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Vorwort zur 4. Auflage

Diese Auflage des Lehrbuches wurde erneut - wie schon die 2. - zu einer gründlichen Überar-
beitung genutzt, wobei die nunmehr reichlich vorliegenden Erfahrungen bei seinem Einsatz
in der Ausbildung von Direkt- und Fernstudenten für Veränderungen, Ergänzungen und
Streichungen maßgeblich waren. Im Vordergrund der Überarbeitung stand deshalb auch die
weitere Verbesserung der methodischen Gesichtspunkte bei geringer Lockerung von abstrak-
ten Betrachtungsweisen.

Der Inhalt richtet sich - wie in allen weiteren Bänden dieses Lehrwerkes - vorwiegend an
Hochschulstudenten der Natur-, Ingenieur-, Wirtschafts- und Landwirtschaftswissenschaften.
Dabei stellt der vorliegende Band die mathematischen Grundlagengebiete bereit, die für die
nachfolgenden Bände erforderlich sind. Entsprechend ist die stoffliche Auswahl getroffen,
wobei auch manche neue Wege beschritten wurden.

Das Lehrbuch ist so angelegt, daß es sowohl Direkt- als auch Fernstudenten zur Unterstüt-
zung des Selbststudiums dienen kann. Natürlich bestimmen Kursvorlesungen oder Studien-
anleitungen Umfang und Auswahl für das mathematische Studium der einzelnen Fachrich-
tungen.

Weiterhin eignet sich dieser Band sicher auch zum Nachlesen für alle diejeniger Interessenten,
die während ihrer Ausbildung die behandelten Gebiete nicht oder nur wenig kennengelernt
haben. Wegen seines spezifischen Inhaltes eignet sich auf diese Weise das Lehrbuch auch zum
Nachschlagen.

Die Autoren waren sich beim Schreiben dieses Bandes auch der Probleme bewusst, die seine
Gestaltung bei teilweise unterschiedlichen Zielstellungen mit sich brachte. Sie möchten sich
deshalb sehr herzlich für die vielen konstruktiven Hinweise - insbesondere zu methodischen
Fragen - bedanken, die weitgehend berücksichtigt werden konnten. Wir bedanken uns bei
Herrn Professor Erfurth, Merseburg, sowie bei Herrn Dipl.-Math. H. Ebmeyer, Dresden, für
ihre kritischen Anregungen und konkreten Abänderungsvorschläge, die uns sehr geholfen ha-
ben. Weiterhin danken wir Herrn Professor Wußing, Leipzig, für seine wertvollen Bemerkun-
gen zum geschichtlichen Überblick. Besonderer Dank gilt Frau Ziegler vom Teubner-Verlag
Leipzig; sie war uns in der Zusammenarbeit wiederum eine verständnisvolle und sachkundige
Beraterin.

Die Autoren

Leipzig, Juli 1979
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1 Zum Anliegen des Bandes

Der vorliegende Band 1 des Lehrwerkes behandelt einige allgemeine Grundlagen, die für
den Aufbau und das Verständnis weiterer mathematischer Gebiete und somit für die Inhalte
der folgenden Bände notwendig sind. Auswahl und Umfang dieser Grundlagen leiten sich
in erster Linie aus den Erfordernissen ab, wichtige Begriffe, Methoden und Ergebnisse zur
fundierten Darstellung mathematischer Disziplinen bereitzustellen.

Dabei ist berücksichtigt, daß nach der Neugestaltung des Mathematikunterrichtes in den
allgemeinbildenden Schulen für moderne Auffassungen in der mathematischen Ausbildung
günstige Vorbedingungen geschaffen sind. Ausreichende Kenntnisse und Fertigkeiten in der
Bruch-, Potenz-, Wurzel- und Logarithmenrechnung sowie in der elementaren Geometrie
und der Trigonometrie werden zudem vorausgesetzt. Selbstverständlich ist bei der Darlegung
der Grundlagengebiete für Inhalt und Form die Zielstellung des Gesamtlehrwerkes maßge-
bend, der mathematischen Unterrichtung von Ingenieuren, Naturwissenschaftlern, Ökono-
men und Landwirten an Hochschulen zu entsprechen. Deshalb wird für die naturgemäß in
den Grundlagengebieten besonders zahlreich auftretenden abstrakten Begriffe der Erkennt-
nisprozeß durch anschauliche Entwicklung unterstützt, ohne die erforderliche Strenge und
Exaktheit zu verletzen. Auch sind zahlreiche anwendungsbezogene Beispiele im Text und bei
den Übungsaufgaben enthalten.

Der Sinn mathematischer Betrachtungen besteht allerdings nicht allein im Bereitstellen von
Ergebnissen und Sätzen. Er liegt gleichermaßen in den besonderen Formen des Denkens und
Schließens zur strengen Herleitung allgemeingültiger Resultate aus exakt formulierten Vor-
aussetzungen. Es ist ein weiteres Anliegen dieses Lehrabschnittes, den Lernenden besonders
an exaktes und logisches Denken zu gewöhnen.

In den Abschnitten 3. und 4. beschäftigen wir uns deshalb mit Begriffen der Logik und den
aus ihnen abgeleiteten Beweisprinzipien. Für die Gewinnung mathematischer Ergebnisse und
Tatsachen ist es charakteristisch, daß sie logisch einwandfrei aus Voraussetzungen abzuleiten
sind. Deshalb ist die Kenntnis strenger Beweisführung notwendig und das sorgfältige Studium
dieser Abschnitte dringend anzuraten.

Im Abschnitt über die Zahlenbereiche wird bei der Darstellung der reellen Zahlen und der
Rechengesetze, denen sie genügen, ein axiomatisches Vorgehen erläutert. Die komplexen Zah-
len dagegen werden anschaulich eingeführt und auf Grund ihrer Bedeutung in physikalischen
und technischen Anwendungen ausführlich behandelt. Bei vielen mathematischen Untersu-
chungen treten Fragen der Auswahl, der Anordnung oder der Zusammenstellung verschie-
denartiger Elemente auf. Sie werden im Kapitel über Kombinatorik näher untersucht.

Eine zentrale Stellung innerhalb der Mathematik nimmt die Mengenlehre ein. Mit ihren
Begriffen lassen sich die mathematischen Disziplinen begründen und die objektiv gegebenen
Sachverhalte verschiedener Wissensgebiete erfassen.

Zwei weitere Abschnitte befassen sich mit den in fast allen Anwendungsgebieten bedeutsa-
men Begriffen der Abbildung bzw. der Funktion, die mengentheoretisch definiert werden. Der
letzte Abschnitt schließlich ist den Zahlenfolgen gewidmet und stellt den wichtigen Grenz-
wertbegriff bereit.
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2 Die Entwicklung der Mathematik und ihre
Beziehung zur Praxis

2.1 Aus der Entwicklungsgeschichte der Mathematik

Die Geschichte der Mathematik ist eng mit der der menschlichen Gesellschaft verknüpft.
Ferner bestimmen einige bedeutende Mathematiker durch ihre richtungweisenden Ideen und
Entdeckungen die Entwicklung der Mathematik entscheidend. Die Mathematik gehört - ne-
ben Philosophie, Medizin und Astronomie - zu den ältesten Wissenschaften. Sie erreichte
schon im 2. Jahrtausend v. u. Z. in Ägypten und Mesopotamien, aber auch im alten China
und Indien einen beachtlichen Reifegrad. Die verwendeten Zahlensysteme standen im engen
Zusammenhang mit kommerziellen und militärischen Interessen sowie mit Verwaltungspro-
blemen. Man kannte Verfahren zur Lösung von Gleichungen, sogar höheren Grades. Die
Geometrie diente dem Errichten von Bauwerken, der Feldvermessung und der Orientierung
am Himmel. Doch handelte es sich um eine rezeptartige, noch nicht auf Beweisen von explizit
angeführten Sätzen aufbauende Mathematik.

Erst mit der Herausbildung der antiken Sklavenhaltergesellschaft im alten Griechenland wur-
de die Mathematik im 6.-5. Jh. v. u. Z. zu einer selbständigen Wissenschaft mit eigenen
Methoden und Beweisverfahren; auf dieser Grundlage schuf Euklid (365?-300? v. u. Z.) mit
seinen ,„Elementen“ (um 325 v. u. Z.) eine bewunderungswürdige Darstellung des damaligen
mathematischen Kenntnisstandes. Mit Archimedes (287?-212 v. u. Z.), dem in Geometrie
und Mechanik große Entdeckungen gelangen, erreichte die Mathematik der Antike während
der hellenistischen Periode ihren Höhepunkt.

Zur Zeit der Herrschaft der Römer und in der feudalistischen Gesellschaft gab es in Europa
keine nennenswerten mathematischen Entwicklungen, während die Mathematik vor allem in
Indien und in den Ländern des Islam zu einer hohen Blüte gelangte ; viele Teilergebnisse -
darunter die indisch-arabischen Ziffern - gelangten seit dem 12./13. Jh. in die Länder des
europäischen Feudalismus, in denen bis dahin nur ein sehr bescheidenes wissenschaftliches,
darunter auch mathematisches Niveau geherrscht hatte.

Erst mit der Entwicklung von Elementen des Frühkapitalismus in Europa bildeten sich, ins-
besondere seit dem 16. Jh., günstige Bedingungen für die Übernahme des antiken mathema-
tischen Erbes und für dessen selbständige Weiterentwicklung durch die Europäer heraus. Die
Trigonometrie entwickelte sich zu einer selbständigen mathematischen Disziplin. Die Durch-
bildung der Rechenmethoden machte große Fortschritte; von den sog. Rechenmeistern wurde
in Deutschland A. Ries (1492-1559) am bekanntesten, der im Erzgebirge wirkte. Reichlich
ein Jahrhundert später wurden die ersten Maschinen für die Grundrechenarten entwickelt
(Schickard (1592-1635), Pascal (1623-1662), Leibniz (1646-1716)).

Das Gedankengut der rationalistischen philosophischen Systeme und der Aufklärung sowie
die bürgerliche Revolution brachten im 16. und 17. Jahrhundert mit der Überwindung der
feudalistischen Gesellschaftsordnung und der diese Ordnung rechtfertigenden Ideologien auch
den Naturwissenschaften und der Mathematik wieder Geltung und Bedeutung. Descartes
(1596-1650) begründete den modernen Rationalismus auf der mathematischen Grundlage
der von Galilei (1564-1642) geformten Naturwissenschaften. Er gilt auch als Begründer der
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analytischen Geometrie. Die Herausbildung der infinitesimalen Methoden erfolgte in engem
Zusammenhang mit der geistigen Bewältigung des Bewegungsproblems in Physik (G. Gali-
lei) und Himmelsmechanik (J. Kepler). Im Anschluß an die Ergebnisse von Archimedes und
durch sehr mühsame Gedankenarbeit im 16. und zu Anfang des 17. Jahrhunderts vermoch-
ten es I. Newton (1643-1727) und G. W. Leibniz im letzten Drittel des 17. Jahrhunderts,
unabhängig voneinander die Methoden der Differential- und Integralrechnung durchzubil-
den. Während Newton, der als einer der bedeutendsten Forscher auf den Gebieten der Ma-
thematik, Mechanik und Astronomie gilt, mit Hilfe dieses neu entwickelten mathematischen
Werkzeuges den Aufbau der klassischen Mechanik und seine „Mathematischen Prinzipien der
Naturwissenschaften“ (1687) vollenden konnte, setzten sich die geschickteren Bezeichnungen
von Leibniz rasch durch. Die „Infinitesimalmathematik“ wurde im 18. Jh. in den Händen
der Gebrüder Johann (1667-1748) und Jakob Bernoulli (1645-1705) und L. Eulers (1707-
1783), der in Berlin und Petersburg wirkte, zu einem weitreichenden Mittel zur Bewältigung
schwieriger Probleme der Mechanik, der Himmelsmechanik, der Optik, des Artilleriewesens,
der Seeschiffahrt und vieler anderer praktischer Anwendungen.

Die neue Geltung und Anerkennung der Mathematik und der Naturwissenschaften kam u.
a. auch bei J. L. d’Alembert (1717-1783) und in der großen französischen Encyclopédie zum
Ausdruck.

Nach der französischen bürgerlichen Revolution (1789) setzte insbesondere in den von der
industriellen Revolution erfaßten Ländern Europas ein bedeutender Aufschwung in der Ma-
thematik ein. Bei der Grundlegung der Analysis, in Algebra, in darstellender, analytischer
und projektiver Geometrie sowie bei der Nutzbarmachung der Mathematik für Anwendun-
gen in Technik und Naturwissenschaften wurden bedeutende Fortschritte erzielt. J. Lagrange
(1736-1813), P. S. Laplace (1749-1827), A. Legendre (1752-1833), G. Monge (1746-1818), J.
Fourier (1768-1830), A. Cauchy (1789-1857), J. V. Poncelet (1788-1867) u. a. leisteten hier
und auf anderen mathematischen Gebieten Hervorragendes; viele Mathematiker nahmen ak-
tiv am gesellschaftlichen Leben ihrer bewegten Zeit teil. Sie haben zudem große Verdienste
bei der Neugestaltung der mathematischen Ausbildung.

Der deutsche Mathematiker C. F. Gauß (1777-1855) lieferte am Ende des 18. und zu Beginn
des 19. Jahrhunderts hervorragende Beiträge zur Entwicklung der Mathematik. Er bereicher-
te sie um zahlreiche neue Verfahren und Theorien und überwand viele ungelöste Probleme.
Seine Forschungen waren dabei an Anwendungen in der Geodäsie, der Astronomie und der
mathematischen Physik orientiert.

Von der zweiten Hälfte des 19. Jahrhunderts bis zum Ausbruch des ersten Weltkrieges tra-
ten insbesondere die Mathematiker aus den Ländern hervor, in denen sich Kapitalismus und
Industrialisierung am weitesten entwickelt hatten. Genannt seien: G. Boole (1815-1869), A.
Cayley (1821-1895) und R. Hamilton (1805-1865) in Großbritannien, C. Jordan (1838-1922)
und H. Poincaré (1854-1912) aus Frankreich, K. Weierstraß (1815-1897), B. Riemann (1826-
1866), R. Dedekind (1831 bis 1916) und F. Klein (1849-1925) aus Deutschland, S. Lie (1842-
1899) aus Norwegen, E. Beltrami (1835-1900) und G. Peano (1858-1932) aus Italien, Ch. S.
Peirce (1839-1914) aus den USA sowie N. I. Lobatschewski (1792-1856) und P. L. Tsche-
byscheff (1821-1894) aus Rußland. Für die Begründung wichtiger Gebiete und Auffassungen
in der modernen Mathematik sind die grundlegenden Ideen von G. Cantor (1845-1918) und
D. Hilbert (1862-1943) aus Deutschland sowie die des polnischen Mathematikers St. Banach
(1892-1945) zu großer Bedeutung gelangt. Nach der Großen Sozialistischen Oktoberrevolu-
tion (1917) nahmen die mathematischen Forschungen in der Sowjetunion einen ungeheuren
Aufschwung. Die gesellschaftliche und wirtschaftliche Entwicklung in diesem Lande ermög-
lichte es, daß heute die sowjetischen Mathematiker zu den führenden in der ganzen Welt
zählen und ihre Ergebnisse und Leistungen Entwicklungsrichtungen der modernen Mathe-
matik bestimmen. Auch in der DDR wurde die Bedeutung der Mathematik durch die Partei-
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und Staatsführung erkannt, was sich in einer großzügigen Förderung der mathematischen
Forschung und Ausbildung äußert.

Dieser kurze Abriß zeigt, daß vorwiegend in den fortschrittlichen Gesellschaftsordnungen
einer Epoche die Mathematik durch bedeutende Entdeckungen erweitert und bereichert
wird.

2.2 Zu den Anwendungen der Mathematik

Die klassische Mathematik fand ihre Anwendung vorwiegend in Physik, Mechanik, Astro-
nomie und Geodäsie. Die mathematische Durchdringung dieser Wissenschaften wirkte sich
andererseits befruchtend auf die Entwicklung der Mathematik und ihrer Methoden aus. Auch
die technischen Wissenschaften bedienen sich seit ihrer Entstehung in starkem Maße des ma-
thematischen Instrumentariums.

Die Begriffe der Mathematik sind Abbild von für den Gegenstand mathematischer Betrach-
tungen wesentlichen Eigenschaften der Realität in unserem Bewußtsein. Von realen Erschei-
nungen läßt sich ein abstraktes mathematisches Modell aufbauen, das ihre Haupteigenschaf-
ten widerspiegelt und einfacher ist. Dieses Modell kann mit mathematischen Methoden un-
tersucht werden, und es können dabei neue Eigenschaften und Gesetzmäßigkeiten der realen
Erscheinungen entdeckt werden.

Aber auch umgekehrt lassen sich zu mathematischen Strukturen Realisierungen finden, deren
Anwendungen von großem Nutzen für den wissenschaftlichen Fortschritt sind. Dieses Vorge-
hen wird in der Astronomie, der modernen Physik oder bei der Entwicklung von Computern
erfolgreich praktiziert.

Auf dieser Grundlage erklären sich die engen Wechselbeziehungen zwischen der gesellschaft-
lichen Praxis und der Mathematik. Heutzutage werden mathematische Methoden besonders
in der Wirtschaft, der Chemie, der Geologie, der Biologie, der Medizin und der Landwirt-
schaft, in der Pädagogik und in den Sprachwissenschaften angewendet. Diese Mathematisie-
rung der Wissenschaften ist eine der bedeutendsten Erscheinungsformen der wissenschaftlich-
technischen Revolution. Die Mathematik entwickelt sich somit zum Bindeglied verschiedener
Disziplinen und beeinflußt aktiv die Entwicklung der Wissenschaften und der Praxis.

Besondere Bedeutung besitzen algorithmische Darstellungen und numerische Methoden im
Hinblick auf die Nutzung der Computer zur Beschreibung und Lösung der Modelle. Da
vielen Vorgängen Zufallserscheinungen innewohnen, ergibt sich eine starke Beachtung der
stochastischen Betrachtungsweise. Sehr intensiv sind mathematische Probleme der Planung
und Leitung, der Prozeßsteuerung, der Produktionskontrolle, der Versuchsplanung und der
Zuverlässigkeit von Systemen zu betrachten. Häufig sind diese Fragen im Zusammenhang
mit Optimierungen zu sehen. Aus der gewachsenen Leistungsfähigkeit der Computer erge-
ben sich zudem neue Gesichtspunkte für die Anwendung mathematischer Methoden in den
Anpassungs- und Lernprozessen oder den Problemen der nichtnumerischen Informationsver-
arbeitung.

Die Mathematik trägt auch dadurch in hervorragendem Maße zum gesellschaftlichen Fort-
schritt bei, indem sie das Formalisieren und Quantifizieren, die strenge Begriffsbildung,
die Entwicklung von Ordnungsprinzipien und das logische Denken in hohem Maße för-
dert.
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3 Logik

Die nachfolgenden ausgewählten Bemerkungen zur Logik dienen in erster Linie dazu, den
Leser zu befähigen, vorgelegte Sätze in besonderer Weise mit dem Ziel einer Formalisierung
zu analysieren.

Wir stellen zunächst mit den sogenannten Wahrheitstabellen ein einfaches Instrumentari-
um bereit, um festzustellen, ob der vorgelegte Sachverhalt eine wahre oder falsche Aussage
darstellt. Dies sind die notwendigen Grundlagen zum Verständnis der logischen Schlüsse,
die in der Mathematik, aber auch in anderen Wissenschaften, immer wieder benötigt wer-
den.

Darüber hinaus findet die Logik in neuerer Zeit immer mehr auch Anwendungen in Natur-
wissenschaften und Technik (digitale Rechentechnik, Neuronennetze, Technologie, Netzplan-
technik, Steuerungsprobleme).

3.1 Aussagen

Gegenstand der Logik sind Aussagen. Diese werden im sprachlichen Umgang in Aussage-
sätzen formuliert. Eine Aussage drückt einen Tatbestand aus. Demzufolge sind alle aus
der Umgangssprache bekannten Fragesätze, Aufforderungssätze, Befehlssätze, Wunschsät-
ze, Zweifelssätze usw. keine Aussagesätze. Speziell sind

- Ist 1010 + 1 eine Primzahl?

- Löse die Gleichung x2 + 4x + 10 = 0 !

- Rechts abbiegen!

- Hoffentlich scheint morgen die Sonne.

- Ich glaube nicht, daß morgen die Sonne scheint.

keine Aussagesätze.

Betrachten wir zunächst als Beispiel die Aussage „2 · 2 = 4“. Diese Aussage kürzen wir mit
p ab und schreiben:

p = „2 · 2 = 4“

Ebenso wird in den folgenden Beispielen verfahren.

Beispiel 3.1

q = „10 ist eine Primzahl“

r = „Die Sonne scheint“

s = „Am 10.10.1995 wird in Leipzig die Sonne scheinen“

t = „Kolumbus hat 1492 Amerika entdeckt“
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Diese Beispiele zeigen, daß es sinnvoll ist, nach dem Wahrheitsgehalt der entsprechenden
Aussagen zu fragen.

Die mit p und t abgekürzten Sätze stellen offenbar wahre Aussagen dar, dagegen ist y falsch.
Die Frage nach dem Wahrheitsgehalt der durch r beschriebenen Aussage ist erst nach Kennt-
nis von Ort und Zeit mit „wahr“ bzw. „falsch“ entscheidbar. Für die durch s beschriebene
Aussage ist es sinnvoll, den Wahrheitsgehalt zu dem Zeitpunkt, an dem sie gemacht wird,
durch eine Wahrscheinlichkeit zu präzisieren.

Diese Überlegungen veranlassen uns zunächst zur folgenden Erklärung:

p heißt eine Aussage, wenn p einen Tatbestand ausdrückt.

Die Gesamtheit aller so definierten Aussagen p fassen wir zu einer Menge A1 zusammen:
A1 = {p | p ist eine Aussage}.

Wir benutzen bereits hier den Begriff der Menge, welcher in Abschnitt 7. ausführlicher be-
handelt wird.

Unter einer Menge verstehen wir nach Cantor eine Gesamtheit (Zusammenfassung) bestimm-
ter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von ei-
nem Objekt eindeutig feststeht, ob es zur Menge gehört oder nicht.

Können wir die Objekte, die zur Menge gehören und Elemente der Menge heißen, aufschrei-
ben, so führen wir sie in geschweiften Klammern auf. So wird die Menge M1 der natürlichen
Zahlen, die größer als 2 und kleiner als 10 sind, wie folgt geschrieben: M1 = {3, 4, 5, 6, 7, 8, 9}.
Die Tatsache, daß z.B. 5 Element der Menge M1 ist, beschreiben wir mit der Symbolik
5 ∈ M1, während 1 /∈ M1 bedeutet, daß 1 kein Element von M1 ist. Wir werden auch
generell für Mengen große lateinische Buchstaben zur Bezeichnung benutzen. Eine andere
Schreibweise für eine Menge M ist

M = {x | E}.

Wir lesen dieses Symbol folgendermaßen: „M ist die Menge aller Elemente x, die Eigenschaft
E besitzen“. Die oben erklärte Menge A1 ist in dieser Schreibweise formuliert A1 = {p |
p ist eine Aussage }. Die Menge M1 kann mit Hilfe dieser Symbol als

M1 = {x | x, natürliche Zahl und 2 < x < 10}

geschrieben werden. Schließlich sei bereits an dieser Stelle der Begriff der Teilmenge erklärt.
Die Menge A heißt Teilmenge der Menge B, wenn jedes Element der Menge A auch Element
der Menge B ist. Wir schreiben in diesem Fall: A ⊆ B.

Zum Beispiel

{3, 4, 5} j M1 = {3, 4, . . . , 9},

aber

{2, 9} ist keine Teilmenge von M1.

Dieser Vorgriff auf Grundbegriffe der Mengenlehre gestattet es uns, nachfolgend gewisse
Sachverhalte besser zu formulieren.

Bei unseren weiteren Betrachtungen wollen wir uns auf eine wichtige Teilmenge von A1

beschränken.

Definition 3.1

Die Aussage p heißt zweiwertige Aussage, wenn p entweder wahr oder falsch ist.D.3.1
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Entsprechend A1 bilden wir die Menge der zweiwertigen Aussagen A2:

A2 = {p | pist eine zweiwertige Aussage}

Durch diese Definition scheiden wir Aussagen wie s aus den weiteren Betrachtungen aus.
Auch Aussagen über die Bewertungen einer Klausur, die man ja üblicherweise mit den Zen-
suren (Wahrheitswerten) 1 bis 5 vornimmt, sind in A2 nicht enthalten.

Im Zusammenhang mit A2 führen wir die Wahrheitswerte

„wahr“, bezeichnet durch W , und

„falsch“, bezeichnet durch F ,

ein. Der Aussage p, p ∈ A2, ist gemäß Definition 3.1 eindeutig ein Wahrheitswert aus {W,F}
zugeordnet. Wir bezeichnen diese eindeutige Zuordnung mit w(p), w(p) ∈ {W,F} ; w(p)−
Wahrheitswert der Aussage p.

Wir wollen noch auf einen wichtigen Tatbestand aufmerksam machen. Das Wissen, daß
p ∈ A2 gilt, heißt noch nicht, daß man auch w(p) kennt. Dazu zwei Beispiele:

Beispiel 3.2

p = „1010 + 1 ist eine Primzahl“;

q = „Ist n eine natürliche Zahl, die größer oder gleich drei ist, so gibt es keine ganzen,
positiven Zahlen x, y, z so, daß xn + yn = zn gilt“.

Es ist sofort klar, daß p ∈ A2 und q ∈ A2 ist, w(p) ist nicht ohne weiteres angebbar.
Es gibt aber einen Algorithmus zur Ermittlung dieses Wahrheitswertes. Dagegen ist der
Wahrheitswert von q (großer Fermatscher Satz) bis heute unbekannt.

Die Ermittlung von Wahrheitswerten mathematischer Aussagen ist eine Aufgabe der Ma-
thematik und keine spezielle Aufgabe der Logik.

3.2 Variable und Aussageformen

Wir betrachten eine Menge X von beliebigen Elementen. Wir wollen x eine Variable nen-
nen, wenn x die Elemente von X durchläuft. X heißt dann Bereich der Variablen x. Die
Sätze

„x ist eine Primzahl“, „y ist eine Großstadt“

die wir mit p(x) bzw. q(y) abkürzen wollen, stellen zunächst keine Aussagen dar. Für jedes
konkrete x = x1 ∈ X und y = y1 ∈ Y gehen p(x) und q(y) jedoch in Aussagen aus A2

über.

Beispiel 3.3

X = {1, 2, . . . , 10}, Y = {Moskau, Leipzig, Weimar}.

Die Aussagen p(2), p(3), p(5), p(7) sind wahre Aussagen, dagegen sind p(1), p(4),
p(6), p(8), p(9) und p(10) falsche Aussagen. Setzen wir im Satz q(y) für die Variable
y die Elemente ihres Bereiches ein, so entstehen die wahren Aussagen „Moskau ist
eine Großstadt“, „Leipzig ist eine Großstadt“ und die falsche Aussage „Weimar ist eine
Großstadt“.
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Für solche Sätze, die eine Variable enthalten, wollen wir einen Namen einführen. Wir defi-
nieren:
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Definition 3.2

Eine Formulierung p(x) mit der Variablen x ∈ X heißt eine Aussageform, wenn p(x) bei D.3.2
Einsetzen jedes konkreten Wertes x = x1 ∈ X in eine zweiwertige Aussage übergeht. Die
Menge der so entstehenden Aussagen heißt Bereich der Aussageform.

Eine Aussageform ist weder wahr noch falsch. Sie ist selbst keine Aussage, sondern stellt eine
Vorschrift zur Gewinnung von Aussagen dar.

Die Sätze der Mathematik und anderer Wissenschaften sind Aussagen bzw. Aussageformen,
die eventuell auch von mehr als einer Variablen abhängen. Diese Aussagen bzw. Aussagefor-
men treten nun aber häufig verknüpft durch Bindewörter, verneint oder auf andere Weise
modifiziert auf. Mit solchen Aussagenverbindungen wollen wir uns im nächsten Abschnitt
beschäftigen.

3.3 Aussagenverbindungen

3.3.1 Elementare Aussagenverbindungen, n-stellige
Aussagenverbindungen

Aus der Umgangssprache sind uns eine Reihe von Bindewörtern bekannt, mit deren Hilfe
man mehreren Aussagen eine neue zweiwertige Aussage zuordnen kann.

Aus der Umgangssprache sind uns eine Reihe von Bindewörtern bekannt, mit deren Hilfe
man mehreren Aussagen eine neue zweiwertige Aussage zuordnen kann.

Beispiel 3.4

Betrachten wir als Beispiele die beiden Aussagen

p = „3 ist eine Primzahl“

q = „10 ist durch 3 teilbar“

Dann können wir die folgenden neuen Sätze bilden:

(1) p1 = „3 ist keine Primzahl“’

(2) p2 = „3 ist eine Primzahl und 10 ist durch 3 teilbar“

(3) p3 = „3 ist eine Primzahl oder 10 ist durch 3 teilbar“

(4) p4 = „Wenn 10 durch 3 teilbar ist, so ist 3 eine Primzahl“

(5) p5 = „3 ist genau dann eine Primzahl, wenn 10 durch 3 teilbar ist“

(6) p6 = „Entweder 3 ist eine Primzahl oder 10 ist durch 3 teilbar“

(7) p7 = „3 ist eine Primzahl, weil 10 durch 3 teilbar ist“

Zunächst einmal steht fest, daß die Sätze p1 bis p7 zweiwertige Aussagen darstellen. Ihr
Wahrheitswert läßt sich in der von der Umgangssprache bekannten Weise einfach bestimmen.
So gilt:

w(p) = W,w(q) = F,

w (p1) = F,w (p2) = F,w (p3) = W,w (p4) = W,w (p5) = F,

w (p6) = W,w (p7) = F.
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Wir wollen nun die Überlegungen aus Beispiel 3.4 verallgemeinern. Die Größen p und q
bezeichnen zwei beliebige Aussagen, p ∈ A2, q ∈ A2. Dann gibt die folgende Tabelle die den
Beispielen entsprechenden Aussagenverbindungen, deren Namen und Kurzschreibweisen an.
Wir bemerken noch einmal, daß eine solche Aussagenverbindung je zwei Elementen von A2

in eindeutiger Weise ein Element von A2 zuordnet. Im Beispiel (1) wird einer Aussage aus
A2 eine andere Aussage, ebenfalls aus A2, eindeutig zugeordnet. Aus diesem Grunde können
wir auch das Wort Aussagenfunktion anstelle Aussagenverbindung benutzen.

Nr. Aussagenverbindung Kurzzeichen Name
1 nicht p p̄ Negation
2 p und q p ∧ q Konjunktion
3 p oder q p ∨ q Alternative
4 wenn p, so q p→ q Implikation
5 p genau dann, wenn q p↔ q Äquivalenz
6 entweder p oder q - Disjunktion
7 p weil q - -

Tabelle 3.1: Aussagenverbindungen

Die Aussagenverbindungen (2) bis (7) in der Tabelle 3.1 sind zweistellige Aussagenverbin-
dungen, da sie je zwei Aussagen aus A2 eine neue Aussage aus A2 eindeutig zuordnen. Die
Negation kann als einstellige Aussagenverbindung aufgefaßt werden. Die Begriffe Alternative
und Disjunktion werden in der Literatur unterschiedlich verwendet.

Mit diesen ein- und zweistelligen Aussagenverbindungen ist aber die Menge der Verknüpfun-
gen von Aussagen noch keineswegs erschöpft. Oft ist es zur Beschreibung mathematischer
Sachverhalte notwendig, Aussagenverbindungen zu betrachten, die aus mehr als zwei Teil-
aussagen zusammengesetzt werden.

Beispiel 3.5

(Wir benutzen die Kurzschreibweise, um die Struktur der Aussagenverbindung deutlicher
hervorzuheben):

(p ∧ q)→ (r ∨ s) (3.1)
((p ∨ q ∨ r) ∧ (p→ s) ∧ (q → s) ∧ (r → s))→ s (3.2)

Mit Worten bedeutet (3.1): Wenn p und q gelten, so gilt auch r oder s. Dabei kann man sich
für p, q, r, s beliebige Aussagen aus A2 eingesetzt denken.

Allgemein gesprochen, können wir also mit Hilfe von Bindewörtern n Aussagen aus A2 eine
neue Aussage aus A2 zuordnen, die wir dann n-stellige Aussagenverbindung nennen. Die kon-
krete Art der Verbindung nennen wir die logische Struktur der Aussage. Zu dieser logischen
Struktur gehören insbesondere auch die Klammern.

Nun können wir die folgende entscheidende Fragestellung der Logik formulieren. auf der dann
alle anderen Untersuchungen aufbauen: Wie beeinflußt die logische Struktur den Wahrheits-
wert der Aussagenverbindung? Dabei fordert man: Der Wahrheitswert der Aussagenverbin-
dung soll nur abhängen

1. von den Wahrheitswerten der eingehenden Teilaussagen und

und
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2. von der logischen Struktur der Aussagenverbindung.

Er soll aber nicht vom konkreten Sinn der in der Aussagenverbindung verknüpften Teil-
aussagen abhängen. Aussagenverbindungen, die diese Forderung erfüllen, heißen extensional
(Extension - Ausdehnung); alle anderen heißen intensionale Aussagenverbindungen (Inten-
sion - Sinn).

Die Aussagenverbindungen 1 bis 6 unserer Tabelle 3.1 werden als extensional aufgefaßt.
Dagegen beschreibt zum Beispiel „weil“ eine intensionale Aussagenverbindung, was man sich
anhand eines Beispiels überlegen kann [14].

3.3.2 Wahrheitstabellen der elementaren Aussagenverbindungen

Im folgenden beschäftigen wir uns nur noch mit extensionalen Aussagenverbindungen und
wollen zunächst für die Aussagenverbindungen 1) bis 6) aus Tabelle 3.1 den Wahrheitswert
bestimmen. Da diese extensional sind, genügt es, für jede Kombination von Wahrheitswerten
(aus {W,F} ) der eingehenden Teilaussagen den Wahrheitswert der Aussagenverbindung
anzugeben.

p F W

p̄ W F

Tabelle 3.2: Wahrheitstabelle der Negation

In der ersten Zeile dieser Tabelle steht links das Symbol p für die Aussage, recht daneben
die beiden möglichen Wahrheitswerte für p : F,W . Die zweite Zeile enthäl links das Symbol
p̄ für die Negation, daneben die Wahrheitswerte für p̄, d. h., gil w(p) = F , so ist w(p̄) = W ,
und für w(p) = W wird w(p̄) = F . Diese Tabelle, die wir Wahrheitstabelle nennen, gibt also
die Zuordnung spaltenweise an.

p F W F W
q F F W W

∧ F F F W

Tabelle 3.3: Wahrheitstabelle der Konjunktion

Da wir es hier mit einer zweistelligen Aussagenverbindung zu tun haben, gibt es 22 = 4 Kom-
binationen (Paare) von Wahrheitswerten (s. Abschnitt 6.). Jedem solchen Paar entspricht
wieder eine Spalte der Tabelle, wobei in der letzten Zeile der zugehörige Wahrheitswert von
p ∧ q aufgeschrieben ist. Wir sehen, daß die Konjunktion genau dann wahr ist, wenn beide
durch und verbundenen Teilaussagen wahr sind. Entsprechend definieren wir die Wahrheits-
tabellen der anderen Aussagenverbindungen.

p F W F W
q F F W W

∨ F W W W

Tabelle 3.4: Wahrheitstabelle der Alternative
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p F W F W
q F F W W

→ W F W W

Tabelle 3.5: Wahrheitstabelle der Implikation

p F W F W
q F F W W

↔ W F F W

Tabelle 3.6: Wahrheitstabelle der Äquivalenz

p F W F W
q F F W W

entweder p oder q F W W F

Tabelle 3.7: Wahrheitstabelle der Disjunktion

* Aufgabe 3.1

Man gebe die Wahrheitstabellen der Aussagenverbindungen p ∧ q (Sheffersche Funkti-
on) bzw. p ∨ q (Nicodsche Funktion) an!

Zu diesen Tabellen sollen noch einige Bemerkungen gemacht werden. Der Implikation wird
nur dann der Wahrheitswert F zugeordnet, wenn die erste Teilaussage p (Voraussetzung)
wahr, aber die zweite Teilaussage q (Behauptung) falsch ist.

Beispiel 3.6

Die Aussage „Wenn 3 eine Primzahl ist, so ist 10 durch 3 teilbar“ ist offenbar falsch. Die
Aussage „Wenn 4 eine Primzahl ist, so ist 10 durch 3 teilbar“ wird dagegen als wahr angese-
hen.

Bemerkenswert ist auch der Unterschied zwischen Alternative und Disjunktion. Die Alterna-
tive stellt ein einschließendes, die Disjunktion ein ausschließendes oder dar.

Betrachten wir noch die folgenden zwei Aussagen

p = „2 · 2 = 4“ oder „Berlin ist die Hauptstadt der UdSSR“

q = Wenn „2 · 2 = 5“ ist, so „ist die Erde ein Planet“

Aussagenverbindungen dieser Art sind häufig insbesondere philosophischer Kritik ausgesetzt.
Im Sinne der Logik handelt es sich jedoch bei p und q um wahre Aussagen, obwohl diese
Aussagenverbindungen rein inhaltlich gesehen völlig sinnlos sind. Im Sinne einer völligen
Allgemeinheit der zur Aussagenverbindung zugelassenen Aussagen aus A2 ist es aber legitim,
auch Verbindungen der obigen Art zu bilden.

Es ist zweckmäßig, die Tabellen 3.1 bis 3.7 gut im Gedächtnis zu behalten, da sie Bausteine
für nachfolgende Überlegungen sind.
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3.3.3 Wahrheitstabellen n-stelliger (n > 2) Aussagenverbindungen

Die Wahrheitstabellen ordnen jeder Kombination (bisher jedem Paar) von Wahrheitswer-
ten eindeutig einen Wahrheitswert zu. Diese Zuordnung ist spaltenweise in den Tabellen
rechts vom vertikalen Strich dargestellt. Die Tabellen repräsentieren also Funktionen (siehe
auch Abschnitt 8.), die man auch Wahrheitsfunktionen nennt. Am Beispiel der 4-stelligen
Aussagenverbindung

(p ∧ q)→ (r ∨ s) (3.3)

wollen wir jetzt noch zeigen, wie man mit Hilfe der in 3.3.2 angegebenen Wahrheitstabellen
die Wahrheitstabelle einer mehr als zweistelligen Aussagenverbindung bestimmt.

Zunächst kann man sich überlegen, daß es 24 = 16 verschiedene Kombinationen von Wahr-
heitswerten gibt. Diese werden in zweckmäßiger Reihenfolge im Kopf der Tabelle aufgeschrie-
ben. Betrachten wir die Struktur von (3.3), so sehen wir, daß wir es mit einer Aussagenver-
bindung t → u mit t = p ∧ q, u = r ∨ s zu tun haben. Dies gibt uns die Möglichkeit, die
Wahrheitstabelle schrittweise, wie nachfolgend dargestellt, aus den schon bekannten Bau-
steinen aufzubauen.

p F W F W F W F W F W F W F W F W
q F F W W F F W W F F W W F F W W
r F F F F W W W W F F F F W W W W
s F F F F F F F F W W W W W W W W

t = p ∧ q F F F W F F F W F F F W F F F W
u = r ∨ s F F F F W W W W W W W W W W W W

t→ u W W W F W W W W W W W W W W W W

Tabelle 3.8: Wahrheitstabelle der Aussagenverbindung (p ∧ q)→ (r ∨ s)

Wir sehen also, daß t→ u nur bei genau einer der 16 möglichen Wahrheitswertkombinationen
falsch wird. Insbesondere ist also auch eine Aussage wie

„Wenn 2 · 2 = 3 und 4 eine Primzahl ist, so ist auch 5 eine Primzahl oder 82 = 60“

eine wahre Aussage.

Mit Hilfe der Ergebnisse aus Abschnitt 6.3.2. kann man sich leicht überlegen, daß bei einer
n-stelligen Aussagenverbindung die Wahrheitstabelle 2n Spalten enthält. Um diese aufzu-
schreiben ist es zweckmäßig, folgendermaßen vorzugehen (siehe auch Tabelle 3.8, n = 4
):

Man schreibe in die erste Zeile die Zweiergruppen FW . . ., in die zweite die Vierergruppen
FFWW . . ., in die dritte die Achtergruppen FFFFWWWW . . . usw. Auf diese Weise erhält
man, wie man sich leicht überlegen kann, alle 2n Spalten, und man ist damit in der Lage,
die gewünschte Wahrheitstabelle anzugeben.

* Aufgabe 3.2

Folgt aus dem Satz „Wenn Peter Mathematik studiert, so studiert er auch Operations-
forschung oder Kybernetik“ und „Peter studiert nicht Operationsforschung“ und „Peter
studiert Mathematik oder Operationsforschung oder Kybernetik“ der Satz: „Peter stu-
diert Kybernetik“?
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3.3.4 Verbindungen von Aussageformen

Auch Aussageformen lassen sich durch Bindewörter neuen Aussageformen zuordnen. Dabei
ist nur zu sichern, daß bei Einsetzung eines beliebigen konkreten Wertes x1 der Variablen x
mit dem Bereich X die „Aussageformverbindung“ in eine Aussage aus A2 übergeht.

Beispiel 3.7

X = {1; 2; 3; 4; 5; 5, 1; 5, 2; 6}

1. p(x) = „x ist eine ganze Zahl, und x ist größer als 4“.
Es gilt: w(p(5)) = w(p(6)) = W,w (p (x1)) = F für x1 ∈ X,x1 6= 5; 6.

2. p(x) = „Wenn x eine ganze Zahl ist, so ist x größer als 4“.
Es gilt: w(p(1)) = w(p(2)) = w(p(3)) = w(p(4)) = F ,
w(p(5)) = w(p(5, 1)) = w(p(5, 2)) = w(p(6)) = W .

Allgemein können wir folgendes feststellen:

Man kann zum Beispiel durch

p(x), p(x) ∧ q(x), p(x) ∨ q(x), p(x)→ q(x),

p(x)↔ q(x), entweder p(x) oder q(x)

Aussageformverbindungen bilden, die für jedes x = x1 ∈ X in Aussagenverbindungen über-
gehen. Es können darüberhinaus auch n-stellige Aussageformverbindungen gebildet wer-
den.

* Aufgabe 3.3

Man gebe die Aussageformverbindung

„Falls n eine Primzahl ist, so teilt 3 eine der Zahlen n− 1 oder n + 1“

mittels logischer Zeichen an und stelle für ein beliebiges festes n die Wahrheitstabelle
auf!

Seite 19

3.4 Die wesentlichen logischen Zeichen und ihre technische
Realisierung

3.4.1 Logische Zeichen

Wir haben bereits in 3.3.1. einige wesentliche Kurzzeichen, die in der Logik zur Beschreibung
von Aussagenverbindungen benutzt werden, angegeben.

Wir wiederholen:
p̄ − nicht p
p ∧ q −p und q
p ∨ q −p oder q
p→ q − wenn p, so q
p↔ q −p genau dann, wenn q
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Die Zeichen −,∧,∨,→,↔ sind die Kurzzeichen (Funktoren) der Aussagenlogik. Darüber
hinaus gibt es jedoch einige Zeichen, die insbesondere für mathematische Aussagen von
Bedeutung sind. Dazu betrachten wir noch einmal eine Aussageform p(x) mit dem Bereich
X der Variablen x.

Es gibt außer der schon behandelten Möglichkeit, von der Aussageform p(x) zu Aussagen
überzugehen (einsetzen konkreter x = x1 ∈ X ), noch eine andere Möglichkeit, Aussagen mit
Hilfe von p(x) zu bilden. Diese Möglichkeit ergibt sich aus der Tatsache, daß beim Einsetzen
spezieller x = x1 ∈ X in die Aussageform die drei folgenden Fälle eintreten können: 1. Alle
entstehenden Aussagen sind wahr, 2. mindestens eine der entstehenden Aussagen ist wahr
und mindestens eine ist falsch, 3. alle entstehenden Aussagen sind falsch.

Entsprechend definieren wir:

Seite 19

Bisher haben wir nur die technischen Realisierungen der grundlegenden Verknüpfungen an-
gegeben.

Im allgemeinen steht aber die Frage, komplizierte Aussagenverbindungen auf der Basis die-
ser Grundverknüpfungen schaltungstechnisch zu realisieren und dabei möglichst geringen
Aufwand zu treiben. Wir wollen das an zwei Beispielen illustrieren. Die Aussagenverbindun-
gen

bzw.
p ∧ (p ∨ q) und p

p ∨ (q ∧ r) und (p ∨ q) ∧ (p ∨ r)

besitzen die gleichen Wahrheitstabellen, realisieren also logisch gleichwertige Aussagenver-
bindungen. Das hat zur Folge, daß die Wahrheitswerttabellen der Aussagenverbindungen
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