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Vorwort

Im vorliegenden Band 5 wird die Integralrechnung weiter ausgebaut. Die Grund-
lagen hierfiir wurden bereits in Band 2 behandelt. Problemstellungen, die diese Er-
weiterung erforderlich machen, sind z. B. die Bestimmung des Flacheninhaltes von
ebenen und raumlich gekriimmten Flachen, die Bestimmung des Volumens von Kor-
pern und der Linge von Raumkurven sowie die Berechnung des Schwerpunktes der
angefiihrten geometrischen Gebilde.

In Abhéngigkeit von der Dimension der betrachteten geometrischen Gebilde
kommen wir zu unterschiedlichen Erweiterungen des Integralbegriffes, die zwar ihre
Besonderheiten haben, sich aber letztlich mit den in Band 2 behandelten Methoden
fiir gewohnliche Integrale berechnen lassen. Gerade fiir die Anwendungen der Inte-
gralrechnung in Naturwissenschaften und Technik ist es sehr zweckmaBig, solche
Begriffe wie,,Kurvenintegral“ und ,,Bereichsintegral*“ zur Hand zu haben. Sie erleich-
tern das Aufstellen mathematischer Modelle auBerordentlich. Erweiterungen des In-
tegralbegriffes finden u. a. auch in der Theorie der Differentialgleichungen und in der
Wabhrscheinlichkeitstheorie Verwendung.

Die historischen Wurzeln der Bereichsintegrale sind bereits im Altertum zu suchen.
Die grundsitzliche Vorgehensweise, mit der Archimedes (287?-212 v.u.Z.) die Fli-
cheninhalts- und Volumenbestimmung behandelte, ist von der der Bereichs- bzw.
Raumintegrale nicht verschieden. Aus élterer Zeit liegen auch Ergebnisse vor (Ni-
herungsformeln fiir den Kreisinhalt, Volumen des Pyramidenstumpfes), die auf dhn-
liche Kenntnisse schliefen lassen. Die vollstindige Losung war aber erst mdoglich,
nachdem Newton und Leibniz die in Band 2 behandelte Differential- und Integral-
rechnung entwickelt hatten und die Schreibweise von Leibniz sich durchgesetzt hatte.
(Siehe hierzu ‘auch den historischen Uberblick in Band 2.) Das Doppelintegral in
unserer heutigen Form gebrauchte als erster Euler (1779), das dreifache Integral
Lagrange (1773). Letzterer verwendete auch als erster krummlinige Koordinaten.
Viele Zusammenhange wurden schon im 17. Jahrhundert erkannt.

Im vorliegenden Band sind von diesen Entdeckungen erwihnt: das Prinzip von
Cavalieri (1598?-1647) und die Regeln von Guldin (1577 -1643). Letztere waren
schon Pappos (um 320 u. Z.) bekannt.

In seinem Werk iiber die Figur der Erde (1743) benutzte Clairaut (1713 -1765)
erstmalig ein Kurvenintegral 2. Art. Die Ergriindung der Zusammenhénge zwischen
Kurven- und Oberflachenintegralen sowie zwischen Oberflichen- und Bereichsinte-
gralen ist vor allem verbunden mit den Namen C.F. GauB3 (1777 -1855), G. Green
(1793 -1841) und G. G. Stokes (1819 -1903).

Neben den Bereichsintegralen (n = 2) und Raumintegralen (n = 3) werden im
vorliegenden Band auch allgemein die n-dimensionalen Integrale kurz behandelt. Ver-
schiedene Verallgemeinerungen des hier verwendeten klassischen Integralbegriffs, die
im 19. und 20. Jahrhundert erfolgten, sind dagegen nicht mehr Gegenstand der Be-
trachtungen in diesem Band.

Den Autoren ist es ein Bediirfnis, sich fiir zahlreiche wertvolle Hinweise der Mit-
arbeiter des Hochschulfernstudiums zu bedanken, die in dieser Auflage zu einem
groBeren Teil realisiert werden konnten. Besonderer Dank gebiihrt den Herren Dr.
W. Denz und Dipl.-Math. H. Ebmeyer (Dresden).

Dem verantwortlichen Herausgeber und dem Verlag danken wir fiir die gute Zu-
sammenarbeit. .
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1. Parameterintegrale und Doppelintegrale

1.1. Begriif des Parameterintegrals

Wir fiihren zunichst sogenannte Normalbereiche ein; diese Normalbereiche sind
fiir alle folgenden Ausfiihrungen von grundsétzlicher Bedeutung (s. Bd. 4).

Definition 1.1: Eine Punktmenge (einen Bereich) B der x,y-Ebene, die ,.seitlich® durch D.1.1
zwei Parallelen zur y-Achse (x = Xy, X = Xp; X; < X») und ,,nach unten* bzw.-,nach

oben®* durch stetige Kurven (y = y,(x), y = yo(x); y1(x) =< »o(x) fiir alle x € [x,, X.])
begrenzt wird, nennt man einen ebenen Normalbereich (Fundamentalbereich) beziiglich

der x-Achse (s. Bild 1.1). Es gilt also:

XEXSX

(%) € B = {yl(x) Sy = 5.

Bild 1.1

Vertauscht man die Rolle von x und y, so erhiilt man einen ebenen Normalbereich be-
ziiglich der y-Achse (s. Bild 1.2). Er ist eine Punktmenge B der x,y-Ebene, die ,,nach
unten®* bzw. ,,nach oben* durch zwei Parallelen zur x-Achse (y = y1,y = ya; Y1 < Y2)
und ,,seitlich durch stetige Kurven (x = x,(y), x = x(3); x:(0) =< x,(y) fiir alle
¥ € [y1,.]) begrenzt wird.

Es gilt also:

<y<
(x,y)EBc»{ Nh=r=)

() = x = x(p).

¥

— Bild 1.2
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Beispiel 1.1: Der in Bild 1.3 dargestellte Bereich ist ein Normalbereich beziiglich der
x-Achse. Es gilt x; = 0, x, =4, y,(x) = ——;ﬁ , Yo%) = i—x (y =— ; ist die Gleichung

der durch die Punkte (0, 0) und (4, —2) hindurchgehenden Geraden; y = $x ist die
Gleichung der durch die Punkte (0, 0) und (4, 3) hindurchgehenden Geraden).

y

(43)

(0,0 Y, = X Bild 13
%

(4-2) |

Bemerkung 1.1: Der in diesem Beispiel betrachtete Bereich ist auch ein Normal-
bereich beziiglich der y-Achse.

Es gilt:

(-, -2=y=0
n=-2 =3 0=

4y, 0=y=3J’

Die ,,linke* Kurve x = x;(¥) (es handelt sich um eine stetige Kurve!) kann aber
hier nicht durch eine einzige Gleichung beschrieben werden. Man muf} bei irgend-
welchen Rechnungen die Intervalle —2 < y < 0 und 0 < y < 3 getrennt betrachten.
Das fithrt in der Praxis zu einer Zerlegung des Bereiches in zwei Teilbereiche. Bei
dem hier vorliegenden Beispiel wiirde man den Bereich B in zwei Dreiecksbereiche
B, und B, zerlegen — falls man mit Normalbereichen beziiglich der y-Achse arbeiten
mochte. B, bzw. B, ist der unterhalb bzw. oberhalb der x-Achse liegende Teil von B.

Beispiel 1.2: Der in Bild 1.4 dargestellte Bereich (Kreisscheibe vom Radius 2 mit dem

Mittelpunkt in (3, 0)) kann sowohl als Normalbereich beziiglich der x-Achse als auf:h
als Normalbereich beziiglich der y-Achse angesehen werden. (x — 3)% + y? =4 ist

x(y) = 4.

y

Bild 1.4
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die Gleichung des Kreises. Nach y aufgeldst, erhalten wir: y = + 14 — (x — 3)%. Das
Vorzeichen ,,+* liefert die obere Kreishilfte, das Vorzeichen ,,—* die untere Kreis-
hilfte. Nach x aufgeldst, erhalten wir: x = 3 + |/4 — y2. Das Vorzeichen ,,+* liefert
bei dieser Darstellung die rechte Kreishilfte, das Vorzeichen ,,—* die linke Kreis-
hilfte. Fiir die Kreisscheibe — als Normalbereich beziiglich der x-Achse aufgefalit —
gilt: x; =1, xo = 5, y(x) = =4 — (x — 3)%, yo(x) = V4 — (x — 3)®. FaBt man die
Kreisscheibe als Normalbereich beziiglich der y-Achse auf, so gilt: y; = =2, yo. = 2,
x()=3-V4=3, x0)=3+14- .

Vorgegeben sei ein Normalbereich B beziiglich der x-Achse (s. Bild 1.1) und eine
Funktion f(x, y) der beiden Verdnderlichen x und y. Von der Funktion f(x, y) setzen
wir voraus, daB sie mindestens in allen Punkten (x, y) € B definiert und stetig ist.
Unter dieser Voraussetzung ist fiir jedes feste x € [x;, x,] die nun allein von y ab-
héngige Funktion f(x, y) (s. Bild 1.1) eine auf dem Intervall [y,(x), yo(x)] stetige Funk-
tion. Da jede stetige Funktion auch integrierbar ist, kann man das folgende Integral
bilden:

y:(2) y(2)
F):= [feydy= [ fxndy (1.1)
n@ y=y,(x)

Definition 1.2: Das Integral (1.1), das natiirlich von der Wahl der Grofle x (des Para-
meters x) abhingt, nennt man ein Parameterintegral mit dem Parameter x; der Para-
meter x (eine im Intervall [x,, x,] willkiirlich wihlbare Grifle) kommt aufer im Inte-
granden auch noch in den Integrationsgrenzen vor. Man sagt in diesem Zusammenhang,
daf3 die durch Formel (1.1) eingefiihrte Funktion F(x) durch ein Integral dargestellt
wird.

Beispiel 1.3: Vorgegeben sei eine Kreisscheibe B vom Radius 1 mit dem Mittel-
punkt im Ursprungspunkt O des zugrunde gelegten x,y-Koordinatensystems und
eine Funktion f(x,y)= x>+ y%. Man berechne fiir ein beliebiges, aber festes
x € [—1, 1] das entsprechende Parameterintegral. Fiir die Punkte der Kreisscheibe B
gilt:

-1=x=1

(%) €B <= iRy =T F

(s. Bild 1.5).

Bild 1.5

D.1.2
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Hieraus folgt:

iy s ¥V lu=y1i—=
Fo= [fendy= [ (rmdy=[sy+ ]2
y, (@) —Vi—z , v=-Vi-s
2
= VT=2Qx +1).

(x ist ein fester Wert aus dem Intervall [—1, 1]; bei der Integration nach y wird er
daher wie eine Konstante behandelt.)

Ergénzung zur Definition 1.2: Neben Parameterintegralen von der in Formel (1.1)
angegebenen Form hat man noch Parameterintegrale mit dem Parameter y:

Z2() Z(y)
GO):i=[fydx= [ f(xy)dx. (1.2)
£ z=ay(y)

Ausgangspunkt fiir diese Parameterintegrale sind Normalbereiche beziiglich der y-

Achse. Der Parameter y ist eine (im Intervall [y,, y,]) willkiirlich wihlbare GroBe.
2x

Aufgabe 1.1: Man berechne das Parameterintegral f x(y + 1) dy. (Auf welchem Intervall verlduft

—x

die Kurve y = y;(x) = —x unterhalb der Kurve y = yy(x) = 2x?)

1.2 Differentiation- von Parameterintegralen

Parameterintegrale (Darstellungen von Funktionen durch bestimmte Integrale) —
siehe Formel (1.1) bzw. (1.2) — begegnen uns in den Anwendungen sehr oft. Die erste
Frage, die sowohl vom theoretischen als auch vom praktischen Standpunkt von
Interesse ist, ist die folgende: Unter welchen Voraussetzungen ist eine durch ein
Integral dargestellte Funktion

¥a(2) EAC
Fx) = [ f(x,y)dy  baw.  G()= [ f(x,»)dx

A ,(y)

stetig und differenzierbar in dem jeweiligen Definitionsbereich? Beziiglich der Frage
der Stetigkeit von F(x) wird man erwarten, daB die Stetigkeit der Funktion f(x, y)
auf B und der Funktionen y,(x), y.(x) auf [x;, x,] die Stetigkeit von F(x) zur Folge
haben wird. Beziiglich der Differenzierbarkeit ist der Sachverhalt ein wenig kompli-
zierter. Sicher wird man zunédchst einmal verlangen miissen, daB die Funktionen
y1(x), yo(x) auf [x;, x,] differenzierbar sind. Dariiber hinaus muB selbstverstindlich
auch die Funktion f(x, y) irgendeine Differenzierbarkeitsforderung auf B erfiillen:
Die Differenzierbarkeit von F(x) nach x verlangt die Existenz der partiellen Ableitung
von f{(x, y) nach x.

Nach diesen Vorbemerkungen wollen wir nun den Satz formulieren, der Auskunft
auf die oben formulierte Frage gibt.
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Satz 1.1: B sei ein Normalbereich beziiglich der x-Achse (s. Bild1.1). Wenn die Funk- S.1.1
tionen yi(x), yo(x) auf [x,, x,] und f(x, y) auf B stetig sind, dann ist auch die durch ein
Integral dargestellte Funktion

v2(2)
F(x) = f S, y)dy
nle)
auf [x,, X,] stetig. Sind iiberdies die Funktionen y,(x), yo(x) auf [x,, x.] differenzierbar
und besitzt die Funktion f(x, y) eine stetige partielle Ableitung f,(x, y) (auf einem B
ganz im Innern enthaltenden Bereich), so ist auch die Funktion F(x) auf dem Intervall
[x1, xs] di]f?renzierbar, und es gilt die Gleichung

Ya(@)
Fo=o [y
y,(z)
Ya(@)
f Sa(x, y) dy — 3/ () f(x, 21(x)) + 32/ (30) f(x, ya(x)). (1.3)
y1(@)
Wir fithren den Beweis lediglich fiir die Giiltigkeit der Formel (1.3) mit Hilfe eines

von uns unbewiesenen Hilfssatzes durch und verweisen fiir die restlichen Behaup-
tungen auf [3], Bd. II, und [4], Bd. III.

Hilfssatz: Ein Parameterintegral der Art (1.1) mit festen Grenzen y; = ¢y, y, = Cq,
dessen Integrand f stetig differenzierbar vom Parameter x abhdngt, wird nach dem
Parameter x differenziert, indem man unter dem Integralzeichen partiell nach x diffe-
renziert, d.h.

s

P-4 [ f5 ) dy = j £ 3) d. )

Aus Band 2, Satz 10.8, ist bekannt, daB die Differentiation eines Integrals (mit
stetigem Integrand f()) nach variabler oberer Grenze y den Integrand f(f) an der
oberen Grenze ¢ = y ergibt, und dieses Resultat bleibt natiirlich giiltig, wenn der
Integrand f auch noch von einem Parameter x abhingt, der wihrend der Differen-
tiation unverdnderlich ist:

,
f—y f fon 1) dE=f(x,3)  (x fest). (%)
Aus
D(x, g, 1) = [ £(x,7) dy

erhaiten wir (1.1), wenn wir

up=11(x), = yy(x)
setzen.
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Dann ist
D (x, uy(x), up(x)) = F(x)

eine Funktion der unabhéngigen Variablen x, fiir deren Ableitung beziiglich x wir
nach der verallgemeinerten Kettenregel (Band 4; 3.6.2.)

dF d
Pt D (x, uy(x), ua(x))
du, du,
=0, + 0, — e +9,, o (k)

erhalten. @,, (i= 1, 2) ldBt sich nach (x%) berechnen, da wihrend der partiellen
Differentiation von ¢(x, uy, u) nach u; stets x als fest angesehen wird.

Wir haben
Dy, = f(x, u) = f(x, yo(x))

und wegen
ff(x, t)dt = —fy‘f(x, 1) dt
Yy a
= —flx, w) = —f(x, y,(x)).

Beachten wir noch das Resultat des Hilfssatzes, so folgt aus (xxx) die Formel
(1.3).m

Hinweis: Die Differentiation von (1.1) mit Hilfe der Kettenregel ist eine gute Merk-
hilfe fiir (1.3).

Sind die Funktionen y,(x) und y,(x) konstant, etwa y;(x) = ¢, y(x) = d, so ver-
einfacht sich — wegen y;'(x) = 0 und y,'(x) = 0 — die Formel (1.3) wesentlich:

da d
o 1= (160 . (1.4

Im Falle y;(x) = ¢, ps(x) = d spricht man von cinem Parameterintegral mit festen
Grenzen.' Der zugehorige Normalbereich B ist in diesem Fall ein Rechteckbereich
(s. Bild 1.65] x; = a, x, = b); obere und untere Begrenzungskurve sind in diesem Fall
Parallelen zur x-Achse. Formel (1.4) ist mit der im Hllfssatz angegebenen Formel ()
1dentlsch

<

x  Bild 16
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soll auf Stetigkeit und Diffe-

1

Beispiel 1.4: Das Parameterintegral F(x) = f _xd .

VT=x%2

[
renzierbarkeit untersucht werden! Der Normalbereich ist in diesem Fall durch die
Geraden y;(x) = 0, yy(x) = 1 begrenzt. In welchem Intervall darf sich x bewegen,
damit die Funktion f(x, y)=V—l~)f—2—2— zundchst einmal iiberhaupt definiert ist?
— Xy

Damit der Ausdruck unter dem Wurzelzeichen stets positiv ist, mul man — wegen
0=<y=1 - die Variable x auf das offene Intervall —1 < x < 1 beschrinken.
(x = 1 bzw. - 1 darf nicht zugelassen werden, denn dann wire fiir y = 1 der Ausdruck
1 — x%y* gleich null.) Die Funktion f(x, y) ist also sicherlich fiir alle Punkte (x, y) des
Rechteckbereichs

B={x,»lasx<bh, 0=y=1, =-1<a<b<]]

definiert. Auf Grund des einfachen Aufbaus der Funktion f(x, y) — im Zéhler steht

eine rationale Funktion, im Nenner die Wurzel aus einer rationalen Funktion — ist

in diesem Bereich die Funktion f(x, y) auch stetig und besitzt stetige partielle Ablei-
. 1

tungen (s. Bd. 4). Aus Satz 1.1 folgt dann: F(x) =/—xdl— ist fiir alle x € (—1,1)

V1T =552
0
stetig und differenzierbar. Fiir die Ableitung F’'(x) erhélt man nach Formel (1.4):

1

1—x%

1

3

Fo= [Hendr= [0 -9 = e
0 0

Das Nachpriifen der letzten Umformung betrachte man als eine kleine Ubungs-

aufgabe: Zundchst kann man das unbestimmte Integral f (1- xzyz)‘% dy durch die

Substitution xy = u (x dy = du; x wird bei der Integration nach y als konstant be-

trachtet) auf das Integral Slc_ f i@ zuriickfiihren. Das letzte Integral entnehmen

]/l—uz du
1-4

wir einer Formelsammlung (s.z. B. [1]): ﬁ = 1-/% Riicktransformation
—u

und Einsetzen der Grenzen liefern, die oben angegebene Beziehung.

Man hitte natiirlich auch F’(x) dadurch bekommen konnen, dal man zunichst das rechts
stehende Integral ausrechnet und anschlieBend nach x differenziert. Das wollen wir bei diesem Bei-
spiel einmal durchfiihren, zumal das Ausrechnen des Parameterintegrals zusitzlich ein interessantes
Ergebnis liefert. Die Substitution xy = u (x dy = du) ergibt:

x A
toxd du ‘ u=z .
F(x) = { /—y = = arcsin u = arcsin x.
J V1 — x2p2 1—u? u=0
0

0
Es gilt also
3 d.
f XY _ arcsinx.
11— %2
. 0
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" Die Funktion arcsin x wird also durch das links stehende Parameterintegral dargestellt. Von der

Funktion arcsin x wissen wir aber, daB (arcsin x)’ =

. A
Beispiel 1.5: Man berechne das Parameterintegral f y*dy! (Voraussetzung fiir den

0
Parameter x:x = 0. Fiir x-Werte zwischen —1 und 0 erhélt man uneigentliche Inte-
1

5
x-Werte mit —1 < x < 0 ein sog. unexgenthches Parametermtegral dar, auf das wir
in Abschnitt 1.4. ndher eingehen werden.) y® ist (fiir jedes konstante x = 0) eine auf

dem Intervall 0 < y < 1 stetige Funktion der Variablen y und daher auf [0, 1]
integrierbar €

y:r:+l ]y:l 1
d =—.
fy dn [x—{—l x+1

Bemerkung 1.2: Die Formel (1.3) bzw. (1.4) wird vor allem bei theoretischen Unter-
suchungen benotigt. Oft hat sie aber auch eine praktische Bedeutung, und zwar dann,

wenn das Integral f fo(x, y) dy einfacher zu 16sen ist als das Integral J f(x, y)dy.

Aufgabe 1.2: Von der durch ein Parameterintegral dargestellten differenzierbaren Funktion
x

grale; im Falle x = —} zum Belsplel ergibt sich / . Das Integral / yedy stellt fuir

F(x) = jsin (xy) dy berechne man die Ableitung F'(x) auf zwei Arten:
0

a) indem man das Parameterintegral ausrechnet und das Ergebnis anschliefend differenziert,
b) mit Hilfe der Formel (1.3).

1.3. Doppelintegrale (Integration von Parameterintegralen)
Unter den in Satz 1.1 angegebenen Voraussetzungen (Stetigkeit der Funktionen
f(x, ), »1(x), yo(x) auf den entsprechenden Bereichen) ist die durch das Parameter-
Y2(2)
integral J f(x,y)dy dargestelite Funktion F(x) eine (auf dem Intervall [x;, x.])

Y1(2)
stetige Funktion. Da jede stetige Funktion auch integrierbar ist, muB das Integral
von F(x) iiber dem Intervall [x,, x,] existieren:

Yo (@) Ty ya(@)
[F(x)dx—f( | fGx. y)dy>dx— f ( f f(x,y)dy)dx

2 \ni(@) z=2, \y=v,(*)

Definition 1.3: Den Ausdruck
zy [Ya(@)
[ ( 1Y) dy) dx M

Z \n@
z2 Yo(x)
— fiir den man abkiirzend auch | [ f(x, ) dy dx schreibt — nennt man Doppelintegral.

T3 Y1 (%)
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(An Stelle von Doppelintegral sagt man auch ,,zweifaches Integral® oder ,iteriertes

Integral®.) Den durch die Kurven x = x;,Xx = X3,y = y1(X), y = yo(x) begrenzten

Bereich (s. Bild 1.1) nennt man den zu diesem Doppelintegral gehorigen Normalbereich.
Z5(y)

Wenn man von einem Parameterintegral der Form G(y) = Jr f(x,y) dx ausgeht

2,y)
(s. Formel (1.2)) und G(y) nach y integriert, erhdlt man ein Doppelintegral der Form
Ya [ %) ve EAO)
[ ( [ 76, dx) = | ( LY dx) dy. an

1 \T@) y=y1 \z=01(y)

In der abkiirzenden Schreibweise lifit man dann wieder die (um G(y) gesetzten) Klam-
mern weg. N

Erliuterung zur Definition 1.3: Bei einem Doppelintegral vom Typ (I) wird die Funk-
tion f(x, y) zunéchst unbestimmt nach y integriert — wobei x wie eine Konstante be-
handelt wird —, anschlieBend werden fiir y die Grenzen y,(x) und y,(x) eingesetzt,
und zum SchluB wird der erhaltene Ausdruck nach x integriert. Bei einem Doppel-
integral vom Typ (II) geht man analog vor; hier wird die Funktion f(x, y) zunichst
unbestimmt nach x integriert, wobei y wie eine Konstante behandelt wird.

3 a:’

Beispiel 1.6: Man berechne das Doppelintegral D = J J xy dy dx! Es handelt sich um

ein Doppelintegral vom Typ (I) (s. Definition 1.3) m1t f(x, N=xy,x=1, xz =3,
»(x) = 0, yo(x) = x®. Wir berechnen zunichst das ,,innere* Integral:

2t a3
A o [P @
nydy—.fxydy—[x 5 L=0 =
[ v=0
. x° e[ .
Hieraus folgt: D = f 5 dx = ol = —17 = 60,66 .... Der zu dem Doppelintegral
1

1
gehorige Normalbereich beziiglich der x-Achse wird durch die Kurven x =1, x = 3,
y =0, y = x* begrenzt (s. Bild 1.7).
-2~y
Beispiel 1.7: D = f (x + y) dx dy ist ein Doppelintegral vom Typ (II) mit y, = —4,
-4y
yo==2, () =y, xz(y) = —y und f(x,y)= x+ p (s. Definition 1.3).
)

Bild 1.7

X
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Es erfolgt zundchst wieder die Berechnung des ,,inneren Integrals‘:

](" +y)dx= f_ Zx +7)dx = [£+ yx]x=_y=ﬂ+ »=y) —(1;+y2) = -2
=y

2 . 2
Yy

Hieraus folgt -

o 2 112
ey - =

-2
2
p= [ dy=—3»
- ,

Der zu diesem Doppelintegral gehorige Normalbereich beziiglich der y-Achse wird
durch die Kurven y = —4, y = —2, x = y, x = —y begrenzt (s. Bild 1.8). Man be-
achte: Fir alle y mit -4 =y, <y <y, = -2 gilt y = x,(y) = x:(y) = —y.

y

X=y Xx=-y

Im allgemeinen darf man bgi einem Doppelintegral die Reihenfolge der Inte-
grationen nicht vertauschen! Es wire ein schwerer Fehler, wenn man z.B. fiir das in
v 2

Beispiel 1.7 behandelte Doppelintegral schreiben wiirde: f f (x + y) dy dx. Nur bei

y —4
einem Doppelintegral mit konstanten Grenzen — der zugehdrige Normalbereich ist
in diesem Falle ein den Koordinatenachsen paralleler Rechteckbereich — ist die
Reihenfolge der Integrationen vertauschbar, wie der folgende Satz zéigt.

Satz1.2: Ist f(x, ) eine auf dem Rechteckbereicha < x < b,c <y < d (s. Bild 1.6)
stetige Funktion, so gilt:

bd db
[[fCey)dydx=[[f(x, y) dxdy.

Auf den Beweis dieses Satzes, den man z. B. in [4], Bd. III, finden kann, verzichten
wir. Wir werden uns an keiner Stelle auf diesen Satz bezichen.

Wir kommen nun zur geometrischen Veranschaulichung des Doppelintegrals.
Erinnern wir uns zundchst an die geometrische Veranschaulichung eines gewohn-
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y

y=fx)

003,1)
Bild 1.9

] X

lichen (bestimmten) Integrals. Unter der Voraussetzung, daB die Funktion f(x) auf
b
dem Intervall [a, b] stetig und nirgends negativ ist, liefert das Integral f f(x) dx den
Flicheninhalt des durch die Kurven x=a,x=5,y=0 und y= f(xa) begrenzten
b

ebenen Bereichs (s. Bd. 2).[ f(x) dx liefert also den Inhalt des zwischen dem ,,Inte-

grationsintervall“ J = [a, b] und der Kurve f(x), a < x =< b, liegenden ebenen Be-

reichs, der sog. Ordinatenmenge O(J, f) (s. Bild 1.9). Man wird erwarten, daB man
3 Ya(2)

bei einem Doppelintegral f f f(x,y)dydx — unter der Voraussetzung, daB die

x, (z)

Funktion f(x, y) auf dem zluzgehﬁrigen Normalbereich B stetig und nirgends negativ
ist — ebenfalls eine einfache geometrische Deutung vornehmen kann. In Analogie
zur Ordinatenmenge O (/, f), die wir beim gewohnlichen Integral eingefiihrt haben,
betrachten wir hier die Ordinatenmenge O(B, f). Die Ordinatenmenge O(B, f) be-
steht aus der Menge aller zwischen dem Normalbereich B = {(x, y) | x; < x < x,,
71(x) =y = yo(x)} und der Fliche z = f(x, ), (x, y) € B, liegenden Punkte (x, y, z)
(s. Bild 1.10).

e Bild 1.10

&

Es gilt also:

Definition 1.4: (x, y,2) € O(B,f) < {(x,¥) € Bund 0 < z < f(x,y)}. O(B,f) heift D.1.4
die zu B und f(x,y) gehorige Ordinatenmenge.
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Satz1.3: Ist B= {(x,y) | x; = x < Xy, y1(x) = y = yo(x)} der zu dem Doppelintegral
Ty Yg(a) ~
f f f(x,y)dy dx gehorige Normalbereich, O(B, f) die zu B und f(x,y) gehirige
, Y1(@)
Ordinatenmenge, so gilt fiir das Volumen V von O(B,f):
Ty Y3 ()
V= | f&xy)dydx. (1.5)
Yy ()
(Voraussetzungen: f(x, y) = 0 fiir alle (x, y) € B, f(x, y) stetig auf B.)
Beim Beweis zu Satz 1.3 berufen wir uns auf das Prinzip von Cavalieri, welches wir in Band 2
kennenlernten. Ist x irgendein zwischen x; und x, gelegener Wert, so gilt fiir die durch die Ebene E,
aus O(B, f) ausgeschnittene Fliche

Y3 (%)
q(x) = j fx,y)dy.
PG
E, ist die durch den Punkt (x, 0, 0) gehende und parallel zur y, z-Ebene verlaufende Ebene. Fiir das
Volumen ¥ von O(B, f) gilt dann (vgl. Band 2, Satz 10.20)

Ty . g Yg(@)
V= [qxdx= | [ fx.ydydx.
Ty 2y Yy(@)

Die Voraussetzung fiir Satz 10.20 — g(x) stetig — ist wegen der Stetigkeit der Funktionen y,(x),
o(x), f(x, y) erfiillt (vgl. Satz 1.1). ®

Beispiel 1.8: Von dem durch die Fliachen z=0,y=0,x=0,3x + 4y =12 und
z = x* + )? begrenzten rdumlichen Bereich B* berechne man das Volumen V.

Wir verschaffen uns zunéchst eine anschauliche Vorstellung von dem raumlichen
Bereich B*: B* wird ,,nach unten‘ von der x,y-Ebene (z = 0), ,,seitlich® durch die
x,z-Ebene (y = 0), die y,z-Ebene (x = 0), die auf der x,y-Ebene senkrecht stehende
Ebene 3x + 4y = 12 und ,,nach oben* durch das Rotationsparaboloid z = x* + )?
begrenzt. (Die Menge aller Punkte (x, y), die der Gleichung 3x + 4y = 12 geniigen,
ist eine Gerade g in der x,y-Ebene. Die Menge aller Punkte (x, y, z), die dieser Glei-
chung geniigen (z beliebig!), ist eine Ebene £ im x,y,z-Raum. E steht auf der
x,y-Ebene senkrecht und schneidet die x,y-Ebene in g. Das Rotationsparaboloid
entsteht durch Rotation der in der x,z-Ebene gelegenen Parabel z = x*> um die
z-Achse!) Der rdumliche Bereich B* ist also eine Ordinatenmenge O(B, f) mit B=
X, ) |0=x=<4,0=<y=3-%x} (s.Bild 1.11) und z = f(x, y) = x> + »*. Bild

Bild 1.11 Bild 1.12
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1.12 liefert eine anschauliche Vorstellung vom rdumlichen Bereich B*. Der ebene
Bereich Bist der GrundriB des raumlichen Bereiches B*! Nach Satz 1.3 ergibt sich fiir
das Volumen ¥V von B*:

433z

v=[ [ &+ dydx.
0 0

Fiir das innere Integral erhdlt man:

1 W=s=%he 27 75, 5T,
R T I e s L e
o 27 .25 ., 5T )t
Also ist V= [9x——Tx +ﬁx ﬁx‘ 0—25.

Aufgabe 1.3: Von dem durch die Flichen z =0,y =0, x =0, x + y = 3sowiez = —x —2y + 6 *
begrenzten raumlichen Bereich B* berechne man das Volumen V. (Man skizziere B*!)

Aufgabe 1.4: Zu berechnen ist das Volumen des (im 1. Oktanten des x,y,z-Raumes gelegenen) *
Korpers B*, der nach unten durch die x,y-Ebene, nach oben durch die Sattelfliche z = xy und seit-
lich durch die Kreiszylinderfliche (x — 3)® + (y — 4)* = 4 begrenzt wird. (Man zeichne den Grund-
riB B von B*!) (1. Oktant: Menge aller Punkte (x, y, z) mit x 20,y = 0,z = 0.)

1.4. Uneigentliche Parameterintegrale

In Band 2, Abschnitt 11, wurden die uneigentlichen Integrale behandelt: a) un-
eigentliche Integrale mit wenigstens einer unendlichen Grenze, b) uneigentliche In-
tegrale mit nichtbeschrinkter Funktion. (Natiirlich konnen auch ,,gemischte* un-
eigentliche Integrale auftreten, die sowohl beziiglich einer Grenze als auch der Funk-
tion (nichtbeschrinkt!) uneigentlich sind!) - Beim Ubergang von uneigentlichen
Integralen zu uneigentlichen Parameterintegralen betrachten wir von den vielen
Typen, die es bei uneigentlichen Integralen gibt, hier nur den Typ

[f(x) dx.

Die Ubertragung der Problematik auf die anderen Typen bereitet keine prinzipiellen
Schwierigkeiten.

‘Wenn nun bei dem hier vorgegebenen uneigentlichen Integral der Integrand noch
von einer anderen verdnderlichen (von x unabhingigen) GroBe y abhingt — man
spricht dann in diesem Zusammenhang vom Parameter y —, so erhélt man ein un-
eigentliches Integral von der Form

[y dx,

ein sog. uneigentliches Parameterintegral. Allgemein definiert man:

Definition 1.5: Ein uneigentliches Parameterintegral ist ein uneigentliches Integral, D.1.5
dessen Integrand neben der Integrationsvariablen x noch von einem Parameter y abhdngt.

2 Korber, Integralrechnung
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Bei oberflichlicher Betrachtung dieser Definition kénnte man der Meinung sein,
oo
daB sich bei einem uneigentlichen Parameterintegral f f(x,y)dx gegeniiber dem
b a

,.eigentlichen” Parameterintegral f f(x,y)dx (s. Abschnitt 1.2.) keine wesentlich

a
neuen Gesichtspunkte ergeben. Das ist leider nicht der Fall! Im Rahmen dieses
Buches konnen wir auf keinen Fall alle mit uneigentlichen Parameterintegralen zu-
sammenhédngenden Fragen untersuchen. Wir miissen uns auf die Darstellung einiger
grundlegender Zusammenhénge beschrinken; weiterfithrende Betrachtungen und
sehr viele Beispiele iiber uneigentliche Parameterintegrale findet man in [3], Band II
(Abschnitt ,,Integrale, die von einem Parameter abhdngen‘).

Betrachten wir zunichst das den beiden Integralen

b
[fx,y) dx = GO) (1.6)
und am .
[fx, ) dx = F(y) .7

Gemeinsame! Wenn das Integral (1.6) bzw. (1.7) fiir alle y aus einem Intervall J
existiert, so stellt es eine Funktion G(y) bzw. F(y) dar, die mindestens fiir alle y € J
definiert ist. Man sagt, daB G(y) eine durch ein eigentliches Integral, F(y) eine durch
ein uneigentliches Integral dargestellte Funktion ist.

Existenz (Konvergenz) des Integrals (1.7) fiir alle y € J heiBit nach Definition der
uneigentlichen Integrale: Fiir jedes y € J existiert der Grenzwert

A
lim [ f(x, ) dx.
Ao,

Der wesentliche Unterschied zwischen den Integralen (1.6) und (1.7) liegt in den fol-
genden Aussagen begriindet:

Ist die Funktion f(x, y) auf dem Bereich D = {(x,y) | a < x = b, y € J} stetig, so
ist die durch das eigentliche Integral (1.6) dargestellte Funktion G(y) stetig (vgl.
Satz 1.1 in Abschnitt 1.2.). Die hierzu analoge Aussage gilt fiir die durch das un-
eigentliche Integral (1.7) dargestellte Funktion F(y) im allgemeinen nicht! Es kann

also vorkommen, daf3 das Integralf f(x, y)dx (= F(y)) fir jedes y € J existiert

a
(konvergiert), f(x, ) auf dem Bereich B = {(x,y) |a = x < oo, y € J| stetig ist und
trotzdem die durch das uneigentliche Integral (1.7) dargestellte Funktion F(y) auf J
unstetig sein kann. Hierzu ein Beispiel!

Beispiel 1.9: Fiir welche y-Werte ist das uneigentliche Parameterintegral
FO’)=[ sinxy o
x
0

definiert (konvergent), und welchen Wert hat es?
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Bei der Beantwortung dieser Fragen setzen wir als bekannt voraus:

I)fSIZZ dz=»g—
0

sin xy

tir all ») mi 0
1) f(x, y)= { fiir alle (x, y) mit x ==

¥y fiir alle (x, y) mit x =0
ist eine auf der gesamten x,y-Ebene stetige Funktion.

Bemerkung zur Voraussetzung I: Der Nachweis der Existenz (Konvergenz) dieses
uneigentlichen Integrals ist einfach (s. z.B. [4], Band III, bzw. [3], Band II). Dagegen
ist die Berechnung dieses uneigentlichen Integrals schwierig; eine relativ iibersicht-
liche Berechnung (unter Ausnutzung von GesetzméBigkeiten iiber unendliche Reihen!)
findet man in [3], Band II.

Bemerkung zur Voraussetzung II: Die Funktion e/

(als Funktion der beiden

Verdnderlichen x und y betrachtet) ist auf Grund allgemeiner GesetzmaBigkeiten fiir
Funktionen von mehreren Veridnderlichen (s. Band 4) in allen Punkten (x, y) mit
x=+0 _stetig. Fiir alle Punkte (x, y) mit x = 0 (das sind alle Punkte der y-Achse!) ist
zwar Smey nicht erklédrt, aber es handelt sich um sog. hebbare Unstetigkeiten. Fiir

jeden Punkt (0, y,) der y-Achse gilt ndmlich:

@0y ¥

(s. Aufgabe 1.5). Daher die Festsetzung f(0, y) = y.
Wir kommen nun zur Beantwortung der in Beispiel 1.9 gestellten Fragen. Fiir jeden
Xy

., sin . " . 8 .
festen y-Wert ist — = @(x) eine fiir alle x-Werte erklérte stetige Funktion, wenn

man fir die ,,Unstetigkeitsstelle” x = 0 (Nenner gleich null!) nachtriglich festlegt:
@(0) = y. Nach der ’'Hospitalschen Regel gilt namlich:

=y.

x-0 3

lim sin xy (= 3) o lilﬁ (cosxy) y
z-0 1

. e sin xy .. .
Durch die Substitution 7 = xy, df = y dx (y konstant!) geht f 5 dx iber in

oo 0

-/‘smtdt *) bzw. fsmtd *%),

0

je nachdem, ob y > 0 oder y < 0 ist. Das Integral (**) kann man wie folgt umfor-
men:

—o0 ©

fSI—IL(—}Q dt = ——f Sy dr  (Substitution: T= —1).

0 0
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o
sin xy

dx =0 (***). Unter Beriicksichtigung der Voraus-

0
setzung I folgt aus den Feststellungen (¥), (**) und (***):

Fy)= f —s—“;ﬂ dx existiert (konvergiert) fiir jedes y, und es gilt
)

T N
- iy fir y<O0
F(y)=fs";"y dx={ 0 fir y=0
’ % fiir y >0
(s. Bild 1.13).
Fly)
e
2

Bild 1.13

iny

Fassen wir die Ergebnisse zusammen! Obwohl dasuneigentliche Integral f gx_n}x__y dx

sin xy

L]
fiir alle y existiert (konvergiert) und die Funktion auf dem entsprechenden

Bereich B= {(x,7) |0 = x < o0, —co < y < oo} stetig ist, ist die durch das un-
eigentliche Integral dargestellte Funktion F(y) unstetig. Um zu garantieren, daB die
©o

durch f f(x, y) dx dargestellte Funktion F(y) auf dem Intervall J stetig ist, mufl man

a
neben der Stetigkeit der Funktion f(x, y) auf dem Bereich B = {(x,y) |a < x < oo,
y € J} die sogenannte gleichmiBige Konvergenz des uneigentlichen Parameterinte-
grals auf J voraussetzen. Auf diesen Begriff werden wir jetzt eingehen! Zuvor soll
aber noch eine Aufgabe formuliert werden, auf die wir im Beispiel 1.9 bereits hin-
gewiesen haben.

Aufgabe 1.5: Man beweise, daB fir jede durch den Punkt (0, y,) gehende differenzierbare Kurve
y = f(x) gilt

. sinx
Jim S0 _ Yo-
z-0 X
- . in X
Ist damit die Aussage lim smxy._ ¥, bewiesen?

@-0y) X
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Definition 1.6: Das uneigentliche Parameterintegral D.1.6

F) = [f(x,y)dx

heift gleichmiaBig konvergent auf dem Intervall J, wenn es
a) fir jedes y € J existiert (konvergiert) und

b) zu jedem (noch so kleinen) & > 0 eine von y unabhingige Zahl B(> a) existiert, so
daf3 die Ungleichung

e

[fx,y)dx
A

fur alle y € J erfiillt ist, sobald A > B ist.
Erlduterung zur Definition 1.6: Fiir jedes feste y € J ist f(x, y) eine Funktion von x,

fiir welche das Integral f f(x, y) dx existiert (s. Bild 1.14). Das ,,Restintegral*

[7&x, ) dx = [ fx, ) dx — [ f(x, y) dx

kann fiir alle y € J absolut genommen beliebig klein gemacht werden, wenn nur 4
rechts von einem hinreichend groB gewihlten B liegt. (Wenn bei vorgegebenem y die
Funktion f(x, y) = 0 ist fiir alle x, so liefert der Fldcheninhalt des in Bild 1.14 schraf-
fiert eingezeichneten Bereiches den Wert des zu 4 gehdrigen Restintegrals.)

fix,e)

Ebene y=const =¢

1 Bild 1.14
q B A & -

Unter der Voraussetzung der gleichméBigen Konvergenz gelten fiir die durch ein
uneigentliches Integral dargestellte Funktion F(y) die folgenden Sitze beziiglich
Stetigkeit, Integrierbarkeit und Differenzierbarkeit. (Beweise s. [3], Band II, bzw.
[4], Bd. IIL)

Satz 1.4: Ist das Integral S.1.4
F(yy=[f(x,) dx

gleichmapig konvergent auf dem Intervall J, die Funktion f(x, y) stetig auf dem Be-
reich B={(x,y) | x = a, y € J}, so ist F(y) stetig auf J.
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Satz 1.5: Wenn die in Satz 1.4 angegebenen Voraussetzungen erfiillt sind, ist F(y) auf
Jjedem in J enthaltenen Intervall [c, d] integrierbar, und es gilt

a d /oo o / d
[Foyay = (fﬂx,y)dx)dy:f (ff(x,y)dy>dx.

Bemerkung zu Satz 1.5: Die Integrierbarkeit von F(y) ist schon durch Satz 1.4 ge-
sichert, weil aus der Stetigkeit die Integrierbarkeit der Funktion folgt. Die eigent-
liche Aussage des Satzes 1.5 besteht in der Moglichkeit, die Reihenfolge der Inte-
grationen auch bei einem uneigentlichen Parameterintegral zu vertauschen. Satz 1.5
kann in diesem Sinne als eine Verallgemeinerung des Satzes 1.2 angesehen werden.

Satz 1.6: Die Funktionen f(x, y) und f,(x, y) seien auf dem Bereich B = {(x,y) | x = a,
y € J| stetig. Auflerdem existiere (konvergiere) das uneigentliche Parameterintegral
oo 0o

Fiy)= f f(x, ) dx fiir alle y € J, und das uneigentliche Parameterintegral f fu(x,y) dx

konvergiere gleichmdfig auf J. Unter diesen Voraussetzungen ist F(y) fiir jedes y € J
differenzierbar, und es gilt

d d ©o oo
=5 [ dx = (£ 9) d. (1.8)

Bemerkung zu Satz 1.6: Die angegebene Formel ist eine Erweiterung der Formel (1.4)
in Abschnitt 1.2. auf uneigentliche Parameterintegrale.

Bei der Anwendung der in den Sitzen 1.5 und 1.6 angegebenen Formeln muB} die
Stetigkeit von f(x, y) sowie f,(x, y) und die gleichméBige Konvergenz der dort auf-
tretenden uneigentlichen Parameterintegrale gesichert sein. Der Nachweis der Stetig-
keit bereitet im allgemeinen keine Schwierigkeiten; in vielen Fillen kann man schon
aus der duBeren Form der Funktion ersehen, an welchen Stellen die Funktion stetig
bzw. unstetig ist. Dagegen ist der Nachweis der gleichmiBigen Konvergenz meistens
nicht einfach! Unter den Kriterien fiir die gleichméBige Konvergenz wollen wir das-
jenige auswihlen, welches fiir die Untersuchung einer konkret vorgegebenen Funk-
tion praktisch gute Dienste leistet. Es handelt sich wieder um ein Majorantenkriterium.
In Band 2, S. 233, wurde das Majorantenkriterium fiir uneigentliche Integrale be-
handelt, mit dessen Hilfe man uneigentliche Integrale auf Konvergenz untersuchen
konnte. Mit dem folgenden Majorantenkriterium fiir uneigentliche Parameterintegrale
werden uneigentliche Parameterintegrale auf gleichméBige Konvergenz untersucht.

Satz 1.7 (Majorantenkriterium fiir uneigentliche Parameterintegrale): Das uneigent-
liche Parameterintegral fﬂ f(x,y)dx ist auf dem Intervall J gleichmdfig konvergent,
wenn folgende Bedingungaen erfiillt sind:

1. f f(x, y) dx existiert fiir jedes b > a und jedes y € J.

2. Es gibt eine auf [a, ) mtegrterbare Funktion g(x) — d.h. f g(x)dx existiert —, fiir

die fiir alle x = a und jedes y € J gilt
|fGx, »)] < 8(x).
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Beweisskizze: Wir haben zu zeigen, daB die Bedingungen a) und b) von Deﬁnmon 1.6
erfullt sind. Aus der Existenz von f g(x) dx folgt — wegen f g(x)dx = f g(x) dx

J g(x) dx — sofort die Existenz von j g(x) dx fiir jedes 4 > a und die Beztehung

lim fg(x) dx = *)

A~ 4
Aus (*) folgt nun weiter, daB auch die Bedingung b) von Definition 1.6 erfiillt ist.
Zu jedem & >0 gibt es ein -B(> @) mit 'Fg(x) dx < ¢ fir jedes 4 > B. Wegen
[f(x, »)] = g(x) (fiir alle x = A und y € J)Aund der fiir jede auf [a, b] integrierbaren
Funktion geltenden Beziehung ‘ prgv(x) dx] = fb |p(x)| dx muB dann auch

| oo

j [ £ p) dx
A

fiir alle y € J sein. Bedingung b) ist also erfiillt. Bedingung a) ergibt sich aus der

= ﬁf(x, Midx = [gx) dx < e
A A

Existenz von f f(x,y) dx und der Voraussetzung 1. &
A

1.5. Die Gammafunktion

Ein wichtiges Beispiel fiir eine durch ein uneigentliches Integral dargestellte Funk-
tion ist die sogenannte Gammafunktion, auf die man durch folgende Fragestellung
gefiihrt wurde: Das Zeichen n! (n-Fakultit) ist bekanntlich nur fiir die nichtnegativen
ganzen Zahlen erklirt. Bei der Suche nach einer stetigen Funktion f(x), die fiir alle
reellen positiven x-Werte erklart ist und fiir ganzzahlige positive Werte x = n mit n!
tibereinstimmt — d.h. f(n) = n! fiir jede positive ganze Zahl n —, wurde man auf die
folgende Funktion I'(x) gefiihrt.

Definition 1.7: Die durch das uneigentliche Parameterintegral f e~it*~1 dt dargestelite
Funktion

Ix): = [e=-1dt
0

heif3t Eulersche Gammafunktion') (I™-Funktion).
(Hinweis: Die Funktion f(¢, x) = e~+*~! wird nach ¢ integriert, x ist der Parameter;
s. Definition 1.5)

Das in Definition 1.7 betrachtete Integral ist in doppelter Hinsicht uneigentlich;
es gehort sowohl zu den uneigentlichen Integralen mit unendlichen Grenzen (obere
Grenze gleich o) als auch zu den uneigentlichen Integralen mit nichtbeschrinkter

1) Leonhard Euler (1707-1783).

D.1.7
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Funktion (der Integrand besitzt eine Unendlichkeitsstelle?) bei ¢ = 0, falls 0 < x < 1
gilt). Bei der Untersuchung eines solchen ,,doppelt* uneigentlichen Integrals erfolgt
eine Aufspaltung in zwei ,,einfache‘ uneigentliche Integrale:

o 1 oo
J=[etrtdt=J+ Jy = [etetde + [ete= dt.
0 0 1

J; ist ein uneigentliches Parametermtegral mit mcht beschriankter Funktion. J, gehort
zu dem in 1.4. behandelten Typ ff(x, ydx: J,= ( f(t, x) dt. Der Nachweis, daB3 das

Ausgangsintegral J eine bestlmmte Eigenschaft hat — z.B. gleichmaBig konvergent
zu sein —, wird dadurch erbracht, daB man die betreffende Eigenschaft getrennt fiir die
Integrale J, und J, nachweist. Anwendung dieses Gedankengangs auf das bei der
Gammafunktion auftretende uneigentliche Parameterintegral liefert die folgende
Aussage iiber die Existenz und Differenzierbarkeit der Gammafunktion I'(x). (Einen
ausfiihrlichen Beweis findet man in [3], Band II, bzw. [4], Band IIL.)

Satz 1.8: Die in Definition 1.7 eingefithrte Gammafunktion I'(x) ist fiir alle x > 0

o

definiert und differenzierbar. Fiir die 1. Ableitung von I'(x) = f e~z dr gilt:
0
I'(x) =fe" t==1]n ¢ dt.
0

Die Gleichung fiir ”(x) ergibt sich durch Anwendung der Formel (1.8) auf das
une1genthche Parameterintegral I'(x) = f S, x) dt:

P =10 =< (1 0 di= (4460 dr
0 o

= [(e =), dt = (et = In 1 dr.
0 0

(Man beachte die Differentiationsregel (%)’ = a®In a.)

Wir kommen nun zu zwei fiir die Gammafunktion besonders wichtigen Eigen-
schaften!

Satz 1.9: a) Fiir jede posztwe Zahlx gilt I'(x + 1) = x* F(x) Funktionalgleichung der
I'-Funktion.

b) Fiir jede nichtnegative ganze Zahl n gilt I'(n + 1)= n!

1
) Wegen 0 < x < list x —1<0und 1 — x> 0. Also gxlt llm etz =‘11T0e 't = 0,



Beweis: a) Durch partielle Integration ergibt sich zunéchst

1E 15
/‘e"t“'1 dt=—ce*t+ f— e~tdz.
x x

1.5. Die Gammafunktion

Hieraus folgt

ist.)

p
_ —t p2-1 Jf — —t
I'(x) fe =1 dt s
0

t==

t=

25

°°+lftze-tdt=o+lr(x+1).
0 X X
0

(Hinweis: Mit Hilfe der I'Hospitalschen Regel kann man leicht zeigen, daB3 lim ;—t =0
t—+00

b) Aus I'(1) = ofoe" dt=[-e7=1und I'n+1)=n-I'(n)firallen=1,2,..
(vgl. a)) folgt: ;’(2) =1=1l, I'Q)=2.-T'QR)=2!, I'4)=3-I'(3)=3,..., all-

gemein: I'(n+1)=nl. m

Bemerkung 1.3: Mit Hilfe der Gammafunktion I'(x), bei der I'(n) = (n — 1)! fiir alle
n=1,2, .. gilt, kann man sofort eine Funktion I™*(x) konstruieren, fiir welche die
Gleichung I'™*(n) = n! fiir alle n = 1, 2, ... erfiillt ist. Fiir I'*(x):= x - I'(x) gilt I"*(n)
=n-I'(n)=n-(m— 1)! = nl. Die Funktion I'#*(x) = I'(x + 1) kann also als eine
natiirliche Verallgemeinerung der Funktion n! (n-Fakultét), die nur fiir nichtnegative
ganze Zahlen definiert ist, angesehen werden. Beim praktischen Rechnen mit der
Gammafunktion wird man sich auf vorliegende Tabellen stiitzen. Eine kleine, aber
fiir viele Zwecke schon ausreichende Tabelle der Gammafunktion findet man in [1].

Aufgabe 1.6: Aus der Tabelle der I-Funktion entnehmen wir die folgenden Werte

x 00 | 1 | 12 3| 14 | 1S
) L0 | o951 | ogs o897 | oss1 | osss
x 6 | 171 | 18 19 | 20

I 0893 | o900 | o093 0962 | 1,000

Mit Hilfe der in Satz 1.9 angegebenen Funktionalgleichung der I-Funktion berechne man I'(x) fiir
x=0,1;0,2;...; 0,9 und x = 2,1; 2,2; ...; 3,0. Welchen Verlauf nimmt I"(x)?
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2. Integrale iiber ebene Bereiche

2.1. Der Begriff des Bereichsintegrals

In Band 2 lernten wir das bestimmte Integral der Funktion f(x) iiber dem Intervall
[a, b] kennen. Es gibt nun viele Moglichkeiten, diesen Integralbegriff auf mehrdimen-
sionale Bereiche zu erweitern. Wenn zum Beispiel an Stelle des Intervalls [«, b] (1-dim.
Bereich) und der Funktion f(x) ein ebener Bereich B (2-dim. Bereich) und eine Funk-
tion f(x, y) gewdhlt werden, so fiihrt der beim bestimmten Integral kennengelernte
Gedankengang zum Begriff des Bereichsintegrals. Mit diesem Integral und seinen
Anwendungen werden wir uns in diesem Abschnitt beschéftigen.

Wir beginnen mit der Zusammenstellung derjenigen Begriffe, die man bei der
Definition des Bereichsintegrals bendtigt.

Definition 2.1: B sei ein ebener Bereich). Ein System von (endlich vielen) Teilmengen
By, Bs, ..., B, von B nennt man eine Zerlegung von B, wenn die Vereinigung der Teil-
mengen B; (i =1, ...,n) den Bereich B ergibt und je zwei verschiedene Teilmengen
B;, B, hochstens Randpunkte gemeinsam haben (s. Bild 2.1).

AL

0y L=

98

y

Bild 2.1 Bild 2.2

Definition 2.2: B sei ein ebener, beschrdinkter Bereich. Unter dem Durchmesser von B —
in Zeichen @B — versteht man die obere Grenze der Abstinde XY je zweier Punkte
XEB,YEB (5. Bild 2.2).

Der Durchmesser von B ist also — anschaulich gesehen — die groBte Ausdehnung
von B. Anstelle von obere Grenze (= kleinste obere Schranke) ist auch Supremum
(Abkiirzung: sup) gebrauchlich. Fiir den Durchmesser von B kann man daher
schreiben:

@B = sup XY.
XeB,YeB

Definition 2.3: Z = (B,, B,, ..., B,| sei eine Zerlegung von B.

d:= max @B;
i=1,..,n
1) d. h.: B ist Teilmenge einer gewissen Ebene E. Fiihrt man in der Ebene E ein rechtwinklig-
kartesisches x,y-Koordinatensystem ein, so ist die Sprechweise iiblich, daB B ein Bereich in der
x,y-Ebene ist. Die Schreibweise P(x, y) bedeutet: Der Punkt P € E hat beziiglich des eingefiihrten
Koordinatensystems die Koordinaten x, y.
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nennt man das FeinheitsmaB der Zerlegung Z. Eine Folge von Zerlegungen Z,, Z,, ...
des Bereiches B heifst eine Folge von unbegrenzt feiner werdenden Zerlegungen von B,
wenn die entsprechenden Feinheitsmafe 0,, 0, ... gegen null streben, d. h. wenn

lim 4, = 0.

n—»oo

Die Definition des Bereichsintegrals erfolgt nun in volliger Analogie zu der des be-
stimmten Integrals. (Man vergleiche die entsprechenden Ausfithrungen in Band 2,
Abschnitt 10.1.)

Vorgegeben ist ein ebener Bereich B und eine reellwertige Funktion f(P), die min-
destens fiir alle Punkte P € B definiert ist.

Uber B und f(P) setzen wir zunichst lediglich voraus:

a) B ist beschrinkt und meBbar,
b) f(P) ist auf B beschrankt.

Genaueres iiber die Begriffe beschrdnkt (anschaulich: wichst nicht iiber alle
Grenzen) und mefbar (anschaulich: besitzt einen Flicheninhalt) findet man in Band 1
bzw. Band 2.

f(P) ist eine auf B definierte skalare Punktfunktion, weil jedem Punkt P € B eine
reelle Zahl (ein Skalar) f(P) zugeordnet wird. Ist B ein Bereich in der x,y-Ebene, so
kann man anstelle von f(P) auch f(x, y) schreiben, wenn (x, y) die Koordinaten von P
beziiglich des eingefiihrten x,y-Koordinatensystems sind. In diesem Sinne kann dann
f(P) = f(x, y) als eine Funktion der beiden Verdnderlichen x und y angesehen werden.
Wir werden bei allgemeinen Ausfithrungen immer die neutrale, vom Koordinaten-
system unabhéngige Schreibweise f(P) benutzen.

Uber skalare Punktfunktionen (skalare Felder) wurde bereits ausfiihrlich in Band 4
gesprochen. Ein Beispiel fiir ein ebenes skalares Feld erhdlt man, wenn ein ebener
Bereich B der x,y-Ebene mit einer bestimmten Massenbelegung versehen wird. Jeder
Punkt P € B hat dann eine bestimmte Flidchendichte o = g(P) = o(x, y), d.h.: o(P)
ist eine skalare Punktfunktion.

Ausgangspunkt bei der Einfilhrung des Bereichsintegrals ist die zu einer Zer-
legung Z von B gehorige Integralsumme. Jede Integralsumme stellt eine Nidherung
des entsprechenden Bereichsintegrals dar; den genauen Wert des Bereichsintegrals
erhilt man, wenn man die Zerlegung Z immer feiner werden 1a6t. Prizisieren wir diese
Bemerkungen!

Definition 2.4: Ist Z = {B,, ..., B,} eine Zerlegung von B, P; ein beliebig gewdihlter
Punkt aus B; und AB; der Flicheninhalt von B;(i = 1, ..., n), so nennt man die Summe

S@):= 3 fP) AB; @

die zu der Zerlegung Z gehorige Integralsumme.

Anstelle von Integralsumme sagt man auch Zwischensumme oder Zerlegungs-
summe. In Definition 2.4 muB natiirlich vorausgesetzt werden, daB der Flichen-
inhalt AB; (i= 1, ..., n) existiert, d.h. alle B; meBbar sind.

D.2.4
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Z,,Z,, ... sei eine Folge unbegrenzt feiner werdender Zerlegungen von B und
S(Z,), S(Z,), ... die zugehorige Folge der Integralsummen. Wenn nun diese Folge von
Integralsummen gegen einen bestimmten Wert G konvergiert — und zwar unabhin-
gig von der Wahl der Folge unbegrenzt feiner werdender Zerlegungen und unabhin-
gig von der Wahl der zu der jeweiligen Zerlegung gehdrigen Punkte P; (s. Defini-
tion 2.4) —, so wollen wir diesen Grenzwert G mit dem Symbol

lim 3 f(P) AB; *)

ZB,-—»O i

bezeichnen. Damit haben wir schon das Bereichsintegral!:

Definition 2.5: f(P) sei eine auf dem ebenen Bereich B definierte reellwertige Funktion.
Unter dem Bereichsintegral der Funktion f(P) iiber dem Bereich B versteht man den

Grenzwert (*) und bezeichnet es mit f f f(P)db. Es gilt also
B
I ([f(P)db= lim 3 f(P))AB;. (2.2)
‘B 2B ;~0 i

Bemerkungen zur Definition 2.5 : Anstelle von Bereichsintegral sagt man auch Fldchen-
integral bzw. Gebietsintegral. Die Bezeichnung (das Symbol) fiir das Bereichsintegral
ist ebenfalls unterschiedlich. Am Ende des Abschnittes 2.3. werden wir etwas aus-
fithrlicher die unterschiedliche Bezeichnungsweise beim Bereichsintegral darstellen

und die Griinde dafiir angeben. — Fiir ff f(P)db kann man ff f(x, y) db schreiben,
B B

falls B ein Bereich in der x,y-Ebene ist.

Wenn das Bereichsintegral der Funktion f(P) iiber dem Bereich B existiert, so
sagt man, die Funktion f(P) ist iiber dem Bereich B (im Riemannschen Sinne) inte-
grierbar.

Bevor wir auf die Fragen nach der Existenz und den Eigenschaften des Bereichs-
integrals eingehen, wollen wir eine wichtige Anwendung kennenlernen.

Von einem speziellen rdumlichen Bereich, der Ordinatenmenge M = O(B,f),
haben wir in Satz 1.3 mit Hilfe des Prinzips von Cavalieri das Volumen ¥ berechnet.
Ausgangspunkt fiir die Berechnung des Volumens mit Hilfe des Prinzips von Cava-
lieri (vgl. Band 2, Satz 10.20) ist eine Zerlegung des rdumlichen Bereiches M in
,»Scheiben*. Im folgenden Beispiel soll das Volumen ¥ von M nach einem anderen
Prinzip berechnet werden. Man zerlegt den raumlichen Bereich M in zylindrische
Sdulen S; und berechnet von diesen Sdulen ndherungsweise das Volumen V;.
Summation aller V; ergibt eine Naherung fiir das gesuchte Volumen ¥ von M. Den
genauen Wert von ¥ erhélt man, indem man die Sdulen immer ,,feiner* (,,diinner*)
werden 14B8t. Dieser GrenzprozeB fithrt dann automatisch auf ein Bereichsintegral.

Beispiel 2.1: B sei ein Bereich in der x,y-Ebene, auf dem eine nichtnegative Funktion
z = f(x, y) =f(P) definiert ist. Von der Ordinatenmenge M = O (B, f) (s. Definition 1.4
und Bild 1.10) ermittle man mit Hilfe des eben beschriebenen Prinzips der Sdulen-
zerlegung das Volumen V. (Von dem ebenen Bereich B wird nicht vorausgesetzt, da
es sich um einen Normalbereich im Sinne von Definition 1.1 handelt.)

Der ebene Bereich B wird in Teilmengen B, B,, ..., B, zerlegt. AuBerdem wird in
jeder Teilmenge B; ein Punkt P; ausgewihlt. Die Zerlegung von B bewirkt eine Zer-
legung des rdumlichen Bereiches M in zylindrische Sédulen S5 Sz5 ey Sp, Wobei
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B; der GrundriB von dem jeweiligen S; ist (s. Bild 2.3). Fiir das Volumen ¥; von S;
gilt: V; = AB; - f(P;) (= (Flicheninhalt von B;) mal (Héhe der Sdule in P;)). Hieraus
folgt: V' = 2 Vi~ Zf(P) AB;. Je feiner die Zerlegung von B ist, um so feiner ist

auch die Zerlegung von M in Séaulen. Den genauen Wert von V erhilt man durch
unbegrenzte Verfeinerung der Zerlegung von B, d.h.: V= lim 3 f(P;) AB;. Damit
@B;~07

haben wir nach Definition 2.5 das SchluBergebnis: V= f f f(P)db. Wegen der
B

Wichtigkeit fassen wir Fragestellung und Ergebnis noch einmal in einem Satz zu-

sammen.
LZ2=f(x,y)

Bild 2.3

X

Satz 2.1: Ist z = f(x, y) = f(P) eine auf dem in der x,y-Ebene gelegenen Bereich B
definierte nichtnegative Funktion, so kann man das Volumen V = V der zu B und f
gehdrigen Ordinatenmenge M (s. Bild 2.3) durch ein Bereichsintegral berechnen. Es gilt

= [[fP)db. (2.3)
B

Folgerung: Ist f(P) = 1 fiir alle P € B, so liefert f {f(P)db = j {1db = f {db das

Volumen V =V eines allgemeinen Zylinders M, mzt der Grundﬂache B und der
Hohe h=1. Wegen Vi, = Ap -1 (Grundfldche mal Hohe) gilt fiir den Flicheninhalt
A = Ap des ebenen Bereiches B

A=[db. (24)
B

( [ f db ist eine Kurzschreibweise fiir [ 1 db; f(P) = 1.)
B B

2.2. Existenz und elementare Eigenschaften des Bereichsintegrals

Bei den in Beispiel 2.1 angestellten Uberlegungen haben wir die Existenz des
Bereichsintegrals f | f(P) db, d.h. des Grenzwertes hm 2 f(P;) AB;, als anschaulich

gesichert augesehen Der folgende Satz bestatlgt daB unter sehr allgemeinen Voraus-
setzungen - die bei den Anwendungen fast immer erfiillt sind — das Bereichsintegral
existiert.

S.2.1
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Satz 2.2: Das Bereichsintegral ﬂ f(P)db existiert, falls beziiglich des ebenen Be-

B N
reichs B und der auf B definierten Funktion f(P) folgende Voraussetzungen erfiillt
sind:
a) B ist ein beschrinkter, mefbarer und abgeschlossener Bereich,
b) f(P) ist auf B stetig.

Fiir die uns interessierenden Anwendungen geniigt es zu wissen, daB} die Voraus-

setzung a) fiir jeden Normalbereich (s. Definition 1.1) und jeden aus endlich vielen
Normalbereichen zusammengesetzten Bereich erfiillt ist. (Bild 2.4 zeigt einen Be-
reich B, der durch die Gerade x = X, in drei Normalbereiche B,, B;, B; beziiglich
der x-Achse zerlegt wird.)
Hinweis: In Satz 2.2 (einen Beweis zu diesem Satz findet man z. B. in [4], Bd. III)
hiétten wir auf die Formulierung ,,B ist beschrinkt und meBbar‘ verzichten konnen,
da wir in Abschnitt 2.1. das Erfiilltsein dieser Bedingung generell verlangt haben. Die
andere, in Abschnitt 2.1. noch angegebene Voraussetzung ,, f(P) ist auf B beschrinkt*
ist nach den in Satz 2.2 angegebenen Voraussetzungen automatisch erfiillt. Es gilt
namlich: Jede auf einer abgeschlossenen, beschrinkten Punktmenge B stetige Funk-
tion f(P) ist auf B beschrinkt (vgl. Band 4, Satz 2.6).

Aus der Definition 2.5 des Bereichsintegrals ergeben sich leicht einige wichtige
Eigenschaften, die wir in einem Satz zusammenfassen wollen.

y

1% : 8

1
3’
[j .

I

I

|

i

% X X

Bild 2.4 Bild 2.5

Satz 2.3: Wenn fiir die im folgenden auftretenden Funktionen (f(P), g(P)) und Bereiche
(B, By, By) die in Satz 2.2 genannten Voraussetzungen erfiillt sind, so gilt

a) Fiir jede Konstante c ist
[[ef(Pydb=c [[f(P)db.
B B .

b) [[(f(P)+ g(P)) db = [[ f(P)db + [[ g(P) db.
B B B

¢) Ist {By, B,} eine Zerlegung von B (s. Bild 2.5), so gilt
[[f(Pydb = [[f(P)db + [[£(P)db.
B, By

B

d) (Mittelwertsatz fiir Bereichsintegrale) Es gibt einen Punkt Py € B, so dap fiir den
Fliicheninhalt A von B gilt

[[rpydb = s(Py) - 4.
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Alle Beweise werden dadurch erbracht, daB man zundchst Integralsummen be-
trachtet und anschlieBend einen Grenziibergang durchfiihrt. Als Beispiel geben wir
eine Beweisskizze fiir die Aussage b) des Satzes 2.3:

[JUP)+ g(P)) db = lim 37 (f(P) + g(P)) AB:
B 2B;~0

= lim [3/(P) ABi+ 3 8(P) AB

z'B -0

= lim 3 f(P)AB; + 11m 3P A8y

ﬂBaOz

i = [[7(P)db + [[¢(P) ab (vgl. Definition 2.5).
B B

Auf die Aussage c) des Satzes 2.3 werden wir oft zuriickgreifen. Vom geome-
trischen Standpunkt ist die in ¢) angegebene Gleichung im Falle f(P) = 0 (fiir alle
P ¢ B) sofort einleuchtend; sie ist nach Satz 2.1 dquivalent mit Volumen von O (B, f)
= Volumen von O(B,,f) + Volumen von O(By, f), d.h.: das Volumen der oberhalb
von B gelegenen Ordinatenmenge ist die Summe aus den Volumina der oberhalb von
B, und B, gelegenen Ordinatenmengen.

2.3. Berechnung von Bereichsintegralen mit Hilfe von Doppelintegralen

Die Berechnung von Bereichsintegralen nach der in Definition 2.5 angegebenen
Vorschrift ( [[fP)db = lim 3 f(P) AB,-\) ist so kompliziert, daB man damit schon
ZB;—0 i

B

bei einfachsten Beispielen groBe Schwierigkeiten zu iiberwinden hat. Definition 2.5
scheidet daher als eine praktisch brauchbare Berechnungsmethode aus. Im folgenden
Satz lernen wir den Weg kennen, auf dem man auf einfache Weise den Wert eines
Bereichsintegrals berechnen kann. Die Einschrinkung, daB es sich bei dem Inte-
grationsbereich B um einen Normalbereich im Sinne von Definition 1.1 handeln
muB, ist nicht wesentlich. In allen praktisch vorkommenden Fillen kann man den
Bereich B in (endlich viele) Normalbereiche zerlegen und anschlieBend die in Satz 2.3,
c), angegebene Zerlegungsformel anwenden. Kommen wir nun zur Formulierung
dieses wichtigen Satzes!

XNEXEX
Satz 2.4: Ist B: ] ein Normalbereich beziiglich der x-Achse (vgl. S.2.4
Yi(x) £ ¥ = pa(x)
Definition 1.1) und f(P) = f(x, y) eine auf B stetige Funktion, so gilt
2, Ya()
l [[£®yab=[ [ fx,») dy dx. )
B 2, (@)
NEVEYe

ein Normalbereich beziiglich der y-Achse (vgl. Def.1.1)

Ist B:
{xl(y) = x = x(y)
und f(P) = f(x, y) eine auf B stetige Funktion, so gilt

2 Z3(y)
I f {f(Pydb = f | fx, ») dx dy. (2.6)

z,(y)
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Jedes Bereichsintegral kann also mit Hilfe eines Doppelintegrals berechnet werden,
falls der Integrationsbereich ein Normalbereich ist. Uber Doppelmtegrale haben wir
ausfiihrlich im Abschnitt 1.3. gesprochen, durch Satz 2.4 beherrschen wir damit auch
die Berechnung von Bereichsintegralen. Einen vollstindigen Beweis fiir Satz 2.4
wollen wir hier nicht geben. Wir begniigen uns mit der Feststellung, daB im Falle
f(P) = 0 fur alle P € B der Satz sicher richtig ist, wie man durch einen Vergleich der
Formeln (2.3) und (1.5) (aus Abschnitt 2.1. bzw. 1.3.) sofort sieht: Sowohl die linke
als auch die rechte Seite in Formel (2.5) sind gleich dem Volumen der zu B und f ge-
horigen Ordinatenmenge.

Beispiel 2.2: Vorgegeben sei der in Bild 2.6 dargestellte Bereich B der x,y-Ebene und
die Funktion f(P) = f(x, y) = 2x — y. Man berechne das Bereichsintegral [[f(P) db.
B

Bild 2.6

3 5 .
Wir zerlegen den Bereich B zunichst in den dreieckigen Bereich B, (mit den Ecken
(0,0), (3,1) und (3, 4)) und den Rechteckbereich B, (mit den Ecken (3, 1), (5, 1),
(5, 6) und (3, 6)). Nach Satz 2.3 c) gilt

[[£Pydb = [[f(P)db + [[f(P)db. *)
B B B,

Auf die rechts stehenden Bereichsintegrale konnen wir Formel (2.5) anwenden.

0=x=3 s 3<x<5
B;: i<y<i§i un ™ 1<y<6

3=
sind Normalbereiche beziiglich der x-Achse, und die Funktion f(P) = f(x, y) = 2x — y
ist iiberall stetig. Aus (*) folgt dann:

{ff(P)db=ff(2x—y)dydx+3flf(2x—y)dydx

=_Z 1
—f[ny—%yﬂ] _i dx+f[2xy———y] 1dx
V=3

21 1
—f———xzdx+f(10x——-) x= T 45 == 555,
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Aufgabe 2.1: Man berechne das Bereichsintegral der Funktion f(P) = f(x, y) = xy liber dem in
Bild 2.7 dargestellten Bereich B. (B wird begrenzt durch die Parabel y = x2, die x-Achse und
die durch die Punkte (6, 0) und (2, 4) hindurchgehende Gerade.)

Bild 2.7

/5

o

X

Bevor wir im néchsten Abschnitt 2.4. auf Anwendungen eingehen, soll zunéchst noch etwas iiber die
sehr unterschiédliche Bezelchnungswelse bei Berelchsmtegralen gesagt werden. Wir haben bereits
erwihnt, da man an Stelle von Bereichsi al auch vom Flich al bzw. Gebietsi al
spricht. Etwas verwirrend dtirfte aber der Umstand sein, daB man oft an Stelle von Bereichsintegral
einfach Doppelii -al sagt. Diese Bezeict ise erklirt sich aus dem engen Zusammenhang
zwischen Bereichsintegralen und Doppelintegralen: Jedes Bereichsintegral 1a8t sich mit Hilfe eines
Doppelintegrals berechnen, falls der Integrationsbereich B des Bereichsintegrals ein Normalbereich
ist (vgl. Satz 2.4). Auch das Symbol zur ichnung eines Bereichsi als ist recht unterschiedlich.

Neben solchen Symbolen wie ff f(P)dw oder ff f(N)do oder f f f(P)ds oder ff f(x,y) dP, die

nur wenig von unserem Symbol ff f(P)db abwexchen, findet man auch Symbole mlt nur einem

Integralzeichen, z.B. f f(P)dr oder ® f f(x,y)db oder f f(x,y)dS. Wir haben uns wegen des

in Satz 2.4 beschnebenen Zusan h zwischen Bereichsi alen und Doppeli alen fiir
das Symbol mit zwei Integralzeichen entschieden. An Stelle von f f f(x, y) db schreibt man gele-
gentlich auch f [ £Cx, ) dx dy.

24. Anwendungen des Bereichsintegrals

Wir beginnen mit einer einfachen physikalischen Fragestellung! Vorgegeben sei
ein ebener Bereich B, den man sich mit einer Massenbelegung versehen denkt. Jedem
Punkt P € Bist dann eine bestimmte Flichendichte o = o(P) zugeordnet. Die Flichen-
dichte o(P) im Punkte P ist wie folgt definiert: Ist D ein kleiner Teilbereich von B,
der den Punkt P enthélt, m(D) die Masse von D, A(D) der Flicheninhalt von D, so

ist der Quotient

AE D; eine Naherung fiir o(P). Den genauen Wert von o(P) erhilt man,
wenn sich D auf den Punkt P zusammenzieht:

m(D)

0 AD)

Beim GrenzprozeB durchlduft D eine Folge D,, D,, ... von P enthaltenden Teil-
bereichen, deren Durchmesser gegen null konvergiert. Ist die Flichendichte ¢ kon-

o(P) = im

3 Korber, Integralrechnung
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stant, d.h. o(P) = g, = const fiir alle P € B, so ergibt sich fiir die Gesamtmasse m des
mit Masse belegten Bereiches B:

_ m= 4. (2.7)
A ist der Flicheninhalt von B.
(Beispiel: p=0,=0,5gem™2, 4 =25cm®> = m=12,5g.)

Es erhebt sich nun die Frage, wie man zur Gesamtmasse von B kommt, wenn die
Fliachendichte nicht konstant, sondern eine sich i.allg. von Punkt zu Punkt indernde
stetige GroBe o = o(P) ist? (o = o(P) ist also eine auf B definierte stetige Funktion!)
Zerlegt man B in kleine Teilbereiche B, Bs, ..., so wird sich innerhalb eines Teil-
bereiches B; die Fliachendichte nur wenig dndern. Ist P; irgendein Punkt aus B;, AB;
der Flicheninhalt von B;, so gilt fiir die Masse m; von B; die Beziehung m;~ o(P;) AB;
(vgl. Formel (2.7)), und fiir die Gesamtmasse m von B erhélt man: m= 3 m,

~ 2 o(P;) AB;. Diese Ndherung wird um so genauer sein, je feiner die Zerlegung von

B istl; den genauen Wert erhélt man durch den in Definition 2.5 beschriebenen Grenz-
prozeB & B; — 0. Es giltalso: m = 11rn 2‘ o(P;) AB;. Der rechts stehende Grenzwert

ist aber gleich dem Berelchsmtegral der Funktion o(P) iiber dem Bereich B (vgl.
Def. 2.5). ZusammengefaBt erhalten wir den

Satz 2.5: Fiir die Gesamtmasse m eines mit Masse belegten ebenen Bereichs B gilt
m= H odb.
B

Hierbei ist p = o(P) die Flichendichte, von der man voraussetzt, daf es sich um eine
auf B stetige Funktion handelt.

Bemerkung : Die Formel (2.7) ist ein Spezialfall der in Satz 2.5 angegebenen Formel.

Ist nédmlich ¢ = g = const, so gilt: m= || odb= || ydb =g, || db=py-A (vgl.
Formel (2.4)). ! H ﬂ ’ Oﬂ .

Beispiel 2.3: Vorgegeben sei der in Bild 2.8 dargestellte ebene Bereich B, den man
sich mit einer Massenbelegung versehen denkt. Fiir die Flichendichte mdge gelten:
o = o(P) = o(x,y) = } (x + y). Man berechne die Gesamtmasse 7 von B.

Bild 2.8
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Nach den Sétzen 2.5 und 2.4 gilt:

44—z

m—ffgdb ff (x+y)dydx——f[ (xy+—y;—)]::_xdx
fto-2)a-t

(Hinweis: Auf jeder Geraden x+ y=c, das sind die zur Begrenzungsgeraden
X + y = 4 parallelen Geraden, ist die Flichendichte konstant. Fiir die Punkte der
Geraden x + y = 2 gilt zum Beispiel p = 1.)

Wir kommen zu einer weiteren wichtigen Anwendung des Bereichsintegrals, nim-
lich der Bestimmung des Schwerpunktes eines (mit Masse belegten) ebenen Bereiches B
mit der Flichendichte o = o(P). In Band 2, 10.4.2., wurden bereits Formeln fiir die
Koordinaten des geometrischen Schwerpunktes von B hergeleitet. Es muBte die Vor-
aussetzung ¢ = const fiir alle Punkte von B erfiillt sein. Wir wenden uns nun dem
allgemeinen Fall zu. Aus Band 2 iibernehmen wir folgenden Sachverhalt: Fiir den
Schwerpunkt (X,7) eines Systems von Massenpunkten Pi(xy, y1), Po(xz, Yo)s eoe»
P, (x,, y,) mit den Massen m,, My, ..., m, gelten die Formeln
Xy A+ e mpXn - MYyt e MY

y

%= =
my+ e+ m, My + e+ 1y

(vgl. Band 2, 10.4.2.). Bei der Herleitung der Formeln fiir die Koordinaten x5, ys
des Schwerpunktes S eines ebenen Bereiches B wenden wir dasselbe Prinzip an, wie
bei der Herleitung der Formel fiir die Gesamtmasse von B. Der (mit Masse belegte)
Bereich B wird in kleine Teilbereiche By, B,, ..., B, zerlegt, und jeder Teilbereich B;
wird durch einen Massenpunkt P; € B; mit der Masse m; = m(B;) = Masse von B;
ersetzt. Von diesem System von Massenpunkten P;, Ps, ..., P, bestimmen wir nach
den oben angegebenen Formeln den Schwerpunkt X, y. Setzt man zur Abkiirzung
m = my + my + ++ + m, (= Gesamtmasse von B) und beriicksichtigt die Ndherungs-
beziehung m(B;) ~ o(P;) - AB; (s. Herleitung zum Satz 2.5), so erhélt man

F= L Smosi= L Sm(B) 5(P) =~ 3 o(P) ABy- 5P,

Es gilt also x =~ %2 [xo] (P;) - AB; und analog y =~ % 2> [yel (P;) - AB;. (Die

Schreibweise [xo] (P;) bzw. [ye] (P;) bringt zum Ausdruck, daB man das Produkt aus
x (x-Koordinate) und ¢ (Flichendichte) fiir den Punkt P; bilden soll.) Der Punkt
(%, ») ist eine Naherung fiir den gesuchten Schwerpunkt (x;s, ys) von B. Den genauen
Wert erhdlt man wieder durch den Grenzproze @ B; — 0

xs= lim L 3 (3] (P) - ABY
2B;~0 m

. 1
)

3%
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1 . .
Den konstanten Faktor — kann man vor das Limeszeichen setzen, und aus Defi-
nition 2.5 folgt der
Satz 2.6:

1 rr
x5=7fj xo db,
B

. db
J’s—;ffyg
B

sind die Koordinaten des Schwerpunktes eines ebenen Bereiches B mit der Flichen-
dichte ¢ = o(P).

Bemerkung : Die Gesamtmasse m von B wird nach der in Satz 2.5 angegebenen Formel
berechnet. Ist p = g, = const fiir alle P € B, so kann ¢ vor das Integralzeichen gesetzt
werden. Unter Beachtung der Formel (2.7) erhdlt man dann fiir den sogenannten
geometrischen Schwerpunkt von B:

x0=7;~ffxdb,
5 .

1
Yo=— fydb-
B

Der Fldacheninhalt 4 von B kann nach Formel A =Jf db berechnet werden, falls
B

keine elementargeometrischen Formeln zur Verfiigung stehen.
Beispiel 2.4: Von dem in Beispiel 2.3 angegebenen Bereich B mit o = } (x + »)

ermittle man den Schwerpunkt S. Man berechne auBerdem den geometrischen

Schwerpunkt S, von B und vergleiche S, mit S.
Fiir S erhélt man nach Satz 2.6:
4 4—z

3 1
xSéB—szx-E(x+y)dydx,
0 0

4 4—zx
3 1
ys=§§ffy-7(x4ry)dydx-
0 0

Die mit ein wenig Rechnung verbundene Auswertung der Doppelintegrale liefert die
Werte x5 = 3% und ys= 3. Fiir die Koordinaten x,, y, des geometrischen Schwer-

punktes von B erhdlt man:
44—z

1 4
xo=§ffxdydx=?
00

und 44—z

1 4
ya=§ffydydx—g-
[
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Bild 2.9 Bild 2.10

Beziiglich der Lage von S und S,: siehe Bild 2.9 (Warum liegen S und S, beide auf
der Geraden y = x? Warum muB} S, etwas unterhalb von S liegen?)

Aufgabe 2.2: Der durch die Kurveny = 1 x* + 1,y = 9 — x, x = O und y = 0 begrenzte Bereich B *
(s. Bild 2.10) sei mit einer Massenbelegung der Flichendichte ¢ = g(x, ) = xy versehen. Man be-
rechne den Schwerpunkt von B. :

Eng mit dem Begriff des Schwerpunktes hingt der Begriff des statischen Moments
von B beziiglich der x- bzw. y-Achse zusammen. Man denkt sich' die Gesamtmasse m
des (mit Masse belegten) Bereiches B im Schwerpunkt (xs, ys) vereinigt. Das sta-
tische Moment des Massenpunktes S mit der Masse m ist dann gleich dem statischen
Moment von B.

Definition 2.6: Ist m die Gesamtmasse und (xs, ys) der Schwerpunkt des Bereiches B, D.2.6
so heifit das Produkt M, = m - xs das statische Moment von B beziiglich der y-Achse
(,,Gesamtmasse* mal ,,Abstand des Schwerpunktes S von der y-Achse*). Analog ist

M. = m - ys das statische Moment von B beziiglich der x-Achse (s. Bild 2.11).

Bild 2.11

]

]

5
S '
Aus Satz 2.6 ergibt sich dann sofort der

Satz 2.7: Fiir die statischen Momente M, und M, von B beziiglich der x- bzw. y-Achse S.2.7
gelten die Formeln

M, = [[yedb,
B

M, = [[ xodb.
B

Den Themenkreis Masse, Schwerpunkt, statisches Moment wollen wir mit dem
Begriff Tragheitsmoment abschlieBen.



D.2.7

S.2.8

*

38 2. Integrale iiber ebene Bereiche

Definition 2.7: Unter dem Triigheitsmoment eines Massenpunktes P, (x,, y,) mit der
Masse m, beziiglich der x- bzw. y-Achse versteht man das Produkt my « y> bzw. mg - X*
(,»Masse** mal ,,Quadrat des Abstands von der betreffenden Achse*). Hat man ein
System von Massenpunkten Py(x1, 1), Pa(Xa, Yo)s «rs Pn(Xn, yn) mit den Massen
my, My, ..., My, SO summiert man iiber die Trdgheitsmomente aller Massenpunkte:
2 miyd bzw. 3 mix? ist das Triigheitsmoment eines Systems von Massenpunkten

l;ezﬁglich der x-' bzw. y-Achse.

Derselbe Gedankengang wie bei der Herleitung der Sétze 2.5 und 2.6 (Zerlegung
des Bereiches B in endlich viele Teilbereiche B,, B, ...; Ersetzung der Teilbereiche
durch ein System von Massenpunkten P, , Py, ...; Berechnung des Trigheitsmomentes
dieses Systems von Massenpunkten nach der in Definition 2.7 angegebenen Formel;
GrenzprozeB & B; — 0) fithrt bei einem ebenen Bereich B mit der Flichendichte
o= o(P) zum
Satz 2.8: Fiir die Trdgheitsmomente J, und J, von B beziiglich der x- bzw. y-Achse
gelten die Formeln

Jo = [[ %0 db,
B
Jy=[[ x0 db.
B
Beispiel 2.5: B sei der durch die Kurven y =4 — x* und y = 0 begrenzte Bereich

(s. Bild 2.12). Fiir die Massenbelegung von B gelte o = x + y. Man berechne das
Trigheitsmoment von B beziiglich der y-Achse.

¢ Bild212

Nach den Sitzen 2.8 und 2.4 (B wird als Normalbereich beziiglich der x-Achse

2 4—2?

angesehen) gilt: J, = f f Xx2(x® + y) dy dx. Fiir das innere Integral erhdlt man
-2 0

2 1 2 =it 2 1 6
X (x2y+5y ) - = 8x° -5 %
2
. 1 20 512
Hieraus folgt J, = f(sz — fo) dx = TR T 24,4,
—2
(Die einfachen Zwischenrechnungen wurden weggelassen!) .

Aufgabe 2.3: Von dem in Beispiel 2.5 beschriebenen Bereich B berechne man das Trigheitsmoment
beziiglich der x-Achse.
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2.5. Uneigentliche Bereichsintegrale

In Analogie zur Erweiterung der einfachen Integrale, d.h. der bestimmten Rie-
mannschen Integrale, auf uneigentliche Integrale (s. Band 2) soll jetzt auch der Be-
griff des Bereichsintegrals auf uneigentliche Bereichsintegrale erweitert werden. Bei
der Definition des Bereichsintegrals

[[fPyde
B
gingen wir von der Vorstellung aus, daB
a) der Bereich B beschrankt und
b) die Funktion f(P) auf B definiert und beschrankt ist.

(Man vergleiche hierzu auch Satz 2.2.) Unser Ziel ist es, dem Symbol f f f(P)db auch
B

dann einen Sinn zu geben, wenn eine der beiden Voraussetzungen a), b) nicht erfiillt
ist. Der Weg, der zur Definition der uneigentlichen Bereichsintegrale fiihrt, ist
wieder ein geeigneter GrenzprozeB. Bevor wir auf diese Problematik eingehen, soll
an einem Beispiel das Nichterfiilltsein der Bedingungen a) und b) demonstriert
werden.

Beispiel 2.6 a) Der durch den Hyperbelast y = —’lc- (x> 0), die positive x-Achse und

die positive y-Achse begrenzte Bereich B (s. Bild 2.13) ist nicht beschrinkt; der Be-
reich B erstreckt sich ins Unendliche.

v
¢

p Bild 2.13

b) Die Funktion f(P) = f(x, ) = )—62—;1_? ist fiir (x, y) = (0, 0) nicht definiert, fiir

alle anderen Punkte ist sie definiert und stetig. Die Funktion f(x, y) = ist auf

1
X2+ y?
jeder punktierten Umgebung des Punktes (x, y) = (0, 0) unbeschrinkt, ihre Funk-
tionswerte iiberspringen jede noch so groBe Schranke. (Eine punktierte Umgebung
von P ist eine Umgebung von P, aus der man den Punkt P herausgenommen hat.)

Wir kommen nun zur ersten Frage: B sei ein nichtbeschriankter Bereich; f(P) eine
reellwertige Funktion, die mindestens fiir alle Punkte P ¢ B definiert ist. Was soll
man in diesem Fall unter dem Bereichsintegral von f(P) iiber B verstehen? Die Ant-
wort findet man nach dem schon bei den gewdhnlichen uneigentlichen Integralen
kennengelernten Prinzip. Der nichtbeschrankte Bereich B wird durch eine Folge
By, B, ... beschréinkter, aber immer groBer werdender Teilmengen von B aufgefiillt.



D.2.8

D.2.9

40 2. Integrale iiber ebene Bereiche

Definition 2.8: Ist B ein nichtbeschrinkter (ebener) Bereich, so nennt man jede Folge
beschrankter, aber immer grofer werdender Teilbereiche B, B,, ... von B (d.h.:
B, < B, C By +++ < B), die in ihrer Gesamtheit den nichtbeschrinkten Bereich B aus-
fiillen (d.h.: zu jeder beschrinkten Teilmenge M < B gibt es ein B, mit M < B,), eine
Folge von B ausfiillenden (ausschipfenden) Teilbereichen (s. Bild 2.14).

y

Bild 2.14 Bild 2.15

Bei dem durch Bild 2.13 dargestellten nichtbeschrankten Bereich B konnte eine
solche Folge B,, B,, ... wie folgt gewonnen werden: Durch die Geraden x = n,
y=n (n=1,2,..) wird von dem nichtbeschrinkten Bereich B ein beschrinkter
Teilbereich B, abgeschnitten (s. Bild 2.15). By, B,, ... ist dann eine FOI%C von B aus-

fiillenden Teilbereichen. Fiir jedes B, kann man das Flichenintegral f £(P)db im

gewdhnlichen Sinn bilden. Falls nun die Folge der Integralwerte { f f(P) db konver-

B
giert, so wird man den Grenzwert als uneigentliches Bereichsintegral von f(P) iiber
dem nichtbeschriankten Bereich bezeichnen. .
Die bisherigen — an einem Beispiel orientierten — Uberlegungen wollen wir in
allgemeiner Form in der folgenden Definition zusammenfassen.

Definition 2.9: B sei ein nichtbeschrinkter Bereich, auf der die reellwertige Funktion
f(P) definiert ist. Wenn fiir jede Folge B,, B, ... von B ausfiillenden (mefbaren) Teil-
bereichen (vgl. Def. 2.8) der Grenzwert hm f f f(P) db existiert und immer den gleichen

Wert hat, so nennt man diesen Grenzwert das uneigentliche Bereichsintegral der
Funktion f(P) iiber dem nichtbeschrdnkten Bereich B. Das uneigentliche Bereichsinte-

gral wird — ebenso wie das gewdhnliche Bereichsintegral — mit dem Symbol f f A(P)db
bezeichnet.

Auch bei den uneigentlichen Bereichsintegralen ist die Sprechweise iiblich, daBl das
uneigentliche Bereichsintegral konvergiert bzw. divergiert, je nachdem, ob der Grenz-

wert hm [ff(P) db (im vorhin angegebenen Sinn!) existiert oder nicht. Die Ent-

scheldung, "ob ein unelgentllches Bereichsintegral konvergiert oder nicht, ist nach
Definition 2.9 mit einigen Schwierigkeiten verbunden. Selbst wenn man fiir eine Folge

By, B,, ... von B ausfiillenden Teilbereichen den Grenzwert G = hm ﬂ f(P)db er-

mittelt hat, so ist damit natiirlich noch nicht gesichert, daB das unelgenthche Be-
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reichsintegral konvergiert. Erst wenn man wei}, daB jede andere Folge von B aus-
fiillenden Teilbereichen zum selben Grenzwert G fiihrt, ist die Frage nach der Kon-
vergenz des uneigentlichen Bereichsintegrals eindeutig entschieden. Gliicklicherweise
ist es so, daB man in vielen Fillen mit der Ermittlung des Grenzwertes G fiir eine
einzige Folge von B ausfiillenden Teilbereichen das Problem geldst hat, wie der fol-
gende Satz zeigt.

Satz 2.9: Ist die Funktion f(P) auf dem nichtbeschrinkten Bereich B nirgends negativ S.2.9
(d.h. f(P) = 0 fiir alle P € B), so ist die Konvergenz des uneigentlichen Bereichsinte-
grals gesichert, falls bei einer einzigen Folge By, B, ... von B ausfiillenden Teilbereichen

der Grenzwert lim f f f(P) db existiert. Es gilt dann:
n-oo

[[fPydb=1im [[7(P)db.
B n—oo g

Beweis: Es sei By, B,, ... eine Folge von B ausfiillenden Teilbereichen, fiir die gilt:
lim ([ f(P)db=G. ®
Lol 10

Zu zeigen ist, daB fiir jede andere Folge B, Bs, ... von B ausfiillenden Teilbereichen
ebenfalls gilt:

lim [[f(P)db=G. )
m—vODB;n

Wir zeigen, daB es zu jedem & >0 ein m, gibt, so daB fir alle m =m, die

Ungleichung G — ¢ < [[ f(P)db < G erfiillt ist. Damit ist dann (**) bewiesen. Nach
B

Definition 2.8 gibt es zu jedem B, ein B, mit B,, < B,. Hieraus und aus (*) folgt dann

[[7(Pydb < [[ /(P)db < G, also

B By

Jfrpydb < 6. )
By

m

Aus (*) liest man ab, daB es zu jedem ¢ > 0 ein 7, mit ff f(P)db > G — ¢ geben

muB. Falls m hinreichend groB ist, muB nach Deﬁnitio'; 2.8 der Bereich B,, den
Bereich B, umfassen: B;, > B, fiir alle m = m,. Hieraus folgt

[[fPydb = [[fP)db > G —e. ()
B

B,

Ty

Aus (I) und (II) folgt G — & < [ f(P)db < G fiir alle m = m,. m

Bm

Beispiel 2.7: Es sei B die ganze x,y-Ebene und f(P) = f(x, y) = e~ @ +4), Man priife,
ob das uneigentliche Bereichsintegral ff f(P) db konvergent ist.
B
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Weil die vorgegebene Funktion f(P) stets = 0 ist, braucht nur von einer ein-
zigen Folge By, B;, ... nachgewiesen zu werden, daB der Grenzwert hm J f f(P)db

existiert — dann ist die Konvergenz des Bere1chs1ntegrals gesichert. B soll der fol-

gende quadratische Bereich sein: B, = {(x,y) |—-n = x=n,—n < y < n} (s. Bild
2.16). Die Folge B,, B, ... fiillt dann die ganze x,y-Ebene aus.

y

5

8

Bild 2.16

Wegen

fff(P)db-—f fe @+ dy dx

—n —n

=f [e—z’_f:e-y' dy] CEre (fe—v* dy)(_f:e—x” dx)

—n —n

=<_f:e‘1‘dx>2= <2 'ofne'z’ dx)

lim ([ f(P)db = (2 -fe-l* dx)g.
n-oop. 0

gilt

Der Wert des rechts stehenden gewdhnlichen uneigentlichen Integrals ist gleich } J/=.
(Einen Beweis fiir diese tiefliegende Aussage findet man z.B. in [2].) Das vorgegebene
uneigentliche Bereichsintegral ist also konvergent und hat den Wert (2(317))*==. -
Wesentlich einfacher wiirde man zum Ziel kommen, wenn man die x,y-Ebene durch
eine Folge immer groBer werdender Kreisscheiben B, = {(x, y) | x* + )* < n?} aus-
fiillen wiirde und bei der Berechnung der Bereichsintegrale iiber B, von kartesischen
Koordinaten x, y zu Polarkoordinaten r, ¢ iibergehen wiirde. Da die Transformation
mehrfacher Integrale erst im Abschnitt 4. behandelt wird, konnte dieser Weg jetzt noch
nicht beschritten werden. Wir werden in Abschnitt 4. noch einmal auf dieses Beispiel
zuriickkommen.

Wenn die Funktion f(P) auf dem nichtbeschrinkten Bereich B auch negative
Werte annimmt, so betrachtet man die Funktion ¢(P):= |f(P)|. Auf|f(P)| kann man
Satz 2.9 anwenden.
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Analog dem bei gewohnlichen uneigentlichen Integralen festgestellten Sachverhalt
gilt auch bei uneigentlichen Bereichsintegralen der folgende

Satz 2.10: Aus der Konvergenz des uneigentlichen Bereichsintegrals H | f(P)| db iiber
B

dem nichtbeschrinkten Bereich B folgt die Konvergenz des uneigentlichen Bereichs-
integrals [ f(P) db.
B

Der Beweis dieses Satzes ist nicht schwierig; man findet ihn z.B. in [3], Band IIL

Nach der Behandlung der uneigentlichen Bereichsintegrale iiber einem nicht-
beschréinkten Bereich kommen wir nun zu den uneigentlichen Bereichsintegralen mit
nichtbeschrankter Funktion (vgl. Beispiel 2.6).

Definition 2.10: Auf dem beschréiinkten Bereich B sei eine Funktion f(P) gegeben, die
in der Umgebung des Punktes P, nichtbeschrinkt ist. (Den Ausnahmepunkt P, nennt
man in diesem Zusammenhang auch singuliren Punkt.) Die Funktion f(P) soll aber auf
der Menge B\ U(P,) — wobei U(P,) jede beliebige Umgebung von P, sein kann —
beschrinkt sein (s. Bild 2.17). Wenn nun fiir jede Folge Uy, U,, ... von Umgebungen
des Punktes Py, deren Durchmesser gegen null konvergieren, der Grenzwert

lim  [] £(P)db
"R B\U,

existiert und immer den gleichen Wert hat, so nennt man diesen Grenzwert das uneigent-
liche Bereichsintegral der nichtbeschrinkten Funktion f(P) iiber dem Bereich B.

%

A\

B\UGR)

e

«  Bild2.17

Die Sitze 2.9 und 2.10 gelten — in entsprechend abgewandelter Form — auch fiir uneigentliche
Bereichsintegrale mit nichtbeschréinkter Funktion. — Ist die Funktion f(P) in der Umgebung mehrerer
Punkte P, Py, ..., P, nichtbeschrinkt, so mufl bei der Untersuchung des obigen Grenzwertes an
Stelle einer Umgebung U von P, ein System von Umgebungen U®, U®), ..., U® der Punkte P,
Py, ..., Py betrachtet werden. — Hat man an Stelle eines oder mehrerer singulirer Punkte eine
singulire Kurve, so dndert sich im Prinzip an den Formulierungen der Definition 2.10 nichts;
U, U,, ... muB jetzt eine Folge von Umgebungen der Kurve sein, die sich auf diese Kurve zusammen-
ziehen.

S.2.10

D.2.10

Aufgabe 2.4: Es sei B der durch die Geraden x = 0, x = V8, y = 0, y = 4 begrenzte Rechteck- *

1
bereich und f(P) = f(x,y) = y.x 3. Man priife, ob das uneigentliche Bereichsintegral _Q f(pP)db

konvergent ist. (Hinweis: Das zwischen y = 0 und y = 4 gelegene Stiick der y-Achse ist ein singuldres
Kurvenstiick.)
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3.1. Der Begriff des Raumintegrals und des n-dimensionalen Integrals

Bei der Definition des Raumintegrals kann man fast wortlich die bei der Einfiih-
rung des Bereichsintegrals im Abschnitt 2. verwendete Formulierung iibernehmen.
Es kommt.im Prinzip kein neuer Gedanke hinzu; eine Begriffsbildung wird von der
(2-dimensionalen) Ebene auf den (3-dimensionalen) Raum iibertragen. Anstelle eines
ebenen Bereichs B (i. allg. stellt man sich B als Teilmenge einer x,y-Ebene vor) mit einer
darauf definierten Funktion f(P) = f(x, y) hat man jetzt einen rdumlichen Bereich B
(eine Teilmenge des x,y,z-Raumes) mit einer darauf definierten Funktion f(P)
= f(x, y, z). Wir kénnen uns daher bei der Einfithrung des Raumintegrals sehr kurz
fassen.

Die Definitionen 2.1, 2.2 und 2.3 konnen wir wortlich auf rdumliche Bereiche
iibertragen; es ist lediglich die Formulierung, B sei ein ebener Bereich, durch die For-
mulierung, B sei ein rdumlicher Bereich (eine Teilmenge des Raumes), zu ersetzen.
Wesentlich ist, da man alle Erklirungen mit einer entsprechenden rdumlichen Vor-
stellung verbindet. In Bild 3.1 wird bei einem speziellen raumlichen Bereich B (einem
Wiirfel) eine Zerlegung in 8 Teilbereiche B, B;, ..., By vorgenommen.

Bei der Ubertragung der Definition 2.4 auf raumliche Bereiche ist selbstverstindlich
unter AB; der Rauminhalt von B; zu verstehen. Auch Definition 2.5 bedarf — ein-
schlieBlich der entsprechenden Vorbetrachtungen — keiner grofien Abdnderung. Diese
letzte, aber entscheidende Definition wollen wir hier aber noch einmal extra formu-
lieren.

Bild 3.1

Definition 3.1: f(P) sei eine auf dem rdumlichen Bereich B definierte reellwertige Funk-
tion. (Legt man ein rechtwinklig kartesisches x,y,z-Koordinatensystem zugrunde, so
gilt f(P) = f(x, y, z).) Falls der Grenzwert der Integralsummen

G=1lim 3 f(P)AB;

2B;»0 1

existiert, so nennt man diesen Grenzwert das Raumintegral der Funktion f(P) iiber dem
Bereich B und bezeichnet es mit dem Symbol

_gff(P) db.

- Die genaue Bedeutung des hier benutzten Grenzwertes entnehme man den Vor-
betrachtungen zu Definition 2.5.



3.1. Raumintegrale uhd n-dimensionale Integrale 45

Es gilt also
| [[[ rpydb = llimo S /(P;) AB;. 3.1
B, 2B;~0 i

Vergleicht man die beiden Definitionen 2.5 und 3.1 fiir das Bereichsintegral bzw.
das Raumintegral, so stellt man fest, daB3 sie in ihrer duBeren Form vollkommen
iibereinstimmen:

[[f(Pydb = lim 3 (P) AB;, ()
B ZB;—0 i
[[f 1Py db = lim 3 f(P) AB:. (I
B Z3 =00k

In (I) bilden die B; (i = 1, 2, ..., n) eine Zerlegung des ebenen Bereichs B, P; ist ein
Punkt aus der ebenen Teilmenge B;, AB; der Flicheninhalt von B, f(P) (= f(x, »))
eine auf dem ebenen Bereich B definierte Funktion. In (IT) ist /(P) (= f(x, y, z)) eine
auf dem rdumlichen Bereich B definierte Funktion, die B; (i = 1, 2, ..., n) sind rdum-
liche Teilmengen, AB; ist der Rauminhalt von B;. — Ahnlich wie belm Berexchsmtegral
ist auch beim Raumintegral die Bezeichnungsweise sehr uneinheitlich; wir werden
auf diesen Sachverhalt am Ende des Abschnittes 3.1. etwas ausfiihrlicher eingehen.

Das Bereichsintegral konnten wir im Falle einer nichtnegativen Funktion f(P)
= f(x, y) als Volumen eines gewissen Bereiches im R® interpretieren (vgl. Satz 2.1).
Auch beim Raumintegral mit nichtnegativer Funktion f(P) = f(x, y, z) ist es moglich,
dasselbe als ,,Volumen* (Riemann-Inhalt) eines gewissen Bereichs im R* anzusehen.
Von einer ,,Veranschaulichung im R* kann natiirlich keine Rede mehr sein. (Eine
Kleine Einfiihrung in den mit dem Riemann-Inhalt zusammenhéngenden Fragenkrels
findet man in Band 2, 10.5.)

Bevor wir zur Berechnung von Raumintegralen kommen, wollen wir ein ein-
faches, aber wichtiges Anwendungsbeispiel fiir Raumintegrale kennenlernen.

Beispiel 3.1 (Masse und Volumen eines Korpers): B sei ein rdumlicher Bereich (K6rper)
mit der Dichte o = o(P) (= o(x, », z)). Masse m und Volumen ¥ von B sollen mit
Hilfe eines Raumintegrals dargestellt werden.

Ist B ein homogener Bereich, d.h. ein Bereich mit konstanter Dichte p = g,, so gilt

natiirlich m = g,V oder anders ausgedriickt: ﬁV = 0. Ist die Dichte ¢ nicht konstant,

so kann man die Masse s von B durch folgenden GrenzprozeB gewinnen: B wird in
(moglichst kleine) Teilbereiche By, Bs, ..., B, zerlegt. Ist P; irgendein Punkt aus
B;(i=1,2,..,n), AB; das Volumen von B, so ist das Produkt g(P;) - AB; ndhe-
rungsweise gleich der Masse m; von B; (vorausgesetzt, daB die Dichtefunktion
o0 = g(P) stetig ist!). Fiir die Masse m von B gilt daher: m = 3 m; = 3 o(P;) AB;.

i i
Diese Naherung fiir m ist umso genauer, je ,.feiner** die Zerlegung B,, B, ..., B, von
B ist; den genauen Wert von m erhdlt man durch den uns nun schon hinreichend
bekannten Grenzproze$ @ B; — 0, d.h.:

m=lim > o(P;) AB;.

2B;~077



D.3.2

46 3. Integrale iiber rdumliche Bereiche

Nach der Definition des Raumintegrals (vgl. Formel (3.1)) ist also

I m=[[[odb. (32
B

Hierbei ist ¢ eine Funktion von P, d.h. ¢ = g(P). Ist im Spezialfall p = g, = const, so
kann man den konstanten Faktor g, vor das Integral setzen und erhélt m = g, f[ f db.

Hieraus folgt — wegen g_ = V - die Beziehung
0

i V=f£fdb. (3.3)

Auch hier méchten wir wieder darauf hinweisen, daB ﬂf db eine Kurzschreibweise

furﬂfldblst

Die Aussagen beziiglich Existenz und Eigenschaften bei Bereichsintegralen (s. Ab-
schnitt 2.2.) kann man sinngemiB auf Raumintegrale iibertragen. Beispielsweise hat
man anstelle von Formel ¢) in Satz 2.3 jetzt zu schreiben:

| fijf(P)db =f8jff(1>)db +[[[ 1Py db. (3.4

Hierbei wurde der rdumliche Bereich B in die beiden Teilbereiche B,, B, zerlegt.

Wir kommen nun zur Berechnung von Raumintegralen. Die in Definition 3.1 an-
gegebene Methode zur Ermittlung des Wertes eines Raumintegrals scheidet wegen
ihrer Kompliziertheit als eine praktisch brauchbare Berechnungsmethode aus. Be-
reichsintegrale wurden mit Hilfe von Doppelintegralen (zweifachen Integralen) be-
rechnet, falls der Bereich B ein ebener Normalbereich beziiglich der x- bzw. y-Achse
war (vgl. Satz 2.4). Einen dhnlichen Zusammenhang hat man bei den Raumintegralen:
Raumintegrale werden mit Hilfe von dreifachen Integralen berechnet, falls der Inte-
grationsbereich B ein rdumlicher Normalbereich ist. Wihrend es sich bei zweifachen
Integralen um zwei nacheinander auszufithrende einfache Integrationen handelt,
miissen bei einem dreifachen Integral drei einfache Integrationen nacheinander aus-
gefiihrt werden.

Was sind nun raumliche Normalbereiche?

Definition 3.2: Unter einem riumlichen Normalbereich beziiglich der x,y-Ebene ver-
steht man einen rdumlichen Bereich B, der ,,nach unten‘ und ,,nach oben‘* durch stetige
Flichen z = z,(x,y), z=z,(x,y) und ,seitlich® durch einen allgemeinen auf der
x,y-Ebene senkrecht stehenden Zylinder") begrenzt wird. Dabei wird vorausgesetzt, daf3
die Projektion B, von B auf die x,y-Ebene ein ebener Normalbereich beziiglich der
x- bzw. y-Achse ist (vgl. Definition 1.1) und die Fliche z = z,(x, y) stets unterhalb der
Fliche z = z,(x, y) verlduft (fiir alle (x,y) € Bay). Analog definiert man rdumliche
Normalbereiche beziiglich der beiden anderen Koordinatenebenen, der y,z-Ebene bzw.
x, z-Ebene.

1) Ist C eine in der Ebene E gelegene geschlossene, doppelpunktfreie Kurve, so bilden die in den
Punkten von C errichteten Normalen auf E die Mantelfliche eines allgemeinen Zylinders. Ist speziell
C ein Kreis, so erhilt man den bekannten Kreiszylinder.
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Beispiel 3.2: Ist B, ein ebener Normalbereich beziiglich der x-Achse, d.h. B,
= {(x,2) | ¥ = x = x5, »1(X) = y = yo(x)}, so wird der raumliche Normalbereich B
durch folgende Ungleichungen beschrieben: !

X EXEX
(3, 2)€EB={  yn(x) =y = p®)
21(%,¥) = 2 = 2(x, ¥).

(Ver.: z;(x, »), z2(x, y) stetig und z;(x, y) = z,(x, y) fir alle (x, y) € By,.) Wihit
man speziell x; =2, %, =6, y1(x) = =X, yo(¥) = X, z:(x,y)=—x— 1}y, ()
= x — } y, so ist B ein rdumlicher Normalbereich beziiglich der x,y-Ebene, der nach
unten durch die Ebene z = —x — § y, nach oben durch die Ebene z = x — } y be-
grenzt wird und dessen Projektion B, , auf die x,y-Ebene ein ebener Normalbereich
beziiglich der x-Achse ist (s. Bild 3.2). Ausgehend von Bild 3.2 versuche man sich
eine genaue Vorstellung von dem Bereich B zu verschaffen! (Von welchen 6 Ebenen
wird B begrenzt? Wie sieht der allgemeine Zylinder in diesem Fall aus? Wie sicht
die Projektion B,,; von B auf die x,z-Ebene aus? B, , ist der Grundrif von B, B, . ein
Seitenrifi von B.)

Bild 3.2
y=-x

Aufgabe 3.1: Von dem rdumlichen Normalbereich

1=x=4
B:{ —x+1=y=x-1
—3=2z=23(x+y+2)

bestimme man die Projektionen By, und By, . von B auf die x,y-Ebene bzw. x,z-Ebene. Von wieviel
Ebenen wird B begrenzt? Wie lauten die Gleichungen dieser Begrenzungsebenen?

Nach Definition 3.2 gibt es zwei Typen von raumlichen Normalbereichen beziiglich
der x,y-Ebene (beim 1. Typ ist B, ein ebener Normalbereich beziiglich der x-Achse,
beim 2. Typ ist B,,, ein ebener Normalbereich beziiglich der y-Achse). Analog gibt
es je zwei Typen beziiglich der y,z-Ebene und der x,z-Ebene. Insgesamt hat man also
6 verschiedene Typen von rdumlichen Normalbereichen. Von einem diéser 6 Typen
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haben wir zu Beginn des Beispiels 3.2 die allgemeine Beschreibung (Ungleichungen
fiir x, y, z) angegeben. Die anderen 5 Typen wurden explizit nicht behandelt.

Aufgabe 3.2: Von den restlichen — in Beispiel 3.2 nicht behandelten — 5 Typen von raumlichen,
Normalbereichen gebe man die allgemeine Beschreibung an.

Hinweis: Das vollstindige Durchdenken der mit der Aufgabe 3.2 zusammenhéingen-
den Problematik ist sehr zu empfehlen! Insbesondere sollte man sich von jedem Nor-
malbereich eine rdumliche Vorstellung verschaffen. Die Kenntnis dieser Zusammen-
hinge ist das Fundament bei der Berechnung eines jeden Raumintegrals.

Zu jedem der 6 Typen von raumlichen Normalbereichen gibt es ein dreifaches Inte-

gral.
Definition 3.3: Unter dem zu dem Normalbereich

HEXEX
B:{ yn(x)=y=y(x)
2106, ) = 2 = 22(x, )

gehorigen dreifachen Integral der Funktion f(x, y, z) versteht man folgenden Ausdruck

Ty Ys(7) 24(2,7) ES ys(2) 3(2,y)
[ fGx,y,2)dzdydx = [ ( ( f(x,9,2) dz) dy) dx.
2, y,(@) %(,y) z=z; \y=yy(2) \z=2(2,y)

Analog definiert man die 5 anderen Typen von dreifachen Integralen.

Zu dem in Definition 3.3 angegebenen Ausdruck miissen wir noch eine Erlduterung
hinzufiigen, da es sich hierbei bereits um eine abkiirzende Schreibweise fiir drei nach-
einander auszufithrende einfache Integrationen handelt. Zundchst wird f(x, y, z)
nach z integriert (wobei x und y wie Konstanten behandelt werden), anschlieBend wird
fiir z in der bekannten Weise die obere und untere Grenze (z;(x, y) bzw. z;(x, y))
eingesetzt und die Differenz gebildet. Im zweiten Schritt wird der erhaltene Ausdruck
nach y integriert (wobei x wie eine Konstante behandelt wird), und fiir y werden die
Grenzen y,(x) und y,(x) eingesetzt. Der nunmehr vorliegende Ausdruck wird im
dritten Schritt nach x integriert, anschlieBend werden fiir die einzige noch vor-
kommende Variable x die Grenzen eingesetzt.

Beispiel 3.3: Man berechne das dreifache Integral

3z ay

2 ]
J=fffxyzdzdydx.
1z

6
Esgilt: x; =1, x,=2; »(x)=x, »nx)=3x; 2z:(x,y)=0, z(x,y)=xy;
f(x, v, z) = xyz (vgl. Definition 3.3).

Beim 1. Schritt berechnen wir das innere Integral

y zy

22 J3=ay 1
5 =fxyz dz = fxyz dz = {xy 7} = E(xyf‘.

z=0
0 z2=0
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Beim 2. Schritt wird das mittlere Integral berechnet

3z 8z
Jo=[hdy=[}GyyPdy =[x L pP=s
. e

= §x°(8lx* — x*) = § x*- 80x! = 10x7.
AuBeres Integral:

] 2
2
J= J3=szdx =f10x7dx=[%xs] —318,75.
b §
1 i

Hinweis: Der zu diesem dreifachen Integral gehorige Normalbereich B wird ,,nach
unten durch die x,y-Ebene (z = 0), ,,nach oben* durch die Sattelfliche z = xy und
,seitlich® durch die vier auf der x,y-Ebene senkrecht stehenden Ebenen y = x,
y=3x, x =1, x =2 begrenzt.

Aufgabe 3.3: Man berechne das dreifache Integral

37% T8 atyta
I J | c+y+addpar
0 z—1 0

(Durch welche Flachen wird der zugehorige Normalbereich B begrenzt?)

Aufgabe 3.4: Man bestimme zu allen 6 Typen von Normalbereichen das entsprechende dreifache *
Integral (vgl. Losung zu Aufgabe 3.2 und Definition 3.3).

Aufgabe 3.5: Man berechne das dreifache Integral

*
5242 o+8z
_[ j j xyzdydxdz.
00 0

(Durch welche Flachen wird der zugehorige Normalbereich B begrenzt?)

Nach all diesen Vorbereitungen kénnen wir nun den zum Satz 2.4 (Berechnung der
Bereichsintegrale mit Hilfe von zweifachen Integralen) analogen Satz fiir Rauminte-
grale formulieren.

Satz 3.1: Ist B ein rdaumlicher Normalbereich und f(P) = f(x, y, z) eine auf B stetige S.3.1
Funktion, so ist der Wert des Raumintegrals von f(P) iiber B gleich dem Wert des zu
B gehdrigen dreifachen Integrals von f(x, y, z) (vgl. Definitionen 3.2 und 3.3).

Bei einem raumlichen Normalbereich vom Typ
X EXE X
B:{ y»i(x) =y = y(x)
2(x,3) = 2 = z(x,y)
lautet die entsprechende Formel:
Ty Ya®) 3(7,9)

[[[r®@yab={ [ [ f(x,y,2)dzdydx. (3.5

B LY ACEACY))

Analoge Formeln erhdlt man bei rdumlichen Normalbereichen der anderen 5 Typen
(vgl. Losung zu Aufgabe 3.4).

4 Korber, Integralrechnung
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Satz 3.1 wollen wir nicht beweisen. Eine Niherungsrechnung soll uns aber die Aus-
sage des Satzes verstindlich machen. Wir setzen voraus, daB der raumliche Bereich B
ein Quader ist. Es gelte
asx=<b
csy=d
esz=g.

Ita=x<x< - <xp=bbzw.c=yp, <y < <ym=d bzw.e=2,< 2,
< - < z;= g eine Zerlegung des Intervalls [a, b] bzw. [c, d] bzw. [e, g], so ist

B:

XiaSxXx=S X
Biji: {}’j—l Sysy;
Z1 S22, ; :
eine Teilmenge von B und die Gesamtheit der By (i=1,...,n;j=1,...,m; k=1,

, ) bildet eine Zerlegung von B. Ist Py (£;, 75, (i) ein beheblger Punkt aus Bjj, so
gllt nach Definition 3.1

f [ f(PYdb =~ 3 f(Pys) - AByji = 2 F(Pyii) Ax; Ay; Az, ‘ (3.6)
i,k
(Ax.—x: Xi_ ;,ij - ¥j- 1,Azk—ZA~ZA D-

Fiir das dreifache Integral f f f f(x,y, z) dz dy dx erhélt man die gleiche Niherungs-

darstellung, wenn man von der Definition fiir das bestimmte Integral ausgeht

b
( f f(x) dx = lim 3 (&) Ax;—) . Der besseren Ubersicht wegen fithren wir einige Ab-
a Az;~0

kiirzungen ein.

g
F(x,»):= [ f(x, ,2) dz = 3 f(x, y, ) Az
e k

a
G(x):= [ F(x, y)dy = 3 F(x, ;) Ay;.
Hieraus folgt '
ffjf(x, y,2)dzdydx = fG(x) dx =~ 3 G(&) Ax;

ace

= 2[2 F(&i,mj) AJ’J] Ax; ~ 2" [12‘ (%f(fu js Ck) AZ/:) AYj} Ax;.

Damit haben wir fiir das dreifache Integral die gewiinschte Naherungsdarstellung

j f f f(x,y,2)dz dy dx ~ 2 S(&y 155 &) Ax; Ay Az (3.7)
ace
Der Vergleich der Formeln (3.6) und (3.7) macht uns die Giiltigkeit der in Satz 3.1
formulierten Aussage verstindlich.
Hinweis : Ist B kein raumlicher Normalbereich, so zerlegt man zunéchst B in Normal-
bereiche B, ..., B, und wendet die Zerlegungsformel (3.4) an.
Die Formel (3.4) wird man auch dann heranziehen, wenn die Funktion f(P) auf dem
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Bereich B nur ,,stiickweise stetig® ist. Dabei wollen wir in Verallgemeinerung zum
Begriff der stiickweisen Stetigkeit bei Funktionen einer Variablen (sieche Band 2)
eine auf dem rdumlichen Bereich B definierte Funktion f(P) stiickweise stetig nennen,
wenn es eine Zerlegung von B in abgeschlossene Teilmengen B, B, ..., B, gibt, so
daB die Funktion f(P) auf jedem Teilbereich B; (i = 1, ..., n) stetig ist.
Beispiel 3.4: Von dem ,,nach unten* durch die x,y-Ebene (z = 0), ,,nach oben*
durch die Ebene 8x + 3y + 12z = 36 und ,,seitlich* durch den auf der x,y-Ebene
senkrecht stehenden Kreiszylinder x* + y* =4 begrenzten raumlichen Bereich B
berechne man das Volumen V.

B ist ein rdumlicher Normalbereich vom Typ B; (vgl. Losungen zu Aufgabe 3.2).
Die Projektion B, von B auf die x,y-Ebene ist eine Kreisschejbe (s. Bild 3.3). Es gilt:

—2<x=2

-V =sys1d-=
0<z=<3-3x—1%y.

(Man konnte B natiirlich auch als einen rdumlichen Normalbereich vom Typ B, an-
sehen.) Nach den Formeln (3.3) und (3.5) erhélt man
2 Yi- g2 8=/l
V= fﬂdb [ [ [ dzdyadx.
—2—Vi—zr o0

Die Integratlonsgrenzen fiir die Variablen x und y kdnnen aus der Skizze des Berei-
ches B, abgelesen werden (siche Bild 3.3). Man beachte auch hier, daf3 die Glei-
chung x? 4+ y? = 4 in der x,y-Ebene einen Kreis, aber im x,y,z-Raum (x? + 32 =4,
z beliebig) einen Kreiszylinder beschreibt.

y=Vi-x
/ 4
X
/ \' Bild 3.3
Vi-x2

y=—

Das rechts stehende dreifache Integral berechnen wir wxeder schrittweise:

3=*/w—/y
S = J dz=3—-%x—1y.
0
Vicat y=V4-2? — ——
[ ndy=py—3xy -3 o= 6Vi—F - fxli— v
—-Vi—z? b

2 2
Jy=[Jpdx=[ (64— 2 —$xVd—2*)dx = 12r.
-2 -2
Ergebnis: ¥ = 12 - © (Volumeneinheiten).

4+
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Die Integrale fiir V4 — x% und x |/4 — x* wurden einer Formelsammlung entnommen
(s. z.B. [1]).

Wie im AnschluB an Definition 3.1 bereits angekiindigt wurde, sollen zum SchluB der Ausfiih-
rungen iiber Raumintegrale noch einige Bemerkungen zur unterschiedlichen Bezeichnungsweise bei
Raumintegralen folgen. Auf Grund des in Satz 3.1 beschriet engen Zi I zwischen
Raumintegralen und dreifachen Integralen ist es verstdndlich, daB man oft an Stelle von Raum-
integral auch die Bezeichnung dreifaches Integral benutzt. Beim Symbol fiir das Raumintegral gibt
es — von kleineren Unterschieden einmal abgesehen — zwei Typen: Das Symbol mit drei Integral-
zeichen (wie wir es benutzt haben) und das Symbol mit einem Integralzeichen. Neben solchen Sym-
bolen wie

ffff(P)db oder (B)ffff(x,y, z)db oder ffff(x,y, z)dV oder
B )

JJf ripydv oder [[[f(x,y,2)dxdy dz
v (V)

findet man auch die Schreibweise

®)f f(x,y,2)db oder [ f(x,y,2)dV oder [ p(P)dr.
v v

Am Ende dieses Abschnitts wollen wir noch kurz auf die Verallgemeinerung des
bei Bereichs- und Raumintegralen kennengelernten Integraibegriffs auf den Fall von
mehr als drei Dimensionen eingehen. Bei einem Bereichsintegral ist ein ebener Be-
reich B (eine Teilmenge des R?) und eine darauf definierte Funktion f(P) = f(x;, X,)
gegeben. (An Stelle von x, y wurde hier die fiir Verallgemeinerungen zweckmaBigere
Schreibweise x;, X, benutzt.) Analog ist bei einem Rauniintegral ein rdumlicher Be-
reich B (eine Teilmenge des R®) und eine darauf definierte Funktion f(P) = f(x,, Xz, X3)
vorgegeben. Um eine fiir alle Dimensionen einheitliche Sprechweise zu ermoglichen,
wollen wir bei unseren jetzigen auf Verallgemeinerung gerichteten Betrachtungen die
Bereichsintegrale als zweidimensionale Integrale und die Raumintegrale als drei-
dimensionale Integrale bezeichnen. Integrale iiber n-dimensionale Bereiche heifien
dann n-dimensionale Integrale.

Bei einem n-dimensionalen Integral ist ein n-dimensionaler Bereich B (eine Teil-
menge des R") und eine darauf definierte Funktion f(P)= f(x,, xs, ..., X,) vor-
gegeben. (Wesentliche im R" geltende Zusammenhidnge wurden im Band 4 behan-
delt.) Die Definition des n-dimensionalen Integrals unterscheidet sich duBerlich kaum
von den entsprechenden Definitionen 2.5 und 3.1 fiir Bereichsintegrale (2-dim. Inte-
grale) bzw. Raumintegrale (3-dim. Integrale). In Analogie zu den Formeln (2.2) und
(3.1) hat man bei n-dimensionalen Integralen die Formel

[ rPydb = lim 3 f(P) AB.. (3.8)
B 2B~

Hierbei ist natiirlich jetzt By, B,, ..., B, eine Zerlegung des n-dim. Bereiches B in
n-dim. Teilbereiche, und unter AB; ist das n-dimensionale Volumen (der Riemannsche
Inhalt) von B; zu verstehen. Auf den Inhaltsbegriff (MaBbegriff) im R™ gehen wir
hier nicht ein. Wir verweisen auf die zu dieser Thematik gemachten Bemerkungen in
Band 2, Abschnitt 10.5.1., und auf [5], Bd. II, bzw. [4], Bd. III. Die Begriffe Abstand
und Durchmesser im R™ wurden in Band 4 erldutert.
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Fiir die Berechnung des n-dim. Integrals ist wesentlich, daB8 auch fiir #-dim. Be-
reiche der zu den Sdtzen 2.4 und 3.1 analoge Satz im R™ gilt.

Satz3.2: Ist B ein Normalbereich des R™ und f(P) = f(X1, Xz, ..., X,) eineauf B definierte
stetige Funktion, so ist der Wert des n-dimensionalen Integrals (vgl. (3.8)) gleich dem
Wert des zu B gehirigen n-fachen Integrals von f(x;, Xy, ..., Xn).

Was man unter einem Normalbereich des R™ und dem zugehorigen n-fachen Integral
versteht, soll an einem Beispiel im R* demonstriert werden.
a=x=G6G
8o(x%1) = X2 = Goxy)
83(X15 X)) = X3 = G5y, X2)
8a(X15 X2, X3) = X3 = Gy(x1, Xp,5 X5)

B:

ist ein solcher Normalbereich. Das 4-dimensionale Integral von f(P) =f(x;, X2, X3, X4)
iiber B ist dann gleich dem zu B gehorigen 4-fachen Integral von f(x;, X5, X3, X,). Das
heiBt:
G, Gy(m,) Galay, g) G4, 29, 24) ‘
[[[fr@dae=[ [ [ [ S %, x5, x) dx, dxs dx, dxy.
B

8 8:(®) 8:(®1,7q) 8,(Ty,7,%5)

Es gibt insgesamt 4! = 24 verschiedene Typen von 4-fachen Integralen. Bei 3-fachen
Integralen gibt es insgesamt 3! = 6 verschiedene Typen (vgl. Lésung zu Aufgabe 3.4).
Allgemein kann man feststellen, daB es n! verschiedene Typen von n-fachen Integralen
gibt.

3.2 Anwendungen des Raumintegrals

Ein erstes Anwendungsbeispiel haben wir schon in Abschnitt 3.1. kennengelernt.
Fiir die Gesamtmasse m des rdumlichen Bereichs B mit der (ortsabhidngigen) Dichte
o= o(P) gilt

m = fBﬂgdb.

Benutzt man fiir das Raumintegral das Symbol mit einem Integralzeichen — wie es
z.B. auch in der Physik sehr oft gebraucht wird —, so lautet die Formel fiir die
Gesamtmasse

m:fgdb.

Auf die Angabe des Integrationsbereiches B haben wir hier ausnahmsweise verzichtet,
da dies in den Anwendungen auch oft der Fall ist; selbstverstédndlich muB dann aus
dem Zusammenhang ersichtlich sein, iiber welchen Bereich B man integriert. SchlieB-

lich kann man an Stelle von m = f o db noch die ganz kurze Schreibweise
m= f dm

finden. Diese Schreibweise entspricht der folgenden physikalischen Vorstellung: Man
zerlegt den rdumlichen Bereich B in kleine Raumteile mit dem Volumen db. Multi-
pliziert man das Volumenelement db mit der Dichte p (o = Dichte in einem beliebigen

S.3.2



S.3.3

54 3. Integrale iiber riumliche Bereiche

Punkt des Raumteiles), so erhélt man niherungsweise die Masse dm des Volumen-
elements: dm = ¢ db. Die Summierung (Integrauon) iiber die Massenelemente dm
ergibt die Gesamtmasse m

m:fdmzfgdb.

(Es ist sehr instruktiv, diese ,,physikalischen* Formulierungen mit den Ausfithrungen
bei der Herleitung der Formel (3.2) zu vergleichen!)

Fiir den Schwerpunkt, das statische Moment und das Tridgheitsmoment im Raum
erhilt man Formeln, die mit den entsprechenden Formeln in der Ebene (vgl. Ab-
schnitt 2.4.) iibereinstimmen, wenn man in den Formeln fiir die Ebene das Bereichs-
integralsymbol durch das Raumintegralsymbol ersetzt. Fiir den Schwerpunkt gilt der
folgende

Satz 3.3: B sei ein rdumlicher Bereich mit der (ortsabhingigen) stetigen Dichte
o = o(P) = o(x, y, z). Fiir den Schwerpunkt S(xs, ys, zs) gilt dann

xs=7nl—/f_/‘xgdb,7
B

vs = [[[ e, 39
L

zs=%/gffzgdb.

Die Gesamtmasse m von B wird dabei nach der Formel

m :gf@db

berechnet.

Bei der Herleitung dieser drei Formeln 146t man sich vom gleichen Gedankengang
leiten, wie bei der Herleitung der entsprechenden Formeln fiir den Schwerpunkt eines
ebenen Bereichs. Bei der Skizzierung des Beweises fiir Satz 3.3 kénnen wir uns ohne
Beschrinkung der Allgemeinheit auf die Formel fiir xs konzentrieren. Als bekannt
setzen wir wieder die Formeln fiir den Schwerpunkt (x ¥, z) eines Systems von
Massenpunkten P;(x;, i, z;) mit den Massen m; (i = 1, ..., n) voraus:

- 1
xzzgximi.

Analog fiir y und z. B wird in (kleine) Teilmengen B, By, ..., B, zerlegt, und jede
Teilmenge B; durch einen Massenpunkt P; € B; mit der Masse m; = m(B;) = Masse
von B; ersetzt. Es gilt m; =~ o(P;) AB;; hierbei ist wieder AB; das Volumen von B; und
o(P;) die Dichte im Punkte P;. Von diesem System von Massenpunkten Py, P», ..., P,
mit den Massen My, My, ey g bestimmen wir nach den bekannten Formeln den
Schwerpunkt (¥, 3, z), der eine Néherung fiir den gesuchten Schwerpunkt (xs, ys, zs)
des Bereiches B darstellt. Es gilt also : X =~ x5,y = ys, Z =~ zs. Den genauen Wert
von Xg, ¥s, zs erhilt man durch den bekannten GrenzprozeB & B; — 0.
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Diese Uberlegungen ergeben formelmaBig:
- 1 1
X =7n‘§x(1’i)'mi z’r;;x(Pl)e(Pi)ABi,

xs= lim X = lim % 2 x(P;) o(P)) AB;

2B;—0 2B ;0
SR 2[xo](P~)A34—ifffx db
_{"aB,»Oi i LumB Ci

(Zuf letzten Umformung vergleiche man Formel (3.1).)

Hinweis: Die in Satz 3.3 angegebene Formel fiir x5 wird wegen der vorhin beschrie-
benen physikalischen Beziehung ¢ db = dm auch in der Form

o [

bzw. — bei Behutzung des Symbols mit einem Integralzeichen —

1
x5=;fxdm

geschrieben. Die drei Gleichungen x5 = ;;; xdm, ys= % f ydm, zg= ;1 f zdm

konnen schlieBlich noch in einer Vektorgleichung zusammengefaBt werden:

Xs x

=X —ifxdm—if dm
Vs |= S=n = y .
zg z

Den Schwerpunkt eines homogenen Bereiches B (o = const) bezeichnet man als
geometrischen Schwerpunkt. Ist p = g, = const, so kann man in den Formeln des
Satzes 3.3 den Faktor p, vor das Integral setzen und erhilt wegen ﬂV =

.

0o den

Satz 3.4: Fiir den geometrischen Schwerpunkt (xy, vy, zo) des riumlichen Bereiches B gilt S.3.4

3]
B

yo=inffydb, C G0
B

z0=iyfffzdb.

V wird nach der Formel V = fﬂ db berechnet (vgl. (3. 3)).
B
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Bild 3.4

X

Beispiel 3.5: Von dem durch die Koordinatenebenen x = U, y = 0, z= 0 (y,z-Ebene,
x,z-Ebene, x,y-Ebene) sowie den Ebenen 2x + y = 6 und 6x -+ 3y + 4z = 24 begrenzten
raumlichen Bereich B (s. Bild 3.4) bestimme man den geometrischen Schwerpunkt.

Wir berechnen zundchst das Volumen ¥ von B nach der Formel V' = f H db.Da B

B
ein rdumlicher Normalbereich vom Typ B, ist (vgl. Lésung zu Aufgabe 3.2), kann
man das Raumintegral mit Hilfe eines dreifachen Integrals berechnen (vgl. Formel
(3.5)). Wegen
0=x<3
B {0 Sys6-—2x
0=z=6-3x-1%y

gilt: 3 6—22 6-3/,2—3y
v=[[fa=[ [ [ dzdydx
B S J
3 6—2x
=f ,r(6—*%X——y)dydx f[6y _sy]_/-e_azdx
0 0

f(——— 12x+—x2)dx 27.

Von den Koordlnaten des geometrischen Schwerpunkts berechnen wir nur die x-Koor-
dinate x,. (Bei y, und z, ergeben sich keine neuen Gesichtspunkte.) Nach Satz 3.4 gilt

3 6—2x 6—3/,2—%y

_fﬂh%_ﬂf/ f xdzdy dx

3 6—2z

1 3 3
-] e 3 p)os
(U

3
1 (45 b 3. 19 7
=—2—7—f(~2—x—12x +7x)dx——27 §-21——§.
0
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Aufgabe 3.6: B sei ein raumlicher Bereich, der nach unten durch die x,y-Ebene, nach oben durch das
Rotationsparaboloid z = x® + 2 + 2 und seitlich durch die auf der x,y-Ebene senkrecht stehenden
Ebenen x =0, x = 3, y = 1, y = 4 begrenzt wird. (In Bild 3.5 ist die Projektion von B auf die
x,y-Ebene eingezeichnet.) Man berechne die x-Koordinate des geometrischen Schwerpunkts von B.

7 Bild 3.5
] X

Ist B ein rdumlicher Bereich mit dem Schwerpunkt S(xs, s, zs) und der Gesamt-
masse m, so versteht man unter dem statischen Moment von B beziiglich der x,y-Ebene
das Produkt M,,:= m - zg (Gesamtmasse von B mal Abstand des Schwerpunktes
von der x,y-Ebene). Analog definiert man die statischen Momente von B beziiglich der
beiden anderen Koordinatenebenen. Nach Satz 3.3 kann man die statischen Mo-
mente von B wieder durch Raumintegrale darstellen.

Satz 3.5:
My=m-zs= ([ z0db S @I
)3 :

ist das statische Moment von dem rdumlichen Bereich B (mit der Dichte o = o(P))
beziiglich der x,y-Ebene.

Ebenfalls durch Raumintegrale kann man den Begriff des Trigheitsmomentes
beschreiben. Unter dem Trdgheitsmoment eines Massenpunktes P(x,y,z) mit der
Masse m beziiglich einer Ebene E, bzw. einer Geraden g, bzw. eines Punktes P, ver-
steht man das Produkt m - r? = Masse mal Quadrat des Abstandes r des Punktes P
von E, bzw. g, bzw. P,. Das Trigheitsmoment Jz, bzw. Jg bzw. Jp, beziiglich einer
Ebene E, bzw. einer Geraden (Achse) g, bzw. eines Punktes (Pols) P, bezeichnet man
als planares bzw. axiales bzw. polares Trigheitsmoment.

Hat man ein System von Massenpunkten P;(x;, y;, z;) mit den Massen m; (i = 1,
2, ..., n), so summiert man iiber die Tragheitsmomente der einzelnen Massenpunkte
und erhdlt das Tragheitsmoment eines Systems von Massenpunkten:

J=3m;ri. ‘ (3.12)

Hierbei ist r; der Abstand des Punktes P; von E, bzw. g, bzw. P, je nachdem, ob es
sich um ein planares, axiales oder polares Trigheitsmoment handelt.

Auf dem nun schon hinreichend bekannten Weg (Zerlegung des Bereiches B in
kleine Teilmengen B, ..., B, usw.; vgl. die Ausfithrungen zum Satz 3.3) gelangt man
von der Formel (3.12) zu einer Formel fiir das Trédgheitsmoment eines riumlichen
Bereichs (eines Kirpers) B.
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Es gilt der

Satz 3.6: Das Tragheitsmoment J (=J g, bzw. Jg, bzw. Jp,) eines rdumlichen Bereiches B
mit der (ortsabhingigen) Dichte p = o(P) = o(x, y, z) bereclnet man nach der Formel

I J=[[[rodb. (3.13)
B .

N
Hierbei ist r der Abstand des (variablen) Punktes P(x,y, z) von Ey bzw. g, bzw. Py,
Je nachdem, ob es sich um das planare, axiale oder polare Trigheitsmoment J = Jg,
bzw. J = Jg, bzw. J = Jp, handelt.

Bei der Berechnung des Abstandes » (Abstand Punkt-Ebene, Abstand Punkt-
Gerade, Abstand Punkt-Punkt) geht es um einfache geometrische Grundaufgaben
(vgl. Band 13; 1.4.5. und 1.4.6.) In einigen wichtigen Spezialfillen kann man r bzw.
r? sofort angeben:

E, = x,y-Ebene = r? = 22,
8 = x-Achse =r?=y*+ 22,
Py=0 =>ri=x"+)"+ 2
(O = Koordinatenursprung).
Die Formel (3.13) wird auch in der Form
J=fffr2 dm bzw. J=_fr2 dm
angegeben.

Beispiel 3.6: Von dem in Bild 3.6 dargestellten rdumlichen Bereich B (Quader) mit
= 1 berechne man das Trigheitsmoment beziiglich der z-Achse.
Ist g, die z-Achse, so gilt fiir den Abstand r des variablen Punktes P(x, y, z) von
der z-Achse r? = x* + y. Fiir das gesuchte Trigheitsmoment J. gilt daher nach For-
mel (3.13)

J=[[[ (2 + ) db.
B
Da B ein rdumlicher Normalbereich ist, kann das Raumintegral sofort durch ein

dreifaches Integral ersetzt werden (vgl. Satz 3.1):
234

J.=[[[ @+ dz dy dx = 104 [g - cm?].
000

Z.

Bild 3.6 Bild 3.7
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Aufgabe 3.7: B sei der in Bild 3.7 dargestellte rdumliche Bereich (Vierflach) mit der Dichte o = x + 1.
Man berechne das Trigheitsmoment von B beziiglich der y-Achse.

Bei der Berechnung des Trigheitsmoments ist ein Satz von Bedeutung, mit dessen
Hilfe man das Trigheitsmoment eines Korpers beziiglich irgendeiner Achse ermitteln
kann, wenn man die Trigheitsmomente dieses Korpers beziiglich der durch den
Schwerpunkt des Korpers gehenden Achsen kennt. Es handelt sich um den

Satz 3.7 (Steiner): B sei ein Korper mit der Dichte o = o(P) und der Gesamtmasse m.
Ist g eine beliebige Achse, gs eine zu g parallel verlaufende Schwerpunktachse (g || gs,
Segs, S Schwerpunkt von B), a der Abstand dieser beiden Achsen, so gilt fir das
Tragheitsmoment J bzw. Js des Korpers beziiglich g bzw. gs die Gleichung

= Js+ ma.

Beweis: Wir fiihren ein rechtwinklig-kartesisches Koordinatensystem ein, dessen z-Achse mit der
Achse g zusammenfillt und dessen x,z-Ebene die Achse g5 enthdlt. Wegen gllgs ist das moglich!
Legt man nun durch den beliebig vorgegebenen Punkt P(x, y, z) eine auf g senkrecht stehende Ebene
Ep (wegen ,,g = z-Achse** muBl Ep parallel zur x,y-Ebene verlaufen!), so ergibt sich beziiglich der
drei GroBen r; = Abstand (P, g), r, = Abstand (P, gs), a = Abstand (g, gs) der in Bild 3.8 darge-

A Bild 3.8

stellte Zusammenhang; dabe1 ist P1 bzw. P, der Schnittpunkt der Ebene Ep mit g bzw. gs. Fiir die
—
Vektorenr; = PP, a = Ple, I, = PZP gelten die Beziehungen:

Dinl=r,lal=a ) =ry;
I rp=2a+r,;
I1D) (x, y, 0): Koordinaten des Vektors ry,
(a, 0, 0): Koordinaten des Vektors a,

(x — a,y,0): Koordinaten des Vektors r, = r; — a (beziiglich des eingefiihrten Koordinaten-
systems).

Fiir die Tragheitsmomente J bzw. Js gilt nach Satz 3.6:
J=[[fr2edb, Js = [[fr20db.
B B

Es ist nun zu zeigen: J = Js + ma®:

S.3.7
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Js=[[[r3edb = [[[rdedb = [[f [x = @) + % 0db
B B B
= [ff a2+ y0db — [ff2axedb + [[f a%odb
B B B

=j;§jrf_odb— 2a_f£_£jxgdb+azj;§”gdb

=J —2a-xsm + a*m. (Vgl. Satz 3.3)

Da der Schwerpunkt S auf g5 liegt, muB fiir die x-Koordinate des Schwerpunkts (xs) beziiglich des
eingefiihrten Koordinatensystems die Gleichung xs = a gelten. Wegen Js = J — 2a*m + @*m
= J — a*m ist damit der Satz von Steiner bewiesen.

Hinweis: Am SchluB des Beweises wurden die Faktoren 2a und 4> vor das jeweilige Raumintegral
gesetzt. Das ist moglich, weil diese Faktoren konstant sind. Den Faktor o dagegen darf man i.allg.
nicht vor das Raumintegral setzen; dies wire lediglich im Falle eines homogenen Bereichs erlaubt
(0 = const).

An dieser Stelle wollen wir zunachst einmal die Reihe der Anwendungen des Raum-
integrals abbrechen. Im Abschnitt 4. lernen wir aber noch weitere Anwendungs-
beispiele kennen. Die Transformationsformel fiir mehrdimensionale Integrale, die
im Abschnitt 4.2. behandelt wird, gestattet eine wesentlich bessere Beherrschung der
mehrfachen Integrale, als das nach unseren bisherigen Kenntnissen mdoglich ist.



4. Transformation mehrdimensionaler Integrale

4.1. Allgemeine krummlinige Koordinaten

In Band 4 (Abschn. 2.6.) wurden krummlinige Koordinaten in der) Ebene und im
Raum eingefiihrt. Der wesentliche Grund, von den rechtwinklig-kartesischen x,y-Ko-
ordinaten in der Ebene [bzw. x,y,z-Koordinaten im Raum] zu krummlinigen u,v-Ko-
ordinaten [bzw. u,v,w-Koordinaten] iiberzugehen, liegt in der Tatsache begriindet,
daB eine ganze Reihe von ebenen [bzw.rdumlichen] Bereichen durch geeignete
krummlinige Koordinaten wesentlich einfacher beschrieben werden konnen, als durch
die im allgemeinen verwendeten rechtwinklig-kartesischen Koordinaten. Das folgende
einfache Beispiel wird zeigen, daB die eben getroffene Feststellung vor allem auch bei
Bereichs- und Raumintegralen unbedingt beachtet werden muB! Ungiinstige Wahl der
Koordinatenart fithrt fast immer zu komplizierteren Rechnungen bei den zugehd-
rigen zweifachen bzw. dreifachen Integralen — in vielen Fillen kann es sogar zu einem
mit den iiblichen Mitteln nicht mehr 16sbaren Problem fiihren.

Beispiel 4.1: Das Volumen ¥ einer Kugel vom Radius a soll mit Hilfe eines Raum-
integrals berechnet werden.

Wir fithren ein rechtwinklig-kartesisches x,y,z-Koordinatensystem ein, dessen
Koordinatenanfangspunkt O mit dem Mittelpunkt M der Kugel zusammenfallen
soll (s. Bild 4.1). Der durch die Kugel x* + y* + z? = a? begrenzte raumliche Bereich B
ist ein Normalbereich vom Typ B, (vgl. Losungen zur Aufgabe 3.2; B kann in diesem
Fall auch als Normalbereich vom Typ B, ..., B angesehen werden). Es gilt

—as<x=a
B: —Je-—EzysVae—

B g SO -

Bild 4.1

Diese Ungleichungen ergeben sich aus folgenden Umformungen: Aus x2 + 3%+ 22 = a*
folgt z = -+ J/a® — x* — »?, wobei ,,+* die obere und ,,—* die untere Kugelhilfte
liefert. Die Projektion B,, (von B auf die x,y-Ebene) ist die durch den Kreis
¥+ y? = a® begrenzte Kreisscheibe mit den Begrenzungskurven y = + |/a® — x°.
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Nach den Formeln (3.3) und (3.5) erhalten wir dann

Va—a Vaaig

ijfdb_f J [ dzdyax.

“a —Var—zt —Yaieaiog

Dieses dreifache Integral ist natiirlich noch 16sbar (fiir ¥ erhilt man den bekannten
Wert § wa®), aber duBerlich sieht es doch schon relativ kompliziert aus. DaB bei
diesem einfachen Bereich (Kugel) das zugehdorige dreifache Integral die angegebenen,
von x und y abhdngigen Grenzen hat, liegt an der fiir diesen Bereich ungiinstigen
Koordinatenwahl. Wenn man dagegen Kugelkoordinaten r, ¢, ¢ einfiihrt, wird der
Bereich B durch den folgenden Bereich B’ des r, ¥,¢-Raumes charakterisiert:

0==r=a
B:{0=9
0=¢

T
2w.

IAIA

Wir wissen aber im Augenblick noch nicht, wie sich das Raumintegral beim Uber-
gang von den x,y,z-Koordinaten zu den r,,¢p-Koordinaten verhélt. Auf diese Frage
werden wir im Abschnitt 4.2. ( Transformationsformel fiir mehrdimensionale Integrale)
eine Antwort geben. An dieser Stelle mochten wir aber schon darauf hinweisen, daf3
die duBerlich naheliegende Umformung

2n 7

V=f}fdrd0d¢
ouvo

nicht richtig ist. Dann wiirde man nidmlich fiir ¥ den Werte 2n%a erhalten.

Als Vorbereitung fiir den Abschnitt 4.2. sollen in diesem Abschnitt alle wesent-
lichen Eigenschaften iiber krummlinige Koordinaten zusammengestellt und erldutert
werden. Es handelt sich zum groBen Teil um eine Wiederholung der bereits im Band 4
behandelten Thematik.

Bei krummlinigen Koordinaten in der x,y-Ebene (im R*) wird durch eine eindeutige
Abbildung (Transformation)

L[ x=x(u,v)
T'{y=y(u, v)

aus der u,0-Ebene auf die x,y-Ebene gewéhrleistet, daB es zu jedem Punkt Py(xo, yo)
(mindestens) ein Paar (i, vy) gibt mit

4.1)

Xo = x(ty, o),
Yo =y (U5 Vo)-
Diese Zahlen u,, v, heilen krummlinige Koordinaten des Punktes Py(x,, y,) beziiglich
des durch Formel (4.1) festgelegten krummlinigen Koordinatensystems.
Die am meisten gebrauchten krummlinigen Koordinaten in der x,y-Ebene sind die
Polarkoordinaten r, ¢ (s. Bild 4.2). Formel (4.1) hat in diesem Spezialfall die Gestalt
x=r- clos @ (= x(r, ), @2)
y=r-sing (= y(, ).
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y "

x,y)

Bild 4.2

X
Zu jedem (x,, o) =+ (0, 0) gibt es im Bereich 0 < r < oo, == < ¢ = = genau ein
Paar (r, ¢,) mit
< Xo = Iy * COS @y,
Yo = T * sin @,
Hinweis: In Band 4 wurde fiir die in Formel (4.1) auftretenden Gleichungen meistens
die Schreibweise x = f; (u, v), y = f(u, v) benutzt.
Bei krummlinigen Koordinaten im x,y,z-Raum (im R®) hat man an Stelle der For-
mel (4.1) die Beziehung ‘
x = x(u, v, w)
T:{y=y(u,v,w) 4.3)
z = z(u, v, w).

Es wird wieder vorausgesetzt, daB durch (4.3) eine eindeutige Abbildung aus dem
u,v,w-Raum auf den x,y,z-Raum definiert ist.

Die bekanntesten krummlinigen Koordinaten im x,y,z-Raum sind die Zylinder-
koordinaten und die Kugelkoordinaten. Bei Zylinderkoordinaten r, ¢, z* nimmt die
Formel (4.3) die folgende Gestalt an:

x=r-cosg (= x(r, p, z%),
y=r-sing(=y({, ¢, z%), “4.4)
z=2z* (= z(r, p, z%)).

Zu jedem Punkt (x,, yo, zo) mit (X, yo) == (0,0) gibt es i.‘m Bereich 0 < r < oo,
—n<@=m —oco< z¥< oo genau ein Tripel (ry, @y, z,*) mit xo = ry - cos ¢,
Yo = I - Sin @y, zp = zo* (s. Bild 4.3).

z

POy D’
Z'

Bild 4.3
P'(x,y,0)

X

Hinweis: Da die dritte kartesische Koordinate z mit der dritten Zylinderkoordinate
z* iibereinstimmt, werden in der Regel die Zylinderkoordinaten mit r, ¢, z bezeichnet.
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In der Einfilhrung empfiehlt es sich aber, diese beiden Koordinaten in der Bezeich-
nung zu unterscheiden; man vermeidet dann die etwas ungliickliche Schreibweise
X=rcosg,y=rsing, z=z.

Fiir Kugelkoordinaten r, 9, ¢ erhilt die Formel (4.3) die spezielle Gestalt
x = rcos ¢ sind (= x(r, 9, ¢)), .
y=rsingsind (= y(r, 9, ), 4.5)
z=rcos¥ (=z(r, 9, ¢)).

Die durch die Formel (4.5) gegebene Abbildung bildet den Bereich 0 < r < oo,
0=9=mr,0= ¢ <2r desr,d,p-Raumes auf den gesamten x,y, z-Raum ab (s. Bild 4.4).

Pixy,2)

P(xy,0) Bild 4.4

X

Den im R? und R® eingefiihrten Begriff der krummlinigen Koordinaten kann man
sofort auf den R" iibertragen. Krummlinige Koordinaten im xy, ..., x,-Raum (im R")
werden durch eine eindeutige Abbildung

Xy = Xy (U5 oee Un)
T : (4.6)

Xn = Xn(Uy, euns Un)

aus dem 4, ..., u,-Raum auf den x, ..., x,-Raum festgelegt.

Ein wesentliches Hilfsmittel fiir die Beherrschung des Zusammenhangs zwischen
den (kartesischen) X, ..., x,-Koordinaten und den krummlinigen #, ..., #,-Koor-
dinaten ist die Funktionaldeterminante der Abbildung 7. Diese Funktionaldetermi-

0(xy,..

nante wird mit dem Symbol __,x,,)) bezeichnet und durch die folgende Gleichung

definiert 0Gh5 vy tn
0x; ax; l’
e T |
0y, ) | 0 " an
O(ttyy v, Un) a)'c,, a:xn |
Ou;, ™ Qu,

Fiir die Existenz der Funktionaldeterminante (in einem gewissen Bereich B’ des
Uy, ..., U,-Raumes) ist natiirlich erforderlich, daB simtliche partiellen Ableitungen
(1. Ordnung) der Funktionen x; (t4;, ..., Up), <., Xn(ty, ..., t4,) von T (in B’) existieren.
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Bei krummlinigen Koordinaten im R? bzw. R® erhilt man als Spezialfall der Formel
(4.7) die Formeln

Gl :
d(x,y) _|Ou O '
= / 4.8
0(u, v) dy Oy “8)
Bu v
und
0x Ox Ox
Ou v ow
0(x,»,2) (O Oy Oy
9w, v,w) | Ou Ov Ow 620
0z 0z 0z
ou v ow

Anwendung der Formel (4.8) bzw. (4.9) auf Polarkoordinaten bzw. Zylinder- und
Kugelkoordinaten liefert die Beziehungen

Ax,y) _|x x,
el =r, 4.10
o, e) |y Y (“.10)
X, X, X.
3(x, 3, 2) v
Aot wl=r 4.11
I I AR (4.11)
Z Zy Zg
| Xr X9 X
3%, y,2) i
o | Y Vet sin & 4.12)
Z; 23 Zp

(vgl. Band 4, Abschnitt 3.8.3.).

Beispiel 4.2: Der in Bild 4.5 dargestellte raumliche Bereich B (Kreiskegel mit dem
Radius R = 2 und der Hohe H = 3) soll

a) durch kartesische Koordinaten x, y, z und

b) durch Zylinderkoordinaten r, @, z beschrieben werden.

72
Bild 4.5 Bild 4.6

5 Kaérber, Integralrechnung
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Zu a): Schneidetman B lingsder x, z-Ebene auf, so erhdlt man ein Dreieck (s. Bild 4.6).
Die Strecken s, und s, werden beide durch die Gleichung z = — 2 |x| + 3 = — 3]/x*+ 3
beschrieben.
z=—3x2 42 + €] ist auf alle Fille eine Rotationsfliche, denn alle Punkte (x,y)
eines Kreises x* + y* = r? haben den gleichen z-Wert z = — 3r + 3. Der Schnitt
dieser Flache mit der x,z-Ebene (y = 0) liefert z = — sz + 3. (Uber Rotations-
flichen, Kegelflichen und Zylinderflichen kann man sich auch in [1] informieren.)
Der Mantel des Kreiskegels entsteht durch Rotation von s, um die z-Achse und
wird durch die Gleichung z = — § x2+ 324 3 (32 + y* = 4) beschrieben. B ist ein
raumlicher Normalbereich vom Typ B, (vgl. Losungen zur Aufgabe 3.2), der nach
oben durch die Kegelmantelfliche und nach unten durch die in der x,y-Ebene (z = 0)
liegende Kreisscheibe x* + y* < 4 begrenzt wird. Es gilt daher:

—-2=x=2
—J4-x=y<sV4-—x®
0=z —-31Ux®+ 32+ 3.

Zu b): Wegen x* + y* = r? (vgl. Formel (4.4)) und z = — 3x% + )% + 3 gilt fiir
alle Punkte (r, ¢, z) der Mantelfliche des Kegels: z= — § r + 3. (Auf Grund der
Rotationssymmetrie von B ist es auch geometrisch unmittelbar einleuchtend, daB z
nur von r und nicht von ¢ abhéngt.) Beziiglich Zylinderkoordinaten wird daher der
Bereich B durch folgende Ungleichungen beschrieben (s. Bild 4.5):

=T
B 0s=r=s2
0z <—-3r+3.

Ein Vergleich von a) und b) zeigt, daB der hier vorgegebene raumliche Bereich (Kreis-
kegel) durch Zylinderkoordinaten wesentlich einfacher zu beschreiben ist, als durch
kartesische Koordinaten. Der durch die obigen Ungleichungen fiir 7, (p, z beschrie-
bene Bereich B’ ist ein Normalbereich im r,p,z-Raum vom Typ

@1 = 14 = P2,
r(p) =r = rle)
20, 9) = 2= 2, ¢).
Auf diese allgemein giiltigen Prinzipien bei der Beschreibung von Normalbereichen

wurde bereits in der Losung zur Aufgabe 3.2 hingewiesen. (Wie sehen die 6 Typen
von Normalbereichen im r,¢,z-Raum aus?)
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Aufgabe 4.1: Man beschreibe den in Beispiel 4.2 angegebenen rdumlichen Bereich durch einen 4
Normalbereich im r,p,z-Raum vom Typ

PLEP =G
z(p) = z = 2(9),
r(@,2) = r = g, 2).

Aufgabe 4.2: Von dem in Bild 4.7 dargestellten raumlichen Bereich B (Halbktigel mit dem Radius R) #
soll eine Darstellung als Normalbereich angegeben werden, und zwar
a) beziiglich kartesischer Koordinaten und

b) beziiglich Kugelkoordinaten.

Bild 4.7 Bild 4.8

Aufgabe 4.3: LaBt man die in der x,z-Ebene liegende Gerade z = x (x = 0) um die z-Achse rotieren

so schneidet sie aus der Kugel x* + »* + z2 = R? einen Kugelausschnitt aus (s. Bild 4.8). Dieser
Kugelausschnitt (B) soll

a) durch Kugelkoordinaten,

b) durch Zylinderkoordinaten beschrieben werden.

Hinweis: Wir empfehlen, die Aufgaben 4.1, 4.2 und 4.3 mit groBer Sorgfalt zu osen.
Die Bestimmung der Grenzen eines Bereiches beziiglich krummliniger Koordinaten
ist die entscheidende Grundlage fiir die Berechnung von Bereichs- und Rauminte-
gralen mit Hilfe krummliniger Koordinaten. Im Abschnitt 4.3. (Anwendungen der
Transformationsformel fiir mehrdimensionale Integrale) werden keine wesentlichen
Schwierigkeiten auftreten, wenn die mit Beispiel 4,2 und den Aufgaben 4.1, 4.2, 4.3
zusammenhidngende Problematik voll verstanden worden ist.

4.2. Die Transformationsformel fiir mehrdimensionale Integrale

Im Abschnitt 4.1. (Beispiel 4.1) wurde bereits darauf hingewiesen, daB es in vielen
Fallen nicht giinstig ist, ein vorgegebenes Bereichs- bzw. Raumintegral (zweidimen-

sionales bzw. dreidimensionales Integral) ([f(P)db bzw. [[[f(P)db mittels Karte-
B B

sischer Koordinaten x, y bzw. x, y, z zu berechnen. °
,

5%
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Bei einem Kreis bzw. Kreisausschnitt ist es vorteilhafter, an Stelle von kartesischen
x,y-Koordinaten mit Polarkoordinaten r, ¢ zu rechnen. Die ,,natiirlichen* Koor-
dinaten fiir die Beschreibung einer Kugel bzw. eines Kugelausschnittes sind die Kugel-
koordinaten r, ¥, . Fiir Kreiszylinder, Kreiskegel und daraus zusammengesetzte
Bereiche sind die Zylinderkoordinaten die giinstigsten Koordinaten zur Beschreibung
dieser Bereiche.

Wir kommen nun zu den Uberlegungen und Fragestellungen, die uns auf die Trans-
formationsformel fiir mehrdimensionale Integrale fithren werden:

Jedes ‘Bereichsintegral [[ f(P)db [bzw. Raumintegral [[[7(P)db] kann nach
B B
Formel (2.5) [bzw. Formel (3.5)] durch Doppelintegrale [bzw. dreifache Integrale]

' Zy Yy(T) EXN y’,'(z) 2(2,y)
der Form f f fx,y)dydx [bzw. f J f f(x,y,z)dz dy dx | berechnet wer-
7y %,(2) 2 11(@) (@)

den — sofern die Grenzen bei den Doppelintegralen [bzw. dreifachen Integralen]
und der Integrand f(x, y) [bzw. f(x, y, z)] nicht so kompliziert sind, daB man bei den
nacheinander auszufithrenden zwei [bzw. drei] einfachen Integrationen auf sehr
groBe Schwierigkeiten stoBt. Treten solche Schwierigkeiten auf, wird man ver-
suchen, von den alten (kartesischen) Koordinaten x, y [bzw. x, y, z] zu neuen (krumm-
linigen) Koordinaten u, v [bzw. u, v, w] iiberzugehen, die dem Problem besser an-
-gepaBt sind. ,,Dem Problem besser angepaBt* heiit in diesem Zusammenhang, da
die Grenzen des Bereiches B und die Funktion f(P) beziiglich der neuen Koordinaten
eine einfachere Gestalt haben. Wir erinnern an dieser Stelle an das besonders an-
. schauliche Beispiel einer Kreisscheibe vom Radius R.

Beispiel 4.3: Legt man durch den Mittelpunkt der Kreisscheibe ein x,y-Koordinaten-

system, so wird die Kreisscheibe in der x,y-Ebene wie folgt beschrieben:
—R=x=R

B:

—IR-¥=<y=VR - 2.

Der Ubergang von den kartesischen Koordinaten x, y zu Polarkoordinaten r, ¢ be-
wirkt, daB dieselbe Kreisscheibe in der r,g-Ebene wesentlich einfacher beschrieben
werden kann:

B,‘[ 0<r <R
Nrm<p=m.

Anders ausgedriickt heiBt das (s. Bild 4.9): Durch die Abbildung

T:{x=r<\:'os<p
y=rsing

wird der Bereich B’ der r,p-Ebene (abgesehen von den Punkten mit » = 0) umkehrbar
eindeutig auf den Bereich B der x,y-Ebene abgebildet. (An Stelle von —x < ¢ ==
konnte in B’ auch 0 < ¢ < 2r oder jedes andere Intervall der Linge 2= gewihlt
werden.)

Die folgenden Sitze geben nun dariiber Auskunft, wie ein Bereichs- bzw. Raum-
integral beziiglich krummliniger Koordinaten beschrieben wird.
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-x Bild 4.9

Satz 4.1: Vorgegeben sei ein Berelchsmtegral H f(P)db = f f f(x, y) db. u, v seien S.4.1

krummlinige Koordinaten der x. y-Ebene die mzt den v,y-Koordmaten durch die Glei-
chungen x = x(u,v), y = y(u, v) verkniipft sein migen. Ist nun B’ ein Bereich der u,v-
Ebene, der durch die Abbildung (Transformation)

T: x=x,v), y=y@,v)

mit in B’ stetigen partiellen Ableitungen und positiver Funktionaldeterminante umkehr-
bar eindeutig auf den vorgegebenen Bereich B der x,y-Ebene abgebildet wird (s. Bild .
4.10), so kann das Bereichsintegral mit Hilfe der neuen u,v-Koordinaten nach der fol-
genden Formel ermittelt werden

76980 = [[ sty o) - gD ey @13
B B’

Diese Formel nennt man Transformationsformel fiir Bereichsintegrale.

P Bild 4.10

Die Formel (4.13) ist eine Verallgemeinerung der bekannten Transformations-
formel fiir bestimmte Integrale

b b
[ dx = [ 1) -

(vgl. ,,Substitutioﬁsmethode bei bestimmten Integralen* in Band 2, Satz 10.11).
Hierbei ist a bzw. b das, Bild von a’ bzw. b’ bei der Transformation x = x(u); das
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Intervall [d, b'] wird durch die Transformation x = x(u) auf das Intervall [a, 5] ab-
gebildet.

Zum Satz 4.1 sind noch einige Hinweise und Erginzungen erforderlich:

a) Die Voraussetzung ,,7 ist eine umkehrbar eindeutige Abbildung* braucht fiir die
Randpunkte von B’ nicht unbedingt erfiillt zu sein. Im Beispiel 4.3 werden simtliche
Punkte (r, ¢) von B’ mit r = 0 auf den Punkt (x, y) = (0, 0) von B abgebildet.

b) Es geniigt vorauszusetzen, daBl die Funktionaldeterminante D im Inneren des

angegebenen Bereichs nicht verschwindet. Im Falle D << 0 kann wegen Zg’ 5))

e y)) durch Vertauschung von u und v das Vorzeichen gedndert werd,en.
Im Belspiel 4.3 ist die Funktionaldeterminante UES))
von B’ liegenden Punkte (» = 0) gleich null, 05 %)

fiir alle auf dem linken Rand

¢) Der in Formel (4.13) auf der rechten Seite stehende Ausdruck ist das Bereichs-

integral der Funktion @(P) = D (u, v) := f(x(u, v), y(u, v)) I o, y; iiber dem in der

u,v-Ebene liegenden Bereich B': ﬂ D (u, v) db’ (vgl. Definition 2.5 im Abschnitt 2.1.).

B
Formel (4.13) kann in eine fiir die praktische Berechnung sofort brauchbare Form
gebracht werden, wenn der Bereich B’ ein Normalbereich in der u,v-Ebene ist. Ist zum
Beispiel B” ein Normalbereich vom Typ

{ hSU=Su
MOEYESEON

so geht die Formel (4.13) in die folgende Formel iiber:

u, vy(u)
f (1657086 = [ [ 0, 0,0 G2 v @19
Uy v,(u)

(vgl. Satz 2.4 im Abschnitt 2.3.).

Die Transformationsformel (4.13) bzw. (4.14) nimmt fiir den Fall, daB es sich bei
den krummlinigen Koordinaten u, » um die Polarkoordinaten r, ¢ handelt, die fol-
gende spezielle Gestalt an

[[£Cx, ») db = [[ f(r cos p, r sin g) - r dbf (4.15)
B B’
bzw.

ff fGx, y)db = f j f(rcosq),rsmgo) rdedr. (4.16)

r o e(n)
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Formel (4.16) gilt, wenn B’ ein Normalbereich in der r,p-Ebene vom Typ

nEr=r
{‘Pl(") =0 = gur)
ist.
Als Beispiel wihlen wir ein Fldchenintegral, welches in einem anderen Zusammen-
hang bereits einmal auftauchte (vgl. Beispiel 2.7 in Abschnitt 2.5.).

Beispiel 4.4 : Bsei eine Kreisscheibe vom Radius R mit dem Mittelpunkt im Ursprungs-
punkt der x,y-Ebene. AuBerdem sei die Funktion f(P)= f(x,y) = e *'"¥" vorge-

geben. Das Bereichsintegral f [ (P) db soll mit Hilfe von Polarkoordinaten berechnet
werden.

Beziiglich x,y-Koordinaten gilt (vgl. (2.5))

R VR —2*
fjseras=] Rf e dy dx.
-R —JR*—2?

Beziiglich Polarkoordinaten gilt (vgl. Formel (4.16) und Bild 4.9)
- R =
[[f®)db=[[f(x,»)db=] [ e rdpdr.
B B 0 —7

Das rechts stehende Doppelintegral kann ohne Schwierigkeiten berechnet werden
(Substitution beim duBeren Integral: r? = f)

£ R R?
[ ferrdpdr=[2merrdr=2r{}etdt
s 0 0

o;:‘5

=7r(—e“‘)]0m= w(l — e‘i*’).

(Im Zusammenhang mit der im Beispiel 2.7 des Abschnittes 2.5. behandelten Frage-
stellung mochten wir darauf hinweisen, daB das hier betrachtete Bereichsintegral fiir
R— oo gegen den Wert = konvergiert.)

Aufzabe 4.4: Von dem in Bild 4.11 dargestellten ebenen Bereich B (Viertelkreis) berechne man den
geometrischen Schwerpunkt mit Hilfe von Polarkoordinaten.

//A Bild 4.1

X

=



*
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Aufgabe 4.5: B sei der in Bild 4.12 dargestellte Bereich (Halbkreis vom Radius 2). Man berechne
das Trigheitsmoment J, von B beziiglich der x-Achse. Die Flachendichte ¢ sei identisch gleich 1.
(Anleitung: Man gehe vom x,y-System zum x’,y’-System iiber.)

~ X Bild 4.12

Es ist nicht beabsichtigt, einen Beweis zum Satz 4.1 zu bringen, da das mit allen Feinheiten einen
erheblichen Aufwand bed wiirde. Wir kénnen uns aber ohne groBere Schwierigkeiten durch
eine grobe Naherungsrechnung die Formel (4.13) verstindlich machen. Ausgangspunkt bei unseren
vergleichenden Betrachtungen ist die fiir Bereichsintegrale giiltige Néherungsformel:

[JfPydb~ 3 fP)AB,. *)
B

Hierbei ist By, Bs, ., B, eine moglichst ,,feine*“ Zerlegung von B, P; ein beliebig gewahlter Punkt
aus B; und AB; der Flicheninhalt von B; (vgl. Definitionen 2.4 und 2.5 im Abschnitt 2.1.).

Durch die Geraden u = »; und v = v; (i =0, 1, 2, ...) wird der Bereich B’ in Teilbereiche zerlegt.
B/’ sei der durch die Geraden u = u;, u = u;y,, v ='v;, 0 = v;4, begrenzte Bereich (s. Bild 4.13). Wir
beriicksichtigen bei den weiteren Ausfithrungen nur diejenigen Bereiche B;’, die ganz in B’ enthalten
sind. Bei geniigend feiner Zerlegung von B’ liefern die ,,Randbereiche‘ B; nur einen geringen Beitrag

zu der in (*) auftretenden Summe, sie konnen bei unserer Niher hnung unberiicksichtigt
bleiben. Die B;’ bilden eine Zerlegung von B’ und wir konnen zunichst einmal festhalten:
[J @@ v)db’ = 3 & (u, v) Auy Av, (**)
B i
y

Bild 4.13
U Uiy ¢ '

3(x.9)

(¢ (u, v) = f(x(u,'v), y(u, v)) 3@ u)) . Hierbei wurde zur Abkiirzung u;; — #; = Aw; und vy — v;
= Av; gesetzt; Au;Av; ist dann der Flicheninhalt von B;'.
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Durch die Transformation T: x = x(«, v), y = y (4, v) werden die Bereiche B;’ auf Bereiche B;
von B abgebildet (B; = T(B;")). Weil T umkehrbar eindeutig ist, bilden die B; eine Zerlegung von B,
von einer kleinen Randzone abgesehen. Die Punkte P;'(u;, v;), Q' (4; + Au;, v), R (i, v; + Avy)
der u,v-Ebene werden dabei auf die Punkte P;, Q;, R; der x,y-Ebene abgebildet (P; = T(P;),
Qi = T(Q/), R; = T(R,)). Die Punkte P;, O;, R; haben die Koordinaten:

Py x(ug, v7), y (i, 0) = X101,
Q;: x(u + Augy v), y(u; + Augy v) = Xo, y2,
Ri: x(uz, v+ Avy), y (g, v; + Avy) = X3, y3.

e

Nach Formel (*) gilt dann

[[f®ydb ~ 3 Py AB; = 3 fx (i, v, iy v)) AB;. (G
B i i

Dabei ist AB; der Flicheninhalt von B; = T(B;).
Ein Vergleich der Formeln (**) und (***) fihrt uns auf die Vermutung

AB; ~ 3(x.7)

30 0) AuiAv; . (F**%)

u=u;, v=v;

Wenn wir uns von der Giiltigkeit dieser Formel iiberzeugt haben, sind wir sicher, daB die Beziehung

: _ oy 259 gy
£ 760706 Bf ff(x(u 0, ¥ 1) db

9 (u, v)

gilt. Formel (****) wird wie folgt bewiesen: Fiir eine geniigend feine Zerlegung ist der Flichen-
inhalt AB; der krummlinig begrenzten Masche B; ungefahr gleich dem durch die Vektoren;,?zt- und
1—’,-—)R,- aufgespannten Parallelogramm B;* (s. Bild 4.14). Nach bekannten Formeln der analytischen
Geometrie und der Funktionen mit mehreren Variablen (vgl. Band 4, Abschn. 3.8.1.) erhalten wir:
Xg — Xy Xz — X3
Yo=Y, V3— N
x (4 + Ay, v3) — x (g v7), x (g, v; + Avg) — x (uy, v;)
¥ (g4 Dug, vp) — y Wi, v, ¥ (g, v + Aoy) — y (uy, v;)
| (g v) - Ay, xy (i, 07) - Avg
T a0 - Ay, v, (i, v) - Avg
Xy (3, 07), Xy (15 0) | _ 0=y
Pl 0, yoo) | T 0w 0)

AB; ~ AB*=

Au; Av,.

u=u;v=v;

Damit haben wir die Giiltigkeit der Beziehung (****) nachgewiesen und sind am Ende unserer
Niherungsbetrachtungen angelangt.

i
/ .
Bild 4.14
[} /§

Die Ausfiihrungen tiber die Transformationsformel fiir Bereichsintegrale wollen wir mit einigen
Uberlegungen abschlieBen, die die geometrische Bede der Funktionalde i betreffen.
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Bezeichnet -man den Flicheninhalt des kleinen ,,Flichenelements* B; bzw. B, mit db bzw.
db'= du - dv (dudv 2= Ay; - Av)), so erhalten wir nach (****):

PN ICS P 1c %) B

O, v) v) 0 (u, v)

Den rechts stehenden Ausdruck ‘

9(x, )

3@ v) dudvy
nennt man das Flichenel in kr linigen Koordii Fir das Flachenelement in Polarkoor-
dinaten erhdlt man nach Formel (4.10)

9(x,») _

P drdep = rdrde.

db_ 3(x,y)
Die Nzherungsformel —— FH=3 @0

null konvergiert:
9(x,) o db
9 (u, v) _dlbl'rilo @

(Beweis: siehe Duschek, Vorlesungen {iber hohere Mathematik, Bd.II.) Diese Gleichung kann

geometrisch wie folgt interpretiert werden: Ein ,,infinitesimal* kleines Rechteck der u,v-Ebene, dessen
linker unterer Eckpunkt die Koordinaten (4, v,) haben moge, wird durch die Transformation

geht in eine Gleichung iiber, wenn der Flidcheninhalt db’ gegen

T: x=x(u,v),y = y(u0v)

auf ein krummhmges Viereck abgebildet (vgl. Bild 4.13; man ersetze dort fur unsere jetzigen Uber-
legungen u;, v; durch uy, vy). Es sei

9(x,)

(U, V) |u=ugv=0,

Der Flicheninhalt des krummlinigen Vierecks (db) ist dann in guter Niherung gleich dem A-fachen
des Flacheninhalts des Rechtecks (db'): db ~ A - db'.

(Vor.: In db" = du dv sind beide Faktoren d« und dv ,,infinitesimal* klein.) Dieser Zusammenhang
zwischen db’ und db gibt zu der Sprechweise AnlaB, daB die Funktionaldeterminante der Ver-
zerrungsfaktor fir den Flicheninhalt von infinitesimal kleinen Bereichen sei.

A=

Nach der ausfiihrlichen Beschiftigung mit der Transformationsformel fiir Be-
reichsintegrale kommen wir nun zu der entsprechenden Formel fiir Raumintegrale.
Die Ubertragung des Satzes 4.1 auf den Raum ergibt den
Satz 4.2: Ist B’ ein solcher Bereich des u,v,w-Raumes, der durch die Abbildung

T: x=x@uv,w), y=yWuv,w), z=:z(u0v,w)

mit in B’ stetigen partiellen Ableitungen und positiver Funktionaldeterminante (vgl.
Formel (4.9)) umkehrbar eindeutig auf den Bereich B des x,y,z-Raumes abgebildet
wird (s. Bild 4.15), so kann das Raumintegral mit Hilfe der krummlinigen u,v,w-Koor-
dinaten nach der Formel

| f f fx,y,2) db = f f f e, v, W), (s, 0, W), 2(u, 0, W) a(’" %2 gy (@417)

ermittelt werden. Formel (4.17) heifit Transformationsformel fiir Raumintegrale.
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u Bild 4.15

Auch bei diesem Satz sind die im AnschluBl an Satz4.1 gegebenen Hinweise zu
beachten, insbesondere geniigt es, daB fiir alle inneren Punkte von B’ die Funk-
0(x,,2)
o(u, v, w)

Das auf der rechten Seite der Formel (4.17) stehende Raumintegral kann durch ein
dreifaches Integral dargestellt werden, falls B’ ein rdumlicher Normalbereich im
u,p,w-Raum ist (vgl. Losung zur Aufgabe 3.2). Ist z.B. B’ ein Normalbereich vom
Typ

tionaldeterminante nicht verschwindet,

< usu, - .
0 @) = v = vy,
Wy (u, U) § w é WZ(u9 U),

so geht die Formel (4.17) in die Formel

uy vy(u) wy(u,v)

[fff(x,y, 2)db _f f f F(, v, ) ggx 5,2) dw do du @4.13)

uy vy(u) w,(u,v)

iiber (vgl. Satz 3.1). In dieser Gleichungist F(u, v, w) eine Abkiirzung fiir die Funktion
fx @, v, w), y(u, v, w), z(u, v, w)); F(u, v, w) ist dieselbe Funktion wie f(x,y, z) —
dargestellt in den neuen Koordinaten u, v, w.

Fithrt man die speziellen krummlinigen Koordinaten r, ¢, z (Zylinderkoordinaten)
bzw. r, 4, ¢ (Kugelkoordinaten) ein, so erhélt man an Stelle der Formel (4.17) die
Formel

[[f £y, 2y db = [[[ F(r, 9,2 r db’ o @19)
B B
bzw.
'f [[ £x, 3, 2)db = [[[ F(r, &, @) r* sin & db’ (4.20)
B B’

(vgl. Formeln (4.11) und (4.12)). Auf eine Ubertragung der Formel (4.18) auf den
Fall von Zylinder- bzw. Kugelkoordinaten verzichten wir; es ist klar, wie das zu
geschehen hat.

Wir kommen jetzt auf die in Beispiel 4.1 behandelte Fragestellung zuriick!

Beispiel 4.5: Das Volumen einer Kugel vom Radius a soll mit Hilfe von Kugel-
koordinaten berechnet werden.
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Das Innere des Bereichs
0=Zr=a
B:lo<d<n
0=¢<2n
des r,8,p-Raumes wird durch die Abbildung
T: x=rcos¢psind, y=rsingsind, z=rcos?
umkehrbar eindeutig auf den Bereich
B:xX+y+rsa

des x,y,z-Raumes abgebildet. Hinweis: Die Punkte von B’ mit r = 0 — Randpunkte
von B’ — werden alle auf den Punkt (0, 0, 0) von B abgebildet. Die Voraussetzung,,7’
ist umkehrbar eindeutig® braucht nur fiir die inneren Punkte von B’ erfiillt zu sein.
Nach Formel (4.20) erhdlt man dann fiir das Volumen dieser Kugel:

2rma
v={[[db=T [ [r*sind drdé dp.
B 000 .

Das rechts stehende dreifache Integral bereitet keine Schwierigkeiten; es ergibt sich:

2r 5 2T
= a 1 o 2 3 _i 3
V= /Tsmﬁdﬂdqp—f?a d<p—31ta.
00 0

Aufgabe 4.6: Von dem im Beispiel 4.2 beschriebenen Kreiskegel soll mit Hilfe von Zylinderkoordi-
naten das Volumen berechnet werden.

(Hinweis: Das Ergebnis konnten wir sofort hinschreiben, denn fiir das Volumen eines Kegels gilt
V = % Fh. Es kommt uns also bei dieser Aufgabe nur auf die richtige Anwendung der Transforma-
tionsformel fir Raumintegrale an.)

Aufgabe 4.7: B sei derjenige raumliche Bereich, der ,,nach unten‘‘ durch die x,y-Ebere, ,,nach oben‘
durch das Rotationsparaboloid z = x? + y? + 4 und ,,seitlich® durch den auf der x,y-Ebene senk-
recht stehenden Kreiszylinder x2 + y? = 9 begrenzt wird. Man berechne mit Hilfe von Zylinder-
koordinaten das Volumen ¥ von B.

Im R" erhélt man in Analogie zu den Sétzen 4.1 und 4.2 den folgenden

Satz 4.3: Durch die Abbildung

X1 = X1 (g, Up, oevy Un)

Tl %= Xo(Uys Uny vy Un)

Xn = Xn(thys Upy ouey Un) .
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mit in B’ stetigen partiellen Ableitungen und nicht verschwindender Funktionaldeter-
minante werde der Bereich B’ des uy, us, ..., u,-Raumes umkehrbar eindeutig auf den
Bereich B des x, , x,, ..., Xxn,-Raumes abgebildet. Mit Hilfe der krummlinigen Koordina-
ten uy, ..., u, kann das n-dimensionale Integral der Funktion f(P)= f(Xy, X2, ..., Xn)
iiber dem Bereich B wie folgt berechnet werden

ff ff(x,,xg,.,xn)db ff fF(ul,ug,.,u,,)?}((?l:i::::z:))db' @21)

(vgl. Ausfithrungen am Ende des Abschnitts 3.1. und die Formeln (4.6), (4.7)). For-
mel (4.21) heiBt Transformationsformel fiir n-dimensionale Integrale. Fiir n = 2 bzw.
n=13 erhilt man die Transformationsformel fiir Bereichsintegrale bzw. Raum-
integrale (Formel (4.13) bzw. (4.17)).

4.3. Anwendungen der Transformationsformel fiir mehrdimensionale Integrale

In diesem Abschnitt sollen einige Anwendungsaufgaben behandelt werden, die
typisch fiir die Berechnung von Bereichs- und Raumintegralen mit Hilfe von krumm-
linigen Koordinaten sind. Wir beginnen mit einer einfachen Schwerpunktermittlung.

Beispiel 4.6: Gesucht ist der geometrische Schwerpunkt einer Halbkugel vom Ra-
dius R (s. Satz 3.4 in Abschnitt 3.2.).

Wir fiihren ein rechtwinklig-kartesisches x,y, z-Koordinatensystem ein (s. Bild 4.16).
Aus Symmetriegriinden ist ersichtlich, daB8 der geometrische Schwerpunkt (x,, Yo, Zo)
dieser Halbkugel auf der z-Achse liegen muf}; d.h.: xo =0, y, = 0. Wir brauchen
daher nur z, zu berechnen. Fiihrt man Kugelkoordinaten r, 9, ¢ ein, so erhélt man
nach der Transformationsformel (4.20) (vgl. auch Aufgabe 4.2)

21:21?

0__fffzdb_ 5 Rsfff(rcosﬁ)rzsmﬂdrdﬁd(p

— Bild 4.16 : L
A X
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Die Berechnung des rechts stehenden dreifachen Integrals erfolgt in drei Teilschritten
R

4
Inneres Integral: fr3 cos @ sin ¥ dr = %— cos ¥ sin 9 = é— R sin 29
0

T

2
4
Mittleres Integral: f % R*sin 29 d¥ = R
0

g
2n
i R 1
AuBeres Integral: f qu) =ZnR4.
0
Hieraus folgt z, = 3 —l-nR4~ s R. Fiir den geometrischen Schwerpunkt d
i gt 2= 5 g =g R F g n Schwerpunkt der

vorgegebenen Halbkugel vom Radius R gilt also: (xo, yo, zo) = (0, 0, 2 R).

Beispiel 4.7: Vorgegeben sei eine Kugel vom Radius R mit der Dichte p = 1. Wie
grofB ist das Triagheitsmoment J dieser Kugel beziiglich einer beliebigen durch den
Mittelpunkt der Kugel gehenden Achse?

Aus Symmetriegriinden ist das Tragheitsmoment der Kugel (¢ = const) beziiglich
jeder durch den Mittelpunkt der Kugel gehenden Achse gleich. Fiihrt man ein recht-
winklig-kartesisches x,y,z-Koordinatensystem ein, dessen Ursprung O mit dem
Kugelmittelpunkt zusammenfillt, so gilt: J=J, =J, = J. (), J,, J:: Trigheits-
moment beziiglich der x- bzw. y- bzw. z-Achse). Fiir die einzelnen Trigheitsmomente
erhdlt man nach Satz 3.6 (Abschnitt 3.2.)

L=[[[0*+22)db, J,=[[[(+22)db, J.=[[[(*+ 2 db.
B B B
Hieraus ergibt sich fiir das gesuchte Trigheitsmoment J die Beziehung

3 =L+ J+ =206+ y2 + ) db.
B

(An dieser Stelle wurde der Satz [[[ f(P)db+ [[[(P)db=([[( f(PS+ g(P))dbver-
B B B

wendet, der — in entsprechend abgewandelter Form — fiir alle Integraltypen gilt.)
Transformiert man jetzt auf Kugelkoordinaten r, ¢, ¢ (vgl. Formel (4.20)), so erhilt
man — wegen x* + y% + z? = r? — die Gleichung

2r ™ R

37=[ [ [2r2(* sin 9) dr 49 dop.

000
Fiir das rechts stehende dreifache Integral erhdlt man nach kurzer Zwischenrechnung
den Wert £ nR®. Ergebnis: Das Triagheitsmoment einer Kugel vom Radius R (mit der
Dichte ¢ = 1) beziiglich einer beliebigen durch den Mittelpunkt der Kugel gehenden
Achse hat den Wert

8
— _—_7RS
J 157!:R.
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Hinweis: Der kleine Kunstgriff J= 3} (J, + J, + J.) hat uns die Rechenarbeit we-
sentlich erleichtert. Wiirde man z. B. J, nach der vorhin angegebenen Formel berech-
nen, so wire das mit wesentlich groBerer Miihe verbunden. Fast unertraglich wiirde
die Rechenarbeit werden, wenn man das Trigheitsmoment beziiglich einer von den
Koordinatenachsen verschiedenen durch O gehenden Achse — z.B. die durch O und
den Punkt (3, 4, 2) gehende Gerade — bestimmen wollte.

Aufgabe 4.8: Von einem Kugelausschnitt B mit R = 4 und a = 2 (s. Bild 4.17) berechne man mit
Hilfe von Raumintegralen das Volumen und den geometrischen Schwerpunkt. (Hinweis: Man
orientiere sich an Aufgabe 4.3 und Beispiel 4.6.)

Bild 4.17

Bild 4.18

X

Beispiel 4.8: Im x,y,z-Raum sei eine Kugel B vom Radius R mit dem Mittelpunkt
(a, b, ¢) gegeben. Gesucht ist der Wert des Raumintegrals der Funktion

1

fP)=f(x,y,2)=
IO =Sy = =T o - e
iiber dem Kugelbereich B. (Hinweis: Der im Nenner von f(x, , z) stehende Ausdruck
ist der Abstand des variablen Punktes P(x, y, z) von dem festen Punkt P,(a, b, ¢).)

Die Funktion f(x, y, z) ist in der Umgebung des Punktes (a, b, ¢) nicht beschrankt.
(Nenner wird fiir (x, y, z) = (a, b, ¢) gleich null!) Es handelt sich um ein sog. un-
eigentliches Raumintegral. Die Definition der uneigentlichen Raumintegrale stimmt
genau mit der entsprechenden Definition fiir Bereichsintegrale iiberein (vgl. Defi-
nition 2.10), wobei jetzt selbstverstandlich unter U(P,) eine rdumliche Umgebung
(z.B. eine kugelformige Umgebung) des singulidren Punktes P, zu verstehen ist. Unter
der Voraussetzung, daB das uneigentliche Raumintegral existiert!), kann der Wert
desselben wie folgt ermittelt werden: Man nimmt zunéchst.die Punkte aus einer
kleinen Kugelumgebung des Punktes Py(a, b, ¢) vom Radius r, heraus, integriert
iiber die verbleibende Hohlkugel B, (duBlerer Radius R, innerer Radius r,) und 148t
anschlieBend ry — 0 gehen (s. Bild 4.18). Die Art der vorgegebenen Funktion und

1) Die Existenz des uneigentlichen Integrals ist bei einer nichtnegativen Funktion gesichert, wenn
fiir eine einzige Folge U, U,, ... von Umgebungen des singuliren Punktes P (a, b, ¢) mit g U, = 0
der Grenzwert lim fff f(P) db existiert. Satz 2.9 gilt in entsprechend abgewandelter Form auch

n—o B\ U/
fiir uneigentliche Raumin?egrale mit nichtbeschrankter Funktion.
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des vorgegebenen Bereiches legen es nahe, vom x,,z-System zum x',y’,z’-System
und anschlieBend zu Kugelkoordinaten r, ¢, ¢ beziiglich des x',y’,z’-Systems iiber-
zugehen:

x=x'+a
9(x, 5, 2)
Tl:{y=y’—|—b — =]
I >
ez e D

X' = rcos @ sin ¢ 3 v o
ng{y'=rsin(psin79 ——g?r’l};—’z))=r2 sin 9.
Z =rcos?d Lo

Fir das Raumintegral (iiber die Hohlkugel B,!) erhalten wir nach den Formeln
(4.17) bzw. (4.20):
2t ® R

ff f(x,y,z)db—fffvxlz+ylz+z,2 f/ i r'*’smq?db"—fffrsmz?drdﬁdcp

00 r

Fur das am Ende der Umformung stehende dreifache Integral erhélt man nach
kurzer Zwischenrechnung den Wert 2 (R* — r2). Damit konnen wir schon das SchiuB-
ergebnis formulieren:

fo [ f(x,y,2)db= hg}) g [f(x, y,2)db = hix; 2n(R? — r?) = 2mRe.

In Vorbereitung auf das nichste Beispiel sollen einige zum Begriff Potential an-
ziehender Massen gehorige Relationen zusammengestellt werden.

B sei ein Korper (rdumlicher Bereich) im x,y,z-Raum mit der Dichte o = o(P)
= o(x, y, z). F sei der Vektor der Anziehungskraft, die von dem Korper B auf einen
bestimmten Massenpunkt Py (X, o, Zo) mit der Masse n1, = 1 ausgeiibt wird. Fiir die
Koordinaten (Komponenten) F,, F,, F; von F gilt dann

ff (x— xo)edb Fy= ff/‘(y yo)edb Fy= j‘ff(z 200 4p

(F; = Fi(xo, yos 20) i = 1, 2, 3). Hierbei ist

r=VG =%+ =y + (= z)

der Abstand des (variablen) Punktes P(x, y, z) vom (festen) Aufpunkt Py(xo, Yo, Zo)-.
(Die Gravitationskonstante wurde gleich 1 gesetzt.)

UG, 30,2 = [[[ 2 e
B

nennt man Potential der Massenanziehung des Korpers B auf den Punkt Py(x,, Yo, Zo)-
Es gelten die drei Gleichungen
U U _ oU
Bxg Bz,

'

=F,
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welche man mit Hilfe des Gradientenbegriffs zu einer Vektorglelchung zZusammen-
fassen kann:

F = grad U.

Um mit den hier eingefiihrten GroBen noch ein wenig vertrauter zu werden, wollen wir die Glei-
chung 8U/0x, = F, beweisen. Dabei stiitzen wir uns auf den Satz, daBl man bei einem mehrdimensio-
nalen Integral, dessen Integrand von einem Parameter « abhéngig ist, die Ableitung des Integrals
nach a durch Differentiation unter dem Integralzeichen erhilt. (Fiir einfache Integrale ist das die
Formel (1.4) in Abschnitt 1.2.) Wir erhalten also:

S~ o= o (3o | ®
Woget - om e o +9<(yx’—y yg T
i(£)= (i) _e.(i) o ) 2 26 -x) oG-

dx, r )z, r = r re 2r r3

Diese Beziehung in (*) eingesetzt liefert uns das Ergebnis:
oU _{‘ e(x—xp) .,
2 - [0
B

Beispiel 4.9: Wie groB ist die Anziehungskraft, die ein kugelférmiger Korper B
mit dem Radius R und der konstanten Dichte ¢ auf einen auBerhalb der Kugel sich
befindenden Massenpunkt P, der Masse 1 ausiibt?

Um das Problem mdglichst gut rechnerisch erfassen zu koénnen, fithren wir ein
rechtwinklig-kartesisches x,y,z-Koordinatensystem ein, dessen Ursprung mit dem
Mittelpunkt der Kugel B zusammenfillt und dessen positive z-Achse durch den
Punkt P, geht (s. Bild 4.19). Fiir die Koordinaten x,, ¥y, zo von P, gilt dann: x, = 0,

x  Bild419

6 Korber, Integralrechnung
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= 0 und z, > R > 0. Die 3. Koordinate der Anziehungskraft ergibt sich aus der

Gleichung
z—2,
"fff(]/xzw T (z—zo)Z)

(Den konstanten Faktor ¢ haben wir gleich vor das Integralzeichen gesetzt.) Es erhebt
sich nun die Frage, mit welchen Koordinaten man das Raumintegral berechnen soll.
Naheliegend wire es, auf Kugelkoordinaten zu transformieren. Die Gestalt des
Integranden beziiglich Kugelkoordinaten bereitet uns aber bei der Integration auBer-
ordentliche Schwierigkeiten — obwohl die Integrationsgrenzen beziiglich Kugel-
koordinaten sehr einfach sind 0 =r=R, 0=9¢ =<, 0 =< ¢ < 2r). Fithrt man
dagegen Zylinderkoordinaten r, ¢, z ein, so werden die Integrationsgrenzen zwar ein
wenig komplizierter, aber die Gestalt des Integranden wird einfacher — und die Inte-
gration des entsprechenden dreifachen Integrals gelingt. (Die z-Achse ist Symmetrie-
achse fiir den Integrationsbereich und den Integranden! In einem solchen Fall ist es
am giinstigsten, mit Zylinderkoordinaten zu arbeiten.)
DervorgegebeneKugelbereich wird beziiglichZylinderkoordinaten beschrieben durch

—R=<z=R
B { 0=p=2r
osr<|JrR-2.
Erlduterung zur 3. Ungleichung: Aus x* + y* + z* < R? folgt (wegen x* + »* =r?)
r? < R® — z2. Bei vorgegebenem z (und ¢) kann also r die Werte von 0 bis VR —r2
durchlaufen. Beriicksichtigt man die Transformationsformel (4.19), so erhélt man

R 2x VR*=3*
Fy= f f f rdr dp dz.
s e Y
“RO 0
Bei der Berechnung dieses dreifachen Integrals muB man ein wenig Geduld aufbringen.

Das innere Integral J; ist ein Integral vom Typ f il/x—xa (vgl. [1]); man erhélt

h=—2"Z%
]/R2+z§—2202 ’

Das mittlere Integral J, ist dann
2m
Js =fJ1 dg = 2rJ;.
0
(J, ist nicht von ¢ abhiingig!). SchlieBlich kann man mit Hilfe der Substitution

t =VR + zg? — 2zyz (tdt = —z, dz, (z — zp) 22y = R® — z,* — #%) auch das duBere
Integral J3 berechncn'

J, = szdz— ———ﬂ:R'“‘.

4 1
Ergebnis: F, = oJ; = — - TR% - —-.
3 ZU
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Die 1. und 2. Koordinate des Vektors F der Anziehungskraft brauchen wir nicht zu
berechnen. Es muB offensichtlich der Vektor F dieselbe Richtung wie die z-Achse
haben, d.h. aber, daB F; = 0 und F, = 0 gelten muB.

Hinweis: § nR% ist die Gesamtmasse m einer homogenen Kugel (o = const) vom
Radius R. z, ist der Abstand des Punktes P, vom Mittelpunkt der Kugel. Die Glei-
m-1

20
einer homogenen Kugel auf einen auBerhalb der Kugel sich befindenden Massen-
punkt der Masse 1 ausgeiibt wird, ist genau so groB, wie diejenige des Mittelpunktes
der Kugel, in der man die Gesamtmasse der Kugel konzentriert hat.

chung F; = kann dann wie folgt gedeutet werden: Die Anziehungskraft, die von
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5. Kurvenintegrale

5.1. Begriff der Kurvenintegrale 1. und 2. Art

Die in diesem Abschnitt untersuchten Kurvenintegrale sind sehr niitzlich bei der
Gewinnung von mathematischen Modellen fiir Prozesse aus Natur oder Technik, z.B.
bei der Bestimmung der Arbeit, die beim Bewegen einer Masse in einem Kraftfeld
aufgebracht werden muB. Sie erweisen sich dariiber hinaus bei der Behandlung ge-
wisser mathematischer Modelle als zweckmiBiges Hilfsmittel, z.B. bei der Losung
von gewohnlichen Differentialgleichungen Im Zusammenhang mit dem GauBschen
Integralsatz gestatten sie die numerische Berechnung von ebenen Berelchsmtegralen
mit den bekannten Methoden der numerischen Integration.

Die Kurvenintegrale unterscheiden sich dabei in ihrer Definition im Prinzip nicht
b b
von den bestimmten Integralen der Form f f(x) dx. Bei der Definition von f f(x) dx

gingen wir von ausgezeichneten Folgen von Zerlegungen des Intervalls [a, b] aus
(s. Band 2, Def. 10.2) und bildeten fiir jede Zerlegung Summen der Form Z' f(&) Ax;.

Hierbei war Ax; die Linge des i-ten Teilintervalles von [a, b] und &; em beliebiger

Punkt aus diesem Teilintervall. Strebten nun fiir jede ausgezeichnete Folge von Zer-

legungen des Intervalles {a, b] die oberr angefiithrten Summen bei beliebiger Wahl der

Zwischenpunkte &; mit wachsender Zahl der Teilintervalle gegen ein und denselben
b

Grenzwert, so nannten wir diesen Grenzwert J f(x) dx und die Funktion f auf [a, b]

integrierbar. Beim Kurvenintegral 1. Art ersetzen wir nun nur die Teilstrecke der
x-Achse von a bis b durch eine zwischen den Punkten 4 und B verlaufende Kurve §
des Raumes. Die zu integrierende Funktion mufl dann natiirlich auf & definiert sein.
Der Zerlegung von [a, b] in Teilintervalle mit den Teilungspunkten x; entspricht die
Zerlegung von & in Teilkurven &; mit den Teilungspunkten P;, der Linge Ax; der
Teilintervalle entspricht die Bogenlinge As; von &, und den Zwischenpunkten &,
entsprechen auf &; gelegene Punkte Q;.

Ehe wir zur Definition des Kurvenintegrals kommen, wollen wir die n6tigen Be-
griffe zusammenstellen (s. auch Bd. 4, 2.6.4., oder Bd. 6, 2.1.).

Definition 5.1: Ist [ = [a,b] ein Intervall (a < b) und sind auf I drei stetige
und wenigstens stiickweise stetig differenzierbare Funktionen g(t), g»(t), gs(t) mit
8.2(t) + &.2(t) + g5%(t) > 0 fiir alle t aus I mit hichstens endlich vielen Ausnahmen
gegeben, so heifit die Menge ® aller Punkte (g,(1), gx(t), g5(t)) des R®, wobei t das
ganze Intervall I durchliuft, eine orientierte Kurve'). A = (g,(a), g:(a), g(a)) heift der
Anfangspunkt, B = (g1(b), g:(b), g5(b)) der Endpunkt von . (g,(1), ga(1), &(1), 1€ L,
nennen wir eine Parameterdarstellung oder auch kurz Darstellung der Kurve.

Beispiel 5.1: Es sei I=[—r,r] und g,(f) = —t, gi(t) = Vr* — 2, gi(t) = O fiir alle
tel(0<r). Wegen z= gy(t) = 0 fiir alle € I liegt & ganz in der x,y-Ebene (& ist

1) Den Zusatz ,,orientierte’* lassen wir gelegentlxch weg, da in Kap. 5. nur orientierte Kurven be-
trachtet werden.
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eine ebene Kurve).  ist der in Bild 5.1. dargestellte Halbkreis mit dem Anfangspunkt

= (r, 0, 0) und dem Endpunkt B = (—r, 0, 0). Die gleiche orientierte Kurve & wird
auch durch I* = [0, «t], g,*(t) = r cos 1, g.*(t) = r sin ¢, g3*(¢) = O fir alle ¢ € I* dar-
gestellt. Die Darstellung einer orientierten, Kurve ist nicht eindeutig bestimmt. Es
gibt zu jeder orientierten Kurve sogar beliebig viele Darstellungen.

¥
R

8 l Bild 5.1
-r 1][ r X

Zur Vereinfachung der Schreibweise werden wir zur Darstellung orientierter
Kurven auch Vektorfunktionen g mit g(¢) = (g,(¢), g2(?), g5(t)) benutzen.) An Stelle
von g(#), te I, wird héufig die Schreibweise x(¢), t € 1, oder 1(t), t € I, verwendet.

Definition 5.2: Ist & eine Kurve mit der Parameterdarstellung g(t), t € I = [a, b], und
to=a <1t <ty < - <t,=b, so nennen wir Z, gegeben durch die Teilungspunkte
(%), g(th), g(t.), .., (t,), eine Zerlegung von & (in die Teilkurven &; mit den Dar-
stellungen g(1), tel; = [t;y, t;], i= 1,2, ...,n)) (5. Bild 5.2).

y(l,,,ﬂ

B=g(ty)

A=g(ty)
4

Bild 5.2. Zerlegung Z von & in die Teilkurven &y, &, ..., &,

Definition 5.3: Eine Folge (Z,)n-1,,.. von Zerlegungen einer orientierten Kurve §
heifit ausgezeichnet, wenn fiir jedes n=1,2, ... die Teilkurven der Zerlegung Z,.,
durch Zerlegung der Teilkurven von Z, entstehen (nicht jede Teilkurve von Z, muf3
dabei sofort weiter zerlegt worden sein), und wenn fiir das Maximum A, der Bogenliingen
der Teilkurven von Z, lim A, = 0 gilt.

Beispiel 5.2: Es sei & die orientierte Kurve aus Beispiel 5.1. Als Parameterdarstel-
lung wihlen wir

&(t)=(rcost, rsint,0), te[0, =].

Z, habe als Teilungspunkte g(0), g(r/2), g(=). Jede weitere Zerlegung der Folge
(Z)n=1,e,.. entstehe durch Halbierung der Teilkurven der vorangegangenen Zer-
legung (s. Bild 5.3). Z, zerlegt & in die 2* Teilkurven &, &, ..., ®:*. &; hat dabei die

1) Aus drucktechnischen Griinden schreiben wir die Komponentendarstellung eines Vektors stets
horizontal, also x = (xy, x5, x3).

D.5.2

D.5.3
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1
Darstellung g(¢), te[ 5% 2k ] Die Bogenldnge einer jeden Teilkurve ®; ist ~— 2k

Dieser Wert ist auch das Maximum der Bogenldngen aller Teilkurven von Z: 4, = 21
Wegen 11m 5= 01ist (Z,)na1,2,... eine ausgezeichnete Folge von Zerlegungen von §£.

aaVanVany

Wir kommen nun zur grundlegenden Deﬁmtlon des Kurvenmtegrales 1. Art:

Bild 5.3

D.5.4 Definition 5.4: Gegeben sei eine Kurve R mit der Parameterdarstellung g(1), t € I,
und eine mind auf ' definierte Funktion f. Ist (Zp)n-1,s, ... €ine ausgezeichnete
Folge von Zerlegungen von & und zerlegt Z,, & in die Teilkurven 8,; (i= 1, 2, ..., k»)
mit den Bogenlingen As,;, so wihlen wir aus jeder Teilkurve &,; einen beliebigen Punkt
Qi und bilden die Summe

k’l
S =i§1f(Q,“-) Asp;. (5.1)

Haben nun die Summen (5.1) bei jeder Wahl der Q,; und fiir jede beliebige ausgezeich-
nete Folge von Zerlegungen von R stets den gleichen Grenzwert
S=1imS,, (5.2)

n-co

so nennen wir S das Kurvenintegral 1. Art von f iiber & und schreiben dafiir
| S=[f(P)ds.
&

f nennen wir iiber & integrierbar.

Ist f auf einem Gebiet M des Raumes definiert, das & als Teil enthélt, und sind die
Werte von f auf M durch eine Gleichung w = f(x, y, 2), ((x, y, z) € M) erklirt, so
schreiben wir auch S = j.f (x, y,z)ds oder in Vektorschreibweise mit x = (x, y, z)
auch §= [ f(x) ds. ®

Die Kurve & ist keinen Einschriankungen unterworfen. Insbesondere darf & Doppel-
punkte haben. Das sind Punkte, fiir die bei verschiedenen ¢, und #, aus I der Wert von
g gleich ist: g(t;) = g() (s. Bild 5.4). Ebenso darf & geschlossen sein, d.h. der An-
fangspunkt 4 und der Endpunkt B fallen zusammen: A = B (s. Bild 5.5). Im Falle
einer geschlossenen orientierten Kurve & schreiben wir fiir das Kurvenintegral S auch

S =¢f(P)ds= §f(x,y,2)ds = § f(x) ds.
® f £

Beispiel 5.3: Es sei & der orientierte Halbkreis aus Beispiel 5.1 und f(x, y, z) = 1 fir
jeden Punkt (x, y, z) des Raumes. Fiir die Summen (5.1) gilt dann stets

kn
Sp=21Asy=rm,
i1
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denn die Summe aller Lingen As,; der Teilkurven ist ja gléich der Linge rr von &.
Damit haben wir dann

lim S, = rr = [ ds.

n—co P
Man kann jedoch auch allgemeinere Mengen, bei denen nicht alle Bedingungen aus Defi-

nition 5.1 erfiillt sind, als Kurven einfithren. Dann muB aber die Bogenlinge f ds nicht unbe-
dingt existieren. &

g =g

Bild 5.5
B-g(5) 5

Bild 5.4 #~9@

Wir kommen jetzt zur Definition der Kurvenintegrale 2. Art. In der Definition 5.4
wird dabei in den Summen (5.1) die Linge As,; des Teilbogens £,; durch die Projek-
tion der Verbindungsstrecke zwischen Anfangspunkt P, ;_; und Endpunkt P,; auf
eine der Koordinatenachsen ersetzt (s. Bild 5.6). Die Projektionen bezeichnen wir
durch Ax,;, Ay,; bzw. Az,;.

Bild 5.6

Definition 5.5: Gegeben sei eine Kurve § mit der Parameterdarstellung (1), te I, und D.5.5
eine mindestens auf ® definierte Funktion f. Ist (Zn)n-,q, ... eine ausgezeichnete Folge

von Zerlegungen von & und wird & durch Z,, in die Teilkurven ®,; (i=1,2, ..., k,) mit den
Anfangspunkten P, ;_, und den Endpunkten Py; zerlegt (P; = (g1(tr;), g2(tnj), 85(tnj)))s

so setzen wir

Axyi= &i(tni) — gl(tn,i—l)’
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wahlen aus jeder Teilkurve ®,; einen beliebigen Punkt Q,; und bilden die Summe
. .

H

L o S(Qxi) Axn;. (5.3)

1

Haben nun die Summen (5.3) bei jeder Wahl der Q,; und fiir jede beliebige ausgezeich-
nete Folge von Zerlegungen von & stets den gleichen Grenzwert

L=1ImL,,

n—co

so nennen wir L Kurvenintegral 2. Art von f iiber & und schreiben dafiir

L= [f(P)dx i i (5.4)
f

oder mit P = (x, y, z) bzw. x = (x, y, z) auch J' f(x, y,z)dx bzw. f f(x) dx.
® [
In analoger Weise werden mit

Ayn; = gu(tni) — gatn, i-1)
bzw.

Az = gy(tni) — 8s(tn,i-1)
an Stelle von Ax,; in (5.3) die Kurvenintegrale 2. Art

[fPydy bzw. [f(P)dz
® f

erklirt. Eine Summe

[A®P)dx + [ fi(PYdy + [ fy(P) dz
L f ®

solcher Kurvenintegrale (mit verschiedenen Integranden fi, f,, fs an Stelle von f)
nennen wir allgemeines Kurvenintegral 2. Art und schreiben dafiir kiirzer

[IAP) dx + £(P) dy + fy(P) dz].
e

Ehe wir Beispiele fiir die Anwendung der Kurvenintegrale 1. und-2. Art bringen,
wollen wir zeigen, wie die Berechnung der Kurvenintegrale auf die Berechnung be-
stimmter Integrale zuriickzufiihren ist.

5.2. Berechnung von Kurvenintegralen

In der Definition des Kurvenintegrales 1. Art (s. Def. 5.4) spielte die Bogenlidnge
As,; der Teilkurven &,; eine wesentliche Rolle. Wir bendtigen deshalb ein Verfahren,
um diese Bogenlingen berechnen zu kénnen. Fiir die Bogenldnge s einer in der
x,y-Ebene verlaufenden Kurve mit der Parameterdarstellung

x = x(1),

a<t<§,
y =),
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hatten wir (s. Band 2; Satz 10. 19)

§= f V32 + 57 dr (5.5)

t=a
gefunden. Fiir eine zwischen x, und x, verlaufende ebene Kurve mit der expliziten
Darstellung y = y(x) galt
Zy
s=[V1+y"dx. / } (5.6)
T=T,

Analog zu Formel (5.5) erhalten wir fiir eine raumliche Kurve & mit der Para-
meterdarstellung x = g(¢), y= g:(t), z = g(t), a =t = b,

b
s=[V@+7+2dt (5.7
t=a '
als Bogenlidnge von &. Mit x = (x, y, z) und g(r) = (g:(?), g2(?), gs(¢)) erhalten wir fiir
die vektorielle Darstellung x = g(t), a = t =< b, der Kurve & wegen

% = V3 + 2 1 2 = [3(0)|

=f|k| drt). " (5.8)
t=a
Ist nun (Z,)n.1,e, ... eine ausgezeichnete Folge von Zerlegungen von & ind zerlegt
Z, ®indieTeilkurven &,; (i= 1,2, ..., k,) mit den Anfangspunkten g(#,,;—,) und den
Endpunkten g(t,,,») so haben wir fiir die Bogenlédnge As,, von &,;

Asyi= f [x(2)] dt. (5.9)
t=tpi1
Aus Formel (5.9) folgt nach dem Mittelwertsatz der Integralrechnung
Asni = |§(Tni)] Aty (5.10)

Da bei Existenz des Kurvenintegrales S = f f(P)ds die Summen (5.1) fiir jede Wahl

mit ¢, iy < Tpi < tp; Und Aty = th; — th, iy

®
der Punkte Q,; aus &,; gegen S konvergieren, konnen wir die Punkte Q,; so wihlen,
daB ihnen die Vektoren g(7,;) mit den Parametern 7,; aus Formel (5.10) entsprechen.
Fiir Formel (5.1) erhalten wir damit

k'l
N %f(g(fni)) &(zni)| Atni. ¢.11)
Aus Formel (5.11) folgt beim Grenziibergang n — oo (Formel (5.2))

S=[/(P)ds = [ fe(t)) - |g()] dt. (5.12)
L3 t=a

*) Siehe hierzu auch Bd. 6, 2.3.
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Die, Formel (5.12) rechtfertigt einerseits die Schreibweise Jf f(P) ds fiir den Grenz=

[
wert S aus Definition 5.4 und gestattet andererseits, die Formel (5.12) zur Berech-
nung eines Kurvenintegrals 1. Art leicht zu merken: Ist g(¢), ¢ € [a, b], eine Parameter-

darstellung von &, so ist in f f(P)ds P durch g(#) und ds durch das Bogenelement
£
|&(?)| dt zu ersetzen. Die Integrationsgrenzen sind #, = a, t, = b.

Eine wichtige Voraussetzung fiir den oben eingeschlagenen Weg zur Berechnung
von Kurvenintegralen war die Differenzierbarkeit von g. Das bestimmte Integral in
Formel (5.12) existiert, wenn der Integrand stiickweise stetig ist. Da g die Kurve &
darstellt, ist g stetig und g stiickweise stetig. Fiir die stiickweise Stetigkeit des Inte-
granden brauchen wir deshalb nur noch die stiickweise Stetigkeit von f zu fordern. Die
Ergebnisse konnen wir im folgenden Satz 5.1 zusammenfassen:

Satz 5.1: Gegeben sei die Kurve & mit der Darstellung (1), t € [a, b, und die auf & de-

finierte und stiickweise stetige Funktion f. Dann existiert das Kurvenintegral f f(P)ds,
und es gilt

[f(P)ds = f flg(@)) &) dr.
f t=a

Das Integral aus Formel (5.12) kénnen wir der Komponentenschreibweise ent-
sprechend auch in der Form

b
S =[£G, 2) ds = [ £aa(t), ga(0), £s0) VEF + 2 F &2t
f t=a

schreiben.

Die Betrachtungen, die uns zu Satz 5.1 fiihrten, sind natiirlich auch fiir ebene orien-
tierte Kurven mit einer Parameterdarstellung

[x=x(2),
|y =,

richtig. Es ist dann nur f eine Funktion von 2 Verdnderlichen und g4(¢) = 0. Damit
wird

St<h,

[, p) ds = [ f(x(0), y(0)) V2 + 5 de. (5.13)
£ t=a

Ist die ebene orientierte Kurve explizit darstellbar,
y=y(x), X=x=x,
so geht (5.13) entsprechend Formel (5.5) und (5.6) in
ff(x, y)ds= ff(x, YENVT + 2 dx (5.19)

=z,
iiber.
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Beispiel 5.4: Es ist die Oberfliche 4 einer Kugel mit dem Radius r zu berechnen. Sie

entsteht durch Rotation des Halbkreises mit der expliziten Darstellung y = J/r? — x*
(—r=x=r) um die x-Achse. Fiir die Oberfliche eines Rotationskorpers gilt
b

(s. Band 2, Satz 10.22) 4 = [2=y )T+ y®dx. Nach Formel (5.14) und Satz 5.1

ist dies ein Kurvenintegral mi'tz der durch f(x, y) = 2ny gegebenen Funktion f. Speziell

fiir die Kugel mit y =1r* — x* und y’ = _VTx—Z wird 1+ 2 = l/wrg";2
r? —x
S und
Vrz —x
A= f2ﬂ:yds— ‘/‘21\:l/r2—x-v2 dx~2-n:r fdx—47:r2
a=—r a=—r

Beispiel 5.5: Es ist das Kurvenintegral 1. Art von fmit f(x, y, z) = z(x* 4+ y?) iiber eine
Windung der Schraubenlinie mit der Darstellung g(t) = (r cos¢, r sint, at), t € [0, 2x],
zu berechnen. Es ist §(f) = (—rsint, r cost, @) und |g(¢)| = Jr? + &®. Damit wird
nach Formel (5.12)

ff(x) ds= fat(rz cos?t+r2sin’t)|/r? + a* dt

=ar*|r? —|—azltdt—27':2 artrry at.

Aufgabe 5.1: Es ist das Kurvenintegral 1. Art von f mit f(x, y, z) = —___y____—ﬁber die von
(1,1,1) nach (2,2,2) fithrende Strecke & zu berechnen. Va2 432 4 22

Bei der Berechnung des Kurvenintegrals f f(P)dx 2. Art haben wir gemiB

Definition 5.5 in Formel (5.1) As,,; durch Axm &1(tni) — &1(tn, i-1) zu ersetzen. Nach
dem Mittelwertsatz der Differentialrechnung gilt

Axpi = &1(7ni) At (5.15)
mit ¢, iy = Tni = tp; Und At,; = t,; — t,,;—;. Genau wie in Formel (5.11) wéhlen
wir nun die Punkte Q,; aus &,; so, daB sie den Vektoren g(z,,) entsprechen. Formel
(5.3) geht dann in

: ,

L,= ;1‘ S(&(wni) &1(Tni) Atn;

iiber, und der Grenziibergang n — oo ergibt

b
L=lim L, = [ flg®) () dr. (5.16)

Analog erhalten wir

[7PYdy = [ f(g) éalt) dt 5.17)
e t=a
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und
b
[A(P)dz = [ f(a()) &s(0) 1. : (5.18)
k3 t=a 0

Linearkombination von (5.16), (5.17) und (5.18) ergibt fiir das allgemeine Kurven-
integral 2. Art

f (fidx +fody + fydz) = f LA @) &) + f2(2()) &0 + f3(2(1) &()] dt. (5.19)

t=a

Fassen wir die f, als Komponenten eines Vektorfeldes f(x) (%), fo(x), f5(x)) auf
und beachten wir, daB f18, + f28, + fa8s = £+ & ist, so wird

J (fi dx + f/dy + f3 dz) = f £(g(t)) - £(¢) dt. (5.20)

t=a

Fiir das allgemeine Kurvenintegral 2. Art schreiben wir mit (dx, dy, dz) = dx auch
formal

[(fdx + fody + £ d2) = [ f(x) - dx.
3 [
Der dem Satz 5.1 entsprechende Satz lautet dann:
Satz 5.2: Gegeben sei die Kurve & mit der Parameterdarstellung g(t),t € [a, b], und die

auf & definierte und stetige Vektorfunktion f. Dann existieren die Kurvenintegrale
2. Art f fidx, f fody, f fsdzund das allgemeine Kurvenintegral 2. Art
) ) ®

f(fldx—%—fgdy+f3dz),
£
und es gilt .
b
f fi(x) dx = fﬁ(g(t)) &) dr, f fi(x) dz = f f3(g() &) dt,
f fulx) dy = j fa(g(t)) &) dt, f f(x) - dx = f £(g(t)) - () dr.

Beispiel 5.6 : Esist das allgemeine Kurvenintegral 2. Art L von f mit f(x, y, z) = (x,,2),
d. h., fi(x) = x, fo(X) = z, f3(x) =y, liber die geschlossene orientierte Kurve § mit
der Parameterdarstellung g(¢) = (cos 2, sin ¢, 3), ¢ € [0, 2x], zu berechnen.
Wegen g(¢) = (—sin ¢, cos ¢, 0) und f(g(¢)) = (cos #, 3, sin t) wird L nach Satz 5.2
2r 2m
= Jﬁ (—cos tsint+ 3 cost) dt = { (3 —sin t)costdt.
t=0 t=0 3
Mit der Substitution 3 — sin ¢ = s, ds = — cos ¢-d¢ wird L = — f sds=0.
3

Beispiel 5.7: In der Physik wird die Arbeit 7, die eine punktférmige Masse beim
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Durchlaufen einer orientierten Kurve § vom Anfangs- bis zum Endpunkt gegen ein
Kraftfeld F = F(x) zu leisten hat, durch das Kurvenintegral 2. Art

W = [F(x)-dx

; [
definiert. B

Diese Definition ist mit den elementaren Vorstellungen vom Begriff der Arbeit
vertraglich, denn fiir das Durchlaufen einer Strecke mit der Darstellung g(t)
=c¢ +1d,t€(a, b], wird bel konstantem Kraftfeld F = const wegen g(f)=d die Arbeit

W= fF dx_jF ddt=(b—a)F-d

t=a
geleistet. Die Weglange ist dabei
sAfds—fld[ dt=(b—a)d|.
t=a

Die Pro_‘ektxon der Kraft auf die Richtung der Strecke, die. Kraftkomponente in

Wegrichtung, ist F Tdcir Damit wird
I
=(b~a)F-d=(b—a)}d{F-—[gT,
\ )
also Arbeit = Weglinge mal Kraftkomponente in Wegrichtung.

Aufgabe 5.2: Fiir die Kurve ® mit der Darstellung g(f) = (4cos #,2sint,61),1 €
(allgemeine) Kurvenintegral 2. Art L = _f(x dx + zdy + 2dz) zu berechnen.
®

e

5 —2-] ist das

5.3. Eigenschaften von Kurvenintegralen

Vergleichen wir die Formeln (5.12) mit (5.20) fiir die Berechnung der Kurveninte-
grale 1. bzw. 2. Art, so kénnen wir feststellen, daB sie ineinander iibergehen, wenn wir

1) 0= (&)

setzen. Wir konnen also jedes Kurvenintegral 2. Art durch ein spezielles Kurven-
integral 1. Art darstellen.

Die folgenden Eigenschaften von Kurvenintegralen leiten wir nur fiir Kurveninte-
grale 1. Art her, bei den Kurvenintegralen 2. Art fithren analoge Gedankengéinge mit
Ausnahme von Satz 5.4 zu den gleichen Ergebnissen.

b
Fiir bestimmte Integrale f h(t) dt gilt, wenn a < ¢ < b ist,

b c ‘ b
[ ) de = [ () de + [ h@t) de (5.21)

(s.Band 2, Abschn. 10.1.4.). Die Berechnung des Kurvenintegrals f fds von fiber die
f
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Kurve & mit der Parameterdarstellung g(¢), ¢ € [a, b], fiihrt uns nach Satz 5.1 auf
ein solches bestimmtes Integral mit A(f) = f(g()) |&(*)|. Die Unterteilung des Inte-
grationsintervalles [a, ] in [a, c] und [c, b] entspricht bei der orientierten Kurve §
der Zerlegung in zwei orientierte Kurven ®; und ®, mit den Darstellungen g(7),
tea, c], und g(1), te[c, b], (s. Bild 5.7). Formel (5.21) ergibt

gf fds =/f fds +Rf fds. (5.22)

i

Da der Wert eines Kurvenintegrales nicht von der Parameterdarstellung der orientier-
ten Kurve abhingt, konnen wir fiir ; bzw. & auch von der speziellen Darstellung
g(1), t€[a, b], von & unabhingige Darstellungen g,(7), ¢ € [a,, b;], von & bzw. gy(?),
t€ [a,,b,], von &, wihlen. Insbesondere muB nicht unbedingt b, = a, sein.

90)
J@

9@ Bild 5.7

Definition 5.6: &, &, K, ..., &, seien orientierte Kurven. Der Endpunkt von R; falle
fiir jedes i=1,2,...,n— 1 mit dem Anfangspunkt von §;,, zusammen. Der Anfangs-
punkt von &, sei gleich dem Anfangspunkt von &, der Endpunkt von &, gleich dem End-
punkt von . Ferner sei & = & \/ 8 \J -+ \J &, wenn wir & und die &; ohne Be-
achtung der Darstellungen als Punktmengen auffassen. Dann sagen wir, & ist aus &,
R, v, &, Zusammengesetzt.

Mit Definition 5.6 und Formel (5.22) erhalten wir:

Satz 5.3: Sind &, &, und &, orientierte Kurven, & aus &, und &, zusamméngesetzt und f
eine auf & integrierbare Funktion, so gilt

[fds=[rds+[fds.
& ®, .

Die entsprechende Aussage gilt auch fiir Kurvenintegrale 2. Art.

Beispiel 5.8: & sei zusammengesetzt aus der auf der z-Achse liegenden orientierten
Strecke ®; mit dem Anfangspunkt (0, 0, 0) und dem Endpunkt (0, 0, 1) und dem in
der Ebene z =1 liegenden orientierten Halbkreisbogen £, mit dem Mittelpunkt
(1,0, 1) und dem Radius 1, der mit y = 0 vom Anfangspunkt (0, 0, 1) zum End-
punkt (2,0, 1) fithrt (siche Bild 5.8). Welche Arbeit W hat ein & durchlaufender
Punkt gegen das durch

F(x) = (/i(x), (), s(x) = (0, 1 — x, 2%)
gegebene Kraftfeld F zu leisten?
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z

Bild 5.8

Nach Beispiel 5.7 gilt
W=[(fidx+ fody+ fydz)= [ F-dx.
& I
® ist aus &, und &, zusammengesetzt. Parameterdarstellungen von &, bzw. &, sind
2.(1)=(0,0,7),1€[0,1], bzw. gxt)= (1 — cost,sint, 1), te[0, «].
Nach Satz 5.3 und 5.2 wird
W=[F.dx=[F-dx+ [F.dx
@ £, £,

t

(0, 1,2%) (0,0, 1) d + [ (sint, cost, 1) (sint, cost, 0) d
t=0

=0
1 Ed

=[rdi+[di=}+=
0 o

wegen
Flg@®)=(0,1,7), £()=(©0,0,1),
F(g,(1)) = (sint, cost, 1) und gy(¢) = (sint, cost, 0).

Aufgabe 5.3: F sei das Kraftfeld aus Beispiel 5.8 und & der orientierte Polygonzug, der von (0,0,0) *
iiber (2, 0, 0) nach (2, 0, 1) fithrt. Wie gro8 ist die Arbeit W, die ein & durchlaufender Punkt gegen
F zu leisten hat?

Definition 5.7: & sei eine orientierte Kurve mit der Parameterdarstellung g(z), t€la, b]. D.5.7
Dann verstehen wir unter —§ die Kurve, die aus der gleichen Punktmenge wie & besteht,
aber von g(b) nach g(a) durchlaufen wird.

Eine Darstellung von —& ist z. B. h(t)=g(a+ b —t), t € [a, b]. Wir wollen

.

jetzt untersuchen, wie sich f fds veréindert, wenn wir & durch —& ersetzen, d.h., den
[
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Integrationsweg entgegengesetzt durchlaufen. Wegen ﬂ(t) = —g(a+ b—1t) wird

I= ffds = jf(h(t)) lh(r)| dr = ff(g(a +b—1)|g@d+b—1)|dt. (523)

t=a

Substituieren wir in (5.23) a + b — t = 7, dt = —dx, so wird

I=— f f(e(@)) |§()| dr = f f(g(@) &(2)| dv = f fds.

T=a

Wir haben also f fds= j fds. Beim Kurvenintegral 2. Art ist der Sachverhalt anders.
-8 &
Ist f = (f3, f2, f3) = f(x) eine Vektorfunktion und

L= ff dx = (f(g(z)) -8(1) dt,

t=a

so wird mit den oben verwendeten Bezeichnungen
b a
[£-dx = [1(a(e)) - h(r) dt = [ £(g(x)) - g(r) dv = —
-8 t=a =b

Beim Kurvenintegral 2. Art wechselt also bei der Umkehrung des Richtungssinnes
einer orientierten Kurve das  Vorzeichen. Die Ergebnisse fassen wir im folgenden
Satz zusammen:

Satz 5.4: Das Kurvenintegral 1. Art ist von der Orientierung des Integrationsweges unab-
hangig, Integration iiber ® und —Q liefern beim gleichen Integranden den gleichen
Wert. Dagegen wechselt ein Kurvenintegral 2. Art beim Ubergang von § zu —§ das
Vorzeichen.

Besteht der Integrand eines Kurvenintegrales (1. oder 2. Art) aus einer Summe
zweier Funktionen oder aus dem Produkt einer Funktion mit einer skalaren Grofe,
so gelten wegen Satz 5.1 bzw. 5.2 die gleichen Verhiltnisse wie bei gewohnlichen be-
stimmten Integralen (sieche Band 2, Abschn. 10.1.4.):

Satz 5.5: Ist § eine orientierte Kurve, f und g auf ® definierte Funktionen und ) eine
reelle Zahl, so gilt

I a) [(f+g)ds=[fds+[gds, b) [ifds =2 [fds.
£ f f £ i

Entsprechende Aussagen sind fiir Kurvenintegrale 2. Art giiltig.

54. Integration totaler Differentiale

Im folgenden Abschnitt wollen wir einige fiir Kurvenintegrale 2. Art typische Er-
gebnisse herleiten. Sie setzen voraus, daB der Integrand nicht nur auf dem Integra-
tionsweg, sondern in einem den Integrationsweg enthaltenden Gebiet definiert ist.
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Es kommt dabei auch darauf an, daB3 die Gebiete einer bestimmten Bedingung ge-
niigen, die in der folgenden Definition angegeben wird.

Definition 5.8: Ein (zwei- oder dreidimensionales) Gebiet G heifit einfach zusammen- D.5.8
hingend, wenn sich jede in G verlaufende geschlossene Kurve auf einen Punkt zu-
sammenziehen kann, ohne G dabei zu verlassen.

Beispiel 5.9: Eine (zweidimensionale) Kreisscheibe ist einfach zusammenhéngend.

Beispiel 5.10: Das durch zwei Kreise nach Bild 5.9a) begrenzte Gebiet G ist nicht
einfach zusammenhéingend, denn jede den inneren Kreis umschlieBende Kurve mufl
beim Zusammenzichen auf einen Punkt das nicht zu G gehorige Innere dieses Kreises
uberstreichen. G kann jedoch durch einen Schnitt nach Bild 5.9b) in ein einfach
zusammenhédngendes Gebiet iiberfithrt werden. Ein solches Gebiet nennen wir nach
Definition 5.9 zweifach zusammenhéngend.

Bild 5.9

Definition 5.9: Ein (zwei- bzw. dreidimensionales) Gebiet G heifit n-fach zusammen- D.5.9
hiingend, wenn es sich durch n — 1 Schnitte (entlang Geraden bzw. Ebenen) in ein

einfach hiingendes Gebiet umwandeln Ift.

Beispiel 5.11: Die durch zwei konzentrische Kugelflichen begrenzte Hohlkugel ist
einfach zusammenhéngend.

Beispiel 5.12: Verstehen wir unter G eine Kugel, aus der nach Bild 5.10 ein Teil durch
einen Zylinder herausgestoBen wurde, so ist G nicht einfach, sondern zweifach zu-
sammenhéngend.

Bild 5.10 LT ——

7 Korber, Integralrechnung
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Definition 5.10: Ein Kurvenintegral 2. Art f f . dx, dessen Integrand f = f(x) in einem
Gebiet G definiert ist, heifit in G vom Integrationsweg unabhiingig, wenn fiir jedes
Punktepaar A, B aus G, gleichgiiltig welche ganz in G verlaufende orientierte Kurve $
als Verbindung zwischen dem Anfangspunkt A und dem Endpunkt B gewdhlt wird, das
Kurvenintegral

1) - dx X
&
nur von A und B, nicht aber von § abhingt.

Satz 5.6: f sei im Gebiet G definiert. Das Kurvenintegral 2. Art f f(x) - dx ist genau dann

in G vom Integrationsweg unabhdngig, wenn fiir jede ganz in G verlaufende geschlossene
Kurve &

56f(x) Ldx =0
®
gilt.
Beweis: a) Es sei f f.dx in G vom Integrationsweg unabhéngig und & eine beliebige,

in G verlaufende geschlossene Kurve. Wir wihlen zwei beliebige, aber voneinander
verschiedene Punkte 4 und B auf §. 4 und B zerlegen & in zwei Teile, die wir, je-
weils von A nach B fithrend, als orientierte Kurven &, und &, auffassen (s. Bild 5.11).
Nach Voraussetzung gilt

ff'dx=ff-dx. =
[
® setzt sich aus & und —&, zusammen. Nach Satz 5.3 und 5.4 gilt

$f-dx=[f-dx+ [f.dx=[f.-dx—[f.dx=0.
& % S %,

Aus der Voraussetzung folgt also (}S f.dx = 0 fiir jede geschlossene Kurve & aus G.
&

b) Fiir jede in G verlaufende geschlossene Kurve & sei
$f-dx=o.
&

Es seien nun A4, B beliebige, voneinander verschiedene Punkte aus G, und &, &
seien in G verlaufende, von 4 nach B fiihrende orientierte Kurven. Die aus &, und
—Q, zusammengesetzte Kurve ist geschlossen. Die Voraussetzung und Satz 5.3
ergeben

<£f>~dx=ff-dx+ [f-dx=o0.
£ EX -8,
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Folglich ist nach Satz 5.4

[fodx=— [f.dx=[f-dx,

£ ) R

also ff - dx vom Integrationsweg unabhidngig. Damit ist Satz 5.6 bewiesen. ®

Die Unabhéngigkeit eines Kurvenintegrals f f-dx mit f(x) = (P(x), O(x), R(X))
tritt z.B. ein, wenn f-dx = Pdx + Q dy + Rdz das totale Differential d® einer
Funktion @ = &(x), d.h. &, = P, @, = Q und @, = R ist. (Es besteht dann die Be-
ziehung f = grad @.)

Ist ndmlich & eine geschlossene Kurve mit der Parameterdarstellung g(¢), 7 € [a, b],
so wird mit x = g(t) = (g1(1), 82(1), g5(1))

OR) = DE) = FO) wnd S = G4+ 04+ By = 1E0) 0.

Fiir das Kurvenintegral gilt dann nach Satz 5.2

b b
$f-dx = [£(e()) - 8(r) dt = [ dF = F(b) — F(a).
k3

t=a t=a

Nach Voraussetzung ist & geschlossen, d.h., g(a) = g(b) = X,, und damit

$f-dx = F(b) — F(@) = D(x;) — D(x,) = 0.
@

Satz 5.6 ergibt schlieBlich die Unabhéngigkeit von f f.dx vom Integrationsweg in
jedem Gebiet, in dem f - dx das totale Differential einer Funktion @ ist. Von diesem
Sachverhalt gilt auch die Umkehrung, was hier aber nicht bewiesen werden soll.

Es gilt also der folgende Satz.

Satz 5.7: f sei in dem Gebiet G stetig. f f - dx ist genau dann in G vom Integrations-
weg unabhdngig, wenn f - dx das totale Differential einer Funktion @ ist, d.h., wenn
f = grad @ in G ist. Ist & eine in G verlaufende orientierte Kurve mit dem Anfangs-
punkt (xy, y1,z,) und dem Endpunkt (xs, V2, Z), so laft sich das Kurvenintegral
iber & durch

ff' dx = B(x, 2, 22) — P(x1, y1, 21)
f <

berechnen.

Es entsteht weiter die Frage, wie man es bereits f ansehen kann, ob es eine Funk-
tion @ mit grad @ = f gibt, d.h., ob f - dx das totale Differential einer Funktion @ ist,
und wie sich @ aus f berechnen 1iBt. Uber den ersten Sachverhalt gibt Satz 5.8 Aus-
kunft, dessen Beweis wir in Abschn. 7.5., Beispiel 7.7, nachholen. Zwei Methoden
zur Berechnung von @ lernen wir in den nachfolgenden Beispielen 5.14 und 5.15
kennen.

7%

S.5.7
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Satz 5.8: G sei ein einfach zusammenhdingendes Gebiet. In G sei f stetig und die Kompo-
nenten P, Q, R von f seien stetig partiell differenzierbar. Ferner sei in G rotf = 0, d.h.,
R,= 0., P.= R, und Q.= P,. Dann ist f - dx ein totales Differential, also j f-dx
in G vom Integrationsweg unabhdingig.

Ist das ganze Problem eben, d.h. G ein Teil der x,y-Ebene, R = 0 und P, Q nur von
x, y abhingig, so reduziert sich rot f = 0 auf die dritte Gleichung P, = Q..

Der einfache Zusammenhang von G ist, wie das folgende Beispiel 5.13 zeigt, eine
wesentliche Voraussetzung, auf die nicht verzichtet werden kann.

Beispiel 5.13: Es ist 9§ f. dx zu berechnen, wobei f(x) = (—y, x) und & der

2 + yZ

Einheitskreis ist. Es handelt sich hier um ein zweidimensionales Problem. Es ist
x2

x2 + 2 ( 2 2)2

Die Bedingung von Satz 5.8 ist also in dem zweifach zusammenhingenden Gebiet

G, das aus der ganzen x,y-Ebene mit Ausnahme des Punktes (0, 0) besteht, erfiillt.

Der Einheitskreis &, iiber den integriert werden soll, liegt ganz in G. Eine Para-
meterdarstellung von & ist

P=— 2,Q fiir %+ 3% >0.

o und  Py=0,=

g(t) = (cost, sint), 1€ [0, 2x].
Mit g(t) = (—sint, cost) wird

2 2n

¢ 1 . . .

gs f(x)-dx = fm—t (—sint, cost) - (—sint, cost) dt —fdt =2n = 0.
t=0 0

f.dx ist also nicht vom Integrationsweg unabhédngig, obwohl f - dx ein totales

Differential ist (aber nicht in einem einfach zusammenhidngenden Gebiet!).

Beispiel 5.14: Es sei f= (yz, xz+ »?, yx). Als erstes wollen wir untersuchen, ob
f - dx ein totales Differential ist. Wir wenden hierzu Satz 5.8 an:

rotf=(Ry— Q:, P — Ry, 0o — P)=(x— %,y —y,z—2)=0

f . dx ist also (im ganzen Raum) ein totales Differential und f f - dx vom Integrations-
weg unabhéngig. Wir wollen nun noch die Funktion @ berechnen, deren totales
Differential f - dx ist. Wir verwenden hierzu die Beziehung grad @ = f, d.h.

grad @ = (D,, D, D) = (yz, xz + »* xy). (5.24)

@ 4Bt sich nun z. B. durch formale Integration von @, = yz nach x bestimmen. Es
ist hierbei zu beachten, daB die Integrationskonstante eine von y und z abhingige
Funktion sein kann. Das Ergebnis der unbestimmten Integration nach x wieder nach
x differenziert ergibt ndmlich yz, auch wenn noch eine Integrationskonstante ¢(y, z)

0 . .
hinzugefiigt wird, da £= 0. Bei der formalen Integration nach x werden iibrigens y
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und z wie Konstante behandelt. Wir erhalten also
D= [yzdx+ 9, 2) = xpz + ¢, 2).

Die Funktion ¢ bendtigen wir unbedingt, um @ auch noch den beiden restlichen
Gleichungen von (5.24) anpassen zu konnen. Ohne ¢ wire namlich @, = xz = xz+)%
Die Beriicksichtigung der Integrationskonstanten ¢ ergibt dagegen

D, = xz+ @, = xz+ )
Damit gilt fiir ¢

2

Py =)~
Formale Integration nach y ergibt

0, 2) =35+ ().
Ahnlich wie bei der Integration von @, = yz muB hier die Integrationskonstante y(z)

beriicksichtigt werden, die noch zur Anpassung von @ an die dritte Gleichung von
(5.24) benotigt wird. Es ist jetzt

D =xpz+1)°+ y(z), also D.=xy+y'(2)=xy.
Damit ergibt sich 9'(z) = 0 und y(z) = C = const. Wir haben somit
D=xyz+3y*+ C
gefunden. Die Probe ergibt, daB @ der Gleichung (5.24) geniigt.

Die Funktion @ kénnen wir nach Satz 5.7 benutzen, um bei konkret vorgegebenen &
Kurvenintegrale f [yz dx + (xz + y?) dy + xy dz] zu berechnen. Es sei z.B. & eine

[
orientierte Kurve mit dem Anfangspunkt (2,0,7) und dem Endpunkt (1, 3, 2).
Dann wird

[f-dx=0(1,3,2) - 6(2,0,)=1-3-2+} 3+ C~C=15.
f

Beispiel 5.15: Eine Feder mit der Federkonstante a sei mit dem einen Ende im
Punkte (0, 0, 0) befestigt. Welche Arbeit W ist gegen die Federkraft zu leisten, wenn
das andere Ende der Feder auf einer von (x;, y;, z;) nach (x, s, z,) filhrenden Kurve
& bewegt wird?

Die Federkraft sei F. |F| ist proportional zum Abstand des Federendes vom Null-
punkt mit dem Proportionalititsfaktor a. Die Richtung von F weist dabei zum Null-
punkt hin. Befindet sich das Federende im Punkt (x, y, z) und setzen wir x = (x, y, z),

so gilt [F| = a|x| und F = — % |F| = —ax. Das die Arbeit liefernde Kurvenintegral
(s. Beispiel 5.7)
W=[F-dx
it
ist wegen rot F = —arot (x,y,z) =0 nach Satz 5.8 vom Integratiosnweg & un-

abhingig. Es gibt also eine Funktion @ mit F = grad &.
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In der Physik nennt man eine Funktion @, die zu einem Kraftfeld F in der Bezie-
hung F = grad @ steht, die zu F gehorige Kréftefunktion, —@ die potentielle Energie
oder das Potential von F. Besitzt F ein Potential, so heiBt ¥ Potentialkraft oder
konservative Kraft. Dieser Sachverhalt trifft fiir das vorliegende Beispiel also zu.
Die Federkraft ist eine konservative Kraft.

Wir wollen nun noch die Kréftefunktion @ bestimmen. Wir konnten dabei ebenso
wie in Beispiel 5.14 vorgehen. Es soll hier jedoch ein anderer Weg eingeschlagen wer-
den. Nach Satz 5.7 gilt

fF' dx = D(x, y, 2) — D(x0, Yo, 20)»
o

wenn £, von (X, Yo, Zo) nach (x, y, z) fiihrt. Diese Formel gestattet es uns also, @ bis
auf die Konstante @ (x,, y,, Z,) Zu bestimmen. Eine eindeutige Bestimmung von @
war uns aber auch in Beispiel 5.14 nicht méglich. Dort war in @ noch die Integra-
tionskonstante C enthalten, die bei der Berechnung eines Kurvenintegrales mit Hilfe
von @ aber herausfillt. Wir kdnnen also

(D(x,y,z)=fF-dx
$o

-setzen, wobei &, wegen der Unabhingigkeit des Kurvenintegrales vom Wege eine
beliebige, von (x,, y,, Zo) nach (x, y, z) fiihrende Kurve sein kann. Wir wihlen fiir
die Integration &, moglichst einfach. Fiir jeden von (x,, ¥, Zo) verschiedenen Punkt
(x, y, 2) sei

8 die von (X, yo, zo) nach (x, yo, zo) fithrende orientierte Strecke,
R, die von (x, yo, zo) nach (x, y, z,) fithrende orientierte Strecke,
®; die von (x, y, z,) nach (x, y, z) filhrende orientierte Strecke

und &, die aus K, & und ®; zusammengesetzte orientierte Kurve (s. Bild 5.12).
Zur Berechnung des Kurvenintegrales benétigen wir Darstellungen von ®;(i= 1,2, 3).
®, wird dargestellt durch

x(t) = (t, Yo, 20), 1 € [Xo, x], mit X = (1, 0, 0).

xy,2)

(X0, Yp17p)

y
X, Y.29)

Bild 5.12
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Nach Satz 5.2 wird

jF dx = jF(x(t)) x(z)dt_f[ a(t, yo, ) * (1,0, 0)] dt

x

= —aftdt:-—%(x2 —x3).

t=x,

Analog erhalten wir

‘a a
fF-dx=—7(y2—-y§) und fF~dx=——2-(zz— 2
K £
Nach Satz 5.3 wird

®=(F-dx=[F-dx+[F-dx+ [F-dx
K ®, R K
= —%(x2+y2.+ 22— x2— yg— z3).
Mit (3 + 3+ 2§) 5 = Cist & = — 5@+ 3"+ 2) + C. Satz 5.7 ergibt schlieBlich

W=fF-dx=%(x3+y3+z§—xg—yg_zg).

1
Aufzabe 5.4: Untersuche, ob das Kraftfeld F = (y, 1 — x, z2) aus Beispiel 5.8 ein Potential besitzt. *

Aufgabe 5.5: Untersuche, ob das Kraftfeld F = — 7= S _— z) (Newtonsche Kraft) ein *
———
+y +z
in einem geeignet zu wihlenden Gebiet G ein Potential besitzt und bestimme gegebenenfalls die
Kriftefunktion @.

Aufgabe 5.6: Berechne unter Benutzung der Ergebnisse aus Beispiel 5.13 das Kurvenintegral ¢ f-dx, *

8y
x2—+—y7 (— y, x) und ®; die orientierte Berandung des Quadrates mit der Seitenldnge 4,
parallel zu den Achsen verlaufenden Seiten und dem Mittelpunkt (0, 0) ist.

wobei f =

Anleitung: Benutze den in Bild 5.13 dargestellten Integrationsweg &o. Er ist geschlossen und verlduft
ganz in einem einfach zusammenhidngenden Gebiet (x,y-Ebene, aus der der Koordinatenursprung
(0, 0) entfernt ist, und die entlang der positiven x-Achse aufgeschnitten wurde), in dem f- dx ein
vollstidndiges Differential ist.

Aufgabe 5.7: Untersuche, ob das Vektorfeld v = (—2x + sinz, cosy — ysiny, xcos z + 4e27) *
ein Potential besitzt und bestimme gegebenenfalls die Kriftefunktion.

S1S% Kurvenintegrale anderer Art
Bei der Definition des Kurvenintegrales 1. Art (s. Def. 5.4) S = f fds waren wir von Zerlegungen

f
(s.Def.5.2) von ® ausgegangen und haben die Summen der Produkte der Teilbogenldngen As; mit
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den Funktionswerten von f in einem beliebigen Punkt des Teilbogens &; (Formel (5.1)) gebildet.
S war dann der Grenzwert dieser Summen bei immer feinerer Unterteilung von &. Der Vorteil eines
solchen Herangehens liegt darin, daB sich mit Definition 5.4 unmittelbar entsprechende geometrische,
physikalische oder technische Probleme modellieren lassen.

In Satz 5.1 hatten wir dann

( fds= j fle(®)) la)| dt (525

t=a

gefunden, wenn g(¢), 7 € [a, b], eine Darstellung der orientierten Kurve & ist. Die Formel (5.25) hit-
ten wir auch zur Definition von f fds benutzen konnen: Ist & eine Kurve mit der Darstellung g(?),

&
t € [a, b], und feine auf & definierte Funktion, so verstehen wir unter f fds das Integral auf der rechten

Seite von Formel (5.25), falls es existiert. Von dieser Definition ausgehend hétten wir die gleichen
Ergebnisse erhalten, die wir mit Definition 5.4 als Ausgangspunkt fanden. Dieser Weg bietet sich vor
allem an, wenn man, z.B. zur Sicherung der Existenz von Kurveni alen unter iger ein-
schrinkenden Bedingungen, den Begriff des Kurvenintegrales allgemeiner fassen will. So kann z.B.
bei der Definition des Kurvenintegrales mit Hilfe von Formel (5.25) das Integral auf der rechten
Seite von Formel (5.25) als Lebesguesches Integral oder anderes Integral (s. Band 2, 2.3.5.) auf-
gefaBt werden. Analog kann man natiirlich auch mit dem Kurvenintegral 2. Art und den Darstellungs-
formeln aus Satz 5.2 verfahren.

Eine weitere Verallgemeinerung erhalten wir auf folgende Art. Es seien & eine Kurve mit der

Darstellung g(2), ¢ € [a, b], und £, h auf & definierte Funktionen. Unter f fdh verstehen wir dann das

Stieltjessche Integral (im Sinne von Riemann oder Lebesgue, s. Band 2, 10.5.) f f(g(t)) dh (g(1)).
t=a
Das Kurvenintegral 1. Art f fds ist jetzt ein Spezialfall dieses all ineren Kurveni -als, wenn

£
wir unter der Funktion s = s(g(#)) die Bogenldnge iiber dem Intervall [a, ] verstehen.

y
5 .
&
7
% -4,
2 Ko 7 % 12 X
-1
Bild 5.13
Integrationsweg ,, zusammengesetzt
2 aus &, &, —& und —K,




6. Oberfldchenintegrale

Unser Ziel ist es, dhnlich wie wir in 5.1. das bestimmte Integral zum Kurvenintegral
erweitert haben, auch das Bereichsintegral fiir ebene Bereiche zum Integral tiber raum-
lich gekriimmte Flichen zu erweitern. Beim Kurvenintegral stand uns mit der Bogen-
lange bereits ein MaB fiir die bei der Zerlegung der Kurve entstehenden Teile zur
Verfiigung (s. Def. 5.3, 5.4 und Abschnitt 5.2.). Wenn wir von den Rotationsflichen
absehen, fehlt uns aber noch eine Definition fiir den Flacheninhalt gekriimmter
Flachen. Wir werden sie in Abschnitt 6.1. bereitstellen. In Abschnitt 6.3. konnen wir
dann auf der Grundlage dieser Definition in Analogie zu den Kurvenintegralen
Oberflichenintegrale erster und zweiter Art einfiihren.

6.1. Definition und Berechnung des Inhalts krummer Flichenstiicke

Es sei § eine (endliche) rdumlich gekriimmte Fliche. Die Projektion B von % auf
die x,y-Ebene (parallel zur z-Achse, s. Bild 6.1) sei meBbar, d.h., ff db existiert.
B

Jeder Projektionsstrahl soll § dabei nur einmal treffen. Ordnen wir nun jedem Punkt
(x, y) aus B die Ordinate z des Punktes von § zu, in dem der Projektionsstrahl durch
(x, y) die Fldche  trifft, so erkliren wir auf B eine Funktion f z = f(x, y) (s. Bild 6.1).

Umgekehrt erhalten wir durch jedes Paar B, f, wobei B ein endlicher Teilbereich der
xzy-Ebene und f eine auf B definierte Funktion ist, eine rdumlich gekriimmte Fliche,
die aus den Punkten (x, y, f(x, y)) mit (x, y) € B besteht. Von der Funktion f wollen
wir verlangen, daB sie auf B stetig und stetig partiell differenzierbar ist.
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An § kénnen wir in jedem Punkt eine Tangentialebene legen. Der Anstieg der
Tangentialebene im Punkt (&, %, f(£, 1)) in x-Richtung ist a = £;(&, %), in y-Richtung
b = f,(& ). Damit konnen wir die Gleichung dieser Tangentialebene in der Form

z=ax+by+c 6.1)
schreiben, wobei ¢ = f(£, n) — ££.(&, 1) — nf,(&, 7)ist. Die Gleichung (6.1) kénnen wir
mit X = (x, y, z) und m = (—a, —b, 1) umformen in

m-x=c.

m ist dann ein senkrecht auf der Tangentialebene stehender Vektor (s. Band 13).
Den Einheitsvektor von m bezeichnen wir durch n und nennen ihn Normalenvektor
der Tangentialebene. Da die Tangentialebene die Fliache § im Punkt (&, %, f(§, 1))
beriihrt, steht n in diesem Punkt auch senkrecht auf . Wir nennen n deshalb auch
Normalenvektor von § im Punkt (&, #, f(&, ). Fir n gilt

1 1 .
iy A L
1
= —f(& ), =&, n), 1). 6.2
AG o aGy &P A& ©2

Unter den oben fiir ¥ gemachten Voraussetzungen 148t sich nun eine Folge
(Pi)ic1,2,.. von auf B erklarten stetigen und stiickweise linearen Funktionen an-
geben, die den weiter unten angefithrten zusitzlichen Bedingungen (a) bis (d) geniigt.
Stiickweise linear bedeutet, da3 sich der Graph von p; aus Teilen von Ebenen zu-
sammensetzt. Wegen der Stetigkeit schlieBen sich die Ebenen ohne Spriinge an-
einander. Der Graph von p; ist also Teil der Oberfliche eines Polyeders. Wir sagen
hierzu kurz polyedrische Fliche. p; sei jeweils auf Teilbereichen By (1 < k =< m;) von
B linear, d.h., z = p;(x, y) stellt iiber B, eine Ebene dar, deren Normalenvektor n;;
sei. «; sei das Maximum der Durchmesser der B (1 =< k < m,) (s. 2.1., Def. 2.2).
B sei das Maximum von |f(x, y) — p:(x, )|, wobei (x, y) ganz B durchlduft. Die
zusdtzlichen Bedingungen fiir die Folge (p,) sind:

@) (Mdiay,s, ...
(b) lim o; = 0.

i—>00

ist eine monoton wachsende Folge.

(c) lim ;= 0.
i»o0

(d) In By gibt es fiir jedes i=1,2,.. und k= 1,2, ..., m; einen Punkt
(> ma), so daB die Normale an § im Punkt (Si, ik, f(Eik> Nik))
mit ny, iibereinstimmt.

Die Teilbereiche B;, Bi, ..., By, von B bilden jeweils eine Zerlegung von B.
Wegen der Bedingungen (a) und (b) bilden diese Zerlegungen fiir i = 1, 2, ... eine aus-
gezeichnete Folge von Zerlegungen von B'(s. 2.1., Def. 2.3). Die Bcdmgungen (©)
und (d) sichern uns, daB sich die durch p; dargestellten polyedrischen Flichen B; mit
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wachsendem i immer mehr der Fliche § nihern. Den Flidcheninhalt 4; von f; kénnen
wir aber leicht berechnen. Besitzt nun die Folge (4;)i.1,s, ... einen Grenzwert 4, so ist
es naheliegend, diesen Wert A als Fldcheninhalt der gekriimmten Fliche ¥ ein-
zufiihren.

Wir wollen jetzt den Flicheninhalt 4; von ; berechnen. Das iiber By, gelegene
Ebenenstiick sei ;. In die Spur der Ebene E, in der P liegt, mit der x,y-Ebene legen
wir eine u-Achse und senkrecht zu ihr (ebenfalls in der x,y-Ebene) eine v-Achse.
Senkrecht zur u-Achse legen wir in die Ebene E eine v-Achse. Die Beziehung zwischen
den Punkten (u, vy von E und ihren Projektionen (u, v) in der u,p-Ebene wird durch

v=TDcosy ©(63)

wiedergegeben. Hierbei ist y der Winkel zwischen E und der u,v-Ebene. Dieser Winkel
liegt auch zwischen ny und der z-Achse (s. Bild 6.2).

Bild 6.2

Die Funktionaldeterminante fiir den Ubergang von u,v-Koordinaten zu u,v-Koor-
dinaten (vgl. Abschnitt 4.1.) folgt aus (6.3) zu

‘_ I
T cosy

9(u, v) _
A(u,v)

0
? sy |

Mit A4 als Flicheninhalt von ;. und ABj als Flicheninhalt von By, gilt

9(u, v) 1 ABy
A=y 4= ey -
9(u, v) cosy cos y

llf ik

(siche Abschn. 4.2.). Ist e; der Einheitsvektor in Richtung der z-Achse, so gilt
COS Yy = €3« M. (6.4)
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Nach Bedingung (d) gibt es nun einen Punkt (&4, i) € Bix, so daB die Normale n
an ¥ mit ny tibereinstimmt. Beriicksichtigen wir n = n und Formel (6.2) in (6.4), so

" erhalten wir

1 1
VI+/2+/2 n+rz+r

wobei f; und f, im Punkte (£, 7s) zu nehmen sind. Damit wird

cosy=(0,0,1)- (=fe, =fy, D = (6.5)

o ABy
* Cos y

=11+ £2i, na) + £2(Ea, M) ABac
und

A4; =I§ V1 + £2(Eres ma) + 12 Cires i) ABy.

Da nach (a) und (b) die By eine ausgezeichnete Folge von Zerlegungen von B er-
klaren und f;, f; stetig sind, konvergieren die 4; gegen ein Bereichsintegral iiber B:

lim 4; = [[VI+ 72+ 73 db

i—»co 3
(siehe 2.1., Def. 2.5). Nach unseren oben angestellten Uberlegungen wollten wir
diesen Grenzwert als Fldcheninhalt A von ¥ einfiihren.
Definition 6.1: Die endliche Fliche 5 sei durch z = f(x, y) iiber dem mefSbaren Bereich B

der x,y-Ebene gegeben, wobei die Funktion f stetig und stetig partiell differenzierbar sei.
Dann definieren wir

| A=([T+fi+fidb

als Flacheninhalt von .

Beispiel 6.1: Uber dem Einheitskreis B = {(x, y): x* + y* = 1} sei durch z = xy
die Flache % gegeben. Es ist also f(x, y) = xy mit f; = y und f, = x. Fiir den
Flicheninhalt 4 von ¥ gilt dann

A=[[VI+7i+/3db=[[VT+ )+ = db.
B B

Wegen der Gestalt von B und des Integranden 148t sich dieses Integral am besten in
Polarkoordinaten auswerten:

2w 1 N

A=ffl/1+x2+y2db=ff]/1—l—r2rdrd§o=zTn(2]/§—l).
B 00

Aufgabe 6.1: Es ist der Flicheninhalt der Zylinderfiiche z = V1—-x2zu berechnen, die sich {iber
dem Einheitskreis B = {(x, y): x? + »? < 1} befindet.



6.2. Parameterdarstellung von Flichenstiicken 109

6.2. Parameterdarstellung von Flichenstiicken

Im vorangegangenen Abschnitt haben wir Flachenstiicke §§ durch die Projek-
tion B von & auf die x,y-Ebene und durch die Funktion f, die aus der Zuordnung
(x,y) =z fir (x,y,z) €F entsteht (siche 6.1.), dargestellt. Voraussetzung war
dabei; daB jeder Projektionsstrahl durch (x, y) € B das Flachenstiick ¥ in nur einem
Punkt trifft. Dieser Sachverhalt ist aber selbst fiir relativ einfache Flichen, wie z.B.
fiir die Kugel, bei der jeder zu einem inneren Punkt von B gehorige Projektionsstrahl
die Kugelfliche zweimal trifft, nicht mehr gegeben. Es ist deshalb zweckmaBig, zu
einer anderen Form der Darstellung iiberzugehen, die die bisher benutzte Form als
Spezialfall enthdlt. Wir gehen dabei dhnlich vor wie bei den Raumkurven in Ab-
schnitt 5.1. (vergleiche insbesondere Def. 5.1). In Abschnitt 6.1. haben wir von raum-
lich gekriimmten Flachen gesprochen, ohne diesen Begriff ndher zu definieren. Dies
wollen wir jetzt nachholen (vgl. auch Bd. 4,2.6.4., oder Bd. 6,4.1.1. und 4.1.5.).

Definition 6.2: Es sei M ein mefbarer Bereich der u,v-Ebene, dessen Rand im Sinn D.6.2
der Def. 5.1 eine Kurve ist, sowie g, g2, g3 auf M stetige Funktionen. Ferner sei
x = g(u, v) = (g1, g2, g3) Stiickweise?) stetig partiell differenzierbar mit

dg _dg|
ETM_ X a—v’ + 0.
Dann nennen wir die Menge aller Punkte (g;(u, v), g8 (u, v), g5(u, v)) des R®, wobei
(u, v) ganz M durchliuft, eine Fliche . g = g(u, v), (u, v) € M, nennen wir Parameter-
darstellung oder auch kurz Darstellung von 5.

Die in Abschnitt 6.1. verwendeten Fldchen entsprechen der Definition 6.2. Ist B ein
mefBbarer Bereich der x,y-Ebene und % durch die Punkte (x, y, (x, )) mit (x, y) € B
gegeben, wobei f auf B stetig und stetig partiell differenzierbar sein soll, so kénnen
wir x = u, y = v, g, (u, v) = u, g,(u, v) = v und gs(u, v) = f(u, v) setzen und erhalten
eine Definition 6.2 entsprechende Darstellung von § ing = (u, v, f(u, v)), (u, v) € B.

Wir wollen nun fiir die Parameterdarstellung die Flichennormale n bestimmen. Hier-
zu betrachten wir vorerst eine Kurve & mit der Darstellung h(z), 7 € I. Die Ableitung ¢

Zrlheeran-he)]

Bild 6.3

?) Stiickweise soll hier bedeuten, daB sich M in endlich viele Teilbereiche M;, Ms,, ..., M, zerlegen
1aBt (die alle meBbar sind und durch Kurven berandet werden), auf denen g stetig differenzierbar ist.
Auf den die Bereiche M; (i = 1, ..., n) trennenden Kurven braucht g nur stetig zu sein.
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von r = h(7) ist der Grenzwert von é [h(z + Af) — h()] fir Az - 0. r hat deshalb

die Richtung der Tangente an & im Punkt r = h(¢) (vergleiche Bild 6.3). Ist nun § eine
Fliache mit der Darstellung g(u, v), (u, v) € M und (up, vo) € M, so setzen wir g,(f)
= g(t, vy) und gy(t) = g(up, t). Sind I; bzw. I, geeignete Intervalle um u, bzw. v,, die
noch ganz in M liegen (s. Bild 6.4), so sind die durch g,(¢), 1€ I;, und g,(¢), t € I3, dar-
gestellten Kurven &; und &, so beschaffen, daB sie in § verlaufen und sich in r,
= g(uy, vo) kreuzen (s. Bild 6.5). Die Tangenten an &, und &, in r, liegen aber in der

I |k

L

Bild 6.4 o Bild 6.5

Tangentialebene an & im Punkt r,. 1y = ,(14) und F; = g5(v,) haben die Richtungen
der beiden Tangenten, f; X r» steht demnach senkrecht auf der Tangentialebene.
I X Ty
[£y X Fy
Orientierung gegeben, denn wir haben eine Seite von ¥, nach der n jeweils zeigt, aus-
gezeichnet. Vertauschung der Reihenfolge von ¥; und r, im Kreuzprodukt hitte
das Vorzeichen von n gedndert und damit die andere Seite von § ausgezeichnet.
Wir wollen uns dabei auf Flichen beschrinken, die zwei Seiten haben. Es sei hier
darauf hingewiesen, daBl es auch Flachen mit nur einer Seite gibt, z. B. das Mbius-
sche Band (s. [6], S. 179, oder [4], S. 391).

3 3
Og,  Og, ,aga) - éTvg=gv=<3gl 0g: aga>

Wir konnen also n =

setzen. Damit haben wir § gleichzeitig eine bestimmte

a
Wenn wir —g =g, = (

ou “Ou’ Ou’ Ou ov ’ v’ v
setzen, wird 1, = g, (4, vo) und ¥, = g, (1, Up). Damit wird
8uX 8
n= 5 6.6
lg.x ] L8
Beriicksichtigen wir dies in (6.4), so erhalten wir mit
001
&1 Sou a(x,»)
€+ (8uX &) = | 81u gou gou | = =3 s
8w 8av (u, v)
8w 82 830

da ja x=g,(u,v), y= g.(u, v) die Beziehung zwischen x,y-Ebene und u,v-Ebene
darstellt (s. Abschn. 4.2.), die (6.5) entsprechende Formel

1 xy) .
e 0, v)

cosy = 6.7)
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Mit Formel (6.5) konnen wir den Flicheninhalt 4 von § in Definition 6.1 auch in
der Form

—fJ w057 (68)

schreiben. Nehmen wir in (6.8) noch die Koordinatentransformation x = g (u, v),
y = g»(u, v) vor, so geht B in M und (6.8) in

9(x, »)
—«U cosy O(u,v) it ()

iiber. Beriicksichtigung von (6.7) ergibt schlieBlich
A= ([ |gux g.| dm. (6.10)
M

Definition 6.3: Ist ¥ eine Fliche mit der Darstellung g(u, v) = (g, g2, &2), (U, v) € M, s0
erkldren wir

_(%g . gy \? 0g, \* Ogs\® ~
E‘(Tu)—(ﬁr)“‘(a—u) +<W)’

g | ag _Og Og  Og Ogo  Ogy Og

Ou ou Oy  Ou Ov ' Ou ov’
_ agzh 9g;\? | (9g:\* , (Ogs)?
o= (o) = (2) +(Z) +(32)-
Mit Def. 6.3 wird dann wegen |axb| = ]/a?h? — (a-b)? (s. Band 13)

lg.x 8| = VEG — F2. (6.11)

In (6.10) eingesetzt, ergibt dies den Fldcheninhalt 4 einer Fliche § mit der Dar-
stellung g(u, v), (u, v) € M, entsprechend Definition (6.1) zu

F=

I A= [[VEG—F*dm. (6.12)
M

Wichtig ist, daB wir in (6.12) keine Riicksicht darauf zu nehmen brauchen, wie oft
ein Projektionsstrahl parallel zur z-Achse die Fliche § trifft. /

Beispiel 6.2: Die raumliche Fliache § werde durch Rotation der ebenen Kurve & mit
der Darstellung g(z) = (x(¢), y(?)), t€ I, (in der x,y-Ebene) um die x-Achse erzeugt.
Hierbei sei y(t) = 0. Eine Darstellung der riumlichen Fliche  erhélt man durch h(z, ¢)
= (x(t), y(t)cos g, y(t)sing), (t, p)e M = (2, p)| teL, pe[0, 2n]}. Wir erhalten E= 3+ 32,
F=0, G=)? und VEG = F= y)*+ y2. (¢t ibernimmt hier die Rolle von u, ¢ die
von ».) Nach Formel (6.12) wird der Flicheninhalt von $

2n
A=HLEG—F2dm =ffy V3 + y* de dt=21rfyds.
M io i

D.6.3
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Fiir den Schwerpunkt (x,, y,) von & gilt

y0=%fydsmita=fds.
I 1

Der Flicheninhalt von § 14Bt sich dann durch
A = 2rya
darstellen. In Worten 148t sich das wie folgt ausdriicken:

Der Oberflicheninhalt eines Rotationskirpers ist gleich der Linge der erzeugenden
Kurve mal der Linge des Weges, den der Schwerpunkt der Kurve bei der Rotation
zuriicklegt.

Diese Aussage wird als zweite Guldinsche Regel bezeichnet. In dhnlicher Weise
kann auch die erste Guldinsche Regel hergeleitet werden:

Der Rauminhalt eines Rotationskdrpers ist gleich dem Flicheninhalt der erzeugenden

Fliche mal der Linge des Weges, den der Schwerpunkt der Fliche bei der Rotation
zuriicklegt.

Beispiel 6.3 : Aus einer Kugel mit dem Radius R, deren Mittelpunkt im Koordinaten-
ursprung liegt, werden durch zwei sich in der z-Achse beriihrende Zylinder mit dem
Radius > Teile herausgeschnitten. Es ist der Flidcheninhalt 4 der Restfliche ¥ der
Kugel zu berechnen. Diese Aufgabenstellung wird als Florentiner Problem bezeichnet.
Sie wurde 1692 von V. Viviani gestellt.

Eine Draufsicht auf § zeigt Bild 6.6a). Wegen der Symmetrie von § geniigt es,
den Inhalt des im ersten Oktanten gelegenen Teils §; von § zu bestimmen
(s. Bild 6.6b) und c)). Der gesamte Flicheninhalt hgt dann den achtfachen Wert.
Zur Darstellung von §; benutzen wir Kugelkoordinaten

Xx =rcos ¢ sin ¥,

y=rsingsind,

z=rcos .
Da §, ein Teil der Kugelfliche mit dem Radius R um den Koordinatenursprung ist,
ist r = R. ¢ entspricht der geographischen Lange, ¢ ist der Winkel zwischen posi-

tiver z-Achse und der Verbindung zwischen Koordinatenursprung und Kugelpunkt
(Polabstand). Mit ¢ = » und ¢ = v wird

g(u, v) = R(cos u sin v, sin u sin v, cos v).

Um den ersten Oktanten zu iiberstreichen, mu » zwischen 0 und % laufen. Bei
festem u ist der Winkel v, zum Schnittpunkt zwischen Zylinder- und Kugelfliche
gleich ;— u (s. Bild 6.6¢)), in dem der zum Winkel # gehorige KugelgroBkreis g::t-
zeichnet ist). Der zu &, gehorige Bereich M ist also festgelegt durch 0 <u = 5

und ; —usv= ; g(u, v), (u, v) € M, ist eine Darstellung von ;.
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z
X
g
Prm/; S
l/ye///i,[ % o//, s
=
,«, /\ Ly )
EAN
b e
-
-
e
//
< u Bild 6.6 a) b) ¢)
Reosu R X,y-Ebene
Mit
= R(—sin u sin v, cos u sin v, 0) und g, = R(cos u cos v, sin u cos v, —sin v)
wird

R?sin?v
F = R*(—sin u cos u sin v cos v -+ sin u cos u sin v cos v) =
G = R*(cos? u cos? v + sin® u cos® v + sin® v) = R?

und VEG — F? = R? |sin v| = R® - sin v wegen v € [0,%}. Fiir den Flicheninhalt von ¥
erhalten wir

E = R*(sin® u sin® v + cos® u sin? v) =

==
2 2
~zsz]/EG F"’dudv—8ff 2 sin o do du
%—u
N e
= BRZICOS(%—u)du=8R2fSinudu= 8R2,
0 0

8 Kaérber, Integralrechnung
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Aufgabe 6.2: Berechne den Teil der in Zylinderkoordinaten r, ¢, z durch z = & (l— L) ,0=5z=h,
a

gegebenen Kegelfliche, die innerhalb des Kreiszylinders r = a cos ¢, — -g- S¢= %liegt. Skizziere

den Schnitt des Zylinders mit der x,y-Ebene, also die Kurve r = a cos ¢ mit — 7 S¢= _2_ in der
x,y-Ebene. Verwende zur Darstellung dieses Teiles der Kegelfliche Zylinderkoordinaten. g soll dabei
eine Funktion von r und ¢ sein.

’

6.3. Definition und Berechnung von Oberflichenintegralen

Definition 6.4: Es sei S eine Fliche (nach Definition 6.2) und F eine mindestens auf
definierte Funktion. Wir zerlegen 5 in i mefbare Teile (fiir jeden Teil ist nach Formel
(6.12) der Flicheninhalt berechenbar) mit dem Flicheninhalt Afy., wéihlen aus jedem
Teil einen Punkt Q. beliebig aus und bilden die Summe

kélF(Qik) Afix. (6.13)

Wir lassen nun i gegen Unendlich gehen und wihlen die Zerlegungen dabei so, daf} eine
ausgezeichnete Folge von Zerlegungen entsteht (vgl. Def. 2.3). Streben die Summen
(6.13) fiir i gegen Unendlich unabhingig von der gewdhlten Zerlegungsfolge und un-
abhiingig von der Wahl der Punkte Q. gegen ein und denselben Grenzwert, so bezeichnen
wir diesen Grenzwert durch

[[Fpydf

und nennen ihn Oberfliichenintegral 1. Art iiber die Fliche  mit dem Integranden F.

Ganz analog wie bei den Kurvenintegralen (vergleiche Abschn. 5.2.) kdnnen wir
die Berechnung der Oberflichenintegrale auf die Berechnung von Bereichsintegralen
zuriickfithren. Wir wollen die Gedankengénge nicht noch einmalwiederholen, sondern
sofort das Ergebnis angeben:

Satz 6.1: Es sei 5 eine Fliche mit der Darstellung g(u, v), (u, v) € M, und F eine auf ¥
definierte und stetige Funktion. Dann existiert das Oberflichenintegral 1. Art f fA(P)df,
und es gilt

HF(P)df fj F(g(u, v)) VEG — F*du dv.

E, F und G sind hierbei nach Definition 6.3 zu berechnen.

Auf Oberflichenintegrale 1. Art fiihrt z.B. die Berechnung des Schwerpunktes
raumlich gekrﬁmmter Flidchen oder die Berechnung von Tréigheitsmomenten solcher

Flichen. — f (x df liefert z.B. die x-Koordinate des Schwerpunktes, wobei 4 = ﬂ df
der Flachemnhalt von g ist.

Beispiel 6.4: Es sind die Koordinaten &, 5, { des Schwerpunktes der im ersten Ok-
tanten gelegenen Fliche ¥, des Florentiner Problems (s. Beispiel 6.3) zu bestimmen.
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Wir verwenden die gleiche Darstellung von ; wie in Beispiel 6.3. Mit VEG — F*
= R?sin v hatten wir dort

NE]
El

| e

R?sinv dv du = R?

u

=([df=[[VEG — F*dudv=
Ty M, 0

T
2

gefunden. Die Integrationsgrenzen bleiben bei der Schwerpunktbestimmung dieselben,
da ja ebenfalls iiber §¥; zu integrieren ist. Der Integrand 1 wird dagegen durch
F(x, y, z) = x bzw. y bzw. z ersetzt.

_ 1 _Lrr ; 3
»—Fffxdf— szJRcosusvaEG—F dudv
B

~Rf fcosusmzvdvdu—

n:.}l_szydf———ffRsmusvaEG F?dudv
B M,

T W
2

——Rf fsmusmzvdvdu—%

T
——u

2

szfzdf chosv]/EG Fdudo

™ ™
Rl

—Rf fcosvsmududu——
-

Aufgabe 6.3: Der im 1. Oktanten liegende Teil § der Kugeloberfliche x* + 2 + z2 = R? sei mit *
Masse der Dichte L
1+z

belegt. Berechne die Gesamtmasse. Das gleiche Problem entsteht, wenn

man ¥ als Schale der Dicke i auffaBlt, wobei / klein gegeniiber R ist, und das Volumen berech-
z =

net. Die Dicke nimmt dabei vom Wert 4 in der x,y-Ebene bis zum Wert 1 im héchsten Punkt

der Kugel ab.
Wir kommen nun zur Definition der Oberflichenintegrale 2. Art. Ahnlich wie
bei den Kurvenintegralen 2. Art ersetzen wir in Formel (6.13) den Flicheninhalt Afy

+ R

8*
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durch seine Projektion auf eine der Koordinatenebenen. Wir wollen dabei jedoch den
Projektionen ein bestimmtes Vorzeichen zuordnen. Wir benutzen hierzu die durch die
Normale n nach Formel (6.6) gegebene Orientierung der Fliche ¥. Sie ist von der
Darstellung abhdngig. Bei geschlossenen Flidchen & wollen wir nur solche Darstel-
lungen zulassen, bei denen die Normale nach auflen zeigt. Ist I nicht geschlossen,
so legen wir willkiirlich eine Seite von § als Aufenseite fest und lassen dann ebenfalls
nur Darstellungen zu, bei denen die Normale nach aufen zeigt. Wir ordnen nun der
Projektion von Afy, auf eine der Koordinatenebenen (y,z-, x,z- oder x,y-Ebene) das
Plus-Zeichen zu, wenn wir bei der Projektion auf die AuBenseite blicken, und wir
ordnen ihr das Minus-Zeichen zu, wenn wir auf die andere Seite, die wir Innenseite
nennen wollen, blicken. In Bild 6.7 sind die Verhéltnisse bei Projektion auf die x,y-
Ebene dargestellt. Blickt man zum Teil auf die AuBen- und zum Teil auf die Innen-
seite,fso wird die Teilfliche durch die Trennlinie nochmals unterteilt.

z

]

Bild 6.7 a) b)

a) x b) X

Ist y der Winkel zwischen positiver z-Achse und n, so ist cos y > 0, wenn y spitz
ist, d.h., wenn wir auf die AuBenseite sehen. Dagegen ist cos y < 0, wenn y stumpf
ist, d.h., wenn wir auf die Innenseite sehen. Die Projektion Ab; von Afy, auf die
x,y—Ebene erhilt also gleichzeitig das richtige Vorzeichen, wenn wir

Aby = Afix cos y = (i - &) Afe
setzen (vgl. Formel (6.4)). Ersetzen wir nun in (6.13) Afy durch Aby, so erhalten wir
als Grenzwert das Oberfldchenintegral f f F(P) (n - e;) df. Verstehen wir unter B; die

Pro_]ektxon von § auf die x,y-Ebene, so hefert jede Zerlegung von ¥ durch die Pro-
jektion eine Zerlegung von B;, wobei der Flicheninhalt Ab;;. der Teile positives oder
negatives Vorzeichen trigt, je nachdem, ob wir bei der Projektion auf die AuBen- oder
Innenseite des Teiles blicken. Die Projektion B; von § kann also auch aus mehreren
Schichten mit unterschiedlichem Vorzeichen bestehen (vgl. Bild 6.8). Den Grenz-

wert der Summe ZF(Q.k) Aby (Formel (6.13), wobei Afy durch Aby, ersetzt ist)

konnen wir nun aber auch als Bereichsintegral (in der x,y-Ebene) iiber B; auffassen.
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n

¥
3

X

Bild 6.8

Dabei ist im Integranden F(P) = F(x, y, z) der Punkt P = (x, y, z) stets so zu nehmen,
daB er auf der Flache ¥ liegt. Wir schreiben deshalb fiir ﬂ F(P) (n- e;) df auch

|fF(x, ¥,z)dx dy und nennen es Oberflichenintegral 2. Art

Deﬁmtlon 6.5: Es sei & eine Fliche mit der Darstellung g(u, v), (u, v) e M, (die D.6.5
nach Formel (6.6) die Normale n auf ¥ festlegt) und Fy, F,, F; mmdestens auf §

definierte und stetige Funktionen. Dann nennen wir HF (P)(m-e)df (i=1,2,3)
Oberflichenintegrale 2. Art und schreiben dafiir: 3

f [F(P) (- e) df = j [ Fi(x,5,2) dy dz,
fsz(P) (n-e)df= }l Fy(x,y,2) dx dz,
Jsz(P) (m-e;)df= fst(x, ¥,2)dx dy.
i 3

Hierbei sind e, , e, bzw. e; die Einheitsvektoren in x,y bzw. z-Richtung. Das Integral
J [F-ndf= fj(F1 dydz + F,dx dz + F, dx dy),
5
wobei F = (F,, F,, F;) gesetzt ist, nennen wir Oberflichenintegral allgemeiner Art.
Beispiel 6.5: Es sei g(u,v)=(Rcosv,u, Rsinv), M der durch 0 <u <R,

- % =v=< % gegebene Bereich der u,v-Ebene und § die durch g(u, v), (4, v) € M, darge-

stellte Flache. Es soll das Oberflichenintegral 2. Artff xyz dx dy berechnet werden.
Mit g, = (0,1,0) und g,= (—Rsinv,0, R cos v) w1rd 2.X 8= (R cos v,0, R sin v),

VEG—F*=|g,xg|=R, n= T§”~:~g~] (cos v, 0, sin v) und n- e; = sin v.
u v
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Fiir das Oberflichenintegral ergibt sich folglich
nyzdxdy=ffxyz (n- ea)]/EG—F2dm
§ M

™
R 2
=f chosv~u-Rsinv~sinv~Rdvdu
0

™
T2
T ™
R 2 R 2
= R® fusin2vcosvdvdu=R"ff%‘--%(sinv)“dvdu
0 ™ [ L
T )

R
=3 R [udu=} R
0

Nach den Definition 6.5 vorangegangenen Betrachtungen konnen wir dieses Ober-
flichenintegral auch iiber die Projektion von ¥ auf die x,y-Ebene berechnen. § ist die
Hiilfte einer Zylinderfliche mit dem Radius R, der y-Achse als Zylinderachse und der
Lange R (s. Bild 6.9). Die Projektion B; von ¥ ist das Quadrat0 < x < R,0 < y < R.

z

Bild 6.9

B, wird bei der Projektion aber doppelt iiberdeckt. Bereits die Projektion des iiber
der x,y-Ebene liegenden Teiles von ¥ liefert B;, und zwar mit positivem Vorzeichen,
da wir bei der Projektion auf die AuBenseite blicken. Auch die Projektion des unter
der x,y-Ebene Teiles von §§ ergibt B, aber jetzt mit negativem Vorzeichen, da wir auf
die Innenseite blicken. Beim oberen Teil gilt z= J/R® — x?, beim unteren dagegen

z=—VR —x.
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Wir erhalten damit

RR RR
ffxyzdxdy=f xy VR = dxdy — ffxy(—]/Rg—xﬁ)dxdy
) GO 00

RR
=2ffyxVR2-—x2dxdy
00

R
=§R[ydy=}Rs
0

Wir sehen also, daB wir die Oberflichenintegrale 2. Art auf zwei Wegen berechnen
konnen: einerseits durch Integration iiber die Fldche ¥, und andererseits durch
Integration iiber die mit Vorzeichen versehene Projektion B;, wobei der Integrand
auf der Fliche $§ zu nehmen ist.

Aufgabe 6.4: Es sei M das Quadrat 0 < # = 1,0 < v < 1 der u,v-Ebeneundg = (u + 1, v—1, %
v — u), § die durch g(u, v), (4, v) € M, dargestellte Fliche sowie F = (y, z, x). Berechne das Ober-
flichenintegral allgemeiner Art ” F-ndf!

3

Bei unseren bisherigen Betrachtungen iiber den Flacheninhalt gekriimmter Flichen
und iiber Oberflichenintegrale waren wir stets davon ausgegangen, daB die die Flache
darstellende Funktion stetig und stiickweise stetig partiell differenzierbar ist, und daB
der Integrand beim Oberflichenintegral stetig ist. Die Existenz des Fldcheninhaltes
und des Oberflichenintegrales ist natiirlich auch unter schwicheren Voraussetzungen
gesichert.

Bei den vorangegangenen Beispielen war g auf ganz M stetig partiell differenzierbar
mit |g, X g,| == 0. Wir wollen jetzt ein Beispiel betrachten, bei dem die Differenzier-
barkeit nur stiickweise vorhanden ist. Wir wihlen dazu einen Wiirfel §§. Fiir eine
Darstellung g(u, v), (u,v) € M, ist g auf den 6 Flichen ¥; (i = 1, ..., 6) stetig partiell
differenzierbar. Dies gilt aber nicht fiir die 12 Kanten des Wiirfels. Die Rechnung
wird vereinfacht, wenn wir nicht eine Darstellung fiir den gesamten Wiirfel wihlen,
sondern fiir jede Teilfliche §; eine von den iibrigen Flichen unabhingige Darstel-
lung g;(u, v), (u, v) € M;, wihlen. Ein Integral iiber ¥ ist gleich der Summe der Inte-
grale iiber die ;.

Beispiel 6.6: ¥ sei die Oberfliche des Wiirfels W im x,,z-Raum mit den folgenden
Eckpunkten (0, 0, 0), (1, 0, 0), (1,0, 1), (0,0, 1), (0, 1,0), (1, 1,0), (1,1, 1) und (0, 1, 1)
und F(x, y, z) = (xy + xz, y?, x* + z%). Es ist das Oberflichenintegral allgemeiner Art

J=[[F.ndf
T

zu berechnen. n zeige hierbei nach auBen.

Wir zerlegen hierzu § in 6 Teilflichen, die mit den Wiirfelseiten iibereinstimmen.
Zur Darstellung jeder dieser Teilflichen benutzen wir das Quadrat M der u,v-Ebene
mt0=u<1,0=v< 10
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Die einzelnen Darstellungen lauten
B g, v) =@, 40 mit n=-—e;,
&t g, v)=(,0,1) mit mn=e,
ot 8 0) =, 0,0) mit ny=—e,,
e g 0)=(,L,u) mit n,=e,
st g, v)=(0,v,u) mit ny=—e und
et 86w, v) = (L, u,v) mit ng=e,
(u,z)e M.
Fiir alle sechs Teilfidchen ist EG — F2 = 1. Damit gilt fiir die Integrale iiber die Teil-
fidchen
J F-ndf= F(g,(u, v)) +n; du dv.
a M

Im einzelnen erhalten wir

v

$ 3
=[x =P df==] [v*dudv= -1},
1 0

0

0

=+ df=][@+ ) dudo =4,
% o
1

1

Js |f =) df=- f j‘Odu dv =0,
T 00

Il

i1
Ji=[[ydf=[[1dudo=1,
T 00

11
Js = “( —xy—x2)df=—[ [0dudv=0,
00

Jo=[[ Gy + xz)df=} fl(u+ v) dudo =1
Ts 00
und

6
J=3Ji=-3+4+1+1=3.
i=1
* Aufgabe 6.5: Die geschlossene Fliche ¥ sei zusammengesetzt aus dem Mantel §§; des Zylinders mit
dem Radius 1, der z-Achse als Zylinderachse und der Hohe 1 (0 = z = 1) sowie der Grundfliche ¥,
(Kreisscheibe in der x,y-Ebene) und der Deckfliche %3 (Kreisscheibe in der Ebene z = 1) dieses
Zylinders. Es ist das Oberflichenintegral 1. Art J = ” (»? + z%) df zu berechnen. Auf das Integral J
L

kL
fiihrt die Berechnung des Trigheitsmomentes eines Blechfasses mit dem Durchmesser 2 und der
Hohe 1 um einen Durchmesser des Bodens.
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In diesem Kapitel werden wir Beziehungen zwischen Bereichs- und Kurven-
integralen bzw. zwischen Raum- und Oberfliachenintegralen kennenlernen, die es uns
in haufig vorkommenden Spezialfillen gestatten, Bereichs- in Kurvenintegrale bzw.
Raum- in Oberflichenintegrale und umgekehrt umzuformen. Diese Bezichungen
gestatten uns auch, eine Reihe von Anwendungen zu behandeln. Besonders fruchtbar
wirken sich diese Bezichungen im Zusammenhang mit der Vektoranalysis aus.

7.1. Der Gaufische Integralsatz in der Ebene

Es sei B ein durch Kurven (vgl. Def. 5.1) berandeter Normalbereich beziiglich
der x-Achse und P eine auf B stetige und stetig nach y differenzierbare Funktion.
Ziel unserer Betrachtung ist es, das Bereichsintegral J = f f P, db in ein Kurvenintegral

B

umzuformen. Dies wird wegen der besonderen Gestalt von B ohne Schwierigkeiten
moglich sein.

Als Normalbereich beziiglich der x-Achse besitzt B eine Darstellung
XEXSX
nx) =y = ).

Die Berandungskurve & von B zerlegen wir in die vier Teilkurven & bis &, (siche
Bild 7.1) mit den Parameterdarstellungen

(x,»)€B <

R gi(t) =t (D), 1€l = [x1, xa]; (7.1)
Rat o) = (xp, 1), 1€ I = [y1(x0), Yol x2)]; (7.2)
— 832 gs(t) = (1, yo(1)), t€ L; (7.3)
=Ry 8(1) = (01, 1), 1€ 1, = [y1(x1), ya(x1)]- (7.4)

Das Bereichsintegral J kénnen wir nach Satz 2.4, Formeli(2.5), durch ein Doppel-
integral darstellen:

Ty Ya(®)
J=[[Px,y)db=| [ Py(x,y) dydx. (7.5)
B

3 Y, (@)

Ly

%

Bild 7.1
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Da wir als Integranden von J die partielle Ableitung von P(x, y) nach y gewihlt
haben, 148t sich das innere Integral des Doppelintegrales in Formel (7.5) sofort an-

geben:
Ya(2)

| Py(x,y) dy = [P(x, MIVZ0D = PIx, ya(3)] — Plx, 1(¥)].
¥, (@)

Damit wird J nach Formel (7.5)
J= [ Plx, ys(x)] dx — [ P[x, ()] dx. (7.6)

Auf die in Formel (7.6) vorkommenden Integrale stoBen wir auch bei der Berech-
nung des Kurvenintegrales 2. Art f P dx. Es ist ndmlich nach Satz 5.2 mit den Dar-
stellungen (7.1) und (7.3): &

f Pdx= J‘P[z, nn]-1-dr, ‘ .7
jpdx——fpdx——fp[t yat)] - 1-de. (7.8)
-8

Die Integrale (7.7) und (7.8) stimmen aber bis auf die Bezeichnung der Integrations-
variablen mit den in (7.6) vorkommenden Integralen iiberein. Weiter gilt

2(%e)
jpdx_Jj P(x,1)-0.d1=0 (7.9)

Yi(@g)

da die Ableitung g,(¢) = (0, 1) von g, in der ersten Komponente den Wert O hat.
Analog ist

fpdx=o. (7.10)
e

Zusammenfassung von (7.7) bis (7.10) ergibt
$ Pdx = [Plx, ()] dx — [ Plx, yo(9)] dx, (7.11)
f zy oy

wobei wir die Integrationsvariable ¢ durch x ersetzt haben. (7.11) stimmt aber bis auf
das Vorzeichen mit (7.6) iiberein. Wir haben damit

[ P)(x,y)db = — § P(x,) dx (7.12)
B ®

gefunden. Dies ist die gesuchte Beziehung.
‘Ganz analog erhalten wir

[ Qalx, y) db = § O(x, y) dy, (7.13)
B ®

wenn B ein Normalbereich beziiglich der y-Achse und Q eine auf dem Bereich B
stetige und nach x stetig partiell differenzierbare Funktion ist. Die einzelnen Schritte
moge der Leser selbst aufschreiben.



7.1. Der GauBsche Integralsatz in der Ebene 123

Die Formeln (7.12) bzw. (7.13) heiBen GauBscher Integralsatz fiir die Ebene. Wol-
len wir die Integrale (7.12) und (7.13) in einer Formel zusammenfassen, so miissen wir
von B verlangen, daB er Normalbereich sowohl beziiglich der x-Achse wie auch be-
ziiglich der y-Achse ist oder sich in endlich viele Normalbereiche beziiglich der x-Achse,
aber auch in endlich viele Normalbereiche beziiglich der y-Achse zerlegen 148t. Ein Bei-
spiel eines solchen Bereiches zeigt das Bild 7.2. Die Definition 5.5 der Kurvenintegrale
erfordert noch, da3 die Berandung & von B Kurve ist und damit eine Parameter-
darstellung g(?), ¢ € , mit stiickweise stetig differenzierbarem g besitzt. Der GauBlsche
Integralsatz erhilt dann die Form:

Satz 7.1: Ist B ein Bereich der oben beschriebenen Art mit der Berandung & und sind P
und Q auf B stetige und stetig nach y bzw. x partiell differenzierbare Funktionen, so gilt

I ff(*“+*)db=;}5(l°dx+ Qdy).

Aus dem GauBschen Integralsatz 7.1 ist sofort zu erkennen, daB J'(P dx+ Q dy)

in einem einfach zusammenhédngenden Gebiet genau dann vom Integrationsweg un-
abhéngig ist, wenn die Integrabilititsbedingung P, = Q. erfiillt ist.

5

4] b)

Bild 7.2 Zerlegung eines Bereiches B in Normalbereiche
a) beziiglich der x-Achse, b) beziiglich der y-Achse

Die rechte Seite der Formel in Satz 7.1 kann auch in Vektordarstellung geschrieben wcrden, wenn
wir G = (P, Q) setzen. Es wird dann

fPdx+ 0y =fG-dx,

wobei dx die Richtung der Tangente an & hat. In Abschnitt 7.2. werden wir den GauBschen Integral-
satz im Raum behandeln. Das Bereichsintegral auf der linken Seite der Formel des Satzes erstreckt
sich dann iiber einen raumlichen Bereich und 148t sich leicht mit Vektoren schreiben. Auf der rechten
Seite der Formel geht das Kurvenintegral in ein Oberflichenintegral iiber die den rdumlichen Bereich
berandende Fliche iiber. Bei einer Fliche tritt an die Stelle der Tangente die Tangentialebene. Ihre
Richtung wird am giinstigsten durch die senkrecht auf ihr stehende Normale festgelegt. Der GauB-
sche Integralsatz im Raum wird deshalb so geschrieben, daB die rechte Seite ein Skalarprodukt mit

S.7.1
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der Flichennormalen enthalt. Wir konnen selbstverstindlich auch den GauBschen Integralsatz in
der Ebene mit Hilfe der Normalen n an die Kurve & (im Kurvenpunkt P) darstellen. Da n orthogonal
zum Einheitsvektor in T: ichtung t ist, miissen wir in G - dx wegen dx = t ds den Vektor G
durch einen orthogonalen Vektor F mit gleichem Betrag ersetzen, um den gleichen Wert des Skalar-
produktes zu erhalten. Ist g mit g(r) = (x(#), »(¢)), ¢ € [a, b], eine Parameterdarsteliung von &, so
wird

t=—Lg= (%,) und n=

2l e -——,nl — (, —%)
g V2 + 52 V3 + 5

Un Fn=G t=-—=—

e + (Px + Qy) zu erhalten, missen wir also F = (Q, —P) setzen.
Erweitern wir noch die zweldlmensmnalen Vektoren F, g, n durch Hinzufiigen einer Komponente
mit dem Wert O zu dreidimensionalen Vektoren, so konnen wir auf der linken Seite Q, — P,
durch div F ersetzen. Damit erhélt die Formel im Satz 7.1 die Form

[[divFdb={F-nds.
B e

In dieser Form werden wir in Abschnitt 7.2. den GauBschen Integralsatz formulieren, nur da8 dort
das Bereichsintegral iiber einen rdumlichen Bereich erstreckt und das Kurvenintegral durch ein
Oberflachenintegral ersetzt wird. Schreiben wir obige Formel fiir das Vektorfeld G = (P, Q, O) auf,
so erhalten wir:

ffdideb=ff(Px+ Qy)db=§c-nds=_£(de—de).
Diese Formel nennen wir auch die Normalkomponentenform des GaufBschen Integralsatzes Sn

der Ebene, wihrend die in Satz 7.1 gewihlte Form als Tangentialkompc orm b
wird.

Wir wollen jetzt noch zu einigen einfachen Anwendungen des GauBschen Inte-
gralsatzes in der Ebene kommen.

Beispiel 7.1: Den Flacheninhalt A eines ebenen Bereiches B erhalten wir aus
A= ff db. Den Integranden 1 des Bereichsintegrals kénnen wir in 1=} + } zer-
B

legen und —P, =}, Q.= } setzen. Wir erhalten daraus z. B. das Paar von Funktionen
P(x,y)=— 4%y, O(x,y) = % x und schlieBlich nach dem GauBschen Integralsatz

4=3$(-ydx+xay). (7.14)
®

(7.14)ist eine vielfach zur Berechnung des Flacheninhaltes benutzte Formel (s. z. B. [1]
S. 358). Aus ihr erhélt man auch leicht die Leibnizsche Sektorformel: B sei begrenzt
durch die Strecke &, von (0, 0) nach (x,, ,), durch die Kurve &, von (x;, ;) nach
(X2, yo) mit der Parameterdarstellung g(7) = (x(¢), »(?)). t € [t1 , 1], und durch die Strecke
®; von (x;, yo) nach (0,0) (s. Bild 7.3). Fiir jede auf einer Geraden durch (0, 0)

liegenden Strecke &, hat nun aber das Kurvenintegral } l (—y dx + x dy) den Wert

K
Null. Ist ndmlich g(¢) = (at, bt), t€[t’, "], eine Parameterdarstellung von &, so wird

}[(—ydx+xdy) =14 f(—bza +atb) dt = 0
R v
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Y

.57 %

(X1,IV/)

4 & Bild 7.3

X
Damit wird fiir die Sektorfliche nach Bild 7.3

A=} (~ydx+xdy) =} [(—ydx+xdy)
£ ®,

= 1[I0 %0 + x0) O] dr. .15
bt

Als Zahlenbeispiel wollen wir den Flacheninhalt der Sektorfliche, die dlirch die

2 2

Strecke von (0, 0) nach (g, 0), durch die Hyperbel % - %2—
(auf dem Hyperbelast im 1. Quadranten) und durch die Strecke von (x,, y;) nach
(0, 0) begrenzt ist, berechnen. Nach (7.15) (Leibnizsche Sektorformel) brauchen wir
nur iiber das Hyperbelstiick zu integrieren. Eine Parameterdarstellung dieser Kurve ist
g(?) = (a cosh t, b sinh ¢) (von der Richtigkeit dieser Darstellung kann man sich leicht
durch Einsetzen von g(¢) in die Hyperbelgleichung iiberzeugen). Zu (a, 0) gehort der
Parameter #, = 0. ¢, gewinnt man durch Aufl'ésen von Xx,=acosht nach t,

)f: . Wir erhalten mit g(¢) = (a sinh ¢, b cosh 1)

=1von(a,0)nach (x,, y,)

Zu t, = arcosh

1y
A=—;—/(—bsinhz~asinht+acoshr-bcosht)dt
0

ty
ab 1 1 X
= 7/dt=iab t, =§ab arcosh7
0

wegen cosh® f — sinh® ¢t = 1. Dieses Ergebnis ist auch fiir die Bezeichnung der
Umkehrfunktionen der Hyperbelfunktionen (area — Fliche) bestimmend gewesen.

Aufgabe 7.1: a) Bestimmen Sie den Flacheninhalt der zum Ellipsenbogen mit der Darstellung *
g(t) = (acost,bsint), t € [ty,t,], gehorigen Sektorfliche! (Benutze Formel (7.15.))

b) Wie groB ist der Fidcheninhalt der ganzen Ellipse?
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Beispiel 7.2: Die Koordinaten des Schwerpunktes (£, 7) eines ebenen Bereiches ‘B mit
der Berandung & berechnet man mit Bereichsintegralen zu

1
E—ffxdb,
B
1
n= [[a,
B

wobei 4 der Fliacheninhalt von B ist. Formt man die Formeln (7.16) mit Hilfe der
Formel (7.12) um, so erhilt man

&

(1.16)

5=—%56xydx,

Man kann bei & den Integranden x des Bereichsintegrales jedoch auch in %+ 23_x
zerlegen und %ﬁ als —P,, 2x als Q, in der Darstellung nach Satz 7.1 auffassen. Es

kann dann P = — 1} xy, Q = } x® gewihlt werden, und wir erhalten

1
E=3—A 5ﬁx(—ydx+ x dy).
&
Damit haben wir eing zu (7.14) dhnliche Formel. Analog erhélt man

1
=3—AgSy(—ydx+xdy).
®

\

Fiir die Trigheitsmomente findet man durch entsprechende Uberlegungen
To=(172db=1§r2(—ydx + xdy), J,=[[x2db=1x*(—ydx + xdy).
B ® - B ®

Die mit Hilfe des GauBschen Integralsatzes gefundenen Formeln fiir 4, &, 7, J,, J, sind gut geeignet
fiir die Berechnung dieser GréBen auf EDV-Anlagen. Nach dem Einsetzen von Parameterdarstellun-
gen g(¢) fiir & sind nur noch bestimmte Integrale mit der Integrationsvariablen ¢ auszuwerten. Dies
kann mit den Methoden der numerischen Integration, je nach notiger Genauigkeit also z. B. mit der
Trapezregel, der Simpsonschen Regel oder dem Romberg-Algorithmus, erfolgen. Schreibt man sich
also einmal ein Programm zur Berechnung der Integranden aus Unterprogrammen fiir x, y, X und y
und zur Anwendung einer Formel fiir die numerische Integration, so braucht man dann jeweils nur
noch die Unterprogramme fiir die Parameterdarstellungen von & einschlieBlich der Integrations-
grenzen einzugeben und erhilt gleichzeitig 4, £, 9, J;, und J,,.

Als Zahlenbeispiel wollen wir J, fiir das Dreieck mit den Eckpunkten (0, 0), (2, 0) und (0, 1) be-
rechnen. & sei die auf der x-Achse liegenden Seite, &, die Seite mit den Eckpunkten (2, 0) und (0, 1).
5 schlieBlich die auf der y-Achse liegende Seite. Die Parameterdarstellungen fur die § einschlieBlich
der Integrationsgrenzen ¢, und ¢, sind in der folgenden Tabelle zusammengefalt:
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k ‘ x I y l x | y . to | t | F(t) = y*(—y% + xp)[4
1 t 0 1 0 0 2 0

2 21 -1 t -2 1 0 1 32

3 0 t 0 1 1 0 0

Die letzte Spalte der Tabelle enthilt die formelméBige Darstellung des Integranden F(z). Sie wird
fiir ein Rechnerprogramm nicht bendtigt. Der Rechner berechnet vielmehr die numerischen Werte
von F(t) in den verwendeten Teilungspunkten unmittelbar aus den Spalten 2 bis 5. Da der Wert des
Integranden auf & ; und &3 null ist, bekommen wir fur J, nur einen Beitrag von &,. Verwendet man fiir
die numerische Integration die Keplerische FaBregel (Fo +4F, + F)mit h=1/2,Fp = F(0) = 0,

= F(h)=1/8, F, = F(2h) = 1/2, so wird J, = %(0 +4-%+ %) =4 Dies ist der genaue
Wert, da die Keplersche FaBiregel Polynome 2. Grades genau integriert. Bei gekriimmten Konturen

wire eine feinere Unterteilung der Integrationsintervalle und die Anwendung der Simpsonschen
Regel oder des Rombergalgorithmus zweckmaBiger.

7.2. Der Gauﬂsche Integralsatz im Raum

Die Betrachtungen von Abschnitt 7.1. lassen sich ganz analog auch fiir Raum-
integrale durchfiihren. Die einzelnen Schritte sollen hier nur angedeutet werden. Zur

Umformung von ﬂf P,(x, y, z) db gehen wir von einem rdumlichen Normalbereich B
der Art

(0r2) € B
@y €8 (0 0

aus und konnen in
231, 7)
P.(x,y,z)db= f P.(x,y,2z)dx |db,, .
J 2, (Y, %) !
J PR A0

das innere Integral berechnen.
Ist § die B begrenzende Fliche (mit nach auflen gerichteter Normale), so kénnen
wir das Ergebnis in der Form

[[[ P.db=[[ P(x,y,2)dy dz 1(7.17)
B )

darstellen. Eine ausfiihrliche Herleitung dieser Formel findet man z.B. in [6], S. 176
oder [4], S.428ff. (Vorzeichenunterschiede in Formel (7.17) kommen durch ent-
gegengesetzte Wahl der Normalenrichtung zustande.)

Entsprechend findet man

] ux, 3, 2)db= [[ O(x, y, z) dx dz . (7.18)
B 5

und

JJ[ Ro(x, 3, 2) db = [[ R(x, , z) dx dy. (7.19)
B &
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Zusammenfassung der Formeln (7.17) bis (7.19) gibt die Grundformel fiir den GauB-
schen Integralsatz im Raum:

[[f @+ 0,+ Ry db=[[(Pdydz+ 0 dxdz + Rax ). (7.20)
i

Das Qberﬂéichenintegral allgemeiner Art in Formel (7.20) kénnen wir nach Definition
6.5 mit F(x,y, z) = (P(x, y, z), Q(%, y, z), R(x, y, z)) auch in der Form

gf(Pz+Q,+R,)db=éfF-ndf (721)

schreiben. n ist hierbei die nach auBen gerichtete Normale der den riumlichen Be-
reich B begrenzenden Fliche §. Auf die Komponenten der Vektorfunktion F kénnen
wir in der Grundformel ganz verzichten, wenn wir noch beachten, daB in Band 4,
Abschnitt 3.9.2.2., P, + Q, + R. als Divergenz von F = (P, O, R) definiert war:

P+ Qy+ R.=divF.

Formel (7.20) erhilt damit die Gestalt
[[[divFdb=[[F-ndf. (1.22)
B 8

Die dquivalenten Formeln (7.20) bis (7.22) sind natiirlich nur unter gewissen Voraus-
setzungen fiir B und F = F(x) giiltig.

Satz 7.2 (Integralsatz von Gauf3): Es sei B ein riumlicher Bereich, der aus endlich
vielen Normalbereichen zusammengesetzt ist, und zwar sowohl beziiglich der x,y-, der
y,z- wie auch der x,z-Ebene. Die die Normalbereiche begrenzenden Funktionen seien
stetig und stiickweise stetig differenzierbar bzw. partiell differenzierbar. ¥ = F(x) sei
auf B stetig und stiickweise stetig partiell differenzierbar. 5 sei schlieflich die Ober-
fliche von B mit nach aufSen gerichteter Normale n. Dann gilt

| ~gfdivi?db=é{jF-ndf.

Der Integralsatz von Gauf gilt auch unter weniger einschrinkenden Bedingungen
fiir Bund F (wobei gegebenenfalls das Riemannsche Integral durch das Lebesguesche
Integral®) zu ersetzen ist). Fiir die meisten praktischen Probleme reicht die obige Form
jedoch voll aus. Wir verzichten deshalb auf nidhere Darlegungen.

Beispiel 7.3: Essei F = (P(x, y), Q(x, y),0)und B= {(x, y,2)|(x,») € B,0 < z<1},
also ein zylindrischer Bereich mit der Grundfliche B’ in der x,y-Ebene und der Hohe 1.
B’ werde durch die geschlossene Kurve & (in der x,y-Ebene) berandet. ¥ bezeichne die
Oberfliche von B. Der GauBsche Integralsatz kann dann wie folgt umgeformt werden:

1) Der interessierte Leser sei beispielsweise auf E. Kamke ,,Das Lebesgue-Stieltjes Integral®,
B. G.Teubner Verlagsgesellschaft Leipzig 1956, oder E. Kamke ,,Differentialgleichungen, II, Partielle
Differentialgleichungen®, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig 1965,
Anhang II, verwiesen.



7.2. Der GauBsche Integralsatz im Raum 129

1
ﬂfdideb=ﬂ[fdz(P,+ Qy)} b’ = ([ (P + Q) db'.
B B’ |0 B’
Wegen n = —e; bzw. e; auf der Grund- bzw. Deckfliche von B wird dort F-n =10

und 1
ffF-ndf=¢ [wa ndz] ds=fﬁF-nds.

& & Lo ®
In dem Kurvenintegral ist n jetzt die nach auBen gerichtete Normale an ®. Ist g(¢)
= (x(t), y(?),0), t€1, eine Parameterdarstellung von &, so wird n= |g|~* (y, —%, 0)
und damit F - n = [g|~! (Py — Ox). Mit ds = |g| d¢ wird schlieBlich

¢F-nds=¢§(1>y—Qx)dz=j(de—de).
P ¢

Es folgt also aus dem GauBschen Satz im Raum durch obige Spezialisierung die
Normalkomponentenform des GauBschen Satzes in der Ebene (vgl. Abschnitt 7.1.):

[+ ) db'=j(de—de).
E

Beispiel 7.4: Ein Korper, begrenzt durch die Fliche ¥ (mit nach auBen gerichteter
Normale n), tauche ganz in eine Fliissigkeit mit dem spezifischen Gewicht y. Wie groB
ist der Auftrieb, der auf den Korper wirkt?

Die Oberflache der Fliissigkeit sei die x,y-Ebene, die z-Achse senkrecht zur Ober-
flache der Fliissigkeit nach oben gerichtet. Den durch % begrenzten raumlichen Be-
reich bezeichnen wir durch B. Der Druck der Fliissigkeit greift senkrecht zur Ober-
fliche von B an und hat die absolute GroBe —yz (z ist negativ, da sich B unter der
x,y-Ebene befindet). Der Druck hat also die GroBe yzn: Die vertikale Komponente

des Druckes ist yzn - e;, und fiir den Auftrieb ergibt sich f f yzn - e; df. Dieses Ober-

b
flichenintegral 2. Art kénnen wir nach Definition 6.5 auch in der Form
ffyzn-esdf=ﬂyzdxdy
T &

schreiben.

Nach Formel (7.19) gilt somit fiir den Auftrieb

[[yzn-e;df=[[[ydb,
g B
d.h., der Auftrieb ist gleich dem Gewicht der verdriangten Fliissigkeit.

Beispiel 7.5: In Beispiel 6.6 haben wir das Oberflichenintegral allgemeiner Art

J = [[F - ndf iiber die Oberfliche § des Wiirfels Bmit 0 < x < 1,0 <y =1 und
T

0 < z = 1 berechnet. Die Vektorfunktion F war durch F = (xy + xz, y?, x* + z%)

gegeben. Die hierbei auftretenden Integrationen waren nicht schwierig. Insgesamt
war die Berechnung von J jedoch recht aufwendig, da iiber jede der 6 Wiirfelflichen

9  Kérber, Integralrechnung
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getrennt integriert werden muBte. Mit Hilfe des GauBschen Integralsatzes kann die
Berechnung von J wesentlich verkiirzt werden. Nach Formel (7.22) gilt

J=ﬂF~ndf=fﬂdideb.

Fiir die Divergenz von F erhalten wir div F = y + z + 2y + 2z = 3(y + z). Mit den
oben angegebenen Grenzen des Normalbereiches B erhalten wir
b O 1 11 1 1
=[] 3(y+z)dzdydx 3+ Ddydx=3[G+Hdx=3[dx=3.
00 0 ) 00 0 0
Aufgabe 7.2: 5 sei die Oberfliche der Kugel mit dem Radius R und dem Koordinatenursprung als
Mittelpunkt, F(x, y, z) = (, z, x). Berechne das Oberflachenintegral 2. Art J = ” F-ndf a)direkt
und b) mit Hilfe des GauBschen Integralsatzes! F
2
Aufgabe 7.3: Es sei x = (x,y,2). Im Raum sei elektrische Ladung der Ladungsdichte ¢ = Jil
X

verteilt (¢ ist die Dielektrizititskonstante). Diese Ladung erzeugt ein elektrisches Feld E = Tl—lx
Zwischen Ladung und Feld besteht die Beziehung ¢ = ¢ div E. Berechne die im Inneren der Kugel

B mit dem Radius @ und dem Mittelpunkt (0,0,0) liegende Ladung @ ="{{ ¢ db mit Hilfe des
B

GauBschen Integralsatzes! Beachte dabei, daB fiir die Oberfliche § der Kugel B der Flicheninhalt 4
durch 4 = ” df = 4ma? gegeben ist!
T

Aufgabe 7.4: Gegeben sei das Vektorfeld F = (x2 + xy + 2ze¥, —x? — y2 — 22, —2xz + 3yz).
Berechne mit Hilfe des Integralsatzes von GauB J = [ F - n df, wobei § die Oberfliche des durch
%

die Flichen x =0,z=0,y =0,y =3 V4 —2x und z = begrenzten Korpers B ist.

1
2x% + 8
Skizziere zunédchst den GrundriBl des Korpers in der x, y-Ebene!

7.3. Koordinatenfreie Darstellung der Divergenz

Wir haben bisher unter der Divergenz einer durch F = F(x) = (P(x), O(x), R(x))
gegebenen Vektorfunktion mit x = (x,y,z) (auch Vektorfeld genannt, vgl. Band 4,
Abschnitt 2.6. und 3.9.) die Differentialoperation

3P 30 OR
ox ' dy ' oz

verstanden. Die partiellen Ableitungen lassen vermuten, da3 die Divergenz in einem
bestimmten Punkt des Raumes nicht nur von der Vektorfunktion F, sondern auch
von der Wahl des rechtwinkligen Koordinatensystems x, y, z abhéngig ist. Bei der
Einfithrung der Divergenz in Band 4 wurde jedoch bereits eine verbale Definition
gewihlt, die von den gewdhlten Koordinaten unabhéngig ist. Nur war es mit den in
Band 4 zur Verfiigung stehenden Hilfsmitteln nicht moglich, diese Definition exakt
und als Formel niederzusch.reiben und der Nachweis, daB die Divergenz von

= (P, 0, R) mit — i +aa§+

wir jetzt nachholen.

3 iibereinstimmt, blieb offen. Diese Schritte wollen
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Um die Betrachtungen anschaulich zu gestalten, wollen wir annehmen, daf
= (P, Q, R) das Geschwindigkeitsfeld einer stationdren, d.h., zeitlich nicht ver-
anderlichen Flissigkeitsstromung darstellt. Ist jetzt §§ irgendeine Fléche, so erhalten
wir das in der Zeiteinheit durch § hindurchflieBende Fliissigkeitsvolumen, den Fluf8

von ¥ durch §, zu fJF -ndf. Betrachten wir ndmlich eine Teilfliche von  der

¥
GroBe Af, so schiebt sich eine Fliissigkeitssdule der Lange |F| - 1 in Richtung von F
durch die Flache. Das Volumen dieser Siule ist Af - 4, wobei 4 die Hohe der Fliissig-
keitssdule ist. Mit 2= F - n (vgl. Bild 7.4) erhalten wir fiir das Volumen F - n Af.
Summation und Grenziibergang liefern schlieBlich fiir den FluB von F durch ¥ das

Oberflichenintegral 2. Art { fF - n df. Ist speziell B ein rdaumlicher Bereich und ¥ die

F
Oberfiache von B, so nennen wir den FluB von F durch ¥ die Quellung von ¥ aus B
(vgl. Band 4, Abschnitt.3.9.2.2.).

Bild 7.4

Fiir einen beliebigen Punkt x sei B, die Folge von Kugeln mit dem Radius -'ll— und

dem Mittelpunkt x. Die Oberfliche von B, bezeichnen wir durch ¥,. Fir jedes
n=1,2,... bilden wir den Quotienten aus Quellung von F aus B, und dem Volumen
A, von B, und betrachten den Grenzwert

-t L [foone

Dieser Grenzwert stellt die lokale Quelldichte von F dar. Das Oberflichenintegral
konnen wir mit dem GauBschen Integralsatz umformen:

ffF-ndf=ﬂfdideb.

oP 9
Sind die paruellen Ableltungen dP ) af und a~ stetig, so ist auch div F steug,
und wir koénnen das Raumintegral mit dem Mittelwertsatz fiir Raumintegrale
(vgl. Abschn. 3.1.) abschitzen:

[[[ divF db = 4, div Fls,,

wobei die Divergenz von F in einem geeigneten Punkt x, aus B, zu nehmen ist.

9%
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Damit wird
= lim A— A, div F|x . hm div F[x

Da div F stetig sein sollte und der Durchmesser der Kugel gegen null strebt, also
X, gegen x konvergiert, gilt

D = div Fx.

Satz 7.3: Ist F = (P, Q, R) eine Vektorfunktion mit stetig partiell differenzierbaren
Komponenten, x = (x,y, z) ein beliebiger Punkt aus dem Inneren des Definitions-

bereiches von ¥ und , die Folge der Kugeloberflichen mit dem Radius L und dem
Mittelpunkt-x, so gilt

Py (%, 9, 2)+ Qy(x, ¥, 2) + Ri(x,y,2) = divF
. 3n®
='lfonoﬁfF-ndf. (1.23)

Aus der Darstellung der Divergenz nach Satz 7.3 folgt insbesondere, daB die Diver-
genz eine skalare Punktfunktion ist, die unabhingig vom gewéhlten Koordinaten-
system durch Integration aus einem gegebenen Vektorfeld gewonnen werden kann.
Formel (7.23) kann, wie das schon in Band 4, 3.9.2.2., angedeutet wurde, sogar zur
Definition der Divergenz benutzt werden. Die Differenzierbarkeitsforderungen in Satz
7.3 konnen dann durch die Forderungen ersetzt werden, daB fiir jede Folge raumlicher
Bereiche B, mit der Oberfliche ¥, und dem Volumen 4,, die x als inneren Punkt

enthalten, der Grenzwert lim —l— f f F - n df existiert und den gleichen Wert besitzt.

n—oo
Sn

7.4. 'Die Greenschen Formeln

Wendet man den GauBschen Integralsatz auf eine Vektorfunktion der Gestalt
F=ggrady
an, wobei @ und v skalare Punktfunktionen sind, so wird wegen
divF = div(p grad y)
= (grad ¢) - (grad y) + ¢ div grad

Op dp  dp dp  p Iy

=oxx oy dy oy t %7 Bz +oby

. . /02 0z 02
i(;rtgl. Band 4, Abschnitt 3.9.2.4.), wobei A der Laplace-Operator o +—6y—2— +—a—;2—
IIf @ve+ @9y + o9+ 9 Ap) db = [[ gn - grad y df. (1.24)
B 3

Die Formel (7.24) bezeichnet man als 1. Greensche Integralformel. Hinsichtlich ihrer
Giiltigkeit miissen wir fiir B und F die gleichen Forderungen stellen wie beim GauB-
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schen Integralsatz 7.2. Fiir ¢ bedeutet das Stetigkeit und die stiickweise Existenz
stetiger partieller Ableitungen, fiir y Stetigkeit von grad » und stiickweise Existenz
stetiger partieller Ableitungen 2. Ordnung. Setzen wir F = ¢ grad 9 — v grad ¢, so
verschwindet in divF der in ¢ und y symmetrische Ausdruck (grad ¢) - (grad y):

divF = ¢ Ay — p Ap.
Der GauBsche Integralsatz liefert dann

| [[[ @ by — v Agp) db = [[ (g grad y — y grad ) - n 4. (1.25)
B F

Formel (7.25) bezeichnet man als 2. Greensche Integ‘ralformel. Fiir ihre Giiltigkeit ist
die stiickweise Stetigkeit bis zu den partiellen Ableitungen 2. Ordnung fiir ¢ und y
zu fordern.

Die Greenschen Integralformeln haben fiir die Losung vieler physikalischer Pro-
bleme eine sehr groBe Bedeutung. Ebenso sind sie in der Analysis ein unentbehr-
liches Hilfsmittel. Bevor wir ihre Anwendung an einigen Beispielen zeigen, wollen
wir noch eine Spezialisierung der Formel (7.24) angeben, die verschiedentlich als
3. Greensche Integralformel bezeichnet wird. Setzt man ¢ = 1, so wird

I JJf Ay db = (] (grad y) - n df. (7.26)
B &

Beispiel 7.6: Eine skalare Punktfunktion u = u(x) heiBt harmonisch, wenn Au =0
gilt. Es sollen einige grundlegende Eigenschaften der harmonischen Funktion her-
geleitet werden. Um die Anwendung der Integralformeln zu erleichtern, wollen wir
noch voraussetzen, daB » und die partiellen Ableitungen bis zur 2. Ordnung in den
betrachteten raumlichen Bereichen einschlieBlich der Oberfliche stetig sind.

a) Aus Formel (7.26) folgt
[[(grad u) -mdf=0. ‘ (7.27)
T
Die Ableitung einer skalaren Punktfunktion v in Richtung eines Einheitsvektors s war
(grad v) - s (vgl. Band 4, Abschnitt 3.9.2.1.). (grad ) - n kénnen wir also als Ablei-

du
tung von u in Richtung der Normalen von $ auffassen und (grad u) - n = n schreiben.
Formel (7.27) konnen wir damit wie folgt in Worte fassen:

Ist u im rdaumlichen Bereich B mit der Oberﬂache & zweimal stetig differenzierbar
und harmonisch, so ist der Mittelwert der Ableitung von u in Richtung der Normalen
von ¥ auf § gleich null.

b) Es sei B ein rdumlicher Bereich mit der Oberfliche ¥, X, ein beliebiger Punkt aus
dem Inneren von B und u in B harmonisch. Wir wenden jetzt die Formel (7.25) mit

K S
p=u und p= = an, wobei wir unter X = (x, y, z) den Ortsvektor verstehen.
InBand 4 Beispiel 3.29, wurde gezeigt, daB harmonisch im R® mit Ausnahme

von x = X, ist. K war dort eine Konstante. Da der Laplacesche Operator A lmear ist,
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gilt auch A m _1_ P = 0 (x == X). Um die 2. Greensche Formel (7.25) anwenden zu

konnen, miissen wir noch x, aus B entfernen, da y in X, die Differenzierbarkeits- und
Stetigkeitseigenschaften nicht erfiillt. Verstehen wir unter B’ den Bereich B, aus dem
die Kugel B, mit dem Radius @ und dem Mittelpunkt x, herausgenommen ist, so
besteht die Oberfliche von B aus § und der Oberfliche ¥, der herausgenommenen
Kugel, wobei die Normale von , nach x, hin zeigt, da die Kugel ja nicht zu B’

gehort. Fir B, g =wuund y = B ist (7.25) anwendbar. Insbesondere wird wegen
Ap=Ap=10in B Ix = x|

[[[ @ Ap—p Ap)db=0.
),

. X — Xy
1(7.2 S NS 0
Formel (7.25) ergibt wegen grad = K=xF
1 —
O—I-[([X—Xol gradu+u !x XoP) -ndf
B
1
+/f(‘x_x grad u + u‘x—}"%) -ndf. (71.28)
o

Das Oberfldchenintegral 2. Art iiber die Kugelfldche $, kénnen wir mit dem Mittel-
wertsatz fiir Bereichsintegrale (vgl. Abschnitt 2.2.) ndher berechnen. Auf §, ist
X — X, -

P Damit wird

[[epsinar==[[uts 2GR ar = [[uer

Anwendung des Mittelwertsatzes auf f f u df ergibt [J u df = 4ra® u(x,), wobei X, ein

X— %) =aundn=—
0

Fo Fo
geeigneter Punkt der Kugeloberfliche %, ist. Wir haben also
f f X0 ndf— —4nu(x). (1.29)

Den zweiten Anteil des Integrals iiber ¥, kdnnen wir mit Formel (7.27) ndher bestim-
men. Es ist

ff|x |(gradu) “df_—f (grad u) - n df.

Da u in B, harmonisch ist, konnen wir Formel (7.27) anwenden. Die nach innen
gerichtete Normale (von der in (7.27) als Ausgang gewihlten Integration iiber B, aus
betrachtet) stort hierbei nicht. Es wiirde lediglich das Vorzeichen umgekehrt. Wir
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erhalten folglich

1 .
ffm(grad W)<ndf=0. (1.30)
o
Unter Beachtung von (7.29) und (7.30) lautet (7.28)
grad u R N
0= ff( B e !3) n df — 4r u(xy). .31

(7.31) gilt fur Jeden Radius a. Wir konnen deshalb in (7.31) a gegen null streben lassen.
Das Oberflachenintegral iiber ¥ ist von a nicht abhéngig, bleibt beim Grenziibergang
also unverdndert. Da x, auf ¥, liegt, strebt x, beim Grenziibergang gegen den Kugei-
mittelpunkt x,. Die Stetigkeit von u ergibt lim 4ru(x,) = 4nu(x,). Der Grenziibergang
a gegen null in (7.31) liefert demnach ~ 4~°

0= ff( |irid;,1 ﬁ) ~ndf— 4w u(x,)

() = 7 f f (\::;‘0"! l—legradu)mdf. (132

oder

Formel (7.32) zeigt uns, daB der Wert einer in einem Bereich B harmonischen Funk-
tion u in einem beliebigen inneren Punkt x, von B aus den Werten von u und der

3 .
Ableitung (grad u)-n= % in Richtung der Normalen von § auf der Ober-
fliche ¥ von B berechnet werden kann. Ist also in B eine Losung von Au = 0 gesucht,

d
wobei # und a—z auf der Oberfliche ¥ von B vorgegebene Werte annehmen sollen,

d
u(x) = vo(x) und %= v,(x) auf § (vo, v, auf § vorgegebene Funktionen), so liefert
(7.32) die Losung

u(xﬂ)—4 ffv.,(x)1 Xo|3 ndf+4 /‘/‘lvl(x) af.

Eine derartige Aufgabenstellung nennt man Randwertaufgabe, hier speziell fiir die partielle Diffe-
rentialgleichung Au = 0 (genannt Laplacesche Differentialgleichung) (vgl. Band 8). Formel (7.32) 1ost
also die Randwertaufgabe der Laplaceschen Differentialgleichung. Eine Losung u der Laplaceschen
Differentialgleichung ist aber bereits durch die Vorgabe der Randwerte v, von « oder durch die Vor-

Oou
gabe der Randwerte v; von =— 3 vollstindig bestimmt. Die Darstellung der Losung « im Inneren von B

ist dann aber schwieriger. Formel (7.32) ist dann noch weiter zu bearbeiten. Dies wollen wir jedoch
Band 8 iiberlassen.

c) Wihlen wir in Formel (7.32) als Integrationsbereich eine Kugel B, um x, mit dem
Radius p und der Oberfliche %, so 1dBt sich wieder Formel (7.27) anwenden. Es ist

namlich —1——— = LY = const und n= l (x — Xo), also
x—x| e e
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ff(l:_:jﬁ x— : |gl'adu)-ndf
~—ff“‘il'4'—ff(greltit4) -ndf.

Das zweite der Integrale auf der rechten Seite ist nach Formel (7.27) gleich null.
Formel (7.32) liefert dann

fudf
ffdf

da 47g? ja gleich der Oberfliche von ), ist. u(X,) ist also der Mittelwert der Werte von
u auf §;. (7.33) 14Bt sich verbal so ausdriicken: Ist u in einer Kugel harmonisch, so
nimmt u im Mittelpunkt der Kugel den Mittelwert der Werte von u auf der Kugelober-
fldche an.

u(Xo) = f udf= (7.33)

7.5. Der Stokessche Integralsatz

Ebenso wie wir mit dem GauBschen Integralsatz der Ebene eine Beziehung zwischen
Bereichsintegralen und Kurvenintegralen iiber geschlossene ebene Kurven herstellen
konnten, ist es auch moglich, eine Beziehung zwischen Oberflichenintegralen und
Integralen iiber Raumkurven anzugeben. Eine solche Beziehung stellt der Integralsatz
von Stokes her.

Satz 7.4: Es sei § eine Fliche mit der Darstellung x = g(u, v), (u,v) € M. M sei ein
Normalbereich beziiglich der u- und beziiglich der v-Achse, g sei stetig und bis zur
2. Ordnung stetig partiell differenzierbar. & werde durch die orientierte Kurve § be-
randet.  und & sind dabei so orientiert, daf3 & entgegengesetzt dem Uhrzeigersinn ver-
liuft, wenn § von der Aufenseite her betrachtet wird. In einer offenen Menge des
Raumes, die  einschlieflich & enthiilt, sei ein Vektorfeld v = v(x) gegeben, dessen
Komponenten stetig und stetig partiell differenzierbar sind. Dann gilt

év dx = f(rot v) - ndf. (7.39)

In Satz 7.4 verstehen wir dabei unter x = (x, y, z) den Ortsvektor und unter der
Rotation den in Band 4, Abschnitt 3.9.2.3., eingefiihrten Differentialoperator:
o 9 0 )
ox’ 9y’ oz/)"
Den Beweis des Integralsatzes von Stokes wollen wir nicht ausfiihrlich durchfithren, sondern nur

eine kurze Skizze angeben. Wir betrachten zunichst nur die erste Komponente P = P(x) von
v = (P, Q, R). Die linke Seite von Formel (7.34) lautet, dann

rotv=Vxv mit V=’(

¢ P(x) dx. (1.35)
@
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x = g(u, v) ist eine Abbildung aus der u,v-Ebene in den x,y,z-Raum, die M auf § abbildet. Bei
dieser Abbildung geht der Rand von M, die orientierte geschlossene Kurve §* (&* wird dem Uhr-
zeigersinn entgegengesetzt durchlaufen), in die ¢ berandende Raumkurve & iiber. Ist (u(t), v(t)),
t €I, eine Darstellung von £*, so ist g(u(t), v(?)), ¢ € I, eine Darstellung von &. Das Integral (7.35)
kann dann berechnet werden durch

f PIx (u(t), v(t)] M dr. (7.36)

Unter Beach von dx(u(z, o) _ g—i: u(t) + g 0(2) ist (7.36) jedoch auch der Ausdruck
zur Berect des Kurveni ales
f {P [x (4, 0] X ("’ %) 4+ Plx (u 0] XY a"("’ 9 4y } @37
&

in der u,v-Ebene. Auf (7.37) konnen wir wegen der Voraussetzungen iiber P, x = g(u, v) und M den
Gaufischen Integralsatz in der Ebene anwenden. (7.37) geht dann {iber in

ff {— —_— [P (x (u, v)) au] P [P (x (4, v) %}} dudv. (7.38)

Berechnet man in (7.38) die partiellen Ableitungen der Ausdriicke in den eckigen Klammern und ord-
net das Ergebnis entsprechend, so stellt (7.38) das Bereichsintegral zur Berechnung des Oberflichen-
integrales zweiter Art

ff(—dxdz—»—dxd> [ﬂ (ey-m) — ai (e3~n)]df (1.39)

dar. Es gxlt also

P
¢de—f-ﬂa (e, n) — y(ea-n)}df. (7.40)
[y
Ganz analog konnen wir mit Q und R verfahren und erhalten die Formeln
56 ody= f 182 €m -2 @ nler. .41
OR
fﬁRdz =ff[w(e,-n)——a7(e2~n)}df. (7.42)
® 3

Fassen wir die Formeln (7.40) bis (7.42) zusammen, so erhalten wir

_[[I(2R _ 20 or _ oR % _op
Greo=[[[(5 -5 eow+ (5 -5 eon + (3= F)wm]or
® F
Der Integrand des Oberflichenintegrales ist aber gleich (rot v) « n, womit wir Formel (7.34) nachge-
wiesen haben.
~ Wir zeigen nun an einigen Beispielen die Anwendung des Integralsatzes von Stokes.

Beispiel 7.7: Wir hatten den Beweis des Satzes 5.8 offengelassen. Wir wollen ihn
jetzt nachholen. Satz 5.8 sagt aus: Ist in einem einfach zusammenhingenden Ge-

biet G die Gleichung rot f = 0 erfiillt, dann ist das Kurvenintegral ff -dx in G vom
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Integrationsweg unabhéngig. Nach Satz 5.6 ist J f dx genau dann vom Integrations-

wegunabhéngig, wenn fiir jede geschlossene, ganzin G verlaufende Kurve & <f> f.-dx=0
gilt.

Um dies nachzuweisen, sei jetzt & eine beliebige ganz in G verlaufende geschlossene
Kurve. § sei eine beliebige, ganz in G liegende und den Voraussetzungen des Inte-
gralsatzes von Stokes geniigende Fliche, die & als Rand hat.*) Nach Formel (7.34) ist
dann

¢f dx j (rotf)-ndf=[[0.ndf=0.

¥
Damit ist Satz 5.8 bewiesen.

Beispiel 7.8: Es sei & die Schnittkurve zwischen der oberen Halbkugel (z = 0) mit
2

dem Radius R um 0 und dem Zylinder (x — g)_ + i = %, die entgegen dem Uhr-

zeigersinn durchlaufen wird, wenn wir von oben auf die Kugelfliche sehen. Es ist
. dx mit f = (xy, y% yz) zu berechnen.

& berandet den beim Florentiner Problem herausgeschnittenen Teil &, der Kugel-
fldche (vergleiche Beispiel 6.3). Wir wenden zur Berechnung des Kurvenintegrales
L = ¢f-dx den Integralsatz von Stokes an. Hierzu bendtigen wir die Rotation von
f und die Darstellung einer geeigneten Fliche, die von & berandet wird. Es bietet sich
hier der Teil §¥, der Kugeloberfliche an. Die Normale der Kugeloberfliche hat die

gleiche Richtung wie der Ortsvektor x = (x, y, z). Es gilt also n = %, da der Betrag

fiir auf der Kugeloberfléche liegende x gleich R ist. Fiir rot f finden wir (z, 0, —x).
Damit wird
(ot 1) n = (0, ~2) - (%7, 2) = g (2 — 32) =
und
= ¢f dx=[[ (ot ) -ndf= ffo df=0.
()0

Aufgabe 7.5: Es ist das gleiche Kurvenintegral wie in Beispiel 7.8 zu berechnen. Bei der Anwendung
des Integralsatzes von Stokes ist jedoch nicht die Kugelfliche, sondern die Fidche §* zu verwenden,
die entsteht, wenn man auf & eine zur y-Achse parallele Gerade entlang gleiten 1a8t.

Ehe wir als néchstes Beispiel eine Anwendung des Integralsatzes von Stokes in der
Elektrodynamik behandeln, wollen wir einen Hilfssatz bereitstellen.

Satz 7.5: Ist v ein in einem raumlichen Gebiet G stetiges Vektorfeld, fiir das fiir jede
beliebige, in G liegende Fliche ¥

[[vemdr=0 . (7.43)
b
gilt, so ist v=o0in G.

1)Man kann zeigen, daB es unter unseren Voraussetzungen iber die Kurve & (Def. 5.2) stets eine
der Definition 6.2 geniigende Fliche ¥ gibt, deren Rand mit & iibereinstimmt.
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Beweis. Wir fiihren den Beweis indirekt. Hierzu nehmen wir an, v sei in x, € G vom
Nullvektor verschieden: v(x,) = a == 0. Wegen der Stetigkeit von v gibt es zu
e=}|alein 6 > 0, s0 daB |[v(x) — v(xo)| = [v(x) — a| < eistfiiralle x mit |x — xo| < 6.
Fiir x mit |[x — X,| = 9 ist dann

ial2
0. Iv6) — aft = 40 — a - (9 — al = WGP + af* = 2v(9 -2 < &8 = 120,

also

0< ¢ laP<w(x)-a fiir [x—x|=02. (7.44)
o sei nun eine Kreisfliche mit dem Radius ¢ um x,, die senkrecht auf a steht. Die
a

[a]
va~ndf= 52:v(x1)-—‘%,

wobei X; ein geeigneter Punkt von ¥, ist. Wegen der Voraussetzung (Formel (7.43))
ist dann

v(x))-a=0

Normale von §, ist also n = —. Nach dem Mittelwertsatz der Integralrechnung ist

im Widerspruch zu Formel (7.44), da wegen x; € 5o, |X; — Xo| < 0 ist. Damit ist
Satz 7.5 bewiesen.

Beispiel 7.9: Die Maxwellschen Gleichungen (fiir ruhendes Medium) in Integralform
lauten:

OB .

[[ 55 mar=- 56 E-dx  (Induktionsgesetz), (7.45)

¥

£
f f C-ndf= :ﬁH -dx (elektromagnetisches Verkettungsgesetz). (7.46)
) &

Hierbei kann § jede beliebige Fliche im Raum sein. & ist die jeweilige Berandungs-
kurve von . B ist die magnetische Induktion, C = %Itz + I der Gesamtstrom, D die
dielektrische Verschiebung, E die elektrische Feldstirke, H die magnetische Erregung
und I der spezifische elektrische Strom (s. z.B. [8], § 3).

Die Maxwellschen Gleichungen sollen nun in eine Form gebracht werden, die
keine Integrale mehr verwendet. Hierzu wenden wir auf die Kurvenintegrale in For-
mel (7.45) und (7.46) den Integralsatz von Stokes an:

$E-dx = [[ (rot E) - ndf,
® F

¢H-dx =[] (rotH) - ndf.
@ &
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Damit konnen wir (7.45) und (7.46) umformen zu

ff(%—}:+rotE)-ndf= 0,
F

ff(%ltl'+l—rotn>-ndf= 0.
3

Da ¥ jede beliebige Fliche sein darf, konnen wir Satz 7.5 anwenden. Es folgt

0
-aT=—l'OtE,
oD
E—+I=rotH.

Dies sind die gesuchten Gleichungen (Maxwellsche Gleichungen in Differentialform).

In den vorangegangenen Beispiclen haben wir Kurvenintegrale iiber den Stokes-
schen Integralsatz durch Oberflichenintegrale ausgewertet. Oft lassen sich jedoch
auch Oberflachenintegrale besser durch Kurvenintegrale berechnen. Es muB dann
die Randkurve der Oberflache oder das Vektorfeld besonders einfach sein. Wir wollen
auch hierzu ein Beispiel angeben.

Wir bemerken weiter: Im Stokesschen Integralsatz 7.4 sind die betrachteten Ober-
flichen ziemlich starken Einschridnkungen unterworfen. Satz 7.4 gilt jedoch auch noch
dann, wenn § aus endlich vielen, den Bedingungen von Satz 7.4 geniigenden Fldchen
zusammengesetzt ist. Auch dieser Sachverhalt soll im néchsten Beispiel beriicksichtigt
werden.

Beispiel 7.10: Es sei B der Wiirfel mit den Eckpunkten (0, 0, 0), (1, 0, 0), (1, 0, 1)
0,0, 1), (0,1,0), (1, 1, 0), (1, 1, 1) und (0, 1, 1). ¥ sei die Oberfliche von B mit nach
auBen gerichteter Normale, ¥, sei die Restfliche von &, wenn aus % das Quadrat
mit den Eckpunkten (0, 0, 0), (1, 0, 0), (1, 1,0) und (0, 1, 0) entfernt wird. Es ist
I= ” (rot v) - n df zu berechnen mit v = (e*%, sin xz, e"%).

o

o besteht aus fiinf Quadraten, iiber die getrennt integriert werden muB. Weiter
ist rot v = (—xe % — x cos Xz, y "% + e¥*%, z cos xz — e/**) sicher nicht einfacher
als v aufgebaut. Da der Rand & von , der Streckenzug (0, 0, 0) — (1,0, 0) — (1, 1, 0)
—(0,1,0) — (0, 0, 0) ist, also ganz in der x,y-Ebene liegt, ist es sicher einfacher, I nach
dem Stokesschen Integralsatz umzuformen und das Kurvenintegral iiber & zu be-
rechnen. Diesen Weg wollen wir beschreiten.

1 1
I=H(rotv)-ndf=q§v~dx=fe°dt—fe’ dt=1-—ce.
Fo & 0 0

(In den beiden Integralen von (1, 0, 0) nach (1, 1, 0) und von (0, 1, 0) nach (0, 0, 0) ist
der Integrand sin xz gleich null wegen z = 0.)

Aufgabe 7.6: Berechne mit Hilfe des Integralsatzes von Stokes I = [{ (rot v) - n df, wobeiv = (z — 4,

&
¥?,0) und & der Teil des Rotationsparaboloides z = x? + y? ist, der im 1. Oktanten x = 0,y = 0,
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z = 0 zwischen den Ebenen z = 0 und z = 4 liegt. Die Normale n von § weise stets in das, AuBere
des die positive z-Achse enthaltenden Rotationskorpers. Skizziere zundchst in einem Schrigbild das
Flachenstiick!

Aus dem Integralsatz von Stokes folgt iibrigens unmittelbar ein Sachverhalt, der

sich oft giinstig zur Auswertung von Oberflichenintegralen des Types U (rotv) -ndf
verwenden laBt.

Satz 7.6: Es sei G ein einfach zusammenhingendes riumliches Gebiet. In G sei das S.7.6
Vektorfeld v stetig und stetig partiell differenzierbar. T, und %, seien ganz in G ver-
laufende Flichen, die den Voraussetzungen von Satz 7.4 geniigen und gemeinsam von

der Raumkurve & berandet werden. ¥, , . und & seien wie in Satz 7.4 orientiert. Dann

gilt

[[@otv)-ndf= [ (rotv)-ndf.
1 Ta
Ist insbesondere 5 eine in G liegende geschlossene Fliche, so ist

vff(rot v)-ndf=0. ‘
&
Zum Beweis wenden wir auf beide Oberflichenintegrale den Integralsatz von
Stokes an und erhalten

ff(rotv)»ndt=q§v-dx,
R &

H(rotv) . ndf=5£v - dx.

Ta ®

Wegen der Gleichheit der rechten Seiten ist der erste Teil des Satzes bereits bewiesen.
Zerlegen wir die geschlossene Fldche § durch eine auf § liegende geschlossene Kurve £
in zwei Teile §; und ., so gilt nach dem bisher bewiesenen

ff(rotv)-ndf: ——ff(rotv)-ndf,
By s

da ® als Rand von g, die entgegengesetzte Orientierung hat wie als Rand von ;.
Zusammenfassung der Integrale iiber $; und . ergibt dge Behauptung

[[@otv)-ndf=0.m
¥

Beispiel 7.11: Satz 7.6 liefert uns ein weiteres Mittel, das Oberflichenintegral I aus
Beispiel 7.10 in einfacherer Weise zu berechnen. v ist im ganzen Raum stetig und stetig
partiell differenzierbar. Weiter ist das Quadrat §; mit der Normale n = e, eine Fliche,
die die gleiche Randkurve & wie ¥, hat. Nach Satz 7.6 gilt folglich

I=ff(rotv)-udf=ff(rotv)-ndf:ffl(rotv)-eadxdy
To 1 00

=—ffeydydx=1-—e.
00



142 7. Integralsitze
7.6. Koordinatenfreie Darstellung der Rotation

Ahnlich wie die Divergenz 1aBt sich auch die Rotation eines Vektorfeldes mit
Hilfe von Integralen in einer Form darstellen, die vom benutzten Koordinaten-
system unabhédngig ist. In Band 4, Abschnitt 3.9.2.3., wurde die Rotation von
v= (P, O, R) durch

rotv=(Ry— Q:, P.— R;, 0, — P)

definiert, und in dieser Form haben wir sie bisher auch immer benutzt. Es wurde
jedoch bereits in Band 4 angedeutet, da3 diese Vektoroperation besser iiber Integrale
definiert werden kann, die dort aber noch nicht zur Verfiigung standen.

Es sei v ein stetiges und stetig partiell differenzierbares Vektorfeld. Ist 5 eine orien-
tierte Flache mit der orientierten Randkurve £ (& wird entgegen dem Uhrzeigersinn

durchlaufen, wenn man von der AuBenseite auf § blickt), so bezeichnet mangg v-dx

s
als Zirkulation des Vektorfeldes v lings der (geschlossenen) Kurve §. Betrachten wir
nun fiir einen festen Punkt x, und eine feste Richtung n, eine Folge ebener Flichen ¥,
mit den Randkurven &,, die senkrecht auf n, stehen, X, als inneren Flichenpunkt
enthalten, und fiir die die Durchmesser gegen null streben, wehn n gegen unendlich
strebt, so konnen wir mit der Zirkulation von v ldngs &, folgende (von x, und n, ab-
hingige) skalare GroBe

fv -dx
=lim &
a —31:2 i (7.47)

erklaren, wobei 4, = ff df der Fldcheninhalt von §, ist. Wenden wir auf die Zir-

B
kulation in Formel (7.47) den Integralsatz von Stokes an, so erhalten wir

¢’v- dx=ff(rotv) -y df.
£, &n
Der Mittelwertsatz fiir Bereichsintegrale liefert weiter

J[ @otv) - mydf = An(rot v]x=s,) - mo,

§n
wobei x, ein geeigneter Punkt von §, ist. Da die Durchmesser der %, gegen null
streben, gilt lim x,, = x,. Wegen der Stetigkeit der partiellen Ableitungen von v ist

evoo
auch rot v stetig, und es gilt lim rot v|—x, = 10t V|x=x,. Damit liefert Formel (7.47)
oo
. An(rotv|x=x,) -
a=lim &‘:!;‘;n)_“o = (1ot ¥]x—x,) - Mo
noco n

a ist also die Komponente von rot v in Richtung von n, im Punkte x,. Wir fassen das
Ergebnis zusammen in

S.7.7 Satz 7.7: Es sei v ein stetiges und stetig partiell differenzierbares Vektorfeld, x, ein
fester Punkt, n, eine feste Richtung und 5, eine Folge ebener, auf n, senkrecht stehen-
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der Flichen mit ‘dem Flicheninhalt A, und dem Rand 8,, die X, als inneren Flichen-
punkt enthalten und deren Durchmesser gegen null streben, so gilt

fv-dx

(rot ¥]x=x,) - 1o = lim 2
n-co n

Satz 7.7 zeigt, daB rot v nicht von der speziellen Wahl der Koordinatenachsen
abhingig ist.

Ubrigens kann die rechte Seite von Formel (7.47) unter Umstinden auch dann berechnet werden,
wenn v schwiicheren als den in Satz 7.7 angegebenen Voraussetzungen geniigt. Zum Beispiel muB v zur
Anwendung von Formel (7.47) nicht unbedingt partiell differenzierbar sein. Man muB dann allerdings
fordern, daB die rechte Seite von (7.47) fiir jede Folge von Flichen der angegebenen Art gegen den
gleichen Grenzwert a strebt. Mit Formel (7.47) als Grundlage fiir die Definition von rot v erhilt man
deshalb sogar einen allgemeineren Begriff als mit der Definition iiber die Differentialoperatoren.

Beispiel 7.12: Es sei v = v(r) mit r = |x|. vist also auf jeder Kugel um 0 eine koustante

VektorgroBe. Es ist die Komponente von rot v im Punkt x, in Richtung von ——no
zu berechnen. [%o|

‘Wir benutzen Satz 7.7 und nehmen fiir §, Kreisflichen mit dem Radlus L um X,
senkrecht zu n,. Auf dem Rand &, dieser Kreisflichen ist |x[*> = |x[* + -’—:5 konstant,

also ist auch v(|x|) = a, konstant auf &,. Wir haben also ?7‘ a, - dx zu berechnen. Wir
B
konnen dieses Kurvenintegral auch als 95 f(x) - dx auffassen mit f(x) = a, = const

[y
im ganzen Raum. Wegen rotf= 0 wird"dann nach Satz 5.8 das Kurvenintegral
<f; f - dx vom Weg unabhingig, nach Satz 5.6 also % f-dx= qga,. dx=0.Formel (7.47)
&
hefert schlieBlich *
. 0
(rotv) - ny = lim -1 = 0.
n—oo
e
Aufgabe 7.7: Es sei v = v(x) ein Vektorfeld, dessen Feldlinien die Ebene E mit der Gleichung
3x + 2y — z =5 senkrecht durchsetzen. Es ist die Komponente von rot v in Richtung

1
—= (3,2, —1) im Punkt x, = (1, 2, 2) zu berechnen.

V14

n, =
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2z 4
11: jx(y + 1) dy = [x@»* + == = X(2x% + 2x) — x (3x% — x)= 3x% (4x + 1).(Fir x = 0 ver-

=—1

-z
lauft y;(x) = —x unterhalb von y,(x) = 2x).

zl
1.2: a) Durch die Substitution # = xy (x dy = du) erhilt man F(x) = f (sin u)—l-du
X

1 u=x* 0
= [—- — cos u] = —(1 — cos x?).

x u=g x

1 1

Hieraus folgt: F'(x) = 2 sin x* — = + -x—zcos 2

b) f(x, ¥) = sin xy, fi(x, ¥) = y cos xy. Aus Formel (1.3) folgt dann:
2

F'(x) = f ycos xydy + sin x% Das Integral kann durch die Substitution # = xy (x dy = du) und

0
anschlieBende partielle Integration geldst werden :
x x?
1 1 X zt ] 5
ycos xydy = = ucosudu = = [usinu + cosu] = —x?()czsmx2 + cos x2 — 1).
0 0 0
Man erhilt also fiir F(x) das gleiche Ergebnis wie in Aufgabe a).

1.3: B* ist eine Ordinatenmenge O(B, f) mit B= {(x,») |0 =x=<3,0=y=3—-x}undz =
f(x,y) = 6 — x — 2y. (Vgl. die Ausfiihrungen in Beispiel 1.8.) Bild L 1.3 liefert uns eine Skizze von B*.

33—z 3 [3—x

Aus Formel (1.5) ergibt sich dann V = | [ (6 — x — 2))dydx = | [ J6—x-2 dy] dx.
00 x=q Ly=0

Wir berechnen zunichst das innere Integral:

3—z

Je—x-2)dy=[6y—xy = »P=3 =66 -0 —xG—x) -G —x2=9 -3
]

e
27

Hieraus folgt: V= f(Q —3x)dx = -5

0

Bild L 1.3
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1 4: B* ist eine Ordinatenmenge O(B, f) mit

e =x=54-Va—(x—3p=psd+ 04— (x-23)2%
und fe, ) = Xy, (vgl. die Ausfithrungen in Beispiel 1.8). Bild L 1.4 zeigt den GrundriB B von B*.
B wird von dem Kreis (x — 3)? + (y — 4)® = 4 begrenzt; y = yy(x) = 4 — V4 — (x — 3)? liefert
die untere Kreishilfte, y = yy(x) = 4 + Va4 — (x — 3)* die obere Kreishilfte. Aus Formel (1.5)
ergibt sich dann

5 4+ Vi—(@—9)* 5 2 -
v=f xydydx = [ 8x V4 — (x — 3 dx = [ 8¢ + 3)V4 — r2ds
L y-Yi—@—y B o

2 2
=8 [tV4a—r2dr+24 [ V4 —12dr =0+ 487 = 48m.
-2 -2

(Hinweis: Das 1. Integral braucht man nicht zu berechnen. Da f(f) = tV4 — £* eine ungerade
3 g

Funktion ist, muB | f(r) dr gleich null sein!)
—2

1.5: Nach der I’'Hospitalschen Regel gilt:

lim sin (xf(x)) =”2“ . () + xf'x)) cos 6f(x) _ Go+0)-1 _
20 x 0 20 1 1

Die Zusatzfrage muBl mit ,,nein‘‘ beantwortet werden (s. Definition des Grenzwertes bei Funktionen
mit mehreren Variablen in Band 4).

1.6: x = 0,1. Aus I'(x + 1) = x - I'(x) (fiir jedes x > 0) und der Tabelle ergibt sich: 0,1 -I'(0,1)
= I'(1,1) = 0,951. Hieraus folgt: I'(0,1) = 9,51. Analog berechnet man I'(x) fir x = 0,2;...;0,9.

x=21=T21)=Ir1,1+1)=11-Id,1) =1,1-0,951 = 1,046.

T

X B 1 1 X

BildL 1.4 . BildL 1.6

Analog berechnet man I'(x) fiir x = 2,2;...; 3,0.

x |01 |02 |03 [ 04 |05 |06 |07 |08 |09

re | ost | ase | 20 | 222 | 177 | nee | 130 | 116 | 107

10 Kérber, Integralrechnung
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]2,1 | 2,2 | 2,3 | 24 ] 2,5 I 2,6 I 2,7 | 2,8 12,9 | 3,0

reo | 1os | 110 | 117 | 126 | 133 | 143 | 155 | nes | 183 | 200

0=y=4
2.1: B:{ -
Iysxs6-y
ist ein Normalbereich beziiglich der y-Achse. (y = —x + 6 ist die Gfrade durch die Punkte (6,0)
und (2,4). Ausy = —x + 6 bzw. y = x*folgt x = 6 — y bzw. x = Vy)

fff(l’) db = f Txydx dy =

2.2: Der Bereich B wxrd durch die Gerade x = 4 (das ist eine Gerade parallel zur y-Achse) in zwei
Normalbereiche beziiglich der x-Achse zerlegt, die wir mit B; bzw. B, bezeichnen wollen (vgl. Def.
1:1).
'l0§x§4 ‘l4§x§9
0sy=*+1, 0=y=9-x
Aus den in Satz 2.5 bzw. Satz 2.6 angegebenen Formeln erhalten wir dann — unter Beachtung der

in Satz 2.3, c angegebenen Zerlegungsformel —
4 1z

Hgdb—”gduffgdb_ff xydydx+ffxydydx

124 875 _ 3617
R
4 Y2t +1 99—z

1 1 9
[ = — 2.
=— fxgdb_m[f f xydydx+ffx2ydydx}
0 0 4 0

B

24 {14176 29151 0066+ 728,76 % 4,81
= 3617 105+4}~’ IR S0

412241 99—z
1 1
¥s =Effygdb S [f fxyzdydx +ffxy2dydx}
B 0 0 4 0

% 0,0066 - {104 + 261} = 2,41.

2 4—2a?

2
128 1
2.3:Jz=ffy2@db=f leg(xz+.V)dydx=f<64——Tx2+8);“ —ﬁxs)dx
B -2 0 2
2

2 64 128 2 4 8xt* LI dx = 121
= T Xt — 5% dx & 121
0

2.4: fff(P)db_hm fff(P)dbAhm ffy ¥ dyde =tim12(2 - o) = 24,

—~+0e 0 e>+0
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y
4
B
Bild L 2.4
L
£ 1 *
3.1: B wird von 5 Ebenen begrenzt:
z=-3 (untere Begrenzung);
y=-x+1, y=x-1, x=4 (seitl. Begrenzung);
z=3(x+y+2) (obere Begrenzung). B
z 7
s
B /y =x-1
2 -
8,
(4 A Bny
1 4 X 1 & *
BildL 3.1
3+
y=-x+1
3.2: Normalbereiche beziiglich der x,y-Ebene:
X SXS X NEy=»n
B;: ) =y = y) By: x1(0) = x = %)
z7(x,¥) £ z = z(x, ), 2)(%,¥) = z S 7%, ),

Normalbereiche beziiglich der y,z-Ebene:
NEY=E» 5 Sz2=17
By [ 2() = z = ) By [ »(2) =y = 32
(0, 2) = x = %0, 2), X1, 2) S x = %0, 2),
Normalbereiche beziiglich der x,z-Ebene:

X =SXS X z7Sz2=52
B;: { (%) £ z £ zy(x) Bs: L x1(2) = x = x2(2)
(%, 2) = ¥ = »x, 2), 1(x, 2) S Y S yolx, 2).

Aus diesen Darstellungen kann man folgende GesetzmiBigkeit bei raumlichen Normalbereichen
ablesen: Bringt man die Variablen x, y, z in eine geeignete Reihenfolge (z. B. z, y, x bei B,), so sind
die Grenzen fiir die 1. Variable konstant, die Grenzen fiir die 2. Variable Funktionen der 1. Variablen

10*
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und die Grenzen fiir die 3. Variable- Funktionen der 1. und 2. Variablen. Diese Formulierung (in
entsprechend prézisierter Form) kann als Definition fiir rdumliche Normalbereiche benutzt werden;
sie ist unabhingig von der in Definition 3.2 zugrunde gelegten geometrischen Vorstellung und sofort
auf einen beliebigen u,v,w-Raum Ubertragbar.

Hinweis: In Aufgabe 3.1 ist B ein raumlicher Normalbereich vom Typ B,. Es gilt z;(x, y) = =3,

zy(x, ¥) = % (x + y + 2). Beider Gleichung z,(x, y) = — 3 soll besonders darauf hingewiesen werden,
daB z = —3 als Funktion von x und y angesehen werden kann: z ist fiir alle Punkte (x, y) konstant

gleich —3 (s. Band 4).

3.3:
z+y+4

2 fz=

2 i=a+y+4
J=

Inneres Integral: f x+y+2dz= [.\fz +yz+—=

o,

&)

3
=ix2+8x+8y+ 3xy+7y2+8.
3 = i y="%+3
Mittleres Integral: xzy +8xy + 42+ —xp 4+ =% + 8y
2 2 J—z—l
37 73 N 261 73,
S Sttty e
e 37 73 261 8 5704
2 [ 4 2 = ~ .
AubBeres Integral.[ o xt+ 2 X%+ g + 78x]0 3 1901

B wird nach unten durch die x,y-Ebene mit der Gleichung z = 0, nach oben durch die Ebene z =
Xx + y + 4 und seitlich durch die drei auf der x,y-Ebene senkrecht stehenden Ebenen y = x — 1,

X
y= 5 + 3, x =0 begrenzt.

3.4: Zu den Normalbereichen B, ..., B gehoren (in der angegebenen Reihenfolge) die folgenden
dreifachen Integrale:

2y Yo(2) 34(2,Y)
L j j J. f(x,y,2)dzdydy,
2 ¥,(@) z(@,y)
 Ya Ty) 2y
2'.‘ j I/f(«\',y,Z)dzdxdy,
v 1) 5@
Ys %) 22,32
| [ feoy 2 dxdzdy,
1 1) 2,,2)
2, Y,(2) 22(y,2)
o] | feyodedyds
2, i(z) 2,,2)
Ty 3,(2) Y,(2,3)
500§ ferodydzd,
z, 3,@) ¥i(7,2)
Zy X5(2) Y,y(T,3)
(] [ f&xy,2dydxdz.

7 2,(2) ¥,(%,2)
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Hinweis: Die drei Symbole (Elemente) dx, dy, dz kann man auf 3! = 6 Arten anordnen (per-
mutieren). Das entspricht der Tatsache, daB es 6 verschiedene Arten von dreifachen Integralen gibt.

3.5:
y=a+3z |

1
Inneres Integral: [3 xzyz] =

9
- 5 Xz + 3x%2% + ?xz“‘.

9 z=3%+2
Mittleres Integral: [— xiz 4+ X322 + z—x’z”]

1/27 .
iy (T 25+ 3274 + 482° 4 242° + 42) 5

- 179 32 5 369025
AuBeres Integral: — [— 28+ <5 25 4+ 1224 + 823 + 222]0 = ~ 23064.

218 16

Betrachtet man die y-Achse als vertikale Richtung, so wird B nach unten durch di¢ x,z-Ebene (y = 0),
nach oben durch die Ebene y = x + 3z und seitlich durch die auf der x,z-Ebene senkrecht stehenden
Ebenen x = 0,x =z + 2,z = 0, z = 5 begrenzt.

3.6:V=jﬂdb=” J dzdydx'

34
=[fo2+y +2)dydx—j(3x‘+27)dx— 108.
01

3 4 2%yi+2
1 1
x°=7f fxdb:—ﬁ)—s—ff f xdzdydx
B 01 0
3
f ’+~2)dd—l~729—£
=og ) ) X E P Ddde =T = g

3.7: Bist ein raumlicher Normalbereich von dem in Beispiel 3.2 behandelten Typ.

0=x=3
5
B: 0§y§5-—§x
0£z£2—£x—£y.
=°= 3 5

2 3 . 5
Diese Darstellung gewinnt man ganz einfach, wenn man davon ausgeht daB y =5 — 3 x die

2 2
Gleichung der Geraden durch die Punkte (3,0,0), (0,5,0)und z =2 — — x — — 24 die Gleichung
der Ebene durch die Punkte (3, 0, 0), (0, 5, 0), (0, 0, 2) ist.
(Hinweis: Bei diesem speziellen Beispiel hiatte man B auch als Normalbereich der anderen fiinf Typen
beschreiben konnen. Siehe Losung zu Aufgabe 3.2.) Nach Satz 3.6 gilt: J, = j”rg odbmitr?= x*+ z*
B
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und ¢ = x + 1. (rist der Abstand des Punktes P(x, y, z) von der y-Achse.) Aus Satz 3.6 folgt dann:
=ffle2+ )@+ nd
B

3 55z 2—Y@—ly
=J 4+ AG+ Ddzdydx
0

3 X /(X —y)
=£6$ 6[ (x2+z2)(x+1)dzdydx(Abk.:X=§(3—x)).

Inneres Integral: — (x +1) (x X-yp + —-(X y)’)

1 2
Mittleres Integral:?(x + 1) x°X2% + 75 (x+ 1)Xx*

5 10
= 3(9):2 + 3x% — 5xf 4+ x8) + m(sl — 27x — 54x® + 42 — 11x* + X%).
AuBeres Integral: J, = 14,25.

41: -t =¢=m, (0 = @ = 2w ebenfalls moglich!)
0=z=53, ‘
0=r=2-4%.
[Aus z = —%r + 3 (vgl. Beispiel 4.2) folgt r = 2 — % z.]
Geometrische Interpretation (s. Bild 4.5): P sei ein Punkt des Kegels mit den Zylinderkoordinaten
r, @, z. Bei beliebig vorgegebenem ¢ kann z alle Werte zwischen 0 und 3 annehmen; z ist nicht von ¢
abhingig. Sind ¢ und z vorgegeben, so kann r alle Werte zwischen 0 und 2 — % z annehmen; r ist
nur von z, nicht von ¢ abhingig.
—R Sx=R
42: a) B{-VRR-2<y = VR - &
0sz<VRE—x— )2
Man orientiere sich am Beispiel 4.1! Dem R in Aufgabe 4.2 entspricht das a in Beispiel 4.1. Wihrend
in Beispiel 4.1 die Halbkugel z = Va2 — x> = »* die untere Begrenzungsfliche von B darstelit,
wird in Aufgabe 4.2 der Bereich B nach unten durch die x,y-Ebene (mit der Gleichung z = z; (x, )
= 0) begrenzt.
b) Ausgehend von der geometrischen Bedeutung der Kugelkoordinaten r, &, ¢ (vgl. Bild 4.4) kénnen
wir feststellen: Bei der vorgegebenen Halbkugel vom Radius R kann r alle Werte zwischen 0 und R
annehmen. Bei beliebig vorgegebenem r kann & alle Werte zwischen 0 und = (= 90°) annehmen;
9 ist nicht von r abhingig. Sind r und & vorgegeben, so kann ¢ alle Werte zwischen 0 und 2= (£ 360°)
annehmen; @ ist in diesem Falle weder von r noch von # abhingig. Der vorgegebene Bereich wird
daher beziiglich Kugelkoordinaten beschrieben durch

0=r =R
B’:{Ogﬂg‘}n

0=¢=2m

0=r=R
4.3:a) B [0 <d=in

0=¢s=2m
b) Schneidet man den vorgegebenen Kugelausschnitt (Kugelsektor) lings der x,z-Ebene auf, so
erhilt man den in Bild L 4.3 b dargestellten Kreisausschnitt (Kreissektor) mit dem Zentriwinkel
« = 90° und dem Radius R. (Beziiglich ebener und raumlicher Figuren siehe z. B. [1], Abschnitt
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Geometrie.) Wir versuchen den Kugelausschnitt als einen Normalbereich von dem in Beispiel 4.2 b
angegebenen Typ

PL=EP =P

(@) = r =),

@) =22 50,9)
zu beschreiben! Zunéchst einmal kann ¢ alle_Wertc zwischen 0 und 2= annehmen. Bei vorgegebenem
@ kann r alle Werte zwischen Ound r, = 3R V2 annehmen (siche Bild L 4.3 b). Die Grenzen fiir r sind
also bei diesem Beispiel nicht von der ersten Variablen ¢ abhingig! Sind ¢ und r vorgegeben, so kann
z alle Werte zwischen z; und z, annehmen; dabei gilt z; = r, z, = VR = 2. (Satz des Pythagoras
beachten!) Die Grenzen fiir 7 sind bei diesem Beispiel nur von der zweiten Variablen r abhingig.
Der vorgegebene Bereich wird daher beziiglich Zylinderkoordinaten beschrieben durch

0=9=2r

Bild L 4.3b)

4.4: Fiir den geometrischen Schwerpunkt x, ¥, von B gilt (vgl. Satz 2.6 und anschlieBende Bemer-
kung): .

1 [ 1 TR?
o= deb,yo::{ yibs 4= | | ab =2
B B B

Transformation auf Polarkoordinaten fiihrt zu den Formeln:

. 4 e 4R
X=Tpm (rcosg)rdr qa—?;,
00
2

4

B ing)rdrdp = 4R
W=Tm (rsing) rdrdp = =
00 N
vgl. Formel (4.16) — diesmal wurde aber in der Reihenfolge dr, dg integriert! Zugehoriger Normal-

bereich:
- T
O=)p=e=p|=7)

O =)rn@) =r =nlp) (=R).
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4.5: Nach Satz 2.8 des Abschnittes 2.4. gilt: J, = ” y*db.
B

1. Transformation (Ubergang von x, y zu x’, y'):
T.x=x’+5 o(x, y) -1
Vy=y+4 o,y

2. Transformation (Ubergang von x’, y zu Polarkoordinaten (beziiglich x’, y') r, @)

T .x’ =rcosp O(x,y) N
¥y =rsing O(r,p)
Hieraus folgt (vgl. Formel (4.16)):
Te=[frdb= [0+ 42 1d0 = [[(rsing + 4 r db”
B B’ B J
3
22
= f f(rsiuqz + 4)?rdrdep =
0

T

2

@
E

64
(4 sing + —3—sintp + 32) dop

”H%m

3

~
= = 347 = 106,81.
2

5 64
= [2<p—sm2qJ—Tcoqu+ 32(;:]

4.6: (Vgl. Formeln (3.3), (4.19), (4.18) und Beispiel 4.2)

@1 13(9) 7a(r,e)

v={{fd=[ffrap=fff1-rar =] [ [ rdzarde

B B B @1 nile) z(re)
T2 —3,r+3

2
[ | rdzdrdg
—-n 0 0

H

™2 ™
j. jr(—%r+3)drdqz= I2d¢p=4n.
0 -

-7

Kontrolle: V=1Fh =4nr*h=4n-22-3 = 4m,

4.7: Beziiglich Zylinderkoordinaten r, ¢, z wird der vorgegebene Bereich beschrieben durch:

0=r=3

0sp=2rn
B’:[
0Sz=rr+4.

Aus z = x* 4+ y® + 4 folgt z = r? + 4. Nach Formel (4.19) gilt daher:

2w 3 ri+4 2n

3
153
V=J‘ffdb=fff rdzdrdtp=fJ-r(r2+4)drdq;=7m
B 00 0 00
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4.8: Wir fithren ein x,y,z-Koordinatensystem ein, dessen Ursprung O mit der Spitze des Kugel-
ausschnitts und dessen z-Achse mit der Symmetrieachse des Kugelausschnitts zusammenfalit. Das

6 R™2
Im r, %, p-Raum (Kugelkoordinaten) wird der Bereich beschrieben durch

T a 1
Bild zeigt'den Schnitt mit der x,z-Ebene. Fiir den Winkel ¢ gilt ¢ = — (sinﬁ =—= —) .

Fiir das Volumen ¥ von B und die z-Koordinate des geometrischen Schwerpunkts von B gilt dann:
T
2m 6 4
v=[ffdb=[[frsinddy =[ [ [rsinddrdddp,
B B 000

zo=——17'”fzdb =iyfjf(rcosﬂ).(r”sinﬂ)drdﬂdtp
B B’

L3
2r 6 4

1 1
=— — i
7 ff f 57 sin 24 dr dd dg.
00

)

xo und y, miissen gleich null sein, weil aus Symmetriegrinden der Schwerpunkt auf der z-Achse
liegen muB. Die Berechnung der auftretenden dreifachen Integrale liefert fiir ¥ und z, die Werte

=221 L 3 28
=—=—nQR2-I3),zy=—=+16n = ——=x 2,8.
3 v w2 -13

Bild L 48

5.1: Eine Darstellung der Strecke erhilt man aus der Geradengleichung x(r) = (1, 1, 1) + #[(2,2, 2)
-1, 1,D]=00+1A,1,1) durch (1,1, 1) und (2,2, 2). Zum Anfangspunkt gehort ¢ = 0, End-
punkt # = 1. Eine Darstellu.n_g der Strecke ist folglich g(t) = (1 + #,1 + ¢, 1 + ¢t),£€ [0, 1], mit
2(1) = (1,1,1) und |g(1)| = V3. Damit wird

1
1+

N 1
ff(x)dssz(1+t)2+<1 R V3d’=fd’=1'
«® 0 )
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5.2: Wegen g(1) = (—4sin ¢, 2 cos ¢, 6) wird nach Formel (5.19)
a2 .
L={[4cost(—4sins)+ 61-2cos s+ 2-6]dr = 9= — 6(1 + 13).
/6

5.3: & ist zusammengesetzt aus §; mit der Darstellung g,(¢) = (2,0, 0), 7 € [0, 2], und &, mit der
Darstellung gy(1) = (2, 0, #), # € [0, 1]. Es ist F(gy(#))-g,(r) = (0,1 —#0)-(1,0,0) =0 und
F(gy(1)) - (1) = (0, =1, -(0,0,1) = £2, also

2 1
W=[0-dr+ [rrdr=1.
o o

5.4: rot F = (0,0, —2) # 0, F besitzt also kein Potential und _[ F - dx ist nicht vom Integrationsweg
unabhingig. .

5.5: rot F = 0in G, wobei G der gesamte Raum mit Ausnahme des Punktes (0, 0, 0) ist (G ist einfach
zusammenhéngend!).

da
Analog Beispiel 5.14 erhilt man @ = _KfV xox
=

+ 32+ 2 Vx2+y2+z2

K
e
Va2 + 32 + 22

+ @0, 2).

@y = 0 ergibt ¢(», z) = () und ¢’(z) = 0 schlieBlich @ =

5.6: G sei die entlang der positiven x-Achse aufgeschnittene x,y-Ebene, aus der (0, 0) entfernt wurde.
G ist ein einfach zusammenhingendes Gebiet, in dem f - dx ein vollstdndiges Differential ist. Die nach
Bild 5.13 aus R, &, — (negativ durchlaufener Einheitskreis, Beispiel 5.13) und —&, zusammen-
gesetzte Kurve & verlduft in G. Satz 5.6 und 5.7 ergeben § f-dx = §f dx + _ff dx — § f-dx
—jf dx—Ound§f dx—§f dx = 2r. b L LS

K 1 &

5.7: Wegen rot v = 0 besitzt v ein Potential. Analog Beispiel 5.14 wird @ = I(—Zx + sinz)dx
= —x%+ xsinz + @, 2).

@), = @y = cosy — ysin yergibt p(y, z) = siny — (—ycos y + siny) + ¢(z).

@, = x cos z + y'(z) = x cos z + 4 e* fiihrt auf p(z) = 2¢* + Cund P = —x* + xsinz + ycosy
+2e¥ + C.

6.1: Esistf(r,) =11 — 2, fy =— ——— und f, =0.
V1 -
e 1
Damit wird V1 + £2 +f2= A/l + = ————und
1 11—
1Y1—22
1
ffyl+fx + f2 db—«f f ﬁdydx
—1-)i—z*

' 1 N
£ fv——ﬁ~2yl—x2dx=4.
— X
—1
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A
N

6.2: g(r, ¢) = (rcos @, rsing, h — hrfa), M: —2- =9 ,0=r=acosg.

o

h h?
g = (COS(p,Sinlp, — -;-),g¢= (—rsing, rcosp,0),E =1+ ?,F= 0,G =r2,

T~ 2 h2
VEG — Fr=r J1+ —.

T acosp

2 P
f 1+h—a‘rdrdqz=£a}/a2+hz.
a* 4
0

N
I
ol q ——

6.3: M={(u v):()Sus% 0=v S:-} g = R(cos u sin v, sin usin v, cos v), t € M, ist eine

2
Darstellung von § (vel. Beispiel 6.2) mit Y EG — F* = R®sin v. Die Masse wird
T T =
e T
ff =ff stinududv=h5R2f———sm—v—du=EhRIn(l +IR).
1+’ 1+ Rcosv 2 1+ Rcosv 2 .
& 00 0

6.4:g,=(1,0,-1),2,=0,1L1),gxg==0-L1,

P = 1
VEG — F*=|gu x gl = V3,n = —=(1, =1, 1)

V3
[[F-ndf=[[F-nVEG — FPdudv
R M

11
1 .
=f (v—1,r—u,1+u)'ﬁ(l,—1,1)l‘3dudr

00
shal

—-Ij(v—-1—L+u+1+u)dudv~2§Iududu—I

6.5: Fir die Teile von & kann man z. B. folgende Darstellungen verwenden (die Darstellungen sind
so gewdhlt, daBB die Normale nach auBen zeigt, obwohl die Normale beim Oberflichenintegral
1. Art nicht benétigt wird):

S M ={wv)|0=u=s2x,0=0v=1}, glé(cosu,SInuv) (u,b)GMl,VEG Fi=1,
Dot My = {(,v) |0 = u <v<l}g2=L(cosu51nuO),(uv)GMz,VEG F2=y,

Far My = {(,v)|0=u=1,0=0v=2n},8 = (ucoso, usinv, 1),(u,v)EM3,VEG— F2=y.
er 1 2n 1

3 .
= ff(yz-%zz)df: ¥ ff@2+zz)df= ff(sinzu+ v?) do du + J‘f(vﬁsin2u+0)vdvdu
3 =t %, 00 00

127

IATIA |

+ @*sinv + ) uded -2 +£+i——
udv ll—3T: ) 41.—

O\l\o

00
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7.1: a) g(t) = (—asint, b cos t) ergibt

A ——f[ —bsint(—asint) + acost- bcost]dx——-—fdt:——ab(z,—!l)
ty b

b) Fiir die ganze Ellipse ist #; = 0, 7, = 2w, also 4 = abr.

7.2: a) Eine Darstellung der Kugelfliche § ist g = R (sin u cos v, sin u sin v, cos #) mit

W) eEM={uv)|0=u=m0=0v=2r}

(Vgl. Beispiel 6.2. Es sind hier lediglich die Parameter # und v vertauscht, um eine nach auBen gerich-

tete Normale zu erhalten.) Fir diese Darstellung ist g, = R (cos # cos v, cos u sinv, —sinu),
= R (—sin usinv, sin u cos v, 0) und g, X g, = R?sin u (sin u cos v, sin u sin v, cos ). Fiir die Be-

— x FE—
rechnung von I benétigen wir n + YEG — F?. Wegenn = -]g"—xgngund VEG — F* = |2y % g wird
2 X 8
n- VEG F?=g, x g, = R*sin u (sin u cos v, sin u sin v, cos u). Es folgt
I=[{F-ndf
&
2
= I ]' R(sin u sin v, cos u, sin u cos v) * R? sin u (sin « cos v, sin u sin v, cos u) du dv ®
00
2an
= R"I j [sin® u sin v cos v + sin® u cos u (sin v + cos v)] du dv
00
o

4 .
=R [2sinvcosvdo =
0

b) Wegen divF = 0 wird [[F-n df = [[[divFdb = 0.
5 B

) 1
7.3:Q=fffgdb= fffadivEdb:sffE-ndf.Fﬁr die Ku@loberﬂéche%istn:gx
B B T

:‘ =1lundQ =st‘df=47mze.
&

X
Damit wird E+n =

x|

7.4: divF=2x+,y—-2y—2x+3y=2y,

2 3f4—2x 2x‘+8 2 3/4—2x 2
. 2 d 2y dydx = 94 — 2x) d
I—fffdldeb— f j ydzdydx = g dr= s o
B 0 0 0 0 0 0

2 (2 g
=2 ( D )
7.5: Da §* in y-Richtung konstant ist, gilt z = g(x) fiir die Darstellung von §* in expliziter Form.

R R?
) + y*=—folgtz = VR2 Rx. Fiir n gilt (vgl. Formel (6.2))

2 2 2 P2 _
Aus x2 + y2 + 7 Rund(x > 7
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1
'}r—( z,, 0, 1) wegen z, = 0. Verstehen wir unter B* die Projektion von §* auf die
. R\? R . .
x,y-Ebene, d.h., die von|x — - + 2= - eingeschlossene Fliche, so wird

0, DV1 + z.2 db

§f dx—ff(rotf) ndf J.f(zo
=ff(—zzx—x)db.
B

o R R . R
Weiter ist z; = — —=——=—== = — —, Fiir L ergibt dies L = f (—— x) db
2/R2 — Rx 2z 2

: R
Da B* symmetrisch zur Geraden x = 5 liegt, wird L = 0.

7.6 1_§v dx_§[(z— 4 dx + 2 dyl.

f ist zusammengesetzt aus einem Parabelbogen §; mit der Darstellung g,(r) = (0, ¢, £%), ¢ € [0, 2],
einem Kreisbogen &, in der Ebene z = 4 mit der Darstellung g,(¢) = (2sin #,2 cos #,4),t € [0, 5
und einem Parabelbogen §; mit der Darstellung gy(t) = (2 — 1,0, (2 — )%, 1€ [0, 2]. Wegen gl(t)
= (0 1,21), 8(t) = (2 cos t, —25sin £,0), g5(1) = (—1,0,2¢ — 4) wird

= j(l~ — 4 2, 0) ©,1,2r)dr +1f(0 4 cos?t,0)- (2 cos t, —2sint, 0) ds

2 a2

J((Z—t)2—4 0,0)(—1,0, 2t—4)dt—ft‘dt—Sfcos"’tsmtdt—f[(Z—t)z — 4]ds
0 0

.
_ 8 8 8 3 16
3737 \37°%)" 3
7.7:%, liegt in E, n, steht senkrecht auf E. n, ist also Normale von E und von jeder Teilfliche von E.
Da v die Ebene E senkrecht durchsetzt, ist v(x) = @(x) n, fiir jedes x € E. Es sei nun , eine Folge von
Teilflachen von E, die X, als inneren Punkt enthalten, und deren Durchmesser fiir # — o0 gegen null
streben. Ist &, die Randkurve von &, mit der Darstellung 7,x = x(#), so ist X(¢) - n, = 0, da &, in E
verlduft und n, senkrecht auf E steht. Damit wird aber

§v dx = _f(p(x(t)) ny - X(¢)dt = 0. Satz 7.7 ergibt (rot v x=x,) " np = 0.
fn
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