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Vorwort

Im vorliegenden l0. Band der Lehrbuchreihe werden die Laplace-Transformation
und ihre Anwendung, die Mikusiriskische Operatorenrechnung‚ die Fourier- und
die Z-Transformation behandelt. Die verschiedenen Abschnitte dieses Bandes sind
trotz mannigfacher Zusammenhänge im wesentlichen unabhängig voneinander an-
gelegt, am ausführlichsten sind die Abschnitte 2. und 3. ausgeführt und deshalb wohl
am leichtesten durchzuarbeiten.

Erklärter Schwerpunkt dieses Bandes ist das Kennenlernen und Üben eines lei-
stungsstarken mathematischen Apparates zur Lösung von Funktionalgleichungen;
dies unterstreichen auch die l2O ausführlich durchgerechneten Beispiele und die
85 Aufgaben mit ihren Lösungen. Die Tabellen im Anhang ermöglichen ein selb-
ständiges Arbeiten mit diesem mathematischen Werkzeug.

Im Interesse einer knappen Darstellung müssen hier viele Beweise weggelassen
werden, die gegebenenfalls in der mathematischen Spezialliteratur nachzulesen sind
(genaue Literaturangaben erleichtern dies). Außer den angegebenen Anwendungs-
möglichkeiten finden sich viele weitere in der entsprechenden technischen Literatur.

Die hauptsächlichen mathematischen Grundlagen zum Verständnis dieses Bandes
betreffen die Diflerential- und Integralrechnung [B 2] und die analytischen Funk-
tionen [B 9] für die Abschnitte 2. und 5., diese Gebiete und die gewöhnlichen und
partiellen Differentialgleichungen [B 7/1], [B 8] für den Abschnitt 3. sowie die Po-
tenzreihen [B 3], [B 9] für den Abschnitt 6. Gelegentlich kommen auch spezielle
(höhere transzendente) Funktionen [B 12] vor. Einige Begrifle aus der Algebra für
den Abschnitt 4. werden dort bereitgestellt.

Die Bezeichnung „Operatorenrechnung“ für alle Abschnitte dieses Bandes ist
historisch üblich, im engeren Sinne wird der Begriff nur für den Mikusinski-Kalkül
gebraucht.

Für wertvolle Hinweise und Verbesserungen des Manuskriptes danke ich den
Herren Prof. Dr. L. Berg (Universität Rostock), Prof. Dr. O. Greuel (Ingenieur-
hochschule Mittweida), Prof. Dr. K. Göldner (Technische Hochschule Karl-Marx-
Stadt) sowie Frau D. Ziegler (Teubner Verlag).

Leipzig, Dezember 1974 F. Stopp

Vorwort zur 3. Auflage

Hinweise der Nutzer dieses Bandes betreffen insbesondere die Motivation und
weitere Anwendungen der behandelten Transformationen.

Deshalb werden in neu aufgenommenen Abschnitten die Definition der Laplace-
Transformation ausführlich physikalisch motiviert sowie die Parsevalsche Gleichung
und das Abtasttheorem als Ausgangspunkte neuer Anwendungen dargestellt. Die
Eigenschaften des Frequenzganges und die Tabellen zur Z-Transformation sind er-

gänzt und die Literaturhinweise auf den neuesten Stand gebracht worden.

Leipzig, Juni 1983 F. Stopp
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Übersicht: Spezielle Zeichen und Funktionen

Bezeichnung, Definition Name

N, G, P, R bzw. K

z=a+jb oder z=x+jy,j2= -1‘)

c‘ = e"(cos b + j sin b)

C z 0,57722

(n): M"- Dmmnvfi-1) ' n veNv v!

[1]=n für n§t<n+l; neN

O, zgo
“0=h,o<z
6(1), Abschnitte 3.1.2. und 4.3.3.

es

I‘(oc + 1) = _(e"‘x"dx; o¢eK,Reoc > -1
0

n! = l-2-3-"n=I'(n+ l)

D0 y l t 2}‘+Il

w’ “EH W712i?)
I

Ei(t)= färbt
-UO

3

erft = -4‘/e""dx; erfct=1—erft
~/7:

0

F(p) = L-(f(t)}, Abschnitt 2.1.1.

F(y) = F{f(1)}, Abschnitt 5.1.1.

F(z) = Z{12,}, Abschnitt 6.2.

Menge der natürlichen, ganzen, rationa-
len, reellen bzw. komplexen Zahlen

komplexe Zahl z

Eulersche Formel

Eulersche Konstante

Binomialkoeffizient

Größtes Ganzes von 1

Spezielle Sprungfunktion

Diracsche Delta-Funktion

Gamma-Funktion

n-Fakultät

Besselfunktion erster Art

Expunentialintegral

Fehlerintegral

Laplace-Transfo1'mation

Fourier-Transformation

Z-Transformation .

‘) Die imaginäre Einheit wird wie in der technischen Literatur mit j bezeichnet.



1. Einführung

1.1. Beispiel und historische Bemerkungen

Bei der von Heaviside‘) praktizierten Methode zur Lösung von Funktionalglei-

chungen wurde mit p = —(%wie mit einem Faktor gerechnet. So wurde z. B. die

Gleichung für den Strom i(t) in einem RLC-Stromkreis (Bild 1.1)

Bild 1.1. RLC-Stromkreis: R Widerstand, L Induktivität, C Kapazität, e(t) Erregung

im) + Rz‘(t) + % f i(r)dr = e(t)

mit-;— als Integrationsoperator in der Form

. . 1 1 . l .Lpt+R1+—C-‚—;z—-(Lp+R+E‚;)z—e

geschrieben und formal nach i aufgelöst mit

- P9 P P
z =e= y( _ — _ )e.

LP2 + RP + % I7 0‘ P l3

In der zweiten Darstellung ergeben sich die Konstanten 0c, ß, y durch Partialbruch-
Zerlegung (siehe 2.4.la). Die Brüche können durch Potenzreihen ([1"1], 19. Aufl.

S. 84, ab 21. Aufl. S. 32) in ä umgeformt werden:

i= y( E <x"p“" — E fl"p"'>e-
n=0 n=O

p"'e bedeutet das n-fache Integral Von e. Ist speziell e(t) E 0 für t ä 0 und e(t) E 1

für 0 < t (Einschaltvorgang), so gilt zusammen mit der Reihendarstellung der
Exponentialfunktion ([T 1], 19. Aufl. S. 85, ab 21. Aufl. S. 33)

i=y(n§ §fl— E =7(e“‘ —e"')-
=o H! n=0

‘) Oliver Heaviside (1850-1925), englischer Elektrotechniker.
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Durch Einsetzen von i = i(t) in die Gleichung (bei Beachtung der Bedeutung von
o: und ß) sieht man, daß es sich tatsächlich um eine Lösung mit dem Anfangswert
i(0) = 0 handelt.

Diese Lösungsmethode fand insbesondere in der Elektrotechnik große Verbreitung;
sie ergab richtige und falsche Resultate. Das fragwürdige Vorgehen läßt sich jedoch
mathematisch fundieren. Die ältere und analytische Begründung gab Doetsch‘)
mittels der Laplace-Transformation’), die neuere und algebraische Begründung gab
Mikusinski’). Bei diesen Untersuchungen wurden viele andere Eigenschaften der
Laplace—Transformation gefunden und die Anwendung über das obige Problem hin-
aus wesentlich erweitert; andere Transformationen wurden betrachtet. Drei dieser
Transformationen und die Mikusiriskische Operatorenrechnung werden in diesem
Band als mathematisches Rüstzeug zur Lösung von Aufgaben in Naturwissenschaft
und Technik behandelt.

1.2. Transformationen und Operatoren

Zum Zweck der Abbildung von komplizierten Rechenoperationen (insbesondere
der Differentiation) auf einfachere Rechenoperationen sind Integraltransformationen
definiert und untersucht worden. Diese Transformationen bilden Funktionen f(t)
eines Originalbereiches und Operationen mit diesen Funktionen auf andere Funk-
tionen und andere Operationen eines Bildbereiches ab und umgekehrt. Dieses Prinzip
und derselbe Zweck (Vereinfachung) wird auch bei der Abbildung der Multiplikation
auf die Addition durch die Logarithmusfunktion (Rechenschieber!) verwirklicht.
Umfangreiche zur Verfügung stehende Tabellen ([T 2], [T 3], [T 4]) zusammen-
gehöriger Ausdrücke des Original- und Bildbereiches erhöhen die Effektivität bei der
Verwendung solcher Transformationen beträchtlich.

Als wichtigste Integraltransformationen für die naturwissenschaftlichen und tech-
nischen Anwendungen haben sich bei stetigen Problemen die Laplace-Transformation
(Abschnitte 2. und 3.) und die Fourier-Transformation‘) (Abschnitt 5.) erwiesen.
Die Hauptanwendung besteht in der Lösung von Anfangs- und Randwertaufgaben
bei gewöhnlichen und partiellen Differentialgleichungen. Zur Verbreitung der La-
place-Transformation haben die Bücher [9] und [10] maßgeblich beigetragen.

Für Anfangswertaufgaben bei gewöhnlichen Differentialgleichungen ist das Lö-
sungsprinzip mit Hilfe der Laplace-Transformation in Bild 1.2 dargestellt.

Bei diskreten Problemen (im Originalbereich werden die Funktionen f(t) nur in den
Punkten t = nT betrachtet) haben sich die diskrete Laplace-Transformation [16]
und die Z-Transformation [14] zur Lösung von Dilferenzengleichungen durchgesetzt.
Diese zwei Transformationen (Abschnitt 6.) gehen durch eine einfache Substitution
ineinander über.

Eine andere Art der Vereinfachung der Differentiation ist die Einführung eines
Dilferentiationsoperators p, mit dem man wie mit einem algebraischen Symbol rech-

1) Gustav Doetsch‚ deutscher Mathematiker.
z) Pierre Simon Laplace (1749-1827), französischer Mathematiker und Astronom.
3) Jan Mikusinski, polnischer Mathematiker.
“) Jean-Baptiste Joseph Fourier (1768-1830), französischer Mathematiker.
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nen kann. Der entsprechend zu konstruierende Rechenbereich (Operatorenkörper),
seine Elemente (Operatoren) und die zugehörigen Rechenregeln wurden von Miku-
siriski [I3] gefunden und untersucht. Dabei gelang es zugleich, den Funktionsbegrifl"

gigma/bere/ig L/gfna/Z/e/irth:
6.,-Wu’/znlfc/75 //'/rem .7/'ff£ren7/17/57/2‘/'5/7M/lg 4.... [drang der A’/fl*':'r:=/7//'11/g/5/L‘/u.'7g7

mit /«mmmen Ky ..:'_‘:,,m mm‘: m/fdrnyegemen Anfanyswi/fen
P//7 Syxfem V0/7 ‘

1 lrp/üce - ‘ransfahwaf/"Jn Kütkfranr.’ormafiw7 T

i/lzflerei’ ' I/IWPIE/ch:

[W Hnz/ya alg.=m«'.-‘cf: Einübung man; de‚'a.’yebraxlr:‚äi‚v 5/e/hvung

Bild 1.2. Lösungsprinzip

sinnvoll zum Begriff der Distributionen zu erweitern. Dadurch ergibt sich eine ein-
fache Möglichkeit, die für die Anwendungen wichtige ö-Distribution und ihre Ab-
leitungen auf exakte Art einzuführen (Abschnitt 4.).

Die Tabelle 4 (Anhang) enthält die genannten und einige andere Transformationen
sowie die Abbildung der Ableitungf’(t) (oderf”(t)) bzw. der Differenz Af(t„ = Af„.
Zwischen diesen Transformationen bestehen vielfältige Zusammenhänge (siehe auch
5.1. und 6.9.).

1.3. Anwendungsmöglichkeiten

Viele naturwissenschaftliche und technische Probleme lassen sich durch spezielle
Funktionalgleichungen beschreiben und untersuchen. Als Beispiele seien aufgeführt
(siehe auch 3.4.3.):

Problem i Funktionalgleichung

Freie gedämpfte elektrische Schwingung Gewöhnliche Differentialgleichung

(B°i“"°13'4') Li”(t) + zum + %i(:) = o, i(O) = o, i’(0) = Lim,

Wärmeleitung in einem unendlich Partielle Differentialgleichung
langen linearen Leiter (Abschnitt 3.3.2.) y„(x, t) — y‚(x, t) = 0, y(x, 0) = 0, y(oo, t) = 0,

y(0, t) gegeben

Systemanalyse Integralgleichung -

f(Beispiel 3.29) f!“ _ i) KT) dr = gm

0

Relaisersatz Differenzengleichung
(Beispiel 6.22.) ‚v„„ = pay, + + p,,y,.-k, y,,-k = 0 für n < k

Gewöhnliche und partielle Differentialgleichungen kommen besonders häufig bei
der mathematischen Modellierung vor. Die Laplace— und Fourier-Transformation
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tragen insbesondere bei linearen physikalischen und technischen Systemen durch
wichtige Begrifie (Übertragungsfaktor, Frequenzgang, siehe 3.1.3.) zur Modell-
bildung bei.

Zu den Anwendungsgebieten gehören die Mechanik, theoretische Physik, Elektro-
technik, Regelungstechnik, Impulstechnik, Informations- und Nachrichtentechnik,
Systemtheorie und Statik. Weiter gibt es viele Anwendungsmöglichkeiten in anderen
mathematischen Disziplinen, z. B. bei der Untersuchung höherer transzendenter
Funktionen, in der Wahrscheinlichkeitsrechnung oder in der numerischen Mathe-
matik.

Auch die Anwendungsbeispiele in diesem Band geben einen Einblick in die um-
fangreichen Möglichkeiten. Die Vielfalt der Beispiele zur Anwendung der Laplace-
Transformation und ihre relativ ausführliche Darstellung im Abschnitt 3. kann aus
Platzgründen für die Fourier- und Z-Transformation nicht in gleicher Weise bei-
behalten werden.



2. Laplace-Transformation

Neben der Fourier—Transformation hat sich insbesondere die Laplace-Transfor-
mation zur mathematischen Darstellung und Lösung vieler Probleme naturwissen-
schaftlicher und technischer Disziplinen durchgesetzt. In der Elektro- und der Rege-
lungstechnik spielt die Laplace-Transformation, insbesondere bei nichtperiodischen
Vorgängen, eine große Rolle. Die mathematischen Teilgebiete Funktionentheorie und
Asymptotik tragen mit ihren Ergebnissen und Methoden wesentlich zur praktischen
Nutzung dieser Transformation bei.

Die Laplace-Transformation stellt eine Möglichkeit dar, die transzendente Ope-
ration des Differenzierens auf die viel einfachere Operation des Multiplizierens ab-
zubilden. Dabei bilden sich auch manche anderen Operationen (z.B. Integration,
Faltung, Differenzenbildung) und Funktionen (z.B. Funktionen mit Sprüngen,
Besselsche Funktionen) sehr einfach ab, deshalb bezieht sich die Anwendung der
Transformation nicht nur auf die Lösung von (gewöhnlichen und partiellen) Diffe-
rentialgleichungen. "

Die Abschnitte 2.2. und 2.4. sind für die praktische Handhabung der Transfor-
mation am wichtigsten, sie stellen Rechenregeln und Möglichkeiten der Rücktrans-
formation zusammen. Die Definition und wichtige Eigenschaften sind in den Ab-
schnitten 2.1., 2.3. und 2.5. zu finden. Insgesamt wird im Abschnitt 2. das Rüstzeug
zur Lösung der verschiedenen Typen von Funktionalgleichungen des Abschnitts 3.

bereitgestellt.

2.1. Definition der Laplace-Transformation

Neben der mit Beispielen illustrierten Definition werden zwei einfache Klassen von
transformierbaren Funktionen angegeben sowie die Frage der Eindeutigkeit der
Transformation und ihrer Umkehrung behandelt.

2.1.1. Definition und Beispiele

Die Laplace-Transformation wird als eine Integraltransformation von Funktionen
f(t) eingeführt, wobei in der Regel t g O die Zeit bedeutet. Der Zusammenhang mit
anderen Transformationen ist in Abschnitt 5.1. zu finden.

Definition 2.1: Der reellen (oder komplexwertigen) Funktion f(t), 0 g t < oo, wird D.2.1
das Integral

eo

F(p) = j e ”'f(t) dt (2.1)
Ü

zugeordnet, falls dieses Integralfür mindestens eine komplexe Zahl p existiert. Diese
Zuordnung heißt Laplace-Transformation und wird bezeichnet durch

F07) = L{f(t)}- (2-2)
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Eine Funktion f(t), für die das uneigentliche Parameterintegral (2.1) existiert, heißt
Laplace-transformierbar, f(t) heißt Originalfunktion, F(p) heißt die zugehörige Bild-
funktion. Der Parameter p = x + jy ist eine komplexe Veränderliche, und damit ist
F(p) eine komplexwertige Funktion. Das Integral (2.1) soll als Riemannsches Inte-
gral‘) aufgefaßt werden. Dabei ist zugelassen, daß f(t) an isolierten Stellen nicht
definiert ist.

Die Funktion f(t) kann für t < 0 beliebig sein, weil in (2.1) f(t) nur für t g 0 vor-
kommt. Es wird deshalb immer

f(t) E 0 für t < 0 (2.3)

gesetzt. Diese Ergänzung von f(t) für negative Argumente t wird meist in_ den Bei-
spielen nicht besonders angegeben, sie ist gegebenenfalls zu beachten.

Beispiel 2.1: Zur einfachen Funktion f(I) E 1 für t g O wird die Bildfuuktion F(p) bestimmt und die
Bedeutung des Integrals (2.1) ausführlich erläutert.

Zunächst ist mit A > 0

.4 A
—: .4 -4 1

J1-.”'f(t)dt=J‘e"'dt= [— e v] = — e’ +—;-
o o

P o P

Aus derDefinition eines uneigentlichen Integrales mit unendlichem Integrationsintervall ([B 2], 11.1.1.)
folgt eo .4

1 1

F(p) = fe"’f(t) dt = 1imfe"'f(t)dt = — — — lim e‘”".
,4» co p p

o
A—poo

O

Wegen [e‘”"| = |e”" e“”"| = e"‘ ist lim e""‘ = 0, falls Rep = x > O ist. Damit gilt für alle p
A ..oo

mit Re p > 0 (also in der rechten Halbebene der komplexen p-Ebene) die Beziehung

1

HP) = LU} = - ‘ (2.4)
P

Da f(t) _=. 0 für t < 0 vereinbart wurde, bedeutet das Ergebnis (2.4) genauer, daß für die spezielle
Sprungfunktion u(t) (siehe Übersicht S. 8; Einheitssprung bei l= 0, Bild 2.1a) die Gleichung

L{u(I)} = -117gilt.

rm f(t) V f!”
3

7 7 2

7

47 1 2 3 4 r 0 T t 0| 7 2 a 4 t
U) b) 5)

Bild 2.1a. f(t): u(t)= ‘ä’ Bild 2‚lb. m) = (lfgf :5 T

Bild 2.lc. f(t) = Ofürt < 0, f(t) = 71: für: > 0
I

‘) Bernhard Riemann (1826-1866), deutscher Mathematiker.
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Beispiel 2.2: Für f(t) = e", a e K, ist mit einer abkürzenden Schreibweise (gegenüber dem letzten
Beispiel) für Re p > Re a

eo

e—¢(p—l) co l
F(p) = L{e“} = fe'”e‘"dt = [ J = . (2.5)

‘P ‘l’ a 0 P — a
o

Für a = 0 ergibt sich aus (2.5) wieder die Formel (2.4).

Beispiel 2.3: Für die bei I = T unstetige Funktion (Bild 2.1 b)

1, 0 g t g T,
f =

f( ) {0,T < t

ergibt sieh die Laplace-Transformierte

T e-nt T 1

F01) = fe‘”’dt = [—— ————] = —(l — f”). (2.6)
l7 0 P

D

1

Beispiel 2.4:f(t) = T-für t > 0 (Bild 2.1 c). Ist zunächst p reell und p > 0, so gilt mit der Sub-

co ~ no eo

— 2
stitution Jpt = u e‘ i: = ~—_.- J‘ e“: du. Wegen]. e": du = l flgilt deshalb

x/t «/11 2
o

1 .L= l/i . (2.7)
x/t «/5

Man kann zeigen, daß das Ergebnis (2.7) sogar für Re p > 0 richtig ist (siehe Satz 2.4).

Beispiel 2.5: Die Funktion f(t) = e" ist nicht Laplace-transformierbar, denn für reelle p ist der Inte-

grand e"”" positiv und hat sein Minimum bei l = Es gilt deshalb für jedes feste reelle p > 0
und A g 0:

.4

f6“ e" dt g A e"2/‘.
o . ,

Aus dieser Ungleichung folgt für A —> 0o, daß das Integral (2.1) für kein reelles p existiert. Zusammen
mit Satz 2.4 folgt sogar, daß (2.1) für kein komplexes p existiert.

Einige weitere Laplace-Transformierte werden in 2.2. berechnet; eine umfangreiche
Zusammenstellung von Origina1funktionenf(t) und ihren zugehörigen Bildfunktionen
F(p) findet man in Tabelle 1 (Anhang).

2.1.2. Motivation der Definition

In diesem Abschnitt wird die Definition (2.1) der Laplace-Transformation physika-
lisch motiviert und gedeutet.

Wie bekannt ([B 3], Kap. 5.), läßt sich jede reelle Funktion f(t) der Periode 27: in
eine (hier in der komplexen Form geschriebene) Fourier-Reihe entwickeln:

f(t)f=iwc„e""'‚ c..=§1; ff(t)e“’”‘dt-
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Die Funktionen e’"' lassen sich als komplexe Schwingungen der Frequenz n deu-
ten, die Konstanten e„ als ihr zugehöriges Spektrum. Wegen der möglichen Reihen-
darstellung ist der durch f(t) beschriebene physikalische Sachverhalt vollständig
durch das Spektrum bestimmt.

In Analogie zu obiger Überlegung gilt bei nicht periodischer Funktion f(t) unter
geeigneten Annahmen der Zusammenhang ([B 3], Kap. 6.):

m- f F(y)e"”dy, F(y>=2‘—T f/(r)e-War.

Wie in der Physik allgemein üblich, wird beim Übergang vom diskreten zum konti-
nuierlichen Fall eine Dichtefunktion eingeführt. Es lassen sich somit F(y) als Spektral-
dichte bei der Frequenz y undf(t) als Spektraldarstellung deuten.

Beachtet man die Festlegung (2.3) und ersetzt außerdem die Funktion f(t) zur

Verbesserung des Konvergenzverhaltens der Integrale durch die Funktion 27: e“"’f(t),
so ergibt sich aus dem zweiten Integral

F(x + jy) = f?" e””f(t) dt
o

oder mitp = x + jy die Formel (2.1).
Folglich kann F(p) = F(x + jy) beifestem x als Spektraldichte der’ Funktion e“'f(t)

bei der Frequenz y aufgefaßt werden. Nach ähnlicher Umrechnung läßt sich das erste
Integral als Spektraldarstellung der Funktion 27-: e""‘f(t) unter Beachtung von (2.3)
deuten.

2.1.3. Zwei Klassen von Originalfunktionen f(t)
Die Funktionen der Beispiele 2.1 bis 2.4 haben sehr unterschiedliche Eigenschaften.

So ist z. B. f(t) aus Beispiel 2.3 unstetig und beschränkt, währendf(t) = e“ mit reellem
a > 0 zwar stetig, aber stark wachsend für t —> oo ist. Andererseits zeigt Beispiel 2.5,
daß es auch nicht transformierbare Funktionen gibt. Es sind viele Klassen Laplace-
transformierbarer Funktionen bekannt, einfache notwendige und hinreichende Be-
dingungen für die Transformierbarkeit von f(t) gibt es jedoch nicht.

Die Origina1funktionenf(t) erfüllen bei den beabsichtigten Anwendungen in der
Regel folgende Voraussetzungen:

1. If(t)| ist integrierbar in jedem Intervall 0 g t g A,
(X)

2a. f [e“"f(t)| dt existiert für mindestens eine komplexe Zahl po.
o

Satz 2.1: Jede Funktion f(t) mit den Voraussetzungen 1 und 2a ist Laplace-transfor-
mierbar. Ihre Bildfunktion F(p) existiert mindestens in der Halbebene Rep g Re po
(Bild 2.2; siehe auch Satz 2.4).

A

Beweis: Aus der ersten Voraussetzung folgt, daß außer dem Integral f !f(t)[ dtauch
A a.

das Integral |e"‘f(t)| dt für jedes feste A > 0 existiert. Es ist |e""| = e‘““”. Die
D
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Bild 2.2. Konvergenzhalbebene einer Laplace-Transformierten

Bildfunktion F(p) existiert für Re p g Repo wegen der Abschätzung

lF(P)l é f |<=“”f(!)| d! ä ‘l °"°’°‘If(t)I d! = f le"’°'f(t)l d!
O O 0

und weil das rechts stehende Integral nach der zweiten Voraussetzung existiert.
Die Originalfunktionen f(t)‚ die den Voraussetzungen 1 und 2a genügen, be-

stimmen die Klasse der absolut konvergenten Laplace-Integrale.
Die Voraussetzung 2a kann ersetzt werden durch die einfachere (aber einschrän-

kendere) Voraussetztmg

2b. f(t) ist durch eine Exponentialfunktion beschränkt, d. h., es gibt ein reelles a und ein
M > 0 mit

lf(t)[ < Me” für t g 0. l (2.8)

Aus der Voraussetzung 2b folgt wegen der für x = Rep > a gültigen Beziehung
(ähnlich wie im Beispiel 2.2)

=i (2.9)
v_Me—t(x—a) cc M

o x — [l
f |e""f(t)] dt < Mf e""““’dt = [ x _ a

O 0

die Voraussetzung 2a. Als po kann jede Zahl mit Re Po > a gewählt’ werden.
Die Originalfunktionenf(t), die den Voraussetzungen l und 2b genügen, bilden die

Klasse der durch Exponentialfunktionen beschränkten Funktionen; diese Klasse ist in
der oben eingeführten Klasse enthalten.

2.1.4. Eindeutigkeit der Laplace-Transformation

Jeder Originalfunktion f(t) wird durch (2.1) eine Bildfunktion F(p) zugeordnet.
Verschiedene Originalfunktionen (die sich aber nicht wesentlich unterscheiden, siehe
z. B. die drei Funktionen des Beispieles 2.12), können die gleiche Bildfunktion haben.

Die Funktionen n(t) mit der Eigenschaft

t

n(r) dr E 0 für beliebige t g 0,
0

2 Stopp, Opexamrenrechnnng
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heißen Nullfunktionen. Beispiel: n(t) = l für t = 0, 1,

Satz 2.2: Aus f(t) = n(t) folgt F(p) E 0 und umgekehrt.

Beweis: Durch partielle Integration folgt sofort

und n(t) = 0 sonst.

co oo I

F(p) = L{n(t)} = fe"”n(t) dt = e""_fn(r) d’: + pfr" frz('r) d-t dt s 0.

Die Umkehrung des Satzes, d.h. zu F(p) E 0 ist jede zugehörige Originalfunktion
eine Nullfunktion n(t), ist schwieriger zu beweisen ([9], §5).

Satz 2.2 kann offenbar auch so beschrieben werden: Zu einer Bildfunktion F(p) ge-
hört eine Menge von Originalfunktionen; zwei Originalfunktionen f‚(t) und f„(t)
dieser Menge unterscheiden sich aber nur durch eine Nullfunktion. Dies folgt un-
mittelbar aus der Beziehung L{f‚(t)} — L{f,,(t)} = F(p) — F(p) = 0.

Ist bekannt, daß die zu einer Bildfunktion gehörigen Originalfunktionen stetig
sind (weil sie z.B. Lösungen einer Differentialgleichung sind und damit sogar diffe-
renzierbar sein müssen), so gilt der

Satz 2.3: Zu einer Bildfunktion F(p) gehört höchstens eine für t > 0 stetige Original-
funktion f(t).

Der Satz besagt, daß es zu einer Bildfunktion a) überhaupt keine stetige Original-
funktion (wie in Beispiel 2.3) oder b) eine einzige stetige Originalfunktion gibt. Denn
gäbe es zwei stetige Originalfunktionen f‚(t) und f„(t)‚ so gilt nach Satz 2.2: n(t)
= f‚(t) —— j"„(t). Diese Nullfunktion ist als Difierenz stetiger Funktionen selbst stetig,

I

deshalb folgt aus f n(t) d1 E 0 durch die jetzt mögliche Differentiation nach t:
n(t) E 0. 0

2.1.5. Aufgaben: Bestimmung von Bildfuuktionen

Aufgabe 2.1: Mit der Definition (2.1) bestimme man L{f(t)} für f(t) = 1 im Intervall a g t g b,
f(t) s 0 sonst, a > 0.

Aufgabe 2.2: Man bestimme L{sinh r}.
Aufgabe 2.3: Unter Verwendung der Definition der Gamma-Funktion (siehe S. 8) bestimme man

L{t°‘} tTir o; > —1.
Aufgabe 2,4: Haben die folgenden Funktionen f(t) eine Bildfunktion? a) f(t) = e3"“",
b) f(t) = 1/(1 — t)“.
Aufgabe 2.5: Warum haben die Funktionen f‚(t) und f„(t) dieselbe Bildfunktion?

l‚4n < t < 2(2n+ 1)

1/2, r = 4n

0, sonst.

1,4n§t<2(2n+ 1)

0, sonst, m“) =
f1(1)={

2.2. Rechenregeln der Laplace-Transformation

Um die Laplace-Transformation zur Lösung von Funktionalgleichungen (z.B.
Difi'erentiaI-, Integral- oder Ditferenzengleichungen) anwenden zu können, werden
Rechenregeln benötigt. Die Bezeichnung dieser Regeln richtet sich nach der Ope-
ration, die mit der Origina1funktionf(t) durchgeführt wird.



2.2. Rechenregeln l9

Einige wenige Regeln werden bewiesen, alle Regeln werden an Beispielen illustriert.
In den folgenden Regeln sind f(t) und g(t) transformierbar, d.h., es existieren die
Bildfunktionen

F(p) = L{f(t)} für Rep > x1; G(p) = L{g(t)} für Rep > x2.

Diese Voraussetzung wird in den Regeln nicht gesondert aufgeführt. Die Formeln
(2.10) bis (2.28) gelten jeweils in einer rechten Halbebene Re p > c, der genaue Gül-
tigkeitsbereich ist stets angegeben. Seine Kenntnis und Beachtung ist bei den meisten
Anwendungen nicht erforderlich.

2.2.1. Additionssatz

Aus der Definition der Laplace-Transformation folgt unmittelbar der

Additionssatz: Ist a, ß e K, so gilt mindestens für Rep > max (x1, x2)

L{°¢f(t) + /3g(t)} = XFQ7) + /3G(P)- (2-10)
Diese Regel läßt sich natürlich auf eine Linearkombination von endlich vielen

Funktionen ausdehnen.

Beispiel 2.6.‘ Es soll L{sin t} berechnet werden. Es ist

_ 1 _‚ _„ 1 1 1 1

L{51n‘}=L’7(3’—e')=—. j." .)’-‘ 2
2J 2J p-J P+J p +1

für Rep > 0. Dabei wurde (2.5) benutzt.

2.2.2. Lineare Substitutiouen der Veränderlichen

In der Origina1funktionf(t) kann die reelle Veränderliche t ersetzt werden durch
ar — b bzw. at + b mit festen a > 0, b g 0. Dadurch erhält man die neuen Funk-
tionen b

‘O, . t < —

f1(t)=f(at— b) = und fz(t) = f(at + b).

if(t1t - 10.1;

a

b

a

Dabei wurde wegen (2.3) beachtet, daß Originalfunktionen mit negativem Argument
identisch Null sind. f(t), f1(t) und f2(t) sind für a = 1 in Bild 2.3 dargestellt; f,(t)
bedeutet eine Verschiebung von f(t) nach rechts, f2(t) eine solche nach links.

H?) GU) f; (f)

/\ /”—\'\_/
,,_L.; LL „

17l i‘ 0 f b‘ f

Bild 2.3. f(t) und die Verschiebungen von f(t) nach rechts (f‚(t)) und nach links (f2(I))

Folgende Regeln gelten bei a > 0, b _2_ O zur Bestimmung der Laplace-Transfor-
n:
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mierten von f1(t) bzw.f2(I) für Rep > axl:

L{f1(t)} = L{f(at — b)} = %e'%”F<%), (2.11)

b .

L{5(1)} = L{f(at + 12)} = $5” (pg) — f e“5“‘f(:) m). (2.12)

Der Beweis von (2.11) und (2.12) folgt mit der Substitution at + B = r aus der
Umformung 0a . „o

B
L{f(at + 3)} = j e”"‘f(at + B) dt = äe?’ f e‘5’f(z) d1

O max(0.H)
l B max(0.H) p r

= 71-e7P<F<%) — I e‘? f(r)d-1').
O

Für B = —b (d.h. B g 0) folgt wegen max (O, B) = 0 Formel (2.11), für B = b
(d.h. B g 0) folgt wegen max (0, B) = b Formel (2.12).

Es ist üblich, Spczialfälle von (2.11) und (2.12) gesondert aufzuführen und mit
Namen zu belegen. Für b = 0 erhält man aus beiden Formeln für Rep > ax, den

Ähnlichkeitssatz:

L{f(at)} = a > o. (2.13)

Für a = 1 ergeben sich für Re p > xi zwei Formeln; sie heißen auch wegen der
geometrischen Deutung der Funktionen f(t — b) und f(t + b) (Bild 2.3)
erster und zweiter Verschiebungssatz:

L{f(t — b)} = e‘°"F(p)‚ 1:; 0; (2-14)

L{f(t + b)} = e" (F(p) — f e"‘f(t)dt), b g o. (2.15)

Beivpiel 2.7: Benutzt man das Ergebnis aus Beispiel 2.6, so folgt für a > 0 und Rep > 0 aus (2.13)

L{ ‘n 1} 1 l “s1 a = ——e =

a (p/:1)’ + 1 p’ + u’
°‚ ä b.

Beispiel 2.8: Aus (2.4) folgt zusammen mit (2.14) für die Sprungfunktion u(t —- b) = l :> b
für Rep > 0

e
L{u(t - 17)} =

-5,

In der Bildfunktion F(p) kann die komplexe Veränderliche p ersetzt werden durch
cp + d mit reellen c > 0 und d e K. Das ergibt mit der Substitution ct = ‘E wegen

an an d

F(cp + d) = f e“°”*‘”f(t) dt = ä fe-We-Trf d1:

O 0

fiirRep > %(x‚ — Red) die
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Rechenregel:
d

L{%e_ 77H} = F(cp + d), c > o. (2.16)

Ist in (2.16) speziell c = l und d reell‚ so erhält man für Rep > xi — d den

Dämpfungssatz:

L{e""f(t)} = F(p + d), d reell. (2.17)

Der Name des Satzes ist verständlich, weil die Funktionswerte f(t) durch Multi-
plikation mit e“" mit wachsendem t verkleinert („gedämpft“) werden, falls noch
zusätzlich d > 0 vorausgesetzt wird (Bild 2.4).

fm-I ,,-e

7/2- ’”:_-_ __

- a I

: : 
m47 7/2 7 Z 3 1' Ü 7/3 7 7 3 Y

’ rm-smt e“"»*inf
7 7

. y . J .

ü if 2r art 0 1 2J: i1 r

—1 —7

Ü}

Bild 2.4 a. f(t) = t und die gedämpfte Funktion t e"
Bild 2.4 b. U: ‘” “u; ühwingung/(l) = sin t und gedämpfte Schwingung e“' sin t,
d > 0

2.2.3. Faltungssatz

Eine wichtige Operation zweier Funktionen f(t) und g(t) ist die Faltung‘) (gelesen
„f gefaltet mit g“)

f(t) =~g(r> =/»«g = f/(r — r>g(r)dr, z; o. (2.18) '

Diese Rechenoperation hat, wie auch die Schreibweise mit dem Stern v ausdrücken
soll, ähnliche Eigenschaften wie die gewöhnliche Multiplikation der zwei Funktionen
f(z) und g(t). Es läßt sich beweisen, daß die Faltung kommutativ, assoziativ und
distributiv ist:

f*g =g*f‚ (f*g)*h =f*(g*h)‚ f*(g + h) =f*g +f*h-
Ist speziell g(t) E l für t g 0, so erhält man bei Beachtung der Kommutativität

1) Falte! man die graphischen Darstellungen von f(1) und g(I) im Intervall 0 __<_ 1: g r beiL‚ so

liegen gerade die Funktionswerte f(r) und g(t —- 1:) übereinander. 2
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die Beziehung ‚

1 *f= im) d1. (2.19)
O

Die Faltung wird bei der Anwendung der Laplace-Transformation zur Lösung von
Differentialgleichungen und Integralgleichungen sowie in der Mikusinskischen Ope-
ratorenrechnung (Abschnitt 4.) eine große Rolle spielen.

Beispiel 2.9: Zur Erläuterung von (2.18) wird fürf(r) = e’ und g(t) = I2 die Fahungf: g berechnet.
Zunächst ist: ‚ ‚

fxg = _[e“'r’dt = e‘ [e"z2 dr.
0 d

Durch zweimalige partielle Integration erhält man

ftg=e'tt2 =2e‘—1—(t+l)2.
Für die Existenz der Faltung (2.18) gibt es viele verschiedene hinreichende Bedin-

gungen, u.a. existiert f av g, falls f(t) und g(t) zur in 2.1.2. eingeführten Klasse der
durch Exponentialfunktionen beschränkten Funktionen gehören.

Für die Transformation der Faltung f a: g gilt unter verschiedenen Voraussetzungen
an die Funktionen f(t) und g(t) ([6], S. 121) mindestens in Rep > max (x1, x2) der
Faltungssatz:

L{f* g} = Fa») Gm. (2.20)
(2.20) gilt z.B. für die Klasse der durch Exponentialfunktionen beschränkten Funk-
tionen f(t) und g(t) (siehe 2.1.2.).

Beispiel 2.10: Die Faltung von f(t) = e‘ und g(t) = I‘ wird transformiert. Es ist nach (2.5) und Bei-
spiel 2.1l 1

L {€'} = F01) = ——

p — l
Mit dem Faltungssatz (2.20) ergibt sich für Rep > 1

2

p(p - 1) '

Dasselbe Ergebnis, aber umständlieher, erhält man natürlich durch Transformation von 2e‘ — 1

— (t + 1)’ aus Beispiel 2.9.

Es ist üblich, den Faltungssatz (2.20) für den Spezialfall g(t) E 1 besonders zu no-

tieren. Unter Beachtung von (2.19) gilt für Rep > max (0, xi) der
Integrationssatz :

t

. L{z=}=c<p>=-}.

L{f*g}=L{=‘*t’}=

L{ (m) d1} = äm). (2.21)

Beispiel 2.11: Formel (2.21) läßt sich benutzen, um L(t"}, n e N, zu berechnen. Dazu ist f(t) = 1"",
n = l, 2, ...‚ in (2.21) einzusetzen, das ergibt die Beziehung

L{fr"“ dr} =L = LL{I"“}.
ö ” 1’

Durch wiederholte Anwendung dieser Rekursionsformel folgt für Re p > 0

n(n — 1) n!
P2 pm-1 '

L{t"} = %L{t"‘1}= L{t"'2} = = gar} =
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2.2.4. Differentiationssatz

Zur Formulierung des Differentiationssatzes ist folgende Vorbetrachtung nötig:
l

Ist die Funktion f(t) für t > 0 differenzierbar und existiert f’(-r) dr, dann gilt
t I °

l‘f’(r) dr = lim f f’(r) dr = f(t) — lim f(s). (2.22)
5 5-» +0 ‚ e-a +0

Folglich muß der Grenzwert lim f(t) = fa (rechtsseitiger Grenzwert in 0) existieren,
t-w + O

er kann aber verschieden sein vom Funktionswert f(0). Istf(t) sogar für t g 0 diffe-
renzierbar, dann ist natürlich f(0) = f0.

Beispiel 2.12: Die Funktionen

0,z<o‚ 0,150, 0‚t<0,
f1(t)—{1,t;0, f’(')"{1,:>o, 1,:>o,

sind für t > Odifferenzierbar, sie haben alle nach (2.4) dieselbe Bildfunktion —1- , und es gilt lim f‚(r)
P r-v + o

fsO) = {

= l = fo für i = l, 2, 3. Dagegen istf1(0) = 1, f‚(0) = 0 und f;(0) gar nicht definiert,d.h., nur für
1'=1istf(0)=fo.

Ersetzt man nun in (2.21) die Funktion f(t) durch f’(t), so erhält man unter Be-
achtung von (2.22), (2.10) und (2.4): '

L{ f’(r)dr} =L{f(t)} — Lm} = L{f(t)} — = §L{f'<r>}.

Multipliziert man diese Gleichung mit p, so ergibt sich der für Re p > max (0, x1)
gültige

Difierenfiafionssatz:

L{f’(t)} = 17F(P) - fa, (2-23)

falls f’(t) transformierbar ist; f0 = 1imf(t).
I-o +0

Beispiel 2.13: L{sin t} ist aus Beispiel 2.6 bekannt. Wegen f’(t) = cos t und f(0) = f.) = 0 ist

L{cos t} = pL{sin z} =
P

p’ +1 '

Beispiel 2.14: Man löse das Anfangswertproblem

)"(F) = 10X0), .V(0) = 5~

Mit m») = L{‚v(t)}, yo = y(0) = 5 folgt aus (2.23)

PY(P) - 5 =10Y(P), YO?) =j -

p — 10

Zu dieser Bildfunktion Y(p) gehört die einzige Originalfunktion y(t) = 5 e‘°‘ (dabei wird Satz 2.3
benutzt), die tatsächlich die Lösung der obigen Anfangswertaufgabe ist. Die in diesem Beispiel an-

gedeutete Lösung von gewöhnlichen Differentialgleichungen wird in Abschnitt 3.1. ausführlich be-
trachtet.
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Die mit der Formel (2.22) verbundene Überlegung kann verallgemeinert werden:

Ist die Funktion f(t) für t > 0 n-mal differenzierbar und existiert lf""(1:) dr, dann
existieren die rechtsseitigen Grenzwerte 6

um m) =/o‚ um f’(r) =/.9, 1imf""“(t) =fé"“’.
I-9+0 l—9+0 x-o+0

Diese Grenzwerte können von den Funktionswerten

f(0). /'<o>,..., /<"-“<o)

verschieden sein, falls diese überhaupt definiert sind. Ist f(t) sogar für t g 0 n-mal
differenzierbar, dann ist natürlich

f(0) =/0, f’(0) =f.‚'‚ f"""(0) =10“-1’.
Durch wiederholte Anwendung von (2.23) erhält man für n e N, Rep > x, den

verallgemeinerte: Dilferenflafionssatz:

L{f""(t)} = p"F(p) —fop"" —fap"'2 — —;::"-*2 (2.24)

falls f""(t) transformierbar ist.
Dieser Satz gestattet also die Abbildung der n-ten Ableitung der Originalfunktion

f(t): Im Bildbereich wird L{f(t)} = F(p) mit p" multipliziert und um ein Polynom
ergänzt. (2.24) ist bei der Lösung von Difierentialgleichungen sehr nützlich!

Beispiel 2.15: Man löse das Anfangswertproblem y”(t) + ‚v(t) = sinr; y(0) = 0, y’(0) = l. Formel
(2.24) mit n = 2, yo = y(0), ‚v; = y’(0)‚ Y(p) = L{y(t)} und L{sin t} aus Beispiel 2.6 ergeben im Bild-
bereich '

1 1 1

‘Y -1 Y =———‚ Y =————1 --——.p (p) + (p) P2“ (F) p‚+1(+p‚+l)
Wird wieder Satz 2.3 benutzt, so erhält man mit Beispiel 2.6 und dem Faltungssatz (2.20) als einzige
zu Y(p) gehörige Originalfunktion

I

y(t)= sint+ sinttsint =sinl + lsinü- 1)sintd1
o

r
l 3 1

= sint+ 7 f(cos(t— 21:) -—cost)d1 = -é—sint— itcost,
0

die tatsächlich die Lösung der Anfaugswenaufgabe darstellt. An diesem Beispiel erkennt man be-
reits die Vorteile (siehe auch Bild 1.2) der Laplace-Transformation gegenüber herkömmlichen Me-
thoden bei der Lösung von Anfangswertproblemen.

2.2.5. Weitere Rechem-egeln

Einfache Regeln sind noch für die Transformation von t7(t), n e N, und %f(t) als

Multiplikations- und Divisionssatz bekannt. Weitere hier nicht mehr aufgeführte Re-
geln betreffen z.B. die Multiplikation von Originalfunktionen und die Differenzen-
bildung.
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Benutzt man bereits die Tatsache, daß L{f(t)} = F(p) in einer Halbebene Re p > x 1

eine analytische Funktion ist (Satz 2.6), so kann man also dort beliebige Ableitungen
von F(p) nach p bilden. Es läßt sich zeigen, daß diese Differentiationen unter dem
Integral (2.1) durchgeführt werden können. Das ergibt den für Re p > x1 gültigen

Multiplikationssatz :

L{"Y(?)} = (-1)" F"”(.v)- (2-25)

Beispiel 2.16: Mit f(t) = e" erhält man nach (2.5) für ne N und Rep > Re a die Beziehung

W (— l)'n! n!L{t"e"}=(—1)"(p_a) =(*l)" = .
Ist é f(t) transformierbar, so läßt sich auf L f(t)} = G(p) die Regel (2.25) mit

n = 1 anwenden und ergibt für Re p > x,
Po

F(p) = L{f(f)} = —G'(P) Oder C(17) - G(.vo) = J F(q)dq-
p

Benutzt man bereits die in Satz 2.7 gezeigte Tatsache, dal3 jede Laplace-Transformierte
für Re p —> 0o gegen null strebt, so folgt der für Re p > x1 gültige

Divisionssatz:
1 Q

L {T/<0} = f F(q) dq, (2.26)
l D

falls Tf(t) transformierbar ist.

Der Integrationsweg kann parallel zur reellen Achse liegen.

. . . . . 1
Beispiel 2.17: Es soll die Laplace-Transformlerte der Funktionf(t) = T (w _ e") bei-ahne; we;-den_

Der Additionssatz (2.10) ist nicht brauchbar, weil die Transformierten der Summanden nicht existie-
ren. Nach (2.26) und (2.5) ist

(Ü

L{i<e"—e")}=f(—1——L)dq=i1n(q—a>—1n(q—b>i:°
t q--a q-—b

F

q-b ‚ p-b'
Dabei wurde beachtet, daßf(i) wegen der Stetigkeit bei t = 0 nach Satz 2.1 transformierbar ist. Das
Ergebnis ist für beliebige a, b e K und für Re p > max (Re a, Re b) richtig.

. . 1 _, _ . . „ . . „

Existiert L {—t—f(t)} fur p = 0, so laßt sich die Gultigkeit von (2.26) auch fur p = O

nachweisen. Das ergibt die nützliche Formel2.
O W

1-%f(t) dt = fF(q)dq. (2.27)
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2.2.6. Transformation periodischer Funktionen

I-Iatf(t) die Periode T, d.h., istf(t) =f(t + T), so gilt

L{f(t)} = i, mime-wf(r)dr = i e-m Ire-I"/<2) d1,

dabei wurde in den Integralen die Substitution t = nT + 1 durchgeführt. Benutzt
man noch die Reihensumme der geometrischen Reihe ([T 1], l9. Aufl. S. 84, ab
21. Aufl. S. 32), so ergibt sich für Rep > O die

Transformationsfonnel :
T

I-{f(t)} = f e-W/(r) dr, (2.28)

falls f(t + T) = f(t) undf(t) integrierbar ist.

Beispiel 2.18: Die periodische Funktion (Bild in Tab. I, Nr. 91, dort T durch T/2 ersetzen)

1, 0 < t < T/2‚
f(t)— {Q m < t < T, f(t+ D -f(t),

hat die einfache Laplace-Transformierte

m T /2

l 1 l — e‘ ’ l l

“’"”= ° "“’= 7 = 7
0

Beispiel 2.19: Die Sägezahnfunktion des Bildes 2.5

2t/T, 0 g t g T/2‚
f(!)={ f(t+ T)=f(t).2(1—t/77, T/2 g t g T,

soll transformiert werden. Wegen

r m 1 .

- I 2 — I — I t 2 - T/2 Ze’f(t)dt=7 e "tdt+2 e P h? d!=?(1—e P)
0 0 TIZ

ergibt sich nach (2.28) für Re p > 0 die Transformierte

2 1 — e-vm 2 „T
L = —— -j——— = — h —- .

{K0} T112 1 + e"’7’2 Tpz m“ 4

T/2 7'

Bild 2.5. Eine Sägezahnfunktion
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2.2. Rechenregeln

Übersicht über die Rechenregeln
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In der folgenden Tabelle werden die wichtigsten Regeln nochmals zusammengestellt
und durch einige neue Regeln ergänzt, die ohne weitere Erläuterungen verständlich
sind,

2.2.8.

Aufgabe 2.6: Man transformiere mit geeigneten Regeln

Originalbereich Bildbereich

MU) + 53(1) <xF(p) + 50(9)

K0,: < b/a 1 b / \

/(at — b), z z b/a —e'7” pg)
l1 ll

a > o, b g 0

f(ut), a > o iF(/E)
a ll

I0, t < b evbpflp)

lf(z—b>,:;b;0

/(r+b).b:o
d

ieV7'f(L), c > 0
‘CL‘

e“‘f(r)
f(t) * m)

1 am) = m) av
O

WU)

f(“(1)

I"/(1)

t"‘f""(t), m g n

(I"‘f(l))‘"’‚ m ä n

1

7K?)

fled,
1

/<2) = fa + T)

f([f])

e"”(F(17) — e""f(r) m)
Ü\

I-"(cp + d)

F(p + (I)

F0’) GU?)

firm
PH?) ‘ fa

mp) —/op"-* — —/;;"~*

<—1>"F<~><p)

<—1>~<p"F(p>><~)

<— mp"F<~>(p>

5 F<q> dq

I P

— [Fan dq
P

0
T

f e“"f(t) d!

0

Efm) e"”’
n=0

l
l — e-VT

l-e"

Aufgaben: Anwendung der Rechenregeln
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b) e"sin t; c) [t].

Aufgabe 2.7: Man bestimme L{e”‘sinh at}, a, b reell.

Aufgabe 2.8: Man bestimme L -1t—sin t .

.2__Lr_;a)sm t 2

Aufgabe 2.9: a) Man beweise (n = 1,2, ...; nFaktoren 1)1 n 1 a o1 =

b) (2.21) ist damit zu verallgemeinern. '

Aufgabe 2.10: Man bestimme L(t sin t} und L(t’ sin t}.
Aufgabe 2.11: Man löse y”(t) -— y(t) = l, y(0) = y’(O) = O.

u:

Aufgabe 2.12: Man berechne -it-(e" — e"‘) dt.
0

Aufgabe 2.13: Man bestimme L{f(l)} für die periodische Funktion
0, t < a (a > 0),

= T = .m) {L „S; T, f(t+ > f(t)

Aufgabe 2.14: Man transformiere e‘ n sin t.
Aufgabe 2.15: Man bestimme L{lsint|}.

2.3. Eigenschaften einer Laplace-Transfonnierten

Für die Bildfunktion F(p) werden einige Eigenschaften angegeben, insbesondere
wird im Satz 2.6 der Zusammenhang zwischen F(p) und den analytischen Funktionen
([B 9], Abschnitt 3.) hergestellt.

2.3.1.

Der Satz 2.1, der für die Klasse der absolut konvergenten Laplace-Integrale gilt,
läßt sich verallgemeinern ([9], S. 25) zum

Sätze für Laplace-Transformierte F(p)

Satz 2.4: Konvergierz (2.1)für p = pg, so existiert die Bildfunktian F(p) mindestens in
der Halbebene Re p > Re po (Konvergenzhalbebene).

Beispiel 2.20: Fürf(t) = e“, a e K, ist nach der Rechnung im Beispiel 2.2 jedes po mit Re po > Re a

möglich. Daraus folgt noch, daß Re p > Rea die größte Halbebene ist, in der (2.1) existiert.

Satz 2.5: Es gilt: F(p) ——> Ofür x = Rep —> oo.

Ein Beweis dieses Satzes für absolut konvergente Laplace-Integrale ist in [4], S. 15,
zu finden. Der Satz gilt sogar für beliebige Bildfunktionen F(p) ([6], S. 136).

Beispiel 2.2I:e ‘F’ ist keine Bildfunktion, weil z.B. für x = y = Rep —> no im Gegensatz zu Satz 2.5
|e"” =e“‘°"’ = e"" —> no gilt.
Beispiel 2.22: Jede in p rationale Funktion mit einem Zähler-polynom, dessen Grad größer oder gleich
dem Grad des Nennerpolynoms ist, ist keine Laplace-Transformierte. Dies folgt sofort aus Satz 2.5;
denn gilt F(p) —> 0 für x = Re p —> o0, so muß der Zählergrad kleiner als der Nennergrad sein. Ins-
besondere sind also alle Konstanten c =)= 0 sowie p keine Laplace-Transfonnierten.

Alle bisher berechneten Bildfunktionen sind in einer Halbebene identisch mit be-

kannten analytischen Funktionen. So gilt z.B. nach (2.4) die Beziehung L{u(t)} = ä
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für Rep > 0. Die analytische Funktion i ist für alle p # 0 definiert, aber Bildfunk-

tion ist sie nur für Rep > 0. Dieser bisher an Beispielen festgestellte Zusammenhang
zwischen analytischen Funktionen und Laplace-Transformierten gilt allgemein und
ist im folgenden Satz formuliert.

Satz 2.6: F(p) ist in der Halbebene Rep > Re p‘, eine analytische Funktion, sie ist be-
liebig oft nach p dzfferenzierbar, und für die n-te Ableitung gilt

G)

F""(p) = (—1)" e“”t"J’(t) dt = (—l)"L{t’y”(t)}. (2.29)
0

Der Beweis dieses wichtigen Satzes für die Klasse der absolut konvergenten Laplace-
Integrale ist in [4], S. l4, zu finden. Der Satz gilt auch für beliebige Bildfunktionen
([9], S. 35). Die Formel zur Berechnung der Ableitungen ist bereits unter den Rechen-
regeln als Multiplikationssatz (2.25) aufgeführt und am Beispiel 2.1 illustriert.

Der Satz 2.6 erlaubt es, die Theorie der analytischen Funktionen (Funktionen-
theorie‚ [B 9]) auf die Transformierten F(p) anzuwenden; dies wird später z.B. bei der
Umkehrung der Laplace-Transformation oder bei asymptotischen Zusammenhängen
benutzt. Die Umkehrung des Satzes 2.6 gilt nicht, d. h., nicht jede in einer rechten
Halbebene analytische Funktion ist Laplace-Transformierte. Dies folgt aus den Sätzen
2.4 und 2.5, den Beispielen 2.21 und 2.22 und dem

Satz 2.7: Eine Bilafunktion F(p) $ 0 ist nicht periodisch und hat keine Folge äqui-
distanter Nullstellen auf einer Parallelen zur reellen Achse.

Dieser Satz, der wieder für beliebige Bildfunktionen gilt, ist in [4], S. 118, bewiesen.
2 .

Beispiel 2.23: e", a e K, ist nach Satz 2.7 keine Laplace-Transformierte, weil e" die Periode —:-J,

a ä 0, besitzt. Für a = 0 ist e" = 1 mit beliebiger Periode und damit auch keine Bildfunktion.

2.3.2.

Existieren die beiden Integrale

Parsevalsche Gleichung

f e""lf(t)l dr, „i e““'lf(t)l’ dz, <2.29a)
0 0

so gilt die als Parsevalsche Gleichung bekannte Formel

fe‘2"|f(t)|2 dt = -21; I |F(x + jy)l2 dy. (2.29b)

o _ eo

Der Beweis von (2.29b) und andere Formen der Darstellung sind in [6], II. Teil,
6. Kapitel, zu finden. Natürlich ist der Zusammenhang zwischen f(t) und F(x + jy)
= F(p) gemäß (2.2) gegeben.

Ist (2.29a) sogar für x = 0 erfüllt, so vereinfacht sich (2.29b) zu

f lf(I)I’dt = f lF(jy)l2 dy. (wo)
0 —oo

Diese letzte Formel läßt sich physikalisch/technisch interpretieren. Ist z. B. in der

8.2.6

S.2.7'
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D0

Regelungstechnik mitf(r) die Regelgröße bezeichnet, so ist [f(t)]? dt die quadrati-
0

sche Regelungsfiäche, die zu minimieren wünschenswert ist. Für diese Minimierung
kann die Forme] (2.29c) als Ausgangspunkt dienen.

2.3.3. Aufgaben: Eigenschaften einer Laplace-Transformierten

Aufgabe 2.16: Man beweise den im Beispiel 2.5 verwendeten Schluß: Konvergiert (2.1) für kein
reelles p, dann konvergiert (2.1) für überhaupt kein p.

— 1

Aufgabe 2.17: Sind \/p und -/—_ Bildfunktionen?
V P

Aufgabe 2.18: Warum sind die analytischen Funktionen sin p und sinh p keine Laplace-Transfor-
mierten‘?
Aufgabe 2.19: Ist e"’ eine Laplace-Transformierte?
. . 1 p p’
Aufgabe 2.20: Sind 20W; , b)E, c) W1- Transforniierte?

2.4. Umkehrung der Laplace-Transformation

Bei der Lösung von Funktional- (z. B. Diiferentialgleichungen) geht man wie schon
in den Beispielen 2.14, 2.15 und in Aufgabe 2.11 praktiziert vor: Transformation der
Gleichung in den Bildbereich, Bestimmung der Lösung der Bildgleichung und Rück-
transformation dieser Lösung (siehe auch Bild 1.2). In diesem letzten Schritt liegt
meist die Schwierigkeit dieses Vorgehens.

Bei der Umkehrung der Laplace-Transformation ist also die Bildfunktion F(p)
gegeben und eine zugehörige Origina1funktionf(t) zu bestimmen. Üblicherweise ver-
wendet man für diese Rücktransformation die Bezeichnung:

L"{F(p)} = f(t)- (2-30)

Über die Eindeutigkeit von (2.30) wurden bereits in den Sätzen 2.2 und 2.3 des
Abschnitts 2.1.4. zwei Aussagen gemacht:

a) f(t) ist nur bis auf eine Nullfunktion n(t) bestimmt,
b) es gibt höchstens eine für t > 0 stetige Originalfunktion.
f(t) in (2.30) soll stets die stetige Originalfunktion bedeuten, falls eine solche existiert;

sonst soll f(t) irgendeine Originalfunktion bezeichnen.

Die einfachste Möglichkeit der Rücktransformation besteht natürlich im Benutzen
der Tabelle 1. Beispielsweise bedeutet (T 5) in dieser Tabelle‘):

L“{ l —-} = e“, as K.
p — a

In Abschnitt 2.4.1. wird die Rücktransformation rationaler Bildfunktionen F(p)
mittels Partialbruchzerlegung behandelt; diese Aufgabe tritt in den Anwendungen
besonders häufig auf. Die komplexe Umkchrformel (2.38) des Abschnitts 2.4.4. bildet

1) (T1) bedeutet die Formel Nr. 1 in der Tabelle 1.
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den Ausgangspunkt für andere Methoden, z.B. der Anwendung der Residuenrech-
nung oder der Herleitung asymptotischer Formeln. Numerische Verfahren zur Be-
rechnung von f(t) sind z. B. in [10], §36, zu finden.

2.4.1. Rücktransformation rationaler Bildfunktionen

Die Rücktransformation rationaler Bildfunktionen kommt bei der Lösung von
Differentialgleichungen sowie bei Problemen der E1ektro- und Regelungstechnik
häufig vor, in Tabelle 1 betreffen die Korrespondenzen (T 1) —— (T 40) und (T 96)
bis (T 105) solche Bildfunktionen (s. auch [T1], 19. Aufl. S. 689-692, ab 21. Aufl.
S. 637-642).

Es wird sich zeigen (Satz 2.8), daß zu jeder in p echt gebrochen rationalen Bild-
funktion F(p) stets eine für t > 0 stetige Originalfunktion f(t) existiert und diese
durch Partialbruchzerlegung von F(p) und Rücktransformation der Partialbrüche
auch tatsächlich gefunden werden kann.

a) Pariialbruchzerlegung rationaler Bildfunkzionen F(p)

Eine rationale Bildfunktion F(p) = Emit dem Zählerpolynom Z(p) und dem
N01)

Nennerpolynom N(p) ist wegen Beispiel 2.22 stets echt gebrochen rational, d.h., der
Zählergrad ist kleiner als der Nennergrad. Sind Z(p) und N(p) noch teilerfremd‘), so
gilt bekanntlich ([T 1], 19. Aufl. S. 566, ab 21. Aufl. S. 514) die folgende
Partialbruchzerlegung für rationale Funktionen:

__ 2(17) _ ( Cu C12 Cm, )
F(p) N(p) p -pa (p -17.-)2 +"'+ (11 ~11.-)""' ’ (231)

die p, e K sind die Nullstellen von N(p) mit der Vielfachheit m.
Die zunächst unbekannten Koeffizienten cu, des Ansatzes (2.31) lassen sich z.B.

mit der Methode des Koeffizientenvergleiches oder der Grenzwertmethode bestimmen
([B 2], Abschnitt 9.2.2.). Diese Methoden werden an den zwei folgenden Beispielen
illustriert.
Beispiel 2.24:1: Die rationale Bildfunktion

Z(p) p + 1

F(p) N07) 11207 - D07’ + 1)

soll in Partialbrüche zerlegt werden. Der Nenner N(p) hat die Nullstellen pl = 0, p, = 1, p; = j,
p4 = —j mit den Vielfachheiten a, = 2, oz; = 0:3 = a4 = 1. Für F(p) ergibt sich deshalb nach (2.31)
der Ansatz 'Z ) L‘ L‘ c c(p)=i.=£ _.12i+ 21 +;+__'3_‘?_

N(p) p p p-l p-J P+J v

Die Koeffizienten cl 1 , , e“ sollen nach der Grenzwertmethode bestimmt werden. Zunächst multi-
pliziert man die letzte Gleichung mit N(p) und erhält

P + 1 = (91117 + C12)(P " D02’ +1)+ 521172072 +1)
+ 12202 -1>(Cai0> +1") + C410 — J'))~

Hier setzt man nacheinander die Nullstellen pl , ..., 4 und dann z.B.p = -1 ein und erhält:

012 = ‘I, 02i =1a 03i = f: 04i = f: 01i = -2-
L“{F(p)} wird in Beispiel 224b bestimmt.

1) Die Teilerfremdheit wird in den Sätzen 2.16 und 2.17 benötigt, sie ist für die Gültigkeit von (2.31)
nicht notwendig.
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1
Beispiel 2.25a: Die rationale Funktion F(p)

tialbrüche zerlegt werden. Wird der Ansatz (2.31)

Z
F(p) = J12 .—_- ._._ +

‘ N(p) p - a

mit N(p) multipliziert, so ergibt sich:

1: 511W - b) + C2107 "‘ a) = (Cu ‘l’ 021)P - ([7511 ‘l’ 9021)-

cl ‚ und on sollen durch Vergleich der Koeffifienten gleicher p-Potenzen der rechten und linken Seite
der letzten Gleichung bestimmt werden. Dieser Vergleich ergibt das Gleichungssystem

C11 + C21 = 0:

mit a, b E K und a # b soll in Par-

C21

p—b

—bc„ —- M“ =1

mit der Lösung cu = wt-21 = a i b .

b) Rücktransfornzazion von F(p) im allgemeinen Fall
Jetzt wird L“{F(p)} bestimmt, wobei F(p) die Form (2.31) hat. Jeder rechts in

(2.31) vorkommende Summand (Partialbruch) entspricht einer für t> 0 stetigen
Originalfunktion. Für Re p > Re p, gilt nämlich nach Beispiel 2.ll und Regel (2.16):

L__1 { c g _ ct“"
(p - m)‘ (k — 1)!

Folglich erhält man aus (2.31) die für Re p > max Re p, gültige Umkehrformel für
rationale Bildfunktionen als folgenden

Z(p)Satz 2.8: Falls die rationale Funktion F(p) = ———

sitzt, so ist N07)

L_1{F(P)} = 2(cu ‘l’ 012l ‘l’ ‘l’ Cm 
i

L“{F(p)} siehe Beispiel 2.25 b.

e”; k=l‚2,...; p‚eK.

die Partialbruchzerlegung (2.31) be-

)e"*’.

Formel (2.32) spielt eine große Rolle bei der Lösung von gewöhnlichen Differen-
tialgleichungen (Abschnitt 3.1.), sie hängt eng mit dem dortigenHeavisideschen Ent-
wicklungssatz zusammen.

Beispiel 224b: Die für F(p) gefundene Partialbruchzerlegung im Beispiel 224a ergibt nach (2.32)
für Re p > 1:

L“{F(p)} = (cu + cur) e” + on e” + an e” + 041e”.

Werden die errechneten Werte für cu , , c4, und p, eingesetzt, so ergibt sich

L“{F(p)) = -2 — z + e‘ + is" + <}e"‘.

Beachtet man noch die Beziehung 5-(e-" + f”) = cos r, so erhält man im Ergebnis nur reellwertige
Funktionen.
Beispiel 2.25b: Für die im Beispiel 2.25 a betrachtete rationale Funktion folgt mit (2.32) für
Rep > max (Re a, Re b):

1 eat _ en:

L-‘{F<p)} = L-1 = ——;
(P - l1)(p - b) a - b

Ist a = A + jB‚ b = A — jB (konjugiert komplexe Nullstellen), so läßt sich das Ergebnis mit (2.35)
noch umformen zu

L“(F(p)} = E e" sin Et.

(2.32)

a,beK, a#=b.
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c) Rücktransformation bei einfachen Nullstellen des Nenners

Ist eine Nullstelle p, e K des Nenners N(p) einfach, dann ergibt die Grenzwert-
methode ([T l], l9. Aufl. S. 228, ab 21. Aufl. S. 176) zur Bestimmung des zugehörigen
Koeffizienten c,~, in der Darstellung (2.31)

G’ = Z071)
x1 N070

Sind alle Nullstellen von N(p) einfach und hat N(p) den Grad n, so vereinfacht sich
(2.31) und damit auch Satz 2.8 wesentlich; es ist zunächst

F()=%(g)_=é1\Zf’((:;)) 17-117."

Satz 2.9: Falls der Nenner N(p) der rationalen Funktion F(p) = zu’) nur einfache Null- S-2-9

(2.33)

stellen p, e K hat, so ist N9")
. n Z
L-*{F<p)} = N552) (2.34)

In (2.32) und (2.34) kann man rechts stets zu reellwertigen Funktionen übergehen,
falls die Polynome Z(p) und N(1_2) nur reelle Koeffizienten haben. Dazu benutzt man
die Eulersche‘) Formel (siehe Übersicht S. 8) in der Form

e“ = e" (cos Et + j sin Bt), a = A + jB. (2.35)

Beispiel 2.26: Mit (2.34) wird die Originalfunktion bestimmt zu

Z07)F=————,Z=’—2 5,N=3.(11) NO) (p) p 17+ (P) 12 +1

Die Nullstellen von N(p) sowie die Koeffizienten in (2.34) sind hier:

pr=-l‚ pz=%(l+i\/5)‚ p3=132; N’(12)=3122;

2cm _ 8 zum __ s . J5 zum s +. J3
N'<p.) 3’N'(p2) 6 ’ 2 ‘Num- 6 ’ 2 ‘

Mit der üblichen Zusammenfassung zu reellwertigen Funktionen unter Verwendung von (23.5) ist
für Rep > 5: - _

L“{F(11)}= - (i + ‚- + l- i + jL
6 2 6 2

e
o

F

w
[o

o

e" — gem cos \/23! + \/gs": sin L/23! .

2.4.2. Riicktransformation mittels Rechenregeln und Tabelle 1

Für nichtrationale Bildfunktionen stehen in Tabelle l die Korrespondenzen
(T 4l)—(T 95) zur Verfügung. Tabelle l (bzw. umfangreichere Tabellen: [T 2], [T 4])
kann man oft auch dann benutzen, wenn die Bildfunktion nicht unmittelbar vor-

‘) Leonard Euler (1707-I783), Schweizer Mathematiker.

3 Stopp,0perat.nrenrechnung
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kommt. Man kann versuchen, F(p) durch Anwendung der Rechenregeln (2.10) bis
(2.28) so umzuformen, daß Tabelle l benutzt werden kann. Die Partialbruchzerlegung
rationaler Bildfunktionen ist ein Beispiel für solche Umformungen.

Das folgende Beispiel zeigt, daß auch rationale Bildfunktionen sich mitunter ein-
facher als durch (2.32) transformieren lassen.

Beispiel 2.27: Bei Benutzung von (T l4) ist

1L“——, N =3 ‘-1,{NW} (P) P (P )

zu bestimmen. Verwendet maniden Integrationssatz (2.21) dreimal (siehe auch Aufgabe 2.917), so
ergibt sich für Rep > 1:

I Ix i: t I.
l

L“ =_/‘ffsinh 1, d1, dr, dz, =ff(cosh I; — 1) dt, dr,

0 0 0 0 0

I

1
='/.(sinhI, — t,)dr, = cosh! — 1 — 712.

0

Dagegen wären bei Anwendung der Partialbruchzerlegung für Formel (2.31) die Bestimmung von

fünf q, nötig gewesen.

Schließlich soll noch an drei Beispielen die Rücktransformation nichtrationaler
Bildfunktionen gezeigt werden.

Beispiel 2.28: Faltungssatz (2.20), (2.7) und (2.5) ergeben (siehe auch S. 8)

t t q t ~/2

L"{:1_ -—-—-—-1}= ————e_[Ldz = ———2e_ I e": dx = e‘ erf t.
«/1» P - 1 x/vv o J? N/"o

Beispiel 2.29: Dämpfungssatz (2.17) und (2.7) ergeben für a > 0

„x {_1}-._1
\/p+a -rt!

Beispiel 2.30: Aus (T 69) folgt mit dem Differentiationssatz (2.23)

L“ [ I-Zrp£e‘“’}= pL“ ]fle""’: = (sinh 2\/0-1)’ = A/% cosh 2 fit.
P P .

2.4.3. Riicktrausformafion durch Reihenentwicklung

Ist eine Bildfunktion gegeben in Form einer unendlichen Reihe von Bildfunktionen
F„(p) oder läßt sie sich in eine solche Reihe entwickeln, ‚so kann formal gliedweise
rücktransformiert werden. Es wird also zu

F(p) = mp)
die Funktion

f(!) = EM!) f..(!) = L" {Fn(p)}.
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gebildet. Zu klären ist jetzt, ob die Reihe der Originalfunktionen konvergiert und ob
L{f(t)} = F(p) gilt. Der folgende einfache Satz über die gliedweise Rücktransfor-
mation ist in [9], S. 188, zu finden.

Satz 2.10: Ist die unendliche Reihe S.2.l0

F(p) = §a.p-*~, o < A. < 2. < < i.» oo,
n-O

absolut konvergent für [pl > R, so ist sie Laplace-Transformierte der Originalfunktion

f(t) = (2.36)

(2.36) konvergiert für beliebige (sogar komplexe) t a1: 0.

Beispiel 2.31: Satz 2.10 wird für die Funktion

._ l llp... l w 1 — w ___.1__
W‘ J; ° ‘ \/; Eo um " „Ä up-+"=

angewendet. Die Reihe ist (wie bekannt) absolut konvergent für lpl > 0, die zugehörige Original-
funktion ist durch (2.36) bestimmt mit 1.„ = n + 4}:

_°° 1 „__1w(4r)"_1
""—.?.T<»:n/T)‘ "T(2:2)! ‘T.-,°°5“’W'

Benutzt wurden bei der Umformung die Reihendarstellung von cosh x ({T1], 19. Aufl. S. 86, ab
21. Aufl. S. 34) sowie die Formel ([B l2], Abschnitt 2.2.) ’

2 !F<n+i)=(n)fi‚ n=1,2‚....
2 n!2’“

Ein besonders einfacher Fall für Satz 2.10 entsteht fürnatürliche Zahlen 1„ = n + 1 ;

F(p) ist dann eine Potenzreihe in p“ ohne Absolutglied, F(n + 1) wird durch n! er-
setzt.

Satz 2.10:1: Ist die Potenzreihe S.2.10a

F07) = i a..p'"“
n=O

konvergent für [p] > R, so ist sie Laplace-Transformierte der für alle t kunvergenten
Potenzreihe

f(r) = a,,t". (2.3'7')

Beispiel 2.32: Bei Verwendung der für [ p[ > I konvergenten Binomialreihe ([T 1], 19. Aufl. S. 84,
ab 21. Aufl. S. 32) ist nach Satz 2.1021 für

n-O (Zn)! n-o ("D2

wegen der Definition der Besselschen‘) Funktion (siehe Übersicht S. 8).

f(z)= E l ‚w: ä Lm(§)2n=Jo(t)

‘) Wilhelm Friedrich Bessel (1784-1846), deutscher Astronom.
3C
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2.4.4.

Versagen die bisherigen Methoden der Rücktransformation, so ist auf die kom-
plexe Umkehrformel zurückzugreifen. Diese Formel wird hier nur für die Klasse der
absolut konvergenten Laplace-Integrale angegeben; ein Beweis des folgenden Satzes
ist in [9], S. 153, zu finden.

2, Laplace-Transforrrlation

Die komplexe Umkehrformel

Satz 2.11: Konvergiert F(p) = L{f(t)} absolutfür ein reelles p = x0, so istfür x g xo
und an jeder Stelle t, wo f(t) in einer Umgebung von beschränkter Variation‘) ist:

x+iy
1 %(f(t+0) +f(t—0)), r> 0,

1im—2——. f e"'F(q)dq = {—}f(+0), z: o, (2.38)
"w WM, 0, :<o.

Der Integrationsweg ist eine Gerade in der Halbebene der absoluten Konvergenz
von (2.1) parallel zur imaginären Achse. f(t + 0) und f(t —— 0) bedeuten wie üblich
den rechts- und linksseitigen Grenzwert an der Stelle t; an jeder Stetigkeitsstelle von
f(t) stimmen diese beiden Grenzwerte bekanntlich überein, und in (2.38) steht dann
rechts einfach f(t). Die als Voraussetzung genannte beschränkte Variation garantiert
die Existenz dieser Grenzwerte.

Die Bedeutung des Satzes 2.11 besteht darin, daß es sich in (2.38) um ein Integral
mit einem Integranden in Form einer analytischen Funktion und um einen Inte-
grationsweg in der komplexen p-Ebene handelt. Über solche Integrale ist vieles be-
kannt ([B 9], Abschnitt 4.): Cauchyscherz) Integralsatz, Möglichkeit der Deformation
des Integrationsweges, Auswertung durch Residuenrechnung u.a.m. Die folgenden
Ausführungen in diesem Abschnitt sind nur mit diesen funktionentheoretischen Be-
griffen aus [B 9] Verständlich.

Für das Residuum einer analytischen Funktion, die als Quotient zweier analytischer
Funktionen F,(p) und F2(p) darstellbar ist (wobei F2(p) in p = pa eine einfache Null-
stelle hat), gilt bekanntlich:

~ E31
R§“§‘},‘f“ i mp) i

= F1(Po)

F$(Po) i

(2.39)

Da sich der Integrationsweg in (2.38) ins Unendliche erstreckt, ist bei der Defor-
mation dieses Weges ein Grenzübergang nötig. Dazu ist der folgende Satz ([4], S. 32)
sehr nützlich.

37:
Satz 2.12: Strebt F(p) für lpl —> oo in g g arg(p — c) g Tgleichmäßig gegen null,
so giltfür t > 0:

llim fe"'F(q) dq = 0. (2.40)
. ”°°c

‘) f(t) heißt von beschränkter Variation, wenn f(t) als Diflerenz zweier monoton wachsender
Funktionen dargestellt werden kann. Eine solche Funktion f(t) hat als Unstetigkeitsstellen höchstens
Sprungstellen.

2) Augustin Louis Cauchy (1789-1857), französischer Mathematiker.
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C ist ein Halbkreis mit dem Radius R um den Punkt p = c in der linken Halb-
ebene Rep g c oder ein Teil dieses Halbkreises (Bild 2.6a).

417:
l

G,‘ l b) i

Bild 2.6a. Integrationsweg in (2.40)
Bild 2.6b. Integrationswege im Beispiel 2.33

Beispiel 2.33: Formel (2.38) und die Verwendung der funktionentheoretischen Hilfsmittel soll für die
l

einfache Funktion F(p) = L{u(t)} = gillustrien werden; hier ist x0 = 0 (Beispiel 2.1) und u(I) von

beschränkter Variation (ansonsten muß die Probe F(p) = L{f(r)} gemacht werden).
Als Integrationsweg wird der in Bild 2.6b dargestellte Weg gewählt mit beliebigem c = x > x0

= O. p = 0 ist ein einfacher Pol und die einzige Singularität von F(p)‚ p = 0 liegt im Inneren des vom

Integrationsweg umschlossenen Gebietes. Deshalb ist nach (2.39) und dem Residuensatz

d
[am —q = 2: j.

u G
CD

1

Wegen }F(p)l = (unabhängig von arg (p — x)) strebt F(p) gleichmäßig gegen null auf C für

.17. —> ac; also gilt (2.40), Für R —> oo und t > 0 folgt deshalb
‚+11:

„ d . d

lim e'«—q = lim l e“—q— = 2'rrj.
R—o::o q Raw - q

CD x—iR

Für I = 0 gilt die letzte Umformung nicht. Hier hat man

x+ly Ä _

~ d ‘.\'+Jy + - + -

J’ —q=1nq; =]nx {y=lnL{aln(—1)=jn
I q ;.\--‚» x-Jy x/y-J

X’ .V

für _\'—> oo wegen lnp = lnlpl +jargp und x > 0.
Zusammenfassend ergibt (2.38) somit für jedes x > 0:

x+iv x-Hao
A I t dq 1 x dq 1, t > 0,
km? e4——=T e"——= 1/2, t=0, (2.41)
-—~ 7'5) . ll "J q

ß x ::—I')' x—lno o’ t< o‘

Beispiel 2.34: Die Originalfunktion zur Bildfunktion

17 _ J‘
F(p) = fie " F, a > O, b g 0, (2.42)

soll bestimmt werden ([10], S. 190). Der Faltungssatz (2.20) wäre anwendbar; er ergibt aber eine
unzweckmäßige Darstellung der Originalfunktion, die z. B. nicht das Verhalten für t —> 0o erkennen
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läßt. Deshalb wird Formel (2.38) verwendet. Zunächst wird der in Bild 2.7 dargestellte Integrations-
weg A betrachtet. Nach dem Residuensatz ist

ie"F<«>d«=f+l+J+f+f+J
A c, z. F 5„ cu D

= 21: 52 Residuum (e" F(p)) = rrj(e"‘e"‘/’_‘ + e-'1" f”715). (2.43)
n=*la

Bild 2.7. Integrationsweg A und seine Teile
im Beispiel 2.34

Weil p = ja und p = —ja einfache Polstellen sind, läßt sich die obige Bestimmung der Residuen nach
— 1

(2.39) durchführen mit F1(p) = e"p e“”‘/;, F2(p) = p’ + a’. Benutzt man noch Jj = -:/-5- (1 + j),
—. 1 . . .\/-3 = EG — J), so ergibt sich

l _. Z

—2——; j- e"F(q) dq = e""/"1 cos (at — b\/zz/2).
"J

A

Jetzt wird der Integrationsweg A deformiert, zunächst soll R -—> so streben. Wegen

|p(p)] =J;e—b n=~/3 ä _1_e—b 2N; g L _‚o
I13‘ + a’! lpl lpl

für |p| —> 0 gleichmäßig bezüglich des Argumentes auf den Bögen C; und C" gilt (2.40): J. -4 0, f» 0.
c c

Für s —> 0 strebt I —v 0, weil der Integrand beschränkt ist und die Länge des Integraxtionswdlges F
17

gegen null strebt. Da der Integrand nur aufder längs der negativen reellen Achse verhefteten Riemann-
schen Fläche eindeutig ist, ist im Grenzfall s —v 0 für das obere Ufer p_= xe” und für das untere

Uferp = x e"" zu setzen. Dann ist = jx für das obere Ufer und \/p = —jx für das untere Ufer.
Esfolgt o _‚„ „3

_ _ J- _“/; xdx

::n:.,(f+f)=/+/
e—>° Er EH —uo o o

Wegen (2.38) folgt zusammenfassend für r > 0 die Originalfunktion f(t) aus (2.42) als

f(t) =Rlim f = e""/E: cos (at —- b \/E)
_.oo

D Q J__
1 u xsinb xdx

—— ' e. 2.44nfe x2+a2 ( )
0
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An dieser Darstellung läßt sich das Verhalten von f(t) für t-v o0 ablesen: Es wird durch die cos-

Funktion beschrieben, weil das Integral nach Satz 2.5 gegen null strebt.

In der technischen Literatur wird mitunter behauptet und benutzt, daß die Ori-
ginalfunktion f(t) gleich der Summe der Residuen der Bildfunktion F(p) ist. Bei-
spiel 2.34 zeigt außer der lehrreichen Anwendung funktionentheoretischer Sätze, daß
dies i. allg. nicht gilt, denn das Integral in (2.44) entsteht nicht so.

Anders als in den zwei Beispielen können auch unendlich viele Pole von F(p) auf-
treten, die hier praktizierte Anwendung des Residuensatzes und Satz 2.12 lassen sich
dann verallgemeinern.

2.4.5. Aufgaben: Bestimmung von Originalfunktionen

Aufgabe 2.21: Durch Partialbruchzerlegung bestimme man

a) L“(2/(P‘ - 1)); b) L”(1/(P‘ + 1)};

die Ergebnisse sollen nur reellwertige Funktionen enthalten.
Aufgabe 2.22: Man bestimme a) mittels Partialbruchzerlegung und b) durch (2.20) und (2.23) die
Originalfunktion zu p/(pz — l)’.
Aufgabe 2.23: Man ermittle die Originalfunktionen zu

a) L _‘_
3/4p \/4p+ l

Aufgabe 2.24: Durch Reihenentwicklung transformiere man—1—e“"'.

Aufgabe 2.25: Mit (2.38) bestimme man die Originalfunkticfli zu F(p) = äln (1 + p). Hinweis:

Integrationsweg ähnlich Bild 2.7 wählen, hier aber —l umgehen und 0 einschließen!

6"’ mit (2.14); b) mit (2.17).

2.5. Asymptotische Eigenschaften

Nach einer Zusammenstellung der in der Asymptotik gebräuchlichen Begrilfe und
Symbole werden einfache asymptotische Eigenschaften der Laplace-Transformation
und ihrer Umkehrung aufgeführt.

Mit den in Abschnitt 2.5.2. angeführten Sätzen wird die Auswirkung asympto-
tischer Eigenschaften der Originalfunktion f(t) auf die Bildfunktion F(p) gegeben,
ohne daß die Bildfunktion explizit berechnet wird.

Interessanter für die Anwendung (aber auch komplizierter) sind die Aussagen des
Abschnitts 2.5.3. Dort wird von asymptotischen Eigenschaften der Bildfunktion F(p)
auf solche der zugehörigen Originalfunktion f(t) geschlossen, ohne f(t) explizit zu
berechnen. Sind nur solche Eigenschaften der Lösung einer Funktionalgleichung ge-
sucht, so ersparen die Sätze in 2.5.3. die oft umständliche Rücktransformation. Ins-
besondere die Frage der Stabilität der Lösungen einer gewöhnlichen Differential-
gleichung kann auf diese Weise beantwortet werden.

2.5.1. Asymptotische Darstellungen und Entwicklungen

Das Verhalten einer Funktionf(t) für t —+ to (t reelle oder komplexe Veränderliche,
to kann auch i oo sein) kann sehr unterschiedlich sein: Es kann Konvergenz ge-
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gen einen Grenzwert, bestimmte oder unbestimmte Divergenz vorliegen. Soll dieses
Verhalten noch genauer beschrieben werden, so zieht man eine (möglichst einfache)

_f_(’>_

. . . 80
te U. Dabei bedeutet U eine unendliche Punktmenge mit to gé U als Randpunkt; der
Quotient soll in U definiert sein. Beispiele solcher Punktmengen sind Winkelräume,
Halbebenen und Geraden (Bild 2.8).

Vergleichsfunktion g(t) heran und untersucht den Quotienten für t-v to und

r, f

Bild 2.8. Punklmengen der Definition 2.2

f(t)Falls E6
f(t) ist ein Klein-o von g(t)).

—> Ofürt —> to gilt, so schreibt man auch f(t) = o(g(t)), t—> to (gelesen:

Definition 2.2: Zwei Funktionen heißen für t —> to und t E U asymptotisch gleich, wenn
gilt:

gé-3-» 1, t——> to bzw. f(t) = g(t) + o(g(t)). t—> t0. (2.45)

Für diesen Sachverhalt schreibt manf(t) ~ g(t) (gelesen :f(t) ist asymptotisch gleich
g(t_)); g(t) heißt eine asymptotische Darstellung von f(t); g(t) stellt f(t) näherungs-
weise ar.

Man kann nachweisen, daß sich asymptotische Darstellungen (natürlich für die-
selbe Stelle to) stets multiplizieren, dividieren und potenzieren‚ aber nur unter zu-

sätzlichen Bedingungen addieren, 1ogarithmieren‚ differenzieren und integrieren lassen

([2]‚ §2)-
Beispie! 2.35: Folgende Funktionen werden verglichen:

a) f(t) = e‘, g(!) = 4' für 1-» oo; b) f(t) = sin t, g(t) = t für t-v 0,

z’ 1C)f(!)=T+1, g(t)=tfi.irt—>:x>.

Ausgehend von den leicht nachprüfbaren Beziehungen
1

%—>a) 0ffirt—voo; b) 1fiirt—>0; c) T für t-r oo

gilt bezüglich der o- und ~-Beziehung

a) f(t) = o(.2(t)),f(t) w g(t) für t-> w; b) f(t) ~ 3(1) für t-v 0; c) f(t) ~ irg(t) für t-> w.

Beispiel 2.36: Als eine bekannte nichttriviale asymptotische Darstellung wird die der Gamma-Funk-
lion F(r) für reelle t—> o0 angegeben ([2], S. 67; Stirlingsche‘) Formel):

T t ‘P(t)NA/—"(_) ‚ 1-» 00.
I e

Hier ist die Vergleichsfunktion eine elementare Funktion, während F(t) eine komplizierte spezielle
Funktion ist.

1) James Stirling (1692-1770), englischer Mathematiker.
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Bei der Darstellung der asymptotischen Gleichheit in der Formf(t) = g(t) + o(g(t))
kann der Summand o(g(t)) als Fehler bei der Ersetzung vonf(t) durch g(t) aufgefaßt
werden. Will man diesen Fehler immer genauer ausdrücken, so kommt man zur

Definition 2.3: Ist g„„(t) = o(g„(t))für t -—> to, te U, undgilt für jedes n = O, 1, 2,
mit festen Kaeflizienten av

f(t) = 0vgv(t) + 0(g,.(t)) für I-> fa, (2-45)

so schreibt man

eo

f(t) z gaett) rar...

Die unendliche Reihe, die nicht zu konvergieren braucht, heißt asymptotische
Entwicklung von f(t). Für n = 0 erhält man speziell die oben eingeführte asympto—
tische Darstellung von f(t).

Die Eigenschaft g„„(t) = o(g„(t)) haben z.B. die Funktionen g„(t) = (t —— t„)"-v
für t—» to oder g„(t) = t-Äv für z—> oo, sofern Re}.,,+1 > Re 3.„ ist. Entwicklungen
nach diesen Potenzfunktionen sind besonders häufig.

‚ Man kann zeigen: Asymptotische Entwicklungen nach denselben Funktionen g„(t)
lassen sich gliedweise addieren, subtrahieren und mit einer Funktion multiplizieren;
eine Funktion f(t) hat höchstens eine asymptotische Entwicklung nach den Funk-
tionen g„(t)‚ aber nicht umgekehrt ([2], §3).

Zwischen konvergenten und asymptotischen Entwicklungen besteht folgender

Unterschied: Für das Restglied r„(t) = f(t) -— E”) a„g„(t) gilt im ersten bzw. zweiten
Fall "‘°

lim um = 0 bei festem n.
""0 gn(t)

lim r„(t) = 0 bei festem t bzw.

Zwei Beispiele für asymptotische Entwicklungen sollen den Begriff und den er-

wähnten Zusammenhang mit konvergenten Reihen noch illustrieren.

Beispiel 2.37: Jede für lt — to] g R absolut und gleichmäßig konvergente Reihe

n

m) = 2 a„(t — to)‘: Re am > Re iv,
V-0

ist zugleich eine asymptotische Entwicklung von f(t) für t—> to. Denn wegen der vorausgesetzten
Konvergenz folgt die Abschätzung

|f(t)— §0a.(r— rm1 =] f; a„<z— am gcir — zo|'“‘~+=;
v- v-n+l

die rechte Seite ist gleich einem a(It —- 101*"-v-) für t-r to und jedes n, womit (2.46) erfüllt ist. Bei-
spielsweise folgt deshalb aus den bekannten Reihenentwicklungen für e‘ oder 1n(1 + t) sofort

„O (_1)v+1tv‚.‚
e*z§— für I-+0, 1n(1+x)z 2‘ für x-‚o.

' I‘:v-O

D. 2.3
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Beispiel 2.38: Als eine bekannte asymptotische Entwicklung wird die von in P(t) für reelle t -o eo an-

gegeben:
E: B2:

„x 2v(2v —— 1)

dabei bedeuten die B;‚ die Bernoullischen‘) Zahlen; es ist B; = 1/6, B4 = -1/30,125 = 1/42,
B3 = -1/30, ...([2], S. 67). Diese Entwicklung heißt Stirlingsche Entwicklung der Gamma-Funk-
tion.

lnI’(t)z t(lnt -1)-In‘/;+ln1/27: + '—27+l;

2.5.2. Asymptotische Eigenschaften der Laplace-Transformation

In diesem Abschnitt wird von dem asymptotischen Verhalten der Originalfunktion
f(t) für t—+ +0 auf das der Bildfunktion F(p) für p—> oo geschlossen, d.h.‚ eine
asymptotische Darstellung oder Entwicklung von f(t) wird unter bestimmten Vor-
aussetzungen auf eine asymptotische Darstellung oder Entwicklung von F(p) ab-
gebildet.

Satz 2.13: Sindf(t) undg(t) transformierbar und ist g(t) > 0 und stetigfür t > 0, dann
folgt aus

f(t) ~ ag(t) für t—+ +0,

für die zugehörigen Laplace-Transformierten

F(p) ~ aG(p) für (reelle) p -—> oo.

Der Beweis dieses von Berg stammenden Satzes ist in [1], S. 187, zu finden.

HEK,

Beispiel 2.39: Oft ist als Vergleichsfunktion sogar die einfache Funktion g(t) = t’, et > -1, möglich
mit G(p) = al"(ot + l)/p“‘”. Dies kann zur asymptotischen Auswertung des Integrals in Formel
(2.44) benutzt werden; dabei wird jetzt gegenüber (2.44) p statt t und t statt x geschrieben. In Satz 2.13
1st dann b sinb mm

f(‘)= t,+u1 "aT=£'(1),1-'>+0.

121152) 3b 'F(p)N = ‚p(l'eell)->oO.

Satz 2.14: a) Wenn limf(t) = a existiert, so ist limpF(p) = a; b) wenn limf(t) = b
8-’ +0 9"“: I->00

existiert, so ist lim pF(p) = b.
‚.. +0

Der Beweis von a) folgt aus Beispiel 2.39 für o: = 0 und (2.45). b) folgt ausf(t) — a
= r(t)‚ [r(t) | < e für t g T, e > O beliebig, und

an

eff" dt
0

T on

g fern |r(t)| dt + f
0

Im») — ‚ä e-P‘ |r(t)[ dt < f|r(:)| dt +

=c+i,
17

’) Jakob Bemoulli (1654-1705), Schweizer Mathematiker.
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also |pF(p) — a] < Cp + e, für p—> +0 ergibt sich daraus die Behauptung. Die
Korrespondenz (T 62, p —> oo) und (T 8, p —+ +0) zeigen, daß Satz 2.14 nicht umkehr-
bar ist (siehe aber Satz 2.16). ‘

Beispiel 2.40: Die Besselsche Funktion J„(t) besitzt für t - oo einen Grenzwert. Wegen " ispiel 2.32
und Satz 2.1415) ist

lim Jo(!) =

1-can
limlim PL{-70(1)} =

9-. +0 n- +0

p = o

\/p2 + 1

Über die Transformation asymptotischer Entwicklungen gilt der

Satz 2.15: Is! f(t) transformierbar und gilt

f(t)z im» für 1-» +0 und -1 <20 <2, <
I’-0

so hat F(p) die u.) mptotische Entwicklung

°° FUN + 1) .‚

F(p) z 2 av Iyjfur p(reeI1) —> oo.
v-0 V

Der Beweis dieses Satzes ist einfach. Nach (2.46) gilt
n-l

f0) — 2 a„t‘v = a,,t‘~ + am») ~a,,t‘" für t—> +0.
v-0

Diese asymptotische Gleichung ist nach Satz 2.13 mit g(t) = a,,t‘" transformicrbar;
damit folgt für jedes n = 1, 2,

~—1 1"/1, - 1 1

F(P)‘§oav ( T )"’ +"(px,.+1pA.»+1 n

Diese Gleichung ist aber wegen (2.46) gleichbedeutend mit der angegebenen asym-
ptotischen Entwicklung von F(p).

Ist die Reihe für f(t) absolut konvergent, so ist sie nach Beispiel 2.37 zugleich
asymptotische Entwicklung; für F(p) ergibt sich i. allg. trotzdem nur obige asympto-
tische Entwicklung. Dieser Sachverhalt und eine Anwendung des Satzes 2.15 werden
im nächsten Beispiel illustriert.

Fa. + 1) _ 1‘(/1,. + 1)
p1,.+1 — an pz,.+1

Beispiel 2.41: Die Funktion
1 „i, 12v

f(t) = e“ = 2 <—1>'——
y-o V!

ist nach Satz 2.1 Laplace-transformierbar, die angegebene Reihe konvergiert für alle t und ist damit
wegen Beispiel 2.37 zugleich asymptotische Entwicklung für t—> +0. Nach Satz 2.15 ist deshalb mit
1"(2v + 1) = (211)!

F(p) z in (— l)" %)!p‘2"‘ —für p (reell) —> oo .

Diese Reihe divergiert tatsächlich für alle p. Wegen

au an _

HP) = fe""’2 d! = e’1" fr": du = i27=—e"1”' (l — erfä)
0 DI2

S.2.15
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(Substitution t = u — ergibt sich durch Umstellung eine asymptotische Entwicklung der Fehler-

funktion für x = -123-—> co:

1 e“: °°

S: X

Sätze der angegebenen Art heißen Abelsche‘) Sätze für die Laplace-Transfor-
mation; sie lassen sich in vieler Hinsicht verallgemeinern ([1], §45; [2], §23; [4],
Kap. VII).

(Zu) !
1- erfx z (-—l)"——'——(2x)"' für x—> oo.

v.1/=0

2.5.3. Asymptotische Eigenschaften der Riicktransformation

In diesem Abschnitt wird vom asymptotischen Verhalten einer Bildfunktion F(p)
auf das der Originalfunktion f(t) geschlossen. Solche Sätze können bei der Rück-
transformation von großem Vorteil sein, insbesondere wenn sich f(t) nur schwierig
bestimmen läßt oder eine explizite Darstellung von f(t) gar nicht benötigt wird.

Leider ist es nicht möglich, die Sätze 2.13 bis 2.15 (und ähnliche Sätze) ohne weiteres
umzukehren, dies zeigen schon einfache Beispiele. Außerdem interessiert vorwiegend
das Verhalten von f(t) für t ~» oo. Sätze der gesuchten Art heißen Abelsche Sätze für
die Rücktransformation, wenn über f(t) keine Voraussetzungen gemacht werden,
sonst Taubersche’) Sätze. Weitergehende Aussagen als hier findet man in [1], §46,
und [4], §45.

Satz 2.16: Konvergiert L{f(t)} für jedes p > 0 und ist f(t) monoton wachsend, so gilt
limf(t) = lim pF(p).
Ü‘ oo D» + (<2

Einen Beweis dieses Satzes findet man in [l], S. 196.

IstF(p) = fig;
der zugehörigen Origina1funktionf(t) sofort folgendes erkennen: Für das Verhalten
vonf(t) für t —> 0o sind allein die Nullstellen p,» mit größtem Realteil (und unter diesen
die mit der größten Vielfachheit 0a,) von N(p) ausschlaggebend. Gibt es mehrere solche
Nullstellen, so müssen alle berücksichtigt werden. Das ergibt den

eine rationale Bildfunktion, so kann man aus der Darstellung (2.32)

satz72‚17; 151170,) = )) eine rationale Bilafunktion, N(p,.) = 0 und A = max Re p„
so gt t tm-l

f(t) = ZC.a,(7‘T€p" + 0(t"“‘1 e") für t—> oo, (2.47)
g — .

wobei über alle p, mit maximalem Realteil und größter Vielfachheit zu summieren ist.

Hat die Funktion Z ab einem gewissen t keine Nullstellen, so kann (2.47) auch in
der Form f(t) ~ 2 für t—> oo geschrieben werden.

‘) Niels Hendrik Abel (1802-1829), norwegischer Mathematiker.
2) Alfred Tauber (geb. 1866, Todesjahr unbekannt), österreichischer Mathematiker.



2.5. Asymptotische Eigenschaften 45

Die asymptotische Darstellung von f(t) kann also ohne vollständige Rücktrans-
formation angegeben werden. Die benötigten Koeffizienten cm sind nach einer der
in Abschnitt 2.4.2. dargestellten Methoden zu bestimmen; liegt eine einfache Null-
stelle p, vor, so ist wieder 6„ = Z(p‚)/N’(p.).

Beispiel 2.42: Es sind die asymptotischen Darstellungen für t—> o0 der Originalfunktionen f(r) der
rationalen Bildfimktionen F(p) der Beispiele a) 2.24 a, b) 2.25 a und c) 2.26 zu bestimmen.

a) Nullstelle mit maximalem Rcalteil ist p; = 1 mit a; = 1, c2, = l nach oben; daher istf(t) ~ e‘
für t—> oo.

1

b) Ist Re a > Re b, so ist die einfache Nullstelle p = a zu berücksichtigen, es ist f(t) = a __ b e"
Rut 1 ar >-+o(e )~ .1.-e fur I-> o0.

a ~ b

c) Die einfachen Nullstellen 12,3 = %(l i jV/3’) haben maximalen Realteil, die zugehörigen

5 3
Koeffizienten sind —(—6— i j deshalb gilt (bei Beachtung von (2.35))

— 5 5 5/(t) = e“ (J3 sin;/_‘—t — —3—cos + o(e"2) für 1-» oo.
z

Die Tatsache, daß die Singularität mit größtem Realteil der Bildfunktion das
asymptotische Verhalten der Originalfunktion bestimmt, gilt i. allg. nicht für nicht-
rationale Bildfunktionen.

2.5.4. Stabilität der Originalfunktionen

Mitunter interessiert von der Lösung einer Funktionalgleichung nicht einmal das
genaue asymptotische Verhalten für t—> 0o, sondern lediglich die (asymptotische)
Stabilität. Es wird gefragt, welcher der folgenden Fälle eintritt (Bild 2.9):

1. f(t) —» B für t—> 0o (B = 0: stabil, B # O: uneigentlich stabil),
2. f(t) hat keinen Grenzwert für t—> 0o, ist aber wenigstens beschränkt (quasi-
stabil, auch asymptotisch stabil genannt),
3.f(t) ist nicht beschränkt für t—> oo (instabil).

HI)
HI)

/W l\

\/V"t 7 t

I'll)
W)

r i

Bild 2.9. Stabiles, uneigentlich stabiles, quasistabiles und instabiles Verhalten von f(t)
für t—> o0
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Für rationale Bildfunktionen F(p) läßt sich der Stabilitätsfall sofort aus Formel
(2.47) ablesen. Es gilt der

Satz 2.18: Isl F(p) = Z0’)
A = max Rep‘: N0’)

l

A > O: f(t) ist instabil,"
A < 0: f(t) ist stabil; .

A = 0 und wenigstens eine das Maximum
ist instabil;
A = 0 und alle das Maximum annelzmende Nullstellen sind einfach, und es ist für eine
davon Imp: =|= 0: f(t) ist quasistabil,
A = O und die einzige das Maximum annehmende Nullstelle ist die einfache Nullstelle
pa = 0: f(t) ist uneigentlich stabil.

Es gibt viele Kriterien, die ohne explizite Bestimmung der Nullstellen von N(p)
eine Antwort gestatten ([12], 9. Kap.; [3], § ll).

eine rationale Bildfunktion und ist N(p,-) = 0, so gilt mit

annehmende Nullstelle ist mehrfach." f(t)

Beispiel 2.43: Die Stabilität der Originalfunktionen, die zu den rationalen Bildfunktionen der Bei-
spiele a) 2.24 a, b) 2.25 a, c) 2.26 gehören, wird bestimmt: Bei a) und c) ist f(t) instabil, weil bei
a) A = 1 > 0 und bei c) A = i > 0 ist. b) Ohne Einschränkung der Allgemeinheit wird Re a g Re b
angenommen, a =i= b. Für Rea > 0 ist f(t) instabil, für Rea < 0 ist f(t) stabil. Für Rea = 0 ist
f(t) quasistabil, weil entweder Im a + O oder Im a = 0, Im b¢ O ist.

Satz 2.18 wird bei der Untersuchung der Lösungen von gewöhnlichen Differential-
gleichungen eine Rolle spielen. Ist F(p) keine rationale Bildfunktion, so gilt dieses ein-
fache Kriterium i. allg. nicht, d.h.‚ das asymptotische Verhalten (und damit die
Stabilität) der Originalfunktionf(t) für t—-> oo muß nicht immer von der Singularität
mit größtem Realteil der Bildfunktion F(p) abhängen.

2.5.5. Aufgaben: Anwendung asymptotischer Formeln
i‘ 2! h

Aufgabe 2.26: Man bestimme eine asymptotische Darstellung von h(t) = für a) t —+ O

und b) 1-» o0. 5"‘

Aufgabe 2.27: Man bestimme eine asymptotische Darstellung von F(p) = L{f(t)} für p —> o0 mit
1 . 2..

a) f(t): Tsxnhx; b) m) = ‚ex/ß + 1 ln(t’ + t).
t

Aufgabe 2.28: Für H(p) = L{h(t)} bestimme man 5 Glieder der asymptotischen Entwicklung für
p —-> co, h(t) aus Aufgabe 2.26. Hinweis: F(n + i) wie in Beispiel 2.31 umrechnen!
Aufgabe 2.29: Man bestimme eine asymptotische Darstellung von f(t) für 1-» oo bei

a) F07) = 1/(P" - 1)$b)F(17)= 1/(I7‘ + 1); C) F07) = P/(P2 *1):-
Aufgabe 2.30: Welches Stabilitätsverhalten haben die Originalfunktionen f(t) für 1» o0 bei

2

a)F(p)=p3p+2 b)F<p>= ” Z ;c>F<p>=+p+2; p3—3p‘+4p— p’-3p2+2p'
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In diesem Abschnitt wird die Lösung von verschiedenen Funktionalgleichungen
behandelt. Dazu werden die in Abschnitt 2. zusammengestellten Regeln und Eigen-
schaften der Transformation benötigt.

Die Lösung von gewöhnlichen Differentialgleichungen (Abschnitt 3.1.) und von
Systemen solcher Differentialgleichungen (Abschnitt 3.2.) mit vorgegebenen Anfangs-
werten spielt eine besondere Rolle; diese Aufgabenstellung war der Anlaß zur Ent-
wicklung der Transformation. Partielle Differentialgleichungen und andere Pro-
bleme werden in den Abschnitten 3.3. und 3.4. behandelt. In allen Abschnitten werden
Beispiele aus naturwissenschaftlichen und technischen Disziplinen (Mechanik, theo-
retische Physik, Elektrotechnik, Regelungstechnik, Systemtheorie) angegeben, die
allgemeinverständlich sind und keineswegs die Spezialliteratur der jeweiligen Diszi-
plin ersetzen.

Das immer wiederkehrende Prinzip der Lösung einer Funktionalgleichung mittels
einer Transformation ist in Bild 3.1 dargestellt. Es ist klar, daß die Anwendung einer
Transformation dann vorteilhaft ist, wenn sich im Bildbereich einfachere Gleichun-
gen ergeben als im Originalbereich. Ferner ist unter der Rücktransformation der Lö-
sung der Bildgleichung nicht immer die explizite Darstellung im Originalbereich zu ver-
stehen, vielmehr genügen mitunter asymptotische Aussagen oder Angaben über die
Stabilität. ‘

Funktion imfmkr/‘ma/y/2/murzg
l)rr'yma/bereft/7im ur/yinalbereicfi

- Tranifarmuirbn ['1' Tia/ufarmuf/anI
x

Fun/r//'0/70/g/2/: ‘ n

im .7//dbereim
117mg im Bildbe/efm

Bild 3.1. Lösungsschema bei Anwendung der Laplace-Transformation

3.1. Lineare Differentialgleichungen mit konstanten Koeffizienten

Naturwissenschaftliche und technische Probleme werden besonders häufig durch
lineare Differentialgleichungen mit konstanten Koeffizienten beschrieben. Eine solche
Differentialgleichung für die gesuchte Funktion y = y(t) hat die Form

y"" + a..,1y‘T"” + + axy’ + any =f(t)- (3-1)

Dabei bedeuten n e N die Ordnung, a, e R oder a, e K die Koeffizienten und f(t)
die rechte Seite der Differentialgleichung. Fürf(t) E Oheißt (3.1) bekanntlich homo-
gen, für f(t) $ O inhomogen. Die Veränderliche t g 0 ist in der Regel die Zeit; für
t < 0 sind wegen (2.3) alle Funktionen identisch null.

Im Abschnitt 3.1.1. werden Anfangswertaufgaben gelöst. Die Struktur eines durch
(3.1) modellierten Problems läßt sich besonders gut erkennen, wenn für die Funk-
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tion f(t) verschiedene spezielle Vorgaben gemacht werden. Diese Untersuchungen
werden in Abschnitt 3.1.2. durchgeführt. Dort wird auch die Diracsche Delta-Funk-
tion eingeführt und die Transformation darauf ausgedehnt.

3.1.1. Anfangswertaufgaben

Bei einer Anfangswertaufgabe sind außer der Differentialgleichung (3.1) noch zu-

sätzlich die Anfangswerte

I6 = y’(0)‚ ‚ 13"” = }’("'”(0)

gegeben. Diese Anfangswerte gehen wegen der beabsichtigten Anwendung des
Differentiationssatzes (2.24) als rechtsseitige Grenzwerte (t —> +0) von y(t)‚ y’(t), ...‚

y"""(t) in die zugehörige Bildgleichung ein.
Die Anfangswertaufgabe (3.1), (3.2) wird unter zwei verschiedenen Annahmen für

die Funktion f(t) betrachtet; der erste Fall tritt besonders häufig auf.

yo = y(0), (3-2)

a) f(t) besitzt eine rationale Bildfunktion

Wegen Satz 2.8, Formel (2.32), besitzt die Funktion f(t) genau dann eine ratio-
nale Bildfunktion F(p)‚ wenn sie eine Linearkombination von Funktionen der Form
(komplexe Schreibweise)

tkeat’ ke N, aé K,

oder der Form (reelle Schreibweise)

t"e"‘‚ t"'e"‘ sin act, t"e" cos ßt, k, m, n e N, a, b, c, 4x, ß E R, (3.3)

ist. Die existierende, eindeutige und n-mal (sogar beliebig oft) stetig diflerenzierbare
Lösung y(t) von (3.1), (3.2) für solche Funktionen ist bekanntlich ebenfalls eine Line-
arkombination von Funktionen der Form (3.3) ([B 7.1], 3.3.4.—3.3.6.). Da die Funk-
tionen (3.3) und ihre Ableitungen Laplace-transformierbar sind (Beispiel 2.16), läßt
sich die gesuchte Lösung y(t) eines Anfangswertproblems immer mittels Laplace-
Transformation finden. Die rechtsseitigen Grenzwerte und die Anfangswerte (3.2)
stimmen wegen der Stetigkeit von y(t), , y""(t) überein. Damit hat man den

Satz 3.1: Bei rationaler Bildfunktion F(p) = L{f(t)} laßt sich das Anfangswertproblem
(3.1), (3.2) stets wie folgt lösen: (3.1), (3.2) wird mit dem Dzflerentiationssatz (2.24)
transformiert, die entstehende algebraische Bildgleichung nach Y = Y(p) = L{y(t)}
aufgelöst und die rationale Bildfunktion Y(p) rficktranyormiert.

Mit (2.24) ergibt sich von (3.1) und (3.2) die Bildgleichung

p"Y - yep“ — M?“ — — y3"‘”

+ a,.—1(p""Y - yep” — yap” — — IBM”) +

+ dz (p2Y — yep - 76) + a1(pY — yo) + aoY = Ftp).
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In dieser algebraischen Gleichung für Y, in die die Anfangswerte (3.2) mit eingegangen
sind, werden die Abkürzungen

P(p) = p" + a -112"“ + + am + “o:

R(P) = }"o(P"_1 + an—1P"'2 ‘i’ ‘l’ 512p + ax)

+ M?" + a —:p"'° + + asp + a2) +

+ y8""(p + am) + y5"'“ (3.4)

eingeführt. P(p) bzw. R(p) sind Polynome in p vom Grade n bzw. höchstens vom
Grade n — 1. Bildgleichung und Lösung sind jetzt

R01) F(P) Z(P)Pomp) Ron) Fox), Y<p> Po) + w) N(p) . (3.5)

Y(p) ist tatsächlich eine rationale Bildfunktion, weil der Grad des Zählerpolynoms
Z(p) kleiner als der Grad des Nennerpolyuoms N(p) ist, y(t) = L“{Y(p)} kann nach
Tabelle l oder Abschnitt 2.4.1. gefunden werden.

Der Vorteil gegenüber anderen Lösungsmethoden für Anfangswertaufgaben be-
steht in der unmittelbaren Berücksichtigung der Anfangswerte (3.2) in der Bild-
gleichung und damit in der Lösung y(t). Die allgemeine Lösung der Differential-
gleichung (3.1) wird bei diesem Vorgehen nicht benötigt im Gegensatz zur üblichen
Methode.

Beispiel 3.1: Die Lösung der Anfangswertaufgabe

uy”’+v”-2y’=te"‚ ‚va=.1‚ y3=-2. .v..=3.

is! nach Satz 3.1 zu bestimmen. Im Bildbereich entsteht mit (2.24) und (T 6) für Y die algebraische
Gleichung

1

p3Y—p2+2p—3+p2Y——p+2-—2(pY—l)=

Die Polynome P(p) und R(p) ergeben sich hier mit

P(p)=p’+p’-2p=p(p-1)(p+2)‚R(p)=p’-p-1. (3.6)

Die Lösung der Bildgleichung und ihre Partialbruchurlegung nach (2.31) ist damit

m: m») + Hp) _ <p2—p—1)(p+1)2+1 _ zu»
m») Pm ‘ poz—1>(p+2>(p+1>2 " N(p)’

Cox 01i C21 C31 C32Y)=—+——+ +———.
(p p p-l p+2 p+l (p+1)’

Nach der Grenzwertmethode bestimmen sich die Koeffizienten zu

Cox = Ü, €11 = —i. 021 = 1. C31 = i» C52 = Ä‘;

damit ist die Lösung der Anfangswertaufgabe mit (T 5) und (T 6)

y(r) = — fie‘ + e"‘ + ie“ + «l» re" = —~}sinh! + e‘z‘ + ire".
4 Slopp,Operatorenrechnung
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Beispiel 3.2: Die Biegelinie y(x) eines Balkens genügt dem Anfangswertproblem

EU“) + Hy” = q(x). .v(0) = y”(0) = 0. .v”(0) = A. EI.v”’(0) = B.

unter folgenden Bedingungen (siehe auch Bild 3.2):

Bild 3.2. Lagerung und Belastung des Balkens im Beispiel 3.2

Der Balken ist gerade mit symmetrischem Querschnitt, er ist links gelenkig und rechts horizontal ver-

schieblich gelagert, er hat die Biegesteifigkeit EI und wird durch eine stetige Streckenlast q(x) sowie
eine horizontale Druckkraft H am rechten Ende belastet. Die Biegelinie y(x) soll bestimmt werden für

EI = 6480, H = 20, q(x) = 41e"‘”.

Als Bildgleichung und ihre Lösung ergeben sich mit den konkreten Werten nach (2.24) und (T S):

6480 (p‘Y— Apz — —B— + 20(p2Y— A) = —-—4—I——,
6480 p + 1/2

82 6480A 1 + 20A + B
Yo») = ————— + —jp——,P(p) = 20p’ (324122 +1).

(217 + 1) PG?) PCP)

Y(p) läßt sich durch Partialbruchzerlegung (mit der Abkürzung C = 20A + B + 81) in der Form

1 1 c 1 A
Y(I7) = :- + T — p +

4op1 +1 162 p2+ 1 p2+ 1 P2 1

2 324 324 324

schreiben. Die Rücktransformation geschieht deshalb am einfachsten mit dem Integrationssatz (2121)
und mit (T S), (T 8) sowie (T 9):

X I \

l C
y(x) = E I I (am: — cos ITT + Tsin dtdt + 18A sin 7x8-

Ü 0

X

1 2C 2C
=— —2e“”—18sin;———cos;+ 2+ —-)dt+18Asin—£—

40 18 9 18 9 l8
o

l x’: 81 x 9(B + 31) _ x 82 20A + B + 82
=——e‘ +—cos——————sm——— ———x.

l8 l0 l8 l0 20

Die Konstanten A und B sind durch das rechte Lager des Balkens festgelegt, sie sollen hier nicht
näher bestimmt werden.

Zwei weitere Anfangswertaufgaben wurden bereits in den Beispielen 2.14 und 2.15
behandelt. Nach Satz 3.1 läßt sich auch jedes homogene Anfangswertproblem mit
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beliebigen Anfangswerten lösen, dennf(t) E O hat die rationale Bildfunktion F(p) E 0.

Als Lösung ergibt sich nach (3.5) y(t) = y„(t) = L" .

Beispiel 3.3: Das folgende homogene Anfangswertproblem

y” + a,y' + aoy = 0; yo,y[, beliebig; a0, a, reell;

wird gelöst. Die Bildgleichung und die Polynome P(p) und R(p) lauten

12’Y- Yo!’ - n’) + aiUIY- yo) + -1oY = 0,

Ptp) = p’ + «up + au. R02) = yap + ‚v6 + mo,

und damit ergibt sich als Lösung

_ R01) _ P ‚ 1

Y0’) - W - yum + 0'0 + alyO) f0’) -

Zur Rücktransformation werden die Nullstellen

a=—<}a‚+\/1-)—‚ b=—-—}a‚—\/D, D=}af—ao,

von P(p) = (p — u) (p — b) benötigt. Soll das Ergebnis nur reellwertige Funktionen enthalten, so

sind folgende Fallunterscheidungen nötig.
Für D > 0, d.h. a und b reell und verschieden, wird (T 96) und (T 99) benutzt. Nach den Expo-

nentialfunktionen geordnet, ergibt sich:

(a+a1).vo+.v.’, _ (b+“1).Vo+.V¢l) em 37

2 JD 2\/D ( ' )

Für D < 0, d.h. a und b konjugiert komplex, benutzt man (T 97). Daraus folgt zunächst

L~1{ p }=e“}a;r (cos\/31-?J‘_D a,sin\/:3t).
P(p)

y(t) = 8'"

Nach den trigonometrischen Funktionen geordnet, ergibt sich

——- + 2 ’ ———

y(t) = (yo cos \/-1) 2+ Sin\/-1) z) e-W. (3.8)
2 \/ —D

Für D = 0, d.h.a = b = —}a,, ist nach (T98)

y(t) = (‚V0 + (‚v6 + {r 41x.vo)!)e"""’- (3-9)

Beispiel 3.4: Hat ein Stromkreis (Bild 3.3a) die Kapazität C, den Widerstand R und die Induktivität L,
so gelten zunächst zwischen Strom i und Spannung u die Gleichungen

t

1

MR = Ri(t)‚ u; = Li’(t)‚ u; = -E-J~i(t) d'r, uR + u; + u; = 0.

o

Dabei soll i(0) = 0 und 115(0) = u„ sein; aus der letzten Bedingung folgt wegen uc(0) = u,_(0) noch
Li’(0) = uo.

43
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Durch Differentiation nach t folgt für denStrom i(t)

Li,/(1) + Rip) + Leim = o, {(0) = 0, im) = i. u°_ (110)

_ R l
Setzt man 7(1) = t(!),a, = T ‚ a0 = E , so liegt Beispiel 3.3 vor. Folgende Bezeichnungen sollen

gelten: R I

a=—, =7, =~5 —, =—a_ _ =2- 2_2L wo LC u +\/D b JD, D ö con

7?‘?!
„L44

ä
l

"b
!

M’)

Ä,
f

H?)

f
1U} FT

17)

Bild 3.3a. RLC -Stromkreis aus Beispiel 3.4
Bild 3.3b. Stark gedämpfte Schwingung, schwach gedämpfte Schwingung, aperiodischer
Grenzfall

Als freie gedämpfte elektrische Schwingungen ergeben sich damit aus (3.7) bis (3.9) folgende Funk- ‘

tionen i(t) (Bild 3.3b):
a) D > 0, d.h.ö’ — auf, > 0 (starke Dämpfung):

‚m = __"°___ e(—.y+¢3)._ _ “°__ e(-a—~/3): = “°_ emsinh J; H
2L \/1> 2L JD L \/D

b) D < 0, d.h. Ö2 —— auf, < 0 (schwache Dämpfung):

i(t) =La“ sin „/—D z;
L J—n

c) D = 0, d.h. Ö2 — rug = 0 (aperiodischer Grenzfall):

. "o _„
t =— .z() L re

Im Beispiel 3.7 wird dieser Stromkreis wieder betrachtet. Dort wird dann eine Eingangsslflaflnung
2(1) vorhanden sein, die zu erzwungenen Schwingungen führt.
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b) f(t) ist für t > O stetig bis auf isoliert liegende Sprungstellen

Wie in a) wird das Anfangswertproblem (3.1), (3.2) betrachtet und vorläufig an-

genommen, daß y(t), ...‚ y""(t) und f(t) Laplace-transformierbar sind. Dann ergibt
sich wie in a) als Bildgleichung von (3.1), (3.2) und deren Lösung

R(p)
P(p)Y(17) - R(p) = F(P), Y(p) = i; + Q(P)F(P)-

und Q(p) = 79:? sind rationale Bildfunktionen; die zugehörigen Originalfunk-

tionen l

y.<r> = L-1 ‚ q(t) = L-1 {con} = L-1 (3.11)

lassen sich nach Abschnitt 2.4.1. bestimmen und haben die Form (2.32). Hat P(p)
nur einfache Nullstellen, so gilt auch die einfachere Darstellung (2.34). y,.(t) ist Lö-
sung von (3.1), (3.2) fürf(t) r: 0. Benutzt man noch den Fa1tungssatz(2.20) zur Rück-
transformation von Y(p)‚ so ergibt sich ‘

y(t) = J’n(t) + q(t) *f(f) = M!) + flqfl - T)f(T) dT- (3.12)

Unabhängig davon, ob y(t), ...‚ y""(t) und f(t) transformierbar sind, wird im
Satz 3.2 die Funktion (3.12) als Lösung von (3.1), (3.2) verifiziert, falls f(t) der fol-
genden einfachen Voraussetzung genügt.

Satz 3.2: Ist die Funktion f(t)für t > 0 bis aufisoliert liegende Sprungstellen stetig und S.3.2
l

existiert J |f(-t)| d-r, so ist (3.12) außerhalb der Sprungstellen die Lösung der Anfangs-
o

wertaufgabe (3.1), (3.2).

Beweis: y,,(t) aus (3.12) genügt der Gleichung (3.1) mit f(t) E 0 und den gegebenen
Anfangswerten (3.2). Deshalb bleibt zu zeigen, daß g(t) = q(t) aef(t) der Gleichung
(3.1) mit der gegebenen Funktion f(t) und verschwindenden Anfangswerten (3.2)
genügt.

Die Funktion q(t) ist nach a) Lösung der Anfangswertaufgabe

41i") + 0n—1i1"'”“ + + alq’ + aoq = 0,

4(0) = 11(0) = = q("'2)(0) = 0, l1(""1)(0) = 1, (3-13)

weil die zugehörige Bildgleichung P(p) Y(p) — I = 0 die Lösung Y(p) = Q(p) hat.
Die Funktion q(t) und alle ihre Ableitungen sind stetig, deshalb und wegen

‘|‘ [f(-r)[ d'r < oo existieren alle Faltungen q") *f(t), v = 0, I, ...‚n ([9], S. 54).
0

Aus g(t) = q(t) *f(t) folgt nach einer Diflerentiationsregel ([9], S. 62)

8'0) = q(t) *f(t)‚ g""“(t) = t1""“(t) *f(t) (3-14)

wegen der Anfangswerte q(0) = q’(0) = = q""2’(0) = 0. Daraus folgt, daß auch
die Funktionen g(t), , g"“"(t) stetig sind und für t-—> +0 alle den Wert Null an-
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nehmen. g‘"’(t) existiert in jedem Intervall, in dem keine Sprungstellen von f(t) liegen
(oder für alle t > 0, falls f(t) durchweg stetig ist), und es ist

g""(t) = q""(f - 1)f(T) d? + q""“(0)f(f) = tI‘"‘(!) *f(!) +f(f)
O

wegen q""“(0) = l. An jeder Sprungstelle t von f(t) existieren links- und rechts-
seitiger Grenzwert f(t — 0) und f(t + 0), folglich existieren dort wegen der letzten
Gleichung auch 1inks— und rechtsseitiger Grenzwert g"”(t — 0) und g""(t + 0), d.h.‚
g""(t) und damit auch y""(t) haben dieselben Sprungstellen wie f(t).

g(t) genügt tatsächlich (3.1), denn durch Einsetzen und Ausklammern von f(t)
ergibt sich für jedes Intervall, das keine Sprungstelle von f(t) enthält,

q‘"’ *f(t) +f(t) + a —1q‘"*"*f(r) + + aoq *f(t)

= (qm + a„-.q‘"*" + + aoq) *f(r) +f(t) =f(r),
weil der Ausdruck in der Klammer wegen (3.13) gleich null ist. An jeder Sprungstelle
von f(t) ist (3.1) durch (3.12) links- und rechtsseitig erfüllt. Damit ist der Beweis be-
endet.

Der Satz gestattet also die teilweise Anwendung der Laplace-Transformation, denn
sowohl y„(t) als auch q(t) in (3.12) können mit ihr berechnet werden.

Die Funktionen (3.3) sind stetig und erfüllen deshalb die Voraussetzungen des
Satzes 3.2, d. h.‚ Satz 3.1 ist ein Spezialfall von Satz 3.2. In diesem Fall sind die Lösung
nach Satz 3.1 und die Lösung (3.12) nur verschiedene Darstellungen derselben Funk-
tion. Andererseits ist Satz 3.2 umfassender, weil die Funktion f(r) in ihm weder
stetig noch transformierbar sein muß.

l

Die Voraussetzung f [f('r)[ dr läßt Funktionen zu, die im Nullpunkt sogar eine

. . °. . .. ’ . l '

absolut integrierbare Singularitat haben (W1C z.B.f(t) —-‚ -—/-_—) .

V I ‚

Beispiel 35a: Die Lösung der Anfangswenaufgabe

„ ‚ 1a°§’<1» . I , ll
y +y -2y= 0’1<t mIt.vo=1, )'o=~-. .vo=3,

wird nach Satz 3.2 bestimmt. Die Funktion f(t) ist bis auf die eine Sprungstelle bei r = l stetig.
Das Anfangswenproblem

y”’ + y” ~ 2y’ = 0. yo =1‚ Y3 = -1. yä’ = 3,

hat nach (3.6) die Bildgleichung

Ftp) Y= m), m») =p<p —1><p + 2>, 1«p)= p: — p -1.

Die Lösung y„(t) ergibt sich wegen der einfachen Nullstellen von P(p) nach (2.34) als

yh(t)=L_l{K(p)} 1 1 5
— =———e‘+—e'3’.
F01) 2 3 6
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g(!) = q(t) *f(t) ist Lösung des Anfangswertproblems

1,0§t<l
o,1<: mi‘y°="‘I'=y‘,’I=0'

y,,, + y,, _ z, = {

q(t) findet man wieder nach (2.34), es ist

w) = L“{Q(p)}= —% + ire‘ + ä e"‘.

Für die Funktion g(t) ergibt sich wegen der Definition von f(t) damit

l

lau-mir, 02:; 1,
O

l

fqa-zmr, igz.
0

go) =

Diese Integrale lassen sich noch berechnen und ergeben

I I I

J‘q(t—r)d1= —§t+§e’ fe"dr+%e‘2’ [e"dt
o 6 ö

= —i—ir+ie'——1-e-2', 0:2; 1;
4 2 3 12

1 1l

I410 z I)dr = — -1- + —1—e’J-e"dr + if“ [e”dr
2 3 6 _

0 0 0

1 1 1 1

= —;+—3-(1 —:)e’+l—2(e‘~ l)e‘°‘, 1:1.

Nach (3.12) folgt durch Zusammenfassen als Lösung der Aufgabe

L—-iI+—3—e"' OStSl
4 2 4 ’ "’

_ %eI—l + _i_e—2I’ + llTe-ZO-l), 1 g f.
ya) =

Aus dem Beweis des Satzes3.2 folgt, daß y(t), y’(t) und y”(t) stetig sind und y”’(t) eine Sprungstelle
bei t = I hat; dies kann man am Beispiel nachprüfen.

Ist die Funktion f(t) sogar Laplace-transformierbar (dies wird in Satz 3.2 nicht
verlangt) und hat sie die Laplace-Transformierte F(p), so kann für die Rücktrans-
formation von Q(p) F(p) statt des Faltungssatzes (2.20) mitunter auch eine andere
Rechenregel schneller und einfacher zur Bestimmung von g(t) führen. Die Berechnung
des Faltungsintegrales entfällt dann; dazu das folgende '

Beispiel 345 b: Dasselbe Anfangswertproblem wie in 3.5 a wird unter Beachtung der letzten Bemerkung
gelöst, Die Bildgleichung und ihre Lösung ist hier mit P(p) und R(p) wie in 3.5a

P02) Y(p) = R(p) + (1 — 60l, Y = £71 + iQ(p) - e"iQ(p)-
p P<p) p p
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Wie in 3.5a erhält man y„(t) und q(t) und daraus nach dem Integrationssatz (2.21) und dem Ver-
schiebungssatz (2.14)

l

1 1 1 1 1L—1_ = d=______ __z_:—2r’{Pan} fem: 4 2t+3e 12c p

o

0,0 ._<. I é 1,
1

L-1 {e"’——Q(p)} = 1

P

n
.

1 l
(t — 1) + -3-e“’ —— Ee““‘“,1 g r.

Faßt man y„(l) und die beiden letzten Ausdrücke zusammen, so ergibt sich dieselbe Lösung y(t) wie in
3.5 a.

Beixpiel 3.6: Die Anfangswertaufgabe

y” + “1J’;+ au)’ =f(f)‚ yo = ‚Via = Ü,

mit beliebiger bis auf Sprungstellen stetiger Funktion f(r) wird gelöst. Für die Lösung y(t) = g(I)
(weil R(p) s 0) wird q(t) benötigt. Nach (3.13) genügt q(t) hier der Anfangswertaufgabe

y”+ a1y’+aoy=0. yo=0, .v3= 1-

Folglich ist nach Beispiel 3.3, Formeln (3.7) bis (3.9), mit den dortigen Bedeutungen von u, b, D für

1

2J?
1 _j

D < 0: q(t) = ———e"1""sin \/-—D t,
./-1)

D > 0: q(r) = (e‘" — e"‘)‚

D = 0: q(t) = te‘*"*’.

Die Lösung der obigen Aufgabe ist nun durch
t .

Y0) = 8(1) = t1(f)*f(!) = i110 - Y)f(T) d!
o

gegeben mit den drei verschiedenen Funktionen q(t) für die drei Fälle D > 0, D < 0 und D = O.

Ein dem Beispiel 3.5b analoges Vorgehen ist hier nicht möglich, weil f(t) beliebig (also auch nicht
transformierbar) sein kann.

Beispiel 3.7: Hat der im Beispiel 3.4 betrachtete Stromkreis die Eingangsspannung e(t) (Bild 3.4), so

gilt (falls e(t) difierenzierbar ist) wegen (3.10) für den Strom i(t) jetzt

Li”(t) + Ri’(t) + 13K!) = e’(t)‚ i(O) = O, i'(0) = K > 0.

am L
c

Bild 3.4. RLC-Stromkreis mit Eingangsspannung
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Die Lösung i(t) läßt sich in allen Fallen mit (3.12) angeben als
r

m) = z‘..<r> + im = im + f qu — r) em aw,
O

1

dabei ist i„(t) aus Beispiel 3.4 (— uo = K) und q(t) aus Beispiel 3.6 zu entnehmen.
L

Für R > O ist ö = -2? > 0 und damit stets i„(t)—> Ofür t-v oo nach Beispiel 3.4 (dies folgt auch
1

aus Satz 2.18, weil beide Nullstellen von Lp’ + Rp + F negativ sind). Deshalb interessiert man sich

vorwiegend für z'D(t). Dafür ergibt sich aus Beispiel 3.6 mit den Bezeichnungen des Beispieles 3.4
für

1

D>0:i„(x)= _

2 D

I

I (ehe +5). - au und, - T) m;

0

I

J e""sin \/—Dre(t — r) dz;

O

D < 0: io(t) =

1

\/:5
t

D = o: igU) = [re-"ea — 1)dr.
0

Eine einfachere Darstellung von io(t) gibt es nicht; das Berechnen der Integrale für konkrete e(t)
ist i. allg. aufwendig.

1, 0 g t < T, _ ‘

Für e(r) = und D = 0 z. B. ist (Bild 3.7) für
0, T < I,

I

l
o g z s T: 50(1): y ze“"d1 = 33-[1——(§I+1)e"‘];

o

T T T

T; t: i0 (t) = (r —— 1)e""“"dt = te“" {e"‘dt — e'”"{1'e”’ dt \

6 oO

= 617 [(1 + 6(t — T)) e"""T’ — (ö: + ne-"q,

in

Bild 3.5. Strom i„(r) aus Beispiel 3.7

Das Bestimmen der allgemeinen Lösung y(t) sowie das Lösen von Rand- und Eigen-
wertproblemen für die Differentialgleichung (3.1) ist ebenfalls mittels Laplace-Trans-
formation möglich. Dabei müssen alle nicht vorgegebenen Anfangswerte aus der
Folge yo, yg, ‚ y:,"'” in der Bildgleichung als Parameter behandelt und nach der
Rücktransformation den gestellten Bedingungen angepaßt werden (siehe Aufgaben
3.5 und 3.6).
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3.1.2. Spezielle rechte Seiten f(t)

Die innere Struktur eines physikalischen oder technischen Systems, das sich durch
eine gewöhnliche lineare Differentialgleichung mit konstanten Koeffizienten be-
schreiben läßt, ist durch die homogene Difierentialgleichung mit den gegebenen An-
fangswerten bestimmt; die zugehörige Lösung ist y..(t).

Die äußeren Einwirkungen auf das modellierte System werden durch die Funk-
tion f(t) (Erregung, Eingangs-‚ Steuer-‚ Störfunktion, Eingangssignal) ausgedrückt.
Die bei verschwindenden Anfangswerten zugehörige Lösung ist g(t) = q(t) >i<f(t).
Die Funktion g(t) (Antwort, Ausgangsfunktion, —signal) wird anschließend für Ver-

schiedene wichtige Funktionenf(t) untersucht, d. h.‚ es wird das Anfangswertproblem

w + a„_iy‘"-“ + + ax)’, + aoy =f(r),
yo = y; = ... = yg"‘1)= ,

betrachtet, das nach Satz 3.2, Formel (3.12), die folgende Lösung hat:

5(1) = 410) *f(f) = frq(t - T)f(T) (in (3.16)

qm = L"{Q(p)}, P(p) = p" + a„-‚p"-* + + a0, Q(p) =4
P02) '

q(t) heißt Gewichtsfunktion (oder auch Greensche‘) Funktion).
Die in Betracht kommenden Funktionenf(t) sind transformierbar und nach dem

Faltungssatz (2.20) folgt aus (3.16)

G(P) = Q(P)F(17)- (3.17)

Von dieser viel einfacheren Bildgleichung kann nunmehr auch anders auf g(it) ge-
schlossen werden (z.B. durch Partialbruchzerlegung bei rationalem G(p)).

[ingmgrfurr/rlivn Ausgangfu/7/(Min

Jror/‘un/rr/"on Antwort
Erregung

Hi? ’

F.’/J) 9 (P1

Bild 3.6. Schematische Darstellung der Gleichung (3.17)

Q(p) heißt Übertragungsfaktor (auch -funktion), er verknüpft sehr einfach durch
(3.17) F(p) (wief(;) Eingangsfunktion genannt) mit Q(p) (wie g(r) Ausgangsfunktion
genannt). Gleichung (3.17) und Eigenschaften des Ubertragungsfaktors bleiben in
gewissen Fällen sogar bei nichtverschwindenden Anfangswerten erhalten (siehe [2],
§23). Sieht man von den konkreten physikalischen oder technischen Einzelheiten des
modellierten Systems ab, so kann der Zusammenhang wie in Bild 3.6 dargestellt wer-
den. Werden mehrere Systeme durch Reihen-[Parallel- oder Rückführschaltung zu-

‘) Georg Green (1793—l84l), englischer Mathematiker.



3.1. Lineare Differentialgleichungen 59

sammengefügt (Bild 3.7), so spiegelt sich das in einfachen Rechnungen mit den Über-
tragungsfaktoren wider; davon wird in der Elektrotechnik, Regelungstechnik und
Systemtheorie ausgiebig Gebrauch gemacht. Es gelten folgende

Verknüpfungsregeln für Übutraglmgsglieder:

a) Reihenschaltung: Q(p) = 91009207),

b) }’arallelschaltung,' Q(p) = Q1(p) + Q2(p),

g, (f)

MP)

im u, (p) gm

LL‘ Fm: MW) m?) m;

9'211’)

52 (P)

Hf} HYWGZW gfff

Hp} 7 '07 W; (:2 w;

Bild 3.7a. Reihenschaltung von Übertragungsfaktoren
Bild 3.7b. Parallelschaltung von Übertragungsfaktoren
Bild 3.7c. 1. Rfickffihrschaltung von Übertragungsfaktoren
Bild 3.7d. 2.Riickfiihrscha1tung von Übertragnngsfaktoren
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c) 1. Rückführschaltung: Q(p) =,
d) 2.R12ckf12hrschaI!ung: Q(p) = .

Der Beweis dieser Regeln folgt aus G1(p) = Q1(p) F1(p) und G2(p) = Q2(p) F2(p)
im Fall

a) wegen F207) = G107) und G207) = G07),

b) Wegen F107) = F207) = F07) und G107) = G207) = G07),

C) Wegen F107) = F07) — G207) und G107) = F207) = G07),

d) Wegen F107) = F07) — G207) und G207) = G07)

Mit diesen Verknüpfungsregeln ist es möglich, _aus technisch sinnvollen Elementar-
baugliedern (ca. l0 Stück mit sehr einfachen Ubertragungsfaktoren) komplizierte
Systeme der Elektrotechnik, Regelungstechnik und Systemtheorie aufzubauen und
den sie charakterisierenden Übertragungsfaktor zu bestimmen; die Beispiele 3.8 und
3.9 skizzieren dieses Vorgehen.

Beispiel 3.8: Als Schwingungsglied wird ein Elemenlarbauglied bezeichnet, dessen Eingangsfunktion
f(t) und Ausgangsfunktion g(t) der Differentialgleichung

g"(f) + 01é"(!) + aog(t) =f(l), 8(0) = g'(0) = 01

genügen. Der RLC-Stromkreis der Abb, 314 ist ein solches Glied für elektrotechnische Systeme
R I

(a, = —L—, a0 = Der Übertragungsfaktor Q(p) eines Schwingungsgliedes ist

Q07) =e,+ m; + ac .

Die Gewichtsfunktion q(t) wurde in Beispiel 3.7 in Abhängigkeit von D = i af — an bestimmt; für
den technisch wichtigsten Fall ist D < 0 und nach Beispiel 3.7

1 __

q(t) = m e'§"" sin \/—D t,
„/—-D

Bild 3.8. Beispiel einer Verknüpfung von Übertragungsfaktorcn
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Beispiel 3.9: Für das System des Bildes 3.8 wird der Übertragungsfaktor Q(p) berechnet. Wegen
der Beziehungen

G1 = Q1(F“ G2): G2 = Q2(G1 " G3), G3 = Q3(Gz " G4), G4 = Q4G3

gilt nach Regel c) zunächst Q .

G3 = Q;G;. Q1 =, G: = QZGI - Q2QlG1-

Daraus ergeben sich G1, G = G1 und Q:

Q (1 + Q Q )
G: = j2'——3é4- G1 = Q1101, G1 = Q1F'_' Q1QuG1:

1 + Qa(Q2 + Q4)

_ = 9m + 949; + 9.» =

G G‘ 1 + 9x92 + 94) + 9,92m + 939.) F Q0’) F"

a) Sprungfunktion f(t) =. u(t), Ubergangsfunktion g,,(t)

.. 0. I S 0‚ .Furf(t) = u(t) = I t > O gilt wegen (2.4)

1 I l

G.<p> = -[W = 3902), gm = 1 * q(t) = qm dz. (3.18)

Die Funktionf(t) = u(t) drückt eine zeitlich konstante Erregung der Höhe 1 des
Systems aus; g„(t) ist die zugehörige Lösung von (3.15).

G„(p) ist eine in p rationale Bildfunktion, die auch durch Partialbruchzerlegung
rücktransformiert werden kann. Hat pP(p) nur die einfachen Nullstellen pa = 0,
pl, ..., p„, so gilt für die Koeffizienten nach (2.33)

l
_ PUR) +171‘-PI(Pl) ,

und g,,(t) hat nach (2.34) die einfache Form

on =O,1‚...‚n‚

1 " l y ‚
„ = -1 —,— I . 3.19

g ‘Ü P(0) + Ä p.P (pa ° ‘ ’

Diese Formel heißt Heauisidercher Entwicklungssatz, sie spielt z. B. in der Elektrotech-
nik eine große Rolle. Hat pP(p) mehrfache Nullstellen, so ist zur Bestimmung von
g„(t) Formel (2.32) zu verwenden.

Für Re p, < 0, i = 1, 2, ‚ n, folgt aus (3.19) bzw. bei mehrfachen Nullstellen aus

(2.32) sofort
1 1

g„(t)-> W = Z, r—> 0°. (3.20)

d. h., g,,(t) ist uneigentlich stabil. Dies gilt auch bei beliebigen Anfangswerten für (3.1)
wegen y„(t) —> 0, t—> 0o, bei Re p, < 0.
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g„(t) heißt Übergangsfunktion. Mit ihr kann man g(t) für jede Funktion f(t) an-

geben, denn aus (3.18) folgt g‚j(t) = q(t) und daraus wegen (3.16)

8(1) = g; (I) *f(t) = fgL(t - 1)f(T) <11 = §7fg..(f -T)f(T)d1,

wenn noch g„(0) 7 0 beachtet wird. Die letzte Darstellung von g(t) heißt Duhamel-
sehe Formel. Die Ubergangsfunktion g„(t) kann analytisch bestimmt und auch durch
technische Experimente gefunden werden, sie kann zu Stabilitätsuntersuchungen
herangezogen werden.

Beispiel 3,10: Die Übergangsfunktion für das Problem y” + aly’ + aoy = u(t), yo = yg = 0, wird
bestimmt. Nach Beispiel 3.3, den dortigen Bedeutungen von a, b und D sowie Formel (3.18) ist nach
einiger Rechnung für

I

l l
D > 0: g„(r) = ——_ J‘(e‘"-—e°')dr = T_(be“ —- de“ — b + a)

2\/D 2‘/Dab
0

1 l
=—+——_-(be"‘—ae"‘) wegena—b=2\/3, ab=a0,

do 21:0‘/1)
f

1 T

D < 0: g„(r) = J‘e'5”1'sin\/—Drd'r
V “D O

1 1 „i - _- _— _-=;- ei"‘(2alsm\/ Dt+\/ Dcos\/ Dr),

l

1 l l
D = O: g„(l) = I Ie"}""’ dr = — — — (l + ———a‚t) e“3"".

ao zu, 2
o

1 .

Der Summand T ist in jedem Falle in Übereinstimmung mit (3.19) vorhanden. In diesem Beispiel ist
ß

das Faltungsintegral in (3.18) zur Bestimmung von g„(t) günstig, weil q(t) im Beispiel 3.3 bereits be-
rechnet wurde.
Beispiel 3.11: Die Übergangsfunktion für y”’ - y” + 4y’ — 4y = u(r), yo = f‘; = yß’ = 0, ist zu

bestimmen. Nach (3.18) folgt

9.111) = P07) = (17 - 1N)?’ + 4). P’(P) = 3172 - 211 + 4-
1

27m’
Da nur einfache Nullstellen po = 0, pl = 1, p; = 2j,p3 = 1'22 vorliegen, ist (3.19) anwendbar. Es ist

P(0) = -4‚ P11’/(P1) = 5. P2P'(P2) = 3(1 — 21')» P3P'(P3) = 8(1 + 1J")-

Durch Einsetzen und Umrechnen auf reelle Funktionen nach (2.35) folgt die Übergangsfunktion

1 1 2h 11

*’"“’='7+—°' ° +s‘aT25‘>°
+ _}:._ -21:

5 8(l - 2))

1

=E(cos2t—2sin2t+4e‘— 5).
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b} Funktion f(t) = e”, Frequenzgang Q(jw)

Für f(t) = e"“", w > O, gilt wegen (2.5)

‘W’ = mm
Die Funktion e"“" drückt wegen

r

‚ gar) = qm =x er" = er‘ f e-Wwnndr.
0

|e""‘| = 1, e""’ = cos wt + j sin wt,

eine periodische Kosinus- oder Sinus-Erregung der Amplitude 1 und der Frequenz w

aus. Statt mit den reellen Funktionen cos cot oder sin wt wird mit der einfacheren
komplexen Funktion e""’ gerechnet und am Ende einer Rechnung zum Real- oder
Imaginärteil übergegangen; diese Ausdrücke sind Lösungen von (3.1) wegen der
reellen Koeffizienten in (3.1). g„‚(t)‚ Re g„‚(t) oder Im g„‚(t) sind also die zu e""'‚
cos wt oder sin wt gehörenden Lösungen von (3.15). _

G„‚(p) ist wieder eine in p rationale Funktion, die auch durch Partialbruchzerlegung
rücktransformiert werden kann. Hat (p — jw) Q(p) nur die einfachen Nullstellen
po = jw, pl, ,p„‚ so folgt analog a) mit (2.33) und (2.34)

x nur n 1 pi!

gw"’=m“’ EEWE '

Liegen mehrfache Nullstellen vor, so ist (2.32) zu benutzen.
Ist Rep: < O für i = 1, ‚ n, so folgt aus (3.21) bzw. bei mehrfachen Nullstellen

aus (2.32) sofort

(3.21)

e’“" + 0(1) = Q(jw) e’“” + 0(1), t—> oo.
1

ga.(t) = Paw)

Die letzte Formel beschreibt das Verhalten des modellierten Systems für große t
(stationärer Zustand). Die Formel gilt sogar bei beliebigen Anfangsbedingungen für
(3.1), weil yh(t) —> 0 für t —> 0o gilt unter der getroffenen Annahme Re p, < 0.

Q(J'w)= |Q(iw)|e’“"‘”’‚ lQ(jw)l bZW- w») (3-22)

heißen Frequenzgang, Amplitude bzw. Phase des Frequenzganges. Q(jw) ist der Wert
des Übertragungsfaktors auf der imaginären Achse. Wegen der für Re p, < 0 gül-
tigen Beziehung

g.„(t) = lQ(jw)| €"""*“"‘"” + 0(1), f—* 0°, (3.228)

erkennt man in diesem Fall am Frequenzgang ohne Rücktransformation sofort
Amplitudenänderung und Phasenverschiebung gegenüber der Eingangsfunktion e’""
für den stationären Zustand.

Der Frequenzgang kann wegen (3.18) aus der Übergangsfunktion durch

Q(jw) = jwG..(jw)

berechnet werden. Auch umgekehrt kann die Übergangsfunktion aus dem Frequenz-
gang berechnet werden ([9], S. 97); dies ist wegen der möglichen experimentellen Er-
mittlung des Frequenzganges von Bedeutung.
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Beispiel 3.12: Der Frequenzgang, seine Amplitude und Phase sowie der stationäre Zustand sind für

a) = ä und

y" + Sy’ + 4y = e"‘"‚ yo und y,’, beliebig,

zu bestimmen. P(p) = p’ + Sp + 4 hat die Nullstellen pl = ——1 < 0 und p; = -4 < 0; es ist

a.) = ——————— =e — w — w ,Q(' > 1 1 (4 2 s" >
J 4 — m2 + Sjw (4 — w2)2 + 25w‘ J

lQ(.i‘0)l = ((4 — 02)’ + 25:07)‘? z 0‚24‚

—s
z —2,564‚ <p(w) z —68,7° z —l‚2.tan ¢p(az) = 4 2

— w

Für t —> o0 ist damit nach (3.22a)
, n

g„‚(t) = 0,24 e1(7'-'-1) +o(1).

yo und y; können tatsächlich beliebig sein, weil wegen der vorliegenden Nullstellen y„(t)—> 0 für
t —> o0 gilt.

Bei der Erregung sin w! gilt für die Antwort Im g„‚(l):

Img‚„(t) = 0,24 sin (ä: — 1,2) + 0(1), z» 6o.

Der Frequenzgang Q(jw) ist eine komplexwertige Funktion der reellen Veränder-
lichen w. Der Realteil von Q(jw) ist eine gerade Funktion von w, der Imaginärteil
von Q(jw) ist eine ungerade Funktion von w:

Re Q(jw) = R6 Q(-J'w)‚ Im Q(iw) = -Im Q(-Jw)-

Dies gilt unter Beachtung von (3.l6) wegen

Qüw) = = V,7J.‘;0)l—2PTjco) = —|,T:W<Re Pow) — j Im Pow),

Re1’(jw) = Z mm)”, Im PO10) = Z ay(jw)"-
v gerade v ungerade

Daraus folgen außerdem die Beziehungen

Qüw) = Q(-jw)‚ Qt-iw) = Q(Jw). lQ(jw)|‘ = Q(jw) Q(-iw)-

Der Frequenzgang Q(jw) kann in der komplexen Ebene dargestellt werden. Aus
dieser Darstellung (Ortskurve genannt) können Amplitude und Phase abgelesen
werden. Dies illustriert das

Beispiel 3413: Der Frequenzgang von

y” + aly’ + aoy = e”‘"‚ yo und y", beliebig, 3,-af = ao, u; > 0,

wird bestimmt und graphisch dargestellt.
Für P(p) = p’ + alp + an sind die Nullstellen p, = p, = —-5 a, < 0. Der Frequenzgang, seine
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Amplitude und Phase sind hier

1 l
Q(J'w) = . lQ(iw)l =a.,—w2+a1jcu ao+w1

¢(a1)= arctana;:(l’)2 beiw # Ja)‘, <p(w) = — -gbeiw = JE.
°_

1

Aus diesen Beziehungen folgt: Für wachsende w g 0 ist offenbar [Q(ja>)] monoton fallend von?
O

bis 0, für wachsende w g 0 ist wegen q/(w) < 0 auch rp(w) monoton fallend von 0 bis —7:. In Bild 3.9
ist dieser Sachverhalt dargestellt.

Der Frequenzgang läßt sich auch zu Stabilitätsuntersuchungen heranziehen (Orts-
kurvenkriterien).

Bild 3.9. Frequenzgang Q(jw) des Beispiels 3.|3 als Funktion von co

c) Diracsche Delta-Funktion Ö(t)

In Physik und Technik ist häufig eine Funktion (Erregung) nötig, die eine sehr
kurze Zeit mit einem sehr großen Wert wirkt. Dies ist z.B. bei der Beschreibung eines
mechanischen Stoßes, eines Strom- oder Spannungsstoßes der Fall (Beispiel 3.14). Da-
bei soll zur Normierung stets die Gesamtintensität gleich l sein (siehe auch [B 22],
1.2.2.).

Solche Funktionen lassen sich beliebig viele angeben, die einfachste unter ihnen
(Bild 3.10a) und ihre Gesamtintensität ist

0, t < 0, s < t ' 1

_ = _. = >¢5(1,g)_ Lyoélée und 6[6(1,e)d1 es 1,t=£.
s

Der Parameter e (und auch die Vielfalt der Funktionen mit obigen Forderungen)
stört bei Rechnungen und ist in den Anwendungen unwesentlich, deshalb wird der
Grenzübergang e —> +0 durchgeführt. Aus den obigen Beziehungen entsteht dadurch
formal: 0 1* 0 I

zS(z)={’ und [5(-r)d1:=1, t>0.
‚ t = 0 ö

Diese Gleichungen stehen zueinander im Widerspruch, denn es gibt keine Funk-
tion ö(t) mit diesen Eigenschaften.

Trotzdem möchte man mit dieser „Pseudofunktion“ 6(1), auch Diracsche Delta-
5 Stopp, Opemmrenrechnung
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Bild 3.103. Funktionen t$(r, s) für e = i, L, L, —i—
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Bild 3.1013. Symbolische Darstellung der Diracschen Delta-Funktion 6(1)

Funktion‘) (Impulsfunktion; symbolische Darstellung in Bild 3. lOb) genannt, gern rech-
nen, insbesondere soll sie in den Kalkül der Laplace-Transformation einbezogen
werden. Dafür gibt es verschiedene Möglichkeiten. Hier wird anschließend der Be-
griff des Stieltjes-Integrales‘) herangezogen, im Abschnitt 4.3.3. wird ö(t) im Rahmen
der modernen Operatorenrechnung mit einer Distribution identifiziert. Diese letzte
Auffassung ermöglicht es auch, Ableitungen (in einem verallgemeinerten Sinn) von

ö(t) und deren Laplace-Transformierte zu bilden.
b

Das Riemann-Stieltjes-Integral ff(t) dg(t) der stetigen Funktion f(t) bezüglich der

in a g t g b monoton wachsenden Funktion g(t) existiert bekanntlich immer ([B 2],
S. 224). Setzt man g(t) = u(t) (u(t) siehe Übersicht S. 8), so folgt aus der Summen-
definition dieses Integrales sofort

{f(t) d (f) {f(0), a g 0 < b,
u = 3.23

.. 0, sonst. ( )

In Analogie zu’ der für stetig differenzierbare Funktionen richtigen Substitutions-
regel führt man jetzt ein formales Element 6(1) durchdie Schreibweise du(t) 2 ö(t)dt
ein, d.h., es wird

{f(t) 6(1) dt = fbf(t) du(t) (3.24)

gesetzt. Nunmehr lassen sich alle Rechenregeln für Stieltjes-Integrale anwenden; z.B.
läßt sich die Faltung einer stetigen Funktion f(t) mit ö(t) bestimmen als

f(t) * au) = M: — z) 5(1) d1 = f(t — 1) du(-r) = f(t). (3.25)

1) Paul Adrien Maurice Dirac (geb. 1902), englischer Physiker.
z) Thomas-Jean Stieltjes (1856-1894), holländischer Mathematiker.
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Ist nicht t = 0 sondern t = to > 0 die kritische Stelle, so schreibt man in Ver-
allgemeinerung von (3.24):

b b fÜo) a § 7 < l7f/(t) au — z.) dt = mt) du(t — x0) = ’ ° ’ (3.26)
.‚ . 0, sonst.

Beispiel 3.14: Die Delta-Funktion 6(1) als idealisierte mathematische Beschreibung physikalischer
Vorgänge ist in den verschiedensten Gebieten nützlich:

a) Zwischen Kraft K(t) und Impuls J(t) in der Mechanik besteht der Zusammenhang

I

J(t) = f K(r)dr, K(t) = J’(t).
O

Bei einem mechanischen Stoß der Größe Jg zum Zeitpunkt t = to springt der Impuls von 0 auf den
konstanten Wert Jg, d.h., es ist J(t) = J9u(t — to). Die hier zugehörige Kraft ist keine Funktion
von t, sie läßt sich in der Form K(t) = J0<5(I — to) darstellen. Analog lassen sich Strom- und Span-
nungsstöße beschreiben.

b) Ist die Eingangsspannung e(t) eines RLC-Stromkreises (Beispiel 3.7) die Spmngfunktion u(t)‚
so kann e’(t) = 6(1) in der Differentialgleichung des Beispiels 3.7 gesetzt werden.

c) Bei der Belastung eines Balkens (Beispiel 3.2) kann neben der Streckenlast q(x) auch eine Einzel—

last qg an der Stelle x = x0 vorkommen. Diese Einzellast kann als Grenzwert einer Streckenlast
analog Bild 3.10 aufgefaßt und mit qo(x) = qo6(x —- xo) in der Differentialgleichung für die Balken-
durchbiegung berücksichtigt werden.

Zur formalen Transformation von Ö(t — to) bildet man unter Beachtung von (3.26)

und wegen 0 g to < oo

j e”‘ö(t — to) dt = j e"” du(t —— to) = e“”°. (3.27)
O O

Die Funktionen e“”° sind nach Beispiel 2.22 keine Laplace-Transformierten von
transformierbaren Funktionen, weil sie periodisch in p sind. Man kann jedoch unter
Beachtung der Vereinbarung (3.24) und der Formel (3.27) nachweisen, daß bei Hinzu-

du(t —— to)

dt
tionen bzw. der Funktionen e""‘° zur Menge der Laplace-Transformierten die meisten
Rechenregeln aus Abschnitt 2.2. gültig bleiben. Ein weiterer solcher Nachweis folgt
aus den allgemeineren Überlegungen des Abschnitts 4.3.3. (Satz 4.5). Im folgenden
wird lediglich die Verwendung von ö(t) als Störfunktion bei Differentialgleichungen
der Form (3.1) gebraucht.

nahme der Elemente ö(t — to) = zur Menge der transformierbaren Funk-

d) Impulsantwort g,(t)

Die spezielle Diracsche Delta-Funktion ö(t) wird jetzt als rechte Seite f(t) für das
Anfangswertproblem (3.15) genommen; Ö(t) drückt also eine kurzzeitige Einwirkung
von großer Stärke mit der Gesamtintensität 1 aus. Die zugehörige Lösung g„(t) heißt
Impulsantwort. 1)

Aus dem Anfangswertproblem

y"" + a..—1y‘"‘“ + + aoy = <5(t), y(0) = = y""“(0) = 0.

‘) In der Technik ist anders als hier ,,Impulsantwort“ bei einer Rechteckerregungflt) üblich.
5:
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ergibt sich mit (2.24), (3.27; to = O) und (3.4) P(p) Y = 1 und daraus sofort mit (3.11)

o, ‚so
" = €10) u(!)- (3-28)gm = { m „O

Diese Impulsantwort g„(t) hat folgende Eigenschaften:
g„(t)‚ ..., gf‚""’(t) ist stetig für alle t, weil nach (3.13) q(0) = = q""2’(0) = 0

ist; dagegen ist g, “’ (t) unstetig bei t = 0, weil der linksseitige Grenzwert wegen
(2.1) 0 und der rechtsseitige Grenzwert nach (3.13) gleich 1 ist. Bei t = 0 existiert
deshalb g,‘,"’(t) nicht. Schreibt man g},"“’(t) in der Form

g$"‘“(t) = tI""“(t)u(f) = (t1"““(f) - 1) "(Ü + 140),

du(t)
dt

n-te Ableitung von g„(t) als Pseudofunktion auffassen und schreiben in der Form

g$"’(t) = q""(t) "(O + 5(1)-

Beispiel 3.15: Es wird die lmpulsantwort g;(t) für

so ist der erste Summand wieder stetig für alle t. Mit ö(t) = läßt sich deshalb die

.v”’ + y” — 2y’ = 5(1). ‚vo = ‚v3 = ‚v.’‚’ = 0.

bestimmt und diskutiert. Aus Beispiel 3.5a ist q(r) bekannt, damit sind die Impulsantwort und ihre
Ableitung

3.50) = {o
‚ zso,

—-}+<_1;e'+%e‘2‘‚ z>0,
‚<0 0. l5 0,

g” _ §e'—§e'2‘, r>0.

Hier ist n = 3; gg(t) und g,§(t) sind für alle t stetig; dagegen hat

0. I; 0

-}e‘+§e”‘, t>0

bei t = 0 eine Sprungstelle der Höhe J. Es ist deshalb als Pseudofunktion

g$'(t) = } = (<3 e‘ + %e'2' — 1) u(t) + u(r)

g§,”(t) = e‘ — gr”) u(t) + 6(1).

In Bild 3411 sind diese Impulsantwort und ihre Ableitungen in der Umgebung von t = 0 dargestellt.

9,5 9a

1 1 ‘ :

17 p 7 v 1

-7 -1 l-

95 u?’

7 1 -

-—————-—>

35 ’ 11/ f

Bild 341l. Impulsantwort g‚;(t) und ihre Ableitungen aus Beispiel 3.15
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e) Übersicht

Das Anfangswertproblem

y"" + an—1y""“ + + any =f(t), yo = ya = = y.§"“’ =

mit der bei transformierbarem f(t) gültigen Bildgleichung

P02) Y(p) = F(p). P(p) = P" + am?“ + + au,

wurde für verschiedene Funktionen f(t) betrachtet. Die wichtigsten Größen und
Zusammenhänge sind nochmals in den folgenden Tabellen aufgeführt. Die in 3.1.2.
verwendeten Bezeichnungen (aber nicht die Buchstaben) mit Ausnahme von „Impuls-
antwort“ stimmen mit den in der technischen Literatur üblichen überein.

Bildbereich Originalbereich

Übertragungsfaktor: Q(p) = ä Gewichtsfunktion: q(t)

Frequenzgang: Q(ja1) -

Funktion f(x) in (3.l5) Lösung g(t) von (3.15)

f“) = um = {(3, : f 2, Ubergangsfunktion; g,,(t), g,;(t) = q(r)

Heavisidescher Eruwicklungssatz für g.,(t)

Duhamelsche Formel für g(t)

m) = e"“",m > o g„‚(r)

f(I) = cos wt Re g‚„(t)

f(t) = sin wt Im gm(t)

f(r) = 6(1) Impu1santwort:g5(t)

gm = {:20 if = q(!) um

Die Funktionen q(t), g,,(t), g,,,(t) und g,,(t) beschreiben alle das Verhalten des durch
(3.l5) modellierten physikalischen oder technischen Systems gleichermaßen. Im
nächsten Beispiel werden sie noch für ein elektrotechnisches System bestimmt.

Beixpiel 3.16: Für die in Bild 3.l2a angegebene Schaltung (ein Elementarbauglied) werden Q(p),
q(r), g,,(t), ga,(t), Im gun) und g5(r) berechnet und graphisch dargestellt in Bild 3.12b.

Bei dieser Schaltung handelt es sich um einen Spezialfall des in Bild 3.3 dargestellten Stromkreises
mit L = 0; deshalb gilt wegen (3.10) für beliebige Anfangsbedingungen

Ri’(t) + l?i(t) = 0.
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Bild 312a. RC-Schaltung des Bei-
L‘ R spiels 3.16

gm g, (f)
. 7 ____ _-

7 E ~ — « i —

0 t L7 r

Im mm gß/f) Bild 3.121). q(t)‚g„(t), Im g„‚(t) und\ 345(1) des Beispiels 3.16

I7) Ü \/ I 0 I

Nach einfachen Rechnungen folgen wegen (T 5), (3.18) und (3.21)

I 1
= l = —IIRC’ = 1 _ —2IRC ’Q(p) p+1/RC. 4() e g..(t) RC( e )

1 _ RC(1 — jcoRC) _

gw(;) = (em: __ e man) 2 (eJw: _ e mac)’

(DRZCZ sin wt \

"“*'w“’ = im "°°“°’ + em)’
M!) = u(t)e"”‘°-

3.1.3. Aufgaben: Lösung linearer Differentialgleichungen

at Aufgabe 3.1: Man löse die Anfangswertprobleme

a) 7“’ -— y = 0, y(0) = .v’(0) = .v”(0) = 0, y"’(0) = 1;

b) .v“’ + y = 0, y(0) = .v’(0) = y”(0) = 0. y”’(0) = 1;

C) ,v‘5’ - .v“" + .v"’ - y" = 0, y(0) = y’<0) = y”(0) = 0. y”’(0) = 1.

y<4)(0) = 2.

>s< ‘Aufgabe 3.2: Man löse die Anfangswenprobleme

a) y” - y = I’. y(0) = y’(0> = 1,

b) y” — y = e“sin t, y(0) = 0, y’(0) = —1.

* Aufgabe 3.3: Man löse das Anfangswertproblem

.v“’ - y =f(t)‚ y(0) = y”(0) = y”(0) = 0, .v”’(0) = 1;

f(t)= O für 0 g t <1, f(t) = e‘2“‘“ für 1 <1.
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Aufgabe 3.4: Man löse die Anfangswertaufgabe

y” + 16y’+ 8y= {Q o; t < I’ 2 < " und y<o> =y'<o) = 0.
1, l < t < 2,

Aufgabe 3.5: Man löse die Randwertaufgabe

J"” + 2.1"’ + y’ = I, ‚V(0) = .V'(0) = 0. y(1) = 0-

Aufgabe 3.6: Man löse die Eigenwertaufgabe

y” + Äzy = O, y’(0) = 0, y’(1r) = 0; Ä > O.

Aufgabe 3.7: Für die Differentialgleichung

‚VW + 7y" + 25y’ + 39)’ =f(f)‚ y(0) = J"(0) = .V"(0) = 0,

bestimme man Q(p), g,.(t), g„(t) und Q(jw).

Aufgabe 3.8: Man bestimme das stationäre Verhalten von

y“) + 8y”’ + 25y” + 36y’ + 20y = sin I, y(0) und y’(0) beliebig.

Aufgabe 3.9: Man bestimme den Frequenzgang von

y" + ü)" =f(f)‚ ü > 0‚ .V(0) = .V'(°) = 0.

und untersuche ihn als Funktion von w g 0. Beschreibt (3.22a) das stationäre Verhalten?

Aufgabe 3.10: Die Impulsantwort ist zu bestimmen von

y”- + ay’ = 5(1), a > 0, ,v(0) = y’(0) = 0-

3.2. Systeme linearer Diflerentialgleichungen

Physikalische oder technische Probleme werden oft sachgemäß als Systeme von
linearen Differentialgleichungen mit konstanten Koeffizienten modelliert. Bei der
Lösung von Anfangswertaufgaben für solche Systeme mittels Laplace-Transformation
gibt es erhebliche Rechenvorteile gegenüber der üblichen Methode, insbesondere ist
die Bestimmung nur einzelner interessierender Funktionen des Systems möglich.

Zur allgemeinen Darstellung der Systeme wird die Matrixschreibweise benutzt.
Werden die Koeffizientenmatrizen und die Vektoren der gesuchten Funktionen bzw.
der rechten Seiten

A = (am). B. = (1252). YÜ) = (y-0)) bZW- f(t) = (f:(t)),
i,k =1,...,N, 1=1,...,n —— 1, z‘; 0,

eingeführt, so hat die Anfangswertaufgabe für ein System von N Differentialglei-
chungen n-ter Ordnung die Form

Ay""(t) + B..—1y‘"""(t) + + Boy(t) = f(t), _

y(0) = yo. y"""(0) = y.§"“"- (3-29)

Für |Al =|= 0 heißt das System (3.29) normal, es hat dann bekanntlich eine eindeutig
bestimmte Lösung; solche Systeme werden in Abschnitt 3.2.1. gelöst. Für {Al = 0
heißt das System (3.29) anormal oder entartet; es gibt lösbare und unlösbare ent-
artete Anfangswertaufgaben (Abschnitt 3.2.2.).
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Beispiel 117a: Für ein System 2. Ordnung werden die Matrizen A, B, und die Vektoren y(t), f(t), yo
angegeben.

yi’ + yé’

ri’ - yä’ + Zyi + yi — 3y2 = 4e"cos 2!.

.V1(0) = y2(0) = 0, .vi(0) = 1. Y§(0) = 2-

Diesem System entspricht die eine Matrixgleichung (3.29) mit N = 2 und

_1 1 _ o2 _ —1 5 _ y

A“(1—1>’ B‘"(2o)' B°'( 1-3)’ y(')‘(y:)’
f() -2 -' o , 1

‘<*> = (25.) = (e-iosm)» w” = yo = (o), m = yo = (2)-
Wegen |A| = -2 4: 0 liegt ein normales System vor; seine Lösung wird im Beispiel 3.l7b ermittelt.

+ 1’-yé - ‚v; + 5y; = -2e",

3.2.1. Normale Systeme

a) Alle f,(t) besitzen rationale Bildfunktionen F‚-(p)

Analog zu Satz 3.1 für Differentialgleichungen gilt für den am häufigsten auftre-
tenden Fall bei Systemen der

Satz 3.3: Die Lösung y(t) eines normalen Systems (3.29) mit rationalen Bildfunktionen
F‚(p) = L{fi(t)} lzißt sich stets mittels Laplace-Transformation bestimmen.

Der Beweis dieses Satzes folgt unter der gemachten Voraussetzung durch die mög-
liche Umformung des Systems (3.29) in eine Einzeldiflerentialgleichung der Ordnung
nN, die den Voraussetzungen des Satzes 3.1 genügt.

Das tatsächliche Vorgehen bei der Lösung ist folgendes: Mit den Vektoren
Y = Y(p) = (Y‚(p)) = (L{yi(t)})‚ F(p) = (F‚.(p)) ergibt sich mittels des Differentia-
tionssatzes (2.24) unter Einbeziehung der Anfangswerte aus (3.29) die Bildgleichung

(Ap" + B„_,p"" + + Bo)Y = F(p) + R(p). (3.30)

Der Vektor R(p) hat als Komponenten Polynome in p, die sich durch die Anfangs
werte ergeben. Diese Bildgleichung (3.30) ist ein lineares Gleichungssystem mit den
Unbekannten Y1, ..., YN; zur systematischen Lösung kann z.B. die Cramersche‘)
Regel oder der Gaußsche’) Algorithmus herangezogen werden. Wegen IA] =|= 0 hat
(3.30) eine eindeutig bestimmte Lösung Y. Jede Komponente von Y ist eine rationale
Bildfunktion, deshalb können die Komponenten von y(t) durch Partialbruchzerlegung
bestimmt werden.

Beispiel 3.17b: Das System aus 3.1721 hat die Bildgleichungen

p21’, — 1 +122)’; — 2 + 2pY2 — Y1 + 5Y2 = ~2/(p +1),

p2Y, -1—p2Y2 + 2 + zpy, + Y, — 3Y2 = 4(p +1)/(112 + 2p + 5);

1) Gabriel Cramer (1704-1752), Schweizer Mathematiker.
2) Carl Friedrich Gauss (1777-1855), deutscher Mathematiker.
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werden diese Gleichungen nach Y, und Y, geordnet, so folgt

3p+1
(p’—1)Yt+(p’+2p+5)Y2= .p+l

(p—1)’1211- 1 3Y=—e.(P+)i (p+)2 P2+2p+5

Dieses Gleichungssystem läßt sich auch in der Form (3.30) schreiben. Zu seiner Lösung wird die

zweite Gleichung mit %—+i1 multipliziert und von der ersten Gleichung subtrahiert (Gaulßscher Algo-

rithmus). So ergibt sich zuerst Y2 und dann Y, als

1 2 2

TE-FF’ ifs“ =TU
daraus folgen sofort nach (T 6) und (T 20) als Lösungen y1(t) = re", y;(t) = e“ sin 2t.

Yx(p) = Y207) = a

Beispiel 3.18: Die Funktion ‚v2(t) des Systems

III u I
y; +.v3 - y§'+ 6y§—.v§+6y; = 12,

Zyg. + y? _ M, = o’

yé” + 3.vi’ - l2.vi = 0;

.V1(0) = y§(0) = 0. ,V§'(0) = 2, .V2(0) = 54(0) = ‚V'g'(0) = 0.

.va(0) = .V§(0) = y§'(0) = Ü,

ist zu bestimmen. Die Bildgleichungen ergeben sich mit (2.24) als

2(6 + p)
(p‘+6p+6)Y; +p(p’—p-1)Y3=—p—,

2P3Y2 + 172(.D - 4) Y3 = 0.

3p(p — 4) Y; +p3Y; = O.

Nach der bekannten Cramerschen Regel ergibt sich für Y‚(p):

2(6+)
p’+6p+60p(p’-p-1) p’+6p+6 l%p@‘—p—1)

Y2=
0 2173 p’(p-4) 0 0 12’(p~4)

39(1)-4) p’ 0 3p(p-4) 0 0

Nach dem Berechnen der beiden Determinanten mit der Sarrusschen Regel ergibt sich schließlich:

5 2 3 2 2 6 4 3-P (P-4)(6p +P)Y2=5P(6+IJ)(P-4). Y2=7§-p—4,y2(!)=I -I.

Beispiel 3.19: Beim Einschalten eines Gleichstrommotors ([15], S. 80; Bild 3.13) gilt für den Anker-
strom i(r) und die Ankerwinkelgesehwindigekit m(t) mit den Anfangsbedingungen i(0) = 0, w(0) = 0
das System

Li’(t) + + Ri(t) + aw(t) = u.,,

0a/(I) — ui(t) = -—M.
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Die erste Beziehung drückt das Spannungsgleichgewicht im Ankerstromkreis aus, die zweite Bezie-
hung ist die mechanische Bewegungsgleichung. B bedeuten z L, R und 0 Induktivität, Widerstand und
Trägheitsmoment des Ankers; M konstantes Drehmoment der Belastung; a eine Motorkonstante.

i

“ Bild 3.13. Gleichstrommotor des Beispiels 3.19

w(t) wird explizit bestimmt, von i(t) wird das Stabilitätsverhalten und i’(O) bestimmt. Die Bild-
gleichungen und ihre Lösungen I(p) und W(p) (gefunden nach der Cramerschen Regel) sind:

M
(L11 + R) ICH) + t1W(1I) = £110: fl1(17)- 911W(I1)= T ‚

‚C.„=(2W.L+L„„>„I_‚
L0 p L p’+a,p+ao

W(p)=(£°_a'fl(Mi_£)_#_:; “=5, «a°=_a:__
L0 p 6 p’+a,p+ao L L9

DieRücktransformation (bei Verwendung von reellwertigen Funktionen) hängt von den Nullstellen
von p’ + alp + an ab; im folgenden wird D = } u} — ac < 0 angenommen (auch D g 0 ist tech-
nisch sinnvoll). Nach (T 97) und dem Integrationssatz (2.21) ist

a—-RM a „ —- —-

w(l)=-u—°——2j 1-e‘§"" —:l;—s1n\/—Dt+ cos \/-Dr)
H 2„/—D

—LL e“§"" sin \/ -D t.
e J-D

Nach Satz 2.18 folgt, daß i(r) uneigentlich stabil ist, denn p = 0 ist die einzige Nullstelle mit maxi-
malem Realteil von p(p’ + 411p + au). Nach (2.47) folgt noch genauer aus I(p) sofort

aM 1 M

“')"'ie"22.,”= 7* '*°°-

i’(O) existiert; nach Satz 114a) und (2.23) ist
l

lim i'(t) = limp(I(p) — i’(O)) = limp2I(p) = — uo = i’(O)‚
1-. + o ,,—>oo p—v co L

b) Die f,(t) sind für t > 0 stetig bis auf isoliert liegende Sprungstellen

Analog wie im Satz 3.2 für eine Einzeldifferentialgleichung können auch bei
Systemen Funktionen berücksichtigt werden, die bis auf Sprungstellen stetig sind.
Sind diese Funktionen außerdem transformierbar, so kann man stets wie im nächsten
Beispiel vorgehen.



3.2. Differentialgleichungssysteme 75

Beispiel 3.20: Das System l. Ordnung mit 2 gesuchten Funktionen

0 0§t<1,
y;+2y;—y, =n(r>={1_’1<‚’

y} - ‚v; + ‚v; -.vz =fz(t) = 1; y1(0) = ,v2(0) = 0,

wird gelöst. Die Bildgleichungen sind mit Beispiel 2.8

‚ 1 1

(11"1)Y1+217Y2=;‘€": (17+1)Y1“(P+1)Y2=;-

Mit der Cramerschen Regel ergeben sich die Lösungen

= —— ——————— — — e - — ,

Y 1 ( 3 1 + _p( 3 I )
1 2 3p — 1 p + 1 3p — 1 p

=—————- ————-———— e ——.
Y 3 l +1 1 1+_p( 3 l)

2 23p—1 2p+l p 3p—I p

Mit dem Verschiebungssatz (2.14) ergeben sich damit als Lösungen

y1<:)= He“ — e") + so). n0) = %(e"~" + e") — 1 + so),

0, 0 g t g 1,

S“) — etun/s _ I, I é L

3.2.2. Entartete Systeme

Ist in (3.29) {A} = 0, d.h.‚ die Determinante der Koeffizienten bei den höchsten
Ableitungen ist null, so liegt ein entartetes System vor. Vorgegebene Anfangswerte
können im Widerspruch zu den Gleichungen des Systems stehen, deshalb gibt es

lösbare und unlösbare entartete Systeme. Beide Arten kommen bei der Modellierung
technischer Systeme (gekoppelte Schwingungen) vor und lassen sich sinnvoll ver-
wenden.

Im folgenden soll es sich um Systeme von N Diflerentialgleichungen der Ordnung
n = 1 (darauf läßt sich durch Einführung neuer Funktionen jedes System reduzieren
([B 7/1], S. 106)) mit stetigen und transformierbaren Funktionen f,(t) handeln. (3.29)
hat damit die Form

AW’) + BYU) = Kt), y(0) = Yo, IA] = 0, (331)

A = (an): B = (Im), YÜ) = (Jä-(Ü), f0) = (fi(l))‚

Yo‘-"(}’t(0))=(,Vo:)» isk=1‚2‚—--‚Nä 120-
Transformiert man (3.31) mit dem Vektor yo der Anfangswerte, so ergibt sich als

Bildgleichung mit (2.23)

(Ap + B)Y = F(p) + Aye. ' (3.32)

Das Gleichungssystem (3.32) für die Unbekannten Y1, ..., YN hat im Fall
D(p) = |Ap + B| $0 einen eindeutig bestimmten Lösungsvektor Y, der z. B. mit
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der Cramerschen Regel gefunden werden kann. Nun steht die Frage nach dem
Zusammenhang mit dem Vektor y aus (3.31). Dafür gibt es drei Möglichkeiten:

a) Y enthält Komponenten Y„ die keine Bildfunktionen sind; dann ist (3.31) nicht
durch Funktionen lösbar.

b) Zu Y läßt sich ein Vektor yo) finden (dieser erfüllt dann Ay'(t) + Bye) = f(t)),
aber es ist 9(0) + yo. Dann ist (3.31) unlösbar, 5(1) wird als verallgemeinerte Lösung
bezeichnet, diese wird sich sinnvoll deuten lassen.

c) Genügt ya) aus b) außerdem noch der Beziehung y(O) = yo, dann ist (3.31) ein-
deutig lösbar mit dem Vektor w) = y(t).
Das folgende Beispiel illustriert diese drei Möglichkeiten.

Beixpic/ 3.21: Es wird das System

yi + y; — y: = 0. yi + ‚v; + ‚v: =1; mo) = you J’z(0) = yoz. (3.33)

betrachtet, zunächst sind die Anfangswerte yo, und yo; beliebig. Die Bildgleichungen (3.32) und
D(p) sind hier

(P- 1) Y; +l7Y2 =)’o1 +J’o2, 11Y1+(17+1)Y2 =%+J’o1 +yo2§

~1
D<p>=.” p =p2-1—p2= —1.

r p p+l

Nach der Cramerschen Regel folgen als Lösungen der Bildgleichungen

Y01+.Vo2 P

D(17)Y1 = l =yo1 +.Vo2 ‘ 1. Y1 =1—0’o1 +‚Vo2).
.Vo1+.Vo2+— 17+l

P

P-1 J’o1+}’o2

D<p)Yz= 1

P .Vo1+yo2+'“
F

l l
=1‘—"(Yo1+Yo2). Y2=}’a1+.Voz"‘+'--

P I7

a) Für ya, + yo; + I sind weder Y, noch Y; Bildfunktionen (nach Beispiel 2.22), das System
(3.33) hat keine Funktionen als Lösungen (dies folgt auch unmittelbar durch Subtraktion der beiden
Gleichungen des Systems).

b) Für ym + yo; = 1 sind Y, und Y; Bildfunktionen, die zugehörigen Originalfunktionen
91(1) = 0 und ;‘:2(t) = 1 erfüllen die Difierentialgleichungen des Systems. Für z.B. yo, = 1, yo; = O

ist jedoch }7‚(0) + yo, und ;72(0) ä: yoz; das Anfangswertproblem (3.33) ist unlösbar, im) und y,(r)
sind verallgemeinerte Lösungen.

c) Für ym + yo; = 1 und zugleich yo, = 0, yo: = 1 erfüllen die Funktionen y1(t) = 5:10) = 0
und y2(t) = _}72(t) = 1 das System (3.33).

Hat die Matrix A den Rang r, so lassen sich aus (3.31) (z. B. durch den Gaußschen
Algorithmus) N — r Gleichungen ohne Ableitungen ermitteln. Führt man in diesen
Gleichungen den Grenzübergang t —> +0 durch, so erhält man N —— r Sogenannte Ver-
träglichkeitsbedingungen zwischen den Anfangswerten, deren Erfüllung für die Lös—

barkeit von (3.31) notwendig (aber nicht hinreichend) ist.
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Beispiel 3.22: In (3.33) ist Rang (A)'= r = l, die N — r = Z — 1 = l Gleichung ohne Ableitungen
ist y‚(!) + y2(t) = 1; aus ihr folgt für I —-> +0 die Verträglichkeitsbcdingung ym + yo; = 1 für die
Anfangswerte y1(0) = yo1,yz(0) = yoz. Wie der Fall b) des Beispiels 3.21 zeigt, ist diese Bedingung
für die Lösbarkeit von (3.33) aber nicht hinreichend.

Weil die Verträglichkeitsbedingungen nur notwendig sind (und im unlösbaren Fall
oft die verallgemeinerten Lösungen interessieren), ist das Vorgehen über die Bild-
gleichung (3.32) und Prüfen der eingetretenen Möglichkeit a), b) oder c) einfacher.
Im folgenden geht es um die Deutung der verallgemeinerten Lösung
5/0) = <y1<t),...,y~(:)) des Fan b).

Die verallgemeinerte Lösung yo) erfüllt die Differentialgleichungen in (3.31), aber
für ihre Anfangswerte gilt y(0) # yo‘ Dieser Sachverhalt läßt sich auf zwei Arten
deuten:

A) Man faßt die Werte des Vektors yo als linksseitige Grenzwerte der Lösung y(t)
auf (Vergangenheit des Systems). Die Sprünge y(0) —— y(0) sind dann durch die
Sprünge des Vektors der Funktionen f(t) im Nullpunkt erklärbar ([7], S. 318).
Bei dieser Auffassung muß natürlich die willkürliche Vereinbarung (2.3) ignoriert
werden.

B) Man deutet entartete Systeme als Grenzfall normaler von einem Parameter ab-
hängiger Systeme ([1], S. 95).

Beispiel 3.23: Die Deutung B) der verallgemeincrten Lösung wird illustriert am entarteten System

yi0) + n0) = 0. yi0) + y;0) + y;0)+ ‚v2(t) = 1. y2(1)+ n0) = 0;

}’1(0) = }’o1 = Ü» .v2(0) = ‚V02 = 0, ‚v:(0) = F03 = 0-

Die Bildgleichungen und D(p) lauten

PY1+Ya=0‚ pYr+(P+1)Y2+PY3= ‚Y2+Y3=0: D(I1)=2P»v|
—

Die Lösungen der Bildgleichungen und die Funktionen ,f,(t) sind:

=T, =__, =_.._; =_, =_, (=.—_,
Y 1 Y 1 Y -1 _ (i) r _ (f) 1 _ ( ) 1

i 21,2 2 2P 3 2P Y1 2 JV2 2 ‚Vs 2

Die vorgegebenen Anfangswerte yo1,yo;,yo3 werden nicht alle angenommen, es liegt Fall b) vor.

Betrachtet man nun das vom Parameter k > O abhängige System

m, k) + k,v5(t, k) + n0. k) = 0.

y;(r, k) + (1 + k) yga, k) + y;(:, k) + y2(?, k) = l,

ky£(r. k) + ky£(t, k) + n0. k) + mt, k) = 0;

y,(o, k) = y,<o, k) = y3(0, k) = o, mit den Bildgleichungen

pY1+(kp+1)Y3=0, pY1+(kp+1+p)Y¢+pY3=—1:-,

(kp +1)(Y2 + Y3) = 0.
1 l

‘ = 2 z T = — =jso ist D(p) (kp + l) 2p, Y, zpz , Y; Y3 „(kp + I) ‚

Dazu gehören die Originalfunktionen

t 1 l 1 l
y1(r,k) = 3. m. k) = 7 — 7e-"*. y3(': k) = — 3 + —5e"”‘.
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Die für y‚(t‚ k) vorgegebenen Anfangswerte werden angenommen (wie es bei einem normalen System
immer der Fall sein muß). Für k —> +0 und t > 0 gilt nun

710: k) " 171l’), ‚V20: k) "’ 72(3)» J’3(’» k) " 7:10‘);

dagegen ist für k —> +0 und t = O

.Vx(0, k) = 0 = J"1(0). y2(0. k) = 0 =l= )"z(0) = f: }’a(0. k) = 0 + 55(0) = — ‘k-

Die Funktionen }‘q(!) erscheinen als die im Nullpunkt unstetigen Grenzwerte der Funktionen y,(t, k)
für k —> +0.

3.2.3. Aufgaben: Lösung von Systemen

* Aufgabe 3.11: Man bestimme y„y2 und y; aus

2yi+ .v£+yé -Syz =1,
.V{“2.V; *5)’; +}’3=l»

yi+ J’; ‘l’ }'i“3‚V2 =0i

-x
-

-x
-

.V1(0) = 0, J'2(0) = L )'s(0) = 0~

Aufgabe 3.12: Man bestimme y, und y, aus

‚v; + Zy; + y; = sin I, Zyi + ‚v; + yz = 0; m0) = ‚v2(0) = 0. v

Aufgabe 3.13: Für den in Bild 3.14 dargestellten Kettenleiter gilt bei differenzierbaren Eingangs-
spannungen e1(t) und e3(!) zur Bestimmung der Ströme i‚(t)‚ i2(t) und i3(t) in den Maschen

—L—i”(t) J— it (t) — ii (r) = e'(t)
2 1 ‘ C ‘ C 2 ‘ ’

.„ 1 . 2 . 1 .

L120) ‘ F110) ‘l’ F120)“ F130) = Ü,

£i”(r) — Liga) + ii3(t) = e’(t).
2 3 C c 3

Man bestimme 13(1) bei verschwindenden Anfangswerten und bei ei(l) = e30) = sin wt. Hinweis:

wo = ———_—; einführen!
„/LC

Bild 3.14. Kettenleiter der Aufgabe 3.13

* Aufgabe 3.14: Analog Beispiel 3.20 löse man

‚v1 +y£+.v1 =0, y} -yé-yz =f(t); .V1(0)=.V2(0)=0§

f(r)=1 für 0§t§T, f(t)=0 für T<r.
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Aufgabe 3.15: Man ermittle die verallgemeinerten Lösungen jI,(t) und die von ihnen angenommenen
Anfangswerte }7‚(0) des entarteten Systems

y£+y£+y§= 1, y{+‚v;+.vz=2‚ y;+y. =1;
yoi = ‚Voz = yoa = 0-

3.3. Partielle Diflerentialgleichungen mit zwei Veränderlichen

Es werden lineare partielle Differentialgleichungen 2. Ordnung mit zwei unab-
hängigen Veränderlichen und konstanten Koeffizienten betrachtet. Diese spielen in
der Praxis bereits eine große Rolle, auch ist das typische Vorgehen bei der Lösung
mittels Laplace-Transformation schon an diesem Fall erkenntlich.

Für die gesuchte Funktion y(x, t) mit 0 < t < 0o, a < x < b, und stetiger Funk-
tion f(x‚ t) gelte die Gleichung

am... + am. + am. + Im‘; + bu‘. + cy =f(x, t)‘) (3-34a)

mit den Anfangsbedingungen

.V(xa 0) = y1(x). y,(X, 0) = y2(x) (3-34 b)

und den Randbedingungen

‚V01, t) = y3(t). y(b. t) = y4(t)- (3-340)

Neben den Koeffizienten und der Funktion f(x‚ t) sind auch die Funktionen y‚(x)‚
y‚(x) (‚v2 nur bei a, + 0) und y3(t), y4(t) (mit analoger Einschränkung) vorgegeben,
sie sind zur eindeutigen Bestimmung von y(x, t) nötig (Anzahl und Art der Vorgaben
sind i. allg. eine schwierige Frage).

Die Gleichungen (3.34b) sind als Grenzwertbeziehungen für t—> +0, die Glei-
chungen (3.34c) als Grenzwertbeziehungen für x—> a + 0 bzw. x —> b — 0 zu ver-
stehen, weil die Funktionswerte von y(x‚ t) auf dem Rande des in Bild 3.15 darge-
stellten Gebietes i. allg. gar nicht existieren. Die Lösung y(x‚ t) ist stets in einem Ge-
biet der x, t-Ebene gesucht, das hier ein Halbstreifen (Bild 3.15), der erste Quadrant
oder die obere Halbebene sein kann.

ybrjl-vgn‘)
„m bei): -a—z7

y(x,rJ—>_y,.'x) _ _

y,(x,1) —-yzlx) Bild 3.15. Halbstreifen
0g,‘ y ——+17 in der xJ-Ebene

Das Lösungsprinzip aus Bild 3.1 ergibt von (3.34) bei Laplace-Transformation
bezüglich t (x fest) mit dem Differentiationssatz (2.24) und den Bezeichnungen
z Ö

‘) Zur Bezeichnung der partiellen Ableitungen wird die lndexschreibweise benutzt: ‚v, = 'v(x' t) ,

3’y(x, t) a‘
Bx Ct

y“ -_— usw.
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L{y(x‚ t)} = Y(x‚ p), L{f(x‚ 1)} = F(x‚ p) die Bildgleichung

a,Y,,,, + (a2p + b1) Y, + (aspz + bzp + c) Y = G(x,p), (3.35a)

G(x,p) = F(x,p) + a2y{(x) + (asp + b2)y;(x) + aayz(x)-

Die Bedingungen (3.34c) transformieren sich zu

Y(a‚p) = Y3(p)‚ Y(b:P) = Y4(.v)- (3-35b)
Insgesamt ergibt sich anstelle der partiellen Differentialgleichung (3.34) für y(x, t) mit
Anfangs- und Randbedingungen die gewöhnliche Differentialgleichung (3.35a)
2. Ordnung für Y(x‚ p) mit den Randbedingungen (3.35b). Die Ableitungen in
(3.35 a) werden nach x gebildet, p ist dabei als Parameter aufzufassen. (3.35) ist eine
wesentlich einfachere mathematische Aufgabe als (3.34), die Transformation ist also
wieder sehr zweckmäßig.

(3.35) wird nach üblichen Methoden oder nach Abschnitt 3.l.2. (falls a = 0 und
b = oo ist, d.h. 0 < x < o0) gelöst; die explizite Rücktransformation von Y(x‚ p)
ist i. allg. sehr schwierig, oft begnügt man sich deshalb schon mit asymptotischen
Aussagen für t—> oo.

Die Überführung von (3.34) in (3.35) geschah durch formale Anwendung der
Laplace-Transformation, eine ganze Reihe von Voraussetzungen (Transformier-
barkeit, Vertauschung von Grenzübergängen) müssen dafür erfüllt sein. So gefundene
Lösungen müssen deshalb durch die Einsetzprobe in (3.34) verifiziert werden; es kann
auch weitere Lösungen geben, die auf diesem Wege nicht gefunden werden. Die
Probe entfällt nur, wenn man Existenz- und Eindeutigkeitssätze heranzieht, die es für
spezielle Klassen von partiellen Differentialgleichungen gibt ([4], §54; [9], §27).

3.3.1. Beispiele zu den Grundtypen

Die Differentialgleichungen (3.34) lassen sich bekanntlich (auch bei variablen
Koeffizienten) in drei Typen einteilen:

Typ l Einfachstes Beispiel

Elliptisch Potentialgleichung: ‚Vxx + ‚Vu = 0

Hyperbolisch Wellengleichung: y,, — y,, = 0

Parabolisch Wärmeleitungsgleichuug. y_„ — ‚v, = 0

An diesen drei Gleichungen wird zunächst (ohne den physikalischen Hintergrund)
das grundsätzliche Vorgehen erläutert.

Beispiel 3.24: Es ist y„ + y., = 0für0 < t < oo, —oo < x < oo (also a1 = u; =1, a; = bl = b;
= c = O, f: O, a = —oo, b = oo) mit den Anfangsbedingungen

‚v(x‚ 0) = mx) = e‘, ‚v‚(x‚ 0) = ‚vz(x) = e“
zu lösen (Randbedingungen entfallen hier). (3.35a) lautet

Y„ + p2Y= pa‘ + e“.
Diese letzte Differentialgleichung wird jetzt mit den üblichen Methoden gelöst. Für die zugehörige
homogene Differentialgleichung führt der Ansatz Y = e“ ([B 7.1], 3.3.8.) auf die charakteristische
Gleichung a2 + p: = 0 mit den Nullstellen 4x1 = jp, cc; = —jp; die Funktionen em’ und e""" sind
aber keine Bildfunktionen (Beispiel 2.22); die homogene Differentialgleichung hat also nur die Bild-
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funktion Y E 0 als Lösung. Eine spezielle Lösung der inhomogenen Differentialgleichung findet man

mit der Ansatzmethode ([13 7.1], 3.3.6):

Y(x‚p) = A(p)e" + B(.v) e“-
Wegen Y,“ = A e" + 4B e“ folgt durch Einsetzen in die Differentialgleichung und durch Vergleich
der Koeffizienten von e" und e": A(l + p2) = p, B(4 + p’) = 1. Also ist

1
Le2x.
4 + p’

Die zugehörige Originalfunktion ergibt sich mit (T 9) und (T 8):

y(x‚ t) = e‘ cost + ire" sin t;

sie erfüllt tatsächlich die Potentialgleichung und die Anfangswerte.

l
Y(Xa.D) = fie‘ +

Beispiel 3.25: Es isty„ - y„ = Ofür 0 < t < o0, 0 < x < co (also a, = -413 =1, a; = bl = b;
= c = O, f2 0, a = 0, b = oo) mit den Nebenbedingungen

Mx) = 0, y;(x) = 0, y(0‚ I) = .vs(t). .v(°0. t) = M!) = 0

zu lösen. Die Transformation ergibt das Randwertproblem

Yxx '-P2Y= 0. Y(0,P) = Y307). Y(°°.P) = 0-

Mit dem Ansatz Y = e“ ergibt sich die charakteristische Gleichung m’ — p’ = 0 mit den Nullstellen
a, =p, a; = —p; also ist

Y(X.p) = C1(17)€"" + C201) 8""-

Wegen Y(00,p) = 0 und bei Rep > 0 ist C‚(p) E 0; aus Y(0‚ p) = Y3(p) folgt schließlich als Lösung
der Bildgleichung

Y(x‚p) = Ya(p)e""’.

Die zugehörige Originalfunktion ermittelt sich mit dem Verschiebungssatz (2.14) als

0, 0 < t < x,
.v(x.!) = .va(I — x) = {Mt _ X)’ x < L

Diese Funktion erfüllt die Wellengleichung und die gegebenen Nebenbedingungen, falls y3(t) zweimal
difierenzierbar ist.

Beispiel 3.26: Es wird yx, — y, = 0 für 0 < t < eo, 0 < x < o0 (also a, = —b2 =1, a; = a3

= b, = c = 0, fa 0, a = 0, b = o0) gelöst mit den Nebenbedingungen

y(X‚ 0) = J’1(x) = 0, y(0. f) = .Vs(Y) = C. y(°0J) = J’4(1) = 0-

Das Randwertproblem (3.35) lautet hier

Yxx -p_Y= 0, Y(0,p) = c/12. Y(°°.p) = 0-

Der Ansgtz Y(x, p) = e""‘_führt auf die charakteristische Gleichung cc’ — p = 0 mit den Nullstellen

oz, = \/p und o4, = —\/p; damit ist

Y<x,p) = c1cp>e*V7 + c;<p)e-‘"7.

Aus Y(oo,p) = 0 folgt bei Rep > 0 Cl(p)E 0; wegen Y(O‚p) = iist

Y(x‚p) = i e""\/"—. '

P

6 Stopp, Operatorenrechnung
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Die zugehörige Originalfunktion ist nach (T 76)

x
y(x t)=c(1—erf ,

’ 2J?
sie erfüllt die Wärmeleitungsgleichung und die Nebenbedingungen. Es gibt (wie man zeigen kann)
eine weitere Lösung der Aufgabe, die sich nicht durch Laplace-Transformation bestimmen läßt.

Das Lösungsverfahren läßt sich offenbar auch bei Gleichungen höherer Ordnung
(aber mit zwei Variablen) anwenden. Die wichtigste Frage ist hier, in welchen Fällen
den Nullstellen des charakteristischen Polynoms der Bildgleichung Bildfunktionen
entsprechen.

3.3.2. Ein Beispiel aus der Physik

Die Wärmeleitungsgleichung yx, — y, = O beschreibt die Temperatur y(x, t) eines
linearen Leiters (z.B. eines Thomson—Kabe1s) an der Stelle x zum Zeitpunkt t. Be-
trachtet man einen unendlich langen Leiter und läßt die Zeit von null an laufen, so ist
0<t<oo‚0<x< oo.

Für t = 0 soll der Leiter die Anfangstemperatur y(x, 0) = y,(x) = 0 haben. Am
linken Ende x = O soll y(0‚ t) = y3(t) gelten, d.h.‚ es ist eine Wärmequelle vorhanden,
die eine von der Zeit abhängige Temperatur garantiert. Am rechten Ende x = 0o ist
(physikalisch sinnvoll) y(oo‚ t) = y,.(t) = 0. Diese Nebenbedingungen sind Grenz-
wertbeziehungen, ausführlich lauten sie:

lim y(x, t) = yi(x)‚ lim ‚vor. t) = ys(t)‚ 1imy(x, t) = 0-
(-0 +0 X-+0 X-50

Zur Bestimmung von y(x, t) mittels Laplace-Transformation ergibt sich analog
Beispiel 3.26 für Y(x, p) das Randwertproblem

Yxx - PY = 0, Y(0‚P) = Ys(p)‚ Y(°°,11)= 0-

Die Differentialgleichung hat wieder die allgemeine Lösung

Y(x‚p> = 009e"? + C2(p)e““”—;
C,(p) = 0 _und C2(p) = Y3(p) folgen wie im Beispiel 3.26. Damit ist Y(x‚ p) =

Y_.,(p) e"“/"; die zugehörige Originalfunktion ist wegen

x

2: JE?
([1], S. 148) und dem Faltungssatz (2.20)

y(x, t) = ya(t) * W0‘, f)» (336)

Diese Lösungsdarstellung ist sehr einfach, aberz. B. für das Ablesen des asympto-
tischen Verhaltens für t —> oo nicht besonders geeignet. y(x, t) wird deshalb für einige
spezielle Randtemperaturen noch in anderer Form angegeben.

a) Für y3(t) = cu(t) = c ist nach Beispiel 3.26

y(x,t)=c=r1p(x,t)=c(1—erf2\?;)—>c, t—>0o.

e—x2/4! = e—x»/7L I/1(x, t) =
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b) Für y3(t) = ö(t) ist nach Formel (3.25)

y(x, r) = am “P06 z) = w. r) ~ 2&7 ‚ z» oo.
TE

c) Für y3(t) = cos w t sind die explizite Darstellung von y(x, t) ohne Benutzen der
Faltung in (2.44) und die asymptotische Darstellung im Beispiel 2.39 angegeben.

Sind jetzt im Gegensatz zu oben verschwindende Randwerte (y3(t) = y..(t) = 0)
und eine nichtverschwindende Anfangstemperatur (z.B. y1(x) = e“) gegeben, so
folgt

n. -1»? = —e-2 Y<o,p> = o. Y<oo‚p> = 0.

Als Lösung findet man mit dem Ansatz Y = C2(p) e"“/7’ + A(p) e“

1 _

Y<x‚p> = pT1(e" - am"), » y(x, r) = e“ — e‘ *w(x‚ z). (3.37)

Die Lösung von yx, — y. = 0 mit y(x‚ 0) = e“, y(0‚ t) = y‚(t) und y(oo‚ t) = 0
setzt sich aus (3.36) und (3.37) zusammen:

y(x, f) = ys(t) * Min f) + 6“‘ - e‘ * W0C, I)-

3.4. Andere Anwendungen

Nach dem nun bereits vertrauten Lösungsprinzip (Bild 3.1) werden jetzt Diffe-
rentialgleichungen mit Polynomkoeffizienten und Integralgleichungen vom Faltungs—
typ betrachtet. In Abschnitt 3.4.3. wird eine Zusammenstellung der behandelten und
anderer Anwendungen gegeben.

Wie schon bei der Lösung von partiellen Differentialgleichungen erörtert wurde,
soll anstelle des Überprüfens von Voraussetzungen für die Anwendung der Laplace-
Transformation hinterher die gefundene Funktion durch die Einsetzprobe als Lösung
des Problems verifiziert werden. Es ist stets möglich, daß beim Übergang zur Bild-
gleichung Lösungen verloren gehen oder auch neue Lösungen hinzukommen (dieser
grundsätzliche Gedanke spielt schon in der Algebra z.B. bei der Auflösung von Wur-
zelgleichungen eine Rolle).

3.4.1. Lineare Darum‘ a; " _ mit Poly ' ‘n; 4

Die zugrunde liegende Differentialgleichung n-ter Ordnung für die gesuchte Funk-
tion y(t) hat die Form

a„(t)y‘"’ + a‚.—i(t)y"'“’ + + a1(t) y’ + ao(t)y = f(t)- (3-33)

Dabei sind die Koeffizienten a‚(z) im Unterschied zu (3.1) jetzt Polynome in t. Der
höchste vorkommende Grad der Polynome sei m g 1 [m = 0 führt auf (3.l)].
6:
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Transformiert man (3.38) mit dem Multiplikationssatz (2.25) und dem Differen-
tiationssatz (2.24), so ergibt sich als Bildgleichung für Y(p) eine Differentialgleichung
m-ter Ordnung mit Polynomkoeffizienten, deren höchstervorkommender Grad n ist.
Die Größen m und n haben beim Übergang zum Bildbereich ihre Rollen vertauscht,
die Transformation ist deshalb nur für m g n zweckmäßig; m = 1 ist besonders ein-
fach zu behandeln.

Sind die Koeffizienten a‚(t) zunächst rationale Funktionen von t, so läßt sich durch
Multiplikation mit dem Hauptnenner aller a‚(t) Gleichung (3.38) mit Polynomkoef-
fizienten herstellen.

Beispiel 3.27: Für die Besselsche Differentialgleichung

ty”(t) + y'(t) + !y(t) = 0

ist ao(t) = a2(t) = t, a1(r) = 1, f(t) = O, m = 1, n = 2. Mit (2.24) und (2.25) folgt

-(p’Y-yap — yé)’ +pY-yo - Y’ = 0.

Führt man die Ableitung nach p aus und ordnet, so ist

(pl + 1) Y’+pY=0.

Die Bildgleichung ist von 1. Ordnung, sie läßt sich z. B. durch die Methode der Trennung der Ver-
änderlichen ([B 7/1], 2.3.1.) lösen. Es ist

dY p dp

T = _ p’ + l

Daraus folgt Y(p) und nach (T 80) y(t) mit

YO) =y Y0) = C100)-

CJo(t) erfüllt tatsächlich die Difierentialgleichung. Die zweite dazu linear unabhängige Lösung läßt
sich so nicht finden.

Hat man die Korrespondenz (T 80) nicht zur Verfügung, so findet man die Originalfunktien zu

Y(p) durch Reihenentwicklung (Beispiel 2.32).

1

, ln[Yl=lnC—?ln(p2+1).

3.4.2. Integralgleichungen vom Faltungstyp

Wegen der einfachen Abbildung der Faltung durch (2.20) ist die Laplace-Trans-
formation besonders geeignet zur Lösung von Integralgleichungen, in denen die ge-
suchte Funktion y(t) unter einem Faltungsintegral vorkommt (Faltungstyp). Bei-
spiele solcher Integralgleichungen sind:

I

a) Volterrascher‘) Typ erster Art: k(t — r) y(-r) dr = f(t)‚
. o

I

b) Volterrascher Typ zweiter Art: y(t) — f k(t -— 1) y(-r) dr = f(t),
O

t

c) Spezielle nichtlineare Art: f y(t — z) y(r) d1 = f(t).
O

‘) Vito Volterra (1860-1940), italienischer Mathematiker.
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f(t) und der sogenannte Kern k(t) sind gegeben. Mit dem Faltungssatz (2.20) er-
geben sich als Bildgleichungen und ihre Lösungen:

a) K<p> Yo») = F(p), m») = M
K(p) ’

b) m») — Km m) = Fm, m») =

c) mp) = Hp). m») = x x/W.
Beispiel 3.28: Ist k(t) = t undf(r) = 12, so haben wegen K(p) = 1/p2 und I-'(p) = 2/p-" die drei Bild-
gleichungen die Lösungen

2 2 1 1 2 1

a)—, b>—————,——. cm‘/3 _.

Die zugehörigen Originalfunktionen sind nach (T 1), (T101) und (T 41)

a)2‚ b)2(cosht—l), c)i2 /3;
7C

sie erfüllen die lntegralgleichungen tatsächlich.

Natürlich ist es bei anderen Vorgaben für k(t) undf(t) i. allg. schwieriger, die Rück-
transformation durchzuführen und in die Integralgleichung einzusetzen. Bei a)

kommt der Faltungssatz (2.20) nicht in Frage, weil Kgp) und damit oft auch Y(p)

keine Bildfunktion ist (z.B. für k(t) = f(t)), bei b) ist i. allg. eine Reihenentwicklung
vorzunehmen und bei c) ist ebenfalls zunächst zu klären, ob \/F(p) überhaupt eine
Bildfunktion ist. Lösungssätze für Integralgleichungen findet man in [8], 25. Kapitel.
Beispiel 3.29: Wird ein physikalisches oder technisches System durch eine lineare Differentialglei-
chung mit konstanten Koeffizienten beschrieben, so gilt bei verschwindenden Anfangswerten, bei
gegebener Eingangsfunktion f(t) und bei bekannter Gewichtsfunktion q(t) für die Ausgangsfunktion
3(1) nach (3,16):

I

30) = q(t) tf(I) = jf(t - 7)q(1-')d1-
o

Wie bekannt, charakterisiert q(l) das System vollständig.
Denkt man sich jetzt bei gegebener Erregung f(t) und gegebener Antwort g(t) die Gewichtsfunk-

tion q(t) = y(t) als gesucht, so erhält man zu deren Bestimmung gerade die Volterrasche Integral-
gleichung erster Art

f

M: — r) m) dz = gm.
o

Hat man beispielsweise zu f(t) aus (T 86) die Antwort g(t) = e“ bestimmt (gemessen), so gilt im
Bildbereich (also für den Übertragungsfaktor Q(p) = Y(p)):

G(p) 1Y(p)=——=—j(1'-e"")=( lp-1
l —T

F07) p(p - 1) 17) (I F)"
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Nach (2.14) gehört dazu die Originalfunktion

0, 0 g I ä T,

1 — e"7, T g t.

Nach diesem Ergebnis kann der Aufbau des konkreten Systems analysiert werden.

y(t)=e‘—1+{

3.4.3.

In der folgenden Tabelle sind die in diesem Band behandelten und andere Glei-
chungstypen und ihre zugehörigen Bildgleichungen zusammengestellt. Die Übersicht
zeigt die Vielfalt der Anwendungsmöglichkeiten der Laplace-Transformation; es

Übersicht der behandelbaren Gleichungstypen

wird die Abkürzung Dgl für Diflerentialgleichung verwendet.

Funktionalglei ' für y Abschnitt Funktionalgleichung für Y
im Originalbereich im Bildbereich

Lineare Dgl mit konstanten 3.1. Algebraische Gleichung
Koeffizienten

System von linearen Dgln 3.2. Gleichungssystem
mit Xe nstanten Koeffizienten

Lineare Dgl mit Polynomkoeffizienten 3.4.1 Lineare Dgl mit Polynomkoeffizienten

Lineare Differenzengleichung — Algebraische Gleichung

Lineare Differential-Dilferenzengleichung — Algebraische Gleichung

Integralgleichung vorn Faltungstyp 3.4.2. Algebraische Gleichung

Lineare Integro-Dgl mit Faltungsintegral Algebraische Gleichung

Lineare partielle Dgl mit zwei unab- 3.3. Gewöhnliche lineare Dgl
hängigen Veränderlichen und konstanten mit konstanten Koeffizienten
Koeffizienten

Lineare partielle Dgl mit m unabhän- — Lineare partielle Dgl mit m — l un-

gigen Veränderlichen und konstanten abhängigen Veränderlichenund konstan-
Koeffizienten (m g 2) ten Koeffizienten

3.4.4.

Aufgabe 3.16: Man löse die partielle Diflerentialgleichung

y... + Ja. = 0. y(x, 0) = x, ‚v‚(x‚ 0) = sin x.

Aufgabe 3.17: Man ermittle eine Lösung von

f.v"(f) + (t + 2).v'(!) + y(t) = 0.
Aufgabe 3.18: Man löse die Integralgleichungen a), b) und c) aus Abschnitt 3.4.2. mit k(t) = t,
f(t) = sin I.
Aufgabe 3.19: Für einen RLC-Strornkreis (Abb. 3.4) mit nicht differenzierbarer Eingangsspannung
e(t) gilt für den Strom i(t) die Integro-Ditferentialgleichung

I

Aufgaben: Verschiedene Gleiehungstypen

Li’(t) + Ri(t) + %fi(r) d1 = e(t), i(0) = O.

o

Man bestimme i(t) für R = O und a) e(t) beliebig, b) e(t) nach (T 87).
Aufgabe 3.20: Man löse mit (2.14) die Differenzengleichung

y(t-T)+y(t)=l‚ y(t)=0 für 0§t_S_T.



4. Moderne Operatorenrechnung

Die ursprüngliche Heavisidesche Idee des formalen Rechnens mit einem Dilfe-

rentiationsoperator p = 3d; wie mit einem algebraischen Symbol wurde in Abschnitt 2.

mittels der Laplace-Transformation mathematisch fundiert. Dabei wurden Teil-
gebiete der Analysis (insbesondere Integralrechnung und Funktionentheorie) heran-
gezogen, aber auch wesentlich mehr erreicht: Deutung von p als komplexe Veränder-
liche, asymptotische Beziehungen u. a.

Stellt man den formalen Kalkül des Rechnens mehr in den Vordergrund, so läßt
sich mit einfachen Hilfsmitteln aus der Algebra (Ring- und Körperbegrifi‘) eine andere
mathematische Begründung geben. Dieser Zugang ist besonders dann völlig aus-
reichend, wenn nur die Lösung von Funktionalgleichungen interessiert und nicht die
vielfältigen Zusammenhänge zwischen Original- und Bildfunktionen.

Während die Grundlagen aus der Analysis für die Laplace-Transformation in
anderen Bänden dieser Reihe dargestellt sind, müssen für den algebraischen Zugang
zunächst einfache Begriffe der Algebra (Abschnitt 4.1.) bereitgestellt werden. Ein
Funktionenring R‘) und der Mikusinskische Operatorenkörper K‘) werden in den
zwei darauf folgenden Abschnitten definiert und diskutiert. —

Die Anwendungsgebiete dieser Operatorenrechnung und der Laplace-Transfor-
mation sind weitgehend identisch, deshalb hat die Übersicht in Abschnitt 3.4.3. auch
hier ihre Gültigkeit; Ergänzungen werden in Abschnitt 4.4. gegeben. Die Tabelle l
kann übernommen werden.

4.1. Ringe und Körper

Ein wichtiger Begriff in der Algebra ist der eines Ringes, dieser Begriff wird jetzt
eingeführt und an bekannten Beispielen erläutert; danach wird der Körperbegriff er-
klärt.

4.1.1. Ringe und Nullteiler

Zunächst werden einige Mengen M eingeführt (siehe auch [B l], Abschnitt 7), an
denen die Begriffe des Abschnitts 4.1. erläutert werden.

Beispiel 4.1 : Mengen mit der Identität als Gleichheit sind z. B.

a) Menge M1 = N = {0, l, 2,...} der natürlichen Zahlen;
b) Menge M2 = G = {0, :1, :2, ...} der ganzen Zahlen;
c) Menge M3 = P der rationalen Zahlen mit

I7
M3 = {i;F1=, qeN, qaé 0};

d) Menge M4 der für t g 0 stetigen Funktionen f(t) mit reellen oder komplexen Funktionswerten.

‘) Im Abschnitt 4 sind R bzw. K von derMenge der reellen Zahlen R bzw. der komplexen Zahlen K
zu unterscheiden.
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Für nichtleere Mengen M wird jetzt gefordert, daß für ihre Elemente außerdem
zwei Rechenoperationen mit gewissen Rechenregeln erklärt sind. Diese zwei Rechen-
operationen werden Addition und Multiplikation genannt und meist mit den üblichen
Zeichen + und - geschrieben, sie müssen aber nicht mit der bei Zahlen üblichen Addi-
tion und Multiplikation übereinstimmen.

Definition 4.1: Eine nichtleere Menge M mit den Elementen a, b, e, und zwei immer
eindeutig aujührbaren Rechenoperationen heißt Ring R, wenn folgende Rechenregeln
gelten:

1. Kommutatiue Gesetze: a + b = b + a, ab = ba;
2. Assoziative Gesetze: a + (b + c) = (a +. b) + c, a(bc) = (ab) c;
3. Subtraktionsgesetz: Jede Gleichung a + x = b hat genau eine Lösung x e R;
4. Distributivgesetz: a(b + c) = ab + ac.

Beispiel 4.2: In den Mengen M1, ..., M4 werden zwei Rechenoperationen eingeführt, und es wird
angegeben, ob dann ein Ring vorliegt oder nicht.

In den Mengen M1, M, und M3 wird die übliche Addition und Multiplikation für Zahlen einge-
führt, dann gilt:

a) M, N ist kein Ring, denn z. B. die Gleichung 3 + x = 1 ist unlösbar in N wegen '—2 $ N
b) M; = G ist ein Ring R2, weil olfenbar- alle Gesetze erfüllt sind.
c) M3 = P ist ein Ring R3, weil offenbar alle Gesetze erfüllt sind.
d) Mit der üblichen Addition und Multiplikation (Werternultiplikation) ist M4 ein Ring R4, denn

Summe und Produkt stetiger Funktionen sind wieder stetige Funktionen ([B 2], S. 32), und alle
Rechenregeln sind erfüllt.

In einem Ring R sind also eine Addition und ihre Umkehrung (Subtraktion) sowie
eine Multiplikation ausführbar, und diese Operationen genügen den Regeln der De-
finition 4.1. Wie steht es aber mit der Umkehrung der Multiplikation? Dazu vor-
bereitend die

Definition 4.2: Ist 2:, b e R, a + o, b + o und ab = o, so heißen a und b Nullteiler. Das
Element o bezeichnet das Nullelement des Ringes R, es hat die Eigenschaft a + o = a

für beliebige a e R.

Beispiel 4.3: Es wird das Nullelement a der Ringe R2 , R3 und R4 angegeben und die Frage nach Null-
teilern beantwortet:

a) Für die Zahlenringe R2 und R; ist das Nullelement 0 die Zahl 0; es gibt keine Nullteiler, weil für
Zahlen gilt: Aus ab = O folgt. daß mindestens ein Faktor a, b die Zahl 0 ist.

b) Der Funktionenring R4 hat alsNullelement die Funktion n(t) E 0, t ä 0. R4 besitzt Nullteiler,
denn z. B. für

0, t — 1,
m) l t _ o’

Oétél,étél.
"(')={ 12:.

0

1, 1 2 z

ist f(t) is n(t), g(t) # n(!) und f(t) g(t) = n(t) E O.

4.1.2. Körper und Division

In einem Ring R ohne Nullteiler können beide Seiten einer Gleichung durch einen
gemeinsamen Faktor =t=o gekürzt werden, beliebige Divisionen müssen aber nicht
ausführbar sein. Fordert man letzteres jedoch, so kommt man zur
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Definition 4.3: Ein Ring R mit mindestens zwei verschiedenen Elementen heißt Körper K,
wenn gilt

5. Divisionsgesetz: Jede Gleichung ax = b mit a =l= o hat genau eine Lösung x e K.

Beispiel 4.4: Die Ringe R2 und R3 werden daraufhin untersucht, ob sie Körper sind.
a) Der Ring R2 ist kein Körper, denn z. B. die Gleichung -3x = 2 ist unlösbar in R, wegen

— ä G R, .

b) Der Ring R5 ist ein Körper K3, denn jede Gleichung ax = b mit rationalen Zahlen u 4: 0 und

b hat die rationale Zahl x = i als Lösung. K3 ist der Körper der rationalen Zahlen.
l2 x

In einem Körper K sind also eine Addition und ihre Umkehrung sowie eine Multi-
plikation und ihre Umkehrung ausführbar, und es gelten die Regeln der Definitionen
4.1 und 4.3. Aus dem Divisionsgesetz folgt noch sofort:

Ein Körper hat keine Nullteiler, denn ax = o (a =l= o) hat nur die Lösung x = o.

Weiter ist die Gleichung ax = a (a =i= O) lösbar, ihre Lösung x = e heißt Einheitsele-
ment e.

Ist ein nullteilerfreier Ring R kein Körper, so läßt sich jedoch stets ein Körper K.
konstruieren, der diesen Ring enthält; dieser Körper K heißt Quotientenkiirper zu R.

Satz 4.1: Zujedem nuIIteiIerfreien Ring R existiert ein Körper K, der den Ring enthält.

Der Beweis besteht in der Konstruktion des Körpers K: Zu R werden neue Ele-
mente (Brüche) hinzugenommen, so daß dann jede Gleichung ax = b, a =l= o, lösbar

a

T
Bruchstrich nicht die gewöhnliche Division bedeuten muß. Es soll mit b =# o und
d + o gelten:

wird. Die neuen Elemente sollen als Quotienten geschrieben werden, wobei der

ad+bc ac aca a
—b— = —§—genau dann, wenn ad = bc; I + ä =Y, ——— =

Man kann nun nachweisen, daß diese Rechenregeln widerspruchsfrei und von der
speziellen Schreibweise der Elemente unabhängig sind sowie die Regeln 1 bis 5 er-

füllen. Setzt man schließlich noch f?- = a, b + o, so ist die Einbettung des Ringes R

in den Körper K, d.h. R c K, erreicht. Der ausführliche Beweis verläuft ebenso wie
bei der wohlbekannten Konstruktion der rationalen Zahlen aus den ganzen Zahlen.

Beispiel 4.5: Zum nullteilerfreien Ring R; der ganzen Zahlen gehört als Quotientenkörper der Kör-
per K; = K3 der rationalen Zahlen. Die angegebenen Regeln entsprechen den bekannten Gesetzen
der Bruchrechnung, der Bruchstrich bedeutet hier die gewöhnliche Division.

4.2. Mikusifiskischer Operatorenkörper K

Der Operatorenkörper K kann als Quotientenkörper eines nullteilerfreien Ringes
eingeführt werden, der in Abschnitt 4.2.1. betrachtet wird; danach wird der Körper K
gebildet und die Hauptformel der Operatorenrechnung hergeleitet.

D.4.3

S.4.1
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4.2.1.
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Funktionenring R

Zunächst wird eine Funktionenmenge M definiert, dann wird durch die Einführung
von zwei Rechenoperationen in M ein nullteilerfreier Ring R konstruiert.

Die Menge M bestehe aus allen Funktionenf(t), t g 0, die stückweise stetig sind,
d.h. höchstens endlich viele Sprünge oder isolierte (bzw. nicht definierte) Funktions-
werte in jedem endlichen Intervall haben. f(t) kann reelle oder komplexe Funktions-
werte besitzen. Da die Funktionswerte an den Sprungstellen hier unwesentlich sind,
wird die Gleichheit in M folgendermaßen festgelegt: f(t) und g(t) heißen gleich,
wenn ihre Integrale gleich sind:

t

f/(‘L’) dt = I-g(7:)d1:.
o 6

(4.1)

Beispiel 4.6: In der Menge M sind offenbar alle für t g 0 stetigen Funktionen enthalten. Beispiele
dafür sind die Originalfunktionen f(t) von (T 1) — (T 41), (T45), (T 48), (T 51), (T53) -— (T58),
(T 61), (T 64) — (T 66), (T 68) — (T 70), (T 75) — (T 78), (T 80), (T 81), (T 88) —— (T 90) und
(T 95) — (T 105) der Tabelle 1.

Für stetige Funktionen ergibt sich aus (4.1) durch Differentiation nach tals Gleich-
heit einfach f(t) = g(t) für jedes t g 0.

Beispiel 4.7: Unstetige Funktionen, die zu M gehören, sind z. B. die Originalfunktionen f(t) von

(T 86), (T 87) und (T 91) -— (T 94) der Tabelle 1. Diese Funktionen sind nach (4.1) alle untereinander
ungleich.

Gleich im Sinne von (4.1) sind z.B. die drei Funktionen des Beispiels 2.12, obwohl
sie bei t = 0 verschieden definiert sind.

Satz 4.2: Die Funktionenmenge M bildet mit der gewöhnlichen Addition und der Fal-
tung (2.l8) als Multiplikation einen nullteilerfreien Ring R.

Beweisschritte: Fürf(t) = f, g(t) = g e M ist zunächst zu zeigen, daß auch Summe
und Ringprodukt wieder Funktionen aus M sind, d.h.

R

f+geM‚ f=i=g = _ff(t—1)g(r)dreM.
o

Weiter ist die Gültigkeit aller Regeln der Definition 4.1 nachzuweisen ([3], S. 68).
Es gelten also in M die Rechenregeln:

f+g=g+fi f+(g+h)=(f+g)+h‚
f*g=g*fi f*(g*h)=(f*g)*h‚ f*(g+h)=f*g+f*/1.

Die behauptete Nullteilerfreiheit bedeutet:
I

(4.2)

f+ x = g immer lösbar,

(4.3)

Aus f as g = fflt -— 1:) g(t) d7: E 0 folgt, daß mindestens eine der Funktionen f(t),
O

g(t) identisch null ist. Diese Tatsache ist keineswegs trivial, sondern erfordert kompli-
zierte Überlegungen beim Beweis ([13], Kap. II; [4], S. 137). Sie ist die grundlegende
Aussage für den algebraischen Aufbau der Operatorenrechnung.
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Damit sind alle notwendigen Beweisschritte aufgeführt, ihre ausführliche Dar-
stellung würde mindestens 5 Druckseiten in Anspruch nehmen.

Beispiel 4.811: Fürf: t2, g = t, Iz = t’, k = I ist (siehe auch Beispiel 2.9)

r z

1 lf=t=k=f(I-Z)2TdT=Et4‚ gth=f(t—I)I3dI=2TI5,
o 0

f P

f-uh=.I\(t—r)2‘z3d1=61—()t5, guk=f(t——r)'tdz=%l3.
0 0

Der Ring R ist kein Körper, denn z.B. die Gleichung 1* x = I, also

2

1(1) * x(t) = f x(1:)d1 = l(t), I= 1(2) E 1, (4.4)
O

ist unlösbar in R. Dies folgt aus (4.4), wenn dort der Grenzübergang t -> +0 durch-
geführt wird: Die linke Seite von (4.4) ergibt 0, die rechte Seite ist aber immer 1.

Das Nullelement des Ringes R ist die Funktion n(t) E 0; ein Einselement gibt es
wegen (4.4) nicht.

Im Ring R sind die Konstanten zx (reelle oder komplexe Zahlen) nicht enthalten.
Die konstanten Funktionen f(t) E ac, t g O, sollen im Unterschied zu den Kon-
stanten ax mit l = l(t) E 1 in der Form

f(t) = ocl, t g 0, (4.5)

geschrieben werden. ex = 5 bedeutet damit die Zahl 5, f(t) = 5l dagegen bedeutet die
Funktion f(r) E 5. Dann ist offenbar

l‘

0c] +f‚ (X/a<f= oc_ff(t) dr (4.6)
0

in R erklärt, abercx +f und on a: fsinnlos in R; o:fbedeutet wie üblich das cx-fache der
Funktion f(t).
Beispiel 4.9: Setzt man in (4.6) on = 1 und f= I, so gilt

t

nt=z==fdz=n
0

Daraus folgt 1:12 =13 = ätz oder allgemein mittels vollständiger Induktion nach n

l
1" = —-—

(n — 1)!

(l", n E N, bedeutet im folgenden stets das Faltungsprodukt 1:1: a I mit n Faktoren l),

t"‘1, n=1,2,.... (4.7)

4.2.2. Operatorenkörper K

Nach Satz 4.1 gibt es zu jedem nullteilerfreien Ring R einen zugehörigen Quo-
tientenkörper K.
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Definition 4.4: Der Quotientenkörper K zum Ring R aus Satz 4.2 heißt Mikusiriskischer
Operatorenkörper, seine Elemente heißen Operatoren.

Die Elemente des Körpers K sollen unter Weglassen des Argumentes t bei Funk-

tionen in der Form; ‚f, g e R, geschrieben werden; der (fette) Bruchstrich bedeutet

die Körperdivision‚ d.h. die Umkehrung der Faltung. Die gewöhnliche Division von

Funktionen wird im Gegensatz dazu bei Hinzunahme des Argumentes t mit einem

(normalen) Bruchstrich in der Form f“)
g(t)

Der Übergang vom Funktionenring R zum Operatorenkörper K erfolgt analog dem
Übergang vom Zahlenring R2 zum Zahlenkörper K2 ; mit Operatoren läßt sich also
formal wie mit rationalen Zahlen rechnen. Jedoch sind die Operatoren nicht so einfach
zu überblicken wie die rationalen Zahlen, spezielle und wichtige Operatoren werden
in den Abschnitten 4.2.3., 4.2.4. und 4.3. untersucht. Die genannte Analogie bringt
folgende Gegenüberstellung nochmals zum Ausdruck.

geschrieben.

Zahlenring R, = G l Funktionenring R

Elemente, Gleichheit, Null- und Einselement

Ganze Zahlen a, b, Für t g 0 stückweise stetige Funktionen
f(t). 30).
t t

Za.h1eng!eic‘.h:ha = b j /(1) dt = [gm dz
0 0

Zahl 0 Funktion n(t) E 0

Zahl l Einselement existiert nicht

Rechenoperationen

Zahlenaddition und Umkehrung

Zahlenmul iplikation ab

Gewöhnliche Addition und Umkehrung
Faltung f n g

Zahlenkörper K; = P Mikusinskischer Operatorenkörper K

Elemente, G‘ ' “‘ '

Rationale Zahlen %

f. = i e» ad = be
b d
a,b,c,:IeR2; b;é0,d;é0

Opexatoreni
g

„I; = ievfak = guh
g k

f,g.h,k€R;g$0,k$0

Weitere Reehenoperation

Zahlendivisiuu nach den
Regeln der Bruchrechnung

Umkehrung der Faltung
nach den Regeln (4.8)
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Nach Satz 4.1 gelten im Körper K die Regeln

genau dann, wenn f»: k = g s: /1;

(4.8)

g k g * k ’ g k g * k '

Dabei sind f, g, h, k Funktionen aus R mit g $ 0, k i 0; der Bruchstrich bedeutet

die Umkehrung der Faltung. ä heißt inverser Operator zu —-.

Im Körper K sind alle Funktionen f = f(t) e R enthalten, wenn

f * g
' g

gesetzt wird. Speziell kann g = 1 gewählt werden. Aus (4.8) folgen mit (4.9) noch die
Gleichungen (f, g, h e R; g i O)

f= ‚ gioy (4-9)

i+lz=f;g_:£, I.h=£_*_}L_ (4_10)
g g 3 g

Beispiel 4.8b: Für f, g, h und k aus Beispiel 4.8a ist

h 1 l
a)-E:-=§-7, weil ftg=Et44=gth=E-I5 ist;

f h 1 5t‘+3t5 1 5-4!I5+3-5!!‘b)?+?=1—0jF—-=fi—23—”4——=2l+6t nach(4.7);

I 1 6 16!I"c)i:_‘=—'—=_—=12I3=6:1 nac11(4.7).
g k l0 t3 10 3!!‘

Das Ergebnis einer Division in K muß natürlich nicht wie bei a), b) und c) eine Funktion aus R sein;

z. B. sind weder i noch ä Funktionen. Das Kürzen in Kist bei b) und c) möglich, denn zwischen den

Faktoren I steht der Stern w.

Der Begriff des Operators ist wegen (4.9) eine Verallgemeinerung des Begriffs der
Funktion. Im Abschnitt 4.3. wird sich zeigen, daß außer den Funktionen aus R noch
viele andere Funktionen in K enthalten sind. Es gibt aber auch Operatoren, die keine
Funktionen sind.

4.2.3. Einfache Operatoren

K hat wie jeder Körper ein Einselement, ä, für das man die Zahl 1 benutzen kann.

Wie sich zeigen läßt ([13], S. 22), lassen sich damit auch die übrigen Konstanten o:

mit den Körperelementen 31i identifizieren, d. h.‚ es wird

‚x = “T1 (4.11)
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gesetzt. Im Unterschied dazu gilt wegen (4.9) für die konstanten Funktionen zxl die
ocI >x I

l .Beziehung ocl =

In K ist (im Gegensatz zu R) jetzt Addition und Multiplikation einer Konstanten cc

mit einer Funktion fe R erklärt. Für die Addition ist wegen (4.11) und (4.10)

w+f=%£+f= ocl+1f*I.

Bei der Multiplikation mit einer Konstanten ist es gleich, ob man diese als gewöhnliche
oder als Operatormultiplikation ausführt, da im letzten Fall wegen (4.11) und (4.10)

zx_lf_ (zxl)*f _ I*(ocf)
1 ’ 1 ‘Ü"

ist und dieses Körperelement wegen (4.9) gleich dem gewöhnlichen Produkt ocf ist.
Die benutzte Beziehung (a!) at f = 1* (zxf) folgt unmittelbar aus (4.6). r

Für die Funktionen l= 1(1) E I, f=f(t)eR gilt nach (4.6) I*f= ff(r)d1:,
O

. . . . 1
deshalb heißt die Funktion I Integrationsoperator. Der dazu inverse Operatorp = —] ‘)

mit pl = 1 ist keine Funktion, er ist ein erstes und wichtiges Beispiel für ein neues
Körperelement; p heißt Diflerenriarionsoperator.

4.2.4.

Mit dem Diflerentiationsoperator p ergibt sich der

Satz 4.3 (Hauptformel): Hatf = f(t)für t g 0 eine Ableitungf’ = f’(t)‚ die zu R ge-
hört, so ist '

pf = f’ + f(0)-
Der Beweis von (4.12) folgt aus der in R gültigen Gleichung ([13], S. 25)

1*f' ff'(T) d? =f(t) -f(0)1

[l steht beif(0) wegen der Vereinbarung (4.5)] durch die im Körper mögliche Multi-
plikation mitp wegen p1 = 1. Fürf(0) = 0 ist pfe R, fi'1rf(0)=1= 0 ist pfé R.

Wegen (4.12) ist der Name des Operators p gerechtfertigt. (4.12) ist dem Differen-
tiationssatz (2.23) der Laplace-Transformation analog, allerdings wird jetzt außer
f’ e R nichts weiter vorausgesetzt.

Wird (4.12) wiederholt angewendet, so folgt: Hat f = f(t) für t g 0 eine Ableitung
ftn) =f""(t) E R, n e N, so ist

p"]'=f"" + P"“f(0) + p"‘2f'(0) + +f‘"‘”(0)- (4~13)

Ist spezieIlf(0) = =f"'“"(0) = 0, so gilt einfach p’f = fW e R, sonst ist p’f¢ R.
Mit (4.13) ist die Diflerentiation auf eine einfachere Operation abgebildet worden,

(4.13) wird natürlich bei der Lösung von Differentialgleichungen Verwendung finden
(Abschnitt 4.3.).

Hauptformel der Operatorenrechnung

(4.12)

‘) Wenn keine Funktion aus R im Zähler oder/und Nenner steht, kann auf den fetten Bruchstrich
verzichtet werden. p ist hier keine komplexe Veränderliche wie im Abschnitt 2.
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Beispiel 4.10: Setzt man in (4.12) f = f(t) = e”, on komplex, so folgt

1

p - a '

peat=aeat+ I, em:

4.2.5. Aufgaben: Rechnen im Ring R und Körper K

Aufgabe 4.1: Man bestimme für f= 41, g = sin t, h = IE l

a)f*:; b)f'g'h; C)f*(g+ h).

Aufgabe 4.2: Mit vollständiger Induktion beweise man für n + 1 Faktoren e“ die Gleichung

1

‘ e""~~-» te“ = —'t"e”", ne N.
n.

Aufgabe 4.3: Man vereinfache mit (4.7) in K:

3-6
2011-1’; b) (1 + I)(l — I).

Aufgabe 4.4: Man forme p"t"’ mit (4.13) um; m, ne N.

Aufgabe 4.5: Man setze in (4.12) f(t) = t + I. Ist pfe R?

4.3. Spezielle Operatoren

Bis jetzt sind nur die Konstanten a, die stückweise stetigen Funktionen aus R und
der Differentiationsoperator p als Elemente von K bekannt. Im folgenden werden
weitere Elemente von K eingeführt und ihre Verwendung diskutiert.

4.3.1. In p rationale Operatoren

Aus Beispiel 4.9 und Aufgabe 4.2 ergibt sich durch n-malige Multiplikation (n + 1

Faktoren e“)

;_.
(p - 00"“

Da die Formel (2.31) eine Identität ist, die in jedem Körper unabhängig von der
speziellen Bedeutung von p gilt, läßt sich jeder in p echt gebrochen rationale Ausdruck
durch Partialbruchzerlegung als eine Linearkombination von Operatoren (4.14) dar-
stellen. Daraus folgt der

Z(p) .

— N01) mzt den Poly-

nomen Z(p) und N(p) kann mit einer bestimmten Linearkombination von Funktionen der
Form t"e“' identifiziert werden.

=e"‘a---*e“'=%t"e“‚ ne N. (4.14)

Satz 4.4: Jeder in p echt gebrochen rationale Operator F(p)

Diese Linearkombination läßt sich allgemein durch (2.32) auch angeben. Beschränkt
man sich auf reellwertige Funktionen, so hat man noch e” bei nichtreellem o: durch

S.4.4
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(2.35) zu ersetzen und erhält dadurch Sinus- und Kosinusfunktionen im Ergebnis;
Beispiele dazu wurden im Abschnitt 2.4.1. gegeben. Die Korrespondenzen (T l)—(T40)
und (T ll1)—(T 145) aus Tabelle 1 sind weitere Beispiele.

Die Lösung von Anfangswertaufgaben (3.1), (3.2) bei gewöhnlichen Diflerential-
gleichungen und bei Systemen (3.29) mit stückweise stetigen Störfunktionen ist nun
bereits möglich; dabei werden Lösungen gesucht, deren n-te Ableitung zu R gehört.
Alle Beispiele aus den Abschnitten 3.1.1., 3.1.2. und 3.2. können zur Illustration
dienen. Zwei weitere Beispiele sollen die jetzt übliche Bezeichnungsweise üben.

Beispiel 4.11: Für das Anfangswertproblem

y" + y’ " 5J’ = 41, J’(0) = 1, ‚V'(0) = 0‚

gilt mit pl = l und (4.13)

ply-17—py-1-6.v=i y=—T—p2+p+4p’ p(p+3>(p—2)

Formel (T 104) ergibt mit pl = O, p; = -3, P3 = 2 sofort

2 2=_____[__-3t 2:.3 Se +e

Beispiel 4.12: Ist im Beispiel 4.11 jetzt f(t) = e", so ist

p+l 1 1
1- _1_5="‚ =__.__:_ __..__.._r

P’ H” y ° ’ <p+3>(p—2>+<p+3)(p—2)°
Mit (2.30) ergibt sich zunächst

_21311(1 1

y_s + —j + —

p + 3 5 p — 2 5

und daraus nach ‚Beispiel 4.10 die Funktion

x z

2 3 l 1y = _;e—3: + ?e2: + ?e2!J’e—21+12d».[ _ ?e—3tJ‘e31+x3dr‘

O

4.3.2. Verschiebungsoperator

Im Ring R sind die Sprungfunktionen

0, t g z, 0, z g 0,
u.(r)= LR, “o(t)=“(t)= {mm (4.15)

enthalten; z g o. Für sie gilt mit feR
r 0, f ä Ä,

“‘*f im’ " ’)"‘(’) d’ = [ ['f(t — 1) dt =Tf(a) da, z < z.
Ä 0
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Setzt man die Funktion u; * fe R in (4.12) ein und führt den Operator v; = pur ein,
so gilt für fe R

0, t g A,

f(t — 1),). < t.

v; heißt Verschiebungsoperator, weil er nach (4.16) die Funktion f(t) um Ä nach rechts
verschiebt. Man beweist leicht die Formel

v/if = P041 n’) = { (4.16)

v,-,L‘,,=v,1+,‘; }.;0, ;4;0.
Ergänzt man die Funktionen aus R für t < 0 durch f(t) E 0 [siehe auch (2.3)]‚ so
lautet (4.16) einfach lg;f = f(t —- Ä). l

Mit dem Verschiebungsoperator w, und dem Integrationsoperator I = -1-; lassen sich

in einfacher Weise alle stückweise linearen Funktionen (mit und. ohne Sprungstellen)
darstellen.

Beispiel 4.13: Die Funktionen a) (T 86), b) (T 87) und c) (T 88) aus Tabelle 1 werden mit v; und

I = .1. dargestellt. Aus den Definitionen der Funktionen und mit (4.16) folgt sofort:
P

a) f(t) = —1—(vo - vr).
P

1

b) fa) = ;‘('/‘o ‘ 2'11- + 911-),

C) fÜ) = !f12'(”o ‘ 291 ‘i’ V27)-

Speziell lassen sich alle stückweise konstanten Funktionen (Treppenfunktionen)
mit dem Verschiebungsoperator w, schreiben. Hat die Treppenfunktion g(t) an den
Stellen t = t„ den Sprung y, = g(t‚ + 0) — g(t‚ — 0), so ist

l
g(t) = Z 7m. = 7 2 7.12». (4-17)

Zu summieren ist über die (endliche oder unendliche) Anzahl der Sprungstellen. Die
Funktionen (T 86) und (T 87) des Beispiels 4.13 illustrieren (4.17).

Jede Funktion f(t) e R läßt sich als Summe einer stetigen Funktion g,(t) und einer
Treppenfunktion g2(t) (Bild 4.1) in der Form

f(t) = m) + gz(t) = gm + figm. (4.18)

Bild 4.1. Zerlegung einer stückweise stetigen Funktion f(t) in eine stetige Funktion g‚(t)
und eine Treppenfunktion gz(t)

7 Stopp, Opexatoremechnung
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darstellen, wobei es für t. —> o0 keine Konvergenzprobleme gibt. Ist g; e R, so gilt
nach (4.12) pgl = g; + g1(0); wegen g; =f’ für t =f= t,, und g1(0) =f(0) erhält man
damit aus (4.18) durch Multiplikation mit p folgende
Verallgemeinerung der I-Iaupflonnel (4.12):
Hatf(t) an den Stellen t = t, die Sprünge y, = f(t‚ + 0) — f(t„ — 0) und existiert für
r 4: t. f’(t) mit f’ = f'(t) e R, dann gilt

Pf=f’ +f(0) + ;7vvr.- (4-19)

Beispiel 4.14: Für folgende Funktion gilt:

cost, 0<t<21'r,
0, 27r<t

f=f(t) ={ }= cost + u,,,(l — dost) — iv“;
p

1

g,(t) = cos t + 02,, (I -— cost), g2(t) = — 7 um,

pf= -sint + v2„(l + sin t) —- v2,,¢R.

Mit dem Verschiebungsoperator lassen sich periodische Funktionen darstellen. Ist
f(t + T) =f(I)1md

(t)_{f(t), 0<t<T,
g " 0, T < r,

so gilt offenbar g(t) + vTf(t + T) = f(t). Daraus folgt

tf(t) = (4.20)
" T

Beispiel 4.15: Für die periodische Funktion f(t) = t/T, 0 < t < T, f(t + T) =f(t), ist

(t) = {t/T’ 0 < t < T’ und damit alsof(t) = —————-——g(‘)

g 0, T < t, 1 — v, l

4.3.3. Distributionen und verallgemeinerte Laplace-Transformation

Distributionen ([4], §35) sind weitere spezielle Operatoren, auf diese läßt sich die
Laplace-Transformation (2.1) ausdehnen.

Ä aus K heißt Distribution, fallsf = f(t) und g = g(t)

absolut konvergente Laplace-Integrale (siehe 2.1.2.) besitzen; f; g e R.

Definition 4.5: Ein Operator (p

Für die Funktionen f(t) und g(t) soll die Festlegung (2.3) gelten. Für Operatoren

(und damit auch für Distributionen) cp = — lassen sich Integration und Verschiebung
definieren durch g

r H ff(r)dt d _

f¢<r)dr=”°jW—, «p<r—z>=‘-“’T)3,z;o;
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eine verallgemeinerte Ableitung läßt sich durch

m‘*;*f""(t) ,1

g(t) ’

definieren, falls f‘"’(t) für alle reellen t stetig ist.
Für Distributionen läßt sich eine verallgemeinerte Laplace-Transformation de-

finieren in der Form
F(p)

L19”) = ¢(P) = W
Diese verallgemeinerte Transformation geht in die gewöhnliche Transformation über,
falls tp(t) ein konvergentes Laplaee-Integral besitzt. Nach [4], S. 44, gilt der

Satz 4.5: Die wichtigen Rechenregeln (2.10), (2.13), (2.14), (2.17), (2.20), (2.21) und S.4.5
(2.25) der LapIace-Transformation bleiben gültig, wenn die Originalfunktionen durch
Distributionen und die Bildfunktianen durch (4.21) ersetzt werden. (2.24) Iäßt sich ver-
allgemeinern durch L {um} = p"d5(p).

eN,

mit L{f(t)} = F(P), L{g(t)} = G(P)- (4-21)

Beispiel 4.16: Die wichtigste Distribution ist die durch

uzÜ)

I(t)

definierte Diracsche Delta-Distribution. Für sie ist wegen (4.21), (T 1) und (2.14) die verallgemei-
nerte Laplace-Transformierte

Ö0 - Ä) = = 17m0) = r;(!). Ä ä 0.

l_e-1n

L{z$(t—/2)}: pl =e”“’.

P

Für ihre Ableitung gilt nach Satz 4.5

L {t5""(I - 1)} = p" e""‚ n E N-

Damit sind also die Korrespondenzen (T 82) bis (T 85) im Rahmen der verallgemeinerten Laplace-
Transformation gültig. Weiter folgen aus der Definition von Ö(t — Ä) die Gleichungen (3.25) und (3.26),
d. h., die im Abschnitt 3.1.30. eingeführte Delta-Funktion ist mit der hier erklärten Delta-Distribution
identisch. Die im Beispiel 3.14 angegebenen Deutungen von ö(t) und die Verwendung von 6(1) als
rechte Seite bei Differentialgleichungen (Abschnitt 3.1.3d.) können beibehalten werden.

4.3.4. Weitere Operatoren

Außer den Funktionen aus R sind in K beliebige integrierbare und sogar nicht inte-
grierbare Funktionen enthalten ([1], S. 118); für nicht integrierbare Funktionen
gelten dann natürlich nicht mehr die Rechenregeln (4.3), sondern sie müssen als
Operatoren mit den Regeln (4.8) behandelt werden.

In K sind Operatoren der Form@—fi:): enthalten ([13], S. 101). Man kann zeigen,

daß dieser Operator für o: g l mit einer Funktion aus R identifiziert werden kann,
"s
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für 0 < 0c < 1 ebenfalls einer Funktion (nicht aus R) entspricht und für o: ä 0 keine
Funktion ist. Für zx > 0 gilt:

1 _ 1 I;

01-11)“ _ 1'(0<)

—1eflt.

7|
I

Für a = 0, o: = n e N, entsteht wieder (4.7), für a = 0, zx = -21-, ist

31
*

1 _

. . . 1’
Damit sind weitere Korrespondenzen der Tabelle 1 benutzbar.

4.4. Anwendungen und Aufgaben zur Operatorenrechnung

Der Zusammenhang zwischen der Operatorenrechnung und der Laplace-Trans-
formation ist eng ([4], §35). Insbesondere kann man zeigen ([3], S. 227), daß alle
Tabellen der Laplace-Transformation (Tabelle l, [T 2], [T 4]) auch in der Operatoren-
rechnung verwendet werden können.

Als Anwendung der Operatorenrechnung soll die Lösung folgender Funktional-
gleichungen hervorgehoben werden: t

l. Gewöhnliche lineare Differentialgleichungen mit konstanten Koeffizienten (Bei-
spiele 4.11 und 4.12, Aufgabe 4.7);

2. Systeme obiger Differentialgleichungen (Aufgabe 4.8);
3. Integralgleichungen vom Faltungstyp (Aufgabe 4.9);
4. Partielle Differentialgleichungen mit konstanten Koeffizienten ([13], Teil IV);
5. Dilferenzengleichungen ([13], S. 146);
6. Gewisse Funktionalgleichungen allgemeiner Art (Aufgabe 4.10).

Weiter können alle entsprechenden Beispiele des Abschnitts 3 zur Illustration
dienen.

Aufgabe 4.6: a) Welche Funktion ist f=

Es ist 0 g a < ß.
Aufgabe 4.7: Man löse die Anfangswertprobleme a) y” + y’ — 6y = f(t), y(0) = y’(0) = O, f(t) aus

(T 87); b) y” + 4y’ - 5y = 50 — T)‚ y(0) = y’(0) = 0-
Aufgabe 4.8: Man löse das normale (siehe Abschnitt 3.2.1.) System

#0 — v, - up + v,.+p)? b) Man bilde f’ mit (4.12)!

yj’ + 3;»; — 4y‚ + Gy; =10cost, y;' + ‚v; — Zy, + 4yz = 0,

mo) = }’2(0) = 0. .vi(0) = 4, y£(0) = 2-

Aufgabe 4.9: Man löse die Integralgleichung vom Faltungstyp

I

y(t) = at + f sin (z — r)y(1)dr.
o e

Aufgabe 4.10: Man löse die Funktionalgleichungen a) y(t) = sin! + 2 f sin (t —- 1)y'(1)d't;
‘ o

b) w) — <1 — r)e' = f yo — mm dr.
0



5. Fourier-Transformation

Die neben der Laplace-Transformation wichtigste Integraltransformation ist die
Fourier-Transformation. Nach ihrer Definition und der Darstellung von Zusammen-
hängen mit anderen Transformationen (Abschnitt 5.1.) werden Umkehrung und
Rechenregeln angegeben. Diese Transformation dient wieder der Lösung von ge-
wöhnlichen und partiellen Diflerentialgleichungen. In Tabelle 2 (siehe Anhang) sind
Korrespondenzen zusammengestellt.

Die Fourier-Transformation kann als Grenzfall einer Fourier-Reihe aufgefaßt
werden. Dieser Zusammenhang soll kurz heuristisch erläutert werden (siehe auch
[B 3], Abschnitt 6):

Läßt sich f(t) im Intervall ——l2’— < t < -11- in eine (in komplexer Form geschriebene)
2

. . . . . 2
Fourier-Rerhe entwickeln, so 1st mit y„ = ——ETi

L/2

m) = 2 c, em’, cu =% f ‚ms-W dz.
-1./2

Zn .

Setzt man Ay = —L—— , so erhält man durch Einsetzen von c,,

' L/2

f(r) = ä e”’"'( Jf(t) e‘”'-' dt)Ay.
n: ü‘ m - L/2

Läßt man nun L ——> oo gehen und setzt F(y) = f(t) e-l” dt‚ so folgt die als Fourier-
sehes Integraltheorem bekannte Formel "°°

eo

f(t)=—21; f emnmdy.

Diese Formel entspricht der unter exakten Voraussetzungen angegebenen Formel
(5.11) des Satzes 5.2, sie verbindet die Funktion F(y) (Fourier-Transformierte) mit der
Funktion f(t) (Originalfunktion) in sehr einfacher Weise.

5.1. Definition der Fourier-'I‘ransformation

Neben der durch Beispiele erläuterten Definition der Fourier-Transformation wird
eine Klasse transformierbarer Funktionen angegeben sowie der Zusammenhang mit
anderen Integraltransformationen hergestellt.
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5.1.1. Definition und Beispiele

Die Fourier-Transformation ist eine weitere wichtige Integraltransformation. Ihre
physikalische Motivation ist aus Abschnitt 2.1.2. zu ersehen.

D.5.l Definition 5.1:Der reellen (oder komplexwertigen) Funktion f(t), —oo < t < co, wird
das Integral

F(y) = Fe""f(t) d! 1) (51)

zugeordnet, falls dieses Integral existiert; dabei ist y reell. Diese Zuordnung heißt
Fourier-Transformation und wird bezeichnet durch

F(y) = F{f(t)}- (5-2)

Wie üblich heißen dannf(t) Fourier-transformierbar, f(t) Original- und F(y) Bild-
funktion. (5.1) ist ein uneigentliches Integral mit dem Parameter y, F(y) besitzt i. allg.
komplexe Funktionswerte. Das Integral (5.1) ist, sofern es nicht als gewöhnliches un-
eigentliches integral existiert, als sogenannter Cauchyscher Hauptwert zu verstehen:

f = lim f‘ ‚ d.h.‚ die Grenzübergänge gegen i-oo sind zugleich und in der gleichen
4-» 0o _~A_oo

Art vorzunehmen.

Beispiel 541: Zur Originalfunkticn f(t) = e”""‘, Re a > O, wird mit (SJ) die Fourier-Transformierte
F(y) bestimmt. Es ist wegen lt] = —t für t < 0 und It] = r für r > 0:

A 0 A
l"e—n~r—am d, = {e—(.l.v—a)t d, + “e—u;-+aJrd,

—'4 —'A 6

e-(jv-u)! 0 e—(!y+n)t A _1 + e(.iy—a)A _e—(:‘>'+n)A + 1

jr-a -A 5y+a 0 jy-a J'.v+a

Wegen ]e"“| g e"““" und Re a > Oexistiert der Grenzwert für A -> o0 und ergibt durch Zusammen-
fassen schließlich

F(y) = F{e"”""} = i. (5.3)a’ + y’

Beispiel 5.2: Für die Originalfunktion

0, —oo < r < —1‚

f(z)= 1, —1<t< 1,

0, 1 < t < oo,

wird die Fourier-Transformierte F(y) bestimmt. Es ist

1

C

F(y) = Ie""dr = .

‘JJ’

„in 1 _L(eD__e_jy)= 2siny '

-1 J)’ y
—1

1) In der Literatur sind verschiedene Definitionen üblich, die sich jedoch nur durch konstante Fak-
toren unterscheiden.
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Beispiel 5.3: Ist f(t) gerade und Fourier-transformierbar, dann ist wegen f(i) = f(—t) mit der Sub-
stitution r = —r im ersten Integral

oo O co co co

F(y)= f e‘-""f(t)dt= + f = f (e""+e5")f(t)dt=2 f f(t)cos(yt)dr.
—oo -00 o o o

Entsprechend gilt für ungerade Funktionen f(t) = —f(—t):
cu

F(y) = —2j f f(t)sin (yt)dt.
O

Beispiel 5.4: Die Funktion f(t) = e"", Re a > 0, ist nicht Fourier-transformierbar, weil für

e-JW-ul dt = ______ =

.4

e-(Jna): A e(Jv+a)A __ e—uy+u)A

jy + a —A jy + a
—.4

der Grenzwert A —> oo nicht existiert.

Wegen der einfachen Ungleichung
00 D0

lF(y)I g J le"”f(t)| dz g J lf(t)| d: (5.4)

lassen sich sofort eine Klasse von Fourier-transformierbaren Funktionen f(t) und
einige Eigenschaften angeben.

Satz 5.1: Existiert f If(t)| dt, so existiert die Fourier-Transformierte F(y) für alle S.5.l

reellen y. F(y) ist dann beschränkt, stetig und strebt gegen null für Iy[ —+ oo.

Beweis: Die Existenz und Beschränktheit von F(y) folgt unmittelbar aus (5.4). Für die
beiden anderen Eigenschaften siehe [6], S. 198. Satz 5.1 ist nur hinreichend, wie Auf-
gabe 5.1 zeigt.

5.1.2. Fourier-, Fourier-Kosinus- und Fourier-Sinus-Transformation

Neben der Fourier-Transformation F(y) = F{f(t)} nach Definition 5.1 benutzt man

auch oft die Fourier-Kosinus-Transformation F¢(y) = Fc{f(t)} und Fourier-Sinus-
Transformation Fs(y) = Fs{f(t)} (Tabellen in [T l], 19. Aufl. S. 673-684, ab 21. Aufl.
S. 621-632):

Fc{f(f)} = ff(t)c0s(yf)df, Fs{f(t)} = Ff(!)Sin(,vt)dt- (5-5)
d

Diese drei Transformationen lassen sich durch einfache Umrechnungsformeln in-
einander überführen. Es ist:

w) = F{f(t)} = Fcmr) + f(—t)} — jFs{f(t) — f(—t)}, (5.6)

FCÜ’) = %F{f(Itl)}‚ w) = %F{f(lt|) sign t}. (5.7)
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(5.6) und (5.7) folgen aus Umrechnungen der Definitionen, so ist z.B. wieder mit der
Substitution t = — 1 im ersten Integral

no O

-;-F{f(ltD} =§ fe"”‘f(It|)dt =g f + g. f

= ä f (am + e"")f(t)dt = Im) cos (yr) ax.

Für a) gerade Funktionenf(t) = f(— t) und b) ungerade Funktionenf(t) = —f(— t)
vereinfacht sich (5.6) zu (siehe Beispiel 5.3)

a) F0) = Fc{f(t) +f(t)} = 2Fc(y). (5.63)

b) F0’) = —J'Fs{f(t) + f0)} = —2J'Fs(y)- (5-6b)

Beispiel 5.5: Fürf(t) = Ski wird die Fourier~Transformierte F(y) bestimmt. f(t) ist gerade, deshalb
gilt nach (5.62): '

co ea

F(y) = 2F¢(y) = 2 J. Si" a’ cos (yl) dt = zf
0 O

sin(a+y)t+sin(a——y)l d!
r .

so

Aus [T1], 19. Aufl. s. 119, ab 21. Aufl. s. 67, entnimmt man 1 = I “f” dr und bestimmt damit
F(y); es ist o

n, —a<y<a,
1r/2, oc>0, _

1: o, 06:0, F(,)=F{s””"}= ;,y=¢a,
-7:/2,o:<0,

O, y<—a,a<y.

5.1.3. Fourier- und Laplace-Transformafion

Die Fourier-Transformation (5.1) hängt eng mit der Laplace-Transformation (2.l)
zusammen, In der folgenden Übersicht werden die beiden Transformationen stich-
wortartig verglichen.

Fourier-Transformation | Laplace-Transformation

no Q

Fcv) = Fvm} = I e-"*/(oar F02) = L{/(rm = o] e"’f(r)dt‘)
‚u, ‚

Einfacher: y reell Komplizierter: p komplex

F" " L :NureinV " ' m0 M f5 l4) K’- " ' m. Zwei vev -' ' ‘

Verschiebungssätze (2.14), (2.15)

Intervall: —oo < 1 < oo Intervall: O g t < oo

Difierentiationssatz (5.18) enthält keine Diflerentiationssatz (2.24) enthält
Anfangswerte Anfangswerte

Schlechter: Konvergenz von (5.1) hängt Besser: Konvergenz von (2.1) wird
allein von f(I) ab durch Faktor 22"‘ verbessert

‘) Die neue Bezeichnung ist nötig, weil in der Schreibweise L{f(t)} die Abhängigkeit von p nicht
zum Ausdruck kommt.
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Aus der letzten Zeile der Übersicht folgt, daß jede Fourier-transformierbare Funk-
tion auch Laplace-transformierbar ist und nicht umgekehrt, d.h.‚ bei Benutzen der
Laplace-Transformation zur Lösung eines bestimmten Problems werden für t g 0
mehr, aber für t g 0 weniger Funktionen f(t) berücksichtigt. Folgende zwei Fälle
lassen sich unterscheiden:

I.f(t) E Ofür t < 0: Dann ist

F(y) = Fmo} = J‘ e-3%) d: = 1-{f(t)‚ p = m. (5.8)
0

d.h.‚ die Fourier-Transformierte entsteht aus der Laplace-Transformierten einfach
durch die Spezialisierung p = jy (p wird auf die imaginäre Achse Rep = 0 cin-
geschränkt).

2. f(t) ist für t < 0 beliebig definiert: Dann ist

F(y) = F{f(t)} = fe-"vto d: = + f= }°e'"f<—r) d: + fe-mt) d:
— so — no 0 0 0

= L{f(-I), p = —J'y} + L{f(t), p = jy}. (5.9)

Dabei wurde wieder im ersten Integral t = —1: gesetzt. Damit ist die Fourier-‘Trans-
formierte als Summe zweier Laplace-Transformierten (falls diese existieren) dar-
gestellt. (5.8) ist in (5.9) enthalten.

Für a) gerade Funktionenf(t) = f(— z) und b) ungerade Funktionenf(t) = ~f(— t)
vereinfacht sich (5.9) zu '

a) F(y) = L{f(t)» P = Jy} + LUG). P = —iV}» (5-93)

b) F(y) = L{f(t). p = jy} — Lmz). p = —jy}. (ssh)
Beispiel 5.6: Für f(t) = e"”“ wird die Fourier-Transformierte F(y) bestimmt. _f(t) ist eine gerade
Funktion, deshalb gilt nach (5.9a), (T 53, Tabelle I) und der Definition der Fehlerfunktion (S. 8):

F(y) = \/;e“’)2 erf c(jy)+ \/':e“")2 erf c(-jy)

= \/1:6": (2 — e1'f(jy) — erf(—jy)) = 2‘/;e“’:.
Dies lälßt sich auch leicht durch direkte Rechnung bestätigen.

5.1.4. Aufgaben: Bestimmung von Fourier-Transformierten

Aufgabe 5.1: Mit (5.1) bestimme man F{e"’“'sign t}, Re a > O. *

Aufgabe 5.2: Für f(t) aus (T 87, Tabelle 1) mitf(—t) = f(t) bestimme man F(y) a) mit der Defini- 4:

lion (5.1) und b) mit (5.9a) und (T 87).
Aufgabe 5.3: Man beweise die Umrechnungsformeln *

a) Feb’) = Fc{f(!)} = %:L(f(!). 17 = iv) + %L{f(1). = -iv};

b) m) = am») = —ä-L{f(:)‚ p = jy} — §L</<0. = —j.v).
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Aufgabe 5.4: Mit (S.6a) und [T 1], 19. Aufl. S. 120, ab 21. Aufl. S. 68, bestimme man F(y) für

a = M; = j——-, _mo ‘ mm) l ‚i: o
1 + t2 \/ |t1

Aufgabe 5.5: Man bestimme die Fourier-Transformierte G(y) von f(at) e”", falls 1-'(y) = F{f(t)} be-
kannt ist; a > 0.

5.2. Umkehrung der Fourier-Transformation

Bei der Umkehrung der Fourier-Transformation ist die Bildfunktion F(y) gegeben
und eine zugehörige Originalfunktion f(t) gesucht; diese wird bei der Lösung von

Funktionalgleiehungen benötigt. Für die Rücktransformation verwendet man die
Bezeichnung

F-*{F<y>} =f(t)- (5.10)

Die einfachste Möglichkeit ist das Benutzen der Tabelle 2 oder [T 3]. Es gibt keine
einfachen Korrespondenzen ganzer Klassen von Funktionen wie bei der Laplace-
Transformation (z. B. für rationale Bildfunktionen).

Es gibt verschiedene hinreichende Sätze über die Umkehrung der Fourier—Trans-
formation, der einfachste davon ist der

a)

Satz 5.2: Existiert I f(t)| dt und ist f(t) von beschränkter Variation‘) in einer Um-

gebung uon t, so dart
co

5m: + o) + f(t — o» = f e”'F(y) d)».

—oo

(5.11)

f(t + 0) und f(t — 0) bezeichnen wie üblich rechts- und linksseitigen Grenzwert
von f(t) an der Stelle t; bei Stetigkeit ist bekanntlich f(t + 0) = f(t — 0) und links
in (5.11) steht einfach f(t). Das Integral in (5.11) ist wie bei (5.1) als Cauchyscher

Hauptwert zu verstehen. Bis auf den Faktor21—7_cund die Ersetzung von —j durch j
stimmt (5.11) mit (5.1) überein. Ein Beweis ist in [6], S. 200, zu finden. Es sei bemerkt,
daß Satz 2.11 eine unmittelbare Folgerung aus Satz 5.2 ist.

Aus Satz 5.2 folgt über die Eindeutigkeit der Umkehrung noch:
Genügen f1(t) und f2(t) für alle t den Voraussetzungen von Satz 5.2 und ist F‚(y)
E F2(y), so ist auch fl(t) E f2(t), wenn an den Unstetigkeitsstellen stets der Mittel-
wert aus den einseitigen Grenzwerten als Funktionswert von f,(t) und f2(t) definiert
1st.

Ist f(t) nicht von beschränkter Variation, so gilt der

‘ö Beschränkte Variation: Siehe Fußnote in 2.4.4.
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cc

Satz 5.3: Existiert |f(t)\ dt‚ so ist immer
—ao

Jff(T)d‘E = ä
o0

f 5e!" — 1)F<y>dy.
—oc

(5.12)

(5.12) entsteht aus (5.11) durch formale Integration nach t, ein Beweis des Satzes
ist in [6], S. 204, zu finden. Bei der Voraussetzung des Satzes 5.3 folgt aus F101) E F,(y)
nur [vg1. (4.1)]

I’

d7 = d?

5.3. Rechenregeln der Fourier-Transfonnatiou

5.3.1.

Zur Anwendung einer Transformation werden Rechenregeln, d.h. die Abbildung
gewisser Operationen im Originalbereich auf andere Operationen im Bildbereich, be-
nötigt. Sind

F(y) = F{f(t)}‚ G(y) = F{g(t)},
zwei Fourier-Transformierte, so gelten die folgenden Regeln:

Additionssatz: I-‘iir cx, ß e K gilt

Zusammenstellung der Rechenregeln

F{<Xf(t) + 1930)} = 0¢F(y) +_ I3G(y)- (5-13)

Verschiebungssatz: Für a =l= 0 und reell, b e K, gilt

F{f(at + 12)} = %e"”/“F. (5.14)

Déimpfungssatz: Für a > 0 und b e K ist

__ 1 y — b
F{e””f(at)}— ;F( a ). (5.15)

Faltungssatz: Existieren die Integrale

_Flf(t)| dt, _Flf(t)l’ dt.
—ae

Cc

i |g(t)1dt,
—co

7Ig(t)|’ dz,

m

so existieren auch die Faltung‘) a(t) = f f(t — 1) g(r) d'r und ihre Fourier-Transfor-

mierte A(y) = F{a(t)}, und es gilt _‘°

F{a(t)} = F{ TK1 - T) 3(1) <11} = F0’) G(y) = A0’)-

‘)Hier ist die Faltung anders als in (2.18) definiert. aber es ist die gleiche Schreibweise
:1(t) = f(t) s g(t) üblich.

(5.15)

S.5.3
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co

Integrationssatz: Wenn f(t) dt = 0 ist, ‘dann gilt

F{ (m) dz} = F(y). (5.17)

Diflerentiafionssatz : Istf""(t)Fourier-transformierbar undstrebenf(t),f’(t), .. . ,f"""(t)
gegen null für t —> ioo, so ist

F{f‘"’(t)} = <jy)"F<y), n e N. (5.18)

Mnlfiplikationssatz: Ist t"f(t) Fourier-transformierbar, so ist

F{t"/’(f)} = J"'F""(J')‚ n E N- (5-19)

Parsevalsche Gleichung: Existieren die Integrale
00 00

j 1f(t)ldt, j lf(t)12dt,

so gilt mit F(y) = F{f(t)} die Gleichung
co

f If(t)l’dt =3‘; f 1F(y)12dy. (im)
—eo

Die Regeln (5.13), (5.14) und (5.15) folgen unmittelbar durch Variablentransfor-
mation im Integral (5.1) [(5.15) siehe auch Aufgabe 5.5]. (5.17)_ und (5.18) folgen
durch partielle Integration aus (5.1), die angegebenen Bedingungen bewirken gerade
das Verschwinden der ausintegrierten Bestandteile. Beweise von (5.16) bzw. (5.19)
findet man in [6], S. 251, bzw. in [l1], S. 527. Gleichung (5.19a) ist in [6], S. 247-248,
bewiesen.

5.3.2. Beispiele zur Anwendung der Rechenregeln

Beispiel 5.7: Unter Verwendung von (5.13), (5.15), (5.19) und F i } = n e71" (Aufgabe 5.4a)
1

1+1’
1

wird F: . } ‚ a > O, bestimmt. Es ist
a — Jt

1 _ a+jt
a—jt _ 112+!‘

1 + _j_ 1

1+(r/«>1 a2 1+0/a>*'
l
a

1

(5.15) mit b = 0,:-anste1le a und (5.19) für n = l ergeben

1 1 j . ‚ 1 I

F _ = —-a7re"'|’| + —2—_1(a7re“"") = n: e‘”"’ -— —(e"' ’[)’ .

a—_]t a a a

Für y > 0 ist IyI = y, für y < 0 ist Iy) = —y; führt man nun die Differentiation aus, so erhält man

1

aj—t
1F{——}=2n:e’”’ für y>0‚ F{_ }EO für y<0.

uJ-t
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Für die Fourier-Transformierten von f,(t) = f(at) cos bt und f2(t) = f(at) sin br,
a > 0, lassen sich aus (5.15) zwei einfache Formeln ermitteln. Es ist nach (5.15)

F{f(at)e”"} = %F(y ; Z’ F{f(at)e"°'} = Mi).
a

Addiert man beide Beziehungen bzw. subtrahiert sie voneinander, so ergeben sich
wegen 1 1 ‘

702"” + e""‘) = cos bt, —2—j(e"" — e""‘) = sin bt

die gesuchten Trausformierten F1(y) und F2(y) als

_ 1 y — b y + b

F‘(’V)~33(F( a )+F( a i)’
- 1 y — b y + b )

= —— —— . 5.20
‘w’ 2jaiFi a i Fi a i ‘ ’

Beispiel 5.8: Die Transformierten F‚(y) und F‚(y) für f1(t) = e"\'1cosbr, f1(r)= e“|‘1sinbt,
a > 0, werden mit (5.20) bestimmt. Aus (5.3) folgt

= 4a(a’ +172 + y’) _ _ Szzby
N a 2 T» N = (a2 + b’): + 2(a’ - b’)y‘ + y‘.I

5.3.3. Aufgaben: Anwendung der Recheuregelu

Aufgabe 5.6: Man bestimme mit A + 0 und reell sowie Be K

sin (At + B)
G = 1-‘ ___¥_

U) i A! + B i
Aufgabe 5.7: Man berechne die Faltung a(t) und ihre Fourier-Transformierte A(y) für f(r) = g(t)
= e"‘|. l
Aufgabe 5.8: Analog Beispiel 5.7 bestimme man F{ a + i’: ‚ a > 0.

Aufgabe 5.9: a) Man beweise den Integrationssatz (5.17)! b) Folgt aus der Gültigkeit von (5.17), dal3

j f(t)dt = o ist‘!
_ a, 1

Aufgabe 5.10: Mit Beispiel 5.5 und (S.20) bestimme man die Fourier-Transformierte von-I sin at cos bt,
0 < a < b.

5.4. Anwendung der Fourier-Transformation

5.4.1. Lösung einer partiellen Diflerentialgleichung

Das Prinzip bei der Lösung von Funktionalgleichungen mittels Fourier-Transfor-
mation entspricht dem in Bild 3.1 dargestellten Prinzip. Die Fourier-Transformation
ist besonders geeignet zur Lösung von Anfangs- und Randwertaufgaben bei partiellen
Differentialgleichungen (siehe auch Abschnitt 3.3.), wobei die Gebiete in der x, t-Ebene
der erste Quadrant oder die obere Halbebene sind.

Beispiel 5.9: Für die Wellengleichung ist mit a = a(x‚ r) das folgende Anfangswertproblem (siehe
auch Beispiel 3.25) zu lösen:

a„,—a„=0, a(0‚x)=f(x)‚ a‚(0‚x)=g(x), 0<t<oo‚ —oo<x<ao.
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I-‘ourier-Transformation bezüglich der Ortskoordinate x (nicht der Zeitkcordinate t!) ergibt mit
A(y, t) = I-‘{a(x, t)}, (5.18) und bei transformierbaren f(x) und g(x) im Bildbereich ein Anfangswert-
problem für eine gewöhnliche Differentialgleichung bezüglich t mit dem Parameter ‚v:

‚VZA + An = 0‚ AU, 0) = F0’). A20’. 0) = G0)-

Mit dem Lösungsansatz A = e""ergibt sich y’ + a2 = 0 mit den Nullstellen a, = jy, a; = ——jy. In
der allgemeinen Lösung

A03!) = C10’) 6"’ + Cz(y)e“"‘

mstimmt man C,(y) und C2(y) aus den Anfangswerten A(y, 0) und A‚(y‚ 0), wodurch man im Bild-
bereich

1 1 1 1

Au. r) = — (m) + .— am) e" + — (w) — .- Gm) rm
2 J)’ 2 J)’

erhält. ‘Jerschiebungs- und Integralionssatz (5.14), (5.17) ergeben

x+t

a(x, z) = wo; + z) +f(x — 1)) + fgmdr.
X-I

Die Einsetzprobe ist erfüllt, so daß a(x‚ t) tatsächlich die Lösung ist.

Beixpiel 5.10: Für die Wärmeleitungsgleiehung ist mit a = a(x, r) das folgende Anfangswertproblem
(siehe auch Beispiel 3.26) zu lösen:

a„‚—a‚=0‚ a(x‚0)=f(x)_‚ —oo <x< oo, 0<t< oo.

Fourier-Transformation bezüglich x mit (5.18) und A(y‚ t) = F{a(x, 1)} ergibt im Bildbereich

Y2/1 + A: = 0‚ A(.V‚0) = F0’)-

Der Ansatz A = e“ ergibt o; = —y’. Aus der allgemeinen Lösung A(y‚ t) = C(y) e"" folgt A(y‚ O)

= C(y) = F(y)‚ also ist A(y‚ I) = F(y) 6"". Der Faltungssatz (5.16) und Formel (T 7) ergeben als
Originalfunktion

co oo

1 I -

a(x‚t) = __ y f(I)e"""’1/"dz = _ I [(2 \/ta + x) e’°2.da.
2 \/rct \/1:

._.,o -

Das Integral wurde durch die Substitution x —_r = a umgeformt. Die Einsetzprobe bestätigt
das Ergebnis. 2 t

co

Die Fourier-Transformation läßt sich auch zur Berechnung vieler uneigentlicher
Integrale, zur Lösung von gewissen Integralgleichungen und bei der Untersuchung
von höheren transzendenten Funktionen benutzen.

5.4.2. Abtasttheorem

Bei der Fourier-Transformation läßt sich analog wie bei der Laplace-Transforma-
tion (s. 3.1.2.c) und d); 4.3.3.) die Diracsche Delta-Funktion Ö(t) einbeziehen. Die
Zusammenhänge (3.23) bis (3.26) bleiben bestehen, und es ist

F{ö(t — :,,)} = e‘”‘o. (5.21)

In der Informationstheorie, wo f(t) ein Signal und F(y) das zugehörige Frequenz-
spektrum bei der Frequenz y bedeuten (siehe 2.1.2.), wird mittels ö(t) ein wichtiger
Zusammenhang zwischen der für reelle t definierten Funktionf(t) und ihren diskreten
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Funktionswerten f(nT) (n = 0, i1, ...; Abtastwerte, siehe auch 6.1.1.) hergestellt.
Dazu wird die Operation „Abtastung A“ eingeführt gemäß

A(f(t)) =f(t)T «so — m. (5.22)

F{A</<z>>} = r jw/(nr) e-W". (5.23)

Bei vorgegebener Funktion f(t) ist die Abgetastete A(f(t)) eindeutig bestimmt; die
Umkehrung gilt i. allg. natürlich nicht. Der folgende Satz 5.4 (Abtasttheorem) be-
inhaltet unter einer technisch gut deutbaren Voraussetzung an F(y) = F{f(t)} gerade
diese Umkehrung.

Satz 5.4: Gilt für die Bildfunktion F(y)
F(y) E O für lyl > b, (5.24)

50 Iäßt sich die 0rigimzlfunktianf(t) darstellen in der Form
T °° ' b — Tf(t) = F Ä wf(nT)Eäfl. (5.25)

Beweis: Aus (5.11) und den Bemerkungen nach Satz 5.2 folgt
so b

f(t) = 71; f ewny) dy = E f e"*F<y> dy. (5.26)
-00 —b

Wird t = nT gesetzt und gilt b g rr/T (T fest, n = 0, i], ...)‚ so ergibt sich daraus
71/T

f(nT) =3‘; f ewm->dy.
—r:lT

Die Konstanten f(nT) sind die (in komplexer Form geschriebenen) Fourierkoeffi-

zienten c_„ der mit dem Intervall -1:/T g y g 7:/T periodischen Funktion %F(y)

([B 3], 5.6.). Die Darstellung (5.23) ist somit die Fourierreihe von TFQ). Setzt

man diese Darstellung in (5.26) ein, so folgt nach einfachen Umformungen die
Formel (5.25).

Diese Formel (5.25) kann unter Beachtung von (5.22), (5.23) und der Faltung

(5.16) in der einfachen Gestalt f(t) = A(f(t)) 2. mit”
Satz 5.4 heißt Abtasttheorem, weil durch (5.25) die Funktion f(t) durch ihre Ab-

tastwerte f(nT) dargestellt ist. Dabei muß unbedingt (5.24) und b g 7:/T beachtet
werden. Ein analoges Theorem existiert für F(y)‚ falls f(t) s 0 für Itl > a ange»
nommen wird.

Das Abtasttheorem spielt in der Informationstheorie und Nachrichtentechnik eine
große Rolle, da die Bedingung (5.24) praktisch immer erfüllt ist und damit Signale
f(t) in Form ihrer Abtastwerte f(nT) dargestellt, übertragen und verarbeitet werden
können. In diesem Zusammenhang läßt sich das Abtasttheorem folgendermaßen
interpretieren: Das Signal f(t) läßt sich bei frequenzbandbegrenzten Signalspektrum
F(y) aus den abgetasteten Werten f(nT) zusammensetzen. Die Abtastperiode ist
T = Tr/b. ‘

geschrieben werden.
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Die Behandlung von zeitlich diskret ablaufenden Vorgängen in der Technik wird
in neuerer Zeit konsequent mit einer diskreten Transformation durchgeführt, wobei
sich auch in der technischen Literatur immer mehr die Z-Transformation durchsetzt.
Solche Vorgänge werden insbesondere in der Systemtheorie, der Elektrotechnik und
der Regelungstechnik betrachtet.

Nach einigen Bemerkungen über diskrete Funktionen und der Definition der
Z-Transformation werden in 6.3. bis 6.5. die wichtigsten Eigenschaften und Rechen-
regeln zusammengestellt. In 6.6. und 6.8. werden die Lösung von Differenzenglei-
chungen als eindrucksvollstes Anwendungsgebiet der Z-Transformation und Anwen-
dungen dazu behandelt. Die Abschnitte 6.7. und 6.9. ergänzen und stellen Zusammen-
hänge her. Tabelle 3 im Anhang enthält Korrespondenzen der Z-Transformation.

6.]. Diskrete Funktionen

6.1.1. Deutung diskreter Funktionen

Ist die Funktion f(t), 0 g t < oo, nur für diskrete (äquidistante) Argumente
t = nT, n = 0, 1, 2, ...‚ interessant oder bekannt, so kann f(nT) = f„ gesetzt und die
Folge {f„} gebildet werden (Bild 6.la). Folgen {f„} und nur für diskrete Argumente
definierte Funktionen (diskrete Funktionen) f(nT) entsprechen einander.

Eine solche Folge {fin} kann z.B. entstanden sein durch „Abtastung“ einer Funk-
tion f(t) in den diskreten Zeitpunkten t = nT(Bild 6.1 b). Die ursprüngliche Funktion
kann dann in der Formf(t) =f(nT + Ar), 0 g At < T, dargestellt und f(nT + At)
= f,,(At) gesetzt werden. At läßt sich als Parameter der Folge {f„(At)} auffassen. Bei

f„(At) = f„(0) = f,„ 0 g At < T, erhält man als besonders einfache Funktionen f(t)
Treppenfunktionen (Bild 6.lc).

- fa

.7

’ I

m), in r(r).f,.

5 a

2 2 :

l Im ’ hr
}

17l rzrannrsm nT 0| rmnmsnr gnr 0| rzrmrmnr anr
a) b) C

Bild 6.1a. Darstellung einer Folge {j',.}
Bild 6.lb. M.) als „Abtastung“ von f(t)
Bild 6.lc. {fi,} und zugehörige Treppenfunktion

Für das folgende wird meist T = l gesetzt (d. h. f(n) = f„), was mit der Substi-
tution f = t/T immer erreicht werden kann. Folgen {f„} oder die damit äquivalenten
diskreten Funktionenf(n) sind die der Z-Transformation zugrunde liegenden mathe-
matischen Objekte. Hier wird die Folgenschreibweise bevorzugt. Ferner ist zu be-
achten, daß keine Konvergenz der Folgen {f„} für n —> o0 verlangt wird.
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6.1.2. Rechnen mit diskreten Funktionen

Folgen {fi} (oder diskrete Funktionen) werden gliedweise verglichen, addiert,
subtrahiert und mit Faktoren multipliziert. Die gliedweise Multiplikation zweier
Folgen ist ebenfalls möglich, aber von untergeordneter Bedeutung.

Wichtiger ist die als Faltung‘)’) bezeichnete Operation der Folgen {f„} und {g„}, sie
wird mit einem a: geschrieben und ist definiert durch

f. ~ gn = Lg”-.. (6.1)

Die Summe der ersten n + l Folgenglieder (Teilsummenfolge) kann man mit g„ s l
für alle n in (6.1) darstellen als

‘äfi=fi*L mm

Beispiel 6.1: Fürf}, = g„ = n ist

‚M: 53m- „m24Arg”
y=O

= %(n — l)n(n +1).

Als Ditferenz l. Ordnung bezeichnet man den Ausdruck ‚

AI. =fi.+‚ -f‚.‚ neN;
analog definiert man Diiferenzen k-ter Ordnung durch

A"f„ = A""j'„„ — A"-1f‚„ A‘f„ = Af‚„ neN. (6.3)

Beispiel 6.2: Für die Binomialkoeffizienten keN‚ k fest mit k g n, gilt bekanntlichdie Gleichung

n + l n n

(k)=Q—J+®'
Daraus folgt für die Difierenzen A"fi, im Beispiel

An=n«—r»=<":1>«<:>=<.:.>» ~

A2f"=Af"“FM‘:(:J::)‘(k:1)=(k:2>’”'
l n nA”,,=A"“,, —A"-1 = "+ _ =

f f“ f" (kv—v+l lr—v+1 k-v

fiiH’§k-A150i5lZ-B»Av/o=0fiirv<k,A'fi,=1undA"/I,=0ffirv>k.

1) Schreibt man die Folgengliederf; und g, für 0 g v g n hintereinander auf einen Papierstreifen
und faltet diesen in der Mitte, so kommen gerade f; und g‚__‚ übereinander.

2) Man beachte, dal3 die Faltung (6.1) für Folgen nicht mit der Faltung (2.18) der zugehörigen
Treppenfunktionen identisch ist (Zusammenhang siehe Abschnitt 6.9.).

8 Stopp, Opernmrenrechnnng
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DilTerenz und Summe von diskreten Funktionen f(n) = f„ haben ähnliche Be-
deutung und Anwendung wie Ableitung und bestimmtes Integral einer Funktionf(t)
(siehe Bild 6.2). Sie sind die wichtigsten Operationen in einer Difierenzengleichung.

An M
I.

3 ‚Aral pm; J
„,5 -— ‚

T" 7 Via,

0|] nmzn vlzzanmn
Bild 6.2. Differenz und Summe einer diskreten Funktion

In der Technik kommen oft periodische diskrete Funktionen vor. Ist die Periode
ke N, k > O, so gilt:

f,,+k =f„ oder f(n + k) =f(n). (6.4)

In Bild 6.3 ist die periodische Funktion f„„ =f„ mit f0 =f1 =f2 = l, f3 =f„,
= f5 = —I dargestellt.

Bild 6.3. Periodische diskrete Funktion
fio =fi =f2 =1./E =/2 =fs = -1,
l'u.s=f..

6.1.3. Eine Dilferenzengleichung

Difierenzengleichungen werden in 6.6. und 6.8. ausführlich behandelt und gelöst.
Hier wird die Aufstellung einer solchen Gleichung an einem technischen Beispiel er-

läutert.
Gegeben ist eine elektrische Schaltung, dargestellt in Bild 6.4. In den Zeitintervallen

n g t < n + e liegt der Schalter S in Stellung 1, d.h., die Gleichspannungsquelle uo

lädt den Kondensator C über den Widerstand R, auf; in den Zeitintervallen n + e g t
< n. + 1 liegt der Schalter S in Stellung 2, d.h.‚ der Kondensator C entlädt sich über
den Widerstand R2; es ist 0 < e <1, n =1, 2, 3, ([16], § 1.4).

Gesucht ist die Spannung u(t) am Kondensator in den diskreten Zeitpunkten t = n.

5

l |:)R1 Ij-2

u, 5 IP,

Bild 6.4. Elektrische Schaltung

Wie bekannt, genügt die Schaltung den Diflerentialgleichungen

R,Cu’(t) + u(t) = uo für n g t < n + a,

R2Cu’(t)+u(t)=0 fürn+egt<n+ 1.
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1

R C , so lauten ihre Lösungen ([B 7/l], 3.3.4. u. 3.3.6.)
2

1
Setzt manoc W43 -

u(t)=uo+A,,e“"‘, n§z<n+s; u(t)=B,,e'5‘,n+s§t<n+l.
Fürt = nist u(t) = u(n) = u‚„damit kann A„geschrieben werden als A, = (u„ — u0)e"‘".
Für t = n + a muß u(t) aus physikalischen Gründen stetig sein, daher ergibt sich B„
aus

uo + A" e—n:(n+£) = B” e—ß(n+:)_

Für t—> n + 1 — 0 folgt schließlich u„„ = B,,e""'+" oder nach Einsetzen von B,

(6.5)u,,+1 —— e““‘*’“"’u,, = uo(1 —— 6'“) e"’““".

Diese Ditferenzengleichung für die gesuchte Spannung u„ wird in 6.8., Beispiel 6.18,
weiter untersucht.

6. 2. Definition der Z-Transformation

Die Z-Transformation wird hier als eine Transformation vonFo1gen{f,,}, n = 0‚1,...,
eingeführt. Ihr enger Zusammenhang mit der Laplace-Transformation ist in Ab-
schnitt 6.9. dargestellt (s. auch [T l], 21. Aufl. S. 64911‘).

Definition 6.1: Der Folge {f„} wird die unendliche Reihe

F(z) = E f„z'" (6.6)
n=0

zugeordnet, falls diese Reihe konvergiert. Diese Zuordnung heißt Z-Transformation
und wird bezeichnet durch

F(z) = Z{f„} ‘)- (6-7)

Eine Folge {f„}, für die die Reihe (6.6) konvergiert, heißt Z-transformierbar; {[2,}
heißt Originalfolge, F(z) heißt Bildfunktion. z ist eine komplexe Veränderliche und
damit als Punkt in der Gaußschen Zahlenebene (z-Ebene) deutbar; F(z) ist eine
komplexwertige Funktion.

Eine mögliche Deutung der Z-Transformierten F(z) ergibt sich aus 6.1.1.: F(z) ist
die Reihensumme der durch z" dividierten Abtastwerte J’, von f(t).

Beispiel 6.3: Fürfi, = 1 für alle n ist

F(z) = ZU} = gar" = (6.8)
2-1.

‘) Die sonst übliche Bezeichnung F(z) wird hier nicht verwendet.

8*

D.6.1
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Die entstandene Reihe ist eine geometrische Reihe in 2”‘. Ihr Konvergenzverhalten und ihre Reihen-
summe sind wohlbekannt, es gilt: z

Die Reihe (6.8) konvergiert für |z"‘| < 1 gegen die Reihensumme z _ l ‚sie divergiert für [ill > l.

Die Bildfunktion ist analytisch ([B 9], Abschnitt 5.2.) in der gesamten z-Ebene mit Ausnahme des
Punktes z = 1. Oder: Das Konvergenzgebiet |z| > l ist das Äußere und das Divergenzgebiet 12l < l
das Innere des Einheitskreises Izl = l in der z-Ebene.

‘Beispiel 6.4: Die Folge {f,,}, f; = n", ist nicht Z-transformierbar, denn für die Potenzreihe (6.6) in
z“ erhält man bei der Bestimmung des Konvergenzradius mit dem Wurzelkriterium ([B 3], 2.4.3.)

" —1 n —1 u\/n"lz =nlz |->oo fur n—>o0, 2+0,

woraus die Divergenz der Reihe (6.6) folgt ([B 3], Kap. 3).

Beirpiel 6.5: Für f„ = e", a e K, gilt analog Beispiel 6.1

F(z) = Z {e""} = Z e"'z'" = 2 (z/e")"' = a (6.9)
n=0 n=n Z‘ 5

für |zI > le"l. Die Bildfunktion F(z) ist analytisch in der ganzen z-Ebene mit Ausnahme des Punktes
z = e".

Weitere Beispiele zur Bestimmung von F(z) bei gegebener Folge {f„} sind in
Abschnitt 6.4. zu finden. In Tabelle 3 (siehe Anhang) sind 50 Folgen und ihre Bild-
funktionen zusammengestellt.

6.3. Wichtige Eigenschaften der Z-Transformation

6.3.1. Konvergenzgebiet der Bildfunktion F(z)

Die Bildfunktionen F(z) sind Potenzreihen in der komplexen Veränderlichen z“.
Das Konvergenzverhalten und das Rechnen mit Potenzreihen im Komplexen ist gut
bekannt([B 9], Kap. 5.); Eigenschaften und Rechenregeln der Z-Transformation wer-
den hier konsequent mit diesen bekannten Ergebnissen begründet. Aus dem Satz von

Abel folgt sofort der

Satz 6.1: Für Z—transformierbt1re Folgen {f„} gibt es eine reelle Zahl R“, so da/J’ die
Reihe (6.6) absolut konvergiert für Iz| > R“ und divergiert für |2] < R”. Für
lzl g R3‘ > R" ist die Reihe (6.6) sogar gleichmäßig konvergetzt.

R ist der Konvergenzradius der Potenzreihe (6.6) in der Veränderlichen z“. R kann
mit bekannten Kriterien (z. B. WurzeI- und Quotientenkriterium) oder nach der
Cauchy-Hadamard-Formal‘) bestimmt werden ([B 9], Kap. 5.). In Bild 6.5 ist die Aus-
sage des Satzes 6.1 noch graphisch dargestellt.

‘) Jacques Hadamard (1866-1963), französischer Mathematiker.



6.4. Reehenregeln 1 17

Konvergiert die Reihe (6.6) für alle |z| > 0, so setzt man R“ = 0. Für nicht Z-
transformierbare Folgen {f„} divergiert (6.6) für alle |z[ > O, und man setzt R“ = oo.

x _ /Y // /
lilrrrlzmamye K

Bild 6.5. Konvergenz- und Divergenzgebiete einer Z-Transformierten in der
(z = x + jy)-Ebene

In den Beispielen 6.3, 6.4 bzw. 6.5 wurde R“ bereits bestimmt mit R“ = 1,

oo bzw. ]e“[.

6.3.2. Eineindeutigkeit der Z-Transformation

Der Eindeutigkeitssatz für Potenzreihen in einer komplexen Veränderlichen ergibt
eine Aussage über die Art der Zuordnung der Folgen {f„} zu den Funktionen F(z)
und charakterisiert die Funktionen F(z) genauer wie folgt:

Satz 6.2: Ist {f„} Z-tramjfarmierbar für |z| > R“, so ist die zugehörige Bildfunktion 5.6.2
F(z) eine analytische Funktion für |z| > R“ und die einzige Bildfunktion zu {fin}.

Ist F(z) eine analytische Funktion für |z[ > R“, die auch für z = oo regulär‘) ist,
so gibt es stets genau eine zugehörige Originalfolge {j",,}.

Die Z-Transformation ordnet also den Folgen {f„} die für |z| > R“ einschließlich
z = oo analytischen Funktionen F(z) eineindeutig zu.

Führt man für die Umkehrung der Z-Transformation wie üblich die Schreibweise
Z“{F(z)} = {f„} ein, so lassen sich die Ergebnisse der Beispiele 6.3 und 6.5 auch in
der Form

24i Z 24iz—1
Z

2.. e. } = {w}
schreiben. Diese Umkehrung wird in 6.5. weiter untersucht.

6.4. Rechenregeln der Z,-Transformation

Vor der beabsichtigten Anwendung der Z-Transformation zur Lösung von Diffe-
renzengleichungen muß zunächst ein Fundus von Rechenregeln zusammengestellt
werden.

‘) F(z) heißt regulär bei z = o0, wenn F(z) eine Potenzreihendarstellung der Form (6.6) besitzt und
F(oo) = fa gilt.
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6.4.1. Zusammenstellung der Rechenregeln

Ist F(z) = Z{f,,} für |z| > Rf und G(z) = Z{g,,} für |z| > Rg‘, so gelten bei den
angegebenen (hinreichenden) Voraussetzungen folgende Regeln:

Additionssatz: oc,/3 e K; Iz] > max (R;‘‚ R5‘):

Z{ocfi‚ + ßg„} = ocF(z) + flG(z). ~ (6.10)

1. Verschiebungssatz: k E N,f,,_k = Ofür n < k; [z] > R;‘:
Z{fi‚_„} = z"‘F(z). (6.11)

2. Verschiebungssatz: k e N; [z] > R;‘:
k—1

Z{fi.+1} = Z"(F(z) - Z fvz") (6-12)
V=O

Dämpfungssatz: 1e K, /'. + O; |z| > |}.| Rf:

Z = {Am} = . (6.13)

Summationssatz: |z| > max (1, R;‘):
II— l F

z { 2 ,3} = (z) . (6.14)
y=0 Z — 1

Difierenzensatz: |z| > R;‘:
Z{A}"„} = (z — l) F(z) — zfo. (6.15)

Dilferenzensatz (allgemein): k e N; |z| > R1‘:
k-

Z{A"f„} = (z —— 1)"'F(z) —— z 2l(z — 1)""“ A‘f0. (6.16)
x'=0

Faltungssatz: [z| > max (Rf, R3‘): ‘

ZU» * gn} = F(z) - 6(2). (6-17)

Diflerentiationssatz: |z| > R1‘:

—zF’(z) = Z{nf„}. ’ (6.18)

Integrafionssatufo = 0; |z| > R;‘:

f H?“ = (6.19)

Regel (6.10) bringt die Linearität der Z-Transformation zum Ausdruck; sie läßt
sich natürlich auf eine Linearkombination von endlich Vielen Folgen verallgemeinern.
Das Konvergenzgebiet beim Additions- und Faltungssatz kann größer sein als
|z| > max (Rf, Rg‘), z.B. gilt (6.10) bei 1x = ß und f„ = —g„ für |z| > 0.
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Die Verschiebungssätze (6.11) und (6.12) beinhalten die Auswirkung einer Rück-
wärts- bzw. Vorwärtsverschiebung der Glieder einer gegebenen Folge {f,,} (siehe auch
Bild 6.6). Die Bezeichnung von (6.13) als Dämpfungssatz sieht man ein, wenn z.B.
i. = e“'‚ a > 0, ist.

Der Faltungssatz (6.17) spielt in der Anwendung der Z-Transformation eine große
Rolle z.B. bei der Rücktransformation. Mit (6.18) lassen sich durch wiederholte An-
wendung auch Ableitungen höherer Ordnung von F(z) bestimmen.

Die Regeln (6.10) bis (6.16) folgen unmittelbar aus der Definition 6.1 der Z-Trans-
formation. S0 ergibt sich z.B. (6.12) sofort aus der Umformung

zum ="§0/...z-" = 2* fvz" = z*(F(z> -2122-V),

wobei n = v + k gesetzt und die Definition (6.6) benutzt wurde. (6.15) folgt aus (6.10)
und (6.12) mit k = 1

Z{Afi.} = Z{f„+i} - Z{fi.} = Z(F(Z) -fo) - F(z) = (Z - 1) F(z) - Zfo-

(6.17) bis (6.19) folgen aus der Tatsache, daß Potenzreihen im Inneren ihres Kon-
vergenzgebietes wie Polynome multipliziert sowie gliedweise differenziert und inte-
griert werden dürfen. Die entstehenden Reihen, deren Reihensummen bekannt sind,
konvergieren mindestens in den angegebenen Gebieten ([B 9], Kap. 5.).

6.4.2. Beispiele zur Anwendung der Rechenregeln

Die folgenden Beispiele illustrieren die Regeln (6.10) bis (6.19) und ergeben gleich-
zeitig neue Korrespondenzen zwischen Folgen und Bildfunktionen.

Beispiel 6.6: h„ = O für gerade n und h„ = 2 für ungerade n (also h“, = O, h2„„ = 2) kann man
darstellen als

h„= 1 — (—1)", n =0‚l‚2‚....

Setztmanfi, E 1undg„ = (—1)"‚so folgtaus(6.8)und(6.10) fürR‚ = R; = 1,0: = 1‚ß = —lund
|z| >1

z z 2z
Zh =j——-———= . 6.20

M} 2-1 z+1 z2—1 (J
—1

Beispiel 6.7: Fürf}, = e", a e K, wird Z{fl.-k} und ZUM} bestimmt. Die Folgen sind für a = T
in Bild 6.6 dargestellt. (6.9) und (6.11) ergeben für lzl > [e”l

l-k

m) = z<r.-.> =

(6.9) und (6.12) ergeben zusammen mit der Summenformel der endlichen geometrischen Reihe für
|z| > Ie”!

z k:

z-e“

Z6
171(1) = Z{fn+k} = Zk< ‘ki1e"vz_') = ja '

v=0 Z - 6
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Beispiel 6.8: Es soll Z{e"" sin bn} bestimmt werden. Für

l ‚ ‚

f}, = sin bn = (e”’" — e"”")

f{!) f}, G4;

7 7‘ 7 1\__ 1

In l s s

l .

I I I l 1 r l l l4...
0|7Z345f 0|72345n072 kKv7n -k~kv7‘-7fl72n

Bild 6.6. Funktion f(r) = e"/‘°, Folgen (f,,}, M.-.) und {/QM} mit}; = e‘""°

erhält man aus (6.9), (6.10) und den Eulerschen Formeln

Z{f;,} = ( (6.21)
z z ) zsinb

z—e"’ z—e"" -22-—2zcosb+1

für |z| > 1 wegen |e"‘| = le‘-‘bl = 1. Daraus folgt mit Ä = e‘ nach (6.13) durch Erweitern mit e“
für |z| > ]e"|

z e" sin b

z’ — 2z e" cos b + e“ l (622)
Z{e‘"‘ sin bn} =

Beispiel 6.9: Für f}, = sin bn ist Z{fi‚} nach (6.21) bekannt, daraus folgt nach (6.14) für |z| > l

"' 1 z sin b
Z ' b = —— ———-———- .

{,§'osm v} z — 1 z’ — 2z cosb + 1

n

k

spiel 6.2 ist Nfi, = 0 für v < k und N]; = 1 bekannt. Dies in (6.16) eingesetzt, ergibt zusammen mit
(6.8) für |z| > 1

z{A”.} = zu} =

BeispieI6.I0:Fürfi‚ = w. k E N, k fest mit k g n, soll F(z) = Z{/„} bestimmt werden. Aus Bei-

z
= (z — 1)" F(z) oder

z — l

F()-Z " — Z 623)
" {(k)}"<T'1)T‘ ‘-

Beispiel 6.II: Für die Folge {h‚.} aus Beispiel 6.6 ist R = l und ho = O. Durch Anwendung von (6.18)
und (6.19) ergeben sich neue Folgen und ihre Bildfunktionen. Es ist für |2] > l

z’ + I
-—zF’(z) = 2z—(—z—2—_-—F = Z{nh,,} = Z{k,},

0017(5) d; m ZÖC z - lf C — £,_1—m z+1"Z(hn/”}—Z{lu}

mit k2,, = 0, kp.“ = 2(2n + I) und 12„ = 0, 12„“ = E.
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6.4.3. Aufgaben: Bestimmung von Bildfunktionen

Aufgabe 6.1: Man bestimme F(z) = Z{n“} für k = 1, 2, 3; wie kann F(z) für beliebiges ke N be-
stimmt werden?

Aufgabe 6.2: Man bestimme F(z) = Z{n"a"} für k = 0, l, 2; a e K; wie kann F(z) für beliebiges
k e N bestimmt werden‘! -

Aufgabe 6.3: Man bestimme F(z) = Z{a" sinh bn}!

Aufgabe 6.4: Gegeben sei eine periodische Funktion (siehe (6.4)) mit der Periode k.
a) Man bestimme ihre Bildfunktion durch die ersten k Folgenglieder.
b) Man benutze das Ergebnis zur Bestimmung von F(z) für die in Bild 6.3 gegebene Funktion.

n- 1

Aufgabe 6.5 : Für f}, = n’ bestimme man F(z) = Z { 2 v3} und deute die Summenbildung geometrisch.
v= o

6.5. Umkehrung der Z-Transformation

Bereits im Anschluß in Satz 6.2 wurde für die Umkehrung der Z-Transformation
die Schreibweise

Z"{F(z)} = {fa} (6-24)

eingeführt. Jetzt kommt es darauf an, für gegebenes F(z) die zugehörige eindeutig
bestimmte Folge {f„} tatsächlich zu finden; diese Aufgabenstellung nennt man auch
Rücktransformation. Es gibt dafür mehrere Möglichkeiten.

6.5.1. Möglichkeiten der Rücktransformation

Die einfachste Möglichkeit der Rücktransformation besteht in der Benutzung der
Tabelle 3. Beispielsweise ist aus ihrer ersten Zeile die Beziehung

z-1{z:1}={1} für lz[> 1

zu entnehmen (siehe auch Beispiel 6.3). Selbstverständlich können in einer Tabelle
nicht alle möglichen Korrespondenzen aufgeführt werden.

Tabellen benutzt man auch dann, wenn die Funktion F(z) nicht unmittelbar vor-
kommt. Man kann nämlich versuchen, die Funktion F(z) durch Umformung und An-
wendung der Regeln (6.10) bis (6.19) in Funktionen zu zerlegen, die wieder in einer
Tabelle zu finden sind. Dazu ist natürlich eine gewisse Vertrautheit mit der Z-Trans-
formation nötig. Gute Dienste leisten in diesem Sinn die Partialbruchzerlegung ra-

tionaler Funktionen, der Verschiebungssatz (6.11) und der Faltungssatz (6.17).

Beispiel 6.12: Gesucht ist die Originalfolge der Bildfunktion

z’ _

(z — e")(z - e”)’
9 SNPP» Operatorenxecbnlxng

F(z)= a,beK.
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Wegen (6.9) und dem Faltungssatz (6.17) ist für lzl > max (|e"I‚ le"l)

f" = i: an eben-v) = eh! Zn e(a—D)"_

r= 0 v = 0 .

Mit Hilfe der Summenformel der endlichen geometrischen Reihe folgt hieraus

eb(n+l) _ ea(n+1)

L1 für aqkb,ü I fi.=(n+1)e"" für a=b.
e——e

(6.25)

Wegen der Definition 6.1 gelingt eine Rücktransformation auch sofort, wenn für
F(z) eine Reihenentwicklung in z“ bekannt ist bzw. sich leicht gewinnen läßt.

Beispiel 6.13: F(z) = e11’ läßtsichbekanntlich für [zl > Oals Reihe in z" darstellen, die Reihenkoef-
fizienten bilden die Folge {f,.}:

°° 1 1
F(z) =n§) n—!z , Z ‘(F(z)} = . (6.26)

Ist die Reihenentwicklung von F(z) nach Potenzen von 2"‘ nicht bekannt, so
können ihre Koeffizienten bestimmt werden als die Koeffizienten der Taylor—Ent-

Wicklung‘) von ([B 9], Kap. 3). Das ergibt den

Satz 6.3: Ist F(z) für |z| > R“ einschließlich z = oo analytisch, m hat die zugehörige
Originalfolge Z“{F(z)} = {f,,} die Glieder

1 d" 1
1:, = W 51l?) M, n = o, 1, (6.27)

Zur Illustration von (6.27) wird für F(z) = z l , [z] > 1, das aus Beispiel 6.3
bekannte Ergebnis verifiziert. Es ist z _

1 1 1 d" 1

F(7)- 1-2’ f~—mv("—1-2)
__ _1 n! _ l
‘ n! (1 —z)’”" „o _ ‘

6.5.2. Aufgaben: Bestimmung von Originalfolgen

F
Aufgabe 6.6: Durch Partialbruchzerlegung von S)

z ll>1‚Z .

z2+1

Aufgabe 6.7: Wie 6.6, aber jetzt mit

bestimme man

Z"{F(z)} = z-1 {

F(z) = ,' [zl > 1.
22-1

‘) Brook Taylor (1665-1731), englischer Mathematiker.
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Aufgabe 6.8: Mit dem Faltungssatz (6.17) bestimme man

Z2

z" {<73‘1F}’ "' > 1'

Aufgabe 6.9: Unter Benutzen der Reihenentwicklung für die Sinus-Funktion ermittle man

1

Z_1{\/;sin \/2-}, |zl>0.

Aufgabe 6.10: Mit dem Satz 6.3 bestimme man

Z"{ln z 1z|>l.
z--1

6.6. Lineare Diiferenzengleichungen

Viele diskrete ökonomische und technische Vorgänge lassen sich durch eine Diffe-
renzengleichung beschreiben (siehe auch Abschnitt 6.1.3.), so wie sich viele konti-
nuierliche Vorgänge durch Diflerentialgleichungen beschreiben lassen. Dabei ist in
der Regel die Zeit t in diskreten Zeitpunkten die unabhängige Veränderliche, und es

liegt ein linearer Zusammenhang vor.

6.6.1. Lösungsprinzip für Ditferenzengleichungen

Eine lineare Difierenzengleichung k-ter Ordnung mit konstanten (d.h. von n unab-
hängigen) Koeffizienten hat die Form

aoyn + a1,Vn+1 + + ak,V:-+1: =1:-~ (6.28)

Dabei ist k e N, a, e K, a0 =l= 0, ah + 0. Die Folge {f„} ist gegeben und die Folge {y„}
ist gesucht.

(6.28) ist eine Rekursionsformel, weil für n = 0, 1, 2, sich nacheinander (rekur-
siv) yk, y,,+1 , ergeben. Man sieht, daß die Folge {y„} erst dann eindeutig bestimmt
ist, wenn noch die sogenannten Anfangswerte yo , , y,,_, vorgegeben sind. Beifi, = 0
für alle n heißt (6.28) homogen, sonst inhomogen. y„ und fl, können noch von einem
Parameter abhängen wie in Abschnitt 6.1.1.

Die Z-Transformation ist ein geeignetes Hilfsmittel, um die Lösungen von (6.28)
zu erhalten. Ihre Anwendung beruht „auf folgendem Prinzip (Bild 6.7):

gilffa u and F f { } Fa/ye imm} "

n an SW? ‚ "ry Im! [PH van y = -1
im Ilrä/‘nuibirzy/th" n Ü”) Z {ym}

Z./;g,~,;(,;,,n/man Imrklranxfannieren

5/e/':I7/my Mr fin/(film Auf'm?” „am m) mung im i/’/mreich:
Y{z) im fil/fiüarifrh >’(z)-Z{3/n}

Bild 6.7. Lösungsprinzip für Diflerenzengleichungen
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Lösungsprinzip: (6.28) wird Z-transformiert insbesondere unter Verwendung des Ver-
schiebungssatzes (6.12); die im Bildbereich entstehende algebraische Gleichung wird
nach Y(z) = Z{y„} aufgelöst und danach {y„} = Z“{Y(z)} nach Tabelle 3 oder Abschnitt
6.5. bestimmt.

Bei diesem Vorgehen findet man natürlich nur trausformierbare Lösungen {y‚}.
Besonders vorteilhaft ist dieses Prinzip anzuwenden, wenn die zu gegebenen An-

Tangswerten gehörige Lösung gesucht ist, weil die Anfangswerte yo, , y,‘_, wegen
(6.12) direkt in die Bildgleichung eingehen.

6.6.2. Beispiele zur Lösung von Diflerenzengleichungen

Beispiel 6.14: y,, wird bestimmt aus dem Anfangswertproblem

}’n+1 “‘ yn =107l‚ yo =1-

(6.12) und (6.23), jeweils für k = 1, ergeben für Y(z) = Z{y„} im Bildbereich die algebraische Glei-
Chung

l0 .

—(:z1—)2— oder umgeformt Y(z) = ( l0z zz(‘Y(z) — 1) — Y(z) = 7T?- + 1%.

Die Rücktransformation geschieht durch (6.23) für k = 2 und (6.8), sie ergibt die Lösung

{y„} = Z“(Y(z)} = :10(:) + I} = {5n(n — 1)+1). (6.29)

Auch Differenzengleichungen für Funktionenf(t), 0 g t < o0, sind lösbar mit der
Z-Transformation; dazu sind die Betrachtungen in 6.1.1. zu beachten. Ein Beispiel
möge dies illustrieren.

Beispiel 6.15: Man bestimme y(t)‚ 0 g t < o0, aus dem Anfangswertproblem

y(t+1)—y(t)=10t, y(t)=1+! für 0§t< 1.

Wie in 6.1.1. setzt man t = n + Ar, y(n + At) = y„(Ar), f(n + At) =fi,(A!) = 10 (n + At) mit
0 g At < 1 und erhält

y„;,(At) — y„(At) = 10(n + At), y.,(At) = 1 + Ar.

(6.12), (6.23) und (6.8) ergeben für Y(z‚Ar) = Z(y„(At)}

l0z 102A!
z(Y(z‚At) — 1 - At) — Y(z,At) = W —;—_—1- y

l0z + z 10zAt zAt
(z—1)3 z—-1 (z—1)= 2-1’Y(z‚At) =

(6.29), (6.23) und (6.8) ergeben

y„(At) = 5n(n —— 1) + 1 + 10nAt + Ar, d.h.

y(t) =5n(n—1)+l+(l0n+1)(t-—n) für n§t<n+l.
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In der Technik spielt insbesondere die Lösung der Gleichung (6.28) für verschiedene
rechte Seiten f,, und verschwindende Anfangswerte, d.h. yo = = y,H = 0, eine
Rolle. Die Gleichung im Bildbereich nimmt hier die Gestalt

a„Y(z) + a,zY(z) + + akz"Y(z) = F(z)

an. Setzt man .P(z) = do + alz + + akz", so ist Y(z) = F(z)/P(z). Der Term
l

9(2) = „m
rationale Funktion in z und kann durch Partialbruchzerlegung rücktransformiert wer-

den. Wegen (6.17) ist dann

,v.. =f.. * II... {In} = Z"{Q(z)}- (5-30)

Beispiel 6.16: Das Anfangswertproblem

heißt z- Übertragungsfaktor (auch Puls—Übertragungsfunktion) ; er ist eine

yn+3-J’n+2")’n+r+)’n=fii‚ .Vo=.V1 =)’2=°,
soll für beliebige (transformierbare) Folgen {f,,} gelöst werden. Z-Transformation ergibt

z3Y— z1Y——zY + Y: F(z)‚ also P(z) = 23 — 22 -— z +1=(z + 1) (z -1)’.

Die Partialbruchzerlegung von Q(z) 9: lautet
1

P(z)

l l l l l l
——-——+——.

42+] 42--1 2(z-—1)2

Die Übersetzung der einzelnen Summanden erfolgt nach Erweitern mit z durch (6.9), (6.8), (6.23)
und (6.11) und ergibt '

qo = 0, q„ = %(—1)"" — % + 5-(n — 1) = für: + (—l)"" — 3) für n :1.

Somit ergibt sich als Lösung des Anfangswertproblems für eine beliebige Folge {f,,} nach (6.30)

II

.v.. =f..*q.. = Z qJH.
y = o

Ist nun z.B. f,, = 0 für n + k‚fi‚ = 1 (Einzelimpuls zur Zeit t = k), so ist

__ 0 für n<k‚
)"_ 11..-, für ngk.

Oder ist z.B. f„ E 1 für alle n (Impulse zu den Zeitpunkten t = n), so gilt unter Beachtung üblicher
Summenformeln

„‚ =y=2oqv = -:—(n(n + 1) + ———>1_ S1)" — 3n).

6.7. Weitere Eigenschaften der Z-Trausfonnation

In Ergänzung zu Abschnitt 6.3. werden einige weitere Eigenschaften der Z-Trans-
formation zusammengestellt, die im folgenden Abschnitt angewendet werden.

10 Stopp, Operatorenrechnung
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Satz 6.4: Eine Folge {f„} ist genau dann Z-transformierbar, wenn es (von n unabhängige)
Konstanten A, B und no gibt mit |fi,| < Ae"", n g no.

Dieser Satz charakterisiert die Menge der Z-transformierbaren Folgen vollständig
durch eine einfache Schrankenbeziehung. Für die Folge f„ = n" (Beispiel 6.4) gibt es

solche Konstanten nicht.
Zwischen gewissen Grenzwerten der Folge {f„} und der analytischen Funktion

F(z) = Z{f„} bestehen Zusammenhänge ähnlich wie bei der Laplace-Transformation.
Das ergibt drei Sätze, deren Nutzen darin besteht, aus Eigenschaften der Bildfunktion
F(z) auf Eigenschaften der Folge {fi} schließen zu können, ohne diese explizit berech-
nen zu müssen. Satz 6.5 bzw. 6.6 heißen Anfangs- bzw. Endwertsatz (Beweise in [I6],
S. 77—78).

Satz 6.5: Es istfi, = lim F(z).

Satz 6.6: Wenn limf„ existiert (für R > 1 stets der Fall), so ist

limf„ = lim (z — 1) F(z).
n-voc z—>1+0

Satz 6.7: Ist die Reihe if, konvergent (für R > 1 stets der Fall), so ist
7| = Ü

Z f„ = lim F(z).
II = D 2-? 1 + O

Der Grenzübergang z —> l + 0 bedeutet, daß z von rechts auf der reellen Achse der
z-Ebene gegen 1 strebt, folglich muß für F(z) der Konvergenzradius R“ g l sein.

Beispiel 6.1 7: Obige Grenzwerte sollen für die Bildfunktion

Z2

. a.be K. R“ = max (Ie“I, |e"1).F(z) =

aus Beispiel 6.12 bestimmt werden.
1imF(z) = 1 = fo gilt ohne weitere Einschränkung. z-vl + 0 ist aber nur im Fall R“ g l
‚am

möglich, d.h. bei [e"I = R“ g 1 und [e’l = e"°" g 1 oder Rea g O und Reb g 0. Dann gilt:

0 für Rea<O‚Reb<0‚
lim (z — l) F(z) = l/(1 — e’) für a = 0, Reb < 0,

“”° 1/(1—e‘) für Rea<0‚b=0.

Für a = b = 0 existiert dieser Grenzwert nicht.

1
i Reb<0.
(1 - e90 - e")

v lim F(z)=
z»1+o

für Rea < 0,

Für a = 0 und/oder b = 0 existiert dieser Grenzwert nicht.
an

Folglich sind im Beispiel f0, lim f}. (Existenz vorausgesetzt) und 2g}, (Konvergenz vorausgesetzt)
II-P DO n =

bestimmt worden, ohne die explizite Darstellung der Folge (f,.} zu benutzen.
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6.8. Verschiedene Anwendungen

Hier kann nur an einigen Beispielen die Anwendung der Z-Transformation ange-
deutet werden, in der angeführten Literatur findet man viele weitere Beispiele. An-
wendungen in der Elektrotechnik, der Ökonomie, der Ersatztheorie und der Reihen-
Iehre werden betrachtet; Beispiel 6.21 ist ein Randwertproblem. In der numerischen
Mathematik spielen Differenzengleichungen eine große Rolle bei der näherungsweisen
Lösung von Differentialgleichungen.

6.8.1. Beispiele

Beispiel 6.18: Die Differenzengleichung (6.5)

14n+x + “nun =fy “o = -e_M_fi”'£): f: üoÜ - 3'") €'fl“’°),

zur Bestimmung der Kondensatorspannung u„ der Schaltung in Bild 6.4 in den diskreten Zeitpunkten
t = n ist eine lineare Difierenzengleichung erster Ordnung mit konstanten Koeffizienten a1 = l
und an , mit konstanter rechter Seite fund gegebenem Anfangswert uo. Z-Transformation mit U(z) =

Z{u„} ergibt

z(U(z) — uo) + a„U(z) = f’ f’ "°’2-1’ U(z): (z—1)(z+a„) + z+a.,’
Rücktransformation nach (6.25) mit a = 0, b = In (—ao), (6.11) sowie (T 6)‘) ergibt für n g 0

1__ _ n

"n=!' + uo("'7o)"-
o

Interessiert man sich nur für lim u‚„ so erhält man diesen Wert, dessen Existenz sich leicht nachweisen
anIl-v

läßt, direkt aus U(z) nach Satz 6.6:

lim u„ = lim (z — 1) U(z) = lim A(
~1+on—ooo 1 z—v1+O

fz + uoz(z - 1)) f
z+ao z+ao =1+a,,'

Beispiel 6.19: Die Zinsberechnung eines Guthabens k‚. soll zu den Zeitpunkten t = n (z.B. am 15.
eines jeden Monats) mit dem Zinssatz e erfolgen; Einzahlungen e„ werden immer zum nächsten Zins-
berechnungstermin gutgeschrieben. Dann gilt offenbar zur Bestimmung von k„ die Differenzen-
gleichung

kn+1 =(1+ €)kn + en+I! ko = 0-

Wird eine stets gleichbleibende Einzahlung 2„ = e für alle Zeitpunkte t = n vorgenommen, so erhält
man mittels Z-Transformation mit K(z) = Z{k„}

__e=__(z-mz-i-e)‘zK(z) = (1 + e) K(z) + , K(z) =

z-1

Rficktransformation nach (625) und (6.11) ergibt

k,.=§((l + s)" -1).

‘) (T 6) bedeutet die Formel Nr. 6 in der Tabelle 3.

10*
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Beispiel 6.20: Mit Satz 6,7 läßt sich die Reihensumme einer konvergenten unendlichen Reihe be-
stimmen. Aus Aufgabe 6.9 folgt:

Z{ }=\/z_sinl/\/z— für |z|>0.

Wegen R = 0 ist
co (-1)" — -

j—= lim zsinl z = 'n1;:.'0,8415.
n=o (2?|+1)1 z—v1+0\/ /\/ S1

Beispiel 6.21: Randwertprobleme für Differenzengleichungen lassen sich ebenfalls mit der Z-Trans-
formation lösen. Zu

yn+2 '_yn+1 +.Y:-=0. ,Vo=0. .VN=1,

N g 1 und fest, ergibt sich als Bildgleichung mit dem Parameter y,:

Z
z’(Y—y,z“)—zY+ Y=0, Y=y,TzTr.

Setzt man in (T 10) b = 1;- , so ergibt sich zunächst

Zy, _ -rm
= : sm — .ya 3 3

Daraus folgt wegen der Randbedingung y„ = l sofort als Lösung

_ 1m _ 1rN
= sin ~— sm — .yn 3 3

Beispiel 6.22: Es wird ein spezielles Ersatzproblem durch eine Differenzengleichung beschrieben und
gelöst.

Die Zeitachse wird in Intervalle n g t < n + 1, n e N, eingeteilt (z.B. in Tage) und eine technische
Anlage mit M Relais betrachtet. Jedes Relais funktioniert mit einer bekannten Wahrscheinlichkeit p‘,
gerade v Tage (0 g v g k, k fest); bei Ausfall eines Relais wird dieses am Ende des entsprechenden
Zeitintervalls sofort ersetzt.

Bezeichnet y,“ die gesuchte Anzahl der zu ersetzenden Relais im Zeitpunkt t = n + 1, so muß
diese Anzahl gleich der Anzahl der ausfallenden Relais im Intervall n g t < n + l sein. In diesem
Intervall fällt aber y„_„ mit der Wahrscheinlichkeit pv aus, d.h., es besteht zur Bestimmung von y„ bei
gegebenen Wahrscheinlichkeiten p, die Difierenzengleichung (k + 1)-ter Ordnung

k

‚m; = Z‘, pvy..-v = pay. + p;y..—1 + + p;y..—k;
v=0

n = 0‚l,...; y,.-,, = 0 für n < k.

Die Bildgleichung und ihre Lösung lauten
Zk+1

z(Y — yo) = 11aY+ 17xz"Y + + 1J.z“"Y, Y = ‚vo —;
P(z)

P(z) = 2"“ - poz“ - 1nz““ - - m.

Hat P(z) nur die einfachen Nullstellen 2., = 1 (dies ist sicher eine Nullstelle wegen pg + + pk = l)
z, ‚ , 2,, so ist nach einer Partialbruchzerlegung (ergibt die Konstanten co, , ck) und mit Formel
(T 6)

y,, = co + 012;’ + + ckzfi.
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‚

. . J’ J’ ‚ . . .

co ergibt sich nach (2.33) als P,("l) =k+ l _ kpo _ (k _°_ I)“ _ _h_l ,nl1n:oy,. existiert, weil

man für die Nullstellen 2,, i = 1, 2, ‚ k, |z,l < 1 nachweisen kann. Folglich gilt lim y„ = co, d.h.,
n—> no

nach anfänglichen Schwankungen sind für große tstets y„ z co Relais im Zeitpunkt t = n zu ersetzen.

6.8.2. Aufgaben: Anwendung der Z-Transformation '

Aufgabe 6.11: Man löse das Anfangswertproblem

yn+3 - 2)’n+2 + yn+1 " 2h = 2": yo = .V2 = o» ‚Vi = 1-

Aufgzzbe 6.12: Analog Beispiel 6.15 löse man

y(t + 3) — 2y(l + 2) + y(t + 1) — 2y(t) = 2‘,

y(t)20 für ogz<1 und 2§t< 3, y(t)=t für 1§r<2.

Aufgabe 6.13: Man löse das Anfangswertproblem

}’n+2 ’ yn =fm yo =J’1 =.0,

für folgende Fälle: a)f„‚ = l‚f2‚„‚ = O, b)f,. E1, c)fo =1,fi‚ = 0, n ä 1.

Aufgabe 6.14: Man löse

(n + 2)y„+2 - (n + 2)y‚.+t + y.. = 0. yo = ‚v. = 1.

unter Verwendung des Difierentiationssatzes (6.18).

Aufgabe 6415: In dem in Bild 6.8 dargestellten Kettenleiter aus N Sprossen gilt für die Stromstärken
ix 1 ‘"51-N ([8], 3103):

R27»: " (R1 + 2R2)im+1 ‘i’ R2im+2 = 0-

Man bestimme bei gegebenen i0 ‚ i1 die Stromstärken i„„ m g 2. Hinweis: R = R,/R, als Abkürzung
einführen!

Bild 6.8. Kettenleiter der Aufgabe 6.15

6.9. Zusammenhang mit der Laplace-Transformation

Durch die Definition 6.1 ist die Z-Transformierte einer Folge {,3} gegeben. Diese
Funktion F(z) kann mit der Laplace-Ttansformierten F(p) von Treppenfunktionen
der Form

f(t)=fi, für n§t<n+1 (6.31)
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(siehe auch Abschnitt 6.1.1. und Bild 6.10) in einen einfachen Zusammenhang ge-
bracht werden. Davon wird in [I0] und [l6] ausführlich Gebrauch gemacht. Die
Laplace-Transformierte von (6.31) ist

co n+1

m») = L{f(t)} = e“”f(t)dt f e-vmdr = ——’“p” e-v".
Die letzte unendliche Reihe bezeichnet man auch als diskrete Laplace-Transformierte.
Setzt man noch z = e", so erhält man den gewünschten Zusammenhang in der Form

pF(p) = (1 — §Df,,z~~ = (1 — F(z). (6.32)

Mit (6.32) lassen sich Korrespondenzen der Z-Transformation (Tabelle 3) in Korre-
spondenzen der Laplace-Transformation (Tabelle 1) für Treppenfunktionen (6.31)
umrechnen und umgekehrt. Zum Beispiel folgt aus (T 2, Tabelle 3) dadurch

1 1 1 I 1

Lt =—— —— z =————-=———-——-—.

{H} pll z)F() p z-l 1I(e"—1)

Selbstverständlich lassen sich durch (6.32) auch die Rechenregeln (6.10) bis (6.19) der
Z-Transformation aus denen der Laplace-Transformation herleiten.

Der Zusammenhang der Faltung (2.18) für Treppenfunktionen mit der Faltung (6.1)
für Folgen ergibt sich aus folgender Rechnung:
Ist f(t) =f„ und g(t) = g„ für n __<_ t < n + 1, so gilt nach (2.18) für t = n

.. 9+1" n i n—l

f(t)*g(f) = ff(T)g(n - 1)dT = D) ff(r)g(n - T)dI = 2of.g.—1—,-
0 v= y v=

Durch Vergleich mit (6.1) erhält man den gesuchten Zusammenhang in der Form

f(t) * g(I) = fl.-1 * g..—1- i (6.338)

Im Bildbereich der Z-Transformation gilt deshalb wegen (6.11)

zmr) * gm} = §F(z> 6(2). (am)

In (6.33 a, b) ist der links stehende Stern im Sinne von (2.18) und der rechts stehende
Stern im Sinne von (6.1) zu verstehen.

Die Gleichungen (6.32) und (6.33 a, b) haben in technischen Disziplinen, in denen
sowohl diskrete als auch kontinuierliche Vorgänge gleichzeitig in einem linearen
System ablaufen, große Bedeutung (Impulstechnik; [10], §27; [16]).
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b

2.1: L(f(t)} = fe"”dr = %(e""’ — e""') fürRep > 0.

a

2.2: (2.5) und die Definition von sinh t ergeben (T 14).

2.3: Zunächst ergibt sich für reelle p mit pt = r, x = ac + 1

W w

Jve-"Hflt = 1% J‘e"t°‘ dr = ———-——F(“+ I) für p > 0.

o

pa+1
o

Wie im Beispiel 2.4 dehnt man das Ergebnis auf Rep > 0 aus.

2.4: a) Ja, Satz 2.1 erfüllt mit a = 3, M beliebig. b) Nein,f(t) hat bei t = 1 nicht integrierbare Pol-
stelle.

2.5: Difierenz f‚(t) — f“(t) ist eine Nullfunktion n(t).

2.6:a)(2.l1)mit a = 2, b = —T2i,f(t) = sint,b)(2.17)mitd = 1,f(t) = sin t, c) Formel fürf([t]) aus

2.2.7. anwenden:

2 4 1 1 1
a) p,+4e:w/ ‚ b) (p+1),+l , e); c,__1.

2.7: (2.13), (2.17) und Aufgabe 2.2 ergeben

ü‚Rep> max(u,—a)+b.

1
2.8: Satz 2.1 gilt, weilTsin t für t g O stetig und beschränkt ist. (2.26) anwendbar: Ergebnis (T 54).

2.9: a) Vollständige Induktion nach n: Formel ist für n = 1 richtig. Weiter gilt nach (2.19):

I

1 l l1w(1t1u--~c1)=1t——-t"“=—— -t"“d1=——t".
\_v._./ (n —- 1)! (n -1)! n!
nFaktoren 0

r z, t„-‚

b) 1— 1 a - 1 w) =f J-~ ff(t..)dt..dr,.—; dn = go)
o o o

l
nach (2.19);g(t) ist das n-fache Integral über f(t). (2.21) verallgemeinert sich zu L{g(r)} = F F(p),
Rep > max (O, x).

2.10: (2.25) und Beispiel 2.6 ergeben für Rep > O:

6p2—2
(p2+1)3 '

ZpL(t sin t} = -W, L{t’ sin t} =
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2.11: Mit (2.24) und (2.4) ergibt sich mit Y(p) = L{y(t)}:

p‘Y(p) - Y(p) = 1/P. Y0) = 1/11(1)’ — 1)-

K

(2.21) und Aufgabe 2.2 ergeben y(t) = sinh I dt = cosht -— 1; Probe durch Einsetzen.
o

2.12: (2.27) ist anwendbar, Ergebnis: ——ln 2.

_ __ 1. e"’ — e‘”"
2.13: Periode T = b, (2.28) fur Rep > 0; 7’-7:?
2.14: (2.20), (2.5) und Beispiel 2.6 ergeben für Rep > 1: L{e' t sin I} = i/gu’ — p’ + p —— 1).

2.15: Periodische Funktion mit T = rt, (2.28) für Rep > 0:

1 1-

pz + 1 1+ e""’/2 '

2.16: Indirekter Beweis: Wäre (2.1) für ein komplexes pa konvergent, dann nach Satz 2.4 auch für
Rep > Re pg; in dieser Halbebene liegen auch reelle p im Gegensatz zur Voraussetzung.

— 1

2.17: \/p ist keine Bildfunktion nach Satz 2.5,---ist Bildfunktion von \/... nach Beispiel 2.4.
Ttt

1

‘\/P
2.18: sin p bzw. sinh p sind periodisch mit der Periode 27: bzw. 27:j; d.h., b) in Satz 2.7 ist nicht er-

füllt.
2.19: Nein, denn z. B. für x = y ist Satz 2.7a) nicht erfüllt:

16-117] = ]e—(x+1y)2| = le—2ix2| = L

2.20: a) Ja, (T 8), b) Ja, (T 9), c) Nein, Beispiel 2.23.

2.21: a) N(p) = p‘ — 1 hat die einfachen Nullstellen 1, — l, j, —j; (2.34) ergibt (T 33) mit a = 1,

b) N(p) = p‘ + 1 hat die einfachen Nullstellen f} (1 + j), i} (1 — j); (2.34) ergibt (T 122).

2.22: a) N07) = (pl — 1)’ hat die Nullstellen p, = 1, p; = —1, Vielfachheiten cc; = a; = 2, An-

satz nach (2.31), (2.32) ergibt-zLsinh t, b) mit f(t) = sinh t t sinh t und (2.23) folgt:
I t

f’(t) = fsinhtcoshu ~ 1) d: = s} f[sinht — sinh(t — 21)] d1 = äsinh t.

o o 1

1 1

2.23: a)f(t) = 0,0 g t < 2;f(t) = , 2 < t, (2.7) benutzt; b)f(t) = —2— d; c"".

2.24: Exponentialfunktion in Reihe entwickeln, Satz 2.10a anwenden, Ergebnis: J„(\/
_ 1 1 + ) 1 I 1+ C „

2.25: f —> Ound J!-> 0,wei1Satz2.12erfiilltist wegen E LI—— -> 0 fur Ipl —> so

C1 Cu
unabhängig vom Argument;

—1 -00 co Q7

“m J‘=_J'_J‘=J‘e_„ ln(1—x)+pcdx_J'e_" 1I1(1-X)-_|1Tdx
‘Hm x x

D -00 ~1 1 1

d d
= 21rjfe"" _";f(:) = J}-"—" = —Ei(-I), :> o.

X u
1 I

Substitution x! = u durchgeführt.
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l _

2.26: a) h(1)~ -2—=, 1-» +0, b) h(1) ~ \/1e',1—» so.
f

2.27: f(t) nach Satz 2.1 transformierbar, Satz 2.13 anwenden:

\/7r

2p \/p I

b)f(1) ~ tln 1,1—» +0,a = -1 undg(1) = —tl111in Satz 2.13, (T 72) fürn = 1ergibtF(p) ~ "f,
p -1 o0. p

2.28: h(t) —-

a)f(t) ~ \/1', z» +0, (T41) ergibt m) ~ ‚P-‘ÜO.

1

2 — erfüllt Satz 2.1 wegen Aufgabe 2.26a und 2.26b, wegen Beispiel 2.4 ist deshalb h(t)
I

selbst transformierbar und dafür Satz 2.15 anwendbar. Reihenentwicklungen elementarer Funktionen
benutzen:

1 11 113
11(1) = ———.— (1 + 21+ T!’ +13 — %1‘)+ au“) für r-r +0,

2J:

H07) =

7: 1 ll I 15 1 79l 1

_ l+——+———+——-T—)+a(p‘9/2) für p-voo.zpl p 81i’ 3113 384p‘
2.29: a) Eine einfache Nullstelle mit maximalem Realteil vorhanden: pa = 1 mit co, = g}; (2.47)
ergibt:

f(t)~i-e‘ für t—>oo.

b) Zwei einfache Nullstellen mit maximalem Realteil vorhanden: '

1

p.,2= T/341:1) mit c„=1/4pä. c2.=1/41:3; (2.47):

JE _ „ ‚ ‚
f(t) = —4—eI/¢2 Sm: — cos

\/2 x/5

c) Die zweifache Nullstelle pl = 1 hat maximalen Realteil, (2.47) ergibt: f(t) ~ Tie‘ für 1-» oo.

) + a(etl*’5) für t-v o0.

2.30: a) Instabil, weil max Re p, = 1; > 0; b) stabil, weil max Re p, = -1 < 0; c) einzige Nullstelle
t i

mit maximalem Realteil ist po = 0, einfache Nullstelle; uneigentlich stabil (Grenzwert ist 1}).

3.]: Satz 3.1 anwendbar, als Bildgleichungen ergeben sich

3) (P‘— 1)Y= 1; b) (P‘+ 1)Y= 1; C)l12(P—1)(P2 +1)Y=P +1-

Die Lösungen y(t) = L“{Y} wurden in Aufgabe 2.21 bzw. Beispiel 224a, b bestimmt.

3.2: Satz 3.1 anwendbar, mit P(p) = p’ — 1 = (p —- 1)(p + l) ist

2a)P(p)Y=p—3+p+l, y(!)=2e'+e"—2——-I’;

=—————, =—— eos —sin e ——e.b)P(p)Y I 1 (t) l(2 1 '1)-* 2 '
(p +1)2 + 1 y s 5

3.3: Analog Beispiel 3.5b vorgehen, Bildgleichung und Lösung:

e" Q07)
P Y = 1 + , Y = + -P—.(0)07) p+2 (p) Q01) e p+2
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L“(Q(p)} nach Aufgabe 2.21a, L“ nach (2.34) bestimmen und danach (2.14) anwenden:

0, ogxgi,
1 1

1 . _ ___(e:—1 _‚ 36-04)) + _e-2(¢—1) +
y(t) = ?(s1nh t —’sm t) + 12 15

+—1%(cos(t— l)— 2sin(t—1)), 15:.

3.4: In Beispiel 3.6 ist a1 = 16, an = 8, D = 0, q(t) = te"‘ und damit wegen der Definition vouf(t)

0. 0 é t é 1,

V

f (z — r) e'3“"’d1, 1 g z g 2,
)’(1)= 11(3) *f(f) =

2

J. (t — r) e"""’ d1, 2 g t,
x

0, 0 ä t ä 1,

ä + F14—e‘°(""(7 — 8!), lé t ä 2,

lE; e““'”(8 (e‘ —1)t+ 7 -— l5 e’), 2 ä t.

3.5: Bildgleichung und ihre Lösung Y mit dem Parameter yg:

„ 1 1 + y; p’
P Y= +——, Y=——————-, P = +12.(p) yo p, pzpm (p) 1702 )

Partialbruchzerlegung für Y und (2.33) ergeben

ya) = 3 + yi; — 2: + w — <3 + ya‘) e-' - <1 + ya’) re-'

— 3
mit yg = 2e __ Z wegen y(1) = 0.

3.6: Formel (3.8) mit a1 = 0, D = -7.2, ‚v; = O, yo als Parameter anwenden: y(t) = yo cos M.
Wegeny’(-rr) = —Äy„ sinln = 0 ist für-sinkt $ 0 yo = 0undy(t) E 0, fürsin 21: == 0, d.h. i. = ne N,
yo = Ce R beliebig und y(t) = Ccos m.

3.7: P01) =p3 + 7p’ + 25p + 39 = (112 + 4p +13)(p + 3),

l 3: 1 -= _. - _ _ _ 3 -q(t) 10 e 30 (3 cos 3: sm t),

daraus folgen sofort Q(p) und g.s(t) sowie nach (3.18) bzw. (3.22)

I
g,,(t) = — 9—0(3 e‘°' + 3 sin31+ cos St — 4), |Q(jw)I = (w5 — w‘ + 79a)’ + 1521)‘§,

man’ — 25')
a bei7a2’ + 39, — lbei m2 = 39.

39 — 7w= 2
¢p(a)) = arctan
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3.8:. P(p) hat nur Nullstellen mit negativen Realteil, es ist:
1

P(p) =p‘ + Sp’ + 25p’ + 36p + 20, w= 1, Q(jw) =

—4+28j;
2

|Q(jw)l = i4/T, 4p(w) = arctan7 z 81‚8° z 1,4; (3.22a) ergibt

E .

1mg„(t) = —4—6—sin (t + 1,4) + 0(1), I-+ oo.

3-93 Q(P) =11’ + HP. Q(J'w) = -£0’ +J'aw. a
1 farctan — , w > 0,

60

|Q(jco)| = (m4 .1. azmzyi = ‚ q2(co) =

w a t- Y , w = 0.

[Q(jw)| ist monoton fallend von o0 bis 0, zp(w) ist monoton fallend von ——f2- bis —n.

(3.22a) beschreibt nicht das stationäre Verhalten, weil die Nullstelle pl = 0 von P(p) keinen ne-

gativen Realteil hat; vielmehr ist

g.,,(t) = Q(J'w)e"”‘ — + 0(1). t—> o0.
Jam

3.10: P(p) =p2 + ap, q(l) = ä (1 — e“'),g.;(t) nach (3.28).

3.11: Normales System wegen 1A] = 3, Lösung nach Satz 3.3:

y, = e'sin 2!, y, = e‘ cos 21, ‚v; = t.

3.12: Normales System wegen |A| = -3, Lösung nach Satz 3.3:

3 “l3 1 ‘ + 1 cos t + 3 sin!=—e ——e ——— —— ,

y‘ 2o 4 1o 1o

‚v; = —3—e"’3 + —l—e‘ — —2—cost -— isin t.
20 4 5 5

3.13: Normales System wegen [Al = }L3, Satz 3.3 und Cramersche Regel verwenden:

1 L 1 2 1 wg 1D(p)=7L’(7p’+?)(p’+wä)‚ I3=—7?<1"*':‘7)~
1

13(2) = (w: — cuä — (Zcuz — wä) cos wt + w’ cosazgt).

l
3.14:(p+1) Y, +pY2 =0, pY1 —(p+ 1) Y; =;(1—e”"'),

‘ 1 l
D =—22+2 +1, Y =—1— -T ———, Y=—— Y —Y;(P) (17 P ) 1 ( 9 ')D(p) 2 (‘+11 1

0, 0§l=~<.T.
t

= —Il2 - ___ _

h“) e smz 5-(I—T)I2Sint T’ Téh

I

m) = —<y1m+ fy1(r>dz>.
O
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3.15: {A} = 0, entartetes System, Koeffizientendeterminante: p(p — 1),

i107) = 5‘ +1» J72(') = '5‘ +11 J73“) = 7 — 22

J71(0) = 2. 92(0) = 0. )7a(0) = -2-
3.16: Analog Beispiel 3.21 vorgehen, y(x‚ l) = x + sin x sinh t.

1

3.17: Y(p)=y„ln p "L
l — e“

, y(t) = y(,—l—— nach (T51).

P2

3.18: a) Y(p) = F? y(I) = cost, b) Y(p) =).

1 l
y(t) = —2—(e’ + sin! + cos t), c) Y(p) = i 27?, Y(1)= iJo(t).

I7

1

3.19: a) i(1) = Ices wr t e(t) nach (2.20), b) nach (2.14):

1Isinwt, 0 g t g T,

. 1 . .

1(t) = Z-(sm wt — 2 s1nw(t — T))‚ T g t g 2T,

1 . . .

—L—(s1n w! — 2sm w(t — T) + s1nw(t — 2T))‚ 2T g t.

1

3.20: e”7'Y + Y = y ‚ y(t) aus (T 91).

4.1: a) 4(l~— cost), b) 4(t — sint), c) 4(t + l— cost).

4.2: Für n = O entsteht eine Identität. Weiter ist mit n Faktoren in der Klammer mit der Induk-
tionsvoraussetzung:

eat! , (ear „m * ein) = cal ‚
-1

II’- .

1 I

¥_ erx(:—1)ear,n—1 d; =L „n-r d; = flea!’
(n -1)! (n — l)! n!

o o

4.3:a)6t+leR,b)1—r6£R. ‘
‚ m.

4.4: a) m g n: (4.13) mit f(1) = t'"‚p”t"' = ——-—‚-I"'"'ER, b) m < n: p"'1"' = m! nach a),
p„_„.p„.‚„. = m, „H. e; RV (m - rt)-

4.5: 1+ 1€ R.

4.6: a)pl= 1‚(4.7) und (4.16) ergeben:f(t)=rfür0< tga,
f(t)=oafüroc<tgß‚f(t)=—t+zx—ß für ß<tga+ß‚
f(t) = 0 für o; + ß <1, b)f’= Fwd. — up + v,,,+,e) = 14.„ — llß + u,+p.

4.7: a) Beispiel 4.9, 4.11 und (T 104) ergeben

1 i 1 1

y = <— ?I+ —1§e‘3’ + 1—oe2‘>#(v0 — 212T + vu-);

(4.16) ergibt y für die Intervalle 0 < t g T, T < t g 2T und 2T < 1.

l l
b) y= —e‘5‘+—e‘)tv,.;

1____v, z (_
(17 + 5) (P — 1) 5 4

(4.16) ergibt y für die Intervalle 0 < t g T und T < r.
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4.8: y‚(t) = 2e" — Zcos l —— 3tsin t, yz(l) = sin: + tcos t -— Zrsin r.
_ _ 2 _ I l 04120): + l7

4.9: Mit (4.7), (T 8) und pI= l ist y =rxI + smr a=y=aI + WY, y = PT;
= oc(I2 + I") = oc(t + h’).
4.10: a) Mit (T 8), y’ = py wegen y(0) = O und (4.14) ist

1 2py 1 t r
= .1 i. ; = ._j_ = e ;

’ 1+p2 1+pZ y <1—p>2
. p _ 2

17))’ t ‚v - y +e= 0
(p — 1)‘

_’)

hat als quadratische Gleichung fürydie Lösungen ‚v1 und yzz yl = :_l ‚ ‚V2 = :3‘ = e‘; nur

y, entspricht einer Funktion.

5.1: Analog Beispiel 5.1 vorgehen:
A u A ’

f e—Jvz—a|x1Sign,d, = __ " e-(ly~a)xd, „r e-umu d,
«.4 —'‚4 ö

e-(iy-a): 0 e—(Iy+n)t A 1 1 2J"),

_. __ —»_ +‘ =, 2=1«‘(y),A—»oo.
Jy-a —A jy+a|0 Jy-a }y+a a'+y

4 ' T 2 ' 2 T
5_2: 1:0,) = ll. _ EL aus

‚V J’

-1 r 21

a) — f e""dl + j e“"dt — I e"”’dr;
-21‘ —"r i

1 1b) ._(l _ e—1!y)2 __ ._(l _ en;-)2.
J)’ J)’

5.3: Definition von FC und F5 verwenden und ersetzen bei

1 .

a) cos yt = IM" + e“”");

l
b) sin yr = ——_- (e”‘ — e"").

2J

5.4: Beide Funktionen sind gerade: F(y) = 2Fc(y).
co

I
a) 2 cosy d! = 7:e"";

1+t’
0

oc co2 _

b)2 °°”'dz— JC°Sldt=.i21_. .V*0.
~/I‘x/7 _\/Ef v’? u

0

5.5: Substitution ‘L’ = ut durchführen:

O

eo

G0,) = j. e—(y—b)Jrf(a,) d, = L y e-(v~b)1'vIuf(,)d; = if-‘(y _ b ) _

a a ü
—oo
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5.6: Mit For) aus Beispiel 5.5 (dort a = 1) und (5.14) folgt

E- e"”“, —A < y < A,
A

1

__W__eJEylA’ y: iA
2A

0, y < —A, A < y.
D0 A‘ O0

5.7: a(:)=j e“1"’| e-M d1.’ = e-‘j e’-III d1.’ + a] e-r-Ivl d1 = (1 + m) e-m,
I-® —®

4
A(y) = (TE;-2;; nach (5.3) und (5.16).

5.8: F(y) = —21re"' für y < 0, P0050 für y > 0.
t

5.9: Mit g(t) = I f(1) dt und einmaliger partieller Integration ist

A _ Go .4

1

J. e""g(I) d: = e‘”"g(A) — e"“g(—A) + J‘ e‘””f(t) dt.

— .4 —— A

a) Für A —> oo existiert der Grenzwert rechts und deshalb gilt (5.17).

b) Ja, weil aus der Existenz der anderen Grenzwerte g(oo) = 0 folgt.
5.10: F(y)E0ffiry< —a—bunda—b<y<b—aunda+b<y‚F(y)=7rfür
—a—b<y<a—bundb—a<y<a+b.
6.1: (6.8) und (6.18) ergeben nacheinander (T 2), (T 3), (T 4) der Tabelle 3. Weitere Differentiation
nach z ergibt Z{n"}.
6.2: Analog Beispiel 6.5 ergibt sich (T 6) der Tabelle 3. Mit (6.18) folgen (T 7), (T 8) sowie F(z) für
beliebiges k.

6.3: Analog Beispiel 6.8 wird zunächst Z{sinh bn} bestimmt ((T 14) in Tabelle 3), mit (6.13) folgt
(T 16).

6.4: f„ = ‚IM, Z-transfornrieren, (6.12) benutzen und nach F(z) auflösen, das ergibt für lz] > 1

z" ""1 z z’ — 1

a) F(z)=fi’§0fvZ v; b) F(z): z_1 23+} o

6.5: Lösung von 6.1 für k = 0 und (6.14) ergeben für [z] > 1

z(z2 + 42 + 1) "“
F = ——-———. 3

(z) (z — If Eo ’

ist der Inhalt der von der Treppenfunktion f(t) = n’, n g r < n + 1, und den Geraden t = 0,
t = n, f(I) = 0 begrenzten Fläche.

F(z) = 1 . + 1 .

z z + J z — J
6.6: Wegen (6.9) mir a = i :21-j folgt aus

19
|»

-

1 mtf" = ?(enJnI2 + e-nJ»/2) __. ms T _

6.7: Wegen (6.9) mita=j1r bzw.a=0fo1gt ausfl=i ———1—+ 1
z 2 z+l z-l

f‚.=%(e"”'+1)=%(eosnn+l)=—%((—1)”+l) oder f,,,=1, f2.+,=o.
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6.8: Mit der Lösung von 6.1 für k = 1 ist

" +1 +1 2 +1 1
j’,,= 2 v(n—v)=n——————n(n)-10‘Mn )=—(n——1)n(n+1).

.=o 2 6 6

_ _ (—1)"6.9.f,,— (2n+l)! .

_ 1 _ 1 d" 1 _(n—l)! „ _ _ (n—1)!_1
6.10. F(7)—ln1—_—;, _d71~‘<?) —(I__z)__ fur 71:1, a1sof0_0,f_=_T__7
ffirngl.

1+(z—2)2 A B Cz-1-D)
6.11:Y = i: ——+——+-——‚

(z z (z—2)P(z) z(z——2 (2-2): z2+1
4 1 l 28

= -2 1 1 =.._., =_,c=_,1)=._;
Pm (Z K’ + )’A 2s B 5 24 25

1 .y„=_5F(5n-2"—8-2"+8cos—.%+56sm%).

A _ 2

6.12: Y(z,Ar) = z 2 ’ + (l + mxz 2) ‚ Ansatz wie in Aufgabe 6.1l mit
(z-2)P(z)

4 1 4 3
A =————2A', 1;=—2A*, c=—2A', 1)=——2A* 1 A-

25 5 2s 2s + + "

= —— n — - —- cos— 1 — - — n --(1) l (5 s) 2' + l 4 m’ + 3 s'n m’ 2'-" + (1 + x )sin m’
‘v so 2s 2 2 2

f(‘n'n§1<n+1.

5-131 Y(z) = F(Z)/P(Z) mit P(Z) = (Z + 1) (Z - 1), Q(2) = ä, Z"’{Q(z)} = {tin} mit'm = 1‚

m21
«um = Ofürn: 1, qo =0;yo =y1 =0,y..=fi.'r1.= 2112.4, fürn; 2.

n ’=

a).vz.. = rt. yz..+1 = 0.b).v.. = [-5-] ,c)y2.. =1.yz..—1 = 0 für n ;1.;vo = 0.

6.14: z’Y’(z) + Y(z) = 0, also Y(z) = ce"‘, also y,, = —c'- und wegen ya = 1 ist c = 1.
H.

6.15: P(z) = z’ —- Tä- (R, + 2R2) z + 1; Wurzeln verschieden und reell:
2

a; (R, + 211, + \/Rf + 411,112), a; =1/1:1,;
=51?

. 1 . . .t‚„ = 203470’, — 1004;) — :x’2"(1, -— 10041)).

\/R‘ + 41a
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Tabelle 1: Laplace-Transformation

Definition siehe 2.1.1., Rechenregeln siehe 2.2., Umkehrung siehe 2.4.

Nr. Originalfunktionflt) | Bildfunktion F(p)

l
l 1, u(t) T

1

2 I E;

3 z", n e N

4 t“, Re o: > —1 ——————F(:a:1)

5 e" „p i a

6 r e" 6-5-5;

7 t"‘e‘",Reoc> -1 %-(:—f1+)l

8 sin a: #13-

9 cos at 1%};

10 r sin at - 
11 t cos at 6;;-Ii?
12 t°‘sinat,Reoc> -2 ( — )
l3 !°‘cosat,Rezx> -1 ( + )
14 sinh at #72-

15 cosh at ä
16 t sinh at Ü%
17 t cosh at

18 t“‘sinhat,Reos > -2 £mT+ll(E}#- )
19 t°‘coshar,Rczx > -1 £12‘.-—1l(V_%;+

20 e“ sin bt b(p-a)2+b2



Tabelle 1: Laplace-Transformation 141

Nr. | Originalfunktion/(t) | Bildfunktion F(p)

p —- a
21 e" cos b: —ß_ a): + b:

22 e“ sinh b! —————L—(p _ a): _. b2

p — a
23 e" cosh bt

. p sin b + a cos b
24 s1n(z1t + b) -—

p cos b — a sin b
25 cos (a! + b) jzzj

. . 2a’)?
26 sm at smh at H

2 __ 2

27 cos at sinh a! -by;+ 42:‘)

2 2

28 sin at cosh at 4:)’::35‘)

29 cos at cosh at L
‘ p‘ + 4a‘

_ ‚ Zabp
30 sm at sm b: (pl + (a + by) (P2 + (a _ by)

p(p’ + a‘ + b’) '

31 cos at cos b: (pl + (a + b?) (P2 +01 _ 17):)

. au)’ + a’ —— b’)
32 sm a1 cos b! (P2 + (a + by) (p: + (a _ by)

33 sinh at — sin at Ji-P4 ._ a4

Zazp
34 cosh at — cos at -1#__—¢

2

35 sinh a! + sin at -TEE-T
p -— a

3

36 cosh a! + cos at ä
. 2a’

37 sm’ at 7(F4E

A p‘ + 2a’
38 C032 at

2112
- 239 smh at MP2 _ 4&2)

P2 __ Zaz
40 cosh’ at —-P_ M1)

ll Stopp. Operatorenrechnung



142 Tabelle l: Laplace-Transformaflon

Nr. Originalfunktion f(t) | Bildfunktion F(p)

— ‘ 1
41 J: 3/1 ——.

2 px/p

4, L ß
J: p

43 ll: , n e N it
~/I n! 4" pR/p

44 %,a;0 A/;—e’"’erfc~/I1}
t + a

l 2 — —

45 ——;—‚ > 0 — —— 2J "" f
(t+a)\/t+a a J; “pa etc‘/up

46 7‘—‘{t—H,a;0 I-f——7c\/;e"’erfc\/E

l 1': —

47 ——_—-—- a > 0 _ e" erfc x/up
x/t -\/I + a ' \/0 _

- 7:
III .j_j:j—_.

48 J“ 2(p-a)~/1>—a

49 —J—.e"‘ J"
t ‘lp — a

so „ e N _¢»_-«_J‘ M4». (p __ a)n+l

51 ————°""t ‘u In i Z 2

52 -—1—t e"""‘ e‘~/H:
P

53 e"'/4 \/7:C"€I'fCfl

54 -Elltqi arccot—%

1 — cos at 1 a’
55 —t—; 71x1 (l +

sin at sin b! l p’ + (a + b)’
5° “—z— 7‘"72f<aT

cosar—cosbt 1]up’+b’
57 t 7 p’ + a1

5s sin 2„/E l A/gie-a/n
P

sin 2-\/Z7 1-A/Z59 ____T: 1c er p

QOS2\/(1! ‘/1 -u/p
so ————— I, 6J7



Tabelle I: Laplace-Transformation 143

Nr. Origina1funktionf(r) Bildfunktion F(p)

sin (Zn + 1)! 1 " 2p2
61 jg“I , ne N fest -17 (l + vgl ‘P2 + M2)

1 . a ”“ _ _

62 Tm Tr e-~/an sin ‘/up

1 a ? _ _

53 17;- cos E e—~/ap cos N/up

64 Äsinh at 1.1 1’ + “
t p — a

65 sinh \/I‘ + sin J? l (1 cosh;
p p 412

66 sinh J? — sin J7 ä I; sinhä

J; + cos «/7 1
67 L /1 _J’ 2 p cosh 4P

68 süß-gib 2 1 Si,,h_1_J: p 412

69 sinh 2 JE % % am’

_ 1 '__ _

70 cosh2~/at —( —E1—e""’erf,‘/1+ I)
I7 P P

71 lnl —-%(lnp+C) 1)

! 1 1 1
72 rrIlnt,nEN -;%‘<1+7+...+_rT_]np_C))

In t I
73 -‘T —A/-—-(1fl4I7+ C)1)

~/t p
1 7:2 1)

2 _ ._74 In t p(6 +(lnp+C)2)

75 erf t %eP'/4 erfcg
a 1 —

76 erf 2J; Fa _ e-Np)

1

77 „w: p J7:1

78 e" erfs/E A/%%
79 e“ + erfJ? „h, +1

«a 1

so Jo(t) x/p——2+ 1

‘) C bedeutet die Eulersche Konstante (siehe Übersicht S. 8).

11*



144 Tabelle l : Laplace-Transformation

Nr. Originalfunktionffl) Bildfunktion I-‘(p)

81 J„(t)neN (‘/”1+1‘1’)"
\/P2 + 1

82 6(1) 1

83 Ö(t -— a)‚a g 0 e”?
84 (5000) pn

85 Ö""(t — a), a g 0 e“"’p"

86 I, 0 t T I

{O T<<t< 70-64’)
H?)

7 """"‘—|
l

'— 7 t

87 ‚ 0 l _

{I-1 T:::;' 70-5”):
O, 2T< r

{H}

7 -—%
i
I

T: ?7l I‘

l
-1- Ll

88 , 0 2 E T l _

{,2T—t T<:<2T 7(l_°Tp)2
0, 2T; t

{H}
T- 1

_ r 2r r

‚ 0 ä g T 1 _

8° l’
Hf}

T
_ r r



Tabelle l : Laplace-Transformation

Nr. | Originalfunktion/(I)

90

92

93

94

{1—l,0<I§T
0, T§t

H!)
1

T

1,0 < I< T
{0,T< t< 2T

TH!)

7——1 r--1

T IT J7’ 4T

z‘

f(t + 2T) =f(I)

I?‘ IT-

I

5T H’ t
1,0 < l < r m +21) =/(x)

{-1,T<r<2T
m)

7*: I-—I F“! f‘
I I I I l

I I I I. I l

7|‘ zr; arl“ 4T; n} er: r

_7L L_..._.I L11 i;

f 0, 0<x<T,2T<t<3T
1, T<t<2T

{-l,3T<t<4T

f(t + 4T) =f(t)

Ht)

7 I IIJ I 4 '

T 2r yr, Ar; if 5r I
I I.

_7 B

1,0<t<s f(t+T)=f(t)
0,s<t<T

rm Q

7 |-| g-1 I"'| r-I r"[ F‘
I II II II I: }

I II I{_Jl II I

I; r zr 3r 4T 5T iTt

145

I Bildfunktion F(p)

7;—2(Tp + e’T" -1)

l
p(l + e‘”)

1 — f”
I75

1 — e'T"
p (en: + EATP)

1 _ e-GD

751T”)



146 Tabelle 1: Laplace-Transformation

Nr. Originalfunktion f(I) Bildfunktion F(p)

L 0g‚<T f(‚+gr)=f(‚) Ä
T ’ _ T11’ (1 + F")

95 2T — t-37,- , _ t < 2T

M)

1

I | l

T 2T .77 4-T 57' 57'

Bildfunktion F(p) Originalfunktion f(t)
1 eat _ eh:

95 <p—a><p—b>’”*” a-b

1 _l_ _ n t ‘ __

97 p2+alp+ao die}: slnJ-Dr

D = g a} — no < 0

+ ß98 gig. (oc + (ß + oa)r)e“‘

M, + ß (m2 + /3) e" —- (cab + ß) e”
99 <p—a><p—b)"’*" a-b

| b e"-(1 +(a—b)r) e“
10° Tp—a)<p—b>*’“* <4-b)‘

“z”: "t- hb—-'1-‘hb101 ,b # 0 e cos r b sm t

a’ + b’ _ i -

102 ,b # 0 ear cos b: + b sm bt

2(12), N07) Polynome in p, N071) = 0‚N’(1I.-) 4= 0.

d1h. p; einfache Nullstelle

1 " 1 „ ‚

103 N(p) I; N'(Px) e l

Z07) " zum ,_.
1°4 N02) ‚.21 N‘(no

1 1 n I P‘,

‘°5 N<o> ‘S.21 paN’(p.~) °PN(1>)



Tabelle 2: Fourier-Transformation

147

Definition siehe 5.1.1., Rechenregeln siehe 5.3.1., Umkehrung siehe 5.2.

Hinweis: Wegen (5.11) ist F{F(t)} = 21rf(— y), so dal3 auch die zweite Spalte als Original- und die
erste Spalte als Bildfunktion benutzt werden können entsprechend obiger Formel. (Tl) bedeutet
also

a
a) = rte-"|"| und b) F{-n:e"'|’|} = ‘Fm.
Nr. Originalfunktion f(t) Bildfunktion F(y)

1 —“— Rea > o ne-alvl
a’ + z’ ’

2 1 0, y < 0

(ü *}Y)"“ { 21: „ _‚„‚

Rea>0‚ neN _nT've ’y>0
1

(T507
Rea>0,neN

ab(a2—-bz)

(a2 + t’)(b’ + t‘)
Rea>0, Reb>0

a3 7:

‘“'“'<7
6 0, t<—a, a<t

1‚—a<t<a
7 e""', Rea>0

s a>0

{(_1)1I+1 %ynenY’ y < 0

0, y > 0

rr(ae"”’ — be""')

1: e“"/Vysin (I- + ——fly—)
4 J2

nJ„(ay), a > 0

iLe-fl/M
a

0,y< —a,a<y
7:,-a<y<a



148 Tabelle 2: Fourier-Transformation

Nr. Gerade Originalfunktionf(r): Gerade Bildfunktion F(y):
f("f) =f(!), f > 0 F(-.V) = F(}’)‚ ‚V > 0

9 1, 0 g t < a Zsin ay

0, u < t y

t, 0 ä I él 2 -

l0 2_! 13,52 ?(2cosy—1—cos2y)

0, 2§!
1 x/577

11 ———= —

\/t s/y
0, 0§t<a -—-

12 i 1 a < t (cos ay —— sin ay)

«/t — a ’ ‘v

e-br _ e-n a2 + y?

13 L; b’ +y2
Rea > 0, Reb > 0

14 e‘: Rea > 0 x/Eß/a;+ yz + a)“:
x/t ’ x/az +y2

15 e'“sinat “+-V + “'--V
a>0‚ Reb>0 b1+<a+y)’ b‘+(a—y)‘

15 e""cosat b + b

Reb>|Imu| b2+(a+y)‘ b’+(a—y)’
lnt J5? ( n:
—— — _ ln4y + C + —)

‘7 J7 \/Y 2

In t, 0 < tél " .

l8 {o 1s x — -2—f3“—'—dr. .. y ,
0

19 ilzzl, >0 {n(a——J2/-), y§2a

0. 20 ä ‚v

20 “im”, >o 7r(a-y)‚ yéa
0, -Iéy
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Nr. Ungerade Originalfunktionf(t): Ungerade Bildfunktion F(y):
f(-1) = -f(!). I > 0 F(-J’) = -FLY). y > 0

21 [1, O < t < u 2j(cosay — 1)

0, a < t ‚V

I, 0 _S_ I ä l 2.

22 {2-z, 1§z§2 —y%(sin2y—2siny)

0, Z g t

1 d}
23 —— -

«/I ~/y
O, 0 < t < a _ -—

24 1 a < f — J‘/3" (sin ay + cos ay)fl_ a ' s/.v

25 e“" R 0 _ ix/7:6/a2 + y’ — a)":J‘- , ea > Ja: + y:

3" ' 5‘/E (In 4 7’)_ y + C -— —

26 J; „/„ 2

co

lnI,0<t§1 _2;’(C , Im" ‘27 [0, lg’ y +ny+ t d!)
Y

— . +
28 ii, >0 -J1n‘:_:

cos m 0, 0 < y < a
29 t ‚ > o {fl-m a < y

30 e-u’, Reg > o e"”/"" erfi.
-' a 2 a

0,0 < y < a

31 J r , > 0 ‘Z50(47) a { ‘h7: ‚ a < y
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Tabelle 3: Z-Transformation

Definition siehe 6.2., Rechenregeln siehe 6.4.1., Umkehrung siehe 6.5.1.

Nr. Originalfolgefl. I Bildfunktion F(z)

1 1 z f l

2 n (7-ET)?

6 a" z i a _

7 rm" ä
8 n’a"

9 (I)
10 sin bn

11 cos bn

12 e" sin bn Zea Sin b
22 — 2ze"cosb + e“

z(z — e“ cos b)
l3 e“ cos bn jg- 

14 sinh bn

15 cosh bn

16 a" sinh bn z” Sin“ bz’ — 22a coshb + a’
z(z — a cosh b)

17 an Cosh b" z? —- 22a cosh b + a1

18 f,.=0fi'1rn$k, _1_

f;=1 z"

19 —o f —2 ———2’f2»: - ‚ 2n+1 - z, _1

f2. = o, 2z(z2 + 1)

fzn+1 = 2(2rI + 1) (Z1 - 1)‘
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Nr. | Originalfolgefi, Bildfunktion F(z)

fzn = 0,
21 f _ 2 ln z + i

2"“ " 2n + 1 z

m: 22
22 cos? Z2 + l

Z2
23 (n + l)e‘”‘ (TE)?

eb(n+l) _ ea(n+1) ‚z

24 e” — e“ (z — e‘) (z — e”)

1 22
25 ?(n - 1) n(n + 1) (Tffi;

1
26 f0=0,f,,=7,n;1 lnz_z_l

a" a
27 e?

(-1)" . 12S jg a»:

(2n+ 1)! ‘/Z5‘"¢

29 m <14)"n z

1

30 2(4)" cos——'
(Zn)! «/2

Z

31 (‘Du z + 1

Z
32 (—I)" n — (—z:_T)3

Z
33 n(n—1)...(n-—k+1) k!(z_l)kH

34 i. e‘/’
n

35 (_1)" e“1/’
. n!

36 " +,1 (1 + -1—)e‘/‘
n z

" I z z

37 1317? z—11nz-1
n-l 1 51/:

38 „Eo H z — 1

k u" en k
39 (‚Je (1 + 7)

4o am“ e‘"1n Z
n e“



152 Tabelle 3: Z-Transformation

Nr. | Originalfunktion f,, Bildfunklion F(z)

41

42

43

44

45

46

47

48

49

50'

n sin bn

Legendresche Polynome ([12], S. 80)’)

1 d" (,2 _ 1)..
‘W’ = Tam

Laguerresclze Polyname ([12], S. 15) l)

L„(t) _e_‘ d"
n! _ n! d!” (t" e")

Hermitarche Polynome ([12], S. 17) ‘)
H(t) (—1)"e" d" _

"n"? = —fi— an ‘° "’

Tschebyschejfxche Palynome ([T1], 19. Aufl.
S. 790, ab 21. Aufl. S. 752)’)

T„(t) = cos (n arccos t)

Q,,(t) = sin (n arccos t)

(z: — 1)z sinb
(z? — Zzcosb +1)2
TC 1

2 + arctan -Z-

sin b
b + arctanL-

z — cosb
cos be? Sin (Sin b)

coxb
e z sinb)

7
COS (

e(2v.v- 1)/1‘

z(2— i)
im?

z

Z2 — 2tz +l

‘) Adrien-Marie Legendre (1752- 1833), Edmond Laguerre (1834-1886), Charles Hermite
(1822-1901), französische Mathematiker.

2) Pafnuti Lwowitsch Tschebyscheff (1821-1894), russischer Mathematiker.



Tabelle 4: Übersicht

Name I Definition

153

wichtige Abbildung

lump ltmnsfonnationen

Laplace~Transformation

p komplex

Fourier-Transformation

. y reell

Mellin-Transformation

p komplex

Stieltjes-Transformation

p komplex, largpl < r:

Hilbert-Transformation‘)

y reell

. Fourier-Kosinus-Transf.

y > 0 reell

Fourier-Sinus—Transf.

y > 0 reell

F<p) = 5 e""f(t)dI
0

co

Fm = j e-M/0) cu
—no

Mm = Mm“ d:
0

S(p)=J"L_*_')p-dr
U

„m = i In:
Tr t

Fc(.v) = ?f(r)cos(yt) d!
U

F50‘) = Ff(l)Sin 0'!) d!
U

Diskrete T. auaformationen

Diskrete Laplace-

Transformation

p komplex

Z-Transformation

Operatorenrechnung

Mikusiriskische

Operatcrenrechnung

Diskrete Operatoren-

rechnung

Abbildung von f’ (I)

PFO7) -f(0)

J'yFO')

-(II -1)M(p - 1)

~s'<p> — firm)

H'(.V)

Abbildung vonf”(t)

“YZFCOÖ — f'(0)

-y2Fs(‚V)+ )’f(0)

Abbildung von

Afr: = fm - fl.

(e" - DFÜ?) -fo€’

z — l)F(2) —/{,2

algebraisch,

p Difierentiationsoperator

algebraisch,

q Diflerenzenoperator

‘) David Hilbert (1862-1943), deutscher Mathematiker.

Abbildung von f’(t)

f’(t) = 1If(!) - f(0)

Abbildung von A};

Afi. =(q— 1)(fi. -fo)
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