
MATHEMATIK
FÜR INGENIEURE

NATURWlSSENSCHAFTLER

ÖKONO N

LAN DWI

SCHULTZ-PISZACHICH

Tensoralgebra und -analysis



Abhängigkeitsgraph

- 1 13
Vorbereitungsband Grundlagen Lineare Algebra

l l
3 Differential- 2

und Lineare
Unendliche Reihen Integralrechnung Optimierung

l l
Gewöhnliche Z Differential- 4
Differential- rechnung mit Nichtlineare
gleichungen mehrerenVariablen ' Optimierung

Gewöhnliche Z Integralrechnung 5
Differential- mit ' ‘F Optimale Prozesse
gleichungen mehreren Variablen und Systeme

l l w

Partielle 8 6 H Wahrscheinlich-
Differential- Differential- "l keitsrechnung,
gleichungen geometrie math.Statistik

w J:
Komplexe 9 V 211
Funktionen Operatorenrechnung Spieltheorie

l l
11 212Spezielle Tensoralgebra

Funktionen und -analysis Graphentheorie

I n f

l

Funktionalanalysis Versuchsplanung

Numerische _ ‘ |S”:g::::tt%isChe 191‘
Methoden Simulation und Modelle

*-——-—-1 l
22 “ L Statistische 192



MATHEMATIK FÜR INGENIEURE, NATURWISSENSCHAFTLER,
ÖKONOMEN UND LANDWIRTE NBAND 11

Herausgeber: Prof. Dr. O. Beyer, Magdeburg ~ Prof. Dr. H. Erfurth, Merseburg

Prof. Dr. O. Greuel T ~ Prof‘ Dr. H. Kadner, Dresden

Prof. Dr. K. Manteuffel, Magdeburg - Doz. Dr. G. Zeidler, Berlin

PROF. DR. W. SCHULTZ-PISZACHICH

Tensoralgebra

und -ana|ysis
2., BEA RBEITETE AUFLAGE

BSB B. G.TEUBNER VERLAGSGESELLSCHAFT
LEIPZIG 1979



Verantwortlicher Herausgeber:

Dr. so. nat. Karl Manteuffel, ordentlicher Professor für mathematische Methoden der Operations-

forschung an der Technischen Hochschule Otto von Guericke, Magdeburg

Autor:

Dr. phil. et rer. nat. habil. Wolfgang Schultz-Piszachich, ordentlicher Professor für Analysis an

der Ingenieurhochschule Köthen

Als Lehrbuch für die Ausbildung an Universitäten und Hochschulen der DDR anerkannt.

Berlin, November 1978 Minister für Hoch- und Fachschulwesen

© BSB B. G. Teubner Verlagsgesellschaft, Leipzig, I977

2. Auflage

VLN 294~375/15/79 r LSV 1034

Lektor: Dorothea Ziegler

Prlnted in the German Democratic Republic

Gesamlherslellung; INTERDRUCK Graphischer Großbetrieb Leipzig — III/18/97

BeslelI-Nr. 665 825 4

DDR 7,— M



Vorwort zur ersten Auflage

Der Tensorkalkül ist die wichtigste Methode, physikalisch-technische Vorgänge
und Prozesse mathematisch zu formulieren. Zahlreiche Anwendungsbeispiele dienen
der „mathematischen Modellierung“ solcher Vorgänge derart, daß ihre Beschreibung
nicht von der Wahl des zufällig benutzten Koordinatensystems abhängt. Die Weiter-
entwicklung der Theorie und der Rechenfertigkeit sollten Hand in Hand gehen. Den
Hinweisen zur Lösung der Übungsaufgaben wurde daher breiter Raum gewidmet.
Die Aufgaben dienen der Rechenübung und Stoffergänzung. Aus Platzgründen
müssen wir uns im Text gelegentlich auf die Ergebnisse von Übungsaufgaben stützen.

Ausgehend von einfachen Grundbegriffen werden die notwendigen Verallgemei-
nerungen schrittweise vorgenommen. Dieses etwas umständliche Vorgehen erfolgt
aus didaktischen Gründen. Alle Zwischenstufen können natürlich durch Spezialisie-
rung aus der ko- und kontravarianten Darstellung des 6. Kapitels zurückge-
wonnen werden.

Neben der Koordinatendarstellung gibt es die Komponentendarstellung in Sum-
menform sowie die koordinatenfreie Darstellung für einen Tensor. Wir beschränken
uns nicht wie üblich auf eine der Darstellungsmöglichkeiten, sondern behandeln
sämtliche Methoden der Tensorrechnung ausführlich. Die Stoffauswahl ist auf die
Belange einer effektiven Einführung in die Tensoralgebra und -analysis zugeschnitten,
die den Leser befähigen soll, weiterführende Literatur mit Verständnis lesen zu

können. .

Für wertvolle Hinweise danke ich Herrn Prof. Dr. E. Lanckau (TH Karl-Marx-
Stadt) und dem Herausgeber Herrn Prof. Dr. K. Manteuffel (TH Magdeburg).
Herrn Prof. em. Dr. H. Schubert (MLU Halle) danke ich besonders für Literatur-
hinweise und -ausleihe. Bei der Ausarbeitung der Übungsaufgaben hat Herr Dr.
U. Werner (IH Köthen) in dankenswerter Weise mitgewirkt. Dem Verlag sei für die
Gestaltung des l 1. Bandes und für die gute Zusammenarbeitherzlich gedankt.

Magdeburg, November 1975 W. Schultz-Piszachich
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1. Tensorielle Aspekte der Vektoralgebra

1.1. Vektoren

Die Vektoralgebra im dreidimensionalen euklidischen Raum kennen Sie bereits aus

der „Linearen Algebra“ (Band 13 dieses Lehrwerks). Eine Einführung in die Vektor-
algebra ist daher nicht beabsichtigt. Es sollen nur jene Begriffe und Zusammenhänge
herausgestellt werden, die für die Tensorrechnung wichtig sind. Dabei ändern wir die
Ihnen geläufige Bezeichnungsweise, um uns Schreibarbeit zu ersparen. Im folgenden
wird der Ihnen durch die Anschauung Vertraute dreidimensionale euklidische Raum
zugrunde gelegt und mit R3 bezeichnet.

Die Achsen eines kartesischen Koordinatensystems (KS) stehen paarweise aufein-
» ander senkrecht. Die Einheiten werden auf allen drei Achsen gleich groß gewählt.
In einem solchen Bezugssystem wollen wir die Einheitsvektoren in Richtung der
positiven x-, y-, z—Achse respektive mit e„ ez, e3 bezeichnen:

le1l=le2l=le3l=1a ex i 92 l 93-

Die so definierten Koordinateneinheitsvektoren e, ‚ c2, e3 bilden eine orthonormierte
Basis. Bezüglich dieser Basis erhält ein Vektor u die Komponentendarslellung

3

u = u1e1+ 142e; + u3e3 = Zu,e,-. (l.l)
Isl

Abgesehen von physikalischen Dimensionen sind die u, Zahlen. Man nennt sie die
Koordinaten des Vektors u. Die drei Summanden u,e, , uzez, u3e3 sind die Komponen-
ten des Vektors u (auch vektorielle Komponenten genannt).

Allgemein wird ein „eigentlicher“ Vektor als Repräsentant einer Translation an-

gesehen. wobei alle Punkte des Raumes oder eines Raumteils (z. B. eines starren
Körpers) die gleiche Parallelverschiebung erfahren. In dieser Definition ist der Vektor
vom speziellen KS unabhängig. Physikalische Vektoren wie z. B. Geschwindigkeit
und Beschleunigung, elektrische und magnetische Feldstärke sind eigentliche Vekto-
ren, d. h. Tcnsoren erster Stufe. Damit ist gemeint, daß das geometrische Bild des
eigentlichen Vektors als gerichtete Strecke mit Länge, Richtung und Richtungssinn
ein geometrisches Objekt darstellt, das sich bei beliebiger Parallelverschiebung nicht
ändert und nicht vom zufällig benutzten KS abhängt. Es werden also freie Vektoren
zugrunde gelegt, die geometrisch von jedem beliebigen Raumpunkt aus abgetragen
werden können. Zwei Vektoren sind gleich, u = v, wenn sie durch Parallelverschie-
bung gleichsinnig zur Deckung gebracht werden können. Das bedeutet algebraisch
u, = v1,u2 = v; , n3 = v3 und folgt aus der linearen Unabhängigkeit der kartesischen
Basisvektoren e, , c2, e3. In der Geometrie wird man verlangen, daß ein geometrisches
Objekt, etwa eine Ebene, selbständige, also vom KS unabhängige Bedeutung hat.
Auch aus dieser Forderung läßt sich, wie wir sehen werden, der Tensorbegrifl her-
leiten.

Zur Frage der Orientierung eines KS betrachten wir drei nicht komplanare Vek-
toren u, v, w, die von einem beliebigen Punkt abgetragen werden. Der Endpunkt des
Vektors u werde (auf kürzestem Wege nach Bild l.l) in die gleichsinnige Richtung des
Vektors v gedreht. Wir erhalten eine Schraubenlinie‚ wenn sich der Endpunkt von u
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bei dieser Drehbewegung gleichzeitig und gleichsinnig in Richtung des Vektors w

bewegt. Ergibt sich dabei eine Rechtsschraube nach Bild 1.1 wie beim üblichen Korken-
zieher, dann nennen wir das Vektortripel u, v, w in dieser Reihenfolge ein Rechts-
system (R); ergibt sich hingegen eine Linksschraube nach Bild 1.2, so bilden die

Bild 1.1: Bild 1.2:
Rechtsschraubenlinie: Linksschraubenlinie:
u, v, w (R) u, v, w (L)

Vektoren u, v, w in dieser Reihenfolge ein Linkssyszem (L). Speziell für ein kartesisches
KS kann man danach angeben, ob die Basisvektoren e, ‚ e2, e3 in dieser Reihenfolge
nach Bild 1.3a ein Rechtssystem oder nach Bild 1.3b ein Linkssystem bilden. Man
sagt auch, das KS sei rechts- oder linksorientiert.

„im [e„e‚) f:

(I)

I

e e, l e,
e. ‘ . ,

' -‚s‚-n,e.‚e3‚

Bild 1.3a: Bild 1.3b:
Rechtssystem: Linkssystem :

61:32:93 (R) 91x92x63 (L)

Vereinbarung 1.1: Solange wir uns auf ein kartesisches KS beziehen, wird vereinbart,
daß die kartesischen Basisvektoren mit der Bezeichnung el, e2, e3 in dieser Reihen-
folge ein Rechtssystem bilden.

Dann bilden auch die Koordinateneinheitsvektoren in der Reihenfolge ez, e3, e,
und c3, e1, e; ein (R), aber in der Reihenfolge e2,e1 , e3 und es , e; , e, sowie e1, ea, e2

ein (L). Bei Vektoren mit anderer Bezeichnung, z. B. 61, E2, E3 oder u, v, w muß in
jedem Falle geprüft werden, ob es sich um ein (R) oder (L) handelt.

Wir schreiben e, , ez, es für die Basisvektoren eines kartesischen KS an Stelle von
i, j, k, um die Summationsvereinbarung nach Einstein benutzen zu können.
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Vereinbarung 1.2: Es wird vereinbart, daß überall dort, wo zwei gleiche lateinische
Buchstabenindizes auftreten, über diese von 1 bis 3 zu summieren ist, sofern nicht
ausdrücklich etwas anderes gesagt wird.

Mit dieser Vorschrift ersparen wir uns das Aufschreiben des Summenzeichens. Die
Komponentendarstellung (1.1) erhält nunmehr die einfache Formulierung

u = uiei. (1.2)

Beispiel 1.1: Die Doppelsumme aikbki soll ausgeschrieben werden. Zunächst ist

aihbki = Hub/u ‘l’ aZkbkZ ‘l’ a3kbk3:

wenn man die Summation bezüglich iausführt. Es ist aber auch über k zu summieren
mit dem Ergebnis

Grab/u" = 11111711 ‘l’ 1112521 "l" 0131731

‘l’ 11211712 ‘l’ 11221722 ‘l’ 11231732

‘l’ 0311713 + 4321723 ‘l’ 41331733-

Aufgabe 1.1: Man schreibe die Doppelsumme aijbij und die dreifache Summe
Eijkaibjck ausführlich!

1.2. Tensoren erster Stufe. Orthogonale Koordinatentransformationen

Das skalare Produkt u - v der Vektoren u und v wird mit einem Zwischenpunkt
gekennzeichnet. Das Ergebnis ist eine skalare Größe.

Definition 1.1: Die skalare Multiplikation zweier Koordinateneinheltsuektoren ergibt
e,- - eh = ö‚-‚„

wo 6,7. das Kronecker-Symbol bedeutet:

6,-,‘ =0füri+k‚ 6,~k=1fi4'ri=k. (1.4)

Nach (1.4) gilt

611 =öz2 =ö33 =1, 6,2 = (521 =0

usw., aber

l f”Ökk = 511 ‘l’ Ö2: + 633 — (1-5)

In der Definition darf bezüglich

(Sm = 1 für i= k

nicht summiert werden, was man in Zweifelsfällen mit (im, = 1 andeuten kann.
Mittels (1.2), (1.3) und (1.4) erhalten wir das Skalarprodukt

u ' V = uiei ' V1491; = uivkei ' ek = uivhöikv

also bei Beachtung der Summationsvereinbarung den Skalar

u ~ v = um, = 11,111 + 1,42122 + u3v3. (1,6)
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Wird nämlich über i summiert, so entsteht

uivköik = ukvkömk) = ukvk-

Das skalare Produkt ist kammutativ

u - v = v - u (l.7)

wegen um, = o‚„u,„..

Beispiel 1.2: Denkt man sich die Masse eines Teilchens in seinem Schwerpunkt
konzentriert, so spricht man von einem „Massenpunkt“, der sich mit der Geschwin-
digkeit v bewegen möge. Seine kinetische Energie ist dann

Em = gut? + 11% + v§).

Wir führen die Kurzbezeichnung v2 ein mit der

Veigleiifisbarung 1.3: v ~ v = vkvk = v2, (1.8)
so a

Ekin= g UkUk= 1;,‘ V2

geschrieben werden kann.
Der Übergang von einem Bezugssystem B zu einem anderen B werde mit einer

linearen Transformation vollzogen, wobei ein betrachteter Punkt festgehalten wird.
Eine solche Transformation heißt Koordinatentransformation. Wegen der Summa-
tionsvereinbarung wollen wir künftig die kartesischen Koordinaten x, y, z durch-
numerieren und dafür x1, x2, x3 schreiben! Derselbe Punkt habe dann in B die
Koordinaten x, , x2, x3 , dagegen in B die Koordinaten f, , i; , E3. Der Übergang von

einem Bezugssystem zum anderen wird von einer Transformationsmatrix Vermittelt.
Wir wollen uns dabei auf homogene lineare Transformationen beschränken, indem wir
Parallelverschiebungen des KS ausschließen. (Im Bedarfsfall werden Translationen
des Bezugssystems gesondert untersucht.) Die Bezugssysteme B und B haben bei
diesen Transformationen immer denselben Ursprung (Nullpunkt), so daß für die
Ortsvektoren x = xie, und F: = 2,5„ desselben Punktes in beiden Bezugssystemen
gilt: x = x,~e,- = fkék = i.

Zur Einführung betrachten wir speziell Drehtransformatianen, die B in B über-
führen. Das sind Drehungen des Bezugssystems B um eine Achse, die durch den fest-
gehaltenen Nullpunkt (Ursprung des KS) geht. Nach wie vor benutzen wir kartesische
Bezugssysteme, so daß ein Dreibein e, , c2, es wie ein starrer Körper in die neue Lage
El, E2, E3 gedreht wird. Dabei sind die E, ‚ E2, E3 wieder kartesische Einheitsvektoren
in gleicher Orientierung wie el, c2, 63. (Bei Spiegelung an einer Ebene durch den
Ursprung würde sich die Orientierung ändern.) Es muß also gelten

efiek =öika éi'ék=5ik- (1-9)
Der zum Vektor v gehörige Einheitsvektor werde mit v° gekennzeichnet, |v°| ‘= 1.

Seine Koordinaten sind die Richtungscosinus mit den Koordinatenachsen. Bezeichnet
(v, e‚-) den kleineren Winkel zwischen den Vektoren v und ei, so erhält v° die Kom-
ponentendarstellung

v“ =e‚ cos (v‚e‚).
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Ein Basisvektor des neuen Bezugssystems B wird also im alten KS B zerlegt in

5„ = e, cos (é,,, e,). (1.10)

Umgekehrt werde w° in B dargestellt:

w° = E, cos (w, 5,).

Ein Basisvektor des alten KS B erhält somit im neuen KS I? die Komponentendar-
Stellung

e, = ö, cos (ek, 6,). (1.11)

Jede Drehung des ursprünglichen KS um eine Achse durch den Nullpunkt und jede
Spiegelung des ursprünglichen KS an einer Ebene durch den Nullpunkt, die auch als
Umlegung bezeichnet wird, überführt das kartesische Basissystem 0„ e2, e3 in eine
neue kartesische Basis E, , E2, E3. Die vorstehenden Formeln gelten für Koordinaten-
transformationen nicht nur bei Drehung, sondern auch bei Umlegung des kartesi-
schen KS.

Definition 1.2: Die orthogonalen Koordinatentransformationen umfassen Drehungen
und Umlegungen des kartesischen Bezugssystems. Sie werden von einer orthogonalen
Matrix C = ((c,,,)) mit den 9 Elementen ck, vermittelt. Die Transformationskoeffizienten
eh, werden wiefolgt definiert:

Ck: = C05 (ein er) = C05 (e15 5k):

Clk = C05 (51, 9k) = C05 (ein 51)-

Der erste Index der Transformationskoeffizienten bezieht sich auf einen Basis-
vektor von B, der zweite Index auf einen Basisvektor von B. Aus (1.10) und (1.11)
liest man mit (1.12) die Transformationsformeln

6„ = c„,e„ e, = c„‚ä, (1.13)

ab, die Sie in anderer Bezeichnungsweise aus der „Linearen Algebra“ kennen.
Wird vorausgesetzt, daß der Vektor v ein Tensor 1. Stufe sei, so muß mit (1.13)

gelten

(1.12)

v = vke, = u„c„,ö, : E,é, 2 V

und

HV = L-„ek = Ekcue, = v,e, v.

Es folgt
v, clkvka U: 3 cklfk"

Auf die Wahl der Buchstabenindizes kommt es nicht an; bei einer Umbezeichnung
müssen die vorher gleichen Buchstaben aber wieder durch gleiche Buchstaben ersetzt
werden! Die Transformationsgesetze lauten dann auch

5k = cklvls Uk = C117‘: (1-14)
neben

5k = cklels ek = clkéb (1-13)

Definition 1.3: Ein Tensor I. Stufe ist ein System von drei Zahlen (v„ v2, v3), seinen
Koordinate/z, die sich bei Drehung oder Umlegung des kartesischen Bezugssystems nach
dem Gesetz (1.14) transformieren.
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Vereinbarung 1.4: Der Tensorbegrifi" wird im folgenden ohne besonderen Vermerk
auf die Gruppe der orthogonalen K0ordinatentransformationen bezogen. Die Gruppe
der Lorentztransformationen und die Gruppe der homogenen linearen Koordinaten-
transformationen werden später besonders angesprochen.

Satz 1.1: B sei ein kartesisches Bezugssystem mit den Koordinateneinheitsvektoren
e1 , e2, e3, entsprechend B ein kartesisches Bezugssystem mit den K0ardinateneinheits<
oektoren E„ E2, E3. Die Koordinatensysteme B und B haben den gleichen Nullpunkt.
Ein Vektor mit der Kontponentendarstel/ung v = o‚-e‚— in B bzw. V = fkEk in B ist ein
Tensor 1. Stufe, wenn die Invarianzbedingung

v = v, oiei = Ekäk (1.15)

bei Übergang von B auf B (und umgekehrt) erfüllt ist.

Aus der Invarianzforderung (1.15) hatten wir mittels (1.13) die Transformations-
gesetze (1.14) für die Koordinaten eines einstufigen Tensors abgeleitet. Durch Ver-
gleich von (1.14) mit (1.13) erkennt man den

Satz 1.2: Die Koordinaten 11„ eines Tensors I. Stufe transformieren sich nach dem glei-
Chen Gesetz wie die kartesischen Basisvektoren er.

Folglich kann das System der kartesischen Basisvektoren e I ‚ e; ‚ c3 insgesamt nicht
mit Tensoren 1. Stufe gebildet werden. Denn bei Übergang von B auf B kann die
Invarianzforderung (1.15) nicht für alle Basisvektoren in der Form e; = E, , e; = E2 ,

c3 = E, erfüllt werden. Liegen im allgemeinen die Drehachse und die Spiegelebene
schräg zu den Koordinatenachsen, dann gilt sogar e,» 4: E,- für i = 1, 2, 3, d. h. die
Basisvektoren sind nicht Tensoren l. Stufe. Wir nennen das kartesische Basissystem
e, ‚ ez, e, eine kartesische Basis I. Stufe. Es folgt der

Satz 1.3: Eine karlesisehe Basis 1 . Stufe kann nicht vollständig mit Tensoren 1, Stufe
gebildet werden. Die Koordinateneinheitsvektoren sind insgesamt keine Tensoren
I. Stufe.

Beispiel 1.3: Bei Drehung um die x3-Achse gilt zwar e3_= E3, aber e, + E1 und
e; # E2. Bei Spiegelung an der x1 , xz-Ebene gilt zwar e, = E1,e2 = E2, aber e3 =1: E3,
nämlich E3 = —-e3.

Nach (1.13) und (1.9) bilden wir die Skalarprodukte

51 ' 51c = cue: ' ckmem = cilclcnxalm t 511511 : öika

91 ' 9k = Cliél ' cmkém : Clicmkölm = 5115/1: = 611:

und erhalten die wichtigen Beziehungen

5115111 = Öika 511511; : 5x'k- (1-16)

Das bedeutet für die Transformationsmatrix

511 512 513
C = 521 522 523 = ((5111)),

531 532 533

die eine Drehung oder Spiegelung des kartesischen Bezugssystems vermittelt, daß die
Quadratsumme der Elemente einer Zeile oder Spalte gleich eins, die Produktsumme
der Elemente zweier verschiedener Zeilen oder Spalten gleich null ist, z. B.

5i2 ‘l’ 552 + 552 =1: 511531 ‘l’ 512532 + 513533 = 0U5W-
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(„Quadrat— bzw. Produktsumme“ soll heißen: Summe der Quadrate bzw. Produkte).
Eine solche Matrix heißt orthogonal.

Vereinbarung 1.5: Wir benutzen die Schreibweise

C = ((510); det C : |1C'ik11

für die Matrix Q und ihre Determinante det C. Es wird det C =1: 0 vorausgesetzt.
Nach (1.16) gilt in Matrizenschreibweise

((ci1ckl)) = ((C1iCuJ) = ((6:10)

oder in symbolischer Form

CC’ = CTC = _I‚ (1.17)

wenn C‘ die bezüglich C transponierte Matrix und 1 = ((6%)) die Einheitsmatrix
bedeuten. Wird (1.17) mit der Grundbeziehung

CC" = C"C = I
verglichen, so folgt

C“ = C‘, (1-18)

wo C“ die bezüglich Q inverse Matrix bezeichnet. Die Eigenschaft (1.18) wird
meistens als Definitionsgleichung für orthogonale Matrizen vorangestellt. Wegen
(1.18) lautet die Auflösung des linearen Gleichungssystems (1.14) 5„ = c„v‚ einfach
12„ = c,,,1",.

Orthogonale Matrizen sind mit den Eigenschaften (1.16) oder (1.18) vollständig
charakterisiert.

Aufgabe 1.2: Man zeige, daß für die Koeffizientenmatrix Q bei orthogonaler Koordi-
natentransformation gilt

llczull’ = iiöikli = 1‚

detC = llc„‚ll = i1.
Im Abschnitt 1.4. beweisen wir den

Satz 1.4:

Hcikll = +1 (Drehung), l|cik|l = —l (Umlegung), (1.19)

d. h. bei Drehung oder Umlegung des kartesischen KS gilt

detC = +1 oder detQ = —l.

1.3. Invarianz des skalaren und vektoriellen Produktes

Die Vektoralgebra wird in dem Umfang, wie sie in Band 13 behandelt wurde, als
bekannt vorausgesetzt. Wir geben nur eine Übersicht (mit Ergänzungen) über das,
was hier gebraucht wird. Das geometrische Bild eines eigentlichen Vektors ist mit
Länge, Richtung und Richtungssinn (Orientierung) bestimmt. Eine Gerade besitzt als
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geometrisches Gebilde eine Richtung, aber keinen Richtungssinn. Die koordinatenfleie
Darstellung des Vektors

v = |v| v“ (1.20)

besagt natürlich, daß es sich um einen Tensor 1. Stufe handelt, denn die geometri-
schen Kenngrößen des Vektors hängen nicht von einem KS ab. Hier bedeuten |v|
die Norm des Vektors v und v° den zu v gehörigen Einheitsvektor mit der Norm
1v°| = 1.

Beispiel 1.4: Ein Massenpunkt bewegt sich auf einer Bahnkurve mit einem Geschwindigkeitsvektor v,
der in jedem Kurvenpunkt die Richtung der Bahntangente besitzt. Durch die mechanische Bewegung
wird ein Durchlaufungssinn der Kurve vorgeschrieben, so daß der Geschwindigkeitsvektor v einen
Richtungssinn erhält. Die Norm des Geschwindigkeitsvektors heißt auch „Größe der Geschwindig-
keit“. Die Größe der Geschwindigkeit sei lv = 50 [m 5“]. Im geometrischen Bild wird dem Betrag M
des Vektors eine Länge des Vektorpfeils zugeordnet. Nachdem die konstruktive Längeneinheit, etwa
10 [ms“] e l [cm], vereinbart worden ist, wird der Betrag des Geschwindigkeitsvektors im geo-
metrischen Bild durch eine Strecke von 5 cm Länge veranschaulicht. Die physikalische Dimension
wird der Norm lv} = 10 [ms"] zugewiesen, so daß der Einheitsvektor v°, für sich betrachtet, dimen-
sionslos ist: 1v°1 : . Ist speziell iv} = 1 [ms"] die Größe der Geschwindigkeit, so müßtc man

v = 1v|v° mit Iv] = 1 [ms“] schreiben.

Die koordinatenfreie Darstellung des skalaren Produkts lautet

u - v = lul lvl cos (u, v). (1.21)

Wir denken uns die Vektoren u und v in einem beliebigen Punkt angesetzt. Dann soll
(u, v) den kleineren Winkel bezeichnen, den die Vektoren einschließen. Die Festlegung
(v, u) = —(u, v) bedeutet cos (v, u) = cos (u, v), aber sin (v, u) = —sin (u, v). Winkel
(u, v) und Längen |ul, 1v| sind geometrische Bestimmungsstücke, die nicht vom KS
abhängen. Mit (1.21) wird unterstellt, daß es sich um Tensoren 1. Stufe handelt, daß
also auch u‚-v‚- = E4,-E, gilt. Aus (1.21) folgt wieder (1.7) u - v = v - u sowie

v,- = v - e, = |v| cos (v, e‚-). (1.22)

Aufgabe 1.3: Mit den drei Seitenvektoren a, b, a + b = c werde ein Dreieck kon-
struiert. Der „Kosinussatz“ ist mittels (a + b) - (a + b) = c - c bei Berücksichtigung
von (1.21) und (1.7) herzuleiten. Man ergänze das Dreieck zum Parallelogramm und
bilde die Diagonalvektören. Mit Hilfe des skalaren Produkts ist zu zeigen, daß die
Diagonalen eines Rhombus, |a| 2 |b|, aufeinander senkrecht stehen.

Das Skalarprodukt hat ursprünglich durch den Begriff der technischen Arbeit
W = f" s Eingang in die Anwendungen gefunden. Wegen

W = f- s = |f[ cos (f, s) 1s| = Isf cos (s, f) |f|

ist die Arbeit gleich der skalaren Projektion des Kraftvektors f in Richtung des Weges
mal Weglänge oder auch gleich der skalaren Projektion des Wegvektors s auf die
Kraftrichtung mal Größe der Kraft. „Größe der Kraf “ ist gleichbedeutend mit der
Norm des Kraftvektors. Von gleicher physikalischer Dimension ist das Drehmoment.
Es stellt aber einen Vektor M dar mit folgenden Bestimmungsgrößen: Betrag des
Vektors als Größe des Drehmoments „Kraft mal Hebelarm“, Richtung des Vektors
in Richtung der momentanen Drehachse und Richtungssinn des Vektors, orientiert
nach dem Drehsinn. Man schreibt M = x >< fund benutzt das Zeichen >< als Symbol
für die vektorielle Multiplikation.
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Das vektorielle Produkt u X v wollen wir zunächst geometrisch einführen. Die
eigentlichen Vektoren u =i= 0 und v =1: o werden in einem beliebigen Raumpunkt
abgetragen und zu einem Parallelogramm ergänzt. Der positive Flächeninhalt des
Parallelogramms ist |u ||vll sin (u, v)| > O, wenn die Vektoren nicht parallel gerichtet
sind. Die Ebene des Parallelogramms liegt aber im allgemeinen schräg zu den Koordi-
natenachsen. Der Betrag des Vektors u >< v sei -

[u >< v| = lu| [v] lsin (u, v)[. (1.23)

Wir definierenjetzt den Normaleneinheitsvektor n = n(u‚ v) bezüglich des vektoriellen
Produkts u >< v. Der Vektor n hat die Norm |n| = 1 und die Richtung der Normalen
zur Parallelogrammebene, die von den Vektoren u und v aufgespannt wird. Der
Richtungssinn des Normaleneinheitsvektors n = n(u‚ v) wird so definiert, daß die
Vektoren u, v, n in dieser Reihenfolge ein Rechtssystem (R) bilden. Damit ist das
vektorielle Produkt in der koordinatenfreien Darstellung

u >< v = [u| |v| lsin (u, v)| n(u‚ v) (1.24)

vollständig definiert. Diese geometrische Konstruktion ist offenbar vom speziellen
KS unabhängig. .

Satz 1.5: Sind u und v Tensoren I. Stufe, so ist der den Vektoren u und v nach (1.24)
zugeordnete Vektor u >< v ein Tensor 1. Stufe, während u - v noch (1.21) einen invarian-
ten Skalar, also einen Tensor nullter Stufe darstellt.

Ein physikalisches Beispiel für ein vektorielles Produkt, das nicht mit dem Orts—

Vektor x gebildet wird, ist der Poyntingsche Vektor E >< H der elektromagnetischen
Energiestrahlung, wo E und H die Vektoren der elektrischen und magnetischen Feld-
stärke bedeuten.

Wegen

n(v. u) = —n(n‚ v)

gilt nach (1.24) das Verrauschungsgesetz

v >< u = —-(u >< v), (1.25)

das auch „alternierendes Kommutativgesetz“ genannt wird, siehe auch die Bilder 1.3a
und 1.3 b.

Wir erinnern an das Assoziatfvgesetz

}.(u >< v) = (Au) >< v = u >< (Äv), (1.26)

wo Ä einen skalaren Faktor bezeichnet, und an das Distributivgesetz

ux(v+w)=(uxv)+(u><w). (1.27)

Analog gelten die Gesetze

}.(u - V) = (Ilu) - v = u ' (Äv), (1.28)

u-(v+w)=(u-v)+(u-w) (1.29)

bei skalarer Multiplikation. Ein assoziatives Gesetz der Form u o (v o w) =

(u O v) o w gibt es weder bei skalarer noch bei vektorieller Multiplikation.
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Von grundlegender Bedeutung ist der nach Band 13 bekannte Verbindungssatz (Ent-
wicklungssatz), den wir im Abschnitt 2.4. mit Hilfe der „Strukturformel“ beweisen
werden:

u><(v><w)=(u~w)v—(u~v)w (1.30)
bzw.

(u >< v) >< w: (u-w)v— (v-w)u.
Aus (1.30) folgt sofort, daß im allgemeinen

u><(v><w)4=(uxv)><w
gelten muß.

Es seien u # o und v + o, wenn o = 0e, + 0e; + 0e; den Nullvektor bezeichnet.
Dann folgt nach (1.21) aus u - v = 0, daß die Vektoren u und vaufeinander senkrecht
stehen, und nach (1.24) aus u >< v = o, daß sie parallel gerichtet sind. Diese Aussagen
sind bei gleicher Voraussetzung umkehrbar als Orthogonalitäts- und Kallinearitäts-
bedingung.

Beispiel 1.5: Bei der Drehung eines starren Körpers um eine feststehende Achse be-
wegt sich ein Massenpunkt P auf einem Kreis mit dem tangential gerichteten Ge-
schwindigkeitsvektor v in einer Kreisebene senkrecht zur Drehachse. Der Ursprung
des KS wird auf der Drehachse angenommen. Sind r der Kreisradius, M der Mittel-
punkt des Kreises und w die Winkelgeschwindigkeit der Kreisbewegung, so können wir

—**‘) - b

in Bild 1.4 die Vektoren MP = r = rr°‚ 0M = a, v = rwt und u = wa° definieren.
Hier sind 21° der zum Achsenvektor a und r° der zum Radiusvektor r gehörige Ein-
heitsvektor sowie t der Tangenteneinheitsvektor der Kreisbahn. Der Vektor a wird so
orientiert, daß bei der Drehbewegung des Punktes P und seiner gleichzeitigen fiktiven
Fortbewegung in gleichsinniger Richtung von a° eine Schraubenlinie entsteht, die zu

einer Rechtsschraube gehört.

/I u

V=rwf

P

a
/ X

k"
0

Bild 1.4: Bild 1.5:
Drehbewegung Spatvolumen: [boa] = [abc]
cines Massenpunktes

Damit definiert man den Drehvektor als Vektor der Winkelgeschwindigkeit

u = wa°. (1.31)

In Bild 1.4 sieht man auf Grund dieser Festlegung die Richtungsbeziehung der ein-
geführten Einheitsvektoren:

r° >< t = a”. (1.32)
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Beispiel 1.6: Nach Beispiel 1.5 soll die physikalisch wichtige Formel

v = u >< x (1.33)

mittels (1.31) und (1.32) bewiesen werden. Nach Bild 1.4 ist der Ortsvektor 0-1)’

= x = a + 1'. Wir benutzen (1.33) und berechnen

v:u><(a+r)=(u><a)+(u><r)=u><r,
da die Vektoren u und a parallel gerichtet sind. Wird der Verbindungsmtz (1.30)
herangezogen, so folgt

r >< v=r >< (u >< r)=(r~r)u—(r-u)r=r2u,
da die Vektoren r und u orthogonal sind. Aus der letzten Gleichung erhalten wir

1 1

u = r—2(r >< v) = —r7(rr° x nut) 2 w(1'° >< t)

und mit (1.32) die schon bekannte Definitionsgleichung (1.31) u = wa°. Damit ist die
Ausgangsformel (1.33) v z u >< x bewiesen.

1.4. Invarianz des Spatproduktes

Es wäre nützlich, ein Kriterium zu besitzen, mit dem man feststellen kann, ob drei
gegebene nicht komplanare Vektoren a, b, c des Raumes R3 in dieser Reihenfolge ein
(R) oder (L) bilden. Dafür tragen wir die Vektoren a, b, c von einem beliebigen Punkt
ab und ergänzen das Vektorgerüst nach Bild 1.5 zu einem Parallelepiped, das auch
Spat genannt wird. Die vorzeichenbehaftete Maßzahl des zugehörigen Spatvolumens
bezeichnen wir mit l7(a, b, c). Das Zeichen Vsoll später als Operator gedeutet werden.

Nach Bild 1.5 können wir das Spatuo/umen als Grundfläche mal Höhe berechnen,
Z. B. mit der schraffierten Grundfläche |b[ |c| [sin (b, c)| und der Höhe h = a„‚ wo
a„ = |a| cos ac die skalare Projektion des Vektors a auf die Normale zu der von den
Vektoren b, c aufgespannten Parallelogrammebene bedeutet. Dann entsteht

17(a, b, c) = (bl |c| [sin (b, c)| |a] cos zx. (1.34)

Dieser Ausdruck ist aber wegen des Faktors cos cc vorzeichenbehaftet. Mit f = b >< c

wird zx = (a, f), also

I7(a‚ b, c) = |b >< c| |a| cos (a, f)
= ]a| |f| cos (a, f) = a~f.

Das Ergebnis lautet

I7(a,b,c)=a-(b><c).
Das hier auftretende gemischte Produkt a - (b >< c) wird auf Grund der geometri-
schen Herleitung Spatprodukt genannt. In der Formulierung (1.34) bestimmt a„ =

|a| cosoc das Vorzeichen des Spatproduktes, nämlich V(a, b, c)20, falls cos m20 ist.

Wenn cos on > 0, also 0 g o: < —:— ist, dann handelt es sich wie in Bild 1.5 um ein

Rechtssystem. Ist aber cos o: < 0, also -1 < on g n, dann bilden die Vektoren a, b, c
2

in dieser Reihenfolge ein Linkssystem. Damit haben wir das gewünschte Kriterium:
2 Schultz-I’isz., Te11<oren
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die Vektoren a, b, c bilden in dieser Reihenfolge ein (R) bzw. (L) genau dann, wenn

V(a, b, c) > O bzw. V(a, b, c) < O ist. Sind die Vektoren a, b, c komplanar, so

können sie kein räumliches Gebilde erzeugen; der Rauminhalt ist gleich null. Wir
fügen hinzu: die Vektoren a, b, c sind genau dann linear unabhängig (nicht kompla-
nar), wenn I7(a, b, c) + O ist; sie sind genau dann linear abhängig (komplanar), wenn
I7(a, b, c) = 0 ist (vgl. auch Bd. l3, 2.2.7.).

Auf Grund der Vereinbarung 1.1 gilt

V(ei‚e2‚e3) = V(ez‚e3‚ei) = I7(ea‚e„e2) = l.
W32, er, 93) = V(93s 92: er) = V(ei‚ 93a 92) = *1,

wobei es sich dem Betrage nach um die Maßzahl des Volumens eines Würfels mit den
Kantenlängen 1 handelt. Zum Beispiel bilden die Vektoren e; , e, , e; in dieser Reihen-
folge ei1:1(R) wegen V(e3, e„ ez) = '1 > O, aber in der Reihenfolge e, ‚ es, e; ein (L)
wegen V(e‚ ‚ c3, ez) = -1 < O. Mit dem Vektortripel e„ ej, e,‘ läßt sich kein räum-
liches Gebilde erzeugen, wenn zwei oder drei Vektoren gleich sind, d. h. es gilt
V(e„ ej, eh) = 0, wenn zwei oder drei Indizes gleich sind.

Wir führen die Komponentendarstellungen der Vektoren

a = a‚-e‚-‚ b : bkeh, c : c,e‚

ein. Nur unter der Voraussetzung, da13 die kartesischen Basisvektoren el, eg, es in
dieser Reihenfolge gemäß I7(e„ ez, e3) = 1 ein Rechtssystem bilden, gelten die be-
kannten Zerlegungsformeln

e‚b‚e1 alblq
bxc: e2b2c2, a-(bxc): azbzcz. (1.35)

e3b3 c3 a3b3c3 '

Man hat sich entschlossen, für das Spatprodukt ein eigenes Symbol [abc] = a - (b >< c)
einzuführen. In der eckigen Klammer werden keine Beistriche gesetzt; es handelt sich
um eine neue Produktdefinilion:

[abc] = a - (b >< c) = (a >< b) - c. (1.36)

Mittels (1.35) erhält man bei Berücksichtigung von Determinanteneigenschaften die
Beziehungen (1.36) und

[abc] = [bca] = [cab]

= — [bac] = — [cba] = — [acb]. ' (1.37)

Von wesentlicher Bedeutung ist der Zusammenhang zwischen der Maßzahl des
Spatvolumens und dem Spatprodukt gemäß

I7(abc) = [abc] (1.38)

sowie die Koordinatendarstellung (1.35) bei Beachtung der Vereinbarung 1.1.

Die Invarianz des Spatprodukts ist aus der geometrischen Konstruktion nach
Bild 1.5 und aus (1.34) ersichtlich, wo nur Längen und Winkel eingehen.

Sati 1.6: Wird das Spatprodukt [uvw] mit den einstufigen Tensoren u, v und w gebildet,
x0 ist es (gegenüber der Gruppe der orthogonalen Koordimztenlranvormationen)
invariant:

[WW] = [uvw].
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[uvw] ist ein Tensor nullter Stufe. Skalarprodukt u - V und Spatprodukt [uvw] werden
auch (skalare) Fundamentalinvariante genannt.

Bemerkung 1 .1: Aus den verallgemeinerten Formeln des Kapitels 7 ergeben sich die
Darstellungen

e, u, w,
e; v2 w;
ea v3 w3

v >< w = [e1e2e3] , (1.35a)

"1 "i W1

u; v; wz
143 v3 W3

[uvw] = [e,e2e3] (1.35b)

mit dem ,,MaBfaktor“ [elezes]. Wenn wir gegen die Vereinbarung l.l verstoßen und
ein Linkssystem el, ez, e; zugrunde legen, sind die Formeln (l.35a, b) mit [e1e2e3}
= -1 anzuwenden. Wir wollen aber die Vereinbarung l.l einhalten, indem wir im
folgenden, wenn nichts anderes gesagt wird, von einem Rechtssystem e,, e2, e3 aus-

gehen, so daß die Formeln (1.35) mit [e,e2e3] = +1 gelten. „

Es sei aber bemerkt, daß das Produkt i

a - u a v v a ' w
b - u b - V b - w

c - u c - v c - w

zweier Spatprodukte wegen [e,e2e3]2 = 1 mit (1.35b) verträglich ist. Setzen wir
nach (1.13)

[abc] [uvw] = (1.39)

“ = E1: clkeka V = 52 = 021.914: W = Es = Cskehs

also uh = clk, 12„ = cu, wk = 03k, so folgt aus '(1.35b) die Beziehung

[515253] z 19192931 llcikll - (L359)

Gehen wir von einem Rechtssystem mit [e‚eze3] = 1 aus, so wird nach (l.35c) auch
{öläfiea} = 1, wenn He,-kl} = 1 ist; es handelt sich um eine Drehung des Bezugssystems,
wobei ein (R) wieder in ein (R) übergeht. Ist aber Hc,-kfl = — 1, so geht [elezes] = 1

nach (1.35c) in [é1ézé3] = -1, also ein Rechtssystem in ein Linkssystem über; es

handelt sich um eine Spiegelung. Die Determinante Ho,-,,]| der Transformations-
matrix_C entscheidet bei orthogonalen Transformationen, ob der Ubergang von

B auf B durch eine Drehung im Falle ||c,kH = +1 oder durch eine Umlegung des KS
im Falle Hc,-,¢l| = -1 vollzogen wird. Damit ist Satz 1.4 bewiesen.

Aufgabe 1.4: Mittels (1.35c) ist nachzuweisen, daß das Kriterium (1.19) auch dann
zutrifft, wenn man von einem Linkssystem ausgeht.

Aufgabe 1.5: Eine Ebene wird von zwei konstanten Vektoren p und q aufgespannt,
die von dem festen Punkt A der Ebene abgetragen werden. Der laufende Punkt P der

—->

Ebene wird mit zwei variablen Parametern Ä und ‚u erfaßt: AP = Äp + uq. Man
e --—> *—)

benutze die Vektoren a = OA, r = AP und x = OP, so daß x = a + r gilt. Man
begründe, daß die Ebenengleichung in der Form

17(1), q, r) = 0, also Vtx, p, q) = V(a, p, q)
2*
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dargestellt werden kann. Man leite daraus die allgemeine Gleichung und die Ab-
schnittsgleichung der Ebene her.

Aufgabe 1.6: Nach Aufgabe 1.5 führe man den Stellungsvektor N = p x q der
Ebene ein und leite die Hessesche Normalform ab.

Aufgabe 1.7: Mit Hilfe des Verbindungssatzes (1.30) leite man die folgenden Vektor-
formeln her:

(a x b) x (c x d) = [acd]b — [bcd] a (1.40a)
und Ä

(a x b) x (c x d) = [abd] c — [abc]d. (1.40b)

Welche Richtung hat der Vektor (a x b) x (c x d)? Es folgt die lineare Abhängig-
keit der Vektoren a, b, c, d gemäß

[abc] d = [bcd] a + [cda] b + [dab] c. (1.40c)

Aufgabe 1.8: Man beweise die Urnwandlungsformel

_ ‘a - c a - d

E b-c b-d
mittels f = c x d, (a x b) - (c x d) = [abf] und (1.30). Welche Beziehung ergibt
(1.41) für (a x b) i (a x b)? Zur Lösung der Übungsaufgaben nehme man Band 13

zur Hilfe! Wir vervollständigen die „Formelsammlung“ mit

(a x b) - (c x d) (1.41)

a x (b x (c x d)) = [acd]b — (a-b) (c x d) (l.42a)
und

ax(bx(cxd))=(b-d)(axc)—(b'c)(axd). (1.42b)

Durch Umbezeichnungen folgt aus den letzten beiden Gleichungen die Beziehung

[abc]d = (a x b) (d'c) + (b x c)(d-a) + (c x a) (dvb). (1.42c)

1.5. Multilinearformen. Tensoren n-ter Stufe

Mit „Zahlen“ sind hier immer reelle Zahlen gemeint, d. h.‚ alle Zahlensymbole mit
Ausnahme der imaginären Einheit bezeichnen reelle Zahlen.

Definition 1.4: Ein Funktional ist ein Operator, der jedem Element seines Definitions-
bereiches eindeutig eine Zahl zuordnet. Der Definitionsbereich des Funktionals L sei die
Menge der Vektoren des euklidischen Vektorraumes R3.

Definition 1.5: Ein lineares Funktional f. ist homogen (vom 1. Grade) gemäß

120m) = M:(u),

wenn Ä eine Zahl bedeutet, und additiv gemäß

Z(u + V) = L(u) + f.(v).

Die Linearität des Funktionals f. wird mit Zahlen I". und ‚u durch die Eigenschaft

Z(/in + ,uv) = AZ(u) + ,uZ(v) (1.43)

gekennzeichnet. «
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Für rnultilineare funktionale benutzen wir einheitlich das Operatorzeichen L,
obwohl L bezüglich L(u)‚ L(u, v), L(u, v, w), jeweils verschiedene Bedeutung hat.

Definitionen 1.6: Ein bilineares Funktional f. wird mit den Eigenschaften

Z(/'.a + ,ub, v) = Älita, v) + ,uZ(b, v),
A A A (l .44)
L(u, /la + ‚ub) = ÄL(u, a) + „L(u, b)

charakterisiert. Ein trilineares Funktional Z wird mit den Eigenschaften

[(121 + ‚ub, v, w) = £l(a, v, w) + ,uZ(b, v, w),

L(u, la + ab, w) 2 U.(u, a, w) + „L(u, b, w), (1.45)

L(u, v, la + ,ub) = U_(u, v, a) + ,uZ(u, v, b)

gekennzeichnet.

Ist nun L ein einfach oder mehrfach lineares Funktional, das je nach Definition
jedem Vektor,jedem Vektorpaanjedem Vektortripel, des Vektorraumes R3 immer
einen bestimmten Zahlwert zuweist‚ speziell

LÜk) = am i«(9.': ek) : ark, Zier: eja er) = am (1-46)

usw.,Aso erhalten wir wegen der Homogenität des linearen bzw. multilinearen Opera-
tors L die Ausdrücke:

LÜ’) = L(ukek) = uk£(eh) = "Irak:

L(u, V) = 13(uzei, Ukek) = '4i”ki-(en er.) : uiUkai/z:

L(u, Vs w) = L(u£eia Ujeja Wkek) = uiUjWkI:(eis ejs ex) = uivjwkaijka
also A A

L01) = akuks L(u, V) : aikuivks

L(u, v, w) = aijkuivjwk

usw. Die sich jeweils rechts ergebenden Skalare von (1.47) heißen nach der Reihe
Linearformk Bilinearform, Trilinearfarm, allgemein Multilinearfarm. Eine Multi-
linearform L(u, v, w, ...) ist in jedem ihrer Argumente u, v, w, linear.

(1.47)

Satz 1.7: Bei Übergang von einem kartesischen KS B zu einem anderen B bleibt eine
Multilinearform genau dann invariant, wenn sie vollständig mit Tensorkaordinaten ge—

bildet wird.

Man sagt dann, daß der Tensor 1., 2., 3. Stufe mit den Koordinaten ak, a,-k, am,
respektive die Linearform, Bilinearform, Trilinearform erzeugt. Die Tensorkoordina-
ten müssen sich bei Übergang von B aufB nach bestimmten Gesetzen transformieren,
um die lnvarianz der Multilinearformen zu sichern. Diese Transformationsgesetze für
die Koordinaten ak, am am, eines Tensors 1., 2., 3. Stufe lauten respektive

an = cklala ak = CIA-071» (1-14)

an: = cijcklajlr ark = cjiclkäjla (1-48)

aiik = Ciuciqfixranqra au"): = Cpicqjcrkäpqr- (1-49)
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Um Satz 1.7 zu beweisen, benutzen wir die vorstehenden Transformationsgesetze
und (1.16). Zunächst wird

ähük = Cnzazckmum = Cklckmalum = ölmalum = aluls
also

dkfik = akuk. (1.50)

Aus (1.50) liest man die Invarianz des Skalarprodukts a - u ab, sofern es mit Tensoren
1. Stufe gebildet wird.

Die entsprechende Rechnung zeigt die lnvarianz der Bilinearform, sofern sie mit
Tensoren 1. und 2. Stufe nach (1.14) und (1.48) erzeugt wird:

aikuirk = Cijcklaflcinxunxcknvrx = aj1um3nCij"rm€k1Chn

= ajlumvnöjmöln = amnumvnv
also

42.742,43, = a,-,,u,~v,(. (1.51)

Wird die Trilinearform nach (1.14) und (1.49) mit Tensoren 1. und 3. Stufe gebildet,
so folgt

amuivjwk = c‚-„cjqc,„a„„‚c‚-‚u,cj„,v‚„c,„‚n'„

apqrulvmwncipcilcjqcjnxckrchn

= apqru1Un:Wn5pz6q~K5n. = alnmulvmwns

II

also
Li”-kill-{_'_,W'k = a,-,,,u,vvjwk. (1.52)

Die Formulierung „genau dann“ in Satz 1.7 besagt, daß der Satz umkehrbar ist. In
der Tat können wir die Beweisführung umkehren, indem wir die Invarianz der
Multilinearformen gemäß (1.50), (1.51), (1.52) voraussetzen und daraus die Trans-
formationsgesetze (1.14), (1.48), (1.49) für die Koordinaten eines Tensors 1., 2.,
3. Stufe herleiten.

Jetzt können wir den Tensorbegriff bezüglich der Gruppe der orthogonalen Trans-
formationen endgültig fassen. Da jeder Index von 1 bis 3 laufen kann, gibt es 3‘ = 3

Zahlen a„, 32 = 9 Zahlen am, 33 = 27 Zahlen a‚-„„ usw.

Definition 1.7: Ein Tensor n—ter Stufe ist ein System von 3" Zahlen, seinen Koordinaten
a,-‘,«I...,-n, die sich bei einer Drehung oder Umlegung des kartesischen KS — in Verall-
gemeinerung von (1.49) — nach dem Gesetz

äi,s‚...z„ = Ci,k‚Cr,x.-‚'"Cz‚.k„”huc2...k„
bzw.

üi,i....i‚. = Ck,:,Ck,r.'“€‘::..i.flk,k.---1... (1-53)

transformieren. Die Transformations/<oeflizienten (‚k sind in Gleichung (1.12) definiert.

Ein Tensor 2. bzw. 3. Stufe ist also ein System von 9 bzw. 27 Zahlen, seinen Koordi-
naten at,‘ bzw. am, die sich bei einer orthogonalen Transformation des kartesischen
KS nach dem Gesetz (1.48) bzw. (1.49) transformieren. Ein Vektor ist nur dann ein
Tensor 1. Stufe, wenn sich seine Koordinaten nach dem Gesetz (1.14) transformieren.
Ein Skalar wird hier als Tensor nullter Stufe, nämlich als Invariante mit nur einer
Bestimmungsgröße (3° = 1) eingereiht. Beispiele sind das Skalarprodukt und Spat-
produkt. Eine beliebige Zahl gehört nicht in diese Kategorie.
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Bezüglich der Gruppe der orthogonalen Transformationen ist auch der variable
Ortsvektor x = x,e‚- ein Tensor l. Stufe. Der Ortsvektor ist an den Ursprung des KS
gebunden, der bei orthogonalen Transformationen nicht verschoben wird.

Beispiel 1.7: Hessesche Normalform der Ebene. Die Gleichung a„x„ = d stellt eine
Ebene im R3 dar, wenn das Skalarprodukt a - X z akxk invariant ist. Der die Linear-
form erzeugende Vektor a = aka,‘ sei der normierte Stellungsvektor der Ebene, |a| = 1.

Er ist senkrecht zur Ebene gerichtet. Sein Richtungssinn kennzeichnet die Seite eines
Blattes, die dem Nullpunkt abgewandt (zugewandt) ist, wenn d > 0 (d < 0) ist, wo

Idl den Abstand der Ebene vom Nullpunkt bedeutet. Die Ebene ist ein geometrisches
Objekt, das nicht von der zufälligen Wahl des KS abhängt. Folglich sind die ak

Koordinaten eines Tensors 1. Stufe. ‘

Beispiel 1.8: Hauptachsentransformation. Setzen wir in der Bilinearform a‚.„x‚-y,. die
Ortsvektoren gleich, x = x‚e, = y = ykek, so entsteht die quadratische Form a.-kxixk,
wo noch a“ = aik und Ha,-,,H 4: 0 vorausgesetzt werden soll. Die Gleichung amx,-x,‘ = l
beschreibt eine Mittelpunktsfläche 2. Grades, wenn die quadratische Form a„‚x‚»x„
von einem Tensor 2. Stufe mit den Koordinaten am erzeugt wird, so daß bei beliebiger
Drehung des KS gilt

d,-,5,-)3‘ = a,-kxixk. (1.54)

Durch eine geeignete Drehung des KS gelingt es, die Hauptachsenfom

115i + 2;: + 13i: = 1 (1.55)

der Flächengleichung herzustellen, so daß

a,»,.x,~xk = 11i? + Äfiä + 132?}

gelten muß, wenn fl, i2, i3 jetzt die Koordinaten im Hauptachsensystem 61, a2, 6;,

bezeichnen. Sind die positiven Eigenwerte Ä,- = l /a,-2 des Hauptachsenproblems sämt-
lich verschieden, so beschreibt die Gl. (1.55) ein dreiachsiges Ellipsoid mit den Halb-
achsen a, , a2 , a3 im Hauptachsensystem, während in einem beliebigen dazu gedrehten
KS die gemischten Glieder in der Gleichung des Ellipsoids

aux} + anxfi + a33x§ + 2a12x,x2 + 2a23X2X3 + 2a3,x3x1 = l (1.56)

auftreten. Diese Gleichung in der Kurzform

a‚-„x,x„ = l (1.57)

kann nur dann ein geometrisches Objekt (z. B. ein Ellipsoid) beschreiben, wenn die
Koeffizienten a‚-,„ der quadratischen Form aikxixk Koordinaten eines Tensors 2. Stufe
sind.
lfeispiel 1.9: Trilineares alternierendes Funktional I7. Entsprechend (1.45) bis (1.47) sei
V ein trilineares Funktional, das jedem geordneten Vektortripel (u, v, w) einen be-
stimmten Zahlwert zuweist, und zwar nach der Vorschrift

I7(u, v, w) = [uvw]. (1.38)
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Nach Vereinbarung 1.1 wird

V(e1‚ 92a 93) = [919233] = 1

vorausgesetzt. Mit der Bezeichnung [e,-e,-ek] = E‘-jk lautet die Vorschrift (1.38) speziell

W91: e]: 9k) = 5-'jk~ (1-58)
Es folgt A _

V(“. Va W) = V("r9:s vjejs W1.-9/c)

u1vj>v1V(e‚«‚e„ 9k) = “r”jWk5ijk.
also nach (1.38)

l7(u, v, w) = e,-,-,,u,-1:,-wk = [u, V, w]. (1.59)

Da das Spatprodukt einen Skalar (Tensor nullter Stufe) darstellt, muß die Trilinear-
form Eijkuivjwk invariant sein. Das ist nur möglich, wenn die am Koordinaten eines
Tensors 3. Stufe sind, den wir E-Tensor nennen wollen.

Wird die Determinantendarstellung (1.35) herangezogen und die Sarrussche Regel
angewandt, dann können wir die Bedingung (1.59) auswerten:

u, v, wl
u; v; w; = u,v2w3 + v,w2u3 + w1u2u3 — ulwzi/*3 — v1u2w3 — w,v2u3
113 v3 W3

= 5123"1172W3 + S231V2U3W1 + €312M3U1W2

+ 521314217111’: + 832:”3”2W1 + 31321110311’:-

Der Vergleich liefert

5123 = 3231 = 5312 =1, (L60)

‚€213 = 5321 = €132 = -1,
Si]-k = 0, wenn zwei oder drei Indizes gleichzahlig sind. am wechselt das Vorzeichen,
wenn man zwei beliebige Indizes vertauscht. Diese Eigenschaft heißt „alternierend“.

Aufgabe 1.9: Man bestätige (1.60) mittels (1.34) in geometrischer Deutung.
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2.1. Tensoroperationen

Addition: Bekanntlich können in der Matrizenrechnung nur Matrizen gleichen For-
mats addiert bzw. subtrahiert werden, indem man die entsprechenden Elemente (mit
gleichem Standort im Matrizenschema) addiert bzw. subtrahiert. Analog können nur
gleichartige Tensoren, nämlich gleichstufige Tensoren desselben Raumes, addiert
bzw. subtrahiert werden, indem man die entsprechenden Koordinaten (mit gleicher
Indizierung) addiert bzw. subtrahiert. Der Summentensor mit den Koordinaten

5i‚i„„r„ 3 ”i,r‚...i.-‚ + bi,i‚...;„ (2-1)

hat die gleiche Stufe wie die Summanden. Ein Tensor, dessen Koordinaten sämtlich
gleich der Zahl Null sind, heißt Nulltensor. Ist die Differenz zweier gleichartiger Ten-
soren gleich dem Nulltensor, so sind die beiden Tensoren gleich. Wir wollen uns bis
auf weiteres nur auf den Raum R3 beziehen.

Multiplikation: Das allgemeine oder tensorielle Produkt zweier Tensoren wird einfach
Produkt genannt. Es wird so definiert. daß Tensoren beliebiger Stufe multipliziert
werden können. (Spezialisierte Produktbildungen erhalten je ein Beiwort wie z. B.
skalares oder inneres Produkt.)

Definition 2.1: Das Produkt zweier Tensoren wird so gebildet, daß man alle Koordinaten
des Linksfaktors m-Ier Stufe mit allen Koordinaten des Reehtsfaktors n—ter Stufe, also
3"’ Zahlen mit 3" Zahlen bei Beachtung der Reihenfolge multipliziert, was ein System
von 3”‘“‘ Koordinaten für den Produkttensor ergibt:

‘P1‚i‚..‚i‚„i.f;.„,'„ = ai‚i‚...i„‚bj‚j‚...j„- (2-2)

Als Multiplikationssatz bezeichnen wir den

Satz 2.1: Das Produkt eines m-stufigen mit einem n-stufigen Tensor ergibt einen Tensor
(m + n)ter Stufe.

Beispiel 2.1: Das Produkt eines Tensors l. Stufe mit einem Tensor 2. Stufe sollte also
einen Tensor 3. Stufe gemäß uüu) = wik, ergeben. Wir überprüfen den Tensorcharak-
ter des Produktes mit Hilfe der Transformationsgesetze (1.14) und (1.48). Die ln-
varianzforderung wird mit

Üiufz = ‘u‘('kp“jp5'zqUu = Fijckpclqunzvq I Cijckpclqwjpq

erfüllt, falls

wild = Cij(’kp5:q‘Vjpq

gilt. Das ist aber das Transformationsgesetz (1.49) für einen Tensor 3. Stufe. Den
allgemeinen Beweis des Satzes 2.1 wollen wir uns schenken.

Als Divisionssatz bezeichnen wir den

Satz 2.2: Von den beiden Faktoren eines Produktes seien ein Faktor und das Produkt
Tensoren. Dann ist auch der andere Faktor ein Tensor.

Dieser Satz bleibt auch gültig, wenn man zu speziellen Produktbildungen übergeht.
Er folgt aus Satz 2.1.
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Überschiebung und Verjüngung. Setzt man im Produkt zweier Tensoren einen Index
des Linksfaktors gleich einem Index des Rechtsfaktors, etwa j = k, so nennt man
diese Maßnahme Überschiebung der beiden Tensoren nach j und k. Eine Uberschie—
bung erniedrigt die Stufe des Produkttensors um 2. Setzt man in ein und demselben
Tensor der Stufe n ä 2 zwei Indizes gleich, so spricht man von einer Verjüngung,
wobei sich die Stufe des Tensors um 2 erniedrigt. Daß durch Überschiebung oder
Verjüngung wieder Tensoren entstehen, muß noch gezeigt werden.

Beispiel 2.2: Durch Überschiebung nach j und p geht

uijkvpq = Wiikvq in “M4714 = ("um
also ein Tensor 5. Stufe in einen Tensor 3. Stufe über. Der Tensor 3. Stufe mit den
Koordinaten um wird in der Form u‚-,-„. = s„ zu einem Tensor 1. Stufe mit den Koordi-
naten s), = um, + um, + 1433„ verjüngt. — __ .

Zum gleichen Resultat gelangen wir durch Überschiebung mit einem Kronecker-
symbol: -

ö‚-„u„„v„„ = ö„‚w‚-j,„,„ : uijkvjq = ru„„„ (Sijuijk = um, = sh. (2.3)

Durch Überschiebung mit 6,-k entstehen aber nur dann in beiden Fällen wieder Ten-
soren, wenn die Zahlen 6„‘ Koordinaten eines Tensors 2. Stufe sind.

Satz 2.3: Die §_,-,, sind Koordinaten eines Tensors 2. Stufe, den wir Einheitstensor
nennen. Durch Überschiebung mit 6,-,‘ (nach i und k) geht ein Tensor oder ein Produkt-
tensor wieder in einen Tensor über, dessen Stufe um 2 erniedrigt ist.

Beweis: Nach (1.9) gilt e, v e„ = du, 6,- - Ek = 6,-k, denn die durch Drehung oder Um-
legung des kartesischen KS aus el, ez, c3 hervorgehenden Basisvektoren 61, 52, E3

stehen wieder paarweise aufeinander senkrecht und haben einzeln die Länge 1 bei-
behalten, z. B. él ' e, = 0, E, -E‚ = a} = l. Ursprünglich gilt aber E, - ék =73,-k

neben e,- - e, = Ö„‘. Es folgt

öik = äik- i (Z4)
Andererseits sind die Transformationsgesetze (1.48) für die Koordinaten eines Ten-
sors 2. Stufe gemäß

5a; = cijcklöjl = Ciickt = öik (2-5)

nach (1.16) in Übereinstimmung mit (2.4) erfüllt; also gilt Satz 2.3.

Das Produkt zweier Tensoren 1. Stufe hat z. B. die Koordinaten u,v,, = wik und
heißt (lineare) Dyade. Es gilt u‚-v„ = vku,-, aber im allgemeinen u,-vk =9: v,-u), = (um. Die
Dyaden mit den Koordinaten w„‚ und (um sind im allgemeinen verschieden. Das Ent-
sprechende muß für das Produkt zweier Tensoren m-ter und n-ter Stufe festgestellt
werden.

Satz 2.4: Das Produkt zweier Tensoren ist (im allgemeinen) nicht kommutativ.

Die spezielle Dyade mit den Koordinaten 22,-1;,‘ stellt eine Ausnahme dar. Der Leser wird vielleicht
fragen, warum z. B. u,-1:2,‘, und u‚-,u„‚ die Koordinaten verschiedener vierstufiger Tensoren sind, da es

„doch auf die Wahl der Buchstabenindizes nicht ankomme“ und in beiden Fällen alle 3‘ Koordinaten
erfaßt werden. Ein System von Koordinaten bedeutet eine systematische Anordnung der Koordinaten
nach Maßgabe der Indizes. Die Wahl der Buchstabenindizes bei uuvk, ist Zunächst willkürlich. Nach
Maßgabe der i1’, kl denken wir uns alle 34 Koordinaten u,-J-v,,, systematisch angeordnet. Dann bedeutet
aber Ujjuk] eine andere Anordnung der 34 Zahlen. Am einfachsten ist das Beispiel der an verglichen
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mit dem am Als systematische Anordnung nehmen wir das Matrizenschema. Die Matrix ((41,,-)) ist
gegenüber der Matrix ((11.10) transportiert. Ursprüngliche und transponierte Matrix sind aber im all-
gemeinen verschiedene Matrizen.

Definition__2.2: Die Stufe der Tensoren sei z l. Als inneres Produkt bezeichnen wir die
spezielle Ubersehiebung derart, daß bei gegebener Reihenfolge der beiden Faktoren die
innen benachbarten Indizes der Koordinaten gleichgesetzt werden.

Das innere Produkt der Tensoren mit den Koordinaten u„- und v‚„„„ ist u,,,v,,.,,,,, um

ein Beispiel zu nennen. Die Stufe des inneren Produktes ist um 2 niedriger als die
Stufe des (allgemeinen) Produkts zweier Tensoren, im Beispiel u‚-J-v„„„.

2.2. Tensoren in Komponentendarstellung. Punkttransformationen

Wir haben festgestellt, daß der Mathematiker geometrische Objekte untersucht, die vorn speziellen
KS unabhängige Bedeutung haben. Der Physiker muß seine Grundgesetze so formulieren, daß sie
prinzipiell nicht von dem zufällig benutzten KS abhängen. Die auftretenden physikalischen Größen
müssen daher Tensoren sein. Es ist verständlich, daß dem Anwender die Definition 1.7 wenig zusagt,
da „eigentlich" nur von Tensorkoordinatemund nicht vom Tensor selbst gesprochen wird, wenn man

das Wort „System“ überliest. Der Anwender sieht aber insbesondere im Tensor 2. Stufe eine selb-
ständige Größe, nämlich ein (geometrisches oder) physikalisches Objekt 2. Stufe, das selbständige
Bedeutung haben sollte. Das bekannteste Beispiel ist der zweistufige Spannungstensor der Mechanik
deformierbarer Körper. Bei Definition von Tensoren 1. und 2. Stufe könnte man statt „System“ auch
„Matrix“ sagen. Dann ist ein Tensor 2. Stufe eine Matrix von 9 Zahlen, seinen Koordinaten am, die
sich bei Übergang von B auf E nach (1.48) transformieren. Einem Tensor 2. Stufe kann man also eine
Matrix vom Format (3,3) zuordnen. Aber nicht jede quadratische Matrix von 9Elementen ist ein
Tensor 2. Stufe. Das ist nur dann der Fall, wenn man überhaupt von Koordinaten und orthogonalen
Koordinatentransformationen sprechen kann und wenn die Transfon-nationsgesetze (1.48) erfüllt
sind. Es ist klar, daß wir mit „System“ eine systematische Anordnung meinen im Gegensatz zur’
Systemtheorie, wo man „Systeme“ mit Eingang und Ausgang betrachtet.

Da man gelernt hat, die Matrizen als selbständige Größen aufzufassen und sie deswegen in der
Matrizenrechnung mit Buchstabensymbolen kennzeichnet, ist es auch erlaubt, einen Tensor zweiter
Stufe, etwa den Spannungstensor als selbständige Größe mit einem Buchstaben, etwa S zu bezeich-
nen. Daß man Vektoren auch dann mit einem Buchstaben bezeichnen darf, wenn sie Tensoren erster
Stufe sind, bedarf keiner Rechtfertigung. Bei Anwendungen genügt der Buchstabe, da die Stufe des

Tensors aus dem Zusammenhang gegeben ist. Bei allgemeinen Betrachtungen wird die Stufe des
Tensors kenntlich gemacht,z. B. A"), A”), Am für einen Tensor 2., 3., 4. Stufe. Speziell sei 0”‘ der
Nulltensor n-ter Stufe.

Wir stellen folgende Rechengeretze zusammen:

Ar») + Bon = Bon + Am’ (I)

Am) + [Bun + Cm] = [Am + Bun] + Con’ (H)

}.A"" + ,uA"" = (Ä + ,u) A"", (III)

}.[A"" + B""] = lA‘"’ + }.B"". (IV)

Für Produkte von Tensoren gelten die Gesetze

}_[A(n7B(m)] = [,1A<n)] B(m) = A0->[;_B(m:], (V)

Am[3<m>C<pn] = [A<n)B<m)] Cm, (V1)

A‘"’[B""’ + cw] = A""B""’ + A‘"’C‘"”. (VII)
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Die Faktoren Ä und ‚u können hier Zahlen oder Skalare bedeuten. In Koordinaten-
schreibweise handelt es sich um bekannte Assoziativ- und Distributivgesetze für
Zahlen.

Eine interessante Erscheinung tritt auf, wenn wir Satz 1.2, nach dem sich die
Koordinaten eines Tensors l. Stufe nach dem gleichen Gesetz wie die Koordinaten-
einheitsvektoren transformieren, auf die behandelten Multilinearformen (1.50),
(1.51), (1.52) anwenden, indem wir dort u‚—, 12,, wk durch e‚-, ej, e, ersetzen. Es folgt,
daß die Ausdrücke

akek = äkök, a‚-‚„.e‚-e„ = ä‚-„.ö‚-E„, a‚-‚-ke‚-e,e,„ = dijkéféjék (2.6)

(bezüglich der Gruppe der orthogonalen Koordinaten) Invarianre der Stufe 1, 2, 3

darstellen, sofern die ah, a,-k, am, Koordinaten eines Tensors 1., 2., 3. Stufe sind. Man
könnte also daran denken, den Tensor als selbständige Größe in Summenform dar-
zustellen, etwa

3 = akelu Am) = ameielu Am = aijkeiejek (2-7)
und -

ä = äkäk, Am = mäiek, A”) = äijköiöjäk. (2.7)

Dann lauten die Invarianzbedingungen für Tensoren 1., 2., 3. Stufe einfach

a 2 ä’ Am : Km, Am z Km. (18)

Die Schwierigkeit besteht aber darin, daß die Produkte e‚-e„, e,-e,-e,, usw. nicht erklärt
sind. Sie sind an und für sich irreduzible Größen der Stufe 2, 3 usw. Wir nennen das
System der Produkte e.-,e;-2... e;,, ein kartesisches Basissystem oder eine kartesische
Basis n-ter Stufe, d. h. die Gleichung

Ä‚x‚-____„‚e‚-1e,-_‚„e‚.„ = 0"" A (2.9)

kann nur dadurch erfüllt werden, daß sämtliche 3" Zahlen h.-„,„‚-„ gleich null sind.
Die 3" Elemente eher, e.»„ einer Basis n-ter Stufe sind linear unabhängig. Das ist eine
Verallgemeinerung des Begrifles der linearen Unabhängigkeit für die Basisvektoren
el, e2, e3 in dem Sinne, daß die Gleichung Äie, = 0, also

Le, + 22c; + }.3e3 = 0

nur die triviale Lösung 21 = /‘.2 = h3 = 0 besitzt. Die Summenform

A‘"’ = a,_,»1m,A,,e,le,A' e,~,, (2.10)

nennen wir Komponentendarstellung des n-stufigen Tensors A"" bezüglich der n-stufi-
gen Basis e.-‚e‚-, e‚»„. Die 3" Zahlen ar‚;„‚_.-„ sind seine Koordinaten, die dem Trans-
formationsgesetz (1.53) genügen müssen. Die Tensoraperationen werden an (2.10) so

definiert, daß sie bezüglich der Tensorkoordinaten mit den im Abschnitt 2.1, erklärten
Rechenregeln übereinstimmen. Speziell wird das innere Produkt an (2.10) so erklärt,
daß der Tensor n-ter Stufe durch n-malige innere Multiplikation mitje einem Tensor
l. Stufe auf eine Multilinearform, also auf einen Skalar „abgebaut“ wird. Diese Art
der Reduzierung auf einen wohldefinierten Ausdruck muß zur Erklärung von (2.10)
ausreichen. Die Elemente des Basissystems er‚e‚-, e‚-‚_ sind insgesamt keine Tensoren
n-ter Stufe ähnlich wie die Basisvektoren e, , c2, e3 insgesamt nicht Tensoren 1. Stufe
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sind. Sie sollen aber den Rechengesetzen (I) bis (VII) genügen. Wir wollen uns darauf
beschränken, die Tensoroperationen an Beispielen zu demonstrieren. Der Summen-
tensor

uiheiek ‘I’ Uiketek = wikeiek

hat die Koordinaten W’,-k = u,-,, + vi,‘ gemäß

uikeiek ‘l’ Uikeiek = (“in + Da) eiek (231)

in Übereinstimmung mit der Summendefinition im Abschnitt 2.l. Der Produkttensor

aiieiejbklmekelem = Cijkzmerejekezem

hat die Koordinaten

Cijklryt = aijbklm
gemäß

aijeiejbklmekelem = aijbklmeiejekelem (2-12)

in Übereinstimmung mit Definition 2.l.
Bei der vorstehenden Multiplikation zweier Tensoren werden (V) und (VII) benutzt.

Bereits bei der (linearen) Dyade

“V = (Vier) (vkek)

gelangt man nur mit Hilfe des assoziativen und distributiven Gesetzes nach (V) und
(VII) zur Komponentendarstellung gemäß

uv_ = meiukek = mvkeiek, (2.13)
aber

vu : v,-eiukek = 1:,-uke,-e,,. (2.13)

Im Beispiel (2.12) haben wir

AmBm = aijbklmeieiekelems
aber

BmAm = bijhalmeiejekelenv

Das Produkt zweier Tensoren ist nicht kommutatiu, also gilt im allgemeinen

A(m)B(n) i B(n)A(m>_

Eine Ausnahme dieser Regel bildet z. B. die Dyade W = u,~v,,e,ek.

Das innere Produkt zweier Tensoren wird an einem Beispiel erläutert. Es wird mit
einem Ma/punkt gekennzeichnet.

A“) ’ B”) = aiklelekel ' bmnemen

aiklbmneieke! ' emen = aiklbmneiekölmenII

= aikmbmneieken-

Mit e, - e‚„ = Ö„„ wird die Multiplikationsvorschrift auf das Skalarprodukt zweier
Vektoren zurückgeführt. Bei Beachtung der Reihenfolge werden die innen mit dem
Malpunkt verbundenen Basisvektoren skalar multipliziert. Wenn man diese Vektoren,
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im Beispiel e, und e‚„, fortläßt un_d die zugehörigen Indizes l und m gleich setzt. gelangt
man zum gleichen Resultat in Übereinstimmung mit der Definition 2.2. Wir können
also z. B. einfacher rechnen:

aikeiek ' blmelem = ailblmeiems

indem wir e,‘ und e, fortlassen und k = l setzen. Wir berechnen

[(-Am ‘ W) ' Vi ' u = [(aijkeiej9I¢ ' W191) ‘ Fmemi ' unen

= [tn-,~me.-e,~ ' v„‚e„.l - u„e‚.

= aijkwkujei ' “neu = aijkwkvjui:

[(A‘?’ - w) -v] - u : aiikuivjivk. (2.14)

Durch dreimalige innere Multiplikation des dreistufigen Tensors A“) mit je einem
Tensor -1. Stufe gelangen wir zu der wohlbekannten skalaren Trilinearform (1.52). —

Das (n — 1)fache innere Produkt eines Tensors n-ter Stufe mit je einem Tensor
1. Stufe ergibt einen Tensor 1. Stufe. Auch auf diese Weise werden häufig Tensoren
höherer Stufe erklärt. Man erhält so eine eindeutige Abbildung von n — 1 Vektoren
auf einen Bildvektor. Diese Zuordnung ist homogen und linear in jedem der n — 1

Originalvektoren. Man nennt sie auch multilineare Vektorfunktion. Das einfachste
Beispiel ist die afline Abbildung mit Hilfe eines zweistufigen Tensors A = aike‚-e‚„

gemäß A < x = x’. Der Tensor, der die affine Abbildung vermittelt, heißt auch „Affi-
nor“. Wegen

also

A - x = awe,-e,, - x,e, = amxhe, = x,’e,- = x’ i (2.15)

wird der Vektor x : x,-e,~ in demselben KS eindeutig auf den Vektor x’ = x}e‚- mit den
Koordinaten

xi = aikxk (2-16)

abgebildet. Die Zuordnung (2.16) ist linear und homogen in den Vektorkoordinaten.
Wenn wir in der Rechnung für (2.14) den Vektor u fortlassen und w = y. v = x

setzen, folgt

(AB) ' Y) ' X = aijkxjykei = Zier = Z’-

Den Vektoren x und y wird eindeutig der Bildvektor z’ mit den Koordinaten

Zr’ = aijkxjyk . (2-17)

zugeordnet. Die Zuordnung ist bilinear und homogen.

Definition 2.3: Die Transformationsformeln (2.16) beschreiben eine Punkttransforma-
(ion, wenn am die Koordinaten eines Tensors 2. Stufe sind. Dabei wird der Endpunkt des
Ortsvektors mit den Koordinaten x,‘ in demselben KS eindeutig auf den Endpunkt des
Ortsuektors mit den Koordinaten x} abgebildet.‘

x = x‚e„ x’ = x‚’e‚-.

Satz 2.5: Eine Koordinatentransformation bei Übergang von einem KS B aufein anderes
B wird mit einer Matrix, speziell bei orthogonalen Koordinatentranvormationen nach
(1.14) mit der Matrix C vollzogen, nicht von einem Tensor 2. Stufe. Im Gegensatz dazu
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wird eine Punkttransformation in demselben KS B von einem zweistufigeiz Tensor A
vermittelt, der die eindeutige Abbildung A - x = x’ nach (2.15) leistet. In beiden Fällen
werden homogene lineare Transformationen (ohne Translation) betrachtet, wobei die
Koordinatentransformation von einer Matrix, die Punkttransformation von einem Tensor
vermittelt wird.

Beispiel 2.3: Die affine Abbildung entspricht geometrischen Vorstellungen. Bei
physikalischen Anwendungen muß man verschiedene Buchstaben wählen, z. B.
T - u = q statt A r x = x’. Die Beziehung T ~ u = q tritt in der Kreiseltheorie auf,
wenn T den zweistufigen Tensor der Trägheitsmomente, u den Vektor der Winkel-
geschwindigkeit und q den Drehimpulsvektor bedeuten.

Beispiel 2.4: Die Dyade vv = v,-vke,-ek ist ein spezieller Tensor 2. Stufe. Bei Strömungs-
Vorgängen wird die Massendichte g = dm/dV definiert, wo dV= dx dy dz das
Volumenelement bedeutet. Den Geschwindigkeitsvektor w einer turbulenten Strömung
zerlegt man in eine Geschwindigkeit W der mittleren Hauptbewegung und eine Stör-
geschwindigkeit w’ einer Nebenbewegung infolge turbulenter Schwankungen:
w = W + w’. Die Turbulenz bewirkt den zusätzlichen Reynoldsschen Spannungstensoi-

S’ = —gw7’ z —gvr‚'.vu}„e‚-e,„ der mit der Dyade w’w’ gebildet wird. Die Querstriche
sollen auf Mittelwerte hinweisen.

Aufgabe 2.1: Mit Hilfe der Transformationsgesetze (1.48) ist zu zeigen, daß der
zweistufige Tensor A = a,v,(e,.e,.. invariant ist.

Aufgabe 2.2: Mit Hilfe der Transformationsgesetze (1.49) zeige man die Invarianz des
dreistufigen Tensors B in der Komponentendarstellung B = b„«ke,-e‚-e„.

2.3. Antisymmetrische Tensoren

Das Spatprodukt [uvw] ist nur dann eine skalare Invariante‚ wenn u, v, w Tensoren
l. Stufe bedeuten. Da die Koordinateneinheitsvektoren im allgemeinen keine Tenso-
ren 1. Stufe sind, stellen die Zahlsymbole nach Levi-Civita

[e,-ejek] = am, (2.18)

die wir bereits im Beispiel 1.9 eingeführt haben, im allgemeinen keine skalaren 1n-
varianlen (Tensoren nullter Stufe) dar. In G1. (1,59)

[“VW] = Sajkuivjwk (1-59)

haben wir unter der Voraussetzung [elezes] = 1 bereits erkannt, daß die Zahlen am
Koordinaten eines dreistufigen Tensors sind, den wir mit E bezeichnen:

E = s‚-„.e‚e‚e„. ' (2.19)

Dann müssen die Transformationsgesetze (1.49) für die Koordinaten eines Tensors
3. Stufe gelten, und zwar bei Berücksichtigung von (1.60):

éijh = [éiéjék] = 8Dl1’CI'17C.il1Ckr

= e123ci1cj2Ck3 + 5231Ci2Cj3€‘k1 + 3312cx3Cj1Cu2

+ 5213Ci2¢'j1Ck3 + E321ci3cj2ckl ‘l’ €l3Zcl1cj3ck2

= ¢‘a1CJ2€'k3 + 5:20,/3cm + 0:30/1Ck2

— 912611013 ‘ Ciacjzcki — 011913522,
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also

C11 Q1 ("h1

C12 Üjz Ckz

C13 C13 Cka

Diese Determinante liefert nämlich bei Anwendung der Sarrusschen Regel die vor-
stehenden 6 Summanden.

Andererseits ziehen wir (1 .35 b) heran und berechnen mit (1.13) é,- = c,-,e, , ä)‘ = 0,-,e, ,

ék = c'k,e, an Stelle Von u, v, w das Spatprodukt [éiéjék]. Auf Grund dieser Rechnung
ergibt sich für [ö,vä‚-äk] wieder die Determinante (2.20). Damit ist bewiesen, daß die
Levi—Civita-Symbole am Koordinaten eines dreistufigen Tensors darstellen.

Nach (1.35c) wissen wir bereits, daß

5m. = [eiéjék] = . (2-20)

[515253] = 5123 = llcik"

in Übereinstimmung mit (2.20). Eine Determinante wechselt ihr Vorzeichen, wenn
man zwei Spalten vertauscht. Sie bleibt ungeändert, wenn man zweimal zwei Spalten

vertauscht. Das bedeutet für die Determinante von (2.20)

5123 = 5231 = 5312 = ‘€213 = ‘3321 - —5132~

Die Determinante (2.20) hat den Zahlwert Null, wenn zwei oder drei Spalten gleich
sind, d. h., die 6,7„ sind gleich null, wenn zwei oder drei Indizes gleichzahlig sind.
Speziell haben wir nach (1.19) die Zahlwerte

5123 = Ilcikll = +1 oder 5123 = Hcikll = ‘l

bei Drehung oder Spiegelung des KS. Folglich gilt mit (1.60)

am, = am (Drehung), éijk = —s,.J-,‘ (Umlegung). (2.21)

1m ursprünglichen Basissystem B können wir

er = 5119i; ej = Öjlels ex: = Ökiei

schreiben und die 6„ als Koordinaten des Basisvektors e,- usw. auffassen. Wir benutzen
wieder (1.35 b), jetzt mit u = e,-‚ v = ej, w = eh, und erhalten

öil Öjl 6111

öiZ ÖjZ ÖkZ

13 513 5113

5m = [eiejek] = - (2-20)

Aufgabe 2.3: Mittels Determinanteneigenschaften ist zu zeigen, daß die Darstellung
(2.20) wieder die Zahlwerte (1.60) ergibt:

5123 2 €231 = E312 =1:
5213 : 5321: 5132 : _l> (1-60)

e,»1.„ = 0, wenn zwei oder drei Indizes gleichzahlig sind.

Ein Tensor n-ter Stufe heißt vollständig antisymmetrisch, wenn seine Koordinaten
bei Vertauschung zweier beliebiger Indizes das Vorzeichen wechseln. Offenbar ist der
dreistufige E-Tensor (2.19) vollständig antisymmetrisch, denn seine Koordinaten am‘
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wechseln bei einmaliger Vertauschung von je zwei Indizes das Vorzeichen; infolge
dessen bleiben sie bei zweimaliger Vertauschung von je zwei Indizes ungeändert:

em; = Ejki = 5/nj = —5j.'k = ‘€kji = "5x'kj- (2-22)

Von diesen Umstellungsmöglichkeiten wird oft Gebrauch gemacht! Bei Vertauschung
von zwei gleichzahligen Indizes kann die Antisymmetrieforderung nur erfüllt werden,
wenn die betreflende Koordinate verschwindet. Vertauschen wir z. B. in au, die
Indizes an erster und dritter Stelle, so muß e232 = -8232 = 0 gefordert werden. Ein
Tensor 3. Stufe hat im R3 27 Koordinaten. Davon sind 21 Koordinaten gleich null,
wenn es sich um einen vollständig antisymmetrischen Tensor handelt. Die nicht ver-

schwindenden 6 Koordinaten des E-Tensors sind nach (1.60)

5123 = 523i = 5312 = ‘€213 = “€321 = ‘€132 =1-

Die Koordinaten u„‚ eines amisymmetrischer: Tensors 2. Stufe U = u,»,,eiek genügen
der Antisymmetriebedingung

uki = ‘"ik- (2-23)

Dann gilt

"i: =“22="33=0‚ (2.24)

"i2 = ‘"21, 1423 = ‘"32: "31 = ‘"13-

Ein antisymmetrischer Tensor 2. Stufe ist mit drei Zahlenangaben bestimmt, was eine
gewisse Verwandtschaft zum Vektor andeutet.

Wir bilden das innere Produkt des E-Tensors mit einem Vektor bei Rechtsmultip1i-
kation:

E ' V = sikleiekel ' Urnen: = siklvmeiekölma
(2.25)

E - v = a‚-‚„v‚e‚e„ = v„eie„ = V.

Der entstehende zweistufige Tensor V hat die Koordinaten

Uik = Em”: = 5tk1171 ‘l’ 9M”: ‘l’ 4511:3113» (2-26)

die wir mittels (1.60) berechnen:

U11: Os U23 = ‘V32 = 91-

U22 = 0a U31 = -1713 = U2, (2-27)

"33 = 0» U12 = “V21 = V3-

Jedem Tensor 1. Stufe v = v‚e‚ läßt sich (mathematisch) durch

E-v = V = v,.,‘e,e,,

nach (2.27) ein antisymmetrischer Tensor 2. Stufe mit den Koordinaten v‚-„ = emu,
zuordnen, denn in (2.27) _ist auch die Antisymmetriebedingung v“ = —v‚„ erfüllt.

In Fortsetzung dieser Überlegung bilden wir das zweifache innere Produkt

(E ' V) ' ‘I. = V ' ‘l = “tkeiek ' "neu = Elklvluneiökn = Eikiuzvtet-
3 Sc-hult/L-Pisz., Tensoren
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Aufgabe 2.4: Durch Nachrechnung bestätige man den Zusammenhang

(E v v) - u = enz-„ukv, = eijkuivjek = u >< v (2.28)

mit dem vektoriellen Produkt

u >< v = e,(u2z23 — ugvz) + e2(u3v1 — 141113) + e3(u1vz — u2v,). (2.29)

Aufgabe 2.5: Mit E - u = U und E - v = V soll gezeigt werden, daß die Beziehungen

(E-v)~u= —(E‘u)-v (2.30)
und

V~u=~u-V=v-U=—U-v (2.31)
gelten.

2.4. Rechenkalkül mit E-Tensoren

Das Produkt eines Tensors m-ter Stufe mit einem Tensor n-ter Stufe ergibt einen
Tensor (m + n)-ter Stufe.

Beispiel 2.5: Das Produkt

EE = 5m9:°Jek5zmn9zem€..

= siikalmneiejekelemen (2-32)

ergibt den Kronecker-Tensor 6. Stufe mit den Koordinaten

‘er ' 91 9:‘ ' 9m 9: ' en 6:‘: öim air:

5ijk5Imn = e)‘ " 91 9;‘ ' 9m 9j ' 9n = öjl jm jn - (2-33)
ek ‘ 91 9k ' em eh ' en am 6km Ökn

Diese Beziehung folgt aus 8,-,ke,,,,,, = [e,-ejek] [e,e,,,e,,] bei Anwendung der Produktregel
(l .39).

Das innere Produkt eines Tensors m-ter Stufe mit einem Tensor n-ter Stufe ergibt
einen Tensor der Stufe m + n — 2.

Beispiel 2.6: Das innere Produkt

E - E = 5,,-,‘e,e,e,‘ - s,,,,,,e,e,,,e,,

= 1>‘:jx€zmneiej5k1em9n = gtjkficmnexejemen

definiert nach (2.33) einen Tensor 4. Stufe mit den Koordinaten

ail: Öim (Sin

5ijI¢5knxn : 6/1: öjm jn - (2-34)
kk km Im

Diese Determinante wird mit Ö“ = 3 nach der 3. Zeile entwickelt:

gijkekmn : 3(ölmöjn ‘ ölnöjm) — 5km(6ik6jn ‘ öinöik) ‘l’ öknwiuöjm ‘ Öimöjk)

= 3(Ölmöjn — öinöjm) * (öimöjn "‘ Öinöjm) ‘l’ (öinölm _ öimöjn)

= ö„„ö‚„ — 6,,,6,,,..

r
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Es hat sich die grundlegende Strukturformel

Sijkskmn = öimöjn ‘ Öinöjm (2.35)
ergeben.

Im Anschluß an (2.25), (2.27), wo einem Vektor V ein antisymmetrischer Tensor
E - v = V zugeordnet wurde, stellen wir die Frage, welcher antisymmetrische Tensor
E - (a >< b) dem Vektor a >< b zugeordnet wird. Mit (2.28) u >< v = s,-,‘,e,-ukv, wird
auch E - (a >< b) 2 gijkeiejek - e,,,,,,e,a,,.b,,.

Die Strukturformel (2.35) läßt sich hier unmittelbar anwenden

E - (a >< b) = .s,<,,s,,,,,,a,,,b,,e,eJ-(3,‘,

= .9,-,-,(a,(,,,,,a,,,b,,eie,- = (6,»,,,6j,, ~ (5,-,,(3J-,,,) a,,,b,,e,-ej

= (aib, — a‚-b,-) e‚-e‚- = a,-bje,-ej — b,-aj-e,-ej.

Sind ab und ba Dyaden, so Iautet das Ergebnis

E-(a >< b)=ab—ba.

Dem vektoriellen Produkt a x b kann man den antisymmetrischen Tensor 2. Stufe

(ab) 2 ab — ba = E - (a >< b) (2.36)

zuordnen. Wir nennen (ab) = ab — ba einen Bivektor.

Jetzt bilden wir das zweifache Produkt von drei Tensoren l. Stufe gemäß

abc = aibjckeiejeka (2.37)

Es stellt einen Tensor 3. Stufe dar.

Aufgabe 2.6: Man zeige, daß

<abc) = abc + bca + cab

— bac — cba — acb (2.38)

ein ‘vollständig antisymmetrischer Tensor 3. Stufe ist. Wir nennen (abc) nach (2.38)
einen Trivektor.

Die Strukturformel (2.35) läßt sich weiter spezialisieren, indem wir nach m und i
überschieben z

Eijtfikin = Öiiöjn “ Öinöji : 361" " ‘sjm
also

5u‘~5k.'u = Sauen»: = 251m (2-39)

Bei drei gleichen Indizes wird schließlich

e‚„je„‚-‚- : gijkeijk = 25], = 6. (2.40)

Beispiel 2.7: Das Gleichungssystem (2.26) 1:,-,_. = 5,-,(,,v,, soll aufgelöst werden. Dafür
wird (2.39) umgeschrieben in

Eihmsikn = 261m1 — (2-39)
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Über (2.26) bilden wir die Doppelsumme

5ikm”ik = gikmgihnvlv

Nach (T9) erhalten wir
s‚»‚„„v‚-„ = 25,,,,,v,, = 2v,,,

und damit die Lösung

Um : %9rkn:”ik-

Das lineare Gleichungssystem

v,-,, = sik,,v,, hat die Lösung v„ = ls,-,,,,v,-,, (2.41)

für n = 1. 2, 3.

Die Strukturformel (2.35) ist mit dem Verbindungssatz (1.30) äquivalent, so dal3 wir
(l.30) mit (2.35) beweisen können. Mit

u x v = 5,-J-,(u,v,-e,_. =fi,e,, = f
wird

(u >< v) >< w = f >< w = e,.,,,,,j',‘w,,,e,,.

Zum Einsetzen muß in beiden Gleichungen fl, erscheinen. Nach (2.35) folgt

f x w = .e,c,,,,,e,»J-,¢uiv,-w,,,e,,

= 5uk*3xm,.“a”JWmen = (Öimörn — öinöim) "iviwmen

= (ö„„u‚-w„,) v„e„ — (Ö‚-„,v‚-1v„‚)u„e„

= (u,,,w,,,) v — (v,,,w,,) u = (u ~ w) v — (v- w) u

in Übereinstimmung mit

(uxv)><w=(u-w)v—(v-w)u. (1.30)

Aufgabe 2.7: Folgende Ausdrücke sind gleich:

(u-v)w=w(u-v)=(v-u)w=w(v-u) .

= u > (vw) = (wu) - v = v - (uw) = (wv) - u. (2.42)

In der letzten Zeile treten die Dyaden vw, wu, uw und wv auf. In Komponentendar-
Stellung zeige man (u ' v) w = u - (vw) und (v - u) w = v - (uw). Warum ist u - (vw)
= v - (uw)? Nach (2.42) können wir den Verbindungssatz in der Form

(u x v) x w=u-wv—v-wu‚

u><(v><w)=u'wv—u-vw (2.43)

schreiben.

Aufgabe 2.8: Man führe die Rechnung

(u >< v) - (u x v) = sijkuivjek - s„„„u‚v„‚e„

zum Ergebnis und zeige

(u >< v)’ + (u - v)’ = uzv’ (2.44)

mit der Bezeichnung (1.8).
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Aufgabe 2.9: Zur Übung beweise man mittels

(3 X b) ' (c X d) = Eijkeiajbk ’ Elmnelclndn

die Umwandlungsformel (1.41)

(a x b)-(c >< d) = (a~c)(b~,d) — (a-d)(b-c).

Das Spatprodukt entsteht jetzt in der Form

[uvw] = (u X v) - w = gijkuivjek ' w,e,,
also

[uvw] = emu,-v,-w,, (1.59)

in Übereinstimmung mit (1.59).

Beispiel 2.8: Ein zweistufiger Tensor, der uns noch beschäftigen wird, habe die Ge-
stalt '

Qi= A1rr+ A2I+ A3E'r. (2.45)

A1, A2, A3 seien Skalare, r sei ein Tensor 1. Stufe. Die Koordinaten des Tensors
(2.45) im Bezugssystem B und E sind

Qij("1s V2: '3) = A1"i"j + A2611 = A38ijkrk (Z46)
und _

Qij("I 9 ”2: 7'3) = CikCjzQk1(r1 s 72a 1'3)

= A1CuJ'k€'jz"z + Azcikcjlékl + A3CikCjx5k1n."m~

Mit r,,, = e,,,,,,r,,, und F,,, = Ek,,,,7,,, gilt nach (2.26) und (2,27) c„c‚-‚r,„.‚ = 7„ = E[jk;ku
Es folgt

Qu'("1» V2, V3) = A17i7j + A2517 + A3Eijk;k (2-47)

wegen 5,-j = 6,, nach (2.4). Durch Vergleich von (2.47) mit (2.46) erkennt man, daß
die Koordinatenbeziehung

Qij(;1 s 72 s 73) = éij("1 2 '2 7 V3) (2-43)

von dem Tensor (2.45) nur dann erfüllt wird, wenn wir uns auf die Untergruppe der
Drehtransformationen mit EM = am. beschränken. Die „Isotropiebedingung“ (2.48),
auf die wir noch zu sprechen kommen, hat mir G. Seifert in verallgemeinerter Form
mitgeteilt.



3. Symmetrische Tensoren 2. Stufe. Tensorfelder. Drehtensor.

3.1. Einheitstensor und Spannungstensor

Dem zweistufigen Tensor T = r‚-„e‚-e„ können wirdie quadratische Matrix ((r„_.))
mit 9 Zahlen 1,,‘ zuordnen, aber nicht umgekehrt. Ohne die Matrix heranzuziehen,
wollen wir dem Tensor 2. Stufe direkt seine Determinante det T = Hrmfl zuordnen.

Definition 3.1: Der zweistufige Tensor T heißt regulär, wenn seine Deterrninante
detT #= 0, also der Rang seiner Koordinarenmatrix gleich drei ist. Der Tensor T heißt
singulär, wenn detT = O ist.

Definition 3.2: Wenn die Tensorkoordinaten die Symmetriebedingung

0k: = ‘Tik (3.1)

erfiillen, heißt der zweistufige Tensor

S = Unteren = Ukleiek

symmetrisch.

Ein wichtiger symmetrischer Tensor 2. Stufe ist der Einheitstensor

I = Öikeiek = eke,‘ = elel + ezez + e3e3. (3.2)

Seine Koordinaten sind wegen ö“ = 6.„ symmetrisch. Der Tensor I ist regulär, da

det1= Hails” = l

gilt. Daß die ö„‚ Tensorkoordinaten darstellen, wurde im Satz 2.3 bewiesen. Obwohl
die Basiselemente 2. Stufe e1e„ ezez, e3e3 insgesamt nicht Tensoren 2. Stufe sind,
ergibt die Summenform (3.2) einen zweistufigen Tensor.

Aufgabe 3.1 .' Man zeige durch Nachrechnung, daß sich der Tensor I nach (3.2) bei
innerer Multiplikation mit einem beliebigen Tensor l. oder 2. Stufe wie ein „Eins-
element“ verhält:

I-v=v'I=v, I-A=A-I=A. (3.3)

Aufgabe 3.2: S sei ein Tensor 2. Stufe. Durch Ausmultiplizieren bestätige man, daß
die Beziehungen

v-S=S-v‚ u-S-v=v~S-u (3.4)

nur gelten, wenn S symmetrisch ist.

Die Zeilen- oder Spalrenvektoren der Matrix eines Tensors 2. Stufe sind insgesamt keine Tensoren
l. Stufe. Bilden wir nämlich die Summenform

S = 1711:9191: = ei(Uikek) = 9:91 (3-5)
mit

Pi = Ulkeln (3-.6)

so sind p„ m, p; die Zeilenvektoren der Matrix ((0,-,,)). Wenn die Transformationsgesetze für die
Koordinaten cm. eines Tensors 2. Stufe erfüllt sind, so sind die Transformationsgesetze z. B. für die
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Koordinaten <71,‘ des Zeilenvektors pl = v1ke„im allgemeinen nicht erfüllt, so daß der Zeilenvektor p,
keinen Tensor 1. Stufe darstellt, wie man leicht überprüft. Die Zeilenvektoren p„ p2, P3 sind also
insgesamt keine Tensoren 1. Stufe. Bedeutet S den symmetrischen Sparmungstensor der Elastizitäts-
theorie mit den Tensorkoordinaten 0",, so sind die zugehörigen Spanmmgsvektaren pl , pz, p; nach
(3.6) insgesamt keine Tensoren l. Stufe. Entsprechend sind die Zeilen» oder Spaltenvektoren des

Tensors I nach (3.2) insgesamt keine Tensoren 1, Stufe, Hier sind die Zeilen- oder Spaltenvektoren
nämlich speziell die Koordinateneinheitsvektoren el . e, ‚ e; ‚ von denen wir wissen, daß sie insgesamt
nicht einstufige Tensoren sein können.

Die Koordinaten (X,-k des Spannungstensors S heißen Schubspaztnungen im Falle i # k; die <7, 1 , 0'12,

033 sind die Narmalspanrmngen. In der Technischen Mechanik sind folgende Bezeichnungen üblich:
an = ax, an = 0,, n33 = o, sowie 6,2 = 23„ 1723 = 1,3m L731 =1„. Mit dem Kräfte- und Momen-
tengleichgewicht werden wir uns noch befassen. Daraus folgt die Symmetrie des Spannungstensors:
0'1:-‘ = "Hr

Beispiel 3.1: Ein elastisch deformierter Körper befinde sich unter dem Einfluß äußerer
Kräfte im Gleichgewichtszustand. Denken wir uns einen Teilkörper herausgeschnit-
ten, so sind an den Schnittflächen Spannungskräfte derart anzubringen, daß sein
Gleichgewichtszustand erhalten bleibt. Als Teilkörper wählen wir einen infinitesima-
len Quader mit achsenparallelen Kanten. Wir konstruieren ihn, indem wir von dem
„Trägerpunkt“ P mit den Koordinaten x1, x2, x3 zunächst die Kantenlängen dxl > 0,
dxz > 0, dxs > 0 abtragen. Damit entstehen die drei in Bild 3.1 eingezeichneten
Randflächen, die sich in P schneiden. Wir ergänzen das Bild in Gedanken zum Voll-
ständigen Quader durch Hinzufügen der gegenüberliegenden Begrenzungsflächen.
Wie wird in diesem Modell der Spannungszustand im Punkt P beschrieben?

l. /Z:

Bild 3.1 : Komponenten der Spannungsvektoren Bild 3.2: Spannungsvektoren

An den drei eingezeichneten Randflächen der Inhalte dAl = dx; dx3, dAz
= dxs dx1, dA3 = dxl dxz greift jeweils im Schwerpunkt der Fläche ein Spannungs-
vektor p, , p2, p3 an, so daß sich p, auf dAi (i = l, 2, 3) bezieht. Die Spannungsvekto-
ren sind Kraftvektoren, bezogen auf die Flächenelnheit. Die Schnittfiächen dA,., an

denen die Spannungsvektoren p,- angreifen, stehen auf den Basisvektoren e, senkrecht.
Ein Spannungsvektor p‚. steht aber im allgemeinen keineswegs senkrecht auf seiner
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Bezugsfläche dAi, so daß wir ihn in Komponenten zerlegen können gemäß

P1 = Ulkeka P2 = Uzkeka P3 = 173x91‘,

oder für i = l, 2, 3 zusammengefaßt: p, = aikek.

Damit haben wir die G1. (3.6) physikalisch gedeutet. Die 9 Tensorkoordinaten U“.
beschreiben den Spannungszustand im Punkt P = (x1 , x2, x3) Vollständig. Die Größe
S nach (3.5) hat also selbständige physikalische Bedeutung und kann als solche nicht
davon abhängen, wie wir das KS in Bild 3.1 einzeichnen. Dann muß aber die In-
varianzbedingung

S = aikeiek = r7,~,¢é,-ék = S

für einen Tensor 2. Stufe erfüllt sein. Wie läßt sich das beweisen? Man wendet den
Divisionssatz an: Besteht die Beziehung A - x = x’ derart, daß x und x’ Tensoren
1. Stufe sind, dann muß A ein Tensor 2. Stufe sein, siehe Beispiel 3.2.

Beispiel 3.2: AlsVolumenelementeineselastischen Körpers legen wir jetzt einTetraeder
nach Bild 3.2 zugrunde. Die Spannungsvektoren p„ p2, p3 greifen an den Dreiecks-
flächen mit den Flächeninhalten

dA, = {;dx2dx3, dA2 = %dx3 dx,, dA3 = ~}dx1dx2

in den Koordinatenebenen an, während der Spannungsvektor p„ der schrägen Deck-
dreiecksfläche mit dem Inhalt dA und dem Normaleneinheitsvektor n zugeordnet ist.
Die Vektoren pl, p; ‚ p3, p„ haben im allgemeinen nicht die Richtung der zugehörigen
Flächennormalen entsprechend el, e2, e3, n, so daß z. B. p,, - n = p,,,, die skalare
Projektion des Vektors p„ auf die Normale der schrägen Deckfläche bedeutet. Wäh-
rend aber die Spannungsvektoren p,- mit ihren Bezugsfiächen dAi vom KS abhängen,
ist das beim Spannungsvektor p„ nicht der Fall. Die schräge Deckfläche ist als Aus-
schnitt einer Ebene ein geometrisches Objekt, das nicht von dem in Bild 3.2 zufällig
gewählten KS abhängt. Die ihr zugeordneten Vektoren n und p„ sind daher Tensoren
1. Stufe.

Die Gleichgewichtsbedingung für die Spannungskräfte an den Randflächen des
Tetraeders lautet

p„ dA = p,- dAi. (3.7)

Wegen dA,- = dA cos (n, e‚-) gilt

p„ dA = pi cos (n, e,.) dA,

11.. = C0501, 60D: = (n ' er) 11:,

also nach (3.5)

p„ =n-e,-p, =n-S. (3.8)

Da p„ und n Tensoren 1. Stufe sind, muß S = o’,-ke,-ek auf Grund des Divisionssatzes
ein Tensor 2. Stufe sein. Die Spannungen aik sind also Koordinaten eines Tensors
2. Stufe. Die vorher definierte skalare Normalspannung erhält jetzt die Darstellung

P,.‘n=n'S‘n=P..,.- (3.9)
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3.2. Tensorfelder. Isotrope Tensoren

Der Begrifl" des Vektorfeldes läßt sich auf den Begriff des Tensorfeldes erweitern.
Als Repräsentanten wählen wir einen Tensor 2. Stufe T = -r‚—‚‘e‚-e„. Die Tensorkoordi-
naten sind jetzt nicht mehr feste Zahlen, sondern Funktionen des Ortes und der Zeit.
Ihr Definitionsbereich umfaßt einen räumlichen Bereich und ein Zeitintervall, mei-
stens den Raum R3 für die Ortskoordinaten x, , x1, x3 und das Intervall 0 g t < so

für die Zeitkoordinate t. Die Tensorkoordinaten seien mindestens zweimal stetig
differenzierbare Funktionen in den Variablen x, , x2, x3, t. Abgekürzt schreiben wir
(xi:-X2:-x3!t)=(x9t)' ‚

Definition 3.3: v = v‚—e‚- bzw. T = 1,.,,eie,‘ seien Tensorfelder I. bzw. 2. Stufe. Bestehen
die Abhängigkeiten v,-(x), 1,-,,(x) oder v,~(x(t)), T,-,‘(X(l‘)), so heißen die Tensorfelder
statisch oder stationär‘). Tensorfelder mit Koordinatenfunktionen der Art l7,~(X(t), t),
r,»„(x(t)‚ t), aber auch v,»(x, t), t‚-‚.(x, t) heißen instationär.

Der letzte Fall liegt z. B. vor, wenn es sich um die Wellenausbreitung in einem
ruhenden Medium handelt. Das Vektorfeld der Geschwindigkeit einer stationären
oder instationären Strömung hat den Charakter w = w‚-(x(t)) e‚- oder w = wi(x(r), t) e,-.

Ein elektrostatisches Feld hat die erstgenannte Eigenschaft.
Jedem Punkt (x, t) des Definitionsbereiches wird ein Tensor 2. Stufe mit den

Koordinaten r‚-„(x, t) zugeordnet. Die Tensorkoordinaten sind die Varianten, die sich
so transformieren müssen, daß der Tensor und die von ihm erzeugte Bilinearform
invariant bleibt. lnvariante Multilinearformen lassen sich leicht konstruieren.

Definition 3.4: Ein Tensorfeld 2. Stufe heißt isotrop, wenn die von ihm erzeugte
Zfache Mulrilinearfarm nur mit additiven Termen aufgebaut wird, diefür sich invariante
Skalare darstellen, wobei sämtliche Möglichkeiten zur Konstruktion von direkten
Skalarprodukten berüchsichtigt, aber Spatprodukte ausgeschlossen werden.

Satz 3.1: Die Koordinaten eines isotropen Tensors 2. Stufe haben die Gestalt

QÜ-(r, t) = A,(r2, t) rir, + A2(r2, t) 6,-J-. (3.10)

Ein isatraper Tensor 2. Stufe ist symmetrisch.

Um das zu zeigen, betrachten wir die Bilinearform

Z-(‘a t; “a V) 2 Qij(1'a t) "ivj (3-11)

in den einstufigen Tensoren u und v. Als Variable werden der Verbindungsvektor

r = F5 der Raumpunkte P und Q und der Zeitparameter t eingeführt. Invariant

gegenüber Drehung und Umlegung des KS sind die Fundamentalinvarianten (Skalar-
und Spatprodukt): r - r = r’; r - u; r ' v; [uvr].

Bilinear in u, v wird damit der Ausdruck

L(r, t; u, v) = A‚(r2, t) (r- u) (r - v) + A2(r2, t) (u - v) + A3(r2, t) [uvr]

= Alriuirfvf + Azöiluiüi + Asöuruivjrk
= [A1r,-rj + A26,-j + A36“-,¢r,(] uivj. (3.12)

‘) Bei Stationarität gilt die Zusatzbedingung, dal3 das Geschwindigkeitsfeld dx/dt = v(x,,xz,x3)
nicht mehr von t abhängt.
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Da diese Bilinearform invariant ist, stehen in der eckigen Klammer die Koordi-
naten eines Tensorfeldes 2. Stufe, die nach G. Seifert der Isotropiebedingung (2.48)
genügen müssen. Diese Bedingung läßt sich allgemein beiorthogonalen Koordinaten-
transformationen (einschließlich Spiegelung) nur dadurch erfüllen, daß wir den
Summanden mit dem Faktor A3 in (3.12) ausschließen. so daß (3.10) entsteht, vgl.
Beispiel 2.8.

Isotropie nach (3.10) setzt Homogenität voraus, d. h. der Punkt P, von dem der
Vektor r abgetragen wird, ist beliebig. Jede Parallelverschiebung der „Zweipunkt-
konfiguration“ PQ ist zulässig. Der Vektor r ist ein Tensor 1. Stufe, was schon be-
nutzt wurde.

Mit der Trilinearform

Z03 ti “a V7 W) = QijI¢(rs f) uivjwk

findet man durch entsprechende Überlegungen die Gestalt eines isotropen Tensor;
3. Stufe mit den Koordinaten

Q‚.‚k(r, t) = K1(r’, t) r,-r,-r,_. + K2(rZ, t) m0,),

+ K3(r2, t) rjöik + K4(r2, t) r,j),,-. (3.13)

Die einfache Linearform

i.(r, t; u) = Q,-(r, t) u,

führt auf den isotropen Tensor I. Stufe mit den Koordinaten

Q1(r‚ t) = C1(r2, t)r‚-. (3.14)

3.3. Der allgemeine Drehtensor 2. Stufe

Zur Vorbereitung soll die Vektorgleiehung

v = v1b1 + v3b3 + v3b3 (3.15)

nach den v1 , v3, v3 aufgelöst werden. Die Basisvektoren b1 , b3, b3 seien nicht kom-
planar, sonst beliebig! Wir multiplizieren (3.15) nach der Reihe skalar mit den Vek-
toriellen Produkten b3 >< b3, b3 >< b1, b1 >< b3 und erhalten

v - (b3 >< b3) = [vb3b3] = v1[b1b3b3] + v3[b3b3b3] + v3[b3b3b3],

v-(b3 x b1)= [vb3b1] = v1[b1b3b1] + v3[b3b3b1] + v3[b3b3b1}‚

v - (b1 >< b3) = [vb1b3] = v1[b1h1b3] + v3[b3b1b3] + v3[b3b1b3].

Das Spatprodukt verschwindet, wenn zwei Vektoren (parallel oder speziell) gleich
sind. Beachten wir außerdem die Umstellungsregeln (1.37) und die Voraussetzung
[b1b3b3] = D ä: 0, so lautet die Lösung

_ [Vbzbs] lbiVbal lbibzV]
— , = , = 3.16

[bibzbs] “ [blb2b3] “3 [bibzba] ‘ ’V1

oder auch zur Erinnerung an die Cramersche Regel

V1: D1/Dy T’: = D2/D: V3 = D3/D-
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Wir betrachten die Drehbewegung eines Massenpunktes um eine beliebige Achse
durch den Ursprung des KS, also eine Punkttransformation, die von einem Tensor
2. Stufe vermittelt wird. Dieser Tensor sei der Drehtensor K. Von einem Bewegungs-
mechanismus mit einer Punktmasse wollen wir absehen und die Aufgabe geometrisch
behandeln, so daß der Endpunkt des Ortsvektors x mit Hilfe des Drehtensors K auf
den Endpunkt des Ortsvektors x’ abgebildet wird, so daß die affine Abbildung

K - x = x’ (3.17)

entsteht. (Bei Übergang von B aufB durch Drehung des Bezugssystems wird hingegen
der betrachtete Punkt festgehalten. Dabei handelt es sich um eine orthogonale Koordi-
natemransformation, die von einer Matrix Q vermittelt wird, nicht von einem Tensor
2. Stufe.) Nach Bild 3.3 wird ein Punkt P eines Kreises (in der Ebene senkrecht zur

Bild 3.3: Zum allgemeinen Drehtensor

Drehachse durch P) auf einen anderen Kreispunkt P’ abgebildet. Wir beziehen uns

auf Bild 3.3, wo die geometrischen Beziehungen
*9

|x’| = lx), |r’| = |rl = r, OM = a, (r, r’) = qt, r v r’ = r2 costp.

x-a°:x’-a°=|a|, x=a+r, x’=a+r’,
r°><t=a° a°><r°=t t><a°=r°

s ‚

abgelesen werden, wenn t wieder den Tangenteneinheitsvektor des Kreises bezeichnet.
Die Einheitsvektoren a°, r°, t bilden in dieser Reihenfolge ein orthonormiertes Rechts-
system. Der Bildvektor x’ werde in dieser Basis dargestellt

x’ = la” + ,ur° + wt. (3.18)

Die Aufgabe wird zunächst algebraisch nach dem Muster (3.15), (3.16) gelöst:

i. z [x’r°t] = x’-(r° >< t) = x’-a" = |a|,

‚u = [a°x’t] = [a°at] + [a°r’t] = [r’ta°],

r’-(t >< 3°) = r’-r° z rcoszp,

[a°r°x’] = [a°r°a] + [a°r°r’] = [a°r°r’],

v = a°-(r° >< r’) = 2°-rsin<pa° = rsinzp,

so daß (3.18) lautet

x’= |a|a° + rcos zpr“ + rsin (pt. (3.19)

H

1/ ll
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Das Problem besteht aber darin, bei Vorgabe der für die Drehung charakteristi-
schen Größen x, a und qo (Ortsvektor, Achsenvektor und Drehwinkel) den Drehtensor
zu ermitteln. Unter diesem Gesichtspunkt wird (3.19)

x’-a+rcosq2+rsin<pt
a + rcostp + rsin gv(a° >< r“),H

Ux’ a(l — cos go) + xcoszp + sin <p(a° x r)

wegen r = x — a und a° >< a = 0 schließlich

x’ = a(l — cos q?) + xcostp + sin q2(a° x x). (3.20)

Die affine Abbildungsaufgabe ist damit gelöst.

Wie sieht der Drehtensor (Affinor) aus, der diese Abbildung vermittelt? Wir
benutzen

la] =a°-x, a=a°|a| =a°a°~x, x =l-x

und (2.28) (E ~ v) - u = u >< v. Damit lautet (3.20)

x’ = a°a°~x(1~— COSQJ) + I-xcosr; + sin<p(E~x)-a°

= [a°a°(l — cosrp) + Icostp — sin<p(E - a°)] ~ x = K - x.

Der Drehtensor ist, wenn wir noch (3.2) und (2.19) heranziehen:

K = a°a°(l — costp) + Icos<p — sin q2E - a°

= [a‘,»’a,§(l — cos (p) + Öik coscp — sin q) s„„a‘,’] eiek. (3.21)

Der Tensor K ist nicht isotrop und auch nicht symmetrisch.

Aufgabe 3.3: Wie gelangt man unter der Voraussetzung cosqa z], Sinrp z r; von
(3.20) wieder zur Grundformel (1.33) v = u x x für die Drehbewegung eines Massen-
punktes im Verband eines starren Körpers?

Aufgabe 3.4: Man untersuche die speziellen orthogonalen Transformationen bei
Drehung um die x3-Achse, und zwar

a) durch Einführung des Winkels (E, ‚ el) = o: die Koordinatentransformation mit der
Koeffizientenmatrix C bei Drehung des Bezugssystems,

b) durch Einführung des positiven Winkels xx, den der Originalvektor x und Bild-
Vektor x’ bei der affinen längentreuen Abbildung A - x = x’ in demselben KS
miteinander bilden, wenn A den speziellen Drehtensor dieser Punkttransfarmation
bei der gedachten Drehbewegung des Punktes P um die x3-Achse in die Lage P’
bedeutet.

Man gebe die Elemente der Matrix C und die Koordinaten des Tensors A an. Man
überprüfe die Bedingungen für orthogonale Transformationen allgemein und speziell
für die Drehtransformation.
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3.4. Hauptachsenform und skalare Invariante eines symmetrischen Tensors
2. Stufe. Hauptachsentransformation

Beim Hauptachsenprablem kommen beide Transformationsarten ins Spiel: Ein
Tensor 2. Stufe leistet in demselben KS vermöge S - x = x’ eine Punkttransformatian,
in geometrischer Sprache eine affine Abbildung. Bei Übergang von B auf B wird
hingegen die Koordinatentransformation Cg: = Zc Von einer Transformationsmatrix C
vermittelt. Die Tensorkoordinaten müssen den Transformationsgesetzen gehorchen,
während es für die Elemente einer Matrix keine Transformationsgesetze gibt.

Durch Drehung des Bezugssystems B in die Lage I? soll der gegebene symmetrische
Tensor S = ai,‘e,e,‘ auf die Hauprachsenform

S = qmele, + <7(22,e2e2 + rf(33,e3e3 (3.22)

gebracht werden. Welche Transformationsmatrix C leistet eine solche Drehung des

KS, daß S in S- nach (3.22) übergeht? Die Querxtriche beziehen sich hier auf das ge-
suchte Hauptachsensystem E, ‚ E2, E3. Wegen E,‘ = c,_.,e, sind die ck, so zu bestimmen,
daß der Tensor S mit Hilfe der gesuchten Transformationsmatrix Q = ((c‚„)) die
Gestalt (3.22) annimmt. Obwohl nur Hauptachsenrichtungen (Gerade) ermittelt
werden können, wollen wir diese mit „Eigenvektoren“ angeben, die dann nur bis auf
je einen Faktor bestimmt sind, über den man so verfügen kann, daß Einheitsvektoren
E, , E2, E3 entstehen. Die gesuchten Basisvektoren

er = C1191: ez = C2191: 53 = C319: (3-23)

bilden das Hauptachsensystem.

Für orthogonale Transformationen wird das Transformationsgesetz (1.48) der
Tensorkoordinaten

[Tile = C'imCIm0'mn

in
cilcimcknanm = almcknanmcildik

oder
citäik = CknÜtn

überführt. Wir schreiben

CknÜu. = Cnäzk

und berücksichtigen in diesem Gleichungssystem die Hauptachsenbedingung

cm = 0 für i+ k (3.24)

in der Formulierung

cknaln = CklU(kk)' (3-25)
Auf der rechten Seite wird mit (im, angedeutet, daß dort nicht über k summiert werden
darf, da nur die Tensorkoordinaten ä„‚ = 0 für i # k ausgeschlossen worden sind.
Dagegen ist auf der linken Seite nach wie vor über n zu summieren. Wir erhalten so

für I = l, 2, 3 das Gleichungssystem

5x131: ‘l’ ck2012 ‘l’ 0x301; = Ck1U(kk)y

Ck10'21 + 0x252: ‘l’ C'k30'23 = 4125040,

0x153: ‘l’ Q2032 ‘l’ Ck3°'33 = ck36(kk);
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oder
(‘M0711 ‘ Uuaq) ‘l’ Ck2U12 + Ck3U13 = 0;

(M1721 ‘l’ Üic2(U22 ‘ W110) ‘l’ Q3023 = Ü, (3-26)

5k1U31 ‘l’ 5k2U32 + Ck3(U33 “ Uucky) = 0-

Das lineare homogene Gleichungssystem (3.26) für die Unbekannten e“, cm, e33 hat
genau dann nichttriviale Lösungen, wenn die Koeffizientendeterminante verschwin-
det, d. h. wenn

Ull-äflcknglza U13

U21, U22 " (Tuck): U23 = 0 (3-27)
0'31, U32; U33 " Um)

ist. Der gesamte weitere Lösungsprozeß ist ihnen aus der „Linearen Algebra“ be-
kannt, wo das Kapitel „Eigenwertprobleme bei Matrizen“ ausführlich behandelt
worden ist. Nach dem Entwicklungssatz oder nach der Sarrusschen Regel berechnet
man die Determinante der Bedingungsgleichung (3.27) und erhält eine algebraische
Gleichung 3. Grades der Form

—ä(i‚„ + Aäofk) — Ba(k,,)+C = 0. (3.28)

Die Wurzeln (im, «m3„ 6,33, sind die Eigenwerte des Hauptachsenproblems.

Diese drei Zahlen werden nach der Reihe für k = 1,2, 3 in das homogene Glei-
chungssystem (3.26) eingesetzt, speziell unter der Voraussetzung, daß es sich um drei
verschiedene reelle Wurzeln handelt. Es entsteht je ein Gleichungssystem für k = 1

mit (im), für k = 2 mit in“, und für k = 3 mit (L33). Die zugeordneten (normierten)
Lösungen sind

c„,c„,c13 und é —c,,e, für k=l,._

I

c2,e, fiir k= 2,IlC21» C225 C23 und 52

e33, e32, e33 und e3 = c3‚e‚ für k = 3.

Die den Eigenwerten am, zugeordneten Eigenvektoren é,, = cme, sind die Basisvekto-
ren des gesuchten Hauptachsensystems. Die Eigenvektoren sind insgesamt keine
Tensoren l. Stufe.

Aufgabe 3.5: Gesucht sind jene Hauptrichtungen (Gerade), für die bei der affinen
Abbildung S - X = x’ speziell keine Richtungsänderung zwischen Original- und Bild-
vektor eintritt, so daß für die affine Parallelabbildung die Bedingung x’ = 2x erfüllt
ist.

Satz 3.2: Die Koeffizienten A, B, C der charakteristischen Gleichung (3.28) sind skalare
Invariante des symmetrischen Tensors S. Es gilt

A = U411) ‘l’ U122) ‘l’ U133) = 1711+ U22 ‘l’ U33,

B = U111>U<22> + Ur22>Ur33> ‘l’ U(33>U<11t (3-29)

= U22U33 + U33U11+ U11U22 — U53 ‘ U;1* "i2,

C = U<11>U<22>U(33) = llUikll -
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Die überstrichenen Tensorkoordinaten 6m, beziehen sich auf das spezielle Haupt-
achsensystem B, während die ungestrichenen 0,-k auf ein beliebiges kartesisches KS B
bezogen werden können. Für alle zulässigen Bezugssysteme Bsind die rechts stehenden
Ausdrücke gleich den links stehenden speziellen Werten, also invariant.

Die Formeln (3.29) ergeben sich in den gestrichenen Größen, wenn man die Ab-
kürzungen Il = (im), /11 = 6m), Ä; = 6(22), 1.3 = am) einführt und die linke Seite
von (3.28) in lineare Wurzelfaktoren zerlegt:

—Ä3 +Ä2A —ÄB + C = (1.1 —}.)(}.2 — }.)(/".3 —/1)

= -2.3 + Z2(l,’ + Ä; + l3) — 20.17.2 + 1213 + /I311) + 1.12213.

Die Ausdrücke von (3.29) in den ungestrichenen Größen erhält man durch Aus-
rechnen der Determinante (3.27) und Ordnen nach Potenzen von Ä = am).

Die Hauptachsentransformation eines Tensors 2. Stufe ist von großer praktischer
Bedeutung. Man stellt z. B. die Beziehung zwischen dem Spannungs- und Verzer-
rungstensor im einfachen Hauptachsensystem B auf und kann die tensorielle Bezie-
hung dann ohne weiteres auf jedes andere kartesische Bezugssystem B umrechnen,
entweder mit Hilfe der Transformationsgesetze für die Tensorkoordinaten oder mit
Hilfe der skalaren Invarianten nach (3.29). Da im allgemeinen die Hauptachsen in
einem deformierten Körper von Punkt zu Punkt ihre Richtung ändern, ist die Um-
rechnung von B auf B sehr wichtig.

3.5. Tensor der Trägheitsmomente. Tensorellipsoid

Wir ziehen die Beispiele l.5 und 1.6 heran und berechnen die kinetische Energie des
Massenpunktes bei seiner Drehbewegung um die Achse mittels (1.33):

Em : gvz = go. >< x)? (3.30)

Der Vektor der Winks/geschwindigkeit (Drehvektor) sei

u = wa“ = oz,-e,., (3.31)
so daß

(u >< x): = uzxz — (u - x)2 = w,-ro,»x2 — (zum):

folgt. Die Umformungen

L050),- = (uiwköik, (co,-x,-)2 = ru,-x,w,‘xk = w,-w,‘x,x,‘.

ergeben
(u >< x)2 = x2w,w,‘6,-k — w,-w,‘xix,,,

also die quadratische Form

2E„,. = m(xZö‚-„ — xix„)ru‚»w,„ = r,,‘o)iu>,‘ (3.32)

in den Koordinaten w. des Drehvektors u. Da die kinetische Energie des Teilchens
nicht vom zufällig benutzten KS abhängt und der physikalische Drehvektor ein
Tensor 1. Stufe ist, muß

T = Tiketek = m(X25ik " Xixk) eiek

= m(x2I — xx) = mx2(I — x°x°) (3.33)
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ein Tensor 2. Stufe sein, der offenbar symmetrisch ist. Das ist der Tensor der Träg-
heitsmomente für das behandelte Einteilchensystem. Wir nennen ihn kurz „Trägheits-
tensor“. Der Triigheitstensor erzeugt die quadratische Form (3.32)

L(u, u) = u - T ~ u = r,-,..w,(nk. (3.34)

Seine Koordinaten -r‚-,„ = —mx‚x„ für i + k heißen Deviationsmamente;

T11 = m(X§ “l” Xi): T22 = ‘l’ Xila T33 = m(x? +
heißen Haupttriigheirsmamente.

Beispiel 3.3: Man berechne den Vektor des Drehimpulses q. Der Teilchenimpuls ist
p = mv. Damit wird der Drehimpulsvektor (Drall)

q = q,e, = x >< p = m(x x V) (3.35)

definiert. Zur Berechnung von q wenden wir den Verbindungssatz (1.30) an:

q = m(x >< (u X x)) = m(x’u — (x - u)x)

= m(X2w‚e‚ — xkzukx,-e.) = qie,-.

Mit (oi = rukéik erhalten wir den Drehimpuls

‘l = m(x2öik — xi-xk) wkei = Tikwkei = 4:9: (3-36)

oder auch

q = T - u. (3.37)

Das entspricht geometrisch der von dem zweistufigen Tensor T vermittelten affinen
Abbildung

x’ = T - x. (3.38)

Den Achseneinheitsuektor bezeichnen wir mit a° = n. Der Vektor der Winkel-
geschwindigkeit ist dann

u = run = (Wei. (3.39)

Die momentane Drehachse ist nur im Ursprung des KS fixiert; sie kann im Laufe der
Zeit ihre mit n gegebene Richtung ändern: n = n(t). Mit dem Achseneinheitsvektor n

definieren wir den Skalar

0=n-T~n (3.40)

und nennen ihn skalares Trägheitsmoment 0. In der technischen Literatur sind die
Bezeichnungen 1", = I", und 0 = I üblich.

Aufgabe 3.6: Man bestätige die Formeln

0
Em. = Twz, 0 = m(n x x)2, (3.41)

n ~ q: q„ = Qt». (3.42)

Aufgabe 3.7: Die Drehachse werde speziell in die Richtung von e; = n gelegt. Fol-
gende Beziehungen sind zu bestätigen: —

Q = T33: ‘I3 = T3301» Ekin = %‘I3- (3-43)
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In der Tensorrechnung sagt man, daß der symmetrische Tensor T die quadratische
Form erzeugt gemäß

u ' T - u = u,»e,- - IJ-‚(ejek - u‚e‚ = '5,-,(u,-u,¢5,-J-<§,,,, (3.44)

u - T - u = t,-,,.u,-uk = L(u, u).

Bei physikalischen Anwendungen kann man einem symmetrischen Tensor 2. Stufe
immer ein Tensorellipsoid zuordnen, indem man die physikalischen Vektoren in
Ortsvektoren übersetzt und die Tensorkoordinaten rm als (dimensionslose) Zahlen 0,,‘
betrachtet, so daß z. B.

T-u =q, u-q =u-T~u

A~x=x’, x-x’ =x-A-x

übergeht. Als geometrische Hilfskonstruktion benutzt man die Gleichung

x - A - x = a,-kx;x,, = l (3.45)

oder in Hauptachsenform

s - Ä ~ 2 = M} + 1;: + 13X3 = 1. (3.46)

Die Gl. (3.46) stellt die Mittelpunktsgleichung einer Fläche 2. Grades in der Normal-
form dar.

Die Beträge der physikalischen Vektoren sind stets endlich, z. B. |u| < oo. Die For—

derung |x| < oo schließt Flächen aus, die sich ins Unendliche erstrecken, so daß es

sich in (3.46) nur um ein Ellipsoid handeln kann. Dann sind alle Eigenwerte 1„ = l/aß
positiv. Die quadratische Form heißt dann positiv definit:

i.(x,x)>O für x+0, f.(x,x)=0 für x=0.

Satz 3.3: Einem physikalischen symmetrischen Tensor 2. Stufe kann man imme_r ein

Tensorellipsoid zuordnen, das im Hauptachsensystem die Halbachsen ak = 1/\//1,‘ be-
sitzt, wenn ll, h; ‚ h3 die positiven Eigenwerte des Hauptachsenproblems bedeuten. Das
Tensorellipsoid stellt in den physikalischen Anwendungen eine Fläche konstanter Energie
dar.

Beispiel 3.4: Nach (3.32) ist

Em = %t,«,‘w,~w,‘ = const

eine Fläche konstanter kinetischer Energie. Bezeichnet S den Spannungstensor, so ist
der Skalar

p„-n =n~S~n=const

eine Energiedichte (Energie je Volumeinheit). in den Beispielen handelt es sich um das
Trägheitsellipsoid und das Spannungsellipsoitl.

Da wir im nächsten Abschnitt mit der Tensoranalysis beginnen, sei hier ein Vor-

grifl’ gestattet. Beschreibt der Endpunkt P des Ortsvektors X = Ö7’ die Ellipsoidfläche,

4 Schultz-}’isz.,Teu.soren
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so liegt der Differentialvektor dx in der Tangentenebene, welche die Fläche in P
berührt. Wird Gl. (3.45) differenziert, so folgt d(x - A - x) = 0 oder

dx-A-x+x~A-dx=2dx-A-x=2dx-x’=O (3.47)

d. h., der Bildvektor x’ ist normal zur Ellipsoidfläche gerichtet. Bezeichnet N einen
Normalenvektor in P, so gilt nach (3.45) x - x’ = |x|lx’| cos (x, x’) = |x|lx’| cos (x, N)
= 1, also

1
T... Ä
{x| cos (x, N) '

Ix’! = 2für —%< (x‚N) < +

Durch Rückübersetzung kann man am Trägheitsellipsoid für jeden Vektor u den
zugehörigen Drehimpulsvektor q = T - u in Richtung der Normalen mit dem Betrag
lq| = 1/|u| cos (u, N) konstruieren. Besonders nützlich für die Anwendungen ist die
festgestellte Richtungsbeziehung‚ indem man zu jeder gegebenen Richtung von u oder
n sofort die zugehörige Richtung von q oder p„ als Normalenrichtung am Tensor-
ellipsoid ablesen kann.

In der Technischen Mechanik rotiert an Stelle des Einteilchensystems entweder ein
System von n Massenpunkten oder ein starrer Körper um die Drehachse. Im 2. Fall
muß über alle differentiellen Massenanteile dm = g dV‚ die im Gesamtvolumen Vdes
Körpers enthalten sind, integriert werden. Formal lassen sich die Kenngrößen ab
(3.30) mit Hilfe des Bereichsintegraloperators

f(L_[...gdV= wgdv... = dm... = (3.48)

ohne weiteres umschreiben, wenn man m durch den linearen Operator M ersetzt,
z. B.

Em z mvZ = 5 m‘ V29 dV‚
‘V’ (3.49)

Tits = H(X25ik — xixk) = (XZÖik ‘ X1751) 9 dV-
m



4. Vektor- und Tensoranalysis mit orthonormierter Basis

4.1. Gradientenfelder, Divergenz und Rotor eines Tensorfeldes erster Stufe

Ein linearer Operator wird in der; Analysis anders als in der Algebra definiert. Der
Definitionsbereich des Operators A enthalte nach Verabredung entweder die Folge
{qn,(x), q22(x), ...} der skalaren Ortsfunktionen rp,,(x) oder die Folge {v1(x), v2(x),...}
der Vektoriellen Ortsfunktionen v„(x).

Definition 4.1: Der Operator Ä ist stetig, werm aus lim ¢,, = <p* folgt
n „ 3o

"if: /f(‘Pn) = /i(,}i3I;¢n) = A'(<p*)

ader (in Kurzsehreibweise), wenn

aus v„ —> v* folgt Äv„ —> Äv*. (4.1)

Definition 4.2: Ein Operator mit der Eigenschaft

Ä(q7+w)=Ärp+Äw oder Ä(u+v)=Äu+Äv
heißt additiv. Ein Operator Ä heißt linear, wenn er additiv und stetig ist.

Daraus folgt, daß der lineare Operator homogen ist, d. h.

Äüqi) = ÄÄqJ oder Ä(Äv) = ÄÄv.

Ein linearer Operator hat also auch in der Analysis die Eigenschaften

Ä(Ä(p + M’) = lÄqn + ‚uÄip oder Ä(lu + ,uv) = ÄÄu + uÄv. (4.2)

Das Operatorsymbol V soll für sich sprechen; hier wird auf das Operatorzeichen a

verzichtet. Der NabIa-Operator wird als Vektor in der Komponentendarstellung

3 Ö ö
V = . . = L _e‚ö‚ e, Öxl + e; OX2 +.e3 OX3 (4 3)

mit den Koordinaten

ö,- = Ö für i= 1,2, 3 (4.4)
Öxi

eingeführt, wobei wieder ein kartesisches Basissystem mit [e,e2e3] = 1 zugrunde
gelegt wird.

Satz 4.1: Der NabIa-Operator ist linear.

Sind q>(x), 'zp(x) oder u(x)‚ v(x) Tensorfelder nullter oder erster Stufe, so gilt für die
(allgemeinen) Produkte entsprechend (4.2):

V(lq7 + W’) = ÄVqJ + aVwp oder VÜM + ‚uv) = ÄVu + ‚uVv, (4.5)

aber auch speziell

V-(}.u+,uv) =/".V~u+;4V-v, (4.6)

V><(i.u+;4v)=lV><u+,uV><v. (4.6)
4*
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Die Stetigkeitsbedingungen sind erfüllt, denn

aus v„ —> v* folgt Vv„ —> Vv* (4,7)
usw.

Als Hauptsatz der Tensoranalysis bezeichnen wir die Invarianz des Nabla-Opera-
tors

v = e‚.a‚. = 5,6,. = V, (4.8)

so daß die Transformationsgesetze (1.14)

Bi = Eikaka Öl = CH6): (4-9)

gelten müssen. Der Nabla-Operator V ist ein partieller Ableitungsoperator mit Vek-
torcharakter. Der Hauptsatz ergibt den

Satz 4.2: Der NabIa-Operator (4.8) ist ein Tensor I. Stufe.

Diese Aussage wird axiomatisch vorangestellt. Durch die koordinatenfreie Dar-
stellung des Nabla-Operators wird sie im Abschnitt 4.3. bewiesen. Das Skalarfeld
Vvw = q beschreibt mit w als Strömungsgeschwindigkeit eine Quelldichte q, die
sicher vom KS unabhängig ist. Das Vektorfeld V >< w = y beschreibt eine Wirbel-
dichte y, die ebenfalls unabhängig vom KS existieren muß. Da das Vektorfeld der
Strömungsgeschwindigkeit w ein Tensorfeld l. Stufe ist, muß auch V ein Tensor
l. Stufe sein. _

Wenn nichts anderes gesagt wird, soll der Ausdruck rechts vom Nabla-Operator
differenziert werden. Wir bilden das Produkt des Nabla-Operators mit einem Tensor-
feld 2. Stufe

VT = ekakrijeiej = <),;r,-J-eke,-e,-. (4.10)

Da die Basisvektoren Konstante sind, werden nur die Tensorkoordinaten differen-
ziert. Durch Verallgemeinerung erhalten wir den

Satz 4.3: Das Produkt des Nab/aoperators mit einem Tensor n-ter Stufe ergibt einen
Tensor der Stufe n + l :

VA“) = Okaui2...i,.ekei1ei2"‘ein' (4-11)

Das innere Produkt ergibt hingegen einen Tensor der Stufe n — l:

V ’ AW = 5kam'2<..i..ei2~-~er,.- (4-12)

Speziell entsteht also ein Tensor 2. oder 0. Stufe, wenn wir

Vv = 6,-v,,e,-e,‘. (4.13)
oder

V r V = bit. = divv (4.14)

bilden. Das Tensorfeld (4.13) heißt „lokale Dyade“, gelegentlich auch „Vektorgra-
client". Das Skalarfeld div v wird „Divergenz des einstufigen Tensorfeldes v“ genannt.
Wir schreiben

V = grad, V- = div, V >< = rot, (4.15)

um auf Gradientenfelder, Quellenfelder, Wirbelfelder hinzuweisen. Sind tp(X) bzw.
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v(x) Tensorfelder der Stufe O bzw. 1, so gelten folgende

Definitionen 4.3:
Vv = gradv = e‚e„Ö,v„ : é,-ékfi,-K5,,

Vqa = gradqa = O,~q2 = 5i§2, V (4.16)

V-v = divv = 6,12,»: 5,-Di,

V >< v = rotv = e,s,,,,O,v,, = e'e,E,~,-,‘5jD,c

nach (2.28). Man nennt gradq: „Gradient des Skalarfeldes q)“ und rotv „Rotor des
einstufigen Tensorfeldes v“. Die Ausdrücke (4.16) stellen nach der Reihe Tensorfelder
der Stufe 2, l, 0, 1 dar.

4.2. Einfache Nabla-Operationen

Der Nabla-Operator wirkt nach der Produktregel der Diflerentialrechnung auf alle
Größen, die rechts von V stehen. Es ist aber rechentechnisch zweckmäßig, wenn man

wie in Band 4 die Größe mit einem Pfeil kennzeichnet, die differenziert werden soll,
z. B.

H 1 l
V ~ (m) = (Vzp) - v + (V-v) q). (4.17)

Außerordentlich wichtig ist die Unterscheidung von Operatorbildung und Anwen-
dung des Operators, wobei der Operator auch nach links wirken kann:

v~ V = mi, aber i-v = i~,.o,. : a,.u,..

Falls vk nicht diflerenziert werden soll, schreibt man vköi, denn Oink = Öuk/öx,» ist

eindeutig festgelegt, entsprechend Vv = Via In dieser Bezeichnungsweise gilt mit
Pfeilmarkierung:

Vqp =vq5=q‘aV, V-v= V-$=$~v,

V ><.v = V >< i: ——(i' >< V), aber VizlciV.

Nur in Ausnahmefällen müssen wir den Wirkoperator vom Blindoperator unterschei-
den und Blindoperatoren, die in dem jeweils angeschriebenen Ausdruck nicht wirken
sollen, besonders kenntlich machen durch Öf, oder V“. So ist Öiökgv = özrp/öxiöxk ein
Skalarfeld, aber O,-tpbk = 6i6,$<p ein Operator. Als Ausnahmefall bezeichnet das Spat-
produkt

[vcvl] = [vlvr] = (V >< i) - V (4.18)

einen Operator, aber es gilt

[VW] = (v x v)-‘v‘ = o. (4.19)

Wir wenden uns den „Nabla-Operationen“, d. h. den Rechenregeln mit dem Nabla-
Operator zu. Die Zulässigkeit jedes Rechenschritts muß in der Koordinatendarstel-
lung bewiesen werden!
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Beispiel 4.1: Um (4.17) zu beweisen, berechnen wir

V - (qJv) = e,ö‚ ' (zpvkek) = ök(zpv„) = (Ökqa) v,‘ + (Ökvk) 1;,

also auch

div (rpv) = v - grad (p + zp div v. (4.20)

Beispiel 4.2: Der Ausdruck div (u x v) ist umzuformen:

div (u x v) = (3,-emu,-v,‘ = 8,,-,,O,(ujvk)

= emvköiuj + sijkujoiuk = 5;,-,,.v,-O,-u,‘ -— 5,-J-,,u,-O,-vk

= v,-.3“-,((‘)ju,, — u,-a,«,,,O,-vk,

also
div (u x v) = v - rotu — u - rotv. (4.21)

Beispiel 4.3: Es gilt

5iJk5J(<P”n) = ‘Pgukbjvk " Eijtcvjbtdf,

folglich (bei Multiplikation mit e, und Summation nach Vereinbarung)

rot (tpv) = (p rot v — v >< grad qz. (4.22)

Aufgabe 4.1: Welche Nabla-Operationen sind nach (4.20) bis (4.22) erlaubt? Man leite
diese Formeln durch Anwendungen des Operators V her.

Mit Hilfe des Nabla-Operators berechnen wir

grad(¢w) = wir?) = (w?) w + w(v«f»),
(4.23)

grad (W) = tr grad ‘P + w grad sv-

Wird der Verbindungssatz (1.30) herangezogen, so ergibt sich

rot(u >< v) = V x >< = —

Nach der Produktregel der Differentialrechnung folgt weiter

rot(u >< v) = (V-idu +(v~V)1i -— (V~ii)v— (u-V):
und mittels Dyadenschreibweise

rot(u><v)=udiVv+v-Vu—-vdiVu-u~Vv. (4.24)

Aufgabe 4.2: Die Formeln (4.23) und (4.24) sind in Koordinatendarstellung zu

beweisen.

Aufgabe 4.3: Für den Ortsvektor x = xie; = rx° bestätige man die Formeln:

a) öixk = ö„„ öir = xi/r, (4.253)

b) div x = 3, rot x = 0, Vx = I, (4.25b)

c) grad r = x“, gradf(r) = f’(r) x°. (4.25 c)

In c) bedeutetf’(r) die Ableitung der Funktion f(r).
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Nach dem Verbindungssatz (1.30) wird

u><rotv=u><(V><iI)=V(u-iI)—u-Vi'‚
(4.26)

v X rotu=v x (V >< = Viv-ii) ——v'Vi|.

Wir wollen das Vektorfeld grad (u - v) zerlegen:

grad(u-v) = = VGIW’) + Wu-i’) = V(u-i{l + Viwii).

Die letzten beiden Summanden werden (4.26) entnommen; es folgt

grad(u-v)=u><rotv+u-Vv+vxrotu+v-Vu (4.27)

und daraus speziell die Lambsche Formel _

v - Vv = igrad v’ — v >< rotv. (4.28)

Beispiel 4.4: Wir untersuchen instatianäre Felder, z. B. das Skalarfeld der Massen-
dichte g(X(t), t) und das instationäre Vektorfeld w = w(x(t), t) der Strömungsge-
schwindigkeit in der Komponentendarstellungw = wiei = icieimit Sc, = dx,/dt = w,-,

das ein Tensorfeld l. Stufe darstellt. Das totale Differentialdg = dx, + %dt
führt auf die totale Zeitableitung

dg _ Ög dx, be _ (‘J9 y _ 0g I

717—a—z+7s:,“37+‘“°-‘9—$+" V9-

Ist v = v(x(t), t) ein instationiires Vektorfeld, so gilt entsprechend

dv övT=W+ W'VV.

Der 1. Summand ist das lokale oder instationäre Glied. Der 2. Summand heißt
„konvektives Glied“ oder „Transportglied“, V9 bzw. Vv sind Tensorfelder 1. bzw.
2. Stufe.

Bei instationärer Strömung benutzt man den Operator der totalen Zeitableitung

d Ö

mit w r V = ugöi. Aus (4.29) folgt speziell

dw Öw
—dI———(3t—+W VW.

Die Eulersche Bewegungsgleichung der Hydrodynamik für die reibungsfreie Strömung
lautet
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wenn p den hydrostatischen Druck, also —-gradp das Druckgefälle bezeichnet. Mit
(4.31) wird

dw Ow 1
Ä. =j - = — — 4_ 2dt at + w Vw Q gradp ( 3)

und nach der Lambschen Formel (4.28)

d Ö 2 l7j¥—=—6‘t:+gradwT—wxrotw=—?gradp. (4.33)

Äußere Kräfte wie z. B. die Schwerkraft werden hier und im folgenden nicht aufge-
schrieben.

4.3. Mehrfache Nabla-Operationen

Zweifache Nabla-Operationen werden sehr oft benötigt. Der Tensoroperator

VV = eieköiök (4.34)
wird zu

Ö2 Ö2 Ö2

V~V=OiO,-=§+$2—+?=V1 ‚ (4.35)
1 Z 3

verjüngt. V2 ist der skalare Laplace-Operator. Das Zeichen A bleibt für Differenz-
terme reserviert, z. B.

Af(X) =f(x + h) -f(x)‚
AV = V(x‚ + Axl, x2 + Axz, X3 + Ax3) — V(x1,x2,x3).

Mit den Bezeichnungen (4.15) kann man schreiben

V2 = V - V = div grad, VV- = grad div. (4.36)

Als Grundformeln gelten

rot grad<;2 = 0,. div rotv = 0 (4.37)
wegen

rotgradrp = V >< Vlqi = (V >< V)

divrotv = V - (V >< = [VVV] = 0.

Nach (1.30) und (4.36) wird

rotrotv = V >< (V >< V) = V(V-V) — (V-V) V,
rot rot v = grad div v — div grad v. (4.38)

Aufgabe 4.4." In Koordinatendarstellung sind die Formeln

V - (vlvl) = div grad v, V - WV) = grad div v (4.39)

zu beweisen.
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Der Tensor der Deformationsgeschwindigkeiten wird definiert:

D = Viv + viv = (am + a,,w,.) eiek. (4.40)

Dieses zweistufige Tensorfeld ist symmetrisch. Daneben benutzen wir

defw = ‚1‚(vv‘v+ 3W) = 4D. (To)
Nach (4.39) gilt somit

V-D=V-lVivi+ ‘v$v) =divgradw+graddivw. (4.41)

Man schreibt auch V - D = div D.

Beispiel 4.5: Die Bewegungsgleichung für die reibungsbehaftete Strömung lautet

d .9% = dIV s. (4.42)

Der symmetrische Spannungstensor 2. Stufe

S = —pI + 77D — ävy (div w) I (4.43)

heißt Navier-Stokes-Tensor, siehe (5.28). Hier bedeuten p den hydrostatischen Druck,
w die Strömungsgeschwindigkeit, 7; die (orts- und zeitunabhängige) dynamische
Zähigkeit; 1/ = n/g heißt kinematische Zähigkeit. Wir berechnen

divS = V-S = —(V-pl) + 7/V~D — §7;V~[(divw)I]
mittels

diV (111) = V'(P1) = 8.-0; 'p5uekei

= Öipöiköklel = ‘Öipörhek = (Ökfl) ein
also

V v (pl) = grad p, V ~ [(div w) I] = grad div w. (4.44)

Mit (4.41) und (4.44) wird V - S nach (4.43):

V ~ S = —gradp + 7/ (div grad w + grad div w — égrad div w).

Wir erhalten damit die Bewegungsgleichung (4.42) nach Navier-Stokes:

dwF = — —(:—gradp + v (div grad W + igrad div W). (4.45)
3

Bewegungsgleichungen müssen so formuliert werden, daß sie vom speziellen KS
unabhängig sind. Die Invarianz der rechten Seite von (4.45) kommt in der Schreib-
weise mit grad und div zum Ausdruck.

Die Ortsfunktionen seien jetzt dreimal stetig difierenzierbar, so daß z. B. div grad
rot v ein stetiges Vektorfeld darstellt. Aus (4.38) folgt die Vertauschbarkeit der linearen
Operatoren V2 und rot gemäß

V2 rot v = rot Vzv, (4.46)

wenn wir einmal von der Identität (4.38) den Rotor bilden

rot rot rot v = rot grad div v — rot div grad v,
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wenn wir andererseits in (4.38) v durch rot v ersetzen

rot rot rot v = grad div rot v — div grad rot v

und die beiden Identitäten (4.37) berücksichtigen. Dann bleibt

— rot div grad v = — div grad rot v

in Übereinstimmung mit (4.46).

Aufgabe 4.5: Die Vertauschbarkeit des Laplace-Operators V2 mit grad und div ist
durch Nabla-Operationen nachzuprüfen.

4.4. Invarianz des Nabla-Operators. Integralsätze nach Gaul!

Im folgenden bezeichnet der Buchstabe A den Flächeninhalt (area). Der Vektor des
Flächenelements sei

dA = dAn (4.47)

mit dem Normaleneinheitsvektor n, der bei einer geschlossenen Oberfläche (Hülle H)
immer nach außen weist. Diese Orientierungsvorschrift für n bleibt erhalten, wenn wir
H in Teilflächen zerlegen. dA ist der Flächeninhalt eines infinitesimalen Parallelo-
gramms in der Tangentenebene, siehe Definition 7.1.

In einer stationären Strömung mit dem Geschwindigkeitsfeld w = w(x‚(l)‚ xz(t),
x3(t)) wird der kinematische Fluß, der in der Zeiteinheit durch ein Flächenelement
strömt, gemäß

w-dA=w-udA=w„dA
definiert. Wenn die Zeitabhängigkeit nicht weiter interessiert, schreibt man einfach
w = w(x)‚ wobei es sich aber nicht um ein statisches Feld handeln soll. Der Hüllen-
fiuß fl w - dA ist der kinematische Fluß durch eine geschlossene Oberfläche. Wenn im

H
Innern keine Quellen (oder Senken) vorhanden sind, ist das Hüllenintegral gleich
null, aber auch dann, wenn im Innern die Summe der Quellstärken gleich der Summe
der Senkenstärken ist. Nur wenn im Innenbereich ein Überschuß an resultierender
Quellstärke eines Vorzeichens besteht, wird das Hüllenintegral

gdA-w=gg€w-dA=g;w„dA=Qü (4.48)
(H) (H) (H)

ungleich null, Es dient daher als direktes Maß für den Überschuß an Quellstärke
Qü = ‘IQ. +Z'Q_ =Z'|Q.,| — E|QA| im Bereich (V). H sei die Oberfläche des
Volumens V. Mit (H) und (V) bezeichnen wir die zugehörigen Bereiche (kontinuier-
liche Punktmengen, die durch Ungleichungen beschrieben werden).

Der grundlegende Integralsatz von Gauß

|”|'[divwdV=5j‘3€dA-w (4.49)
"(Vi (H)

ist aus der Analysis (Band 5) bekannt. Neben der Quellstärke Q wird die Quelldichte

AQ dQ
lim

AV—>0 Kt? = d7 = 4°‘) “m”
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eingeführt. Durch den Grenzübergang AV = Axl Ax; Ax; —> O soll das Volumen-
element auf den „Trägerpunkt“ (x1,x;,x3) zusammenschrumpfen, so daß alle
Kantenlängen des infinitesimalen Quaders gegen null streben:

Ax1—> 0, Ax; —> 0, Ax3 —> 0.

Satz 4.4: Die Divergenz des Geschwindigkeitsfeldes einer stationären Strömung stellt
eine kinematische Quelldichte dar:

div w = t](x). (4.51)

Allgemein wird div v als ein Quellenfeld angesprochen, das ein zugeordnetes Vektorfeld v

erzeugt. i

Setzen wir nämlich (4.51) in den Integralsatz (4.49) ein, so folgt

ffJqdV=J£f%dV=Q.-,=£§dA-w
(V) () (l

in Übereinstimmung mit (4.48). Aus (4.51) V - w = q folgt weiter in Verbindung mit
(4.50):

. AQ . 1

V "1‘:‘P„U’‚J:TO<U;Ü€°‘A w)’ (4-52’
AH)

wenn (4.48) in der Form ß dA - w = AQ auf das Volumelement AV mit der Ober-
)H

flache AH und dem Quel(1?1ntei1 AQ übertragen wird. Da w ein beliebiges Vektorfeld
ist, erhalten wir aus (4.52) die koordinatenfreie Darstellung des Nabla—Operators

. l
V =Al;r_1:10 (Wg dA) ‚ (4.53)

(AH) A

d. 11., V ist ein Tensor l. Stufe, wie es der Hauptsatz verlangt. Die Koordinaten des
Nabla-Tensors V = e,-O,» müssen sich also nach den Gesetzen (4.9)

51 = cikök: at = CklÖ-k

transformieren.
Weitere Integralsätze nach Gauß sind in (5.9), (5.10) und (5.11) formuliert.
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5.1. Lorentztransformationen

Programmatischer Satz 5.1: Der Übergang von einem kartesischen KS B auf ein
relativ zu B mit konstanter Geschwindigkeit u im Sinne der Mechanik bewegtes KS B
Iäßt sich deuten als Übergang von einem Bezugssystem B” des Minkawskiraumes auf
ein um eine Achse durch den Ursprung gedrehtes Bezugssystem B“, wenn der Übergang
nach der Lorentztransformation erfolgt. Damit wird eine Translationsbewegung des
Bezugssystems im dreidimensionalen euklidischen Raum in eine Drehung des Bezugs-
systems im uierdimensionalen Minkowskiraum übersetzt. Da Tensoren gegenüber sol-
chen Drehtransformationen des Bezugssystems invariant sind, lassen sich die Gesetze der
Elektrodynamik und Mechanik lorentzinvariant formulieren, wenn es gelingt, die zu-

gehörigen physikalischen Tensoren des uierdimensionalen Minkowskiraumcs aufzu-
stellen. Insbesondere muß ein vierdimensionaler Nabla-Tensor existieren.

Definition 5.1: Das kartesische KS B habe, von B aus beurteilt, die konstante Trans/a-
tionsgeschwindigkeit u = ue1. Bedeutet c die Lichtgeschwindigkeit im Vakuum, so

lautet die Lorentztransformation

_ x — ut _ _ ‚ t — ux/cz
= ___, = ‚ = ‚ =T 5,1

x \/l — uz/c2 y y Z Z t \/l —— uZ/cz ( )

Dabei wird die Zeitkoardinate t mittransformiert. Die Lichtgeschwindigkeit c ist nach
Einstein eine Invariante:

E = c. (5.2)

Wir gehen von einem vierdimensionalen euklidischen Punktraum R4 mit der
orthonormierten Basis c1, ez, e3, e‘, als Bezugssystem aus. Dieser Punktraum wird
durch die Definition der Punktkoordinaten

x, = x, x2 = y, x3 = z, x4 = ict (5.3a)

zu einem pseudoeuklidischen Raum Rä‘ modifiziert, der als uierdimensionaleLMin-
kowskiraum bezeichnet wird. Der Faktor i ist die imaginäre Einheit (i = \/ -1 und
i2 = -1). Durch Drehung des Bezugssystems BM mit der Basis e, ‚ ez, e3, e4 in die
neue Lage B” mit 5„ E2, E3, E4 wird eine orthogonale Ko0rdinatentransformation
durchgeführt, wobei (5.3 a) in

e, = i, i, = y, X3 = z, i4 = ici (5.3b)

übergeht. Mit den Abkürzungen

1Lj=K; 1-/12 I<2=1
h’ \/l—u2/c2 ( )

IIl
c

und den Umbezeichnungen nach (5.3 a, b) liefert (5.1) die Transformationsgleichungen

771 = K051 ‘i’ 177354): 372 = X2: 373 = X3: 374 = K(X4 — ihx1)- (5-43)
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Aufgabe 5.1: Man schreibe das lineare Gleichungssystem (5.4a) in Matrizenform mit
der Transformationsmatrix CM und zeige, daß

CM=CM=K‚ C2“’§=C§"§=1, C{‘,‘.=ihK=—C§’{, (5.5)

alle anderen Ci‘? = O.

Man überprüfe, daß die Quadratsumme der Elemente jeder Zeile oder Spalte der
Matrix CM eins ergibt und daß die Produktsumme zweier verschiedener Zeilen oder
Spalten immer gleich null wird. Die Transformationsmatrix CMistalso orthogonal:
(CM)" = (QM)? Man berechne det QM = l. Die Matrix CM vermittelt also eine
Drehung des KS BM in die Lage EM.

Mit der transponierten Matrix erhält man sofort die Auflösung von (5.421) nach

x1 = K01 — ih)?4), X2 = f2, x3 = X3, X4 = K()?4 + ih,\",). (5.4b)

Satz 5. 2: Die Koordinaten der Vierertensoren genügen der Inuarianzforderung gegenüber
Larentztransformationen, wenn die Transformationsgesetze

4 4

ék =1?‘ Cklela ek = 1:1 C5351; (5-63)

_ 4 4 _

Vk = [Z1 Ck] V1, Vk = lzl C111‘:/I V1» (5~6b)

_ 4 _ 4 _

Bnk a; 1C:1uV'ICIZ[Bj1: Bnk : Fjn C1135)’: (5-6°)
L = J. =

usw. mit den Transformationskoeffizienten (5.5) erfüllt sind, speziell nach (5.6 b) für
Vierertensoren I. Stufe:

V = Vlel + Vzez + V3e3 + V4e4.

Aufgabe 5.2: Mit Hilfe der konkreten Transformationsformeln (5.6 b)

I71: K(V, + ihV4), I72 = V2, I73 = V3, I74 = K(V„ — ihV1),

V, = K(l71 — ihI74), V2 = I72, V3 = I73, V4 = K(I74 + ihI71)

und (5.5) beweise man die Invarianz des Skalarprodukts

U171 + L‘/2172 + U373 + U474 = UIV. + UZV, + U3V3 + U41/4.

Mit Ö4 = Ö/öx4 = ö/öüct) wird der vierdimensionale Nab/a-Operator

EI = e161 + e202 + e303 + e404 (5.8)

erklärt. Er ist ein Tensor 1. Stufe, wenn er gegenüber Lorentztransformationen in-
variant ist: :1 = E. Das ist der Fall, wenn seine Koordinaten mit V, = Ö1, V2 = 62,
V3 .= Ö3, V4 = O4 den Transformationsgesetzen (5.7) genügen. Alle Bezugssysteme‚
die sich relativ zueinander mit konstanter Translationsgeschwindigkeit bewegen,
heißen Inertialsysteme. Die Grundgesetze der Physik müssen unabhängig von dem
zufällig benutzten Inertialsystem gelten. Das trifft für die Maxwellschen Grundglei-
chungen der Elektrodynamik zu, da sie sich vollständig in Vierertensoren darstellen
lassen. Insbesondere muß U ein Tensor 1. Stufe sein.

(5.7)
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Ergänzung: Der Tensorkalkül läßt sich auf den n-dimensionalen euklidischen Raum
R" erweitern. Dafür wird zunächst die Summenvereinbarung verallgemeinert: über
zwei gleiche Buchstabenindizes soll immer von 1 bis n summiert werden, wenn der
Raum R" zugrunde gelegt wird. Die Summenform eines beliebigen Tensors und das
Produkt zweier Tensoren behalten ihre bisherige Darstellung; speziell besitzt die
Dyade uv : u,-v,,e,-e,,. jetzt n2 Summanden.

Auch die Formulierung des Skalarproduktes

u-v = u,v,- = ulvl + uzvz + + u,,v,,

bleibt mit e,- - e‚„ = <5,-,, erhalten.
Die Konstruktion des Vektors u x v ist jedoch an den Raum R’ gebunden. Für

11> 3 wird das vektorielle Produkt u x v durch den Bivektor <uv> nach (2.36)
ersetzt:

(uv) = E — (u x v) = uv — vu = (24,11. — v,-uk) e,ek,

(Vv)=E-(Vxv)=V(1—§V=E-rotv.
Statt des Wirbelfeldes rotv wird somit das antisymmetrische zweistufige Tensorfeld

(T)

Vv — (V emgefuhrt. Der Speziellen Relativitatstheorie liegt der vierdimensionale
Minkowskiraum RE)‘ zugrunde, wo jeweils bis n = 4 zu summieren ist. An Stelle von

1

rot v muß hier das Tensorfeld Efli’ — VD mit (5.7) und (5.8) benutzt werden.

5.2. Kräfte- und Momentengleichgewicht

Eine Verallgemeinerung des Satzes von Gauß in der Form (4.49) besteht in der
Operaroridenlität

fffdVv... = fädA...‚ (59)
(v) (H)

so daß auch folgende Integralsätze gelten:

_|‘HdVgrad<p =§zpdA, HfdVr0tw = fi§dA x w, (5.10)
(V) (H) (V) (H)

HfdI/divT=fidA>T‚ (5.11)
(v) (H)

wo (p, w, T Tensoren 0., 1., 2. Stufe bedeuten.

Beispiel 5.1: Wir legen als Volumenelement eines elastischen Körpers nochmals das
Tetraeder nach Bild 3.2 zugrunde. Es sei wieder p„ derSpannungsvektor bezüglich
der schrägen Randfläche mit dem Stellungsvektor n. Die äußere Kraftdichte sei f, so
daß f vektorielle Kraft je Volumeneinheit und p vektorielle Kraft je Flächeneinheit be-
deuten. Die Bedingungen des Kräfte- und Drehmomentengleichgewichts am Gesamt-
volumen V des Körpers mit der Oberfläche H lauten

mrdv +(i5§)p,,dA = o (5.12)

und
ff] (x x f)dV +£§)(x x p„)dA = 0. (5,13)
(V)
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Durch Vergleich des Integralsatzes (5.11) in der Form

— m‘d1vsdV+§3€n-sdA = o
(v) (H)

mit (5.12) erhalten wir die Beziehungen

f: —divS‚ p,,=n~S, (5.14)

von denen wir schon Gebrauch gemacht haben, z. B. in der dynamischen Bewegungs-
gleichung

d d .gT‘:+f=0, gd—':=d1vs. (5.15)

Bei Anwendung des Integralsatzes (4.49) von Gauß können wir nach (5.14)

dA(p„ >< x) = dA(n~S) X x = dA-(S >< x)
schreiben

5E)5<1„1(p„ x x) =gädA-(s x x) = fljdvdix/(s x x)
(H) (H) ' )(it

und nach (5.13) und (5.14)

fiidA(p„ x x) = J'v|..|-dV(x x r) = J“f.|'dV(div s) x x.

(H) (V) (V)

Durch Vergleich der beiden Ergebnisse finden wir
div (S >< x) = (div S) X x,

also

v-(s >< x) = o. (5.16)

Wir hatten S = e‚-p‚- und setzen ST = p,~e,». Damit wird (5:16)

v-(s x§)=sT~v ><x=0,
P191’ ehök X X = (piötköh) X X = Pi X Öix

= Pi X er = Uikek X e: = ‘Gase: X eh

: ‘((723 ‘ U32)91 — (‘T31 — 0'13) 92 ‘ (1712 "' 021) e: = 0:

also a“ = an‘; der Spamzungstensor ist symmetrisch.

5.3. Kugeltensor. Deviator. Verzerrungstensor. Navier-Stokes-Tensor

Durch
Sx = a‚-„e‚- >< e,, (5.17)

wird die Stufe des Tensors S = cr,~,,,e,»e,‘ um 1 erniedrigt; durch die Verjüngung

sp S = a,-he, - e„ = 0'“, (5.18)

erniedrigt sich die Tensorstufe um 2; sp S heißt „Spur des Tensors 2. Stufe“. Kugel-
tensor S„ und Deviator S, werden wie folgt erklärt:

5.. = HS? S) L S» = S -% (SP S)1, (5-19)
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so daß die identische Zerlegung

S = S„ + SD (5.20)

in Kugeltensor und Deviator besteht. Es gilt

sp S, = sp S, sp S,, = 0, (5.21)

denn nach (5.18) und (5.19) wird

Spsv z 0k): ‘ 3'%‘7kk = 0~

Die Spur des Tensors der Deformationsgeschwindigkeiten

D =' (O,-wk + Okw,-)e;e,. = Vw + ivV
ist

sp D = 2 div w. (5.22)

Auch hier können wir (5.19) entsprechend in Kugeltensor und Deviator zerlegen:

i D„ = §(di-v w) I, D„ = D — §(div w) I. (5.23)

Für viskose Strömungen gilt in einem isotropen Medium das rhealogische Prinzip

s„ = 1;D,,, (5.24)
also

5,, = S — S„ = n[D —— %(div w) I]. (5.25)

Wird der hydrostatische Druck

I’ = —%Ukk (5-26)

eingeführt, so folgt

S“ = «}a,,.kI = —pI (5.27)

und damit nach (5.25) der Nauz'er—Stokes-Tensor

s = —pI + r‚[vw + vlvv — §(div w) 1] (5.28)

in Übereinstimmung mit (4.43).

In der Elastizitätslehre wird der Verzerrungstensor def s = 12-(Vs + éV) mit dem
Verschiebungsvektor s benutzt, sofern man sich auf linearisiert elastische Verformun-
gen in einem isotropen Medium beschränkt. Man erhält mit völlig entsprechenden
Überlegungen die Tensorbeziehung

s : gakkr + 2G[defs — §(div s) I]. (5.29)

Schubmodul (Gleitmodul) G und dynamische Zähigkeit 77 seien zeit- und ortsunab-
hängige Kenugrößen. Der Kugeltensor bewirkt hier eine Deformation mit Volumen-
änderung ohne Gestaltsänderung, wobei eine Kugel wieder in eine (kleinere oder
größere) Kugel übergeht. Der Deviator bewirkt umgekehrt eine Gestaltsänderung
ohne Volumenänderung, z. B. die Verformung einer Kugel in ein Ellipsoid mit glei-
chem Volumen.
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Satz 5.3: Ein beliebiger asymmetrischer Tensor 2. Stufe läßt sich immer in einen
symmetrischen und antisymmetrischen Tensor 2. Stufe zerlegen.

Eine solche Zerlegung ist A = B + C mit A 2 ameiek, bi,‘ 2 ä-(aik + ab) = b“,
c‚-„ = l(a„„. — am) = —c,„‚ so daß B = b„‚e‚e„ einen symmetrischen und C = c‚-‚.e,e,.

einen antisymmetrisehen Tensor 2. Stufe darstellt. Spaltet man in der Zerlegung

Vs = %(Vs + äv) + %(Vs — iv) (5.30)

den antisymmetrischen Rotationsanteil i-(VS — bV) ab, so bleibt der symmetrische

Verzerrungstensol" def s = ‘l*(VS + bV) = l-„eiek übrig. Die Tensorkoordinaten
d‚-‚„ = %(b,-3,; + Oks,-) für i # k heißen Scherungen und bedeuten relative Winkelände-
rungen gegenüber einem ursprünglich rechten Winkel.

dn = Ölsl, dz; = 6232, da3 = 63s; sind relative Längenänderungen in den Ach-
senrichtungen und heißen Dehnungen (bzw. Stauchungen). .——

Es seien A und B Tensoren 2. Stufe. Wir bilden das innere Produkt und erhalten
wieder einen Tensor 2. Stufe

A l B = aijeiej - b‚„e„e, = a„,b‚„e‚-e,. (5.31)

Die Koordinaten des Produkttensors erhält man auch durch Matrizenmultiplikation.
Wird nochmals verjüngt, so entsteht das dappeltskalare Produkt

A: B = a‚»‚‘b,„e,- - e, = aikbw (5.32)

Bei energetischen Betrachtungen spielt das doppeltskalare Produkt, das eine skalare
physikalische Größe darstellt, eine große Rolle.

Beispiel 5.2: Mit S = z7‚-‚„e‚e„ und Vw = öiivkqek sowie I = 6,-ke,-e,, berechnen wir nach
(5.32):

S: Vw = oykökvai,

I: Vw = ömökwi = O,,w,, = div w. (5.33)

Aufgabe 5.3: Man berechne die Dissipation

e = S„: Vw = 217[defw — ~}(div w) I] : VW, (5.34)

wo S, den Deviator (5.25) bezeichnet.

Aufgabe 5.4: Es sei S der Navier-Stokes-Tensor. Man bilde die Energiebilanz

S:Vw= -—pdiVw +8. (5.35)

Aufgabe 5.5: Man bringe die Kontinuitätsgleichung

2+: + div (gw) = 0 (5.36)

. 1 .

mit v = ?auf die Formen

l dg l du .—?E—7F—d1vw. (5.37)

Was bedeutet S„: Vw = -p div w physikalisch?
5 SChulbZ>PlSZ., Tensoreu
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Die Dissipation s nach (5.34) bedeutet die durch Reibung in Wärme verwandelte
mechanische Energie je Volumen- und Zeiteinheit. Die Kontinuitätsgleichung bringt
den Satz von der Erhaltung der Masse in einem strömenden Medium zum Ausdruck.

5.4. Die Maxwellschen Gleichungen der Elektrodynamik

Wir benutzen das internationale Maßsystem nach Giorgi. Als Materialkonstante
definiert man die absolute und relative Dielektrizitätskonstante sowie die absolute
und relative Permeabilität mit den Buchstaben so und e sowie n0 und ‚u. Die Ver-
bindungsgrößen sind

D = BOSE, B : ‚umuH. (5.38)

Die Vektorfelder E und H sowie B und D sind die elektrische und magnetische Feld-
stärke sowie die magnetische Induktion und die dielektrische Verschiebung. lm
Vakuum gilt e = i4 = l. Die Lichtgeschwindigkeit im Medium ist

5 = l/V/Eöo/‘Nov (5-39)

im Vakuum c = 1/\/so/40. Es wird die elektrische Raumladungsdichte g, als elektri-
sche Ladungje Volumeneinheit eingeführt, außerdem das Vektorfeld jg der elektrischen
Stromdichte. Dann lauten die Maxwellschen Gleichungen für eine im Laborsystem
ruhende Anordnung: '

div D = 9., (5.40)

divB = o, (5.41)

rotH = j‚_‚ + D, (5.42)

rotE = —B. (5.43)

Die partielle Ableitungä wird durch Punktierung gekennzeichnet. Gl. (5.41) besagt,

daß es keine magnetischen Ladungen eines Vorzeichens gibt, sondern nur magnetische
Dipole, Quadrupole usw. existieren können. (5,40) bringt nach Satz 4.4 zum Ausdruck,
daß elektrische Ladungen ein elektrisches Feld erzeugen. Nach (5.43) sind Ladungen
aber nicht die einzig möglichen Ursachen für ein elektrisches Feld.

Beispiel 5.3: Wegen div rot H = 0 folgt aus (5.42)

divrotH = divje + divD = divje +§t—divD = 0,

also mit (5.40) die Kontinuitätsg/eichung

divjz + (i. = 0, (5.44)

die hier den Satz von der Erhaltung der elektrischen Ladung zum Ausdruck bringt,
wenn ein elektrischer Strom fließt. Wegen div rot E = 0 muß nach (5.43) auch gelten

divrotE = div(—B) = —%divB = 0.

Diese Bedingung ist aber bereits mit (5.41) erfüllt.
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Beispiel 5.4: Durch Einführung des Poymingschen Energiestrahlungsvektors S*
= E x H haben wir nach (4.21)

divS* =H-rotE—E-rotH

und mit (5.42) und (5.43)

divS* : —H-1§—E~je—E-D: ——(E~l.)+H-B)—E-jg.

Wird das Ohmsche Gesetz je = xE als Feldgleichung berücksichtigt, so erhalten wir
mit (5.38) die Bilanzgleichung

«im = div S* + zE’, (5.45)
wenn

wem = %<s.,eE2 + MHZ) (5.46)

die elektromagnetische Energiedichte bezeichnet. In Integralform geht (5.45) in

— Wm, z M’ div s* dV + )'(|'x1~:2 dV (5.47)
(V) (V)

und nach dem lntegralsatz von Gauß (4.49) in

—% wen, = f]EJEs* - dA + Q; (5.48)

(H)

über. Die Abnahme der elektromagnetischen Energie ist nach (5.48) aufelektromagne-
tische Energieausstrahlung und Umwandlung in Joulesche Wärme zurückzuführen.

Bewegt sich die Anordnung gegenüber dem Laborsystem mit der Geschwindigkeit
u, so müssen wir D in (5.42) und B in (5.43) durch

dD OD dB OBW—W+u VD und ~(F—?t~+u VB (5.49)

ersetzen. Während die Lorentztransformation (5.1) die Grundlage der Speziellen
Relativitätstheorie darstellt, basiert die „Absoluttheorie“ auf der Gal1'leitransforma-

m" S=x—-ut‚j2=y, 2:2, i:r, (5.50)

die aus (5.1) unter der Voraussetzung 142/C2 < 1 hervorgeht. Diese Näherung ist in der
Elektrotechnik gut erfüllt, wenn man den Einfluß der Parallelverschiebung eines

__,.

elektromagnetischen Systems mit konstanter Geschwindigkeit (u z const) unter-
sucht.

Aufgabe 5.6: Man benutze (4.24) für u - VD und u - VB bezüglich (5.49) in der Form

u-Vv=udivv—vdivu+v-Vu—rot(uxv), (4.24)

um die Maxwellschen Gleichungen

rotH=j2+D+geu+rot(D >< u), (5.51)

rotE = —}-3 + rot (u X B) (5.52)

mit Zlusatzgliedern gegenüber (5.42) und einem Zusatzglied gegenüber (5.43)
herzuleiten.
5*
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5.5. Bilanzgleichungen

Wir führen eine stetig diflerenzierbare Orts- und Zeitfunktion G = G(x(t), t)'ein,
über deren physikalische Bedeutung noch verfügt werden kann. Für

d(gG)_ dg dG
dt ‘GING?

erhalten wir nach (4.30)

d(9G) _ 0(9G)
dt _ d:

Wegen (4.20) gilt

div (gGw) = w - grad (QG) + 9G div w,

+ w ~ grad (QG).

folglich
dg dG _ Ö(gG) . .G]? e? - Öl + d1v(gGw) — gGdrvw.

Damit ergibt sich die Beziehung

dG _ 6(96) . I . dgF _ at + d1V(gGw) — G[gdww + TI].

Der Ausdruck in der eckigen Klammer verschwindet, wenn die Kontinuitätsglei-
ehung in der Gestalt (5.37) berücksichtigt wird. Als neue Formulierung der Kon-
tinuitätsgleichung erhalten wir nunmehr

dG ö(' G) .

g W = —O‘5’t-— + d1v (gGw) (5.53)

mit der verfügbaren Transpartgrbfle G. Transportgrößcn sind z. B. Masse, Impuls,
innere Energie, Enthalpie, Entropie, bezogen auf die Masseneinheit. Temperatur und

. 1 . . ..

spezifisches Volumen z; = F sind keine Transportgroßen.

Beispiel 5.5: Ersetzen wir Ö durch die vektorielle Strömungsgeschwindigkeit w als
Impuls je Masseneinheit, so folgt aus (5.53)

dw _ Ö(gw)
gd—t — at + div (gww) (5.54)

mit dem Tensorfeld der Dyade ww =' wiirkeiek. Damit geht die Bewegungsgleichung
g dw/dt = div S in die Impulsbilanzgleichung

mag). = div (gww) — div s (5.55)

über. G1. (5.45) hat die Form einer elektromagnetischen Energiebilanzgleichung.
Aus der Bewegungsgleichung nach Navier-Stokes (4.45) soll die „Wirbeltransport-

gleichung“ hergeleitet werden. Wir ziehen die Lambsche Formel (4.28) heran und
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erhalten für (4.45)

öw 1 ZY+3gradw —w x rotw

= —— ägradp + vdiv gradw + %vgrad div w. (5.56)

v und Q seien Konstante. Durch Rotorbildung über (5.56) entsteht

Örot-l — rot (w x rot W) = v rot (Vzw).
a:

Aufgabe 5.7: Mit rot w = y leite man die Rayleighsche Wirbelgleichung her:

d Öd—};=b—2;+w-Vy=vV2y+y~Vw. (5.57)

Speziell für das ebensymmetrische (aber räumliche) Problem

3’ = V051: x2) es =(51W2 " O2W1)e3a

w = “(x1 a x2) = W1(x1 s X2) er + W205i 5 X2) 32
wird

y ’ Vw = r(x1‚ xz)ösw(xi‚ x2) = 0- (5.58)

Nur beim „ebenen Problem“ stellen y eine Transportgröße und

at
eine Bilanzgleichung dar.

= w - Vy -— vV2y (5.59)

5.6. Wirhelfelder. Integralsätze nach Stokes. Inkompatibilitätstensor

Dem Wirbelfeld y(x) wird mittels y = rotw ein Geschwindigkeitsfeld w(x) zu-

geordnet. Die Feldlinien des Vektorfeldes y(x) heißen Wirbellinien. Eine einzelne
gerade Wirbellinie senkrecht zur Zeichenebene ist in der Zeichenebene von konzen-
trischen kreisförmigen Stromlinien des Geschwindigkeitsfeldes w(x) umgeben. Eine
im allgemeinen gekrümmte Wirbellinie erzeugt das Geschwindigkeitsfeld einer
Zirkulationsströmung mit der Wirbelstärke (Zirkulation) I". Bei einer kontinuierlichen
Wirbelverteilung wird die Wirbe/dichte

d1" '

dA J

als Zirkulation je Flächeneinheit erklärt, wobei man sich vorstellt, daß zunächst eine
Schar diskreter Wirbellinien mit den Wirbelstärken I] , I‘; , F3, das Flächenelement
dA durchsetzt, die dann durch „Auffüllung zu einer lückenlosen Packung“ im Grenz-
übergang ein Kontinuum bilden, wobei keine Überschneidungen auftreten. Diese
Hilfsvorstellungen werden durch den Integralsatz von Stokes

H1-otw-dA= fw-ds (5.61)
(A) (C)

I‘/I = (5-60)
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präzisiert, der nach Band 5 bekannt ist, siehe auch (7.7). Hier bezeichnet C die ge-
schlossene Randkurve der oflenen Fläche A. Das geschlossene Linienintegral wird mit
mathematisch positivem Umlaufsinn (Gegenuhrzeigersinn) definiert; andernfalls
erhält das Integral negatives Vorzeichen. Ähnlich wie die Integrale des Gaußschen
Satzes den Uberschuß an Quellen eines Vorzeichens messen, definieren die Integrale
des Satzes von Stokes

Hy-dA=fw-ds=§w,ds=I",-, _ (5.62)
(A) (C) (C)

den Uberschuß an Wirbelstärken eines Drehsinns. Werden von der Randkurve C
nämlich entgegengesetzt drehende Wirbel eingeschlossen, so gibt das geschlossene
Linienintegral die Summe aller im Integrationsbereich vorhandenen vorzeichenbe-
hafteten Wirbelstärken an, also den Überschuß der Wirbelstärken eines Vorzeichens,
sofern I}, # 0 ist.

Wegen

dA-V >< w: [dAvlv] =(dA >< V)-iv

gilt auch

H(dA><V)-w=j§dx-w. (5.63)
(A) (C)

Verallgemeinert läßt sich die Operatoridentität

HdA><V=§dx (5.64)
(c)(A)

begründen, aus der sich weitere Integralsätze ergeben, z. B.

HdA><V¢=fdx<p
(A) (C)

oder g

— ff gradzp x dA = wax, (5.65)
(A) (C)

ferner
lH(dA><V)><w=§§dx><w (5.66)

(A) (C)

und für ein zweistufiges Tensorfeld T:

t
”(dA><V)-T=§dx~T. (5.67)

(A) (c)

Satz 5.4: Der Rotor des Gesehwindigkeitsfeldes einer stationären Strömung stellt eine
Wirbeldichtc dar:

rotw = y(x). (5.68)

Allgemein wird rotv als Wirbelfeld angesprochen, das ein zugeordnete: Vektorfeld v

erzeugt.
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Beispiel 5.6: Bei stationärer elektrischer Strömung lautet die Maxwellsehe Glei-
chung (5.42)

rot H = j‚(x). ‘ (15.68)

Der elektrische „Strom“, nämlich die Stromstärke

1 = H‘ j, - dA, (5.69)
(A)

entspricht bei Vergleich von (5.68) mit (5.68) der Zirkulation I’. Elektrodynamisch
und hydrodynamisch entsprechen sich die Größen

j, a y, I g I‘, H 5 w, (5.70)

man denke an das Biot—Savartsche Gesetz in beiden Fassungen! Die elektrische
Stromdichte je stellt also ein Wirbelfeld dar, das ein zugeordnetes Magnetfeld H
erzeugt. .

Satz 5.5: Der Rotor eine: Tensorfeldes I. Stufe ergibt ein Tensorfe/a’ I. Stufe.

Das folgt aus der koordinatenfreien Darstellung (4.53) des Nablatensors l. Stufe
und dem Tensorcharakter des Vektorfeldes w(x)‚ so daß Vw, V >< w = rotw und
V - w = div w Tensorfelder 2., l. und nullter Stufe sind.

Von großer Bedeutung für Theorie und Anwendung ist die Erweiterung des
Wirbelfeldbegriffes rotw = V >< w auf Tensorfelder 2. Stufe durch den Begriff der
Inkomparibilität des Tensorfeldes T gemäß

H
V X T >< V = inkT. (5.71)

Wenn wir auch def s = äiVi + äv) als eine Erweiterung des Vektoriellen Gradienten-
begrifies gradgv auf Tensoren 2. Stufe ansehen, gelten folgende sich entsprechende
Identitäten:

rot grad = 0, div rot = O,

ink def = 0, div ink = 0.

Beispiel 5.7: Wegen seiner Bedeutung berechnen wir für D = dikeie,‘ den Inkompati-
bilitätstensor

ink D = V X D X V = e1e1(O3O25l'32 + 02035123 — 03535522 * Özözdss)

+ elel(ö3ö3d2l ‘l’ Örözdas ‘ Ö3Ö2d31 “ ÖlÖ3d23)

+ e1e3(Ö2Ö2d31 ‘l’ Ö1Ö3d22 ‘ Özösdzr ‘ 51025132)

+ 9291(O353d12 ‘l’ Özördaa “ 03515132 — 02035113)

‘l’ e2e2(Ö3Öld31 + Öiöadis — 53535111 — 01015133) (5-73)

+ e2e3<a1a1d32 + Ö2Ö3dl1 ‘ özÖidar — 51035112)

+ eae1(6z52d13 + 03515122 “ 53525512 — Özöidzs)

‘l’ 93e2(51o1d23 + 53525111 ‘ 53515121 " ÖIÖZdIS)

+ e3e3(5251d21 ‘l’ Örözdrz “ 02025111 ‘ Ö1Ö1d22)«

(5.72)
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Aufgabe 5.8: Man beweise mittels (5.73) und bestätige mit Nablaoperationen die
Indentitäten

inkdefw = 0 und div inkD = 0. (5.74)

Aufgabe 5.9: Man überprüfe an drei ausgewählten Komponenten, daß ink D = 0 ist,

wenn D = -} (v; + 5V) eingesetzt wird, z. B.

an = 0151, d2; = 03x2, 24., 2 Öls; + 62x1

für die letzte Komponente in (5.73).
Wenn D ein symmetrischer Tensor 2. Stufe ist, ist es auch ink D. Welche Koordina-

ten des Tensors ink D gehen durch zyklische Vertauschung auseinander hervor?

Wir wollen d„ = d„‚ voraussetzen. Die Tensorgleichung

inkD = 0 (5.75)

heißt Kompatibilitätsbedingung. Nach (5.73) erhalten wir die Bedingungsgleichungen
der Kompatibilität:

R,"‚‘„‚„ = Öiüpdqk + Ö„Ö„d‚i — Öqdpk — Ököpdqi = 0, (5.76)

z. B. für kipq = 1212, 2323, 3131, 1123, 2231, 3312 bei Beachtung der Reihenfolge,
also 6 unabhängige Bedingungen nach (5.73). Andererseits genügen die Koordinaten
Rt,“ nach (5.76) den Symmetriebeziehungen

Rtiptl = ‘Rtiqn = "Rfikpa = +R‘;kzn7’ (577)
Rtiwl ‘i’ Rlfpqt + Rifqip : 0:

wie man durch Vertauschungen von Indizes in (5.76) sofort bestätigt. Wegen (5.77)
gibt es auch nur 6 unabhängige Bedingungsgleichungen der Form R,‘fi,,,, = 0. Die
Rtipq sind die Koordinaten eines Tensors 4. Stufe, der aus den Koordinaten Rkwq

des Riemann—Tensors (8.18) durch Linearisierung bei Annahme kleiner Verzerrungen
|d„„| hervorgeht.

Eine ausführliche Darstellung findet sich in dem vierbändigen Werk „Ein Kurs über
Kontinuumsmechanik“ von L. I, Sedow, Universität Moskau (Englische Übersetzung: Wolters-
Noordhoff Publishing Groningen The Netherlands). Der Tensorkalkül wird hier weitgehend in
unserer Auffassung benutzt. Während wir uns in den Anwendungen auf die Eulersche Darstellung
beschränken mußten, wird in dem genannten Werk auch die Lagrangesehe Darstellung ausführlich
erörtert und angewandt.



6. Einführung in die Tensoralgebra mit ko- und
kontravarianter Basis

6.1. K0- und kontravariante Basisvektoren und Tensorkoordinaten

Es wird unter der Voraussetzung [b1bzb3] =l= 0 eine beliebige Basis b1, b2, b3 zu-

grunde gelegt. Die Basisvektoren b,» (i = 1, 2, 3) haben beliebige Längen (Normen)
und definieren im allgemeinen ein schiefwinkliges KS B. In diesem Bezugssystem habe
ein Vektor v die Komponentendarstellung

V = v,b1 + vzbz + v3b3 (6.1)

mit den Koordinaten v1, v2, vs. Die Lösung dieser Vektorgleichung ist uns aus
(3.15), (3.l6) bekannt:

[Vbzbsl [bivbal _ [b1b2v]

" ‘ [bibzbs], ”’ ‘ ibmzbai’ "3 ‘ lbibzbsl"

Wir führen die neue Bezeichnung

„i; = v’ (6.3)

ein und verabreden das neue Summationsübereinkommen als

(6.2)

Vereinbarung 6.1: Über zwei gleiche lateinische Buchstabenindizes wird nur dann
automatisch von _1 bis 3 summiert, wenn einer der Indizes tiefgestellt, der andere
hochgestellt ist. (Über 2 gleiche Buchstabenindizes‚ die in gleicher Höhe stehen, darf
künftig nicht summiert werdenl).

Damit wird (6.1)

V = v‘b1 + 122b; + v3b3 = v’b,- (6.4)

und (6.2)
b >< b b >< b b >< b1__2 3’_2=_3 1’ 3:. i z. 6.5

[bibzba] ” V [b.b2b31 ” ' [bibzbsl ‘ )

Wir definieren die zu den Basisvektoren b, reziproken Vektoren b‘ gemäß

b >< b ' b >< b b x bb1: 2 a’ 2: 3 1’ b3: 1 2 _ 6.6

[bibzbsl [b1b2b3] [b1b2b3] ‘ ’
und erhalten für (6.5)

v’=v'b‘, v2=v-bl, v3=v-b3,
also

v’ = v - b‘ (6.7)

bezüglich (6.4). Diese ursprüngliche Darstellung enthält keine offenen Fragen mehr.
Der Vektor v ist aber auch mit den Koordinaten

v - b, = u, (6.8)

vollständig bestimmt. Sie entsprechen den Parallelprojektionen in einem schiefwink-
ligen KS, während die v‘ den senkrechten Projektionen entsprechen. Wie sieht die

"Darstellung eines Vektors v mittels (6.8) aus?
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Zur Beantwortung dieser Frage wird (6.5) skalar mit b,- multipliziert, z, B.

lbrbabil [bzbsbl]b -b2=—————=0, b ~b2 =j—=

‘ [lahm] ’ [bibzbs]
usw. Es gilt

b,- ~ b" = ö? = b" - b,., (6.9)

wo jetzt öf‘ das Kroneckersymbol bedeuten soll. Bilden wir nach (6.4)

v- b,» = v„b" - b, = 15,6? : m,

so wird die gestellte Frage mit der Komponentendarstellung

v = v‚b’ (6.10)

des Vektors v beantwortet, d. h. die Koordinaten v - b, = v,- hat der Vektor nicht im
ursprünglichen Basissystem B der Vektoren b 1 , b, , b3, sondern im zugeordneten rezi-
proken System B* der Basisvektoren b‘, bl, b3 (vgl. Bd. 13, 2.3.7.2.).

Aufgaben 6.1: Es ist nachzuweisen, daß die Reziprozitätsbeziehungen

b, - b" = Ö5‘, [b1b2b3] [b‘b2b3] = 1 (6.11)

und die Korrespondenzformeln zu (6.6)

2 3 3 I 1 2 '_b><b _b><b bxb (6.12)

"1- 2 ‘ 3- [h‘b2b3]
gelten.

Ist b,, b2, b3 eine Basis, so bilden auch die reziproken Vektoren b‘, b2, b3 eine
Basis nach (6.1 1), und zwar beide ein (R)'oder beide ein (L), denn aus [b,b2b3] 2 0
folgt [blbzb3] 2 O. In den Darstellungen

v = 12,-b‘ = v’b, (6.13)

heißen die v, kavariante, die v’ kontrauariante Koordinaten des Vektors v. Entspre-
chend heißen die b, kovariante, die b‘ kontravariante Basisvektoren. Diese Bezeich-
nungen werden sich aus dem Transformationsverhalten bei Übergang von B auf I?

und B* auf 3* ergeben. Wenn es sich um kartesische Einheitsvektoren handelt, fallen
die Parallelprojektionen mit den Normalprojektionen zusammen, und es gilt nach
(6.6) und (6.12)

e, = b, = b’.

6.2. Die Transformationsgesetze für die Tensorkoordinaten

An Stelle der früheren cf,‘ müssen wir neue Transformationskoeffizienten ß!‘ ein-
führen, mit denen der Übergang von B auf B durch eine homogene lineare Koordina-
tentransformation gemäß

B. = 181m. b. = 5:7». (6.14)

und von B* auf 5* gemäß

b‘ = 52b”, b‘ = ßib” (6.15)
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für i = 1, 2, 3 vollzogen wird. Der Buchstabe /5’ soll an Basis und Bezugssystem
erinnern. Die Transformationsmatrix Z = ((1955)) sei regulär, also Ilßfll 4= 0. Das
2. Gleichungssystem von (6.14) ist die Auflösung des 1. Gleichungssystems, so daß

die Elemente der inversen Matrix zur Ausgangsmatrix mit den Elementen ß!‘ be-
deuten. Da die b,- und b‘ in einer festen Beziehung zueinander stehen, ist (6.15) aus der
Vorgabe (6.14) zu folgern. Auch in den neuen Bezugssystemen B und 3* muß

b,- ~11“ = öf‘ (6.16)

gelten. Da die Transformationsmatrizen Z = und Z“ = ((5,5)) zueinander
invers sind, bestehen die Beziehungen ZZ“ = = _I, also

15551‘ = 5113i‘ = 559 (6.17)

Aufgabe 6.2: Mit dem Ansatz b‘ = yib" bestätige man das erste Gleichungssystem
von (6.15) als Folgerung aus (6.14) mittels (6.16) und (6.17).

Jetzt können wir die Transformationsgesetze angeben, nach denen sich die Koordi-
naten eines Vektors v transformieren müssen, um der Invarianzforderung v = V an
einen Tensor 1. Stufe zu genügen. Mit (6.14) und (6.15) folgt

(( k»
z‘;

v = iii», : Eififfbk = v = v"b,,,

V = :3,-1)‘ = vfifibk = v = vkb“,

‘ _ "k- _ -_ i 'v'b¢ — v‘p’,»b,,. — v— LkbkIIV

v = v,b‘ = v,fl;j)" = v = Ükl-lk.

Durch Vergleich der Faktoren von b" bzw, h,, erhalten wir die Transformationsgesetze

Ü: = ßrkvka U: = B:651: (6-18)

E‘ = 52v‘, v‘ = ßfiö“ (6.19)

für die Koordinaten eines Tensors 1. Stufe.

Durch Vergleich von (6.18) und (6.19) allein mit (6.14), d. h. mit den „ursprünglichen“ Basisvek-
toren h,~, nennt man das Transformationsverhalten der Koordinaten v, kavarianl (zu den b,-), das
Transformationsverhalten der Koordinaten v’ dagegen kontravariant (zu den 11,-). Verschiedene Grö-
ßen, die sich gemeinsam nach dem Transformationsgesetz (6.18) oder gemeinsam nach (6.19) richten,
heißen kogredient. Transformiert sich eine Größe nach (6.18), eine andere Größe nach (6.19), so

verhalten sie sich zueinander konlragredient. Die Matrix (Z“)T = ((5,9) heißt nämlich die kontra-
gredientc Matrix zu Z z ((ßf)). Mit diesen Matrizen sind die in (6.18) und (6.19) untereinander ste-
henden Vergleichssummen gebildet. Rein äußerlich erkennt man Kovarianz in (6.18) daran, daß die
Summe nur mit ungestrichenen oder nur mit gesttichenen Größen gebildet wird, während bei Konv
travarianz nach (6.19) in der Summe gestrichene und ungestrichene Größen zusammentreten. In b,-

und v, bzw. b’ und v’ weist bereits der tief bzw. hoch gestellte Index auf das ko- bzw. kontravariante
Verhalten dieser Größen hin.

Das Produkt zweier Vektoren u und v wird völlig analog zu (2.13) definiert. Jetzt
gibt es aber vier Darstellungsmöglichkeiten für die Dyade uv, nämlich

uv = zflbivkbk = u"v"bib‚„ uv = u,-v,‘b"b",

außerdem die gemischten Darstellungen

uv = u,»v"b"b,,, uv = u‘v,,b,-b".
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Da das Flächenelement dA im folgenden nicht auftritt, können wir mit A einen
Tensor 2. Stufe bezeichnen, Entsprechend den Darstellungsmöglichkeiten für uv

gibt es für einen Tensor 2. Stufe die Komponentendarstellungen

A = a"‘b‚-b„ = amblb" = aikblbk = a‘kbib". (6.20)

Die Schreibweise a? ist nur erlaubt, wenn a,~" = a", gilt wie z. B. für das Kronecker-
symbol Ö5‘. Die Transformationsgesetze für die Koordinaten eines Tensors 2. Stufe

ergeben sich mit (6.14), (6.15) aus der Invarianzforderung A = Ä, also z. B.

A z aübibj = aijfiiäkfiißz:

oder

A = auhibj : <Iufl}}b"/3’)b‘,

A ’—" aiJfl;<fifi)k-Bl = Ä = ¢7xz_l3kBl-

Wir stellen die Transformationsgesetze für die Koordinaten eines Tensors 2. Stufe in
den 4 möglichen Darstellungen zusammen:

did = Igicßiaijy am = Bicläiäiia

a-kl = fgfgßjiaij, am = ß? Jiäij)

äkl = 13155503, 0k’ = ßicßiäijs

ä‘. = Bffilaü» ah = /5’5‘5i'fi";-

Ersichtlich braucht man immer nur eine der nebeneinander stehenden Transforma-
tionsgleichungen aufzuschreiben, da jeweils eine aus der anderen hervorgeht, wenn

man alle Trägerbuchstaben mit einem zusätzlichen Querstrich versieht und ä = a,

(6.21)

3 = ß beachtet. Auch ohne Rechnung entnimmt man aus den Transformationsgeset-
zen (6.21) das Bildungsgesetz der Transformationsformeln, was wir am Beispiel eines
vierstufigen Tensors zeigen,

Beispiel 6.1: Es sei R ein Tensor 4. Stufe. Seine Koordinaten genügen z. B. folgenden
Transformationsgesetzen

7m! = /3?"/3;”555?’n.npqs w“ = mpg’
= 5;mmr"'.»., = :"’iB’,§/3£,r,.."W.

Ein Tensor 4. Stufe hat 3‘ = 81 Koordinaten. Für seine Charakteristik bezüglich
Ko- und Kontravarianz gibt es 2‘ = 16_Mög1ichkeiten‚ von denen wir in (6.22) nur

4 angegeben haben. Die Komponentendarstellung geht aus der Koordinatendar-
stellung eindeutig hervor, z. B.

R = r‚„„b’b’b"b’ = r‘”“b,b,bkb,

= ri,'c,b,.bfb,.b' = r,”“b‘h,b,,b,,

so daß man die Basisvektoren jederzeit hinzufügen oder weglassen kann, wenn man
nur in Koordinaten rechnen will. Die Varianten sind die Tensorkoordinaten und
Basisvektoren. Invariant sind die Tensoren und die von ihnen erzeugten Multilinear-

(6.22)
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formen. Der Vergleich von (6.18) und (6.19) mit (6.14) und (6.15) zeigt, daß sich die
kovarianten (kontravarianten) Koordinaten eines Tensors 1. Stufe nach dem gleichen
Gesetz transformieren wie die kovarianten (kontravarianten) Basisvektoren. Das ist
eine Verallgemeinerung des Satzes 1.2. Alles über Multilinearformen im Zusammen-
hang mit Tensoren Gesagte könnte hier in sinngemäßer Verallgemeinerung wiederholt
werden. Die Erweiterung von kartesischen auf beliebige Basissysteme, von orthogona-
len auf beliebige homogene lineare Koordinatentransformationen ist erheblich. Es
wäre aber ermüdend und aus Platzgründen gar nicht möglich, alle Übertragungen mit
Definitionen, Sätzen und Beweisen sinngemäß zu wiederholen. Wir müssen uns darauf
beschränken, den Kalkül mitzuteilen und das wesentlich Neue hervorzuheben.

6.3. ' Tensor der Metrikkoeffizienten

Es fehlt noch die Komponentendarstellung eines Basisvektors b‘ in B und eines
Basisvektors bi in B*. Diesen Zusammenhang sollen die Koeffizienten g“ und gik
herstellen gemäß

b‘ = gikbks bi = gu.»bk- (6-23)

Methodisch gesehen, läßt sich mittels g”‘b,, = b‘ der Index von bk ,,heraufziehen“ und
mittels g,-,,b" = b,- der Index von b" „herunterziehen“, indem man mit g“‘ bzw. gm
„überschiebt“. Schreiben wir (6.23) in der Form b" = g"’b„ b, = g„b‘ und b" = öfb‘,
so folgt

b" = gklbl = guglibi = äiibiv

gklgu = 61k: (634)

d. h. die Matrizen ((g"')) und ((g„)) sind zueinander invers, wie es nach (6.23) sein
muß. Nun können wir auch das Skalarprodukt der Basisvektoren in B oder B* mit
(6.9) angeben

also

bx’ ' bk = gtjbj ' bk = 811611;: gun
b! ‚ bk = gijbj . bk = gijö} = gik,

so daß die (Beziehungen b; - bk = bk ~ b,-, g... = gki und b‘ ~ b" = b" ' b‘, g“‘ = g“
gelten. Aus später ersichtlichen Gründen heißen die in (6.23) eingeführten Koeffizien-
ten „Metrikkoeffizienten“, und zwar die gm kavariarzte Metrikkoeffiziemen und die
g"‘ kontravariante Metrikkaeffizienten. Die Metrikkoeffizienten sind symmetrisch:

b: ’ bk = git: = 81m bi‘ bk = 8“‘ = gki- (6-25)

Nach (6.8) und (6.23) wird

U: = V ' b: = "lb: ' gikbk = Ulgucéll‘ = vkgika
analog

v‘ = v - b‘ = v,b‘ - g"‘b,, = v,g""6f¢ = Lug”.

Mit Hilfe der Metrikkoeffizienten läßt sich der Index auch bei den Koordinaten eines
Vektors herauf- und herunterziehen:

v„g"‘ = v‘, v"g,k = v‘. (6.26)
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Wir untersuchen den „Einheitstensor“ G, der den Forderungen

G-v:v-G=v (6.27)

genügen soll, in der ko- und kontravarianten Gestalt

G = y,,,b"b‘ : y"'b„b,.
Es folgt

G - v = yk,b"b' - v‘b,- = y,,,v‘b"(5,’- = -/k,v‘b"' = v = vkbk,

v - G = v,-b‘ - ~,/"‘b,‘b, = ~/"’v,6};b, = 7»"'vkb, = v = v‘b,,

also nach (6.26)

75k = i'm”! = 8x151, 1J z ‘/“Pk : 8“":-

Wegen yk, = g“, y“ = g“ bilden die Metrikkoeffizienten einen Tensor 2. Stufe

G = gikbibk = gikbibka (628)

der als „Metriktensor“ (Tensor der Metrikkoejfizienten) bezeichnet wird und die
Eigenschaft des Einheitstensors nach (6.27) besitzt. Wegen (6.25) ist der Metriktensor
G symmetrisch.

Die neuen Kroneckersymbole Öf‘ genügen der Symmetriebedingung

6,7‘ = ö", = Ö5‘. (6.29)

Sie sind die Koordinaten des Einheitstensors

I = Bf-‘b‘b,( = öfbkb‘ = bkbk = bkb". (6.30)

Da auch I 4 v = v -I = v gelten muß, wie man leicht nachrechnet‚ besteht der Zu-
sammenhang

G =1. (6.3!)

I wird gemischt, G wird rein kovariant oder kontravariant dargestellt.

6.4. Tensorprodukte. Der ko- und kontravariante E-Tensor

Daß nur „gleichartige“ Tensoren addiert werden können, besagt auch, daß man

sich auf die gleiche Basis beziehen muß, z. B.

<7‚-"b"bk + 1:,» kbibk = (z7,«" + 1,-") b‘b„.

Wenn statt der e,- die Basisvektoren b‘ und b,‘ eingeführt werden, läßt sich das Produkt
zweier Tensoren völlig analog definieren, z. B.

a,~"b‘bk1’,,,,,b,b’"b" = a, “1',,,,,b‘b,,b,b"'b"

bei Beachtung der Reihenfolge. Das innere Produkt der beiden Tensoren wird nach

(625) k r 1 k 1 ~o} b‘h‚„ ~ T ‚„„b‚b"‘b" = a,» 1‚„„g‚„b’b’"b”.
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Für das ska/are Produkt (zweier Vektoren) haben wir die Darstellungsmöglichkeiten

u ' v = u‘b,- - v"bk = u"u"bi - bk = g,.,‘u"v",

i k i k ik (632)u-v = uib -vkb 2 uivkb -b 2g uivk

und die gemischten Darstellungen

u - v = uibi ~ ukb" = ulvkbi - b" : ulvköf‘ = u'vi,
. k . . ‚ (6.33)

u - v = u‚b'-v bk = u,-u"b' - bk = um" ‘k = u,-u‘,

also gilt auch

g“‘u‚-vk = u"L~k, g;,‘u‘v" = uku". (6.34)

Satz 6.1: Mit Hilfe der Metrikkaejfizienten lassen sich die Indizes der Tensarkaordimk
ten systematisch herauf- oder herunterziehen nach dem Muster

_ l Ä l _ ‘k
gijgklafl — am gllgk an - 11' ‚

. _ . (6-35)
gijgklajl = aika gljgklajl = “Ik-

Die öf‘ bewirken nur einen Austausch der Indizes, z. B.

öfcail = akl’ Öfcail = aik’ _

4 _ (6.36)
5150:1; = jks élcéfatk = an-

Das vektorielle Produkt berechnen wir in der Form

u x v = u‘b,- x v"b„ = u"v"(b,» x bk) = (ulvz —— uzu‘) (b, x bl)

+ (142123 — u3v2) (b2 x b3) + (14301 — i1‘v3)(b3 >< bl)
und nach (6.6)

b‘ u‘ v‘
u x v = [b1b2b3] b’ uz v“ , (6.37)

b3 us U3

analog
b1 ul U1

u x v : u,vk(b‘ x b") = [b‘bZb3] b; u; v2 (6.38)
' b3 143 v3

Das Spatprodukt wird nach (6.37)
b1'W u‘ v‘

(u x v)-w = [uvw] = [b1b2b3] b2 - w u: v2

b3-w 143 v3

wegen (6.7)
u‘ v‘ wl

[uvw] = [blbzbs] uz u’ w“ (6.39)
uä U3 „,3

und entsprechend
ul v1 w,

[uvw] = [b‘b’b3] u; u; w; . (6.40)
u3 v3 W3
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Der Maßfaktor [b,b2b3] bzw. [b‘b2b3] ergibt sich hier ganz von selbst. Mit (6.37)
bis (6.40) werden die vorweggenommenen Formulierungen (1.35 a, b) legitimiert.

Wir bilden das doppelte Spatprodukt

[xyz] [WW] x1‘ x: x: u, v1 wl
—'——‘*‘Tr3—= J’ y y Hzvzwz[b1b2h3] [b b b ] Z1 Z2 Z3 us U3 W3

x‘uix'u,x"wi x~u X‘V x-w

= M. flv; y‘m = y ~ u y ' V y ' W - (6.41)
z"u,‘z‘v,-z‘"w,— lz-uz-vz-w

Speziell wird
u -u u -v u -w

[uvw]2= v'uv~vv-w, (6.42)
W'll w-v w'w_

also ist nach (6.25)

[b1b2b3:|1 = llb: ' bk” = “gm” -

Die Determinante der kovarianten Metrikkoeffizienten wird mit

“gm” = g (5-43)

bezeichnet, so daß

[b1b2b3]2 = llgikll = g > 0 (6-44)

und wegen (6.44)

. l
[b‘b2b3]z = |\g"‘H = E > 0 (5-45)

gilt. Die Matrix der Metrikkoeffizienten ist regulär. Bilden die Basisvektoren in der
Index-Reihenfolge l, 2, 3 ein Rechts- oder Linkssystem, so erhalten wir die „Maß-
faktoren“

[bibzbsl = + „(E (R) oder = w; (L),

[b‘b2b3] z + % (R) oder = — L. (L).
\/ 8 \/S’ ' _

Wie sieht der E-Tensor in ko- und kontravarianter Darstellung aus? Wir schreiben

E = e”"b,bkb, = ei,,,b‘b“b‘. (6.47)

Zur Unterscheidung von den früheren Koordinaten am benutzen wir den Buchsta-
ben e. Nach (6.46) treflen wir die
Vereinbarung 6.2: Die Basisvektoren bl , b; , b3 und bl, b“, b3 sollen in dieser Reihen-
folge ein Rechtssystem bilden, so daß gilt

[b1b2b3]= +JE‚ [b‘b’b3] = +1/x/E (6.48)

Definition 6.1: Die Koordinaten des vollständig antisymmetrischen Tensors 3. Stufe E

nach‘”(6.47) sind ‚

em = [btbhbi]: em = [bibkbl]: l’ (649)

(6.46)
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und zwar nach (6.48)

e123 = N/E. €123 =1/\/g‚
e123 2 9231: 9312 = ‘e213 = ‘e321 = “e132,” (6-50)

123e = e231 = e312 = _e213 = _e321 = _e1a2’

em = 0 und e"" = 0, wenn zwei oder drei Indizes gleichzahlig sind.
Diese Tensorkoordinaten müssen also entsprechend (6.21) und (6.22) den Trans-

formatiansgesetzen

5m = fi€"fl:’!fl§’e».»p, Em = lggnfifigfémnp

e-ikl = emnp’ em = érrmp
genügen. Der Beweis ist etwas anspruchsvoller; darauf können wir nicht mehr ein-
gehen.

Die Rechenregeln mit den Tensorkoordinaten (6.49) werden methodisch völlig
analog aufgestellt, wie wir es früher an den am gezeigt haben. So ergibt sich für das
vektorielle Produkt u >< v = w = w‘b,» = w,b‘ die Koordinateudarstellung

(6.51)

w" = e”‘.’u„v„ w, = e,,,,u"v' (6.52)

und für das Spatprodukt

[uvw] = e""u,v„w‚ = emu‘v"w’. (6.53)

Sind u, v, w Tensoren l. Stufe, so ist [uvw] ein (invarianter) Skalar. Die Basisvektoren
bl, b2, h3 oder h‘, b’, b3 sind insgesamt nicht Tensoren 1. Stufe. Folglich stellen
[bibjbk] = em und [b‘b’b"] = e"" keine skalaren Invarianten dar. In der Tat sind sie
die Varianten Koordinaten des E-Tensors, die sich nach (6.51) transformieren müssen.
Nach Satz 6.1 erhalten wir

gngjmgknelmn = em‘: gilgfmgknewm = eijlv (6-54)

Statt (2.33), (2.35), (2.39), (2.40) gelten die entsprechenden Produktformeln

‘Öl ö} ÖL
e„„e""" = 6,5” 6;" 6;," ‚ (6.55)

ö," 6;’ 6;;

e,,»,,e‘”"’ = 6;"6,’; — 6j‘6,’§‘, (6.56)

emeifn '= 26;, e.,ke"I’= = 6. (6.57)

Zum Beispiel nimmt die Beziehung (2.41) jetzt die Form an

e"“z:, = v”, v, = §e,»,.,v‘*. (6.58)

6 Schultz-1‘1'ss., Tensoren



7. Einführung in die Tensoranalysis mit ko- und
kontravarianter Basis

7.1. Krummlinige Flächenkoordinaten. Vektor des Flächenelements.
Zirkulation

Wir erinnern an Kugelkoordinaten (räumliche Polarkoordinaten) r, 29, (p, die mit
xi =rsin19cos<p, x2 =rsinz9sin<p‚ x2 =rcosz9 (7.1)

für 0 g r < o0, 0 g 19 g n, 0 g zp < 272 erklärt sind. Auf der Kugelfläche r = R
= const können wir krummlinige Flächenkoardinaten 19, (p mittels

x1 = R sin 19 cos (p, x2 = R sin 19 sin zp, x3 = R cos 19 (7-2)

in der Form x2 2 x1(19,<p), x2 = x2(19,<p), x3 = x3(19,<p) einführen. Ein Festwert
19 = 190 ergibt einen Breitenkreis, während (p = (pa einen Meridiankreis der Kugel
r = R definiert. Allgemein wird mit

x, = x1(u, v), x2 = x2(u, v), x3 = x3(u‚ v) (7-3)

oder Vektoriell mit x = x(u‚ v) die Gleichung einer Fläche im R3 mit den krummlini-
gen Koordinaten u und v beschrieben. Für v = v0 erhalten wir in x = x(u, v0) eine
Raumkurve mit dem freien Parameter u, die wir u-Linie nennen, für u = u0 in
x = x(u0‚ v) entsprechend eine v-Linie. Die u-Linien (v = v1, 122,...) und v-Liniön
(u = ul , u2, ...) bedecken die Fläche mit einem Netz von Koordinatenlinien, die ganz
der Fläche in Bild 7.l angehören. Die mit v = v0 markierte u-Linie und die mit

‚'\

E2. -‚ \
x_

/ ,:d,\.du

Bild 7.1: Bild 7.2:
Flächenelement in krummlinigen Koordinaten Zum Integralsatz von Stokes

u = u0 markierte v-Linie schneiden sich in dem Flächenpunkt P0 ‚ der mit den krumm-
linigen Koordinaten v0 , v0 bestimmt ist. Wir wollen u und v hier als Flächenkoardina-

Öx

T)?
Ist nämlich x = x(t) irgendeine Parameterdarstellung für eine Raumkurve, so ist
dx
W
tielle Tangentenvefktoren

ten bezeichnen. Auf der Fläche sind 3T): und Tangentenvektoren der u- und v-Linie.

Tangentenvektorin jedem Punkt der Kurve. Damit sind auf der Fläche difleren-

ax öx
d„x — Edu und d„x — Tidy (7.4)
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der u- und v-Linie definiert. Tragen wir d„x und d„x von einem Flächenpunkt P ab,
so spannen sie ein infinitesimales Parallelogramm in der Tangentenebene, die in P
gelegt wird, auf, wie in Bild 7.1 ersichtlich.

Definition 7.1: Mit

d„x >< d‚x = dA (7.5)

definieren wir das oektorielle Flächenelement in einem Punkt der Fläche. Der Vektor
dA = dA n des Flächenelements ist Stellungsvektor der Tangentenebene, also normal
gerichtet. Der Normaleneinheitsvektor n wird so definiert, daß die Vektoren d„x‚ d„x‚ n in
dieser Reihenfolge ein Rechtssystem bilden.

Beispiel 7.1: Auf der Kugel r = R sind die u- und v-Linien (mit u = i9, v = (p)

Meridiankreise (q: = const) und Breitenkreise (i9 = const). In Kugelflächenkoordi-
naten (7.2) ist d„s = das = Rdü das Linienelement des Meridiankreises durch P.
Der Radius eines Breitenkreises ist R sin 19. Das Linienelement des Breitenkreises
durch P wird daher d„s = d„‚s = R sin19dq2. Der Durchlaufungssinn der u- und
v-Linien wird so festgelegt, daß d„s > 0 und d„s > 0 sind. Bezeichnen e„ = ea und
e, = e, die Tangenteneinheitsvektoren der u- und v-Linie, so gilt ‘

e,g‘>< e,, = e, = r°

mit e, in Richtung des Kugelradius. Wir erhalten das Vektorielle Flächenelement

dA = d„x >< d„x = dox >< d,x

= R d19e,9 x R sin 19 (19769, = R’ sin i9 dz? d(]7e.9 >< e„‚
also

dA R2 sin 19 d1? dtfe, = dAr°. (7.6)

Beispiel 7.2: Die in Bild 7.1 angedeutete gekrümmte Fläche besitzt das von den
infinitesimalen Tangentenvektoren d„x und d„x in P aufgespannte Parallelogramm
als Flächenelement mit dem Inhalt AA. Ihre Randkurve AC umschließt nach Bild 7.2
in einer wirbelbehafteten Strömung den Zirkulationsanteil

AF = w - dx
(AC)

w(x) - d„x + w(x + d„x) - d„x — w(x + d„x) - d„x — w(x) - d„x

[w(x + d„x) — w(x)] - d„x — [w(x + d„x) — w(x)] - d„x‚
wobei wir für das Vektorielle Linienelement jetzt dx (statt ds) schreiben. Für den
nachfolgenden Integrationsprozeß genügt es, die nach Taylor linearisierten Anteile
gemäß

w(x + dx) — w(x) = dx-Vw +

zu nehmen, da die Glieder höherer als 1. Ordnung in (dx - V) keinen Beitrag zum

Integral liefern. Wir schreiben also

d!" = (d„x ' Vw) - d,,x — (dux - Vw) - d„x

= (d„x—v)(»‘v-d„x) — (d„x-V)(vh-d„x)
=(a-c)(d-b)—(b-c)(d-a)=(a>< b)-(c><d)
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mit der Umwandlungsformel (1.41). Setzen wir für a, b, c, d die darüber stehenden
Vektoren ein, so folgt mit (7.5)

d1": w-dx=(d„x >< d,,x)~(V >< w)=dA-rotw. (7.7)
(dc) .

Durch Integration über den gesamten Flächenbereich (A) leitet man mittels (7.7) den
Integralsatz von Stokes (5.61) her.

Es sei bemerkt, daß es sich bei 6F = rot w - dA und ÖQ = div w dV um Dzfierenrialformen, nicht
um Dzferentiale handelt. Bei linearen Differentialformen soll das Zeichen Ö andeuten, daß nicht ein
totales Differential vorliegt; z. B. ist die difierentielle Kompressionsarbeit 6W,‘ = —p du in der
Thermodynamik kein totales Differential der Zustandsvariablen p, v, T. Zustandrfunktionen lassen
sich als totales Difierential darstellen, z. B. die innere Energie und die Entropie. Trotz dieser Bemer-
kungen wird man auf die bequeme Schreibweise q(x) = dQ/dV nicht gern verzichten wollen.

7.2. Krummlinige Koordinaten des Raumes R3 und der Ebene R2

Statt der vorher besprochenen Flächenkoordinaten u, v legen wir jetzt räumliche
krummlinige Koordinaten u, v, w mit den Transformationsgleichungen

x1 = x1(“: Ü; W), x2 = x204: 7}, W), X3 = X304, v: W) (7-8)

oder vektoriell

x = x(u, v, w) (7.9)

zugrunde. Als Beispiel denken wir an die Kugelkoordinaten (7.1) mit u = 0, v = (p,

w = r. Jetzt bedeutet allgemein w = w0 mit x = x(u, v, w0) eine Fläche im R3 ‚ die wir
„Koordinatenfläche“ nennen. Ebenso stellen u : v0 mit x = x(u0, v, w) und v = v0

w ~l//7/'2

Bild 7.3: Bild 7.4:
Differentielle Tangentenvektoren Volumelement in krumm-

linigen Koordinaten

mit x = x(u, v0, w) Koordinatenfiächen dar, die sich nach Bild 7.3 im Punkt P0
schneiden, der also mit den krummlinigen Koordinaten u0, v0, w0 bestimmt ist. Die
Koordinatenflächen v = v0 und w = w0 schneiden sich in der Raumkurve
x = x(u, v0, w0) mit dem freien Parameter u, die wir jetzt als u-Linie bezeichnen.
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Entsprechend erhalten wir die anderen Koordinatenlinien‚ nämlich die v—Lim'e als
Schnitt der Koordinatenflächen w = wo und u = ug sowie die w-Linie als Schnitt der
Koordinatenflächen u = uo und v = v0. Die so konstruierten drei Koordinatenlinien
schneiden sich ebenfalls im Punkt P0, wo wir die diflerentiellen Tangentenvektoren
der 14-, v-, w-Linie gemäß

öx Ox
d„x = Bit-du, d,,x = E

nach Bild 7.3 abtragen. Wir ergänzen sie in Bild 7,4 zu einem infinitesimalen Parallel-
epiped (Spat) mit dem Spatvolumen

.. a a a
dw = [d„x d„x d„‚x] = (T: T: 7::

du, d„x = gädw (7.10)

Jdu du dw, (7,11)

Hier ist das Volumenverhältnis

[d„xd„xd„x] _ Öl __ O(x1‚x„x3) W
du dv dw Öu öv öw — O(u, u, w) '

gleich der Jacobischen Funktionaldeterminante

——-7) = 311532’ . (7.12)
aw’ v’ w) Öxl/Öw Öxg/Öw öx3/öw

Die eindeutige Auflösung des Gleichungssystems (7.8) x ‚z x(u, u, w) nach den
Koordinaten u, v, w (oder umgekehrt) ist nur möglich, wenn die Funktionaldeter-
minante

Ö0‘ 1 a X2 7 X3)
Ö(u, 1;, w)

ist, da sonst die „Abbildung“ degeneriert. Der Übergang von einem Rechtssystem zu

einem Rechts- oder Linkssystem wird dadurch angezeigt, daß (7.13) speziell >0 oder
<0 ist. Die krummlinigen Koordinaten u, v, w heißen orthogonal, wenn die Be-
dingungen

Öx Öx bx öx öx bx
öu Öv _ 0’ Öv Öw —0’ Öw öu _ 0 0'14)

erfüllt sind. Dann stehen ‚die Tangentenvektoren der u-, v—, w-Linien in jedem Punkt
des Definitionsbereichs aufeinander senkrecht. Die Koordinaten der folgenden Bei-
spiele sind orthogonal. Später wollen wir die Tangentenvektoren Öx/Öu, Öx/Öv,
Öx/Öw der u-, 12-, w-Linie durch P als neue Basisvektoren b, ‚ b2, b3 einführen, so daß
die Funktionaldeterminante (7.12) in [b1b2b3] übergeht. Die neue Basis ist dann im
allgemeinen nach (7.11) weder orthogonal noch normiert.

4: 0 (7.13)

Aus Band 5 ist die Umrechnung eines räumlichen Bereichsintegrals auf krummlinige Koordinaten
bekannt:

III 430:1 , X2, X3)dX1 dx; dx3 = 05* (u, v,w) du du dw, (7.15)
ö(u‚ v. w)

(V) (mu

7 Schnltz-Piam, Tensoren
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wenn

4’(x1(u, v, w), xz(u‚ v, w), xstu, v, w)) = @*(u‚ v, w)

und (V*) den Bereich (V), ausgedrückt in krummlinigen Koordinaten u, v, w, bedeuten.
Aufgabe 7.1.: Bei Einführung von Kugelkoordinaten (7.1) definiere man die Koordinatenfiächen
(Kugel, Kegel, Meridianebenen) und Koordinatenlinien (Radialstrahlen, Breiten- und Meridian-
kreise). Mittels (7.14) zeige man die Orthogonalität der Kugelkoordinaten.
Aufgabe 7.2: Man berechne das Volumenelement

‘Xxx y X2 x x3)dV* = [d„x d„x dwx] =edu du dw (7.16)
Ö(u, v, w)

in Kugelkoordinaten mit dem Ergebnis

dV*=r2sim9drd19d¢p. (7.17)

Bei ebenen Problemen führt man ebenfalls krummlinige Koordinaten u, v mit

xi = xitu, v). x2 = x2(u, v). x3 = 0 (7.13)

ein, wobei ein krummliniges Koordinatennetz die xbxz-Ebene überdeckt. Die vorstehenden For-
meln lassen sich leicht übertragen, z. B, auf das ebene Bereichsintegral

IJ £1-5(x,,x2) dxl dxz = I i Q5*(u‚v) du du, (7.19)
. . Ö(u‚ v)

(V) U7‘)

wo die Jacobische Funktionaldeterminante

6(x1 , xz) bx, Ox; Öx; Ox,
2- = ——- —-—- —- — 7.20

Ö(u‚ v) öu bu öu Ö1: ( )

auftritt. Jetzt bedeutet (V) bzw. (V*) einen Bereich der x1 ‚ xz-Ebene, ausgedrückt in x1 , x2 bzw. u, 1;.

Der Inhalt des Flächenelements in krummlinigen Koordinaten ist

dV* = I7(d„x, d„x) = 76“"x’) du du. (7.21)
504, v)

Beispiel 7.3: Wir definieren (normierte) elliptisclie Koordinaten u = 7., v = 19 gemäß

x1 = cosh i. cos 15‘, x; = sinh Ä sin 19 (7.22)

für 0 g I’. < o0, 0 g 29 < 2:. Die Koordinatenlinien sind konfokale Ellipsen (i. = lo) und Hyper-
beläste (19 = 290). Die Brennpunkte liegen auf der xl-Achse in den Punkten xi = -1 und x, = +1.
Die Orthogonalität dieser Koordinaten folgt aus

d;_x - dgx = (OX1 °"‘ + ax’ Ö“ )dt cw = o.
bi. öfl ö}. 619

Aufgabe 7.3: Man berechne den Inhalt des Flächenelements in elliptischen Koordinaten

dV* = im‘’ X2) d}. d29 = [(cosh ‚w — (cos15‘)z] d)‘. da.
OM, 19)

Aufgabe 7.4: In ebenen Polarkoordinaten r, (p mit

x,=rcosq7, xzzrsinqz für 0gr<oo‚ 0g<p<2x (7.23)

berechne man den Inhalt des Flächenelements dV* = r dr d¢ und zeige d‚x - d¢x = 0.

Aufgabe 7.5: In Zylirlderkoordinaten r, q), z mit

x, = rcostp, x2 = rsin qr, x3 = z (7.24)

für 0 g r < o0, 0 g q: < 21:, ~00 < z < + o0 berechne man das Volumenelement d V* = r dr dqz dz
und zeige die Orthogonalität dieser Koordinaten. Welche Koordinatenfiächen und Koordinaten-
linien treten bei Zylinderkoordinaten auf‘!
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7.3. Ortsabhängige Bezugssysteme

Die krummlinigen Koordinaten u, v, w werden künftig mit x‘, x2, x3 bezeichnet.
Bei Ubergang zu einem anderen Bezugssystem x1, E’, >23, in den folgenden Beispielen
speziell zu einem kartesischen KS, müssen die Transformationsgleichungen gegeben
sein:

221 = J?‘(x‘, x2, x3), x2 = x2(x1, x2, x3), 563 = x308, x2, x3)
bzw.

Ix = x‘(.§‘, x2, >23), x2 3 = x3(>"c‘‚ 22,23). (7.25)

Zwischen dieser allgemeinen Koordinatentransformation und den verallgemeinerten
Transformationskoeflizienten muß ein Zusammenhang bestehen, siehe (7.41).

= x‘(>‘c1,>?2J3), x

Das Bild 7.3 der krummlinigen Koordinaten, dargestellt in einem kartesischen_
Bezugssystem, entsteht durch Abbildung des Raumes mit den Punktkoordinaten
u, v, w auf den Punktraum mit den Koordinaten xi , x2 , x3. In Bild 7.5 sieht man die

bx Öx öx
Öu ’ Öu ’ Öw

der u-, v—, w-Linien gebildet wird, am Beispiel der Kugelkoordinaten 29, (p, r.

Ortsabhängigkeit eines Bezugssystems, das mit den Tangentenuektoren

53

Bild 7.5: Kugelkoordinaten 29, (p, r:

öx Ox Öxb :_‚ |‚ = _‚ b = _

‘ M 2 Ötp 3 Dr

Definition 7.2: In der Bezeichnung x‘, x2, x3 statt u, v, w werden die ortsabhängigen
kovarianten Basisvektoren bl, b2, b3 als Tangentenuektoren der Koordinatenlinien
definiert:

öx öx ÖxW=bu ——‘=b2am, = b3. (7.26)

7*
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Wir verabreden die Schreibweise

51-, = 0„ ö‚x = bi. (7.27)

Es gilt also

b, = b‚(x’‚ x2, x3). (7.28)

Den Ortsvektor schreiben wir jetzt in kartesischen Koordinaten

x = )’c‘e,. (7.29)

Beispiel 7.4: In ebenen Polarkoordinaten haben wir nach (7.23)

l 2x‘ = r, x2 = zp, x = xi cosx’, x = x‘ sinx’,
also

x = >‘c‘e1 + 22c; = e‚x‘ cos x’ + ezxl sin x’.
Die kovarianten Basisvektoren erhalten nach (7.27) die Darstellung

bl = 61x = e1 cos x? + e; sin x2, (7.30)

b; = 62x = —e1x‘ sm x2 + egx‘ cos x2.

Das ist wegen bl = b,(x‘, x2), b; = b2(x1, x2) ein Beispiel für die Ortsabhängigkeit
der Basisvektoren.

Mit x’ = x‘(x‘‚ x2, x3) nach (7.25) können wir

x = e,5"(x1, x‘, x3) = x(x1, x’, x3) (7.31)

schreiben. Damit erhält der Vektor des Linienelements die Form

dx = (ökx) dx" = dx"b,„ (7.32)

Definition 7.3: Um das totale Differential einer skalaren Ortsfunktian '

dcp = dx- gradq) = dx‘Ö‚<p (7.33)

herzustellen, definieren wir den Gradienten und Nabla-Operamr

gradq: = b‘()i<p, V = b’ö„ (7.34)
so daß

dx - gradzp = dx‘bi - b"Ok<p = dxibkqzéf = dx‘bi<p

mit (7.33) übereinstimmt, wenn

b, -b" = b"-b, = Ö5‘ _ (7.35)

gefordert wird. Das ist der Fall, wenn wir die kontravarianten Basisvektoren wieder als
reziproke Vektoren zu den kovarianten Basisvektaren nach (6.6) definieren. Die Basis-
vektoren b’, b’, b3 werden demgemäß per Definition nach (6.6) eingeführt.

Satz 7.1: Auch für ortsabhängige Basissysteme gelten die Reziprozitätsbeziehungen
(6.11) und (6.12). Unabhängigkeit vom KS bedeutet jetzt auch Unabhängigkeit davon,
ob wir Kugel- oder Zylinderkoordinaten oder sonstige Koordinaten wählen.
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Satz 7.2: Auch in der Form V = b"ö‚t ist der Nabla-Operator ein Tensor 1. Stufe, so daß
seine Koordinaten den Transformationsgesetzen (6.18)

51 = I3.’-‘bk, Öi = (7-36)

genügen. Ist v ein Tensorfeld I. Stufe, so sind Vv, V X v, V - v Tensorfelder der Stufe

‚Illaieoigebräuchliche Scheindefinition grad x" = b" können wir nicht akzeptieren;
denn sie besagt -

biöix‘ = biöf‘ = b".

Man kann aber nicht b" mittels b‘ definieren! Wie früher gilt auch jetzt
öixk = 65°. (7.37)

Nach (7.32) erhalten wir das Quadrat des Linienelements

dsz = dx - dx = b, dx‘ - bk dx" = (b, - bk) dx‘ dx",

ds2 = gm dx‘ dx".

Die Koeffizienten gi,‘ der quadratischen Form (7.38) heißen Metrikkoeffizienten, weil
sie die Struktur des Linienelements in der Differentialgeometrie bestimmen. Da die b,-

Tangentenvektoren der Koordinatenlinien sind, gilt speziell für orthogonale Koordi-
naten

(7.38)

bi-bk = g,-k = 0 für i+ k (739)
und

d5; = g11(dx1)2 + é’22(dX2)2 ‘i’ g33(dx3)2~ ' (7.40)

Bei Benutzung orthogonaler Koordinaten vereinfachen sich die folgenden Rechnun-
gen erheblich. Wir wollen diesen Vorteil aber nur in Beispielrechnungen ausnutzen.

Bei Übergang von einem Bezugssystem B zu einem anderen B (und umgekehrt)
hatten wir die Transformationsformeln (6.19) für die Vektorkoordinaten

= nur. w = ßw _

bereitgestellt. Der Vektor des Linienelements dx hat nach (7.25) die Tensorkoordina-
ten

„t _ 6)?‘ ‚_ bx‘ _k
dx —Fx-,;dx", dx — firdx.

Satz 7.3: Durch Vergleich werden die Transfermationskoeffizienten bei Benutzung
krummliniger Koordinaten in

—‚. ö)?’ i Ox‘
fik = W. fik = W (7.41)

festgelegt, Wobei ((132)) und ((55.)) zueinander inverse Matrizen bedeuten, so daß die
Beziehung (6.17) mit (7.41) in

——.——=—-—=ö{‘ (7.42)

übergeht.
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7.4. Die Christoflelsymbole

Die Tensoranalysis bietet eine systematische Methode, Tensorfelder von kartesi-
schen auf krummlinige Koordinaten umzurechnen. Wenn wir die Divergenz
eines

V - v = div v = b’6, - (h,,v")

Vektorfeldes bilden, müssen wir (hier und im folgenden) die Ortsabhängigkeit der
Basisvektoren beachten:

div v = b‘-(c‘1,b,,)v" + (bi - bk) 6,22"

= u“b’-O,-bk + 65,042" = ökv" + v"b‘—öib„.

Wir zerlegen O,-bk im System der Basisvektoren b1, b2, b3 gemäß

ö‚b„ = F,’,,b, (7.43)

mit Hilfe der Christoflelsymbole Es sei darauf hingewiesen, daß Ö‚b„ kein Tensor
1. Stufe ist und die Ffk keinen Tensor 3. Stufe bilden. Unter den Voraussetzungen des
Satzes von Schwarz gilt auf Grund der Definition (7.27)

Ökb, = ö‚b„. (7.44)

Wegen (7.43) gilt auch '

Ökb, = T,’„b‚.

Damit folgt aus (7.43) und (7.44) die Symmetrieeigenschaft

17x. = 1'152 (7-45)

der Christoffelsymbole. Für die Divergenz des Vektorfeldes v erhalten wir nunmehr
den Ausdruck

divv = Ökv‘ + v"b‘ - b.F{k = 6,42" + v"F,’,,. (7.46)

Wie läßt sich bib” zum Unterschied von (7.43) darstellen? Wir machen den Ansatz

bib“ = I’,-,"h' (7.47)

und beachten

Ö‚.(b„ - b’) = (ö‚b‚‘) - b’ + bk - öib’ = Ö‚-(öl‚) = 0,

(6,-bk) - b’ —-(6,~b’) - b„. (7.48)

Mit (7.43) bzw. (7.47) bilden wir die Skalarprodukte

' O,-bk - b’ = F{kbJ« - b’ = m,
ö‚b’ - bk = F,-’§’b’ - la,‘ = T,“

und finden wegen (7.48)

I",-‘,‘c’ = — Ik, (7.49)
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also

Öibk = Filkbla Öibk Z ‘Fäblo (7-50)

Satz 7.4: Die Christoflelsymbole lassen sich durch die Metrikkoejfizienten ausdrücken
gemäß

Pi = %8l"(5tgkn + Ökgin ‘ Öngik)‘ (7-51)

Zum Beweis bilden wir die partielle Ableitung
l

Öigkn = Öi(bk ‘ bu) = Öibk ‘bu + bk ' Ölbn

und berücksichtigen (7.43)

Öigkn = Hkbl ' bn + bk ’ nub! = Filkgtu + nngkls
analog _

Ökgnl = Fllcngli + Fllcignla Öngik = Friiguc + -Frlxkgih

Überschieben wir den Ausdruck

Ölgkn + Ökgni - bngm = 2I’{kgz..

mit g"’”, so folgt

gmnwigkn + Ökgni — Öngik) = Nlkgmgm" : zfiköi":

ä = %g”m(6igkn ‘l’ Ökgni _ Önglk) oder (7-51)-

Nachträglich können wir (7.51) als Definitionsgleiehung der Christoflelsymbale und
(7.50) als Anwendungsformeln ansehen.
Aufgabe 7.6: Für I = k ist aus (7.51) die Formel

1 1 _

f‘ = _ kn . = ____ _Pik 2 g Öngkn Jg o. \/g <7 52)

herzuleiten. Man zeige, daß sich (7.51) für orthogonale Koordinaten auf

Pi’ = zg(m(öi‘gkl + Ökgii _ Ölgik) (7-53)

reduziert, wo nicht über l zu summieren ist! ä

Um V21/J = div grad 1/J zu ermitteln, wird für (7.46) statt v = grad 1/1 = Q,,1pb" = 1:kb“

die Form u"b,, benötigt. Dafür bilden wir durch Heben des Index v" = g"‘v‚ = g"‘b,vp
und erhalten

div v = bk(g""On/2) + gik(5,-1/J) F,£, = div gradz/1

oder mit (7.52)

W = (akgikm + gikököiw + wie. 790m. (7.54)

Beispiel 7.5: Es soll V2-zp in ebenen Polarkoordinaten r, (p berechnet werden. Nach
Beispiel 7.4 wird

b, - b2 = —x‘ cos x2 sin x’ + x‘ sin x2 cos x’ = 0,

7b1‘b2 =g12 =g21 =0;
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die Koordinaten x‘ z r, x2 = (p sind orthogonal. Es bleibt gm = b, - b1 = l,
E22 = b2 ‘ b2 =(X1)2:

um = g = (ma \/4; = x1 = r. (7.55)

Nach (6.23) sind die Matrizen ((g‚-„)) und ((g"‘)) zueinander invers, also gilt

((81h)): (31);), ((g**>) = (<g.-9)” = (:1)-2)‘ $7-56>

Wegen g“ = l, g“ = (x‘)'2 und 61g“ = 62g“ = 62g“ = 0 bleibt von (7.54) nur

2 _ 11 22 gm \/_V'l’—g ÖiÖ1W+8 Ö2Ö2W+ (Ö1 g)51'/2

übrig, so daß sich mit (7.55) und (7.56)

027p l 627p 1 01,02 ___j T ___ j

V w— Örz + r2 09192 + r Ör (757)
ergibt.

Aufgabe 7.7: Die Poissonsche Dgl. V2¢ = q(x) ist auf Zylinderkoordinaten (7.24)
und Kugelkoordinaten (7.1) umzurechnen mit dem Ergebnis

52¢ l b¢ 1 62¢ 62¢
Or2 + 7 Ör + 7 T??? + Ü? = qmm’ z) (758)

und
02¢ 2 6¢ 1 62¢ cota? O¢ 1 62¢

z+——+—7—T+ 2 ~—+—2.—~ —2—=q<rM>.ör r Ör r O29 r O79 r 511119 örp

(7.59)

Bei orthogonalen Koordinaten ergeben sich aus (7.53) folgende Vereinfachungen zur
Berechnung der Christoflelsymbole 1",~’,,:

H‘? = ägunölgii für i: k =1,

1*’ = ;1g<">a,g_.,. für k = i, 1+ i, (7.60)i! 2

I",-92 = %g‘“’O,‘g,, für I = i, k # i,

Ff,‘ = 0, wenn alle 3 Indizes voneinander verschieden sind. Bei geradlinigen (schief-
winkligen oder orthogonalen) Koordinaten sind die g‚-„ konstant, so daß alle F,-’k nach
(7.51) verschwinden.
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8.1. Kovafiante Ableitungen

Das Feld der lokalen Dyade Vv ist zu berechnen:

Vv = b’ö‚-(L'kb") = biiöizlkbk + vkt‘),-b").

Mit (7.50) ergibt sich

Vv = Niöiiakb" — v,,I‘{§b‘)
oder

Vv : b‘b"(6;v,‘ —~ U111,-’,,). .

Man bezeichnet die Koordinaten dieses Tensors 2. Stufe als kovariante Ableitungen
der kavarianten Vektorkoordinaten

Öfvk = Öivk — “trill: (8-1)

und schreibt

Vv 2 b‘b"O}*vk. (8.2)

In gemischter Tensordarstellung bilden wir mit (7.50) die lokale Dyade

Vv = biorukbk) = b"(ö‚-i;"b„ + Main).

= b"(a‚.ä*bk + 12* ,!„b‚) = b"b„(ö‚-u" + L-'1‘,!;).

Man bezeichnet

Öfv" = Dirk + H115 (8.3)

als kovariante Ableitung der kantravarianten Vektorkoardinaten und schreibt

Vv = b‘b,,<3,’»“v". . (8.4)

Beispiel 8.1: Um das Wirbelfeld rot w = V >< w zu berechnen, wird das Produkt Vw
nach (8.2) und (8.1) auf das vektorielle Produkt gemäß

V >< w = (b‘ X b") Öfwk = (b‘ >< b") B,-wk — (b‘ x b") w,1',’k

spezialisiert. Wegen

T{2(b1 x bl) + F§,(b’ x b‘) = 1"{2[(b‘ x b’) — (bl >< b2)] = 0

usw. wird (b" >< b")1‘,!,, = 0, also ~

V x w = (b‘ >< b") öiwk. (8.5)
Es gilt

b: X bk = eiklbl: b! X bk = embn (85)
denn aus

(bi X bk) , bin = elklbl . bm ___ eikléin

8 Sn-hnlLz.Pisz., T4.-nsuren
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folgt (6.49)

[b‘b"b'"] = e""", analog [b,»b,,b,,,] = e,-,„„ (8.7)

und speziell (6.11)

[blbzb3] [b‘b2b3] = emem = \/§—\%_— = 1.

Dieser Beziehung entspricht g

Ö(x1:x2a x3) ÖÜ‘; U» w) _ 1

(‘(14, U; Wv) 6(x1 5 x2 a x3)

mit den zugehörigen Funktionaldeterminanten in früherer Schreibweise (7.12).
Mit (8.6) geht (8.5) in

V >< W = €W(();1.7k)b; (8.8)

und

rotw = jfi: [b1((‘J2w3 — Ögwz) + b2(Ö31v‚ — Ö1w3) + b3(O,w; — O2w1)]
g

über. (8.9)

8.2. Der Riemann-Christoflel-Tensor (RCT)

Wir bilden jetzt das Produkt VA, wo A = ak’b"b, ein zweistufiges Tensorfeld in
gemischter Darstellung sei:

VA = b‘O,~(ak ’b"b,)

_ L J

=b'(c‘)iak’b"b, + a,,’Oib"b, + ak’b"Oib,)

= b"(b"b,O,-ak’ —- a(.’F,§b"b, + ak’b" {,b,-)

= bibkb:(O:akI — "j, {k + 41131111,‘),

also das dreistufige Tensorfeld

VA = b‘h"b,E);"a,,’ (8.10)

mit den kovarianten Ableitungen

Öfak’ = Öiak’ — a]-'1",/5,, + ak’T,’,- (8.11)

der gemischten Tensorkoordinaten 11„ ’.

Nun setzen wir ak’ = Öfv’ und berechnen Öfak’ = O;"6’,‘§v' nach (8.11). Das ergibt
bei Berücksichtigung Von (8.3):

öföfiv’ = (3,»(3,’fl/‘I — ((3}"v') ff,‘ + (Öivj)

= Öi(ö„v’ + v’Tj’k) — (b,v’ + v’"1",’,,j) ./‘fk + (om + v”'1"{;,k)1",§

= Öiökv’ + (5,-z;")1‘,-1;‘ + (6,.v")I’,1]- — ((3,-U’) I11-‘k + UJO,-Fl-'k

+ Vm(F{nkF:!j * FrInjF{k):
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also
o;.*a';u' = Oibkv‘ + (ö‚1v")1"‚-’„ + (ökul) 1]’, — (öjvl) Ff,‘

+ u"‘((),-F,’,,k + 1'{,,,,I — l ‘‚’„,-1‘‚7„). (8.12)

Durch Vertauschung der Reihenfolge der kovarianten Ableitungen erhalten wir

Ö: f”! = ököivl ‘l’ (Öivj) Filz" ‘l’ (Gav!) [wir ‘ (Öjvl)

‘l’ ”m(ÖIz1lini ‘i’ Finirllci — FrInjF1k)a (8~13)

wobei wir den 3. vor dem 2. Summanden aufgeschrieben haben. Der 1., 2., 3., 4. und
7. Summand von (8.12) und (8.13) sind einander gleich, so daß die Differenz dieser
beiden Gleichungen das wichtige Resultat '

07020’ — Öiöfv’ _

= u"'(()‚-F‚’„k — Ok1‘[,,,~ + I‘{,,k1’,§ — I‘{,,,»I‘,£j) = z;”‘R{,,,,, (8.14)

liefertl). Auf Grund der Herleitung stellt (8.14) ein dreistufiges Tensorfeld dar.

Definition 8.1: Folglich sind die

Rinik = Öirrink * Okfilnl ‘l’ Fink”; — fihirij (3-15)

nach der Quotientenregel die Koordinaten eines vierstuflgen Tensors R“’ = Rim-,,b,b"’bib",
der als Riemann-Christoflel-Tensor (RCT) bezeichnet wird.

Aus (8.14) können wir den Schluß ziehen, daß die Reihenfolge der kovarianten
Ableitungen genau dann vertauschbar ist, wenn der RCT verschwindet, d. h. aus
Rim = 0 folgt auch

Öfözu’ = Öföfu’.

Laut Definition (8.15) gilt

182.): —R’„.„.-‚ 18.16)

so daß alle

Rim = 0 (8.17)
sind. u

Durch Uberschieben mit g„‚ erhalten wir die Koordinaten

gnzRlnik = Rnmik (8-18)

des vollständig kovarianten RCT, den wir als Riemannschen Krümmungstensor
4. Stufe R : R„„„„b"b'"b’b"' bezeichnen wollen. Durch Verjüngung geht aus (8.15)
der Riemannsche Krümmungstensor 2. Stufe R“) = R,,,,,b"‘b" mit den Koordinaten

Rm. = R... = am — au‘; + I‘:'.,.I‘,',- — I‘./‘..Pz., (8.19)

hervor. Es sei erwähnt, daß dieser Tensor nach Einstein mit R‚„„ = 0 verschwindet,
wenn das Gravitationsfeld im Vakuum nach der Allgemeinen Relativitätstheorie
untersucht wird. In (5.76) finden Sie eine Ergänzung.

1) Wir schreiben hier ausnahmsweise Rf„‚-„ statt R'„„-„.
8*
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8.3. Berechnung des RCT in zweidimensionalen Beispielräumen

Es soll nun je ein einfaches Beispiel dafür angegeben werden, daß die Koordinaten
(8.15) des RCT in euklidischen Räumen sämtlich gleich null sind, hingegen in Rie-
mannschen Räumen nicht sämtlich gleich null sind.

Beispiel 8.2: Als zweidimensionalen euklidischen Raum betrachten wir die e 1 ‚e;-
Ebene, wo wir nach Beispiel 7.4 Polarkoordinaten r, (p einführen. Dann verfügen wir
bereits in (7.56) über die Metrikkoeffizienten und können, da es sich um orthogonale
Koordinaten handelt, die Christoffelsymbole nach (7.60) berechnen, Wir erhalten

‘z’: = -x‘‚ Ff; = T31 = (x‘)“‚ (3-20)

alle anderen I"1-}, sind gleich null. Im zweidimensionalen euklidischen Raum hat der
vierstufige RCT 2‘ = 16 Koordinaten Rf‚1‚-„. Nach (8.17) kennen wir bereits

Riu = Rizz = Rin = R1222 = 0»

Rf11 = Rf” = R§,, = R132, = 0.

Von den verbliebenen 8 Koordinaten berechnen wir nach (8.15) z. B.

R11„ = 61H,‘ — 6,1131 + 171,11},- — 13111351.

Bei Beachtung von (8.20) folgt

R112 = ö1F1‘2 — ö2F1‘1 + P1111‘, — F111},-

= 1112115 + Ff; l2 - 115131 - 1121112‘: = 0.

weil in jedem Summanden mindestens ein Faktor verschwindet. Entsprechend findet
man wegen (8.16)

R111 = —R}12 = 0, Rim = —R§12 = 0,

Rf“ = —Rf1‚ = o, Rim = ——R§,2 = o.

Effektiv braucht man also nur 4 Koordinaten Rf,"-k auszurechnen.
Jede gekrümmte Fläche kann als zweidimensionaler Raum aufgefaßt werden, wo

wir nach Abschnitt 7.1. Flächenkoordinaten u, v einführen können. Wir betrachten
nur geschlossene Oberflächen. Der einfachste gekrümmte zweidimensionale Raum ist
dann die Kugel (mit konstanter Krümmung). Wenn wir gekrümmte Flächen als
zweidimensionale Riemannsche Räume ansprechen, liegt der Gedanke nahe, auch
dreidimensionale gekrümmte Riemannsche Räume zu definieren, wo der Riemann-
Christofl"e1-Tensor nicht verschwindet.

Beispiel 8.3: Als Beispiel betrachten wir die Kugelfläche r = R als zweidimensionalen
Riemannschen Raum, indem wir die Kugelflächenkoordinaten x‘ = 0, x2 = q:

nach (7.2)

i‘ = R sin x‘ cos x2, f’ = R sin x‘ sin x’, i’ = R cos x‘

mit x = file, + 5c'2e2 + Pea, also

x = R sin x‘ cos x2e1 + R sin x‘ sin x2e, + R cos x‘e3
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einführen. Die Tangentenvektoren der u- und v-Linien sind jetzt

bl = 01x = R cos x‘ cos xzel + R cos x‘ sin xlez — R sin x‘e3‚

b2 = özx = ——R sin x‘ sin xze, + R sin x‘ cos xzez.

Es handelt sich um orthogonale Koordinaten, so daß für die Metrikkoeffizienten
h, * b2 = gm = gz, = 0 gilt sowie

b1'b1 = 311 = R2, b2'b2 =g22 = (R5i11X1)2a

l 0
= 2

((glk)) R <0 (Sin x1)2) v.

1 l 0 (8.21)

i,‘ Z . 71 z —.—«g >) (am) R, (0 (Sinx1)_1)'

Im zweidimensionalen Raum gibt es 23 = 8 Christoffelsymbole I‘,-',,, wobei wir die
Symmetrieeigenschaft (7.45) und die speziellen Formeln (7.60) für orthogonale
Koordinaten berücksichtigen. Wir berechnen

P1. = ‘7‘g"a.g„ = ‘T112-2<3.<R sin xv,

F212 = —sin x‘ cos x‘. (8.22)

, 1 1 .

1122 = ?g2251g22 = 7 O1(R Sm x1)2:

Ff; = F21 = cot x‘. (8.23)

Analog berechnet man die übrigen Tfk nach (7.60) und stellt fest, daß sie alle außer
(8.22) und (8.23) verschwinden.

Um zu zeigen, daß der RCT im betrachteten Beispielraum nicht verschwindet,
genügt es, nur eine Tensorkoordinate herauszufinden, die ungleich null ist, Zum Bei-
spiel erhalten wir nach (8.15)

R212 =Ö1F22 — 5211211 ‘l’ I122-1111;‘ T211315

= 611122 ‘l’ P2211111 + Fzzzriz‘ F21 21‘ 1121122,

R212 = 5111212 ‘ 3111212

= —O1(sin x‘ cos x‘) + cot x‘ sin x‘ cos x‘

= —(c0s x‘)‘ + (sin x‘): + (cos x‘): = (sin x‘): i 0.

Damit ist bewiesen, daß der RCT in dem zugrunde gelegten zweidimensionalen
Riemannschen Raum nicht identisch verschwindet.

Aufgabe 8.1.’ Als Ergänzung zum Beispiel 8.3 berechne man die Tensorkoordinaten
R212 = ‘R221 = (Sin X1)22 Rizi = “Rim =1: Rinne = Osonst- ‘



98 8. Riemannsche Krümmungstcnsoren

8.4. Zum Ricci-Kalkiil

Durch den Zusammenhang

ehrjekimflhm = Rijkl (8-24)

wird in der Metallphysik dem Riemannschen Krümmungstensor 4. Stufe mit den
Koordinaten (8.18) der zweistufige Tensor Y = w7""'b,,b,,, zugeordnet.

Aufgabe 8.2: Das Gleichungssystem (8.24) ist aufzulösen nach

‚rlhm : 1}:e}IijeklnxRijkl'

Die krummlinigen Koordinaten einer Fläche seien E‘ und 52. Damit lassen sich
zweidimensionale Flächenvektoren und Flächentensoren definieren. Der RCT der
gekrümmten Fläche erhält die gleiche Gestalt wie (8.15) mit dem einen Unterschied,
daß man als Indizes griechische Buchstaben wählt, über die nur von 1 bis 2 zu sum-
mieren ist. Die Fläche ist ein zweidimensionaler Riemannscher Raum mit dem Linien-
element ds gemäß

ds2 = gmgdf“ d5”. (8.26)

Der RCT der im dreidimensionalen euklidischen Raum eingebetteten gekrümmten
Fläche existiert, während der RCT des einbettenden euklidischen Raumes identisch
verschwinden muß. Aus dieser Bedingung leitet Gauß den Zusammenhang der (einzig
wesentlichen) Koordinate Rum des Riemannschen Krümmungstensors der Fläche

l .

RIRZ her, wo 1/-R1 und 1/R2 die

Hauptkrümmungen bedeuten. Mit dieser Andeutung müssen wir uns hier begnügen.
Flächentheorie, Differentialgeometrie, Riemannsche Geometrie sind Gegenstand
selbständiger Lehrbücher. In dieser Reihe behandelt Band 6 die Diffarentialgeome-
trie.

Als Satz von Ricci bezeichnet man den

mit dem „Gaußschen Krümmungsmaß“ K=

Satz 8.1: Die kovarianten Ableitungen der Metrikkoefiizienten verschwinden identisch:

Öägkz = 0, 5fi.g"' = 0~ (3-27)

Zum Beweis werden die kauariamen Ableitungen eines ka- und kontrauarianten
Tensor: 2. Stufe benötigt:

5510m = Omakl ‘ finale: ‘ Ilclmanla (8-28)

Of,,a"’ = Oma“ + F,’,,,,a"" + F,’,‘,,,a"’. I (8.29)

Aufgabe 8.3: Man beweise Ö‚"‚‘‚g„, = 0.

Aufgabe 8.4: Man beweise <3,‘§g"‘ = 0.

Der Ricci-Kalkül besteht darin, daß man weder Basissysteme noch Buchstaben-
symbole für Tensoren benutzt, sondern konsequent in ko- und kontravarianter
Koordinatendarstellung rechnet. Wenn man die kovarianten Ableitungen besitzt,
besteht kaum noch ein Bedürfnis, die Ausdrücke in den Koordinaten mit Basisele-
menten zu ergänzen. Das Rechnen mit Tensorkoordinaten haben wir erläutert. Im
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Ricci-Kalkül führt man noch eine Stenographie für partielle und kovariante Ablei-
tungen ein, z. B.

ömakl = aklmx und Önömü“ = aklmm
sowie (8.30)

Öäaki = “mm und 5:539“ = 0mm.»-

Diese Schreibweise bringt eine erhebliche Platzersparnis. Damit wird das Schriftbild
aber so konzentriert, daß der Anfänger Schwierigkeiten hat, den Inhalt herauszulesen.
Man beachte die Umkehrung der Reihenfolge der Indizes gegenüber der Operator-
schreibweise!

Ein Tensor n-ter Stufe des R3 wird wie früher als abstraktes System von 3" Zahlen
definiert, die Tensorkoordinaten genannt werden, die bestimmten Transformations‘-
gesetzen genügen und einer invarianten Multilinearform entnommen werden. Man
bezeichnet jetzt einfach die Tensorkoordinaten als „den Tensor“. Mit „dem Tensor“
am ist dann das System von neun Zahlen gemeint, das eine doppelt indizierte Größe
umfaßt. Der Ricci-Kalkül ist das geeignete Instrument, bei ortsabhängiger Basis in
krummlinigen Koordinaten zu rechnen und weiterfiihrend die Tensorrechnung mit der
Variationsrechnung zu Verbinden, um die Grundgleichungen der Schalentheorie oder
Metallphysik, der Hamiltonschen Theorie oder der Allgemeinen Relativitätstheorie
nach Einstein zu formulieren, wobei Probleme der Dynamik in Probleme der Rie-
mannschen Geometrie übersetzt werden. — -

Eine ganz andere Situation liegt vor, wenn man wie in den Kapiteln 1 bis 5 karren’-
sehe Basissysteme zugrunde legt. Da es sich bei den meisten physikalisch-technischen
Anwendungen um Drehungen des Bezugssystems handelt, da bei orthugonalen
Transformationen aber die Beziehung

55} = ß? (8.31)

für die Transformationskoeffizienten besteht, versagt der „Mechanismus“ der
Summenkonvention mit hoch- und tiefgestellten Indizes, wenn man (8.31) berück-
sichtigt. Außerdem hat es keinen Sinn, ko- und kontravariante Basisvektoren und
Tensorkoordinaten zu benutzen, wenn bi = b,- 2 e, gilt. Als Musterbeispiel sei aufdas
Werk P [10] von Landau/Lifschitz hingewiesen, wo die ko- und kontravariante
Schreibweise erst dann eingeführt wird, wenn sie bei Benutzung krummliniger Koordi-
naten Nutzen bringt, während bei Bezug auf kartesische Basissysteme die Methoden
angewandt werden, die wir in den Kapiteln l bis 5 erläutert haben.



9. Hinweise zurflLösung der Übungsaufgaben

1.1: Man vertausche die Indizes bezüglich b in Beispiel 1.1, In der dreifachen Summe durchlaufen
die Indizes ijk die 27 Tripel

111,112,113, 121,122,123, 131,132,133,
211, 212, 213, 221, 222, 223, 231, 232, 233,
311, 312, 313, 321, 322, 323, 331, 332, 333.

1.2: Nach (1.17) gilt det Cdet CT = detg. Wegen detC = det CT folgt llqkllz = 116ml = 1, also
det C : llcull : i 1.

1.3: (a + b)’ z a’ + 2a - b + b’ = lal’ ~— Zlallbl cosy + lblz = lcl’ mit cos (a, b) = cos (7: — y)
= —c0s y. Die Diagonalvektoren sind a + bund a — b, also ist für einen Rhombus (a + b) 1 (a — b)
= lalz — lblz = O mit la} = lbl.

1.4: Ist [e‚e‚e3] = —1, so wird [Q5253] = -1 oder +1 bei Drehung oder Spiegelung mit l,‘c„l|

: +1 oder —1.

1.5: Die Vektoren p‚q und r = x — a sind komplanar, so daß sich V(p, q, x — a) = 0 ergibt. Aus
I7(x‚ p, q) = const folgt, wenn man die Determinante entwickelt, Ax, + Bx; + Cx3 z const, also
Ax, + Bx; + CX3 + D = 0 oder X,/a + X2/b + X3/L‘ = 1.

1.6: Nach Aufgabe 1.5 gilt l7(x, p, q) = [xpq] = x ~ (p x q) = x - N = const, also ist x ~ N° = [die
Hessesche Normalform.

1.7: In (1.30) (a x b) >< c 2 (c - a)b — (c - b)a ersetze man c durch c x d. Das ergibt bereits
(1.40a). Nach (1.30) gilt auch a x (e x d) = (a - d) c — (a - c) d. Ersetzen wir hier a durch a x h,
so folgt (1.40b). Der Vergleich von (1.40a) mit (1.40b) zeigt, daß der Vektor (a x b) x (c x d) die
Richtung der Schnittgeraden der von den Vektoren a, b und c, d aufgespannten Ebenen besitzt.

l.8:Mittels(l.30)wird(a >< b)-(c x d) = (a x b)<f= a-(b x f) = a- [b x (c x d)]=a-[(b>d)c
—— (b - c) d] : (a .c) (b-d) — (a vd) (b - c), speziell

(3 X b); = lfllzlblz * (3 '17)2- (91)

2-11 Ä = fi1k5:5I< = a'1x¢'uej€u€1 = ¢7u<€u€x1eje1 = 911919: = A: (9-2)

A = a„,e‚e„ = a,kc,,é,c,ké, = a,~,(t,-,~c,,,o':,-E, = äjläjäl = Ä‘. (9.3)

2.2: B : b,J,‘e,e,e,, = b,,,‘c,,,~é,,c,,-é,c,,‘é, = b,,,,c,,,-cu,-c,ké,,éqé,. = 5,¢,.é,,é,,E, = (9.4)

2.3: Aus(2.20) folgt e123 = 116ml = 1. Die Determinante (2.20) wechselt (wie jede Determinants) ihr
Vorzeichen, wenn man zwei Spalten vertauscht. Ihr Wert bleibt ungeändert, wenn man zweimal
zwei Spalten vertauscht. Er ist gleich null, wenn zwei oder drei Spalten gleich sind.Damit folgt (1.60)
aus (2.20).

2-4: 5ijk’l1‘”Jek = 51231419293 + 52311129391 ‘l’ 53121430192

+ 32131120193 + 53211139291 + 51321110392-

1-52 (E ' V) ' ll : <‘.'ul’1e1€x ' umem = glklumvlelakm = 51k1'4k1'191 = V .‘ 1|,

(E ' u) ‘ V = ‘7ik1”k"191 = *51kI"kUL€1 = U ‘V = ‘V ' u,

u - (E - v) = u‚„e„‚ -v,-‚„v‚e,-e‚„ = s‚-‚„u‚-v,e„.

Durch Vergleich findet man

u ~ V = a,k,u,v,,e, = U - v.

2.6: Vertauschung von a und b in (2.38) ergibt

bac + acb + cba — abc — cab — bca = —(abc + bca + cab — bac — cba — acb),
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also (bac) = —<abc). Entsprechend zeigt man

(ach) = —-(abc), (cha) = —(abc).

2.7: (u - v) w = (u,v,) wkek,

u - (vw) = u‚e‚ - mwkeiek = u,v,w,.(e, ~ e,) e,‘ = u,v,w,c6,;e,( = (u.~v,-) w,‘e,,, usw.

u-(vw) = (u-v)w= (v-u)w=v-(uw).
2.3: (u >< v)’ = e,.„u‚.11‚‘ö„„s„„„u,u„‚ = e,.„‚e„„„u‚u‚.u,u„‚'= (ö„a„„ — a‚.‚„a‚-,)u‚.u‚u‚v‚„

= uivflqvj — mvjujv; = (u,-u,-) (vjvj) e (M101) (ujv,-) = uzvz - (u - v)’

bei Anwendung der Strukturformel.

2.9: Mit (2435) wird (a >< b) -(c >< d)

= e‚„“e„„„ö‚-‚ajbkc‚„d„ = s‚-‚-„e‚-„„‚a‚b„c„‚d„

= (öjmökn -— ö‚-„Ö‚„„) a,-I7,,c,,,d,, = ajbkcjdk = — ajbhckdj

= (I1m)(b;a1k) — (I111/1) (bkck) = (a ‘ C) (b ' d) - (3 ‘ d) (b ' t).
3.1: e.e‚ - vie,‘ = uke.-6,-,( = vkek = v,

v.-e‚ - eke,‘ = 11,-(5,-ke,‘ = v,-e, = v.

öu919j ‘ 1111191191 = Ö1jl1k1Öjk9191 = 11119191 = A!

a,1e,e,-z3,,,e,,e, = 6,(,a,,z5,-,(e,e, = a,-,e,-e, = A.

3.2: v - S = me, - sue,-ek = s,-kv,z5,,«e,( = s,~,(1;,e,‘,

S ‘ V = 511191191 ‘ Vie: = 511191911511 = 5111111911»

also v - S = S ~ v, falls s“ = n,‘ gilt.

u - S - V = me, ~ s,ke,e,, - v,e, = u,u,s,k6,,6k,,

u < S - v = u‚»v„s‚k‚ v - S ~ u = v,-uksu‘

= v,cu,:,,, = uivks“ = u - S - v im Falle ski = s,-,,.

3.3: Gleichung (3.20) geht für sehr kleine hp], wenn wir 172 durch zip ersetzen, in x’ — x = Ö<,v(a° x x)
über. Für infinitesimale Drehungen gilt also 6x = (6q:a°) x x. Mit v = dx/dt und w = dq:/dr folgt
v=wa°><x=u><x.
3.4: Unter den Voraussetzungen i3 = x3, x; = x3 erhält man

( cosoc sinzx O cosoc -—sinoc 0

(0,-,())= —sinoc coszx 0 , ((a‚„))= sinzx cosa 0

o o 1, o o 1

l.m“ Crick: = “Ham = 5111 und Hcrull = Hund:

3.5: x’=lI~x, S-x=}.I-x,
(S — ÄI) ' x = (a,,, — 26,") e,e„ - X„‚e„‚

= (“tn — 313111) xmelönm = (‘Tm — A6171)-Xnel

= (Ümxn " AX!) 91 = 0

führt auf ein homogenes Gleichungssystem vom Typ (3.26).

3.6: 2E“, = u - T - u = w2(n -T - n) = m10. (9.5)

Nach (3.30) gilt auch 2E“. = mw’(n >< x)’. Wegen q = T - u = wT - n folgt

n-q=q,,=wn-T~n=w0. (9.6)
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1:33 2 w

2 a’ =Tq3'3.7: Ist n : c3, so gilt speziell 9 = e3 - T ~ e3 = T33, q3 = rum, Em =

4.1: Erlaubt sind folgende Nabla-Operationen nach (4.20) bis (4.22):

V*(<;7i)=q2V'v+v-Vw,

v ~ (i: >< i) = [V11] = [Viiv] + [Vuii] = [Nd] — [uvlv] = v-(v >< u) — u-(V >< v),

V >< = ¢:(V >< v) A v >< (Vxp).

4.2: OJW) : tpöitp + wb.-mp. Mit u >< v = eljkuivjek = wkek : w erhält V >< w = e,,mb,wke,, nach
(2.35) die Koordinaten e„„s„‚„ö‚(u.-uj) = u„Ö‚-v‚- + u,ö‚u„ — v„ö,u‚ — u,-O,~v,,.

4.3: a) am, = 0 für i:F k, 61x, = 62x2 = 03x3 = 1.

r = I/x% + X22 + x§, Or/OX, = X,/I‘, usw.

b) 51X1 : 3: 5.951: — ÖkXz = Ü. 01X1: = Öm (9.7)

Vx = ö,»x‚„e‚e‚. = t5,,¢e,~e,, = ekek = I.
c) 5,-r = x,-/1', e,bir = x/r = x°,

et5x'f(") =f’((') eiÖi" = IMO‘) XO-

4.4: V ~ (vlvl) = ein. '(Ö„v‚e„e‚) = aroma.) = div grad v,

V ' (iviV) = e‚O; ' (ivikömke) = Ö‚(Ö„v„) e, = grad div v.

4.5: Nach (4.38) gilt

rot rot (grad (p) = 0 = grad div (grad w) — div grad (grad (p),

grad V277 = V’ grad q; (9.8)
und

div (rot rot v) = 0 : div (grad div v) — div (div grad v),

V2 div v = div V2 v. (9.9)

5.1: Wenn man (5.421)

Sq = Kxl + ihKx4, 5*; = x2, X3 = X3, X4 = —i_/1Kx1 + KX4

als Matrizengleichung schreibt, erhält man die Matrix CM. Man beachte (l — h2) K2 = 1.

5.2: 0,17, + Z7412 + 172172 + (73173 = K2(U1 + ihU4)(V1 + ihn)
+ K2(U4 — ihUÄ) (V4 — ihV,) + UZVZ + U3V3

= ](’(1 — h’)(U1V1 + U4V4) + U21’; + U3V3 mit K20 ~11‘): 1.

5.3: Nach (5.33) ist (div w) I: Vw : (div w)’, also

s = 17(6,w,. + Ökw.) Ökwi — än (div w)’. (9.10)

5.4: S„ : Vw = —pl: Vw = —p div w, Sp: Vw = s, S: Vw = -p div w + e. Nach (5.37) bedeutet

_ dv —p du ÖWk

—”"“= 'PTd,=W= „d. <9-“>

die Kompressions~ bzw. Expansionsarbeil. (Ö Wk > 0 bzw. < 0) je Volumen- und Zeiteinheit.

5.5: div (aw) = w - grad g + g div w. Die Kontinuitäisgleichung lautet

öe . de .

-—+ d1v(9w) =——+ gdivw = 0.
ax dr

(9.12)
dg l dv

?dt— vdr’911:1, gdv+vdg=0,
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5.6: u-VD=udivD-—Ddivu+D~Vu—rot(u><D),
u'VB=udivB—Bdivu+B-Vu—rot(u x B),

divu =o, divB=0, D-v$=B.v1x=o.
j .

5.7: (% — rot (w >< y) = vVzy. Wegen divy = 0 und divw = 0 wird nach (4.24) rot (w >< y)

=y‘Vw—w-Vy,a]s0

—+w~Vy—y'Vw=1vV1y. (9.13)
Ö

5.8:2inkdefw=V >< (V¢V¢v‘+vV¢V) >< V= V >< (Vw) >< V+ V x (wV) >< V

(v >< v)('v‘v‘ x v) + (v x ‘v*v‘)(v >< V): 0.

Nabla-Operationen haben nur dann „Beweiskraft“, wenn man sich auf schon bewiescnc Beziehungen
stützen kann. — Nach (5.73) wird div ink D : V ~ ink D

= 915193021/32 + 0203423 — 53531/22 - Ö2Ö2d33)

‘i’ 91Ö2(Ö3Ö3d1z ‘i’ Ö2Ü1d33 ” 0351432 ” 52031113)

‘i’ e1‘)3(b2b2d13 + ÖSÖIdZZ ‘ Üsbzdiz “ Özöidzs) ‘i’ = 0>

5.9: Für die letzte Komponente in (5.73) gilt

9393(2Ö1‘)2d12 ” Özözdn “ Ölöidzz)

= e3e3[("152(O1-5'2 ‘i’ Ö251) — 52515151 — Ö1Ö1Ö252l Z 0~

Durch zyklische Vertauschung gehen z, B. die Koordinaten des Tensbrs ink D bezüglich e‚e, , eicz,
ege; nach (5.73) ineinander über.

6.1: Nach dem Musterbeispiel für (6.9) berechnet man z. B. b1 "b3 = 0, b2 ~ b3 = 0, h3 - b3 : I mit
(6.6). Aus (6.6) folgt

ibibzbs] = i(b2 X b3) (b3 X b1) (b1 X b2)]r’iblb2b3)3a

i(bz X b3) (b3 X b1) (b1 X b2)l = (b2 X b3) ' ((b3 X b1) X (b1 X b2))

und nach (1.40a)

(b3 X b1) X (b1 X b2) 2 ibsbibzl b1 — ib1b1b2l b3 = ibibzbslbh (9-14)

Ö7

I

lI

also

iblbzbal = (b2 X b3) ' b1/ib1bzb3l2 : ib1b2b3]—1> (9-15)

Ferner gilt mit (9.14)

b2 X ha z (b3 X b1) X (b1 X b2) = ib1b2b3lb1

lb1b2b3l2 1h1bzb312_’
also nach (9.15)

' b’ >< b3
b, = [b,b;b3] (b2 x b3) = usw.

6.2: Wegen 17,4? = e; und b, - b" = 6‘; wird mit (6.14) S,«E' = 1?,-y,:hk = fi{bJ~y,§b" = ;3{y1'a§,

b, < h‘ = /9;‘;/,’; = 6,’. Nach (6.17) ist ßffiß = Ö}, also y; = 5,‘; und b’ = 6,2l)", siehe (6.15).

7.1: r = 1-0, 19 = 190, (p = (pg slellen eine Kugel, einen Kegel, eine Meridianebcnc dar. Die Schnitt-
kurven von je zwei dieser Koordinatenflächen ergeben eine (p-Linie (Breitenkreis), 19»Linie (Meridian-
kreis), r-Linie (Radialstrahl). Mittels (7.1) bestätigt man (7.14) für u = r, v = i), w = (p.

7.2: Nach (7.1) und (7.12) berechnet man

O( . ‚ ‚ .

= I‘2 s1n a? für Kugelkoordlnaten. (9.16)
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7.3: Nach (7.20) und (7.22) berechnet man

= (sinh z)! (cos W + (cosh z)? (sin a)? (9.17)

7.4 und 7.5: Alle Rechenhinweise sind in den vorhergehenden Beispielen enthalten. In Zylinder-
koordinaten treten Zylinder, Ebenen durch die xa-Achse und Ebenen senkrecht zur xg-Achse als
Koordinatenflächen auf.

7.6! Nach (7451) Wird F5, Z 1A'k"(51&’kn + Ökgln — ngik) = %8k"Ö18kn W529“ 8k"Ök8in = £"k3n3u;
= g""O,.g,k, da es auf die Bezeichnung gleicher Indizes nicht ankommt, und mit g"" = g"". «Wegen
(6.23) ist die Matrix ((g"‘)) invers zu ((g‚k))‚ also

<(g*"» = (<g...»-1 = f «ch», g" = f a".

wenn G"" die Minoren (Adjunkten) zu den Elementen g‚„, bezeichnen. Man bildet

(31811 821 831

5:812 822 832
51'813 823 833

811 821 (31831

812 822 Ö1832

813 823 51'833

811 51821 831

812 51822 832
813 51'823 833

Ö‚g = + +

und entwickelt den 1., 2., 3. Summanden nach der 1., 2., 3. Spalte. Damit folgen mg = G'"'O,g.,,
= gg'"'(),g,,, und der zweite Ausdruck von (7.52). —Bei orthogonalen Koordinaten gilt g‚-‚„ = 0,
g"‘ : 0 für i4: k, so daß in (7,51) n = [gesetzt werden kann, wobei nicht mehr über n = [summiert
wird.

7.7: In Zylinderkaordinaten x‘ = r, x2 = tp, x5 = x3 haben wir

x = x‘ cosx’ e; + x‘ sin x’ e, + x3e3, b, = 01x = cosx‘ e, + sinx‘ ez,

b2 = 52x = —x‘ sin x’ e1 + x‘ cos x‘ c2, b3 = 03x = es.

811 = b1'b1 =1» 822 = b2’h2 = (X52, 833 = b3‘b3 =1. \/5‘ = xiv

Wesen ((g"‘)) = dem)“ folgte“ = Lg“ = (x‘)“,g“ = l.
In Kugelkoordinalen (7.1) x‘ = r, x2 = a9, x3 = (p gilt

x = x‘ sin x2 cos x3 e; + x‘ sin x2 sin x3 e; + x‘ cos x’ c3,

bl = 01x = sin x‘ cos x3 e, + sin x’ sin x3 e; + cos x‘ e3,

b, = 62x = x‘ cos x’ cos x3 e, + x‘ cos x‘ sin x3 e, — x‘ sin x2 c3.

b3 = 63x = —-x‘ sin x2 sin x3 el + x‘ sin x’ cos x3 ez.

‚e11 = 1. 822 = (x')’‚ 833 = (x‘ sin x2)’, V; = 0c‘): sin x’.
gu = y gzz = (X1)—2, g33 = (x1 sin x2)—z_

Gleichung (7.54) vereinfacht sich wegen g“ = 0 für i z): k zu

3 1 _

V2111 = 2 [a.<g**aw> + g**a.rw+ z“? (o. Vghw]. (9.18)
k=1 g

wobei nur das Summenzeichen wirken soll. Durch Diflerenzieren erhält man die Ergebnisse (7.58)
und (7.59).

8.1: Nach (8.15) wird mit (8.22) R?” = b,F;22 — 132F121 + F{;1"12,- — I"{11"§J = O1 cot x‘ — 0
+ cot x‘ cot x‘ —— 0 = —(sin x‘)“‘ + (cotx‘)‘ = —1, Rfzl = —R%,2 = +1. Zur Übung berechne
man noch R312 = Räz, = 0.
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Nach (8.24) wird

e"”e'""‘R‚-_‚-k‚ = e""e"""e„‚-Je„„n"“ = eWe,,Ue“"'ek,qn"' = 26;',2<§'a"7}"",

eWe"""R,,,., = 41;"”‘. (9.19)

In der Kurzschrift nach (8.30) leitet man aus g“ = bk - b, mit b„_„‚ = Fßmb„ her:

8km = hk,m ' bl ‘l’ bk ' bl.m = Irlmbn ‘ b! ‘l’ Iyrlnbk ‘ b...

8km: ‘ fmgni ’ Fflngkrx = 0.

5’k:;m = 0- (910)

B“ = bk ‘bl: 17k.m = —F:'§mb".

gum = bklm ‚ b: + bx . him‘ = _I"l;mbn . b! __ Fllnnbk . bu)

g"’.m + I'."m.g"’ + Tims)” = 0.

g"‘„„ = 0. (9.21)
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