ ö dy. (3.93)

Für den absoluten Fehler erhält man die Abschätzung

84,3 — 73,2 cos f: 73,2 -— 84,3 cos )7 _

[Ac] z Idcl g‘ 65,5 l-OJ +1 65,5 0,2

34,3 - 73,2sin ,7 7:

+‘T:*1'°’°‘?
= 0,055 + 0,053 + 0,246 = 0,354 < 0,4.

1

Für den wahren Wert c besteht also praktisch die Ungleichung [c — 65,51 < 0,4, d.h.

65,5 —— 0,4 < c < 65,5 + 0,4. (3.94)

Hierfür schreiben wir auch c = 65,5 j; 0,4. Für den relativen Fehler gilt

Ac dc 0,4T N T < z? —— 0,0061 — 0,61%. (3.95)

Für die relativen Fehler der Meßwerte gilt

d 0,1 db 0,2
—&‘i}g8—43—= o‚oo12= 0,12%; T|g73—2—=0,0027=0,27%;

d 0,0177}gm= 0,0041 = 0,41%.

Im folgenden Beispiel führen wir eine geänderte Betrachtungsweise durch. Bei der
Abschätzung des Fehlers betrachten wir wieder das vollständige Diflerential der be-
treffenden Funktion; wir arbeiten dann aber nicht nur mit Abschätzungenfür die Zu-
wachsgrößen der unabhängigen Variablen, sondern bestimmen auch Abschätzungen
für die auftretenden partiellen Ableitungen. Wie mit dem Mittelwertsatz nachge-
wiesen werden kann, erhält man hierbei tatsächlich eine obere Schranke für den ab-
soluten Fehler der betrachteten Funktion.



70 3. Partielle Ableitungen und totales Differential

Beispiel 3.12: Bei einem konzentrischen (einadrigen) Ölkabel‚ dessen Außenleiter den
inneren Radius b = 1,75 cm und dessen Innenleiter den Radius a = 0,35 cm hat, ist
die maximale Feldstärke (am Innenleiter) durch

U U
E = —b = Rrxfm“ (3-96>

aln—
fl

mit dem Scheitelwert U der Betriebsspannung gegeben. Wie groß ist der relative Feh-
ler von E für U = 100 kV, wenn die relativen Fehler von a und b mit je l % und von
Umit 2% angesetzt werden? Es ist also E eine Funktion der drei unabhängigen Varia-
blen U, a und b: E = E(U, a, b). Nach der Voraussetzung über die relativen Fehler
von U, a, b ist die Funktion E(U, a, b) zu betrachten in der Menge B aller Punkte
(U, a, b), für die gilt 100 — 2 g U g 100 + 2; 0,35 —— 0,0035 g a g 0,35 + 0,0035;
1,75 — 0,0175 g b g 1,75 + 0,0175. B ist also die Menge aller Punkte (U, a, b) mit

98 g U g 102; 0,3465 g a g 0,3535; 1,7325 g b g 1,7675. (3.97)

Nun ist

6i__ l _ Ö_E_U(l—lnb+lna)_ £_ —U‘
6U—.a(1nb—lna)’ 6a _- (a(111b—lna))’ ’ öb —ab(lnb—lna)"

Für das vollständige Differential der Funktion E(U‚ a, b) gilt dann

dE(U‚ a, b) = gäamädafäädb. (3.98)

Für alle auf der rechten Seite von (3.98) stehenden Größen werden obere Schranken
— bezogen auf die Menge B — angegeben. Wir lassen also alle Punkte (U, a, b) zu, für
die (3.97) gilt, und erhalten dann

]dU| g 2; |da[ g 0,0035; Idbl g 0,0175;

6E l
TU§ ä W15“;-

6E S 1o2(—1 + ln 1,7675 — In 0,3465)

T; - (0,3465(lnI,7325—1n0,3535))’

BE < 102

Tb = 0,3465 - 1,7325 (ln 1,7325 — In 0,3535)?

g 204‚94l2 ;

g 68,6320. 1)

Dann gilt a
ElAElzldElg W‘-|dU{+

ö

g 1,8158 - 2 + 204‚94l2 - 0,0035 + 68,6320 - 0,0175

g 5,5499.

0E

a

as
-|da| |db|

1) Man hat darauf zu achten, daß der Zähler den größtmöglichen und der Nenner den kleinstmög-
lichen Wert annimmt. Weiter bemerken wir, daß Maßeinheiten bei der Rechnung aus Gründen der
Übersichtlichkeit weggelassen wurden.
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Für E selber erhält man mit den angegebenen Werten: E = 177,52. Für den relativen
Fehler erhält man somit die Abschätzung

AE
E g 0,03 = 3%.

In Band 2 wurde folgendes gefunden: Es seien 5g, ...‚ 5g. Näherungen für n Zah-
len x1, ...‚ x‚.. Betrachten wir nun Z = 5c, + + 5a,. als Näherung für die Summe
z = x, + + x‚. der n Zahlen, so gilt, daß der absolute Fehler der Summe von n

Zahlen höchstens gleich der Summe der absoluten Fehler der einzelnen Summan-
den ist. Dieses Ergebnis würden wir an dieser Stelle sofort erhalten durch die
Betrachtung der Funktion f(x1 ‚ ‚ x‚.) = x1 + + x‚. mit dem vollständigen Difleren-
tia1(fi1= =fi„= 1): .

df(x„ ...‚ x‚.) = dx, + + dx„.

Also folgt

Idf(x1, x..)| ‚S. ldxxl + + ldx„l-

Es soll jetzt eine Zahl z berechnet werden als Produkt zweier Zahlen x und y:
z = x - y. Wir betrachten dann die Funktion f(x, y) = x - y mit dem vollständigen
Differential df(x‚ y) = y dx + x dy. Sind 5c bzw. y Näherungen für x bzw. y, so gilt
also

[All = [Z - 5| z ldz(5c.}")l = l5’ dx + 5€ dyl

und damit weiter mit 2 = 2 - y:

E: d_
2 Z

iii +i s l d;
x y x

Die Abschätzung (3.99) besagt: Der relative Fehler eines Produktes ist höchstens
gleich der Summe der relativen Fehler der einzelnen Faktoren.

+ 1 E; l - (3.99)

Zum Abschluß betrachten wir noch den Fall, daß eine Zahl z als Quotient zweier I

Zahlen x und y berechnet werden soll:

x2:; (x=‘‚=0‚y=l=0).

Wir betrachten an dieser Stelle f(x, y) = ämit dem vollständigen Differential

dx x
d ‚ = — — —d .f(x y) y y, y

Sind wieder 5c bzw. y Näherungen für x bzw. y, so gilt

[A21 z1dz(J'c, y)1= 3.’i—"fi’ und damit weiter micz=iz
y y’ y

iz9i=(di—i—äl)(i);3+‘3. (3.100)
z z y y x x y
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Die Abschätzung (3.100) besagt: Der relative Fehler eines Quotienten ist höchstens
gleich der Summe der relativen Fehler von Zähler und Nenner.

Beispiel 3.13: Nach dem Stokesschen Reibungsgesetz erfährt eine Kugel vom Radius
r beim Fallen in einer zähen Flüssigkeit von der Zähigkeit n einen Reibungswiderstand
vom Betrag F = 61mm. v sei der Betrag der Fallgeschwindigkeit. Wie groß ist ma-
ximal der relative Fehler von F, wenn der relative Fehler von 17 bzw. r bzw. v gerade
0,5% bzw. 4,3% bzw. 2,7% beträgt?

Wir können (3.99) anwenden, da die Größen 17, r und v miteinander multipliziert
werden. Für den relativen Fehler von F gilt also

E Ei -
- ä 0‚5°/o + 4‚3°/o + 2,7% = 7,5%»

Aufgabe 3.4: Die Funktionf(x, y) = arctan 3- werde für alle Punkte (x, y) der oberen

Halbebene betrachtet, d. h. für alle Punkte (x, y) mit y > 0. Man bilde das Differen-
tial zweiter Ordnung: d’f(x, y).

Aufgabe 3.5 : Für die Koordinaten des Punktes P(x‚ y, z) wurden die Werte J’: = 2,51 ;

5: = -1,72; 2 = 3,43 gemessen. Gesucht ist der Abstand r des Punktes P vom Koor-

dinatenursprung: r = Vac’ + y’ + z”. Wie groß ist der Näherungswert F für r und
mit welchem absoluten und relativen Fehler muß man rechnen, wenn die Koordi-
naten xund y mit einer Genauigkeit von j:0,02 und die Koordinate z mit einer
Genauigkeit von j; 0,03 bestimmt wurden?

3.6. Diiferentiation zusammengesetzter Funktionen

Die verallgemeinerte Kettenregel

3.6.1. Zusammengesetzte Funktionen mehrerer Veränderlicher

Wir betrachten zunächst folgenden Sachverhalt: Es sei Meine Teilmenge des R’, und
aufM sei eine reelle Funktionf erklärt; d. h., durch die Abbildungfwird jedem Punkt
(x, y) aus M eine Zahl f(x‚ y) zugeordnet. Weiter sei [a‚ b] ein Intervall auf der re-
ellen Achse, und auf [a‚ b] seien zwei reelle Funktionen (pl und q), erklärt. Jedem t aus
[a‚ b] sind also zwei Zahlen m10) und <p‚(t) zugeordnet. Wir betrachten nun im R‘ die
Kurve mit der Parameterdarstellung x = <p1(t), y = 992(1) und nehmen an, daß alle
Punkte ((p1(t), <p2(t)) zum Definitionsbereich M von fgehören. Als zusammengesetzte
Funktion bezeichnet man dann diejenige Abbildung, die jedem t aus [a, b] die Zahl
f(q2,(t), q72(t)) zuordnet. Schreibweise: F(t) = f(<p,(t)‚ <;o1(t)) für t aus [a‚ b]. In diesem
Spezialfall bildet die Gesamtheit aller Punkte (<p1(t), (p;(t)) im allgemeinen eine in M
verlaufende Kurve. Die Bildung der zusammengesetzten Funktion bedeutet dann
eine Einschränkung von f auf die Punkte dieser Kurve. Die folgenden Bilder 3.6a
und 3.6b veranschaulichen diesen Sachverhalt.
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Bild 3.6 a Bild 3.6 b

Beispiel 3.14: Auf [a, b] = [0, 21c] werden die Funktionen <p‚(t) = 2 cos t und <p,(t) =

2 sin t betrachtet. In der x, y-Ebene sei M die Fläche des Kreises mit dem Radius
R= 20 um den Nullpunkt und f(x, y) = e‘ siny auf M erklärt. Die (Punkte
(x, y) = (<p,(t), q22(t)) = (2 cos t, 2 sin t) gehören dann zu M für alle t aus [0, 27:] und
bilden in M den Kreis mit dem Radius 2 um den Nullpunkt. Für alle t aus [0, 21:]

erhält man die zusammengesetzte Abbildung

F(1)=f(?71(t)‚ <P2(f)) = e’ °°“ ' Sil1(2 Sill f)-

Speziell für t= gfolgt = e2 m5 sin (2 sin = e“ - sin 2 = sin 2.

Folgende Verallgemeinerung ist möglich: Es sei M eine Teilmenge des R", und
auf M sei eine reelle Funktionferklärt. Anstelle des Intervalls [a, b] der Vorbetrach-
tung sei jetzt M eine Teilmenge des R". Auf M seien dann n reelle Funktionen
¢p,, 922, ..., 92,. erklärt, d.h., jedem (ul, 14„ ...‚ uk) aus M sind n Zahlen «p1(u,, ..., uk),

, (12,, (u,, , w.) zugeordnet. Wenn nun alle Punkte mit den Koordinaten (x1 , , x‚.)
= (q>,(u1, ..., uk), ..., <p,.(u,, ...‚ u;.)) zum Definitionsbereich M von f gehören, kann
die zusammengesetzte Funktion

F(“i‚ "u 141:): f(‘I’1("1a ‘f’, Vic): "3 ‘Pn(“1y "3 Mk»

gebildet werden. (In der Vorbetrachtung war n = 2 und k = l.)
Beispiel 3.15 (Potential zweier Punktladungen): An den Punkten P‚(1‚ 0, 0) und
P2(0, 1, 0) befinden sich Punktladungen Q, bzw. Q2. Gesucht ist das Potential «p der
beiden Punktladungen im beliebigen Raumpunkt P(x, y, z) als Funktion von (x, y, z).

Nach den Grundgesetzen der Elektrostatik erhalten wir für das Potential q: = <p(P)

der vorgegebenen Ladungsverteilung den Ausdruck tp(P) = E7:—£— + %), wobei
0 1 2

r1 bzw. r, den Abstand des Punktes P von P, bzw. P2 bezeichnet (so ist die Influenz-
konstante oder „elektrische Feldkonstante“). In dieser Schreibweise erscheint das
Potential (p als Funktion der Variablen r1 und r, (Q, und Q, seien fest). Es interessiert
aber die Abhängigkeit zp = <p(x‚ y, z). Dazu stellen wir r1 und r, mittels des Satzes von
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Pythagoras durch die Koordinaten (x, y, z) des Punktes P dar. Es gilt

r, = (x -1)’ + ya + z’, (3.101)

r,= x“+(y—1)2+z2. (3.102)

Also ist die gesuchte Funktion gegeben durch den Ausdruck

v) = ¢(P) = <r(x, y, z)

= l’(x —1)?3ry=+ 2* ‘L w + o? n2 + 2*) (ms)
((x, y, z) =1: (1, 0, 0); (x, y, z) # (0, 1, 0)). Sie entsteht durch Zusammensetzung; die
Ausdrücke (3.101) und (3.102) werden in den Ausdruck für zp eingesetzt. Der Ausdruck
(3.103) kann also als eine zusammengesetzte Funktion aufgefaßt werden.

3.6.2. Die verallgemeinerte Kettenregel

Natürlich interessieren die partiellen Ableitungen der zusammengesetzten Funk-
tionen nach den neuen unabhängigen Variablen (z.B. zur Berechnung der Feld-
stärke E = —grad mp im vorhergehenden Beispiel 3.15). Die Rechenvorschrift‚ die diese
Aufgabe löst, nennt man die verallgemeinerte Kettenregel.

Zur Beschreibung dieser Rechenregel betrachten wir zunächst den Fall, daß in einem
Gebiet G des Raumes R3 eine reelle Ortsfunktion U(r) = U(x, y, z) gegeben ist und

daß der Ortsvektor r =

x0)
daß r = r(t) = [ym]

z(t)
gesetzte Funktion von t. (Man betrachtet z.B. die Temperaturverteilung U(r) in
einem Gefäß G auf einer speziellen Raumkurve r(t).)

x
[y] selbst eine Funktion einer weiteren Variablen t ist; d.h.
z

gilt. Aus U wird durch Einsetzen von r = r(t) eine zusammen-

Satz 3.9: Es sei die Funktion U(r) = U(x, y, z) stetig diflerenzierbar in einem Gebiet
G < R3, und die Funktionen x = x(t)‚ y = y(t), z = z(t) seien stetig diflerenzierbar im

3(1)
Intervall (a, b). Für IE (a, b) liege r(t)= [y(t)J in G. Dann ist die Funktion

2(1)
U(r(1)) = U(x(t)‚ y(t), z(t)) auf (a, b) stetig dzflerenzierbar nach t, und es gilt die
Gleichung (verallgemeinerte Kettenregel)

= U,)‘c + U,,}'I + 11,2, (3.104)

wobei Sc = i? ‚ y = %yt—, 2 = —:—: ist und die partiellen Ableitungen U„ (1,, U, an der

Stelle (x, y, z) = (x(t)‚ y(t), z(t)) zu nehmen sind.
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Gleichberechtigt verwenden wir die folgenden Schreibweisen:

dU('(’))_°” d: 51.41 fl.£
dt “Tx"dt ay dt az dt

“d dU(r(t)) av dU(r(t))T=Tr4 oder —dT——=(gradU)-r.

Wir gehen jetzt zum allgemeinen Fall über, daß die zusammengesetzte Funktion
eine Funktion mehrerer Veränderlicher ist (vgl. Band 2, Satz 4.4).

Satz 3.10: Es sei f(x‚ y) eine in einem Gebiet G g R‘ definierte stetig dzflerenzierbare
Funktion, und die Funktionen x = g‚(u, v), y = gz(u, v) seien stetig dzflerenzierbar
in einem Gebiet B g R’. Für (u, v) EB liege der Punkt (x, y) = (g1(u, v); g2(u, v))

_in G. Dann kann die zusammengesetzte Funktion F(u‚ v) = f(g,(u, v), gz(u, v)) ge-
bildet werden. Die Funktion F(u‚ v) ist stetig diflerenzierbar in B, und es gelten die
Gleichungen

ÖF_öf_öx öf'öy _ _Ög_1 6g;
514——ö7ö—u wBfl-ßatfißw)’
öF_öf.öx bf.£y__ E; $2.
35-57 a7 a ou(‘f"ou +f»a.,)= 0-1“)

Weiber’ diepgrtiellen Ableitungen §’:—,~O—y—an der Stelle (x = g,(u, v), y = g2(u, v))zu
ne men sm .

Zum Beispiel sei f(x‚ y) = x’ + y’ undx = g,(u, v) = u + v,y = gz(u, v) =u—v.
Dann gilt F(u‚ v) = (u + v)“ + (u — v)’ = Zu’ + 2122 sowie nach (3.105)

OF 2x-1+2y'1=2(x—i:y)=2(u+v+u-—v)=4u und ä; 2x'l
Öu

+ 2y(—- l) = 2(x — y) = 2(u + v — (u —— 12)) = 4o, was sich durch direktes Aus-
rechnen dieser partiellen Ableitungen sofort bestätigt.

In der Theorie impliziter Funktionen (s. Abschnitt 3.7‚) und bei der Untersuchung
gewöhnlicher Differentialgleichungen (s. Band 7) tritt folgender Fall einer zusammen-
gesetzten Funktion auf: In den Ausdruck für eine Funktion F(x, y) wird für y eine
Funktion einer Variablen, y = f(x)‚ eingesetzt. Nach der verallgemeinerten Ketten-
regel in der Form (3.104) gilt dann mit t = x; x(t) = x; y(t) = f(x); z(t) = 0 die
Gleichung

~"—F%")—’ = F. + Fyf’(x) = F,(x./<x» + Fy(x,f(x))f’(x)-

Bemerkung 3.9: Zur Gültigkeit der verallgemeinerten Kettenregel (in irgendeiner
ihrer bisher oder im folgenden angegebenen Formen) reicht die Voraussetzung der
totalen Dilferenzierbarkeit der zur Bildung der zusammengesetzten Funktion benutz-
ten Funktionen aus. Einen diesbezüglichen Beweis findet man in [4]. Er beruht auf
der Benutzung der Zerlegungsformel (s. 3.2.).

Beweis der Kettenregel
Wir beweisen die verallgemeinerte Kettenregel für den Fall, daß eine zusammen-

gesetzte Funktion von einer Veränderlichen dadurch gebildet wird, daß in eine Funk-
tion von zwei unabhängigen Veränderlichen zwei Funktionen von nur einer Veränder-
lichen eingesetzt werden. Genauer sei vorausgesetzt: Die Funktion f(x‚ y) sei im Ge-

‘s.3.1o
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biet G g}? definiert und dort total differenzierbar, ferner seien die Funktionen
<p,(!), q22(t) im Intervall (a, b) (a < b) erklärt und dilTerenzierbar. Für t E (a, b) gelte,
daß der Punkt (Vektor) q2,(t)e1 + <p2(t) e, in G liegt, so daß die zusammengesetzte
Funktion

U0) =f(‘P1(’)2 <P2(t)) (0 < I < b)

definiert ist. Anstelle der totalen Differenzierbarkeit vonf(x, y) kann man auch for-
dem, daßf(x, y) in G überall stetig partiell nach beiden unabhängigen Variablen dif-
ferenzierbar ist, da aus dieser Voraussetzung die totale Differenzierbarkeit vonf(x, y)
folgt. Wir halten ein to E (a, b) fest und betrachten den zugehörigen Differenzen-
quotienten für die Funktion U(t). Es sei h =4: 0, und damit wird

UÜo + h) — UÜo) = f(¢P1(to + h): ‘P2 (‘o + h» “f(‘P1(to)a 'P2(to»

h h

= f(9’1(’o + h) ‘ W100) + 971W): ‘P2 (to + h) “ ‘P2(to) + ‘P2(to))"f(‘P1(’o)a ‘P2(to))

h

= f(‘P1(to) ‘i’ Axe» $200) + Ayo) ‘f(9"1(‘o): 972(70))
h 3

wobei zur Abkürzung Axe = <p1(t., + h) — <p1(t0), Aye = <p2(to + h) — <p2(t.,) gesetzt
wurde. Nach der Zerlegungsformel (s. 3.3.1.), angewandt auf den Zähler des obigen

Bruches, ergibt sich mit g = V(Ax0)’ + (Ayo 2

U +h — U llg= I(.fi1(‘P1(to); ¢P2(’o)) Axe + fi2(‘P1(’o)a 99209)) Ayn + 779),

wobei 77 = 17(<p1(t„)‚ 922(10), Axo, Ayn) mit g —> 0 ebenfalls gegen null geht.

Es bestehen die folgenden Gleichungen (ausführliche Schreibweise der obigen Ab-
kürzungen)

Axe _ ‘P100 ‘i’ h) “ WlÜo) Ayn __ ‘P2 (‘o + h) " 972(30)

h h h h ’

wen?
Auf Grund der vorausgesetzten Dilferenzierbarkeit von gv‚(t)‚ tp,(t) ergeben sich aus
diesen Gleichungen die folgenden Limesbeziehungen für den Grenzübergang h —> 0:

A ‚

z” = ‘P2 (t0),limü= <p1'(to), lim
n—-o h h—v0

um %= I/(%’(to))” + (‘Pé’(’o))2 = A.
h-0

Aus der letzteren Limesbeziehung folgt die weitere lim g = 0 (denn g = h - ,

h—»0

also lim g = lim h - lim-i- = o - A = o) . Daraus ergibt sich weiterlim 1, . = o,
'. h—>0h-0 h—o0 h->0
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(dann lim n (E) = (um n) . (um E) = o -A = o, da lim 9 = o und somit lim 17 = o ist) .

h—-0 h n-‚o mo h n—-o n—.o

Auf der rechten Seite der zuletzt hingeschriebenen Gleichung für den Differenzen-
quotienten von U(t) läßt sich in jedem der drei Summanden der Grenzübergang h —> 0
durchführen. Also existiert auch der Grenzwert der linken Seite, und dieser ist dann
nach Definition gleich dem Differentialquotienten U’(t0). Wir erhalten somit die
gewünschte Beziehung

U/(to) =fi1‘P1/ +fi2?72I ’-‘f;:‘P1I +fl'¢2,:

wobei rechts die Variablenwerte x = q21(t0), y = <p2(to), t = to einzusetzen sind. I

Im allgemeinen Fall haben wir s Funktionen von je n Veränderlichenfi(x„ ‚ x‚.);
f,(x1, ..., x‚.); ...; f‚(x„ ..., x‚.), in die n Funktionen von je k Veränderlichen
x, = g1(u1‚ ..., uk); x, = g,(u1‚ , uk); ...; x,. = g,.(u1, ..., w.) eingesetzt werden und
damit s zusammengesetzte Funktionen

Fi(ui‚ w.) =fi(gi(ui‚ ur); 55.041, um,
1720H, m, ilk) =f2(g1(“1, ---‚ 11k); --~§ gn(141. ---9 ilk»:

gebildet werden. Die verallgemeinerte Kettenregel lautet für diesen allgemeinen Fall

aF‚._ k _ k öfi Ox,
a—W—r§fi.,g,.;(—r§1 6x’ 6%), (3.106)

wobei die rechts auftretenden partiellen Ableitungen f‚-„ an der Stelle x1 =

g,(u„ ..., uk); x, = g,(u1, ..., uk); ...; x,. = g,.(u,, ..., uk) zu nehmen sind.
Die verallgemeinerte Kettenregel gewinnt die einfache und anschauliche Bedeu-

tung der gewöhnlichen Kettenregel für reelle Funktionen einer reellen Variablen zu-
rück, wenn wir sie vektoriell schreiben. Hierbei fassen wir die Variablen x„ ..., x‚.
zu einem Spaltenvektor x; die Funktionen f1(x,, ..., x‚.); ...; f‚(x„ ..., x‚.) zu einem
Spaltenvektor f(x); entsprechend die Variablen ul, ..., m, zu einem Spaltenvektor u

und die Funktionen g,(u1, , uk); ...; g,.(u,, ..., w.) zu einem Spaltenvektor g(u) und
schließlich die zusammengesetzten Funktionen F,(u,, , uk), , F,(u1, ..., uk) zu

einem Spaltenvektor F(u) zusammen. Bezeichnet (DF) (u) die Matrix und sind
i

(Di) (x) bzw. (Dg) (u) die entsprechenden Matrizen für f bzw. g, so läßt sich die in der
obigen Formel (3.106) ausgedrückte Regel in der Form

(DF) (II) = (Df) (g(II)) - (De) (II) (3-105')

schreiben (man beachte hierzu die Regeln der Matrizenmultiplikation). Berücksich-
tigt man die Gleichung F(u) = f(g(ll)), so erhält man die Beziehung

(Df (g))(“) = (D!) (801)) - (D8) (II)- (3-105”)

Beispiel 3.16: Für das Potential zweier Punktladungen (s. Beispiel 3.14) 92 =

1 . ————————4:<-Qi+ mit r1= V(x— 1)”+y2+z’ und r2= 1/x2+(y— l)”+z’ berechne
mo r1 r2
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man die Feldstärke E = —grad (p im Punkte P„(0, 0, 0). Zur Lösung bilden wir grad q:

2 fie + 29:, + P2
6x l By 2 öz

Kettenregel

e, = q), e, + 92„ e, + (p, e, und dazu nach der verallgemeinerten

Öqz er, Ötp Br,

“"=T,Tx+T2’a'x"
„Ei 31,351

V Örl Öy Ör, Öy ’

=fl& 2.62
‘p’ Ör, Oz Örg Oz ' v

Da alle Größen 92,, , «p, nur an der Stelle P„(O‚ 0, 0) benötigt werden, berechnen wir
fig: Or,

die erforderlichen Hilfsgrößen a,‘ , ax
r1 = I2 = 1, und daher ist

für diese Stelle. Es gilt dann x = y = z = 0 und

&=‘Q1_i= ‘Q1, Öl: ‘Q2_i= "Q2,
Br, 41:50 r1’ 41:5,, ’ Örz 47:5,, I22 47180 ’

Br, x -— 1 « ör, x _

E r, " ‘I’ W T, - °’
Örl y _ Br, y —- 1

1V?“ W"T’"1’
Br, z _ Br, z

"arr: °» “a?” T," °-

Daraus folgt <p‚(0, 0, 0) = Ä ; (p„(0‚ 0, 0) = Q2 ; ¢p,(0, 0, 0) = 0. Die gesuchte
4715„ 47:50

Feldstärke ist daher gleich E =Z (Q, e, + Q, c2). Wie läßt sich dieses Ergebnis
physikalisch deuten? 47:50

Die Notwendigkeit für die Benutzung der verallgemeinerten Kettenregel wird dann
besonders deutlich, wenn die Ableitungen einer zunächst nicht näher bestimmten
Funktion auf neue unabhängige Variablen umgerechnet werden sollen. Ist z. B.
f(x, y) eine bekannte (nicht näher festgelegte) hinreichend oft differenzierbare Funk-
tion der unabhängigen Variablen x und y und werden anstelle dieser unabhängigen
Variablen durch die Beziehungen x = r cos tp, y = ~r sin (p neue unabhängige Variablen
r und tp eingeführt (sog. Polarkoordinaten, s. auch 2.6.2.), so erhalten wir eine zusam-
mengesetzte Funktion F(r, zp) = f(r cos «p; r sin qr), für die in entsprechenden Punk-
ten (x, y) und (r, mp) die Gleichung F(r, (p) = f(x, y) gilt.

ÖlEs werde z.B. die partielle Ableitung a’:
Kettenregel gilt

gesucht. Nach der verallgemeinerten

BF 6 ö 6F .Fr—=„'%+fi„-Ö—‘r‚ also —a;—=fi,cos<p+fi‚smq>
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und weiter wird, wieder nach der verallgemeinerten Kettenregel,

631" Ö Öy Öx Öy .

"a'r'2‘= (fin "a%+fl12'?r‘)C°5¢7+(fi2x ‘ 'a';+fi22"é7) 5111?’

=fi„ cos’ «p +1112 sin «p cos «p +fin cos «p sin «p +fi23 sin’ cp

= flu cos’ «p + 2fi„ sin «p cos (p +fi„ sin’ go oder schließlich

ö6;: =fi„ cos” «p +fi12 sin 292 +fi„ sin’ «p.

Wesentlich ist nun, daß auf der rechten Seite der letzteren Gleichung die partiellen
Ableitungen einer ganz beliebigen (zweimal difierenzierbaren) Funktion f(x, y) auf-
treten. Die verallgemeinerte Kettenregel verhilft uns hier zu einem allgemeingültigen
Ausdruck, der die Rechnung für Spezialiälle vereinfacht und abkürzt.

Ist z.B. f(x‚y) = x’ + y’ + y“, so giltfiu = 2, fin = 0, figg = 2 + 6y und somit
wegen y = r sin «p

Ö’F 2 . . 2TH: 2cos «p+ (2+ 6r sm«p)sin «p.

Man beachte, daß für die Variablen x und y überall die durch r und «p gegebenen
Ausdrücke eingesetzt werden müssen.

Wir betrachten noch ein zweites Beispiel. Es seien P1(x1, yl, zl) und P„(x2, ya, Z2)

zwei verschiedene Punkte des R’ mit den Ortsvektoren r, und r, . Mit r = xe1+ye, + zeg ,

dem Ortsvektor eines (variablen) Punktes im R3, bilden wir die Abstände

r1 = lr —— r‚{ und f2 = [r — ‘gl.

Es sei f(u‚ v) eine für (u, v) E R’ zweimal stetig differenzierbare Funktion. Wenn wir
für u den Wert r,, für v den Wert r, in f(u, v) einsetzen, erhalten wir eine zusammen-
gesetzte Funktion h(x‚ y, z) = f(r,, r2). Wir stellen uns die Aufgabe, den Ausdruck
Ah = h ‚n + hm + hm zu berechnen. Nach der Kettenregel erhalten wir:

h|l=|fl1rl|1+fl2r2|1 und h|l1=fll1'r12|1+./inrlIl7a|1+fi217'1l17'2l1’

+fi22"22|1+fi1"1ln+fi2'2|11-

i

Ferner gilt, wegen r, = ((x — x1)’ + (y - y,)’ + (z — 2.)’) 2 ,

x-—x,

'1

l
7111: ä rllll=Tg’(rlz—(-x"xl)g)i

l

}"‘}’1 z—Z1fl = ' r| = ‘i2 r] I 13 ‚l y

entsprechende Ausdrücke erhalten wir für hm und hm sowie mag, m3„ r,|„ rm,
rzlaa ”2|ua’2|22»72!33~
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Die Zusammenfassung von hm, hm und hm im Ausdruck Ah ergibt (wegen
fi12=fi21)

Ah =fiu["12|1 ‘i’ rl2|2 ‘l’ ’12|a] ‘l’ 2fi12["1(1’2|1 ‘i’ ’1|2"2|2 ‘l’ ’1|a"2l3] +fl22[’22l1

+ 72212 + 72213] +fi1["1I11 + F1122 + T1133] +fl2[V2|u + ’2|22 + 72m]

= .1,+%}f[(x—xo<x—x2>+<y—yo<y—y2)+<z—z.)(z—22>]

2 2
+fi22 + +72‘fi2-

Eine einfache Rechnung zeigt, daß das Ergebnis auch in der Form

Ah =J’I11+fl22+fi12(?— +’—‘ — Ki) +—2—fi, +,l .2
2 2r, r,r, r,

geschrieben werden kann.

"‘ Aufgabe 3.6: Mittels der verallgemeinerten Kettenregel berechne man die erste Ab-

leitung z = ä der Funktionen

a)z=e“’V mitx=sint; y=t3;
b)z = i‘; mit x = x(t); y = y(t) (m, n reell und positiv; x > 0, y > 0);

l

c)z=y’ mitx=t; y=t (1>0).

3.7. Implizite Funktionen. Implizite Diflerentiation

3.7.1. Implizit definierte Funktionen einer Variablen

Bei der Berechnung von Planetenbahnen stößt man auf die „Keplersche Gleichung“

x+y—esiny=0‚
die den Zusammenhang zwischen der exzentrischen Anomalie y und der mittleren
Anomalie x bei gegebener Planetenbahn (e: Exzentrizität der Bahnellipse) festlegt.
Es interessiert hierbei die explizite Abhängigkeit der Variablen y von der Variablen x,

y =f(x)-
Offensichtlich kann man diesen Zusammenhang nicht ohne weiteres durch Auflösen
finden. Andererseits erkennt man sofort, daß das Wertepaar x = 0, y = 0 die obige
Gleichung erfüllt und somit die Gleichung

o =f(0)
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gelten muß (falls überhaupt eine Auflösung in der gewünschten Form existiert).
Zur näheren Bestimmung des Verhaltens von f(x) in einer Umgebung von x = 0
wäre es günstig, den Wert f’(x)|,,_° zu kennen. Da f(x) nicht bekannt ist, fehlt zu-
nächst jede Möglichkeit, diesen Wert der ersten Ableitung zu berechnen. Wir wer-
den im folgenden ein allgemeines Verfahren zur Bestimmung der Ableitungen von
f(x) kennenlernen, das die explizite Funktion f(x) nicht benötigt. Zuvor fragen wir
nach Bedingungen, wann es überhaupt zu erwarten ist, daß ein allgemeiner Zusam-
menhang zwischen den reellen Variablen x und y,

F(-x: y) = o)

auch in der Form y = f(x) dargestellt werden kann. Falls dies möglich ist, muß also
F(x,f(x)) = 0 gelten. Wir sagen dann, die Funktion f ist implizit durch die Bezie-
hung F(x‚ y) = 0 gegeben oder F(x‚ y) = 0 kann eindeutig nach y aufgelöst werden.
Zunächst einige Beispiele zur Erläuterung:

Beispiel 3.17: Die Funktion F(x, y) = y’ — x’ ist in der gesamten x, y-Ebene erklärt.
3

F(x, y) = 0 bedeutet dann y’ — x’ = O, und hieraus folgt y = Zu jeder Zahl x
3

gehört also genau eine Zahl y = f(x) = Ü, so daß F(x,f(x)) = 0 gilt. Bei gegebenem
x kann also F(x, y) = 0 auch als Bestimmungsgleichung für y aufgefaßt werden. Die
Niveaulinie (s. 2.1.) F(x‚ y) = 0 ist die im Bild 3.7 skinierte Kurve.

Bild 3.7
X

l

Beispiel 3.18: Die Funktion F(x, y) = x’ + ‚v2 + l ist in der gesamten x, y-Ebene
erklärt. F(x‚ y) = O gilt für keinen Punkt (x, y); denn für alle (x, y) gilt x” +y’
+ l > 0. Die genannte Fragestellung entfällt also für dieses Beispiel.

Beispiel 3.19: Die Funktion F(x, y) = (x3 + y’ — 1) (x2 + y’ — 9) ist in der gesam-
ten x, y-Ebene erklärt. F(x‚ y) = 0 bedeutet x“ + y’ -— 1 = 0 oder x“ + y’ —- 9 = 0,
d.h.‚ F(x, y) = 0 gilt für alle Punkte auf dem Einheitskreis und alle Punkte auf dem
Kreis mit dem Radius 3 um den Nullpunkt. Man erkennt folgendes (s. Bild 3.8): Es
sei x, gewählt mit ——l < x, < l. Dann gibt es zu x, vier Zahlen yl, yg, ‚v3, y, so, daß

F(x1‚y‚) = F(x1, yg) = F(x1, ya) = F(x1, y.) = 0 gilt (zu xi = 5 gehören die vier

6 Hnrbnrch/Riedricb, Difi. Rechn.
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y

Bild 348

1 —— — .

Zahlen yi = 5 V35, ‚V2 = 2L I/3, ‚V3 = —%1/3, y. = - ä V35)- Zu einem x2 mit

1 < Ix2| < 3 gehören zwei Zahlen ys, y, so, daß F(x2‚ ys) = F(x2, ys) = 0 gilt.
Es gibt also bestimmt keine Funktionfso, daß die gesamte Niveaulinie F(x, y) = O

(die in die beiden Kreise x’ + y’ = 1 und x’ + ‚v2 = 9 zerfällt) in der Form y = f(x)
dargestellt werden kann. Die Gleichung F(x, y) = 0 ist also nicht eindeutig nach y
auflösbar‚ d. h., F(x, y) = 0 ist bei gegebenem x keine eindeutige Bestimmungs-
gleichung für y. Jedoch ist folgendes möglich: Wir greifen einen der genannten Punkte
heraus, etwa den Punkt P(x1, y‘). Man kann dann eine Rechteckumgebung U um P
legen, so daß das in dieser Umgebung U von P verlaufende Teilstück der gesamten
Niveaulinie F(x, y) = 0 in der Form y = f(x) dargestellt werden kann. Der Punkt
F(x„ y‘) liegt auf der unteren Hälfte des Kreises x2 + y’ = 9; für das genannte Teil-
stück würde also die eindeutige Auflösung nach y lauten: y =f(x)= -1/9 —~ x’.
Man sagt für diesen Sachverhalt auch: F(x, y) = 0 kann lokal eindeutig nach y
aufgelöst werden. Im Beispiel 3.17 könnte man dann sagen: F(x, y) = 0 ist global
nach y auflösbar. In der Nähe des Punktes Q(3; 0) ist allerdings auch eine lokale
Auflösung nach y der eben genannten Art nicht möglich. Betrachten wir nämlich
eine beliebige Rechteckumgebung U von Q(3; 0), so enthält sie sowohl Punkte vom
oberen als auch vom unteren Halbkreis. Zu einem x in der Nähe von x = 3 gibt es

dann zwei y-Werte so, dal3 (x, y) in U liegt und F(x, y) = 0 gilt. (Im Punkt Q(3; 0)
besitzt die Niveaulinie F(x, y) = 0 eine vertikale Tangente; es gilt Fg,,(3; 0) = 0.)

Unsere Beispiele zeigen, daß wir im allgemeinen nicht erwarten dürfen, daß durch
eine Gleichung der Form F(x, y) = 0 eine einzige ganz bestimmte Funktion y =f(x)
gegeben ist. Erst wenn wir unsere Betrachtung auf ein hinreichend kleines Gebiet der
x, y-Ebene einschränken, können wir mit der eindeutigen Auflösbarkeit der Gleichung
F(x‚y)= 0 und damit mit der Existenz genau einer implizit definierten Funktion
rechnen. Der folgende Satz gibt darüber genauere Auskunft.

Satz 3.11: Die Funktion F(x, y) und ihre partiellen Ableitungen erster Ordnung F, (x, y);
F‚(x‚ y) seien in einem Gebiet G der (x, y)—Ebene stetig. Der Punkt P0(x°, yo) gehöre
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zur Menge aller Punkte F(x, y), für die die Gleichung F(x, y) = 0 gilt, d. h., es gelte
F(x„‚ yo) = 0. Außerdem gelte die Ungleichung

am, y.) + o. (3.107)

Dann gibt es genau eine Funktion y = f(x), die in einer gewissen Umgebung U, von x,
(auf der Zahlengeraden) definiert ist und für die die Beziehungen

f(xo) = ‚v... (3.103)

F(x,f(x)) = 0 (x E Uo)

gelten. Die Funktion f(x) ist für x E U0 stetig difierenzierbar, und es gilt

Pf.
f’(x) = — = — 363% (3.109)

(x 6 Uo) Ü (Xe Uo; ‚v =f(x))-

3.7.2. Implizite Difierentiation implizit definierter Funktionen einer Variablen

Der Satz 3.11 liefert nur eine Existenzaussage und informiert uns nicht darüber,
wie die Auflösung y = f(x) (die implizit definierte Funktion) der Gleichung F(x, y) = 0
gefunden werden kann. Tatsächlich ist es in der Mehrzahl der auftretenden Fälle
unmöglich, eine exakte Lösung der Gleichung F(x, y) = 0 (Auflösung nach y bei
gegebenem x) in formelmäßig geschlossener Form (s. Beispiele 3.17 und 3.18) anzu-
geben. Die Funktionf(x) kann im allgemeinen nur näherungsweise berechnet werden.

Häufig interessieren jedoch nur Werte der Ableitungenf’(x)‚f"’(x)‚ der durch die
Gleichung F(x, y) = 0 gegebenen Funktion an der Stelle x = x0. An der Stelle x = xo
ist der Funktionswert f(xo) ja gleich yo; f(x.,) = yo und yo sind bekannt. Zur Berech-
nung dieser Ableitungen (ihre Existenz vorausgesetzt) geht man von der Gleichung
F(x, f(x)) = 0 aus, die für alle hinreichend nahe bei x0 gelegenen x besteht, und wendet
auf diese Gleichung die verallgemeinerte Kettenregel an. Das heißt, in die Funktion
von zwei Variablen F(x, y) setzen wir die Funktionen einer Variablen g,(x) = x;
g„(x) = f(x) anstelle der ursprünglichen Variablen ein und bilden so die zusammen-
gesetzte Funktion u(x) = F(g1(x), g,(x)) = F(x,f(x)). Auf Grund der Defimtion von
f(x) gilt aber (s. Gleichung (3,108)) u(x) = 0 für alle x aus einer Umgebung von x„.
Also sind sämtliche Ableitungen u’(x)‚ u"(x), dort ebenfalls gleich null. Die An-
wendung der verallgemeinerten Kettenregel liefert somit die Beziehungen:

0 = u'(x) = Fu(x.f(x)) + FI2(x,f(x)) 'f'(x), (*)

0 = I/(X) = FIu(x.f(x)) + 2Fu2(x,f(x)) 'f'(x) + F:22(X.f(X)) U'(x))”

+ Fu2(x,f(x))f"’(X): (“J

Aus der ersten Gleichung (*) ermitteln wir durch Auflösenf’(x):
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Den gefundenen Ausdruck setzen wir in die zweite Gleichung (“‘) ein und lösen nach
f”(x) auf. Dies ergibt

„ _ -1 2F12(,f())F(,f())
- f (x) — mm(n,1(x,f<x)) —

+H22(x‚f(x))(E1(x‚f(x)))’)
(R2(x.f(x)))’

—l
=WW((FI2(x:f(x)))2 F|11(x:f(x))

—2Fu(x, f(x)) Fnz(x.f(x)) FI12 (x.f(x)) + (Fu(x.f(x)))’ F122 (x‚f(x)))

= #3 <—F:Fw + 2FzFyFrv — F,,’Fu) (y =f(x))- (3.111)
(Fy)

Der letzte Ausdruck läßt sich auch als Determinante schreiben:

o 1; F,

F; Fu Fa, (,v=f(x))- (3-112)

F, F,,, Fm,

1

f(x) = W

Auf diese Weise können auch alle höheren Ableitungen von f(x) ermittelt werden.
An der speziellen Stelle x = x0 gelten die Beziehungen

f(xo) = yo 1

f’(xo) = —

fl/(X0) = ;J)§‘ (-(Fy(x0> }’o))2 F.u(x0 r yo)

+ 2Fz(x0) yo) Fu(xo> yo) Fa-y(xo» yo) “ (F1050: )’o))2 Fm/(xo a yo»;
(3.1 13)

Beispiel 3.20: Man überprüfe, ob in einer Umgebung von x0 = 0 durch die Gleichung
F(x, y) = x cl’ — y e’ + x = 0 eine Funktion y = f(x) implizit dargestellt wird, und
berechne gegebenenfalls die Werte f’(0), f”(0). Zunächst folgt aus x = 0 und
F(x, y) = 0 die Gleichung y = 0, so daß also (x0, yo) = (0, O) die zu untersuchende
Stelle ist. Es gilt

F,=eV—ye'+1; F,,=xeV—e‘

und speziell

F‚(0‚ 0) = 2; F„(0‚ 0) = —l.

Wegen F„(0, 0) =l= 0 ist (nach Satz 3.11) eine Auflösung der Gleichung x eV —— y e’
+ x = 0 nach y für alle x aus einer Umgebung von x‘, = O möglich; es gilt dort y = f(x)
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mit f(0) = 0. Nach den obigen Formeln erhalten wir

‚ _ _ am, o) '_

’ ‘°’ ‘ "am' 2'

Ferner gilt F” = —y e‘; Fly = e? — e‘; Fm, = x e11, und speziell ist F„(0, 0) = 0;
F,,,(0, 0) = 0; F‚„‚(0‚ 0) = 0, und wir erhalten nach den obigen Formeln die Glei-
chung f"(0) = 0.

Beispiel 3.21: Die Stromlinien einer ebenen Potentialströmnng (wirbelfreie Strö-
mung einer inkompressiblen reibungsfreien Flüssigkeit), diedurch zwei feste Wände

y = 0 und y = xl/S (x g 0) begrenzt wird und in dem von diesen Wänden berandeten
Winkelraum verläuft, sind durch die Gleichung U(x, y) = const mit U(x, y) = 3x"y
— y“ gegeben (U bezeichnet die sog. Stromfunktion). In welchen Gebieten der (x, y)-
Ebene lassen sich diese Stromlinien in der Form y =f(x) darstellen? Man unter-
suche speziell die Stromlinie U(x, y) = l1; diese enthält den Punkt P(2;l). Zur
Lösung dieser Aufgabe setzen wir F(x‚ y) = U(x, y) — 11 = 3x”y — y’ — ll. Es gilt
F, = 6xy und F, = 3(x2 — 2). Die partielle Ableitung F, verschwindet im betrach-
teten Winkelraum nur für y = x, also auf der Winkelhalbierenden des ersten
Quadranten. Der Sjrömungsbereich wird also in die beiden Teilbereiche B, =

{(x, y) [x < y g x}/3; x g 0] und B2 = {(x, y) [0 gy < x; x _>; 0} zerlegt. Die Punkte
der Stromlinie F(x, y) = 0, die in B, liegen, lassen sich durch eine Funktion y =_fi(x)
darstellen; die Punkte der Stromlinie F(x, y) = 0, die in B2 liegen, lassen sich ent-

sprechend durch eine Funktion y =f,(x) beschreiben. Nach der Formel y’ = —%

gilt somit y’ = f2+x‚(x > 0; y =i= x), wobei F(x, y) = 0 ist. Im Inneren von B”,

bzw. B2 ist der Ausdruck y22:yx2

gen f,’(x) > 0 undf2’(x) < 0; d. h., f‚(x) ist eine wachsende‚f2(x) eine fallende Funk-
tion. Die Stromlinie F(x, y) = 0 schneidet die Gerade y = x in einem Punkt, für

dessen Abszisse x die Gleichung F(x‚ x) = 0 oder x‘ = 1—1 gilt, also im Punkt
3 — a —— 2

P ä ‚ . Bei Annäherung an diesen Punkt von rechts gehen die Ableitun-
3 __

gen f{(x) bzw. f,’(x) gegen +o<> bzw. —oo; die Stromlinie besitzt also bei x = %
eine zur y-Achse parallele Tangente. Die Funktionen y =f1(x) und y =f2(x) beschrei-

3 — 3 —

ben somit zwei Kurven, die im Punkt P( ä ; Vzusammenhängen, d.h.‚ es

positiv bzw. negativ. Somit gelten die Ungleichun-

liegt in Wirklichkeit nur eine einzige Kurve vor, die aber durch zwei Funktionen
3 -- 3 —

y = fi(x) und y =f,(x) beschrieben werden muß. An der StelleP; ist

eine Auflösung der Gleichung F(x‚ y) = 0 in der Form y = f(x) nicht möglich, denn
in jeder Umgebung des genannten Punktes hat die Gleichung F(x, y) = 0 die beiden
verschiedenen Lösungen y =f‚(x) und y =f‚(x). Für jeden anderen Punkt der Strom-
linie F(x‚ y) = 0, z. B. den Punkt P(2; 1), gibt es eine hinreichend kleine Umgebung
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dieses Punktes, in der y = f‚(x) oder y = ß(x) (z. B. fiir den Punkt P(2; 1)) die ein-
zige Lösung der Gleichung F(x‚ y) = 0 ist.

Zur weiteren Untersuchung der Form der Kurve F(x, y) = 0 betrachten wir die
Auflösbarkeit der Gleichung F(x, y) = 0 nach x. Für jeden Kurvenpunkt P(x, y)
mit x > 0 und y > 0 ist wegen F,(x‚ y) = 6xy > 0 eine solche Auflösung in einer ge-
wissen Umgebung von P(x, y) in eindeutiger Weise mittels einer Funktion x = g(y)
möglich, und man kann, indem man die Gleichung F(x‚ y) = 3x’y — y“ — ll = 0

nach x auflöst, die Funktion g(y) erhalten: x = g(y) =V u stjya (0 < y < +00).

Diese Funktion stellt den gesamten Verlauf der Stromlinie F(x‚ y) = 0 dar (denn
das Bestehen der Bedingungen F(x‚ y)= 0; x > 0,y >0, ist dem Bestehen der
Gleichung x = g(y) (0 < y < +00) gleichwertig). Man rechnet leicht nach, daß

3 -— a —

g’(y) = 0 nur für y = gilt und g”(y) für dieses ypositiv ist. Die Stelle y = .1;-

y
Fm:-:2

y-X1’?

y-f,(x)

N
I:

N
,

I „u
.

F(x,;/2'17

i I w I Bild 3.9
X

ist also die einzige relative Extremstelle von x = g(y), und zwar die eines Minimums. Da
die Limesbeziehungen lim g(y) = + oo und lim g(y) = + 0o gelten, liefert dieses relative

M .. v*+°° . 3 T1‘ 3 ii
Minimum sogar das absolute Minimum von g(y). Es gilt also —2—— = g g) g g(y)

fiir_0 < y < +00, d.h., die Stromlinie F(x, y) = 0 enthält nur Punkte F(x‚ y) mit
3

1T! g x. Somit erhalten wir nachträglich den (gemeinsamen) Definitionsbereich
3 _._

von f1(x) und f2(x); diese Funktionen sind definiert für 17l; x < +04. Der

Quotient Ä =L= 3)’:
x

(y) ll + ya hat füry —> 0 den Grenzwert 0 und füry —> +°°
8
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den Grenzwert V3 ‚ d.h., die Kurve y = f‚(x) nähert sich für x —> +03 der x-Achse,

und die Kurve y =f‚(x) nähert sich für x—> +oo der Geraden y = x]/3. Das Bild 3.9
faßt die über den Verlauf der Stromlinie F(x, y)= 0 gewonnenen Erkenntnisse zu-

sammen. Man überlegt sich leicht, daß die weiteren Stromlinien U(x, y) = const ein
qualitativ ähnliches Verhalten aufweisen.

Aufgabe 3.7: Man berechne durch implizite Difierentiation die erste und zweite Ab-
leitung der durch die Gleichung 3x’ — 2xy — y" = 0 implizit gegebenen Funktionen
y =f(x). Wie läßt sich das Ergebnis erklären?

3.7.3. Implizite Funktionen von mehreren Variablen

Es liege nun der allgemeine Fall vor, daß in einem gewissen Gebiet G des Rau-
mes R"'*" insgesamt n reelle Funktionen von m+n unabhängigen Variablen
x„...,x„.;y1‚...,y„ gegeben sind:

zl = F‚(x„ ..., x„.; y„ ...‚y„)

z‚. = F,.(x,, ..., x,,.; yl, ..., y,,) (3.114)

oder in vektorieller Schreibweise

z = F(x‚ y) (3.1 14’)

z, x, y,
mit z = [ 5 J ; x = [ 5 J ; y = 5 J . Uns interessiert die Frage, ob die Gleichung

zu xm yn

F(x, y) = 0 (3.114”)

eine Auflösung nach y in der Form

Y = f(x)

besitzt; mit anderen Worten, ob das Gleichungssystem

F1(x1‚...‚x‚„; y1‚...‚y„)=0
. . . . . . . . . . . . . . . . . . . (3.115)

F„(x„ ..., x,,.; yl, ...,y,,) = 0

sich nach den Variablen y„ ..., y‚. in der Form

yl =f1(x1, ..., x„‚)
. . . . . . . . . . . (3.116)

yn =./;I(x17 "U xm)

auflösen läßt. Ist dies möglich, so nennen wir (3.116) ein Lösungssystem für das
Gleichungssystem (3.115) oder ein System von durch die Gleichungen (3.115) impli-
zit definierter Funktionen mehrerer Variabler. Ohne Beweis geben wir zur Beant-
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wortung dieser Frage den folgenden Satz an, der den entsprechenden Satz 3.11

(3.7.1.) verallgemeinert.

Satz 3.12: Es sei x1“), ...‚ x„.(°); y1(°), ..., y,,(°> ein System von Werten, welches die
Gleichungen (3.115) erflillt. Die Funktionen F,»(x,, ...,x,,.; y1‚...‚y„) (j= 1, ...,n)
seien in einer Umgebung des Punktes Po = P(x1(°), ‚ x„‚“’)‚; y,(°), , y,,<°>) im R'"+"
nach allen Variablen x1, ...‚ x„.; ‚v1, ...‚ y‚. stetig partiell dzflerenzierbar. Die Matrix

an
[ Öyk
den Variablen ‚v1, ...‚ y„ an der Stelle Po = P(x1(°>, ...‚ x,,,(°); y,<°>, ..., y,.(°)) gebildet
wird, sei nichtsingulär (d.h.‚ ihre Determinante sei von null verschieden). Dann gibt
es eine Umgebung des Punktes Po im R"‘+", in der ein einziges Lösungssystem

(P.,)] , die aus den ersten partiellen Ableitungen der Funktionen Fj nach
1§1'.k§"

‚V1 =f1(x1:---, 35m)

. . . . . . . (3.117)

yn =fit(xlx m; xm)

des Gleichungssystem (3.115) existiert. Dieses Lösungssystem hat die folgenden Eigen-
schuften (die Eigenschaft 2. drückt die Eigenschaft „Lösungssystem zu sein“ formel-
mäßig aus).

l. y§°’ =fx(x§°’, 2:53’)

. . . . . . . . . . . . (3.118)

yf?’ =f,.(x§°’, x53’);

2. es gilt

F,(x1, ..., x,,.; f1(x1, ..., x,,.), ...,f,.(x,, ..., x,,.)) = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.119)

Fn(-xi: ---9 xm; fl(xlx ---9 xrn): v-->fn(xl: m» xm» = o;

für alle x1, ‚ x„. aus einer Umgebung des Punktes P(x1(°), ..., x,,.§°>) im R“;

3. die Funktionen f,(x,, ..., x,,,), ,..,f,.(x1, , x,,.) sind nach den Variablen x1, ...‚ x„.
in einer Umgebung des Punktes P(x,(°>, , x,,_(°)) im R“ stetig partiell diflerenzierbar.

3.7.4. Die Differentiation implizit definierter Funktionen mehrerer Variabler

Die Differentiation implizit definierter Funktionen mehrerer Variabler erweist sich
als eine Anwendung der verallgemeinerte): Kettenregel. Wir gehen hierbei aus von
der Eigenschaft 2., Satz 3.12 (3.7.3.) für ein Lösungssystem

yl =fl(xlx m) xm) y?) =.f1(x{o)x m: x57?)

. . . . . . . . . . . mit . . . . . . . . .

y..=fi.(x„---‚x„.) y3.°’=f„(x1 ‚ ‚x53’)
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eines Gleichungssystems

F1(x1:---sxm; ylr--~vyn)=0

Fn(x1:---2-xm; J’1:---»}’n)=0-

Es gelten nämlich (für alle x1 ‚ ‚ x„‚ aus einer Umgebung von P(x,(°)‚ ‚ x,,,(°>) im R"‘)
die Gleichungen

F‚(x„ ...‚ x„‚; fi(x„ ...‚ x„.)‚ ...,f,.(x1, ..., x,,,)) = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.120)

Es seien auch die übrigen Voraussetzungen des Satzes 3.12 (3.7.3.) (stetige Differen-

zierbarkeit, Matrix (P.,)] nichtsingulär) erfüllt. Dann erhalten wir durch partielle
k

Differentiation der j—ten Zeile von (3.120) nach der Variablen xk mittels der verall-
gemeinerten Kettenregel die folgenden Beziehungen:

=_°£ iii 92% .. E.“
Bxk 6y, Öxk öy, Öxk Öy„ ax,.

(j=1,...‚n; k= l‚...,m). (3.121)

Bezeichnet man die Matrizen ‚ [an] und mit D,F‚
r ext: Isis»: 5?» isisn axk tsrsn

l kSm 1 ISk m

D,F und Df, so lautet das System (3.127) in Matrizerlädhreibweise (0-1 flullmatrix)

0 = DxF + DyF - Di, (3.121’)

wobei für die Variablen y„ ...‚ y„ überall die Werte f1(x1, , x,,,), ...,f,.(x,, ..., x„‚)
einzusetzen sind. Nach Voraussetzung ist die Matrix (D yF) (Po) nichtsingtflär. Wegen
der Stetigkeit der partiellen Ableitungen erster Ordnung von F, , ‚ F„ trifit dies auch
für die ‘Matrix (DyF) (P) für alle P aus einer gewissen Umgebung von P0 im R"'+" zu.
Es existiert also die inverse Matrix [(D‚F) (P)]“ für diese P. Daher können wir die
Gleichung (3.l21’) nach Df auflösen. Es gilt zunächst

D,F ~ Df= —D,F,

und nach Multiplikation beider Seiten mit der inversen Matrix von DyF von links her
ergibt sich die Beziehung

Df = —[D,F]" - D,F, (3.122)

die ausführlich geschrieben lautet

l (Df) (X) = -[(DyF) (X, f(X))]" - (DJ) (X. f(X))- (3-123)

In Koordinatenschreibweise kann die Gleichung (3.123) wie folgt geschrieben
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(e =-1(‘”’)1“ (ü)Öxk lsrsn a)’. Öxk igjgn

womit eine formale Ähnlichkeit zur Formel für die Ableitung einer implizit definier-
ten Funktion von einer Variablen hergestellt ist (s. 3.7.2.).

werden:

(k = 1, ..., m), (3.124)

Aufgabe 3.8: Man zeige, daß die Gleichung u(x’ + y’) - (23 + u’) — 4 = 0 die im-
plizite Darstellung einer Funktion u = u(x‚ y, z) in der Umgebung des Punktes
Po (2 |—3| 2) mit u(P0) = 1 ist und berechne grad u[p_!

Aufgabe 3.9: Man untersuche‚ nach welchen beiden Unbekannten (x, y); (x, z) oder
(y, z) sich das Gleichungssystem

(x-i-y)‘—xz(x’—z’) —1=0

(x — z)‘— xy(x’ + z’) = 0

in der Umgebung des Punktes P„(0 1110) gemäß der allgemeinen Theorie in 3.7.4.
auflösen läßt. Man berechne dann die ersten Ableitungen dieser implizit dargestell-
ten Funktionen an dieser Stelle.

3.7.5. Extremwerte implizite: Funktionen

Häufig interessiert man sich für Extremwerte implizit definierter Funktionen. Wir
betrachten nur den Fall, daß die implizite Funktion durch eine Gleichung der Form

F(x, y) = o (3.125)

gegeben ist, wo F(x, y) eine in einem Gebiet G des R’ definierte Funktion ist. Zur
analytischen Behandlung dieser Aufgabenstellung setzen wir voraus, daß F(x, y) in
G stetige partielle Ableitungen bis zur zweiten Ordnung besitzt. Es sei in G eine Auf-
lösung der Gleichung (3.125) nach y in der Form y =f(x) möglich, und es sei
F„(x‚ y) + 0 in G. Dann gilt nach 3.7.2., Formel (3.110) und (3.111),

‚ F: lf (x) = —— Ty und f”(x) = (T.y—)3— (—F,’FW + 2F,FyF,, — Fy‘F,,).

Eine notwendige Bedingung fiir das Eintreten eines Extremwertes ist das Bestehen
der Gleichung

f’(x) = o,

d. h. der Gleichung F‚(x‚ y) = 0 (neben der Gleichung F(x, y) = 0, die die Funktion
y = f(x) beschreibt; denn nach unserer Voraussetzung ist F}, =l= 0). Die zusätzliche
Bedingung f’(x) =1: 0 für eine Stelle x, fiir die f’(x) = 0 gilt, ist bekanntlich hin-
reichend für das Eintreten eines Extremwertes. Ist f’(x.,) und damit F‚(x„, yo) = 0

(mit F(xo, yo) = 0), so gilt nach der obigen Formel f"(x.,) = — .

erhalten somit das folgende Ergebnis: !'(x°’y°)
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Satz 3.13: Notwendig für das Eintreten eines relativen Extremwertes der durch die
Gleichung F(x, y) = 0 implizit dargestellten Funktion y = f(x) an der Stelle x„ ist das
Bestehen der Gleichung

F‚(xo‚ yo) = 0

mit yo = f(x„). Hinreichend für das Vorliegen eines Extremwertes von f(x) an dieser
Stelle ist das Nichtverschwinden des Ausdrucks

E1050: yo) _

Fy(xo: yo)

Ist dieser Ausdruck negativ, so hatf(x) bei x = x0 ein relatives Maximum, ist er positiv,
so hat f(x) bei x = x0 ein relatives Minimum (vgl. Bd. 2, 7.3.3.).

f”(xo) = —

Anmerkungen

1. Zur Ermittlung der für relative Extremwerte der durch die Gleichung F(x, y) = 0
implizit gegebenen Funktion in Frage kommenden Stellen sind Werte (x, y) mit

F(xr y) = 0:

I'"‚(x‚ y) = 0 F

zu suchen und die gefundenen Werte in den Ausdruck einzusetzen.
Fy(xo» yo)

2. Erweist sich der letztere Ausdruck dabei als gleich null, so müssen mittels impli-
ziter Differentiation höhere Ableitungen gebildet und auf ihr Nichtverschwinden hin
untersucht werden. Es sind dann die Kriterien aus Band 2, Abschnitt 7.3., anzuwen-
den.

3. Punkte, in denen außer F(x, y) = 0, F,(x‚ y) = 0 noch F„(x‚ y) = 0 gilt, schlie-
ßen wir grundsätzlich von der Betrachtung aus, da sie jeweils gesonderte Untersuchun-
gen erfordern.

Beispiel 3.22: F(x, y) = y3 — 3xy + x3. Gesucht sind die relativen Extremwerte der
durch F(x, y) = 0 implizit dargestellten Funktion y =f(x). Es gilt F, —3y + 3x2,
F, = 3y9 — 3x, F" = 6x. Das Gleichungssystem F ä 0, F, = 0 liefert die Bedingun-
gen y = x’ und damit x‘ — 3x3 + x3 = x‘*(x“ —— 2) = 0 mit den reellen Wurzeln

x1 = 0; x, = 1/5 (es gibt noch zwei komplexe Wurzeln x3 ‚ x4 , die natürlich nicht in Be-
3 _

tracht kommen). Zu x1 gehört der Wert y, = 0; zu x, gehört der Wert y, = 1/4. Im
Punkt (x1,y1) ist F„(x, y) = 0, solche Punkte sollten nicht betrachtet werden. Im

Punskt (x2, yg) ist F„(x, y) + O (es gilt F„(x„ ya) = 3]/2), 3und weiter gilt F„(x„ ya)

= 615, und somit ist f”(x,) = —2. Also liegt bei x, = Vi ein relatives Maximum
der in einer gewissen Umgebung des Punktes (x2, yz) durch die Gleichung F(x, y) = 0
implizit dargestellten Funktion y =f(x) vor.

S.3.l3



D.3.5

92

3.8.

3. Partielle Ableitungen und totales Differential

Die Funktionaldeterminante eines Funktionensystems

3.8.1. Geometrische Eigenschaften, die mittels der Funktionaldeterminante
ausgedrückt werden können

In neuerer Zeit setzt sich immer mehr die Auffassung durch, Abhängigkeiten und
Zusammenhänge, die durch Funktionen mehrerer Variabler beschrieben werden,
als Abbildungen aus einem Raum R"' in einen Raum R" aufzufassen. Wir haben
von dieser Auffassung bereits an den verschiedensten Stellen Gebrauch gemacht
(s. Abschnitt 3.6.). Die Funktionaldeterminante oder auch sog. Jacobischel) Determi-
nante stellt ein weiteres Hilfsmittel dar, Abbildungseigenschaften auszudrücken. Zur
besseren Verständlichkeit betrachten wir zunächst nur Abbildungen f: R’ —> R’ bzw.

g: R3 —> R’. Es sei x —> f(x) = ] eine Abbildung eines Gebietes G < R’
la

in den R’. Hierbei ist es zweckmäßig, von der Vorstellung auszugehen, daß die Werte
f,(x1, x2); f2(x„ x2) die Koordinaten des Bildpunktes Q(u, v) E R’ des Original- oder
Urbildpunktes P(x1, x2) E R’ sind. Wir setzen also

u =f1(xn X2)
U =f;(xb x2) «x1, x2) E

Jedes Teilgebiet G’ von G (allgemeiner: jede Teilmenge M von G) wird dabei auf eine
Teilmenge l'(G') (bzw. f(M)) abgebildet. Hierbei entstehen Fragen, wie z. B.

l. Ist I(G’) wieder ein Gebiet?

2. Gibt es zu jedem Bildpunkt Q(u‚ v) nur einen einzigen Originalpunkt
P(x1‚ x2) E G, dessen Bildpunkt er ist? Mit anderen Worten, läßt die Abbildung f eine
Umkehrung zu, besitzt sie eine inverse Abbildung (f)“?

3. Ist C < G eine einfach geschlossene Kurve (stetig diflerenzierbare geschlossene
Kurve ohne Doppelpunkte bzw. Selbstüberschneidungen), die ein Teilgebiet G’ von
G so berandet, daß G’ bei positivem Umlauf (entgegen dem Uhrzeigersinn) stets auf
der linken Seite von C liegt, besitzt dann die Bildkurve f(C) bezüglich des Bildgebietes
f(G’) die gleiche Orientierung?

Setzt man voraus, daß f eine differenzierbare Abbildung ist, d. h., daß die Koordi-
natenfunktionen f,- total ditferenzierbar sind (s. 3.3.1.), so lassen sich diese Fragen
weitestgehend mittels der Funktionaldeterminante der gegebenen Abbildung be-
antworten.

Definition 3.5: Es sei G < R’ ein Gebiet des R’ und f: G —> R’ eine im Punkt P0 E G

diflerenzierbare Abbildung; f(x) = [§1g";C”)) ](x E G). Dann heiß! die Determinante
i 2 l! 2

der im Punkt P0 gebildeten Funktionalmatrix (f.-U.) von f die Funktionaldeterminante
ö

von f in P0. Sie wird mit den Symbolen J(f) (Po) oder 68m5? bezeichnet; d.h.
1 2

a(f1af2)_ fili filz _ fili fil2 _ _

——a(x1,x2)_ae: f“ Im] _ f2“ f“ 41m... m1.... (3.126)

1) Carl Gustav Jacob Jacobi (1804 — 1851)
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Bezeichnet man f,(x,, x2)’ mit u und f2(x„ x2) mit u, so lautet der Ausdruck für die
Funktionaldeterminante

60km = 60*") =Ö_"Ä_Ä_ÖL (3127)
a(x1ax2) a(x1s-V2) 6x1 axz ax? axx l

6
Beispiel 3.23: Es sei u = x,2 -— x,’ und v = 2x1x,. Wie groß ist a—(fl— allgemein
und speziell im Punkt P(O; 1)? (x1’ x2)

‚ ö(u, v) _ uu um __ 2x1 —2x2 _ 4 2 2

Es gilt —) ml m2 — 2x2 2x1 — (x, + x2 ).

s ' 11' t——"’" =

pezle ls a(x1: x2) (0,1)

Es liegt auf der Hand, wie die Definition der Funktionaldeterminante für den all-
gemeinen Fall einer Abbildung f: R" —-> R" zu verallgemeinern ist.

Definition 3.6: Es sei G < R" ein Gebiet des R" und f: G —> R" eine im Punkt Po E G

fl(x1s m: xn)

dtflerenzierbare Abbildung; f(x) = ' ' ' ' - - - ' (x E G). Dann heißt die Deter-

fn(x1> m: xn)
minante der im Punkt Po gebildeten Funktionalmatrix (fuk) von t‘ die Funktional-

determinante van f in Po. Sie wird mit den Symbolen J(f) (Po) oder
bezeichnet, d. h.‚ (x1’ “" x")

fin mfnn=d€t(ftIk)1;i,kgn= ' ' ' ‘ ' ' =-7“) (Po)

" f„u---f‚.u„

(hierbei sind die partiellen Ableitungen im Punkt Po zu nehmen).

Im folgenden betrachten wir Abbildungen f : G—> R2 bzw. g: B-r R3 (G; B Gebiete
im R2 bzw. R3), die in G bzw. B überall stetig differenzierbar sind. Man nennt solche
Abbildungen C‘-Abbildungen oder Abbildungen der Klasse C‘ in G bzw. B. Beispiels-
weise ist die in Beispiel 3.23 angegebene Abbildung eine Cl-Abbildung im gesamten
R2. Wir kommen nunmehr zur Beantwortung der eingangs gestellten Fragen über
das Verhalten der Bildmengen von C1-Abbildungen und formulieren dazu einige
Sätze. Es sind dies die Sätze von der Gebietsinvarianz (Gebietstreue), der lokalen Um-
kehrbarkeit und der Erhaltung der Orientienmg.

Satz 3.14 (Gebietsinvarianz) .' Es sei G ein Gebiet des R2 und f: G —> R2 eine C‘-Abbil-
dung in G mit J(f) (P) =l= 0 für alle P E G. Dann wird jedes Gebiet G’ < G durch die
Abbildung f auf ein Gebiet des R2 abgebildet; d.h.‚ f(G’) ist ein Gebiet.

Satz 3.15 (Lokale Umkehrbarkeit) : Es sei G ein Gebiet des R2 und f: G —> R2 eine
C‘-Abbildung in G mit J(f) (P0) # Ofür ein P, E G. Dann gibt es eine Umgebung U von
Po so, daß V = f[U] eine Umgebung von Q‘, = f(P„) enthält. Ferner ist die Abbildung
f, eingeschränkt auf U, eine eineindeutige Abbildung (d. h.‚ jeder Bildpunkt besitzt genau
einen Originalpunkt), und die inverse Abbildung f" dieser auf U eingeschränkten Ab-
bildung ist eine C1-Abbildung auf V und bildet V auf U ab.

(3.128)

D.3.6

5.3.14

S.3.l5



S.3.l6

94 3. Partielle Ableitungen und totales Differential

Wir sagen, daß eine beschränkte einfach geschlossene Kurve C in der Ebene (im
Raum R’) positiv (bzw. negativ) orientiert sei, wenn ein Durchlaufungssinn von C so
festgelegt ist, daß das von C berandete Innengebiet stets linksseitig (bzw. rechtsseitig)
der Durchlaufungsrichtung der Kurve C liegt (s. Bild 3.6.).

X: )9

Ü l”=-l‘

l‘ positiv orientiert X7 l l‘ negativ arienf/erf XI Bild 33°

Satz 3.16 (Erhaltung der Orientierung) : Es sei G ein Gebiet des R’ und f : G —> R’ eine
C’-Abbildung in G. Die Funktionaldeterminante von f sei überall in G positiv, d. h.‚

J(f)(P) > 0 (P E G)-

Dann gehtjede orientierte beschränkte einfach geschlossene Kurve C, die in G Iiegt, in
eine Bildkurve C’ = f[C] über, die die gleiche Orientierung wie C besitzt. Ist J(i') (P) in
jedem Punkt von G negativ, so besitzt die Bildkurve C’ die entgegengesetzte Orientie-
rung wie die gegebene Kurve C. Das hezjit, durchläuft man in G die Kurve C entspre-
chend ihrer positiven Orientierung, so durchlaufen die Bildpunkte der Punkte van C die
Kurve C’ entsprechend ihrer positiven bzw. negativen Orientierung, je nachdem, ob in
G die Funktionaldeterminante der betiub’ ‘ ten Abbildung positiv oder negativ ist.

Bemerkung 3.10: lst G ein Gebiet des R’ und f : G —> R’ eine Cl-Abbildung in G, so
folgt aus der Eigenschaft

J(f) (P) + 0 für alle P E G

nicht, daß f auch „im Großen“ eineindeutig ist; d.h.‚ der Satz 3.15 gibt nur die
Eineindeutigkeit in der Umgebung eines Punktes P von G an. Die Größe dieser
Umgebung hängt von P ab. Zur Begründung betrachten wir nochmals das obige

. . ö ‚ . .

Beispiel: u = x1’ — x2’; v = 22:12:, undlL= 4(x1’ + x22). Im Ringgebxet

x > 0. Trotzdem haben z.B.
ls 2

die beiden verschiedenen Punkte P(l; 0) und P(—1;0) beide den gleichen Bild-
2 _ 2

punkt Q(l ; 0) bezüglich der gegebenen Abbildung f(x) = läufig’
Die Funktionaldeterminante einer Abbildung läßt sich auch als „lokale lineare

Volumenverzermng“ auffassen und besitzt durch diese Eigenschaft große Bedeu-
tung bei der Berechnung mehrfacher Integrale (s. Bd. 5).
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Zur Erklärung dieser Eigenschaft betrachten wir diejenige lineare Abbildung
f

f: R“—> R3, die durch f= [Ä] mit
fa

f,(x1, xg, x3) = alxl + b,x2 + 01x3,
-‚b-, - e ebe e Konstanten,

f2(x..xz. x3) = rz—zx;+ I723‘: + caxa. 1,‘2,c3)g g n

f:s(X12 x2, xs) = am + baxa + caxa.

gegeben ist. Die Abbildung f ist linear, und es gilt

f(ex) = II» f(e2) = b» f(ea) = c

a1 b1 c1

mit a= [h] , b= [b2] ‚ c= c2] . Auf Grund der Linearität von f wird der

a3 I73 53
von den Basisvektoren c1, ea, c4 aufgespannte Würfel W= [(x1, x,, x3) |0 g x.- g l;
i= 1, 2, 3] auf den von den drei Vektoren a, b, c aufgespannten Spat Q (Parallelfiach;
schiefer Quader) abgebildet:

f[W] = Q-
(Man überlege sich die Richtigkeit dieser Behauptung!) Nun gilt

fm f1I2 fils a1 b: c1

J(f)(X)= fill f2I2 fais = 42 b2 C2 -

fan falz Ans a: b: Ca

Die rechtsstehende Determinante ist andererseits gleich dem Spatprodukt [abc] der
drei Vektoren a, b, c, welches seinem Betrage nach gleich dem Rauminhalt des von
a, b, c gebildeten Spates Q ist. Also gilt in diesem Fall die Gleichheit

Rauminhalt von f[W] = |J(f)l - Rauminhalt von W

(der zweite Faktor rechts hat den Wert l), und es ist leicht zu sehen, daß diese Glei-
chung richtig bleibt, wenn man fin‘ W einen Quader mit beliebigen Kantenlängen
nimmt, dessen Kanten zu den Basisvektoren el, c2, c3 parallel sind. Speziell gilt dies
für einen Quader AW mit den Kanten Ax, e„ Ax, c2, Axg c3; d.h.‚ es gilt die Glei-
chung

Rauminhalt von f[A W] = i Ax, Ax, Axa. (3.129)
a(3‘1:X2yXs)

Geht man von der (bis jetzt erhobenen) Forderung der Linearität der Abbildung f ab,
so wird aus der Gleichung (3.129) eine nur nähenmgsweise gültige Gleichung, die um-

so genauer gilt, je kleiner der Ausdruck |Ax,| + |Ax2| + |Ax3| wird. Diese Nähe-
rungsbeziehung ist die Grundlage für die in Band 5 behandelten Transformationen
mehrfacher Integrale.
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3.8.2. Der Multiplikationssatz für Fnnktionaldeterminanten

Aus der verallgemeinerten Kettenregel (s. 3.6.2.) läßt sich eine einfache Folgerung
über die Funktionaldeterminante der zusammengesetzten Abbildung herleiten. Zur
Vereinfachung der Darstellung behandeln wir diesen Sachverhalt für den Fall der
Funktionen zweier Variabler. Es seien h1(x1, x2); h, (x1, x2) zwei diflerenzierbare
Funktionen, die in einem gewissen Gebiet des R’ definiert sind; desgleichen g1(u1‚ a2);
g‚(u„ u‚)‚ wobei der Definitionsbereich von gl und g, die Menge der Bildpunkte der

Abbildung h(x) = enthält. Wir bilden zusammengesetzte Abbildungen

fx(xia x2) = 81(h1(X1: x2): h2(xn x2»: fi(x1: x2) = 82(h1(xxs X2): h2(x1» x2»-

Nach der verallgemeinerten Kettenregel gelten die folgenden vier Gleichungen

fili = glllhlll + g1|2h2|1

f1|2 = g1I1h1I2 + 5’1|2h2|2

fzu = gzhhllx ‘l’ 82I2h2I1

fzlz = gm/1112 + gmhgnz,

die wir, wie bereits in 3.6.2. durchgeführt, als Matrizengleichung schreiben können:

[ffll f1|2]=[g1|x Elle] [hm hm]
fzli fzlz 82h gala hell hm ’

wobei als Argumente der Ableitungen gm die Punkte (h, (x1, x2); h,(x,, x,)) einzu-
setzen sind (s. 3.6.2., Formel (3.106)). Aus der bekannten Determinanteneigenschaft
det (AB) = det A det B für zwei (n, n)-Matrizen A, B folgt somit die Gleichung

aUufi) Ö( h 2) 301 J!)
| ‘3-13°’

. "n: nllnzn

die wir als Multiplikationssatz für Funktionaldeterminanten bezeichnen.

Bemerkung 3.11 : Setzt man zur Abkürzung h,(x1, x2) = ul, h,(x1, x2) = H2, so kann
man die letztere Gleichung in_der (in älteren Lehrbüchern anzutreffenden, mathe-
matisch ungenauen, aber leichter einzuprägenden) Form schreiben:

Ö(fi‚f2) aUnfz) 5041.142)

a(x1:x‘2) = a(“1s 142). a(x1:x2) ’ (3.131)

in der sich der Anteil „ö(u„ a2)“ gewissermaßen „herauskürzt“.
Dieser Multiplikationssatzläßt sich ohne Schwierigkeiten formal aufden Fall einer zu-

h1(X1a -u‚ x71)

sammengesetzten Abbildung l'(x) = g(h(x)) zweier Abbildungen h(x) = [ - - - - - - -

3106i. x..) h,,(x,, ._,,x,,)
und g(x)= - ~ - ~ ' - - ' übertragen. Unter den üblichen Voraussetzungen (die

g..(x1,..., m.)
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zusammengesetzte Abbildung läßt sich bilden; es existieren die erforderlichen par-
tiellen Ableitungen) gilt der Mulüplikationssatz

J(f) (X) = -7(2) (11(x)) 1(11) (X)- (3-132)

Ein wichtiger Spezialfall ist der Fall, daß t'(x) = g(h(x)) = x für alle x aus dem Defi-
1 0 . 0

0 1 0 0

nitionsbereich vonh gilt. In diesem Fall gilt J(f) (x) = det 0 O 1 0 = l, also

6 6 b i
ist dann J(g) (h(x)) = [J(h) (x)]“. Dieser Fall tritt speziell dann ein, wenn g die Um-
kehrabbildung einer diiferenzierbaren Abbildung h ist, die ein Gebiet des R" abbildet.
Es ist dann g = (h)"‚ und somit gilt die Gleichung

1(01)“) (1101)) = lJ(11)(X)l"‚ (3-133)

die man in Worten so ausdrücken kann: „in einander zugeordneten Punkten sind
die Werte der Funktionaldeterminanten der gegebenen Abbildung und ihrer Umkehr-
abbildung zueinander reziprok“.

Beispiel 3.24: Es seien u = h‚(x„ x2) = x, + x; und v = h2(x„ x2) = xi — xz.
Man erhält durch Auflösen nach x1 und x; die Beziehungen: x, = iu + in;
x, = 4} u — <1; v und daraus weiter

Ö(u,v) _1 1__ .o(x,x)_«;~ J,___1_
b(x1,x,) ‘ 1 -1 ‘ 2’S°w’° 6(114,v)2 ‘ J, '—‘& ‘ 2'

Durch direkte Rechnung bestätigt sich also die (allgemeingültige) Relation

Ö(u‚ v) Ö(x1‚ x2) _

5051: x2) l Ö0‘: v) _

3.8.3. Die Transformation von Difierenfialausdriicken bei der Transformation der
unabhängigen Variablen

Häufig entsteht bei Anwendungen die Aufgabe, für ein spezielles Problem geeig-
nete, dem Problem angepaßte Koordinaten zu verwenden, die bereits gewisse Eigen-
schaften des zu untersuchenden Sachverhalts in einfacher Weise zum Ausdruck brin-
gen. Zum Beispiel verwendet man für ebene Probleme, die nur vom Abstand vom
Nullpunkt abhängen, zweckmäßigerweise nicht die kartesischen Koordinaten x, x; ,

sondern die ebenen Polarkoordinaten r, «p, die mit x1 und x, durch die Gleichungen
x, = r cos (p, x2 = r sin q: zusammenhängen. Dabei ergibt sich zwangsläufig die Auf-
gabe, Differentialausdrücke, die in kartesischen Koordinaten gegeben sind, auf
die neuen Koordinaten umzurechnenf) Es interessiert u. a., wie der Begriff einer
harmonischen Funktion U = U(x‚ ‚ x2) der Variablen x, , x, , d. h. einerFunktion U,
für die die Gleichung AU = U I ,1 + UIn = 0 gilt, in ebenen Polarkoordinaten

1) Bei der Berechnung mehrfacher Integrale führt die Verwendung angepaßter Koordinaten zu
wesentlichen Vereinfachungen (vgl. Bd. 5, Abschn. 4.).

7 HnbnrLh/Riedxich, Difl. Realm.
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zu beschreiben ist. Dazu muß der Differentialausdruck (Dilferentialoperator)
ö’ Ö2

A = -a;+ Tau!" ebene Polarkoordinaten umgerechnet werden.
l 2

Entsprechende Fragen treten auf, wenn partielle Differentialgleichungen, deren
Lösungen bestimmte gesuchte technisch wichtige Funktionen sind, in einem geeig-
neten Koordinatensystem betrachtet werden sollen (und vom Standpunkt der An-
wendungen aus gesehen, dort betrachtet werden müssen).

3.8.3.1. Transformation auf ebene Polarkoordinaten

Liegen ebene, axialsymmetrische Probleme vor, wobei die Symmetrieachse auf
der betrachteten Ebene senkrecht steht, ist es zweckmäßig, ebene Polarkoordinaten
einzuführen. Neben der x1, xz-Ebene betrachten wir eine r, qJ-Ebene und stellen den
Zusammenhang zwischen beiden Ebenen dadurch her, daß wir fordern, daß r der
Abstand des Punktes (x1, x1) vom Nullpunkt ist und q: der im mathematisch positiven
Sinn gemessene Winkel des Strahls vom Nullpunkt durch den Punkt (x1, x1) gegen
die positive x1-Richtung (vgl. Abschn. 2.6.2.). Aus der Elementargeometrie ergibt sich
unmittelbar der Zusammenhang x1 = r cos (p, x, = r sin go. Damit jeder Punkt in der
Ebene, der nicht der Nullpunkt ist, nur ein einziges Mal durch die Polarkoordinaten
r, zp beschrieben wird, verlangt man das Bestehen der Ungleichung —1r < «p g 1:.

Durch diese Festsetzung erreichen wir, daß die Zuordnung (x1, x2)» (r, (p) eine
(bis auf den Nullpunkt) eineindeutige Abbildung der x1, xg-Ebene auf einen
Teil einer (rechtwinkligen) r, <p-Ebene"wird. Dieser Teil ist der Halbstreifen r g 0;
—-n < mp g 7:. Treten innerhalb einer Rechnung (z.B. durch Addition) Winkel gegen
die positive x1-Richtung auf, die größer als 1: oder kleiner gleich —7'c sind, so können
sie stets durch Hinzufügen eines geeigneten Vielfachen von 21: in das Intervall
-71: < q) g ‘n: transformiert werden. Sind x1 und x2 gegeben, so findet man die zu-
gehörigen Werte (r, (p) mittels der folgenden Formeln, die leicht zu beweisen sind:

r = Vxf + x,’ (x1, x, beliebig),

arctan? (x1 > 0; x2 beliebig),
l

(arctan + r: (x1 < 0; x, beliebig),

sv = 1

(x1: 0; x2 > 0).

~
l=

I
“I

n

(x1 = 0; x2 < 0)-

q: ist nicht festgelegt für den Fall x1 = 0; x, = 0 und kann dann beliebige Werte aus
dem Intervall (—1:, 7:] annehmen. Aus der verallgemeinerten Kettenregel folgt die
Gleichheit

h ü 3* 3'
Ör Ötp Bx, Öx,

h h 32: 2
ör 6g: Öx1 6x1

(s. 3.6.2., Formel (3.106)). Die Matrix der Ableitungen (Funktionalmatrix) von x1, x,

10

01
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nach r und q: läßt sich sehr leicht berechnen; es gilt

Bx, 6x, .

a’ a‘? cos q: — rsm (p

6x, ax, — .W -5; sm (p rcos (p

Somit ist

I L °.°”’ '”i“"’ =r. (3.134)
(r, qz) sin q: r cos (p

Die Matrix der Ableitungen von r, q) nach x, und x, erhalten wir nach den Betrach-
tungen in Punkt 3.8.2. als die zur eben berechneten Matrix inverse Matrix. Hat die

Matrix [g 3 eine von null verschiedene Determinante D = ad —— bc, so ist ihre inverse

Matrix durch den Ausdruck % [_j_:
durch Multiplikation beider Matrizen). Also gilt

] gegeben (man überzeugt sich davon sofort

ö ö ‚ .T; T; l rcosq: rsinqz — cosqz smtp

—§p— E7- r —-sinqo cos<p —lsin<p lcoszp
6x1 6x2 r r

aus der die gesuchten Ableitungen abgelesen werden können. Als Anwendung
2

. ax,”
auf Polarkoordinaten. Hierzu werde durch Einsetzen von x, = r cos (p und

behandeln wir die Umrechnung des (zweidimensionalen) Laplace-Operators A =

a2

+ Ox?“

x‚= r sin (p in eine gegebene Funktion U(x1, x2) eine zusammengesetzte Funktion
V(r‚ (p) = U(r cos «p, r sin 92) gebildet. Die Funktion AU = Um + Um wird nun
durch V und die partiellen Ableitungen von Vnach r und (‚v ausgedrückt. Mittels der
Kettenregel erhalten wir die Beziehungen:

l .U„= V‚—ru+ V„‚-q2„= V‚cosgv—7V„s1n<p‚

. 1
U;2= V, n2+ V..-q2.2= V,S1n¢p +7 V¢,cosq2

und weiter mit Kettenregel und Produktregel
. l .

Um = (V,,r., + V,.,,¢p.,) cos «p — V‚(s1n m) (Pu +7§n,V¢, Sln q)

l . l
— '7(Vw"|1 + VIw‘P|1)Sm ‘I’ ‘T Va (C05 V7) ‘PH

V’ sin’q7+—r1—2 V, sintpcosgv
l .

= V,,cos”cp-—,—V,¢,cos<ps1n<p+ r

1 . l . 1 .-7 V,q,s1ncpcos <p+ F VWs1n’<p+—r; Vwcos gvsm (p,
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entsprechend

. 1

U122 = (V..-rm + Vnp'¢I2)51119'9‘*‘ V.(cos<p)<p:.—7 V. (cos tr) T12

1 1 .

+ T(Vwr7|2 + VWW2) C05 9’ ’ T Va» (Sm 9’) ‘PI2

V . ‚ 1 . 1 2 1 .

= „sin q2+—r—V,,,cosq2sm<p+7V,cos (p—FV°,C0SqJSln(p

g Vwcos’ tp — ä V, sin q: cos (p.

Die Addition der erhaltenen Ausdrücke ergibt schließlich AU = U.,,+ Um:
V‚.‚ + i’ V, + g VW. Der Laplace-Operator in ebenen Polarkoordinaten hat daher

l .

+—r-V„„coscps1n<p+

die Form

Ö’ l Ö 1 ö’A=—a7+7-57+7W—. (3.135)

" Aufgabe 3.10: Man überlege sich, daß der Laplace-Operator in ebenen Polarkoor-
ö 1 ö’
H + 7W

Ö
dinaten auch in der Form %—a-; (r geschrieben werden kann.

3.8.3.2. 'I‘ransformaflon auf Zylinderkoordinaten

Räumliche Probleme, die bezüglich einer festen Achse axialsymmetrisch sind, wer-
den zweckmäßig mittels Zylinderkoordinaten beschrieben. Die Symmetrieachse
P(x„ x2, x3) kann beschrieben werden durch ihre xa-Koordinate z, den Abstand r

von der x3-Achse und den im mathematisch positiven Sinn gemessenen Winkel (p des
Strahls vom Nullpunkt durch den Punkt P’ (x1, x2, 0) gegen die positive x,-Richtung
(vgl. Abschn. 2.6.3.). Es ergeben sich die (elementargeometrischen) Beziehungen

x1=rcos<p, x2=rsin<p, x3=z.

Der gesamte Raum R3 der Punkte P(x„ x2 , x3) wird hierbei auf einen Teil eines drei-
dimensionalen (r, (p, z)-Raumes abgebildet, wobei analoge Festsetzungen zu treffen
sind wie im Fall ebener Polarkoordinaten. Man nennt (r, (p, z) die Zylinderkoordina-
ten des Punktes P(x„ x2, x3). Die Funktionalmatrix der x1, x2, x3 bezüglich r, qz, z
hat die Form _

ax‘ ax‘ ax’ coszp -rsinep 0Tr W T2
ö ö ö .

-61,’ ÖL; Öl; = Slntp rcosqz 0 ,

6x, 3x3 ax,
WET: ° °‘
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so daß sich für die zugehörige Funktionaldeterminante der Wert

cos q: —r sin (p 0= sing: rcosqz o =r (3.135)

’ ’ 0 0 1

ergibt. Bei der Umrechnung von Differentialausdrücken sind dieselben Rechnungen
wie im Fall ebener Polarkoordinaten durchzuführen, wegen x3 = z können Ablei-
tungen nach x3 sofort als (dieselben) Ableitungen nach z geschrieben werden. Zum

Beispiel ergibt sich für den (dreidimensionalen) Laplace-Operator A = 326L, +ä
2 l 2

+ aax 2 unter Benutzung des Ergebnisses von 3.8.3.1. in Zylinderkoordinateu sofort

der Asusdruck

Ö’ 1 Ö 1 ö’ 6’
=a—,2+7'a7+fiW+a—z2 m”)

3.8.3.3. Transformation au! Kugelkoordinateu

Räumliche Probleme, die nur vom Abstand der zu betrachtenden Punkte von einem
festen Punkt abhängen (z. B. Einwirkung einer Zentralkraft) bzw. gewisse Symmetrie-
eigenschaftcn gegenüber Drehungen des Raumes um einen festen Punkt aufweisen,
werden in Kugelkoordinaten beschrieben. Der feste Punkt sei der Nullpunkt des
Koordinatensystems. Ein beliebiger Raumpunkt P(x„ x2, x3) kann beschrieben wer-
den durch seinen Abstand r vom Nullpunkt, den Winkel (p, den der Strahl vom Null-
punkt durch den Punkt P’ (x1, x2, 0) gegen die positive x,-Richtung (im mathema-
tisch positiven Sinn gemessen) besitzt und den Winkel 19, den der Strahl vom Null-
punkt durch den gegebenen Punkt P(x„ x2. x3) gegen die positive xa-Richtung hat.
Es gelten die Transformationsbeziehungen (vgl. 2.6.3.)

x,=rcosq:sin19, x,=rsinqnsin19, x3=rcos19.

Der gesamte Raum R3 wird auf einen Teil des (r, 19, <p)-Raumes abgebildet, wobei
man aus der Forderung, eine (weitestgehend) eineindeutige Abbildung von (x1 , x2 , x3)
auf die Werte (r, 19, (p) zu erhalten, die folgenden Vereinbarungen trifft:

0§I‘<+°°, 0§15‘§W,
—-n<¢p§rr (oder 0§(p<21r).

Die Funktionalmatrix der Transformation (x1, x2, x3) -—> (r, 19, (p) hat die Gestalt

Ö Ö Ö . . .

x‘ x‘ xi cos q: s1n19 r cos q; cos 19 ——r sm q: Slll 19"a? "a3 7„
ö 6 ö . . . .Öl: ÖL; F); = smqzsin19 rs1n<pcos19 rcos<ps1n19

6x3 6x3 6x3 ‚T’ f} C0519 —rs1n19 0
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605i: x2, X3)Ihre Determinante, die Funktionaldeterminante ‚ hat den Wert
30,19, w)

Ö(x.‚ x2‚ x3) _ .WW .— r“ sin 19. (3.138)

Der (dreidimensionale) Laplace-Operator hat in Kugelkoordinaten die Gestalt
A a2 a: a2

= Tax: + T; w;
1 ö 6 1 ö . ö l Ö2

=7a—r("w)+@‘e>3(S'“"T.a)+fi,1fi>*a—.,a?‘ (3-1”’

3.8.4. Abhängigkeit dilferenzierbarer Funktionen

Beispiel 3.25: Aus der Vektorrechnung ist der Begrifl‘ der linearen Abhängigkeit von
Vektoren bekannt. Zum Beispiel seien a, b, c drei Vektoren im dreidimensionalen
Raum. Sie heißen linear abhängig (vgl. Bd. I3, 1.2.7.), wenn es reelle Zahlen 1.„ 112, Ä;

gibt, die nicht sämtlich gleich null sind und für die die (Vektor-) Gleichung

118 + 12b + lac = 0 (I11! + Val + IM > 0) (3-140)

gilt (o: Nullvektor). Geometrisch bedeutet dies, dal3 die drei Vektoren a, b, c in einer
Ebene liegen (komplanare Vektoren). Neben den Vektoren a, b, c betrachten wir die
ihnen zugeordneten linearen Funktionen. Es seien

a: b: C1

a= a: ‚b= b: ‚c= c2;
as be c3

dann bilden wir die Funktionen der unabhängigen Variablen x1, x2, xx

I1(-V12 352: 75a) = 5195i + 025752 + aaxs»

I2(x1» 752: 35a) = 171751 + 172352 + 173353»

I3(x„ x2, x3) = clxl + 62x2 + 63x3.

Ferner betrachten wir die lineare Funktion L(u„ uz, us) = 11a, + 12a, + lau, der
drei unabhängigen Variablen u, , U2, ua. Dann ist die zusammengesetzte Funktion

M(xls 152,753): L(ll(xl9 352» 75s); I2(X1» X2. X3); la(-Y1, 752a 753))

für alle x1, x2, x3 gleich null;

L(l1(-xx; x2, X3)? 12(x1,x2, xs); l:.(x1, x2, xa)) = 0 ((x1,x2,xa) E R“).

Zum Nachweis dieser Behauptung setzen wir die obigen Ausdrücke für 1,, 1„ I, in
L(u,, U2, a3) ein und benutzen die Gleichung (3.140),

L(I1(xls x22 x3); 5205i: 952» xx); I3(x1: 752: 753))

= 111x051: X2» 953) + 1252951: 752a 353) + ÄGIECXI: 952a 753)

= 11011751 ‘l’ 52752 + 51335:) ‘l’ }’2(blxl ‘l’ 172952 ‘l’ 173353) ‘l’ Ä3(C1Xi + C2752 ‘l’ 53X3)

= (1141 + 1217i + ivacx) X1 + (1102 + 32572 ‘l’ 1352) x2 + (}~1l1'.:+ }~2ba+ 1393) X:

=0-x,+o-x,40.x,=o,
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weil die Klammerausdrücke in der vorletzten Zeile infolge des Bestehens der Glei-
chung (3.140) alle verschwinden.

Beispiel 3.26: Wir betrachten die folgenden Funktionen von zwei unabhängigen
Variablen x1, x2: f,(x1, x2) = sin (x1 + x2), f2(x„ x2) = cos (x1 + x2). _

Aus der für alle reellen Zahlen t gültigen Beziehung sin’ t + cos’ t = l folgt mit t =

x, + x2 die Gleichung

[f1(x„ x2)]’ + [f2(x„ x2)? = sin’(x‚ + x2) + cos2(x1 + x2) = 1

für alle x2, x2. Es sei F(u,, Wg) = u? + a2’ — 1 für (14„ a2) E R’.
Die zusammengesetzte Funktion

F(f1(x1» x2); f2(x1‚ 262)) = [f1(x1,x2)1’ + [f2(x1‚ x2)? - 1

ist dann nach den obigen Feststellungen fiir alle x„ x2 gleich null:

F(.fl(xlr x2); f2(x1a x2» = 0 «x1: x2) E R2)-

In den Beispielen 3.25 und 3.26 stellten wir fest, daß die Werte der betrachteten
Funktionen nicht unabhängig voneinander sind, da zwischen den Funktionswerten
der betrachteten Funktionensysteme (1„ I2, l2 bzw. f„ f2) gewisse Bindungen in Glei-
chungsform bestehen. Im Beispiel 3.25 ist das die Beziehung

1111051» x2: X3) + }~212(-xx. X2: x3) + 3413071: X2; x3) = 0‚

und im Beispiel 3.26 haben wir die Gleichung

[f1(xn x2)]’ + [f2(x1, x2)]’ - 1 = 0-

Diese Beispiele sind Sonderfälle eines allgemeinen Abhängigkeitsbegriffs für Funk-
tionen.

Definition 3.7: Es seien f‚(x1, , x„), fi2(x„ ...‚ x„)‚ ,f„,(x„ ...‚ x„) stetig differen-
zierbare Funktionen, die in einem Gebiet G des R" definiert sind. Die Funktionen
f, ‚ ,f‚„ heißen abhängig in G, wenn es eine stetig differenzierbare Funktion F(u1 , , u„.)
der m unabhängigen Variablen ul, , um gibt, die in keinem Teilgebiet des R"' konstant
ist, so daß die Gleichung (Abhängigkeitsbeziehung)

FCÄCH, ---x xn)» "'rfm(-xls m: xn» = 0

für alle (x,, ..., x,.) aus G gilt.

(3.141)

Wir suchen nun ein einfaches Kriterium dafür, wann ein Funktionensystem
f,(x1, ..., x,.), ...,f,,.(x1, , x,,) abhängig ist, ohne daß wir eine Abhängigkeitsbezie
hung selbst angeben müssen, da diese Abhängigkeitsbeziehung oft nur mit großem
Aufwand gefunden werden kann. Dabei orientieren wir uns zunächst wieder am Bei-
spiel 3.25, d.h. der linearen Abhängigkeit von linearen Funktionen. Aus der Vektor-
rechnung ist bekannt (vgl. Bd. l3), daß eine lineare Abhängigkeit der Vektoren

a, b, cl

a2 b3 c2

D.3.7
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genau dann besteht, wenn das Spatprodukt [abc] der Vektoren a, b, c verschwindet,
d.h.‚ die Gleichung

a, a, as

[abc] = b, b, b, =0
"1 C2 c3

gilt. Da die Vektoren a, b, c aber nun genau dann linear abhängig sind, wenn die zuge-
hörigen linearen Funktionen I1 ‚ I, ‚ I, linear abhängig sind, ist somit das Verschwinden
der obigen Determinante eine notwendige und zugleich hinreichende Bedingung für
die lineare Abhängigkeit der Funktionen 1,, I2 , I3 des Beispiels 3.25. Diese Determinante

ist jedoch gerade die Determinante der partiellen Ableitungen , d. h. die Funk-
. . 60.. 1.. 13> . a“tionaldeterminante—————- Es hegt daher nahe, auch zur Untersuchung der

6051 7 x2 n 35:1)

Abhängigkeit allgemeiner Funktionen die ersten partiellen Ableitungen heranzu-
ziehen. Wir gehen davon aus, daß zwischen m gegebenen differenzierbaren Funktio-
nen f,(x1, ..., x,.), ...,f,,.(x,, ..., x,.) von n unabhängigen Veränderlichen eine Ab-
hängigkeitsbeziehung besteht, die in der Form

F(fi(xi‚ ---.x..); fm(x;..--.xn))= 0 ((x1. --ax») E G)

geschrieben werden kann. Durch partielle Differentiation nach den x,- erhalten wir
aus dieser Gleichung mittels der verallgemeinerten Kettenregel (s. 3.6.2.) die Glei-
chungen

F|1_f1|1 ‘l’ Flzffll ‘l’ ‘l’ Flmfmlx = 0

F|1_f1l2 + Flzfila + + Flmfmlz = 0

Fuflln + Fnfzn. + + Fnmfmxn = 0,

wobei die Werte von F“ an der Stelle

(uh "z, m; um) = (.fl(x1: m: XII); f2(x1s m; xn); m; fm(x1: -~-2 xn»

zu nehmen sind (i = l, ...‚ m). Man kann die obigen Gleichungen als ein homogenes
Gleichungssystem mit der Koeffizientenmatrix (fiqk) (1 g i g m; 1 g k g n) und
dem Lösungsvektor (F1,-),5.>§,,, auffassen. Da dieser Lösungsvektor nicht der Null-
vektor sein kann (evtl. abgesehen von einer nicht interessierenden Ausnahmemenge
von Punkten aus G), weil F(u„ ...‚ um) in keinem Teilgebiet des R" konstant ist,
folgt aus der Theorie der linearen homogenen Gleichungssysteme, daß der Rang der
Koeffizientenmatrix (fiik) kleiner als m sein muß. Damit haben wir eine notwendige
Bedingung für die Abhängigkeit der Funktionen fl, ...,f,,. erhalten, die man ohne
Kenntnis einer Abhängigkeitsfunktion F(u„ ...‚ u,,,) überprüfen kann. Ohne Beweis
zitieren wir die folgenden Sätze über die Abhängigkeit von Funktionen (in einer
unseren Zwecken angepaßten Form).
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Satz 3.17: Es seien f1(x,, ..., x‚.), ,f,,.(x, , , x,,) in einem Gebiet G des R" gegebene,
dort stetig difierenzierbare Funktionen. Dafür, daß die Funktionenfi ‚ ‚ f‚„ in G abhän-
gig sind, ist notwendig, dafl die Ungleichung

R8118 [fax] < m

überall in G erfüllt ist.

(3.142)

Satz 3.18: Es seien f1(x„ ..., x„), ...,f„‚(x1, ..., x„) in einem beschränkten Gebiet G
des R" gegebene, dort stetig diflerenzierbare Funktionen. Dann gelten die folgenden
Aussagen 1.-3.:

1. Es sei m = n. Dann sind die f.- genau dann abhängig in G, wenn die Funktional-
determinante det (fuk) überall in G verschwindet.

2. Es sei m > n. Dann sind die f; abhängig in G.

3. Es sei m < n. Ist der Rang der Matrix (f;|k) in G konstant und kleiner als m, so
sind die Funktionen f,- abhängig in G.

Beispiel 3.27: Es sei f1(x,, x2) = (x; — a)’ + (x2 — b)’,

f2(xn x2) = (x1 " (3)2 ‘i’ (x2 " d)? «xi! x2) E R2).

wobei a, b, e, d beliebige reelle Zahlen bezeichnen. Zur Untersuchung der Abhängig-
keit der Funktionen fl, f, bilden wir die Funktionaldeterminante

= fm fm 2(x1 - a) 2(x2 - b)

fzu f2Iz 2(x1 - C) 2(x2 - d)

= 4(x,(b — d) + x‚(c — a) + ad — bc).

det (fiik)

Nach Satz 3.18 besteht Abhängigkeit zwischen den Funktionen fl und f, in einem
(beliebigen) beschränkten Gebiet G des R’ geuau dann, wenn diese Determinante
für alle (xi , x2) aus G verschwindet. DerAusdruck für det (fi„‚) ist ein Polynom ersten
Grades in x, und x2, der nur dann in einem Gebiet des R’ verschwindet, wenn seine
Koeffizienten gleich null sind, also die Gleichungen

b—d=0,
c—a=0‚
ad—bc=0

gelten. Man sieht sofort, daß mit den ersten beiden Gleichungen, die auch in der Form
b = d, a = c geschrieben werden können, auch die letzte dieser Gleichungen erfüllt
ist. Wir haben somit das folgende Ergebnis:

l. Ist (a, b) =i= (c, d), so sind f, und f, unabhängig.

2. Ist (a, b) = (c, d), so sind f, und f2 abhängig; in diesem Fall gilt sogar f,(x,, x2)
= f,(x1, x2) fiir alle (x,, x2) E R2. (Man interpretiere das Ergebnis geometrisch!)

S.3. l7

S.3. 18



4. Der Satz von Taylor und Extremwertaufgabeu

4.1. Die Taylor-Fonnel für Funktionen zweier Variabler

Es sei z = f(x, y) eine in einem Gebiet G des R’ n-mal stetig (partiell) differen-
zierbare Funktion und P(x„, yo) ein fester Punkt aus G. Uns interessiert das Ver-
halten von f in einer Umgebung von P(x„, yo). Dazu betrachten wir den Punkt
P(x„ + h, yo + k) für hinreichend kleine Werte von |h| und |k[ und führen die fol-
gende Funktion einer reellen Variablen ein:

<p(t) = f(x., + ht, yo + kt) (——a g t g a; a > 0 hinreichend klein).

Mit anderen Worten, wir setzen x = xo + th = x(t) und y = yo + tk = y(t) und bilden
die zusammengesetzte Funktion q>(t) = f(x(t), y(t)). Die Funktion q>(t) wird nach t
differenziert (Ableitungen nach t sind durch „"‘ gekennzeichnet). Nach der verall-
gemeinerten Kettenregel erhalten wir

w’(!) =fi1x'(t) +fiay'(t) = fix’ + M’
und mit x’(t) = (x0 + th)’ = h, y'(t) = (yo + kt)’ = k weiter <p’(t) = fi,h +fi‚k =

fi,(x(t), y(t)) h +flg(x(t), y(t)) k. Zweimalige Difierentiation nach t liefert entspre-
chend (der Leser überprüfe dies)

¢P"(t) =fluh” +flx2hk +fi21/Ch +}i22/<2 =fiu/I2 + Zfuzhk +fl22/C’.

wobei die partiellen Ableitungen fiu. an der Stelle (x(t), y(t)) zu nehmen sind. Analog
ergibt sich die dritte Ableitung

‘P'(’) =flu1h3 +fiu2h2k + Zfimhzk + Zflmhkz +fl221k2h ‘*'fi222/V3

=.f|u1h3 + 3fiu2h2k + 3fi122hk2 +fl222k3,

wobei vom Satz von Schwarz (Vertauschbarkeit der Reihenfolge der partiellen Ab-
leitungen) Gebrauch gemacht wurde. Um eine übersichtlichen Schreibweise zu er-
halten, erinnern wir an die in 3.4. unter den Formeln (3.78) bis (3.84) getroffenen
Bezeichnungsvereinbarungen. Wenn wir nun h anstelle von dx und k anstelle von dy
setzen und für die Bezeichnung der partiellen Ableitungen vonfdie Symbole fi 1, fl,
usw. verwenden, so erhalten wir

«p"(r) = mm +fi2k]"’, = Lf.h + /,k1<“,

am) = w: +fi2k]‘“’- = Wt + /,k1">.

Anstelle der Potenzen von fl, bzw. fl, sind die entsprechenden Ableitungen einzu-
setzen; also ist z. B. flu anstelle von 011)’ und analogfin, anstelle von (/',,)’ fi, einzu-
setzen, während für h und k die üblichen Potenzen und die üblichen Koeffizienten
zu benutzen sind. Diese Vereinbarung gilt auch allgemein für die n-te Ableitung, so

daß wir erhalten

Mr) = Lfuh +mk1w (n = 1, 2, „o,
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wobei der Ausdruck rechts gemäß der allgemeinen binomischen Formel

(a + b)" = 2" a""‘b" (")
1:=o k

zu bilden ist (vgl. auch Abschn. 3.4.). Die auftretenden partiellen Ableitungen V011]
sind dabei stets an der Stelle x = x(t) = x0 + th; y = y(t) = yo + tk einzusetzen. Nun
bilden wir den Ausdruck der Taylorformel für die Funktion tp(t) mit der Entwicklungs-
stelle to = 0 mit dem Ziel, einen Taylor-Ausdruck fürfzu erhalten. Es gilt (s. Bd. 2, 6.3.)

t I t2 I’ tn-1 _

w) = <P(0) + 1-! «r (0) + T! so (0) + +i<P"' "(0) + R..—1(t)

mit R,,,1(t)= 711T t"zp<")(19t)(0 < h? < 1). Speziell erhalten wir für t = 1 die Beziehung

1 , 1 ,, 1

w(l)— <p(o)+ T) (o) + T): (o) + + (n _1)!

mit Rn—1(1)= 5m») (o < h < 1). (4.1)

Zur Bestimmung der einzelnen Ausdrücke <p(0), <p’(0), verwenden wir die oben
eingeführte Schreibweise und erhalten (man beachte, daß jetzt t= 0 gilt)

<P(0) = f(xo ‚ yo).

971(0) =fil(x09 yo) h +fl2(Xo»}’o) k = df
(vgl. Abschnitt 3.4., man setze dort dx = h, dy = k),

TK0) = fiu(xo 2 yo) h2 + Zfi 12950: yo) hk +fi22 (x0 ‚ Yo) kg

= [fi1(xo,yo)h +fl2(xo,yo)k]‘2’ = d’f
und allgemein

<P""’(0) = [fi1(xo»)’o) h +fi2(xo‚ yo) k]""’ = d"f (m =1. 2, ---)-
Andererseits ist

<p(l) =f(x„ + h, yo + k) und

«p<")(19) = [fi1(x., + 19h, yo + 19k) h +fi„(x„ + 29h, yo + 19k) k](").
Aus (4.1) folgt damit endgültig, wenn wir die zuletzt notierten Ausdrücke einsetzen

f(xo + h‚y„ + k) =f(xo‚ n.) + (mm, yo) h +m<x„‚ yo) k]

+ mm, yo) h +m<x.., yo) kw

T‘;wxo, yo) h +fi2(xo‚yo) k]<"‘” + Rn-1(h: k) (4.2)

l l 1=f(x0,yo) + +

w-1>(o) + Rn-1(1)

+ ... +

d"“f + Rn—1(h9 k)

(4.2')

R,,_1(h,k)= % mm + 1‘/‘h, yo + 19k) h + fi2(x.,= + 29h, yo + 19k) w)
(0 < '9 <1)- (4-3)
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Bemerkung 4.1: Gelegentlich gibt man das Restglied R„-1(h‚ k) in Integralform an;
es lautet dann

l

R„-.(h. k) = 0%),f(1 — z)"-* um + um + tic) h

0

+ fi,(x., + th, yo + tk) k](") dt. (4.4)

Die Formel (4.2) bzw. (4.2’) heißt die Taylorformel für f(x, y) mit der Entwicklungs-
stelle (x0, yo) und dem Restglied der Ordnung n. Für Funktionen von mehr als zwei
Variablen gilt eine analoge Taylorformel, die man sich leicht aus der Beziehung (4.2)
durch Verallgemeinerung herstellt.

Bemerkungen und Beispiele

l. Setzen wir in dem Ausdruck (4.2) für n speziell den Wert n = l ein, so erhalten
wir die Beziehung

f(-"o + hsyo + k) =f(xoa}’o) + R00‘: k)

f(xo + hayo '|’ k) "f(xo:)’n) =fi1(Xo ‘i’ Whyo + W‘) h

+fl2(xo + 19h,}’o + 15‘k)k (0 < 19 <1).
mit anderen Worten, für n = l geht die Taylorformel in den Mittelwertsatz (s. 3.3.4.)
für Funktionen mehrerer Variabler (hier: zweier Variabler) über.

oder

2. Setztmanx.,+h=x,yo+k=y, sogi1th=x—xo,k=y—yo,und aus(4.2)
wird die Beziehung

f(x».V) =f(xos yo) + M1050: yo) (x “ X0) +fi2(xos yo) Ü’ " .Vo)]

+ [fi1(xo: yo) (x ‘ x0) +fi2(xo: yo) Ü’ ‘ yo)?”

+ +(,,—_‘i)—, Um, yo) (x — x0) +fi2(x„‚ y.) (y — y.‚)1<"'=>

+ R‚.-l(x - xa.y — yo)
mit

Rn—1(x — xmy ‘)’o) = fimmxo + wx — x.,),yo + W — yo» (x — x0)

+fi„(x.‚ + «9(x — x0); n. + w — m) (y — yo)1<~> (o < a9 < 1). (4.5)

Wählt man speziell x„ = 0, yo = 0, so entsteht aus der letzteren Beziehung die sog.
Formel von Mac Laurin (zur Vereinfachung der Schreibweise arbeiten wir mit dem
Summenzeichen)

f(x‚ y) =f(0‚ 0) +käl [fi1(0. 0) X +fi2(0‚ 0) y]"" + Rn—1(X» J’)
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mit

R‚.—i(x‚ 7‘ = M1097‘: 19)’) x +fl2(19X.19y).v]"" (0 < 19 < 1)- (4-6)

In dieser letzten Form wird die Taylorformel sehr häufig verwendet.

3. Bricht man die Taylorformel (in der Form unter 2. oben) nach den Gliedern mit
den ersten Ableitungen ab, so erhält man eine lineare Näherungsfunktion f‚(x‚ y)
fii1'f(x,y).fz(x,,v) = f(xo» yo) + f|i(xo: yo) (x ‘ x0) + f|2(xoa yo) (‚V " }’o)- Faßt
man (vgl. Abschnitt 2.1.) z = f(x, y) als Darstellung einer Fläche im (x, y, z)-Koor-
dinatensystem auf, so liefert z = f‚(x, y) die Darstellung der Tangentialebene dieser
Fläche im Punkt (x0, yo, 20) mit zo = f(xo, yo).

Mit Benutzung des vollständigen Differentials gilt die Gleichung

fx(xx}’) =f(x09y0) +

4. Bricht man die Taylorformel (in der Form unter 2. oben) nach den Gliedern mit
den zweiten Ableitungen ab, so erhält man eine quadratische Näherungsfunktion
f.(x‚y) für f(x. y).

fi:(-xx y) = f-(X0: yo) +fil(x0x yo) (x — X0) + f12(xos yo) (Y ‘ yo)

+ §1!“fm(xoa yo) (x ‘ x0): + 2f|12(xo» yo) (x ‘ x0) (‚V ‘ yo)

+f122(xo> yo) (y — .Vo)2 = f:(x, y) + 71,—d‘f-

Die Gleichung z = _f,(x, y) liefert die Darstellung einer Fläche zweiter Ordnung, die
die gegebene Fläche z = f(x, y) im Punkt (xo, yo, f(xo, y.,)) berührt und lokal appro-
ximiert. Im folgenden Beispiel 4.1 ist diese Fläche ein hyperbolisches Paraboloid;
im Beispiel 4.2 erhalten wir ein (zweischaliges) Rotationshyperboloid.

Das Verhalten der quadratischen Näherungsfunktion fi‚(x, y) ist vor allem für
die Diskussion von Extremwertaufgaben wesentlich (s. Abschnitt 4.2.).

Beispiel 4.1: Als Beispiel betrachten wir die Funktion f(x, y) = (sin x) (sin y) und
entwickeln diese Funktion an der Stelle (0, 0) bis zum Restglied R‚. Wir legen uns
eine Tabelle der partiellen Ableitungen vonfbis zur 3. Ordnung einschließlich an.

fl1(x,y)=fl1=cosxsiny; fig =sinxcosy; fi„=cosxcosy;

flu = —sin x sin y; fizz = -—sin x sin y; fim = —sinx cos y;

fim = —cos x sin y; fim = —sin x cos y; fl”, = -—-cosx siny.

Die speziellen Werte der Funktionf und ihrer ersten und zweiten (partiellen) Ablei-
tungen an der Entwicklungsstelle (0, 0) lauten:

f(0‚ 0) = 0; .f1(0x 0) = 0; fi2(0‚ 0) = 0; fim(0‚ 0) = 1;

fin(0‚ 0) = o; fl22(0» o) = 0-
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Damit erhalten wir mittels der Formel (4.6) für n = 3 die Entwicklung

smx-siny=f<o‚o>+%rfi1(o‚o>x+fi2(o‚ om

+ wo, o) x2 + 2fii2(0‚ o) xy +fi,,<o. o) w} + Rs(x, yi

L
22

= -2xy+R2=xy+R2
mit

R2 = [fli(1‘/‘X. 19)’) x +flz(19x.19y).v]‘“’

l
= ‘g[flu1('9x» 19)’)-"3 + 3fi112Ü9X» 19)’)x2,V + 3fi122(79xa '19)’) xy’

+fi222(T9x» 19}’).V3]

= ‘ä l-x“ cos fix sin 19y + 3x’y(—sin 19x cos 19y)

— 3xy’ cos 19x sin 19y — y3 sin 19x cos 29y]

= — % [(x" + 3xy2) cos 29x sin 19y + (3x“’y + y“) sin 19x cos 19y]

(0 < 19 < 1)

Das Restglied R, läßt sich wegen |cos i9x| g 1; |sin 1?x| g 1 betragsmäßig wie folgt
abschätzen (Anwendung der Dreiecksungleichung):

|R2| ä %(|xl“ + 3!X| M” + 3|xF Iyl + lyl“) = %(lX| + M)“-

Für kleine Werte von (lxl + lyl) wird daher |R,| von 3. Ordnung klein, d.h.‚ für nahe
beim Nullpunkt gelegene Punkte P(x‚ y) verhält sich die Funktion f(x‚ y) =

sin x - sin y wie die Funktiong(x‚ y) = xy. Bei der Darstellung von f(x‚ y) als Fläche
im Raum R3 der Punkte P(x‚ y, z) mit z = f(x‚ y) = (sin x) (sin y) können wir daher
näherungsweise diese Fläche durch die Fläche 2. Ordnung z = xy (hyperbolisches
Paraboloid, s. [3] S. 197) ersetzen.

Beispiel 4.2: Als weiteres Beispiel betrachten wir das Potential einer Punktladung,
die sich im Punkt (O, 0, 0) befindet, und entwickeln dieses in einen Taylorausdruck
an der Stelle (l, 0, O). Dieses Potential ist (bis auf einen hier weggelassenen Zahlen-
faktor, s. auch Beispiel 5.1) gleich der Funktion

l l‘P(xa}’:Z)=7= .
d.h.‚ es liegt eine Funktion von drei Veränderlichen vor. Wir wollen diesmal so vor-
gehen, daß wir die Entwicklung rm’: dem Restglied R2 abbrechen, dieses Restglied aber
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nicht näher berechnen, sondern an einzelnen Zahlenbeispielen uns ein Bild von der
Güte der Approximation der Funktion (p(x, y, z) durch die ersten Glieder der Taylor-
formel (ohne das Restglied) verschaffen. Zunächst berechnen wir die partiellen Ablei-
tungen von <p(x, y, z) allgemein und anschließend an der interessierenden Stelle

(1, 0, 0). Es gelten die Beziehungen (s. auch Abschnitt 3.6.2.) (r = Vx‘ + y’ + z’)

x y _ z _

‘P|1=—’l3§ ‘P|2=‘"T3‘a ‘P|3=—Fa

3x’ 1 3xy 3yz l
<PI11=T"T;Q <Pu-.»=<Pm=j5—~; <PI22=7r—j.

l3x2 3yz 32’
Wl13=¢l31=7'; ‘P|z3=‘P|32=f3 ‘Pla3=j“‘F'

Diese Funktionen haben an der Stelle (1, 0, 0) in der obigen Reihenfolge die Werte
—l; 0; 0; 2; 0; —l; 0; 0; —l und ferner gilt noch <p(l, 0,0) = 1. Die Taylorformel
lautet allgemein mit dem Restglied R, und dann mit den speziellen Werten

1

<P(x‚y‚z)=<z>(1‚0‚0) +-1—,[¢:r(x- 1)+9’l2'}’+‘P|a‘Z]

+%[<p:u(x —-1)’ + 24pm-(x—1)y+ (P122 -yz

+ Zqzm - (x —1)z+ 2cm; ~yz+ was -z*] + R2,

wobei die partiellen Ableitungen an der Stelle (1, 0, 0) einzusetzen sind. Es gilt also

<P(x,.V,z)=1+(-1)(x - 1) +-217 [2(x -1)’ + (-1)y’ + (-1)Z’] + R:

y2 2

=3—3x+x3——2———g—+R‚.

Den. ersten Anteil auf der rechten Seite letzterer Gleichung bezeichnen wir mit
«p*(x, y, z), wir setzen also

N
IX

»

<p*(x,y,z)=3—3x+x2—%—

Es gilt (s. o.)

<p(x‚y‚ z) = <p‘(x,y, z) + R2-

In dieser letzteren Schreibweise sehen wir den formelmäßig einfacheren Ausdruck
(keine Wurzeln) cp‘ als eine Nähenmg von q: an. Die Funktion q7*(x‚ y, z) ist ein Poly-
nom zweiten Grades in x, y, z und rechnerisch in ihren Eigenschaften leicht zu über-
schauen. Wir verzichten hier auf eine Restgliedabschätzung und stellen nur einige
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Funktionswerte (Zahlenwerte) von q: und <p* gegenüber.

(x, y, z) l <1v(x‚ y, z) I <1=*(x‚ y, z) [ R2

(1,-0, o) 1 1 0

(1, 0, 0) 2 1,75 0,25

(g, o, 0) g z 0,67 0,75 —0,0s

(1, 1, 0) 5 Vi z 0,7071 0,5000 0,2071

(1, 1, 1) g 1/5 z 0,5774 0 0,5774

Man erkennt aus dieser Tabelle, daß die Funktion 02* die Werte der Funktion «p in
einer gewissen Umgebung der Entwicklungsstelle (1, 0, 0) relativ gut annähert oder
approximiert, so daß wir in einer solchen Umgebung die Funktion zp‘ als einen Ersatz,
als eine Approximation für die Funktion «p benutzen können. In größerer Entfernung
von der Entwicklungsstelle wird die Genauigkeit der Annäherung von «p durch tp‘
zunehmend schlechter.

Ergänzend werde noch auf den folgenden einfachen geometrischen Sachverhalt
hingewiesen.

Die Aquipotentialfläche <p(x, y, z) = l enthält den Punkt (l, 0, 0), um welchen wir
die Funktion <p(x‚ y, z) entwickelt haben.

Die Niveaufiächen

2—x=1
bzw.

<<p*<x,y,z)s>3—3x+x2-i—‘—2=1,

die sich als Nähenmgsfiächen für die Äquipotentialfiäche q2(x, y, z) = 1 ergeben,
wenn die Taylorentwicklung bei den linearen bzw. den” quadratischen Gliedern in
x, y, z abgebrochen wird, Iiefem die Tangentialebene der Aquipotentialfiäche <p(x,y, z)
= l bzw. eine Fläche zweiten Grades (hier: ein zweischaliges Rotationshyperboloid
mit dem einen Scheitel (1, 0, 0) und der x-Achse als Drehachse), die die Äquipoten-
tialfläche im Punkt (1, 0, 0) berührt.

4.2. Extremwertaufgaben

Im Rahmen der Operationsforschung hat die Frage nach den bestmöglichen (weil
wirtschaftlichsten) Lösungen bestimmter praktischer Probleme der Theorie der Ex-
tremwerte besonderen Aufschwung gegeben (vgl. z. B. Bde. 14, 15, 16, 20 dieser
Reihe). Insbesondere sind Extremwertaufgaben mit Nebenbedingungen (Restrik-
tionen) für die Anwendungen wichtig, weil in der Praxis gerade ein maximaler Nutz-
eflekt „bei Einhaltung gewisser Bedingungen“ zu erzielen ist, z. B. die höchste Tages-
produktion in einem Betrieb bei vorgegebenem Energieverbrauch. Das Kapitel über
Extremwertaufgaben mit Nebenbedingungen verdient also besonderes Interesse
und kann als ein Teilgebiet der Disziplin „Optimierung“ angesehen werden. Bevor
wir uns aber dieser Problematik zuwenden, müssen wir die Frage nach den Extrem-
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werten schlechthin (also ohne Nebenbedingungen) diskutieren. Unsere Entwick-
lungen knüpfen dabei an die Ausführungen über Extremwerte in Band 2, Abschnitt
7.3., an (vgl. auch Bd. 16). Zur numerischen, automatisierten Berechnung von Ex-
tremwerten vgl. insbesondere [l6].

4.2.1.

Wir behandeln die Frage nach der Bestimmung von Extremwerten von Funktionen
mehrerer Variabler am Beispiel von Funktionen zweier Variabler und geben an-
schließend die Verallgemeinerung auf den Fall der Funktionen von n _2_ 2 Variablen
an (vgl. die entsprechenden Bemerkungen in Bd. 2, 7.3.).

Notwendige Bedingungen für Extremwerte

Definition 4.1: Es seif(x, ‚ x2) eine in einem Gebiet G < R’ definierte und dort differen-
zierbare reelle Funktion und P(x1(°)‚x„(°>) ein (innerer) Punkt von G. Der Punkt
P(x‚(°J‚ x2(°)) heißt Stelle eines (relativen oder lokalen) Maximums bzw. Minimums,
wenn die Ungleichung

f(x1: X2) S f(xi‘°’‚ 352W) (4.7)

bzw.

f(-751: x2) ä flxima 752(0)) (43)

für alle Punkte P(x1 , x2) aus einer reduzierten Umgebung von P(x,(°), x2‘°>) gilt. Werden
in der Ungleichung (4.7) bzw. (4.8) die Zeichen „g“ bzw. „ä“ durch „<“ bzw. „>“
ersetzt, so sprechen wir von einem (relativen) Maximum bzw. Minimum von f(x„ x2)
„im engeren Sinne“. Hat f(x„ x2) bei P(x,(°), x2(°>) ein Maximum oder Minimum, so
sagen wir, f(x1, x2) hat bei P(x‚(°), x2(°)) einen (relativen) Extremwert bzw. Extremwert
im weiteren Sinne.

Gelten die Ungleichungen (4.7) bzw. (4.8) mit „g“ bzw. „ g“ für alle Punkte
P(x„ x,) e G, so heißt P(x‘‚’, x2) eine Stelle des absoluten Maximums bzw. Minimums von
f(x1, x„) in G.

Satz 4.1: Es seif(x1‚ x2) eine in einem Gebiet G < R2 definierte und dort diflerenzier-
bare reelle Funktion. Ist P(x,(°l‚ x,(°>) eine Stelle eines relativen Maximum (bzw. Mini-
mums), so gelten die Gleichungen

fi1(Xx‘°’.x2‘°’) = 0.

fi2(x1(°)‚ -752(0)) = 0:
Öf

d. h.‚ es gelten die Gleichungen a =

(4.9)

Öf
— = 0 an der Stelle P.
by

0,

Beweis des Satzes 4.1: Es sei z. B. P(x,(°), x2‘°>) eine Stelle eines relativen Maximum;
es gilt also die Ungleichung (4.7). Wir betrachten die Funktionen <p,(x1) = f(x1, x,(°))
und <p,(x2) = f(x1<°>, x2), die nur von einer Variablen abhängen. Die Funktion <p1(x1)

besitzt wegen (4.7) an der Stelle x, = x,(°> ein (relatives) Maximum. Aus der Extrem-

8 Harbnrth/Eiedrich, Difl. Bachn.

D.4.l

S.4.l
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werttheorie von Funktionen einer reellen Variablen (Band 2, Satz 7.5) folgt, daß die
Gleichung

d‘P1 =

dxi ‚Mm
. . d ö . . .

gilt. Es gilt aber}? = ( axf ) (x1,x‚<°>). Somit folgt die erste der Gleichungen (4.9).
1 1

Die zweite Gleichung ergibt sich entsprechend durch Betrachtung der Funktion
‘P2(x2)- I

Bemerkung 4.2: Die Gleichungen (4.9) gelten auch, wennf(x1 , x2) bei P(x‚(">, x,(°J) einen
(relativen) Extremwert im weiteren Sinne besitzt. Die Untersuchung konkreter Bei-
spiele zeigt nun, daß die Bedingung (4.9) nur eine notwendige, aber keine hinreichende
Bedingung für das Vorliegen eines Extremwertes an der Stelle P(x,(°>, x,<°>) ist.

Beispiel4.3: Es scif(x,, x2) = x‚xg (—oo < x1, x2 < +00). Es giltfi, = xhfi, = x1.
Die Gleichung (4.9) ist (genau dann) erfüllt, wenn x1 = 0 und x, = 0 gilt. Hat die
Funktion f(x1, x2) = xlx, bei P(x,(°J, x,(°>) = P(0, 0) einen Extremwert? Dazu be-
trachten wir die Funktionf(x1, x2) auf der Geraden gt mit der Parameterdarstellung
x1 = t, x2 = t (—oo < t < +o<>). Die Gerade g+ geht durch den Punkt P(0, 0), und
es gilt auf gt die Gleichungl)

f(xi‚x2) i!’ =f(!‚ t)= t’ (-°° <1 < + °°)—

Wegenf(O‚ 0) = 0 ist f(0‚ 0) < f(t, t) für O < lt]. In jeder Umgebung von P(0, 0) gibt
es also Punkte mit größerem Funktionswert als an dieser Stelle. Andererseits betrach-
ten wir die Funktion f(x1 , x2) auf der Geraden g‘ mit der Parameterdarstellung
xx = t, xz = —t (—oo < t < +oo). Die Gerade g‘ geht durch den Punkt P(0, 0),
schneidet die Gerade gt unter rechtem Winkel, und es gilt auf g‘ die Gleichung

f(x1a x2) Kg‘ =f(t: ‘Ü: ‘t2 (-‘°° < 7 < ‘I’ °°)-
Es gilt also f(0‚ 0) >f(t, —t) für 0 < |t|. In jeder Umgebung von P(0, 0) gibt es also
Punkte mit kleinerem Funktionswert als an dieser Stelle. Eine Skizze des Funktions-
verlaufes zeigt, daß bei P(0‚ 0) ein „Sattelpunktverhalten“ vorliegt. Die Stelle P(0‚ 0)
kann daher weder eine Maximal- noch eine Minimalstelle (auch nicht im weiteren
Sinne) der Funktion f(x1 ‚ x1) sein, denn es gibt keine Umgebung von‚P(0‚ 0), in der
alle Funktionswerte entweder größer (oder gleich) als f(0, 0) oder kleiner (oder gleich)
als f(0, 0) sind. Es sind also zusätzliche Entscheidungsregeln über das tatsächliche
Vorliegen eines Extremwertes erforderlich. Wir nennen einen Punkt P(x,‘°’, x,“”), für
den die Gleichungen (4.9) gelten, einen stationären oder kritischen Punkt oder eine
kritische Stelle der Funktion f(x1‚ xi). Unsere Frage muß also lauten: Wann ist ein
kritischer Punkt vonf(x‚ , x2) eine Extremalstelle?

4.2.2. Hinreichende Bedingungen für das Vorliegen eines Extremwertes

Satz 4.2: Es seif(x1., x2) eine in einem Gebiet G < R’ definierte reelle Funktion, die in
G zweimal stetig dtjferenzierbar ist. Ferner sei P(x1(°)‚ xz(°>) ein kritischer Punkt vonf
in G, und es sei D die sagenannte Diskrimimmte von f(x,, x2) im Punkt P(x1l°’‚ x19”).

1) Es bezeichne f |A die Einschränkung einer Funktion f auf die Menge A (vgl. Bd. I).



4.2. Extremwertaufgaben l l 5

die durch die Gleichung

D =fiufi22 — (‚am (4.10)

definiert ist, wobei die auftretenden partiellen Ableitungen an der Stelle x, = x‚‘°)‚
x, = x2“) zu nehmen sind. Dann gelten die folgenden Entscheidungsregeln für das Vor-
liegen eines Extremwertes an der kritischen Stelle P(x‚(°)‚ x,(°>):

a) Ist D < 0, so hat f(x,, x2) an der Stelle P(x,(°>, x,(°)) keinen Extremwert. ‘)
b) Ist D > 0 und fl,1(x1<°), x2(°)) > 0, so hat f(x„ x2) an der Stelle P(x1“’), x,‘°))

ein relatives Minimum.

c) Ist D > 0 undflu (x1(°), x2(°)) < 0, so hatf(X1, x2) an der Stelle P(x‚(°)‚ x,<°)) ein
relatives Maximum.

Bemerkung 4.3: Ist unter den Voraussetzungen des Satzes 4.2 die Gleichung D = 0

an der Stelle P(x‚(°), x20”) erfüllt, so läßt sich auf Grund dieser Tatsache allein noch
keine Entscheidung über das Vorliegen oder Nichtvorliegen eines Extremwertes
treffen. Zum Beispiel hat die Funktion f,(x,, x2) = (x1)‘ + (x‚)‘ an der Stelle x11“)

= 0; x2“) = 0 ein relatives Minimum; zum anderen hat die Funktion fi(x,, x2)

= (x1)" + (x2)3 an der Stelle x5“) = 0; x4“) = 0 keinen Extremwert. Für beide Funk-
tionen gilt an der kritischen Stelle x1“) = O; x2“) = 0 die Gleichung D = 0. Stellt man
also fest, daß an einer kritischen Stelle der Funktion f(x,, x,) die Beziehung D = 0

gilt, so sind zusätzliche Untersuchungen über das Vorliegen eines Extremwertes erfor-
derlich.

Für einen vollständigen Beweis des Satzes 4.2 verweisen wir auf [7].
Damit aber die Nützlichkeit der Taylorformel besser zum Ausdruck kommt, be-

weisen wir wenigstens die Teilaussage (Satz 4.2b).

Beweis von 4.2b): Es sei (x0, yo) eine kritische Stelle von f(x‚ y), und es seien h, k
reelle Zahlen mit h’ + k’ = Ü’ (ö > 0) sowie

x=%+m
y = yo + tk

beliebige Punkte aus einer ö-Umgebung von (x0, yo), wobei über den Wert von ö wei-
ter unten noch verfügt wird.

Die Taylorsche Formel liefert bei Verwendung des Restgliedes zweiter Ordnung in
jeder solchen (hinreichend kleinen) ö-Umgebung

f(x‚y) =f(xo„vo) + %fll((xo»yol th +fl2(xo- Yo) tk)

+ 2i!(fi,1(x., + 0th, + yo 19tk)t’h’

+ 2fi1,(x., + 19th, yo + 19tk) tthk + fi„(x„ + 0th, yo + wk) fik’)
(0 < 19 < 1).

Da (x., yo) ein kritischer Punkt vonf ist, verschwindet die erste Klammer, und wir
erhalten

f0‘: y) =f(x0l yo) ‘l’ g (anhz + 2012M‘ + 022152) =f(x05 Yo) ‘i’ ‘,2: Q0’: k),

}. Oéitlgl,

‘) Die durch z = f(x1 , x1) dargestellte Fläche besitzt an der Stelle (x,‘°’, x1‘°’) einen Sattelpunkt.

8*
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wobei zur Abkürzung

an =fi11(xo ‘i’ m)’: yo ‘l’ 57k); "12 =fi12(xo ‘l’ 79th: yo ‘l’ Wk);
G22 = fi„(x„ + 19th, yo + 19tk); Q(h‚ k) = auh2 + Zauhk + azgk’

gesetzt wurde.
Somit gilt

f(x.y) —/(x..,y..) =’—22Q<h,k>. e)

Q(h‚ k) ist eine quadratische Form (vgl. Bd. 13, 4.1.), deren Koeffizienten a1 1 ‚ an ‚ a, 2

nach Voraussetzung (f(x, y) zweimal stetig differenzierbar) stetig von ‘l9, t, h, k ab-
hängen. Speziell gelten für t ~> 0 die Limesrelationen

limo‘ an =fiu(xox yo); 131% an =fl12(xo‚ yo);

1’iD;’1 U22 =/’|22(Xo» yo)-

Es gelte nun fm(x.,, yo) > 0 und D = finfigg — ffilz > 0 (an der Stelle (x0, y„)). Aus
Stetigkeitsgründen (f(x, y) zweimal stetig diflerenzierbar) gilt dann

an > 0 und 411422 — 0122 > 0 (u)
für hinreichend kleines ö > 0 und alle 19,1, h, k mit 0 < 19 < 1, [tl g 1, h’ + k? = ö’.

Wir formen um (man beachte die Relation an > 0):

2 k2

Q(h‚ k) = a11((h + Elk) + T(“na22 ‘ e139) *

all an

Da wegen h’ + k’ = ö’ nicht gleichzeitig h und k gleich null sein können, ist Q(h‚ k)
wegen (**) positiv. Folglich ergibt sich aus (*) die Ungleichung

f(x‚y) -f(xo..vo) > 0

für alle (x, y) + (x0, yo), die in einer hinreichend kleinen ö-Umgebung von (x0, yo)
liegen. Somit besitztf(x, y) an der Stelle (xo, yo) ein relatives Minimum. Entsprechend
wird die Aussage c) bewiesen. I

Beispiel 4.4: Es sei f(x, y) = ä x2 — Äxy + 9y’ + 3x —— l4y + ä. Gesucht sind die

Extremwerte von f(x, y). Es gilt git: = x — 4y + 3; a—f = —4x + 18y — 14. Als not-

wendige Bedingung für eine kritische Stelle von f(x, y) haben wir die beiden Glei-
chungen

x —— 4y + 3 = 0,

—4x+ l8y— 14=o,

aus denen sich xo= 1, y.,= 1 ergibt. Wegen i5: ; a;{=1 ; —afl——= -4
67 azf a2; 2 ax a? ax Ü .

erhalten wir D = —— ( ax ay) =18 -16 = 2; also D > 0. Es 1st also ll1
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P(1‚ 1) ein Extremwert von f(x, y) vorhanden, der wegen 2:1;- = l > 0 ein Minimum
ist. Der Wert von f(x‚ y) beträgt dort f(1‚ 1) = ——5.

Beispiel 4.5: Die Summe S = x + y + z der Kantenlängen x, y, z eines Quaders sei
gegeben. Wie lang sind diese Kanten zu wählen, damit der Oberflächeninhalt des
Quaders maximal wird? Es sei A der Oberfiächeninhalt des betrachteten Quaders,
dann gilt A = 2(xy + yz + xz). Wir eliminieren die Variable z durch die Beziehung
z = S — x —— y (S ist konstant). Daher wird A =f(x,y) = 2(xy + y(S —— x — y)
+ x(S — x — y)) = 2(—x" — xy -— y’ + Sx + Sy). Als notwendige Bedingung für eine
kritische Stelle vonf(x, y) erhalten wird durch Nullsetzen der ersten partiellen Ablei-
tungen die Beziehungen

2(——2x— y+S)=0‚
2(— x-—2y+S)=0‚

woraus sich x= gs, y= ä S und daher auch z= ä S ergibt. Wegen azf = -4;
63’ _ 62f , 62/ 62f 62f 2 _ . . .

§y7= -4, W = -2 gilt D = ~ (ax ay) = l2, d.h.‚ D 1st positiv.

Also liegt ein Extremwert für A an der Stelle x = §S; y= ä S vor, der wegen

Ö9"

5x7
male Oberfläche Am, ist gleich f(ä S; ä S) = ä S’.

= —4 < 0 ein Maximum ist. Der gesuchte Quader ist ein Würfel; die maxi-

Zum Abschluß dieses Abschnittes formulieren wir noch die einfachsten Kriterien
für das Vorliegen eines relativen Extremwertes einer Funktion von n Variablen. Alle
Definitionen sind vom Fall der Funktionen zweier Variabler her sinngemäß zu fiber-
tragen.

Satz 4.3: Es sei f(x,, ..., x„) eine in einem Gebiet des R" definierte und dort stetig
dzflerenzierbare Funktion mit reellen Werten. Besitzt f(x,, ...,x,,) an der Stelle
P(x,<°>, ..., x,,‘°’) einen (relativen) Extremwert, so gilt notwendig

fi1(x;‘°>,x,.“’>)= 0; fizbcfl“), x..‘°>) = 0; fl,.(x1‘°’, xn‘°’) = 0
(4.11)

oder kürzer:

df(x,<°>, x„"”) = 0. (4.11')

Zur Entscheidung über das Vorliegen eines (relativen) Extremwertes an einer kri-
tischen Stelle einer zweimal stetig difierenzierbaren Funktion untersucht man die
quadratische Form der Matrix (sog. Hesse‘)-Matrix) der zweiten partiellen Ableitungen
H = [a„,] mit

a2

415k = (xl(0): --»‚ xn(°’) =f1ik(x1(0): m. Xnw’),
i k

d.h. die Form

Q01:--'7 yn) =1‘; §10ik)’iyk~ (412)

‘) Ludwig Otto Hesse (1811-1874)

S. 4.3



5.4.4

118 4. Der Satz von Taylor und Extremwertaufgaben

Dann gilt der folgende Satz:

Satz 4.4 (Entscheidungsregei) :

1. Ist die quadratische Form Q = Q(y) (s. (4.12)) für alle von o verschiedenen Vek-

J’
toren y = 51] positiv (man sagt: Q ist positiv definit), so hat f(x1‚ ..., x„) an der

J’
Stelle P(x‚(°>:...‚ x,,‘°)) ein (relatives) Minimum.

2. Ist die quadratische Form Q = Q(y) (s. (4.12)) für alle von o verschiedenen Vek-

J’
toren y = [ E1] negativ (man sagt: Q ist negativ definit), so hat f(x„ ..., x,.) an der

yr:
Stelle P(x,(°>, ..., x,,<°)) ein (relatives) Maximum.

3. Nimmt die quadratische Form Q = Q(y) (s. (4.12)) sowohlpositive als auch negative
Werte an (man sagt: Q ist indefinit), so hat f(x„ , x„) an der Stelle P(x1‘°), , x,.‘°3)
keinen Extremwert.

(Für die Beweise der Sätze 4.3 und 4.4 siehe z.B. [4].)

Bemerkungen :

1. Für den Fall, daß die quadratische Form Q = Q(y) für alle Vektoren y nicht-
negativ bzw. nichtpositiv ist, aber für gewisse y =t= o gleich null ist (man sagt: Q ist
positiv bzw. negativ semidefinit), sind zusätzliche Untersuchungen erforderlich (der
obige Satz liefert dann keine Entscheidung).

2. Für n = 2 sind die Aussagen der Sätze 4.2 und 4.4 gleichwertig. Dies zeigt eine
einfache, hier übergangene Betrachtung.

3. In vielen praktischen Fällen ergibt sich das Vorliegen eines Extremwertes an der
untersuchten kritischen Stelle nach folgendem einfachem Prinzip, das die Anwendung
der Entscheidungsregel (Satz 4.4) erübrigt (und auf dem Weierstraßschen Satz über
stetige Funktionen auf abgeschlossenen beschränkten Definitionsbereichen im R"
beruht):

Istf(x„ ..., x„) auf der AbschließungG eines beschränkten Gebietes G < R" defi-
niert und stetig und in G differenzierbar, besitzt ferner f(x1, ..., x,.) in G einen ein-
zigen kritischen Punkt Po und gilt die Ung1eichungf(P.,) <f(P) für alle Randpunkte

P von G (d. h. fü_r alle P E (G \ G)), so ist Po die SteIl_e des absoluten Minimums von

f(x1, ..., x„) in G (d. h. f(P„) §f(Q) für alle Q E (G \ {P0})). Eine entsprechende
Aussage gilt für das absolute Maximum von f(x1, ..., x,. .

Häufig gegebene Begründungen der Form „nach der Anschauung ist klar, daß
f(x1, ‚ x‚.) an der gefundenen kritischen Stelle einen Extremwert besitzt“ entbehren
oft jeder Grundlage.

4. Zur praktischen Benutzung der Entscheidungsregel ist die folgende Tatsache nütz-
lich: Die quadratische Form Q(y) ist genau dann positiv (negativ) definit‚ wenn alle
Eigenwerte der zugehörigen symmetrischen Matrix [am] positiv (negativ) sind. (Auf
diese Weise ergibt sich auch der Satz 4.2.; vgl. hierzu auch Bd. 13; 4.1., 4.2.5.)
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4.2.3. Extremwertaufgaben mit Nebenbedingungen

Extremwertbetrachtungen finden bei vielen Problemen sowohl in Naturwissen-
schaft, Technik und Ökonomie im Rahmen der sog. „Operationsforschung“ zahl-
reiche Anwendungen. Das Ziel besteht immer darin, unter allen möglichen Varianten
diejenige zu finden, die im Hinblick auf ein besonderes Merkmal (z. B. Kosten in
Mark; Energieverbrauch in kWh) eine bestmögliche Variante darstellt. Diese best-
mögliche oder, wie man sagt, „optimale“ Variante realisiert unter den gegebenen
Bedingungen z. B. die geringsten (= minimalen) Kosten oder den geringsten Energie-
verbrauch. Das betrachtete Merkmal heißt auch „Zielfunktion“, wenn es als eine
Funktion der Variablen, die die möglichen Varianten beschreiben, dargestellt wer-
den kann. Rein äußerlich haben wir damit die folgende Problemstellung. Gegeben
ist eine Funktion f(x„ ..., x„)‚ die in einer gewissen Menge G des R" erklärt ist. Ge-
sucht sind alle Punkte P6], ..., E.) aus G, in denen f(x„ ..., x„) einen minimalen
(bzw. maximalen) Wert annimmt, d.h., für welche die Ungleichung

f(3E1, ..., E.) §f(x1, ..., x,.) (4.13)

für alle P(x1‚ ..., x„) aus G gilt. Ist die Menge G ein beschränktes Gebiet des R", so
liegt die in den vorangegangenen Abschnitten behandelte Problemstellung der Be-
stimmung relativer Extremwerte vor: Zur Bestimmung der Punkte P61, ..., 2,.)
ermittelt man alle relativen Minimalstellen und nimmt alle Punkte davon, in denen
die Funktion f(x1, ..., x„) den kleinsten Wert der (endlich vielen) relativen Minimal-
werte annimmt. (Dieser kleinste Wert heißt auch das absolute Minimum vonf(x1‚ ‚ x„)
in G.) In der Praxis liegt jedoch meist der Fall vor, daß die Menge G kein Gebiet
ist, sondern u. U. sogar eine recht komplizierte Struktur hat. Wir betrachten hier nur
den Fall, in welchem die Menge G durch Gleichungen beschrieben werden kann. Ist
z. B. die Menge G eine Kugeloberfiäche im R3 mit dem Mittelpunkt (x0, yo, z.,) und
dem Radius a > 0, so lautet die Beschreibung der Menge G in Gleichungsform:

G = {(x,y, z) I (x - xo)’ + (y - yo)’ + (Z - lo)’ = a’!

oder kurz

G:(x—xo)’+ (y-yo)’+ (z- zo)’= a2

oder auch

G:(x—xo)"’+(y-yo)’+(z—z.,)’—a’=0.

Gerade die letztgenannte Form der Beschreibung von G erweist sich für die Behand-
lung von Extremwertaufgaben als zweckmäßig. Ist nun eine (Ziel-) Funktion gegeben,
z. B. f(x‚ y, z) = x + y + z, die auf der Menge G betrachtet werden soll, so stellt die
Gleichung

(x-xo)2+(y-yo)’+(z-zo)’-a’=0
eine Zusatzbedingung oder Nebenbedingung (Restriktion) dar, die die Menge aller
zum Vergleich zugelassenen Punkte festlegt. Die Funktionf(x, y, z) = x + y + z ist
also nicht schlechthin zu einem Minimum (bzw. Maximum) zu machen, sondern
unter der Einhaltung von Nebenbedingungen. Dies führt auf folgende Definition:
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Definition 4.2: Es seif(x„ ..., x„) eine in einem Gebiet G des R" erklärte reelle Funk-
tion. Die Menge Go < R" sei die Menge aller Punkte P(x1, ..., x,.) aus G, für welche
(gleichzeitig) die folgenden Gleichungen gelten (m < n):

‘P1051, m, Xn) = 0,
c v o n v p I

(Pm(xl> ---9 xn) = 0:

wobei die Funktionen <p1(x,, ..., x,,), ..., <p,,.(x1, , x,,) reelle, in G erklärte Funktionen
sind. Die Aufgabe: „Man bestimme alle Punkte 1-‘($1, ..., 27,.) aus Go mit

fab "'3 En) §f(-xix m: x»)

für alle P(x1, , x„) aus G0“ heißt das Minimumprablem für f(x„ , x,.) unter den
Nebenbedingungen (N) (bzw. Restriktionen (N)).

ist anstelle des Minimums von f(x1, ..., x„) das Maximum von f(x1, ..., x„) ge-
sucht, so sprechen wir‘ von einem Maximumproblem mit Nebenbedingungen; beide
Möglichkeiten zusammenfassend, sprechen wir von einem Extremwertproblem mit
Nebenbedingungen.

Mittels der Differentialrechnung läßt sich eine einfache notwendige Bedingung
dafür aufstellen, daß ein Punkt eine Extremalstelle eines Extremwertproblems mit
Nebenbedingungen ist. Diese Bedingung ist die Sogenannte Multiplikatorenregel von
Lagrange, die wir im folgenden Satz formulieren:

Satz 4.5 (spezieller Fall): Es sei f(x‚ y) eine im Gebiet G g R2 definierte (reelle)
dzjferenzierbare Funktion, ebenso sei g(x, y) in G definiert und diflerenzierbar. Wir
setzen H(x‚ y; Ä) = f(x‚ y) + Äg(x‚ y) (i. reell). Besitzt f(x, y) an der Stelle P(xo‚ yo)
unter der Nebenbedingung g(x, y) = 0 einen (relativen) Extremwert (Maximum oder
Minimum) und gilt |g‚(xo‚ yo)! + lg,(xo, yo)! > 0, so gibt es ein lo mit

ÖH ÖH
‘$(xos}’o§}~o) = 0 und $(xo,yo;lo) = 0- (4-14)

Die Zahl lo heißt ein Lagrange-Mulfiplikator des betrachteten Extremwertproblems.

Die Gleichungen (4.14), sowie die Nebenbedingung g(xo, yo) = 0 bilden ein
System von drei (im allgemeinen nichtlinearen) Gleichungen für die drei gesuchten
Werte von x0 , yo , lo. Im Beispiel 4.6 wird die Auflösung dieser Gleichungen an einem
Spezialfall erläutert.

Satz 4.5 (allgemeiner Fall): Es seif(x, , , x,.) eine im Gebiet G g R" definierte (reelle)
difierenzierbare Funktion, ebenso seienm < n (reelle) stetig diflerenzierbare Funktionen
<p‚(x„ ...,x„), ..., ¢p,,,(x1,...,x,,) in G gegeben. Es sei H(x„ ...‚x„; h1, ..., 1m) =

f(x„...,x‚.) + Z lkq2;.(x1,...,x,.), wobei die 2,, beliebige reelle Zahlen bezeichnen.
k=l

Der Rang der Matrix (<p„„) sei an der Stelle (x1‘°’, ..., x,.‘°’) gleich m. Notwendig für
das Eintreten eines Extremwertes (relatives Maximum oder Minimum) an der
Stelle (x‚(°>‚ ..., x„(°l) für die Funktion f(x„ ..., x,,) unter den Nebenbe-
dingungen cp‚(x„ ..., x,,) = O, ..., <p,,,(x,, ..., x,,) = 0 ist das Bestehen der
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Gleichungen

öH öH OH ,:0’ :0,..., ‘0
an der Stelle (x,(°), ..., x„(°>) für gewisse 1,,..., 1,, sowie die Gültigkeit der Beziehungen

9710510)); m, xnm) = o,
(4.15)

<P„.(xi‘°’‚ m, xnl”) = 0-

Die Gleichungssysteme (4.l4’)‚ (4.15) bilden ein System von insgesamt n + m Glei-
chungen fiir die n + m Unbekannten x,<°), ..., x,,(°); Z1, ..., im. Für die Anwendung
des Satzes 4.5 bei Optimierungsaufgaben siehe auch [l7].

Beispiel 4.6: Welche Punkte der Ellipse 4x2 + ‚v2 —— 4 = 0 haben vom Punkt P(2; 0)
extremalen Abstand (relative Extremwerte)?

Lösung: Wir betrachten zur Vereinfachung der Rechnung das Quadrat des Ab-
standes des Punktes P(2‚ 0) von einem beliebigen Ellipsenpunkt P(x‚ y). Hat dieser
Abstand ein Maximum (Minimum) an einer bestimmten Stelle, so gilt das gleiche für
sein Quadrat. Wir betrachten daher die Funktion

f(x.y) = (x — 2)? +y2-

Als Nebenbedingung (Restriktion) kommt hinzu, daß der Punkt P(x‚ y) auf der El-
lipse liegen soll. Es muß daher die Gleichung

<.v(x‚ y) = 0
gelten mit <p(x, y) = 4x’ + y’ — 4. Nach Satz 4.5 bilden wir die Funktion

H(x‚y; 1) =f(x‚y) + l¢(x.y).

H(x,y; Ä) = (x —- 2)’ + y’ + 2(4):’ +y2 -- 4),

und stellen das Gleichungssystem für (x0, yo; Ä)

OH _ ÖH

also

W-Q . $=0. <;0(x.y)=0

auf. Im Beispiel lautet dieses System

2(x—2)+8/lx=0‚ 2y+2Zy=0, 4x2+y3—4=0.

Die zweite dieser Gleichungen kann in der äquivalenten Form

y(l + Ä) = 0

geschrieben werden. Es ist also entweder Ä= —l oder Ä =l= -1 und im letzteren
Falle y = 0. Im Fall Ä = —l erhalten wir aus der ersten Gleichung den Wert x = —§

und damit aus der letzten Gleichung die Werte y = 3}/5 und y = ~—§1/5. Im Fall
Z + —l erhalten wir wegen y = 0 aus der letzten Gleichung den Wert x = l oder
x= -1. Aus der ersten Gleichung ergeben sich die zugehörigen Werte von Ä zu
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Ä = ä bzw. Ä = —§. Wir erhalten also die folgenden Lösungssysteme

x1: 12 ‚V1: 0? 3-1: i‘;
x2=“1§ ‚V2: '0} }~2=‘%§

x3: —ä; ‚V3: H3; l3= -1;
x4: ‘ä; 74: ‘gl/g; 14 = ”1~

Zu diesen Lösungen gehören die folgenden Werte von f(x‚ y): f(x1, yl) = 1; f(x2, yz)

= 9; f(X3: ya) =f(xi‚ y.) = 35i. Wie man aus der Ungleichung f(x2‚ yz) <f(x3»J"a)

erkennt und mittels Bild 4.1 begründen kann, gelten die folgenden Feststellungen:

P(x1, yl) ist ein Punkt, für den der Abstand ein relatives Minimum (hier sogar das
absolute Minimum) hat;
P(x2‚ yg) ist ein Punkt, für den der Abstand ein relatives Minimum hat;
P(x„ ya); P(x4, y.) sind Punkte, in denen der Abstand ein relatives Maximum (und
sogar das absolute Maximum) annimmt.

\\ P{2,-0)
Bild 4.1

2

Es stellt sich natürlich sofort die Frage, ob es nicht möglich ist, gewisse hinreichende
Kriterien dafür aufzustellen, daß eine mittels der Lagrange-Multiplikatorenmethode
gefundene Stelle wirklich eine Extremalstelle ist. Im nächsten Abschnitt werden wir
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(ohne Beweis) eine solche Bedingung angeben und ihre Anwendbarkeit bei verschie-
denen Beispielen zeigen. Den Beweis des Satzes 4.5 führen wir für den Spezialfall, daß
eine Funktionf(x1 ‚ x2) zweier unabhängiger Veränderlicher unter einer Nebenbedin-
gung der Form g(x1, x2) = 0 auf Extremwerte hin zu untersuchen ist. Zur Vorberei-
tung des Beweises von Satz 4.5 beweisen wir einen Hilfssatz:

Hilfssatz 4.1: Im Gebiet G < R’ seien die reellen Funktionen f(x1‚ x2) und g(x1, x2)
stetig diflerenzierbar. Der Punkt P1, = P(x,<°>, x2(°)) sei ein Punkt von G mit g(P.,) =

g(x,<°?, x,(°>) = 0 undf(P0) =f(x1(°), x2<°)) = 21,. Der Rang der Matrix A = w‘ ml]
((11,; g| 1) gebildet an der Stelle (x,(">, x2(°>)) sei gleich 2. |9 g”

Darm besitzt die Funktion f(x1, x2) unter den Nebenbedingungen g(x1‚ x2) = 0 an
der Stelle Po = P(x,<°), x2<°>) keinen relativen Extremwert.

Beweis des Hilfssatzes 4.1: Es sei U eine beliebige, in G enthaltene Umgebung von
Po. Wir zeigen, daß in U sowohl Punkte liegen, die die Nebenbedingung g(x1, x2) = 0
erfüllen und in denenf(x1, x2) größere Werte als 22 = f(P1‚) annimmt, als auch solche
Punkte, die diese Nebenbedingung erfüllen und in denen f(x1‚ x2) kleinere Werte als
21, =f(P1,) annimmt.

Nach der Voraussetzung über den Rang von A gilt

fi1(Po) 8|1(Po)

/"l2(Po) §l2(Po)

Wir betrachten das Gleichungssystem

f(x1: x2) = Zo + h,

z(x1, x2) = 0,

detA= =l=0.

wobei h ein reeller Parameter ist. Wegen det A =¢= 0 ist auf dieses Gleichungssystem
der Satz von der impliziten Funktion anwendbar (Satz 3.12). Nach diesem Satz folgt,
daß es ein d1 > 0 gibt, so daß das obige Gleichungssystem für [h| g Ö1 nach x1 und
x2 auflösbar ist: x1 = <p1(h); x2 = <p2(h) (|h| g Ö1), wobei x1(°> = <p1(0); x2”) = q72(0) gilt
und der Punkt (q:,(h), q22(h)) für |h| g Ö1 in U liegt.

Wir setzen x1“): zp1(—ö1); x20>= <p2(—ö1) und erklären damit einen Punkt P1

= P(x1<‘>, x2(1)), entsprechend sei x1“) = 901(61); x2“) = cp2(ö1) und P2 = P(x,(’), x2(’>).
Die Punkte P1 und P2 liegen in U, und nach Definition der Auflösungsfunktionen
zp1(h)‚ (7220:) gelten die Beziehungen (Z1, = f(P1‚)):

f(P1)=z0—öl<z0 und 8(P1)=0§

f(P2)=Zo+‘§1>Zo und 5'(P2)=0-

Damit ist der Hilfssatz bewiesen. I '

Zum Beweis des Satzes 4.5 (für unseren Spezialfall) ergibt sich mittels des eben
bewiesenen Hilfssatzes 4.1 als notwendige Bedingung für einen Punkt Po aus G mit
g(P2)= 0 als Stelle eines relativen Extremwertes von f(x1,x2) unter der Neben-

bedingung g(x1, x2) = 0 die Forderung, daß der Rang der Matrix A = [fl‘(P“) g"(P°)]
_ _ g‘ (1„ zur.» gm)

kleiner 1st als 2. Da der Rang von [g|1(P°)] nach Voraussetzung (des Satzes 4.5)
2 0
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gleichl ist, muß der Rang von A ebenfalls gleich l sein. Daraus folgt, daß das
homogene lineare Gleichungssystem für die Werte 11 und 2.,

1LI'n(Po) ‘i’ 12811070) = 0»

ÄLfiZUJO) ‘i’ Ä28I2(Po) = 0

eine nichttriviale Lösung (2.1, 12 nicht beide gleich null) besitzt. Da g|1(P„) und g|2(1’0)
nicht beide gleich null sind, ist l1 =i= 0. Teilen wir die beiden letzten Gleichungen

durch ‚l1 und setzen wir Ä = Ag , so sehen wir, daß es eine reelle Zahl i. gibt, für die die
Gleichungen 1

fi1(Po)+ /'1g11(Po)= 0»

fl2(Po) + }~gI2(Po) = 0

erfüllt sind. Damit ist die Behauptung des Satzes 4.5 (für den betrachteten Spezial-
fall) bewiesen. I

4.2.4. Hinreichende Bedingungen‘ für das Vorliegen relativer Extremwerte
' für Extremwertaufgaben mit Nebenbedingungen

Analog zu den hinreichenden Bedingungen, die wir für Extremwertaufgaben ohne
Nebenbedingungen angegeben hatten (s. 4.2.2.), lassen sich auch für Extremwert-
aufgaben mit Nebenbedingungen hinreichende Bedingungen mittels des Verhaltens
einer aus den zweiten Ableitungen gebildeten quadratischen Form formulieren. Die
Besonderheit, welche neu hinzukommt, ist darin zu sehen, daß die zu betrachtende
quadratische Form jetzt nur auf einem Teilraum des R" auf (positive, negative) Defi-
nitheit zu untersuchen ist. Zur Verdeutlichung dieses Sachverhaltes betrachten wir
zunächst das Beispiel am Ende des vorangegangenen Abschnitts. Wir hatten fest-
gestellt, daß die Funktion

f(x‚ y) = (x - 2)’ + y’

mit der Nebenbedingung

<ß(x‚y)=4x’+y’—4=0
im Punkt (x1, y1) = (1, 0) ein Minimum annimmt. Bei der Untersuchung, ob die
Funktion f(x‚ y) dort tatsächlich ein Minimum (bei Einhaltung der Nebenbedingun-
gen) annimmt, muß man die Funktionswerte von f(x, y) mit dem Funktionswert
f(x1 , y1) = l für zu (x1, y1) benachbarte (x, y) vergleichen und zeigen, daß die Unglei-
chungf(x, y) g f(x1 , y1) für alle hinreichend nahe benachbarten (x, y), die der Neben-
bedingung genügen, gilt. Es ist sinnvoll, diese zu (x1, y1) benachbarten Werte (x, y)
in der Formx = x1 + h1, y = y; + h2 zu schreiben. Es interessiert also das Vorzeichen
der Differenz

f(x1 + h1; y; +h2) ‘f(xi‚ yl)

für 1h1| + {h2| < Ö (ö hinreichend klein) bei Einhaltung der Nebenbedingung

4(x1+ h1)? + (y, + h1)? — 4 = o.
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Die letzte Bedingung läßt sich aber wegen des Bestehens der Beziehung

4x,"’+y,’~4=0
auch in der Form 4(2x1h1 + h1*)+ (2y1h2 + h2’) = 0 schreiben. Division durch 2

ergibt schließlich

4x1h1 + y1h1 + (2/If + ä hf) = 0.

Da h1, h, betragsmäßig kleine Werte sind, wird das Verhalten der linken Seite letz—

terer Gleichung hauptsächlich durch den linearen Anteil (4x1h1 + y1h2) bestimmt.
Man kann zeigen, daß man die__Glieder höherer Ordnung tatsächlich vernachlässigen
darf und daher mit solchen Anderungen h1,h2 arbeitet, für die 4x1h1+y1h1 = 0
gilt. Im Beispiel (x1 = 1; y1 = O) lautet diese Bedingung 4h1 = 0 oder h1 = O.

Diese Gleichung legt in der h1, hg-Ebene einen linearen Teilraum fest, nämlich den
Teilraum E = {(h1, h2) | h1 = 0; h, beliebig}, der mit der hg-Achse identisch ist. Die
geometrische Deutung dieses Teilraumes ist die folgende: durch Parallelverschiebung
dieses Raumes derart, daß der Punkt (x1, y1) in dem parallel verschobenen Teilraum
liegt, erhält man die Tangente an die Kurve 4x’ + y“ — 4 = O (Ellipse) im Punkt
(x1, y1). Die betrachteten Änderungen x = x1 + h1, y = y1 + h2 werden also durch
solche ersetzt, für die der Punkt (x, y) nicht die Nebenbedingung <p(x, y) = 0 (mit
zp(x, y) = 4x’ + y’ — 4) erfüllt, sondern auf der Tangente an die Kurve <p(x, y) = 0
im Punkt (x1, y1) liegt. Das Vorzeichen der interessierenden DilTerenz

f(x1 + hnyx ‘i’ h2) ‘f(x1:,V1)

wird daher durch das Verhalten einer mit den zweiten Ableitungen von f(x, y) und
<p(x, y) gebildeten quadratischen Form auf dem zur Tangente durch den Punkt (x1 ‚ y1)
an die Kurve q>(x‚ y) = 0 parallelen linearen Teilraum E (durch den Punkt (0, 0))
beschrieben. Die exakte allgemeine Formulierung dieser Aussage ist der Inhalt des
folgenden Satzes.

Satz 4.6: Es sei G ein Gebiet des R" undf(x1‚ ..., x„) eine reellwertige zweimal stetig S.4.6
diflerenzierbare in G definierte Funktion; ebenso seien die Funktionen <p1(x1 , ‚ x„), ...,

<p„(x1‚ ..., x,.) in G zweimal stetig dzflerenzierbar (m < n). Das Gleichungssystem

6H .§£= 0, 1- l, ...‚n‚

<p1(x1, ..., x,.) = 0,

<p„‚(x1‚..., x„) = 0,

wobei

H(x1, ..., x„; h1, ..., 1,.) =f(x1‚ ..., x„) + §:}..»<p,~(x1, ..., x,.)

ist, besitze die Lösung

(x1<°>‚ , x„(°>; /1,<°>, ..., /1,,.<°>).

An dieser Stelle (x1‘°’, ..., x„‘°’) sei der Rang der Matrix (<p,,,,) gleich m.
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Dafür, daß die Stelle (x,(°), , x,.‘°)) eine Stelle eines relativen Minimums (Maximums)
der Funktion f(x1, ..., x,.) unter den Nebenbedingungen

‘P1(x1s m: xn) = o,

<p„.(x1‚ ..., x„) = 0

ist, ist hinreichend, daß die quadratische Form

Q = 901,, h.) = ä z" H„‚<x‚<°>‚ x.J°>;H°’. ml) km, (4.16)
. i=l j=1

auf dem linearen Teilraum E aller Vektoren (h1, ..., h„)‚ die den Gleichungen

„

911:.-(x1‘°’, xn‘°’) ha = 0,
|=

z" z,v,,.|,-(x,‘°), x,.(°>) h, = o (4.17)
i=1

genügen, positiv (negativ) definit ist. Ist Q auf E indefinit, so liegt an der Stelle
(x,(°>, ..., x,.(°)) kein Extremwert der Funktion f(x1, ..., x,.) unter den gestellten Neben-
bedingungen vor.

Das Arbeiten mit der in Satz 4.6 formulierten hinreichenden Bedingung erläutern
wir am Beispiel der am Ende von Abschnitt 4.2.3. behandelten Extremwertaufgabe.
Die Funktion H(x1, ..., x„; 2.„ ..., 1,.) hat dort die (bereits früher angegebene) Form

H(x,y; Ä)=(x—2)2+y’+}.(4x’+y’—4).

Es gelten daher die folgenden Beziehungen Hm = Hu = 2 + 81, Hm = Hm = H,”
= Hy, = 0, Hm = Hw = 2 + 2h. Die quadratische Form Q = Q(h„ ha) hat also die
Gestalt (für beliebige Punkte (x, y; 3.))

Q(h1‚ ha) = (2 + 8/1) h1’ + (2 + 21) h2’-

Wir erhielten bei der früheren Betrachtung dieser Extremwertaufgabe vier Lösungen.
Für jede von diesen muß auf dem jeweils zugehörigen Teilraum E die Definitheit der
zugehörigen quadratischen Form Q untersucht werden. Die Gleichung für den linea-
ren Teilraum E lautet allgemein

‘P|1(x: y) h1 ‘l’ ‘PI2(-V: J’) h2 = 0

mit <p(x, y) = 4x’ + y’ — 4, also

82th, + Zyh, = 0.

Für x, y; Ä sind jeweils die speziellen Werte der betrachteten Lösung einzusetzen. Wir
erhalten also die folgenden Fälle für E und Q:

Für (x1, h; l:)=(1,0;%)gi1t
5

E13 h1 = o: QÜH» h2) =3h22-
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.. 3 .

Fur (X2: ya; /12) = (-1.0; 3) 311*

E.:h.=o‚ Q(h.‚h.>=%h.2.

Für <x,.ya;2,..) = i6; —1)gm

._l§
I 3

Für (x4.y4;/14) = (—%r ' —1)gi1t

16 4
E45 _Thl ‘gl/gib = o: Qihnhz): _6h12-

E3 h1 +%1f5 h2 = o, 9021,71.) = —6h1’.

Wir betrachten weiter den Fall der Lösung (x1 , y1; h1). Gilt (h1, h2) E E1 und
(h1, h2) =|= (0, 0), so muß wegen h1 = 0 notwendig h2 =4= 0 gelten. Dann ist aber Q(h1 ‚ h2)

= #3112’ eine positive Zahl, Q(h1‚ h2) > 0. Mit anderen Worten, Q(h1‚ h2) ist auf E1
positiv definit, nach Satz 4.6 liegt bei (x1, y1) ein Minimum der Funktion f(x‚ y)
(unter der Nebenbedingung <p(x, y) = 0) vor. Man beachte, daß die quadratische
Form Q(h1‚ h2) = g h2’, wenn wir sie auf dem gesamten R’ betrachten (also für (h1, h2)

sämtliche Werte und nicht nur die mit h1 = 0 zulassen), keineswegs positiv definit,
sondern nur positiv semidefinit ist. Denn für alle Vektoren der Form (h1, h2) = (a, 0)
ist Q(h1‚ h2) gleich null (ohne daß (a, 0) = (0, 0) gilt). Durch eine entsprechende Dis-
kussion erhält man für die anderen Fälle die folgenden Aussagen:

1. Für (x2, y2; h2) ist Q(h1‚ h2) auf E, positiv definit.

2. Für (x3, ya; h2) ist Q(h1‚ h2) auf E; negativ definit.

3. Für (x1, y1; h1) ist Q(h1‚ h2) auf E1 negativ definit.

Es sind also (x3, ys), (x1, y1) Stellen relativer Maxima; (x2, ya) eine Stelle eines rela-
tiven Minimums vonf(x, y) = (x — 2)’ +* y” unter der Nebenbedingung 4x’ + y’ — 4
= 0. Damit sind die auf mehr anschaulichem Wege erhaltenen Ergebnisse am Ende
von Abschnitt 4.2.3. bestätigt.

Aufgabe 4.1: Man führe die Diskussion der Lösungen (x2, y2; h2); (x2, ya; l3); "

(x1, y1; h1) der oben behandelten Aufgabe mittels der quadratischen Form Q(h1‚ h2)

vollständig durch.

4.2.5. Beispiele für Extremwertaufgaben

4.2.5.1. Stnndortnroblem.Steiner-Weber-Problem

Unter einem Standortproblem versteht man eine Aufgabe des folgenden Typs;
Gegeben sind n Betriebe, die sich (in einer ebenen Darstellung) an den Orten P(x1, y1)‚
...‚ P(x‚„ y„) befinden. Gesucht ist die Lage S(x, y) einer Versorgungseinrichtung
(eines gemeinsamen Zulieferbetriebes usw.) derart, daß die Kosten für die Trans-
porte zwischen S(x, y) und den Betrieben an den Stellen P(x1‚ y1)‚ ...‚ P(x„‚ y„) ins-
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gesamt minimal werden. Sieht man die Kosten von S(x, y) zu P(x„, yk) proportional
zum Abstand (bzw. zum Abstandsquadrat) dieser beiden Punkte an, was in vielen
Fällen zutrifft, so haben diese Kosten die Form

¢1k[(Xk ’ -")2 + (}’I.- - W1’,

wobei ak ein geeigneter Proportionalitätsfaktor ist (k = l, ...‚ n). Die Gesamtkosten

f(x‚ y) arm — x)? + (y. — m’ (4.18)

sollen minimal werden. Wir erhalten somit die Aufgabe, die Funktionf(x‚ y) (das sog.
,,ZieIfunktianal“) auf ihre Minimalstellen hin zu untersuchen, ein Problem, das wir
mit den in Abschnitt 4.2.4. entwickelten Methoden im Prinzip (d. h. abgesehen von
Schwierigkeiten bei der numerischen Auswertung) lösen können. _

Anstelle der Funktion (4.18) betrachtet man zur Vereinfachung auch häufig die
Funktion

g(x‚ y) =k§’1a,3[(xk — x)’ + (yr — y)*]. (4.19)

Aufgaben, bei denen eine Funktion vom Typ (4.18) oder vom Typ (4.19) auf Extrem-
werte hin zu untersuchen ist, bezeichnet man auch als Aufgaben vom Typ des „Stei-
ner-Weber-Problems“ (s. Literatur [8], [l5]).

Wir behandeln zur Veranschaulichung eine auf den Ansatz (4.19) begründete
Standortaufgabe mit Restriktionen, d.h., der gesuchte Punkt S(x‚ y) unterliegt noch
zusätzlichen Nebenbedingungen. Solche Nebenbedingungen können zustande kom-
men, wenn z. B. gewisse Gebiete für die Lage von S(x‚ y) auszuschließen sind (infolge
ungünstigen Baugrundes usw.) oder der Punkt S(x‚ y) an einer bestimmten Straße,
Eisenbahnlinie usw. liegen soll.

Beispiel 4.7: An den Orten P1(0; 0), P2(0; 1), P;.,(0; 2) befinden sich Großbaustellen,
die durch ein gemeinsames Betonwerk mit Fertigteilen zu versorgen sind (s. Bild 4.2).
Das Betonwerk S(x‚ y) soll an der Bahnlinie mit der Kurvendarstellung y’ — x’ + 1 = 0
(x < 0) errichtet werden, und zwar so, daß die Gesamttransportkosten (pro Tag)
möglichst gering werden. "

Zur Lösung dieser Aufgaben benutzen wir den Ansatz mit (4.19) ak = 1 (Trans-
portkosten nur abhängig von der Entfernung). Es ist also die Funktion g(x‚ y) =

x’ + y’ + x’ + (y — l)’ + x’ + (y — 2)’ zum Minimum zu machen unter der Neben-
bedingung <p(x, y) = 0 mit ¢p(x, y) = y’ — x’ + 1 (x < 0). Es gilt g(x, y) = 3x’ + 3y’
— 6y+ 5, und damit ist H(x,y; Ä) = 3x’ + 3y’ — 6y + 5 + Ä(y’ —- x’ +1). Zu-
gehörige Gleichungen:

H.=o‚ H‚=o‚ m(x‚y)= 0

2x(3—/I)= o,

2y(3+/1)= 6,

y’—x’=—l.

oder
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«
N

x
:

1 Bild 4.2
F, 7 X

Aus der ersten Gleichung folgt, daß x = 0 oder Ä = 3 gelten muß. Da für die Punkte
der Bahnlinie x < 0 gilt, entfällt die erste Möglichkeit, und es gilt /I = 3. Damit folgt
aus der zweiten Gleichung 12y = 6 oder y = Q, womit sich aus der dritten Gleichung
(wegen x < 0) die Lösung x = —§}/5 ergibt. Diese Werte (x, y; Ä) = (—§]/3, Q; 3)
sind die einzige Lösung des betrachteten Gleichungssystems. Die Diskussion der zu-
gehörigen quadratischen Form auf dem entsprechenden linearen Teilraum zeigt, daß
ein relatives Minimum vorliegt. Da mit x—> —oo, y—> +o<> (bz_w. y—> -00) auch

g(x‚ y) -—> +o<> geht, ist der gefundene Punkt S(x‚ y) = S(—5]/5; 5) die Stelle des
absoluten Minimums von g(x‚ y) unter der Nebenbedingung y’ — x2 + l = 0.

Bemerkung 4.4: Gehen wir nicht von g(x‚ y) = 3x’ + 3y’ — 6y + 5, sondern von

f(x‚ y) = Vx’ + y’ + I/x2 + (y — l)’ + Vx’ + (y — 2)” aus, so erhalten wir eine
Lösung S(x‚ y), die in der Nähe der oben gefundenen Lösung liegt, deren rechneri-
sche Ermittlung jedoch wesentlich schwieriger ist. Die obige Lösung kann als eine
für die Zwecke der Praxis ausreichende Näherung für die Lösung der Extremwert-
aufgabe für f(x, y) unter denselben Nebenbedingungen angesehen werden.

9 Harbarch/Biedrioh, pm. menu.
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4.7.5.2. Kritische Punkte des elektrischen Feldes

Beispiel 4.8: Gegeben seien zwei Punktladungen Q, = l, Q, = 1, die sich an den
Orten P‚(l‚ 1, 1) bzw. P2(—l, -1, -1) befinden. Die beiden Punktladungen er-
zeugen ein elektrisches Feld. Als Potential eines elektrischen Feldes bezeichnet man
die elektrische Spannung zwischen einem beliebigen Raumpunkt und einem festen
Bezugspunkt. Die Feldstärke ergibt sich dann als negativer Gradient (s. 5.2.1.) des
Potentials. In der Elektrizitätslehre wird gezeigt, daß das Potential der beiden Punkt-
ladungen gegen Unendlich durch den Ausdruck

Q1 + Q2

U(x’ y’ Z) = 4'n:5or1 4r:s°r2

(r1, r, Abstand zwischen P(x‚ y, z) und P, bzw. P,;eo Influenzkonstante) gegeben
ist. Man weise nach, daß der Punkt P(O, 0, 0) ein kritischer Punkt des von den beiden
Punkten erzeugten Potentials U(x‚ y, z) ist, daß aber U(x‚ y, z) an dieser Stelle weder
ein relatives Maximum noch ein relatives Minimum hat. Ein solcher Punkt heißt,
da die Feldstärke (—grad U) dort verschwindet, ein sogenannter „Gleichgewichts-
punk!“ des elektrischen Feldes‘)

Wir betrachten anstelle von U(x‚ y, z) die Funktion V(x‚ y, z) = 47:e„U(x, y, z).
Dann gilt

l l
V(xx}’»Zi=Tl+T2 (rlsr2#:0)

mit r‚’=(x— l)’+(y— l)’+(z— l)’ und r‚’=(x+ l)’+(y+ 1)’+(z+ l)’.

Ferner ist

V„=(—:13l—)(x—l)+ (i) (x+ 1),

m.=‘j—l’o—n+%iy+n‚

(- 1)
r,“V.3=3})(z—1>+ (z+1).

Für x= y = z = 0 gilt r, = r, =1/3, und daher ist dort V1, = V., = M, ——: 0; somit
ist P(O, 0, 0) tatsächlich ein kritischer Punkt von V (und auch von U). An dieser Stelle

gilt .

r,“ — 3(x— l)2r1 + r,“ — 3(x+ l)5’r2
V. = —(

u T1" '2“ «o.o,o>

= o; V122 = Visa = 0;

‘) Bezüglich der Operation „grad“ vgl. 5.2.1.
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r13-0——3(y— l)r,
r1‘

+(X+1)‘b.0—3(6y+l)'-1)V. .2 = — (o: — 1)

_‚L‚ QL.
3V3 3Vä

Die Matrix A der zweiten partiellen Ableitungen von V, die Hessesche Matrix, hat
also die Form

(o.o.o)

SVI13= I/V23:

0 1 1 2

A=a|:101Jmita=——_,
l 1 O 3]/3

Die zugehörige quadratische Form lautet (s. 4.2.4.)

0 l 1 h,

Q(hi»h2;ha)=hTAh=a(h1;h2:h3) [1 01][h2]
1 1 0 h3

h, + h;

= a(h„ ha, /13) [h + h3] = 2a(h1h2 + hghg + h,h3).

h1 + h,

Diese quadratische Form ist indefinit. Also liegt kein Extremwert vor. Dieses Ver-
halten ist für elektrostatische Potentiale typisch (vgl. Bd. 8).

4.2.5.3. Geometrische Beispiele

Beispiel 4.9: Im dreidimensionalen Raum R’ sei ein Punkt P(u, v, w) gegeben mit
u > 0, v > 0, w > O. Gesucht ist diejenige Ebene durch den Punkt P(u, v, w), fiir die
das von den Koordinatenebenen und der gesuchten Ebene im ersten Oktanten
(x g O, y g 0, z 2 0) gebildete Tetraeder einen kleinstmöglichen Rauminhalt hat.

Zur Lösung verwenden wir die Abschnittsglcichung der Ebene, die die Koordina-
tenachsen in den Punkten P(a‚ 0, 0); P(0, b, 0); P(0, 0, c) schneidet. Ist P(x‚ y, z)
der laufende Punkt dieser Ebene, so gilt

Z
b

Das’ Volumen des von dieser Ebene vom ersten Oktanten abgeschnittenen Körpers
ist V = V(a‚ b, c) = äabc. Da der Punkt P(u, v, w) auf dieser Ebene liegen soll, erhal-
ten wir als Nebenbedingung die Gleichung

x Z;+ +?=1 (asb:c>0)-

1
b

Zur Behandlung der Aufgabe sind die ersten partiellen Ableitungen der Funktion

H(a, b, c; Ä) = ä abc +Ä (ä + ä + g —— 1 )nach a, b, c gleich null zu setzen. Das

ergibt folgende Gleichungen: i

Äu 1l Äv
Ebc——?=0‚ Eac—F=0,

ll W
—+ +—=.
l1 C

1 /1w u
gab-——c2——0, ;+7;+-[-1.
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Durch Auflösen der ersten drei Gleichungen jeweils nach und Addition der so

erhaltenen Gleichungen ergibt sich unter Verwendung der Nebenbedingung (vierte

Gleichung) die Beziehung ä = 72-; , aus der weiter die Gleichungen a = 3a, b = 3v,

c = 3w, Ä = 277 uvw sowie V(3u, 3U, 3w) = äuvw folgen. Man kann zeigen, daß tat-

sächlich das (absolute) Minimum von V(a, b, c) vorliegt. Die gesuchte Ebene hat die

Gleichung ä + ä + g = 3.

4.3. Die Methode der kleinsten Quadrate

Die Methode der kleinsten Quadrate wird vor allem bei Problemen der Ausgleichs-
rechnung (Ausgleichung von Fehlern) und bei der Approximation von Funktionen
mittels „einfacherer“ Funktionen angewandt. Sie kann wahrscheinlichkeitstheore-
tisch begründet werden (s. [5]). Da die Anwendung dieser Methode auf eine Extrem—
wertaufgabe für Funktionen mehrerer Variabler führt, wollen wir sie im Rahmen die-
ses Bandes behandeln. Wir werden feststellen, daß man genauer von einer „Methode
der kleinsten Quadratsumme“ sprechen müßte (vgl. Bd. l8, Abschn. 3.).

Wir erläutern diese Methode am Beispiel des Mittelwertes einer Beobachtungs-
reihe. Dabei folgen wir im wesentlichen den Betrachtungen in [5]. Die einzelnen
Meßwerte für eine bestimmte interessierende Größe, die als konstant anzusehen ist,
werden infolge unvermeidbarer Meßfehler unterschiedlich ausfallen. Die Ausgleichs-
rechnung hat die Aufgabe, einen „brauchbaren Ersatzwert“ für den wahren, aber
unbekannten Wert der gemessenen Größe zu definieren. Sind x„ ...‚ x„ die gemes-
senen Werte und 3 der Wert, der die wahre Größe ersetzen soll, so verlangt die
Methode der kleinsten Quadrate, daß für die scheinbaren Fehler

r‚«=x.»—x (i=l,...‚n)
die Quadratsumme

7L

Z H’
i=1

ein Minimum werden soll. Die obige „Fehlerquadratsumme“ hängt von den festen,
gegebenen Größen x1, ...‚ x‚. und der zunächst als variabel aufzufassenden Größe
E ab. Wir ersetzen 2 formal durch den Buchstaben x und bezeichnen danach mit Tc

nur denjenigen Wert von x, der das gesuchte Minimum der Quadratsumme liefert.
7!

Wir untersuchen also die Funktion F(x) = Z r,-2 = Z (x.- — x)’ auf ihre Extremwerte.
t- l i=l

Diese Extremwertaufgabe für eine Funktion von nur einer Veränderlichen wird wie
im Band 2 gelöst. Es gilt

n

F’(x)=—2ié:(x.>—x)=—-(

n

Z xi. Da F”(x) durchweg größer als null ist,
=l

x.- — nx) und F”(x)= 2n.
I=1

=
|>

--

F’(x) wird gleich null nur für x =
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liefert dieser Wert eine (und die einzige) Minimalstelle von F(x) (absolutes Minimum).
Diesen Wert x = i, also

2= l x„ (4.20)
n l=l

bezeichnet man bekanntlich als den Mittelwert der Beobachtungsreihe x1, ...‚ x„
oder auch als arithmetisches Mittel dieser Werte. Der gewöhnliche Mittelwert liefert
im Sinne der Methode der kleinsten Quadrate den „besten Ersatz“ für den wahren
Wert einer beobachteten Größe.
' Eine weitere Anwendung der Methode der kleinsten Quadrate finden wir in der Aus-
gleichsrechnung bei der Aufgabe, die Werte von nur indirekt zugänglichen Meß-
größen (vermittelnde Beobachtungen) bestmöglich zu bestimmen. Dabei können
einerseits überschüssige Beobachtungen vorliegen oder andererseits zusätzliche Be-
dingungsgleichungen vorhanden sein (bedingte Beobachtungen). Beispielsweise kann
sich die Messung einer Strecke zusammensetzen aus der Messung zweier Teil-
strecken, deren Summe die Gesamtstrecke ist. Wird unabhängig davon die Gesamt-
strecke auf eine andere Weise gemessen, so liegt eine überschüssige Messung vor. Die
Messungen der Teilstrecken und der Gesamtstrecke sind notwendig fehlerbehaftet,
und die Summe der Meßwerte der Teilstrecken wird vom Meßwert der Gesamt-
strecke verschieden sein. Also ergibt sich die Frage nach der günstigsten Korrektur
der Meßwerte der Teilstrecken und der Gesamtstrecke. Ein Beispiel für das Vorliegen
zusätzlicher Bedingungsgleichungen liefert die Messung der drei Innenwinkel eines
Dreiecks; als Gleichung haben wir die Forderung, daß die Summe dieser Winkel 180°
betragen muß. Wird jeder Innenwinkel gemessen, so ist diese Forderung infolge der
auftretenden Meßfehler sicher nicht erfüllt, also muß die Frage nach einer Korrektur,
einem „Ausgleich“ dieser Werte, gestellt werden.

Die allgemeine Verfahrensweise in jedem dieser Fälle besteht darin, daß man geeig-
‘nete Fehlergrbßen definiert, die von den auszugleichenden Werten abhängen, und die
ausgeglichenen Werte so festlegt, daß die Summe der Quadrate dieser Fehlergrößen
minimal wird. Zur Erläuterung dieses Prinzips betrachten wir das folgende Beispiel:

Beispiel 4.10 (vgl. [5]): Eine Strecke AC (s. Bild 4.3) werde mit 165,21 m gemessen.
Die Meßwerte der Teilstrecken AB bzw. BC seien 50,26 m bzw. 114,30 m. Die
Summe dieser Meßwerte, 164,56 m, ist vom Meßwert für die Strecke AC verschieden.
Es ist also ein Ausgleich erforderlich. Die auszugleichenden Werte der Längen der
Strecken AB bzw. BC bezeichnen wir mit x, bzw. x2. Der Meßwert der Strecke AC
stellt also eine überschüssige Beobachtung für die Festlegung von x, und x2 dar.

x, x,
A J C Bild 4.3

Wir betrachten die folgenden Fehlergrößen v1, 12„ v3:

v, = x1 — 50,26,

u; = x2 — 114,30,

v; = x1 + x2 -165,21.

l0 Harbarth/Riedxich, Difl. Rechn.
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Wir wählen die ausgeglichenen Werte x, = x2‚x2 = 5:2 so, daß die Summe Q =

= Q(x„ x2) = v,’ + v2’ + v,’ = (x1 —- 50,26)? + (x2 — 114,30)’ + (x1 + x2 — 165,21)”
minimal wird. Dazu bilden wir die ersten partiellen Ableitungen von Q nach x1, x2 und
setzen diese Ableitungen gleich null. Das entstehende Gleichungssystem hat als
Lösung die gesuchten Werte 5:1, x2. Es gilt

%‘Q—-= 2(x, — 50,26) + 2(x, + x2 —~ 165,21),
l

ÖQ = 2(x2 — 114,30) + 2(x, + x2 — 165,21).
bx;

Daher hat das Gleichungssystem Q1, = 0, Q‚2 = 0 die Form

22, + 5:2 = 215,47,

5:, + 25:2 = 279,51.

Man nennt diese Gleichungen auch die „Normalgleichungen“ des gegebenen Aus-
gleichsproblems. Als (einzige) Lösung ergibt sich 5:, = 50,49; x2 114,52 mit
der Summe 5:1 + 5:2 = 165,01. Sieliefert, wie sich zeigen läßt, das (absolute) Mini-
mum von Q.

Aufgabe 4.2 (vgl. [5]): Für die Winkel eines Dreiecks ergeben sich die folgenden
Meßwerte o: = 45° 16'; ß = 30°l0’; y = lO5°l2’. Sie sind so auszugleichen, daß die
Summe der ausgeglichenen Winkel 180° beträgt. Diese Aufgabe ist als Extremwert-
problem mit Nebenbedingungen zu behandeln.

Die Methode der kleinsten Quadrate wird schließlich sehr ausgiebig bei der Be-
stimmung von Ausgleichskurven und zur Approximation von Funktionen benutzt.
Der Grundgedanke besteht darin, daß kompliziert zusammengesetzte Funktionen
bzw. Funktionen, die nur näherungsweise durch Meßwerte gegeben sind, durch Funk-
tionen von bekannter einfacher Bauart ersetzt bzw. angenähert werden.

Bei physikalischen und technischen Meßvorgängen werden Wertepaare (x.-, y.-)

(i = 1, ...‚ n) gemessen. Man nimmt an, daß diese Wertepaare auf einer Kurve liegen,
die einen bekannten, einfachen Funktionstyp beschreibt. Da man auch hier Meß-
fehler von vornherein nicht ausschließen kann, ermittelt man die gesuchte Kurve
als sog. Ausgleichskurve, d.h. als eine Kurve, die sich dem vorliegenden Meßvor-
gang am besten anpaßt unter der Bedingung, daß sie einem gegebenen einfachen
Kurventyp (Gerade, Parabel, ...) angehört.

Wir betrachten zur Verdeutlichung ein Beispiel für eine Ausgleichsgerade‚ die mit
der Methode der kleinsten Quadrate bestimmt wird. Es seien die Werte (x‚-‚ y.—)

(i = 1, ..., n) gegeben. Gesucht ist eine Gerade y(x) = ax + b, für die der Ausdruck

Q = Q(a‚ b) = (ya — y(x.-))2 (4-21)

minimal wird. Man sucht also diejenige Gerade, die an den Stellen x.- von den gege-
benen Werten y, im Sinne der Summe der Fehlerquadrate am wenigsten abweicht.
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Die Bestimmung der Konstanten a, b erfolgt in der üblichen Weise aus den Gleichun-
gen

ÖQ. ÖQ
Ta - °’ Tb r °’

mit der gesuchten Lösung a = ä, b = b. Zur Durchführung der Rechnung setzen wir
in den Ausdruck (4.21) für y(x,v) die Werte y(x;) = ax; + b (i = l, ‚ n) ein und erhal-
ten

Q(a, b) = 2o.- — ax.- — b)’.

Also wird
ÖQ "

Ta - ‘zglUi - l1x.'— b) xi.

öQ ' "W= ——2E1(y.- r- (IX; —

. . ‚ 8Q ÖQ . .

(man beachte die Kettenregeli). Die Gleichungen W = 0,E = 0 sind also gleich-

bedeutend mit den Gleichungen (sog. Normalgleichungen)

0 = 12:01,- — ax.» — b) x, = ix.-y; — aznfilxg’ — b ix.-, (4.22)

0=>5(y;—ax.»—b)=iy.-—aix.-—nb,
i=1 i=1 i=1

aus denen man die gesuchten Werte a = ä, b = b berechnen kann. (4.22) stellt ein
lineares Gleichungssystem für diese beiden Werte dar, welches für den Fall, daß nicht
alle x.~ denselben Wert haben, eine von null verschiedene Koeffizientendeterminante
und somit genau eine Lösung besitzt.

Die Gerade }7(x) = äx + b ist die sog. Regressionsgerade (vgl. Bd. 17). Sie liefert
das absolute Minimum von Q (a, b).

Aufgabe 4.3: Die Meßpunkte P(x‚-, yg) (i = 1, ...‚ n) sollen nach der Methode der
kleinsten Quadrate durch eine Kurve der Form

ausgeglichen werden. Es ist das System der Normalgleichungen zu bestimmen, und
die gesuchten Werte a, b sind speziell für die Punkte einer Meßreihe mit den Werten
P(~—2; 15), P(—1;5), P(0; 1), P(l; l), P(2; 3) zu ermitteln. Wie groß ist die mini-
male Summe der Fehlerquadrate‚ und wie groß ist das Maximum des absoluten Feh-
lers für die Meßpunkte?

Die Approximation von Funktionen mittels der Methode der kleinsten Quadrate
ist eine weitere Anwendung dieses Prinzips, die es ermöglicht, eine gegebene kompli-
zierte Funktion für einen gewissen Argumentbereieh durch eine einfachere zu erset-
zen. Im Unterschied zu den Ansgleichskurven, die die Fehlerquadrate an nur endlich
vielen Bezugsstellen berücksichtigen, werden zur Bestimmung der Approximations-
kurven alle Argumentstellen bei der Bildung der Fehlerquadrate berücksichtigt; die

10*
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bisher auftretende Summe über die Fehlerquadrate an endlich vielen Stellen wird
durch ein entsprechendes Integral ersetzt. Ganz besonders wichtig ist dieses Gebiet
durch die Entwicklung der EDVA geworden, weil es bei der Benutzung dieser An-
lagen darum geht, die häufig benutzten Funktionen (sin, cos, ...) durch eine einfache
Rechenvorschrift darzustellen. Das Prinzip dieser Methode besteht darin, daß eine
Funktion f(x)‚ die z.B. in einem Intervall [x1, x,] gegeben ist, durch eine Funktion
f(x; a1, ...‚ a„) approximiert werden soll, die von einfacher Bauart (z.B. ein Poly-
nom) ist und Parameter a1, ‚ a„ enthält. Diese Parameter werden so bestimmt, daß
das Integral über die Fehlerquadrate

Q = 20:1. a.) = fl/(x) —f<x; an a»? ax

ein Minimum wird. Man spricht daher auch von der Approximation im Mittel. Das
folgende Beispiel verdeutlicht den allgemeinen Sachverhalt.

(4.23)

Beispiel 4.11: Welche Gerade f(x; a1, a2) = alx + a, ersetzt die Kurve f(x) = xi‘ im
Intervall [0, l] im Sinne der Approximation im Mittel am besten? Wir berechnen zur
Lösung das Integral

1 _ 1 % 2

Q=f[f(x)—f(x; a1,a2)12dx=f [x —a.x—a. dx
0 0

3 4 4 1

=3;-+af+a1a,—7a1—?ag +j4«~

. . Ö
Die Extremwertaufgabe für Q = Q(a„ a2) führt auf die Gleichungen —Q = 0,
aQ Ba,

—— = 0 oder
da,

§a1 + a2 — ä = 0.
a, + Zug — i = 0

mit der (einzigen) Lösung a, = 2% ‚ a, = — :—5 . Die gesuchte Gerade lautet daher

f‘ xi —i)=“li (0<xS 1) (Skizze!)
’ 3S ’ 35 35 = ‘ '

Ein besonders wichtiger Fall der Approximation ist die Approximation durch Sy-
steme orthogonaler Funktionen. Hierzu geben wir erst die folgende Definition an.

Definition 4.3: Eine Folge (<p‚.(x)) von Funktionen, die auf einem Intervall [a, b] defi-
niert sind‚ heißt ein Orthogonalsystem bezüglich des Intervalls [a, b], wenn die Glei-
chung

b

I f <m(x) 9»,-<x> dx = 0 (i +1) (4.24)

für alle i, j mit i =§= j besteht. Gilt zusätzlich die Gleichung
b

f (go.-(x))= dx = 1 (i = 1, 2, ...)‚ (4.25)
a

so heißt die Folge (q2,.(x)) ein Orthonormalsystem auf [a, b].
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Man stellt sich nun die Aufgabe, eine in [a‚ b] gegebene Funktion f(x) durch eine
Linearkombination

f(x) =f_(x; an an) = a1<z>i(x)+ a2¢2(x) + + a..<pn(x)

= aw)

im Sinne der Approximation im Mittel bestmöglich zu ersetzen. Ein bekanntes Bei-
spiel für ein Orthogonalsystem ist das System der trigonometrischen Funktionen
1, cos x, cos 2x, ..., cos nx, ..., sin x, sin 2x, ..., sin nx, ‚ betrachtet auf dem Inter-
vall [0, 271]. Es gelten die Gleichungen

2" {O für m =l= n,
fcos mx cos nx dx = ..

0 7: fur m = n # 0,

21:

fcosmxsinnxdx=0,
0

2 ..". . 0 fur m # n,f sin mx SID nx dx = ..

0 11: fur m = n,

die zeigen, daß das genannte System ein Orthogonalsystem ist. Man schreibt hier

f(x)=%+ a‚cosx+ + a„cosnx+ b‚sinx+ b2sin2x

+ + b„ sin nx

und nennt diesen Ausdruck ein trigonometrisches Polynom vom Grade n. Der Vor-
teil der Orthogonalsysteme bei der Approximation liegt in folgendem Sachver-
halt. ‘

Satz 4.7: Ist (<,v,.(x)) ein Orthogonalsystem auf [a‚ b], ferner f(x) eine auf [a‚ b] defi- 5.4.7
nierte (integrierbare) Funktion, so wird das (absolute) Minimum der quadratischen
Abweichung

b Yl

Q = Q(al> an) = f (f(x) 7:21 ai‘Pi(x))2 dx (4.26)

für die Werte b a

[f(x) um dx
a,-=13.-="—,,—j 1, ...,")

f(<Pi(x))2 dx

und nur für diese angenommen. Das (absolute) Minimum von Q hat den Wert

;=1
Q = Q<a1,...,an>= l (f(x))’ ax] — ä f(97i(x))2 ax).
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Für das Beispiel der trigonometrischen Funktionen auf dem Intervall [0, 27:] er-
halten wir die Formeln von Euler und Fourier:

21:

ä‚.= %ff(x)coskx dx (k = o, ...‚n)

° 2" (4.28)

5k = —T‘:—ff(x)sinkx dx (k = l,...,n).
o

Für Sogenannte vollständige Orthogonalsysteme (<p„(x)) gilt lim Q(¢'z1, , (x„) = 0,
YI->® n

d. h., mit wachsendem n wird die Approximation vonf(x) durch die Summe E äktpk(x)
k=l

immer besser. Man gelangt auf diesem Wege zur Theorie der Orthogonalreihen (vgl.
Bd. 12) und, da die trigonometrischen Funktionen 1, cos x, cos 2x, ..., cos nx, ...;
sin x, sin 2x, ...‚ ‚ sin nx, ein vollständiges Orthogonalsystem auf [0, 211:] bilden,
zur Theorie der trigonometrischen Reihen oder Fourier-Reihen (vgl. Band 3).

Aufgabe 4.4: Die Funktionf(x) = x‘ ist im Intervall [0, 21:] im Sinne der Approxima-
tion im Mittel bestmöglich durch einen Ausdruck der Form

f(x)=%+a1cosx+a,cos2x+b1sinx+b2sin2x

zu approximieren.

Aufgabe 4.5.: Es sind die Koeffizienten der Regressionsgeraden flx) = fix + I3 aus
den Gleichungen (4. 22) zu ermitteln. Wie groß ist die minimale Summe der Fehler-
quadrate Q(ä; b)?

Aufgabe 4.6.: Ist f(x„..., x„) auf dem gesamten R" definiert und differenzierbar, und
besitzt f(x1‚ ...‚ x„) im R" nur einen einzigen kritischen Punkt P, und gilt ferner
1imf(x,, ...,x,.) = +00 für (x? + x2 + xi) -> +00, so ist Po Stelle des absoluten
Minimums vonf(x„ ...,x,,) im R" (Hinweis: S. 118, Bemerkung 3).



5. Skalare Felder und Vektorfelder

5.1. Allgemeine Betrachtungen zum Feldbegrifl‘

Im Unterschied zur Betrachtungsweise der Punktmechanik‚ die davon ausgeht,
daß die physikalischen Eigenschaften eines Teilchens, z. B. die Masse (näherungsweise)
in einem Punkt konzentriert sind, wird beim Feldbegriff die Vorstellung zugrunde
gelegt, daß eine bestimmte physikalische Größe in jedem Punkt eines räumlichen
Gebietes betrachtet werden kann. Man unterscheidet (mehr aus historischen Grün-
den) zwischen skalaren Feldern und Vektorfeldern (vgl. Abschnitt 2.6.1.).

Ein skalares Feld ordnet jedem Punkt eines Gebietes des R3 einen Skalar, d. h. eine
reelle Zahl, zu. Beispielsweise sind die Temperaturverteilung in einem Gewächshaus
oder die Größe des Luftdruckes in den verschiedenen Punkten der Erdoberfläche
und der Atmosphäre Spezialfälle skalarer Felder. Zu einem festen Zeitpunkt kann ein
skalares Feld durch eine (reelle) Funktion U = U(r) mit r = x = xlel +__x2e2 + x3e2

beschrieben werden, die in einem gewissen Gebiet des R3 definiert ist. Andert sich
das betrachtete skalare Feld zeitlich nicht (stationäres Feld), so genügt seine Kenntnis
zu einem festen Zeitpunkt. Im allgemeinen muß jedoch eine zeitliche Anderung des
Feldes berücksichtigt werden (instationäres Feld), d.h.‚ das skalare Feld U ist sowohl
eine Funktion des Ortes r als auch der Zeit t: U = U(r, t). Bei der Untersuchung
grundlegender Eigenschaften eines Feldes geht man zunächst so vor, daß ein fester
(aber beliebiger) Zeitpunkt betrachtet wird.

Eine anschauliche Vorstellung eines skalaren Feldes U(r) (die Zeitabhängigkeit
wird, wie vereinbart, nicht hervorgehoben) erhält man durch die Einführung der Flä-
chen, auf denen U(r) einen jeweils konstanten Wert annimmt. Diese Flächen heißen
Nivean- oder Aquipotentialflächen von U. Sie sind (als Mengen) erklärt durch

H(c) = {r I U(r) = c) (c beliebig, reell).

Als Beispiel betrachten wir das durch die Gleichung U(r) = l/r (r = [rl # 0) gegebene
skalare Feld im R3. Genau dann gilt für eine reelle Zahl c > 0 die Gleichheit U(r) = c,
wenn die Beziehung lr| = l /c besteht (der Fall „c g 0“ kann ersichtlich ausgeschlossen
werden). Alle Punkte r e R3, für die die Gleichung lr| = l /c (c fest) gilt, liegen auf der
Oberfläche der Kugel mit dem Nullpunkt als Mittelpunkt und dem Radius l /c, und
für jeden Punkt dieser Kugeloberfiäche ist diese Gleichung erfüllt. Die Äquipoten-
tialflächen von U(r) sind daher konzentrische Kugelflächen mit dem Nullpunkt als
Mittelpunkt. Durchläuft die Zahl c alle positiven reellen Zahlen, so durchläuft auch
die Zahl 1/c alle positiven reellen Zahlen. Die Gesamtheit aller Niveauflächen der ge-
gebenen Funktion U(r) = l /r besteht also aus allen Kugeloberflächen mit dem Mittel-
punkt 0.

Das skalare Feld U(r) heiße ein ebenes Feld, wenn (bei geeigneter Koordinatenwahl)
U(r) = U(x,, x2) gilt, also U nicht von x3 abhängt. Setzt man f(x2, x2) = U(x,, x2)
und stellt die Funktion f in der Form x3 =f(x2‚ x2) als (krumme) Fläche über der
x, , x2-Ebene R2 dar, so sind die Schnittkurven der Niveauflächen von U mit der x2 ‚x2-
Ebene gleichzeitig die Höhenlinien von f(x,, x2) (s. 2.1.).

Man bezeichnet diese auch als Niveaulinien von U(x‚ ‚ x2). Ist z. B. U(r) = U(x‚ , x2)
= xlx2 ‚ so erhält man die Gleichung einer Niveaulinie durch die Beziehung

U(x„ x2) = xlx2 = c (c reell, fest),
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die bekanntlich die Gleichung für eine Hyperbel (mit den Koordinatenachsen als
Asymptoten) darstellt. Für c < 0 liegen die Hyperbeläste im ersten und dritten Qua-
dranten, für c > 0 im zweiten und vierten Quadranten, der Fall c = 0 liefert die bei-
den Koordinatenachsen. Faßt man das System der Niveaulinien als Karte der Fläche
x3 = x,x, auf, so erkennt man aus dem Verlauf der Höhenlinien (= Niveaulinien),
daß der Nullpunkt einSattelpunkt dieser Fläche ist (in Richtung des ersten und drit-
ten Quadranten wächst die Höhe c, in Richtung des zweiten und vierten Quadranten
fällt die Höhe c; der Leser fertige eine Skizze an !).

Ein Vektorfeld ordnet jedem Punkt des Raumes bzw. eines Gebietes des R3 einen
Vektor zu. Beispiele für Vektorfelder sind das Magnetfeld der Erde, das elektrische
Feld zwischen Ladungsverteilungen, das Geschwindigkeitsfeld einer Flüssigkeits-
Strömung (jedem Raumpunkt wird hierbei der Geschwindigkeitsvektor des dort be-
findlichen Flüssigkeitsteilchens zugeordnet). Zu einem festen Zeitpunkt kann ein Vek-
torfeld durch eine Vektorfunktion v = v(r) (vgl. Abschnitt 2.6.) angegeben werden,
die in einem gewissen Gebiet des R3 erklärt ist. Wie bei skalaren Feldern unter-
scheiden wir zwischen stationären (zeitunabhängigen) und instationären (zeitlich ver-
änderlichen) Vektorfeldem. Die letztgenannten Vektorfelder sind in der Form
v = v(r‚ t) zu beschreiben. Eine anschauliche Vorstellung eines Vektorfeldes zu einem
festen Zeitpunkt ergibt die Einführung seiner Feldlinien (Stromlinien), das sind
diejenigen Kurven r = I-(1) (r E R, Kurvenparameter), deren Tangentenrichtung

i(1) = g—:in jedem Raumpunkt mit der Richtung des Feldes v(r) übereinstimmt.

Daher muß das vektorielle Produkt i- >< v(r) verschwinden, wenn für r die Punkte der
Feldlinie r(r) eingesetzt werden. Somit ergibt sich als eine notwendige Bedingung für
den Verlauf von r(r) die Diflerentialgleichung der Feldlinien

i'('r) >< v(r(-r)) = 0. (5.1)

Die Gleichung

'71

v = v2

'73

lautet in Koordinatenschreibweise

Va 051(7): X2(T): 353(7)) 152(7) — 172 071(7). X20’): 353(7)) -733(7) = Ü,

v1(x1(1), x2(1)‚ xa(1)) 133(1) — va(x1(1), 162(1). 963(1)) für) = 0. (5-2)

v2(x1(r)- x2('r), xs(r))J'c;(1) - v:(x1(r)‚ x2(r)‚ 203(1)) M?) = 0-

(5.2) stellt ein nichtlineares gewöhnliches DilTerentialgleichungssystem erster Ord-
nung dar. Seine Lösung (die entweder geschlossen angebbar ist oder näherungsweise
gefunden werden muß) enthält drei feste Konstanten, die durch die Vorgabe eines
Punktes, durch den eine Feldlinie gehen soll, bestimmt werden können (s. Band 7).
Häufig kann man durch geeignete Wahl des Parameters 1 erreichen, daß das Diffe-
rentialgleichungssystem für die Feldlinien die folgende (einfachere) Gestalt besitzt:

i(1) = V(I'(T))- (5-3)
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Diese Form ist zur praktischen Berechnung besser geeignet als das Differentialglei-
chungssystem (5.2). Als Beispiel betrachten wir das homogene Feld, das durch einen
konstanten, ortsunabhängigen Vektor

v = a = ale; + azez + age,

gegeben ist. Das Diflerentialgleichungssystem (5.3) lautet hier

i'(r) = a

oder in Koordinatenschreibweise

5c, = al, i; = a), k, = a3.

Es besitzt als Lösung (Kontrolle durch Differenzieren!) die Funktionen

x,(r) = (1117 + b,, x2(r) = az-t + b2, x3(z) = a3r + b3

mit beliebigen Konstanten b, (j = l, 2, 3). Vektoriell geschrieben lautet diese Lö-
sung (es sei b = blel + bze, + b3e3)

r('r)=ra+b (—oo<'r<+oo),
das ist die Gleichung einer Geraden mit dem Richtungsvektor a. Die Feldlinien sind
also zu a parallele Geraden.

Ein weiteres einfaches Beispiel erhalten wir mittels

v = -1...
Irl

Dieses Feld besitzt überall die Richtung des Ortsvektors r, ist also radial vom Null-
punkt weg gerichtet. Die Feldlinien sind (beliebige) Geraden durch den Ursprung,
v stellt ein sog. radiales Feld dar.

Die Vorstellung eines Feldes bietet die Möglichkeit, die unserer Anschauung unge-
wohnten Femwirkungen als Nahwirkungen darzustellen. So kann man sich erklären,
daß das Gravitationsfeld der Sonne die Kraft auf die Planeten überträgt und direkt
am Körper angreift. Das Wesentliche bei der Beschreibung physikalischer Vorgänge
durch Felder besteht aber darin, daß man die Eigenschaften der untersuchten Größe
an irgendeinem Raumpunkt in Zusammenhang bringt mit den Eigenschaften in be-
nachbarten Raumpunkten und zu benachbarten Zeiten. Dazu bedarf es insbesondere
der Differentialrechnung in Vektorfeldern, der der folgende Abschnitt gewidmet ist.

Beispiel 5.1: In den Punkten P, und P, sind elektrische Punktladungen Q, = Q > 0
bzw. Q, = —2Q angebracht. Es ist die zugehörige Aquipotentialfläche mit dem Po-
tential Null zu bestimmen (im Unendlichen gehe das Potential der Ladungen gegen
Null). Die Ortsvektoren der Punkte P1 und P2 im (x1, x2 ‚ x3)-System seien I,
bzw. rz. Die Superposition (Überlagerung) der Coulomb-Potentiale beider Ladungen

1 Q: Q2 -

47"-'5'o (Ir “ ‘il + l1’ — Tzl ) (I + rm)‘ Die
Punkte r der Potentialfläche <p(r) = 0 genügen daher der Gleichung

ergibt das resultierende Potential <p(r) =
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Wir denken uns durch die Punkte P, und P, eine Gerade g gelegt. Alle Punkte, die von
P, und gleichzeitig von P, einen festen Abstand e, bzw. Q2 besitzen, liegen auf der
Schnittkurve der Kugelfiächen um P, mit dem Radius g, und um I’, mit dem Radius
9,. Diese Schnittkurve ist ein Kreis, dessen Mittelpunkt auf g liegt und dessen Ebene
auf g senkrecht steht. Auf diesem Kreis ändert sich der Wert von q? ersichtlich nicht.
Jede Potentialfläche enthält mit jedem ihrer Punkte auch den gesamten Kreis, der
durch diesen Punkt geht, dessen Mittelpunkt aufg liegt und dessen Ebene aufg senk-
recht steht. Alle Potentialflächen sind somit axialsymmetrisch bezüglich der Achse g.
Es reicht daher aus, die Schnittkurven der Potentialfiächen mit einer beliebigen durch
die Gerade g gehenden Ebene zu bestimmen. Die Potentialfiächen ergeben sich dann
durch Rotation dieser Schnittkurven um die Achse g. Wir wählen eine solche Ebene
E aus und führen in ihr ein zusätzliches rechtwinkliges x, y-Koordinatensystem ein,
dessen Ursprung der Mittelpunkt M der Strecke PIP; sei, dessen x-Achse die Gera-
de g mit positiver Richtung von M nach P1 und dessen y-Achse beliebig orientiert
sei (s. Bild 5.1). In diesem Koordinatensystem hat P, die Koordinaten (a, 0), P, die

>
<

ll

Bild 5.1

Koordinaten (—a, 0), wobei a = ß fr, — rzl. Es gelten die Beziehungen’(r E E)

l1‘ " HI =,
Ir — ‘al = V(:Tz)_*+—y2.

Auf der gesuchten Niveaufiäche gilt daher

l/(X-GY +}”=äl/(x+a)’ +.V”
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oder (quadrierenl)

4x’ — 8ax + 4a’ + 4y2 = x’ + 2ax+ a’ +y’‚
d. h. (umstellen!)

x“—2ax+a’+y2=O
3

oder (quadratische Ergänzung bilden!)

2

(x- go) +y’ =%a2.

Die gesuchte Schnittkurve ist also ein Kreis mit dem Mittelpunkt (ä a, 0) und dem
Radius R = ä a. Gehen wir zur räumlichen Betrachtung im (x,,x,,, x3)-System zu-

rück und beachten die Definition von a, so erhalten wir das folgende Ergebnis: Die
gesuchte Potentialfläche ist eine Kugel vom Radius R = § ir, —— r‚|. Der Ortsvektor r.‚
des Mittelpunktes dieser Kugel ergibt sich aus der Gleichung (s. Bild 5.1)

_1 5 rl-rz
r,,——2—(n+r,_)+3ah_l__r2I

_1 5 1 n-r,
— —2—(r‚ + rs) + 3 flu — r,|?——|h_ ta’

4 l
=?r,——-3—r.,..

Wir stellen noch die folgende Eigenschaft fest (einsetzenl):

4 2 2i‘: ‘ Tal ' ||’2 — ‘ol = 3'13 — ‘zl = R - (5-4)

Bemerkung 5.1: Es sei B eine Kugel im dreidimensionalen Raum mit dem Mittel-
punkt ro und dem Radius R > 0 und r1 der Ortsvektor eines weiteren von to verschie-
denen Punktes. Dann gibt es auf dem Strahl (Halbgerade) von ro durch r1 genau
einen Punkt rz, für den die Gleichung

I i‘) " "cl ' i‘: ‘ ‘cl = R2

gilt. Man sagt: „r, ist der zu r, bezüglich B spiegelbildlich liegende Punkt“ bzw.
„r; geht aus r, durch die Kelvin-Transformation hervor (bezüglich B)“ oder „man
erhält r, aus rl mittels der „Transformation durch reziproke Radien“. Die Gleichung
(5.4) des Beispiels 5.1 zeigt, daß die Ladungspunkte P, und P, bezüglich der Po-
tentialfläche ur = 0 spiegelbildlich liegen.

Aufgabe 5.1: Unter den übrigen Voraussetzungen des Beispiels 5.1 gelte für das

Verhältnis der Ladungen Q1 und Q, jetzt-g—‘= —k mit 0 < k < 1. Man zeige, daß
2



3|
-

L.
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i die Potentialfiäche mit dem Potential Null (ebenfalls) eine Kugel ist, die den Punkt P,
im Inneren enthält und deren Mittelpunkt auf der Verbindungsgeraden von P, und
P2 liegt. Man bestimme den Mittelpunkt r„ und den Radius R dieser Kugel und zeige,
daß auch im vorliegenden Fall die Beziehung |r, — ro| - lrg — r„| = R2 erfüllt ist.

Aufgabe 5.2: Bestimmen Sie die Feldlinien der folgenden Vektorfelder durch ein-
fache geometrische Überlegungen:

a) v = b) .v = w x r (w =l= o konstanter Vektor).
r

III’ ’

5.2. Die Difierentialoperatoren der Vektoranalysis

5.2.1. Richtungsableitung und Gradient

Wir haben bisher nur Ableitungen (gewöhnliche oder partielle) betrachtet, in denen
eine skalare Funktion nach einer skalaren Variablen differenziert wird. Es ist aber
auch erforderlich, Ableitungen nach vektoriellen Variablen zu betrachten, um die
Änderungen eines Feldes nach beliebigen Richtungen hin zu verfolgen. Wir betrach-
ten zunächst den Fall eines skalaren Feldes U(r) = U(x1, x2, x3).

Definition 5.1: Es sei s ein Vektor der Länge 1 (|s| = 1). Wir untersuchen die Funktion
U(r) auf der Geraden durch den Punkt r in Richtung s und betrachten die Änderung

ö(U)= U(r+ ts)— U(r) (—oo <1 < + o0)

von U(r) auf dieser Geraden. Der Grenzwert des Quotienten

E
t

für t—> 0 heißt, falls er existiert, die Richtungsableitung von U im Punkte r in Rich-

tung s und wird mita—§] bezeichnet. In Formeln lautet dies

BU . lT =11m—[U(r + ts) — U(r)]. (5.5)
S g_.o f

Bemerkung 5.2: In verschiedenen Lehrbüchern wird bei der Definition der Rich-
tungsableitung auf die Forderung, daß Isl = 1 gilt, verzichtet.

Wenn wir s = s‚e1 + S262 + S383 setzen, so sehen wir, daß

BU d(T: = a? (U(x;+ts1, x2 +1.92, x3 + ts‚)) I I=0

gilt, falls die rechte Seite existiert. Im weiteren besitze U(r) = U(x1, x2, x3) stetige
partielle Ableitungen erster Ordnung. Nach der verallgemeinerten Kettenregel (3.6.2.)
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gilt somit

BU .

‘E3’: U11-V1 ‘i’ U125: ‘i’ UI3S3

(dennes istz.B. fig = sl, oder, wenn wir die rechte Seite letzterer
at ___o

Gleichung als Skalarprodukt auffassen:

ö
—asE=(grad U)-s= s-grad U.

. . ö U ‚

Nach der Definition des Skalarprodukts gilt weiter -63- = |s| - [grad Ul cos (grad D, s)

= I grad U I cos (grad U, s). Aus dieser Beziehung entnehmen wir, daß (wegen [cos «xi g 1

für jedes reelle a) stets die Ungleichung

— [grad U1; -‘gig lgrad U1

grad U
gilt. Stimmt die Richtung von grad U mit s überein, gilt also s = Wl-
cos (grad U, s) = 1, und daher gilt dann

BU grad U
—aT= |grad U| (s= —7w).

In Worten lautet dieses Ergebnis: Die Richtung des Gradienten ist die Richtung des
größten Anstieges der Funktion U(r) (d. h. die Richtung der größten Richtungsablei-
tung im Vergleich zu allen Richtungen vom Punkt r aus); dieser größte Anstieg hat den

Wert |grad Ui.

Es sei weiter r(t) eine Raumkurve, die in der Niveaufiäche U(r) = C liegt. Es gilt
somit U(r(t)) = C (a g t g b). Difierentiation beider Seiten letzterer Gleichung nach
i liefert mit r(t) = x,(I)e1 + x,(t) e, + x3(t) ea (Kettenregel)

Uni, ‘i’ U122; + UWE; = 0

oder

i-(t) - grad U= 0. (5.7)

Mit anderen Worten, der Gradient von U steht senkrecht auf den Tangentenrichtun-
gen aller in der betrachteten Niveaufläche verlaufenden Raumkurven, d.h.‚ er steht
senkrecht aufder Niveaufläche. Bildet man grad U(r) für jeden Raumpunkt r, so erhält
man ein Vektorfeld v(r) = grad U(r). Die Feldlinien dieses Vektorfeldes, die Sogenann-
ten Gradientenlinien, verlaufen überall senkrecht zu den Niveauflächen von U(r). Ist
z. B. U(r) = <p(r) das elektrostatische Potential einer beschränkten Ladungsverteilung,
so ergibt sich auf diese Weise, daß die Feldlinien des elektrischen Feldes (E(r) =

—grad (p(l')) überall auf den Äquipotentialfiächen senkrecht stehen.
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Das folgende Bild 5.2 veranschaulicht die Verhältnisse zwischen Niveaufläche
U(r) = c, dem Gradienten grad U und der Riehtungsableitung BU in einem festen
Raumpunkt P.

.. n.öUr 7Vr.ÖU_
Fur IoLI g 7 gilt—as— — d(P, Q), fur [a] > -2-151$ — —d(P, Q) (d(P‚ Q) be-

zeichnet den Abstand zwischen P und Q, vgl. Abschnitt l.l.l.).

Bild 5.2

Hat ferner P den Ortsvektor ro, so ist der (laufende) Ortsvektor r’ der Tangential-
ebene (TE) an die Fläche U(r) = c im Punkt P ersichtlich durch die folgende Glei-
chung gebunden (s. Bild 5.2):

(r’ — r„) -grad U = 0.

Das ist die Gleichung der Tangentialebene in vektorieller Form.

Beispiel 5.2: Man berechne die Richtungsableitung des Potentials U(r) zweier Punkt-
ladungen Q, = Q > 0 und Q, = —2Q, die sich in den Punkten P1 bzw. P, mit den
Ortsvektoren r, und ‘g befinden, an der Stelle r; = f; r, + ä r, in Richtung des Vektors

f1 - 1'2 . .

In _ H‘ (vgl. Beispiel 3.27).

. . _1 Q. Q2 _Q 1 2

“"“"" ES“ w" 47m. (Ir-ril + lr-rzl)‘ 41=6o(lr-nl ‘ lr-r2|)'
.. . . Q ——(r—r) 2(r—r)

Somit ist grad U gegeben durch die Beziehung grad U = -——4mo (Q_ ‘A; I‘ __ h;

Für die betrachtete Stelle r = t3 ergibt sich grad U|‚=„ = 1%- (1? (9 +
_ 0 l— 2

= 2—7 - (I1 ü) . Skalare Multiplikation mit s ergibt die gesuchte Richtungs-
8 7'550 irl “ ‘als

av 27 Q 1

ableitung as = grad U|,,,_ - s=T-T0‘1:_W.

5.2.2. Divergenz

Zur Erläuterung des Begriffes der Divergenz eines Vektorfeldes v(x‚ y, z) gehen
wir von der Vorstellung aus, daß das Vektorfeld v(x‚ y, z) das Geschwindigkeitsfeld
einer stationären Flüssigkeitsströmung darstellt. Ist nun S irgendein Flächenstück,
das ganz im Definitionsbereich von v(x‚ y, z) liegt, so ist der Fluß von v(x‚ y, z) durch
S gegeben durch das durch das Flächenstück S pro Zeiteinheit fließende Flüssigkeits-
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volumen (eine genaue Definition kann erst im Bd. 5, Integralrechnung für Funktionen
mit mehreren Variablen, gegeben werden). Ist jetzt G ein beschränktes Gebiet des R“
und S speziell gleich der Oberfläche (Rand) von G, so heißt der Fluß von v(x‚ y, z)
durch S die Quellung von v(x‚ y, z) aus dem Gebiet G. (Die Quellung ist positiv,
wenn im Inneren von G stets ein „Überschuß“ an ausfiießender Flüssigkeitsmenge
erzeugt wird, anschaulich: wie von einer Quelle; die Quellung ist negativ, wenn in G
Flüssigkeit abgeführt wird — man spricht dann von einer Senke — und die Quel-
lung ist gleich null, wenn sich — wie häufig der Fall — die ein- bzw. ausfiießende
Flüssigkeitsmenge die Waage halten, also stets gleich sind.) Der Quotient

Quellung von v(x, y, z) aus G

q - q(G) ä Volumen von G

heißt die mittlere Quelldichte von v(x, y, z) in G. Durch einen Grenzübergang kann
man von der mittleren Quelldichte von v(x‚ y, z) zur Quelldichte von v(x, y, z) in
einem Punkt gelangen (analog zum Übergang von der mittleren Geschwindigkeit zur
Momentangeschwindigkeit bei der Bewegung eines Massenpunktes). Diese lokale
Quelldichte heißt die Divergenz von v(x, y, z). Sie wird folgendermaßen definiert.
Es sei P(x„, yo, zo) ein innerer Punkt aus dem Definitionsbereich von v(x, y, z) und
(G,.) eine Folge von Würfeln mit dem Mittelpunkt P(x„‚ yo, 2.,), deren Kantenlängen
gegen null gehen. Existiert der Grenzwert

lim q(G„)
n-uon

der mittleren Quelldichten von v(x, y, z) in G„ für jede solche Folge von Würfeln G‚.‚
so ist dieser Grenzwert von der speziell gewählten Folge (G„) unabhängig und heißt
die Divergenz von v(x, y, z) in P(x0, yo, zo). Die Divergenz von v(x, y, z) in einem
Punkt wird mit dem Symbol

div v

bezeichnet. In der Integralrechnung der Funktionen mehrerer Veränderlicher wird
gezeigt, daß die Divergenz eines Vektorfeldes

v1(x‚y‚ z)

V(x‚y‚z) = v2(x‚y‚z) ‚

va(x,,v, z)

dessen kartesische Koordinaten v,-(x‚ y, z) (i = l, 2, 3) stetige partielle Ableitungen
erster Ordnung besitzen, durch den Ausdruck

dlVV=vi|i+ ”2I2+Val3=%:‘l+%+%%‘ (5-8)

gegeben ist. An dieser Stelle interessieren uns nur die Rechenregeln‚ die für die Opera-
tion „div“ gelten.‘)

Beispiel 5.3: Man berechne die Divergenz des Vektorfeldes v(x,y, z) = xe, + ye, + ze,

1) vgl. Bd. 5, Abschn. 7. Integralsätze.
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= r. Wirerhalten mit v, x, v; = y, v3 = z die Gleichungen divv = um + um
+ 123,3 l + 1 + l = 3, also giltdivr = 3.

5.2.3. Rotation

Die Rotation eines Vektorfeldes leitet sich anschaulich aus dem Begriff der auf eine
Flächeneinheit bezogenen Zirkulation des betrachteten Vektorfeldes her. Da sich die
exakte Herleitung dieses Begrifls nur mit Hilfsmitteln der Integralrechnung für Funk-
tionen mehrerer Veränderlicher (s. Bd. 5, Abschn. 7.) durchführen läßt, geben wir
nur die formale Definition der Rotation eines Vektorfeldes für ein kartesisches
Koordinatensystem.

Definition 5.2: Es sei v(x, y, z) = v1(x, y, z) e, + v2(x. y, z) e, + v‚(x, y, z) e, ein in
einem Gebiet G des R3 drflerenzierbares Vektorfeld. Die Dzflerentialoperation rot v,
die Rotation von v(x, y, z), wird durch die Gleichung

_ Öv, au, Övl aus Öv, 6o,

’°‘ V“ (W‘Tz)°*+('é?" a?) W‘ a)
= (Um " 92|3)e1 +(171|a — '73|1)e2 ‘l’ (vzli ‘ V112) er (5-9)

definiert.

Zur übersichtlichen Schreibweise empfiehlt sich die Darstellung

91 92 es

ö ö 6 ‚

rotv= -6; Ty E, (5.9)

"1 U2 93

wobei der Ausdruck rechts wie eine gewöhnliche dreireihige Determinante ausgerech-
net wird mit der Besonderheit, daß die Multiplikation mit einem der Diflerentiations-

symbole ö die Bildung der entsprechenden partiellen Ableitung bedeutet.
ö 6

6x ’ öy ’ Oz

(Durch Entwicklung der obigen „Determinante“ nach den Elementen der ersten
Zeile stellt man sofort die Übereinstimmung mit dem in der Definition eingeführten
Ausdruck für rot v fest.) Im Unterschied zur Divergenz von v, einem Skalar, ist rot v
wieder ein Vektor. Ein Vektorfeld v = v(r) heißt wirbelfrei, wenn rot v = o gilt.

Beispiel 5.4: Ein starrer Körper rotiere n1it der konstanten Winkelgeschwindigkeit
w > 0 um eine feste Achse der Richtung n (mit |n[ = l). Die Geschwindigkeitsvek-
toren v, die den Punkten r (Ortsvektor) dieses starren Körpers zugeordnet sind, bilden

‚ein Vektorfeld. Bezeichnet w = am den Winkelgeschwindigkeitsvektor‚ so gilt, wie
aus der Mechanik bekannt ist, die Gleichung

v = w x r.

Wie groß ist rot v?
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Es ist r = xel + yeg + Z93, und es sei w = axle, + (U362 + waea. Dann wird

01 e: es

V = W X l’ = 001 W2 W3 = VW!‘ J’w::)e1+(xa’3 ‘ ZW1) 92 + 0'091 4 x602) e:

x y z

= ulel + vgeg + v,e3.

Also ist

‚m:

a(z“’2 — ywa) a(}’w1 ‘ x502)

+ [T- —‘aT‘_ °‘=

3(xwa — zwi) 3(zw2 — ywa)

+ [T— —ay—J ««

= 2w1e1+ 2m, eg+ Zange, = 2w.

Die Rotation von v beträgt also das Doppelte des Winkelgeschwindigkeitsvektors.

Beispiel 5.5: Es sei v(x‚ y, z) = —ye1. Deutet man dieses Vektorfeld als Geschwin-
digkeitsfeld einer Strömung, so erkennt man, daß die Stromlinien Geraden sind, die
parallel zur x-Achse (el-Richtung) verlaufen. Es gilt

91 92 es

ö ö Örotv=$ Ty a—z=0-e1+0-e2+1-e,=e»,,.

—y 0 0

Es ist also rot v =i= o, obwohl keine „Drehbewegung“ in der strömenden Flüssig-
keit erfolgt.

Aufgabe 5.3: Man berechne die Divergenz des Vektorfeldes v(x‚ y, z) = x2e, + yze,
+ Z293 .

Aufgabe 5.4: Man bestimme die Rotation des Vektorfeldes v(x‚ y, z)=Tr|3—

=:W(xe, + ye, + zeg) (I =i= 0); (elektrisches Feld einer bei 0 liegen-

den Punktladung).

5.2.4. Der Vektordifierentialoperator V. Rechenregeln für die Operatoren
grad; div; rot

Mittels des Vektordiflerentialoperators V (gelesen „Nabla“, nach dem althebräischen
Musikinstrument Nabal) können die in den vorangegangenen Abschnitten eingeführten
Difierentialoperatoren der Vektoranalysis „grad“; „div“; „rot“ in einer einheitlichen,
dem Wesen dieser Operatoren besser angepaßten Schreibweise ausgedrückt werden.
Gleichzeitig ergibt sich durch diese Schreibweise eine wesentliche Vereinfachung beim

ll I-Iubarth/Riedrich, Difl. Rechn.
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Beweis von Rechenregeln für diese Operatoren (bzw. bei der Anwendung dieser Opera-
toren). Wegen weiterer Einzelheiten und Verallgemeinerungen vgl. Bd. l 1, Abschnitt 4.

Definition 5.3: Es seien (xi, x2, x3) die kartesischen Koordinaten eines Punktes des
euklidischen Raumes R3. Der Diflerentialoperator

öEel +T2e2 +€x;e_-, (5.10)

wird mit dem Ausdruck V(.) bzw. bezeichnet (r = x‚e‚ + xge, + xaeg).

Bemerkung 5.3:

1. Ist zp(x,, x,, x3) eine reelle, partiell differenzierhare Funktion (also ein skalares
Feld), so gilt

am amÖ

V‘P=”5%¢1 +6392 +5E€3= (PI191+ lPl2¢2+ (P1333;

also ist (s. Def. 3.3)

Vrp=gradq7. (5.11)

2. Ist v(x1, x, , x3) ein (partiell diflerenzierbares) Vektorfeld mit partiell differenzier-
baren Koordinaten 1:,-(x1, x2, x3) und wendet man den Operator V auf das Vektor-
feld v(x1, xz, x3) analog zur Bildung eines Skalarproduktes von V und v(x„ x„ x3)
an, so erhält man

V __ ö ö 6 + +
-v—(T1e,+—a?2e2+T3e3)-(v,e, vgeg v3e3)

6173öv,
+'a:‘:= Um + U212 + „alsax,

_ ü
_ 6x1

(die Klammern werden formal wie bei der Bildung des Skalarproduktes ausmulti-

pliziert, wobei Multiplikation mitä die partielle Differentiation nach x, bedeutet
l

usw.), d.h., wir können die Gleichung

V -v= divv (5.12)

schreiben.

3. Ist v(x„x„x„) ein Vektorfeld mit partiell differenzierbaren Koordinaten
v;(x,,x,,x3) (i = 1,2, 3) und wendet man den Operator V auf das Vektorfeld
v(x1, x,, x3) analog zur Bildung des Vektorproduktes von V und v(x1, x,, x3) an, so

erhält man (Multiplikation mit-%—(—')—bedeutet stets die Bildung der partiellen Ablei-
I
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tung nach x.)

C1 ‘<5

_ Ö0 Ö0 Ö0
V“ ‘ T, T, e; -

v1 v, v,

also ist (s. (5.9’))

V ><v=rotv. (5.13)

4. Ist v(x,, X2, x3) ein Vektorfeld, so kann man den Difierentialoperator (v grad)
= (v, V), gelesen „v mit grad“, einführen, der analog zu dem Skalarprodukt von v
mit V, aber ohne Anwendung der Differentialoperatoren auf v gebildet wird und
durch die Gleichung

a a a
(v.V)=(v1e1+v2e2+vaea)(Ee1 +55» +5,5%)

6 ö ö=u1-a:+u26-£-+|J3Txa- (5.14)

definiert ist. Es gilt z. B. für ein Skalarfeld zp(x„ x2, x3) die Beziehung

am 39>Ö

q) 3;; + WT; = 17:97h + 92%: + 1735W:(V‚V)‘P=1HT‘I +172

oder für ein Vektorfeld u(x„ x2, x3) = u; c1 + u, e, + u, e, (u; = u,«(x,, x2, x3) ;

i = l, 2, 3),

(Vs V) 11 = (V: V) 141 er ‘l’ (V: V) 142 92 + (Vs V) 14s es

= (17114111 + 172141I2 + 17314113) er ‘l’ ("Wall ‘l’ 17214212 + 17314213) e:

+ (17x143I1 + 17214312 + 17314313) 93-

Mittels der oben eingeführten Schreibweisen für die Operatoren „grad“, „div“,
„rot“ lassen sich die Rechenregeln für diese Differentialoperatoren mittels der
Rechenregeln der gewöhnlichen Vektorrechnung erhalten, wobei nur darauf zu ach-
ten ist, dal3 die auftretenden Vektorfelder und der Operator V in der richtigen Reihen-
folge aufgeschrieben werden. Außerdem ist bei der Anwendung des Operators V
auf Produkte die Produktregel der Differentialrechnung einzuhalten; d. h.‚ der Opera-
tor V ist auf jeden Faktor einzeln anzuwenden, während die anderen Faktoren kon-
stant bleiben, und die Ergebnisse sind zu addieren. Im einzelnen gelten die folgenden
Rechenregeln

l. Linearität

Es seien (p, w, skalare Felder; u, v, Vektorfelder mit geeigneten Diflerenzierbar-
keitseigenschaften.

11*



I52 5. Skalare Felder und Vektorfelder

grad (q: + 1p)= grad q: + grad up; (5.15)

grad (cqn) = c grad op (c reell, beliebig); (5.16)

div (u + v) = div u + div v; (5.17)

div (cv) = c div v (c reell‚ beliebig); (5.18)

rot (u + v) = rot u + rot v; (5.19)

rot (cv) = c rot v (c reell, beliebig). (5.20)

2. Produkiregeln

grad (W) = «P grad w + w grad m; i (5.21)

grad (uv) = v x rot u + (v grad) u + u x rot v + (u grad) v; (5.22)

div (qzv) == v grad q: + 9: div v; (5.23)

div (u >< v) = v rot n — u rot v; (5.24)

rot (epv) = (grad (p) X v + 92 rot v; (5.25)

rot (u >< v) = (v grad) u — v div u + u div v — (u grad) v. (5.26)

Diese Regeln lassen sich mittels des V-Operators unter Benutzung der Gesetze
der Vektorrechnung ohne großen Rechenaufwand beweisen. Wir erläutern das an
drei der obigen Regeln, die übrigen sollten vom Leser in analoger Form behandelt
werden. Zum Beweis der Formel (5.21) bilden wir

t l
VOM») = W20 + Ww = Wt? + WI/I = w grad tr + <17 grad v»

und erhalten das richtige Ergebnis, das wir auch durch Rückgrilf auf die Definition
der Operation ,,grad“ erhalten würden, wie eine ausführliche Rechnung zeigt. Die Pfeile
in der obigen Beziehung markieren diejenige Funktion (bzw. dasjenige Feld), auf die
der Differentiationsoperator V gerade angewandt werden soll, wobei die einzelnen
Summanden wie bei der gewöhnlichen Produktregel zu bilden sind. Die Berechtigung
für diese Verfahrensweise ergibt sich aus der folgenden ausführlichen Rechnung:

a a a
v(w)=grad (svr/:)=%e1 +—%”y—"’)e2 +Lg;L>e,

Ö Ö Ö Ö Ö Ö

= (<p§'§+va—:)e1 +(<p—a~';—+wa—:)e2 +(¢a—:’+w3:1)ea

Ö Ö Ö Ö Ö Ö

= ‘P(%°1 +(-T392 +‘5:—]°a)+'P(”a“;‘°1 ‘Fit-92 +‘£¢s)

=¢gradw+wgrad<r=<rW+~pW-
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Diese ausführliche Rechnung zeigt, daß (abgesehen von der Berücksichtigung der
Produktregel) mit dem Operator V wie mit einem Vektor gerechnet werden kann,
weil formal die gleichen Operationen auszuführen sind. Auf diese Überlegung stützen
wir uns bei der Ableitung der Regeln (5.24) und (5.26). Zum Beweis der Formel

1 L

(5.24) bilden wir div u X v = V(u X v) = V (u >< V) + V(u x v). Der Ausdruck
V (u x v) hat die Form eines Spatprodukts (vgl. Bd. 13, Satz 2.15). Nach den Rechen-
regeln der Vektoralgebra (a(b X c) = c(a x b)) gilt somit

VG: X V) = v(V x u). Entsprechend ist

V (u x = —V(i' x u) = ——u(V >< v). Insgesamt wird

div(u><v)=v(Vxu)—u(V><v)=vrotu—urotv.

Zum Beweis der Formel (5.26) stützen wir uns auf den sog. „Entwicklungssatz“ der
Vektoralgebra (vgl. Bd. l3, Satz 2.16)

ax(b><c)=(ac)b—(ab)c.
Es gilt

ß l
rot(u><v)= Vx(u><v)= Vx(uxv) + V><(u><v)

= (vv) i — (via) v + (vi) u — (voi
= (vgrad)u—v divu+u div v— (u grad)v.

Auch beim Beweis der Regel (5.22) muß der Entwicklungssatz herangezogen wer-
den.

5.2.5. Difierentialoperatoren zweiter Ordnung

Wendet man die von uns betrachteten Differentialoperatoren für skalare Felder
und Vektorfelder wiederholt an, so erhält man Dilferentialausdrücke höherer Ord-
nung, im einfachsten Falle von zweiter Ordnung. Nicht jede denkbare Kombination
der Differentialoperatoren grad, div, rot ist sinnvoll, z.B. ist der Ausdruck div (div v)
sinnlos, da div v ein skalares Feld ist und die Divergenz nur für Vektorfelder erklärt
ist (div (div v) wäre die Divergenz eines skalaren Feldes). Man kann sich leicht über-
legen, daß nur die folgenden fünf Kombinationen von grad, div, rot definiert sind:
dlV (grad (p); rot (grad (p); grad (div v); div (rot v); rot (rot v). Mittels der bereits oben
benutzten formalen Übereinstimmung des Rechnens mit Vektoren und des Arbei-
tens mit dem Differentialoperator V erkennt man, daß rot (grad up) und div (rot v)
stets verschwinden. Denn es gilt rot (grad (p) = V x (V<p) = o (das Vektorprodukt
zweier paralleler Vektoren ist stets gleich o) und div (rot v) = V (V x v) (das Spatpro-
dukt a(a >< b) ist stets gleich 0). Der Ausdruck div (grad qJ) lautet ausführlich

. ö. d. ö. ö ö ö
dw<gradw)=v-(v<p>=(a—‘x’e. aiy’e2+—a‘}ea)(a—jfe1+a—j’e2+a—‘fea)

A Ö Özp Ö Ötp Ö Öcp _ 62¢ 621p 6’q7_
-ME) a’y(a—y) a—z(a—z)"ax2+a—y2+7"A9’
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Der Operator div (grad) stimmt also mit dem bereits früher (s. 3.8.3.) eingeführten
Laplace-Operator A überein. Man kann diesen Operator auch für Vektorfelder defi-
nieren: ist v(x, y, z) = v,(x, y, z) e, + v2(x, y, z) e, + v3 (x, y, z) e, ein Vektorfeld, so
gelte

Av = (A0,) e, + (Avg) e? + (Ava) e3.

Offensichtlich kann Av auch in der Form (VV)v geschrieben werden. Mittels des
Entwicklungssatzes erhalten wir

rot (rot v) = V X (V X v) = V(Vv) — (VV) v, also rot (rot v) = grad (div v) — Av.
(5.27)

Besonders häufig werden alle diese Differentialausdrücke für Skalar- oder Vektor-
felder benötigt, welche nur vorn Abstand r = I/x’ + y’ + z’ des Raumpunktes
P(x‚ y, z) vom Ursprung (0, 0,0) abhängen (sog. radialsymmetrische Felder). Für
ein skalares Feld (p(x, y, z) mit dieser Eigenschaft gilt somit

¢(x. y, z) =f(r)‚ (5-23)

und für ein solches Vektorfeld v(x‚ y, z) gilt entsprechend

v(x, y, z) = a(r). (5.29)

Es ergeben sich für die vier Diflerentialoperatoren grad, div, rot, A bei der Anwendung
auf die radialsymmetrischen Felder (5.28) und (5.29) die folgenden Ausdrücke
(„m bedeute: Ableitung nach der Variablen r):

gradf(r) = r (r = xe. + ye. + Zea); (5.30)

Af(r) =/"'(r) + %/'(r); ' (5.31)

div a(r) = r; (5.32)

rota(r) =$(rx(a(r))'); (3.33)

Aa(r) = (a(r))' + %(a(r))’. (5.34)

‘ Aufgabe 5.5: Man beweise die Formel (5.31).

* Aufgabe 5.6: Man berechne grad(er) (e fester Vektor).

Die Formeln (5.30)—(5.34) bleiben bestehen, wenn die Variable r überall durch

r = I/(x — xo)’ + (y —yo)‘ + (z - zu)’ = Ir - rol
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(lo ein fester Punkt des R3 mit den Koordinaten x0 , yo , zo) und der Vektor r überall
durch

1' — ‘o = (X “ Xo)°1 ‘l’ (Y " J’o)°2 + (Z ‘ zu)‘:
ersetzt werden.
Beispiel 5.6: Man berechne die Divergenz des elektrischen Feldes E = —gradrp
einer im Punkt (x0 , yo , zo) befindlichen Punktladung der Größe Q mit dem Potential

zp. Es gilt (p = H-m (r =4= ro), und gesucht ist div E = div (—grad (p)

—div grad (p. Es gilt also (s. oben) div E = ——Atp. Mitf(r) =

1
47% —r— folgen aus der

-Af(r) = - (f"(r) + %/'<r>)

2 2 -1‘ . ..

=—(41?£0)(-r-3+7 (r2))=0 (r=§=ro), alsod1vE=0fur1'=i=r0.

Formel (5.31) die Gleichungen div E = —A(p

(Ein Vektorfeld, dessen Divergenz in einem gewissen Gebiet verschwindet, heißt
qnellenfrei in dem betrachteten Gebiet. Das elektrische Feld einer ruhenden Punkt-
ladung ist in jedem räumlichen Gebiet, das den Ort ro der Ladung nicht enthält,
ein quellenfreies Feld. Eine entsprechende Aussage gilt auch für allgemeinere La-
dungsverteilungen im Raum (vgl. Band 8).)
Bemerkung 5.4: Für ebene zylindersymmetrische Felder gelten zu den Formeln
(5.30—5.34) analoge Beziehungen, wobei sich aber einige Koeffizienten verändern.

Es ist dann r = Vx‘ + y‘ und <p(x, y, z) = f(r) bzw. v(x‚ y, z) = a(r) vorausgesetzt.
Mit r = xe, + ye, gilt dann (analog zur Formel (5.30))

gradf(r) = {fing (5.35)

aber (analog zur Formel (5.31))

Arm =f”(r) + é/'(r> (5.36)

(vergleiche auch Formel (3.135)).

Zum Abschluß des Kapitels über Vektoranalysis (= Theorie der skalaren Felder
und der. Vektorfelder) erwähnen wir noch ohne Beweis den in der Physik wichtigen
Fundamentalsatz derVektoranalysis (vgl. [l2]).

Satz 5.1: Jedes im ganzen R3 definierte stetig difierenzierbare Vektorfeld v(x, y, z)
= v,(x, y, z) e! + v, (x, y, z) Cg + v3(x, y, z) ea, für welches die Limesrelationen

lim lim v;n.(x‚ y, z) = 0 (i, k = l, 2, 3)
z'+y'+z'->oo1'+y’+z’—»on

vs (x,y.z)= 0;

gelten, Ia)?! sich in ein wirbelfreies Feld u(x, y, z) und ein quellenfreies Feld w(x, y, z)
zerlegen; d. h.‚ es gelten die Beziehungen

v = ll + W;

rot u = o;

div w = 0.

(5.37)

S. 5.1
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1-1: du’, A) = Yx‘ + y‘. da’. B) = l’(x +1)’ + (y — I)’. Aus d(P, A) =d(P‚ B)folgty— x =1.
Fur alle Punkte der Geraden y = x + 1 (Mittelsenkrechte auf der Strecke mit den Endpunkten
A und B) gllt d(P, A) = da’, B).

1.2: a) B, wird begrenzt von der unteren Hälfte des Kreises (x — 1)’ + y‘ = 1 und der x-Achse.

b) 3a wird begrenzt von der oberen name des Kreises (x — 2)’ + y’ = 4 und dem darüber verlaufen-
den Stück der Parabel y = V47.

C) B. wird begrenzt von der y-Achse und der rechten Hälfte des Kreises x‘ + (y — 1)‘ = 1.

1.3: lim x,, = 3. yn = -1 für alle n und daher limy„ = —l‚ 1imz,. = e. Die Punktfolge konver-
""°° n—>tx) n—»ou

ziert sesen 1’(3. —l.e).

1'43 Folge nicht konvergent, da limy„ = lim (—l)" nicht existiert.
7|<'% II-‘G3

2.1: a) 1 —e‘“’V > 0¢>e“'1/ < l<>x + y < 0<>y < —x.ferklärbnr für alle Punkte unterhalb
der Geraden y = —x.

b) ä g 1<> Iyl g lxl. ferklärbar für alle Punkte zwischen den Geraden y = x und y = ——x

einschließlich der Punkte dieser Geraden selbst. Nullpunkt auslassen.

2.2: a) Vx‘ + y’ = k ¢> x’ + y’ = k’; Kreis mit Radius k um Nullpunkt. Fläche: nach oben geöff-
neter Kreiskegel mit Spitze im Nullpunkt.

b) m — l)’ + 4y= =-k <> (" ’ ‘)2 + —"—,— = 1; Ellipse mit großer Halbachse k und kleinerk’ k
k 2

Halbachse —2— und Mittelpunkt (1, 0). Fläche: nach oben geöfinetel‘ elliptischer Kegel mit Spitze in
(l. 0)-

_ x’ -.v . x’ - J’ _

M’ a) 0s l x’ + I’ E M’ a1s(()z.1I§l'l'](l0,0) x’ +3” _ 0'

b) lim —’—"2 existiert nicht, denn für Folge (x„, y„) = (i, o) gilt lim f(x‚„ y„) = lim
(zilD-‘(Otm x’ +y' n l w» um

T
= l und für Folge (x„'‚ y‚.’) = (0,1) gilt limf(x„’, y,,') = lim —5— = —1 + l.

n n-vce n—~co 1

:~
|

um
!

a4
.
.
.

‘K
z+u+7—2

2.4: u(x, y) = x, v(x, y) = e ‚ w(x, y) = sin xy sind in der gesamten x, y-Ebene stetig,

also auchf(x, y) = u - v - w. Also lim =f(3, —— = 3e.

2.5:a)I?={(r,q2)€§H’§§r§}’§und -—1c<¢§7:}.

b) Mittelpunkt des Kreises aufder y-Achse im Punkt (O, 3); Radius des Kreises R = 3. Man betrachte
Menge aller w-Strahlen für 0 s go § 1c. P sei variabler Punkt auf dem Kreis rnit Polarkoordinaten r
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und «p. Aus rechtwinkligem Dreieck mit Eckpunkten I’, (0, 0), P und P.(0‚ 6) folgt oos —— v)

=% im Fall 0§<p§% und cos(q7——72£>=% im Fall %§qz_S_ n. Wegen cos(<p——;

=cos(%—<p)istI?,={(r,<p)E§l0§<p§1rund0§r§6cos(«p——;)}.

2.6: a)GruudkreisflicheFvonKinx,y-Ebene: F: {(r, w)‘ — -21: S 92 5-:- ‚0 g r g 2 cos w}.

Für jedes (r‚zp) E Fvariien z zwischen 0 und x’ + y'=r’.
A1soI?.= {(r,«r.z)‘-1;-§rpg§5.osrs2cosw.o§z§r=}.

b) Zu allen Punkten des Kegels gehört die geographische Breite 0 = ä .

I?:={(r.0,w)|0§r§2.o§0s1j—.0s<p<2n}.

’ . . . . 2 2 . . n

2.7: Koordinatenlimen u = cl > 0: Ell1psen7;T + 6% = 1. Koordmatenlmlen v = ca:

b sin c,
a cos c,

positive y-Achse; für c, = -2- 1:: negative y-Achse.

Halbgeraden durch Nullpunkt y = x für c, + 125 , c, + % 1F. Für c, = g:

3.1: a)r‚<x‚y> = am: y, f,(x..v) =% . /,,<x.y> = o.

fw(x.y)= (T—_FZx’7{)7.fWfx.y) =fy,(x,y) =

b)y < x, dannf(x.y) = 2y, als0fz(X.}’) = 0./‘y(x.y) = 2:

y > x, dannf(x, y) = 2x, aXsof,(x,y) = 2,];,(x, y) = O.

In allen Fällen ist f_I,,(x, y) = f;,y(x, y) = f,y(x, y) =fy,(x, y) = 0.

c)f,(x.y) = yxv" + y'1ny.f.,(x,,v) = x" In x + xy"‘.
fn(x.y) = y(y - 1) x?" + .v'(|n y)’.
fy,,(x..v) = Min x)’ + x(x - 1) f",
f„,(x‚ y) =f„(x‚ y) = xV" + yxV"1n x + xy“ In y + f".

xx

3.2: u,(x,r) = 4a E; e — H‘? (— "it + 72%) = a’ u„(x‚t).\

3.3:lim /————-—("’°)‘ “M” = o = f,(0‚ o);
z—-O x

„m f(0.y) —/(0, o) = o =m’ o);

yaO J’

um f"————""°’ ‘w’ °’ = 1 =/mo, o);
z—~0 x

]im = _] =fz1/(0,0).
y->0 Y

Nicht beide partielle Ableitungen 2. Ordnung sind im Nullpunkt stetig,
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3A: d!(x..v) = F}; o d: — x d»,

dv<x.y) = 53%,), (—2ry«tx)* + 2<x= — m ax dy + zxy(dy)*).

3.5: 7 = V(2,5l)‘ + (—1,72)* + (3, 43 ’ = 4,58.

dr(2,7,2)= 
~ i Z ZlArl~Idr|§ ,ax|+ ,cLr|+ ich!

< Tä- (2‚5l - 0,02 + 1.72 - 0,02 + 3,43 - 0,03) = 0,011 + 0,008 + 0,022 = 0,041.

Für den Abstand r 9']! also r = 4,58 d; 0,04 oder anders formuliert: 4,54 g r g 4,62. Für den rela-
. . Ar 0,041t1vcnFehlergIlt‘T!z T g 4,58 <0,009=0,9%.

3.6: Allgemein gi1:2=i’—=z,x+ y.A1sogmim1=ane
d: ‘V ‚

a)z"= e<““"‘*"((cos:) -— an);

b)2=;",—::<n2y—mxi);

L:
c)i=t‘ (1—lnI)(!>0). v

3.7: F(x,y)=3x’— 2xy—y=-r,= ax—2y,r,,= —2x—2y,y'= 3:;y’(x+ —y). Die wei-

tere Difiexmtiation wird mittels der va-allgmeinaten Kettennael gleich an dem letzteren Ausdruck
für ‚v‘ durchgeführt.

)"=(x+y)"[(3-.V')(X+.V)-(3X-}')(l+}")l
=(x+y)"-4(y-x.v')=(x+y)"(2xy4-y’—3x’)
= —(x+y)“F(x.y) =0 (x + —Jr)-

Schreibt mzm F(x. y) in der Form F(x. .v)= 4x‘-(x+y)=(2x+x+y)(2x—(x+y))
= (3x+y) (x—y), so ukmnt man, daB die Gleichung F(x, y) = 0 das Gemdenpaar y = —3x
undy=xdarstellt‚fürweld1csnatfxrlichy'=0gilt.

3.8: F(x,y‚z‚u)=u(x*+y’)—(z'+xä)——4. F(2|—3l2|l)=0. F„=(x‘+y‘)—3u’ und
F..(2|——3I2| l)= 10+0.AlsoistAu{l6sungnachuinderFonnu=u(x,y,z)m6glich.Esgilt

u,=—£,u,=—fi,u,=——F—‘. Anderbetnchtetcn Stelle gilt F‚=2u.x=4‚F„=2uy
= —6‚ F‚= —3z’= -12. A1soistgradu(P,)=u,e.+u,e,+u,e,= —§e,+§e,+§e,.

3-9: /1(x.y,z)=(x+.v)‘-xz(r‘ -2')-1 und f1(0|1|0)= 0.

f2(x.y.z)=(x-2)‘-xyo-‘+z’) und f.(0H|0)=0.
Es bestehen die folgenden Beziehungen:

r...a'.) = 4../'m(P.) = 4.Iua(P.) = 0.

f:|1(Po) = —1nfi|2(PI) = onfi|l(PI) = o-
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Für die Äuflösbarkeit nach (x, y); (x, z) bzw. (y, z) in einer Umgebung von P. ist das Verhalten der
Determinanten der Matrizen

3:1: §:::1<r«>= L; gl-

éii ;§§1“’"’=‘=: 3]’
[fan f2.,](P')= o ol

maßgebend. Da nur die Detenninnnte der ersten Matrix ungleich null ist, kann (auf diesem Wege)
nur gesagt werden, daß sich in einer Umgebung von P. eine Auflösung nach (x, y) in der Form
x = x(z)‚ y = y(z) finden läßt. Es gilt

x'<o) _ _ Him fnz] P 1-‘ fua ] ,, _ _[ 4 4]“ [0] _ [0].
im) fzu fm ‘ °) fm ‘ " -1 o o ’ o

4.2: Die Summe v,’ + v,’ + v,’ der Quadrate der A'u ' hungen v, = x, — a, v, = x, — ß,
v; = x3 —— y ist unter der Nebenbedingung x, + x, + x, = 180° = k zum Minimum zu machen.
Wir betrachten daher die Funktion (Anwendung der Muhiplikatorcnmethode von Lagrange)
Q(xi. X2; X3) = V1’ ‘l’ V22 + 17:12 ‘i’ ;~(X1 + x: ‘l’ X3 — k)
- (x, —-— a)’ + (x, — ß)’ + (x, — y)’ + Mx, + x, + x, — k) und setzen ihre partiellen Ableitun-
gen nach x1, x2, x, gleich null. Dies ergibt die Gleichungen

Q|l=2(x1— 00+}-=0
Q.a=2(Xz—I3)+}-=0
Q|a=2(xa—}’)+7-=0-

Addition dieser Gleichungen liefert wegen x, + x, + x, = k die Beziehung 0 = 2k —— 2(a + ß + y
+ 3/1 oder i. = ä (a + ß + y — k) und damit die ausgeglichenen Werte (Lösungen der obigen Glei-
chung) _

3i= 4-§(a+fl+1'-k)=45°3'
J'¥:=/3—§(a+l3+'}'—k)=29°57'
ia=7—§(a+fl+7-k)= 105°-

4.3: Die " der A}. ' ‘ “-m- ist im _ _ ‘ Fall gleich Q(a‚ b) =

f’ (y- — a — . Die F‘ ichungen a—Q— = 0' E- = 0 (Norm ‘gleichungen) lauten daher
‚-=, ' 1 + x,~’ Ba ’ 6b .

" bx,- __

_2.'§1 yi_a l+x.">_°’
" bx; x; _

"EX" ‘ “fiel m?“
Ausführung der Summation, Umstellung und Division durch (-2) liefert zwei lineare Gleichungen
mit den Unbekannten a und b:

W + b E’; ‘i’ = ä n,
i=1 1 + xi’ i=1

n . . . .

„i5: + big: =i=§1 
Mir den Zahlenwerten des “ ' ‚' ' ergibt sich das (sehr ' " ‘ ‘ Gleichungssystem

5a .—. 2s,

0,82 b = —6‚8
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bx,-mit der Lösung ä = 5; 5 = —8‚293. Die einzelnen Fehler A; = y.- — ä —— 1 + xi ergeben sich

Z1; Ax = 5.53. A: = -4‚15, A, = —4,0, A, = 0,15, A, = 1,32. Die Summe der ‘Fehlerquadrate

Z A,-9 ist gleich 79,66. Das Maximum des absoluten Fehlers für die Meßpunkte beträgt 6,68.
=1

21:

4.4:ä„=%ff(x)coskxdx (k=0‚...‚n)‚
o
2n-

I3„=%ff(x)sinkxdx (k=l,...,n)
0

sind für f(x) = x’; n = 2 (0 g x g 21:) zu verwenden. Wir erhalten

=—:—2n‘‚ a,=4‚ a,=1,

b, = -—41r, b, = —-27:. Die gesuchte Näherungsfunktion hat die Form f(x) = Ä 1:‘ + 4 cos x
+cos2x—41tsinx—27rsin2x(0§x§21I:). 5

4.5: Man erhält

l j l

H II Pl n

(_§xJ2)(§yJ)— _2xJJ’1)(2xJ) 1 n 1 „

5: F! 1;‘ f! 2 1:1 =7.2)’J“7 72X1:
"2312-(231) F‘ 1-1

_ j=:l j?! n 3 n 1 n n

Qmin=Q(äxb)=_2 .V1z—“ Z J’: ‘l7 Z XJ.VJ‘—_2XJ_ J’; -

,=1 " =1 1:1 '|;=1,=1

4.6:Für (7,0 = IPeR" |x,’ + x,’ + + x.’ g R0) mit hinreichend großem R0 > 0 ist die Aus-
sage der Bemerkung 3., S.118, anwendbar und liefert f(P„) g f(P) für alle Pe R", da jedes P e R"
zu einem G," mit hinreichend großem R0 gehört.

5.1: Mit den Bezeichnungen des Beispiels 3.27 ist jetzt die Gleichung

l’(x-a)’+y’=kV(x+ü)’+y’
für die„Schnittkurve der Potentialfiäche mit der dort eingeführten x, y-Ebene zu diskutieren. Wir
erhalten durch entsprechende Umformungen die Gleichung

(1 + k’)
(l - k’)

aus der mittels quadratischer Ergänzung sich die gesuchte Kurve aus einer Kreisgleichung ergibt:

1 + k: 2 402k:

i"‘“(”—)i +”"nT)2‘1 — k’ ‘ (

. . . 1 + k” . . .

Im x, y-System hat dieser Kreis den Mittelpunkt x = a l_—k;; y = 0 (dieser liegt auf der Verbin-

x’—2a x+y’=—a’,
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dungsgeraden von P, und P,), sein Radius beträgt R = fi—;2‘fE§)— . Die gesuchte Potentialfläche ist

(nach analogen Überlegungen wie im Beispiel 3.27) eine Kugel mit dem Radius R = (1 _ kg)

=—(1—__m1r, — r,|. Ihr Mittelpunkt ergibt sich aus der (geometrisch evidenten) Beziehung

l_o=_;_(n+l_2)+a(l+k2) ri-rz l k!
1—k' |r,—r,1=1—k= "‘1—k* "

(man beachte die Gleichunga = ä [r] — n!) . Daraus folgen die Beziehungen

ZkZ

II’: - fol = 7%; (wegen 0 < k < I folgt hieraus, daß in — rol < R gilt, also P, im Inneren

der Kugel liegt!) und Ira — r,] =

403k’ ‚

= R’ gilt.

‚ woraus sich ergibt, daß Ir. —- r„| - Ir, — r‚|
_ (1- k“)

‘ä
5.2: a) Halbgeraden (Strahlen) durch den Nullpunkt.

b) Kreise, deren Mittelpunkte auf der Geraden durch den Nullpunkt mit Richtungsvektor w liegen
und deren Ebenen auf w senkrecht stehen.

5(x’) + 50') + 3(12)5.3: div v= ax ä a: _ = (x+.v+z).

5.4: Die x-Komponente von rot v lautet

%_%_(z.____._3’_y.jj’3’ =0
Ö)’ Ö2 (yxz + ya + z2)5 (yxz + y: + z2)5 '

Aus Symmetriegründen sind auch die weiteren Koordinaten von rot v gleich null. Also gilt rot v = o
(r =+= o). Das elektrische Feld einer Punktladung ist (abgesehen vom Ort der Ladung) wirbelfrei, d. h.‚
seine Rotation ist gleich null.

5.5: Es gilt Af(r) = div grad f(r)= div L? r(nach Formel (3.170)). Nach Rechenregel (5.23)

gilt aber div if’) /—”—(rrl +gdiv r. Wegen div r = 3 und Formel (5.30) wird

f'(r) f'(r) . _ 1 f'(r) ' f'(r)r-grad:r+—r—d1vr— r-(7 r) + 3f-
= + %r'<r> =f'(r) + %r'<r)

I’

r=r-grad

(man beachte noch r - r = lrl’ = r’).

5.6:c=c,e‚+c‚e‚+c;e, und c-r=c‚x+c‚y+c‚z.
also grad (cvr)=c‚e‚+c‚e‚+c3g=c.
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Normalgleichungen 134

offene Menge 12

Orientienmg einer Kurve 40, 94
—, Erhaltung der 93

Orthogonalsystem 136

Orthonormalsystem 136

Parameter der Fläche 42

Parameterbereich 42
Parameterdarstellung einer Fläche 42

—— -— Geraden 40
— von Kurven 40, 41

Parameterintervall 40
Parameterkurven 43
partiell differenzierbar 47
partielle Ableitungen erster Ordnung 44
— — höherer Ordnung 48
Polarkoordinaten 33, 98

Polynom, trigonometrisches 137

Punktfolge, beschränkte 18

—, konvergente 16

punktierte e-Umgebung 9

Quaderumgebung 9

Quelldichte 147

radialsymmetrische Felder 154

Rand 11

Randpunkt 11

Raum, euklidischer 8

Rechteckumgebung 9

reelle Funktion 19

relatives Maximum bzw. Minimum 113

Restglied der Ordnung n 108

Restriktion 119

—‚ inaktive 121

Richtungsableitung 144

Rotation 148

Schraubenfiache 43

Schraubcnlinie 41

Schwarz 49
Skalarfeld 31, 139
Standortaufgabe mit Restriktionen 128

Standortproblern 127

stationäres Feld 139

stetige Fläche 42
— Kurve 40
Stetigkeit 28
Stromlinien 140

Tangentialebene 46
Taylorforrnel 108

trigonometrisches Polynom 137

total diiferenzierbar 54
totaler Zuwachs 52

Umgebung 9, 10

Umkehrbarkeit, lokale 93

Vektorfeld 31, 140

Vektorfunktion 32

Vektordiflerentialoperator 149

verallgemeinerte Kettenregel 74
vollständiges Differential 54

Zahlenpaar, geordnetes 6

Zerlegungsformel 53

Zielfunktion 119

zusammenhängend 13

zusammengesetzte Funktion I2
Zuwachs, totaler 52

Zylinderkoordinaten 38, 100


