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Vorwort

Der vorliegende Band der Lehrbuchreihe ,,Mathematik fiir Ingenieure, Natur-
wissenschaftler, Okonomen und Landwirte* gehort mit den ersten drei Banden zu
denen, auf welchen alle weiteren Bande wesentlich aufbauen. Der Band 4 ist einer-
seits eine unmittelbare Fortsetzung des Bandes 2 ,,Differential- und Integralrechnung
fiir Funktionen mit einer Variablen* und bereitet andererseits den Band 5 ,,Inte-
gralrechnung fiir Funktionen mit mehreren Variablen* direkt vor. Bei der Ubertra-
gung der gewohnlichen Differentialrechnung fiir Funktionen einer Verdnderlichen
auf den Fall von Funktionen, die von mehreren Veranderlichen abhéngen, ergeben
sich eine ganze Reihe grundlegender qualitativer Unterschiede in Begriffen, Satzen
und Methoden, so daB ein gesonderter Band speziell iiber die Differentialrechnung
fiir Funktionen von mehreren Verinderlichen berechtigt erscheint.

Wie im Band 2 wurden schwierige Beweise im allgemeinen weggelassen und mehr
Gewicht auf die anschauliche Interpretation und Anwendung der dargestellten Metho-
den und Zusammenhinge gelegt.

Fiir wertvolle Hinweise bei der Vorbereitung der dritten Auflage danken wir vor
allem dem Herausgeber, Herrn Prof. Dr. K. Manteuffel (TH Magdeburg) und
Herrn Dr. R. Kuhrt (HU Berlin).

Dresden, Mirz 1980 K. Harbarth T. Riedrich

Vorwort zur vierten Auflage

Im Juli 1981 verstarb plotzlich der Mitautor dieses Bandes, Dozent Dr. rer. nat.
Klaus Harbarth. An seiner Stelle wird von nun an Dr. sc. nat. W. Schirotzek als Mit-
autor tatig sein. Wir werden das Buch im Sinne des Verstorbenen weiterfithren und
auch damit unserem Kollegen ein bleibendes Andenken bewahren.

In der vierten Auflage wurden nur kleinere Berichtigungen und Ergédnzungen an-
gebracht.

Dresden, im Mirz 1983 T. Riedrich W. Schirotzek
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1. Elemente der Theorie der Punktmengen

1.1. Grundbegriffe der Theorie der Punktmengen

1.1.1.  Definition des R"; Abstand im R

In der Differential- und Integralrechnung fiir Funktionen einer reellen Verinder-
lichen werden alle Uberlegungen in der Menge der reellen Zahlen als Grundmenge
durchgefiihrt. Es bezeichne wie bisher R oder R' die Menge der reellen Zahlen. Wir
rechnen im R! nach den iiblichen Regeln. Als Abstand d(x;, x,) zweier reeller Zahlen
x, und x, verwenden wir die Zahl

d(x1, X2) = |x; = X, (L1)

Fiir eine Ausdehnung der Theorie auf Funktionen von mehreren unabhingigen Ver-
anderlichen ist es erforderlich, neue Grundmengen heranzuziehen. Wir betrachten
zunichst Paare von reellen Zahlen und legen fiir je zwei reelle Zahlen q, b eine Reihen-
folge fest. Soll a die erste und b die zweite Zahl sein, so schreiben wir x; = a und
X, = b und fassen beide Zahlen durch Klammern in der Weise zu einem Paar zusam-
men, daB wir innerhalb der Klammern x; an die erste und x, an die zweite Stelle
setzen. Wir schreiben also (x;, x,) und bezeichnen (x;, x;) als geordnetes Zahlenpaar.
Die Zahlen 3 und —1 konnen also zu dem Paar (3, —1) oder zu dem Paar (-1, 3) zu-
sammengefaBt werden. Zwei geordnete Zahlenpaare (x;, x,) und (y,, y,) nennen wir
gleich, wenn innerhalb der Klammern an der jeweils entsprechenden Stelle die gleiche
Zahl steht. Wir setzen also (x;, X,) = (31, y») genau dann, wenn x; = y, und x, = y,
gilt. Somit ist (3, —1) == (—1, 3) und auch (3, —1) == (3, 0) wegen —1 == 0.

Eine geometrische Veranschaulichung von geordneten Zahlenpaaren ist in einer
mit einem kartesischen Koordinatensystem versehenen Ebene moglich. Man erkennt
an Bild 1.1, daB man das Zahlenpaar (x;, x,) durch den Punkt X mit den Koordina-
ten x, und x, oder durch den Vektor x mit den Koordinaten x, und x, veranschauli-

X

L] Sttt Xi,%)

7

X=X, 8 X,8,
&

Bild 1.1

>

e 7 ;X
chen kann. Gleichbedeutend sprechen wir in diesem Zusammenhang also von dem ge-
ordneten Zahlenpaar (x;, x,), dem Punkt X (x,, x,) oder dem Vektor x = x,e, + xs€;.
Eine Menge von geordneten Zahlenpaaren nennen wir demzufolge auch eine Punki-
menge. Unter dem R? verstehen wir die Menge aller geordneten Zahlenpaare (x;, x»).

Sind X(x;, x;) und Y(y,, y;) zwei beliebige Punkte des R?, so bezeichnet man unter
Beachtung des Satzes von Pythagoras die Zahl

dX, Y) = V(e =y + (x2 — »a)? (1.2)
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%

X
%Y

Ima K
i Bild 1.2
I XN

als Abstand der Punkte X und Y (vgl. Bild 1.2). Bei Benutzung der Vektorschreibweise
X = Xi€; + Xq€, und y = y,e; + yqe, bzw. der Koordinatenschreibweise hatte man zu
formulieren:

d(x,y) = Vixi =y + (e — 1o

A(x15 Xa), (V15 ¥2)) = V1 — p1)* + (%2 = y2)* .

Speziell fiir X(—1, 3) und Y(5, —4) erhalt man

bzw.

d(X, Y) = V(=1 =52 + (3 + 47 = 36 + 49 = }/85.

Je zwei Punkten X und Y ist also eine nichtnegative reelle Zahl d(X, Y) als Abstand
zwischen X und Y zugeordnet. Man sagt fiir diesen Sachverhalt auch, daBl im R? eine
Abstandsfunktion oder Metrik erkldrt ist. Man erkennt leicht, daB die Metrik im
R? die von der Abstandsfunktion (1.1) im R* her bekannten drei Eigenschaften erfiillt:

1. d(X, Y) = 0 fiir beliebige X, ¥ € R* und

d(X, Y)= 0genaudann, wenn X = Y; (1.3)
2.d(X, Y)= d(Y, X)fiir beliebige X, Y € R?; (1.4)
3.d(X,Z) < d(X, Y)+ d(Y, Z)fiir beliebige X, Y, Z € R®. (1.5)

Eigenschaft (1.5) heiBt Dreiecksungleichung. Der Name wird deutlich, wenn man z. B,
die Abstande in dem in Bild 1.3 gezeichneten Dreieck betrachtet.

%

Bild 1.3
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8 1. Elemente der Theorie der Punktmengen

Zusammen mit der Metrik (1.2) bezeichnet man den R? auch als zweidimensiona-
len enklidischen Raum.

Alle angestellten Uberlegungen konnen waortlich zur Definition des dreidimensio-
nalen euklidischen Raumes R® bzw. allgemein zur Definition des n-dimensionalen
euklidischen Raumes R" iibernommen werden. Der R" ist also die Menge aller geord-
neten n-Tupel von reellen Zahlen; wir bezeichnen sie mit (x;, X;, ..., X,). Der Index
gibt die Stelle an, an welcher die betreffende Zahl angeordnet werden soll. Fiir zwei
n-Tupel gilt die Gleichheit (x;, x,, ..., X,) = (J1, Y2, ..., Yn) genau dann, wenn zugleich
X1= Y1, X2 = Yo veer Xn = Yy, erfiillt ist. Fiir die Verschiedenheit zweier n-Tupel reicht
also aus, daB an mindestens einer Stelle innerhalb der beiden n-Tupel verschiedene
reelle Zahlen stehen. Die geordneten n-Tupel bezeichnen wir auch als Punkte eines
n-dimensionalen Raumes und die Zahlen innerhalb der n-Tupel dann als Koordinaten
der Punkte. Punkte im R? bzw. R® bezeichnet man gelegentlich auch durch (x, y)
oder (a, b) oder (x,,y,) bzw. durch (x, y, z) oder (a, b, c) oder (x,, o, Zo); d.h.,
man verzichtet hier auch gelegentlich auf die konsequente Verwendung der Index-
schreibweise (x;, x,) bzw. (x;, X,, X;) zur Kennzeichnung der Anordnung innerhalb
der Paare bzw. Tripel. Unter dem Abstand zweier Punkte X(x,, x,, ..., x,) und
Y(¥15 Y2» «v» Yn) Versteht man die nichtnegative Zahl

d(X’ Y)= V(xl—yl)2+ Sls (xn — In, t = Vké‘l(xk - yk)z- (16)

Die so im R erklarte Abstandsfunktion erfiillt die Eigenschaften (1.3) bis (1.5).

Aufgabe 1.1: Bestimmen Sie alle Punkte P(x, y) des R?, fiir die der Abstand zwischen
P(x,y) und dem festen Punkt 4(0, 0) genau so groB ist wie der Abstand zwischen
P(x,y) und dem festen Punkt B(—1, 1). Es soll also gelten d(P, A) = d(P, B).

1.1.2.  Der Umgebungsbegriff im R

Ehe im weiteren Verlauf Funktionen untersucht werden, die auf dem R bzw. auf
Teilmengen des R™ erklért sind, miissen einige Begriffe eingefiihrt werden. An vielen
Stellen wird eine Analogie zum Vorgehen im R! deutlich erkennbar sein.

Beginnen wir mit dem Umgebungsbegriff. Es sei ¢ eine vorgegebene reelle Zahl,
& > 0.Im R! bezeichnet man als &-Umgebung eines festen Punktes x, der reellen Achse
die Menge aller Zahlen x, deren Abstand zu x, kleiner als & ist. Verwenden wir fiir die
e-Umgebung von x, das Symbol U(x,; ¢), so ist also U(x,; ¢) die Menge aller Zahlen
x, fiir die d(x, x,) = |x — x| < ¢ gilt. Abgekiirzt schreiben wir

U(xo; &) = {x € R* | d(x, xo) < }.) ()]
Im R gilt fiir d(x, x,) = |x — X,| nun
[x—x] <ew—e<x—x<ewx—e<x<X+e.

Im R ist die e-Umgebung U(x,; ¢) also gerade das offene Intervall der Linge 2¢ mit
dem Mittelpunkt x,, d.h.

Uxp; €)= (X ER | xp — e < x < X + €. (1.8)

1) Die Klammern { } verwenden wir wie auch im Band 1 zur K ich von M Ge-
meint ist also die Menge aller x des R!, fiir die d(x, x,) < ¢ gilt.
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Die Formulierung (1.7) ist sofort auf den R" fiir n = 2 iibertragbar, da auch im R"
ein Abstand erklart ist. Ist Xy{a;, as, ..., @,) ein fester Punkt des R, so versteht man
unter der e-Umgebeng U(X,; €) von X, die Menge aller Punkte X (x;, X,, ..., X,) des
R~ mit d(X, X;) < e, also

U(XO; 8) = {X(xls 0f) xn) E R* | d(X’ Xo) < 5}

= [X(xh eeesy xn) € R" l/kzn‘ (xk = ak)2 < 6]
=1

- e s € 2| 3 00— ap <

Speziell fiir n = 2 ist U(X,; ¢) die in Bild 1.4 dargestellte Kreisscheibe ohne Rand mit
dem Mittelpunkt X, und dem Radius ¢ und fiir n = 3 die Kugel ohne Oberflache
mit dem Mittelpunkt X, und dem Radius &. Entsprechend dem Aussehen im R;
werden die e-Umgebungen ganz allgemein auch als Kugelumgebungen bezeichnet.

X

V(Xg;ots,06)

= //%-"

/

Bild 1.4 Bild 1.5

Durchléuft ¢ alle positiven reellen Zahlen, so erhilt man fiir jeden Punkt X, ein ganzes
System von e-Umgebungen U(X,; ¢). Ist 0 < &, < &, so folgt U(Xy; &,) < U (Xo; &),
d.h., die e-Umgebungen eines festen Punktes X, sind ineinandergeschachtelt. Nimmt
man aus einer e-Umgebung U(X,; ¢) von X, den Punkt X, heraus, so bezeichnet man
die verbleibende Menge als punktierte (oder auch reduzierte) s-Umgebung von Xi;
symbolisch

U*(Xo; &) = U(Xy; &)\ {Xo}.) (1.9)
Gelegentlich betrachtet man neben den Kugelumgebungen auch Rechteckumge-
bungen im R? bzw. allgemein Quaderumgebungen im R". Es seien X, (a;, a,) ein fester
Punkt des R? und «, sowie a, zwei positive reelle Zahlen. In Bild 1.5 ist die zugehorige
Rechteckumgebung V(X,; o,, &) von X, eingezeichnet — es ist das Rechteck ohne
Rand mit den Kantenldngen 2, bzw. 2a, und dem Mittelpunkt X;, also
V(Xo; a1, o) = {X(x1, X2) € R? | @y — oy < %, < @+ & und

ay — 0y < Xp < @y + ). (1.10)

1) Das Mi ichen "\ fiir M verwenden wir in dem im Band 1 erklarten Sinne. Sind 4 und
B beliebige Mengen, so bezeichnet A4\ B die Menge aller Elemente von 4, die nicht zu B gehoren.
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Im Spezialfall ®, = «, = ¢ erhdlt man eine quadratische e-Umgebung. Analog kon-
nen im R* mit Hilfe von Ungleichungen Quaderumgebungen eines Punktes X mit n
Kantenldngen 2«,, 244, ..., 20, erklirt werden. "

Im R? erkennt man an den Bildern 1.6 und 1.7 sofort, daB jede Kreisumgebung
eines Punktes X, auch eine Rechteckumgebung von X, enthilt und umgekehrt. In
diesem Sinne sind fiir einen Punkt X das System aller Rechteckumgebungen und das
System aller Kreisumgebungen als gleichwertig anzusehen. Fiir viele Uberlegungen
ist es daher gleichgiiltig, welche Umgebungsart man verwendet.

X2
-1 N F————x
/ \\ | |
// \ | /’—\\ |
r=r—s-- 7 I{ |
| | X | [
| P T al |\ /I
\ / |
\ /,/ t
N X N R
Bild 1.6 Bild 1.7

Mit Hilfe von Umgebungen des Nullpunktes kann auch die Beschrinktheit
von Mengen erkldrt werden. Es sei zundchst M eine Teilmenge des R?. Fiir jeden
Punkt X von M sei d(X,0) der Abstand des Punktes X vom Nullpunkt, also
d(X,0)= Vx;%+ x,* fiir X(x,, x,). Wir nennen die Menge M beschrinkt, wenn es eine
positive Zahl K gibt, so daB

d(X,0) = Vx® + x® <K firalle X(x;,%,) € M (L.11)

gilt. (1.11) besagt gerade, daB alle Punkte von M in der Kreisumgebung mit dem
Radius K um den Nullpunkt liegen miissen. Anders formuliert erhalten wir also:
Eine Menge M < R? heiBt beschrénkt, wenn es eine Kreisumgebung des Nullpunktes
gibt, welche die Menge M ganz enthilt.

Ist M das Quadrat mit den Eckpunkten P;(2, —1), P(5, —1), P5(5, 2) und P,(2, 2),
so gilt ganz sicher

d(X, 0) < 10 fiir alle Punkte X des Quadrates M.

M ist also ganz enthalten in der Kreisumgebung mit dem Radius 10 um den Null-
punkt; M ist somit beschrankt. (Es ist an dieser Stelle unwichtig, daB es auch schon
,.kleinere* Umgebungen des Nullpunktes gibt, welche das Quadrat M ganz enthalten;
d.h., K = 10 ist nicht die kleinste Zahl, so daB (1.11) gilt. Es geniigt dic Angabe von
mindestens einer solchen Zahl K.)

Die Menge M’ aller Punkte des ersten Quadranten in der x, y-Ebene ist ein Bei-
spiel fiir eine nicht beschrankte Menge.

Die Definition der Beschrinktheit ist wortlich zu iibernehmen fiir Teilmengen
des R™.



1.1. Grundbegriffe 11

1.1.3.  Gebiete im R"

Wir erinnern an den Begriff der Stetigkeit einer reellen Funktion f einer unabhén-
gigen Variablen an einer Stelle x,. Es wird der Funktionswert f(x,) verglichen mit den
Funktionswerten f(x) fiir x-Werte, die zu x, benachbart sind. Der Definitionsbereich
von f muB also die Eigenschaft haben, daB3 sowohl x, als auch eine ganze Umgebung
von X, zu ihm gehdren; x, muB ein sogenannter innerer Punkt des Definitions-
bereiches von f sein.

Nun sei allgemein M eine Teilmenge des R? und X;(x,, y,) ein Punkt von M. Wenn
dann mindestens ein ¢, > 0 existiert, so daB die ¢-Umgebung U(X,; &) von X, ganz
zur Menge M gehort, dann heiBt X, innerer Punkt von M.

Beispiel 1.1: Q sei das in Bild 1.8 gezeichnete Quadrat. Fiir die Koordinaten aller
Punkte P(x, y) von Q soll gelten 0 < x <1 und 0 = y <1. Die rechte und die

obere Quadratseite sollen also nicht zur Menge Q gehoren. P, (2 ; ist ein innerer
Punkt von @, denn z.B. fiir ¢,= 1—xst U (Po, 4) ganz in Q enthalten. U(Py; &) < @

)

gilt sogar fiir alle ¢ mit 0 < ¢ < - wihrend fiir & > die Umgebung U(P,; ¢) nicht

)
mehr ganz in Q enthalten ist. Die Definition eines inneren Punktes verlangt lediglich,
daB U(Py; &) < Q fiir gewisse & > 0 gilt. Die Wahl solcher Werte &, hangt von

der Lage von P, ab. P; 2) ist kein Punkt von Q, also erst recht auch kein innerer

(-
4
Punkt von Q. Wir sehen an Bild 1.8, daB jede e-Umgebung von P, zwar Punkte von
O enthalt aber zugleich auch Punkte, die nicht zu Q gehéren.
Die folgenden allgemeinen Bezeichnungen sind iiblich: Die Menge aller inneren
Punkte von M heiBt das Innere von M. Das Innere von M ist also ‘stets ein Teil

YA
"
AN
i15 <
S
1L
7 o Y
1
/l 7
= S 4%
Py H Bild 1.8
A T

von M. Ein Punkt X heift Randpunkt von M, wenn jede Umgebung von X; sowohl
Punkte enthalt, die zu M gehoren als auch Punkte, die nicht zu M gehéren. Die Menge
aller Randpunkte von M heiBt der Rand von M. Beim Rand von M ist zu unter-
scheiden zwischen Randpunkten, die zu M gehoren und Randpunkten, die nicht zu
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M gehoren. M heiBt eine offene Menge, wenn jeder Punkt von M ein innerer Punkt
von M ist. Ist M eine offene Menge, so gehoren also alle Randpunkte von M nicht zu
M. M heiBt eine abgeschlossene Menge, wenn M alle Randpunkte von M enthilt.
Fiigt man zu einer Menge M samtliche Randpunkte von M hinzu, so heiBt die ent-
stehende neue Menge die AbschlieBung von M oder die abgeschlossene Hiille von M.
Wenn eine Menge M < R* sowohl abgeschlossen als auch beschrankt ist, dann heiBt
M eine kompakte Menge. Abgeschlossene Rechtecke bzw. abgeschlossene Kreise
(d.h. alle Randpunkte sollen zur Rechteckfliche bzw. zur Kreisfliche gehoren) sind
also Beispiele fiir kompakte Teilmengen des R?. Auf der Zahlengeraden sind abge-
schlossene Intervalle Beispiele fiir kompakte Teilmengen des R.

Im Beispiel 1.1 ist P;(1, §) ein nicht zu Q gehdrender Randpunkt und P,(0, ) ein
zu Q gehorender Randpunkt. Alle Punkte der vier Seiten des Quadrates sind Rand-
punkte von Q. Das Innere von Q besteht aus allen Punkten P(x, y) mit 0 < x <1
und 0 < y < 1. Die Menge Q ist also weder offen noch abgeschlossen, weil es sowohl
Randpunkte gibt, die zu Q gehéren als auch Randpunkte, die nicht zu Q gehoren.
Beispiele fiir offene Mengen in der x, y-Ebene sind Kreisscheiben ohne die Punkte
der begrenzenden Kreislinie. Speziell die e-Umgebungen U(P; ¢) von Punkten P € R®
sind somit offene Mengen.

Zwei Begriffe sollen noch erwdhnt werden. Eine Menge M < R* heilt konvex,
wenn mit je zwei Punkten X, ¥ € M auch alle Punkte der Verbindungsstrecke von
X und Y zu M gehoren. In der Sprache der Vektorrechnung bedeutet das: Gehoren
x und y zu M, so auch alle z der Gestalt

z=ty+(l—f)x=x+1t(y—x) fir 0< <1, (1.12)

Fiir # = 0 erhélt man x und fiir 7 =1 dann y. Setzen wir h =y — X, so miissen mit
xundyauchallez = x + thfiir0 < 7 < 1 zu M gehoren. Halbebenen, Kreisscheiben,
Rechteckflichen sind Beispiele fiir konvexe Mengen.

Eine offene Teilmenge G des R* heif3t zusammenhéngend, wenn je zwei Punkte von
G durch einen ganz in G verlaufenden Streckenzug mit nur endlich vielen Eckpunk-
ten verbunden werden konnen. Die in Bild 1.9 skizzierte Menge (die Randpunkte

JA

Bild 1.9

sollen nicht zur Menge gehoren) ist nicht konvex, wohl aber zusammenhéingend.
Jede offene und konvexe Menge ist somit erst recht zusammenhéngend. Eine offene
und zusammenhéngende Punktmenge nennt man auch ein Gebiet. Gelegentlich unter-
scheidet man noch zwischen einfach zusammenhéngenden und mehrfach zusammen-
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héngenden Gebieten. Dabei soll ein Gebiet G des R* einfach zusammenhéingend heiflen,
wenn jede in G liegende doppelpunktfreie geschlossene Kurve innerhalb G stetig zu
einem Punkt deformiert werden kann'). Andernfalls heiBt ein Gebiet G mehrfach zu-
sammenhiingend. Die in Bild 1.10 skizzierte Menge (Kreisring ohne Randpunkte) ist
ein Beispiel fiir ein mehrfach zusammenhéngendes Gebiet?). Das Gebiet in Bild 1.9
ist einfach zusammenhéngend.

JA y /\

! 7.%
—
S
AR

Bild 1.10 Bild 1.11

/

Ist G ein Gebiet und nehmen wir zur Menge G alle Randpunkte von G hinzu, so
nennt man die so entstehende AbschlieBung G von G auch einen Bereich.

In den Anwendungen werden Gebiete oder Bereiche haufig durch Ungleichungen
beschrieben — wir erldutern dies durch einige Beispiele.

Beispiel 1.2: Es sei B, die Menge aller Punkte P(x,y), fiir deren Koordinaten
y <3x+ 1 gilt, also .

By = {P(x,y) € Ry <3x+1}.

B, ist die in Bild 1.11 unterhalb der Geraden y = 3x + 1 gelegene Halbebene ohne
die Punkte der Geraden selbst. Die Menge B, ist offen und konvex und damit ein
Gebiet. B, ist ein einfach zusammenhangendes Gebiet.
Beispiel 1.3: Es sei

B, = {P(x,y) € B[ (16 — x*) (9 — ") 2 0}.
B, ist die Menge aller Punkte P(x, y), fiir deren Koordinaten entweder gilt

16 —x*=0 undzugleich 9—3»*=0 (1.13)

') Eine genaue mathematische Formulierung fiir diesen Sachverhalt geben wir an dieser Stelle
nicht — uns geniigt eine anschauliche Interpretation.

%) Das Gebiet ,,enthilt ein Loch®, welches ,,das stetige Zusammenziehen* fiir gewisse geschlos-
sene Kurven ,,verhindert*.
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oder
16 —x*<0 undzugleich 9-—3*<0. (1.14)
(1.13) bedeutet |x| < 4 und zugleich |y| < 3,
(1.14) bedeutet |x| = 4 und zugleich |y| = 3.

B, ist in Bild 1.12 schraffiert; B, ist abgeschlossen, nicht beschrinkt und nicht
konvex. B, ist kein Bereich, da das Innere von B, (d. h. die schraffierten Mengen ohne
die Rénder) nicht zusammenhéingend, also kein Gebiet ist.

Beispiel 1.4: Es sei [a, b] ein abgeschlossenes Intervall auf der x-Achse, und ¢, und ¢,
seien zwei auf [a, b] definierte reelle stetige Funktionen der unabhangigen Variablen
x mit ¢,(x) < @,(x) fiir alle x aus [a, b]. Fiir jede feste Zahl x, mita < x, < bist dann
die Menge aller Punkte (x,, y) mit ¢,(x,) < y < @(x,) gerade die Strecke, die von den
Punkten (xy, ¢1(x,)) und (x,, @o(x,)) begrenzt wird. Durchlduft x, alle Punkte von
[a, b], so erhalten wir die in Bild 1.13 skizzierte Menge

G={xy)€R|a<x<bund ¢,(x) <y < gu()}.

Die Menge G ist ein Bereich. Man nennt Mengen dieser Art auch Normalbereiche
oder Fundamentalbereiche. (Die Menge G konnen wir auch auffassen als Abschlie-
Bung der offenen Menge

G ={(x,y) ER|a<x<b und ¢,(x) <y < po(x)}.

Die Menge G ist ein Gebiet.) Normalbereiche werden im Band 5 in der Integral-
rechnung fiir Funktionen mit zwei Variablen als Integrationsbereiche betrachtet.

N

= / :-3 4‘ s
A

Bild 1.12 Bild 1.13

N
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[

Beispiel 1.5: Ganz ahnlich aufgebaut ist die folgende Menge H: Es sei [c, ] ein ab-
geschlossenes Intervall auf der y-Achse, und v, und y; seien zwei auf [c, d] erklarte re-
elle stetige Funktionen der unabhingigen Variablen y mit y,(y) < y,(p)fiir alle y aus
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[c, d]. H sei dann die Menge
H={(x,y) € R*|c <y <dund 9,(») <x < 3:(»)}
mit der in Bild 1.14 gezeichneten Abschliefung
H={(x,y) €K |c=y=<dund () < x < p0)).
Alle eingefiihrten Begriffe kénnen wieder allgemein im R* formuliert werden.
Aufgabe 1.2: Skizzieren Sie in der x, y-Ebene die folgenden Normalbereiche:
) B ={xy0sx=2ud - T-G-1F=y=<o},
b)B,={(x,»)|0<x=<4 und Vax— 2 <y < Vax},

OB ={(xy) 1Sy=2ud 0<x<I=G=T8.

Bild 1.14 Bild 1.15

1.2.  Konvergenz von Punktfolgen

In Band 1 wurden im R* Zahlenfolgen auf Konvergenz untersucht. Wir betrachten
nun Punktfolgen in einem m-dimensionalen euklidischen Raum R™. Den Begriff einer
gegen einen Punkt des R™ konvergenten Punktfolge werden wir in der Weise erkliren,
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daB wir der Punktfolge eine Zahlenfolge zuordnen und von dieser zugeordneten
Zahlenfolge ein gewisses Konvergenzverhalten fordern. Diese Gedanken sind bereits
in Bd. 1, 10.9., dargestellt. Zur Vereinfachung der Schreibarbeit nehmen wir wieder
m = 2 an. Es sei (P,) eine Punktfolge im R? mit den Koordinaten (x,,, y,), d. h., jeder
natiirlichen Zahl n = 1, 2, ... ist ein Punkt P,(x,, y,) zugeordnet.!) Als Beispiel be-

trachten wir die Punktfolge (x,,y,) = (%, 1—-'17) . Es gilt also x, = % und

Ya=1- nl =1 — x,. Alle Punkte P, liegen auf der in Bild 1.15 gezeichneten Geraden
y =1 — x. Weiter betrachten wir den Punkt P(a, b) mit (a, b) = (0, 1). Fiir die Ab-
stinde der Punkte P, von P gilt

APy P)= VG —aF F On =B = VW):E

n

Der Punktfolge (x,, y) soll nun die Zahlenfolge (d(P,, P)) dieser Abstinde zuge-
ordnet werden. Im vorliegenden Beispiel gilt

lim d(P,, P) = lim ﬁ =0,
Die Folge der Abstinde ist eine Nullfolge. Anschaulich bedeutet dies, daB die
Punktfolge (P,) fiir n > oo gegen den Punkt P konvergiert. Allgemein wird definiert:

Definition 1.1: Eine Punktfolge (P,) heifit konvergent gegen den Punkt P, wenn die
Zahlenfolge der Abstinde der Punkte P, von dem Punkt P eine Nullfolge ist, d.h., wenn
lim d(P,, P) = 0 gilt. Wir schreiben dann fiir diesen Sachverhalt: lim P, = P.

n-oo n—co

Besonders wichtig ist die Charakterisierung der Konvergenz einer Punktfolge durch
die Konvergenz der Zahlenfolgen der einzelnen Koordinaten. Es seien wieder x, und
yn die Koordinaten der Punkte P, und a und b die Koordmaten des Punktes P. Dann
beweisen wir den

Satz 1.1: Fiir eine Punktfolge (P,(x,,,)) und einen Punkt P(a, b) gilt

I lim P, = P genau dann, wenn lim x, = a und lim y, = b gilt.

n—oo n-oo n—-oo

Beweis: Die Konvergenz einer Zahlenfolge («,) gegen die Zahl « besagt, daB es zu
jeder beliebig vorgegebenen Zahl & > 0 einen Index n,(¢) geben muB, so daB fiir alle
Indizes n mit n = ny(e) gilt |a, — o] < e.

1. Teil des Beweises: Wir setzen voraus, daB die Folge der Abstinde d(P,, P) eine
Nullfolge ist und haben zu zeigen, daB dann folgt lim x, = a und lim y, = b. Nun
gelten die Abschatzungen 00 3o

0 é |xn - al V(xn - a)2 = V(xn - 4)2 et (yn - b)z d(Pn, P) (115)

1) Zur Beschreibung einer Folge kénnte anstelle des Buchstaben n selbstverstindlich auch je-
der andere Buchstabe als Index verwendet werden. So konnten wir fiir eine Punktfolge auch
schreiben Py (x, yi) mit k =1,2,3 ...
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und entsprechend

0= |yn‘b1 V(}’n"‘b)2< V(xn'_a)z‘l'(yn'—b)2 d(Py, P). (1.16)
Da nach Voraussetzung lim d(P,, P) = 0 gilt, so folgt aus der Ungleichung (1.15)

bzw. (1.16) dann auch lin; _];: — a| = 0 bzw. lim |y, — b| = 0, und das bedeutet aber
n-oo n-oco
gerade lim x, = @ bzw. lim y, = b.

n-oo n—co

2. Teil des Beweises: Wir setzen voraus, dal lim x,. = gund lim y, = b gilt und haben

n—oo

zu zeigen, daB dann lim d(P,, P) = 0 folgt. Es werde eine Zahl ¢ > 0 vorgegeben.

n-soo

Zu zeigen ist nun die Existenz von einem Index ny, so daB fiir alle n = n, gilt
d(P,, P) < &. (Wegen d(P,, P) = 0 ist |d(P,, P)| = d(Pn, P); wir brauchen also nicht
mit Betrdgen zu arbeiten.) Wir bilden nun die Zahl ¢ = —; . Da,}{n:o X, =a gilt, so
existiert spezie]l zu der Zahl ¢, ein Index n;, so daB fiir alle Indizes n = n, gilt

—a| < & ==. Da zugleich lim y, = b gilt, so existiert wieder speziell zu der
Zahl &,’ein wexterer Index n,, so daﬁwfur alle Indizes n = n, gilt |y, — b| < &; = f Es

sei nun n, die groBere der beiden Zahlen n, und n,. Fiir alle n = n, gilt dann erst recht

X, — a] < —;— und zugleich |y, — b] < ; (1.17)

Ebenfalls fiir alle » = n, folgt dann (warum?)

d(PmP)=\/(xn_a)2+(yn_b)z é\/(|x"_a] + Iy,.—-bl)ﬂ

=[x —al+ [yn— bl

e ¢
<7+»2—=-5 wegen  (1.17).

Damit ist ein Index n, mit der geforderten Eigenschaft gefunden und der Beweis be-
endet. m

Es sei ausdriicklich vermerkt, daB eine zu Satz 1.1 analoge Aussage auch im R™
fiir m > 2 gilt.

Die Konvergenz einer Punktfolge liegt also genau dann vor, wenn die Zahlenfolgen
der einzelnen Koordinaten sdmtlich konvergieren, und zwar jeweils gegen die ent-
sprechende Koordinate des Grenzelementes. Es ist einleuchtend, daB fiir die Konver-
genz von Punktfolgen Eigenschaften gelten, wie sie vom R! her bekannt sind. Ins-
besondere gilt das Konvergenzkriterium von Cauchy. Bs besagt, daB eine Punkt-
folge (P,) genau dann konvergiert, wenn es zu jeder Zahl ¢ > 0 einen Index n, gibt,

2 Harbarth;Riedrich, Diff. Rechn.
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so daB fiir alle Indizes n, und n, mit n; = ny, 1y = ng gilt d(Pa,, Pr,) < &. Wenn eine
Punktfolge konvergiert, dann ist das Grenzelement eindeutig bestimmt.

Es bezeichne 0 den Nullpunkt des rechtwinklig kartesischen Koordinatensystems.
Eine Punktfolge (P,) heiBit dann beschrinkt, wenn die Zahlenfolge (d(P,, 0)) der
Abstinde der Punkte P, vom Nullpunkt 0 beschrinkt ist im Sinne der Sprechweise
fiir Zahlenfolgen. Es muB also eine Zahl K existieren, so daB gilt

d(P,,0)=Vx2 +p2< K firalle n=12,...
Dann gelten die folgenden Sitze:
Satz 1.2: Jede konvergente Punktfolge ist beschrinkt.

Satz 1.3 (Satz von Bolzano-WeierstraB): Jede beschrinkte Punktfolge enthdlt eine
konvergente Teilfolge.

Aufgabe 1.3: Im R® betrachten wir die Punktfolge Py(Xn, Yn, 2,) mit
5 1\
(xm Vns Z,,)= (3 + ﬁ: —l: (1 + ;) )
Ist diese Punktfolge konvergent?

Aufgabe 1.4 Untersuchen Sie das Konvergenzverhalten der Punktfolge
G ) = (57 (1) im R



2. Funktionen mehrerer unabhéingiger Variabler

2.1.  Begriff einer reellen Funktion von mehreren unabhingigen Variablen

Wir kennen bereits viele Beispiele fiir das Aufteten von Funktionen von mehreren
Verénderlichen. So ist z. B. der Umfang U eines Rechtecks eine Funktion seiner
Seitenldngen a und b:

U = U(a, b) = 2a + 2b.
Das Volumen V eines Quaders ist eine Funktion seiner Seitenldngen a, b und c:
V="Vabc)y=ab-c.
Fiir a, b und auch ¢ kommen selbstverstandlich nur positive Zahlen in Frage.
Nach dem Ohmschen Gesetz hingt die Spannung U in einem elektrischen Strom-

kreis mit dem Widerstand R und der Stromstdrke 7/ durch U = R - I zusammen.
Wenn U und R gegeben sind, so kann man I als Funktion von U und R bestimmen:

I=1IU,R) =%.

In den genannten Beispielen wird also gewissen Zahlenpaaren bzw. gewissen Zahlen-
tripeln von reellen Zahlen eine weitere reelle Zahl als Funktionswert zugeordnet.
Die Verallgemeinerung dieser Beispiele fiihrt auf den Begriff einer reellen Funktion
von mehreren unabhéngigen Variablen:

Definition 2.1: Es sei M eine Teilmenge des R". Wenn dann durch eine Vorschrift
jedem Punkt P (xy, ..., x,) von M genau eine reelle Zahl zugeordnet wird, so sagen
wir, daf} auf M eine reelle Funktion von n unabhingigen Verinderlichen x, ..., x, mit
dem Definitionsbereich M erkldrt ist. Fiir die dem Punkt P(x,, ..., X,) zugeordnete
reelle Zahl schreiben wir dann f(P) oder f(xy, ..., X,). Mit dem Ortsvektor
X = Xxi&; + ... + X,e, des Punktes P(x,, ..., x,) schreibt man gelegentlich auch

SGery s X)) = f(X).

Die Zuordnungsvorschrift ist in den meisten Fallen durch einen analytischen
Rechenausdruck gegeben. Wir betrachten zunichst die Spezialisierung n =2, da
dieser Fall leichter iiberschaubar ist. Der Definitionsbereich ist dann eine Teilmenge
der x, y-Ebene. Statt f(x,, x,) schreiben wir dann auch f(x, y). Vieles kann unmittel-
bar auf den Fall #n > 2 iibertragen werden.

Beispiel 2.1: f(x,y)= x-y. Als Definitionsbereich M konnen wir die gesamte
x, y-Ebene betrachten. Dann gilt z.B. (0, 0) = 0 oder f(—1, 2) = (—1) - 2 = —2. Fiir
alle Punkte auf den Koordinatenachsen ist der Funktionswert Null; er ist positiv fiir
alle Punkte des ersten und dritten Quadranten und negativ fiir alle Punkte des zweiten
und vierten Quadranten.

Beispiel 2.2: f(x,y)= x*+ y*. Die Funktion f ist fiir alle Punkte der gesamten
x, y-Ebene erklart. Es ist f(0, 0) = 0 und f(x, y) > 0 fiir (x, y) + (0, 0). Es seien
r > 0 und K der Kreis mit dem Radius » um den Nullpunkt. Dann gilt f{(r, 0) =
f0,r) = f(—r,0) = f(0, —r) = r Gleiches gilt firr alle Punkte (x, y) auf X, d. h.,
fir alle (x,y) mit x* + 3* = r? gilt f(x, y) = r% Die geometrische Veranschauli-
chung dieser Funktion erfolgt in Bild 2.1.

2%

D.2.1
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Beispiel 2.3: f(x,y) = Jx —y. Wegen des Auftretens der Wurzel kann die Funk-
tion fnur fiir solche Punkte P(x, y) erklirt werden, fiir deren Koordinaten 0 < x — y,
d.h., y < x gilt. fist also nur fiir alle Punkte der Geraden y = x und alle Punkte
unterhalb dieser Geraden erklart.

2 2
Beispiel 2.4 f(x, y) = % . fist fiir alle P(x, y) erklart, fiir die x + y + 0 gilt,

d.h., fiir alle Punkte der x, y-Ebene mit Ausnahme der Punkte auf der Geraden
y = —x. Fiir Punkte oberhalb dieser Geraden gilt x + y > 0 und somit f(x, y) > 0;
fiir Punkte unterhalb dieser Geraden gilt x + y < 0 und somit f(x, y) < 0. :

Analog zum Vorgehen bei Funktionen einer unabhéngigen Variablen ist eine geo-
metrische Veranschaulichung auch fiir Funktionen von zwei unabhéngigen Verinder-
lichen moglich. Ausgehend von den Punkten des Definitionsbereiches M einer Funk-
tion f(x, y) werde der Funktionswert f(x, y) senkrecht iiber P(x, y) € M in Richtung
der z-Achse abgetragen — im Fall f(x, y) = 0 wird eine Strecke der Lénge |f(x, y)|
= f(x, ) in Richtung der positiven z-Achse und im Fall f(x, y) < 0 eine Strecke der
Linge |f(x, »)| = —f(x, ) in Richtung der negativen z-Achse angetragen. Die End-
punkte aller dieser Strecken bilden in vielen Fillen eine Fliche im Raum. Diese
Fliche wird dann als das geometrische Bild von f(x, y) angesehen. Ein Punkt R(x,y,z)
des R® gehort also genau dann zum Bild einer Funktion f(x, ), wenn z = f(x, y) fiir
die z-Koordinate des Punktes R gilt.

Das geometrische Bild fiir die in Beispiel 2.2. betrachtete Funktion f{(x, y) =
x? + )* ist in Bild 2.1 skizziert. Senkrecht iiber allen Punkten (x, y) auf dem Kreis
x% + y* = r? ist iiberall der Funktionswert f(x, ) = x* + »* = r? in Richtung der
positiven z-Achse abzutragen.

Als Schnittkurve dieser Flidche mit der x,z-Ebene erhilt man fiir y = 0 die Parabel
z = f(x,0) = x? (Bild 2.1a) und als Schnittkurve mit der y,z-Ebene fiir x = 0 die
Parabel z = f(0,y) = »* (Bild 2.1b). Fiir jede Ebene, die senkrecht auf der x,y-
Ebene steht und den Nullpunkt enthilt, ist die Schnittkurve mit der genannten Fliche
eine Parabel. Die durch z = f(x, y) = x2 + y? dargestellte Flache heiBt daher auch
ein Paraboloid.

z z
z=x? z=y?
(y=0) (x=0)
7 7
7 X ¥ y

Bild 2.1 Bild 2.1a Bild 2.1b
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Wir bemerken bereits an dieser Stelle, daB es fiir gewisse Uberlegungen niitzlich
ist, die Schnittkurven zu betrachten, die durch Schnitt der Fliche z = f(x, y) mit
geeigneten auf der x,y-Ebene senkrecht stehenden Ebenen entstehen. Man vergleiche
hierzu auch im Abschnitt 3.1. die Einfiihrung der partiellen Ableitungen.

Eine weitere geometrische Veranschaulichung fiir eine Funktion f{(x, y) ist durch
die folgende Uberlegung moglich. Man geht von den Werten ¢ des Wertevorrates von
faus und bestimmt fiir jede solche Zahl ¢ die Menge der Urbilder in der x, y-Ebene.
Genauer: Ist f eine Funktion von zwei unabhéngigen Variablen und ¢ eine Zahl
aus dem Wertebereich von f, so werden alle Punkte (x, y) aus dem Definitionsbereich
von f gesucht, fiir die f(x, y) = c gilt.?) In vielen Fallen bilden diese Punkte eine im
Definitionsbereich verlaufende Kurve. Solche Kurven nennt man deshalb auch
Héhenlinien oder Niveaulinien der Funktion f. Als geometrische Veranschaulichung
von f kann man dann im Definitionsbereich M der Funktion f das System der Niveau-
linien skizzieren. Schreibt man an jede Niveaulinie den zugehérigen Funktionswert c,
so erhélt man auf diese Weise eine gute Vorstellung von der Funktion f(x, y). Die
Schar aller Hohenlinien bildet i.allg. die einparametrige Kurvenschar f(x, y) = ¢ mit ¢
aus dem Wertevorrat der Funktion f(x, ). Diese Kurvenschar nennt man gelegent-
lich die Karte der Fliche oder die Karte der Funktion.

(63
yjiéix

Bild 2.2 Bild 2.3

In Bild 2.2 ist die Karte der Fldche f(x, y) = x - y angedeutet. Die Niveaulinie ¢ = 0
fallt mit den Koordinatenachsen zusammen. Fiir ¢ = 0 erhilt man als Niveaulinie
f(x,y)=c die Hyperbel y = % .

1) Bei der Konstruktion des geometrischen Bildes der Funktion wire iiber allen diesen Punkten
der gleiche Funktionswert abzutragen.
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Die Karte der Funktion aus Beispiel 2.2, f(x, y) = x* + »?, ist in Bild 2.3 skizziert.
f(x,y) = 0 gilt nur fiir den Nullpunkt. Fiir ¢ > 0 gilt f(x, y) = x* + »* = ¢ fiir alle
Punkte des Kreises mit dem Radius Jc um den Nullpunkt. Geht man von diesem
System aller Niveaulinien der Funktion f(x, y) aus, so entsteht aus ihm das geometri-
sche Bild der Funktion, wenn man jeden Kreis mit dem Radius Ve auf die Hohe ¢
gehoben denkt. Man erhilt so das in Bild 2.1 skizzierte nach oben gedffnete Para-
boloid, das im Nullpunkt auf der x, y-Ebene aufliegt.

Fiir die Funktion von Beispiel 2.3 ist die Schar der Niveaulinien gerade die in Bild
2.4 skizzierte Schar der Geraden y = x — ¢%

Im Beispiel 2.4 ist ¢ = 0 auszuschlieBen. Fiir ¢ == 0 bedeutet f(x, y) = ¢ dann

X+ y*=2cx+2cy oder (x—cp+ (y—c)P=2c¢". .1

(2.1) bedeutet die Kreisschar mit den Mittelpunkten (c,' ¢) und den Radien ¢ = |¢|}2

Man erkennt in Bild 2.5, daB alle Kreismittelpunkte auf der Geraden y = x liegen.
Der Nullpunkt gehort jeweils nicht zur Niveaulinie.

Bei reellen Funktionen von mehr als zwei unabhéngigen Verdnderlichen ist eine
analoge geometrische Interpretation nicht moglich, da wir Punkte des #-dimensio-
nalen euklidischen Raumes R" fiir » = 4 nicht mehr geometrisch veranschaulichen
koénnen.

2.2. Grenzwerte von Funktionen mehrerer Variabler

Wir betrachten zuniichst Funktionen von zwei unabhéngigen Variablen. Es sei
f(x, y) eine solche Funktion, und ein Punkt Py(x,, y,) sei so gewéhlt, da} zumindest
eine punktierte Umgebung von P, ganz zum Definitionsbereich M der Funktion f(x,y)
gehort.?) Analog zum Vorgehen bei Funktionen einer unabhéngigen Variablen be-
trachten wir nun Punktfolgen P,(x,, y,) mit folgenden Eigenschaften:

E1) Gnyn) €M firallen n=1,2,3,..),
(E2) (Xn,yn) + (x0, ) fiirallen,
(E3) nllrg (%ns Yn) = (%o Yo)-

Die betrachteten Punktfolgen sollen also ganz zum Definitionsbereich von f(x, )
gehoren, den Punkt (x,, yo) nicht enthalten und gegen (xo, y,) konvergieren. Fiir jede
solche Punktfolge ist dann die zugehdrige Folge der Funktionswerte f(x,, y,) eine
Zahlenfolge, und diese Zahlenfolge wird auf Konvergenz untersucht. Wir verein-
baren dann folgende

1) Die Funktion fist also wenigstens fiir die Punkte einer Umgebung von P, mit eventueller Aus-
nahme von P, selber erklart.
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¥

Bild 2.4

Koyt
2(x+y)”

Bild 2.5
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D.2.2 Definition 2.2: Die Funktion f(x, y) sei (mindestens) in einer punktierten Umgebung
von Py(Xq, o) definiert. Eine Zahl « heift Grenzwert von f(x, y) fiir P gegen P, (bzw.
fiir (x, y) gegen (X, y,)), wenn fiir jede Folge (xy, y,) mit den Eigenschaften (E 1), (E 2),
(E 3) gilt, dap die Zahlenfolge (f(xn, y.)) der zugehirigen Funktionswerte stets gegen
die Zahl « konvergiert. Wir schreiben dann

lim f(x,y)=0a oder limf(x,y)=a oder
(2, y)~(2s, Yo) P~P,

S, p)—> o fir  (x,p)— (X0, Yo)-

Als Beispiel betrachten wir zunichst die Funktion f(x, y) = x* + »* und wihlen
2.B. (xp, yo) = (=2, 1). Ist (x,, y») eine beliebige Folge mit den Eigenschaften (E 1)
bis (E3), so folgt aus lim (x,,y,) = (—2,1) dann fiir die Koordinatenfolgen

lim x, = —2 und lim y, = l*und damit weiter

n-co n-x

lim f(Xn, ya) = lim (x,2 + y,2) = lim x, 4 lim y,2 = 5. (2.2)
n—-co n—-o n—-oo n-—+oo

Da (2.2) fiir jede solche Folge gilt, erhalten wir
lim  f(x,y)=>5. 23)

(z,9)~(-2,)

Weiter betrachten wir die Funktion f(x, y) = E(x_—:-y—)

(xo5 ¥o) = (0, 0); im Nullpunkt ist f(x, y) nicht erklirt. Wir verfolgen unsere Uber-

aus Beispiel 2.4 und wihlen

=3

(%n,3n)

Bild 2.6

legungen in Bild 2.6. Ist (x,, y,) eine Folge auf der x-Achse mit den Eigenschaften
(E 1) bis (E 3), so gilt y, = 0 fiir alle #n und lim x, = 0. Dann folgt

tim f(%a, o) = lim 2= = im L 5, = 0, 2.4
HLW " yn n--oco 2x’l n-oo 2 " = .
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Das gleiche Ergebnis wiirde man erhalten, wenn die Punkte einer Folge (X,, y,) mit
den Eigenschaften (E 1) bis (E 3) auf einer beliebigen Geraden y = ax (a %= —1) durch
den Ursprung liegen. Dann gilt 3, = aX, fiir alle » und weiter

BrEd & Xk + &%’ . Xa(1+4d%)
Jim fGn, yn) = lim ey =M v e @3)

An dieser Stelle darf auf keinen Fall geschlossen werden, daB lim f (x, y) =0 gilt, denn
(@y)—0,0)

durch die bisherigen Betrachtungen sind bei weitem nicht alle Moglichkeiten fiir die

Wahl von Folgen mit den Figenschaften (E 1) bis (E 3) ausgeschopft worden. Ist

z.B. (x.', y.) eine Folge mit den Eigenschaften (E 1) bis (E 3), die auf der Niveau-

linie ¢ = 1liegt, so giltalso f(x,, y.') = 1 fiir alle n und damit auch hm f(x,. y)=L

Ist (X, y») eine entsprechende Folge auf der Niveaulinie ¢ = 3, dle gegen den Null-
punkt konvergiert, so gilt

lim f(Z, ¥) = 3 = 1 =lim f(x,, y).
n—o n-—+oo

Der Grenzwert lim f(x, y) existiert also nicht, weil wir Folgen mit den Eigenschaften
(z,y)-(0,0)
(E 1) bis (E 3) im Definitionsbereich der Funktion f(x, y) angeben konnen, fiir welche
die Zahlenfolgen der zugehorigen Funktionswerte unterschiedliches Grenzwertver-
halten aufweisen.?)
Analog zum Vorgehen im R* kann auch hier der Grenzwert mit Hilfe von Um-
gebungen charakterisiert werden. Ohne Beweis nennen wir den

Satz 2.1: Die Funktion f(x,y) sei (mindestens) in einer punktierten Umgebung von
Py(xq, yo) definiert. Es gtlt lim, f(x, y) = a genau dann, wenn zu jeder beliebigen e-Um-

gebung der Zahl « eine é- Umgebung von P, so gefunden werden kann, dap fiir alle
Punkte P(x,y) aus der punktierten d-Umgebung von P, die Funktionswerte f(x, y) in
der ¢-Umgebung von « liegen.

Anders formuliert: lim f(x,y) = o gilt genau dann, wenn zu jedem ¢ >0 ein

PP,
8 = d(¢) > 0 so gefunden werden kann, dap fiir alle P(x, y) mit
0 <d(P,P)<d?) folgt |f(x,y)—a| <e. (2.6)
Ubertragen kénnen wir auch die Definition der bestimmten Divergenz gegen + oo

bzw. gegen —oo. Wir schreiben z.B. hm f(x, y) = oo, wenn fiir jede Folge (x,, y.)

mit den Eigenschaften (E 1) bis (E 3) g[lt daB die Zahlenfolge der Funktionswerte
(f(xn, yn)) bestimmt gegen +co divergiert.

1) Es geniigt die Angabe von mindestens zwei derartigen Folgen.
2) Da8B es sich um eine punktierte Umgebung von P, handelt, kommt darin zum Ausdruck, daB
wir schreiben 0 < d (P, P;) und nicht 0 < d (P, Py).

S.2.1
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Bemerkung 2.1: Unmittelbar klar ist die Grenzwertdefinition fiir Funktionen von
mehr als zwei unabhéngigen Variablen. Auf eine Tatsache sei noch hingewiesen. Bei
Funktionen einer unabhéngigen Verinderlichen wird auBerdem der Begriff des ein-
seitigen Grenzwertes eingefiihrt, indem man im Definitionsbereich nur solche Folgen
betrachtet, die von rechts oder von links gegen die betrachtete Stelle konvergieren.
Der Definitionsbereich ist dort Teil des ,,eindimensionalen R!, und eine Hervor-
hebung von ausgezeichneten Richtungen ist somit natiirlich. Bei Funktionen von n
unabhangigen Verinderlichen ist im Fall n = 2 die Definition von einseitigen Grenz-
werten nicht sinnvoll. Wir betrachten ebenfalls kein Analogon zu den im R? iiblichen
,,Bewegungen‘‘ x — +co oder x — — oo innerhalb des Definitionsbereiches der Funk-
tion.

2.3. Grenzwertsitze

Die aus dem Band 2 bekannten Grenzwertsétze 2.3 bis 2.5 fiir Funktionen einer
unabhingigen Variablen kénnen wortlich fiir Funktionen von zwei und mehr unab-
hingigen Variablen iibertragen werden. Wir nennen noch einmal die wichtigsten Er-
gebnisse und beschrinken uns auf den Fali n = 2.

Satz 2.2: Fiir die Funktionen f, und f, miogen die Grenzwerte
lim fi(x,y)=ao und lim fix,y)=p
¢

(x.9)~(x0.70) x,9)-(X0,Y0)

existieren. Dann gilt

lim [ﬁ(x, Y+l )] =a+ B, VX))
(x,)=(x0:Y0)

lim [fl(x, ») = folx, )] =« =B, 2.8)
(x,9)~(x0,Y0)

lim  [c-fi(x,»)] = ¢ - « (cbeliebige Konstante), 2.9)
(x)=(x0,¥0)

lim  [fi(x, ) - folx, ¥)] = & - B. (2.10)

(x%,9)~(x0:¥0)
Ist auferdem f(x, y) = O fiir alle P(x,y) einer punktierten Umgebung von Py(x,, yo)
und B == 0, dann gilt auch
fixy) o
im .
GG LX) B

Gilt o = B und fi(x,y) < f(x,¥) < fux,y) fiir eine Funktion f und alle P(x,y)
einer punktierten Umgebung von Po(xo, o) So folgt aus

lim fi(x,y)= lim fy(x,y)=« dannauch lim flx,y)=c« (2.12)

(x,9)=(x0,Y0) (x,2)—+(x0,Y0) (*,9)~(x0,70)

.11

Unter Ausnutzung dieses Satzes konnen oft sehr vorteilhaft Grenzwerte berechnet
werden:
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Beispiel 2.5 : Die Funktion f(x, y) =

2
y’ ist fiir alle Punkte (x, ) == (0, 0) erklart.

Fiir alle diese (x, y) gilt +
0=y < %+ )~ . (2.13)
Wegen x* + y* > 0 folgt aus (2.13)
Y -
0§x2+y2_~1 (2.14)

und dann weiter

0§m—f(x,}03x2 (2.15)

Betrachten wir nun im Definitionsbereich von f den Grenziibergang (x, y) — (0, 0),
so folgt speziell x— 0 und damit weiter x*— 0. Setzt man fi(x,y)=0 und
fa(x, ¥) = x? fiir alle (x, y) == (0, 0), so folgt

lim  fi(x,y) = hm fz(x,)’)

(z,1)—(0,0) (2,9)~
und aus (2.12) dann auch

im ¥ =
@n-0,0 ¥ + ¥

Aufgabe 2.1: Bestimmen Sie alle Punkte P(x, y), fiir die folgende Funktionen erklirt
werden konnen:

a) f(x,y)=In(l — =), b) f(x,y) = arcsin %

Aufgabe 2.2: Zeichnen Sie fiir die folgenden Funktionen die Niveaulinien ¢ = 1, 2,
3,4, 5, und geben Sie anschlieBend an, durch welche Flichen die Funktionen veran-
schaulicht werden kénnen.

a)fx,y)=V1x+5", bflxy)=Vx-10+4"

Aufgabe 2.3: Die folgenden Funktionen f(x, y) sind fiir (x, y) = (0, 0) erklart. Unter-

suchen Sie, ob lim f(x, y) existiert.
(@y)~0,0

a) fix, ) = b) f(x,

y 2
+f’ ﬂ+y

2.4. Stetigkeit von Funktionen mehrerer Variabler

Genau wie bei Funktionen einer unabhéngigen Variablen ist auch bei Funktionen
mehrerer unabhangiger Variabler der Begriff des Grenzwertes einer Funktion f an
einer Stelle (xo, y,) eng mit dem Begriff der Stetigkeit von f an der Stelle (x,, y,) ver-
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bunden. Die Funktion mu8 jetzt nicht nur in einer punktierten Umgebung von (x,, y,)
erklért sein, sondern auch an der Stelle (x,, y,) selber. In wortlicher Ubertragung')
der Definition 3.1 aus Band 2 formulieren wir dann

Definition 2.3: Eine in einer Umgebung von (x,, y,) definierte Funktion f(x, y) heift
an der Stelle (x,, y,) stetig, wenn gilt

lim  f(x, y) = f(xo, yo). (2.16)

(@, 9)~ @0, ¥o)

Fiihrt man fiir einen beliebigen zu (x, y,) benachbarten Punkt (x, y) die GroBen
h=x—xound k =y — y, ein, so gilt x =x, + A und y = y, + k, und der
Grenziibergang (x, y) - (%, ¥o) bedeutet dann (h, k) — (0, 0). Fiir (2.16) konnen wir
dann auch schreiben

lim f(xo + h, yo + k) = f(x0, 30)- (2.17)

(h,k)—(0,0)

Bei Benutzung von Punktfolgen bedeutet die Stetigkeit von f, daB fiir jede Folge
(%n, yn) aus dem Definitionsbereich von f(x, y) mit lim (x,, y.) = (xo, o) gilt

n—oo

Lim fGxn, yu)=1] (3152 (xn;s yn)) =[x, ¥0)- (2.18)

Die Stetigkeit besagt also, daB man zwei mathematische Operationen vertauschen
kann. Auf der linken Seite von (2.18) wird verlangt, daBl man zuerst die Funktions-
werte f(xn, y») und anschlieBend den Grenzwert der Zahlenfolge (f(x,, y,)) bestimmt.
Auf der rechten Seite von (2.18) ist zunichst der Grenzwert der Punktfolge (x., y»)
zu ermitteln und anschlieBend der Funktionswert von diesem Punkt aufzusuchen. Ist
die Funktion f(x, y) stetig, so ist das Ergebnis in beiden Fillen gleich.

Die ,,¢, 0-Charakterisierung‘ der Stetigkeit kann wie folgt formuliert werden.

Satz 2.3: Die Funktion f(x, y) sei in einer Umgebung von (x,, y,) definiert. Genau dann
ist f(x, y) an der Stelle (x,, y,) stetig, wenn zu jeder Zahl ¢ > 0 eine Zahl 6 = d(¢) >0
existiert, so dap gilt: Fir alle (x, y) mit

d((x, ), (%o, y0)) < 82) folgt |£(x, ) — fx0, yo)| <& (219

Mit Hilfe des Umgebungsbegriffes konnen wir die Bedingung fiir die Stetigkeit
auch wie folgt formulieren: Zu jedem ¢ > 0 existiert eine Zahl é = (¢) > 0, so daB
fiir alle (x,y) aus der 6-Umgebung U((x,, y,); 6) von (X, y,) der Funktionswert
f(x, ) in der e-Umgebung der Zahl f(x,, y,) liegt.?)

1) Eine wortliche Ubertragung ist moglich, weil auch zuvor im R™ die Begriffe ,,Umgebung‘ und
,,Grenzwert* erklirt wurden.

2) d(...) bedeutet den Abstand der beiden Punkte.

3) Die 6-Umgebung von (x,, y,) ist Teilmenge des R?; die e-Umgebung von f(x,, ,) ist Teilmenge
des R
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Beispiel 2.6: Wir betrachten die Funktion:
S, y) = x2 + 7

An jeder Stelle (x,, y,) = (0, 0) ist f(x, y) stetig, denn ist (x,, y,) eine beliebige Punkt-
folge mit lim (Xns Yn) = (X, ¥o), so folgt fiir die Koordinaten lim x, = x, und

n—co

fiir (x, y) == (0,0) und £(0,0) =

lim y, = y, und damit

n-»oo

Xn * Yn _ Xo* Yo —
PRI R BN = f(x0, Y0).

lim f(xy, y) = lim

Im Nullpunkt ist f(x, y) nicht stetig, denn z.B. fiir die Folge (x,, y) = (— L) gilt

(% i) 0,0) und f( 1)_—1-, also auch hmf(— l)-—%$0 £0,0).

‘n n—oo

(Wir bemerken noch erginzend, daB im vorliegenden Beispiel nicht einmal der Grenz-
wert lim f(x,y) existiert. Zum Beispiel fiir die Folge (x.,y.)= (-2— l) gllt

(2, )—(0,0) - 5
(%', yx) = (0,0) und f(_ _)=?,

also auch lim f(x,)/,y.)=—+ # =
n e 5 2
und - = im £, 3r))

Die Stetigkeit einer Funktion f(x, y), die auf einer Teilmenge M des R? erklart ist,
wird, entsprechend der Definition 2.3, durch die Ubereinstimmung von Grenzwert
und Funktionswert definiert, wobei der Grenzwert in M zu bilden ist, d. h., da man
nur auf Folgen {(x,, y»)} Bezug nimmt, die in M liegen und gegen (x,, y,) konvergieren
(dabei wird nicht vorausgesetzt, da M eine Umgebung von (x,, y,) enthalt).

2.5. Siitze iiber stetige Funktionen

Die uns bekannten Satze iiber stetige Funktionen einer unabhingigen Variablen
aus Band 2 konnen nahezu wortlich iibertragen werden auf stetige Funktionen von
mehreren unabhingigen Variablen. Wir formulieren die entsprechenden Aussagen,
fiir den Fall n = 2, ohne auf die Beweise der Sitze einzugehen. Der Begriff der ein-
seitigen Stetigkeit kann fiir Funktionen mehrerer unabhéngiger Variabler nicht er-
klart werden. Die Ubertragung der dortigen Sitze 3.3 und 3.4 lautet hier:

Satz 2.4: Ist die Funktion f(x, ) an der Stelle (x,, y,) stetig und gilt f(xo, yo) > 0 (bzw.
f(x0,¥0) < 0), s0 gibt es mindestens eine 3-Umgebung U(x,, yo; 6) von (xo, ¥o), s0
daf sogar f(x,y) > 0 (bzw. f(x,y) < 0) auch noch fiir alle (x, y) € U(x,,y,; 9) gilt.

Satz 2.5: Die Funktionen f(x,y) und g(x,y) seien an der Stelle (x,, y,) stetig. Dann sind
auch die Funktionen

f(xy) + 8(x), ¢ - flx,y) (c beliebige Konstante) und f(x,y)- g(x,y)

an der Stelle (xo, o) stetig. Gilt weiter g(x,, yo) == 0, dann ist auch die Funktion A%
an der Stelle (xo, y,) stetig. g(x,»)

In Ubertragung der dortigen Sitze 3.8 und 3.9 kénnen wir formulieren:

S.24

S.2.5
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Satz2.6: Die Funktion f(x,y) sei auf einer Menge M < R? erkldrt. Ist f(x,y) stetig auf M
und ist M eine kompakte Teilmenge des R* (d. h., M ist eine beschrinkte und abge-
schlossene Teilmenge des R?), so besitzt f(x,y) auf M ein absolutes Maximum und ein
absolutes Minimum. Es gibt also Punkte (x,, yy) und (x2,y,) in M, so daf

S, y1) £ flx,y) = f(x2,3,) fiir alle (x,y) € M gilt.")

Speziell im Fall n = 2 gilt also, daB stetige Funktionen, die z.B. auf einem abge-
schlossenen Rechteck definiert sind, dort ein absolutes Maximum und ein absolutes
Minimum besitzen. Im Fall » = 1 sind abgeschlossene Intervalle kompakte Teilmen-
gen des R!.

Als Ubertragung der Nullstelleneigenschaft formulieren wir den

Satz 2.7: Die Funktion f(x, y) sei in einem Gebiet G definiert und dort stetig. Fiir ein
(%1, 1) € G gelte f(xy,y1) > Ound fiir ein (x,,y,) € G gelte f(x,,,) < 0. Dann gibt
es mindestens ein (&) € G mit f(&,1) = 0.

Fiir die Bildung zusammengesetzter (oder mittelbarer) Funktionen betrachten wir
wegen der besseren Ubersicht wieder den Spezialfall # = 2 und besprechen zwei Mog-
lichkeiten fiir die Bildung mittelbarer Funktionen. Ausfiihrlicher gehen wir auf zusam-
mengesetzte Funktionen im Abschnitt 3.6.1. ein.

Beispiel 2.7: In der gesamten x, y-Ebene erklart ist die Funktion

f(x,y) = e=siny, (2.20)
Ausgehend von den beiden Funktionen

u(x,y)=x-siny und z(u)=e" (2.21)

kann fiir einen beliebigen Punkt (x, y) zunéchst der Funktionswert u(x, y)= x-sin y
bestimmt werden. Da z(u) = e* fiir jede reelle Zahl definiert ist, gehori speziell u( x, y)
= x - sin y zum Definitionsbereich von z = e¥, und man kann anschlieBend

2(u(x, y)) = ev@¥) = e=siny (2.22)

bilden. Die Funktion (2.20) besteht somit aus den beiden ,,Bausteinen* (2.21), wobei
die ,,innere Funktion u(x, y) eine Funktion von zwei Variablen und die ,,duBere
Funktion* z(u) eine Funktion von nur einer Variablen ist. Durch Zusammensetzung
beider Funktionen oder Hintereinanderausfiihrung beider Funktionen erhilt man
eine reelle Funktion von zwei Variablen.

Beispiel 2.8: Auf einer t-Achse betrachten wir etwa auf dem abgeschlossenen Inter-
vall [0, 2n] die beiden Funktionen
p(t)=cost und y(r)=c¢'.

1) Gilt f(xy, y1) < flx, y) fir alle (x, y), so heiBt (x;,y,) Stelle des absoluten Minimums der
Funktion f. Gilt f(x,y) < f(x,, y,) firr alle (x,y), so heiBt (x,, y,) Stelle des absoluten Maximums
der Funktion f.
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Fiir jeden Wert ¢ aus [0, 2] gehoren dann die Punkte (x, y) = (¢(z), (t)) = (cos ¢, ¢)
zum Definitionsbereich der Funktion f(x, y) = 2x -+ y*. Wir konnen also die mittel-
bare Funktion

8() = flg(t), (1) = 2(¢(1) + ((1))* = 2 cos £ + €

bilden und erhalten als Ergebnis durch Zusammensetzung eine auf dem Intervall
[0, 2] erklérte reelle Funktion einer unabhéngigen Variablen.

Beziiglich der Stetigkeit gilt dann, daB mittelbare Funktionen stetig sind, wenn die
zu ihrem Aufbau benutzten Funktionen an den verwendeten Stellen einzeln stetig
sind.

Wir erkennen also sofort, daB die Funktion f(x, y) = Vx — y fiir alle Punkte (x, y)
unterhalb der Geraden y= x stetig ist, da u(x,y)= x — y iberall stetig und

2(u) = Vu fiir alle u > 0 stetig ist.
Aufgabe 2.4: Bestimmen Sie

lim x -ez+y+%_2
={3-3)

- sin xy.

2.6. Vektorfunktionen

2.6.1.  Begriff der Vektorfunktion

Bei den bisher betrachteten Funktionen war der Definitionsbereich eine geeignete
Teilmenge M des R?* oder allgemeiner eine geeignete Teilmenge des n-dimensionalen
euklidischen Raumes R*, und die Funktionswerte waren reelle Zahlen, lagen also
stets im R, Fiir die Anwendungen ist jedoch die folgende Verallgemeinerung wichtig.
Es sei M eine Teilmenge des R und W eine Teilmenge des R™ (m natiirliche Zahl,
m = 1; an dieser Stelle interessiert besonders der Fall m > 1).

Es soll nun jedem Punkt P aus M als Funktionswert ein Punkt Q von W < R™ zu-
geordnet werden. Benutzen wir die Sprechweise der Vektorrechnung, so soll jedem
Punkt P € M mit dem Ortsvektor x als Funktionswert ein Punkt Q € W mit dem
Ortsvektor y zugeordnet werden. Wir schreiben dann f(P) oder auch f(x) und spre-
chen von einer Vektorfunktion f. (Durch das Symbol f wird angedeutet, daB die
Funktionswerte wieder Punkte bzw. Vektoren sind.) Fiir die Anwendungen ist der
Spezialfall m = n = 3 wichtig. Als erstes Beispiel nennen wir an dieser Stelle die
stationdre Stromung einer Flissigkeit. Ein Fliissigkeitsteilchen hat dann in einem
Punkt P des durchstromten Gebietes G eine Geschwindigkeit v(P). Betrachtet man
fiir alle Punkte P des Gebietes G den Vektor v(P), so erhélt man eine in G erklarte
Vektorfunktion. Man spricht dann gelegentlich auch von einem in G erkldrten
Vektorfeld im Gegensatz zu den bisher betrachteten Funktionen. Bei ihnen sind die
Funktionswerte reelle Zahlen, und man bezeichnet solche Funktionen dann auch als
Skalarfelder.
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Beispiel 2.9: Es sei nun m = n = 3. Jedem Punkt P(x,, X,, x3) € R® werde als Funk-
tionswert der Punkt Q (x,x3, x3(%; + X3), Xo(X1 + X3) + X3(x; + X3)) zugeordnet. Bei
Benutzung der Vektorschreibweise erhalten wir die Vektorfunktion

£(x) = xox5€; + X5 (X1 + Xx5) € + [x2(x1 + X5) + X5(x2 + x5)] €3
fiir jedes x = x,e; + x.€, + X;€5 € R®.

Wichtig ist der folgende Zusammenhang zwischen einer Vektorfunktion und einem
System von reellen Funktionen. Fiir jeden Punkt P aus dem Definitionsbereich M
einer Vektorfunktion f ist der Funktionswert f(P) ein Punkt des R™; wir konnen also
schreiben f(P) = (1, Y2, «..» Ym). Jedem Punkt P wird somit ein m-Tupel von reellen
Zahlen zugeordnet, Schreiben wir

Yi=f(P)=fi(X1, e, Xp) fir i=1,2,..,mund PEM, (2.23)

so sind die Funktionen f; reelle Funktionen mit dem gemeinsamen Definitionsbereich
M, und es gilt

(P) = (AP)SAP), s SolP))- 224

Ein Vektorfeld f kann somit auf ein System von m reellen Funktionen f, f5, ..., fm
zuriickgefiihrt werden. Die Anzahl der reellen Funktionen ist gleich der Dimension
des Bildraumes. Umgekehrt kann jedes System von m reellen Funktionen mit gemein-
samem Definitionsbereich M zu einer Vektorfunktion auf M mit Werten im R™ zu-
sammengefaBt werden. Wir konnen also die Vektorfunktion f identifizieren mit einem
m-Tupel (f1, /25 ..., fm) von reellen Funktionen und daher symbolisch schreiben

f= (/25 s fm)-

Im Beispiel 2.9 wire die Vektorfunktion f zu identifizieren mit folgendem Tripel
von reellen Funktionen:

Si(xry Xa, X3) = Xo+ X35 fa(xy, Xa, X5) = X5(%; + X5);
Sa(x15 X2, X5) = [%a (%1 + x3) + X5(%2 + X5)].

Die Definition des Grenzwertes fiir Vektorfunktionen lim f(P) ist nahezu wortlich

PP,

zu iibernehmen von Definition 2.2 mit dem Unterschied, daB die Funktionswert-
folgen jetzt Punktfolgen und nicht Zahlenfolgen sind. Wenn also fiir jede Folge (P,)
aus dem Definitionsbereich M der Vektorfunktion f mit P, %= P, fiir alle natiirlichen
Zahlen n und lim P, = P, dann im R™ gilt lim f(P,) = Q, so schreiben wir

lim f(P) = Q. Xnogloges gilt fiir den Begriff de; Stetigkeit von f an einer Stelle P,. Fiir
PP, N

jede Folge (P,) aus dem Definitionsbereich von f mit lim P, = P, muB folgen
lim f(P,) = f(P). WL
n—00

Beachten wir die Tatsache, daB eine Folge im R™ genau dann konvergiert, wenn die
m Zahlenfolgen der einzelnen Koordinaten konvergieren, so kénnen wir folgendes
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sagen: Eine Vektorfunktion f(P) ist genau dann stetig, wenn die m reellen Funk-
tionen f,(P), fo(P), ..., fm(P) im bekannten Sinne stetig sind.

Die im Beispiel 2.9 genannte Vektorfunktion ist also iiberall stetig,da die drei reel-
len Funktionen fi(xy, X2, X3), fo(X1, X2, X3), f3(%1, X2, X3) iiberall stetig sind.

2.6.2. Krummlinige Koordinaten im R*

In der Integralrechnung fiir Funktionen mit mehreren Variablen im Band 5 wer-
den als Integrationsbereiche geeignete Punktmengen im R® oder R® betrachtet.
Es wird darauf ankommen, diese Mengen mdglichst iibersichtlich zu beschreiben.
Hierzu sind dann oft die sogenannten krummlinigen Koordinaten sehr geeignet.
Sie stellen zugleich ein wichtiges Beispiel fiir das Arbeiten mit Vektorfunktionen
dar und sollen nun besprochen werden. In allen Féllen betrachtet man neben dem R"
eine geeignete Teilmenge eines R™, die durch eine Vektorfunktion auf den gesamten
R" abgebildet wird.

Zuerst behandeln wir fiir den Fall m = n = 2 die ebenen Polarkoordinaten. Neben
der x, y-Ebene E wird eine weitere Ebene E ebenfalls mit einem rechtwinklig karte-
sischen Koordinatensystem betrachtet, in der wir die Koordinaten der Punkte mit
r und ¢ bezeichnen. In der r, g-Ebene E sei B der in Bild 2.7 gekennzeichnete Halb-
streifen; die linke und obere Begrenzungsgerade sollen zu B gehoren. Wir konnen
also schreiben

B=|rng)€E|0=Sr<c ud -rm<p=n). (2.25)

S
<

E £

Bild 2.7 Bild 2.7a

X

Ny |

I8

!
KN

T

Jedem Punkt (r, ) aus B werde nun der Punkt (x,y) = (rcos @, rsin @) in der

x, y-Ebene zugeordnet. Auf der Menge B wird also die durch die beiden reellen

Funktionen
x(r,@)=rcosp) .
fir0 < d — < )
Y gy =l = ST S g (2.26)

3 Harbarth/Riedrich, Diff. Rechn.
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gekennzeichnete Vektorfunktion betrachtet. Aus (2.26) lesen wir dann folgende Zu-

ordnung von Punkten aus B zu Punkten in der x, y-Ebene ab: (r;, @)= (2, - g) wird

abgebildet in (x;, y,)=(2 cos( 2) 2 sin (— 7)) (0,—2) oder (s, g2) = (2 7)

wird abgebildet in (x,, y,) = (2 cos —=-, 2 sin 7) = (0, 2). Erteilen wir allgemein der
Koordinate r den festen Wert r = 2, so werden die Punkte (r, ¢) = (2, @) aus Bab-
gebildetin die Punkte (x, y) = (2 cos ¢, 2 sin ¢). Wegen x>+ =4 cos* g+ 4sin® p=4
sind dies gerade die Punkte des Kreises mit dem Radius r =2 um den Nullpunkt
in der x, y-Ebene. Erteilen wir andererseits der unabhéngigen Variablen ¢ z.B.

den festen Wert ‘p_Z’ so gilt fir die Bildpunkte von (r, q))=(r, E) dann

x,y)= (r cos 7, 7 sin ) Wegen cosz =sin— durchlauft der Bildpunkt alle Punkte
der Halbgeraden y = x mit 0 < x < oo durch den Nullpunkt. InBild 2.7 und Bild 2.7aist
die Punktzuordnung durch die gleich_e Markierung angedeutet. Die Bilder von Geraden
r=c (c konstant, —= < ¢ = =) in Bsind Kreise um den Nullpunkt in der x, y-Ebene;
die Bilder von Geraden ¢ = ¢ (¢ konstant, 0 < r < o0) in B sind vom Nullpunkt aus-
gehende Halbgeraden in der x, y-Ebene. Der Nullpunkt (x, y) = (0, 0) in der Ebene E
ist Bildpunkt von allen Punkten (r, ¢) = (0, ) mit —r < ¢ = 7, d.h., der Nullpunkt
ist Bildpunkt von allen Punkten des linken Rande_s von B. Zu jedem anderen Punkt
(x,) %+ (0,0) gibt es genau einen Punkt (r, ) in B mit x=rcos ¢ und y=r sin p.
Jeder Punkt (x, y) == (0, 0) entsteht also in eindeutiger Weise aus genau einem Punkt
(r, ¢) von B. Die durch (2.26) beschriebene Vektorfunktion ist also eineindeutig
auBer in gewissen Randpunkten von B.

In Bild 2.8 erkennt man den geometrischen Zusammenhang zwischen den Zahlen
r, ¢ und den zugehorigen Zahlen x, y. Wegen 32+ )% = Vricos ¢ + risinfp =r
ist r der Abstand des Punktes (x, y) vom Nullpunkt. ¢ ist der von der positiven
x-Achse aus gemessene Winkel gegen die Halbgerade durch den Nullpunkt und den
Punkt (x,y). Diese Zahlen r und ¢ bezeichnet man als die Polarkoordinaten des
Punktes P. Die Bilder der Geraden r = const bzw. ¢ = const heiBen Koordinaten-
linien. Die Koordinatenlinien der Polarkoordinaten sind also Kreise um den Null-
punkt bzw. vom Nullpunkt ausgehende Halbgeraden.

Mit Hilfe von Polarkoordinaten kénnen Punktmengen in der x, y-Ebene immer
dann bequemer beschrieben werden als dies mit den Koordinaten x und y mdglich
wire, wenn sie durch Koordinatenlinien der Polarkoordinaten, also durch geeignete
Kreise um den Nullpunkt und Halbgeraden durch den Nullpunkt, begrenzt wer-
den. Fiir diese Punktmengen bilden die zugehérigen Punkte in der r, g-Ebene einen
iibersichtlicheren Normalbereich.

Beispiel 2.10: Es sei K die durch den Kreis x> + »* = 4 begrenzte Punktmenge.
Es ist dies die Koordinatenlinie r = 2. Wollen wir ‘die Punkte von K mit Hilfe der
rechtwinkligen x, y-Koordinaten beschreiben, so miissen wir den oberen Begren-
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7 y
(x,y)
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|
X=rcosy X X
Bild 2.8 Bild 2.9

zungshalbkreis y = J4 — x*und den unteren Begrenzungshalbkreis y = — }4 — x*
heranziehen und konnen dann schreiben

K={x»)€E|-2<x<2 und —Vd-E=y=<Vi-x}. (227
Betrachten wir in der r, p-Ebene das Rechteck
K={r¢)€B|0<r=<2 und -n<¢=n, (2.28)

so entsteht der Kreis K durch die Abbildung (2.26) aus K. (2.28) ist in vielen Fillen
eine iibersichtlichere Darstellung fiir die genannte Menge.

Beispiel 2.11: Es sei K; die in Bild 2.9 skizzierte Menge; sie wird begrenzt durch die
Koordinatenlinien r; = 1, r, = 3 und die Koordinatenlinien ¢, = 0 und ¢, = %
K, entsteht durch Anwendung der Abbildung (2.26) auf das Rechteck

K =(n¢)eBl1<r<3 und 0§<p§%.

Mit Hilfe der x, y-Koordinaten wére eine Beschreibung der Menge K; komplizierter.
Beispiel 2.12: Es sei K, die durch den Kreis (x — 2)? + y* = 4 begrenzte Menge in
der x, y-Ebene. Bezeichnet O den Nullpunkt und P einen variablen Punkt auf der
Kreislinie, so erkennt man in Bild 2.10, daB die Menge X, aufgefaBt werden kann als
Menge aller Strecken OP, wobei P die gesamte Kreislinie durchlduft. Ein Kreispunkt
P, werde herausgegriffen; seine Polarkoordinaten seien r, und ¢,. Aus dem recht-
winkligen Dreieck mit den Eckpunkten O, P, und P,(4, 0) lesen wir dann
=l
COS ¢ =7

ab. Alle Punkte der Strecke OP, haben die gleiche p-K oordinate g, sie liegen auf der
Koordinatenlinie ¢ = ¢,. Die Strecke OP, ist also dic Menge aller Punkte (x, y)
mit x = rcosg,, y =rsing, und r variabel in 0 < r < 4cosg,. Speziell fir
@ = 0 ist die Strecke OP, die Menge aller Punkte

(x,y)=(rcos0,rsin0)=(r,0) mit 0<r=<4cos0=4.

oder ry=4cos g,

3%
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Lassen wir nun g, variieren zwischen — 2 und 780 erhalten wir alle Punkte von K.

K, wird daher durch die Koordinatenlinien ¢, = — % und @, = % begrenzt.
In der r, p-Ebene betrachten wir die Menge:
122={(r,¢)eﬁ ~ 2 <psTund 0§r§4cos¢} 2.29)

Die Begrenzung der r-Koordinate ist also von ¢ abhéngig. K, ist derin Bild 2.11 skiz-
zierte Normalbereich in der r, p-Ebene. Wendet man auf K, die Vektorfunktion
(2.26) an, so erhdlt man den Kreis K, in der x, y-Ebene. Unter Benutzung der
x, y-Koordinaten hétte man zu schreiben:

Ki={))€E[0<x<4 wd —Vi—G-2<y< Vi-G- ).

(2.30)

Die Darstellung des Kreises durch (2.29) ist in vielen Fillen sehr viel giinstiger als
durch (2.30).

In Verallgemeinerung des geschilderten Sachverhaltes ist es nun naheliegend, so-
genannte krummlinige Koordinaten in der x, y-Ebene einzufiihren. Neben der x, y-
Ebene betrachtet man eine u,v-Ebene und in dieser u,v-Ebene eine gewisse
Teilmenge B. Fiir die Punkte von B soll eine Vektorfunktion durch die reellen
Funktionen fy(y, v) und f,(u, v) derart erkldrt sein, daB durch die Festsetzung

x=fi(u,v) und y=rfo(u,0) (2.31)

eine Abbildung von der Menge B auf die gesamte x, y-Ebene entsteht, Die Abbildung

soll eineindeutig sein mit eventueller Ausnahme von gewissen Randpunkten von B.
Wenn dann x, = f; (4, Uo) und y, = f5(4, vo) gilt, dann heiBen u, und v, die krumm-
linigen Koordinaten des Punktes Py(x,, y,). Als Koordinatenlinien bezeichnet man
die Bilder der Geraden u = u, bzw. der Geraden v = v,. Die Wahl passender krumm-
liniger Koordinaten geschieht in der Weise, daB die zu behandelnden Punktmengen
in der x, y-Ebene durch méglichst iibersichtliche Normalbereiche in der u, v-Ebene
beschrieben werden konnen. Dies ist der Fall, wenn die Mengen durch Koordinaten-
linien begrenzt werden.
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Aufgabe 2.5: Die folgenden Punktmengen K in der x, y-Ebene beschreibe man mit *
Hilfe von Polarkoordinaten:

a) K sei der Kreisring, begrenzt durch die Kreise
X+)*=2 und x*+y*=6;
b) K werde begrenzt durch den Kreis x* + (y — 3)* = 9.

2.6.3. Krummlinige Koordinaten im R*

Alles, was iiber krummlinige Koordinaten in der x, y-Ebene gesagt wurde, gilt in
sinnvoller Ubertragung auch fiir krummlinige Koordinaten im Raum. Neben dem
X, y, z-Raum wird ein u, v, w-Raum betrachtet und in diesem eine gewisse Teilmenge

R. Fiir die Punkte von R muB eine Vektorfunktion durch drei reelle Funktionen
Jfi(u, v, W), fo(u, v, w) und f;(u, v, w) derart erklart sein, daB durch die Festsetzung

x=filu,v,w), y=falu,o,w) und z=rf3(u,v,w) (2.32)

eine Abbildung von der Menge R auf den gesamten x, y, z-Raum entsteht. Diese Ab-
bildung muB eineindeutig sein mit eventueller Ausnahme von gewissen Randpunkten

von R. u,v,w heiBen dann krummlinige Koordinaten des Punktes P(x, y, z). Be-

trachtet man in der Menge R eine Gerade, die dadurch entsteht, daB man zwei der
unabhéngigen Variablen einen festen Wert erteilt und die iibrige Variable variieren
1aBt, so heiBt das Bild dieser Geraden bei Anwendung der Vektorfunktion (2.32) eine
Koordinatenlinie im R®. Wéhlt man z.B. u = u, und w = w, fest und 14Bt v variieren,
so entsteht durch Anwendung von (2.32) eine v-Koordinatenlinie im R3. Erteilt man

nur einer der unabhéngigen Variablen einen festen Wert, so erhilt man Ebenen in R,
die zu den Koordinatenebenen im u, v, w-Raum parallel sind. Die Bilder solcher Ebe-
nen heiBen Koordinatenfliichen im R3. Die Wahl geeigneter krummliniger Koordina-
ten im R® wird wieder so geschehen, daB die zu beschreibenden Punktmengen durch
zugehorige Koordinatenfldchen begrenzt werden.

Beispiel 2.13: Zylinderkoordinaten: Neben dem x, y, z-Raum wird ein r, ¢, z-Raum
betrachtet und in diesem die Menge

R={(np,2)|0<r<cound —n < @< und —o0 < z <oo). (2.33)

Man gelangt zu R, indem mau in der r, p-Ebene von dem fiir ebene Polarkoordinaten
bekannten Halbstreifen B ausgeht und dann alle Punkte im r, ¢, z-Raum betrachtet,
die senkrecht iiber Punkten von B liegen. Die zu den sogenannten Zylinderkoordinaten
gehérende Abbildung der Menge R in den RS ist gekennzeichnet durch

x(r,p,z) =rcos g
yor,p ) =rsing} fir (ng2)€ER _ (2.34)
z(r: (2 Z) =2z
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k11

B —2‘ )
x,5,2) = (cos-;i, sin % , 1) = (0, 1, 1). In Bild 2.12 erkennt man sofort den Zu-

Der Punkt (r, ¢, z) = (1 1) wird also durch (2.34) abgebildet in den Punkt

sammenhang zwischen den Koordinaten x, y, z und den Zylinderkoordinaten r, g, z.
Wird r und g ein fester Wert erteilt und z variabel gelassen, so erhilt man als z-Ko-
ordinatenlinien im R® Geraden parallel zur z-Achse. Wird r und z ein fester Wert
erteilt und ¢ variabel gelassen, so erhilt man als p-Koordinatenlinien im R® Kreise,
die in Ebenen z = const parallel zur x, y-Ebene verlaufen; die Mittelpunkte aller
dieser Kreise liegen auf der z-Achse. Wird ¢ und z ein fester Wert erteilt und r variabel

74
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A 3 (x,,2)

Bild 2.12
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gelassen, so erhélt man als r-Koordinatenlinien im R® Halbgeraden; sie gehen von
Punkten der z-Achse aus und verlaufen parallel zur x, y-Ebene. Die Koordinatenfld-
chen z = const sind Ebenen parallel zur x, y-Ebene. Die Koordinatenflichen ¢ =
const sind von der z-Achse ausgehende Halbebenen; sie verlaufen senkrecht zur
x, y-Ebene. Die Koordinatenflichen r = const sind Zylinder; fiir alle diese Zylinder
ist die z-Achse gemeinsame Zylinderachse.

Die Zylinderkoordinaten eignen sich besonders zur Beschreibung solcher Punkt-
mengen im R®, deren Begrenzungsflachen zum Teil Koordinatenfidchen der Zylinder-
koordinaten sind. Es sei z.B. K derjenige Korper, der von dem Kegel z = VX2 + )2
(Spitze im Nullpunkt; nach oben geoffnet), dem Zylinder x* + y* = 9 und der Ebene
z =15 begrenzt wird. Die Koordinatenflichen z = 5 und r = 3 gehdren also mit zu den
Begrenzungen von K. Wihlen wir nunein rmit0 < r < 3undeingmit -t < p =,
so gehort der Punkt (7, ¢, z) genau dann zu K, wenn gilt Ve + P <z 5, oder
wegen r = Jx* + y* muB gelten r < z < 5. Schreiben wir

K={r,p,2) €R|0Sr<3,—n<p=<mr<z<5},

so entsteht der Korper K aus der iibersichtlichen Menge K durch Anwendung der
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Abbildung (2.34). Mit Hilfe der x, y, z-Koordinaten hétte man zu schreiben

K={x02)|-3<x<3,-9-E=<y<19-2, V@ +<z<5).

Beispiel 2.14: Kugelkoordinaten oder sphirische Koordinaten oder raumliche Polar-
koordinaten: Neben dem x, y, z-Raum betrachten wir einen r, 9, -Raum und in
diesem die Teilmenge

R={(n9,¢)|0r<cound 0<d<nund 0< ¢ <2rn). (235
Die durch die drei reellen Funktionen V

x(r, 9, @) =rcos gsind,
y(r, %, 9)=rsingsind,} (r,9,¢) €ER (2.36)
z(r, 9, ) =rcos ¥

gekennzeichnete Vektorfunktion bildet die Menge R auf den gesamten R® ab. In
Bild 2.13 erkennt man den geometrischen Zusammenhang zwischen den Kugelkoordi-
naten r, ¥,  und den rechtwinkligen Koordinaten x, y, z. Die Koordinatenflichen
r = const sind Kugeln um den Nullpunkt, die Koordinatenflichen # = const sind

Kegel mit der Spitze im Nullpunkt. Sie sind nach oben gedffnet fiir 0 < ¢ < ; und
nach unten geoffnet fiir ;< # < =. Die Koordinatenflichen ¢ = const sind von der
z-Achse ausgehende Halbebenen. In Anlehnung an entsprechende Begriffe aus der

Geographie nennt man gelegentlich ¢ bzw. % — ¢ die ,,geographische Liinge* bzw.

z

z

e (xy2)

rcos %

o 2V
9 Doy L/

7/
________ /
) teyl) Bild 2.13

die ,,geographische Breite* des Punktes P(x, , z). Anstelle von (r, 9, ¢) schreibt man
bei Kugelkoordinaten auch oft (o, ©, ¢).
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Wir erwihnen abschlieBend, daB gelegentlich noch andere Beispiele fiir krumm-
linige Koordinaten als die hier genannten auftreten kdnnen.

Aufgabe 2.6:

a) K; sei der Korper, der begrenzt wird durch die x, y-Ebene, den Zylinder
(x — 1>+ »* =1 und das Paraboloid z = x* + y%. Man charakterisiere die Punkte
von K; mit Hilfe von Zylinderkoordinaten.

b) K, sei der oberhalb der x,y-Ebene gelegene Korper, der von dem Kegel

z=Yx* + 2 und der Kugel x2 + )* + 2% = 4 begrenzt wird. Man charakterisiere die
Punkte von K, mit Hilfe von Kugelkoordinaten.

Aufgabe 2.7: Es seien @ > 0 und b > 0 fest vorgegebene reelle Zahlen. Die sogenann-
ten Ellipsenkoordinaten in der x, y-Ebene werden eingefiihrt durch die Festsetzung:

x = x(u, v) = au cos v

N mit ¥=0 und 0= v < 2w,
y=y,v)=businv

Welche Kurven bilden die Koordinatenlinien u = const bzw. v = const?

2.64. Parameterdarstellung von Kurven und Flichen

Als weiteres Beispiel fiir das Auftreten von Vektorfunktionen betrachten wir zu-
nichst die Parameterdarstellungen von Kurven. Wir betrachten ein Intervall J auf
der Zahlengeraden - es kann abgeschlossen, offen oder halboffen sein; J kann auch
der gesamte R! sein. Durch eine eindeutige Vorschrift sei jeder Zahl ¢ € J ein Vektor
r(f) des R® zugeordnet; es gelte also

r(t) = x(t)e, + y(t) e, + z(t) ey fiir € J. (2.37)
Auf J ist also eine Vektorfunktion mit Werten im R® erklirt, und wir setzen voraus,
daB r(¢) eine stetige Vektorfunktion ist. Die reellen Funktionen x(¢), y(#) und z(¢) sol-
len also stetig sein. Fiir jeden Wert ¢ € J suchen wir den Punkt (x(t), y(¢), z(¢)) im R®.
Ist #, € J gewihlt, so folgt aus der vorausgesetzten Stetigkeit von r(¢), daB fiir nahe
bei £, gelegene Werte ¢ die Punkte (x(¢), y(t), z(¢)) nahe bei dem Punkt (x(t,), y(t,), z(%,)) -
liegen. Die Gesamtheit aller dieser Punkte (x(t), (¢), z(¢)) nennen wir eine stetige
Kurve C im R®. Die Vektorfunktion r(f) heiBit in diesem Zusammenhang eine Para-
meterdarstellung der Kurve, Die unabhingige Veranderliche ¢ heiBt Kurvenparameter?),
und das betrachtete Intervall J heiBt Parameterintervall. Eine Parameterdarstellung
legt in natiirlicher Weise eine Orientierung der Kurve fest, indem die Kurvenpunkte
im Sinne wachsender Parameterwerte durchlaufen werden sollen.

Man erhélt eine Parameterdarstellung einer Kurve in der x, y-Ebene, wenn in
(2.37) gilt z(¢t) = 0, wenn also r(?) eine stetige Vektorfunktion mit Werten im R? ist.
Fiir eine Kurve C in der x, y-Ebene gilt also

K(f)=x(t)e; + y(t)e, fir t€J (2.38)
mit stetigen auf J erkldrten Funktionen x(t), ().

1) Der Kurvenparameter wird gelegentlich auch mit and Buchstaben bezeict z.B. mit
Ty Oy eues
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Wir erwahnen einige wichtige Beispiele.

Beispiel 2.15: Py(ay, b;) und P,(a,, b,) seien feste Punkte in der x, y-Ebene mit
den Ortsvektoren x; = a,e, + b,e, und X, = a, ¢, + bye,. Als Intervall J betrachten wir
den gesamten R! und betrachten fiir alle ¢ mit —oo < t < oo die Vektorfunktion

| 0(t) =% + (X, — X)) = [a; + (@ — @)l e, + [by + (b, — b)) €. (2.39)

(2.39) ist eine Parameterdarstellung der Geraden durch P; und P, mit x(f) = a,
+ t(a, — a;) und y(t) = b, + t(b, ~ b,). Beschrinken wir den Parameter ¢ auf das
Intervall 0 £ ¢t £ 1, so erhalten wir die Punkte der durch P, und P, begrenzten
Strecke.

Beispiel 2.16: Es seien a, b und R vorgegebene Zahlen. Auf dem Intervall J = [0, 27)
betrachten wir
| x(t)=a+ Rcost und y(f)=b+ Rsint. (2.40)

Dann gilt (x(t) — a)® + (y(t) — b)* = R®. Durchlauft der Parameter ¢ das Intervall J
von 0 bis 2=, so durchlduft der Punkt (x(¢), y(t)) den Kreis mit dem Mittelpunkt (a, b)
und dem Radius R einmal im mathematisch positiven Sinne') — beginnend beim
Punkt (2 + R, b).

Beispiel 2.17: Eine Parameterdarstellung der Ellipse % + 'I‘;—: =1(0 < b < a)erhilt
man, wenn man auf dem Intervall J = [0, 2x) die Funktionen

| x(f)=acost und y(t)=bsint ' (2.41)
betrachtet.

Beispiel 2.18: Schraubenlinie im Raum: Es seien @ > 0 und R > 0 vorgegebene Zah-
len. Eine Parameterdarstellung der Schraubenlinie lautet dann

| x(t)= Rcost, y(t)= Rsint, z(t)=at mit 0Zt< 2. (2.42)

Die geometrische Konstruktion der Schraubenlinie erkennen wir in Bild 2.14; sie ist
wie folgt moglich: Fiir jedes ¢ € [0, 27c] suchen wir zunéchst in der x, y-Ebene den
Punkt F(R cos ¢, R sin t). Er liegt auf dem Kreis mit dem Radius R um den Null-
punkt. AnschlieBend gehen wir in Richtung der z-Achse zum Punkt F'(R cost,
Rsint, at). Zu t = 0 bzw. t = 2n gehoren die Punkte (R, 0,0) bzw. (R, 0, 2ra);

Bild 2.14

1) Durchlaufen im h isch positiven Sinn bed Durchlaufe dem Uhrzeiger-
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sie liegen iibereinander. Beschrinkt man ¢ auf das Intervall [0, 2x], so nennt man das
entstehende Kurvenstiick einen Gang der Schraubenlinie mit der Ganghdhe 2ra.
Als Parameterintervall konnte das Intervall [0, co) oder auch die gesamte reelle
Achse betrachtet werden. Die Schraubenlinie verlduft auf dem Zylinder mit dem
Radius R und der z-Achse als Zylinderachse.

Beispiel 2.19: Wir kennen bereits Kurven in der x, y-Ebene als Veranschaulichungen
von stetigen Funktionen f(x), die z.B. auf einem Intervall [a, b] der x-Achse erklart
sind. Eine Parameterdarstellung dieser Kurven lautet etwa

x(f)=t und y(t)=f) fir a<t<b. (2.43)

Bemerkung 2.2: Es ist moglich, daB cine Kurve C durch mehrere unterschiedliche
Parameterdarstellungen dargestellt werden kann. Auf der reellen Achse betrachten
wir z.B. die Vektorfunktionen

r(t)=te +te, fir —oco <t oo (2.44)
und

L) =1+27)e;+ (14 27)e; fir — oo <7 00, (2.45)
In beiden Fillen handelt es sich um Parameterdarstellungen der Geraden y = x.
Man erhilt in beiden Fillen die gleiche Punktmenge; zu jedem Kurvenpunkt gehoren
dann je nach Verwendung der Parameterdarstellung (2.44) oder (2.45) unterschied-
liche Parameterwerte. Den Punkt (1, 1) erhalten wir z.B. aus (2.44) fiir # = 1 und aus
(2.45) fiur T=0.

Bemerkung 2.3: Fiir gewisse weitergehende Betrachtungen ist es niitzlich, solche Kur-
ven C zu betrachten, fiir die es Parameterdarstellungen r(¢) mit sogar differenzier-
baren Funktionen x(f), y(t), z(t) gibt. Solche Kurven haben gewisse ,,Glattheits-
eigenschaften. Bezeichnen wir die Ableitungen der Koordinatenfunktionen nach
t mit x(¢), y(¢), z(t), so verlduft z.B. der Vektor i(z) = x(t) e; + y(t) e, + z(¢) €; in
Richtung der Kurventangente im Kurvenpunkt mit dem Ortsvektor r(f) = x(t) e,
+ y(t) e; + z(t) e;. Derartige Betrachtungen werden an dieser Stelle nicht weiter-
gefiihrt.

Wir behandeln noch den Begriff der Parameterdarstellung einer Fliche im Raum.
Gegeben sei eine u, v-Ebene und in dieser ein Rechteck R oder auch allgemeiner ein
Normalbereich R. Auf R sei eine stetige Vektorfunktion

(4, v) = x(u, v) €, + y(u, V) €; + z(u, v) & (2.46)

erklért; die drei reellen Funktionen x(u, v), y(4, v), z(4, v) sollen also auf R stetig
sein. Die Menge aller Punkte (x(x, v), y(u, v), z(u, v)) bezeichnet man dann als stetige
Fliche F im R®. (2.46) heiBt eine Parameterdarstellung von F; R heiBt der Parameter-
bereich von F und u, v heiBen die Parameter der Fliche.

Bemerkung 2.4: Man erkennt die Verallgemeinerung, die vom Begriff der Parameter-
darstellung einer Kurve zum Begriff der Parameterdarstellung einer Flache fiihrt. An
die Stelle einer -Parameterachse tritt eine u, v-Parameterebene. Das Parameterinter-
vall ist zu ersetzen durch ein Rechteck bzw. durch einen Normalbereich, und die ste-
tige Vektorfunktion r ist jetzt eine Abbildung einer Teilmenge des R? in den R®.

Beispiel 2.20: Parameterdarstellung einer Schraubenfliche: Als Parameterebene be-
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trachten wir eine r, p-Ebene und in dieser das Rechteck

A={r,¢)|0Sr=R und 0=Z¢=<2% (2.47)
und auf 4 die stetige Vektorfunktion
x(r, p) =rcos @, y(r, p) =rsin ¢, z(r, ) = ap (2.48)

mit vorgegebenen Zahlen a >0 und R > 0. Fiir jeden festen Wert r = r, ist (2.48)
die Parameterdarstellung eines Ganges einer Schraubenlinie, die auf dem Zylinder
x? + y* = r? verlduft. Fiir jeden festen Wert ¢ = ¢, ist (2.48) die Parameterdarstel-
lung der in der Ebene z = ag, verlaufenden Strecke vom Punkt (0, 0, ap,) zum
Punkt (R cos ¢, R sin ¢,, ap,). Die Schraubenfliche konnen wir uns in der Weise
entstanden denken, daB die auf der x-Achse verlaufende Strecke vom Punkt (0, 0, 0)
zum Punkt (R, 0, 0) im mathematisch positiven Sinn um 27 gedreht wird und dabei
gleichzeitig kontinuierlich um ag gehoben wird.

Wir kennen Fléchen als geometrische Veranschaulichungen von stetigen Funktio-
nen f(x, y) von zwei unabhéingigen Verdnderlichen. Identifiziert man die x, y-Ebene
mit der Parameterebene und setzt man dann

x(x,y)=x, y(x,y) =, 2(x,y) = f(x, ), (2.49)
s0 ist (2.49) eine Parameterdarstellung der genannten Fléche.

Es gilt auch hier, daB zu einer Fliche unterschiedliche Parameterdarstellungen
gehoren konnen.

Wird in (2.46) einer der unabhéngigen Verdnderlichen ein fester Wert erteilt (also
u = u, gesetzt und nur v variabel gelassen bzw. v = v, gesetzt und u variabel gelassen),
so ist (2.46) die Parameterdarstellung einer auf der Fliche verlaufenden Raumkurve.
Man bezeichnet diese Kurven auf F gelegentlich auch als Parameterkurven oder als
Parameterlinien. Die Fliche F erscheint dann als Zusammenfassung der Schar aller
u-Parameterlinien bzw. als Zusammenfassung der Schar aller v-Parameterlinien.

Fir weiterfiihrende Betrachtungen bendtigt man wieder Flichen mit gewissen
,,Glattheitseigenschaften*. Die Funktionen x(u, v), y(u, v), z(u, v) miissen dann
beziiglich- der partiellen Ableitungen (vgl. Kapitel 3.) gewisse Eigenschaften be-
sitzen; an dieser Stelle verfolgen wir diesen Gedanken nicht weiter. In Band 6
(Differentialgeometrie) findet man weitere Ausfithrungen iiber Kurven und Fla-
chen.



3. Partielle Ableitungen und totales Differential

3.1. Partielle Ableitungen erster Ordnung

Wir betrachten zunéchst eine in der gesamten x, y-Ebene erklérte stetige Funktion
f(x, ). Essei Py(x,, ) ein fester Punkt und y = y, die feste Gerade durch P, paral-
lel zur x-Achse. Wird die Funktion f(x, y) nur fiir die Punkte dieser Geraden betrach-
tet, so wird y der feste Wert y, erteilt, und variabel ist lediglich x. Man erhilt die
Funktion der einen unabhéngigen Variablen x:

p(x) = f(x, yo)- @3.1)

Die geometrische Veranschaulichung von () erkennt man in Bild 3.1, wenn man
senkrecht iiber jedem Punkt (x, y,) der genannten Geraden den Funktionswert f(x, y,)
abtragt. Wir erhalten eine in der Ebene y = y, verlaufende Kurve, die wir auch als
Schnitt der Fliche z = f(x, y) mit der Ebene y = y,') entstanden denken konnen.

74
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5o, ¥0) Plxg*hyp) X
Pio*hy)  Bild 3.1 Bild 3.2
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Diese Schnittkurve soll in jedem Punkt (x,y,) eine Tangente mit dem Anstieg
'(x) besitzen. Speziell fiir den festen Wert x, erhalt man

0 - 0. H h) = 3 0.
V)= }.ifé p(x +12 Yxo) _ L‘ﬂ Sxo + yoz S(xo5 ) | 62)
Der Quotient
f(xo + h’ yo; —f(xo’ yo) (33)

1) Durch die Gleichung y = y, wird im R! ein Punkt festgelegt. Deuten wir y = y, im R?, so erhal-
ten wir eine Gerade parallel zur x-Achse: die Menge aller Punkte (x, y) mit der Forderung y = y,.
Deuten wir y = y, im R®, so erhalten wir eine Ebene parallel zur x, z-Ebene: die Menge aller Punkte
(x, y, z) mit der Forderung y = y,.
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heiBt dann der Differenzenquotient der Funktion f(x, y) an der Stelle (x,, y,) bei festem
y =¥, beziiglich der Variablen x. Bezogen auf die urspriinglich gegebene Funktion
f(x, y) folgt also, daB die Ableitung '(x,) aus dem speziellen Differenzenquotienten
(3.3) durch den Grenziibergang # — 0 gewonnen werden kann. In Bild 3.2 ist der
Schnitt der Ebene y = y, mit der Fliche z = f(x, y) noch gesondert herausgezeichnet
worden. Dort ist die Tangente an die Schnittkurve deutlich sichtbar. Es gilt y'(x,) =
tan «. Der analoge Gedankengang ist moglich, wenn wir der unabhdngigen Varia-
blen x einen festen Wert x = x, erteilen und die Funktion f(x, y) auf die Punkte der
Geraden x = x, einschrinken. Wir erhalten eine Funktion der unabhéngigen Varia-
blen y:

90) = f(x0, ). (34
Die zugehorige Kurve entsteht als Schnitt der Flache z = f(x, y) mit der Ebene x = x,.

®() sei an jeder Stelle (x,, y) nach y differenzierbar mit der Ableitung ¢'(y). Speziell
fiir einen festen Wert y, erhalten wir

700 = S”(,Vo + h) ®(¥0) —lim S (%05 Yo + h]z = f(x05 o) ) (.5
A0
Der Quotient
S(x0, yo+ h])'—f(xo’YO) (3.6)

heiBt dann der Differenzenquotient der Funktion f(x, y) an der Stelle (x,, y,) bei
festem x, beziiglich der Variablen y. ¢'(y,) ergibt sich also aus (3.6) durch den Grenz-
iibergang A — 0.
Speziell fiir f(x, y) = x*y® wiirde man bei der Wahl eines festen Punktes (x,,y,) er-
halten:
P(x) =f0x,y0) = x; mit ' (x) = 2xp;

() =f(x0y) = x5* mit ¢’ (y) = 3xfy2.

Allgemein vereinbaren wir die folgende

und

Definition 3.1: Die Funktion f(x, y) sei in einer Umgebung eines Punktes (x,, y,) defi-
niert. Bei festgehaltenem y = y, sei die Funktion y(x) = f(x, y,) an der Stelle x = x,
im gewihnlichen Sinne nach x differenzierbar. Dann heifit die Funktion f(x,y) an der
Stelle (x,, y,) partiell nach x differenzierbar, und

LEDEUCO N SINORS (B0 )

(%) = lim
h—0

heifit die partielle Ableltung der Funktion f(x, y) nach x an der Stelle (x,, y,). Fiir
¥'(xo) verwenden wir die Symbole

Fisom) oder L oder Y% L
= (X0,Y0)

X0:Y0) X

Ist analog bei festgehaltenem x = x, die Funktion ¢(y) = f(x,, y) an der Stelle y = y,

D.3.1
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im gewohnlichen Sinne nach y differenzierbar, so heifit die Funktion f(x,y) an der
Stelle (xo, o) partiell nach y differenzierbar, und

¢ () = lim PO+ h) —e00) _ lim S (o5 o + h) = f(%o5 30) (3.8)
h-0 h 0 h

heift die partielle Ableitung der Funktion f(x, y) nach y an der Stelle (x,, y,). ¢'(yo)

bezeichnen wir durch die Symbole

of f(x, y) L

X0, oder —— oder ——~ 5

ixa: yo) 0% |(xo,50 oy X0,Y0)
Wir lesen die Symbole fiir die partiellen Ableitungen als ,,d-f nach d-x partiell*
oder kiirzer ,, fnach x*, wenn klar ist, daB es sich um eine partielle Ableitung handelt,
bzw. als ,,d-f nach d-y partiell” oder kiirzer ,,f nach y“. Die Angabe der Argu-
mente entfillt auch gelegentlich, wenn aus dem Zusammenhang heraus ersichtlich
ist, welche Argumente zu wéhlen sind.

Ist f(x, y) an jeder Stelle (x, y) einer Menge M partiell nach x und y differenzierbar,
so sind f(x, y) und f, (x, y) wiederum Funktionen von x und y. Wir merken uns: Bei
der Bildung der partiellen Ableitungen f;(x, ) bzw. f,(x, y) wird y bzw. x behandelt
wie eine Xonstante, und es wird f(x, y) dann nach x bzw. nach y im gewéhnlichen
Sinne differenziert. Fiir eine Funktion von zwei unabhéngigen Variablen gehéren
somit zu einem festen Punkt (@, b) des Definitionsbereiches von f(x, y) zwei Ablei-
tungszahlen f;(a, b) und £, (a, b). Wir konnen diese Zahlen geometrisch interpretieren
als Geradenanstiege der Tangenten an die Schnittkurven der Ebenen y = b bzw. x = a
mit der Fliache z = f(x, y). Der Anschauung entnehmen wir, daB diese beiden Kurven-
tangenten eine Ebene durch den Punkt (a, b, f(a, b)) aufspannen - die sogenannte
Tangentialebene an die Fliche z = f(x, y) im Punkt (g, b, f(a, b)).

Aus obiger Definition ergibt sich, daB man zur Durchfithrung einer partiellen
Differentiation bei vorliegenden Funktionen f und g keine neuen Regeln entwickeln
muB. Vorausgesetzt, die jeweils rechtsstehenden Ableitungen existieren, erhélt man
dann sofort fiir die partiellen Ableitungen nach x:

O Lk
of+e _of | ¢ g)  x® o
* ot ox g2 &+0),
o) _of " f% fu(x,y) _ df  Ou
ox T i TTox du ox

Beispiel 3.1: Die in den folgenden Beispielen genannten Funktionen sind in der
gesamten x,y-Ebene erkldrt. Die partiellen Ableitungen nach x und y existieren in
den ersten vier Beispielen iiberall.

.. Oe
1. Fiir f(x, ) = x* + 2 gilt £i(x, ) = 2x und f(x, ) = 2e?. (Es gmaLx =0

und By = 0.) Fiir spezielle Punkte erhalten wir

£O.0=0,£0,0 =2 oder fi(-1, l) = =2, /,( 1, _) = 2%.
2. Fiir f(x, y) = x2° gilt f,(x, y) = 2xy° und f,(x, ) = 3x%%.
3. Fiir f(x,y) = sin x?y? gilt fi(x, y) = 2xy° cos x23, f,(x, ) = 3x2y? cos x?y>.
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4. Fir f(x,y) = xsinx2p* gilt fi(x,y) = sin x2y* + 2x?y% cos x*y*® und f,(x, )

= 3x3y? cos x%y°>.

5. Fir f(x,y) = |x| + y gilt f;(x, ) = 1 fiir alle Punkte (x, ). Es gilt fi(x,y) = 1
fiir alle Punkte (x, y) mit x > Qund f,(x, y) = —1 fiir alle Punkte (x, y) mit x < 0.
Die partiellen Ableitungen £,(0, y) fiir alle Punkte (0, y) auf der y-Achse existieren
nicht, weil die Funktion ¢(x) = |x| fiir x = 0 nicht differenzierbar ist.

Wir verallgemeinern unsere Betrachtungen jetzt auf den Fall einer reellen Funk-
tion von n unabhingigen Variablen x;, X;, ..., X,. Es sei f(xy, ..., X,,) eine auf einer
Menge M < R* erklirte reelle Funktion. f sei in einer Umgebung der festen Stelle
Po(ay, as, ..., a,) € M erklirt. Wir definieren dann die Funktion

&i(x1) = f(x1, a3, @, ..., @), (3.9)

d.h., wir erteilen den unabhingigen Variablen x,, X3, ..., X, die festen Werte x, = a,,
<ees Xn = Gy, und lassen nur x,; variieren. Ist nun g,(x,) fiir x, = a; im gewohnlichen
Sinne nach x, differenzierbar, so heiBt f an der Stelle (a;, @, ..., a,) partiell nach x;
differenzierbar, und die Ableitung

; . a, +h, ay, as, .., a,) — fay, @3, G55 .. Gn
g1(01)=}.1ﬂ; fla 25 A3 a})' flay, a3, a4 a,) (3.10)

heiBt die partielle Ableitung von fmach x, an der Stelle (a,, a,, ..., a,). Wir bezeichnen
sie durch die Symbole

ful@s, ., a) oder ao—xflLa oder fiy(ar, ag, ..., a,). ST

(Man beachte genau die Schreibweise fi; fir den Fall, daB nach der ersten unabhén-
gigen Variablen x, partiell differenziert wird bei festgewéhlten Variablen x,, ..., X,.)
Zur Bildung der iibrigen partiellen Ableitungen f;, fir 2 < i < n wird gebildet

gi(xi) = f(ay, .., @i_1, Xi, GiL1s eeny Gn),

d.h., die i-te unabhingige Veranderliche wird variabel gelassen, und den iibrigen
n — 1 Verinderlichen werden feste Werte erteilt. Falls die gewohnliche Ableitung

g/(a;) =1lim -—1— [f(a1, .., Gicys i + By @iy, oy G7)
n-o B
—f(@15 ees Bio1s Gis Giy1s ens Gn)] (3.12)

von g{x;) nach x; an der Stelle x; = a; existiert, heiBt sie die partielle Ableitung von
f nach x; im Punkt (a,, ..., a;, ..., @,). Wir bezeichnen sie mit

f(@y, ..., a,) oder :—f oder fi(ay, ..., a,). (3.13)
xl P, o
Bemerkung 3.1: Ist f eine reelle Funktion von zwei unabhingigen Variablen und be-
zeichnen wir diese mit x und y, so schreiben wir fiir die partiellen Ableitungen von
f(x,y) dann f;(x, y) und f,(x, y). Bezeichnen wir die unabhéngigen Variablen mit x,
und X,, so haben wir fiir die partiellen Ableitungen von f(x;, x,) zu schreiben
S (x1, x2) und £ (x4, X2) oder fiy(x;, X;) und fig(x;, xp).
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Der Strich kann immer dann verwendet werden, wenn die unabhéngigen Variablen
numeriert sind. Ohne MiBversténdnisse befiirchten zu miissen, wollen wir jedoch
gelegentlich auch in dem Fall, daB die unabhéngigen Variablen mit x und y bezeich-
net sind, fiir die partiellen Ableitungen f;(x, y) bzw. f, (x, y) die Bezeichnungen fi,(x,y)
bzw. fis(x, y) zulassen. Werden gleichzeitig mehrere Funktionen fi(xy, ..., Xn),
fo(X15 cees Xn)y oy Sm(X1s oees X,) mit gemeinsamem Definitionsbereich betrachtet, so
wiirde man die partielle Ableitung der Funktion f;(x, ..., X,) nach der unabhangigen

fi(X15 ees Xn)
0

Variablen x; bezeichnen mit oder mit fiix(Xy, ..., X,). (Vor dem Strich

k
steht die Nummer der gerade betrachteten Funktion und nach dem Strich die Num-
mer derjenigen Variablen, nach der differenziert wird.)

3.2. Partielle Ableitungen hoherer Ordnung

Die Funktion f(x, y) = x*y* + 2x%y — 6 ist in der gesamten x, y-Ebene erklirt und
besitzt iiberall die partiellen Ableitungen

fe(x,9)=4x*y* + 6x% und f,(x,y) = 2x%y + 2x°. (3.14)
Aus (3.14) erkennt man sofort, daB f;(x, y) und f, (x, y) als Funktionen von x und y
erneut partiell nach x und nach y differenziert werden konnen. Man erhilt

0

LD _ 1y 4 123y, f’("’y) = 8%y + 6x3;

(%) _ o . S y) _

T—Bxy+ 6x2; W = 2x*. (3.15)

Die so erhaltenen Ableitungen heiBen die partiellen Ableltungen zweiter Ordnung
%) O ) o o, ). Bt

sprechende Symbole fuhren wir in den anderen Fillen ein und schreiben dann (zur
Erhéhung der Ubersichtlichkeit schreiben wir die iiberall gleichen Argumente x, y
nicht mit)

von f(x, y). Fir === verwenden wir die Symbole

bzf_ bfx, *f o  Of _bf, of _9%
Jea= * dxQy =fe= Jy P opox =Jie ox ’ =t oy
(3.16)

(Die Wahl der Symbole ist so erfolgt, daB ,,von links nach rechts gelesen* die Reihen-
folge erkennbar ist, in der die partiellen Ableitungen gebildet werden. Das Symbol

2.
%’{szw. fuz lesen wir ,,d-2-f nach d-x-Quadrat“ bzw.,,f zweimal partiell nach

x differenziert”.) Fiir eine Funktion von zwei unabhéngigen Verinderlichen gibt
es also vier Moglichkeiten fiir die Bildung von partiellen Ableitungen zweiter
Ordnung. Es ist sofort klar, wie partielle Ableitungen dritter Ordnung und dann
auch héherer Ordnung gebildet werden kénnen. Das Symbol f,,.(x, y) bedeutet, daB
die gegebene Funktion f(x, y) zunachst zweimal partiell nach y und anschlieBend ein-
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mal partiell nach x differenziert werden soll. Klar ist weiterhin die Ausdehnung
der Definition auf Funktionen von mehr als zwei unabhingigen Variablen. Ist
f(xy, X2, .., Xp) eine Funktion von n unabhéngigen Variablen und z.B. n = 5, so
bedeutet beispielsweise das Symbol

03f(X15 very Xn)

ax‘ axl ax3 =./;:41‘x3 (xh ey -xn);

daB die Funktion f zundchst nach x,, anschlieBend nach x, und dann nach x; partiell
zu differenzieren ist. Fiir diese Ableitung schreiben wir auch f1413(X1, ...\ Xa)-

Wir kehren zu unserem Ausgangsbeispiel zuriick und erkennen aus (3.15) die
Gleichheit

Jay (%, ) = fya(x, ).

Es ist also gleichgiiltig, in welcher Reihenfolge die partiellen Ableitungen gebildet
werden. Wichtig ist lediglich, daB einmal partiell nach x und einmal partiell nach y
differenziert wurde. Dieses wichtige spezielle Ergebnis kann auf weitere Funktionen
verallgemeinert werden, denn es gilt der

Satz 3.1 (Satz von Schwarz!) : Sind fiir eine auf einer offenen Menge M erklirte Funk-
tion f(x, y) die partiellen Ableitungen fy,(x, y) und fy-(x, y) stetig, so gilt auf M

Joy (%, 9) = fue(%, ). (3.17)

(Die Voraussetzungen fiir die Giiltigkeit der Identitdt (3.17) konnten weiter abge-
schwicht werden. Da in vielen Anwendungsbeispielen der Fall vorliegt, daB die be-
treffenden partiellen Ableitungen stetig sind, begniigen wir uns mit dem angegebenen
Fall.)

Zum Beweis von Satz 3.1: Es sei (a, b) ein Punkt aus M. Dann gilt

Fyola, b) = lim v ® 0 4@ b)

o0 x—a

(3.18)

Wir betrachten weiter diejenigen Differenzenquotienten, aus denen man durch
Grenziibergang y — b die im Zahler von (3.18) stehende partielle Ableitung
fy(x, b) —f,(a, b) erhalt; wir betrachten also insgesamt den Ausdruck

1 [f(x,y)—f(x,b) _f@,y—fab ]

x—a y—>b y—b
__1 [f(x,y)—f(x,b) f(a,y) f(a,b)]
y—b x—a )

__1 g®-g@

y—-b x—a ’

wenn wir y und b als konstant und nur x als
variabel betrachten und dann setzen

8(x) = f(x, y) — f(x,b).

Dann ist g(a) = f(a, y) — f(a, b).

1) Hermann Amandus Schwarz, deutscher Mathematiker, 1843-1921.

4  Harbarth/Riedrich, Diff. Rechn.

S.3.1
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A,
=5=5¢ @
mit £ zwischen @ und x, denn g(x) ist nach x differen-

zierbar und geniigt den Voraussetzungen des 1. Mittel-
wertsatzes der Differentialrechnung:

£®) =&~ LG b,
~ L) - 466, D)

_ k) - h)
y=b

wenn wir h(y) = f;(&, y) setzen, also nur y als variabel
ansehen; /() ist differenzierbar nach y.

=K (n)
mit 5 zwischen y und b; wieder durch Anwendung
des 1. Mittelwertsatzes, jetzt auf A(y).

=fzv(5: 77)

Beim Grenziibergang x — a und y — b folgt fiir die Zwischenpunkte auch &£ — a und
71— b. Wegen der vorausgesetzten Stetigkeit von £, (x, y) gilt dann £, (&, ) - £, (a,b),
und wir erhalten f,.(a, b)) = f3,(a, b). m

Der Satz von Schwarz fiir die Vertauschbarkeit der Reihenfolge bei der Bildung
der partiellen Ableitungen gilt auch fiir Ableitungen von hoherer als zweiter Ordnung,
wenn diese stetig sind. Es wiirde dann gelten

Sy ¥) = fyay (%, ¥) = fipg= (%, ¥)- (3.19)

Auf diese Weise wird die Anzahl der wirklich verschiedenen partiellen Ableitungen
dritter Ordnung verringert. Es gibt dann nur vier verschiedene partielle Ableitungen
dritter Ordnung, und zwar

Jezz(X, ¥), fuv(xf », fz‘w(xy ), fwy(x: »)-

Bei der Berechnung hoherer Ableitungen wird man daher eine moglichst giinstige
Reihenfolge wiahlen. Soll z.B. £, (x, y) fiir die Funktion

sin x

2 + x*

gebildet werden, so wird man die Reihenfolge f,(x,y) = 2xy, fy.(x,y)=2y=
fay (%,¥) wiihlen und umgeht so die ,,komplizierte Differentiation des ersten Sum-
manden nach x.

Wir wollen noch die Frage beantworten, ob aus der Existenz der partiellen Ablei-
tungen f;(x, ) und f,(x, y) bereits gefolgert werden kann, daB die Funktion f(x, y)

ﬂxr »=

+ x)?
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stetig ist. Wir betrachten die Funkuon f(x, y) aus Beispiel 2.6. Dort hatten wir gesehen,
daB f(x, y) im Nullpunkt nicht stetig ist. Es gilt jedoch

i E0=100 o o0 imlEA=M00_o_g,
i

20 X

d.h., die beiden partiellen Ableitungen existieren im Nullpunkt. Aus der bloBen Exi-
stenz der partiellen Ableitungen kann also im allgemeinen noch nicht gefolgert wer-
den, daB die Funktion selber stetig ist. Die Stetigkeit der Funktion f kann gezeigt
werden, wenn die Ableitungen f, und f, stetig sind.

Wir erwihnen abschlieBend noch die Erweiterungen der Kettenregel fiir die Bil-
dung der Ableitung von zusammengesetzten Funktionen. Ausfithrlich wird diese
Fragestellung in Abschnitt 3.6. behandelt.

Satz 3.2: Die Funktionen x(t) und y(t) sollen auf der gleichen Menge M, einer t-Achse
erkldrt sein und stetige Ableitungen x'(t) und y'(t) besitzen. Alle Punkte (x(t), y(t))
sollen zum Definitionsbereich M einer Funktion f(x,y) gehoren, und f(x,y) soll
auf M stetige partielle Ableitungen besitzen. Die auf M, erkldrte mittelbare Funktion
F(t)= f(x(2), y(2)) ist dann nach t differenzierbar, und es gilt

F() = fo(x(8), (6)) X' () + fy (x(0), () Y’ (©). (3.20)

Satz 3.3: Auf einer Menge M, einer u, v-Ebene seien die beiden Funktionen x(u, v) und
y(u, v) erkldrt, die beide auf M, stetige partielle Ableitungen nach u und v besitzen. Alle
Punkte (x(u, v), y(u, v)) sollen zum Definitionsbereich M einer Funktion f(x,y) ge-
héren, und f(x, y) soll auf M stetige partielle Ableitungen nach x und y besitzen. Die auf
M, erklirte mittelbare Funktion F(u,v),= f(x(u,v), y(u,v)) besitzt dann partielle
Ableitungen nach u und v, und es gilt

Fu(u,v) = fo(x(u, v), y(u, v))  xu(, v) + £ (x(, v), y(¥, v) - yu(y, v),
F.,(u, v) =f;=(x(us D), y(u) v)) N x,,(u, U) +f;/(x(“x D), y(“? l7)) N yv(ua l)).

Die Beweise iibergehen wir. Die Aussage der Sitze miiSte nicht unbedingt heran-
gezogen werden, wenn sowohl die duBere Funktion als auch die inneren Funktionen
explizit bekannt wiren. Man konnte dann direkt die gewiinschten Ableitungen bilden.
Eine Bedeutung der Sétze wird z. B. dann deutlich, wenn man von den inneren Funk-
tionen nur gewisse Eigenschaften kennt, ohne sie explizit angeben zu konnen. Aus
(3.20) bzw. (3.21) kann man dann mitunter weitere Eigenschaften herleiten.

Beispiel 3.2: Gegeben sei die Funktion f(x, y) = x* + y*. Von einer stetig differenzier-
baren Funktion y(x) sei lediglich bekannt, daB y(1) = 3 gilt und daB y(x) der Bezie-
hung f(x, y(x)) = 5 geniigt. Den expliziten Ausdruck von y(x) kennen wir nicht. Wir
fragen nach dem Wert der Ableitung y’(1). Auf die differenzierbare Funktion F(x)
= f(x, y(x)) kann (3.20) angewendet werden. Aus f(x, y(x)) = 5 folgt dann durch
Differentiation nach x: f;(x, y(x)) + f,(x, ¥(x)) y'(x) = 0 und wegen y(1) = 3 und
fz(x, y) = 3x* und f;(x, y) = 2y dann (1, 3) + £,(1, 3) »'(1) = 0, also 3 + 6y’(1)=0
und damit y'(1) = -5 7

Die Erweiterungen der Kettenregel gelten auch fiir Ableitungen hherer Ordnung,
ohne daB neue Sétze erforderlich sind.

(3.21)

4%

S.3.2

S.3.3
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Aufgabe 3.1: Man bilde die partiellen Ableitungen erster und zweiter Ordnung von
a) f(x, y) = x arctan y,
b f(x,y)=x+y—|x—y fir x=+y,
Of(x,y)=xv+y> fir x>0,y >0.

Aufgabe 3.2: Man zeige, daB3 die Funktion

1 T . . .
u(x, t) = Ve e (a = const) eine Losung der sogenannten Warmeleitungs-
T

gleichung u,(x, t) = a®u,,(x, 1) ist.

— 2
Aufgabe 3.3: Es sei f(x, y) = xp % fir (x, y) % (0, 0) und £(0, 0) = 0. Man zeige,

2

daB £;,(0, 0) = £,.(0, 0) gilt. Was folgt beziiglich der Stetigkeit von f,(x, y) und
Jyz (%, y) im Nullpunkt?

3.3. Das totale Differential

3.3.1. Das totale Differential und die Zerlegungsformel

Wir fiihren analoge Betrachtungen durch wie im Band 2 im Kapitel 5 iiber Differen-
tiale fiir Funktionen einer unabhéngigen Variablen. Es ging darum, fiir eine Funk-
tion f(x) und fiir benachbarte Stellen x, und x, + # des Definitionsbereiches von
f(x) den Funktionswertzuwachs f(x, + &) — f(x,) mit Hilfe der Ableitung f”(x,) durch
eine Zerlegungsformel auszudriicken. Der Wert f(x, + /) kann dann mit Hilfe der
Werte f(x,) und f”(x,) angendhert werden.

Zunichst sei f(x ,y) eine Funktion von zwei unabhéngigen Variablen, die z.B. in
einem Gebiet G erklart ist, und es sei P(x,, y,) ein fester Punkt von G. Es bezeichne
hy = Ax'bzw. hy =Ay einen Zuwachs der unabhingigen Variablen x bzw. y, und der
benachbarte Punkt P’ (x, + Ax, y, + Ay) gehére ebenfalls zu G. Dann ist

S%o + Ax, yo + Ay) — f(x05 Yo) (3.22)
der totale Zuwachs (das totale Inkrement) der Funktion f(x, y) an der Stelle (x,, y,) mit
dem Zuwachs (Ax,Ay) = (hy, hy). Der totale Zuwachs wird mit Af bezeichnet. Bei
einer Funktion von n Variablen f(x,, ..., x,) ist

Af=f(x1 + hla ey Xp hn) _'f(xlr weey xn)
der totale Zuwachs der Funktion f(x, ..., X,) an der Stelle P(xy, ..., x,) mit dem Zu-
wachs (hy, ..., ).

Beispiel 3.3: Wir betrachten die im gesamten R? erklirte Funktion

S, p)=x* + xp2 (3.23)
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Fiir P(xy, o) und beliebige (im allgemeinen , kleine) Ax, Ay gilt
Af = f(x + Ax, yo + Ay) = f(x0, 7o)
= (%o + Ax)? + (xo + Ax) (yo + Ay)* — x§ — Xo)}
= [(2x0 + ¥8) Ax + 2x0¥0 Ay] + [(Ax + 2y, Ay) Ax
+ (xo Ay + Ax Ay) Ay].
Der totale Zuwachs von f(x, y) ist somit in zwei Summanden zerlegt, von denen der
erste die Gestalt
AAx+ BAy mit A=2x,+);, B=2yx, (3.29)
hat. Die Koeffizienten 4, B hingen nur von X, y, und nicht von den Zuwachsgro8en
Ax, Ay, ab. Es gilt
A= fo(X0, ¥0), B = fy(Xo5 Yo)- (3.25)
Den zweiten Summanden bringen wir ebenfalls auf die Gestalt « Ax + SAy
mit
a=Ax +2y,Ay, B=x0Ay+ AxAy. (3.26)

Die Koeffizienten «, f hingen somit sowohl von x,, y, als auch von Ax, Ay ab. Es
bezeichne ¢ den Abstand zwischen den Punkten P und P’, also

o= V@xP + (By)y. (3.27)

Dann konnen wir schreiben

A
an+ﬂAy=(aAg—x+ﬂTy)a=ne, (3.28)
wenn wir zur Abkiirzung setzen
Ax Ay
=4 —Ff—. 329
7 . B . (3.29)
Man erhilt
2]

'
VAxR + (Ayy = V(axy 18]

und analog ‘%‘ < 1. Wir lassen nun den Punkt P’ gegen den festen Punkt P riicken,

(3.30)

e

betrachten also den Grenziibergang ¢ — 0. Aus (3.27) folgt dann auch Ax—0
Ay — 0 und aus (3.26) dann weiter & — 0, — 0. Wegen

Ax

— |+ .
. I

folgt aus p — 0 dann letztlich auch % — 0. Als Ergebnis fassen wir zusammen: Der

totale Zuwachs der Funktion f(x, y) an einer Stelle (x,, o) kann durch die Zerle-
gungsformel

Af=f(x0 + Ax, Yo+ Ay) "f(xo» yo)
= (AAx + BAy) +ne
= (fo(x0, yo) Ax + £ (x05 Yo) Ay) + 7m0 (331

Inl < o] -

A
LR
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dargestellt werden. Die Koeffizienten A, B hiingen nur von x,, y, und nicht von den
ZuwachsgroBen Ax, Ay ab, wihrend die GréBe 7 sowohl von x, yyalsauchvon Ax, Ay
abhingt; aus dem Grenziibergang ¢ — 0 folgt dann auch 5 — 0; wir schreiben
hierfiir
limn=0. (3.32)
=0
Im ersten Anteil von (3.31) treten Ax, Ay nur linear auf.
Die Frage nach der Giiltigkeit einer Zerlegungsformel der Gestalt (3.31) mit der
Zusatzforderung (3.32) fiir die GroBe n wird nun ganz allgemein gestellt. Wir ver-
einbaren die

Definition 3.2: Eine Funktion f(x, y) besitze in einem Gebiet G partielle Ableitungen
erster Ordnung. Es sei P(xy,y,) aus G, und fir beliebige Zuwachsgrifen Ax, Ay
gelte

Af = f(xo + Ax, yo + Ay) — f(%o, yo)
= fa(%0, yo) Ax + £, (x0, yo) Ay + 71 - 0. (3.33)

Dabei sei o = Y(Ax)? + (Ay)?, und die G+ofe n hinge von x,, y, und von Ax, Ay ab
und besitze die Zusatzeigenschaft
lim 9 = 0. (3.39)
00
Der in Ax und Ay lineare Anteil von (3.33) heift das totale oder vollstindige Differen-
tial der Funktion f(x, y) an der Stelle P(x,, y,) mit dem Zuwachs (Ax, Ay) = (hy, hy).
Das totale Differential wird mit df bezeichnet. Es gilt also

| df = fo(xo, yo) Ax + f; (%o, yo) Ay sowie Af=df+n-e. (3.35)
Wenn eine Zerlegungsformel der beschriebenen Art (3.33), (3.34) - bezogen auf

den Punkt P - gilt, dann sagt man auch, die Funktion f(x, y) sei im Punkt P total
differenzierbar oder vollstindig differenzierbar.

Wir schlieBen einige Bemerkungen an:

Bemerkung 3.2: Unter den genannten Voraussetzungen kénnen wir in (3.33) den Sum-
manden 7 - o fiir ,,kleine* Ax, Ay vernachldssigen und ndherungsweise schreiben

S(xo + Ax, yo + Ay) — f(Xq, yo) = df

N (3.36)

falls der Zuwachs (Ax, Ay) klein ist. Bei Kenntnis des Funktionswertes und der Werte
der partiellen Ableitungen an der festen Stelle (x,, y,) kann somit mit Hilfe des voll-
stindigen Differentials der Funktionswert an einer benachbarten Stelle approximiert
werden. Dieser Gedanke wird spéter im Satz von Taylor erneut aufgegriffen.

Wir betrachten zur Approximation Af ~ df das folgende

Beispiel 3.4: Fiir die Funktion f(x, y) = xy setzen wir x, = 2 und y, = 3. Dann ist
f(xo, y0) = 6. MitAx = 0,2und Ay = 0,1 wird Af = f(x, + Ax, yo + Ay) — f(X0, o)

oder
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=22:31-6 =682 — 6= 0,82 Wegenf, = yund f, = x wird

df = yoAx + %Ay =3-02 4+ 20,1 = 0,80.

Der Unterschied Af — df = 0,02 ist also sehr klein im Vergleich zu den Argument-
anderungen Ax und Ay, und es gilt Af ~ df. Die Aussage dieses speziellen Beispiels
kénnen wir im Bild 3.3 verdeutlichen. Zur Veranschaulichung des Funktionswertes
f(x,y) = xy verwenden wir den Flicheninhalt eines Rechtecks mit den Seiten x
und y. Die Differenz Af — df wird dann durch das doppelt schraffierte kleine Recht-
eck dargestellt. Man erkennt, daB diese Differenz um so kleiner wird, je kleiner man
Ax und Ay wihlt. Man sagt auch, die Differenz Af — df wird ,,von hoherer Ordnung
klein* als Ax und Ay. Auf eine Prizisierung dieses Begriffes gehen wir nicht ein.

S .
3
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=
: g
Bild 3.3 g =
Pogearyyeay)}

Tl )

Plag+ax )

Bild 3.4 % Xprdx X

Bemerkung 3.3 : Im Fall einer Funktion von zwei unabhéngigen Variablen konnen wir
fiir das vollstindige Differential die in Bild 3.4 ablesbare geometrische Interpretation
geben. Eine Funktion f(x, y) kann im R® durch eine Fliche veranschaulicht werden.
Es seien P(x), y,) bzw. P'(xy + Ax, yo + Ay) im Definitionsbereich von f(x, y) ge-
wihlt. Wird senkrecht iiber P bzw. iiber P’ der Funktionswert f(x,, y,) bzw. der Wert
fxy + Ax, y, + Ay) abgetragen, so kommt man zu den zugehéorigen Punkten auf der
Flache der Funktion f(x, y). Im festen Punkt (xo, y,, Zo) mit z, = f(x,, o) Werde nun
die Tangentialebene 7" an die genannte Fliche gelegt. Trigt man nun senkrecht iiber
P’ nur den Naherungswert f(x,, o) + df ab, so gelangt man gerade bis zu dem
iiber P’ liegenden Punkt der genannten Tangentialebene. Das vollstindige Differential
df (xy, yo) driickt also den Funktionswertzuwachs aus, wenn die zur Funktion f(x, y)
gehorige Flache durch die Tangentialebene an diese Flache im festen Punkt (xo, yo, Zo)
ersetzt wird. Es leuchtet anschaulich ein, daB in vielen Fillen in der Néihe des Punk-
tes (xg, o, Zo) die Fliche und die Tangentialebene einander gut anndhern.
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3.3.2.  Eigenschaften des totalen Differentials
Bei einer Funktion von n Variablen f(x, ..., x,) ist

_of of of
O =gt gttt

=j;1(xls '"’xn)hl +j;:;(x1) ceey xn)hz + . +fx,,(xh ...,x,,)h,,

el if;n(xl: veey xn)hl
i=1

das totale Differential der Funktion f(xy, ..., X,) an der Stelle P(x,, ..., X,) mit dem
Zuwachs (hy, ..., h,). Fiir das ausfiihrliche Symbol dflassen wir auch die Schreibweise
df(xy, ..., X,) oder df(x, y, z) im Falle von drei unabhingigen Variablen zu, wenn die
Hervorhebung der ZuwachsgroBen nicht wesentlich ist.

Man erkennt sofort die folgenden Rechenregeln fiir das Arbeiten mit dem voll-
stindigen Differential: Besitzen die beiden Funktionen fund g ein vollstindiges Diffe-
rential, so gilt dies auch fiir die Funktionen

f+g fg und —ﬁ- € +0).

Fiir die vollstindigen Differentiale gilt

d(f+g) = df + dg (3.37)

d(fg) = gdf + fdg (3.38)
f\_ gdf-fdg

d(?) =EE 40 (3.39)

Folgerungen: d(¢cf) = cdf (c = const) und d(f?) = 2fdf.
Weiter erkennt man den folgenden

S.3.4 Satz 3.4: Ist die Funktion f(x, y) im Punkt (x,, y,) total differenzierbar, so ist f(x, y)
dort auch stetig.

Beweis: Wir gehen aus von Punkten P’(x, + Ax, y, + Ay), die zu P(x,, y,) benachbart
sind. Dann gilt (3.33). Betrachten wir nun im Definitionsbereich der Funktion f(x, y)
den Grenziibergang ¢ — 0, so folgt wegen lim = 0 dann auch lim 5 - ¢ = 0. Da aus

-0 o0

o—» 0 auch Ax— 0, Ay — 0 folgt, konvergie:'t fiir o — 0 die rechte Seite von (3.33) gegen
null, d.h. aber, die Funktionswerte f(x, + Ax, y, + Ay) konvergieren gegen den Funk-
tionswert f(xo, y,). Das ist gerade die Bedingung fiir die Stetigkeit der Funktion f(x, y)
im Punkt (X, y,). ®

Bemerkung 3.4: Wir erwihnen einige Bezeichnungsmaglichkeiten. Schreibt man fiir
die ZuwachsgroBen b, = Ax, h, = Ay, so erhalt man fiir einen Punkt (x, y)

df(x, y) = fo(x, y) b + £y (%, ¥) ha. (3.40)
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Fiir die spezielle Funktion f(x, y) = x liefert (3.35) uns df(x, y) = dx = Ax. Analog
ergibt sich dy = Ay, so daB wir auch schreiben

df(x, y) = fa(x, y) dx + f(x, y) dy. (341)
Bei Benutzung der Vektorschreibweise wiirden wir
x=xe +ye, und h=dxe +dye,
setzen und dann erhalten (und dies gilt sinngem#B auch fiir n>2)
f(x+h)—f(x) =df(x) + ¢ - n(x,h) mit limn(x,h)=0, (3.42)
e—0
df(x) = fo(x) dx + f(x) dy.

Bemerkung 3.5: Gilt unter den genannten Voraussetzungen fiir den totalen Zuwachs
von f(x, y) eine Zerlegungsformel der Gestalt

Af = flxo + Ax, yo + Ay) — f(X05 Yo)
=AAx+ BAy+m-¢ mit limy=0,
00
so folgt automatisch 4 = f;(xo, yo), B=1,(xo,s). Man setze etwa Ay = 0 und erhilt
(% + Ax, o) = f(Xo5 yo) = A Ax+ 7 |Ax]

n fir Ax=0,
—n fir Ax<0.
Wegen lim 7 = 0 folgt aus (3.43) dann

Az—0

=AAx+ 7Ax mit 7= (3.43)

lim S0 + Ax, po) — f(X05 Yo) —A+lim7=4,
Az—0 Ax Az—~0

also A4 = f;(x,, ¥). Analog erhalt man die Beziehung fiir B.

Bemerkung 3.6: Die bloBe Existenz der partiellen Ableitungen f,(x, »,) f,(x, y) reicht
im allgemeinen nicht dafiir aus, daB mit diesen Ableitungen (3.42) gilt. Wir erhalten
jedoch den

Satz 3.5: Existieren die partiellen Ableitungen f,(x, ), f,(x, y) fiir eine Umgebung des
Punktes P(xq, y,) und sind sie sogar stetig im Punkt P, so gilt die Zerlegungsformel (3.33).

Beweis: Der Beweis macht deutlich, wie man durch geschickte Zusatziiberlegungen
Sitze aus der an dieser Stelle bekannten Theorie iiber reelle Funktionen von nur
einer unabhéngigen Variablen einsetzen kann. Wir wihlen Ax, Ay, gehen dann
vom Punkt P(x,, y,) iiber zum Punkt P’(x,+ Ax,y,+ Ay) und haben dann
die Funktionswertdifferenz beziiglich der Punkte P und P’ zu betrachten. Fiir den
Ubergang von P nach P’ wihlen wir einen ganz speziellen Weg. Zunichst gehen wir
parallel zur y-Achse von P(x,, y,) zum Punkt R(x,,y, + Ay); auf diesem Weg hat x
den konstanten Wert x,, und nur y allein ist variabel. AnschlieBend gehen wir par-
allel zur x-Achse von R zu P’; auf diesem Weg ist x allein variabel (Bild 3.5).

S.3.5
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Dann gilt
S0+ Ax, yo + Ay) — f(xo5 Yo)

= [f(%o + Ax, yo + Ay) = f(xo, o + Ap)] + [f(x0, yo + Ay) ‘—f(xo:{%)nj

Auf der rechten Seite greifen wir einen der beiden Summanden heraus; die Behandlung
des anderen Summanden ist dann ganz entsprechend. Betrachten wir z.B. den zweiten
Summanden auf der rechten Seite von (3.44). Die Variable x hat den festen Wert x,
angenommen; verdnderlich ist allein y. Wir konnen also den Mittelwertsatz der Dif-
ferentialrechnung fiir Funktionen einer unabhéngigen Variablen beziiglich der Varia-
blen y anwenden. Es existiert also eine Zahl 4, mit 0 < &, < 1, so daB gilt

S (X5 Yo+ Ay) = f(X05 7o) = £ (%05 Yo + B2 Ay) - Ay. (3.45)
y S
RiXy, p+0y) Pllxy+dx,y,+8y)
.yﬂf-A‘y f————e :
|
|
|
|
|
|
|
N 2P 0t5,%) |
| ;
| |
| |
' ! Bild 3.5
Xy XgHAx X

Wir fithren die GroBe § ein durch die Festsetzung

B = 1, (%o0s Yo + D2 AY) = £, (X0, Y0) (3.46)
und kénnen dann in (3.45) fortsetzen:

= fy(xo, yo) Ay + B Ay.

Bezogen auf die Variable x, gilt fiir den ersten Summanden in (3.44) durch die gleiche
Uberlegung: Es existiert eine Zahl 9, mit 0 < 9, < 1, so daB

[f(xo + Ax, yo + Ay) = f(%o, o + Ap)]

= fu(%o + B Ax, yo + Ay) - Ax = f; (%o, yo) Ax + o Ax (3.47)
mit

& = fo(xo + 1A%, yo + Ay) = fo(xo, Yo)- (3.48)
Insgesamt konnen wir dann in (3.44) weiterschreiben:

= fo(%o, yo) Bx + £, (%o, yo) Ay + & Ax + BAy. (3:49)

1) Derartige , kiinstliche Erweiterungen* findet man in vielen mathematischen Beweisen, indem
man wie hier geeignete Zahlen subtrahiert und sie dann sofort wieder addiert.
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Der Beweis des Satzes ist erbracht, wenn wir nun noch zeigen kénnen, daB fiir den
Grenziibergang ¢ — 0 folgt, daB dann auch gilt « = 0, § — 0. Der Grenziibergang
o — 0 bedeutet nun aber, daB gilt Ax — 0, Ay — 0. Dann gilt aber in (3.46) bzw. in
(3.48):

(%05 Yo + 95 Ay) = (%o, Yo)
bzw

(% + D1 Ax, yo + Ay) = (%o, Yo)-
Da die partiellen Ableitungen als stetig vorausgesetzt wurden, folgt dann aber

ooy o+ B2 Ay) = fy (%0, 30), d.h. f—0. (3.50)

Analog erhilt man « — 0. Damit ist der Beweis beendet. ®
Die Voraussetzung, daB die partiellen Ableitungen existieren und stetig sind, wird
an vielen Stellen benétigt. Wir vereinbaren daher die folgende

Definition 3.3: Wir nennen die Funktion f(x, y) im Punkt P(x,, y,) stetig differenzier- D.3.3
bar, wenn die partiellen Ableitungen f.(x, y), f,(x, y) fiir eine Umgebung von P existie-
ren und im Punkt P stetig sind.

DaB die Aussage von Satz 3.5 nicht zu gelten braucht, wenn die partiellen Ablei-
tungen nicht stetig sind, zeigt

Beispiel 3.5: Wir betrachten

*2y
Ty fir (x,y) = (0,0), (3.51)

0 fiir (x,y)= (0, 0).
Die Beziehung (x, y) == (0, 0) ist gleichbedeutend mit der Forderung x*+ y* > 0.

Man erkennt sofort, daB f(x, y) stetig fiir alle Punkte (x, ) = (0, 0) ist. Aus der Ab-
schitzung

S, y) =

I xzx:_y 7 < |y| folgt auchz vll_l:ﬂ fx, y)=0=£(,0),
d.h., f(x, y) ist auch im Nullpunkt stetig. Fiir (x, y) == (0, 0) ist
. _ 20—
) o) = G M) =
un
i f 0 = f(0 0_ o~ 10,0) w 0=£(0,0).

z-0
Die partiellen Ablextungen Jo(x,y) und £, (x, y) existieren somit fiir alle Punkte (x, y);
sie sind jedoch im Nullpunkt nicht stetig. Betrachten wir z.B. die gegen den Null-
1 1y 2w
punkt konvergierende Folge (x,, y,) = (—— —) so gilt fo {— )= T =7

n’'n
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Daher gilt auch hm fo (-— l) =+ 0=1:(0,0).

Wir zeigen noch, daB eine Zerlegungsforme] der Gestalt (3.33), bezogen auf den
Nullpunkt, nicht gilt. Fiir z.B. Ax = Ay > 0 ist dann

S0+ Ax, 0+ Ay) — £(0,0) = f(Ax, Ay) = } Ax.
Wegen £;(0, 0) = £,(0, 0) = 0 und ¢ = V(Ax)* + (Ay)* = 12 Ax muB dann gelten

1 1
—Ax=n.-0=17.)2Ax, also n =——.
s Ax=n-0=7-12 o=

Somit gilt nicht lim = 0, d.h., bezogen auf den Nullpunkt, gilt eine Zerlegungs-

-0
formel der Gesta‘it (3.33) nicht.

Fiir Funktionen f(x) einer unabhéngigen Variablen reicht die Existenz der Ablei-
tung f”(x,) bereits aus fiir das Bestehen der entsprechenden Zerlegungsformel. Bei
Funktionen von mehreren unabhéngigen Variablen ist die Forderung nach der Giil-
tigkeit der genannten Zerlegungsformel also stérker als die bloBe Forderung, daB alle
partiellen Ableitungen an den betrachteten Stellen existieren.

Bemerkung 3.7: Das totale Differential fiir zusammengesetzte Funktionen. Wir be-
trachten wieder zusammengesetzte Funktionen und wollen annehmen, daB fiir alle
auftretenden Funktionen das vollstindige Differential existiert. Wir betrachten nur
eine herausgegriffene Moglichkeit. Es sei z. B. g(v) eine Funktion einer unabhéngigen
Variablen v, und es gelte v = v(x, y). Beziiglich der unabhéngigen Variablen v gilt

dann
dg(v) = g'(v) dv. (3.52)

Wollen wir nun das vollstindige Differential fiir die zusammengesetzte Funktion
f(x, y) = g(v(x, y)) ermitteln, so konnen wir von (3.52) ausgehen und in diese Formel
fiir dv das vollstidndige Differential dv(x, y) der Funktion v(x, y) und in die Ableitung
g'(v) die Beziehung v = v(x, y) einfithren (vgl. hierzu auch die Betrachtungen unter
3.6.2.).

Auf diese Weise konnen gelegentlich die partiellen Ableitungen fiir Funktionen
von mehreren unabhéngigen Variablen mit Hilfe des vollstandigen Differentials fiir
zusammengesetzte Funktionen bequemer berechnet werden. Wir bringen zwei Bei-
spiele.

Beispiel 3.6: Es sei f(x,y) = arctan 2-. Wir setzen v(x, y) = —und betrachten die
Funktion g(v) = arctan v mit *

dv

2 (3.53)

dg=

Fiihren wir dv = x2dx+ dy und v —; in (3.53) ein, so erhalten wir fiir

(x, y) = arctan v(x, y) = arctan —Jidann

df(x,y)=$y2 —;dx+ dy [~y dx + x dy).
1+

X"y2
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- 9
f(x, M _ =V g Y x
x Xt dy X%+ y*

Beispiel 3.7: Es sei f(x,y)=1In \/ x® + y*. Wir betrachten zunéchst g(v) = In \/ 0=
$1n v mit

Somit gilt

14d
dg = 77” (3.54)

Fithren wir v(x, y)=x?+ »* und dv = 2x dx + 2y dy in (3.54) ein, so erhalten wir

df(x’y)_ + 2 (x dx+ }'d.V)s also f;(xr y) f;/(xhy)

X
e x2+y

3.3.3. Der Gradient einer reellen Funktion f(x, y, z)

Es sei nun f(x, y, z) eine reelle Funktion von drei unabhingigen Verinderlichen
mit stetigen partiellen Ableitungen f,(x, , z), f,(x, ¥, z), f(%, », z). Das vollstdndige
Differential lautet dann

df(x, 3, 2) = fa(%, 3, 2) dx + £y (%, 3, 2) dy + fi(x, 3, 2) dz. (3.59)
Die GroBen dx, dy, dz driicken dabei Anderungen der unabhingigen Variablen aus;
wir konnen sie zusammenfassen zum Vektor

dr=dxe, +dye;,+ dze;. (3.56)

Es liegt nun nahe, in (3.55) auch die jeweils ersten Faktoren f;(x, y, z), £, (x, y, 2),
fz(x,, z) als Koordinaten eines Vektors aufzufassen. Dann wire das vollstindige
Differential gerade das Skalarprodukt zweier Vektoren. Wir vereinbaren die folgende

Definition 3.4: Die reelle Funktion f(x, y, z) besitze partielle Ableitungen erster Ord- D.3.4
nung nach x, y und z. Fiir jeden Punkt (x,y, z) des Definitionsbereiches von f(x, y, z)
definieren wir dann den Vektor

f;(x) Vs Z) € +f11(x: Vs Z) € +f2(x’ s Z) €.
Er heift Gradient von f im Punkt (x, y, z) und wird mit grad f(x, y, z) bezeichnet:
%y, 2) f(x, », 2) f(x,,2)
grad f(x, y, 2) = —5 e + Gy et 5 &
=f(x, 3, 2) &1+ fy (%, 9, 2) & + fu(x, ¥, 2) &5, (3.57)
Bei der Bildung des Gradienten geht man also von einem Skalarfeld aus und erhalt
als Ergebnis ein Vektorfeld. Fiir die Bildung des Vektors grad f(x, y, z) ist es nicht
erforderlich, daB die partiellen Ableitungen von f(x, y, z) stetig sind.
of _of _of _

Beispiel 3.8: Fir f(x, y,z)=x+y+z gllta = —67 B = 1 und daher

grad f(x, y ,2) = e, + &2 + €.
Beispiel 3.9: Fir f(x, y, z) = z® e*'+2 gilt
fo=2x2% e¥'t¥E, f, = 23 ePYE f, = (22 4 yz?) etz
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und somit
grad f(x, y, z) = =4V (2xz2 e, + 23 €, + (22 + yz%) &)
=zeE (2xze,+ 22 ey + (2 + yz) €5).

Das vollstindige Differential df(x, y, z) ist dann als Skalarprodukt der beiden Vek-
toren grad f(x, y, z) und dr darstellbar:

df(x’ A Z) =f-:¢(x’y) Z) dx +f1}(x)y’ z) dy +fx(xxy) Z) dz

= (grad f(x, y, z)) dr. (3.58)
An Rechenregeln fiir den Gradienten ergibt sich sofort:

S.3.6 Satz3.6: Zwei beliebige Funktionen f(x, y, z) und g(x, y, z) migen partielle Ableitun-
gen besitzen, und es sei ferner K eine beliebige Konstante. Dann gilt

grad (f(x, y, 2) + g(x, , 2)) = grad f(x, y, 2) + grad g(x, y, 2), (3.59)

grad (K - f(x, y, z)) = K grad f(x, y, z) (K konstant), (3.60)
grad (f(x, y, 2) - g(x, y, 2)) = f(x, y, z) grad g (x, y, z)
+ &(x, y, 2) grad f(x, », 2). (3.61)

Der Beweis dieser Regeln ergibt sich als leichte Ubungsaufgabe, indem man die
Regeln fiir die Differentiation einer Summe und eines Produktes beachtet. Weitere
Ausfiihrungen iiber den Gradienten folgen spiter.

Wir bemerken noch, daB der Gradient auch fiir Funktionen von n unabhingigen
Variablen gebildet werden kann. Besitzt die reelle Funktion von n unabhingigen
Variablen f(x,, X,, ..., X,) partielle Ableitungen erster Ordnung, so setzt man

grad (X1, oo, Xn) = fr, (X1, ooy Xn) €14 oo+ [, (X1, oevy Xn) €0
= ,)::1 Ty oo Xo) €5 (.62)
grad f(xy, ..., X,) ist dann ein n-dimensionaler Vektor. Wir konnen auch schreiben
grad f(xy, ..., x,) = é‘i Suxys ooy Xn) €.
Hinweis: Bei Benutzung der Matrixschreibweise hitte man zu schreiben
gdf=(L, L. L)

Ox; ' Oxy 7T Ox,

3.34. Der Mittelwertsatz fiir Funktionen mehrerer Verinderlicher

Wir erinnern an den Mittelwertsatz der Differentialrechnung fiir Funktionen einer
unabhingigen Variablen (vgl. Bd.2). Eine Funktion f(x) sei in einem abgeschlos-
senen Intervall [a, b] stetig und im offenen Intervall (a, b) differenzierbar. Sind x,
und x, + h zwei Stellen aus dem Intervall [a, b], so gilt ndherungsweise

f(%o + h) = f(xo) = hf'(x,) fiir Kleine |A|. (3.63)
Der Mittelwertsatz der Differentialrechnung sagt nun aus, daB es bei Erfiilltsein der
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genannten Voraussetzungen eine Zahl ¢ mit 0 <& < 1 gibt, so daB anstelle von
(3.63) exakt gilt

S0 + ) = flx)) = bf" (xo + ). (3.64)

Die Funktionswertdifferenz f(x, + A) — f(x,) ist somit das Produkt aus der Argu-
mentdifferenz 4 und der Ableitung der Funktion f an einer geeigneten zwischen x,
und x, + h gelegenen Zwischenstelle x, + 9. Da die Funktion f in einem Intervall
betrachtet wird, so folgt von selbst, daBl die Zwischenstelle x, + #h ebenfalls zum
Definitionsbereich von f gehort.

Wir wollen den Mittelwertsatz der Differentialrechnung fiir Funktionen von drei
unabhéingigen Variablen herleiten. Unter analogen Voraussetzungen wie im Fall
einer Funktion f(x) werden wir zu einer Aussage kommen, die groBe Ahnlichkeit zur
Formel (3.64) hat. An die Stelle von /4 wird ein Differenzvektor h = h,e, + hye, + hse;
treten; die Ableitung wird zu ersetzen sein durch den Gradienten der betrachteten
Funktion, und anstelle des gewohnlichen Produktes ist dann mit dem Skalarprodukt
zweier Vektoren zu arbeiten.

Die Funktion f(x, y, z) sei definiert in einer offenen Teilmenge D des R® und die
Menge D sei konvex — d.h., sind Py(xq, o, 2,) und P(x, y, z) zwei Punkte von D, so
sollen auch alle Punkte der Verbindungsstrecke von P, und P zu D gehoren. Dies
sind aber gerade alle Punkte der Gestalt

(e + 1(x = x0), o+ t(y = o) 2o+ 1z — 2)) mit 0=t=1. (3.65)

Fiir ¢ = 0 erhalt man in (3.65) den Punkt P, fiir ¢ = 1 erhélt man den Punkt P und
fiir r mit 0 < ¢ < 1 liegt der zugehorige Punkt aus (3.65) auf der Verbindungsstrecke
zwischen P, und P. (Man vergleiche hierzu auch die Darstellung (2.39), die in der
gleichen Gestalt auch fiir zwei Punkte Py(a,, b, c;) und P,(a,, b,,c,) des R®
richtig ist.) Setzen wir by = x — X0, h, =y — y, und hy = z — z,, so ist die ge-
nannte Verbindungsstrecke die Menge aller Punkte der Gestalt

(Xo+ thy, yo+ thy,zo+ thy) mit 0=t 1. (3.66)

Satz 3.7 (Mittelwertsatz der Differentialrechnung): Die reelle Funktion f(x, y, z) sei
definiert in der offenen und konvexen Teilmenge D des R® und besitze iiberall in D stetige
partielle Ableitungen nach x, y und z. Sind dann die Punkte Py(Xq, y,, 2o) und P(xy+ hy,
Yo+ ha, 2y + h3) in D gewdhlt, so existiert eine Zahl % mit 0 < & < 1, so dap gilt

f(o + by, yo + oy 2o + hs) — f(%o, Yos 20)
= fa(xo + Ohy, yo + Ohay 2o + Bhs) By + £, () Be + £2(.) Bs. (3.67)

Bemerkung 3.8: In Formel (3.67) sind alle drei partiellen Ableitungen an der gleichen
Zwischenstelle (x, + 9hy, y, + Phy, 2y + 9h3) zu betrachten. Man beachte ferner, daB
fiir alle drei Koordinaten die gleiche Zahl ¥ auftritt.

Verwenden wir die Vektorschreibweise, so konnen wir setzen x = x,e; + yo€; + Zo€s
und  h=he, + he, + he;. Unter den genannten Voraussetzungen fiir die Funk-
tion f(x) und den Definitionsbereich der Funktion kénnen wir dann sagen: Es gibt
eine Zahl ¢ mit 0 <9 < 1, so daB gilt

S+ B) = f(x) = £u(x + OB by + £, (x + Oh) g + £.(x + D) kg
= (grad f(x + 9h)) - h. (3.68)

S.3.7
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Wir werden in 4.1. sehen, daB der Mittelwertsatz durch eine Spezialisierung aus der
Taylorformel gewonnen werden kann.

Beweis: Die Funktion f(x, y, z) werde eingeschrinkt auf die Punkte der Verbin-
dungsstrecke (3.66), d.h., wir betrachten die zusammengesetzte Funktion der unab-
héngigen Variablen 7:

F(t) = f(xo+ thy, po + thy, 2o+ thy) mit 0=z 1. (3.69)
Die Funktion F(z) erfiillt nun auf dem Intervall [0, 1] die Voraussetzung des Mittel-

wertsatzes fiir Funktionen einer unabhéngigen Verénderlichen. Es gibt also eine Zahl
9 mit 0 < & < 1, so daB gilt

F(1) — F0)= F'(9)Y). (3.70)
Die Ableitung F'(t) berechnen wir nach Satz 3.2 fiir den Spezialfall x(t) = x, + th;,

Y(@®)=yo + thy, z(t) =z, + thy. Es gilt x'(t)= hy, y'(t)= hy, z’(f)= h; und damit
insgesamt

F'(t)= fo(xo + thy, yo + the, 2o + thy) hy+ f,(...) B + £2(...) Bs?). (3.711)
Also ist '
F'(§) = fo(xo + Ohy, Yo + Ohg, 2o + Ohs) by + fi(o) ha + f.(..) Bs
= (grad f(x + 9h)) h.

Wegen F(1) = f(x + h) und F(0) = f(x) liefert die Umschreibung von (3.70) gerade
die Behauptung. Damit ist der Beweis beendet. m

Es ist sofort klar, wie der Mittelwertsatz fiir Funktionen von zwei unabhangigen
Variablen oder allgemein fiir Funktionen von n Variablen lautet. Als unmittelbare
Folgerung ergibt sich der

Satz 3.8: Die reelle Funktion f(x,y, z) erfille die gleichen Voraussetzungen wie in
Satz 3.7, und es gelte noch zusatzlich f,(x, y, z) = f,(x, y, z) = f.(x, y, 2) = O fiir alle
(x, y,2) € D. Dann ist die Funktion f(x, y, z) auf D konstant.

Beweis: Es sei (x,, o, 2o) ein fester Punkt aus D. Fiir jeden weiteren Punkt (x, y, z)
aus D folgt dann nach Satz 3.7 f(x, y, z) — f(xo, Yo, 2o) = 0, da die partiellen Ablei-
tungen fiir alle Punkte von D verschwinden. Also gilt f(x, y, z) = f(x,, Yo, 2) fiir alle
(x, y,z) € D; d.h., f(x, y, z) ist konstant auf D. m

34. Differentiale hoherer Ordnung

Wir betrachten zunéchst den Fall einer reellen Funktion von zwei unabhidngigen
Variablen. Eine Funktion f(x, y) sei in einer offenen Teilmenge der x, y-Ebene defi-
niert und besitze iiberall stetige partielle Ableitungen erster Ordnung. Dann kénnen
wir das vollstindige Differential df(x, y) bilden:

f(x, ) f(x, )
= —7 dy. 3.72
dfx, y) = dx + % dy (3.712)
1) Fiir die Anwendung des Mittelwertsatzes miissen wir die Spezialisierunga = 0,6 =1und s =1

betrachten.
2) Alle drei partiellen Ableitungen werden an ‘der gleichen Stelle betrachtet.
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Dabei bedeuten dx bzw. dy ZuwachsgroBen der unabhingigen Verdnderlichen x
bzw. y. Wihlen wir in (3.72) nun feste ZuwachsgroBen dx und dy, so ist das voll-
standige Differential (3.72) wieder eine Funktion von x und y. Setzen wir voraus,
daB f(x, y) sogar stetige partielle Ableitungen zweiter Ordnung nach x und nach y
besitzt, so besitzt also df(x, y) als Funktion von x und y stetige partielle Ableitungen
erster Ordnung nach x und nach y. Man kann daher von (3.72) erneut das vollstindige
Differential d(df(x, y)) bestimmen. Wir nennen es das Differential zweiter Ordnung
von f(x, y) an der Stelle (x, y) mit dem Zuwachs (dx, dy) = (k,, h,) und bezeichnen
es mit d?f(x, y). Wir haben also bei der Bildung von df(x, y) die GréB8en dx und dy
zu behandeln wie Konstanten. Wir betrachten das folgende

Beispiel 3.10: Die Funktion

S(x,y) = x3e¥ (3.73)
besitzt in der gesamten x, y-Ebene stetige partielle Ableitungen zweiter Ordnung nach
x und y, und es gilt fiir das Differential erster Ordnung:

df(x, y) =3x* e dx + 2 e¥x3 dy. (3.74)
Wir wihlen jetzt feste ZuwachsgroBen dx und dy und betrachten dann die rechte Seite
von (3.74) nur als Funktion von x und y. Setzen wir voriibergehend F(x, y) = 3x® e?¥ dx

+ 2 e%x® dy, so soll nun das vollstindige Differential dF(x, y) gebildet werden. Es ist
dann fiir konstantes dx und dy:

a%’;’y& 6x & dx + 6x2 ¥ dy, “’%’;’yh 63 et dx + 4x% etv dy,

und daher gilt fiir dF(x, y) = d*f(x, y):
d*f(x, y) = [6x e dx + 6x* €2 dy] dx + [6x* € dx + 4x® e dy] dy
= 6x €% (dx)* + 2 - 6x2 e® dx dy + 4x° e (dy)?

3 3 3
- LD @2 LB axey+ TED @y @9

wegen
fea(X, ) = 6x €%, f(x,y)=4x° €%, f(x,y)=6x*e%,

Die zuletzt gefundene Beziehung (3.75) fiir d/(x, y) gilt nun ganz allgemein. Unter
den genannten Voraussetzungen fiir f(x, y) gilt fiir die gemischten partiellen Ablei-
tungen die Vertauschungsregel £, (X, ¥) = f;z(x, y). Beachten wir ferner die Rechen-
regeln (3.36) und (3.37) fiir das Arbeiten mit dem vollstindigen Differential, so erhal-
ten wir (dx und dy sind zu behandeln wie Konstanten) wegen

f(x,»)\ _ ¥f(x,7) f(x,y)
d = dx + dy
) 0x? 0x 0
e (af(x )) (%, y) a’fz y)
X,y f(x, y XY
d( 3 )= 3y ox dx + o dy,

dann weiter

&f(x, y) = d(df(x, y)) = d (.%gxﬂdx N af(gy, ») )

5 Harbarth/Riedrich, Diff. Rechn,



66 3. Partielle Ableitungen und totales Differential

=(dx)'d(a—ﬂﬂ)—)+(d)-d(-§f(’;—’y))

@ [P 2 gr 1 D )

+@)- [ag("a'g)dﬂ azfé;’y)d}

0f(x, 2f(x, . f(x,
= LED (g 4 2 g)‘j‘ayy)axm fg’y‘zy) @Fy.  (76)

Analog wird das Differential dritter Ordnung d*(x,y) anschlieBend erklirt als
d*f(x, y) = d(d*(x, y)). Dieser BildungsprozeB kann weiter fortgesetzt werden. Besitzt
also f(x, y) stetige partielle Ableitungen bis zur k-ten Ordnung und ist das Differen-
tial (k — 1)-ter Ordnung schon gebildet, so verstehen wir unter dem Differential k-ter
Ordnung dann
| d*f(x, y) = d(d*Yf(x, y)). (3.77)
Man erkennt, daB die bei der sukzessiven Bildung der Differentiale auftretenden
Ausdriicke immer komplizierter werden. Zur besseren Ubersicht fithren wir daher eine
formale Bezeichnung ein und konnen mit dieser dann die Differentiale d*f(x,y)
bequem darstellen.

Der explizite Ausdruck fiir d%/(x, y) in (3.76) weist eine gewisse Ahnlichkeit mit der
rechten Seite der Gleichung (@ + b)* = a* + 2ab + b* (a, b beliebige reelle Zahlen)
auf. Wir definieren daher das formale Symbol

I
(Grex+5 &) 5.5 | (3.78)

in der folgenden Weise: Der Ausdruck in der Klammer wird zur zweiten Potenz
erhoben, und dabei werden die Symbole 0, Ox, dy wie selbsténdige algebraische Sym-
bole behandelt. AnschlieBend werden die Klammern fortgelassen, und zu jedem Sym-
bol 0% wird der ,Faktor* f(x,y) hinzugesetzt (der ,,Faktor* f(x,y) wird also
,hineinmultipliziert”). Nach diesem Vorgang soll dann alles wieder seine urspriing-
liche Bedeutung haben. Wichtig fiir diesen Gedankengang ist die Vertauschbarkeit
der gemischten partiellen Ableitungen von f(x, y). Also ist

(55 05+ 55 89) S5 )
= (e @+ 2 gy dx 0y + o @65 )

= D) @+ 2% g gy + LI gy, 379

Fiir das Differential zweiter Ordnung von f(x, y) erhalten wir dann die sehr ein-
pragsame Darstellung

a9 9, \?
@t 3) = (7 dx + 55 &) ). (330

1) Anstelle von (dx)? bzw. (dy)? schreibt man auch kiirzer ohne Klammer nur dx? bzw. dy*.
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Ganz entsprechend ist die Schreibweise

6] ad
G5,9) = (5 5+ 5 ) .0) (3381
zu interpretieren; der ,,Faktor f(x,y) wurde ,ausgeklammert”. Man kann nun
zeigen, daB allgemein gilt
] G}
&) = (5 + 5-89) S ). (3:82)

Fiir das Differential dritter Ordnung einer Funktion f(x, y) mit stetigen partiellen
Ableitungen dritter Ordnung gilt also

005,9) = (5 0 + 500 S05.9)

= faaa(x, y) A5° + 3fomy (x, y) dx* dy
+ o (%, ¥) dx dp* + fp (x, ) dy*. (3.83)

Ist f(x;, ..., x,) eine reelle Funktion von » unabhéngigen Verinderlichen mit stetigen
partiellen Ableitungen k-ter Ordnung, so gilt entsprechend

aJ k
A4y s %) = (alxl dxy o ek dxn> %y o 2. (3.84)

Das Symbol auf der rechten Seite von (3.84) ist ganz entsprechend zu lesen wie fiir
eine Funktion von zwei unabhéngigen Variablen. Fiir eine Funktion von drei unab-
héngigen Variablen f(x,, x,, x;) mit stetigen partiellen Ableitungen zweiter Ordnung
gilt dann fiir das Differential zweiter Ordnung:

0 9 9 :
@, 30 30) = (- 831 + 5 G+ g d) S, )

= finn X + fiag X5 + fig dxs®
+ 2fiye dx; dxy + 2fiys dx; dxg + 2figg dx, dx;.

(Alle partiellen Ableitungen sind an der Stelle (x,, X,, x3) zu betrachten — wir haben
die Argumente nicht mitgeschrieben, wie es gelegentlich ubhch ist, falls keine Ver-
wechslungen zu befiirchten sind.)

3.5. Anwendungen des totalen Differentials in der Fehlerrechnung

Wir fithren analoge Uberlegungen durch wie im Band 2 im Kapitel 5.2. fiir Funk-
tionen einer unabhéngigen Variablen und betrachten zunachst Funktionen von zwei
unabhingigen Variablen. Es liege also der Fall vor, da8 eine GroBe z als Funktion
zweier GroBen x und y berechnet werden soll als z = f(x, y). Es seien % bzw. y Néhe-
rungswerte fiir x bzw. y, so daB anstelle des exakten Wertes z = f(x, y) auch nur der
Néherungswert

i=fG,7) ‘ (385)
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berechnet werden kann. Wir schreiben dann
x=%X+dx, y=y +dy (3.86)

und bezeichnen in diesem Zusammenhang dx und dy auch als Meffehler. Weiter
seien zwei Schranken & > 0 bzw. k > 0 fiir die MeBfehler bekannt, d.h., es gelte

|[dx|<h  bzw. |dy|<k. (3.87)
Es gelte also die Abschitzung

X-h<x<xi+hundy—-k<y<y+k, (3.88)
wofiir wir mit der Symbolik aus Band 2 auch schreibenx =% 4+/ und y=y + k.
Gesucht ist nun eine obere Schranke fiir den absoluten Fehler

[Az| = |z — Z| = |f(x,y) = (%, 7)| = |f(% + dx, 7 + dy) = f(&, 7). (3.89)

Sind A und k ,,klein*, so sind nach (3.87) auch dx und dy ,,klein*, und man kann die
Funktionswertdifferenz (3.89) durch das zu der Stelle (X, ) und den Zuwichsen dx
und dy gehorige Differential von f anndhern. Man setzt also |Az| ~ |dz| und erhilt
die Abschatzung

|Az] = |dz| = | &, 7) dx + £ (&, 7) dy| S | L%, )] - [dx] + 1 £(%, )] - [dy]
SIEEDN b+ 1HE 7 -k (3.90)

Die Abschatzung (3.90) ist zwar nur eine gendherte, aber sehr einfache und praktisch
durchaus brauchbare Abschétzung fiir den absoluten Fehler von z. Anstelle des rela-

. A . . . v, d
tiven Fehlers —2—2— berechnet man in der Praxis dann auch die GroBe Tz

Die Betrachtungen konnen sofort auf Funktionen von mehr als zwei unabhéngi-
gen Variablen ausgedehnt werden.

Beispiel 3.11: In einem Dreieck seien fiir die Seiten @ und b und den eingeschlossenen
Winkel y die Naherungswerte @ = 84,3 m, b = 73,2 m und § = 48,6°(d.h. § = 0,27x)
gemessen worden. Fiir die MeBfehler da, db und dy soll gelten

|da| <h =01m; |db|<h,=02m und |dy| < hy=0,01 g

Gesucht ist eine Abschitzung des absoluten Fehlers fiir die Lange der dritten Seite c,
die sich aus den angegebenen Werten ergibt. Nach dem Kosinussatz gilt

¢=f(a,b,y)=Va*+ b* —2abcos y. (3.91)

1) Der Praktiker hat in jedem Einzelfall zu iiberlegen, ob |dx| und |dy| hinreichend klein gemacht
werden konnen, um die Ersetzung von |Az| durch |dz| zu rechtfertigen.



3.5. Anwendungen in der Fehlerrechnung 69
Also ist
¢=f(@ b, 7) = |/@+ B* — 2ab cos 7
= V(84,3) + (73,2)2 — 2 (84,3) (73,2) cos 0,27w = 65,5. (3.92)
Fiir das zur Stelle (@, b, 7) und den Zuwichsen da, db, dy gehérige Differential gilt

(23— 2b cos 7) da + (2b— 2a cos 7) db + 2ab sin 7 dy
2V&2 + b2 — 2ab cos 7

df(&! I;! 77) =

(3.93)

za—bzcosyda+b—azcosydb+absimydy.

Fiir den absoluten Fehler erhilt man die Abschitzung

84,3 — 73,2 cos y 73,2 — 84,3 cos y

|Ac| = |dc| gl .5 l-O,l + ‘ .5 +0,2
84,3732 sin 7 -
+‘ 65,5 }'0’01 )

= 0,055 + 0,053 + 0,246 = 0,354 < 0,4.
/

Fiir den wahren Wert ¢ besteht also praktisch die Ungleichung |c — 65,5| < 0,4, d.h.

65,5—0,4 <c¢<655+04. (3.94)
Hierfiir schreiben wir auch ¢ = 65,5 4- 0,4. Fiir den relativen Fehler gilt
Ac de o
z = < -65—5 = 0,0061 = 0,61%. (3.95)

Fiir die relativen Fehler der MeBwerte gilt

< gy = 00012 = 0,12%; = 0,0027 = 0,27%;

b |I=732

o
w

a|_ 01
|

dbl 0,2

dy|_00
\ "§243 0,0041 = 0,41%.

Im folgenden Beispiel fithren wir eine gednderte Betrachtungsweise durch. Bei der
Abschétzung des Fehlers betrachten wir wieder das vollstindige Differential der be-
treffenden Funktion; wir arbeiten dann aber nicht nur mit Abschétzungen fiir die Zu-
wachsgréBen der unabhingigen Variablen, sondern bestimmen auch Abschétzungen
fir die auftretenden partiellen Ableitungen. Wie mit dem Mittelwertsatz nachge-
wiesen werden kann, erhilt man hierbei tatsichlich eine obere Schranke fiir den ab-
soluten Fehler der betrachteten Funktion.
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Beispiel 3.12: Bei einem konzentrischen (einadrigen) Olkabel, dessen AuBenleiter den
inneren Radius b = 1,75 cm und dessen Innenleiter den Radius a = 0,35 cm hat, ist
die maximale Feldstirke (am Innenleiter) durch

U U

aln% a(lnb—Ina)

E= (3.96)

mit dem Scheitelwert U der Betriebsspannung gegeben. Wie groB ist der relative Feh-
ler von E fiir U = 100 kV, wenn die relativen Fehler von a und b mit je 1% und von
U mit 2%, angesetzt werden? Es ist also E eine Funktion der drei unabhéngigen Varia-
blen U, a und b: E = E(U, a, b). Nach der Voraussetzung iiber die relativen Fehler
von U, a, b ist die Funktion E(U, a, b) zu betrachten in der Menge B aller Punkte
(U, a, b), fiir die gilt 100 — 2 < U < 100 + 2; 0,35 — 0,0035 < a < 0,35 + 0,0035;
1,75 - 10,0175 < b < 1,754+ 0,0175. B ist also die Menge aller Punkte (U, a, b) mit

98 < U < 102; 0,3465 < a < 0,3535; 1,7325 < b < 1,7675. (3.97)
Nun ist

OE _ 1 . 0E _U(l-Inb+Ina) OE _ -U

OU a(nb—Ing)’ da (a(lnb—1na)? > 0b ab(lnb—Ina)’
Fiir das vollstindige Differential der Funktion E(U, g, b) gilt dann

OE oE OFE
iVt tg

dE(U, a,b) = db. (3.98)

0

Fiir alle auf der rechten Seite von (3.98) stehenden GroBen werden obere Schranken
- bezogen auf die Menge B — angegeben. Wir lassen also alle Punkte (U, a, b) zu, fiir
die (3.97) gilt, und erhalten dann

[dU| < 2; |da] < 0,0035; |db| < 0,0175;
‘ 3E ‘ 1

< 1,8158;

— <

U |=70,3465 (In 1,7325 — In 0,3535) —

3E | _ 102(~1+ In 1,7675 — In 0,3465) _
e | = 034650 1,735 — i 03535) = 20942

JE 102
— < 1
db = 0,3465 - 1,7325(In 1,7325 — In 0,3535)* = 68,6320.9

Dann gilt
sMMMg%Mwﬁ%Mmﬂ%hw
< 1,8158 - 2 + 204,9412 - 0,0035 + 68,6320 - 0,0175
< 5,5499.
1) Man hat darauf zu achten, daB der Zéhler den groBtmdglichen und der Nenner den kleinstmog-

lichen Wert annimmt. Weiter bemerken wir, daB MaBeinheiten bei der Rechnung aus Griinden der
Ubersichtlichkeit weggelassen wurden.
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Fiir E selber erhilt man mit den angegebenen Werten: E = 177,52. Fiir den relativen
Fehler erhélt man somit die Abschatzung
AE

= = 0,03 =3%.

In Band 2 wurde folgendes gefunden: Es seien X, ..., X, Naherungen fiir n Zah-
len xy, ..., X,. Betrachten wir nun z = X, + - + X, als Néaherung fiir die Summe
z=Xx;+ -+ x, der n Zahlen, so gilt, daB der absolute Fehler der Summe von n
Zahlen hochstens gleich der Summe der absoluten Fehler der einzelnen Summan-
den ist. Dieses Ergebnis wiirden wir an dieser Stelle sofort erhalten durch die
Betrachtung der Funktion f(x;, ..., X,) = X; + ** + X, mit dem vollstindigen Differen-

tial (fiy= - = fin =

Af (X1, vy Xn) = dx; + ++ + dxp.
Also folgt

4 (x15 s Xa)| S [ds] + oo+ [dxa]

Es soll jetzt eine Zahl z berechnet werden als Produkt zweier Zahlen x und y:
z=x-y. Wir betrachten dann die Funktion f(x, y) = x - y mit dem vollstdndigen
Differential df(x, y) = y dx + x dy. Sind X bzw. y Néherungen fiir x bzw. y, so gilt
also

[Az| = |z — Z| = |dz(%, 7)| = [y dx + X dy|
und damit weiter mit z=%- y:_
Az dz dx ii{‘ > ‘ dx

(3.99)

- + ‘ Y.

z X y y

Die Abschatzung (3.99) besagt: Der relative Fehler eines Produktes ist hochstens

gleich der Summe der relativen Fehler der einzelnen Faktoren. :
Zum AbschluB betrachten wir noch den Fall, daB eine Zahl z als Quotient zweier

Zahlen x und y berechnet werden soll:

x

z=ﬁ(xqeo,y=(=0).

Wir betrachten an dieser Stelle f(x, y) = ; mit dem vollstindigen Differential

dx x
df(x, y) =— — =-dy.
If(x, y) R

Sind wieder X bzw. y Néaherungen fiir x bzw. y, so gilt

|Az| = |dz(%, y)| = d—x——x—d’i und damit weiter mit 7 = > :
y 9 y
A d d d d
=~ |- 5 x zy)(-) <| ‘ (3.100)
z z y y
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Die Abschitzung (3.100) besagt: Der relative Fehler eines Quotienten ist hdchstens
gleich der Summe der relativen Fehler von Zahler und Nenner.

Beispiel 3.13: Nach dem Stokesschen Reibungsgesetz erfihrt eine Kugel vom Radius
r beim Fallen in einer zihen Fliissigkeit von der Zahigkeit 7 einen Reibungswiderstand
vom Betrag F = 6myrv. v sei der Betrag der Fallgeschwindigkeit. Wie groB ist ma-
ximal der relative Fehler von F, wenn der relative Fehler von 7 bzw. r bzw. v gerade
0,5% bzw. 4,3% bzw. 2,7% betrigt?

Wir kénnen (3.99) anwenden, da die GroBen 7, r und v miteinander multipliziert
werden. Fiir den relativen Fehler von F gilt also

AF dF

7 = 0,5% + 4,3% + 2,7% = 7,5%.

Aufgabe 3.4: Die Funktion f(x, y) = arctan % werde fiir alle Punkte (x, y) der oberen

Halbebene betrachtet, d.h. fiir alle Punkte (x, y) mit y > 0. Man bilde das Differen-
tial zweiter Ordnung: d*(x, y).

Aufgabe 3.5: Fiir die Koordinaten des Punktes P(x, y, z) wurden die Werte X = 2,51;
= —1,72; z = 3,43 gemessen. Gesucht ist der Abstand r des Punktes P vom Koor-

dinatenursprung: r = Vx* + y* + z2. Wie groB ist der Naherungswert 7 fiir » und
mit welchem absoluten und relativen Fehler muB man rechnen, wenn die Koordi-
naten x und y mit einer Genauigkeit von 4- 0,02 und die Koordinate z mit einer
Genauigkeit von 40,03 bestimmt wurden?

3.6. Differentiation zusammengesetzter Funktionen
Die verallgemeinerte Kettenregel

3.6.1. Zusammengmt'zte Funktionen mehrerer Verinderlicher

Wir betrachten zunéchst folgenden Sachverhalt: Es sei M eine Teilmenge des R?, und
auf M sei eine reelle Funktion f erklart; d. h., durch die Abbildung f wird jedem Punkt
(x, y) aus M eine Zahl f(x, y) zugeordnet. Weiter sei [a, b] ein Intervall auf der re-
ellen Achse, und auf [a, b] seien zwei reelle Funktionen @, und ¢, erklért. Jedem ¢ aus
[a, b] sind also zwei Zahlen ¢, (f) und @,() zugeordnet. Wir betrachten nun im R* die
Kurve mit der Parameterdarstellung x = ¢,(t), y = @,(¢) und nehmen an, daB alle
Punkte (¢,(f), p2(?)) zum Definitionsbereich M von f gehéren. Als zusammengesetzte
Funktion bezeichnet man dann diejenige Abbildung, die jedem ¢ aus [a, b] die Zahl
Sf(@(t), p-(t)) zuordnet. Schreibweise: F(t) = f(g4(t), 4;01(1)) fiir ¢ aus [a, b]. In diesem
Spezialfall bildet die Gesamtheit aller Punkte (,(), ¢(#)) im allgemeinen eine in M
verlaufende Kurve. Die Bildung der zusammengesetzten Funktion bedeutet dann
eine Einschrinkung von f auf die Punkte dieser Kurve. Die folgenden Bilder 3.6a
und 3.6b veranschaulichen diesen Sachverhalt.
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g (t) X(0)=g,0)=(t-1
PUATES

7 7t i) 7 X

~

() y(ty)
G

-1
Yl
yH=g,(t)=21t=1)

7

Bild3.6a Bild3.6b

Beispiel 3.14: Auf [a, b] = [0, 2=] werden die Funktionen @,(f) = 2 cos 7 und g,(t) =
2sin ¢ betrachtet. In der x, y-Ebene sei M die Fliche des Kreises mit dem Radius
R=20um den Nullpunkt und f(x,y)=e?siny auf M erklirt. Die Punkte
(%, ») = (¢:1(), ps(£)) = (2 cos ¢, 2 sin t) gehdren dann zu M fiir alle ¢ aus [0, 2x] und
bilden in M den Kreis mit dem Radius 2 um den Nullpunkt. Fiir alle ¢ aus [0, 2x]
erhilt man die zusammengesetzte Abbildung

F(1) = flg:(®), pa1) = €* ¢ - sin (2 sin 7).

k3
Speziell fiir ¢ = jzifolgt F(%) =¢ “Zsin (2 sin ;) =ed.5in2=sin2.

Folgende Verallgemeinerung ist moglich: Es sei. M eine Teilmenge des R”, und
auf M sei eine reelle Funktion f erklért. Anstelle ({es Intervalls [a, b] der Vorbetrach-
tung sei jetzt M eine Teilmenge des R*. Auf M seign dann n reelle Funktionen
@15 P2 o, @y erklért, d.h., jedem (uy, us, ..., uy) aus M sind n Zahlen ¢, (uy, ..., ty),
wees @n(Uy, ..., w;) zugeordnet. Wenn nun alle Punkte mit den Koordinaten (xy, ..., X»)
= (@1(U1, vee, Uk)y vovs Pulty, ..., ux)) zum Definitionsbereich M von f gehoren, kann
die zusammengesetzte Funktion

F(ulv "ty uk) = ﬂtpl(“b ) uk)r "t ?’n(uly "ty uk))
gebildet werden. (In der Vorbetrachtung war n =2 und k = 1.)

Beispiel 3.15 (Potential zweier Punktladungen): An den Punkten P;(1,0,0) und
P,(0, 1, 0) befinden sich Punktladungen Q, bzw. Q,. Gesucht ist das Potential ¢ der
beiden Punktladungen im beliebigen Raumpunkt P(x, y, z) als Funktion von (x, y, z).

Nach den Grundgesetzen der Elektrostatik erhalten wir fiir das Potential ¢ = ¢(P)
der vorgegebenen Ladungsverteilung den Ausdruck ¢(P) = %— (% + %), wobei

0 1 2

r, bzw. r, den Abstand des Punktes P von P; bzw. P, bezeichnet (g, ist die Influenz-
konstante oder ,,elektrische Feldkonstante*). In dieser Schreibweise erscheint das
Potential ¢ als Funktion der Variablen r, und r, (Q, und Q, seien fest). Es interessiert
aber die Abhangigkeit ¢ = ¢(x, y, z). Dazu stellen wir r, und r, mittels des Satzes von
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Pythagoras durch die Koordinaten (x, y, z) des Punktes P dar. Es gilt
Sy @3.101)
=1+ (@ - 1+ 2. (3.102)
Also ist die gesuchte Funktion gegeben durch den Ausdruck
¢ =9(P)=g(x,y,2)

1 2 0
= 3.103
4"«90<v1/(:c—1)2+y*+zer Vx2+(y—1)2+z2) 1%

((x,7,2) #+ (1,0,0); (x,»,2) & (0, 1, 0)). Sie entsteht durch Zusammensetzung; die
Ausdriicke (3.101) und (3.102) werden in den Ausdruck fiir ¢ eingesetzt. Der Ausdruck
(3.103) kann also als eine zusammengesetzte Funktion aufgefat werden.

3.6.1. Die verallgemeinerte Kettenregel

Natiirlich interessieren die partiellen Ableitungen der zusammengesetzten Funk-
tionen nach den neuen unabhingigen Variablen (z.B. zur Berechnung der Feld-
stirke E = —grad ¢ im vorhergehenden Beispiel 3.15). Die Rechenvorschrift, die diese
Aufgabe 16st, nennt man die verallgemeinerte Kettenregel.

Zur Beschreibung dieser Rechenregel betrachten wir zunachst den Fall, daB in einem
Gebiet G des Raumes R® eine reelle Ortsfunktion U(r) = U(x, y, z) gegeben ist und

X

daB der Ortsvektor r = [y] selbst eine Funktion einer weiteren Variablen ¢ ist; d.h.

x(1) z

daB r=1r(t)= [y(t)] gilt. Aus U wird durch Einsetzen von r = r(¢) eine zusammen-
z(t

gesetzte Funktion von ¢ (Man betrachtet z.B. die Temperaturverteilung U(r) in
einem GefdB G auf einer speziellen Raumkurve r(r).)

Satz 3.9: Es sei die Funktion U(r) = U(x, y, z) stetig differenzierbar in einem Gebiet
G < R, und die Funktionen x = x(t), y = y(t), z = z(t) seien stetig differenzierbar im
t

Intervall (a,b). Fir t€(a,b) liege r(t)= [y(t)] in G. Dann ist die Funktion
2(t)

Ux(t)) = U(x(t), y(t), z(t)) auf (a, b) stetig differenzierbar nach ¢, und es gilt die

Gleichung (verallgemeinerte Kettenregel)

du@)

T Ux+ Uy+ Uz, (3.104)
wobei x = dx —_—, = i}; yZz= —‘;—:ist und die partiellen Ableitungen U, U,, U, an der

Stelle (x, y, z) (x(1), y(t), 2(t)) zu nehmen sind.
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Gleichberechtigt verwenden wir die folgenden Schreibweisen:
dU@y) 0V dx U dy  OU dr
dr ox df ' Oy dr ' 0z dr
du®) _ U . e dU(r(t))
de or
Wir gehen jetzt zum allgemeinen Fall uber, daB die zusammengesetzte Funktion
eine Funktion mehrerer Verdnderlicher ist (vgl. Band 2, Satz 4.4).

und
=(grad U)-r.

Satz 3.10: Es sei f(x, y) eine in einem Gebiet G < R? definierte stetig differenzierbare
Funktion, und die Funktionen x = g{(u,v), y = g,(u, v) seien stetig differenzierbar
in einem Gebiet B < R>. Fiir (u,v) € B liege der Punkt (x,y) = (g,(u, v); g,(u, v))
in G. Dann kann die zusammengesetzte Funktion F(u,v) = f(g,(u, v), g2(u, v)) ge-
bildet werden. Die Funktion F(u,v) ist stetig differenzierbar in B, und es gelten die
Gleichungen

OF _of ox  of Oy 0g 0g,

u " ox o Ty ou(f* 1 )

OF _of ox  of 0y bgl 6g2
ST L o:;( AL ) (3.105)

wobei die partiellen Ableitungen — gf : gf an der Stelle (x = g,(u, v), y = g,(u, v)) zu
nehmen sind.

Zum Beispiel sei f(x,y) = x? + y*und x = g,(u,v) = u + v,y = g,(u, v) =u—v.
Dann gilt F(u,v) = (u + v)* + (u — v)* = 2u* + 20* sowie nach (3.105)
Oai 2142 1=2x+7) =2u+0+u—0)=4du und -g———Zx 1
+29(=1) =2(x — y) = 2(u + v — (u — v)) = 4v, was sich durch direktes Aus-
rechnen dieser partiellen Ableitungen sofort bestatigt.

In der Theorie impliziter Funktionen (s. Abschnitt 3.7:) und bei der Untersuchung
gewohnlicher Differentialgleichungen (s. Band 7) tritt folgender Fall einer zusammen-
gesetzten Funktion auf: In den Ausdruck fiir eine Funktion F(x, y) wird fiir y eine
Funktion einer Variablen, y = f(x), eingesetzt. Nach der verallgemeinerten Ketten-
regel in der Form (3.104) gilt dann mit ¢ = x; x(¢) = x; y(t) = f(x); z(¢) = 0 die
Gleichung

IECTOD _ F, 4 By () = Eo ) + Fye S S/00):

Bemerkung 3.9: Zur Giiltigkeit der verallgemeinerten Kettenregel (in irgendeiner
ihrer bisher oder im folgenden angegebenen Formen) reicht die Voraussetzung der
totalen Differenzierbarkeit der zur Bildung der zusammengesetzten Funktion benutz-
ten Funktionen aus. Einen diesbeziiglichen Beweis findet man in [4]. Er beruht auf
der Benutzung der Zerlegungsformel (s. 3.2.).

Beweis der Kettenregel

Wir beweisen die verallgemeinerte Kettenregel fiir den Fall, daB eine zusammen-
gesetzte Funktion von einer Verdnderlichen dadurch gebildet wird, da8 in eine Funk-
tion von zwei unabhéngigen Veridnderlichen zwei Funktionen von nur einer Verander-
lichen eingesetzt werden. Genauer sei vorausgesetzt: Die Funktion f(x, y) sei im Ge-

'$.3.10
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biet G < R? definiert und dort total differenzierbar, ferner seien die Funktionen
(1), @o(2) im Intervall (a, b) (@ < b) erklirt und differenzierbar. Fiir ¢ € (g, b) gelte,
daBl der Punkt (Vektor) ¢,(?) e; + ¢u(?) e, in G liegt, so daB die zusammengesetzte
Funktion

U(t) = flp:(t), p(1)) (@ <t < b)

definiert ist. Anstelle der totalen Differenzierbarkeit von f(x, y) kann man auch for-
dern, daB f(x, y) in G iiberall stetig partiell nach beiden unabhéngigen Variablen dif-
ferenzierbar ist, da aus dieser Voraussetzung die totale Differenzierbarkeit von f(x, y)
folgt. Wir halten ein ¢, € (g, b) fest und betrachten den zugehorigen Differenzen-
quotienten fiir die Funktion U(¢). Es sei 4 = 0, und damit wird

Ulty + h) — Ulty) _ S(@1(to + 1), @2t + 1) — f(@s(te), Palte))
h h

_ S@alt + h) = @i(to) + @ate)s 2 (to + 1) — alto) + @a(to)) — f(@s(to), Pa(to))
h

_ S(@a(to) + Axo, @a(to) + Ayo) — f(@a(to), Pa(to))
h s

wobei zur Abkiirzung Axy = @,(fy + h) — @:(to), Aye = @a(te + h) — @o(ty) gesetzt
wurde. Nach der Zerlegungsformel (s. 3.3.1.), angewandt auf den Zahler des obigen

Bruches, ergibt sich mit ¢ = J(Ax,)2 + (Ay,)?

U(t, + h) — U(2, 1

YD = U6 _ 17yttt %0 + fa(pstte), ) B3 + 70),
wobei 7 = 7(py(to), @a(to), Axo, Ayo) mit ¢ — 0 ebenfalls gegen null geht.

Es bestehen die folgenden Gleichungen (ausfiihrliche Schreibweise der obigen Ab-
kiirzungen)

Axy _oi(to + h) ‘Pl(to) Ays oo+ h) — %(to)

h h h
o V(Ax)? ;r [(3D% =V(/_3}§9_)2 +(_A_:_o)2'

Auf Grund der vorausgesetzten Differenzierbarkeit von @,(t), .(t) ergeben sich aus
diesen Gleichungen die folgenden Limesbeziehungen fiir den Grenziibergang h — 0:

Jim 2% _ P, lim = A% _ o0,

a0 B “h

lim 4= V@ G + (75 () = 4

’ (‘g-‘)
g,

h
also limg=lim#A- lim—gh— =0.-4A= O) Daraus ergibt sich weiter hm n- (%) =0,

h=0 h=0 h=0

Aus der letzteren Limesbeziehung folgt die weitere lim 0=0 (denn o=
-0
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(denn lim#n (—%) = (lim 77) . (lim 7) 0-4=0,dalimp=0und somit 11m 7= Olst)

h—0 h-0 h=0 h—0

Auf der rechten Seite der zuletzt hingeschriebenen Gleichung fiir den Differenzen-
quotienten von U(¢) 148t sich in jedem der drei Summanden der Grenziibergang & — 0
durchfiihren. Also existiert auch der Grenzwert der linken Seite, und dieser ist dann
nach Definition gleich dem Differentialquotienten U’(,). Wir erhalten somit die
gewiinschte Beziehung

U'(t) = fiagy + fiagy = fupi’ + fi92's
wobei rechts die Variablenwerte x = @;(t,), ¥ = @a(ty), t = ¢, einzusetzen sind. ®

Im allgemeinen Fall haben wir s Funktionen von je n Verdnderlichen f; (x4, ..., Xn);
fa(X1, ey Xn); o3 f3(X15 ooy Xn), in die n Funktionen von je k Verdnderlichen
X1 = 81Uy ooy Ur); Xg = ga(Uyy ves Uk); voos Xn = Gn(Uy, ..., i) eingesetzt werden und
damit s zusammengesetzte Funktionen

Fy(uys ey ) = f1(81 (U1 vovs 4); wors 8n (s ey 1)),
Fy(uyy cony ) = f2(81 (U1, covs Un); o 8nthay vons Ur)),

Fy(uys ooy u) = fo(81 1, vees )5 wvr 8ty wovs Uk))
gebildet werden. Die verallgemeinerte Kettenregel lautet fiir diesen allgemeinen Fall

__rzf,.,gru( 2§£: gﬁ,)

wobei die rechts auftretenden partiellen Ableitungen f;, an der Stelle x,=
81(Uy, vy ti); Xo = go(Uyy covy Up); oo Xn = gn(Uhy, ..., ty) zu nehmen sind.

Die verallgemeinerte Kettenregel gewinnt die einfache und anschauliche Bedeu-
tung der gewohnlichen Kettenregel fiir reelle Funktionen einer reellen Variablen zu-
riick, wenn wir sie vektoriell schreiben. Hierbei fassen wir die Variablen x;, ..., x,
zu einem Spaltenvektor x; die Funktionen f(X1, ey Xn); ooy fo (X1, ooe» Xn) ZU €inem
Spaltenvektor f(x); entsprechend die Variablen u,, ..., u; zu einem Spaltenvektor u
und die Funktionen g, (;, ..., 4); ...; n(t1, ..., 4x) zu einem Spaltenvektor g(u) und
schlieBlich die zusammengesetzten Funktionen F,(uy, ..., k), ..., Fs(Uyy cuoy th) ZU
einem Spaltenvektor F(u) zusammen. Bezeichnet (DF) (u) die Matrix ( gF ) und sind
(Di) (x) bzw. (Dg) (u) die entsprechenden Matrizen fiir f bzw. g, so 148t sxch die in der
obigen Formel (3.106) ausgedriickte Regel in der Form

(DF) (u) = (Df) (g(w)) - (Dg) (w) (3.106)

schreiben (man beachte hierzu die Regeln der Matrizenmultiplikation). Beriicksich-
tigt man die Gleichung F(u) = f(g(u)), so erhalt man die Beziehung

(D1 (g))(w) = (Df) (g(w)) - (Dg) (w). (3.1067
Beispiel 3.16: Fur das Potential zweier Punktladungen (s.Beispiel 3.14) ¢ =
1 -
(Q’ + )m1t n=Vx—12+y+2 und r,= V32 + (y — 1)? + 22 berechne
ry

4rey \ 1y

(3.106)
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man die Feldstirke E = —grad ¢ im Punkte P, (0,0, 0). Zur Losung bilden wir grad ¢
_ O dgp Op
=3 + = a e+ —a—e3 @z €+ @, e+ ¢. e; und dazu nach der verallgemeinerten

Kettenregel

_Op Or, | 39 On
%—‘aza—ﬁa—,gw’
_Op O, O Or,
“or, 0y ' Or, 0y’
¢ Or,  Bp 0r
=5, 0z tor, 0z

Da alle GroBen ¢, ..., ¢, nur an der Stelle P, (0, 0, 0) benotigt werden, berechnen wir

die erforderlichen HilfsgroBen —a— s or, L fiir diese Stelle. Es gilt dann x = y = z = O und

r; = ry =1, und daher ist o

O -0 1 _ -0 089 -0 1 -0,
Or, 4me, r?® 4me,  Ory, 4dmeg r? dmg
o x-1 —1 o, x_

x n ’ ox

oy _ .. o, y—-1_ 1

o n W m

o _z_ arg_z__o

oz rn, 0z

Daraus folgt ¢.(0,0,0)= Q ; 9,(0,0,0)= 5 9.(0,0,0) = 0. Die gesuchte

Feldstarke ist daher glelch E e (Ql e+ Qz e,) Wie 148t sich dieses Ergebnis
physikalisch deuten?

Die Notwendigkeit fiir die Benutzung der verallgemeinerten Kettenregel wird dann
besonders deutlich, wenn die Ableitungen einer zunichst nicht ndher bestimmten
Funktion auf neue unabhingige Variablen umgerechnet werden sollen. Ist z.B.
f(x, ») eine bekannte (nicht niher festgelegte) hinreichend oft differenzierbare Funk-
tion der unabhingigen Variablen x und y und werden anstelle dieser unabhéngigen
Variablen durch die Beziehungen x = r cos ¢, y =  sin ¢ neue unabhéngige Variablen
r und g eingefiihrt (sog. Polarkoordinaten, s. auch 2.6.2.), so erhalten wir eine zusam-
mengesetzte Funktion F(r, ¢) = f(r cos ¢; r sin @), fiir die in entsprechenden Punk-
ten (x, ) und (r, ¢) die Gleichung F(r, ¢) = f(x, y) gilt.

Es werde z.B. die partielle Ableitung ?) ;- gesucht. Nach der verallgemeinerten
Kettenregel gilt

oF 0 9 oF
i u'a—f+ﬁn'a—f, also == fiicos ¢ +fissin ¢
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und weiter wird, wieder nach der verallgemeinerten Kettenregel,

OF
e (flu ) +fi y)005¢+(ﬁ21 ar +fize® )Sm?’

= fi11 €0s® @ + fi1g sin @ oS @ + figy COS @ Sin @ + fiz Sin® @

= fi11 €08* @ + 2fi1o sin @ cos ¢ + figp sin? @ oder schlieBlich

*F . .
57 =fin cos? @ + fi1o Sin 2 + fig, sin® @.

Wesentlich ist nun, daB auf der rechten Seite der letzteren Gleichung die partiellen
Ableitungen einer ganz beliebigen (zweimal differenzierbaren) Funktion f(x, y) auf-
treten. Die verallgemeinerte Kettenregel verhilft uns hier zu einem allgemeingiiltigen
Ausdruck, der die Rechnung fiir Spezialfalle vereinfacht und abkiirzt.

Ist z.B. f(x,y) = x* + y* + %, so gilt fin=2, fie=0, fize =2+ 6y und somit
wegen y =r sin ¢

&*F ) . 0
5= 2 cos? ¢ + (2 + 6r sin @) sin® ¢.

Man beachte, daB fiir die Variablen x und y iiberall die durch r und ¢ gegebenen
Ausdriicke eingesetzt werden miissen.

Wir betrachten noch ein zweites Beispiel. Es seien P;(x;, y;, z;) und Py(x,, 2, 25)
zwei verschiedene Punkte des R® mit den Ortsvektorenr; undr,. Mitr=xe,+ye,+ze;,
dem Ortsvektor eines (variablen) Punktes im R®, bilden wir die Absténde

n=fr—rn| und rp=-r

Es sei f(u, v) eine fiir (4, v) € R? zweimal stetig differenzierbare Funktion. Wenn wir
fiir u den Wert ry, fiir v den Wert r, in f(u, v) einsetzen, erhalten wir eine zusammen-
gesetzte Funktion 4(x, y, z) = f(r1, r;). Wir stellen uns die Aufgabe, den Ausdruck
Ah = hyy; + higs + higz zu berechnen. Nach der Kettenregel erhalten wir:

by = firny + firan und Ay = figg * riy + fire g rann + fiaa Faaran

+ fizar®iy + fisrun + fiaTain -

1
Ferner gilt, wegen r; = (x — %) + (0 —p)* + 2 — 2z 2,

X~ X 1
nh=— 5 ’ﬂu=';§"(’12“(x"xl)2)§
1 : 1

Y= Z—Zn
Hig==—7—; ni= H
oo s P

entsprechende Ausdriicke erhalten wir fiir higy und hizz SOWie ryigg, Fuiss, Fairs Falzy
Tal35 Falay, Falogs Falaze
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Die Zusammenfassung von /iy, hip; und Ay im Ausdruck Ak ergibt (wegen

Sz = fiz1)

Ah = finlr?in + riie + rifis] + 2fiselrusran + rusraie + rugrais] + fizalrstn
+ rofig + rfis] + fislrun + rise + russ] + fialrain + raiee + raig)

2

{‘;‘f[(x—xl)(x—x2>+<y—y1)<y—y2)+<z—z,)(z—zz>1

=fin+

+ﬁ22+ ﬁ1+ ﬁ2

Eine einfache Rechnung zeigt, da3 das Ergebnis auch in der Form

rnor r; — I 2
=fin +ﬁzz+ﬁu(i+—2——|4)+;l‘fu g P

n rnrs

geschrieben werden kann.

*

Aufgabe 3.6: Mittels der verallgemeinerten Kettenregel berechne man die erste Ab-

leitung z = gz der Funktionen

37

37.1.

dt
a)z=e*% mit x=sint; y=13

b)z= 3’)‘—:— mit x = x(t); y=y(t) (m,nreell und positiv; x >0,y > 0);

1
Qz=y® mitx=t y=t (>0).

Implizite Funktionen. Implizite Differentiation

Implizit definierte Funktionen einer Variablen

Bei der Berechnung von Planetenbahnen st68t man auf die ,,Keplersche Gleichung*

X+y—esiny=0,

die den Zusammenhang zwischen der exzentrischen Anomalie y und der mittleren
Anomalie x bei gegebener Planetenbahn (e: Exzentrizitit der Bahnellipse) festlegt.
Es interessiert hierbei die explizite Abhéngigkeit der Variablen y von der Variablen x,

¥ =fx).

Offensichtlich kann man diesen Zusammenhang nicht ohne weiteres durch Auflésen
finden. Andererseits erkennt man sofort, da das Wertepaar x = 0, y = 0 die obige
Gleichung erfiillt und somit die Gleichung

0 =/0)
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gelten muB (falls iiberhaupt eine Auflésung in der gewiinschten Form existiert).
Zur niheren Bestimmung des Verhaltens von f(x) in einer Umgebung von x =0
wire es giinstig, den Wert f'(x)|.o zu kennen. Da f(x) nicht bekannt ist, fehlt zu-
nichst jede Moglichkeit, diesen Wert der ersten Ableitung zu berechnen. Wir wer-
den im folgenden ein allgemeines Verfahren zur Bestimmung der Ableitungen von
f(x) kennenlernen, das die explizite Funktion f(x) nicht benétigt. Zuvor fragen wir
nach Bedingungen, wann es iiberhaupt zu erwarten ist, daB ein allgemeiner Zusam-
menhang zwischen den reellen Variablen x und y,

F (x: y) =0,
auch in der Form y = f(x) dargestellt werden kann. Falls dies moglich ist, muB also
F(x,f(x)) = 0 gelten. Wir sagen dann, die Funktion f ist implizit durch die Bezie-

hung F(x, y) = 0 gegeben oder F(x, y) = 0 kann eindeutig nach y aufgeldst werden.
Zunichst einige Beispiele zur Erlduterung:

Beispiel 3.17: Die Funktion F(x, y) = y® — x? ist in der gesamten x, y-Ebene erklart.
3
F(x, y) = 0 bedeutet dann y* — x2 = 0, und hieraus folgt y = }/x%. Zu jeder Zahl x
3

gehért also genau eine Zahl y = f(x) = V2, so daB F(x, f(x)) = 0 gilt. Bei gegebenem
x kann also F(x, y) = 0 auch als Bestimmungsgleichung fiir y aufgefaBit werden. Die
Niveaulinie (s. 2.1.) F(x, y) = 0 ist die im Bild 3.7 skizzierte Kurve.

Bild 3.7
X

Beispiel 3.18: Die Funktion F(x,y)=x®+ )»*+ 1 ist in der gesamten x, y-Ebene
erkldrt. F(x,y) =0 gilt fiir keinen Punkt (x,y); denn fiir alle (x,y) gilt x*+ »*
+ 1 > 0. Die genannte Fragestellung entféllt also fiir dieses Beispiel.

Beispiel 3.19: Die Funktion F(x,y) = (x* 4+ y* — 1) (x® + »* — 9) ist in der gesam-
ten x, y-Ebene erklart. F(x, y) = 0 bedeutet x* + 2 — 1 =0 oder x* + y*— 9 =0,
d.h., F(x, y) = 0 gilt fiir alle Punkte auf dem Einheitskreis und alle Punkte auf dem
Kreis mit dem Radius 3 um den Nullpunkt. Man erkennt folgendes (s. Bild 3.8): Es
sei x; gewdhlt mit —1 < x, < 1. Dann gibt es zu x, vier Zahlen y,, y,, y3, ¥, 50, daB

F(x1, y1) = F(x1, y2) = F(x;, y3) = F(x1, o) = 0 gilt (zu n=3 gehoren die vier

6 Harbarth/Riedrich, Diff. Rechn,
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¥

Bild 3.8

Zahlen y1=%l/§§, y2=2i|/§, y3=—%1/§, y,=—-%}/375—). Zu einem X, mit

1 < |xp| < 3 gehdren zwei Zahlen ys, yg 50, daB F(x,, ys) = F(x,, y¢) = 0 gilt.

Es gibt also bestimmt keine Funktion f'so, daB die gesamte Niveaulinie F(x, y) = 0
(die in die beiden Kreise x2 + y? = 1 und x2 + »* = 9 zerfillt) in der Form y = f(x)
dargestellt werden kann. Die Gleichung F(x, y) = 0 ist also nicht eindeutig nach y
auflosbar, d.h., F(x,y)=0 ist bei gegebenem x keine eindeutige Bestimmungs-
gleichung fiir y. Jedoch ist folgendes méglich: Wir greifen einen der genannten Punkte
heraus, etwa den Punkt P(x,, y,). Man kann dann eine Rechteckumgebung U um P
legen, so daB das in dieser Umgebung U von P verlaufende Teilstiick der gesamten
Niveaulinie F(x, y) = 0 in der Form y = f(x) dargestellt werden kann. Der Punkt
P(x,, y,) liegt auf der unteren Halfte des Kreises x* + y* = 9; fiir das genannte Teil-
stiick wiirde also die eindeutige Auflosung nach y lauten: y = f(x) = —}9 — x2
Man sagt fiir diesen Sachverhalt auch: F(x, y) =0 kann lokal eindeutig nach y
aufgelost werden. Im Beispiel 3.17 konnte man dann sagen: F(x, y) =0 ist global
nach y auflosbar. In der Néhe des Punktes Q(3; 0) ist allerdings auch eine lokale
Auflosung nach y der eben genannten Art nicht mdglich. Betrachten wir namlich
eine beliebige Rechteckumgebung U von Q(3; 0), so enthilt sie sowohl Punkte vom
oberen als auch vom unteren Halbkreis. Zu einem x in der Nahe von x = 3 gibt es
dann zwei y-Werte so, daB (x, y) in U liegt und F(x, y) = 0 gilt. (Im Punkt Q(3; 0)
besitzt die Niveaulinie F(x, y) =0 eine vertikale Tangente; es gilt Fi,(3;0) = 0.)

Unsere Beispiele zeigen, daB wir im allgemeinen nicht erwarten diirfen, da durch
eine Gleichung der Form F(x, y) = 0 eine einzige ganz bestimmte Funktion y = f(x)
gegeben ist. Erst wenn wir unsere Betrachtung auf ein hinreichend kleines Gebiet der
x, y-Ebene einschrinken, kdnnen wir mit der eindeutigen Auflosbarkeit der Gleichung
F(x,y)=0 und damit mit der Existenz genau einer implizit definierten Funktion
rechnen. Der folgende Satz gibt dariiber genauere Auskunft.

Satz 3.11: Die Funktion F(x, y) und ihre partiellen Ableitungen erster Ordnung Fy(x, y);
F,(x, y) seien in einem Gebiet G der (x, y)-Ebene stetig. Der Punkt Py(x,, yo) gehore
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zur Menge aller Punkte P(x,y), fiir die die Gleichung F(x,y) =0 gilt, d.h., es gelte
F(xy, yo) = 0. Auferdem gelte die Ungleichung

Fy (%0, 30) + 0. (3.107)

Dann gibt es genau eine Funktion y = f(x), die in einer gewissen Umgebung U, von X,
(auf der Zahlengeraden) definiert ist und fiir die die Beziehungen

SGxo) = yo, (3.108)
Fx,f(x)=0 (x€ Uy
gelten. Die Funktion f(x) ist fiir x € U, stetig differenzierbar, und es gilt

OF
s Fuloft) ™
)=~ Tl ) = ~3F (3.109)

(xeU) o |xelUy y=fx).

3.7.2.  Implizite Differentiation implizit definierter Funktionen einer Variablen

Der Satz 3.11 liefert nur eine Existenzaussage und informiert uns nicht dariiber,
wie die Auflosung y = f(x) (die implizit definierte Funktion) der Gleichung F(x, y) = 0
gefunden werden kann. Tatsdchlich ist es in der Mehrzahl der auftretenden Fille
unmoglich, eine exakte Losung der Gleichung F(x, y) = 0 (Auflosung nach y bei
gegebenem x) in formelméBig geschlossener Form (s. Beispiele 3.17 und 3.18) anzu-
geben. Die Funktion f{x) kann im allgemeinen nur ndherungsweise berechnet werden.

Haufig interessieren jedoch nur Werte der Ableitungen f”(x), f"(x), ... der durch die
Gleichung F(x, y) = 0 gegebenen Funktion an der Stelle x = x,. An der Stelle x = x,
ist der Funktionswert f(x,) ja gleich yy; f(x;) = ¥, und y, sind bekannt. Zur Berech-
nung dieser Ableitungen (ihre Existenz vorausgesetzt) geht man von der Gleichung
F(x, f(x)) = 0 aus, die fiir alle hinreichend nahe bei x, gelegenen x besteht, und wendet
auf diese Gleichung die verallgemeinerte Kettenregel an. Das heiBt, in die Funktion
von zwei Variablen F(x, y) setzen wir die Funktionen einer Variablen g;(x) = x;
82(x) = f(x) anstelle der urspriinglichen Variablen ein und bilden so die zusammen-
gesetzte Funktion u(x) = F(gy(x), g2(x)) = F(x, f(x)). Auf Grund der Definition von
f(x) gilt aber (s. Gleichung (3.108)) u(x) = 0 fiir alle x aus einer Umgebung von x,.
Also sind sémtliche Ableitungen #'(x), #’(x), ... dort ebenfalls gleich null. Die An-
wendung der verallgemeinerten Kettenregel liefert somit die Beziehungen:

0=u(x) = Fu(x,f(x)) + Fio (x, f(x)) " f'(x), *)
0= u"(x) = Finy (%, f(x)) + 2Fi52(x, f(x)) " f'(%) + Fiaa (x, f(x)) (f (x))*
+ Fia (%, f(x)) f' (%), **)

Aus der ersten Gleichung (*) ermitteln wir durch Aufldsen f*(x):

i ) RMy)  _FEo
r@= Fo(6 /) F(xy) F, 0 =/&). (3.110)

6*
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Den gefundenen Ausdruck setzen wir in die zweite Gleichung (**) ein und 16sen nach
f"(x) auf. Dies ergibt )

ne Gl _ 2Fiu(x, f(x)) Fia (x, /(x))
0= gy (Bt Fia(x,/06))
| P S A l(x,f(x)))z)
RENT)R

- —(FIT;}@- ((FuaCt, FDY: Fina s, /)
— 215, f(8)) Fia (e, () Fraa (e, f9) + (Fia5 SO Faa e S

= % (~E*Fy + 2EFFy — FPF) (0 =f(). @.111)

Der letzte Ausdruck 148t sich auch als Determinante schreiben:

0 E F,
f'®) =5 | o Foa Bry| (v =1(x). (3.112)
(Fy)
F, Ey Fy

Auf diese Weise konnen auch alle hoheren Ableitungen von f(x) ermittelt werden.
An der speziellen Stelle x = x, gelten die Bezichungen

fxo) = o,
, _ Fi (%05 Yo)
7o) == Fay0)”
" 1
f'x) = AT (= (Fy (xo5 y0))* Faz (%05 Vo)

+ 2F;(xo, yo) Fy (%o, ¥o) Fay (%0, ¥0) — (Fx(X05 Y0))* Fyy (%o, }’o))(s3 ]

Beispiel 3.20: Man iiberpriife, ob in einer Umgebung von x, = 0 durch die Gleichung
F(x,y)=xeV—ye*+ x =0 eine Funktion y = f(x) implizit dargestellt wird, und
berechne gegebenenfalls die Werte f7(0), f"(0). Zunichst folgt aus x=0 und
F(x, y)= 0 die Gleichung y = 0, so daB also (x,,y,) = (0, 0) die zu untersuchende
Stelle ist. Es gilt

Fo=¢v—ye*+1; Fy=xev—¢*
und speziell

F;(0,0)=2; F,(0,0)=—1.

Wegen F,(0,0) < 0 ist (nach Satz 3.11) eine Auflosung der Gleichung x ev — y e*
+ x = 0 nach y fiir alle x aus einer Umgebung von x, = 0 mdglich; es gilt dort y = f(x)
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mit f(0) = 0. Nach den obigen Formeln erhalten wir

' F(0,0)
0)=— =20 2,
rO=- 255

Ferner gilt F,, = —ye®; F,,=e¢ —e¢%; F,=xeY, und speziell ist F,(0,0)=0;
Fy(0,0) = 0; F,(0,0) =0, und wir erhalten nach den obigen Formeln die Glei-
chung f"(0) = 0.

Beispiel 3.21: Die Stromlinien einer ebenen Potentialstromung (wirbelfreie Stro-
mung einer inkompressiblen reibungsfreien Fliissigkeit), die-durch zwei feste Wande
y = 0und y = x3 (x = 0) begrenzt wird und in dem von diesen Winden berandeten
Winkelraum verlduft, sind durch die Gleichung U(x, y) = const mit U(x, y) = 3x%y
— »® gegeben (U bezeichnet die sog. Stromfunktion). In welchen Gebieten der (x, y)-
Ebene lassen sich diese Stromlinien in der Form y = f(x) darstellen? Man unter-
suche speziell die Stromlinie U(x,y)= 11; diese enthélt den Punkt P(2;1). Zur
Losung dieser Aufgabe setzen wir F(x,y) = U(x, y) — 11 = 3x%y — y* — 11. Es gilt
F, = 6xy und F, = 3(x* — )*). Die partielle Ableitung F, verschwindet im betrach-
teten Winkelraum nur fiir y = x, also auf der Winkelhalbierenden des ersten
Quadranten. Der Strémungsbereich wird also in die beiden Teilbereiche By =
{(x,9) | x <y < xV3; x =0} und B, = {(x, y) | 0 < y < x; x =0} zerlegt. Die Punkte
der Stromlinie F(x, y) = 0, die in B, liegen, lassen sich durch eine Funktion y = fi(x)
darstellen; die Punkte der Stromlinie F(x, y) =0, die in B, liegen, lassen sich ent-
sprechend durch eine Funktion y = fy(x) beschreiben. Nach der Formel y’ = ——i,i
gilt somit y’' = y2 (x > 0; y = x), wobei F(x,y)=0 ist. Im Inneren von Bl

bzw. B, ist der Ausdruck - il posmv bzw. negativ. Somit gelten die Ungleichun-

gen fi'(x) > 0 und £, (x) < 0; d h., fi(x) ist eine wachsende, f5(x) eine fallende Funk-
tion. Die Stromlinie F(x, y) = 0 schneidet die Gerade y = x in einem Punkt, fiir

dessen Abszisse x die Gleichung F(x, x) =0 oder x* =

i1 gilt, also im Punkt

3 2
P % . 121 Bei Anndherung an diesen Punkt von rechts gehen die Ableltun-
gen fy'(x) bzw. f;(x) gegen + oo bzw. —oo; die Stromlinie besitzt also bei x = %

eine zur y-Achse parallele Tangente. Die Funkuonen y=/f1(x) und y = fy(x) beschrei-
ben somit zwei Kurven, die im Punkt P( 5 1/ lzl)zusammenhangen d.h, es
liegt in Wirklichkeit nur eine einzige Kurve vor, die aber durch zwe_i_ Funktionen
y=fi(x) und y = fy(x) beschrieben werden muB. An der Stelle P (31/12_1 3 3‘/%) ist

eine Auflosung der Gleichung F(x, y) = 0 in der Form y = f(x) nicht méglich, denn
in jeder Umgebung des genannten Punktes hat die Gleichung F(x, y) = 0 die beiden
verschiedenen Losungen y = fi(x) und y=fy(x). Fiir jeden anderen Punkt der Strom-
linie F(x, y) = 0, z.B. den Punkt P(2; 1), gibt es eine hinreichend kleine Umgebung
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dieses Punktes, in der y = fi(x) oder y = fy(x) (z.B. fiir den Punkt P(2; 1)) die ein-
zige Losung der Gleichung F(x, y) = 0 ist.

Zur weiteren Untersuchung der Form der Kurve F(x, y) = 0 betrachten wir die
Auflosbarkeit der Gleichung F(x, y) = 0 nach x. Fiir jeden Kurvenpunkt P(x, y)
mit x > 0und y > 0ist wegen F,(x, y) = 6xy > 0 eine solche Aufldsung in einer ge-
wissen Umgebung von P(x, y) in eindeutiger Weise mittels einer Funktion x = g(»)
moglich, und man kann, indem man die Gleichung F(x, y)=3x%y —*— 11 =0

nach x auflost, die Funktion g(y) erhalten: x = g(y) = V +y 0 <y < +x).

Diese Funktion stellt den gesamten Verlauf der Stromlinie F (x,y) =0 dar (denn
das Bestehen der Bedingungen F(x,y)=0; x >0,y >0, ist dem Bestehen der
Gleichung x=g(») (0 <y < +o0) glelchwertlg) Man rechnet leicht nach daB

g()=0nurfiry= V__ gilt und g"(y) fiir dieses y positivist. Die Stelle y = 121

J
Flxy)=0

SRl
T
=

Flxy)=0
L L | 1 Bild 3.9
X

istalso die einzige relative Extremstelle von x = g(y), und zwar die eines Minimums. Da
die Limesbeziehungen lim g(y) = + oo und lim g(y) = 4o gelten, liefert dieses relative

i Ut m__(3/1
Minimum sogar das absolute Minimum von g(y). Es gilt also 5= 5 =g

fur 0 < y < 400, d.h., die Stromlinie F(x,y)= 0 enthélt nur Punkte P(x,y) mit

it —— < x. Somit erhalten wir nachtriglich den (gememsamen) Definitionsbereich

von fy(x) und fy(x); diese Funktionen sind definiert fiir LZI-S x < 400, Der

Quotient 2. = % = 1137“ fiir y - 0 den Grenzwert 0 und fiir y — 40
x g
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den Grenzwert V§ , d.h., die Kurve y = f;(x) néhert sich fiir x — +-oo der x-Achse,
und die Kurve y = f,(x) nahert sich fiir x — + oo der Geraden y = x}/3. Das Bild 3.9
faBt die iiber den Verlauf der Stromlinie F(x, y)=0 gewonnenen Erkenntnisse zu-
sammen. Man iiberlegt sich leicht, daB die weiteren Stromlinien U(x, y) = const ein
qualitativ dhnliches Verhalten aufwelsen

Aufgabe 3.7: Man berechne durch implizite Differentiation die erste und zweite Ab-
leitung der durch die Gleichung 3x* — 2xy — »* = 0 implizit gegebenen Funktionen
y = f(x). Wie laBt sich das Ergebnis erklaren?

3.7.3.  Implizite Funktionen von mehreren Variablen

Es liege nun der allgemeine Fall vor, daB in einem gewissen Gebiet G des Rau-
mes R™*" insgesamt n reelle Funktionen von m+ n unabhingigen Variablen
X1y eees Xm3 Y15 o5 Yo gEgEbEN sind:

=Fi(X15 ees Xmj Y15 eees Yn)

Zn=Fo(X15 ey Xm} Y1y eves Vn) (3.114)
oder in vektorieller Schreibweise
z=F(x,y) (3.114)
Z X1 N
mit z = [ : J s X = [ : ] s y=1: J . Uns interessiert die Frage, ob die Gleichung
Zn Xm Yn
F(x,y)=0 (3.114")
eine Auflésung nach y in der Form
y =1(x)

besitzt; mit anderen Worten, ob das Gleichungssystem

Fi(X15 ey X3 Y15 ees Ya) =0

................... (3.115)
Fo(x1y cees Xmy - Yisees Yu) =0
sich nach den Variablen y, ..., y, in der Form
Y1=51(X1, ey Xp)
........... (3.116)

Jn =f;|(x1, R )

auflosen 1aBt. Ist dies mdglich, so nennen wir (3.116) ein Lésungssystem fiir das
Gleichungssystem (3.115) oder ein System von durch die Gleichungen (3.115) impli-
zit definierter Funktionen mehrerer Variabler. Ohne Beweis geben wir zur Beant-
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wortung dieser Frage den folgenden Satz an, der den entsprechenden Satz 3.11
(3.7.1.) verallgemeinert.

Satz 3.12: Es sei x,9, ..., x,©; »,O), ..., y,) ein System von Werten, weIches die
Gleichungen (3.115) erfillt. Die Funktionen Fj(Xy,...,Xm} Y15y Yn) (= ,n)
seien in einer Umgebung des Punktes Py = P(x,©), ..., X, »,©, ..., y, ) tm R'"""
nach allen Variablen X, ..., Xm; Y1, ..., Vn Stetig partiell differenzierbar. Die Matrix
oF;
[a—y’ (Po)] , die aus den ersten partiellen Ableitungen der Funktionen F; nach
k 1<), k=i

den Variablen yl, .sYn an der Stelle Py = P(x,%), ..., x,®; 9, ..., y,%) gebildet
wird, sei nichtsinguldr (d.h., ihre Determinante sei von null verschieden). Dann gibt
es eine Umgebung des Punktes Py im R™*", in der ein einziges Lisungssystem

yl=fl(x1!---)xm)
5 0 00 o ¢ (3.117)
Jn =f;t(xla vees Xm)

des Gleichungssystems (3.115) existiert. Dieses Losungssystem hat die folgenden Eigen-
schaften (die Eigenschaft 2. driickt die Eigenschaft ,,Losungssystem zu sein‘ formel-
mapig aus).

L L)

............ (3.118)
W = Ll oy 32);

2. es gilt
Fi(X1y s Xmy  f1(X1y ees Xm)s oos fa(X15 oy Xm)) = 0
............................... (3.119)

Fn(xly wers Xms fl(xh ey xm)s ~--,fn(x1: sy xm)) =0;

fiir alle x,, ..., Xn, aus einer Umgebung des Punktes P(x,?, ..., x,,)) im R™;
3. die Funktionen fi(X1, ..., Xm)s soes fu(X15 «ovs Xm) Sind nach den Variablen x,, ..., Xm
in einer Umgebung des Punktes P(x,©), ..., x,,®) im R™ stetig partiell differenzierbar.

3.7.4. Die Differentiation implizit definierter Funktionen mehrerer Variabler

Die Differentiation implizit definierter Funktionen mehrerer Variabler erweist sich
als eine Anwendung der verallgemeinerten Kettenregel. Wir gehen hierbei aus von
der Eigenschaft 2., Satz 3.12 (3.7.3.) fiir ein Losungssystem

Y1=f(%15 e Xm) 0 =A100, s xD)

Vo= fa(X15 ey Xm) yr(:)) =f;n(x§0); ey x::?))
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eines Gleichungssystems

F1(x1,- o5 Xm Y1 - ‘ryn) 0

............. . .

Fn(xl’"-y Xm s Yis e :yn) 0

Es gelten namlich (fiir alle x; ..., X, aus einer Umgebung von P(x,), ..., x,,V) im R™)
die Gleichungen

Fy(X15 ey Xm3  [i(X15 eers Xm)s wves Jo(X15 v0es Xm)) = 0
............................... (3.120)

Fa(®s e Xm3 fil¥1, eees Xm)y vees fa(F1s wony Xm)) = 0.
Es seien auch die iibrigen Voraussetzungen des Satzes 3.12 (3.7.3.) (stetige Differen-
zierbarkeit, Matrix [g% (Po)] nichtsingulér) erfiillt. Dann erhalten wir durch partielle
k

Differentiation der j-ten Zeile von (3.120) nach der Variablen x; mittels der verall-
gemeinerten Kettenregel die folgenden Beziehungen:

o OF O  OF % 0% O
6xk Oy, Oxx = Oy, Oxx Oy, Oxx
(=1.,n; k=1,.,m). (3.121)

e, 5]
9y, 1215,. Oy 15r5n

D,F und Df, so lautet das System (3 121) in Matrizenschreibweise (0 Nullmatrlx)

oF:
Bezeichnet man die Matrizen [ % ] 3 [ mit D,F,
0 1sjsn

0=D,F+ D,F - Df, (3.121)

wobei fiir die Variablen y,, ..., y, iberall die Werte f;(X1, voy Xm)y coes o (X1s ooy Xm)
einzusetzen sind. Nach Voraussetzung ist die Matrix (D,F) (P,) nichtsinguldr. Wegen
der Stetigkeit der partiellen Ableitungen erster Ordnung von Fj, ..., F, trifft dies auch
fiir die Matrix (D,F) (P) fiir alle P aus einer gewissen Umgebung von P, im R™*" zu.
Es existiert also die inverse Matrix [(D,F) (P)]™ fiir diese P. Daher konnen wir die
Gleichung (3.121") nach Df auflosen. Es gilt zunéchst

D,F.Df= —D,F,

und nach Multiplikation beider Seiten mit der inversen Matrix von DF von links her
ergibt sich die Beziehung

Df = —[D,F]™* - D,F, (3.122)
die ausfiihrlich geschrieben lautet
| (Df) (x) = —[(DyF) (x, {(x))]"* - (D:F) (x, f(x)). (3.123)

In Koordinatenschreibweise kann die Gleichung (3.123) wie folgt geschrieben
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werden:

of, OF; ]-1 ( aFj)
A == —L k=1,..,m), 3.124
( Oxy )xsrsn [( ay,) Eiéﬁ [ 1<jsn ( ) ( )

womit eine formale Ahnlichkeit zur Formel fiir die Ableitung einer implizit definier-
ten Funktion von einer Variablen hergestellt ist (s. 3.7.2.).

Aufgabe 3.8: Man zeige, daB die Gleichung u(x® + y*) — (z* + #*) — 4 = 0 die im-
plizite Darstellung einer Funktion u = u(x, y, z) in der Umgebung des Punktes
Py (2 |-3| 2) mit u(Py) =1 ist und berechne grad u|p,!

Aufgabe 3.9: Man untersuche, nach welchen beiden Unbekannten (x, y); (x, z) oder
(¥, z) sich das Gleichungssystem

x+p)t=xz(x*=2) —1=0
(x = 2)*= xy(x* + 2%) =0

in der Umgebung des Punktes Py(0 [1| 0) gemiB der allgemeinen Theorie in 3.7.4.
auflosen 1aB8t. Man berechne dann die ersten Ableitungen dieser implizit dargestell-
ten Funktionen an dieser Stelle.

3.7.5. Extremwerte impliziter Funktionen

Hiufig interessiert man sich fiir Extremwerte implizit definierter Funktionen. Wir
betrachten nur den Fall, daB die implizite Funktion durch eine Gleichung der Form

F(x,)=0 (3.125)

gegeben ist, wo F(x, y) eine in einem Gebiet G des R? definierte Funktion ist. Zur
analytischen Behandlung dieser Aufgabenstellung setzen wir voraus, daB F(x, y) in
G stetige partielle Ableitungen bis zur zweiten Ordnung besitzt. Es sei in G eine Auf-
l1osung der Gleichung (3.125) nach y in der Form y = f(x) méglich, und es sei
F,(x,y) = 0 in G. Dann gilt nach 3.7.2., Formel (3.110) und (3.111),
I s o
@)= —-Tv und  f'(x) = W( FE?F,, + 2F.F,F,, — F?F,,).

Eine notwendige Bedingung fiir das Eintreten eines Extremwertes ist das Bestehen
der Gleichung

f'x)=0,

d.h. der Gleichung F,(x, y) = 0 (neben der Gleichung F(x, y) = 0, die die Funktion
y = f(x) beschreibt; denn nach unserer Voraussetzung ist F, & 0). Die zusitzliche
Bedingung f”(x) == O fiir eine Stelle x, fiir die f'(x) = 0 gilt, ist bekanntlich hin-
reichend fiir das Eintreten eines Extremwertes. Ist f'(x,) und damit F,(x,, y,) = 0

(mit F(xp, yo) = 0), so gilt nach der obigen Formel f"(x,) = — if."—"y") Wir
erhalten somit das folgende Ergebnis: (%0, o)
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Satz 3.13: Notwendig fiir das Eintreten eines relativen Extremwertes der durch die
Gleichung F(x, y) = 0 implizit dargestellten Funktion y = f(x) an der Stelle x, ist das
Bestehen der Gleichung

Fy(x0, y0) =0

mit y, = f(x,). Hinreichend fiir das Vorliegen eines Extremwertes von f(x) an dieser
Stelle ist das Nichtverschwinden des Ausdrucks

” _ Fre (%0, Y0) .
o) = Fy(xo, o)

Ist dieser Ausdruck negativ, so hat f(x) bei x = x, ein relatives Maximum, ist er positiv,
so hat f(x) bei x = x, ein relatives Minimum (vgl. Bd. 2, 7.3.3.).

Anmerkungen

1. Zur Ermittlung der fiir relative Extremwerte der durch die Gleichung F(x, y) =0
implizit gegebenen Funktion in Frage kommenden Stellen sind Werte (x, y) mit

F (X, ) ) =

F(x,y)=0
zu suchen und die gefundenen Werte in den AusdruckMeimuwtzen.
Fy(%o, yo)

2. Erweist sich der letztere Ausdruck dabei als gleich null, so miissen mittels impli-
ziter Differentiation hohere Ableitungen gebildet und auf ihr Nichtverschwinden hin
untersucht werden. Es sind dann die Kriterien aus Band 2, Abschnitt 7.3., anzuwen-
den.

3. Punkte, in denen auBer F(x, y) = 0, F;(x, y) = 0 noch F,(x, y) = 0 gilt, schlie-
Ben wir grundsitzlich von der Betrachtung aus, da sie jeweils gesonderte Untersuchun-
gen erfordern.

Beispiel 3.22: F(x,y) = y* — 3xy + x°. Gesucht sind die relativen Extremwerte der
durch F(x, y) = 0 implizit dargestellten Funktion y = f(x). Es gilt F, = —3y + 3x?,
F, = 3)* — 3x, F;; = 6x. Das Gleichungssystem F = 0, F, = 0 liefert die Bedingun-
gen y=x* und damit x®— 3x%+ x3= x*(x* — 2) = 0 mit den reellen Wurzeln

x1=0; x, = Vi (es gibt noch zwei komplexe Wurzeln x3, x,, die natiirlich nicht in Be-
3

tracht kommen). Zu x, gehort der Wert y, = 0; zu x, gehort der Wert y, = }/2 Im
Punkt (x,, y1) ist F,(x, y) = 0, solche Punkte soIlten nicht betrachtet werden. Im

Punkt (X2, yo) ist F,(x,y) &= 0 (es gilt Fy(xz, y) = 3V2), und weiter gilt Fo,(xs,ys)
83—

= 6p2 und somit ist f"(x,) = —2. Also liegt bei x, = 12 ein relatives Maximum
der in einer gewissen Umgebung des Punktes (x;, y,) durch die Gleichung F(x, y) =0
implizit dargestellten Funktion y = f(x) vor.

S.3.13
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3.8. Die Funktionaldeterminante eines Funktionensystems

3.8.1.  Geometrische Eigenschaften, die mittels der Funktionaldeterminante
ausgedriickt werden konnen

In neuerer Zeit setzt sich immer mehr die Auffassung durch, Abhéngigkeiten und
Zusammenhange, die durch Funktionen mehrerer Variabler beschrieben werden,
als Abbildungen aus einem Raum R™ in einen Raum R" aufzufassen. Wir haben
von dieser Auffassung bereits an den verschiedensten Stellen Gebrauch gemacht
(s. Abschnitt 3.6.). Die Funktionaldeterminante oder auch sog. Jacobische?) Determi-
nante stellt ein weiteres Hilfsmittel dar, Abbildungseigenschaften auszudriicken. Zur
besseren Verstindlichkeit betrachten wir zunachst nur Abbildungen f: R* - R? bzw.

g: R®*— R, Es sei x — f(x) = [f‘((i"f)) ] eine Abbildung eines Gebietes G < R?
2\ A2,

in den R Hierbei ist es zweckmaBig, von der Vorstellung auszugehen, daBl die Werte
fi(%1, X2); fa (%1, X;) die Koordinaten des Bildpunktes Q(u, v) € R? des Original- oder
Urbildpunktes P(x;, x,) € R? sind. Wir setzen also
u = f1(x1, X3)
A ((x1, x2) € G).

v = fo(x1, x3)
Jedes Teilgebiet G’ von G (allgemeiner: jede Teilmenge M von G) wird dabei auf eine
Teilmenge f(G’) (bzw. f(M)) abgebildet. Hierbei entstehen Fragen, wie z.B.

1. Ist f(G") wieder ein Gebiet?

2. Gibt es zu jedem Bildpunkt Q(w, v) nur einen einzigen Originalpunkt
P(x,;, x;) € G, dessen Bildpunkt er ist? Mit anderen Worten, 148t die Abbildung f eine
Umkehrung zu, besitzt sie eine inverse Abbildung (f)~1?

3. Ist C < G eine einfach geschlossene Kurve (stetig differenzierbare geschlossene
Kurve ohne Doppelpunkte bzw. Selbstiiberschneidungen), die ein Teilgebiet G' von
G so berandet, daB G’ bei positivem Umlauf (entgegen dem Uhrzeigersinn) stets auf
der linken Seite von C liegt, besitzt dann die Bildkurve f(C) beziiglich des Bildgebietes
f(G") die gleiche Orientierung?

Setzt man voraus, daf f eine differenzierbare Abbildung ist, d. h., daB die Koordi-
natenfunktionen f; total differenzierbar sind (s. 3.3.1.), so lassen sich diese Fragen
weitestgehend mittels der Funktionaldeterminante der gegebenen Abbildung be-
antworten.

Definition 3.5: Es sei G C R? ein Gebiet des R* und f: G — R® eine im Punkt P, € G

differenzierbare Abbildung; f(x) = [-?gl’f) ](x € G). Dann heipt die Determinante
. 1 2

der im Punkt P, gebildeten Funktionalmatrix (f;1x) von f dic Funktionaldeterminante

9
von f in P,. Sie wird mit den Symbolen J(f) (P,) oder Mbezelchnet d.h.

00x1, x5)
a(f’f2) _ flll fllz fxll f1I2
Tocey = ful=lfn s —funsn. G120

1) Carl Gustav Jacob Jacobi (1804 — 1851)
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Bezeichnet man f; (x,, x,) mit » und f5(x;, ;) mit v, so lautet der Ausdruck fiir die
Funktionaldeterminante
9(f1, /o) d(u, v) Ou v du Ov

_ ,0) _Ou Ov _ Cu Ov 127
O(x,x)  O(r,x)  Ox Oxp  Oxp Ox (3.127)

) .
Beispiel 3.23: Es sei u = x,®> — x,* und v = 2x,x,. Wie groB ist a_(“:_'ﬂ_ allgemein
und speziell im Punkt P(0; 1)? (1, %)
Lo 0@ ) |un we| 2% —2x| . .
e Tewes R PN bl P e
Speziell ist 49 | _ 4,

9(x1, X2) | 0,1)

Es liegt auf der Hand, wie die Definition der Funktionaldeterminante fiir den all-
gemeinen Fall einer Abbildung f: R* — R" zu verallgemeinern ist.

Definition 3.6: Es sei G < R* ein Gebiet des R* und f: G — R™ eine im Punkt P, € G
Si(x1s ey Xn)
differenzierbare Abbildung; f(x) = [+ - (x € G). Dann heifit die Deter-

Ja(X15 evey Xn)
minante der im Punkt P, gebildeten Funktionalmatrix (fii,) von f die Funktional-

determinante von f in Py. Sie wird mit den Symbolen J(f) (Py) oder SChsesf)

bezeichnet, dh f f ( 15 ’xn)
i1 " Jiln

OWoseeaf) _ et (fahsiksn=]" " " |=J0E) (Py) (3.128)
LIRS el

(hierbei sind die partiellen Ableitungen im Punkt Py zu nehmen).

Im folgenden betrachten wir Abbildungen f: G— R? bzw. g: B— R® (G; B Gebiete
im R? bzw. R®), die in G bzw. B iiberall stetig differenzierbar sind. Man nennt solche
Abbildungen C'-Abbildungen oder Abbildungen der Klasse C* in G bzw. B. Beispiels-
weise ist die in Beispiel 3.23 angegebene Abbildung eine C*-Abbildung im gesamten
R®. Wir kommen nunmehr zur Beantwortung der eingangs gestellten Fragen iiber
das Verhalten der Bildmengen von C'-Abbildungen und formulieren dazu einige
Sitze. Es sind dies die Sitze von der Gebietsinvarianz (Gebietstreue), der lokalen Um-
kehrbarkeit und der Erhaltung der Orientierung.

Satz 3.14 (Gebietsinvarianz) : Es sei G ein Gebiet des R* und f: G — R? eine C'-Abbil-
dung in G mit J(f) (P) = 0 fiir alle P € G. Dann wird jedes Gebiet G' < G durch die
Abbildung f auf ein Gebiet des R® abgebildet; d.h., £(G") ist ein Gebiet.

Satz 3.15 (Lokale Umkehrbarkeit): Es sei G ein Gebiet des R* und f: G — R? eine
C-Abbildung in G mit J(f) (P,) == 0 fiir ein Py € G. Dann gibt es eine Umgebung U von
P, s0, daf V = f[U] eine Umgebung von Q, = f(P,) enthdlt. Ferner ist die Abbildung
1, eingeschrankt auf U, eine eineindeutige Abbildung (d.h., jeder Bildpunkt besitzt genau
einen Originalpunkt), und die inverse Abbildung £ dieser auf U eingeschrinkten Ab-
bildung ist eine C'-Abbildung auf V und bildet V auf U ab.

D.3.6

S.3.14

S.3.15
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Wir sagen, daB eine beschrinkte einfach geschlossene Kurve C in der Ebene (im
Raum R?) positiv (bzw. negativ) orientiert sei, wenn ein Durchlaufungssinn von C so
festgelegt ist, daB das von C berandete Innengebiet stets linksseitig (bzw. rechtsseitig)
der Durchlaufungsrichtung der Kurve C liegt (s. Bild 3.6.).

% %

[4 =0

C positiv orientiert % C negativ orientiert % Bild 3.10

Satz 3.16 (Erhaltung der Orientierung) : Es sei G ein Gebiet des R? und f: G — R? eine
C'-Abbildung in G. Die Funktionaldeterminante von f sei iiberall in G positiv,d. h.,

JOP) >0 (PEG).

Dann geht jede orientierte beschrinkte einfach geschlossene Kurve C, die in G liegt, in
eine Bildkurve C' = f[C) iiber, die die gleiche Orientierung wie C besitzt. Ist J(f) (P) in
Jjedem Punkt von G negativ, so besitzt die Bildkurve C' die entgegengesetzte Orientie-
rung wie die gegebene Kurve C. Das heift, durchlduft man in G die Kurve C entspre-
chend ihrer positiven Orientierung, so durchlaufen die Bildpunkte der Punkte von C die
Kurve C' entsprechend ihrer positiven bzw. negativen Orientierung, je nachdem, ob in
G die Funktionald inante der betracht Abbildung positiv oder negativ ist.

Bemerkung 3.10: Ist G ein Gebiet des R? und f: G — R? eine C*-Abbildung in G, so
folgt aus der Eigenschaft

JE)(P)==0 firalle PEG

nicht, daB f auch ,,im GroBen* eineindeutig ist; d.h., der Satz 3.15 gibt nur die
Eineindeutigkeit in der Umgebung eines Punktes P von G an. Die GroBe dieser
Umgebung hingt von P ab. Zur Begriindung betrachten wir nochmals das obige

d(u, v) . .
—2 7 = 4(x2 + x2). Im Ringgebiet
a(xnxz) G ) &

(X1, Xo) =~ 10 <X+ x2 < 10} ist uberall 8) ——22_> 0. Trotzdem haben z.B.
die beiden verschiedenen Punkte P(1;0) und P(—l 0) beide den gleichen Bild-
punkt Q(1; 0) beziiglich der gegebenen Abbildung f(x) = [lex_,x):Z ]

Die Funktionaldeterminante einer Abbildung 148t sich auch als ,lokale lineare

Volumenverzerrung® auffassen und besitzt durch diese Eigenschaft grofie Bedeu-
tung bei der Berechnung mehrfacher Integrale (s. Bd. 5).

Beispiel: u = x> — x,% v = 2x,x, und
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Zur Erklirung dieser Eigenschaft betrachten wir dicjenige lineare Abbildung

h
f: R®* —> R®, die durch f= [f,] mit
fs
Ji(x1s X2, X3) = @y%; + bixs + C1X3,

a;i, b;, c; gegebene Konstanten,
Salxis Xo, X5) = @yxy + baXs + Co%s, ,(=' L2 ‘3)g ’

Sa(x1, Xz, X5) = agxy + byXe + C3%s,
gegeben ist. Die Abbildung f ist linear, und es gilt

fle)=a, fle)=b, fle)=c

a b, ¢

mit a= [a,] , b= [bz] , C= [cz] . Auf Grund der Linearitit von f wird der
as by €

von den Basisvektoren e,, e,, e; aufgespannte Wiirfel W = {(x, x;, %3) [0 S x; < 1;

i=1,2,3} auf den von den drei Vektoren a, b, ¢ aufgespannten Spat Q (Parallelfiach;

schiefer Quader) abgebildet:

flw]=Q.
(Man iiberlege sich die Richtigkeit dieser Behauptung!) Nun gilt

S fue Sfus a b o
JO ) =|fan fae fas|=|a@ b <.
fan fae Sfas| (a4 by o

Die rechtsstehende Determinante ist andererseits gleich dem Spatprodukt [abe] der
drei Vektoren a, b, ¢, welches seinem Betrage nach gleich dem Rauminhalt des von
a, b, ¢ gebildeten Spates Q ist. Also gilt in diesem Fall die Gleichheit

Rauminhalt von f[W] = |J(f)| - Rauminhalt von W

(der zweite Faktor rechts hat den Wert 1), und es ist leicht zu sehen, daB diese Glei-
chung richtig bleibt, wenn man fiir W einen Quader mit belicbigen Kantenldngen
nimmt, dessen Kanten zu den Basisvektoren e,, e,, e; parallel sind. Speziell gilt dies
fiir einen Quader AW mit den Kanten Ax, e,, Ax; e,, Ax; e;; d.h., es gilt die Glei-
chung

Rauminhalt von f[AW] = } Otfenfs) Ax; Ax, Axs. (3.129)

9(x;, Xz, X3)

Geht man von der (bis jetzt erhobenen) Forderung der Linearitit der Abbildung f ab,
so wird aus der Gleichung (3.129) eine nur ndherungsweise giiltige Gleichung, die um-
so genauer gilt, je kleiner der Ausdruck |Ax,|+ |Ax,| + |Ax;| wird. Diese Nahe-
rungsbeziehung ist die Grundlage fiir die in Band 5 behandelten Transformationen
mehrfacher Integrale.
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3.8.2. Der Multiplikationssatz fiir Funktionaldeterminanten

Aus der verallgemeinerten Kettenregel (s. 3.6.2.) 1aBt sich eine einfache Folgerung
iiber die Funktionaldeterminante der zusammengesetzten Abbildung herleiten. Zur
Vereinfachung der Darstellung behandeln wir diesen Sachverhalt fiir den Fall der
Funktionen zweier Variabler. Es seien hy(x;, X;); hy(x;, X;) zwei differenzierbare
Funktionen, die in einem gewissen Gebiet des R? definiert sind; desgleichen g, (4, , uy);
82(uy, up), wobei der Definitionsbereich von g; und g, die Menge der Bildpunkte der

Abbildung h(x) = [h‘(x" x’)] enthilt. Wir bilden zusammengesetzte Abbildungen

SiGers x0) = g(hy (x1, X5), ha(x1, X2)), fa (X1, ) = Ga(a(xy, Xo), ha(X1, X2)).
Nach der verallgemeinerten Kettenregel gelten die folgenden vier Gleichungen

S = guihus + guzhan

Suz = guihys + gushaie

Sar1 = gaishuy + gatohaiy

Sate = atthyia + gaiohalz,
die wir, wie bereits in 3.6.2. durchgefiihrt, als Matrizengleichung schreiben kénnen:

[flll fllz] _ [3111 gllz] [hxll hliz}
San faie &1 &zl Lhay hap

wobei als Argumente der Ableitungen g, die Punkte (h;(x;, X,); Ay (%1, X,)) einzu-
setzen sind (s. 3.6.2., Formel (3.106)). Aus der bekannten Determinanteneigenschaft
det (AB) = det A det B fiir zwei (n, n)-Matrizen A, B folgt somit die Gleichung

O(f.f) _[3(81,80) 3(hy, hy)
I 0, %) [a(ul,ug) ]—a(xl,xz)’ (3.130)

uy=h, (@, Zy)
uy=hy(zy, 7y

die wir als Multiplikationssatz fiir Funktionaldeterminanten bezeichnen.

Bemerkung 3.11: Setzt man zur Abkiirzung h;(x;, X;) = 41, hy(X;, X3) = Uz, so kann
man die letztere Gleichung in der (in élteren Lehrbiichern anzutreffenden, mathe-
matisch ungenauen, aber leichter einzuprigenden) Form schreiben:

0ff)  OUunf) dm)
TR TN AT gl

in der sich der Anteil ,,0(u;, uy)* gewissermaBen ,,herauskiirzt.
Dieser Multiplikationssatz14Bt sich ohne Schwierigkeiten formal auf den Fall einer zu-

1(X15 wens Xn)
sammengesetzten Abbildung f(x) = g (h(x)) zweier Abbildungen h(x) = [ -------- ]
gl(xh '--yxn) hn(x1,---,xn)
und gx)= |- iibertragen. Unter den iiblichen Voraussetzungen (die
8n(X15 wees Xn)
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zusammengesetzte Abbildung 148t sich bilden; es existieren die erforderlichen par-
tiellen Ableitungen) gilt der Multiplikationssatz

J(E) x) = J(g) (1h(x)) J(b) (x). (3.132)

Ein wichtiger Spezialfall ist der Fall, daB f(x) = g(h(x)) = x fiir alle x aus dem Defi-
10 .0
010..0

nitionsbereich von h gili. In diesem Fall gilt J(f) (x) =det} 0 0 1 ... 0 | =1, also
000..1

ist dann J(g) (h(x)) = [J(h) (x)]~'. Dieser Fall tritt speziell dann ein, wenn g die Um-
kehrabbildung einer differenzierbaren Abbildung h ist, die ein Gebiet des R abbildet.
Es ist dann g = (h)~?*, und somit gilt die Gleichung

J(@®)™) (b(x)) = [J(b) )], (3.133)
die man in Worten so ausdriicken kann: ,,in einander zugeordneten Punkten sind
die Werte der Funktionaldeterminanten der gegebenen Abbildung und ihrer Umkehr-
abbildung zueinander reziprok*‘.
Beispiel 3.24: Es seien u = hy(xy, X;) = X; + X, und v = hy(x;, X,) = Xy — X,.

Man erhélt durch Aufldsen nach x; und x, die Beziehungen: x; =4 u + }v;
X, = % u — % v und daraus weiter

o) |1 1|_ L O(x,x) |43 _ 1
o x) ~ |1 —1| = TEsWe—E =1 =7

Durch direkte Rechnung bestitigt sich also die (allgemeingiiltige) Relation
O, v)  O(xy, %) _
o(x1, %) Ow,v)

3.8.3. Die Transformation von Differentialausdriicken bei der Transformation der
unabhéingigen Variablen

Haufig entsteht bei Anwendungen die Aufgabe, fiir ein spezielles Problem geeig-
nete, dem Problem angepaBte Koordinaten zu verwenden, die bereits gewisse Eigen-
schaften des zu untersuchenden Sachverhalts in einfacher Weise zum Ausdruck brin-
gen. Zum Beispiel verwendet man fiir ebene Probleme, die nur vom Abstand vom
Nullpunkt abhangen, zweckmaBigerweise nicht die kartesischen Koordinaten x, x,,
sondern die ebenen Polarkoordinaten r, ¢, die mit x; und x, durch die Gleichungen
Xy = rcos g, x, = rsin ¢ zusammenhangen. Dabei ergibt sich zwangsldufig die Auf-
gabe, Differentialausdriicke, die in kartesischen Koordinaten gegeben sind, auf
die neuen Koordinaten umzurechnen.!) Es interessiert u. a., wie der Begriff einer
harmonischen Funktion U = U(x,, x,) der Variablen x,, x,, d. h. einer Funktion U,
fir die die Gleichung AU = Ul|,, + U|,, = 0 gilt, in ebenen Polarkoordinaten

1) Bei der Berechnung mehrfacher Integrale fiihrt die Verwendung angepaBter Koordinaten zu
wesentlichen Vereinfachungen (vgl. Bd. 5, Abschn. 4.).

T Harbarth/Riedrich, Diff. Rechn.
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zu beschreiben ist. Dazu muB der Differentialausdruck (Differentialoperator)
o2 02 .
A= E + Wauf ebene Polarkoordinaten umgerechnet werden.
1 2

Entsprechende Fragen treten auf, wenn partielle Differentialgleichungen, deren
Losungen bestimmte gesuchte technisch wichtige Funktionen sind, in einem geeig-
neten Koordinatensystem betrachtet werden sollen (und vom Standpunkt der An-
wendungen aus gesehen, dort betrachtet werden miissen).

3.83.1. Transformation auf ebene Polarkoordinaten

Liegen ebene, axialsymmetrische Probleme vor, wobei die Symmetrieachse auf
der betrachteten Ebene senkrecht steht, ist es zweckmiBig, ebene Polarkoordinaten
einzufiihren. Neben der x;, x,-Ebene betrachten wir eine r, g-Ebene und stellen den
Zusammenhang zwischen beiden Ebenen dadurch her, daB wir fordern, daB r der
Abstand des Punktes (x;, x,) vom Nullpunkt ist und ¢ der im mathematisch positiven
Sinn gemessene Winkel des Strahls vom Nullpunkt durch den Punkt (x;, x,) gegen
die positive x;-Richtung (vgl. Abschn. 2.6.2.). Aus der Elementargeometrie ergibt sich
unmittelbar der Zusammenhang x, = r cos ¢, x, = r sin ¢. Damit jeder Punkt in der
Ebene, der nicht der Nullpunkt ist, nur ein einziges Mal durch die Polarkoordinaten
r, ¢ beschrieben wird, verlangt man das Bestehen der Ungleichung —nt < ¢ < =,
Durch diese Festsetzung erreichen wir, daB die Zuordnung (x,, x,) — (r, ) eine
(bis auf den Nullpunkt) eineindeutige Abbildung der x,, x,-Ebene auf einen
Teil einer (rechtwinkligen) r, p-Ebene wird. Dieser Teil ist der Halbstreifen r = 0;
—n < @ < . Treten innerhalb einer Rechnung (z.B. durch Addition) Winkel gegen
die positive x,-Richtung auf, die groBer als w oder kleiner gleich —= sind, so konnen
sie stets durch Hinzufiigen eines geeigneten Vielfachen von 2x in das Intervall
—7n < ¢ < = transformiert werden. Sind x; und x, gegeben, so findet man die zu-
gehdrigen Werte (r, @) mittels der folgenden Formeln, die leicht zu beweisen sind:

r=yx? + x? (%1, X, beliebig),

arctan% (x; > 0; x, beliebig),
1

(arctan —;’-) +7 (x; < 0; x, beliebig),

il

(x1=0; x, >0),

NIERENTE]

(1= 0; x, <0).

o ist nicht festgelegt fiir den Fall x, = 0; x, = 0 und kann dann beliebige Werte aus
dem Intervall (—, =] annehmen. Aus der verallgemeinerten Kettenregel folgt die
Gleichheit
oy onror o
or dg¢ O0x, Ox,
% Ox | O Oy
or Og 0x; Ox,
(s. 3.6.2., Formel (3.106)). Die Matrix der Ableitungen (Funktionalmatrix) von x;, X,

10

01
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nach r und g 1Bt sich sehr leicht berechnen; es gilt

8, o 0s @ —rsin
or O cos ¢ ¢
—aﬁ —Qx—z sin rcos
or O 4 ¢
Somit ist
0%y, X5) _|cose —rsing . (3.134)
o, ¢) sing rcosp| .

Die Matrix der Ableitungen von r, ¢ nach x, und x, erhalten wir nach den Betrach-
tungen in Punkt 3.8.2. als die zur eben berechneten Matrix inverse Matrix. Hat die
Matrix [g g eine von null velischie?ieneb Determinante D = ad — bc, so istihre inverse
Matrix durch den Ausdruck ) [—c _a] gegeben (man iiberzeugt sich davon sofort
durch Multiplikation beider Matrizen). Also gilt

or Or . .
T x 1 rcosg rsing - cosp sing
_@P_ i”— o —sin cos - 1 sin l cos
Ox;, Ox, 4 ® PR 7

aus der die gesuchten Ableitungen abgelesen werden konnen. Als Anwendung
2

. ox,?
auf Polarkoordinaten. Hierzu werde durch Einsetzen von x; = r cos ¢ und

behandeln wir die Umrechnung des (zweidimensionalen) Laplace-Operators A =

aZ
+ 0x,?
X;=r sin @ in eine gegebene Funktion U(x,, x;) eine zusammengesetzte Funktion
V(r, ¢) = U(r cos @, r sin ¢) gebildet. Die Funktion AU = Uyy; + Uy, wird nun
durch ¥ und die partiellen Ableitungen von ¥ nach r und ¢ ausgedriickt. Mittels der
Kettenregel erhalten wir die Beziehungen:

1 .
U=V, ru+ Vo pu="V,cosp——V,sing,

. 1
U=V, rg+ Ve = V,sing +7 Vg cos @
und weiter mit Kettenregel und Produktregel

. 1 .
Uiss = (Vs + Vrofps) 005 ¢ = V,(5in ¢) gy -5 raV g sin @

1 . 1
-7 (Voriy + Voopin) sin g — 7 Vo (cos @) gy

4 sin’¢+-r17 Vg sin g cos @

= V,,cos’(p——:—V,wcosqzsin<p+ p

1 . 1 . 1 .
- ¥,y sin @ cos tp+; szmzzp+72— Vycos @ sin g,
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entsprechend

: 1
Uig = (Vrr* Nia + Vig - @ra) sin @ + V,(c08 9) 1z — —5 V' (c0s ¢) rig
1 1 .
- Vorna + Voo pra) cos ¢ — — V5 (sin ¢) gy
ey 1 . 1 . 1 :
=V, sin’ ¢ +——V,¢cos<psm<p+—r—V,cos qJ—FVwcosq:smtp
1 1 .
+— V,,, cos @ sin @ + 7 VooCos® 9 — — V,, sin ¢ cos .

Die Addition der erhaltenen- Ausdriicke ergibt schlieBlich AU = Uiy, + Uiy =
Vot — V + 1 5 Voo. Der Laplace-Operator in ebenen Polarkoordinaten hat daher

die Form

02 10 1 0
A=grt oot o

* Aufgabe 3.10: Man iiberlege sich, da8 der Laplace-Operator in ebenen Polarkoor-

a .
dinaten auch in der Form —5;( ) = 8 7 geschrieben werden kann.

3.8.3.2. Transformation auf Zylinderkoordinaten

Riumliche Probleme, die beziiglich einer festen Achse axialsymmetrisch sind, wer-
den zweckmiBig mittels Zylinderkoordinaten beschrieben. Die Symmetrieachse
P(xy, X3, X;) kann beschrieben werden durch ihre x;-Koordinate z, den Abstand r
von der x;-Achse und den im mathematisch positiven Sinn gemessenen Winkel ¢ des
Strahls vom Nullpunkt durch den Punkt P’(x;, x,,0) gegen die positive x,-Richtung
(vgl. Abschn. 2.6.3.). Es ergeben sich die (elementargeometrischen) Bezichungen

X;=rcosQ, Xxp=rsing, x3=z.

Der gesamte Raum R® der Punkte P(x;, X,, X;) wird hierbei auf einen Teil eines drei-
dimensionalen (r, ¢, z)-Raumes abgebildet, wobei analoge Festsetzungen zu treffen
sind wie im Fall ebener Polarkoordinaten. Man nennt (r, ¢, z) die Zylinderkoordina-
ten des Punktes P(x;, X,, x3). Die Funktionalmatrix der x;, X, x3 beziiglich r, ¢, z
hat die Form _

O Ox 3x cosg —rsing 0

o g 0z
O0x, Ox, Ox, .
o B9 %z |T sing rcose O |,

Ox; Ox; Oxg

o g & g LR
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so daB sich fiir die zugehorige Funktionaldeterminante der Wert

cosp —rsing 0
B2 X) _gro reosg 0|=r (3.136)
o(r, 9, 2)
0 0 1
ergibt. Bei der Umrechnung von Differentialausdriicken sind dieselben Rechnungen

wie im Fall ebener Polarkoordinaten durchzufiihren, wegen x; = z konnen Ablei-
tungen nach x; sofort als (dieselben) Ableitungen nach z geschrieben werden. Zum

2 2
Beispiel ergibt sich fiir den (dreidimensionalen) Laplace-Operator A = % + %
2 1 2
+ aax 5 unter Benutzung des Ergebnisses von 3.8.3.1. in Zylinderkoordinaten sofort
3
der Ausdruck

® 190 1 @& o

R A R o

(3.137)

3.8.3.3. Transformation auf Kugelkoordinaten

Réumliche Probleme, die nur vom Abstand der zu betrachtenden Punkte von einem
festen Punkt abhéngen (z. B. Einwirkung einer Zentralkraft) bzw. gewisse Symmetrie-
eigenschaften gegeniiber Drehungen des Raumes um einen festen Punkt aufweisen,
werden in Kugelkoordinaten beschrieben. Der feste Punkt sei der Nullpunkt des
Koordinatensystems. Ein beliebiger Raumpunkt P(x;, X;, x3) kann beschrieben wer-
den durch seinen Abstand  vom Nullpunkt, den Winkel ¢, den der Strahl vom Null-
punkt durch den Punkt P’(x;, x,, 0) gegen die positive x;-Richtung (im mathema-
tisch positiven Sinn gemessen) besitzt und den Winkel 4, den der Strahl vom Null-
punkt durch den gegebenen Punkt P(x;, X,, X;) gegen die positive xz-Richtung hat.
Es gelten die Transformationsbeziehungen (vgl. 2.6.3.)

x;=rcosgsind, x;=rsingsind, x;=rcosd.

Der gesamte Raum R® wird auf einen Teil des (r, ¢, p)-Raumes abgebildet, wobei
man aus der Forderung, eine (weitestgehend) eineindeutige Abbildung von (x;, x,, X;3)
auf die Werte (r, 9, ¢) zu erhalten, die folgenden Vereinbarungen trifft:

0=sr<+ow, 0=9=m,
—t<@p=m (oder 0= ¢ < 2n).
Die Funktionalmatrix der Transformation (x;, x,, x5) = (r, ¥, ¢) hat die Gestalt

0, ) a . . .
el ) cos gsind rcos@cos? —rsin g sin ¢

o 0 Op
Ox, Ox, Ox, . . . .
o @ 9 | sinpsin® rsingcos?  rcosesind

Ox; Ox; Ox, .
5 99 3 cos & —rsin 9 1}
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Thre Determinante, die Funktionaldeterminante %ﬁ% hat den Wert
0Cry, X2, %) _
W.— r¥sin 9. (3.138)
Der (dreidimensionale) Laplace-Operator hat in Kugelkoordinaten die Gestalt
A 92 o 02
= x? T Oxg? | Oxg?
10 9 1 9 /. a 1 92
—‘_’a_( 6r)+ 2 sin & 65(5“‘"6_0)* rEsin? @ 0¢® (3139

3.8.4. Abhingigkeit differenzierbarer Funktionen

Beispiel 3.25: Aus der Vektorrechnung ist der Begriff der linearen Abhangigkeit von
Vektoren bekannt. Zum Beispiel seien a, b, ¢ drei Vektoren im dreidimensionalen
Raum. Sie heiBen linear abhingig (vgl. Bd. 13, 1.2.7.), wenn es reelle Zahlen 4,, 4;, 4;
gibt, die nicht s@mtlich gleich null sind und fiir die die (Vektor-) Gleichung

at+db+he=0 (A + |2+ |4l >0) (3.140)

gilt (o: Nullvektor). Geometrisch bedeutet dies, daB die drei Vektoren a, b, ¢ in einer
Ebene liegen (komplanare Vektoren). Neben den Vektoren a, b, ¢ betrachten wir die
ihnen zugeordneten linearen Funktionen. Es seien

a by 5}
a= [az} , b= [ba] , = [c‘z] H
as by C3

dann bilden wir die Funktionen der unabhingigen Variablen x;, x;, X3
L(x1s Xa, X5) = ayxy + sy + A5Xs,
Iy(xy, Xz, X5) = byxy + baXs + byxs,
Iy (xy, X2, X3) = €11 + CoXp + C3X3.

Ferner betrachten wir die lineare Funktion L(uy, s, tg) = Ay + Agup + Aguy der
drei unabhingigen Variablen u,, u,, ug. Dann ist die zusammengesetzte Funktion

M(xy, Xz, X3) = L(L (%1, X2, X3) 5 (%1, X2, X5) 5 l3(%1, X2, X3))
fiir alle x,, x,, x; gleich null;
L(h(x1, Xa, X3) 5 B(x1, X2y X3) 5 l5(x1, X2, X5)) = 0 (%1, X2, X3) € K).

Zum Nachweis dieser Behauptung setzen wir die obigen Ausdriicke fiir [, b, /; in
L(uy, us, ug) ein und benutzen die Gleichung (3.140),

LI (xy, X2, X3); LCer, xa, x3); l(xy, X2, X3))
= Ml (x1, X2, X3) + Aol (X1, X2, X5) + Aaly (x1, X2, X5)
= Ay(ayxy + axz + a3%3) + Ay (byXy + baXa + byxs) + Ay (cyxy + Caxp + €3X5)
= (M + Aby + A1) x; + (Mate + Aoba + AsC) X+ (Ais+ Aabs+ Aocs) s
=0-x,+0-x+0-2=0,



3.8. Funktionald i eines Funkti ystems 103

weil die Klammerausdriicke in der vorletzten Zeile infolge des Bestehens der Glei-
chung (3.140) alle verschwinden.

Beispiel 3.26: Wir betrachten die folgenden Funktionen von zwei unabhingigen
Variablen X, X,: f3(%1, X5) = sin (x; + X2), fo(x1, X2) = €08 (X1 + X5).

Aus der fiir alle reellen Zahlen 7 giiltigen Beziehung sin? 7 4+ cos®t = 1 folgt mit ¢ =
x; + x, die Gleichung

[f1Ger, x)P + [fa (1, X2)FF = sin? (x; + Xp) + €08 (3, + x5) = 1

fiir alle x,, x5. Es sei F(uy, us) = > + > — 1 fiir (uy, up) € R2.
Die zusammengesetzte Funktion

F(fi(x1, X2); fo(%1, X2)) = [f1(x1, %) + [fo (1, X)) — 1

ist dann nach den obigen Feststellungen fiir alle x,, x, gleich null:
F(fi(x15 %2); fo(x1, %)) =0 ((x1, X2) € RY).

In den Beispielen 3.25 und 3.26 stellten wir fest, daB die Werte der betrachteten
Funktionen nicht unabhéngig voneinander sind, da zwischen den Funktionswerten
der betrachteten Funktionensysteme (I, /5, I; bzw. f,, f;) gewisse Bindungen in Glei-
chungsform bestehen. Im Beispiel 3.25 ist das die Bezichung

Mdi(xy, Xa,y X3) + Aolp (X1, X2, X3) + Aols (%1, Xa, X5) = 0,
und im Beispiel 3.26 haben wir die Gleichung
UG %12 + [falxy, %)) = 1= 0.

Diese Beispiele sind Sonderfille eines allgemeinen Abhingigkeitsbegriffs fiir Funk-
tionen.

Definition 3.7: Es seien f1(xX1, ...y Xn)s fo(X15 coes Xn)y ooy fn(X15 oey Xp) Stetig differen-
zierbare Funktionen, die in einem Gebiet G des R" definiert sind. Die Funktionen
fis «wes fm heiflen abhingig in G, wenn es eine stetig differenzierbare Funktion F(u,, ..., )
der m unabhdngigen Variablen u,, ..., uy, gibt, die in keinem Teilgebiet des R™ konstant
ist, so dap die Gleichung (Abhiingigkeitsbeziehung)

F(f1(¥15 s Xn)y vons S (X1, wony X)) = 0 (3.141)
fiir alle (x,, ..., x,) aus G gilt.

Wir suchen nun ein einfaches Kriterium dafiir, wann ein Funktionensystem
Fi(X1, ooy Xn)y ooy f(X1, . 5 X,) abhingig ist, ohne daB wir eine Abhingigkeitsbezie-
hung selbst angeben miissen, da diese Abhéngigkeitsbeziehung oft nur mit groBem
Aufwand gefunden werden kann. Dabei orientieren wir uns zunichst wieder am Bei-
spiel 3.25, d.h. der linearen Abhéngigkeit von linearen Funktionen. Aus der Vektor-
rechnung ist bekannt (vgl. Bd. 13), daB eine lineare Abhéngigkeit der Vektoren

a, b1 ¢
as bs C3

D.3.7
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genau dann besteht, wenn das Spatprodukt [abc] der Vektoren a, b, ¢ verschwindet,
d.h., die Gleichung

a, Gy a3
[abe] = | b, by b3 |=0
¢ € C3

gilt. Dadie Vektoren a, b, ¢ aber nun genau dann linear abhéingig sind, wenn die zuge-
horigen linearen Funktionen /,, /,, I; linear abhingig sind, ist somit das Verschwinden
der obigen Determinante eine notwendige und zugleich hinreichende Bedingung fiir
dielineare Abhéngigkeit der Funktionen/,, /,, /s des Beispiels 3.25. Diese Determinante

ist jedoch gerade die Determinante der partiellen Ableitungen [—(%I‘L] , d.h. die Funk-
k

M- Es liegt daher nahe, auch zur Untersuchung der
0(x1, X2, X3)

Abhiéngigkeit allgemeiner Funktionen die ersten partiellen Ableitungen heranzu-
ziehen. Wir gehen davon aus, daB zwischen m gegebenen differenzierbaren Funktio-
nen fi(X1, w5 Xn)s v fm(*15 oy X5) vOR 1 unabhéngigen Verdnderlichen eine Ab-
héngigkeitsbeziehung besteht, die in der Form

F(fl(xls eeey xn); ey fm(x]» orey xn)) =0 ((xl» wery xn) E G)

tionaldeterminante

geschrieben werden kann. Durch partielle Differentiation nach den x; erhalten wir
aus dieser Gleichung mittels der verallgemeinerten Kettenregel (s. 3.6.2.) die Glei-
chungen

FI)_flll + Flzlel + -+ Flmfmll =0
Fljfllz + Flzlez R Flmfmlz =0

Fufin+ Fofon+ = + Finfmin=0,
wobei die Werte von Fi; an der Stelle
(uh Uy eeey ll,,.) = (fl(xl: ey xn); f2(x1’ weey xn); ey fm(xly weny xn))

zu nehmen sind (i = 1, ..., m). Man kann die obigen Gleichungen als ein homogenes
Gleichungssystem mit der Koeffizientenmatrix (fu) (1S i=m; 1 =k <n) und
dem Losungsvektor (Fi;)i<i<m auffassen. Da dieser Losungsvektor nicht der Null-
vektor sein kann (evtl. abgesehen von einer nicht interessierenden Ausnahmemenge
von Punkten aus G), weil F(u,, ..., u,) in keinem Teilgebiet des R™ konstant ist,
folgt aus der Theorie der linearen homogenen Gleichungssysteme, daB der Rang der
Koeffizientenmatrix (f;x) kleiner als m sein muB. Damit haben wir eine notwendige
Bedingung fiir die Abhéngigkeit der Funktionen f;, ..., fn erhalten, die man ohne
Kenntnis einer Abhingigkeitsfunktion F(u,, ..., uy) tiberprifen kann. Ohne Beweis
zitieren wir die folgenden Sitze iiber die Abhéngigkeit von Funktionen (in einer
unseren Zwecken angepaBten Form).
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Satz 3.17: Es seien f1(Xy, cooy Xn)s voes S (X15 e Xn) in einem Gebiet G des R™ gegebene,
dort stetig differenzierbare Funktionen. Dafiir, daf die Funktionen f,, ..., f,, in G abhin-
g’ sind, ist notwendig, daf die Ungleichung

Rang [fi] <m (3.142)

uberall in G erfilllt ist.

Satz 3.18: Es seien f1(X1, voy Xn)s eors Sm(X15 voey Xn) in einem beschrinkten Gebiet G
des R™ gegebene, dort stetig differenzierbare Funktionen. Dann gelten die folgenden
Aussagen 1.-3.:

1. Es sei m = n. Dann sind die f; genau dann abhingig in G, wenn die Funktional-
determinante det (f;) tiberall in G verschwindet.

2. Es sei m > n. Dann sind die f; abhdngig in G.
3. Es sei m < n. Ist der Rang der Matrix (fuy) in G konstant und kleiner als m, so
sind die Funktionen f; abhdngig in G.

Beispiel 3.27: Es sei fi(x, X5) = (x; — a)* + (x, — b)%,

Sfo(xyy %) = (xy = fF + (v — AP ((x1, %) € RY),
wobei a, b, ¢, d beliebige reelle Zahlen bezeichnen. Zur Untersuchung der Abhéngig-
keit der Funktionen f;, f; bilden wir die Funktionaldeterminante

S fua| _ |20 —a) 2(x; — b)

det (fir) =
) far faz 2z =€) 2(x; — d)
= 4(x,(b — d) + x5(c — a) + ad — bc).

Nach Satz 3.18 besteht Abhangigkeit zwischen den Funktionen f; und f; in einem
(beliebigen) beschrankten Gebiet G des R® genau dann, wenn diese Determinante
fiir alle (x,, x;) aus G verschwindet. Der Ausdruck fiir det (fiix) ist ein Polynom ersten
Grades in x, und x,, der nur dann in einem Gebiet des R? verschwindet, wenn seine
Koeffizienten gleich null sind, also die Gleichungen

b—d=0,
c—a=0,
ad—bc=0

gelten. Man sieht sofort, da mit den ersten beiden Gleichungen, die auch in der Form
b=d, a= c geschrieben werden konnen, auch die letzte dieser Gleichungen erfiillt
ist. Wir haben somit das folgende Ergebnis:

1. Ist (a, b) = (c, d), so sind f; und f, unabhingig.

2.Ist (a, b) = (c, d), so sind f; und f, abhingig; in diesem Fall gilt sogar f;(x;, x;)
= fo(x;, x,) fiir alle (x;, x,) € R% (Man interpretiere das Ergebnis geometrisch!)

S.3.17

S.3.18



4. Der Satz von Taylor und Extremwertaufgaben

4.1. Die Taylor-Formel fiir Funktionen zweier Variabler

Es sei z= f(x, y) eine in einem Gebiet G des R® n-mal stetig (partiell) differen-
zierbare Funktion und P(x,, y,) ein fester Punkt aus G. Uns interessiert das Ver-
halten von fin einer Umgebung von P(x,, y,). Dazu betrachten wir den Punkt
P(xy + h, po + k) fiir hinreichend kleine Werte von |A| und |k| und fiihren die fol-
gende Funktion einer reellen Variablen ein:

o(t)=f(xo+ ht,yo + kt) (—a <t = a;a >0 hinreichend klein).

Mit anderen Worten, wir setzen x = X, + th = x(¢t) und y = y, + tk = y(t) und bilden
die zusammengesetzte Funktion ¢(f) = f(x(t), y(t)). Die Funktion ¢(f) wird nach ¢
differenziert (Ableitungen nach ¢ sind durch ,,”* gekennzeichnet). Nach der verall-
gemeinerten Kettenregel erhalten wir

¢ =fix O)+ fiy' (1) = fx' + £y

und mit x'(t) = (xo + thY = h, y'(t) = (o + kt)' = k weiter ¢'(t) = fi,h +fisk =
Jir((2), y(®) b+ fia(x(2), y(1)) k. Zweimalige Differentiation nach ¢ liefert entspre-
chend (der Leser iiberpriife dies)

" (t) = finlh® + firshk + fiarskh + fiaak® = finh® + 2firehk + fink®,

wobei die partiellen Ableitungen fi;, an der Stelle (x(f), y(¢)) zu nehmen sind. Analog
ergibt sich die dritte Ableitung

(1) = finh® + fireh®k + 2fi11hPk + 2fi100hK? + fionik*h + fiaaok?
= finh® + ek + 3fi1aehk® + fiank®,

wobei vom Satz von Schwarz (Vertauschbarkeit der Reihenfolge der partiellen Ab-
leitungen) Gebrauch gemacht wurde. Um eine iibersichtlichere Schreibweise zu er-
halten, erinnern wir an die in 3.4. unter den Formeln (3.78) bis (3.84) getroffenen
Bezeichnungsvereinbarungen. Wenn wir nun 4 anstelle von dx und & anstelle von dy
setzen und fiir die Bezeichnung der partiellen Ableitungen von f die Symbole fi,, fis
usw. verwenden, so erhalten wir

¢'(0) = [fish + fiek]®, = Uik + £k]2,
@"(0) = Lfish + fisk]®). = [fih + LI,

Anstelle der Potenzen von fi; bzw. fi, sind die entsprechenden Ableitungen einzu-
setzen; also ist z.B. fi, anstelle von (fi,)* und analog fi,;; anstelle von (f},)? fi, einzu-
setzen, wihrend fiir # und k die iiblichen Potenzen und die iiblichen Koeffizienten
zu benutzen sind. Diese Vereinbarung gilt auch allgemein fiir die n-te Ableitung, so
daB wir erhalten

() = Lfish + fisk]™ (n=1,2,..),
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wobei der Ausdruck rechts gemaf der allgemeinen binomischen Formel
@+ by = 3 aripk (" )
K=o k
zu bilden ist (vgl. auch Abschn. 3.4.). Die auftretenden partiellen Ableitungen von y
sind dabei stets an der Stelle x = x(t) = x, + th; y = y(t) = y, + tk einzusetzen. Nun

bilden wir den Ausdruck der Taylorformel fiir die Funktion ¢() mit der Entwicklungs-
stelle 7, =0 mit dem Ziel, einen Taylor-Ausdruck fiir f zu erhalten. Es gilt (s. Bd. 2, 6.3.)

#(1) = ¢(0) + ,¢(0)+ ,l.v”(0)+ +( 1), @ 1(0) + Ruy(1)

mit R, ,(t) = —1~ trp(9t) (0 < & < 1). Speziell erhalten wir fiir =1 die Beziehung

¢(1) = ¢(0) + ,<P(0)+ ,w"(0)+ - 1), @ (0) + Ruy(1)

mit R,(1) = Ftp‘"’(ﬂ) 0<9<LD). @1
Zur Bestimmung der einzelnen Ausdriicke ¢(0), ¢'(0), ... verwenden wir die oben
eingefiihrte Schreibweise und erhalten (man beachte, daB jetzt 7 = 0 gilt)
#(0) = f(x0, y0)»
#'(0) = fi1(Xo, yo) b+ fiz(x0, yo) k = df
(vgl. Abschnitt 3.4., man setze dort dx = &, dy = k),
@"(0) = fira (%05 Yo) B + 212 (X0, Yo) bk + fiaz(Xo, yo) k*
= [fi1(xo, yo) b + fia(x0, yo) K1® = &%
und allgemein
@™(0) = [fi1(Xo, Yo) b + fia(x0, yo) KI™ = d"f (m=1,2,..).
Andererseits ist
o(1)=f(xo+ h, yo+ k) und
() = [fi1(xq + Bh, yo + k) h + fia(xg + Oh, yo + k) k1™,
Aus (4.1) folgt damit endgiiltig, wenn wir die zuletzt notierten Ausdriicke einsetzen

S(xo + by yo + k) = f(x0, o) + [ﬁ1(xo: Yo) b + fia (%o, yo) K]
2, [flx(xm Yo) b+ fiz(x0, yo) KI®

[fir(xo, J'o) b+ fia(Xo, o) k1" + Ry (B k) (42)
1
(n - 1!

+ = + e 1),
= fxo, yo) + 77 df+ df +. d"=Lf + Rya(h, k)

“2)

Roy(h k) = % [fis(xo + O, yo + k) b+ fia(xe + Oh, yo + 9k) K]
0O<P<n. (43)
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Bemerkung 4.1: Gelegentlich gibt man das Restglied R,_; (%, k) in Integralform an;
es lautet dann

1
1
Reslls )= =57 [0 G+ th o+ )1
0

+ fia(xo + th, yo + tk) kK] dt. (4.4

Die Formel (4.2) bzw. (4.2') heiit die Taylorformel fiir f(x, y) mit der Entwicklungs-
stelle (x,, yo) und dem Restglied der Ordnung ». Fiir Funktionen von mehr als zwei
Variablen gilt eine analoge Taylorformel, die man sich leicht aus der Beziehung (4.2)
durch Verallgemeinerung herstellt.

Bemerkungen und Beispiele

1. Setzen wir in dem Ausdruck (4.2) fiir » speziell den Wert n = 1 ein, so erhalten
wir die Beziehung

SO0+ by yo + k) = f(%q, yo) + Ro(h, k)
SO+ b, yo + k) = f(xo, yo) = fir(xo + Oh, o + k) h
+fialxo+ Fh, o+ 9k) k. (0< P <),

mit anderen Worten, fiir n = 1 geht die Taylorformel in den Mittelwertsatz (s. 3.3.4.)
fiir Funktionen mehrerer Variabler (hier: zweier Variabler) iiber.

oder

2. Setzt man x, + h=x, yo+ k =y, s0 gilt h = x — x5, k = y — y,, und aus (4.2)
wird die Beziechung

S, ) = f(x0, yo) + % [fix (%05 yo) (x = xo) + fiz (%05 Yo) (v — ¥0)]

gy Ui, 0) G = )+ fia o 300 0 = 301

1

+ ey [£i1(%o, 7o) (x = x0) + fia (%o, ¥0) (7 — yo)]* ™))

. o F Rn-)(x — X0,y — y(l)
mit

Rucs(5 = %y = 30 =~ Ui+ 90 = %0, 3o + 80— 1) (2 — )

+fia(xo + B — X0, yo + 4 — 1)) 0 =3I (0 <F 1), (4.5)

Wihlt man speziell x, = 0, y, = 0, so entsteht aus der letzteren Beziehung die sog.
Formel von Mac Laurin (zur Vereinfachung der Schreibweise arbeiten wir mit dem
Summenzeichen)

SR =100+ 3 210,05+ fis0, 019+ Rors(5,)



4.1, Taylor-Formel fiir Funktionen zweier Variabler 109
mit
1
Roes(x,y) = o [ (3%, 99) x + fiaBx, )17 (0 <& ). (4.6)

In dieser letzten Form wird die Taylorformel sehr hiufig verwendet.
3. Bricht man die Taylorformel (in der Form unter 2. oben) nach den Gliedern mit

den ersten Ableitungen ab, so erhilt man eine lineare Naherungsfunktion fi(x, y)
fiir f(x, y), fulx, ¥) = f(xo, yo) + fis(xo, Yo) (x — xo) + fia(%o, }'o) (r = ¥o). FaBt
man (vgl. Abschnitt 2.1.) z = f(x, y) als Darstellung einer Fldche im (x, y, z)-Koor-
dinatensystem auf, so liefert z = f,(x, y) die Darstellung der Tangentialebene dieser
Fliache im Punkt (x,, o, Zo) mit zo = f(Xo, Yo)-

Mit Benutzung des vollstindigen Differentials gilt die Gleichung

filx, y) = flxos yo) + df.

4. Bricht man die Taylorformel (in der Form unter 2. oben) nach den Gliedern mit
den zweiten Ableitungen ab, so erhélt man eine quadratische Naherungsfunktion

Salx, y) fiir f(x, y),
%, ¥) = f(xo, yo) + fis(¥o» Yo) (¢ = Xo) + fi2(X05 Yo) ( = ¥o)

+ '2'1‘i‘fm(xo; Yo) (¥ = X0)* + 2f112(%0, Yo) (x = Xo) (v = Yo)

o 1) 0 = Yo = fio53) + o &,

Die Gleichung z = f,(x, ) liefert die Darstellung einer Fliche zweiter Ordnung, die
die gegebene Fliche z = f(x, y) im Punkt (x,, yo, f(Xo, o)) beriihrt und lokal appro-
ximiert. Im folgenden Beispiel 4.1 ist diese Fliche ein hyperbolisches Paraboloid;
im Beispiel 4.2 erhalten wir ein (zweischaliges) Rotationshyperboloid.

Das Verhalten der quadratischen Naherungsfunktion fo(x, y) ist vor allem fiir
die Diskussion von Extremwertaufgaben wesentlich (s. Abschnitt 4.2.).

Beispiel 4.1: Als Beispiel betrachten wir die Funktion f(x, y) = (sin x) (sin y) und
entwickeln diese Funktion an der Stelle (0, 0) bis zum Restglied R,. Wir legen uns
eine Tabelle der partiellen Ableitungen von f bis zur 3. Ordnung einschlieBlich an.

fiulx,y)=fiy=cosxsiny; fi, =sinxcosy; fi;z=cosxcCosy;
fin = —sin xsin y; Sy =—sinxsiny; fiy, = —sinx cosy;
fizn = —cos x sin y; fizza = —sin X COS p; fl19g = —COS X sin y.

Die speziellen Werte der Funktion f und ihrer ersten und zweiten (partiellen) Ablei-
tungen an der Entwicklungsstelle (0, 0) lauten:

70,00 =0; fi0,0) =0; fix(0,0)=0; fi1e(0,0)=1;
Sin(0,0)=0;  fix(0,0)= 0.
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Damit erhalten wir mittels der Formel (4.6) fiir n = 3 die Entwicklung
. : 1
sinx - sin y = (0, 0) + 7 [/ix(0, 0) x +£i2(0, 0) y] -
1 .
+ o [/in(0, 0) x* + 2£15(0, 0) xy + fi2x(0, 0) 3] + Ry(x, y)

1
=7-2ch+R2=xy+R2
mit

Ry = a0, 99) x + i, 89) 31O

= 5 L%, 99) 5 + Foa @, 99) 2y + Vi, 09) 37
+ fiza (9%, 9y) y°]

1
s [—x® cos ¥x sin Py + 3x2p(—sin Fx cos Fy)
— 3xy? cos ¥x sin ?y — y* sin ¥x cos Jy]

=— % [(x® + 3xy?) cos Ox sin Iy + (3x2y + »°) sin Fx cos Fy]
(R A

Das Restglied R, 148t sich wegen |cos x| < 1; [sin 9x| < 1 betragsmiBig wie folgt
abschétzen (Anwendung der Dreiecksungleichung):

IRo| < 3(xf + 3fx| [y + 3Ix* [yl + [yF*) = &(Ixl + Iyl)°.

Fiir kleine Werte von (|x| + |y|) wird daher |R,| von 3. Ordnung Klein, d.h., fiir nahe
beim Nullpunkt gelegene Punkte P(x,y) verhélt sich die Funktion f(x,y)=
sin x - sin y wie die Funktion g(x, y) = xy. Bei der Darstellung von f(x, y) als Flache
im Raum R® der Punkte P(x, y, z) mit z = f(x, y) = (sin x) (sin y) kénnen wir daher
naherungsweise diese Fliche durch die Flache 2. Ordnung z = xy (hyperbolisches
Paraboloid, s. [3] S. 197) ersetzen.

Beispiel 4.2: Als weiteres Beispiel betrachten wir das Potential einer Punktladung,
die sich im Punkt (0, 0, 0) befindet, und entwickeln dieses in einen Taylorausdruck
an der Stelle (1, 0, 0). Dieses Potential ist (bis auf einen hier weggelassenen Zahlen-
faktor, s. auch Beispiel 5.1) gleich der Funktion

1 1
X Yy 2) =—= /7=,
Py 2) = Ry

d.h., es liegt eine Funktion von drei Verdnderlichen vor. Wir wollen diesmal so vor-
gehen, daB wir die Entwicklung mit dem Restglied R, abbrechen, dieses Restglied aber
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nicht ndher berechnen, sondern an einzelnen Zahlenbeispielen uns ein Bild von der
Giite der Approximation der Funktion ¢(x, y, z) durch die ersten Glieder der Taylor-
formel (ohne das Restglied) verschaffen. Zunachst berechnen wir die partiellen Ablei-
tungen von g¢(x,y,z) allgemein und anschlieBend an der interessierenden Stelle

(1,0, 0). Es gelten die Beziehungen (s. auch Abschnitt 3.6.2.) (r = Vx* + y* + 2%)

P -2 - _Z.
P =""7 P2 =—"3 Pi3 = A
3x2 1 3x; 3 1
fPIn=T—F; 9’112=‘P121=75!‘; ¢I22=—r'y;—ﬁ,
_ _ 3%z _ _3yz _3F 1
th—‘l’l:n——r;, ‘Plza—‘Plsz——rs 5 ‘Plsa——‘r5 7

Diese Funktionen haben an der Stelle (1, 0, 0) in der obigen Reihenfolge die Werte
—1;0;0;2; 0; —1; 0; 0; —1 und ferner gilt noch ¢(1, 0, 0) = 1. Die Taylorformel
lautet allgemein mit dem Restglied R, und dann mit den speziellen Werten

1
o(x, ,2) = ¢(1, 0, 0) +?[¢u'(x— Dtgn-y+os-z]

1
o7 PG =17 + 21 - (x = Dy + praa - ?
+ 20135+ (x — 1) 2+ 29195 - Y2 + @3z - 221 + R,

wobei die partiellen Ableitungen an der Stelle (1, 0, 0) einzusetzen sind. Es gilt also

e(xp2)=1+(-)Ex-1) +-21—! RE-1+ DY+ (=) 2]+ R,
=3—3x+x2—-};—2——z;—+R,.

Den. ersten Anteil auf der rechten Seite letzterer Gleichung bezeichnen wir mit
9*(x, 7, 2), Wir setzen also

A

q)*(x,y,z)=3—3x+x2—%—

Es gilt (s. 0.)

#(x,5,2) = ¢*(x, 7, 2) + R,.
In dieser letzteren Schreibweise schen wir den formelmiBig einfacheren Ausdruck
(keine Wurzeln) ¢* als eine Néherung von ¢ an. Die Funktion ¢*(x, y, z) ist ein Poly-

nom zweiten Grades in x, y, z und rechnerisch in ihren Eigenschaften leicht zu iiber-
schauen. Wir verzichten hier auf eine Restgliedabschitzung und stellen nur einige
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Funktionswerte (Zahlenwerte) von ¢ und ¢* gegeniiber.

(x.3,2) | 9(x,.2) | 9*(x,,2) | Ry

(1,0, 0) 1 1 0
(,0,0) 2 1,75 0,25
3,0,0) 2 ~ 0,67 0,75 —0,08
1,1,0) }V2~0,7071 0,5000 0,2071
1,1,1) 1/3~05774 |0 0,5774

Man erkennt aus dieser Tabelle, daB die Funktion ¢* die Werte der Funktion ¢ in
einer gewissen Umgebung der Entwicklungsstelle (1, 0, 0) relativ gut anndhert oder
approximiert, so daB8 wirin einer solchen Umgebung die Funktion ¢* als einen Ersatz,
als eine Approximation fiir die Funktion ¢ benutzen konnen. In groBerer Entfernung
von der Entwicklungsstelle wird die Genauigkeit der Anndherung von ¢ durch ¢*
zunehmend schlechter.

Erginzend werde noch auf den folgenden einfachen geometrischen Sachverhalt
hingewiesen.

Die Aquipotentialfiiche ¢(x, y, z) = 1 enthlt den Punkt (1, 0, 0), um welchen wir
die Funktion ¢(x, y, z) entwickelt haben.

Die Niveauflachen

2-x=1
bzw.

@0y =)3-x+xa-L T,

die sich als Naherungsflichen fiir die Aquipotentialfiiche @(x, y,z) =1 ergeben,
wenn die Taylorentwicklung bei den linearen bzw. den quadratischen Gliedern in
%, y, z abgebrochen wird, liefern die Tangentialebene der Aquipotentialfliche ¢(x,y,2)
=1 bzw. eine Fliche zweiten Grades (hier: ein zweischaliges Rotationshyperboloid
mit dem einen Scheitel (1, 0, 0) und der x-Achse als Drehachse), die die Aquipoten-
tialfliche im Punkt (1, 0, 0) beriihrt.

4.2. Extremwertaufgaben

Im Rahmen der Operationsforschung hat die Frage nach den bestmdglichen (weil
wirtschaftlichsten) Losungen bestimmter praktischer Probleme der Theorie der Ex-
tremwerte besonderen Aufschwung gegeben (vgl. z. B. Bde. 14, 15, 16, 20 dieser
Reihe). Insbesondere sind Extremwertaufgaben mit Nebenbedingungen (Restrik-
tionen) fiir die Anwendungen wichtig, weil in der Praxis gerade ein maximaler Nutz-
effekt ,,bei Einhaltung gewisser Bedingungen* zu erzielen ist, z. B. die hochste Tages-
produktion in einem Betrieb bei vorgegebenem Energieverbrauch. Das Kapitel iiber
Extremwertaufgaben mit Nebenbedingungen verdient also besonderes Interesse
und kann als ein Teilgebiet der Disziplin ,,Optimierung® angesehen werden. Bevor
wir uns aber dieser Problematik zuwenden, miissen wir die Frage nach den Extrem-
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werten schlechthin (also ohne Nebenbedingungen) diskutieren. Unsere Entwick-
lungen kniipfen dabei an die Ausfilhrungen iiber Extremwerte in Band 2, Abschnitt
7.3., an (vgl. auch Bd. 16). Zur numerischen, automatisierten Berechnung von Ex-
tremwerten vgl. insbesondere [16].

4.2.1. Notwendige Bedingungen fiir Extremwerte

Wir behandeln die Frage nach der Bestimmung von Extremwerten von Funktionen
mehrerer Variabler am Beispiel von Funktionen zweier Variabler und geben an-
schlieBend die Verallgemeinerung auf den Fall der Funktionen von n = 2 Variablen
an (vgl. die entsprechenden Bemerkungen in Bd. 2, 7.3.).

Definition 4.1: Es sei f(x,, x,) eine in einem Gebiet G C R? definierte und dort differen-
zierbare reelle Funktion und P(x,), x,°)) ein (innerer) Punkt von G. Der Punkt
P(x,9, x,) heift Stelle eines (relativen oder lokalen) Maximums bzw. Minimums,
wenn die Ungleichung

S, %) £ (6, @), x,10) 4.7
bzw.
S(x1, %) Z (%9, %) 4.8)

fiir alle Punkte P(x,, x,) aus einer reduzierten Umgebung von P(x;©), x,() gilt. Werden
in der Ungleichung (4.7) bzw. (4.8) die Zeichen ,,<* bzw. ,,2* durch ,,<* bzw. ,,>*
ersetzt, so sprechen wir von einem (relativen) Maximum bzw. Minimum von f(x,, x,)
,»im engeren Sinne*“. Hat f(x,, X,) bei P(x,), x,) ein Maximum oder Minimum, so
sagen wir, f(x,, x,) hat bei P(x,©, x,")) einen (relativen) Extremwert bzw. Extremwert
im weiteren Sinne.

Gelten die Ungleichungen (4.7) bzw. (4.8) mit ,,<* bzw. ,,2* fiir alle Punkte
P(xy, x,) € G, 50 heifit P(x3, x3) eine Stelle des absoluten Maximums bzw. Minimums von
f(x1, %) in G.

Satz 4.1: Es sei f(x,, x,) eine in einem Gebiet G C R® definierte und dort differenzier-
bare reelle Funktion. Ist P(x,®), x,)) eine Stelle eines relativen Maximums (bzw. Mini-
mums), so gelten die Gleichungen

Si1( @, %,®) =0,
Sia(6 @, %,®) = 0,
of

d. h., es gelten die Gleichungen roe 0,

.9)

o = 0 an der Stelle P.
oy
Beweis des Satzes 4.1: Es sei z.B. P(x,%), x,() eine Stelle eines relativen Maximum
es gilt also die Ungleichung (4.7). Wir betrachten die Funktionen ¢,(x,) = f(x;, x,)
und @a(x,) = f(x;%, x,), die nur von einer Variablen abhéngen. Die Funktion ¢,(x,)
besitzt wegen (4.7) an der Stelle x; = x,® ein (relatives) Maximum. Aus der Extrem-

8 Harbarth/Riedrich, Diff. Rechn.

D.4.1

S.4.1
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werttheorie von Funktionen einer reellen Variablen (Band 2, Satz 7.5) folgt, daB die
Gleichung

de,

dx; [g,mg,® =0
gilt. Es gilt aber g% = (—6%{—) (%1, %,). Somit folgt die erste der Gleichungen (4.9).
1 1

Die zweite Gleichung ergibt sich entsprechend durch Betrachtung der Funktion
Pa(x2). W

Bemerkung 4.2 : Die Gleichungen (4.9) gelten auch, wenn f(x;, x;) bei P(x, ), x,®) einen
(relativen) Extremwert im weiteren Sinne besitzt. Die Untersuchung konkreter Bei-
spiele zeigt nun, daB die Bedingung (4.9) nur eine notwendige, aber keine hinreichende
Bedingung fiir das Vorliegen eines Extremwertes an der Stelle P(x;(®), x,) ist.

Beispiel 4.3: Es sei f(x;, X3) = x1%; (—o0 < X3, X, < +00). Es gilt fi; = x,, fiz = ;.
Die Gleichung (4.9) ist (genau dann) erfiillt, wenn x, = 0 und x, = 0 gilt. Hat die
Funktion f(x,, X;) = x;%, bei P(x;), x,) = P(0, 0) einen Extremwert? Dazu be-
trachten wir die Funktion f(x,, x,) auf der Geraden g* mit der Parameterdarstellung
X3 =1, X =t (—o0 < t < +). Die Gerade g+ geht durch den Punkt P(0, 0), und
es gilt auf g* die Gleichung?)

Saxnx) |gr=ft, )= 1 (—o00 <t <+ ).
Wegen £(0, 0) = 0ist f(0, 0) < f(t, ¢) fiir 0 < [¢|. In jeder Umgebung von P(0, 0) gibt
es also Punkte mit groBerem Funktionswert als an dieser Stelle. Andererseits betrach-
ten wir die Funktion f(x,, x,) auf der Geraden g~ mit der Parameterdarstellung
X1 =1, Xp=—t (—o0 <t < +). Die Gerade g~ geht durch den Punkt P(0, 0),
schneidet die Gerade g+ unter rechtem Winkel, und es gilt auf g~ die Gleichung

S, %) (g7 =St —t)=—1* (o0 <t <+ o).
Es gilt also £(0, 0) > f(t, —1) fiir 0 < |¢|. In jeder Umgebung von P(0, 0) gibt es also
Punkte mit kleinerem Funktionswert als an dieser Stelle. Eine Skizze des Funktions-
verlaufes zeigt, daBl bei P(0, 0) ein ,,Sattelpunktverhalten* vorliegt. Die Stelle P(0, 0)
kann daher weder eine Maximal- noch eine Minimalstelle (auch nicht im weiteren
Sinne) der Funktion f(x,, x,) sein, denn es gibt keine Umgebung von P(0, 0), in der
alle Funktionswerte entweder groBer (oder gleich) als £(0, 0) oder kleiner (oder gleich)
als f(0, 0) sind. Es sind also zusitzliche Entscheidungsregeln iiber das tatsichliche
Vorliegen eines Extremwertes erforderlich. Wir nennen einen Punkt P(x, @, x,), fiir
den die Gleichungen (4.9) gelten, einen stationdren oder kritischen Punkt oder eine
kritische Stelle der Funktion f(x,, x,). Unsere Frage muB also lauten: Wann ist ein
kritischer Punkt vonf{(x,, x,) eine Extremalstelle?

4.2.2,  Hinreichende Bedingungen fiir das Vorliegen eines Extremwertes

Satz 4.2: Es sei f(x,, X,) eine in einem Gebiet G < R? definierte reelle Funktion, die in
G zweimal stetig differenzierbar ist. Ferner sei P(x,®), x,®) ein kritischer Punkt von f
in G, und es sei D die sogenannte Diskriminante von f(x,, x;) im Punkt P(x,®, x,),

1) Es bezeichne |4 die Einschrinkung einer Funktion f auf die Menge A (vgl. Bd. 1).
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die durch die Gleichung
D = finfize — (firef (4.10)
definiert ist, wobei die auftretenden partiellen Ableitungen an der Stelle x; = x,),

X, = X,©) zu nehmen sind. Dann gelten die folgenden Entscheidungsregeln fiir das Vor-
liegen eines Extremwertes an der kritischen Stelle P(x,®), x,)):

a) Ist D <0, so hat f(x,, X,) an der Stelle P(x,®), x,()) keinen Extremwert.*)

b) Ist D >0 und fi);(x,©), x,®) >0, so hat f(x1, x) an der Stelle P(x,*, x,\*))
ein relatives Minimum.

¢) Ist D > 0 und fi;;(x,9, x,®) < 0, so hat f(x1, x2) an der Stelle P(x,®), x,) ein
relatives Maximum.

Bemerkung 4.3: Ist unter den Voraussetzungen des Satzes 4.2 die Gleichung D = 0
an der Stelle P(x,(©), x,©) erfiillt, so 1aBt sich auf Grund dieser Tatsache allein noch
keine Entscheidung iiber das Vorliegen oder Nichtvorliegen eines Extremwertes
treffen. Zum Beispiel hat die Funktion fi(x;, X5) = (%) + (x;)* an der Stelle x,®
=0; x,» =0 ein relatives Minimum; zum anderen hat die Funktion f,(x;, x;)
= (x,)* + (x2)* an der Stelle x,® = 0; x,® = 0 keinen Extremwert. Fiir beide Funk-
tionen gilt an der kritischen Stelle x,® = 0; x,® = 0 die Gleichung D = 0. Stellt man
also fest, daB an einer kritischen Stelle der Funktion f(x;, x,) die Bezichung D = 0
gilt, so sind zusatzliche Untersuchungen iiber das Vorliegen eines Extremwertes erfor-
derlich.

Fiir einen vollstindigen Beweis des Satzes 4.2 verweisen wir auf [7].

Damit aber die Niitzlichkeit der Taylorformel besser zum Ausdruck kommt, be-
weisen wir wenigstens die Teilaussage (Satz 4.2b).

Beweis von 4.2b): Es sei (xy, y,) eine kritische Stelle von f(x, y), und es seien 4, k
reelle Zahlen mit 4* 4+ k* = 6% (6 > 0) sowie
x =Xxy+th
Y=y +1k
beliebige Punkte aus einer -Umgebung von (x,, y,), wobei iiber den Wert von d wei-
ter unten noch verfiigt wird.

Die Taylorsche Formel liefert bei Verwendung des Restgliedes zweiter Ordnung in
jeder solchen (hinreichend kleinen) d-Umgebung

S, 3) = f (%05 yo) + %fu((xo,yo) th + fis(xo, yo) tk)
+ % (finn(xo + Oth, + y, Stk) 122

+ 2fi1a(xo + Dth, yo + Otk) 12hk + figs (Xo + Fth, yo + Ftk) 12k?)
0<e<I).
Da (x,, o) ein kritischer Punkt von f'ist, verschwindet die erste Klammer, und wir
erhalten

S, y) = f(x0, yo) + %2' (auh® + 2aphk + ayk?®) = f(xq, o) + ';i O(h, k),

}, o<1,

1) Die durch z = f(x,, x,) dargestellte Fliche besitzt an der Stelle (x,(®, x,(®) einen Sattelpunkt.

8%
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wobei zur Abkiirzung
ay = fin(xg + Oth, yo + 9tk);  aws = fira(xo + Oth, yo + Dtk);
Qo = fina(Xo + Dth, yo + 9tk);  Q(h, k) = ayh® + 2ahk + ayk?

gesetzt wurde.
Somit gilt

1) = 50,390 =500, ). S

O(h, k) ist eine quadratische Form (vgl. Bd. 13,4.1.), deren Koeffizienten a,,, a,,, a,,
nach Voraussetzung (f(x, y) zweimal stetig differenzierbar) stetig von ¥4, t, h, k ab-
hangen. Speziell gelten fiir # — 0 die Limesrelationen

ltino‘ ay; = fin (%o, Yo); ltiﬂ; ays = fira (X0, Yo);

ltin;’l 35 = fiaa (X0, Yo)-

Es gelte nun f{3;(xo, o) > 0 und D = fi3;f15; — f232 > 0 (an der Stelle (x,, y,)). Aus
Stetigkeitsgriinden (f(x, y) zweimal stetig differenzierbar) gilt dann

a; >0 und 45,85 —ap? >0 **)

fir hinreichend kleines d >Ound alle &, ¢, b, k mit 0 <3 < 1, [t| < 1, B + k* = 0%
Wir formen um (man beachte die Relation a;; > 0):
ap \P K 9
Q(h k)= ay ((h + *k) +—5 (31822 — aig)) .
an a5

Da wegen h? + k?* = ¢ nicht gleichzeitig 4 und k gleich null sein kénnen, ist Q (h, k)
wegen (**) positiv. Folglich ergibt sich aus (*) die Ungleichung

SCx, ) = fxos o) >0

fiir alle (x, y) == (xq, »o), die in einer hinreichend kleinen 6-Umgebung von (o, o)
liegen. Somit besitzt f(x, y) an der Stelle (x,, y,) ein relatives Minimum. Entsprechend
wird die Aussage c) bewiesen. m

Beispiel 4.4: Es sei f(x,y) =} x® —dxy+ 95® + 3x — 14y + }. Gesucht sind die

Extremwerte von f(x, ). Es gilt a—£ =x—4y+3; a—f = —4x + 18y — 14. Als not-
wendige Bedingung fiir eine kritische Stelle von f(x, y) haben wir die beiden Glei-
chungen
x— 4y+ 3=0,
—4x 4+ 18y — 14=0,
*f L L %

aus denen sich x, =1, y, =1 ergibt. Wegen 2= 3 =18; —ax—a—y—— —4

AV O\ 4 ‘ .
erha]tenwer—(W)(a—yz)-—(axay>_18—16—2,alsoD > 0. Es ist also in
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. 0%f e
P(1, 1) ein Extremwert von f(x, y) vorhanden, der wegen e 1 >0 ein Minimum
ist. Der Wert von f(x, y) betragt dort f(1, 1) = —5.

Beispiel 4.5: Die Summe S = x + y + z der Kantenléingen x, y, z eines Quaders sei
gegeben. Wie lang sind diese Kanten zu wéhlen, damit der Oberflicheninhalt des
Quaders maximal wird? Es sei 4 der Oberflicheninhalt des betrachteten Quaders,
dann gilt A = 2(xy + yz + xz). Wir eliminieren die Variable z durch die Bezichung
z=S8—x—y (S ist konstant). Daher wird 4 =f(x,y)=2(xy +y(S—x—y)
+ x(S — x —y)) =2(—x* — xy — y* + Sx + Sy). Als notwendige Bedingung fiir eine
kritische Stelle von f(x, y)erhalten wird durch Nullsetzen der ersten partiellen Ablei-
tungen die Beziehungen

2=2x— y+8)=0,
2= x—2y+8)=0,

2
woraus sich x=13S, y=1S und daher auch z=} S ergibt. Wegen% =—4,

of Ay ¥\ . D
B —4; W =-2gltD= <6x2 ) (6_))2) — (Gx 6y) =12; d.h., D ist positiv.
Also liegt ein Extremwert fiir 4 an der Stelle x =14 S; y=1S vor, der wegen
o
0x?
male Oberfliche 4,,,, ist gleich /(3 S; 3 )= § S%

= —4 < 0 ein Maximum ist. Der gesuchte Quader ist ein Wiirfel; die maxi-

Zum Abschlul dieses Abschnittes formulieren wir noch die einfachsten Kriterien
fiir das Vorliegen eines relativen Extremwertes einer Funktion von n Variablen. Alle
Definitionen sind vom Fall der Funktionen zweier Variabler her sinngemi8 zu iiber-
tragen.

Satz4.3: Es sei f(xy, ..., x,) eine in einem Gebiet des R™ definierte und dort stetig
differenzierbare Funktion mit reellen Werten. Besitzt f(xy, ..., x,) an der Stelle
P(x;®, ..., x,0) einen (relativen) Extremwert, so gilt notwendig

S0, ey %,0) = 05 fiz (061, ey %2®) = 0505 fin (1, oo, %,@) = 0
4.11)
oder kiirzer:
df(x, @, ..., x,@) = 0. (4.11")
Zur Entscheidung iiber das Vorliegen eines (relativen) Extremwertes an einer Kri-
tischen Stelle einer zweimal stetig differenzierbaren Funktion untersucht man die

quadratische Form der Matrix (sog. Hesse')-Matrix) der zweiten partiellen Ableitungen
H = [a,] mit )

= e *19, oo, %,9) = fian(x,, ..., x,®)
i axi axk Sl »*n il 1% s n i)
d.h. die Form
Q15 w5 ¥n) =k§; g;aikyiyk- (4.12)

1) Ludwig Otto Hesse (1811-1874)

S.4.3
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Dann gilt der folgende Satz:

Satz 4.4 (Entscheidungsregel) :

1. Ist die quadratische Form Q = Q(y) (s. (4.12)) fiir alle von o verschiedenen Vek-

N1
toren y = [ : ] positiv (man sagt: Q ist positiv definit), so hat f(x,, ..., x,) an der

y’l
Stelle P(x,, ..., x,) ein (relatives) Minimum.
2. Ist die quadratische Form Q = Q(y) (s. (4.12)) fiir alle von o verschiedenen Vek-

N
toren y = [ : ]negativ (man sagt: Q ist negativ definit), so hat f(x,, ..., x,) an der

Yn
Stelle P(x,©), ..., x,) ein (relatives) Maximum.

3. Nimmt die quadratische Form Q = Q(y) (s. (4.12)) sowohl positive als auch negative
Werte an (man sagt: Q ist indefinit), so hat f(x,, ..., x,) an der Stelle P(x,, ..., x,)
keinen Extremwert.

(Fiir die Beweise der Sitze 4.3 und 4.4 siche z.B. [4].)

Bemerkungen :

1. Fiir den Fall, daB die quadratische Form Q = Q(y) fiir alle Vektoren y nicht-
negativ bzw. nichtpositiv ist, aber fiir gewisse y = o gleich null ist (man sagt: Q ist
positiv bzw. negativ semidefinit), sind zusétzliche Untersuchungen erforderlich (der
obige Satz liefert dann keine Entscheidung).

2. Fiir n = 2 sind die Aussagen der Sitze 4.2 und 4.4 gleichwertig. Dies zeigt eine
einfache, hier iibergangene Betrachtung.

3. In vielen praktischen Fillen ergibt sich das Vorliegen eines Extremwertes an der
untersuchten kritischen Stelle nach folgendem einfachem Prinzip, das die Anwendung
der Entscheidungsregel (Satz 4.4) eriibrigt (und auf dem WeierstraBschen Satz iiber
stetige Funktionen auf abgeschlossenen beschrinkten Definitionsbereichen im R"
beruht):

Ist f(x;, ..., X,) auf der AbschlieBung G eines beschrinkten Gebietes G < R" defi-
niert und stetig und in G differenzierbar, besitzt ferner f(xy, ..., x,) in G einen ein-
zigen kritischen Punkt P, und gilt die Ungleichung f(P,) < f(P) fiir alle Randpunkte
Pvon G (d. h. fiir alle P € (G \ G)), so ist P, die Stelle des absoluten Minimums von
S(X1, ey X)) in G (d. h. f(Py) < f(Q) fiir alle Q € (G \ {P,})). Eine entsprechende
Aussage gilt fiir das absolute Maximum von f(x;, ..., Xn).

Hiufig gegebene Begriindungen der Form ,,nach der Anschauung ist klar, da8
f(x1, ..., X,) an der gefundenen kritischen Stelle einen Extremwert besitzt™ entbehren
oft jeder Grundlage.

4. Zur praktischen Benutzung der Entscheidungsregel ist die folgende Tatsache niitz-
lich: Die quadratische Form Q(y) ist genau dann positiv (negativ) definit, wenn alle
Eigenwerte der zugehdrigen symmetrischen Matrix [a;] positiv (negativ) sind. (Auf
diese Weise ergibt sich auch der Satz 4.2.; vgl. hierzu auch Bd. 13; 4.1, 4.2.5.)
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4.2.3. Extremwertaufgaben mit Nebenbedingungen

Extremwertbetrachtungen finden bei vielen Problemen sowohl in Naturwissen-
schaft, Technik und Okonomie im Rahmen der sog. ,,Operationsforschung zahl-
reiche Anwendungen. Das Ziel besteht immer darin, unter allen méglichen Varianten
diejenige zu finden, die im Hinblick auf ein besonderes Merkmal (z.B. Kosten in
Mark; Energieverbrauch in kWh) eine bestmogliche Variante darstellt. Diese best-
mégliche oder, wie man sagt, ,,optimale” Variante realisiert unter den gegebenen
Bedingungen z.B. die geringsten (= minimalen) Kosten oder den geringsten Energie-
verbrauch. Das betrachtete Merkmal heiSt auch ,,Zielfunktion®, wenn es als eine
Funktion der Variablen, die die moglichen Varianten beschreiben, dargestellt wer-
den kann. Rein duBerlich haben wir damit die folgende Problemstellung. Gegeben
ist eine Funktion f(x;, ..., X,), die in einer gewissen Menge G des R™ erklart ist. Ge-
sucht sind alle Punkte P(xy, ..., X,) aus G, in denen f(xy, ..., X,) einen minimalen
(bzw. maximalen) Wert annimmt, d.h., fiir welche die Ungleichung

Sy ooy %) S f(015 0005 %) (4.13)

fiir alle P(xy, ..., x,) aus G gilt. Ist die Menge G ein beschrinktes Gebiet des R", so
liegt die in den vorangegangenen Abschnitten behandelte Problemstellung der Be-
stimmung relativer Extremwerte vor: Zur Bestimmung der Punkte P(x, ..., X,)
ermittelt man alle relativen Minimalstellen und nimmt alle Punkte davon, in denen
die Funktion f(x,, ..., x,) den kleinsten Wert der (endlich vielen) relativen Minimal-
werte annimmt. (Dieser kleinste Wert heiBt auch das absolute Minimum von f(x;, ..., X,)
in G.) In der Praxis liegt jedoch meist der Fall vor, daB die Menge G. kein Gebiet
ist, sondern u.U. sogar eine recht komplizierte Struktur hat. Wir betrachten hier nur
den Fall, in welchem die Menge G durch Gleichungen beschrieben werden kann. Ist
z.B. die Menge G eine Kugeloberflache im R® mit dem Mittelpunkt (xy, o, Zo) und
dem Radius a > 0, so lautet die Beschreibung der Menge G in Gleichungsform:

={(0 2| —x)+ =y + (2 — 2)* = @}
oder kurz
G:(x=X)+@=y)+(z—2z)=a
oder auch
G:i(x—x) + =y + E—mP — @ =0.

Gerade die letztgenannte Form der Beschreibung von G erweist sich fiir die Behand-
lung von Extremwertaufgaben als zweckmaBig. Ist nun eine (Ziel-) Funktion gegeben,
z.B. f(x,y,z) = x + y + z, die auf der Menge G betrachtet werden soll, so stellt die
Gleichung

X=Xl + =yl +GE—zp—a=0

eine Zusatzbedingung oder Nebenbedingung (Restriktion) dar, die die Menge aller
zum Vergleich zugelassenen Punkte festlegt. Die Funktion f(x, y, z) = x + y + z ist
also nicht schlechthin zu einem Minimum (bzw. Maximum) zu machen, sondern
unter der Einhaltung von Nebenbedingungen. Dies fiihrt auf folgende Definition:
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Definition 4.2: Es sei f(xy, ..., X,) eine in einem Gebiet G des R" erklirte reelle Funk-
tion. Die Menge G, C R™ sei die Menge aller Punkte P(x,, ..., X,) aus G, fiir welche
(gleichzeitig) die folgenden Gleichungen gelten (m < n):
@1(X15 o0y Xn) = 0,
L R (N)
(Pm(xl; eeey xn) = 0)

wobei die Funktionen @1(Xy, ..., Xn)s vors @m(X1, .., Xn) reelle, in G erklirte Funktionen
sind. Die Aufgabe: ,,Man bestimme alle Punkte P(X;, ..., X,) aus G, mit

f(}h 00 J_C,,) éf(xlx eeely xn)

fiir alle P(xy, ..., X,) aus Gy* heifit das Minimumproblem fiir f(x,, ..., x,) unter den
Nebenbedingungen (N) (bzw. Restriktionen (N)).

Ist anstelle des Minimums von f(xy, ..., X,) das Maximum von f(x,, ..., X,) ge-
sucht, so sprechen wir' von einem Maximumproblem mit Nebenbedingungen; beide
Maoglichkeiten zusammenfassend, sprechen wir von einem Extremwertproblem mit
Nebenbedingungen.

Mittels der Differentialrechnung 14Bt sich eine einfache notwendige Bedingung
dafiir aufstellen, daB ein Punkt eine Extremalstelle eines Extremwertproblems mit
Nebenbedingungen ist. Diese Bedingung ist die sogenannte Multiplikatorenregel von
Lagrange, die wir im folgenden Satz formulieren:

Satz 4.5 (spezieller Fall): Es sei f(x,y) eine im Gebiet G = R* definierte (reelle)
differenzierbare Funktion, ebenso sei g(x,y) in G definiert und differenzierbar. Wir
setzen H(x,y; %) = f(x,y) + Ag(x, y) (4 reell). Besitzt f(x, y) an der Stelle P(x,, y,)
unter der Nebenbedingung g(x,y) = 0 einen (relativen) Extremwert (Maximum oder
Minimum) und gilt |g.(xo, yo)| + 18,(X0, Yo)l > 0, so gibt es ein A, mit

0H 0H
Sy *XosYo3 ko) =0 und W(xm}”oﬂo) =0. (4.14)

Die Zahl A, heift ein Lagrange-Multiplikator des betrachteten Extremwertproblems.

Die Gleichungen (4.14), sowie die Nebenbedingung g(xo,,y,) = 0 bilden ein
System von drei (im allgemeinen nichtlinearen) Gleichungen fiir die drei gesuchten
Werte von Xo, Jo, 4o. Im Beispiel 4.6 wird die Auflgsung dieser Gleichungen an einem
Spezialfall erldutert.

Satz 4.5 (allgemeiner Fall): Essei f(x,, ..., X) eine im Gebiet G < R™ definierte (reelle)
differenzierbare Funktion, ebenso seienm < n (reelle) stztig differenzierbare Funktionen
@1(X15 ees Xn)y ooy @m(X1, ooy X)) in G gegeben. Es sei H(Xy, ..., Xn; Ary ovy Am) =

TGty eees Xn) + 2 A@re(%1, ..., Xn), Wwobei die A beliebige reelle Zahlen bezeichnen.
k=1

Der Rang der Matrix (p,s) sei an der Stelle (x,'9, ..., x,/®) gleich m. Notwendig fiir

das Eintreten eines Extremwertes (relatives Maximum oder Minimum) an der

Stelle (x,®, ..., x,0) fir die Funktion f(x,, .., X,) unter den Nebenbe-
dingungen @y(x1, ..., X)) = 0, .., @m(x1, ..., Xx) = O ist das Bestehen der
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Gleichungen
OH 0H 0H ,
‘5;1—=0,—6;2-=0,...,m—0 (4.14)

an der Stelle (x,%), ..., x,©) fiir gewisse Ay,..., A, sowie die Giiltigkeit der Beziehungen

P1(, .., x,0) =0,
. (4.15)

P (9, ..y %, @) = 0.
Die Gleichungssysteme (4.14"), (4.15) bilden ein System von insgesamt n + m Glei-

chungen fiir die n + m Unbekannten x,), ..., x,; ,, ..., 4. Fir die Anwendung
des Satzes 4.5 bei Optimierungsaufgaben siehe auch [17].

Beispiel 4.6: Welche Punkte der Ellipse 4x* + y* — 4 = 0 haben vom Punkt P(2;0)
extremalen Abstand (relative Extremwerte)?

Lésung: Wir betrachten zur Vereinfachung der Rechnung das Quadrat des Ab-
standes des Punktes P(2, 0) von einem beliebigen Ellipsenpunkt P(x, y). Hat dieser
Abstand ein Maximum (Minimum) an einer bestimmten Stelle, so gilt das gleiche fiir
sein Quadrat. Wir betrachten daher die Funktion

S p) = (x =27 +)"

Als Nebenbedingung (Restriktion) kommt hinzu, daB der Punkt P(x, y) auf der El-
lipse liegen soll. Es muf3 daher die Gleichung

P(x,»)=0
gelten mit @(x, y) = 4x® + »* — 4. Nach Satz 4.5 bilden wir die Funktion

H(x, y; 2) = f(x,y) + 29(x, ),

H(x,y; )= (x =22+ )+ A@x*+ > — 4),
und stellen das Gleichungssystem fiir (xy, yo; 4)

0H OH

also

w0 W=0’ P(x,»)=0
auf. Im Beispiel lautet dieses System

2(x—=2)+8ix=0, 2y+2ly=0, 4x+y*—4=0.
Die zweite dieser Gleichungen kann in der dquivalenten Form

yQ+24)=0

geschrieben werden. Es ist also entweder A= —1 oder 4 < —1 und im letzteren
Falle y = 0. Im Fall 2 = —1 erhalten wir aus der ersten Gleichung den Wert x = —%
und damit aus der letzten Gleichung die Werte y = 2}/5 und y = —3}5. Im Fall
A== —1 erhalten wir wegen y = 0 aus der letzten Gleichung den Wert x = 1 oder
x= —1. Aus der ersten Gleichung ergeben sich die zugehorigen Werte von 4 zu
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A=} bzw. A= —}. Wir erhalten also die folgenden Lésungssysteme

n= 1L yn= 0 A=}

Xo=~—1; yo= - 0; A=-%

x=-% n= 3% h=-1

x=—% y=-415% A=-L
Zu diesen Losungen gehoren die folgenden Werte von f(x, y): f(x1, y1) = 1; f(x2, y2)
=9; fxs, ya) = (x4, yo) = %- Wie man aus der Ungleichung f(x;, ) < f(x3, y3)
erkennt und mittels Bild 4.1 begriinden kann, gelten die folgenden Feststellungen:

P(x;, y,) ist ein Punkt, fiir den der Abstand ein relatives Minimum (hier sogar das
absolute Minimum) hat;
P(x, ;) ist ein Punkt, fiir den der Abstand ein relatives Minimum hat;

P(x3, y3); P(x4, ys) sind Punkte, in denen der Abstand ein relatives Maximum (und
sogar das absolute Maximum) annimmt.

~N
~_P(20
() Bild 4.1

Es stellt sich natiirlich sofort die Frage, ob es nicht moglich ist, gewisse hinreichende
Kriterien dafiir aufzustellen, daB eine mittels der Lagrange-Multiplikatorenmethode
gefundene Stelle wirklich eine Extremalstelle ist. Im néchsten Abschnitt werden wir
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(ohne Beweis) eine solche Bedingung angeben und ihre Anwendbarkeit bei verschie-
denen Beispielen zeigen. Den Beweis des Satzes 4.5 fithren wir fiir den Spezialfall, daB
eine Funktion f(x,, x,) zweier unabhangiger Verdnderlicher unter einer Nebenbedin-
gung der Form g(x,, x,) = 0 auf Extremwerte hin zu untersuchen ist. Zur Vorberei-
tung des Beweises von Satz 4.5 beweisen wir einen Hilfssatz:

Hilfssatz 4.1: Im Gebiet G < R? seien die reellen Funktionen f(x,, x;) und g(x, xs)
stetig differenzierbar. Der Punkt Py= P(x,%), x,(*)) sei ein Punkt von G mit g(Py)=
2(%,©), x,) = 0 und f(Py) = f(x,, x,®) = z,. Der Rang der Matrix A= [f" g“]
((fis; g1:) gebildet an der Stelle (x,0), x,)) sei gleich 2. Jie 8o

Dann besitzt die Funktion f(x,, x;) unter den Nebenbedingungen g(x,, x,) =0 an
der Stelle Py = P(x,%), x,) keinen relativen Extremwert.

Beweis des Hilfssatzes 4.1: Es sei U eine beliebige, in G enthaltene Umgebung von
P,. Wir zeigen, daB in U sowohl Punkte liegen, die die Nebenbedingung g(x,, x,) = 0
erfiillen und in denen f(x,, x,) groBere Werte als z, = f(P,) annimmt, als auch solche
Punkte, die diese Nebenbedingung erfiillen und in denen f(x;, x,) kleinere Werte als
= f(P,) annimmt.
Nach der Voraussetzung iiber den Rang von A gilt
Sis(Po) gi11(Po)
Sia(Po) g12(Po)

Wir betrachten das Gleichungssystem
fCx1, %) =20+ h,
g(x1,x9) =0,

det A=

wobei £ ein reeller Parameter ist. Wegen det A == 0 ist auf dieses Gleichungssystem
der Satz von der impliziten Funktion anwendbar (Satz 3.12). Nach diesem Satz folgt,
daB es ein d; > 0 gibt, so daB das obige Gleichungssystem fiir || < 6, nach x; und
x auflosbar ist: x; = gy(h); %, = @a(h) (| = &), wobei 1, = p,(0); x,® = y(0) gilt
und der Punkt (¢,(h), @,(h)) fir [h| < 6, in U liegt.

Wir setzen x,) = ¢;(—d,); X,V = @o(—0;) und erkldren damit einen Punkt P,
= P(x;®, x,M), entsprechend sei x;®) = @;(;); @ = @y(8,) und Py = P(x,®), x,@)),
Die Punkte P, und P, liegen in U, und nach Definition der Auflésungsfunktionen
@:fh), @o(h) gelten die Beziehungen (z, = f(Py)):

JPy) =z, — 6, <z, und g(Py) = 0;
f(Py) =z, + 0, >z und g(P,) = 0.

Damit ist der Hilfssatz bewiesen. ®

Zum Beweis des Satzes 4.5 (fiir unseren Spezialfall) erglbt sich mittels des eben
bewiesenen Hilfssatzes 4.1 als notwendige Bedingung fiir einen Punkt P, aus G mit
8(Py) =0 als Stelle eines relativen Extremwertes von f(x;, x,) unter der Neben-
bedingung g(x;, x;) = 0 die Forderung, daB der Rang der Matrix A = [ﬁl(P“) 8 1(P°)]

. . g1(Po) f12(Po) &12(Po)
kleiner ist als 2. Da der Rang von [Eil( P")] nach Voraussetzung (des Satzes 4.5)
214 0.
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gleich 1 ist, muB der Rang von A ebenfalls gleich 1 sein. Daraus folgt, daB das
homogene lineare Gleichungssystem fiir die Werte 4, und 4,

Mfii(Po) + Ao811(Py) = 0,
Mfis(Po) + Aog1o(Po) = 0

eine nichttriviale Losung (4,, 4, nicht beide gleich null) besitzt. Da gi,(P,) und gi»(Py)
nicht beide gleich null sind, ist 4, = 0. Teilen wir die beiden letzten Gleichungen

durch 4, und setzen wir 1 = Aﬁ , so sehen wir, daB es eine reelle Zahl 2 gibt, fiir die die
Gleichungen 1

Sia(Po) + Ag11(Py) = 0,
Sia(Po) + Agio(Po) = 0

erfiillt sind. Damit ist die Behauptung des Satzes 4.5 (fiir den betrachteten Spezial-
fall) bewiesen. ®

4.24. Hinreichende Bedingungen fiir das Vorliegen relativer Extremwerte
‘ fiir Extremwertaufgaben mit Nebenbedingungen

Analog zu den hinreichenden Bedingungen, die wir fiir Extremwertaufgaben ohne
Nebenbedingungen angegeben hatten (s. 4.2.2.), lassen sich auch fiir Extremwert-
aufgaben mit Nebenbedingungen hinreichende Bedingungen mittels des Verhaltens
einer aus den zweiten Ableitungen gebildeten quadratischen Form formulieren. Die
Besonderheit, welche neu hinzukommt, ist darin zu sehen, daB die zu betrachtende
quadratische Form jetzt nur auf einem Teilraum des R" auf (positive, negative) Defi-
nitheit zu untersuchen ist. Zur Verdeutlichung dieses Sachverhaltes betrachten wir
zunichst das Beispiel am Ende des vorangegangenen Abschnitts. Wir hatten fest-
gestellt, daB die Funktion

S y)=(x—2¢+ )
mit der Nebenbedingung
P y) =4+ —4=0

im Punkt (x;, y;) = (1,0) ein Minimum annimmt. Bei der Untersuchung, ob die
Funktion f(x, y) dort tatsichlich ein Minimum (bei Einhaltung der Nebenbedingun-
gen) annimmt, muB man die Funktionswerte von f(x, y) mit dem Funktionswert
f(x1, y1) = 1 fiir zu (x,, y;) benachbarte (x, y) vergleichen und zeigen, daB die Unglei-
chung f(x, y) = f(x;, y,) fiir alle hinreichend nahe benachbarten (x, y), die der Neben-
bedingung geniigen, gilt. Es ist sinnvoll, diese zu (x,, ;) benachbarten Werte (x, y)
inder Form x = x; + Ay, y = y, + hy zu schreiben. Es interessiert also das Vorzeichen
der Differenz

SGey + hus yy +he) = fx1, 31)
fiir |hy| + |hs| < & (6 hinreichend klein) bei Einhaltung der Nebenbedingung
400+ m)P*+ (On + b)) —4=0.
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Die letzte Bedingung 1dBt sich aber wegen des Bestehens der Beziehung

Ax?+y*—4=0

auch in der Form 4(2x,h, + h?) + (2y1hy + h*) = 0 schreiben. Division durch 2
ergibt schlieflich

4x:h; + yihy + 2% + é h22) =0.

Da hy, hy betragsméBig kleine Werte sind, wird das Verhalten der linken Seite letz-
terer Gleichung hauptsichlich durch den linearen Anteil (4x,/4; + y,h;) bestimmt.
Man kann zeigen, daBl man die Glieder hoherer Ordnung tatsdchlich vernachléssigen
darf und daher mit solchen Anderungen 4, h, arbeitet, fiir die 4x.h, + yihy = 0
gilt. Im Beispiel (x; = 1; y, = 0) lautet diese Bedingung 4k, = 0 oder A, = 0.

Diese Gleichung legt in der 4, /,-Ebene einen linearen Teilraum fest, ndmlich den
Teilraum E = {(hy, hy) | b, = 0; h, beliebig}, der mit der h,-Achse identisch ist. Die
geometrische Deutung dieses Teilraumes ist die folgende: durch Parallelverschiebung
dieses Raumes derart, daB der Punkt (x;, y;) in dem parallel verschobenen Teilraum
liegt, erhdlt man die Tangente an die Kurve 4x* + y* — 4 = 0 (Ellipse) im Punkt
(1, y1). Die betrachteten Anderungen x = x; + h;, y = y, + h; werden also durch
solche ersetzt, fiir die der Punkt (x, y) nicht die Nebenbedingung ¢(x, y) =0 (mit
@(x,y) = 4x> + y* — 4) erfiillt, sondern auf der Tangente an die Kurve ¢(x,y) =0
im Punkt (x,, y,) liegt. Das Vorzeichen der interessierenden Differenz

SOe1+ by, y1+ ho) =[x, 1)

wird daher durch das Verhalten einer mit den zweiten Ableitungen von f(x, y) und
@(x, y) gebildeten quadratischen Form auf dem zur Tangente durch den Punkt (x,, y;)
an die Kurve ¢(x, y) = 0 parallelen linearen Teilraum E (durch den Punkt (0, 0))
beschrieben. Die exakte allgemeine Formulierung dieser Aussage ist der Inhalt des
folgenden Satzes.

Satz 4.6: Es sei G ein Gebiet des R* und f(x,, ..., x,) eine reellwertige zweimal stetig S.4.6
differenzierbare in G definierte Funktion, eb seien die Funktionen @,(xy, ..., X3); ovy
@m(X1s vy Xn) in G zweimal stetig differenzierbar (m < n). Das Gleichungssystem
oH .
FE= 0, i=1,..,n,
(pl(xls ey xn) = 0’

Pm(X15 0, X) = 0,
wobei

H(X1, ooy Xnj Ay cvey Am) = f(X15 ooy Xn) + éi/’l.«pi(xl, wes Xp)
ist, besitze die Losung

x1 @, oy X, 2,0, 0y A, ).

An dieser Stelle (x,'?, ..., x,®) sei der Rang der Matrix (py) gleich m.
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Dafiir, dap die Stelle (x,, ..., x,©) eine Stelle eines relativen Minimums ( Maximums)
der Funktion f(x,, ..., X,) unter den Nebenbedingungen

‘Pl(xh sesy xn) 0

¢m(x1,. ,xn) 0
ist, ist hinreichend, daf die quadratische Form

0=0(h, .., )= 3 3 Hij(x;, ., .05 1@, ., 2n®) ik (4.16)
_ fr s’
auf dem linearen Teilraum E aller Vektoren (h,, ..., h,), die den Gleichungen

n
2 Puila®, ., x.®) b =0,
&

S Pmli(%19, vy X, O) B =0 (4.17)
i=1

geniigen, positiv (negativ) definit ist. Ist Q auf E indefinit, so liegt an der Stelle
(19, ..., X,®)) kein Extremwert der Funktion f(x,, ..., X,) unter den gestellten Neben-
bedingungen vor.

Das Arbeiten mit der in Satz 4.6 formulierten hinreichenden Bedingung erliutern
wir am Beispiel der am Ende von Abschnitt 4.2.3. behandelten Extremwertaufgabe.
Die Funktion H(X;, ..., Xa} A1 ..., Am) hat dort die (bereits friiher angegebene) Form

H(x,y; H=(x=27+y* + 2(4x2 +y* — 4).

Es gelten daher die folgenden Beziehungen Hiy = Hop =2+ 84, Hijp= Hiyy = Hyy
= Hyz =0, Hyg, = Hy, =2+ 2. Die quadratische Form Q = Q(hl, hy) hat also d1e
Gestalt (fiir behebxge Punkte (x, y; 4)

O, he) = 2+ 82) h® + 2 + 22) .

Wir erhielten bei der fritheren Betrachtung dieser Extremwertaufgabe vier Losungen.
Fiir jede von diesen muB auf dem jeweils zugehorigen Teilraum E die Definitheit der
zugehorigen quadratischen Form Q untersucht werden. Die Gleichung fiir den linea-
ren Teilraum E lautet allgem&in

Pu% ) b+ @a(x, ) b = 0
mit p(x, y) = 4x* + »* - 4, also
8xh, + 2yh, = 0.
Fiir x, y; A sind jeweils die speziellen Werte der betrachteten Losung einzusetzen. Wir
erhalten also die folgenden Fille fiir E und Q:
Fir (s, 735 2) = (1,0 ) it

2)
Eyih=0, QU h)=5ht
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N 3\ .
Fir (xz, yo; 42) = (-1,0; ;) gilt
1
Ey:hy=0, Q(hy,h)= 7"22-

. 2 2 .
Fir (x3, 33 A) = (—3,-5 }/3; —l)gllt
16

Es:—~3~

4 .
h +§1/§ hy=0, Q(hy, hy) = —6h2.

Fir (v 240 = (= 3, = 515 —1) it

16 4
E,: _Thl —;Vghz =0, Q,h)=—6h7.

Wir betrachten weiter den Fall der Lésung (x;, yi; 4,). Gilt (A, h) € E; und
(hy, hy) == (0, 0), so muB wegen k; = 0 notwendig h, = 0 gelten. Dann ist aber Q (hy, hy)
= § hy? eine positive Zahl, Q(h,, k) > 0. Mit anderen Worten, Q(h;, h,) ist auf E;
positiv definit, nach Satz 4.6 liegt bei (x;, y;) ein Minimum der Funktion f(x, y)
(unter der Nebenbedingung ¢(x, y) = 0) vor. Man beachte, daB die quadratische
Form Q(hy, hy) = § h,?, wenn wir sie auf dem gesamten R? betrachten (also fiir (4, /)
simtliche Werte und nicht nur die mit A, = 0 zulassen), keineswegs positiv definit,
sondern nur positiv semidefinit ist. Denn fiir alle Vektoren der Form (%, 4;) = (a, 0)
ist Q(hy, hy) gleich null (ohne daB (a, 0) = (0, 0) gilt). Durch eine entsprechende Dis-
kussion erhélt man fiir die anderen Falle die folgenden Aussagen:

1. Fir (xg, yo; 4;) ist Q(hy, hy) auf E, positiv definit.
2. Fiir (x3, ys; As) ist Q(hy, hy) auf E; negativ definit.
3. Fiir (x,, y4; Ag) ist Q(hy, he) auf E, negativ definit.
Es sind also (x3, ys), (x4, y,) Stellen relativer Maxima; (x,, y,) eine Stelle eines rela-
tiven Minimums von f(x, y) = (x — 2)* + »* unter der Nebenbedingung 4x* + y* — 4

= 0. Damit sind die auf mehr anschaulichem Wege erhaltenen Ergebnisse am Ende
von Abschnitt 4.2.3. bestitigt.

Aufgabe 4.1: Man fithre die Diskussion der Losungen (X, yo; 40); (3,35 4s); *
(x4, Y43 44) der oben behandelten Aufgabe mittels der quadratischen Form Q(h;, h;)
vollstandig durch.

4.2.5. Beispiele fiir Extremwertaufgaben

4.2.5.1.  Standortproblem. Steiner-Weber-Problem

Unter einem Standortproblem versteht man eine Aufgabe des folgenden Typs;
Gegeben sind 7 Betriebe, die sich (in einer ebenen Darstellung) an den Orten P(x4, y,),
vees P(Xn, yn) befinden. Gesucht ist die Lage S(x, y) einer Versorgungseinrichtung
(eines gemeinsamen Zulieferbetriebes usw.) derart, daB die Kosten fiir die Trans-
porte zwischen S(x, y) und den Betrieben an den Stellen P(x,, y,), ..., P(Xn, y,) ins-
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gesamt minimal werden. Sieht man die Kosten von S(x, y) zu P(xy, yx) proportional
zum Abstand (bzw. zum Abstandsquadrat) dieser beiden Punkte an, was in vielen
Fillen zutrifft, so haben diese Kosten die Form

al(e — 3 + i — yP1,

wobei gy ein geeigneter Proportionalitétsfaktor ist (k = 1, ..., n). Die Gesamtkosten
S(x,9) =k_21 a(ex — x)* + (i — y)zlé (4.18)

sollen minimal werden. Wir erhalten somit die Aufgabe, die Funktion f(x, y) (das sog.
.. Zielfunktional*‘) auf ihre Minimalstellen hin zu untersuchen, ein Problem, das wir
mit den in Abschnitt 4.2.4. entwickelten Methoden im Prinzip (d.h. abgesehen von
Schwierigkeiten bei der numerischen Auswertung) 16sen kénnen. )

Anstelle der Funktion (4.18) betrachtet man zur Vereinfachung auch hiufig die
Funktion

g0x, ) =§ 2[00k — X + (e — Y. 4.19)

Aufgaben, bei denen eine Funktion vom Typ (4.18) oder vom Typ (4.19) auf Extrem-
werte hin zu untersuchen ist, bezeichnet man auch als Aufgaben vom Typ des ,,Stei-
ner-Weber-Problems® (s. Literatur [8], [15]).

Wir behandeln zur Veranschaulichung eine auf den Ansatz (4.19) begriindete
Standortaufgabe mit Restriktionen, d.h., der gesuchte Punkt S(x, y) unterliegt noch
zusitzlichen Nebenbedingungen. Solche Nebenbedingungen kdnnen zustande kom-
men, wenn z. B. gewisse Gebiete fiir die Lage von S(x, y) auszuschlieBen sind (infolge
ungiinstigen Baugrundes usw.) oder der Punkt S(x, y) an einer bestimmten Strafe,
Eisenbahnlinie usw. liegen soll.

Beispiel 4.7: An den Orten P,(0; 0), P,(0; 1), P5(0; 2) befinden sich GroBbaustellen,
die durch ein gemeinsames Betonwerk mit Fertigteilen zu versorgen sind (s. Bild 4.2).
Das Betonwerk S(x, y) soll an der Bahnlinie mit der Kurvendarstellung y? — x*+ 1=0
(x < 0) errichtet werden, und zwar so, daB die Gesamttransportkosten (pro Tag)
moglichst gering werden.

Zur Loésung dieser Aufgaben benutzen wir den Ansatz mit (4.19) a, = 1 (Trans-
portkosten nur abhéngig von der Entfernung). Es ist also die Funktion g(x, y) =
X+ y 4+ x*+ (y — 1)* + x* + (¥ — 2)* zZum Minimum zu machen unter der Neben-
bedingung ¢(x, y) = 0 mit ¢(x, y) = * — x> + 1 (x < 0). Es gilt g(x, y) = 3x* + 3y*
—6y+5, und damit ist H(x,y;A)=3x*+3y*—6y+ 5+ A0%*—x*+ 1). Zu-
gehorige Gleichungen:

H,=0, H,=0, ¢(x,9)= 0
2x(3-2)= 0,

2y3+ A= 6,
P =xt=-1

oder
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L Bild 4.2
A 7 X

Aus der ersten Gleichung folgt, daB x = 0 oder A = 3 gelten muB. Da fiir die Punkte
der Bahnlinie x < 0 gilt, entf3llt die erste Moglichkeit, und es gilt 2 = 3. Damit folgt
aus der zweiten Gleichung 12y = 6 oder y = 4, womit sich aus der dritten Gleichung
(wegen x < 0) die Losung x = —} /5 ergibt. Diese Werte (x,y; 4) = (—3V5, §;3)
sind die einzige Losung des betrachteten Gleichungssystems. Die Diskussion der zu-
gehorigen quadratischen Form auf dem entsprechenden linearen Teilraum zeigt, daf3
ein relatives Minimum vorliegt. Da mit x — —oo, y — 400 (bzw. y — —o0) auch
g(x,y)— +oo geht, ist der gefundene Punkt S(x,y) = S(—4V5; §) die Stelle des
absoluten Minimums von g(x, y) unter der Nebenbedingung »* — x>+ 1 =0.

Bemerkung 4.4: Gehen wir nicht von g(x,y) = 3x*+ 3)®> — 6y + 5, sondern von
o)=Y+ +Ve+@ -1+ 1x+ (-2 aus, so erhalten wir eine
Losung S(x, y), die in der Nihe der oben gefundenen Losung liegt, deren rechneri-
sche Ermittlung jedoch wesentlich schwieriger ist. Die obige Losung kann als eine
fiir die Zwecke der Praxis ausreichende Néherung fiir die Losung der Extremwert-
aufgabe fiir f(x, y) unter denselben Nebenbedingungen angesehen werden.

9  Harbarth/Riedrich, Diff. Rcchn,
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4.2.5.2. Kritische Punkte des elektrischen Feldes

Beispiel 4.8: Gegeben seien zwei Punktladungen Q, =1, Q, = 1, die sich an den
Orten P,(1,1,1) bzw. P,(—1, —1, —1) befinden. Die beiden Punktladungen er-
zeugen ein elektrisches Feld. Als Potential eines elektrischen Feldes bezeichnet man
die elektrische Spannung zwischen einem beliebigen Raumpunkt und einem festen
Bezugspunkt. Die Feldstirke ergibt sich dann als negativer Gradient (s. 5.2.1.) des
Potentials. In der Elektrizitéitslehre wird gezeigt, daB das Potential der beiden Punkt-
ladungen gegen Unendlich durch den Ausdruck

U(x, y,z) = 0, + (23

4megry  4dmegr,

(ry, r, Abstand zwischen P(x, y, z) und P, bzw. P,; ¢, Influenzkonstante) gegeben
ist. Man weise nach, daB8 der Punkt P(0, 0, 0) ein kritischer Punkt des von den beiden
Punkten erzeugten Potentials U(x, y, z) ist, daB aber U(x, y, z) an dieser Stelle weder
ein relatives Maximum noch ein relatives Minimum hat. Ein solcher Punkt heift,
da die Feldstiarke (—grad U) dort verschwindet, ein sogenannter ,,Gleichgewichts-
punkt* des elektrischen Feldes.")

Wir betrachten anstelle von U(x, y, z) die Funktion V(x, y, z) = 4we,U(x, y, z).
Dann gilt
1

re

1
Vix,y,2)= o + (r1,r2 £ 0)

mitr2=x—-12+@—-12+E—1? und r?=x+12+Q@+ 12+ + 1A
Ferner ist

V|,=(—:131—)(x—1)+(:—;)(x+1),

= C2o-0+ S o+,

V|3=%(z— 1)+£:—;l(z+ 1).

Firx=y=z=0gltr,=r,= 13, und daher ist dort ¥, = Vi, = Vi3 = 0; somit
ist P(0, 0, 0) tatsichlich ein kritischer Punkt von ¥ (und auch von U). An dieser Stelle
gilt

R =3x=1Pn 2 —3G+1Pn )

Vin=— (
r$ ry (0,0,0)

=0; Vip="Viyp=0;

1) Beziiglich der Operation ,,grad* vgl. 5.2.1.
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5.0—3(y—1 5.0—3(y+1
mz=—((x—1)—————'l g il

(0,0,0)

2 .
3]/3 31/5

Die Matrix A der zweiten partiellen Ableitungen von ¥, die Hessesche Matrix, hat
also die Form

011
A=a|:1 0 1] mit a————
110 33

Die zugehorige quadratische Form lautet (s. 4.2.4.)

0117r1h
Q(huhz,ha)=hTAh=a(h1,hz,ha)[1 0 1} [hz]

110] L
By + by

= a(hy, hy, hy) [hl + hsJ = 2a(hhy + hohy + hyhy).
hy+ by

Diese quadratische Form ist indefinit. Also liegt kein Extremwert vor. Dieses Ver-
halten ist fiir elektrostatische Potentiale typisch (vgl. Bd. 8).

4.2.5.3.  Geometrische Beispiele

Beispiel 4.9: Im dreidimensionalen Raum R® sei ein Punkt P(u, v, w) gegeben mit
u >0,v >0, w > 0. Gesucht ist diejenige Ebene durch den Punkt P(u, v, w), fiir die
das von den Koordinatenebenen und der gesuchten Ebene im ersten Oktanten
(x =0,y =0,z = 0) gebildete Tetraeder einen kleinstmdglichen Rauminhalt hat.

Zur Losung verwenden wir die Abschnittsgleichung der Ebene, die die Koordina-
tenachsen in den Punkten P(a, 0, 0); P(0, b, 0); P(0, 0, ¢) schneidet. Ist P(x, y, z)
der laufende Punkt dieser Ebene, so gilt

EZ oL
atpte=1 @be>0.

Das Volumen des von dieser Ebene vom ersten Oktanten abgeschnittenen Korpers
ist V= V(a, b, ¢) = } abc. Da der Punkt P(u, v, w) auf dieser Ebene liegen soll, erhal-
ten wir als Nebenbedingung die Gleichung

Zhptiot
a b
Zur Behandlung der Aufgabe sind die ersten partiellen Ableitungen der Funktion

H(a, b, c; A) = } abc +1 (% + 2

7 + % -1 )nach a, b, c gleich null zu setzen. Das

ergibt folgende Gleichungen:

ab— —=0, 1+i+—w—=l.
¢ a b ¢
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Durch Auflosen der ersten drei Gleichungen jeweils nach und Addition der so

(3)
erhaltenen Gleichungen ergibt sich uater Verwendung der Nebenbedingung (vierte

Gleichung) die Beziehung % = a—:c— , aus der weiter die Gleichungen a = 3u, b = 3v,

c=13w, A= ? uvw sowie V(3u, 3v, 3w) = %uvw folgen. Man kann zeigen, da8 tat-
sichlich das (absolute) Minimum von ¥ (a, b, c) vorliegt. Die gesuchte Ebene hat die

Gleichung x + va + !
u vw

4.3. Die Methode der kleinsten Quadrate

Die Methode der kleinsten Quadrate wird vor allem bei Problemen der Ausgleichs-
rechnung (Ausgleichung von Fehlern) und bei der Approximation von Funktionen
mittels ,,einfacherer” Funktionen angewandt. Sie kann wahrscheinlichkeitstheore-
tisch begriindet werden (s. [5]). Da die Anwendung dieser Methode auf eine Extrem-
wertaufgabe fiir Funktionen mehrerer Variabler fiihrt, wollen wir sie im Rahmen die-
ses Bandes behandeln. Wir werden feststellen, da man genauer von einer ,,Methode
der kleinsten Quadratsumme‘ sprechen miiBte (vgl. Bd. 18, Abschn. 3.).

Wir erldutern diese Methode am Beispiel des Mittelwertes einer Beobachtungs-
reihe. Dabei folgen wir im wesentlichen den Betrachtungen in [5]. Die einzelnen
MeBwerte fiir eine bestimmte interessierende GréBe, die als konstant anzusehen ist,
werden infolge unvermeidbarer MeBfehler unterschiedlich ausfallen. Die Ausgleichs-
rechnung hat die Aufgabe, einen ,,brauchbaren Ersatzwert fiir den wahren, aber
unbekannten Wert der gemessenen GroBe zu definieren. Sind x;, ..., x, die gemes-
senen Werte und X der Wert, der die wahre GroBe ersetzen soll, so verlangt die
Methode der kleinsten Quadrate, daB fiir die scheinbaren Fehler

ri=Xi—Xx (i=1,...,n)

die Quadratsumme
n
2rd
i=1

ein Minimum werden soll. Die obige ,,Fehlerquadratsumme* hangt von den festen,
gegebenen GréBen x;, ..., X, und der zundchst als variabel aufzufassenden GroéBe
X ab. Wir ersetzen ¥ formal durch den Buchstaben x und bezeichnen danach mit %
nur denjenigen Wert von x, der das gesuchte Minimum der Quadratsumme liefert.

Wir untersuchen also die Funktion F(x) = 2 ré= 2 (x: — x)? auf ihre Extremwerte.
Diese Extremwertaufgabe fiir eine Funktwn von nur einer Veranderlichen wird wie
im Band 2 gelost. Es gilt

F(x)= —22’1(xi —x)=-

F'(x) wird gleich null nur fiir x =711- 5 x;. Da F’(x) durchweg groBer als null ist,
=1

< ~

) Xi — nx) und F'(x)=2n.

i=1
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liefert dieser Wert eine (und die einzige) Minimalstelle von F(x) (absolutes Minimum).
Diesen Wert x = X, also

X= L > xi, (4.20)
ni=1

bezeichnet man bekanntlich als den Mittelwert der Beobachtungsreihe X, ..., x,
oder auch als arithmetisches Mittel dieser Werte. Der gewohnliche Mittelwert liefert
im Sinne der Methode der kleinsten Quadrate den ,,besten Ersatz* fiir den wahren
Wert einer beobachteten Grofe.

" Eine weitere Anwendung der Methode der kleinsten Quadrate finden wir in der Aus-
gleichsrechnung bei der Aufgabe, die Werte von nur indirekt zugénglichen MeB-
groBen (vermittelnde Beobachtungen) bestmoglich zu bestimmen. Dabei konnen
einerseits iiberschiissige Beobachtungen vorliegen oder andererseits zusétzliche Be-
dingungsgleichungen vorhanden sein (bedingte Beobachtungen). Beispielsweise kann
sich die Messung einer Strecke zusammensetzen aus der Messung zweier Teil-
strecken, deren Summe die Gesamtstrecke ist. Wird unabhingig davon die Gesamt-
strecke auf eine andere Weise gemessen, so liegt eine iiberschiissige Messung vor. Die
Messungen der Teilstrecken und der Gesamtstrecke sind notwendig fehlerbehaftet,
und die Summe der MeBwerte der Teilstrecken wird vom MeBwert der Gesamt-
strecke verschieden sein. Also ergibt sich die Frage nach der giinstigsten Korrektur
der MeBwerte der Teilstrecken und der Gesamtstrecke. Ein Beispiel fiir das Vorliegen
zusitzlicher Bedingungsgleichungen liefert die Messung der drei Innenwinkel eines
Dreiecks; als Gleichung haben wir die Forderung, daB die Summe dieser Winkel 180°
betragen muB. Wird jeder Innenwinkel gemessen, so ist diese Forderung infolge der
auftretenden MeBfehler sicher nicht erfiillt, also muB die Frage nach einer Korrektur,
einem ,,Ausgleich* dieser Werte, gestellt werden.

Die allgemeine Verfahrensweise in jedem dieser Fille besteht darin, daf man geeig-
‘nete Fehlergrifien definiert, die von den auszugleichenden Werten abhdngen, und die
ausgeglichenen Werte so festlegt, daf die Summe der Quadrate dieser Fehlergrifen
minimal wird. Zur Erlduterung dieses Prinzips betrachten wir das folgende Beispiel:

Beispiel 4.10 (vgl. [S]): Eine Strecke AC (s. Bild 4.3) werde mit 165,21 m gemessen.
Die MeBwerte der Teilstrecken 4B bzw. BC seien 50,26 m bzw. 114,30 m. Die
Summe dieser MeBwerte, 164,56 m, ist vom MeBwert fiir die Strecke AC verschieden.
Es ist also ein Ausgleich erforderlich. Die auszugleichenden Werte der Lingen der
Strecken 4B bzw. BC bezeichnen wir mit x; bzw. x,. Der MeBwert der Strecke AC
stellt also eine iiberschiissige Beobachtung fiir die Festlegung von x, und x, dar.

L X 1 X J
A 8 ¢ Bild43

Wir betrachten die folgenden FehlergroBen v;, vy, vy

0 =X, — 50,26,
vy =X, — 114,30,

2

v = X; + Xy — 165,21.

10 Harbarth/Riedrich, Diff. Rechn.
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Wir wihlen die ausgeglichenen Werte x; = X;, x, = X, so, daB die Summe Q =
= Q(x1, X3) = 12 + vg® + 3% = (x; — 50,26)* + (x, — 114,30)% + (x; + x, — 165,21)
minimal wird. Dazu bilden wir die ersten partiellen Ableitungen von Q nach x;, x, und
setzen diese Ableitungen gleich null. Das entstehende Gleichungssystem hat als
Losung die gesuchten Werte X,, X,. Es gilt

———-gf =2(x; — 50,26) + 2(x;, + x, — 165,21),
il
Y
== 2(x; — 114,30) + 2(x; + x, — 165,21).
ox,

Daher hat das Gleichungssystem Q), = 0, @i, = 0 die Form

2%+ Xy = 21547,
X1+ 2%, = 279,51.

Man nennt diese Gleichungen auch die ,,Normalgleichungen* des gegebenen Aus-
gleichsproblems. Als (einzige) Losung ergibt sich X; = 50,49; X, = 114,52 mit
der Summe X, + X, = 165,01. Sie'liefert, wie sich zeigen 148t, das (absolute) Mini-
mum von Q.

Aufgabe 4.2 (vgl. [5]): Fiir die Winkel eines Dreiecks ergeben sich die folgenden
MeBwerte & = 45°16"; = 30°10"; y =105°12". Sie sind so auszugleichen, daB die
Summe der ausgeglichenen Winkel 180° betrégt. Diese Aufgabe ist als Extremwert-
problem mit Nebenbedingungen zu behandeln.

Die Methode der kleinsten Quadrate wird schlieSlich sehr ausgiebig bei der Be-
stimmung von Ausgleichskurven und zur Approximation von Funktionen benutzt.
Der Grundgedanke besteht darin, daB kompliziert zusammengesetzte Funktionen
bzw. Funktionen, die nur ndherungsweise durch MeBwerte gegeben sind, durch Funk-
tionen von bekannter einfacher Bauart ersetzt bzw. angendhert werden.

Bei physikalischen und technischen MeBvorgingen werden Wertepaare (x;, y;)
(i=1, ..., n) gemessen. Man nimmt an, daBl diese Wertepaare auf einer Kurve liegen,
die einen bekannten, einfachen Funktionstyp beschreibt. Da man auch hier MeB-
fehler von vornherein nicht ausschlieBen kann, ermittelt man die gesuchte Kurve
als sog. Ausgleichskurve, d.h. als eine Kurve, die sich dem vorliegenden MeBvor-
gang am besten anpafit unter der Bedingung, daB sie einem gegebenen einfachen
Kurventyp (Gerade, Parabel, ...) angehort.

Wir betrachten zur Verdeutlichung ein Beispiel fiir eine Ausgleichsgerade, die mit
der Methode der kleinsten Quadrate bestimmt wird. Es seien die Werte (x;, ;)
(i=1, ..., n) gegeben. Gesucht ist eine Gerade y(x) = ax + b, fiir die der Ausdruck

0= 0@ =3 0=y @21)

minimal wird. Man sucht also diejenige Gerade, die an den Stellen x; von den gege-
benen Werten y; im Sinne der Summe der Fehlerquadrate am wenigsten abweicht.
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Die Bestimmung der Konstanten g, b erfolgt in der iiblichen Weise aus den Gleichun-
gen

00, Y

a_a - 09 a_b - 01
mit der gesuchten Losung a = a, b = b. Zur Durchfiihrung der Rechnung setzen wir
in den Ausdruck (4.21) fiir y(x;) die Werte y(x;) = ax; + b (i = 1, ..., n) ein und erhal-
ten

0(a.b) = 3 (i - axi— by

Also wird

a0 n

T _2i§1(}’i — ax; — b) x;,

Q .

'@ = -ZEI(y.- —ax; — b)

. . . a0 a0 . .

(man beachte die Kettenregel!). Die Gleichungen e = 0, 5= 0 sind also gleich-
bedeutend mit den Gleichungen (sog. Normalgleichungen)

0=3(i—ax—bx=Yxy-ayx—b3x, “2)

i=1 i=1 i=1 i=1

0= (i—axi—b)=Tyi—axx—nb,
i=1 i=1 i=1

aus denen man die gesuchten Werte a = a, b = b berechnen kann. (4.22) stellt ein
lineares Gleichungssystem fiir diese beiden Werte dar, welches fiir den Fall, daB nicht
alle x; denselben Wert haben, eine von null verschiedene Koeffizientendeterminante
und somit genau eine Losung besitzt.

Die Gerade j(x) = dx + b ist die sog. Regressionsgerade (vgl. Bd. 17). Sie liefert
das absolute Minimum von Q (a, b).

Aufgabe 4.3: Die MeBpunkte P(x;,y;) (i=1,...,n) sollen nach der Methode der
kleinsten Quadrate durch eine Kurve der Form

bx

J&)=a+ 1+ x*
ausgeglichen werden. Es ist das System der Normalgleichungen zu bestimmen, und
die gesuchten Werte a, b sind speziell fiir die Punkte einer MeBreihe mit den Werten
P(=2; 15), P(—1;5), P(0; 1), P(1; 1), P(2; 3) zu ermitteln. Wie grof ist die mini-
male Summe der Fehlerquadrate, und wie groB ist das Maximum des absoluten Feh-
lers fiir die MeBpunkte?

Die Approximation von Funktionen mittels der Methode der kleinsten Quadrate
ist eine weitere Anwendung dieses Prinzips, die es erméglicht, eine gegebene kompli-
zierte Funktion fiir einen gewissen Argumentbereich durch eine einfachere zu erset-
zen. Im Unterschied zu den Ausgleichskurven, die die Fehlerquadrate an nur endlich
vielen Bezugsstellen beriicksichtigen, werden zur Bestimmung der Approximations-
kurven alle Argumentstellen bei der Bildung der Fehlerquadrate beriicksichtigt; die

10*
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bisher auftretende Summe iiber die Fehlerquadrate an endlich vielen Stellen wird
durch ein entsprechendes Integral ersetzt. Ganz besonders wichtig ist dieses Gebiet
durch die Entwicklung der EDVA geworden, weil es bei der Benutzung dieser An-
lagen darum geht, die haufig benutzten Funktionen (sin, cos, ...) durch eine einfache
Rechenvorschrift darzustellen. Das Prinzip dieser Methode besteht darin, daB eine
Funktion f(x), die z.B. in einem Intervall [x,, x,] gegeben ist, durch eine Funktion
f(x; ay, ..., a,) approximiert werden soll, die von einfacher Bauart (z.B. ein Poly-
nom) ist und Parameter a;, ..., a, enthélt. Diese Parameter werden so bestimmt, da8
das Integral iiber die Fehlerquadrate

0 = 01, s ) = [ ) — F33 @1y oy )] dx @23

ein Minimum wird. Man spricht daher auch von der Approximation im Mittel. Das
folgende Beispiel verdeutlicht den allgemeinen Sachverhalt.

Beispiel 4.11: Welche Gerade f(x; a,, a;) = a,x + a, ersetzt die Kurve f(x) = x% im
Intervall [0, 1] im Sinne der Approximation im Mittel am besten? Wir berechnen zur
Losung das Integral

1 ~ 1 % 2
0 = ()~ fxs ay aplt dx= [ |3} = gy — ] dx
0 0

a? 4 4 1
s tetan-ga-gaty
Die Extremwertaufgabe fiir Q = Q(ay, a;) fithrt auf die Gleichungen 6_Q =0,
a0 0a,
—— =0 oder
da,
fa,+a; — $=0,
a+2a—-%=0
mit der (einzigen) Losung a, = AL ,Gy = — LA . Die gesuchte Gerade lautet daher
Fr 36, _4) 364 4 isxs 1 (313<i5zze')
("’ﬁ’ 35)‘ 35 e .

Ein besonders wichtiger Fall der Approximation ist die Approximation durch Sy-
steme orthogonaler Funktionen. Hierzu geben wir erst die folgende Definition an.

Definition 4.3: Eine Folge (¢n(x)) von Funktionen, die auf einem Intervall [a, b] defi-
niert sind, heift ein Orthogonalsystem beziiglich des Intervalls [a, b], wenn die Glei-

chung
I fbwi(x) g(x)dx=0 (i +j) 4.29)
fiir alle i, j mit i == j besteht. Gilt zusitzlich die Gleichung
fb (p)rdx=1 (@(=12,.), (4.25)
a

so heift die Folge (p.(x)) ein Orthonormalsystem auf [a, b].
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Man stellt sich nun die Aufgabe, eine in [a, b] gegebene Funktion f(x) durch eine
Linearkombination

J6) = F(x; @1, oo, ) = @@s(x) + @pa(x) + - + (%)
= é; aipi(x)

im Sinne der Approximation im Mittel bestmoglich zu ersetzen. Ein bekanntes Bei-
spiel fiir ein Orthogonalsystem ist das System der trigonometrischen Funktionen
1, cos x, cos 2x, ..., COS nx, ..., sin x, sin 2x, ..., sin nx, ..., betrachtet auf dem Inter-
vall [0, 27]. Es gelten die Gleichungen

2 {0 fir m<n,
J'cos mx cosnx dx = N
5 n fir m=n=0,

2m

J'cosmxsinnxdx=0,
0

2; s

i . 0 fir m=+n,
f sin mx sin nx dx = N
b n fir m=n,

die zeigen, daB das genannte System ein Orthogonalsystem ist. Man schreibt hier

f(x)=%+ a,cos X + ++ 4 a, cosnx + b, sin x + b, sin 2x
+ o+ b, sin nx
und nennt diesen Ausdruck ein trigonometrisches Polynom vom Grade n. Der Vor-

teil der Orthogonalsysteme bei der Approximation liegt in folgendem Sachver-
halt. .

Satz 4.7: Ist (pa(x)) ein Orthogonalsystem auf [a, b], ferner f(x) eine auf [a, b] defi- S.4.7
nierte (integrierbare) Funktion, so wird das (absolute) Minimum der quadratischen
Abweichung

b n
0=0@, ., a)=[(f() = 2 Gy dx (4.26)
fur die Werte , ‘
100 pilx) dx

ai=a;=

. (i=1,.. 1) 4.27)
[ (@) dx

und nur fiir diese Das (absolute) Minimum von Q hat den Wert

-3

b n b
0= 0 i) = { [y dx} -3 (a @G dx) :

L a
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Fiir das Beispiel der trigonometrischen Funktionen auf dem Intervall [0, 2] er-
halten wir die Formeln von Euler und Fourier:

2r
S %ff(x)coskx dx (k=0,..,n)
. (4.28)
b= —Tl?ff(x) sinkxdx (k=1,..,n).

0

Fiir sogenannte vollstindige Orthogonalsysteme (g.(x)) gilt lim Q(a,, ..., @,) =0,
n-—oo n

d.h., mit wachsendem » wird die Approximation von f(x) durch die Summe 2 @px(x)
k=1

immer besser. Man gelangt auf diesem Wege zur Theorie der Orthogonalreihen (vgl.
Bd. 12) und, da die trigonometrischen Funktionen 1, cos x, cos 2Xx, ..., COS X, ...;
sin x, sin 2x, ..., ..., Sin nx, ... ein vollstindiges Orthogonalsystem auf [0, 2x] bilden,
zur Theorie der trigonometrischen Reihen oder Fourier-Reihen (vgl. Band 3).

Aufgabe 4.4: Die Funktion f(x) = x* ist im Intervall [0, 2x] im Sinne der Approxima-
tion im Mittel bestmoglich durch einen Ausdruck der Form

f(x)=%+ a, co8 X + a, cos 2x + b, sin x + b, sin 2x

Zu approximieren.

Aufgabe 4.5.: Es sind die Koeffizienten der Regressionsgeraden j(x) = dx + b aus
den Gleichungen (4. 22) zu ermitteln. Wie groB ist die minimale Summe der Fehler-
quadrate Q(d; b)?

Aufgabe 4.6.: Ist f(x,,..., x,) auf dem gesamten R" definiert und differenzierbar, und
besitzt f(xy, ..., X,) im R" nur einen einzigen kritischen Punkt P, und gilt ferner
lim f(xy, ..., X,) = +00 fiir (x} + x3... + x3) > + 00, so0 ist P, Stelle des absoluten
Minimums von f(xy, ..., x,) im R" (Hinweis: S. 118, Bemerkung 3).
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5.1. Allgemeine Betrachtungen zum Feldbegriff

Im Unterschied zur Betrachtungsweise der Punktmechanik, die davon ausgeht,
daB die physikalischen Eigenschaften eines Teilchens, z. B. die Masse (n&herungsweise)
in einem Punkt konzentriert sind, wird beim Feldbegriff die Vorstellung zugrunde
gelegt, daB eine bestimmte physikalische GroBe in jedem Punkt eines rdumlichen
Gebietes betrachtet werden kann. Man unterscheidet (mehr aus historischen Griin-
den) zwischen skalaren Feldern und Vektorfeldern (vgl. Abschnitt 2.6.1.).

Ein skalares Feld ordnet jedem Punkt eines Gebietes des R® einen Skalar, d.h. eine
reelle Zahl, zu. Beispielsweise sind die Temperaturverteilung in einem Gewéchshaus
oder die GroBe des Luftdruckes in den verschiedenen Punkten der Erdoberfliche
und der Atmosphare Spezialfille skalarer Felder. Zu einem festen Zeitpunkt kann ein
skalares Feld durch eine (reelle) Funktion U = U(r) mit r = X = x€; + Xz, + X;€3
beschrieben werden, die in einem gewissen Gebiet des R® definiert ist. Andert sich
das betrachtete skalare Feld zeitlich nicht (stationires Feld), 50 geniigt seine Kenntnis
zu einem festen Zeitpunkt. Im allgemeinen muB jedoch eine zeitliche Anderung des
Feldes beriicksichtigt werden (instationéres Feld), d.h., das skalare Feld U ist sowohl
eine Funktion des Ortes r als auch der Zeit #: U= U (r, 2). Bei der Untersuchung
grundlegender Eigenschaften eines Feldes geht man zunéchst so vor, daB ein fester
(aber beliebiger) Zeitpunkt betrachtet wird.

Eine anschauliche Vorstellung eines skalaren Feldes U(r) (die Zeitabhdngigkeit
wird, wie vereinbart, nicht hervorgehoben) erhalt man durch die Einfithrung der Fla-
chen, auf denen U(r) einen jeweils konstanten Wert annimmt. Diese Fldchen heiien
Niveau- oder Aquipotentialfiichen von U. Sie sind (als Mengen) erklirt durch

H(c)={r|Ux)=c} (c beliebig, reell).

Als Beispiel betrachten wir das durch die Gleichung U(r) = 1/r (r = |r| + 0) gegebene
skalare Feld im R®. Genau dann gilt fiir eine reelle Zahl ¢ > 0 die Gleichheit U(r) = c,
wenn die Beziehung |r| = 1/c besteht (der Fall,,c < 0* kann ersichtlich ausgeschlossen
werden). Alle Punkte r e R3, fiir die die Gleichung |r| = 1/c (c fest) gilt, liegen auf der
Oberflache der Kugel mit dem Nullpunkt als Mittelpunkt und dem Radius 1/c, und
fiir jeden Punkt dieser Kugeloberfliche ist diese Gleichung erfiillt. Die Aquipoten-
tialflichen von U(r) sind daher konzentrische Kugelflichen mit dem Nullpunkt als
Mittelpunkt. Durchlduft die Zahl ¢ alle positiven reellen Zahlen, so durchlduft auch
die Zahl 1/c alle positiven reellen Zahlen. Die Gesamtheit aller Niveauflichen der ge-
gebenen Funktion U(r) = 1/r besteht also aus allen Kugeloberflichen mit dem Mittel-
punkt 0.

Das skalare Feld U(r) heiBe ein ebenes Feld, wenn (bei geeigneter Koordinatenwahl)
U(r) = U(x,, x,) gilt, also U nicht von x; abhéngt. Setzt man f(x,, x,) = U(xy, X,)
und stellt die Funktion f in der Form x; = f(x,, x,) als (krumme) Fliche iiber der
X1, X;-Ebene R? dar, so sind die Schnittkurven der Niveauflichen von U mit der x,, x,-
Ebene gleichzeitig die Hohenlinien von f(x;, x3) (s. 2.1.).

Man bezeichnet diese auch als Niveaulinien von U(x,, x,). Istz. B. U(r) = U(x,, x,)
= X;X,, so erhilt man die Gleichung einer Niveaulinie durch die Bezichung

U(xy, x5) = x1x, = ¢ (c reell, fest),
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die bekanntlich die Gleichung fiir eine Hyperbel (mit den Koordinatenachsen als
Asymptoten) darstellt. Fiir ¢ < 0liegen die Hyperbeléste im ersten und dritten Qua-
dranten, fiir ¢ > 0 im zweiten und vierten Quadranten, der Fall ¢ = 0 liefert die bei-
den Koordinatenachsen. FaBt man das System der Niveaulinien als Karte der Fliche
X3 = Xx;x, auf, so erkennt man aus dem Verlauf der Hohenlinien (= Niveaulinien),
daB der Nullpunkt ein Sattelpunkt dieser Fliche ist (in Richtung des ersten und drit-
ten Quadranten wichst die Hohe c, in Richtung des zweiten und vierten Quadranten
fallt die Hohe c; der Leser fertige eine Skizze an!).

Ein Vektorfeld ordnet jedem Punkt des Raumes bzw. eines Gebietes des R® einen
Vektor zu. Beispiele fiir Vektorfelder sind das Magnetfeld der Erde, das elektrische
Feld zwischen Ladungsverteilungen, das Geschwindigkeitsfeld einer Fliissigkeits-
stromung (jedem Raumpunkt wird hierbei der Geschwindigkeitsvektor des dort be-
findlichen Fliissigkeitsteilchens zugeordnet). Zu einem festen Zeitpunkt kann ein Vek-
torfeld durch eine Vektorfunktion v = v(r) (vgl. Abschnitt 2.6.) angegeben werden,
die in einem gewissen Gebiet des R® erklért ist. Wie bei skalaren Feldern unter-
scheiden wir zwischen stationdren (zeitunabhingigen) und instationdren (zeitlich ver-
dnderlichen) Vektorfeldern. Die letztgenannten Vektorfelder sind in der Form
v = v(r, t) zu beschreiben. Eine anschauliche Vorstellung eines Vektorfeldes zu einem
festen Zeitpunkt ergibt die Einfiihrung seiner Feldlinien (Stromlinien), das sind
diejenigen Kurven r=r(r) (v € R, Kurvenparameter), deren Tangentenrichtung

I(z) = g—;in jedem Raumpunkt mit der Richtung des Feldes v(r) iibereinstimmt.

Daher muB das vektorielle Produkt ¥ x v(r) verschwinden, wenn fiir r die Punkte der
Feldlinie r(7) eingesetzt werden. Somit ergibt sich als eine notwendige Bedingung fiir
den Verlauf von r(z) die Differentialgleichung der Feldlinien

£(7) X v(r(z)) = 0. (5.1)
Die Gleichung

v,
v=|v,
U3

lautet in Koordinatenschreibweise
03 (x1(7), X3(7), X3(7)) %a(7) — 02 (%2(7), X5(7), X3(7)) X5() = O,
01 (x1(7), x3(7), X5(7)) X(7) — v3(x1(7), X3(7), X5(7)) %1(7) = O, (5.2)
0 (%1(2), Xo(7), %o(7)) Z1() — 01(%:(%), X(7), 2(7)) Xo(7) = 0.
(5.2) stellt ein nichtlineares gewdhnliches Differentialgleichungssystem erster Ord-
nung dar. Seine Losung (die entweder geschlossen angebbar ist oder ndherungsweise
gefunden werden muB) enthalt drei feste Konstanten, die durch die Vorgabe eines
Punktes, durch den eine Feldlinie gehen soll, bestimmt werden konnen (s. Band 7).

Hiufig kann man durch geeignete Wahl des Parameters 7 erreichen, daB das Diffe-
rentialgleichungssystem fiir die Feldlinien die folgende (einfachere) Gestalt besitzt:

i) = v((@)). (5:3)
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Diese Form ist zur praktischen Berechnung besser geeignet als das Differentialglei-
chungssystem (5.2). Als Beispiel betrachten wir das homogene Feld, das durch einen
konstanten, ortsunabhingigen Vektor

V=a=ae + ase, + ase;
gegeben ist. Das Differentialgleichungssystem (5.3) lautet hier
(r)=a
oder in Koordinatenschreibweise
Xy =ay, X,=a,, X3=ds.
Es besitzt als Losung (Kontrolle durch Differenzieren!) die Funktionen
x1(7) = a;v + by, x,(r) = a,t + by, x3(r) = a;v + bs

mit beliebigen Konstanten b, (j = 1, 2, 3). Vektoriell geschrieben lautet diese Lo-
sung (es sei b = b,e, + b,e, + bses)

t)=7a+b (-0 <7< +00),

das ist die Gleichung einer Geraden mit dem Richtungsvektor a. Die Feldlinien sind
also zu a parallele Geraden.
Ein weiteres einfaches Beispiel erhalten wir mittels

V= ! r
Il
Dieses Feld besitzt iiberall die Richtung des Ortsvektors r, ist also radial vom Null-
punkt weg gerichtet. Die Feldlinien sind (beliebige) Geraden durch den Ursprung,
v stellt ein sog. radiales Feld dar.

Die Vorstellung eines Feldes bietet die Moglichkeit, die unserer Anschauung unge-
wohnten Fernwirkungen als Nahwirkungen darzustellen. So kann man sich erkldren,
dafB das Gravitationsfeld der Sonne die Kraft auf die Planeten iibertragt und direkt
am Korper angreift. Das Wesentliche bei der Beschreibung physikalischer Vorginge
durch Felder besteht aber darin, daB man die Eigenschaften der untersuchten Grofe
an irgendeinem Raumpunkt in Zusammenhang bringt mit den Eigenschaften in be-
nachbarten Raumpunkten und zu benachbarten Zeiten. Dazu bedarf es insbesondere
der Differentialrechnung in Vektorfeldern, der der folgende Abschnitt gewidmet ist.

Beispiel 5.1: In den Punkten P, und P, sind elektrische Punktladungen O, = Q >0
bzw. Q, = —2Q angebracht. Es ist die zugehorige Aquipotentialfiiche mit dem Po-
tential Null zu bestimmen (im Unendlichen gehe das Potential der Ladungen gegen
Null). Die Ortsvektoren der Punkte P; und P, im (x;, X,, X;)-System seien r,
bzw. r,. Die Superposition (Uberlagerung) der Coulomb-Potentlale beider Ladungen
1 9}

47"80(|l"‘l'1|+ Ir— 1)('*1'”) Die
Punkte r der Potentialfliche ¢(r) = 0 geniigen daher der Glexchung

Ir=r _ 01
Ir—r, 0, 2

ergibt das resultierende Potential ¢(r) =
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Wir denken uns durch die Punkte P, und P, eine Gerade g gelegt. Alle Punkte, die von
P, und gleichzeitig von P, einen festen Abstand p, bzw. g, besitzen, liegen auf der
Schnittkurve der Kugelflichen um P, mit dem Radius g, und um P, mit dem Radius
0,. Diese Schnittkurve ist ein Kreis, dessen Mittelpunkt auf g liegt und dessen Ebene
auf g senkrecht steht. Auf diesem Kreis dndert sich der Wert von ¢ ersichtlich nicht.
Jede Potentialfliche enthélt mit jedem ihrer Punkte auch den gesamten Kreis, der
durch diesen Punkt geht, dessen Mittelpunkt auf g liegt und dessen Ebene auf g senk-
recht steht. Alle Potentialflichen sind somit axialsymmetrisch beziiglich der Achse g.
Es reicht daher aus, die Schnittkurven der Potentialfidchen mit einer beliebigen durch
die Gerade g gehenden Ebene zu bestimmen. Die Potentialflichen ergeben sich dann
durch Rotation dieser Schnittkurven um die Achse g. Wir wihlen eine solche Ebene
E aus und fithren in ihr ein zusitzliches rechtwinkliges x, y-Koordinatensystem ein,
dessen Ursprung der Mittelpunkt M der Strecke P, P, sei, dessen x-Achse die Gera-
de g mit positiver Richtung von M nach P; und dessen y-Achse beliebig orientiert
sei (s. Bild 5.1). In diesem Koordinatensystem hat P; die Koordinaten (g, 0), P, die

=Y

Bild 5.1

Koordinaten (—a, 0), wobei @ = } [r, — ry|. Es gelten die Beziehungen (r € E)

[r—rl=V(x—ap +)?
It — g = V(x +af + 2

Auf der gesuchten Niveaufliche gilt daher

Vx — ap + =} V(x + a)* + »*
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oder (quadrieren!)
4x* — Bax + 4a® + 4y* = x* + 2ax + a®* + )?,

d. h. (umstellen!)

xz—Bax+a’+y2=0

3
oder (quadratische Ergénzung bilden!)
5\, 16
(x—?a) + ) —Taz'

Die gesuchte Schnittkurve ist also ein Kreis mit dem Mittelpunkt ($ @, 0) und dem
Radius R = % a. Gehen wir zur rdumlichen Betrachtung im (x;, X, x5)-System zu-
riick und beachten die Definition von a, so erhalten wir das folgende Ergebnis: Die
gesuchte Potentialfliche ist eine Kugel vom Radius R = § r; — r,|. Der Ortsvektor r,
des Mittelpunktes dieser Kugel ergibt sich aus der Gleichung (s. Bild 5.1)

o1 5 r—r
r°_—2_(n+r“)+3aln—-r2[
_ 1 51 n—r
__2_(r,+r,)+? 7"1 rzllT_—r—’,»
4 1 '
=gh-3h

Wir stellen noch die folgende Eigenschaft fest (einsetzen!):
4 2 2
Iy — |« [r; — x| = ) Iry — rof* = R2. (54)

Bemerkung 5.1: Es sei B eine Kugel im dreidimensionalen Raum mit dem Mittel-
punkt ro und dem Radius R > 0 und r, der Ortsvektor eines weiteren von r, verschie-
denen Punktes. Dann gibt es auf dem Strahl (Halbgerade) von r, durch r, genau
einen Punkt r,, fiir den die Gleichung

l [ty = x| [, — x| = R?

gilt. Man sagt: ,,r, ist der zu r; beziiglich B spiegelbildlich liegende Punkt* bzw.
,»F2 geht aus r; durch die Kelvin-Transformation hervor (beziiglich B)* oder ,,man
erhalt r, aus r, mittels der ,,Transformation durch reziproke Radien*. Die Gleichung
(5.4) des Beispiels 5.1 zeigt, daB die Ladungspunkte P, und P, beziiglich der Po-
tentialfliche ¢ = 0 spiegelbildlich liegen.

Aufgabe 5.1: Unter den iibrigen Voraussetzungen des Beispiels 5.1 gelte fiir das *

Verhaltnis der Ladungen Q; und Q, jetzt%‘—= —k mit 0 <k < 1. Man zeige, daB
2



*

144 5. Skalare Felder und Vektorfelder

* die Potentialfléiche mit dem Potential Null (ebenfalls) eine Kugel ist, die den Punkt P,

im Inneren enthélt und deren Mittelpunkt auf der Verbindungsgeraden von P; und
P, liegt. Man bestimme den Mittelpunkt r, und den Radius R dieser Kugel und zeige,
daB auch im vorliegenden Fall die Beziehung |r; — ro| - [r; — 1y| = R? erfiillt ist.

Aufgabe 5.2: Bestimmen Sie die Feldlinien der folgenden Vektorfelder durch ein-
fache geometrische Uberlegungen:

a)v= b) v=wxr (w 3o konstanter Vektor).

r
Ief*”

5.2.  Die Differentialoperatoren der Vektoranalysis

5.2.1.  Richtungsableitung und Gradient

Wir haben bisher nur Ableitungen (gewohnliche oder partielle) betrachtet, in denen
eine skalare Funktion nach einer skalaren Variablen differenziert wird. Es ist aber
auch erforderlich, Ableitungen nach vektoriellen Variablen zu betrachten, um die
Anderungen eines Feldes nach beliebigen Richtungen hin zu verfolgen. Wir betrach-
ten zundchst den Fall eines skalaren Feldes U(r) = U(x;, X2, X;).

Definition 5.1: Es sei s ein Vektor der Linge 1 (|s| = 1). Wir untersuchen die Funktion
U(r) auf der Geraden durch den Punkt r in Richtung s und betrachten die Anderung

U)=U+1s)— UE) (—o0 <t <+ o)
von U(r) auf dieser Geraden. Der Grenzwert des Quotienten

8(U)
Tt

fiir t = 0 heift, falls er existiert, die Richtungsableitung von U im Punkte r in Rich-

tung s und wird mita—i/ bezeichnet. In Formeln lautet dies
a
62} hm— [U(r + ts) — U(r)]. (5.5)
Bemerkung 5.2: In verschiedenen Lehrbiichern wird bei der Definition der Rich-
tungsableitung auf die Forderung, daB |s| = 1 gilt, verzichtet.
Wenn wir s = sye; + s5€, + 53€; setzen, so sehen wir, daB3

U

d
TR (U(xy+ 151, Xo + sy, X3+ 185)) | 1=0

gilt, falls die rechte Seite existiert. Im weiteren besitze U(r) = U(xy, x,, x3) stetige
partielle Ableitungen erster Ordnung. Nach der verallgemeinerten Kettenregel (3.6.2.)
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gilt somit
U -
—a§‘= Uiysy + Ulgsy + Ulgsy (5.6)
(dcnn esistz.B. M =5, ), oder, wenn wir die rechte Seite letzterer
4 t=0

Gleichung als Skalarprodukt auffassen:

il
—a%=(grad U)-s=s-.grad U.

. ., QU i
Nach der Definition des Skalarprodukts gilt weiter == |s| - |grad U| cos (grad U, s)
= |grad U| cos (grad U, s). Aus dieser Beziehung entnehmen wir, daB (wegen [cos | < 1

fir jedes reelle o) stets die Ungleichung

~lgrad U] 9L < fgrad U]

gilt. Stimmt die Richtung von grad U mit s iiberein, gilt also s = &gg—, so ist
cos (grad U, s) = 1, und daher gilt dann |grad U]

U rad U

o |grad U| (s = ﬁ?ﬁ—l}_{)

In Worten lautet dieses Ergebnis: Die Richtung des Gradienten ist die Richtung des
groften Anstieges der Funktion U(r) (d. h. die Richtung der griften Richtungsablei-
tung im Vergleich zu allen Richtungen vom Punkt t aus); dieser grofte Anstieg hat den
Wert |grad Ul|.

Es sei weiter r(f) eine Raumkurve, die in der Niveaufliche U(r) = C liegt. Es gilt
somit U(r(¢)) = C (a < t < b). Differentiation beider Seiten letzterer Gleichung nach
t liefert mit r(t) = x,(1) e, + x5(f) €; + x5(f) e5 (Kettenregel)

UiX; + UlgXy + Uigxs =0
oder
r(t) - grad U= 0. (5.7

Mit anderen Worten, der Gradient von U steht senkrecht auf den Tangentenrichtun-
gen aller in der betrachteten Niveaufliche verlaufenden Raumkurven, d.h., er steht
senkrecht auf der Niveaufliche. Bildet man grad U(r) fiir jeden Raumpunkt r, so erhalt
man ein Vektorfeld v(r) = grad U(r). Die Feldlinien dieses Vektorfeldes, die sogenann-
ten Gradientenlinien, verlaufen iiberall senkrecht zu den Niveauflichen von U(r). Ist
z.B. U(r) = ¢(r) das elektrostatische Potential einer beschriankten Ladungsverteilung,
so ergibt sich auf diese Weise, daB die Feldlinien des elektrischen Feldes (E(r) =
—grad g(r)) iiberall auf den Aquipotentialfiachen senkrecht stehen.
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Das folgende Bild 5.2 veranschaulicht die Verhdltnisse zwischen Niveaufliche
U(r) = ¢, dem Gradienten grad U und der Richtungsableitung oU in einem festen
Raumpunkt P. ,

aU- oU

Fiir || £ —gllt— = d(P, Q); fir |« > ——1sta— = —d(P, Q) (d(P,Q) be-

zeichnet den Abstand zw1schen P und Q, vgl. Abschnitt 1.1.1.).

Bild 5.2

Hat ferner P den Ortsvektor r,, so ist der (laufende) Ortsvektor r’ der Tangential-
ebene (TE) an die Fliche U(r) = ¢ im Punkt P ersichtlich durch die folgende Glei-
chung gebunden (s. Bild 5.2):

' —rp) -grad U = 0.

Das ist die Gleichung der Tangentialebene in vektorieller Form.
Beispiel 5.2: Man berechne die Richtungsableltung des Potentials U(r) zweier Punkt-

ladungen Q; = Q > 0 und Q, = —20, die sich in den Punkten P; bzw. P, mit den
Ortsvektoren r, und r, befinden, an der Stelle r; = % r, + } r, in Richtung des Vektors

= 1712 (yol. Beispiel 3.27).
S L (0 0\ 0 [ 1 2
- . - 1 2 __= _ 5
Losung. Es gilt U(r) = pry ( F—r1] + F—r) ) T ( Ir z P ) |f2—(1'2| ) :
. . . . —(r -1, r—r)\
Somit ist grad U gegeben durch die Beziehung grad U pr (—|r —5F = l_2[3)

Fiir die betrachtete Stelle r = ry ergibt sich grad Ui, =
_21 Q0 (m—rm)

Q0 (-1 9

4rgy |1 — 1l (9 i 7)

. Skalare Multiplikation mit s ergibt die gesuchte Richtungs-
. U_ _21. 0 1

ableitung 5 grad Ulry, - 8 =% e m

5.2.2. Divergenz

Zur Erlduterung des Begriffes der Divergenz eines Vektorfeldes v(x, y, z) gehen
wir von der Vorstellung aus, daB das Vektorfeld v(x, y, z) das Geschwindigkeitsfeld
einer stationdren Fliissigkeitsstromung darstellt. Ist nun S irgendein Flachenstiick,
das ganz im Definitionsbereich von v(x, y, z) liegt, so ist der Flu von v(x, y, z) durch
S gegeben durch das durch das Flachenstiick S pro Zeiteinheit flieBende Fliissigkeits-
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volumen (eine genaue Definition kann erst im Bd. 5, Integralrechnung fiir Funktionen
mit mehreren Variablen, gegeben werden). Ist jetzt G ein beschrinktes Gebiet des R®
und S speziell gleich der Oberfliche (Rand) von G, so heiit der FluB von v(x, y, z)
durch S die Quellung von v(x, y, z) aus dem Gebiet G. (Die Quellung ist positiv,
wenn im Inneren von G stets ein ,,UberschuB* an ausflieBender Fliissigkeitsmenge
erzeugt wird, anschaulich: wie von einer Quelle; die Quellung ist negativ, wenn in G
Fliissigkeit abgefiihrt wird — man spricht dann von einer Senke — und die Quel-
lung ist gleich null, wenn sich — wie héufig der Fall — die ein- bzw. ausflieBende
Flussigkeitsmenge die Waage halten, also stets gleich sind.) Der Quotient

Quellung von v(x, y, z) aus G
Volumen von G

9=40)=

heiBt die mittlere Quelldichte von v(x, y, z) in G. Durch einen Grenziibergang kann
man von der mittleren Quelldichte von v(x, y, z) zur Quelldichte von v(x, y, z) in
einem Punkt gelangen (analog zum Ubergang von der mittleren Geschwindigkeit zur
Momentangeschwindigkeit bei der Bewegung eines Massenpunktes). Diese lokale
Quelldichte heiBt die Divergenz von v(x, y, z). Sie wird folgendermafBen definiert.
Es sei P(xy, o, 2,) ein innerer Punkt aus dem Definitionsbereich von v(x, y, z) und
(G,) eine Folge von Wiirfeln mit dem Mittelpunkt P(x,, y,, z,), deren Kantenldngen
gegen null gehen. Existiert der Grenzwert
lim ¢(G,)

n-co

der mittleren Quelldichten von v(x, y, z) in G, fiir jede solche Folge von Wiirfeln G,
so ist dieser Grenzwert von der speziell gewdhlten Folge (G,) unabhingig und heiBt
die Divergenz von v(x, y, z) in P(x,, o, 2,). Die Divergenz von v(x, y, z) in einem
Punkt wird mit dem Symbol

divy

bezeichnet. In der Integralrechnung der Funktionen mehrerer Verdnderlicher wird
gezeigt, daB die Divergenz eines Vektorfeldes

"1(",}’, 2)
V(x,y, Z) = {Uz(xay’ Z)] >
vs(x,y, 2)

dessen kartesische Koordinaten v;(x, y, z) (i = 1, 2, 3) stetige partielle Ableitungen
erster Ordnung besitzen, durch den Ausdruck
. dv dv, . Ov
divv=vy; + vzlz+vzls=—a;l‘+a—;+-a?3‘ (5.8)

gegeben ist. An dieser Stelle interessieren uns nur die Rechenregeln, die fiir die Opera-
tion ,,div* gelten.')

Beispiel 5.3: Man berechne die Divergenz des Vektorfeldes v(x, y,z) = xe, + ye, + ze,

1) vgl. Bd. 5, Abschn. 7. Integralsitze.
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=r. Wirerhalten mit v, = x, v, = y, v; = z die Gleichungen divv = vy; + v;,
+ 33 =141+ 1=3 alsogiltdivr = 3.

5.2.3. Rotation

Die Rotation eines Vektorfeldes leitet sich anschaulich aus dem Begriff der auf eine
Flacheneinheit bezogenen Zirkulation des betrachteten Vektorfeldes her. Da sich die
exakte Herleitung dieses Begriffs nur mit Hilfsmitteln der Integralrechnung fiir Funk-
tionen mehrerer Verdnderlicher (s. Bd. 5, Abschn. 7.) durchfiihren 148t, geben wir
nur die formale Definition der Rotation eines Vektorfeldes fiir ein kartesisches
Koordinatensystem.

Definition 5.2: Es sei v(x, y,z) = v,(x, y, z) €, + v,(x. y, 2) €, + v3(x, y, 2) & ein in
einem Gebiet G des R® differenzierbares Vektorfeld. Die Differentialoperation tot v,
die Rotation von v(x, y, z), wird durch die Gleichung
Ovs _ a_v) By _ 3ny

dy 0z)™ (az “W)

= (U312 — Vaig) € + (V113 — V311) € + (Va1 — V1io) € (5.9

rotv=( (—%-— aﬂ)

ox 0y

definiert.

Zur iibersichtlichen Schreibweise empfiehlt sich die Darstellung

e e e

o 90 o0 E
rotv= o a_y 2l (5.9

Uy Uy U

wobei der Ausdruck rechts wie eine gewohnliche dreireihige Determinante ausgerech-
net wird mit der Besonderheit, daB8 die Multiplikation mit einem der Differentiations-

symbole —695 5 —% 5 %die Bildung der entsprechenden partiellen Ableitung bedeutet.
(Durch Entwicklung der obigen ,,Determinante” nach den Elementen der ersten
Zeile stellt man sofort die Ubereinstimmung mit dem in der Definition eingefiihrten
Ausdruck fiir rot v fest.) Im Unterschied zur Divergenz von v, einem Skalar, ist rot v
wieder ein Vektor. Ein Vektorfeld v = v(r) heift wirbelfrei, wenn rot v = o gilt.

Beispiel 5.4: Ein starrer Korper rotiere mit der konstanten Winkelgeschwindigkeit
® > 0 um eine feste Achse der Richtung n (mit |n| = 1). Die Geschwindigkeitsvek-
toren v, die den Punkten r (Ortsvektor) dieses starren Korpers zugeordnet sind, bilden

,ein Vektorfeld. Bezeichnet w = wn den Winkelgeschwindigkeitsvektor, so gilt, wie

aus der Mechanik bekannt ist, die Gleichung
V=W XTI

Wie groB ist rot v?
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Es ist r = xe; + ye, + ze;, und es sei W = w,e; + w;€; + wyez. Dann wird

€ € €
V=WXI=|0, 0, 0|=(z0;— yw;) e; + (xws — zw;) &; + (yo; — xw,) €
Xy z
= v,€; + vg€; + Uz€3.
Also ist
O(yw; — xwy)  O(xws — zwy)
rotv= [ & = 9z ]e,
3(zw; — yws)  O(yw; — xap)
+ 0z - O0x €
0(xw; — zw,) 0z, — yoy)
u [ 0x - dy ] €

= 2w, €, + 2w, €; + 2w; €3 = 2W.
Die Rotation von v betrégt also das Doppelte des Winkelgeschwindigkeitsvektors.

Beispiel 5.5: Es sei v(x, y,z) = —ye,. Deutet man dieses Vektorfeld als Geschwin-
digkeitsfeld einer Strémung, so erkennt man, daB die Stromlinien Geraden sind, die
parallel zur x-Achse (e;-Richtung) verlaufen. Es gilt

€ € &

0 9 9
rotv=$ _6)7 a—z=0-el+0-e,+l-e,=e4.
-y 0 0

Es ist also rot v = o, obwohl keine ,,Drehbewegung® in der strémenden Fliissig-
keit erfolgt.

Aufgabe 5.3: Man berechne die Divergenz des Vektorfeldes v(x, y, z) = x%,; 4 y%¢; *
+ 2%;.

Aufgabe 5.4: Man bestimme die Rotation des Vektorfeldes v(x,y,z) = !

TelE *
. (sz—_*__—lz‘T)a (xe;+ ye;+ zeg)  (r = 0); (elektrisches Feld einer bei 0 liegen-
y+
den Punktladung).

5.2.4. Der Vektordifferentialoperator V. Rechenregeln fiir die Operatoren
grad; div; rot

Mittels des Vektordifferentialoperators \/ (gelesen ,,Nabla*, nach dem althebriischen
Musikinstrument Nabal) konnen die in den vorangegangenen Abschnitten eingefiihrten
Differentialoperatoren der Vektoranalysis ,,grad*; ,,div*‘; ,,rot* in einer einheitlichen,
dem Wesen dieser Operatoren besser angepaBten Schreibweise ausgedriickt werden.
Gleichzeitig ergibt sich durch diese Schreibweise eine wesentliche Vereinfachung beim

11  Harbarth/Riedrich, Diff. Rechn.
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Beweis von Rechenregeln fiir diese Operatoren (bzw. bei der Anwendung dieser Opera-
toren). Wegen weiterer Einzelheiten und Verallgemeinerungen vgl. Bd. 11, Abschnitt 4.

Definition 5.3: Es seien (x,, X;, X3) die kartesischen Koordinaten eines Punktes des
euklidischen Raumes R®. Der Differentialoperator

ad S 0
Ex—lel +a—x2e2 +?x;e3 (5'10)

wird mit dem Ausdruck <7(.) bzw. % bezeichnet (r = x,; + Xq€; + X€3).

Bemerkung 5.3:
1. Ist @(x;, X3, x3) eine reelle, partiell differenzierbare Funktion (also ein skalares
Feld), so gilt

L I IS o s
V‘P—axlel +672¢z +5x—ses—¢’llel+¢lzez @13 €3

also ist (s. Def. 3.3)
Vo= grad . (5.11)

2. Ist v(x;, Xy, X3) ein (partiell differenzierbares) Vektorfeld mit partiell differenzier-
baren Koordinaten v;(x;, X;, x3) und wendet man den Operator ¥/ auf das Vektor-
feld v(x,, x;, x3) analog zur Bildung eines Skalarproduktes von ¥/ und v(x,, x,, x3)
an, so erhilt man

K 0 9 Coes
V'V—(a—hel+a—x282+a—&%)'(vlel vy € + U3 €5)

v dv v,
=6_x11 a_x:‘*'—a‘x%:vlll‘}‘vﬂz'f'vala
(die Klammern werden formal wie bei der Bildung des Skalarproduktes ausmulti-
pliziert, wobei Multiplikation mit % die partielle Differentiation nach x, bedeutet

1
usw.), d.h., wir konnen die Gleichung
V-v=divy (5.12)

schreiben.

3. Ist v(xy, x5, x;) ein Vektorfeld mit partiell differenzierbaren Koordinaten
vi(%1, X2, X3) (i=1,2,3) und wendet man den Operator V auf das Vektorfeld
¥(x;, Xs, X;) analog zur Bildung des Vektorproduktes von ¥ und v(x;, X;, X;) an, so
erhilt man (Multiplikation mit%-(—')—bedeutet stets die Bildung der partiellen Ablei-

i
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tung nach x;)

e € €
180 9w 80
VXV = —E a_xz _a'x‘; ’
12 Vg U3
also ist (s. (5.9))
V Xv=rotv. (513)

4. Ist v(x,, X,, x3) ein Vektorfeld, so kann man den Differentialoperator (v grad)
= (v, V), gelesen ,,v mit grad*, einfiihren, der analog zu dem Skalarprodukt von v
mit ¥/, aber ohne Anwendung der Differentialoperatoren auf v gebildet wird und
durch die Gleichung

3 9 9
(v,v)=(v1e1+vzez+vaea)(a—ne1 +gx:ez +E%)

a a ad
=vla—%+v,—éx—2+ uaa—xa (5.14)

definiert ist. Es gilt z.B. fiir ein Skalarfeld ¢(x;, x,, x;) dic Beziehung

0 0 0
wVe= vla—:; + Uzg)% + 036_.::= 01911 + Vo@Piz + UsPig

oder fiir ein Vektorfeld u(x;, X;, X3) = 4, e, + u; €, + uz €5 (u; = u;(xy, Xa, X3);
i=1,23),

WV)a=@, V) ue+ Ve + (¥, Ve
= (03111 + Vatiyiz + Vgtiyiz) € + (Va1 + Vagia + Vgthaiz) €2

+ (1311 + Valhgia + Vslizis) €3.

Mittels der oben eingefiihrten Schreibweisen fiir die Operatoren ,,grad*, ,,div*,
ot lassen sich die Rechenregeln fiir diese Differentialoperatoren mittels der
Rechenregeln der gewdhnlichen Vektorrechnung erhalten, wobei nur darauf zu ach-
ten ist, daB die auftretenden Vektorfelder und der Operator 7 in der richtigen Reihen-
folge aufgeschriecben werden. AuBerdem ist bei der Anwendung des Operators
auf Produkte die Produktregel der Differentialrechnung einzuhalten; d.h., der Opera-
tor V/ ist auf jeden Faktor einzeln anzuwenden, wahrend die anderen Faktoren kon-
stant bleiben, und die Ergebnisse sind zu addieren. Im einzelnen gelten die folgenden
Rechenregeln

1. Linearitdt

Es seien @, v, ... skalare Felder; u, v, ... Vektorfelder mit geeigneten Differenzierbar-
keitseigenschaften.

11*
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grad (¢ + y) = grad ¢ + grad y; (5.15)
grad (cp) =cgradg (c reell, beliebig); (5.16)
divu+v) =divu+divy, (5.17)
div (cv) =cdivy (c reell, beliebig); (5.18)
rot(w+v) =rotu+ rotyv; (5.19)
rot (cv) =crotv (c reell, beliebig). (5.20)

2. Produktregeln

grad (py) =ggradyp+ygradg; (5.21)
grad (wv) =vxrotu+ (vgrad)u+ uxrotv+ (ugrad)v; (5.22)
div (pv) =vgrad p + @ divy, (5.23)
divaxv) =vrotu—urotyv; (5.24)
rot (gv) = (grad ) X v+ @ rot v; (5.25)
rot(uxv) = (vgrad)u—vdiva+ udivv— (ugrad)v. (5.26)

Diese Regeln lassen sich mittels des /-Operators unter Benutzung der Gesetze
der Vektorrechnung ohne groBen Rechenaufwand beweisen. Wir erlautern das an
drei der obigen Regeln, die iibrigen sollten vom Leser in analoger Form behandelt
werden. Zum Beweis der Formel ¢5.21) bilden wir

4 )
Vipy) = Voy + Voy = yVp + ¢Vyp=ygrad o + g grad y

und erhalten das richtige Ergebnis, das wir auch durch Riickgriff auf die Definition
der Operation ,,grad* erhalten wiirden, wie eine ausfiihrliche Rechnung zeigt. Die Pfeile
in der obigen Beziehung markieren diejenige Funktion (bzw. dasjenige Feld), auf die
der Differentiationsoperator \/ gerade angewandt werden soll, wobei die einzelnen
Summanden wie bei der gewohnlichen Produktregel zu bilden sind. Die Berechtigung
fiir diese Verfahrensweise ergibt sich aus der folgenden ausfiihrlichen Rechnung:

3 3 B
Vipy) = grad (py) = (g;w) et (g;”) &+ (g Le,

_( Oy Op oy g oy g
—(‘PE;-P'PW)%+(‘P—a—;+'ﬁa—y)ez+(¢a—z+'l’gz“)ea

0 0 ) 0 ) 0
= ‘P(a—zel +a—:ea +%%)+’P(%el +%ez +*£es)

=g grady + y grad ¢ = Uy + pVp.
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Diese ausfiihrliche Rechnung zeigt, daB (abgesehen von der Beriicksichtigung der
Produktregel) mit dem Operator ¥/ wie mit einem Vektor gerechnet werden kann,
weil formal die gleichen Operationen auszufiihren sind. Auf diese Uberlegung stiitzen
wir uns bei der Ableitung der Regeln (5.24) und (5.26). Zum Beweis der Formel

t '
(5.24) bilden wir div uxv=YV@xv)= Y (u X v) + V(u X v). Der Ausdruck
¥/ (u x v) hat die Form eines Spatprodukts (vgl. Bd. 13, Satz 2.15). Nach den Rechen-
regeln der Vektoralgebra (a(b x ¢) = c(a x b)) gilt somit

'
v(u X v) = v(V X u). Entsprechend ist

v (u X :') = —v(; X u) = —u(VY xv). Insgesamt wird
divuxv)=v(Vxu)—ua(VYXV)=vrotu—urotv.

Zum Beweis der Formel (5.26) stiitzen wir uns auf den sog. ,,Entwicklungssatz* der
Vektoralgebra (vgl. Bd. 13, Satz 2.16)

ax(bxc)=(ac)b— (ab)c.
Es gilt
4 +
rot@xv) =Y x@mxv)= VX(uxv) + X (uxv)

' ' ' '
= (wnu—(va)v+ () u=(vm)v
= (vgrad)u—vdiva+ u div v — (u grad) v.

Auch beim Beweis der Regel (5.22) muBl der Entwicklungssatz herangezogen wer-
den.

5.2.5. Differentialoperatoren zweiter Ordnung

Wendet man die von uns betrachteten Differentialoperatoren fiir skalare Felder
und Vektorfelder wiederholt an, so erhilt man Differentialausdriicke hoherer Ord-
nung, im einfachsten Falle von zweiter Ordnung. Nicht jede denkbare Kombination
der Differentialoperatoren grad, div, rot ist sinnvoll, z.B. ist der Ausdruck div (div v)
sinnlos, da div v ein skalares Feld ist und die Divergenz nur fiir Vektorfelder erklart
ist (div(div v) wire die Divergenz eines skalaren Feldes). Man kann sich leicht iiber-
legen, daB nur die folgenden fiinf Kombinationen von grad, div, rot definiert sind:
div (grad ¢); rot (grad ¢); grad (div v); div (rot v); rot (rot v). Mittels der bereits oben
benutzten formalen Ubereinstimmung des Rechnens mit Vektoren und des Arbei-
tens mit dem Differentialoperator 7 erkennt man, daB rot (grad ¢) und div (rot v)
stets verschwinden. Denn es gilt rot (grad ¢) = ¥ x (V¢) = o (das Vektorprodukt
zweier paralleler Vektoren ist stets gleich 0) und div (rot v) = V (V x v) (das Spatpro-
dukt a(a x b) ist stets gleich 0). Der Ausdruck div (grad ¢) lautet ausfiihrlich

. a(. (. a(. a a a
div grad §)= 7-(79) = (52 & + e + L es) (2o e + L)
dp ) a ( dp ) a < aq)) dp 0 0%

0
=a(a +3 5y w) T Tt T

0z
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Der Operator div (grad) stimmt also mit dem bereits friiher (s. 3.8.3.) eingefiihrten
Laplace-Operator A iiberein. Man kann diesen Operator auch fiir Vektorfelder defi-
nieren: ist v(x, y, z) = v,(x, y, z) e, + v (x, , 2) €, + v3(x, y, z) €3 ein Vektorfeld, so
gelte

Av = (Avy) e; + (Avy) €, + (Av;) €.

Offensichtlich kann Av auch in der Form (7 /) v geschrieben werden. Mittels des
Entwicklungssatzes erhalten wir

rot (rot v) = V x (V X ¥) = V(V¥) — (VV) v, also rot (rot v) = grad (div v) — Av.
(5.27)

Besonders haufig werden alle diese Differentialausdriicke fiir Skalar- oder Vektor-

felder benotigt, welche nur vom Abstand r= J/x®+ »* + 2 des Raumpunktes
P(x,y,z) vom Ursprung (0, 0,0) abhidngen (sog. radialsymmetrische Felder). Fiir
ein skalares Feld ¢(x, y, z) mit dieser Eigenschaft gilt somit

o(x, y,2) = f(r), (5.28)
und fiir ein solches Vektorfeld v(x, y, z) gilt entsprechend
v(x,y,2) = a(r). (5.29)

Es ergeben sich fiir die vier Differentialoperatoren grad, div, rot, A bei der Anwendung
auf die radialsymmetrischen Felder (5.28) und (5.29) die folgenden Ausdriicke
(,,’* bedeute: Ableitung nach der Variablen r):

grad f{r) = (f—ffl) r (= xe+ yes + 263); (5.30)
Afr)=1"(r) + %f "(r); ' (5.31)
diva(r) = @ r; (5.3
cot a(r) =+ (e x @) ); (533
8a) = ()Y + 2 @) (534)

* Aufgabe 5.5: Man beweise die Formel (5.31).
* Aufgabe 5.6: Man berechne grad(er) (e fester Vektor).
Die Formeln (5.30)-(5.34) bleiben bestehen, wenn die Variable r iiberall durch

r=Jx—-x)+ -y + (@ —2) =Ir—r1
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(r, ein fester Punkt des R® mit den Koordinaten x,, o, z,) und der Vektor r iiberall
durch

r—ro=(x—Xx)e, +(—y)e:+ (z—z)e;
ersetzt werden.
Beispiel 5.6: Man berechne die Divergenz des elektrischen Feldes E = —gradg
einer im Punkt (x,, y,, o) befindlichen Punktladung der GroBe Q mit dem Potential

. Esgilt p = ————
¢ gl 4 4TEEO |l' = rol . . Q 1
= —div grad ¢. Es gilt also (s. oben) div E = —Ag. Mitf(r) = s folgen aus der
0

(r == 1), und gesucht ist div E = div (—grad ¢)

Formel (5.31) die Gleichungen divE = —Agp = —Af(r) = — (f”(r) + %f '(’))

2 —-1) .
= - (41?50) (-r—;+% er—)) =0 (r=r,), alsodivE = 0fiirr # ro.
(Ein Vektorfeld, dessen Divergenz in einem gewissen Gebiet verschwindet, heiBt
quellenfrei in dem betrachteten Gebiet. Das elektrische Feld einer ruhenden Punkt-
ladung ist in jedem rdumlichen Gebiet, das den Ortr, der Ladung nicht enthdlt,
ein quellenfreies Feld. Eine entsprechende Aussage gilt auch fiir allgemeinere La-
dungsverteilungen im Raum (vgl. Band 8).)
Bemerkung 5.4: Fir ebene zylindersymmetrische Felder gelten zu den Formeln
(5.30-5.34) analoge Beziehungen, wobei sich aber einige Koeffizienten verandern.
Esist dann r = Vx? + y? und ¢(x, y, z) = f(r) bzw. ¥(x, y, z) = a(r) vorausgesetzt.
Mit r = xe, + ye, gilt dann (analog zur Formel (5.30))

grad f(r) = f@r, (5.35)
aber (analog zur Formel (5.31))
M) =) + 1) (536)

(vergleiche auch Formel (3.135)).

Zum AbschluB des Kapitels iiber Vektoranalysis (= Theorie der skalaren Felder
und der Vektorfelder) erwdhnen wir noch ohne Beweis den in der Physik wichtigen
Fundamentalsatz der Vektoranalysis (vgl. [12]).

Satz 5.1: Jedes im ganzen R® definierte stetig differenzierbare Vektorfeld v(x, y, z)
= 0,(x, 5, 2) &, + v:(x, ¥, 2) &, + v3(x, y, 2) €3, fiir welches die Limesrelationen

lim v (x,5,2)=0; lim  ou(x,»,2)=0 (,k=1,23)

2yt4at—oo z'yt+ita00

gelten, laft sich in ein wirbelfreies Feld u(x, y, z) und ein quellenfreies Feld w(x, y, z)
zerlegen; d.h., es gelten die Beziehungen
v=u+Ww
rotu=o; (5.37)
divw=0.

S.5.1



Lésungen der Aufgaben

11: d(P, A) = Vx*+ 3%, d(P, B) = V(x + ) + (y — 1)%. Ausd(P, 4)=d(P, B)folgty — x = 1.
Fiir alle Pante der Geraden y = x + 1 (Mittelsenkrechte auf der Strecke mit den Endpunkten
A und B) gilt d(P, A) = d(P, B).

1.2: a) B, wird begrenzt von der unteren Hilfte des Kreises (x — 1) + 2 = 1 und der x-Achse.

b) B, wird begrenzt von der oberen Hilfte des Kreises (x — 2)* + »* = 4 und dem dariiber verlaufen-
den Stiick der Parabel y = V4x.

©) B, wird begrenzt von der y-Achse und der rechten Hilfte des Kreises x2 - y—1)32=1

1.3: limx, = 3, y» = —1 fiir alle # und daher lim y, = —1, lim z, = e. Die Punktfolge konver-
. n-+oo n-+00 n—oo
giert gegen P(3, —1,¢).

1"4: Folge nicht konvergent, da lim y, = lim (—1)" nicht existiert.
n--oo n-oco

21:a) 1 — eV >0« eV < 1< x4+ y <0<y < —x. ferklirbar fir alle Punkte unterhalb
der Geraden y = —x.

b) % < 1< |y| £ [x|. f erkldrbar fiir alle Punkte zwischen den Geraden y=x und y = —x
einschlieBlich der Punkte dieser Geraden selbst. Nullpunkt auslassen.

2.2: a) Vx® + y* = k <> x* 4 y* = k?* Kreis mit Radius £ um Nullpunkt. Flache: nach oben gedfi-
neter Kreiskegel mit Spitze im Nullpunkt.
—1)
b) V(x — 1) + 4y* ='k<¢>(167Q + —ky’—g = 1; Ellipse mit groBer Halbachse k und kleiner
2
Halbach —zk—u.nd Mittelpunkt (1, 0). Fliche: nach oben gedfineter elliptischer Kegel mit Spitze in
1,0).

. x—y
b) lim ——
)(z,y)-»(o,w 2+

Shhalso lim Y —o
= a0 ¥+ ’ 1

n”

23:3)0=

existiert nicht, denn fiir Folge (xy, y,) = (l, o) gilt Tim f(x,, y,) = lim
n n-oo Puesel |
nz
ey
= 1 und for Folge (%, y,') = (o, l) gilt Tim f(x,', y) = lim — 1 = —1 +1.
n n—oo n—oo _1__
n’

Hyt o —

£ 2
24: u(x,y)=x, v(x,y)=¢ 2, w(x,») =sinxy sind in der gesamten x, y-Ebene stetig,

also auch f(x,y) =u-v-w. Also lim...= f[3, — %) = 3e.

25:2) K={(r,9)€B|V2=r=<V6und —n < p < 7).

b) Mittelpunkt des Kreises auf der y-Achse im Punkt (0, 3); Radius des Kreises R = 3. Man betrachte
Menge aller @-Strahlen fiir 0 < @ < 7. P sei variabler Punkt auf dem Kreis mit Polarkoordinaten r
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und @. Aus rechtwinkligem Dreieck mit Eckpunkten P;(0,0), P und P,(0, 6) folgt cos (% - )

r T T r T
=— i s SN pe—— T < < —
3 imFall 0S¢ =< 2 undcos(¢ 2) 3 im Fall FEPST Wegencos((p 3

=cos (5 —p) ist ki={(, ) € BloSp < mund 057 6 cos -3))-

2.6: a) Grundkreisfliche F von K in x, y-Ebene: F= {(r, @) — —;— s g% ,0=Sr=<2cos cp}.
Fiir jedes (r, ¢) € F variiert z zwischen 0 und x2 + y* =r?%
Also Ky = {(’,%Z)‘--;—éwé—;:—,ogrshosqz,ogzgr’}.

b) Zu allen Punkten des Kegels gehort die geographische Breite # = A

EN

I?==‘(r,0,v)|0§r§2,0§0§1;—. os¢<zn].

2.7: Koordinatenlinien u = ¢, > 0: Ellipsen —— (ac ¥ + (bc ‘), = 1. Koordinatenlinien v = ¢,:

bsinc, 3 " T
Halhoerad Nillnnnkt o T 3 _r.
F durch Nullp y—acosczxfurc,+2,c;+21=.Furc, 5t

positive y-Achse; fiir ¢, = -%- m: negative y-Achse.

31: a) £ (x0) =Zx arctany, £y(,0) = 753 > f,:(x, »=0,
Ty, 3 = gy e ) = fyas ) = T

b) y < x, dann f(x, y) = 2y, also f(x,y) = 0, f,(x, ) = 2:

» > x, dann f(x, y) = 2x, also f;(x, y) = 2, f(x,y) =

In allen Fallen ist f;;(x, ») = £, (x, ») = foy (x,5) = fyz(x, ) = 0
©) fz(x,9) = yx¥™' + y*In y, f,(x, ) = x¥ In x + xy*7,

frz(6,9) = y(y — D) x¥"2 + y*(In y)?,

Sy, ¥) = (0 x)* + x(x — 1) 72,

Soy(, ¥) =fyz (%, ) = x¥"1 + yx¥~ In x + xp* 'y + y=L

x?

e—?“_"_(—l+ L ) a’uu(X.t)

3.2: u(x,t) =m = porD
33: lxmw 0=£.(0,0);
20
n}) £0,y)— f(0 0) =0=4,0,0)
e

of”——-——(x’ DACO 1 fa.05
z
lim £2(0,7) —£2(0,0) _ —1=1,(0,0).
y-0 y
Nicht beide partielle Ableitungen 2. Ordnung sind im Nullpunkt stetig,
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34:4f(x,y) = x,+ ;0 dx—xdy),

&f(x,y) = (;_l_—y,), (=2xy(dx)* + 2(x* — y*) dx dy + 2xy(dy)?).

35:F =V(2,51) + (—1,72* + (3, 43)* = 4,58.

- Xdx+ydy+zdz

arx,5,20)=———e—
2+ +7
IAr] ~ |dr| < édx|+|§ idz‘
r r r
<4—s§-(2,51-0,02+1.72-0,02+3,43-0,03)=0,011+0,008+0,022=0,041.
Fiir den Abstand r gltalsor—4,58i0040du’mdﬂsformuliert: 4,54 < r < 4,62. Fiir den rela-
_4—'”(0009 0,9%.

3.6: Allgemein gilt =—:‘t— = z,% + 7,7 Ao gilt im Falle
a) z = 9= (cos 1) — 61);
N P .
b)z=w(nxy—mxr);
1,
Qz=1t" (A—Int)(@>0).
3.7:F(x,y)=3x'—w—y=-rz=ax—zy,r,,=—2x—2y.y=3;“;y’(x+—y).Diewei-

tere Differentiation wird mittels der verallgemeinerten Kettenregel gleich an dem letzteren Ausdruck
fiir y* durchgefiihrt.

Y=&+)2B-y)x+»)—-0Cx—»0+y)

=GN 40— D)=+ )T @y +y -3

=—+)?F(x,y) =0 (x+ —y).
Schreibt man F(x, y) in der Form F(x, y) = 4x*— (x +y)=2x+ x+ ) 2x — (x + )
= (3x + ») (x — ), so erkennt man, daB die Gleichung F(x, y) = 0 das Geradenpaar y = —3x
und y = x darstellt, fiirr welches natiirlich y* = 0 gilt.

38: F(x,y,z,u)=u(x*+ ) — (Z+ ) —4. F2|—3|2|1)=0. F,=(x*+ y*) — 34* und
F,(2|—3]2|1) =10+ 0. Also ist Auflosung nach « in der Form u = u(x, y, z) méglich. Es gilt
u,——i,u,,——i,u,———— An der betrachteten Stelle gilt F, = 2ux = 4, F, = 2uy

= —6, E= —32'= 12, Also ist grad u(Py) = i, & + uy e, + e = — e, + Fes + S e,

39: ik, y,2)=(x+y)—xz(c*—2)—1 und £(0[1]0)=
filx,y,2)=@x—2)— xy(y’+z‘) und £,(0]1]0)=
Es bestehen die folgenden Bezieh
Sin(Pg) = 4,_’;;;(?.) = 4,II|A(P0) =0,
Sun(Po) = —1, f31(Pe) = 0, fy(Py) = 0.
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Fiir die Auf]osbarkelt nach (x, y); (x, z) bzw. (y, z) in einer Umgebung von P, ist das Verhalten der
Determinanten der Matrizen

fin fnz](Po)__ [_4 4]'

fur S 10
S fus _[ 40
) @=[_1 o]
fuz fus _[ 40
[fzu fzn](P.)_ 0 0}

maBgebend. Da nur die Determinante der ersten Matrix ungleich null ist, kann (auf diesem Wege)
nur gesagt werden, daB sich in einer Umgebung von P, eine Auflésung nach (x, y) in der Form
x = x(z), y = y(z) finden 148t. Es gilt

x(O) [[fm fuz ]-l Sus ] [ 4 4]-1[0] [0]
P, P) = — = .
Y fan fm o fus P -1 0 0 0
4.2: Die Summe v,®> + v,? + v;? der Quadrate der Abweichungen v, = x; — &, 03 = x, — 3,
v = x5 — ¥ ist unter der Nebenbedingung x, + X3 + X3 = 180° = k zum Mmlmum zu machen.
Wir betrachten daher dle Funktion (A der Multiplikatc yde von Lagrange)
Q (%1, X3,y X3) = 01 + 0% + 02 + A(x; + Xp + X3 — k)
=(x; — a)® 4 (x3 — B)* + (x3 — ¥)* + A(x, + X, + x; — k) und setzen ihre partiellen Ableitun-
gen nach x,, x,, x; gleich null. Dies ergibt die Gleichungen
01=2(x—a)+41=0
Qe=20(x—p+4=0
Q3=2(5—»)+4=0.

Addition dieser Gleichungen liefert wegen x, + x; + x; = k die Bczxehuug 0=2k—2(0+f+y
+ 3A oder =% (a + B+ » — k) und damit die ausgeglich Werte (L6 der obigen Glei-

chung)
H=a—}@tpty—h=45%
=B—}+B+y—k)=29°5T
=y—}+B+y—k=105,
4.3: Die S der Abweict drate ist im gegeb Fall gleich Q(a, b) =
) i—a— bxi )\t Die Gleich 0 OaQ—O(Normall'h ) lauten daher
ié“(y. 1+xi,) . Di e i gleichungen) lauten da

RN (R . T P
2i§1(y, a 1+xi,>—-0,

n bx; L X _
25 (e 1) TR

Ausfithrung der Summation, Umstellung und Division durch (—2) liefert zwei lineare Gleichungen
mit den Unbekannten a und b:
b n x‘ n
na+ § T+ —'§ Yis

7 2 + & X
T P ‘231 a - x,’)’ =2 T

Mit den Zahlenwerten des Beispiels ergibt sich das (sehr einfache) Gleichungssystem
S5a =25,
0,826 = —6,8
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mit der Losung @ = 5; b = —8,293. Die einzelnen Fehler A=y —a— i _l:_x;, ergeben sich
zu A, = 6,68, Ay = —4,15, Ay = —4,0, A, = 0,15, A; = 1,32. Die Summe der ‘Fehlerquadrate
2 A ist gleich 79,66, Das Maximum des absoluten Fehlers fiir die MeBpunkte betrigt 6,68.

4.4: 5 = ?ff(x) coskxdx  (k=0,...,n),
0

2r
bk=%ff(x)sinkxdx (k=1,..,n)
0

sind fiir f(x) = x% n =2 (0 £ x < 2r) zu verwenden. Wir erhalten
= _35_2 ooy =4,a=1,

b, = —4r, by = —2x. Die gesuchte Naherungsfunktion hat die Form f(x) = = 1:‘ + 4 cos x
+ co82x — 4rsin x — 2w sin 2x (0 < x < 27m).

4.5: Man erhalt

d= ~ s
"lez-(le
Jj=1 Jj=1
(£e7) (E0) - (£) (B2
2% 2%, 22X\ 2 ) -

Ul Ol L
"ZM‘(Z’U) = =
j=1 J=1 )

- n 1/n n 1 n n

Q..;Q=Q(5,b)=.2yj’——(/2y;) —5(2-"1)’1__'2-"1.2."1)-
j=1i n \j=1 j=1 nj=1j=1

4.6: Fir G,o ={PeR"|x,? + x,2 + ... + x,> £ Ro) mit hinreichend groBem R, > 0 ist die Aus-
sage der Bemerkung 3., S.118, anwendbar und liefert f(Py) < f(P)fiir alle Pe R, da jedes P€ R"
zu einem G"o mit hinreichend groBem R, gehort.
5.1: Mit den Bezeicl des Beispiels 3.27 ist jetzt die Gleichung

V& —aP + ¥ =klx+ o+

fiir die_Schnittkurve der Potentlalﬁache mit der dort emgcfuhrten x, y-Ebene zu diskutieren. Wir
erhalten durch entsprect Umfor die

(1 + k%)

2 = —

X Za =) x4+ a,

aus der mittels dratischer Ergi sich die hte Kurve aus einer Kreisgleichung ergibt:

[x—a(1+k )] + 2._(1422’;‘:)2

Im x, y-System hat dieser Kreis den Mittelpunkt x = a3 e :,, y = 0 (dieser liegt auf der Verbin-
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dungsgeraden von P, und P,), sein Radius betrigt R = —I—;Z‘Ek—— . Die gesuchte Potentialfliche ist

(nach analogen Uberlegungen wie im Beispiel 3.27) eine Kugel mit dem Radius R = )

='—-—Iﬁlr‘ — r;l. Ihr Mittelpunkt ergibt sich aus der (geometrisch evidenten) Beziehung

n—r 1 _ 2
m—n I—R T-g"

l'u——‘(rx+'2)+a( +k)

(man beachte die Gleichung a = % Iry— rgl) . Daraus folgen die Beziehungen
Zkz
Ity — 1 = r’;{,) (wegen 0 < k < 1 folgt hieraus, daB |r, — r,| < R gilt, also P, im Inneren
der Kugel liegt!) und |r; — 1o =
4a%k? .
= R? gilt.

, woraus sich ergibt, daB |r; — x| « [r; — 1|

2a
a-k?
Ta—wr
5.2: a) Halbgeraden (Strahlen) durch den Nullpunkt

b) Kreise, deren Mittelpunkte auf der Geraden durch den Nullpunkt mit Rich ktor w liegen
und deren Ebenen auf w senkrecht stehen.

ox?) | 80" + a(2)

5.3: div v=—- N =E&+y+2).

5.4: Die x-Komponente von rot v lautet

L A -

O/ = V2 +r+2f ° @+ +2°

Aus Symmetriegriinden sind auch die weiteren Koordinaten von rot v gleich null. Also gilt rot v =0

(r = o). Das elektrische Feld einer Punktladung ist (abgesehen vom Ort der Ladung) wirbelfrei, d.h.,
seine Rotation ist gleich null.

5.5: Es gilt Af(r)= div grad f(r) = div f (') r (nach Formel (3.170)). Nach Rechenregel (5.23)

gilt aber div f (r) r=r- gradf () f (r) —=divr. Wegen div r = 3 und Formel (5.30) wird

r-gradl:) f—frl 1vr=r-(—(£(ﬁ) r) 3&

=L L0 2= ro+ 2o

(man beachte noch r« r = |2 =r?).

5.6:c=cre;t+ce+cze; und cr=cx+ 6y + Gz
alsograd (c-r)=c,e,+ coe; + c3e3 = ¢.
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