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YVorwort zur 4. Auflage

Diese Auflage des Lehrbuches wurde erneut — wie schon die 2. - zu einer griind-
lichen Uberarbeltung genutzt, wobei die nunmehr reichlich vorliegenden Erfahrungen
bei seinem Einsatz in der Ausbildung von Direkt- und Fernstudenten fiir Verande-
rungen, Erginzungen und Streichungen mabBgeblich waren. Im Vordergrund der
Uberarbeitung stand deshalb auch die weitere Verbesserung der methodischen
Gesichtspunkte bei geringer Lockerung von abstrakten Betrachtungsweisen.

Der Inhalt richtet sich — wie in allen weiteren Bianden dieses Lehrwerkes — vorwie-
gend an Hochschulstudenten der Natur-, Ingenieur-, Wirtschafts- und Landwirt-
schaftswissenschaften. Dabei stellt der vorliegende Band die mathematischen Grund-
lagengebiete bereit, die fir die nachfolgenden Bande erforderlich sind. Entsprechend
ist die stoffliche Auswahl getroffen, wobei auch manche neue Wege beschritten
wurden.

Das Lehrbuch ist so angelegt, daB es sowohl Direkt- als auch Fernstudenten zur
Unterstiitzung des Selbststudiums dienen kann. Natiirlich bestimmen Kursvorlesun-
gen oder Studienanleitungen Umfang und Auswahl fiir das mathematische Studium
der einzelnen Fachrichtungen.

Weiterhin eignet sich dieser Band sicher auch zum Nachlesen fiir alle diejeniger
Interessenten, die wihrend ihrer Ausbildung die behandelten Gebiete nicht oder nui
wenig kennengelernt haben. Wegen seines spezifischen Inhaltes eignet sich auf diese
Weise das Lehrbuch auch zum Nachschlagen.

Die Autoren waren sich beim Schreiben dieses Bandes auch der Probleme bewuBt,
die seine Gestaltung bei teilweise unterschiedlichen Zielstellungen mit sich brachte.
Sie mochten sich deshalb sehr herzlich fiir die vielen konstruktiven Hinweise — ins-
besondere zu methodischen Fragen - bedanken, die weitgehend beriicksichtigt
werden konnten. Wir bedanken uns bei Herrn Professor Erfurth, Merseburg, sowie
bei Herrn Dipl.-Math. H. Ebmeyer, Dresden, fiir ihre kritischen Anregungen und
konkreten Abidnderungsvorschlige, die uns sehr geholfen haben. Weiterhin danken
wir Herrn Professor WuBing, Leipzig, fiir seine wertvollen Bemerkungen zum ge-
schichtlichen Uberblick. Besonderer Dank gilt Frau Ziegler vom Teubner-Verlag
Leipzig; sie war uns in der Zusammenarbeit wiederum eine verstindnisvolle und
sachkundige Beraterin.

Die Autoren

Leipzig, Juli 1979
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1. Zum Anliegen des Bandes

Der vorliegende Band 1 des Lehrwerkes behandelt einige allgemeine Grundlagen,
die fiir den Aufbau und das Verstiandnis weiterer mathematischer Gebiete und somit
fiir-die Inhalte der folgenden Bénde notwendig sind. Auswahl und Umfang dieser
Grundlagen leiten sich in erster Linie aus den Erfordernissen ab, wichtige Begriffe,
Methoden und Ergebnisse zur fundierten Darstellung mathematischer Disziplinen
bereitzustellen.

Dabei ist berticksichtigt, dal nach der Neugestaltung des Mathematikunterrichtes
in den allgemeinbildenden Schulen fiir moderne Auffassungen in der mathematischen
Ausbildung giinstige Vorbedingungen geschaffen sind. Ausreichende Kenntnisse
und Fertigkeiten in der Bruch-, Potenz-, Wurzel- und Logarithmenrechnung sowie
in der elementaren Geometrie und der Trigonometrie werden zudem vorausgesetzt.
Selbstverstandlich ist bei der Darlegung der Grundlagengebiete fiir Inhalt und Form
die Zielstellung des Gesamtlehrwerkes maBgebend, der mathematischen Unterrich-
tung von Ingenieuren, Naturwissenschaftlern, Okonomen und Landwirten an Hoch-
schulen zu entsprechen. Deshalb wird fiir die naturgemiB in den Grundlagengebieten
besonders zahlreich auftretenden abstrakten Begriffe der Erkenntnisproze8 durch
anschauliche Entwicklung unterstiitzt, ohne die erforderliche Strenge und Exaktheit
zu verletzen. Auch sind zahlreiche anwendungsbezogene Beispiele im Text und bei
den Ubungsaufgaben enthalten.

Der Sinn mathematischer Betrachtungen besteht allerdings nicht allein im Bereit-
stellen von Ergebnissen und Satzen. Er liegt gleichermaBen in den besonderen For-
men des Denkens und SchlieBens zur strengen Herleitung allgemeingiiltiger Resultate
aus exakt formulierten Voraussetzungen. Es ist ein weiteres Anliegen dieses Lehr-
abschnittes, den Lernenden besonders an exaktes und logisches Denken zu gewéhnen.

In den Abschnitten 3. und 4. beschaftigen wir uns deshalb mit Begriffen der Logik
und den aus ihnen abgleiteten Beweisprinzipien. Fiir die Gewinnung mathematischer
Ergebnisse und Tatsachen ist es charakteristisch, daBl sie logisch einwandfrei aus
Voraussetzungen abzuleiten sind. Deshalb ist die Kenntnis strenger Beweisfiihrung
notwendig und das sorgfaltige Studium dieser Abschnitte dringend anzuraten.

Im Abschnitt Giber die Zahlenbereiche wird bei der Darstellung der reellen Zahlen
und der Rechengesetze, denen sie geniigen, ein axiomatisches Vorgehen erldutert.
Die komplexen Zahlen dagegen werden anschaulich eingefiihrt und auf Grund ihrer
Bedeutung in physikalischen und technischen Anwendungen ausfiihrlich behandelt.
Bei vielen mathematischen Untersuchungen treten Fragen der Auswahl, der Anord-
nung oder der Zusammenstellung verschiedenartiger Elemente auf. Sie werden im
Kapitel iiber Kombinatorik niher untersucht.

Eine zentrale Stellung innerhalb der Mathematik nimmt die Mengenlehre ein.
Mit ihren Begriffen lassen sich die mathematischen Disziplinen begriinden und die
objektiv gegebenen Sachverhalte verschiedener Wissensgebiete erfassen.

Zwei weitere Abschnitte befassen sich mit den in fast allen Anwendungsgebieten
bedeutsamen Begriffen der Abbildung bzw. der Funktion, die mengentheoretisch
definiert werden. Der letzte Abschnitt schlieBlich ist den Zahlenfolgen gewidmet
und stellt den wichtigen Grenzwertbegriff bereit.



2. Die Entwicklung der Mathematik und ihre Beziehung
zur Praxis

2.1. Aus der Entwicklungsgeschichte der Mathematik

Die Geschichte der Mathematik ist eng mit der der menschlichen Gesellschaft
verkniipft. Ferner bestimmen einige bedeutende Mathematiker durch ihre richtung-
weisenden Ideen und Entdeckungen die Entwicklung der Mathematik entscheidend.
Die Mathematik gehdrt — neben Philosophie, Medizirt und Astronomie — zu den
altesten Wissenschaften. Sie erreichte schon im 2. Jahrtausend v. u. Z. in Agypten
und Mesopotamien, aber auch im alten China und Indien einen beachtlichen Reife-
grad. Die verwendeten Zahlensysteme standen im engen Zusammenhang mit kom-
merziellen und militarischen Interessen sowie mit Verwaltungsproblemen. Man
kannte Verfahren zur Losung von Gleichungen, sogar héheren Grades. Die Geometrie
diente dem Errichten von Bauwerken, der Feldvermessung und der Orientierung am
Himmel. Doch handelte es sich um eine rezeptartige, noch nicht auf Beweisen von
explizit angefiihrten Sitzen aufbauende Mathematik.

Erst mit der Herausbildung der antiken Sklavenhaltergesellschaft im alten Griechen-
land wurde die Mathematik im 6.-5. Jh. v. u. Z. zu einer selbstandigen Wissenschaft
mit eigenen Methoden und Beweisverfahren; auf dieser Grundlage schuf Euklid
(365?-300? v. u. Z.) mit seinen ,,Elementen* (um 325 v. u. Z.) eine bewunderungs-
wiirdige Darstellung des damaligen mathematischen Kenntnisstandes. Mit Archi-
medes (287?-212 v.u. Z.), dem in Geometrie und Mechanik groBe Entdeckungen
gelangen, erreichte die Mathematik der Antike wiahrend der hellenistischen Periode
ihren Hohepunkt.

Zur Zeit der Herrschaft der Romer und in der feudalistischen Gesellschaft gab es in
Europa keine nennenswerten mathematischen Entwicklungen, wihrend die Mathe-
matik vor allem in Indien und in den Lindern des Islam zu einer hohen Bliite gelangte;
viele Texlergebmsse — darunter die indisch-arabischen Ziffern — gelangten seit dem
12./13. Jh. in die Lander des europaischen Feudalismus, in denen bis dahin nur ein
sehr bescheidenes wissenschaftliches, darunter auch mathematisches Niveau geherrscht
hatte.

Erst mit der Entwicklung von Elementen des Friihkapitalismus in Europa bildeten
sich, insbesondere seit dem 16. Jh., giinstige Bedingungen fiir die Ubernahme des
antiken mathematischen Erbes und fur dessen selbstiandige Weiterentwicklung durch
die Europder heraus. Die Trigonometrie entwickelte sich zu einer selbstandigen mathe-
matischen Disziplin. Die Durchbildung der Rechenmethoden machte grofle Fort-
schritte; von den sog. Rechenmeistern wurde in Deutschland A. Ries (1492-1559)
am bekanntesten, der im Erzgebirge wirkte. Reichlich ein Jahrhundert spiter wurden
die ersten Maschinen fiir die Grundrechenarten entwickelt (Schickard (1592-1635),
Pascal (1623-1662), Leibniz (1646-1716)).

Das Gedankengut der rationalistischen philosophischen Systeme und der Auf-
kldrung sowie die biirgerliche Revolution brachten im 16. und 17. Jahrhundert mit
der Uberwindung der feudalistischen Gesellschaftsordnung und der diese Ordnung
rechtfertigenden Ideologien auch den Naturwissenschaften und der Mathematik
wieder Geltung und Bedeutung. Descartes (1596-1650) begriindete den modernen
Rationalismus auf der mathematischen Grundlage der von Galilei (1564-1642) ge-
formten Naturwissenschaften. Er gilt auch als Begriinder der analytischen Geometrie.

Die Herausbildung der infinitesimalen Methoden erfolgte in engem Zusammenhang
mit der geistigen Bewiltigung des Bewegungsproblems in Physik (G. Galilei) und
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Himmelsmechanik (J. Kepler). Im AnschluB an die Ergebnisse von Archimedes und
durch sehr mithsame Gedankenarbeit im 16. und zu Anfang des 17. Jahrhunderts
vermochten es I. Newton (1643-1727) und G. W. Leibniz im letzten Drittel des
17. Jahrhunderts, unabhéngig voneinander die Methoden der Differential- und Inte-
gralrechnung durchzubilden. Wihrend Newton, der als einer der bedeutendsten For-
scher auf den Gebieten der Mathematik, Mechanik und Astronomie gilt, mit Hilfe
dieses neu entwickelten mathematischen Werkzeuges den Aufbau der klassischen
Mechanik und seine ,,Mathematischen Prinzipien der Naturwissenschaften (1687)
vollenden konnte, setzten sich die geschickteren Bezeichnungen von Leibniz rasch
durch. Die ,,Infinitesimalmathematik* wurde im 18. Jh. in den Hinden der Gebriider
Johann (1667-1748) und Jakob Bernoulli (1645-1705) und L. Eulers (1707-1783),
der in Berlin und Petersburg wirkte, zu einem weitreichenden Mittel zur Bewiltigung
schwieriger Probleme der Mechanik, der Himmelsmechanik, der Optik, des Artillerie-
wesens, der Seeschiffahrt und vieler anderer praktischer Anwendungen.

Die neue Geltung und Anerkennung der Mathematik und der Naturwissenschaften
kam u. a. auch bei J. L. d’Alembert (1717-1783) und in der groBen franzdsischen
Encyclopédie zum Ausdruck.

Nach der franzosischen biirgerlichen Revolution (1789) setzte insbesondere in den
von der industriellen Revolution erfafSiten Landern Europas ein bedeutender Auf-
schwung in der Mathematik ein. Bei der Grundlegung der Analysis, in Algebra, in
darstellender, analytischer und projektiver Geometrie sowie bei der Nutzbarmachung

" der Mathematik fiir Anwendungen in Technik und Naturwissenschaften wurden be-
deutende Fortschritte erzielt. J. Lagrange (1736-1813), P. S. Laplace (1749-1827),
A. Legendre (1752-1833), G. Monge (1746-1818), J. Fourier (1768-1830), A. Cauchy
(1789-1857), J. V. Poncelet (1788-1867) u. a. leisteten hier und auf anderen mathe-
matischen Gebieten Hervorragendes; viele Mathematiker nahmen aktiv am gesell-
schaftlichen Leben ihrer bewegten Zeit teil. Sie haben zudem grofie Verdienste bei
der Neugestaltung der mathematischen Ausbildung.

Der deutsche Mathematiker C. F. GauBl (1777-1855) lieferte am Ende des 18. und
zu Beginn des 19. Jahrhunderts hervorragende Beitrage zur Entwicklung der Mathe-
matik. Er bereicherte sie um zahlreiche neue Verfahren und Theorien und {iberwand
viele ungeléste Probleme. Seine Forschungen waren dabei an Anwendungen in der
Geodasie, der Astronomie und der mathematischen Physik orientiert.

Von der zweiten Halfte des 19. Jahrhunderts bis zum Ausbruch des ersten Welt-
krieges traten insbesondere die Mathematiker aus den Landern hervor, in denen sich
Kapitalismus und Industrialisierung am weitesten entwickelt hatten. Genannt seien:
G. Boole (1815-1869), A. Cayley (1821-1895) und R. Hamilton (1805-1865) in
GroBbritannien, C. Jordan (1838-1922) und H. Poincaré (1854-1912) aus Frank-
reich, K. Weierstra (1815-1897), B. Riemann (1826-1866), R. Dedekind (1831
bis 1916) und F. Klein (1849-1925) aus Deutschland, S. Lie (1842-1899) aus Nor-
wegen, E. Beltrami (1835-1900) und G. Peano (1858-1932) aus Italien, Ch. S.
Peirce (1839-1914) aus den USA sowie N.I. Lobatschewski (1792-1856) und
P. L. Tschebyscheff (1821-1894) aus RuBland. Fiir die Begriindung wichtiger Ge-
biete und Auffassungen in der modernen Mathematik sind die grundlegenden Ideen
von G. Cantor (1845-1918) und D. Hilbert (1862-1943) aus Deutschland sowie die
des polnischen Mathematikers St. Banach (1892-1945) zu groBer Bedeutung gelangt.

Nach der GrofBien Sozialistischen Oktoberrevolution (1917) nahmen die mathe-
matischen Forschungen in der Sowjetunion einen ungeheuren Aufschwung. Die
gesellschaftliche und wirtschaftliche Entwicklung in diesem Lande ermdglichte es,
daB heute die sowjetischen Mathematiker zu den fithrenden in der ganzen Welt
zdhlen und ihre Ergebnisse und Leistungen Entwicklungsrichtungen der modernen
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Mathematik bestimmen. Auch in der DDR wurde die Bedeutung der Mathematik
durch die Partei- und Staatsfiithrung erkannt, was sich in einer groBziigigen For-
derung der mathematischen Forschung und Ausbildung duBert.

Dieser kurze AbriB zeigt, daB vorwiegend in den fortschrittlichen Gesellschafts-
ordnungen einer Epoche die Mathematik durch bedeutende Entdeckungen erweitert
und bereichert wird.

2523 Zu den Anwendungen der Mathematik

Die klassische Mathematik fand ihre Anwendung vorwiegend in Physik, Mecha-
nik, Astronomic und Geodisie. Die mathematische Durchdringung dieser Wissen-
schaften wirkte sich andererseits befruchtend auf die Entwicklung der Mathematik
und ihrer Methoden aus. Auch die technischen Wissenschaften bedienen sich seit
ihrer Entstehung in starkem MaBe des mathematischen Instrumentariums.

Die Begriffe der Mathematik sind Abbild von fiir den Gegenstand mathematischer
Betrachtungen wesentlichen Eigenschaften der Realitat in unserem BewuBtsein. Von
realen Erscheinungen 14Bt sich ein abstraktes mathematisches Modell aufbauen,
das ihre Haupteigenschaften widerspiegelt und einfacher ist. Dieses Modell kann mit
mathematischen Methoden untersucht werden, und es kénnen dabei neue Eigen-
schaften und GesetzmaBigkeiten der realen Erscheinungen entdeckt werden.

Aber auch umgekehrt lassen sich zu mathematischen Strukturen Realisierungen
finden, deren Anwendungen von grofiem Nutzen fiir den wissenschaftlichen Fort-
schritt sind. Dieses Vorgehen wird in der Astronomie, der modernen Physik oder
bei der Entwicklung von Computern erfolgreich praktiziert.

Auf dieser Grundlage erkldren sich die engen Wechselbeziehungen zwischen der
gesellschaftlichen Praxis und der Mathematik. Heutzutage werden mathematische
Methoden besonders in der Wirtschaft, der Chemie, der Geologie, der Biologie, der
Medizin und der Landwirtschaft, in der Pddagogik und in den Sprachwissenschaften
angewendet. Diese Mathematisierung der Wissenschaften ist eine der bedeutendsten
Erscheinungsformen der wissenschaftlich-technischen Revolution. Die Mathematik
entwickelt sich somit zum Bindeglied verschiedener Disziplinen und beeinflut aktiv
die Entwicklung der Wissenschaften und der Praxis.

Besondere Bedeutung besitzen algorithmische Darstellungen und numerische Me-
thoden im Hinblick auf die Nutzung der Computer zur Beschreibung und Lésung
der Modelle. Da vielen Vorgéingen Zufallserscheinungen innewohnen, ergibt sich
eine starke Beachtung der stochastischen Betrachtungsweise. Sehr intensiv sind
mathematische Probleme der Planung und Leitung, der ProzeBsteuerung, der
Produktionskontrolle, der Versuchsplanung und der Zuverlassigkeit von Systernen
zu betrachten. Héufig sind diese Fragen im Zusammenhang mit Optimierungen zu
sehen. Aus der gewachsenen Leistungsfihigkeit der Computer ergeben sich zudem
neue Gesichtspunkte fiir die Anwendung mathematischer Methoden in den An-
passungs- und Lernprozessen oder den Problemen der nichtnumerischen Informa-
tionsverarbeitung.

Die Mathematik tragt auch dadurch in hervorragendem MaBle zum gesellschaft-
lichen Fortschritt bei, indem sie das Formalisieren und Quantifizieren, die strenge
Begriffsbildung, die Entwicklung von Ordnungsprinzipien und das logische Denken
in hohem Mafe fordert.
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Die nachfolgenden ausgewihlten Bemerkungen zur Logik dienen in erster Linie
dazu, den Leser zu befdhigen, vorgelegte Sitze in besonderer Weise mit dem Ziel einer
Formalisierung zu analysieren.

Wir stellen zundchst mit den sogenannten Wahrheitstabellen ein einfaches Instru-
mentarium bereit, um festzustellen, ob der vorgelegte Sachverhalt eine wahre oder
falsche Aussage darstellt. Dies sind die notwendigen Grundlagen zum Verstindnis
der logischen Schliisse, die in der Mathematik, aber auch in anderen Wissenschaften,
immer wieder bendtigt werden.

Dartiber hinaus findet die Logik in neuerer Zeit immer mehr auch Anwendungen
in Naturwissenschaften und Technik (digitale Rechentechnik, Neuronennetze, Tech-
nologie, Netzplantechnik, Steuerungsprobleme). -

3.1. Aussagen

Gegenstand der Logik sind Aussagen. Diese werden im sprachlichen Umgang in
Aussagesitzen formuliert. Eine Aussage driickt einen Zatbestand aus. Demzufolge
sind alle aus der Umgangssprache bekannten Fragesitze, Aufforderungssitze,
Befehlssatze, Wunschsitze, Zweifelssitze usw. keine Aussagesitze. Speziell sind

~ Ist 10'° + 1 eine Primzahl?

~ Lose die Gleichung x* + 4x + 10 = 0!

— Rechts abbiegen!

— Hoffentlich scheint morgen die Sonne.

~ Ich glaube nicht, da3 morgen die Sonne scheint.
keine Aussagesitze.

Betrachten wir zunichst als Beispiel die Aussage ,,2-2 = 4. Diese Aussage
kiirzen wir mit p ab und schreiben:

p=,2"2=4
Ebenso wird in den folgenden Beispielen verfahren.
Beispiel 3.1:

¢ = ,,10 ist eine Primzahl*
,

,,Die Sonne scheint*
,.,Am 10. 10. 1995 wird in Leipzig die Sonne scheinen‘
1 = ,,Kolumbus hat 1492 Amerika entdeckt*

N

I

Diese Beispiele zeigen, dal es sinnvoll ist, nach dem Wahrheitsgehalt der entspre-
chenden Aussagen zu fragen.

Die mit p und 7 abgekiirzten Sitze stellen offenbar wahre Aussagen dar, dagegen
ist ¢ falsch. Die Frage nach dem Wahrheitsgehalt der durch r beschriebenen Aussage
ist erst nach Kenntnis von Ort und Zeit mit ,,wahr* bzw. ,,falsch® entscheidbar.
Fiir die durch s beschricbene Aussage ist es sinnvoll, den Wahrheitsgehalt zu dem
Zcitpunkt, an dem sie gemacht wird, durch eine Wahrscheinlichkeit zu prizisieren.
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Diese Uberlegungen veranlassen uns zunichst zur folgenden Erklirung:
p heifit eine Aussage, wenn p einen Tatbestand ausdriickt.

Die Gesamtheit aller so definierten Aussagen p fassen wir zu einer Menge A,
zusammen: 4; = {p | p ist eine Aussage}.

Wir benutzen bereits hier den Begriff der Menge, welcher in Abschnitt 7. ausfiihr-
licher behandelt wird.

Unter einer Menge verstehen wir nach Cantor eine Gesamtheit (Zusammenfassung)
bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens,
wobei von einem Objekt eindeutig feststeht, ob es zur Menge gehért oder nicht.

Kénnen wir die Objekte, die zur Menge gehéren und Elemente der Menge heil3en,
aufschreiben, so fithren wir sie in geschweiften Klammern auf. So wird die Menge M,
der natiirlichen Zahlen, die gréBer als 2 und kleiner als 10 sind, wie folgt geschrieben:
M, = {3,4,5,6,7,8,9}. Die Tatsache, da§ z. B. 5 Element der Menge M, ist, be-
schreiben wir mit der Symbolik 5 e M, wihrend 1 ¢ M, bedeutet, daBl 1 kein Ele-
ment von M, ist. Wir werden auch generell fiir Mengen grofle lateinische Buch-
staben zur Bezeichnung benutzen. Eine andere Schreibweise fiir eine Menge M ist

= {x| E}.

Wir lesen dieses Symbol folgendermaBen: ,,M ist die Menge aller Elemente x, die die
Eigenschaft £ besitzen. Die oben erklirte Menge A, ist in dieser Schreibweise for-
muliert A, = {p| pist eine Aussage}. Die Menge M, kann mit Hilfe dieser Symbolik
als

M, = {x|x _natiirliche Zahlund 2 < x < 10}

geschrieben werden.

SchiieBlich sei bereits an dieser Stelle der Begriff der Teilmenge erklart.

Die Menge A heifit Teilmenge der Menge B, wenn jedes Element der Menge A4
auch Element der Menge B ist. Wir schreiben in diesem Fall: 4 < B.

Zum Beispiel

3,45 =M, ={3,4,...,9},
aber
{2,9} st keine Teilmenge von M.

Dieser Vorgriff auf Grundbegriffe der Mengenlehre gestattet es uns, nachfolgend
gewisse Sachverhalte besser zu formulieren.

Bei unseren weiteren Betrachtungen wollen wir uns auf eine wichtige Teilmenge
von A, beschrianken.

D.3.1 Definition 3.1: Die Aussage p heifit zweiwertige Aussage, wenn p entweder wahr oder
Salsch ist.

Entsprechend A, bilden wir die Menge der zweiwertigen Aussagen A, :
A, = {p| p ist eine zweiwertige Aussage}

Durch diese Definition scheiden wir Aussagen wie s aus den weiteren Betrachtungen
aus. Auch Aussagen tlber die Bewertungen einer Klausur, die man ja tiblicherweise
mit den Zensuren (Wahrheitswerten) I bis 5 vornimmt, sind in 4, nicht enthalten.

Im Zusammenhang mit A, fithren wir die Wahrheitswerte

,,wahr, bezeichnet durch W, und
. falsch, bezeichnet durch F,
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ein. Der Aussage p,p € 4,, ist gemdB Definition 3.1 eindeutig ein Wahrheitswert
aus {W, F} zugeordnet. Wir bezeichnen diese eindeutige Zuordnung mit w(p),
w(p) € {W, F}; w(p) — Wahrheitswert der Aussage p.

Wir wollen noch auf einen wichtigen Tatbestand aufmerksam machen. Das Wissen,
daB p € A4, gilt, heiBt noch nicht, daB man auch w(p) kennt. Dazu zwei Beispiele:

Beispiele 3.2:
p = ,,101° + 1 ist eine Primzahl;

q = ,,Ist n eine natiirliche Zahl, die groBer oder gleich drei ist, so gibt es
keine ganzen, positiven Zahlen x, y, z so, daB3 x" + y" = z" gilt*.

Es ist sofort klar, daB p € A, und g € 4, ist, w(p) ist nicht ohne weiteres angebbar.
Es gibt aber einen Algorithmus zur Ermittlung dieses Wahrheitswertes. Dagegen
ist der Wahrheitswert von ¢ (groBer Fermatscher Satz) bis heute unbekannt.

Die Ermittlung von Wahrheitswerten mathematischer Aussagen ist eine Aufgabe
der Mathematik und keine spezielle Aufgabe der Logik.

3.2. Variable und Aussageformen

Wir betrachten eine Menge X von beliebigen Elementen. Wir wollen x eine Variable
nennen, wenn x die Elemente von X durchlduft. X hei3t dann Bereich der Variablen x.
Die Sitze

,,X ist eine Primzahl*, .,y ist eine Grofstadt*,

die wir mit p(x) bzw. g(y) abkiirzen wollen, stellen zunichst keine Aussagen dar.
Fiir jedes konkrete x = x; € X und y = y, € Y gehen p(x) und ¢(y) jedoch in Aus-
sagen aus A, iber.

Beispiel 3.3: X = {1,2,..., 10}, Y = {Moskau, Leipzig, Weimar}. Die Aussagen
p(2), p(3), p(5), p(7) sind wahre Aussagen, dagegen sind p(1), p(4), p(6), p(8), p(9) und
p(10) falsche Aussagen. Setzen wir im Satz ¢(y) fiir die Variable y die Elemente ihres
Bereiches ein, so entstehen die wahren Aussagen ,,Moskau ist eine GroBstadt®,
,,Leipzig ist eine GroBstadt und die falsche Aussage ,,Weimar ist eine GroBstadt*.

Fiir solche Sitze, die eine Variable enthalten, wollen wir einen Namen einfiihren.
Wir definieren:

Definition 3.2: Eine Formulierung p(x) mit der Variablen x € X heifit eine Aussageform,
wenn p(x) bei Einsetzen jedes konkreten Wertes x = x, € X in eine zweiwertige Aus-
sage tibergeht. Die Menge der so entstehenden Aussagen heit Bereich der Aussageform.

Eine Aussageform ist weder wahr noch falsch. Sie ist selbst keine Aussage, sondern
stellt eine Vorschrift zur Gewinnung von Aussagen dar.

Die Satze der Mathematik und anderer Wissenschaften sind Aussagen bzw. Aus-
sageformen, die eventuell auch von mehr als einer Variablen abhingen. Diese Aus-
sagen bzw. Aussageformen treten nun aber hiufig verkniipft durch Bindewdrter,
verneint oder auf andere Weise modifiziert auf. Mit solchen Aussagenverbindungen
wollen wir uns im nichsten Abschnitt beschaftigen.

D.3.2
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3538 Aussagenverbindungen

3.3.1. Elementare A bindungen, n-stellige A bind

Aus der Umgangssprache sind uns eine Reihe von Bindewértern bekannt, mit deren
Hilfe man mehreren Aussagen eine neue zweiwertige Aussage zuordnen kann.

Beispiel 3.4: Betrachten wir als Beispicle die beiden Aussagen
p = ,,3 ist eine Primzahl*

q = ,,10 ist durch 3 teilbar*

Dann koénnen wir die folgenden neuen Sitze bilden:

(1) Py = ,,3 ist keine Primzahl*

2 p, = ,,3 ist eine Primzahl und 10 ist durch 3 teilbar¢

3) p3 = ,,3 ist eine Primzahl oder 10 ist durch 3 teilbar*

4) P+ = ,,Wenn 10 durch 3 teilbar ist, so ist 3 eine Primzahl*

(5) Pps = ,,3 ist genau dann eine Primzahl, wenn 10 durch 3 teilbar ist*
(6) Pe = ,.Entweder 3 ist eine Primzahl oder 10 ist durch 3 teilbar*

(7 P = 3 ist eine Primzahl, weil 10 durch 3 teilbar ist**

Zunichst einmal steht fest, daB die Sitze p, bis p, zweiwertige Aussagen darstellen.
Thr Wahrheitswert a8t sich in der von der Umgangssprache bekaninten Weise ein-
fach bestimmen. So gilt:

w(p) = W, w(g) = F,
w(py) = F, w(py) = F, w(ps) = W, w(py) = W. w(ps) = F,
w(ps) = W, w(ps) =F.

Wir wollen nun die Uberlegungen aus Beispiel 3.4 verallgemeinern. Die GroBen p
und ¢ bezeichnen zwei beliebige Aussagen, p € A,, g€ A,. Dann gibt die folgende
Tabelle die den Beispielen entsprechenden Aussagenverbindungen, deren Namen
und Kurzschreibweisen an. Wir bemerken noch einmal, da3 cine solche Aussagen-
verbindung je zwei Elementen von A, in eindeutiger Weise ein Element von 4, zu-
ordnet. Im Beispiel (1) wird einer Aussage aus A, c¢ine andere Aussage, ebenfalls aus
A, , eindeutig zugeordnet. Aus diesem Grunde konnen wir auch das Wort Aussagen-
funktion anstelle Aussagenverbindung benutzen.

Tabelle 3.1. Aussagenverbindungen

Nr. | Aussagenverbindung | Kurzzeichen| Name

1 nicht p D Negation

2 pund g PAg Konjunktion

3 p oder q pVyq Alternative

4 wenn p, so ¢ pPoq Implikation

5 p genau dann, wenn ¢ perq Aquivalenz .
6 entweder p oder ¢ - Disjunktion

7 p weil g = -
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Die Aussagenverbindungen (2) bis (7) in der Tabelle 3.1 sind zweistellige Aussagen-
verbindungen, da sie je zwei Aussagen aus 4, eine neue Aussage aus A, eindeutig
zuordnen. Die Negation kann als einstellige Aussagenverbindung aufgefaBt werden.
Die Begriffe Alternative und Disjunkiion werden in der Literatur unterschiedlich
verwendet.

Mit diesen ein- und zweistelligen Aussagenverbindungen ist aber die Menge der
Verkniipfungen von Aussagen noch keineswegs erschépft. Oft ist es zur Beschreibung
mathematischer Sachverhalte notwendig, Aussagenverbindungen zu betrachten, dic
aus mehr als zwei Teilaussagen zusammengesetzt werden.

Beispiel 3.5 (Wir benutzen die Kurzschreibweise, um die Struktur der Aussagen-
verbindung deutlicher hervorzuheben):

(prg)—(rvs) 3.1
(pvagvr)n(p=>)A(@-)A(r—s)—s (3.2)

Mit Worten bedeutet (3.1): Wenn p und ¢ gelten, so gilt auch r oder 5. Dabei kann
man sich fiir p, g, r, s beliebige Aussagen aus A4, eingesetzt denken.

Allgemein gesprochen, kénnen wir also mit Hilfe von Bindewditern n Aussagen
aus A, eine neue Aussage aus 4, zuordnen, dic wir dann n-stellige Aussagenverbin-
dung nennen. Dic konkrete Art der Verbindung nennen wir die logische Struktur
der Aussage. Zu dieser logischen Struktur gehoren insbesondere auch die Klammern.

Nun kénnen wir die folgende entscheidende Fragestellung der Logik formulieren.
auf der dann alle anderen Untersuchungen aufbauen: Wie beeinflult die logische
Struktur den Wahrheitswert der Aussagenverbindung? Dabei fordert man: Der Wahr-
heitswert der Aussagenverbindung soll nur abhdngen

1. von den Wahrheitswerten der eingehenden Teilaussagen
und
2. von der logischen Struktur der Aussagenverbindung.

Er soll aber nicht vom konkreten Sinn der in der Aussagenverbindung verkniipften
Teilaussagen abhidngen. Aussagenverbindungen, die diese Forderung erfiillen,
heiBen extensional (Extension — Ausdehnung); alle anderen heilen intensionale Aus-
sagenverbindungen (Intension — Sinn).
Die Aussagenverbindungen 1 bis 6 unserer Tabelle 3.1 werden als extensional auf-
gefafBt. Dagegen beschreibt zum Beispiel ,,weil“ eine intensionale Aussagenverbin-
- dung, was man sich anhand eines Beispiels tiberlegen kann [14].

3.3.2.  Wabrheitstabellen der el en A verbind

5! =)

Im foigenden beschiftigen wir uns nur noch mit extensionalen Aussagenverbin-
dungen und wollen zunichst fiir die Aussagenverbindungen 1) bis 6) aus Tabelle 3.1
den Wahrheitswert bestimmen. Da diese extensional sind, gentigt es, fiir jede Kombi-
nation von Wahrheitswerten (aus { W, F'}) der eingehenden Teilaussagen den Wahr-
heitswert der Aussagenverbindung anzugeben.

1. Wahrheitstabelle fiir die Negation
Tabelle 3.2. Wahrheitstabelle der Negation
P | F W
Pl wr
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In der ersten Zeile dieser Tabelle steht links das Symbol p fiir die Aussage, rechts
daneben die beiden moglichen Wahrheitswerte fiir p: F, W. Die zweite Zeile enthélt
links das Symbol p fiir die Negation, daneben die Wahrheitswerte fiir p, d. h., gilt
w(p) = F, soist w(p) = W, und fiir w(p) = W wird w(p) = F. Diese Tabelle, die wir
Wahrheitstabelle nennen, gibt also die Zuordnung spaltenweise an.

2. Wahrheitstabelle fiir die Konjunktion

Tabelle 3.3. Wahrheitstabelle der Konjunktion

» F WF W
q F F W W
A | FFF oW

Da wir es hier mit einer zweistelligen Aussagenverbindung zu tun haben, gibt es
2% = 4 Kombinationen (Paare) von Wahrheitswerten (s. Abschnitt 6.). Jedem solchen
Paar entspricht wieder eine Spalte der Tabelle, wobei in der letzten Zeile der zuge-
horige Wahrheitswert von p A g aufgeschrieben ist. Wir sehen, daf3 die Konjunktion
genau dann wahr ist, wenn beide durch und verbundenen Teilaussagen wahr sind.

Entsprechend definieren wir die Wahrheitstabellen der anderen Aussagenverbin-
dungen.

Tabelle 3.4. Wahrheitstabelle der Alternative

» F W F W
q FF W W
v | F www

Tabelle 3.5. Wahrheitstabelle der Implikation

» F W F w
q F F W W
= woF W oW

Tabelle 3.6. Wahrheitstabelle der Aquivalenz

P F W F W
q F F W W

= w F F W

Tabelle 3.7. Wahrheitstabelle der Disjunktion

» F W F W
q F F W W

entweder p oder ¢ ‘F w W F

% Aufgabe 3.1: Man gebe die Wahrheitstabellen der Aussagenverbindungen p g (Sheffersche
Funktion) bzw. p v ¢ (Nicodsche Funktion) an!
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Zu diesen Tabellen sollen noch einige Bemerkungen gemacht werden. Der Impli-
kation wird nur dann der Wahrheitswert F zugeordnet, wenn die erste Teilaussage p
(Voraussetzung) wahr, aber die zweite Teilaussage ¢ (Behauptung) falsch ist.

Beispiel 3.6: Die Aussage ,,Wenn 3 eine Primzahl ist, so ist 10 durch 3 teilbar* ist
offenbar falsch. Die Aussage ,,Wenn 4 eine Primzahl ist, so ist 10 durch 3 teilbar*
wird dagegen als wahr angesehen.

Bemerkenswert ist auch der Unterschied zwischen Alternative und Disjunktion.
Die Alternative stellt ein einschlieBendes, die Disjunktion ein ausschlieBendes oder
dar.

Betrachten wir noch die folgenden zwei Aussagen

p =,2-2 = 4 oder ,,Berlin ist die Hauptstadt der UdSSR*
g = Wenn ,,2 -2 = 5% ist, so ,,ist die Erde ein Planet*

Aussagenverbindungen dieser Art sind haufig insbesondere philosophischer Kritik
ausgesetzt. Im Sinne der Logik handelt es sich jedoch bei p und ¢ um wahre Aussagen,
obwohl diese Aussagenverbindungen rein inhaltlich gesehen vollig sinnlos sind. Im
Sinne einer volligen Allgemeinheit der zur Aussagenverbindung zugelassenen Aus-
sagen aus A, ist es aber legitim, auch Verbindungen der obigen Art zu bilden.

Es ist zweckmaBig, die Tabellen 3.1 bis 3.7 gut im Gedéachtnis zu behalten, da sie
Bausteine fiir nachfolgende Uberlegungen sind.

3.3.3.  Wahrheitstabellen n-stelliger (n > 2) Aussagenverbindungen

Die Wahrheitstabellen ordnen jeder Kombination (bisher jedem Paar) von Wahr-
heitswerten eindeutig einen Wahrheitswert zu. Diese Zuordnung ist spaltenweise in
den Tabellen rechts vom vertikalen Strich dargestellt. Die Tabellen reprisentieren
also Funktionen (siche auch Abschnitt 8.), die man auch Wahrheitsfunktionen nennt.

Am Beispiel der 4-stelligen Aussagenverbindung

(png)—(rvs) (3.3)

wollen wir jetzt noch zeigen, wie man mit Hilfe der in 3.3.2. angegebenen Wahrheits-
tabellen die Wahrheitstabelle einer mehr als zweistelligen Aussagenverbindung
bestimmt.

Zunichst kann man sich tberlegen, daB3 es 2* = 16 verschiedene Kombinationen
von Wahrheitswerten gibt. Diese werden in zweckmiBiger Reihenfolge im Kopf
der Tabelle aufgeschrieben. Betrachten wir die Struktur von (3.3), so sehen wir,
daB wir es mit ciner Aussagenverbindung ¢ — u mit t =pag, u =rVvs zu tun
haben. Dies gibt uns die Moglichkeit, die Wahrheitstabelle schrittweise, wie nach-
folgend dargestellt, aus den schon bekannten Bausteinen aufzubauen.

Tabelle 3.8. Wahrheitstabelle der Aussagenverbindung (p A ¢) — (r v s)

P F WF WF WF WF WF WF WF W
q FFWWFFWWFFWWEFWW
r FFFFWWWWFFFFWWWW
s FFFFFFFFWWWWWWWW
r=pAag FFFWFFFWFFFWFFFW
u=rvs FFFFWWWWWWWWWWWW
t—-u WWWF WWWWWWWWWWWW

2 Sieber u. a., Mathematik
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Wir sehen also, daBl ¢ - u nur bei genau einer der 16 moglichen Wahrheitswert-
kombinationen falsch wird. Insbesondere ist also auch eine Aussage wie

,,Wenn 22 = 3 und 4 eine Primzahl ist, so ist auch 5 eine Primzahl oder
82 p— 60“

eine wahre Aussage.

Mit Hilfe der Ergebnisse aus Abschnitt 6.3.2. kann man sich leicht iiberlegen,
daB bei einer n-stelligen Aussagenverbindung die Wahrheitstabelle 2" Spalten ent-
halt. Um diese aufzuschreiben ist es zweckméBig, folgendermaBen vorzugehen (siehe
auch Tabelle 3.8, n = 4):

Man schreibe in die erste Zeile die Zweiergruppen FW ..., in die zweite die Vierer-
gruppen FFWW ..., in die dritte die Achtergruppen FFFFWWWW ... usw. Auf diese
Weise erhélt man, wie man sich leicht liberlegen kann, alle 2" Spalten, und man ist
damit in der Lage, die gewilinschte Wahrheitstabelle anzugeben.

Aufgabe 3.2: Folgt aus dem Satz ,,Wenn Peter Mathematik studiert, so studiert er
auch Operationsforschung oder Kybernetik und ,,Peter studiert nicht Operations-
forschung® und ,,Peter studiert Mathematik oder Operationsforschung oder Kyber-
netik** der Satz: ,,Peter studiert Kybernetik*?

3.3.4.  Verbindungen von Aussageformen

Auch Aussageformen lassen sich durch Bindewdrter neuen Aussageformen zu-
ordnen. Dabei ist nur zu sichern, daB bei Einsetzung eines beliebigen konkreten
Wertes x, der Variablen x mit dem Bereich X die ,,Aussageformverbindung* in eine
Aussage aus A4, libergeht.

Beispiel 3.7: X = {1;2;3;4;5;5,1;52; 6}

1. p(x) = ,,x ist eine ganze Zahl, und x ist groBer als 4.

Es gilt: w(p(5)) = w(p(6)) = W, w(p(x,)) = F fir x, € X, x; + 5;6.
2. p(x) = ,,Wenn x eine ganze Zahl ist, so ist x groBer als 4.

Es gilt: w(p(1)) = w(p(2)) = w(p(3)) = w(p(4)) = F,

w(p(5)) = w(p(5,1)) = w(p(5,2)) = w(p(6)) = W.
Allgemein kénnen wir folgendes feststellen:

Man kann zum Beispiel durch
P(), p(X) A g(x), p(x) v q(x), p(x) = g(x),
p(x) & q(x), entweder p(x) oder q(x)

Aussageformverbindungen bilden, die fiir jedes x = x; € X in Aussagenverbindungen
iibergehen. Es konnen dariiberhinaus auch n-stellige Aussageformverbindungen
gebildet werden.
Aufgabe 3.3: Man gebe die Aussageformverbindung

,,Falls n eine Primzahl ist, so teilt 3 eine der Zahlen n — 1 oder n + 1

mittels logischer Zeichen an und stelle fiir ein beliebiges festes n die Wahrheits-
tabelle auf'!



3.4. Die wesentlichen logischen Zeichen 19
3.4. Die wesentlichen logischen Zeichen und ihre technische Realisierung

3.4.1. Logische Zeichen

Wir haben bereits in 3.3.1. einige wesentliche Kurzzeichen, die in der Logik zur
Beschreibung von Aussagenverbindungen benutzt werden, angegeben.
Wir wiederholen:

)4 — nicht p

PAg - pundq

pVvyq — p oder q

pP—yq — wenn p, 50 ¢

Peq - p genau dann, wenn q

Die Zeichen -, A, v, -, & sind die Kurzzeichen (Funktoren) der Aussagenlogik.
Dartiber hinaus gibt es jedoch einige Zeichen, die insbesondere fiir mathematische
Aussagen von Bedeutung sind. Dazu betrachten wir noch einmal eine Aussageform
p(x) mit dem Bereich X der Variablen x.

Es gibt auBer der schon behandelten Mdglichkeit, von der Aussageform p(x) zu
Aussagen iberzugehen (einsetzen konkreter x = x, € X), noch eine andere Moglich-
keit, Aussagen mit Hilfe von p(x) zu bilden. Diese Mdglichkeit ergibt sich aus der
Tatsache, daB beim Einsetzen spezieller x = x, € X in die Aussageform die drei fol-
genden Fille eintreten konnen:

1. Alle entstehenden Aussagen sind wahr,
2. mindestens eine der entstehenden Aussagen ist wahr und mindestens eine ist falsch,
3. alle entstehenden Aussagen sind falsch.

Entsprechend definieren wir:
Definition 3.3: D.3,3

(a) ¢ = (Yx) p(x), gelesen: ,,Fiir jedes x gilt p(x), ist eine zweiwertige Aussage, die
genau dann den Wert W besitzt, wenn p(x) fiir jedes konkrete x = x, € X eine
wahre Aussage darstellt. Das Symbol Y heifit Allquantor.

(b) r = (Ix) p(x), gelesen: ,,Es existiert ein x so, dafy p(x) gilt**, ist eine zweiwertige
Aussage, die genau dann den Wert F besitzt, wenn p(x) fiir jedes konkrete x = x, € X
eine falsche Aussage darstellt. Das Symbol 3 heifit Existenzquantor.

(¢) s = (Nx) p(x) = (Vx) p(x), gelesen: Fiir kein x gilt p(x)*“. N heifpt Nullquantor
und kann leicht auf den Allquantor zuriickgefiihrt werden.
Beispiele 3.8:

p(x) = ,,x ist eine gerade Zahl*,

q(x) = ,,Das Quadrat von x ist nicht negativ*,
X={.,-2-1,0,1,2,3,4,...} =G (Menge der ganzen Zahlen).
Dann gilt:

w((Yx) p(x)) = F, denn z. B. x = 1 ist eine ungerade Zahl;

w((3x) p(x)) = W, denn z. B. x = 2 ist eine gerade Zahl;

w((¥x) g(x)) = W, denn das Quadrat einer ganzen Zahl ist nicht negativ;

w((@x) q(x)) = W ist eine Folgerung von w((¥x) g(x)) = W.

2*
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Die oben genannten Zeichen -, v, A, —, <> bilden gemeinsam mit den beiden
Quantoren ¥, 3 eine Zeichenmenge, mit der man (unter Zuhilfenahme von Klammern)
die Aussagen. die in der Mathematik. aber auch in anderen Wissenschaften vorkom-
men. formalisiert darstellen und auf ihren Wahrheitsgehalt untersuchen kann.

Aufgabe 3.4:-Es werden folgende Aussageformen betrachtet:
q(x) = ,.x ist eine Primzahl*; r(x) = ,,x ist durch 2 teilbar*:
s(x) = ,,xist durch 3 teilbar; 1(x) = ,,x ist durch 6 teilbar*.
Dabei ist x eine natiirliche Zahl, x > 1.

Man formuliere die folgenden Aussagen verbal und untersuche, ob sie wahr sind:
1. (V) r(x) = g(x): 2. (Vx) H(x) A 8(x) = q(x);
3. (Vx) g(x) = F(x) A 5(x); 4. (Yx) r(x) A s(x) < t(x):
5. (3x) 7(x) A S(x) = g(x).

Aufgabe 3.5: Man stelle die folgenden Aussagen mittels logischer Symbole dar:

a) Zu einer beliebigen natiirlichen Zahl 1aBt sich immer eine groBere Zahl finden, die
Primzahl ist.
b) Das Quadrat jeder beliebigen reellen Zahl ist groBer als null.

Man bilde die Verneinung der durch b) formulierten Aussage!

3.4.2.  Technische Realisierung der logischen Zeichen

Eine wichtige technische Anwendung der Logik ist die Beschreibung von Schalt-
kreisen. So machte Ehrenfest bereits 1910 darauf aufmerksam, dafl man die mathe-
matische Logik auf Relaiskontaktschaltungen anwenden konne. Die Anwendung
begann jedoch erst in den dreiBiger Jahren mit den Arbeiten von Shannon. Es ent-
stand die Schaltalgebra als mathematische Grundlage fiir die logischen Schaltungen
und speziell fiir die digitalen Rechenautomaten.

Betrachten wir cinen Stromkreis, der durch Schalter gedffnet werden kann. Dann
1Bt sich leicht die folgende zweiwertige Aussage definieren

p = ..Der Stromkreis ist geschlossen* = ,Es flieit Strom‘
Dabei ist w(p) € { W, F}. wobei W dem geschlossenen, F dem gedffneten Stromkreis
entspricht.

Wir wollen jetzt die Wahrheitstabellen (Wahrheitswertfunktionen) der grund-
legenden Verkniipfungen (Aussagenverbindungen) durch Schaltungen technisch reali-
sieren.

In Bild 3.1 und Bild 3.2 haben wir jeweils zwei Schalter, wobei

p. = ..Der Schalter 1 ist geschlossen*,
P> = ,,Der Schalter 2 ist geschlossen

wie oben zweiwertige Aussagen sind. Eine Glithlampe G zeigt an, ob der Stromkreis
geschlossen oder offen ist. Fiir die Schaltung aus Bild 3.1 gilt

W genau dann, wenn w(p,) = W oder w(p,) = W

wp) = F genau dann, wenn w(p,) = F und w(p,) = F.
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Danmit ist p also eine Aussagenverbindung von p,, p,, deren Wahrheitsverhalten mit
dem der ,,oder Verbindung (Alternative) libereinstimmt. Die Parallelschaltung aus
Bild 3.1 realisiert die Wahrheitstabelle der Aussagenverbindung p = p; v p,.

=p, v,
M CRN RERE
G P = p1 v p> (Alternative)

Pr

174 =
5 of o ®/’ %% Bild3.2.
G

P = p1 A p2 (Konjunktion)

Fiir die Reihenschaltung der Schalter 1 und 2 aus Bild 3.2 kénnen wir uns leicht tiber-
legen, daB8 der Wahrheitswert der Aussage p = ,,Der Stromkreis ist geschlossen‘
[Wgenau dann, wenn w(p,) = Wund w(p,) = W
W) =l

|F sonst
ist. Wir sehen also Ubereinstimmung mit der Wahrheitstabelle der Konjunktion, und
deshalb realisiert die Reihenschaltung aus Bild 3.2 die Wahrheitstabelle einer Kon-
junktion,

P =PiAP2.

Das Wabhrheitsverhalten der Negation, also einer einstelligen Aussagenverbindung,
1aBt sich schaltungstechnisch durch einen Ruhekontakt (Bild 3.3) realisieren.

cuﬁuo,q/;—

Px=-= & .-
Q__,,,_,Mtp 7 "

Durch Betrachtung von Bild 3.3 sehen wir, der Stromkreis mit der Gliihlampe G
ist geschlossen, falls der Schalter 1 gedffnet ist und umgekehrt. Es ist also

W, fallsw(q) = F
- |

F, falls w(g) = W.
Deshalb gilt: p = g.

Fiir die Konstruktion von komplizierten elektronischen Schaltungen ist es not-
wendig, die Wahrheitstabellen n-stelliger Aussagenverbindungen schaltungstechnisch
zu realisieren, insbesondere auch die der anderen Aussagenverbindungen Impli-
kation, Aquivalénz, Entweder-oder-Verbindung, Sheffersche und Nicodsche Funk-
tion. Ohne auf die Theorie hier naher einzugehen, wollen wir ein grundlegendes und
fiir die Technik duBerst wichtiges Ergebnis formulieren, welches sich im Rahmen der
mathematischen Logik beweisen 1aBt.

Jede beliebige n-stellige Wahrheitswertfunktion (Wahrheitstabelle) 1aBt sich aus den
Wahrheitswertfunktionen der Negation, Konjunktion und Alternative (Tabellen 3.2,
3.3, 3.4) durch gewisse Operationen gewinnen. Es ist dariiber hinaus sogar moglich,
allein mit Hilfe der Wahrheitswertfunktion der Shefferschen bzw. der Nicodschen

Bild 3.3. p = g (Negation)
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Funktion (Aufgabe 3.1) jede beliebige andere n-stellige Wahrheitswertfunktion dar-
zustellen.

Da sich die Operationen, die fiir die Darstellungen notwendig sind, schaltungs-
technisch gut realisieren lassen, bedeutet dies, daB wir allein mit den drei angegebenen
Grundschaltungen (Bilder 3.1, 3.2, 3.3) als Bausteine jede beliebige n-stellige Wahr-
heitswertfunktion technisch realisieren kénnen.

Bisher haben wir nur die technischen Realisierungen der grundlegenden Ver-
kniipfungen angegeben.

Im allgemeinen steht aber die Frage, komplizierte Aussagenverbindungen auf der
Basis dieser Grundverkniipfungen schaltungstechnisch zu realisieren und dabei
moglichst geringen Aufwand zu treiben. Wir wollen das an zwei Beispielen illustrieren.
Die Aussagenverbindungen

pa(pvg) und p
bzw.

pv(gar) und (pvg)a(pvr)
besitzen die gleichen Wahrheitstabellen, realisieren also logisch gleichwertige Aus-
sagenverbindungen. Das hat zur Folge, daB8 die Wahrheitswerttabellen der Aussagen-
verbindungen

PA(PY g p G4

pvigar)e(pvealpvr) (3.5
in der letzten Zeile jeweils nur das Symbol W besitzen, also immer wahre Aussagen

darstellen. (Wir werden in Abschnitt 4.1.1. auf diese wichtige Klasse der Aussagen-
verbindungen, die Tautologien, ausfiihrlich zu sprechen kommen.)

Tabelle 3.9 Tabelle 3.10
P F WF W p F WF WF WF W
q FFWwWWwW q FF WWFFWW
r FFFFWWWW
r=pvgq Fwww
S=pAFr F WF We s=gqnr F FFFFFWW
P F WF W«
pVvs F WF WF WWW «
(par)ep WWwWWwWWw
t=pvr F WF WWWWW
u=pvyq F WWWF WWW
tAu F WF WF WWW «
pVSeotau WWWWWWWW

y/i/mwerl/yA—./_

pAlpvy)
Bild 3.4. Logisch gleichwertige Aussagenverbindungen p A (p Vv q), p
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Somit kénnen wir die betrachteten Aussageverbindungen durch Schaltungen reali-
sieren, die jeweils dasselbe leisten (siche Bild 3.4 und 3.5). Man braucht sicherlich
nicht gesondert zu erwiahnen, welches die jeweils einfachere Schaltung ist.

’ 1 7
pv (gan) (pvglalpvr)

Bild 3.5. Logisch gleichwertige Aussagenverbindungen pv(gar),(pvg)a(pvr)

Gelegentlich vereinfacht man die Schreibweise von Ausdriicken der Form wie
z.B

pVv(gar) (3.6)

indem man sogenannte Vorrang- oder Klammereinsparungsregeln vereinbart. So
hat die Konjunktion A Vorrang vor v, d. h. man kann anstelle (3.5) auch

pVgnar 3.7

schreiben.

Es sei noch bemerkt, da Relaiskontaktschaltungen nicht die einzigen technischen
Realisierungen der Wahrheitswertfunktion sind.

Die Anwendung der Logik beschriankt sich heute keineswegs mehr auf die Schalt-
algebra, d. h. die mathematische Beschreibung, Analyse, Synthese und Optimierung
von technischen Schaltungen. Es ist zweckmiBig, die Aussagenlogik auch zur Be-
schreibung anderer Sachverhalte aus verschiedenen Wissenschaften anzuwenden.



4. Einige Beweisprinzipien

Die nachfolgenden Ausfithrungen enthalten einige wichtige logische Schliisse und
die Methode der vollstindigen Induktion als Beweisprinzipien. Die logischen Schliisse,
welche zuerst behandelt werden, kniipfen unmittelbar an die Grundbegriffe der Logik
aus Abschnitt 3. an und sind selbst ein wesentlicher Bestandteil der Logik. Wir wer-
den sie hier an Beispielen erldutern.

4.1. Logische Schliisse

Beim Beweisen mathematischer Aussagen steht héufig das Problem, daB nicht
sofort eine Beweisidee vorhanden ist oder ein direkter Beweis entweder nur schwer
oder nicht moglich ist. Betrachten wir zur Erlduterung folgendes

Beispiel 4.1: Man beweise: Wenn « und f zwei gleiche Winkel iiber einer Strecke
P, P, sind, so geht der durch die Punkte P,, P,, Py bestimmte Kreis K auch durch
den Punkt P,. (In Bild 4.1 ist zu sehen, daB der Winkel bei P; mit «, der Winkel bei
P, mit § bezeichnet wird.)

Mit den Hilfsmitteln, die in der Logik bereitgestellt werden, sind wir bereits in
der Lage, die zu beweisende mathematische Aussage als Aussagenverbindung dar-
zustellen. Bezeichnen namlich

p = .« und B sind zwei gleiche Winkel iibér P, P,
q = ,,P, liegt auf dem Kreis K

zweiwertige Aussagen, so haben wir zu beweisen, daf3
p — g eine wahre Aussage ist.

Ein direkter Beweis dieser Implikation gelingt nicht ohne weiteres, und deshalb wird
der Beweis mit Hilfe einer Methode des indirekten Beweisens gefithrt. Man zeigt:

Bild 4.1 Bild 4.2

Wenn der Punkt P, nicht auf dem Kreis K liegt, so ist « ungleich 5. Wie Bild 4.2
zeigt, zerfallt die Aussage g = ,,P, liegt nicht auf dem Kreis K* in zwei Fille:

G, = ,,P, liegt auBerhalb K*
G, = ,,P4 liegt innerhalb K*,

1

d. h. es gilt
G = entweder g, oder G,.
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In jedem dieser beiden Fille kann man beweisen (der Beweis wird unter Verwendung
des Peripheriewinkelsatzes und eines Satzes liber AuBenwinkel am Dreieck gefiihrt),
daB o ungleich f ist, d. h.

gi—>p und 3, p
sind wahre Aussagen.

Aufgabe 4.1: Man beweise, daB g, — p und g, — p wahre Aussagen sind.

Die Frage ist nun, wieso wir auf Grund dessen, da3 g, - p und g, — p wahre Aus-
sagen sind, darauf schlieBen konnen, daB auch p — ¢ eine wahre Aussage ist. Der
wesentliche Schritt hierbei ist, daf3 wir begriinden:

Es geniigt zu wissen, daB g — p, § > p = Wenn ,,P, nicht auf K* liegt, so gilt
,,Winkel o ist verschieden Winkel #**, eine wahre Aussage ist, um folgern zu kénnen,
daB auch p — g wahr ist. Falls eine solche Begriindung méglich ist, gilt sie natiirlich
fiir alle Beispiele, in denen man den Beweis von p — ¢ durch den Beweis von § — p
ersetzen mochte. Wir verlassen also zunéchst das Beispiel und stellen uns unter p, ¢
beliebige Aussagen vor.

Die oben genannte Begriindung kann man wie folgt formulieren:

1. Es ist zu zeigen, dal § — p eine wahre Aussage ist.
I1. Die Aussagenverbindung

; G-p)~(p—a) 4.0

ist immer eine wahre Aussage, ganz gleich welche konkreten (wahren oder
falschen) Aussagen p und ¢ darstellen (Beweis s. Tabelle 4.1).

III. Demzufolge ist auch (g— p) A ((g— p) = (p — ¢)) als Konjunktion zweier
wahrer Aussagen, wiederum wahr (Tabelle 3.3).

IV. Weil die Aussage

(sA(s—>0)—>1¢ 4.2)

unabhingig davon, welche konkreten (wahren oder falschen) Aussagen s, 7 in
diese Verbindung eingehen, immer wahr ist, knnen wir mit s = § — p und
t = p — g auf die Wahrheit.der Aussage p — ¢ schlieBen (Beweis siche Tabelle
4.2). (Auf Grund der Wahrheitstabelle der Implikation (Tabellc 3.5) muf3 bei Rich-
tigkeit der Voraussetzung und der Implikdtion auch die Behauptung wahr sein.)

Sicherlich ist diese Begriindung beim ersten Lesen schwer zu verstehen. Anderer-
seits stellt sie aber das Muster fiir das Verstandnis aller logischen Schliisse dar und
sollte deshalb gut durchdacht werden. In den Punkten II. und IV. sind zwei Be-
hauptungen formuliert, die die entscheidende Rolle fiir die Stichhaltigkeit unserer
Begriindung spielen.

Wir behaupten, da3 die Aussagenverbindungen (4.1) und (4.2) immer wahre Aus-
sagen darstellen. Den Beweis dafiir konnen wir leicht mit Hilfe der Wahrheitstabellen
fithren.

In der letzten Zeile dieser Wahrheitstabellen steht jeweils nur das Symbol W, d. h.
die Aussagenverbindungen sind immer wahr, ganz gleich ob p, ¢, r, s wahr oder
falsch sind.
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Tabelle 4.1. Kontraposition Tabelle 4.2. Abtrennungsregel

P F W F W s F W F W
q F F W W t F F W W
P W F W F st W F W W
q W W F F z=sA(s—>1) F F F W
u=p-gq W F W W

v=q-p W F W W z-—t w w w W
v u w w W W

Die Begriindung einer richtigen logischen SchluBweise liegt also offenbar in der
Existenz von Aussagenverbindungen der oben betrachteten Art. Deshalb liegt es
nahe, daBl wir uns zunichst etwas genauer mit dieser Klasse der immer wahren Aus-
sagenverbindungen beschaftigen.

4.1.1.  Tautologien

Definition 4.1: Eine Aussagenverbindung heifit Tautologie, wenn die Wahrheitswert-
Sfunktion nur den Wert W annimmt, d. h. wenn die letzte Zeile der Wahrheitstabelle
nur den Wert W besitzt. (Anstelle von Tautologie ist auch der Begriff’ Identitit ge-
brauchlich.)

Wir haben damit eine sehr wesentliche Klasse von Aussagenverbindungen definiert,
die allein auf Grund ihrer logischen Struktur stets nur wahre Aussagen enthalt. Uns
interessiert diese Klasse von Aussagenverbindungen im Hinblick auf weitere logische
SchluBfiguren. Deshalb stellen wir nachfolgend einige besonders wichtige Tautologien
zusammen und fithren den Nachweis iiber die entsprechenden Wahrheitstabellen.

Tautologien sind beispielsweise :

1) Abtrennungsregel SA(s—>t)>t 4.2)
2) Indirekter Beweis Ga(p—-q)—-p (4.3)
3) Fallunterscheidung (pvar(p->r)alg-r)—r (4.49)
4) Kettenschlufl (p->rl@-r)—>(p-r) (4.5
5) SchluB auf eine Aquivalenz ((p — q) A (g = p)) = (p < q) (4.6)
6) Kontraposition p->9 - (@-p (4.7)

@-n-@p-9 (4.8)
7) Doppelte Verneinung pep (4.9)
8) de Morgansche Regeln AT (4.10)

PVq = (prg) (4.11)

Mit den Tabellen 4.3, 4.4 und 4.5 zeigen wir fiir drei besonders wichtige dieser Aus-
sagenverbindungen, daB es sich tatsichlich um Tautologien handelt.

Aufgabe 4.2: Man weise nach, daB die Aussagenverbindungen (4.10), (4.11) Tautolo-
gien sind!
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Tabelle 4.3. Kettenschluf

P F W F W F WF W

q F F W W F F W W

r F F F F W W W W

u=p-gq W F W W WF W W

v=g-or W W F F W W W W

w=p-or W F WF WWWW

X=UAD W  F F F W F W W

x> w wWw W W WwWWwWWwWW

Tabelle 4.4. Indirekter Beweis Tabelle 4.5. Schluf auf Aquivalenz
)4 F W F W p F W F W
q F F W W ¢ F F W W
b W F W F r=p-gq W F W W
q W W F F s=qg-p w W F W
r=p-4q W W F W t=ras W F F W
S=qAr F F F W u=pegq W F F W
s> p w w wWw t—u ww w W

4.1.2. Logische SchluBfiguren

Die oben angegebenen Tautologien haben spezielle Bezeichnungen erhalten, die
in der Regel mit dem Namen des logischen Schlusses identisch sind, dessen Grund-
lage sie bilden. Eine Sonderrolle nimmt die Abtrennungsregel (4.2) ein. Streng ge-
nommen bendtigt man jeweils die Abtrennungsregel, um aus den anderen Tauto-
logien logische Schliisse aufzubauen, wie wir das mit den Punkten I. bis IV. fiir ein
Beispiel getan haben. Am Beispiel des indirekten Beweises wollen wir noch einmal
das Zusammenwirken einer speziellen Tautologie mit der Abtrennungsregel demon-
strieren.

—

. Man betrachtet eine Aussage g, von der man weil3, da} sie wahr ist, und beweist,

daB die Implikation p — g eine wahre Aussage darstellt.

Nach Tabelle 4.4 ist (g A (p — g)) — p eine Tautologie, also eine stets wahre

Aussage.

III. Demzufolge ist auch (g A (p = 4)) A (g A (5 = §)) — p) als Konjunktion wahrer
Aussagen wiederum wahr.

IV. Auf Grund der Abtrennungsregel [Tautologie (4.2)] konnen wir mit s =

g A(p— g)und ¢ = p auf die Wahrheit der Aussage p schlieBen.

I

—

Da dieses Vorgehen sehr aufwendig ist und dariiber hinaus auch die Ubersicht-
lichkeit bei komplizierteren Schliissen nicht mehr gegeben ist, hat man ein Schema
entwickelt, mit dem man die logischen Schliisse iibersichtlich darstellen kann. In der
Darstellung dieses Schemas sprechen wir von logischen SchluBfiguren, die wie folgt
aufgebaut werden (Tabelle 4.6):
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Tabelle 4.6. Schema logischer SchluBfiguren und Beispiel - indirekter

Beweis
Voraussetzung 1 q
Voraussetzung k pP—q

Behauptung 1 P
Behauétung )

Uber einem horizontalen Strich werden im allgemeinen k Voraussetzungen angegeben,
unter diesem Strich / Behauptungen, die jeweils durch ,,und* also konjunktiv ver-
knipft sind. Wenn man die Giiltigkeit der Voraussetzungen nachgepriift hat, kann
man folgern, dal auch die Behauptungen wahre Aussagen sind. Die Begriindung
dafiir liefert jeweils die entsprechende Tautologie gemeinsam mit der Abtrennungs-
regel. Ein solches Schema ist sehr zweckmiBig, weil es unmittelbar ein Rezept fiir das
,,Beweisen* liefert. Hat man zum Beispiel — wie in Tabelle 4.6 — die Wuhrheit einer
Aussage p zu beweisen, so kann man anstelle dessen versuchen, die Wahrheit der
beiden Aussagen (Voraussetzungen) ¢ und p — g zu lberpriifen, was unter Umstin-
den wesentlich leichter sein kann. Wir werden das in 4.3.3. an einem Beispiel demon-
strieren. )

Nachfolgend geben wir ausgehend von (4.1) bis (4.11) die entsprechenden logischen
SchluBfiguren an.

Im Abschnitt 4.2. werden wir dic Anwendung dieser logischen Schluf3figuren auf
einige Beispiele aus der Elementarmathematik zeigen.

Wir sind jetzt in der Lage, auch die etwas kompliziertere Frage ,, Warum kann man
auf Grund von ¢, — p und g, — p auf g — p schlieBen?* zu beantworten, die im
Zusammenhang mit unserem einfithrenden Beispiel noch offen ist.

Aufgabe 4.3: Man weise die Richtigkeit der logischen SchluBfigur nach, wobei
q
qi>p
42 = p
EEY
g = entweder g, oder g, ist (Disjunktion)!
Tabelle 4.7. Logische Schlulfiguren

rPvq
s g P P-a 74
st p—q q—r q-r q—=p
t Vd r por peq
Abtrennungs- Indirekter Fallunter- Ketten- SchluB aufeine
regel Beweis scheidung schiufl Aquivalenz
P=q q-p » PAq rvq
i-p P=4q p PV AT
Kontrapositionsschliisse Doppelte de Morgansche Regeln

Verneinung
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4.2 Beispiele zur Anwendung logischer Schliisse beim Fiihren
von Beweisen

Die logischen Schliisse konnen beim Beweisen mathematischer Aussagen bei einer
geschickten Umformulierung des Problems helfen, so daf die neuen Aussagen zu-
mindest einfacher beweisbar sind. Fir solche Anwendungen jedoch gibt es kaum
Rezepte. Die nachfolgenden Beispicle sollen das Vorgehen zur Anwendung logischer
Schliisse bei der Beweisfithrung illustrieren.

4.2.1. Zur Anwendung der Abtrennungsregel

Die Abtrennungsregel zeigt, wie man aus einer Implikation auf eine Aussage ¢
richtig schliet. Die Richtigkeit von ¢ kann demnach gefolgert werden, wenn man
eine Voraussetzung p kennt und die Giltigkeit von p — ¢ zeigt.

Insbesondere heiBit das: Im allgemeinen darf aus der Giiltigkeit von p — ¢ nicht
auf die von ¢ geschlossen werden, d. h. (p — ¢) — ¢ ist keine Tautologie (Beweis:
Tabelle 4.8).

Tabelle 4.8. (p - q) — ¢q

2 F W F W
q F F W W
r=p-ogq w F W W
r—q F W W W

Man sieht aus dieser Tabelle 4.8 auch, wanndieser SchluBfalsch ist: (w(p) =w(q) =F).
Insbesondere sehen wir auch folgendes: Die Folgerungen aus falschen Voraussetzun-
gen konnen, miissen aber nicht falsch sein.

Beispiel 4.2:

. Der Satz ,,Wenn (—1) = (+1), so 1 = 1*“ ist richtig und auch ,,1 = 1¢ ist eine
wahre Aussage. )

. Der Satz ,,Wenn (—1) < (—2), so 1 < 0 ist wahr, aber,,1 < 0 ist eine falsche
Aussage.
(I < 0 kann aus (—1) < (—2) durch Addition von 2 gefolgert werden.)
Es wire also falsch, aus der Richtigkeit von ,,Wenn (—1) < (=2), so | < 0*
auf die von ,,1 < 0* zu schlieBen.

N

4.2.2. Direktes und indirektes Beweisen .

Wir beginnen mit einem sehr einfachen Beispiel. Es ist uns bekannt, daf der Satz
»Wenn I = 1ist, soist —1 = +1* falsch ist. Nun gibt es aber auch andere, kompli-
ziertere Aussagen, bei denen man nicht sofort sicht, ob es sich um eine wahre oder
falsche Aussage handelt. Leider ist in solchen Fillen das folgende falsche SchlieBen
recht haufig tiblich. Man nimmt die Behauptung und rechnet so lange, bis man zur
Voraussetzung kommt und meint, man habe damit den Satz bewiesen, d. h., man
will p — ¢ zeigen, indem man g — p zeigt. Der Leser kann sich aber leicht davon
liberzeugen, dal3

(g=p) = (-9

keine Tautologie ist, und aus diesem Grunde fiihrt die genannte Vorgehensweise
im allgemeinen zu falschen Ergebnissen.
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Fiir unser Beispiel wire dieses falsche Vorgehen folgendermaBen charakterisiert:
Zu zeigen ist:

Wenn 1 = 1ist, soist —1 = +1.

Beweis: Es sei —1 = +1. Dann folgt: (—1)? = (+1)?,d. h. 1 = 1. Das ist
gerade die Voraussetzung und daraus folgt die Richtigkeit des Satzes.

Trotzdem kann das genannte Vorgehen, zunichst ¢ — p nachzuweisen, niitzlich sein,
wenn man daraus nicht den falschen SchluB3 p — g zieht.

Aufgabe 4.4: Man bestimme die Losung der Gleichung
x+2 x4 7 =4,
Nun betrachten wir dazu das folgende Beispiél:

Beispiel 4.3: Wir wollen beweisen:

R > \/a~b, a> 0, b > 0, reelle Zahlen.
Wir versuchen zundchst zu zeigen: g - p, d. h., es sei a -; 2 > \/a-b. Dann wiirde
gelten:

p—q = Wenn a =% b ist, so gilt

(a + b)? > 4ab, a* + 2ab + b* > 4ab,
a* —2ab + b* >0, (a—0b?>0.

Von der Aussage (¢ — b)> > 0 weiB man, daB sie fiir @ & b gilt. Wir haben also

. b . . .
gezeigt: Wenn a ; > 4/a-b, soist a + b. AuBerdem hat uns der obige Beweis
. . . b
aber auch einen Ansatzpunkt dafiir geliefert, wie man,,Wenn a = b, so a ; > /ab*

zeigen kann. Man durchlaufe dazu die Schritte des Beweises riickwirts: Fiir a + b
gilt

(@ — b)? >0, a® — 2ab + b* > 0,

a* + 2ab + b? > 4ab,  (a+b) > 2-./ab.

Damit haben wir auch durch diesen riickwértigen Weg gezeigt: Wenn a # b, so

a'-: J >\/E.

Wir fassen zusammen: Das SchlieBen von einer Behauptung ¢ aus beweist die
Implikation p — ¢ nicht (auch wenn es zur Voraussetzung p fiihrt), kann aber oft
sehr niitzlich sein, um einen Beweisansatz zu finden. Wir nennen dieses Vorgehen
deshalb Analyse.

Die Analyse liefert aber nicht immer einen Ansatz wie zum Beispiel (a — b)* > 0.
Dagegen ist die Anwendung der Kontrapositionsschliisse (Tabelle 4.7) immer mog-
lich, die uns auch sofort einen Ausgangspunkt fiir den Beweis in die Hand gibt:

Man nehme das Gegenteil der Behauptung ¢ an und versuche g — p zu beweisen.

a+b

Beispiel 4.4: p - q = ,Wenn a * b, so >/ ab*.

. a+b . L . ..
Wir nehmen g = ,, < \/ ab“ an. Dies ist ein unmittelbarer Ansatz fiir den

2
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Beweis von g - p (p = ,,a = b*). Wir kénnen folgern:
(a + b)* < 4ab, a* + 2ab + b* < 4ab, a*> — 2ab + b* £ 0,
(@ — b)* £0, woraus sofort a = b folgt.
Damit ist § — p gezeigt, und der Kontrapositionsschlufl =
der Implikation p — q.
Unter der Voraussetzung, dall p — g eine wahre Aussage ist, benutzt man hiufig
die folgende Sprechweise :
Die Aussage p ist eine hinreichende Bedingung fiir die Aussage g, oder auch, die Aus-
sage q ist eine notwendige Bedingung fiir p.

Im Beispiel 4.5 ist also a + b hinreichend dafiir, daB
¢ ; b > \/ a-b

; liefert die Richtigkeit

) g

gilt. Wie wir geschen haben, folgt aus der Giiltigkeit von p — ¢ noch nicht, daB auch
q — p eine wahre Aussage ist. Das bedeutet in unserer soeben eingefiihrten Sprech-
weise ausgedriickt:

— Eine fir die Giiltigkeit der Aussage p natwendige Bedingung ¢ muf3 nicht hin-
reichend fiir p sein und

- eine fir die Giiltigkeit der Aussage p hinreichende Bedingung ¢ muf nicht not-
wendig fiir p sein.

So ist die Teilbarkeit einer natiirlichen Zahl n durch 2 notwendig aber nicht hinrei-
chend fiir die Teilbarkeit von n durch 4. Fiir drei natiirliche Zahlen a, b, ¢ ist die
Teilbarkeit von @ durch ¢ und b durch ¢ hinreichend, aber nicht notwendig fiir die
Teilbarkeit von a + b durch c.

Die Anwendung des Kontrapositionsschlusses ist eine Form des indirekten Bewei-
sens. Man benutzt sie zum Beweis einer Implikation.

Die als indirekter Beweis bezeichnete SchluBfigur in Tabelle 4.6 benutzt man zum
Beweis einer Aussage p. Das nachfolgende Beispiel soll auch diesen SchluB etwas.
niher erldutern.

Beispiel 4.5: Wir wollen zeigen, daB die Aussage
p= ,,\/5 ist keine rationale Zahl

eine wahre Aussage ist.

Wir benutzen Tabelle 4.6 und zeigen zunichst p — g, wobei g eine Aussage ist,
die das Gegenteil einer noch zu vereinbarenden Annahme g darstellt. Zunichst be-
trachten wir p, p = ,, \/5 ist eine rationale Zahl*“. Das heift \/ 2= % mit ganzen Zah-
len a, b; b % 0, deren groBter gemeinsamer Teiler gleich eins ist (d. h. a, b - teiler-

2 2
fremd). Wenn p gilt, so gilt auch (\/5)2 = (%) ,2 = Z—z oder, anders geschrieben,
a* = 2+ b% Demzufolge wiire a? eine gerade Zahl, was nur dann mdglich ist, wenn
a = 2n eine gerade Zahl ist. Es wiirde also a*> = (2n)? = 4n® = 2b%,d. h. b*> = 2+ n?
und damit auch b eine gerade Zahl sein.

Bezeichnen wir mit ¢ die Aussage: ¢ = ,,a und b sind teilerfremd*, so haben wir
gezeigt: g A (p - §), denn a und b wiirden den gemeinsamen Teiler 2 besitzen. Unter
Verwendung der SchluBfigur aus Tabelle 4.7 folgt die Giiltigkeit von p.
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Wie wir gesehen haben, wurde die Aussage g erst im Laufe des Beweises konstruiert,
worin auch die Hauptschwierigkeit bei der Fiihrung eines indirekten Beweises liegt.
Man muB sich vorher zielbewuBt iiberlegen, welche Annahme g bei Voraussetzung
von p zur Folgerung g fithren konnte.

4.2.3.  SchluB auf eine Aquivalenz

_ Die besondere Bedeutung von (4.6) liegt darin, daB es eine Mdéglichkeit gibt, eine
Aquivalenz zu beweisen.
Betrachten wir zum Beispiel eine Eigenschaft, die wir oben schon benutzt haben.

Beispiel 4.6: Es sei a eine ganze Zahl. Dann gilt: a ist genau dann eine gerade Zahl,
wenn a? eine gerade Zahl ist. (a gerade ist notwendig und hinreichend dafiir, daf3
a* gerade ist). Formalisieren wir diesen mathematischen Satz mittels der Aussagen

p = ,.a ist eine gerade Zahl*, g = ,,a* ist eine gerade Zahl*,

50 kénnen wir ihn in der Form p «» g schreiben (a - beliebig, aber fest). Wir beweisen
p <> g, indem wir den Schlufl auf eine Aquivalenz anwenden. Demnach miissen wir
zeigen: (p — q) A (g — p). Es bedeuten dabei:

1. p— q = ,,Wenn a gerade ist, ist auch a® gerade* (,,a gerade* ist hinreichende Be-
dingung fiir ,,a* gerade): ' ’
2.g— p = ,,Wenn a? gerade ist, ist auch a gerade® (,,a gerade** ist notwendige Be-

dingung fir ,,a* gerade*).

Wir beweisen die Implikationen nacheinander.

Zu 1: Es sei a gerade. Dann ist a = 2m, wobei m eine ganze Zahl ist. Dann gilt:
@® = a-a = (2m)(2m) = 2(2m?). Da 2m? eine ganze Zahl ist, ist a* eine gerade Zahl,
und demzufolge ist p — g bewiesen.

Zu 2: Wir wollen zeigen: g — p. Nach dem Kontrapositionsschlull gentigt es, statt
dessen p — ¢ zu beweisen, d. h.

,.wenn a ungerade ist, ist auch ¢ ungerade*

miite bewiesen werden. a ungerade ist gleichbedeutend mit @ = 2m + 1 mit einer
ganzen Zahl m. Nun bilden wir a®: @*> = 2m + 1)+ 2m + 1) = 2 2m? + 2 + 2m
+ 1 =2-2m?* + 2m) + 1. Da 2 (2m* + 2m) eine gerade Zahl ist, ist a* ungerade
und somit p — ¢ nachgewiesen.

Wir wollen hier noch einmal ausfiihrlich aufschreiben, wie aus, dem Gezeigten die
eigentliche Behauptung geschlossen wird. Wir haben gezeigt:

l.p—>g 2.p—4q.

Nach dem Kontrapositionsschluf3 folgt ¢ — p. Deshalb wissen wir, daB (p — ¢q)
A (g = p) gilt. Nach dem SchiuB auf eine Aquivalenz folgt p <> g.

Die Darstellung dieses Beispiels zeigt besonders deutlich, wie das Anwenden logi-
scher Schliisse kombiniert durchzufiihren ist, um konkrete Beweise zu fiihren.

Bemerkung: Da wir keinerlei Bedingung an das feste @ wihrend des Beweises stellen
muBten, konnen wir p und ¢ auch als Aussageformen p(a), g(a) tliber dem Bereich
der ganzen Zahlen interpretieren und behaupten:

(Va) (p(a) < g(a)).
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Bei Giiltigkeit der Aussage p <> ¢ sagt man:
p ist eine notwendige und hinreichende Bedingung fiir q.

So ist dafiir, daB ein Dreieck gleichseitig ist, notwendig und hinreichend, daB alle
drei Innenwinkel des Dreiecks einander gleich sind.

4.3. Die Methode der vollstindigen Induktion

Die bekannte Methode der vollstindigen Induktion gibt uns die Moglichkeit, die
Giiltigkeit von unendlich vielen Aussagen zu beweisen. Von diesen unendlich vielen
Aussagen mufl man einschrankend fordern, daB sie durch Einsetzen natiirlicher
Zahlen in eine Aussageform entstehen. Diese Aussageform kiirzen wir wie iiblich
mit p(n) ab. Dabei sei n die Variable, die eine Menge X natiirlicher Zahlen durchlauft,
wobei wir voraussetzen wollen, daB

X = {n|n — natiirliche Zahl A n 2 a},

a sei eine natiirliche Zahl, ist. Nachdem diese Bezeichnungen eingefiihrt sind, konnen
wir préziser sagen: Mit der Methode der vollstindigen Induktion kann man nach-
weisen, daB die unendlich vielen Aussagen

p@),pla+1),pa+2),...

wahre Aussagen sind.
Indem wir unsere Ergebnisse aus 3.4.1. verwenden, schreiben wir kiirzer:

q = (¥n)p(n), X = {n|n — natiirliche Zahl A n 2 a}.

Demnach ist die vollstindige Induktion die Methode dafiir, nachzuweisen, daB ¢
eine wahre Aussage ist.

In diesem Abschnitt ist es nicht unser Ziel, moglichst viele Beispiele darzustellen,
sondern wir wollen einige charakteristische Eigenschaften angeben. Weitere Bei-
spiele finden Sie insbesondere in Abschnitt ¢.

Um Aussagen ¢ = (Vn) p(n), ne X — man schreibt dafiir oft kurz: Es gilt p(n)
fiir n = a,a ganz - zu illustrieren, betrachten wir zunéchst Beispiele:

Beispiel 4.7:

(1) Alle Zahlen der Form n* + n + 41, wobei n eine beliebige natiirliche Zahl ist

(X ={0,1,2,...}), sind Primzahlen.
. 1 1 1 1 n

(2) Esgilt: S, ~*1_~—2_+“2~_3+§7+ +~n(n—+T)———n+—l
fiir jede natiirliche Zahl n, die groBer oder gleich eins ist (X = {1,2,...}).

(3) Jede natiirliche Zahl n, (X = {0, 1,2, ...}),ist der ihr folgenden natiirlichen’Zahl
gleich.

(4) Fiir jede natiirliche Zahl n, die gréBer oder gleich 3 ist, (X = {3, 4, 5, ...}), gilt
die Ungleichung 2" > 2n + 1.

Es kommt nun darauf an, den Wahrheitswert solcher Aussagen zu bestimmen.
Die Methode der vollstandigen Induktion (siche auch Induktionsaxiom in 5.1.) 148t
sich folgendermaBen formulieren:

3 Sieber u. a., Mathematik
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Satz 4.1 (Methode der volistindigen Induktion): Eine Aussage q = (Vn) p(n) mit
= {n| n natiirliche Zahl A n Z a} ist genau dann eine wahre Aussage, wenn gilt:

(1) p(a) ist eine wahre Aussage.

(2) Aus der Annahme, dap p(k) fiir ein beliebiges festes n = k = a eine walre Aussage
ist, folgt, daf} auch p(k + 1) eine wahre Aussage ist.

Wir formulieren diese Methode hier als Satz und wollen uns darauf beschrinken,
diesen Satz etwas plausibel zu machen.

Nach (1) wissen wir, daB3 p(a) gilt. Setzen wir in (2) k = a, so gilt wegen (2) auch
pla + 1). Setzen wir nun k = a + 1, so folgt wegen (2) die Giiltigkeit von p(a + 2).
Fahren wir so fort, so durchlaufen wir offenbar die gesamte Menge der natiirlichen
Zahlen = a.

Um bei konkreten Aufgaben Satz 4.1 anwenden zu konnen, formulieren wir noch
ein Schema, nach dem man beim Beweis immer vorgehen kann.

1. Man zeige: Es gilt p(a). (Induktionsbeginn)
II. Man nehme an: p(k) ist fiir ein beliebiges n = k& = a eine wahre Aus-
sage. (Induktionsannahme)
III. Man zeige: Unter der Voraussetzung II. ist auch p(k + 1) eine wahre
Aussage. (Induktionsschritt)

IV. Bei Giiltigkeit von L., IT., III. kann man folgern:
g = (Vn) p(n) mit X = {n|n natiirliche Zah! A n = a} ist eine wahre
Aussage. (Induktionsschluf3)

Beispiel 4.8: Wir betrachten die Aussage (1) aus Beispiel 4.7. Setzen wir n = 0, 1, 2,

., 10 ein, so erhalten wir die Primzahlen 41, 43, 47, 53, 61, 71, 83,97, 113, 131, 151, ...
Man ist also geneigt, daraus zu folgern, daB3 die Aussage richtig ist. Wenn wir aber
versuchen, fiir dieses Beispiel den Schritt III. durchzufiihren, so merken wir, daf3
dies nicht gelingt. Das bedeutet, daB8 die Aussage ,,n*> + n + 41 liefert nur Prim-
zahlen* nicht nachgewiesen werden kann. Es ist deshalb zweckméBig zu priifen,.ob
diese Aussage falsch ist. In der Tat: Fiirn = 0, ..., 39 erhalten wir nur Primzahlen, fiir
n = 40 jedoch ist 40 + 40 + 41 keine Primzahl.

Das Beispiel zeigt: Es ist im allgemeinen falsch, aus der Giiltigkeit von Aussagen
pla),p(a + 1),..., p(a + b) auf die Allgemeingiiltigkeit zu schliefen.

Beispiel 4.9: Wir betrachten die Aussage (2) aus Beispiel 4.7:

I.a=1.Esgilt:S1=—1_1—2= 1_1‘_1.

. 1 1 1 k
1L ESSClSk~ﬁ+—2.—3+...+m-k—+—l—
fiir ein beliebiges k > 1 giiltig.

II1. Unter der Annahme II. ist zu zeigen:

Es gilt: Sept = g + g+ oo+ I -Fh
I K I I B (R R (S (R
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Beweis: Es ist

1 k 1
Sk+1 =

St FIF DI DT Frl T R+ DETD
(nach 1I)
Kk +2) + 1 K42k 4+ 1 k+1? k41

TKk+Dk+2 k+DKk+2 (k+DGk+2 k+2°

Demzufolge ist III. gezeigt, und wir kénnen nach IV. schliefen, daB die Summen-
formsgl
PR SR TR S
KT 2 T2 3 T T e+ ) n+ 1
fiir jede natiirliche Zahln > 1 gilt. m

Beispiel 4.10: Wir betrachten die Aussage (3) am Beispiel 4.7. Wir nehmen an:
Es sei k = k + 1 fiir ein beliebiges n = k = 0. Dann ist nach III. zu zeigen: k + 1
= k + 2. Dies ist aber nicht schwer, denn aus k = k& + 1 folgt durch Addition von 1
auf beiden Seiten sofort k + 1 = k + 2.

Hieraus den SchluB zu ziehen, daB die in Beispicl 4.7, (3), formulierte Aussage
richtig ist, wire jedoch falsch, denn wir haben vergessen, I. nachzupriifen. Nach I.
miiBte gelten: 0 = I. Das ist aber offenbar falsch.

So einfach es im Beispiel 4.10 auch zu sehen ist, daB die Aussage (Vn)n = n + |
falsch ist, so zeigt es doch die Wichtigkeit des Schrittes I. Es kann ohne weiteres
vorkommen, daB sich III. beweisen 1aBt, aber I. nicht gilt. In einem solchen Falle
ist die zu untersuchende Aussage falsch. Den Beweis der Aussage (4) aus Beispiel 4.7
iberlassen wir dem Leser.

Bemerkungen:

. Die Schwierigkeit beim Induktionsbeweis liegt darin, da es zum Beweis von III.
keine Rezepte gibt. Es kommt jeweils darauf an, die Annahme II. giinstig auszu-
nutzen, um III. zu zeigen.

. In vielen Anwendungen sind sowohl « als auch die Aussageformen p(n) nicht
gegeben, und es kann sehr schwierig sein, diese zu finden.

. Es gibt eine Modifikation der Annahme I1., die folgendermaBen lautet:

II'.: Die Aussagen p(n) mogen fiir alle Zahlen a < n < k gelten. Man kann nun
II. durch IT'. ersetzen und in manchen Beispielen nutzbringend anwenden.

I3

%)

Aufgabe 4.5: Man zeige mittels vollstindiger Induktion ¢ = (Vn)2" > 2n + 1, =
X =1{3,4,5,...}, ist einec wahre Aussage!

Aufgabe 4.6: Man zeige mittels vollstandiger Induktion . *
n 1 — 1 - x" «yntl
=) Tm il +(l) x)f" L x=1{01,2.)
m=1 -

ist fiir jede beliebige reelle Zahl x, x # 1, x fest gewiihlt, eine wahre Aussage.



5. Aufbau der Zahlenbereiche

5.1. Der Bereich der reellen Zahlen

Am Anfang mathematischer Betrachtungen steht auch der Zahlbegriff. Die Zahlen
gehoren zu den grundlegenden mathematischen Objekten, mit deren Hilfe die realen
Dinge oder Ereignisse quantifiziert oder geordnet werden konnen. In diesem Ab-
schnitt wollen wir ihre wesentlichen Eigenschaften und die Gesetze, denen sie ge-
niigen, zusammenstellen.

5.1.1.  Natiirliche Zahlen

Von der Anzahl oder Ordnung einer Menge von Dingen kommen wir zu den
natiirlichen Zahlen 1, 2, 3, ..., zu denen wir hier auch die Null rechnen wollen.

Die natiirlichen Zahlen konnen auch axiomatisch erklart werden. Dazu nutzt man die Kenntnis
ihrer Eigenschaften. Wihlt man unter diesen eine minimale Zahl von Grundeigenschaften derart aus,
daB sich alle weiteren von diesen ableiten lassen, so bilden diese ein Axiomensystem. Fiir die natiir-
lichen Zahlen stammt das bekannteste von Peano (1891):

1. 0 ist eine natiirliche Zahl.

2. Zu jeder natiirlichen Zahl n gibt es genau einen Nachfolger n’.

3. Es gibt keine natiirliche Zahl, deren Nachfolger 0 ist.
4.
59

)

Die Nuchfolger zweier ver r Zahlen sind voneinander verschieden.
Enthdlt eine Menge natiirlicher Zahlen die Zahl O und mit jeder natiirlichen Zahl n auch deren

Nachfolger n’, so enthiilt sie alle natiirlichen Zahlen.

Die ersten vier Axiome sind ohne weiteres verstindlich. Den Nachfolger von 0 nennt man 0’
oder 1, den von 1 entsprechend 0" oder 1’ oder 2 usf. Das fiinfte Axiom verwendet den Begriff einer
Menge, der in 7. niher erkldart wird. Wir verstehen dabei die natiirlichen Zahlen als eine Gesamtheit,
eben als Menge der natiirlichen Zahlen. Dieses letzte Axiom wird auch als Induktionsaxiom bezeich-
net, es rechtfertigt den SchluB der vollstindigen Induktion (siehe auch 4.3.). Mit Hilfe dieser finf
Grundgesetze konnen die Addition, die Multiplikation und eine Ordnungsrelation erklirt und ferner
alle bekannten Rechenregeln fiir die natiirlichen Zahlen abgeleitet werden.

Im Bereich dieser natiirlichen Zahlen sind die arithmetischen Grundoperationen
Addition und Multiplikation unbeschriankt durchfiihrbar. Summe und Produkt
zweier natiirlicher Zahlen ist wieder eine natiirliche Zahl.

Die Umkehrung dieser Rechenoperationen, die Subtraktion und die Division,
lassen sich dagegen im Bereich der natiirlichen Zahlen nicht unbeschrinkt ausfiihren.
So gibt es beispielsweise fiir die Gleichungen 5 + x = 2 oder 3 -y = 7 unter den
natiirlichen Zahlen keine Losungen x oder y.

5.1.2. Rationale Zahlen, Grundgesetze der Arithmetik

Rationale Zahlen

Diese Fragestellungen fiihren bekanntlich zur Einfithrung negativer ganzer Zahlen
und der positiven und negativen Briiche. Die ganzen und die gebrochenen Zahlen
bilden den Bereich der rationalen Zahlen. Mit ihnen kann man unbeschrinkt die
vier Grundrechenarten Addition, Subtraktion, Multiplikation und Division aus-
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fiihren. Summe, Differenz, Produkt und Quotient zweier rationaler Zahlen ist wieder
eine solche.

Beachten muB3 man lediglich, daB die Division durch 0 nicht méglich ist!

Dabei kann jede rationale Zahl als Quotient zweier ganzer rationaler Zahlen dar-
gestellt werden. Die ganzen Zahlen werden als ein Bruch mit dem Nenner 1 aufge-
faBt.

Wir wollen den Bereich der rationalen Zahlen als etwas Gegebenes ansehen und
gehen nicht weiter auf seine Entwicklung aus dem Bereich der natiirlichen Zahlen ein.
Das formale Rechnen mit derartigen Zahlen einschlieBlich der Vorzeichen- und
Klammerregeln setzen wir ebenfalls als bekannt voraus.

Grundgesetze der Arithmetik

Im folgenden sollen einige Eigenschaften und Gesetze der rationalen Zahlen
angegeben werden. Dabei bedienen wir uns eines ,,axiomatischen* Vorgehens, indem
wir die grundlegenden Eigenschaften als Grundgesetze formulieren, aus denen sich
dann alle weiteren — uns bekannten — Rechenregeln ableiten lassen. Wenn wir jetzt
allgemein von Zahlen sprechen, so sind die rationalen Zahlen gemeint. Bezeichnet
werden sie mit kleinen lateinischen Buchstaben a, b, c,

Die Grundgesetze der rationalen Zahlen werdcn fiir dle Gleichheit und Ordnung,
Addition und Subtraktion, Multiplikation und Division formuliert und falls erfor-
derlich jeweils erldutert:

1. Grundgesetze der Gleichheit:

1.Esist a=a (Reflexivitit der Gleichheit)
2.Aus a=b folgt b=a (Symmetrie der Gleichheit)
3.Aus a=5b und b=c folgt a=c (Transitivitdt der Gleichheit)

11. Grundgesetze der Ordnung:

1. Die Zahlen bilden eine geordnete Menge, d. h. fiir jedes Paar von Zahlen @ und b
gilt genau eine der drei Beziehungen: a < b,a = b,a > b

2. Aus a < bund b < ¢ folgt a < ¢ (Transitivitat der Beziehung ,,kleiner*).
Eine andere kiirzere Schreibweise hierfiir ist

(@<bab<c)—a<ec.

Soll nur die Ungleichheit von a und b ausgedriickt werden, so schreiben wir a # b,
d. h., a ist nicht gleich b.

II1. Grundgesetze der Addition:

1. Zu jedem Paar von Zahlen a und b gibt es genau eine dritte Zahl, die die Summe
von a und b genannt und mit @ + b bezeichnet wird; a, b heilen Summanden. Die
Addition geniigt folgenden Gesetzen:

2.a+b=b+a (Kommutativitit der Addition)
3(a+b)+c=a+ b +o (Assoziativitit der Addition)
4 Ausa<bfolgta+c<b+c (Monotonie der Addition)

oder kiirzer
a<b-oa+c<b+c
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. 45 4 5 19 17
Beispiel 5.1: Ausg < folgt §+ 3 < T + 3, also <7
4 S 11 7
or - — - - -3 -——< .
oder 3 +(=3) < 7 + (=3), also 3 < 7

IV. Grundgesetz der Subtraktion (Umkehrung der Addition):

Zu jedem Paar von Zahlen ¢ und b gibt es genau eine Losung x der Gleichung
a + x = b. Man nennt x die Differenz von b und a und schreibt x = b — a; b wird
als Minuend, a als Subtiahend bezeichnet.

Auf die Eindeutigkeit der Lésung — ,.es gibt genau eine Losung* — soll besonders
hingewiesen werden.

An dieser Stelle wird der Satz von der Existenz der Null cingefiigt, der aus den

angefiihrten Grundgesetzen abgeleitet werden kann. .

Satz 5.1: Es gibt genau eine Zahl 0, die, bei der Addition als Summand verwendet,
keine Anderung bewirkt, d. h., es gilt (Ya)a + 0 = a.

Definition 5.1: Eine Zahl a heifit positiv, wenn a > 0, und negativ, wenn a < 0 ist.

Die Gleichung a + x = 0 wird durch x = 0 — a geldst, wofiir wir x = —a schrei-
ben. Man nennt —a die zu a entgegengesetzte Zahl, und es gilt a + (—a) = 0.
Daraus folgt sofort: Ist a > 0, soist —a < 0, und ist @ < 0, so ist —a > 0. Denn ist
beispielsweise a > 0, so ist wegen IlL.4. a + (—a) > (—a), also auch 0 > —a.
Uberlegen Sie sich ebenso den Nachweis des zweiten Teils der Folgerung!

V. Grundgesetze der Multiplikation

1. Zu jedem Paar von Zahlen a und b gibt es genau eine dritte Zahl, die das Produkt
von a und b genannt und mit a - b (oder ab) bezeichnet wird; a, b heiBen Faktoren,
a Multiplikand, b Multiplikator. Die Multiplikation geniigt folgenden Gesetzen:

2.a-b=b-a (Kommutativitit der Multiplikation)
3.(ab)y-c=a-(b-c) (Assoziativitit der Multiplikation)
4. (a+b:-c=ac+bc (Distributivitdt)
S5.Ausa < bund ¢ >O0folgta-c<b-c (Monotonie der Multiplikation)

oder kiirzer
(@a<brc>0-ac<b-c.
Zu beachten ist, daB das 4. Gesetz Addition und Multiplikation unsymmetrisch
miteinander verkniipft. Die Vertauschung beider Operationen in diesem Gesetz
fithrt zu einer falschen Aussage, denn es ist im allgemeinena - b+ ¢+ (a +¢) - (b + ¢).
Wegen des 5. Gesetzes spielt die 0 fir die Multiplikation von Ungleichungen eine
besondere Rolle, wie das folgende Beispiel zeigt.

Beispiel 5.2: Wir gehen von der Beziehung 4 < 6 aus, die wir nacheinander mit
2, 4,0 und —1 multiplizieren:
4:2<6-2 4-1<6:% 4:0=6-0 4-(-D)>6-(=1)
8§ <12 2<3 0=0 —~4 > —6.

Man darf also Ungleichungen nur mit positivén Zahlen multiplizieren, ohne dal3
sich das Ungleichheitszeichen dndert.
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VI. Grundgesetz der Division (Umkehrung der Multiplikation):

Zu jedem Paar von Zahlen ¢ und b mit a # 0 gibt es genau eine Losung x der Glei-
chung a - x = b. Man nennt x den Quotienten (oder Bruch) von b und a und schreibt

= %oder x = b:a; b wird als Dividend (oder Zdhler), a als Divisor (oder Nenner)

bezeichnet.

Auch sei hier besonders auf die Eindeutigkeit der Losung x hingewiesen! Die Di-
vision durch 0 wird ausgeschlossen!

Beweisbar ist jetzt der Satz von der Existenz der Eins:

Satz 5.2: Es gibt genau eine Zahl 1, die, bei der Multiplikation als Faktor verwendet,
keine Anderung bewirkt, d. h., es gilt (Ya)a- 1 = a.

Als letztes soll eine weitere grundlegende Eigenschaft der rationalen Zahlen ange-
geben werden, die man als Archimedisches Grundgesetz bezeichnet.

VII. Archimedisches Grundgesetz:

Ist a eine positive Zahl, so gibt es stets eine natiirliche Zahl » mit n > a.
Die folgende Formulierung 1aBt eine geometrische Interpretation zu. Sind @ und b
zwei positive Zahlen, so gibt es stets eine natiirliche Zahl n mit

at+a+...+a=n-a>b.
LIS
n-mal

Die Strecke der Lange a kann so oft addiert werden, daB die Summe groBer als die
Strecke b wird.

Abgeleitete Rechenregeln

Aus den vorstehend genannten Grundgesetzen lassen sich alle bekannten Regeln —
s0 etwa die Vorzeichen- und Klammerregeln - fiir das Rechnen mit rationalen Zahlen
herleiten. Die getroffene Auswahl der Grundgesetze erweist sich insofern als zweck-
méBig, da alle Rechenregeln der Arithmetik aus ihnen ableitbar sind und ihre Anwen-
dung nicht zu Widerspriichen fithrt. Auf die interessanten Fragen, ob die angegebenen
Grundgesetze selbst bewiesen oder inwieweit sie durch andere ersetzt werden kénnen
oder ob sie fiir den Bereich der rationalen Zahlen charakteristisch sind, kann hier
nicht eingegangen werden.

AnschlieBend werden einige Rechenregeln aus den Grundgesetzen hergeleitet. Die
hierfiir erforderlichen SchluBweisen sind nicht sehr schwierig, miissen aber sorg-
faltig durchgefiihrt werden.

Beispiele 5.3:

1. Es gilt —(—a) = a.
Da wegen I11.2. aus @ + (—a) = 0 auch (—a) + « = 0 folgt, ergibt sich nachIV.a = 0 — (—a)
odera = —(—a).

2. Esgiith + (—a) =b —a.

Die Zahl x = b — a 16st nach IV. die Gleichung a + x = b. Setzen wir andererseits fiir
x = b + (—a), so ergibt sich nach 1II.2. und IT[.3.:

a+ b+ (-l=a+(-a)+bl=[a+ (-] +b=0+b=b.
Wegen der Eindeutigkeit der Losung muBl demnach b + (—a) = b — a sein.

S.5.2
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3. Aus a < b folgt —a > —b.
Denn addieren wir nach IIT.4. auf beiden Seiten von a < b die Summe (—a) + (—b), so folgt
a+[(-a) + (=)l < b+ [(—a) + (=)
Nach Umformungen gema@ I1I.2., IT1.3. und Regel 2 erhalten wir
[a+ ()] + (=b) < b+ [(=b) + (—a)],
0—1b <[b+ (=B)]+ (-a),
-b <0—a,
—-b < —a.

»

Firalleagilta:0=0-a=0.

Dennesist b + 0 = b. Beide Seiten der Gleichung kénnen mit @ multipliziert werden: (b + 0) - ¢
= b+a. Wegen V.4. folgt daraus b-a + 0-a = b - a. Aus Satz 5.1 folgt 0-a = 0.

5. Wenn b-a = 0ist und b + 0, so muB a = 0 sein.

0 0
Denn es ist a = —E-Uﬂd auch 0 = 5 Wwegen b+ 0 = 0 (Regel 4). Aus der Eindeutigkeit fiir a

nach VI. folgt somit @ = 0.

[=a)

.Esgilta-(b—c)=a-b—a-c
Diese Beziehung folgt nach Anwendung von V.2., V.4., Regel 2, II1.3. und IV. aus:
a-b—c)+a-c=b-c)rat+tca=[b-c)+cla
=[b+(=cD+clra=pb+(-c)+0l-a=[b+0l-a=b-a=a-b.

=

.Ausa<bunda,b>0folgt%<%

1 1
Zum Beweis multiplizieren wir beide Seiten der Ungleichung @ < b mit der positiven Zahl e T

1 1
Wegen V.2. und V.3. und ¢ P 1bzw. b+ TR 1 folgt dann die Behauptung.

In den Beispielen sind einige wichtige, wenn auch sehr einfache Rechenregeln unter
Verwendung der Grundgesetze abgeleitet worden. Selbstverstiandlich lassen sich auch
weiterfithrende arithmetische Regeln gewinnen, wie etwa bei der Klammerrechnung,
der Faktorenzerlegung, der Bruchrechnung oder der Potenzrechnung mit ganzen
Exponenten.

Aufgabe 5.1: Leiten Sie durch exakte SchluBweise aus den Grundgesetzen der Arith-

metik die Regel .
—@+b)=(-a)+(-b)=—-a-b

ab.

Veranschaulichung der rationalen Zahlen auf der Zahlengeraden

Die rationalen Zahlen lassen sich auf Punkte einer orientierten Geraden abbilden.
Diese geometrische Veranschaulichung ist nicht aus dem Axiomensystem der Grund-
gesetze herleitbar, sondern eine an und fiir sich unnétige, aber in vielerlei Hinsicht
zweckmaBige Anleihe bei der Geometrie.

Wir legen zunichst zwei Punkte O und E auf der Geraden fest, O links von E,
und haben damit eine Orientierung gewonnen, wenn wir die Richtung von O nach E
als positive festlegen. Ferner wird die Strecke OF als Lingeneinheit angesehen und
nach beiden Seiten von O wiederholt abgetragen (Bild 5.1).
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" . — Bild 5.1.
0 £ 2 7 0 1 2 3 Zahlengerade

Die ganzen Zahlen ordnen wir nun wie bei einer Thermometerskala den so gewon-
nenen Punkten zu. Dabei entspricht der Zahl Null der Punkt O und der Zahl 1 der

Punkt E usf. Diese Zuordnung kann auf jede rationale Zahl r = % (a, b ganz und

b > 0) erweitert werden, wie wir der Konstruktion aus Bild 5.2 entnehmen.

Bild 5.2.

\ . .
Geometrische Konstruktionen von r =

[SHEY

ori a

Bei Anwendung des Strahlensatzes verhélt sich a:r = b: 1, also r = %. In der

Abbildung ist r = f;— Jede rationale Zahl wird damit auf einen Punkt der Zahlen-

geraden abgebildet, den wir als einen rationalen Punkt bezeichnen.
Wir wollen jetzt eine Eigenschaft iiber die Verteilung dieser Zahlen-auf der Ge-
raden angeben:

Satz 5.3: Die rationalen Zahlen liegen dicht geordnet auf der Zahlengeraden, das heifit
zwischen irgend zwei rationalen Punkten gibt es stets einen weiteren.

Fiir zwei Zahlen ¢ und b mit @ < b gibt es stets eine dritte Zahl ¢ mit a < ¢ < b.

- . a
Beispielsweise ist m =

e eine solche Zahl. Denn aus a < b folgt% < %, und

wenn auf beiden Seiten% oder—l;— addiert wird, so folgt @ < m < b. Mit diesem Ver-

fahren kénnen wir sogar unendlich viele rationale Zahlen zwischen a und b unter-
bringen.

5.1.3. Reelle Zahlen

Irrationale Zahlen

Obwohl die rationalen Zahlen beliebig dicht geordnet auf der Zahlengeraden liegen,
konnen wir nicht sagen, daB jeder Punkt dieser Geraden auch ein rationaler ist, das
heiBt, es 1aBt sich umgekehrt nicht jedem Punkt der Zahlengeraden eine rationale
Zahl zuordnen. An dieser Stelle wird die Veranschaulichung sicher problematisch,
denn diese ,,Liicken* lassen sich auch nicht mit einem Elektronenmikroskop finden.

Es gibt beispielsweise keine rationale Zahl, deren Quadrat gleich 2 ist oder geo-
metrisch ausgedriickt: Der Lange der Diagonalen eines Quadrates mit der Seiten-
linge 1 entspricht auf der Zahlengeraden kein rationaler Punkt (Bild 5.3). Der Be-
weis dafiir ist im Abschnitt 4.2.2. gefiihrt worden.

S.5.3
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Bild 5.3

0 7

Der Umfang eines Kreises mit dem Radius r berechnet sich nach der Formel
U = 27r. Auch = ist keine rationale Zahl, so daB3 wir fir » = 4 einen Kreisumfang
erhalten, dessen Lénge ebenfalls nicht mit einer rationalen Zahl meBbar ist.

Es gibt also nichtrationale Zahlen. Das fiihrt zu einer Erweiterung des Bereiches
der rationalen Zahlen. Durch Hinzunahme von irrationalen (nichtrationalen) Zahlen
erhalten wir den Bereich der reellen Zahlen. Die Einfiithrung der irrationalen Zahlen
und die Rechtfertigung de: Giiltigkeit der Grundgesetze der Arithmetik und damit
auch der abgeleiteten Regeln bedarf genauerer Untersuchungen, die hier nicht ge-
fiihrt werden.

So kann man nach WeierstraB (1815-1897) die reellen Zahlen durch Intervallschachtelungen
mit rationalen Intervallgrenzen oder nach Dedekind (1831-1916) durch Schnitte im rationalen Zah-
lenbereich erkldren. Die rationalen Zahlen lassen sich in diese Definitionen einordnen und gehoren
damit zum Bereich der reellen Zahlen.

Letzterer bildet also eine Erweiterung des Bereichs der rationalen Zahlen derart,
daf alle im Bereich der rationalen Zahlen giiltigen Regeln bestehen bleiben und for-
mal unverdndert auf die irrationalen Zahlen iibertragen werden. Weiterhin 146t sich
zwischen den Punkten der Zahlengeraden und den reellen Zahlen eine umkehrbar
cindeutige Zuordnung herstellen. Jedem Punkt P der Zahlengeraden entspricht dann
genau eine reelle Zahl @ und umgekehrt jeder reellen Zahl a genau ein Punkt P der
Geraden.

Aufgabe 5.2: Welches der Zeichen <, =, > gehort jeweils zwischen die folgenden
Zahlen:
r

\/; und 1,41314; \/f und  1,423-15; \/E e und 1,42

Eine Erweiterung des Bereichs der reellen Zahlen ist bei Beibehaltung der Grund-
gesetze aus 5.1.2. nicht mehr méglich. Das geht nur bei Verzicht auf gewisse Axiome.
So wird bei der Erweiterung zum Bereich der komplexen Zahlen in 5.3. auf die Grund-
gesetze der Ordnung und der Monotonie verzichtet.

Ubersicht zum Bereich der reellen Zahlen

Wir geben eine endgiiltige Ubersicht iiber den Aufbau des Bereichs der reellen
Zahlen an:

1
314
i ?

reelle Zohlen

pd
rationale Zohlen  irrationale Zohlen

ganze Zohlen gebrochene Zahlen
///\‘\\
negatire ganze Zaplen natirliche Zohjen Bild 5.4
(positive ganze Zahlen u. Null)
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5.1.4.  Zahlendarstellung

Zur numerischen Rechnung werden die positiven reellen Zahlen in Zahlensystemen
durch Aneinanderreihung von Ziffern dargestellt. Bei Briichen kommt noch ein
Komma oder Punkt hinzu. Die Ziffern sind bei Potenzsystemen von einer Basis B
abgeleitet.

Im Dezimalsystem (B = 10) wird eine Zahl a durch die Folge der 10 Ziffern 0,
1,2,...,9 dargestellt:

Q=2ZyZy_1...2120,2.4Z_5...Z.y; 022, Z9; N+ M=0; zy+0.
Dies bedeutet weiter nichts als die Darstellung der Zahl a in der Form
a=zy 10" + zy_, - 101 + ...+ 2z, - 10* + 2z - 10° + z_, - 10°¢

+25,°1072 + ... 4z 107M, (5.1)
Fiir M = 0 haben wir eine ganze Zahl, dann wird das Komma oder der Punkt weg-
gelassen. Fiir N < 0 wird in der Darstellung der Zahl als Ziffernfolge zo =...=zy,, =0

gesetzt. So ist

27.03 =2-10' +7-10° + 0-10"* + 3-102
und

0.0047 = 4-10-3 + 7-10~%,

Natiirlich kann nicht jede reelle Zahl in dieser Art dargestellt werden, zum Bei-
spiel%oder ﬁ, sondern nur die Vielfachen von 10~™. Jede gebrochene rationale

Zahl 1aBt sich durch eine abbrechende oder durch eine nichtabbrechende, jedoch
periodische Dezimalzahl, deren Ziffern sich periodisch wiederholen, darstellen.
Dagegen konnen die irrationalen Zahlen nur annidherungsweise durch Dezimal-
zahlen erfa8t werden.

Beispielsweise lSt% =125 oderi =0. 142857142857 . Die Ziffernfolge 142857
wiederholt sich laufend, wir schrelben dafiir auch — = 0.142857. Andererseits sind

fir \/E die Zahlen 1.4, 1.41, 1.414 oder fiir © die Zahlen 3.14 oder 3.1415 lediglich
rationale Néherungen, auch wenn beliebig viele weitere Stellen hinzugenommen
werden.

Fiir die Belange der Informatik erweist sich die Verwendung des Dual- (B = 2)
bzw. des Oktalsystems (B = 8) als zweckmiBig. Im Dual- oder Bindrsystem
gibt es nur die Ziffern 0 und L'). Es gilt fiir die ziffernmaBige Darstellung der
Zahlen

a="by 2+ by_; 2V 4 A+ by 20+ by 2% + by 27!
Ct by 27 (52)
mit
by=0,L; N+ M=0; by +0.
Fiir M = 0 und N < 0 gelten entsprechende Bemerkungen wie beim Dezimalsystem.
Die Zahl 13 schreibt sich demnach im Dualsystem
LLOL =L-2% +L-22+0-2! + L-2°

1) Die Dualziffer 1 wird mit L bezeichnet (zum Unterschied zur Dezimalziffer 1).
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Das Rechnen im Dualsystem ist duBerst einfach. So besteht das ,,kleine Einmaleins*
lediglich aus vier Multiplikationen:

0:0=0, 0:L=0, L-0=0 und L-L=0L.

Jedoch entsprechen den Zahlen in diesem System sehr lange uniibersichtliche Aus-
driicke. Einer 12-stelligen Dezimalzahl entspricht eine 40-stellige Dualzahl, die im
ibrigen nur ,,Nullen*“ und ,,Einsen‘ enthalt. Dies ermdglicht eine Verwendung des
Dualsystems im tdglichen Umgang praktisch nicht.

Aufgabe 5.3: Schreiben Sie bei Verwendung von L (Eins) und 0 (Null) als Ziffern des
Dualsystems

a) 27 und 53.625 als Dualzahlen und
b) LLOL0.0LO und LOLLOLLLOLL.LLLLLL als Dezimalzahlen.

5.2. Rechnen mit Ungleichungen und absoluten Betriigen

5.2.1.  Ungleichungen

Das Rechnen mit Ungleichungen beruht auf den Grundgesetzen der Arithmetik
(siehe 5.1.2., insbesondere II.2, TI1.4. und V.5.). In diesem Abschnitt sollen einige
weitere Regeln fiir das Rechnen mit Beziehungen, in denen die Zeichen <, >, <, =
vorkommen, abgeleitet werden. Die zahlreichen Beispiele beriicksichtigen die zu
beachtenden Besonderheiten beim Umgang mit Ungleichungen. Die verwendeten
Zahlen a, b, c, ... sind reell.

Es gelten folgende Regeln

.Ausa < bund a = b folgt a = b.

Die Zeichen £ und = sind im Sinne vom ausschlieBenden ,,oder* zu verstehen.
Entweder ist @ < b, oder es ist @ = b, beides ist nach II.1. gleichzeitig nicht mog-
lich. Wenn also beide Voraussetzungen gelten sollen, so kann nur a = b sein.
Ausa + c<b + cfolgta < b.

Zum Nachweis addieren wir auf beiden Seiten der Ausgangsungleichung nach I11.4.
den Wert (—c¢).

Ausa-c < b-cund c > 0folgta < b. 1
Denn wir konnen beide Seiten der Ausgangsungleichung nach V.5. mit — multi-
plizieren. E

4. Ausa< bundc< dfolgta+c< b +d,

kurz: (@< bac<d)-»a+c<b+d,

d. h., gleichgerichtete Ungleichungen konnen addiert werden.

—

S

Beweis: Aus a < b folgt wegen IIl.4. a + ¢ < b + ¢,
aus ¢ < d folgt ebenso b+c<b+d
und somit wegen IL.2. die Behauptung. m
Zu beachten ist, daB man gleichgerichtete Ungleichungen nicht ohne weiteres
subtrahieren darf, wie folgendes Beispiel zeigt (dabei wird die in der zweiten Zeile
stehende Ungleichheit jeweils von der ersten abgezogen):
3<5 3<5 3<5
1 <2 1<3 1<4

2<3 2=2 2>1
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[

.Ista < bund ¢ < d und sind b und c¢ positiv, dann gilt a- ¢ < b - d.
Beweis: Aus a < b folgt wegen V.5.a-c< b ¢,
aus ¢ < d folgt ebenso b-c<b-d

und somit wiederum wegen I1.2. die Behauptung. =

Wir konnen aber gleichgerichtete Ungleichungen im allgemeinen nicht mitein-
ander multiplizieren, z. B.ist —3 < —1 und 2 < 10, aber —6 > —10!

6. Aus a < b folgt —a > —b und falls @ > 0 — und somit auch b > 0 - ist, folgt
1 1
? < ;
Die Beweise hierfiir sind bereits in den Beispielen 5.3 (3 und 7) angegeben. Bei der
Multiplikation mit (—1) kehrt sich der Sinn der Ungleichung um!

Beispiele 5.4:

1. Es sollen diejenigen reellen Zahlen ermittelt werden, die der Ungleichung
9x + 2 > _s
2-3x 7~

geniigen. Zur Losung wird die Ungleichung mit 2 — 3x multipliziert. Dabei sind
zwei Fille zu unterscheiden:

Falll:2-—3x>0(<—>x<%);
dann wird 9x +2 = —5(2 — 3x) oder 12 = 6x oder x < 2; d.h., die Un-

gleichung gilt fiir x < %

Fa112:2—3x<0(<—>x>—§—);

hierfir gilt 9x + 2 £ —5(2 — 3x) oder 12 < 6x oder x = 2; d. h.,, die Un-
gleichung gilt fiir x = 2. Insgesamt gilt die Ungleichung somit fiir

x<—§- und 2 < x.

2. Wenn% < % und g¢,s5 >0, so gilt

£<p+r r

qg qg+s s

Wir beweisen die linke Ungleichung. Bei der Durchfithrung des Beweises beachten
wir, daB wir von der Voraussetzung ausgehen und durch schrittweise Folgerungen
die Behauptung entwickeln!

Aus% < gund g, s > 0 folgt nach Multiplikation beider Seiten mit ¢ - s:

p-s<q-r
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und daraus durch Addition von p - ¢ auf beiden Seiten
prs+pg<qr+pq

oder
p@+s)<q(p+r).

Wir multiplizieren beide Seiten mit — und erhalten die Behauptung

1
(g+9)q
)4 p+r
¢ q+s
Man entwickle hierzu den Beweis fiir die rechte Ungleichung!

3. Es gilt die Bernoullische Ungleichung:

(l+a">1+n+a fir a> -1, a+0, n=2, ganz. (5.3)

Der Beweis erfolgt durch vollsté{ndige Induktion (siehe 4.3.):

I. Induktionsbeginn fiir n = 2:

(l+a?*=14+2-a+a*>1+2-a, daa®>>0.

I1. Mit der Induktionsannahme ist fiir n = k:
(I+af>1+k-a.

T11. Beide Seiten werden mit 1 + a > 0 multipliziert, das ergibt
I+af'>U+k-a)-(1+a)

oder
A+aftt>1+Gk+D-a+k-a®>1+k+1)-a,

da k- a® > 0ist.
1V. Die Ungleichung gilt auch fiir » = k& + 1 und somit fiir alle natiirlichen n = 2. ®

* Aufgabe 5.4: Beweisen Sie die Cauchy-Schwarzsche Ungleichung
@ b+c-d?=@+cH - (b*>+d.
* Aufgabe 5.5: Gegeben sind zwei Zahlen @ und b mit 0 < a < b.

Esist A = % (a + b) das arithmetische Mittel von ¢ und b,

G =./ab das geometrische Mittel von a und b und
H = —2Lb—- das harmonische Mittel von a und b
a+b

Beweisen Sie die Ungleichungskette:a < H < G < 4 < b.

* Aufgabe 5.6: Beweisen Sie durch vollstindige Induktion

(1+a)"<l~ fir n=1, ganz, —1<a<%, a+0.
x Aufgabe 5.7: Fiir welche x gilt
1 x—4
: R S S 9
a)x—3<1’ b)2x2—7x+5>0'

¢) Man bestimme die Punkte der x,y-Ebene, fiir die gilt:
y+x=<4ax20Ay=0.
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5.2.2.  Absoluter Betrag
Definition 5.2: Der absolute Betrag einer reellen Zahl a wird durch

a fir a=20
—a fir a<0

la] =

erklirt.

Da —a fiir negatives a positiv ist, gilt stets |a| = 0. Der absolute Betrag wird des-
halb auch als Abstand der reellen Zahl @ vom Nullpunkt auf der Zahlengeraden
gedeutet.

Beispiel 5.5: |2| =2,da2>0,und |-2| = —(=2) =2,da -2 < 0.

Fiir das Rechnen mit absoluten Betrigen von reellen Zahlen @ und b lassen sich
folgende Regeln herleiten:

L. [—a]| = |a| (5.4)
Hieraus folgt sofort |a — b] = |b — al.

2. ta = |q

3. Ia bl = |al - |b] (5.5)

4. ‘b lbI b+0 (5.6)

5. llal = |b]| < |a + b] < |a| + |b] (5.7)

Die unter 5. stehenden Beziehungen werden als Dreiecksungleichungen bezeichnet
und besagen, daB der Betrag einer Summe nicht gréBer als die Summe der Betrige
der Summanden und nicht kleiner als der Betrag der Differenz dieser Betrige ist.

Beispiele 5.6:
1. Die Ungleichung |a| < b mit b > 0 bedeutet dasselbe wie —b < a < b (Bild 5.5).

Bild 5.5
la] < b

-5 70 b

2. Der Abstand der beiden den Zahlen a und b entsprechenden Punkte auf der Zah-
lengeraden betrigt |b — al.
3. Fiir welche x gilt |[x — @] < b mit b > 0?
Nach der Definition 5.2 ist:
x—a fir x=a
Ix —a = { .
a—x fir x<a

Fiir x = a entspricht obiger Ungleichung x — a < b oder umgestellt ¢ < x <
a + b. Fiir x < a entspricht der Ungleichunga — x < bodera — b < x <a.
Somit gilt obige Ungleichung fiir alle x mit @ — b < x < a + b (Bild 5.6).

Bild 5.6.

o-b l‘l T |x—al <b,b>0

a + |a| a fir a20 a — |a| 0 fir a=0
= und =

4 Esist —— =1, o a<0 2 la fir a<0

D.5.2



48 5. Aufbau der Zahlenbereiche
5. Gesucht sind alle reellen Zahlen x, die die Ungleichung
|x - 1] £ [2x + 5|

erfiillen. Unter Benutzung von Definition 5.2 fir a = x — 1 bzw. a = 2x + 5
werden drei Falle unterschieden:

Fall 1: x = 1. Hierfiir lautet die Ungleichung
x—1=2x+5,

was mit x > —6 gleichbedeutend ist. Also ist die Ungleichung fiir alle x = 1
erfiillt.

Fall 2: — ; < x < 1. Hierfiir lautet die Ungleichung
—(x—-1)s2x + 5,

4 S
woraus sich x = — ?erglbt. Also ist sie auch fiir — -g— < x < 1 erfiillt.

Fall3: x < — % Hierfiir lautet die Ungleichung

—x~1=s-2x+59)
und dies ist wiederum gleichbedeutend mit x < —6. Also gilt sie auch fiir x < —6,

Insgesamt: Die Ungleichung gilt fiir x < —6 und fir — % <x

* Aufgabe 5.8: Fiir welche x gilt

DR ed<x+y B|Fae|--on
=% _<ix—4; d) x|+ x — 1] + [x — 2] > 62
x+1° ’ '

* Aufgabe 5.9: Man bestimme die Punkte der x,y-Ebene, fiir die gilt:

a)lx +yl <1 b) Iyl = Ixl = 1.
* Aufgabe 5.10: Zeigen Sie
W = Max (a, b); w = Min (a, b).

5.3. Komplexe Zahlen

Der Tatbestand, daB die Gleichung x* = 2 durch keine rationale Zahl gelost
werden konnte, brachte uns die Einfiihrung des Bereichs der reellen Zahlen (Ab-
schnitt 5.1.3.). Die Gleichung x> + 1 = 0 ist nun andererseits auch fiir keine reelle
Zahl 16sbar. Dieser Sachverhalt ist bei der Untersuchung quadratischer Gleichungen
schon sehr frith entdeckt worden. Mitte des 16. Jahrhunderts kam Cardano auf den
Gedanken, da man mit Wurzeln aus negativen Radikanden, z. B.\/ —15, nach den
iiblichen Regeln rechnen sollte. Descartes verwendet etwa ein Jahrhundert spater
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bei der Behandlung derartiger GroBen den Namen ,,imagindre” Zahlen, was soviel
wie ,,eingebildete* oder ,,unwirkliche* Zahlen — im Gegensatz zu den ,,wirklichen‘
reellen Zahlen - bedeutet. Diese Bezeichnung hat sich bis heute erhalten. Das Sym-
bol i, dessen Quadrat = —1 ist, hat Euler 1777 eingefiihrt. Eine strengere Theorie
zur Begriindung der komplexen Zahlen geht auf GauB zuriick, der auch ihre Ver-
anschaulichung in der Ebene vornahm. Die komplexen Zahlen haben seitdem die
gleiche Bedeutung erlangt wie die reellen; sie treten bei zahlreichen Anwendungen
in Physik und Technik auf.

Die komplexen Zahlen kénnen axiomatisch als Zahlenpaare (a, b) eingefiihrt
werden, wobei @ und b reelle Zahlen sind. Fiir diese Paare werden dann die Gleich-
heit und die vier Grundrechenarten definiert. Auf die Gesetze der Ordnung und Mono-
tonie wird verzichtet. Die reellen Zahlen sind als Paare der Form (a, 0) im Bereich
der komplexen Zahlen enthalten. Wir werden die komplexen Zahlen in einer anderen
Weise gewinnen. Zur besseren Unterscheidung werden wir fiir die Bezeichnung der
Zahlen auch indizierte Buchstaben verwenden: ay, a,, as,... oder b, b,, bs, ...

5.3.1. Rein imaginire Zahlen

Zunichst werden die rein imagindren Zahlen eingefiihrt. Dazu wird festgelegt,
daB die Gleichung x* + 1 = 0 von der imagindren Einheit i') gelost wird. Es gilt
also

i i?=-1. /
Definition 5.3: Das Produkt bi mit reellem b + 0 heifit rein imaginire Zahl.

Fiir die rein imaginiren Zahlen kénnen ohne weiteres die Grundgesetze der
Gleichheit, Ordnung, Addition und Subtraktion von den reellen Zahlen iibernommen
werden. Es ist also insbesondere

bii + byi = (by + by)i, byi — byi = (b — by)i
und
b < byi fir by < b,.

Dabei wird 0i = 0 gesetzt.
Mithin lassen sich die rein imaginaren Zahlen auch anschaulich auf einer Zahlen-
geraden, der imagindren Achse, darstellen. Die Einheit ist i.

Ubertragt man die Regeln der Multiplikation, so ist bei Beachtung von i = —1:

byi-byi = (b, by) 1> = —bb,.
Das Produkt zweier rein imagindrer Zahlen ist demnach nicht wieder eine rein ima-

ginare, sondern eine reelle Zahl!
Fiir die Potenzen von i gilt:

il=i, i2=-1, i®=-i, i*=1 oder allgemein
Pl =g 42 = ] 43 = —j i =1 fiirallen 2 0, ganz.
Eine Losung der Gleichung ix = 1 fiir rein imaginires x ist x = —i, deshalb setzen
o . )
wir—=1i1!=—1i
i

1) In der Elektrotechnik wird dafiir der Buchstabe j verwendet, da mit i bereits die Stromstirke
bezeichnet wird.

4 Sieber u. a., Mathematik

D.5.3



50

5. Aufbau der Zahlenbereiche

Beispiele 5.7: 1. 3i + 71 — 8i = 2i,

5.3.2.
D.5.4

2. 5i- 6i
3.
i

Komplexe Zahlen

= -30,

= —Ti.

Definition 5.4: Die Summe einer reellen und einer rein imaginéren Zahl heif3t komplexe

Zahl z, z = a + bi, a, b reell. Dabei nennt man a den Realteil und b den Imaginirteil
von z und schreibt auch a = Re (z), b = Im (2).

Fiir b = 0 erhalten wir eine reelle, fiir @ = 0 und b = 0 eine rein imaginire Zahl.
Die Zahl Z = a — bi heiBt die zu z konjugiert komplexe Zahl.
Wir erkldren die Gleichheit zweier komplexer Zahlen folgendermaBen:

D.5.5

Definition 5.5: Zwei komplexe Zahlen sind gleich, wenn sowohl die Real- als auch die

Imagindrteile iibereinstimmen, d. h. a; + bji = a, + byi (a, = a, A by = b,).

Ferner gelten die Grundgesetze der

Reflexivitit;
Symmetrie:
_ Transitivitdt:

Aus z; =z,

z=z,

Aus z; =z, folgt z, =z; und
und z, = z; folgt z; = z;.

Insbesondere bedeutet z = 0, daB a = b = 0 ist.

Die Grundgesetze der Arithmetik werden mit Ausnahme der Gesetze fiir Unglei-
chungen, also der Ordnung und Monotonie, von den reellen Zahlen ibernommen.

Bei Beriicksichtigung von i*

fiir

die Summe

—1 ergibt sich mit z; = a; + byiund z, = a, + b,i

21+ 2y = (ay + byi) + (@, + byi) = (@ + a,) + (b, + b)) i,

die Differenz z; — z,= (a, + b,i) — (a, + b,i) = (a; — a,) + (by — b,) i,
das Produkt z, -z, = (a; + byi)* (a, + b,i) = (aya, — b,b,) + (a;b, + ab,)i

und den Quotienten
z

Z2

(5.7

a; + b (a; + byi) (@ — byi)

a, + by (a; + bsi) (@, — byi)

a,a, + b,b,

aby — a,b,

a; + b2

+ i, z; £0.

as + b3

Summe, Differenz, Produkt und Quotient zweier komplexer Zahlen sind demnach
wieder komplex.

Ferner gelten die Gesetze:

zy + 2z =1
(z+2z)+2z3=12
Zy° 2, =2z,
(z1°22) " 23 =2I
(z1+2)z3 =12

+ z;

+ (22 + z3)
-z

(22 23)
23+ 2,23

(Kommutativitit der Addition);
(Assoziativitit der Addition);
(Kommutativitit der Multiplikation);
(Assoziativitit der Multiplikation);
(Distributivitdt).
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Entsprechend lassen sich die Grundgesetze fiir die Subtraktion und Division bei
Beachtung der obigen Festlegungen fiir Differenz und Quotient zweier komplexer
Zahlen iibernechmen.

Wir sehen den Bereich der komplexen Zahlen als eine Erweiterung des Bereichs
der reellen Zahlen an. Bei den komplexen Zahlen wird mit Ausnahme der Ungleich-
heitsbeziehung auf der Grundlage derselben arithmetischen Axiome gerechnet wie
bei den reellen Zahlen. Andererseits lassen sich mit Hilfe der komplexen Zahlen Auf-
gaben bewiltigen, wie die Lésung der Gleichung x* + 1 = 0, die im reellen Zahlen-
bereich nicht 16sbar sind.

Beispiele 5.8:

1. z; =3+4i,z,=1-2i
Zy+2,=4+2i=2-2+1); zy —2,=246i =2-(1 + 3i);
zyvz, =@34+4)-1-2)=0@3+8+@—-6)i=11—-2i;

344 142 3-8 644 .
=% 1+2% 5 G

2,12, =

Wir beachten: Zihler und Nenner des Quotienten werden mit der konjugiert
komplexen Zahl des Nenners multipliziert! Diese Regel kann bei jeder derartigen
Division verwendet werden.

Z=0-2)=1—-4i—4=-3—4i

2. Es seien z = a + bi und Z = a — bi zueinander konjugiert komplex.
Dann gilt

z+ 2z =2a,

z —Z = 2bi,

z:Z =a*+ b

z  _a+bhi a+bi _a-b - 2ab .
z a—bi a+bi @+ b a® + b*

Insbesondere folgt fir z =1 +1i, Z=1—isofortz+2z =2, z—-2z =2i,

_ z. .
z'Z=2 und= =i
z

Aufgabe 5.11: Berechnen Sie

Q)@ =3 (=1 +50); by—— ; T2,

=% 9345
A+ o -2+ DY, ©—5+ 12

5.3.3. Veranschaulichung der komplexen Zahlen in der Gauischen Zahlenebene.
Trigonometrische und exponentielle Darstellung der komplexen Zahlen

In einem kartesischen Koordinatensystem werden auf der x-Achse die reellen und
auf der y-Achse die rein imaginaren Zahlen abgetragen. Diese beiden Geraden werden
dann reelle bzw. imaginare Achse genannt. Somit a8t sich jeder komplexen Zahl
z = a + bi ein Punkt P mit den kartesischen Koordinaten (a, ) in der x, y-Ebene
umkehrbar eindeutig zuordnen (Bild 5.7).

4%
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Haufig wird der Zahl z auch die gerichtete Strecke OP als Pfeil oder Vektor zuge-
ordnet und umgekehrt. Die Lage von —z, Z und —Z wird durch Bild 5.8 verdeutlicht.
Die geometrischen GréBen in Bild 5.7

r, Lange der Strecke O_I; oder Abstand des Punktes P vom Ursprung und
—_—
@, Winkel zwischen der positiven x-Achse und der Strecke OP,

legen den Punkt P in der Ebene ebenfalls eindeutig fest. Dabei wird der Winkel ¢
im mathematisch positiven Drehsinn entgegen dem Uhrzeigensinn gemessen, und
man wihlt in der Regel —n < ¢ < w. Man'nennt r und ¢ die Polarkoordinaten von
P. Sie werden zu einer weiteren Darstellung der komplexén Zahlen verwendet.

imagindre Achse

reelle Achse
Bild 5.7. Bild 5.8.
z=a+ bi Lagevonz, z, —z, — Z
Mit
a=r-cosp und b =r-sing
folgt
] z=a+ bi =r(cosp + ising). (5.8)

Dies ist die trigonometrische Darstellung von z. Dabei wird

|z} = r =+/a* + b* der absolute Betrag von z und der Winkel ¢ das Argu-
ment von z genannt. Man schreibt auch ¢ = arg z.

Den Winkel ¢ mit —% < ¢ < +m ermittelt man fiir » =l= 0, d. h. fiir alle von 0 ver-
schiedenen komplexen Zahlen, eindeutig aus

a a 5 b b
I cosw:—\/T—_ﬁ.;=7, sm(p=\7‘_12—+—b—2-=—r—.
Durch Division der beiden‘Formeln erhdlt man
| tang = ﬁ
a

Diese Formel ist zwar einfacher, aber sie hat auch gewisse Nachteile. Sie versagt
fiir @ = 0, also fiir die Punkte der imaginiaren Achse der GauBschen Zahlenebene.
Weiterhin ist durch sie allein der Winkel ¢ mit —7 < ¢ < 4= nicht eindeutig fest-
gelegt. Der Quadrant fiir z muf zusitzlich aus den Vorzeichen von @ und b bestimmt
werden.

Es soll noch eine weitere Darstellung komplexer Zahlen behandelt werden. Mit
Hilfe der Eulerschen Formel

] el? = cos @ + ising, ' (5.9)
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die hier nur ohne Beweis angegeben werden kann, erhalten wir aus (5.8) die expo-
nentielle Darstellung

] z=re® (5.10)

fiir die komplexe Zahl z. Diese Darstellung ist z. B. fiir die Ausfithrung von Multi-
plikation und Division von komplexen Zahlen von Vorteil, weil. -~ wie ohne Beweis
mitgeteilt sei — die bekannten Gesetze fiir das Rechnen mit Potenzen auch fiir ¢i? gel-
ten. So wird

Z,°2, = ry €% p, €92 = p i, 01492,

t B S AL BN T

z, rs €%z rs

Wegen der Periodizitat von cos ¢ und sin ¢ gilt
] eiw+k2m — el (k ganz). (5.10")

Beispiel 5.9: Die komplexen Zahlen z; = —2\/3 — 2iund z, = -1+ \/31‘ sollen
in der exponentiellen Darstellung angegeben und damit die Zahlen

V4
z3=12,'2, und 2z, = 22'2

berechnet und schlieBlich in der Form Re (z) 4+ i-Im (z) angegeben werden. Man

erhalt: 5

: 1 57
rn=J12+4=4, tang, =_\/§ , ¢ = —-61, 3. Quadrant;

s = 2r
r2=\/1+3 =2, tang, = —-\/3, (/2:——;—, 2. Quadrant;

57 2m

=k
Aufgabe 5.12: Schreiben Sie folgende komplexen Zahlen in der Form a + ib: *

. n 11 (3.
e be 3; ges;  d) e'(Tnfz'm) , n ganz.

B

Aufgabe 5.13: Stellen Sie folgende komplexen Zahlen in der geometrischen und der #
exponentiellen Form (5.8) und (5.10) dar:

a)2i; b)) —1—i; ¢©3—iy3.
Aufgabe 5.14: Wie lautet die Darstellung z = a + bi der komplexén Zahlen mit *
a)r=2 ¢=60 b)r=23 ¢=300?

Zur Veranschaulichung der Addition zweier komplexer Zahlen z; = a, + b,i
und z, = a; + b,i betrachten wir Bild 5.9.

Die geometrische Addition zweier komplexer Zahlen wird entsprechend der geo-
metrischen Addition zweier Vektoren nach dem Parallelogrammsatz vollzogen.

Setzt man —z = +(—z), so 1aBt sich die Subtraktion geometrisch sofort auf die
Addition zurtickfiihren (Bild 5.10), z, — z; = z, + (—2z,).
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imagindre Achse
4t
2z T
by| imagindre Achse
| z
b’ -1y
L7, 4
2] reelle Achse A
a ‘//Ir reelle Achse
P
040 -
Bild 5.9. Bild 5.10.
Addition zweier komplexer Zahlen Subtraktion zweier
komplexer Zahlen

Fiir die anschauliche Deutung der Multiplikation zweier komplexer Zahlen ver-

wenden wir zweckmaBiger die exponentielle Darstellung der Faktoren
z, =ry e und z, =r,ei?2,

Dann wird
Zy " Zy = FyF, €@1492) = rel® = r(cos ¢ + ising)

mit r=ricround ¢ =@, + @,.

Wir erhalten folgendes Resultat: Das Produkt zweier komplexer Zahlen ist eine
komplexe Zahl, deren absoluter Betrag gleich. dem Produkt der absoluten Betrige
und deren Argument gleich der Summe der Argumente der Faktoren ist.

Die Konstruktion von z, - z, ergibt sich einmal aus der Tatsache, daB das Produkt
auf dem Ursprungsstrahl mit dem Winkel (¢, + ¢,) zur positiven reellen Achse
liegt und zum anderen aus der offensichtlichen Ahnlichkeit der beiden Dreiecke
in Bild 5.11 und der daraus folgenden Bezichung r,: 1 = r:r,, also r = ryr,.

imagindre Achse

24° 7y
I
!
I

Bild 5.11.
Multiplikation zweier komplexer Zahlen

teelle Achse
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Bei der Division von z; durch z, bekommen wir

z r, eiv1 T . )
Lo LT o Llei@i-9) = R-elv = R (cosy + isiny)
23 r, ez ry

mit
r
R=-L und y =¢, — ¢,.
[

Das Resultat ist jetzt: Man erhélt den Quotienten zweier komplexer Zahlen, indem
man ihre Betrdge dividiert und die Argumente subtrahiert.

Beispiel 5.10: Wir berechnen noch einmal s (B 1d 5.12.). Die Betrage von Zahler
und Nenner sind \/ 2, ihr Quotient mithin 1. Das Argument des Zahlers ist +Z , das

des Nenners — Zund somit die Differenz + —5. Die komplexe Zahl mit dem Betrag 1

1+i .
und dem Argument + — 1st1 und somit ist = =t

I\)

AbschlieBend sei bemerkt, daB fiir das Rechnen mit den Betriagen folgende Regeln
gelten:

1 ]lzy] = |25l £ |2y + 2] £ |zy] + |z2|  (Dreiecksungleichungen),  (5.11)
2. |z 25| = |zy] * |22,

e =l , Z, # 0.

Z2 |Zz’

5.3.4. Potenzieren, Radizieren und Logarithmieren von komplexen Zahlen
Potenzieren
Wir multiplizieren zunéichst n komplexe Zahlen
Zi = Iy €%, =1,2,...,n,
miteinander und erhalten das Produkt:
2yt Zy i 2y = Pyl 1, €@ PR,
Setzen wir darin
Zy =z =.=Z,=z"alse ry=r=.,..=r,=rf und
$1=0¢2=... =@, =g, sofolgt
= [r (cosp + isin@)]" = [re?]" = rreine
=r"(cos np + isinng) mit n > 0, ganz.
Hieraus entnehmen wir die wichtige Beziehung
(cos@ + ising)" = cosnp + isinng, n > 0, ganz. (5.12)
Dieser Ausdruck wird Moivresche Formel genannt.

Diese Formel gilt auch fiir beliebige rationale Exponenten (ohne Beweis):

LA
(cosp + isin ¢) ¢ =cos(%'¢p) + isin(%-(p), p,gganz, g >0, -z <@ = 7.
(5.13)
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it 1+
sr 4
N [¥a d
4 0 7
&
.41 -
Bild 5.12 Bild 5.13. (1 + i)°

Beispiel 5.11:

141 = [ 730 (cos7+xsm—)] [\/Ee‘] = (\/2)56 3
=(\/§)5-(c055 %—+1sm5 —) 4\/2 ( COS——ISln4)

= —4[\/5~(cos—z- wisin)] = —a- 0, @S,

Radizieren

Eine n-te Wurzel der komplexen Zahl z wird als Losung der Gleichung w" = z
erklirt. Setzt man z = rei? und w = R el in die Gleichung ein, so wird

R" gin@ — C".

woraus sofort R = \"/ r folgt. Bei Berticksichtigung der Periodizitat der e-Funktion
(5.10") folgt

no, =@ + k+2r oder w, =%+k-27n,kganz.

Wegen der Periodizitit der Funktion ei® — bzw. der Funktionen Kosinus und Sinus —
gibt es dann aber nur 7 verschiedene w-Werte, die man zum Beispiel fiir k = 0,1.2,...,

n — 1 erhalt. Somit hat w" = z die n verschiedenen Lésungen:
® 2n
w""—\/re( ) \/r [LOS( + k- ﬁ)+isin( + k- - )]
k=0,1,2,....,n—1. (5.14)

Im Bereich der komplexen Zahlen erhalten wir demnach fiir 3, 2 ) n verschiedene

Werte. Sie liegen alle auf einem Kreis um den Nullpunkt mit dem Radius :/; und bil-
den die Eckpunkte eines diesem Kreise eingeschriebenen regelmiaBigen n-Ecks. Die

Wuirzel mit k = 0, also w@ = /7 - (cos—- + i sin (p) wird als Hauptwert bezeichnet.

1) Hierbei ist zu beachten, daB bei reellem nichtnegativem a das Zeichen %eine etwas andere
Bedeutung hat. Fiir einen reellen nichtnegativen Radikanden entspricht ihm nur ein Wert. Im Falle
eines nicht reellen Radikanden bedeutet es dagegen n Werte (siehe auch Band 9).
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Bilds.14.
Werte von i/i

Beispiel 5.12: w = i/; Fiir die Zahliist r = 1 und ¢ = %, somit wird auch R = 1

und w, = %% + k ZTT fir k =0, 1, 2, 3,4. Wirerhalten fiir

Hauptwert k = 0: o, = ILO’ im GradmalBl 18°,
T dn  w N
=R wl——m+l~wzioder 90°,
k=2 w,= %TE oder 162°,
k=3 o —ETL‘ oder 234°
R T} ’
17
k=4 w, = Wﬂ oder 306°.

](l) n =2+ —%’ die zugehdrige Zahl deckt sich mit dem

Hauptwert; wir erhalten keine weiteren Losungen. Die Lage der fiinf Wurzeln ent-
nimmt man Bild 5.14.

Wir wollen noch die Lage der n Losungen von wi = 1, der n-ten Einheitswurzeln,
untersuchen. Nach der allgemeinen Formel (5.14) erhalten wir

Fir k = 5 wire s =

=
I W = =C05(k.2£)+jsin(k~—2§), k=0,1,2,....n—1. (5.15)

n

Wenn n gerade ist, so sind fiir k = Ound k = %die reellen Zahlen +1 bzw. —1 unter

den Lésungen. Ist n ungerade, so ist nur fiir k = 0 die reelle Wurzel +1 enthalten.

Wir bilden ferner
. 27 . 2 . 2 . id
o, = O e.(zn-k- - e.(-kT _ ex(kT) -,
d. h., je zwei Einheitswurzeln w{., deren Indizes sich zu n erginzen, sind konjugiert
komplex. Damit kann gesagt werden, da3 simtliche n-te Einheitswurzeln auf einem
regelmaBigen n-Eck mit den Eckpunkten auf dem Einheitskreis symmetrisch zur
reellen Achse liegen.
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n=9
70°
0 7
Lage der n-ten Einheitswurzeln Lage der n-fen Eipheitswurzeln
Bild 5.15. Lage der n-ten Einheitswurzeln
SchlieBlich ist

ik 2% 27\ k
Wi =e " =(e ") , k=0,1,2,...,n—1,
oder

2r .. 2n 2 .o 2wk
wﬁf’,l=cosk~——+1smk~——:(cos—+mn—),
n n n n

k=0,1,2,...,n— 1. (5.16)
Das bedeutet: Simtliche n-te Einheitswurzeln w(% lassen sich durch Potenzieren
einer geeignet ausgewihlten erzeugen.
Die Zerlegung
= (2 4% 2 = ® .22
w = \"/re'(" &) = \"/re"' e n, k=01,2,...,n—1, (5.17)
besagt, dal man alle n Wurzeln von z bekommt, wenn man den Hauptwert nach-
einander mit sdmtlichen n-ten Einheitswurzeln multipliziert.
Logarithmieren
Der Logarithmus einer komplexen Zahl z wird als Losung der Gleichung e = z
nach w erkldrt. Setzt man z = re'? und w = a + ib, so wird
e%elt = rel?,
Es ist also @ = Inr und wiederum b = ¢ + k2w (k ganz). Mithin erhélt man mit dem
Symbol log z .
w=logz=Inr+i(p+k-2n), k=0+1,+2,...,z%0. (5.18)
Bei reellem positivem a ist log a der Wert, fiir den e'°#¢ = @ wird. Haufig wird dafiir auchIna
geschrieben. Im Falle eines nicht positiv reellen und von null verschiedenen z werden durch log z
unendlich viele Funktionswerte zu einem Symbol zusammengefaBt. Der Logarithmus nimmt fir
komplexe z unendlich viele Funktionswerte an,

Der Hauptwert des Logarithmus ergibt sich fiir k = 0 zu
(logz)y = Int +ip, — T < @ < +7.

7

2

* Aufgabe 5.15: Ermitteln Sie simtliche Losungen der Gleichungen:

a)z3=3—i\/§ und b)z* = 81.

* Aufgabe 5.16: In welchen Bereichen der GauBschen Zahlenebene liegen die kom-
plexen Zahlen z, fiir die die folgenden Beziehungen erfiillt sind:

So ist beispielsweise (log i)y = iz oder [log (—1)]y = im.

a) |z| < 1 und zugleich |z — 1] < 1; b)z-z=1; c)|argz}<%;

d)|[Re (@] + Im @) =1; ¢ [Re (9| [Im(2)| = 1?
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6.1.  Einfiihrung

6.1.1.  Auswahl- und Anordnungsprobleme

Die Aufgaben der Kombinatorik lassen sich von Auswahl- oder Anordnungs-
problemen herleiten. Bei vielen praktischen und mathematischen Problemen ist die
Kenntnis der Anzahl verschiedener Zusammenstellungen von ausgewihlten Ele-
menten einer endlichen Menge wichtig. Diese Elemente kénnen Zahlen, Buchstaben,
Personen, Gegenstinde, Versuche, Ereignisse u. a. sein. Wir werden sie in der Regel
mit a,, a,, ..., a, bezeichnen.

Dabei wird zu beachten sein, dafl verschiedene Elemente auch durch verschiedene
Bezeichnungen und gleiche Elemente immer durch ein und dieselbe Bezeichnung dar-
gestellt werden. Zwei Zusammenstellungen sind grundsétzlich verschieden, wenn sie
nicht die gleiche Anzahl von Elementen enthalten oder wenn in ihnen nicht genau die
gleichen Elemente auftreten. Zum Beispiel sind die Zusammenstellungen a; a, a3
und a, a3 bzw. a, a, a; und a, a, a, jeweils voneinander verschieden.

Im folgenden sollen die sechs Grundaufgaben erlautert werden, auf die sich alle
Probleme der Kombinatorik im wesentlichen zuriickfiihren lassen.

Bei einer ersten einfachen Aufgabe betrachten wir eine bestimmte Zusammen-
stellung samtlicher n Elemente der Ausgangsmenge. Darin soll jedes Element nur
einmal auftreten. Eine solche Zusammenstellung wird eine Permutation genannt.

In wieviel verschiedenen Reihenfolgen lassen sich nun diese Elemente anordnen?
So kénnen beispielsweise 6 Personen in einer Warteschlange stehen. Auf wie viele
Arten ist das moglich?

Wir kommen zu einer weiteren Aufgabe, wenn in einer solchen Zusammenstellung
nicht alle Elemente voneinander verschieden sind. In der erwidhnten Warteschlange
befinden sich 2 Manner und 4 Frauen. Unterscheidet man die Warteschlange nur
nach dem Standort der Manner und Frauen, so gibt es sicher weniger unterschied-
liche Reihenfolgen. Wir sprechen von Permutationen mit Wiederholung.

So bilden a, a, a3 a, as ag und a4 a; a, a, as ag zwei verschiedene Reihenfolgen
der 6 Personen a;, i = 1, 2, ..., 6. Sind a, und a, Ménner und die anderen Frauen, so
unterscheiden sich die beiden Zusammenstellungen bei der ausschlieBlichen Be-
achtung dieses Merkmals nicht mehr. In beiden Fillen entsteht a,, a, a, a, a,; a,.

Eine andere kombinatorische Aufgabe erhalten wir, wenn wir aus den »n Elementen
fiir k£ verschiedene Positionen je eines auswidhlen und dabei nach der Anzahl der
entstehenden moglichen Zusammenstellungen fragen. Anders ausgedriickt, es wird
nach der Anzahl der mdéglichen Zusammenstellungen zu je k von n Elementen ge-
fragt.

Dabei kann die Berticksichtigung der Anordnung der Elemente von Bedeutung
sein. Es soll z. B. unter fiinf FuBballspielern der ,,Fufballer des Jahres* ausgewéhlt
werden. Wie viele Moglichkeiten gibt es fiir die richtige Reihenfolge der drei Erst-
plazierten? Derartige Zusammenstellungen heiflen Variationen.

Andererseits gibt es auch Zusammenstellungen, wo die Anordnung der ausgewihl-
ten Elemente nicht beriicksichtigt zu werden braucht. Diese Zusammenstellungen
heilen Kombinationen. Fiir einen Skatspieler ist die Anordnung seiner 10 Karten
ohne Bedeutung fiir das Spiel.

In beiden Fillen konnen in den Zusammenstellungen die Elemente auch mehrfach
vorkommen. Ein Tipschein des FuBballtotos mit 12 méglichen Tips muf8 wenigstens
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eines der Elemente:

(1) & Sieg der Heimmannschaft, (0) < Unentschieden,

(2) < Niederlage der Heimmannschaft.

mehrfach enthalten. Natiirlich ist in diesem Fall die Anordnung von Bedeutung!

Insgesamt werden nach der jeweiligen kombinatorischen Fragestellung die fol-
genden Grundaufgaben unterschieden:

. Anzahl der Permutationen von n verschiedenen Elementen.
2. Anzahl der Permutationen von n verschiedenen Elementen mit Wiederholung.

3. Anzahl der Variationen (Zusammenstellungen mit Beriicksichtigung der Anord-
nung) von n Elementen zu je k. '

. Anzahl der Variationen mit Wiederholung.

. Anzahl der Kombinationen (Zusammenstellungen ohne Beriicksichtigung der An-
ordnung) zu je k£ von n Elementen.

6. Anzahl-der Kombinationen mit Wiederholung.

[

6.1.2.  Gebrauch des Summen- und Produktzeichens

Zur abgekiirzten Darstellung von Summen mit einfach gebauten Summanden
wird das Summenzeichen Y (groBes griechisches Sigma) verwendet. So kann man
die Summe der natiirlichen Zahlen von 1 bis 10 schreiben:

10
I1+2+3+4+54+64+7+8+9+10= 3% k.
k=1

Dabei werden fiir den Summationsbuchstaben k nacheinander alle ganzzahligen Werte
von 1 bis 10 eingesetzt und die entstehenden Ausdriicke — hier die natiirlichen Zahlen
selbst — addiert. Die unter dem Summensymbol stehende Bezichung k& = 1 gibt die
untere Summationsgrenze 1, die oberhalb von Y stehende Zahl 10 die obere Sum-
mationsgrenze an.

Beispiele 6.1: Man achte auf die unterschiedlichen Bezeichnungen!

N
1.3 n? =12+22432+ .. +N*=1+4+9+ ...+ N%
n=1
S (=1y o1
2. e e e
D E 273 7ts 7%
4 1 1 1 1
3. e
P2 s vl A v SRRy s eyl
‘T =l+g+q +. 4+ g%
n—1
5.‘ a; =ay+a; +a,+ ...+ ay;;

n
6. Y a =a+a+..+a=n-a.

n-mal
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Es gelten die leicht zu beweisenden Regeln:

I. i c-a; =c-* i a;, creell; (6.1)
i=1 " i=1

25 @+b) = L a+ ¥ b ©2)
i=1 i= i=

3% (@-b)=3%a-3b (63)
i=1 = i=

Ganz entsprechend verwendet man zur abgekiirzten Darstellung von Produkten mit
einfach darstellbaren Faktoren das Produktzeichen [] (groBes griechisches Pi):

n
Ma=aa a-... a,.

Zum Beispiel ist
5

il (1 +%)=(1 +1)(1 +%)(1+%)(1+%)(1+%).

Es gelten die Regeln

4 ﬁ cra;=c- [] a, creell; (6.4)
i=1 i=1

s 11 ab =11 a I1 bs ©5)
=1 i=1 i=1
A i 12

6. 11 5= = bi#0, i=12..n (6.6)
i=1 i Hb;

6.2. Permutationen

6.2.1. Permutationen ohne Wiederholung

Anzahl der Permutationen

Wir betrachten n verschiedene Elemente. Eine bestimmte Zusammenstellung,
in der die n Elemente simtlich angeordnet sind, heiBt eine Permutation der n Ele-
mente. Zwei Permutationen der gleichen Elemente unterscheiden sich durch die
Reihenfolge oder Anordnung der Elemente. Stimmt diese tiberein, so sind die beiden
Permutationen gleich.

Fiir zwei Elemente a, und a, kann man die zwei Permutationen a, a, und a, a,
bilden. Tritt ein drittes Element a3 hinzu, so kann dieses bei jeder der beiden Permu-
tationen @, a, und a, @, an die dritte, zweite oder erste Stelle treten. Fiir drei
Elemente a, . a,, ay gibt es also 6 Permutationen:

a,a,a;,a,0a34,, 034,04, 44,43, A, d3A,, A304,04;. 6.7)
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Man vermutet daher den

Satz 6.1: Bezeichnet man mit P, die Anzahl der Permutationen von n verschiedenen
Elementen, so ist

BRI S LI (6.8)

Der Beweis wird durch vollstindige Induktion gefiihrt (siche 4.3.):
I. Induktionsbeginn: Die Behauptung ist fiir n = 1 richtig.
II. Induktionsannahme: Der Satz gilt fiir n = k, esistalso P, = 1-2-3-... k.

III. Nehmen wir ein weiteres (k + 1)-tes Element hinzu, so kann dieses in eine bestimmte vor-
handene Zusammenstellung der k Elemente an die erste, zweite, ..., (k + 1)-te Stelle gesetzt
werden. Wir erhalten somit (k + 1) Permutationen fiir diese eine Zusammenstellung.

Wird dieser Vorgang fiir jede der P, Permutationen durchgefiihrt, so erhalten wir fiir die Anzahl
der Permutationen von (k + 1) Elementen:

Popy=P(k+1)=1-2-3-...-(k+1).
IV. Die Formel gilt also fiir » = k + 1 und somit fiir alle natiirlichen Zahlenn = 1. ®

Fakultat

Fiir das Produkt der natiirlichen Zahlen von 1 bis n wird das Symbol n! - gelesen:
,»n-Fakultit — verwendet :

1 nl=1:2-3-...-n. (6.9)
Es gilt

(n+ D!'=nl-(n+1). (6.10)
Zudem wird 0! = 1! = 1 gesetzt. Wir erhalten 2! = 2, 3! = 6, 4! = 24, 5! = 120,

6! = 720, 7! = 5040, 8! = 40320 usf. Damit kann die Anzahl der Permutationen
ohne Wiederholung geschrieben werden:

i P, =nl. (6.8")

Beispiele 6.2:

1. 6 Personen kénnen in 6! = 720 verschiedenen Reihenfolgen in einer Warteschlange
stehen.

2. 5 Biicher konnen auf 5! = 120 verschiedene Weisen auf einem Biicherbrett ange-
ordnet werden.

3. Wenn auf einer Maschine n verschiedene Artikel nacheinander bearbeitet werden
sollen, so gibt es fiir die Reihenfolge n! Moglichkeiten.

Lexikographische Anordnung

Bei vielen Elementen gibt es eine sc natiirliche Z 1stellung, so bei den indizierten
GroBen die Anordnung ay a; as ... a,, bei den Buchstaben das Alphabet. Permutationen werden als
lexikographisch geordnet bezeichnet, wenn die einzelnen Permutationen wie die Worter in einem
Worterbuch aufeinander folgen. Von zwei Permutationen geht dabei diejenige voran, deren erstes
Element in der natiirlichen Anordnung an niedrigerer Stelle steht. Falls jedoch die ersten Elemente
gleich sind, geht diejenige voraus, deren zweites Element in der natiirlichen Anordnung niedriger ist.
Sind die ersten zwei Elemente gleich, so folgt die Unterscheidung nach dem dritten usf.

Beispielsweise sind die Permutationen der drei Elemente a,, a,, az in (6.7) nicht lexikographisch
geordnet. Fir abe, ach, bac, bea, cab, cba liegt dagegen eine lexikographische Anordnung vor, wenn
man das Alphabet als natiirliche Zusammenstellung ansieht.
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Inversionen

Wenn zwei Elemente in einer Permutation umgekehrt zu ihrer natiirlichen Anordnung stehen, so
bilden sie eine Inversion dieser Permutation. Die Inversionen sind demnach die Fehlstédnde in einer
Permutation. Ist 12 3 4 5 die natiirliche Ahordnung von 5 Elementen, so haben die Permutationen

2 51 3 4 vier Inversionen durch Fehlstinde der Elemente 2 und 1, 5und 4, 5und 3, 5und 1;

32451 finf Inversionen durch Fehlstinde der Elemente 3 und 2, 3 und 1, 2 und 1,
4und 1, 5und 1.

Satz 6.2: Die Anzahl der Inversionen dindert sich um eine ungerade Zahl, wenn aus einer Permutation
eine andere durch Vertauschung zweier Elemente gebildet wird.

Dieser Satz wird bei der Erkldrung von Determinanten (Band 13) verwendet.

Beispiele 6.3:

.In3 245 1 mit finf Inversionen wird 2 mit 5 vertauscht. Man erhilt die neue Permutation 3542 1

mit apht Inversionen. Vertauscht man in dieser 1 mit 2, so ergibt sich 3 54 1 2 mit 7 Inversionen.

Die Anderungen der Inversionen betragen also 3 bzw. 1.

Die Permutation a, a,_, ... as a, a; hat gegeniiber der natiirlichen Anordnung a; @, a3 ... ay_y a,

insgesamt
m-D+mr-2)+..4+2+1=

Fehlstinde.

)

n(n — 1)
2

Gerade und ungerade Permutationen !

Ist die Anzahl der Inversionen gerade, so heif3t die Permutation gerade, sonst ungerade.

Satz 6.3: Die Anzahl der geraden Per i von n verschied El (n > 1) ist gleich
der Anzahl der ungeraden Permutationen und somit gleich ¥n!.

6.2.2.  Permutationen mit Wiederholung

Wenn die n Elemente nicht alle voneinander verschieden sind, so treten Permu-
tationen mit Wiederholungen auf, bei denen einzelne Elemente mehrfach vorkommen,
z.B. a; a, a; a, a,. Die Anzahl der Permutationen verringert sich bei gleicher
Stellenzahl 7 gegeniiber der Anzahl der Permutationen von durchweg verschiedenen
Elementen. Hat man 3 Elemente, so ist P; = 6. Werden davon zwei gleichgesetzt,
etwa a, = a,, so reduzieren sich die voneinander verschiedenen Permutationen auf

drei:
a,a;az, a,asda;, azda;d.

Hat man n verschiedene Elemente, so gibt es n! Permutationen. Sind nun n, Elemente
einander gleich, so sind alle urspriinglichen Permutationen nicht mehr zu unterschei-
den, bei denen nur diese n, Elemente die Plitze untereinander vertauschen. Dafiir
. S . X . n!
gibt es aber jeweils n;! Moglichkeiten. Daher hat man nur noch insgesamt T
1!
Permutationen. Entsprechendes gilt, wenn weitere Gruppen von einander gleichen
Elementen auftreten.
Allgemein ergibt sich die Anzahl der Permutationen mit Wiederholungen aus dem

Satz 6.4: Teilt man die n Elemente derart in k Gruppen von je n; (i = 1,2, ..., k)
gleichen Elementen auf, daf§ die Elemente verschiedener Gruppen verschieden sind,
so ist die Anzahl der verschiedenen Permutationen.

n!

(g, ey 1) B = )
I it AT mit ny +ny, + ... +n = n. (6.11)

Der Satz wird hier nicht bewiesen.

S.6.2

S.6.3

S.6.4
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Beispiele 6.4:

1. Wie groB ist die Anzahl aller verschiedenen Reihenfolgen von 2 griinen, 3 roten
und 5 schwarzen Kugeln?

@35 100
Py, =3713715T = 2520.
2. Stehen in einer Warteschlange von 6 Personen 2 Manner und 4 Frauen, so lassen
sich diese in .

o4 _ 6! _
Pu” = 2141 i

verschiedene Reihenfolgen bringen, wenn bei dem einzelnen Standort nur zwischen
Mann und Frau unterschieden wird.

6.3. Variationen

Jede Auswahl oder Zusammenstellung von k aus n verschiedenen Elementen, die
ihre Anordnung beriicksichtigt, heiBt eine Variation von n Elementen zu je k (oder
zut k-ten Ordnung bzw. zur k-ten Klasse).

Bei der Bildung von Wortern aus drei Buchstaben wird die Anordnung beriick-
sichtigt. Die unterschiedliche Bedeutung der Worter ,,rot*, ,,ort* und ,,tor* gehen
von der Beriicksichtigung der Anordnung der drei Buchstaben o, r, t aus.

6.3.1.  Variationen ohne Wiederholung

Treten in den Zusammenstellungen nur verschiedene Elemente auf, so spricht man
von Variationen ohne Wiederholung von n Elementen zu je k. Naturgemal ist
1<k=n

Satz 6.5: Die Anzahl VY der Variationen ohne Wiederholung von n Elementen zu je
k ist
] VE=nn—-1)mn-2)...n—k+1), 1<k=n. 6.12)

Diese Anzahl V¥ ergibt sich aus dem Produkt von n und den (k — 1) néchst kleineren
Zahlen.

Beweis: Die n Elemente seien durch a,,a,, ..., a, beschrieben. Wir werden den Satz durch voll-
standige Induktion nach der Ordnung k beweisen.

1. Induktionsbeginn: Fiir k = 1 gilt ;! = n, denn es lassen sich die Zusammenstellungen zu je
einem Element durch genau die Elemente selbst realisieren. Wir wollen uns noch fir k£ = 2
eine Ubersicht iber die moglichen Variationen ohne Wiederholung verschaffen:

aya; a,ay ... apa,
a,ay, aay ... aa, '
asa; aza, ... dxd,

Apdy a"(lz allan-—l

Die Variationen sind in n waagerechten und (7 — 1) senkrechten Reihen angeordnet, insgesamt
ergibt sich also

VZ=n-(n—1).
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II. Die Induktionsannahme lautet:
Firk=Il<ngltVl=nn—-1) .. —1+1).

III. Wir betrachten nun eine Variation /-ter Ordnung. Es gibt dann noch (n — ) weitere Elemente,
die in dieser Variation nicht auftreten. Fiigen wir je eines dieser Elemente an diese Variation ohne
Einschrinkung der Allgemeinheit am Ende hinzu, so erhalten wir (» — /) Variationen (! + 1)-ter
Ordnung. Tun wir dies nacheinander fiir alle ¥} Variationen, so bekommen wir samtliche
Variationen (/ + 1)-ter Ordnung, und zwar jede genau einmal. Also ist

Vil =Vl-m-D=nn—-1)..0 =1+ 1)@m-1D.
1V. Die Formel ist fiir k = [ + 1 abgeleitet und somit der Satz bewiesen. B

Wir konnen auch schreiben:
k_n(n—])...(n—k+1)(n-k)...~3-2-] _ n!
V' = n—k)-...-3-2-1 T =k ) ©.13)

Beispiele 6.5:

1. Aus 5 Personen sollen 3 fiir bestimmte Positionen ausgewihlt werden. Es gibt
V3 =5-4-3 = 60 Moglichkeiten.
Hierzu gehért auch die Antwort auf die Fragestellung aus 6.1.1.: Unter 5 Spielern
soll der ,,FuBballer des Jahres* ausgewahlt werden. Wie viele Moglichkeiten gibt
es fiir die richtige Reihenfolge der 3 Erstplazierten?

N

Das internationale Signalbuch hat n = 26 verschiedene Flaggen. Aus k = 2,3, 4
ausgewihlten Flaggen kann man entsprechend V% = 650, V35 = 15600,
V3s = 358800 Signale bilden, wobei Wiederholungen derselben Flaggen in einer
Signalanordnung nicht zugelassen sind.

6.3.2.  Variationen mit Wiederholung

Sind in den Zusammenstellungen auch Wiederholungen zugelassen. so spricht
man von Variationen mit Wiederholung von »n Elementen zu je k.
Satz 6.6: Die Anzahl V:" der Variationen mit Wiederholung von n Elementen zu je k ist
Vi =n (6.14)
Beweis:

I. Induktionsbeginn: Fiir k = 1 gilt offensichtlich ¥} = n. Fiir k = 2 erhalten wir jetzt folgende
moglichen Variationen:

ayay, a;a, ... apa,
aay axa, ... aa,
dyy  Gnay ... Guay

Sie stehen in je n waagerechten und senkrechten Reihen, so daB ihre Anzahl Vf_ = n?ist.
1I. Induktionsannahme: Die Formel gilt fir k = [, ¥} = n".

II1. Dann fiigen wir an jede der n' Variationen /-ter Ordnung der Reihe nach ein weiteres Element
der n gegebenen ohne Einschrinkung der Allgemeinheit am Ende hinzu und erhalten somit
insgesamt n' - n = n'*! Variationen (/ + 1)-ter Ordnung und jede nur einmal.

IV. Damit ist ¥}t = n'*! und der Satz bewiesen. M

Beispiele 6.6:

1. Aus den 2 Ziffern (0, 1) des Dualsystems lassen sich 2% Nachrichten - k-stellige
positive ganze Zahlen — bilden. Der Fiinfkanalcode fiir den Lochstreifen cines

5  Sieber u. a., Mathematik

S.6.6
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Fernschreibers besitzt 2% = 32 Zeichen. Dabei wird in eine Zeile jeweils eine Zu-
sammenstellung von je 5 der Zustinde ,,Loch* oder ,,Nicht-Loch*“ gestanzt.
Natiirlich muB3 dabei die Anordnung beriicksichtigt werden. Bei der Blindenschrift
werden Variationen von je 6 ,,eingedriickten* oder ,,nichteingedriickten‘ Punkten
verwendet. Damit erhdlt man 2 = 64 Mdoglichkeiten zur Darstellung der Zeichen
(Alphabet, Ziffern und Satzzeichen).

2. Aus den 26 Buchstaben des Alphabets lassen sich formal V%
k Buchstaben bilden.

= 26¢ Worter zu je

26

Beispielsweise gibt es Worter aus Dazu gehéren auch
26% = 676 2 Buchstaben xi, ab, du, oo
263 = 17576 3 Buchstaben ubu, ich, rim
26* = 456976 4 Buchstaben rata, esel, biir u. a.

3. Fiir den Ausgang eines regulir verlaufenden FufBballspiels gibt es drei Moglich-
keiten: Sieg der Heimmannschaft (1), Unentschieden (0), Niederlage der Heim-
mannschaft (2). Sind im FuBballtoto 12 Spiele vorgesehen, so kann man die drei
Elemente (0), (1), (2) auf einem Tipzettel zu je 12 zusammenstellen. Wiederholun-
gen der Elemente sind selbstverstindlich, und die Anordnung ist durchaus von
erheblicher Bedeutung. Das ergibt

V2 = 3'2 = 531441 Tipmoglichkeiten.

6.4. Kombinationen

Jede Auswahl oder Zusammenstellung von k aus n verschiedenen Elementen, dic
ihre Anordnung nicht beriicksichtigt, heit eine Kombination von n Elementen zu
je k (oder zur k-ten Ordnung bzw. zur k-ten Klasse).

Fiir die Auswahl von 5 Zahlen zu einem Tip beim Zahlenlotto ist ihre Anordnung
ohne Bedeutung.

6.4.1. Kombinationen ohne Wiederholung

Treten in den Zusammenstellungen nur verschiedene Elemente auf. so spricht
man von Kombinationen ohne Wiederholung von n Elementen zu je A. NaturgemiB
ist1 £k < n.

Satz 6.7: Die Anzahl C¥ der Kombinationen ohne Wiederholung von n Elementen zu
Jje k ist .
!
koM <k< 6.15
| Cn=Goprer 1Ek=n o1

Beweis: Wir gehen von den entsprechenden Variationen ohne Wiederholung von » Elementen zu je

k aus. Thre Anzahl war nach (6.10): VE= . Bei den Kombinationen fallen alle dicjenigen

n:
PA (n — k)!
Zusammenstellungen in eine zusammen, die die gleichen Elemente in verschiedener Anordnung
enthalten. Da andererseits k Elemente auf k! verschiedene Weisen angeordnet werden kinnen, mul3
Ck- k! = V¥ sein, womit der Satz bewiesen ist.

‘Wir kénnen auch schreiben
nn—1m-=2)...-n—k +1)

23k 6.16)

ck =
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Fiir die Anzahl dieser Kombinationen erhalten wir demnach einen Quotienten, dessen
Nenner das Produkt der natiirlichen Zahlen von 1 bis & ist und dessen Zahler ebenfalls
k Faktoren enthilt, die mit » beginnen und jeweils um eine Einheit abnehmen.

Beispiele 6.7

1. Wenn bei einer Feier sich 7 Personen zunachst mit Handschlag gegenseitig
begriiBen und dann paarweise miteinander die Glaser anstoflen, so gibt es
C2= Z—g = 21 Handschlage und ebensoviel Gliserklingen.

. Ein Skatspieler kann C3§ = 64 512 240 verschiedene Spiele zu je 10 Karten er-

halten.

Beim Zahlenlotto stellt jeder Tip eine Auswahl von k = 5 aus n = 90 Zahlen dar.

Er bildet eine Kombination zu je 5 von 90 Elementen. Die Anzahl der moglichen

Tips betrigt
90 - 89 - 88 - 87 - 86
S0 =" "~ @ =
C3o = T3 3435 43949 268.

4. Bei einer Stichprobe zur Qualititskontrolle greift man aus n Produkten & heraus.
Die Anzahl der Auswahlmdéglichkeiten ist C¥. Dabei wird ein kontrolliertes Pro-
dukt nicht zuriickgelegt.

. Zwischen Halle und Leipzig befinden sich 7 weitere Eisenbahnstationen. Wieviel
verschiedene Normalfahrkarten 2. Klasse werden innerhalb dieser Strecke ausge-
geben, wobei nur jeweils eine Richtung beriicksichtigt werden soll? Dann gibt es

C3 = ?—g— = 36 solcher Fahrkarten.

I35

i)

w

6.4.2. Bi ialkoeffizient und bi ischer Lehrsatz

Da der in C¥ auftretende Quotient auch in vielen anderen mathematischen For-

meln vorkommt, verwendet man fiir ihn ein abkiirzendes Symbol (") , lies: ,,n liber
k. Es geht auf Euler zuriick. Wir schreiben also k

I ck = (Z) (6.17)

Wir wollen uns jetzt mit einigen einfachen Eigenschaften derartiger Quotienten
beschiftigen. Dazu betrachten wir die

Definition 6.1: Es sei a eine reelle Zahl und k = 1, ganz, dann wird gesetzt:

aa—1)(a—=2)...(a=k+1) [(a\")
I PRI _(k) ©18)
a
und (O) =1.
Der Ausdruck (Z) wird Binomialkoeffizient genannt. Wir beachten, dafl a im allge-

meinen teliebig reell ist. Deshalb soll noch einmal betont werden, daB (Z) ein

a
)In (k) kann « auch eine komplexe Zahl sein.

5%

D.6.1
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Quotient ist, bei dem im Nenner das Produkt von 1 bis k und im Zahler ebenfalls ein
Produkt aus k Faktoren steht, das mit a beginnt und jeder weitere Faktor jeweils um
eine Einheit abnimmt.

Beispiele 6.8

) e a() R
1 ]__l
L(-cacace L, (7). 808

a
1

Wir kommen zu den wichtigsten Eigenschaften von (Z) :

Weiter ist stets( ) = a und (i) = 1 fiir natiirliches p.

1.Ist @a =n =0, ganz, und k > n, so ist (Z)
n —k + 1 £ 0. Somit tritt im Zahler von (6.15) der Faktor 0 auf. Zum Beispiel

ist

= 0. Denn aus n — k < 0 folgt

(2);2~1-0~(—1)_0
4 " 1-2:3-4 7
2. Es seien n und k positiv ganz und n = k, dann gilt
n n! n
(o) == = 7 ) .

Der Beweis folgt unmittelbar aus der Uberlegung, im mittleren Quotienten k
durch n — k zu ersetzen.

3. Es gilt fiir reelles @ und k = 0:

(Z) * (k i 1) = (Z JJ: i) (6.20)

Diese Formel wird zum Aufbau des Pascalschen Dreiecks verwendet.

Bewelis:

a a ~a(u—-l)“.(a—k-{—l) al@—1)...(a—k+1)(a—k)
(k) = ( ) T u Kk + 1)

k+1
_ (9. a—k 7(a.a+1_ﬂ+l)
‘(k) [l+k+l]_k) k+l_(k+l'.
4. Fiir a reell und n = 0 gilt:
a a+1 a+2 a+n a+1+n
O+ (3 )+ (3 ) ¢ () =70

oder mit dem Summenzeichen aus 6.1.2.:

i(a+v):(a+l+n). 621)

=0 v n



6.4. Kombinationen 69

Setzen wir @ = p = 0, ganz, so wird aus der Formel (6.21):
Lo(p+v_ 'p+l+n)
50007

Nach Eigenschaft 2. ist andererseits (p * v) = ( Pt ) = (
also wird y ptyv—7

no(pt+ p+1l+n
L0050
=0\ P p+1

Setzen wir noch p + n = m, so erhalten wir die Bezichung

C)*(p;1)*"'*(:):(;7:11)- (6.22)

Fiir p = 1 ergibt sich die bekannte Summe

m+ 1\ _ mm+1)
2 )_ DI

p+v)
» )

1+2+3+...+m=<

Satz 6.8 (binomischer Lehrsatz): Es seien a, b reelle Zahlen und n = 1, ganz. Dann S.6.8
gilt

no__ n n n—1 'n n-2p2 n n—1 n n
l (a+b)—(0)a”+(])a b+(2)a b +..‘+(n_1)ab +(n)b.

(6.23)
Mit dem Summensymbol wird diese Formel einfacher geschrieben:
@+by=3% (:’) @b = S Clab. (6.24)
»=0 =0

Beispiele 6.9:
1. Setzen wir in Formel (6.23) a = b = 1, so wird

2= £()= () + () + -+ ()
Setzen wir in (6.23) @ = 1 und b = —1, so ergibt sich
0= £ () =)= () + ()2 -+ ()

2. Die Moivresche Formel (5.12) lautet:
(cos @ + ising)" = cosnp + isinng, n>0,ganz.

Entwickeln wir die linke Seite der Gleichung nach dem binomischen Lehrsatz (6.23)
und setzen ferner die Real- bzw. Imaginirteile beider Seiten gleich, so erhalten wir

cos np = cos" p — (;) cos" 2 g sin? ¢ + (Z) cos"*@sin* g £ ...

sinng = (;’) cos™gsing — (;l) cos" 2 g sind ¢ + (;) cos" SgsinSp + ...
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6.4.3. Kombinationen mit Wiederholung

Treten in den Kombinationen Elemente mehrfach auf, so spricht man von Kom-
binationen mit Wiederholung von n Elementen zu je k.

Satz 6.9: Die Anzahl der Kombinationen mit Wiederholung von n Elementen zu je k ist
e _ (N + k= 1)
I C. = ( P ) (6.25)

Der Beweis kann durch vollstindige Induktion nach & gefiihrt werden, wobei
Formel (6.22) angewendet wird.

Beispiele 6.10:
1. Bei einem Wurf mit 2 bzw. 3 Wiirfeln sind €, = (;) =2l bzw. G} = (f) = 56
Zahlenkombinationen maglich. ’ -

2. Wird bei einer Stichprobe von k aus n Produkten das gepriifte Produkt wieder
zuriickgelegt, so kann es eventuell mehrfach untersucht werden. Die Anzahl der
Auswahlmdglichkeiten ist jetzt C .

6.5. Ubersicht zu den Grundaufgaben der Kombinatorik

1. Permutationen ohne Wiederholung

P, =n!l. (6.8)
2. Permutationen mit Wiederholung
n!

P — no+ny, + ..o+ m=n. (6.11)
! -

3. Variationen ohne Wiederholung (Zusammenstellung von n Elementen zu je k mit
Beriicksichtigung der Anordnung)
n! ‘n
—_— = k!, 1 <k <an.
o= (l\) L=

(6.12), (6.13)

VE=nin-1)...n -k +1)=

4. Variationen mit Wiederholung
vk =t (6.14)

Wn

5. Kombinationen ohne Wiederholung (Zusammenstellung von n Elementen zu je
k ohne Beriicksichtigung der Anordnung)

cz:(;\f)‘ I<h<n (6.17)

6. Kombinationen mit Wiederholung

C£~=("+/A€‘—l). (6.25)
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6.5. Grundaufgaben der Kombinatorik
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Aufgaben

Aufgabe 6.1: Bei der Lagerhaltung kennzeichnet man haufig Materialien unterschied-
licher Abmessungen und Rohstoffzusammensetzungen durch Farbmarkierungen.
Wie viele verschiedene Sorten Rohre konnen gekennzeichnet werden, wenn drei
Farben zur Verfiigung stehen und jede Sorte mit drei verschiedenfarbigen Ringen
am unteren Ende des Rohres markiert wird?

Aufgabe 6.2: Ein Gewichtssatz besteht aus den Gewichten 1 N, 2 N, 5N, 10 N, 50 N
100 N. Wie viele Zusammenstellungen dieser Gewichte sind mdglich?

Aufgabe 6.3: In der Umgebung eines Erholungsortes sollen 15 Wanderwege durch
je zwei parallele Striche gekennzeichnet werden. Wie viele Farben benétigt man, wenn

a) die Reihenfolge der Striche eine Rolle spielt und beide Striche von gleicher Farbe
sein diirfen,

b) die Reihenfolge der Striche keine Rolle spielt und beide Striche von gleicher
Farbe sein diirfen,

¢) die Reihenfolge der Striche keine Rolle spielt und beide Striche nicht von gleicher
Farbe sein diirfen?

Aufgabe 6.4: Acht Betriecbe der Bauindustrie sind an einem Wettbewerb beteiligt.

Wie viele Moglichkeiten gibt es, die Namen der drei erstplazierten Betriebe

a) in beliebiger Reihenfolge,

b) in der richtigen Reihenfolge

vorherzusagen?

Aufgabe 6.5:

a) Wieviel Fernsprechanschliisse lassen sich einrichten, wenn nur fiinfstellige Ruf-
nummern verwendet werden sollen?

b) Wie groB ist die Zahl der Anschliisse, wenn die Rufnummern, die mit 0 beginnen,
fiir Sonderanschliisse frei gehalten werden?

Aufgabe 6.6: Ein Stadtteil von der Form eines Rechtecks ist auf seinen vier Seiten
von Strafen begrenzt und auBerdem von 5 StraBen durchzogen, welche dem einen,
und 4 StraBen, welche dem anderen Paar von Gegenseiten des begrenzenden Recht-
ecks parallel laufen. Auf wieviel verschiedenen Wegen kann man ohne Umwege zu
machen, von einer der vier duBeren Ecken des Stadteils zu der diagonal gegeniiber-
liegenden Ecke gelangen?

Aufgabe 6.7: Beweisen Sie die Formel (6.21) und den Satz 6.8 durch vollstindige
Induktion.
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Die Mengenlehre ist fiir die Mathematik von grundlegender Bedeutung. Jedes
derzeit bekannte mathematische Teilgebiet 1aBt sich mengentheoretisch begriinden.
Dariiber hinaus ist aber die Mengenlehre auch sehr gut geeignet, ja notwendig, um
viele Probleme in den Naturwissenschaften, der Technik und der Okonomie zu for-
mulieren und zu 16sen. Als Begriinder der Mengenlehre wird der Hallenser Mathe-
matiker Georg Cantor (1845-1918) angegeben. Die Cantorsche Mengendefinition
kann jedoch AnlaB zu Widerspriichen geben, so daB man heute zur streng axiomati-
schen Begriindung der Mengenlehre einen Stufenkalkiil benutzt. Trotzdem ist es
zweckmiBig, die anschauliche Cantorsche Mengendefinition zugrunde zu legen, da
diese fiir das Verstandnis vieler mathematischer Teilgebiete und Anwendungen véllig
ausreicht. Wir werden deshalb in diesem Abschnitt nur an einer Stelle eine Bemerkung
zum Stufenaufbau der Mengenlehre machen.

7.1. Zum Begriff der Menge

Ausgehend von den obigen allgemeinen Bemerkungen legen wir die folgende
Definition des Mengenbegriffs zugrunde.

Definition 7.1: Eine Menge ist eine Gesamtheit (Zu fassung) besti , wohl- D.7.1
unterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem
Obyjekt eindeutig feststeht, ob es zur Menge gehort oder nicht.

Beispiele solcher Mengen sind:

Beispiel 7.1:

(1) Die Menge der natiirlichen Zahlen 1, 2, 3, 5, 8, 12.

(2) Die Menge der Farben griin, rot, gelb, blau.

(3) Die Menge der Leipziger Telefonnummern.

(4) Die Menge der reellen Zahlen x mit der Eigenschaft x2 + 2 = 0.

(5) Die Menge der zweiwertigen Aussagen.

Fiir alle Beispiele ist leicht zu priifen, daB die Definition 7.1 zutrifft.
Wir vereinbaren folgende Rede- und Schreibweisen:

a) Die zur Menge gehérenden Objekte heiBBen Elemente der Menge.

b) Als Kurzbezeichnungen verwenden wir fiir Mengen groBe lateinische Buchstaben
wie M, M, M,, M, ..., A, B, C,... So seien z. B. die Mengen (1) bis (5) mit
M, bis M bezeichnet.

¢) Sind wir in der Lage, die Elemente einer Menge anzugeben, so schreiben wir diese
in geschweiften Klammern

M={.}.
Beispiel 7.2:
(1) M, ={1,2,3,5,8,12};
(2) M, = {griin, rot, gelb, blau}.
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d) Die Elementbeziehung beschreiben wir durch folgende Symbolik:

a e M heiBt: a ist ein Element der Menge M;
b ¢ M heilit: b ist kein Element der Menge M.

Beispiel 7.3:
(1) leM,, 12eM,,4¢ M,;
(2) rote M,, schwarz ¢ M,;
(3) 398254 € Mj;
(4) 1¢M,.
Fiir die in 5. behandelten Zahlenmengen' fiihren wir die folgenden Symbole ein:
N - Menge der natiirlichen Zahlen;
N+ — Menge der positiven natiirlichen Zahlen;
G - Menge der ganzen Zahlen;
P - Menge der rationalen Zahlen;')
R - Menge der reellen Zahlen;')
K - Menge der komplexen Zahlen.

Oft ist es nicht moglich oder nicht zweckmaBig, die Elemente einer Menge aufzu-
zihlen. Dann ist aber mindestens eine Bildungsvorschrift (wie in Definition 7.1
gefordert) fiir die Menge M vorgegeben: M = {x | E} (M ist die Menge aller x, die die
Eigenschaft E besitzen).

Die Bildungsvorschrift E 1a8t sich als Aussageform m(x) mit einem Bereich X fol-
gendermaBen ausdriicken: ,,M ist die Menge derjenigen Elemente x aus dem Varia-
blenbereich X, fiir die m(x) in eine wahre Aussage tibergeht*.

Beachten wir, daB X selbst eine Menge ist, so kénnen wir fiir den obigen Satz
die folgende Symbolik einfiihren:

1 M = {x|wxeXrmx) =W} (7.1)

Fiir diese Schreibweise werden wir wie tiblich im folgenden die etwas einfacheren
Bezeichnungen

1 M = {x|xeXnm(x) (7.1)
oder noch kiirzer
| M = {x| m(x)} (1.2)

einfithren, wobei wir uns im Falle (7.2) merken, daB die Menge X als Variablen-
bereich zugrunde gelegt ist. Die Schreibweise (7.1') hat den Vorteil, daB man den
\arlablenberelch nicht aufzuschreiben braucht. Wir lesen diese Beziehung (7.2)
endermaBen: M ist die Menge aller Elemente des Variablenbereiches von x, fiir
on(x) gilt (d. h. w(m(x)) = W ist). Damit haben wir eine unmittelbare Verbin-
zum AbschnmS.}. gekniipft. Die dort behandelten Aussageformen dienen uns
zur Bildung von Mengen. Da es zweckméBig ist, die Schreibweise (7.2) zu ver-
den, werden wir sie auch in den folgenden Abschnitten benutzen, um zusétzlich
erbalen Definitionen wichtige Begriffe auch formelmaBig einzufiihren.

Im Mathematikunterricht der Oberschulen wird die Menge der rationalen Zahlen mit R,
iz Menge der reellen Zahlen mit P bezeichnet.
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Die so wie oben (7.1), (7.2) definierten Mengen heien auch Mengen 1. Stufe.
Beispiele zur Mengenbildung mittels Aussageformen:
Beispiel 7.4:
nx N
m(x) = ,x < 12 und ,,x e M.

Dann wird:
A={x|wxeNaA(x<I12“A,xe M) = W}
{x],x < 12“A,,xe M“}.
Wir sehen leicht, daB gilt:
A={x|,x<12ar,xeM} ={1,2,3,5,8].
() X =R,
B = {x|,x*+2=0“.
(3) X = Menge der Monate eines Jahres;
C = {x|,,x besitzt 30 Tage“}.
(4) X = Menge aller zweistelligen Aussagenverbindungen;
D = {x|,,xist eine Tautologie*}.

Uber diese Beispiele sollen zunichst keine weiteren Aussagen gemacht werden, die
sich auf Eigenschaften beziehen. Wir kommen spiter darauf zuriick.

Zum SchluB dieses Abschnittes wollen wir noch die folgende Bemerkung machen. Wir konnen
gemdl Definition 7.1 Mengen bilden, die als Elemente selbst wieder Mengen enthalten.
So sind zum Beispiel
E = {{1,2,3} {rot, schwarz}}
F={1},{1,2},{1,2,3},...}

={x|x={,2,...,n, nne N}

oder

wieder Mengen im Sinne unserer Definition. Wir wiirden sie sinnvollerweise Mengen zweiter Stufe
nennen, da ihre Elemente Mengen 1. Stufe sind.

7.2 Spezielle Mengen

Im folgenden sollen einige wichtige Beziehungen zwischen Mengen sowie spezielle
Mengen untersucht werden.

7.2.1.  Teilmengen, leere Menge

Definition 7.2: A heifst Teilmenge von B, wenn jedes Element der Menge A auch
Element von B ist. Symbolisch- A = B ist gleichbedeutend mit (Vx) (xe A — xe B)
ist eine wahre Aussage.

Beispiel 7.5:
(1){1,2,3} € {1,3,5,2,6}.
(2) A = {1, 2, 3} ist keine Teilmenge von
B =1{1,2,4,56},da3€e A aber 3 ¢ Bist.

(3) 4 {\/5 rot, griin}, B = {\/5, \/3 rot, gelb, griin},
A < B.

n

D.7.2
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Beispiel 7.6: Haufig werden spezielle Teilmengen der Menge der reellen Zahlen R,
die Intervalle benétigt, die folgendermaBen klassifiziert und bezeichnet werden:

[a,b] = {x|xeRra < x £ b} abgeschlossenes Intervall;
(@,b)={x|xeRra<x< b} offenes Intervall;

[a,b) = {x|xeRra < x< b} halboffenes Intervall;
(@bl={x|xeRra<x=<b} halboffenes Intervall;

[a, +0) ={x|xeRra=<x< +o0}

(o0, 8]
(=0, +0) ={x|xeRA -0 <x< +0} =R

I

{x|xeRA -0 < x £b} unendliche Intervalle.

Denken wir uns die Mengen 4 und B durch Aussageformen a(x), b(y) iiber Variablenbereichen
X, Y gebildet, so konnen wir die Definition der Teilmengenbeziehung folgendermaBen ausdriicken:
A < B ist gleichbedeutend mit (Vx) (a(x) — b(x)) ist eine wahre Aussage.

Beispiel 7.7:
X=NY=G;
a(x) = ,,x ist eine gerade Zahl‘
b(y) = ,,y ist groBer oder gleich —10*
a(x) - b(x) = ,,Wenn x eine gerade Zahl ist, so ist x = —10%

ist offenbar fiir jedes feste x € X (= N) eine wahre Aussage. Deshalb ist (Vx) (a(x) = b(x))
eine wahre Aussage und demzufolge auch 4 € B.

Eigenschaften der Teilmengenbeziehung
(1) Fiir alle Mengen A gilt: A < A (siche Definition 7.2).
(2) Fiir alle Mengen 4, B, C gilt:
(AsBABcsC)»AcC.
Auch Eigenschaft (2) ist eine einfache Folgerung von Definition 7.2. Man nennt
(1) Reflexivitdt, (2) Transitivitdt der Teilmengenbeziehung.

Definition 7.3 (Gleichheit von Mengen): Zwei Mengen A, B heifen gleich. wenn jedes
Element der Menge A auch Element der Menge B ist und umgekehrt.

Kurzschreibweise: A = B ist gleichbedeutend mit (Vx)(x € A< x € B) ist eine
wahre Aussage.

Nehmen wir an, 4 = {x|a(x)}, B = {x| b(x)} (die Variablenbereiche sind also
von vornherein gleich), so nimmt Definition 7.3 die folgende Form an:

A = Bist gleichbedeutend mit (Vx) (a(x) <> b(x)) ist eine wahre Aussage.

Man sieht daran, da8 wir durchaus von gleichen (umfangsgleichen) Mengen spre-
chen, wenn auch deren erzeugende Aussageformen voneinander verschieden sind.
Beispiel 7.8:

X =N, 4={x|x*-7x+ 10 = 0} = B = {x| Entweder x = 2 oder x = 5}.

Satz 7.1: Fiir alle Mengen A, B gilt
(A< BABC A)e A =B. (7.3)



7.2. Spezielle Mengen 77

Definition 7.4 (leere Menge): Eine Menge M heifit leer, wenn sie kein Element enthlt.
Die leere Menge wird mit () bezeichnet.

Die Bildung einer leeren Menge geschieht durch eine Aussageform m(x), die fiir
kein x aus dem zugrunde gelegten Variablenbereich X zu einer wahren Aussage wird,
d.h.,

M = {x| m(x)} = 0 < Die Aussage (V(x)m (x) ist wahr. (7.4)

Als Beispiel betrachten wir zunachst die Menge M,. M, = Menge der reellen
Zahlen x mit der Eigenschaft x? + 2 = 0. Mit X = R konnen wir also schreiben:
M, ={x|x*+2=0}
Nun kann man aber schnell zeigen: Nur die komplexen Zahlen x; = \/ 2-i,
X = —\/ 2 - i machen die Aussageform (Gleichung)
X +2=0
zu einer wahren Aussage. Demzufolge gilt fiir alle reellen Zahlen x
x2+2%0,
und daraus folgt nach (7.4)
X=R M,={x|x*+2=0}=0.

Die eine leere Menge erzeugende Aussagenform ist nun aber keineswegs eindeutig bestimmt, so
gilt z. B.
A={x|xeNAx <0} =0;

B = {x| xist ein Monat A x besitzt mehr als 31 Tage} = 0

usw. Man beachte aber: Ist 0 die leere Menge erster Stufe und bilden wir eine Menge M zweiter
Stufe folgendermafBen

M=),
so ist M nicht etwa die leere Menge zweiter Stufe, denn M enthilt genau ein Element, nimlich die
leere Menge erster Stufe 0.

In Teilgebieten und bei Anwendungen der Mathematik ist es oft erforderlich zu
wissen, ob bestimmte Mengen leer oder nicht leer sind.

7.2.2. Potenzmenge
Wir wenden uns jetzt weiteren wichtigen speziellen Mengen zu.

Definition 7.5 (Potenzmenge): M sei eine Menge, und A sei eine Teilmenge von M,
d. h. A = M. Wir bilden eine Menge, die alle Teilmengen A von M als Elemente enthiilt
und nennen diese Potenzmenge P(M) von M.

] Kurzschreibweise: P(M) = {A| A = M}. (7.5

Dabei heifit M die Universalmenge.')

1) Unter ,,Universalmenge* ist, wenn nichts anderes gesagt wird, immer die im Zusammenhang
mit der betreffenden inhaltlichen Problematik zugrunde gelegte umfassende Grundmenge zu ver-
stehen (siche z. B. Aufgabe 7.1).

D.7.4

D.7.5
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Folgerung: Es gilt stets, d. h. fiir jede Menge M,
0 e P(M) A Me P(M).
(Grund: 9 =< M, M = M).
Die Poterizmenge einer Menge M erster Stufe ist eine Menge zweiter Stufe.

Beispiel 7.9: Wir betrachten die zweielementige Zahlenmenge M = {1, 2}. Dann gilt:
P(M) = {0, {1}.{2}, M}.

Fassen wir P(M) nun wieder als Ausgangsmenge fiir eine Potenzmengenbildung auf, so konnen
wir die Potenzmenge P(P(M)) von P(M), die wir mit P2(M) bezeichnen wollen, bilden. Es wird:

PXM) = P(P(M)) = {02, {0}, {{1}}, {23}, {M}, {0, {1}}, {0, {2}},
{0, M3, {13, {23}, {1}, M}, {{23, M}, {0, {1}, {2}},
{0, {13, M}, {0, {2}, M}, {1}, {2}, M}, P(M)},
wobei 02 die leere Menge 2. Stufe, also hier die Teilmenge von P(M), die kein Element enthilt, ist.

Es sei vermerkt, daB die Benutzung von Potenzmengen P?(M) zum Beispiel auf dem Gebiet der
Optimierung wichtige Anwendungen besitzt.

7.2.3. Komplementirmenge

Definition 7.6 (Komplementirmenge): Gegeben sei eine Menge A, A < M. M besitzt
dabei wie in Definition 7.5 die Rolle einer Universalmenge. A heifft Komplementir-
menge von A beziiglich der Universalmenge M, wenn gilt:

] A={x|xeMnx¢A},
d. h., A enthilt alle Elemente von M, die nicht zu A gehiren.

Stellen wir uns die Menge A4 durch eine Aussageform a(x) erzeugt vor, so kénnen
wir die obige Definition folgendermafen formulieren:

1 Mit 4={x|xeMna(x)} wird 4 ={x|eMna()}.

Beispiel 7.10:

(1) 4 = {x| xe N axist eine gerade Zahl} = {x|x =2-mame N};
A = {x|xe N axist keine gerade Zahl} = {x | x = 2m + 1 Ame N}.

(2) A = Menge aller innerhalb des Kreises x> + y? = 1 liegenden Punkte der Ebene.
Die Universalmenge M sci die Menge aller innerhalb oder auf dem Rande des
Quadrates Q (Bild 7.1) liegenden Punkte. Dann ist 4 die in Bild 7.1 schraffierte

Menge (einschlieBlich Kreisrand) aller Punkte, die zu M gehoren, aber nicht
innerhalb des Kreises liegen.

¥
4 4
7M
A
X
| ;  Bild7.1
Komplement von A
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Die in diesem Beispiel gewihlte Darstellung mit Hilfe von Punktmengen ist
auBerst anschaulich und in der Mengenlehre allgemein als Hilfsmittel sehr ver-
breitet.

(3) Fiir eine beliebige Universalmenge M gilt, wie man sich mit Hilfe von Defini-«
tion 7.6 leicht ﬁberlegen kann:

M=9, 0=M M={x|xeMrx¢M}=0.

Aufgabe 7.1: Mit A sei die Menge der reellen Lésungen der Ungleichung [x + 1|
= % + 2 bezeichnet. Universalmenge sei die Menge R der reellen Zahlen (siche
FuBnote S. 77). Ermitteln Sie A und A!

7.3. Vereinigung, Durchschnitt und Differenz von Mengen

Die Bildung von Vereinigung, Durchschnitt und Differenz von Mengen bedeutet,
gewisse Mengen miteinander zu neuen Mengen zu verkniipfen. Diese auch fiir An-
wendungen auBerordentlich wichtigen Verkniipfungen wollen wir sowohl verbal als
auch formelmaBig definieren. AuBerdem werden wir sie uns veranschaulichen, indem
wir dquivalente ebene Punktmengen (Mengen von Punkten in einer Ebene) benutzen.
Zwei Mengen sind dabei dquivalent, wenn es eine umkehrbar eindeutige Zuordnung
zwischen den Elementen der beiden Mengen gibt.

Universalmenge M

I N

Bild 7.2.
Darstellung einer endlichen Menge, bestehend aus 10
Elementen mit Hilfe einer dquivalenten Punktmenge

Eine Menge 1aBt sich dann in einer Ebene veranschaulichen, indem man sie durch
eine geschlossene Linie umfaf3t. Eine solche Darstellung nennt man haufig Venn-
Diagramm (Bild 7.2). Zeichnet man keine Punkte innerhalb einer. geschlossenen
Linie aus, so meint man die Menge aller Punkte, die innerhalb und auf der Begren-
zungslinie liegen.

7.3.1.  Vereinigungsmenge

Definition 7.7 (Vereinigungsmenge): Unter der Vereinigung A U B zweier Mengen
A und B versteht man die Menge aller Elemente, die mindestens einer der beiden Mengen
A oder B angehiren:

] AVB={x|(xeAd)V(xeB)} (7.6)
Bemerkung: Stellen wir uns 4 und B durch Aussageformen a(x) und b(y) mit X, ¥
als Variablenbereiche erzeugt vor, so kénnen wir schreiben:

] AVB={z|(zeXnra(2)V(ze Y A b(2))}. 7.7

D.7.7
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Beispiel 7.11:
mA4={12 3}, B= {3,4, 5},
AVB={1,2,3,4,5).
2A={x|(xeR)r(0<x<6)} B={yl(yeG)a(-22y=0)}.

Dann wird:
AVB={z|(zeRAO<z<6)Vv(zeGA(-2Z2zZ0)}
={z|(z=-2)v(z=-1Dv(zeRAD Lz < 6)}.

a0,
AvB .

An8

Bild 7.3. Vereinigungsmenge 4 v B Bild 7.4. Durchschnittsmengen
A~B, CAD=0

7.3.2.  Durchschnittsmenge

D.7.8 Definition 7.8 (Durchschnittsmenge): Der Durchschnitt A N B zweier Mengen A und B
ist die Menge aller Elemente, die sowohl A als auch B angehoren:

] AnB={x|(xeA)A(xeB). (7.8)
Bemerkung: Sind die Mengen wie oben durch Aussageformen gegeben, so gilt:
] AnB={z|(zeXra(@)r(ze Y rb(z)),. (7.9)

Beispiel 7.12: Wir betrachten wieder die Mengen aus Beispiel 7.11. Es gilt:
(1) AnB={3};
2 AnB={z|(zeRAO<z<6)A(zeGA(-2=Z2Z0)} =0.

Im AnschluB an dieses Beispiel soll noch eine Redeweise eingefiihrt werden. Zwei
Mengen A4, B mit A n B = @ heillen disjunkt oder elementfremd.

Aufgabe 7.2: Man bestimme die Menge aller reellen Zahlen x, fiir die gilt:

a)3x+2
3 - 2x

»*

22 b)r+3Z2x+2x—5; fx—1]+x+5 <4

Aufgabe 7.3: Fir welche Punkte der x,y-Ebene gilt (Skizzen!):
a)x+y<3 und x—y=2; b)xy=1; c)x?+y*<25 und 2x+ y < 5?

*

7.3.3.  Differenzmenge

D.7.9 Definition 7.9 (Differenzmenge): Die Differenz A\ B zweier Mengen A und B ist
die Menge aller Elemente von A, die nicht zu B gehiren:
] A\B={x|xeAdrx¢B). (7.10)
Es gilt:
] A\ B = {x| (xe X A (a(x) A b(x))}.
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Beispiele 7.13:

1) A\ B ={1,2}

2 A\B={z|zeRA(0<z<b6Aa(z< —2Vvz>0)}
{z]zeRAO < z< 6} = 4;
B\A=B={-2-1,0}.

R —
AN

‘ %H M Bild7s.

l A Differenzmenge 4 \ B

Wir wollen an dieser Stelle auf den engen Zusammenhang der soeben eingefiihrten
Differenzmenge 4 \ B mit dem Komplement einer Menge A beziiglich einer Univer-
salmenge M hinweisen.

Es seien also A € M, B < M. Dann gilt:

A\B=ANB. (7.11)

Nach Formel (7.11) wire es also prinzipiell moglich, auf die Differenzmenge zu ver-
zichten, da sich diese eindeutig mit Hilfe von ~ und - darstellen 1aBt.

I

7.3.4.  Rechenregeln fiir die Verkniipfungen Vereinigung,
Durchschnitt, Komplement

Wir wollen im folgenden die Existenz der Universalmenge M, von der alle betrach-
teten Mengen 4, B, C, ... Teilmengen sind, voraussetzen und einige wichtige Rechen-
regeln fiir unsere edngefiihrten Mengenverkniipfungen U, ~, ~ angeben und diese
auBlerdem durch Punktmengen veranschaulichen. Rechenregeln fiir die Differenz-
menge gewinnt man leicht durch Anwendung der Beziehung (7.11).

Satz 7.2 (Rechenregeln fiir die Operationen U, N, ~): Es gilt fiir alle Mengen A, B, S.7.2

C, ..., die Teilmengen einer Universalmenge M sind:

() AnB=BnA, AV B = BuA; (Kommutativgesetz) (7.12)

2)(AnB)NC=An(BNC), (Assoziativgesetz) (7.13)
(AvB)VC = AV (BYCC);

B3 An(AvC) =4, (Verschmelzungsgesetz)  (7.14)
BU(Bn D) = B. )

4 ANBUC)=(AnB)vv(AnC), (Distributivgesetz) (7.15)
AU(BAC)=(AUB)n(AUC);

5) AV = A, And =0, (0 = Nullelement) (7.16)
AnM = A4, AVUM = M; (M — Einselement)

(6) A ist Komplement von A genau dann, wenn gilt:
AVA=MAANA=0. (Komplement-Eigenschaften)  (7.17)

Die Kommutativgesetze (7.12) erlauben das Vertauschen der Reihenfolge der
Mengen. dic Assoziativgesetze gestatten es, die Vereinigung bzw. den Durchschnitt
von endlich vielen Mengen zu bilden. wobei es gleichgiiltig ist, wie man Klammern

# Nieber u. .. Mathematik
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setzt. Die Verschmelzungs- und Distributivgesetze sind zum Teil fiir uns neu, wenn
wir an das Rechnen mit Zahlen denken. Aus der Logik jedoch sind uns diese Regeln
nicht fremd, da z. B.

palpvgep (3.4)
oder

pv@ar)e(vr)alpvg) (3.5)
Tautologien sind, die linke und die rechte Seite vom Doppelpfeil also jeweils logisch
gleichwertig sind.

Wiirden wir jedoch A4, B, C als Zahlen (a, b, ¢), ~ als Multiplikation (-) und v

als Addition (+) interpretieren, so wissen wir, daf3

a-(@a+c)=a, a+(ac)=a, a+b-c)=(@+b):(a+o
im allgemeinen nicht gelten. Wir haben es also hier mit fiir uns gegeniiber dem Rech-
nen mit Zahlen neuartigen Rechenregeln zu tun. Die Bezeichnungen Nullelement
fiir die leere Menge ¢ und Einselement fiir die Universalmenge M verwenden wir
hier deshalb, weil diese Mengen eine dhnliche Rolle wie die Zahlen 0 und 1 spielen.
Die Bezichungen

a+0=a a'0=0, a'l=a

entsprechen unmittelbar den Bezichungen (7.16). Eine Bezichung @ + 1 = 1 fiir alle
a gibt es im Bereich der Zahlen jedoch nicht.
Gemil Regel (7.13) konnen wir Vereinigung und Durchschnitt von je n Mengen bil-
den.

Wir bezeichnen:

A VAV vl =UAg (7.18)
i=1
n

Aindyn...nd, =N 4. (7.19)
i=1

Im Bild 7.6 werden die Regeln (7.14) dargestellt.

(AuCInA AuC )
8 Bild 7.6.
A Die Verschmelzungsregeln
8nD Bu (BnD) An(AvC)=A4,Bv(BAD)=B

Man kann sich genauso die anderen angegebenen Regeln veranschaulichen. Es
ist jedoch auch ein Beweis der Regeln ohne die Hilfsmittel der Anschauung direkt
aus den Definitionen moglich. Dabei ist es besonders zweckmaBig, von den Dar-
stellungen mit Hilfe der Aussageformen (7.7), (7.9) auszugehen.

Beispiel 7.14: Wir beweisen AU (A n B) = A, wobei wir zur Vereinfachung der
Schreibweise X = Y (gleiche Variablenbereiche fiir a(x) und b(y)) wihlen. Dann sind :
A={x|xeXnax)}, B={x|xeXabx)},
AN B ={x|xeXna(x)bx)}.
Wir bilden: A4 v (4 n B) und erhalten nach (7.7):
AV (An B) ={x|(xeXnaax) Vv ((xeXna(x)) A b(x))}
={x|xeXnrax)} =4,
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denn: (pv(pagq)) < p ist eine Tautologie (p = ,,x € X A a(x)*, g =,,b(x)*, zu-
néchst x fest, jedoch fiir jedes beliebige x).

Es gibt nun noch eine Reihe weiterer wichtiger Rechenregeln, die man jedoch
durch Anwendung der bereits bekannten Regeln (7.12) bis (7.17) herleiten kann.
So gilt z. B.:

(N A= 4; (7.20)
®AUB=ANB, A~nB=AVUB; (de-Morgan-Gesetze) (7.21)
9 A< BoBcd; (7.22)
(10) (4 < By (AnB =0) o (AVB = M). (7.23)

Wir beweisen die Regel (7.21): Nach Regel (6), Formel (7.17) geniigt es zu zeigen:
(AUB)V(AnB)=M und (AVB)A(AnB)=09.
Es gilt: . ) -
(AVB)V(ANB)=(AVvB)VA) n(AvB)vB)
(1.15)
=(AVA)UB)n (4 (B B))
(7.12), (1.13)
=MUB)NAVM)=M~nM=M
(7.17) (7.17)

(AvB)N(ANnB)=(AnANB)v(Bn (A~ B))
=(AnA)NB)U(BAB) A A)
—@nB)UOAA) =0uUp =0,

Wir werden zum AbschluBl des nachsten Abschnittes ein Beispiel fiir die Anwendung
dieser Regeln geben.

Aufgabe 7.4: A, B, C, D seien belicbige Mengen. Man untersuche die Richtigkeit
folgender Beziehungen:
a)(A\B)nC=(AnC)\B; b) A\B=An(A\B);
¢c)A=(A\B)v B;
d)(AUC)A(BYUC)A(AUD)A(BUD) = (4~ B)Vv(CA D).
Aufgabe 7.5: A, B, C seien Teilmengen von M. Man vereinfache folgende Aus- #
driicke:
aA)An(AVB)\B); bA~ABAC)VAUBUC.

7.4. Uber Michtigkeit von Mengen

In den vorhergehenden Abschnitten haben wir eine Reihe von Mengen betrachtet,
die endlich viele Elemente besitzen, aber auch solche, die nicht aus endlich viclen
Elementen bestehen.

Beispiel 7.15:
4, =1{1,2,3,5,8,12},
A, = {griin, rot, gelb, blau},
A3 = P = {x| x ist eine rationale Zahl},
Ay = {x| x ist eine reelle Zahl und 0 < x < 1},
As ={x|xeGax? =3} =0.
6*
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Definition 7.10: Eine Menge M, M + 0, die endlich viele Elemente besitzt, heifit
endliche Menge, eine Menge M, M + 0, die nicht aus endlich vielen Elementen be-
steht, heift unendliche Menge.

Ay, Az sind endliche, A5, A, unendliche Mengen.
Wir verabreden die folgende Bezeichnung:
u(M) - Anzahl der Elemente der endlichen Menge M.

Beispiele, bei denen auch u(M) fiir gewisse Mengen M zu bestimmen ist, geben wir
am Ende dieses Abschnittes an.

Nun mochte man aber auch gern unendliche Mengen vergleichen und damit klassi-
fizieren koénnen. Aus diesem Grunde fiihrt man den Begriff der Mdchtigkeit ein, der
im Spezialfall endlicher Mengen mit der Anzahl ihrer Elemente {ibereinstimmt.

7.4.1.  Gleichmichtige Mengen

Definition 7.11: Zwei Mengen A, B (endliche oder unendliche Mengen) besitzen die
gleiche Michtigkeit, wenn man jedem Element a,ac A, umkehrbar eindeutig ein
Element b, b € B, zuordnen kann. Daraus folgt:

Wenn dem Element a,, a, € A, das Element b, b e B, und auch dem Element a,,
a, € A, das Element b, b € B, zugeordnet wird, so gilt a, = a, (d. h. voneinander verschie-
schiedenen Elementen aus A werdenvoneinander verschiedene Elemente aus B zugeordnet ).

Mittels unserer logischen Zeichen kénnen wir diese Eigenschaft folgendermafen
schreiben: A, B seien die Bereiche der Variablen a, a,, b.
w((Va,) (Ya,) (Vb) (,,Dem Element a, wird b zugeordnet* A ,,Dem Element a, wird b
zugeordnet“ —» a; = a,)) = W. (7.24)
Schreibweise: 4 und B haben die gleiche Machtigkeit = A glm. B.

Satz 7.3: Die mit Definition 7.11 eingefiihrte Gleichmichtigkeit besitzt die folgenden
Eigenschaften
(I) A glm. 4, (Reflexivitdt)
(IT) 4 glm. B—> Bglm. A4, (Symmetrie)
(ITI) A glm. BA Bglm. C —» A4 glm. C. (Transitivitdt)

Durch die Definition 7.11 entstehen Mengen von Mengen gleicher Mdchtigkeit, die
charakterisiert sind durch den Méchtigkeitstyp (Kardinalzahlen).

Beispiel 7.16: Die endlichen Mengen stellen einen Michtigkeitstyp dar. Die Kardi-
nalzahlen hierfiir sind die Elemente der Menge der natiirlichen Zahlen. Nach Defi-
nition 7.11 konnen wir w(M) auch Michtigkeit der endlichen Menge M nennen.
Die Mengen

M, = {rot, griin, blau}, M, = {\/5, \/5, \/Z}’ My = {1}, {2}, 0}
sind gleichmachtig. So kénnen wir z. B. die folgende Zuordnung (charakterisiert

durch Paare) (rot, \/4_1), (grﬁn, \/E), (b]au, \/5) vornehmen, die die Definition 7.11
erfiillt. Wie man ohne weiteres sicht, gilt aulerdem

w(My) = w(Ms) = uw(M;) = 3.
Die Mengen M, M,, M5 gehoren also zur Menge der dreielementigen Mengen.
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Den Méchtigkeitstyp einer unendlichen Menge werden wir nachfolgend ebenfalls
mit u(M) bezeichnen und uns mit dem Typ der abzihlbaren Menge und der Mdchtig-
keit des Kontinuums etwas naher beschiftigen.

7.4.2.  Abzihlbare Mengen

Definition 7.12: Eine Menge M heifit abzihlbar, wenn gilt: D.7.12
Mglm. N mit N=1{0,1,2,3,...}
(d. h., die Elemente von M lassen sich mit Hilfe der natiirlichen Zahlen numerieren).

Einige Eigenschaften abzihlbarer Mengen werden im nachfolgenden Satz formu-
liert.

Satz 7.4: S.7.4

(1) Eine beliebige unendliche Teilmenge eciner abzihlbaren Menge M ist wieder cine
abzdihlbare Menge.

(2) Es seien Ay, A,, ..., A, abzdihlbare Mengen. Dann gilt: M = ] A ist eine
abzdhlbare Menge. k=1
Sind gewisse der Ay endliche Mengen, so bleibt die Giiltigkeit dieser Aussage er-
halten.

(3) Die Vereinigung abzdihlbar vieler abzdihlbarer Mengen ist eine abzihlbare Menge.

(4) Aus einer unendlichen Menge kann stets cine abzdhlbare Menge abgespalten
werden.

(5) Wenn beim Abspalten. einer abzihlbaren Menge A von ciner unendlichen Menge M
eine unendliche Menge B iibrigbleibt, so haben M und B die gleiche Michtigkeit.

Die Aussagen (1) bis (5) vermitteln eigentlich erst eine klare Vorstellung vom Be-
griff der abzahlbaren Menge. Die Beweise konnen hier nicht vorgefiihrt werden.
Beispiel 7.17: Beispiele fiir abzihlbare Mengen:

(1) Die Menge G der ganzen Zahlen ist abzdhlbar.
Beweis: Es gilt
G={0,1,23,..} v{-1,-2-3,..}=NuG-.

Zunichst ist N nach Definition abzihlbar. G = {—1, —2, —3, ...} ist ebenfalls
abzihlbar. Ordnen wir nimlich einem beliebigen Element —n € G das Element
n — 1€ N zu, so ist Definition 7.11 erfillt, und deshalb folgt die Behauptung
aus Satz 7.4 (2), wobei A; = N, A, = G zu setzen ist. Wir sehen also, daB die
Menge G, obwohl man gefithlsmaBig meint, daB sie ,,mehr* Elemente als N ent-

hilt, ebenfalls abzihlbar, also gleichmichtig N ist. Im folgenden Beispiel wird
diese Eigenschaft des Miachtigkeitsbegriffes noch deutlicher. m

(2) Die Menge P der rationalen Zahlen ist eine abzihlbare Menge.

Beweis: Wir wissen, daf} sich P folgendermaBen darstellen 1aBt:

P= {-’:—IlmeG/\k eN\ {0} A m und k sind teilerfremd}.
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Wir definieren Mengen A, folgendermafien

Ak:{.’l

k
Nun gilt offenbar

me Gake N\ {0}, k — fest A m und k teilerfremd}.

0
M=U 4, =P,
k=1
und deshalb gilt nach Satz 7.4 (3): P ist abzihlbar. m

7.4.3.  Nicht abzihlbare Mengen

Am Beispiel der rationalen Zahlen haben wir gesehen, dal} eine Menge abzihlbar
sein kann, auch wenn ihre Struktur und Anordnung sich auBerordentlich stark von
N unterscheidet. Man konnte daher beinahe denken, daB jede unendliche Menge
abzihlbar ist. DaB dies ein TrugschluB wire, driickt Satz 7.5 aus.

S.7.5 Satz 7.5: Die Menge C, C = {x|xe R A0 < x < 1} ist nicht abzéhlbar.

Bezeichnungsweisen: Eine nicht abzihlbare unendliche Menge nennen wir dber-
abzihlbare Menge. Die Machtigkeit der Menge C heil3t",,Mdchtigkeit des Konti-
nuums*:.

Wir bemerken zum AbschluBl, da der Machtigkeitstypus des Kontinuums von
dem abzihlbarer Mengen verschieden ist und dal man mit Hilfe von Satz 7.4 sowie
Definition 7.11 zeigen kann, daB z. B. die Mengen

D={x|xeRAOZx <=1},
E={x|xeRrna=<x=<bhab—fest,abeR},
R

ebenfalls die Méchtigkeit des Kontinuums besitzen. Dabei kommt es zum Beweis nur
darauf an, geeignete Zuordnungen, die die Definition 7.11 erfiillen, zu finden. Man
nennt alle Mengen, die zu C gleichméchtig sind, Kontinua

7.4.4.  Beispiel fiir die Begriffe Vereinigung, Durchschaitt,
Komplement und Michtigkeit

Eine statistische Erhebung an einer Technischen Hochschule ergab bei 100 Stu-
denten das folgende Ergebnis: 48 Studenten horen weiterfiihrende Vorlesungen iber
Technologie, 26 iiber konstruktiven Ingenieurbau, 8 iiber Technologie und mathe-
matische Operationsforschung, 23 iiber konstruktiven Ingenieurbau, aber keine Ope-
rationsforschung, 18 nur iiber konstruktiven Ingenieurbau, 8 tiber Technologic und
konstruktiven Ingenieurbau und 24 iiber keines dieser 3 Gebiete.

Wir stellen folgende Fragen:

1. Wie viele Studenten horen Operationsforschung?

2. Wie viele Studenten héren Operationsforschung und konstruktiven Ingenieurbau,
aber nicht Technologie?

3. Wie viele Studenten horen konstruktiven Ingenicurbau und daneben Operations-
forschung oder Technologie?
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Zur Losung dieser Aufgaben definieren wir die folgenden Mengen: M = Menge:
der befragten Studenten, J = Menge der Studenten, die konstruktiven Ingenieurbau
horen, T = Menge der Studenten, die Technologie horen, O = Menge der Stu-
denten, die Operationsforschung héren. Diese Mengen, J, 7, O erzeugen in M acht
Teilmengen, die in Bild 7.7 dargestellt sind und deren Machtigkeiten wir zu bestim-

men haben.
r '/N

Bild 7.7.
Darstellung durch ebene Punktmengen

Die gegebenen Groflen sind:
uw(M) = 100, u(lJ) = 26, w(T) =48,
wTnO) =8, u(JnO0) =23, u(JnT)=28,
pJInOAT)=18, u(UTUO) =24

Wir suchen u(0), u(A4) und u(B) mit A = JAnONT, B=Jn(0VT).

Zur Losung benutzen wir die Rechenregeln aus 7.3.4. und die folgende grundlegende
Figenschaft von u:

(A COABsOANANB=0)A(AVB=2C)

— u(C) = u(A4) + w(B). (7.25)
Zu Frage 3: Es gilt

J=JAM=Jn({(TvO0)u(TUO0)

=(Un(TVO)UUNTU0) =BU(NTAO).

Wegen (7.25) gilt also: u(J) = u(B) + u(JnTrn 0), also wu(B) =26 — 18 = 8.
(Man verfolge diese Rechnung am Bild.)
Aufgabe 7.6: Wir betrachten die folgenden Teilmengen der Menge
M={n|neNaAl £n<50}:
A = {n|ne M an enthilt mindestens eine Ziffer drei},
B = {n|neMnanist durch 8 teilbar},
C = {n|ne M A n enthilt nur gerade Zahlen als Ziffern}.

a) Man gebe A, B, C durch ihre Elemente an!

b) Man bestimme: u(A), w(B), w(C), u(Av B), u(4 nB), w(AnC), u(BnC),
wW(BnNC), (AN Bn C)!

¢) Man gebe eine Menge X an mit u(X) =2 3 und (Xn4 =0 A (X~ B =0)
AXA~C=0).

d) Wie grof3 ist die Méchtigkeit der Menge D jener Elemente, die in genau zwei der
drei Teilmengen 4, B, C liegen?

Aufgabe 7.7: Man bestimme p(0), 1(A) aus dem obigen Beispiel!
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7.5. Produktmengen

7.5.1.  Geordnete Paare und geordnete n-Tupel

Oft kommt es darauf an, gewisse Elemente von Mengen gleichzeitig zu betrachten
und so zusammenzufassen, dal damit eine Reihenfolge festgelegt wird (siche auch
7.6.,7.9.). Die einfachste solche Zusammenfassung ist die von 2 Elementen zu einem
Paar, wobei es auf die Reihenfolge der Elemente ankommt.

D.7.13 Definition 7.13 (geordnetes Paar):

(1) Ein geordnetes Paar (a, b) ist eine Gesamtheit von zwei Elementen a, b, wobei es
auf die Reihenfolge dieser El te ankommt, d. h. (a, b) =% (b, a), falls a % b.

(2) Zwei geordnete Paare (a, b) und (c, d) heifien gleich genau dann, wenn gilt
a=cAb=d. (7.26)

Die im wesentlichen verbale Definition 7.13 bringt den neuen Begriff ,,geordnetes Paar<. Wir
wollen versuchen, diesen mit Hilfe des schon erklirten Begriffes ,,Menge** zu definieren.

Zunichst stellen wir die Frage: Kann man (a, b) durch die Menge {a, b} definieren, d. h. (a, b)
= {a, b} setzen? Dies ist nicht méglich, denn es gilt {a, b} = {b, a} und demzufolge wire (a, b)
= (b, a) auch fiir @ & b. Der Ansatz

(a, b) = {{a}, {a, b}}, . (1.271)
das geordnete Paar. als Mer ge zweiter Stufe zu definieren, ist dagegen erfolgreich, denn man kann
zeigen, daB die in (7.27) erkldrte Menge die Gleichheitsdefinition (7.26) erfiillt.

Damit konnen wir unsere verbale Definition 7.13 ersetzen durch eine Definition,
die den Begriff ,,geordnetes Paar auf den Mengenbegriff zurtickfiihrt.

D.7.14 Definition 7.14: Ein geordnetes Paar (a, b) ist die Menge {{a}, {a, b}}
(a,b) = {{a}, {a, B}}.

Fiir die Beschreibung vieler praktisch interessanter Sachverhalte reicht jedoch der
Begriff des geordneten Paares nicht aus. Wir erweitern deshalb auf Anordnungen
von n Elementen, wobei es ebenfalls wieder auf die Reihenfolge dieser Elemente
ankommt. Wir nutzen die Definition 7.14 (n = 2) aus und definieren induktiv:

D.7.15 Definition 7.15: Ein geordnetes n-Tupel (a,, a,, ..., a,) von Elementen ist ein geord-
netes Paar, dessen Elemente das (n — 1)-Tupel (a,, a,, ..., a,_,) und das Element a,
sind (n = 2: Induktionsanfang) :

@y, 5,y Gyy, @) = {{(al Ay ey Gyy)}s {(01, [CYRTY S an}}- (7.28)

~=-9Q=(ba) (Elemente von 8)
g o o o oAx8

o o o o

o o o o

7 2 X
(Elemenfe von A)

Bild 7.8. Darstellung geordneter Bild 7.9. Darstellung von 4 x B
Paare als Punkte einer Ebene
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Beispiel 7.18: Wir betrachten in einer Ebene ein rechtwinkliges x,y-Koordinaten-
system (Bild 7.8). Die Punkte P in der Ebene lassen sich dann eindeutig durch je ein
geordnetes Paar (a, b) charakterisieren. Es ist allgemein bekannt, daB der Punkt
P = (a, b) vom Punkt Q = (b, a) fiir a + b verschieden ist.

Die Punkte im 3-dimensionalen Raum werden dagegen eindeutig durch ein 3-Tupel
(Tripel) charakterisiert. (Weitere Beispicle siche 7.6. und 7.9.)

7.5.2.  Produktmengen
Im folgenden wollen wir geordnete Paare, die aus Elementen gewisser Mengen 4, B
gebildet werden, zu Mengen zusammenfassen und diese speziell bezeichnen.
Definition 7.16 (Produktmengen): A und B seien zwei Mengen. Dann heifst D.7.16
Ax B={(ab)|acAAnbeB) (7.29)
Produktmenge der Mengen A, B (auch genannt: Kreuzmenge, kartesisches Produkt),
Die Menge A4 x B ist eine Menge geordneter Paare, enthilt also Mengen zweiter
Stufe als Elemente und ist deshalb selbst eine Menge dritter Stufe.
Beispiel 7.19:
4= {‘71’ az}y B = {0, 2, 4},
A4 x B ={(a;,0),(a,,2), (a4, (@,0), (a,?2), (a, 4)}.
(2) A ={p =3 ist eine Primzahl®, ¢ = ,,10 ist durch 4 teilbar*}, B = {W, F},
A x B = {(,,3 ist eine Primzahl, W), (,,3 ist eine Primzahl“, F)
(,,10 ist durch 4 teilbar, W), (,,10 ist durch 4 teilbar*, F).
1 3
,3,1,72}, B=1{0,1,2,3,4}.

Die Elemente von 4 x B lassen sich also als Punktmenge geméB Bild 7.9 darstellen.

@A:@

(Elemenfe von 8)

T e s
T, S

(Elemente yan )

4 A={alacGnra> =5}, B={b|beRA—-1=Zb< +1},

Darstellung von 4 x B = {(a.b) | (@aeGra> =5 a(becRA—-1=<b< 1)} in
Bild 7.10.

Einige Rechenregeln fiir die Produktmenge wollen wir im Satz 7.6 zusammen-
stellen:

.

Satz 7.6: Fiir beliebige Mengen A, B, C gilt: S.7.6
(DA+B>AXxB+BxA4d . (nichtkommutativ); (7.30)
2)A x (BUC)= (4 x Byv (4 x C) (Distributivgesetze); (7.31)

(3)A x (BNAC) = (4 x Byn (4 x C) (Distributivgesetze). (7.32)
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Aufgabe 7.8: Man bilde 4 x Bfir 4 = {x|xeGAr -2 < x = +2}.
B={y|lyeGay* =xnxe4d].

Aufgabe 7.9: Man zeige, daB sich in einem rechtwinkligen kartesischen Koordinaten-
system das Geradenstiick der x,y-Ebene y =2x, 0 < x <5, nicht als Kreuzprodukt
einer Teilmenge A der x-Achse und einer Teilmenge B der y-Achse darstellen 1aBt.

Zum AbschluB wollen wir den Begriff der Produktmenge noch ausdehnen auf
den Falln = 2.

Definition 7.17: Es seien A,, A,, ..., A, Mengen. Dann nennen wir die Menge aller
n-Tupel (ay, a,, ..., a,) mit a; € A; Produktmenge (n-faches kartesisches Produkt)
Ay X Ay x ... x A, = x 4; ={(ay,a,.....a,) | (Vi) (a, € 4)}. (7.33)
i=1
abgekiirzte Schreibweise

Beispiel 7.20: A = A; = A, = ... = A, ={alaeRA0 < a < 1}. Dann heifit
Ay X oo x A, =Ax ... x4 ={a,..,a)(Vi)(ageRA0Za 2 1)

n-dimensionaler Einheitswiirfel (n = 2 - Quadrat, n = 3 - Wiirfel).

7.6. Beziehungen zwischen den Elementen einer Menge (System)

Wir wollen ein Versorgungssystem (Bild 7.11) betrachten, wie es in den verschie-
denen Bereichen der Wirtschaft auftritt.

Ein Hersteller H erzeugt ein Produkt, welches von den drei Abnehmern (Betrieben,
Baustellen usw.) benétigt wird. Die Pfeile geben an, dafl und in welcher Richtung
Fahrzeuge zwischen den Elementen H, 4, , 4,, A5 das betreffende Produkt transpor-
tieren bzw. leer zum Hersteller zuriickfahren.

Bild 7.11.
Ein spezielles Versorgungssystem

Die Gesamtheit der H, A, A,, A3, also der Hersteller und Abnehmer sowie die
Pfeile, die die Beziehungen zwischen diesen beschreiben, fassen wir als Einheit auf
und nennen sie System. Dabei heiflen

E ={H, A, A,, A3} die Menge der Elemente,

R* — die Menge der Beziehungen zwischen den Elementen des Systems.

Im Bild 7.1 haben wir die Elemente von R* durch Pfeile dargestellt. Man kann nun
einen solch« n Pfeil eindeutig durch ein geordnetes Paar von Elementen aus E dar-
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stellen. In unserem Beispiel ergeben sich die folgenden, geordneten Paare

(H, 4,)

(H, 4,) } — Transport der Produkte vom Hersteller zu den Abnehmern;
(H, 43)

(4,1, H) .

(4, H) — Riickfahrt der leeren Fahrzeuge von den Abnehmern zum

2 Hersteller;

(45, H)

(A, 43) — Fahrzeuge, die durch irgendwelche Stérungen bedingt bei 4,
(45, 4,) bzw. bei A4, nicht entladen kénnen, transportieren das Pro-

dukt weiter zu 4, bzw. A4,.

Damit sehen wir sofort, daB sich die Menge R* der Beziehungen zwischen den Ele-
menten des Systems, die wir auch Relation nennen wollen, als Teilmenge der Produkt-
menge £ x E darstellen 1aBt:

R* = {(H, 4,), (H, A,), (H, 43), (4,, H), (4>, H), (43, H), (4, 4,),
(45, 4)} S E x E.

Die Menge R* legt die Struktur des Systems fest. Die beiden Mengen E und R*,
die gemeinsam das System beschreiben, fassen wir durch das Symbol S = [E, R¥]
zusammen und nennen S das System. Eine solche Definition des Systems ist eine
wichtige und notwendige Vorstufe fiir alle weiteren Untersuchungen wie:

— Beschreibung der zeitlichen Vorgénge (Prozesse), die im System ablaufen,
— Simulation solcher Prozesse,
- Optimierung des Systems selbst oder der Prozesse, die in ihm ablaufen.

Als Abstraktion aus diesem Beispiel wollen wir zum AbschluB cine allgemeinere
Definition des Systembegriffs formulieren.

Definition 7.18: Ein System S ist eine Zusammenfassung von zwei Mengen E und R¥,
symbolisch: S = [E, R¥], wobei E die Menge der Elemente des Systems und R*.
R* < E x E, die Menge der zwischen diesen Elementen existierenden Beziehungen
( Relationen) und damit die Struktur des Systems beschreibt.

e Operationen zwischen den Elementen einer Menge (linearer Raum)

In diesem Abschnitt und auch in den nachfolgenden beiden Abschnitten werden
einige Begriffe, die unmittelbar mit dem Mengenbegriff zusammenhangen, angegeben.
Zunichst definieren wir den fiir die Mathematik fundamentalen Begriff des linearen
Raumes. Dazu werden im folgenden Elemente einer beliebigen Menge X mit x, y, z, ...
und Zahlen (reelle Zahlen) mit a, b, c, ... bezeichnet.

Definition 7.19 (linearer Raum): Eine Menge X heifit ein linearer Raum, wenn gilt:
Sind x. v beliebige Elemente von X, so ist auch ihre Summe x + y ein Element von X,
und ist ferner a eine Zahl, so ist auch a - x ein Element von X. Der Begriff ,,Summe*
steht hier fiir irgendeine Operation, die je zwei Elementen x,y€ X ein Element, bezeichnet

D.7.18

D.7.19
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durch x + y € X, zuordnet. Dabei geniigen diese Addition und die Multiplikation mit
einer Zahl den folgenden Gesetzen:

Mx+y=y+x, (7.34)
QDx+@+2)=x+y) +z, (7.35)
BRa-x+y)=ax+a-y, (7.36)
@@+b)-x=ax+b-x, (7.37)
() a-(b-x)= (- b)-x, (7.38)
©1-x=x, (7.39)
MNEx+y=x+2-y=z (7.40)

und es wird ein Nullelement o durch O-x = o definiert, welches die Bedingung
x + o = x erfiillt und weitere aus (7.34) bis (7.40) herleitbare Eigenschaften besitzt.

Nach dieser Definition folgt, dal mit zwei beliebigen Elementen x, y eines linearen
Raumes X und zwei beliebigen Zahlen auch das Element a - x + b -y, welches wir
Linearkombination von x und y nennen, zum Raum X gehort.

Beispiel 7.21: Es sei X = {(xy, X5, .... X,) | (€ {1, 2, ..., n}) (Vi) x; € R} die Menge
aller n-Tupel reeller Zahlen,d. h. X = R x R x ... x R, wobei wir im folgenden zur
Abkirzung fir R x R x ... x R das Symbol R" schreiben wollen. Wir definieren:
X+ Y= X1, X2, 000, Xn) + (V15 Y25 000y I)
=(x; + Y5, X2 + Vayees Xy + V) ERY, (7.41)
a*x =a - (x;,Xy,....,x,) =(a"x;,a"x,,...,a"x,)€R" (7.42)
Man kann leicht zeigen, daB3 die Eigenschaften (1) bis (7) gelten,
zB.@):(@+b):-x=((a+b)x,@+b)x,,...,(a+b-x,)
=@ x;+b"x,...,ax,+b-x,)=(a"x,...,a"x,)
+ b xy,..,b0x,)
=a (Xy,.e0s X)) + b (xy,...,x,) =a-x+b-x.

|

Das Nullelement o ergibt sich zu
0=0"Xx=0" (X1, %, ... %) =(0°x,0°x5,...,0°x,) =(0,0,...,0).

Demzufolge bildet die Menge R" mit den Definitionen (7.41) und (7.42) einen linearen
Raum, den sogenannten n-dimensionalen, reellen, euklidischen Raum (siche auch 7.8.),
der bei Interpretation der n-Tupel (x,, x5, ..., x,) als Vektoren auch Vektorraum
genannt wird.

7.8. Metriken in Mengen (metrischer Raum, Umgebungsbegriff)

Wir betrachten wieder eine Menge X.

Definition 7.20: Ein Abstand auf X ist dann definiert, wenn jedem Element (x, ¥)
aus X x X in eindeutiger Weise eine reelle Zahl d, bezeichnet mit d(x, y), zugeordnet
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ist, die die folgenden Eigenschaften besitzt:

() d(x,y) =0 fiiralle (x,y)eX x X, (7.43)
(2 dx,y) =0ex=y, (7.44)
3) d(x, y) = d(y, x) fiiralle (x,y)eX x X, (7.45)
(4) fiir drei beliebige Elemente x, y, z € X gilt:

d(x,2z) £d(x,y) +d@, 2) Dreiecksungleichung (7.46)

Die Grofie d(x, y) heifst dann Abstand auf X.
Unter einem metrischen Raum versteht man eine Menge X gemeinsam mit einem auf
X gegebenen Abstand d(x, y).

Die metrischen Raume besitzen groBe Bedeutung in der Funktionalanalysis und
stellen eine wichtige Grundlage fiir Probleme der mathematischen Operationsfor-
schung und der numerischen Mathematik dar. Wir betrachten als Beispiel noch ein-
mal die Menge X' = R", von der wir bereits gezeigt hatten, daB sie einen linearen Raum
bildet. Auf R" fithren wir jetzt einen Abstand d folgendermaBlen ein: Fiir beliebige
X = (X;, X2y 000y X), ¥ = (V1 Va5 ..., V) definieren wir:

I dx,y) = A/ é; (= y)* (7.47)

Bild 7.12. zeigt diesen Abstand im Falle n = 2, der mit dem gut bekannten gerad-
linigen Abstand zweier Punkte der Ebene tibereinstimmt. (Aus diesem Grunde heilt
(7.47) tibrigens auch Euklidischer Abstand und R" Euklidischer Raum.)

Eigentlich ware nachzupriifen, dal (7.47) tatsichlich die Bedingungen (7.43) bis
(7.46) erfiillt. Wir wollen diese einfache Aufgabe jedoch dem Leser iiberlassen.

J
““ifl/?y-(y,,yz)

1
ek

Bild 7.12.
Euklidischer Abstand im R?

Als Ergebnis erhalten wir: Die Menge R" ist ein linearer, metrischer Raum. Wei-
tere Beispiele konnen erst spiter, beispielsweise in Abschnitt 8., behandelt werden.

Im foigenden wollen wir noch den wichtigen Begriff der Umgebung einfiihren.
Dazu sind einige weitere Definitionen notwendig:

Definition 7.21: X sei ein metrischer Raum.
1. Die Menge K(a,r) = {x| xe X nd(a, x) < r} (7.48)
heifit offene Kugel um a mit dem Radius r.
2. Die Menge K'(a,r) = {x|xe X rnd(a,x) < r} (7.49)

heif3t abgeschlossene Kugel um a mit dem Radius r.

3. Eine nichtleere Teilmenge A von X heifit beschrinkte Menge in X, wenn
gilt: Es existiert eine abgeschlossene Kugel K'(a, r) mit endlichem Radius r,
so dafp A < K'(a, r) gilt.

D.7.21
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Beispiel 7.22: Wir haben gezeigt, daBl die Menge R” ein metrischer Raum ist. Also ist

auch R = R, indiesem Falle geht (7.47) iiber in d(x, y) = \/ (x —p)* =|x — y|, ein
metrischer Raum.
Es sei @ € R. Dann gilt:

K(a,r)={x|xeRad@ax)<r} ={x|xeRnala—x| <r},
K'(a,r)={x|xeRndax)sr} ={x|xeRala— x| <r}
sind Intervalle mit dem Mittelpunkt @ und der Lange 2r. Der Begriff der Kugel filit

also im Falle R" = R mit dem des Intervalls zusammen, den wir in Beispiel 7.6
ausfiihrlich erlautert haben.

Beispiel 7.23: In Bild 7.13 haben wir fir X die Menge R*> = R x R gewihlt und
sowohl eine beschrinkte als auch eine nichtbeschrinkte Teilmenge gezeichnet.

Definition 7.22: X sei ein metrischer Raum mit dem Abstand d und A = X. A heift
offene Teilmenge von X, wenn gilt: Fir alle x, x € A, existiert ein r, r > 0 so, daf}
K(x,r) c A gilt.

Bild 7.13.
A beschréinkte,
B nichtbeschrinkte Teilmenge des R?

Das heiBt, mit jedem x, welches zu 4 gehort, gehort auch eine offene Kugel um x
zur Menge A. Es sei z. B. X = R. Dann ist jedes offene Intervall (a, b) eine offene
Teilmenge von X.

Mit Hilfe dieser Begriffe sind wir nun in der Lage, eine Umgebung einer Menge
zu definieren.

Definition 7.23:
1. Eine offene Umgebung von A ist eine offene Menge O mit A < O.
2. Eine Umgebung von A ist jede Menge U mit O = U (O offene Umgebung von A).

3. Ist A = {x}, so sprechen wir von Umgebungen des Punktes x anstelle des Begriffes
Umgebung der Menge {x}.

Beispiel 7.24: Wir betrachten wieder X' = R. (a, b) sei ein beliebiges offenes Intervall.
Dann gilt: Fir ein beliebiges festes ¢,£€ R, ¢ > 0, ist jede Menge (a — &, b + ¢)
={x|xeRaa—e< x<b+ ¢} cine offene Umgebung von (g, b).

Da das abgeschlossene Intervall [@ — ¢, b + ¢] das offene Intervall (@ — ¢, b + ¢)
umfaBit, (@ — &, b +¢) S [a — &, b + ¢],ist[a — &, b + ¢] eine Umgebung von (a, b).

Das abgeschlossene Intervall [a, a] konnen wir mit der reellen Zahl a identifizieren.
Fiir jedes positive ¢ ist deshalb (@ — ¢, a + ¢) eine offene Umgebung, [a — ¢, a + ¢]
eine Umgebung des Punktes a. Man nennt diese wichtige spezielle Umgebung auch
e-Umgebung des Punktes a.

AbschlieBend erklaren wir noch zwei wichtige Begriffe fiir Teilmengen der Menge R
der reellen Zahlen.
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Definition 7.24:

a) Es sei A = R; beR heifit obere Schranke von A, wenn fiir alle x € A die Unglei-
chung x < b erfillt ist; ae R heifit untere Schranke von A, wenn a < x fiir alle
x € A gilt.

b) Die Menge A heifit nach oben (bzw. nach unten) beschrinkt, wenn die Menge aller
oberen (bzw. unterzn) Schranken von A nicht leer ist.

Diese Betrachtung ist eine Verfeinerung unserer Aussagen im Beispiel 7.20.

Ist namlich dort X = Rund 4 £ X eine beschriankte Menge, so ist A nach oben und
unten beschriankt. Auch die Umkehrung dieser Behauptung ist richtig. Wir erklaren
nun das Supremum und das Infimum der Menge A:

Definition 7.25:
a) y = sup A ist eine reelle Zahl mit den Eigenschaften:

1. y ist obere Schranke von A;

2. :gfllliit'jede natirliche Zahl n, n = 1, existiert ein x € A so, dafiy — 71{ <x=vy
b) v = inf A ist eine reelle Zahl mit den Eigenschaften:

1. v ist untere Schranke von A;

2. fiir jede natiirliche Zahl n, n = 1, existiert ein x € A so, daffv < x < v + L
gilt. n
Anschaulich gesprochen: Das Supremum einer Menge A < R, y = sup 4, ist die

. 1.
kleinste obere Schranke von 4, denn y selbst ist obere Schranke, aber y — o ist auch

fiir beliebig groBes n keine obere Schranke von 4. Entsprechend kann man sich das
Infimum einer Menge 4, » = inf A, anschaulich vorstellen.

Fiir eine nach oben beschrankte Zahlenmenge 4 < R existiert stets das Supremum,
fiir eine nach unten beschrankte Menge 4 < R stets das Infimum. Supremum bzw.
Infimum einer unendlichen Menge 4 < R miissen jedoch nicht zu 4 gehéren.

Istnamlichz. B. 4 = [0, 1),sogilt:y =supA4 =1,» =inf4 =0und» = 0€ 4,
abery = 1¢ 4.

Gehoren y bzw. » aber zu A, so schreiben wir

y=supAd =max4 bzw. v =infA4 = min 4,

max A - Maximum der Menge A (groéBtes Element von A),
min 4 — Minimum der Menge A4 (kleinstes Element von A).

In unserem Beispiel gilt » = inf 4 = min 4 = 0, wihrend das Maximum von A
nicht existiert.

Diese Betrachtungen besitzen besondere Bedeutung im Zusammenhang mit reell-
wertigen Funktionen (Abschnitt 9.).
Aufgabe 7.10:

a) Man zeige, daB das halboffene Intervall [0, 1) keine offene Teilmenge von R* =
ist!

b) Man bildé: A=100,1)n]IL2],
B = (-1, +1]v(0,2)) n([1, 2]V [3, 10)).

D.7.24

D.7.25
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7.9. Weitere Anwendungen (Graphen, konvexe Polyeder)
7.9.1.  Graphen

Bei der Planung industrieller Prozesse und bei der Betrachtung von Netzwerken,
die in den verschiedenen Wissenschaftsgebieten auftreten, findet man vielfiltige Be-
ziehungen zwischen Wirtschaftsobjekten, Personengruppen und anderen GréBen.
Zur Beschreibung solcher Objekte und ihrer Wechselbeziehungen erleichtern gra-
phentheoretische Betrachtungsweisen sowohl die mathematische Modellierung als
auch die Losung der anstehenden Probleme. Man geht dabei so vor, dal man den
Objekten Punkte, den Wechselbeziehungen diese Punkte verbindende Kurven zu-
ordnet. Denken wir z. B. an das Bild 7.11, so haben wir damit den Graphen des
zugrunde liegenden konkreten Systems dargestellt. Im folgenden wollen wir den
Begriff des gerichteten Graphen definieren, miissen uns aber dann mit einigen ganz
wenigen Beispielen, die die Vielfalt graphenartiger Gebilde in keiner Weise wider-
spiegeln, zufriedengeben. Wir verweisen den interessierten Leser insbesondere auf
[3] und Band 21/2.

Definition 7.26: Ein gerichteter Graph D besteht aus einer Knotenmenge V,
V={v;,05,...}, V&9,
und einer Menge A gerichteter Kanten, die als Teilmenge der Menge V x V dargestellt
wird. Wir schreiben
D= (V, A).

Ist ae A die gerichtete Kante, die als Anfangsknoten v;, als Endknoten v; enthdlt, so
definieren wir

a = (v;, ;).
Beispiel 7.25 (siche auch Bild 7.14):

V ={vy, 0,03, 04, 0s}, A={a,,a,,a;,a4,0as,a6,0a,,ag, as}
mit a, = (vs, vs), a, = (vy, v3), a; = (v, 0,),

a, = (v2,v3), as = (v4, v3), as = (v4, Va),

a; = (v3,0,), ag = (04, Vs), as = (v3,vy).

Bild 7.14.
D =(V, 4,
V={o1,...,vs},

A={ay, ..., a0}

In Bild 7.11 ist ein weiteres Beispiel fiir einen gerichteten Graphen dargestellt.

Besondere praktische Bedeutung besitzen die Graphen als Grundlage der Netz-
plantechnik. Es sei z. B. ein Projektablauf in 6 Vorginge v,, v,, v, 04, Us, g Cinge-
teilt. Jeder Vorgang v; besitze einen frithesten Anfangstermin #; eine Dauer d; und
cine Mindestzeit ¢;’, die nach Beendigung des Vorgangs v; noch bis zur Beendigung des
Gesamtprojekts benétigt wird.



7.9. Weitere Anwendungen 97

Wir wollen voraussetzen: vy, v,, v3 und vs werden in dieser Reihenfolge von einer
Brigade 1, vs, v, ebenfalls in der angegebenen Reihenfolge von Brigade 2 erledigt,
und v, moge erst dann begonnen werden, wenn v, beendet ist. Indem wir einen An-
fangsknoten v, (Beginn) und einen Endknoten v, (Ende des Projektes) hinzunehmen,
konnen wir den oben verbal formulierten Projektablauf durch den Graphen D = (V, A)
aus Bild 7.15 darstellen.

W

ot

% Gl
Bild 7.15. Beispiel fiir einen Netzplan

7.9.2. Konvexe Polyeder

Zum AbschluB sollen als weitere wichtige Anwendungen des Mengenbegriffes
spezielle Punktmengen, die Polyedermengen, kurz behandelt werden. Die praktische
Bedeutung dieser Mengen liegt darin begriindet, daf3 sie die Mengen zuldssiger Lo-
sungen bei Optimierungsproblemen mit linearen Nebenbedingungen (siche insbe-
sondere Band 14) darstellen und damit Grundlage z. B. der linearen Optimierung sind.

Wir betrachten im folgenden wieder die Menge R" und darin ein rechtwinkliges,
kartesisches Koordinatensystem und definieren die Teilmenge

A={x=(x,%,.cc,X) | XER A ayX; + arX; + ... + a,X, — b < 0},

wobei alle ¢; und b reelle Zahlen seien. Bild 7.16 stellt die Menge A im Falle n = 2
dar.

Bild 7.16.
Halbebene und Begrenzungsgerade

R it Sk

Die lineare Ungleichung a,x, + a,x, — b £ 0, (a;, a,) # (0,0), definiert als

Menge A eine Halbebene, deren Begrenzungsgerade G*, G* < A, durch die Gleichung
a,x; + a,x, — b = 0 definiert wird. Als Verallgemeinerung dazu definieren wir:

Definition 7.27: Die Menge A heift ein abgeschlossener Halbraum des R". Die Glei-
chung ax, + a,x, + ... + a,x, — b = 0 kennzeichnet die Begrenzungshyperebene
dieses Halbraumes.

Im folgenden betrachten wir Mengen A,
Ai={x=(x;, %, ... %) | XER" NG "X, + a5, X3 + ... + a;," X,
—-b; 20}, i=1,2,...,m.

Sieber u. a., Mathematik

D.7.27
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Die zuldssigen Bereiche (Mengen zulassiger Losungen) groBer Klassen von Opti-
mierungsproblemen sind definiert als Durchschnitt endlich vieler solcher Mengen A, .
Wir betrachten deshalb

B=A nAsn...ndn= 0 4
i=1
={x|xeR'AGe{l,2, ... m} A (Vi)(a;," X, + ... + a;," x, — b; £ 0))}.

D.7.28 Definition 7.28: Die Menge B (Durchschnitt endlich vieler Halbrdume) heifit eine
Polyedermenge (konvexes Polyeder).
Beispiel 7.26 (siche auch Bild 7.17):
A, = {(xuxz) | (1, x2) € RP A —x; £ 0},
Ay = {(xlsxz) [ (x1, X2) € R* A —x, = 0},
Ay = {(x1, %) | (x1, X2) e R A X + x, = 10 £ 0},

N 1
A, = {(xx,xz)l(xl,xz)ek/\ —g'xl —x, + 1 go}.

Bild 7.17.
Spezielle Polyedermenge

x Aufgabe 7.11: Man stelle die Polyedermenge
Bz{tN|(=xS0A(-ySOA(-x =2 +6=0)r(x<9)
ARx—yZ —DAalx +y = 12)}

graphisch dar!
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Die Abbildung gehort zu den Grundbegriffen der Mathematik. Sie wird bei vielen
Untersuchungen angewendet. Deshalb werden hierzu im folgenden die wesentlichsten
Definitionen und Aussagen entwickelt. Sie bilden gleichzeitig die Grundlage fiir
die beiden folgenden Abschnitte iiber Funktionen und Zahlenfolgen. SchlieBlich
werden einige Anwendungen aufgezeigt. Diese tragen aber — entsprechend dem
Grundlagencharakter des Abschnittes — vorrangig illustrativen und mathematischen
Charakter, oder aber sie bezichen sich auf stark vereinfachte Fragestellungen der
Praxis.

8.1. Abbildungsbegriff

Die Bezeichnung Abbildung ist der Umgangssprache entlehnt. Damit ist eine
Schwierigkeit verbunden, denn in der Umgangssprache wird diese Bezeichnung in
anderem Sinne verwendet als in der Mathematik. Umgangssprachlich kann man
durchaus solche Bemerkungen wie ,,Mit diesem Modell ist eine gute Abbildung der
Realitit gelungen antreffen, wobei damit sowohl die Tatigkeit des Modellierens
als auch ihr Ergebnis gemeint sind. Nicht selten werden auch graphische Darstellun-
gen in Biichern als Abbildungen bezeichnet. An diese Vorstellungen kniipft der ma-
thematische Begriff der Abbildung in gewisser Weise an, obgleich er — wie gesagt —
sich von ihnen sehr wohl unterscheidet.

Zum leichteren Verstindnis sei als Einfiihrung der allen bekannte und sich seit
Jahrhunderten stindig aufs Neue wiederholende Vorgang der EheschlieBung be-
trachtet. Dabei muB selbstverstandlich von vielen gesetzmadBigen Zusammenhangen
und individuellen Einzelheiten abstrahiert werden, so daB sich Formulierungen erge-
ben, die teilweise etwas kurios anmuten. Dafiir sei im voraus um Verstandnis ge-
beten. Mathematisch 148t sich das Problem z. B. wie folgt beschreiben. In einem
Kalenderjahr kann die gesamte Bevolkerung tiber 18 Jahre zunichst in zwei Mengen
eingeteilt werden. Die eine Menge enthilt als Elemente alle weiblichen Bewohner
und die andere Menge enthilt alle médnnlichen Bewohner, und zwar unabhingig
davon, ob sie ledig oder verheiratet sind. Nun kann man eine dritte Mengen bilden,
deren Elemente alle die Paare sind, die in dem betrachteten Kalenderjahr die Ehe
schlieBen. Die Menge dieser Paare stellt dann eine Abbildung im mathematischen
Sinne dar. So einfach 1aBt sich dieses Problem beschreiben, wenn man sich auf die
Ebene mathematischer Abstraktionen begibt. Es muf3 natiirlich gleichzeitig einge-
standen werden, daB in der Realitat bei der Bildung solcher Paare ein ganzer Komplex
von GesetzmaBigkeiten und funktionalen Zusammenhingen wirkt, der durch die
obige mathematische Beschreibung in keiner Weise erfalit werden konnte.

Im folgenden Beispi2l ist ein vereinfachtes Problem der Praxis dargestellt. Es ist
fiir die Anwendung schon interessanter.

Beispiel 8.1: Gegeben sei ein festes Zeitintervall [#,, #;] und eine Anzahl von glei-
chen Maschinen, ‘mit denen ein bestimmtes Erzeugnis, z. B. Strimpfe, hergestellt
werden kann. Dann hiangt die Anzahl E der in [¢,, ¢,] produzierten Einheiten des
Erzeugnisses ab von der Zahl k der eingesetzten Maschinen. K6nnen mit einer Ma-
schine E, Einheiten des Erzeugnisses hergestellt werden, so kénnen mit & Maschinen
E,k Einheiten produziert werden. Damit ergibt sich die Formel

E=fk) mit f(k) = Ek.
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Vom Standpunkt der Abbildung kann man diesen Sachverhalt etwa so beschreiben:
Jede Zahl k der eingesetzten Maschinen wird auf eine Zahl E der mit ihnen produ-
zierten Einheiten des Erzeugnisses abgebildet. Im Ergebnis erhilt man eine Menge
von Paaren (k, E), die ebenfalls Beispiel einer Abbildung ist.

Das Charakteristische dieses sowie des Beispiels iiber die EheschlieBung besteht
darin, daB3 den Elementen einer Menge Elemente einer anderen Menge zugeordnet
werden, wobei eine Menge von Paaren entsteht. Damit ist Wesentliches des mathe-
matischen Begriffs der Abbildung bereits gesagt.

Definition 8.1: M und N seien zwei Mengen. Dann heif$t jede Teilmenge A = M x N
eine Abbildung aus der Menge A/ in die Menge N.

Entsprechend dieser Definition enthilt eine Abbildung 4 aus der Menge M in
die Menge N als Elemente nur geordnete Paare (x, y) mit xe M und y e N.

Aufgabe 8.1: Die bestehenden vertraglichen Beziehungen zwischen allen GieBerei-
betrieben und allen Verbrauchern von GieBereierzeugnissen der DDR sind zu einer
Abbildung zu modellieren.

Beispiel 8.2: Zahlreiche Probleme der Praxis fiihren bei ihrer mathematischen Mo-
dellierung auf Ungleichungen der Art i ¢;x; < b (vgl. Bd. 14). In diesem Zusam-
menhang betrachten wir die Aufgabe: l1\7lan ermittle alle die ganzen, nichtnegativen
Zahlen x, und x,, die der Ungleichung

8x, + 12x, < 96 (8.1)

geniigen. Wird die Menge der ganzen, nichtnegativen Zahlen mit N bezeichnet, so
ist mit dieser Aufgabe eine Abbildung 4 = N x N gegeben, die aus allen denjenigen
geordneten Paaren (x,, x,) mit x;, x, € N besteht, die der Ungleichung (8.1) ge-
niigen. Diese Abbildung 4 kann man graphisch z. B. so wie in Bild 8.1 darstellen.

%

Bild 8.1.

Eine Méglichkeit zur graphischen

., Darstellung der Abbildung {(x, x;)} mit
._.‘_\_7 8x; + 12x, < 96 und x;, x,€ N

Hierbei wird A reprisentiert durch die Menge aller markierten Punkte, wobei jeder
Punkt ein geordnetes Paar (x,, x,) € 4 darstellt (vgl. Bilder 7.9, 7.17).
Aufgabe 8.2: Fiir welche der Wertepaare (x, . x,):
(3,9), (4,9), (8,6), (9, 4), (16, 0), (6, 8)
ist die Ungleichung 5x, + 8x, < 88 erfiillt?

# Aufgabe 8.3: Wie in Beispiel 8.2 sei durch die Ungleichung 5x; + 8x, < 88 eine

*

Abbildung 4 = N x N definiert. Man gebe alle Wertepaare (5, x,) und (x,, 6) an,
die Elemente dieser Abbildung sind.

Aufgabe 8.4: Man stelle alle in Aufgabe 8.2 genannten und in Aufgabe 8.3 als Lo-
sung erhaltenen Wertepaare einschlieSlich der Geraden 5x, + 8x, = 88 graphisch
dar (vgl. Bild 8.1).
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Beispiel 8.3: Gegeben seien die beiden Mengen M = {1,2,3} und N = {a, b, ¢}.
Dabei ergibt sich die Produktmenge M x N zu

M x N ={(1,a),(1,b),(1,c¢), (2, a),(2,b), (20,3, a),(3,b), 3,0}
Dann sind z. B. die Teilmengen

4, = {(1,a),(1,b),(2,a),(2,¢)} und

A, ={(1,a),(2,a), 3, a)}

Abbildungen aus M in N. Diese Abbildungen kann man graphisch z. B. so wie in
Bild 8.2 darstellen. Hierbei wird jedes Element von A, reprasentiert durch die Gesamt-
heit von jeweils zwei entsprechenden Punkten und dem sie verbindenden Pfeil.

vl &

2 Tob 297/ ob pudga,
\\o o Graphische Darstellung der Abbildungen
3e ¢ 3 ° 4, und 4, aus Beispicl 8.3
4 A
Aufgabe 8.5: Gegeben sei die Abbildung *

A =1{(7,3),(1,4), (0, 6). 4,06), (5,7}

aus M in N. Welche Elemente muf3 dann die Menge M und welche die Menge N auf
jeden Fall enthalten?

Aufgabe 8.6: Nehmen Sie an, die Mengen M und N bestehen nur aus den von Thnen #*
fiir die Aufgabe 8.5 gefundenen Elementen. Stellen Sie dann die Abbildung A der Auf-
gabe 8.5 auf beide Arten graphisch dar (vgl. Bild 8.1 und 8.2).

Aus den obigen Beispiclen kann man schluBfolgern, daB3 bei einer Abbildung A
aus M in N durchaus nicht zu jedem Element x € M ein Element y € N gehéren muf3
(siche Abbildung A, in Beispiel 8.3). Umgekehrt muB auch nicht jedes ye N zu
einem x e M gehoren; schlieBlich kénnen zu einem xe M auch mehrere ye N
gehoren (siche Abbildung A, in Beispiel 8.3). In diesem Zusammenhang fiihrt man
noch folgende ergédnzende Begriffe ein:

Definition 8.2: Ist A eine Abbildung aus M in N, so nennen wir die Menge aller x € M, D.8.2
fur die ein y e N derart existiert, daf} (x,y)€ A ist, den Definitionsbereich von A;

er wird mit D 4 bezeichnet. Die Menge aller y € N, fiir die ein x € M derart existiert,

daf (x, y) € A ist, wird Wertebereich von A genannt und mit W , bezeichnet. Ist weiter-

hin (x, y) € A, so wird x ein Original oder Urbild von y und y ein Bild von x bei der
Abbildung A genannt. Man sagt auch, daf$ x durch A auf y abgebildet wird.

Diese neuen Begriffe kénnen am Beispiel 8.1 der Maschinen und der mit ihnen
produzierten Einheiten eines Erzeugnisses wie folgt interpretiert werden. Es sei M
die Menge der natiirlichen Zahlen von 1 bis m:

M={1,2,....k ...,m},
wobei m die maximale Anzahl der einsetzbaren Maschinen angibt und jede einzelne

Zahl k die unter gegebenen Umstinden konkret eingesetzte Anzahl von Maschinen
reprasentiert. N sei die Menge aller natiirlichen Zahlen. Dann ist mit

A ={(, E), 2,2E), ..., (k,kE,), ..., (m, mE,)}
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eine Abbildung aus M in N gegeben, die den Sachverhalt modelliert, daB mit jeder
einzelnen Maschine E; Einheiten des Erzeugnisses im Intervall [z, 7,] hergestellt
werden koénnen. Diese Abbildung besteht aus Paaren natiirlicher Zahlen (k, kE,),
k=1,2,. .., m,wobei k Urbild oder Original und kE; Bild ist. Der Definitionsbereich
dieser Abbildung ist gleich der Menge M, wihrend der Wertebereich gleich derje-
nigen Teilmenge der natiirlichen Zahlen ist, die die Zahlen kE,, k = 1,2,..., m,
enthalt.

Beispiel 8.4: Es sei M die Menge aller geordneten Paare P = (x,, x,) der Abbildung
aus Beispiel 8.2. Dann ist durch

z = 6x; + 5x; 8.2)

mit (x;, x,) € M eine Abbildung 4 € M x R' gegeben, deren Definitionsbereich
durch M gegeben und deren Wertebereich eine Teilmenge von R! ist. Sie besteht aus
allen denjenigen geordneten Paaren (P, z), fiir die P = (x,, x,) € M ist und z nach
der Formel (8.2) berechnet worden ist. Mit anderen Worten, die Originale dieser Ab-
bildung sind alle die Paare P = (x,, x,), deren Zahlen die Ungleichung (8.1) erfiillen,
wihrend die Bilder dieser Abbildung gewisse reelle Zahlen sind.

Aufgabe 8.7: Jeder der folgenden Sachverhalte soll zu einer Abbildung modelliert
werden. Dabei sind auch Definitionsbereich, Wertebereich, Originale und Bilder
néher zu beschreiben.

a) Von einer Ware stehen Q Mengeneinheiten zum Verkauf bereit. Beim Verkauf
einer Mengeneinheit der Ware wird ein Erlos von p Geldeinheiten erzielt. Der Erlos
wird in Abhédngigkeit von der Anzahl ¢ der verkauften Mengeneinheiten ermittelt
(g=1,2....,0).

b) In einem geschlossenen Behilter mit konstantem Volumen befindet sich ein
Gas, das Temperaturschwankungen im Bereich von 7, bis 7, unterworfen wird.
Der Druck des Gases wird in Abhangigkeit von der Temperatur gemessen.

Aufgabe 8.8: Man gebe Definitionsbereich, Wertebereich, Originale und Bilder der
Abbildungen 4, und A4, aus Beispiel 8.3 an.

Bei der Losung der Aufgabe 8.7 war es sicher etwas schwierig, alle Elemente der
Abbildungen in mdglichst kompakter Weise anzugeben. Das ist eine Schwierigkeit,
die allgemein fiir Mengen und damit auch fiir Abbildungen gilt. Es ist manchmal gar
nicht méglich und hiufig sehr umstédndlich, alle Elemente ciner Abbildung aufzu-
schreiben. Das gleiche Problem ist uns schon bei Mengen begegnet und wurde dort
mit Hilfe von Aussageformen gelost. Da Abbildungen nichts anderes als gewisse
Mengen sind, verwenden wir hier die Ergebnisse von Abschnitt 7.1. Dabei ergibt
sich, dall eine Abbildung 4 € M x N aus allen denjenigen geordneten Paaren
(x,y) mit xe M und y € N gebildet wird, fiir die eine Aussageform p,(x, ) zu einer
wahren Aussage wird. Dabei ist p,(x,y) eine Aussageform, die die Abbildung 4
charakterisiert. Dieser Sachverhalt wird von uns im weiteren kurz so geschrieben:

] A={(x.2)|xe MryeNnapix,»}. » (8.3)

Unter Aussageformen sollen ganz allgemein im weiteren Formulierungen ver-
standen werden (vgl. Abschnitt 3.2. sowie auch die Formeln (7.1), (7.2)), die sowohl
in verbaler als auch mathematischer Form gegeben sein konnen. Als Beispiel einer
verbal formulierten Aussageform p,(G, V) sei genannt: ,,Zwischen der GieBerei G
und dem Verbraucher ¥ gibt es vertragliche Beziehungen* (vgl. Aufgabe 8.1).



8.2. Lineare Abbildungen 103

Da die mathematische Formulierung von Aussageformen héufig selbst sehr kurz
ist, so kann man sie auch in der Schreibweise (8.3) direkt fiir p,(x, y) angeben. Ist
z.B. durch ,,E = kE, ecine Aussageform p(k, E) gegeben (vgl. Beispiel 8.1), so
kann anstelle von

A={(k,E)| ke MA Ee N ap(k, E)} (8.4)
auch geschrieben werden
A={(k,E)|ke MAEeNAE = kE,}. 8.5

Aufgabe 8.9: Die Abbildung der Aufgabe 8.7, Teil b) soll in der Form (8.3) und in
einer zu (8.5) dquivalenten Form geschrieben werden. Man verwende dabei die Lo-
sung fiir diesen Teil der Aufgabe 8.7.

Aufgabe 8.10: Die in der Losung der Aufgabe 8.1 konstruierte Abbildung 4 soll in
der Form (8.3) geschrieben werden.

Aufgabe 8.11: Bekanntlich besagt eines der Newtonschen Bewegungsgesetze, dal
die Kraft cines sich geradlinig bewegenden Korpers gleich dessen Masse multipliziert
mit seiner Beschleunigung ist. Man modelliere diesen Sachverhalt fiir einen Korper
mit konstanter Masse zu einer Abbildung und schreibe sie in Form von (8.5).

Aufgabe 8.12: a) Man gebe alle Elemente der Abbildung
A={x»]|xeMryeGay=x?
mit M = {-2, -1,0,1,2,3} an.
b) Man stelle die Abbildung
A={xp|xeR AyeR rAx+y <4}
graphisch in einer x,y-Ebene dar.

Durch die Definition 8.1 ist ein neues mathematisches Objekt eingefiihrt worden.
Mit den anschlieBenden Beispielen wurde gezeigt, daB solche Objekte tatsichlich
existieren und daf sie Bezichungen zu Problemen der Realitét haben.

Wenden wir uns nun der konkreten Untersuchung des neuen Objektes ,,Abbil-
dung® zu. Dabei sei zundchst daran erinnert, daf gute Fragen eine solide Grund-
lage fiir jegliche Erkenntnis bilden. Als erstes bietet sich die Frage an, wann denn
zwei Abbildungen gleich sind. Darauf kann sofort eine Antwort gegeben werden.
Abbildungen sind ja Mengen, und daher sind zwei Abbildungen gleich, wenn sie
dieselben Elemente enthalten. Diese Aussage mdge vorerst gentigen. Spéter wird sie
durch eine dquivalente, aber besser anwendbare ersetzt.

Als néchstes fragen wir nun nach besonders einfachen Abbildungen. Hierauf gibt
der folgende Abschnitt eine erste Antwort,

8.2. Lineare Abbildungen

Unter den Beziehungen zwischen GréBen der Realitdt zeichnet sich eine Klasse
durch besondere Einfachheit aus. Thr charakteristisches Merkmal ist die sogenannte
Linearitiit. Hierzu gehoren z. B. die Beziechung zwischen Erlos und Anzahl der ver-
kauften Mengeneinheiten einer Ware (siche Aufgabe 8.7) oder die zwischen der
Kraft und der Beschleunigung eines Kdorpers (siche Aufgabe 8.11). Nehmen wir
einmal an, daf} die Anzahl der zum Verkauf bereitgestellten Mengeneinheiten der

*
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Ware unbeschrinkt ist. Wurden dann m; bzw. m, Mengeneinheiten der Ware ver-
kauft und wurde dabei ein Erlés von E; = pm, bzw. E, = pm, Geldeinheiten erzielt,
so ist der Erlos E fiir den Verkauf von a;m; + a,m, Mengeneinheiten gleich a, E;
+ a,E, (ay, a, seien natiirliche Zahlen). Mit anderen Worten, der Linearkombination
(vgl. Abschnitt 7.7.) der verkauften Mengeneinheiten entspricht die gleiche Linear-
kombination der Erlose. Damit ist zugleich das Wesen der Linearitit von Abbil-
dungen herausgearbeitet. Es kann wie folgt charakterisiert werden: das Bild einer be-
liebigen Linearkombination von Originalen der Abbildung ist gleich der entsprechen-
den Linearkombination der Bilder dieser Originale (siehe hierzu insbesondere (8.8)).
Allgemein werden wir im weiteren unter linearen Abbildungen folgendes verstehen:

Definition 8.3: Eine Abbildung A aus einer Menge M in eine Menge N mit dem Defi-
nitionsbereich D 4 heifit linear, wenn

1. D, ein linearer Raum ist und
2. mit (X1, ¥1), (X2, ¥,) € A fiir beliebige reelle Zahlen a,, a, auch
(@1x1 + %5, a1y, + azy)) € A (8.6)
gilt.

Als Erlduterung zu dieser Definition sei folgendes erwahnt. Jede beliebige Ab-
bildung 4 aus M in N ist eine Teilmenge geordneter Paare (x, y) mit x € M und y € N.
Die Tatsache, daB dabei y Bild des Originals x ist, wird auch durch die Schreibweise

Ax =y oder A(x) =y 8.7

zum Ausdruck gebracht. Unter Verwendung dieser Schreibweise kann man die For-
derung (8.6) nun so formulieren:

I A(ayx, + a%,) = a1 4(x,) + aA(x,). (8.8)

Das ist auch di€ Form, die bei praktischen Uberpriifungen der Linearitit gegebener
Abbildungen hiufig benutzt wird.

Schon hier sei darauf hingewiesen, dafl im folgenden noch eine Reihe linearer
Abbildungen auftreten werden. Dazu gehdren u. a. die Abbildungen, die den diffe-
renzierbaren Funktionen deren Ableitungen, den integrierbaren Funktionen deren
Integrale und den Vektoren eines linearen Raumes bei der Multiplikation mit Matri-
zen wiederum Vektoren des gleichen oder eines anderen Raumes zuordnen.

Aufgabe 8.13 : Man untersuche, welche der folgenden Abbildungen linear ist:
Ay ={(x,») | xeR' AyeR Ay =3x + 4};
Ay ={(x,») | xeR' AyeR Ay = 2x};
A ={(x,») | xe[-34]Aye R Ay = 2x}.
AbschlieBend sei noch erwihnt, daB8 der Begriff der Linearitét fiir gewisse Spezial-
klassen von Abbildungen wie Operatoren und Funktionale (vgl. Abschnitt 8.4.) in
der Literatur nicht einheitlich verwendet wird. Einige Autoren fassen die Linearitit

von Operatoren enger auf und fordern zusitzlich zu den von uns genannten Bedin-
gungen noch die Stetigkeit bzw. Beschrinktheit des Operators (vgl. [13]).

8.3.  Umkehrabbildung
In der Praxis ergibt sich bei der Untersuchung der Beziehungen zwischen zwei

GréBen oft folgendes Problem. Unter einem Gesichtspunkt ist die eine der GroBen
das Original und die andere deren Bild, wihrend es unter einem anderen Gesichts-
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punkt gerade umgekehrt sein kann. So sind z. B. fiir die Abbildung in Aufgabe 8.7
die Werte der Temperatur die Originale und die zugehdrigen MeBwerte des Drucks
die Bilder. Man kann jedoch das Gas auch Veranderungen des Drucks unterwerfen
und die Temperatur des Gases in Abhdngigkeit vom Druck messen. Fiir eine Ab-
bildung dieses Sachverhalts sind dann die Werte des Drucks die Originale und die
zugehorigen MeBwerte der Temperatur die Bilder.

In der Mathematik reduziert sich die Vielfalt solcher konkreten Probleme auf
die Frage, was sich ergibt, wenn man die Rolle von Original und Bild bei einer Ab-
bildung A umkehrt. Offensichtlich entsteht dabei wieder eine Abbildung; sie wird
auf Grund ihrer Konstruktion die Umkehrabbildung von 4 genannt.

Definition 8.4: Es sei A eine Abbildung aus M in N. Dann heifit die Menge {(y, x)|
yeNAxeMAn(x,y)e A} die Umkehrabbildung oder inverse Abbildung von A.
Sie wird mit A= bezeichnet:

1 At ={(y,x)|yeNaxe Ma(x,y) e 4]. (8.9)

Aus dieser Definition ist ersichtlich, dal 4= < N x M und somit eine Abbildung
aus N in M ist, wenn A € M x N gilt. Als Ergianzung hierzu sei bemerkt, daB
die Bildung der Produktmengen i. allg. nicht kommutativ ist und daher i. allg.
M x N £ N x M folgt.

Die Definition gibt gleichzeitig an, wie man in einfacher Weise fiir eine Abbildung 4
deren inverse 4! erhilt. Dazu ist nur in allen geordneten Paaren (x, y), die zu A
gehoren, die Reihenfolge der Elemente umzukehren. Dabei vertauschen gleichzeitig
Definitions- und Wertebereiche ihre Rollen:

Dy = Wi, Was =D,
Beispiel 8.5: Es seien A; und A, die Abbildungen von Beispiel 8.3; dann sind die
Umkehrabbxldungen gegeben durch -

={@aD,® 1), @2),(2)},

Az“ =1{@a, 1), (a 2),(a,3)}.

Dabei gilt
DA;I = WA; = {a, b, C}, VI/A;I = DA‘ = {1,2},
DA;I = WA2 = {a}, WAEI = DA2 = {l, 2, 3}.

Aufgabe 8.14: Man gebe fiir die Abbildung A vom Teil a) der Aufgabe 8.12 die inverse
A1 einschlieBlich D,~* und W,™* an.

8.4. Einige spezielle Abbildungen

Nachdem bereits in Abschnitt 8.2. eine Klasse einfacher Abbildungen niher be-
trachtet worden ist, setzen wir diese Untersuchungen jetzt fort und interessieren uns
fiir weitere Klassen von Abbildungen, die durch besonders charakteristische Merk-
male ausgezeichnet sind.

So ein charakteristisches Merkmal besteht z. B. darin, daB zu jedem Original genau
ein Bild gehort. Fiir Abbildungen praktischer Probleme ist das hdufig der Fall
(vgl. u. a. Beispiel 8.1, Aufgaben 8.7 und 8.11), muB jedoch durchaus nicht immer
erfiillt sein. So wird es fiir die Abbildung von Beispiel 8.2 im allgemeinen zu einzelnen
Originalen durchaus mehrere Bilder geben. Daher sondert man unter allen Abbil-
dungen durch die folgenden Definitionen eine Teilklasse aus.

D.8.4
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Definition 8.5: Eine Abbildung A =< M x N wird eindeutig genannt, wenn aus
(x, y1) € A und (x, y,) € A immer y, = y, folgt.

Definition 8.6: Jede eindeutige Abbildung wird Funktion genannt.

Hiernach ist durchaus nicht jede Abbildung eine Funktion, so daf} dic Menge
aller Funktionen echt in der Menge aller Abbildungen enthalten ist. Eine Funktion
zeichnet sich unter den Abbildungen also vor allem dadurch aus, daB3 zu jedem ihrer
Originale jeweils nur ein einziges Bild gehort.

Beispiel 8.6: Es sei M die Menge aller n-Tupel reeller Zahlen (x, x,, ..., x,) = x;
zu jedem dieser n-Tupel kann man durch die Formel

n

Xl = X |xl (8.10)

i=1
eine reelle Zahl ||x|| definieren. Wir erwahnen, daf diese Zahl auch /;-Norm von x
genannt wird (vgl. Bd. 22). Offensichtlich ist die Zahl ||x|| durch (8.10) eindeutig
bestimmt. Daher ist durch die Menge aller Paare (x, ||x[|) € M x R! cine eindeutige
Abbildung 4, d. h. eine Funktion aus M in R! definiert. Die Umkehrabbildung

A" ={(z,x)|zeR' Axe M A (x,2) € A}
{(z,x)|zeR' Axe Mz =|[x]]}

ist jedoch nicht mehr eindeutig, denn man tberzeugt sich leicht, daB3 z. B. zu jedem
fixierten z € R, z > 0, die Bilder x' = (z,0,....0), x* =(0.20,...,0),

x3 = (%%, %) gehdren. Daher ist A= zwar eine Abbildung, jedoch keine
Funktion.
Beispiel 8.7: Wird jeder natiirlichen Zahlie N* = [1. 2, ...} durch cine gewissc Aus-

sageform p(i, a), z. B. in Form einer Formel wic ¢ = (I + /)~'. cine eindeutig be-
stimmte Zahl zugeordnet, so ist dadurch eine Funktion

A ={(,a)|ie N* rae R' A p(i, a))
oder — wie fiir die konkret genannte Formel -
A={GaieN"racR ra=( +i)" ,

erklart. Derartige spezielle Funktionen nennt man auch‘(unendliche) Zahlenfolgen.
In Abschnitt 10. wird dieser Begriff prizisiert und ausfiihrlich untersucht.

Es sei noch bemerkt, dafi der durch Definition 8.6 gepriigte Begrifl der Funktion
durchaus umfassender ist als derjenige, der bei der Modellierung quantitativer Zu-
sammenhange verwendet wird. Hierzu diene die folgende Aufgabe als Erliuterung.

Aufgabe 8.15: Es sei M die Menge aller Maschinen in einer Betriebshalle und N
dic Menge aller Arbeiter, die diese Maschinen bedienen. Dabei mogen einzelne
Arbeiter auch mehrere Maschinen bedienen, jedoch soll jede einzelne Maschine immer
nur vom gleichen Arbeiter bedient werden (man denke an die Mehr-Maschinen-
Bedienung bei Webeautomaten). Bildet man nun aus jeder Maschine m und dem
Arbeiter a, der sie bedient, Paare (m, a), dann ist damit eine Abbildung 4 € M x N
gegeben. Man untersuche, ob diese Abbildung eine Funktion ist.

Der Begriff der Funktion kann seinerseits noch weiter spezifiziert werden. Dazu

werden zundchst an Definitions- und Wertebereiche der Funktion weitere Forderun-
gen gestellt.
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Definition 8.7: Sind M und N metrische Riume (vgl. Abschnitt 7.8., s. auch Bd. 22), D.8.7
so wird jede Funktion A < M x N ein Operator genannt.

Definition 8.8: Ist M ein metrischer Raum, so wird jede Funktion A = M x R ein D.8.8
Funktional genannt.

Funktionale zeichnen sich also unter den Operatoren dadurch aus, daB ihr Werte-
bereich nicht in irgendeinem metrischen Raum, sondern in dem Raum der reellen
Zahlen liegt. Mit anderen Worten, bei einem Funktional ist das Bild immer eine
reelle Zahl.

Beispiel 8.8: Es sei M die Menge aller n-Tupel reeller Zahlen mit der Metrik

dat =, 5 @b ' @®.11)

wobei a = (a,, ay,...,a,) und b = (b, b, ..., b,) beliebige Elemente von M be-
zeichnen. Dann ist M ein metrischer Raum, den wir mit R" bezeichnen, und die in Bei-
spiel 8.6 eingefiihrte Abbildung A ist ein Funktional aus R" in R*.

AbschlieBend weisen wir auf eine weitere Spezifizierung des Funktionsbegriffes
hin, die vorrangig mit einer zusétzlichen Forderung an seine Aussageform zusammen-
hingt. Eine Abbildung kann namlich nicht nur selbst eindeutig sein, d. h. eine Funk-
tion darstellen, sondern auch eine eindeutige Umkehrabbildung besitzen. Dieses
neue charakteristische Merkmal ist AnlaB3 zu folgender Begriffsbildung.

Definition 8.9: Eine Abbildung A heifit eineindeutig (oder auch umkehrbar eindeutig), D.8.9
wenn sowohl A als auch ihre Umkehrabbildung A= eindeutig sind.

Es konnte der berechtigte Einwand erhoben werden, warum von eineindeutiger
Abbildung und nicht einfach von eineindeutiger Funktion gesprochen wird. Es gibt
niamlich keine eineindeutige Abbildung, die nicht gleichzeitig Funktion im Sinne
von Definition 8.6 ist. Wenn hier dennoch von eineindeutigen Abbildungen die Rede
ist, so wird damit der traditionellen Bezeichnungsweise Rechnung getragen. Es sei
jedoch auch erwéhnt, daB der Begriff der eineindeutigen Abbildung widerspruchslos
ist und daher formal durchaus seine Berechtigung hat.

Aufgabe §.16: Mit Mp, My, M, bzw. M, seien in dieser Reihenfolge entsprechend
die Menge aller Funktionale, aller Operatoren, aller Funktionen bzw. aller Abbil-
dungen bezeichnet. Man vergleiche diese Mengen miteinander und gebe - soweit
vorhanden - Enthaltenseinsrelationen zwischen diesen Mengen an.

Aufgabe 8.17: Gegeben seien die folgenden Abbildungen
DA, ={P,2)|P=(x;,x)eR*rzeR Az =X} + 23},
DA, ={(x, )| XeR"AYER"AY = (X1, X5, ..., X)), m < n}.
3) Fiir eine beliebige fixierte reelle Zahl a + 0 sei

Ay ={(x, ) | xe R"AYye R" Ay = (ax,, ax,, ..., ax,)}.

4) Zur Produktion der Erzeugnisse E|, E,, ..., E,, werden insgesamt n verschiedene
Rohstoffe R,.,R,, ..., R, bendtigt, wobei n > m sei. Mit den Bezeichnungen
M ={E,E,,....E,}, N ={R,,R,, ..., R,} und der Aussageform p(E;, R)), die
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den Sachverhalt ,,Zur Produktion des Erzeugnisses E; ist der Rohstoff’ R; erfor-
derlich** beinhaltet, sei

Ay = {(Ei, R) | E;e M A Rje N A p(E;, R)}.

Man priife, welche dieser Abbildungen eineindeutig, welche nur eindeutig oder welche
keines von beiden ist, und gebe an, ob es sich bei ihnen im einzelnen um eine Funk-
tion, einen Operator, ein Funktional oder nur eine Abbildung handelt.

AbschlieBend geben wir noch eine Abbildung an, die auch in anderen Zusammen-
hangen von Bedeutung ist (vgl. Bd. 13). Gemeint ist die Permutation, unter der man
i. allg. eine geordnete Auswahl von Elementen aus einer Menge versteht (vgl. Abschnitt
6.2.1.). Wir spezifizieren den Begriff in folgender Weise. Es sei N* das n-fache karte-
sische Produkt der Menge N mit sich selbst. Ordnet man nun dem speziellen Element
To = (1,2,...,n)e N" alle moglichen anderen Elemente 7€ N" zu, so bildet die
Menge der dabei entstehenden geordneten Paare (7, ; 7') eine Teilmenge von N* x N*
und ist als solche eine Abbildung von N” auf N”. Jedes ihrer Elemente stellt eine
Permutation gewisser n natiirlicher Zahlen k(i), i = 1, 2, ..., n, dar. Ahnlich wie bei
Zahlenfolgen (vgl. (10.1)) verwendet man dabei statt des platzaufwendigen Symbols
(To;T) = (1,2, ...,n;k(1), k(2), ..., k(n)) das kiirzere Symbol (k,, k,, ..., k,).



9, Funktionen reeller Variabler

Funktionen reeller Variabler haben sich cinerseits bei der Losung zahlreicher
Probleme der Naturwissenschaften, Technik und Okonomie bewdhrt und sind
andererseits fiir viele mathematische Untersuchungen von grundlegender Bedeutung.
Deshalb werden im folgenden Funktionsbegriffe eingefiihrt sowie theoretische Grund-
kenntnisse {iber Funktionen vermittelt und deren einfachste Eigenschaften ent-
wickelt.

9.1. Begriff der Funktion und Arten ihrer Vorgabe

In der Realitit kann vielfach der Sachverhalt beobachtet werden, daB eine Grofle
ihren Zahlenwert in Abhédngigkeit von den jeweiligen Werten gewisser anderer
GroBen verandert. So ist aus der Geometrie bekannt, da3 sich der Flicheninhalt
eines Kreises mit dessen Radius und der Flicheninhalt eines Rechtecks sich mit
dessen Seitenlangen verandert; in der Physik ist u. a. ein Gesetz liber den Zusam-
menhang zwischen Volumen (¥), Druck (p) und Temperatur (7) bekannt, das jeweils

eine dieser drei GroBen durch die beiden anderen ausdriickt (z. B. V= az.

a - Proportionalitiats- und Dimcnsionsfaktor); aus der Wirtschaft ist bekannt, dal

sich der beim Verkauf einer Ware erzielte Erlos mit der Anzahl der verkauften Men-
geneinheiten dndert; in der politischen Okonomie wird die Profitrate dargestellt als
Quotient von Mehrwert durch Summe von variablem und konstantem Kapital und
andert sich daher mit den letztgenannten Grofen.

Die Vielfalt dieser realen Sachverhalte wurde mathematisch durch den Begriff
der Funktion verallgemeinert. Vorbereitend sei bemerkt, daf in1 weiteren mit R"
der reelle, n-dimensionale, euklidische Raum bezeichnet wird, dessen Elemente
geordnete n-Tupel reeller Zahlen sind (vgl. Abschnitt 7.7.). Fiir den Spezialfall
n = 1 bezeichnet R' einfach die Menge aller reellen Zahlen R.

Definition 9.1: Es sei M eine Teilmenge des R" bzw. des R*. Wird dann durch eine Vor-
schrift jedem x € M genau eine reelle Zahl y zugeordnet, so sagen wir, daf$ auf M eine
reelle Funktion von einer Variablen (bei M < R') bzw. von mehreren Variablen
(bei M < R") gegeben ist. Fiir die Funktion verwendet man héufig das Symbol f,
und fiir die dem Element x € M eindeutig zugeordnete Zahl wird dann f(x) geschrieben.

Die in der Definition 9.1 auftretende Menge M wird Definitionsbereich von 1 ge-
nannt und mit D, bezeichnet; die Menge aller Zahlenwerte f(x), die sich ergibt,
wenn x die gesamte Menge M durchlduft, heit Wertebereich der Funktion f und wird
mit W, bezeichnet. Fiir Funktionen wird folgende Schreibweise verwendet:

y = f(x) firalle xeD, ©.1)
oder kurz
y=/fx), xeD;. 9.2)

Dabei wird y = f(x) von uns auch Zuordnungsvorschrift, x dic unabhéingige Variable
oder das Argument und y die abhingige Variable der Funktion y = f(x), xe D,
genannt werden. Die Zuordnungsvorschrift muBl durchaus nicht immer unmittelbar
durch eine mathematische Formel gegeben sein. Auf die Vielfalt der Moglichkeiten
wird unten niher eingegangen.

D.9.1
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Sowohl in (9.1) als auch (9.2) fehlt jeglicher Hinweis auf den Wertebereich W,
der Funktion f. Das ist berechtigt, denn eine Funktion ist — im Gegensatz zur Ab-
bildung — allein durch ihren Definitionsbereich und ihre Zuordnungsvorschrift ein-
deutig bestimmt. Es gilt namlich

Satz 9.1: Zwei Funktionen
fii y=fix), xeDy, i=12,

sind genau dann gleich, wenn ihre Definitionsbereiche gleich sind und sie fiir jedes
Argument x aus dem Definitionsbereich gleiche Funktionswerte besitzen, d. h., es gilt

Si =1 9.3)
genau dann, wenn sowohl Dy, = Dy, als auch f,(x) = f5(x) fiir alle x € Dy, gilt.

Mit diesem Satz wird noch einmal betont, daf in (9.1) bzw. (9.2) genau die Angaben
enthalten sind, durch die eine Funktion eindeutig bestimmt ist. Wird etwa der Defi-
nitionsbereich nicht angegeben — wie das leider manchmal noch anzutreffen ist —,
dann ist auch keine Funktion mehr gegeben. Und umgekehrt kann man durch An-
gabe verschiedener Definitionsbereiche zur gleichen Zuordnungsvorschrift auch unter-
schiedliche Funktionen angeben.

Beispiel 9.1: Von den drei Funktionen
fit 7=/ =G +3),  xeD;=(-w, =3V +0)  (94)
i y=JGE =5 +3), xeD,=[5+®) ©.5)
fir v=yJ(x=35Jx +3), xeD,, =[5 +0o0) 9.6)

sind nur die beiden letzten cinander gleich: f, = f;. Ihre Zuordnungsvorschriften
stellen nimlich in dem gemeinsamen Definitionsbereich [5, 4 c0) nur unterschied-
liche Schreibweisen dar. Dagegen gilt f; % f,, denn hier sind zur gleichen Zuord-
nungsvorschrift verschiedene Definitionsbereiche angegeben worden.

Aufgabe 9.1: Man gebe fiir a,und a, solche konkreten Werte an, daB die Funktionen
. (x?=2x—=3)(x+2)
S T I
for y=x+4+2, xe(ay, +0)

x€(a;, +o0)

gleich sind.

Das Ergebnis von Satz 9.1 kann auch noch wie folgt formuliert werden: Der Werte-
bereich einer Funktion ist durch ihren Definitionsbereich und ihre Zuordnungsvor-
schrift eindeutig festgelegt. Jedoch ist durch Wertebereich und Zuordnungsvorschrift
der Definitionsbereich und damit die Funktion im allgemeinen nicht eindeutig be-
stimmt.

Aufgabe 9.2: Man bestimme vier Zahlen, a,, by, a,, b, derart, dal durch
y=x xela,b]

y=x%, xe€la,,b,]

zwei verschiedene Funktionen f; und 7, gegeben sind, die den gleichen Wertebereich
W, = Wy, = [1,9] besitzen.
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Als Symbole fiir Funktionen werden neben f hiaufig kleine lateinische Buchstaben
/. & h, ... verwendet. Aber auch F,G, H,...,p,p,..., D, ¥, ... sind gebriuchliche
Symbole fiir Funktionen. Entsprechend werden Definitions- bzw. Wertebereich mit
D,, D,,...bzw. W, W,. ... usw. bezeichnet.

Funktionen im Sinne von Definition 9.1 sind eindeutige Abbildungen und stellen daher Spezial-
fille des Funktionsbegriffes aus Abschnitt 8.4. (siche Definition 8.6) dar. Ihre Spezifik liegt darin,
daB der Wertebereich eine Teilmenge der reellen Zahlen ist und Dy S R* bzw. Dy < R" gilt. Diese
mengentheoretische Auffassung der Funktion findet man heute bereits in einer Reihe von Publika-
tionen. Unseren Zielen geniigt jedoch im wesentlichen die Definition 9.1, d. h. die urspriingliche
Auffassung der Funktion als eine Zuordnungsvorschrift fir xe D, £ R".

Die weiteren Darlegungen dieses Abschnittes beziehen sich vorrangig auf Funk-
tionen einer Variablen. Diese Einschrankung hat hier keine prinzipielle Bedeutung;
sie wird nur vorgenommen, um in der Darlegung Einfachheit und Geschlossenheit

zu erreichen.
Mit den folgenden Beispielen weisen wir auf die Vielfalt der Anwendungsmdéglich-
keiten der Funktionen hin (vgl. Abschnitt 9.8.).

Beispiel 9.2: Bezeichnet man mit x den Radius und mit / die Lange der Peripherie
eines Kreises, so gilt bekanntlich ‘

Il =2rx, x>0. 9.7)
Beispiel 9.3: Eine Spiralfeder wirkt dem Versuch, sie in Langsrichtung auszudehnen,
mit einer gewissen Kraft k entgegen. Experimente haben gezeigt, daB die Kraft &
im Rahmen gewisser Grenzen direkt proportional zur Ausdehnung x der Feder ist:
k ~ x. Es gibt nun fiir jede Feder eine spezifische Konstante ¢ derart, daf gilt

k =cx, 0<x<b. 9.8)

Beispiel 9.4: Fiir den in Beispiel 8.1 betrachteten 6konomischen Sachverhalt ergibt
sich die Funktion (vgl. auch (8.5))
E=Ex, xe{l,2,...,m}. 9.9)
Zu-diesen Beispielen sei bemerkt, daB die Zuordnungsvorschriften in (9.7), (9.8)
und (9.9) im Prinzip gleich sind, obwohl sic Sachverhalte zum Ausdruck bringen,
die vollig unterschiedlichen Bereichen der objektiven Realitdt angehoren. Gleich-
zeitig mochten wir jedoch betonen, daB die durch (9.7), (9.8) und (9.9) definierten
Funktionen selbst dann voneinander verschieden sind, wenn zufillig 2n = ¢ = E|;
gelten wiirde. Das folgt daraus, daB die Definitionsbereiche dieser Funktionen ver-
schieden sind.

An dieser Stelle erscheint es uns nun geboten, darauf hmzuwelsen daB man Funktionen erweitern
bzw. Erweiterungen von Funktionen betrachten kann.
Definition 9.2: Die Funktion
= g(x), xeD,

heift Exweiterung der Funktion

y=f(x), xeDy,
wenn gilt:

1.D; < Dy und

2. f(x) = g(x) fiiralle xeD;,.

D.9.2
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Im Sinne dieser Definition ist z. B. die Funktion

y=x2—4x-5 -0 <x<+0 9.10)
eine Erweiterung jeder der beiden folgenden Funktionen

y=x2—4x—-5 -0 <x=0 9.11)

y=x*—4x-5 25 x< +o. 9.12)

Ebenso ist die Funktion (9.4) Erweiterung der Funktion (9.5) bzw. (9.6). Aber auch die Funktion

_{x2~4x~5, -0 <x=Z0 9.13

r= 3x, 2<x <+ 0.13)

stellt eine Erweiterung der Funktion (9.11) dar. SchlieSlich ist auch folgendes Beispiel in diesem
Zusammenhang von Interesse:

Beispiel 9.5: Gegeben sei die Funktion f
y=3x+1, xeD,, mit D,={1,2,3,...,20}.
Dann ist jede der Funktionen
y=3x+1, x€[l,20] oder y=3x+1, x€(0, +o)
oder
y=3x+1, xe(—00,+00)
cine Erweiterung von f. Erweiterungsprobleme dieser Art treten insbesondere im Zusammenhang
mit der Auswertung von MeB- und Zeitreihen auf.

Wenden wir uns nun den Moglichkeiten zu, die fiir die Vorgabe von Funktionen
ciner Variablen existieren. Geht man vom Standpunkt des Praktikers an diese Frage
heran, so kann man wohl sagen, daB die urspriinglichsten Arten hierfiir darin be-
stehen, Funktionen durch verbale Beschreibung sowie durch MeB- bzw. Zeitreihen
vorzugeben. Als Beispiele der Vorgabe von Funktionen durch verbale Beschreibung
konnten genannt werden:

Beispiel 9.6:

1. [ sei die Funktion, bei der jedem Tag eines fixierten Jahres die mittlere Tages-
temperatur in einem bestimmten Gebiet zugeordnet wird; dabei seien die Tage,
beginnend mit dem 1. Januar, in der Reihenfolge 1, 2, ..., 365 numeriert.

2. fsei die Funktion, bei der jedem Jahr einer lingeren Zeitperiode (etwa von 1965

_ bis 1980) das Nationaleinkommen eines bestimmten Landes zugeordnet wird.

3. f'sei die Funktion, bei der in einem Stromkreis bei gegebener konstanter Strom-
stirke jedem Wert des Widerstands (in einem Bereich zwischen zwei Werten, etwa
Ry, = 10 Ohm und R, = 20 Ohm) der entsprechende Wert der Spannung zugeord-
net wird.

Die Vorgabe von Funktionen durch MeB- bzw. Zeitreihen ist haufig eine Folge
der verbalen Vorgabe und besteht einfach in der tabellenméBigen Zusammenstellung
der Werte fiir die unabhéngige und abhéngige Variable. Fiir die beiden ersten soeben
betrachteten Funktionen ergidbe das Zeitreihen der Art:

Tage 1 [ 2 l 3 | I 365 ©9.14)
mittlere Tagestemp. (in °C) —-72 I -83 ’ -79 ‘ I =51

bzw.

Jahre 1965 ‘ 1966 | { 1980 ©.15)
Nationaleinkommen \ '

(in 10° Wihrungseinheiten) 147,1 155,3 302,4
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Entsprechend konnte man fiir die im Zusammenhang mit dem Stromkreis genannte
Funktion z. B. folgende MeBreihe erhalten:

Widerstand (in Ohm) I 10,0 | 10,5 | 11,0 ] l 20,0 © Ié)
Spannung (in Volt) | 120 | 126 | 132 | | 240

Es sei darauf aufmerksam gemacht, daB durch die Zeitreihen (9.14) und (9.15)
die gleichen Funktionen gegeben sind, wie die in den Teilen 1. und 2. des Beispiels 9.6
genannten; sie unterscheiden sich nur in der Art der Vorgabe. Dagegen gibt die MeB-
reihe (9.16) eine Funktion an, die sich von der im Beispiel 9.6, Teil 3, genannten
unterscheidet, weil z. B. ihre Definitionsbereiche verschieden sind.

Eine Funktion kann weiterhin auch durch Angabe von Rechenvorschriften, nach
denen die Werte der abhingigen Variablen aus denen der unabhédngigen Variablen
berechnet werden sollen, gegeben werden; hierbei mufl selbstverstandlich auch der
Definitionsbereich mit angegeben werden. Beispiele dieser Art der Vorgabe haben wir
in (9.4) bis (9.12) bereits kennengelernt. Hier seien noch genannt

y=12x, xel[l0,20], 9.17)

y=12x, xeD,,D, ={100;10,5;11,0;...; 19,5; 20,0}.

Wir bemerken, daB die letzte Funktion die gleiche wie die durch die MeBreihe (9.16)
gegebene ist. Dagegen stellt (9.17) eine Erweiterung von (9.16) dar und kann mit
der in Beispiel 9.6, Teil 3, genannten iibereinstimmen.

Zu der Vorgabe von Funktionen durch Rechenvorschriften gehoren aber auch
Beispiele wie

{2x+], x € (—o0,0)
- x+ 1, xe[0,+oo)_
{ 6 — 2x, x€[0,3)

y (9.18)

oder

12 — 2x, x€[3,6) ' (9.19)
18 — 2x, x€[6,9).
Diese Funktionen unterscheiden sich von (9.17) sowie (9.4) bis (9.12) dadurch, daf
die Zuordnungsvorschrift nicht in Form einer einzigen, fiir den ganzen Definitionsbe-
reich giiltigen Rechenvorschrift gegeben ist; vielmehr gelten hier in verschiedenen
Teilmengen des Definitionshereiches der Funktion unterschiedliche Formeln. Der-
artige Funktionen werden wir zusammengesetzte Funktionen ncnnen. Sie sind keines-
falls reine Denkprodukte des Mathematikers, sondern crgeben sich bei der mathe-
matischen Modellierung praktischer Probleme.

Im Zusammenhang mit zusammengesetzten Funktionen weisen wir noch auf die
beiden folgenden speziellen Vertreter dieser Art hin.

Definition 9.3:

-1, x€ (--,0)
sgn x = J 0, x =0 ) (gelesen ,,Signum") x*) (9.20)
L+]. xe (0, +x)
sowie =P xe(—w0,0) )
Ix] = : . ve [0, +o) (gelesen ,,Betrag von x*) 9.21)

Y ,,Signum —,, Zeichen*, hicr als ,,Vorzeichen verwendet (aus dem Lateinischen).

8 Rieber u.a.. Mathematik

D.9.3



114 9. Funktionen reeller Variabler

Neben den genannten Arten der Vorgabe einer Funktion nutzt man in der Mathe-
matik auch die Moglichkeit, Funktionen graphisch darzustellen. Dadurch wird eine
Briicke zur Anschaulichkeit geschlagen. Es sei jedoch betont, daBl gegebene Funk-
tionen graphisch immer nur naherungsweise dargestellt werden konnen. Deshalb
ist die graphische Darstellung zwar ein wesentliches Hilfsmittel zur Untersuchung
von Funktionen, fiihrt jedoch nur in begrenztem MaBe zu exakten Aussagen. Zur
graphischen Darstellung einer Funktion zeichnet man sich gewéhnlich ein Achsen-
kreuz, bestehend aus zwei senkrecht aufeinander stehenden Geraden, triagt auf diesen
einen MafBstab auf und versieht sie mit einer Richtung. Theoretisch kann man nun
jedem geordneten Wertepaar (x, y) einer Funktion f eineindeutig einen Punkt in der
Zeichenebene zuordnen, den man als Schnittpunkt der beiden Hilfsgeraden g,, g,
erhalt (siehe Bild 9.1). Die so entstehende Punktmenge nennt man Graph der Funk-

[ R 5

Bild 9.1.
Graphische Darstellung eines
7 Y 5 v Wertepaares (xo, yo) einer Funktion f

tion. Praktisch geht man bei der Funktion f, deren Zuordnungsvorschrift eine
Rechenvorschrift y = f(x) ist, gewShnlich wie folgt vor. Man schafft sich zundchst
eine Wertetabelle. Hierzu wihlt man eine Reihe von Werten x;€ D, i = 1,2,...,n,
und berechnet die zugehérigen y,-Werte:

x I A ] x| | Xn

Y=/ | | || 5,

Danach {ibertrigt man die Wertepaare (x;, y;) in die Ebene mit dem Achsenkreuz, die
man kurz x,y-Ebene nennt, und versucht, di¢ so entstandenen Punkte durch einen
moglichst ,,glatten* Kurvenzug miteinander zu verbinden. Dazu benutzt man
die iiblichen Kurvenlineale. Der so konstruierte Kurvenzug stellt natiirlich nur eine
Niherung der Funktion fdar. Um die Nédherung mdglichst genau zu machen, ver-
sucht man die x;-Werte fiir die Wertetabelle so auszuwihlen, daf die charakteristi-
schen Merkmale der Funktion dabei erfaBBt werden. Derartige Merkmale sind u. a.
(vgl. hierzu weiterhin Abschnitt 7.6. aus Band 2) die sog. Null- bzw. Polstellen der
Funktion. Dabei heiit x, Nullstelle der Funktion y = f(x). x € D, wenn f(x,) = 0
und x, € D, gilt; dagegen heiBit x, Polstelle der Funktion, wenn | f(x)| in der Umge-
bung von x, beliebig grofie Werte annimmt.

Aufgabe 9.3: Die Funktion
y=x*-=5x+6, xel[l,3]
ist graphisch darzustellen; hierzu sind in die Wertetabellen die Werte
ZI’ i=0,1,2,...,8, aufzunehmen.
Zusammenfassend kann gesagt werden, dal Funktionen verbal, tabellarisch (durch

MeB- oder Zeitreihen) und analytisch (durch Rechenvorschriften) gegeben und aufler-
dem zur Nutzung der Anschaulichkeit graphisch dargestellt werden kénnen. Daneben

x; =1+
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gibt es noch weitere Moglichkeiten zur Vorgabe von Funktionen. Erwahnt seien
hier die Vorgabe von Funktionen mittels Parameter (siche Abschnitt 9.7.). SchlieB-
lich k6nnen Funktionen auch durch gewisse Gleichungen gegeben werden. Genannt
seien hier Differentialgleichungen (siche Band 7), Integralgleichungen und Differen-
zengleichungen.

Bei praktischen Problemen ergeben sich hdufig Funktionen, deren Definitions-
bereich kleiner ist, als die Menge aller x-Werte, fiir die der analytische Term der
Zuordnungsvorschrift mathematisch sinnvoll ist und reelle Werte liefert. Man unter-
scheidet daher zwischen dem sachbezogenen oder natiirlichen und dem mathemati-
schen Definitionsbereich. So stellt im Beispiel 9.6 das Intervall [10, 20] den sach-
bezogenen oder natiirlichen Definitionsbereich fiir die Funktion von Teil 3 dar
(siehe (9.17)), wahrend der analytische Term 12x der Zuordnungsvorschrift y = 12x
mathematisch fiir alle x € R' sinnvoll ist, weshalb R' hier den mathematischen
Definitionsbereich bildet. Der mathematische Definitionsbereich muf3 durchaus nicht
immer der ganze R' sein. So ist z. B. der Term log (3x — 12) nur fiir alle x mit
3x — 12 > 0, d. h. fiir alle x > 4 mathematisch sinnvoll. Daher stellt das Inter-
vall (4, +00) den mathematischen Definitionsbereich der Zuordnungsvorschrift
y = log 3x — 12) dar.

Aufgabe 9.4: Fir die Zuordnungsvorschrift y = \/ 4x — 20 ist der mathematische
Definitionsbereich zu ermitteln.

In den folgenden Darlegungen des Abschnittes 9. steht das neue mathematische
Objekt der Funktion einer reellen Variablen im Mittelpunkt. Wir werden nach der
Umkehrfunktion fragen (Abschnitt 9.2.), die einfachsten Eigenschaften unseres
Untersuchungsobjektes darlegen (Abschnitt 9.3.), gewisse Grundfunktionen auf-
zéhlen (Abschnitt 9.4.) und aus diesen ein recht umfangreiches ,,Reservoir® ge-
brauchlicher elementarer Funktionen bilden (Abschnitt 9.5.). Danach werden engere
Bezichungen zur Anwendung hergestellt. Hierzu gehéren die Konstruktion einer
Funktion, die vorgegebene Wertepaare (x;, y;), i = 1,2,..., n, enthdlt (Abschnitt
9.6.), die Darstellung von Funktionen mittels Parameter (Abschnitt 9.7.), dic mathe-
matische Modellierung einiger praktischer Probieme (Abschnitt 9.8.) sowic Funk-
tionsleitern und Elemente der Nomographie (Abschnitt 9.9.). Wir hoffen auf dic
Bereitschaft des Lesers, bei der Realisierung dieses Programms mitzuwirken, und
betonen noch einmal, dal im Vordergrund dieses wie auch des Abschnittes 10. das
Anliegen steht, die mathematischen Grundlagen fiir eine Reihe der folgenden Binde
zu legen.

Vorab sei hier noch erklart, wie man die elementaren Grundrechenarten der Addi-
tion und Multiplikation sowie deren Umkehrungen auf Funktionen tibertragt. Das
geschieht, indem man diese Operationen fiir Funktionen auf dic entsprechenden
Operationen ihrer Funktionswerte zuriickfihrt. So wird z. B. die Summe zweier
Funktionen f;: y = fi(x), x€ Dy, i = 1, 2, erklirt als die folgende Funktion

y =40+ fi(x), xeD;
dabei muB Dy, ~ Dy, + 0 sein und D = Dy, n Dy, gesetzt werden. Analog wird die
Differenz, das Produkt sowie der Quotient zweier Funktionen definiert. Beim Quo-

tienten von Funktionen ist zu beachten, dal man aus dem Definitionsbereich alle
die x-Werte ausschlieBen muB, fiir die die Nennerfunktion gleich null wird.

9.2 Umkehrfunktion (fiir eine unabhingige Variable)

In praktischen Problemen sind die Rollen von unabhingigen und abhingigen
Variablen durchaus nicht eindeutig festgelegt. So kann in den Beispielen 9.2 bis 9.4

3%
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die dort zunachst jeweils als abhdngige Variable angegebene GréBe durchaus als
unabhéngige Variable aufgefat werden. Mathematisch fithrt die Vertauschung der
Rollen von unabhingiger und abhangiger Variablen zur Umkehrfunktion.

Ist die Funktion f von der Art, daB} es zu jedem y € W, genau ein x € D, gibt,
dann heiBt f eineindeutig oder umkehrbar eindeutig. Fir jede eineindeutige Funktion
ist also nicht nur jedem x € D, eindeutig ein y, sondern umgekehrt auch jedem y € W,
genau ein x zugeordnet. Die letztgenannte Zuordnung bildet zusammen mit W, als
Definitionsbereich die Umkehrfunktion f~*:

[l x =), yeDgr, mit Dpr = W, (8122)
Die Zuordnungsvorschrift x = f~*(y) erhilt man fiir eineindeutige Funktionen,
indem y = f(x) nach x aufgeldst wird.

Es erweist sich, da3 die Eineindeutigkeit der Funktion fiir die Existenz ihrer Um-
kehrfunktion auch notwendig ist, denn es gilt

Satz 9.2: Die Eineindeutigkeit einer Funktion ist notwendig und hinreichend dafiir,
dafs sie eine Umkehrfunktion besitzt.

Fiir die praktische Ermittlung und den Umgang mit Umkehrfunktionen bezeichnet
man in der Darstellung (9.22) die unabhingige Variable wieder wie iiblich mit x
und die abhéngige Variable mit y; anstatt (9.22) wird also

1 [y =f1x). xeDm=W, (9.23)
geschrieben. Das hat eine vereinfachende Konsequenz fiir die graphische Darstellung
von fund f~!. Letztere ergibt sich namlich fiir die Form (9.23), indem der Graph der
Funktion f'an der Geraden y = x, x € (—00, +00) ,,gespiegelt* wird.

Beispiel 9.7: Fir die Funktion

3
fioy=¢e%% —-04, x€ [0, 7] 9.24)

soll dic Umkehrfunktion ermittelt werden. Zur Ermittlung von f~! 16sen wir die fiir
f gegebene Zuordnungsvorschrift schrittweise nach x auf:

v+ 0,4 = %5, 0.5x = In(y + 0,4)
und schlieBlich
x=2In(y +04).

Hierbei haben wir bereits den Sachverhalt benutzt (siche Abschnitt 9.4.). daf die
Logarithmusfunktion Umkehrfunktion der Exponentialfunktion ist. Man kann

zeigen. daBb W, = [f(OL f(%)] = [0,6; 1,72] ist. Daher lautet /~* in der Form (9.23)

[t v=2In(x+ 04), x e[0,6:1,72].
Bild 9.2 zcigt die graphische Darstellung von fund f-'.
Aufgabe 9.5 Man ermittle zu der Funktion

f: yr=2x-1, x e [0,3],

die Umkehrfunktion f/~'in der Form (9.23) und stelle sowohl 7 ais auch f~* graphisch
dar.
Wiihrend diese Aufgabe noch relativ einfach war, ist die folgende schon schwieriger.
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J
" ; Bild9.2.
1k Graphische Darstellung der Funktion
. 3
06 7 y =% — 04, xe |0,
) und ihrer Umkehrfunktion
06 7 1 X

Aufgabe 9.6: Man gebe zunéchst fiir den Parameter a einen Wert kleiner als 4 derart *
an, daB die Funktion

for y=x*—2x -3, x€[a, 4]

eineindeutig ist. Danach ermittle man die Umkehrfunktion /= in der Form (9.23)
und stelle beide graphisch dar.

Fiir Umkehrfunktionen gilt ein Sachverhalt, der rein formal eine Ubereinstim-
mung mit entsprechenden Formeln fiir das Rechnen mit Zahlen herstellt.

Satz 9.3: Die Umkehrfunktion einer Funktion, die selbst schon Umkehrfunktion einer S.9.3
anderen Funktion f ist, existiert immer und ist gleich f:

Gyt =, ©.23

Wird die Funktion als Abbildung aufgefa3t, d. h. wird von ihrer mengentheoretischen Auffassung
ausgegangen, dann fihrt die Vertauschung der Rollen von abhingiger und unabhingiger Variabler
bekanntlich zur Umkehrabbildung (siche Abschnitt 8.3.). Die Umkehrabbildung einer Funktion
muf jedoch nicht eindeutig sein; wenn sie es ist, dann stellt sie die Umkehrfunktion im obigen Sinne
dar. Daher kann sie auch wie folgt eingefithrt werden.

Definition 9.4: Ist die Umkehrabbildung f~* einer Funktion D.9.4
fiy=f(x), xeDy,
selbst eine Funktion, so wird f~* Umkehrfunktion von f genannt.

9.3. Einfachste Eigenschaften von Funktionen -

In diesem Abschnitt werden erstmals gewisse qualitative Betrachtungen von Funk-
tionen eine Rolle spielen. Es geht um Eigenschaften, die eine Funktion in ihrem ganzen
Definitionsbereich oder in Teilmengen, nicht jedoch in einzelnen Punkten dieses
Bereiches haben kann. Wir werden deshalb im weiteren voraussetzen, daf3 der Defi-
nitionsbereich der betrachteten Funktionen selbst ein Intervall ist.

Vorweg sei noch bemerkt, daB es umstandlich ist, die nachfolgend eingefiihrten
Eigenschaften fiir konkrete Funktionen ohne die Hilfsmittel der Differentialrechnung
nachzuweisen (hierzu s. Bd. 2). Deshalb werden wir nach Mdéglichkeit graphischen
Darstellungen den Vorzug gegeniiber rechnerischen Beispielen und analytischen
Betrachtungen geben.

Definition 9.5: Eine Funktion f D.9.5
=flx), xeDy,
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heifst auf der Menge M < D, beschrinkt, wenn es eine endliche Konstante C derart
gibt, dafs .

|fx)| = C firalle xeM (9.26)
gilt. Dabei wird C eine Schranke von f auf M genannt.

Da (9.26) aquivalent mit den Ungleichungen
] —C= flx) £C furalle xeM (9.26) .
ist, so ist die Beschrinkung einer Funktion auf M < D, gleichbedeutend damit,
daB ihre graphische Darstellung zwischen den beiden Geraden y = -C,und y = C

verlauft.
Neben (9.26) unterscheidet man noch die Beschrianktheit in nur einer Richtung.

Definition 9.6: Eine Funktion f

y=/x), xeD,,

heifit auf der Menge M < D, nach unten bzw. nach oben beschrinkt, wenn es eine
endliche Konstante C, bzw. C, derart gibt, daf8

C, £ f(x) firalle xeM 9.27)
bzw.
fix) £ C, firalle xeM (9.28)

gilt. Dabei werden C, bzw. C, untere bzw. obere Schranke von f auf M genannt.
Es gilt folgende-Aussage:

Satz 9.4: Fiir die Beschrinktheit einer Funktion [ auf M < D, ist notwendig und hin-
reichend, daf f auf M sowohl nach oben als auch nach unten beschrinkt ist.

Es sei noch bemerkt, daB eine beschriankte Funktion nicht nur eine, sondern un-
endlich viele Schranken besitzt. Ist namlich f auf M beschrankt und C irgendeine
Schranke, so ist auch jede Zahl C > C ebenfalls Schranke von fauf M.

Beispiel 9.8: Fiir die in Bild 9.3 dargestellte Funktion f gelten u. a. folgende Aussagen
1. fist auf [a, b] beschrinkt; dabei ist C = 4 eine mogliche Schranke.

Bild 9.3.
Zur Beschranktheit von Funktionen

2. f ist auf (—o0, x,] nach oben beschrankt, wobei C, = 3 eine mogliche obere
Schranke ist.

3. fist auf [0, +00) nach unten beschrinkt, wobei C; = —2 eine mdgliche untere
Schranke ist.
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Aufgabe 9.7: Man zeige, dal C, = —3 eine untere Schranke der Funktion f
flx) =x* —2x -1, xe(—o0, +0),

auf ihrem gesamten Definitionsbereich ist. AuBerdem bestimme man zwei Zahlen
a < b derart, daB [a, b] das groBte Intervall ist, auf dem /' nach oben durch C, = 7
beschrankt ist.

Definition 9.7: Eine Funktion
y=/fx), xeDy,
heifit in dem Intervall I < D, monoton wachsend, wenn

| f(x)) £ f(xy) firalle x;,x,€l mit x; < x, 9.29)
gilt; entsprechend wird sie monoton fallend in I genannt, wenn
] fx) = f(xy) fiiralle x;,x,el mit x; < x, (9.30)

gilt. Treten in den Ungleichungen (9.29) bzw. (9.30) zwischen den Funktionswerten
f(x,) und f(x,) die Gleichheitszeichen nicht auf, d. h. gilt

f(x)) < f(xy) firalle x,,x,el mit x; < x, 9.31)

f(x)) > f(x,) firalle x,,x,el mit x; < X, 9.32)

so wird f entsprechend streng monoton wachsend bzw. streng monoton fallend in I
genannt.

Das streng monotone Wachsen 148t sich verbal auch etwa so formulieren: Wenn
das Argument groBer wird, dann wird auch der Funktionswert grofler. Entsprechend
kann man die anderen Eigenschaften verbal formulieren. Wichtig ist fiir die Mono-
tonie, daB z. B. f(x;) < f(x,) nicht nur fiir gewisse x;, x, € / mit x; < X,, sondern
fiir alle solche x,, x, giiltig ist.

Beispiel 9.9:

1.y =Inx, xe (0, +00) ist im gesamten Definitionsbereich streng monoton wach-
send. Tatsachlich, es seien x;, x, € (0, +00) zwei belicbige Werte mit x; < X,.
Dann gilt die Darstellung x; = ax, mit 0 < a < 1. Daher folgt In x; = In ax,
=Ina + In x,, woraus sich wegen In @ < 0 die behauptete Monotonie In x; < Inx,
ergibt.

I3

. Fiir die in Bild 9.4 dargestellte Funktion f gelten folgende Aussagen:

1. fist in jedem Intervall (— oo, b] mit b < x, streng monoton wachsend; Gleiches
gilt fiir jedes Intervall [a, +0c0) mit a = x,.

2. fist in [x;, x,] monoton fallend, dagegen jedoch in [x;, %] streng monoton
fallend.

y

*

£ Bild 9.4.
Zur Monotonie von
Funktionen

N
(
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Aufgabe 9.8: Man zeige, daB die Funktion y = 1 — e?*, x € (— o0, +00), in ihrem
gesamten Definitionsbereich streng nonoton fallend ist.

Als Aussage mit einem gewissen Allgemeinheitsgrad erwidhnen wir:
Satz 9.5: Jede Funktion (Parabel) zweiten Grades

y=x*+ax+b, xe(-0w,+0), 9.33)
' a
ist in (— 00, x,] streng monoton fallend und in [xs, + 00) streng monoton wachsend; dabei ist x; = — 5

die x-Koordinate des Scheitelpunktes der Parabel (9.33).
Aufgabe 9.9: Man beweise Satz 9.5.

SchlieBlich weisen wir noch auf folgende Eigenschaften monotoner Funktionen hin.

Satz 9.6:

a) Wenn f, und f, im gleichen Intervall I streng monoton wachsend sind, dann
ist die Summe f, + f, der beiden Funktionen sowie das Produkt af; (i = 1.2) fiir
a > 0 in I ebenfalls streng monoton wachsend; dagegen ist af; (i = 1,2) fiirr a <0
in I streng monoton fallend.

b) Wenn fim Intervall I streng monoton ist, dann existiert die inverse Funktion f=*.
Die Umkehrung hieivon gilt i. allg. nicht mehr.

¢) Wennsf im Intervall I streng monoton wachsend ist, dann ist [~ mit
D,y = (x|xeR"Ax = fu), uel} injedem Intervall I- < Dy, ebenfalls streng mo-
noton wachsend. Analoges gilt fiir streng monoton fallende Funktionen.

Aufgabe 9.10 : Man beweise Teil a) von Satz 9.6.

Definition 9.8: Eine Funktion y = f(x), x € D, heifit im Intervall I S D, konvex,
wenn fir alle x, , x, € I und jedes « € [0, 1] die Ungleichung

| Sloxy + (1 = x)x2) < of(x) + (1 — o) flxz) 9.34)
gilt; entsprechend wird sie konkav in I genannt, wenn
| floxy + (1 = o) x3) 2 «f(xy) + (1 = a) f(x2) (9.35)

fir alle x,, x, € I und jedes « € [0, 1] gilt.

Auch fiir die Konvexitit bzw. Konkavitat einer Funktion im Intervall 7 ist wieder
besonders wichtig, da (9.34) bzw. (9.35) nicht nur fiir gewisse x,, x, € /, sondern
fir alle x,, x, € I giiltig ist.

Geometrisch kann man die Konvexitat etwa wie folgt deuten (vgl. Bild 9.5). Es
seien xy, x, € I beliebig, und P; = (x;, y;) seien die zugehorigen Punkte in der gra-
phischen Darstellung der Funktion. Dann liegt der gesamte Kurvenbogen P/IT’2
immer nicht oberhalb der Sekante P, P,, und insbesondere liegt der Mittelpunkt
der Sekante nicht unterhalb des entsprechenden Punktes des Graphen der Funktion
Entsprechend 148t sich die Konkavitit geometrisch interpretieren.

Es sei noch bemerkt, daB sich der Nachweis der Konvexitit fiir stetige Funktionen
(vgl. Band 2, Abschn. 3.) vereinfachen 1aft: fiir sie gentigt es nimlich zu zeigen, dafl
dic Ungleichung (9.34) fiir « = 1 erfiillt ist. Davon werden wir in den folgenden
Beispielen Gebrauch machen, wobei hier erst einmal unterstellt wird, daB} die be-
trachteten Funktionen alle stetig sind. Analoges gilt fiir den Nachweis der Konkavitit.
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y
Z—’/{;,)*gf(xz) S
Bild 9.5.
| Geometrische Interpretation
' h 44 fiie o
I ] (e 11 x,) der Konvexitit fiir « = %
H H ;

& Joury  m s

Beispiel 9.10: Es sei a + 0 eine beliebig fixierte Zahl. Dannist y = e*, x € (— 0, + ),
im gesamten Definitionsbereich konvex. Tatsichlich, die zu beweisende Ungleichung
€312 + 2D < 1 e®1 4 1 ea¥2 formen wir auf die dquivalente Ungleichung

0 g %eﬂ"x + % eaxz — ea(x,/2+x2/2) (936)
um. Fiir deren rechte Seite, die mit r(x,, x,) bezeichnet sei, ergibt sich
F(xp, X)) = }ea¥t 4+ Jemxa — eam/2eanal2 = I (eavi/? — eaxai?)2,
woraus sofort (9.36) und damit die Behauptung folgt.
Aufgabe 9.11: Man zeige, daB die Funktion y = —x?, xe R', in ihrem gesamten
Definitionsbereich konkav jst.
Eine gewisse Sonderstellung nehmen die Funktionen 1. Grades
y=px+gq, xeRY
ein. Sie sind namlich in ihrem gesamten Definitionsbereich sowohl konvex als auch

konkav.
Zu den einfachsten Eigenschaften konvexer Funktionen gehoren die folgenden:

Satz 9.7: Die Funktionen f, und f, seien in dem gleichen Intervall I konvex. Dann ist
ilire Summe fy + f, ebenfalls in I konvex. Die Funktion af ist fiir a > 0 in I konvex,
fiir a < 0 dagegen konkav. Analoge Aussagen lassen sich fiir konkave Funktionen
Sormulieren.

Konvexe und konkave Funktionen spielen in zahlreichen praktischen Problemen
eine Rolle. Hier seien nur einige genannt. Da sind z. B. die Kriimmungslinien von
Linsen und Spiegeln in der Optik; in der Okonomie haben die sogenannten Isoquan-
ten im Zusammenhang mit Produktionsfunktionen haufig die Eigenschaft der Kon-
vexitit. Fiir nicht wenige Funktionen, die den Verlauf von Prozessen aus den ver-
schiedensten Bereichen der Realitiat modellieren, ist charakteristisch, daf} sie monoton
wachsend und konkav bzw. konvex sind.

AbschlieBend weisen wir noch auf zwei Eigenschaften hin, die Funktionen be-
sitzen konnen.

Definition 9.9: Eine Funktion
v=f(x), xeD,,
heifit gerade, wenn D, = [—a, a] bzw. D; = (—a, a) mit a > 0 gilt und wenn
f(—=x) = f(x) fir alle positiven xe D, : 9.37)

S.9.7

D.9.9
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gilt; entsprechend heift sie ungerade, wenn statt (9.37)
f(=x) = —f(x) fir alle positiven xe D, (9.38)
gilt. Der Funktionswert f(0) ist fiir beide Fille uninteressant.

Als Beispiel sei hier die Funktion
y=x" xeR,
genannt. Sie ist fiir gerade Zahlen n selbst gerade und fiir ungerade Zahlen n ungerade.

Definition 9.10: Eine Funktion y = f(x). x € D, heifit periodisch mit der Periode A,
wenn A eine positive Zahl ist, mit der die Identitdt

Sx +2) = f(x) 9.39)

fiir alle diejenigen x € D erfiillt ist, fiir die auch gleichzeitig x + 1€ D, gilt. Dabei
wird die kleinste positive Zahl 2, mit der (9.39) gilt, primitive Periode genannt.

Periodische Funktionen ergeben sich bei der mathematischen Modellierung phy-
sikalischer Erscheinungen. So 14Bt sich z. B. die Bewegung gewisser Pendel durch
solche Funktionen beschreiben. In der Technik treten periodische Funktionen eben-
falls auf, und zwar im Zusammenhang mit Schwingungsprozessen. Aber auch in der
Okonomie gibt es Erscheinungen, deren mathematische Beschreibung zu periodi-
schen Funktionen fiihrt (vgl. Lagerhaltungsproblem in [2]).

Abschliefend wollen wir dem Praktiker noch einen konkreten Anhaltspunkt dafiir
geben, wo die Vielzahl der genannten Eigenschaften u. U. benétigt wird. Bei der
Durchfithrung von Experimenten und bei statistischen Erhebungen ergeben sich u. a.
MeB- und Zeitreihen. Dabei ist es hdufig wiinschenswert, sie durch formelmaBige
Darstellung fiir alle x aus einem gewissen Intervall I zu ersetzen. Eine Methode dazu
wird in Abschnitt 4.3. von Band 4 dargelegt. Sie setzt aber voraus, den Typ der
Funktion vorher auszuwihlen. Eben dazu muB man solche Eigenschaften wie
Beschrianktheit, Monotonie, Konvexitit u. a. beachten. Mit der Differentialrechnung
wird in Band 2 eine Methode bereitgestellt, mit deren Hilfe man die genannten

* Eigenschaften fiir eine groBe Klasse von Funktionen einfach nachpriifen kann.

9.4. Grundfunktionen einer Variablen

Die Darlegungen iiber die Grundfunktionen sind sehr kurz gehalten. Wir miissen
hier einfach voraussetzen, daB tiber solche Fragen wie: Was ist eine Potenz, was ist
eine Wurzel, was ist ein Logarithmus, wie sind Sinus, Kosinus, Tangens und Ko-
tangens definiert, Klarheit besteht und die Grundgesetze der Potenz-, Wurzel- und
Logarithmenrechnung beherrscht werden sowie einige trigonometrische Umfor-
mungen bekannt sind. Fiir eine Wissensauffrischung verweisen wir auf die Literatur
(siehe z. B. [5] und Band V dieser Reihe). Daher besteht das Anliegen dieses Abschnit-
tes nur darin, wichtigste Angaben iiber einige Funktionenklassen zusammenzustellen.

1. Potenzfunktionen f:
y=x* xeDy, (9.40)

wobei x eine beliebige fixierte reelle Zahl ist. Der Definitionsbereich D, dieser Funk-

_ tion hingt ab von dem konkreten Wert von u. Ist u eine positive ganze Zahl, 4 = n, so
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gilt

y=x" xeD;= (-0, +m0). (9.41)
Ist p eine ganze, aber negative Zahl, 4 = —n, so gilt

y=x7" xeD;=(—0,0)Vv (0, +0). (9.42)

Mit (9.41) bzw. (9.42) haben wir die einfachsten Fille von ganzen bzw. gebrochenen
rationalen Funktionen vorliegen (vgl. Abschnitt 9.5.). Ist x eine rationale Zahl der

Artp = %, wobei ¢ eine natiirliche Zahl >0 ist, so erhalten wir die Wurzelfunktion

y=x%, xeD, = [0, +o0). 9.43)
Entsprechend gilt im Falle beliebiger rationaler Zahlen p = fq—:

y=x%, xeD,= (0, + w). (9.44)
Tst schlieBlich x eine irrationale Zahl, so gilt

y=2x* xeD;=(0, +00). (9.45)
Es sei bemerkt, daB die Umkehrfunktionen — soweit sie existieren — von Potenz-

funktionen selbst wieder Potenzfunktionen sind. So ist z. B. fiir y = x", x € [0, + o0),

die Umkehrfunktion durch y = V;, x € [0, +00) gegeben (siche Bild 9.6). Dabei
zeigen sowohl Ausgangsfunktion als auch ihre Umkehrfunktion gleiches Monotonie-
verhalten (vgl. Satz 9.6, Teil c)). Insbesondere sind die beiden Funktionen y = x",

y = :,;, x € [0, + o0) streng monoton wachsend.

yex3

Bild 9.6. Bild 9.7.
Parabeln und Wurzelfunktionen Hyperbeln
Eine besonders einfache Funktion ist die Konstante

y=c¢ xe€(—o00, +00),
wobei ¢ eine beliebige feste Zahl ist. Die graphische Darstellung dieser Funktion
ist eine Gerade, die die y-Achse bei ¢ schneidet und parallel zur x-Achse verliuft.
2. Exponentialfunktionen

y=a', x€(—o, +w0); (9.46)
hierbei setzen wir voraus, daB a eine fixierte reelle Zahl mit den Eigenschaften a > 0
und @ * 1 ist. .
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Die Exponentialfunktionen (9.46) sind alle konvex; fiir0 < a < 1 sind sie streng
monoton fallend, dagegen fiir I < @ monoton wachsend.

Eine Sonderstellung nimmt in der Klasse der Funktionen (9.46) diejenige ein, die
sich fiir @ = e ergibt, wobei e eine Konstante (auch Wachstumskonstante genannt)
ist (¢ deutet auf den Anfangsbuchstaben von Euler hin). Thr Wert betrigt
2,7182818284 ... Diese Funktion ergibt sich im Zusammenhang mit gewissen Wachs-
tums- und Zerfallsprozessen (vgl. Band 7/1, Abschnitte 1.2.1. und 2.3.2.).

3. Logarithmusfunktionen
y =log,x, xe(0, +00); 9.47)
hierbei setzen wir voraus, daB a eine fixierte reelle Zahl mit den Eigenschaften a > 0

und a # 1 ist. Die Funktionen (9.46) und (9.47) nehmen gegenseitig die Rolle von
Umbkehrfunktionen ein (vgl. Bild 9.8), d. h. es gilt

] log,a* = x, xe(—o0, +0). (9.48)

Die Logarithmusfunktionen (9.47) sind fiir 0 < @ < 1 streng monoton fallend und
konvex, fiir 1 < a dagegen streng monoton wachsend und konkav (vgl. Bild 9.8).

AN
y (#) o Ay

- log, x
| L /ﬁg, T

Bild 9.8. Exponential- und Logarithmusfunktionen

Fiir numerische Untersuchungen werden besonders folgende drei Arten von
Logarithmusfunktionen herangezogen:

a =10: Igx = log,o x (Briggsscher Logarithmus)
a=2: lbx =1log, x (bindrer Logarithmus)
a=¢: Inx=Ilog.x (natiirlicher Logarithmus)

Die Werte dieser Funktionen findet man in Tabellen (siche z. B. [4]).
Die Logarithmusfunktionen besitzen eine Reihe von Eigenschaften. Zwei davon
seien hier genannt:

log, x,x, = log, x, +1og, x,, wenn x,,x, >0,
log, x* = plog,x, wenn x > 0.

4. Trigonometrische Funktionen
y =sinx, xe(—o0, +00), (9.49)
y=cosx, xe€(—o0, +w0), (9.50)
y=tanx, x4 2k + D, k=0, +1, +2,..., (9.51)

y = cotx, xFkr, k=0,+1, +£2,... (9.52)



9.4. Grundfunktionen einer Variablen 125

Diese Funktionen sind periodisch, wobei y = sin x und y = cos x die primitive
Periode 27 haben, wihrend die primitive Periode der beiden letzten Funktionen
gleich = ist (vgl. Bild 9.9 und 9.10).

Bild 9.9.
Sinus- und Kosinusfunktion

Biid 9.10.
| Tangens- und Kotangensfunktion

S. Umkehrfunktionen der trigonometrischen Funktionen (auch Arkusfunktionen
genannt) '
y =arcsinx, xe[—1,1]; y=arccosx, xe[—1,1];

(9.53)

y-=arctanx, xe€(—o00, +0); = arccot X, x€(—o0, +00).

Zu diesen Funktionen und ihren Bezeichnungen sind einige Bemerkungen notwendig. Man sicht
aus den Bildern 9.9 und 9.10 sofort, daf3 die trigonometrischen Funktionen nicht eineindeutig sind.
Deshalb existieren zwar Umkehrabbildungen fiir sie, diese sind jedoch keine Funktionen. Wic kommt
man dennoch zu der globalen Bezeichnung Umkehrfunktionen der trigonometrischen Funktionen?
Man betrachtet hierzu die trigonometrischen Funktionen nur in solchen Intervallen, in denen sic
cineindeutig sind. Hierzu wihlt man z. B.

fik: y =sinux,

four y=cosx, xe€lkm,m+kr]l, k=0,%1,+2, ...,

(= ki
fa: y =tanx, .\'e(—7+/\t,7+krc), k=0,+1,+2,...,
fax: y=cotx, xe(kw,m+ km), k=0, %1, +2,....

Bei fixiertem k ist nun jede der Funktionen fi, (i = 1,2, 3, 4) eineindeutig (vgl. Bild 9.9 und 9.10)
und besitzt daher eine Umkehrfunktionen f; !. Unter den Funktionen (9.53) versteht man nun spezicll
die Umkehrfunktion fig ! (i = 1,2, 3, 4). Sic sind in den Bildern9.11a und 9.11b dargestellt; auficr-

dem zeigen diese Bilder noch f;7* sowie f51! und fi71.
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Die hier unter 1. bis 5. genannten Funktionen werden wir im weiteren Grund-
funktionen nennen. Diese wenigen Funktionen bilden die Ausgangselemente fiir-die
Konstruktion der sogenannten elementaren Funktionen (vgl. Abschnitt 9.5.). Letztere
sind bereits so verschiedenartig, da3 man mit ihnen in vielen Untersuchungen aus-
kommt. Erginzt man sie noch durch die zusammengesetzten Funktionen (vgl.
Abschnitt 9.1., insbesondere (9.18) und (9.19)), so erhilt man bereits die Menge der
Funktionen, die vielen praktischen Anforderungen geniigt und die daher im Mittel-
punkt der Untersuchungen der folgenden Binde tiber Funktionen steht.

.

z — y.uman X _

Y=orceof y
' — A %
X
1 S
Bild 9.11a. Bild 9.11b.
Arkussinus- und Arkustangens- und
Arkuskosinusfunktion Arkuskotangensfunktion

9.5. Mittelbare und elementare Funktionen

Wie bereits im vorhergehenden Abschnitt angedeutet, gehen wir jetzt dazu iber,
aus den Grundfunktionen neue Funktionen zu konstruieren. Die einfachste Moglich-
keit hierzu besteht darin, sie durch die vier Grundrechenarten miteinander zu ,,ver-
kniipfen«. Wie dabei vorzugehen ist, wurde bereits am Ende von Abschnitt 9.1.
dargelegt. Unter den Funktionen, die auf diese Weise gebildet werden, scien einige
erwihnt.

1. Ganze rationale Funktionen
y=ay+ ax + ax*+ ... + a,_x"' + ax", xeR'; (9.54)

hierbei ist n eine natiirliche Zahl und a;, i = 0, 1, ..., n, sind gewisse feste reclie
Zahlen. Funktionen der Art (9.54) nennt man auch Polynome vom Grade n (wenn
a, + 0). Nehmen zwei Polynome P(x) und R(x) vom Grade » fiir mehr als n x-Werte
gleiche Werte an: P(x;) = R(x;),i = 1,2, ..., r (r > n), dann sind sie identisch, d. h.,
dann gilt P(x) = R(x) fir alle x € R'. Fiir Polynome sind hiiufig - dhnlich wie fiir
beliebige andere Funktionen — die sog. Nullstellen (vgl. Abschnitt 9.1.) von beson-
derem Interesse. Wie das Beispicl der Exponentialfunktion zeigt, besitzen durchaus
nicht alle Funktionen Nullstellen. Dehnt man jedoch den Definitionsbereich der
Polynome auf die Menge aller komplexen Zahlen aus, so gilt die Aussage (Funda-
mentalsatz der Algebra):

Jedes Polynom n-ten Grades hat in der Menge der komplexen Zahlen wenigstens
eine Nulistelle, wenn n = 1 ist. Ist P(x) ein Polynom n-ten Grades und x, eine Null-
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stelle von P(x), dann iiberzeugt man sich durch entsprechende Polynomdivision, dafB
die Darstellung

P(x) = (x = x;) R(x)

gilt, wobei R(x) ein Polynom nur noch (r — 1)-ten Grades ist. Eine analoge Dar-
stellung kann man nun auch fiir R(x) angeben. Setzt man diese Uberlegung fort, so
erhélt man schlieBlich fiir P(x) eine Darstellung der Form

P(x) = ay(x — x1) (x = x3) " oot (x = X,),

die Zerlegung des Polynoms in Elementarfaktoren genannt wird; dabei sind die x,,
Xy, ..., X, genau alle Nullstellen von P(x). Tritt eine Nullstelle x; in dieser Zerlegung
genau einmal auf, so wird x; einfache Nullstelle von P(x) genannt; tritt eine Null-
stelle x; jedoch n;-mal auf, so heilt x; mehrfache Nullstelle der Vielfachheit n;. Daher
kann die Zerlegung in Elementarfaktoren auch so geschrieben werden:

P(x) = ay(x — x;)" (x = Xp)" o (x = )™ (9.55)

dabei sind die n;, j = 1, 2, ..., k, gewisse natiirliche Zahlen mit n; = 1 und Z nj=n.

Deshalb sagt man auch, daB ein Polynom n-ten Grades genau n Nullstellen hat wobei
man die mehrfachen Nullstellen entsprechend ihrer Vielfachheit zahlt.

2. Gebrochen rationale Funktionen ergeben sich als Quotient zweier Polynome

P(x)  ag+ax+ax’+...+a,_ X" +ax"
Ru(x) by + byx + byx? +.. 4 by X"+ byx

e (9.56)

der Definitionsbereich besteht aus all denjenigen x, fiir die das Nennerpolynom
verschieden von null ist. Im weiteren bezeichnen wir die rechte Seite von (9.56)
kurz mit Q(x). In Abhangigkeit davon, ob der Grad des Zahlerpolynoms von Q(x)
grofer oder kleiner als der des Nennerpolynoms ist, werden die gebrochen rationalen
Funktionen weiter unterschieden: ist n = m, so heifit die rationale Funktion (9.56)
unecht gebrochen, dagegen wird sie fiir n < m echt gebrochen genannt. Durch ent-
sprechende Polynomdivision kann jede unecht gebrochen rationale Funktion als
Summe eines Polynoms vom Grade n — m und einer echt gebrochen rationalen
Funktion dargestellt werden.

Die Nullstellen des Nennerpolynoms haben eine besondere Bedeutung fiir gebro-
chen rationale Funktionen, obwohl sie aus deren Definitionsbereich ausgeschlossen
sind. Ist eine Nullstelle x; des Nennerpolynoms auch gleichzeitig Nullstelle des
Zahlerpolynoms von Q(x), so wird dadurch eine sogenannte Liicke definiert. Ist da-
gegen x; ecine Nullstelle der Vielfachheit m, des Nennerpolynoms, jedoch keine
Nullstelle des Zahlerpolynoms, so wird dadurch ein Pol der Ordnung m, definiert.
Liicken und Pole sind ihrerseits noch detaillierter zu charakterisieren.

Es sei x; ein Pol von Q(x). Ist seine Ordnung m, eine gerade Zahl, so nimmt
0O(x) in der Umgebung von x; nur beliebig groBe Werte gleichen Vorzeichens an;
ist m,; dagegen ungerade, so nimmt Q(x) in der Umgebung von x; sowohl beliebig
grofle positive als auch negative Werte an. Als einfachste Beispiele seien hierfiir die
gleichseitigen Hyperbeln y = x™", x # 0, genannt; sie haben fiir beliebiges n e N*
in x; = 0einen Pol der Ordnung # (fiir n = 1, 2, 3 siche Bild 9.7). Die Bilder 9.12a
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und 9.12b zeigen die verschiedenen Mdglichkeiten fiir Pole gerader und ungerader
Ordnung.

Wenn x, eine Liicke von Q(x) darstellt, dann gilt P,(x;) = R,(x;) = 0, und es
seien n; bzw. s, die Vielfachheiten der Nullstelle x, von P, bzw. R,. Hier sind

S W
~

Bild 9.12a. Bild 9.12b.
Pole gerader Ordnung Pole ungerader Ordnung

folgende Falle zu unterscheiden. Fir n; = m, liegt in x, eine sogenannte /ebbare
Unstetigkeit von Q(x) vor; dabei verhilt sich Q(x) fiir n; > m, in der Umgebung von
x; wie in der Umgebung einer Nullstelle von Q(x). Fiir n; < m, verhalt sich Q(x)
in der Umgebung von x; dagegen wie in der Umgebung eines Pols der Ordnung
m; — ny.

Aufgabe 9.12: Von der gebrochen rationalen Funktion

X2 —x—12

A T — )

sind Nullstellen, Pole und Liicken zu ermitteln. Fiir Nullstellen und Pole sind deren
Ordnung anzugeben; die Liicken sind nidher zu charakterisieren.

3. Hyperbolische Funktionen

. . iy R IC
y =sinhx mit smhx:—i———, xe(—ow +m),
. e* 4+ e
y = cosh x mit coshx = —5— xe(-w, +0),
. e* — e ©:57
y =tanh x mit tanhx:m, xe(—o0, +0),
. e* 4+ e
v =cothx mit cothx = prpuped xe(—o0,0)v (0, +00).

Gelesen werden diese Funktionen als hyperbolischer Sinus, Kosinus, Tangens und
Kotangens. Zwischen ihnen bestehen dhnliche Beziehungen wie zwischen den trigo-
nometrischen Funktionen. Dabei ist zu beachten, daB sie im Zusammenhang mit dem
hyperbolischen Kotangens fiir x = 0 nicht gelten, wihrend sie sonst immer fiir alle
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x € R giiltig sind. Hier sei folgende Auswahl dieser Beziehungen genannt:

sinh x cosh x

cosh? x — sinh? x = 1, = tanh x, . = coth x,
cosh x sinh x
PE—
sinh x sinh? x + 1
tanh x = ——ons—, coth x =-\/—4——L
\/smhz x+1 sinh x

cosh (x; + x,) = cosh x, cosh x, + sinh x, sinh x,,
tanh x; + tanh x,

tanh (¥, & X)) = Tk,

sinh 2x = 2 sinh x cosh x,

) 2 tanh x
cosh 2x ='sinh* x + cosh’x,  tanh2x = 1 + tanh? x °
1 + coth? x
hox = — —— — |
(i3 2 coth x

Die Bilder 9.13a und 9.13b zeigen die Graphen der hyperbolischen Funktionen. Aus
ithnen kann man auch Vorstellungen iiber das Monotonie- und Kriimmungsverhalten
dieser Funktionen gewinnen.

J
y=coth x
| W y=artanh x
i iy =arcoth x
\ I
-]
1 % N y=tanh »
— ——t A,
oo N 7 |
ra‘f‘gx -1 R “+7/_ _47___{_
. Y=Cothe Ny
K
r n
i
Bild9.13a Bild. 9.13b

Hyperbelfunktionen mit Umkehrfunktionen (Areafunktionen)
4. Areafunktionen

y=arsinhx mit arsinhx =1n(x + /x> + 1), xe(—00, +0),

y=arcoshx mit arcoshx =In(x + /x> = 1). xe[l, +00),

y=artanhx mit artanhx = %ln } t: , xe(=11), ©.58)
. 1 x + |
y =arcothx mit arcothx=7ln st xe(—oo, =1)v(l, +00).

Gelesen werden diese Funktionen als hyperbolischer Areasinus, Areakosinus. Area-
tangens und Areakotangens. Sie stellen die Umkehrfunktionen der hyperbolischen
Funktionen dar und ergeben sich in der tiblichen Weise. So erhalt man z. B. nach
Multiplikation von y = sinh x = 4 (e¥ — e™¥) mit 2 ¢ die in e* quadratische Glei-

9 Sicber u. a., Mathematik
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chung (¢%)* — 2ye® — 1 = 0; aus ihr folgt zunichst e* =y + \/y2 + 1, wobei
jedoch das Minuszeichen ausgeschlossen werden muf3, weil e* > 0 fiir alle x € R! gilt;
wendet man nun noch den Logarithmus auf beide Seiten an und vertauscht x und y,
so erhélt man die Umkehrfunktion y = arsinh x in der angegebenen Form. Zum hy-
perbolischen Areakosinus muf3 allerdings bemerkt werden, daB er nur die Umkehr-
funktion von y = coshx, x = 0, darstellt; die Umkehrfunktion des ,,Zweiges*
y=coshx, x £0, ist durch y = —In(x + /x> = ) =In(x — / x*= 1),
x € [l, +0) gegeben. Die Graphen aller Areafunktionen erhilt man durch ent-
sprechende Spiegelung (vgl. Abschnitt 9.2. und Bilder 9.13a, 9.13b). Die Vorsilbe
,,Area in der Bezeichnung dieser Funktionen kommt von dem Wort ,,Flache* und
wurde gewahlt, weil die Areafunktionen bei der Berechnung der Flachen von Hy-
perbelsektoren auftreten.

Funktionen kann man nicht nur mittels der vier Grundrechenarten miteinander
verkniipfen, sondern auch dadurch, da man das Argument einer Funktion durch
eine andere Funktion ersetzt. Auf diese Weise entsteht z. B. aus

y=+u, uel0,+w), wnd wu=1+x% xe(—o0,+0c0),
die neue Funktion
y=\/1 + x2, xe(—o0, +00).

Man spricht in diesem Zusammenhang von mittelbaren Funktionen. Sie konnen
nicht vollig beliebig gebildet werden. Es gilt die

D.9.11 Definition 9.11: Es seien

D.9.12

y=fu), ueD; und u=g(x), xeD,
zwei beliebige Funktionen. Wenn dabei W, < D, gilt, dann kann die neue Funktion
y=[lg(x)),  xeD,

gebildet werden; sie wird mittelbare Funktion oder Verkettung der Funktionen f und
g genannt.

Die Forderung W, < D, ist wesentlich, denn sonst kann es zu sinnlosen Termen
kommen.

Aufgabe 9.13: Man gebe fiir den Definitionsbereich D, der Funktion u = 1 — x2,
x € D, einmaximales Intervall / derart an, daf die mittelbare Funktion y = In (1 —x?),
x € I, sinnvoll ist.

Jetzt kénnen wir den Begriff der elementaren Funktion einfiihren.

Definition 9.12: Jede Funktion, die sich durch endlich viele Operationen der Grund-
rechenarten sowie durch Verkettung aus den Grundfunktionen darstellen ldft, nennt
man elementare Funktion.

AuBerhalb der Menge der elementaren Funktionen liegt u. a. noch die Menge
der zusammengesetzten Funktionen (vgl. Abschnitt 9.1.). Die Vereinigung beider
Mengen erfaB8t zwar auch noch nicht alle existierenden Funktionen, ist aber dennoch
bereits so umfangreich, daB sie fiir viele praktische Probleme ausreicht.



9.6. Interpolation (Newton) 131

9.6.  Interpolation (Newton)

Allgemein besteht die Interpolation darin, eine gegebene Funktion f durch Ver-
treter einer gewissen Klasse von Funktionen (z. B. Polynome eines gewissen Grades
oder trigonometrische Funktionen mit unterschiedlichen Perioden) so anzunihern,
daB fund ihre Niherungs- oder Interpolationsfunktion in gegebenen Punkten gleich
sind (ausfithrlichere Behandlung dieses Gebietes siehe [2]). Bevorzugt werden Poly-
nome als Interpolationsfunktionen verwendet, denn sie erweisen sich in vielen Be-
ziehungen als besonders einfach. So sind z. B. zur Berechnung der Funktionswerte
eines Polynoms nur die Grundrechenarten Addition, Subtraktion und Multipli-
kation erforderlich.

Dieser Abschnitt ist der Interpolation durch Polynome gewidmet. Die dabei be-
stechende Aufgabe 148t sich wie folgt formulieren: Gegeben seien n + 1 Zahlenpaare
(xi, ), i =0,1,2,...,n; es ist ein Polynom

P,(x) = ap + a;x + a;x* + ... + ax" 9.59)
zu bestimmen, das diese Zahlenpaare enthalt. Mit anderen Worten, fiir P,(x) soll
gelten

P(x;) = yi, i=01,...,n (9.60)
Hierbei werden die x;, i = 0, 1, ..., n, Stiitzstellen und die y;, i = 0, 1, ..., n, Stiitz-
werte genannt. Wir setzen voraus, dal die Stiitzstellen alle paarweise verschieden
sind. Man beachte schlieBlich noch, daBl der Grad des gesuchten Polynoms (9.59)
zunachst gleich n, d. h. um eins kleiner als die Anzahl der Stiitzstellen, gesetzt wird.

Zu einer solchen Aufgabenstellung kann man auf verschiedenen Wegen gelangen.
Zwei Moglichkeiten davon seien hier genannt. Eine ergibt sich, wenn man zu einer
MeBreihe (vgl. etwa (9.16)) ein entsprechendes Interpolationspolynom konstruieren
will. Eine andere erhilt man, wenn eine gegebene Funktion y = f(x), x € D, durch
ein Interpolationspolynom angendhert werden soll. In diesem Falle muB3 man sich
aber erst eine Wertetabelle schaffen; ihr kann man dann die Zahlenpaare (x;, y;),
i=0,1,...,n, entnechmen. Es kann gezeigt werden: Fir die gestellte Aufgabe
existiert immer genau ein Interpolationspolynom der Art (9.59).

Das Interpolationspolynom kann auf verschiedenen Wegen konstruiert werden.
Dabei ergeben sich Formen des Polynoms, die sich von (9.59) zwar duBerlich unter-
scheiden, sich jedoch alle wieder auf (9.59) zuriickfithren lassen. Eine besonders
elegante Form geht auf Newton zuriick. Erwahnt sei hier noch das Interpolations-
polynom von Lagrange. .

Nach Newton wird das Interpolationspolynom fiir die Stiitzzahlenpaare (x;, y;),
i=0,1,...,n in der Form

| P(x) = co + ¢1(x ~ Xo) + €a(x — x0) (x — x1) + ...
+ cp(x — X0) (x — Xy) oei (X = Xpey) 9.61)
angesetzt. Dabei sind ¢;, i = 0, 1, ..., n, zunachst noch unbekannte Zahlen. Zu ihrer

Bestimmung werden die Forderungen (9.60) benutzt. Hiernach ergibt sich namlich
folgendes gestaffeltes lineares algebraisches Gleichungssystem:

i=0: yo=1¢
i=1: y =co + ¢1(x; — Xo)
i=2: yy=co+ c1(xa — Xo) + €alx2 — Xo) (X2 — Xx1) (9.62)

i=n yp=co+ c1(Xn — Xo) + 2(Xn — Xo) (Xp — X1) + ...
+ Xy — Xo) (g — X1) en (6 — Xuy).
9*
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Dieses Gleichungssystem kann sukzessive — beginnend bei der ersten Gleichung
und fortschreitend bis zur letzten — gelost werden. Dabei erhalt man die Koeffi-
zienten ¢y, ¢y, ..., ¢, als sogenannte Steigungen oder dividierte Differenzen. Allge-
mein unterscheidet man 1., 2., ... Steigungen. Sie werden rekursiv wie folgt definiert:

: Yi = i1
1. Steigungen: XiXi] = ———,

gung [xixiai] Pa———
2. Steigungen: [axcix sl = M,

Xi = X2

. Xigr oo Xipm1) — [Kip1Xie2 oo X

k. Steigungen: [x;X;.; ... X;u] = [XiXis (VS Bl LTESETTE wl 9.63)
Xi = Xisk

Mit diesen Bezeichnungen gelten fiir die ¢;, i = 1, 2, ..., n, die Formeln ¢, = [xox,],

o= [rox; ] = BoXee Xl = Do x5 g 6

Xo — X;
Somit nimmt das Polynom (9.61) die Form an
Pu(x) = yo + [xoX;] (x = Xo) + [¥ox1X2] (x — xo) (X — x;) + ...
+ [xoXy . X, ] (x = x0) (X — x) .. (X = Xpoy)- (9.65)

Aufgabe 9.14: Man zeige - ausgehend von (9.63) -, daB tatsichlich die folgende
Formel gilt

~ [xexi] = [xx3]

N e ’

¢
Das Polynom der Form (9.61) wird Newtonsches Interpolationspolynom genannt.
Es hat einen groBen Vorteil, denn es gilt

Satz 9.8: Fiigt man den Stiitzpaaren (x;, y,), i = 0, 1, ..., n, unter Beibehaltung ihrer
Reihenfolge k neue Stiitzpaare (X, ;, Yaij), J = 1,2.. k hinzu (um etwa den Grad
des Interpolationspolynoms zu erhéhen), so dndern szch dle Koeffizienten ¢, = yq,
¢ = [xoX, ... x;), i =1,2,...,n, nicht, und es miissen lediglich die Koeffizienten
Coij = [XoXy .o X J = 1,2, ..., k, neu berechnet werden.

Dieses Vorgehen wird im Beispiel 9.11 demonstriert. Es sei noch erwihnt, daf3
durch die Hinzunahme neuer Stiitzpaare der Grad des Polynoms durchaus nicht immer
erhoht werden kann. Das ist nur dann méglich, wenn die neuen Stiitzpaare nicht zu
dem bereits ermittelten Interpolationspolynom gehoren.

Beispiel 9.11: Fiir die Stiitzpaare (0; 7), (3; —2), (4; 115) und (—2; 73) ist ein New-
tonsches Interpolationspolynom zu ermitteln. Das entsprechende Gleichungssystem
(9.62) lautet

0 7 =c,

i=1: =2=c¢, + 3¢y,

i=2: 115=1cy +4dc, +4(4 —3)c, = ¢y + 4c; + 4cs,
30 T=co — 20 —2=5) s —2=5)(=6) s
= ¢y — 2¢, + 10c;, — 60c;.

[ =

i=
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Lost man dieses lineare Gleichungssystem schrittweise, beginnend mit der ersten
Gleichung, so erhilt man ¢y = 7, ¢; = —3, ¢, = 30, ¢; = 4. Das gesuchte Newton-
sche Polynom lautet daher

Piy(x) =7 — 3x + 30x(x — 3) + 4x(x — 3) (x — 4).

Nun nehmen wir an, daB noch ein weiteres Stiitzpaar (1; 4) bekannt sei, und benutzen
es, um den Grad des Newtonschen Interpolationspolynoms um eins zu erhdhen.
Um dabei die bisherigen Ergebnisse verwenden zu kénnen, verfahren wir gemal
Satz 9.8 und fiigen die dem neuen Stiitzpaar (1; 4) entsprechende Gleichung

i=4: d=cyo+c; —2c;, —2(=3)c; —2(=3)(1 +2)cy
=co+¢; —2¢c, + 6¢c5 + 18¢,

. . . . 1
dem obigen Gleichungssystem hinzu. Hieraus folgt ¢, = 5 (4—co—cy+2c,— 6¢3);

unter Verwendung der bereits berechneten Werte fiir ¢, bis ¢; ergibt sich ¢, = 2.
Somit erhalten wir das neue Newtonsche Interpolationspolynom vierten Grades:

Py(x) = Py(x) + 2x(x = 3) (x — 4 (x + 2)
=7 — 3x + 30x(x — 3) + 4x(x — 3) (x — 4)
+ 2x(x —3) (x — 4) (x + 2).

Wir bemerken noch, daB die Reihenfolge der Stiitzpaare EinfluB auf die duBere
Form des Newtonschen Interpolationspolynoms hat. Ordnet man beispielsweise die
obigen Stiitzpaare in der Reihenfolge fallender x-Werte an, d. h. geht man von
(4; 115), (3; —=2), (0; 7) und (—2; 73) aus, so erhilt man

Py(x) = 115 + 117(x — 4) + 30(x — 4) (x — 3) + 4(x — 4) (x — 3) x.

Selbstverstindlich sind die beiden Polynome P;(x) und P;(x) identisch. Das kann
man u. a. dadurch nachpriifen, daBl man alle Klammern in beiden Polynomen auf-
16st.

%

Aufgabe 9.15: Man nehme im Beispiel 9.11 das Stiitzpaar (2, — 43) anstelle von (1, 4)
hinzu und zeige, daf} sich dabei der Grad des Polynoms P3(x) nicht erhéht. Worin
liegt die Ursache dafiir?

Aufgabe 9.16: Man verwende die Stiitzpaare (4, 115), (3, —2), (1,4), (0,7) und =
(—2,73) in der angegebenen Reihenfolge zur Konstruktion des entsprechenden
Newtonschen Interpolationspolynoms P,(x). Weiter iiberpriife man, daB dieses
Polynom identisch gleich dem in Beispiel 9.11 ermittelten Polynom P,(x) ist.

Ein einfacher Spezialfall des Newtonschen Interpolationspolynoms ergibt sich,
wenn der Abstand zwischen zwei beliebigen benachbarten Stiitzstellen gleich ist,
d. h. wenn
. X; — X,y =h=const fiiralle i=12...,n (9.66)

gilt. Man spricht dann von dquidistanten Stiitzstellen und ordnet sie in wachsender
Reihenfolge: x, < x; < ... < x,. Fiir dquidistante Stiitzstellen lassen sich die zum
Newtonschen Interpolationspolynom fiihrenden Berechnungen vereinfachen. Ins-
besondere konnen die Steigungen im Prinzip durch einfache Differenzen ersetzt
werden. Aus (9.66) folgen namlich die Gleichungen

X;=Xxo +ih bzw. x;—xo=1ih, i=1,2,...,n; 9.67)
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benutzt man auBlerdem die fiir Differenzen iiblichen Bezeichnungen
Ayy =y =y, 1=0,1,...,m,
Ay, =Nty =&y, i=0,1,...,n; j=2,3,...,

so ergibt sich fiir die Koeffizienten des Newtonschen Interpolationspolynoms
11 .
¢ =7!-'}‘I]'AiJ’0y i=12...,n. (9.68)
Mit diesen Koeffizienten lautet das Newtonsche Interpolationspolynom (9.61) jetzt

1 1
Py(x) = yo + I—IAIJ’o(x = Xo) + WAZ,VO(X = Xo) (x — xy) + ...

+ n—!IFA"yo(x —Xo) (x — x1) .. (X — Xpy)- (9.69)

Die Koeffizienten dieses Polynoms sind bekannt, wenn die Differenzen Aly,,
i=1,2,...,n, bekannt sind. Zu ihrer Berechnung verwendet man gewdhnlich ein
einfaches Differenzenschema (siehe [2] bzw. Rechenschema in der Losung von Auf-
gabe 9.17).

Aufgabe 9.17: Man verwende die Stiitzpaare (—2,73), (-1, 10), (0, 7), (1, 4), (2, —11)
und (3, —2) in der angegebenen Reihenfolge zur Konstruktion des entsprechenden
Newtonschen Interpolationspolynoms.

9.7. Darstellung von Funktionen mittels Parameter

Auf die Darstellung von Funktionen mittels Parameter wurde bereits in Abschnitt
9.1. kurz hingewiesen. Allgemein versteht man darunter folgendes. Es seien g und 4
zwei Funktionen mit gleichem Definitionsbereich D. Dann ist durch

x=g(t), y=~h@), teD, (9.70)
zunichst i. allg. noch keine Funktion, sondern erst eine Abbildung definiert. Sie be-
steht aus allen geordneten Paaren (x, y), bei denen x und y die durch (9.70) gegebenen
Bilder derselben Hilfsvariablen ¢ € D sind.

Aufgabe 9.18: Man zeige, daB fiir die Funktionen g(¢) = sin ¢, h(r) = % (t - %) , t€ R', durch

. 5 1
die Menge aller Paare (x, y) mit x = g(t), y = h(t), d.h. x = sint, y = y (1 - %), t € R, zwar
eine Abbildung, jedoch keine Funktion gegeben ist.

Sind nun dagegen die Funktionen g und / von der Art, daB jedem nach (9.70) még-
lichen x-Wert genau ein y-Wert zugeordnet ist, dann ist mit (9.70) eine neue Funktion
f definiert. Wir werden diese Voraussetzungen beziiglich g und 4 immer als erfiillt
betrachten. Dazu geniigt es z. B. zu fordern, daB8 g eine eineindeutige Funktion
ist. Man nennt dann (9.70) Parameterdarstelling der Funktion fund die Hilfsvariable
t Parameter.

Allgemein kann man fiir jede Funktion beliebig viele Parameterdarstellungen an-
geben.
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Zur Erlduterung dieser Feststellung erwidhnen wir folgendes. Es sei eine Funktion fin der Form

y = f(x), x€ Dy, gegeben. Weiter sei w, x = w(t), t € D,,, irgendeine Funktion mit der Eigenschaft,

daB Dy 2 W, gilt. Der Einfachheit wegen wollen wir annehmen, daB8 W, = D, und daB w eine
streng monotone Funktion ist. Dann ist durch :

x =),y =h(t) mit K@) =f0ut)), 1€D,, ©.71)

immer eine Parameterdarstellung der Ausgangsfunktion f gegeben. Da es aber beliebig viele Funk-

tionen w mit den geforderten Eigenschaften gibt (man wihle etwa w(r) = g¢ mit beliebigen g > 0),

50 haben wir mit (9.71) im Prinzip beliebig viele Parameterdarstellungen der urspriinglichen Funktion
fangegeben.

Aufgabe 9.19: Man zeige, daBl durch die Parameterdarstellungen

x=rcosx, y= —rsinx, «e(0,m), 9.72)
und
2u u? -1
_ - — 9.73
ereyT YT rwrr veChtD ©.73)

die gleiche Funktion gegeben wird, und ermittle deren Graph.

In der Praxis besteht das Problem jedoch hdufig nicht darin, zu einer gegebenen
Funktion gewisse Parameterdarstellungen anzugeben. Vielmehr ergeben sich solche
Parameterdarstellungen nicht selten einfach bei der mathematischen Modellierung
(siche auch Aufgabe 9.23 in Abschnitt 9.8.). So ist z. B. die Bewegungskurve der
Punktmasse eines mathematischen Pendels eine Kreislinie bzw. ein Teil von ihr.
Daher fiihrt ihre Modellierung zu Parameterdarstellungen der Form (9.72) oder
auch (9.73).

Abschliefend sei noch bemerkt, da die Parameterdarstellung von Funktionen
erweitert werden kann auf Parameterdarstellung von Kurven in der Ebene sowie von
Kurven und Flichen im Raum. Dabei miissen z. B. diese Kurven in der Ebene in
der Vorgabe durch rechtwinklige Koordinaten x, y durchaus keine Funktionen
sein. Mit anderen Worten, durch Parameter kénnen nicht nur eindeutige, sondern —
in einer Reihe von Fallen — auch mehrdeutige Abbildungen dargestellt werden. Einige
Einzelheiten zu dieser Thematik findet man in Band 6. Wir bemerken hier nur, daf3
ddbei haufig die sogenannten Polarkoordinaten ein wesentliches Hilfsmittel sind, und
betrachten zur Erlauterung das folgende

Beispiel 9.12: Wir stellen uns einmal vor, ein Punkt P bewege sich mit konstanter
Geschwindigkeit entlang einer Geraden, wobei die Bewegung zum Zeitpunkt 7,
im Punkt P, beginnen mdége (vgl. [10]). Wenn dabei die Gerade ihrerseits — aus-
gehend von der horizontalen Lage PoH — mit konstanter Geschwindigkeit in einer
Ebene um den Punkt P, gedreht wird, so ergibt sich z. B. eine Kurve, wie sie Bild
9.14 zeigt.

Bild 9.14.
Archimedische Spirale
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Will man die Lage des Punktes auf der Kurve in jedem Augenblick # > 7, eindeutig
beschreiben, so ist das mit den rechtwinkligen x,y-Koordinaten nicht mehr moglich.
Denn die Abbildung 4 = R' x R!, die aus allen Paaren (x, y) besteht, wobei x und y
die rechtwinkligen Koordinaten der Kurvenpunkte sind, ist offensichtlich nicht mehr
eindeutig. Hier helfen folgende Betrachtungen. Die Lage des Punktes P ist in jedem
Augenblick # > 7, eindeutig bestimmt durch seinen Abstand r(¢) von P, und durch den

Winkel ¢(7), den die Strecke Py P mit der Horizontalen P, H bildet:
r=r(), @=g¢0), 121; 9.74)

dabei muf} der Winkel ¢(¢) allerdings nicht nur von 0 bis 2=, sondern — entsprechend
der Héufigkeit der Drehungen um P, — von 0 bis + oo gerechnet werden.

Mit (9.74) ist ein Beispiel fiir eine Parameterdarstellung einer Kurve in Polar-
koordinaten gegeben.

9.8. Anwendungen von Funktionen

Schon in den vorangegangenen Abschnitten wurden einige ausgewihlte Aufgaben-
stellungen der Praxis betrachtet, deren mathematische Modellierung zu Funktionen
fiihrte (sieche Aufgabe 8.15, Beispiele 9.2 bis 9.4 und 9.6). Das Anliegen dieses Ab-
schnittes besteht darin, durch weitere praktische Probleme zu zeigen, wie vielfiltig
die Anwendungsmoglichkeiten fiir Funktionen sind. Dabei werden wir in diesem
Rahmen natiirlich teilweise stark vereinfachende Voraussetzungen machen miissen.

Beispiel 9.13: Wir wenden uns den bekannten Hebelgesetzen zu und betrachten
hierzu die Bilder 9.15a und 9.15b. Dabei seien die Liangen /, und /, jeweils bekannt
und konstant, wogegen die Kraft Q zwar auch bekannt, aber variabel sein mége.
Gesucht ist dann eine solche Kraft P, die den Hebel im Gleichgewicht hilt. Hierfiir
ist eine Funktion aufzustellen.

. S
b
g

Bild 9.15a. Bild 9.15b.
Hebel erster Art Hebel zweiter Art

Dazu benutzen wir das bekannte Hebelgesctz und bezeichnen die GréBen der
Krifte P bzw. Q entsprechend mit p bzw. ¢. Dieses Gesetz besagt: Damit cin Hebel
sich im Gleichgewicht befindet, miissen die Produkte aus Kraft mal entsprechender
Linge des ,,Kraftarmes* gleich sein (bei entsprechend gerichteten Kriften). Somit
ergibt sich fiir Hebel beider Arten als Gleichgewichtsbedingung p/, = ¢/, oder

) I .
p=fl@ mit fg)=34q ¢z0. (9.75)
1

In der Praxis findet das Hebelgesetz in seiner mathematischen Darstellung in Form
der Funktion (9.75) vielfdltige Anwendung. Genannt seien hier Seilwinden und
Flaschenziige. Bei beiden nutzt man unterschiedliche Radien fiir die Angriffspunkte
von Last und Kraft aus (vgl. Bild 9.16). Fiir Bild 9.16 gilt dann z. B.

gr = pR oder p =%q.
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So kann man durch entsprechende Wahl der Radien r und R erreichen, daB die Grofe
q der Last Q in eine Kraft gewiinschter GroBe p ,,ibersetzt* (transformiert) wird.

*

Aufgabe 9.20: Fir den in Bild 9.17 dargestellten Flaschenzug stelle man die Ab-
hangigkeit zwischen der GroBe ¢ der Last Q, den Radien r sowie R einerseits und der
GrofBle p der Kraft P andererseits als Funktion dar. Dabei soll P selbstverstandlich
so gewdhlt werden, daB Gleichgewicht herrscht. Hinweis: Man beachte, daB bei
jeder Aufhéingung einer Last iiber eine Rolle diese Kraft gewissermaBen halbiert wird
(vgl. Bild 9.18).

Lo

P
@l

Bild 9.16. Bild 9.17. Bild 9.18.

Grundprinzip der Seilwinde Prinzip des Halbierung der

Flaschenzuges Wirkung einer Last

Beispiel 9.14: Aus einem rechteckigen Stiick Blech soll ein Kasten ohne Deckel
hergestellt werden. Dazu muB an jeder der vier Ecken entsprechend Material ausge-
schnitten werden (vgl. Bild 9.19). Danach werden die entsprechenden Teile hoch-
gebogen und verschweifit. Fiir die Abhéangigkeit des Volumens des so entstehenden
Behilters von den MaBen des Bleches und den vorgenommenen Abschnitten ergibt
sich die Funktion
V = fla,b,c) mit fla,b,c)=(a—2c)(b — 2c)c.

Hierbei bezeichnen a, b und ¢ die Langen wie in Bild 9.19. Als Definitionsbereich

mubB selbstverstiandlich die Menge alle (a, b, c) mit a, b, ¢ > 0 und 2¢ < min (a, b)
betrachtet werden.

Aufgabe 9.21: Zwei Triebrader seien gegeben (vgl. Bild 9.20). Die Abhidngigkeit der
Léinge / des Treibriemens von den Radien r und R der Triebrader und deren Abstand
d ist (analytisch) durch eine Funktion darzustellen (vgl. [10]).

Bild 9.19. Bild 9.20.

Zuschnitt eines Blechkastens Linge eines Treibriemens
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Beispiel 9.15: Bei 6konomischen Untersuchungen spielt hdufig die Fondsausnutzung
eine Rolle. Sie stellt das Verhiltnis des erzielten Nutzens zum Umfang der einge-
setzten Fonds dar. Zur Messung der Fondsausnutzung werden verschiedene Kenn-
ziffern verwendet. Eine davon ist die Grundfondsquote, die hier mit ¢ bezeichnet
wird. Sie ist definiert als der Quotient von Produktionsvolumen y zu den Grundfonds
x, die zur Produktion von y eingesetzt werden:

VIS
Nimmt man nun an, daB die Grundfondsquote fiir ein gewisses Planungszeitintervall
und im Rahmen gewisser Grenzen fiir die eingesetzten Grundfonds (a < x < b)
konstant ist, so ergibt sich mit

y=gqx, asx=b a>0, 9.76)

eine Funktion. Thre Zuordnungsvorschrift lautet y = gx, ihr Argument ist x, und fiir
ihren Definitionsbereich D gilt: D = [a, b].

Aufgabe 9.22: Ein Betrieb produziert k verschiedene Erzeugnisse E, ..., E,. Beim
Verkauf einer Mengeneinheit (ME) des Erzeugnisses E; erzielt er einen Gewinn von
¢; Werteinheiten (i = 1,2, ..., k). Wie groB ist der Gesamtgewinn, wenn x; ME
von E;, x, ME von E,, ..., x, ME von E, verkauft werden?

Mit dieser Aufgabe haben wir insbesondere den Okonomen an eine ganze Klasse
von praktischen Problemen herangefiihrt, deren mathematische Modellierung eng
mit dem Begriff der Funktion verkniipft ist. Es handelt sich um Optimierungsauf-
gaben und insbesondere um Probleme der linearen Optimierung (siche Band 14).
Aber nicht nur hier, sondern z. B. auch bei Lagerhaltungs- und Standortproblemen
(Spezialfall: Steiner-Weber-Problem) fiihrt die mathematische Modellierung zu
Funktionen (vgl. [2]).

In den Beispielen dieses Abschnittes wurden nur solche Probleme betrachtet,
deren Modelllerung zu Funktionen in analytischer Darstellung fiihrte. Damit beim
Leser nicht der Eindruck entsteht, das miisse immer so sein, erinnern wir noch einmal
an die Vielfalt der Méglichkeiten, Funktionen vorzugeben (siche Abschnitt 9.1.).
An dieser Stelle sei hierzu einerseits noch einmal das Beispiel der tabellarischen Dar-
stellung (9.14) einer Funktion erwihnt, die in einem ganz konkreten Sachverhalt
auftritt, und andererseits auf folgende Aufgabe verwiesen.

¥
AN 4
\ / o \
# : j Bild 9.21.
s AN Zykloide
0 45 X

Aufgabe 9.23: Auf einer Kreisfliche moge ein Punkt P markiert sein. Der Kreis
moge entlang einer Geraden rollen. Fiir die Kurve, die der markierte Punkt dabei
beschreibt (siche Bild 9.21), ist eine Parameterdarstellung zu ermitteln. Als Para-
meter verwende man den Winkel «.
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9.9. Funktionsleitern und Netze

In diesem Abschnitt wird eine Einfithrung in das Gebiet der Funktionsleitern
und Funktionsnetze gegeben. Diese beiden Begriffe sind ihrerseits Elemente der
Nomographie. Die Nomographie ist die Lehre der theoretischen Grundlagen, der
Konstruktion und praktischen Nutzung solcher graphischer Darstellung der Bezie-
hungen zwischen mehreren Verdnderlichen, die es gestatten, zusammengehdrige
Werte bequem abzulesen. Sie hat sich seit Mitte des vorigen Jahrhunderts als eigen-
standige Theorie entwickelt. Eine wesentliche Ursache fiir diese Entwicklung war das
Bediirfnis, komplizierte Formeln, die sich bei praktischen Untersuchunegn ergaben,
schnell, tibersichtlich und mit der notwendigen Genauigkeit numerisch auszuwerten.
Dabei erwiesen sich unter den Bedingungen noch nicht vorhandener Rechenauto-
maten eben gerade die Nomogramme als ein wichtiges Hilfsmittel.

Allgemein versteht man unter einem Nomogramm die graphische Darstellung eines
funktionalen Zusammenhangs. Da das Ziel solcher Darstellungen iiberwiegend
darin besteht, auf diesem Wege numerische Resultate zu erhalten, wird ein Nomo-
gramm auch als eine graphische Rechentafel fiir eine funktionale Beziehung zwischen
zwei oder mehreren Verdnderlichen F(x,, x,,...,x,) = 0 bezeichnet. Sie ist i. allg.
so gestaltet, dal man durch eine sogenannte Ablesevorschrift aus gegebenen Werten
fiir n — m Variable die Werte der restlichen m Variablen ablesen kann. Damit ist ein
Nomogramm in gewisser Weise ein graphisches Analogon zu einer Zahlentafel.
Einfachstes Beispiel eines Nomogramms ist die graphische Darstellung einer Funktion
von einer unabhédngigen Variablen im rechtwinkligen Koordinatensystem.

Funktionsleitern und -netze sind Spezialfalle bzw. Bestandteile von Nomogram-
men. Zu den héufig angewandten Nomogrammen gehéren: Fluchtlinientafeln, Netz-
tafeln sowie kombinierte Fluchtlinien-Netztafeln. Eine Darstellung der theoretischen
Grundlagen hieriiber findet man in geraffter Form in [21], wobei hier ein sehr aus-
fihrlicher Teil mit vielen Aufgaben und Anwendungen enthalten ist. Eine Reihe
sofort verwendbarer Nomogramme findet der Ingenieur in [19]. SchlieBlich sei auch
noch auf die fiir den Praktiker bestimmte Darstellung in [18] verwiesen,

Wir werden uns hier nur mit Funktionsleitern und Funktionsnetzen beschiftigen.
Dabei wird einerseits dargelegt, was man darunter versteht, welches ihre wesentlichen
Merkmale und Eigenschaften sind und wie man sie nutzt; andererseits wird die Frage
beantwortet, wie sie konstruiert werden. Es sei jedoch hier bereits vermerkt, daB
insbesondere diese letzte Frage fiir Nomogramme wie Fluchtlinientafeln und Netz-
tafeln nicht so einfach beantwortet werden kann (vgl. [21] und [18]).

Wenden wir uns den Funktionsleitern zu. Wurde das vorangegangene Material
systematisch durchgearbeitet und wurden insbesondere die Aufgaben 8.12, 9.3, 9.5
und 9.6 geldst, so sind dabei im Prinzip bereits einfachste Leitern konstruiert worden.
Wie mufite nimlich z. B. bei der Losung der Aufgabe 9.3 vorgegangen werden?
Es wurden zwei senkrecht aufeinanderstehende Geraden als Achsenkreuz benétigt.
Bevor man diese beiden Geraden jedoch zeichnete, wird man sich auf Grund der
Wertetabelle tiberlegt haben, wo etwa der Graph der Funktion liegen wird. Diese
Uberlegung wird schlieBlich auch Ausgangspunkt gewesen sein fiir die Wahl des
,,MaBstabes auf den beiden Koordinatenachsen. Uns schien dabei ein Verhiltnis
am geeignetsten, bei dem fiir eine Einheit der x- bzw. y-GréBe auf den Achsen 0,9 LE
(Langeneinheiter) gewihlt werden. Denn dadurch konnte einerseits die graphische
Darstellung (siche Bild. 9.1) fiir den Leser hinreichend iibersichtlich gestaltet und
andererseits verhindert werden, daB3 sie unnétig viel Platz verbraucht. Das von uns
verwendete Verhiltnis kann auch so geschrieben werden:

X=1Ix mit /=09LE, 9.77)
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d. h., X gibt die Linge der Strecke in LE an, die auf der x-Achse fiir x Einheiten
abgetragen werden sollen (siche Bild L.9.1). Das Bild 9.22 zeigt ein erstes einfaches
Beispiel einer Leiter, wobei X = [x mit / = 1,6 cm gewihlt wurde.

. X =16x

= = Bild 9.22.

| T A e e T I T TR T"x Einfachstes Beispiel einer Leiter
0 7 2 Mo

Diese konkreten Betrachtungen werden wie folgt verallgemeinert:

Definition 9.13: Eine orientierte Gerade mit einem Anfangspunkt A, die entsprechend
einer Formel

X =IL(x — xp) (9.78)

unterteilt ist, wird reguliire Leiter (oder auch Skala) genannt. Die Gerade selbst heifit
Triger der Leiter, und I, wird MaBstabsfaktor genannt. Hierbei entspricht dem An-
fangspunkt A der Wert x,.

Dieser Definition seien zunéchst folgende Bemerkungen angefiigt :

. Die Unterteilung entsprechend (9.78) wird auf der reguldren Leiter fiir gewisse
ausgewahlte Werte von x durch kleine senkrechte Striche, die sogenannten 7ei-
lungsstriche, markiert.

An die Teilungsstriche der Leiter werden nicht die Werte von X, sondern immer
die Werte von x geschrieben. Die Ursache hierfiir liegt in dem Verwendungszweck
von Leitern. Die Formel (9.78) dient nur dazu, die Unterteilung der Leiter vor-
nehmen zu kénnen. '

Man vergleiche hierzu etwa die Verwendung der Formel (9.77) und die regulire
Leiter auf der x-Achse in Bild L.9.1. Der Abstand zwischen zwei Teilungsstrichen
bzw. jedes Teilungsstriches vom Anfangspunkt (dem Koordinatenursprung) ist
dabei fiir die Verwendung der Leiter im Prinzip vollig uninteressant. Wichtig
sind dort nur die Werte der Variablen x, die diesen Teilungsstrichen entsprechen.
und deshalb stehen sie auch an ausgewéhlten Teilungsstrichen.

Die Eintragung ausgewihlter Werte der Variablen x an die Teilungsstriche nennt
man Bezifferung der Leiter. Um dabei sowohl hinreichende Genauigkeit zu garan-
tieren als auch Ubersichtlichkeit zu wahren, werden zwar hinreichend viele Tei-
lungsstriche eingetragen, ohne sie jedoch alle zu beziffern (vgl. Bild 9.22).

. Die vorangegangenen Bemerkungen gestatten den Hinweis, dafl der MaBstabs-
faktor I, als Zeicheneinheit oder Einslinge aufgefaBt werden kann. Er entspricht
namlich gerade dem Zuwachs der Variablen x um eins. Mit anderen Worten,
wenn X, — x, = 1 ist, dann unterscheiden sich die ihnen nach (9.78) entsprechen-
den Werte X, und X, genau um /,: X, — X, = [,.

N

%)

Aufgabe 9.24: Der Leser moge sich wenigstens ein Beispiel einer reguliren Leiter
tiberlegen, die ihm im Alltag bereits begegnet ist oder ihm des 6fteren dort begegnet.

Praktische Probleme (vgl. Beispiel 9.16) haben es erforderfich gemacht. die regu-
lire Leiter dahingehend zu verallgemeinern, daB in (9.78) die Variablen x und x,
durch eine streng monotone Funktion fersetzt werden:
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Definition 9.14: Es sei f(x), x€ D,, eine streng monotone Funktion f. Wird eine
orientierte Gerade mit einem Anfangspunkt A gemdf3 der Formel

X = L(f(x) = f(x0)) 9.79)

unterteilt und mit den Werten der Variablen x entsprechend beziffert, wobei dem
Punkt A der Wert x, entspricht, so erhdlt man eine Funktionsleiter oder auch Funktions-
skala. Die Gerade heifit Trager der Funktionsleiter, f wird ihre erzeugende Funktion
und [, der Mapstabsfaktor genannt. Schlieflich wird x das Argument der Funktions-
leiter genannt, und der einem Wert des Arguments entsprechende Punkt heifit sein
Bildpunkt.

Zu dieser Definition gelten Bemerkungen, die denen zur Definition 9.13 ent-
sprechen. Insbesondere sei erwihnt, daBl auch hier die Bezifferung weder nach den
Werten der GroBe X noch nach den Funktionswerten f(x), sondern wiederum nach
den Werten der Variablen x erfolgt. Die Begriindung hierfiir liegt ebenfalls im Ver-
wendungszweck ven Funktionsleitern (siche Beispiel 9.16 und Aufgabe 9.26). Zur
Unterteilung und Bezifferung sei ergidnzend gesagt, dafB3 sie gewdhnlich so vorge-
nommen werden, daBl die Differenz Ax zweier aufeinanderfolgender Argumente
den Wert 107, 2 - 10" bzw. 5 - 10" hat (wobei n eine ganze Zahl ist); dabei wird dann
jeder zehnte, jeder fiinfte bzw. jeder zweite Teilstrich beziffert. Hiufig ist es aus
Griinden der Ubersichtlichkeit und Genauigkeit zweckmiBig, fiir verschiedene Ab-
schnitte ein und derselben Funktionsleiter unterschiedliche Unterteilungen vorzu-
nchmen (siehe Beispiel 9.16 und Aufgabe 9.26). Der MaBstabsfaktor /, ist natiirlich
wieder gleich der Zeicheneinheit. Préazisierend mul jedoch bemerkt werden, daf3
[, jetzt nicht mehr der Differenz der Argumente, sondern der Differenz zweier Funk-
tionswerte um eins entspricht. Mit anderen Worten, wenn f(x,) — f(x;) = 1 ist,
dann ergibt sich X, — X, = I, wobei X die Bildpunkte von x; (i = 1, 2) sind. Ergin-
zend sei noch erwéhnt, daB die durch Definition 9.14 eingefiihrten Funktionsleitern
geradlinig sind, weil ihr Tréager eine Gerade ist. In der Praxis (man denke z. B. an die
verschiedenen MeBinstrumente der Elektrotechnik oder an Manometer) werden auch
Funktionsleitern benutzt, deren Trager eine ebene Kurve, jedoch keine Gerade ist.
Man spricht dann von gekriimmten oder krummlinigen Funktionsleitern (siche
Bild 9.23).

s 0

Krummlinige Funktionsleiter

Funktionsleitern werden auch als geometrischer Ort von Bildpunkten definiert.
Das kann man zwar machen, doch wird damit das Wesen der Funktionsleiter unge-
niigend zum Ausdruck gebracht. Treffender ist es, eine Funktionsleiter als Abbil-
dung {(x, X)} aufzufassen, d. h., sie als die Menge der geordneten Paare (x, X) zu
betrachten, bei denen x einen gewissen Zahlenbereich durchlduft und X der Punkt
auf dem Trager der Funktionsleiter ist, der sich fir x gemaB (9.79) ergibt. Damit ist
gleichzeitig eine weitere Begriindung fiir die Bezifferung der Funktionsleiter mit den
Werten von x gegeben.

SchlieBlich sei noch erldautert, warum die erzeugende Funxtion streng monoton
sein mul3. Wiirden wir als erzeugende Funktion eine nicht streng monotone Funktion
(siche z. B. faus Bild 9.4 fiir x € [x,, x,]) zulassen, so gibt es mindestens zwei ver-
schiedene Argumente X und £ derart, daB ihnen ein und derselbe Bildpunkt auf der

D.9.14



142 9. Funktionen reeller Variabler

Funktionsleiter entspricht. Um mit Funktionsleitern jedoch arbeiten und sie anwen-
den zu kénnen, muB nicht nur jedem Wert des Arguments eindeutig ein Bildpunkt
entsprechen, sondern auch umgekehrt, zu jedem Bildpunkt auf der Funktionsleiter
darf es nur einen Wert des Arguments geben. Mit anderen Worten, die Abbildung
(x, X) muB fir alle x € D, eineindeutig sein. Und gerade das garantiert uns die
strenge Monotonie der Funktion f (vgl. Satz 9.2 und Satz 9.6, Teil b)).

Beispiel 9.16: Fiir einen geradlinigen Trager ist mit der erzeugenden Funktion f(x)
= x%,0 £ x £ 7, eine Funktionsleiter zu konstruieren, die etwa 100 mm lang sein
soll; die Unterteilung ist so zu wihlen, daBl der Abstand A zwischen den Teilstrichen
etwa der Bedingung 2 mm =< 4 < 4 mm geniigt. SchlieBlich wollen wir uns iiberlegen,
wozu eine solche Funktionsleiter genutzt werden kann.

Die Funktionswerte liegen im Intervall [0, 49]. Dieses Intervall soll etwa die Lange
von 100 mm der Funktionsleiter ausfiillen. Daher ergibt sich fiir den MaBstabs-
faktor I, die Beziehung

/ ~1—02-mm
749 )

Wir wihlen /, = 2 mm. Damit folgt wegen x, = 0 und f(0) = O fiir die Funktions-
leiter die Unterteilungsformel

ESTD 28 (9.80)
Nun muB die Wertetabelle der Argumente fiir die Unterteilung und Bezifferung so
aufgestellt werden, dafl dabei 2 mm < 4 < 4 mm gilt. Im gegebenen Falle reduziert
sich diese_Aufgabe darauf, zu ermitteln, wo Ax gleich 5-10-%, 2-10~! bzw. 10-*

gesetzt werden mufl. Es seien x und x + Ax zwei beliebige aufeinanderfolgende Argu-
mente und X, X, die ihnen entsprechenden benachbarten Bildpunkte. Dann gilt

A=X, — X, = L(x + Ax)? — Lx? = [,(2x Ax + Ax?). b
Daher muB3 also gelten
2 < 2(2xAx + Ax?) £ 4 oder 1 <2xAx +Ax? £2.

Setzt man hier nun nacheinander fiir Ax die Werte 5-10-1, 2 - 10~! sowie 10! ein,
so ergibt sich, daf folgende Ungleichungen etwa beachtet werden miissen:

075 <x< 1,75 fir Ax= 5-107%,
24 <x ) fir Ax= 2-107%,
5 =x=10 fir Ax =107,

Jetzt sind wir in der Lage, die Funktionsleiter zu konstruieren (siche Bild 9.24).

IAIA I

01 2 3oy 5 o F x 7
| T AU S i FETWE NN BR TS R X
Xy = 2u?

Xp=2x3

H=h4th

Bild 9.24. Funktionsleiter fiir f(x) = x>,0 < x <7

Wozu kann die konstruierte Funktionsleiter genutzt werden? Da die Unterteilungs-
formel (9.80) auf Grund der Monotonie der erzeugenden Funktion f zwischen den
Argumenten x € [0, 7] und deren Bildpunkten auf der Funktionsleiter eine einein-
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deutige Abbildung erzeugt, kann die konstruierte Funktionsleiter in folgender Weise
genutzt werden. Es seien x; und x, zwei beliebige Argumente 0 < x,, x, < 7 mit der
Eigenschaft, daB die Summe der zugehorigen Bildpunkte X; + X, ebenfalls auf der
Funktionsleiter liegt. Dabei wird unter der Summe zweier Bildpunkte X, + X, der
Bildpunkt verstanden, den man wie folgt erhilt. Die beiden Strecken Ox, und 0x,
werden addiert und die so erhaltene Gesamtstrecke auf der Funktionsleiter bei 0
beginnend abgetragen; ihr Endpunkt markiert den Bildpunkt X, + X, (siche
Bild 9.24). Dann entspricht diesem Bildpunkt ein gewisses x; € [0, 7] derart, daB
X, + X, = 2x% ist. Andererseits gilt jedoch X, + X, = 2x? + 2x3.

Somit folgt: x3 = x} + x3 oder

X3 =\/x%+x§.

Wenn wir also zwei Argumente X, x, € [0, 7] mit der oben genannten Eigen-
schaft haben, so koénnen wir bei X; + X, ohne jede weitere Rechnung den Wert
X3 = /x? + x3 ablesen. Formeln dieser Art treten u. a. bei der Berechnung der Linge
der Hypotenuse eines rechtwinkligen Dreiecks auf. Wenn z. B. die Katheten eines
solchen Dreiecks 3,6 m und 5,3 m lang sind, so folgt (vgl. Bild 9.24) sofort 6,4 < x;
< 6,5, und wir lesen niherungsweise x; &~ 6,4 m ab. In analoger Weise entwickelt
man eine Formel fiir /33 — x2.

Aufgabe 9.25: Mit a, b seien die Katheten und mit ¢ die Hypotenuse von recht- %
winkligen Dreiecken bezeichnet. Dann ermittle man unter Verwendung der in
Beispiel 9.16 konstruierten Funktionsleiter die jeweils fehlenden Langen fiir die drei
rechtwinkligen Dreiecke mit

a 4,8 km 26 m 300 m
b 24km | 3,8 m 400 m
c 69m | 67m

Als Hinweis sei vermerkt, daBl bei den beiden letzten Dreiecken zusitzliche Uber-
legungen angestellt werden miissen.

Neben der regularen Leiter zeichnet man fiir geradlinige Trager nach dem Typ
der erzeugenden Funktion einige weitere Funktionsleitern aus. Dazu gehéren die
logarithmische sowie die projektive Funktionsleiter. Erstere hat die erzeugende
Funktion

f(x) =log.x, 0<as<x=<b< +w,

wobei a, b, ¢ gegebene fixierte Zahlen (¢ > 0,c¢ # 1) sind; fiir die projektive
Funktionsleiter lautet die erzeugende Funktion

ax + b
= 1
S =~ o Yl
wobei a, b und c fixierte Zahlen mit ac # b sind und 7 ein Intervall ist, das x = —¢

nicht enthilt.

Aufgabe 9.26: Man konstruiere fiir einen geradlinigen Triger mit der erzeugenden #
Funktion f(x) = Igx, 1 £ x < 10, eine Funktionsleiter, die 125 mm lang sein soll.
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Die Unterteilung ist so zu wahlen, daB3 der Abstand 4 zwischen den Teilstrichen etwa
der Bedingung 0,5 mm < A < 1,25 mm geniigt. SchlieBlich soll eine Anwendungs-
moglichkeit fiir eine solche Funktionsleiter aufgezeigt werden.

Es wurde von uns schon im Beispiel 9.16 auf mogliche Anwendungen einer ein-
zelnen Funktionsleiter hingewiesen. Dennoch ist die praktische Bedeutung, die eine
Funktionsleiter fiir sich allein hat, begrenzt. Diese Grenzen lassen sich liberwinden,
wenn man zwei oder mehrere Funktionsleitern miteinander kombiniert. Die wesent-
lichsten Formen solcher Kombinationen sind Doppelleitern, Rechenstab und
Fluchtiinientafeln. Beziiglich der letzteren verweisen wir auf die o. g. Literatur zur
Nomographie. Das Prinzip der beiden ersteren sei hier kurz erldutert.

xp fx)
Il L ’l 1 I l‘ Il . | X Bild 9.25.
Talpiat B T p .
Y P — Allgemeu}er Aufbau einer
Doppelleiter

Eine Doppelleiter entsteht, wenn zwei Funktionsleitern (mit geradlinigem Trager)
so aneinandergelegt werden, daf3 ihre Orientierungen tibereinstimmen und die An-
fangspunkte zusammenfallen (siche Bild 9.25). Sind f und g die erzeugenden Funk-
tionen dieser beiden Leitern und

X = L[fx) = flxo)] bzw. Y =1[g(y) — g(yo)] (9.81)

ihre Unterteilungsformeln, so ergibt sich fir gleiche Punkte der Doppelleiter dann
fiir x und y der funktionale Zusammenhang

Lle(y) — &(o)] = LLf(x) = f(xo)]. (9.82)
Kann speziell /, = [, gewihlt werden, so nimmt (9.82) die einfachere Form
g(y) — g(yo) = f(x) — f(xo)

an. Ist dariiber hinaus auch noch g(y,) = f(x,), so wird (9.82) besonders einfach;
sie driickt den funktionalen Zusammenhang

g(») = f(x) (9.83)

aus. Haben wir eine solche Doppelleiter, so konnen wir zu jedem Argument x sofort
denjenigen Wert des Arguments ) ablesen, so daB fiir beide (9.83) gilt. Diese Werte
stehen einfach nebeneinander auf der Doppelleiter. Umgekehrt kann natiirlich auch
fiir jedes y das entsprechende x angegeben werden.

Die einfachste Anwendung von Doppelleitern besteht darin, dall man streng
monotone Funktionen /1 auf einer Doppelleiter darstellt. Dazu kann man entspre-
chend (9.82) bzw. (9.81) wihlen: f(x) = i(x), g(¥) =y, yo = f(xp)und [ = I, = I;
danach wird die Doppelleiter mit diesen GréBen gemaB (9.81) unterteilt. Natiirlich
konnen f und g auch anders gewihlt werden. So ist fir f(x) = x und g(y) = A~'(»)
mit g(y) = f(x) auch wieder der funktionale Zusammenhang y = /(x) dargestellt.

Beispiel 9.17: Es ist die Funktion y = x2,0 < x < 7, durch eine Doppelleiter darzu-
stellen, die etwa 100 mm lang werden soll, Um die bereits in Beispiel 9.16 konstru-
ierte Leiter anwenden zu kénnen, wihlen wir g(p) = y, f(x) = x>, [, = [, = 2mm
und benutzen dann die Unterteilungsformel (9.81). Dabei erhalten wir fir g(y) = y,
0 < y < 49, eine reguldre Leiter. Sie ist gemaf

Y=2
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unterteilt. Fiir f(x) = x2, 0 < x < 7, ergibt sich genau die Funktionsleiter von Bei-
spiel 9.16. Tragt man sie nun beide auf der gleichen Trigergeraden in der oben be-
schriebenen Weise so ab, erhalt man die gewiinschte Darstellung von y = x2, 0 < x
=< 7, durch eine Doppelleiter. Sie ist im Bild 9.26 zu sehen.

y—-
0 10 20 30 4« 5
01 2 3 4 5 3 7
X

Bild 9.26. Doppelleiter mit X = 2x? und Y = 2y

Aufgabe 9.27: Es ist die Funktion y = \/ x, 0 < x £ 36, durch eine Doppelleiter
darzustellen, die etwa 100 mm lang werden soll. Hierzu ein Hinweis: Neben der Kon-
struktion mittels entsprechender Unterteilungsformeln gibt es eine Konstruktion,
die an Vorhergehendes ankniipft und ohne jede Rechnung auskommt.

Der Rechenstab geht in zweifacher Hinsicht iiber die Doppelleiter hinaus. Zum
einen stellt er eine Kombination von mindestens drei (geradlinigen) Funktions-
leitern dar. Zum anderen konnen diese gegeneinander verschoben werden. Das wird
dadurch erreicht, daB zwei der Funktionsleitern auf einem festen Triger (dem Stab-
korper T,) angeordnet sind, wihrend die dritte auf einem beweglichen Tréger (der

L

0 7 F

T X .« )F}

Zunge T,) aufgetragen ist (siehe Bild 9.27). Die im Bild 9.27 angedeuteten Funktions-
leitern seien nach den Formeln

X = L[f(x) — f(x0)]
Y = L[g(y) — &gl
Z = L[h(z) — h(z)]

unterteilt. Im allgemeinen strebt man hierbei an, da8 /, = I, = [, ist. Dann entspricht
jeder Beziehung Z = X + Y zwischen den Bildpunkten (vgl. Bild 9.27) der funk-
tionale Zusammenhang zwischen Variablen x, y, z:

h(z) = h(zo) = f(x) — f(xo) % [8()) — &(o)]. 9.84)

Der Rechenstab ist bereits so konstruiert, dal der Bildpunkt 0, von z, genau iiber
dem Bildpunkt 0, von x, liegt. Daher besagt die Formel (9.84) genauer folgendes:
Wird der Bildpunkt 0, von y, iiber den Bildpunkt X des Wertes x gestellt, dann
geniigt dieser Wert zusammen mit jedem Wertepaar y und z, welches iibereinander-
liegenden Bildpunkten Y und Z entspricht, dem funktionalen Zusammenhang (9.84).
Um das Ablesen iibereinanderliegender Bildpunkte zu erleichtern, ist der Rechen-
stab noch mit einem beweglichen Laufer L versehen, der eine entsprechende Mar-
kierungslinie trigt (siche Bild 9.27). Besonders einfach wird der funktionale Zu-

10  Sieber u. a., Mathematik

7 ‘; Bild 9.27.
g Prinzip des Rechenstabs
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sammenhang (9.84), wenn A(z,) = f(x,) = g(yo) = 0 gilt. Dann folgt namlich
h(z) = f(x) £ 8(3).
Ein Spezialfall hiervon wiederum ergibt sich, wenn /1 = f = g gilt:
f(@) = f(x) £ f(»). (9.85)

Hierbei ist eine der beiden Funktionsleitern auf dem Stabkorper iberfliissig. Die
bekannteste Anwendung dieses Falles ist mit dem logarithmischen Rechenstab ge-
geben. Fiir ihn gilt f(¥) = 1g u. Dann besagt (9.85)

Igz=Ilgxtlgy, x32>0,
und stellt somit den funktionalen Zusammenhang
z = xytt

dar. Der logarithmische Rechenstab kann also benutzt werden, um die Multiplikation
oder Division zweier Zahlen auszufiihren.

Betrachten wir nun noch die Funktionsnetze. Jedem Leser ist sicher ein einfaches
Beispiel von Funktionsnetzen in Form des handelsiiblichen Millimeterpapiers be-
kannt. Thr wesentlicher Unterschied gegentiber den Funktionsleitern besteht darin.
daB bei ihnen jedem Wert eines Arguments nicht ein Bildpunkt, sondern eine ein-
deutig bestimmte Bildkurve zugeordnet ist. Allgemein bestehen nun Funktions-

7

Bild 9.28.
Funktionsnetze

netze aus zwei sich schneidenden Kurvenscharen (siehe Bild 9.28). die jede fiir sich
eine Variable x bzw. ) reprasentieren. Dabei erfolgt die Bezifferung der Kurven
einer Schar entsprechend der Werte der Variablen. deren Bilder sie sind (vgl. etwa
mit den Gradnetzen in Atlanten). Hiufig verwendet werden Netze aus rechtwinklig
zueinander verlaufenden Geradenscharen. Sie werden Funktionispapier genannt.

Definition 9.15: Fiir zwei streng monotone Funktionen f und g seien entsprechend der
Unterteilungsformel

X =L{fx) = fix)], Y =L[gy) — glro)] (9.86)

auf geradlinigen Trigern zwei Funktionsleitern konstruiert. Stellt man diese beiden
Leitern senkrecht so zueinander, daf die Bildpunkte X, und Y, sich decken, und zieht
durch jeden Teilstrich einer Leiter eine Gerade, die senkrecht zu ihr ist. so erhdlt man
ein sogenanntes Funktionspapier.

Funktionspapiere unterscheidet man nach den Funktionen, die ihrer Konstruktion
(siehe (9.86)) zugrunde liegen. Sind f und g in (9.86) lineare Funktionen, so spricht
man von Millimeterpapier: ist feine lineare Funktion und g die Logarithmusfunktion,
so erhilt man das sogenannte Exponentialpapier: ist dagegen f die Logarithmus-
funktion und g eine lineare Funktion, so erhalt man das sogenannte Logarithimen-
papier: sind schlieBlich beide Leiter logarithmisch unterteilt. so ergibt sich das soge-
nannte doppellogarithmische Papier.
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Eine wesentliche Anwendung von Funktionspapieren besteht darin, funktionale
Zusammenhinge zwischen MeBgroBen sichtbar zu machen. In diesem Zusammen-
hang seien folgende Eigenschaften einiger der genannten Funktionspapiere erwihnt.

Satz 9.9: Exponentialfunktionen der Form y = ba* ergeben im Exponentialpapier
Geraden und umgekehrt, Geraden im Exponentialpapier entsprechen gewisse Expo-
nentialfunktionen (s. a. Beispiel 9.18).

Satz 9.10: Logarithmusfunktionen der Form y = alg x + b ergeben im Logarithmen-
papier Geraden und umgekehrt, Geraden im Logarithmenpapier entsprechen gewisse
Logarithmusfunktionen.

Hat man also im Ergebnis eines Experiments eifie MeBreihe der Art (9.15) erhalten
und ergibt sich bei der Darstellung der Wertepaare einer solchen MeBreihe in einem
Exponentialpapier naherungsweise eine Gerade, so kann man schluBfolgern, daf} der
funktionale Zusammenhang zwischen den MefBgroBen eine Exponentialfunktion
darstellt.

Beispiel 9.18: Gegeben sei die MeBreihe:
X IZ |2,5’3 '3,5{4 |4,5|
vy |35 |44 |55 |70 |89 [110]14

9.87)

Auf Grund sachlicher Zusammenhédnge moge die Annahme berechtigt erscheinen,
daB y exponentiell von x abhéingt. Diese Annahme ist mittels eines geeigneten Funk-
tionspapiers zu liberpriifen.

Wegen der oben genannten Eigenschaften wahlen wir ein Exponentialpapier mit
den Unterteﬂungsformeln /

= 10x, 0<x, (9.88)
Y=50lgy, 1=<jy. (9.89)

Es ist in Bild 9.29 dargestelit. Nun iiberzeugen wir uns zunichst davon, daB jeder
Geraden

Y=aX +b (9.90) -

in dem konstruierten Funktionspapier tatsachhch ein gewisser exponentleller Zu-

S.9.9

S.9.10

sammenhang zwischen x und y entspricht. Hierzu werden (9.88) und (9.89) in (9.90) .

eingesetzt. Danach ergibt sich

501gy = 10ax + b,
woraus nach den Umformungen

lg y = 0,2ax + 0,025,

y= 100.2nx+0,02b

die Zuordnungsvorschrift

y=CI10* mit C=10"°% k =0.2a
folgt. Damit ist diese Eigenschaft des Exponentialpapiers bewiesen. Jetzt werden die

Punkte der MeBreihe (9.87) in das konstruierte Funktionspapier eingetragen; danach
kann man sich davon iiberzeugen, daB die Annahme iiber den exponentiellen Zu-
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Bild 9.29. Exponentialpapier mit MeBreihe und angeniherter empirischer Funktion

sammenhang zwischen den Mefgréflen x und v berechtigt war (siehe Bild 9.29).
Schreibt man ihn in der Form

r=Cl10, 9.91)
so kann man aus Bild 9.29 sogar die Werte fiir C und k naherungsweise ablesen. Ver-
langert man namlich die Strecke, die die MeBpunkte nédherungsweise verbindet, bis
zur y-Achse, so schneidet sie diese bei 1,4. Damit folgt aber C = 1,4. Setzt man diesen

gefundenen Wert sowie x = 5und y = 14in (9.91) ein, so findet man k = 0,2. Damit
Jautet der gesuchte funktionale Zusammenhang fiir die MeBgréBen x und y

v = 1,4-10%%,
Aufgabe 9.28: Man konstruiere ein doppellogarithmisches Funktionspapier fiir
1 £x =<300und1 < y < 50. Dabei moge der MaBstabsfaktor fiir beide Funktions-
leitern gleich sein und so gewahlt werden. daB die x-Funktionsleiter etwa 60 mm lang

wird. Als erzeugende Funktion diene in beiden Fillen die dekadische Logarithmus-
funktion.

Es sei erwdhnt, daB Geraden
Y=aX+b
im doppellogarithmischen Papier der Aufgabe 9.28 Potenzfunktionen der Art
=N it ci— 10%

darstellen, wobei / der Mafstabsfaktor ist.
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Abschlieflend weisen wir darauf hin, daB die Konstruktion und Nutzung von Funk-
tionsleitern, Funktionsnetzen und anderen Nomogrammen immer verbunden wer-
den mufl mit Genauigkeitsbetrachtungen. Einzelheiten hierzu findet man z. B. in
[21]. Wir empfehlen jedoch, sich hierfiir erst mit den Grundlagen der Differential-
rechnung aus Band 2 vertraut zu machen.

11 sieber u. a., Mathematik



10.  Zahlenfolgen

Das Ziel dieses Kapitels besteht darin, fiir ein neues mathematisches Objekt, nim-
lich die Zahlenfolge, die wesentlichsten Aussagen und Eigenschaften darzulegen.
Insofern besteht hier Analogie zum Kapitel 9. liber Funktionen. Aber natiirlich er-
geben sich fiir das neue mathematische Objekt ,,Zahlenfolge* auch Probleme, die
sich von den bisher fiir Funktiongn untersuchten grundlegend unterscheiden. Die
neuen Probleme fiihren ihrerseits zu neuen Begriffen, Aussagen usw. Als wesentlichste
Begriffe seien vorab bereits genannt: Nullfolgen, Grenzwert, Konvergenz und Hau-
fungspunkt. Unter ihnen wiederum sind Grenzwert und Konvergenz von fundamen-
taler Bedeutung fiir das Verstindnis der gesamten Differential- und Integralrechnung
und damit fiir zahlreiche angewandte Problemstellungen. Die Beziechungen des vor-
liegenden Kapitels selbst zu praktischen Problemen sind jedoch nicht so unmittelbar
wie die des Kapitels iiber Funktionen. Es hat ausgesprochenen Grundlagencharakter.
Das macht sich auch in der Darlegungsweise bemerkbar. Gerade deshalb hoffen wir,
mit den vorangegangenen Darlegungen beim Leser so viel Verstandnis fir die not-
wendige mathematische Kleinarbeit geweckt zu haben, daB er bereit ist. mit uns
gemeinsam die folgenden Stufen der Abstraktionen Schritt fiir Schritt zu ersteigen.

Trotz der obigen Bemerkungen iiber den Grundlagencharakter dieses Kapitels
haben Zahlenfolgen natiirlich auch eine vielfdltige Bedeutung fiir praktische Unter-
suchungen. Auf einige wird in Abschnitt 10.9. hingewiesen.

Zur Vorbereitung auf die folgenden Ausfithrungen empfehlen wir, das Rechnen
mit Betragen und Ungleichungen zu wiederholen (siehe Abschnitt 5.2.).

10.1.  Zahlenfolgen als Spezialfall von Abbildungen
und einige ihrer besonderen Vertreter

Im Beispiel 8.7 (Abschnitt 8.4.) wurden Zahlenfolgen bereits als Spezialfall von
Abbildungen eingefiihrt. Danach sind Zahlenfolgen geordnete Paare (n, ) reeller
Zahlen. Das Wesen der Spezialisierung, die beim Ubergang von Abbildungen zu
Zahlenfolgen vorgenommen wurde, besteht ingfolgenden drei Merkmalen:

1. Der Definitionsbereich der Abbildung ist gleich N*, wobei wir mit N+ die Menge
der natiirlichen Zahlen 1, 2, ... bezeichnen.

2. Die Abbildung ist eindeutig.
3. Der Wertebereich ist eine Teilmenge von R'.

Die im Beispiel 8.7 angegebene Schreibweise bringt zwei dieser drei Merkmale
zum Ausdruck. Sie ist jedoch zu umfangreich und wird daher nicht verwendet. Es
ist u. a. tiblich, eine Zahlenfolge allgemein durch das Symbol

1 {a.}, a, = f(n), (10.1)

oder konkret z. B. in der Form {a,}, a, = (1 + n)~*, anzugeben. Dabei schlieBt diese
Schreibweise ein, da3 der Definitionsbereich der Funktion f gleich N* ist, d. h., daB
n = 1,2,... gilt. Der Index n besagt, daf es sich bei a, um das Bild des Originals »n
handelt. Das kommt auch allgemein in der Formel a, = f(n) bzw. konkret z. B.
in a, = (1 + n)~! zum Ausdruck. Da n hierbei eine beliebige natiirliche Zahl gréBer
0 ist, nennt man a, das allgemeine Glied der Zahlenfolge.
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In Ubereinstimmung damit, daB in (10.1) n = 1,2, ... gilt, wird a, das erste,
a, das zweite, ..., a; das i-te Glied usw. der Zahlenfolge (10.1) genannt. Dement-
sprechend schreibt man (10.1) mitunter auch ausfiihrlicher als

Ay, Aoy ooy lyy ... (10.2)
Damit ist fiir Zahlenfolgen gegeniiber den Abbildungen i. allg. noch ein Merkmal
charakteristisch (jedoch nicht unbedingt erforderlich): ihre Zahlenpaare (n, a) bzw.
kurz a, sind in der Reihenfolge der Werte von n angeordnet.
Wir nennen zwei einfache Vertreter von Zahlenfolgen.
Beispiel 10.1:
1. Es seien @ und d zwei beliebige reelle Zahlen, d + 0. Die Folge
{a,},a,=a+ (n—1)d,
lautet in der ausfiihrlichen Schreibweise (10.2)
a, a+d a+2 .. a+m-1d...
Sie wird arithmetische Zahlenfolge genannt und ist dadurch charakterisiert, daf3

die Differenz zweier beliebiger benachbarter Glieder konstant ist: a;,; — a; = d,
Jj=12,..

2. Es seien @ und ¢ zwei belicbige reelle, von Null verschiedene Zahlen. Die Folge
{a,), a, = ag"",
lautet in der ausfiihrlichen Schreibweise (10.2)
a,aq,aq’, ..., aq""*, ...

Sie wird geometrische Zahlenfolge genannt und ist dadurch charakterisiert, daf
der Quotient zweier beliebiger benachbarter Glieder konstant ist:
41 .
== =g, I .
q; q. J

Als weiteren speziellen Vertreter der Zahlenfolgen nennen wir die alternierende
Folge. Fir sie ist charakteristisch, daB benachbarte Glieder jeweils unterschiedliche
Vorzeichen besitzen:

sgna; = —sgna;,;, wasgleichbedeutend mit a;a;,; <0, j=1,2,..., ist.

Beispiel 10.2: Wenn in der geometrischen Folge g < 0 ist, so erhdlt man eine alter-
nierende Folge. Tatséichlich, es gilt ndmlich in diesem Falle

aa;,, = a*q¥qt <0, " j=1,2,...

Aufgabe 10.1: Man schreibe die ersten 5 Glieder der geometrischen Folge
1\
{an}s a, = (- 7) )

Aufgabe 10.2: Der bekannte Wettlauf zwischen Achilles und der Schildkréte kann
etwa dadurch charakterisiert werden, daBl Achilles doppelt so schnell lduft wie die
Schildkréte und diese zu Beginn einen Vorsprung von / Metern besitzt. Den weiteren
Wettlauf zerlegt man haufig (vgl. [12]) in folgende Phasen: in der ersten Phase legt

11*

auf.
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Achilles / Meter zuriick; in der zweiten Phase durchlduft Achilles die Strecke, die von
der Schildkrote in der ersten Phase zuriickgelegt worden ist usw. Man gebe in zwei
Zahlenfolgen die von Achilles bzw. der Schildkréte in jeder Phase zuriickgelegten
Strecken an. '

Wir werden im weiteren haufig einfach von der Zahlenfolge

(a,) (10.3)

sprechen und darunter (10.1) mit n = 1, 2, ... verstehen.

In engem Zusammenhang mit Zahlenfolgen stehen deren Teilfolgen. Teilfolgen
einer Zahlenfolge {a,} erhilt man wie folgt: es sei {ki, ks, ..., Ky, Kyi1, ...} cine
beliebige Teilmenge der natiirlichen Zahlen, wobei

ky <k, <...<k,<ky,<...

gilt; dann ist {a} eine Teilfolge von {a,}. Wir werden das gegebenenfalls durch
{a,} = {a,} ausdricken. Eine Teilfolge von {a,} ergibt sich also dadurch, da gewisse
Glieder dieser Folge — es miissen jedoch unendlich viele sein — ausgewéhlt und zu
einer neuen Folge ,,zusammengestellt* werden.

10.2.  Einfachste Eigenschaften von Zahlenfolgen

Die Darlegung der einfachsten Eigenschaften von Zahlenfolgen hat Wesentliches
gemeinsam mit den entsprechenden Darlegungen fiir Funktionen (vgl. Abschnitt 9.3.).
Deshalb empfehlen wir dem Leser, die folgenden Ausfithrungen insbesondere mit
denen fiir monotone bzw. beschriankte Funktionen zu vergleichen.

Definition 10.1: Eine Zahlenfolge {a,} heit monoton wachsend, wenn

a, < a,yy firalle n=12,... (10.4)
gilt; entsprechend wird sie monoton fallend genannt, wenn

a, = a,., firalle n=12... (10.5)

gilt. Gelten dagegen fiir eine Zahlenfolge {a,} Ungleichungen der Art (10.4) bzw. (10.5)
ohne Gleichheitszeichen

a, < @y firalle n=12,... (10.6)
bzw.

a, > @, firalle n=12,..., (10.7)

dann heifit die Folge streng monoton wachsend bzw? streng monoton fallend.

Aufgabe 10.3: Es seien n und r zwei beliebige natiirliche Zahlen mit » < r. Man zeige, da3 dann fir
monoton wachsende bzw. fallende Zahlenfolgen immer die Ungleichungen

a, < a, bzw.a, = a,
gelten.

Mit der Eigenschaft monotoner Folgen, die in der Aufgabe 10.3 formuliert ist,
wird véllige Analogie zur Monotonie von Funktionen hergestellt. Dazu ist lediglich
zu beachten, daB die Rolle des Arguments x von Funktionen bei Zahlenfolgen vom
Index n eingenommen wird.
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Beispiel 10.3: Die geometrische Folge {a,}, a, = ag"* mit a > 0, ist fiir 0 < ¢ < 1
streng monoton fallend; dagegen ist sie fiir 1 < ¢ streng monoton wachsend. Wir
zeigen hier nur die letzte Behauptung. Wegen 1 < ¢ folgt auf jeden Fall ¢"-* > 0.
Wird daher 1 < g mit ¢"! und danach mit @ > 0 multipliziert, so ergibt sich
ag"' < ag" oder a, < gy, n=1,2,...

Beispiel 10.4: Die Folge {a,}, a, = %, ist streng monoton fallend. Tatsédchlich, es

n=1,2,..., gilt. Letztéres ist

muB gezeigt werden, daB a, > a,,, oder7 > T 1

aber eine unmittelbare Folge aus der evidenten Ungleichungn + 1 > n,n=1,2,...

Aufgabe 10.4: Man betrachte eine geometrische Folge {a,}, a, = ag"™*, mit a < 0
und untersuche — dhnlich wie in Beispiel 10.3 — ihr Monotonieverhalten.

Aufgabe 10.5: Ist die Folge {a,},a, = — in_zi , monoton?

Mit der Zahlenfolge {a,}, a, = 2n + (—1)", weisen wir auf eine zwar monoton
wachsende, jedoch nicht streng monoton wachsende Folge hin.

7
Aufgabe 10.6: Fir die Zahlenfolge {a,}, a, = cn + 3 (—1)", untersuche man, ob es einen Wert ¢
gibt, fiir den {a,} zwar monoton, jedoch nicht streng monoton wachsend ist. AuBerdem priife man,
ob es Werte ¢ gibt, fiir die {a,} streng monoton wachsend ist. .
Zahlenfolgen konnen genau wie Funktionen beschrinkt sein.

Definition 10.2: Eine Zahlenfolge {a,} heiit beschriinkt, wenn es eine endliche Kon-
stante C derart gibt, daf§

la,) £ C firalle n=1,2,...;
dabei heift C Schranke der Folge {a,}. Eine Folge heifit nach oben bzw. nach unten
beschriinkt, werin es eine endliche Konstante K bzw. k derart gibt, dafs

a, < K bzw. a, 2k firale n=12,...
gilt; dabei wird K obere Schranke und k untere Schranke von {a,) genannt.

Die folgenden konkreten Zahlenfolgen mégen diese Begriffe erlautern.

Beispiel 10.5: Die Folge {a,}, a, = —I—%En—, ist beschrankt. Es gilt namlich fiir alle
n=12...
1—13n 1

3——|<3.
n

|a| =\
Dabher ist jede Zahl C = 3 eine Schranke dieser Folge. AuBerdem iiberzeugt man
sich wegen a, = —;— — 3 leicht, daB jede Zahl kK < —3 eine untere Schranke und jede
Zahl K = —2 eine obere Schranke der Zahlenfolge ist.

Beispiel 10.6: Eine geomettische Folge {a,}, @, = ag"~!, ist fir —1 < ¢ < | immer
beschrinkt, und jede Zahl C = |a| ist eine Schranke dieser Folge. Tatsichlich, fiir
g e[—1, 1] gilt namlich |g|"* £ 1, so daB |a,| < |a| fiir alle n = 1, 2, ... folgt.

D.10.2
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Als Beispiel einer unbeschriankten Folge nennen wir die arithmetische Folge mit
d * 0.

Aufgabe 10.7: Es seien zwei beliebige beschrinkte Folgen {a,} und {b,} gegeben.
Sind dann auch die Folgen {c,}, ¢, = a,b,, und {d,}, d, = a, + b,, beschiankt?

AbschlieBend vertiefen wir die bisherigen Darlegungen durch folgende Bemer-
kungen.

1. Haufig trifft man die intuitive Vorstellung, daf3 streng monoton wachsende Folgen
nicht beschrinkt sind. Das ist jedoch i. allg. falsch, wie die geometrische Zahlen-
folge fir @ < 0 und 0 < g < 1 zeigt. Sie ist namlich sowohl beschrinkt (siche
Beispiel 10.6) als auch streng monoton wachsend (vgl. Losung der Aufgabe 10.4).

2. Wenndie Folge {a,} eine der obengenannten Eigenschaften besitzt, so besitzt auch
jede ihrer Teilfolgen diese Eigenschaft.

10.3.  Nullfolgen und ihr Vergleich

Es gibt eine Klasse von Zahlenfolgen, die sich durch eine besondere Eigenschaft
auszeichnen. Sie besteht darin, daB der Betrag des allgemeinen Gliedes einer solchen
Folge ,,beliebig klein* wird. Praziser ist damit folgendes gemeint: Es sei ¢ eine be-
liebig kleine Zahl grofBer als Null (es kann z. B.e = 102° sein); dann existiert immer
eine natiirliche Zahl N(¢) mit der Eigenschaft, daB |a,| < ¢ fiir alle n = N(e) gilt.
Das Argument ¢ deutet hier an, daB die Zahl N(e) sich in Abhangigkeit von dem ge-

wihlten ¢ dndert. Eine solch]e Eigenschaft besitzt z B. die Folge {4,} mit a, = n—lz-
Fiir sie gilt namlich [q,| = el so daB bei beliebigem ¢ > 0 immer |a,| < ¢ fir alle
n = N(e) folgt, wobei fiir N(¢) die kleinste ganze Zahl gewdhlt werden kann, die
noch groBer ist als =

In diesem Zusamme;hang erweist es sich als niitzlich, den Begriff der e&-Umgebung

einer Zahl a anzuwenden (vgl. Abschnitt 7.8.). Wir bezeichnen sie mit Ug(a) und
verstehen im weiteren darunter die Menge

] Ufa) = {xeR'|a —e < x < a+s}; (10.8)

dabei ist ¢ eine gewisse positive Zahl. Mit anderen Worten, wir bezeichnen hier mit
U,(a) das offene Intervall (a — &, a + &):

Ufa) = (a — ¢ a+e) (10.9)
U@
: e Bild 10.1.
] ﬂ-‘ﬁ ;, ,,1, ¥ Darstellung der e-Umgebung der Zahl a

(vgl. Bild 10.1). Es sei bemerkt, daB3 x e U,(a) dquivalent ist mit
|x —a|] < e. (10.10)
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Mit Hilfe der e-Umgebung 148t sich nun leicht folgender Begriff einfiihren:

Definition 10.3: Eine Zahlenfolge {a,} heift Nullfolge, wenn fiir jede positive Zahl D.10.3
& > 0 cine natiirliche Zahl N(g) derart existiert, daf}

a, € Uy0) fiiralle n = N(e) (10.11)
gilt.

Zur Erlauterung dieser Definition bemerken wir:
. Die Forderung (10.11) ist gleichbedeutend damit, daf3
la,| < e firalle n= N() (10.12)

ist. Somit sind Nullfolgen solche Zahlenfolgen, deren Glieder a, mit wachsendem n
dem Betrage nach ,,beliebig klein*“ werden, also auf der Zahlenachse beliebig
nahe bei Null liegen. Daraus ist auch der Name ,,Nullfolge abgeleitet.

. Fiir die Definition der Nullfolge ist es von prinzipieller Bedeutung, daB (10.11)
fiir jede positive Zahle gilt. Soist z. B. die Folge {a,}, a, = L’;a:—l, keine Nullfolge,

obwohl man sich fiir ¢ = —110— zundchst davon iiberzeugen kann, daf

[

la,| < L firalle n=>8
ilt. Wiahlt meir? namlich ein kleineres ¢, etwa ¢ = ! so folgt wegen a, > Rl
o © = oo > S0 OB eEen & > g,
1 1

3 > 100" daB die Bedingung a, € U,(0) bei ¢ = mfur kein n erfiillt ist.

Von ebenso prinzipieller Bedeutung fiir die Definition der Nullfolge ist es, daf3
(10.11) fiir alle n = N(e) gilt. So ist z. B. die Folge {a,}, a, = 1 + (—1)", keine
Nullfolge, obwohl a, = 0 fiir alle ungeraden n =1, 3,5, ... gilt und somit fir
diese n natiirlich bei jedem positiven & auch a, € U,(0) folgt. Fiir alle geraden n
ergibt sich dagegen a, = 2, so daBl bei cinem ¢¢€(0,2) immer a,¢ U/(0),
n=246060,..., folgt.

0

Es sei erwahnt, daB3 (10.11) bzw. (10.12) haufig auch so formuliert werden:
a, € U/0) bzw. |a,| < ¢ gilt fiir alle hinreichend grofien n.

(=1)"
n

Beispiel 10.7: {a,}, a, = ,isteine Nullfolge. Tatsachlich, es sei ¢ eine beliebige

positive Zahl. Dann muf fiir alle hinreichend groBen » die Bedingung |a,| < & gelten.
Wegen |a,| = % ist das aquivalent mit% <e o?er% < n. Wihlt man also fiir
N(¢) die kleinste ganze Zahl, die noch gréfler als - ist, so gilt fir dieses N(e) (10.12)
und damit auch (10.11).

Aufgabe 10.8: Man zeige, daB {a,}. a, = ¢", fiir jedes feste g € (—1, 1) eine Nullfolge *
‘SLOhne auf Einzelheiten einzugehen, erwidhnen wir noch, daB auch Folgen wie

{a,,‘,.a":':—a, x>0, (10.13)
P(n)

{an}’an :W’

(10.14)
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Nullfolgen sind; im Falle von (10.14) sind P(n) und R(n) gewisse Polynome, wobei
R(n) héheren Grades als P(n) ist.
Unter den Eigenschaften von Nullfolgen geben wir hier ohne Beweis folgende an:

1. Jede Nullfolge ist beschrankt; die Umkehrung gilt jedoch im allgemeinen nicht.
2. Sind {a,} und {b,} Nullfolgen, so sind auch
{a, + b,}, {ab,} und {ca,}
Nullfolgen; im letzten Falle ist ¢ eine beliebige Konstante.

Der Quotient zweier Nullfolgen {a,} und {b,} kann, muf jedoch nicht wieder eine

Nullfolge sein. Wenn jedoch auch { Z"

eine Nullfolge ist, dann nennt man {a,} im

Vergleich zu {b,} eine Nullfolge hﬁhere: Ordnung.

*

Aufgabe 10.9: Es sei 1 > g, > g, > 0. Man vergleiche die beiden Nullfolgen {a,},
a, = q7, und {b,,}, b, = q3, und priife, ob eine von hsherer Ordnung im Vergleich
zur anderen ist.

S.10.1 Satz 10.1: Jede Teilfolge einer Nullfolge ist ebenfalls eine Nullfolge.

S.10.2 Satz 10.2: Wenn {a,} eine Nullfolge ist und fiir {b,} eine natiirliche Zahl N, derart
existiert, daf
[b,| < la,| fiiralle n = Ny,
dann ist auch {b,} eine Nullfolge.

*

Aufgabe 10.10: Man beweise Satz 10.1.

10.4. K(invergenzbegriff fiir Zahlenfolgen

Dieser Abschnitt ist dem fiir die gesamte Differential- und Integralrechnung fun-
damentalen Begriff der Konvergenz gewidmet. Dabei wird er hier zunichst im Zu-
sammenhang mit Zahlenfolgen behandelt. Spater werden wir ihm in den vielfiltigsten
Beziehungen bei Funktionen begegnen.

Im allgemeinen Sprachgebrauch bedeutet, Konvergenz soviel wie sich an etwas
anndhern. In eben diesem Sinne wird der Begriff ,,Konvergenz‘ auch in der Mathe-
matik verwendet. Fiir Zahlenfolgen bedeutet Konvergenz speziell, daB3 es eine ge-
wisse Zahl a gibt, an die sich die Glieder der Folge anndhern. Das Maf3 fiir diese
Anniherung ist der Abstand zwischen der Zahl a und den Gliedern a, der Zahlen-
folge {a,). Er wird ausgedriickt durch die Zahl |a, — a].

D.10.4 Definition 10.4: Eine (konstante) endliche Zahl a heifit Grenzwert der Zahlenfolge
{a,}, und diese Folge heifit konvergent gegen den Grenzwert a, wenn es zu jedem & > 0
eine natiirliche Zahl N(g) derart gibt, daf

la, — a|l < & firalle n= N(e) (10.15)
gilt. Man schreibt fiir die Konvergenz von {a,} gegen a

lim a, = a (10.16)

n—o

oder
a,—a fir n— . (10.17)
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Die Schreibweisen (10.16) bzw. (10.17) werden gelesen als ,,Limes a, fiir n gegen oo
ist gleich a* bzw. ,,a, konvergiert gegen a fiir n gegen oo*. Damit bringt besonders
die Schreibweise (10.17) das Wesen der Konvergenz einer Zahlenfolge {a,} gegen
einen Grenzwert a zum Ausdruck: Mit wachsendem Index nihern sich die Glieder
der Folge immer mehr dem Grenzwert, wird also ihr Abstand von diesem Grenzwert
immer kleiner (vgl. auch Satz 10.3). Hierzu mufl man natiirlich erginzen, daBl diese
Anniherung nicht unbedingt monoton erfolgen muf (siehe Beispiel 10.9).

Als ein Spezialfall konvergenter Zahlenfolgen erhilt man die Nullfolgen; sie sind
dadurch charakterisiert, daB ihr Grenzwert gleich Null ist (diese Begriffsbildung ist
mit Definition 10.3 identisch).

Satz 10.3: Die Folge {a,} konvergiert dann und nur dann gegen a, wenn die Folge der
Abstinde {|a, — a|} eine Nullfolge ist.

Es sei besonders der theoretische Charakter der Definition 10.4 betont. Er besteht darin, daB durch
diese Definition zwar der Begriff des Grenzwertes eingefiihrt, jedoch keinerlei praktische Anleitung
zu seiner Ermittlung gegeben wird. Diese Frage muBl auf die folgenden Abschnitte (siche 10.5.,
10.6. und 10.8.) vertagt werden. Deshalb kann man mit Hilfe der Definition 10.4 fiir eine konkrete
Zahlenfolge nur entscheiden, ob eine gegebene Zahl ihr Grenzwert ist oder nicht.

- S 1+ 3n+ 522 . 5
Beispiel 10.8: Fur die Folge {a,}, a, = — ist von den beiden Zahlen 3 und—4— nur

letztere Grenzwert dieser Folge. Tatsachlich, fir n = 1,2, ... gilt

14 3n 5<n+3n+5
4n? t7= 4n? 4

B _L,5._»
S SwtTET

|

9
Also ist {a,} nach oben beschrinkt, wobei;eine obere Schranke der Folge ist. Dann kann der

3 3
Abstand |a, — 3| aber nie kleiner als T werden, so daB die Forderung (10.15) fiir kein e € (0, Z)

erfiillt ist. Somit ist die Zahl 3 nicht Grenzwert der Folge {a,}. Dagegen ergibt sich ﬁirz zunéchst

14 3n
4n?

1
a, — | =htt
[

4

Aus dieser Abschatzung folgt mit Satz 10.1 (vgl. noch Beispiel 10.7) die Behauptung.
Aufgabe 10.11: Man priife, ob eine der Zahlen 2 oder 4 Grenzwert der Folge

2 — dn + 127
{an}, an = e s

ist.

Die Definition 10.4 hat groBe theoretische Bedeutung. Mit ihrer Hilfe kann man
fiir konvergente Zahlenfolgen eine ganze Reihe von Eigenschaften nachweisen, ohne
ihren Grenzwert zu kennen. Ausfiihrlicher folgen derartige Betrachtungen im nichsten
Abschnitt. Hier wird das zunéchst beim Beweis folgender Aussage demonstriert.

Satz 10.4: Wenn fiir eine Zahlenfolge {a,} die Konvergenzbeziehungen

lima, =ad und lima,=4da

now n-
gelten, dann folgt @ = a, d. h., der Grenzwert einer konvergenten Zahlenfolge ist ein-
deutig bestimmt.

S.10.3

S.10.4
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Diese Aussage ist bewiesen, wenn wir zeigen konnen, dal3 [@ — a| = 0 gilt. Also
betrachten wir |@ — a| etwas néher.

ld—al=la-a,+a —dl<sld-al+la —al

Jeden der beiden Summanden |@ — a,| und |a, — @ kann man wegen der vorausge-
setzten Konvergenz fiir alle hinreichend groBen n kleiner als jede positive Zahl ¢
machen. Daher ergibt sich @ — d| < 2¢, und da ¢ eine beliebige positive Zahl ist,
folgt (vgl. Lésung der Aufgabe 10.12) |d — d| = 0 oder @ = a.

Aufgabe 10.12: Man iiberlege sich, ob es nichtnegative Zahlen gibt, die kleiner als
alle positiven Zahlen sind.

Aufgabe 10.13: Man zeige, daB fiir die Zahlenfolge {s,},s, = ¥ ¢, n = 1.2,...,
i=1

q .
ilt.
—4 ¢

0 < ¢ < 1, die Grenzwertrelation lim s, =

n— oo 1

Durchaus nicht jede Zahlenfolge besitzt einen Grenzwert im Sinne der Defini-
tion 10.4. Zahlenfolgen, die keinen Grenzwert besitzen, also nicht konvergent sind,
werden divergent genannt. Die Menge aller divergenten Zahlenfolgen wird ihrerseits
nioch einmal unterteilt in bestimmt und unbestimmt divergente Zahlenfolgen.

Definition 10.5: Eine Zahlenfolge {a,} heifit bestimmt divergent, wenn es zu jeder
beliebig grofien Zahl A > 0 eine natiirliche Zahl N(A) derart gibt, dafy

a,> A  firalle n= N(A)
bzw.
a, < —A firalle n= N(A).
Diese beiden Fiille werden kurz ausgedriickt durch

lima, = +00 bzw. lima, = —o0.

now noo
Gilt dagegen keiner dieser beiden Fille und ist die Zahlenfolge auch nicht konvergent,
so heifit sie unbestimmt divergent.

Ohne auf Einzelheiten einzugehen, weisen wir auf folgende Beispiele hin.

Beispiel 10.9: Fiir die Folge {a,}, a, = ag"*,mitq > lund a > Ogilt lima, = + 0.

n—®

Beispiel 10.10: Fiir die Folge {b,},b, = bg"*, mitqg > 1und b < 0 gilt lim b, = — 0.
nsx

Beispiel 10.11: Die Folge {c,}. ¢, = ¢g"*, mit ¢ < —1 und ¢ > 0 ist unbestimmt

divergent.

10.5.  Eigenschaften von und Rechnen mit konvergenten Zahlenfolgen

Wir folgen unserer bisherigen Methodik. Im vorangehenden Abschnitt wurde ein
neues mathematisches Objekt — die konvergente Zahlenfolge — eingefiihrt. Jetzt unter-
suchen wir dessen wesentlichste Eigenschaften und insbesondere die Mdglichkeiten,
mit diesem Objekt zu rechnen. Dabei werden wir zwar die Existenz des Grenzwertes,
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nicht jedoch die Kenntnis seines konkreten Wertes voraussetzen. Dennoch erweist
es sich, daB die Eigenschaften und die Rechenregeln fiir Zahlenfolgen es in einer
Reihe von Fillen gestatten, Grenzwerte zu berechnen. Schon hier sei bemerkt, daBl es
keine allgemeingiiltige Methode zur Ermittlung des Grenzwertes einer konvergenten
Zahlenfolge gibt. Hierzu ist vielmehr die Spezifik der jeweils vorliegenden Folge
auszunutzen. Das Anliegen dieses Abschnittes bésteht auch darin, aus den Eigen-
schaften und insbesondere aus den Rechenregeln fiir konvergente Zahlenfolgen erste
Hinweise fiir die Berechnung der Grenzwerte abzuleiten.

Untersuchen wir zunéchst, ob eine konvergente Zahlenfolge die in Abschnitt 10.2.
genannten einfachsten Eigenschaften der Monotonie und Beschrinktheit besitzt.

[ ——

9

I
13

“«2 o o

&
<R &
ks
~R e

5

Bild 10.2. Darstellung der konvergenten aber nicht monotonen Zahlenfolge

{as}, a, = L 24 (=1D"+ 4n]
n

Beispiel 10.12: Die Zahlenfolge {a,}. a, = 2—+———(—’i);4”,ist konvergent gegen
den Grenzwert 4. Davon kann man sich iiberzeugen, indem man analoge Betrachtun-
gen wie in Beispiel 10.8 anstellt. Die Konvergenz dieser Folge ist jedoch nicht mono-
ton. Man priift nidmlich leicht nach, dal einerseits «,, , < a,;, und andererseits
a5, > Ay, flir beliebige k£ = 1,2, ... gilt (vgl. Bild 10.2).

Zahlenfolgen von der in Beispiel 10.12 genannten Art kann man beliebig viele
konstruieren. Neben diesen gibt es aber auch Zahlenfolgen, deren Konvergenz in
anderer Weise erfolgt.

Aufgabe 10.14: Man nehme folgende Konvergenzaussagen als bewiesen hin

. 4 1 . 4n — 1
i PN AL L 1 limb, = 4 fir b, —-——1
no o n n-ow n
4, 1)
lime, =4 fir c,,:ﬁ—u-, L= D N
S e n

und zeige, daB {a,} streng monoton fallend, {b,} streng monoton wachsend und {c,}
nicht monoton ist.

Verallgemeinert man die Ergebnisse von Beispiel 10.12 und Aufgabe 10.14, so
kommt man zu der SchluBfolgerung, dal konvergente Zahlenfolgen monoton sein
kénnen, es jedoch nicht sein miissen. Mit anderen Worten, aus der Konvergenz einer
Zahlenfolge kann man im allgemeinen nicht deren Monotonie schluBfolgern.

Beziiglich der Beschrinktheit kann dagegen folgender Satz bewiesen werden.

Satz 10.5: Jede konvergente Zahlenfolge {a,} ist beschrinkt.

Zum Beweis bezeichnen wir den Grenzwert von {a,} mit a. Dann gibt es fiir eine beliebig fixierte
Zahl € > 0 eine natiirliche Zahl N(e¢) derart, daB (10.15) gilt. Somit folgt —¢ < @, — a < & oder

S.10.5
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a—¢& < a, < a+ & firalle n 2 N(g). Dann gilt aber auch |a,| < C, fiir alle n = N(¢), wobei C;
die groBere der beiden Zahlen [a — ¢| und |a + &| ist. Bezeichnet man nun mit C die groBte der Zahlen
C1, lail, |aa, ..., lany-1], dann folgt die Behauptung [a,| < Cfir allen = 1,2, ...

Die Umkehrung von Satz 10.5 gilt nicht, d. h.,im allgemeinen ist nicht jede be-
schrankte Zahlenfolge auch konvergent. Das wird im Beispiel 10.13 bewiesen. Man
kann jedoch zeigen, daBl aus jeder beschrankten Folge eine konvergente Teilfolge
ausgewéhlt werden kann (vgl. Satz 10.14 in Abschnitt 10.8.).

Bevor wir eine weitere Eigenschaft konvergenter Zahlenfolgen formulieren, mége
sich der Leser einmal — ohne zu rechnen, nur seiner Intuition folgend - iiberlegen,
wie sich der Abstand [a, — a,,| zweier benachbarter Glieder einer konvergenten
Zahlenfolge mit wachsendem n verhilt. In der Hoffnung, daB3 er der richtigen Ant-
wort nahe gekommen ist, formulieren wir nun den
Satz 10.6: Fiir eine konvergente Zahlenfolge {a,} bilden die Abstinde d, = |a, — @,.,|
zweier beliebiger benachbarter Glieder eine Nullfolge, d. h. lim d, = 0.

n-on

Hiernach ist es leicht, das oben erwihnte Beispiel zu geben.

(=1)", ist zwar beschrankt, denn man

. 1
Beispiel 10.13: Die Folge {a,}, a, = = :
priift leicht die Ungleichung |a,| < 2, n = 1, 2, ..., nach. Dennoch ist sie nicht kon-
vergent; fiir den Abstand zweier beliebiger benachbarter Glieder ergibt sich namlich
n+1 n+1+1

n GV n+1 (_l)n“,

|y = Gyis| =

=‘(—1)ﬁ(1+%+1+ )’;2, n=12.

n+1
Dabher ist {d,}, d, = |a, — a,,,|, keine Nullfolge, so daB nach Satz 10.6 die Folge {a,)
selbst nicht konvergent sein kann.

Unter den Eigenschaften konvergenter Zahlenfolgen sei noch folgende erwihnt.

Satz 10.7: Jede Teilfolge einer konvergenten Zahlenfolge {ay} ist ebenfalls konvergent
und besitzt den gleichen Grenzwert wie die urspriingliche Folge {a,}.

Wenden wir uns nun dem Rechnen mit konvergenten Zahlenfolgen zu und erkléren
zunéchst, daB wir ganz allgemein unter der Summe zweier Zahlenfolgen {a,} und {b,}
die neue Zahlenfolge {a, + b,} verstehen. Wir fiihren also die Addition zweier
Zahlenfolgen auf die Addition ihrer Glieder mit gleichem Index zuriick. Analog
werden Differenz, Produkt und Quotient zweier Zahlenfolgen sowie das Produkt
einer Zahlenfolge mit einer Zahl erklart. Uns interessiert nun, ob das Ergebnis der-
artiger arithmetischer Verkniipfungen von konvergenten Zahlenfolgen wieder kon-
vergente Zahlenfolgen sind. Antwort hierauf geben die folgenden Aussagen:

Satz 10.8: Die beiden Folgen {a,} bzw. {b,} seien konvergent gegen den Grenzwert a
bzw. b:

lima, =a, limb, =b.

n-o n—o
Dann sind auch die Summe bzw. Differenz {a, + b,}, das Produkt {a,b,} dieser beiden
Folgen sowie die Folge {ca,}, wobei c eine gewisse reelle Zahl ist, konvergent.
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Dabei gelten beziiglich der Grenzwerte die Formeln

lxm(a,,ib)~hma + limb, =a+ b, (10.18)
nw e

lim a,b, = lim a, - lim b, = ab, (10.19)
n— oo n— o0 n— oo

lim ca, = clima, = ca. (10.20)
n—» o0 n— oo

Satz 10.9: Wenn beziiglich der beiden Folgen {a,} und {b,} die gleichen Voraussetzungen
wie in Satz 10.8 erfiillt sind und zusdtzlich b + 0 sowie b, + 0,n = 1,2, ..., gilt, dann

ist auch der Quotient { } wieder eine konvergente Folge. Dabei gilt beziiglich des Grenz-
wertes dieser Folge L]

a lima, “
s _a
Lty L2
e

Den Beweis dieser Satze fithren wir nur fiir (10.19). Nach den einfiihrenden Be-
merkungen von Abschnitt 10.4. geniigt es zu zeigen, daBl die Folge der Abstinde
{d,}, d, = |a,b, — ab|, eine Nullfolge ist. Hierzu bemerken wir

lasb, — ab| = |a,b, — ab, + ab, — ab| < |b,| |a, — a| + |a||b, — b]. (10.22)

Beachtet man nun, daf {b,} eine beschrinkte Folge ist (siche Satz 10.5) und {[a, — al}
sowie {|b, — b|} Nullfolgen sind, so steht auf der rechten Seite von (10.22) die Summe
zweier Nullfolgen. Dann folgt aber auch lim |a,b, — ab| = 0, womit (10.19) be-
wiesen ist. Liad

Die Formeln (10.18) bis (10.21) gestatten es, in einer Reihe von Fillen die Grenz-
werte konvergenter Folgen zu ermitteln. Das gilt insbesondere fiir Folgen der Art

P(n)

oK (10.23)

f o —
a,; mit a, =

wobei P(n) und R(n) Polynome sind und R(n) héheren oder gleichen Grades wie
P(n) ist.

Beispiel 10.14: Wir betrachten noch einmal die Folge aus Beispiel 10.8. Zur An-
wendung der obigen Formeln formen wir das allgemeine Glied a, dieser Folge zu-
nichst in entsprechender Weise um:

1? (-]—— + 2 + 5) L +
1434507 n? " n o
G = 4n? - 4n? 3 4

Wendet man nun erst (10.21) und danach auf den dabei entstehenden Zihler (10.18)
an und beachtet (10.13), so erhélt man

1 3
lim — + 11m — 4+ 1lim$5
lima. = =% n? n naw
no Ilm4

n—w

FNEYY

S.10.9
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Im allgemeinen Falle (10.23) wird dhnlich wie im Beispiel (10.14) vorgegangen:
Man klammert die hochste Potenz von n, die in R(n) auftritt, sowohl im Zahler als
auch im Nenner aus, kiirzt sie heraus und wendet dann zunéchst (10.21) und danach
(10.18) an.

Aufgabe 10.15: Man ermittle jeweils den Grenzwert von den Zahlenfolgen

7 + 3n + 4n* — 5n° {blb_5n+4n2+6n3
2n + 10n® ’ " TR T —2n2 4730
Gelingt es also mit den Formeln (10.18) bis (10.21) den Grenzwert einer Folge
zu ermitteln, dann ist damit auch automatisch deren Konvergenz nachgewiesen.
Besonders bemerkenswert daran ist, dal man die von den Praktikern haufig als
,,;unhandlich® empfundenen Betrachtungen mit ¢ und N(¢) zum Nachweis' der Kon-
vergenz vollig umgehen kann.

( _
‘Lan}, a, =

Aufgabe 10.16: {a,} und {b,} scien zwei konvergente Zahlenfolgen, wobei a, + 0
und b, # O fir alle n =1,2,... und lim @, = 3, lim b, = 4. Man ermittle die

n— o n-» 0 4a + b
Grenzwerte der Folgen {c,}, ¢, = 2a, — 3b,, {d,}, d, = #A

AbschlieBend weisen wir noch auf folgende Aussage hin: Wenn a, = 0(n =1,2,...) und

lim a, = a, dann folgt lim \/a,, = \/a. Hier wird nur der Fall @ = 0 bewiesen, und zwar indirekt.
n-o n—>w@

Die Behauptung lim \/a_,, = 0 ist gleichbedeutend damit, daBl zu jedem & > 0 ein N(¢) derart existiert,

— now

daB \/a,, < ¢ fur alle » = N(g). Angenommen, diese Aussage gilt nicht. Dann gibt es wenigstens zu

cineme; > 0ein Ny(g;) derart, daf} \/a,, > ¢ fiirallen = Ny(e;) oder a, = ¢} > Ofiiralle n = N,(e;).

Letzteres steht aber im Widerspruch zu der Voraussetzung, dafl lim a, = 0 gelten soll. Mit diesem
now

Widerspruch ist unsere Aussage fiir den Fall a = 0 bewiesen. Weitere Aussagen dhnlicher Art werden

noch im Zusammenhang mit der Stetigkeit von Funktionen gezeigt (vgl. Band 2).

10.6.  Konvergenzkriterien

In diesem Abschnitt werden Kriterien entwickelt, die es gestatten, dariiber zu
entscheiden, ob eine gegebene Folge konvergent ist oder nicht. Solche Kriterien
sind sowohl von praktischer als auch von theoretischer Bedeutung. Fiir die Praxis
— insbesondere beim Einsatz von Rechenautomaten — ist es natiirlich sinnvoll, von
einer Zahlenfolge, deren Grenzwert ermittelt werden soll, erst einmal zu zeigen, daf3
sie einen solchen besitzt. In vielen theoretischen Untersuchungen kommt es weniger
darauf an, den Grenzwert zu berechnen. Vielmehr muB einfach der Nachweis ge-
fiuhrt werden, daf3 eine Folge konvergent ist. Fiir einen solchen Nachweis steht uns
bisher nur die Definition 10.4 zur Verfigung; um sie anwenden zu konnen, muf3 der
Grenzwert jedoch bereits bekannt sein. So ergibt sich auch aus theoretischer Sicht
die Notwendigkeit, solche Kriterien zu entwickeln, mit denen man itber die Kon-
vergenz einer Zahlenfolge entscheiden kann, ohne deren Grenzwert zu kennen.
SchlieBlich konnen Konvergenzkriterien in einigen Fallen auch die Berechnung von
Grenzwerten ermdglichen bzw. erleichtern (siehe Beispiel 10.16, 10.17 sowie Auf-
gabe 10.20).

Vor uns steht also die Aufgabe, die in Definition 10.4 enthaltene Kopplung von
Grenzwert und Konvergenz aufzulgsen und Aussagen iiber die Konvergenz unab-
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hingig von der Kenntnis des Grenzwertes zu machen. Hierzu liegt es nahe, sich zu-
nichst noch einmal den einfachsten Eigenschaften von Zahlenfolgen zuzuwenden.
Wir haben gesehen, daB3 im allgemeinen weder die Monotonie allein oder die Be-
schrinktheit allein die Konvergenz einer Zahlenfolge garantieren. Es gilt jedoch

Satz 10.10: Wenn eine Folge monoton wachsend und nach oben beschrinkt bzw.
monoton fallend und nach unten beschrdnkt ist, dann ist sie konvergent.

Mit diesem Satz ist ein erstes Kriterium gegeben, das es gestattet, die Konvergenz
einer Zahlenfolge nachzuweisen, ohne deren Grenzwert zu kennen oder zu berechnen.
Hierzu muB gezeigt werden, daB3 die Folge sowohl monoton als auch beschrinkt ist.
Es sei bemerkt, daBl es dabei gentigt, von der Folge eine abgeschwichte Monotonie
in folgendem Sinne nachzuweisen: {a,,} heiBt im weiteren Sinne monoton wachsend,
wenn es eine natiirliche Zahl n, derart gibt, daB a, < a,,, fiir alle n = n, gilt. Analog
wird das monotone Fallen im weiteren Sinne definiert.

Beispiel 10.15: Mit Hilfe von Satz 10.10 zeigen wir, daB die Folge

{a.},a, = A/d + A/d + Jd + ..+ \/3, d > 0, konvergent ist; zu a, sei bemerkt, daf}
der Summand 4 und mit ihm die Wurzel genau n-mal auftritt (vgl. [10]). Es ist also

a, = \/d_ a, = /d-f— \/Z a; = Jd + Jd+ \/57, .... Zur Anwendung von Satz 10.10
zeigen wir zunéchst, daB {a,} monoton wachsend ist. Das ergibt sich einfach durch

iy =~1/d+~2/d+A3/d+...+{d+\n/z>~{d+Az/d+J3d+...+\"/§=a,,,

wobei zur besseren Ubersichtlichkeit die Wurzeln numeriert worden sind und die
triviale Ungleichung / d+ \/ d> \/ d benutzt worden ist (man beachte die Mono-
tonie der Wurzelfunktion, Abschnitt 9.4.). Es geniigt nun zu zeigen, daB {a,} nach
oben beschrinkt ist. Hierzu bemerken wir, daf a, < \/a’ + 1firallen =1,2,... gilt

(siche Aufgabe 10.17). Damit erfiillt die Folge {a,} die Bedingungen von Satz 10.10
und ist somit konvergent.

Aufgabe 10.17: Man zeige, daB fir das allgemeine Glied @, der Folge von Bei-
spiel 10.15 die Ungleichung a, < /d + 1, n = 1,2, ..., gilt.

Aufgabe 10.18: Man zeige, dafi die Zahlenfolge {a,}, @, = q_" fiir festes ¢ > 1 kon-
vergent ist. o

: . 1
Aufgabe 10.19: Man zeige mit Hilfe von Satz 10.10, daf die Folge {a,}, a, = —,
fir « > 0 konvergent ist. L

Nun wird gezeigt, da3 die Kenntnis der Konvergenz einer Folge es unter Umstén-
den auch gestattet, ihren Grenzwert einfach zu ermitteln.

Beispiel 10.16: Wir betrachten die Folge von Beispiel 10.15 und nutzen ihre Kon-
vergenz zur Berechnung des Grenzwertes. Hierzu versuchen wir zwischen a,,; und
a, eine Beziehung aufzustellen. Man sieht leicht, da im gegebenen Falle

a,,+1=\/d+a,, oder a%,, =d+ a,

gilt. Bezeichnet manden existierenden aber zunéichst noch unbekannten Grenzwert
mit @ und geht nun in der letzten Gleichung zum Grenzwert iiber, so erhidlt man

S.10.10
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a* =d + a oder a* — a —d = 0. Diese quadratische Gleichung hat die beiden
Losungen a,,, = % + = \/1 +4d, von denen die Zahli - 7\/1 +4d < 0 als
Grenzwert unserer F olge nicht in Betracht kommt, weil a]le a, > 0 und damit auch

a = 0 gelten muB. Also folgt fiir den Grenzwert a = % + —;—\/1 + 4d.

Aufgabe 10.20: Man ermittle den Grenzwert der konvergenten Zahlenfolge {a,},
_7

a, = o qg>1.
In einer Reihe von Fillen gelingt es auch, Aussagen iiber die Konvergenz einer

Folge einschlieBlich ihres Grenzwertes zu erhalten, indem man sie mit bereits unter-
suchten Folgen vergleicht. Grundlage hierfiir ist der

Satz 10.11 (Vergleichskriterium): Eine Folge {b,} ist konvergent gegen den Grenz--
wert a, wenn es zwei andere Zahlenfolgen {a,} und {c,} derart gibt, daf

I. lim g, = a, lim ¢, = a
n—o© n—o
und
2.4,£b,2¢,, n=12..,
gilt.
Beispiel 10.17: Esist die Folge {a,}, a, = Y—————— zu untersuchen. Um das

n
Vergleichskriterium anzuwenden, muB a, ,,vorsichtig®, d. h. unter geringfiigigen An-
derungen nach oben und unten, derart abgeschatzt werden, daB sich dabei Folgen
ergeben, die gegen den gleichen Grenzwert konvergleren Im gegebenen Falle bieten
sich dafiir die Abschatzungen

‘/"ZH_I)" J1+( J1+ <1+—

a, _A/1+(—1)" J1__>1_i

. . . 1 1
an. Damit erhalten wir b, < a, < ¢, mit b, = 1 — - und ¢, =1+ " Beachtet

sowie

man, daB offensichtlich h'm b, = lim ¢, = 1 gilt, so liefert Satz 10.11 fiir die ge-
nooo
gebene Folge den Grenzwert lim a, = 1.
n— oo

Die bisher genannten Konvergenzkriterien sind an spezielle Eigenschaften gebun-
den, die nicht jede konvergente Folge besitzen muB. Dagegen hat das folgende Kri-
terium allgemeinen Charakter in dem Sinne, dafB} es an keinerlei konkrete Eigenschaf-
ten wie Monotonie oder andere gebunden ist. Es wurde von B. Bolzano und A. L.
Cauchy formuliert und ist von fundamentaler Bedeutung fiir die gesamte Analysis
sowie auch fiir die modernen Gebiete wie z. B. die Funktionalanalysis (siche Bd. 22).
Seine Grundidee basiert darauf, daB fiir eine konvergente Folge {a,} mit dem Grenz-
wert a die Relation (10.15) gilt. Diese kann auch wie folgt geschrieben werden:

a—¢e<a,<a+¢ oder a,eUfa) firalle n= N(e).
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In dieser Form ist sofort ersichtlich (vgl. Bild 10.1), daB der Abstand zwischen zwei
beliebigen Gliedern a; und a; mit 7, j, = N(e) bei einer konvergenten Zahlenfolge
nie groBer als die Lange 2¢ des Intervalls (@ — ¢, a + ¢) werden kann. Mit anderen
Worten: fiir hinreichend groBie i und j muBl der Abstand |a; — a;] fiir die Glieder
einer konvergenten Folge beliebig klein werden. Es konnte auch die Umkehrung
dieser Aussage bewiesen werden. So ergab sich

Satz 10.12 (Cauchysches Konvergenzkriterium): Eine Zahlenfolge {a,) ist dann und S.10.12
nur dann konvergent, wenn es zu jedem ¢ > 0 eine natiirliche Zahl N(¢) derart gibt, dap

la; — a;| < ¢ firalle i,j= N(e) (10.24)
gilt.

Der Beweis kann z. B. in [10] nachgelesen werden.

Das Cauchysche Konvergenzkriterium hat sich bei zahlreichen theoretischen
Untersuchungen bewidhrt. Genannt seien hier der Konvergenznachweis fiir die
Naherungsfolgen bei iterativer Losung von Gleichungen und insbesondere das Fix-
punktprinzip (vgl. [8], [9] und Bd. 22).

10.7.  Einige spezielle Zahlenfolgen

In den vorangegangenen Abschnitten haben wir uns mit konvergenten Zahlen-
folgen beschiftigt und dabei fiir gewisse Klassen solcher Folgen Methoden zur Be-
rechnung ihres Grenzwertes kennengelernt. Mit diesen Klassen waren aber durchaus
nicht alle konvergenten Folgen erfaBt. Im folgenden werden einige spezielle Zahlen-
folgen untersucht. Die Konvergenzaussagen fiir sie erweisen sich wiederum als gutes
Hilfsmittel bei der Ermittlung des Grenzwertes einer Reihe anderer Folgen.

Zuniachst beginnen wir mit einer bestimmt divergenten Folge. Als solche erweist
sich ndmlich

(@) a=<, a>1, k>0 (10.25)

Zum Beweis dieser Behauptung bendtigen wir eine Hilfsungleichung, die uns auch
in einem anderen Zusammenhang noch niitzlich sein wird. Wegen a > 1 gibt es
ein d > 0 derart, daB a = 1 + d ist. Daher ergibt sich nach der binomischen Formel
n_ 0w (MY () g2 n = 1) 2>"_Zz
@ =(+d ;igo(i)d () =2z e,
wobei die letzte Ungleichung fiir alle n > 2 gilt. Setzt man hier fiir d seinen Wert @ — 1
ein, so erhilt man die gewiinschte Hilfsungleichung

—_ 12

@> ﬁ‘l—“l—)na (10.26)
woraus speziell fir 0 < & <1

a _a _ (a—1)7?

S >2 X"

e > 7 n (10.27)
folgt. Aus (10.27) ergibt sich fiir 0 < k < 1 sofort

lim % = +o und 1im£,7= +o0. (10.28)

n-oo F nsw N

12 sieber u. a., Mathematik
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Damit ist die obige Behauptung fiir 0 < k < 1 bewiesen. Fiir beliebiges k > 1
gilt aber
at ar k . 1
a,.=—k—=(——-) mit 4@ =ak > 1.
n n )

Hieraus ergibt sich wegen k > 1

"i’l
et

woraus wegen (10.28) auch

lim 3:— = +©
nsoo N
folgt. Damit ist die obige Behauptung fiir die Folge (10.25) vollstindig bewiesen.

Man. vergleiche dieses Ergebnis mit dem der Aufgabe 10.18
Wir wenden nun die Hilfsungleichung (10.26) fiir Konvergenzuntersuchungen

der Folge
{a}, ay="3n,
gilt, kann man hier a = :/; setzen; das liefert

an. Da :/;> 1 fur alle n = 2, 3,
n? (n- ?
n>-—4—(\/n—1) oder \/—+1>\/n>1

Hieraus folgt mit Satz 10.11 wegen der offensichtlichen Bezichung

1
— ( * \/,,)
(10.29)

lim%/n = 1.
n—»oo

Dieses Resultat kann u. a. wie folgt angewendet werden

auch

Beispiel 10.18: Es gilt die Limesrelation
(10.30)

Tatsachlich, wegen (10.29) sowie wegen 10¢ > 1, ¢ > 0, gibt es zu jedem ¢ > 0 ein
N(e) derart, daBl

1<%n<10° firalle n= N()
Beriicksichtigt man, daBl die Logarithmusfunktion monoton wachsend ist, so folgt

Igl < lg{/; < lg 108,
woraus sich auf Grund der Eigenschaften der Logarithmusfunktion die Ungleichung

0<llgn<e fiir alle n = N(e)
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ergibt. Da ¢ > 0 beliebig ist, folgt aus ihr (vgl. Aufgabe 10.12) die Behauptung
(10.30).

Im Zusammenhang mit (10.29) sei noch folgende allgemeingiiltige Konvergenz-
aussage erwahnt.

Satz 10.13: Wenn eine Folge {a,} gegen den Grenzwert a konvergiert, dann konvergiert
auch die Folge {b,} mit

a, +a, +... + a,

b, =
n

gegen a.
Beispiel 10.19: Die Limesrelation

2/5 3/3 n/

. 1+32+33+...+%n

Ao n

=1

ist eine unmittelbare Folgerung des Satzes 10.13 sowie des Ergebnisses (10.29).

Als dritte und letzte spezielle Zahlenfolge erwahnen wir

{a,}, a,= (1 +-’11—) n="1,2,.. (10.31)

Ohne hier auf Einzelheiten einzugehen, bemerken wir, daf3 diese Folge streng mono-
ton wachsend sowie nach oben beschrankt ist und daher auch konvergiert. Ihr Grenz-
wert ist die Wachstumskonstante e

fim (1 + %)= e, wobei e = 27182818284 ... (1032)

n—w

Beispiel 10.20: Wir benutzen das Resultat (10.32), um zu zeigen, daf}

tim (1+ —217) e (10.33)

ist. Dazu nehmen wir die einfache Umformung

1\» - X N 1\2n
(1 +—27) =./d, mit a, —(1 +E>
vor. Dabei ist {d,,} eine Teilfolge von (10.31), und somit gilt @, — e, woraus die Be-
hauptung (10.33) folgt (vgl. mit letztem Absatz in Abschnitt 10.5.).

kn + 1
( kn

Aufgabe 10.21: Man untersuche, ob die Zahlenfolge {a,}, a, =

) , fiir eine
beliebig fixierte natiirliche Zahl k > 0 konvergiert.

10.8. Hiufungspunkte und lim sup sowie lim inf

In den Abschnitten 10.3. bis 10.7. wurden — abgesehen von einzelnen Bemerkungen
und Beispielen — konvergente Zahlenfolgen untersucht. Dabei haben wir gesehen,
daB der Grenzwert einer konvergenten Zahlenfolge eindeutig bestimmt ist. Jetzt
betrachten wir beliebige, jedoch beschrinkte Folgen. Fiir sie gilt eine Aussage, auf
12+

S.10.13
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deren Tragweite hier nur-aufmerksam gemacht werden kann. Die Aussage bringt
ein fundamentales Prinzip der gesamten Analysis und Funktionalanalysis zum Aus-
druck. Sie hidngt eng zusammen mit dem allgemeineren Begriff der kompakten Menge.

Satz 10.14: Aus einer beliebigen beschrinkten Folge {a,} kann man immer konvergente
Teilfolgen auswdhlen.

Zu diesem Satz sei bemerkt, daBl sein Inhalt uns fiir konvergente Folgen bereits
bekannt ist. Sie sind namlich beschrinkt (siehe Satz 10.5), und auBlerdem konvergiert
auch jede ihrer Teilfolgen, und zwar gegen den Grenzwert der Folge. Das wesentliche
Neue an dem Satz 10.14 besteht darin, da3 von der Folge {a,,} nur die Beschrankt-
heit gefordert wird und also auch divergente, jedoch beschrankte Folgen wie z. B.
{aa}, @y = (=1)" + %, zugelassen sind. Dabei werden die Teilfolgen solcher Folgen

i. allg. nicht mehr gegen ein und denselben Grenzwert konvergieren. In diesem Zu-
sammenhang ergibt sich die Frage, ob ein kleinster und ein groBter Grenzwert unter
den Grenzwerten aller konvergenten Teilfolgen einer beschriankten Zahlenfolge exi-
stiert. Die Antwort hierauf gibt der folgende Satz.

Satz 10.15: Unter den Grenzwerten aller konvergenten Teilfolgen einer beschrinkten

Folge {a,} gibt es einen kleinsten a, und einen griften a*.

Definition 10.6: Die Zahlen a, bzw. a* haben eine spezielle Bezeichnung. Sie werden
unterer bzw. oberer Grenzwert der beschrinkten Folge {a,} genannt und mit

a, = liminfa, bzw. a* = limsupa,
oder auch
a, =lima, bzw. a* =lima,

bezeichnet.
Beispiel 10.21: Die Folge {a,}, a, = (—1)" (I + %) , n=1,2,..., ist offensichtlich

beschrankt, denn es gilt z. B. |a,| = |1 + -’IT < 2. Also existieren fiir sie die Zahlen
a, und a*. Man kann zeigen, daB a, = —1 und a* = +1 ist.
Ohne Beweis werden nun einige Eigenschaften des unteren bzw. oberen Grenz-
wertes einer beschrankten Zahlenfolge formuliert (Einzelheiten siche [10]).
1. Fiir jedes ¢ > 0 existiert eine natiirliche Zahl N*(g) derart, daB3
a, < a* + ¢ firalle n> N*().
2. Fiir jedes ¢ > 0 existiert eine natiirliche Zahl N, (¢) derart, daB
a, —e<a, firalle n> Ny(e).

Diese beiden Eigenschaften lassen sich auch so formulieren: Sind a, bzw. a* der
untere bzw. obere Grenzwert einer beschrinkten Zahlenfolge {a,}, so liegen bei
beliebigem ¢ > 0 nur endlich viele Glieder der Folge auBerhalb des Intervalls
(a — & a* + ¢). Fiir konvergente Zahlenfolgen ist uns eine solche SchluBfolgerung
bereits bekannt. In diesem Zusammenhang stellen wir die

Aufgabe 10.22: Man beweise, daf eine beschrinkte Zahlenfolge {,} dann und nur
dann konvergent ist, wenn ihr oberer Grenzwert gleich ihrem unteren ist: a* = a,.
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Der obere Grenzwert besitzt neben den bereits genannten auch noch folgende
Eigenschaft:

3. Zu jedem ¢ > 0 und jeder natiirlichen Zahl N existiert wenigstens ein Element
a, mit n > N derart, daB

a*t —e<a,

ist. Eine analoge Eigenschaft gilt fiir den unteren Gienzwert a, .

Nun wenden wir uns dem Begriff des Haufungspunktes zu. Er ist in gewisser Weise
eine Verallgemeinerung des Grenzwertes. Um diese Verallgemeinerung zu erhalten,
gehen wir den in solchen Fillen iiblichen Weg. Wir wihlen fiir die Definition des
Grenzwertes eine Formulierung, von der man durch Vernachldssigung oder Ab-
schwichung einer Forderung dann zu einer Verallgemeinerung gelangt. Zuvor sei
noch erwahnt, daBl der Begriff des Haufungspunktes nicht auf Zahlenfolgen be-
schrinkt ist, sondern fiir beliebige Mengen, fiir deren Elemente ein Abstand erklart
ist, definiert werden kann.

Es sei {a,} eine konvergente Zahlenfolge mit dem Grenzwert a. Dann gibt es zu
jedem ¢ > 0 eine natiirliche Zahl N(e) derart, daB |a, — a| < ¢ fiir alle n = N(e)
ist. Fiir alle hinreichend groBen # gilt also

a, € Ufa). (10.34)

In dieser Formulierung des Grenzwertes nehmen wir nun eine Abschwichung vor,
um zum Begriff des Haufungspunktes zu gelangen. Wir fordern namlich nicht mehr,
daB (10.34) fiir alle hinreichend groBen # erfiillt ist, sondern nur noch, daB es we-
nigstens ein a, gibt, welches (10.34) erfiillt. Zusétzlich wird allerdings verlangt, daBl
dieses a, + a ist. Praziser gehen wir wie folgt vor:

Definition 10.7: Es sei M eine beliebige Punktmenge der reellen Zahlengeraden, d. h.
eine beliebige Menge reeller Zahlen. Dann heifst ein Punkt a der Zahlengeraden (eine
Zahl a) Haufungspunkt der Menge M, wenn es zu jedem ¢ > 0 ein Element a' € M
derart gibt, daff @' + a und

d' € Uga) (10.35)
ist.

Als erstes erwiahnen wir folgende Eigenschaft des Haufungspunktes. Besitzt eine
Menge M einen Haufungspunkt, so kann dieser zur Menge M gehéren, kann aber
auch nicht zu ihr gehéren.

Beispiel 10.22: Es sei M = (—1, 1). Dann ist jeder Punkt a € (—1, 1) Haufungspunkt
von M, aber auch die nicht zu M gehérenden Randpunkte +1 sind Haufungspunkte
von M. Tatsichlich, es seien ae (—1, 1) und ¢ > 0 beliebig fixiert. Dann gilt fiir
r= —;-min (e,a + 1,1 — a) sowohl Uy(a) c Uga) als auch U,(a) = M, und daher
ist (10.35) fiir jedes a’ € U,(a) mit a’ + a erfillt.

Aufgabe 10.23: Man zeige, daBl der Randpunkt ¢ = 1 Haufungspunkt der Menge
M = (-1,1)ist.

Folgende Eigenschaft des Haufungspunktes erldutert seinen Namen. Ist a. Hau-
fungspunkt einer Menge M, so gibt es in jeder e-Umgebung von a unendlich viele
Punkte dieser Menge, die alle von a verschieden sind (vgl. Beispiel 10.22). Anschau-

D.10.7



*

170 10. Zahlenfolgen

lich gesprochen heiBt das eben gerade, daB sich in jeder Umgebung eines Punktes
mit den in der Definition 10.7 genannten Eigenschaften unendlich viele Punkte der
Menge befinden, sich also dort ,,hdufen‘. Darauf beruht dic Bezeichnung Héufungs-
punkt.

Betrachtet man Zahlenfolgen gleichzeitig als Punktmenge auf der Zahlengeraden,
so gelten tiber die Beziehungen zwischen ihnen und dem Begriff des Hiufungspunktes
folgende Aussagen.

. Wenn eine konvergente Zahlenfolge unendlich viele Glieder enthilt, die von
ihrem Grenzwert verschieden sind, so ist ihr Grenzwert gleichzeitig ihr einziger
Haufungspunkt.

. Enthélt eine konvergente Zahlenfolge dagegen nur endlich viele Glieder, die von
ihrem Grenzwert verschieden sind, so besitzt sie keinen Haufungspunkt und ins-
besondere ist ihr Grenzwert nicht Haufungspunkt fiir sie.

. Wenn eine divergente, jedoch beschrinkte Zahlenfolge hochstens endlich viele
gleiche Glieder enthilt, so besitzt sie mindestens zwei Haufungspunkte, ndmlich
ihren unteren und oberen Grenzwert.

[

w

Aufgabe 10.24: Man untersuche, ob die Zghlenfolgen

@ha =0+ 22 ) b= 22

konvergent oder divergent sind. Im Falle der Konvergenz ermittle man ihren Grenz-
wert und priife, ob dieser Grenzwert gleichzeitig ihr Haufungspunkt ist. Im Falle
der Divergenz priife man, ob die Folgen beschrinkt sind. Sollten sie sich als be-
schrankt erweisen, so ermittle man ihren oberen und unteren Grenzwert und priife,
ob diese Grenzwerte gleichzeitig Haufungspunkte fiir die Folgen sind.

10.9. Bedeutung von Zahlenfolgen und Grenzwert
fiir die numerische Mathematik

Wenn praktische Untersuchungen auf mathematische Aspekte fiihren, so ergibt
sich in vielen Féllen die Aufgabe, konkrete Zahlen zu ermitteln, d. h. numerische
Lésungen zu finden. Als ein Beispiel hierfiir sei die Aufgabe genannt, fiir eine
Funktion f(x), xe D,, die Nullstellen, d. h. diejenigen x€ D, zu bestimmen, fiir
die

fx)=0 (10.36)

gilt. Eine andere Aufgabe dieser Art besteht darin, den Flacheninhalt einer ebenen
Fliche zu bestimmen, deren Randkurven die Graphen bekannter Funktionen sind.

Sehr einfach und exakt kann die Lésung von (10.36) angegeben werden, wenn
z. B. f(x) = 3x — 12 ist. Sie lautet dann x, = 4. Komplizierter wird es schon, wenn

f(x) = 3x — 1 ist. Dann lautet die Losung x, = —;— Will man diese Zahl nun im

Dualsystem darstellen — das macht sich insbesondere bei der Anwendung von elek-
tronischen Rechenanlagen notwendig — dann st6Bt man schon auf Schwierigkeiten,
bei deren Uberwindung die Zahlenfolgen von Nutzen sind. Man iiberzeugt sich leicht
davon (vgl. Aufgabe 10.13 und deren Losung), da3

1 . X : n 1\¢ 1\2
F=lims, mit 5= 2 (7) =5 (3)

M=
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ist. Somit kann fiir hinreichend groBes n néherungsweise% ~ s, gesetzt werden.
Da s, bereits im Dualsystem dargestellt ist, haben wir damit auch eine naherungs-
weise Darstellung der Zahl% im Dualsystem erhalten.

Noch schwieriger wird die Losung von (10.36), wenn f(x) kein Polynom ersten
Grades ist. Auch in diesen Fallen sind Zahlenfolgen ein wesentliches Hilfsmittel zur
naherungsweisen Bestimmung der gesuchten Losung. Dabei werden die Zahlenfolgen
auf dem Wege der sogenannten Iteration konstruiert. Das Wesen der Iteration be-
steht darin, daB die zu 16sende Gleichung f(x) = 0 durch eine andere der Art x = A(x)
ersetzt wird. Dabei muB letztere so beschaffen sein, dafl sie die gleichen Lésungen
wie f(x) = 0 besitzt. (Wie diese Funktion gewonnen wird, ist in Band 18, Numerische
Methoden, bzw. in [8] ausfiihrlich behandelt.) Danach wird fiir die gesuchte Losung
eine Naherungsfolge {x,} konstruiert. Dazu wahlt man eine Zahl x,, von der man
annimmt, daB sie moglichst nahe bei der gesuchten Losung liegt, und berechnet dann
x; = h(x,). Danach folgen x, = h(x,), X3 = h(x,), ... und allgemein

Xpe1 = h(x,), n=0,1,2,... (10.37)

Wenn /(x) bzw. f(x) gewissen Bedingungen geniigen, dann konvergiert die so kon-
struierte Zahlenfolge {x,} gegen eine Nullstelle von f(x). Wir demonstrieren dieses
allgemeine Vorgehen an einem Beispiel.

Beispiel 10.23: Es sollen die Nullstellen der Funktion f(x) = x> =2 —Inx, x = 1,
ermittelt werden, d. h., es sollen diejenigen Werte x = 1 bestimmt werden, fiir die

x2=2—-Inx=0 (10.38)
gilt (vgl. R. Zurmiihl, Praktische Mathematik fiir Ingenieure und Physiker).

Zunichst tiberlegen wir uns, ob tiberhaupt eine Losung von (10.38) existiert, die
nicht kleiner als eins ist. Dazu wird (10.38) umgeformt auf x> — 2 = In x. Stellt man
nun die beiden Funktionen g;(x) = x> — 2, g,(x) = In x, x = 1, graphisch dar (siche
Bild 10.3), so tiberzeugt man sich davon, daB genau eine Losung von (10.38) existiert,
die nicht kleiner als eins ist. Sie liegt in der Nahe des Wertes 1,6.

Im gegebenen Falle kann u. a.

x?—=2—Inx

2)6—l
x

h(x) = x — x=1,

gewihlt und Gleichung (10.38) durch x = A(x) ersetzt werden. Es sei erwéhnt, daf
es sich hierbei um das sogenannte Newtonsche Verfahren handelt (Einzelheiten
siche Abschnitt 7.7. in Band 2 bzw. Band 18). Damit nimmt (10.37) die konkrete
Form
2 _ g _
2x, — —
X,

an. Wihlt man nun fiir x, = 1,6 (vgl. Bild 10.3), so konvergiert die auf diese Weise
konstruierte Folge {x,} gegen die gesuchte Losung von (10.38). Dabei ergibt sich
bereits mit x, = 1,5646 ein Wert, von dem man zeigen kann, daB er sich héchstens
noch um 0,0006 von der gesuchten Losung unterscheidet.
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& x-2
inx
7|
|
K 2 x

/

/
-1 Bild 10.3.

/ Graphische Ermittlung einer Niherungs-

/ : 16sung der Gleichung

IPy g x2—2=Inx, x21

In dhnlicher Weise wie im vorangehenden Beispiel spielen konvergente Zahlen-
folgen auch bei der eingangs erwidhnten Flachenberechnung (vgl. Band 2, Ab-
schnitt 10., bzw. [2], Abschnitt 3.3.4.) und bei vielen anderen praktischen Unter-
suchungen eine wichtige Rolle. Thre Bedeutung fiir die numerische Mathematik be-
steht dabei darin, dal man gesuchte Zahlen entweder als Grenzwerte konvergenter
Zahlenfolgen berechnen oder sie niherungsweise durch die Glieder solcher Folgen
ersetzen kann.

* Aufgabe 10.25: Fiir die Gleichung x* — 2 = 0 ist die positive Lsung héiherungs-
weise durch Konstruktion einer Iterationsfolge {x,} zu bestimmen. Dazu wihle
man x, = 1,4 und ersetze die obige Gleichung durch die Gleichung x = /(x) mit

x2 =2
2x

Danach berechne man die ersten zwei Glieder der Iterationsfolge.

h(x) = x —
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3.1:  Wahrheitstabelle der Wahrheitstabelle der
Shefferschen Funktion p A ¢ Nicodschen Funktion p v ¢
P F W F W P F W F W
q F F W W q F F W W
prg F F F W Vg F W w w
pAg w W W F pVq W F F F

3.2: Wir erkldren die Aussagen: m = ,,Peter studiert Mathematik*‘, o = ,,Peter studiert Operations-
forschung®, k = ,,Peter studiert Kybernetik*.

Die in der Aufgabe gestellte Frage kann mit ja beantwortet werden, wenn die folgende Aussagen-
verbindung stets wahr ist, das heiit, in der letzten Zeile der Wahrheitstabelle nur das Symbol W
auftritt (man durchdenke diese Behauptung!):

p=[((m—-(vk)ro)a(mvovk)—k].

Die Wahrheitstabelle zu dieser Aussagenverbindung ist

m F W F W F W F W Vollig gleichgiltig, ob

o FF WWVF F W W die Aussagen m, o, k

k F F F F W W W W wahre bzw. falsche Aus-
sagen sind, ist p stets

pi=o0Vvk FF W WwWWwWWwWWwWW wahr, so daB wir die

pr=m—py WF W W W W W W Frage mit ja beant-

Py =D2A0 WF F F W W F F worten kdnnen.

pa=mvovk F W W WWWW W

Ps = D3 ADs FF F F WWF F

p =ps—k WW W W W W W W

3.3: Es sei X = {1,2,...} der Bereich der Variablen # fiir folgende Aussageformen: p(n) = ,,n ist
eine Primzahl*, g(n) = ,,3 teiltn — 1%, r(n) = ,,3 teilt n + 1¢. Die gegebene Aussageformverbindung
ist in logischen Zeichen geschrieben.

p(n) = q(n) v r(n).

Ist n fest gewiéhlt, so ergibt sich folgende Wahrheitstabelle

P F WF WF WF W Mit diesen Betrachtungen ist
q F F W W F F W W jedoch noch in keiner Weise
r F F F F W W W W bewiesen, daf3 die Aussage
(Vn) p(n) > q(n) v r(n) eine
s=qvr F F W WWWWW wahre Aussage ist. Der Beweis
i dt) wF W W WwWwWW wird empfohlen.

Bild L.4.1
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3.4: 1. Fiir jede natiirliche Zahl x = 1 gilt: Wenn x durch 2 teilbar ist, so ist x keine Primzahl (falsch,
denn x = 2 ist durch 2 teilbar und Primzahl). 2. Fiir jede natiirliche Zahl x = 1 gilt: Wenn x nicht
durch 2 und nicht durch 3 teilbar ist, dann ist x eine Primzahl (diese Aussage ist falsch). 3. Fiir jede
natiirliche Zahl x = 1 gilt: Wenn x eine Primzahl ist, so ist x nicht durch 2 und nicht durch 3 teilbar
(falsch, denn x = 3 ist Primzahl und durch 3 teilbar). 4. Fiir jede natiirliche Zahl x = 1 gilt: x ist
genau dann durch 2 und durch 3 teilbar, wenn x durch 6 teilbar ist (richtig). 5. Es existiert eine na-
tirliche Zahl x = 1 so, daB, wenn x nicht durch 2 und nicht durch 3 teilbar ist, x eine Primzahl ist
(richtig, zum Beispiel x = 5).

3.5: a) Wir bezeichnen mit x eine Variable, deren Bereich die Menge X = {0, 1, 2, ...} der natiir-
lichen Zahlen und mit y eine Variable, deren Bereich die Menge Y = {1, 2, 3, 5, 7, ...} der Primzahlen
ist. Dann gilt fiir unsere Aussage p, p = (Vx) (3y) y > x. b) Es sei x eine Variable, deren Bereich X
die Menge der reellen Zahlen ist. Dann gilt fiir die verbal formulierte Aussage g, g = (¥x) x> > 0,
und deren Verneinung ¢ wird § = (3x) x* < 0 (g ist falsch, § wahr).

4.1: Wir beweisen die Richtigkeit von g, — p. (Der Beweis von g, — p verlduft entsprechend.) Da
P, auBerhalb K liegt, existiert ein Punkt P, der auf K und P, P, liegt. Nach dem Peripheriewinkelsatz
gilt fiir den Winkel bei P4: o« = f’. Wir betrachten das Dreieck P,P4P,. Nach dem AuBenwinkelsat:
gilt f” > f, und somit ist & > f. Also gilt p = ,,x + *, was zu beweisen war (Bild L.4.1).

4.2: Tabelle: de Morgansche Regeln

P F W F W P F W F W
q F F W w q F F W W
s=pvq w W W F S=pAg W F F F
t=pnrq F F F W t=pvq Fw w w
u=pnaq w W W F u=pvq W F F F
Uers w w w W ues w W W W

4.3: Wir konstruieren die Wahrheitstabelle fiir die der logischen SchluBfigur entsprechende Aus-
sagenverbindung

@A @G> P A @~ P~ (@—p) mit §= entweder §; oder §,:
p F WF WF WF W
@ F F WWFTF WW
g2 F F F F W W W W
a4y w W F F W W F F
qs w w W W F F F F
g = entweder g, oder g, F F W W W W F F
s=q—>p W F W W W F W W
1=04,-p W F W F W W W W
u=qnsnt F F W F W F F F
v=q-p w w W F W F W W
u-v ww W W W W W W

4.4: Die Gleichung \/x +2+ \/Zx + 7 = 4 besitze die reelle Losung x. Dann ist x auch Losung
)

von x + 2 + \/2x + 7 = 16 und damit auch von 4/2x + 7 = 14 — x. Die Losungen der quadra-

tischen Gleichung sind x; = 21, x, = 9. Die Uberpriifung zeigt, daB x, = 21 die Ausgangsgleichung

nicht erfiillt, sondern lediglich x, = 9. Also ist x, = 9 einzige Losung.

4.5: Fir n =3 gilt 22 =8 > 23 + 1 = 7 (Induktionsanfang). Fiir festes k, k = 3, sei nun
2% > 2k + 1 erfilllt (Induktionsannahme). Dann ist 2%} > 2(k + 1) + 1 zu beweisen. Es gilt:
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2kl = 2.2k > 2(2k + 1) = 4k + 2. Es bleibt zu zeigen, daB 4k + 2 > 2k + )+ 1 =2k + 3
d.h. 4k + 2 > 2k + 3, also 2k > 1 gilt. Diese Ungleichung ist fir k£ = 3 selbstverstindlich e:
und somit der Induktionsschritt nachgewiesen. Mit Hilfe des Induktionsschlusses folgt die Behaup
tung.

1=+ 1)x°+0-x0+t
I (1 - x)?
anfang). Die Gleichung gelte nun fiir beliebiges fest gewihltes k = 0 (Induktionsannahme). Zu zsige
k1 1= (k + 2) X1 + (k + 1) x¥+2 k+l k
ist: 3 mx™ = { ) 2( ) CEsgilt: Y omx™ =Y ma™t 4 (b o+ 1) 2t
m=0 1 -x m=0 m=0
1= (k + 1) x* + kxk+t v 1= (k+ Dx* + kxM' + (k + 1) x*(1 — x)?
h—(—l_—x)z——+(k+l).\a =7
B R e P
B (1= x)? !

0
4.6: Fiir n = 0 ist die Gleichung richtig: Y mx™* = = 0 (Induktions-

w.z.b.w.

5.1: 1. x = —(a + b) lost nach IV. (S. 39) die Gleichung (¢ + b) + x = 0. Ferner ist mit 5 = 3
= —agnachIV.y= —a — bundnachlll.3a + (b +y) =(a+ b) + y =a + (—a) = 0. Weg
der Eindeutigkeit der Losung muBl y = x sein. 2. Aus der 2. abgeleiteten Regel der Beispiele 3
folgt: (—a) + (—b) = —a — b. Die Regel folgt aus I.2. und 1.3. (S. 37).

— - -3,14 — —3,15

52: =T s YT s At T2 < 14200,
S -

J2TVE s 2T e s 142 Ve,

53:2)27=1:2%+1:2340-22 4 1-2' +1-1° = LLOLL; 53.625 = 125 + [ -2% = 0-2°

F1:2240-20 4120+ 1-27140-272 4 1-2°3 = LLOLOL.LOL

b) LLOLO.OLO = 1-2% 4 123 4 0-22 4+ 1-21 4020+ 0-270 + 1-2°2 4+ 0-2°% = 26,25

LOLLOLLLOLL LLLLLL = 1467.984375.

5.4: (@ + c?) (b* + d*) — (ab + cd)?® = a*d* — 2adbc + b*c* = (ad — bc)? = 0.

5.5: Wir beweisen jede Ungleichung fiir sich. Nach Voraussetzung ist:

a@a—-b <0 | 0= (JVa-/b) 0< (a— b)? as<h
— : 1

a® + ab < 2ab 2\/u1)§a+l) abgT(az-i—Zab#bz) a+ b2

BRI SRS R e dTe s .

a=a+b_ ST ab = § —‘\(l}:?(“‘.‘ ) =A Ash ,

1
5.6: I. Induktionsanfang fir n=1: 1+ a < T—7 (1 —a) >0, 0< «? richtig, da a + 0.

II. Mit der Induktionsannahme ist fiir v = k: (1 + a)* < . TII. Beide Seitenmit 1 + a > 0

1
1 — ka
1 1 1 :
T—ka T-a " e

I—(+1Da’
Ungleichung gilt fiir #» = k + 1 und somit fiir alle natiirlichen n = 1.

1
T . K+1
multiplizieren: (1 + a)**! < T %a (1+a) <

5.7: a) Fallunterscheidung: 1. Fir x — 3 > 0folgt 4 < x,2. x — 3 < 0 = x < 3, insgesamt x < 3

dx>4b x4 x4 Sich) Bild L.5.1
> 4. = = = ,
und x ) Z=E Tt R CER T T i
2 - D {x — =
2
z=0
z<0 | z2>0 |Z<0 ‘z>0
. |

0 x % X3 X BildLS5.1
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y=1-x J Y=1x
! 7
i d
11]]
yrx=4 ~|l “
0] ry % BildL.5.2 Y=t J=x  BildL5.3

c) Die Punkte liegen im Inneren und auf dem Rande des schraffierten Dreiecks (Bild L.5.2).

3
5.8: a) Fallunterscheidung: 1. Fiir 2x + 3 = 0 folgt — 5 < x < 0,2 Fiir2x + 3 < Ofolgt -2 < x
3 11
<= 5 insgesamt —2 < x < 0. b) Fallunterscheidung wie in a) ergibt x; = s X2 = — 5 -
c) Wir_ermitteln durch Fallunterscheidung zunichst folgende Intervalle: 1. Fiir x = 4 folgt x = 3
+ \/13; 2.Fir—1 <x <4 folgt —1 < x £ 2; 3.Firx < —1 folgt x = —2; also insgesamt gilt

die Ungleichung fiir folgende x: x < —2; —1 <x=<2; 3+ \/13 =)

3x — 3 fur xz2
x+ 1 fur 1= x =2 Die Ungleichung gilt fiir x > 3
Dl + e+ lr=2=) _ 3 for 05721 undx< —1.
—3x + 3 fir x=0

5.9:a) [x+ y| <1 entspricht —1 <x+p < +1 oder —1 —x <y<1—x c)Fallunter-
scheidung (BildL.53): 1. x20; [y 14+ x; 1+ x)=y=<1+4+x 2. x20; |y =1 —x;
-l-x=sysl-x

i a+b+|b—dq b
5.10: Fallunterscheidung: 1. a < b; —s =5 = b; 2. a> b;
= a. Die 2. Beziehung ist analog zu beweisen.

a+b+|b—d
2

z

511: a) 131 +1i); b) 1+ 2i; ¢)3+2i; d) (1 + D8 =[(1+i0)?*=@2)*=16; e) 4l + i

2

f) \/i_=a+bi' i=(a+bi)2 =@ =0 4 2bio @~ b =0; 2ab=1, o=+ L2

= +— sAi= +—(1+1) @S+ 12 =a+bija® —b*=—5,2b=12a=+2
b= + 3; \/ 5+ 12i = + (2 + 3i). Man entwickle die Losungen von f) und g) iiber die Forme!
(5.12)!
512:2) e =cos3x +isin3n = —1;b)e” 3 = cos——lsm—-l—L\/si'

. ’ 3 3 2 2 ’

11 3

c)e'T"—cos—g—lsm =—-\/3——1 d)e'(—z'"+z"")= it

® . T .. T . - 5 .
513: a)r=2, 9= —; 2i=2(cos — + isin — =2€2;b)r=\/2,¢=—w(~225c);
2 2 2 4
5 s - -
Jz(cosTﬁﬂsm—n) V2EET O r=243 p=330° 243 (cos 330° + i sin 330°)
- 11
=2 \/3 ¢6 ™. Man vergleiche das Ergebnis mit dem von 5.12¢)!

5.14:2) 2(cos 60° + isin 60°) = 1 + +/3i;  b) 2 /3 (cos 300° + isin 3009) = /3 — 3i.
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515: @) 2 =3 —iy/3 =12 (cos 330° + i sin 330°);  w® = /12 [cos (110° + & - 120°)
+isin (110° 4 k- 12091, & = 0,1,2; w§® = §/12 (cos 110° + isin 1109 = —0.52 + 1.42i; w?
= /12 (cos 230° + i 5in 2309 = —0.97 — 1161, w§® = $/12 (cos 350° + i sin 350°) = 1.49 — 0,26i
(Bild L.5.4a);

b) 2*=81=81(cos0° + isin0%; w =3 (cosk 5 + isink;); k=01,2,3; w® =3,
W = 30, w® = —3, w® = —3i (Bild L.5.4b).

Bild L.5.4a Bild L.5.4b BildL.5.5

5.16:a) z = re'?, |z| = r < 1, stellt das Innere des Einheitskreises dar. |z — 1| < 1 stellt das Innere
des Kreises mit dem Mittelpunkt zo = 1 und dem Radius 1 dar. Im schraffierten Bereich liegen die
gesuchten komplexen Zahlen (Bild L.5.5). b) z-Z =re!?-re~' =2 = 1. Die entsprechenden

n Tt n k21 n
Punkte liegen auf dem Einheitskreis. c) |argz| < 5 "3 < argz < + —, — S << + 7
(rechte Halbebene). d) z = a + ib; |a| + |b] = 1 (BildL.5.6). €) z=a + ib; |a|-|b| = 1 (BildL.5.7).

Bild L.5.6 Bild L.5.7

6.1: Permutationen ohne Wiederholung (es werden alle 3 zur Verfiigung stehenden Farben verwen-
det; keine Farbe soll mehrfach an einem Rohr vorkommen): P; = 3! = 6.

o

6.2: Kombinationen ohne Wiederholung: n =6, k=1,2,...,6; Cpes = z Cg = (?) + (g)
6 k=1

P GaG (6) = 63.

6.3: Hier wird die Anzahl der Elemente n gesucht, wobei jeweils die Mindestanzahl 15 der not-
wendigen Zusammenstellungen vorgegeben ist. a) Variationen mit Wiederholung: Vj =n?=15.
Man bendtigt also mindestens 4 Farben. "

. n+2-1 (n+ 1 1
b) Kombinationen mit Wiederholung: €2 = ( 2 ) = ( ' 2 ) = (L+2 )n > 15,
n? +n—3020,n=5 Man benétigt also mindestens 5 Farben. -
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e . ‘n n(n — 1
c) Kombinationen ohne Wiederholung: C} = (2) = % 215, n®-n—-302=15 n=6.
Man benétigt also mindestens 6 Farben.

6.4: n=8, k=3. a) Kombinationen ohne Wiederholung: C3 =

,_\
)
=
[}
—| o
o —
w| o
I
w
=

8!
b) Variationen ohne Wiederholung: V —=8-:7-6=336.

6.5: a) Variationen mit Wiederholung: n = 10 (10 Ziffern), & = 5 (fiinfstellige Rufnummern):
V" = n* = 10% = 100000. b) Von den 100000 Anschliissen beginnen V" = 10* = 10000 An-
schlussc mit 0; also verbleiben 90000 Anschliisse.

6.6: Um ohne Umwege von 4 nach B zu gelangen, muf3
man 6 Abschnitte in x-Richtung und 5 Abschnitte in y-
Richtung zuriicklegen. Die verschiedenartigen Zusammen-
stellungen von 6 x-Abschnitten und 5 y-Abschnitten sind
Permutationen mit Wiederholung:

11!
PED = o = 462,

A Bild L.6.1
X

a4 +1
67:9) % (“ ") = (“ +"), a reell, n 20, (621);

n

o fa+ +1
I. Induktionsanfang 7 = 0: (a v) Shig= <a ),
y=0
ko fa+ +1+
1I. Induktionsannahme n = k: 2 (a v) ( & ),

w £ (TR E )00 ()

+ Y
Mit (6.20) folgt dann: 2 (a v) = (“ . )

1V. Formel (6.21) gilt fur n =k + 1 und damit fir alle natiirlichen » = 0.

23
7.1: Es ist A={xleR/\|x+]|§—2-+2}={x]xeRA—2§x§ +2}, denn: 1) wenn
x
x+1=0 ist, folgt x+1§7+2, d.h. x <2, und 2) wenn x + 1 < 0 ist,folgt —x — 1

3 _
= —)25 +2,d.h. —z—x = —3 (gleichwertig mit x = —2). Demzufolge ist 4 nach Definition:

={x|(—0 <x < =2)v(+2 < x < +00)}.

3
7.2:a) Essei3 —2x>0,d.h. x < 5 Dann gilt bei Richtigkeit der Ungleichung auch 3x + 2

4
=23 — 2x), d.h. 3x + 2 = 6 — 4x. Hieraus folgt x = - Da die Rechenschritte rﬁckwéirts
x + 2
3 - 2x
nicht erklart. Fir x > -2—ist 3 — 2x < 0. Deshalb folgt 3x + 2 = 23 — 2x), d. h. 6x = 4, also

4 3 3
durchlaufbar sind, 16sen alle x € [7 ) die Ungleichung. Fiir x = =5 ist der Ausdruck

2 3
b= 3 Demzufolge besitzt die Ungleichung fir x > —Z—-keine Losungen. Die Losungsmenge ist

4 3 8

[—7—-, 7)4 b) Die Losungsmenge ist (—oco, —8] v [2, ?] . Man unterscheide die drei Fille:
5 5

x< -3 -3<x= 5, * > 7 c) Essei x = —5. Dann geht Ungleichung |x — 1|

+]x+ 5| S4iberin —(x—1)—(x+5=-2x—4=4,dhxz -4
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Es existiert also keine Losung mit x = —5.

Entsprechend betrachte man die Teilintervalle —5 < x = 1 und 1 '< x. Dabei zeigt sich, daB kein x
die betrachtete Ungleichung 16st. Die Losungsmenge ist also gleich 0.

7.3:siehe L.7.1, L.7.2 und L.7.3

7.4: Die Beziehungen a), b), d) sind richtig, wihrend ¢) nur fiir B £ A4 gilt. Man illustriere diese Aus-
sagen an Skizzen, z. B. wie in Bild L.7.1, L.7.2.

Bild L.7.1 Bild L.7.2
7
i s
. I
3
% -y =12
A8 %//' A 2X-y= ; Xty
(3 (ANB)uB=AuB 27 0 7N %
(ANBINC =(AnC)\B -x-2v+6=0
BildL.7.4 Bild L.7.5 Bild L.7.6

7.5: a) (Av B)\ B= A\ B. Demzufolge ist A~ (A< B)\B)=A~(A\B)= A\B. b) Nach
Formel (7.21) gilt AvBv C = A~ B~ C. Deshalb ist (A~B~C)v AvBw(C=(A~BnC)
vA@A~BAC) =M.

7.6:a) A = {3, 13, 23, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43}; B = {8, 16, 24, 32, 40, 48};
C=1{2,4,6,8,20, 22,24, 26, 28, 40, 42, 44, 46, 48}. b) u(A) = 14; u(B) = 6; u(C) = 14; u(4 -~ B)
=19; W(A~B)=1; WA ~C) =0; W(B~C) = 4; u(B~C) =46, f(A~B~C)=0. c) Es
muB gelten X £ A~ B C, denn dannsind X ~ 4 = 0, X ~ B = 0, X ~ C = 0 erfiillt. Man wihle
z2B. X={1,57,9 ) D=A~B~C)v(A~CnB)v (B~ Cn A). Diec Mengen 4 ~B~C,
A~ Cn~ B, B~ C~ Asind paarweise disjunkt. Deshalb ist u(D) = u(4 ~ B~ C) + u(A ~ C ~ B)
+UBACAD=1+0+4=5

7.7: Wir suchen u(0) und u(4), A = I ~ O ~ T. Wir berechnen zunéchst u(4). Es gilt:
B=1~(0vT)=Av({~T). Daraus folgt: u(B) = u(A4) + u(I ~ T), also 8 = u(4) + 8, d. h.,
1u(A4) = 0. Auch zur Berechnung von x(0) versuchen wir wieder eine Darstellung als Vereinigung
paarweise disjunkter Mengen zu finden. Esist: M = O v (I~ O)v (T~ I~ 0)v (I< T 0)und
damit u(M) = j(0) + p(I ~ 0) + (T ~ I~ 0) + (I T < 0). 100 = p(0) + 23 + w(T ~1~ 0)
+ 24. Ahnlich zeigt man, daB (T ~ [ ~ 0) = 35 ist und hiermit gilt 4(0) = 18.

7.8: Esist A = {—1,0,1,2}, B= {0, —1, +1} und somit 4 x B = {(=1,0), (=1, =1),(=1, 1),
(0,0), (0, —1), (0, 1), (1,0), (1, =1), (1,1),(2,0), (2, =1), (2, D}.
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7.9: Die Punkte (0,0) und (5,10) gehoren zum Geradenstiick. Wir nehmen an, eine Darstellung
der Form 4 x B sei moglich, wobei 4 Teilmenge der x-Achse, B Teilmenge der y-Achse sei. Dann
gilt: 0 Aund 5€ 4,0¢€ Bund 10 € B. Nach Definition des Kreuzproduktes ist dann aber auch zum
Beispiel (0, 10) € A x B. Der Punkt (0, 10) gehért aber nicht zum Geradenstiick. Das ist ein Wider-
spruch zur Annahme, das Geradenstiick wiirde sich als Kreuzprodukt 4 x B darstellen lassen.

7.10: a) Wir setzen X = R' und 4 = [0, 1) und benutzen Definition 7.22. Es sei x = 0, 0 € 4 aus-
gewihlt. Dann gibt es kein r > 0 so, daB K(0,r) = {x | xe RA|x| < r} Tzilmenge von A ist.
b) A’=[0,1) ~[1,2] = 0, denn 1 ¢[0, 1), aber 1€[1,2]. B= ([—1,1]1v(0,2)) ~ (1, 2] v [3,10))
=[-1,2)~[1,10) = [1,2).

7.11: Die graphische Darstellung der Polyedermenge ist in Bild L.7.3 angegeben.

8.1: Es sei M die Menge aller GieBereibetriebe und N die Menge aller Verbraucher von Gieflerei-
erzeugnissen der DDR. Weiter seien G € M bzw. V€ N beliebige Elemente (d. h. GieBereien bzw.
Verbraucher) dieser Mengen. Dann ist die gesuchte Abbildung A diejenige ‘Teilmenge von M x N,
die als Elemente nur solche Paare (G, V) enthilt, bei denen Vertragsbeziehungen zwischen G und V'
bestehen.

8.2: Von den gegebenen Wertepaaren erfiillen nur (3, 9), (8, 6), (9, 4) und (16, 0)) die Ungleichung.

8.3: A enthilt nur die Paare (5, x,) mit x, =0,1,...,7 sowie nur die Paare (x,,6) mit x, =0,1,...,8.

X;
d 0
3
1
L3
¢
5
5
7 7
ol 7
Bild L.8.1 Bild L.8.2 Bild L.8.3

8.4: siehe Bild L.8.1

8.5: M muB wenigstens die Zahlen 0, 1, 4, 5 und 7 enthalten; beziiglich N muf3 wenigstens gelten
3,4,6,7€N.

8.6: Die Bilder L..8.2 und L.8.3 zeigen die gesuchten Darstellungen.

8.7: a) Der Erlos fiir den Verkauf von & Mengeneinheiten der Ware betriigt kp Geldeinheiten. Da-
her kann mit M = {1, 2, ...,0} und mit N = {p, 2p, 3p, ...,Qp} die Beziehung zwischen verkauften
Mengeneinheiten und Erlos als Abbildung 4 aus N in N aufgefaBt werden. Dabei besteht 4 aus
allen geordneten Paaren (k, kp), wobei k € M beliebig ist,und es gilt: Dy =M < N, W, = N <« N,
b) Aus dieser Aufgabenstellung folgt keine konkrete Beziehung zwischen Temperatur und Druck.
Deshalb miissen wir allgemein vorgehen. Es sei M = [T}, T5], und N sei die Menge der Werte, die
sich fiir den Druck des Gases bei Temperaturen T'€ M ergeben. Dann kann die Beziehung zwischen
Temperatur und gen Druck als Abbild A aus R' in R! aufgefaBt werden. Dabei besteht
A aus allen geordneten Paaren (7, p), wobei T'e M beliebig und p der bei dieser Temperatur gemessene
Druck ist. Weiter gilt Dy = M < R, W, = N < R*.

Wir bemerken noch, daB - bei entsprechend gewihlten Werten fiir 7; und T, - fiir die Temperatur
und den zugehdrigen Druck die Formel p = yV~T gilt, wobei ¥ das Volumen des Gases und y
eine spezifische Gaskonstante bezeichnet.

8.8:D4, = {1,2}, Da, = {1,2,3}, Wa, = {a,b,c}, Wa, = {a}. Bei 4; sind die Zahlen 1, 2 Originale
und die Buchstaben a, b und ¢ Bilder; konkret ist z. B. a Bild sowohl von 1 als auch von 2, jedoch
nicht von 3. Bei A, sind ebenfalls die Zahlen1,2,3 Originale, dagegen gibt es nur ein Bild, nidmlich a.
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8.9: Mit den Bezeichnungen der Losung von Aufgabe 8.7, Teil b) ergibt sich 4 = {(T, p) | T'€ [Ty, T»]
Ap€R Ap =yV~'T}. Die zu (8.3) analoge Mdglichkeit der Darstellung von 4 ergibt sich, wenn
man mit p4(T, p) die Aussageform ,,p = y¥~'T A T€ [Ty, T,]* bezeichnet:

A={T,p)|TeR rpeR' ArpaT,p)}-

8.10: Ist p(G, V) die Aussageform ,,Zwischen der Gieflerei G und dem Verbraucher ¥ bestehen ver-
tragliche Beziechungen®, so lautet die gesuchte Darstellung 4 = {(G, ¥) | Ge M A V€ N A p(G, V)}.

8.11: Ist k die Kraft, m die Masse und b die Beschleunigung des Korpers, so folgt aus der Aufgaben-
stellung die Formel k = mb. Nehmen wir nun an, daB8 die Beschleunigung nur Werte aus dem Inter-
vall [b,, b,] annehmen kann, so ergibt sich 4 = {(b, k) | be [by, b1 nk € R' A k = mb}.

8.12:2) A = {(—2,4),(-1,1),0,0), (1,1), (2,4), (3, 9)}.
b) siehe schraffierte Halbebene einschlieSlich der Geraden y = —x + 4 in Bild L.8.4.

Bild L.8.4

8.13: A, ist keine lineare Abbildung, weil der Linearkombination von Originalen im allgemeinen
nicht die Linearkombination ihrer Bilder entspricht, d. h. weil aus (x;, ;) € 4, i = 1, 2, 1. allg. nicht
(ayx; + ayx;, a1y, + a,) € A, folgt. Dagegen ist A4, eine lineare Abbildung. A5 ist wiederum keine
lineare Abbildung, weil ihr Definitionsbereich [—3, 4] kein linearer Raum ist.

8.14: A" = {4, -2),(1, —1),(0,0), (1, 1), (4, 2),(9, 3)}, wobei D41 ={0,1,4,9} und
Wy-1={-2,-1,0,1,2,3} gilt.

8.15: Es seien zwei beliebige Elemente (m, a,), (m, a,) € A gegeben. Dann ist m eine der Maschinen
in der Halle und a, sowie a, sind Arbeiter, die sie bedienen. Da nach der Aufgabenstellung jede
Maschine immer nur vom gleichen Arbeiter bedient werden soll, muBl a; = a, gelten. Also ist 4
eine Funktion. Damit ist ein Zusammenhang, der nicht quantitativer Natur ist (ndmlich der zwischen
Maschinen und den sie bedienenden Arbeitern), durch eine Funktion modelliert.

8.16: My « Mo = My = M,.

8.17: A, ist eindeutig, denn zu jedem Original P = (xy, x,) € R? gehort ein eindeutig bestimmtes
Bild z = x2 + x}. Dagegen ist A ! nicht mehr eindeutig, weil z.B. (4, Po), (4, P))e A7 ! gilt,
obwohl P, = (2,0) verschieden von P; = (0, 2) ist. Also ist 4; zwar eindeutig, jedoch nicht ein-
eindeutig. AuBerdem ist A4; nach Definition 2.8 ein Funktional.

A, ist ebenfalls eindeutig, jedoch nicht eineindeutig. Ersteres folgt daraus, daB jedem Original

X = (X15 X2y ey Xy Xms1s -- -, Xp) € R €in eindeutig bestimmtes Bild y = (x;, x2, ..., X,) zugeord-
net ist. Letzteres folgt daraus, daB unterschiedlichen Elementen von R™ wie (xy, ..., Xu, 0, ..., 0) und
(X1, ..oy Xmy 1, ..., 1) das gleiche y = (xy, ..., X,,) zugeordnet ist und daher 45 * nicht cindeutig ist.

AuBerdem ist 4, nach Definition 2.7 ein Operator, jedoch — wenn 1 < m - kein Funktional. Dieser
Operator wird auch Projektion von R" auf R™ genannt.

Aj ist eineindeutig. Das prift man leicht nach. AuBerdem ist A5 fiir 1 < » ein Operator, jedoch
kein Funktional. Er wird fir a = —1 Spiegel, am Koordi sprung und fur 0 < a < 1 Kon-
traktion genannt.

Ag ist nicht eindeutig und kann deshalb auch nicht eineindeutig sein. Letzteres ist trivial, ersteres
folgt daraus, dal n > m ist. Daher muf} es wenigstens ein Erzeugnis geben, fiir dessen Produktion
mehr als ein Rohstoff bendtigt wird. Daher ist A4 auch nur eine Abbildung.

9.1: Fur die gesuchten Zahlen muB gelten ¢; = a, = ¢ mita = 3.

18 sicber u. a., Mathematik
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9.2: Die Zahlen a; = —3, by = —1, a, = 1, b, = 3 erfiillen die gestellten Forderungen.
9.3: Fiir die angegebenen Werte ergibt sich folgende Wertetabelle:
5 3 7 9 5 11
2 21 3 & 0 3 1 3 0
4 6 | 4|76 6 |74 |16

Die graphische Darstellung der Funktion unter Verwendung dieser Wertetabelle zeigt Bild L.9.1.

y
1
P L g
7 2 J X
Bild L.9.1
¥
Sk
I 7 X
L T
Iy L
-/’.
e 1 b 4 1 1 -
-1 1 § X
Y I
Bild L.9.2 Bild L.9.3 .

9.4: Der Radikand muB groBer oder gleich Null sein: 4x — 20 = 0. Hieraus folgt 4x = 20 oder
x = 5, so daB der mathematische Definitionsbereich mit I = [5, + c0) gegeben ist.

9.5: Aus x€[0,3] oder 0 < x < 3 folgt zunichst 0 < 2x = 6 und schlieBlich —1 = 2x — 15,
so daB W, = [—1,5] gilt. Weiter ergibt die Elimination von x aus y = 2x — 1 die Bezichung
1 1

b= 7(y + 1). Daher lautet die zu (9.23) analoge Darstellung f~!:y = —2—(x + 1), xe[-1,5].
Die Graphen von fund £~ zeigt Bild L.9.2.

9.6: fist eine Parabel. Von einer Parabel sind jedoch immer nur die einzelnen ,,Aste** links bzw.
rechts vom Scheitelpunkt eineindeutige Funktionen. Die x-Koordinate x; des Scheitelpunktes der
gegebenen Parabel erhilt man aus einer entsprechenden Formel (vgl. [4]) zu x; = 1. Daher muf3
1 < a gelten. Wir wihlena = 1. Fir 1 < x < 4folgt —4 < x? — 2x — 3 < 5.sodaB W, = [—4,5]
gilt. Die formale Elimination von x aus y = x> — 2x — 3 ergibt x = 1 + \/4 + y. Das Minus-
zeichen scheidet aus. weil x € [1, 4] sein muB. Daher lautet die zu (9.23) analoge Darstellung von

fLy=1+ \/4 + x, x € [—4,5]. Die Graphen von fund f~! zeigt Bild L.9.3. Wirerwihnen noch,
daB fiir die Funktion f, beia < 1 zwar auch eine Umkehrabbildung, jedoch keine Umkehrfunktion
mehr existiert.
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9.7: fist eine Parabel. Sie nimmt ihren kleinsten Funktionswert fiir x = x; an (x; — x-Koordinate
des Scheitelpunktes der Parabel). Fiir x; ergibt sich aus einer entsprechenden Formel (vgl. [4]):
xg = 1. Somit folgtalso f(x) = f(1) =1 — 2 — 1 = —2fiiralle x € (— 0, +00). Daherist C; = —3
erst recht eine untere Schranke. Weiter sollen die Zahlen a, b so bestimmt werden, daB8 x* — 2x — 1
< 7 oder x? — 2x — 8 = O fiir alle x € [a, b] gilt. Nun ist aber A(x) = x> — 2x — 8, x € (— 00, +00)
selbst eine Parabel, die negative Werte -nur zwischen ihren Nullstellen annimmt (vorausgesetzt,
diese Nullstellen sind reelle Zahlen). Lost man die Gleichung x? —2x — 8 = 0, so folgt h(x) <0
fiir alle x € [—2,4] oder f(x) < 7 fir alle x€ [a, )] mita = —2,b = 4.

9.8: Es seien x;, x, € R, beliebig, mit x; < x,. Dann gilt 2x, = 2x; + a mit a > 0. Somit folgt
e2¥2 = e¥*11% = ¢ ¢**1 > e2*1, wobei €® > 1 fiir @ > 0 benutzt wurde. Nach Multiplikation mit —1
und anschlieBender Addition der Zahl 1 ergibt sich die geforderte Ungleichung 1 — e?*2 < 1 — e*1.

a a a
9.9: Essei x; < x2 £ — 7 Daraus folgt x; + 5 <X + 5 < 0. Nach entsprechender Multi-
I X a\? a a a\?
plikation erhdlt man hieraus {x; + > > (X + > Xz + 5 2 |x2 + a5 oder x} + ax;

a a a
+ e X2+ ax; + T Addiert man hier auf beiden Seiten (b — =) s erhdlt man die
a

gewiinschte Ungleichung x7 + ax; + b > x2 + ax, + b. Analog wird der Satz fiir — 7
< Xx, bewiesen,

9.10: Es sei x;, x, € I mit x; < x, beliebig. Aus den Voraussetzungen iiber f; und f, folgt dann
filxy) < fixz) und fo(x;) < fa(x;). Addiert man diese beiden Ungleichungen bzw. multipliziert
man sie mit @ <0, so folgt fi(x;) + fo(x1) < fi(x2) + fo(xz) bzw. afi(xy) > afi(x,), i=1,2,
w.z. b.w.

=x

1 1 = 1 1
9.11: Es muB fiir beliebige x;, x, € R die Ungleichung — (7 X + 7x2> e 7)(%

. . 1 1 1 .
gezeigt werden. Diese Forderung ist dquivalent mit —z—xf + —2—x§ - (7 X + sz) = 0. Die
letzte Ungleichung ist aber immer erfiillt, denn man iiberzeugt sich nach einigen einfachen Um-

1
formungen davon, da8 ihre linke Seite gleich dem nichtnegativen AusdruckT(x1 — x,)? ist.

9.12: Das Zihlerpolynom besitzt die Nullstellen x; = —3 und x, = 4; die Nullstellen des Nenner-
polynomssind x3 = —1, x4 = 0, x5 = 4. Daher gelten die Zerlegungen x* — x — 12 = (x + 3) (x — 4)
sowie x* — 3x% — 4x? = x?(x + 1) (x — 4), und die gebrochen rationale Funktion hat in x; = —3
eine Nullstelle der Vielfachheit 1, in x3 = —1 einen Pol der Ordnung 1, in x, = 0 einen Pol der
Ordnung 2 und in x = 4 eine Liicke; letztere stellt eine hebbare Unstetigkeit dar.

9.13: Aus dem Definitionsbereich der Logarithmusfunktion (vgl. Abschnitt 9.4.) folgt die Bedingung
1 — x? > 0. Dasist gleichbedeutend mit 1 > x2 oder —1 < x < 1. Somit ergibt sich fiir das gesuchte
Intervall I = (—1,1).

9.14: Das Anliegen dieser Aufgabe ist eine reine Recheniibung. Empfehlung: Man 16se zunéchst die
eckigen Klammern auf der rechten Seite der behaupteten Formel auf; den dabei erhaltenen Doppel-
bruch forme man auf einen einfachen Bruch um. Nun 16se man die dritte Gleichung des Systems
(9.62) nach ¢, auf und forme den so fiir ¢, erhaltenen Ausdruck auf den bereits erwidhnten Bruch um.

9.15: Mit dem zusitzlichen Stiitzpaar (2, —43) anstelle von (1, 4) ergibt sich in Beispiel 9.11, daB
¢4 = 0ist. Somit fithrt dieses Stiitzpaar nicht zu einer Erhohung des Grades des Newtonschen Inter-
polationspolynoms. Die Ursache hierfiir liegt darin, daB (2, —43) schon Element des Polynoms
P3(x) ist, d. h.,es gilt bereits P3(2) = —43.
9.16: Verwendet man die gegebenen Stiitzpaare in der angegebenen Reihenfolge, so lautet das ent-
sprechende Gleichungssystem (9.62) jetzt:
i=0: 115 = ¢,
i Pom2=co— ¢y,

4=co—3¢c; —3(-2)cs,
ii=13° T=1co—4c; —4—3)c; —4(-3)(-Des,
i=4: T3=co—6c; — 6(—5)c; — 6(=5)(=3) ez —6(—=5)(—3)(—2) cq.
13*
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Die schrittweise Losung dieses linearen Gleichungssystems, beginnend mit der ersten Gleichung,
liefert fir P,(x) die Koeffizienten éq = 115, é, = 117, é, = 40, é5 = 10, & = 2, und wir erhalten
Pyx) =115+ 117(x — 4) + 40(x — 4) (x = 3) + 10(x —4) (x = 3) (x — 1) + 2(x — 4) (x — 3)
X (x — 1) x. Lost man nun sowohl hier als auch in P4(x) alle Klammern auf und ordnet nach wach-
senden Potenzen von x, so iiberzeugt man sich davon, daB tatsichlich Py(x) = Pa(x) = 7 + 3x
— 2x% — 6x° + 2x* x e R, gilt.

9.17: Zunichst bildet man das Differenzenschema (siche Rechenschema L.9.2). Thm entnimmt man
die erforderlichen Differenzen. Dabei liegt die Besonderheit vor, daB A%y = 0 ist; die Ursache
hierfiir ist darin zu sehen, da die 6 Stiitzpaare zu einem Polynom von nur viertem Grade gehdren.
Beachtet man weiter, da im gegebenen Falle &4 = 1 ist, so ergibt sich Ps(x) = 73 — 63(x + 2)
+30(x +2)(x + 1) - 10(x + 2) (x + 1) x + 2(x + 2) (x + 1) x(x = 1).

Rechenschema L.9.2

X | Vi Aty A2y A3y A%y ASy
-2 73
—63
-1 |10 60
= —60
0 7 0 48
=] -12 0 ;
1 |4 —12 48
| —-15 36
2 Y 24
9
3 =)

9.18: Die Behauptung ist bewiesen, wenn man zeigen kann, daB die Abbildung nicht eindeutig ist.
Das ergibt sich aber aus der Periodizitit der Funktion g(r) = sin ¢, r € R'. Hiernach gehdren nim-
lich z. B. alle Paare (1, 2kx), k = 0, 1, +2, ..., zu der Abbildung. Also ist sie nicht eindeutig.
9.19: Da g(x) = r cos «, & € (0, ), eine eineindeutige Funktion ist, folgt sofort, daB mit (9.72) eine
Funktion gegeben ist. Beriicksichtigt man, daf sinx = /1 — cos? o fiir « € (0, ) gilt, so kann die
durch (9.72) gegebene Funktion auch durch y = —+/r? — x2, x € (—r, r), ausgedriickt werden. Thr
Graph ist der Halbkreis, der in der unteren Halbebene liegt und den Radius r sowie den Punkt (x, y)
= (0,0) zum Zentrum hat. Setzt man nun in y = —\/r2 — x? den Ausdruck fiir x aus (9.73) ein,
so erhélt man nach entsprechenden Umformungen den in (9.73) fiir y gegebenen Term. Also ist
durch (9.72) und (9.73) tatsichlich die gleiche Funktion gegeben.

9.20: Das Gleichgewicht muf fiir die obere Rolle hergestellt werden. An ihr greifen die Kraft g— iiber

den Radius R, die gleiche Kraft iber den Radius r sowie die Kraft P tiber den Radius R an. Die beiden
. q
letzten wirken der ersten entgegen. Deshalb muBl nach dem Hebelgesetz gelten % R= R PR oder
. (R—1r)q
p=flgr,R mit flqr R) = ——,—-)—I
2R

9.21: Das Bild 9.20 enthilt schon alle notwendigen Bezeichnungen. Thm entnehmen wir unter Be-
achtung der Symmetrie des Problems zunichst

R,ryqg>0.

— 2(4B + BC + CE + EF). (L.9.1)

. . ~ kd ~ =
Weiter folgt durch entsprechende geometrische Betrachtungen AB=7R, BC = aR, EF

= (7 - y) r sowie CE = \/d? — (R — r)> . AufBerdem kann man zeigen, dal & = arcsin

Werden nun die gefundenen Ausdriicke in (L.9.1) eingesetzt, so ergibt sich die gesuchte Funktion

R — —
zu | = f(d,r, R) mit f(d,r,R) = =(R + r) + 2(R — r) arcsin 4 + 2\/d2 — (R —r)%. Der

d
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Definitionsbereich dieser Funktion besteht — ausgehend von den konkreten Bedingungen der
Variablen 4, r, R — aus der Menge aller der (d, r, R), fiir die d, r, R > 0 und auBerdem d > R + r

gilt.

9.22: Beim Verkauf der x; ME des Erzeugnisses E; wird ein Gewinn von c;x; erzielt. Daher ergibt
sich fiir den Gesamtgewinn g die Funktion g = f(x;, X2, ..., X}) = i ¢;x;, wobei der Definitions-
bereich aus gewissen geordneten k-Tupeln natiirlicher Zahlen (x,, x: ..., xy) besteht.

9.23: Die vom Punkt beschriebene Kurve ist bereits in Bild 9.21 dargestellt. Diesem Bild entnimmt
man die Beziehungen x = O4 = OB — ABund y = AP, = R + CP4, woraus nach entsprechen-

den geometrischen Uberlegungen folgende Parameterdarstellung fiir die Kurve folgt: x = Ra — rsina,
y =R —rcosa;a€R.

9.24: Wir nennen hier zwei Beispiele: die Gewichtsskala auf handelstiblichen Kiichenwaagen und
die Temperaturskala auf Bade-, Zimmer- und Fieberthermometer.

9.25: Unter Benutzung der in Bild 9.24 dargestellten Funktionsleiter findet man nach Addition
bzw. Subtraktion entsprechender Strecken ¢ & 5,4 km sowie ¢ & 5,8 m. Fiir das dritte Dreieck muf3
man zunichst die Umformung b ~ \/672 — 26% x 10+/6,7% — 2,6% vornehmen. Danach findet man
\/6,72 — 2,6 ~ 6,2, womit b ~ 62 m folgt. Analog ergibt sich fiir das letzte Dreieck ¢ = 500 m.

9.26: Da fiir x € [1, 10] die Abschiatzungen 0 < Igx = 1 folgen, haben wir als Mafstabsfaktor
[, = 125 mm zu wihlen. Analog zu Beispiel 9.16 bestimmen wir nun aus der Forderung 0,5 mm
< 2 < 1,25mm die verschiedenen Unterteilungsintervalle. Dazu miissen x und Ax so gewihit

x + Ax

werden, daB 0,5 = 125 ]gT = 1,25 gilt. Hieraus ergeben sich die Unterteilungsintervalle

0,86 < x <216 fir Ax=2-102, 2I5=<x=54 fir Ax=5-10"2,

43 =x =108 fir Ax = 1071,
AR ALY L LU L W L W L R M L LAAR M R AU MU UL MU UL UL AL LS L A i e |
7 2 H 4 s 7 49 90

X =
Bild L.9.4

Hilt man sich ndherungsweise an diese Intervalle, so ergibt sich die in Bild L.9.4 dargestellte Funk-
tionsleiter. Dic obigen Intervalle kann man auch mit Hilfe entsprechender Tabellen ermitteln. Da
aus lgx; = lgx, + lgx, die Beziehung x3 = x;x,*! folgt, kann die konstruierte Funktionsleiter
zur Multiplikation bzw. Division von Zahlen angewendet werden.

9.27: Es liegt nahe, eine Verbindung zwischen dieser Aufgabe und dem Beispiel 9.17 zu suchen.
Vertauscht man dort dic Rolle der Variablen, so erhilt man x = »2, 0 < y < 7, wobei 0 < v < 49
gilt. Das ist gleichbedeutend mit y = \/x, 0 = x = 49. Damit wiirde der Abschnitt 0 = x £ 36 der
in Beispiel 9.17 konstruierten Funktionsleiter bereits die gewiinschte Leiter darstellen, wenn er die
geforderte Linge von etwa 100 mm hiitte. Dieser Abschnitt ist aber (siehe Bild 9.26) nur 72 mm lang.
Also muB er noch auf 100 mm ,,gestreckt* werden. Das wird konstruktiv unter Verwendung des
aus der elementaren Geometrie bekannten Strahlensatzes gemacht (siche Bild L.9.5).

9.28: Fur x € [1,300] folgt 0 < Igx < 2,4771. Daher ergibt dic Forderung, daB die x-Funktions-

60
leiter etwa 60 mm lang werden soll, fir den MaBstabsfaktor /, & Wmm. Wir setzen also
I, = 25 mm. Bild L.9.6 zeigt das gewiinschte Funktionspapier. g
1
7’

1

1 1
Wlia = —7, G =7, @= —F, Ga="¢, ds= 35
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10.2: Da Achilles doppelt so schnell lauft wie die Schildkréte, so legt diese in der ersten Phase nur

1 !
5 Meter zuriick. Folglich legt Achilles in der zweiten Phase selbst-i- Meter zuriick, wihrend die

]
Schildkréte nur noch T Meter bewiltigt usw. Man erhélt schlieBlich die beiden Zahlenfolgen:
. 21 . . /
Achilles:  {a,}, an = —-, Schildkrote:  {sa}, 8u = 5 -

Mit diesem Wettlauf hingen weitreichende philosophische Probleme zusammen (vgl. z. B. [12]).

50

~ W aoy

2
12345 W 50w Bild L.9.6
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10.3: Mit der Bezeichnung p = r — n erhélt man durch wiederholte Anwendung von (10.4):
Ay S ey Sy S o0 S Gpypoy S Gpyp = G

10.4: Die Folge ist fiir fixiertes g € (0, 1) streng monoton wachsend und fiir fixiertes g € (1, +c0)
streng monoton fallend (analog zu den Betrachtungen von Beispiel 10.3).

7 1 1 1
10.5: Die ersten 5 Glieder dieser Folge sind a; = 11, a, = T B=T M= e ds= .
Wiirde man aus dem Verhalten dieser Glieder schlieBen, daB die ganze Folge monoton fallend ist,
1 29
so wire das falsch. Denn man iiberzeugt sich leicht, daB z.B. a0 = ——, a;; = EETTE und

somit a;o < ay; ist. Daher ist die Folge weder monoton wachsend noch monoton fallend. Man
kann aber zeigen, daB fiir ihre Glieder gilt @, < ay,, fir alle n = 8.

10.6: Zur Losung der Aufgabe nehmen wir an, dall die Folge monoton wachsend ist und versuchen
daraus eine Bedingung fiir ¢ abzuleiten. Aus a, < a,,, wiirde

7 7 7
cn +T(_l)"§ cn + c—F?(Al)”+1 oder -3—(—1)"-2§c

N . 14 L 14 7
folgen.Setztmannun ¢ = 5 soist die Folge {a,}, a, = St 1)", zwar monoton wachsend,

L . . 14
jedoch nicht streng monoton wachsend. Dagegen ist die Folge fiir jeden fixierten Wert ¢ > 5 streng
monoton wachsend.

10.7: Es sei A die Schranke von {a,} und B die Schranke von {b,}. Dann folgt aus |c,| = |asb,|
= |a,| |ba, £ AB bzw. |d,| = |a, + b,| = |a,| + |bs| = 4 + B, daB auch die Folgen {c,} bzw.
{d,} beschrinkt sind.

10.8: GemiB Definition 10.3 ist zu priifen, ob zu jedem &€ > 0 ein N(¢) derart existiert, daB (10.11)
gilt. Angenommen, es wire —¢ < ¢" < &. Daraus folgt ¢ > |¢"| = |g|" oder Ine > nln |g|. Wegen
’ In

€
lg] < 1istaberln|g| < 0, so daB schlieBlich die Bedingung n > W folgt. Da alle durchgefiihrten

Umformungen umkehrbar sind, ist die Bedingung (10.11) fiir jedes &€ > 0 erfiillt, wenn N(e) gleich
der groBten ganzen Zahl gewahlt wird, die kleiner oder gleich In & (In |g)~! ist.

b,
10.9: Betrachtet man den Quotienten ¢, = a—" =—0=4q" mit ¢g= % €(0,1), so folgt, daB

n q3 1
{cn} ebenfalls eine Nullfolge ist (vgl. Losung von Aufgabe 10.8), und daher ist {b,} im Vergleich zu
{a,} eine Nullfolge hoherer Ordnung.

10.10: Wendet man die zu (10.11) dquivalente Bedingung (10.12) an, so folgt aus den Voraussetzun-
gen des Satzes, daB |b,| < ¢ fiir alle n = Nj(e) gilt, wobei N;(¢) = max (N, N(e)) gesetzt wurde.

2 — 4n + 12n* 2_2—4n

4 1
e = + 2 > —— + 2 > — kann die Bedin-

3n? 3n 2

10.11: Wegen a, — 2 =

1
gung (10.15) fiir kein & < Terfiillt werden, so daB 2 nicht Grenzwert der gegebenen Folge ist.
X . 2—4n 4n — 2 )
Dagegen ergibt die Betrachtung von |a, — 4|: |a, — 4] = =7 =T < Weiter

schluBfolgert man analog Beispiel 10.8 und findet so, daB 4 Grenzwert der Folge ist.

10.12: Es gibt nur eine einzige nichtnegative Zahl, die kleiner als alle positiven Zahlen ist, und das
ist die Null. Es ist unmittelbar klar, daB Null kleiner als jede positive Zahl ist. Angenommen, sie ist
nicht die einzige nichtnegative Zahl mit dieser Eigenschaft. Dann gibe es eine Zahlr, > 0, die klei-

ner als jede positive Zahl ist. Dann miite jedoch auch T" > ro sein, woraus aber ro < 0 folgen

wiirde. Dieser Widerspruch beweist, daf3 unsere Annahme falsch war.
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10.13: Nach Definition 10.4 muB (10.15) gezeigt werden. Dazu betrachten wir
q S = Snd =4 q—q"! it
—t - g™
I-gq 1-¢ 1-¢ I-q
Wegen 0 < g < 1 steht aber auf der rechten Seite eine Nullfolge, und somit existiert zu jedem & > 0
eine natiirliche Zahl N(g) derart, daB3 (10.15) erfullt ist.

_ -4

Sp —

10.14: 1 1 4n+1)+1
R

1 1 dn+1)—-1
e T

Es sei k eine beliebige natiirliche Zahl. Dann betrachten wir die drei aufeinanderfolgenden Glieder
1 1

Caks C2kers C2kp2. Wegen =4+ T Gk = 4 TR A1 (ke = 4 kT2 folgt cax

> Cope1 UNd Cop41 < Cax42, 50 daB {c,} weder monoton fallend noch monoton wachsend ist.

10.15: Unter Anwendung der Rechengesetze fiir konvergente Zahlenfolgen erhalten wir nach ent-
sprechenden Umformungen

7 3 4 5 4 6
FrEty R
lim ¢, = lim —————m— = ——, lim b, = lim ————————=
o ama 2 e
n? n* [

10.16: Unter Anwendung entsprechender Rechengesetze {ir konvergente Zahlenfolgen erhalten wir

4 lim a, + lim b,
li 2lim 3lim b= 6—12= -6, lmdy=—ton2e _12¥4 4
im ¢,=2lim a, — 3 li =6—12=— im d, =— . = ==,
o R = R lim a, lim b, 3.4 3
s -
10.17: Der Beweis wird durch vollstindige Induktion gefiihrt. Wegen a; = \/.z;< \/d_—i- 1 ist die
Behauptung fiir » = 1 richtig. Angenommen, sie sei fiir eine gewisse natiirliche Zahl n richtig, d. h.

es moge gelten a, < \/3+ 1. Dann folgt wegen a,,; = \/d + a, auch 4,y </ d + \/J+ 1
<\Vd+ 2\/11 +1= \/¢7+ 1. Damit ist die Behauptung fiir alle n = 1, 2, ... bewiesen.

10.18: Wegen der Gleichung

q
n+ 1 (L.10.1)
folgt fir alle » + 1 > ¢ die Ungleichung a@,,; < a,. Daher ist {a,} streng monoton fallend im wei-
teren Sinne. AuBerdem gilt offensichtlich a, > 0, so daB {a,} nach Satz 10.10 konvergent ist.

Any1 = Gy

10.19: Fir o > 0 folgt n* < (n + 1)*, so daB {a,} streng monoton fallt. Aufierdem gilt offensicht-
lich a, > O fiir alle n = 1, 2, ... Dann folgt aber wegen Satz 10.10, daB {a,} konvergent ist.

10.20: Nach der Losung von Aufgabe 10.18 existiert der Grenzwert. Bezeichnet man ihn mit @ und
geht in (L.10.1) zum Grenzwert fir » — oo lber, so erhdlt man a = a - 0, woraus ¢ = 0 folgt.

10.21: In Anlehnung an das Beispiel 10.20 wird auch hier das Resultat (10.32) verwendet. Dazu wird

g kn + 1\ 1\" ., . 1 \kn»
die Umformung a, = ( T ) = (I + ﬁ) = \/d—,.mn 4, = (1 + ﬁ) vorgenommen.

Weiter folgt wie in Beispiel (10.20): a, — ’{/e—.

10.22: Die Zahlenfolge {a,} konvergiere gegen den Grenzwert a. Dann konvergiert bekanntlich
auch jede ihrer Teilfolgen gegen a, und daher folgt a, = a* = a, womit die Behauptung in einer
Richtung bewiesen ist. Es sei nun'a, = a*. Wir bezeichnen diesen gemeinsamen Wert mit «. Weiter
sei N(e) fiir beliebiges ¢ > 0 die groBere der beiden Zahlen N,(¢) und N*(¢) aus den beiden Eigen-
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schaften 1. und 2. von a, bzw. a*. Dann gilt also bei beliecbigem > 0 die Relationa —& < a, < a+ ¢
oder |a, — a| < efiirallen = N(¢), womit die Konvergenz der Folge {a,} gezeigt und die Behauptung
bewiesen ist.

10.23: Es geniigt, nur positive ¢ < 2 zu betrachten. Bildet man fir sie das Intervall I; = (1 — ¢, 1),
so gilt sowohl I, < M als auch I, < Ug(1). Daher ist (10.34) fiir alle & € I, erfiillt.

4n
10.24: Da der Faktor 1 + (—1)" beschrinkt bleibt und der zweite Faktor die Glieder einer

Nullfolge bilden, konvergiert {a,} gegen Null. Obwohl unendlich viele Glleder der Folge {a,} selbst
Null sind, ist der Grenzwert Null dennoch Haufungspunkt der gegebenen Folge, denn gleichzeitig
sind unendlich viele ihrer Glieder (ndmlich a5y, k = 1, 2, ...) verschieden vom Grenzwert.

Fiir die Folge {b,} kann man nicht so einfach wie fiir die Folge {a,} auf Konvergenz schliefen.
Deshalb untersuchen wir zunéchst, ob {b,} iiberhaupt beschrinkt ist. Es ergibt sich hierbei

4n -3 6
|byl £ 2———=8 —— < 8. (L.10.2)
n n

Also ist {b,} beschrinkt, folglich existieren b, und b*. Zu ihrer Ermittlung werden zunichst solche
Teilfolgen von {b,} betrachtet, fir die der Faktor 1 + (—1)" eine einfache Form annimmt. Das ist
fir {bax} < {ba}und {byx_} < {b,} der Fall (k = 1,2, ...). Tatsichlich, fiir sie erhiilt man

k-3 8k — 3 4-3

8
b= [l + (=DM —5—=——F— baw. by, =[1+ (=1 ;]_T =0,

woraus l|m by = 8 und hm bu 1 = 0 folgt. Wegen (L.10.2) konnen wir aber auch gleichzeitig

-3
schluBfoIgern daB b* = 8 gllt In gleicher Weise folgt aus b, = [1 + (—l)"] >0 die

Relation b, = 0. Nun tberpriift man leicht, daB von den beiden Werten b, und b* nur letzterer
auch Haufungspunkt der Folge {b,} ist.

. X3 =2 o
10.25: Mit x,,3 = X, — E n=0,1,2,..., ergibt sich
196 200
- 105 106 2 1,414286 e 1,414214
ST w70 : 27 13860 T :

]
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Raum, euklidischer 92

—, linearer 91, 92

—, — metrischer 93

-, metrischer 93

—, n-dimensionaler 92

—, reeller 92

Realteil 50

Rechenregeln 39

- fiir Mengenverkniipfungen 81

— — Produktmengen 89

Rechenstab 145

reelle Zahlen 36, 42, 74

reeller Raum 92

reellwertige Funktion einer bzw. mehrerer reeller
Variabler 109

Reflexivitit 37, 50, 76, 84

Regeln von de Morgan 28, 83

regulire Leiter 140

Reihenschaltung 21

rein imaginire Zahlen 49

Relaiskontaktschaltung 20

Relation 90, 91

Riemann 9

Ries 8

Schaltalgebra 20

Schaltkreis 20

Schickard 8

Schliisse, logische 11, 23, 27,
SchluB auf eine Aquivalenz 28, 31
SchluBfiguren, logische 28
Schranke 118, 153

—, obere 118, 153

—, untere 118, 153

Shannon 20

Sheffersche Funktion 16, 21
Signum 113

Skala 140

spezielle Mengen 75

Spiegelung am Koordinatenursprung 181
Steigungen 132

streng monoton fallende Funktion 119
— — — Zahlenfolge 152

- — wachsende Funktion 119

— — — Zahlenfolge 152
Stiitzstellen 131

-, aquidistante 133

Stiitzwerte 131

Stufenkalkiil 73



Namen- und Sachregister

Subtrahend 38
Subtraktion 38, 54
Summand 38

Summe 38, 50

— zweier Zahlenfolgen 160
Summenformel 34
Summenzeichen 60
Supremum 95
Symmetrie 37, 50, 84
System 90

— der reellen Zahlen 43
Systembegriff 91

Tautologien 25, 75
Teilfolgen 152

Teilmenge 12, 75, 94

-, beschrinkte 93

—, nichtbeschréankte 93

-, nicht leere 93

— der Produktmenge 91
Teilmengenbeziehung 75
Trager der Leiter 140
Transitivitdt 37, 50, 76, 84
trigonomische Funktion 124
Tschebyscheff 9

iiberabzihlbare Menge 86
Umgebung 93, 94

— einer Menge 94

— eines Punktes 94
&-Umgebung einer Zahl 154
Umgebungsbegriff 93, 94
umkehrbar eindeutige Abbildung 107
— — Zuordnung 79
Umbkehrabbildung 105
Umkehrfunktion 115
unabhingige Variable 109

unbestimmt divergente Zahlenfolgen 158

unendliche Mengen 84
ungerade Funktion 122

- Permutationen 63
Ungleichung 44, 48

—, Cauchy-Schwarzsche 46 ™
Universalmenge 77, 78
untere Schranke 118, 153
Urbild 101

Variable 13

—, abhédngige 109

-, unabhéngige 109
Variablenbereich 76

Variation 59, 64, 70

— mit Wiederholung 65, 70

— ohne Wiederholung 64, 70
Venndiagramm 82

Verbindung von Aussageformen 18

Vereinigung von Mengen 79, 81, 85, 86
Vergleichskriterium 164

Verkettung 130

Verneinung, doppelte 28
Verschmelzungsgesetz 81
Verschmelzungsregeln 82

wahre Aussage 11
Wahrheitsgehalt 11
Wabhrheitstabelle 11, 15

195

Wabhrheitstabellen n-stelliger Aussagenverbin-

dungen 17
Wahrheitsverhalten 21
Wahrheitswert 12, 15
— einer Aussagenverbindung 16
Wabhrheitswertfunktion 17, 20, 25
Weierstral3 9, 42
Wertebereich 101
Waurzelfunktion 123

Zahlen, ganze 74, 85

—, irrationale 41

-, komplexe 48, 50, 51, 74

-, konjugiert komplexe S0

-, natiirliche 33, 36, 74, 85
—, rationale 36, 74, 85

—, reelle 36, 42, 74

-, rein imaginire 49
Zahlenbereich 36
Zahlendarstellung 43
Zahlenfolge, alternierende 151
—, arithmetische 151

—, beschrinkte 153

—, bestimmte divergente 158
-, divergente 158

-, geometrische 151

—, konvergente 156

—, monoton fallende 152, 163
—, — wachsende 152, 163

—, streng monoton fallende 152
-, — — wachsende 152

-, unbestimmt divergente 158
Zahlenfolgen 106, 150

-, Produkt von 160

-, Quotient von 161

-, Summe von 160
Zahlengerade 40, 41, 47
Zahlensystem 43

Zeichen, logische 19, 20
Zeichenmenge 20
Zuordnung, eindeutige 13

—, umkehrbar eindeutige 79
Zuordnungsvorschrift 109

zweistellige Aussagenverbindungen 15, 75

zweiwertige Aussage 12, 20
zusammengesetzte Funktionen 113



