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Vorwort

Im vorliegenden Band 5 wird die Integralrechnung weiter ausgebaut. Die Grund-
lagen hierfür wurden bereits in Band 2 behandelt. Problemstellungen, die diese Er-
weiterung erforderlich machen, sind z.B. die Bestimmung des Flächeninhaltes von

ebenen und räumlich gekrümmten Flächen, die Bestimmung des Volumens von Kör-
pern und der Länge von Raumkurven sowie die Berechnung des Schwerpunktes der
angeführten geometrischen Gebilde.

In Abhängigkeit von der Dimension der betrachteten geometrischen Gebilde
kommen wir zu unterschiedlichen Erweiterungen des Integralbegriffes, die zwar ihre
Besonderheiten haben, sich aber letztlich mit den in Band 2 behandelten Methoden
für gewöhnliche Integrale berechnen lassen. Gerade für die Anwendungen der Inte-
gralrechnung in Naturwissenschaften und Technik ist es sehr zweckmäßig, solche
Begriffe wie „Kurvenintegral“ und „Bereichsintegral“ zur Hand zu haben. Sie erleich-
tern das Aufstellen mathematischer Modelle außerordentlich. Erweiterungen des In-
tegralbegriffes finden u. a. auchin der Theorie der Differentialgleichungen und in der
Wahrscheinlichkeitstheorie Verwendung.

Die historischen Wurzeln der Bereichsintegrale sind bereits im Altertum zu suchen.
Die grundsätzliche Vorgehensweise, mit der Archimedes (287?— 212 v. u. Z.) die Flä-
cheninha1ts- und Volumenbestimmung behandelte, ist von der der Bereichs- bzw.
Raumintegrale nicht verschieden. Aus älterer Zeit liegen auch Ergebnisse vor (Nä-
herungsformeln für den Kreisinhalt, Volumen des Pyramidenstumpfes)‚ die auf ähn-
liche Kenntnisse schließen lassen. Die vollständige Lösung war aber erst möglich,
nachdem Newton und Leibniz die in Band 2 behandelte Differential- und Integral-
rechnung entwickelt hatten und die Schreibweise von Leibniz sich durchgesetzt hatte.
(Siehe hierzu auch den historischen Überblick in Band 2.) Das Doppelintegral in
unserer heutigen Form gebrauchte als erster Euler (1779), das dreifache Integral
Lagrange (1773). Letzterer verwendete auch als erster krummlinige Koordinaten.
Viele Zusammenhänge wurden schon im 17. Jahrhundert erkannt.

Im vorliegenden Band sind von diesen Entdeckungen erwähnt: das Prinzip von

Cavalieri (I598?—1647) und die Regeln von Guldin (1577-1643). Letztere waren
schon Pappos (um 320 u. Z.) bekannt.

In seinem Werk über die Figur der Erde (1743) benutzte Clairaut (1713-1765)
erstmalig ein Kurvenintegral 2. Art. Die Ergründung der Zusammenhänge zwischen
Kurven- und Oberflächenintegralen sowie zwischen Oberfiächen- und Bereichsinte-
gralen ist vor allem verbunden mit den Namen C. F. Gauß (1777- 1855), G. Green
(1793 — 1841) und G. G. Stokes (1819 -1903).

Neben den Bereichsintegralen (n = 2) un'd Raumintegralen (n = 3) werden im
vorliegenden Band auch allgemein die n-dimensionalen Integrale kurz behandelt. Ver-
schiedene Verallgemeinerungen des hier verwendeten klassischen Integralbegriffs, die
im 19. und 20. Jahrhundert erfolgten, sind dagegen nicht mehr Gegenstand der Be-
trachtungen in diesem Band.

Den Autoren ist es ein Bedürfnis, sich für zahlreiche wertvolle Hinweise der Mit-
arbeiter des Hochschulfernstudiums zu bedanken, die in dieser Auflage zu einem
größeren Teil realisiert werden konnten. Besonderer Dank gebührt den Herren Dr.
W. Denz und Dipl.-Math. H. Ebmeyer (Dresden).

Dem verantwortlichen Herausgeber und dem Verlag danken wir für die gute Zu-
sammenarbeit. »
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1. Parameterintegrale und Doppelintegrale

1.1. Begriff des Parameterintegrals

Wir führen zunächst Sogenannte Normalbereiche ein; diese Normalbereiche sind
für alle folgenden Ausführungen von grundsätzlicher Bedeutung (s. Bd. 4).

Definition 1.1: Eine Punktmenge (einen Bereich) B der x‚y-Ebene‚ die „seitlich“ durch D.1.l
zwei Parallelen zur y-Achse (x = x1, x = x2; x1 < x2) und „nach unten“ bzw. „nach
oben“ durch stetige Kurven (y = y1(x)‚ y = y2(x); y1(x) g y2(x) für alle x E [x1, x2])
begrenzt wird, nennt man einen ebenen Normalbereich (Fundamentalbereich) beziiglicb
der x-Achse (s. Bild 1.1). Es gilt also:

xi S x g x2

y1(x) g J’ S J/2(x) -

(x,y)EB<=>{

Bild 1.1

Vertauscht man die Rolle von x und y, so erhält man einen ebenen Normalbereich be-
züglich der y-Achse (s. Bild 1.2). Er ist eine Punktmenge B der x,y-Ebene, die „nach
unten“ bzw. „nach oben“ durch zwei Parallelen zur x-Achse (y = yl, y = y-2; yl < ye)
und „seitlich“ durch stetige Kurven (x= x101), x = x2(y); x1(y) g x202) für alle
y E [y,, y2]) begrenzt wird.

Es gilt also:

(x’y)EB¢>{ yléyéyz
x1(y) S x g x2(y)-

Bild 1.2



6 1. Parameterintegrale und Doppelintegrale

Beispiel 1.1 : Der in Bild 1.3 dargestellte Bereich ist ein Normalbereich bezüglich der
. ' 3 . . .

x-Achse. Es gilt x, = 0, x2 = 4, y1(x) = -35- , y2(x) = T): (y = — ä ist die Gleichung

der durch die Punkte (0, 0) und (4, —2) hindurchgehenden Geraden; y = 2x ist die
Gleichung der durch die Punkte (0, 0) und (4, 3) hindurchgehenden Geraden).

y .

Bild 1.3

Bemerkung 1.1: Der in diesem Beispiel betrachtete Bereich ist auch ein Normal-
bereich bezüglich der y-Achse.
Es gilt:

— —2y, —2§y§o
J’i = '2: ‚V2 = 3. X10’) =: e‚0;y;3

Die „linke“ Kurve x = x,(y) (es handelt sich um eine stetige Kurve!) kann aber
hier nicht durch eine einzige Gleichung beschrieben werden. Man muß bei irgend-
welchen Rechnungen die Intervalle -2 g y g 0 und 0 g y g 3 getrennt betrachten.
Das führt in der Praxis zu einer Zerlegung des Bereiches in zwei Teilbereiche. Bei
dem hier vorliegenden Beispiel würde man den Bereich B in zwei Dreiecksbereiche
B1 und B2 zerlegen — falls man mit Normalbereichen bezüglich der y-Achse arbeiten
möchte. B1 bzw. B2 ist der unterhalb bzw. oberhalb der x-Achse liegende Teil von B.

Beispiel 1.2: Der in Bild 1.4 dargestellte Bereich (Kreisscheibe vom Radius 2 mit dem
Mittelpunkt in (3, 0)) kann sowohl als Normalbereich bezüglich der x-Achse als auch
als Normalbereich bezüglich der y-Achse angesehen werden. (x — 3)” + y’ = 4 ist

‚ x20’) = 4-

Bild 1,4
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die Gleichung des Kreises. Nach y aufgelöst, erhalten wir: y = j; 1/4 — (x — 3)’. Das
Vorzeichen „+“ liefert die obere Kreishälfte, das Vorzeichen „—“ die untere Kreis-
hälfte. Nach x aufgelöst, erhalten wir: x = 3 j; |/4 —— y’ . Das Vorzeichen „+“ liefert
bei dieser Darstellung die rechte Kreishälfte, das Vorzeichen „—“ die linke Kreis-
hälfte. Für die Kreisscheibe — als Normalbereich bezüglich der x-Achse aufgefaßt —

gi1t:.x1 =_1, x2 = 5, y1(x) =51/4 — (x.—- 3)2, y2(x) = V4 — (x —_ 3)=. Faßt man die
Kreisscheibe als Normalbereich bezüglich der y-Achse auf, so gilt: y, = —-2‚ y, = 2,

xuo=3—t4—yänor=3+V4—y%
Vorgegeben sei ein Normalbereich B bezüglich der x-Achse (s. Bild 1.1) und eine

Funktion f(x‚ y) der beiden Veränderlichen x und y. Von der Funktionf(x, y) setzen
wir voraus, dal3 sie mindestens in allen Punkten (x, y) E B definiert und stetig ist.
Unter dieser Voraussetzung ist für jedes feste x E [x1‚ x2] die nun allein von y ab-
hängige Funktion f(x‚ y) (s. Bild 1.1) eine auf dem Intervall [y‚(x), y2(x)] stetige Funk-
tion. Da jede stetige Funktion auch integrierbar ist, kann man das folgende Integral
bilden:

3/a(x

fÜm»o. an
v=yim

113(22)

F(x): = [f(x‚ y) dy =

v; (z)

Definition 1.2: Das Integral (1.1), das natürlich von der Wahl der Größe x (des Para-
meters x) abhängt, nennt man ein Parameterintegral mit dem Parameter x; der Para-
meter x (eine im Intervall [x,, x2] willkürlich wählbare Größe) kommt außer im Inte-
granden auch noch in den Integrationsgrenzen vor. Man sagt in diesem Zusammenhang,
daß die durch Formel (1.1) eingeführte Funktion F(x) durch ein Integral dargestellt
wird.

Beispiel 1.3: Vorgegeben sei eine Kreisscheibe B vom Radius 1 mit dem Mittel-
punkt im Ursprungspunkt 0 des zugrunde gelegten x,y-Koordinatensystems und
eine Funktion f(x‚ y) = x’ + y’. Man berechne für ein beliebiges, aber festes
x E [——l, l] das entsprechende Parameterintegral. Für die Punkte der Kreisscheibe B
gilt:

x

J’
mneaoi :

—V1—x2 V1 — x2

(s. Bild 1.5).

Bild 1.5

D.1.2
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Hieraus folgt:

zum ' Vi: ___

m) = f/(x, y) dy = f (x2 + w) dy = [x2y+ ~—”3i]”=“‘“_‘
mm _;/1:7 ‚ ‘”=_1/1"“

2
3 1/1 — x2(2x2+1).

(x ist ein fester Wert aus dem Intervall [—l, l]; bei der Integration nach y wird er
daher wie eine Konstante behandelt.)

Ergänzung zur Definition 1.2: Neben Parameterintegralen von der in Formel (l.l)
angegebenen Form hat man noch Parameterintegrale mit dem Parameter y:

462(11) My)
G(y)= = j f(x.-y) dx = f f(x.y) dx- (1-2)

mu) z=z.<y>

Ausgangspunkt für diese Parameterintegrale sind Normalbereiche bezüglich der y-
Achse. Der Parameter y ist eine (im Intervall [y1, y2]) willkürlich wählbare Größe.

2x

Aufgabe 1.1: Man berechne das Paran1eterintegra1‘/'x(y + l) dy. (Auf welchem Intervall verläuft
‘ X

die Kurve y = y1(x) = ——x unterhalb der Kurve y = y2(x) = 2x?)

1.2. Diflerentiation von Parameterintegralen

Parameterintegrale (Darstellungen von Funktionen durch bestimmte Integrale) —

siehe Formel (1.1) bzw. (1.2) — begegnen uns in den Anwendungen sehr oft. Die erste
Frage, die sowohl vom theoretischen als auch vom praktischen Standpunkt von
Interesse ist, ist die folgende: Unter welchen Voraussetzungen ist eine durch ein
Integral dargestellte Funktion

5520/)

G(y) = ff( ,y) dx
112(1)

F<x) = f f(x‚y) dy bzw.
N1) mm

stetig und difierenzierbar in dem jeweiligen Definitionsbereich? Bezüglich der Frage
der Stetigkeit von F(x) wird man erwarten, daß die Stetigkeit der Funktion f(x, y)
auf B und der Funktionen y1(x), y2(x) auf [x,, x2] die Stetigkeit von F(x) zur Folge
haben wird. Bezüglich der Differenzierbarkeit ist der Sachverhalt ein wenig kompli-
zierter. Sicher wird man zunächst einmal verlangen müssen, daß die Funktionen
y,(x), y2(x) auf [x1, x2] difierenzierbar sind. Darüber hinaus muß selbstverständlich
auch die Funktion f(x, y) irgendeine Diflerenzierbarkeitsforderung auf B erfüllen:
Die Difierenzierbarkeit von F(x) nach x Verlangt die Existenz der partiellen Ableitung
von f(x, y) nach x.

Nach diesen Vorbemerkungen wollen wir nun den Satz formulieren, der Auskunft
auf die oben formulierte Frage gibt.
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Satz 1.1: B sei ein Normalbereich bezüglich der x-Achse (s. Bild 1.1). Wenn die Funk- S.1.1
rinnen ‚v1(x)‚ y2(x) auf [x„ x2] undf(x, y) auf B stetig sind, dann ist auch die durch ein
Integral dargestellte Funktion

N2)
F(x) = j f(x. y) dy

mm)

auf [x1, x2] stetig. Sind überdies die Funktionen ‚v,(x), y2(x) auf [x1 , x2] dtflerenzierbar
und besitzt die Funktion f(x, y) eine stetige partielle Ableitung f,(x, y) (auf einem B
ganz im bmern enthaltenden Bereich), so ist auch die Funktion F(x) auf dem Intervall
[x1, x2] dijflrenzierbar, und es gilt die Gleichung

' 112(1)

F’(x) =3‘; ff<x,y>dy
um)

1/air) '

= [um dy ~ y;<x>/<x,y1<x>) + y2’(x)f(x»y2(x))- (1.3)

1/Aw)

Wir führen den Beweis lediglich für die Gültigkeit der Formel (1.3) mit Hilfe eines
von uns unbewiesenen Hilfssatzes durch und verweisen für die restlichen Behaup-
tungen auf [3], Bd. II, und [4], Bd. III.

Hilfssatz: Ein Parameterintegral der Art (1.1) mit festen Grenzen y, = c1,y2 = C2,

dessen Integrand f stetig dzflerenzierbar vom Parameter x abhängt, wird nach dem
Parameter x differenziert, indem man unter dem Integralzeichen partiell nach x difle-
renziert, d.h.

7J: .7/2

%F<x) = f(x, y) dy = j m, y) dy. <>:<>

I’/1 U:

Aus Band 2, Satz 10.8, ist bekannt, daß die Differentiation eines Integrals (mit
stetigem Integrand f(t)) nach variabler oberer Grenze y den Integrand f(t) an der
oberen Grenze t= y ergibt, und dieses Resultat bleibt natürlich gültig, wenn der
Integrand f auch noch von einem Parameter x abhängt, der während der Dilferen-
liatlon unveränderlich ist:

U

:—yff(x, t) dt =f(x, y) (x fest). (fink)

Aus

am, m, u» = fifOQJÖdy

erhalten wir (1.1), wenn wir

u: = .V1(x)‚ "2 = V20‘)

setzen.
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Dann ist

‘P06. u1(x), u2(x)) = F(x)

eine Funktion der unabhängigen Variablen x, für deren Ableitung bezüglich x wir
nach der verallgemeinerten Kettenregel (Band 4; 3.6.2.)

j-f = d“—x am, u1<x>, um)

du du»
=‘P‚ u~—‘ u '+¢'dx +(D’dx

erhalten. (15,5 (i = 1, 2) läßt sich nach (>'s*) berechnen, da während der partiellen
Differentiation von <15(x, ul, U2) nach u.- stets x als fest angesehen wird.

Wir haben

95i, = f(x, H2) = f(X. y2(x))

und wegen

(>I<>l<*)

fiflx, t) dt = —fJf(x, t) dt
y d

din. = “f(-X: V1) = -f(x‚ yi(x))-

Beachten wir noch das Resultat des Hilfssatzes, so folgt aus (*>|<>|<) die Formel
(1.3). I

Hinweis: Die Differentiation Von (1.1) mit Hilfe der Kettenregel ist eine gute Merk-
hilfe für (1.3).

Sind die Funktionen y‚(x) und y2(x) konstant, etwa y‚(x) = c, y2(x) = d, so ver-
einfacht sich — wegen y1’(x) = 0 und y2’(x) = 0 — die Formel (1.3) wesentlich:

‚ 4 ‚z

§—xff(x. y) dy =fn<x,y> dy. (1.4)

Im Falle y1(x) = c, y2(x) = d spricht man von einem Parameterintegrdl mit festen
Grenzen.‘ Der zugehörige Normalbereich B ist in diesem Fall ein Rechteckbereich
(s. Bild 1.6;{x1 = a, x2 = b); obere und untere Begrenzungskurve sind in diesem Fall
Parallelen zur x-Achse. Formel (1.4) ist mit der im Hilfssatz angegebenen Formel (>:=)

identisch. '

5 _____

Bild 1.6
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soll auf Stetigkeit und Diffe-

1

BeispieI1.4: Das Parameterintegral F(x) =1‘-£5‘
O V1 — x2)»-

renzierbarkeit untersucht werden! Der Normalbereich ist in diesem Fall durch die
Geraden y‚(x) = 0, y2(x) = 1 begrenzt. In welchem Intervall darf sich x bewegen,

damit die Funktion f(x‚y)=W’f—2-2— zunächst einmal überhaupt definiert ist?
_ x y

Damit der Ausdruck unter dem Wurzelzeichen stets positiv ist, muß man — wegen
0 g y g 1 — die Variable x auf das oflene Intervall —1 < x < 1 beschränken.
(x = 1 bzw. — 1 darf nicht zugelassen werden, denn dann wäre für y = 1 der Ausdruck
1 — xzy’ gleich null.) Die Funktionf(x, y) ist also sicherlich für alle Punkte (x, y) des
Rechteckbereichs

B={(x,y)[a§x§b, 0§y§1, j1<a<b<l}
definiert. Auf Grund des einfachen Aufbaus der Funktion f(x‚ y) — im Zähler steht
eine rationale Funktion, im Nenner die Wurzel aus einer rationalen Funktion —— ist
in diesem Bereich die Funktion f(x‚ y) auch stetig und besitzt stetige partielle Ablei-

. 1

xdy
tungen (s. Bd. 4). Aus Satz 1.1 folgt dann: F(x) =fV ist für allexE (-1,1)

1 __ xzyz
o

stetig und differenzierbar. Für die Ableitung F’(x) erhält man nach Formel (1.4):
l .

1F1:"x7'

Das Nachprüfen der letzten Umformung betrachte man als eine kleine Übungs-
aufgabe: Zunächst kann man das unbestimmte Integral f (1 — x2y2)‘% dy durch die
Substitution xy = u (x dy = du; x wird bei der Integration nach y als konstant be-

trachtet) auf das Integral ~1—fig zurückführen. Das letzte Integral entnehmen

wir einer orme samm un s. z. . z T= ——

. . F I 1 x( i/lgffl) du u

' g _/‘I/1-1123 I/1-142
und Einsetzen der Grenzen lieferndie oben angegebene Beziehung.

l
_.3. 1

F’(x)= J2(x.y)dy= (1—x”y2) 2dy=f f
0

. Rücktransformation

Man hätte natürlich auch F’(x) dadurch bekommen können, daß man zunächst das rechts
stehende Integral ausrechnet und anschließend nach x differenziert. Das wollen wir bei diesem Bei-
spiel einmal durchführen, zumal das Ausrechnen des Parameterintegrals zusätzlich ein interessantes
Ergebnis liefert. Die Substitution xy = u (x dy = du) ergibt:

1 z v

' d d . = _

F(x) = ;%=fe= arcsmu u z = arcsmx.
_/ H —— x2)!“ }/1-1:’ u=o
0 o

Es gilt also

1j’ xdy .

“eZ ZIICSIHX.
0 I/1- x‘y’
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k Die Funktion arcsinx wird also durch das links stehende Parameterintegral dargestellt. Von der

gilt.
. . . . _ 1

Funktion arcsrn x wissen wir aber, daß (arcsin x)’ = },1——2
— x x „«

Beispiel 1.5: Man berechne das Parameterintegral f y’ dy! (Voraussetzung für den
o

Parameter x : x g 0. Für x-Werte zwischen -1 und O erhält man uneigentliche Inte-
~ 11

grale; im Falle x = —§ zum Beispiel ergibt sich /
' .1 y

o

x-Werte mit —1 < x < 0 ein sog. uneigentliches Parameterintegral dar, auf das wir
in Abschnitt 1.4. näher eingehen werden.) y’ ist (für jedes konstante x g 0) eine auf
dem Intervall 0 g y g 1 stetige Funktion der Variablen y und daher auf [0,1]
integrierbar :

1

fy"dy=i
0

Bemerkung 1.2: Die Formel (1.3) bzw. (1.4) wird vor allem bei theoretischen Unter-
suchungen benötigt. Oft hat sie aber auch eine praktische Bedeutung, und zwar dann,
wenn das Integral ff,(x‚ y) dy einfacher zu lösen ist als das Integral f(x, y) dy.

Das Integral l yI dy stellt für

ym+l ]y:1— 1

x+1,,:0~x+1'

Aufgabe 1.2: Von der durch ein Parameterintegral dargestellten difierenzierbaren Funktion
x

F(x) = jsin (xy) dy berechne man die Ableitung F’(x) auf zwei Arten:
0

a) indem man das Parameterintegral ausrechnet und das Ergebnis anschließend difierenziert,

b) mit Hilfe der Formel (1.3).

1.3.

Unter den in Satz 1.1 angegebenen Voraussetzungen (Stetigkeit der Funktionen
f(x, y), y1(x), y2(x) auf den entsprechenden Bereichen) ist die durch das Parameter-

y:(av)

Doppelintegrale (Integration von Parameterintegralen)

integral f(x, y) dy dargestellte Funktion F(x) eine (auf dem Intervall [x„ x2])
y (r)

stetige Funktion. Da jede stetige Funktion auch integrierbar ist, muß das Integral
von F(x) über dem Intervall [x„ x2] existieren:

I; I; mix) 902 Mr)
[F(x)dx=f ( Jf(x,y)dy>dx= f ( f f<x‚y>dy)dx.

-"x T: V111) I=Ii y=wx>

Definition 1.3: Den Ausdruck
I; 3/.(=v) ‘

J < f /<x‚y>dy)dx a)
I; m1’)

I2 112(1)

— für den man abkürzend auch f f f(x, y) dy dx schreibt — nennt man Doppelintegral.
I. y.<r)
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(An Stelle von Doppelintegral sagt man auch „zweifaches Integral“ oder „iteriertes
Integral“) Den durch die Kurven x = x1, x = x2, y = y1(x), y = y2(x) begrenzten
Bereich (s. Bild 1.1) nennt man den zu diesem Doppelintegral gehörigen Normalbereich.

Iz(y)
Wenn man von einem Parameterintegral der Form G(y)= f(x, y) dx ausgeht

EN)
(s. Formel (1.2)) und G(y) nach y integriert, erhält man ein Dopp/elintegral der Form

v; '/1'z"..‘/) I/2 w) \
j ( Jf(x.y)dx)dy= f < f f(x,y)dx)dy. (II)

y; my) y=1/1 ~¢'=1';(.v)

In der abkürzenden Schreibweise läßt man dann wieder die (um G(y) gesetzten) Klam-
mern weg. "

Erläuterung zur Definition 1.3: Bei einem Doppe1i11tegra1'§/om Typ (I) wird die Funk-
tion f(x‚ y) zunächst unbestimmt nach y integriert — wobei x wie eine Konstante be-
handelt wird —, anschließend werden für y die Grenzen y‚(x) und y2(x) eingesetzt,
und zum Schluß wird der erhaltene Ausdruck nach x integriert. Bei einem Doppel-
integral vom Typ (II) geht man analog vor; hier wird die Funktion f(x, y) zunächst
unbestimmt nach x integriert, wobei y wie eine Konstante behandelt wird.

3 zu‘

Beispiel 1.6: Man berechne das Doppelintegral D = xy dy dx! Es handelt sich um
01 .

ein Doppelintegral vom Typ (I) (s. Definition 1.3) mit f(x, y) = xy, x, = I, x2 = 3,
y,(x) = 0, y2(x) = x2. Wir berechnen zunächst das „innere“ Integral:

z’ "x

n . 2 y=x' _.3

jxydy=.f‘ydy=[xy7] =2
0

y=Ü
y=0

3
35 G‘ 728 .

Z dx = {ff 1 = -17 = 60,66 Der zu dem Doppehntegral

l

gehörige Normalbereich bezüglich der x—Achse wird durch die Kurven x = 1, x = 3,
y = O, y = x2 begrenzt (s. Bild 1.7).

-2 „v

Beispiel 1.7: D = f J (x + y) dx dy ist ein Doppelintegral vom Typ (II) mit y1= -4,

Hieraus folgt: D =f

‚v2 = —2, x102) = y,4 ;2(y) = —y und f(x, y) = x + y (s. Definition 1.3).

y

Bild 1.7
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Es erfolgt zunächst wieder die Berechnung des „inneren Integrals“:
_„ _

3/

= = g I=-v: (—y)’f(x+y)dx I£(x+y)dx [ +yx]
2

+ ~ —(y—+2)=—22.2 my 2 y( y) 2 y y
7.-’

Hieraus folgt ~

E3 .

-2

D = f(-2y’) dy = — äy’ _

-4

2 3 3 _-;<<—2> —<—4))——

Der zu diesem Doppelintegral gehörige Normalbereich bezüglich der y-Achse wird
durch die Kurven y = -4, y = -2, x = y, x = —y begrenzt (s. Bild 1.8). Man be-
achte: Für alle y mit -4 = y, g y g y; = —2 gilt y = x1(y) g x2(y) = —y.

Y

Bild 1.8m.
Im allgemeinen darf man bei einem Doppelintegral die Reihenfolge der Inte-

grationen nicht vertauschen! Es wäre ein schwerer Fehler, wenn man z.B. für das in
_„ 2

Beispiel 1.7 behandelte Doppelintegral schreiben würde: f f (x +‘ y) dy dx. Nur bei

x-y 1")’

—4

einem Doppelintegral mit konstanten Grenzen — der zugehörige Normalbereich ist
in diesem Falle ein den Koordinatenachsen paralleler Rechteckbereich — ist die
Reihenfolge der Integrationen vertauschbar, wie der folgende Satzzeigt.

Satz 1.2: Ist f(x‚ y) eine aufdem Rechteckbereich a g x g b, c g y g d (S. Bild 1.6)
stetige Funktion, so gilt:

ltd d b

ff/(x, y) dy dx = Hf(x, y) dx dy.

Auf den Beweis dieses Satzes, den man z. B. in [4], Bd. III, finden kann, verzichten
wir. Wir werden uns an keiner Stelle auf diesen Satz beziehen.

Wir kommen nun zur geometrischen Veranschaulichung des Doppeliutegrals.
Erinnern wir uns zunächst an die geometrische Veranschaulichung eines gewöhn-
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Y

y- f(x)

Bild 1.9

/ 17(J.f)

5

lichen (bestimmten) Integrals. Unter der Voraussetzung, daß die Funktion f(x) auf
o

X

dem Intervall [a, b] stetig und nirgends negativ ist, liefert das Integral [f(x) dx den

Flächeninhalt des durch die Kurven x = a, x = b, y = 0 und y = f(xa) begrenzten
b

ebenen Bereichs (s. Bd. 2).ff(x) dx liefert also den Inhalt des zwischen dem „Inte—

grationsintervall“ J = [a, bll und der Kurve f(x), a g x g b, liegenden ebenen Be-
reichs, der sog. Ordinatenmenge 0(J, f) (s. Bild 1.9). Man wird erwarten, daß man

I; y:(=)

bei einem Doppelintegral f f f(x, y) dy dx — unter der Voraussetzung, daß die
I: (I)

Funktion f(x, y) auf dem zugehörigen Normalbereich B stetig und nirgends negativ
ist — ebenfalls eine einfache geometrische Deutung vornehmen kann. In Analogie
zur Ordinatenmenge 0(J‚f), die wir beim gewöhnlichen Integral eingeführt haben,
betrachten wir hier die Ordinatenrnenge 0(B‚ f). Die Ordinatenmenge 0(B‚ f) be-
steht aus der Menge aller zwischen dem Normalbereich B = {(x, y) | x, g x g x2,
y1(x) g. y g y2(x)} und der Fläche z = f(x, y), (x, y) E B, liegenden Punkte (x, y, z)
(s. Bild 1.10).

e’ Bild 1.10

‘I
Es gilt also: ‚

Definition 1.4: (x, y, z) E 0(B‚f) ¢> {(x, y) E B und 0 g z gf(x‚y)]. 0(B‚f) heißt D.l.4
die zu B und f (x,y) gehörige Ordinatenmenge.
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Satz 1.3: Ist B = {(x, y) l xi g x g x2, y‚(x) g y g y2(x)} der zu dem Doppelintegral
V2 W1) —f f f(x, y) dy dx gehörige Normalbereich, 0(B, f) die zu B und f(x, y) gehörige

I1 1/1(1)
Ordinatenmenge, so gilt für das Volumen V von 0(B‚ f) :

1x 3/2_(1-‘)

Vzf j f(x‚y)dydx. (1.5)
i‘: E107)

(Voraussetzungen: f(x, y) g 0 für alle (x, y) E B, f(x, y) stetig auf B.)
Beim Beweis zu Satz 1.3 berufen wir uns auf das Prinzip von Cavalieri, welches wir in Band 2

kennenlernten. Ist x irgendein zwischen x1 und x2 gelegener Wert, so gilt für die durch die Ebene Ex
aus 0(B, f) ausgeschnittene Fläche

11.00

q(x) = „l f(x, y) dy.
y.(x)

E, ist die durch den Punkt (x, 0, 0) gehende und parallel zur y, z-Ebene verlaufende Ebene. Für das
Volumen Vvon 0(B, f) gilt dann (vgl. Band 2, Satz 10.20)

z. . w. man)

V= jqoodx =j §f(x,y)dydx.
x. z. man)

Die Voraussetzung für Satz 10.20 —— q(x) stetig — ist wegen der Stetigkeit der Funktionen y‚(x)‚
y,(x),f(x, y) erfüllt (Vgl. Satz 1.1). I

Beispiel 1.8: Von dem durch die Flächen z = 0, y = 0, x = 0, 3x + 4y = 12 und
z = x2 + y2 begrenzten räumlichen Bereich B* berechne man das Volumen V.

Wir verschaffen uns zunächst eine anschauliche Vorstellung von dem räumlichen
Bereich B*: B* wird „nach unten“ von der x,y-Ebene (z = 0), „seitlic “ durch die
x, z-Ebene (y = 0), die y, z-Ebene (x = 0), die auf der x,y-Ebene senkrecht stehende
Ebene 3x + 4y = 12 und ,,nach oben“ durch das Rotationsparaboloid z = x’ + yz
begrenzt. (Die Menge aller Punkte (x, y), die der Gleichung 3x + 4y = 12 genügen,
ist eine Gerade g in. der x,y—Ebene. Die Menge aller Punkte (x, y, z), die dieser Glei-
chung genügen (z beliebigl), ist eine Ebene E im x,y,z-Raum. E steht auf der
x,y-Ebene senkrecht und schneidet die x,y-Ebene in g. Das Rotationsparaboloid
entsteht durch Rotation der in der x,z-Ebene gelegenen Parabel z: x2 um die
z-Achse!) Der räumliche Bereich B* ist also eine Ordinatenmenge 0(B‚ f) mitB =

.{(x,y)|0§ x g 4,0 gyg 3 —§x} (s. Bild 1.1l) und z=f(x,y)= x’ +y2. Bild
z

Bild 1.12
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1.12 liefert eine anschauliche Vorstellung vom räumlichen Bereich B*. Der ebene
Bereich B ist der Grundriß des räumlichen Bereiches 8*! Nach Satz 1.3 ergibt sich für
das Volumen V von B*:

4 3-‘/‘.2:
V=f f(x2+y2)dydx.

0 O

Für das innere Integral erhält man:

1 „v=3—’m_ 27 75 2 57 .3[x2y+§yL=0 -9 74—x+Ex ax.
4

AlsoistV=[9x——%Zx2+%—x3—%%-x“0=25.

Aufgabe 1.3: Von dem durch die Flächen z = 0, y = 0, x = 0, x + y = 3 sowie z = —x —2y + 6 a;

begrenzten räumlichen Bereich B* berechne man das Volumen V. (Man skizziere 13*!)

Aufgabe 1.4: Zu berechnen ist das Volumen des (im 1. Oktanten des x,y‚z—Raumes gelegenen) *

Körpers B‘, der nach unten durch die x,y-Ebene‚ nach oben durch die Sattelfläche z = xy und seit-
lich durch die Kreiszylinderfläche (x — 3)’ + (y — 4)” = 4 begrenzt wird. (Man zeichne den Grund-
riß B von 13*!) (1. Oktant: Menge aller Punkte (x, y, z) mit x g 0, y g 0, z g 0.)

1.4. Uneigentliche Parameterintegrale

In Band 2, Abschnitt 11, wurden die uneigentlichen Integrale behandelt: a) un-
eigentliche Integrale mit wenigstens einer unendlichen Grenze, b) uneigentliche In-
tegrale mit nichtbeschränkter Funktion. (Natürlich können auch „gemischte“ un-
eigentliche Integrale auftreten, die sowohl bezüglich einer Grenze als auch der Funk-
tion (nichtbeschränkt!) uneigentlich sind!) » Beim Übergang von uneigentlichen
Integralen zu uneigentlichen Parameterintegralen betrachten wir von den vielen
Typen, die es bei uneigentlichen Integralen gibt, hier nur den Typ

ff(x) dx.

Die Übertragung der Problematik auf die anderen Typen bereitet keine prinzipiellen
Schwierigkeiten.

Wenn nun bei dem hier vorgegebenen uneigentlichen Integral der Integrand noch
von einer anderen veränderlichen (von x unabhängigen) Größe y abhängt — man
spricht dann in diesem Zusammenhang vom Parameter y —‚ so erhält man ein un-
eigentliches Integral von der Form

fflx, y) dx,

ein sog. uneigentliches Parameterintegral. Allgemein definiert man:

Definition 1.5: Ein uneigentliches Parameterintegral ist ein uneigentliches Integral, D.l.5
dessen Integrand neben der Integrationsvariablen x noch von einem Parameter y abhängt.

Z K<‘irbex,Ime3ralrechnunz
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Bei oberflächlicher Betrachtung dieser Definition könnte man der Meinung sein,
oo

daß sich bei einem uneigentlichen Parameterintegral fflx, y) dx gegenüber dem
b a

„eigentlichen“ Parameterintegral ff(x, y) dx (s. Abschnitt 1.2.) keine wesentlich
B

neuen Gesichtspunkte ergeben. Das ist leider nicht der Fall! Im Rahmen dieses
Buches können wir auf keinen Fall alle mit uneigentlichen Parameterintegralen zu-

sammenhängenden Fragen untersuchen. Wir müssen uns auf die Darstellung einiger
grundlegender Zusammenhänge beschränken; weiterführende Betrachtungen und
sehr viele Beispiele über uneigentliche Parameterintegrale findet man in [3], Band II
(Abschnitt „Integrale, die von einem Parameter abhängen“).

Betrachten wir zunächst das den beiden Integralen
b

ff(x‚ y) dx : G(y) (1.6)

und am -

ff(x‚ y) dx = F(y) (1.7)

Gemeinsame! Wenn das Integral (1.6) bzw. (1.7) für alle y aus einem Intervall J
existiert, so stellt es eine Funktion G(y) bzw. F(y) dar, die mindestens für alle y E J
definiert ist. Man sagt, daß G(y) eine durch ein eigentliches Integral, F(y) eine durch
ein uneigentliches Integral dargestellte Funktion ist.

Existenz (Konvergenz) des Integrals (1.7) für alle y E J heißt nach Definition der
uneigentlichen Integrale: Für jedes y E J existiert der Grenzwert

A

Anm [f(x, y) dx.

Der wesentliche Unterschied zwischen den Integralen (1.6) und (1.7) liegt in den fol-
genden Aussagen begründet:

Ist die Funktion f(x, y) auf dem Bereich D = {(x, y) I a g x g b, y E J} stetig, so
ist die durch das eigentliche Integral (1.6) dargestellte Funktion G(y) stetig (vgl.
Satz 1.1 in Abschnitt 1.2.). Die hierzu analoge Aussage gilt für die durch das un-
eigentliche Integral (1.7) dargestellte Funktion F(y) im allgemeinen nicht! Es kann

also vorkommen, daß das Integralfflx, y) dx (= F(y)) für jedes y E J existiert

(konvergiert), f(x, y) auf dem Bereicli B = {(x, y) l a g x < oo‚ y E J } stetig ist und
trotzdem die durch das uneigentliche Integral (1.7) dargestellte Funktion F(y) auf J
unstetig sein kann. Hierzu ein Beispiel!

Beispiel 1.9: Für welche y-Werte ist das uneigentliche Parameterintegral

= sin xy
F(y) f»; dx

O

definiert (konvergent), und welchen Wert hat es?
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Bei der Beantwortung dieser Fragen setzen wir als bekannt voraus:

oo

Dfsmz dz=:r_

0

z 2

sin xyn) fix, y) = { für alle (x‚y) mit x + 0

y für alle (x, y) mit x = 0

ist eine auf der gesamten x‚y—Ebene stetige Funktion.
Bemerkung zur Voraussetzung I: Der Nachweis der Existenz (Konvergenz) dieses

uneigentlichen Integrals ist einfach (s. z. B. [4], Band III, bzw. [3], Band II). Dagegen
ist die Berechnung dieses uneigentlichen Integrals schwierig; eine relativ übersicht-
liche Berechnung (unter Ausnutzung von Gesetzmäßigkeiten über unendliche Reihen!)
findet man in [3], Band II.

Bemerkung zur_Voraussetzung II: Die Funktion smxxy

Veränderlichen x und y betrachtet) ist auf Grund allgemeiner Gesetzmäßigkeiten für
Funktionen von mehreren Veränderlichen (s. Band 4) in allen Punkten (x, y) mit
x =l= 0 stetig. Für alle Punkte (x, y) mit x = 0 (das sind alle Punkte der y-Achse!) ist

sin xy

(als Funktion der beiden

zwar nicht erklärt, aber es handelt sich um sog. hebbare Unstetigkeiten. Für
x

jeden Punkt (0, yo) der y-Achse gilt nämlich:

hm sin xy = y

(IHw-NÜA/o) x 0

(s. Aufgabe 1.5). Daher die Festsetzung f(O, y) = y.

Wir kommen nun zur Beantwortung der in Beispiel 1.9 gestellten Fragen. Für jeden

festen y—Wert ist Smxxy

man für die „Unstetigkeitsstelle“ x = 0 (Nenner gleich null!) nachträglich festlegt:
<p(0) = y. Nach der l’Hospitalschen Regel gilt nämlich:

um sin xy (: : um (cos xy) y =

ran l

Durch die Substitution t = xy, dt = y dx (y konstant!) geht f

= (p(x) eine für alle x-Werte erklärte stetige Funktion, wenn

y.
1-0 so

Sln x ‚. .

y dx uber in

oo 0o 0f 5“” dt (*) bzw. fit" dt (w),
0 0

__t__

je nachdem, ob y > 0 oder y < 0 ist. Das Integral (‘*) kann man wie folgt umfor-
men:

fa:= —fdz (Substitution: 1 g —z).

O 0
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on

sm xy
dx=0 (***). Unter Berücksichtigung der Voraus-

setzung I folgt aus den Feststellungen (*), (**) und (***):

$

F(y) =f—S‘—nxl dx existiert (konvergiert) für jedes y, und es gilt
o

w —— für y<0

F(y)=fS1:x’vdx= o für y=O

° für y>0
(s. Bild 1.13).

F(y)

z.____._„__
Z

Y

Bild 1.13

N
IP

!

Fassen wir die Ergebnisse zusammen! Obwohl dasuneigentliche Integralfwdx

' 9

Sm xy auf dem entsprechendenfür alle y existiert (konvergiert) und die Funktion

Bereich B= {(x, y) | 0 g x < oo, —oo < y < eo} stetig ist, ist die durch das un-
eigentliche Integral dargestellte Funktion F(y) unstetig. Um zu garantieren, daß die

O0

durch ff(x, y) dx dargestellte Funktion F(y) auf dem Intervall J stetig ist, muß man
fl

neben der Stetigkeit der Funktionf(x‚ y) auf dem Bereich B = {(x, y) I a g x < eo,
y E J] die Sogenannte gleichmäßige Konvergenz des uneigentlichen Parameterinte-
grals auf J voraussetzen. Auf diesen Begriff werden wir jetzt eingehen! Zuvor soll
aber noch eine Aufgabe formuliert werden, auf die wir im Beispiel 1.9 bereits hin-
gewiesen haben.

Aufgabe 1.5: Man beweise, daß für jede durch den Punkt (0, yo) gehende differenzierbare Kurve
y = f(x) gilt

um sinxf(x) = y

I->0 X
o.

lim “y
(I-U)"(0-1/o) x

Ist damit die Aussage = ya bewiesen?
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Definition 1.6: Das uneigentliche Parameterintegral 13.1.6

m) =f°f(x‚y>dx

heißt gleichmäßig konvergent auf dem Intervall J, wenn es

a) für jedes y E J existiert (konvergiert) und

b) zu jedem (noch so kleinen) e > 0 eine von y unabhängige Zahl B(> a) existiert, so
daß die Ungleichung

<5Tflx. y) dx
A

für alle y E J erfüllt ist, sobald A > B ist.

Erläuterung zur Definition 1.6: Für jedes feste y E J ist f(x‚ y) eine Funktion von x,

für welche das Integral ff(x, y) dx existiert (s. Bild 1.14). Das „Restintegral“

f/(x, y) dx = fa ‚w dx ~ f/(x, y)dx

kann für alle y E J absolut genommen beliebig klein gemacht werden, wenn nur A
rechts von einem hinreichend groß gewählten B liegt. (Wenn bei vorgegebenem y die
Funktion f(x‚ y) g 0 ist für alle x, so liefert der Flächeninhalt des in Bild 1.14 schraf-
fiert eingezeichneten Bereiches den Wert des zu A gehörigen Restintegrals.)

f(x,r>

Eben: y- ms! - I:

l B‘1d 1.14
a a A ” l -

Unter der Voraussetzung der gleichmäßigen Konvergenz gelten für die durch ein
uneigentliches Integral dargestellte Funktion F(y) die folgenden Sätze bezüglich
Stetigkeit, Integrierbarkeit und Ditferenzierbarkeit. (Beweise s. [3], Band II, bzw.
[4], Bd. III.)
Satz 1.4: Ist das Integral S.1.4

F(y) = J/(x, y) dx

gleichmäßig konvergent auf dem Intervall J, die Funktion f(x, y) stetig auf dem Be-
reich B = {(x, y) I x g a, y E J], so ist F(y) stetig aufJ.
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Satz 1.5: Wenn die in Satz 1.4 angegebenen Voraussetzungen erfüllt sind, ist F(y) auf
jedem in J enthaltenen Intervall [c‚ d] integrierbar, und es gilt

d ti '00 oo '

f F(y) dy = J (J/(max) dy = f (f?(x.y)dy>dx.

Bemerkung zu Satz 1.5: Die Integrierbarkeit von F(y) ist schon durch Satz 1.4 ge-
sichert, weil aus der Stetigkeit die Integrierbarkeit der Funktion folgt. Die eigent-
liche Aussage des Satzes 1.5 besteht in der Möglichkeit, die Reihenfolge der Inte-
grationen auch bei einem uneigentlichen Parameterintegral zu vertauschen. Satz 1.5
kann in diesem Sinne als eine Verallgemeinerung des Satzes 1.2 angesehen werden.

Satz 1.6: Die Funktionenf(x, y) undfiJ(x, y) seien aufdem Bereich B = {(x‚ y) l x g a,
y E J} stetig. Außerdem existiere (konvergiere) das uneigentliche Parameterintegral

F(y) = ff(x, y) dxfür alle y E J, und das uneigentliche Parameterintegral ffi,(x, y) dx

konuergiere gleichmäßig auf J. Unter diesen Voraussetzungen ist F(y) fit‘: jedes y E J
dzflerenzierbar, und es gilt

diyw) : diy [f(x‚ y) dx = ffxx, y) ax. (1.8)

Bemerkung zu Satz 1.6: Die angegebene Formel ist eine Erweiterung der Formel (1.4)
in Abschnitt 1.2. auf uneigentliche Parameterintegrale.

Bei der Anwendung der in den Sätzen 1.5 und 1.6 angegebenen Formeln muß die
Stetigkeit von f(x‚ y) sowie f„(x, y) und die gleichmäßige Konvergenz der dort auf-
tretenden uneigentlichen Parameterintegrale gesichert sein. Der Nachweis der Stetig-
keit bereitet im allgemeinen keine Schwierigkeiten; in vielen Fällen kann man schon
aus der äußeren Form der Funktion ersehen, an welchen Stellen die Funktion stetig
bzw. unstetig ist. Dagegen ist der Nachweis der gleichmäßigen Konvergenz meistens
nicht einfach! Unter den Kriterien für die gleichmäßige Konvergenz wollen wir das-
jenige auswählen, welches für die Untersuchung einer konkret vorgegebenen Funk-
tion praktisch gute Dienste leistet. Es handelt sich wieder um ein Majorantenkriterium.
In Band 2, S. 233, wurde das Majorantenkriterium für uneigentliche Integrale be-
handelt, mit dessen Hilfe man uneigentliche Integrale auf Konvergenz untersuchen
konnte. Mit dem folgenden Majorantenkriterium für uneigentliche Parameterintegrale
werden uneigentliche Parameterintegrale auf gleichmäßige Konvergenz untersucht.

Satz 1.7 (Majarantenkriterium für uneigentliche Parameterintegrale): Das uneigent-

liche Parameterintegral fof(x, y) dx ist auf dem Intervall] gleichmäßig konvergent,

wenn folgende Bedingungen erfüllt sind:

I. ff(x, y) dx existiert für jedes b > a und jedes y E J.

2. ‘J53 gibt eine auf [a, oo) integrierbare Funktion g(x) — d. h.fg(x) dx existiert —, für
die für alle x g a und jedes y E J gilt

lf(x‚ y)! 2 g(x)-
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Beweisskizze: Wir haben zu zeigen, daß die Bedingungen a) und b) von Definition 1.6
b on A

erfüllt sind. Aus der Existenz von f g(x) dx folgt — wegen fg(x) dx = f g(x) dx

+ E°g(x) dx — sofort die Existenz voanfg(x) dx für jedes A > a und die Beziehung
.1 A

lim f°g(x) dx = O. (*)
-4*‘°° A

Aus (*) folgt nun weiter, daß auch die Bedingung b) von Definition 1.6 erfüllt ist.

Zu jedem e > 0 gibt es ein vB(> a) mit Fax) dx < e für jedes A > B. "Wegen

{f(x, y)| g g(x) (für alle x g A und y E J)Aund der für jede auf (a, b] integrierbaren

Funktion geltenden Beziehung j¢,v(x) dx l gafb |rp(x)1 dx muß dann auch

Jf(x.- y) ax
A

für alle y E J sein. Bedingung b) ist also erfüllt. Bedingung a) ergibt sich aus der

g far/(x, y» dx g im) dx < e
A A

Existenz von ff(x, y) dx und der Voraussetzung 1. I
A

1.5. Die Gammafunktion

Ein wichtiges Beispiel für eine durch ein uneigentliches Integral dargestellte Funk-
tion ist die Sogenannte Gammafunktion‚ auf die man durch folgende Fragestellung
geführt wurde: Das Zeichen n! (n-Fakultät) ist bekanntlich nur für die nichtnegativen
ganzen Zahlen erklärt. Bei der Suche nach einer stetigen Funktion f(x), die für alle
reellen positiven x-Werte erklärt ist und für ganzzahlige positive Werte x = n mit n!
übereinstimmt — d.h.f(n) = n! für jede positive ganze Zahl n —, wurde man auf die
folgende Funktion F(x) geführt.

00

Definition 1.7: Die durch das uneigentliche Parameterintegral f e"’t1" dt dargestellte
Funktion o

I'(x): = fe"'t"1 dt
0

heißt Eulersche Gammafunktion‘) (F—Funktion).
(Hinweis: Die Funktion f(t‚ x) = e“t“‘ wird nach t integriert, x ist der Parameter;
s. Definition 1.5)

Das in Definition 1.7 betrachtete Integral ist in doppelter Hinsicht uneigentlich;
es gehört sowohl zu den uneigentlichen Integralen mit unendlichen Grenzen (obere
Grenze gleich oo) als auch zu den uneigentlichen Integralen mit nichtbeschränkter

l) Leonhard Euler (17074783).

D.1.7
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Funktion (der Integrand besitzt eine Unendlichkeitsstelle‘) bei t = 0, falls 0 < x < 1

gilt). Bei der Untersuchung eines solchen „doppelt“ uneigentlichen Integrals erfolgt
eine Aufspaltung in zwei „einfache“ uneigentliche Integrale:

on 1 oo

J=fe-ux-1 dt = J, + J2 =fe-»:=-1d:+fe-in-I dt.
O 0 1

J1 ist ein uneigentliches Parameterintegral mit nicht beschränkter Funktion. Jg gehört

zu dem in 1.4. behandelten Typ ff(x, y) dx: J2 = lf(t, x) dt. Der Nachweis, daß das

Ausgangsintegral J eine bestimrfliite Eigenschaft hlat — z.B. gleichmäßig konvergent
zu sein —, wird dadurch erbracht, daß man die betreffende Eigenschaft getrennt für die
Integrale J1 und J2 nachweist. Anwendung dieses Gedankengangs auf das bei der
Gammafunktion auftretende uneigentliche Parameterintegral liefert die folgende
Aussage über die Existenz und Differenzierbarkeit der Gammafunktion I‘(x). (Einen
ausführlichen Beweis findet man in [3], Band II, bzw. [4], Band III.)

Satz 1.8: Die in Definition 1.7 eingeführte Gammafunktion T(x) ist für alle x > 0
00

definiert und dz/ferenzierbar. Für die I. Ableitung von F(x) = Ie“t“‘ dt gilt:
0

I”(x) =fe" H“ In t dr.
o

Die Gleichung für F'(x) ergibt sich durch Anwendung der Formel (1.8) auf das

uneigentliche Parameterintegra1I‘(x) = Jff(t, x) dt:
O

Im) = :—xI‘(x) = dd—x ffo, x) d: = Im, x) dt

0 0

= formt-l), dt = fe-‘tr-1 Intdt.
0 0

(Man beachte die Difierentiationsregel (a')' = a’ In a.)

Wir kommen nun zu zwei für die Gammafunktion besonders wichtigen Eigen-
schaften!

Satz 1.9: a) Für jede positive Zahl x gilt I’(x + l) = x ' F(x), Funktionalgleichung der
T-Funktion. v

b) Für jede nichtnegative ganze Zahl n gilt I"(n + I)= n!

1
' -l.___hm e _,— 00.') Wegen 0 < x <1 istx —- l < 0 und 1— x > 0. Also gilt lim e“t"‘1 = t,

t—>+0 z..+0
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Beweis: a) Durch partielle Integration ergibt sich zunächst

fe“t"" dt = f-e“ + ‘/‘t—1 e"dt.
x ' x

Hieraus folgt

I'(x)=fe"t*'“’dz=-tie“ I=°°+iftx e-‘dt = 0 +iF(x+1)-
x ;=o X x

0 0

(Hinweis: Mit Hilfe der l‘Hospitalschen Regel kann man leicht zeigen, daß lim g = 0
ist.) ‘*°°

b) Aus F(1) =Ie" dt = [—e“]?= 1 und I"(n +1): n - F(n) für alle n =1, 2,
0

(vgl. a)) folgt: F(2) = 1 = 1!, F(3) = 2 - I'(2) = 2!, F(4) = 3 - F(3) = 3!, ..., all-
gemein: F(n + 1) = n!. I

Bemerkung 1.3: Mit Hilfe der Gammafunktion F(x), bei der I"(n) = (n — 1)! für alle
n = l, 2, gilt, kann man sofort eine Funktion F*(x) konstruieren, für welche die
Gleichung I'*(n) = n! für alle n = l, 2, erfüllt ist. Für F*(x) := x - F(x) gilt I’*(n)
= n - F(n) = n - (n — 1)! = n!. Die Funktion F*(x) = F(x + 1) kann also als eine
natürliche Verallgemeinerung der Funktion n! (n-Fakultät), die nur für nichtnegative
ganze Zahlen definiert ist, angesehen werden. Beim praktischen Rechnen mit der
Gammafunktion wird man sich auf vorliegende Tabellen stützen. Eine kleine, aber
für viele Zwecke schon ausreichende Tabelle der Gammafunktion findet man in [1].

Aufgabe 1.6: Aus der Tabelle der F-Funktion entnehmen wir die folgenden Werte

x 1,0 | 1,1 1 1,2 1,3 1 1,4 1 1,5

F(x) 1,000 I 0,951 I 0,91 s 0,897 I 0,887 I 0,886

x 1,6 1 1,7 1 1,8 1,9 | 2,0

Foo 0,393 I 0,909 I 0,931 0,962 I 1,000

Mit Hilfe der in Satz 1.9 angegebenen Funktionalgleichung der F-Funktion berechne man I‘(x) für
x = 0,]; 0,2; ...; 0,9 und x = 2,1; 2,2; ‚„; 3,0. Welchen Verlauf nimmt F(x)'!



D.2.l

D.2.2

D.2.3

2. Integrale über ebene Bereiche

2.1.

In Band 2 lernten wir das bestimmte Integral der Funktion f(x) über dem Intervall
[a, b] kennen. Es gibt nun viele Möglichkeiten, diesen Integralbegriff auf mehrdimen-
sionale Bereiche zu erweitern. Wenn zum Beispiel an Stelle des Intervalls [a‚ b] (l-dim.
Bereich) und der Funktion f(x) ein ebener BereichB (2-dim. Bereich) und eine Funk-
tion f(x, y) gewählt werden, so führt der beim bestimmten Integral kennengelernte
Gedankengang zum Begriff des Bereichsintegrals. Mit diesem Integral und seinen
Anwendungen werden wir uns in diesem Abschnitt beschäftigen.

Wir beginnen mit der Zusammenstellung derjenigen Begriffe, die man bei der
Definition des Bereichsintegrals benötigt.

Der Begrifi des Bereichsintegrals

Definition 2.1: B sei ein ebener Bereich 1). Ein System von (endlich vielen) Teilmengen
B, ‚ B2, ...‚ B„ von B nennt man eine Zerlegung von B, wenn die Vereinigung der Teil-
mengen B; (i = 1, ..., n) den Bereich B ergibt und je zwei verschiedene Teilmengen
Bi, Bk höchstens Randpunkte gemeinsam haben (s. Bild 2.1).

AG y

Bild 2.!

Y

ä;
05

x X

Bild 2.2

Definition 2.2: B sei ein ebener, beschränkter Bereich. Unter dem Durchmesser von B —

in Zeichen QB — versteht man die obere Grenze der Abstände :’7'je zweier Punkte
X E B, YE B (s. Bild 2.2).

Der Durchmesser von B ist also — anschaulich gesehen ~ die größte Ausdehnung
von B. Anstelle von obere Grenze (= kleinste obere Schranke) ist auch Supremum
(Abkürzung: sup) gebräuchlich. Für den Durchmesser von B kann man daher
schreiben:

25B= sup Ü.
X€B‚YeB

Definition 2.3: Z = {B1, B2, ...‚ B„} sei eine Zerlegung von B.

6:: max GB,
i=1. n

‘) d. h.: B ist Teilmenge einer gewissen Ebene E. Führt man in der Ebene E ein rechtwinklig-
kartesisches x‚y—Koordinatensystem ein, so ist die Sprechweise üblich, daß B ein Bereich in der
x‚y-Ebene ist. Die Schreibweise P(x‚ y) bedeutet: Der Punkt P E E hat bezüglich des eingeführten
Koordinatensystems die Koordinaten x, y.
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nennt man das Feinheitsmaß der Zerlegung Z. Eine Folge von Zerlegungen Z1, Z2, . ..

des Bereiches B heißt eine Folge von unbegrenzt feiner werdenden Zerlegungen von B,
wenn die entsprechenden Feinheitsmaße Ö1, Ö2, gegen null streben, d. h. wenn

Iim 6„ = 0.
n—>oo

Die Definition des Bereichsintegrals erfolgt nun in völliger Analogie zu der des be-
stimmten Integrals. (Man vergleiche die entsprechenden Ausführungen in Band 2,
Abschnitt 10.1.)

Vorgegeben ist ein ebener Bereich B und eine reellwertige Funktion f(P), die min-
destens für alle Punkte P E B definiert ist.

Über B und f(P) setzen wir zunächst lediglich voraus:

a) B ist beschränkt und meßbar,

b) f(P) ist auf B beschränkt.

Genaueres über die Begriffe beschränkt (anschaulich: wächst nicht über alle
Grenzen) und meßbar (anschaulich: besitzt einen Flächeninhalt) findet man in Band 1

bzw. Band 2.

f(P) ist eine auf B definierte skalare Punktfunktion, weil jedem Punkt P E B eine
reelle Zahl (ein Skalar) f(P) zugeordnet wird. Ist B ein Bereich in der x‚y-Ebene, so
kann man anstelle vonf(P) auchf(x, y) schreiben, wenn (x, y) die Koordinaten von P
bezüglich des eingeführten x,y-Koordinatensystems sind. In diesem Sinne kann dann
f(P) = f(x, y) als eine Funktion der beiden Veränderlichen x und y angesehen werden.
Wir werden bei allgemeinen Ausführungen immer die neutrale, vom Koordinaten-
system unabhängige Schreibweise f(P) benutzen.

Über skalare Punktfunktionen (skalare Felder) wurde bereits ausführlich in Band 4
gesprochen. Ein Beispiel für ein ebenes skalares Feld erhält man, wenn ein ebener
Bereich B der x,y-Ebene mit einer bestimmten Massenbelegung versehen wird. Jeder
Punkt P E B hat dann eine bestimmte Flächendichte g = g(P) = g(x‚ y), d.h.: g(P)
ist eine skalare Punktfunktion.

Ausgangspunkt bei der Einführung des Bereichsintegrals ist die zu einer Zer-
legung Z von B gehörige Integralsumme. Jede Integralsumme stellt eine Näherung
des entsprechenden Bereichsintegrals dar; den genauen Wert des Bereichsintegrals
erhält man, wenn man die Zerlegung Z immer feiner werden läßt. Präzisieren wir diese
Bemerkungen!

Definition 2.4: Ist Z = {B1, ..., B,,} eine Zerlegung von B, P, ein beliebig gewählter
Punkt aus B; und AB; der Flächeninhalt von Bi (i = 1, ‚ n), so nennt man die Summe

5(2): = 2"f(P.-> AB.- (2.1)
i=1

die zu der Zerlegung Z gehörige Integralsumme.

Anstelle von Integralsumme sagt man auch Zwischensumme oder Zerlegungs-
summe. In Definition 2.4 muß natürlich vorausgesetzt werden, dal3 der Flächen-
inhalt AB, (i = 1, ..., n) existiert, d.h. alle B,- meßbar sind.

D.2.4
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Z1, Z2, sei eine Folge unbegrenzt feiner werdender Zerlegungen von B und
S(Z,), S(Z2), die zugehörige Folge der Integralsummen. Wenn nun diese Folge von
Integralsummen gegen einen bestimmten Wert G konvergiert — und zwar unabhän-
gig von der Wahl der Folge unbegrenzt feiner werdender Zerlegungen und unabhän-
gig von der Wahl der zu der jeweiligen Zerlegung gehörigen Punkte P,- (s. Defini-
tion 2.4) —‚ so wollen wir diesen Grenzwert G mit dem Symbol

lim Z‘ f(P‚-) AB,-
flBi—>O i

(*)

bezeichnen. Damit haben wir schon das Bereichsintegrall:

Definition 2.5: f(P) sei eine auf dem ebenen Bereich B definierte reellwertige Funktion.
Unter dem Bereichsintegral der Funktion f(P) über dem Bereich B versteht man den

Grenzwert (*) und bezeichnet es mit flflP) db. Es gilt also
B

I fff(1>)db = lim 2f(1>‚-)AB‚„ (2.2)
B xaBi-vo 1

Bemerkungen zur Definition 2.5: Anstelle von Bereichsintegral sagt man auch Flächen-
integral bzw. Gebietsintegral. Die Bezeichnung (das Symbol) für das Bereichsintegral
ist ebenfalls unterschiedlich. Am Ende des Abschnittes 2.3. werden wir etwas aus-
führlicher die unterschiedliche Bezeichnungsweise beim Bereichsintegral darstellen‘
und die Gründe dafür angeben. — Für f(P) db kann man „fix, y) db schreiben,

B B
falls B ein Bereich in der x,y—Ebene ist.

Wenn das Bereichsintegral der Funktion f(P) über dem Bereich B existiert, so
sagt man, die Funktion f(P) ist über dem Bereich B (im Riemannschen Sinne) inte-
grierbar.

Bevor wir auf die Fragen nach der Existenz und den Eigenschaften des Bereichs-
integrals eingehen, wollen wir eine wichtige Anwendung kennenlernen.

Von einem speziellen räumlichen Bereich, der Ordinatenmenge M = 0(B, f),
haben wir in Satz 1.3 mit Hilfe des Prinzips von Cavalieri das Volumen V berechnet.
Ausgangspunkt für die Berechnung des Volumens mit Hilfe des Prinzips von Cava—

lieri (vgl. Band 2, Satz 10.20) ist eine Zerlegung des räumlichen Bereiches M in
„Scheiben“. Im folgenden Beispiel soll das Volumen V von M nach einem anderen
Prinzip berechnet werden. Man zerlegt den räumlichen Bereich M in zylindrische
Säulen Si und berechnet von diesen Säulen näherungsweise das Volumen V‚-.
Summation aller Vi ergibt eine Näherung für das gesuchte Volumen V von M. Den
genauen Wert von V erhält man, indem man die Säulen immer „feiner“ („dünner“)
werden läßt. Dieser Grenzprozeß führt dann automatisch auf ein Bereichsintegral.

Beispiel 2.1: B sei ein Bereich in der x‚y-Ebene‚ auf dem eine nichtnegative Funktion
z =f(x‚ y) =f(P) definiert ist. Von der OrdinatenmengeM = O(B‚ f) (s. Definition 1.4
und Bild 1.10) ermittle man mit Hilfe des eben beschriebenen Prinzips der Säulen-
zerlegung das Volumen V. (Von dem ebenen Bereich B wird nicht vorausgesetzt, daß
es sich um einen Normalbereich im Sinne von Definition 1.1 handelt.)

Der ebene Bereich B wird in Teilmengen B, ‚ B2, ‚ B„ zerlegt. Außerdem wird in
jeder Teilmenge Bi ein Punkt P; ausgewählt. Die Zerlegung von B bewirkt eine Zer-
legung des räumlichen Bereiches M in zylindrische Säulen S1, S2, ...‚ Sn, wobei
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B,- der Grundriß von dem jeweiligen S; ist (s. Bild 2.3). Für das Volumen V.~ von S.-

giltz V,v z: AB,» - f(P,) (= (Flächeninhalt von B.) mal (Höhe der Säule in P,-)). Hieraus
folgt: V: V; z Zf(P‚-) Aßi. Je feiner die Zerlegung von B ist, um so feiner ist

auch die Zerlegung von M in Säulen. Den genauen Wert von V erhält man durch
unbegrenzte Verfeinerung der Zerlegung von B, d.h.: V= 1in1 Ef(P,-) ABi. Damit

zBl-ao i

haben wir nach Definition 2.5 das Schlußergebnis: V=fff(P) db. Wegen der
B

Wichtigkeit fassen wir Fragestellung und Ergebnis noch einmal in einem Satz zu-
sammen.

Bild 2.3

X

Satz 2.1: Ist z = f(x, y) = f(P) eine auf dem in der x‚y-Ebene gelegenen Bereich B
definierte nichtnegatiue Funktion, so kann man das Volumen V= VM der zu B undf
gehörigen Ordinatenmenge ‚M (s. Bild2.3) durch ein Bereichsintegral berechnen. Es gilt

V= fff(P) db. (2.3)
B

Folgerung: Ist f(P) E 1 für alle P e B, so liefert ff f(P) db = ff 1 db = ff db das
B B E

Volumen V= VMD eines allgemeinen Zylinders Mo mit der Grundfläche B und der
Höhe h = I. Wegen V:|[a = AB - I (Grundfläche mal Höhe) gilt für den Flächeninhalt
A = AB der ebenen Bereiches B

A = fdb. (2.4)

(f db ist eine Kurzschreibweise für ff l db; f(P) s If)
B B

2.2.

Bei den in Beispiel 2.1 angestellten Überlegungen haben wir die Existenz des

Bereichsintegrals ff(P) db, d.h. des Grenzwertes lim Ef(P,-) AB“ als anschaulich
EB;-—~0 i

Existenz und elementare Eigenschaften des Bereichsintegrals

B

gesichert angesehen. Der folgende Satz bestätigt, daß unter sehr allgemeinen Voraus-
setzungen — die bei den Anwendungen fast immer erfüllt sind —— das Bereichsintegral
existiert.

S.2.l
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Satz 2.2: Das Bereichsintegral f(P) db existiert, falls bezüglich des ebenen Be-
B

reichs B und der auf B definierten Funktion f(P) folgende Voraussetzungen erfüllt
sind:
a) B ist ein beschränkter, meßbarer und abgeschlossener Bereich,
b) f(P) ist auf B stetig.

Für die uns interessierenden Anwendungen genügt es zu wissen, daß die Voraus-
setzung a) für jeden Normalbereich (s. Definition, 1.1) und jeden aus endlich vielen
Normalbereichen zusammengesetzten Bereich erfüllt ist. (Bild 2.4 zeigt einen Be-
reich B, der durch die Gerade x = x1, in drei Normalbereiche B1, B2, B3 bezüglich
der x-Achse zerlegt wird.)
Hinweis: In Satz 2.2 (einen Beweis zu diesem Satz findet man z. B. in [4], Bd. III)
hätten wir auf die Formulierung „B ist beschränkt und meßbar“ verzichten können,
da wir in Abschnitt 2.1. das Erfülltsein dieser Bedingung generell verlangt haben. Die
andere, in Abschnitt 2.1. noch angegebene Voraussetzung „f(P) ist auf B beschränkt“
ist nach den in Satz 2.2 angegebenen Voraussetzungen automatisch erfüllt. Es gilt
nämlich: Jede auf einer abgeschlossenen, beschränkten Punktmenge B stetige Funk-
tion f(P) ist auf B beschränkt (vgl. Band 4, Satz 2.6).

Aus der Definition 2.5 des Bereiehsintegrals ergeben sich leicht einige wichtige
Eigenschaften, die wir in einem Satz zusammenfassen wollen.

l

r

I

I

X, ‘

Bild 2.4 Bild 2.5

Satz 2.3: Wenn für die im folgenden auftretenden Funktionen (f(P), g(P)) und Bereiche
(B, B1, B1) die in Satz 2.2 genannten Voraussetzungen erfüllt sind, so gilt
a) Für jede Konstante c ist

ffcf(P)db =0 jff(P)db.
B B v

b) mm’) + g<P)> db = IMP) db + [im db.
B B B

c) Ist {B1, B1} eine Zerlegung von B (s. Bild 2.5), so gilt

fff(P)db =fff(p)db +fff(P) db.
B, B,B

d) (Mittelwertsatz für Bereichsintegrale) Es gibt einen Punkt P‘, E B, so daß für den
Flächeninhalt A von B gilt

man db =/(Po) - A.
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Alle Beweise werden dadurch erbracht, daß man zunächst Integralsummen be-
trachtet und anschließend einen Grenzübergang durchführt. Als Beispiel geben wir
eine Beweisskizze für die Aussage b) des Satzes 2.3:

ff (/(P) + im) db 191x30; (f(P.) + g<1:>>AB.-
B

= lim [§f(1>,) ABi+ §g(P,)A13.]
EB‘-~>0 t

= lim Z’f(P,) AB. + lim Z g(P,~) AB]
zßi-‚o iflBi»0 i

I
z fff(P) db +ffg(1>) db (vgl. Definition 2.5).

B B

Auf die Aussage c) des Satzes 2.3 werden wir oft zurückgreifen. Vom geome«
trischen Standpunkt ist die in c) angegebene Gleichung im Falle f(P) g 0 (für alle
P E B) sofort einleuchtend; sie ist nach Satz 2.1 äquivalent mit Volumen von O(B, f)
= Volumen von O(B, , f) + Volumen von 0(B2, f), d.h.: das Volumen der oberhalb
von B gelegenen Ordinatenmenge ist die Summe aus den Volumina der oberhalb von
B1 und B; gelegenen Ordinatenmengen.

2.3. Berechnung von Bereichsintegralen mit Hilfe von Doppelintegralen

Die Berechnung von Bereichsintegralen nach der in Definition 2.5 angegebenen

Vorschrift (“f(P) db = lim Z’f(P,») ABE) ist so kompliziert, daß man damit schon
B QB.--*0 z

bei einfachsten Beispielen große Schwierigkeiten zu überwinden hat. Definition 2.5
scheidet daher als eine praktisch brauchbare Berechnungsmethode aus. Im folgenden
Satz lernen wir den Weg kennen, auf dem man auf einfache Weise den Wert eines
Bereichsintegrals berechnen kann. Die Einschränkung, daß es sich bei dem Inte-
grationsbereich B um einen Normalbereich im Sinne von Definition 1.1 handeln
muß, ist nicht wesentlich. In allen praktisch vorkommenden Fällen kann man den
Bereich B in (endlich viele) Normalbereiche zerlegen und anschließend die in Satz 2.3,
c), angegebene Zerlegungsformel anwenden. Kommen wir nun zur Formulierung
dieses wichtigen Satzes!

x1 g x E x2 . ,

Satz 2.4: Ist B: em Normalberezch bezüglich der x-Acltse (vgl. S.2.4
yi(x) S y é yz(x)

Definition 1.1) und f(P) = f(x, y) eine auf B stetige Funktion, so gilt
‘a. y.(I)

fff(P) db = r t f(x. y) dy ax. (2.5)
B 5; .1/.(-r)

Ist B: yl g y g yz ein Normalbereich bezüglich der y-Achse (vgl. Def. I .1)
x10’) S x ä x20’)

undf(P) =f(x‚ y) eine auf B stetige Funktion, so gilt

l lff(P) db =

yl I:

2.511)

„l f(x‚ y) dx dy- (2-6)
(y)
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Jedes Bereichsintegral kann also mit Hilfe eines Doppelintegrals berechnet werden,
falls der Integrationsbereich ein Normalbereich ist. Uber Doppelintegrale haben wir
ausführlich im Abschnitt 1.3. gesprochen, durch Satz 2.4 beherrschen wir damit auch
die Berechnung von Bereichsintegralen. Einen vollständigen Beweis für Satz 2.4
wollen wir hier nicht geben. Wir begnügen uns mit der Feststellung, daß im Falle
f(P) 2 0 für alle P E B der Satz sicher richtig ist, wie man durch einen Vergleich der
Formeln (2.3) und (1.5) (aus Abschnitt 2.1. bzw. 1.3.) sofort sieht: Sowohl die linke
als auch die rechte Seite in Formel (2.5) sind gleich dem Volumen der zu B undfge-
hörigen Ordinatenmenge.
Beispiel 2.2: Vorgegeben sei der in Bild 2.6 dargestellte Bereich B der x‚y-Ebene und
die Funktionf(P) =f(x, y) = 2x — y. Man berechne das Bereichsintegral f(P) db.

s
Y

Bild 2.6

X

Wir zerlegen den Bereich B zunächst in den dreieckigenBereich B, (mit den Ecken
(0, 0), (3, 1) und (3, 4)) und den Rechteckbereich B2 (mit den Ecken (3, 1), (5, 1),
(5, 6) und (3, 6)). Nach Satz 2.3 c) gilt

fff(1>) db=fff(P)db+fff(P) db. (*)
B B, B,

Auf die rechts stehenden Bereichsintegrale können wir Formel (2.5) anwenden.

°§"§3 3§x§5
B1 i;_<y§:13;: und B2:{1§y§6

sind Normalbereiche bezüglich der x-Achse, und die Funktionf(P) = f(x, y) = 2x — y
ist überall stetig. Aus (*) folgt dann:

ffflmdb=f3jä2x—y)dydx+f5f(2x—y)dydx
R Oi 3 1

5

21 111=f%x2dx+f(1ox——)dx=7+45=T=55,5.
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Aufgabe 2.1: Man berechne das Bereichsintegral der Funktion f(P) = f(x, y) z xy über dem in a:

Bild 2.7 dargestellten Bereich B. (B wird begrenzt durch die Parabel y = x2, die x-Achse und
die durch die Punkte (6, 0) und (2, 4) hindurchgehende Gerade.)

Y

Bild 2.7

Bevor wir im nächsten Abschnitt 2.4. auf Anwendungen eingehen, soll zunächst noch etwas über die
sehr unterschiedliche Bezeichnungsweise bei Bereichsintegralen gesagt werden. Wir haben bereits
erwähnt, daß man an Stelle von “ ' ' ' ..1 auch vom 1"" L ‘ a‘. bzw. f‘ ‘ ' ' n!
spricht, Etwas verwirrend dürfte aber der Umstand sein, daß man oft an Stelle von Bereichsintegral
einfach Doppelintegral sagt. Diese “ezeiehnungsweise erklärt sich aus dem engen Zusammenhang
zwischen Bereichsintegralen und Duppelinte aleu: Jedes Bereichsintegral läßt sich mit Hilfe eines
Doppelintegrals berechnen, falls der Integrationsbereich B des Bereiehsintegrals ein Normalbereich
ist (vgl. Satz 2.4). Auch das Symbol zur Bezeichnung eines Bereichsintegrals ist recht unterschiedlich.

Neben solchen Symbolen wie f(P) da: oder ffflN) da oder fff(P) ds oder f(x, y) dP, die
(n (a) D (P)

X

) .

nur wenig von unserem Symbol f(P) db abweichen, findet man auch Symbole mit nur einem
B

Integralzeichen, z.B. ff(1’)dr oder (B)ff(x, y) db oder fflx. y) dS. Wir haben uns wegen des
M s

in Satz 2.4 beschriebenen Zu „u. L zwischen Rm ‘ ‘ ' Alm und Dn-‚n " «Im: für
das Symbol mit zwei Integralzeichen entschieden. An Stelle von fff(x, y) db schreibt man gele-

gentlich auch f(x‚ y) dx dy. B
B

2.4. Anwendungen des Bereichsintegrals

Wir beginnen mit einer einfachen physikalischen Fragestellung! Vorgegeben sei
ein ebener Bereich B, den man sich mit einer Massenbelegung versehen denkt. Jedem
Punkt P E B ist dann eine bestimmte Flächendichte g = g(P) zugeordnet. Die Flächen-
dichte g(P) im Punkte P ist wie folgt definiert: Ist D ein kleiner Teilbereich von B,
der den Punkt P enthält, m(D) die Masse von D, A(D) der Flächeninhalt von D, so

ist der Quotient r—:—((’-7% eme Naherung fur g(P). Den genauen Wert von g(P) erhalt man,

wenn sich D auf den Punkt Pgzusammenzieht:

. (D)p =1 La.
9‘ ’ „E20 A(D)

Beim Grenzprozeß durchläuft D eine Folge D1, D2, von P enthaltenden Teil-
bereichen, deren Durchmesser gegen null konvergiert. Ist die Flächendichte g kon-

3 Körber, Integralrechnung
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stant‚ d. h. g(P) = go = const für alle P E B, so ergibt sich für die Gesamtmasse m des
mit Masse belegten Bereiches B:

g m = goA.

A ist der Flächeninhalt von B.

(Beispiel: g = go = 0,5 g cm‘2, A = 25 cm2 = m = 12,5 g.)

(2.7)

Es erhebt sich nun die Frage, wie man zur Gesamtmasse von B kommt, wenn die
Flächendichte nicht konstant, sondern eine sich i.allg. von Punkt zu Punkt ändernde
stetige Größe g = g(P) ist? (g = g(P) ist also eine auf B definierte stetige Funktion!)
Zerlegt man B in kleine Teilbereiche B1, B2, ...‚ so wird sich innerhalb eines Teil-
bereiches B; die Flächendichte nur wenig ändern. Ist Pi irgendein Punkt aus B‚-‚ AB.
der Flächeninhalt Von B,- ‚ so gilt für die Masse m.» von Bi die Beziehung miz g(P.~) AB,-
(vgl. Formel (2.7)), und für die Gesamtmasse m von B erhält man: m = Z‘ m.

z g(P‚-) AB.-. Diese Näherung wird um so genauer sein, je feiner die Zerlegung von

B ist‘; den genauen Wert erhält man durch den in Definition 2.5 beschriebenen Grenz-
prozeß z Bi —> 0. Es gilt also: m = lirn g(P,~) AB,-. Der rechts stehende Grenzwert

Bl-—-0 I

ist aber gleich dem Bereichsintegrial der Funktion g(P) über dem Bereich B (vgl.
Def. 2.5). Zusammengefaßt erhalten wir den

Satz 2.5: Für die Gesamtmasse m eines mit Masse belegten ebenen Bereichs B gilt

m = g db.
B

Hierbei ist g = g(P) die Flächendiehte, von der man voraussetzt, daß es sich um eine
auf B stetige Funktion handelt.

Bemerkung: Die Formel (2.7) ist ein Spezialfall der in Satz 2.5 angegebenen Formel.
Ist nämlich g = go = const, so gilt: m =fig db zflgo db : gofldb = g.) - A (vgl.
Formel (2.4)). B B B

Beispiel 2.3: Vorgegeben sei der in Bild 2.8 dargestellte ebene Bereich B, den man
sich mit einer Massenbelegung Versehen denkt. Für die Flächendichte möge gelten:
g = g(P) = g(x, y) = g (x + y). Man berechne die Gesamtmasse m von B.

Bild 2.8
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Nach den Sätzen 2.5 und 2.4 gilt:
4 44.7: 4

ü u. 1 _ 1 y2 y=4—x
m— gdb- 7(x+y)dydx—— 7xy+~f dx

B 0 0 0 y=0
4

"1 x2 32
=6}—2—<8——2—)dx=T.

(Hinweis: Auf jeder Geraden x+ y: c, das sind die zur Begrenzungsgeraden
x + y : 4 parallelen Geraden, ist die Flächendichte konstant. Für die Punkte der
Geraden x + y = 2 gilt zum Beispiel g E 1.)

Wir kommen zu einer weiteren wichtigen Anwendung des Bereichsintegrals, näm-
lich der Bestimmung des Schwerpunktes eines (mit Masse belegten) ebenen Bereiches B
mit der Flächendichte g = g(P). In Band2, lO.4.2., wurden bereits Formeln für die
Koordinaten des geometrischen Schwerpunktes vonB hergeleitet. Es mußte die Vor-
aussetzung g = const für alle Punkte von B erfüllt sein. Wir wenden uns nun dem
allgemeinen Fall zu. Aus Band 2 übernehmen wir folgenden Sachverhalt: Für den
Schwerpunkt OE, y) eines Systems von Massenpunkten P, (x1, y1), P2 (x2, yz), ...,

P,,(x,., y,.) mit den Massen m1, m2, ...‚ m‚. gelten die Formeln

m1x1+ "‘+mnXn }=m1y1+ "'+mnyn
x: ml+"‘+mn ’ 1711+-~+mn

(vgl. Band 2, 10.4.2). Bei der Herleitung der Formeln für die Koordinaten x5, ys
des Schwerpunktes S eines ebenen Bereiches B wenden wir dasselbe Prinzip an, wie
bei der Herleitung der Formel für die Gesamtmasse von B. Der (mit Masse belegte)
Bereich B wird in kleine Teilbereiche B1, B1, ...‚ B‚. zerlegt, und jeder Teilbereich B,
wird durch einen Massenpunkt P; E B,- mit der Masse m, = m(B,>) = Masse von B,
ersetzt. Von diesem System von Massenpunkten P1, P2, , P„ bestimmen wir nach
den oben angegebenen Formeln den Schwerpunkt 2,}. Setzt man zur Abkürzung
m = m1 + mg + + m,. (——~ Gesamtmasse von B) und berücksichtigt die Näherungs-
beziehung m(B,~) z g(P,-) - AB; (s. Herleitung zum Satz 2.5), so erhält man

_ 1 1 1

x= 712M295." = 7 gmflä) ' x(Pi) “7;1Q(Px) ABi’x(Pi)-

Es gilt also T: z [xg] (P,-) - AB,- und analog y z ä D29] (P,-) - A81. (Die

Schreibweise [xg] (P,-) bzw. [yg] (Pi) bringt zum Ausdruck, daß man das Produkt aus
x (Je-Koordinate) und g (Flächendichte) für den Punkt P; bilden soll.) Der Punkt
(i, y) ist eine Näherung für den gesuchten Schwerpunkt (x5, ys) von B. Den genauen
Wert erhält man wieder durch den Grenzprozeß E15’,- —-> 0:

XS: um {i2[xe1(1=.-)-AB.-},
’ nBi-‚o m i
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1 .

Den konstanten Faktor — kann man vor das Limeszeichen setzen, und aus Defi-
nition 2.5 folgt der

Satz 2.6: l n .

x5=—f xgdb,m8}

1ys=;ffyedb
B

sind die Koordinaten des Schwerpunktes eines ebenen Bereiches B mit der Flächen-
dichte g = g(P).

Bemerkung: Die Gesamtmasse m von B wird nach der in Satz 2.5 angegebenen Formel
berechnet. Ist g = go = const für alle P E B, so kann g vor das Integralzeichen gesetzt
werden. Unter_Beachtung der Formel (2.7) erhält man dann für den sogenannten
geometrischen Schwerpunkt von B:

1xo=7ffxdb,
B

1

yo=-A— _[ydb-
B

Der Flächeninhalt A von B kann nach Formel A = H db berechnet werden, falls

keine elementargeometrischen Formeln zur Verfügung stehen.

Beispiel 2.4: Von dem in Beispiel 2.3 angegebenen Bereich B mit g = 5 (x + y)
ermittle man den Schwerpunkt S. Man berechne außerdem den geometrischen
Schwerpunkt So von B und vergleiche S0 mit S.

Für S erhält man nach Satz 2.6:
4 4-1

3 1x5‘=§2—j-fx-3(x+y)dydx,
O 0

-1 4--1‘

3 1ys=§§ff,v'§(x+y)dydx-
0 O

Die mit ein wenig Rechnung verbundene Auswertung der Doppelintegrale liefert die
Werte x5 = ä- und ys = ä. Für die Koordinaten x0, yo des geometrischen Schwer-
punktes von B erhält man:

4 4-1:

1 4xo=§ffxdydx=§
0 o

4 4-2
1 4yo=§]~'/ydydx=;

0 0

und
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Bild 2.9 Bild 2.10

Bezüglich der Lage von S und SO: siehe Bild 2.9 (Warum liegen S und S„ beide auf
der Geraden y = x? Warum muB S0 etwas unterhalb von S liegen?)

Aufgabe 2,2: Der durch die Kurven y = % x2 + l, y = 9 — x, x = O und y = 0 begrenzte Bereich B
(s. Bild 2.10) sei mit einer Massenbelegung der Flächendichte g = g(x, y) = xy versehen. Man be-
rechne den Schwerpunkt von B. ‘

Eng mit dem Begriff des Schwerpunktes hängt der Begriff des statischen Moments
von B bezüglich der x- bzw. y-Achse zusammen. Man denkt sich die Gesamtmasse m

des (mit Masse belegten) Bereiches B im Schwerpunkt (x5, ys) vereinigt. Das sta-
tische Moment des Massenpunktes S mit der Masse m ist dann gleich dem statischen
Moment von B.

Definition 2.6: Ist m die Gesamtmasse und (x5, ys) der Schwerpunkt des Bereiches B,
so heißt das Produkt My = m - x5 das statische Moment von B bezüglich der y-Achse
(„Gesamtmasse“ mal „Abstand des Schwerpunktes S von der y-Achse“). Analog ist
M, = m — y; das statische Moment von B bezüglich der x-Achse (s. Bild 2.1l).

T____ __

ß

l

1 z

iv‘ I

X3 „ Bild 2.11

¢>‘_

Aus Satz 2.6 ergibt sich dann sofort der

Satz 2.7: Für die statischen Momente M, und My von B bezüglich der x- bzw. y—Achse
gelten die Formeln

Mfiffyedb,
B

My=Uxgdb.

Den Themenkreis Masse, Schwerpunkt, statisches Moment wollen wir mit dem
Begriff Trägheitsmoment abschließen.

*

D.2.6

S.2.7
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D.2.7 Definition 2.7: Unter dem Trägheitsmoment eines Massenpunktes P0 (x0, y0) mit der
Masse m0 bezüglich der x- bzw. y-Aehse versteht man das Produkt m0 - yo? bzw. m0 — x02

(„Masse“ mal „Quadrat des Abstands von der betreflenden Achse“). Hat man ein
System von Massenpunkten P1(x1‚y1)‚ P2(x2‚ yg), ...‚P„(x„‚ y„) mit den Massen
m„m„ ..., m„‚ so summiert man über die Trägheitsmomente aller Massenpunkte:
Z‘ m,»y,2 bzw. Z‘ mixfi ist das Trägheitsmoment eines Systems von Massenpunkten

liezüglieh der x-l bzw. y-Achse.

Derselbe Gedankengang wie bei der Herleitung der Sätze 2.5 und 2.6 (Zerlegmg
des Bereiches B in endlich viele Teilbereiche B1, B2, ...; Ersetzung der Teilbereiche
durch ein System von Massenpunkten P1, P2 , ...; Berechnung des Trägheitsmomentes
dieses Systems von Massenpunkten nach der in Definition 2.7 angegebenen Formel;
Grenzprozeß @131 —> O) führt bei einem ebenen Bereich B mit der Flächendichte
e = e(P) zum

S.2.8 Satz 2.8: Für die Trägheizsmomente J, und J, von B bezüglich der x- bzw. y-Aclzse
gelten die Formeln

J, = ff f9 db,
B

J0 = ff x29 db.
B

Beispiel 2.5: B sei der durch die Kurven y = 4 —- x’ und y = 0 begrenzte Bereich
(s. Bild 2.12). Für die Massenbelegung von B gelte g = x’ + y. Man berechne das
Trägheitsmoment von B bezüglich der y-Achse.

‚V

\\
Ä

„

\\\
\\\

\\\
\‘

Je. X Bild 2.12

Nach den Sätzen 2.8 und 2.4 (B wird als Normalbereich bezüglich der x-Achse
2 4-1’

angesehen) gilt: L, = f I x’(x’ + y) dy dx. Für das innere Integral erhält man
—2 0

x’ (W2 + l z) ‘hin: ‘ 8x2 — l x“y 2 y F0 2 -

2

29 512
Hieraus folgt J, = f(w — äxö) dx = 2—1 =T z 24,4.

—2

(Die einfachen Zwischenrechnungen wurden weggelassen!) .

a: Angabe 2.3: Von dem in Beispiel 2.5 beschriebenen Bereich B berechne man das Trägheitsmoment
bezüglich der x-Aehse.
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2.5. Uneigentliche Bereichsintegrale

In Analogie zur Erweiterung der einfachen Integrale, d.h. der bestimmten Rie-
mannschen Integrale, auf uneigentliche Integrale (s. Band 2) soll jetzt auch der Be:
griff des Bereichsintegrals auf uneigentliche Bereichsintegrale erweitert werden. Bei
der Definition des Bereichsintegrals

lfflP) ab
‘u

gingen wir von der Vorstellung aus, dal3

a) der Bereich B beschränkt und

b) die Funktion f(P) auf B definiert und beschränkt ist.

(Man vergleiche hierzu auch Satz 2.2.) Unser Ziel ist es, dem Symbol fff(P) db auch
B

dann einen Sinn zu geben, wenn eine der beiden Voraussetzungen a), b) nicht erfüllt
ist. Der Weg, der zur Definition der uneigentlichen Bereichsintegrale führt, ist
wieder ein geeigneter Grenzprozeß. Bevor wir auf diese Problematik eingehen, soll
an einem Beispiel das Nichterfülltsein der Bedingungen a) und b) demonstriert
werden.

Beispiel 2.6: a) Der durch den Hyperbelast y = ä (x > 0), die positive x-Achse und

die positive y-Achse begrenzte Bereich B (s. Bild 2.13) ist nicht beschränkt; der Be-
reich B erstreckt sich ins Unendliche.

X Bild 2.13

b) Die Funktion f(P) = f(x, y) =. f‘? ist für (x, y) = (0, 0) nicht definiert, für

alle anderen Punkte ist sie definiert und stetig. Die Funktion f(x‚ y) = 2 ist auf__1_
x2 + y

jeder punktierten Umgebung des Punktes (x, y) = (0,0) unbeschränkt, ihre Funk-
tionswerte überspringen jede noch so große Schranke. (Eine punktierte Umgebung
von P ist eine Umgebung von P, aus der man den Punkt P herausgenommen hat.)

Wir kommen nun zur ersten FragefB sei ein nichtbeschränkter Bereich; f(P) eine
reellwertige Funktion, die mindestens für alle Punkte P E B definiert ist. Was soll
man in diesem Fall unter dem Bereichsintegral von f(P) über B verstehen? Die Ant-
wort findet man nach dem schon bei den gewöhnlichen uneigentlichen Integralen
kennengelernten Prinzip. Der nichtbeschränkte Bereich B wird durch eine Folge
B, ‚ B2, beschränkter, aber immer größer werdender Teilmengen von B aufgefüllt.
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Definition 2.8: Ist B ein nichtbeschränkter (ebener) Bereich, so nennt man jede Folge
beschränkter, aber immer größer werdender Teilbereiche B1 , B2, von B (d. h.':
B1 < B2 < B3 <' B), die in ihrer Gesamtheit den nichtbeschränkten Bereich B aus-

füllen (d. h. : zu jeder beschränkten Teilmenge M < B gibt es ein Bu mit M < Bu), eine
Folge von B ansfüllenden (ausschöpfenden) Teilbereichen (s. Bild 2.14).

Y

Bild 2.14

Bei dem durch Bild 2.13 dargestellten nichtbeschränkten Bereich B könnte eine
solche Folge B1,B„, wie folgt gewonnen werden: Durch die Geraden x = n,
y= n (n = l, 2,...) wird von dem nichtbeschränkten Bereich B ein beschränkter
Teilbereich B„ abgeschnitten (s. Bild 2.15). B1, B2, ist dann eine Folge von B aus-

füllenden Teilbereichen. Für jedes B,. kann man das Flächenintegral Ä [f(P) db n}?
B

gewöhnlichen Sinn bilden. Falls nun die Folge der Integralwerteflf f(P3 db konver-
B

giert, so wird man den Grenzwert als uneigentliches Bereichsintegral von f(P) über
dem nichtbeschränkten Bereich bezeichnen. u

Die bisherigen — an einem Beispiel orientierten — Überlegungen wollen wir in
allgemeiner Form in der folgenden Definition zusammenfassen.

Definition 2.9: B sei ein nichtbeschränkter Bereich, auf der die reellwertige Funktion
f(P) definiert ist. Wenn für jede Folge B1, B2, von B ausfüllenden (meßbaren) Teil-
bereichen (vgl, Def. 2.8) der Grenzwert lim f(P) db existiert und immer den gleichen

II->® B

Wert hat, so nennt man diesen Grenzwert" das uneigentliche Bereichsintegral der
Funktion f(P) über dem nichtbeschränkten Bereich B. Das uneigentliche Bereichsinte-
gral wird — ebenso wie das gewöhnliche Bereichsintegral — mit dem Symbol fiflP) db
bezeichnet. B

Auch bei den uneigentlichen Bereichsintegralen ist die Sprechweise üblich, daß das
uneigentliche Bereichsintegral konvergiert bzw. divergiert, je nachdem, ob der Grenz-
wert lim f(P) db (im vorhin angegebenen Sinn!) existiert oder nicht. Die Ent-

n-oo 1';

Scheidung, "ob ein uneigentliches Bereichsintegral konvergiert oder nicht, ist nach
Definition 2.9 n1it einigen Schwierigkeiten verbunden. Selbst wenn man für eine Folge
B1, B2, von B ausfüllenden Teilbereichen den Grenzwert G = lim f(P)db er-

n-voo B

mittelt hat, so ist damit natürlich noch nicht gesichert, daß das uneiggntliche Be-
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reichsintegral konvergiert. Erst wenn man weiß, dal3 jede andere Folge von B aus-
füllenden Teilbereichen zum selben Grenzwert G führt, ist die Frage nach der Kon-
vergenz des uneigentlichen Bereichsintegrals eindeutig entschieden. Glücklicherweise
ist es so, daß man in vielen Fällen mit der Ermittlung des Grenzwertes G für eine
einzige Folge von B ausfüllenden Teilbereichen das Problem gelöst hat, wie der fol-
gende Satz zeigt.

Satz 2.9: Ist die Funktion f(P) auf dem nichtbeschränkten BereichB nirgends negativ S.2.9
(d.h. f(P) g 0 für alleP E B), so ist die Konvergenz des uneigentlichen Bereichsinte-
grals gesichert, falls bei einer einzigen Folge B1 , B2 , von B ausfüllenden Teilbereichen

der Grenzwert lim flflP) db existiert. Es gilt dann:
naoo B"

fff(1>)db= lim fff(P)db.
B "-'°° B”

Beweis: Es sei B1, B2, eine Folge von B ausfüllenden Teilbereichen, für die gilt:

lim ff/(P) db = G. (*)
n**O0B"

Zu zeigen ist, daß für jede andere Folge B)’, B5, von B ausfüllenden Teilbereichen
ebenfalls gilt:

„in fff(P)db= G. .(**>
003;"

Wir zeigen, dal3 es zu jedem‘ s > O ein mo gibt, so daß für alle m‘; mo die

Ungleichung G — s < f(P) db g G erfüllt ist. Damit ist dann (**) bewiesen. Nach

2;.
Definition 2.8 gibt es zujedem B,’„ ein B) mit B‚'„ < B‚. Hieraus und aus (*) folgt dann
fffav) db g ff/(P) db g G, also

3;" Bl

ffflp) db g G. (I)

B;
Aus (*) liest man ab, daß es zu jedem s > O ein no mit f(P) db > G — s geben

13,’

muß. Falls m hinreichend groß ist, muß nach Definition 2.8 der Bereich B§,. den
Bereich B„_ umfassen: B‚’„ > BM für alle m g mo. Hieraus folgt

_Uf(P)db;fff(P)db>G—s. (II)
B; B"n

Aus (I) und (II) folgt G — e < fffav) db g G für alle m g mo. u

Bm

Beispiel 2.7: Es sei B die ganze x,y-Ebene und f(P) = f(x‚ y) = e'(‘°“'1">. Man prüfe,
ob das uneigentliche Bereichsintegral f(P) db konvergent ist.

B
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Weil die vorgegebene Funktion f(P) stets g 0 ist, braucht nur von einer ein-

zigen Folge B1, B2, nachgewiesen zu werden, daß der Grenzwert lim f(P) db
n—>ooB

existiert — dann ist die Konvergenz des Bereichsintegrals gesichert. 13,. soll der fol-
gende quadratische Bereich sein: 8,. = {(x, y) I —n g x g n, —n g y g n} (s. Bild
2.16). Die Folge B1, B2, füllt dann die ganze x‚y-Ebene aus.

Y

Bild 2.16

Wegen

fffmdb = le“”’+V‘>dy dx
B71 —n —n

= f [e""fe“‘J’dy dx=(’_[ne"1I’dy)(_£e“"”dx\)
-—n ——n —rz

x / x

= <_f:e‘“‘dx>2= <2 Je‘? dx)?

lim fff(1>) db = <2 -:Fe'1‘” dx\)2.
H400 En 0 l

gilt

Der Wert des rechts stehenden gewöhnlichen uneigentlichen Integrals ist gleich a} I/7:.
(Einen Beweis für diese tiefliegende Aussage findet man z.B. in [2].) Das vorgegebene

uneigentliche Bereichsintegral ist also konvergent und hat den Wert (2 ( g = 7:. —

Wesentlich einfacher würde man zum Ziel kommen, wenn man die x,y-Ebene durch
eine Folge immer größer werdender Kreisscheiben B„ = {(x‚ y) | x’ + y’ g n2} aus-
füllen würde und bei der Berechnung der Bereichsintegrale über B„ von kartesischen
Koordinaten x, y zu Polarkoordinaten r, (p übergehen würde. Da die Transformation
mehrfacher Integrale erst im Abschnitt 4. behandelt wird, konnte dieser Weg jetzt noch
nicht beschritten werden. Wir werden in Abschnitt 4. noch einmal auf dieses Beispiel
zurückkommen.

Wenn die Funktion f(P) auf dem nichtbeschränkten Bereich B auch negative
Werte annimmt, so betrachtet man die Funktion <p(P) := Jf(P)|. Auf {f(P)} kann man
Satz 2.9 anwenden.
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Analog dem bei gewöhnlichen uneigentlichen Integralen festgestellten Sachverhalt
gilt auch bei uneigentlichen Bereichsintegralen der folgende

Satz 2.10: Aus der Konvergenz des uneigentlichen Bereichsintegrals l f(P)} db über
B

dem nichtbeschränktett Bereich B folgt die Konvergenz des uneigentlichen Bereichs-

integrals ff/(mdb.
B

Der Beweis dieses Satzes ist nicht schwierig; man findet ihn z.B. in [3], Band III.
Nach der Behandlung der uneigentlichen Bereichsintegrale über einem nicht-

besclzränkten Bereich kommen wir nun zu den uneigentlichen Bereichsintegralen mit
nichtbeschränkter Funktion (vgl. Beispiel 2.6).

Definition 2.10: Auf dem beschränkten Bereich B sei eine Funktion f(P) gegeben, die
in der Umgebung des Punktes P0 nichtbeschränkt ist. (Den Ausnahmepunkt Po nennt
man in diesem Zusammenhang auch singulären Punkt.) Die Funktion f(P) soll aber auf
der Menge B \ U(P(,) — wobei U(P0) jede beliebige Umgebung von P0 sein kann —

beschränkt sein (s. Bild 2.17). Wenn nun für jede Folge U„ U2, von Umgebungen
des Punktes Po, deren Durchmesser gegen null konvergieren, der Grenzwert

ff f(P) db
\Un

existiert und immer den gleichen Wert hat, so nennt man diesen Grenzwert das uneigent-
liche Bereichsintegral der nichtbeschränkten Funktion f(P) über dem Bereich B.

lim
„so B

E ß
a_\z/07,)¥__j__,X Bild 2.17

Die Sätze 2.9 und 2.10 gelten — in entsprechend abgewandelter Form — auch für uneigentliche
Bereichsintegrale mit nichtbeschränkter Funktion. — Ist die Funktionf(P) in der Umgebung mehrerer
Punkte P), P2, ..., Pk nichtbeschränkt, so muß bei der Untersuchung des obigen Grenzwertes an

Stelle einer Umgebung U von Pa ein System von Umgebungen U“), U“), ..., UV‘) der Punkte P„
P2, ..., Pk betrachtet werden. - Hat man an Stelle eines oder mehrerer singulärer Punkte eine
singuläre Kurve, so ändert sich im Prinzip an den Formulierungen der Definition 2.10 nichts;
U, ‚ U2, muß jetzt eine Folge von Umgebungen der Kurve sein, die sich auf diese Kurve zusammen-

ziehen.

i
I

i

Aufgabe 2.4: Es sei B der durch die Geraden x = O, x = V8, y = 0, y = 4 begrenzte Rechteck-

bereich und f(P) = f(x, y) = y. {ä Man prüfe, ob das uneigentliche Bereichsintegral f(P) db
B

konvergent ist. (Hinweis: Das zwischen y = 0 und ‚v = 4 gelegene Stück der y-Achse ist ein singuläres
Kurvenstück.)

S.2.10

D.2.10
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3. Integrale über räumliche Bereiche

3.1. Der Begriff des Raumintegrals und des n-dimensionalen Integrals

Bei der Definition des Raumintegrals kann man fast wörtlich die bei der Einfüh-
rung des Bereichsintegrals im Abschnitt 2. verwendete Formulierung übernehmen.
Es kommtim Prinzip kein neuer Gedanke hinzu; eine Begrilfsbildung wird von der
(2-dimensionalen) Ebene auf den (3-dimensionalen) Raum übertragen. Anstelle eines
ebenen Bereichs B (i.a11g. stellt man sich B als Teilmenge einer x,y—Ebene vor) mit einer
darauf definierten Funktionf(P) = f(x‚ y) hat man jetzt einen räumlichen Bereich B
(eine Teilmenge des x,y,z-Raumes) mit einer darauf definierten Funktion f(P)
= f(x, y, z). Wir können uns daher bei der Einführung des Raumintegrals sehr kurz
fassen.

Die Definitionen 2.1, 2.2 und 2.3 können wir wörtlich auf räumliche Bereiche
übertragen; es ist lediglich die Formulierung, B sei ein ebener Bereich, durch die For-
mulierung, B sei ein räumlicher Bereich (eine Teilmenge des Raumes), zu ersetzen.
Wesentlich ist, daß man alle Erklärungen mit einer entsprechenden räumlichen Vor-
stellung verbindet. In Bild 3.1 wird bei einem speziellen räumlichen Bereich B (einem
Würfel) eine Zerlegung in 8 Teilbereiche B1, B2, ..., B3 vorgenommen.

Bei der Übertragung der Definition 2.4 auf räumliche Bereiche ist selbstverständlich
unter AB. der Rauminhalt von Bi zu verstehen. Auch Definition 2.5 bedarf — ein-
schließlich der entsprechenden Vorbetrachtungen — keiner großen Abänderung. Diese
letzte, aber entscheidende Definition wollen wir hier aber noch einmal extra formu-
lieren.

Bild 3.1

Definition 3.1: f(P) sei eine auf dem räumlichen Bereich B definierte reellwertige Funk-
tion. (Legt man ein rechtwinklig kartesisches x‚y,z-Koordinatensystem zugrunde, so
gilt f(P) = f(x‚ y, z).) Falls der Grenzwert der Imegralsummen

G = lim 2‘f(P,-) Am
ZBi-ofi i

existiert, so nennt man diesen Grenzwert das Raumintegral der Funktionf(P) über dem
Bereich B und bezeichnet es mit dem Symbol

fflfmdb.

- Die genaue Bedeutung des hier benutzten Grenzwertes entnehme man den Vor-
betrachtungen zu Definition 2.5.
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Es gilt also

| ffffmdb = 1lim0Ef(P,)AB,<. (3.1)
B ‚ E’ ‘P t

Vergleicht man die beiden Definitionen 2.5 und 3.1 für das Bereichsintegral bzw.
das Raumintegral, so stellt man fest, daß sie in ihrer äußeren Form vollkommen
übereinstimmen:

fff(P)db = um ZAR.) Am, (I)
B raBi—»o n

ffff(P)db = gmoz/(Pa AB.-. (II)
B o i» I

In (I) bilden die Bi (i = 1, 2, ..., n) eine Zerlegung des ebenen Bereichs B, P,- ist ein
Punkt aus der ebenen Teilmenge B.-, AB,- der Flächeninhalt von B„f(P) (=f(x‚ y))
eine auf dem ebenen Bereich B definierte Funktion. In (II) istf(P) (= f(x‚ y, z)) eine
auf dem räumlichen Bereich B definierte Funktion, die B,- (i : 1, 2, ..., n) sind räum-
liche Teilmengen, AB,- ist der Rauminhalt von B‚v. — Ähnlich wie beim Bereichsintegral
ist auch beim Raumintegral die-Bezeichnungsweise sehr uneinheitlich; wir werden
auf diesen Sachverhalt am Ende des Abschnittes 3.1. etwas ausführlicher eingehen.

Das Bereichsintegral konnten wir im Falle einer nichtnegativen Funktion f(P)
= f(x‚ y) als Volumen eines gewissen Bereiches im R3 interpretieren (vgl. Satz 2.1).
Auch beim Raumintegral mit nichtnegativer Funktionf(P) = f(x, y, z) ist es möglich,
dasselbe als „Volumen“ (Riemann-Inhalt) eines gewissen Bereichs im R‘ anzusehen.
Von einer „Veranschaulichung“ im R‘ kann natürlich keine Rede mehr sein. (Eine
kleine Einführung in den mit dem Riemann-Inhalt zusammenhängenden Fragenkreis
findet man in Band 2, 10.5.) '

Bevor wir zur Berechnung von Raurnintegralen kommen, wollen wir ein ein-
faches, aber wichtiges Anwendungsbeispiel für Raumintegrale kennenlernen.

Beispiel 3.1 (Masse und Volumen eines Körpers): B sei ein räumlicher Bereich (Körper)
mit der Dichte g = g(P) (= g(x, y, z)). Masse m und Volumen V von B sollen mit
Hilfe eines Raumintegrals dargestellt werden.

Ist B ein homogener Bereich, d.h. ein Bereich mit konstanter Dichte g = Q0, so gilt

natürlich m = QQV oder anders ausgedrückt: fly = 90. Ist die Dichte g nicht konstant,

so kann man die Masse m von B durch folgenden Grenzprozeß gewinnen: B wird in
(möglichst kleine) Teilbereiche B1,B2, ..., B„ zerlegt. Ist Pi irgendein Punkt aus
B,» (i = 1, 2, ..., n), AB; das Volumen von B, so ist das Produkt g(P,») - AB,- nähe-
rungsweise gleich der Masse m,~ von B,- (vorausgesetzt, daß die Dichtefunktion
g = g(P) stetig istl). Für die Masse m von B gilt daher: m = Z‘ mi z Z g(P,-) AB.-.

l I

Diese Näherung für m ist umso genauer, je „feiner“ die Zerlegung B1, B2, ..., B„ von
B ist; den genauen Wert von m erhält man durch den uns nun schon hinreichend
bekannten Grenzprozeß EB,‘ ——> 0, d.h.:

m = lim 2 9(12) AB,—.
flBl-ao i
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Nach der Definition des Raumintegrals (vgl. Formel (3.1)) ist also

I m =m" g db. (3.2)
B

Hierbei ist 9 eine Funktion von P, d.h. g = g(P). Ist im Spezialfall g = go = const, so

kann man den konstanten Faktor go vor das Integral setzen und erhält m = go db.
"B

Hieraus folgt — wegen 2E = V —- die Beziehung
o

I V=g_{db. (3.3)

Auch hier möchten wir wieder darauf hinweisen, daß db eine Kurzschreibweise
{mm1 db ist. B

B

Die Aussagen bezüglich Existenz und Eigenschaften bei Bereichsintegralen (s. Ab-
schnitt 2.2.) kann man sinngemäß auf Raumintegrale übertragen. Beispielsweise hat
man anstelle von Formel c) in Satz 2.3 jetzt zu schreiben:

I fßffflmdb =fBflf(P)db +fjff(P)db. (3.4)

Hierbei wurde der räumliche Bereich B in die beiden Teilbereiche B„ B2 zerlegt.
Wir kommen nun zur Berechnung von Raumintegralen. Die in Definition 3.1 an-

gegebene Methode zur Ermittlung des Wertes eines Raumintegrals scheidet wegen
ihrer Kompliziertheit als eine praktisch brauchbare Berechnungsmethode aus. Be-
reichsintegrale wurden mit Hilfe von Doppelintegralen (zweifachen integralen) be-
rechnet, falls der Bereich B ein ebener Normalbereich bezüglich der x— bzw. y-Achse
war (vgl. Satz 2.4). Einen ähnlichen Zusammenhang hat man bei den Raumintegralen:
Raumintegrale werden mit Hilfe von dreifachen Integralen berechnet, falls der Inte-
grationsbereich B ein räumlicher Normalbereich ist. Während es sich bei zweifachen
integralen um zwei nacheinander auszuführende einfache Integrationen handelt,
müssen bei einem dreifachen Integral drei einfache Integrationen nacheinander aus-
geführt werden.

Was sind nun räumliche Normalbereiche?

D.3.2 Definition 3.2: Unter einem räumlichen Normalbereich bezüglich der x,y-Ebene ver-
steht man einen räumlichen Bereich B, der „nach unten“ und „nach oben“ durch stetige
Flächen z = z‚(x‚ y), z = z2(x, y) und „seitlic “ durch einen allgemeinen auf der
x,y-Ebene senkrecht stehenden Zylinder‘) begrenzt wird. Dabei wird vorausgesetzt, daß
die Projektion BM von B auf die x,y-Ebene ein ebener Normalbereich bezüglich der
x- bzw. y-Achse ist (vgl. Definition 1.1) und die Fläche z = z1(x, y) stets unterhalb der
Fläche z = z2(x‚ y) verläuft (für alle (x, y) E BM). Analog definiert man räumliche
Narmalbereiche bezüglich der beiden anderen Koordinatenebenen‚ der y, z-Ebene bzw.
x, z-Ebene.

‘) Ist C eine in der Ebene E gelegene geschlossene, doppelpunktfreie Kurve, so bilden die in den
Punkten von C errichteten Normalen auf E die Mantelfläche eines allgemeinen Zylinders. Ist speziell
C ein Kreis, so erhält man den bekannten Kreiszylinder.
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Beispiel 3.2: Ist B“, ein ebener Normalbereich bezüglich der x-Achse, d.h. B,‘
= '(x, y) l x1 g x g x2, y,(x) g y g y2(x)}, so wird der räumliche Normalbereich B
durch folgende Ungleichungen beschrieben: '

x1 E X E x2

(x, y, z) E B ¢> y1(x) g y g y2(x)

z1(x,y) g z g z2(x‚ y).

(Vor; zl (x, y), z2(x‚ y) stetig und z1(x, y) g z2(x, y) für alle (x, y) E BM.) Wählt
man speziell x, : 2, x2 = 6, y,(x = —x, y2(x) = x, z, x, y) = —x — ä y, z2(x, y)
= x — 5 y, so ist B ein räumlicher Normalbereich bezüglich der x‚y-Ebene, der nach
unten durch die Ebene z = —x — ä y, nach oben durch die Ebene z = x — Q y be-
grenzt wird und dessen Projektion 31,1, auf die x‚y-Ebene ein ebener Normalbereich
bezüglich der x—Achse ist (s. Bild 3.2). Ausgehend von Bild 3.2 versuche man sich
eine genaue Vorstellung von dem Bereich B zu verschaffen! (Vonwelchen 6 Ebenen
wird B begrenzt‘? Wie sieht der allgemeine Zylinder in diesem Fall aus? Wie sieht
die Projektion Bm von B auf die x, z-Ebene aus? BM ist der Grundriß von B, B“ ein
Seitenrzß von B.)

Bild 3.2

Aufgabe 3.1: Von dem räumlichen Normalbereich

l:xg4
B:[—x+1§ySx——1

-—3§z§§(x+y+2)

bestimme man die Projektionen B“, und BM Von B auf die x‚y-Ebene bzw. x‚z-Ebene. Von wieviel
Ebenen wird‘ B begrenzt? Wie lauten die Gleichungen dieser Begrenzungsebenen?

Nach Definition 3.2 gibt es zwei Typen von räumlichen Normalbereichen bezüglich
der x,y-Ebene (beim 1. Typ ist B“, ein ebener Normalbereich bezüglich der x-Achse,
beim 2. Typ ist BW ein ebener Normalbereich bezüglich der y-Achse). Analog gibt
es je zwei Typen bezüglich der y, z-Ebene und der x, z-Ebene. Insgesamt hat man also
6 verschiedene Typen von räumlichen Normalbereichen. Von einem dieser 6 Typen
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haben wir zu Beginn des Beispiels 3.2 die allgemeine Beschreibung (Ungleichungen
fü.r_x, y, z) angegeben. Die anderen 5 Typen wurden explizit nicht behandelt.

Aufgabe 3.2: Von den restlichen — in Beispiel 3.2 nicht behandelten — 5 Typen von räumlichen,
Normalbereichen gebe man die allgemeine Beschreibung an.

Hinweis: Das vollständige Durchdenken der mit der Aufgabe 3.2 zusammenhängen-
den Problematik ist sehr zu empfehlen! Insbesondere sollte man sich von jedem Nor-
malbereich eine räumliche Vorstellung verschaffen. Die Kenntnis dieser Zusammen-
hänge ist das Fundament bei der Berechnung eines jeden Raumintegrals.

Zu jedem der 6 Typen von räumlichen Normalbereichen gibt es ein dreifaches Inte-
gral.

Definition 3.3: Unter dem zu dem Normalbereich

xi g x g x2

ri(x) g ‚v g y2(x)

zi(x‚ y) g z g z2(x‚ y)

B:

gehörigen dreifachen Integral der Funktion f(x, y, z) versteht man folgenden Ausdruck

1. y.(z) um!) «T: y.<x> =.(I.z/)

f f(x, y, z) dz dy dx = f ( f < f f(x, y, z) dz) dy) dx.
i; wir) %.(t.I/) I=Ii y=yr(z) Z=%.(r.y)

Analog definiert man die 5 anderen Typen von dreifachen Integralen.

Zu dem in Definition 3.3 angegebenen Ausdruck müssen wir noch eine Erläuterung
hinzufügen, da es sich hierbei bereits um eine abkürzende Schreibweise für drei nach-
einander auszuführende einfache Integrationen handelt. Zunächst wird f(x‚ y, z)
nach z integriert (wobei x und y wie Konstanten behandelt werden), anschließend wird
für z in der bekannten Weise die obere und untere Grenze (22 (x, y) bzw. z1(x, y))
eingesetzt und die Differenz gebildet. Im zweiten Schritt wird der erhaltene Ausdruck
nach y integriert (wobei x wie eine Konstante behandelt wird), und für y werden die
Grenzen y3(x) und y,(x) eingesetzt. Der nunmehr vorliegende Ausdruck wird im
dritten Schritt nach x integriert, anschließend werden für die einzige noch vor-
kommende Variable x die Grenzen eingesetzt.

Beispiel 3.3: Man berechne das dreifache Integral

hilf
10

U

xyz dz dy dx.

Es gilt: xi = 1, x2= 2; ,v1(x)= x, y2(x) = 3x; z1(x,y)= 0, z2(x.y)= xy;
f(x, y, z) = xyz (vgl. Definition 3.3).

Beim l. Schritt berechnen wir das innere Integral

zy 2g

J, =fxyz dz= fxyzdz = [xy
0 :=0

Z2 Jz-zzy
1 3

2 —§(xy) .

z=0
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Beim 2. Schritt wird das mittlere Integral berechnet

3a: 3x

J2 = f J1 dy = f ä (m3 dy = [ä x“ - %y‘]Z::"
z F.

2 g x3(81x‘ — x4) = —§;x3 - 80x‘ = 10x7.

Äußeres Integral:
.. 2

J= J3 =fJ2dx =f1oxvdx = [%x3r=318,75.
l

1 1

Hinweis: Der zu diesem dreifachen Integral gehörige Normalbereich B wird „nach
unten“ durch die x‚y-Ebene (z = 0), „nach oben“ durch die Sattelfläche z : xy und
„seitlich“ durch die vier auf der x‚y-Ebene senkrecht stehenden Ebenen y= x,
y = 3x, x = l, x = 2 begrenzt.

Aufgabe 3.3: Man berechne das dreifache Integral

+3z+y+4
i I J (x+y+z)dzdydx.
0 x—1 0

(Durch welche Flächen wird der zugehörige Normalbereich B begrenzt?)

Aztfgabe 3.4: Man bestimme zu allen 6 Typen von Normalbereichen das entsprechende dreifache a:

Integral (vgl. Lösung zu Aufgabe 3.2 und Definition 3.3).

Aufgabe 3,5: Man berechne das dreifache Integral a:

5.'.+2a:+3:
I I I xyzdydxdz.
o 0 o

(Durch welche Flächen wird der zugehörige Normalbereich B begrenzt?)

Nach all diesen Vorbereitungen können wir nun den zum Satz 2.4 (Berechnung der
Bereichsintegrale mit Hilfe von zweifachen Integralen) analogen Satz für Raurninte-
grale formulieren.

Satz 3.1: Ist B ein räumlicher Narmalbereich undf(P) =f(x, y, z) eine auf B stetige 5.3.1
Funktion, so ist der Wert des Raumintegrals vqn f(P) über B gleich dem Wert des zu

B gehörigen dreifachen Integrals von f(x‚ y, z) (vgl. Definitionen 3.2 und 3.3).

Bei einem räumlichen Normalbereich vorn Typ

méxgm
B: y1(x) S J’ E y2(x)

z1(x,;v) é z g z2(x‚ y)
lautet die entsprechende Formel:

_ z, „(q :!(a'‚ )

m f(P)db =f Jf f yflx, y, z) dz dy dx. (3.5)
B T; am :,(I,U)

Analoge Formeln erhält man bei räumlichen Normalbereichen der anderen 5 Typen
(vgl, Lösung zu Aufgabe 3.4).

4 Körben integralrechnung
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Satz 3.1 wollen wir nicht beweisen. Eine Näherungsrechnung soll uns aber die Aus-
sagedes Satzes verständlich machen. Wir setzen voraus, daß der räumliche Bereich B
ein Quader ist. Es gelte

agxgb
céyéd
eézég

ISI a=xo<x1_< ---<x,.=b bzw.c=y0<y,< -~-<
< < z; = g eine Zerlegung des Intervalls [a, b] zw. [c‚

‘ mqgxgn
Bgjkf i

B:

y‚„=d bzw.e=z„<z‚
d] bzw. [e, g], so ist

yj-l S y ä Y;

Zk—1 S Z E 2k . ‚

eine Teilmenge von B und die Gesamtheit der ‚Bfjk (i = l, ...‚ n; j = 1, ..., m; k = 1,

..., l) bildet eine Zerlegung von B. Ist Pjjk (Ei, 17,-, (k) ein beliebiger Punkt aus Bifk, so
gilt nach Definition 3.1

[ff/(P) db z 2f(P,-,-k) - Am = 2/<1’.-J-A.) Ax. Ay, A2,. (3.6)
B i,j,k I',j,l:

(AL = xi - xi-i: Ayj = yj ' ‚Vj-u Azk = Z1.- “- 21H)-
Iz d g

Für das dreifache Integral _Hff(x, y, z) dz dy dx erhält man die gleiche Näherungs-
ac:

darstellung, wenn man von der Definition für das bestimmte Integral ausgeht
b

< ff(x) dx = lim Zf(5[) Ax,-) . Der besseren Übersicht wegen führen wir einige Ab-
a A”t”0

kürzungen ein.

F<x‚ y):= jg/(x, y, z) dz z 2m, y, z.) Az‚..
e I:

d

G(x) := f F(x‚ y) dy z Z F(x‚ m) An-

Hieraus folgt J

b a g b

ffff(x, y, z) dz dy dx = f G(x) dx z: z G(E‚-) Ax;

a l 5- 27i; 1m m) AyjfAxi ~ 2 [,Zi(Zf(€»~, m, a) Azl) An] Axt.
I. J z 1 k

Damit haben wir für das dreifache Integral die gewünschte Näherungsdarstellung
b d g

f_Hf(x, y, z) dz dy dx z Zf(§i, 77;‘, Q.) Axi Ayj Azk. (3.7)
i‚j‚kll C Q

Der Vergleich der Formeln (3.6) und (3.7) macht uns die Gültigkeit der in Satz 3.1
formulierten Aussage verständlich.
Hinweis: Ist B kein räumlicher Normalbereich, so zerlegt man zunächst B in Normal-
bereiche B1, ...‚ 13,. und wendet die Zerlegungsfarmel (3.4) an.
Die Formel (3.4) wird man auch dann heranziehen, wenn die Funktionf(P) auf dem
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Bereich B nur „stückweise stetig“ ist. Dabei wollen wir in Verallgemeinerung zum

Begriff der stückweisen Stetigkeit bei Funktionen einer Variablen (siehe Band 2)
eine auf dem räumlichen Bereich B definierte Funktionf(P) stückweise stetig nennen,
wenn es eine Zerlegung von B in abgeschlossene Teilmengen B1, B2, ...‚ B„ gibt, so,

daß die Funktion f(P) auf jedem Teilbereich B, (i = 1, ...‚ n) stetig ist.
Beispiel 3.4: Von dem „nach unten“ durch die x,y—Ebene (z= 0), „nach oben“
durch die Ebene 8x + 3y + l2z = 36 und „seitlich“ durch den auf der x,y-Ebene
senkrecht stehenden Kreiszylinder x2 + y? = 4 begrenzten räumlichen Bereich B
berechne man das Volumen V.

B ist ein räumlicher Normalbereich vom Typ B] (vgl. Lösungen zu Aufgabe 3.2).
Die Projektion B“, von B auf die x,y—Ebene ist eine Kreisscheibe (s. Bild 3.3). Es gilt:

-2 S x S 2

B: —]/4—x‘-’§y§]/4—x2
0§z§3—§x—%y-

(Man könnte B natürlich auch als einen räumlichen Normalbereich vom Typ B, an-
sehen.) Nach den Formeln (3.3) und (3.5) erhält man

’ 2 V477 3-’/.:5—'/.y
V=mdb=f l dzdydx.

B -—2 —}/2:; 0

Die Integrationsgrenzen für die Variablen x und y können aus der Skizze des Berei-
ches BM abgelesen werden (siehe Bild 3.3). Manibeachte auch hier, daß die Glei-
chung x2 + y’ = 4 in der x‚y-Ebene einen Kreis, aber im x,y‚z-Raum (x1 + y’ = 4,
z beliebig) einen Kreiszylinder beschreibt.

\ Bild 3.3

Das rechts stehende dreifache Integral berechnen wir wieder schrittweise:
s—=/‚z„—v.y -

= J dz=3—§x—;}y.
0

w? HE _ _—

J2= fJ1dy=[3y—§xy—m”=_Vfi=61/4-x2—%xv4—x*'.
2

‚.
2

J„=fJ2dx=_{(61/4— xz- §xl/4~ x’)dx=12\-rt.
2 -2

Ergebnis: V ——: 12 - 7: (Volumeneinheiten).

4c
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Die Integrale für V4 — x2 und x 1/4 — x2 wurden einer Formelsammlung entnommen
(s. z. B. [1]).

Wie im Anschluß an Definition 3.1 bereits angekündigt wurde, sollen zum Schluß der Ausfüh-
rungen über Raumintegrale noch einige Bemerkungen zur unterschiedlichen Bezeichnungsweise bei
Raumintegralen folgen. Auf Grund des in Satz 3.1 beschriebenen engen Zusammenhangs zwischen
Raumintegralen und dreifachen Integralen ist es verständlich, daß man oft an Stelle von Raum-
integral auch die Bezeichnung dreifaches Integral benutzt. Beim Symbol für das Raumintegral gibt
es — von kleineren Unterschieden einmal abgesehen — zwei Typen: Das Symbol mit drei Integral-
zeichen (wie wir es benutzt haben) und das Symbol mit einem Integralzeichen. Neben solchen Sym-
bolen wie

ffffmdb oder <B>fff/(x,y,z)d1; oder ffff(x, y, z)dV oder
B (v)

ffff(P)c1u oder jfff(x, y, z)dx dy dz
V (V)

findet man auch die Schreibweise

‘m; f(x‚ y, z) db oder j/(x, y, z)dV oder j.p(P) dr.
V V

Am Ende dieses Abschnitts wollen wir noch kurz auf die Verallgemeinerung des
bei Bereichs- und Raumintegralen kennengelernten Integralbegriffs auf den Fall von
mehr als drei Dimensionen eingehen. Bei einem Bereichsintegral ist ein ebener Be-
reich B (eine Teilmenge des R2) und eine darauf definierte Funktion f(P) : f(x1, x2)
gegeben. (An Stelle von x, y wurde hier die für Verallgemeinerungen zweckmäßiger-e
Schreibweise x, , x2 benutzt.) Analog ist bei einem Raunfintegral ein räumlicher Be-
reich B (eine Teilmenge des R3) und eine darauf definierte Funktionf(P) =f(x1 , x2, x3)
vorgegeben. Um eine für alle Dimensionen einheitliche Sprechweise zu ermöglichen,
wollen wir bei unseren jetzigen auf Verallgemeinerung gerichteten Betrachtungen die
Bereichsintegrale als zweidimensionale Integrale und die Raumintegrale als drei-
dimensionale Integrale bezeichnen. Integrale über n-dimensionale Bereiche heißen
dann n-dimensionale Integrale.

Bei einem n-dimensionalen Integral ist ein n-dimensionaler Bereich B (eine Teil-
menge des R") und eine darauf definierte Funktion f(P) = f(x1, x2, , x„) Vor-
gegeben. (Wesentliche im R" geltende Zusammenhänge wurden im Band 4 behan-
delt.) Die Definition des n-dimensionalen Integrals unterscheidet sich äußerlich kaum
von den entsprechenden Definitionen 2.5 und 3.1 für Bereichsintegrale (2-dim. Inte-
grale) bzw. Raumintegrale (3-dim. Integrale). In Analogie zu den Formeln (2.2) und
(3.1) hat man bei n-dimensionalen Integralen die Formel

ff [f(P) db = gm0Zf(P;) AB.-. (3.8)
B f’ r’

Hierbei ist natürlich jetzt B1, B2, ..., B„ eine Zerlegung des n—dim. Bereiches B in
n-dim. Teilbereiche, und unter AB; ist das n-dimensionale Volumen (der Riemannsche
Inhalt) von B, zu verstehen. Auf den Inhaltsbegriff (Maßbegrifi) im R" gehen wir
hier nicht ein. Wir verweisen auf die zu dieser Thematik gemachten Bemerkungen in
Band 2, Abschnitt l0.5.l.‚ und auf [5], Bd. II, bzw. [4], Bd. III. Die Begriffe Abstand
und Durchmesser im R" wurden in Band 4 erläutert.
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Für die Berechnung des n-dim.Integra1s ist wesentlich, daß auch für n-dim. Be-
reiche der zu den Sätzen 2.4 und 3.1 analoge Satz im R" gilt.

Satz 3.2: Ist B ein Normalbereich desR" undf(P) = f(x1 ‚ x2 ‚ ‚ x,.) eineaufB definierte
stetige Funktion, so ist der Wert des n-dimensionalen Integrals (vgl. (3.8)) gleich dem
Wert des zu B gehörigen n-fachen Integrals von f(x1, x2, , x,,).

Was man unter einem Normalbereich des R" und dem zugehörigen n-fachen Integral
versteht, soll an einem Beispiel im R‘ demonstriert werden.

8'1 g x1 g G1

32051) E x2 S G2(-xx)

$3051: x2) S x3 .5. G3(x1: x2)

g4(x1a X2, x3) g x4 g G4(x1: x2: X3)

B:

ist ein solcher Normalbereich. Das 4-dimensionale Integral vonf(P) =f(x1 , x2 , x3 ‚ x4)
über B ist dann gleich dem zu B gehörigen 4-fachen Integral von f(x‚ , x2, x3, x4). Das
heißt:

G2 Gxlfn) Ga(5’n°’:) G4(7‘x»5‘7a»¢:)

f_U_{f(P)dl7=_{ I I f(x1:x2:x3:x4)dx4dX3dx2dx1-
B s. am.) s:<I.,z.> s.<I1.zz.x.>

Es gibt insgesamt 4! = 24 verschiedene Typen Von 4-fachen Integralen. Bei 3-fachen
Integralen gibt es insgesamt 3! = 6 verschiedene Typen (vgl. Lösung zu Aufgabe 3.4).
Allgemein kann man feststellen, daß es n! verschiedene Typen von n-fachen Integralen
gibt.

3.2. Anwendungen des Raumintegrals

Ein erstes Anwendungsbeispiel haben wir schon in Abschnitt 3.1. kennengelernt.
Für die Gesamtmasse m des räumlichen Bereichs B mit der (ortsabhängigen) Dichte
9 = e(P) gilt

m = fbflgdb.

Benutzt man für das Raumintegral das Symbol mit einem Integralzeichen — wie es

z. B. auch in der Physik sehr oft gebraucht wird —‚ so lautet die Formel für die
Gesamtmasse

mzfgdb.
Auf die Angabe des Integrationsbereiches B haben wir hier ausnahmsweise verzichtet,
da dies in den Anwendungen auch oft der Fall ist; selbstverständlich muß dann aus
dem Zusammenhang ersichtlich sein, über welchen Bereich B man integriert. Schließ-
lich kann man an Stelle von m = f g db noch die ganz kurze Schreibweise

m = I dm

finden. Diese Schreibweise entspricht der folgenden physikalischen Vorstellung: Man
zerlegt den räumlichen Bereich B in kleine Raumteile mit dem Volumen db. Multi-
pliziert man das Volumenelement db mit der Dichte g (g = Dichte in einem beliebigen

S.3.2
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Punkt des Raumteiles)‚ so erhält man näherungsweise die Masse dm des Volumen-
elements: dm = g db. Die Summierung (Integration) über die Massenelemente dm
ergibt die Gesamtmasse m '

m=fdm=fQdb.

(Es ist sehr instruktiv, diese „physikalischen“ Formulierungen mit den Ausführungen
bei der Herleitung der Formel (3.2) zu vergleichen!)

Für den Schwerpunkt, das statische Moment und das Trägheitsmoment im Raum
erhält man Formeln, die mit den entsprechenden Formeln in der Ebene (vgl. Ab-
schnitt 2.4.) übereinstimmen, wenn man in den Formeln für die Ebene das Bereichs-
integralsymbol durch das Raumintegralsymbol ersetzt. Für den Schwerpunkt gilt der
folgende

Satz 3.3: B sei ein räumlicher Bereich mit der (ortsabhängigen) stetigen Dichte
g = g(P) = g(x, y, z). Für den Schwerpunkt S(x5, yg, zs) gilt dann

xs=7nl—j;ffxgdb‚i

ys=%fff.vedb.
L

zs=%/ffzgdb.
a

Die Gesamtmasse m von B wird dabei nach der Formel

m =£_iU.9db

berechnet.

(3.9)

Bei der Herleitung dieser drei Formeln läßt man sich vom gleichen Gedankengang
leiten, wie bei der Herleitung der entsprechenden Formeln für den Schwerpunkt eines
ebenen Bereichs. Bei der Skizzierung des Beweises für Satz 3.3 können wir uns ohne
Beschränkung der Allgemeinheit auf die Formel für/x; konzentrieren. Als bekannt
setzen wir wieder die Formeln für den Schwerpunkt (37, i, E) eines Systems von
Massenpunkten P,~(x,-, y,-, 2,) mitden Massen m; (i = 1, ..., n) voraus:

„ lx=;%’x,-m,-.

Analog für 52 und E. B wird in (kleine) Teilmengen B„ B2, ...‚ B„ zerlegt, und jede
Teilmenge Bi durch einen Massenpunkt P.- E B; mit der Masse m,- = m(B‚-) = Masse
von Bi ersetzt. Es gilt m,- z g(P‚-) AB‚-; hierbei ist wieder AB; das Volumen von B; und
g(P,-) die Dichte im Punkte P). Von diesem System von Massenpunkten P1 , P2, , P,.
mit den Massen m„ mg, ..., m„ bestimmen wir nach den bekannten Formeln den
Schwerpunkt (Sc, i, E), der eine Näherung für den gesuchten Schwerpunkt (x5, y5, 25)
des Bereiches B darstellt. Es gilt also : a? z x5, j z ys, E z zs. Den genauen Wert
von x5, yg, 25 erhält man durch den bekannten Grenzprozeß s5 B,» —-> 0.
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Diese Überlegungen ergeben formelmäßig:

2 : ä g x(P,) . m.- z ä g x(P.> e(P.-) An,

x5 = lim E = lim L Z x(P‚—) g(P,-) AB,-
zapo nBi-‚o m i

1 ‚ 1
= Z2220; [xg](P,~)AB;=7n—£ffxg db.

(Zur letzten Umformung vergleiche man Formel (3.1).)

Hinweis: Die in Satz 3.3 angegebene Formel für x5 wird wegen der vorhin beschrie-
benen physikalischen Beziehung g db_ = dm auch in der Form

x5 = äfßjyxdm

bzw. — bei Benutzung des Symbols mit einem Integralzeichen —

x5=%fxdm

geschrieben. Die drei Gleichungen x5 ———‘ 7:7 fx dm, yg = äj’y dm, z; = Z1!z dm

könnemschließlich noch in einer Vektorgleichung zusammengefaßt werden:

xs x
l 1

ys =x5=—n‘1fxdm=;fy dm.

zZs

Den Schwerpunkt eines homogenen Bereiches B (g = const) bezeichnet man als
geometrischen Schwerpunkt. Ist g = 9., = const, so kann man in den Formeln des

Satzes 3.3 den Faktor go vor das Integral setzen und erhält wegen I; =

x

go den

Satz 3.4: Für den geometrischen Schwerpunkt (x„, yo , zo) des räumlichen Bereiches B gilt S.3.4

.x.,=—I1/—‘/J:/‘xdb,

yo=iVfBffy db, ‘ (3.10)

z0=iV/1;]-fzdb.

V wird nach der Formel V = db berechnet (vgl. (3. 3)).
B
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y z

Bild 3.4

3 X

Beispiel 3.5: Von dem durch die Koordinatenebenen x = Ü, y = O, z == 0 (y, z—Ebene,
x, z-Ebene, x,y-Ebene) sowie den Ebenen 2x+ y = 6 und 6x+ 3y + 4z = 24 begrenzten
räumlichen Bereich B (s. Bi1d3.4) bestimme man den geometrischen Schwerpunkt.

Wir berechnen zunächst das Volumen Vvon B nach der Formel V=Idb. Da. B

ein räumlicher Normalbereich vom Typ B1 ist (vgl. Lösung zu Aufgabe; 3.2), kann
man das Raumintegral mit Hilfe eines dreifachen Integrals berechnen (vgl. Formel
(3.5)). Wegen

ogxga
B: {O g y g 6 — 2x

0 S Z S 5 — *3 x * ä)’
gm: 3 6-23: 6—’/,z—’/‘y

V=fffdb=ff f dzdydx
1s o 0 o

3 6-2.: 3

=1 I(6—%x—%y>dydx=f[6y—%xy-zyv1::f;""‘dx
0 O O

8

=f(523—12x+%x2)dx:27.
0

Von den Koordinaten des geometrischen Schwerpunkts berechnen wirnur die x—Koor-
dinate x.,. (Bei yo und zu ergeben sich keine neuen Gesichtspunkte.) Nach Satz 3.4 gilt

3 6»2z 6-’/,a:—-‘],y
1 Ix.,=7fffxdb=7f/ f xdzdydx

B 0 0 O

3 6~—2z

l 3 3=fiffx(6—5x—:y)dydx
o o
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Aufgabe 3.6: B sei ein räumlicher Bereich, der nach unten durch die Jgy-Ebenc, nach oben durch das
Rotationsparabcloid z = x3 + y‘ + 2 und seitlich durch die auf der x,y-Ebene senkrecht stehenden
Ebenen x = 0, x = 3, y = 1, y = 4 begrenzt wird. (In Bild 3.5 ist die Projektion von B auf die
x‚y-Ebene eingezeichnet.) Man berechne die x-Koordinate des geometrischen Sehwerpunkts von B.

‚ Bild 3.5

J X

Ist B ein räumlicher Bereich mit dem Schwerpunkt S(x5, ys, 25) und der Gesamt-
masse m, so versteht man unter dem statischen Moment von B bezüglich der x‚y-Ebene
das Produkt M‚„„:= m -z5 (Gesamtmasse von B mal Abstand des Schwerpunktes
von der x‚y-Ebene). Analog definiert man die statischen Momente von B bezüglich der
beiden anderen Koordinatenebenen. Nach Satz 3.3 kann man die statischen Mo-
mente von B wieder durch Raumintegrale darstellen.

Satz 3.5:

Mw=mtzs=gfzgdb (3.11)

ist das Moment von dem räumlichen Bereich B (mit der Dichte g = g(P))
bezüglich der x,y-Ebene.

Ebenfalls durch Raumintegrale kann man den Begriff des Trägheitsmomentes
beschreiben. Unter dem Trägheitsmoment eines Massenpunktes P(x‚ y, z) mit der
Masse m bezüglich einer Ebene Eo bzw. einer Geraden go bzw. eines Punktes Po ver-
steht man das Produkt m - r? = Masse mal Quadrat des Abstandes r des Punktes P
von E0 bzw. go bzw. P0. Das Trägheitsmoment JEn bzw. Ja, bzw. Jpa bezüglich einer
Ebene Eo bzw. einer Geraden (Achse) go bzw. eines Punktes (Pols) P0 bezeichnet man
als planares bzw. axiales bzw. polares Ttäg’ ' smoment.

Hat man ein System von Massenpunkten P.-(x‚-‚ yi, z‚-) mit den Massen m; (i = 1,

2, , n), so summiert man über die Trägheitsmomente der einzelnen Massenpunkte
und erhält das Trägheitsmament eines Systems von Massenpunkten:

J= Z‘ m; r?. (3.12)

Hierbei ist r,- der Abstand des Punktes P; von E0 bzw. go bzw. Pg, je nachdem, ob es

sich um ein planares, axiales oder polares Trägheitsmoment handelt.
Auf dem nun schon hinreichend bekannten Weg (Zerlegung des Bereiches B in

kleine Teilmengen B1 , ..., B„ usw.; vgl. die Ausführungen zum Satz 3.3) gelangt man
von der Formel (3.12) zu einer Formel für das Trägheitsmontent eines räumlichen
Bereichs (eines Körpers) B.
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Es gilt der

Satz 3.6: Das Trägheitsmoment J (=JE„ bzw. Jg“ bzw. Jp“) eines räumlichen Bereiches B
mit der (ortsabhängigen) Dichte g = g(P) = g(x, y, z) berechnet man nach der Formel

I J=gfr2gdb. (3.13)

Hierbei ist r der Abstand des (variablen) Punktes P(x, y, z) von E0 bzw. go bzw. P0,
je nachdem, ob es sich um das planare, axiale oder polare Trägheitsmoment J = JE"

bzw. J = Jg" bzw. J = Jp“ handelt.

Bei der Berechnung des Abstandes r (Abstand Punkt-Ebene, Abstand Punkt-
Gerade, Abstand Punkt-Punkt) geht es um einfache geometrische Grundaufgaben
(vgl. Band 13; 1.4.5. und 1.4.6.) In einigen wichtigen Spezialfallen kann man r bzw.
r? sofort angeben:

Eo = x‚y—Ebene = r’ = 22,

go = x-Achse 2 r’ = y’ + 22,

P0=0 =>r2=x2+y"’+z2
(0 = Koordinatenursprung).

Die Formel (3.13) wird auch in der Form

J=_{ffr2 dm bzw. J=fr? dm

angegeben.

Beispiel 3.6: Von dem in Bild 3.6 dargestellten räumlichen Bereich B(Quader) mit
E 1 berechne man das Trägheitsmoment bezüglich der z-Achse.
Ist go die z-Achse, so gilt für den Abstand r des variablen Punktes P(x, y, z) von

der z-Achse r’ = x2 + y’. Für das gesuchte Trägheitsmoment J, gilt daher nach For-
mel (3.13)

J‚=fif(x’-’+y2)db.
B

Da B ein räumlicher Normalbereich ist, kann das Raumintegral sofort durch ein
dreifaches Integral ersetzt werden (vgl. Satz 3.1):

.2 3 4

J.=fff(x2+y2)dzdydx=1o4[g-cmz].
000

Z.

Bild 3.7
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Aufgabe 3.7: B sei der in Bild 3.7 dargestellte räumliche Bereich (Vierflach) mit dcr Dichte g = x + 1. s

Man berechne das Trägheitsmoment von B bezüglich der y-Achse.

Bei der Berechnung des Trägheitsmoments ist ein Satz von Bedeutung, mit dessen
Hilfe man das Trägheitsmoment eines Körpers bezüglich irgendeiner Achse ermitteln
kann, wenn man die Trägheitsmomente dieses Körpers bezüglich der durch den
Schwerpunkt des Körpers gehenden Achsen kennt. Es handelt sich um den

Satz 3.7 (Steiner): B sei ein Körper mit der Dichte g = g(P) und der Gesamtmasse m. 5.3.7
1st g eine beliebige Achse, gs eine zu g parallel verlaufende Schwerpunktachse (g H gs,
S egs, S Schwerpunkt von B), a der Abstand dieser beiden Achsen, so gilt für das
Trägheitsmoment J bzw. J5 des Körpers bezüglich g bzw. gs die Gleichung

J: Js+ ma?

Beweis: Wir führen ein rechtwinklig-kartesisches Koordinatensystem ein, dessen z-Achse mit der
Achse g zusammenfällt und dessen x,z-Ebene die Achse gs enthält. Wegen gllgs ist das möglich!
Legt man nun durch den beliebigvorgegebenen Punkt P(x, y, z) eine auf g senkrecht stehende Ebene
Ep (wegen „g -=- z-Achse“ muß E, parallel zur x,y-Ebene verlaufen!), so ergibt sich bezüglich der
drei Größen rl = Abstand (P, g), r; = Abstand (P, gs), a = Abstand (g, gs) der in Bild 3.8 darge-

P’ Bild 3.8

stellte Zusammenhang; dabei ist P1 bzw. P2 der Schnittpunkt der Ebene E‘. mit g bzw. gs. Für die
_. _. _»

Vektoren rl = P1P, a = P1P2, r2 = P21’ gelten die Beziehungen:

I) lrll = n, lal = a. Ira! = r2;

I1) r1 = a + r2;

III) (x, y, 0): Koordinaten des Vektors rl,

(a, 0, 0): Koordinaten des Vektors a,

(x —- a, y, 0): Koordinaten des Vektors rg = r1 — a (bezüglich des eingeführten Koordinaten-
Systems).

Für die Trägheitsmomente J bzw. J5 gilt nach Satz 3.6:

J = m ‚f9 db‚ J5 = m" rgg db.
B B

Es ist nun zu zeigen: J = J5 + ma“:
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J, = jjjrfig db = jjjrfig db = m [(x — a)? + ya g db
B B B

= m" (x2 + y’)g db — m‘ Zzzxg db + ff] 112g db
B B B

=j'é”rfgdb— 2a§éHxgdb+a2£_}”gdb

= J — 2a ~ xsm + azm. (Vgl. Satz 3.3)

Da der Schwerpunkt S auf gs liegt, muß für die x-Koordinate des Schwerpunkts (x5) bezüglich des
eingeführten Koordinatensystems die Gleichung x5 = a gelten. Wegen J5 = J — 2112m + azm
= J ~ 412m ist damit der Satz von Steiner bewiesen.

Hinweis: Am Schluß des Beweises wurden die Faktoren 2a und a? vor das jeweilige Raumintegral
gesetzt. Das ist möglich, weil diese Faktoren konstant sind. Den Faktorg dagegen darf man i.allg.
nicht vor das Raumintegral setzen; dies wäre lediglich im Falle eines homogenen Bereichs erlaubt
(g = const).

An dieser Stelle wollen wir zunächst einmal die Reihe der Anwendungen des Raum-
integrals abbrechen. Im Abschnitt 4. lernen wir aber noch weitere Anwendungs-
beispiele kennen. Die Transformationsformel für mehrdimensionale Integrale, die
im Abschnitt 4.2. behandelt wird, gestattet eine wesentlich bessere Beherrschung der
mehrfachen Integrale, als das nach unseren bisherigen Kenntnissen möglich ist.
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4.1. Allgemeine krnmmlinige Koordinaten

In Band 4 (Abschn. 2.6.) wurden krummlinige Koordinaten in der Ebene und im
Raum eingeführt. Der wesentliche Grund, von den rechtwinklig-kartesischen x,y-Ko-
ordinaten in der Ebene [bzw. x‚y,z—Koordinaten im Raum] zu krummlinigen u‚v-Ko-
ordinaten [bzw. u‚v‚w-Koordinaten] „überzugehen, liegt in der Tatsache begründet,
daß eine ganze Reihe von ebenen [bzw. räumlichen] Bereichen durch geeignete
krummlinige Koordinaten wesentlich einfacher beschrieben werden können, als durch
die im allgemeinen verwendeten rechtwinklig-kartesischen Koordinaten. Das folgende
einfache Beispiel wird zeigen, daß die eben getroffene Feststellung vor allem auch bei
Bereichs- und Raumintegralen unbedingt beachtet werden muß! Ungünstige Wahl der
Koordinatenart führt fast immer zu komplizierteren Rechnungen bei den zugehö-
rigen zweifachen bzw. dreifachen Integralen — in Vielen Fällen kann es sogar zu einem
mit den üblichen Mitteln nicht mehr lösbaren Problem führen.

Beispiel 4.1: Das Volumen V einer Kugel vom Radius a soll mit Hilfe eines Raum-
integrals berechnet werden.

Wir führen ein rechtwinklig-kartesisches x,y‚z-Koordinatensystem ein, dessen
Koordinatenanfangspunkt 0 mit dem Mittelpunkt M der Kugel zusammenfallen
soll (s. Bild 4.1). Der durch die Kugel x’ + y’ + z’ = a’ begrenzte räumliche Bereich B
ist ein Normalbereich vom Typ B1 (vgl. Lösungen zur Aufgabe 3.2; B kann in diesem
Fall auch als Normalbereich vom Typ B2, ..., B6 angesehen werden). Es gilt

—a§xga
B: —l/ xzgygl/a2—x"

_Va2__x2__y2§Z§‘|/a2_x2__y2.

Bild 4.1

Diese Ungleichungen ergeben sich aus folgenden Umformungen: Aus x2 + y’ + z? = a’
folgt z = 517a? ~ x2 — y’, wobei „+“ die obere und „—“ die untere Kugelhälfte
liefert. Die Projektion B“, (von B auf die x‚y-Ebene) ist die durch den Kreis
x’ + y’ = a’ begrenzte Kreisscheibe mit den Begrenzungskurven y = i 1/a2 — x2.
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Nach den Formeln (3.3) und (3.5) erhalten wir dann

a „T1. „muflfii
V=fffdb=f L f dzdydx_.

_„ _Va2_12 _ y„._„_yz

Dieses dreifache Integral ist natürlich noch lösbar (für V erhält man den bekannten
Wert %-7:11“), aber äußerlich sieht es doch schon relativ kompliziert aus. Daß bei
diesem einfachen Bereich (Kugel) das zugehörige dreifache Integral die angegebenen,
von x und y abhängigen Grenzen hat, liegt an der für diesen Bereich ungünstigen
Koordinatenwahl. Wenn man dagegen Kugelkoordinaten r, 1.9, (p einführt, wird der
Bereich B durch den folgenden Bereich B’ des r, 19,90-Raumes charakterisiert:

0§r<a
B’: ogo

029?
7:

27c.H
/\

IV
\

l!

Wir wissen aber im Augenblick noch nicht, wie sich das Raumintegral beim Über-
gang von den x‚y,z-Koordinaten zu den r,v.9,<p-Koordinaten verhält. Auf diese Frage
werden wir im Abschnitt 4.2. ( Transfarmationsformelfür mehrdimensionale Integrale)
eine Antwort geben. An dieser Stelle möchten wir aber schon darauf hinweisen, daß
die äußerlich naheliegende Umformung

n2.1.;

V=fffdrdt9d<p
000

nicht richtig ist. Dann würde man nämlich für V den Werte 278a erhalten.
Als Vorbereitung für den Abschnitt 4.2. sollen in diesem Abschnitt alle wesent-

lichen Eigenschaften über krummlinige Koordinaten zusammengestellt und erläutert
werden. Es handelt sich zum großen Teil um eine Wiederholung der bereits im Band 4
behandelten Thematik.

Bei krummlinigen Koordinaten in der x,y—Ebene (im R’) wird durch eine eindeutige
Abbildung (Transformation)

T:{"= w“ ") (4.1)
y = y(u. v)

aus der u,v-Ebene auf die x,y—Ebene gewährleistet, daß es zu jedem Punkt Po (x0, yo)
(mindestens) ein Paar (Ito, v.,) gibt mit

x0 = x(“os Va),

yo = )’(“o: '70)-

Diese Zahlen uo, vo heißen krummlinige Koordinaten des Punktes P0(x„, yo) bezüglich
des durch Formel (4.1) festgelegten krummlinigen Koordinatensystems.

Die am meisten gebrauchten krummlinigen Koordinaten in der x,y—Ebene sind die
Polarkoordinaten r, q) (s. Bild 4.2). Formel (4.1) hat in diesem Spezialfall die Gestalt

x= r - 00W (= x(r‚ <P)).
„ (4.2)

y = r~s1n <P (= y(r, 97))-
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y .

Bild 4.2

Zu jedem (xo, yo) =1: (0, 0) gibt es im‘ Bereich 0 < r < oo‚ —-71 < (p g T: genau ein
Paar (ro, goo) mit

—x„= 70- cbs (po,

yo = to - sin «pa.

Hinweis: In Band 4 wurde für die in Formel (4.1) auftretenden Gleichungen meistens
die Schreibweise x = fi(u, v), y = f2(u, v) benutzt.

Bei krummlinigen Koordinaten im x,y,z-Raum (im R3) hat man an Stelle der For-
mel (4.1) die Beziehung ‘

x = x(u, v, w)

T: y = y(u, v, w) (4.3)

z = z(u, v, w).

Es wird wieder vorausgesetzt, daß durch (4.3) eine eindeutige Abbildung aus dem
u,v‚w-Raum auf den x‚y‚z-Raum definiert ist.

Die bekanntesten krummlinigen Koordinaten im x,y,z-Raum sind die Zylinder-
koordinaten und die Kugelkoordinaten. Bei Zylinderkoordinaten r, (p, 2* nimmt die
Formel (4.3) die folgende Gestalt an:

x = r - COW (= x(r, tr, z*)),
y = r - sin (p (= y(r‚ (p, z*)), (4.4)

z = 2* (= z(r, w, z*))-

Zu jedem Punkt (xo, yo, z.) mit (x0, y.) + (p, o) gibt es iin Bereich o < r < o0,’
-7: < «p TC, —oo< z* < eo genau ein Tupel (ro, 910, 29*) mit x0 = ro - cos «pg,

y„ = n, - sin 9120, zo = 20* (s. Bild 4.3).

Z

Bild 4.3

Hinweis: Da die dritte kartesische Koordinate z mit der dritten Zylinderkoordinate
z* übereinstimmt, werden in der Regel die Zylinderkoordinaten mit r, (p, z bezeichnet.
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In der Einführung empfiehlt es sich aber, diese beiden Koordinaten in der Bezeich-
nung zu unterscheiden; man vermeidet dann die etwas unglückliche Schreibweise
x=rcos¢p,y=rsin<;a, z=z.

Für Kugelkoordinaten r, 15‘, q) erhält die Formel (4.3) die spezielle Gestalt

x = r cos q: sin 19 (= x(r‚ 15‘, 92)),

y = r Sin <17 Sin 19 (= y(r, 79, w), (4.5)

z: rcosü (= z(r, 19, 1,17)).

Die durch die Formel (4.5) gegebene Abbildung bildet den Bereich 0 g r < oo,
0 g 2‘) g 7c, 0 g (‚v < 2.-: des r,v9,<p-Raumes auf den gesamten x‚y‚z—Raum ab (s. Bild 4.4).

P(x‚y.z)

P’(XIy, D) Bild 4.4

X

Den im R2 und R7‘ eingeführten Begriff der krummlinigen Koordinaten kann man

sofort auf den R" übertragen. Krummlinige Koordinaten im x1, ..., x‚.-Raum (im R")
werden durch eine eindeutige Abbildung

x, = x,(u1, ..., u„)

T: S (4.6)
x‚. = x„(u1‚ ..., 14,.)

aus dem ul, ..., u„-Raum auf den xx , , x,,-Raum festgelegt.

Ein wesentliches Hilfsmittel für die Beherrschung des Zusammenhangs zwischen
den (kartesischen) x1, ..., x,.-Koordinaten und den krummlinigen ul, ..., u„-Koor-
dinaten ist die Funktionaldeterminante der Abbildung T. Diese Funktionaldetermi-

nante ‘wird mit dem Symbol bezeichnet und durch die folgende Gleichung
definiert W1 ’ "'9

5x1 ax,

ö<x.. x„) a?“ a?" =56-7 := . . l . (4.7)
1 7 s n ax" ax"

Oul Gun

Für die Existenz der Funktionaldeterminante (in einem gewissen Bereich B’ des
ul, ..., u„-Raumes) ist natürlich erforderlich, daß sämtliche partiellen Ableitungen
(l. Ordnung) der Funktionen x‚(u„ ..., u‚.), ..., x„ (ul, , u,.) Von T (in B’) existieren.
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Bei krummlinigen Koordinaten im R’ bzw. R3 erhält man als Spezialfall der Formel
(4.7) die Formeln

3 2 .

6(x‚y) _ öu av ' 4 8

3(u,v) _ Öy Öy (')
Ü? Tu

und
Öx Bx Öx

(Tu "B? W
6(x. y, z) _ Öy Q a)’ _

w)’. a—„ av a—w‘ “-9)
öz Oz Öz

Tu T; Ü»?

Anwendung der Formel (4.8) bzw. (4.9) auf Polarkoordinaten bzw; Zylinder- und
Kugelkoordinaten liefert die Beziehungen

3(x y) xr x.„
’ = = ‚ 4.10

B099’) yr ya: r ( )

ab: y z) x xv, x,
.a——’—’—= ‚ = , 4.1l
d(r‚<r‚z) J; z” z‘ r ( )

7‘ G7 I

1x, x3 x
Ö(x.y‚z)_‘ "’ .— Jzz, :29 :a,‘=r’ 511119 (4.12)

r .9 o

(vgl. Band 4, Abschnitt 3.8.3.).

Beispiel 4.2: Der in Bild 4.5 dargestellte räumliche Bereich B (Kreiskegel mit dem
Radius R = 2 und der Höhe H = 3) soll

a) durch kartesische Koordinaten x, y, z und

b) durch Zylinderkoordinaten r, (p, z beschrieben werden.

Bild 4.5

5 Körbenlnlegralrechnung
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Zu a): Schneidet manB längs der x, z-Ebene auf, so erhält man ein Dreieck (s. Bild 4.6).

Die Strecken s1 und s2 werden beide durch die Gleichung z = — [x[ + 3 = —+ 3

beschrieben.
3

z = — gl/x2 + y’ + 3 ist auf alle Fälle eine Rotationsfläche, denn alle Punkte (x, y)
eines Kreises x2 + y’ = r’ haben den gleichen z-Wert z = — gr + 3. Der Schnitt
dieser Fläche mit der x‚z—Ebene (y = 0) liefert z = — 2V)?’ + 3. (Über Rotations-
fiächen. Kegelflächen und Zylinderfläehen kann man sich auch in [1] informieren.)
Der Mantel des Kreiskegels entsteht durch Rotation von s2 um die z-Achse und
wird durch die Gleichung z = —— ä l/x’ + y’ + 3 (x2 + y’ g 4) beschrieben. B ist ein
räumlicher Normalbereich vom Typ B1 (vgl. Lösungen zur Aufgabe 3.2), der nach
oben durch die Kegelmantelfläche und nach unten durch die in der x‚y-Ebene (z = 0)
liegende Kreisscheibe x2 + y’ g 4 begrenzt wird. Es gilt daher:

—2§x§2
B: —|/4—x2gyg|/4—x2

0gzg—%l/x2+y2+3.

Zu b): Wegen x2 + y2 = r? (vgl. Formel (4.4)) und z = — £1/x2 + yz + 3 gilt für
alle Punkte (r, (p, z) der Mantelfläche des Kegels: z = — är + 3. (Auf Grund der
Rotationssymmetrie von B ist es auch geometrisch unmittelbar einleuchtend, daß z

nur von r und nicht von (p abhängt.) Bezüglich Zylinderkoordinaten wird daher der
Bereich B durch folgende Ungleichungen beschrieben (s. Bild 4.5):

—7'c<(p§7':
B’: ogrgz

0§z§—§r+3.

Ein Vergleich von a) und b) zeigt, dal3 der hier vorgegebene räumliche Bereich (Kreis-
kegel) durch Zylinderkoordinaten wesentlich einfacher zu beschreiben ist, als durch
kartesische Koordinaten. Der durch die obigen Ungleichungen für r, (p, z beschrie-
bene Bereich B’ ist ein Normalbereich im r‚<;v,z-Raum vom Typ A '

‘P1 g ‘P S. ‘P2,

r1(¢) ä r g r2(<P)>

z1(r, m) 2 z g z2(r‚ s0)-

Auf diese allgemein gültigen Prinzipien bei der Beschreibung von Normalbereichen
wurde bereits in der Lösung zur Aufgabe 3.2 hingewiesen. (Wie sehen die 6 Typen
von Normalbereichen im r‚cp,z-Raum aus?)
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Aufgabe 4.1: Man beschreibe den in Beispiel 4.2 angegebenen räumlichen Bereich durch einen „
Normalbereich im r,zp,z-Raum vom Typ

‘F1 ä (F ä ‘P2,

71W) 5 Z E 72(99):

"1(‘PyZ) ä V ä V2(‘PyZ)<

Aufgabe 4.2: Von dem in Bild 4.7 dargestellten räumlichen Bereich B (Halbkugel mit dem Radius R) 3

soll eine Darstellung als Normalbereich angegeben werden, und zwar

a) bezüglich kartesischer Koordinaten und

b) bezüglich Kugelkoordinaten.

Bild 4.7 Bild 4.8

Aufgabe 4.3: Läßt man die in der x‚z-Ebene liegende Gerade z = x (x g 0) um die z-Achse rotieren „
so schneidet sie aus der Kugel x’ + y? + z’ g R2 einen Kugelausschnitt aus (s. Bild 4.8). Dieser
Kugelausschnitt (B) soll

a) durch Kugelkoordinaten,

b) durch Zylinderkoordinaten beschrieben werden.

Hinweis: Wir empfehlen, die Aufgaben 4.1, 4.2 und 4.3 mit großer Sorgfalt zu lösen.
Die Bestimmung der Grenzen eines Bereiches bezüglich krummliniger Koordinaten
ist die entscheidende Grundlage für die Berechnung von Bereichs- und Rauminte-
gralen mit Hilfe krummliniger Koordinaten. Im Abschnitt 4.3. (Anwendungen der
Transformationsformel für mehrdimensionale Integrale) werden keine wesentlichen
Schwierigkeiten auftreten, wenn die mit Beispiel 4.2 und den Aufgaben 4.1, 4.2, 4.3
zusammenhängende Problematik voll verstanden worden ist.

4.2. Die Transfomiationsfonnel für mehrdimensionale Integrale

Im Abschnitt 4.1. (Beispiel 4.1) wurde bereits darauf hingewiesen, daß es in vielen
Fällen nicht günstig ist, ein vorgegebenes Bereichs- bzw. Raumintegral (zweidimen-
sionales bzw. dreidimensionales Integral) f(P) db bzw. ffl/(P) db mittels karte-

B B
sischer Koordinaten x, y bzw. x, y, z zu berechnen. '

‚

5c
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Bei einem Kreis bzw. Kreisausschnitt ist es vorteilhafter, an Stelle von kartesischen
x,y-Koordinaten mit Polarkoordinaten r, (p zu rechnen. Die „natürlichen“ Koor-
dinaten für die Beschreibung einer Kugel bzw. eines Kugelausschnittes sind die Kugel-
koordinaten r, 19, (p. Für Kreiszylinder‚ Kreiskegel und daraus zusammengesetzte
Bereiche sind die Zylinderkoordinaten die günstigsten Koordinaten zur Beschreibung
dieser Bereiche.

Wir kommen nun zu den Überlegungen und Fragestellungen, die uns auf die Trans-
formationsformel für mehrdimensionale Integrale führen werden:

Jedes Bereichsintegral fff(P)db [bzw. Raumintegral ffff(P)db] kann nach

Formel (2.5) [bzw. Form; (3.5)] durch Doppelintegrale [blzw dreifache Integrale]
. z, y‚(z) z, y„'(z) z,(z,y)

der Form f f f(x, y) dy dx [bzw. f J f f(x, y, z) dz dy dx berechnet wer-

I. 1/.(I> z;(w.y)1. um)
den — sofern die Grenzen bei den Doppelintegralen [bzw. dreifachen Integralen]
und der Integrandf(x, y) [bzw. f(x, y, z)] nicht so kompliziert sind, daß man bei den
nacheinander auszuführenden zwei [bzw. drei] einfachen Integrationen auf sehr
große Schwierigkeiten stößt. Treten solche Schwierigkeiten auf, wird man ver-
suchen, von den alten (kartesischen) Koordinaten x, y [bzw. x, y, z] zu neuen (krumm-
linigen) Koordinaten u, v [bzw. u, v, w] überzugehen, die dem Problem besser an-

vgepaßt sind. „Dem Problem besser angepaßt“ heißt in diesem Zusammenhang, daß
die Grenzen des Bereiches B und die Funktionf(P) bezüglich der neuen Koordinaten
eine einfachere Gestalt haben. Wir erinnern an dieser Stelle an das besonders an-

. schauliche Beispiel einer Kreisscheibe vom Radius R.

Beispiel 4.3: Legt man durch den Mittelpunkt der Kreisscheibe ein x‚y-Koordinaten-
system, so wird die Kreisscheibe in der x,y-Ebene wie folgt beschrieben:

—R g x g R
B: j T

—]/R2-x2§~y_S_VR2——x’.

Der Übergang von den kartesischen Koordinaten x, y zu Polarkoordinaten r, q) be-
wirkt, daß dieselbe Kreisscheibe in der r‚<p-Ebene wesentlich einfacher beschrieben
werden kann:

B,‘ l 0 ä r ä R
' -1: < q: g n: .

Anders ausgedrückt heißt das (s. Bild 4.9): Durch die Abbildung

T_{x=rcoszp
' y=rsinzp

wird der Bereich B’ der r,<p-Ebene (abgesehen von den Punkten mit r = 0) umkehrbar
eindeutig auf den Bereich B der x‚y-Ebene abgebildet. (An Stelle von —7r < (p g 7c

könnte in B’ auch 0 g (p < 21': oder jedes andere Intervall der Länge 21: gewählt
werden.)

Die folgenden Sätze geben nun darüber Auskunft, wie ein Bereichs- bzw. Raum-
integral bezüglich krummliniger Koordinaten beschrieben wird.
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-x Bild 4.9

Satz 4.1: Vorgegeben sei ein Bereiclzsintegral f(P) db = ff f(x, y) db. u, v seien S.4.l
B B

krummlinige Koordinaten der igy-Ebene, die mit den x,y-Koordinaten durch die Glei-
chungen x = x(u‚ v), y = y(u‚ v) verknüpft sein mögen. Ist nun B’ ein Bereich der u‚v-
Ebene, der durch die Abbildung (Transformation)

T: x = x(u‚ v), y = y(u, v)

mit in B’ stetigen partiellen Ableitungen und positiver Funktionaldeterminante umkehr-
bar eindeutig auf den vorgegebenen Bereich B der x,y—Ebene abgebildet wird (s. Bild .

4.10), so kann das Bereichsintegral mit Hilfe der neuen u,v-Koordirzaten nach der fol-
genden Formel ermittelt werden

/ff(x,y)db ‘fff(x(u, v), y(u, v))- ab”) db’. l (4.13)
B B’

301: v)

Diese Formel nennt man Transformationsformel für Bereichsintegrale.

H Bild 4.10

Die Formel (4.13) ist eine Verallgemeinerung der bekannten Transformations-
forme] für bestimmte Integrale

b l7’

f/(x) dx = ff(x<u»g du

(vgl.„Substitutionsmethode bei bestimmten Integralen“ in Band 2, Satz 10.11).
Hierbei ist a bzw. b das, Bild von a’ bzw. b’ bei der Transformation x = x(u); das
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Intervall [a’, b’] wird durch die Transformation x = x(u) auf das Intervall [a‚ b] ab-
gebildet.

Zum Satz 4.1 sind noch einige Hinweise und Ergänzungen erforderlich:

a) Die Voraussetzung „T ist eine umkehrbar eindeutige Abbildung“ braucht für die
Randpunkte von B’ nicht unbedingt erfüllt zu sein. Im Beispiel 4.3 werden sämtliche
Punkte (r, 9:) von B’ mit r = 0 auf den Punkt (x, y) = (0, 0) von B abgebildet.

b) Es genügt vorauszusetzen‚ daß die Funktionaldeterminante D im Inneren des

‘angegebenen Bereichs nicht verschwindet. Im Falle D < 0 kann wegen 5))

23i? durch Vertauschung von u und v das Vorzeichen geändert werden.

Im Beispiel 4.3 ‚ist die Funktionaldeterminante a(x’ y) für alle auf dem linken Rand
von B’ liegenden Punkte’(r = 0) gleich null. r’ (p)

c) Der Formel (4.13) auf der rechten Seite stehende Ausdruck ist das Bereichs-

integral der Funktion ¢(P) = Q3(u, v) := f(x(u‚ v), y(u, 12)) über dem in der

u‚v—Ebene liegenden Bereich 13': ff cm4, v) db’ (vgl. Definition 2.5 im Abschnitt 2.1.).
B,

Formel (4.13) kann in eine für die praktische Berechnung sofort brauchbare Form
gebracht werden, wenn der Bereich B’ ein Normalbereich in der u‚v-Ebene ist. Ist zum
Beispiel B’ ein Normalbereich vom Typ

{ “1 g 14 S 142

V10‘) S. U i U2(“)‚

so geht die Formel (4.13) in die folgende Formel über:

u, 112(14)fff(x, y) db =f ff(x(u, v), y(u, 12)) dvdu (4.14)

B "1 ”|(Y1)

(vgl. Satz 2.4 im Abschnitt 2.3.).

Die Transformationsformel (4.13) (4.14) nimmt für den Fall, daß es sich bei
den krummlinigen Koordinaten u, v um die Polarkoordinaten r, (p handelt, die fol-
gende spezielle Gestalt an

ff/(x, y) db = _{ff(r cos £17,!‘ sin (p) . r db’ (4.15)
B B’

bzw.

ffflx, y) db = f 9fr)f(r cos (p, r sin (v) . r dq) dr. (4.16)
B n w.<r> .
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Formel (4.16) gilt, wenn B’ ein Normalbereich in der r,<p-Ebene vom Typ

{ r1 S i‘ S T2

<Pi(r) S <71 S <;o2(r)

ist.

Als Beispiel wählen wir ein Flächenintegral, welches in einem anderen Zusammen-
hang bereits einmal auftauchte (Vgl. Beispiel 2.7 in Abschnitt 2.5.).

Beispiel4 .4 : B sei eine Kreisscheibe vom Radius R mit dem Mittelpunkt im Ursprungs-
punkt der x,y-Ebene. Außerdem sei die Funktion f(P)=f(x, y)= e‘1"V' Vorge-

geben. Das Bereichsintegral flflP) db soll mit Hilfe von Polarkoordinaten berechnet
werden. Ä

Bezüglich x,y-Koordinaten gilt (vgl. (2.5))

R V2
fff(P)db= f f e"("’+V’>dy dx.
B —R -1/T

Bezüglich Polarkoordinauten gilt (vgl. Formel (4.16) und Bild 4.9)

ß R 7!

fjf(P)db =fff(x, y) db =f fe-r’ rdqa dr.
B B 0 -1:

Das rechts stehende Doppelintegral kann ohne Schwierigkeiten berechnet werden
(Substitution beim äußeren Integral: r’ = t)

B
:

m fr“ r dq: dr = f2?! e"" r dr = 21tf2§e"dt
—.' 0 0o

.

='n:(—e“‘) f; „(i — e-ä’).

(Im Zusammenhang mit der im Beispiel 2.7 des Abschnittes 2.5. behandelten Frage-
stellung möchten wir darauf hinweisen, daß das hier betrachtete Bereichsintegral für
R—> oo gegen den Wert 1: konvergiert.)
Aufgabe 4.4: Von dem in Bild 4.1l dargestellten ebenen Bereich B (Viertelkreis) berechne man den
geometrischen Schwerpunkt mit Hilfe von Polarkoordinaten.

Y

Bild 4.11
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Aufgabe 4.5: B sei der in Bild 4.12 dargestellte Bereich (Halbkreis vom Radius 2). Man berechne
das Trägheitsmoment J, von B bezüglich der x-Achse. Die Flächendichte g sei identisch gleich 1.

(Anleitung: Man gehe vom x‚y-System zum x'‚y’-System über.)

Y

Bild 4.12

Es ist nicht beabsichtigt, einen Beweis zum Satz 4.1 zu bringen, da das mit allen Feinheiten einen
erheblichen Aufwand bedeuten würde. Wir können uns aber ohne größere Schwierigkeiten durch
eine grobe Näherungsrechnung die Formel (4.13) verständlich machen. Ausgangspunkt bei unseren

vergleichenden Betrachtungen ist die für Bereichsintegrale gültige Näherungsformel:

fff(P) db r: 2 f(P,) AB,.. a)
B

Hierbei ist B1, B2, ..-., B„ eine möglichst „feine“ Zerlegung von B, P,- ein beliebig gewählter Punkt
aus B; und AB; der Flächeninhalt von B; (Vgl. Definitionen 2.4 und 2.5 im Abschnitt 2.1.).

Durch die Geraden u = u,- und v = v,- (i = 0, 1, 2, ...) wird der Bereich B’ in Teilbereiche zerlegt.
B,-' sei der durch die Geraden u = llg, u = 14;“, v =‘v,~, v = um begrenzte Bereich (s. Bild 4.13). Wir
berücksichtigen bei den weiteren Ausführungen nur diejenigen Bereiche B,-', die ganz in B’ enthalten
sind. Bei genügend feiner Zerlegung von B’ liefern die „Randbereiche“ B,-’ nur einen geringen Beitrag
zu der in (*) auftretenden Summe, sie können bei unserer Näherungsrechnung unberücksichtigt
bleiben. Die B,’ bilden eine Zerlegung von B’ und wir können zunächst einmal festhalten:

ffdioz, v) db' z z ¢p(u,., 1;,-) Au,Av,- (H)
B’ i

y

x u! u“, a’ Bild 4.13

(Q (u, v) = f(x (u‚‘v)‚ y(u‚ v)) . Hierbei wurde zur Abkürzung um — u, = Au; und v,-H — v‘

= Au; gesetzt; Au,-Au; ist dann der Flächeninhalt von B,-‘.
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Durch die Transformation T: x = x(u‚ v), y = y(u‚ v) werden die Bereiche 8,-’ auf Bereiche B;
von B abgebildet (B,- = T(B‚-’)). Weil T umkehrbar eindeutig ist, bilden die B,- eine Zerlegung von B,
von einer kleinen Randzone abgesehen. Die Punkte 1’.-’(u,v, v,v), Q,«’(u,- + Allg, 0,-), R,-’(u,», vi + Avi)
der u,v-Ebene werden dabei auf die Punkte P‚-‚ Q,-, R; der x‚y-Ebene abgebildet (P; = T(P,-’),
Q,- = T(Q,»'), R,- = T(R,«’)). Die Punkte P,-, Qt, R; hahen die Koordinaten:

Prix(u.<‚ vr)‚y(u.-. w) = xlm.

Qi I X01.‘ + Alli. ”i)sy(“i + Alli. Vi) = X2, ‚V2.

Ri1X('4i. vi + A”i),}’(Vi: 17i + A91‘): Xx, ya-

/

Nach Formel (*) gilt dann

man cw z 2:/(P.-) AB. = 2/(x(u.v. w). y<u., v.» AB.-. <***)
B l l

Dabei ist AB; der Flächeninhalt von B,» = T(B‚-').

Ein Vergleich der Formeln (**) und (***) führt uns auf die Vermutung

N a(x. y)
AB‘ ” am, v)

Wenn wir uns von der Gültigkeit dieser Formel überzeugt haben, sind wir sicher, daß die Beziehung

“ f/(x. y) db if/(x (u. v). y<u. v» a "" y’ db’

Au,-Avi. ' ("e")
u=ui‚ v=vi

Ö (u, v)

gilt. Formel ("‘**) wird wie folgt bewiesen: Für eine genügend feine Zerlegung ist der Flächen-

inhalt AB; der krummlinig begrenzten Masche B,- ungefähr gleich dem durch die Vektoren??? und

1—’,-—R),- aufgespannten Parallelogramm Bf‘ (s. Bild 4.14). Nach bekannten Formeln der analytischen
Geometrie und der Funktionen mit mehreren Variablen (vgl. Band 4, Abschn. 3.8.1.) erhalten wir:

x2 " xv x3 " x1

Y2 — yn J’: " ."1

x(u,» + Aug, v,-) — x(u,-. vi), x(u,-, v,» + Avg —- x(u,, v.)

}'("i + Aux‘: Vi) - .V(Il.'» vs’): }’(“iv Vs + Alu) - ‚V (Ila. vs)

N xu ("o Pi) ' Aui: «\‘v(".s Vi) ' A":

N |yu(uix Vi) "Alm ING» Pi) ’ AW}

_ Xu (14.3 Vi)» X.;(Il., Pi) i _

AB‘ z A33‘:

Ö(x‚y)
A -A ~=

y..(u..v.>, y.<u.-.»~_.>f "‘ aw) u'=u..»~=v.-

Damit haben wir die Gültigkeit der Beziehung (****) nachgewiesen und sind am Ende unserer
Näherungsbetrachtungen angelangt.

Au,»Av,..

Pif
j Bild 4.14

I? 9x

Die Ausführungen über die Transformationsformel für Bereichsintegrale wollen wir mit einigen
Überlegungen abschließen, die die geometrische Bedeutung der Funklianuldeterminante betrefien.
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Bezeichnet man den Flächeninhalt des kleinen „Flächenelements“ B,- bzw. B,-' mit db bzw.
db’: du - dv (du du Q Au,» - Avg). so erhalten wir nach (****):

~a<x,y> ,_a<x,y> ‚dbmWÖ-db — um”) dud».

Den rechts stehenden Ausdruck .

0 (x. y)
Ö (u, v)

nennt man das Fläclzenelemen in krummlinigen KUUI "

dinaten erhält man nach Formel (4.10)

6 (x, y)
6 (r, <r)

dudv

. Für das Flächenelement in Polarkoor-

drdq2= rdrdtp.

Die Nähenxngsformel ü ~ a(x' y)
null konvergiert: db’ Mu’ D)

ö (x, y) ‚ db
._.__ 2 1 ._7 .

au. v) dl-‘fo db

(Beweis: siehe Duschek‚ Vorlesungen über höhere Mathematik, Bd. II.) Diese Gleichung kann
geometrisch wie folgt interpretiert werden: Ein „infinitesimal“ kleines Rechteck der u,v-Ebene, dessen
linker unterer Eckpunkt die Koordinaten (u„‚ 12.,) haben möge, wird durch die Transformation

T: x = x(u‚ v), y = y(u‚ v)

auf ein krummliniges Viereck abgebildet (vgl. Bild 4.13; man ersetze dort für unsere jetzigen Über-
legungen u}, v; durch u„‚ v„). Es sei '

3 (X. y)
Ö (u, v)

Der Flächeninhalt des krummlinigen Vierecks (db) ist dann in guter Näherung gleich dem Ä-fachen
des Flächeninhalts des Rechtecks (db’): db z l. - db’.
(Vor.: In db’ = du dv sind beide Faktoren du und du „infinitesimal“ klein.) Dieser Z ammenhang
zwischen db’ und db gibt zu der Sprechweise Anlaß, daß die Funktiona“eterminante der Ver-
zerr ' t -r für den Fläc‘ ' L lt von ' " ' ' l kleinen Bereichen sei.

geht in eine Gleichung über, wenn der Flächeninhalt db’ gegen

),=
u: 14.„ v=vn

Nach der ausführlichen Beschäftigung mit der Transformationsformel für Be-
reichsintegrale kommen wir nun zu der entsprechenden Formel für Raumintegrale.
Die Übertragung des Satzes 4.1 auf den Raum ergibt den

Satz 4.2: Ist B’ ein solcher Bereich des u‚v‚w-Raumes‚ der durch die Abbildung

T: x = x(u‚ v, w), y = y(u‚ v, w), z = z(u‚ v, w)

mit in B’ stetigen partiellen Ableitungen und positiver Funktionaldeterminante (vgl.
Formel (4.9)) umkehrbar eindeutig auf den Bereich B des x‚y,z-Raumes abgebildet
wird (s. Bild 4.15), so kann das Raumintegral mit Hilfe der krummlinigen u,v‚w-Koor-
dinaten nach der Formel

Ö(x‚ y, z) ‚f(x, y, z) db = f(x(u, v, w), y(u‚ u, w), z(u, v, w))Tdb (4.17)f]! if Ö (u, v, w)

ermittelt werden. Formel (4.17) heißt Transformationsformel für Raumintegrale.
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u Bild 4.15

Auch bei diesem Satz sind die im Anschluß an Satz 4.1 gegebenen Hinweise zu
beachten, insbesondere genügt es, daß für alle inneren Punkte von B’ die Funk-

3(x.y. z)

304. v, W)

Das auf der rechten Seite der Formel (4.17) stehende Raumintegral kann durch ein
dreifaches Integral dargestellt werden, falls B’ ein räumlicher Normalbereich im
u,v‚w—Raum ist (VgLLÖsung zur Aufgabe 3.2). Ist z.B. B’ ein Normalbereich vom

Typ

tionaldeterminante nicht verschwindet.

"1 S u S U2» i’ ‘

v1(u) é v ä v2(u)‚

wi(u‚ v) g w 2 W204, v).

so geht die Formel (4.17) in die Formel

u. v.<u) w.(u,v>
‘= , , Öfxay» ) _fBfff(x,y,z)db fF(uvw) z dwdvdu (418)

6(u, v, w)
u, mit) w,(u,u)

über (vgl. Satz 3.1). In dieser Gleichung ist F(u, v, w) eine Abkürzung für die Funktion
f(x(u, v, w), y(u, u, w), z(u‚ u, w)); F(u, v, w) ist dieselbe Funktion wie f(x‚ y, z) —

dargestellt in den neuen Koordinaten u, v, w.
Führt man die speziellen krummlinigen Koordinaten r, (p, z (Zylinderkoordinaten)

bzw. r, 29, (p (Kugelkoordinaten) ein,’ so erhält man an Stelle der Formel (4.17) die
Formel

flflflx, y, z) db =_£UF(r, <p,z)rdb’ i ' (4.19)

bzw.

'_{_| J f(x‚ y, z) db = mm, n, 4;?) r2 sin u db’ (4.20)
B B’

(vgl. Formeln (4.11) und (4.12)). Auf eine Übertragung der Formel (4.18) auf den
Fall von Zylinder- bzw. Kugelkoordinaten verzichten wir; es ist klar, wie das zu
geschehen hat.

Wir kommen jetzt auf die in Beispiel 4.1 behandelte Fragestellung zurück!

‘Beispiel 4.5: Das Volumen einer Kugel vom Radius a soll mit Hilfe von Kugel-
koordinaten berechnet werden.
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Das Innere des Bereichs

Ogrga
0219511:
0§<]1<27r

B’:

des r,29,<p-Raumes wird durch die Abbildung

T: x=rcos<psinz9, y=rsin<psin19, z=rc<isz9

umkehrbar eindeutig auf den Bereich

B: x2+y’+z2ga’

des x‚y,z-Raumes abgebildet. Hinweis: Die Punkte von B’ mit r = O — Randpunkte
von B’ — werden alle auf den Punkt (0, O, 0) von B abgebildet. Die Voraussetzung „T
ist umkehrbar eindeutig“ braucht nur für die inneren Punkte von B’ erfüllt zu sein.
Nach Formel (4.20) erhält man dann für das Volumen dieser Kugel:

Etwa

V=féUdb=;]f6f6{r2sin19drd29dq:.

Das rechts stehende dreifache Integral bereitet keine Schwierigkeiten; es ergibt sich:

21: rr 21v

V= f%3sin19d19d<p=f—§~a3d<p=%7:a3.

000

Aufgabe 4.6: Von dem im Beispiel 4.2 beschriebenen Kreiskegel soll mit Hilfe von Zylinderkoordi-
naten das Volumen berechnet werden.
(Hinweis: Das Ergebnis könnten wir sofort hinschreiben, denn für das Volumen eines Kegels gilt
V = -} Fh. Es kommt uns also bei dieser Aufgabe nur auf die richtige Anwendung der Transforma-
tionsformel für Raumintegrale an.)

Aufgabe 4.7: B sei derjenige räumliche Bereich, der „nach unten“ durch die x,y-Ebefie, „nach oben“
durch das Rotationsparaboloid z = x’ + ‚v2 + 4 und „seitlich“ durch den auf der x,y-Ebene senk-
recht stehenden Kreiszylinder x2 + ‚v2 = 9 begrenzt wird. Man berechne mit Hilfe von Zylinder-
koordinaten das Volumen V von B.

Im R" erhält man in Analogie zu den Sätzen 4.1 und 4.2 den folgenden

Satz 4.3: Durch die Abbildung

x, = x,(u1, a2, ..., u„)

‚ un)T. x2 = x2(u1s "2;

x‚. = x„(u.‚ ug, u„) .
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mit in B’ stetigen partiellen Ableitungen und nicht verschwindender Funktionaldeter—
minante werde der Bereich B’ des ul, ug, ...‚ u‚.-Raumes umkehrbar eindeutig auf den
Bereich B des x1, x2, ‚ x„-Raumes abgebildet. Mit Hilfe der krummlinigen Koordina-
ten ul, ..., u,. kann das n-dimensionale Integral der Funktion f(P) = f(x1, x2, ...‚ x„)
über dem Bereich B wie folgt berechnet werden

5041, "2, un)
ffif(x„ x2, x„) db =ffirag u,, u,,)db’ (4.21)

B B’

(vgl. Ausführungen am Ende des Abschnitts 3.1. und die Formeln (4.6), (4.7)). For-
mel (4.21) heißt Transformationsformel für n-dimensionale Integrale. Für n = 2 bzw.
n = 3 erhält man die Transformationsformel für Bereichsintegrale bzw. Raum-
integrale (Formel (4.13) bzw. (4.17)).

4.3. Anwendungen der Transformationsformel für mehrdimensionale Integrale

In diesem Abschnitt sollen einige Anwendungsaufgaben behandelt werden, die
typisch für die Berechnung von Bereichs- und Raumintegralen mit Hilfe von krumm-
linigen Koordinaten sind. Wir beginnen mit einer einfachen Schwerpunktermittlung.

Beispiel 4.6: Gesucht ist der geometrische Schwerpunkt einer Halbkugel vom Ra-
dius R (s. Satz 3.4 in Abschnitt 3.2.).

Wir führen ein rechtwinklig—kartesisches x‚y,z-Koordinatensystern ein (s. Bild 4.16).
Aus Symmetriegründen ist ersichtlich, daß der geometrische Schwerpunkt (x0, yo, zo)

dieser Halbkugel auf der z-Achse liegen muß; d.h.: x0 = 0, yo = 0. Wir brauchen
daher nur zo zu berechnen. Führt man Kugelkoordinaten r, Ü, q: ein, so erhält man
nach der Transformationsformel (4.20) (vgl. auch Aufgabe 4.2)

7:

21:73
1 ~ 3 .20:7]/fzdb=fifff(rcosz9)r2sm0drdz9d«p.

B 0 0 0

I

y

Bild 4.16 i ‘
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Die Berechnung des rechts stehenden dreifachen Integrals erfolgt in drei Teilschritten

R

Inneres Integral: fr3cos 7.9 sin 19 dr = Rf; cos 29 sin 29 = ä- R4 sin 229.

0
r:

2

Mittleres Integral: f ä R4 sin 219 dz? = 1;: .

O

.. 2" R4 1

Außeres Integral: f —8— dgo = Z nR4.

0

Hieraus folgt z„ = ä-%:7rR‘ = %R. Für den geometrischen Schwerpunkt der

vorgegebenen Halbkugel vom Radius R gilt also: (x0, yo, zo) = (0, 0, 2 R).

Beispiel 4.7: Vorgegeben sei eine Kugel vom Radius R mit der Dichte g =‚ l. Wie
groß ist das Trägheitsmoment J dieser Kugel bezüglich einer beliebigen durch den
Mittelpunkt der Kugel gehenden Achse?

Aus Symmetriegründen ist das Trägheitsmoment der Kugel (g = const) bezüglich
jeder durch den Mittelpunkt der Kugel gehenden Achse gleich. Führt man ein recht-
winklig-kartesisches x,y‚z-Koordinatensystem ein, dessen Ursprung O mit dem
Kugelmittelpunkt zusammenfällt, so gilt: J = J, = IZJ = J; (Jx, J!/5 Jzz Trägheits-
moment bezüglich der x- bzw. y- bzw. z-Achse). Für die einzelnen Trägheitsmomente
erhält man nach Satz 3.6 (Abschnitt 3.2.)

J,=fff(}2+z2)db, J„=_{ff(x2+z2)db, J‚:fff(x2+y2)db.
B B B

Hieraus ergibt sich für das gesuchte Trägheitsmoment J die Beziehung

3J=J„+J„+J‚=fff2(x’+y2+z’)db.
B

(An dieser Stelle wurde der Satz ffj f(P) db + ffjg(P) db =fff(f(P3+g(P))dbver-
B B B

wendet, der — in entsprechend abgewandelter Form — für alle Integraltypen gilt.)
Transformjert man jetzt auf Kugelkoordinaten r, 19, (p (vgl. Formel (4.20)), so erhält
man — wegen x2 + y? + z? = r? — die Gleichung

21': 11' R

3J=fff2r2o2 sin19) drd19 dm.
0 D O ‘

Für das rechts stehende dreifache Integral erhält man nach kurzer Zwischenrechnung
den Wert ä 1:R5. Ergebnis: Das Trägheitsmoment einer Kugel vom Radius R (mit der
Dichte g = 1) bezüglich einer beliebigen durch den Mittelpunkt der Kugel gehenden
Achse hat den Wert

J = 7I:R‘.

.
- L/
.|°

°
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Hinweis: Der kleine Kunstgriff J = ä (J, + Jy + Jz) hat uns die Rechenarbeit we-
sentlich erleichtert. Würde man z. B. J, nach der vorhin angegebenen Formel berech-
nen, so wäre das mit wesentlich größerer Mühe verbunden. Fast unerträglich würde
die Rechenarbeit werden, wenn man das Trägheitsmoment bezüglich einer von den
Koordinatenachsen verschiedenen durch 0 gehenden Achse —— z. B. die durch 0 und
den Punkt (3, 4, 2) gehende Gerade — bestimmen wollte.

Aufgabe 4.8: Von einem Kugelausschnitt B’ mit R = 4 und a = 2 (s. Bild 4.17) berechne man mit
Hilfe von Raumintegralen das Volumen und den geometrischen Schwerpunkt. (Hinweis: Man
orientiere sich an Aufgabe 4.3 und Beispiel 4.6.)

Bild 4.17

Bild 4.18
X

Beispiel 4.8: Im x,y,z-Raum sei eine Kugel B vom Radius R mit dem Mittelpunkt
(a, b, c) gegeben. Gesucht ist der Wert des Raumintegrals der Funktion

1
' P = X, , Z =: f() f( y ) l/(x_a),+(y_b),+(z_c),

über dem Kugelbereich B. (Hinweis: Der im Nenner vonf(x, y, z) stehende Ausdruck
ist der Abstand des variablen Punktes P(x, y, z) von dem festen Punkt P„(a, b, c).)

Die Funktionf(x, y, z) ist in der Umgebung des Punktes (a, b, c) nicht beschränkt.
(Nenner wird für (x, y, z) = (a, b, c) gleich null!) Es handelt sich um ein sog. un-
eigentliches Raumintegral. Die Definition der uneigentlichen Raumintegrale stimmt
genau mit der entsprechenden Definition für Bereichsintegrale überein (vgl. Defi-
nition 2.10), wobei jetzt selbstverständlich unter U(P„) eine räumliche Umgebung
(z. B. eine kugelförmige Umgebung) des singulären Punktes Po zu verstehen ist. Unter
der Voraussetzung, daß das uneigentliche Raumintegral existiert‘), kann der Wert
desselben wie folgt ermittelt werden: Man nimmt zunächstdie Punkte aus einer
kleinen Kugelumgebung des Punktes P„(a, b, c) vom Radius ro heraus, integriert
über die verbleibende Hohlkugel Bo (äußerer Radius R, innerer Radius ro) und läßt
anschließend ro —> 0 gehen (s. Bild 4.18). Die Art der vorgegebenen Funktion und

1) Die Existenz des uneigentlichen Integrals ist bei einer nichtnegativen Funktion gesichert, wenn

für eine einzige Folge U1, U2, von Umgebungen des singnxlären Punktes Pa (a, b, c) mit z U„ —> 0

der Grenzwert lim f(P) db existiert. Satz 2.9 gilt in entsprechend abgewandelter Form auch
naoc B\U

für uneigentliche Rauminiiegrale mit nichtbeschränkter Funktion.
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des vorgegebenen Bereiches legen es nahe, vom x‚y,z—System zum x',y’,z’-System
und anschließend zu Kugelkoordinaten r, i9, go bezüglich des x’*‚y’,z'—Systems über-
zugehen:

x=%+a
. ‚ Ö(x‚y‚z)

’*{"y,+” MTy',7>“"
z=z +c

x’=rcos<psint9 a ‚ ‚ ‚

T2:{y’ = rsin q? sin i9 —%z";’;)) = r? sin 19.

z'=rcosz9 ’ ’

Für das Raumintegral (über die Hohlkugel B0!) erhalten wir nach den Formeln
(4.17) bzw. (4.20): 9 H

f(x,y,z)db= ää: l-rzsinödb”: rsim$‘drd19d<p.
I/x’2 + '2 + z” "

B0 B; y B; o o r,

Für das am Ende der Umformung stehende dreifache Integral erhält man nach
kurzer Zwischenrechnung den Wert 27c (R2 — rg). Damit können wir schon das Schluß-
ergebnis formulieren:

ffffoc, y, z) db = lim fff/(x, y, z) db = lim 2rr(R’ — rg) = 27:122.
13 "n"° B0 rwo

In Vorbereitung auf das nächste Beispiel sollen einige zum Begriff Potential an-

ziehender Massen gehörige Relationen zusammengestellt werden.
B sei ein Körper (räumlicher Bereich) im x‚y‚z-Raum mit der Dichte g = g(P)

= g(x, y, z). F sei der Vektor der Anziehungskraft, die von dem Körper B auf einen
bestimmten Massenpunkt P0 (x0, y0‚ 20) mit der Masse m0 = 1 ausgeübt wird. Für die
Koordinaten (Komponenten) F1, F2, F0 von F gilt dann

(- ) (—}’). (— )p1=ff x_r:"‘<’_9db’F2=ff L_;3_fldb,1:3='/-I z%°9d[,
B B B

(F, = F‚<(x0‚ y0‚ 20), i = 1, 2, 3). Hierbei ist

r: Hx- x0)? + (‚v -ya)2 + (Z— zu?

der Abstand des (variablen) Punktes P(x‚ y, z) vom (festen) Aufpunkt P0 (x0, y0‚ z0).

(Die Gravitationskonstante wurde gleich l gesetzt.)

U(xo,yoaZo)=_£ff%db

nennt man Potential der Massenanziehung des Körpers B auf den Punkt P0 (x0 ‚ y0‚ z0).
Es gelten die drei Gleichungen

6U _ E _ BU
6x0 _ l ’ öy0 620

t

=F3‚
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welche man mit Hilfe des Gradientenbegrifis zu einer Vektorgleichung zusammen-
fassen kann: ~

F= grad U.

Um mit den hier eingeführten Größen noch ein wenig vertrauter zu werden, wollen wir die Glei-
chung BU/öxa = F, beweisen. Dabei stützen wir uns auf den Satz, daß man bei einem mehrdimensio-
nalen Integral, dessen Integrand von einem Parameter a abhängig ist, die Ableitung des Integrals
nach an durch Differentiation unter dem Integralzeichen erhält. (Für einfache Integrale ist das die
Formel (1.4) in Abschnitt 1.2.) Wir erhalten also:

%i%=%.{f„l%d"={ff%(%)

wegmi= gih
r v<x—x..>=*+<y~y.)2+<z—z.>2«

a g _e _ /1 _ (—'z..)_ e —2(x—x)_9(x—x)T%(7)_(T)z_e.(7)x,_9‘7—_—7i%_%‘
Diese Beziehung in (‘) eingesetzt liefert uns das Ergebnis:

GU _[‘ 9(x—x,) __

ax“ _vff—_r, db_ n.
B

Beispiel 4.9: Wie groß ist die Anziehungskraft, die ein kugelförmiger Körper B
mit dem Radius R und der konstanten Dichte g auf einen außerhalb der Kugel sich
befindenden Massenpunkt Po der Masse 1 ausübt?

Um das Problem möglichst gut rechnerisch erfassen zu können, führen wir ein
rechtwinklig-kartesisches x,y‚z-Koordinatensystem ein, dessen Ursprung mit dem
Mittelpunkt der Kugel B zusammenfällt und dessen positive z-Achse durch den
Punkt Po geht (s. Bild 4.19). Für die Koordinaten x0, yo, zo von Po gilt dann: x0 = 0,

x Bild 4.19

l

6 immer, Integralrechnung
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yo = O und z„ > R > 0. Die 3. Koordinate der Anziehungskraft ergibt sich aus der
Gleichung

F3 z 9Äff dm
(Den konstanten Faktor g haben wir gleich vor das Integralzeichen gesetzt.) Es erhebt
sich nun die Frage, mit welchen Koordinaten man das Raumintegral berechnen soll.
Naheliegend wäre es, auf Kugelkoordinaten zu transformieren. Die Gestalt des
Integranden bezüglich Kugelkoordinaten bereitet uns aber bei der Integration außer-
ordentliche Schwierigkeiten — obwohl die Integrationsgrenzen bezüglich Kugel-
koordinaten sehr einfach sind (0 g r g R, 0 g 19 g 7c, 0 g (‚v g 2m). Führt man
dagegen Zylinderkoordinaten r, (p, z ein, so werden die Integrationsgrenzen zwar ein
wenig komplizierter, aber die Gestalt des Integranden wird einfacher — und die Inte-
gration des entsprechenden dreifachen Integrals gelingt. (Die z-Achse ist Symmetrie-
achse für den Integrationsbereich und den Integranden! In einem solchen Fall ist es

am günstigsten, mit Zylinderkoordinaten zu arbeiten.)
Der vorgegebeneKugelbereich wird bezüglichlylinderkoordinaten beschrieben durch

—R g z g R
B’ { 0 g (p g 2T:

o g r g 1/122 — 22.

Erläuterung zur 3. Ungleichung: Aus x2 + y? + 22 g R2 folgt (wegen x’ + y? = r’)
r’ g R2 — z’. Bei vorgegebenem z (und cp) kann also r die Werte von 0 bis I/R2 — r?
durchlaufen. Berücksichtigt man die Transformationsformel (4.19), so erhält man

R 21:}/R‘—z’ ‘

F=gf/A IL-20.rdrd<pd2.
3 d“) 0 I/r2+(z—20)25

Bei der Berechnung dieses dreifachen Integrals muß man ein wenig Geduld aufbringen.
d

Das innere Integral J, ist ein Integral vom Typ ——L3 (vgl. [1]); man erhält
(1/a" + x2)

_ 20 — z

_ ]/R2 + 23 — 2202

Das mittlere Integral J2 ist dann

J1 —1.

21v

J2 =fJ1 d‘? = 27"-'J1~
o

(J1 ist nicht von (p abhängig!) Schließlich kann man mit Hilfe der Substitution
t = 1/R2 + 202 — 2202 (t dt = -20 dz, (z — 20) 220 = R2 — zu? — t2) auch das äußere
Integral J3 berechnen:

R

4J3: flzdz: —»3z—änka

AR

. 4 1
Ergebms: F3 = 913 = — —7:R3g -—2 .

3 zu
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Die 1. und 2. Koordinate des Vektors F der Anziehungskraft brauchen wir nicht zu
berechnen. Es muß ofiensichtlich der Vektor F dieselbe Richtung wie die z-Achse
haben, d.h. aber, daß F1 = 0 und F, = 0 gelten muß.

Hinweis: g 7cR3g ist die Gesamtmasse m einer homogenen Kugel (g = const) vom
Radius R. z„ ist der Abstand des Punktes Po vom Mittelpunkt der Kugel. Die Glei-

m - 1

202

einer homogenen Kugel auf einen außerhalb der Kugel sich befindenden Massen-
punkt der Masse 1 ausgeübt wird, ist genau so groß, wie diejenige des Mittelpunktes
der Kugel, in der man die Gesamtmasse der Kugel konzentriert hat.

chung F3 = kann dann wie folgt gedeutet werden: Die Anziehungskraft, die von
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5. Kurvenintegrale

5.1.

Die in diesem Abschnitt untersuchten Kurvenintegrale sind sehr nützlich bei der
Gewinnung von mathematischen Modellen für Prozesse aus Natur oder Technik, z.'B.
bei der Bestimmung der Arbeit, die beim Bewegen einer Masse in einem Kraftfeld
aufgebracht werden muß. Sie erweisen sich darüber hinaus bei der Behandlung ge-
wisser mathematischer Modelle als zweckmäßiges Hilfsmittel, z.B. bei der Lösung
von gewöhnlichen Diflerentialgleichungen. Im Zusammenhang mit dem Gaußschen
Integralsatz gestatten sie die numerische Berechnung von ebenen Bereichsintegralen
mit den bekannten Methoden der numerischen Integration. i

Begriff der Kurvenintegrale l. und 2. Art

Die Kurvenintegrale unterscheiden sich dabei in ihrer Definition im Prinzip nicht
b o

von den bestimmten Integralen der Form ff(x) dx. Bei der Definition von ff(x) dx

gingen wir von ausgezeichneten Folgen Zion Zerlegungen des Intervalls [21, b] aus
(s. Band 2, Def. 10.2) und bildeten für jede Zerlegung Summen der Form f(5,—) Axg.

t

Hierbei war Ax,» die Länge des i-ten Teilintervalles von [a, b] und f.- ein beliebiger
Punkt aus diesem Teilintervall. Strebten nun für jede ausgezeichnete Folge von Zer-
legungen des Intervalles [a, b] die oben angeführten Summen bei beliebiger Wahl der
Zwischenpunkte E; mit wachsender Zahl der Teilintervalle gegen ein und denselben

b

Grenzwert, so nannten wir diesen Grenzwert) f(x) dx und die Funktionf auf [a, b]

integrierbar. Beim Kurvenintegral 1. Art ersetzen wir nun nur die Teilstrecke der
x-Achse von a bis b durch eine zwischen den Punkten A und B verlaufende Kurve s?

des Raumes. Die zu integrierende Funktion muß dann natürlich auf S? definiert sein.
Der Zerlegung von [a, b] in Teilintervalle mit den Teilungspunkten x,- entspricht die
Zerlegung von St in Teilkurven R; mit den Teilungspunkten P,-, der Länge Ax,» der
Teilintervalle entspricht die Bogenlänge As; von 9,», und den Zwischenpunkten E,-

entsprechen auf R.» gelegene Punkte Q,~.

Ehe wir zur Definition des Kurvenintegrals kommen, wollen wir die nötigen Be-
griffe zusammenstellen (s. auch Bd. 4, 2.6.4., oder Bd. 6, 2.1.).

Definition 5.1: -Ist I = [a, b] ein Intervall (a < b) und sind auf I drei stetige
und wenigstens stückweise stetig diflerenzierbare Funktionen g1(t), g2(t), g3(I) mit
gm) + gm) + gm) > 0 für alle t aus I mit höchstens endlich vielen Ausnahmen
gegeben, so heißt die Menge R aller Punkte (g‚(t), g2(t), g3(t)) des R3, wobei t das
ganze Intervall I durchläuft, eine orientierte Kurve‘). A = (g1(a), g2(a)‚ g3(a)) heißt der
Anfangsplmkt, B = (g1(b), g2(l>), ga(b)) der Endpunkt von 9. (g1(t),gz(t).gs(t)), tel,
nennen wir eine Parameterdarstellung oder auch kurz Darstellung der Kurve.
Beispiel 5.1: Es sei I= [—r‚ r] und g1(t) = —t‚ g‚(t) = I/r2 — t’, g3(t) = 0 für alle
teI (0 < r). Wegen z = g3(t) = 0 für alle te I liegt R ganz in der x‚y-Ebene (S? ist

1) Den Zusatz „orientierte“ lassen wir gelegentlich weg, da in Kap. 5. nur orientierte Kurven be-
trachtet werden. -
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eine ebene Kurve). St‘ ist der in Bild 5.1. dargestellte Halbkreis mit dem Anfangspunkt
A = (r, 0, 0) und dem Endpunkt B = (~r, 0, O). Die gleiche orientierte Kurve R wird
auch durch I* = [0,‘7c], g,*(t) = r cos t, g2*(t) = r sin t, g3*(t) = 0 für alle t e 1* dar-
gestellt. Die Darstellung einer orientiertenKurve ist nicht eindeutig bestimmt. Es
gibt zu jeder orientierten Kurve sogar beliebig viele Darstellungen.

V

r

l

B A Bild 5.1
-r 11l r x

Zur Vereinfachung der Schreibweise werden wir zur Darstellung orientierter
Kurven auch Vektorfunktionen g mit g(t) = (g‚(t), g2(t)‚ g3(t)) benutzen‘) An Stelle
von g(t), te I, wird häufig die Schreibweise x(t), tel, oder r(t)‚ t e I, verwendet.

Definition 5.2: Ist ft‘ eine Kurve mit der Parameterdarstellung g(t), te I = [a, b], und
to = a < t1 < t2 < < t„ = b, so nennen wir Z, gegeben durch die Teilungspunkte
g(t„), g(t1), g(t2), ..., g(t,,), eine Zerlegung von KP (in die Teilkurven Q. mit den Dar—

stellungen g(t)‚ teI‚- = [t,«_1, t,-], (i = l, 2, ..., n)) (s. Bild 5.2).

ya/1'7)

H-y(t,,)

A-_y(t )i’ a

Bild 5.2. Zerlegung Z von ST in die Teilkurven 92,, fig, ..., 9,,

Definition 5.3: Eine Folge (Z„)„=„2‚_„ von Zerlegungen einer orientierten Kurve S?

heißt ausgezeichnet, wenn für jedes n : l, 2, die Teilkurven der Zerlegung Z,,+,
durch Zerlegung der Teilkurven von Z„ entstehen (nicht jede Teilkurve von Z„ muß
dabei sofort weiter zerlegt worden sein), und wennfür das Maximum 1,. der Bogenlängen
der Teilkurven von Z„ lim 1.,. = 0 gilt.

Beispiel 5.2: Es sei Q die orientierte Kurve aus Beispiel 5.1. Als Parameterdarstel-
lung wählen wir

‚g(t) = (r cos t, r sin t, 0), te [0, 71:]. —

Z, habe als Teilungspunkte g(0), g(1c/2), g(:). Jede weitere Zerlegung der Folge
(Z„)„‚1‚2‚„_ entstehe durch Halbierung der Teilkurven der vorangegangenen Zer-
legung (s. Bild 5.3). Zk zerlegt 9 in die 2* Teilkurven ft}, 9,, , 92k. Q. hat dabei die

‘) Aus drucktechnischen Gründen schreiben wir die Kuurponentendarstelluug eines Vektors stets
horizontal, also x = (x„ x2, x3).

D.5.2

D.5.3
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i — l
2k

Dieser Wert ist auch das Maximum der Bogenlängen aller Teilkurven von Zk: 1,. =

TEDarstellung g(t)‚ te [ 2F7c, ä 1c]. Die Bogenlänge einer jeden Teilkurve Si‘; ist

7Ti.
Wegenilim ä = 0 ist (Z„)„_1‚2„„ eine ausgezeichneteFolge von Zerlegungen von R.

Iz, x I‘: x Z‘: x

Wir kommen nun zur grundlegenden Definition des Kurvenintegrales l. Art:
Definition 5.4: Gegeben sei eine Kurve R mit der Parameterdarstellung g(t), ts I,
und eine mindestens auf ‘R definierte Funktion f. Ist (Z„)„:1‚2‚ eine ausgezeichnete
Folge von Zerlegungen von R und zerlegt Z„ R in die Teilkurven R‚„ (i = 1, 2, ..., k„)
mit den Bogenlängen As‚„<, so wählen wir aus jeder Tei/kurve R‚„- einen beliebigen Punkt
Qni‘ und bilden die Summe

S„ = gflQm) As‚„v. (5.1)
i=1

Haben nun die Summen (5.1) bei jeder Wahl der Qni undfür jede beliebige ausgezeich-
nete Folge von Zerlegungen von R stets den gleichen Grenzwert

S = lim S‚.‚
n-voo

Bild 5.3

(5.2)

so nennen wir S das Kurvenintegral 1. Art von f über R und schreiben dafür

l s = MP) ds.
o

f nennen wir über R integrierbar.

Istf auf einem Gebiet M des Raumes definiert, das R als Teil enthält, und sind die
Werte von f auf M durch eine Gleichung w = f(x‚ y, z), ((x, y, z) E M) erklärt, so

schreiben wir auch S = ff(x, y, z) ds oder in Vektorschreibweise mit x = (x, y, z)

auch S = Jff(x) ds. R

n
Die Kurve R ist keinen Einschränkungen unterworfen. Insbesondere darf R Doppel-
punkte haben. Das sind Punkte, für die bei verschiedenen t, und t2 aus I der Wert von
g gleich ist: g(t‚) = g(t2) (s. Bild 5.4). Ebenso darf R geschlossen sein, d.h. der An-
fangspunkt A und der Endpunkt B fallen zusammen: A ; B (s. Bild 5.5). Im Falle
einer geschlossenen orientierten Kurve R schreiben wir für das Kurvenintegral S auch

s = gS/(P) ds= ;f:f(x,y, z) ds = §3f(x) ds.
R R R

Beispiel 5.3: Es sei R der orientierte Halbkreis aus Beispiel 5.1 und f(x‚ y, z) = 1 für
jeden Punkt (x, y, z) des Raumes. Für die Summen (5.l) gilt dann stets

kn
S,,=21~As,,,«=rn:,

i=1
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denn die Summe aller Längen As"; der Teilkurven ist ja gleich der Länge rrr von 5?.

Damit haben wir dann

lim s„= r1: =fdx.
7l.v>00 a

Man kann jedoch auch allgemeinere Mengen, bei denen nicht alle Bedingungen aus Defi-
nition 5.1 erfüllt sind, als Kurven einführen. Dann muß aber die Bogenlänge f ds nicht unbe-
dingt existieren. Sr

_q(t,)-y(t;)

Bild 5.5
B-](/5) _

Bild 5.4 4'107’

Wir kommen jetzt zur Definition der Kurvenintegrale 2. Art. In der Definition 5.4
wird dabei in den Summen (5.1) die Länge Asm- des Teilbogens Qm- durch die Projek-
tion der Verbindungsstrecke zwischen Anfangspunkt P,1,,»_, und Endpunkt P,,.~ auf
eine der Koordinatenachsen ersetzt (s. Bild 5.6). Die Projektionen bezeichnen wir
durch Ax‚„-‚ Ayn: bzw. Az,.,-.

Bild 5.6

Definition 5.5: Gegeben sei eine Kurve R mit der Parameterdarstellung g(t), te I, und D.5.5
eine mindestens auf S? definierte Funktion f. Ist (Z„)‚.:1‚2_ eine ausgezeichnete Folge
von Zerlegungen von R und wird R durch Z„ in die Teilkurven Q"; (i = 1, 2, ‚ k„) mit den
Anfangspunicten P‚.‚ ‚-_, und den Endpunkten P‚„- zerlegt (Pu, = (g,(t,,,»), g2(t,,,-), g3(t,,J-))),

so setzen Wlf

Axni = 810m‘) —’ g1(fn,i—1)‚
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wählen aus jeder Teilkurve Si‘,..» einen beliebigen Punkt Q‚„- und bilden die Summe
k .

M
:

Ln =i f(Q.-') Axni- (5.3)
1

Haben nun die Summen (5.3) bei jeder Wahl der Q‚„- undfür jede beliebige ausgezeich-
nete Folge von Zerlegungen von R‘ stets den gleichen Grenzwert

L = lim L‚.,
n—>eo

so nennen wir L Kurvenintegral 2. Art von f über R und schreiben dafür

L = ffav) dx ' (5.4)
n

oder mit P = (x, y, z) bzw. x = (x, y, z) auch ff(x, y, z) dx bzw. ff(x) dx.

In analoger Weise werden mit R R

Ayni = E2(lm') — 320», i—1)
bzw.

Azni = 8a(tm‘) ‘ ga(t..,i-1)

an Stelle von Ax,.,« in (5.3) die Kurvenintegrale 2. Art

ff(1>) dy bzw. ff(1=) dz
s? e

erklärt. Eine Summe

Ifi(P)dx+ jfi(P)dy + ff3(P)dz
8 R S?

solcher Kuruenintegrale (mit verschiedenen Integranden f„fg, f3 an Stelle von f)
nennen wir allgemeines Kurvenintegral 2. Art und schreiben dafür kürzer

f im) dx +120’) dy +fs(P) dz].
92 .

Ehe wir Beispiele für die Anwendung der Kurvenintegrale 1. und32. Art bringen,
wollen wir zeigen, wie die Berechnung der Kurvenintegrale auf die Berechnung be-
stimmter Integrale zurückzuführen ist.

5.2. Berechnung von Kurvenintegralen

In der Definition des Kurvenintegrales 1. Art (s. Def. 5.4) spielte die Bogenlänge
As"; der Teilkurven SE"; eine wesentliche Rolle. Wir benötigen deshalb ein Verfahren,
um diese Bogenlängen berechnen zu können. Für die Bogenlänge s einer in der
x,y-Ebene verlaufenden Kurve mit der Parameterdarstellung

x = x(t),
aétéfi,

y=y(t),
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hatten wir (s. Band 2; Satz 10.19)
ß .

s = f 1/222 + ‚v‘? dt (5.5)
[EH

gefunden. Für eine zwischen x( und x2 verlaufende ebene Kurve mit der expliziten
Darstellung y = y(x) galt

-5:

s =fV1+ y”dx. ‘ . (5.6)
x=z‚

Analog zu Formel (5.5) erhalten wir für eine räumliche Kurve R mit der Para-
meterdarstellung x = g1(t), y = g2(t), z = g3(t), a g i; b,

b

“s = f 1/222 + y'2'+ 2'2 dt (5.7)
L=a '

als Bogenlänge von 5%. Mit x = (x, y, z) und g(t) = (g,(t), g‚(t), g3(t)) erhalten wir für
die vektorielle Darstellung x = g(t)‚ a g t g b, der Kurve R wegen

lil = vx~*—2+ s»? + 22 = so):
b

s =f|sr| dt‘). ~ (5.2)
t=a

Ist nun (Z‚.)„_‚_2Y eine ausgezeichnete Folge von Zerlegungen von R‘ und zerlegt
Z‚. R in die Teilkurven Rm» (i = 1, 2, , k„) mit den Anfangspunkten g(t„_ ,»_,) und den
Endpunkten g(t,”»), so haben wir für die Bogenlänge As", von QM-

till.
As"; = f |x(z)| dt. (5.9)

‘='n.i—i

Aus Formel (5.9) folgt nach dem Mittelwertsatz der Integralrechnung

As‚„- = |g(1,.,){ At,,,- (5.10)

Da bei Existenz des Kurvenintegrales S = ff(P) ds die Summen (5.1) für jede Wahl

mit fn,i—1 —<_- Tut S tni und Atni = bu’ — fn,i-1-

der Punkte Qni aus Q"; gegen S konvergiereä, können wir die Punkte Q‚„- so wählen,
daß ihnen die Vektoren g(z‚„<) mit den Parametern 1m- aus Formel (5.10) entsprechen.
Für Formel (5.1) erhalten wirdamit

k"
Sn = i§:f(g(T,.;)) |E(Tm-)| Alma (5.1 l)

Aus Formel (5.11) folgt beim Grenzübergang ti —> oo (Formel (5.2))
b

s wer») ds = ff(g(r»- 12(2)! dr. (5.12)
R t=a

‘) Siehe hierzu auch Bd. 6, 2.3.



S.5.1

90 5. Kurvenintegrale

Die/Formel (5.12) rechtfertigt einerseits die Schreibweise Jrf(P) ds für den Grenz-
s:

wert S aus Definition 5.4 und gestattet andererseits, die Formel (5.12) zur Berech-
nung eines Kurvenintegrals 1. Art leicht zu merken: Ist g(t)‚ te [a, b], eine Parameter-
darstellung von ä‘, so ist in ff(P) ds P durch g(t) und ds durch das Bogenelement

n
|g(t)| dt zu ersetzen. Die Integrationsgrenzen sind t1 = a, t2 = b.

Eine wichtige Voraussetzung für den oben eingeschlagenen Weg zur Berechnung
von Kurvenintegralen war die Differenzierbarkeit von g. Das bestimmte Integral in
Formel (5.12) existiert, wenn der Integrand stückweise stetig ist. Da g die Kurve R
darstellt, ist g stetig und g stückweise stetig. Für die stückweise Stetigkeit des Inte-
granden brauchen wir deshalb nur noch die stückweise Stetigkeit vonfzufordern. Die
Ergebnisse können wir im folgenden Satz 5.1 zusammenfassen:

Satz 5.1: Gegeben sei die Kurve R mit der Darstellung g(t)‚ re [a, b], und die auf R de-

finierte und stückweise stetige Funktion f. Dann existiert das Kurvenintegral ff(P) ds,
und es gilt R

MP) as = Jim» Igml dr.
S? £=a

Das Integral aus Formel (5.12) können wir der Komponentenschreibweise ent-
sprechend auch in der Form

b

s = f/(x, y, z) ds = J/(gm, gm, gm» I/gs + g: + 932 at
R t=a

schreiben.

Die Betrachtungen, die uns zu Satz 5.1 führten, sind natürlich auch für ebene orien-
tierte Kurven mit einer Parameterdarstellung

[x = x0),
l y = w),

richtig. Es ist dann nurf eine Funktion von 2 Veränderlichen und g3(t) z- 0. Damit
wird

15b,

Mx. y) as = fl/(x0). ya» V3? + t2 dr.
R I:=a

(5.13)

Ist die ebene orientierte Kurve explizit darstellbar,

y=y(x)‚ x1; x g x2,

so geht (5.13) entsprechend Formel (5.5) und (5.6) in

f/(x, y) ds= f}(x, y(x))1/1 +y’2 ax _<s.14>
s? :c=z,

über.



5.2. Berechnung von Kurvenintegralen 91

Beispiel 5.4: Es ist die Oberfläche A einer Kugel mit dem Radius r zu berechnen. Sie

entsteht durch Rotation des Halbkreises mit der expliziten Darstellung y = I/r’ — x2
(—r g x g r) um die x-Achse. Für die Oberfläche eines Rotationskörpers gilt

l b

(s. Band 2, Satz 10.22) A =f2ny1/1+y'2dx. Nach Formel (5.14) und Satz 5.1

ist dies ein Kurvenintegral der durchf(x, y) = 21ry gegebenen Funktionf. Speziell

für die Kugel mit y =1/I3 — x2 und y’ = — 72:: wird I/l +y’2 = l/l+fli;5
r r —x ”

= wir; “d
P I’

A=f27‘*')’ds= 27171/r2—x9 4_;—dx=2'n:r fdx=4Trr’.I/,2 _ x2
5e .r=—r z=vr

Beispiel 5.5: Es ist das Kurvenintegral I.Art vonfmitf(x‚ y, z) = z(x2 + y’) über eine
Windung der Schraubenlinie mit der Darstellung g(t) = (r cost, r sint, at), te [0, 21:],

zu berechnen. Es ist go) = (—r sin t, r cost, a) und |g(:)1 = I/r2 + a’. Damit wird
nach Formel (5.12)

2

ff(x) ds = fat(r2 cos2 t + r2 sin? t)}/r2 + a’ dt
Si‘ i=0

27:

= arz],/r9 + a2 ltdt = 27c’ arzl/r2 + £12 .

6

Aufgabe 5.1: Es ist das Kurvenintegral 1. Art vonfmitf(x, y, z) =

(1‚1‚1) nach (2,22) führende Strecke n zu berechnen. Vx’ +y’ + z’

Bei der Berechnung des Kurvenintegrals I f(P) dx 2. Art haben wir gemäß
n

über die von

Definition 5.5 in Formel (5.1) A5,..- durch Ax"; = g1(t,L,~) -— g1(t,L_,v_1) zu ersetzen. Nach
dem Mittelwertsatz der Differentialrechnung gilt

Axm- = g1(1:,,,~) Arm» (5.15)

mit t‚.„-_1 g -r‚„» g t‚„- und Arm = tn; — t,.,,--1. Genau wie in Formel (5.11) wählen
wir nun die Punkte Q„‚- aus fi‘,,,~ so, daß sie den Vektoren g(1‚„) entsprechen. Formel
(5.3) geht dann in

. k”

Ln = f(g(m)) é1(rm-) Atm-

über, und der Grenzübergang n —> oo ergibt

L = lim Ln = ff(g(t))g1(t) dt. (5.16)

Analog erhalten wir

M13) dy = ’/(gm) gem d: (5.17)
R‘ t=a
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und

MP) dz = fbf(g(t)) 230) dr. (5.18)
it t=a -

Linearkombination von (5.16), (5.17) und (5.18) ergibt für das allgemeine Kurven-
integral 2. Art

b

= f [f1 (80)) 31(1) + f2(g(f)) é2(t) + fa(g(t)) 230)] dt. (5-19)f(f,dx+f2dy+f3dz)
R

Fassen wir die f,- als Komponenten eines Vektorfeldes f(x) = (f,(x),f2(x),f3(x)) auf
dund beachten wir, daß fig, +,gg2 +f3g3 = f - "g ist, so WII‘

b

Jo: dx +/stay +/3 dz) = f «go» - 20> dr.
S? t=a

(5.20)

Für das allgemeine Kurvenintegral 2. Art schreiben wir mit (dx, dy, dz) = dx auch
formal

_{(fidx+ßdy+f3dz)=ff(x)-dx.
R a

Der dem Satz 5.1 entsprechende Satz lautet dann:

Satz 5.2: Gegeben sei die Kurve S? mit der Parameterdarstellung g(t), t e [a, b], und die
auf S? definierte und stetige Vektorfunktion f. Dann existieren die Kurvenintegrale
2.Art ff1 dx, f j; dy, [fa dz und das allgemeine Kuruenintegral 2. Art

s? R S?

fmdx+f2dy+f3dz),
E

und es gilt b
b

Im) dx = ff1(g(t))§1(t) dr, f13(x) d; = frage» gm) dr,
R z=a R l=a

b I2

J/2(x) dy = J/2<g<r)>g2<r> dr, fax) - dx = f r(g<r)> ~ 20> dr.
ä.‘ t=a R r=n

Beispiel 5.6 : Esist das allgemeine Kurvenintegral 2. ArtL von f mit f(x, y, z) = (x,y, z),
d. h.‚ f1(x) = x, f2(x) = z, f3(x) = y, fiber die geschlossene orientierte Kurve S? mit
der Parameterdaxstellung g(t) = (cost, sin t, 3), te [0, 27:], zu berechnen.

Wegen g'(t) = (—sin t, cos t, 0) und f(g(t)) = (cos t, 3, sin t) wird L nach Satz 5.2
27c 27:

L = Jr (-—cos t sin t+ 3 cost) dt = (3 — sin t) cos t dt.
c= o f= o s

Mit der Substitution 3 — sin t = s, ds = — cos t - dt wird L = — sds = 0.
s

Beispiel 5.7: In der Physik wird die Arbeit W, die eine punktförmige Masse beim
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Durchlaufen einer orientierten Kurve R‘ vom Anfangs- bis zum Endpunkt gegen ein
Kraftfeld F = F(x) zu leisten hat, durch das Kurvenintegral 2. Art

W=_{F(x)«dx
R

definiert. r

Diese Definition ist mit den elementaren Vorstellungen vom Begriff der Arbeit
verträglich, denn für das Durchlaufen einer Strecke mit der Darstellung g(t)
= c + td. te [a, b], wird bei konstantem KraftfeldF = const wegen go) = d die Arbeit

b

W=fF-dx=fF-ddt=(b—a)F-d
n l=a

geleistet. Die Weglänge ist dabei
b

s=fdx=fld[dz=(b—a)ldg.
R l=a

Die Projektion der Kraft auf die Richtung der Strecke, die Kraftkomponente in

Wegrichtung, ist F Damit wird
l

d
W=(b—-a)F-d=(b—a)ld{F-—[a|—‚

\ l

also Arbeit = Weglänge mal Kraftkomponente in Wegrichtung.

Aufgabe 5.2: Für die Kurve R mit der Darstellung g(t) = (4 cos t, 2 sin t, 6 r), t 6 [jg-, , ist das

(allgemeine) Kurvenintegral 2. Art L = _[(x dx + zdy + Zdz) zu berechnen.
R

5.3. Eigenschaften von Kurvenintegralen

Vergleichen wir die Formeln (5.12) mit (5.20) für die Berechnung der Kurveninte-
grale l. bzw. 2. Art, so können wir feststellen, daß sie ineinander übergehen, wenn wir

'(t)r z WL = z(g( » M f(g( )>

setzen. Wir können also jedes Kurvenintegral 2. Art durch ein spezielles Kurven-
integral 1. Art darstellen.

Die folgenden Eigenschaften von Kurvenintegralen leiten wir nur für Kurveninte-
grale 1. Art her, bei den Kurvenintegralen 2. Art führen analoge Gedankengänge mit
Ausnahme von Satz 5.4 zu den gleichen Ergebnissen.

l1

Für bestimmte Integrale f h(t) dt gilt, wenn a < c < b ist,

If c a b

J h(t) dz .—. (m) dt + f h(t) dt (5.21)
B Cu

(s. Band 2, Abschn. l0.l.4.). Die Berechnung des Kurvenintegrals ffds vonfüber die
n
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Kurve R mit der Parameterdarstellung g(t)‚ te[a‚ b], führt uns nach Satz 5.1 auf
ein solches bestimmtes Integral mit h(t) =f(g(t)) |g(t)]. Die Unterteilung des Inte-
grationsintervalles [a‚ b] in [a, c] und [c‚ b] entspricht bei der orientierten Kurve R
der Zerlegung in zwei orientierte Kurven R1 und R2 mit den Darstellungen g(t),
te [a, c], und g(t), te [c, b], (s. Bild 5.7). Formel (5.21) ergibt

affds =/ffds +Rffds. (5.22)

Da der Wert eines Kurvenintegrales nicht von der Parameterdarstellung der orientier-
ten Kurve abhängt, können wir für R1 bzw. R2 auch von der speziellen Darstellung
g(t)‚ te [a‚ b], von R unabhängige Darstellungen g1(t)‚ te ]a1„b1], von R1 bzw. g2(t),
te [a2‚b‚], von ft‘, wählen. Insbesondere muß nicht unbedingt b1 = a2 sein.

‚am
m)

IQ‘) Bild 5.7

Definition 5.6: R, R1, R2, ..., R„ seien orientierte Kurven. Der Endpunkt von R; falle
für jedes i = 1, 2, ..., n — l mit dem Anfangspunkt von R141 zusammen. Der Anfangs-
punkt von R1 sei gleich dem Anfangspunkt von R, der Endpunkt von R„ gleich dem End-
punkt von R. Ferner sei R = R1 VR1 \/ VR‚„ wenn wir R und die E; ohne Be-
achtung der Darstellungen als Punktmengen auffassen. Dann sagen wir, R ist aus R1,
R2, ... , R‚. zusammengesetzt.

Mit Definition 5.6 und Formel (5.22) erhalten wir:

Satz 5.3: Sind R, R1 und Si‘; orientierte Kurven, R aus R1 und R2 zusammengesetzt undf
eine auf R integrierbare Funktion, so gilt

ffds=ffds+ffds.
R R1 R,

Die entsprechende Aussage gilt auch für Kurvenintegrale 2. Art.

Beispiel 5.8: R sei zusammengesetzt aus der auf der z-Achse liegenden orientierten
Strecke R1 mit dem Anfangspunkt (0, 0, 0) und dem Endpunkt (0, 0, 1) und dem in
der Ebene z: l liegenden orientierten Halbkreisbogen Q, mit dem Mittelpunkt
(1, O, 1) und dem Radius 1, der mit y g 0 vom Anfangspunkt (0, 0, 1) zum End-
punkt (2, 0, 1) führt (siehe Bild 5.8). Welche Arbeit W hat ein R durchlaufender
Punkt gegen das durch

F(X) = (f1(X):fz(X):fi(X)) = (y, 1 ~ x, z?)

gegebene Kraftfeld F zu leisten?
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Bild 5.8

Nach Beispiel 5.7 gilt

W=f(f1dx+f2dy+f3dz)=fF-dx.
R E?

Q ist aus 3%, und R2 zusammengesetzt. Parameterdarstellungen von Q, bzw. 582 sind

g1(t) = (0, O, t), re [0, 1], bzw. g2(t) = (1 - cos t, sin t, 1), te [0, n].

Nach Satz 5.3 und 5.2 wird

W=fF-.dx=[F-dx +fF-dx
- s: n. a.

7!

(sin t, cost, 1) (sin t, cost, 0) dt
o

f1(o, 1, :2) (o, o, 1) dt +
;0 t:

1

=ft2dt+fndt=g+n
0 0

wegen

F (gr(t)) = (0‚ 1, I“). 2:0) = (0. 0. 1),

F(g2(t)) = (sin t, cost, 1) und 'g2(t) = (sin t, cost, 0).

Aufgabe 5.3: F sei das Kxaftfeld aus Beispiel 5.8 und R der orientierte Polygonzug, der von (0, 0, 0) t
über (2, 0, 0) nach (2, 0, l) führt. Wie groß ist die Arbeit W, die ein R durchlaufender Punkt gegen
F zu leisten hat?

Definition 5.7: E‘ sei eine orientierte Kurve mit der Parameterdarstellung g(‘t), te [a, b]. D.5.7
Dann verstehen wir unter -9 die Kurve, die aus der gleichen Punktmenge wie PC besteht,
aber von g(b) nach g(a) durchlaufen wird.

Eine Darstellung von —@ ist z. B. h(t) = g(a + b — t), te [a‚ b]. Wir wollen
wenn;

jetzt untersuchen, wie sich ffds verändert, wenn wir S? durch —fl ersetzen, d.h.‚ den
9
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Integrationsweg entgegengesetzt durchlaufen. Wegen li(t) = —g'(a + b — t) wird

I b

1= ffds = J'f(h(t)) 11i(:)| dt = ff(g(a‘ + b — o) | g(a + b — :)| dt. (5.23)
-R x=a :=a

Substituieren wir in (5.23) a + b — t= r, dt = —d1, so wird
b

= ff(g(r)) |g(r)| d: = ffds.
ain:

I= —fr<g<r» lg'(r)| d:
2-6

Wir haben also ffds = jfds. Beim Kurvenintegral 2. Art ist der Sachverhalt anders.
~31 n

Ist f = (fl, f;,fi,) = f(x) eine Vektorfunktion und

b

=ff(g(t)) zum,
t=a

L = f r. dx
a

so wird mit den oben verwendeten Bezeichnungen

b u

ff. dx =fr(h(:)) . i;(z)d: =fr(g(z)) - gm d1 = —L.
-R l=a z=b

Beim Kurvenintegral 2. Art wechselt also bei der Umkehrung des Richtungssinnes
einer orientierten Kurve das Vorzeichen. Die Ergebnisse fassen wir im folgenden
Satz zusammen:

Satz 5.4: Das Kurvenintegral 1. Art ist von der Orientierung des Integrationsweges unab-
hängig, Integration über S‘? und —fl liefern beim gleichen Integranden den gleichen
Wert. Dagegen wechselt ein Kurvenintegral 2. Art beim Übergang von Q zu —R das
Vorzeichen.

Besteht der Integrand eines Kurvenintegrales (l. oder 2. Art) aus einer Summe
zweier Funktionen oder aus dem Produkt einer Funktion mit einer skalaren Größe,
so gelten wegen Satz 5.1 bzw. 5.2 die gleichen Verhältnisse wie bei gewöhnlichen be-
stimmten Integralen (siehe Band 2, Abschn. 10.1.4.):

Satz 5.5: Ist S? eine orientierte Kurve, f und g auf R definierte Funktionen und Ä eine
reelle Zahl, so gilt

I a) f(f+g)ds=ffds+fgds, b)f/1fds=Affds.
S? R S? H‘ n

Entsprechende Aussagen sind für Kurvenintegrale 2. Art gültig.

5.4.

Im folgenden Abschnitt wollen wir einige für Kurvenintegrale 2. Art typische Er-
gebnisse herleiten. Sie setzen voraus, daß der Integrand nicht nur auf dem Integra-
tionsweg, sondern in einem den Integrationsweg enthaltenden Gebiet definiert ist.

Integration totaler Diiferentiale
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Es kommt dabei auch darauf an, daß die Gebiete einer bestimmten Bedingung ge-
nügen, die in der folgenden Definition angegeben wird.

Definition 5.8: Ein (zwei- oder dreidimensionales) Gebiet G heißt einfach zusammen-
hängend, wenn sich jede in G verlaufende geschlossene Kurve auf einen Punkt zu-

sammenziehen kann, ohne G dabei zu verlassen.

Beispiel 5.9: Eine (zweidimensionale) Kreisscheibe ist einfach zusammenhängend.

Beispiel 5.10: Das durch zwei Kreise nach Bild 5.9a) begrenzte Gebiet G ist nicht
einfach zusammenhängend, denn jede den inneren Kreis umschließende Kurve muß
beim Zusammenziehen auf einen Punkt das nicht zu G gehörige Innere dieses Kreises
überstreichen. G kann jedoch durch einen Schnitt nach Bild 5.9 b) in ein einfach
zusammenhängendes Gebiet überführt werden. Ein solches Gebiet nennen wir nach
Definition 5.9 zweifach zusammenhängend.

Bild 5.9

Definition 5.9: Ein (zwei- bzw. dreidimensionales) Gebiet G heißt n-fach zusammen-

hängend, wenn es sich durch n — 1 Schnitte (entlang Geraden bzw. Ebenen) in ein
einfach zusammenhängendes Gebiet umwandeln läßt.

Beispiel 5.11: Die durch zwei konzentrische Kugelflächen begrenzte Hohlkugel ist
einfach zusammenhängend.

Beispiel 5.12: Verstehen wir unter G eine Kugel, aus der nach Bild 5.10 ein Teil durch
einen Zylinder herausgestoßen wurde, so ist G nicht einfach, sondern zweifach zu-
sammenhängend.

Bild 5.10
Bild 5.11

7 Körber. Integralrechnung

D.5.8

D.5.9
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Definition 5.10: Ein Kurvenintegral 2. Art f f - dx, dessen Integrand f = f(x) in einem

Gebiet G definiert ist, heißt in G vom Integrationsweg unabhängig, wenn für jedes
Punktepaar A, B aus G, gleichgültig welche ganz in G verlaufende orientierte Kurve 9C

als Verbindung zwischen dem Anfangspunkt A und dem Endpunkt B gewählt wird, das
Kurvenintegral

f f(x) . dx
sr

nur von A und B, nicht aber von 9 abhängt.

Satz 5.6: f sei im Gebiet G definiert. Das Kurvenintegral 2. Art ff(x) - dx ist genau dann

in G vom Integrationsweg unabhängig, wenn für jede ganz in G verlaufende geschlossene
Kurve R

56m4) . dx z o
S!‘

gilt.

Beweis: a) Es sei f f - dx in G vom Integrationsweg unabhängig und 5% eine beliebige,
in G verlaufende geschlossene Kurve. Wir wählen zwei beliebige, aber voneinander
verschiedene Punkte A und B auf ST. A und B zerlegen R in zwei Teile, die wir, je-
weils von A nach B führend, als orientierte Kurven E, und Si} auffassen (s. Bild 5.11).
Nach Voraussetzung gilt

ffvdx=ff-dx. -

n, ' xi,

S? setzt sich aus 3%, und —@2 zusammen. Nach Satz 5.3 und 5.4 gilt

g€r.dx=fr.dx+fr.dx:fr.dx—fr.dx=o.
S5 R. —W. R’, R,

Aus der Voraussetzung folgt also f -dx = 0 für jede geschlossene Kurve R aus G.
ä

b) Für jede in G verlaufende geschlossene Kurve S? sei

dii- dx = o.
s?

Es seien nun A, B beliebige, voneinander verschiedene Punkte aus G, und R1, R2

seien in G verlaufende, von A nach B führende orientierte Kurven. Die aus St‘, und
—§‘2 zusammengesetzte Kurve ist geschlossen. Die Voraussetzung und Satz 5.3
ergeben

ßfhdx=ftfidx+ fr.dx=o.
xi‘ n. —a.
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Folglich ist nach Satz 5.4

f r. dx =

5F;

also ff - dx vom Integrationsweg unabhängig. Damit ist Satz 5.6 bewiesen. I

Die Unabhängigkeit eines Kurvenintegrals f f- dx mit f(X) = (P(x), Q(x), R(x))
tritt z.B. ein, wenn f - dx = P dx + Q dy + R dz das totale Differential dd? einer
Funktion (D = d5(x), d.h. (15„ = P, (Dy = Q und (D; = R ist. (Es besteht dann die Be-
ziehung f = grad d5.)

— {r.dx={f.dx,
—3i, n".

Ist nämlich R eine geschlossene Kurve mit der Parameterdarstellung g(t)‚ re [a, b],
so wird mit x = g(t) = (gi(t)‚gz(t)‚gs(t))

‘1’(X) = ‘1’(g(t)) = F(t) und
dF . . . .

d’ Igl+¢Hg2+¢zg3='f(g(t))'g(t)-

Für das Kurvenintegral gilt dann nach Satz 5.2

b b

351"-dx = fr(g(:)) . go) dt = fdF= F(b) — F(a).
R t=lz l=a

Nach Voraussetzung ist R geschlossen, d.h., g(a) = g(b) = x0, und damit

9€ r. dx = F(b) — F(a) = am) — 45(xo) = o.
e

Satz 5.6 ergibt schließlich die Unabhängigkeit von f f - dx vom Integrationsweg in
jedem Gebiet, in dem f - dx das totale Differential einer Funktion (D ist. Von diesem
Sachverhalt gilt auch die Umkehrung, was hier aber nicht bewiesen werden soll.
Es gilt also der folgende Satz.

Satz 5.7: f sei in dem Gebiet G stetig. f f - dx ist genau dann in G vom Integrations-
weg unabhängig, wenn f - dx das totale Differential einer Funktion d5 ist, d.h., wenn
f = grad €13 in G ist. Ist E? eine in G verlaufende orientierte Kurve mit dem Anfangs-
punkt (x,,y,,z1) und dem Endpunkt (x2, yg, 22), so Iäßt sich das Kuruenintegral
über R durch

ff" dx = ¢(x2,y2. Z2) - ¢(x1:y1a Z1)
I? .

berechnen.

Es entsteht weiter die Frage, wie man es bereits f ansehen kann, ob es eine Funk-
tion (15 mit grad d5 = f gibt, d.h., ob f - dx das totale Differential einer Funktion d5 ist,
und wie sich 9D aus f berechnen läßt. Über den ersten Sachverhalt gibt Satz 5.8 Aus-
kunft, dessen Beweis wir in Abschn. 7.5., Beispiel 7.7, nachholen. Zwei Methoden
zur Berechnung von <15 lernen wir in den nachfolgenden Beispielen 5.l4 und 5.15
kennen.

j:

S.5.7
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Satz 5.8: G sei ein einfach zusammenhängendes Gebiet. In G sei f stetig und die Kompo-
nenten P, Q, R van f seien stetig partiell dzflerenzierbar. Ferner sei in G rot f = 0, d.h.,
Ry = Q_., P, = R, und Q, = Py. Dann ist f - dx ein totales Dififerential, also j f - dx
in G vom Integrationsweg unabhängig.

Ist das ganze Problem eben, d. h. G ein Teil der x,y-Ebene, R E 0 und P, Q nur von
x, y abhängig, so reduziert sich rot f = 0 auf die dritte Gleichung Pg = Qx.

Der einfache Zusammenhang von G ist, wie das folgende Beispiel 5.13 zeigt, eine
wesentliche Voraussetzung, auf die nicht verzichtet werden kann.

1
a W, x) und S? der

Einheitskreis ist. Es handelt sich hier um ein zweidimensionales Problem. Es ist

y’ - x

(x2 + f)’

Beispiel 5.13: Es ist 95 f - dx zu berechnen, wobei f(x) =

x 2

x’ + ‚V2

Die Bedingung von Satz 5.8 ist also in dem zweifach zusammenhängenden Gebiet
G, das aus der ganzen x,y-Ebene mit Ausnahme des Punktes (0, 0) besteht, erfüllt.
Der Einheitskreis Q, über den integriert werden soll, liegt ganz in G. Eine Para-
meterdarstellung von R ist

y 2‚Q= für x2+y2>0.P_Jfl und Py=Q,=

g(t) = (cost, sint), te [0, 27:].

Mit go) = («sin t, cost) Wird
27c

. l . t ‘

gSf(x) »dx = (—-s1nt, cost) - (—smt, cost) dt —fdt = 27: x 0.

2::

c=o o

f - dx ist also nicht vom Integrationsweg unabhängig, obwohl f — dx ein totales
Diflerential ist (aber nicht in einem einfach zusammenhängenden Gebietl).

Beispiel 5.14: Es sei f = (yz, xz + yz, yx). Als erstes wollen wir untersuchen, ob
f - dx ein totales DilTerential ist. Wir wenden hierzu Satz 5.8 an:

rotf=(Ry—Q,,P,——R,,Q,—P,,)=(x—x,y——y,z—z)=0.

f - dx ist also (im ganzen Raum) ein totales Differential und f f - dx vom Integrations-
weg unabhängig. Wir wollen nun noch die Funktion d5 berechnen, deren totales
Diflerential f ~ dx ist. Wir verwenden hierzu die Beziehung grad (15 = f, d.h.

grad Q5 = (am Q1/s $2) = (yza xz ‘l’ ya: -73’)-

Q3 läßt sich nun z. B. durch formale Integration von €15, = yz nach x bestimmen. Es
ist hierbei zu beachten, daß die Integrationskonstante eine von y und z abhängige
Funktion sein kann. Das Ergebnis der unbestimmten Integration nach x wieder nach
x dilTerenziert ergibt nämlich yz, auch wenn noch eine Integrationskonstante q2(y, z)

591

Ox

(5.24)

0. Bei der formalen Integration nach x werden übrigens yhinzugefügt wird, da
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und z wie Konstante behandelt. Wir erhalten also

¢=fyz dx+ «My, z)= xyz+ <IJ(y.z)-

Die Funktion q: benötigen wir unbedingt, um <15 auch noch den beiden restlichen
Gleichungen von (5.24) anpassen zu können. Ohne q: wäre nämlich (Dy = xz ä: xz+y2.
Die Berücksichtigung der Integrationskonstanten (p ergibt dagegen

Q5y=xz+<p„=xz+y2.

Damit gilt für (p

2
‘Py = J’ «

Formale Integration nach y ergibt

W0. z) = %,v3 + 112(2)-

Ähnlich wie bei der Integration von 115x = yz muß hier die Integrationskonstante 1/.v(z)

berücksichtigt werden, die noch zur Anpassung von (D an die dritte Gleichung von
(5.24) benötigt wird. Es ist jetzt

(D = xyz + ;1.,y“ + 1/1(2), also Q5; = xy + 1p’(z) = xy.

Damit ergibt sich 1p’(z) = 0 und 1y(z) = C = const. Wir haben somit

IP = xyz + ä y3 + C

gefunden. Die Probe ergibt, daß (Z5 der Gleichung (5.24) genügt.
Die Funktion Q5 können wir nach Satz 5.7 benutzen, um bei konkret vorgegebenen R

Kurvenintegrale f [yz dx + (xz + y?) dy + xy dz] zu berechnen. Es sei z.B. S? eine
n

orientierte Kurve mit dem Anfangspunkt (2, 0, 7) und dem Endpunkt (l, 3, 2).
Dann wird

ff-dx=l15(1,3,2)—<15(2,0,7)=1-3-2+§33+C—C=15.
R

Beispiel 5.15: Eine Feder mit der Federkonstante a sei mit dem einen Ende im
Punkte (0, 0, 0) befestigt. Welche Arbeit W ist gegen die Federkraft zu leisten, wenn
das andere Ende der Feder auf einer von (x1 , yl , 2,) nach (x2 , yg , 22) führenden Kurve
5% bewegt wird‘!

Die Federkraft sei F. [F| ist proportional zum Abstand des Federendes Vorn Null-
punkt mit dem Proportionalitätsfaktor a. Die Richtung von F weist dabei zum Null-
punkt hin. Befindet sich das Federende im Punkt (x, y, z) und setzen wir x = (x, y, z),

so gilt |F| = alxl und F = — [%]1F| = —ax. Das die Arbeit liefernde Kurvenintegral

(s. Beispiel 5.7)

W:fF.dx
K1‘

ist wegen rot F = —a rot (x, y, z) = 0 nach Satz 5.8 vom Integratiosnweg R un-
abhängig. Es gibt also eine Funktion Q5 mit F = grad (D.
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In der Physik nennt man eine Funktion <15, die zu einem Kraftfeld F in der Bezie-
hung F = grad <15 steht, die zu F gehörige Krizflefunktion, —d5 die potentielle Energie
oder das Potential von F. Besitzt F ein Potential, so heißt F Potentialkraft oder
konservative Kraft. Dieser Sachverhalt trifft für das vorliegende Beispiel also zu.
Die Federkraft ist eine konservative Kraft.

Wir wollen nun noch die Kräftefunktion G5 bestimmen. Wir könnten dabei ebenso
wie in Beispiel 5.14 vorgehen. Es soll hier jedoch ein anderer Weg eingeschlagen wer-
den. Nach Satz 5.7 gilt

IF’ dx 2 $05,)’; Z) ‘ 5D(xo»}’os zu):
R0

wenn 8%., von (x0, yo, zo) nach (x, y, z) führt. Diese Formel gestattet es uns also, (D bis
auf die Konstante <P(x„‚ yo, zo) zu bestimmen. Eine eindeutige Bestimmung von Q7

war uns aber auch in Beispiel 5.14 nicht möglich. Dort war in (D noch die. Integra-
tionskonstante C enthalten, die bei der Berechnung eines Kurvenintegrales mit Hilfe
von (.15 aber herausfällt. Wir können also

Q5(x‚y,z)=(F-dx
51a

setzen, wobei R0 wegen der Unabhängigkeit des Kurvenintegrales vom Wege eine
beliebige, von (x0, yo, zo) nach (x, y, z) führende Kurve sein kann. Wir wählen für
die Integration R0 möglichst einfach. Für jeden von (x0, yo, zo) verschiedenen Punkt
(x, y, z) sei

ft‘, die von (x0, yo, 20) nach (x, yo, zo) führende orientierte Strecke,

92 die von (x, yo, zo) nach (x, y, zo) führende orientierte Strecke,

R3 die von (x, y, zo) nach (x, y, z) führende orientierte Strecke

und R0 die aus F61, 92 und R3 zusammengesetzte orientierte Kurve (s. Bild 5.12).
Zur Berechnung des Kurvenintegrales benötigen wir Darstellungen von 9.- (i = I, 2, 3).
Q, wird dargestellt durch

XÜ) = (ta yo, Z0): t5 [x09 X]: mit 51 = (1; 0; 0)-

Bild 5.12



5.4. Integration totaler Differentials . 103

Nach Satz 5.2 wird

IF - dX= fF(X(f))-5<(t) df= fl-aü. yo.zo)‘ (L0, 0)] d!
‚a, ‚t=z„ z=.i„

z

ü
= -af:d:=~3(x2 —xg).

t=I,,

Analog erhalten wir

fF-dx= —%(y2 —yg) und fF'dx= ——‘2’—(z2— zg).

R; R:

Nach Satz 5.3 wird

<D=fF—dx=fF-dx+_lF-dx+lF-dx
5?. R, R. R.

= _%(x2+y’.+ z2—x§—y3— zä).

Mit (x3 + yä + 23) g = c ist 45 = — gm? + y’ + z’) + c. Satz 5.7 ergibt schließlich

l

W=fF-dx=%(xg+y5+zg—xg—yg_zg).
S?

Aufgabe 5.4: Untersuche, ob das Kraftfeld F = (y, 1 —- x, z’) aus Beispiel 5.8 ein Potential besitzt. a:

Aufgabe 5.5: Untersuehe, ob das Kraftfeld F = —ä(x, y, z) (Newtonsche Kraft) ein a:

Vac’ + y: + z’
in einem geeignet zu wählenden Gebiet G ein Potential besitzt und bestimme gegebenenfalls die
Kräftefunktion (15.

Aufgabe 5.6: Berechne unter Benutzung der Ergebnisse aus Beispiel 5.13 das Kurvenintegral ä f'dX‚ t

ä
F? (— y, x) und R, die orientierte Berandung des Quadrates mit der Seitenlänge 4,

parallel zu den Achsen verlaufenden Seiten und dem Mittelpunkt (0, 0) ist.

wobei f =

Anleitung: Benutze den in Bild 5.13 dargestellten Integrationsweg R0. Er ist geschlossen und verläuft
ganz in einem einfach zusammenhängenden Gebiet (x,y—Ebene, aus der der Koordinatenursprung
(0, 0) entfemt ist, und die entlang der positiven x-Achse aufgeschnitten wurde), in dem f - dx ein
vollständiges Differential ist.

Aufgabe 5.7: Untersuche, ob das Vektorfeld v = (—2x + sin z, cos y — y sin y, xcos z + 4 e21) t

ein Potential besitzt und bestimme gegebenenfalls die Kräftefunktion.

5.5. Kurvenintegrale anderer Art

Bei der Definition des Kurvenintegrales 1. Art (s. Def. 5.4) S = lfds waren wir von Zerlegungen
R

(s.Def. 5.2) von S? ausgegangen und haben die Summen der Produkte der Teilbogenlängen As; mit
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den Funktionswerten von f in einem beliebigen Punkt des Teilbogens R; (Formel (5.1)) gebildet.
S war dann der Grenzwert dieser Summen bei immer feinerer Unterteilung von R. Der Vorteil eines
solchen Herangehensliegt darin, daß sich mit Definition 5.4 unmittelbar entsprechende geometrische,
physikalische oder technische Probleme modellieren lassen.

In Satz 5.1 hatten wir dann

b

„m: = {f(g(t)) Igml d: (5.25)
s» :;a

gefunden, wenn gU), t E [a, b], eine Darstellung der orientierten Kurve R ist. Die Formel (5.25) hät-

ten wir auch zur Definition von Jr f ds benutzen können: Ist R eine Kurve mit der Darstellung g(t)‚
R

t E [a, b], undfeine auf S? definierte Funktion, so verstehen wir unter ffds das Integral aufder rechten
n

Seite von Formel (5.25), falls es existiert. Von dieser Definition ausgehend hätten wir die gleichen
Ergebnisse erhalten, die wir mit Definition 5.4 als Ausgangspunkt fanden. Dieser Weg bietet sich vor

allem an, wenn man, z.B. zur Sicherung der Existenz von Kurvenintegralen unter weniger ein-
sein" ' ‘ Bedingungen, den Begrifl‘ des Kurvenintegrales allgemeine fassen will. So kann z. B.
bei der Definition des Kurvenintegrales mit Hilfe von Formel (5.25) das Integral auf der rechten
Seite von Formel (5.25) als Lebesguesches Integral oder anderes Integral (s. Band 2, 2.3.5.) auf-
gefaßt werden. Analog kann man natürlich auch mit dem Kurvenintegral 2. Art und den Darstellungs-
formeln aus Satz 5.2 verfahren.

Eine weitere Verallgemeinerung erhalten wir auf folgende Art. Es seien R eine Kurve mit der

Darstellung g(t), t E [11, b], und f, h auf R definierte Funktionen. Unter ffdh verstehen wir dann das
R b

Stieltjessche Integral (im Sinne von Riemann oder Lebesgue, s. Band 2, 10.5.) ff(g(t)) dh (g(t)).
l=a

Das Kurvenintegral 1. Art Ifds ist jetzt ein Spezialfall dieses allgemeine cu Kurvenintegral ‚ wenn

1?

wir unter der Funktion s = s(g(t)) die Bogenlänge über dem Intervall [a‚ t] verstehen.

k}f
-2 K0 7 32 x

Bild 5.13
Integrationsweg Rn, usammengesetzt

_z aus 3%,, R2, —@ und —5t“g
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Unser Ziel ist es, ähnlich wie wir in 5.1. das bestimmte Integral zum Kurvenintegral
erweitert haben, auch das Bereichsintegral für ebene Bereiche zum Integral über räum-
lich gekrümmte Flächen zu erweitern. Beim Kurvenintegral stand uns mit der Bogen-
länge bereits ein Maß für die bei der Zerlegung der Kurve entstehenden Teile zur
Verfügung (s. Def. 5.3, 5.4 und Abschnitt 5.2.). Wenn wir von den Rotationsfiächen
absehen, fehlt uns aber noch eine Definition für den Flächeninhalt gekrümmter
Flächen. Wir werden sie in Abschnitt 6.1. bereitstellen. In Abschnitt 6.3. können wir
dann auf der Grundlage dieser Definition in Analogie zu den Kurvenintegralen
Oberflächenintegrale erster und zweiter Art einführen.

6.1. Definition und Berechnung des Inhalts krummer Fliichenstiicke

Es sei % eine (endliche) räumlich gekrümmte Fläche. Die Projektion B von ä auf
die x,y-Ebene (parallel zur z-Achse, s. Bild 6.1) sei meßbar, d.h., db existiert.

B
Jeder Projektionsstrahl soll ‘fy dabei nur einmal treffen. Ordnen wir nun jedem Punkt
(x, y) aus B die Ordinate z des Punktes von E5 zu, in dem der Projektionsstrahl durch
(x, y) die Fläche ä trifft, so erklären wir auf B eine Funktionf: z = f(x, y) (s. Bild 6.1).

Bild 6.]

Umgekehrt erhalten wir durch jedes Paar B, f, wobei B ein endlicher Teilbereich der
x‚y-Ebene undf eine auf B definierte Funktion ist, eine räumlich gekrümmte Fläche,
die aus den Punkten (x, y,f(x, y)) mit (x, y) E B besteht. Von der Funktionfwollen
wir verlangen, daß sie auf B stetig und stetig partiell differenzierbar ist.
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An €- können wir in jedem Punkt eine Tangentialebene legen. Der Anstieg der
Tangentialebene im Punkt (E, 17, f(E, 17)) in x-Richtung ist a = j;(£, 1;), in y—Richtung
b = fy(E, 17). Damit können wir die Gleichung dieser Tangentialebene in der Form

z=ax+by+c (6.1)

schreiben, wobei c = f(£, 7;) — Efi,(£, 17) ~ 17fy(£, 17) ist. Die Gleichung (6.1) können wir
mit x = (x, y, z) und m = (ea, —b, I) umformen in

m-x=c.

m ist dann ein senkrecht auf der Tangentialebene stehender Vektor (s. Band l3).
Den Einheitsvektor von m bezeichnen wir durch n und nennen ihn Normalenvektor
der Tangentialebene. Da die Tangentialebene die Flächeä- im Punkt (.5, 17,f(£, 77))

berührt, steht n in diesem Punkt auch senkrecht auf ‘ü. Wir nennen n deshalb auch
Normalenvektor von 55- im Punkt (E, 17‚f(5, 77)). Für n gilt

l 1

i?“Ü?
f 1

’ v 1 +f§(E, n) +7;-‘<5, n)

Unter den oben für Ty gemachten Voraussetzungen läßt sich nun eine Folge
(pg),-_,,2__, von auf B erklärten stetigen und stückweise linearen Funktionen an-
geben, die den weiter unten angeführten zusätzlichen Bedingungen (a) bis (d) genügt.
Stückweise linear bedeutet, daß sich der Graph von p; aus Teilen von Ebenen zu-
sammensetzt. Wegen der Stetigkeit schließen sich die Ebenen ohne Sprünge an-
einander. Der Graph von p; ist also Teil der Oberfläche eines Polyeders. Wir sagen
hierzu kurz polyedrische Fläche. p,» sei jeweils auf Teilbereichen B„.(l g k g m.) von
B linear, d.h., z = p,-(x, y) stellt über B”. eine Ebene dar, deren Normalenvektor n,-k

sei. a,» sei das Maximum der Durchmesser der B,~k(l g k g m.) (s. 2.1., Def. 2.2).
‚B; sei das Maximum von [f(x‚ y) ~ p,-(x, y)[, wobei (x, y) ganz B durchläuft. Die
zusätzlichen Bedingungen für die Folge (77,) sind:

n= (—a, —b, l)'

(-/1(§,17). *fJ(E, n) 1)- (6-2)

(a) (m.»)‚«‚1 „ ist eine monoton wachsende Folge. i

(b) lim cc; = 0.
z'—>oo

(c) lim ß, = 0.
I'—~oo

(d) In 8.-1. gibt es für jedes i= 1, 2, und k = 1, 2, ...‚ m; einen Punkt
(E,»;,,17,;,.), so daß die Normale an ‘fy im Punkt (5u„77ik‚f(5rk‚77ak))
mit n„. übereinstimmt.

Die Teilbereiche Bu, B,-2, ..., B.“ von B bilden jeweils eine Zerlegung von B.
Wegen der Bedingungen (a) und (b) bilden diese Zerlegungen für i = 1, 2, eine aus-
gezeichnete Folge von Zerlegungen von B'(s. 2.1., Def. 2.3). Die Bedingungen (c)
und (d) sichern uns, daß sichdie durch Pf dargestellten polyedrischen Flächen EB; mit
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wachsendem iimmer mehr der Fläche f; nähern. Den Flächeninhalt A; von ‘J3,- können
wir aber leicht berechnen. Besitzt nun die Folge (A ,-),-=1,2, einen Grenzwert A, so ist
es naheliegend, diesen Wert A als Flächeninhalt der gekrümmten Fläche ‘i’; ein-
zuführen,

Wir wollen jetzt den Flächeninhalt A. von EB; berechnen. Das über By. gelegene
Ebenenstück sei SB,-k. In die Spur der Ebene E, in der ‘B,-;. liegt, mit der x,y-Ebene legen
wir eine u-Achse und senkrecht zu ihr (ebenfalls in der x,y-Ebene) eine v-Achse.
Senkrecht zur u-Achse legen wir in die Ebene E eine Ü-Achse. Die Beziehung zwischen
den Punkten (u, D’ von E und ihren Projektionen (u, v) in der u,v-Ebene wird durch

v = Ücos y l (6.3)

wiedergegeben. Hierbei ist y der Winkel zwischen E und der u‚v-Ebene. Dieser Winkel
liegt auch zwischen nu‘ und der z-Achse (s. Bild 6.2).

Bild 6.2

Die Funktionaldeterminante für den Übergang von u,'13-Koordinaten zu u,v-Koor-
dinaten (vgl. Abschnitt 4.1.) folgt aus (6.3) zu

0 l

l
1 =

cosy '

6(u,B) _‘ l

3(u, v) — 0
| cosy|

Mit A i,‘ als Flächeninhalt von 531k und AB,-k als Flächeninhalt von Bik gilt

a .

Aik=f (“fl db: 1 „ab: AB“

LI:

ö (u, v) cos y cos y
m B

(siehe Abschn. 4.2.). Ist e3 der Einheitsvektor in Richtung der z-Achse, so gilt

cos y = es - n,k. (6.4)
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Nach Bedingung (d) gibt es nun einen Punkt (Eng, 17,1.) E B.-k, so daß die Normale n
an ‘f- mit ng. übereinstimmt. Berücksichtigen wir n = nu. und Formel (6.2) in (6.4), so

' erhalten wir

1 1
j — ‚ —— ,, 1 =,

1/1+f3+f§( fl fJ ) V1+f;~:+f§
wobei f, und fy im Punkte (Em, 77,7.) zu nehmen sind. Damit wird

cos y = (0, 0, 1) - (6.5)

V _ A3,‘);

‘k cosy =1/1 +f§ (5th ?7i1.~)+f3(5nc, 7117:) A311:

und

Ai =1: I/1 +f§(§ik, ?7tk)+f§(5i1c, mic) ABik~

Da; nach (a) und (b) die B”; eine ausgezeichnete Folge von Zerlegungen von B er-
klären und f,,j; stetig sind, konvergieren die A,- gegen ein Bereichsintegral über B:

iim‚4‚._=ff1/1+f:+f;jdb
x-voo B

(siehe 2.1., Def. 2.5). Nach unseren oben angestellten Überlegungen wollten wir
diesen Grenzwert als Flächeninhalt A von % einführen.

Definition 6.1: Die endliche Fläche ä sei durch z =f(x, y) über dem meßbaren Bereich B
der x,y-Ebene gegeben, wobei die Funktionfstetig und stetig partiell diflerenzierbar sei.
Dann definieren wir

I A=ff|/1+f3+f5db

als Flächeninhalt von ä.

Beispiel 6.1: Über dem Einheitskreis B = {(x, y): x’ + y? g 1} sei durch z = xy
die Fläche % gegeben. Es ist also f(x‚ y) ‚= xy mit f, = y und fl, = x. Für den
Flächeninhalt A von f; gilt dann

A=ff1/1+f2+f5db=ff1/1+y2+x2db.
B B

Wegen der Gestalt von B und des Integranden läßt sich dieses Integral am besten in
Polarkoordinaten auswerten:

2711 ‘

%____ i _ 2 _

A=ff1/1+x2+y2db:ff1/1+r2rdrdg;=%(21/2-1).
B 00

Aufgabe 6.1: Es ist der Flächeninhalt der Zylinderfiäche z = V1 — x’ zu berechnen, die sich über
dem Einheitskreis B = {(x‚ y): x2 + y’ g 1} befindet.
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6.2. Parameterdarstellung von Flächenstücken

Im vorangegangenen Abschnitt haben wir Flächenstücke ‘5- durch die Projek-
tion B von ‘f; auf die x,y-Ebene und durch die Funktion f, die aus der Zuordnung
(x, y) —> z für (x, y, z) E {y entsteht (siehe 6.1.), dargestellt. Voraussetzung war
dabei, daß jeder Projektionsstrahl durch (x, y) E B das Flächenstück ä} in nur einem
Punkt trifft. Dieser Sachverhalt ist aber selbst für relativ einfache Flächen, wie z. B.
für die Kugel, bei der jeder zu einem inneren Punkt von B gehörige Projektionsstrahl
die Kugelfläche zweimal trifft, nicht mehr gegeben. Es ist deshalb zweckmäßig, zu
einer anderen Form der Darstellung überzugehen, die die bisher benutzte Form als
Spezialfall enthält. Wir gehen dabei ähnlich vor wie bei den Raumkurven in Ab-
schnitt 5.1. (vergleiche insbesondere Def. 5.1). In Abschnitt 6.1. haben wir von räum-
lich gekrümmten Flächen gesprochen, ohne diesen Begrifl" näher zu definieren. Dies
wollen wir jetzt nachholen (vgl. auch Bd. 4, 2.6.4., oder Bd. 6, 4.1.1. und 4.1.5.).

Definition 6.2: Es sei M ein meßbarer Bereich der u‚v-Ebene, dessen Rand im Sinn D-6-2
der Def. 5.1 eine Kurve ist, sowie gl, gg, g3 auf M stetige Funktionen. Ferner sei
x = g(u, v) = (g1, g2, g3) stückweise 1) stetig partiell diflerenzierbar mit

ö ö li5 >< T5’ # 0.

Dann nennen wir die Menge aller Punkte (g, (u, v), g2 (u, v), g3 (u, v)) des R3, wobei
(u, v) ganz M durchläuft, eine Fläche ä. g = g(u, v), (u, v) e M, nennen wir Parameter-
darstellung oder auch kurz Darstellung von ä.

Die in Abschnitt 6.1. verwendeten Flächen entsprechen der Definition 6.2. Ist B ein
meßbarer Bereich der x,y-Ebene und {s durch die Punkte (x, y, f(x, y)) mit (x, y) E B
gegeben, wobei f auf B stetig und stetig partiell differenzierbar sein soll, so können
wir x = u, y = v, g, (u, v) = u, gg (u, v) = v und g3(u, v) = f(u‚ v) setzen und erhalten
eine Definition 6.2 entsprechende Darstellung von €- in g = (u, v, f(u, 12)), (u, v) e B.

Wir wollen nun für die Parameterdarstellung die Flächennarmale n bestimmen. Hier-
zu betrachten wir vorerst eine Kurve 9 mit der Darstellung h(t), re I. Die Ableitung i"

AL,flrt»At)-my

Bild 6.3

1) stückweise soll hier bedeuten, daß sich M in endlich viele Teilbereiche M1, M2 , ...‚ Mn zerlegen
läßt (die alle meßbar sind und durch Kurven berandet werden), auf denen g stetig differenzierbar ist.
Auf den die Bereiche M,- (i = 1, n) trennenden Kurven braucht g nur stetig zu sein.
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von r = h(t) ist der Grenzwert von ä [h(t + At) — h(t)] für At —> O. i hat deshalb

die Richtung der Tangente an S? im Punkt r = h(t) (vergleiche Bild 6.3). Ist nun {y eine
Fläche mit der Darstellung g(u, v), (u, v) e M und (u0‚ v0) e M, so setzen wir g1(t)
= g(t, v0) und g2(t) = g(u0, t). Sind I, bzw. I2 geeignete Intervalle um n0 bzw. v0, die
noch ganz in M liegen (s. Bild 6.4), so sind die durch g1(t), teI,, und g,(t), [E12, dar-
gestellten Kurven Q1 und R2 so beschaffen, daß sie in ä verlaufen und sich in r0
= g(u0, v0) kreuzen (s. Bild 6.5). Die Tangenten an 5%, und R2 in 1-0 liegen aber in der

Bild 6.4 "V Bild 6.5

Tangentialebene an ä im Punkt r0. i-l = g,(u0) und i"; = g2(v0) haben die Richtungen
der beiden Tangenten, mm steht demnach senkrecht auf der Tangentialebene.

1'1 X 1'2

“'1 Xizi
Orientierung gegeben, denn wir haben eine Seite von ‘ä, nach der n jeweils zeigt, aus-
gezeichnet. Vertauschung der Reihenfolge von i", und i2 im Kreuzprodukt hätte
das Vorzeichen von n geändert und damit die andere Seite von % ausgezeichnet.
Wir wollen uns dabei auf Flächen beschränken, die zwei Seiten haben. Es sei hier
darauf hingewiesen, dal3 es auch Flächen mit nur einer Seite gibt, z.B. das Möbius-
sche Band (s. [6], S. 179, oder [4], S. 391).

Wir können also n = setzen. Damit haben wir ‘f; gleichzeitig eine bestimmte

. Ö Ögi 532 figs Ö _ 3g; Ögz 683
W°““W“Tug"g““ (7., Tu= n?) “d T6’- gr (Tw Tu» Ü?)

setzen, wird i", = g„(u0, v0) und i‘: = g„(u0, v0). Damit wird

g„>< gv
n = . (6.6

lgux gvl )

Berücksichtigen wir dies in (6.4), so erhalten wir mit

0 O l
gm gzu Ö (x, y)

93 ' (guX gv) z g1ug2u gau :, : ö ‚

glv g2u (us V)
gm 82v g3v

da ja x= g1(u, v), y= g2(u, v) die Beziehung zwischen x,y-Ebene und u‚u-Ebene
darstellt (s. Abschn. 4.2.), die (6.5) entsprechende Formel

l 5(x.y) _

1g..§g..| agu, v)
cos y = (6.7)



6.2. Parameterdarstellung von Flächenstücken lll

Mit Formel (6.5) können wir den Flächeninhalt A von {ä in Definition 6.1 auch in
der Form

A =1.
B

schreiben. Nehmen wir in (6.8) noch die Koordinatentransformation x = g1 (u, v),
y = g2(u, v) vor, so geht B in M und (6.8) m '

_ I Über)
A19 cosy 6(u, v)

db
Ä (6.8)
cos y

(6.9)

über. Berücksichtigung von (6.7) ergibt schließlich

A = ff 1g.x g.—| dm. (6.10)
M

Definition 6.3: Ist f» eine Fläche mit der Darstellung g(u, v) = (g), gg ‚ g3), (u, v) e M, so

erklären wir

_5g2_5g1’ 6822 6832 x“(fl "(Wl +(a—u) WW)’
F_ a: . as _ 631.631

öu" W 6—u '- W Tu av

_ ag 2_ 681 2 682 2 683 2

G‘ W) - (w) W737) +<T..)'
Mit Def. 6.3 wird dann wegen [axbl = I/a2b2 -— (217)? (s. Band 13)

|g.>< gyl =1/EG ~ F2. (6.11)

In (6.10) eingesetzt, ergibt dies den Flächeninhalt A einer Fläche ä mit der Dar-
stellung g(u, v), (u, v) EM, entsprechend Definition (6.1) zu

683 _ 683
F677)?’

I A=(f]/EG—F2dm. (6.12)
M

Wichtig ist, daß wir in (6.12) keine Rücksicht darauf zu nehmen brauchen, wie oft
ein Projektionsstrahl parallel zur z-Achse die Fläche {y trifft. '

Beispiel 6.2: Die räumliche Fläche ä werde durch Rotation der ebenen Kurve f? mit
der Darstellung g(t) = (x(t)‚ y(t)), tel, (in der x‚y-Ebene) um die x‘-Achse erzeugt.
Hierbei sei y(t) g 0. Eine Darstellung der räumlichen Fläche ä erhält man durch h(t, go)

= (x(t),y(t) cos <p,y(t) sin g), (t, <p)EM= {(1, (p) | tel, zpe [0, 21:] ]. Wir erhalten E= JE’ + jig,

F= 0, G = y’ und VEG — F’ = yVJEt2+ j)’. (t übernimmt hier die Rolle von u, qzdie
von v.) Nach Formel (6.12) wird der Flächeninhalt von ‘f;

2:!

A=fi]/EG—F2dm=ffyllx’+}>zd<pdt=2vrfyds.
M II0

D.6.3
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Für den Schwerpunkt (x0, yo) V011 R gilt

1 .y0=;fydsm1ta=fds.
1 1

Der Flächeninhalt von ä läßt sich dann durch

A = Zvcyga

darstellen. In Worten läßt sich das wie folgt ausdrücken:

Der Oberflächeninhalt eines Rotationskörpers ist gleich der Länge der erzeugenden
Kurve mal der Länge des Weges, den der Schwerpunkt der Kurve bei der Rotation
zurücklegt.

Diese Aussage wird als zweite Guldinsche Regel bezeichnet. In ähnlicher Weise
kann auch die erste Guldinsche Regel hergeleitet werden:

Der Rauminhalt eines Rotationskörpers ist gleich dem Flächeninhalt der erzeugenden
Fläche mal der Länge des Weges, den der Schwerpunkt der Fläche bei der Rotation
zurücklegt.

Beispiel 6.3: Aus einer Kugel mit dem Radius R, deren Mittelpunkt im Koordinaten-
ursprung liegt, werden durch zwei sich in der z-Achse berührende Zylinder mit dem

Radius 7 Teile herausgeschnitten. Es ist der Flächeninhalt A der Restfiäche f; der

Kugel zu berechnen. Diese Aufgabenstellung wird als Florentiner Problem bezeichnet.
Sie wurde 1692 von V. Viviani gestellt.

Eine Draufsicht auf ä} zeigt Bild 6.63.). Wegen der Symmetrie von ä genügt es,
den Inhalt des im ersten Oktanten gelegenen Teils {s1 von 3} zu bestimmen
(s. Bild 6.6b) und c)). Der gesamte Flächeninhalt hat dann den achtfachen Wert.
Zur Darstellung von %, benutzen wir Kugelkoordinaten

x= rcostpsinö,
y= rsincpsinfl,
z = r cos 19 .

Da %‚ ein Teil der Kugelfläche mit dem Radius R um den Koordinatenursprung ist,
ist r = R. go entspricht der geographischen Länge, 19 ist der Winkel zwischen posi-
tiver z-Achse und der Verbindung zwischen Koordinatenursprung und Kugelpunkt
(Polabstand). Mit (p = u und 0 = v wird

g(u‚ v) = R(cos u sin v, sin u sin u, cos u).

Um den ersten Oktanten zu überstreichen, muß u zwischen 0 und g laufen. Bei

festem u ist der Winkel v0 zum Schnittpunkt zwischen Zylinder- und Kugelfläche

gleich g- u (s. Bild 6.6c))‚ in dem der zum Winkel u gehörige Kugelgroßkreis gi-

zeichnet ist). Der zu %1 gehörige Bereich M1 ist also festgelegt durch 0 g u g -2-

und g — u g v g g(u, o), (u, v) EM, ist eine Darstellung von $1.
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z
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/ Ä Bild 6.6 a) b) c)

R m u I? x,y-[me

Mit
g., = R(-—sin u sin v, cos u sin v, O) und g„ = R(cos u cos v, sin u cos v, —sin v)

wird
E = R2 (sin2 u sin2 v + cos2 u sin2 v) = R2 sin2 v,

F= R2(——sin u cos u sin v cos v + sin u cos u sin v cos v) = O,

G = R2 (0052 u cos2 v + sin2 u cos? v + sin2 v) = R2

und = R2 |sin v[ = R2 - sin v wegen v E [0,3]. Für den Flächeninhalt von ü
erhalten wir 2

1: 1!

2 2

A:Sffl/EG—F’dudv=8}-V./-R2sinvdvdu
M‘ O

—u

I]

i
N

]:

N
]

*1

m
l?

!

no
[?

|

8R2 cos( " —u)du=8R2fsinudu= 8R2.

0 0

8 Körbcr. Integralrechnung
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Aufgabe 6.2: Berechne den Teil der in Zylinderkoordinaten r, zp, z durch z = h <1-— L) , 0 g z g h,
ll

TC

gegebenen Kegelfiäche, die innerhalb des Kreiszylinders r F a cos qz, — 2 g q: g gliegt. Skizziere

den Schnitt des Zylinders mit der x‚y-Ebene‚ also die Kurve r = a cos mit — 3 g g I in derr 2 r 2

x,y-Ebene. Verwende zur Darstellung dieses Teiles der Kegelfiäche Zylinderkoordinaten. g soll dabei
eine Funktion von r und (p sein.

/

6.3. Definition und Berechnung von Oberflächenintegralen

Definition 6.4: Es sei {S eine Fläche (nach Definition 6.2) und F eine mindestens auf {y

definierte Funktion. Wir zerlegen €- in i meßbare Teile (für jeden Teil ist nach Formel
(6.12) der Flächeninhalt berechenbar) mit dem Flächeninhalt Af,-;,, wählen aus jedem
Teil einen Punkt Qik beliebig aus und bilden die Summe

käHQrk) AI?» (6-13)

Wir lassen nun i gegen Unendlich gehen und wählen die Zerlegungen dabei so, daß eine
ausgezeichnete Folge von Zerlegungen entsteht (vgl. Def. 2.3). Streben die Summen
(6.13) für i gegen Unendlich unabhängig von der gewählten Zerlegungsfolge und un-

abhängig von der Wahl der Punkte Q”, gegen ein und denselben Grenzwert, so bezeichnen
wir diesen Grenzwert durch

ff F(P> df
Tr

und nennen ihn Oberflächenintegral J. Art über die Fläche S< mit dem Integranden F.

Ganz analog wie bei den Kurvenintegralen (vergleiche Abschn. 5.2.) können wir
die Berechnung der Oberflächenintegrale auf die Berechnung von Bereichsintegralen
zurückführen. Wir wollen die Gedankengänge nicht noch einmal wiederholen, sondern
sofort das Ergebnis angeben:

Satz 6.1: Es sei ä} eine Fläche mit der Darstellung g(u‚ v), (u, v) EM, undF eine auf %

definierte und stetige Funktion. Dann existiert das Oberflächenintegral 1. Art f(P) df,
und es gilt ä;

flF(P)df=ffF(g(u,v))1/EG — F? du du.
E M

E, F und G sind hierbei nach Definition 6.3 zu berechnen.

Auf Oberflächenintegrale 1. Art. führt z. B. die Berechnung des Schwerpunktes
räumlich gekrümmter Flächen oder die Berechnung von Trägheitsmomenten solcher

Flächen. älx df liefert z.B. die x-Koordinate des Schwerpunktes, wobei A = ff df
(v Ü‘

der Flächenirlhalt von ä} ist.

Beispiel 6.4: Es sind die Koordinaten E, 17, C des Schwerpunktes der im ersten Ok-
tanten gelegenen Fläche ä}, des Florentiner Problems (s. Beispiel 6.3) zu bestimmen.
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Wir verwenden die gleiche Darstellung von ‘ü; wie in Beispiel 6.3. Mit WEG-F”
= R’ sin v hatten wir dort

A= {fdf=ff1/EG—F*dudu=
i}, M, o

m
]:

io
|r

i

fRzsinvdvdu=Rz
x u
2

gefunden. Die Integrationsgrenzen bleiben bei der Schwerpunktbestimmung dieselben,
da ja ebenfalls über ä}, zu integrieren ist. Der Integrand 1 wird dagegen durch
F(x, y, z) = x bzw. y bzw. z ersetzt.

E=%;ffxdf=%'/-fRcosusinv|/EG—Fzdudv
Ü‘: M1

ä ä
=Rf fcosusin2vdvdu= 3n1Z4R,

0 L
2

17=—R1?ffydf=—R1—2-J‘Rsinusinv]/EG—F2dudv

a. Mi
7? T!

T Y

=Rf fsinusin2vdvdu=%R,
U 7."

———u
2

1 j_,

C=Ff-/‘zdf=—1%;ffRcosv]/EG—F’dudv
Üi Mi

v:

2

=Rf fcosvsinvdvdu=—;—R.
o

x

2

n H
2

Aufgabe 6.3: Der im 1. Oktanten liegende Teil ä} der Kugeloberfiäche x2 + y’ + z’ = R2 sei mit at

. I . .

Masse der Dichte 7T’- belegt. Berechne die Gesamtmasse. Das gleiche Problem entsteht, wenn
Z

man i} als Schale der Dicke 1 + auffaßt, wobei h klein gegenüber R ist, und das Volumen berech-
Z h

iiet. Die Dicke nimmt dabei vom Wert h in der x,y-Ebene bis zum Wert 1

der Kugel ab. + R

Wir kommen nun zur Definition der Oberflächenintegrale 2. Art. Ähnlich wie
bei den Kurvenintegralen 2. Art ersetzen wir in Formel (6.13) den Flächeninhalt Afg,

im höchsten Punkt

St
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durch seine Projektion auf eine der Koordinatenebenen. Wir wollen dabei jedoch den
Projektionen ein bestimmtes Vorzeichen zuordnen. Wir benutzen hierzu die durch die
Normale n nach Formel (6.6) gegebene Orientierung der Fläche ‘[3. Sie ist von der
Darstellung abhängig. Bei geschlossenen Flächen f; wollen wir nur solche Darstel-
lungen zulassen, bei denen die Normale nach außen zeigt. Ist % nicht geschlossen,
so legen wir willkürlich eine Seite von {y als Außenseite fest und lassen dann ebenfalls
nur Darstellungen zu, bei denen die Normale nach außen zeigt. Wir ordnen nun der
Projektion von Afik auf eine der Koordinatenebenen (y‚z-‚ x, 2- oder x,y-Ebene) das
Plus-Zeichen zu, wenn wir bei der Projektion auf die Außenseite blicken, und wir
ordnen ihr das Minus-Zeichen zu, wenn wir auf die andere Seite, die wir Innenseite
nennen wollen, blicken. In Bild 6.7 sind die Verhältnisse bei Projektion auf die x,y-
Ebene dargestellt. Blickt man zum Teil auf die Außen- und zum Teil auf die Innen-
seite,[so wird die Teilfläche durch die Trennlinie nochmals unterteilt.

Bild 6.7 a) b)

0)H) x X

Ist yider Winkel zwischen positiver z-Achse und n, so ist cos y > 0, wenn y spitz
ist, d.h.‚ wenn wir auf die Außenseite sehen. Dagegen ist cos y < 0, wenn y stumpf
ist, d.h.‚ wenn wir auf die Innenseite sehen. Die Projektion AbL-„von Af„‚ auf die
x,y-Ebene erhält also gleichzeitig das richtige Vorzeichen, wenn wir

Abo: = Afik cos y = (nu. - es) Afik

setzen (vgl. Formel (6.4)). Ersetzen wir nun in (6.13) Afik durch Abgk, so erhalten wir
als Grenzwert das Oberflächenintegral HF(P) (n - e3) df. Verstehen wir unter B3 die

Projektion von {s auf die x,y-Ebene, sod liefert jede Zerlegung von ä durch die Pro-
jektion eine Zerlegung von B3, wobei der Flächeninhalt Ab,-k der Teile positives oder
negatives Vorzeichen trägt, je nachdem, ob wirbei der Projektion auf die Außen- oder
Innenseite des Teiles blicken. Die Projektion B3 von f: kann also auch aus mehreren
Schichten mit unterschiedlichem Vorzeichen bestehen (vgl. Bild 6.8). Den Grenz-

wert der Summe i'F(Q.-k) Ab,-;, (Formel (6.13), wobei Af‚-„ durch Alm, ersetzt ist)
k—'l

können wir nun aber auch als Bereichsintegral (in der x‚y-Ebene) über B3 auffassen.
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II

n.
X

Bild 6.8

Dabei ist im Integranden F(P) = F(x, y, z) der Punkt P = (x, y, z) stets so zu nehmen,

daß er auf der Fläche % liegt. Wir schreiben deshalb für F(P) (n — c3) df auch
‚ "e

[F(x‚ y, z) dx dy und nennen es Oberflächenintegral 2. Ar}.
i‘)

Definition 6.5: Es sei ä} eine Fläche mit der Darstellung g(u, v), (u, v) e M, (die D.6.5
nach Formel (6.6) die Normale n auf {y festlegt) und F1, F2, F3 mindestens auf ‘fy

definierte und stetige Funktionen. Dann nennen wir U37,-(P) (n - e.) df (i é 1, 2,3)
Oberflichenintegrale 2. Art und schreiben dafür: "ä

ffFm (n - eo df= ff F1(x, y, z) dy dz,
i‘: ü

ff Fm (n - ea df= ff F2 (x, y, z) dx dz,
i} i’;

ff Fm (n - es) df= ffFax, y, z) dx dy.
i? ä}

Hierbei sind e1, e2 bzw. ea die Einheitsvektoren in x, y bzw. z-Richtung. Das Integral

HF—ndf=U(F‚ dy dz+ F2dxdz+ Fadxdy),
T" ‘ö

wobei F = (F1, F2, F3) gesetzt ist, nennen wir Oberfliichenintegral allgemeiner Art.

Beispiel 6.5: Es sei g(u; v) = (R cos v, u, Rsin v), M der durch 0 g u g R,

— Z2: g v g gegebene Bereich der u‚v—Ebene und ä die durch g(u, v), (u, v) e M, darge-

stellte Fläche. Es soll das Oberflächenintegral 2. Artff xyz dx dy berechnet werden.

Mit g„ = (0, 1, 0) und g„ = (—R sin v, 0, R cos v) wisd g..>< g„ = (R cos v, 0, R sin v),

‘p'EG—F2= lguX gul = R, n=äfit4l= (cos v, 0, sin v) undn-eg = sin u.
U- ~ v
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Für das Oberfiächenintegral ergibt sich folglich

fixyzdxdyzfixyz (n- e3)]/EG—F2dm
i; M

e}
,

Rcosv-u-Rsinv-sinv-Rdvdu

‘ä
.

7|’

T
7T ‘IF

n? R ?

=R3ffusin’vcosvdvdu=R3}-fg--%(sinv)3dvdu
0 1! 0 7r

"T ‘T
R

=§R3fudu=§R5.
O

Nach den Definition 6.5 vorangegangenen Betrachtungen können wir dieses Ober-
fiächenintegral auch über die Projektion von 3 auf die x‚y-Ebene berechnen. % ist die
Hälfte einer Zylinderfläche mit dem Radius R, der y-Achse als Zylinderachse und der
Länge R (s. Bild 6.9). Die Projektion B3 von% ist das QuadratO g x g R,0 g y g R.

Z

Bild 6.9

B3 wird bei der Projektion aber doppelt überdeckt. Bereits die Projektion des über
der x‚y—Ebene liegenden Teiles von i} liefert B3, und zwar mit positivem Vorzeichen,
da wir bei der Projektion auf die Außenseite blicken. Auch die Projektion des unter
der x,y—Ebene Teiles von ?- ergibt B3, aber jetzt mit negativem Vorzeichen, da wir auf
die Innenseite blicken. Beim oberen Teil gilt z = VR’ —— xäbeim unteren dagegen

z = — VR’ — x2.
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Wir erhalten damit

RR 1111

fixyzdxdy=ffxy l/R2—x2 dx dy — ffxy(—]/R’—x’)dxdy
a 0o oo

RR

=2ffyx]/R2——x2dxdy
o0

R

=%R“fydy= H“.
0

Wir sehen also, daß wir die Oberflächenintegrale 2. Art auf zwei Wegen berechnen
können: einerseits durch Integration über die Fläche %, und andererseits durch
Integration über die mit Vorzeichen versehene Projektion B3, wobei der Integrand
auf der Fläche {T zu nehmen ist.

Aufgabe 6.4: Es sei M das Quadrat 0 g u g 1, 0 g v g 1 der u,v-Ebene undg = (u + 1, V -1, a:

v - u), ä die durch g(u‚ v), (u, v) E M, dargestellte Fläche sowie F = (y, z, x). Berechne das Ober-

flächenintegral allgemeiner Art F - n df!
3

Bei unseren bisherigen Betrachtungen über den Flächeninhalt gekrümmter Flächen
und über Oberflächenintegrale waren wir stets davon ausgegangen, daß die die Fläche
darstellende Funktion stetig und stückweise stetig partiell differenzierbar ist, und daß
der Integrand beim Oberflächenintegral stetig ist. Die Existenz des Flächeninhaltes
und des Oberflächenintegrales ist natürlich auch unter schwächeren Voraussetzungen
gesichert.

Bei den vorangegangenen Beispielen war g auf ganz M stetig partiell differenzierbar
mit [g„><g„| + 0. Wir wollen jetzt ein Beispiel betrachten, bei dem die Differenzier-
barkeit nur stückweise vorhanden ist. Wir wählen dazu einen Würfel ä}. Für eine
Darstellung g(u, v), (u, v) e M, ist g auf den 6 Flächen %.- (i = 1, ..., 6) stetig partiell
differenzierbar. Dies gilt aber nicht für die 12 Kanten des Würfels. Die Rechnung
wird vereinfacht, wenn wir nicht eine Darstellung für den gesamten Würfel wählen,
sondern für jede Teilfläche ‘f3,- eine von den übrigen Flächen unabhängige Darstel-
lung gi(u, v), (u, v) e Mi, wählen. Ein Integral über ä ist gleich der Summe der Inte-
grale über die %,-.

Beispiel 6.6: T) sei die Oberfläche des Würfels Wim x, y, z-Raum mit den folgenden
Eckpunkten (0, 0, o), (1, o, o), (1, o, 1), (o, o, 1), (o, 1, o), (1, 1, 0), (1, 1, 1) und (o, 1, 1)
und F(x, y, z) = (xy + xz, yz, x2 + z’). Es ist das Oberflächenintegral allgemeiner Art

J=gF-ndf

zu berechnen. n zeige hierbei nach außen.

Wir zerlegen hierzu % in 6 Teilflächen, die mit den Würfelseiten übereinstimmen.
Zur Darstellung jeder dieser Teilflächen benutzen wirdas Quadrat M der u,v-Ebene
mitogug Logvg 1.



120 6. Oberfiächenintegrale

Die einzelnen Darstellungen lauten

5:15 g1(“: V) = ("a u: 0) mit n1 = ‘es:
i~5”23 Z204: U) = (V: v: I) mit '12 = es:

353: g3(u, v) = (u, 0, v) mit n3 = —e2,

$113 ga(“a V) = (U: 1: u) mit "4 = 92,

‘$5: g5(u, v) = (0, v, u) mit n5 = —e1 und

20551 8604s V)=(1: u: Ü) mit “e = e12

(u, v) e M.

Für alle sechs Teilflächen ist ]/EG — F2 = 1. Damit gilt für die Integrale über die Teil-
fiächen

J;=U'F-n,- df= J‘J‘F(g,(u, 0)) . n,- du du.
U, M

Im einzelnen erhalten wir
u

ll

J‚:H(—x'-’—z2)df=—ffv2dudv=—ä,
E, 00

H.
(u9+ 1)dudv=%,

0

J2=H(x2+z2)df= l
11

J3 = _|”f(—y2)df= —f |0du dv = o,
E: 0 0

11

J‚=_{fy2df=ff1dudu=1‚
5, 00

1‘1

J5=H(—xy—xz)df=—_| f0dudv=0,
$5 00

11

Jc=_H'(xy+xz)df=AH(u+ v)dudv=1
‘J, 00

und

J=£’J,-=—§+§+1+l=3.
1:1

I’ Aufgabe 6.5: Die geschlossene Fläche ä sei zusammengesetzt aus dem Mantel ‘ü, des Zylinders mit
dem Radius 1, der z-Achse als Zylinderachse und der Höhe 1 (0 g" z g 1) sowie der Grundfläche T53

(Kreisscheibe in der x,y-Ebene) und der Deckfiäche ä}; (Kreisscheibe in der Ebene z = 1) dieses

Zylinders. Es ist das Oberflächenintegral 1. Art J = (‚v2 + z’) dfzu berechnen. Auf das Integral J
‘Vl

führt die Berechnung des Trägheitsmomentes eines Blechfasses mit dem Durchmesser 2 und der
Höhe 1 um einen Durchmesser des Bodens.
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In diesem Kapitel werden wir Beziehungen zwischen Bereichs- und Kurven-
integralen bzw. zwischen Raum- und Oberflächenintegralen kennenlernen, die es uns
in häufig vorkommenden Spezialfzillen gestatten, Bereichs- in Kurvenintegrale bzw.
Raum- in Oberfiächenintegrale und umgekehrt umzuformen. Diese Beziehungen
gestatten uns auch, eine Reihe von Anwendungen zu behandeln. Besonders fruchtbar
wirken sich diese Beziehungen im Zusammenhang mit der Vektoranalysis aus.

7.1. Der Gaußsche Integralsatz in der Ebene

Es sei B ein durch Kurven (vgl. Def. 5.1) berandeter Normalbereich bezüglich
der x-Achse und P eine auf B stetige und stetig nach y diflerenzierbare Funktion.
Ziel unserer Betrachtung ist es, das Bereichsintegral J= ffPy db in ein Kurvenintegral

umzuformen. Dies wird wegen der besonderen Gestaltßvon B ohne Schwierigkeiten
möglich sein.

Als Normalbereich bezüglich der x-Achse besitzt B eine Darstellung

M§x§&
y1(x) 2 y g J'2(x)-

Die Berandungskurve S}? von B zerlegen wir in die vier Teilkurven R1 bis SE, (siehe
Bild 7.1) mit den Parameterdarstellungen

(x‚y)EB<>

R13 31(5): (ta V10»: T5 I1 = [xia x2]; (7-1)

R23 32(1): (x2: T), 77512 = U102), ;V2(x2)]§ (7-2)

-933 23(1) = (i, 720)); FE 11; (7-3)

‘m: ga(t) = (x1: Ü: t5 I; 3 LV1(x1)> y2(x1)]- (7-4)

Das Bereichsintegral J können wir nach Satz 2.4, Forme1j;(2.5), durch ein Doppel-
integral darstellen:

{z vgir)
J=flP,(x, y) db =j _[)Py(x, y) dy dx. (7.5)

T; UM‘

Bild 7.1
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Da wir als Integranden von J die partielle Ableitung von P(x, y) nach y gewählt
haben, läßt sich das innere Integral des Doppelintegrales in Formel (7.5) sofort an-
geben:

y.(I>

f P„(x‚ y) dy = [P(x,y)1::;;§:; = P[x, y2(x)1 — 1=[x,y1(x)1.
Mr)

Damit wird J nach Formel (7.5)

J= fP[x.y2(x)1dx— fP1x,y,<x>1<1x. (7.6)

Auf die in Formel (7.6) vorkommenden Integrale stoßen wir auch bei der Berech-

nung des Kurvenintegrales 2. Art I P dx. Es ist nämlich nach Satz 5.2 mit den Dar-
stellungen (7.1) und (7.3): 5‘

f P dx = jI':P[t, y1(t)] . 1 . dt, l (7.7)
ff, x,

fpdx=—fpdx=—f'p[r,yg(r)].i.dz. ' (7.8)
5?, -R, ‚z,

Die Integrale (7.7) und (7.8) stimmen aber bis auf die Bezeichnung der Integrations-
variablen mit den in (7.6) vorkommenden Integralen überein. Weiter gilt

um.) ‚

fPdx= fP(x2,t)-0~dt= o, (7.9)
R. zum)

da die Ableitung g2(t) =. (0, 1) von g2 in der ersten Komponente den Wert 0 hat.
Analog ist

fpdx=o. (7.10)
n;

Zusammenfassung von (7.7) bis (7.10) ergibt

451° dx = fP[x,y.(x>1dx — fP[x‚y.(x)1dx‚ (7.11)
n x, x,

wobei wir die Integrationsvariable t durch x ersetzt haben. (7.11) stimmt aber bis auf
das Vorzeichen mit (7.6) überein. Wir haben damit

ffpyoc, y) db = — g51>(x, y) dx (7.12)
B S?

gefunden. Dies ist die gesuchte Beziehung.
‘Ganz analog erhalten wir

ffQ„(x‚y>db= sßQ(x.y)dy‚ (7.13)
B R

wenn Bdein Normalbereich bezüglich der y-Achse und Q eine auf dem Bereich B
stetige und nach x stetig partiell difierenzierbare Funktion ist. Die einzelnen Schritte
möge der Leser selbst aufschreiben.
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Die Formeln (7.12) bzw. (7.13) heißen Gaußscher Integralsatz für die Ebene. Wol-
len wir die Integrale (7.12) und (7.13) in einer Formel zusammenfassen, so müssen wir
von B verlangen, daß er Normalbereich sowohl bezüglich der x-Achse wie auch be-
züglich der y-Achse ist oder sich in endlich viele Normalbereiche bezüglich der x-Achse,
aber auch in endlich viele Normalbereiche bezüglich der y-Achse zerlegen läßt. Ein Bei-
spiel eines solchen Bereiches zeigt das Bild 7.2. Die Definition 5.5 der Kurvenintegrale
erfordert noch, daß die Berandung Et‘ von B Kurve ist und damit eine Parameter-
darstellung g(t)‚ tel, mit stückweise stetig diflerenzierbarem g besitzt. Der Gaußsche
Integralsatz erhält dann die Form:

Satz 7.1: Ist B ein Bereich der oben beschriebenen Art mit der Berandung S? und sind P
und Q aufB stetige und stetig nach y bzw. x partiell differenzierbare Funktionen, so gilt

I {f(—%;+?%)db=ä6(Pdx+Qdy).

Aus dem Gaußschen Integralsatz 7.1 ist sofort zu erkennen, daß j'(P dx+ Q dy)
in einem einfach zusammenhängenden Gebiet genau dann vom Integrationsweg un-
abhängig ist, wenn die Integrabilitätsbedingung Pu = Q, erfüllt ist.

f)’ ‚V

a;

a) b)

Bild 7.2 Zerlegung eines Bereiches B in Normalbereiche

a) bezüglich der x-Achse, b) bezüglich der y-Achse

Die rechte Seite der Formel in Satz 7.1 kann auch in Vektordarstellung geschrieben werden, wenn

wir G = (P, Q) setzen. Es wird dann

¢7(1>dx4'— Qdy)=_¢”c-dx,

wobei dx die Richtung der Tangente an H hat. In Abschnitt 7.2. werden wir den Gaußschen Integral-
satz im Raum behandeln. Das Bereichsintegral auf der linken Seite der Formel des Satzes erstreckt
sich dann über einen räumlichen Bereich und läßt sich leicht mit Vektoren schreiben. Auf der rechten
Seite der Formel geht das KLu enintegral in ein Oberflächenintegral über die den räumlichen Bereich
berandende Fläche über. Bei einer Fläche tritt an die Stelle der Tangente die Tangentialebene. Ihre
Richtung wird am günstigsten durch die senkrecht auf ihr stehende Normale festgelegt. Der Gauß-
sche Integralsatz im Raum wird deshalb so geschrieben, daß die rechte Seite ein Skalarprodukt mit

S.7.l
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der Flächennormalen enthält. Wir können selbstverständlich auch den Gaußschen Integralsatz in
der Ebene mit Hilfe der Normalen n an die Kurve S? (im Kurvenpunkt P) darstellen. Da n orthogonal
zum Einheitsvektor in Tangentenrichtung t ist, müssen wir in G ~ dx wegen dx = t d: den Vektor G
durch einen orthogonalen Vektor F mit gleichem Betrag ersetzen, um den gleichen Wert des Skalar-
produktes zu erhalten. Ist g mit g(t) = (x(t), y(t)), t E [a, b], eine Parameterdarstellung von 5%, so

wird
1 . 1 1

t=-.— =—:." d =———,"—‘.lg‘ g yi2+y,2 (ny) un n W+y,2 (h x)

. l
Um F ' n = G ' t = (Pic + Q?) zu erhalten, müssen wir also F = (Q, — P) setzen.

Erweitern wir noch die zweidimensionalen Vektoren F, g, n durch Hinzufügen einer Komponente
mit dem Wert O zu dreidimensionalen Vektoren, so können wir auf der linken Seite Q, — P,
durch divF ersetzen. Damit erhält die Formel im Satz 7.1 die Form

jfdivFdb=jfF'nds.
B k?

In dieser Form werden wir in Abschnitt 7.2. den Gaußschen Integralsatz formulieren, nur daß dort
das Bereichsintegral über einen räumlichen Bereich erstreckt und das Kurvenintegral durch ein
Oberflächenintegral ersetzt wird. Schreiben wir obige Formel für das Vektorfeld G = (P, Q, 0) auf,
so erhalten wir:

IfdivGdb=fflPx+Qy)db=fEG-nds=iKPdy-Qdx).
B B St s"?

Diese Formel nennen wir auch die Normalkomponentenform des Gaußschen Integra1satzes"in
der Ebene, während die in Satz 7.1 gewählte Form als Tangentialkomponentenform bezeichnet
wird.

Wir wollen jetzt noch zu einigen einfachen Anwendungen des Gaußschen Inte-
gralsatzes in der Ebene kommen.

Beispiel 7.1: Den Flächeninhalt A eines ebenen Bereiches B erhalten wir aus

A = db. Den Integranden l des Bereichsintegrals können wir in 1 = ä + 5 zer-
B

legen und ——P„= 5, Qx: 5 setzen. Wir erhalten daraus z. B. das Paar von Funktionen
P(x, y) = — g y, Q(x‚ y) = g x und schließlich nach dem Gaußschen Integralsatz

A=;g3(—ydx+xdy). (7.14)
n

(7.14) ist eine vielfach zur Berechnung des Flächeninhaltes benutzte Formel (s. z. B. [1]
S. 358). Aus ihr erhält man auch leicht die Leibnizsche Sektorformel: B sei begrenzt
durch die Strecke 91 von (0, 0) nach (x1, yl), durch die Kurve R2 von (x1, y‚) nach
(x2 ‚ yg) mit der Parameterdarstellung g(t) = (x(t), y(t)), te [t1 , t2], und durch die Strecke
{E3 von (x2, yg) nach (0, 0) (s. Bild 7.3). Für jede auf einer Geraden durch (0,0)
liegenden Strecke E}, hat nun aber das Kurvenintegral ä (—y dx + x dy) den Wert

5o

Null. Ist nämlich g(t) = (at, bt), te [t’, t”], eine Parametetrdarstellung von R0, so wird
‚.

;f(—ydx+xdy)= §f(——bta+atb)dt=0.
n. r
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‚V

Bild 7.3

Damit wird für die Sektorfläche nach Bild 7.3

A=;g$(—ydx+xdy)=;f(—ydx+xdy)
e n,

= ä fl-YÜ) 56(1) + x(t) J3(t)] dt- (7-15)
‘x

Als Zahlenbeispiel wollen wir den Flächeninhalt der Sektorfläche, die durch die
2 2

Strecke von (0, 0) nach (a, 0), durch die Hyperbel ä- — äg-

(auf dem Hyperbelast im 1. Quadranten) und durch die Strecke von (x2, yg) nach
(0, 0) begrenzt ist, berechnen. Nach (7.15) (Leibnizsche Sektorformel) brauchen wir
nur über das Hyperbelstück zu integrieren. Eine Parameterdarstellung dieser Kurve ist
g(() = (a cosh t, b sinh t) (von der Richtigkeit dieser Darstellung kann man sich leicht
durch Einsetzen von g(t) in die Hyperbelgleichung überzeugen). Zu (a, O) gehört der
Parameter t1 = 0. t2 gewinnt man durch Auflösen von x2 = a cosh ta nach t2

= 1 Von (a, 0) nach (x2 ‚ y‚)

zu t2 = arcosh i}. Wir erhalten mit gm = (a sinh t, b cosh t)

'2

A=—;—/(—bsinhz-asinht+acoshr-bcosht)dt
6

x2

(1

‘a
ab 1 1=Tfdt=§abt2=§ab arcosh

0

wegen coshgt- sinh? t= l. Dieses Ergebnis ist auch für die Bezeichnung der
Umkehrfunktionen der Hyperbelfunktionen (area —— Fläche) bestimmend gewesen.

Aufgabe 7.1: a) Bestimmen Sie den Flächeninhalt der zum Ellipsenbogen mit der Darstellung s:

g(t) = (a cos t, b sin t), t E [11, t2], gehörigen Sektorfläche! (Benutze Formel (7.15.))

b) Wie groß ist der Flächeninhalt der ganzen Ellipse?
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Beispiel 7.2: Die Koordinaten des Schwerpunktes (E, 7;) eines ebenen Bereiches ‘B mit
der Berandung R berechnet man mit Bereichsintegralen zu

l~A—j-fxdb,
B

1“IHM”
B

wobei A der Flächeninhalt von B ist. Formt man die Formeln (7.16) mit Hilfe der
Formel (7.12) um, so erhält man

E

(7.16)

5=—%55xydx‚

Man kann bei 5 den Integranden x des Bereichsintegrales jedoch auch in %+ :—x

zerlegen und a: als —P„, ä als Q, in der Darstellung nach Satz 7.1 auffassen. Es

kann dann P = -— ä xy‚ Q = 3 x’ gewählt werden, und wir erhalten

1
§=3—A Efix(—ydx+ xdy).

a

Damit haben wir eine zu (7.l4) ähnliche Formel. Analog erhält man

=§1Z~g3y(—ydx+xdy).
R

Für die Trägheitsmomente findet man durch entsprechende Überlegungen

J, = Hyzdb = }§y2(-ydX + 5c dy), J,.= x2 db = f§x3(—y dx + xdy).
B R - B f?

Die mit Hilfe des Gaußschen Integralsatzes gefundenen Formeln für A, .5, n, J, , J, sind gut geeignet
für die Berechnung dieser Größen auf EDV-Anlagen. Nach dem Einsetzen von Parameterdarstellun-
gen g(t) für S? sind nur noch bestimmte Integrale mit der lntegrationsvariablen t auszuwerten. Dies
kann mit den Methoden der numerischen Integration, je nach nötiger Genauigkeit also z. B. mit der
Trapezregel‚ der Simpsonschen Regel oder dem Romberg-Algorithmus, erfolgen. Schreibt man sich
also einmal ein Programm zur Berechnung der Integranden aus Unterprogrammen für x, y, X und y
und zur Anwendung einer Formel für die numerische Integration, so braucht man dann jeweils nur

noch die Unterprogramme für die Parameterdarstellungen von S? einschließlich der Integrations-
grenzen einzugeben und erhält gleichzeitig A, E, 17, J,‘ , und 1,.

Als Zahlenbeispiel wollen wir J, für das Dreieck mit den Eckpunkten (0, 0), (2, 0) und (0, l) be-
rechnen. E1 sei die aufder x-Achse liegenden Seite, 8?; die Seite mit den Eckpunkten (2, 0) und (0, 1).
st‘; schließlich die auf der y-Achse liegende Seite. Die Parameterdarstellungen für die Q,‘ einschließlich
der lntegrationsgrenzen to und t, sind in der folgenden Tabelle zusammengefaßt:
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k l x l y | x | y‘ | to | z, | F(t) = y2(-yic + xy')/4

1 r 0 1 0 0 2 o
2 2(1 — z) 1 —2 1 o 1 gxl
3 0 1 0 1 1 0 0

Die letzte Spalte der Tabelle enthält die formelmäßige Darstellung des Integranden F(t). Sie wird
für ein Rechnerprogramm nicht benötigt. Der Rechner berechnet vielmehr die numerischen Werte
von F(t) in den verwendeten Teilungspunkten unmittelbar aus den Spalten 2 bis 5. Da der Wert des
Integranden auf R‘, und St“; null ist, bekommen wir für J, nur einen Beitrag von Q2. Verwendet man für

. h
die numerische Integration die Keplerische Faßregel T (F0 + 4F1 + F2) mit h = 1/2, F0 = F(0) = 0,

F1 = F(h)= 1/8, F; = F(2h) = 1/2, so wird J, = H0 + 4 w} + 4;») = a». Dies ist der genaue

Wert, da die Keplersche Faßregel Polynome 2. Grades genau integriert. Bei gekrümmten Konturen
wäre eine feinere Unterteilung der Integraticnsintervalle und die Anwendung der Simpsonschen
Regel oder des Rombergalgorithmus zweckmäßiger.

7.2. Der Gaußsche Integralsatz im Raum

Die Betrachtungen von Abschnitt 7.l. lassen sich ganz analog auch für Raum-
integrale durchführen. Die einzelnen Schritte sollen hier nur angedeutet werden. Zur
Umformung von P,(x, y, z) db gehen wir Von einem räumlichen Normalbereich B
der Art ' B

l (y, Z) E B: z
‚ ‚ B '

(x y z) E ° {x1(y.z) g xäxzoaz)
aus und können in

10/11)

gf1?,(x, y, z) db =Bff E f P,(x, y, z) dx:l dbw
„‚. . (1/,2)

das innere Integral berechnen.
Ist % die B begrenzende Fläche (mit nach außen gerichteter Normale), so können

wir das Ergebnis in der Form

[fizz db=ff1>(x, y, z) dy dz {(7.17)
B s

darstellen. Eine ausführliche Herleitung dieser Formel findet man z.B. in [6], S. 176
oder [4], S. 428ff. (Vorzeichenunterschiede in Formel (7.17) kommen durch ent-
gegengesetzte Wahl der Normalenrichtung zustande.)

Entsprechend findet man

fffQy(x, y, z)db=jfQ(x,y, z) dx dz ‚ (7.18)
B a

und

man, y, z) dbb=ff1a(x‚ y, z) dx dy. (7.19)
B t1
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Zusammenfassung ‘der Formeln (7.17) bis (7.19) gibt die Grundformel für den Gauß-
schen Integralsatz im Raum:

gflPx + Ql/ + R.) db =ffae dy dz + Q dx dz + R dx dy). (7.20)
‘Es

Das Qberflächenintegral allgemeiner Art in Formel (7.20) können wir nach Definition
5-5 mit F0C, JG Z) = (P06, y, Z), Q(x, y, z), R(x, y, z)) auch in der Form

lBff(Pz+Q„+R.)db=ffF-ndf (7.-21)
ü

schreiben. n ist hierbei die nach außen gerichtete Normale der den räumlichen Be-
reich B begrenzenden Fläche $3. Auf die Komponenten der Vektorfunktion F können
wir in der Grundformel ganz verzichten, wenn wir noch beachten, dal3 in Band 4,

Abschnl“ 3-921, P1 + Qy + R, als Divergenz von F = (P, Q, R) definiert war:

P‚+ Q„+ R‚=divF.

Formel (7.20) erhält damit die Gestalt

ffldivFdbalfF-ndf. (7.22)
B fr

Die äquivalenten Formeln (7.20) bis (7.22) sind natürlich nur unter gewissen Voraus-
setzungen für B und F = F(x) gültig.

Satz 7.2 (Integralsatz von Gauß) .' Es sei B ein räumlicher Bereich, der aus endlich
vielen Normalbereichen zusammengesetzt ist, und zwar sowohl bezüglich der x,y-‚ der
y,z- wie auch der x‚z-Ebene. Die die Normalbereiche begrenzenden Funktionen seien
stetig und stückweise stetig dtflerenzierbar bzw. partiell dzflerenzierbar. F = F(x) sei
auf B stetig und stückweise stetig partiell diflerenzierbar. % sei schließlich die Ober-
fläche von B mit nach außen gerichteter Normale n. Dann gilt

I _gfdivfdb=5{jF-ndf.

Der Integralsatz von Gauß gilt auch unter weniger einschränkenden Bedingungen
für B und F (wobei gegebenenfalls das Riemannsche Integral durch das Lebesguesche
Integral‘) zu ersetzen ist). Für die meisten praktischen Probleme reicht die obige Form
jedoch voll aus. Wir verzichten deshalb auf nähere Darlegungen.

Beispiel 7.3: Es sei F = (P(x‚ y), Q(x, y), 0) und B = {(x‚ y, z) | (x, y) E B’,0 g 2g l},
also ein zylindrischer Bereich mit der Grundfläche B’ in der x,y-Ebene und der Höhe l.
B’ werde durch die geschlossene Kurve Q (in der x‚y-Ebene) berandet. ‘Z- bezeichne die
Oberfläche von B. Der Gaußsche Integralsatz kann dann wie folgt umgeformt werden:

1) Der interessierte Leser sei beispielsweise auf E. Kamke „Das Lebesgue-Stieltjes Integral“,
B. G. Teubner Verlagsgesellschaft Leipzig 1956, oder E. Kamke „Differentialgleichungen, II, Partielle
Differentialgleichungen“, Akademische Verlagsgesellschaft Geest & Portig K.-G.‚ Leipzig 196S,

Anhang II, verwiesen.
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ffidivFdb=_U[f1dz(P,+Qy)]db’=ff(P,+Qy)db’.
B B’ O B’

Wegen n = —e3 bzw. e3 auf der Grund- bzw. Deckfiäche von B wird dort F - n = 0
und x

HF-ndf=¢ [fF~ ndz] ds=f£F-nds.
n o s?S

In dem Kurvenintegral ist n jetzt die nach außen gerichtete Normale an R. Ist g(t)
= (x(t), y(t), 0), te I, eine Parameterdarstellung von R, so wirdn = 1g|-1 (j, —J2‚ O)

und damit F - n = lg]-1(1=y — Qfc). Mit ds = [g'| dt wird schließlich

(fin-nd.s=¢§(Py'—Qx)dz=;1§(1=dy—Qdx).
a fa

Es folgt also aus dem Gaußschen Satz im Raum durch obige Spezialisierung die
Normalkomponentenform des Gaußschen Satzes in der Ebene (Vgl. Abschnitt 7.1.):

ff(p‚+ Qy) db’=3{§(Pdy—Qdx).
B‘ SE

Beispiel 7.4: Ein Körper, begrenzt durch die Fläche 3; (mit nach außen gerichteter
Normale n), tauche ganz in eine Flüssigkeit mit dem spezifischen Gewicht y. Wie groß
ist der Auftrieb, der auf den Körper wirkt?

Die Oberfläche der Flüssigkeit sei die x,y-Ebene, die z-Achse senkrecht zur Ober-
fläche der Flüssigkeit nach oben gerichtet. Den durch ‘f; begrenzten räumlichen Be-
reich bezeichnen wir durch B. Der Druck der Flüssigkeit greift senkrecht zur Ober-
fläche von B an und hat die absolute Größe —yz (z ist negativ, da sich B unter der
x‚y-Ebene befindet). Der Druck hat also die Größe yzn. Die vertikale Komponente
des Druckes ist yzn ~ es, und für den Auftrieb ergibt sich ff yzn - e; df. Dieses Ober-

ü
flächenintegral 2. Art können wir nach Definition 6.5 auch in der Form

ffyzn-e3df=ffyzdxdy
I} d

schreiben.

Nach Formel (7.19) gilt somit für den Auftrieb

ffyzu.e3df=fffy db,
{f B

d.h., der Auftrieb ist gleich dem Gewicht der verdrängten Flüssigkeit.

Beispiel 7.5: In Beispiel 6.6 haben wir das Oberflächenintegral allgemeiner Art
J= [fr . n dfüber die Oberfläche g des Würfels B mit o g x g 1, o g y g 1 und

i?
O g z g l berechnet. Die Vektorfunktion F war durch F = (xy + xz, y’, x’ + z’)
gegeben. Die hierbei auftretenden Integrationen waren nicht schwierig. Insgesamt
war die Berechnung von J jedoch recht aufwendig, da über jede der 6 Würfelflächen

9 Körber, Integralrechnung
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getrennt integriert werden mußte. Mit Hilfe des Gaußschen Integralsatzes kann die
Berechnung von J wesentlich verkürzt werden. Nach Formel (7.22) gilt

J=ffF.ndf=fffdivFdb.

Für die Divergenz von F erhalten wir div F = y + z + 2y + 22 = 3(y + z). Mit den
oben angegebenen Grenzen des Normalbereiches B erhalten wir

1 1 1
» p1:“ J 3(y+z)dzdydx=

o o o

Aufgabe 7.2: ä sei die Oberfläche der Kugel mit dem Radius R und dem Koordinatenursprung als

Mittelpunkt, F(x, y, z) = (y, z, x). Berechne das Oberfiächenintegral 2. Art J = j] F<n df a) direkt
und b) mit Hilfe des Gaußschen Integralsatzes! ä

3flf(y+ §)dydx=3_f(§+ §)dx=3fdx=3.

Aufgabe 7.3: Es sei x = (x, ‚v, z). Im Raum sei elektrische Ladung der Ladungsdichte g = ä
x

verteilt (e ist die Dielektrizitätskonstante). Diese Ladung erzeugt ein elektrisches Feld E = Tl-Ix.
' X

Zwischen Ladung und Feld besteht die Beziehung g = e div E. Berechne die im Inneren der Kugel
B mit dem Radius a und dem Mittelpunkt (o, o, o) liegende Ladung Q =-j'fl gdb mit Hilfe des

B
Gaußschen Integralsatzes! Beachte dabei, daß für die Oberfläche % der Kugel B der Flächeninhalt A

durch A = j] df= 47m1 gegeben ist!
8

Aufgabe 7.4: Gegeben sei das Vektorfeld F = (x2 + xy + Zz eJ’, —x’ — yz — z’, —2xz + 3yz).

Berechne mit Hilfe des Integralsatzes von Gauß J = F ~ n df, wobei z"; die Oberfläche des durch
8'

j 1

die Flächen x = 0, z = 0,y = 0,y = 3 V4 — 2x und z = -zfi begrenzten Körpers B ist.

Skizziere zunächst den Grundriß des Körpers in der x, y-Ebene!

7.3. Koordinatenfreie Darstellung der Divergenz

Wir haben bisher unter der Divergenz einer durch F = F(x) = (P(x), Q(x), R(x))
gegebenen Vektorfunktion mit x = (x, y, z) (auch Vektorfeld genannt, vgl. Band 4,
Abschnitt 2.6. und 3.9.) die Differentialoperation

verstanden. Die partiellen Ableitungen lassen vermuten, daß die Divergenz in einem
bestimmten Punkt des Raumes nicht nur von der Vektorfunktion F, sondern auch
von der Wahl des rechtwinkligen Koordinatensystems x, y, z abhängig ist. Bei der
Einführung der Divergenz in Band 4 wurde jedoch bereits eine verbale Definition
gewählt, die von den gewählten Koordinaten unabhängig ist. Nur war es rnit den in
Band 4 zur Verfügung stehenden Hilfsmitteln nicht möglich, diese Definition exakt
und als Formel niederzuschreiben, und der Nachweis, daß die Divergenz von

a aF=(P,Q,R)mitaP Q Rf + Ü; + E übereinstimmt, blieb offen. Diese Schritte wollen

wir jetzt nachholen.
Bx
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Um die Betrachtungen anschaulich zu gestalten, wollen wir annehmen, daß
F = (P, Q, R) das Geschwindigkeitsfeld einer stationären, d.h., zeitlich nicht ver-

änderlichen Flüssigkeitsströmung darstellt. Ist jetzt ä irgendeine Fläche, so erhalten
wir das in der Zeiteinheit durch f; hindurchfließende Flüssigkeitsvolumen, den Fluß
von F durch i9, zu — n df. Betrachten wir nämlich eine Teilfläche von ‘f; der

n-

Größe Af, so schiebt sich eine Flüssigkeitssäule der Länge |Fl - 1 in Richtung von F
durch die Fläche. Das Volumen dieser Säule ist Af - h, wobei h die Höhe der Flüssig-
keitssäule ist. Mit h = F - n (vgl. Bild 7.4) erhalten wir für das Volumen F - n Af.
Summation und Grenzübergang liefern schließlich für den Fluß von F durch ä das

Oberfiächenintegral 2. Art IF - n df. Ist speziell B ein räumlicher Bereich und i} die
8

Oberfläche von B, so nennen wir den Fluß von F durch Ty die Quellung von F aus B
(vgl. Band 4, Abschnitt‚3.9.2.2.).

Bild 7.4

Für einen beliebigen Punkt x sei B,. die Folge von Kugeln mit dem Radius 711- und

dem Mittelpunkt x. Die Oberfläche von 8,. bezeichnen wir durch ‘{~,.. Für jedes
n = 1, 2, bilden wir den Quotienten aus Quellung von F aus B„ und dem Volumen
An von B" und Betrachten den Grenzwert

Dieser Grenzwert stellt die lokale Quelldichte von F dar. Das Oberflächenintegral
können wir mit dem Gaußschen Integralsatz umformen:

UF-ndf=flfdivFdb.
Ü" B" aQ ax. . . . ö .

Sind die partiellen Ableitungen ä, a-y- und E stetig, so ist auch div F stetig,

und wir können das Raumintegral mit dem Mittelwertsatz für Raumintegrale
(vgl. Abschn. 3.1.) abschätzen:

fff div F db = A,. div m",
BH.

wobei die Divergenz von F in einem geeigneten Punkt x„ aus B,. zu nehmen ist.

9*
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Damit wird

D = lim LA‚. div F|, =1im div F], .

A n n-voo nn—>oo n

Da div F stetig sein sollte und der Durchmesser der Kugel gegen null strebt, also
x‚. gegen x konvergiert, gilt

D= div F|,.

Satz 7.3: Ist F = (P, Q, R) eine Vektorfunktion mit stetig partiell diflerenzierbaren
Komponenten, x= (x, y, z) ein beliebiger Punkt aus dem Inneren des Definitions-

bereiches von F und ü. die Folge der Kugeloberflächen mit dem Radius L und dem
Mittelpunkrx, so gilt n

P: (X, y, Z)+ Qu(x, y. Z) + Rz(X, y, Z) = div F
. 3213='llin°1°nfF-ndf (7.23)

Aus der Darstellung der Divergenz nach Satz 7.3 folgt insbesondere, daß die Diver-
genz eine skalare Punktfunktion ist, die unabhängig vom gewählten Koordinaten-
system durch Integration aus einem gegebenen Vektorfeld gewonnen werden kann.
Formel (7.23) kann, wie das schon in Band 4, 3.9.2.2., angedeutet wurde, sogar zur
Definition der Divergenz benutzt werden. DieDifferenzierbarkeitsforderungen in Satz
7.3 können dann durch die Forderungen ersetzt werden, daß für jede Folge räumlicher
Bereiche B,. mit der Oberfläche ü. und dem Volumen A‚., die x als inneren Punkt

enthalten, der Grenzwert lim -1-ffF - n df existiert und den gleichen Wert besitzt.
n ü"

‘Die Greenschen Formeln

Wendet man den Gaußschen Integralsatz auf eine Vektorfunktion der Gestalt

F = «p grad w

an, wobei (p und u: skalare Punktfunktionen sind, so wird wegen

div F = div(q2 grad w)

= (grad so) - (grad w) + <7 div grad w

Ötp asp Ötp Ö|p Ö9: 61;:

=aTxa—x €;*a;+$$+"’A'”
. . « er ar a2

i(:tg1. Band 4, Abschnitt 3.9.2.4.), wobei A der Laplace-Operator g +—a-y—2— + -6-;

fff(<1wz + «Pm + aw: + ‘PAW db = ff am - grad w df. (7.24)
B n

Die Formel (7.24) bezeichnet man als I. Greensche Integralformel. Hinsichtlmh ihrer
Gültigkeit müssen wir für B und F die gleichen Forderungen stellen wie beim Gauß-
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sehen Integralsatz 7.2. Für (p bedeutet das Stetigkeit und die stückweise Existenz
stetiger partieller Ableitungen, für ip Stetigkeit von grad u: und stückweise Existenz
stetiger partieller Ableitungen 2. Ordnung. Setzen wir F = q) grad u: — ip grad (p, so
verschwindet in divF der in (p und 1p symmetrische Ausdruck (grad (p) - (grad (p):

diVF=qJA1p—1pAtp.

Der Gaußsche Integralsatz liefert dann

I ffl(q2A1p—1pAzp)db=H(¢pgrad1p—1pgrad<p)-ndf. (7.25)
B ‘6

Formel (7.25) bezeichnet man als 2. Greensche Integralformel. Für ihre Gültigkeit ist
die stückweise Stetigkeit bis zu den partiellen Ableitungen 2. Ordnung für (p und up

zu fordern.
Die Greenschen Integralformeln haben für die Lösung vieler physikalischer Pro-

bleme eine sehr große Bedeutung. Ebenso sind sie in der Analysis ein unentbehr-
liches Hilfsmittel. Bevor wir ihre Anwendung an einigen Beispielen zeigen, wollen
wir noch eine Spezialisierung der_Formel (7.24) angeben, die verschiedentlich als
3. Greenrche Integralformel bezeichnet wird. Setzt man (p = 1, so wird

l fff A); db = ff (grad w) . n df. (7.26)
B s

Beispiel 7.6: Eine skalare Punktfunktion u = u(x) heißt harmonisch, wenn Au = O

gilt. Es sollen einige grundlegende Eigenschaften der harmonischen Funktion her-
geleitet werden. Um die Anwendung der Iritegralformeln zu erleichtern, wollen wir
noch voraussetzen, daß u und die partiellen Ableitungen bis zur 2. Ordnung in den
betrachteten räumlichen Bereichen einschließlich der Oberfläche stetig sind.

a) Aus Formel (7.26) folgt

ff (grad u) . n df= o. ' (7.27)
i}

Die Ableitung einer skalaren Punktfunktion v in Richtung eines Einheitsvektors s war
(grad v) - s (vgl. Band 4, Abschnitt 3.9.2.1.). (grad u) - n können wir also als Ablei-

. . ö .

tung von u in Richtung der Normalen von ä} auffassen und (grad u) - n = 8-“ schreiben.
Formel (7.27) können wir damit wie folgt in Worte fassen: n

Ist u im räumlichen Bereich B mit der Oberfläche {y zweimal stetig dzflerenzierbar
und harmonisch, so ist der Mittelwert der Ableitung von u in Richtung der Normalen
von % auf i? gleich null.

b) Es sei B ein räumlicher Bereich mit der Oberfläche ‘ü, x0 ein beliebiger Punkt aus
dem Inneren von B und u in B harmonisch. Wir wenden jetzt die Formel (7.25) mit

K . .

(p = u und ip =ä an, wobei WlI‘ unter x = (x, y, z) den Ortsvektor verstehen.

In Band 4, Beispiel 3.29, wurde gezeigt, daß KT harmonisch im R3 mit Ausnahme

von x = x0 ist. K war dort eine Konstante. Da der Laplacesche Operator A linear ist,
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gilt auch Aä= O (x =i= x0). Um die 2. Greensche Formel (7.25) anwenden zu

können, müssen wir noch x0 aus B entfernen, da 1p in x0 die Differenzierbarkeits- und
Stetigkeitseigenschaften nicht erfüllt. Verstehen wir unter B’ den Bereich B, aus dem
die Kugel B0 mit dem Radius a und dem Mittelpunkt x0 herausgenommen ist, so
besteht die Oberfläche von B’ aus 8- und der Oberfläche ä, der herausgenommenen
Kugel, wobei die Normale von 550 nach x0 hin zeigt, da die Kugel ja nicht zu B’

gehört. Für B’, (p = u und y: = ——1~— ist (7.25) anwendbar. Insbesondere wird wegen
A<p=Aw=0inB’ \""‘o1

_Uf(<PA1P“%UA‘P)dl7=0-
B.

1 . ' i:—_—"""°Forme (7 25) ergibt wegen grad ‘X _ X0‘ gx _ XOP

__ 1 x- x0

°-ff(@g‘ad"+"ml?>'"d’
i":

1 x— x0+/f(figradu+ u‘X—_—):.|3—)~ndf. (7.28)

fin

Das Oberflächenintegral 2. Art über die Kugelfläche ä0 können wir mit dem Mittel-
wertsatz für Bereichsintegrale (vgl. Abschnitt 2.2.) näher berechnen. Auf %0 ist

x :1 X" . Damit wird

x—x x—x x—x 1

/f“%|:T—x7,°1”=«'““f=‘/f““:zs—°'T°“f= *7./f“df'
5a 3o go

Anwendung des Mittelwertsatzes auf H u df ergibt u df= 41m2 u(x1), wobei X1 ein

|x—x0[:aundn=—

fin u,»

geeigneter Punkt der Kugeloberfläche 30 ist. Wir haben also

x — x0 a _

-ndf— 47ru(X,). (7.29)

Den zweiten‘Antei1 des Integrals über %}0 können wir mit Formel (7.27) näher bestim-
men. Es ist

£f«|x_%(0|(gradu)-ndf=%—é{/‘(gradu)~ndf.

Da u in B.) harmonisch ist, können wir Formel (7.27) anwenden. Die nach innen
gerichtete Normale (von der in (7.27) als Ausgang gewählten Integration über B0 aus
betrachtet) stört hierbei nicht. Es würde lediglich das Vorzeichen umgekehrt. Wir
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erhalten folglich

l .ff%T_Td(grad u)-ndf= o. (7.30)

du

Unter Beachtung von (7.29) und (7.30) lautet (7.28)

_ grad u I X — X0 _ _ __o_Xf(iY;T()iTu—:[X_X0l3) ndf 4..u(x1). (7.31)

Ü

(7.31) gilt für jeden Radius a. Wir können deshalb in (7.31) a gegen null streben lassen.
Das Oberflächenintegral über {y ist von a nicht abhängig, bleibt beim Grenzübergang
also unverändert. Da x1 auf {so liegt, strebt x1 beim Grenzübergang gegen den Kugel-
mittelpunkt x0. Die Stetigkeit von u ergibt lim 47ru(x,) = 47ru(x„). Der Grenzübergang
a gegennull in (7.31) liefert demnach ““'°

0:[Ef( +u )-ndf— 4‚-.u(x„)

1 — 1
u(x„)= 4_n[f(1%|3u+ Hgrad u) -ndf. (7.32)

„ .

Formel (7.32) zeigt uns, daß der Wert einer in einem Bereich B harmonischen Funk-
tion u in einem beliebigen inneren Punkt x0 von B aus den Werten von u und der

oder

6
Ableitung (grad u) - n = FE in Richtung der Normalen von ‘f; auf der Ober-

fiäche T; von B berechnet werden kann. Ist also in B eine Lösung von Au = 0 gesucht,
ö

wobei u und T?‘ auf der Oberfläche €- von B vorgegebene Werte annehmen sollen,

0
u(x) = v0(x) und ä: v,(x) auf ä (v0, v1 auf % vorgegebene Funktionen), so liefert

(7.32) die Lösung

u(x„)=iffvgzqägndfiräffäuf.
i} E

Eine derartige Aufgabenstellung nennt man Randwertaufgabe, hier speziell für die partielle Difle-
rentialgleichung Au = 0 (genannt Laplacesche Differentialgleichung) (vgl. Band 8). Formel (7.32) löst
also die Randwertaufgabe der Laplaceschen Differentialgleichung. Eine Lösung u der Laplaoeschen
Differentialgleichung ist aber bereits durch die Vorgabe der Randwerte 12„ von u oder durch die Vor-

8
gabe der Randwerte v1 von ä vollständig bestimmt. Die Darstellung der Lösung u im Inneren von B

ist dann aber schwieriger. Formel (7.32) ist dann noch weiter zu bearbeiten. Dies wollen wir jedoch
Band 8 überlassen.

c) Wählen wir in Formel (7.32) als Integrationsbereich eine Kugel B1 um x., mit dem
Radius g und der Oberfläche €51, so läßt sich wieder Formel (7.27) anwenden. Es ist

nämlich ?1———— = l = const und n = l (x —— x0), also
lx - xol e e
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=.g;ffudf+%ff(gradu).ndf.
3x Ü:

Das zweite der Integrale auf der rechten Seite ist nach Formel (7.27) gleich null.
Formel (7.32) liefert dann

If u df
u(xo)=—4~}g%ffudf=‘*}T,

l i}:

da 41:92 ja gleich der Oberfläche von 5F, ist. u(xo) ist also der Mittelwert der Werte von
u auf ‘.31. (7.33) läßt sich verbal so ausdrücken: Ist u in einer Kugel harmonisch, so
nimmt u im Mittelpunkt der Kugel den Mittelwert der Werte von u auf der Kugelober-
fläche an.

1mgadu)-ndf

(7.33)

7.5. Der ‚Stokessche Integralsatz

Ebenso wie wir mit dem Gaußschen lntegralsatz der Ebene eine Beziehung zwischen
Bereichsintegralen und Kurvenintegralen über geschlossene ebene Kurven herstellen
konnten, ist es auch möglich, eine Beziehung zwischen Oberfiächenintegralen und
Integralen über Raumkurven anzugeben. Eine solche Beziehung stellt der Integralsatz
von Stokes her.

Sntz 7.4: Es sei f; eine Fläche mit der Darstellung x = g(u, v), (u, v) e M. M sei ein
Normalbereich bezüglich der u- und bezüglich der u-Achse, g sei stetig und bis zur

2. Ordnung stetig partiell diflerenzierbar. % werde durch die orientierte Kurve S? be-
randet. ä} und R sind dabei so orientiert, daß Ei entgegengesetzt dem Uhrzeigersinn ver-
läuft, wenn ä von der Außenseite her betrachtet wird. In einer oflenen Menge des
Raumes, die '5} einschließlich 5?: enthält, sei ein Vektorfeld v = v(x) gegeben, dessen
Komponenten stetig und stetig partiell diflerenzierbar sind. Dann gilt

év-dx=fl(rotv)-ndf. (7.34)
a 3 "

In Satz 7.4 verstehen wir dabei unter x = (x, y, z) den Ortsvektor und unter der
Rotation den in Band 4, Abschnitt 3.9.2.3., eingeführten Differentialoperator:

a a a

Den Beweis des Integralsatzes von Stokes wollen wir nicht ausführlich durchführen, sondern nur

eine kurze Skizze angeben. Wir betrachten zunächst nur die erste Komponente P= P(x) von
v = (P, Q, R). Die linke Seite von Formel (7.34) lautet dann

cf P(x) dx .

s’?

rotv=V><v mit V%(

(7.35)
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x = g(u‚ v) ist eine Abbildung aus der up-Ebene in den x,y,z-Raum, die M auf i’; abbildet. Bei
dieser Abbildung geht der Rand von M, die orientierte geschlossene Kurve R‘ (fi" wird dem Uhr-
zeigersinn entgegengesetzt durchlaufen), in die i‘; berandende Raumkurve Q über. Ist (u(t), 9(1)),
t E I, eine Darstellung von R‘, so ist g(u(t)‚ v(t)), t E I, eine Darstellung von fl. Das Integral (7.35)
kann dann berechnet werden durch

fP [x (u(t), v(t))]3&3dt. (7.36)

I
d:

a . a .

—’° . u(t) + ä v(t) ist (7.36) jedoch auch der AusdruckdX(I4(t). '70)) _

dt _ 61¢
Unter Beachtung von

zur Berechnung des Kurvenintegrales

Ö ‚ Ö ‚f {P[x (u, v)] "—(,g"“L) du + P[x (u, 01% av} (7.37)
R".

in der u,v-Ebene. Auf (7.37) können wir wegen der Voraussetzungen über P, x = g(u‚ v) und M den
GauBs'chen Integralsatz in der Ebene anwenden. (7.37) geht dann über in

if {— 61 [P (x (u, v)) + 6L:- [P (x (u, 72)) du du . (7.38)
l)

Berechnet man in (7.38) die partiellen Ableitungen der Ausdrücke in den eckigen Klammern und ord-
net das Ergebnis entsprechend, so stellt (7.38) das Bereichsintegral zur Berechnung des Oberflächen-
integrales zweiter Art

6P SP 3P 8Pf] (E dx dz — 7,37 dx dy> =flmä (eg - n) — Ty (e, - 12)] df (7.39)

‘Zr ‘ä

dar. Es gilt also

öP 6PgSPdx=ff[3;(e2~n)—$(e3-n)]df. (7.40)

n 3;

Ganz analog können wir mit Q und R verfahren und erhalten die Formeln

a 6
§6Qdy=ff[a—f<e.~n>—a—‘;’(e.-n>]d/, (7.41)

R Ü

6(ßkdz =ff[%(e,-n)——6%(e2-n)}df. (7.42)

R f:

Fassen wir die Formeln (7.40) bis (7.42) zusammen, so erhalten wir

Ü

Der Integrand des Oberfläehenintegrales ist aber gleich (rot v) - n, womit wir Formel (7.34) nachge-
wiesen haben.

_ Wir zeigen nun an einigen Beispielen die Anwendung des Integralsatzes von Stokes.

Beispiel 7.7: Wir hatten den Beweis des Satzes 5.8 offengelassen. Wir wollen ihn
jetzt nachholen. Satz 5.8 sagt aus: Ist in einem einfach zusammenhängenden Ge-
biet G die Gleichung rot f = 0 erfüllt, dann ist das Kurvenintegral ff - dx in G vom
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Integrationsweg unabhängig. Nach Satz 5.6 ist j f dx genau dann vom Integrations-

weg unabhängig, wenn für jede geschlossene, ganz in G verlaufende Kurve S? f - dx = 0
gilt. S:

Um dies nachzuweisen, sei jetzt 3? eine beliebige ganz in G verlaufende geschlossene
Kurve. {y sei eine beliebige, ganz in G liegende und den Voraussetzungen des Inte-
gralsatzes von Stokes genügende Fläche, die R als Rand hat. 1) Nach Formel (7.34) ist
dann

dyf- dx = lfaocr) - n df=ffo . n df= 0.
ié f: 3

Damit ist Satz 5.8 bewiesen.

Beispiel 7.8: Es sei R die Schnittkurve zwischen der oberen Halbkugel (z g 0) mit
. . R 2 R2 .

dem Radius R um 0 und dem Zylinder (x — 7) + 322 = T, die entgegen dem Uhr-

zeigersinn durchlaufen wird, wenn wir von oben auf die Kugelfläche sehen. Es ist

f - dx mit f = (xy, y’, yz) zu berechnen.

R‘ berandet den beim Florentiner Problem herausgeschnittenen Teil $0 der Kugel-
fiächetvergleiche Beispiel 6.3). Wir wenden zur Berechnung des Kurvenintegrales

L = f ~ dx den Integralsatz von Stokes an. Hierzu benötigen wir die Rotation von

r:
f und die Darstellung einer geeigneten Fläche, die von R berandet wird. Es bietet sich
hier der Teil $0 der Kugeloberfläche an. Die Normale der Kugeloberfläche hat die

gleiche Richtung wie der Ortsvektor x = (x, y, z). Es gilt also n = ä, da der Betrag

für auf der Kugeloberfläche liegende x gleich R ist. Für rot f finden wir (z, 0, —x).
Damit wird

(l‘(‘)tf)-ll:-11—{-(Z, O, —x)-(x‚y, z)=%(xz—xz)=0
und

L=¢f-dx=_U(rotf)-ndf=ff0~df= 0.
a’ e. e.

Aufgabe 7.5: Es ist das gleiche Kurvenintegral wie in Beispiel 7.8 zu berechnen. Bei der Anwendung
des Integralsatzes von Stokes ist jedoch nicht die Kugelfläche, sondern die Fläche ‘ff zu verwenden,
die entsteht, wenn man auf S? eine zur y-Achse parallele Gerade entlang gleiten läßt.

Ehe wir als nächstes Beispiel eine Anwendung des Integralsatzes von Stokes in der
Elektrodynamik behandeln, wollen wir einen Hilfssatz bereitstellen.

Satz 7.5: Ist v ein in einem räumlichen Gebiet G stetiges Vektoifeld, für das für jede
beliebige, in G liegende Fläche 3}

‘fjv - n df= o
LT

gilt, so ist v = o in G.

(7.43)

1) Man kann zeigen, daß es unter unseren Voraussetzungen über die Kurve S? (Def. 5.2) stets eine
der Definition 6.2 genügende Fläche {E gibt, deren Rand mit Q übereinstimmt.
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Beweis. Wir führen den Beweis indirekt. Hierzu nehmen wir an, v sei in x0 E G vom
Nullvektor Verschieden: v(x0) = a =l= o. Wegen der Stetigkeit von v gibt es zu
s = g [a] ein ö > 0, so daB1v(x) — v(x0)|=1v(x)— a] < aistfür alle x mit [x — x„| g ö.
Für x mit |x —— x0] g ö ist dann

o g 1v<x> — av = [v(x) — a1»[v(x>— a1= |v<x>12 + W — 2v<x> - a < s= =

also

0 < |a]2 < v(x) - a für [x — xol g ö. (7.44)

30 sei nun eine Kreisfiäche mit dem Radius ö um x0, die senkrecht auf a steht. Die

Normale von ü, ist also n = ü. Nach dem Mittelwertsatz der Integralrechnung ist

[XIV o n df= Ö’:v(x1)-—‘;T ,

wobei x, ein geeigneter Punkt von ‘f1, ist. Wegen der Voraussetzung (Formel (7.43))
ist dann

v(x‚) - a= 0

im Widerspruch zu Formel (7.44), "da wegen x, E <50, |xl — xo| g ö ist. Damit ist
Satz 7.5 bewiesen.

Beispiel 7.9: Die Maxwellschen Gleichungen (für ruhendes Medium) in Integralform
lauten:

‘ öB .l W - n df= — SEE - dx (Induktwnsgesetz), (7.45)

ö S?

ffC - n df= ffifl - dx (elektromagnetischer Verkettungsgesetz). (7.46)

{r s!

Hierbei kann ‘f: jede beliebige Fläche im Raum sein. R ist die jeweilige Berandungs-

kurve von ‘ü. B ist die magnetische Induktion, C = %-It: + I der Gesamtstrqm, D die

dielektrische Verschiebung, E die elektrische Feldstärke, H die magnetische Erregung
und I der spezifische elektrische Strom (s. z.B. [8], §3).

Die Maxwellschen Gleichungen sollen nun in eine Form gebracht werden, die
keine Integrale mehr verwendet. Hierzu wenden wir auf die Kurvenintegrale in For-
mel (7.45) und (7.46) den Integralsatz von Stokes an:

13E-dx=ff(rotE)-ndf,
s? ü

(£11-dx=ff(rotH).ndf.
s‘? e
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Damit können wir (7.45) und (7.46) umformen zu

'£[(§%+rotE)-ndf= 0,

{f(9aD7‘+I—rotH>.ndf= 0.

Da ü- jede beliebige Fläche sein darf, können wir Satz 7.5 anwenden. Es folgt

Ö-aT=—rotE,

6DE—+I=rotH.

Dies sind die gesuchten Gleichungen (Maxwellsche Gleichungen in Differentialform).
In den vorangegangenen Beispielen haben wir Kurvenintegrale über den Stokes-

schen Integralsatz durch Oberflächenintegrale ausgewertet. Oft lassen sich jedoch
auch Oberflächenintegrale besser durch Kurvenintegrale berechnen. Es muß dann
die Randkurve der Oberfläche oder das Vektorfeld besonders einfach sein. Wir wollen
auch hierzu ein Beispiel angeben.

Wir bemerken weiter: Im Stokesschen Integralsatz 7.4 sind die betrachteten Ober-
flächen ziemlich starken Einschränkungen unterworfen. Satz 7.4 gilt jedoch auch noch
dann, wenn i} aus endlich vielen, den Bedingungen von Satz 7.4 genügenden Flächen
zusammengesetzt ist. Auch dieser Sachverhalt soll im nächsten Beispiel berücksichtigt
werden.

Beispiel 7.10: Es sei B der Würfel mit den Eckpunkten (0, 0, 0), (I, 0, 0), (1, 0, 1)
(0, 0, 1), (0, 1, 0), (l, 1, 0), (I, 1, 1) und (0, 1, 1). ä sei die Oberfläche von B mit nach
außen gerichteter Normale, f7, sei die Restfläche von 3, wenn aus ‘f; das Quadrat ä,
mit den Eckpunkten (O, 0, 0), (1, 0, 0), (1, 1, O) und (0, 1, O) entfernt wird. Es ist
I = (rot v) - n df zu berechnen mit v = (eV”, sin xz, e‘W).

%.,mi)esteht aus fünf Quadraten, über die getrennt integriert werden muß. Weiter
ist rot v = (—x e“? — x cos xz, y e“! + cg”, z cos xz — c9“) sicher nicht einfacher
als v aufgebaut. Da der Rand S? von $30 der Streckenzug (0, 0, 0) —- (1, 0, 0) — (l, 1, 0)
— (0, 1, 0) — (O, 0, 0) ist, also ganz in der x,y-Ebene liegt, ist es sicher einfacher, [nach
dem Stokesschen Integralsatz umzuformen und das Kurvenintegral über Q zu be-
rechnen. Diesen Weg wollen wir beschreiten.

1 1

I=H(rotv)-ndf=qgwdx=fe°dt—fe’dt= l —e.

55., xi‘ o 0

(In den beiden Integralen von (1, 0, O) nach (1, 1, 0) und von (0, 1, 0) nach (0, O, 0) ist
der Integrand sin xz gleich null wegen z = 0.)

Aufgabe 7.6: Berechne mit Hilfe des Integralsatzes von Stokes I = (rot v) - n df, wobei v = (z — 4,
i?

y’, 0) und ‘E’; der Teil des Rotationsparaboloides z = x’ + ‚v2 ist, der im 1. Oktanten x ä 0, y g 0,
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z g 0 zwischen den Ebenen z = O und z = 4 liegt. Die Normale n von ‘Es weise stets in das Äußere
des die positive z-Achse enthaltenden Rotationskörpers. Skizziere zunächst in einem Schrägbild das
Flächenstück!

Aus dem Integralsatz von Stokes folgt übrigens unmittelbar ein Sachverhalt, der
sich oft günstig zur Auswertung von Oberflächenintegralen des Types (rot v) - n df
verwenden läßt.

Satz 7.6: Es sei G ein einfach zusammenhängendes räumliches Gebiet. In G sei das
Vektarfeld v stetig und stetig partiell diflerenzierbar. {n und ä, seien ganz in G ver-
laufende Flächen, die den Voraussetzungen von Satz 7.4 genügen und gemeinsam von
der Raumkurve S‘? berandet werden. %,, ä; und R seien wie in Satz 7.4 orientiert. Dann
gilt

ffaotv)-ndf=fi(rotv).ndf.
‘fr; %.

Ist insbesondere {E eine in G liegende geschlossene Fläche, so ist

vW(rotv)-ndf= 0. i

ü
Zum Beweis wenden wir auf beide Oberflächenintegrale den Integralsatz von

Stokes an und erhalten

ff(rotv)—ndt=giv-dx‚
Tn xi

H(rotv)~ndf=5£v-dx.
Ü: ‘E

Wegen der Gleichheit der rechten Seiten ist der erste Teil des Satzes bereits bewiesen.
Zerlegen wir die geschlossene Fläche i”; durch eine auf {y liegende geschlossene Kurve S?

in zwei Teile ‘äl und fyg, so gilt nach dem bisher bewiesenen

ff(rotv)-ndf= ——f_{(rotv)»ndf‚
‘Zn E}:

da R als Rand von ‘fyg die entgegengesetzte Orientierung hat wie als Rand von $1.
Zusammenfassung der Integrale über {n und 252 ergibt die Behauptung

ffootv) - ndf= 0. u
i’:

Beispiel 7.11: Satz 7.6 liefert uns ein weiteres Mittel, das Oberflächenintegral I aus
Beispiel 7.10 in einfacherer Weise zu berechnen. v ist im ganzen Raum stetig und stetig
partiell differenzierbar. Weiter ist das Quadrat {n mit der Normale n = c3 eine Fläche,
die die gleiche Randkurve R wie ü, hat. Nach Satz 7.6 gilt folglich

I=U(rotv)undfzflüotv)-ndf=f_f(rotv)-e3dxdy
3a Ü; 00

1

=—ffe9dydx=1—e.
O0

5.7.6
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7.6. Koordinatenfreie Darstellung der Rotation

Ähnlich wie die Divergenz läßt sich auch die Rotation eines Vektorfeldes mit
Hilfe von Integralen in einer Form darstellen, die vom benutzten Koordinaten-
system unabhängig ist. In Band 4, Abschnitt 3.9.2.3., wurde die Rotation von
v = (P, Q, R) durch

r°tv=(Rz/—Qz>Pz—R:n Q1_ y)

definiert, und in dieser Form haben wir sie bisher auch immer benutzt. Es wurde
jedoch bereits in Band 4 angedeutet, daß diese Vektoroperation besser über Integrale
definiert werden kann, die dort aber noch nicht zur Verfügung standen.

Es sei v ein stetiges und stetig partiell differenzierbares Vektorfeld. Ist €- eine orien-
tierte Fläche mit der orientierten Randkurve 9 (S? wird entgegen dem Uhrzeigersinn

durchlaufen, wenn man von der Außenseite auf Y- blickt), so bezeichnet mandg v-dx
.0.‘

als Zirkulation des Vektorfeldes v längs der (geschlossenen) Kurve E. Betrachten wir
nun für einen festen Punkt x0 und eine feste Richtung n0 eine Folge ebener Flächen {sh
mit den Randkurven R3„ die senkrecht auf n0 stehen, x0 als inneren Flächenpunkt
enthalten, und für die die Durchmesser gegen null streben, wehn n gegen unendlich
strebt, so können wir mit der Zirkulation von v längs Rn folgende (von x0 und n0 ab-
hängige) skalare Größe

fv -dx

a = i7"- (7.47)

erklären, wobei A‚. = df der Flächeninhalt von ü. ist. Wenden wir auf die Zir-
‘in

kulation in Formel (7.47) den Integralsatz von Stokes an, so erhalten wir

div - dx=H(rotv) - n0 df.
9,. fin

Der Mittelwertsatz für Bereichsintegrale liefert weiter

fflrot v) ‘ no df= A„(rot v].=‚„) ' no,
{in

wobei x„ ein geeigneter Punkt von ‘[3, ist. Da die Durchmesser der ‘fyn gegen null
streben, gilt lim x0 = x0. Wegen der Stetigkeit der partiellen Ableitungen von v ist

n-‚oo

auch rot v stetig, und es gilt lim rot vlxq" = rot v [ x=xo. Damit liefert Formel (7.47)
n-boc

a = um A,1(rotv|x=,") ~ n0

Ann—>oo

= (rot v|x=‚„) ~ n0.

a ist also die Komponente von rot v in Richtung von n0 im Punkte x0. Wir fassen das
Ergebnis zusammen in

S.7.7 Satz 7.7: Es sei v ein stetiges und stetig partiell dzflerenzierbares Vektarfeld, x0 ein
fester Punkt, n0 einefeste Richtung und ü. eine Folge ebener, auf n0 senkrecht stehen-
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der Flächen mit 'dem Flächeninhalt A„ und dem Rand m, die x0 als inneren Flächen-
punkt enthalten und deren Durchmesser gegen null streben, so gilt

f v - dx
Rn(rot v[x=xo) - no = lim

n-ooo n

Satz 7.7 zeigt, daß rot v nicht von der speziellen Wahl der Koordinatenachsen
abhängig ist.

Übrigens kann die rechte Seite von Formel (7.47) unter Umständen auch dann berechnet werden,
wenn v schwächeren als den in Satz 7.7 angegebenen Voraussetzungen genügt. Zum Beispiel muß v zur

Anwendung von Formel (7.47) nicht unbedingt partiell diiferenzierbar sein. Man muß dann allerdings
fordern, daß die rechte Seite von (7.47) für jede Folge von Flächen der angegebenen Art gegen den
gleichen Grenzwert a strebt. Mit Formel (7.47) als Grundlage für die Definition von rot v erhält man

deshalb sogar einen allgemeineren Begrifl als mit der Definition über die Difierentialoperatoren.

Beispiel 7.12: Es sei v = v(r) mit r = |x|. v ist also aufjeder Kugel um 0 eine konstante
x0 _

Vektorgröße. Es ist die Komponente von rot v im Punkt x0 in Richtung von |x I

0zu berechnen. . 1

Wir benutzen Satz 7.7 und nehmen für 3,. Kreisflächen mit dem Radius 7 um x.,

no

. . .. . 1
senkrecht zu no. Auf dem Rand 9,, dieser Kreisflachen ist |x|2 = |x„|° + z; konstant,

also ist auch v([xD = an konstant auf Rn. Wir haben also ffia" - dxzu berechnen. Wir
m

können dieses Kurvenintegral auch als _<}§f(x) - dx auffajssen mit f(x) = a„ = const

h
im ganzen Raum. Wegen rotf : 0 wird dann nach Satz 5.8 das Kurvenintegral
ggf - dx vom Weg unabhängig, nach Satz 5.6 also ffi f - dx = (flan - dx = 0. Formel (7.47)

‚ _ m sin
hefert schließlich

. 0(rotv) - no = hm 1 = 0.
"goo u m

n2

Aufgabe 7.7: Es sei v = v(x) ein Vektorfeld, dessen Feldlinien die Ebene E mit der Gleichung
3x + Zy — z = 5 senkrecht durchsetzen, Es ist die Komponente von rot v in Richtung

1
no = 7: (3, 2, — l) im Punkt x0 = (l, 2, 2) zu berechnen.
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2x

1.1: _[x(y + 1) dy = [x(-1-y’ + „v?“ = x(7.x‘ + u) — x(«}x2 — x)= 3x2({rx + 1). (Fürx g Over-
=—1

—z

läuft y‚(x) = —x unterhalb von y„(x) = 2x).
z!

1.2: a) Durch die Substitution u = xy (x dy = du) erhält man F(x) = f (sin u)—1—du
I X

ou=x‘ 1

= [—- —cos u] = —(l —— cos x‘).
x x141:0

1 1

Hieraus folgt: F’(x) = 2 sinx’ —— y + 71:05 X2.

b) f(x‚ y) = sin xy,/”,(x, y) = y cos xy. Aus Formel (1.3) folgt dann:
J

F’(x) = fy cos xy dy + sin x’. Das Integral kann durch die Substitution u = xy (x dy = du) und
o

anschließende partielle Integration gelöst werden:
.1 „x

1 1 _ I’ 1 _

ycos xydy=—x; ucosudu= ?[us1nu+cosu] =—x?(x’s1nx‘+cosx2— 1).
o

o o

Man erhält also für F’(x) das gleiche Ergebnis wie in Aufgabe a).

1.3: B* ist eine Ordinatenmenge 0(B‚f) mit B = {(x, y) l0 g x g 3,0 g y g 3 — x} und z =

f(x, y) = 6 -— x — 2y. (Vgl. die Ausführungen in Beispiel 1.8.) BildL 1.3 liefert uns eine Skizze von B‘.
33-1 3 3-):

Aus Formel (1.5) ergibt sich dann V = j j (6 — x — 2y) dy dx = j [ j (6 — x — 2y) dy] dx.
o o x=o y=0

Wir berechnen zunächst das innere Integral:
3-1

_[(6—x—2y)dy=[6y—xy—y2];:ä”‘=s<3—x)—x(3—x)—(3—x)2=9—3x.
0 3.

27
Hieraus folgt: V= [(9 — 3x) dx = T.

o

Z

Bild L 1.3
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1.4: B‘ ist eine Ordinatenmenge 0(B, f) mit

B={(x.‚v)lIäx;S‚4—V4-(X-3)’äy:4+l’4-(x-3)’} .

und f(x, y) = x,v_ (vgl. die Ausführungen in Beispiel 1.8). Bild L 1.4 zeigt den Grundriß B von B‘.
B wird von dem Kreis (x — 3)’ + (y — 4)“ = 4 begrenzt; y = y,(x) = 4 —- V4 — (x —— 3)’ liefert
die untere Kreishälfte, y = y3(x) = 4 + V4 - (x — 3)’ die obere Kreishälfte. Aus Formel (1.5)
ergibt sich dann

5 4+ I/4—(.z—3)‘ 5 x 2

V=j j xydydx=_I8x}/4—(x—3)’dx=_I8(t+3)}/4—t’dt
1 ,_.y4_(,,_3)x 1 —2

2 2

=sj1V4—:=c1z+24jV4—z=dz=o+4sn=4s1=.
-2 -2

(Hinweis: Das 1. Integral braucht man nicht zu berechnen. Da f(t) = I}/4 — I“ eine ungerade
2 .

Funktion ist, muß Im) dr gleich null sein!)
-2

1.5: Nach der l’Hospitalschen Regel gilt:

Hm sin (xf(x)) =” 2 LL ___ Hm (f(x) + xf’(x)) cos (xf(x)) = (yo + 0) ' l = yo

z—>o x 0 z-‚o 1 1

Die Zusatzfrage muß mit „nein“ beantwortet werden (s. Definition des Grenzwertes bei Funktionen
mit mehreren Variablen in Band 4).

1.6: x = 0,1. Aus I’(x + 1) = x -I'(x) (für jedes x > 0) und der Tabelle ergibt sich: 0,1 ‘I"(0,1)
= I"(1,1) = 0,951. Hieraus folgt: 1"(0‚1) = 9,5l. Analog berechnet man I'(x) für x = 0,2; ...;0,9.

x = 2,1 =>F(2,1) = F(1,1 + 1) = 1,1~F(1,1) = 1,1-0,951 = 1,046.

I'm

Bild L 1.4 ‘ Bild L 1.6

Analog berechnet man F(x) für x = 2,2; ...; 3,0.

x [o,1|o,2Io,3|o,4|o,5|o,s|o,7|o,s[o,9
I’<x) I 9,51 I 4,59 I 2,99 I 2,22 I 1,77 I 1,49 I 1,30 I 1,15 I 1,07

l0 Körber, Integralrechnung
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x I2,1 |2,2 |2,3 |2,4 I2,5 I2,6 I2,7 |2,8 I2,9 |3,0

Poo I 1,05 I 1,10 I 1,17 I 1,24 I 1,33 l 1,43 I 1,55 I 1,68 I 1,83 I 2,00

0 ä y g 4

V} é x g s — y
ist ein Normalbereich bezüglich der y-Achse. (y = —x + 6 ist die Gerade durch die Punkte (6,0)

und (2,4). Ausy = —x + 6 bzw. y = x’ folgt x = 6 — y bzw. x = Vy.)

2.1: B:{

4 H’ 112fffa’) db =f fxydxdy=—§—.
B o y; y

2.2: Der Bereich B wird durch die Gerade x = 4 (das ist eine Gerade parallel zur y-Achse) in zwei
Normalbereiche bezüglich der x—Achse zerlegt, die wir mit B, bzw. B2 bezeichnen wollen (vgl. Def.
1.1).

{ 0 ä X é 4 l 4 é x ä 9

0§y§ix2+1, B’: 0§y§9—x.1.

Aus den in Satz 2.5 bzw. Satz 2.6 angegebenen Formeln erhalten wir dann — unter Beachtung der
in Satz 2.3, c angegebenen Zerlegungsfcrmel —

9 94 */‚.r*+1 —z

m=fJ‘gdb=ffgdb+ffgdb=J‘ J‘ xydydx+J-J‘xydydx
B B, B, o o 4 o

124 875 3 617

‘3+s 24’
9 9-:4‘/.z'+1

I 1 ’xs-_-;fJ.xgdb=;{f I x’ydydx+ffx‘ydydx}
0 o oB 4

24 {m76 2375 ‘woooss 72876~481‘3617 105 +—4_I” ’ ’ “ ’ ’

4‘/‘.Z’+1 99—.z
1 1

ys ygdb =7 Jxy’dydx +fJxy’dydx}
B 0 0 4 O

z 0,0066'{104 + 26l} z 2,4l.

2 4—a:‘ 2

„ 128 1

2,3; J, = y~g db = y2(x’ + y) dy dx = 64 — -Txz + 8):‘ — Ex‘ dx

B H2 0 2

-2 s4 1282+s4- 1“d~121_ 3 X X —‘T2‘x Xrv .

0 ‚

Vg4 1 2
2.4: fffmdb = lim _Uf(P)db=lin1 ffy-rs dy dx =11m12I2 — ea) = 24.

B ;—»+0B( E‘*+0e 0 E"+0
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Y

k

55

Bild L 2.4

c YE i X

3.1: B wird von 5 Ebenen begrenzt:

z = -3 (untere Begrenzung);

y = —x +1, y = x — 1, x = 4 (seitl. Begrenzung);

z = ä (x + y + 2) (obere Begrenzung). /

z y _

5 _

. y-x-1

7 _

E“ "m

7 6 x 7 4 X

Bild L 3.1

-3 _

y - -x+ I

3.2: Normalbereiehe bezüglich der x,y-Ebene:

xlgxgx; hgyg)’:
B1 { }’1(X) ä J’ ä J’2(X) B: { X10’) ä x ä X20’)

z1(x, y) g z g z2(x‚ y). z1(x,.v) g z g zz(x‚ y),
Normalbereiche bezüglich der y‚z-Ebene:

J’1§y§J’2 Z1§Z§Zz
B3:{ Z100 g z g w) B41 l y1(z) g y g y2(z)

X10’. z) g x g my, z). x10, z) g x g xz(y‚ z),

Normalbereiche bezüglich der x,z-Ebene:

xléxéxz z1§z§z2
B5: { z1(x) g z g z2(x) B6: L xi(z) g x g x2(z)

y1(x, z) g y g y2(x‚ z), 10c. z) g ‚v g y2(x. z).
Aus diesen Darstellungen kann man folgende Gesetzmäßigkeit bei räumlichen Normalbereichen
ablesen: Bringt man die Variablen x, y, z in eine geeignete Reihenfolge (z, B. z, y, x bei B‘), so sind
die Grenzen für die l. Variable konstant, die Grenzen für die 2. Variable Funktionen der 1. Variablen

10*
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und die Grenzen für die 3. Variable-Funktionen der l. und 2. Variablen. Diese Formulierung (in
entsprechend präzisierter Form) kann als Definition für räumliche Normalbereiche benutzt werden;
sie ist unabhängig von der in Definition 3.2 zugrunde gelegten geometrischen Vorstellung und sofort
auf einen beliebigen u,v,w-Raum übertragbar.

Hinweis: In Aufgabe 3.1 ist B ein räumlicher Normalbereich vom Typ B1. Es gilt z‚(x, y) = —3‚
z,(x, y) = S‘ (x + y + 2). Bei der Gleichung 210c, y) = -3 soll besonders daraufhingewiesen werden,
dal3 z = — 3 als Funktion von x und y angesehen werden kann: z ist für alle Punkte (x, y) konstant
gleich —3 (s. Band 4). ~

3.3:

x+y+4
z: z=x+y+4

Inneres Integral: J (x + y + z) dz = [xz + yz + 7] o
z:

0

3 3=5x2+ 8x+8y+ 3xy+;y2+8.

g 3 2 „ 3 2 1 ‘s y=i+3
Mittleres Integral: —xy + 8xy + 4y- + —xy + —y + 8y 2

2 2 2 „=„..1

37 73 „ 26l
= —-Rx3+—8*x"+—4—x+78.

26l

8

3 5704
x2+78x =—Tz1901.

0
Ä ße I l- 37 4 73 x3u res ntegra. —6—4x +E +

B wird nach unten durch die x‚y-Ebene mit der Gleichung z = 0, nach oben durch die Ebene z =

x + y + 4 und seitlich durch die drei auf der x,y-Ebene senkrecht stehenden Ebenen y = x — 1,

y = g + 3, x =0 begrenzt.

3.4: Zu den Normalbereichen B1, ...‚ B, gehören (in der angegebenen Reihenfolge) die folgenden
dreifachen Integrale:

12 m1) 1a(I,y)
1. J J J f(x,y‚z)dzdydx,

91i Ihm ‘u(¢.y)
v. IN) man

2. j j j/ f(x, y, z) dz dx dy,
v. My) am!)
y. 11W) M1/,x)

3. I I I f(x,y,z)dxdzdy,
y. 2.01) I.(1/.1)

I-2 mix) M1/.z;
4. i. J J f(x‚y‚z)dxdydz‚

I; y:(z) früh‘)
z, :‚(:I:i y‚(a:,z)

5. j I I f(x,y, z) dy dzdx,
1x WI) H:(5V»1)

z. arm) yg(a;,:)

6. j j f f(x,y,z)dydxdz.
z, 1.(z) y.(z.z)
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Hinweis: Die drei Symbole (Elemente) dx‚dy‚dz kann man auf 3! = 6 Arten anordnen (per-
mutieren). Das entspricht der Tatsache, daß es 6 verschiedene Arten von dreifachen Integralen gibt.

3;5:
y=x+3x 11

Inneres Integral: [3 xzyg] =

9
_. 22 _ Sy=o 2x"‘z+3xz+2xz.

1 9 z=x+2
Mittleres Integral: x‘z + x”z“ + 2- x223]

z=0

1 27 <

= 25+ 322‘ + 482” + 242’ + 41).

369025

I6
.. 1 9 32 3 5
Außeres Integral: — -2“ + ?z5 + 1224 + 82 + 22’ o =2 8 J: 23064.

Betrachtet man die y-Achse als vertikale Richtung, so wird B nach unten durch die x‚z-Ebene (y = 0),
nach oben durch die Ebene y = x + 3z und seitlich durch die auf der x,z»Ebene senkrecht stehenden
Ebenen x = 0,): = z + 2,2 = 0, z = 5 begrenzt.

‘ 3 4 z’+y’+2 '

3.6: V= mdb = H j dzdydx
z B 0 1 0

34 3

=jj(x=+y2+2)dydx=j(3x2+27)dx=108.
01 0

I l 34z’+y’+2

xo=—7J‘J.J‘xdb=T(-)§J:[ J‘ xdzdydx
B 0 1 0

8 i
_ 1 2 „ l 729 27
——-I—8J x(x +y'+2)dyd.r=-W-——"(—=l—6.

0 1

3.7: B ist ein räumlicher Normalbereich von dem in Beispiel 3.2 behandelten Typ.

02x53
5

B: ogygs-ix
n

0§z§2——x—:y.
3 5

. ‚ 5
Diese Darstellung gewinnt man ganz einfach, wenn man davon ausgeht, daß y = 5 — TX die

. . 2 2
Gleichung der Geraden durch die Punkte (3, 0, 0), (0, 5, 0) und z = 2 — 3 x — — y die Gleichung
der Ebene durch die Punkte (3, 0, O), (O, 5, 0), (0, 0, 2) ist. 5

(Hinweis: Bei diesem speziellen Beispiel hätte man B auch als Normalbereich der anderen fünf Typen

beschreiben können. Siehe Lösung zu Aufgabe 3.2.) Nach Satz 3.6 gilt: J‚= „h? 9 db mit r’ = x’ + z”
I:
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und g = x + 1. (r ist der Abstand des Punktes P(x‚ y, z) von der ‚v-Achse.) Aus Satz 3.6 folgt dann:

J, = {Äjocz + z?) (x +1)db

s 5-"/.1 2—*/‚z—=/‚y
=j j j (x2+z2)(x+1)dzdydx

0 U 0

3 X '/.<X«y)
=jj j (.r2+z2)(x+1)dzdydx(Abk.:X=§(3—x)).

0 0 0

2 4
Inneres Integra1:—5~ (x + 1) x2 (X — y) + 75—(X — y)’ .

1 2
Mittleres Integral: ? (x + 1) x"X’ + i? (x + 1)X‘

5 l0
= 3(9)? + 3x’ — 5x‘ + x‘) + Ea-(81 — 27x - 54x2 + 42x3 —- llx‘ + x5).

Äußeres Integral: J, = 14,25.

4.1: -1: g (p g n’, (0 g (p g 27: ebenfalls möglich!)
0 g z g 3,

0 g r g 2 — äz.

[Aus z = —%r + 3 (vgl. Beispiel 4.2) folgt r = 2 — §~ 2.]
Geometrische Interpretation (s. Bild 4.5): P sei ein Punkt des Kegels mit den Zylinderkoordinaten
r, (v, z. Bei beliebig vorgegebenem (p kann z alle Werte zwischen O und 3 annehmen; z ist nicht von (p

abhängig. Sind (p und z vorgegeben, so kann r alle Werte zwischen 0 und 2 — ä z annehmen; r ist
nur von z, nicht von a: abhängig. —

-R g x g R

4-2: a) B: —VR2 — xzg y g W
0g zgl/R2—. ——y2.

Man orientiere sich am Beispiel 4.1! Dem R in Aufgabe 4.2 entspricht das a in Beispiel 4.1. Während

in Beispiel 4.1 die Halbkugel z = -1/a’ — x2 — y“ die‘ untere Begrenzungsfläche von B darstellt,
wird in Aufgabe 4.2 der Bereich B nach unten durch die x‚y—Ebene (mit der Gleichung z = 21 (x, y)
= 0) begrenzt.

b) Ausgehend von der geometrischen Bedeutung der Kugelkoordinaten r, 19, (p (vgl. Bild 4.4) können
wir feststellen: Bei der vorgegebenen Halbkugel vom Radius R kann r alle Werte zwischen 0 und R
annehmen. Bei beliebig vorgegebenem r kann 19 alle Werte zwischen 0 und ävr (g 90°) annehmen;
v9 ist nicht von r abhängig. Sind r und 1.9 vorgegeben, so kann (p alle Werte zwischen 0 und 27v (2 360°)
annehmen; (p ist in diesem Falle weder von r noch von 29 abhängig. Der vorgegebene Bereich wird
daher bezüglich Kugelkoordinaten beschrieben durch

ogr g R

B’:{ O g 19 g 4}:
0 g (p g 27:.

0 g r g R

4.3: a) B’: [0 §19 g in
0 g (‚v g 2x;

b) Schneidet man den vorgegebenen Kugelausschnitt (Kugelsektor) längs der x,z-Ebene auf, so

erhält man den in Bild L 4.3 b dargestellten Kreisausschnitt (Kreissektor) mit dem Zentriwinkel
(x = 90° und dem Radius R. (Bezüglich ebener und räumlicher Figuren siehe z.B. [1], Abschnitt
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Geometrie.) Wir versuchen den Kugelausschniu als einen Normalbereich von dem in Beispiel 4.2 b

angegebenen Typ

‘F1 S ‘P § ‘P2;

710??) ä V § 72(47):
Z10, IP) ä Z é Zz(r.<P)

zu beschreiben! Zunächst einmal kann q: alle_Wertc zwischen 0 und 21: annehmen. Bei vorgegebenem

(p kann r alle Werte zwischen 0 und n, = QR V2 annehmen (siehe Bild L 4.3 b). Die Grenzen für r sind
also bei diesem Beispiel nicht von der ersten Variablen go abhängig! Sind q: und r vorgegeben, so kann
z alle Werte zwischen z, und z; annehmen; dabei gilt 21 = r, 22 = }/R2 — r”. (Satz des Pythagoras
beachten!) Die Grenzen für 7 sind bei diesem Beispiel nur von der zweiten Variablen r abhängig.
Der vorgegebene Bereich wird daher bezüglich Zyliuderkoordinaten beschrieben durch

0§<p§2:

Bild L 4.3 b)

4.4: Für den geometrischen Schwerpunkt x„, yo von B gilt (vgl. Satz 2.6 und anschließende Bemer-
kung): '

l " 1 nRax„=7 Jxdb‚y„=71- ydb;A= db=—4—.
B B B

Transformation auf Polarkoordinaten führt zu den Formeln:
‘Y

"753
4 4Rms? (rcosq:)rdrdq>=?_:~,

oo

T);
4 _ 4R

y,,=fi{—2- (rsm<p)rdrdq2=T:-,
o o

vgl. Formel (4.16) —— diesmal wurde aber in der Reihenfolge dr, dq: integriert! Zugehörige: Normal-
bereich:

' 71

(0 =) ‘P1 §<P§¢2<=§').

(0 =)r1(sv) § r ä rz(¢) (= R)-
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4.5’: Nach Satz 2.8 des Abschnittes 2.4. gilt: 1,, = y’ db.
1x

1. Transformation (Übergang von x, y zu x’, y’):

T_x=x'+5 Ö(x‚y) _1

"y=y’+4 v3(x’.y’) x ’

2. Transformation (Übergang von x’, y’ zu Polarkoordinaten (bezüglich x’, y’) r, m):

_ x’ = T6054]! ö(x’‚ y’) _

"y’=rsinq> Ö(r,<p) '-

Hieraus folgt (vgl. Formel (4.16)):

1,: gyzdb =éU(y’ + 4)=- 1 db’ =§U(rsin<p + 4)2r'db”
w

|

a37:

2 2

=f Jusinqz + 4)‘rdrdq2 =

o1:

2

64
(451329: + -3-sing: + 32)dq1

u
n
d
,“

3_"
2.
l = 34~r:= 106,81.

2

„ 64
= 2<p—sm2<p—Tcosq1+ 32l]:

4.6: (Vgl. Formeln (3.3), (4.19), (4.18) und Beispiel 4.2)

w. um z.(r.«r)

V= fljdb: mldb =_[jj1-rdb'= j j j rdzdrdq:
B B B’ w; w) z‚(r‚w)

1r 2 --’/,r+-3
= j j j rdz drdqz

—1r0 0

7:2 1:

‘ 5jr(—%r+3)drdq2= I2dcp=4m
0 —1r-1:

Kontrolle: V= <}Fh = §7rr’h = A-1:-2“ 3 = 47r.

4.7: Bezüglich Zylinderkoordinaten r, tr, z wird der vorgegebene Bereich beschrieben durch:

0§ré3
0§lP§27:

B’:[
0§z§r2+4.

Aus z = x” + y’ + 4 folgt z = r’ + 4. Nach Formel (4.19) gilt daher:

27! 3 r‘-w‘-4 27! 3

153V=J‘J:[db=J.J~J' rdzdrdq2=fJ-r(r2+4)drdq2=Tn:.
B 0 o o 0 0
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4.8: Wir führen ein x,y,z-Koordinatensystem ein, dessen Ursprung 0 mit der Spitze des Kugel-
ausschnitts und dessen z-Achse mit der Symmetrieachse des Kugelausschnitts zusammenfällt. Das

. 1

Bild zeigt‘den Schnitt mit der x,z-Ebene. Für den Winkel 19 gilt 19 = g (Sim? = ä- = i).
Im r, 19, qz-Raum (Kugelkoordinaten) wird der Bereich beschrieben durch

0§<p§27=

E’: _ _:05195 6

O§r§4.

Für das Volumen V von B und die z-Koordinate des geometrischen Schwerpunkts von B gilt dann:

7!

21: T 4

V = m db = _fjjr2sim9db' =3‘ j jr2sim9 drd19d<p,
B n’ * o o o

1 ° 1zo=7fjfzdb =Vijjocosa).(‚zsinßmrdadrp
B B’

7:

21: T 4

1 1 ‚

= 7 _ ?r3s1n215‘drd19dzp.

D 0 0

x‘, und yo müssen gleich null sein, weil aus Symmetriegründen der Schwerpunkt auf der z-Achse
liegen muß. Die Berechnung der auftretenden dreifachen Integrale liefert für V und z.) die Werte

=—rr — ,z=—~ n=——j_-Z ,.V 64 (2 V5) I 16 3 2s
3 ° V 4(2—V3)

U

l

R

" lBildL4.8
X

5.1: Eine Darstellung der Strecke erhält man aus der Geradengleichung x(t) = (1, 1, 1) + t[(2, 2, 2)
— (1, 1, 1)] = (1 + t) (1, 1, 1) durch (1, 1, 1) und (2, 2, 2). Zum Anfangspunkt gehört t = 0, End-
punkt t = 1. Eine Darstellung der Strecke ist folglich g(t) = (1 + t, 1 + I, 1 + t),tE [0, 1], mit
gm = (1, 1, 1) und |g(t)| = V3. Damit wird

1+: l
i‘ 1

!f<*>ds=f ”d'=fd'= *-
0 0
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5.2: Wegen g(t) = (—4 sin t, 2 cos t, 6) wird nach Formel (5.19)
:1/2 _

L =jr4cosr-(—4sinz)+ 6t-2cost+ 2-6]dt= 9: — 6(l + V3).
2:/5

5.3: fr ist zusammengesetzt aus R1 mit der Darstellung g1(t) = (t, 0, 0), t 6 [0, 2], und fig mit der
Darstellung g‚(r) = (2, o, r), r E [0, 1]. Es ist F(g1(t))~§,(I) = (0,1 — r, o) — (1,0, o) = 0 und
F(gz(t)) ' 22(1) = (0. —1‚ t2) - (0, 0. I) = t’. also

2 l

W=j0-dt+_ft“dt=§.
o o

5.4: rot F = (0, O, —2) ä: 0, F besitzt also kein Potential und I F- dx ist nicht vom Integrationsweg
unabhängig. r

5.5: rot F = 0 in G, wobei G der gesamte Raum mit Ausnahme des Punktes (0, 0, O) ist (G ist einfach
zusammenhängend !).

x dx
Analog Beispiel 5.14 erhält man 115 = —Kf = :____2—.._: + <p( ‚ z).

Vx” + y“ + 223 Vxz + ye + z? y

K
‘i'c-

Vx- + y" + z-
qa, = 0 ergibt <p(y, z) = 1p(z) und w’(z) = O schließlich a5 =

5.6: G sei die entlang der positiven x-Achse aufgeschnittene x,y-Ebene, aus der (0, 0) entfernt wurde.
G ist ein einfach zusammenhängendes Gebiet, in dem f - dx ein vollständiges Diflerential ist. Die nach
Bild 5.13 aus 91,92, —fl (negativ durchlaufener Einheitskreis, Beispiel 5.13) und -92 zusammen<

gesetzte Kurve 9„ verläuft in G. Satz 546 und 5.7 ergeben f f » dx = fit‘ - dx + If > dx — f f- dx

—If-dx=Ound§f-dx=§f~dx=27:. 9- Rx 91 9
ä‘: H: St‘

5.7: Wegen rot v = 0 besitzt v ein Potential, Analog Beispiel 5.14 wird (I? = _[(—2x + sin z) dx
= ——x2 + xsinz + <p(y, z).

113,, = z}, = cosy — ysinyergibtq2(y, z) = siny — (—ycosy + siny) + Ip(z).
d5, = x cosz + 1,u’(z) = xcosz + 4e"f1'ihrtauf 1p(z) = 2e?‘ + Cundd? = —x’ + xsinz + ycosy
+ 2:2“ + C.

und f,=0.6.1: Es istf(x,y) =1/1 ~ x2,f,, =— VT’:-
x2

Damit wirdVl +fß +f,= = A/1 + 1

1 1/:3 I

A=fJ-},l+f,2+f,.2db=J‘ I yd.\‘
1s _i.—}/1—x!

1

' 1 ___

= ffi-2Vl—.x?dx=4.
-1
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l|/
\

N
I

71

6.2: g(r,<p)=(rcosq2,rsinq2,/1- hr/a),M: — g rp ,0 g r g ncosqz.

.1
‚ _ h ‚ I13

g, = <COS£p,Slnlp, — -E-),g,,,= (—rs1n<p,rcosLp,0),E= I + 23,1-'= 0,G = r’,

ha

VEG—1=2=rA/1+7.

7mm
2 TI ~/1+h—a, rdrd<p=£a}/a2+h3.

a- 4
0

A:

-o
x:

:“
“>

6.3: M={(u‚v):0gzcg%‚0gv §%},g= R(cosusin u, sinusinz,-,cos v),tEM, ist eine

Darstellung von i} (Vgl. Beispiel 642) mit VEG - F“ = R3 sin v. Die Masse wird
1C 7T T?

-2

„ h _ _ n sinv 7:ff 1:5: df=J‘J\ R2s1n11dudv=h;R2J. dv=?hRIn(1+!R).
fr 0 0 o

6-4: gu = (1.0, -1),gu = (0, 1. 1),gu >< gu =(1‚ -1.1).
,— J- 1

WEG — F== :g.. x an = l3‚n = },—§(1, -1, 1)

jjF«nc1f=jjF-nVEG— Fgdudv
3- Al

1 1
1 V-

=-[Jr/(U-1,E—1l,l+11)’;/:(],—1,1)V3dl4dE
o 0

11 11

—‘——Ij(v—~1-v+u+1+u)dudu=2_Hududv=1.
0o oo

6.5: Für die Teile von €- kann man z. B. folgende Darstellungen verwenden (die Darstellungen sind
so gewählt, daß die Normale nach außen zeigt, obwohl die Normale beim Oberfläclienintegral
1. Art nicht benötigt wird):

%1:M1= {<u,v)Iogu:2.- Oévé 1}.g1é(cosu,sinu,v>,(u,v)€M1.VE —F2= 1,

‘27M2= {(“:1»‘)]0—_<—u g g v g l}, g2 = v(cos u, sin u,0)‚(u, v)E;’|/13,1/E — F” = v,

3:M3= {(u‚v)|0 g u g 1,0 g v g 21-r},g3 = (ucosv,usinv,1),(u,v)EM3,VEG — F2= u.

21: 1 21-:1
3

I= J.f(y‘+z2)df= J‘J‘(y2+ z2)df= ff(sin’tl + v2)dvdu + ff(v2sin211+0)vdvdu
‘=1

a} l al- o o o o

1 2.-:

C
0

G
?

+ (u’sin’v+1)udvdu=i1':+:+E:=ig
3 4 4 6

00
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7.1: a) go) = (—-zz sin t, b cos t) ergibt
l I 7x

1 b 1

A = TI [—bsint(—asint) + acost~bcost]dt =4/12-—fdt= ~2—ub(t, — x1).

t, z,

b) Für die ganze Ellipse ist t1 = 0, t, = 21:, also A = abrr.

7.2: a) Eine Darstellung der Kugelfläche S- ist g = R (sin u cos v, sin u sin v, cos u) mit
(u,v)EM= {(u,v)[0§ u§rv,0 g v; 27v}.

(Vgl. Beispiel 6.2. Es sind hier lediglich die Parameter u und v vertauscht, um eine nach außen gerich-
tete Normale zu erhalten.) Für diese Darstellung ist g„ = R (cos u cos v, cos u sin v, —sin u),
g„= R (—sin u sin v, sin u cos v, 0) und g„ >< g„ = R2 sin u (sin u cos v, sin u sin v, cos u). Für die Be-

.. . . —— g.. >< g., t .

rechnung von Ibenotigen wirn - VEG — F’. Wegenn = -———und VEG — F = lgu >< g.‚| wird
12.. >< g„l

n ' VEG — F2 = g„ >< g, = R‘ sin u (sin u cos v, sin u sin v, cos u). Es folgt

I = f)’ F - n df
53

2:: at

= I _[R(sin u sin v, cos u, sin u cos v) - R’ sin u (sin u cos v, sin u sin v, cos u) du du v.

o o

271:!

= Raj j [sin" u sin v cos z: + sin” u cos u (sin v + cos v)] du du
o o

21:

=R3Hsinucosvdv = 0.
O

b) wegendivF=owird_fj1=-ndf=jjjdivFgb=0.
i} u“

' 17.3:Q=fffgdb= j‘J:radivEdb=eJ“fE-ndf.Ffir die Kugeloberfiéiche%istn=gx.
B B 8-

x x =lundQ =s‘Udf=4na2e.Damit wird E - n =

IX 2

‘ü

7.4: divF=2x +_y—-2y—2x+3y=2y.
l ‚

2 3V4—2x 2x'+8 2 3}/4—2x 2
_ ' 2y 9(4 — 2x)

I=J:[J‘d1vFdb= J‘ I 2ydzdydx= W8-dydx= Hd):
B n o o o o o

=%(g——,—ln2).

7.5: Da *5‘ in y-Richtung konstant ist, gilt z = g(x) für die Darstellung von Ü‘ in expliziter Form.
R 2 R2 j—“ .. .

Aus x2 + ‚v2 + 23 = R’ und (x — I) + y’ = —4- folgt z = VR’ -— Rx. Fur n gilt (vgl. Formel (6.2))



Lösungen der Aufgaben 157

n = fi;(-z„ 0, 1) wegen z, = O. Verstehen wir unter B* die Projektion von {'y* auf die
1x

R 2 R2
x,y-Ebene, d.h.‚ die von (x — —> + y? = -4- eingeschlossene Fläche, so wird

2
. 1 T

L= f>dx= ffaocf)-nc1f=J-f(z,o, —x;———(—z,,o, im + zfidb
V1 + z,’

f, S‘ B.

= (-25,, — x) db.
B.

. . R R .. . . R
Weiter ist z, = —L= — —_ FurL ergibt dies L= (—— x) db.

2VR2— Rx 2; 2
B.

’ R
Da 13* symmetrisch zur Geraden x = 7 liegt, wird L = O. i

7.6: 1= §v-dx=§[(z '- 4)>dx + yzdy].

ä‘ ist zuszfinmengesesfzt aus einem Parabelbogen S21 mit der Darstellung g1(t) = (0, t, t2), I E [0, 2],

einem Kreisbogen fig in der Ebene z = 4 mit der Darstellung g„(t) = (2 sin t, 2 cos t, 4), t E [0, ,

und einem Parabelbogen S1‘, mit der Darstellung g,(t) = (2 — t, 0, (2 — n’), I E [0, 2]. Wegen g,(z)
= (0, 1, 2r),g2(t) = (2 cos I, -2 sin I, 0), g„(t) = (-1, 0, 2t — 4) wird

I = E (t2 — 4, I2, Ö) -(0, 1, 2!) d! +fl}2(0, 4 cos‘ t, 0) ~ (2 cos I, —2sin t, 0) d!
' o

2 2 .1/2 2

+ f((2—t)‘ —4,0,0)(—1,0,2t — 4)dt= ft2dt—8fcos2tsinrdt—f[(2 — t)’ — 41d:
0 - 0 0 0

.

8 8 8 ' l6
= — _ — _ _ _ g = — ‚

3 3 3 3

7.7:x0 liegt in E, no steht senkrecht auf E. no ist also Normale von E und von jeder Teilfläche von E.
Da v die Ebene E senkrecht durchsetzt, ist v(x) = <p(x) no für jedes x e E. Es sei nun ‘f3, eine Folge von

Teilflächen von E, die x„ als inneren Punkt enthalten, und deren Durchmesser für n —> oo ‚gegen null
streben. Ist 3„ die Randkurve von {S-,. mit der Darstellung I,x = x(t), so ist )'((t) ~ no = 0, da E, in E
verläuft und no senkrecht auf E steht. Damit wird aber

43v - dx = _f<p(x(t)) no -:k(t)dt = 0. Satz 7.7 ergibt (rot v lx=x„) ~ n„ = 0.
m. 1
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Eulersche Gammafunktion (F-Funktion) 23

Feinheitsmaß der Zerlegung 27
Feld, skalares 27
Fläche 109
Flächendichte 27, 33

Flächenelement in krummlinigen Koordinaten 74
Flächeninhalt einer räumlich gekrümmten

Fläche 1 1 1

Flächenintegral 28
Florentiner Problem 112

Fundamentalbereich 5

Funktion, durch ein Integral dargestellt 7

—, durch ein uneigentliches Integral dargestellte
18

—, integrierbare 28
Funktionaldeterminante 64
—‚ geometrische Bedeutung 73
Funktionalgleichung der F-Funktion 24

Gammafunktion, Eulcrsche (F-Funktion) 23
F-Funktion, Funktionalgleichung der 24
Gaußscher Integralsatz für die Ebene 123
— — im Raum 128
Gebiet, einfach zusammenhängendes 97
—, n-fach zusammenhängendes 97
Gebietsintegral 28
geometrische Bedeutung der Funktionaldeter-

minante 73

geometrischer Schwerpunkt 36, 55
Gesamtmasse 34, 54
gleichmäßig konvergent 21

Greensche Integralformeln 132, 133

Grenze, obere 26
Guldinsche Regeln 112

hebbare Unstetigkeiten 19
homogener Bereich 45

Integral, dreidimensionales 52
-‚ dreifaches 48
—‚ iteriertes 13

—‚ n-faches 53
—, zweidimensionales 52
—, zweifaches 13

—, n-dimensionales 52
—, Transformationsformel für ein n-dimen-

sionales 77
Integralformeln, Greensche 132, 133
Integralsatz für den Raum, Gaußscher 128

— — die Ebene, Gaußscher 123
— von Stokes 136
Integralsumme, zu einer Zerlegung gehörige 27
integrierbare Funktion 28

Körper, Masse und Volumen 45
konvergent, gleichmäßig 21

konvergentes uneigentliches Bereichsintegral 40
Koordinaten im R", krummlinige 64
koordinatenfreie Darstellung der Divergenz I30
— — — Rotation 142
Kräftefunktion 102
Kreiskegel 65

Kreiszylinderfläche 17

krumrnlinige Koordinaten 62
—— —— im R" 64
Kugelausschnitt 67, 79
Kugelkoordinaten 64
Kurve, orientierte 84
—, singuläre 43 .

Kurven, Zusammensetzung von 94
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Kurvenintegral 1. Art 86
— 2. Art 88
— — —‚ allgemeines 88

Leibnizsche Sektorformel 125

Majorantenkriterium für uneigentliche Para-
meterintegrale 22

Masse eines Körpers 45

Massenbelegung 33

Massenelemente 54
Maxwellsche Gleichungen 139

Mittelwertsatz für Bereichsintegrale 30
Moment, statisches 37, 57

n-dimensionales Integral 52
n-fach zusammenhängendes Gebiet V97

n-faches Integral 53

Normalbereich l3, 66

— des R" 53

—, ebener 5

—‚ räumlicher 46

obere Grenze 26
Oberfiächenintegral 118

— 1. Art 114
Ordinatenmenge 15, 16

orientierte Kurve 84

Parameterintegral 7

—— mit festen Grenzen l0
—, uneigentliches 17

—, Differentiation 8

——‚ Majorantenkriterium für ein uneigentliches 22
planares Trägheitsmoment 57
polares Trägheitsmoment 57
Potential 102
— anziehender Massen 80
Potentialkraft 102
Punkt, singulärer 43
Punktfimktion, skalare 27
punktierte Umgebung 39

räumlicher Normalbereich 46
Raumintegral 44
—, uneigentliches 79
~, Transformationsformel für ein 74
Rotation, koordinatenfreie Darstellung 142
Rotationsparaboloid 16

Säulenzerlegung 28
Sattelfläche 17
Satz V011 Steiner 59
Schwerpunkt 54
— eines ebenen Bereiches 36
—, geometrischer 36, 55
Sektorformel, Leibnizsche 125
singuläre Kurve 43
singulärer Punkt 43
skalare Punktfunktion 27
skalares Feld 27
statisches Moment 37, 57
Stokesscher Integralsatz 136
stückweise stetig 51

Supremum 26

Trägheitsmoment 38, 57
—‚ planares bzw. axiales bzw. polares 57
Transformationsformel für Bereiohsintegrale 69
— ~ Raumintegrale 74 .

Umgebung, punktierte 39
unabhängig vom Integrationsweg 98
uneigentliches Bereichsintegral einer nicht-

beschränkten Funktion 43
— —— über einem nichtbeschränkten Bereich 40
— Parameterintegral 17

—- Raumintegral 79
Unstetigkeiten, hebbare l9

Verzerrungsfaktor 74
Vierflach 59
Volumen eines Körpers 45
Volumenelement 53

Zerlegung eines Bereiches 26
—, Feinheitsmaß der 27
Zerlegungen, Folge von unbegrenzt feiner wer-

denden 27

Zerlegnngssumme 27
Zusammensetzung von Kurven 94
zweidimensionales Integral 52
zweifaches Integral 13

zweite Greensche Integralformel 133

Zwischensumme 27
Zylinder, allgemeiner 46
Zylinderkoordinaten 63


