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Vorwort

Im vorliegenden 10. Band der Lehrbuchreihe werden die Laplace-Transformation
und ihre Anwendung, die Mikusinskische Operatorenrechnung, die Fourier- und
die Z-Transformation behandelt. Die verschiedenen Abschnitte dieses Bandes sind
trotz mannigfacher Zusammenhénge im wesentlichen unabhingig voneinander an-
gelegt, am ausfiihrlichsten sind die Abschnitte 2. und 3. ausgefiihrt und deshalb wohl
am leichtesten durchzuarbeiten.

Erklarter Schwerpunkt dieses Bandes ist das Kennenlernen und Uben eines lei-
stungsstarken mathematischen Apparates zur Losung von Funktionalgleichungen;
dies unterstreichen auch die 120 ausfiihrlich durchgerechneten Beispiele und die
85 Aufgaben mit ihren Losungen. Die Tabellen im Anhang erméglichen ein selb-
stindiges Arbeiten mit diesem mathematischen Werkzeug.

Im Interesse einer knappen Darstellung miissen hier viele Beweise weggelassen
werden, die gegebenenfalls in der mathematischen Spezialliteratur nachzulesen sind
(genaue Literaturangaben erleichtern dies). AuBer den angegebenen Anwendungs-
mdoglichkeiten finden sich viele weitere in der entsprechenden technischen Literatur.

Die hauptsdchlichen mathematischen Grundlagen zum Verstindnis dieses Bandes
betreffen die Differential- und Integralrechnung [B 2] und die analytischen Funk-
tionen [B 9] fir die Abschnitte 2. und 5., diese Gebiete und die gewdhnlichen und
partiellen Differentialgleichungen [B 7/1], [B 8] fiir den Abschnitt 3. sowie die Po-
tenzreihen [B 3], [B9] fiir den Abschnitt 6. Gelegentlich kommen auch spezielle
(hohere transzendente) Funktionen [B 12] vor. Einige Begriffe aus der Algebra fiir
den Abschnitt 4. werden dort bereitgestellt.

Die Bezeichnung ,,Operatorenrechnung fiir alle Abschnitte dieses Bandes ist
historisch iiblich, im engeren Sinne wird der Begriff nur fiir den Mikusinski-Kalkiil
gebraucht.

Fir wertvolle Hinweise und Verbesserungen des Manuskriptes danke ich den
Herren Prof. Dr. L. Berg (Universitit Rostock), Prof. Dr. O. Greuel (Ingenieur-
hochschule Mittweida), Prof. Dr. K. G6ldner (Technische Hochschule Karl-Marx-
Stadt) sowie Frau D. Ziegler (Teubner Verlag).

Leipzig, Dezember 1974 F. Stopp

Vorwort zur 3. Auflage

Hinweise der Nutzer dieses Bandes betreffen insbesondere die Motivation und
weitere Anwendungen der behandelten Transformationen.

Deshalb werden in neu aufgenommenen Abschnitten die Definition der Laplace-
Transformation ausfiihrlich physikalisch motiviert sowie die Parsevalsche Gleichung
und das Abtasttheorem als Ausgangspunkte neuer Anwendungen dargestellt. Die
Eigenschaften des Frequenzganges und die Tabellen zur Z-Transformation sind er-
génzt und die Literaturhinweise auf den neuesten Stand gebracht worden.

Leipzig, Juni 1983 F. Stopp
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Ubersicht: Spezielle Zeichen und Funktionen

Bezeichnung, Definition I Name

N, G, P, R bzw. K Menge der natiirlichen, ganzen, rationa-

len, reellen bzw. komplexen Zahlen

z=a+jb oder z=x+jyj?=~—1
e* = e°(cos b + jsin b)
C x 0,57722

nveN

(n)= nn—1...t—v+1)

» »!
[fl=n fir n=t<n+1; neN

0, t=0

“(')={1, 0<t

&(f), Abschnitte 3.1.2. und 4.3.3.
eo

Lo+ 1) = Ie"‘x"‘dx; xeK,Reax > —1
0

nl=1-2:3n=I(n+1)

0 =§(- 1)"_.__1__. _t_ 2v+n
" y=0 v+ n)! \2

1]
Ei(r) = fidx
X
o
1
erft=-2—_/e“’dx; erfct =1 —erft
V=
0

F(p) = L{f(t)}, Abschnitt 2.1.1.
F(y) = F{f(t)}, Abschnitt 5.1.1.

F(z) = Z{f,}, Abschnitt 6.2.

komplexe Zahl z
Eulersche Formel

Eulersche Konstante

Binomialkoeffizient

GroBtes Ganzes von ¢

Spezielle Sprungfunktion

Diracsche Delta-Funktion

Gamma-Funktion

n-Fakultat

Besselfunktion erster Art

Exponentialintegral

Fehlerintegral

Laplace-Transformation
Fourier-Transformation

Z-Transformation .

1) Die imaginire Einheit wird wie in der technischen Literatur mit j bezeichnet.



1. Einfiihrung

1.1. Beispiel und historische Bemerkungen

Bei der von Heaviside') praktizierten Methode zur Losung von Funktionalglei-
chungen wurde mit p = —(‘:—twie mit einem Faktor gerechnet. So wurde z. B. die
Gleichung fiir den Strom i(7) in einem RLC-Stromkreis (Bild 1.1)

R
el(f) L
5

Bild 1.1. RLC-Stromkreis: R Widerstand, L Induktivitdt, C Kapazitit, e(f) Erregung

1

Lit) + Ri(t) + % f i(z) dr = e(r)

o

mit% als Integrationsoperator in der Form

. ..o 11, 1y,
Lpt+R1+—é-;l—-<Lp+R+E,;)z—e
geschrieben und formal nach i aufgeldst mit
. pe _ ( p p )
i= =1 — e.
AV

1
2 —
Lp +Rp+C

In der zweiten Darstellung ergeben sich die Konstanten «, 3, y durch Partialbruch-
zerlegung (siche 2.4.1a). Die Briiche kénnen durch Potenzreihen ([T 1], 19. Aufl.

S. 84, ab 21. Aufl. S. 32) in % umgeformt werden:
i= y( Xapt— % ﬂ"p"‘)e-
n=0 n=0

p~"e bedeutet das n-fache Integral von e. Ist speziell e(f) = O fiir 7 <0 und e(f) = 1
fiir 0 < ¢ (Einschaltvorgang), so gilt zusammen mit der Reihendarstellung der
Exponentialfunktion ([T 1], 19. Aufl. S. 85, ab 21. Aufl. S. 33)

=0 n! n=0

1) Oliver Heaviside (1850-1925), englischer Elektrotechniker.



10 1. Einfithrung

Durch Einsetzen von i = i(r) in die Gleichung (bei Beachtung der Bedeutung von
« und f) sieht man, daB es sich tatsichlich um eine Losung mit dem Anfangswert
i(0) = 0 handelt.

Diese Losungsmethode fand insbesondere in der Elektrotechnik groBe Verbreitung;
sie ergab richtige und falsche Resultate. Das fragwiirdige Vorgehen 148t sich jedoch
mathematisch fundieren. Die &ltere und analytische Begriindung gab Doetsch')
mittels der Laplace-Transformation?), die neuere und algebraische Begriindung gab
Mikusifiski®). Bei diesen Untersuchungen wurden viele andere Eigenschaften der
Laplace-Transformation gefunden und die Anwendung iiber das obige Problem hin-
aus wesentlich erweitert; andere Transformationen wurden betrachtet. Drei dieser
Transformationen und die Mikusiniskische Operatorenrechnung werden in diesem
Band als mathematisches Riistzeug zur Losung von Aufgaben in Naturwissenschaft
und Technik behandelt.

1.2 Transformationen und Operatoren

Zum Zweck der Abbildung von komplizierten Rechenoperationen (insbesondere
der Differentiation) auf einfachere Rechenoperationen sind Integraltransformationen
definiert und untersucht worden. Diese Transformationen bilden Funktionen f()
eines Originalbereiches und Operationen mit diesen Funktionen auf andere Funk-
tionen und andere Operationen eines Bildbereiches ab und umgekehrt. Dieses Prinzip
und derselbe Zweck (Vereinfachung) wird auch bei der Abbildung der Multiplikation
auf die Addition durch die Logarithmusfunktion (Rechenschieber!) verwirklicht.
Umfangreiche zur Verfiigung stehende Tabellen ([T 2], [T 3], [T 4]) zusammen-
gehoriger Ausdriicke des Original- und Bildbereiches erhdhen die Effektivitit bei der
Verwendung solcher Transformationen betrichtlich.

Als wichtigste Integraltransformationen fiir die naturwissenschaftlichen und tech-
nischen Anwendungen haben sich bei stetigen Problemen die Laplace-Transformation
(Abschnitte 2. und 3.) und die Fourier-Transformation*) (Abschnitt 5.) erwiesen.
Die Hauptanwendung besteht in der Losung von Anfangs- und Randwertaufgaben
bei gewohnlichen und partiellen Differentialgleichungen. Zur Verbreitung der La-
place-Transformation haben die Biicher [9] und [10] maBgeblich beigetragen.

Fiir Anfangswertaufgaben bei gewdhnlichen Differentialgleichungen ist das Lo-
sungsprinzip mit Hilfe der Laplace-Transformation in Bild 1.2 dargestellt.

Bei diskreten Problemen (im Originalbereich werden die Funktionen f(¢) nur in den
Punkten 7 = nT betrachtet) haben sich die diskrete Laplace-Transformation [16]
und die Z-Transformation [14] zur Losung von Differenzengleichungen durchgesetzt.
Diese zwei Transformationen (Abschnitt 6.) gehen durch eine einfache Substitution
ineinander tiber.

Eine andere Art der Vereinfachung der Differentiation ist die Einfiihrung eines
Differentiationsoperators p, mit dem man wie mit einem algebraischen Symbol rech-

1) Gustav Doetsch, deutscher Mathematiker.

2) Pierre Simon Laplace (1749-1827), franzésischer Mathematiker und Astronom.
3) Jan Mikusinski, polnischer Mathematiker.

4) Jean-Baptiste Joseph Fourier (1768-1830), franzdsischer Mathematiker.



1.3. Anwendungsmoglichkeiten 11

nen kann. Der entsprechend zu konstruierende Rechenbereich (Operatorenkérper),
seine Elemente (Operatoren) und die zugehdrigen Rechenregeln wurden von Miku-
sinski [13] gefunden und untersucht. Dabei gelang es zugleich, den Funktionsbegriff

Originalbereich: Originalbereich:
wihnliche lineare Differentialgleichung |e— | Ldsung der Differentialgleichung
mit konstanten Koeffizienfen sowie mit dengegebenen Anfangswerfen

ein System von A

Laplace -Transformation Riicktransformation T

Bildbereich: Bildbereich:
Fine einzige algebraische Gleichung Losung deralgebraischen Gleichung

Bild 1.2. Losungsprinzip

sinnvoll zum Begriff der Distributionen zu erweitern. Dadurch ergibt sich eine ein-
fache Maoglichkeit, die fiir die Anwendungen wichtige J-Distribution und ihre Ab-
leitungen auf exakte Art einzufiihren (Abschnitt 4.).

Die Tabelle 4 (Anhang) enthélt die genannten und einige andere Transformationen
sowie die Abbildung der Ableitung f”(¢) (oder /”'(¢)) bzw. der Differenz Af(z,) = Af,.
Zwischen diesen Transformationen bestehen vielféltige Zusammenhéange (siche auch
5.1. und 6.9.).

1.3. Anwendungsmoglichkeiten

Viele naturwissenschaftliche und technische Probleme lassen sich durch spezielle
Funktionalgleichungen beschreiben und untersuchen. Als Beispiele seien aufgefiihrt
(siche auch 3.4.3.):

Problem Funktionalgleichung

Freie gedampfte elektrische Schwingung | Gewdhnliche Differentialgleichung

(Beispiel 3.4.) Li"() + Rit) + _é_ i) =0, i0) =0, i0)= _2_“0
Wairmeleitung in einem unendlich Partielle Differentialgleichung
langen linearen Leiter (Abschnitt 3.3.2.) | yex(x,£) — y:(x, ) =0, »(x,0)=0, y(c0,7)=0,
0, 7) gegeben
Systemanalyse Integralgleichung .
3

(Beispiel 3.29)
o [ £ = 5@ de = (1)
o

Relaisersatz Differenzengleichung
(Beispiel 6.22.) Ynt1 =PoVa + 0 F DiVa-ks Yu-k =0 fir n<k

Gewdhnliche und partielle Differentialgleichungen kommen besonders hiufig bei
der mathematischen Modellierung vor. Die Laplace- und Fourier-Transformation
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tragen insbesondere bei linearen physikalischen und technischen Systemen durch
wichtige Begriffe (Ubertragungsfaktor, Frequenzgang, siehe 3.1.3.) zur Modell-
bildung bei.

Zu den Anwendungsgebieten gehoren die Mechanik, theoretische Physik, Elektro-
technik, Regelungstechnik, Impulstechnik, Informations- und Nachrichtentechnik,
Systemtheorie und Statik. Weiter gibt es viele Anwendungsmdglichkeiten in anderen
mathematischen Disziplinen, z. B. bei der Untersuchung héherer transzendenter
Funktionen, in der Wahrscheinlichkeitsrechnung oder in der numerischen Mathe-
matik.

Auch die Anwendungsbeispiele in diesem Band geben einen Einblick in die um-
fangreichen Moglichkeiten. Die Vielfalt der Beispiele zur Anwendung der Laplace-
Transformation und ihre relativ ausfiihrliche Darstellung im Abschnitt 3. kann aus
Platzgriinden fiir die Fourier- und Z-Transformation nicht in gleicher Weise bei-
behalten werden.



2. Laplace-Transformation

Neben der Fourier-Transformation hat sich insbesondere die Laplace-Transfor-
mation zur mathematischen Darstellung und Losung vieler Probleme naturwissen-
schaftlicher und technischer Disziplinen durchgesetzt. In der Elektro- und der Rege-
lungstechnik spielt die Laplace-Transformation, insbesondere bei nichtperiodischen
Vorgangen, eine groBe Rolle. Die mathematischen Teilgebiete Funktionentheorie und
Asymptotik tragen mit ihren Ergebnissen und Methoden wesentlich zur praktischen
Nutzung dieser Transformation bei.

Die Laplace-Transformation stellt eine Moglichkeit dar, die transzendente Ope-
ration des Differenzierens auf die viel einfachere Operation des Multiplizierens ab-
zubilden. Dabei bilden sich auch manche anderen Operationen (z.B. Integration,
Faltung, Differenzenbildung) und Funktionen (z.B. Funktionen mit Spriingen,
Besselsche Funktionen) sehr einfach ab, deshalb bezieht sich die Anwendung der
Transformation nicht nur auf die Lésung von (gewdhnlichen und partiellen) Diffe-
rentialgleichungen. .

Die Abschnitte 2.2. und 2.4. sind fiir die praktische Handhabung der Transfor-
mation am wichtigsten, sie stellen Rechenregeln und Maglichkeiten der Riicktrans-
formation zusammen. Die Definition und wichtige Eigenschaften sind in den Ab-
schnitten 2.1., 2.3. und 2.5. zu finden. Insgesamt wird im Abschnitt 2. das Riistzeug
zur Losung der verschiedenen Typen von Funktionalgleichungen des Abschnitts 3.
bereitgestellt.

2.1.  Definition der Laplace-Transformation

Neben der mit Beispielen illustrierten Definition werden zwei einfache Klassen von
transformierbaren Funktionen angegeben sowie die Frage der Eindeutigkeit der
Transformation und ihrer Umkehrung behandelt.

2.1.1.  Definition und Beispiele

Die Laplace-Transformation wird als eine Integraltransformation von Funktionen
f(¢) eingefiihrt, wobei in der Regel # = 0 die Zeit bedeutet. Der Zusammenhang mit
anderen Transformationen ist in Abschnitt 5.1. zu finden.

Definition 2.1: Der reellen (oder komplexwertigen) Funktion f(t),0 < t < oo, wird D.2.1
das Integral

©

F(p) = [e "f(t)d: 2.1)

o

zugeordnet, falls dieses Integral fiir mindestens eine komplexe Zahl p existiert. Diese
Zuordnung heifit Laplace-Transformation und wird bezeichnet durch

F(p) = L{f(1)}.- 22
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Eine Funktion f(¢), fiir die das uneigentliche Parameterintegral (2.1) existiert, heif3t
Laplace-transformierbar, f(¢) heiBt Originalfunktion, F(p) heiBt die zugehdrige Bild-
funktion. Der Parameter p = x + jy ist eine komplexe Verdnderliche, und damit ist
F(p) eine komplexwertige Funktion. Das Integral (2.1) soll als Riemannsches Inte-
gral') aufgefaBBt werden. Dabei ist zugelassen, daB f(¢) an isolierten Stellen nicht
definiert ist.

Die Funktion f{(#) kann fiir z < 0 beliebig sein, weil in (2.1) f(¢) nur fiir ¢ = 0 vor-
kommt. Es wird deshalb immer

f(H=0 fir 1<0 23)
gesetzt. Diese Ergénzung von f(¢) fiir negative Argumente 7 wird meist in den Bei-
spielen nicht besonders angegeben, sie ist gegebenenfalls zu beachten.
Beispiel 2.1: Zur einfachen Funktion f(¢) = 1 fir ¢ = 0 wird die Bildfunktion F(p) bestimmt und die
Bedeutung des Integrals (2.1) ausfiihrlich erldutert.
Zunichst ist mit 4 > 0
4 4

—pt 14 —pA 1
fe‘”'f(t)dt:fe‘”‘dt=[— ¢ ] S e g
o 0

P o p 14

Aus der Definition eines uneigentlichen Integrales mit unendlichem Integrationsintervall ([B 2], 11.1.1.)
folgt © A

F(p) = fe"‘f(t) dr = lim fe"'f(t) dt = i - L lim e~P4,
A—baoo V4 p

A= oo
o

Wegen |e 74| = |e~*4 e~ P4| = e~*4 jst llm e?4 = 0, falls Re p = x > 0 ist. Damit gilt fiir alle p

mit Re p > 0 (also in der rechten Halbebene der komplexen p-Ebene) die Bezichung
F(p) =L{1} = ;— . 2.4)

Da f(t) = 0 fiir # < 0 vereinbart wurde, bedeutet das Ergebnis (2.4) genauer, daB fiir die spezielle
Sprungfunktion u(f) (siehe Ubersicht S.8; Einheitssprung bei ¢ = 0, Bild 2.1a) die Gleichung

L{u(} = %gilt.

it fit) fi
3
—_ 2
7
AT P
o 7 2 3 4t 0 T t a7 2 3 4t
a) )] )
. 0,70, . _[LOStET
Bild 2.1a. f(£) = u(t) = [1,’> 0 Bild 2.1b. /() = |o) 7 2,

Bild 2.1c. f(f)=O0firt <0, f(1) = 71= firz> 0
t

') Bernhard Riemann (1826-1866), deutscher Mathematiker.
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Beispiel 2.2: Fir f(t) = e*, ae K, ist mit einer abkiirzenden Schreibweise (gegeniiber dem letzten
Beispiel) fir Rep > Rea

< e—f(p—d) o 1
F(p) = L{e"} = fe"" e dt = [ ] = 5 2.5)
-p+aljo p—a
0
Fiir a = 0 ergibt sich aus (2.5) wieder die Formel (2.4).
Beispiel 2.3: Fir die bei ¢ = T unstetige Funktion (Bild 2.1b)
1LOSt=T,
1) =
0 {O,T <t
ergibt sich die Laplace-Transformierte
T
et T 1
F@p) = J‘e"" dr = [— J = —(1—e?). . (2.6)
0 P

o

1
Beispiel 2.4: f(t) = T—fﬁr t > 0 (Bild 2.1c). Ist zunéchst p reell und p > 0, so gilt mit der Sub-
t
£ : © ©

stitution \/ pt=u e Pt Ll el J‘ e~#* du. Wegen J. e ¥ du = —;— \/; gilt deshalb

o2
NI/
0
1 v
L {——_} = l/i . @7
NOEN
Man kann zeigen, daB das Ergebnis (2.7) sogar fiir Re p > 0 richtig ist (siehe Satz 2.4).

Beispiel 2.5: Die Funktion f(f) = e'* ist nicht Laplace-transformierbar, denn fiir reelle p ist der Inte-

grand e~?*** positiv und hat sein Minimum bei ¢ = % . Es gilt deshalb fiir jedes feste reelle p > 0
und 4 = 0:
4

[erretdrz aer?e,

0 i .
Aus dieser Ungleichung folgt fiir 4 — oo, daB das Integral (2.1) fir kein reelles p existiert. Zusammen
mit Satz 2.4 folgt sogar, daB (2.1) fiir kein komplexes p existiert.

Einige weitere Laplace-Transformierte werden in 2.2. berechnet; eine umfangreiche
Zusammenstellung von Originalfunktionen f(¢) und ihren zugehorigen Bildfunktionen
F(p) findet man in Tabelle 1 (Anhang).

2.1.2. Motivation der Definition

In diesem Abschnitt wird die Definition (2.1) der Laplace-Transformation physika-
lisch motiviert und gedeutet.

Wie bekannt ([B 3], Kap. 5.), 1Bt sich jede reelle Funktion f(f) der Periode 2= in
eine (hier in der komplexen Form geschriebene) Fourier-Reihe entwickeln:

fO=% aem,  o=o [fOemar.
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Die Funktionen e lassen sich als komplexe Schwingungen der Frequenz n deu-
ten, die Konstanten c, als ihr zugehdriges Spektrum. Wegen der moglichen Reihen-
darstellung ist der durch f(#) beschriebene physikalische Sachverhalt vollstindig
durch das Spektrum bestimmt.

In Analogie zu obiger Uberlegung gilt bei nicht periodischer Funktion f(¢) unter
geeigneten Annahmen der Zusammenhang ([B 3], Kap. 6.):

flt) = J‘ F(y)e™ dy, Fy) = 21_7: ff(t) et df.

Wie in der Physik allgemein iiblich, wird beim Ubergang vom diskreten zum konti-
nuierlichen Fall eine Dichtefunktion eingefiihrt. Es lassen sich somit F(y) als Spektral-
dichte bei der Frequenz y und f(¢) als Spektraldarstellung deuten.

Beachtet man die Festlegung (2.3) und ersetzt auBlerdem die Funktion f(z) zur
Verbesserung des Konvergenzverhaltens der Integrale durch die Funktion 27 e=*f{z),
so ergibt sich aus dem zweiten Integral

F(x +jy) = [ e e (1) dt
0

oder mit p = x + jy die Formel (2.1).

Folglich kann F(p) = F(x + jy) bei festem x als Spektraldichte der Funktion e~*'f(t)
bei der Frequenz y aufgefafit werden. Nach ahnlicher Umrechnung 148t sich das erste
Integral als Spektraldarstellung der Funktion 27 e=*'f(¢) unter Beachtung von (2.3)
deuten.

2.1.3.  Zwei Klassen von Originalfunktionen f(¢)

Die Funktionen der Beispiele 2.1 bis 2.4 haben sehr unterschiedliche Eigenschaften.
So ist z.B. f(¢) aus Beispiel 2.3 unstetig und beschrankt, wihrend f(¢) = e® mit reellem
a > 0 zwar stetig, aber stark wachsend fiir # —» oo ist. Andererseits zeigt Beispiel 2.5,
daB es auch nicht transformierbare Funktionen gibt. Es sind viele Klassen Laplace-
transformierbarer Funktionen bekannt, einfache notwendige und hinreichende Be-
dingungen fiir die Transformierbarkeit von f(¢) gibt es jedoch nicht.

Die Originalfunktionen f(¢) erfiillen bei den beabsichtigten Anwendungen in der
Regel folgende Voraussetzungen:

1. |f(?)] ist integrierbar in jedem Intervall 0 < ¢ < 4,

©
2a. J' |e=P'f(¢)| dt existiert fiir mindestens eine komplexe Zahl p,.
0

Satz 2.1: Jede Funktion f(t) mit den Voraussetzungen 1 und 2a ist Laplace-transfor-
mierbar. Ihre Bildfunktion F(p) existiert mind s in der Halbebene Re p = Re p,
(Bild 2.2; siehe auch Satz 2.4).

A
Beweis: Aus der ersten Voraussetzung folgt, daB auBer dem Integral [ | f(#)] dt auch
4 0

das Integral { le=?*f(¢)| dt fiir jedes feste 4 > O existiert. Es ist |e=?*| = e"R¢?’. Die
o
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Bild 2.2. Konvergenzhalbebene einer Laplace-Transformierten
Bildfunktion F(p) existiert fiir Re p = Re p, wegen der Abschétzung
[F(p)l = fle“"f(f)l dr= fe"‘“’"'lf(t)l dr = f Ie"""'f(t)l dt

und weil das rechts stehende Integral nach der zweiten Voraussetzung existiert.
Die Originalfunktionen f(7), die den Voraussetzungen 1 und 2a geniigen, be-
stimmen die Klasse der absolut konvergenten Laplace-Integrale.
Die Voraussetzung 2a kann ersetzt werden durch die einfachere (aber einschrin-
kendere) Voraussetzung
2b. f(2) ist durch eine Exponentialfunktion beschrénkt, d.h., es gibt ein reelles a und ein
M > 0 mit

/(O] < Me* fiir t=0. (2.8)

Aus der Voraussetzung 2b folgt wegen der fiir x = Re p > a giiltigen Beziehung
(dhnlich wie im Beispiel 2.2)

— M e—t(an) ]ce M
o

xX—a Y (&)

[lemsonar < »r [eemar= [
0 0
die Voraussetzung 2a. Als p, kann jede Zahl mit Re p, > a gewihlt' werden.
Die Originalfunktionen f(¢), die den Voraussetzungen 1 und 2b geniigen, bilden die
Klasse der durch Exponentialfunktionen beschrinkten Funktionen; diese Klasse ist in
der oben eingefiihrten Klasse enthalten.

2.1.4. Eindeutigkeit der Laplace-Transformation

Jeder Originalfunktion f(#) wird durch (2.1) eine Bildfunktion F(p) zugeordnet.
Verschiedene Originalfunktionen (die sich aber nicht wesentlich unterscheiden, siehe
z.B. die drei Funktionen des Beispieles 2.12), konnen die gleiche Bildfunktion haben.

Die Funktionen n(t) mit der Eigenschaft

t
[ n(x)dr =0 fiir beliebige ¢ 2 0,
0

2 Stopp, Operatorenrechnung
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heiBen Nullfunktionen. Beispiel: n(r) =1 fir 1 =0, 1, ... und n() = 0 sonst.

Satz 2.2: Aus f(t) = n(t) folgt F(p) = 0 und umgekehrt.
Beweis: Durch partielle Integration folgt sofort

© o t

F(p) = L{n()} = j:oe""n(t) dr = e [n()dv + p [ e [ n(z) dvde = 0.

Die Umkehrung des Satzes, d.h.zu F(p) = 0 ist jede zugehdrige Originalfunktion
eine Nullfunktion n(t), ist schwieriger zu beweisen ([9], § 5).

Satz 2.2 kann offenbar auch so beschrieben werden: Zu einer Bildfunktion F(p) ge-
hort eine Menge von Originalfunktionen; zwei Originalfunktionen f(f) und fu(r)
dieser Menge unterscheiden sich aber nur durch eine Nullfunktion. Dies folgt un-
mittelbar aus der Beziehung L{ £} — L{fu(®)} = F(p) — F(p) = 0.

Ist bekannt, daBB die zu einer Bildfunktion gehorigen Originalfunktionen stetig
sind (weil sie z.B. Losungen einer Differentialgleichung sind und damit sogar diffe-
renzierbar sein miissen), so gilt der

Satz 2.3: Zu einer Bildfunktion F(p) gehort hichstens eine fiir t > 0 stetige Original-
Sfunktion f(t).

Der Satz besagt, daB es zu einer Bildfunktion a) iiberhaupt keine stetige Original-
funktion (wie in Beispiel 2.3) oder b) eine einzige stetige Originalfunktion gibt. Denn
gibe es zwei stetige Originalfunktionen f;(¢) und f;,(¢), so gilt nach Satz 2.2: n(z)
= fi(t) — fu(?). Diese Nullfunktion ist als Differenz stetiger Funktionen selbst stetig,

deshalb folgt aus f n(zr)dr = 0 durch die jetzt mdogliche Differentiation nach 7:
n(t) =

2.1.5. Aufgaben: Bestimmung von Bildfunktionen

Aufgabe 2.1: Mit der Definition (2.1) bestimme man L{f(#)} fir f(f) = 1 im Intervall a < ¢ < b,
f(t) = 0 sonst, a > 0.

Aufgabe 2.2: Man bestimme L{sinh t}.

Aufgabe 2.3: Unter Verwendung der Definition der Gamma-Funktion (siehe S. 8) bestimme man
L{t*} fir « > —1.

Aufgabe 2.4: Haben die folgenden Funktionen f(¢) eine Bildfunktion? a) f(f) = e3sinf,
b) f(0) = 1/ — 1%

Aufgabe 2.5: Warum haben die Funktionen f(f) und f;,(¢) dieselbe Bildfunktion?

l,dn <t<2Q@n+1)
Ldn=t<2@2n+1
fx(t)={ nEr<2@nr D =it

0, sonst, 0
, sonst.

2.2. Rechenregeln der Laplace-Transformation

Um die Laplace-Transformation zur Losung von Funktionalgleichungen (z.B.
Differential-, Integral- oder Differenzengleichungen) anwenden zu konnen, werden
Rechenregeln benotigt. Die Bezeichnung dieser Regeln richtet sich nach der Ope-
ration, die mit der Originalfunktion f(#) durchgefiihrt wird.
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Einige wenige Regeln werden bewiesen, alle Regeln werden an Beispielen illustriert.
In den folgenden Regeln sind f(¢) und g(¢) transformierbar, d.h., es existieren die
Bildfunktionen

E(p) = L{f(t)} fir Rep>x;; G(p)=L{g(®} fir Rep > x,.

Diese Voraussetzung wird in den Regeln nicht gesondert aufgefiihrt. Die Formeln
(2.10) bis (2.28) gelten jeweils in einer rechten Halbebene Re p > ¢, der genaue Giil-
tigkeitsbereich ist stets angegeben. Seine Kenntnis und Beachtung ist bei den meisten
Anwendungen nicht erforderlich.

2.2.1. Additionssatz

Aus der Definition der Laplace-Transformation folgt unmittelbar der
Additionssatz: Ist «, f € K, so gilt mindestens fiir Re p > max (x;, x,)
L{af(t) + fg(t)} = xF(p) + BG(p)- (2.10)

Diese Regel ldBt sich natiirlich auf eine Linearkombination von endlich vielen
Funktionen ausdehnen.

Beispiel 2.6: Es soll L{sin ¢} berechnet werden. Es ist
1 . . 1 1 1 1
Lisint}=L {—,—(e” - e“")}= Ty (—— - —“) R
2j 2 \p=i p+i p*+1
fir Re p > 0. Dabei wurde (2.5) benutzt.

2.2.2. Lineare Substitutionen der Verinderlichen

In der Originalfunktion f(r) kann die reelle Verdnderliche ¢ ersetzt werden durch
at — b bzw. at + b mit festen @ > 0, b = 0. Dadurch erhilt man die neuen Funk-
tionen b

‘0, < —
f1@) = flat — b) =

und f,(f) = f(at + b).
lf(at =b),1z

a
b
a
Dabei wurde wegen (2.3) beachtet, daB Originalfunktionen mit negativem Argument
identisch Null sind. f(7), f1(¢) und f,(¢) sind fiir ¢ = 1 in Bild 2.3 dargestellt; f;(¢)
bedeutet eine Verschiebung von f(#) nach rechts, f5(¢) eine solche nach links.

f(t (1) ()

P

Bild 2.3. f() und die Verschiebungen von f(¢) nach rechts (f;(#)) und nach links (f5())

ol ]

Folgende Regeln gelten bei @ > 0, b = 0 zur Bestimmung der Laplace-Transfor-

o%
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mierten von f(¢) bzw. f,(¢) fiir Re p > ax;:

LA} = Liftar = b)) = g e? F(2), @.11)
b
. .

LU0} = L{f(at + b)) = %e?" (F(%) - f E dt>. @12

Der Beweis von (2.11) und (2. 12) folgt mit der Substitution at + B = 7 aus der
Umformung o o
B
L{f(at + B)} = f e"f(at + B)dr = ;CTP f e @
0 ‘ max(0,B)
1 I max(0,B) v,
=;eTP<F(%) = f e 7 f(r) dr).
0

Fir B = —b (d.h. B £ 0) folgt wegen max (0, B) = 0 Formel (2.11), fir B=5
(d.h. B = 0) folgt wegen max (0, B) = b Formel (2.12).

Es ist iiblich, Spezialfille von (2.11) und (2.12) gesondert aufzufithren und mit
Namen zu belegen. Fiir b = 0 erhélt man aus beiden Formeln fiir Re p > ax,; den

Ahnlichkeitssatz:
L{f(af)} = %F(%) a>0. @.13)
Fiir @ = 1 ergeben sich fiir Re p > x, zwei Formeln; sie heien auch wegen der

geometrischen Deutung der Funktionen f(¢z — b) und f(r + b) (Bild 2.3)
erster und zweiter Verschiebungssatz:

L{f(t = b)} = e™F(p), b20; (2.14)
. b
L{f(t + b)} =& (F(p) — [e"f(1)ds), b 20. (2.15)

Beispiel 2.7: Benutzt man das Ergebnis aus Beispiel 2.6, so folgt fir @ > 0 und Re p > 0 aus (2.13)
1 a
L {sinat i e el o
\ } (11/11)z +1 p*+d
Beispiel 2.8: Aus (2.4) folgt zusammen mit (2.14) fiir die Sprungfunktion u(z — b) =
fiir Rep > 0

e
L{u(t — b)} =

0,7 b,
1,t> b,
e

In der Bildfunktion F{(p) kann die komplexe Verdnderliche p ersetzt werden durch
¢p + d mit reellen ¢ >0 und d € K. Das ergibt mit der Substitution ¢t =z wegen

N =,
Flep +d) = f e-CrHtf(r) dt = -i- f ere T f(%) dr
0 0

fir Rep > %(xl — Re d) die
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Rechenregel:
d
L{%e_ T'f(%)} = Flp +d),  ¢>0. (2.16)

Ist in (2.16) speziell ¢ = 1 und d reell, so erhélt man fiir Rep > x; — d den
Dimpfungssatz:
L{e~*f()} = F(p + d), dreell. (2.17)
Der Name des Satzes ist verstindlich, weil die Funktionswerte f(¢) durch Multi-

plikation mit e~ mit wachsendem ¢ verkleinert (,,geddmpft*) werden, falls noch
zusitzlich d > 0 vorausgesetzt wird (Bild 2.4).

-t tot
2 |
it gl
2/’77——2{_&\
L 1]
A T S —]
ml] /) 2 3 ¢ o121 2 3
f(t)=sint e~ sint
1 1
. ) . i . n L ;
0 Jr\/?x \{xi 0 x 22T t
= -1

b

Bild 2.4 a. f(f) = ¢ und die geddmpfte Funktion #e™*
Bild 2.4 b. Ungedampfte Schwingung f(¢) = sin ¢ und gedimpfte Schwingung e% sin #,
d>0

2.2.3. Faltungssatz

Eine wichtige Operation zweier Funktionen f(#) und g(7) ist die Faltung®) (gelesen
,.f gefaltet mit g*)

) xg) =f+xg=[f(t —7)gx)dr, 120. @18)

Diese Rechenoperation hat, wie auch die Schreibweise mit dem Stern * ausdriicken
soll, dhnliche Eigenschaften wie die gewShnliche Multiplikation der zwei Funktionen
f(t) und g(#). Es 1aBt sich beweisen, daB3 die Faltung kommutativ, assoziativ und
distributiv ist:

frg=gxf, (fxQxh=fx(gxh), fx(@+h=f«xg+[f*h.
Ist speziell g(f) = 1 fiir 7 = 0, so erhdlt man bei Beachtung der Kommutativitéit

1) Faltet man die graphischen Darstellungen von f(z) und g(z) im Intervall 0 S 7 < ¢ bel— 50
liegen gerade «ie Funktionswerte f(7) und g(z — 7) iibereinander.
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die Beziehung
lxf= J’f(-[)dr. (2.19)
0

Die Faltung wird bei der Anwendung der Laplace-Transformation zur Lésung von
Differentialgleichungen und Integralgleichungen sowie in der Mikusinskischen Ope-
ratorenrechnung (Abschnitt 4.) eine groBe Rolle spielen.

Beispiel 2.9: Zur Erliuterung von (2.18) wird fiir f(f) = ¢’ und g(¢) = ¢ die Faltung f* g berechnet,
Zunichst ist: t 3
frg= fe“' 72t = et [e 72 dr.
0 0
Durch zweimalige partielle Integration erhdlt man
frg=ct*xt?=2¢e" —1—(t+ 1)

Fiir die Existenz der Faltung (2.18) gibt es viele verschiedene hinreichende Bedin-
gungen, u.a. existiert f g, falls f(¢) und g(¢#) zur in 2.1.2. eingefiihrten Klasse der
durch Exponentialfunktionen beschrinkten Funktionen gehoren.

Fiir die Transformation der Faltung f * g gilt unter verschiedenen Voraussetzungen
an die Funktionen f(#) und g(z) ([6], S. 121) mindestens in Re p > max (xy, x,) der
Faltungssatz:

L{f*g} = F(p) G(p). (2.20)
(2.20) gilt z.B. fiir die Klasse der durch Exponentialfunktionen beschrinkten Funk-
tionen f(7) und g(¢) (siehe 2.1.2.).
Beispiel 2.10: Die Faltung von f(#) = €' und g(t) = ¢? wird transformiert. Es ist nach (2.5) und Bei-
spiel 2.11

1 2
L{e‘}=F(p)=7—_—l, L{12}=G(p)=;..,

Mit dem Faltungssatz (2.20) ergibt sich fiir Re p > 1
2
L{fsg}=L{e'*t?} = —.
{ plp—1)
Dasselbe Ergebnis, aber umstindlicher, erhédlt man natiirlich durch Transformation von 2e* — 1
— (t + 1)* aus Beispiel 2.9.

Es ist tiblich, den Faltungssatz (2.20) fiir den Spezialfall g(f) = 1 besonders zu no-
tieren. Unter Beachtung von (2.19) gilt fiir Re p > max (0, x,) der
Integrationssatz:

t

L{ f 1) dr} - %F(p)A @21

Beispiel 2.11: Formel (2.21) 1aBt sich benutzen, um L{t"}, n € N, zu berechnen. Dazu ist f(f) = "%,
n=1,2,...,in (2.21) einzusetzen, das ergibt die Beziechung

L{fz"-l dt} =L {i} =Ly
o n)p

Durch wiederholte Anwendung dieser Rekursionsformel folgt fiir Rep > 0

- 1
L = pgeny = 2 = D pm2y == Zopgy = S
) [J P P
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2.2.4. Differentiationssatz
Zur Formulierung des Differentiationssatzes ist folgende Vorbetrachtung nétig:
t

Ist die Funktion f(¢) fiir ¢ > 0 differenzierbar und existiert J f'(z) dz, dann gilt
} f'(@)dr = hm f f'(@)dr =f(t) — hm f(s) (2.22)

Folglich muB der Grenzwert lim f(#) = f, (rechtsseitiger Grenzwert in 0) existieren,
t=+0

er kann aber verschieden sein vom Funktionswert f(0). Ist f(¢) sogar fiir # = 0 diffe-
renzierbar, dann ist natiirlich f(0) = f,.

Beispiel 2.12: Die Funktionen

_ 0,t<0,
L= {1;>0 fz(i)—-{

,t <0,
1,¢>0,

0,t<0,

) =

”){m>m

sind fur 7 > O differenzierbar, sie haben alle nach (2.4) dieselbe Bildfunktion —1- ,und es gilt lim f(z)
p t=+0

=1=f, firi = 1, 2, 3. Dagegen ist f;(0) = 1, f2(0) = 0 und f3(0) gar nicht definiert, d.h., nur fiir
i=1ist f(0) = fp.

Ersetzt man nun in (2.21) die Funktion f(#) durch f'(¢), so erhalt man unter Be-
achtung von (2 22), (2.10) und (2.4):

, _ B _ _So _1,en
L{ off (r)dr} =L{f0} = L{fe} = LY@} 22 = L@y

Multipliziert man diese Gleichung mit p, so ergibt sich der fiir Re p > max (0, x,)
giiltige
Differentiationssatz:

L{f'()} = pF(p) = fo, (223)
falls f'(t) transformierbar ist; fo = lim f(t).

Beispiel 2.13: L{sin t} ist aus Beispiel 2.6 bekannt. Wegen f’(f) = cos ¢ und f(0) = fo = 0 ist

L{cos t} = pL{sint} =

P

PP+l

Beispiel 2.14: Man 16se das Anfangswertproblem
(1) =10p(1), »0)=>5.

Mit Y(p) = L{y(1)}, yo = »(0) = 5 folgt aus (2.23)
PY(p) — 5 =10Y(p), Y(p)= __—10 .

Zu dieser Bildfunktion Y(p) gehort die einzige Originalfunktion y(f) = 5e!° (dabei wird Satz 2.3

benutzt), die tatsichlich die Losung der obigen Anfangswertaufgabe ist. Die in diesem Beispiel an-

gedeutete Losung von gewdhnlichen Differentialgleichungen wird in Abschnitt 3.1. ausfiihrlich be-
trachtet.
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Die mit der Formel (2.22) verbundene Uberlegung kann verallgemeinert werden:

Ist die Funktion f(¢) fiir # > 0 n-mal differenzierbar und existiert f f™(z) dz, dann
existieren die rechtsseitigen Grenzwerte

lim f(t) = f,, lim f'(¢) = f3, -, Lim f@D() = f&-D,
£+0 t++0 1= +0
Diese Grenzwerte kénnen von den Funktionswerten

f0), f’(O), s f(n—l)(o)

verschieden sein, falls diese iiberhaupt definiert sind. Ist f(¢) sogar fiir # = 0 #-mal
differenzierbar, dann ist natiirlich

JO) =fo, fO) =f,.... fOD0)=[fo"P.
Durch wiederholte Anwendung von (2.23) erhélt man fiir ne N, Rep > x; den
verallgemeinerten Differentiationssatz:

L{f ™0} = p"F(p) — fop"* = fop"? — ... = [0, 224

falls f™(t) transformierbar ist.

Dieser Satz gestattet also die Abbildung der n-ten Ableitung der Originalfunktion
f(): Im Bildbereich wird L{f(1)} = F(p) mit p" multipliziert und um ein Polynom
erginzt. (2.24) ist bei der Losung von Differentialgleichungen sehr niitzlich!

Beispiel 2.15: Man 16se das Anfangswertproblem y”'(t) + y(¢) = sin#; y(0) = 0, »’(0) = 1. Formel
2.24) mit n = 2, yo = y(0), y§ = »'(0), Y(p) = L{y(#)} und L{sin ¢} aus Beispiel 2.6 ergeben im Bild-
bereich C

1 1 1
2Y(p) — 1+ Y(p) = ———, Y =_.__(1+.._._)_
P*Y(p) ® 71 ® 7EI i1

Wird wieder Satz 2.3 benutzt, so erhélt man mit Beispiel 2.6 und dem Faltungssatz (2.20) als einzige
zu Y(p) gehorige Originalfunktion

t
y(t)=sint +sint«sins =sinz + fsin(l— 7)sinTdr
0
t

1 3 1
=sint + 3 f(cos(t— 27) — cost)dr = —z-sint— Etcost,

die tatsichlich die Lésung der Anfangswertaufgabe darstellt. An diesem Beispiel erkennt man be-
reits die Vorteile (siehe auch Bild 1.2) der Laplace-Transformation gegeniiber herkommlichen Me-
thoden bei der Losung von Anfangswertproblemen.

2.2.5. Weitere Rechenregeln

Einfache Regeln sind noch fiir die Transformation von ¢"f(¢), n € N, und % f(t)als

Multiplikations- und Divisionssatz bekannt. Weitere hier nicht mehr aufgefiihrte Re-
geln betreffen z.B. die Multiplikation von Originalfunktionen und die Differenzen-
bildung.
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Benutzt man bereits die Tatsache, daB L{f(¢)} = F(p) in einer Halbebene Re p > x,
eine analytische Funktion ist (Satz 2.6), so kann man also dort beliebige Ableitungen
von F(p) nach p bilden. Es 1aBt sich zeigen, daB diese Differentiationen unter dem
Integral (2.1) durchgefiihrt werden kénnen. Das ergibt den fiir Re p > x, giiltigen
Multiplikationssatz:

L{rf(0)} = (=1 F™(p). (2.25)

Beispiel 2.16: Mit f(t) = e°* erhilt man nach (2.5) fiir ne N und Re p > Re a die Beziehung
1 \® (=1)"n! n!
L{tre®) = (—1 — =y —-
e =( )"(p—a) VT T G

Ist % f(t) transformierbar, so 148t sich auf L {—%— f(t)} = G(p) die Regel (2.25) mit

n = 1 anwenden und ergibt fiir Rep > x;

Py

Fp) = L{f(6)} = —G'(p) oder G(p) — G(po) = | F(g)dg.

13

Benutzt man bereits die in Satz 2.7 gezeigte Tatsache, daB jede Laplace-Transformierte
fiir Re p —» oo gegen null strebt, so folgt der fiir Re p > x; giiltige

Divisionssatz:
L{3s0)= [ Foyda, 2.26)

falls lt f(t) transformierbar ist.

Der Integrationsweg kann parallel zur reellen Achse liegen.

Beispiel 2.17: Es soll die Laplace-Transformierte der Funktion f(¢) = -;- (e®* — e®*) berechnet werden.

Der Additionssatz (2.10) ist nicht brauchbar, weil die Transformierten der Summanden nicht existie-
ren. Nach (2.26) und (2.5) ist

]
1 1 1
L{—(e"—e")}=f(—— )dq=[1n(q—a)—1n(q—b)1:°
t g—a qg-b
'
- @© —
. Snlll Y Al
q->5 | p-b

Dabei wurde beachtet, daB f(r) wegen der Stetigkeit bei # = 0 nach Satz 2.1 transformierbar ist. Das
Ergebnis ist fiir beliebige a, b € K und fiir Re p > max (Re a, Re b) richtig.
s 1 N YY) R "
Existiert L {—t- f(t)} fiir p = 0, so 1aBtsich die Giiltigkeit von (2.26) auch fiir p =0
nachweisen. Das ergibt die niitzliche Formel:,

© ©

[+rwar= [ Fayaa e



26 2. Laplace-Transformation

2.2.6. Transformation periodischer Funktionen
Hat f(¢) die Periode 7, d.h., ist f(¢) = f(t + T), so gilt

(n+DT

LWy =% | erf@di=Term [ erf@ar,

dabei wurde in den Integralen die Substitution ¢ = nT + 7 durchgefiihrt. Benutzt
man noch die Reihensumme der geometrischen Reihe ([T 1], 19. Aufl. S. 84, ab
21. Aufl. S. 32), so ergibt sich fiir Re p > 0 die

Transformationsformel :
T

L{f(0)} = ——_,,, f e (1) dt, (2.28)

falls f(t + T) = f(t) und f(¢) integrierbar ist.
Beispiel 2.18: Die periodische Funktion (Bild in Tab. 1, Nr. 91, dort T durch 7)2 ersetzen)

1, 0<t<T)2

1) = t+ T)=f@1),

f®) {0’ TR<t<T, ft+T)=f(n)
hat die einfache Laplace-Transformierte
T2 .
1 11— 1 1
= —— —pt = e— = —
L= e [ et~ S
[

Beispiel 2.19: Die Sagezahnfunktion des Bildes 2.5

2T, 0 =t=T)2,

20 -4, TRStsT, CTD=IO

fn= {

soll transformiert werden. Wegen
T T2 7
f P () dt = —f ePtde + 2 f &7 (1— ?) dt = T22 (1 — e?T2)2
° T2
ergibt sich nach (2.28) fiir Re p > 0 die Transformierte
1— P72 2 pT

Lif0} = 7 Trewm ~ g @b

fit

1
ol 2T T 3T Tt
Bild 2.5. Eine Sigezahnfunktion
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2.2.7.  Ubersicht iiber die Rechenregeln

In der folgenden Tabelle werden die wichtigsten Regeln nochmals zusammengestellt
und durch einige neue Regeln ergénzt, die ohne weitere Erliduterungen verstindlich
sind.

Originalbereich | Bildbereich
«f(t) + Be(t) «F(p) + BG(p)
0,1 < bla .
{f(nt —b), 12 bja L= F(ﬂ)
a>0,b620 “ 4
fa), a >0 i F(ﬂ>
a a
I 0,t<b b
Lft—b,tzbz0 D)
b
f+b),b20 ebr ( E(p) - je""f(r)dr)
1 -2 /4 ) !
—e‘f(—),c>0 F(ep + d)
c c
ef(1) F(p + d)
f(e)xg(®) F(p) G(p)
1+f(t)= [f(m)dr L e
0 P
fi@® PF(p) — fo
) PE(p) = fop"~t — -+ _f‘;n__]-
1"f (1) (= 1y'F™(p)
M), m=n (= 1)™(p"F(p)™
af@O)™, m=zn (= 1y"p"F™(p)
i -
Tf (1) j F(g)dg
Fﬂ de L f F@)dq
T )
1 )
T
SO =f(t+T) = ERC (0L
o
1) 1277 S e
P n=0

2.2.8. Aufgaben: Anwendung der Rechenregeln

Aufgabe 2.6: Man transformiere mit geeigneten Regeln
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a) sin (2! - %— ; b)yetsint; ¢ [1].

Aufgabe 2.7: Man bestimme L{e® sinh ar}, a, b reell.
Aufgabe 2.8: Man bestimme L. -ITSin 1.
1
Aufgabe 2.9: a) Man beweise (n = 1,2, ...;nFaktoren 1) 1 # 1 .-+ 1 = (n_—])'t"“;

b) (2.21) ist damit zu verallgemeinern.

Aufgabe 2.10: Man bestimme L{z sin ¢} und L{t? sin }.

Aufgabe 2.11: Man lose y”(f) — y(t) = 1, (0) = y(0) = 0.
@

Aufgabe 2.12: Man berechne J —lt-(e" — e ) dr.

0
Aufgabe 2.13: Man bestimme L{f(¢)} fiir die periodische Funktion
0, t<a(@a>0),
70| » g+ )= 1),

L, ast=T,

Aufgabe 2.14: Man transformiere e* * sin 7.
Aufgabe 2.15: Man bestimme L{|sin #|}.

2.3. Eigenschaften einer Laplace-Transformierten

Fiir die Bildfunktion F(p) werden einige Eigenschaften angegeben, insbesondere
wird im Satz 2.6 der Zusammenhang zwischen F(p) und den analytischen Funktionen
([B 9], Abschnitt 3.) hergestelit.

2.3.1.  Siitze fiir Laplace-Transformierte F(p)

Der Satz 2.1, der fiir die Klasse der absolut konvergenten Laplace-Integrale gilt,
1aBt sich verallgemeinern ([9], S. 25) zum

Satz 2.4: Konvergiert (2.1) fiir p = p,, so existiert die Bildfunktion F(p) mindestens in
der Halbebene Re p > Re p, (Konvergenzhalbebene).

Beispiel 2.20: Fiir f(t) = e™, a € K, ist nach der Rechnung im Beispiel 2.2 jedes po mit Re pp > Re a
mdglich. Daraus folgt noch, daB Re p > Re a die groBte Halbebene ist, in der (2.1) existiert.

Satz 2.5: Es gilt: F(p) — 0 fiir x = Rep - 0.

Ein Beweis dieses Satzes fiir absolut konvergente Laplace-Integrale ist in [4], S. 15,
zu finden. Der Satz gilt sogar fiir beliebige Bildfunktionen F(p) ([6], S. 136).

Beispiel 2.21:e =7 ist keine Bildfunktion, weil z.B. fiir x = y = Re p — 00 im Gegensatz zu Satz 2.5
[e77°] =e~ReP® = e2** 5 oo gilt.

Beispiel 2.22: Jede in p rationale Funktion mit einem Zihlerpolynom, dessen Grad gréBer oder gleich
dem Grad des Nennerpolynoms ist, ist keine Laplace-Transformierte. Dies folgt sofort aus Satz 2.5;
denn gilt F(p) — 0 fiir x = Re p — 00, so muB der Zahlergrad kleiner als der Nennergrad sein. Ins-
besondere sind also alle Konstanten ¢ % 0 sowie p keine Laplace-Transformierten.

Alle bisher berechneten Bildfunktionen sind in einer Halbebene identisch mit be-

kannten analytischen Funktionen. So gilt z. B. nach (2.4) die Beziehung L{u(¢)} = %
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fir Re p > 0. Die analytische Funktion L ist fiir alle p & 0 definiert, aber Bildfunk-

tion ist sie nur fiir Re p > 0. Dieser bisher an Beispielen festgestellte Zusammenhang
zwischen analytischen Funktionen und Laplace-Transformierten gilt allgemein und
ist im folgenden Satz formuliert.

Satz 2.6: F(p) ist in der Halbebene Re p > Re p, eine analytische Funktion, sie ist be- S.2.6
liebig oft nach p differenzierbar, und fiir die n-te Ableitung gilt
o
F®™(p) = (=1)" [ e?mf(t) dt = (= 1)"L{t"f(1)}. 2.29)
o

Der Beweis dieses wichtigen Satzes fiir die Klasse der absolut konvergenten Laplace-
Integrale ist in [4], S. 14, zu finden. Der Satz gilt auch fiir beliebige Bildfunktionen
([9], S. 35). Die Formel zur Berechnung der Ableitungen ist bereits unter den Rechen-
regeln als Multiplikationssatz (2.25) aufgefiihrt und am Beispiel 2.1 illustriert.

Der Satz 2.6 erlaubt es, die Theorie der analytischen Funktionen (Funktionen-
theorie, [B 9]) auf die Transformierten F(p) anzuwenden; dies wird spiter z.B. bei der
Umkehrung der Laplace-Transformation oder bei asymptotischen Zusammenhéngen
benutzt. Die Umkehrung des Satzes 2.6 gilt nicht, d.h., nicht jede in einer rechten
Halbebene analytische Funktion ist Laplace-Transformierte. Dies folgt aus den Sitzen
2.4 und 2.5, den Beispielen 2.21 und 2.22 und dem

Satz 2.7: Eine Bildfunktion F(p) % 0 ist nicht periodisch und hat keine Folge dqui- S.2.7
distanter Nullstellen auf einer Parallelen zur reellen Achse.

Dieser Satz, der wieder fiir beliebige Bildfunktionen gilt, ist in [4], S. 118, bewiesen.
2mj
Beispiel 2.23: ¢°?, a e K, ist nach Satz 2.7 keine Laplace-Transformierte, weil e°? die Periode —a—J,

a % 0, besitzt. Fir a = 0 ist ¢”? = 1 mit beliebiger Periode und damit auch keine Bildfunktion.

2.3.2. Parsevalsche Gleichung

Existieren die beiden Integrale

[eif@lde,  [e|fw)*dr, (2.292)
0 0

so gilt die als Parsevalsche Gleichung bekannte Formel
f e M) dt = ‘217; f [F(x + )| dy. 229%)
0 -0

Der Beweis von (2.29b) und andere Formen der Darstellung sind in [6], IL. Teil,
6. Kapitel, zu finden. Natiirlich ist der Zusammenhang zwischen f(f) und F(x + jy)
= F(p) gemiB (2.2) gegeben.

Ist (2.29a) sogar fiir x = 0 erfiillt, so vereinfacht sich (2.29b) zu

[1sorar = 5= [1F@re o, (2299
0 -0

Diese letzte Formel 1aBt sich physikalisch/technisch interpretieren. Ist z. B. in der
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0

Regelungstechnik mit f(r) die RegelgréBe bezeichnet, so ist J |f())* dt die quadrati-

0
sche Regelungsfidche, die zu minimieren wiinschenswert ist. Fiir diese Minimierung
kann die Formel (2.29c¢) als Ausgangspunkt dienen.

2.3.3.  Aufgaben: Eigenschaften einer Laplace-Transformierten

Aufgabe 2.16: Man beweise den im Beispiel 2.5 verwendeten SchluB3: Konvergiert (2.1) fir kein
reelles p, dann konvergiert (2.1) fur tiberhaupt kein p.

— 1
Aufgabe 2.17: Sind \/p und —= Bildfunktionen?

VP
Aufgabe 2.18: Warum sind die analytischen Funktionen sin p und sinh p keine Laplace-Transfor-
mierten?
Aufgabe 2.19: Tst ¢?* eine Laplace-Transformierte?

. . 1 P P .
Aufgabe 2.20: Sind a) i b) R c) 7+ Transformierte?

2.4. Umkehrung der Laplace-Transformation

Bei der Losung von Funktional- (z. B. Differentialgleichungen) geht man wie schon
in den Beispielen 2.14, 2.15 und in Aufgabe 2.11 praktiziert vor: Transformation der
Gleichung in den Bildbereich, Bestimmung der Losung der Bildgleichung und Riick-
transformation dieser Losung (siehe auch Bild 1.2). In diesem letzten Schritt liegt
meist die Schwierigkeit dieses Vorgehens.

Bei der Umkehrung der Laplace-Transformation ist also die Bildfunktion F(p)
gegeben und eine zugehorige Originalfunktion £(¢) zu bestimmen. Ublicherweise ver-
wendet man fiir diese Riicktransformation die Bezeichnung:

L-Y{F(p)} = f(). (2.30)

Uber die Eindeutigkeit von (2.30) wurden bereits in den Sdtzen 2.2 und 2.3 des
Abschnitts 2.1.4. zwei Aussagen gemacht:

a) f(¢) ist nur bis auf eine Nullfunktion n(f) bestimmt,

b) es gibt hochstens eine fir # > 0 stetige Originalfunktion.

f(#)in(2.30) soll stets die stetige Originalfunktion bedeuten, falls eine solche existiert;
sonst soll f(¢) irgendeine Originalfunktion bezeichnen.

Die einfachste Moglichkeit der Riicktransformation besteht natiirlich im Benutzen
der Tabelle 1. Beispielsweise bedeutet (T 5) in dieser Tabelle?):

|

! —-} =e¥, aeK.
p—a

In Abschnitt 2.4.1. wird die Riicktransformation rationaler Bildfunktionen F(p)

mittels Partialbruchzerlegung behandelt; diese Aufgabe tritt in den Anwendungen
besonders hiufig auf. Die komplexe Umkehrformel (2.38) des Abschnitts 2.4.4. bildet

1) (T 1) bedeutet die Formel Nr. 1 in der Tabelle 1.
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den Ausgangspunkt fiir andere Methoden, z.B. der Anwendung der Residuenrech-
nung oder der Herleitung asymptotischer Formeln. Numerische Verfahren zur Be-
rechnung von £(7) sind z. B. in [10], § 36, zu finden.

2.4.1.  Riicktransformation rationaler Bildfunktionen

Die Riicktransformation rationaler Bildfunktionen kommt bei der Losung von
Differentialgleichungen sowie bei Problemen der Elektro- und Regelungstechnik
héufig vor, in Tabelle 1 betreffen die Korrespondenzen (T 1) — (T 40) und (T 96)
bis (T 105) solche Bildfunktionen (s. auch [T 1], 19. Aufl. S. 689-692, ab 21. Aufl.
S. 637-642).

Es wird sich zeigen (Satz 2.8), daB zu jeder in p echt gebrochen rationalen Bild-
funktion F(p) stets eine fiir # > O stetige Originalfunktion f(¢) existiert und diese
durch Partialbruchzerlegung von F(p) und Riicktransformation der Partialbriiche
auch tatsdchlich gefunden werden kann.

a) Partialbruchzerlegung rationaler Bildfunktionen F(p)

Z(p)
N
Nennerpolynom N(p) ist wegen Beispiel 2.22 stets echt gebrochen rational, d.h., der
Ziahlergrad ist kleiner als der Nennergrad. Sind Z(p) und N(p) noch teilerfremd?), so
gilt bekanntlich ([T 1], 19. Aufl. S. 566, ab 21. Aufl. S. 514) die folgende
Partialbruchzerlegung fiir rationale Funktionen:

_ Zp) _ ( Cin Ciz Cix; )
i N(p) * =0 =y T G-p) @-31)
die p, € K sind die Nullstellen von N(p) mit der Vielfachheit «;.

Die zunichst unbekannten Koeffizienten c;, des Ansatzes (2.31) lassen sich z.B.
mit der Methode des Koeffizientenvergleiches oder der Grenzwertmethode bestimmen
([B 2], Abschnitt 9.2.2.). Diese Methoden werden an den zwei folgenden Beispielen
illustriert.

Beispiel 2.24a: Die rationale Bildfunktion
Z(p) p+1
5 Np)  Pe-DE*+D
soll in Partialbriiche zerlegt werden. Der Nenner N(p) hat die Nullstellen p; = 0, p, = 1, p3 = j,

Ppa = —j mit den Vielfachheiten &y = 2, x, = x3 = &4 = 1. Fiir F(p) ergibt sich deshalb nach (2 31)
der Ansatz

Eine rationale Bildfunktion F(p) = —— mit dem Zahlerpolynom Z(p) und dem

Z(p) _ ‘u C12 C21 + €31 4 041. .
p=1 p=j p+j
Die Koeffizienten ¢y, ..., ¢4y sollen nach der Grenzwertmethode bestimmt werden. Zunéchst multi-
pliziert man die letzte Gleichung mit N(p) und erhilt

prl=(cp+en)(p— D@+ 1)+ e PP(P* + 1)

+p(p = 1) (c31(p +J) + cas(p = ).

Hier setzt man nacheinander die Nullstellen py, ..., ps und dann z.B. p = —1 ein und erhilt:

c2=-1, cu=1 ey=% cu=% cy=-2.
L~Y{F(p)} wird in Beispiel 2.24b bestimmt.

!) Die Teilerfremdheit wird in den Sétzen 2.16 und 2.17 benétigt, sie ist fiir die Giiltigkeit von (2.31)
nicht notwendig.
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Beispiel 2.25a: Die rationale Funktion F(p) = mit a, b€ K und ¢ # bsoll in Par-

1
. -a@-b)
tialbriiche zerlegt werden. Wird der Ansatz (2.31)
Fp) = Zo) L S
Np) p—a p-b
mit N(p) multipliziert, so ergibt sich:
T=cu(@—b)+ c21(p — @) = (c11 + €21) p — (beyy + acay).

¢y und ¢, sollen durch Vergleich der Koeffizienten gleicher p-Potenzen der rechten und linken Seite
der letzten Gleichung bestimmt werden. Dieser Vergleich ergibt das Gleichungssystem

Ci1p+ €1 =0, =—bcyy —ac, =1
+b . L"Y{F(p)} siche Beispiel 2.25b.

b) Riicktransformation von F(p) im allgemeinen Fall
Jetzt wird L~*{F(p)} bestimmt, wobei F(p) die Form (2.31) hat. Jeder rechts in

(2.31) vorkommende Summand (Partialbruch) entspricht einer fiir 7 > O stetigen
Originalfunktion. Fiir Re p > Re p, gilt ndmlich nach Beispiel 2.11 und Regel (2.16):

mit der Losung ¢y = —c¢py =

-ll € = ettt Dit - = .
et =g k=2 pek.

Folglich erhdlt man aus (2.31) die fiir Re p > max Re p; giiltige Umkehrformel fiir
rationale Bildfunktionen als folgenden

Satz 2.8: Falls die rationale Funktion F(p) = Z(p) die Partialbruchzerlegung (2 31) be-
sitzt, so ist ( )

L{F(p)} = (Cu + et + o+ o 1).)6""’- (232)

Formel (2.32) spielt eine groBe Rolle bei der Losung von gewohnlichen Differen-
tialgleichungen (Abschnitt 3.1.), sie héingt eng mit dem dortigen Heavisideschen Ent-
wicklungssatz zusammen.

-1

Beispiel 2.24b: Die fur F(p) gefundene Partialbruchzerlegung im Beispiel 2.24 a ergibt nach (2.32)
fiir Rep > 1:

LY{F(p)} = (c11 + c12t) €™ + 3y P + 31 €7 + 4 €74,
Werden die errechneten Werte fiir ¢4, ..., c4; und p; eingesetzt, so ergibt sich
LYFp)} = =2 —t+e' + e + Fe .

Beachtet man noch die Beziehung 4(e* + e™**) = cos #, so erhilt man im Ergebnis nur reellwertige
Funktionen.

Beispiel 2.25b: Fiir die im Beispiel 2.25a betrachtete rationale Funktion folgt mit (2.32) fir
Rep > max (Rea, Re b):

LFe) = L — }— — . abeK a%b
le-a0r-b a=b T )
Ista = A + jB, b = A — jB (konjugiert komplexe Nullstellen), so 1a8t sich das Ergebnis mit (2.35)
noch umformen zu
L Y{F(p)} = T e4tsin Bt.
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¢) Riicktransformation bei einfachen Nullstellen des Nenners

Ist eine Nullstelle p, € K des Nenners N(p) einfach, dann ergibt die Grenzwert-
methode ([T 1], 19. Aufl. S. 228, ab 21. Aufl. S. 176) zur Bestimmung des zugehdrigen
Koeffizienten ¢;; in der Darstellung (2.31)

Z(py)
N'(py)
Sind alle Nullstellen von N(p) einfach und hat N(p) den Grad n, so vereinfacht sich
(2.31) und damit auch Satz 2.8 wesentlich; es ist zundchst
Z(p) _ & Zp) 1
Fp) = = 5
= Noy =& NG) 77

Satz 2.9: Falls der Nenner N(p) der rationalen Funktion F(p) = Z(p) nur einfache Null- S.2.9
stellen p; € K hat, so ist N(p)

Z(pi)
LYF(p)} =
Fw} = 550
In (2.32) und (2.34) kann man rechts stets zu reellwertigen Funktionen iibergehen,
falls die Polynome Z(p) und N(p) nur reelle Koeffizienten haben. Dazu benutzt man
die Eulersche') Formel (siche Ubersicht S. 8) in der Form

Cin=

(2.33)

erit, (2.34)

e = e (cos Bt + jsin Bt), a=A4 +jB. (2.35)
Beispiel 2.26: Mit (2.34) wird die Originalfunktion bestimmt zu
Z(p)
Fp)=——, Zp)=p*—2p+5, Np=p>+1.
N(p)

Die Nullstellen von N(p) sowie die Koeffizienten in (2.34) sind hier:
==l pp=31+iV3, ps=5s N0 =3%
200 _8 Zp) __5_ .3 269 5 3

Ny 3 NG» 6 2 NG» 6 2°

Mit der tublichen Zusammenfassung zu reellwertigen Funktionen unter Verwendung von (23.5) ist

fir Rep > %: \/_ \/,
8 5 3 T 5 3 .
L1F =2 et (24 (1+5~/3)z/2+ S ] (1-jv3)e2
{F(p)} 3 (6 oy )e g Ti5)e
8 5 3 3:
=—e*t — —e'?cos —— \/ + \/3e"251n \/
3 3 2 2

2.4.2. Riicktransformation mittels Rechenregeln und Tabelle 1

Fiir nichtrationale Bildfunktionen stehen in Tabelle 1 die Korrespondenzen
(T 41)~(T 95) zur Verfiigung. Tabelle 1 (bzw. umfangreichere Tabellen: [T 2], [T 4])
kann man oft auch dann benutzen, wenn die Bildfunktion nicht unmittelbar vor-

1) Leonard Euler (1707-1783), Schweizer Mathematiker.

3 Stopp, Operatorenrechnung
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kommt. Man kann versuchen, F(p) durch Anwendung der Rechenregeln (2.10) bis
(2.28) so umzuformen, daB Tabelle 1 benutzt werden kann. Die Partialbruchzerlegung
rationaler Bildfunktionen ist ein Beispiel fiir solche Umformungen.

Das folgende Beispiel zeigt, daB auch rationale Bildfunktionen sich mitunter ein-
facher als durch (2.32) transformieren lassen.

Beispiel 2.27: Bei Benutzung von (T 14) ist
1
Lt {—} . No)=p@* -1,
N)
zu bestimmen. Verwendet man den Integrationssatz (2.21) dreimal (siche auch Aufgabe 2.9b), so

ergibt sich fir Rep > 1:

tnn

oty
1
It {N_(p)} =fffsinh t3 dez de, dey =ff(cosh t, — 1)de, deyy
000
t

00
. 1
=f(smhl. —ty)dt; =cosht—1— 7:’.
[
Dagegen wiren bei Anwendung der Partialbruchzerlegung fiir Formel (2.31) die Bestimmung von

finf ¢, notig gewesen.

SchlieBlich soll noch an drei Beispielen die Riicktransformation nichtrationaler
Bildfunktionen gezeigt werden.

Beispiel 2.28: Faltungssatz (2.20), (2.7) und (2.5) ergeben (siche auch S. 8)

vt
11 4 i 2t
L"{—_-—-—--}=—i.— —e——dr=—i_ e dx = eferf /1.
\/p = \/71: \/'; \/7!
0 0
Beispiel 2.29: Dampfungssatz (2.17) und (2.7) ergeben fiir @ > 0

Beispiel 2.30: Aus (T 69) folgt mit dem Differentiationssatz (2.23)
. B —
It { /ﬂe‘“’}= pL? {— /ﬁe""’; = (sinh 2\/01)’ = A/-‘:— cosh 2 \/:z-t.
14 p 4 5

2.4.3. Riicktransformation durch Reihenentwicklung

Ist eine Bildfunktion gegeben in Form einer unendlichen Reihe von Bildfunktionen
F,(p) oder 14Bt sie sich in eine solche Reihe entwickeln, so kann formal gliedweise
riicktransformiert werden. Es wird also zu

F(p) = . Fi(p)
die Funktion

SO = 240, f@y= L {FP)
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gebildet. Zu kldren ist jetzt, ob die Reihe der Originalfunktionen konvergiert und ob
L{f(t)} = F(p) gilt. Der folgende einfache Satz iiber die gliedweise Riicktransfor-
mation ist in [9], S. 188, zu finden.

Satz 2.10: Ist die unendliche Reihe S.2.10
F(p) = ia,.p“", 0<lg<Ay <o <hy— 00,
n=0

absolut konvergent fiir |p| > R, so ist sie Laplace-Transformierte der Originalfunktion
pra

f@) = Z T (2.36)

(2.36) konvergiert fiir beliebige (sogar komplexe) t % 0.
Beispiel 2.31: Satz 2.10 wird fiir die Funktion

Fo) wo 13 L5
== Y — = —
\/p \/p oo nlpt Ao nlptti2

angewendet. Die Reihe ist (wie bekannt) absolut konvergent fiir [p| > 0, die zugehorige Original-
funktion ist durch (2.36) bestimmt mit 4, = n + %

1 1 & @r 1
— 1 s Sl
e % WG+ 1D Z It °°Sh2‘/;'

Benutzt wurden bei der Umformung die Reihendarstellung von cosh x ([T 1], 19. Aufl. S. 86 ab
21. Aufl. S. 34) sowie die Formel ([B 12], Abschnitt 2.2.)

2n)!
F(n+l)=(n)ﬁ, n=12,...
2 nl22n

Ein besonders einfacher Fall fiir Satz 2.10 entsteht fiirnatiirliche Zahlen 4, = n + 1;
F(p) ist dann eine Potenzreihe in p~* ohne Absolutglied, I'(n + 1) wird durch n! er-
setzt.

Satz 2.10a: Ist die Potenzreihe S.2.10a
Fp) =X ap™!

konvergent fiir |p| > R, so ist sie Laplace-Transformierte der fiir alle t konvergenten
Potenzreihe

0 = i% . : (2.37)

Beispiel 2.32: Bei Verwendung der fiur [ p[ > 1 konvergenten Binomialreihe ([T 1], 19. Aufl. S. 84,
ab 21. Aufl. S. 32) ist nach Satz 2.10a fur

1 1 1 o [
SR W T YT

JPPH1 P J14p2  ao\n

0 -— 0 ,_1 J 2n
=X ( 5) _1-,2" = L (_’_) = Jo(®)
o\ n 2

ne (2n)! a0 (n})?
wegen der Definition der Besselschen') Funktion (siche Ubersicht S. 8).

1) Wilhelm Friedrich Bessel (1784-1846), deutscher Astronom.
3‘



S.2.11

S.2.12

36 2. Laplace-Transformation
2.4.4. Die komplexe Umkehrformel

Versagen die bisherigen Methoden der Riicktransformation, so ist auf die kom-
plexe Umkehrformel zuriickzugreifen. Diese Formel wird hier nur fiir die Klasse der
absolut konvergenten Laplace-Integrale angegeben; ein Beweis des folgenden Satzes
ist in [9], S. 153, zu finden.

Satz 2.11: Konvergiert F(p) = L{f(t)} absolut fiir ein reelles p = x,, so ist fiir x = x,
und an jeder Stelle t, wo f(t) in einer Umgebung von beschrinkter Variation') ist:

1 3(f(t+0) + f(1=0)), 1> 0,
ey f e"F(g) dg = [ 1/(+0), t=0, (2.38)
e e 0, t<0.

Der Integrationsweg ist eine Gerade in der Halbebene der absoluten Konvergenz
von (2.1) parallel zur imagindren Achse. /(¢ + 0) und f(# — 0) bedeuten wie iiblich
den rechts- und linksseitigen Grenzwert an der Stelle #; an jeder Stetigkeitsstelle von
() stimmen diese beiden Grenzwerte bekanntlich iiberein, und in (2.38) steht dann
rechts einfach f(¢). Die als Voraussetzung genannte beschrinkte Variation garantiert
die Existenz dieser Grenzwerte.

Die Bedeutung des Satzes 2.11 besteht darin, daB es sich in (2.38) um ein Integral
mit einem Integranden in Form einer analytischen Funktion und um einen Inte-
grationsweg in der komplexen p-Ebene handelt. Uber solche Integrale ist vieles be-
kannt ([B 9], Abschnitt 4.): Cauchyscher?) Integralsatz, Moglichkeit der Deformation
des Integrationsweges, Auswertung durch Residuenrechnung u.a.m. Die folgenden
Ausfiihrungen in diesem Abschnitt sind nur mit diesen funktionentheoretischen Be-
griffen aus [B 9] verstindlich.

Fiir das Residuum einer analytischen Funktion, die als Quotient zweier analytischer
Funktionen Fy(p) und F,(p) darstellbar ist (wobei F,(p) in p = p, eine einfache Null-
stelle hat), gilt bekanntlich:

Fi(p) ) Fi(po)
Fy(p) Fi(po)

Residuum (
P = Do
Da sich der Integrationsweg in (2.38) ins Unendliche erstreckt, ist bei der Defor-

mation dieses Weges ein Grenziibergang notig. Dazu ist der folgende Satz ([4], S. 32)
sehr niitzlich.

(2.39)

Satz 2.12: Strebt F(p) fiir |p| = oo in -2— Sarg(p —¢) S — gletchmaﬁtg gegen null,
so gilt fiir t > 0:

lim [ e*F(g) dg = 0. (2.40)
B~

1) f(¢) heiBt von beschrinkter Variation, wenn f(¢) als Differenz zweier monoton wachsender
Funktionen dargestellt werden kann. Eine solche Funktion f(¢) hat als Unstetigkeitsstellen hochstens
Sprungstellen.

2) Augustin Louis Cauchy (1789-1857), franzdsischer Mathematiker.
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C ist ein Halbkreis mit dem Radius R um den Punkt p = ¢ in der linken Halb-
ebene Re p < ¢ oder ein Teil dieses Halbkreises (Bild 2.6a).

Aimp

|
(T

G

o | » |
Bild 2.6a. Integrationsweg in (2.40)
Bild 2.6b. Integrationswege im Beispiel 2.33
Beispiel 2.33: Formel (2.38) und die Verwendung der funktionentheoretischen Hilfsmittel soll fir die
1
einfache Funktion F(p) = L{u(t)} = -;'illustrien werden; hier ist xo = 0 (Beispiel 2.1) und u(¢) von

beschrankter Variation (ansonsten muB die Probe F(p) = L{f(¢)} gemacht werden).

Als Integrationsweg wird der in Bild 2.6b dargestellte Weg gewihlt mit beliebigem ¢ = x > xo
= 0. p = Oist ein einfacher Pol und die einzige Singularitit von F(p), p = 0 liegt im Inneren des vom
Integrationsweg umschlossenen Gebietes. Deshalb ist nach (2.39) und dem Residuensatz

d
[ 1L _ orj.
v q
cD
1
Wegen |F(p)| = —] (unabhingig von arg(p — x)) strebt F(p) gleichmiBig gegen null auf C fir
pl— o0; also gilf (2.40). Fiir R— oo und ¢ > 0 folgt deshalb

x+IR
rod . d
lim et i lim / e“—q— =2mj.
Row q Row J q
cp x—iR

Fiir 7 = 0 gilt die letzte Umformung nicht. Hier hat man

X+iy ! )
[ d [x+w X + ] Xy +j

J _q=]nq; =T =ln—/y D=1 =j=
4 q = x = jy xly =]

xX=jy

fiir y = o0 wegen Inp = In|p| + jargp und x > 0.
Zusammenfassend ergibt (2.38) somit fiir jedes x > 0:

x+iy x+jo0

1 Ldg 1 Ldg Lo 1>0

lxm—z—: e"—=T el—=1{1/2, t=0, (2.41)
o 27 q e j q
e x=jy x—joo 0, 1<0

Beispiel 2.34: Die Originalfunktion zur Bildfunktion
-_7 -oVp

F(p) = me Wr. a>0, 520, (2.42)

soll bestimmt werden ([10], S. 190). Der Faltungssatz (2.20) wire anwendbar; er ergibt aber eine
unzweckméBige Darstellung der Originalfunktion, die z. B. nicht das Verhalten fiir # — 00 erkennen
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14Bt. Deshalb wird Formel (2.38) verwendet. Zunichst wird der in Bild 2.7 dargestellte Integrations-
weg A betrachtet. Nach dem Residuensatz ist

Jer@s= fo 4] 4]+

Enx Cu D

= 2rj¥. Residuum (% F(p)) = mj(ee e2"3% 4 e=tie ¢-0"=ie), 243)
p=%ia
Imp
A
610
Lio
F
Sk ¢
L/ ] Rep
R

Bild 2.7. Integrationsweg 4 und seine Teile
im Beispiel 2.34

Weil p = jaund p = —ja einfache Polstellen sind, 148t sich die obige Bestimmung der Residuen nach
(2.39) durchfuhren mit Fy(p) = e'p e"V?, Fy(p) = p* + a>. Benutzt man noch / (. o a+3j,
\/ —-j= \/- (1 = j), so ergibt sich

—z—n_j— fe" Flg) dg = &™V%72 cos (at — by/aj2).
A

Jetzt wird der Integrationsweg A deformiert, zundchst soll R — o0 streben. Wegen

RO = b o g etrelr s o
+ a?| Ipl 1Pl
ﬁBig' tiglich des Ar auf den Bogen Cyund Cy; gilt (2.40): f -0, f—» 0.
Cr Cu
Fir € - 0 strebt f — 0, weil der Integrand beschrinkt ist und die Linge des Integrationsweges F

:F

fiirlpl—»O il

gegen null strebt. Da der Integrand nur auf der lings der negativen reellen Achse verhefteten Riemann-
schen Fliche eindeutig ist, ist im Grenzfall e — 0 fiir das obere Ufer p = x ¢'" und fiir das untere

Ufer p = x ¢™3™ zu setzen. Dann ist \/ p = jx fiir das obere Ufer und \/ p = —jx fiir das untere Ufer.

Es folgt
- - dx
i - - tx (@ oiVr _ gty 2
Ji‘ﬁ(f*f) f*f f(" e S
e=0 Er En -0 0 0
Wegen (2.38) folgt zusammenfassend fiir # > 0 die Originalfunktion f(¢) aus (2.42) als

f(t) = lim ZL f = eVal2 ¢og (at — b \/11/_2)
R-

__f e xsmb\/xdx ) .44

T 2ra
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An dieser Darstellung 148t sich das Verhalten von f(¢#) fiir # — oo ablesen: Es wird durch die cos-
Funktion beschrieben, weil das Integral nach Satz 2.5 gegen null strebt.

In der technischen Literatur wird mitunter behauptet und benutzt, daB die Ori-
ginalfunktion f(#) gleich der Summe der Residuen der Bildfunktion F(p) ist. Bei-
spiel 2.34 zeigt auBer der lehrreichen Anwendung funktionentheoretischer Sitze, daB
dies i. allg. nicht gilt, denn das Integral in (2.44) entsteht nicht so.

Anders als in den zwei Beispielen kénnen auch unendlich viele Pole von F(p) auf-
treten, die hier praktizierte Anwendung des Residuensatzes und Satz 2.12 lassen sich
dann verallgemeinern.

2.4.5. Aufgaben: Bestimmung von Originalfunktionen

Aufgabe 2.21: Durch Partialbruchzerlegung bestimme man

a) LH2/(p* — D}Y;  b) LTH{1/(p* + D}

die Ergebnisse sollen nur reellwertige Funktionen enthalten.

Aufgabe 2.22: Man bestimme a) mittels Partialbruchzerlegung und b) durch (2.20) und (2.23) die

Originalfunktion zu p/(p? — 1)
Aufgabe 2.23: Man ermittle die Originalfunktionen zu

1 1
RS Nz

Aufgabe 2.24: Durch Reihenentwicklung transformiere man—l—e‘”".

€727 mit (2.14); 'b) mit (2.17).

4 1
Aufgabe 2.25: Mit (2.38) bestimme man die Originalfunktion zu F(p) = ;ln (1 + p). Hinweis:
Integrationsweg dhnlich Bild 2.7 wihlen, hier aber —1 umgehen und 0 einschlieBen!

2.5. Asymptotische Eigenschaften

Nach einer Zusammenstellung der in der Asymptotik gebrauchlichen Begriffe und
Symbole werden einfache asymptotische Eigenschaften der Laplace-Transformation
und ihrer Umkehrung aufgefiihrt.

Mit den in Abschnitt 2.5.2. angefithrten Sitzen wird die Auswirkung asympto-
tischer Eigenschaften der Originalfunktion f(¢) auf die Bildfunktion F(p) gegeben,
ohne daB die Bildfunktion explizit berechnet wird.

Interessanter fiir die Anwendung (aber auch komplizierter) sind die Aussagen des
Abschnitts 2.5.3. Dort wird von asymptotischen Eigenschaften der Bildfunktion F(p)
auf solche der zugehdrigen Originalfunktion f(r) geschlossen, ohne f(f) explizit zu
berechnen. Sind nur solche Eigenschaften der Losung einer Funktionalgleichung ge-
sucht, so ersparen die Sitze in 2.5.3. die oft umsténdliche Riicktransformation. Ins-
besondere die Frage der Stabilitdt der Losungen einer gewdShnlichen Differential-
gleichung kann auf diese Weise beantwortet werden.

2.5.1.  Asymptotische Darstellungen und Entwicklungen

Das Verhalten einer Funktion f(¢) fiir t — ¢, (¢ reelle oder komplexe Verdnderliche,
fo kann auch + oo sein) kann sehr unterschiedlich sein: Es kann Konvergenz ge-
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gen einen Grenzwert, bestimmte oder unbestimmte Divergenz vorliegen. Soll dieses
Verhalten noch genauer beschrieben werden, so zieht man eine (mdglichst einfache)

Vergleichsfunktion g(#) heran und untersucht den Quotienten ig-;— fiir t > ¢, und
t € U. Dabei bedeutet U eine unendliche Punktmenge mit 7, ¢ U als Randpunkt; der
Quotient soll in U definiert sein. Beispiele solcher Punktmengen sind Winkelrdiume,
Halbebenen und Geraden (Bild 2.8).

% ¢

Bild 2.8. Punktmengen der Definition 2.2

Falls i;((tT; — 0fiir ¢ — ¢, gilt, so schreibt man auch f(t) = o(g(?)), t - ¢, (gelesen:

f(2) ist ein Klein-o von g(t)).

Definition 2.2: Zwei Funktionen heifen fiir t — t, und t € U asymptotisch gleich, wenn
gilt:
g—g;— =1, t—=ty bzw. f(t) =g(t) + o(g(t)), t—to. (2.45)

Fir diesen Sachverhalt schreibt man f(¢) ~ g(¢) (gelesen: f(¢) ist asymptotisch gleich
g(®); g(t) heiBt eine asymptotische Darstellung von f(t); g(t) stellt f(¢) niherungs-
weise dar.

Man kann nachweisen, daB sich asymptotische Darstellungen (natiirlich fiir die-
selbe Stelle #,) stets multiplizieren, dividieren und potenzieren, aber nur unter zu-
sdtzlichen Bedingungen addieren, logarithmieren, differenzieren und integrieren lassen
1 §2).

Beispiel 2.35: Folgende Funktionen werden verglichen:
a) f(t)=¢', g(t)=4"firt—c0; b) f(t)=sint, gt) =1t firr-0,

2+1 .
O f) =577, EO=1furi-co.
Ausgehend von den leicht nachpriifbaren Beziehungen
f@

1
m—»a) 0firt—c; b)lfirr—>0; c¢) 7 fiir t — o0
gilt beziiglich der o- und ~-Beziehung

a) f(1) = o(g()), f(1) * g(t) fiir t— c0;  b) f(t) ~ g(t) fir > 0; ) f(£) ~ $g(r) fiar 1 — co.

Beispiel 2.36: Als eine bekannte nichttriviale asymptotische Darstellung wird die der Gamma-Funk-
tion I'(¢) fiir reelle # — oo angegeben ([2], S. 67; Stirlingsche!) Formel):

2 [t
I’(t)NA/_(_.) , t— 0.
t €
Hier ist die Vergleichsfunktion eine elementare Funktion, wihrend I'(f) eine komplizierte spezielle

Funktion ist.

1) James Stirling (1692-1770), englischer Mathematiker.
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Bei der Darstellung der asymptotischen Gleichheit in der Form () = g(¢) + o(g(?))
kann der Summand o(g(¢)) als Fehler bei der Ersetzung von f(¢) durch g() aufgefalBt
werden. Will man diesen Fehler immer genauer ausdriicken, so kommt man zur

Definition 2.3: Ist g,+,(¢) = o(g,(t)) fiir t = to, t € U, und gilt fiir jedesn = 0,1, 2, ...
mit festen Koeffizienten a,

0= };0 a,g(t) + o(g,(1) fiir - 1o, (2.46)
so schreibt man
) = 3 ag0) fir 1= to.

Die unendliche Reihe, die nicht zu konvergieren braucht, heiBt asymptotische
Entwicklung von f(t). Fiir n = 0 erhilt man speziell die oben eingefiihrte asympto-
tische Darstellung von f(z).

Die Eigenschaft g,:,(¢) = o(g,(t)) haben z.B.die Funktionen g,(¢) = (t — to)*
fiir ¢ — to oder g,(t) = ¢t~ fiir t - oo, sofern ReA,.; > Re A, ist. Entwicklungen
nach diesen Potenzfunktionen sind besonders héufig.

. Man kann zeigen: Asymptotische Entwicklungen nach denselben Funktionen g,(7)

lassen sich gliedweise addieren, subtrahieren und mit einer Funktion multiplizieren;
eine Funktion f(#) hat hochstens eine asymptotische Entwicklung nach den Funk-
tionen g,(f), aber nicht umgekehrt ([2], § 3).

Zwischen konvergenten und asymptotischen Entwicklungen besteht folgender

Unterschied: Fiir das Restglied r,(¢) = f(¢) — Z a,g,(¢) gilt im ersten bzw. zweiten
Fall

lim r,(t) = O bei festem ¢ bzw. lim—— Ul = 0 bei festem n.

110 &nl1)

Zwei Beispiele fiir asymptotische Entwicklungen sollen den Begriff und den er-
wihnten Zusammenhang mit konvergenten Reihen noch illustrieren.

Beispiel 2.37: Jede fiir |t — to| < R absolut und gleichmiBig konvergente Reihe

n
fity=3Y aft—to)™, Rel:; > Rel,

v=0

ist zugleich eine asymptotische Entwicklung von f(r) fiir f — #,. Denn wegen der vorausgesetzten
Konvergenz folgt die Abschitzung

ey - T at - to)™| —} = o =

41
5

die rechte Seite ist gleich einem o(| — #o|R¢%x) fiir ¢ — fo und jedes 7, womit (2.46) erfiillt ist. Bei-
spielsweise folgt deshalb aus den bekannten Reihenentwicklungen fiir €* oder In (1 + f) sofort

. o (_1)v+1tv .
e~2— fir t—0, ]n(l+t)z2—— fir t-0.
v

vmo ! vel

D.2.3
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Beispiel 2.38: Als eine bekannte asymptotische Entwicklung wird die von In I'(¢) fiir reelle  — o0 an-
gegeben: ® B
InI@) = tlnt — 1) —In\/t + In{/2: 2 gy
O ins =D =In/1+1ny/zm 4 3 2
dabei bedeuten die B,, die Bernoullischen') Zahlen; es ist B, = 1/6, By = —1/30, Bs = 1/42,
Bg = —1/30, ...([2], S. 67). Diese Entwicklung heiBt Stirlingsche Entwicklung der Gamma-Funk-
tion.

2.5.2.  Asymptotische Eigenschaften der Laplace-Transformation

In diesem Abschnitt wird von dem asymptotischen Verhalten der Originalfunktion
f(¢) fir t— +0 auf das der Bildfunktion F(p) fiir p > oo geschlossen, d.h., eine
asymptotische Darstellung oder Entwicklung von f(f) wird unter bestimmten Vor-
aussetzungen auf eine asymptotische Darstellung oder Entwicklung von F(p) ab-
gebildet.

Satz 2.13: Sind f(t) und g(t) transformierbar und ist g(t) > O und stetig fiir t > 0, dann
folgt aus
f@&) ~ ag(t) fir t—> 40, aek,

fiir die zugehorigen Laplace-Transformierten
F(p) ~ aG(p) fiir (reelle) p— oo.
Der Beweis dieses von Berg stammenden Satzes ist in [1], S. 187, zu finden.
Beispiel 2.39: Oft ist als Vergleichsfunktion sogar die einfache Funktion g(¢) = ¢*, « > —1, moglich

mit G(p) = al'(x + 1)/p**'. Dies kann zur asymptotischen Auswertung des Integrals in Formel
(2.44) benutzt werden; dabei wird jetzt gegeniiber (2.44) p statt z und ¢ statt x geschrieben, In Satz 2.13

ist dann _
bsinb/t b3

fra &

brGR)  3by/m
I

fn=

=g(t),t—> +0,

,p (reell) - oo,

Satz 2.14: a) Wenn lim f(t) = a existiert, so ist lim pF(p) = a; b) wenn lim f(t) = b
t=+0 P t=oco

existiert, so ist im pF(p) = b.
P40

Der Beweis von a) folgt aus Beispiel 2.39 fiir « = 0 und (2.45). b) folgt aus f(t) — a
= r(t), [r(t) | < ¢ fiir t 2 T, & > 0 beliebig, und

2 © T ©
|F(p) —il < f e |r(r)| dt + f e 1) df < f r(0)] dt + & f e dt
: 4 o T 0 0

=c+%,
p

1) Jakob Bernoulli (1654-1705), Schweizer Mathematiker.
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also |pF(p) — a| < Cp + &, fiir p— +0 ergibt sich daraus die Behauptung. Die
Korrespondenz (T 62, p — oo) und (T 8, p — +0) zeigen, daB Satz 2.14 mcht umkehr-
bar ist (siehe aber Satz 2.16).

Beispiel 2.40: Die Besselsche Funktion Jo(r) besitzt fiir # - oo einen Grenzwert. Wegen Beispiel 2.32
und Satz 2.14b) ist

lim Jo(t) = lxm pL{Jo(t)} = lim ——==
1= P> +0 \/p2 +1

Uber die Transformation asymptotischer Entwicklungen gilt der

Satz 2.15: Ist f(t) transformierbar und gilt
) ~ iavﬂv fiir 1o +0 und —1<ig <A <.,
so hat F(p) die asymptotische Entwicklung
F(p) ~ E‘, a, Mﬁir p (reell) - .
Der Beweis dieses Satzes ist einfach. Nach (2.46) gilt
£t - :i:a,t‘v = ayt* + o(t*) ~at* fiir t - +0.

Diese asymptotische Gleichung ist nach Satz 2.13 mit g(f) = a,t* transformierbar;
damit folgt fiir jedes n = 1,2, ...

', +1) I'(Z, + D _ I+ 1) 0( 1 )
p

n-1
F(p) - Z-oav il ~ an i ay Pl yus]

Diese Gleichung ist aber wegen (2.46) gleichbedeutend mit der angegebenen asym-
ptotischen Entwicklung von F(p).

Ist die Reihe fiir f(¢) absolut konvergent, so ist sie nach Beispiel 2.37 zugleich
asymptotische Entwicklung; fiir F(p) ergibt sich i. allg. trotzdem nur obige asympto-
tische Entwicklung. Dieser Sachverhalt und eine Anwendung des Satzes 2.15 werden
im ndchsten Beispiel illustriert.

Beispiel 2.41: Die Funktion
2 & 12
fO=e=3% (1) —
v=0 v!
ist nach Satz 2.1 Laplace-transformierbar, die angegebene Reihe konvergiert fiir alle # und ist damit
wegen Beispiel 2.37 zugleich asymptotische Entwicklung fiir # - +0. Nach Satz 2.15 ist deshalb mit
I'2v + 1) = 2v)!
F(p) = 2 (- 1)" ) P21 _fir p (reell) » 0.

Diese Reihe divergiert tatsdchlich fiir alle p. Wegen

«© L4 -
F(p) = fe""'“z dr = eI+ \/e“‘2 du = #e"z" (1 - erf%}

0 P2

S.2.15
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(Substitution t=u-— —‘;—) ergibt sich durch Umstellung eine asymptotische Entwicklung der Fehler-

funktion fiir x = —g——» 00

1—erfxx \}_ TS ey Bt ) @0 fir x> oo.
T v=0

Sitze der angegebenen Art heiBen Abelsche!) Sitze fiir die Laplace-Transfor-
mation; sie lassen sich in vieler Hinsicht verallgemeinern ([1], § 45; [2], § 23; [4],
Kap. VII).

2.5.3.. Asymptotische Eigenschaften der Riicktransformation

In diesem Abschnitt wird vom asymptotischen Verhalten einer Bildfunktion F(p)
auf das der Originalfunktion f(¢) geschlossen. Solche Sitze kénnen bei der Riick-
transformation von grofem Vorteil sein, insbesondere wenn sich f(7) nur schwierig
bestimmen 148t oder eine explizite Darstellung von f(¢) gar nicht benétigt wird.

Leider ist es nicht moglich, die Sdtze 2.13 bis 2.15 (und dhnliche Sétze) ohne weiteres
umzukehren, dies zeigen schon einfache Beispiele. AuBerdem interessiert vorwiegend
das Verhalten von f{(¢) fiir  — oo. Sétze der gesuchten Art heiBen Abelsche Sitze fiir
die Ricktransformation, wenn iiber f(#) keine Voraussetzungen gemacht werden,
sonst Taubersche?) Sitze. Weitergehende Aussagen als hier findet man in [1], § 46,
und [4], § 45.

Satz 2.16: Konvergiert L{f(t)} fiir jedes p > 0 und ist f(t) monoton wachsend, so gilt
lim f(¢t) = lim pF(p).
100 P+ 0

Einen Beweis dieses Satzes findet man in [1], S. 196.

IstF(p) = f,(f) ) eine rationale Bildfunktion, so kann man aus der Darstellung (2.32)

der zugehorigen Originalfunktion f(r) sofort folgendes erkennen: Fiir das Verhalten
von f{(¢) fiir t - oo sind allein die Nullstellen p; mit groBtem Realteil (und unter diesen
die mit der groBten Vielfachheit «;) von N(p) ausschlaggebend. Gibt es mehrere solche
Nullstellen, so miissen alle beriicksichtigt werden. Das ergibt den

Z(p)
N(p )

Satz2.17:Ist F(p) =

eine rationale Bildfunktion, N(p;) = 0 und A = max Re p;,
so gilt .

f(t) = 3 Ciay—————€"" + ot et)  fir t— o, (2.47)

(o — !
wobei iiber alle p; mit maximalem Realteil und grifter Vielfachheit zu summieren ist.

Hat die Funktion Y ab einem gewissen ¢ keine Nullstellen, so kann (2.47) auch in
der Form f{(t) ~ ¥ fiir > oo geschrieben werden.

1) Niels Hendrik Abel (1802-1829), norwegischer Mathematiker.
2) Alfred Tauber (geb. 1866, Todesjahr unbekannt), dsterreichischer Mathematiker.
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Die asymptotische Darstellung von f(¢) kann also ohne vollstindige Riicktrans-
formation angegeben werden. Die benétigten Koeffizienten ¢, sind nach einer der
in Abschnitt 2.4.2. dargestellten Methoden zu bestimmen; liegt eine einfache Null-
stelle p; vor, so ist wieder ¢;; = Z(p;)/N'(p;).

Beispiel 2.42: Es sind die asymptotischen Darstellungen fiir # — co der Originalfunktionen f(¢) der
rationalen Bildfunktionen F(p) der Beispiele a) 2.24 a, b) 2.25a und c) 2.26 zu bestimmen.

a) Nullstelle mit maximalem Realteil ist p, = 1 mit «, = 1, ¢;; = 1 nach oben; daher ist f(f) ~ €'
fir ¢ — co.
b) Ist Re @ > Re b, so ist die einfache Nullstelle p = a zu beriicksichtigen, es ist f(r) = e

+ o(eRet) ~ !
@ —

1
a—b

e fiir 1 — 0.
b

c) Die einfachen Nullstellen P23 = 1(1 + j\//3—) haben maximalen Realteil, die zugehdrigen

5 3
Koeffizienten sind —(—6— +j —\é—), deshalb gilt (bei Beachtung von (2.35))

= 3 s 3t
f(t)=e"2(\/35in \/ d ——3—cos—%——)+0(e"2) fir r— .

&)
2

Die Tatsache, daB die Singularitit mit grofStem Realteil der Bildfunktion das
asymptotische Verhalten der Originalfunktion bestimmt, gilt i. allg. nicht fiir nicht-
rationale Bildfunktionen.

2.5.4.  Stabilitiit der Originalfunktionen

Mitunter interessiert von der Losung einer Funktionalgleichung nicht einmal das
genaue asymptotische Verhalten fiir # — oo, sondern lediglich die (asymptotische)
Stabilitdt. Es wird gefragt, welcher der folgenden Fille eintritt (Bild 2.9):

1.f(t)— B fiir t—» o (B = 0: stabil, B = 0: uneigentlich stabil),

2.f(r) hat keinen Grenzwert fiir z — co, ist aber wenigstens beschrinkt (quasi-

stabil, auch asymptotisch stabil genannt),

3. /(1) ist nicht beschrénkt fiir r — oo (instabil).

fit)
fit)
/\ A

J YT -/ ¢

fit)

flt)
t t

Bild 2.9. Stabiles, uneigentlich stabiles, quasistabiles und instabiles Verhalten von f(f)
fiir t - o
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Fiir rationale Bildfunktionen F(p) 1aBt sich der Stabilitétsfall sofort aus Formel
(2.47) ablesen. Es gilt der

Satz 2.18: Ist F(p) = Z(p) eine rationale Bildfunktion und ist N(p;) = 0, so gilt mit
A = max Re p;: Np)
i

A > 0: f(2) ist instabil;
A < 0: f(¢) ist stabil;

= 0 und wenigstens eine das Maxzmum annehmende Nullstelle ist mehrfach f()
zst instabil ;
A = 0 und alle das Maximum annehmende Nullstellen sind einfach, und es ist fiir eine
davon Im p; # 0: f(t) ist quasistabil,
A = 0 und die einzige das Maximum annehmende Nullstelle ist die einfache Nullstelle
Dpo = 0: f(¢) ist uneigentlich stabil.

Es gibt viele Kriterien, die ohne explizite Bestimmung der Nullstellen von N(p)
eine Antwort gestatten ([12], 9. Kap.; [3], § 11).

Beispiel 2.43: Die Stabilitit der Originalfunktionen, die zu den rationalen Bildfunktionen der Bei-
spiele a) 2.24 a, b) 2.25a, c) 2.26 gehoren, wird bestimmt: Bei a) und c) ist f(z) instabil, weil bei
a)A =1 > Oundbeic)4 =% > 0ist. b) Ohne Einschrinkung der Allgemeinheit wird Re @ = Re b
angenommen, a # b. Fiir Rea > 0 ist f(¢) instabil, fir Rea < 0 ist f(¢) stabil. Fiir Rea = 0 ist
f(#) quasistabil, weil entweder Im @ + 0 oder Ima = 0,Im b= 0 ist.

Satz 2.18 wird bei der Untersuchung der Lsungen von gewShnlichen Differential-
gleichungen eine Rolle spielen. Ist F(p) keine rationale Bildfunktion, so gilt dieses ein-
fache Kriterium i. allg. nicht, d.h., das asymptotische Verhalten (und damit die
Stabilitéit) der Originalfunktion f(¢) fiir 7— oo muB nicht immer von der Singularitit
mit groBtem Realteil der Bildfunktion F(p) abhédngen.

2.5.5. Aufgaben: Anwendung asymptotischer Formeln

. . . \/ t e* cosht
Aufgabe 2.26: Man bestimme eine asymptotische Darstellung von /(r) = b2
und b) ¢ — 0. L2y
Aufgabe 2.27: Man bestimme eine asymptotische Darstellung von F(p) = L{f(f)} fiir p —» 00 mit

a) f( = T;'=sinh £ 0) £(t) = tet /12 + 1 In(¢2 + ).

fira) t— 0

Aufgabe 2.28: Firr H(p) = L{h(t)} bestimme man 5 Glieder der asymptotischen Entwicklung fiir
p— 0, h(t) aus Aufgabe 2.26. Hinweis: I'(n + %) wie in Beispiel 2.31 umrechnen!

Aufgabe 2.29: Man bestimme eine asymptotische Darstellung von f(z) fiir 1— oo bei

a) F(p) = 1/(p* = 1); b) F(p) = 1/(p* + 1); ¢) F(p) = p/(P* = 1*.

Aufgabe 2.30: Welches Stabilitdtsverhalten haben die Originalfunktionen f(¢) fiir £ - co bei

a) F(p) = b) Fp) = - _3p”+4p_2 5¢) F(p) =

FTT GEEEsTE
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In diesem Abschnitt wird die Losung von verschiedenen Funktionalgleichungen
behandelt. Dazu werden die in Abschnitt 2. zusammengestellten Regeln und Eigen-
schaften der Transformation benétigt.

Die Losung von gewdhnlichen Differentialgleichungen (Abschnitt 3.1.) und von
Systemgn solcher Differentialgleichungen (Abschnitt 3.2.) mit vorgegebenen Anfangs-
werten spielt eine besondere Rolle; diese Aufgabenstellung war der AnlaB zur Ent-
wicklung der Transformation. Partielle Differentialgleichungen und andere Pro-
bleme werden in den Abschnitten 3.3. und 3.4. behandelt. In allen Abschnitten werden
Beispiele aus naturwissenschaftlichen und technischen Disziplinen (Mechanik, theo-
retische Physik, Elektrotechnik, Regelungstechnik, Systemtheorie) angegeben, die
allgemeinverstindlich sind und keineswegs die Spezialliteratur der jeweiligen Diszi-
plin ersetzen.

Das immer wiederkehrende Prinzip der Losung einer Funktionalgleichung mittels
einer Transformation ist in Bild 3.1 dargestellt. Es ist klar, daB die Anwendung einer
Transformation dann vorteilhaft ist, wenn sich im Bildbereich einfachere Gleichun-
gen ergeben als im Originalbereich. Ferner ist unter der Riicktransformation der Lo-
sung der Bildgleichung nicht immer die explizite Darstellung im Originalbereich zu ver-
stehen, vielmehr geniigen mitunter asymptotische Aussagen oder Angaben iiber die

Stabilitét.
Funktionalgleichung Prote Funktion im
im Originalbereich Originalbereich

~|Transformation -\ Transformation

£

Ldsung

f lfmi//dbereim | | feungim B//dbm/m‘

Bild 3.1. Lost 3 bei Anwendung der Laplace-Transformation

3.1 Lineare Differentialgleichungen mit konstanten Koeffizienten

Naturwissenschaftliche und technische Probleme werden besonders haufig durch
lineare Differentialgleichungen mit konstanten Koeffizienten beschrieben. Eine solche
Differentialgleichung fiir die gesuchte Funktion y = y(¢) hat die Form

@+ a,,_ly“"'” + o+ @y + agy = f(t): 3.1

Dabei bedeuten n € N die Ordnung, a; € R oder g, € K die Koeffizienten und f(r)
die rechte Seite der Differentialgleichung. Fiir f(¢) = 0 heiBt (3.1) bekanntlich homo-
gen, fiir f(#) = 0 inhomogen. Die Verdnderliche 7 = 0 ist in der Regel die Zeit; fiir
t < 0 sind wegen (2.3) alle Funktionen identisch null.

Im Abschnitt 3.1.1. werden Anfangswertaufgaben geldst. Die Struktur eines durch
(3.1) modellierten Problems 1aBt sich besonders gut erkennen, wenn fiir die Funk-
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tion f(¢) verschiedene spezielle Vorgaben gemacht werden. Diese Untersuchungen
werden in Abschnitt 3.1.2. durchgefiihrt. Dort wird auch die Diracsche Delta-Funk-
tion eingefiihrt und die Transformation darauf ausgedehnt.

3.1.1.  Anfangswertaufgaben

Bei einer Anfangswertaufgabe sind auBer der Differentialgleichung (3.1) noch zu-
sitzlich die Anfangswerte

Yo =¥0), y5=y00),...,y57" = y"=1(0) (3.2)

gegeben. Diese Anfangswerte gehen wegen der beabsichtigten Anwendung des
Differentiationssatzes (2.24) als rechtsseitige Grenzwerte (t — +0) von y(¢), y'(?), ...,
y@®=1(7) in die zugehdrige Bildgleichung ein.

Die Anfangswertaufgabe (3.1), (3.2) wird unter zwei verschiedenen Annahmen fiir
die Funktion f{() betrachtet; der erste Fall tritt besonders héufig auf.

a) f(t) besitzt eine rationale Bildfunktion

Wegen Satz 2.8, Formel (2.32), besitzt die Funktion f(#) genau dann eine ratio-
nale Bildfunktion F(p), wenn sie eine Linearkombination von Funktionen der Form
(komplexe Schreibweise)

the®, keN, aekK,
oder der Form (reelle Schreibweise)
the?, mebsinwt, t"e‘cosft, k,m,neN, ab,c,x pfeR, (3.3)

ist. Die existierende, eindeutige und n-mal (sogar beliebig oft) stetig differenzierbare
Lésung y(t) von (3.1), (3.2) fiir solche Funktionen ist bekanntlich ebenfalls eine Line-
arkombination von Funktionen der Form (3.3) ([B 7.1], 3.3.4.-3.3.6.). Da die Funk-
tionen (3.3) und ihre Ableitungen Laplace-transformierbar sind (Beispiel 2.16), 18t
sich die gesuchte Losung y(f) eines Anfangswertproblems immer mittels Laplace-
Transformation finden. Die rechtsseitigen Grenzwerte und die Anfangswerte (3.2)
stimmen wegen der Stetigkeit von y(¢), ..., y™(¢) liberein. Damit hat man den

Satz 3.1: Bei rationaler Bildfunktion F(p) = L{f(t)} lat sich das Anfangswertproblem
(3.1), (3.2) stets wie folgt losen: (3.1), (3.2) wird mit dem Differentiationssatz (2.24)
transformiert, die entstehende algebraische Bildgleichung nach Y = Y(p) = L{y(t)}
aufgelost und die rationale Bildfunktion Y(p) riicktransformiert.

Mit (2.24) ergibt sich von (3.1) und (3.2) die Bildgleichung
P'Y = yop"t = yop" = e = yg70
+ @y (P"HY = Yop" P = yop" T = e = V) e
+a, (P*Y = yop — y3) + ai(pY — yo) + aoY = F(p).
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In dieser algebraischen Gleichung fiir Y, in die die Anfangswerte (3.2) mit eingegangen
sind, werden die Abkiirzungen

P(p) = p" + @p-1p"t + - + a1p + 4o,
R(p) = yo(p"! + @pr " + =+ + aop + ay)
+ 150" + @ p" + e+ asp + @) + e
+ Y52 + @) + 360 (65

eingefiihrt. P(p) bzw. R(p) sind Polynome in p vom Grade n bzw. hochstens vom
Grade n — 1. Bildgleichung und Losung sind jetzt

P()Y(p) — R(p) = F(p), Y(p) = 1;(—(’1’,; + % = %. )

Y(p) ist tatsdchlich eine rationale Bildfunktion, weil der Grad des Zéhlerpolynoms
Z(p) kleiner als der Grad des Nennerpolynoms N(p) ist, y(r) = L~*{¥(p)} kann nach
Tabelle 1 oder Abschnitt 2.4.1. gefunden werden.

Der Vorteil gegeniiber anderen Losungsmethoden fiir Anfangswertaufgaben be-
steht in der unmittelbaren Beriicksichtigung der Anfangswerte (3.2) in der Bild-
gleichung und damit in der Losung y(7). Die allgemeine Losung der Differential-
gleichung (3.1) wird bei diesem Vorgehen nicht benétigt im Gegensatz zur iiblichen
Methode.

Beispiel 3.1: Die Losung der Anfangswertaufgabe

"

VIV =2 =te", yo=1, y=-2, y'=3,

ist pach Satz 3.1 zu bestimmen. Im Bildbereich entsteht mit (2.24) und (T 6) fiir Y die algebraische
Gleichung

1
Y —p*+2p =3+ pY—p+2-2pY - 1) = —.
P P 7 p 14 (p ) G2
Die Polynome P(p) und R(p) ergeben sich hier mit
P(p)=p*+p*=2p=p(p— 1) +2),Rp)=p*—p—1. (3.6)

Die Losung der Bildgleichung und ihre Partialbruchzerlegung nach (2.31) ist damit

Y0) = R(p) " Fp) _ P —p-D@+D*+1 _ Z0p)
P(p)  Pp)  pp-DE+D@+1D* N’

C11 C21 €31 €32
+ + + :
p—-1 p+2 p+1 (p+ 1)?

C
Y(p) = — +
P

Nach der Grenzwertmethode bestimmen sich die Kocffizienten zu
c1=0, cu=-% cu=1 c1=% cn=1%
damit ist die Losung der Anfangswertaufgabe mit (T 5) und (T 6)

yt)=—te'+e 2 +let+Ltet = —Lsinht+ e + -}te"f

4 Stopp, Operatorenrechnung
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Beispiel 3.2: Die Biegelinie y(x) eines Balkens geniigt dem Anfangswertproblem
Ey® + Hy” =q(x), y0)=y"(0)=0, y(0) =4, E”(0)=B,
unter folgenden Bedingungen (siche auch Bild 3.2):

y(x)
900
0 I H
A ~ z
o

Bild 3.2. Lagerung und Belastung des Balkens im Beispiel 3.2

Der Balken ist gerade mit symmetrischem Querschnitt, er ist links gelenkig und rechts horizontal ver-
schieblich gelagert, er hat die Biegesteifigkeit EI und wird durch eine stetige Streckenlast g(x) sowie
eine horizontale Druckkraft H am rechten Ende belastet. Die Biegelinie p(x) soll bestimmt werden fiir

EI = 6480, H =20, g(x)=4le™*2,
Als Bildgleichung und ihre Losung ergeben sich mit den konkreten Werten nach (2.24) und (T 5):

6480(‘Y-A2— B ) 0y — 4y = —2
¥ 7" a0 P+12°
82 64804p> + 204 + B
Y() = = , P(p) = 20p? (324p* + 1).
@2p + 1) P(p) P(p)
Y(p) 14Bt sich durch Partialbruchzerlegung (mit der Abkiirzung C = 204 + B + 81) in der Form
1 1 c 1 » 4
Y() = — - - +
wf (1T e s ] A
PT3 3 U Tam) P Tom

schreiben. Die Riicktransformation geschieht deshalb am einfachsten mit dem Integrationssatz (2.21)
und mit (T 5), (T 8) sowie (T 9):

x t

1 k4 c T x
) = ~T12 _ o _+._s'n—)drdt+ 184 sin —
h mff(e Cr TR BT
00

x

1 Lt 2C t 2C LXx

— | [—2e"2 — 18sin — — —cos — + 2 + — ) df + 184sin—

40 9 18
0

18 9 18
1 stz 81 o x 9B+ 81 sin X 82 " 204 + B + 82
=—c —c0§— —————sin — — — + —— —x.
10 10 18 10 18 10 20

Die Konstanten A und B sind durch das rechte Lager des Balkens festgelegt, sie sollen hier nicht
‘niher bestimmt werden.

Zwei weitere Anfangswertaufgaben wurden bereits in den Beispielen 2.14 und 2.15
behandelt. Nach Satz 3.1 148t sich auch jedes homogene Anfangswertproblem mit
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beliebigen Anfangswerten 16sen, denn f(#) = 0 hat die rationale Bildfunktion F(p) = 0.

Als Lésung ergibt sich nach (3.5) J(t) = y(r) = L-! {%}

Beispiel 3.3: Das folgende homogene Anfangswertproblem
V' +ay’ +ay =0;  yo, ¥ beliebig;  ao, ay reell;
wird geldst. Die Bildgleichung und die Polynome P(p) und R(p) lauten
P*Y = ¥op = ¥o + a;(pY — ¥o) + @Y =0,
P(p) =p* + aip + ao,  R(p) = YoP + ¥o + @Yo,
und damit ergibt sich als Losung

Rp) _
Y(p) = (p) =Yo—7— P() + (o + a1¥0) =— P(p)

Zur Riicktransformation werden die Nullstellen
a=—<}a,+\/3, b=—~§a1—\/1—), D=1}al— a,
von P(p) = (p — a)(p — b) benétigt. Soll das Ergebnis nur reellwertige Funktionen enthalten, so
sind folgende Fallunterscheidungen nétig.
Fiir D > 0, d.h. a und b reell und verschieden, wird (T 96) und (T 99) benutzt. Nach den Expo-
nentialfunktionen geordnet, ergibt sich:

(a+ a))yo + J’o (b +ag) yo + }’o obt.
3.7
2/D 2D

Fiir D < 0, d.h. a und b konjugiert komplex, benutzt man (T 97). Daraus folgt zunéchst

{W} = e~tar (cos\/ Dt— \/_ ay sm\/ D t)

Nach den trigonometrischen Funktionen geordnet, ergibt sich

S a + 2p! —_—
¥y = (yo cos</=D 1+ ‘Z—yj/%sin J-D :) o, 6.9

) =

Fir D =0, d.h.a =b= —1aq, ist nach (T 98)
¥(1) = (o + (g + ¥ ayo)r) e ¥, (39
Beispiel 3.4: Hat ein Stromkreis (Bild 3.3a) die Kapazitit C, den Widerstand R und die Induktivitat L,

so gelten zunédchst zwischen Strom i und Spannung u die Gleichungen

t

1
ug = Ri(t), wup=Li'(t), uc= ?fi(l) dr, wugp+uL+ uc=0.

Dabei soll i(0) = 0 und uc(0) = u, sein; aus der letzten Bedingung folgt wegen uc(0) = u;(0) noch
Li’'(0) = u.
43
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Durch Differentiation nach ¢ folgt fiir den'Strom i(z)

1
Li"(1) + Ri'(t) + ?i(l) =0, i0)=0, 0= Ifu0~ (3.10)

R 1
Setzt man y(¢) = i(t),a; = I % =50 liegt Beispiel 3.3 vor. Folgende Bezeichnungen sollen
elten:
. R 1

=5 w°=JZE’ a=-3+4y/D, b=-8-/D, D=6 ol

=]

0
b)
Bild 3.3a. RLC -Stromkreis aus Beispiel 3.4

Bild 3.3b. Stark geddmpfte Schwingung, schwach geddmpfte Schwingung, aperiodischer
Grenzfall

~

Als freie geddmpfte elektrische Schwingungen ergeben sich damit aus (3.7) bis (3.9) folgende Funk- -
tionen i(r) (Bild 3.3b):

a) D > 0, d.h. 8% — w? > 0 (starke Dampfung):

2L/D 2L/D LD
b) D < 0, d.h. 0> — w} < 0 (schwache Dampfung):

U — U — U —
i(f) = —2 _eCorVDd — 0 Co-vD) = 2 edinh /D 1

i) = ——a e sin\/—D t;

Uo
L\/-D

¢) D =0, d.h.6*> — w2 = 0 (aperiodischer Grenzfall):

. Ho 5
i(t) = —1te ™.
® i

Im Beispiel 3.7 wird dieser Stromkreis wieder betrachtet. Dort wird dann eine Eingangsspannung
e(t) vorhanden sein, die zu erzwungenen Schwingungen fiihrt.
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b) f(t) ist fiir t > O stetig bis auf isoliert liegende Sprungstellen

Wie in a) wird das Anfangswertproblem (3.1), (3.2) betrachtet und vorldufig an-
genommen, daB8 y(¢), ..., y™(¢) und f(#) Laplace-transformierbar sind. Dann ergibt
sich wie in a) als Bildgleichung von (3.1), (3.2) und deren Losung

R(p)

P(p)Y(p) - R(P) =Fp. Yp)= o T O(P)F(p)-
];Ep )) und Q(p) = P( ) — —sind rationale Blldfunktlonen die zugehorigen Originalfunk-
tionen

iy 71 [R(P) _ 1

70 = 1 {501, 40 = 7 {01} = I {55 310

lassen sich nach Abschnitt 2.4.1. bestimmen und haben die Form (2.32). Hat P(p)
nur einfache Nullstellen, so gilt auch die einfachere Darstellung (2.34). yy(¢) ist Lo-
sung von (3.1), (3.2) fiir /(¢) = 0. Benutzt man noch den Faltungssatz (2.20) zur Ruck-
transformation von Y(p), so ergibt sich

YO = y() + qO) »f(1) = »(0) + fLI(' - /(@) dz. (3.12)

Unabhingig davon, ob y(t), ..., »™(r) und f(¢) transformierbar sind, wird im
Satz 3.2 die Funktion (3.12) als Losung von (3.1), (3.2) verifiziert, falls f(¢) der fol-
genden einfachen Voraussetzung gentigt.

Satz 3.2: Ist die Funktion f(t) fiir t > 0 bis auf isoliert liegende Sprungstellen stetig und S.3.2
t
existiert f | /()| dz, so ist (3.12) auferhalb der Sprungstellen die Lisung der Anfangs-

0
wertaufgabe (3.1), (3.2).

Beweis: yy(t) aus (3.12) geniigt der Gleichung (3.1) mit f(¢) = 0 und den gegebenen
Anfangswerten (3.2). Deshalb bleibt zu zeigen, daBl g(¢) = q(¢) = f(¢) der Gleichung
(3.1) mit der gegebenen Funktion f(#) und verschwindenden Anfangswerten (3.2)
geniigt.

Die Funktion ¢(¢) ist nach a) Losung der Anfangswertaufgabe

4@ + @1 g + e+ @19 + agg =0,
9(0) =¢'(0) = - = g"2(0) =0, ¢"0)=1, (3.13)

weil die zugehdrige Bildgleichung P(p) Y(p) — 1 = 0 die Losung Y(p) = Q(p) hat.
Die Funktion ¢(¢) und alle ihre Ableitungen sind stetig, deshalb und wegen

~|‘ |f(¥)l dr < oo existieren alle Faltungen ¢® = f(¢), » = 0, 1, ..., n ([9], S. 54).
0
Aus g(t) = q(t) = f(¢) folgt nach einer Differentiationsregel ([9], S. 62)
g0 =g @O *f(1), ..., g"0(t) = g™ V@) + f() (3.14)

wegen der Anfangswerte ¢(0) = ¢’(0) = --- = ¢®2(0) = 0. Daraus folgt, daB auch
die Funktionen g(), ..., g™ (¢) stetig sind und fiir # —» +0 alle den Wert Null an-
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nehmen. g™(¢) existiert in jedem Intervall, in dem keine Sprungstellen von f{(¢) liegen
(oder fiir alle £ > 0, falls f(r) durchweg stetig ist), und es ist

g = [ = D f@) dv + ¢"=2©) (1) = ¢(0) * (1) + f(¢)

0

wegen g®~1(0) = 1. An jeder Sprungstelle ¢ von f(¢) existieren links- und rechts-
seitiger Grenzwert (¢ — 0) und f( + 0), folglich existieren dort wegen der letzten
Gleichung auch links- und rechtsseitiger Grenzwert g™ (¢ — 0) und g™(¢ + 0), d.h.,
g™(#) und damit auch y™(f) haben dieselben Sprungstellen wie f(z).

g(t) gentigt tatsdchlich (3.1), denn durch Einsetzen und Ausklammern von f()
ergibt sich fiir jedes Intervall, das keine Sprungstelle von f(¢) enthilt,

4P f(0) + f0) + @10 2 f0) + oo + aoq + f(7)
= (@™ + a1V + o+ a0q) * (1) + f(1) = f(0),

weil der Ausdruck in der Klammer wegen (3.13) gleich null ist. An jeder Sprungstelle
von f(t) ist (3.1) durch (3.12) links- und rechtsseitig erfiillt. Damit ist der Beweis be-
endet.

Der Satz gestattet also die teilweise Anwendung der Laplace-Transformation, denn
sowohl y,(¢) als auch ¢(¢) in (3.12) konnen mit ihr berechnet werden.

Die Funktionen (3.3) sind stetig und erfiillen deshalb die Voraussetzungen des
Satzes 3.2, d. h., Satz 3.1 ist ein Spezialfall von Satz 3.2. In diesem Fall sind die Losung
nach Satz 3.1 und die Losung (3.12) nur verschiedene Darstellungen derselben Funk-
tion. Andererseits ist Satz 3.2 umfassender, weil die Funktion f(r) in ihm weder
stetig noch transformierbar sein muB.

t
Die Voraussetzung f | f(z)| dz 148t Funktionen zu, die im Nullpunkt sogar eine

0 7 .
absolut integrierbare Singularitdt haben (wie z.B.f(t) = —1/=-) .
NEY

Beispiel 3.5a: Die Losung der Anfangswertaufgabe

gy [BOSISL
— = mit yo =1, yo= -2, ¥y =3,
y Yy 24 0,1<t Yo Yo 0

wird nach Satz 3.2 bestimmt. Die Funktion f(r) ist bis auf die eine Sprungstelle bei r = 1 stetig.
Das Anfangswertproblem

VO+Y =2y=0, yo=1, y=-2 y'=3,
hat nach (3.6) dic Bildgleichung
P(p) Y=Rp), P@P)=pp-1D((p+2), Rp=p"-p-1.
Die Losung yy(#) ergibt sich wegen der einfachen Nullstellen von P(p) nach (2.34) als

=11 [ 22

1 S
=———c¢' +—e?
P(p) 2 3 6
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g(t) = q(t) * f(¢) ist Losung des Anfangswertproblems

gy [BOSESL
— = m = = = V.
Y y’ Y 0,1<t it Yo = Yo = Yo
q(t) findet man wieder nach (2.34), es ist
a(t) = L"H{O(p)}= —% + }e' + e

Fiir die Funktion g(¢) ergibt sich wegen der Definition von f(¢) damit

t

[at-vdr, 0sts1,

o
i1

fq(t—r)d'r, 1=¢.
0

&)=

Diese Integrale lassen sich noch berechnen und ergeben

1 t t
J‘q(t—r)d1=—§r+—}e'|‘e"dr+%e"2'[e"dt
0 0 0
1 1
= ————tt+_—e——eH 05121
4 3 2
1 1 1
J.q(t—z)drz —_1.+_1_et e"df'*'ie_z'fe"dr
2 3 6
0 0 0
1 1 1 1
=——+—(l=-—|e'+—(*—-De? 1=1.
7t 3( e)e &~ he

Nach (3.12) folgt durch Zusammenfassen als Losung der Aufgabe

— —etl 4 ie‘z‘ + 1—e‘z“‘”, 11,
3 4 12 -

Aus dem Beweis des Satzes 3.2 folgt, daB y(¢), y'(¢) und y”(¢) stetig sind und y"”(¢) eine Sprungstelie
bei # = 1 hat; dies kann man am Beispiel nachpriifen.

Ist die Funktion f(¢) sogar Laplace-transformierbar (dies wird in Satz 3.2 nicht
verlangt) und hat sie die Laplace-Transformierte F(p), so kann fiir die Riicktrans-
formation von Q(p) F(p) statt des Faltungssatzes (2.20) mitunter auch eine andere
Rechenregel schneller und einfacher zur Bestimmung von g(7) fithren. Die Berechnung
des Faltungsintegrales entfillt dann; dazu das folgende

Beispiel 3.5b: Dasselbe Anfangswertproblem wie in 3.5a wird unter Beachtung der letzten Bemerkung
gelost. Die Bildgleichung und ihre Losung ist hier mit P(p) und R(p) wie in 3.5a

1 R(p) | 1
PP)YP)=Rp)+ (1 —e?)—,¥=——+ —Q(p) = e" Q(p)
P P(p)
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Wie in 3.5a erhélt man y,(f) und g(#) und daraus nach dem Integrationssatz (2.21) und dem Ver-
schiebungssatz (2.14)
1

1 1 1 1 1
y it {;Q(P)} = fq(‘t)dr S —e'— —e?,
g .

2 3 12
1 0,0s¢=1,
L1 ie?— = 1 1
{e P Q(P)} _?_7“— 1)+—3—e“‘ - —e2t-D 1 =y,

FaBt man y,(#) und die beiden letzten Ausdriicke zusammen, so ergibt sich dieselbe Losung y(¢) wiein
3.5a.

Beispiel 3.6: Die Anfangswertaufgabe
V't ay +ay=£1, yo=y=0,

mit beliebiger bis auf Sprungstellen stetiger Funktion () wird gelost. Fiir die Losung y(¢) = g(r)
(weil R(p) = 0) wird g(z) bendtigt. Nach (3.13) geniigt g(¢) hier der Anfangswertaufgabe

Y+ @y +ay=0, yo=0, yy=1.
Folglich ist nach Beispiel 3.3, Formeln (3.7) bis (3.9), mit den dortigen Bedeutungen von a, b, D fiir
1

D > 0:q(t) = — (e — &%),
2./D
1 s
D < 0:q(t) = ———e"1%'sin \/—-D t,
N

D = 0:q(t) = te3%,
Die Losung der obigen Aufgabe ist nun durch

t
W) =g(t) = q(t) + f(t) = f q(t — ) f(x) dz

o

gegeben mit den drei verschiedenen Funktionen g(#) fiir die drei Félle D > 0, D < 0 und D = 0.
Ein dem Beispiel 3.5b analoges Vorgehen ist hier nicht moglich, weil f(¢) beliebig (also auch nicht
transformierbar) sein kann.

Beispiel 3.7: Hat der im Beispiel 3.4 betrachtete Stromkreis die Eingangsspannung e(r) (Bild 3.4), so
gilt (falis e(¢) differenzierbar ist) wegen (3.10) fiir den Strom i(7) jetzt

Li"(t) + Ri'(t) + 1Ei(l‘) =e'(t), i0)=0, i0)=K>0.

elt) L
c

Bild 3.4. RLC-Stromkreis mit Eingangsspannung
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Die Losung i(z) 1aBt sich in allen Féllen mit (3.12) angeben als

L4
i(t) = ig(t) + io() = i) + [ a(t.— D) @) dr,
o

1
dabei ist in(?) aus Beispiel 3.4 (— Uy = K) und ¢(¢) aus Beispiel 3.6 zu entnehmen.

L
Fir R> 0istd = DA > 0 und damit stets i,(¢) = 0 fiir # — 00 nach Beispiel 3.4 (dies folgt auch
aus Satz 2.18, weil beide Nullstellen von Lp® + Rp + < negativ sind). Deshalb interessiert man sich

vorwiegend fiir io(r). Dafiir ergibt sich aus Beispiel 3.6 mit den Bezeichnungen des Beispieles 3.4
fur

1]
1 — —
D > 0: ig(t) = —-—:f(e(—MJD)r— e(-6+VD)re(t — 7)d7;
2/D
0
1
J-b
t

D=0:io(t) = [Te~ et — 7) dr.
0

D < 0:ig(t) =

t
J e~%%sin \/—Dte(t — 7)dt;
0

Eine einfachere Darstellung von ig(#) gibt es nicht; das Berechnen der Integrale fiir konkrete e(r)
ist i. allg. aufwendig.
,0=r<T,

Fiir e(t) = {0 T<t und D = 0 z. B.ist (Bild 3.7) fur
, L <1,

¢
1
0=t =T:ig(t) = f e ¥ dr = 32_[1 — @t+ 1)e%;

0
T T T
\
TEtig(t) = f(r — 1) e~ %D d7 = e fe‘”'dt - e"‘fre”’ dr
0 0 o

= ;_2 [ +68(t = T)e~%¢=D — (¢ + 1) e,

SN E——

0] 7 t
Bild 3.5. Strom io(#) aus Beispiel 3.7

Das Bestimmen der allgemeinen Losung y() sowie das Losen von Rand- und Eigen-
wertproblemen fiir die Differentialgleichung (3.1) ist ebenfalls mittels Laplace-Trans-
formation maglich. Dabei miissen alle nicht vorgegebenen Anfangswerte aus der
Folge yo, 56, ..., y¢~" in der Bildgleichung als Parameter behandelt und nach der
Riicktransformation den gestellten Bedingungen angepaBt werden (siche Aufgaben
3.5 und 3.6).



58 3. Anwendungen der Laplace-Transformation
3.1.2.  Spezielle rechte Seiten f(r)

Die innere Struktur eines physikalischen oder technischen Systems, das sich durch
eine gewdohnliche lineare Differentialgleichung mit konstanten Koeffizienten be-
schreiben 148t, ist durch die homogene Differentialgleichung mit den gegebenen An-
fangswerten bestimmt; die zugehorige Losung ist yu(?).

Die auBeren Einwirkungen auf das modellierte System werden durch die Funk-
tion f(#) (Erregung, Eingangs-, Steuer-, Stérfunktion, Eingangssignal) ausgedriickt.
Die bei verschwindenden Anfangswerten zugehdrige Losung ist g(r) = g(7) = f(1).
Die Funktion g(r) (Antwort, Ausgangsfunktion, -signal) wird anschliefend fiir ver-
schiedene wichtige Funktionen f(¢) untersucht, d. h., es wird das Anfangswertproblem

YO+ @y + e+ @y + a0y = £(0),
Yo=Yo=r =) =0, (3.15)
betrachtet, das nach Satz 3.2, Formel (3.12), die folgende Losung hat:

8() = q() +f(1) = [ q(t = D f(x) dr, (3.16)

q(t) = L7H{OP)},  P(p) =p" + @yyp"t + - + a0, Op) =

q(t) heiBt Gewichtsfunktion (oder auch Greensche') Funktion).
Die in Betracht kommenden Funktionen f(¢) sind transformierbar und nach dem
Faltungssatz (2.20) folgt aus (3.16)

G(p) = O(p)F(p). (3.17)

Von dieser viel einfacheren Bildgleichung kann nunmehr auch anders auf g(t) ge-
schlossen werden (z.B. durch Partialbruchzerlegung bei rationalem G(p)).

P(p)

Fingangsfunktion Ausgangfunktion
Storfunktion Antwort
Errequng

1) i gtt)

[7('7/ N

fip) Glp)
Bild 3.6. Schematische Darsteliung der Gleichung (3.17)

O(p) heiBt Ubertragungsfaktor (auch -funktion), er verkniipft sehr einfach durch
(3.17) F(p) (wie f(t) Eingangsfunktion genannt) mit G(p) (wie g(r) Ausgangsfunktion
genannt). Gleichung (3.17) und Eigenschaften des Ubertragungsfaktors bleiben in
gewissen Fillen sogar bei nichtverschwindenden Anfangswerten erhalten (siehe [2],
§ 23). Sieht man von den konkreten physikalischen oder technischen Einzelheiten des
modellierten Systems ab, so kann der Zusammenhang wie in Bild 3.6 dargestellt wer-
den. Werden mehrere Systeme durch Reihen-, Parallel- oder Riickfiihrschaltung zu-

1) Georg Green (1793-1841), englischer Mathematiker.



3.1. Lineare Differentialgleichungen 59
sammengefiigt (Bild 3.7), so spiegelt sich das in einfachen Rechnungen mit den Uber-

tragungsfaktoren wider; davon wird in der Elektrotechnik, Regelungstechnik und
Systemtheorie ausgiebig Gebrauch gemacht. Es gelten folgende

Verkniipfungsregeln fiir Ubertragungsglieder:

a) Reihenschaltung: a(p) = Q:(p) Q:(p),

b) Parallelschaltung: O(p) = 04(p) + Os(p),
it 4 ’
Fipl G ip)

—_s_ =
&
f Gip
1 7(p) 12 ot
Fi 6(p)
Pl L]
£t g(t)
T G(p)+&(p) o

i) g,
U &) ——
Fip) Fip)=G:(p) G1(p) G:(p)
G (0) G(p)
2 O (p) Al

fit) &(p git)

H Fip 7+G1(p) & (p) G(p)
92(p)
S
G2 (p)

fit) 8(0)8;(p) gt

4 Fip T+ &0 () G(p)

Bild 3.7a. Reihenschaltung von Ubertragungsfaktoren
Bild 3.7b. Parallelschaltung von Ubertragungsfaktoren
Bild 3.7c. 1. Riickfiihrschaltung von Ubertragungsfaktoren
Bild 3.7d. 2. Riickfiithrschaltung von Ubertragungsfaktoren
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¢) 1. Riickfihrschaltung:  O(p) = _1%_3%67’

d) 2. Riickfiihrschaltung:  Q(p) = % .

Der Beweis dieser Regeln folgt aus G,(p) = Q,(p) F1(p) und G,(p) = 0.(p) F»(p)
im Fall
a) wegen Fy(p) = Gy(p) und G,(p) = G(p),
b) wegen Fi(p) = Fx(p) = F(p) und G,(p) = G»(p) = G(p),
¢) wegen Fy(p) = F(p) — Gx(p) und G,(p) = Fa(p) = G(p),
d) wegen Fy(p) = F(p) — G,(p) und G.(p) = G(p).

Mit diesen Verkniipfungsregeln ist es moglich, aus technisch sinnvollen Elementar-
baugliedern (ca. 10 Stiick mit sehr einfachen Ubertragungsfaktoren) komplizierte
Systeme der Elektrotechnik, Regelungstechnik und Systemtheorie aufzubauen und
den sie charakterisierenden Ubertragungsfaktor zu bestimmen; die Beispiele 3.8 und
3.9 skizzieren dieses Vorgehen.

Beispiel 3.8: Als Schwingungsglied wird ein Elementarbauglied bezeichnet, dessen Eingangsfunktion
f(r) und Ausgangsfunktion g(z) der Differentialgleichung

g"() + a1 g'(t) + aog(t) = f(t), g(0) = g'(0) =0,
geniigen. Der RLC-Stromkreis der Abb. 3.4 ist ein solches Glied fiir elektrotechnische Systeme

R 1
—> Der Ubertragungsfaktor Q(p) eines Schwingungsgliedes ist

4 =74 = 5

o) = P

Die Gewichtsfunktion g(r) wurde in Beispiel 3.7 in Abhingigkeit von D = } a? — ao bestimmt; fiir
den technisch wichtigsten Fall ist D < 0 und nach Beispiel 3.7

q(t) = e 14 sin \/—D t.

1
NET)

Bild 3.8. Beispicl einer Verkniipfung von Ubertragungsfaktoren
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Beispiel 3.9: Fiir das System des Bildes 3.8 wird der Ubertragungsfaktor Q(p) berechnet. Wegen
der Bezichungen

=01(F—=Gy), G, =0Q5G, —G3), G3=03G;—Gs), Gi=04G;

gilt nach Regel ¢) zunichst

G3=QG,, 0= T%S;.QT’ Gz = 0,G; — 020G,

Daraus ergeben sich G,, G = G; und Q:

_ Q.00+ 0504) - _ _ .
Gy = m Gy = QnGy, Gy =0Q/F - 0,016

0,(1 + 0s(0: + Q)
G=G; = F= F.
ST 030, 1 00 + 000 £ 000 | 2P

a) Sprungfunktion Sf(t) = u(t), Ubergangsfunktion g,(t)

t=0, .
Fir f(1) = u(t) = 1 ‘= - o gilt wegen (2.4)

Gp) =

7 = 520 80 = () = j 4@ ér. (318)

Die Funktion f(#) = u(¢) driickt eine zeitlich konstante Erregung der Hohe 1 des
Systems aus; g,(¢) ist die zugehorige Losung von (3.15).

G,(p) ist eine in p rationale Bildfunktion, die auch durch Partialbruchzerlegung
riicktransformiert werden kann. Hat pP(p) nur die einfachen Nullstellen p, = 0,
D1s---» DPns SO gilt fiir die Koeffizienten nach (2.33)

1
P(p)) + p:P'(p1)’

und g,(¢) hat nach (2.34) die einfache Form

cy = =0,1,...,n,

1 Ll 1 -
s“O=p0 * EPem (@42
Diese Formel heiBt Heavisidescher Entwicklungssatz, sie spielt z. B. in der Elektrotech-
nik eine groBe Rolle. Hat pP(p) mehrfache Nullstellen, so ist zur Bestimmung von
g,(¢) Formel (2.32) zu verwenden.

FirRep; < 0,i = 1,2,..., n, folgt aus (3.19) bzw. bei mehrfachen Nullstellen aus
(2.32) sofort

1

gt) ~> % = t> o, (3.20)

d.h., g,(¢) ist uneigentlich stabil. Dies gilt auch bei beliebigen Anfangswerten fiir (3.1)
wegen y,(t) - 0, t - oo, bei Re p; < 0.
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2,(¢) heiBt Ubergangsfunktion. Mit ihr kann man g(¢) fiir jede Funktion f(¢) an-
geben, denn aus (3.18) folgt g.(t) = ¢(#) und daraus wegen (3.16)
T

80) = 8 () + 1) = f gt =) dr = f &t =0 f@) dr,

wenn noch g,(0) = 0 beachtet wird. Die letzte Darstellung von g(z) heiBt Duhamel-
sche Formel. Die Ubergangsfunktion g,(¢) kann analytisch bestimmt und auch durch
technische Experimente gefunden werden, sie kann zu Stabilitidtsuntersuchungen
herangezogen werden.

Beispiel 3.10: Die Ubergangsfunktion fiir das Problem y” + a;)" + aoy = u(t), yo = ¥o = 0, wird
bestimmt. Nach Beispiel 3.3, den dortigen Bedeutungen von a, b und D sowie Formel (3.18) ist nach
einiger Rechnung fur

1 1
D>0:g()= —= f(e‘"—-e"’)dr = ———(be*—ae” —b+a)
2/D 2/Dab

1

ao 2410\/
1 e
D<0:g()=—— fe-%":’sin -Drde
V=D J

——(be" — ae™) wegena—b—z\/D ab = aq,

= L - _\/1__7 etou (gax sina/ =D+ /=D cos ¢3,),

1
1 1 1
D=0:g()= f Te7 i dr = — — — (1 + ———a,t) et
ag ao 2
0
1 .
Der Summand - istin jedem Falle in Ubereinstimmung mit (3.19) vorhanden. In diesem Beispiel ist
0

das Faltungsintegral in (3.18) zur Bestimmung von g,(¢) giinstig, weil g(¢) im Beispiel 3.3 bereits be-
rechnet wurde.

Beispiel 3.11: Die Ubergangsfunktion fiir y/ — y” + 4y — dy = u(t), yo = ¥6 = ¥4’ = 0, ist zu
bestimmen. Nach (3.18) folgt

1
Gp)=——, PO=(@-DP*+4, PE=3"-2p+4
PP(p)
Da nur einfache Nullstellen po = 0, p; = 1, p, = 2j, p3 = D, vorliegen, ist (3.19) anwendbar. Es ist
PO)= -4, pP(p) =35, PpP(pz)=38(1—2j), psP(ps)=28(1+2.
Durch Einsetzen und Umrechnen auf reelle Funktionen nach (2.35) folgt die Ubergangsfunktion

1 1 1 1
)= ——+ —e' + et 4+ g2t
(50 4 5 8(1 — 2j) 8(1 + 2j)

1
= — (cos 2¢ — 2sin 2f + 4e' — 5).
20( )
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b) Funktion f(t) = ¢!, Frequenzgang Q(jw)
Fiir f(7) = ', w > 0, gilt wegen (2.5)
1
(p = jow) P(p)

Die Funktion e’ driickt wegen

t

Gu(p) = s 8o(t) = q(1) % & = & f e g(r)dr.

o

e =1, €&/t = coswt + jsinwt,

eine periodische Kosinus- oder Sinus-Erregung der Amplitude 1 und der Frequenz
aus. Statt mit den reellen Funktionen cos wt oder sin wz wird mit der einfacheren
komplexen Funktion e’®* gerechnet und am Ende einer Rechnung zum Real- oder
Imaginérteil libergegangen; diese Ausdriicke sind Losungen von (3.1) wegen der
reellen Koeffizienten in (3.1). g,(#), Re g,(f) oder Im g, () sind also die zu e/,
cos wt oder sin wt gehdérenden Losungen von (3.15). )

G,(p) ist wieder eine in p rationale Funktion, die auch durch Partialbruchzerlegung
riicktransformiert werden kann. Hat (p — jo) Q(p) nur die einfachen Nullstellen
Po = ]jw, Py, ..., Pa, O folgt analog a) mit (2.33) und (2.34)

(3.21)

=Py E G P

Liegen mehrfache Nullstellen vor, so ist (2.32) zu benutzen.
Ist Rep; < O fiir i = 1,..., n, so folgt aus (3.21) bzw. bei mehrfachen Nullstellen

aus (2.32) sofort
2,(1) = P(;w) et + o(1) = O(jw) e'* + o(1), - co.

Die letzte Formel beschreibt das Verhalten des modellierten Systems fiir groBe ¢
(stationdrer Zustand). Die Formel gilt sogar bei beliebigen Anfangsbedingungen fiir
(3.1), weil y,(t) — 0 fiir > oo gilt unter der getroffenen Annahme Re p; < 0.

O(jw) = 1Q(w)| e, [Q(w)|  bzw.  g¢(w) (3:22)

heifien Frequenzgang, Amplitude bzw. Phase des Frequenzganges. Q(jw) ist der Wert
des Ubertragungsfaktors auf der imaginiren Achse. Wegen der fiir Re p; < 0 giil-
tigen Beziehung

8u(t) = |Q(w)| e + o(1), 1 o, (3.222)

erkennt man in diesem Fall am Frequenzgang ohne Riicktransformation sofort
Amplitudenidnderung und Phasenverschiebung gegeniiber der Eingangsfunktion e'**
fiir den stationdren Zustand.

Der Frequenzgang kann wegen (3.18) aus der Ubergangsfunktion durch

Q(jo) = joG,(jw)

berechnet werden. Auch umgekehrt kann die Ubergangsfunktion aus dem Frequenz-
gang berechnet werden ([9], S. 97); dies ist wegen der méglichen experimentellen Er-
mittlung des Frequenzganges von Bedeutung.
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Beispiel 3.12: Der Frequenzgang, seine Amplitude und Phase sowie der stationire Zustand sind fiir
3
= und
Y + 5y + 4y =€, yo und yg beliebig,
zu bestimmen. P(p) = p? + 5p + 4 hat die Nullstellen p; = —1 < 0 und p, = —4 < 0; es ist
_ 1
-0+ 50 (4 - w)? + 2502

Q) = 7 (4 - ® = Sjw),

10G)| = ((4 — w?)? + 250%)~% ~ 0,24,

-5

R —2,564, @w)x —68,7°% —1,2.

tan p(o) = ———
an p(w) =
i 4—w?
Fiir t — oo ist damit nach (3.22a)
@
2o(0) = 0,246i(F1-12) 1o(1).

Yo und y} konnen tatsdchlich beliebig sein, weil wegen der vorliegenden Nullstellen yy(1)— 0 fiir
t— oo gilt.
Bei der Erregung sin wt gilt fiir die Antwort Im g, (1):

Im g, (f) = 0,24 sin (%x = 1,2) +o(l), 1o .

Der Frequenzgang Q(jw) ist eine komplexwertige Funktion der reellen Verinder-
lichen . Der Realteil von Q(jw) ist eine gerade Funktion von o, der Imaginirteil
von Q(jw) ist eine ungerade Funktion von w:

ReQ(jw) = Re Q(—jw),  ImQ(jo) = —Im Q(—jo).
Dies gilt unter Beachtung von (3.16) wegen
. 1 1 1
209 = By = TPGaI? PG
Re P(jw) = ¥ a(iw), ImP(w)= ¥ a(jo)".

» gerade v ungerade

P(jo) = (Re P(jo) — jIm P(jw)),

Daraus folgen auflerdem die Bezichungen

0(w) = 0(=jw),  O(=jo) = 0(w),  [Q()* = O(j») O(—jv).
Der Frequenzgang Q(jw) kann in der komplexen Ebene dargestellt werden. Aus
dieser Darstellung (Ortskurve genannt) konnen Amplitude und Phase abgelesen
werden. Dies illustriert das
Beispiel 3.13: Der Frequenzgang von

Y+ a1y’ + agy = &',  yo und yg beliebig, } a7 = ag,a; > 0,

wird bestimmt und graphisch dargestellt.
Fiir P(p) = p* + a;p + a, sind die Nullstellen p; = p, = —}a; < 0. Der Frequenzgang, seine
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Amplitude und Phase sind hier

1 . 1
. 1QG) = ——

ay — @* + a;jo a +

Q) =

a

—a,0 - - —
p(w) = arctan ——— beiow + \/ao , plw)= — -Z—beiw = \/ao.
a — o

1
Aus diesen Beziehungen folgt: Fiir wachsende w = 0 ist offenbar |Q(jw)| monoton fallend von—a—

0
bis 0, fiir wachsende @ = 0 ist wegen ¢'(w) < 0 auch g(w) monoton fallend von 0 bis —=. In Bild 3.9
ist dieser Sachverhalt dargestellt.

Der Frequenzgang 1Bt sich auch zu Stabilitdtsuntersuchungen heranziehen (Orts-
kurvenkriterien).

Ima

Bild 3.9. Frequenzgang Q(jw) des Beispiels 3.13 als Funktion von @

¢) Diracsche Delta-Funktion 6(t)

In Physik und Technik ist hiufig eine Funktion (Erregung) notig, die eine sehr
kurze Zeit mit einem sehr grofien Wert wirkt. Dies ist z. B. bei der Beschreibung eines
mechanischen Stofes, eines Strom- oder SpannungsstoBes der Fall (Beispiel 3.14). Da-
bei soll zur Normierung stets die Gesamtintensitit gleich 1 sein (siche auch [B 22],
1.2.2).

Solche Funktionen lassen sich beliebig viele angeben, die einfachste unter ihnen
(Bild 3.10a) und ihre Gesamtintensitat ist

0, t1<0, e<t

t

1

- dfa,d=_=1,z;.

o(t, €) L,Oétés un J (7, €) dv e €
&

Der Parameter ¢ (und auch die Vielfalt der Funktionen mit obigen Forderungen)
stort bei Rechnungen und ist in den Anwendungen unwesentlich, deshalb wird der
Grenziibergang ¢ — +0 durchgefiihrt. Aus den obigen Beziehungen entsteht dadurch
formal: ¢
0, t=%0
6(1)={ o und [d(x) dv =1, t>0.
, b= o

Diese Gleichungen stehen zueinander im Widerspruch, denn es gibt keine Funk-
tion () mit diesen Eigenschaften.
Trotzdem mochte man mit dieser ,,Pseudofunktion® d(¢), auch Diracsche Delta-

5  Stopp, Operatorenrechnung
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4 (te) 6

1

00 =75 o
|
!
|
|

e
1 L L t t
a) 700 50 20 70 b)
" . - 1 1 1 1
Bild 3.10a. Funktionen d(¢, ¢) fir e = —, —, —, ——

Bild 3.10b. Symbolische Darstellung der Diracschen Delta-Funktion §(¢)

Funktion®) (Impulsfunktion ; symbolische Darstellung in Bild 3.10b) genannt, gern rech-
nen, insbesondere soll sie in den Kalkiil der Laplace-Transformation einbezogen
werden. Dafiir gibt es verschiedene Méglichkeiten. Hier wird anschlieBend der Be-
griff des Stieltjes-Integrales?) herangezogen, im Abschnitt 4.3.3. wird §(¢) im Rahmen
der modernen Operatorenrechnung mit einer Distribution identifiziert. Diese letzte
Auffassung ermdglicht es auch, Ableitungen (in einem verallgemeinerten Sinn) von
4(t) und deren Laplace-Transformierte zu bilden.
b

Das Riemann-Stieltjes-Integral f f(t) dg(¢) der stetigen Funktion f(¢) beziiglich der

in @ £ t £ b monoton wachsenden Funktion g(¢) existiert bekanntlich immer ([B 2],
S. 224). Setzt man g(¢) = u(t) (u(f) siche Ubersicht S. 8), so folgt aus der Summen-
definition dieses Integrales sofort

{f(o), as0<p,

0, sonst.

[0y dute) =

(3.23)

In Analogie zu der fiir stetig differenzierbare Funktionen richtigen Substitutions-
regel fithrt man jetzt ein formales Element 6(z) durch die Schreibweise du(r) = 6(¢)dt
ein, d.h., es wird

[ 7@ 8) dt = [ £(2t) du(o) (3.24)

gesetzt. Nunmehr lassen sich alle Rechenregeln fiir Stieltjes-Integrale anwenden; z. B.
148t sich die Faltung einer stetigen Funktion f(¢) mit d(¢) bestimmen als

J(0)*8(t) = [t = 1) 8@) dv = [ f(t — ©) du(z) = £(@). (3.25)

1) Paul Adrien Maurice Dirac (geb. 1902), englischer Physiker.
2) Thomas-Jean Stieltjes (1856-1894), hollindischer Mathematiker.
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Ist nicht 7 = 0 sondern ¢ = #, > 0 die kritische Stelle, so schreibt man in Ver-
allgemeinerung von (3.24):

) e S(to), @ =19 < b,
f f@®) 6@t — ty)dt = f f@) du(t — ty) = (3.26)
a a 0, sonst.
Beispiel 3.14: Die Delta-Funktion &(¢) als idealisierte mathematische Beschreibung physikalischer
Vorginge ist in den verschiedensten Gebieten niitzlich:
a) Zwischen Kraft K(¢) und Impuls J(¢) in der Mechanik besteht der Zusammenhang

t
J0 = [K@dr, K@) =J0.
0

Bei einem mechanischen StoB der GréBe J, zum Zeitpunkt z = 7, springt der Impuls von 0 auf den
konstanten Wert Jo, d.h., es ist J(f) = Jou(t — t,). Die hier zugehorige Kraft ist keine Funktion
von ¢, sie 148t sich in der Form K(f) = Jod(¢ — to) darstellen. Analog lassen sich Strom- und Span-
nungsstoBe beschreiben.

b) Ist die Eingangsspannung e(t) eines RLC-Stromkreises (Beispiel 3.7) die Sprungfunktion u(z),
so kann €’(f) = &(¢) in der Differentialgleichung des Beispiels 3.7 gesetzt werden.

¢) Bei der Belastung eines Balkens (Beispiel 3.2) kann neben der Streckenlast g(x) auch eine Einzel-
last go an der Stelle x = x, vorkommen. Diese Einzellast kann als Grenzwert einer Streckenlast
analog Bild 3.10 aufgefaBt und mit go(x) = god(x — Xo) in der Differentialgleichung fur die Balken-
durchbiegung beriicksichtigt werden.

Zur formalen Transformation von d(f — #,) bildet man unter Beachtung von (3.26)

und wegen 0 < 1, < @
; et — to) dt = J e~? du(t — t,) = e "o, (3.27)
[ 0
Die Funktionen e~?' sind nach Beispiel 2.22 keine Laplace-Transformierten von
transformierbaren Funktionen, weil sie periodisch in p sind. Man kann jedoch unter
Beachtung der Vereinbarung (3.24) und der Formel (3.27) nachweisen, daB bei Hinzu-
du(t — t5)
dt
tionen bzw. der Funktionen e~?* zur Menge der Laplace-Transformierten die meisten
Rechenregeln aus Abschnitt 2.2. giiltig bleiben. Ein weiterer solcher Nachweis folgt
aus den allgemeineren Uberlegungen des Abschnitts 4.3.3. (Satz 4.5). Im folgenden
wird lediglich die Verwendung von 4(¢) als Storfunktion bei Differentialgleichungen
der Form (3.1) gebraucht.

nahme der Elemente 6(t — 1,) = zur Menge der transformierbaren Funk-

d) Impulsantwort g(t)

Die spezielle Diracsche Delta-Funktion d(7) wird jetzt als rechte Seite f(¢) fur das
Anfangswertproblem (3.15) genommen; d(¢) driickt also eine kurzzeitige Einwirkung
von groBer Stirke mit der Gesamtintensitét 1 aus. Die zugehorige Losung g,() heifit

Impulsantwort.’)
Aus dem Anfangswertproblem
YOt @y 4 et agy = 0(1),  y(0) = - = y*D(0) =0,

) In der Technik ist anders als hier ,,Impulsantwort‘ bei einer Rechteckerregung f(7) iiblich.

5%
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ergibt sich mit (2.24), (3.27; t, = 0) und (3.4) P(p) Y = 1 und daraus sofort mit (3.11)

a0 =0, 150 = a0uo. 3.29)

Diese Impulsantwort g,() hat folgende Eigenschaften:

g5(1), ..., g82(t) ist stetig fiir alle 7, weil nach (3.13) g(0) = -+ = ¢g®2(0) = 0
ist; dagegen ist g~ (¢) unstetig bei # = 0, weil der linksseitige Grenzwert wegen
(2.1) 0 und der rechtsseitige Grenzwert nach (3.13) gleich 1 ist. Bei # = 0 existiert
deshalb g§(7) nicht. Schreibt man g§~(¢) in der Form

g80() = V(O u(t) = (¢ V(1) — Du(t) + u(t),

d"(') 24) 148t sich deshalb die

so ist der erste Summand wieder stetig fiir alle 2. Mit 4(r) =
n-te Ableitung von g4(¢) als Pseudofunktion auffassen und schrexben in der Form
g8(1) = g (@) u(?) + 6(1).
Beispiel 3.15: Es wird die Impulsantwort gs(¢) fur
YOy =2y =080, yo=yp=x =0,

bestimmt und diskutiert. Aus Beispiel 3.5a ist g(r) bekannt, damit sind die Impulsantwort und ihre
Ableitung

(1) = 0, t=0, 1) = t=0,
L T B L S T v} f—te, 1>0.
Hier ist n = 3; g5(¢) und ga(¢) sind fiir alle ¢ stetig; dagegen hat

gi0)= =0
{'}e +4%e2, >0

bei t = 0 eine Sprungstelle der Hohe 1. Es ist deshalb als Pseudofunktion

} =@Ge + 3 = Dul) + u)

1 4
& = (_3_ of Te—m) u(t) + 8(1).

InBild 3.11 sind diese Impulsantwort und ihre Ableitungen in der Umgebung von ¢ = 0 dargestellt.

95 9

a0

Bild 3.11. Impulsantwort gs(¢) und ihre Ableitungen aus Beispiel 3.15
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e) Ubersicht
Das Anfangswertproblem
PP+ @ YD+ et aoy = f1), Yo =yp = =y =0,
mit der bei transformierbarem f{(z) giiltigen Bildgleichung
P(p) Y(p) = F(p), P(p) =p" + @y1p"" + = + @0,

wurde fiir verschiedene Funktionen f(z) betrachtet. Die wichtigsten GréBen und
Zusammenhdnge sind nochmals in den folgenden Tabellen aufgefiihrt. Die in 3.1.2.
verwendeten Bezeichnungen (aber nicht die Buchstaben) mit Ausnahme von ,,Impuls-
antwort®* stimmen mit den in der technischen Literatur tiblichen tiberein.

Bildbereich Originalbereich
Ubertragungsfaktor: Q(p) = 7’%15- Gewichtsfunktion: g(r)
Frequenzgang: Q(jw) -
Funktion f(¢) in (3.15) Losung g(1) von (3.15)
£ = ult) = {(1), t< g, Ubergangsfunktion: g,(t), gi(t) = q(t)
o e Heavisidescher Entwicklungssatz fiir g,(¢)
Duhamelsche Formel fiir g(7)
f@=¢e"0>0 &)
f(t) = cos ot Reg, (1)
f(t) = sinwt Im g, (1)
f(t) = 1) Impulsantwort: g4(f)
0, t<0,
1) = = q(t) u(t
ao={" 150 ) =00

Die Funktionen ¢(1), g,(1), g,(¢) und g(¢) beschreiben alle das Verhalten des durch
(3.15) modellierten physikalischen oder technischen Systems gleichermaBen. Im
ndchsten Beispiel werden sie noch fiir ein elektrotechnisches System bestimmt.

Beispiel 3.16: Fir die in Bild 3.12a angegebene Schaltung (ein Elementarbauglied) werden Q(p),
9(1), 2u(1), &,(1), Im g,,(1) und g(r) berechnet und graphisch dargestellt in Bild 3.12b.

Bei dieser Schaltung handelt es sich um einen Spezialfall des in Bild 3.3 dargestellten Stromkreises
mit L = 0; deshalb gilt wegen (3.10) fiir beliebige Anfangsbedingungen

Ri'(1) + Lci(t) =0.
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Bild 3.12a. RC-Schaltung des Bei-
C 7 spiels 3.16

/]
gl g,
. o
1 k i
0 t 0 t
Im g, (1) 95(1) Bild 3.12b. ¢(1), £,(1), Im g(t) und
7\ g5(t) des Beispiels 3.16
L VG 0 t

Nach einfachen Rechnungen folgen wegen (T 5), (3.18) und (3.21)

1 1
—- = f) = e~t/RC, ) = 1 — etIRS),

o(p) p+1/RC.q() e &) = =1 =)

1 RC(1 — joRC)
gw(t) — jw T I/RC (e!wr - e—t!RC) — T T (e‘“” — e—tIRC)’

wR*C? sin wt \
I = 1 g pre oot + ).

w w.

gs(t) = u(t) e 1RC,

3.1.3.  Aufgaben: Losung linearer Differentialgleichungen

* Aufgabe 3.1: Man lose die Anfangswertprobleme
) y® —y=0, ¥0)=y0)=y"0)=0 y0=1
b) ¥y +y=0, »0)=y0)=y"0)=0 »y0)=1;
Q) ¥y —y® 4y —y" =0, O =y©0)=y©0=0, y0=1

Y0) = 2.

% Aufgabe 3.2: Man 16se die Anfangswertprobleme
a)y —y=r y0)=y©0=1,
b) ' —y=etsint, p0)=0, »0) =-1.

* Aufgabe 3.3: Man 16se das Anfangswertproblem
Y —y=f1), »0)=y0=y"0) =0 y'0)=1;
f)=0 fir 0=2r<1, f(f)=e2Y fir 1<t
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Aufgabe 3.4: Man lose die Anfangswertaufgabe

'+ 16y + 8y = {o’ S und  y(0) = ¥'(0) = 0.

1, 1<t<2,

Aufgabe 3.5: Man 16se die Randwertaufgabe

'+ +y =t y0)=y0) =0 y1)=0.
Aufgabe 3.6: Man 15se die Eigenwertaufgabe

Y'+2y=0, y0)=0 yx=0 Ai>0.
Aufgabe 3.7: Fir die Differentialgleichung

Y+ Ty + 25y + 39y = f(1), ¥0) =y(0)=y"0)=0,
bestimme man Q(p), g.(?), gs(t) und Q(jw).
Aufgabe 3.8: Man bestimme das stationdre Verhalten von

¥ + 8y + 25y” + 36y’ + 20y =sint, y(0) und y'(0) beliebig.
Aufgabe 3.9: Man bestimme den Frequenzgang von

Y'+ay =), a>0, »0)=y0)=0,
und untersuche ihn als Funktion von @ = 0. Beschreibt (3.22a) das stationire Verhalten?
Aufgabe 3.10: Die Impulsantwort ist zu bestimmen von

Vit ay =61, a>0, y0)=y0)=0.

3.2. Systeme linearer Differentialgleichungen

Physikalische oder technische Probleme werden oft sachgemiB als Systeme von
linearen Differentialgleichungen mit konstanten Koeffizienten modelliert. Bei der
Losung von Anfangswertaufgaben fiir solche Systeme mittels Laplace-Transformation
gibt es erhebliche Rechenvorteile gegeniiber der iiblichen Methode, insbesondere ist
die Bestimmung nur einzelner interessierender Funktionen des Systems mdglich.

Zur allgemeinen Darstellung der Systeme wird die Matrixschreibweise benutzt.
Werden die Koeffizientenmatrizen und die Vektoren der gesuchten Funktionen bzw.
der rechten Seiten

A=(aw), Bi=0R), yO=00) bzw. ()= (f1),

ik=1,.,N, I=1,..,n—1, 20,
eingefiihrt, so hat die Anfangswertaufgabe fiir ein System von N Differentialglei-
chungen n-ter Ordnung die Form

Ay®(t) + Bo-yy*0(0) + -+ + Boy(t) = (), _

¥(0) = Yo, ..., y*=(0) =y V. (3.29)

Fiir |A] = 0 heiBt das System (3.29) normal, es hat dann bekanntlich eine eindeutig

bestimmte Losung; solche Systeme werden in Abschnitt 3.2.1. geldst. Fiir |[A] = 0

heiBt das System (3.29) anormal oder entartet; es gibt l6sbare und unlésbare ent-
artete Anfangswertaufgaben (Abschnitt 3.2.2.).
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Beispiel 3.17a: Fir ein System 2. Ordnung werden die Matrizen A, B, und die Vektoren y(¢), £(¢), yo
angegeben.

Wt + 23 =y + Sy = =27,

=+ 2 + y1 — 3y, = 4e*cos 2¢,

710)=y,0) =0, 0 =1, y30)=2.

Diesem System entspricht die eine Matrixgleichung (3.29) mit N = 2 und

o 02 (-1 5 M
A=( ) B=(o) = (T ) v0-()

___fl(t) _ —2e7t _ > 0 o s 1
L0l (fz(l)) B (46"005 21) » YO =Yo= (0) » YO =yo = (2) .

Wegen |A| = —2 =% 0 liegt ein normales System vor; seine Losung wird im Beispiel 3.17b ermittelt.

3.2.1. Normale Systeme

a) Alle f(t) besitzen rationale Bildfunktionen F(p)

Analog zu Satz 3.1 fiir Differentialgleichungen gilt fiir den am haufigsten auftre-
tenden Fall bei Systemen der

Satz 3.3: Die Losung y(t) eines normalen Systems (3.29) mit rationalen Bildfunktionen
F((p) = L{fi(t)} lapt sich stets mittels Laplace-Transformation bestimmen.

Der Beweis dieses Satzes folgt unter der gemachten Voraussetzung durch die mog-
liche Umformung des Systems (3.29) in eine Einzeldifferentialgleichung der Ordnung
nN, die den Voraussetzungen des Satzes 3.1 geniigt.

Das tatsichliche Vorgehen bei der Losung ist folgendes: Mit den Vektoren
Y = Y(p) = (Y(p)) = (L{pA1)}), F(p) = (Fi(p)) ergibt sich mittels des Differentia-
tionssatzes (2.24) unter Einbeziehung der Anfangswerte aus (3.29) die Bildgleichung

(Ap" + B,_ip" ' + -+ + By) Y = F(p) + R(p). (3.30)

Der Vektor R(p) hat als Komponenten Polynome in p, die sich durch die Anfangs-
werte ergeben. Diese Bildgleichung (3.30) ist ein lineares Gleichungssystem mit den
Unbekannten Y, ..., Yy; zur systematischen Losung kann z.B. die Cramersche?)
Regel oder der GauBsche?) Algorithmus herangezogen werden. Wegen |A| == 0 hat
(3.30) eine eindeutig bestimmte Losung Y. Jede Komponente von Y ist eine rationale
Bildfunktion, deshalb konnen die Komponenten von y() durch Partialbruchzerlegung
bestimmt werden.

Beispiel 3.17b: Das System aus 3.17a hat die Bildgleichungen
p2Y =1+ pY, =2+ 2pY, = Y, + 5Y, = =2/(p + 1),
p2Yy — 1 = p?Y, + 2+ 2pY; + ¥; — 3Y, = 4(p + D/(p* + 2p + 5);

1) Gabriel Cramer (1704-1752), Schweizer Mathematiker.
2) Carl Friedrich Gauss (1777-1855), deutscher Mathematiker.
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werden diese Gleichungen nach Y; und Y, geordnet, so folgt

3p+1
P =DV + (P +2p+ 5, =,
p+1
(p—1)7?
+ 1Y, — iV, =,
» ) €1 (p ) Y2 P +2p+5

Dieses Gleichungssystem 148t sich auch in der Form (3.30) schreiben. Zu seiner Losung wird die

=5 .
zweite Gleichung mit ﬁ multipliziert und von der ersten Gleichung subtrahiert (GauBscher Algo-

+1
rithmus). So ergibt sich zuerst ¥, und dann Y; als
Y0 = ——. %) : 2,
T rnE Y T PP i 2p+s5 D 44

daraus folgen sofort nach (T 6) und (T 20) als Losungen y,(f) = re™, y,(f) = e "sin 2.

Beispiel 3.18: Die Funktion y,(¢) des Systems

e 1

" + 4 - W+ 6=yt 6y =12,
247 4 9 — 4 -0,
vy + 3 - 12y =0;

7100) = y1(0) =0, »/(0) =2, »:(0) = y30) = ¥;(0) = 0,
¥3(0) = y30) = 35(0) = 0,

ist zu bestimmen. Die Bildgleichungen ergeben sich mit (2.24) als

2(6 +
(P> +6p+6) Yy +p(p’—p-1)Y3=——m,

4
2p’Y, +p(p -4 Ys =0,
3pp -4 Y, +p°Y2 =0.
Nach der bekannten Cramerschen Regel ergibt sich fiirr Y,(p):

2p(6 +
pPP+ep+6 0 p(p>—p—1) P +6p+6 u11(112—1)—1)
P
Y, =
0 2p* pp-9) 0 0 P-4
(-4 p? 0 3pp — 4 0 0

Nach dem Berechnen der beiden Determinanten mit der Sarrusschen Regel ergibt sich schlieBlich:
5 2 3 2, 2 24 6 4 3
—p*(p — 4)(6p* + p*)Y> = 6p*(6 + p)(p — 4)%, Y2=;5‘—p—4,y2(’)=1 =

Beispiel 3.19: Beim Einschalten eines Gleichstrommotors ([15], S. 80; Bild 3.13) gilt fir den Anker-
strom i(t) und die Ankerwinkelgeschwindigekit w(#) mit den Anfangsbedingungen i(0) = 0, (0) = 0
das System

Li'(t) + + Ri(t) + ao(t) = ug,

O’ (1) — ai(t) =-M.
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Die erste Beziel driickt das Sy lei wicht im Ankerstromkreis aus, die zweite Bezie-
hung ist die mechanische B leichung. Es bed : L, Rund 0 Induktivitit, Widerstand und

Triagheitsmoment des Ankers; M konstantes Drehmoment der Belastung; a eine Motorkonstante.

L
S,
C T

4 Bild 3.13. Gleichstrommotor des Beispiels 3.19

o(t) wird explizit bestimmt, von i(f) wird das Stabilitdtsverhalten und i’(0) bestimmt. Die Bild-
gleichungen und ihre Losungen I(p) und W(p) (gefunden nach der Cramerschen Regel) sind:

1 M
(Lp + R)I(p) + aW(p) = 7140, al(p) — 6pW(p) = ks

aM 1 1 1
I(p) = ( —+ -—uo>
p

i P +app+ap
W(p)_(uoa-—RM 1 M) 1 . oa— R = a*
- 9 ? 0 )pPP+ap+a’ - L’ ° I8

Die Riicktransformation (bei Verwendung von reellwertigen Funktionen) hingt von den Nullstellen
von p? + ayp + a, ab; im folgenden wird D = % a? — ao < 0 angenommen (auch D = 0 ist tech-
nisch sinnvoll). Nach (T 97) und dem Integrationssatz (2.21) ist

o(t) = ___ﬂl:l—e‘*“"( \/_ sm\/ Dt+cos\/ Dt)]

M .
— ————e"#%'sin \/-—-D t.
0/=D
Nach Satz 2.18 folgt, daB i(r) uneigentlich stabil ist, denn p = 0 ist die einzige Nullstelle mit maxi-
malem Realteil von p(p? + a,p + ao). Nach (2.47) folgt noch genauer aus I(p) sofort

aM 1 M
i) ——=—, > w0.

i’(0) existiert; nach Satz 2.14a) und (2.23) ist
1
lim x (1) = llmp(I(p) —i(0)) = lim p?I(p) = s ug = i'(0).
o0 p—oo

1>+

b) Die f(t) sind fur t > 0 3tetig bis auf isoliert liegende Sprungstellen

Analog wie im Satz 3.2 fiir eine Einzeldifferentialgleichung kénnen auch bei
Systemen Funktionen beriicksichtigt werden, die bis auf Sprungstellen stetig sind.
Sind diese Funktionen auBerdem transformierbar, so kann man stets wie im nichsten
Beispiel vorgehen.
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Beispiel 3.20: Das System 1. Ordnung mit 2 gesuchten Funktionen

0, 0=s¢t<1,

’ ' = £i(f) =
n+t2-n fi()) {1, 1<t

= Vetn=rn=L0=1 0 =r0=0,
wird gelost. Die Bildgleichungen sind mit Beispiel 2.8

. 1 1
P-1DY +2pY, =—e, (P+1)Y1—(P+1)Yz=7-
V4
Mit der Cramerschen Regel ergeben sich die Losungen
N 1 ( 3 1 " _,,( 3 1 )
=—=|——]+¢ -—],
! 2\3p-1 p+1 3p—-1 P

N 3 1 +1 1 l+_p( 3 l)
=t ——— ——+e¢ -—].
2 2 3p-1 2 p+1 ? 3p-1 P

Mit dem Verschiebungssatz (2.14) ergeben sich damit als Losungen
1) =He™ — e ) +5(),  ya1) = He + e — 1+ 5(0),

0, 0=t=1,
SO= w51, 151,

3.2.2. Entartete Systeme

Ist in (3.29) |A| = 0, d.h., die Determinante der Koeffizienten bei den hochsten
Ableitungen ist null, so liegt ein entartetes System vor. Vorgegebene Anfangswerte
konnen im Widerspruch zu den Gleichungen des Systems stehen, deshalb gibt es
18sbare und unlgsbare entartete Systeme. Beide Arten kommen bei der Modellierung
technischer Systeme (gekoppelte Schwingungen) vor und lassen sich sinnvoll ver-
wenden.

Im folgenden soll es sich um Systeme von N Differentialgleichungen der Ordnung
n = 1 (darauf 1aBt sich durch Einfiihrung neuer Funktionen jedes System reduzieren
([B7/1], S. 106)) mit stetigen und transformierbaren Funktionen f;(#) handeln. (3.29)
hat damit die Form

Ay'(r) + By(t) = £(1),  y(0) = Yo, |A] =0, (3.31)
A=(aw), B=(0w, yO=0M), f(r) = (fi1)),
Yo = (:(0)) = (os)s ik=12..,N; t20.

Transformiert man (3.31) mit dem Vektor y, der Anfangswerte, so ergibt sich als
Bildgleichung mit (2.23)

(Ap + B)Y = F(p) + Ay,. 1(3.32)

Das Gleichungssystem (3.32) fiir die Unbekannten Y, ..., Yy hat im Fall
D(p) = |Ap + B| %0 einen eindeutig bestimmten Losungsvektor Y, der z. B. mit
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der Cramerschen Regel gefunden werden kann. Nun steht die Frage nach dem
Zusammenhang mit dem Vektor y aus (3.31). Dafiir gibt es drei Moglichkeiten:

a) Y enthélt Komponenten Y, die keine Bildfunktionen sind; dann ist (3.31) nicht
durch Funktionen 16sbar.

b) Zu Y 1aBt sich ein Vektor y(¢) finden (dieser erfiillt dann Ay'(¢) + By(¢) = (7)),
aber es ist §(0) * y,. Dann ist (3.31) unlésbar, y(r) wird als verallgemeinerte Losung
bezeichnet, diese wird sich sinnvoll deuten lassen.

c) Gentigt y(¢) aus b) auBerdem noch der Beziehung y(0) = y,, dann ist (3.31) ein-
deutig 16sbar mit dem Vektor y(7) = y(¢).

Das folgende Beispiel illustriert diese drei Moglichkeiten.

Beispiel 3.21: Es wird das System

VA =y=0, yi+yytr=1 30 =y, »0) =y, (3.33)
betrachtet, zunéchst sind die Anfangswerte yo; und yo, beliebig. Die Bildgleichungen (3.32) und
D(p) sind hier

1

(P-DYi+pYs=yo1+ Y2, Pit(@+1DY,= ;+YO1 + Yoz

B
o =" g [P 1y
i p P+l

Nach der Cramerschen Regel folgen als Losungen der Bildgleichungen

Yo1 + Yoz P
D(p) Y, = 1 =Yo1+yo2—1, Yi=1= o1+ o),
Yor + Yoz + — p+1
P
p—1 Yo1 + Yoz
D(p) Y, = 1
p Yo1 + Yoz + —
P
1 1
=1—— = (i + ¥o2), Y2=Yo1+Yo2— 1+—.
p P

a) Fir yo; + yoz #= 1 sind weder Y; noch Y, Bildfunktionen (nach Beispiel 2.22), das System
(3.33) hat keine Funktionen als Losungen (dies folgt auch unmittelbar durch Subtraktion der beiden
Gleichungen des Systems).

b) Fiir yo; + yo2 = 1 sind ¥; und Y, Bildfunktionen, die zugehdrigen Originalfunktionen
71(t) = 0 und y,(¢) = 1 erfiillen die Differentialgleichungen des Systems. Fiir z.B. yo; = 1, yo2 = 0
ist jedoch 7,(0) = yo, und 7,(0) # yo,; das Anfangswertproblem (3.33) ist unldsbar, y,(z) und y,(1)
sind verallgemeinerte Lsungen.

¢) Fir yo1 + yoz2 = 1 und zugleich yo; = 0, yo, = 1 erfiillen die Funktionen y,(¢) = () = 0
und y,(f) = j,(¢) = 1 das System (3.33).

Hat die Matrix A den Rang r, so lassen sich aus (3.31) (z.B. durch den Gauflschen
Algorithmus) N — r Gleichungen ohne Ableitungen ermitteln. Fiihrt man in diesen
Gleichungen den Grenziibergang ¢ — +0 durch, so erhidlt man N — r sogenannte Ver-
traglichkeitsbedingungen zwischen den Anfangswerten, deren Erfiillung fiir die Los-
barkeit von (3.31) notwendig (aber nicht hinreichend) ist.
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Beispiel 3.22: In (3.33) ist Rang (A= r = 1, die N — r = 2 — 1 = 1 Gleichung ohne Ableitungen
ist y1(t) + y2(1) = 1; aus ihr folgt fiir # > +0 die Vertraglichkeitsbedingung yo; + yoz = 1 fiir die
Anfangswerte y1(0) = o1, y2(0) = yo2. Wie der Fall b) des Beispiels 3.21 zeigt, ist diese Bedingung
fir die Losbarkeit von (3.33) aber nicht hinreichend.

Weil die Vertriglichkeitsbedingungen nur notwendig sind (und im unlgsbaren Fall
oft die verallgemeinerten Losungen interessieren), ist das Vorgehen iiber die Bild-
gleichung (3.32) und Priifen der eingetretenen Mdoglichkeit a), b) oder c) einfacher.
Im folgenden geht es um die Deutung der verallgemeinerten Losung
y(t) = (7:(2), ...,jN(t)) des Fall b). o ) ) ]

Die verallgemeinerte Losung y(¢) erfiillt die Differentialgleichungen in (3.31), aber
fiir ihre Anfangswerte gilt y(0) = y,. Dieser Sachverhalt 148t sich auf zwei Arten
deuten:

A) Man fafit die Werte des Vektors y, als linksseitige Grenzwerte der Losung y(¢)
auf (Vergangenheit des Systems). Die Spriinge y(0) — y(0) sind dann durch die
Spriinge des Vektors der Funktionen f(¢) im Nullpunkt erkldrbar ([7], S. 318).
Bei dieser Auffassung muB natiirlich die willkiirliche Vereinbarung (2.3) ignoriert
werden.

B) Man deutet entartete Systeme als Grenzfall normaler von einem Parameter ab-
héngiger Systeme ([1], S. 95).

Beispiel 3.23: Die Deutung B) der verallgemeinerten Losung wird illustriert am entarteten System
VO + 330 =0, Y1)+ y(0) + y3(ty+ 32() = 1, ya(8) + y3(1) = 05
»1(0) = yo1 =0, ¥2(0) = o2 =0, ¥3(0) = yo3 = 0.

Die Bildgleichungen und D(p) lauten

1
PY1+Y;=0, pYi+(@+DY2+pYs=—, Y2+ Y;=0; D(p)=2p.
P

Die Losungen der Bildgleichungen und die Funktionen y,(f) sind:

: Y, = L Ys = ! y1(t) ! ya(t) ! ya(t) !
=, =—, =—; =—, =—, )= — —.
2p* T op P 2l 2 7 27 2

Die vorgegebenen Anfangswerte yo1,Yo2, Yoz Werden nicht alle angenommen, es liegt Fall b) vor.
Betrachtet man nun das vom Parameter £ > 0 abhéngige System

(k) + kyi(1, k) + 33, k) =0,
Vit k) + (L + k)it k) + Y50, k) + ya(t, k) =1,
kyy(t, k) + kyi(t, k) + ya(t, k) + ys(t, k) = 0;
$1(0, k) = 2(0, k) = »3(0, k) = 0, mit den Bildgleichungen

Y

! 1
pYi+kp+1) Y3 =0, pY  +(kp+1+p) Y, +pYs=—,
p
kp+ 1) (Y2 + ¥3) =0,
1 1
i = 2 = — = — =
so ist D(p) = (kp + 1)*2p, Y, = TR Y, Y; TR
Dazu gehoren die Originalfunktionen

t 1 1 1 1
tk)=—, tk)=— — —e "k t k) = = — + —e ik,
y1(t, k) 3 y2(2, k) Rl y3(t, k) R C
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Die fiir y(t, k) vorgegebenen Anfangswerte werden angenommen (wie es bei einem normalen System
immer der Fall sein muB). Fiir Kk — +0 und ¢ > 0 gilt nun

2R = F1(O),  y2(t, ) = F2(1),  ys3(t, k)= F3(2);
dagegen ist fir k— +0und r =0

210,k =0=730), »20,k)=0%750)=% »30,k) =0 y0) = — .

Die Funktionen (1) erscheinen als die im Nullpunkt unstetigen Grenzwerte der Funktionen y(z, k)
fir k- +0.

3.2.3.  Aufgaben: Losung von Systemen

% Aufgabe 3.11: Man bestimme y;, y, una y; aus
21+ yp+ s -5y, =1,
Yi—2n - 5y +ys=1,
i+ + =3 =0;

»10) =0, y(0) =1, y;0)=0.

*

Aufgabe 3.12: Man bestimme y; und y, aus

yi+ 2ty =sint, i+ 4+, =0; 31(0) = 3,00 = 0. .

*

Aufgabe 3.13: Fur den in Bild 3.14 dargestellten Kettenleiter gilt bei differenzierbaren Eingangs-
spannungen e;(7) und es(#) zur Bestimmung der Strome i4(¢), i»(#) und is(t) in den Maschen

i L e
3"1(’) g Fll( ) FIZ() =e,(0),
) 1 2. 1.
Liy(t) - Fh(’)‘!‘ F’z(’) - F'a(’)=0,
L .11, I : 1 3 q
7'3(’) o ?12(1)‘*' Els(t)= ex(t).

Man bestimme i5(f) bei verschwindenden Anfangswerten und bei e;(¢f) = e;(f) = sin wr. Hinweis:

==- einfithren!

@ ="JIc

Bild 3.14. Kettenleiter der Aufgabe 3.13

% Aufgabe 3.14: Analog Beispiel 3.20 15se man
NAY =0, yi—y; =y =f(0); 3(0) =0 =0;
f@y=1 fir 05¢t=T, f()=0 fir T<t.
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Aufgabe 3.15: Man ermittle die verallgemeinerten Losungen #(¢) und die von ihnen angenommenen
Anfangswerte 7,(0) des entarteten Systems

Ntytri=1 Ntyitrn=2 pn+tn=1

Yo1 = Yoz = Yo3 = 0.

3.3. Partielle Differentialgleichungen mit zwei Veréinderlichen

Es werden lineare partielle Differentialgleichungen 2. Ordnung mit zwei unab-
héngigen Verdnderlichen und konstanten Koeffizienten betrachtet. Diese spielen in
der Praxis bereits eine groBe Rolle, auch ist das typische Vorgehen bei der Lésung
mittels Laplace-Transformation schon an diesem Fall erkenntlich.

Fiir die gesuchte Funktion y(x, ) mit 0 < 7 < o0, a < x < b, und stetiger Funk-
tion f(x, ) gelte die Gleichung

@ Yxx + @Yx + Q3Yi + biyx + boyi + oy = f(x, 1)) (3.34a)
mit den Anfangsbedingungen

¥x,0) = yi(x), (%, 0) = ya(x) (3.34b)
und den Randbedingungen

wa, 1) = (),  y(b, 1) = ya(t). (3.34¢)

Neben den Koeffizienten und der Funktion f(x, ¢) sind auch die Funktionen y,(x),
¥2(x) (v, nur bei ay + 0) und y,(¢), y«(¢) (mit analoger Einschridnkung) vorgegeben,
sie sind zur eindeutigen Bestimmung von y(x, ) notig (Anzahl und Art der Vorgaben
sind i. allg. eine schwierige Frage).

Die Gleichungen (3.34b) sind als Grenzwertbeziehungen fiir # —» +0, die Glei-
chungen (3.34c) als Grenzwertbeziehungen fir x - a + 0 bzw.x —» b — 0 zu ver-
stehen, weil die Funktionswerte von y(x, ) auf dem Rande des in Bild 3.15 darge-
stellten Gebietes i. allg. gar nicht existieren. Die Losung y(x, ¢) ist stets in einem Ge-
biet der x,#-Ebene gesucht, das hier ein Halbstreifen (Bild 3.15), der erste Quadrant
oder die obere Halbebene sein kann.

Yixt) =y (@)

yixt) Y, (1) beix —=b-0

+
Y 0% (0 b

yxt) —y,x)
Bxt) ==Y x) Bild 3.15. Halbstreifen
bei t —=+0 in der x,-Ebene

Das Losungsprinzip aus Bild 3.1 ergibt von (3.34) bei Laplace-Transformation
beziiglich ¢+ (x fest) mit dem Differentiationssatz (2.24) und den Bezeichnungen

TN . Al T Oy(x,t
') Zur Bezeichnung der partiellen Ableitungen wird die Indexschreibweise benutzt: y, = M R
0%y(x, 1) i
usw.
Ox Ot

Yl =
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L{y(x, 1)} = Y(x,p), L{f(x,1)} = F(x,p) die Bildgleichung
a; Y. + (ap + by) Yo + (asp* + bop + ©) Y = G(x, p), (3.35a)
G(x, p) = F(x,p) + a;31(%) + (@3p + b2) y1(*) + a3p5(x).

Die Bedingungen (3.34c¢) transformieren sich zu
Y(a,p) = Ys(p), Y(b,p) = Yu(p). (3.35b)

Insgesamt ergibt sich anstelle der partiellen Differentialgleichung (3.34) fiir y(x, #) mit
Anfangs- und Randbedingungen die gewohnliche Differentialgleichung (3.35a)
2. Ordnung fiir Y(x,p) mit den Randbedingungen (3.35b). Die Ableitungen in
(3.35a) werden nach x gebildet, p ist dabei als Parameter aufzufassen. (3.35) ist eine
wesentlich einfachere mathematische Aufgabe als (3.34), die Transformation ist also
wieder sehr zweckmaBig.

(3.35) wird nach iiblichen Methoden oder nach Abschnitt 3.1.2. (falls @ = 0 und
b = o ist, d.h.0 < x < o) gelost; die explizite Riicktransformation von Y(x, p)
ist i. allg. sehr schwierig, oft begniigt man sich deshalb schon mit asymptotischen
Aussagen fiir # — oo.

Die Uberfithrung von (3.34) in (3.35) geschah durch formale Anwendung der
Laplace-Transformation, eine ganze Reihe von Voraussetzungen (Transformier-
barkeit, Vertauschung von Grenziibergéngen) miissen dafiir erfiillt sein. So gefundene
Losungen miissen deshalb durch die Einsetzprobe in (3.34) verifiziert werden; es kann
auch weitere Losungen geben, die auf diesem Wege nicht gefunden werden. Die
Probe entféllt nur, wenn man Existenz- und Eindeutigkeitssdtze heranzieht, die es fiir
spezielle Klassen von partiellen Differentialgleichungen gibt ([4], § 54; [9], § 27).

3.3.1.  Beispiele zu den Grundtypen

Die Differentialgleichungen (3.34) lassen sich bekanntlich (auch bei variablen
Koeffizienten) in drei Typen einteilen:

Typ l Einfachstes Beispiel

Elliptisch Potentialgleichung: Yix T V=0
Hyperbolisch Wellengleichung: Yix — V=0
Parabolisch Wirmeleitungsgleichung:  yye — ¥, =0

An diesen drei Gleichungen wird zunichst (ohne den physikalischen Hintergrund)
das grundsitzliche Vorgehen erldutert.
Beispiel 3.24: Esist yy, + ¥ = 0flir0 < t < 00, —00 < x < 0 (alsoa; = a3 =1,a, = b, = b,
=¢=0,f=0,a= —00, b= 0c0) mit den Anfangsbedingungen

X, 0) = yi(x) = €%, p(x,0) = y(x) = e**
zu 16sen (Randbedingungen entfallen hier). (3.35a) lautet

Yix + p?Y = pe* + e?*.
Diese letzte Differentialgleichung wird jetzt mit den iiblichen Methoden geldst. Fiir die zugehérige
homogene Differentialgleichung fithrt der Ansatz ¥ = e** ([B 7.1], 3.3.8.) auf die charakteristische

Gleichung &2 + p? = 0 mit den Nullstellen «; = jp, , = —jp; die Funktionen e!*? und e™3*? sind
aber keine Bildfunktionen (Beispiel 2.22); die homogene Differentialgleichung hat also nur die Bild-
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funktion ¥ = 0 als Losung. Eine spezielle Losung der inhomogenen Differentialgleichung findet man
mit der Ansatzmethode ([B 7.1], 3.3.6):
Y(x,p) = A(p) e* + B(p)e**.
Wegen Y, = Ae* + 4Be?* folgt durch Einsetzen in die Differentialgleichung und durch Vergleich
der Koeffizienten von e* und e2*: A(1 + p?) = p, B(4 + p?) = 1. Also ist
Y(55) = ey e* 4
X,p) = ——e* + ——
AT P 4+ p?
Die zugehorige Originalfunktion ergibt sich mit (T 9) und (T 8):

e,

y(x, 1) = e*cost + L e**sint;
sie erfiillt tatsichlich die Potentialgleichung und die Anfangswerte.

Beispiel 3.25: Esist yyx — 1 = 0flr 0 <t < 0,0 < x <00 (alsoa; = —az =1,a, = b; = b,
=¢=0,f=0,a=0, b= 00) mit den Nebenbedingungen

7)) =0, () =0, y0,0)=y5(t), ¥0,8)=yst) =0
zu losen. Die Transformation ergibt das Randwertproblem
Yix = p?Y =0, Y0,p)=Ys(p), ¥(0,p)=0.

Mit dem Ansatz ¥ = e%* ergibt sich die charakteristische Gleichung «?> — p? = 0 mit den Nullstellen
®; = p, &y = —p; also ist

Y(x,p) = Ci(p) €™ + Ca(p) ™.

Wegen Y(c0, p) = 0 und bei Re p > 0ist C;(p) = 0; aus Y(0, p) = Y3(p) folgt schlieBlich als Losung
der Bildgleichung

Y(x,p) = Y3(p) ™.
Die zugehérige Originalfunktion ermittelt sich mit dem Verschiebungssatz (2.14) als
0, 0<t<x,
Wx 1) =yt = x) = {ys(t_x), -

Diese Funktion erfiillt die Wellengleichung und die gegebenen Nebenbedingungen, falls y3(¢) zweimal
differenzierbar ist.

Beispiel 3.26: Es wird yox — y, =0 flir 0 <7< 0, 0 <x< 0 (also a; = —b, =1, a, = a;
=by=c=0,f=0,a=0, b= 00) gelost mit den Nebenbedingungen

¥x,0 =31(x) =0, y0,0) =y3(t) =c, 3(0,7)=yit) =0.
Das Randwertproblem (3.35) lautet hier
Yoe —pY =0, Y©,p)=clp, Y(,p)=0.

Der Ansatz Y(x, p) = e** fiihrt auf die charakteristische Gleichung % — p = 0 mit den Nullstellen
*y = \/p und &, = —\/;; damit ist

Y, p) = Cup) V7 + Capy e
Aus Y(co,p) = 0 folgt bei Rep > 0 Cy(p)= 0; wegen ¥(0,p) = %ist
Y, p) = — e, g
P

6 Stopp, Operatorenrechnung



82 3. Anwendungen der Laplace-Transformation
Die zugehérige Originalfunktion ist nach (T 76)

x
2/t)’

sie erfiillt-die Warmeleitungsgleichung und die Nebenbedingungen. Es gibt (wie man zeigen kann)
eine weitere Losung der Aufgabe, die sich nicht durch Laplace-Transformation bestimmen 148t.

yx,t)=c¢c (1 — erf

Das Losungsverfahren 148t sich offenbar auch bei Gleichungen héherer Ordnung
(aber mit zwei Variablen) anwenden. Die wichtigste Frage ist hier, in welchen Fillen
den Nullstellen des charakteristischen Polynoms der Bildgleichung Bildfunktionen
entsprechen.

3.3.2. Ein Beispiel aus der Physik

Die Wirmeleitungsgleichung y.. — y. = 0 beschreibt die Temperatur y(x, ) eines
linearen Leiters (z.B. eines Thomson-Kabels) an der Stelle x zum Zeitpunkt ¢. Be-
trachtet man einen unendlich langen Leiter und 148t die Zeit von null an laufen, so ist
0<t<0<x< 00,

Fiir ¢ = 0 soll der Leiter die Anfangstemperatur y(x, 0) = y;(x) = 0 haben. Am
linken Ende x = 0soll y(0, ) = y,(¢) gelten, d.h., es ist eine Warmequelle vorhanden,
die eine von der Zeit abhéngige Temperatur garantiert. Am rechten Ende x = oo ist
(physikalisch sinnvoll) y(o, t) = y4(t) = 0. Diese Nebenbedingungen sind Grenz-
wertbeziehungen, ausfiihrlich lauten sie:

lim y(x, ) = yy(x), lim y(x, 1) = y3(1), limy(x,7) = 0.
t=++0 X240 x—00

Zur Bestimmung von y(x, f) mittels Laplace-Transformation ergibt sich analog
Beispiel 3.26 fiir Y(x, p) das Randwertproblem

Yo —pY =0, Y(0,p)=7Ysp), Y(o,p)=0.
Die Differentialgleichung hat wieder die allgemeine Losung
Y(x,p) = Cy(p) &7 + Cy(p) e 7
Ci(p) = 0 und C,(p) = Y5(p) folgen wie im Beispiel 3.26. Damit ist Y(x,p) =
Y3(p) e-*V?; die zugehorige Originalfunktion ist wegen
x
2t/wt
([11, S. 148) und dem Faltungssatz (2.20)
y(x, 1) = p3(0) * p(x, 1). (3.36)
Diese Losungsdarstellung ist sehr einfach, aber z. B. fiir das Ablesen des asympto-
tischen Verhaltens fiir # — oo nicht besonders geeignet. y(x, f) wird deshalb fiir einige
spezielle Randtemperaturen noch in anderer Form angegeben.
a) Fir y;(f) = cu(t) = c ist nach Beispiel 3.26

x
x, 1) =c¢ x,t) =c (1 —erf =|—>¢, t- 0.
Y1) = e % p(x, 1) ( 2\/1)

e—x4t| — oe—xVP

Liy(x, t) =
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b) Fiir y5(¢) = 4(¢) ist nach Formel (3.25)

p
y(x, 1) = 6(t) x p(x, 1) = p(x, 1) ~ N t— .

¢) Fiir y5(r) = cos w ¢ sind die explizite Darstellung von y(x, ) ohne Benutzen der
Faltung in (2.44) und die asymptotische Darstellung im Beispiel 2.39 angegeben.
Sind jetzt im Gegensatz zu oben verschwindende Randwerte (y;(t) = ya(t) = 0)
und eine nichtverschwindende Anfangstemperatur (z.B.y;(x) = e~) gegeben, so
folgt
Yoo —pY = —e,  Y(0,p) =0, Y(,p)=0.

Als Losung findet man mit dem Ansatz Y = C,(p) eV A(p)e™

Y(x,p) = (e"‘ - e"“/;>, cy(x, ) = et — et wy(x, 7). 3.37)

1
p—1

Die Losung von y,. — y, = 0 mit y(x,0) = e, (0, 1) = y5(t) und y(o0, ) =0
setzt sich aus (3.36) und (3.37) zusammen:

V(X 1) = pa(t) xp(x, 1) + €7 — e xp(x, 7).

3.4. Andere Anwendungen

Nach dem nun bereits vertrauten Losungsprinzip (Bild 3.1) werden jetzt Diffe-
rentialgleichungen mit Polynomkoeffizienten und Integralgleichungen vom Faltungs-
typ betrachtet. In Abschnitt 3.4.3. wird eine Zusammenstellung der behandelten und
anderer Anwendungen gegeben.

Wie schon bei der Losung von partiellen Differentialgleichungen erortert wurde,
soll anstelle des Uberpriifens von Voraussetzungen fiir die Anwendung der Laplace-
Transformation hinterher die gefundene Funktion durch die Einsetzprobe als Losung
des Problems verifiziert werden. Es ist stets moglich, daB beim Ubergang zur Bild-
gleichung Losungen verloren gehen oder auch neue Losungen hinzukommen (dieser
grundsitzliche Gedanke spielt schon in der Algebra z.B. bei der Auflésung von Wur-
zelgleichungen eine Rolle).

3.4.1. Lineare Differentialgleichungen mit Polynomkoeffizient

Die zugrunde liegende Differentialgleichung n-ter Ordnung fiir die gesuchte Funk-
tion y(¢) hat die Form

a(t) Y + @y (YD + e+ ay () Y+ ao(t) y = f(0). (3.38)

Dabei sind die Koeffizienten a,(f) im Unterschied zu (3.1) jetzt Polynome in ¢. Der
hochste vorkommende Grad der Polynome sei m = 1 [m = 0 fithrt auf (3.1)].

6%
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Transformiert man (3.38) mit dem Multiplikationssatz (2.25) und dem Differen-
tiationssatz (2.24), so ergibt sich als Bildgleichung fiir Y(p) eine Differentialgleichung
m-ter Ordnung mit Polynomkoeffizienten, deren hochster vorkommender Grad # ist.
Die GréBen m und n haben beim Ubergang zum Bildbereich ihre Rollen vertauscht,
die Transformation ist deshalb nur fiir m < n zweckméBig; m = 1 ist besonders ein-
fach zu behandeln.

Sind die Koeffizienten a,(t) zunichst rationale Funktionen von ¢, so 148t sich durch
Multiplikation mit dem Hauptnenner aller a,(¢) Gleichung (3.38) mit Polynomkoef-
fizienten herstellen.

Beispiel 3.27: Fiir die Besselsche Differentialgleichung

@)+ Y (@) + (1) =0
ist ap(f) = ax(f) = t, a,() = 1, f(1) = 0, m = 1, n = 2, Mit (2.24) und (2.25) folgt

—(*Y = yop = yo¥ +PY = yo— Y’ =0.
Fiihrt man die Ableitung nach p aus und ordnet, so ist

@*+ 1) Y +pY=0.
Die Bildgleichung ist von 1. Ordnung, sie 148t sich z. B. durch die Methode der Trennung der Ver-
dnderlichen ([B 7/1], 2.3.1.) 16sen. Es ist

a _ pdp

Y pr+1

Daraus folgt Y(p) und nach (T 80) y(¢) mit

C
Y(p) = . ¥ = Cly(D).
p. 7;—1—' M of

Clo(t) erfullt ichlich die Differentialgleict Die zweite dazu linear unabhingige Losung 1a8t
sich so nicht finden.

Hat man die Korrespondenz (T 80) nicht zur Verfiigung, so findet man die Originalfunktion zu
Y(p) durch Reihenentwicklung (Beispiel 2.32).

1
s ln[Y|=lnC—7ln(pz+l).

3.4.2. Integraigleichungen vom Faltungstyp

Wegen der einfachen Abbildung der Faltung durch (2.20) ist die Laplace-Trans-
formation besonders geeignet zur Losung von Integralgleichungen, in denen die ge-
suchte Funktion y(f) unter einem Faltungsintegral vorkommt (Faltungstyp). Bei-
spiele solcher Integralgleichungen sind:

t
a) Volterrascher!) Typ erster Art: [ k(t = 7) ¥(x) dr = £(0),
. 0
t
b) Volterrascher Typ zweiter Art:  y(f) — [ k(t — 7) y(z) dz = f(2),
]
t
¢) Spezielle nichtlineare Art: [ 3t = ) y(®) dv = (o).
0

1) Vito Volterra (1860-1940), italienischer Mathematiker.
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/() und der sogenannte Kern k(¢) sind gegeben. Mit dem Faltungssatz (2.20) er-
geben sich als Bildgleichungen und ihre Lésungen:

G K0) Y0) = Fp) V() = 50
b) 106) = K() Y0) = Fp). - Y(P) = Ty

o) Y¥(p) = F(p), Y(p) = +F).

Beispiel 3.28: Ist k(t) = ¢ und f(r) = 2, so haben wegen K(p) = 1/p? und F(p) = 2/p® die drei Bild-
gleichungen die Losungen

Die zugehdrigen Originalfunktionen sind nach (T 1), (T 101) und (T 41)

a)2, b 2coshr—1), o x2 |2,
™

sie erfiillen die Integralgleichungen tatsichlich.

Natiirlich ist es bei anderen Vorgaben fiir k(7) und f(¢) i. allg. schwieriger, die Riick-
transformation durchzufiihren und in die Integralgleichung einzusetzen. Bei a)

und damit oft auch Y(p)

keine Bildfunktion ist (z.B. fiir k(r) = f(t)), bei b) ist i. allg. eine Reihenentwicklung
vorzunehmen und bei c) ist ebenfalls zunéchst zu kldren, ob \/ F(p) tiberhaupt eine
Bildfunktion ist. Losungssétze fiir Integralgleichungen findet man in [8], 25. Kapitel.
Beispiel 3.29: Wird ein physikalisches oder technisches System durch eine lineare Differentialglei-
chung mit konstanten Koeffizienten beschrieben, so gilt bei versch denden Anfangswerten, bei

gegebener Eingangsfunktion f(¢) und bei bekannter Gewichtsfunktion g(z) fiir die A funktion
g(1) nach (3.16):

kommt der Faltungssatz (2.20) nicht in Frage, weil Kl

t

&0 = g (1) = [ f(t = D) q(x) dr.
[

Wie bekannt, charakterisiert ¢(f) das System vollstindig.

Denkt man sich jetzt bei gegebener Erregung f(f) und gegebener Antwort g(z) die Gewichtsfunk-
tion g(t) = y(¢) als gesucht, so erhélt man zu deren Bestimmung gerade die Volterrasche Integral-
gleichung erster Art

’
[ £ =050 dv = £0).
o

Hat man beispielsweise zu f(¢) aus (T 86) die Antwort g(f) = e~* bestimmt (gemessen), so gilt im
Bildbereich (also fiir den Ubertragungsfaktor Q(p) = Y(p)):

G(p) 1 ( 1

Yp)=—==——- (@1=-e™=
p—-1

1
- =)a-em)
Fp) pp-1 17)( )
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Nach (2.14) gehort dazu die Originalfunktion
0, 0=<¢t=T,
1-e-T,T=st.

Nach diesem Ergebnis kann der Aufbau des konkreten Systems analysiert werden.

y(t)=e'—1+{

3.4.3.

In der folgenden Tabelle sind die in diesem Band behandelten und andere Glei-
chungstypen und ihre zugehorigen Bildgleichungen zusammengestellt. Die Ubersicht
zeigt die Vielfalt der Anwendungsmdoglichkeiten der Laplace-Transformation; es

Ubersicht der behandelbaren Gleichungstypen

wird die Abkiirzung Dgl fiir Differentialgleichung verwendet.

Funktionalgleichung fiir y Abschnitt Funktionalgleichung fiir ¥

im Originalbereich im Bildbereich

Lineare Dgl mit konstanten 3:1% Algebraische Gleichung

Koeffizienten

System von linearen Dgin 3:2° Gleichungssystem

mit konstanten Koeffizienten

Lineare Dgl mit Polynomkoeffizienten 34.1. Lineare Dgl mit Polynomkoeffizienten
Lineare Differenzengleichung - Algebraische Gleichung

Lineare Differential-Differenzengleichung | - Algebraische Gleichung
Integralgleichung vom Faltungstyp 3.4.2. Algebraische Gleichung

Lineare Integro-Dgl mit Faltungsintegral Algebraische Gleichung

Lineare partielle Dgl mit zwei unab- 3.3. Gewdhnliche lineare Dgl

héngigen Veranderlichen und konstanten mit konstanten Koeffizienten
Koeffizienten

Lineare partielle Dgl mit m unabhin- - Lineare partielle Dgl mit m — 1 un-
gigen Verianderlichen und konstanten abhingigen Verénderlichen und konstan-
Koeffizienten (m = 2) ten Koeffizienten

3.4.4.

Aufgabe 3.16: Man 16se die partielle Differentialgleichung

Vex + Y =0, ¥x0=1x y/(x0) =sinx.
Aufgabe 3.17: Man ermittle eine Lsung von

O+ + 2y + ) =0.
Aufgabe 3.18: Man lose die Integralgleichungen a), b) und c) aus Abschnitt 3.4.2. mit k(z) = ¢,
f};}g;bi"}?.lb: Fiir einen RLC-Stromkreis (Abb. 3.4) mit nicht differenzierbarer Eingangsspannung
e(t) gilt fiir den Strom i(¢) die Integro-Differentialgleichung

t

Aufgaben: Verschiedene Gleichungstypen

Li’(t) + Ri(t) + —é—fi(‘t) dr = e(?),. i(0) =0.
0

Man bestimme i(¢) fiir R = 0 und a) e(¢) beliebig, b) e(s) nach (T 87).
Aufgabe 3.20: Man l6se mit (2.14) die Differenzengleichung

W—T)+y)=1, yt)=0 fir 0=t=T.



4. Moderne Operatorenrechnung

Die urspriingliche Heavisidesche Idee des formalen Rechnens mit einem Diffe-
rentiationsoperator p = dit wie mit einem algebraischen Symbol wurde in Abschnitt 2.
mittels der Laplace-Transformation mathematisch fundiert. Dabei wurden Teil-
gebiete der Analysis (insbesondere Integralrechnung und Funktionentheorie) heran-
gezogen, aber auch wesentlich mehr erreicht: Deutung von p als komplexe Verdnder-
liche, asymptotische Beziehungen u.a.

Stellt man den formalen Kalkiil des Rechnens mehr in den Vordergrund, so 1Bt
sich mit einfachen Hilfsmitteln aus der Algebra (Ring- und Kérperbegriff) eine andere
mathematische Begriindung geben. Dieser Zugang ist besonders dann véllig aus-
reichend, wenn nur die Lésung von Funktionalgleichungen interessiert und nicht die
vielfiltigen Zusammenhénge zwischen Original- und Bildfunktionen.

Wihrend die Grundlagen aus der Analysis fiir die Laplace-Transformation in
anderen Bénden dieser Reihe dargestellt sind, miissen fiir den algebraischen Zugang
zunéchst einfache Begriffe der Algebra (Abschnitt 4.1.) bereitgestellt werden. Ein
Funktionenring RY) und der Mikusiniskische Operatorenkdrper K*) werden in den
zwei darauf folgenden Abschnitten definiert und diskutiert.

Die Anwendungsgebiete dieser Operatorenrechnung und der Laplace-Transfor~
mation sind weitgehend identisch, deshalb hat die Ubersicht in Abschnitt 3.4.3. auch
hier ihre Giiltigkeit; Ergidnzungen werden in Abschnitt 4.4. gegeben. Die Tabelle 1
kann {ibernommen werden.

4.1. Ringe und Korper

Ein wichtiger Begriff in der Algebra ist der eines Ringes, dieser Begriff wird jetzt
eingefiihrt und an bekannten Beispielen erldutert; danach wird der Kérperbegriff er-
klart.

4.1.1.  Ringe und Nullteiler
Zunéchst werden einige Mengen M eingefiihrt (siehe auch [B 1], Abschnitt 7), an
denen die Begriffe des Abschnitts 4.1. erldutert werden.

Beispiel 4.1: Mengen mit der Identitit als Gleichheit sind z. B.
a) Menge M; = N = {0, 1,2, ...} der natiirlichen Zahlen;
b) Menge M, = G = {0, +1, +2,...} der ganzen Zahlen;
c) Menge M3 = P der rationalen Zahlen mit

={i%‘p,qu,q¢0};

d) Menge M, der fiir # = 0 stetigen Funktionen f() mit reellen oder komplexen Funktionswerten.

1) Im Abschnitt 4 sind R bzw. K von der Menge der reellen Zahlen R bzw. der komplexen Zahlen K
zu unterscheiden.



D.4.1

D.4.2

88 4. Moderne Operatorenrechnung

Fiir nichtleere Mengen M wird jetzt gefordert, daB fiir ihre Elemente auBerdem
zwei Rechenoperationen mit gewissen Rechenregeln erklért sind. Diese zwei Rechen-
operationen werden Addition und Multiplikation genannt und meist mit den iiblichen
Zeichen + und - geschrieben, sie miissen aber nicht mit der bei Zahlen tiblichen Addi-
tion und Multiplikation iibereinstimmen.

Definition 4.1: Eine nichtleere Menge M mit den Elementen a, b, c, -+ und zwei immer
eindeutig ausfiihrbaren Rechenoperationen heifit Ring R, wenn folgende Rechenregeln
gelten:

1. Kommutative Gesetze: a + b = b + a, ab = ba;

2. Assoziative Gesetze: a + (b + ¢) = (a +.b) + ¢, a(bc) = (ab) c;

3. Subtraktionsgesetz: Jede Gleichung @ + x = b hat genau eine Losung x € R;

4. Distributivgesetz: a(b + ¢) = ab + ac.

Beispiel 4.2: In den Mengen My, ..., M4 werden zwei Rechenoperationen eingefiihrt, und es wird
angegeben, ob dann ein Ring vorliegt oder nicht.

In den Mengen M;, M, und M; wird die iibliche Addition und Multiplikation fiir Zahlen einge-
fiihrt, dann gilt:

a) M; = N ist kein Ring, denn z. B. die Gleichung 3 + x = 1 ist unlésbar in N wegen =2 ¢ N

b) M, = G ist ein Ring R,, weil offenbar alle Gesetze erfiillt sind.

c) M5 = P ist ein Ring R, weil offenbar alle Gesetze erfiillt sind.

d) Mit der iiblichen Addition und Multiplikation (Wertemultiplikation) ist M, ein Ring R4, denn
Summe und Produkt stetiger Funktionen sind wieder stetige Funktionen ([B 2], S.32), und alle
Rechenregeln sind erfiillt.

In einem Ring R sind also eine Addition und ihre Umkehrung (Subtraktion) sowie
eine Multiplikation ausfithrbar, und diese Operationen geniigen den Regeln der De-
finition 4.1. Wie steht es aber mit der Umkehrung der Multiplikation? Dazu vor-
bereitend die

Definition 4.2: Ist a,be R, a + 0,b + o und ab = o, so heifien a und b Nullteiler. Das
Element o bezeichnet das Nullelement des Ringes R, es hat die Eigenschaft a + o = a
fiir beliebige a€ R.

Beispiel 4.3: Es wird das Nullelement o der Ringe R,, R; und R, angegeben und die Frage nach Null-
teilern beantwortet:

a) Fiir die Zahlenringe R, und Rjist das Nullelement o die Zahl 0; es gibt keine Nullteiler, weil fiir
Zahlen gilt: Aus ab = 0 folgt, daB mindestens ein Faktor a, b die Zahl 0 ist.

b) Der Funktionenring R4 hat alsNullelement die Funktion n(f) = 0, ¢ = 0. R, besitzt Nullteiler,
denn z. B. fiir

3 t—-1, 0st=1,
f@0= { ? -

=1,
1) =
&) {o, 11,

1, 1=:¢

ist £(8) + n(t), g(t) == n(t) und f(t) g(t) = n(t) = 0.

4.1.2. Korper und Division

In einem Ring R ohne Nullteiler kénnen beide Seiten einer Gleichung durch einen
gemeinsamen Faktor #o gekiirzt werden, beliebige Divisionen miissen aber nicht
ausfiihrbar sein. Fordert man letzteres jedoch, so kommt man zur
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Definition 4.3: Ein Ring R mit mindestens zwei verschiedenen Elementen heifst Korper K,
wenn gilt

5. Divisionsgesetz: Jede Gleichung ax = b mit a = o hat genau eine Losung x € K.

Beispiel 4.4: Die Ringe R, und R; werden daraufhin untersucht, ob sie Korper sind.

a) Der Ring R, ist kein Kérper, denn z. B. die Gleichung —3x = 2 ist unldsbar in R, wegen
—%¢R,.

b) Der Ring Rj; ist ein Kérper K3, denn jede Gleichung ax = b mit rationalen Zahlen a = 0 und

b hat die rationale Zahl x = i als Losung. K ist der Korper der rationalen Zahlen.
a

.

In einem Korper K sind also eine Addition und ihre Umkehrung sowie eine Multi-
plikation und ihre Umkehrung ausfiihrbar, und es gelten die Regeln der Definitionen
4.1 und 4.3. Aus dem Divisionsgesetz folgt noch sofort:

Ein Korper hat keine Nullteiler, denn ax = o (a = o) hat nur die Losung x = o.
Weiter ist die Gleichung ax = a(a # 0) l6sbar, ihre Losung x = e heilt Einheitsele-
ment e.

Ist ein nullteilerfreier Ring R kein Korper, so 146t sich jedoch stets ein Korper K.
konstruieren, der diesen Ring enthalt; dieser Korper K heilit Quotientenkérper zu R.

Satz 4.1: Zu jedem nullteilerfreien Ring R existiert ein Korper K, der den Ring enthdlt.

Der Beweis besteht in der Konstruktion des Kérpers K: Zu R werden neue Ele-
mente (Briiche) hinzugenommen, so da dann jede Gleichung ax = b, a = o, 16sbar
a
b
Bruchstrich nicht die gewéhnliche Division bedeuten muB. Es soll mit b # o und
d = o gelten:

wird. Die neuen Elemente sollen als Quotienten geschrieben werden, wobei der

a_ ¢ a ¢ ad+bc ac ac
3= 7genau dann, wenn ad = bc; 5 + I B d-B

Man kann nun nachweisen, daB diese Rechenregeln widerspruchsfrei und von der

speziellen Schreibweise der Elemente unabhéngig sind sowie die Regeln' 1 bis 5 er-

fiillen. Setzt man schlieBlich noch %b— =a, b+ o, so ist die Einbettung des Ringes R

in den Kérper K, d.h. R < K, erreicht. Der ausfiihrliche Beweis verlduft ebenso wie
bei der wohlbekannten Konstruktion der rationalen Zahlen aus den ganzen Zahlen.

Beispiel 4.5: Zum nullteilerfreien Ring R, der ganzen Zahlen gehort als Quotientenkdrper der Kor-
per K, = K3 der rationalen Zahlen. Die angegebenen Regeln entsprechen den bekannten Gesetzen
der Bruchrechnung, der Bruchstrich bedeutet hier die gewdhnliche Division.

4.2. Mikusinskischer Operatorenkérper K

Der Operatorenkdrper K kann als Quotientenkdrper eines nullteilerfreien Ringes
eingefiihrt werden, der in Abschnitt 4.2.1. betrachtet wird; danach wird der Kérper K
gebildet und die Hauptformel der Operatorenrechnung hergeleitet.

D.4.3

S.4.1
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4.2.1. Funktionenring R

Zunéchst wird eine Funktionenmenge M definiert, dann wird durch die Einfithrung
von zwei Rechenoperationen in M ein nullteilerfreier Ring R konstruiert.

Die Menge M bestehe aus allen Funktionen f(¢), t = 0, die stiickweise stetig sind,
d.h. héchstens endlich viele Spriinge oder isolierte (bzw. nicht definierte) Funktions-
werte in jedem endlichen Intervall haben. f(¢) kann reelle oder komplexe Funktions-
werte besitzen. Da die Funktionswerte an den Sprungstellen hier unwesentlich sind,
wird die Gleichheit in M folgendermaBen festgelegt: f(¢) und g(f) heiBen gleich,
wenn ihre Integrale gleich sind:

j f@)dt = g(r) dr. @.1)

Beispiel 4.6: In der Menge M sind offenbar alle fiir # = 0 stetigen Funktionen enthalten. Beispiele
dafiir sind die Originalfunktionen f(r) von (T 1) — (T 41), (T 45), (T 48), (T 51), (T 53) — (T 58),
(T 61), (T 64) — (T 66), (T68) — (T 70), (T75) — (T78), (T80), (T81), (T88) — (T90) und
(T 95) — (T 105) der Tabelle 1.

Fiir stetige Funktionen ergibt sich aus (4.1) durch Differentiation nach ¢ als Gleich-
heit einfach f(t) = g(¢) fiir jedes 7 = 0.

Beispiel 4.7: Unstetige Funktionen, die zu M gehdren, sind z. B. die Originalfunktionen f(f) von
(T 86), (T 87) und (T 91) — (T 94) der Tabelle 1. Diese Funktionen sind nach (4.1) alle untereinander
ungleich.

Gleich im Sinne von (4.1) sind z.B. die drei Funktionen des Beispiels 2.12, obwohl
sie bei ¢ = 0 verschieden definiert sind.

Satz 4.2: Die Funktionenmenge M bildet mit der gewohnlichen Addition und der Fal-
tung (2.18) als Multiplikation einen nullteilerfreien Ring R.

Beweisschritte: Fiir f(t) = f, g(t) = g € M ist zundchst zu zeigen, daBl auch Summe
und Ringprodukt wieder Funktionen aus M sind, d.h.
T
f+geM, fsg=[f(t-—7)g)dreM. 4.2)
0
Weiter ist die Giiltigkeit aller Regeln der Definition 4.1 nachzuweisen ([3], S. 68).
Es gelten also in M die Rechenregeln:
f+eg=g+f, f+@E@+hN=(+8+h [+ x=g immer ldsbar,
frg=gxf, fx(gxh)=(f+g*h fx(@+h=fxg+f«h (43)
Die behauptete Nullteilerfreiheit bedeutet:
t
Aus fxg = f f(t — 7) g(z) dr = 0 folgt, daB mindestens eine der Funktionen f(¢),

g(1) 1dentlsch null ist. Diese Tatsache ist keineswegs trivial, sondern erfordert kompli-
zierte Uberlegungen beim Beweis ([13], Kap. IT; [4], S. 137). Sie ist die grundlegende
Aussage fiir den algebraischen Aufbau der Operatorenrechnung
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Damit sind alle notwendigen Beweisschritte aufgefiihrt, ihre ausfiihrliche Dar-
stellung wiirde mindestens 5 Druckseiten in Anspruch nehmen.

Beispiel 4.8a: Fiir f=12,g=1t, h=1t3, k = t ist (siche auch Beispiel 2.9)

t t
1 1
f*k=f(t—t)21dr=ﬁt“, gth:j(t—r)rsd't:—ﬁls,
0 0

t t
/th:f(t—r)z‘ﬂd‘!:él—ots, gtk=f(t——t)'zdz=%l3.
[ o
Der Ring R ist kein Korper, denn z.B. die Gleichung /% x = /, also

I(t) * x(1) = fx(r) de=1I), I=1In=1, @.4)

o

ist unlosbar in R. Dies folgt aus (4.4), wenn dort der Grenziibergang ¢ — +0 durch-
gefiihrt wird: Die linke Seite von (4.4) ergibt 0, die rechte Seite ist aber immer 1.
Das Nullelement des Ringes R ist die Funktion n(f) = 0; ein Einselement gibt es
wegen (4.4) nicht.
Im Ring R sind die Konstanten « (reelle oder komplexe Zahlen) nicht enthalten.
Die konstanten Funktionen f(r) = «, ¢t 2 0, sollen im Unterschied zu den Kon-
stanten o« mit / = /(t) = 1 in der Form

fG) =al, 120, @.5)

geschrieben werden. o = 5 bedeutet damit die Zahl 5, f(r) = 5/ dagegen bedeutet die
Funktion f(f) = 5. Dann ist offenbar

t
al+f, a«lxf= zx_ff(t) dr (4.6)
0
in R erklirt, aberx + fund «  f'sinnlos in R; «f bedeutet wie iiblich das x-fache der

Funktion f(f).

Beispiel 4.9: Setzt man in (4.6) x = 1 und f =/, so gilt
t
Isl=12=[dr=1
0

Daraus folgt /#1% = [3 = 1+ oder allgemein mittels vollstindiger Induktion nach »
1
= —t
(n—1)!
(I", ne N, bedeutet im folgenden stets das Faltungsprodukt / * /% --+ [ mit n Faktoren /).

Bl n=1,2,-... @7

4.2.2.  Operatorenkorper X

Nach Satz 4.1 gibt es zu jedem nullteilerfreien Ring R einen zugehodrigen Quo-
tientenkorper K.
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Definition 4.4: Der Quotientenkirper K zum Ring R aus Satz 4.2 heifgt Mikusinskischer
Operatorenkorper, seine Elemente heiflen Operatoren.

Die Elemente des Kérpers K sollen unter Weglassen des Argumentes ¢ bei Funk-
tionen in der Formi , /> & € R, geschrieben werden; der (fette) Bruchstrich bedeutet

die Korperdivision, d.h. die Umkehrung der Faltung. Die gewéhnliche Division von
Funktionen wird im Gegensatz dazu bei Hinzunahme des Argumentes / mit einem

(normalen) Bruchstrich in der Form S

g(®)

Der Ubergang vom Funktionenring R zum Operatorenkorper K erfolgt analog dem

Ubergang vom Zahlenring R, zum Zahlenkérper K,; mit Operatoren 1iBt sich also

formal wie mit rationalen Zahlen rechnen. Jedoch sind die Operatoren nicht so einfach

zu {iberblicken wie die rationalen Zahlen, spezielle und wichtige Operatoren werden

in den Abschnitten 4.2.3., 4.2.4. und 4.3. untersucht. Die genannte Analogie bringt
folgende Gegeniiberstellung nochmals zum Ausdruck.

geschrieben.

Zahlenring R, = G | Funktionenring R

Elemente, Gleichheit, Null- und Einselement

Ganze Zahlen a, b, ... Fiir ¢ = 0 stiickweise stetige Funktionen
f(0), 80, ...
i ¢
Zahlengleichheit @ = b [f@dr = [e@) de
0 0
Zahl 0 Funktion n(t) =0
Zahl 1 Einselement existiert nicht
Rechenoperationen
Zahlenaddition und Umkehrung Gewdhnliche Addition und Umkehrung
Zahlenmultiplikation ab Faltung f* g
Zahlenkorper K, = P Mikusiniskischer Operatorenkorper K

Elemente, Gleichheit

Rationale Zahlen% Opexatoren%

8 -l oad=be _[.:i(—yf*k:gth
b d g k

a,b,c,deRy; b#0,d #0 fg.hkeR; g£0,k=0

Weitere Rechenoperation

Zahlendivision nach den Umkehrung der Faltung
Regeln der Bruchrechnung nach den Regeln (4.8)
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Nach Satz 4.1 gelten im Korper K die Regeln

%;— %genaudann wenn fxk = gx*h;

4.8
£+£_f*k+g*h fh_ fxh “8
gk gxk gk gxk’

Dabei sind f, g, 1, k Funktionen aus R mit g % 0, k % 0; der Bruchstrich bedeutet
die Umkehrung der Faltung. % heiBt inverser Operator zu —.
Im Kérper K sind alle Funktionen f = f(¢) € R enthalten, wenn

r=L£ g0, 49)
gesetzt wird. Spe21ell kann g = / gewihlt werden. Aus (4.8) folgen mit (4.9) noch die
Gleichungen (f, g, he R; g £ 0)

+gxh *h
LypoLltesh [ feh o

g g g g
Beispiel 4.8b: Fiir f, g, h und k aus Beispiel 4.8a ist

h 1 1
a)—;;#?, weil frg= —t *gth:Ets ist;
b)f+h— 1 5t‘+3t5_ 1 5'4!15+3'5!15_21+6t @D
T ECI0 A 10 3E nach (4.7);
h 1 ¢ 1 61
oll L _ L O k6 nach@).

gk 10 £ 10 3174
Das Ergebnis einer Division in X muf natiirlich nicht wie bei a), b) und c) eine Funktion aus R sein;
z. B. sind weder £- noch % Funktionen. Das Kiirzen in Kist bei b) und ¢) méglich, denn zwischen den
Faktoren / steht der Stern *.

Der Begriff des Operators ist wegen (4.9) eine Verallgemeinerung des Begriffs der
Funktion. Im Abschnitt 4.3. wird sich zeigen, daB auBer den Funktionen aus R noch
viele andere Funktionen in K enthalten sind. Es gibt aber auch Operatoren, die keine
Funktionen sind.

4.2.3.  Einfache Operatoren

K hat wie jeder Korper ein Einselement, %, fiir das man die Zahl 1 benutzen kann.
Wie sich zeigen 148t ([13], S. 22), lassen sich damit auch die {ibrigen Konstanten «
mit den Korperelementen —“IL identifizieren, d. h., es wird

&= ”‘TI @.11)
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gesetzt. Im Unterschied dazu gilt wegen (4.9) fiir die konstanten Funktionen «/ die
ol %1
—

Beziehung «/ =

In Kist (im Gegensatz zu R) jetzt Addition und Multiplikation einer Konstanten o
mit einer Funktion f € R erkldrt. Fiir die Addition ist wegen (4.11) und (4.10)

ot +f_ ocl+f*1

Bei der Multlphkauon mit einer Konstanten ist es gleich, ob man diese als gewdhnliche
oder als Operatormultiplikation ausfiihrt, da im letzten Fall wegen (4.11) und (4.10)

zx_lf_ ((xl)*f_ Ix(xf)

[ A ]
ist und dieses Korperelement wegen (4.9) gleich dem gewdShnlichen Produkt «f ist.
Die benutzte Beziehung («/) * f = [ = (of) folgt unmittelbar aus (4.6). t

Fiir die Funktionen / = I(t) = 1, f = f(t)e R gilt nach (4.6) /xf = ff(r) dr,
0
deshalb heiBt die Funktion / Integrationsoperator. Der dazu inverse Operator p = —; )

mit p/ = 1 ist keine Funktion, er ist ein erstes und wichtiges Beispiel fiir ein neues
Korperelement; p hei3t Differentiationsoperator.

4.2.4. Hauptformel der Operatorenrechnung
Mit dem Differentiationsoperator p ergibt sich der

Satz 4.3 (Hauptformel): Hat f = f(1) fiir t 2 0 eine Ableitung f* = f'(t), die zu R ge-
hort, so ist

of =f" + f0). (4.12)
Der Beweis von (4.12) folgt aus der in R giiltigen Gleichung ([13], S. 25)
t

If'=[f(@)dr = f(1) - f(O) !

[7 steht bei f(0) wegen der Vereinbarung (4.5)] durch die im Kérper mogliche Multi-
plikation mit p wegen p/ = 1. Fiir f(0) = 0 ist pfe R, fiir f(0) + 0 ist pf'¢ R.

Wegen (4.12) ist der Name des Operators p gerechtfertigt. (4.12) ist dem Differen-
tiationssatz (2.23) der Laplace-Transformation analog, allerdings wird jetzt auBler
/"€ R nichts weiter vorausgesetzt.

Wird (4.12) wiederholt angewendet, so folgt: Hat [ = f(t) fiir t = 0 eine Ableitung
™ =f®r)eR, neN, soist

P =1+ p=f(0) + pr3f(0) + - + fD(0). (4.13)

Ist speziell f(0) =+ =f®1(0) = 0, so gilt einfach p"f = f™ € R, sonst ist p"f ¢ R.

Mit (4.13) ist die Differentiation auf eine einfachere Operation abgebildet worden,

(4.13) wird natiirlich bei der Losung von Differentialgleichungen Verwendung finden
(Abschnitt 4.3.).

1) Wenn keine Funktion aus R im Zéhler oder/und Nenner steht, kann auf den fetten Bruchstrich
verzichtet werden. p ist hier keine komplexe Verdnderliche wie im Abschnitt 2.
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Beispiel 4.10: Setzt man in (4.12) f = f(f) = €%, « komplex, so folgt
1

pe=ae*+1, M= .
pP—c

4.2.5. Aufgaben: Rechnen im Ring R und Korper X
Aufgabe 4.1: Man bestimme fiir f= 4/, g =sint, h=1=1
a)frg; b)frgeh; o) fx(g+h).
Aufgabe 4.2: Mit vollstindiger Induktion beweise man fiir n + 1 Faktoren e** die Gleichung

1
C et wet = — e, neN.
nl

Aufgabe 4.3: Man vereinfache mit (4.7) in K:

3 ~

2 t—1 D

HaA+nHa-=n.
Aufgabe 4.4: Man forme p"t™ mit (4.13) um; m,ne N.
Aufgabe 4.5: Man setze in (4.12) f(f) = ¢t + I. Ist pfe R?
4.3. Spezielle Operatoren
Bis jetzt sind nur die Konstanten «, die stlickweise stetigen Funktionen aus R und
der Differentiationsoperator p als Elemente von K bekannt. Im folgenden werden
weitere Elemente von K eingefiihrt und ihre Verwendung diskutiert.
4.3.1. In p rationale Operatoren

Aus Beispiel 4.9 und Aufgabe 4.2 ergibt sich durch n-malige Multiplikation (n + 1
Faktoren e*)

@—_L‘Fy=e“*-~-*e“'=%t"e”, neN. (4.14)

Da die Formel (2.31) eine Identitit ist, die in jedem Ko6rper unabhingig von der
speziellen Bedeutung von p gilt, 1aBt sich jeder in p echt gebrochen rationale Ausdruck
durch Partialbruchzerlegung als eine Linearkombination von Operatoren (4.14) dar-
stellen. Daraus folgt der

Z(p)

Satz 4.4: Jeder in p echt gebrochen rationale Operator F(p) = W@Tmit den Poly-

bination von Funktionen der

nomen Z(p) und N(p) kann mit einer bestii Lineark
Form t"e** identifiziert werden.

Diese Linearkombination 148t sich allgemein durch (2.32) auch angeben. Beschriinkt
man sich auf reellwertige Funktionen, so hat man noch e** bei nichtreellem & durch

S.4.4
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(2.35) zu ersetzen und erhélt dadurch Sinus- und Kosinusfunktionen im  Ergebnis;
Beispiele dazu wurden im Abschnitt 2.4.1. gegeben. Die Korrespondenzen (T 1)-(T40)
und (T 111)~(T 145) aus Tabelle 1 sind weitere Beispiele.

Die Losung von Anfangswertaufgaben (3.1), (3.2) bei gewdhnlichen Differential-
gleichungen und bei Systemien (3.29) mit stiickweise stetigen Storfunktionen ist nun
bereits moglich; dabei werden Losungen gesucht, deren n-te Ableitung zu R gehort.
Alle Beispiele aus den Abschnitten 3.1.1., 3.1.2. und 3.2. kénnen zur Illustration
dienen. Zwei weitere Beispiele sollen die jetzt tibliche Bezeichnungsweise iiben.

Beispiel 4.11: Fiir das Anfangswertproblem
y'+y —6y=4, y0=1 y0)=0,
gilt mit p/ = 1 und (4.13)

2 1—6 4 5 pPP+p+4
Py—p-py-l-by=—, y=—r—nH-.
)4 p+3(@-2)
Formel (T 104) ergibt mit p, = 0, p, = —3, p; = 2 sofort
2 2
=—-?l—?e‘3'+ez‘.

Beispiel 4.12: Ist im Beispiel 4.11 jetzt f(f) = e'?, so ist

p+1 1 2

2 2
y—p+py—1—6y=e*, y= + (a8
’ G+Ir-2  GrIG-D

Mit (2.30) ergibt sich zundchst

_2_1 3 1 +1(1 1)6'2
YT S 3 5p=2 s\p-2 p+3

und daraus nach 'Beispiel 4.10 die Funktion
t t
y =-2—e‘3‘+iez’+ie” e_”*'ld"r—ie's'fe”“zdn
5 5 5 5

o

4.3.2.  Verschiebungsoperator
Im Ring R sind die Sprungfunktionen

O={112% wo=wo={] 2 19
WO\ na<r T Lo <, '
enthalten; 4 2 0. Fiir sie gilt mit fe R
‘ 0, t<,
= - dr=1{ ¢ -
uxf off(t 7) uy(7) dv { [ft -9 dr= [ f(9)do, A<t
i 0
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Setzt man die Funktion u; * '€ R in (4.12) ein und fithrt den Operator v, = pu; ein,
so gilt fir fe R
0, t<4,

f =A<t

v; heilt Verschiebungsoperator, weil er nach (4.16) die Funktion f(#) um 4 nach rechts
verschiebt. Man beweist leicht die Formel

vuf=pu*f) = { (4.16)

Oy = Uagu; A20, w20,

Ergidnzt man die Funktionen aus R fiir # < 0 durch f(#) = 0 [siche auch (2.3)], so
lautet (4.16) einfach v;f = f(t — 2). 1
Mit dem Verschiebungsoperator v; und dem Integrationsoperator / = — lassen sich

in einfacher Weise alle stiickweise linearen Funktionen (mit und ohne Sprungstellen)
darstellen.

Beispiel 4.13: Die Funktionen a) (T 86), b) (T 87) und c) (T 88) aus Tabelle 1 werden mit v; und
= -1- dargestellt. Aus den Definitionen der Funktionen und mit (4.16) folgt sofort:
p

1
a) f(t) = —(vo — vp),
p
1
b) f() = ;‘(vo = 2vr + vp7),

1
o) f(t)= 7(”0 = 2vp + vy1)-
Speziell lassen sich alle stiickweise konstanten Funktionen (Treppenfunktionen)

mit dem Verschiebungsoperator v, schreiben. Hat die Treppenfunktion g(f) an den
Stellen 7 = 7, den Sprung y, = g(t, + 0) — g(t, — 0), so ist

1
8() = Xy, = rl PRI 4.17)
Zu summieren ist iber die (endliche oder unendliche) Anzahl der Sprungstellen. Die
Funktionen (T 86) und (T 87) des Beispiels 4.13 illustrieren (4.17).

Jede Funktion f(¢) € R 1Bt sich als Summe einer stetigen Funktion g,(#) und einer
Treppenfunktion g,(¢) (Bild 4.1) in der Form

1) = 840 + &2t = 2(0) + %;yvv,v @.18)

f1n

g
Bild 4.1. Zerlegung einer stiickweise stetigen Funktion f(¢) in eine stetige Funktion g,(r)
und eine Treppenfunktion g,(t)

7 Stopp, Operatorenrechnung
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darstellen, wobei es fiir #, - co keine Konvergenzprobleme gibt. Ist g} € R, so gilt
nach (4.12) pgy = g1 + £1(0); wegen g; = f” fiir ¢ + ¢, und g,(0) = f(0) erhilt man
damit aus (4.18) durch Multiplikation mit p folgende

Verallgemeinerung der Hauptformel (4.12):

Hat f(t) an den Stellen t = t, die Spriinge y, = f(t, + 0) — f(t, — 0) und existiert fiir
t = t, f'(t) mit f’ = f'(t) € R, dann gilt

pf=f"+10) + );vvvrv. (4.19)

Beispiel 4.14: Fir folgende Funktion gilt:

cost, 0<t<2m, . 1
f= f(t)—-{ 0, B }=cost+vz,,(l-cost)—;vz,,;
1
gi(t) =cost+ vy, (I —cost), g(t)= ——uvy,
P

pf= —sint + vy, (1 +sin?) — v, ¢ R.

Mit dem Verschiebungsoperator lassen sich periodische Funktionen darstellen. Ist

St + T) = f(r) und
&) _{f(t), 0<t<T,

0, T<t,
so gilt offenbar g(¢) + vrf(t + T) = f(¢). Daraus folgt

t
) = g( )T . (4.20)
Beispiel 4.15: Fiir die periodische Funktion f(f)=1¢T, 0<t<T, f(t+ T)=f(t), ist
HT,0<t<T, (()
g(t) = { und damit also f(f) = .
0, T<t, -

4.3.3. Distributionen und verallgemeinerte Laplace-Transformation

Distributic;nen ([4], § 35) sind weitere spezielle Operatoren, auf diese 148t sich die
Laplace-Transformation (2.1) ausdehnen.
Definition 4.5: Ein Operator ¢ = 1 aus K heift Distribution, falls f = f(t) und g = g(t)
absolut konvergente Laplace-Integrale (siche 2.1.2.) besitzen; f, g € R.

Fiir die Funktionen f(¢) und g(¢) soll die Festlegung (2.3) gelten. Fiir Operatoren

(und damit auch fiir Distributionen) ¢ = = lassen sich Integration und Verschicbung
definieren durch g

ff(r) &

fw(r)dr Y ot -nEL=D 550,

g(0)
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eine verallgemeinerte Ableitung 1dBt sich durch

(n)d;f )
¢ HO)
definieren, falls £™(7) fiir alle reellen ¢ stetig ist.

Fiir Distributionen 148t sich eine veralligemeinerte Laplace-Transformation de-
finieren in der Form
F(p)

Lig} = D(p) = W

Diese verallgemeinerte Transformation geht in die gewohnliche Transformation iiber,
falls ¢(¢) ein konvergentes Laplace-Integral besitzt. Nach [4], S. 44, gilt der

Satz 4.5: Die wichtigen Rechenregeln (2.10), (2.13), (2.14), (2.17), (2.20), (2.21) und S.4.5
(2.25) der Laplace-Transformation bleiben giiltig, wenn die Originalfunktionen durch
Distributionen und die Bildfunktionen durch (4.21) ersetzt werden. (2.24) laft sich ver-
allgemeinern durch L {¢™} = p"d(p).

,neN,

mit  L{f(1)} = F(p), L{g(0)} = G(p). (4.21)

Beispiel 4.16: Die wichtigste Distribution ist die durch
uy(t)
i)

definierte Diracsche Delta-Distribution. Fiir sie ist wegen (4.21), (T 1) und (2.14) die verallgemei-
nerte Laplace-Transformierte

8t —4) = = puy(t) = o)1), 220,

I -
—e
4

2p

Lot -2} =

P
Fiir ihre Ableitung gilt nach Satz 4.5
L{™(@¢ — A} =p"e*, neN.

Damit sind also die Korrespondenzen (T 82) bis (T 85) im Rahmen der verallgemeinerten Laplace-
Transformation giiltig. Weiter folgen aus der Definition von d(¢ — 4) die Gleichungen (3.25) und (3.26),
d.h., die im Abschnitt 3.1.3c. eingefiihrte Delta-Funkrion ist mit der hier erklarten Delta-Distribution
identisch. Die im Beispiel 3.14 angegebenen Deutungen von d(¢) und die Verwendung von 4(¢) als
rechte Seite bei Differentialgleichungen (Abschnitt 3.1.3d.) konnen beibehalten werden.

4.3.4. Weitere Operatoren

AuBer den Funktionen aus R sind in K beliebige integrierbare und sogar nicht inte-
grierbare Funktionen enthalten ([1], S.118); fiir nicht integrierbare Funktionen
gelten dann natiirlich nicht mehr die Rechenregeln (4.3), sondern sie miissen als
Operatoren mit den Regeln (4.8) behandelt werden.

In K sind Operatoren der FormG—i;);- enthalten ([13], S. 101). Man kann zeigen,

daB dieser Operator fiir « 2 1 mit einer Funktion aus R identifiziert werden kann,

T*
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fiir 0 < o < 1 ebenfalls einer Funktion (nicht aus R) entspricht und fiir < 0 keine
Funktion ist. Fir o« > 0 gilt:

S S
P-a* I . _
1 1 T

Fiir a = 0, « = ne N, entsteht wieder (4.7), fir a =0, x = 5 ist —;7—
r

N—lent

.l

Damit sind weitere Korrespondenzen der Tabelle 1 benutzbar.

4.4. Anwendungen und Aufgaben zur Operatorenrechnung

Der Zusammenhang zwischen der Operatorenrechnung und der Laplace-Trans-
formation ist eng ([4], § 35). Insbesondere kann man zeigen ([3], S.227), daB alle
Tabellen der Laplace-Transformation (Tabelle 1, [T 2], [T 4]) auch in der Operatoren-
rechnung verwendet werden konnen.

Als Anwendung der Operatorenrechnung soll die Losung folgender Funktional-
gleichungen hervorgehoben werden:

1. Gewohnliche lineare Differentialgleichungen mit konstanten Koeffizienten (Bei-
spiele 4.11 und 4.12, Aufgabe 4.7);

2. Systeme obiger Differentialgleichungen (Aufgabe 4.8);

3. Integralgleichungen vom Faltungstyp (Aufgabe 4.9);

4. Partielle Differentialgleichungen mit konstanten Koeffizienten ([13], Teil IV);

5. Differenzengleichungen ([13], S. 146);

6. Gewisse Funktionalgleichungen allgemeiner Art (Aufgabe 4.10).

Weiter kénnen alle entsprechenden Beispiele des Abschnitts 3 zur Illustration
dienen.

Aufgabe 4.6: a) Welche Funktion ist f= —(l —vx — vg + Ua+p)?  b) Man bilde f* mit (4.12)!
Esist0 S < f.

Aufgabe 4.7: Man lose die Anfangswertprobleme a)y” +y — 6y = f(1), ¥0) = y(0) = 0, f() aus
(T87); b)y”" + 4y — 5y =20(t—T),y0) =y =0.

Aufgabe 4.8: Man lose das normale (siche Abschnitt 3.2.1.) System

Yy + 3y, — 4y, + 6y, =10cost, yy +y;— 2y + 4y, =0,
710) =320 =0, »0) =4, 0 =2.
Aufgabe 4.9: Man lose die Integralgleichung vom Faltungstyp
t
W) =t + J sin (¢ — 7) ¥(7) dz.
0 t

Aufgabe 4.10: Man lose die Funktionalgleichungen a) y(t) =sint + 2 f sin (¢ — 7) y'(z) dz;
t
0
D) ¥~ (1 = Ne' = [yt — )@ dr.
0



S8 Fourier-Transformation

Die neben der Laplace-Transformation wichtigste Integraltransformation ist die
Fourier-Transformation. Nach ihrer Definition und der Darstellung von Zusammen-
hdngen mit anderen Transformationen (Abschnitt 5.1.) werden Umkehrung und
Rechenregeln angegeben. Diese Transformation dient wieder der Losung von ge-
wohnlichen und partiellen Differentialgleichungen. In Tabelle 2 (sieche Anhang) sind
Korrespondenzen zusammengestellt.

Die Fourier-Transformation kann als Grenzfall einer Fourier-Reihe aufgefaBt
werden. Dieser Zusammenhang soll kurz heuristisch erldutert werden (siche auch
[B 3], Abschnitt 6):

LaBt sich f(7) im Intervall —--12‘— <t< 3 in eine (in komplexer Form geschriebene)

2
Fourier-Reihe entwickeln, so ist mit y, = —Z—ZL
L2
= 1
f0= % oo, q=1 [f0emar

—L/2
2% N .
Setzt man Ay = T so erhalt man durch Einsetzen von ¢,

L2

f(r) = ZL‘ Z ely,.!( ff(t) e vnt dt)Ay.
T —-L/2

LiafBt man nun L — oo gehen und setzt F(y) = J f(t) e~»* dt, so folgt die als Fourier-

sches Integraltheorem bekannte Formel -

1= 5= [ &0 dy.

Diese Formel entspricht der unter exakten Voraussetzungen angegebenen Formel
(5.11) des Satzes 5.2, sie verbindet die Funktion F(y) (Fourier-Transformierte) mit der
Funktion f(r) (Originalfunktion) in sehr einfacher Weise.

SN Definition der Fourier-Transformation

Neben der durch Beispicle erlduterten Definition der Fourier-Transformation wird
eine Klasse transformierbarer Funktionen angegeben sowie der Zusammenhang mit
anderen Integraltransformationen hergestellt.
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5.1.1.  Definition und Beispiele

Die Fourier-Transformation ist eine weitere wichtige Integraltransformation. Thre
physikalische Motivation ist aus Abschnitt 2.1.2. zu ersehen.

Definition 5.1: Der reellen (oder komplexwertigen) Funktion f(t), —oo < t < co, wird
das Integral

F(y) = [ef()dt) 5.1)

zugeordnet, falls dieses Integral existiert; dabei ist y reell. Diese Zuordnung heifit
Fourier-Transformation und wird bezeichnet durch

F(y) = F{f(t)}. (5.2)

Wie tiblich heifen dann f(¢) Fourier-transformierbar, f(#) Original- und F(y) Bild-
funktion. (5.1) ist ein uneigentliches Integral mit dem Parameter y, F(y) besitzt i. allg.
komplexe Funktionswerte. Das Integral (5.1) ist, sofern es nicht als gewohnliches un-
eigentliches Integral existiert, als sogenannter Cauchyscher Hauptwert zu verstehen:

© A

j =lim [,d.h., die Grenziiberginge gegen + oo sind zugleich und in der gleichen
—oo A-o_ Yy

Art vorzunehmen.

Beispiel 5.1: Zur Originalfunktion f(¢) = e !*}, Re @ > 0, wird mit (5.1) die Fourier-Transformierte

F(y) bestimmt. Es ist wegen [t| = —¢ fiir < 0 und |7| = ¢ fiir t > 0:
A 0 A
| e ivt—alt gy = fy(bua): dr + J‘e—uy+and,
-4 —4A 0
e—Uy—at | e—Ur+at | 4 1 4 eliv—a4 _e—lrted g
T iy—a —-A jy+a 0o jy—a y+a

Wegen |e™%4| < e"R*?und Re a > 0 existiert der Grenzwert fiir 4 — o0 und ergibt durch Zusammen-
fassen schlieBlich
2a
Fy)=F{e W} = ——— . 5.3
(62)] { } prgr (5.3)
Beispiel 5.2: Fiir die Originalfunktion
0, —0o<t< -1,
fy={1, -1 <t< 1,
0, 1 <t< oo,

wird die Fourier-Transformierte F(y) bestimmt. Es ist
1

F(y) = fe‘”‘ dr =

|

=yt iny
|0 =L(ei>'_e—iy)=251l.

-1 jy ¥

—-jy

1) In der Literatur sind verschiedene Definitionen iiblich, die sich jedoch nur dqrch konstante Fak-
toren unterscheiden.
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Beispiel 5.3: Ist f(t) gerade und Fourier-transformierbar, dann ist wegen f(7) = f(—¢) mit der Sub-
stitution # = —7 im ersten Integral

oo 0 oo oo )
Fo)= [ e P fndi= [ + [ = [ @@+ e f@dt=2 [ f(H)cos ) dr.
) —oo 0 o o

Entsprechend gilt fiir ungerade Funktionen f(f) = —f(—1):

F(y) = —2j J‘ f(©)sin (1) dt.
0

Beispiel 5.4: Die Funktion f(¢) = e™®, Rea > 0, ist nicht Fourier-transformierbar, weil fur

A
—Gy+ae (y+a)d _ o—(y+a)d
J’ —iyt—at gy _ e A e e

y+a | -4 y+a
—4

der Grenzwert A — o0 nicht existiert.
Wegen der einfachen Ungleichung

e 0
FON s [ lef@ldis [170)]de (54)
lassen sich sofort eine Klasse von Fourier-transformierbaren Funktionen f(¢) und
einige Eigenschaften angeben.
Satz 5.1: Existiert f |f(®)| dt, so existiert die Fourier-Transformierte F(y) fiir alle S.5.1

reellen y. F(y) ist dann beschrinkt, stetig und strebt gegen null fiir |y| - .

Beweis: Die Existenz und Beschréanktheit von F(y) folgt unmittelbar aus (5.4). Fiir die
beiden anderen Eigenschaften siehe [6], S. 198. Satz 5.1 ist nur hinreichend, wie Auf-
gabe 5.1 zeigt.

5.1.2. Fourier-, Fourier-Kosinus- und Fourier-Sinus-Transformation

Neben der Fourier-Transformation F(y) = F{f(t)} nach Definition 5.1 benutzt man
auch oft die Fourier-Kosinus-Transformation Fe(y) = Fc{f(f)} und Fourier-Sinus-
Transformation Fs(y) = Fs{f(r)} (Tabellen in [T 1], 19. Aufl. S. 673-684, ab 21. Aufl.
S. 621-632):

Fe{f(0} = [f(t) cos () d1,  F{f(0)} = [ f(t) sin (yr) de. (.5

Diese drei Transformationen lassen sich durch einfache Umrechnungsformeln in-
einander tberfithren. Es ist:

FO) = F{fO} = Felf@) + f(=0} = iF{f©) = (=0}, 56
Fe) = 3 FUUD},  RO) = 3 Fif(d) sign ). e0)
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(5.6) und (5.7) folgen aus Umrechnungen der Definitionen, so ist z. B. wieder mit der
Substitution # = — 7 im ersten Integral

%F{f(lt!)} =—;— f e-brf(l1]) dr =% f + % f

- % f @ + ) f() dt = j £(t) cos (y1) dt.

Fiir a) gerade Funktionen f(f) = f(—¢) und b) ungerade Funktionen f(¢) = —f(—1)
vereinfacht sich (5.6) zu (siche Beispiel 5.3)

a) F(y) = F{f(t) + f(1)} = 2F(y), (5.6a)

b) F(y) = —iFs{f(t) + f(O)} = —25F(). (5.6b)

Beispiel 5.5: Fir f(t)= LG wird die Fourier-Transformierte F(y) bestimmt. f(¢) ist gerade, deshalb
gilt nach (5.6a): J

© o

FO) = 2Fc0) = 2 J' sinat s o) de = zf

] ]

sin(a + y) ¢ + sin(a — y)t T
; )

@

in xt
Aus [T 1], 19. Aufi. S. 119, ab 21. Aufl. S. 67, entnimmt man I = f gdt und bestimmt damit

F(y); es ist 0
a2 &> 0, . n, —a<y<a,
sin at ©
I=] 0, a=0, F(y)_—.F{ }: V=4
—mf2, & <0,

0, y<—a,a<y.

5.1.3. Fourier- und Laplace-Transformation

Die Fourier-Transformation (5.1) hingt eng mit der Laplace-Transformation (2.1)
zusammen. In der folgenden Ubersicht werden die beiden Transformationen stich-
wortartig verglichen.

Fourier-Transformation Laplace-Transformation
o L
FO) = Fif0)} = § ey dr F(p) = L{f(1), p} = OI (1) drt)
o .

Einfacher: y reell Komplizierter: p komplex

Einfacher: Nur ein Verschiebungssatz (5.14) Komplizierter: Zwei verschied
Verschiebungssitze (2.14), (2.15)

Intervall: —c0 < ¢t < Intervall: 0 < ¢ < o

Differentiationssatz (5.18) enthalt keine Differentiationssatz (2.24) enthilt

Anfangswerte Anfangswerte

Schlechter: Konvergenz von (5.1) hangt Besser: Konvergenz von (2.1) wird

allein von f(r) ab durch Faktor e™?* verbessert

1) Die neue Bezeichnung ist notig, weil in der Schreibweise L{f(#)} die Abhangigkeit von p nicht
zum Ausdruck kommt.
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Aus der letzten Zeile der Ubersicht folgt, daB jede Fourier-transformierbare Funk-
tion auch Laplace-transformierbar ist und nicht umgekehrt, d.h., bei Benutzen der
Laplace-Transformation zur Losung eines bestimmten Problems werden fiir # = 0
mehr, aber fiir ¢+ £ 0 weniger Funktionen f(#) beriicksichtigt. Folgende zwei Fille
lassen sich unterscheiden:

1.f(t) = 0 fir t < 0: Dann ist
F(y) = F{f(®)} = [ e»f() dt = L{f(t), p =]y}, (3)
)

d.h., die Fourier-Transformierte entsteht aus der Laplace-Transformierten einfach
durch die Spezialisierung p = jy (p wird auf die imaginire Achse Rep = 0 ein-
geschrankt).

2. f(¢t) ist fiir t < O beliebig definiert: Dann ist
oo 0 o oo £
FO) = Ff®} = [ e™f@ydt = [ + [ = [e¥f(—n)dt + [ef(e) de
-0 -0 0 0 0

= L{f(-0), p=-jy} + L{f(®), p =iy} (5.9)

Dabei wurde wieder im ersten Integral t = —7 gesetzt. Damit ist die Fourier-Trans-

formierte als Summe zweier Laplace-Transformierten (falls diese existieren) dar-

gestellt. (5.8) ist in (5.9) enthalten.

Fiir a) gerade Funktionen f(7) = f(—¢) und b) ungerade Funktionen f(¢) = —f(—1)
vereinfacht sich (5.9) zu '

a) FO) = L{f(t), p =iy} + L{f(®), p= -0}, (5.93)

b) FO) = L{f(t), p =iy} = L{f(O), p= -3y} (5.90)

Beispiel 5.6: Fiir f(f) = ¢™**/* wird die Fourier-Transformierte F(y) bestimmt. f(r) ist eine gerade
Funktion, deshalb gilt nach (5.9a), (T 53, Tabelle 1) und der Definition der Fehlerfunktion (S. 8):

F@) = \/;e(”)z erf c(jy)+ \/;e(“’)z erf c(—jy)

. \/r_re"z 2 — erf (jy) — erf (—jy)) = 2\/7':_e“’2.
Dies 148t sich auch leicht durch direkte Rechnung bestitigen.

5.1.4. Aufgaben: Bestimmung von Fourier-Transformierten

Aufgabe 5.1: Mit (5.1) bestimme man F{e~**!sign ¢}, Rea > 0. *
Aufgabe 5.2: Fiir f(¢) aus (T 87, Tabelle 1) mit f(—7) = f(f) bestimme man F(y) a) mit der Defini-
tion (5.1) und b) mit (5.9a) und (T 87).

Aufgabe 5.3: Man beweise die Umrechnungsformeln *

a) Fe() = Fe{f(0} = 1L{f(1), p =iy} + LSO, p= —iy};

b) RO) = B0} = SLUW®, p=i} - SLUO. »=-b}.
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Aufgabe 5.4: Mit (5.6a) und [T 1], 19. Aufl. S. 120, ab 21. Aufl. S. 68, bestimme man F(y) fiir
1 1
a) f)=———; b ft)y=—"7—, t£0.
) [O= 17 D0 =70

Aufgabe 5.5: Man bestimme die Fourier-Transformierte G(y) von f(at) e, falls F(y) = F{f(t)} be-
kannt ist; a > 0.,

5.2. Umkehrung der Fourier-Transformation

Bei der Umkehrung der Fourier-Transformation ist die Bildfunktion F(y) gegeben
und eine zugehorige Originalfunktion f(#) gesucht; diese wird bei der Lésung von
Funktionalgleichungen benétigt. Fiir die Riicktransformation verwendet man die
Bezeichnung

FHFO)} = ). (5.10)

Die einfachste Moglichkeit ist das Benutzen der Tabelle 2 oder [T 3]. Es gibt keine
einfachen Korrespondenzen ganzer Klassen von Funktionen wie bei der Laplace-
Transformation (z.B. fiir rationale Bildfunktionen).

Es gibt verschiedene hinreichende Sitze iiber die Umkehrung der Fourier-Trans-
formation, der einfachste davon ist der

o

Satz 5.2: Existiert f | f(®)] At und ist f(t) von beschrinkter Variation') in einer Um-
-

gebung von t, so gilt dort

—%—(f(t +0) +f(t —0) = Zi_ f V() dy. (5.11)

—

f(t + 0) und f(t — 0) bezeichnen wie iiblich rechts- und linksseitigen Grenzwert
von f{(¢) an der Stelle 7; bei Stetigkeit ist bekanntlich f(# + 0) = f(# — 0) und links
in (5.11) steht einfach f(¢). Das Integral in (5.11) ist wie bei (5.1) als Cauchyscher

Hauptwert zu verstehen. Bis auf den Faktor;—ﬂund die Ersetzung von —j durch j

stimmt (5.11) mit (5.1) tiberein. Ein Bewesis ist in [6], S. 200, zu finden. Es sei bemerkt,
daB Satz 2.11 eine unmittelbare Folgerung aus Satz 5.2 ist.

Aus Satz 5.2 folgt tiber die Eindeutigkeit der Umkehrung noch:
Geniigen f(7) und f,(7) fiir alle # den Voraussetzungen von Satz 5.2 und ist F,(y)
= F,(), so ist auch f;(¢) = f5(f), wenn an den Unstetigkeitsstellen stets der Mittel-
wert aus den einseitigen Grenzwerten als Funktionswert von f;(¢) und f,(¢) definiert

1st.
Ist f(¢) nicht von beschrinkter Variation, so gilt der

1) Beschrinkte Variation: Siehe FuBnote in 2.4.4.
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)

Satz 5.3: Existiert J‘ | f(1)] dt, so ist'immer

-
©

t
— 1 1 iyt _
ff(z) dr = fﬁ(e 1) ) dy. G.12)
0 —oo
(5.12) entsteht aus (5.11) durch formale Integration nach #, ein Beweis des Satzes
istin [6], S. 204, zu finden. Bei der Voraussetzung des Satzes 5.3 folgtaus Fy(y) = F,(3)
nur [vgl. (4.1)]
t

|f1(7) dr = [fz('f) dr.

5.3. Rechenregeln der Fourier-Transformation

5.3.1. Zusammenstellung der Rechenregeln

Zur Anwendung einer Transformation werden Rechenregeln, d.h. die Abbildung
gewisser Operationen im Originalbereich auf andere Operationen im Bildbereich, be-
nétigt. Sind

Fy) = F{f(1)}, G() = Flg)},
zwei Fourier-Transformierte, so gelten die folgenden Regeln:

Additionssatz: Fiir «, f € K gilt

Floef(1) + Bg()} = «F(») + BG(). (5.13)
Verschiebungssatz: Fiir a == 0 und reell, b € K, gilt
Fifat +b)} = —(I;e””/“F (%) . (5.14)
Diimpfungssatz: Fiir a > 0 und b € K ist
1 y—5b
bt —
Fle™f(an)} = F( = ) . (5.15)

Faltungssatz: Existieren die Integrale

o ©

[Ifolde,  [1Rd,  [lg@lde,  [le@l? d,

o — oo

o

so existieren auch die Faltung') a(t) = ( f(t — 7) g(z) dv und ihre Fourier-Transfor-
mierte A(y) = F{a(t)}, und es gilt

Fla(O)} = F{ [ftt =9 g0 dr} = F() G() = A(y). (5.16)

) Hier ist die Faltung anders als in (2.18) definiert, aber es ist die gleiche Schreibweise
a(t) = f(r) = g(¢) ublich.

S.5.3
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©

Integrationssatz: Wenn J f(t)dt = 0 ist, dann gilt

F{ f 1) dr} - % FO). G.17)

Differentiationssatz: Ist f (¢ ) Fourier-transformierbar und strebenf(t), f'(t), ..., f @ V(t)
gegen null fiir t - + o0, so ist

F{f®0)} = (yyF(), neN. (5.18)
Multiplikationssatz: Ist t"f(t) Fourier-transformierbar, so ist
F{tf()} = "F®(y), neN. (5.19)

Parsevalsche Gleichung: Existieren die Integrale
© 0
Jif@idr, 1@ de,

so gilt mit F(y) = F{f(r)} die Gleichung
[rora=o= [0 e. (s.193)

Die Regeln (5.13), (5.14) und (5.15) folgen unmittelbar durch Variablentransfor-
mation im Integral (5.1) [(5.15) siche auch Aufgabe 5.5]. (5.17) und (5.18) folgen
durch partielle Integration aus (5.1), die angegebenen Bedingungen bewirken gerade
das Verschwinden der ausintegrierten Bestandteile. Beweise von (5.16) bzw. (5.19)
findet man in [6], S. 251, bzw. in [11], S. 527. Gleichung (5.19a) ist in [6], S. 247-248,
bewiesen.

5.3.2.  Beispiele zur Anwendung der Rechenregeln

Beispiel 5.7: Unter Verwendung von (5.13), (5.15), (5.19) und F { = nwe?l (Aufgabe 5.4a)

1 }
1+
1
wird F{-—-—} ,a > 0, bestimmt. Es ist

a-—jt

1 _ a+jt _

a—jt a*+1t?

LI t
T+WaE @ 1+ @ay?

1
a

1
(5.15) mit b = O,Tanstelle a und (5.19) fiir n = 1 ergeben

1 1 i 1
F = —arne P 4 —jlane Pl = (ePl = —(e-aPly),
a-—jt a a? a

Fiir y > O ist |[y| = y, fiir y < O ist |[y| = —y; fithrt man nun die Differentiation aus, so erhdlt man

1
F{ - ’}=Zﬂ:e'”’ fir y>0, F{ }EO fir y <O.
aj—

aj—t
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Fiir die Fourier-Transformierten von f1(¢) = f(at) cos bt und f,(¢) = f(at) sin bt,
a > 0, lassen sich aus (5.15) zwei einfache Formeln ermitteln. Es ist nach (5.15)

F{f(at) ™} = %F(y - b), F{f(at) e} = %F<J’ + 1’) )

a

Addiert man beide Beziehungen bzw. subtrahiert sie voneinander, so ergeben sich
wegen | 1
i(e"" + e ) = cos bt, —2—j(e"" — e~ ) = sin bt

die gesuchten Transformierten F;(p) und F,(y) als
_ 1 y—5b y+b
F0) = ¢ (F5) + 7 ()

a
Fz(y)=-2;—a(F(y ab)—F(y;’b)). (5.20)
Beispiel 5.8: Die Transformierten Fy(y) und Fy(») fir fi(r) = el cosbt, fo(r) = e~Ilsinbrt,
a > 0, werden mit (5.20) bestimmt. Aus (5.3) folgt
4a(a® +b* + y?)
=5

_ 8aby

N = (a® + b%)? + 2(a® — b*) y* + y*.

1

5.3.3. Aufgaben: Anwendung der Rechenregeln
Aufgabe 5.6: Man bestimme mit 4 + 0 und reell sowie Be K

sin (At + B)
G(y) = Fl———~
o) { At + B }
Aufgabe 5.7: Man berechne die Faltung a(f) und ihre Fourier-Transformierte A(y) fiir f() = g()
=e.

1
Aufgabe 5.8: Analog Beispiel 5.7 bestimme man F {—a—_l_—ﬂ—} ,a>0.
Aufgabe 5.9: a) Man beweise den Integrationssatz (5.17)! b) Folgt aus der Giiltigkeit von (5.17), daB

[ fwydr=0ist2

~ 1
Aufgabe 5.10: Mit Beispiel 5.5 und (5.20) bestimme man die Fourier-Transformierte von = sinatcos bt,
0<a<b

5.4. Anwendung der Fourier-Transformation

5.4.1. Losung einer partiellen Differentialgleichung

Das Prinzip bei der Losung von Funktionalgleichungen mittels Fourier-Transfor-
mation entspricht dem in Bild 3.1 dargestellten Prinzip. Die Fourier-Transformation
ist besonders geeignet zur Losung von Anfangs- und Randwertaufgaben bei partiellen
Differentialgleichungen (siehe auch Abschnitt 3.3.), wobei die Gebiete in der x, #-Ebene
der erste Quadrant oder die obere Halbebene sind.

Beispiel 5.9: Fir die Wellengleichung ist mit @ = a(x, t) das folgende Anfangswertproblem (siche
auch Beispiel 3.25) zu 16sen:

Gy — a;y =0, a(0,x)=f(x), a0,x)=gk), 0<t<oo, =—00<x<oo0,
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Fourier-Transformation beziiglich der Ortskoordinate x (nicht der Zeitkoordinate #!) ergibt mit
A(y, t) = F{a(x, t)}, (5.18) und bei transformierbaren f(x) und g(x) im Bildbereich ein Anfangswert-
problem fiir eine gewohnliche Differentialgleichung beziiglich # mit dem Parameter y:

YA+ Ay =0, A0 =F(@), A,0=G0).
Mit dem Losungsansatz 4 = e*' ergibt sich y2 + a* = 0 mit den Nullstellen &; = jy, a, = —jy. In
der allgemeinen Losung

A, 1) = Ci()e” + Co(y) et
bestimmt man C;(y) und C,(y) aus den Anfangswerten A(y, 0) und A4,(y, 0), wodurch man im Bild-
bereich i : f i

40v1) = 5 (Fo + - 60 4 2 (FO) = —Gm) e

2 iy 2 Wy

erhalt. Verschiebungs- und Integrationssatz (5.14), (5.17) ergeben
x+t

ax, ) =Hfx + 1)+ fx =) + [ g@)dr.

x—t
Die Einsetzprobe ist erfiillt, so daB a(x, #) tatsdchlich die Losung ist.

Beispiel 5.10: Fir die Warmeleitungsgleichung ist mit a = a(x, r) das folgende Anfangswertproblem
(siche auch Beispiel 3.26) zu losen:

Ay —a, =0, a(x,0)=f(x)y, —o<x<oo 0<i?<oo.
Fourier-Transformation beziiglich x mit (5.18) und A(y, t) = F{a(x, t)} ergibt im Bildbereich
YA+ A4,=0, A@»0) =F@).

Der Ansatz 4 = e** ergibt « = —y2. Aus der allgemeinen Lésung A(y, £) = C(y) e™** folgt A(y, 0)
= C(y) = F(), also ist A(y,t) = F(y)e™*". Der Faltungssatz (5.16) und Formel (T 7) ergeben als
Originalfunktion

1 1 =
ax, ) = —— | f@)e G4 dr = — f f2/to + x)e* do.
2 \/rct f \/7: \/ Ve

. Lo -7 - .
Das Integral wurde durch die Substitution d — = o umgeformt. Die Einsetzprobe bestatigt

das Ergebnis. 24/t

Die Fourier-Transformation 148t sich auch zur Berechnung vieler uneigentlicher
Integrale, zur Losung von gewissen Integralgleichungen und bei der Untersuchung
von hoheren transzendenten Funktionen benutzen.

5.4.2.  Abtasttheorem

Bei der Fourier-Transformation 148t sich analog wie bei der Laplace-Transforma-
tion (s. 3.1.2.¢) und d); 4.3.3.) die Diracsche Delta-Funktion d(¢) einbeziehen. Die
Zusammenhénge (3.23) bis (3.26) bleiben bestehen, und es ist

F{3(t — o)} = e~o, (5.21)

In der Informationstheorie, wo f(¢) ein Signal und F(y) das zugehdrige Frequenz-
spektrum bei der Frequenz y bedeuten (siche 2.1.2.), wird mittels 6(¢) ein wichtiger
Zusammenhang zwischen der fiir reelle 7 definierten Funktion f(¢) und ihren diskreten



5.4. Anwendung 111

Funktionswerten f(nT) (n = 0, &1, ...; Abtastwerte, siche auch 6.1.1.) hergestellt.
Dazu wird die Operation ,,Abtastung A eingefiihrt gemaf

AGO) =fOT ¥ 8 - nT), (522)

FAG®)} =T 3 fT)e. (529

Bei vorgegebener Funktion f(7) ist die Abgetastete A(f(¢)) eindeutig bestimmt; die
Umkehrung gilt i. allg. natiirlich nicht. Der folgende Satz 5.4 (Abtasttheorem) be-
inhaltet unter einer technisch gut deutbaren Voraussetzung an F(y) = F{f()} gerade
diese Umkehrung.

Satz 5.4: Gilt fiir die Bildfunktion F(y)
F(y)=0 firlyl > b, (5.24)
so lapt sich die Originalfunktion f(¢) darstellen in der Form
T sin b(t — nT)
foy=_ . 2 JOOD———- (5.25)
Beweis: Aus (5.11) und den Bemerkungen nach Satz 5.2 folgt
f) = 5= f eMF() dy = o f ePE(y) dy. (5.26)
Wird ¢t = nT gesetzt und gilt b < =/T (T fest, n =0, +1,...), so ergibt sich daraus
/T
1
S T F(
1) = 5= [ TF() .
-=/T

Die Konstanten f(nT) sind die (in komplexer Form geschriebenen) Fourierkoeffi-
zienten c_, der mit dem Intervall —=/T < y < =/T periodischen Funktion —;—F( ¥)
([B 3], 5.6.). Die Darstellung (5.23) ist somit die Fourierreihe von TF(y). Setzt

man diese Darstellung in (5.26) ein, so folgt nach einfachen Umformungen die
Formel (5.25).
Diese Formel (5.25) kann unter Beachtung von (5.22), (5.23) und der Faltung

(5.16) in der einfachen Gestalt f(r) = A(f(1)) *

Satz 5.4 heiBt Abtasttheorem, weil durch (5.25) dle Funktion f(¢) durch ihre Ab-
tastwerte f(nT) dargestellt ist. Dabei muBl unbedingt (5.24) und b < =/T beachtet
werden. Ein analoges Theorem existiert fiir F(y), falls f(r) = 0 fiir |¢| > a ange-
nommen wird.

Das Abtasttheorem spielt in der Informationstheorie und Nachrichtentechnik eine
groBe Rolle, da die Bedingung (5.24) praktisch immer erfiillt ist und damit Signale
f(t) in Form ihrer Abtastwerte f(nT) dargestellt, libertragen und verarbeitet werden
konnen. In diesem Zusammenhang 148t sich das Abtasttheorem folgendermaBen
interpretieren: Das Signal f(¢) 1dBt sich bei frequenzbandbegrenzten Signalspektrum
F( y) aus den abgetasteten Werten f(nT) zusammensetzen. Die Abtastperiode ist

= 7/b.

b geschrieben werden.
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Die Behandlung von zeitlich diskret ablaufenden Vorgéngen in der Technik wird
in neuerer Zeit konsequent mit einer diskreten Transformation durchgefiihrt, wobei
sich auch in der technischen Literatur immer mehr die Z-Transformation durchsetzt.
Solche Vorginge werden insbesondere in der Systemtheorie, der Elektrotechnik und
der Regelungstechnik betrachtet.

Nach einigen Bemerkungen iiber diskrete Funktionen und der Definition der
Z-Transformation werden in 6.3. bis 6.5. die wichtigsten Eigenschaften und Rechen-
regeln zusammengestellt. In 6.6. und 6.8. werden die Losung von Differenzenglei-
chungen als eindrucksvollstes Anwendungsgebiet der Z-Transformation und Anwen-
dungen dazu behandelt. Die Abschnitte 6.7. und 6.9. ergdnzen und stellen Zusammen-
hénge her. Tabelle 3 im Anhang enthilt Korrespondenzen der Z-Transformation.

6.1. Diskrete Funktionen

6.1.1. Deutung diskreter Funktionen

Ist die Funktion f(¢), 0 <t < oo, nur fiir diskrete (dquidistante) Argumente
t=nT,n=0,1,2,..., interessant oder bekannt, so kann f(nT) = f, gesetzt und die
Folge {f,} gebildet werden (Bild 6.1a). Folgen {f,} und nur fiir diskrete Argumente
definierte Funktionen (diskrete Funktionen) f(n7T) entsprechen einander.

Eine solche Folge {f,} kann z.B. entstanden sein durch ,,Abtastung* einer Funk-
tion f(¢) in den diskreten Zeitpunkten ¢ = n7 (Bild 6.1b). Die urspriingliche Funktion
kann dann in der Form f(¢) = f(nT + A1), 0 < At < T, dargestellt und f(n7 + Ar)
= f,(Ar) gesetzt werden. At 1dBt sich als Parameter der Folge {f,(A7)} auffassen. Bei
f(A) = f(0) = f, 0 < At < T, erhilt man als besonders einfache Funktionen £(7)
Treppenfunktionen (Bild 6.1c¢).

‘f 4 f(n A
l I H [11 m %

l’l T2T3T4TST6TIT AT 0| T 2T3T4TST6TIT  tal 0| rzrmrmryr tnr
b)

Blld 6.1a. Darstellung einer Folge {f,}
Bild 6.1b. {f,} als ,,Abtastung® von f(¢)
Bild 6.1c. {f,} und zugehorige Treppenfunktion

Fiir das folgende wird meist 7 = 1 gesetzt (d.h. f(n) = f,), was mit der Substi-
tution 7 = #/T immer erreicht werden kann. Folgen {f,} oder die damit dquivalenten
diskreten Funktionen f(n) sind die der Z-Transformation zugrunde liegenden mathe-
matischen Objekte. Hier wird die Folgenschreibweise bevorzugt. Ferner ist zu be-
achten, daB keine Konvergenz der Folgen {,} fiir n - oo verlangt wird.
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6.1.2. Rechnen mit diskreten Funktionen

Folgen {f,} (oder diskrete Funktionen) werden gliedweise verglichen, addiert,
subtrahiert und mit Faktoren multipliziert. Die gliedweise Multiplikation zweier
Folgen ist ebenfalls moglich, aber von untergeordneter Bedeutung.

Wichtiger ist die als Faltung!)?) bezeichnete Operation der Folgen {,} und {g,}, sie
wird mit einem = geschrieben und ist definiert durch

forga= T fitaen ©1)

Die Summe der ersten n + 1 Folgenglieder (Teilsummenfolge) kann man mit g, = 1
fiir alle n in (6.1) darstellen als

P::of" =faxl. 6.2)

Beispiel 6.1: Fir f, = g, = n ist

fiven =,§,V(n —9= nygo,, _’Z:D,,z - n(n;- ) _ e+ l)6(bt +1)
1

= ?(n = Dan+ 1).

Als Differenz 1. Ordnung bezeichnet man den Ausdruck )
Afy = fors — fo neN;
analog definiert man Differenzen k-ter Ordnung durch
AY = A=Y — A AY, = Af,, neN. (6.3)
Beispiel 6.2: Fiir die Binomialkoeffizienten (Z), keN, k fest mit k = n, gilt bekanntlich die Gleichung
n+ 1 n n
(2 ) -2+ 6

Daraus folgt fiir die Differenzen Af, im Beispiel

smtnmte (7)) ~
Azf"zA”"*‘_Aﬁ'=(Zii>‘(k21)=(kiz>""

n+1 n n

T =( _ _
5 Tt S k—v+1 k—v+1 k-
fiir v < k. Also ist z.B. A, = 0 fiir » < k, A, = 1 und A"f, = 0 fiir » > k.

') Schreibt man die Folgenglieder f; und g, fiir 0 = v < n hintereinander auf einen Papierstreifen
und faltet diesen in der Mitte, so kommen gerade £, und g, _, iibereinander.

2) Man beachte, daB die Faltung (6.1) fiir Folgen nicht mit der Faltung (2.18) der zugehdrigen
Treppenfunktionen identisch ist (Zusammenhang siche Abschnitt 6.9.).

8 Stopp, Operatorenrechnung
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Differenz und Summe von diskreten Funktionen f(n) = f, haben #dhnliche Be-
deutung und Anwendung wie Ableitung und bestimmtes Integral einer Funktion £(7)
(siehe Bild 6.2). Sie sind die wichtigsten Operationen in einer Differenzengleichung.

2 A

24,

o7 n onlon o 7 2 3 " n on
Bild 6.2. Differenz und Summe einer diskreten Funktion

In der Technik kommen oft periodische diskrete Funktionen vor. Ist die Periode
keN, k>0, so gilt:
Josk = fo oder f(n + k) = f(n). 6.4)

In Bild 6.3 ist die periodische Funktion f,.s =f, mit fo =f, =f, =1, f3 = f4
= fs = —1 dargestellt.

RN

0 nBH n Bild 6.3. Periodische diskrete Funktion
h=fh=h=Li=fi=fi=-],
- fore =1a

6.1.3.  Eine Differenzengleichung

Differenzengleichungen werden in 6.6. und 6.8. ausfiihrlich behandelt und gelost.
Hier wird die Aufstellung einer solchen Gleichung an einem technischen Beispiel er-
lautert.

Gegeben ist eine elektrische Schaltung, dargestellt in Bild 6.4. In den Zeitintervallen
n £t < n+ ¢ liegt der Schalter S in Stellung 1, d.h., die Gleichspannungsquelle u,
14dt den Kondensator C iiber den Widerstand R, auf; in den Zeitintervallenn + ¢ < ¢
< n+ 1 liegt der Schalter S in Stellung 2, d.h., der Kondensator C entldt sich iiber
den Widerstand R,; esist 0 <e < 1,n =1,2,3,... ([16], § 1.4).

Gesucht ist die Spannung u(¢) am Kondensator in den diskreten Zeitpunkten ¢ = n.

5
:]& 7 J-Z
A c R,
-[- Bild 6.4. Elektrische Schaltung

Wie bekannt, geniigt die Schaltung den Differentialgleichungen
RCU(t) +u(t) =u, firn<t<n+e,
RCu(t) +u(t)=0 firn+e<t<n+1.
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so lauten jhre Losungen ([B 7/1], 3.3.4. u. 3.3.6.)

1 1
Setztmana_m,ﬁ_m,

ut) =tp + Ape™', n=<t<n+e ut)=Bef,n+e<t<n+l1.

Fiir 1 = nistu(t) = u(n) = u,,damitkann 4, geschrieben werden als 4, = (u, — uo)e*".
Fiir # = n + ¢ muB u(¢) aus physikalischen Griinden stetig sein, daher ergibt sich B,
aus

Uy + A, e~ = B, e—Fn+e),

Fiir t— n + 1 — 0 folgt schlieBlich u,+, = B,e?®+1 oder nach Einsetzen von B,
Upsy — e—al—ﬂ(l—z)u" = Uo(l — e-u) e-p-o (6_5)

Diese Differenzengleichung fiir die gesuchte Spannung u, wird in 6.8., Beispiel 6.18,
weiter untersucht.

6.2. Definition der Z-Transformation

Die Z-Transformation wird hier als eine Transformation vonFolgen {f,},n =0,1,...,
eingefiihrt. Thr enger Zusammenhang mit der Laplace-Transformation ist in Ab-
schnitt 6.9. dargestellt (s. auch [T 1], 21. Aufl. S. 649fF).

Definition 6.1: Der Folge {f,} wird die unendliche Reihe
F@) = X fuz™ (6.6)

zugeordnet, falls diese Reihe konvergiert. Diese Zuordnung heift Z-Transformation
und wird bezeichnet durch

F@) = Z{£}). 6.7

Eine Folge {f,}, fiir die die Reihe (6.6) konvergiert, heiBt Z-transformierbar; {,}
heiBt Originalfolge, F(z) heiBt Bildfunktion. z ist eine komplexe Verdnderliche und
damit als Punkt in der GauBschen Zahlenebene (z-Ebene) deutbar; F(z) ist eine
komplexwertige Funktion.

Eine mogliche Deutung der Z-Transformierten F(z) ergibt sich aus 6.1.1.: F(z) ist
die Reihensumme der durch z* dividierten Abtastwerte f, von f(¢).

Beispiel 6.3: Fiir f, = 1 fiir alle n ist

F@) = Z(} = 3o = z_z = 68)

1) Die sonst iibliche Bezeichnung F*(z) wird hier nicht verwendet.
8*

D.6.1
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Die entstandene Reihe ist eine geometrische Reihe in z~*. Thr Konvergenzverhalten und ihre Reihen-
summe sind wohlbekannt, es gilt:
Die Reihe (6.8) konvergiert fiir |z7!| < 1 gegen die Reihensumme

=1 , sie divergiert fiir [z > 1.
Die Bildfunktion ist analytisch ([B 9], Abschnitt 5.2.) in der gesamten z-Ebene mit Ausnahme des
Punktes z = 1. Oder: Das Konvergenzgebiet |z| > 1 ist das AuBere und das Divergenzgebiet |z| < 1
das Innere des Einheitskreises |z| = 1 in der z-Ebene.

Beispiel 6.4: Die Folge {f}, f, = ", ist nicht Z-transformierbar, denn fiir die Potenzreihe (6.6) in

z~! erhilt man bei der Bestimmung des Konvergenzradius mit dem Wurzelkriterium ([B 3], 2.4.3.)
"\/n" lz7Y" =njzY >0 fir n—>ow, z%0,

woraus die Divergenz der Reihe (6.6) folgt ([B 3], Kap. 3).
Beispiel 6.5: Fur f, = e™, ae K, gilt analog Beispiel 6.1

z

F()=Z{e"} = Zoe"'z'" =) Z_: u(z/e")"’ = (6.9)

z—¢e*
fiir |z] > |e“|. Die Bildfunktion F(z) ist analytisch in der ganzen z-Ebene mit Ausnahme des Punktes
z=¢e"

Weitere Beispiele zur Bestimmung von F(z) bei gegebener Folge {f,} sind in
Abschnitt 6.4. zu finden. In Tabelle 3 (siche Anhang) sind 50 Folgen und ihre Bild-
funktionen zusammengestellt.

6.3. Wichtige Eigenschaften der Z-Transformation

6.3.1. Konvergenzgebiet der Bildfunktion F(z)

Die Bildfunktionen F(z) sind Potenzreihen in der komplexen Verdnderlichen z~*.
Das Konvergenzverhalten und das Rechnen mit Potenzreihen im Komplexen ist gut
bekannt ([B 9], Kap. 5.); Eigenschaften und Rechenregeln der Z-Transformation wer-
den hier konsequent mit diesen bekannten Ergebnissen begriindet. Aus dem Satz von
Abel folgt sofort der

Satz 6.1: Fiir Z-transformierbare Folgen {f,} gibt es eine reelle Zahl R™*, so daf die
Reihe (6.6) absolut konvergiert fiir |z| > R-* und divergiert fiir |z| < R-*. Fiir
|zl = Rg* > R~ ist die Reihe (6.6) sogar gleichmdpig konvergent.

R ist der Konvergenzradius der Potenzreihe (6.6) in der Verdnderlichen z-. R kann
mit bekannten Kriterien (z.B. Wurzel- und Quotientenkriterium) oder nach der
Cauchy-Hadamard-Formel*) bestimmt werden ([B 9], Kap. 5.). In Bild 6.5 ist die Aus-
sage des Satzes 6.1 noch graphisch dargestellt.

1) Jacques Hadamard (1866-1963), franzosischer Mathematiker.
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Konvergiert die Reihe (6.6) fiir alle |z| > 0, so setzt man R~ = 0. Fiir nicht Z-
transformierbare Folgen {f,} divergiert (6.6) fiir alle |z| > 0, und man setzt R-! = co.

Bild 6.5. Konvergenz- und Divergenzgebiete einer Z-Transformierten in der
(z = x + jy)-Ebene

In den Beispielen 6.3, 6.4 bzw. 6.5 wurde R-! bereits bestimmt mit R~* =1,
o bzw. |e°].

6.3.2. Eineindeutigkeit der Z-Transformation

Der Eindeutigkeitssatz fiir Potenzreihen in einer komplexen Verinderlichen ergibt
eine Aussage iiber die Art der Zuordnung der Folgen {f,} zu den Funktionen F(z)
und charakterisiert die Funktionen F(z) genauer wie folgt:

Satz 6.2: Ist {f,} Z-transformierbar fiir |z| > R, so ist die zugehdrige Bildfunktion S.6.2
F(z) eine analytische Funktion fiir |z| > R~* und die einzige Bildfunktion zu {f,}.

Ist F(z) eine analytische Funktion fiir |z| > R, die auch fiir z = oo reguldr?®) ist,
so gibt es stets genau eine zugehirige Originalfolge {f,}.

Die Z-Transformation ordnet also den Folgen {f,} die fiir |z > R~ einschlieBlich
z = o analytischen Funktionen F(z) eineindeutig zu.

Fiihrt man fiir die Umkehrung der Z-Transformation wie iiblich die Schreibweise
Z-*{F(2)} = {f,} ein, so lassen sich die Ergebnisse der Beispiele 6.3 und 6.5 auch in
der Form

] |

z-1

¢4
z—¢e°

| = e

schreiben. Diese Umkehrung wird in 6.5. weiter untersucht.

6.4. Rechenregeln der Z-Transformation

Vor der beabsichtigten Anwendung der Z-Transformation zur Losung von Diffe-
renzengleichungen mufB zunichst ein Fundus von Rechenregeln zusammengestellt
werden.

1) F(z) heifit reguliir bei z = o0, wenn F(2) eine Potenzreihendarstellung der Form (6.6) besitzt und
F(0) = f, gilt.
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6.4.1. Zusammenstellung der Rechenregeln

Ist F(z) = Z{f,} fiir |z| > R;* und G(z) = Z{g,} fir |z| > R;*, so gelten bei den
angegebenen (hinreichenden) Voraussetzungen folgende Regeln:

Additionssatz: o, § € K; |z] > max (R{*, R;"):

Z{afn + Pgn} = &F(z) + BG(2). . (6.10)
1. Verschiebungssatz: k € N, f,_, = 0 fiir n < k; |z| > R;*:

Z{fyri} = (). (6.11)
2. Verschiebungssatz: k € N; |z| > Rj':

k—1

Z{frsr} = 2X(F(2) — ;}fvz"), (6.12)
Diimpfungssatz: /e K, 2 + 0; |z| > |2] R}":

Z= () = F(—/z—) ) (6.13)
Summationssatz: |z| > max (1, R7"):

n—1
z { > fv} = fa (6.14)
v=0 z—1

Differenzensatz: |z| > R{':

Z{Af,} = (z = 1) F(2) — zf,. (6.15)
Differenzensatz (allgemein): k € N; |z| > R;":

k-1
Z{AY,) = (z = 1)'F(z) — z 3 (z — D} LAY, (6.16)
»=0

Faltungssatz: |z| > max (R7*, R;"): N

Z{fy* g} = FQ) - GE). 617)
Differentiationssatz: |z| > R;':

—zF'(2) = Z{nf,}. ) (6.18)
Integrationssatz: f, = 0; |z| > R7!:

f d_, {%} . (6.19)

Regel (6.10) bringt die Linearitit der Z-Transformation zum Ausdruck; sie 148t
sich natiirlich auf eine Linearkombination von endlich vielen Folgen verallgemeinern.
Das Konvergenzgebiet beim Additions- und Faltungssatz kann groBer sein als
|z| > max (R, R;'), z.B. gilt (6.10) bei « = § und f, = —g, fiir |z| > 0.
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Die Verschiebungssitze (6.11) und (6.12) beinhalten die Auswirkung einer Riick-
wiirts- bzw. Vorwirtsverschiebung der Glieder einer gegebenen Folge {f,} (siehe auch
Bild 6.6). Die Bezeichnung von (6.13) als Dampfungssatz siecht man ein, wenn z.B.
A=e"%a>0,ist.

Der Faltungssatz (6.17) spielt in der Anwendung der Z-Transformation eine groBe
Rolle z.B. bei der Riicktransformation. Mit (6.18) lassen sich durch wiederholte An-
wendung auch Ableitungen hdherer Ordnung von F(z) bestimmen.

Die Regeln (6.10) bis (6.16) folgen unmittelbar aus der Definition 6.1 der Z-Trans-
formation. So ergibt sich z.B. (6.12) sofort aus der Umformung

o o k—1
Z{ fusi} ="§0ﬁ|+kz~" = Zkygk fet =2F@) - V=Eofvz_y),

wobein = v + k gesetzt und die Definition (6.6) benutzt wurde. (6.15) folgt aus (6.10)
und (6.12) mit k = 1
Z{Af} = Z{fora} = Z{fa} = 2(F(@2) — fo) = F(2) = (z = 1) F(2) — #fo.

(6.17) bis (6.19) folgen aus der Tatsache, daBl Potenzreihen im Inneren ihres Kon-
vergenzgebietes wie Polynome multipliziert sowie gliedweise differenziert und inte-
griert werden diirfen. Die entstehenden Reihen, deren Reihensummen bekannt sind,
konvergieren mindestens in den angegebenen Gebieten ([B 9], Kap. 5.).

6.4.2.  Beispiele zur Anwendung der Rechenregeln

Die folgenden Beispiele illustrieren die Regeln (6.10) bis (6.19) und ergeben gleich-
zeitig neue Korrespondenzen zwischen Folgen und Bildfunktionen.

Beispiel 6.6: h, = 0 fiir gerade n und h, = 2 fiir ungerade n (also ki, = 0, hzp+1 = 2) kann man
darstellen als

hy=1-(-1" n=0,12,...

Setzt man f, = 1und g, = (—1)", so folgt aus (6.8) und (6.10) fir R; = R, = 1,0 = 1, = —1und
|zl > 1

Z{h} = el : (6.20)

Beispiel 6.7: Fiir f, = ¢°", a € K, wird Z{f,—} und Z{f,+} bestimmt. Die Folgen sind fiir a = T
in Bild 6.6 dargestellt. (6.9) und (6.11) ergeben fiir [z| > |e?]

21k
Fi(2) = Z{fus} = —z—:? s

(6.9) und (6.12) ergeben zusammen mit der Summenformel der endlichen geometrischen Reihe fiir
Izl > le?]

z eka

k—1
Fy2) = Z{fyu} = 2 (—z— - ze“z-') ==
z—e* o z—¢
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Beispiel 6.8: Es soll Z{e™ sin bn} bestimmt werden. Fiir

1 .
fo =sinbn = — (e" — e7itm)
2j

flt) fa

7.
L1 \]]]r 11 gt I
0072345t 0172345 n 0112 kkin ~-kk1-100712 1
Bild 6.6. Funktion f(r) = ¢~*/*°, Folgen {f,}, {f-x} und {fp+x} mit f, = e™"°

1 7\‘1
I
|

erhélt man aus (6.9), (6.10) und den Eulerschen Formeln

(6.21)

Z<f,}=2ij(

z z zsinb
z—elt  z—eW z2 — 2zcosb + 1

fir [z] > 1 v\l/egen le’| = [e™%| = 1. Daraus folgt mit A = e nach (6.13) durch Erweitern mit e2¢
fiir |z| > |e?|
zesinb

—_— 6.22
2% — 2ze%cos b + ¢ (62)

Z{e™sin bn} =

Beispiel 6.9: Fiir f, = sin bn ist Z{f,} nach (6.21) bekannt, daraus folgt nach (6.14) fiir |z| > 1

n—1 .
z{ Zsinlw} - sinb

y=0 z—1 z2=2zcosb+1 "~
Beispiel 6.10: Fiir f, = {(Z)}. keN, k fest mit k < n, soll F(z) = Z{f,} bestimmt werden. Aus Bei-

spiel 6.2 ist A’y = O fiir v < k und A¥f, = 1 bekannt. Dies in (6.16) eingesetzt, ergibt zusammen mit
(6.8) fiir |z| > 1

ZIAf} = Z{1} = z%l— = (z - 1)*F(z) oder

Foy =z ("= —2 __ 6.23)
2= {(k)} e &

Beispiel 6.11: Fiir die Folge {h,} aus Beispiel 6.6 ist R = 1 und /iy = 0. Durch Anwendung von (6.18)
und (6.19) ergeben sich neue Folgen und ihre Bildfunktionen. Es ist fir |z] > 1

i) = 22 2k = Zk)
zrz) = m— {nha} = nfs
F@)d; 2d¢ z—1
f T lz—l—lnz+l = Z{hIn} = Z{l,}

. 2
mit k2, = 0, k2p41 = 2(2n + 1) und by = 0, hapy1 = prra
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6.4.3.  Aufgaben: Bestimmung von Bildfunktionen

Aufgabe 6.1: Man bestimme F(z) = Z{n*} fiir k = 1,2, 3; wie kann F(z) fiir beliebiges k € N be-
stimmt werden?

Aufgabe 6.2: Man bestimme F(z) = Z{n*a"} fiir k = 0,1, 2; ae K; wie kann F(z) fiir beliebiges
k e N bestimmt werden? .

Aufgabe 6.3: Man bestimme F(z) = Z{a" sinh bn}!

Aufgabe 6.4: Gegeben sei eine periodische Funktion (siche (6.4)) mit der Periode k.
a) Man bestimme ihre Bildfunktion durch die ersten k Folgenglieder.
b) Man benutze das Ergebnis zur Bestimmung von F(z) fiir die in Bild 6.3 gegebene Funktion.

n—1
Aufgabe 6.5: Fiir f;, = n® bestimme man F(z) = Z { > v3} und deute die Summenbildung geometrisch.
¥=0

6.5. Umkehrung der Z-Transformation

Bereits im AnschluB in Satz 6.2 wurde fir die Umkehrung der Z-Transformation
die Schreibweise

ZHF@)} = {f} (6.24)

eingefiihrt. Jetzt kommt es darauf an, fiir gegebenes F(z) die zugehdrige eindeutig
bestimmte Folge {f,} tatsichlich zu finden; diese Aufgabenstellung nennt man auch
Riicktransformation. Es gibt dafiir mehrere Moglichkeiten.

6.5.1. Moglichkeiten der Riicktransformation

Die einfachste Moglichkeit der Riicktransformation besteht in der Benutzung der
Tabelle 3. Beispielsweise ist aus ihrer ersten Zeile die Beziehung

=3 z _ .
z {z—l}_{l} fir |z| > 1
zu entnehmen (siehe auch Beispiel 6.3). Selbstverstindlich konnen in einer Tabelle
nicht alle moglichen Korrespondenzen aufgefiihrt werden.

Tabellen benutzt man auch dann, wenn die Funktion F(z) nicht unmittelbar vor-
kommt. Man kann namlich versuchen, die Funktion F(z) durch Umformung und An-
wendung der Regeln (6.10) bis (6.19) in Funktionen zu zerlegen, die wieder in einer
Tabelle zu finden sind. Dazu ist natiirlich eine gewisse Vertrautheit mit der Z-Trans-
formation nétig. Gute Dienste leisten in diesem Sinn die Partialbruchzerlegung ra-
tionaler Funktionen, der Verschiebungssatz (6.11) und der Faltungssatz (6.17).

Beispiel 6.12: Gesucht ist die Originalfolge der Bildfunktion

22

(z—e9(z—¢"

9  Stopp, Operatorenrechnung

F(z) = ; abekK.
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Wegen (6.9) und dem Faltungssatz (6.17) ist fiir |z| > max (|e%, [e®])

n n
fo= z ea¥ gb-V) — gbn z el@-by,
»=0 »=0

Mit Hilfe der Summenformel der endlichen geometrischen Reihe folgt hieraus

eb+l) _ ga(n+1)
ﬁ,=v fir a%b, fy=@+1)e™ fir a=5b. (6.25)

Wegen der Definition 6.1 gelingt eine Riicktransformation auch sofort, wenn fiir
F(z) eine Reihenentwicklung in z=* bekannt ist bzw. sich leicht gewinnen 148t.

Beispiel 6.13: F(z) = el/# 1Bt sich bekanntlich fiir z] > 0als Reihein z~! darstellen, die Reihenkoef-
fizienten bilden die Folge {f,}:

® 1 1
F(z) = ;) — " ZHEE) = {7} (6.26)

Ist die Reihenentwicklung von F(z) nach Potenzen von z-! nicht bekannt, so
konnen ihre Koeffizienten bestimmt werden als die Koeffizienten der Taylor-Ent-
wicklung?) von F( )([B 9], Kap. 3). Das ergibt den

Satz 6.3: Ist F(z) fiir |z| > R einschlieflich z = oo analytisch, so hat die zugehirige
Originalfolge Z=*{F(2)} = {f,} die Glieder

1 d° 1
fn—wvl’(?)

Zur Illustration von (6.27) wird fiir F(z) =
bekannte Ergebnis verifiziert. Es ist

1 1 1 4 1
F(7)=1_z’ fF‘EF(_I_Z)

i n=01,.. (6.27)

z=0

1 , |z > 1, das aus Beispiel 6.3

z=0

6.5.2.  Aufgaben: Bestimmung von Originalfolgen

F
Aufgabe 6.6: Durch Partialbruchzerlegung von @)

bestimme man

Z-YF@)} = Z- { 221 - },]z[ > 1.

Aufgabe 6.7: Wie 6.6, aber jetzt mit

22
F(z) = 71 , 2l > 1.

1) Brook Taylor (1665-1731), englischer Mathematiker.
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Aufgabe 6.8: Mit dem Faltungssatz (6.17) bestimme man

;| zZ
Gty we

Aufgabe 6.9: Unter Benutzen der Reihenentwicklung fiir die Sinus-Funktion ermittle man
1

Z-‘{J?sin J?}’ Izl > 0.

Aufgabe 6.10: Mit dem Satz 6.3 bestimme man

z
Z"{ln 1}, lz| > 1.

z -

6.6. Lineare Differenzengleichungen

Viele diskrete 6konomische und technische Vorgénge lassen sich durch eine Diffe-
renzengleichung beschreiben (siehe auch Abschnitt 6.1.3.), so wie sich viele konti-
nuierliche Vorginge durch Differentialgleichungen beschreiben lassen. Dabei ist in
der Regel die Zeit ¢ in diskreten Zeitpunkten die unabhéngige Verdnderliche, und es
liegt ein linearer Zusammenhang vor.

6.6.1.  Losungsprinzip fiir Differenzengleichungen

Eine lineare Differenzengleichung k-ter Ordnung mit konstanten (d.h. von » unab-
hingigen) Koeffizienten hat die Form

oYy + A1Vnr1 + 0 F GInik = - (6.28)

Dabeiist k € N, a;€ K, a5 + 0, a; =+ 0. Die Folge {f,} ist gegeben und die Folge {y,}
ist gesucht.

(6.28) ist eine Rekursionsformel, weil fiir n = 0, 1, 2, ... sich nacheinander (rekur-
SIV) Yk, Yis1, --. €rgeben. Man sieht, daB die Folge {y,} erst dann eindeutig bestimmt
ist, wenn noch die sogenannten Anfangswerte y,, ..., yx_y vorgegeben sind. Bei f, = 0
fiir alle n heiBt (6.28) homogen, sonst inhomogen. y, und f, kénnen noch von einem
Parameter abhidngen wie in Abschnitt 6.1.1.

Die Z-Transformation ist ein geeignetes Hilfsmittel, um die Lsungen von (6.28)
zu erhalten. Thre Anwendung beruht auf folgendem Prinzip (Bild 6.7):

gflff: ’ ,” und = o Folge im Originalbereich:

\nfangswerte fir y, Insetzen von Yy =7,

im Orfjfnﬂ/bm’/'m” "\ {nh=27 (V)
Z-transformieren Riickfransformieren

Gleichung fir Funkfion Auflisen nach ¥(2) Ldsung im Bildbereich:

Y(z) im Bildbereich Y(2)=2{yn}

Bild 6.7. Lésungsprinzip fiir Differenzengleichungen
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Losungsprinzip: (6.28) wird Z-transformiert insbesondere unter Verwendung des Ver-
schiebungssatzes (6.12); die im Bildbereich entstehende algebraische Gleichung wird
nach Y(z) = Z{y,} aufgeldst und danach {y,} = Z-*{¥(2)} nach Tabelle 3 oder Abschnitt
6.5. bestimmt.

Bei diesem Vorgehen findet man natiirlich nur transformierbare Losungen {y,}.

Besonders vorteilhaft ist dieses Prinzip anzuwenden, wenn die zu gegebenen An-
‘fangswerten gehorige Losung gesucht ist, weil die Anfangswerte y,, ..., y,-; wegen
(6.12) direkt in die Bildgleichung eingehen.

6.6.2. Beispiele zur Losung von Differenzengleichungen

Beispiel 6.14: y, wird bestimmt aus dem Anfangswertproblem
Yut1 — ¥n=10n, yo=1.

(6.12) und (6.23), jeweils fiir k = 1, ergeben fiir Y(z) = Z{y,} im Bildbereich die algebraische Glei-
chung

F@) = 1) = Y = —25 . oder umgeformt  ¥(@) = — 2 4 —Z
z)—1) — = or! 7) = 5
= G-1? = G- T z-1

Die Riicktransformation geschieht durch (6.23) fiir k = 2 und (6.8), sie ergibt die Lsung
n
{m} = Z7H{Y@D)} = =10(2) + 1} = {5n(n — 1) + 1}. (6.29)

Auch Differenzengleichungen fiir Funktionen f(#), 0 < ¢ < o, sind 16sbar mit der
Z-Transformation; dazu sind die Betrachtungen in 6.1.1. zu beachten. Ein Beispiel
moge dies illustrieren.

Beispiel 6.15: Man bestimme 3(z), 0 < ¢ < o, aus dem Anfangswertproblem
Y+ 1) —y@t)=10t, yt)=1+1¢ fir 0=¢<1.

Wie in 6.1.1. setzt man t = n + At, y(n + Af) = y, (A1), f(n + At) = £,(At) = 10 (n + Af) mit
0 < Ar < 1 und erhilt

YurrA1) = y(AD) = 10 (1 + Af),  yo(Ar) =1 + Ar.
(6.12), (6.23) und (6.8) ergeben fiir Y(z, At) = Z{y, (A1)}

10z 10zA¢

2(Y(z,At) — 1 — At) — Y(z,At) = m_ P

B

10z " z 10z At z At
-1 z—-1  (@-1* z-1"

Y(z,At) = G

(6.29), (6.23) und (6.8) ergeben
Yo(Af) = 5n(n — 1) + 1 + 10nAt + At, d.h.

¥Wt) =5nn—1D)+1+1A0n+ D)@ —n fir n=t<n+1.
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In der Technik spielt insbesondere die Losung der Gleichung (6.28) fiir verschiedene
rechte Seiten f, und verschwindende Anfangswerte, d.h. y, = -+ = y,_; = 0, eine
Rolle. Die Gleichung im Bildbereich nimmt hier die Gestalt

a0 Y(2) + a,zY(2) + - + @z*Y(z) = F(2)
an. Setzt man P(z) = a, + a;z + - + @z, so ist Y(z) = F(z)/P(z). Der Term
Q(z) = P—(j heiBt z- Ubertragungsfaktor (auch PulS-Ubertragungsfunktion);eristeine

rationale Funktion in z und kann durch Partialbruchzerlegung riicktransformiert wer-
den. Wegen (6.17) ist dann

=fo*dns - {q} = Z7H{O@)}. (6.30)
Beispiel 6.16: Das Anfangswertproblem
Ytz = Yz = Var1 + Y =Jos Yo=y1=y2=0,
soll fiir beliebige (transformierbare) Folgen {f,} gelost werden. Z-Transformation ergibt

Y —-22Y—zY + Y=F(), also P@)=z-z22—z+1=(z+ 1)(z— 1)~

. 1
Die Partialbruchzerlegung von Q(z) = ?(5 lautet

1 1 1 1 1

0= T~ T T T e

Die Ubersetzung der einzelnen Summanden erfolgt nach Erweitern mit z durch (6.9), (6.8), (6.23)
und (6.11) und ergibt

G=0 g=i(-D1-1+}@-D=3Cr+(-11-3 fur nzl.
Somit ergibt sich als Losung des Anfangswertproblems fiir eine beliebige Folge {f,} nach (6.30)

n
In=fatdn=2 qfoy-
y=0

Ist nun z.B. f, = 0 fiir n % k, f; = 1 (Einzelimpuls zur Zeit ¢ = k), so ist

0 fir n<k,
In = N
n-x  fir nzk.
Oder ist z.B. f, = 1 fur alle » (Impulse zu den Zeitpunkten ¢ = n), so gilt unter Beachtung {iblicher
Summenformeln

n

y,,=2qv=%<n(n+1)+-1—:—(2_ﬁ—3n).

=0

6.7. Weitere Eigenschaften der Z-Transformation

In Ergdnzung zu Abschnitt 6.3. werden einige weitere Eigenschaften der Z-Trans-
formation zusammengestellt, die im folgenden Abschnitt angewendet werden.

10 Stopp, Operatorenrechnung
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Satz 6.4: Eine Folge {f,} ist genau dann Z-transformierbar, wenn es (von n unabhdngige )
Konstanten A, B und n, gibt mit |f,| < Ae®, n = n,.

Dieser Satz charakterisiert die Menge der Z-transformierbaren Folgen vollstindig
durch eine einfache Schrankenbeziehung. Fiir die Folge f, = n" (Beispiel 6.4) gibt es
solche Konstanten nicht.

Zwischen gewissen Grenzwerten der Folge {f,} und der analytischen Funktion
F(z) = Z{,} bestehen Zusammenhénge dhnlich wie bei der Laplace-Transformation.
Das ergibt drei Sdtze, deren Nutzen darin besteht, aus Eigenschaften der Bildfunktion
F(z) auf Eigenschaften der Folge {,} schlieBen zu konnen, ohne diese explizit berech-
nen zu miissen. Satz 6.5 bzw. 6.6 heiBen Anfangs- bzw. Endwertsatz (Beweise in [16],
S. 77-78).

Satz 6.5: Es ist fy = lim F(z).

Satz 6.6: Wenn lim f, existiert (fiir R > 1 stets der Fall), so ist

lim f, = lim (z — 1) F(2).
n-oco z=1+0
Satz 6.7: Ist die Reihe Y f,, konvergent (fir R > 1 stets der Fall), so ist
n=0
> fo = lim F(2).
n=0 2-1+40

Der Grenziibergang z — 1 + 0 bedeutet, daB3 z von rechts auf der reellen Achse der
z-Ebene gegen 1 strebt, folglich muB fiir F(z) der Konvergenzradius R~*< 1 sein.

Beispiel 6.17: Obige Grenzwerte sollen fiir die Bildfunktion

22

F(2) = ( , a,beK, R'= max (e, le"),

z—e%)(z—¢eb)
aué Beispiel 6.12 bestimmt werden.
lim F(z) = 1 = f, gilt ohne weitere Einschrinkung. z— 1 + 0 ist aber nur im Fall R°! £ 1

zZ-00

méglich, d.h. bei |e?] = eR*® < 1 und |e¥| = eR*® < 1 oder Rea =< 0 und Re b £ 0. Dann gilt:

0 fir Rea<0, Reb <0,
lim (z—-1)F@) ={1/1—-¢) fir a=0, Reb<0,
arito 1/(1 —e® fir Rea<0,b=0.

Fiir a = b = 0 existiert dieser Grenzwert nicht.

1
lim F(z) = —————— fir Rea <0, Reb < 0.
sa140 -1 -¢)

Fiira = 0 und/oder b = 0 existiert dieser Grenzwert nicht.
)
Folglich sind im Beispiel fy, lim f, (Existenz vorausgesetzt) und Y f, (Konvergenz vorausgesetzt)
n-co n=0

bestimmt worden, ohne die explizite Darstellung der Folge {f,} zu benutzen.
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6.8. Verschiedene Anwendungen

Hier kann nur an einigen Beispielen die Anwendung der Z-Transformation ange-
deutet werden, in der angefiihrten Literatur findet man viele weitere Beispiele. An-
wendungen in der Elektrotechnik, der Okonomie, der Ersatztheorie und der Reihen-
lehre werden betrachtet; Beispiel 6.21 ist ein Randwertproblem. In der numerischen
Mathematik spielen Differenzengleichungen eine groBe Rolle bei der ndherungsweisen
Losung von Differentialgleichungen.

6.8.1.  Beispiele
Beispiel 6.18: Die Differenzengleichung (6.5)

Uppy + Qoltn = f,  Gp = —e%8PU=O £ yp(1 — %) e F1-9),

zur Bestimmung der Kondensatorspannung u, der Schaltung in Bild 6.4 in den diskreten Zeitpunkten
t = n ist eine lineare Differenzengleichung erster Ordnung mit konstanten Koeffizienten a, = 1
und ag, mit konstanter rechter Seite f und gegebenem Anfangswert u, . Z-Transformation mit U(z) =
Z{u,} ergibt
fz fz oz
2(U(z) — up) + apU(z) = ——, U(z) = + 5
(@)= sa) + 8U@S 7 =5 = NGra ira

Riicktransformation nach (6.25) mit @ = 0, b = In (—ay), (6.11) séwie (T 6)*) ergibt fir n =2 0

1 - (-a0)" .
Uy —fTao— + uo(—ao)".

Interessiert man sich nur fir lim u,, so erhdlt man diesen Wert, dessen Existenz sich leicht nachweisen
o

n—
1aBt, direkt aus U(z) nach Satz 6.6:

lim u, = lim (z—1) U(z) = lim - (
n-co z-1+0 z-1+0

fz upz(z — 1) ) f

z+a, z+ay ) 1+a

Beispiel 6.19: Die Zinsberechnung eines Guthabens &, soll zu den Zeitpunkten ¢ = n (z.B.am 15.
eines jeden Monats) mit dem Zinssatz ¢ erfolgen; Einzahlungen e, werden immer zum néchsten Zins-
1 1 min hrieben. Dann gilt offenbar zur Bestimmung von k, die Differenzen-
gleichung

kni1 = (1 + &) ky + €n1, ko =0.

Wird eine stets gleichbleibende Einzahlung e, = e fiir alle Zeitpunkte ¢ = n vorgenommen, so erhalt
man mittels Z-Transformation mit K(z) = Z{k,}

o I ez Kiz) = ez
K@) =1+ ¢ (z)+ﬁ, (z)——(—;—_lm.

Riicktransformation nach (6.25) und (6.11) ergibt

k=S + o = 1),
[

1) (T 6) bedeutet die Formel Nr. 6 in der Tabelle 3.
10*
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Beispiel 6.20: Mit Satz 6.7 148t sich die Reihensumme einer konvergenten unendlichen Reihe be-
stimmen. Aus Aufgabe 6.9 folgt:

(G2 Y i S
Z{.(Zn—-i-l)_!}—\/z sml/\/z fir |z| > 0.

Wegen R = 0 ist

)

(G = -

— = lim z sinl/a/z =sinl =~ 0,8415.
n=0 (2n + 1! z—>1+0\/ /\/

Beispiel 6.21: Randwertprobleme fiir Differenzengleichungen lassen sich ebenfalls mit der Z-Trans-

formation 16sen. Zu

Yntz = Ynt1 +Ya=0, y =0, yy=1,
N = 1 und fest, ergibt sich als Bildgleichung mit dem Parameter y,:
z

(Y —yz)=zY+Y=0, Y=y —/— ——.
z%( »iz™h) }’122_Z+1

Setzt man in (T 10)b = —7;— , 0 ergibt sich zunichst

Daraus folgt wegen der Randbedingung yy = 1 sofort als Lsung

S mn [, wN
= sin — [sin — .
In 3 3

Beispiel 6.22: Es wird ein spezielles Ersatzproblem durch eine Differenzengleichung beschrieben und
gelost.

Die Zeitachse wird in Intervalle n < t < n + 1, ne N, eingeteilt (z.B. in Tage) und eine technische
Anlage mit M Relais betrachtet. Jedes Relais funktioniert mit einer bekannten Wahrscheinlichkeit p,
gerade » Tage (0 = v = k, k fest); bei Ausfall eines Relais wird dieses am Ende des entsprechenden
Zeitintervalls sofort ersetzt.

Bezeichnet y,+; die gesuchte Anzahl der zu ersetzenden Relais im Zeitpunkt # = n + 1, so muB
diese Anzahl gleich der Anzahl der ausfallenden Relais im Intervall » £ 7 < n + 1 sein. In diesem
Intervall fallt aber y,_, mit der Wahrscheinlichkeit p, aus, d.h., es besteht zur Bestimmung von y, bei
gegebenen Wahrscheinlichkeiten p, die Differenzengleichung (k + 1)-ter Ordnung

k
Yut1 = 2 Py¥ny = Po¥n + P1Va-1 + - + Pia-is
=0

n=0,1,...; y=0 fir n<k.

Die Bildgleichung und ihre Losung lauten

2o+t

2(Y = yo) = poY + 1z 'Y + - + Y, Y =yo——;
P(z)
P(z) = 21 — poz¥ — pyz*t — oo — py.

Hat P(z) nur die einfachen Nullstellen z, = 1 (dies ist sicher cine Nullstelle wegen py + -+ + px = 1)
Zy, .-+ Z, SO ist nach einer Partialbruchzerlegung (ergibt die Konstanten co, ..., ¢;) und mit Formel
(T6)

Yn=Co + €12} + - + cZf.
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/

Yo p
, lim y, existiert, weil

P~ T T e ~ D=y iy
man fiir die Nullstellen z;, i = 1,2, ..., k, |z| < 1 nachweisen kann. Folglxch gllt lxm y,, =g, d.h.,,

¢ ergibt sich nach (2.33) als —,~—

nach anfinglichen Schwankungen sind fiir grofe 7 stets y, & c¢o Relais im Zeltpunkt 1 = n zu ersetzen.

6.8.2. Aufgaben: Anwendung der Z-Transformation :
Aufgabe 6.11: Man lose das Anfangswertproblem

Ytz = 2niz t Vi1 = 2w =2" Yo=y2=0, y =1.
Aufgabe 6.12: Analog Beispiel 6.15 lose man

W+ 3) =29t +2) + y(t + 1) = 2y(t) = 2,

yt)=0 fur 0=<¢t<1 und 2=¢t<3, yH)=1t fir 151<2.
Aufgabe 6.13: Man l6se das Anfangswertproblem

Ynt2 = ¥n=toy Yo=)1=0,
fir folgende Fille: a) f2, =1, fo0:1 =0, b) =1, 0) fo=1,£,=0,n= 1.
Aufgabe 6.14: Man lose

B+ 22—+ Yp1+ =0, yo=y1=1,
unter Verwendung des Differentiationssatzes (6.18).

Aufgabe 6.15: In dem in Bild 6.8 dargestellten Kettenleiter aus N Sprossen gilt fiir die Stromstéirken
iy, ..., iy ([8], S.103):

Riim = (Ry + 2R;) im+1 + Raimsz = 0.

Man bestimme bei gegebenen iy, i; die Stromstarken i,,, m = 2. Hinweis: R = R,/R; als Abkiirzung
einfithren!

Bild 6.8. Kettenleiter der Aufgabe 6.15

6.9. Zusammenhang mit der Laplace-Transformation

Durch die Definition 6.1 ist die Z-Transformierte einer Folge {f;} gegeben. Diese
Funktion F(z) kann mit der Laplace-Transformierten F(p) von Treppenfunktionen
der Form

f=f, fir n<t<n+1 (6.31)
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(siche auch Abschnitt 6.1.1. und Bild 6.1c) in einen einfachen Zusammenhang ge-
bracht werden. Davon wird in [10] und [16] ausfiihrlich Gebrauch gemacht. Die
Laplace-Transformierte von (6.31) ist

o n+1

F@) = L@} = [empar= 5, [ eopdr =

o

1—e? &
epn,
P n§of

Die letzte unendliche Reihe bezeichnet man auch als diskrete Laplace-Transformierte.
Setzt man noch z = e, so erhilt man den gewiinschten Zusammenhang in der Form

PE(p) = (1 = %) nif,.z*" = (1 - %) F(z). (6.32)

Mit (6.32) lassen sich Korrespondenzen der Z-Transformation (Tabelle 3) in Korre-
spondenzen der Laplace-Transformation (Tabelle 1) fiir Treppenfunktionen (6.31)
umrechnen und umgekehrt. Zum Beispiel folgt aus (T 2, Tabelle 3) dadurch

1 1 1 1 1

L =3 (1 z)F(Z) Tpz-1 p@-1°
Selbstverstandlich lassen sich durch (6.32) auch die Rechenregeln (6.10) bis (6.19) der
Z-Transformation aus denen der Laplace-Transformation herleiten.

Der Zusammenhang der Faltung (2.18) fiir Treppenfunktionen mit der Faltung (6.1)
fiir Folgen ergibt sich aus folgender Rechnung:
Ist f(t) = f, und g(t) = g, fiir n < t < n + 1, so gilt nach (2.18) fiir r = n

—q v+l

L n—1 n—1
f)+80) = [[@) g =D dr = T [ fD)gln = 7) dv = T fgoes-s-
0 v=0 , v=
Durch Vergleich mit (6.1) erhdlt man den gesuchten Zusammenhang in der Form

f0) % g(t) = fam1 * Gnere (6.33a)
Im Bildbereich der Z-Transformation gilt deshalb wegen (6.11)

Z{() » 50)} = = F@) GG, ©633b)

In (6.33a, b) ist der links stehende Stern im Sinne von (2.18) und der rechts stehende
Stern im Sinne von (6.1) zu verstehen.

Die Gleichungen (6.32) und (6.33a, b) haben in technischen Disziplinen, in denen
sowohl diskrete als auch kontinuierliche Vorginge gleichzeitig in einem linearen
System ablaufen, groBe Bedeutung (Impulstechnik; [10], § 27; [16]).
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b 4
1
2.1: L{f(} = fe""'dr = ) (e — e7?) fiir Rep > 0.
a
2.2: (2.5) und die Definition von sinh ¢ ergeben (T 14).
2.3: Zunichst ergibt sich fiir reelle p mit pt =7, x =a + 1

© ©

1 I'x + 1
fe"‘t”‘dt: o je"t“dr:—(ﬁ—-————)- fir p>0.
P

pa+1

0 0
Wie im Beispiel 2.4 dehnt man das Ergebnis auf Rep > 0 aus.

2.4: a) Ja, Satz 2.1 erfiillt mit a = 3, M beliebig. b) Nein, f(¢) hat bei ¢ = 1 nicht integrierbare Pol-
stelle.

2.5: Differenz fi(f) — fu(?) ist eine Nullfunktion n(?).

2.6:a)(2.11)mita = 2,5 = —;,f(t) = sin#,b)(2.17) mitd = 1,£(¢) = sin ¢, ¢) Formel fiir f([¢]) aus
2.2.7. anwenden:

1 11
e DT 9 et

2.7: (2.13), (2.17) und Aufgabe 2.2 ergeben

/4

a)

Ft;’——aT’Rep> max (a, —a) + b.

1
2.8: Satz 2.1 gilt, wei]—;-sin t fiir # = O stetig und beschrankt ist. (2.26) anwendbar: Ergebnis (T 54).

2.9: a) Vollstindige Induktion nach n: Formel ist fiir » = 1 richtig. Weiter gilt nach (2.19):
t
1 1 1
1s(Q*leesl)=10— "1 __|o*ldo=—¢",
S (n-=1)! m—1)! n!
n Faktoren U

t oty thoy

B) Lalxeeslaf@)= [ [ [f(t)dtydtyy - dty = g(t)
00 0

1
nach (2.19); g(¢) ist das n-fache Integral iiber f(¢). (2.21) verallgemeinert sich zu L{g(r)} = — F(p),
Rep > max (0, x). r

2.10: (2,25) und Beispiel 2.6 ergeben fiir Re p > 0:

2p 6p% -2

Litsint} = m' L{t*>sint} = —(~p—2—-:—1-)—; 3



132 Lésungen

2.11: Mit (2.24) und (2.4) ergibt sich mit Y(p) = L{y(1)}:
PY(P) = Y(p)=1p, Y(p)=1/p(p* -
T
(2.21) und Aufgabe 2.2 ergeben y(1) = J sinh 7d7r = cosh # — 1; Probe durch Einsetzen.

0
2.12: (2.27) ist anwendbar, Ergebnis: —In 2.
i . 1. e % —¢gbp
2.13: Periode T = b, (2.28) fiir Rep > 0; ;-——1_—C_T
2.14: (2.20), (2.5) und Beispiel 2.6 ergeben fiir Rep > 1: L{e" *sin 1} = 1/(p® — p> + p — 1).
2.15: Periodische Funktion mit 7 = =, (2.28) fiir Rep > 0:
1 1

PP+l l+e™?
2.16: Indirekter Beweis: Wire (2.1) fiir ein komplexes po konvergent, dann nach Satz 2.4 auch fiir
Rep > Repy; in dieser Halbebene liegen auch reelle p im Gegensatz zur Voraussetzung.

1
2.17: \/ p ist keine Bildfunktion nach Satz 2.5, ——/—mt Bildfunktion von \/—- nach Beispiel 2.4.
P Tt
2.18: sin p bzw. sinh p sind periodisch mit der Periode 27 bzw. 27j; d.h., b) in Satz 2.7 ist nicht er-
fullt.

2.19: Nein, denn z.B. fiir x = y ist Satz 2.7a) nicht erfiillt:
[e—lﬂl = e H?| = |g-2%?| =
2.20: a) Ja, (T 8), b) Ja, (T'9), c) Nein, Beispiel 2.23.
2.21: a) N(p) = p* — 1 hat die einfachen Nullstellen 1, —1, j, —j; (2.34) ergibt (T 33) mit a = 1,
b) N(p) = p* + 1 hat die einfachen Nullstellen +% (1 +7), +% (1 — j); (2.34) ergibt (T 122).
2.22: a) N(p) = (p*> — 1) hat die Nullstellen p; = 1, p, = —1, Vielfachheiten o; = «, = 2, An-
t
satz nach (2.31), (2.32) ergibt—z—sinh 1, b) mit f(z) = sinh ¢ * sinh ¢ und (2.23) folgt:
t

t
()= fsinhtcosh(r —7dr=4% f[sinht — sinh (r — 27)]d7 = Tsinh (5
0 0

223:a)f(1)=0,0=t < 2;f(1)= , 2 < t, (2.7) benutzt; b) f(1) = e 4,

1
\/ 4r(t — /
2.24: Exponentialfunktion in Reihe entwickeln, Satz 2.10a anwenden, Ergebnis: JD(\/ 1).

In(1 + Injp|+ C
2.25: J- — Ound f—-» 0, weil Satz 2.12 erfiillt ist wegen _(___p_)_‘ = P—Il_ - 0 fur |p| » ©
Cy Cn
unabhingig vom Argument

©

]imJ.——J. f f ln(l_x)ﬂnd —J.e"" ht-»=i
P X
1 1

d
= zfrjfe-" — s f@ = fe-"_i = —Ei(-1), ¢>0.
X u

1 t

Substitution x¢ = # durchgefiihrt.
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1 —
2.26: a) k(1) ~ 27 40, b) h(t) ~ 1€l 1> 0.
t
2.27: f(t) nach Satz 2.1 transformierbar, Satz 2.13 anwenden:
J=
2p/p .
n
b)f(t) ~tlnt,t > +0,a = —1und g(r) = —¢Intin Satz 2.13, (T 72) fiirn = 1 ergibt F(p) ~ f 3
p— 0. 4

1
2.28: h(t)— 3

a) f(t) ~ \/1, t— +0, (T 41) ergibt F(p) ~

s P> 00,

= erfiillt Satz 2.1 wegen Aufgabe 2.26a und 2.26b, wegen Beispiel 2.4 ist deshalb /(¢)
t

selbst transformierbar und dafiir Satz 2.15 anwendbar. Reihenentwicklungen elementarer Funktionen
benutzen:

1 11 113
W)= —=(1+2t+ — 2+ 13— —1*) +0(t7%) fir t— +0,
2\/, 6 360

H(p) =

NE 11115 1 7911
_ —t ——t —— — ——— | +0(p%?) fir p— 0.
2\/,;( p 8 p 8 p 384p‘> @ ?
2.29: a) Eine einfache Nullstelle mit maximalem Realteil vorhanden: po = 1 mit co; = %; (2.47)
ergibt:
f(t) ~Lte' fir t— 0.

b) Zwei einfache Nullstellen mit maximalem Realteil vorhanden: '

Pz = \/- (1 £j) mit ¢y =1/4p}, c2y = 1/4p3; 247):

V2 ( '
f@)y = —el/~/2 sin —= — cos —=
NN

t
c) Die zweifache Nullstelle p; = 1 hat maximalen Realteil, (2.47) ergibt: f(t) ~ Te' fiir t > o0.

) + o(eV2) fiir t—» o0.

2.30: a) Instabil, weil max Re p; = 1 > 0; b) stabil, weil max Re p; = —1 < 0; c) einzige Nullstelle
i i

mit maximalem Realteil ist p, = 0, einfache Nullstelle; uneigentlich stabil (Grenzwert ist 4).
3.1: Satz 3.1 anwendbar, als Bildgleichungen ergeben sich

aA(p*—1DY=1; b)P*+1DY=1; )pp—-DE*+1DY=p+1.
Die Losungen y(r) = L~'{Y} wurden in Aufgabe 2.21 bzw. Beispiel 2.24a, b bestimmt.
3.2: Satz 3.1 anwendbar, mit P(p) = p> — 1 =(p — 1)(p + 1) ist
2
A PP)Y=—+p+1, yt)=2"+e"—-2-1%
P
b) P() Y ! I, 30 =L @eost - sintye - 2ot
=1, = —(2cos t — sin - —ct
G+P+1 A =gltesimsmben =3¢
3.3: Analog Beispiel 3.5b vorgehen, Bildgleichung und Losung:

P oty 4 er 2P
P(P)Y(P)—1+P+2, Y(.D)—Q(P)+e”p+2-
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Q(p)
p+2

0,0=¢=1,

L~{Q(p)} nach Aufgabe 2.21a, L™* { : nach (2.34) bestimmen und danach (2.14) anwenden:

1 1
1 (et = 3emU-D) 4 —_e-20-D)
y(t) = T(Sinh t—sint) + { 12 ( ) 15

+%(cos(t— 1) = 2sin(r-1), 1=t

3.4: In Beispiel 3.6 ist a; = 16,4, = 8, D = 0, g(¢) = ¢ ¢~% und damit wegen der Definition von f(¢)
0, 0s¢=s1,
t
j (t—1)e8¢-9dr,1 = ¢ <2,
WD) =q®)«f(1) =
2

[(t-Detedr2x1,
i

0, 0sts1,
1 1
@ + ae“’("”a - 81), 15122,

1
i e 8¢-D (8 (e® — 1)+ 7 —15€%), 2=1t.

3.5: Bildgleichung und ihre Losung Y mit dem Parameter yj :
14y, p?
., Y=——
P P*P(p)
Partialbruchzerlegung fiir Y und (2.33) ergeben
YO =34y, —2t+3> =B +y)et — (1 +yy)te™

P(p) Y =y, + . P@)=plp +1)%.

mit yy = E—-ﬁ- wegen y(1) = 0.

° " 2e—-4 .

3.6: Formel (3.8) mit a; =0, D = —42, y; = 0, y als Parameter anwenden: y(t) = yo cos At.
Wegen y'(w) = —Aypsinin = Qist fiirsinw & 0 yo = Ound y(¢) = O, fiirsin ix = 0,d.h. 2 = neN,
Yo = C€ R beliebig und y(¢) = Ccos nt.

37T:Pp)=p>+ >+ 25p +39=(p>+4p + 13)(p + 3),

1 1
q(t) = —1—0—5‘3' - 3—0(3 cos 3¢ — sin 3¢);

daraus folgen sofort Q(p) und g5(¢) sowie nach (3.18) bzw. (3.22)

1
g(t) = — oy (B3e™3 + 3sin3f + cos 3t — 4), [Q(jw)| = (@° — 0* + 1902 + 1521)~%,
(0? — 25)

o
@(w) = arctan

o beiTo? £39, — bei T0? = 39,
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3.8: P(p) hat nur Nullstellen mit negativen Realteil, es ist:

P(p)=p* + 8p> + 25> + 36p + 20, o=1, Q(o)=

2
w0’ @(w) = arctan 7 ~ 81,8° % 1,4; (3.22a) ergibt

1 .
—4+28j ’

1QGw)l =

2

Img,(t) = —a—sm (t+14)+0(1), t— .
3.9: O(p) = p* + ap, Q(jw) = —o? + jaw, a
farctan —, 0>0,
1 4]

1QGw)| = (0* + dw?)t = VT Pl0) =
o/ w? + a l_ . ©=0.

2
|Q(jw)| ist monoton fallend von oo bis 0, ¢(w) ist monoton fallend von ——% bis —=.

(3.22a) beschreibt nicht das stationare Verhalten, weil die Nullstelle p; = 0 von P(p) keinen ne-
gativen Realteil hat; vielmehr ist

£4(1) = Q(w) ot — 1— +o(l), t—o0.
jwa

1
3.10: P(p) = p® + ap, q(t) = = (1 — e™), g5() nach (3.28).

3.11: Normales System wegen |A| = 3, Losung nach Satz 3.3:

yy =¢€'sin2f, y,=ce'cos2t, y;=1t.

3.12: Normales System wegen |A| = —3, Losung nach Satz 3.3:
3 1 1 3
- ~t/3 U H
=— — —e'+ —cost + —sin¢,
=50 ¢ PR 0"
1

Y2 = —s—e"’3 +—ef — icnst - isin t.
20 4 S 5
3.13: Normales System wegen |A| = }L3, Satz 3.3 und Cramersche Regel verwenden:
1 L 1 2 1 ? 1
D(p) ==L (=p* + = | (P> +0d), Li=-—5—F(1-—=>—5—5),
(p) 2 (212 C)(p 0, Is I Fta? —
1

LU Al e o g g

(@? — 0§ — Qw? — w}) cos t + »? cos wyt).
1
314: p+ DY +pY2=0, pY1—(+DY:= —(1 — e T?),

D)= -@r*+ 2+ 1), Yi=-( *“‘”3@ Y, = -(Y,+%n);

0, 0<!=T,

t
t) = e sin— —
(0 sin = = emiz

. t—=T
sin , T=t,
2

t
7)) = —0u() + [ 1@ do).
)
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3.15: |A| = 0, entartetes System, Koeffizientendeterminante: p(p — 1),
=€ +1, F)=—e+1, F()=1-2;
710) =2, 70)=0, 5(0)=-2.

3.16: Analog Beispiel 3.21 vorgehen, y(x, ) = x + sin xsinh 7.

1 1—e
317 Y =yon 2L iy = yo—,e—nach (T 51).
318:0) Y() = 2 30) = cost, B) Y(p) = ——Por
et pP+1’ ’ P-D@E*+1)’
1 1
() =— (" +sint+cost), ¢) Y(p)=+ ———, ()= £Jo(1).
2 NI

1
3.19:a)i(t) = fcos wt = e(t) nach (2.20), b) nach (2.14):

1

—sinwt, 0=t=T,

L

1. .

i(t) = Z—(sm wt —2sinw(t —-T)), T=r=2T,

1 . . .

—L—(sm wt — 2sinw(t — T) + sinw(t — 2T)), 2T = ¢.
1

3.20:eTPY + Y = 1 , ¥(t) aus (T 91).

4.1:a) 4(l —cost), b) 4(r —sint), c) 4(z + I — cost).
4.2: Fir n = 0 entsteht eine Identitit. Weiter ist mit » Faktoren in der Klammer mit der Induk-
tionsvoraussetzung:

tn‘l
%% x (% ker % €M) = e & eat
. (n—1)!
1 eX(-T) T yn—1 q7 e -1dr = ie‘“.
(n—1)! n—1! n!
0 0
4.3:a)6r+ IR b)1 —t€R. ,
m!

4.4: a) m = n: (4.13) mit f(r) =", p" = mt"“"sR, b) m < n: p™t™ = m! nach a),
PITRTM = ) phm ¢ R, :
45:1+1€R.

4.6: a) pl = 1, (4.7) und (4.16) ergeben: f(t) = ¢ flir 0 < 1 = &,
fO=afira<t=p,f(h=—t+a—-plirf<t=a+fp
f()y=0firx+ B <t,b)f'= F(U“ — vp + Vaip) = Up — Up + Uaip.
4.7: a) Beispiel 4.9, 4.11 und (T 104) ergeben

1 1 1
y= (—?I+—1—5~e‘3‘+ﬁe2‘>*(vo—2vr+v;r);

(4.16) ergibt y fiir die Intervalle 0 < t = T, T < t < 2Tund 2T < t.

1 1
b) y —e 5 4+ Te‘) * 073

1
N —
P+5C@-D 6
(4.16) ergibt y fiir die Intervalle 0 < 1 = Tund T < .
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4.8: y (1) = 2¢®* — 2cost — 3tsint, y,(t) =sint + tcost — 2tsint.

. . . al}(p* +
4.9: Mit (4.7), (T8) und p/ =1 ist y =l +sint xy = al* + 552 »y= 52
=a(? +1*) =a(t + §13).
4.10: a) Mit (T 8), »* = py wegen y(0) = 0 und (4.14) ist
1 2py 1
= + ;o= =te';
TS a—»r
. p—2
b)y*y—y+—-3=0
(p—1?

: . B p=2 1
hat als quadratische Gleichung fiir y die Losungen y, und y,: y; = =i 2= 17 ef; nur
y, entspricht einer Funktion.

5.1: Analog Beispiel 5.1 vorgehen:
A 0 a’
J. e W-alilgign rdr = — ' e Wr-atds 4 ‘ e W+ax gy
-4 -4 0
e~r-at | o e-Ur+art | 4 1 1 2jy
== = S sk =— = =F(@), A- .
jy—a |-4 jy+a |0 jy—a jy+a a* + y
4 sin yT 2sin 2yT
5.2: F(y) = it A - et aus
¥y y
-T T 2T
a) — f eMdr4+ | edr— | et dr;
—-2r -T by
1 1
B) (1 — ™) — — (1 — ™.
Wy Wy
5.3: Definition von F¢ und Fs verwenden und ersetzen bei
1 )
a) cos yt = 7(e,b’f + e—])'t);
) 1
b) sin yt = — (e — ™).
2j
5.4: Beide Funktionen sind gerade: F(y) = 2Fc(y).
©
cos yt
a) 2 Y 4t = me M,
1442
cos yt 2 cos ¢ )
b) 2 W = > dr = \/E’j, y+0.
N Vi) Ve NI
0 0
5.5: Substitution 7 = ar durchfiihren:
© © )
1 . 1 —-b
Gv) = f =00 f(ar) dr = — f 00T £(7) it = —F( 4 ) .
a a a
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5.6: Mit F(y) aus Beispiel 5.5 (dort @ = 1) und (5.14) folgt
Tt _g<y<d,
A

1 y
G — __ oiByld Fl=)=
(2] iC Y] 27; OBy gy

0, y< -4, A<y.

o t o
5.7: a(t) = 5 e=lt—tle—Itl dr = e“j er—ltl dv + a’j e=7=ltl dv = (1 + |1]) e~ldl,
{

—c0 -0
4
Ay) = T7 nach (5.3) und (5.16).

5.8: F(y) = —2rne® fir y < 0, F(») =0 fir y > 0.

T
5.9: Mit g(1) = .f f(r) dr und einmaliger partieller Integration ist

-
4 4
1
J. e Mg(r)dt = e P g(d) — e g(—A4) + > J‘ e f(t) dr.
4 -4

a) Fiir A > oo existiert der Grenzwert rechts und deshalb gilt (5.17).

b) Ja, weil aus der Existenz der anderen Grenzwerte g(c0) = 0 folgt.

510: F(»)=0firy< —a—bunda—-b<y<b—aund a+ b <y, F(y) == fir
—a—b<y<a—-bundb—a<y<a+hb

6.1: (6.8) und (6.18) ergeben nacheinander (T 2), (T 3), (T 4) der Tabelle 3. Weitere Differentiation
nach z ergibt Z{n*}.

6.2: Analog Beispiel 6.5 ergibt sich (T 6) der Tabelle 3. Mit (6.18) folgen (T 7), (T 8) sowie F(z) fiir
beliebiges k.

6.3: Analog Beispiel 6.8 wird zundchst Z{sinh bn} bestimmt ((T 14) in Tabelle 3), mit (6.13) folgt
(T 16).

6.4: f, = fuex Z-transformieren, (6.12) benutzen und nach F(z) auflésen, das ergibt fiir |z] > 1

ZEamEst z -1
F() = Y b) F@@) = —— ——— .
3) F@) -1 ,Eofvz ) F@) z—1 22 +1
6.5: Losung von 6.1 fir k = 0 und (6.14) ergeben fiir |z] > 1
2(z* +4z+ 1) Rl
F@z)= —————. »3
z-1)° ugo

ist der Inhalt der von der Treppenfunktion f(t) = n%, n <t < n + 1, und den Geraden ¢ = 0,
t = n, f(t) = 0 begrenzten Flache.

6.6: Wegen (6.9) mit a = iil-j folgt ausfﬂ=i 1, + i .
2 z 2\z+j z—)

1 nm
= 7in2 4 e-7inl2) = cog )
fn 2 (@ e™mn%) 3

6.7: Wegen (6.9) mit a = jr bzw. a = 0 folgt aus —— = — +
z z+1 z—1

FG@) _1( 1 1
al )

1 1 1
fam 5@ D= Zosmnt D)= o (=1 + 1) oder frn=1, fous =0.
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6.8: Mit der Losung von 6.1 fiir £k = 1 ist

id 1 +1)@n+1 1
f,,=2v(n-v)=nn(n+)-—n(" ) @n )=—(n—1)n(n+1).
¥=0 2 6 [3
S
69: 5 = @+
1 1 d» 1 n=-1! . (n—-1!
10: F(—)=ln——, °_F[=]= fir n21; also fo =0, f, = —— 2
6.10 F(z) nl_z, dz"F(z> a7 ir n = 1; also fp fn =
firnz 1.
1+ (z—2)2 A B Cz+ D
6.11: Y(z) = = + ¥
&= z(z—Z G-27 z2+1)
1 1 28
P = (z— =—_,B=—,C=—_,D=2;
@=&-26 + 1, 4 25 5 b1 25
y,=%(5n~2"—8-2"+8cos-7;l+56sin%).
At _ 92
6.12: Y(z,Ar)=z2 tA+ANE-2) , Ansatz wie in Aufgabe 6.11 mit
(z=2)P(2)
4 1 4 3
A4 = ———28 B=—_028 C=—24 D=_—_2411+Ag
25 5 25 352 TIHAs
1
y(t)—-——(Sn—S) 2'+E(4COST+3smT) 2“"+(1+t—n)sm-2—

firnst<n+1.

6.13: Y(2) = F(2)/P(z) mit P(2)=(z+ 1)(z — 1), Q(2) = PL’ ZHQ(2)} = {gn} mit gzn =

(2)
[n/21
Qo1 =0firnz1,g0=0;y0 =y, =0,y =fo%qs= Zlﬁ.-zvfiirnzl
n i
a) Y2 =M, Yan+1 = 0,b) y, = ["‘] 5O V2n=1,Y2p-1 =0 fﬁr nz1l,y,=0
6.14: z2Y'(z) + Y(z) =0, also Y(z) = ce'’, also y, = — und wegen yo = 1 ist ¢ = 1.

6.15: P(z) = 22 — — (Rl + 2R;) z + 1; Wurzeln verschleden und reell:

1 et ——
oy = F(Rl + 2R, + /R + 4RiR;), oz = 1[ay;
2

. 1 O
by = —=———— (&(iy — io2) — &3y — io%)).

VR + 4R

139

_ 1
n

1
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Tabelle 1: Laplace-Transformation

Definition siehe 2.1.1., Rechenregeln siehe 2.2., Umkehrung siehe 2.4.

Nr. Originalfunktion £(¢) | Bildfunktion F(p)
1

1 1, u(t) 3

2 | 1

3 t" neN ’1;%

4 t*, Rex > —1 _I"(_:a;%_l)_

5 G4 !

P—a

6 te® —(;__La?

7 t*e”,Rea > —1 é(—ii:_)"‘l")l

8 sin at #‘;z‘

9 cos at pz—iﬁ
10 tsin at Tp—z%

2 _ 42

11 tcos at G%‘,;T
12 t*sinat,Rex > —2 jp(a;— = ( 7] +§a)a+1 T _lja)au )
13 t*cosat,Reax > —1 F((X; U ( @ +§a)a+1 + G- }a)aﬂ )
14 sinh at 'pz—a_ﬁ
15 cosh at ’pz—ia—z'
16 tsinh at W%—Laz)f
17 t cosh at 'UJL:;_::T
18 t*sinhat, Rex > —2 F(a2+ ) ((p _la)a-u T +la)a+1)
19 t*coshat,Rea > —1 I'(a; 2] ((p _1 ! + @ +1a)"*’>
20 €% sin bt 2




Tabelle 1: Laplace-Transformation

Nr. | Originalfunktion f(¢) | Bildfunktion F(p)
21 €% cos bt (p——pa_—)-_z_am
22 e sinh bt _(?——a—t)’th
23 e% cosh bt F_“L‘;%I,T
24 sin (at + b) %ﬂ
25 cos (at + b) ﬂco;_f;_:zsii
26 sin at sinh at —p%
27 cos at sinh ar "z—;ﬁ—z_{_——zz?
28 sin at cosh at —-—a;‘f:— :::)
p3
29 | cosat cosh at rarwr
30 sin at sin bt P+r@+ b)f;lgz ¥ @ - b))
31 cos at cos bt @+ (Z(iz b;)a(zp:_fz()a =53
32 sin at cos bt 7 F (:(f_zb;)a(;; :2 09
33 sinh at — sin at ;:gés—af
34 cosh at — cos at %
35 sinh at + sin at -p—;zi_liar
36 cosh at + cos at %
37 | sin*ar p(’ﬂ—z‘jhz_z)
38 cos? at I,(’;,:+—_+_2‘;.:z)
39 sinh? at ;ﬁ
40 cosh? at p—fl;;_z‘:‘;z)
1 Stop, Operstoremrechong.
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Tabelle 1: Laplace-Transformation

Nr. Originalfunktion f(¢) | Bildfunktion F(p)
- 1
a |/t S
2 pp
0 | L -
NG P
n 1 =
43 t_ ,neN M ;_
Vi nt4 p/p
44 J—l—_,ago A/l;—e""erfc«/zi
t+a
45 mT—a—,a>0 % —2/mpeerfc/ap
46 7‘—_{’—”&; l-;——n\/;e"erfc\/a
47 _\7?71;?'“>0 j_ e"”erfc\/a_p
a
= T
48 |re e
2Ap—a)/p—a
s | e =
t Vp—a
50 | e neN @\r p—a_
\/; ’ nlan - a)n+1
at __ bt -—
s1 | &= m2=?
t p—a
2 | Lo fE o
P
53 | et = erterfcp
sin at P
54 — arccot—;
1 — cos ar 1 a*
SRS 7(i+5)
sin at sin bt 1, p*>+(a+b?
56 — T In PE—(a-bp
cos at — cos bt 1 ]up2+b2
57 7 2 prPta?
58 | sin2ar lA/E“_e—a/n
p 14
sin 2«/;; A/‘1
e Al of f —
59 - e B
cos2+/at A/_7"_ e
60 P

N




Tabelle 1: Laplace-Transformation 143
Nr. Originalfunktion f(r) Bildfunktion F(p)
sin(2n + 1) ¢ p*
61 T,neNfest (l+"z1 p2+4v2
1 | a . ——
62 7sm o A/ % eVer sin/ap
63 T/T“’sj A/% eVar cos+/ap
64 %sinhaz n2*a
65 sinh \/; + sin \/7 L [1 coshL
pNp 4p
66 | sinh \/7 — sin /7 L/ Gon L
pNp 4p
7 cosh /7 + cos /7 ) (= cosh L
N7 P 4p
68 cosh\/;—cos\/; 2 /1 sinh—l—
Vit P 4p
= 1 [ma
69 i _A/_ edlp
sinh 2 \/ﬂf ? ?
_ ([ eor e [T )
— | J—ePerf [—+1
70 cosh 2 \/at ? ( ) P
1
Y Int —7(lnp+C) 1)
" n! 1 1 1
72 "Int,neN e (1+2 ..+-'T—lnp—C)
73 18 —A/f.(ln4p+ )
Jt P
1 2 b
7% | (% +mp+ o) .
1 P
—er'/4 —
75 erfz 5 er’l4 erfc 3
1 _
erf — (1 —ep)
76 W7 E (
1
77 erf\/t E Jm
- a 1
78 9t erf </ at —
hiht 7
e - -
+ erf </t 1
I v NG 1
80 | Jo(r) il

1) C bedeutet die Eulersche Konstante (siehe Ubersicht S. 8).

11*
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Tabelle 1: Laplace-Transformation

Nr. | Originalfunktion f(f) Bildfunktion F(p)
STy
81 | J,(),neN Wr+t-p)"
P2+ 1
82 (1) 1
83 it—a)y,az0 [ d
84 | 6 "
85 | 0"t —a),az0 %"
86 1, 0<t<T 1 .
0, T<t 2 4=
f(t)
[ e
|
I
T t
87 1, 0<t<T L(l — e Top2
-1, T<t<2T 4
0, 2T<1t
f(t)
1 —_-ﬁ
i
|
7! oy i
l l
|
-1k | IR
88 t 0=:t=T 1 _ Toy2
{21—:, T<r=or 7=
0, 2T =1t
ft)
s
1
T T t
8 |5 (;iftéT ;}2—(1—e-”)
f(t)
-
1
T




Tabelle 1: Laplace-Transformation

Nr. | Originalfunktion f(r)

145
] Bildfunktion F(p)

90

91

92

93

94

{l—r,0<r§7‘

0, T=t
f(t)
| T t
,0<r<T f(t+2T) = f(1)
0,T<t<2T
f(t)
1 1 r 1 f 1 |
| [ | | | |
| | | | ! |
roar  Jr 4T 5T 6T ¢
{ 1,0<1<T f@t +2T) = f(1)
-1,T<t<2T
f(t)
7 | r 1 | — —
| | | | | !
S TN A SO B
TV zrt arb 4Tl sl erl
| | | | | 1
_7L L | l | i |
0, 0<t<T,2T<t<3T f(t +4T) = f(1)
1, T<t<2T
—1,3T <t < 4T
f(f)
1 — —
| |
. I O
T T 37: Ar; 5T 6Tt
» | .
,0<t<e ft+T)=f@)
0cs<t<T
fit) A
1 ™ [ T e B m ~
N | g
T e e e ]
I[ T T 3T 4T 5T 6T ¢

1 ~Tp
7 (Tp+e -1

1
p(l + e ™)

1—eT?

p(l + e T?)

1—e TP
p (eTl’ — e‘TP)

I SIC
p(1 — e P)
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Tabelle 1: Laplace-Transformation

Nr. Originalfunktion £() Bildfunktion F(p)
i o<i=T fa+2T) = f) | b
. [T srs =f0 | Traremy
ZTT_ Lorsisor
f(t)
1
L 1 L
T 2T Jr 4T 5T 6T ¢
Bildfunktion F(p) Originaifunktion f(¢)
1 et — bt
% | G-aG-n"FP b
1 1 R
97 2+ a—_xp T a \/—_D e3%*sin J—Dt
D=1%a}—ap<0
o ap + B (x + (B + xa) t) e
(- ay
p + B (xa + p)e® — (xb + B) e
¥ Gmap-bn ‘¥ a=b
1 y e — (1 + (a — b)t) e
10 1 G=aG -t ¢ @=by
a* — b* ¢ a .
—_— — b*0 e — cosh bt — —sinh bt
o G=ae - O F 5
a® + b Eae
12 | G TR b+0 e — cos bt + 5 sin bt
Z(p), N(p) Polynome inp, ~ N(p;) = 0, N'(p;) * 0,
d.h. p; einfache Nullstelle
1 <N S
103 N(p) lgi N'(py) e
Z(p) & Zp) ,
104 ¥ & V)
1 1 < _1___ bt
105 NO & N ¢

PN (p)



Tabelle 2: Fourier-Transformation
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Definition siehe 5.1.1., Rechenregeln siehe 5.3.1., Umkehrung siehe 5.2.

Hinweis: Wegen (5.11) ist F{F(#)} = 2 f(—), so daB auch die zweite Spalte als Original- und die
erste Spalte als Bildfunktion benutzt werden konnen entsprechend obiger Formel. (T1) bedeutet

also
a) F —“—} = ne-P| und b) Fime-ltl} = L
a® + 12 a® + y?
Nr. | Originalfunktion f() Bildfunktion F(y)
1 | ==, Rea>0 mealsl
a+12’
5 1 0, y<0
@—0r { =, .
= —ay
Rea >0, neN n!y"e O e
1 _1y#1 2T ey
Pl a@Ee {( D ye y<0
Rea > 0,neN 0, y>0
ab(a® — b?) by —ay
¢ (@ +12) (b* + t?) R o
Rea >0, Reb>0
a3 ] —. [T ay
— = = 2 —_— —_—
S| e lasa <7 reall sm(4 + \/E)
6 0, t<—a a<t mJo(@y), a>0
1
—_——,-a<t<a
Ja2 —t2
7 e, Rea >0 Ii— e~'l4a
a
3 Smat, a>0 0,y< —a,a<y
t T, —a<y<a
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Tabelle 2: Fourier-Transformation

Nr. | Gerade Originalfunktion f(¢): Gerade Bildfunktion F(y):
f(=0=f@), t>0 F(-»)=FQy), y>0
ll, 0=t<a 2sin ay
9 .=
0, a<t a4
1, 0=sr=1 2 :
10 [2_1, l=r=2 —y—2(2cosy—l—c052y)
0, 2=t
11 : ]
Jt Vy
0, 0=t<a —
12 { 1 ACar ://23 (cos ay — sin ay)
Ji—a’ 4
bt _ g-at a® + y*
13 . In )
Rea>0, Reb>0
et (/a2 4 o2 172
14 =, Rea>0 REICETE D
\/‘ \/a2 + y?
15 e~b sin at a+y + a-y
a>0, Reb>0 b +@+y)? b+ @—y)?
16 e~b* cos at b N b
Reb > |Imal b2+ (@+y? " b+ (@—y)P
Int N ( n
— - Y (n4y + c+—)
7o Ve VR U g
Int, 0<r=1 T
18 {0 1<t __Z_J‘smldt
3 = 7 7
0
sin? at n(a—l-) y<2a
19 |~ >0 { z) 7=
0, 2a=y
=lcosde wa—-y), y=a
20 e 5 >0

0, asy
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Nr. | Ungerade Originalfunktion f(¢): Ungerade Bildfunktion F(»):
f(=0=—f1), t>0 F(-yy=-F(), y>0
1, 0<t<a 2j(cosay — 1)
21 [ i)
0, a<t ¥y
1, 0=r=1 or
22 {2—1, 1st=2 ;%(sinZy—Zsiny)
0, 2=t
»n | L - A=
Vi vy
0, 0st<a L —
]\/27r .
24 { 1 Y - 7 (sin ay + cos ay)
Jt-a
s o B iR (Wi + - a)'?
\/‘—, Rea >0 \/a2+y2
Int e (ln4y+ C——)
26 ﬁ \/
27 {lnt, 0<t=1 2j (C+ln +J'cosrd1)
0, 1=1:
sin at . y+a
28 | AME 50 il o=
0, 0<y<a
cos at g
29 ==, a>0 { e an
NG
—ar e-»'l4aerf ———
30 e, Rea>0 NZi =
0,0<y<a
31 Jolat), a>0 e B
olar), {Jy2~a2’a<y
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Tabelle 3: Z-Transformation

Definition siehe 6.2., Rechenregeln siehe 6.4.1., Umkehrung siehe 6.5.1.

Nr. | Originalfolge f, I Bildfunktion F(z)
z
1 1 -1
z
2 n ——(z e
2 2(z+ 1)
3 n =19
3 2(z+4z+ 1)
4 n -1
s fem =z
z—¢
6 a" z
zZ—a -
za
O [
Y az(z + a)
8 n*a" T
n z
’ (k ) @ = et
. zsinb
= S z2 —2zcosb + 1
2(z — cos b)
. D z2 —2zcosh + 1
P
12 e sin bn Zeasind

z2 — 2ze%cos b + e2a
z(z — e cos b)

an _ zz—ecosh)
° ercosbn z2 — 2ze®Cos b + e2a
i zsinh b
14 sinh bn e
z(z — cosh b)
8 cosh b z2 — 2zcoshb + 1
16 a" sinh bn za sinh b

z% — 2zacosh b + a*
2(z — a cosh b)

17 a" cosh bn 72 — 2zacosh b + a2

18 fo=0firn=+k, 1
fi=1 zk
19 =0, fomy =2 2
qu_ 3 2n+1 = Z_z—-—-]—
2 fon=0, 22(22 + 1)

Sant1 =220+ 1) (2 = 1)?



Tabelle 3: Z-Transformation

Nr. | Originalfolge f, Bildfunktion F(z)
fan=0,
a | 2 InZ = i
= g
nm z2
2| eos i1
2 an zz
3 n+1)e¢ G-
eb('l+1) - eﬂ(n+l) z2
2 eb —e? z—e)(z—¢Y)
1 z2
25 'E(" —Dn@+1) ey
1 z
26 Jo=0, fi=—nzl In——
a a
27 T o
-1 - 1
8 | =D At
@+ D! +z sin Jz
k
29 (") (1 + i)
n z
1
3 | D —
@n)! Jz
z
el (=1 z+1
z
32 (=1)"n - (—Z—TT)—i
z
— - 1
33 nmn—1)..(n—k+1) k'(z—])"“
VI el
7l
35 (=1 ez
. n!
36 |2l (1 + —l—)e‘/‘
n z
n 1 Zz z
<l ,E;'k— z—llnz—-l
n=1 1 ellz
Sk kZo & z-1
a\ k
39 (k)e‘"' (1 + °—)
n z
(n-1)
40 2 e“In =
n z ¢




152 Tabelle 3: Z-Transformation

Nr. Originalfunktion f, Bildfunktion F(z)
. (z2 — 1)zsinb
4Ly moimbe @ = Zcosh + 17
1 . nr T 1
42 < Sin—=- 5 + arctan -
43 2 sin bn b + arctan Lﬂb——
n z — cosh
cosb .
44 —):—'sin bn e © sin (2)
1 cos) )
45 ST C08 bn e © cos (ﬂ)

Legendresche Polynome ([12], S. 80)1)

L e '2"1_"!%(,2 - NE = +1

Laguerresche Polynome ([12), S.15)1)
i . R

Hermitesche Polynome ([12], S.17) ')

w |0 CHE e st
Tschebyscheffsche Polynome ([T 1], 19. Aufl.
S. 790, ab 21. Aufl. S. 752)?)

49 T,(t) = cos (narccost) %22;2_—1

50" Q,(t) = sin (narccos?) 22—_22—tz—+—l

1) Adrien-Marie Legendre (1752—1833), Edmond Laguerre (1834—1886), Charles Hermite
(1822—1901), franzosische Mathematiker.
2) Pafnuti Lwowitsch Tschebyscheff (1821 — 1894), russischer Mathematiker.



Tabelle 4: Ubersicht
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p komplex

Stieltjes-Transformation
p komplex, largp| < =

Hilbert-Transformation?)
y reell

. Fourier-Kosinus-Transf.
y > Oreell
Fourier-Sinus-Transf.

y > Oreell

©

_ [ f
S(p)—J T

0
wor= L [ 1O

Fe) = [ f(t) cos(yr) de
Y

Fs(y) = | f()sin () dt
0

Diskrete Transformationen

Diskrete Laplace-
Transformation
p komplex

Z-Transformation

Operatorenrechnung

Mikusinskische
Operatorenrechnung
Diskrete Operatoren-

rechnung

Name ' Definition l’Wichn‘ge Abbildung
Integraltransformationen Abbildung von f” (7)
Laplace-Transformation v
F(p) = [ ef(0)dr PF(p) ~ f(0)
p komplex 0
Fourier-Transformati S
ourier-Transformation FO) = j e-bif(e) de VFO)
. yreell —
Mellin-Transformation o
s M(p) = [ f()r>=* dt —(p - DMp—1)
0

W) -~
-5 - 1O

H'(y)
Abbildung von f”(t)

—¥y*Fe(y) — £1(0)

=2 Fs()+ ¥ (©0)

Abbildung von
Afo=fors = fa

€? — 1) F(p) — foe®

z =1 F(z) — foz

algebraisch,
p Differentiationsoperator

algebraisch,

q Differenzenoperator

1) David Hilbert (1862-1943), deutscher Mathematiker.

Abbildung von f(7)
f(0) = pf(t) — f(0)
Abbildung von A f,
Afa=la—- DU —fo)
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Laplace-Integrale, Klasse der absolut konver-
genten 17

Laplace-Transformation 13

-, Umkehrung der 30

-, verallgemeinerte 99

Laplace-transformierbar 14
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-, rationale 95

Operatorenkorper 92
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- Operatoren 95
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Residuum 36

Ring 88
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Sinus-Erregung 63
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System, entartetes 71, 75
—, normales 71, 72
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— — Laplace-Transformation 30
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— Losung 76, 77 -
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Verschiebungsoperator 96, 97
Verschiebungssatz 20, 107, 118
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Wirmeleitungsgleichung 80, 82, 110
Wellengleichung 80, 109

Zahlen, Bernoullische 42
Z-Transformation 115

-, Umkehrung 121
Z-transformierbar 115
z-Ubertragungsfaktor 125
zweiter Verschiebungssatz 20, 118



