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Vorwort zur ersten Auflage

Der Tensorkalkiil ist die wichtigste Methode, physikalisch-technische Vorginge
und Prozesse mathematisch zu formulieren. Zahlreiche Anwendungsbeispiele dienen
der ,,mathematischen Modellierung* solcher Vorginge derart, da3 ihre Beschreibung
nicht von der Wahl des zufillig benutzten Koordinatensystems abhangt. Die Weiter-
entwicklung der Theorie und der Rechenfertigkeit sollten Hand in Hand gehen. Den
Hinweisen zur Losung der Ubungsaufgaben wurde daher breiter Raum gewidmet.
Die Aufgaben dienen der Recheniibung und Stofferginzung. Aus Platzgriinden
miissen wir uns im Text gelegentlich auf die Ergebnisse von Ubungsaufgaben stiitzen.

Ausgehend von einfachen Grundbegriffen werden die notwendigen Verallgemei-
nerungen schrittweise vorgenommen. Dieses etwas umstidndliche Vorgehen erfolgt
aus didaktischen Griinden. Alle Zwischenstufen konnen natiirlich durch Spezialisie-
rung aus der ko- und kontravarianten Darstellung des 6. Kapitels zuriickge-
wonnen werden.

Neben der Koordinatendarstellung gibt es die Komponentendarstellung in Sum-
menform sowie die koordinatenfreie Darstellung fiir einen Tensor. Wir beschrinken
uns nicht wie iiblich auf eine der Darstellungsmoglichkeiten, sondern behandeln
samtliche Methoden der Tensorrechnung ausfithrlich. Die Stoffauswahl ist auf die
Belange einer effektiven Einfiihrung in die Tensoralgebra und -analysis zugeschnitten,
die den Leser befdahigen soll, weiterfithrende Literatur mit Verstindnis lesen zu
koénnen. .

Fiir wertvolle Hinweise danke ich Herrn Prof. Dr. E. Lanckau (TH Karl-Marx-
Stadt) und dem Herausgeber Herrn Prof. Dr. K. Manteuffel (TH Magdeburg).
Herrn Prof. em. Dr. H. Schubert (MLU Halle) danke ich besonders fiir Literatur-
hinweise und -ausleihe. Bei der Ausarbeitung der Ubungsaufgaben hat Herr Dr.
U. Werner (IH Ké&then) in dankenswerter Weise mitgewirkt. Dem Verlag sei fiir die
Gestaltung des 11. Bandes und fiir die gute Zusammenarbeit herzlich gedankt.

Magdeburg, November 1975 W. Schultz-Piszachich
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1. Tensorielle Aspekte der Vektoralgebra

1.1. Vektoren

Die Vektoralgebra im dreidimensionalen euklidischen Raum kennen Sie bereits aus
der ,,Linearen Algebra‘‘ (Band 13 dieses Lehrwerks). Eine Einfithrung in die Vektor-
algebra ist daher nicht beabsichtigt. Es sollen nur jene Begriffe und Zusammenhéange
herausgestellt werden, die fiir die Tensorrechnung wichtig sind. Dabei dndern wir die
Thnen geldufige Bezeichnungsweise, um uns Schreibarbeit zu ersparen. Im folgenden
wird der Thnen durch die Anschauung vertraute dreidimensionale euklidische Raum
zugrunde gelegt und mit R® bezeichnet.

Die Achsen eines kartesischen Koordinatensystems (KS) stehen paarweise aufein-

- ander senkrecht. Die Einheiten werden auf allen drei Achsen gleich grofl gewahlt.
In einem solchen Bezugssystem wollen wir die Einheitsvektoren in Richtung der
positiven x-, y-, z-Achse respektive mit e, , e,, e; bezeichnen:

le)] = les| = les| =1, e Le, Les.

Die so definierten Koordinateneinheitsvektoren e, e,, e; bilden eine orthonormierte
Basis. Beziiglich dieser Basis erhilt ein Vektor u die Komponentendarstellung

3
u = ue; + ue; + Uuzez = Y ue;. (1.1)
i=1

Abgesehen von physikalischen Dimensionen sind die u; Zahlen. Man nennt sie die
Koordinaten des Vektors u. Die drei Summanden u,e,, u,e,, use; sind die Komponen-
ten des Vektors u (auch vektorielle Komponenten genannt).

Aligemein wird ein ,,eigentlicher* Vektor als Reprisentant einer Translation an-
gesehen, wobei alle Punkte des Raumes oder eines Raumteils (z. B. eines starren
Kérpers) die gleiche Parallelverschiebung erfahren. In dieser Definition ist der Vektor
vom speziellen KS unabhingig. Physikalische Vektoren wie z. B. Geschwindigkeit
und Beschleunigung, elektrische und magnetische Feldstirke sind eigentliche Vekto-
ren, d. h. Tensoren erster Stufe. Damit ist gemeint, da3 das geometrische Bild des
eigentlichen Vektors als gerichtete Strecke mit Lange, Richtung und Richtungssinn
ein geometrisches Objekt darstellt, das sich bei beliebiger Parallelverschiebung nicht
andert und nicht vom zufallig benutzten KS abhéngt. Es werden also freie Vektoren
zugrunde gelegt, die geometrisch von jedem beliebigen Raumpunkt aus abgetragen
werden konnen. Zwei Vektoren sind gleich, u = v, wenn sie durch Parallelverschie-
bung gleichsinnig zur Deckung gebracht werden konnen. Das bedeutet algebraisch
U, = vy,U, = Uy, us = vz und folgt aus der linearen Unabhangigkeit der kartesischen
Basisvektoren e, , e,, €. In der Geometrie wird man verlangen, daB ein geometrisches
Objekt, etwa eine Ebene, selbstindige, also vom KS unabhidngige Bedeutung hat.
Auch aus dieser Forderung 148t sich, wie wir sehen werden, der Tensorbegriff her-
leiten.

Zur Frage der Orientierung eines KS betrachten wir drei nicht komplanare Vek-
toren u, v, w, die von einem beliebigen Punkt abgetragen werden. Der Endpunkt des
Vektors u werde (auf kiirzestem Wege nach Bild 1.1) in die gleichsinnige Richtung des
Vektors v gedreht. Wir erhalten eine Schraubenlinie, wenn sich der Endpunkt von u
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bei dieser Drehbewegung gleichzeitig und gleichsinnig in Richtung des Vektors w
bewegt. Ergibt sich dabei eine Rechtsschraube nach Bild 1.1 wie beim iiblichen Korken-
zieher, dann nennen wir das Vektortripel u, v, w in dieser Reihenfolge ein Rechts-
system (R); ergibt sich hingegen eine Linksschraube nach Bild 1.2, so bilden die

Bild 1.1: Bild 1.2:
Rechtsschraubenlinie: Linksschraubenlinie:
u, v, w (R) u,v,w (L)

Vektoren u, v, w in dieser Reihenfolge ein Linkssystem (L). Speziell fiir ein kartesisches
KS kann man danach angeben, ob die Basisvektoren e, e,, e; in dieser Reihenfolge
nach Bild 1.3a ein Rechtssystem oder nach Bild 1.3b ein Linkssystem bilden. Man
sagt auch, das KS sei rechts- oder linksorientiert.

€

-&;=n (&,€,)

Bild 1.3a:
Rechtssystem:
e, e, e3 (R)

Bild 1.3b:
Linkssystem:
e, e;,e; (L)

Vereinbarung 1.1: Solange wir uns auf ein kartesisches KS beziehen, wird vereinbart,
daB die kartesischen Basisvektoren mit der Bezeichnung e, , e, €5 in dieser Reihen-
folge ein Rechtssystem bilden.

Dann bilden auch die Koordinateneinheitsvektoren in der Reihenfolge e,, e, e,
und e;, e, e, ein (R), aber in der Reihenfolge e,, e;, e; und e3, e,, e, sowie e, e;, €,
ein (L). Bei Vektoren mit anderer Bezeichnung, z. B. &, €,, &; oder u, v, w muB in
jedem Falle gepriift werden, ob es sich um ein (R) oder (L) handelt.

Wir schreiben e, e,, e; fiir die Basisvektoren eines kartesischen KS an Stelle von
i, j, k, um die Summationsvereinbarung nach Einstein benutzen zu kénnen.
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Vereinbarung 1.2: Es wird vereinbart, daB iiberall dort, wo zwei gleiche lateinische
Buchstabenindizes auftreten, iiber diese von 1 bis 3 zu summieren ist, sofern nicht
ausdriicklich etwas anderes gesagt wird.

Mit dieser Vorschrift ersparen wir uns das Aufschreiben des Summenzeichens. Die
Komponentendarstellung (1.1) erhdlt nunmehr die einfache Formulierung

u = ue;. (1.2)
Beispiel 1.1: Die Doppelsumme a;,b,; soll ausgeschrieben werden. Zunéchst ist
ayby = apbiy + anbia + asbis,

wenn man die Summation beziiglich 7 ausfiihrt. Es ist aber auch tiber k£ zu summieren
mit dem Ergebnis

ayby; = ay1byy + ai2b2y + ai3bsy
+ a31b12 + @22b22 + az3b3
+ az1bya + aszbiz + azsbss.
Aufgabe 1.1: Man schreibe die Doppelsumme a;;b;; und die dreifache Summe

&;xa;b jc, ausfithrlich!

1.2. Tensoren erster Stufe. Orthogonale Koordinatentransformationen

Das skalare Produkt w-v der Vektoren u und v wird mit einem Zwischenpunkt
gekennzeichnet. Das Ergebnis ist eine skalare GréBe.

Definition 1.1: Die skalare Multiplikation zweier Koordinateneinheitsvektoren ergibt
€ e =0y,

wo 0y, das Kronecker-Symbol bedeutet:
Oy = Ofiiri £k, 0y =1firi==k. (1.4)
Nach (1.4) gilt
011 =03, =033 =1, 0;,=0,,=0
usw., aber
O =011 + 025 + 033 =
In der Definition darf beziiglich
Oy =1 fur i=k

nicht summiert werden, was man in Zweifelsfallen mit d44, = 1 andeuten kann.
Mittels (1.2), (1.3) und (1.4) erhalten wir das Skalarprodukt

[
w

(1.5)

U-V = Ue; Uyl = Uit € = U0y,
also bei Beachtung der Summationsvereinbarung den Skalar

UV = U, = Uy + Ul + Usvs. (1.6)
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Wird ndmlich tiber i summiert, so entsteht

Uy = ukvké(kk) = Uply.
Das skalare Produkt ist kommutativ

uv=v-u (1.7)
wegen U, = Uyl
Beispiel 1.2: Denkt man sich die Masse eines Teilchens in seinem Schwerpunkt
konzentriert, so spricht man von einem ,, Massenpunkt*, der sich mit der Geschwin-
digkeit v bewegen moge. Seine kinetische Energie ist dann

m
Eyin = 7(1}% + 13 + 13).

Wir fiihren die Kurzbezeichnung v? ein mit der

Vereinbarung 1.3: v+ v = pp, = v2, (1.8)
so daf

m m J—

Exin= 7 U= 2 (1.8)

geschrieben werden kann.

Der Ubergang von einem Bezugssystem B zu einem anderen B werde mit einer
linearen Transformation vollzogen, wobei ein betrachteter Punkt festgehalten wird.
Eine solche Transformation heilit Koordinatentransformation. Wegen der Summa-
tionsvereinbarung wollen wir kiinftig die kartesischen Koordinaten x, y, z durch-
numerieren und dafiir x;, x,, x3 schreiben! Derselbe Punkt habe dann in B die
Koordinaten x,, x,, x5, dagegen in B die Koordinaten X, , X,, X5. Der Ubergang von
einem Bezugssystem zum anderen wird von einer Transformationsmatrix vermittelt.
Wir wollen uns dabei auf homogene lineare Transformationen beschranken, indem wir
Parallelverschiebungen des KS ausschlieBen. (Im Bedarfsfall werden Translationen
des Bezugssystems gesondert untersucht.) Die Bezugssysteme B und B haben bei
diesen Transformationen immer denselben Ursprung (Nullpunkt), so daB fiir die
Ortsvektoren x = x;e; und X = X;&, desselben Punktes in beiden Bezugssystemen
gilt: x = x,; = X6, = X.

Zur Einfithrung betrachten wir speziell Drehtransformationen, die B in B iiber-
fithren. Das sind Drehungen des Bezugssystems B um eine Achse, die durch den fest-
gehaltenen Nullpunkt (Ursprung des KS) geht. Nach wie vor benutzen wir kartesische
Bezugssysteme, so daB ein Dreibein e, , e,, e; wie ein starrer Korper in die neue Lage
€, &,, €3 gedreht wird. Dabei sind die €,, €,, €; wieder kartesische Einheitsvektoren
in gleicher Orientierung wie e,, e,, e;. (Bei Spiegelung an einer Ebene durch den
Ursprung wiirde sich die Orientierung dndern.) Es muB also gelten

e -e =0y, €- & =0dy. (1.9

Der zum Vektor v gehorige Einheitsvektor werde mit v° gekennzeichnet, [v0| = 1.
Seine Koordinaten sind die Richtungscosinus mit den Koordinatenachsen. Bezeichnet
(v, e;) den kleineren Winkel zwischen den Vektoren v und e;, so erhilt v° die Kom-
ponentendarstellung

V0 =e, cos (V).
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Ein Basisvektor des neuen Bezugssystems B wird also im alten KS B zerlegt in

&, = e, cos (&,e). (1.10)
Umgekehrt werde w° in B dargestellt:

w° = & cos (W, &).

Ein Basisvektor des alten KS B erhilt somit im neuen KS B die Komponentendar-
stellung
e, = € cos (e, €). (1.11)

Jede Drehung des urspriinglichen KS um eine Achse durch den Nullpunkt und jede
Spiegelung des urspriinglichen KS an einer Ebene durch den Nullpunkt, die auch als
Umlegung bezeichnet wird, tiberfithrt das kartesische Basissystem e,, e,, e; in eine
neue kartesische Basis €,, €,, €;. Die vorstehenden Formeln gelten fiir Koordinaten-
transformationen nicht nur bei Drehung, sondern auch bei Umlegung des kartesi-
schen KS.

Definition 1.2: Die orthogonalen Koordinatentransformationen umfassen Drehungen
und Umlegungen des kartesischen Bezugssystems. Sie werden von einer orthogonalen
Matrix C = ((cy,)) mit den 9 Elementen c,, vermittelt. Die Transformationskoeffizienten
¢ werden wie folgt definiert:

iy = c0s (&, e) = cos (e, &),

1.12
i = €08 (&, &) = cos (e, &). (112

Der erste Index der Transformationskoeffizienten bezieht sich auf einen Basis-
vektor von B, der zweite Index auf einen Basisvektor von B. Aus (1.10) und (1.11)
liest man mit (1.12) die Transformationsformeln

& = cue, € = Cu (1.13)
ab, die Sie in anderer Bezeichnungsweise aus der ,,Linearen Algebra“ kennen.

Wird vorausgesetzt, daB der Vektor v ein Tensor 1. Stufe sei, so muf3 mit (1.13)
gelten

V =6 = € = 0,6, =V
und

Vo= 018 = D€, = v€; = V.
Es folgt
Up = Cply, U = Cpil.
Auf die Wahl der Buchstabenindizes kommt es nicht an; bei einer Umbezeichnung
miissen die vorher gleichen Buchstaben aber wieder durch gleiche Buchstaben ersetzt
werden! Die Transformationsgesetze lauten dann auch

U = Cualy, Ug = Cily (1.14)
neben

€ = Cue;, € = Cuf. (1.13)
Definition 1.3: Ein Tensor 1. Stufe ist ein System von drei Zahlen (v, v,, v3), seinen
Koordinaten, die sich bei Drehung oder Umlegung des kartesischen Bezugssystems nach
dem Gesetz (1.14) transformieren.
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Vereinbarung 1.4: Der Tensorbegriff wird im folgenden ohne besonderen Vermerk
auf die Gruppe der orthogonalen Koordinatentransformationen bezogen. Die Gruppe
der Lorentztransformationen und die Gruppe der homogenen linearen Koordinaten-
transformationen werden spater besonders angesprochen.

Satz 1.1: B sei ein kartesisches Bezugssystem mit den Koordinateneinheitsvektoren
e, ,, €3, entsprechend B ein kartesisches Bezugssystem mit den Koordinateneinheits-
vektoren €, , €,, €;. Die Koordinatensysteme B und B haben den gleichen Nli/lpunkt.
Ein Vektor mit der Komponentendarstellung v = v.e; in B bzw. ¥V = )&, in B ist ein
Tensor 1. Stufe, wenn die Invarianzbedingung

v="V, ve =g (1.15)
bei Ubergang von B auf B (und umgekehrt) erfiillt ist.

Aus der Invarianzforderung (1.15) hatten wir mittels (1.13) die Transformations-
gesetze (1.14) fiir die Koordinaten eines einstufigen Tensors abgeleitet. Durch Ver-
gleich von (1.14) mit (1.13) erkennt man den
Satz 1.2: Die Koordinaten v eines Tensors 1. Stufe transformieren sich nach dem glei-
chen Gesetz wie die kartesischen Basisvektoren e.

Folglich kann das System der kartesischen Basisvektoren ey, e,, e; insgesamt nicht
mit Tensoren 1. Stufe gebildet werden. Denn bei Ubergang von B auf B kann die
Invarianzforderung (1.15) nicht fiir alle Basisvektoren in der Form e, = &, e, = &,,
e; = &, erfiillt werden. Liegen im allgemeinen die Drehachse und die Spiegelebene
schrig zu den Koordinatenachsen, dann gilt sogar e; + & fiir i = 1,2, 3, d. h. die
Basisvektoren sind nicht Tensoren 1. Stufe. Wir nennen das kartesische Basissystem
e, e,, e; eine kartesische Basis 1. Stufe. Es folgt der
Satz 1.3: Eine kartesische Basis 1. Stufe kann nicht vollstindig mit Tensoren 1. Stufe
gebildet werden. Die Koordinateneinheitsvektoren sind insgesamt keine Tensoren
1. Stufe.

Beispiel 1.3: Bei Drehung um die x;-Achse gilt zwar e; = &;, aber e; + &, und
e, + €,. Bei Spiegelung an der x,, x,-Ebene gilt zware; = €,,e, = &,,abere; + &;,
namlich &; = —ej.

Nach (1.13) und (1.9) bilden wir die Skalarprodukte

€ & = Ci 1€ " Cim€m = ClCumOim = CuCi = O,
€ € = Cp€ " Couy = il = CriCp = O
und erhalten die wichtigen Beziehungen
CuC = O, CriC = O (1.16)
Das bedeutet fiir die Transformationsmatrix
C11 C12 €13
C ={c2y €22 23] = ((car))s
€31 C32 C33
die eine Drehung oder Spiegelung des kartesischen Bezugssystems vermittelt, da3 die
Quadratsumme der Elemente einer Zeile oder Spalte gleich eins, die Produktsumme
der Elemente zweier verschiedener Zeilen oder Spalten gleich null ist, z. B.

2 2 2 n p—
ch + 3+ =1, c11¢31 + €12C32 + 13033 = 0 usw.



1.3. Invarianz des skalaren und vektoriellen Produktes 13

(,,Quadrat- bzw. Produktsumme** soll heiflen: Summe der Quadrate bzw. Produkte).
Eine solche Matrix heiBt orthogonal.

Vereinbarung 1.5: Wir benutzen die Schreibweise
C = ((cw), detC = [yl

fiir die Matrix C und ihre Determinante det C. Es wird det C = 0 vorausgesetzt.
Nach (1.16) gilt in Matrizenschreibweise

((cuc) = ((cuien)) = ((On))
oder in symbolischer Form
CCr=(C"C=1, (1.17)

wenn CT die beziiglich C transponierte Matrix und / = ((d;)) die Einheitsmatrix
bedeuten. Wird (1.17) mit der Grundbeziehung

cCt=Cc'C=1
verglichen, so folgt
ct=Cr, (1.18)

wo C~' die beziiglich C inverse Matrix bezeichnet. Die Eigenschaft (1.18) wird
meistens als Definitionsgleichung fiir orthogonale Matrizen vorangestellt. Wegen
(1.18) lautet die Auflsung des linearen Gleichungssystems (1.14) o, = ¢, einfach
O = Cydy-

Orthogonale Matrizen sind mit den Eigenschaften (1.16) oder (1.18) vollstindig
charakterisiert.

Aufgabe 1.2: Man zeige, daB fiir die Koeffizientenmatrix C bei orthogonaler Koordi-
natentransformation gilt

lewl? = 10ull = 1,

det C = [leyll = £1.
Im Abschnitt 1.4. beweisen wir den
Satz 1.4:

lewl = +1 (Drehung), |cul = —1 (Umlegung), (1.19)
d. h. bei Drehung oder Umlegung des kartesischen KS gilt

detC = +1 oder detC = —1.

1.3. Invarianz des skalaren und vektorieilen Produktes

Die Vektoralgebra wird in dem Umfang, wie sie in Band 13 behandelt wurde, als
bekannt vorausgesetzt. Wir geben nur eine Ubersicht (mit Ergéinzungen) iiber das,
was hier gebraucht wird. Das geometrische Bild eines eigentlichen Vektors ist mit
Lénge, Richtung und Richtungssinn (Orientierung) bestimmt. Eine Gerade besitzt als
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geometrisches Gebilde eine Richtung, aber keinen Richtungssinn. Die koordinatenfreie
Darstellung des Vektors

v = |v|v° (1.20)

besagt natiirlich, da3 es sich um einen Tensor 1. Stufe handelt, denn die geometri-
schen KenngroBen des Vektors hdngen nicht von einem KS ab. Hier bedeuten |v]|
die Norm des Vektors v und v° den zu v gehérigen Einheitsvektor mit der Norm
[v0| = 1.

Beispiel 1.4: Ein Massenpunkt bewegt sich auf einer Bahnkurve mit einem Geschwindigkeitsvektor v,
der in jedem Kurvenpunkt die Richtung der Bahntangente besitzt. Durch die mechanische Bewegung
wird ein Durchlaufungssinn der Kurve vorgeschrieben, so daB der Geschwindigkeitsvektor v einen
Richtungssinn erhilt. Die Norm des Geschwindigkeitsvektors heilt auch ,,GroBe der Geschwindig-
keit*. Die GroBe der Geschwindigkeit sei |[v| = 50 [ms~!]. Im geometrischen Bild wird dem Betrag |v|
des Vektors eine Linge des Vektorpfeils zugeordnet. Nachdem die konstruktive Léngeneinheit, etwa
10 [ms™'] = 1 [em], vereinbart worden ist, wird der Betrag des Geschwindigkeitsvektors im geo-
metrischen Bild durch eine Strecke von 5 ¢cm Liange veranschaulicht. Die physikalische Dimension
wird der Norm |v| = 10 [ms~!] zugewiesen, so daB der Einheitsvektor v°, fiir sich betrachtet, dimen-
sionslos ist: [v0| = 1. Ist speziell |v| = 1 [ms™'] die GroBe der Geschwindigkeit, so miite man
v = |v|v® mit |[v| = 1 [ms~!] schreiben.

Die koordinatenfreie Darstellung des skalaren Produkts lautet
u-v = |ul|v|cos (u,v). (1.21)

Wir denken uns die Vektoren uund v in einem beliebigen Punkt angesetzt. Dann soll
(u, v) den kleineren Winkel bezeichnen, den die Vektoren einschlieBen. Die Festlegung
(v, u) = —(u, v) bedeutet cos (v, u) = cos (u, v), aber sin (v, u) = —sin (u, v). Winkel
(u, v) und Léngen |u], |v| sind geometrische Bestimmungsstiicke, die nicht vom KS
abhidngen. Mit (1.21) wird unterstellt, daf3 es sich um Tensoren 1. Stufe handelt, da
also auch uw; = u,7; gilt. Aus (1.21) folgt wieder (1.7) u-v = v - u sowie

v; =V-e = |v|]cos(v,e;). (1.22)

Aufgabe 1.3: Mit den drei Seitenvektoren a, b, a + b = ¢ werde ein Dreieck kon-
struiert. Der ,,Kosinussatz** ist mittels (a + b) - (a + b) = ¢ - ¢ bei Beriicksichtigung
von (1.21) und (1.7) herzuleiten. Man ergidnze das Dreieck zum Parallelogramm und
bilde die Diagonalvektoren. Mit Hilfe des skalaren Produkts ist zu zeigen, daB die
Diagonalen eines Rhombus, |a| = |b|, aufeinander senkrecht stehen.

Das Skalarprodukt hat urspriinglich durch den Begriff der technischen Arbeit
W = f-s Eingang in die Anwendungen gefunden. Wegen

W =1f-s = |f| cos (f, s) [s| = |s| cos (s, f) |f]

ist die Arbeit gleich der skalaren Projektion des Kraftvektors f in Richtung des Weges
mal Weglidnge oder auch gleich der skalaren Projektion des Wegvektors s auf die
Kraftrichtung mal GroBe der Kraft. ,,GroBe der Kraft ist gleichbedeutend mit der
Norm des Kraftvektors. Von gleicher physikalischer Dimension ist das Drehmoment.
Es stellt aber einen Vektor M dar mit folgenden BestimmungsgroBen: Betrag des
Vektors als GréfBe des Drehmoments ,,Kraft mal Hebelarm*, Richtung des Vektors
in Richtung der momentanen Drehachse und Richtungssinn des Vektors, orientiert
nach dem Drehsinn. Man schreibt M = x x fund benutzt das Zeichen x als Symbol
fiir die vektorielle Multiplikation.
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Das vektorielle Produkt m x v wollen wir zundchst geometrisch einfiithren. Die
eigentlichen Vektoren u + o und v + o werden in einem beliebigen Raumpunkt
abgetragen und zu einem Parallelogramm erganzt. Der positive Flicheninhalt des
Parallelogramms ist |u ||v| sin (u, v)] > 0, wenn die Vektoren nicht parallel gerichtet
sind. Die Ebene des Parallelogramms liegt aber im allgemeinen schrig zu den Koordi-
natenachsen. Der Betrag des Vektors u x v sei -

la x v| = |u] |v] |sin (u, V)|. (1.23)

Wir definieren jetzt den Normaleneinheitsvektor n = n(u, v) beziiglich des vektoriellen
Produkts u x v. Der Vektor n hat die Norm [n| = 1 und die Richtung der Normalen
zur Parallelogrammebene, die von den Vektoren u und v aufgespannt wird. Der
Richtungssinn des Normaleneinheitsvektors n = n(u, v) wird so definiert, daB die
Vektoren u, v, n in dieser Reihenfolge ein Rechtssystem (R) bilden. Damit ist das
vektorielle Produkt in der koordinatenfreien Darstellung

u x v = [u| [v] |sin (u, V)| n(u, V) (1.24)

vollstindig definiert. Diese geometrische Konstruktion ist offenbar vom speziellen
KS unabhingig. .

Satz 1.5: Sind u und v Tensoren 1. Stufe, so ist der den Vektoren u und v nach (1.24)
zugeordnete Vektor u x v ein Tensor 1. Stufe, wihrend u - v nach (1.21) einen invarian-
ten Skalar, also einen Tensor nullter Stufe darstellt.

Ein physikalisches Beispiel fiir ein vektorielles Produkt, das nicht mit dem Orts-
vektor x gebildet wird, ist der Poyntingsche Vektor E x H der elektromagnetischen
Energiestrahlung, wo E und H die Vektoren der elektrischen und magnetischen Feld-
starke bedeuten.

Wegen

n(v,u) = —n(u, v)
gilt nach (1.24) das Vertauschungsgesetz
vxu= —(uxy), (1.25)

das auch ,,alternierendes Kommutativgesetz* genannt wird, siehe auch die Bilder 1.3a
und 1.3b.
Wir erinnern an das Assoziativgesetz

AMu x v) = (Au) x v=u x (4v), (1.26)
wo A einen skalaren Faktor bezeichnet, und an das Distributivgesetz
ux (V+w=@@xvVv)+@xw. (1.27)
Analog gelten die Gesetze
AMu-v) = (du):v=mu-(lv), (1.28)
u-(v+w=(@v)+ u-w (1.29)

bei skalarer Multiplikation. Ein assoziatives Gesetz der Form uo (vo w) =
(u 0v) o w gibt es weder bei skalarer noch bei vektorieller Multiplikation.
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Von grundlegender Bedeutung ist der nach Band 13 bekannte Verbindungssatz (Ent-
wicklungssatz), den wir im Abschnitt 2.4. mit Hilfe der ,,Strukturformel* beweisen
werden:

ux (vxw=Wwv-—(u-vw (1.30)
bzw.

Uxv)xw=@wyv-—(v-wu.
Aus (1.30) folgt sofort, daB3 im allgemeinen

ux (VXWs=E@uxv)xw
gelten muB.

Es seien u + o und v + o, wenn o = Oe, + Oe, + Oes den Nullvektor bezeichnet.
Dann folgt nach (1.21) aus u - v = 0, daB die Vektoren u und v aufeinander senkrecht
stehen, und nach (1.24) ausu x v = o, daB sie parallel gerichtet sind. Diese Aussagen
sind bei gleicher Voraussetzung umkehrbar als Orthogonalitits- und Kollinearitdits-
bedingung.

Beispiel 1.5: Bei der Drehung eines starren Korpers um eine feststehende Achse be-
wegt sich ein Massenpunkt P auf einem Kreis mit dem tangential gerichteten Ge-
schwindigkeitsvektor v in einer Kreisebene senkrecht zur Drehachse. Der Ursprung
des KS wird auf der Drehachse angenommen. Sind r der Kreisradius, M der Mittel-
punkt des Kreises und o die kaelgeschwmdzgkezr der Kreisbewegung, so kénnen wir

in Bild 1.4 die Vektoren MP = r = e, oM = a, v = rot und u = wa® definieren.
Hier sind a° der zum Achsenvektor a und r° der zum Radiusvektor r gehdrige Ein-
heitsvektor sowie t der Tangenteneinheitsvektor der Kreisbahn. Der Vektor a wird so
orientiert, daf bei der Drehbewegung des Punktes P und seiner gleichzeitigen fiktiven
Fortbewegung in gleichsinniger Richtung von a° eine Schraubenlinie entsteht, die zu
einer Rechtsschraube gehort.

/ u
. v=rwt
P
a
/ X
/
0
Bild 1.4: Bild 1.5:
Drehbewegung Spatvolumen: [bea] = [abc]

eines Massenpunktes

Damit definiert man den Drehvektor als Vektor der Winkelgeschwindigkeit
u = wa’. (1.31)
In Bild 1.4 sicht man auf Grund dieser Festlegung die Richtungsbeziehung der ein-
gefiihrten Einheitsvektoren:

r® x t =a° (1.32)
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Beispiel 1.6: Nach Beispiel 1.5 soll die physikalisch wichtige Formel
vV=1uXX (1.33)
mittels (1.31) und (1.32) bewiesen werden. Nach Bild 1.4 ist der Ortsvektor O_;’
= x = a + r. Wir benutzen (1.33) und berechnen
v=ux(@+r)=@uxa)+@uUxr)=uxr,
da die Vektoren u und a parallel gerichtet sind. Wird der Verbindungssatz (1.30)
herangezogen, so folgt
rxv=rx@xr)=('r)u—(r-ur=ru,

da die Vektoren r und u orthogonal sind. Aus der letzten Gleichung erhalten wir
1
u= %(r X V) = —rz—(rr0 x rot) = o® x t)

und mit (1.32) die schon bekannte Definitionsgleichung (1.31) u = wa®. Damit ist die
Ausgangsformel (1.33) v = u x x bewiesen.

1.4. Invarianz des Spatproduktes

Es wire niitzlich, ein Kriterium zu besitzen, mit dem man feststellen kann, ob drei
gegebene nicht komplanare Vektoren a, b, ¢ des Raumes R® in dieser Reihenfolge ein
(R) oder (L) bilden. Dafiir tragen wir die Vektoren a, b, ¢ von einem beliebigen Punkt
ab und erginzen das Vektorgeriist nach Bild 1.5 zu einem Parallelepiped, das auch
Spat genannt wird. Die vorzeichenbehaftete MafBzahl des zugehorigen Spatvolumens
bezeichnen wir mit V(a, b, ¢). Das Zeichen ¥ soll spiter als Operator gedeutet werden.

Nach Bild 1.5 kénnen wir das Spatvolumen als Grundflache mal Hohe berechnen,
z. B. mit der schraffierten Grundflache |b| |¢| [sin (b, ¢)| und der H6he /4 = a,, wo
a, = |a| cos « die skalare Projektion des Vektors a auf die Normale zu der von den
Vektoren b, ¢ aufgespannten Parallelogrammebene bedeutet. Dann entsteht

7(a, b, ¢) = |b| |¢| [sin (b, ¢)| |a] cos . (1.34)

Dieser Ausdruck ist aber wegen des Faktors cos « vorzeichenbehaftet. Mit f = b x ¢
wird & = (a, ), also

V(a, b, ¢) = |b x ¢ |a] cos (a, f)
= |a| |f| cos (a,f) = a-f.
Das Ergebnis lautet
V(a,b,c) = a- (b x ¢). (1.34)

Das hier auftretende gemischte Produkt a - (b x ¢) wird auf Grund der geometri-
schen Herleitung Spatprodukt genannt. In der Formulierung (1.34) bestimmt a, =
|al cosx das Vorzeichen des Spatproduktes, namlich ¥(a, b, ¢)=0, falls cos x =0 ist.

Wenn cosax > 0, also 0 =« < —;— ist, dann handelt es sich wie in Bild 1.5 um ein
Rechtssystem. Ist aber cos & < 0, also AP < m, dann bilden die Vektoren a, b, ¢

2
in dieser Reihenfolge ein Linkssystem. Damit haben wir das gewiinschte Kriterium:

2 Schultz-Pisz., Tensoren
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die Vektoren a, b, ¢ bilden in dieser Reihenfolge ein (R) bzw. (L) genau dann, wenn
V(a,b,c¢) > 0 bzw. V(a,b,c) < 0 ist. Sind die Vektoren a, b, ¢ komplanar, so
konnen sie kein rdumliches Gebilde erzeugen; der Rauminhalt ist gleich null. Wir
fiigen hinzu: die Vektoren a, b, ¢ sind genau dann linear unabhéngig (nicht kompla-
nar), wenn ¥(a, b, ¢) # 0 ist; sie sind genau dann linear abhéngig (komplanar), wenn
V(a,b, ¢) = 0ist (vgl. auch Bd. 13,2.2.7.).
Auf Grund der Vereinbarung 1.1 gilt

Vier,es,e3) = Vies, e, e) = Vies, e, e2) = 1,

Vies e e5) = Vies, er,8,) = Vies, e, ;) = — 1,
wobei es sich dem Betrage nach um die MafBizahl des Volumens eines Wiirfels mit den
Kantenléngen 1 handelt. Zum Beispiel bilden die Vektoren e, e, €, in dieser Reihen-
folge ein (R) wegen V(e e,, €,) =1 > 0, aber in der Reihenfolge e, , e, e, ein (L)
wegen Ve, e;, e;) = —1 < 0. Mit dem Vektortripel e;, e;, e, 1aBt sich kein raum-
liches Gebilde erzeugen, wenn zwei oder drei Vektoren gleich sind, d.h. es gilt
V(e;, e;, €) = 0, wenn zwei oder drei Indizes gleich sind.

Wir fithren die Komponentendarstellungen der Vektoren

a=uae, b=>Dbe, c=ce
ein. Nur unter der Voraussetzung, daf3 die kartesischen Basisvektoren e,, e,, e; in
dieser Reihenfolge gemaB V(e,, e,, e;) = | ein Rechtssystem bilden, gelten die be-
kannten Zerlegungsformeln

e b, c a, by ¢,
bxc=|ebyc,|, a-(bxc)=|a,b,c,|. (1.35)
e; by ey a3 bs c; :

Man hat sich entschlossen, fiir das Spatprodukt ein eigenes Symbol [abe] = a - (b x ¢)
einzufiihren. In der eckigen Klammer werden keine Beistriche gesetzt; es handelt sich
um eine neue Produktdefinition:

[abc] = a-(b x ¢) = (a x b)-c. (1.36)
Mittels (1.35) erhilt man bei Beriicksichtigung von Determinanteneigenschaften die
Beziehungen (1.36) und

[abc] = [bea] = [cab]

= —[bac] = —[cba] = —[ach]. ' (1.37)
Von wesentlicher Bedeutung ist der Zusammenhang zwischen der Malizahl des
Spatvolumens und dem Spatprodukt gemaf3

V(abc) = [abe] (1.38)
sowie die Koordinatendarstellung (1.35) bei Beachtung der Vereinbarung 1.1.

Die Invarianz des Spatprodukts ist aus der geometrischen Konstruktion nach
Bild 1.5 und aus (1.34) ersichtlich, wo nur Langen und Winkel eingehen.

Satz 1.6: Wird das Spatprodukt [avw] mit den einstufigen Tensoren w, v und w gebildet,
so ist es (gegeniiber der Gruppe der orthogonalen Koordinatentransformationen)
invariant:

[UVW] = [uvw].
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[uvw] ist ein Tensor nullter Stufe. Skalarprodukt w - v und Spatprodukt [uvw] werden
auch (skalare) Fundamentalinvariante genannt.

Bemerkung 1.1: Aus den verallgemeinerten Formeln des Kapitels 7 ergeben sich die
Darstellungen

€, Uy Wy
€, Uy W)
e3 U3 W3

v x W= [eee;] s (1.352)

Uy Uy Wy
Uy 0y Wy
U3 V3 W3

[uvw] = [e,e,e;] (1.35b)

mit dem ,,MaBfaktor* [e e,e;]. Wenn wir gegen die Vereinbarung 1.1 verstoBen und
ein Linkssystem e,, e,, e; zugrunde legen, sind die Formeln (1.35a, b) mit [e,e,es]
= —1 anzuwenden. Wir wollen aber die Vereinbarung 1.1 einhalten, indem wir im
folgenden, wenn nichts anderes gesagt wird, von einem Rechtssystem e, e,, e aus-
gehen, so daB die Formeln (1.35) mit [e,e,e;] = +1 gelten. :

Es sei aber bemerkt, daf3 das Produkt .
au a‘vaw
b-ub'vbw
cruc'verw

[abe] [uvw] = (1.39)

zweier Spatprodukte wegen [e;ese;]* = 1 mit (1.35b) vertrdglich ist. Setzen wir
nach (1.13)
=& =cul, V=8 = e, W=8 = Cye,

also uy, = ¢yy, Uy = Cop, Wi = Cay, 50 folgt aus (1.35b) die Beziehung

[€,8:85] = [eseze;] fcul - (1.35¢)
Gehen wir von einem Rechtssystem mit [e,e,e;] = 1 aus, so wird nach (1.35¢) auch
[€,€,€5] = 1, wenn |[c, || = 1ist; es handelt sich um eine Drehung des Bezugssystems,
wobei ein (R) wieder in ein (R) iibergeht. Ist aber |cy| = —1, so geht [e e es] =
nach (1.35¢) in [e;8:8;] = —1, also ein Rechtssystem in ein Linkssystem tiiber; es
handelt sich um eine Spiegelung. Die Determinante |c;| der Trapsformatlons-
matrix C entscheidet bei orthogonalen Transformationen, ob der Ubergang von

B auf B durch eine Drehung im Falle |¢;| = +1 oder durch eine Umlegung des KS
im Falle | ¢/l = —1 vollzogen wird. Damit ist Satz 1.4 bewiesen.

Aufgabe 1.4: Mittels (1.35¢) ist nachzuweisen, daB das Kriterium (1.19) auch dann
zutrifft, wenn man von einem Linkssystem ausgeht.

Aufgabe 1.5: Eine Ebene wird von zwei konstanten Vektoren p und q aufgespannt,
die von dem festen Punkt A der Ebene abgetragen werden. Der laufende Punkt P der
Ebene wird mit zwei varlablen Parametern A und erfaBt: AP = p + uq. Man
benutze die Vektoren a = OA r=AP und x = OP so daBl x = a + r gilt. Man
begriinde, dal die Ebenengleichung in der Form

V(p.q,1) =0, also V(x,p,q) = V(a,p.q)
2%
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dargestellt werden kann. Man leite daraus die allgemeine Gleichung und die Ab-
schnittsgleichung der Ebene her.

Aufgabe 1.6: Nach Aufgabe 1.5 fithre man den Stellungsvektor N = p x q der
Ebene ein und leite die Hessesche Normalform ab.

Aufgabe 1.7: Mit Hilfe des Verbindungssatzes (1.30) leite ﬁ)an die folgenden Vektor-
formeln her:

(a x b) x (¢ x d) = [acd] b — [bed] a (1.40a)
und )

(a x b) x (¢ x d) = [abd] ¢ — [abc] d. (1.40b)
Welche Richtung hat der Vektor (a x b) x (¢ x d)? Es folgt die lineare Abhéngig-
keit der Vektoren a, b, ¢, d gemal3

[abc] d = [bed] a + [eda] b + [dab]c. (1.40¢)
Aufgabe 1.8: Man beweise die Umwandlungsformel
a-c a-d
b-c b-d
mittels f = ¢ x d, (a x b)- (¢ x d) = [abf] und (1.30). Welche Beziehung ergibt

(1.41) fiir (a x b) - (a x b)? Zur Losung der Ubungsaufgaben nehme man Band 13
zur Hilfe! Wir vervollstindigen die ,,Formelsammlung® mit

(axb)(cxd) = i (1.41)

ax (b x (cxd))=[acd]b — (a-b)(c x d) (1.42a)
und

ax((bx(exd)=((d-d@xc)—(b-c)(axd). (1.42b)
Durch Umbezeichnungen folgt aus den letzten beiden Gleichungen die Beziehung

[abc]d = (a x b)(d-¢) + (b x ¢)(d-a) + (c x a)(d-b). (1.42¢)

1.5. Multilinearformen. Tensoren rn-ter Stufe

Mit ,,Zahlen** sind hier immer reelle Zahlen gemeint, d. h., alle Zahlensymbole mit
Ausnahme der imagindren Einheit bezeichnen reelle Zahlen.

Definition 1.4: Ein Funktional ist ein Operator, der jedem Element seines Definitions-
bereiches eindeutig eine Zahl zuordnet. Der Definitionsbereich des Funktionals L sei die
Menge der Vektoren des euklidischen Vektorraumes R>.

Definition 1.5: Ein lineares Funktional L isz homogen (vom 1. Grade) gemdifp
L(2u) = AL(n),
wenn A eine Zahl bedeutet, und additiv gemdf
L(u + v) = L(u) + L(v).
Die Linearitit des Funktionals L wird mit Zahlen . und u durch die Eigenschaft
LA + puv) = AL(u) + uL(v) (1.43)
gekennzeichnet. !
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Fiir multilineare Funktionale benutzen wir einheitlich das Operatorzeichen L,
obwohl L beziiglich L(u), L(u, v), L(u, v, w), ... jeweils verschiedene Bedeutung hat.

Definitionen 1.6: Ein bilineares Funktional L wird mit den Eigenschaften
L(Ja + pb,v) = 2L(a,v) + uL(b,v),

~ N N (1.44)
L(u, 2a + ub) = AL(u, a) + uL(u, b)

charakterisiert. Ein trilineares Funktional L wird mit den Eigenschaften
L(Za + ub,v,w) = 2L(a, v, w) + uL(b, v, w),
L(u, a + pb, w) = AL(u, a, w) + uL(u, b, w), (1.45)
L(u,v,Aa + pb) = AL(u,v,a) + pl(u,v,b)

gekennzeichnet.

Ist nun L ein einfach oder mehrfach lineares Funktional, das je nach Definition
jedem Vektor, jedem Vektorpaar, jedem Vektortripel, ... des Vektorraumes R® immer
einen bestimmten Zahlwert zuweist, speziell

L(e)) = a, 1:(9.'; &) = di, L(eu €, ) = ay (1.46)

usw., so erhalten wir wegen der Homogenitit des linearen bzw. multilinearen Opera-
tors L die Ausdriicke:

L(u) = L(we) = wl(e) = uay,
Lw,v) = L(ue;, ve) = uwcLle;, e) = upay,

Lu, v, w) = L(ue;, vje;, wey) = wwwil(e;, e;, e) = u0wedyy,
also . R
L(w) = auy, L(u,v) = ayuvy, (1.47)

L(u, v, W) = a,u,0,w;

usw. Die sich jeweils rechts ergebenden Skalare von (1.47) heiBen nach der Reihe
Linearform, Bilinearform, Trilinearform, allgemein Multilinearform. Eine Multi-
linearform L(u, v, w, ...) ist in jedem ihrer Argumente u, v, w, ... linear.

Satz 1.7: Bei Ubergang von einem kartesischen KS B zu einem anderen B bleibt eine
Multilinearform genau dann invariant, wenn sie vollstindig mit Tensorkoordinaten ge-
bildet wird.

Man sagt dann, daB3 der Tensor 1., 2., 3. Stufe mit den Koordinaten a, a;, a;
respektive die Linearform, Bilinearform, Trilinearform erzeugt. Die Tensorkoordina-
ten miissen sich bei Ubergang von B auf B nach bestimmten Gesetzen transformieren,
um die Invarianz der Multilinearformen zu sichern. Diese Transformationsgesetze fiir
die Koordinaten @, ay, a;; eines Tensors 1., 2., 3. Stufe lauten respektive
Ak = Cudy, a, = cydy, (1.14)
Aix = CijCalji, Ay = CjiCydi, (1.48)

Gijk = CipCigCirlpgrs i = CpiCqiCrilpgr- (1.49)
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Um Satz 1.7 zu beweisen, benutzen wir die vorstehenden Transformationsgesetze
und (1.16). Zunichst wird

Ay, = CiylComthy = CoComthy = Oty = AUy,
also
Aty = Ay . (1.50)
Aus (1.50) liest man die Invarianz des Skalarprodukts a - u ab, sofern es mit Tensoren
1. Stufe gebildet wird.
Die entsprechende Rechnung zeigt die Invarianz der Bilinearform, sofern sie mit
Tensoren 1. und 2. Stufe nach (1.14) und (1.48) erzeugt wird:

il = C;jCiljiCimtmChnln = @jiynUnCiiCimCriChn
= jUp0,0uOtn = AtV >

also
AydliTy = Ay - y (1.51)

Wird die Trilinearform nach (1.14) und (1.49) mit Tensoren 1. und 3. Stufe gebildet,
so folgt
Ay rdt0 Wy = CipCiqCrrGpgrCittCjmUmCinWn
= Aol UnWaCipCiiC gl jmCrrCin
= pgrtVWad piOanOpn = umnlliVpWy s
also
Q0 Wy = G iU Wy (1.52)
Die Formulierung ,,genau dann* in Satz 1.7 besagt, daB der Satz umkehrbar ist. In
der Tat kénnen wir die Beweisfithrung umkehren, indem wir die Invarianz der
Multilinearformen gemif (1.50), (1.51), (1.52) voraussetzen und daraus die Trans-
formationsgesetze (1.14), (1.48), (1.49) fiir die Koordinaten eines Tensors 1., 2.,
3. Stufe herleiten.
Jetzt kénnen wir den Tensorbegriff beziiglich der Gruppe der orthogonalen Trans-
formationen endgiiltig fassen. Da jeder Index von 1 bis 3 laufen kann, gibt es 3! = 3
Zahlen ay, 3% = 9 Zahlen a;, 3% = 27 Zahlen a;, usw.

Definition 1.7: Ein Tensor n-ter Stufe ist ein System von 3" Zahlen, seinen Koordinaten
Qyj...iy» die sich bei einer Drehung oder Umlegung des kartesischen KS - in Verall-
gemeiverung von (1.49) — nach dem Gesetz

Aiyigein = Cirk,Cigky”**Cinknh1k2.eken
bzw.

Ay iyeiin = Chyi,Chiyiy”** Chinin@kykyokn (1.53)
transformieren. Die Transformationskoeffizienten cy, sind in Gleichung (1.12) definiert.

Ein Tensor 2. bzw. 3. Stufe ist also ein System von 9 bzw. 27 Zahlen, seinen Koordi-
naten a; bzw. a;, die sich bei einer orthogonalen Transformation des kartesischen
KS nach dem Gesetz (1.48) bzw. (1.49) transformieren. Ein Vektor ist nur dann ein
Tensor 1. Stufe, wenn sich seine Koordinaten nach dem Gesetz (1.14) transformieren.
Ein Skalar wird hier als Tensor nullter Stufe, nimlich als Invariante mit nur einer
Bestimmungsgrofe (3° = 1) eingereiht. Beispiele sind das Skalarprodukt und Spat-
produkt. Eine beliebige Zahl gehdrt nicht in diese Kategorie.
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Beziiglich der Gruppe der orthogonalen Transformationen ist auch der variable
Ortsvektor x = x,e; ein Tensor 1. Stufe. Der Ortsvektor ist an den Ursprung des KS
gebunden, der bei orthogonalen Transformationen nicht verschoben wird.

Beispiel 1.7: Hessesche Normalform der Ebene. Die Gleichung a,x; = d stellt eine
Ebene im R? dar, wenn das Skalarprodukt a - x = a,x, invariant ist. Der die Linear-
form erzeugende Vektor a = a,e, sei der normierte Stellungsvektor der Ebene, |a| = 1.
Er ist senkrecht zur Ebene gerichtet. Sein Richtungssinn kennzeichnet die Seite eines
Blattes, die dem Nullpunkt abgewandt (zugewandt) ist, wenn d > 0 (d < 0) ist, wo
|d| den Abstand der Ebene vom Nullpunkt bedeutet. Die Ebene ist ein geometrisches
Objekt, das nicht von der zufilligen Wahl des KS abhéngt. Folglich smd die a;
Koordinaten eines Tensors 1. Stufe.

Beispiel 1.8: Hauptachsentransformation. Setzen wir in der Bilinearform ayx;y, die
Ortsvektoren gleich, x = x,e; = y = )&, so entsteht die quadratische Form a;x;xy,
wo noch a;; = ayund ||a;| =+ 0 vorausgesetzt werden soll. Die Gleichung a;,x;x;, = 1
beschreibt eine Mittelpunktsfliche 2. Grades, wenn die quadratische Form a;x;x;
von einem Tensor 2. Stufe mit den Koordinaten a;, erzeugt wird, so daB bei beliebiger
Drehung des KS gilt

A XXy = ApXiXy. (1.54)
Durch eine geeignete Drehung des KS gelingt es, die Hauptachsenfom

X4+ L5+ A =1 (1.55)
der Flachengleichung herzustellen, so daf3

XXy = MXE + X5 + AsX3

gelten muB, wenn X, X,, X3 jetzt die Koordinaten im Hauptachsensystem &, &,, &;
bezeichnen. Sind die positiven Eigenwerte 4; = 1/a? des Hauptachsenproblems simt-
lich verschieden, so beschreibt die Gl. (1. 55) ein dreiachsiges Ellipsoid mit den Halb-
achsen a,, a,, a; im Hauptachsensystem, wihrend in einem beliebigen dazu gedrehten
KS die gemischten Glieder in der Gleichung des Ellipsoids

Ay X} + Ay0x3 + a33xi + 2a1,X,X, + 2a3%,X3 + 2a3,x3x;, = 1 (1.56)

auftreten. Diese Gleichung in der Kurzform
agxix, = 1 (1.57)

kann nur dann' ein geometrisches Objekt (z. B. ein Ellipsoid) beschreiben, wenn die
Koeffizienten a;;, der quadratischen Form a;.x;x, Koordinaten eines Tensors 2. Stufe
sind.

Bersprel 1.9: Trilineares alternierendes Funktional V. Entsprechend (1.45) bis (1 47) sei
V ein trilineares Funktional, das jedem geordneten Vektortripel (u, v, w) einen be-
stimmten Zahlwert zuweist, und zwar nach der Vorschrift

V(u, v, w) = [uvw]. (1.38)
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Nach Vereinbarung 1.1 wird
Vies,e,,e;) = [eje,es] = 1

vorausgesetzt. Mit der Bezeichnung [e;e;e;] = ¢, lautet die Vorschrift (1.38) speziell
Ve, e, ) = & (1.58)

Es folgt
V(a, v, w)

V(ue;, vie;, wie)

up;w Ve, ;, €) = UV;Wie, i,

also nach (1.38)
V(u, v, w) = g uvw, = [u, v, w. (1.59)

Da das Spatprodukt einen Skalar (Tensor nullter Stufe) darstellt, muf die Trilinear-
form &;uv,w, invariant sein. Das ist nur méglich, wenn die ¢, Koordinaten eines
Tensors 3. Stufe sind, den wir E-Tensor nennen wollen.

Wird die Determinantendarstellung (1.35) herangezogen und die Sarrussche Regel
angewandt, dann konnen wir die Bedingung (1.59) auswerten:

Uy vy Wy
Us Uy Wa | = UUaW3 + UiWolly + WillaU3 — UyWals — Uil W3 — Wi lslUs
Uz U3 W3

= E123U1 VW3 + E231U2U3Wy + E312U3V1 W2
T+ E213U0 W3 + E321U3VW T+ €132l U3V
Der Vergleich liefert
€123 = €231 = €312 = 1,
(1.60)
213 = €321 = &3, = —1,

g = 0, wenn zwei oder drei Indizes gleichzahlig sind. ¢, wechselt das Vorzeichen,
wenn man zwei beliebige Indizes vertauscht. Diese Eigenschaft hei3t ,,alternierend-:.

Aufgabe 1.9: Man bestitige (1.60) mittels (1.34) in geometrischer Deutung.
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2.1. Tensoroperationen

Addition: Bekanntlich kénnen in der Matrizenrechnung nur Matrizen gleichen For-
mats addiert bzw. subtrahiert werden, indem man die entsprechenden Elemente (mit
gleichem Standort im Matrizenschema) addiert bzw. subtrahiert. Analog kénnen nur
gleichartige Tensoren, namlich gleichstufige Tensoren desselben Raumes, addiert
bzw. subtrahiert werden, indem man die entsprechenden Koordinaten (mit gleicher
Indizierung) addiert bzw. subtrahiert. Der Summentensor mit den Koordinaten

tigeein = Qiyigein + Dityin 2.1
hat die gleiche Stufe wie die Summanden. Ein Tensor, dessen Koordinaten samtlich
gleich der Zahl Null sind, hei3t Nulltensor. Ist die Differenz zweier gleichartiger Ten-

soren gleich dem Nulltensor, so sind die beiden Tensoren gleich. Wir wollen uns bis
auf weiteres nur auf den Raum R® beziehen.

Multiplikation: Das allgemeine oder tensorielle Produkt zweier Tensoren wird einfach
Produkt genannt. Es wird so definiert, dal Tensoren beliebiger Stufe multipliziert
werden konnen. (Spezialisierte Produktbildungen erhalten je ein Beiwort wie z. B.
skalares oder inneres Produkt.)

s

Definition 2.1: Das Produkt zweier Tensoren wird so gebildet, daf$ man alle Koordinaten
des Linksfaktors m-ter Stufe mit allen Koordinaten des Rechtsfaktors n-ter Stufe, also
3™ Zahlen mit 3" Zahlen bei Beachtung der Reihenfolge multipliziert, was ein System
von 3™*" Koordinaten fiir den Produkttensor ergibt:

Djpjyein
Als Multiplikationssatz bezeichnen wir den

)
Pijiyeimiyizein = Qiyigeeein (2.2)

Satz 2.1: Das Produkt eines m-stufigen mit einem n-stufigen Tensor ergibt einen Tensor
(m + n)ter Stufe.

Beispiel 2.1: Das Produkt eines Tensors 1. Stufe mit einem Tensor 2. Stufe sollte also
einen Tensor 3. Stufe gemaB u,v, = wy, ergeben. Wir iiberpriifen den Tensorcharak-
ter des Produktes mit Hilfe der Transformationsgesetze (1.14) und (1.48). Die In-
varianzforderung wird mit

Uikly = CijCptjpCiqla = CijChpClalipVa = CijCkpClqWipa
erfiillt, falls

Wiki = CijCipC1qWipa
gilt. Das ist aber das Transformationsgesetz (1.49) fiir einen Tensor 3. Stufe. Den
allgemeinen Beweis des Satzes 2.1 wollen wir uns schenken.

Als Divisionssatz bezeichnen wir den

Satz 2.2: Von den beiden Faktoren eines Produktes seien ein Faktor und das Produkt
Tensoren. Dann ist auch der andere Faktor ein Tensor.

Dieser Satz bleibt auch giiltig, wenn man zu speziellen Produktbildungen iibergeht.
Er folgt aus Satz 2.1.
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Uberschiebung und Verjiingung. Setzt man im Produkt zweier Tensoren einen Index
des Linksfaktors gleich einem Index des Rechtsfaktors, etwa j = k, so nennt man
diese MaBnahme Uberschiebung der beiden Tensoren nach j und k. Eine Uberschie-
bung erniedrigt die Stufe des Produkttensors um 2. Setzt man in ein und demselben
Tensor der Stufe n = 2 zwei Indizes gleich, so spricht man von einer Verjiingung,
wobei sich die Stufe des Tensors um 2 erniedrigt. DaB durch Uberschiebung oder
Verjiingung wieder Tensoren entstehen, muBl noch gezeigt werden.

Beispiel 2.2: Durch Uberschiebung nach j und p geht

Uijilpg = Wijkpg 10 Ui = Oixg,
also ein Tensor 5. Stufe in einen Tensor 3. Stufe iiber. Der Tensor 3. Stufe mit den
Koordinaten u, ;, wird in der Form u,;;, = s zu einem Tensor 1. Stufe mit den Koordi-
naten Sy = uyx + Uzzx + Uz, verjiingt. —

Zum gleichen Resultat gelangen wir durch Uberschiebung mit einem Kronecker-

symbol:

Ojplhi jkUpg = OjpWijkpg = Uijilig = Pigs Opjthiz = Upik = Sg- (23)
Durch Uberschiebung mit d;, entstehen aber nur dann in beiden Fillen wieder Ten-
soren, wenn die Zahlen §;, Koordinaten eines Tensors 2. Stufe sind.

Satz 2.3: Die 0, sind Koordinaten eines Tensors 2. Stufe, den wir Einheitstensor
nennen. Durch Uberschiebung mit 8, (nach i und k) geht ein Tensor oder ein Produkt-
tensor wieder in einen Tensor iiber, dessen Stufe um 2 erniedrigt ist.
Beweis: Nach (1.9) gilt e; - ¢, = J;, € * & = 0y, denn die durch Drehung oder Um-
legung des kartesischen KS aus e, e,, e; hervorgehenden Basisvektoren &, €,, €;
stehen wieder paarweise aufeinander senkrecht und haben einzeln die Lange 1 bei-
behalten, z. B. & & =0, & & = & = |. Urspriinglich gilt aber & & = 0,
neben e; - ¢, = d;. Es folgt

61‘/: = 51k~ ) (2.4)
Andererseits sind die Transformationsgesetze (1.48) fiir die Koordinaten eines Ten-
sors 2. Stufe gemaB

o = CijCudy = CuCy = Oy 2.5
nach (1.16) in Ubereinstimmung mit (2.4) erfiillt; also gilt Satz 2.3.

Das Produkt zweier Tensoren 1. Stufe hat z. B. die Koordinaten u,v, = w;, und
heiit (lineare) Dyade. Es gilt uv, = vu;, aber im allgemeinen v, # vy, = wy . Die
Dyaden mit den Koordinaten wy, und w;; sind im allgemeinen verschieden. Das Ent-
sprechende muB fiir das Produkt zweier Tensoren m-ter und n-ter Stufe festgestellt
werden.

Satz 2.4: Das Produkt zweier Tensoren ist (im allgemeinen) nicht kommutativ.

Die spezielle Dyade mit den Koordinaten v stellt eine Ausnahme dar. Der Leser wird vielleicht
fragen, warum z. B. ;04 und v, 1y, die Koordinaten verschiedener vierstufiger Tensoren sind, da es
,,doch auf die Wahl der Buchstabenindizes nicht ankomme*‘ und in beiden Fillen alle 3* Koordinaten
erfaBit werden. Ein System von Koordinaten bedeutet eine systematische Anordnung der Koordinaten
nach MafBgabe der Indizes. Die Wahl der Buchstabenindizes bei u; vy, ist zunédchst willkiirlich. Nach
MaBgabe der ij, kI denken wir uns alle 3* Koordinaten u; v, systematisch angeordnet. Dann bedeutet
aber v, juy; eine andere Anordnung der 3* Zahlen. Am einfachsten ist das Beispiel der a;; verglichen
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mit dem a;;. Als systematische Anordnung nehmen wir das Matrizenschema. Die Matrix ((ay;)) ist
gegeniiber der Matrix ((a;;,)) transponiert. Urspriingliche und transponierte Matrix sind aber im all-
gemeinen verschiedene Matrizen.

Definition 2.2: Die Stufe der Tensoren sei =21. Als inneres Produkt bezeichnen wir die
spezielle Uberschiebung derart, daf3 bei gegebener Reihenfolge der beiden Faktoren die
innen benachbarten Indizes der Koordinaten gleichgesetzt werden.

Das innere Produkt der Tensoren mit den Koordinaten u;; und vy, ist #;0,, um
ein Beispiel zu nennen. Die Stufe des inneren Produktes ist um 2 niedriger als die
Stufe des (allgemeinen) Produkts zweier Tensoren, im Beispiel u;;vy,,-

2.2 Tensoren in Komponentendarstellung. Punkttransformationen

Wir haben festgestellt, da der Mathematiker geometrische Objekte untersucht, die vom speziellen
KS unabhingige Bedeutung haben. Der Physiker muB seine Grundgesetze so formulieren, daf sie
prinzipiell nicht von dem zufillig benutzten KS abhidngen. Die auftretenden physikalischen Grofen
miissen daher Tensoren sein. Es ist verstidndlich, daBB dem Anwender die Definition 1.7 wenig zusagt,
da ,,eigentlich** nur von Tensorkoordinaten-und nicht vom Tensor selbst gesprochen wird, wenn man
das Wort ,,System** iiberliest. Der Anwender sieht aber insbesondere im Tensor 2. Stufe eine selb-
stindige GroBe, namlich ein (geometrisches oder) physikalisches Objekt 2. Stufe, das selbstdndige
Bedeutung haben sollte. Das bekannteste Beispiel ist der zweistufige Spannungstensor der Mechanik
deformierbarer Korper. Bei Definition von Tensoren 1. und 2. Stufe konnte man statt ,,System** auch
,,Matrix‘‘ sagen. Dann ist ein Tensor 2. Stufe eine Matrix von 9 Zahlen, seinen Koordinaten a;, die
sich bei Ubergang von B auf B nach (1.48) transformieren. Einem Tensor 2. Stufe kann man also eine
Matrix vom Format (3,3) zuordnen. Aber nicht jede quadratische Matrix von 9 Elementen ist ein
Tensor 2. Stufe. Das ist nur dann der Fall, wenn man iiberhaupt von Koordinaten und orthogonalen
Koordinatentransformationen sprechen kann und wenn die Transformationsgesetze (1.48) erfiillt
sind. Es ist klar, daB wir mit ,,System‘* eine systematische Anordnung meinen im Gegensatz zur
Systemtheorie, wo man ,,Systeme* mit Eingang und Ausgang betrachtet.

Da man gelernt hat, die Matrizen als selbstindige GroBen aufzufassen und sie deswegen in der
Matrizenrechnung mit Buchstabensymbolen kennzeichnet, ist es auch erlaubt, einen Tensor zweiter
Stufe, etwa den Spannungstensor als selbstdndige GroBe mit einem Buchstaben, etwa S zu bezeich-
nen. DaBl man Vektoren auch dann mit einem Buchstaben bezeichnen darf, wenn sie Tensoren erster
Stufe sind, bedarf keiner Rechtfertigung. Bei Anwendungen geniigt der Buchstabe, da die Stufe des
Tensors aus dem Zusammenhang gegeben ist. Bei allgemeinen Betrachtungen wird die Stufe des
Tensors kenntlich gemacht,z. B. A®), A®, A® fiir einen Tensor 2., 3., 4. Stufe. Speziell sei 0™ der
Nulltensor n-ter Stufe.

Wir stellen folgende Rechengesetze zusammen:

A® 4 B®™ = B® 4 A®, )
A®™ + [B® + C™] = [A® + B™] + C™, (1)
JAD + uA™ = (A + p) A™, (I1I)
AA® + B®™] = 2A™ + 1B™. (V)

Fiir Produkte von Tensoren gelten die Gesetze
J[AMB™] = [JA™] B™ = A®[AB™], )
A®[B™CP] = [AWBM™] C®», (V1)

A®[B™ 4 CW] = AWB™ 4 AWC™, (VD)
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Die Faktoren 4 und x konnen hier Zahlen oder Skalare bedeuten. In Koordinaten-
schreibweise handelt es sich um bekannte Assoziativ- und Distributivgesetze fiir
Zahlen.

Eine interessante Erscheinung tritt auf, wenn wir Satz 1.2, nach dem sich die
Koordinaten eines Tensors 1. Stufe nach dem gleichen Gesetz wie die Koordinaten-
einheitsvektoren transformieren, auf die behandelten Multilinearformen (1.50),
(1.51), (1.52) anwenden, indem wir dort u;, v;, w, durch e,, e;, e, ersetzen. Es folgt,
daBl die Ausdriicke

ae, = 8, auee, = Ay, a;;e.e;e, = d;;€€;€ (2.6)

(beziiglich der Gruppe der orthogonalen Koordinaten) /nvariante der Stufe 1, 2, 3
darstellen, sofern die @y, a;, a;;; Koordinaten eines Tensors 1., 2., 3. Stufe sind. Man
konnte also daran denken, den Tensor als selbstindige Grofie in Summenform dar-
zustellen, etwa

_ 2 _ _
a=aqe, A? =azee,, AD =aq;eee, 2.7)
und .

s _ sz X2 _ 5 AG) _ 5 saa 57y
a=a&, AP =488, AP =d,,&8%&%. 2.7

Dann lauten die Invarianzbedingungen fiir Tensoren 1., 2., 3. Stufe einfach
a=3 A®= K(Z), A® = A, (2.8)

Die Schwierigkeit besteht aber darin, daB3 die Produkte e;e;, e;e;e, usw. nicht erklart
sind. Sie sind an und fiir sich irreduzible GréBen der Stufe 2, 3 usw. Wir nennen das
System der Produkte e;e;,... e;, ein kartesisches Basissystem oder eine kartesische
Basis n-ter Stufe, d. h. die Gleichung

iyt ini iy €y, = 00 ) (2.9)

kann nur dadurch erfiillt werden, daB simtliche 3" Zahlen Ai,i,...s, gleich null sind.
Die 3" Elemente e;,e;, ... €;, einer Basis n-ter Stufe sind linear unabhdngig. Das ist eine
Verallgemeinerung des Begriffes der linearen Unabhangigkeit fiir die Basisvektoren
e, e,, e3 in dem Sinne, daB die Gleichung 4,¢; = 0, also

Aey + Are; + Azes =0

igeerin

nur die triviale Losung 4, = 4, = A3 = 0 besitzt. Die Summenform

AD =g (2.10)
nennen wir Komponentendarstellung des n-stufigen Tensors A™ beziiglich der n-stufi-
gen Basis e; e, ... €;,. Die 3" Zahlen a;,i,...i, sind seine Koordinaten, die dem Trans-
formationsgesetz (1.53) geniigen miissen. Die Tensoroperationen werden an (2.10) so
definiert, daf sie beziiglich der Tensorkoordinaten mit den im Abschnitt 2.1. erklirten
Rechenregeln iibereinstimmen. Speziell wird das innere Produkt an (2.10) so erklért,
daB der Tensor n-ter Stufe durch n-malige innere Multiplikation mit je einem Tensor
1. Stufe auf eine Multilinearform, also auf einen Skalar ,,abgebaut* wird. Diese Art
der Reduzierung auf einen wohldefinierten Ausdruck muf3 zur Erkldrung von (2.10)
ausreichen. Die Elemente des Basissystems e;, e, ... €;, sind insgesamt keine Tensoren
n-ter Stufe dhnlich wie die Basisvektoren e, e,, e; insgesamt nicht Tensoren 1. Stufe

e e ...e

in
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sind. Sie sollen aber den Rechengesetzen (I) bis (VII) geniigen. Wir wollen uns darauf
beschrinken, die Tensoroperationen an Beispielen zu demonstrieren. Der Summen-
tensor

Uik€;€ + V€€ = W;€;€

hat die Koordinaten wy, = uy, + v gemal
Upeie, + vpeie, = (Uy + Vi) e .11
in Ubereinstimmung mit der Summendefinition im Abschnitt 2.1. Der Produkttensor
;7€1€,b41n€k€ 8y = Cijiimei€,€4€ €y
hat die Koordinaten

Cijktm = Uijbkim
gemal
a; /€€ 0cimee e = a;;biineie e e, (2.12)

in Ubereinstimmung mit Definition 2.1.
Bei der vorstehenden Multiplikation zweier Tensoren werden (V) und (VII) benutzt.
Bereits bei der (linearen) Dyade

uy = (u;e;) (vxey)

gelangt man nur mit Hilfe des assoziativen und distributiven Gesetzes nach (V) und
(VII) zur Komponentendarstellung geméf

v = ;€U = U;Uye;€, (2.13)
aber

VU = U@l = V;l€ey. (2.13)
Tm Beispiel (2.12) haben wir

APB® = q;;by e eieeie,,
aber

BPA? = b, ai,e.eee,.

Das Produkt zweier Tensoren ist nicht kommutativ, also gilt im allgemeinen
AMPBM L BmWAM
Eine Ausnahme dieser Regel bildet z. B. die Dyade vwv = v,0,¢;e;.

Das innere Produkt zweier Tensoren wird an einem Beispiel erlautert. Es wird mit
einem Malpunkt gekennzeichnet.

3 2
A - B® = qyeee;  byuene,
= Qiibmn€i€€1 * €n€y = AitiDmn€i €0 e,
= Aymbmne iy

Mit e, - e, = 0, wird die Multiplikationsvorschrift auf das Skalarprodukt zweier
Vektoren zuriickgefiihrt. Bei Beachtung der Reihenfolge werden die innen mit dem
Malpunkt verbundenen Basisvektoren skalar multipliziert. Wenn man diese Vektoren,
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im Beispiel e, und e,,, fortlaBt und die zugehorigen Indizes / und m gleich setzt, gelangt
man zum gleichen Resultat in Ubereinstimmung mit der Definition 2.2. Wir kénnen
also z. B. emfacher rechnen:

apeey " b, = aybi,eey,
indem wir e, und e, fortlassen und k = / setzen. Wir berechnen
3 . —_ W . .
(AP - w) V] u = [(aipeee wie) - vpen] - Uye,
= [aijwieie; - vye,] - une,
= dipWilj€  Un€, = Wiy,

also
[(A® - w) - v]-u = agu0;w,. (2.14)

Durch dreimalige innere Multiplikation des dreistufigen Tensors A mit je einem
Tensor -1. Stufe gelangen wir zu der wohlbekannten skalaren Trilinearform (1.52). —

Das (n — I)fache innere Produkt eines Tensors n-ter Stufe mit je einem Tensor
1. Stufe ergibt einen Tensor 1. Stufe. Auch auf diese Weise werden héufig Tensoren
hoherer Stufe erklart. Man erhilt so eine eindeutige Abbildung von n — 1 Vektoren
auf einen Bildvektor. Diese Zuordnung ist homogen und linear in jedem der n — 1
Originalvektoren. Man nennt sie auch multilineare Vektorfunktion. Das einfachste
Beispiel ist die affine Abbildung mit Hilfe eines zweistufigen Tensors A = a;.e;e;
gemil A - x = x'. Der Tensor, der die affine Abbildung vermittelt, heiBt auch ,,Affi-
nor*. Wegen

A-X = aue e, x€, = auxe; = xje; = X’ ) (2.15)
wird der Vektor x = x;e; in demselben KS eindeutig auf den Vektor X’ = xje; mit den
Koordinaten

Xj = ayXy @.16)
abgebildet. Die Zuordnung (2.16) ist linear und homogen in den Vektorkoordinaten.

Wenn wir in der Rechnung fiir (2.14) den Vektor u fortlassen und w =y, v = x
setzen, folgt

(A® - y) X = apx;pe; = zje; = 7.
Den Vektoren x und y wird eindeutig der Bildvektor z’ mit den Koordinaten

zi = QpXpe (2.17)
zugeordnet. Die Zuordnung ist bilinear und homogen.

Definition 2.3: Die Transformationsformeln (2.16) beschreiben eine Punkttransforma-
tion, wenn ay, die Koordinaten eines Tensors 2. Stufe sind. Dabei wird der Endpunkt des
Ortsvektors mit den Koordinaten x, in demselben KS eindeutig auf den Endpunkt des
Ortsvektors mit den Koordinaten x; abgebildet :

X = xi€;, X = Xxje;.

Satz 2.5: Eine Koordinatentransformation bei Ubergang von einem KS B auf ein anderes
B wird mit einer Matrix, speziell bei orthogonalen Koordinatentransformationen nach
(1.14) mit der Matrix C vollzogen, nicht von einem Tensor 2. Stufe. Im Gegensatz dazu
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wird eine Punkttransformation in demselben KS B von einem zweistufigen Tensor A
vermittelt, der die eindeutige Abbildung A - x = X’ nach (2.15) leistet. In beiden Fillen
werden homogene lineare Transformationen (ohne Translation) betrachtet, wobei die
Koordinatentransformation von einer Matrix, die Punkttransformation von einem Tensor
vermittelt wird.

Beispiel 2.3: Die affine Abbildung entspricht geometrischen Vorstellungen. Bei
physikalischen Anwendungen muB3 man verschiedene Buchstaben wihlen, z. B.
T u = q statt A-x = x’. Die Bezichung T - u = q tritt in der Kreiseltheorie auf,
wenn T den zweistufigen Tensor der Tragheitsmomente, u den Vektor der Winkel-
geschwindigkeit und q den Drehimpulsvektor bedeuten.

Beispiel 2.4: Die Dyade vv = v;v,e;¢, ist ein spezieller Tensor 2. Stufe. Bei Stromungs-
vorgingen wird die Massendichte ¢ = dm/dV definiert, wo dV = dx dydz das
Volumenelement bedeutet. Den Geschwindigkeitsvektor w einer turbulenten Stromung
zerlegt man in eine Geschwindigkeit W der mittleren Hauptbewegung und eine Stor-
geschwindigkeit w’ einer Nebenbewegung infolge turbulenter Schwankungen:
w = w + w’. Die Turbulenz bewirkt den zusatzlichen Reynoldsschen Spannungstensor
S’ = —pw'W = —owwee,, der mit der Dyade w'w’ gebildet wird. Die Querstriche
sollen auf Mittelwerte hinweisen.

Aufgabe 2.1: Mit Hilfe der Transformationsgesetze (1.48) ist zu zeigen, dal der
zweistufige Tensor A = ae;e, invariant ist.

Aufgabe 2.2: Mit Hilfe der Transformationsgesetze (1.49) zeige man die Invarianz des
dreistufigen Tensors B in der Komponentendarstellung B = b, e;e;e;.

2.3. Antisymmetrische Tensoren

Das Spatprodukt [uvw] ist nur dann eine skalare Invariante, wenn u, v, w Tensoren
1. Stufe bedeuten. Da die Koordinateneinheitsvektoren im allgemeinen keine Tenso-
ren 1. Stufe sind, stellen die Zahlsymbole nach Levi-Civita

[eie;e ] = &5, (2.18)

die wir bereits im Beispiel 1.9 eingefithrt haben, im allgemeinen keine skalaren In-
varianten (Tensoren nullter Stufe) dar. In Gl. (1.59)

[uvw] = &;j1,0;m, (1.59)

haben wir unter der Voraussetzung [e e,e;] = 1 bereits erkannt, dal die Zahlen ¢,
Koordinaten eines dreistufigen Tensors sind, den wir mit E bezeichnen:

E = ¢;;e.e5€;. (2.19)

Dann miissen die Transformationsgesetze (1.49) fiir die Koordinaten eines Tensors
3. Stufe gelten, und zwar bei Beriicksichtigung von (1.60):

Sk = [B8;8] = €p0rCipCigCir

I

€123Ci1Cj2Ck3 + €231Ci2C3Ck1 + €312€i3Cj1Ck2
+ €213€i2Cj1Ck3 T €321€13C;2Ck1 + €132€11€;3Ck2
Ci1CjaCks T Ci2CjaCkr t €13C51Ck2

I

— Ci2Cj1Ck3 — Ci3Cj2Ck1 — C11Cj3Ck2,
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also

Ci1 Cj1 Cry
Ci2 Cja Cra
Ci3 Cj3 (k3
Diese Determinante liefert namlich bei Anwendung der Sarrusschen Regel die vor-
stehenden 6 Summanden.

Andererseits ziehen wir (1.35b) heran und berechnen mit (1.13) &, = c;e,, &, =c;e;,
€, = ¢ye; an Stelle von u, v, w das Spatprodukt [€,€,&,]. Auf Grund dieser Rechnung
ergibt sich fiir [€,€;6,] wieder die Determinante (2.20). Damit ist bewiesen, dal die
Levi-Civita-Symbole ¢, 5 Koordinaten eines dreistufigen Tensors darstellen.

Nach (1.35c) wissen wir bereits, dafl

Eijk = [éiéjék] =

. 2209

[€,8,85] = €123 = [cudl

in Ubereinstimmung mit (2.20). Eine Determinante wechselt ihr Vorzeichen, wenn
man zwei Spalten vertauscht. Sie bleibt ungedndert, wenn man zweimal zwei Spalten

vertauscht. Das bedeutet fiir die Determinante von (2.20)
E123 = €231 = €312 = —&13 = —E321 = —&132.

Die Determinante (2.20) hat den Zahlwert Null, wenn zwei oder drei Spalten gleich
sind, d. h., die &;; sind gleich null, wenn zwei oder drei Indizes gleichzahlig sind.
Speziell haben wir nach (1.19) die Zahlwerte

&123 = |leull = +1 oder &3 = eyl = —1
bei Drehung oder Spiegelung des KS. Folglich gilt mit (1.60)
&k = &, (Drehung), &, = —¢;; (Umlegung). (2.21)
Im urspriinglichen Basissystem B konnen wir
e, =0,e, e =0;€, € =0y

schreiben und die ;, als Koordinaten des Basisvektors e; usw. auffassen. Wir benutzen

wieder (1.35b), jetzt mit u = e;, v = e;, w = ¢,, und erhalten

6!’1 6]'1 6‘:1

6i2 6j2 6}(2
i3 5;‘3 Ok

e = [eee] =

. (2.20)

Aufgabe 2.3: Mittels Determinanteneigenschaften ist zu zeigen, da3 die Darstellung
(2.20) wieder die Zahlwerte (1.60) ergibt:

€123 = €231 = €312 = 1,
€313 = €321 = E132 = — 1, (1.60)
&x = 0, wenn zwei oder drei Indizes gleichzahlig sind.

Ein Tensor n-ter Stufe heiBt vollstindig antisymmetrisch, wenn seine Koordinaten
bei Vertauschung zweier beliebiger Indizes das Vorzeichen wechseln. Offenbar ist der
dreistufige E-Tensor (2.19) vollstandig antisymmetrisch, denn seine Koordinaten ¢,
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wechseln bei einmaliger Vertauschung von je zwei Indizes das Vorzeichen; infolge-
dessen bleiben sie bei zweimaliger Vertauschung von je zwei Indizes ungedndert:

Eijk = Ejki = Eij = TEjik = TE&ji = TEij- (2.22)

Von diesen Umstellungsméglichkeiten wird oft Gebrauch gemacht! Bei Vertauschung
von zwei gleichzahligen Indizes kann die Antisymmetrieforderung nur erfiillt werden,
wenn die betreffende Koordinate verschwindet. Vertauschen wir z. B. in ¢,5, die
Indizes an erster und dritter Stelle, so muB ¢,3, = —&,3, = 0 gefordert werden. Ein
Tensor 3. Stufe hat im R*® 27 Koordinaten. Davon sind 21 Koordinaten gleich null,
wenn es sich um einen vollstdndig antisymmetrischen Tensor handelt. Die nicht ver-
schwindenden 6 Koordinaten des E-Tensors sind nach (1.60)

€123 = €231 = €312 = —&13 = —&323 = —&p33 = |.
Die Koordinaten u;, eines antisymmetrischen Tensors 2. Stufe U = u,ee, geniigen
der Antisymmetriebedingung
Ug = —Ujg.- (2.23)
Dann gilt
Uy = Uyy =33 =0,
(2.24)
Uy = —Upy, Uz3z = —Uzz, Uz = —Ugz.

Ein antisymmetrischer Tensor 2. Stufe ist mit drei Zahlenangaben bestimmt, was eine
gewisse Verwandtschaft zum Vektor andeutet.

Wir bilden das innere Produkt des E-Tensors mit einem Vektor bei Rechtsmultipli-
kation:

E-v=cpeee 0,6, = Eln€Om,

(2.25)
E-v=¢yvee =vyee,=V.
Der entstehende zweistufige Tensor V hat die Koordinaten
Uik = Ejly = €101 + Eikalz + Eials, (2.26)
die wir mittels (1.60) berechnen:
vy =0, v3= —v3, =7y,
0y, =0, v3; = —vy3 =0,, (2.27)
v33 =0, v, = —vy; = 0. .

Jedem Tensor 1. Stufe v = v,e, 1aBt sich (mathematisch) durch
E-v=V =v,ee

nach (2.27) ein antisymmetrischer Tensor 2. Stufe mit den Koordinaten Ve = Egaly
zuordnen, denn in (2.27) ist auch die Antisymmetriebedingung v;; = — vy erfiillt.
In Fortsetzung dieser Uberlegung bilden wir das zweifache innere Produkt
(E-v)-u=V-u=novuee ue, = ¢yl = Enilh €.

3 Schultz-Pisz,, Tensoren
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Aufgabe 2.4: Durch Nachrechnung bestitige man den Zusammenhang
(E-v)-u = ey, = euve, =u X V (2.28)
mit dem vektoriellen Produkt
u X v =e Uz — Usty) + ex(Usv; — uv3) + ez(u vy — Uyvy). (2.29)
Aufgabe 2.5: Mit E-u = U und E - v = V soll gezeigt werden, da3 die Beziechungen
(E-v)ru= —(E-u)-v (2.30)

und
Viu= —u-V=v-U= -U-v (2.31)
gelten.

2.4. Rechenkalkiil mit E-Tensoren

Das Produkt eines Tensors m-ter Stufe mit einem Tensor n-ter Stufe ergibt einen
Tensor (m + n)-ter Stufe.

Beispiel 2.5: Das Produkt
EE = ¢;;e.€,680m€.€,8,
= EijkEimn€i€;€x€ €€y (2.32)

ergibt den Kronecker-Tensor 6. Stufe mit den Koordinaten

| . . .
€€ €€y €€ 0it Oim Oin

Eijk€imn = | €5 € €57 €y €5 €| = |05 Ojy Ojy|. (2.33)
€ € €€y €€, ki Oxm  Okn

Diese Beziehung folgt aus ¢; &, = [ee;¢,] [e,e,e,] bei Anwendung der Produktregel
(1.39).

Das innere Produkt eines Tensors m-ter Stufe mit einem Tensor n-ter Stufe ergibt
einen Tensor der Stufe m + n — 2.

Beispiel 2.6: Das innere Produkt
E-E = ¢ ;€ Eimnei€ne,
= &1 kEimn€ i€ 0k18m€n = €ijkEmnei€ €nen

definiert nach (2.33) einen Tensor 4. Stufe mit den Koordinaten

6ik 6!’"1 61’”
EijkEinn = |Ojc Ojm Ojn . (2.34)
kk km kn

Diese Determinante wird mit d,, = 3 nach der 3. Zeile entwickelt:
gijkskmn = 3(6!m6jn - 6ln6jm) - 6km(aik6jn - 6inéjk) + 6ku(6i16jm - 6im6jk)
= 30imjn = OinOjm) — OimOjn — 010 jm) + (0in0jm — Oim0jn)
= OimOjn — 0inOjm-

P
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Es hat sich die grundlegende Strukturformel

Eikkmn = OimOjn = 0inOjm (2.35)
ergeben.

Im AnschluB} an (2.25), (2.27), wo einem Vektor v ein antisymmetrischer Tensor
E - v = V zugeordnet wurde, stellen wir die Frage, welcher antisymmetrische Tensor
E-(a x b) dem Vektor a x b zugeordnet wird. Mit (2.28) u x v = g;,e;uw, wird
auch E- (a x b) = ¢;e,e;€; * £1,n€ @b, .

Die Strukturformel (2.35) 148t sich hier unmittelbar anwenden
E-(a x b) = & 3&manbiee;n
= & jkCmnlnbn€i€; = (Oim0;n — 010m) abyeie;
= (a;b; — a;b;) eie; = abjee; — bajee;.
Sind ab und ba Dyaden, so lautet das Ergebnis
E-(a x b) = ab — ba.
Dem vektoriellen Produkt a x b kann man den antisymmetrischen Tensor 2. Stufe
(aby = ab —ba = E-(a x b) (2.36)
zuordnen. Wir nennen <aby = ab — ba einen Bivektor.
Jetzt bilden wir das zweifache Produkt von drei Tensoren 1. Stufe gemal
abe = a;bjcie e ey. (2.37)
Es stellt einen Tensor 3. Stufe dar.
Aufgabe 2.6: Man zeige, dal3
{abcy = abc + bca + cab
— bac — cha — ach (2.38)

ein vollstindig antisymmetrischer Tensor 3. Stufe ist. Wir nennen <abcy nach (2.38)
einen Trivektor.

Die Strukturformel (2.35) 146t sich weiter spezialisieren, indem wir nach m und i
iiberschieben:

Eijuekin = 04i0jn — 0305 = 30,5 — O,

also

&1jkCkin = kij€kin = 20n- (2.39)
Bei drei gleichen Indizes wird schlieBlich

Sijekiy = Eiplin = 20;; = 6. (2.40)

Beispiel 2.7: Das Gleichungssystem (2.26) vy, = ey,0, soll aufgelost werden. Dafiir
wird (2.39) umgeschrieben in

EikmEikn = 20pn- 2.39)
3*
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Uber (2.26) bilden wir die Doppelsumme
EikmVik = EikmEiknUn -
Nach (2.39) erhalten wir
Eimlik = 20mnlp = 20,
und damit die Losung
U = $eitmVik-
Das lineare Gleichungssystem
Vi = Eynl, hat die Losung v, = Jey,vu (2.41)
firn = 1,2,3.

Die Strukturformel (2.35) ist mit dem Verbindungssatz (1.30) aquivalent, so daBl wir
(1.30) mit (2.35) beweisen konnen. Mit

u XV =guupe = fie, =1
wird
uxv)xw="FfxWw=e¢,,fivne,.
Zum Einsetzen muB3 in beiden Gleichungen f; erscheinen. Nach (2.35) folgt
£ X W = &l iV ;W€
= & jk€mntliViWn€s = OimOjn — 010 jm) UiV;Wpe,,
= OimiWm) Vyen — (0m0;Wi) U,
= UyWn)V — (OpWp)u = -wW)v — (V- W)u
in Ubereinstimmung mit
Uuxv)xw=@-wWv—(v-wu. (1.30)
Aufgabe 2.7: Folgende Ausdriicke sind gleich:
- v)yw=wu-v)=(v-uw=wyv-u .
=u-(vw) = (wa) v = v (uw) = (Wv) ' u. (2.42)
In der letzten Zeile treten die Dyaden vw, wu, uw und wv auf. In Komponentendar-

stellung zeige man (u-v)w = u- (vw) und (v-u)w = v- (uw). Warum ist u- (vw)
= v - (uw)? Nach (2.42) kénnen wir den Verbindungssatz in der Form

(UXV)XW=u wy—V-wu,

u X (VXW=U"W—u-w (2.43)
schreiben.
Aufgabe 2.8: Man fiihre die Rechnung

(U X V) (U X V) = & UD€ EmnlhiUm€n
zum Ergebnis und zeige

(u x v)? + (u-v)? = u?v? (2.44)
mit der Bezeichnung (1.8).
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Aufgabe 2.9: Zur Ubung beweise man mittels
(@ x b)-(c x d) = & ea;by - emneiCrd,
die Umwandlungsformel (1.41)
@xb)y-(exd=(@-c)y(h-d —(a-dy(b-c).
Das Spatprodukt entsteht jetzt in der Form
[uvyw] = (u x V) - W = &;u,0,€, - wee,,
also
[uvw] = &; ;0w (1.59)
in Ubereinstimmung mit (1.59).
Bezispiel 2.8: Ein zweistufiger Tensor, der uns noch beschéftigen wird, habe die Ge-
stalt /
Q=A,r + A,] + A;E-r. (2.45)

Ay, A,, A; seien Skalare, r sei ein Tensor 1. Stufe. Die Koordinaten des Tensors
(2.45) im Bezugssystem B und B sind

Qij(risrayr3) = Ayriry + Axdi; = Azeipdi (2.46)
und N

Qij(ry, 12, 13) = Qi (ry, 1z, 13)

= Ajcuricprs + AxCuCudu + A3CuCiiEimlm-

Mit 1y = &gl und 7y = Egml'y gilt nach (2.26) und (2.27) cycuru = Tij = €ijlx-
Es folgt

0i(r1, 13, 13) = AT, + A0i; + AzEipty (2.47)
wegen §;; = 0;; nach (2.4). Durch Vergleich von (2.47) mit (2.46) erkennt man, da}
die Koordinatenbeziechung

Qij(F1,72,73) = éij(rl 5725 13) (2.48)
von dem Tensor (2.45) nur dann erfiillt wird, wenn wir uns auf die Untergruppe der
Drehtransformationen mit &, = &, beschrinken. Die ,,Isotropiebedingung® (2.48),
auf die wir noch zu sprechen kommen, hat mir G. Seifert in verallgemeinerter Form
mitgeteilt.



3. Symmetrische Tensoren 2. Stufe. Tensorfelder. Drehtensor.

3.1. Einheitstensor und Spannungstensor

Dem zweistufigen Tensor T = 7,e,e, konnen wir die quadratische Matrix ((;))
mit 9 Zahlen 7, zuordnen, aber nicht umgekehrt. Ohne die Matrix heranzuziehen,
wollen wir dem Tensor 2. Stufe direkt seine Determinante det T = |7 | zuordnen.

Definition 3.1: Der zweistufige Tensor T heifit regulir, wenn seine Determinante
detT + 0, also der Rang seiner Koordinatenmatrix gleich drei ist. Der Tensor T heifit
singulir, wenn det T = 0 ist.
Definition 3.2: Wenn die Tensorkoordinaten die Symmetriebedingung
Oki = Oy (3.1
erfiillen, heift der zweistufige Tensor
S = oyeie = opeiey
symmetrisch.
Ein wichtiger symmetrischer Tensor 2. Stufe ist der Einheitstensor
I =0,ee = ee, =ee + ee, + eze;. 3.2)
Seine Koordinaten sind wegen d;; = d;, symmetrisch. Der Tensor I ist regulir, da
detI = [0, =1
gilt. DaB die 0, Tensorkoordinaten darstellen, wurde im Satz 2.3 bewiesen. Obwohl

die Basiselemente 2. Stufe e,e;, e,e,, ese; insgesamt nicht Tensoren 2. Stufe sind,
ergibt die Summenform (3.2) einen zweistufigen Tensor.

Aufgabe 3.1: Man zeige durch Nachrechnung, daB sich der Tensor I nach (3.2) bei
innerer Multiplikation mit einem beliebigen Tensor 1. oder 2. Stufe wie ein ,,Eins-
element* verhalt:

I'v=v-I=v, I'rA=A"1T=A. (3.3)
Aufgabe 3.2: S sei ein Tensor 2. Stufe. Durch Ausmultiplizieren bestitige man, daf
die Beziehungen

v:S=S'v, uS:v=v-S-u (3.4
nur gelten, wenn S symmetrisch ist.

Die Zeilen- oder Spaltenvektoren der Matrix eines Tensors 2. Stufe sind insgesamt keine Tensoren
1. Stufe. Bilden wir ndmlich die Summenform

S = opeie, = e(0iey) = ep; (3.5)
mit
Pi = Oy, (3.6)

so sind py, p,, p3 die Zeilenvektoren der Matrix ((0;)). Wenn die Transformationsgesetze fiir die
Koordinaten oy, eines Tensors 2. Stufe erfiillt sind, so sind die Transformationsgesetze z. B. fiir die
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Koordinaten oy, des Zeilenvektors p; = oy,e; im allgemeinen nicht erfiillt, so daB der Zeilenvektor p,
keinen Tensor 1. Stufe darstellt, wie man leicht Giberpriift. Die Zeilenvektoren py, p,, p; sind also
insgesamt keine Tensoren 1. Stufe. Bedeutet S den symmetrischen Spannungstensor der Elastizitits-
theorie mit den Tensorkoordinaten o, so sind die zugehdrigen Spannungsvektoren py, p,, ps nach
(3.6) insgesamt keine Tensoren 1. Stufe. Entsprechend sind die Zeilen- oder Spaltenvektoren des
Tensors I nach (3.2) insgesamt keine Tensoren 1. Stufe. Hier sind die Zeilen- oder Spaltenvektoren
namlich speziell die Koordinateneinheitsvektoren e , e,, 3, von denen wir wissen, daB3 sie insgesamt
nicht einstufige Tensoren sein konnen.

Die Koordinaten o;; des Spannungstensors S heilen Schubspannungen im Falle i + k; die oy, 05,
033 sind die Normalspannungen. In der Technischen Mechanik sind folgende Bezeichnungen iiblich:
011 = 04,053 = 0Oy, 033 = 0 SOWi€ 0y, = Ty, 023 = Ty, 031 =7.,. Mit dem Krifte- und Momen-
tengleichgewicht werden wir uns noch befassen. Daraus folgt die Symmetrie des Spannungstensors:
Oki = Oik-

Beispiel 3.1: Ein elastisch deformierter Kérper befinde sich unter dem EinfluB duBerer
Krifte im Gleichgewichtszustand. Denken wir uns einen Teilkorper herausgeschnit-
ten, so sind an den Schnittflichen Spannungskrifte derart anzubringen, daB sein
Gleichgewichtszustand erhalten bleibt. Als Teilkorper wihlen wir einen infinitesima-
len Quader mit achsenparallelen Kanten. Wir konstruieren ihn, indem wir von dem
,, Tragerpunkt* P mit den Koordinaten x, x5, x3 zundchst die Kantenldngen dx; > 0,
dx, > 0, dx; > 0 abtragen. Damit entstehen die drei in Bild 3.1 eingezeichneten
Randflachen, die sich in P schneiden. Wir ergdnzen das Bild in Gedanken zum voll-
staindigen Quader durch Hinzufiigen der gegeniiberliegenden Begrenzungsflichen.
Wie wird in diesem Modell der Spannungszustand im Punkt P beschrieben?

Bild 3.1: Komponenten der Spannungsvektoren Bild 3.2: Spannungsvektoren

An den drei eingezeichneten Randflichen der Inhalte dA4, = dx, dx;, d4,
= dx; dx,, d4; = dx, dx, greift jeweils im Schwerpunkt der Fliche ein Spannungs-
vektor p;, P2, P3 an, so daB sich p; auf d4; (i = 1, 2, 3) bezieht. Die Spannungsvekto-
ren sind Kraftvektoren, bezogen auf die Flacheneinheit. Die Schnittflichen d4;, an
denen die Spannungsvektoren p; angreifen, stehen auf den Basisvektoren e; senkrecht.
Ein Spannungsvektor p; steht aber im allgemeinen keineswegs senkrecht auf seiner
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Bezugsflache d4;, so daB wir ihn in Komponenten zerlegen konnen gemaf
Pi = Ou€s P2 = 02x€, P3 = 03,8,

oder fiir i = 1, 2, 3 zusammengefaBt: p; = o,

Damit haben wir die Gl. (3.6) physikalisch gedeutet. Die 9 Tensorkoordinaten o
beschreiben den Spannungszustand im Punkt P = (x,, X,, x3) vollstindig. Die Grofe
S nach (3.5) hat also selbstindige physikalische Bedeutung und kann als solche nicht
davon abhéngen, wie wir das KS in Bild 3.1 einzeichnen. Dann muf} aber die In-
varianzbedingung

S = oueie, = 0488 =S
fiir einen Tensor 2. Stufe erfiillt sein. Wie 1aBt sich das beweisen? Man wendet den

Divisionssatz an: Besteht die Bezichung A - x = x’ derart, daB x und x’ Tensoren
1. Stufe sind, dann muB A ein Tensor 2. Stufe sein, siche Beispiel 3.2.

Beispiel 3.2: AlsVolumenelementeineselastischen Korperslegen wir jetzt ein Tetraeder
nach Bild 3.2 zugrunde. Die Spannungsvektoren p,, p,, ps greifen an den Dreiecks-
flachen mit den Flacheninhalten

d4; = $dx,dx;, dd4, = Ldx;dx;, dd4; = $dx, dx,

in den Koordinatenebenen an, wihrend der Spannungsvektor p, der schrigen Deck-
dreiecksflache mit dem Inhalt d4 und dem Normaleneinheitsvektor n zugeordnet ist.
Die Vektoren p,, p,, ps, p, haben im allgemeinen nicht die Richtung der zugehérigen
Flachennormalen entsprechend e, e,, es, n, so daB z. B. p,-n = p,, die skalare
Projektion des Vektors p, auf die Normale der schriagen Deckfliche bedeutet. Wih-
rend aber die Spannungsvektoren p; mit ihren Bezugsflichen d4; vom KS abhangen,
ist das beim Spannungsvektor p, nicht der Fall. Die schrage Deckflache ist als Aus-
schnitt einer Ebene ein geometrisches Objekt, das nicht von dem in Bild 3.2 zufallig
gewihlten KS abhingt. Die ihr zugeordneten Vektoren n und p, sind daher Tensoren
1. Stufe.

Die Gleichgewichtsbedingung fiir die Spannungskrifte an den Randflichen des
Tetraeders lautet

p.dA4 = p;d4;. 3.7)
Wegen dA4; = d4 cos (n, e;) gilt

p,dA4 = p;cos(n,e)d4,

p, =cos(m,e;)p; = (n-e)p;,
also nach (3.5)

p,.=n-ep, =n-S. (3.8)

Da p, und n Tensoren 1. Stufe sind, muB3 S = o,e;e, auf Grund des Divisionssatzes
ein Tensor 2. Stufe sein. Die Spannungen o, sind also Koordinaten eines Tensors
2. Stufe. Die vorher definierte skalare Normalspannung erhalt jetzt die Darstellung

p,rn=n-S-n=p,. (3.9
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3.2. Tensorfelder. Isotrope Tensoren

Der Begriff des Vektorfeldes 1aBt sich auf den Begriff des Tensorfeldes erweitern.

Als Représentanten wihlen wir einen Tensor 2. Stufe T = 7,e,e,. Die Tensorkoordi-
naten sind jetzt nicht mehr feste Zahlen, sondern Funktionen des Ortes und der Zeit.
Ihr Definitionsbereich umfaBt einen rdumlichen Bereich und ein Zeitintervall, mei-
stens den Raum R? fiir die Ortskoordinaten x,, x,, x3 und das Intervall 0 = ¢t < ©
fiir die Zeitkoordinate 7. Die Tensorkoordinaten seien mindestens zweimal stetig
differenzierbare Funktionen in den Variablen x,, x,, x3, t. Abgekiirzt schreiben wir
(1, X2, X3,1) = (X, 7). .
Definition 3.3: v = vie; bzw. T = v,e,e, seien Tensorfelder 1.bzw. 2. Stufe. Bestehen
die Abhdngigkeiten v,(x), T4(x) oder v,(x(t)), 1, (x(t)), so heifen die Tensorfelder
statisch oder stationir'). Tensorfelder mit Koordinatenfunktionen der Art v/(x(1), 1),
Tu(X(1), 1), aber auch v(x, t), Ty(X, t) heiffen instationdr.

Der letzte Fall liegt z. B. vor, wenn es sich um die Wellenausbreitung in einem
ruhenden Medium handelt. Das Vektorfeld der Geschwindigkeit einer stationaren
oder instationidren Stromung hat den Charakter w = w;(x(¢)) e; oder w = w;(x(¢), 1) e;.
Ein elektrostatisches Feld hat die erstgenannte Eigenschaft.

Jedem Punkt (x,?) des Definitionsbereiches wird ein Tensor 2. Stufe mit den
Koordinaten 7,(x, t) zugeordnet. Die Tensorkoordinaten sind die Varianten, die sich
so transformieren miissen, daB3 der Tensor und die von ihm erzeugte Bilinearform
invariant bleibt. Invariante Multilinearformen lassen sich leicht konstruieren.

Definition 3.4: Ein Tensorfeld 2. Stufe heifit isotrop, wenn die von ihm erzeugte
2fache Multilinearform nur mit additiven Termen aufgebaut wird, die fiir sich invariante
Skalare darstellen, wobei siamtliche Méglichkeiten zur Konstruktion von direkten
Skalarprodukten beriichsichtigt, aber Spatprodukte ausgeschlossen werden.

Satz 3.1: Die Koordinaten eines isotropen Tensors 2. Stufe haben die Gestalt
Qir, 1) = A,(r2, 1) rir; + Ax(r?, 1) 0y5. (3.10)
Ein isotroper Tensor 2. Stufe ist symmetrisch.
Um das zu zeigen, betrachten wir die Bilinearform
L(x, t;u,v) = Qi(r, ) uw; 3.11)
in den einstufigen Tensoren u und v. Als Variable werden der Verbindungsvektor
r = j’—é der Raumpunkte P und Q und der Zeitparameter ¢ eingefiihrt. Invariant
gegeniiber Drehung und Umlegung des KS sind die Fundamentalinvarianten (Skalar-
und Spatprodukt): r-r = r?; r-u;r-v; [uvr].
Bilinear in u, v wird damit der Ausdruck
L(r, t;u,v) = A,(r2, t) (r-u) (r - v) + A,(r?, ) (- v) + A3(r?, t) [uvr]
= Aruriv; + A0u,0; + Asepuviry
= [Arir; + A20;; + Aseipr] ;. (3.12)

1) Bei Stationaritit gilt die Zusatzbedingung, daB das Geschwindigkeitsfeld dx/d7 = v(xy, x5, x3)
nicht mehr von ¢ abhédngt.
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Da diese Bilinearform invariant ist, stehen in der eckigen Klammer die Koordi-
naten eines Tensorfeldes 2. Stufe, die nach G. Seifert der Isotropiebedingung (2.48)
geniigen miissen. Diese Bedingung 1aBt sich allgemein bei orthogonalen Koordinaten-
transformationen (einschlieBlich Spiegelung) nur dadurch erfiillen, dal wir den
Summanden mit dem Faktor 43 in (3.12) ausschlieBen, so daB (3.10) entsteht, vgl.
Beispiel 2.8.

Isotropie nach (3.10) setzt Homogenitdt voraus, d. h. der Punkt P, von dem der
Vektor r abgetragen wird, ist beliebig. Jede Parallelverschiebung der ,,Zweipunkt-
konfiguration** PQ ist zuldassig. Der Vektor r ist ein Tensor 1. Stufe, was schon be-
nutzt wurde.

Mit der Trilinearform
Lir, t;0,v,w) = Q(r, 1) up,w,
findet man durch entsprechende Uberlegungen die Gestalt eines isotropen Tensors
3. Stufe mit den Koordinaten
Qunr, 1) = Ki(r*, 1) rirjr + Ko(r?, 1) rid
) + K3(r?, 1) ridy + Ka(r?, 1) rd,;. (3.13)
Die einfache Linearform
L(r, t;u) = Oy(r, 1) u;
fihrt auf den isotropen Tensor 1. Stufe mit den Koordinaten
0i(r, 1) = C,(r, 1) 1y (3.14)

3.3. Der allgemeine Drehtensor 2. Stufe
Zur Vorbereitung soll die Vektorgleichung
v = »b; + v,b, + v3bs (3.15)

nach den »,, v,, v5 aufgelost werden. Die Basisvektoren by, b,, b seien nicht kom-
planar, sonst beliebig! Wir multiplizieren (3.15) nach der Reihe skalar mit den vek-
toriellen Produkten b, X bz, by x by, b; X b, und erhalten

v (by % b3) = [vbybs] = v([b;bybs] + v,[b,bybs] + v3[bsbybs],
v (bs x by) = [vbsb;] = »,[b;bsb,] + »,[b,b3b,] + v3[bsbsb,],
v (by x by) = [vbib,] = »,[b,b;b>] + »;[b,b;b,] + v3[bsb;b,].
Das Spatprodukt verschwindet, wenn zwei Vektoren (parallel oder speziell) gleich

sind. Beachten wir auflerdem die Umstellungsregeln (1.37) und die Voraussetzung
[byb,bs] = D = 0, so lautet die Losung
_ [vhybs] [b,vbs] [b;b,v]

- = = 3.16
bbb, ” "2 = Tobsbo” **  [hibsba] @16

&1

oder auch zur Erinnerung an die Cramersche Regel
vy = Dy/D, v, = Dy/D, v3 = Ds/D.
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Wir betrachten die Drehbewegung eines Massenpunktes um eine beliebige Achse
durch den Ursprung des KS, also eine Punkttransformation, die von einem Tensor
2. Stufe vermittelt wird. Dieser Tensor sei der Drehtensor K. Von einem Bewegungs-
mechanismus mit einer Punktmasse wollen wir absehen und die Aufgabe geometrisch
behandeln, so daB der Endpunkt des Ortsvektors x mit Hilfe des Drehtensors K auf
den Endpunkt des Ortsvektors x” abgebildet wird, so daB die affine Abbildung

K-x=x (3.17)

entsteht. (Bei Ubergang von B auf B durch Drehung des Bezugssystems wird hingegen
der betrachtete Punkt festgehalten. Dabei handelt es sich um eine orthogonale Koordi-
natentransformation, die von einer Matrix C vermittelt wird, nicht von einem Tensor
2. Stufe.) Nach Bild 3.3 wird ein Punkt P eines Kreises (in der Ebene senkrecht zur

Pt

Bild 3.3: Zum allgemeinen Drehtensor

Drehachse durch P) auf einen anderen Kreispunkt P abgebildet. Wir beziehen uns
auf Bild 3.3, wo die geometrischen Beziehungen
—
xX|=1x, ¥|=|=r, OM=a, (r,r)=¢, r-r =r>cose,
x-a°=x-a=a, x=a+r, X =a+r,
Pxt=2a% a°xr®=t txa’=r°

abgelesen werden, wenn t wieder den Tangenteneinheitsvektor des Kreises bezeichnet.
Die Einheitsvektoren a°, r°, t bilden in dieser Reihenfolge ein orthonormiertes Rechts-
system. Der Bildvektor x” werde in dieser Basis dargestellt

X = 2a° + ur® + ot. (3.18)
Die Aufgabe wird zunichst algebraisch nach dem Muster (3.15), (3.16) geldst:
=[x =x (" xt)=x"2a° = |a],
u = [a°'t] = [a%t] + [a°r't] = [r'ta®],
n=r-(txa%=r-r’=rcosg,
[2%r°x’] = [a°r%a] + [a%r°r'] = [a%r'r],
v =a% (° x r) = a% rsinga® = rsing,
so daB (3.18) lautet
X'= |ala® + rcos gr® + rsingt. (3.19)

v

I
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Das Problem besteht aber darin, bei Vorgabe der fiir die Drehung charakteristi-
schen GréBen x, a und ¢ (Ortsvektor, Achsenvektor und Drehwinkel) den Drehtensor
zu ermitteln. Unter diesem Gesichtspunkt wird (3.19)

X' =a+rcosg + rsingt

a+rcosp + rsing(a® x r°,

I

I

x = a(l — cos ) + xcos ¢ + sinp(a® x r)
wegenr = x — a und a° x a = 0 schlieBlich

X' = a(l — cos¢g) + xcosg + sinp(a® x x). (3.20)
Die affine Abbildungsaufgabe ist damit geldst.

Wie sieht der Drehtensor (Affinor) aus, der diese Abbildung vermittelt? Wir
benutzen

la] =a%-x, a=aal=2a%°"x, x=1"x
und (2.28) (E - v) - u = u x v. Damit lautet (3.20)
x' = a%°% x(1 — cosg) + I xcosqp + sing(E - x)-a°
= [a%° — cos¢p) + Icosp — sing(E-a%] - x = K- x.
Der Drehtensor ist, wenn wir noch (3.2) und (2.19) heranziehen:
K = a%°(1 — cos¢g) + Icosp — singE - a°
= [a%Q(1 — cos @) + dy cos @ — sin ¢ &;,a9] ;€. (3.21)
Der Tensor K ist nicht isotrop und auch nicht symmetrisch.

Aufgabe 3.3: Wie gelangt man unter der Voraussetzung cos¢ x1, sing X ¢ von
(3.20) wieder zur Grundformel (1.33) v = u x x fiir die Drehbewegung eines Massen-
punktes im Verband eines starren Korpers?

Aufgabe 3.4: Man untersuche die speziellen orthogonalen Transformationen bei
Drehung um die x3-Achse, und zwar

a) durch Einfithrung des Winkels (€, , e,) = « die Koordinatentransformation mit der
Koeffizientenmatrix C bei Drehung des Bezugssystems,

b) durch Einfithrung des positiven Winkels «, den der Originalvektor x und Bild-
vektor x’ bei der affinen lingentreuen Abbildung A - x = x’ in demselben KS
miteinander bilden, wenn A den speziellen Drehtensor dieser Punkttransformation
bei der gedachten Drehbewegung des Punktes P um die x;-Achse in die Lage P’
bedeutet.

Man gebe die Elemente der Matrix C und die Koordinaten des Tensors A an. Man
iiberpriife die Bedingungen fiir orthogonale Transformationen allgemein und speziell
fiir die Drehtransformation.



3.4. Hauptachsenform. Hauptachsentransformation 45

3.4. Hauptachsenform und skalare Invariante eines symmetrischen Tensors
2. Stufe. Hauptachsentransformation

Beim Hauptachsenproblem kommen beide Transformationsarten ins Spiel: Ein
Tensor 2. Stufe leistet in demselben KS vermdge S - x = x' eine Punkttransformation,
in geometrischer Sprache eine affine Abbildung. Bei Ubergang von B auf B wird
hingegen die Koordinatentransformation Cx = X von einer Transformationsmatrix C
vermittelt. Die Tensorkoordinaten miissen den Transformationsgesetzen gehorchen,
wahrend es fiir die Elemente einer Matrix keine Transformationsgesetze gibt.

Durch Drehung des Bezugssystems B in die Lage B soll der gegebene symmetrische
Tensor S = oe,e, auf die Hauptachsenform

S =011 €181 + 022)€2€5 + G(33,€3€3 (3.22)
gebracht werden. Welche Transformationsmatrix C leistet eine solche Drehung des
KS, daB S in S nach (3.22) iibergeht? Die Querstriche beziehen sich hier auf das ge-
suchte Hauptachsensystem €., &,, &;. Wegen &, = ¢,,e, sind die ¢, so zu bestimmen,
daB der Tensor S mit Hilfe der gesuchten Transformationsmatrix C = ((¢;,)) die
Gestalt (3.22) annimmt. Obwohl nur Hauptachsenrichtungen (Gerade) ermittelt
werden konnen, wollen wir diese mit ,,Eigenvektoren* angeben, die dann nur bis auf
je einen Faktor bestimmt sind, iiber den man so verfiigen kann, daB Einheitsvektoren
€,, €,, &; entstehen. Die gesuchten Basisvektoren

& =cye, & =cye, € =c3e (3.23)
bilden das Hauptachsensystem.
Fiir orthogonale Transformationen wird das Transformationsgesetz (1.48) der
Tensorkoordinaten
. Oik = CimCknOmn
in
Citfik = CiCimCinOmn = OtmCinOmn
oder
Cit0ik = CknOin
iiberfithrt. Wir schreiben
CknOtn = CitTik
und beriicksichtigen in diesem Gleichungssystem die Hauptachsenbedingung

g =0 fir ik (3.29)
in der Formulierung
CknOtn = CriO(kk) - (3.25)

Auf der rechten Seite wird mit &, angedeutet, daBl dort nicht iber kK summiert werden
darf, da nur die Tensorkoordinaten 6;, = O fiir / + k ausgeschlossen worden sind.
Dagegen ist auf der linken Seite nach wie vor iiber n zu summieren. Wir erhalten so
fiir / = 1, 2, 3 das Gleichungssystem

Ck1011 + Cka012 + Ck3013 = CkiO(kky»
Ck1021 + k2022 + Ck3023 = Cx20(kiy»

Ck1031 + Ck2032 + Cu3033 = k3O s
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oder
(011 — Ouy) + Ch2012 + €303 =0,
Ck1021 + 2022 = Guay) + k3023 =0, (3.26)
Ck1031 + k2032 + ¢3(033 — Ogwy) = 0.

Das lineare homogene Gleichungssystem (3.26) fiir die Unbekannten ¢, , ¢;,, ¢x3 hat
genau dann nichttriviale Losungen, wenn die Koeffizientendeterminante verschwin-
det, d. h. wenn

011 — Okys 0125 043
0215 022 = Ogkkys 023 =0 (3.27)
031, 032, 033 — Ok

ist. Der gesamte weitere LosungsprozeB ist ihnen aus der ,,Linearen Algebra‘*“ be-
kannt, wo das Kapitel ,,Eigenwertprobleme bei Matrizen‘‘ ausfiihrlich behandelt
worden ist. Nach dem Entwicklungssatz oder nach der Sarrusschen Regel berechnet
man die Determinante der Bedingungsgleichung (3.27) und erhilt eine algebraische
Gleichung 3. Grades der Form

—Gixy + AGgwy — Bouwy+C = 0. (3.28)
Die Wurzeln G, 1y, 622y, 033 sind die Eigenwerte des Hauptachsenproblems.

Diese drei Zahlen werden nach der Reihe fiir £ = 1, 2, 3 in das homogene Glei-
chungssystem (3.26) eingesetzt, speziell unter der Voraussetzung, daf3 es sich um drei
verschiedene reelle Wurzeln handelt. Es entsteht je ein Gleichungssystem fiir & = 1
mit Gy 1y, fiir K = 2 mit 6,,, und fir £ = 3 mit 6.33,. Die zugeordneten (normierten)
Losungen sind

Ci1, C1ay €3 und & =cye fir k=1,
Cy15 C22,C23 und &, = cye, fir k=2,
C31, C32, C33 Und & = cye, fir k= 3.

Die den Eigenwertén G, zugeordneten Eigenvektoren &, = cye, sind die Basisvekto-
ren des gesuchten Hauptachsensystems. Die Eigenvektoren sind insgesamt keine
Tensoren 1. Stufe.

Aufgabe 3.5: Gesucht sind jene Hauptrichtungen (Gerade), fiir die bei der affinen
Abbildung S - x = x’ speziell keine Richtungsinderung zwischen Original- und Bild-
vektor eintritt, so daB fiir die affine Parallelabbildung die Bedingung x’ = Ax erfullt
ist.

Satz 3.2: Die Koeffizienten A, B, C der charakteristischen Gleichung (3.28) sind skalare
Invariante des symmetrischen Tensors S. Es gilt
A =041 + 0a2) + Oaay = 011 + 022 + 033,
B = 6(11)022) + 622033 + G33011) (3.29)
= 023033 + 03301, + 01102, — 033 — 03, — 0%y,

C = 041022063 = llow .
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Die uiberstrichenen Tensorkoordinaten G, beziehen sich auf das spezielle Haupt-
achsensystem B, wihrend die ungestrichenen o, auf ein beliebiges kartesisches KS B
bezogen werden konnen. Fiir alle zulassigen Bezugssysteme Bsind die rechts stehenden
Ausdriicke gleich den links stehenden speziellen Werten, also invariant.

Die Formeln (3.29) ergeben sich in den gestrichenen GroBen, wenn man die Ab-
kiirzungen 2 = Gy, A1 = Gai1y> A2 = Gazy> A3 = G(33 einfiihrt und die linke Seite
von (3.28) in lineare Wurzelfaktoren zerlegt:

B PA =B+ C=0y =N — N (hs — 1)
= 2 20+ Ay + Ay) = A0iha + Aok + Agdy) + Adads.

Die Ausdriicke von (3.29) in den ungestrichenen GréBen erhédlt man durch Aus-
rechnen der Determinante (3.27) und Ordnen nach Potenzen von 4 = Gy,

Die Hauptachsentransformation eines Tensors 2. Stufe ist von grofler praktischer
Bedeutung. Man stellt z. B. die Beziehung zwischen dem Spannungs- und Verzer-
rungstensor im einfachen Hauptachsensystem B auf und kann die tensorielle Bezie-
hung dann ohne weiteres auf jedes andere kartesische Bezugssystem B umrechnen,
entweder mit Hilfe der Transformationsgesetze fiir die Tensorkoordinaten oder mit
Hilfe der skalaren Invarianten nach (3.29). Da im allgemeinen die Hauptachsen in
einem deformierten Korper von Punkt zu Punkt ihre Richtung dndern, ist die Um-
rechnung von B auf B sehr wichtig.

3.5. Tensor der Triagheitsmomente. Tensorellipsoid

Wir ziehen die Beispiele 1.5 und 1.6 heran und berechnen die kinetische Energie des
Massenpunktes bei seiner Drehbewegung um die Achse mittels (1.33):

Eyin = %vz = %(n X X)2. (3.30)
Der Vektor der Winkelgeschwindigkeit (Drehvektor) sei
u=owa’ =owe, (3.31)

so daB
(u x x)? = ux? — (u-x)? = 0;0x* — (0;x;)?
folgt. Die Umformungen
W0; = 0005, (0X)? = O;X;0X, = O;0,X Xk
ergeben
(u x xX)? = X200 — O;0X X,
also die quadratische Form
2Evin = m(X20y — XiXp) 0,00 = Ty (3.32)
in den Koordinaten w; des Drehvektors u. Da die kinetische Energie des Teilchens

nicht vom zufillig benutzten KS abhdngt und der physikalische Drehvektor ein
Tensor 1. Stufe ist, muB

2
T = wpeie, = m(x*0y — x;%;) e;e;

= m(x*1 — xx) = mx*(I — xx°) (3.33)
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ein Tensor 2. Stufe sein, der offenbar symme;trisch ist. Das ist der Tensor der Trig-
heitsmomente fiir das behandelte Einteilchensystem. Wir nennen ihn kurz ,, Tragheits-
tensor*. Der Trdgheitstensor erzeugt die quadratische Form (3.32)

Lu,u) = u-T-u = 150,0. (3.34)
Seine Koordinaten 7;, = —mx;x, fiir i & k heillen Deviationsmomente;

Ty =m0G + X3, Tar = md 4 D), a3 = m(x} + X3
heiBen Haupttréigheitsmomente.

Beispiel 3.3: Man berechne den Vektor des Drehimpulses q. Der Teilchenimpuls ist
p = mv. Damit wird der Drehimpulsvektor (Drall)

q=ge, =XXp=mXxXxXYV) (3.35)
definiert. Zur Berechnung von q wenden wir den Verbindungssatz (1.30) an:
q=m(x x (ux x)) = mx*u — (x-w)x)
= m(x’we; — Xwxi€;) = ge;.

Mit w; = wdy erhalten wir den Drehimpuls

q =m0y — X, X) 08 = Tyone; = gie; (3.36)
oder auch
q=T-u. (3.37)

Das entspricht geometrisch der von dem zweistufigen Tensor T vermittelten affinen
Abbildung

x =T x. (3.38)

Den Achseneinheitsvektor bezeichnen wir mit a® = n. Der Vektor der Winkel-
geschwindigkeit ist dann

u=on=one. (3.39)

Die momentane Drehachse ist nur im Ursprung des KS fixiert; sie kann im Laufe der
Zeit ihre mit n gegebene Richtung dndern: n = n(7). Mit dem Achseneinheitsvektor n
definieren wir den Skalar

®=n-T-n (3.40)
und nennen ihn skalares Trdgheitsmoment ©. In der technischen Literatur sind die
Bezeichnungen 7, = I;; und @ = [ iiblich.

Aufgabe 3.6: Man bestitige die Formeln
L.
2

nq=gq,=0o. 3.42)
Aufgabe 3.7: Die Drehachse werde speziell in die Rlchtung von e; = n gelegt. Fol-
gende Beziehungen sind zu bestdtigen:

Ein = ——»%, 0 = m x x)*, (3.41)

0 =133, q3 = T330, Ean = %q:«s' (3.43)
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In der Tensorrechnung sagt man, daB der symmetrische Tensor T die quadratische
Form erzeugt gemal
u-T u=ue;:- rj,(ejf,( S = T 0;;0k, (3.44)
u-T-u =70y, = L(u,u).

Bei physikalischen Anwendungen kann man einem symmetrischen Tensor 2. Stufe
immer ein Tensorellipsoid zuordnen, indem man die physikalischen Vektoren in
Ortsvektoren iibersetzt und die Tensorkoordinaten 7, als (dimensionslose) Zahlen a;;
betrachtet, so dal} z. B.

Tu=q, u-q =u-T-u

A-x=X, x'X =Xx"A'Xx
iibergeht. Als geometrische Hilfskonstruktion benutzt man die Gleichung

X A X = agx;x, =1 (3.45)
oder in Hauptachsenform

XA X =0 4 L+ AR =1, (3.46)

Die Gl. (3.46) stellt die Mittelpunktsgleichung einer Fliche 2. Grades in der Normal-
form dar.

Die Betrage der physikalischen Vektoren sind stets endlich, z. B. |u| < . Die For-
derung |x| < o schlieBt Flichen aus, die sich ins Unendliche erstrecken, so daB es
sich in (3.46) nur um ein Ellipsoid handeln kann. Dann sind alle Eigenwerte 4, = 1/a?
positiv. Die quadratische Form hei3t dann positiv definit:

L(x,x) >0 fir x==0, Lx,x) =0 fir x=0.

Satz 3.3: Einem physikalischen symmetrischen Tensor 2. Stufe kann man immer ein

Tensorellipsoid zuordnen, das im Hauptachsensystem die Halbachsen a, = 1/\/ Ay be-
sitzt, wenn Ay, Ay, A3 die positiven Eigenwerte des Hauptachsenproblems bedeuten. Das
Tensorellipsoid stellt in den physikalischen Anwendungen eine Fliche konstanter Energie
dar.

Beispiel 3.4: Nach (3.32) ist
Eyin = 3730;0, = const

eine Flache konstanter kinetischer Energie. Bezeichnet S den Spannungstensor, so ist
der Skalar

P,n=n-'S-n = const
eine Energiedichte (Energie je Volumeinheit). In den Beispielen handelt es sich um das
Trdgheitsellipsoid und das Spannungsellipsoid.
Da wir im néchsten Abschnitt mit der Tensoranalysis beginnen, sei hier ein Vor-
griff gestattet. Beschreibt der Endpunkt P des Ortsvektors x = or die Ellipsoidflache,

4 Schultz-Pisz., Tensoren



50 3. Symmetrische Tensoren 2. Stufe

so liegt der Differentialvektor dx in der Tangentenebene, welche die Fliache in P
beriihrt. Wird Gl. (3.45) differenziert, so folgt d(x - A - x) = 0 oder

dx A x+xA-dx=2dx-A-x=2dx"x =0 (3.47)

d. h., der Bildvektor x’ ist normal zur Ellipsoidfiache gerichtet. Bezeichnet N einen
Normalenvektor in P, so gilt nach (3.45) x - x" = [x|x’| cos (x, X') = |x]x’| cos (x, N)
=1, also

1
~ x| cos (x, N)

Durch Riickiibersetzung kann man am Tragheitsellipsoid fiir jeden Vektor u den
zugehorigen Drehimpulsvektor ¢ = T - u in Richtung der Normalen mit dem Betrag
|g| = 1/]u| cos (u, N) konstruieren. Besonders niitzlich fiir die Anwendungen ist die
festgestellte Richtungsbeziehung, indem man zu jeder gegebenen Richtung von u oder
n sofort die zugehdrige Richtung von q oder p, als Normalenrichtung am Tensor-
ellipsoid ablesen kann.

In der Technischen Mechanik rotiert an Stelle des Einteilchensystems entwedér ein
System von n Massenpunkten oder ein starrer Korper um die Drehachse. Im 2. Fall
muB iiber alle differentiellen Massenanteile dm = p dV, die im Gesamtvolumen V des
Korpers enthalten sind, integriert werden. Formal lassen sich die KenngréBen ab
(3.30) mit Hilfe des Bereichsintegraloperators

u!mng={Q@an.={ﬂﬁmu.=Ai” (3.48)

ohne weiteres umschreiben, wenn man m durch den linearen Operator M ersetzt,
z. B.

g

x| mr—%<@m<+2

Eun = M3 = 3 [[] v aV,
w (3.49)
Tik = H(Xzam - XX) = J.H. (x*0y — xx) 0 AV

({2]



4. Vektor- und Tensoranalysis mit orthonormierter Basis

4.1. Gradientenfelder, Divergenz und Rotor eines Tensorfeldes erster Stufe

Ein linearer Operator wird in der Analysis anders als in der Algebra definiert. Der
Definitionsbereich des Operators 4 enthalte nach Verabredung entweder die Folge
{p4(X), 92(x), ...} der skalaren Ortsfunktionen ¢,(x) oder die Folge {v,(x), v,(x),..
der Vektoriellen Ortsfunktionen v,(x).

Definition 4.1: Der Operator A ist stetig; wenn aus lim ¢, = ¢* folgt
n— o
Jim A(gn) = ﬁ(nlif;%) = A(g*)
oder (in Kurzschreibweise), wenn
aus v, = v* folgt Av, — Av*. 4.1)
Definition 4.2: Ein Operator mit der Eigenschaft
Al +y) = Ap + Ay oder A + v) = Au + Av
heifit additiv. Ein Operator A heifit linear, wenn er additiv und stetig ist.
Daraus folgt, daB der lineare Operator homogen ist, d. h.
A(Ghp) = AAp  oder A(hv) = JAv.
Ein linearer Operator hat also auch in der Analysis die Eigenschaften
AQAg + wy) = 2dp + pdy oder A(lu + pv) = 2du + udv. 4.2)

Das Operatorsymbol V soll fiir sich sprechen; hier wird auf das Operatorzeichen ~
verzichtet. Der Nabla-Operator wird als Vektor in der Komponentendarstellung

0 0 0
V=ed =e — - 2 .
e0; =e; prs + e, o + e o (4.3)
mit den Koordinaten
0
= fiir i= 4.4
0; o fir i=1,2,3 4.4

eingefiihrt, wobe1 wieder ein kartesisches Basissystem mit [e;e,e;] = 1 zugrunde
gelegt wird.

Satz 4.1: Der Nabla-Operator ist linear.

Sind @(x), p(x) oder u(x), v(x) Tensorfelder nullter oder erster Stufe, so gilt fiir die
(allgemeinen) Produkte entsprechend (4.2):

V(o + up) = AVp + uVyp oder V(iu + uv) = AVu + uVy, 4.5)
aber auch speziell

Ve(u+pv) =iVou+puv-v, (4.6)

VX (Au+puv) =24V x u+ uV x v. @0

4%
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Die Stetigkeitsbedingungen sind erfiillt, denn

aus v, — v* folgt Vv, —» Vv* 4.7)
usw.

Als Hauptsatz der Tensoranalysis bezeichnen wir die Invarianz des Nabla-Opera-
tors

V=ed =80 =V, (4.8)
so daB die Transformationsgesetze (1.14)
0 = cadi, 0; = iy (4.9)

gelten miissen. Der Nabla-Operator V ist ein partieller Ableitungsoperator mit Vek-
torcharakter. Der Hauptsatz ergibt den

Satz 4.2: Der Nabla-Operator (4.8) ist ein Tensor 1. Stufe.

Diese Aussage wird axiomatisch vorangestellt. Durch die koordinatenfreie Dar-
stellung des Nabla-Operators wird sie im Abschnitt 4.3. bewiesen. Das Skalarfeld
V-w = g beschreibt mit w als Stromungsgeschwindigkeit eine Quelldichte ¢q, die
sicher vom KS unabhéngig ist. Das Vektorfeld V x w = y beschreibt eine Wirbel-
dichte y, die ebenfalls unabhingig vom KS existieren muf3. Da das Vektorfeld der
Stromungsgeschwindigkeit w ein Tensorfeld 1. Stufe ist, muB auch V ein Tensor
1. Stufe sein. .

Wenn nichts anderes gesagt wird, soll der Ausdruck rechts vom Nabla-Operator
differenziert werden. Wir bilden das Produkt des Nabla-Operators mit einem Tensor-
feld 2. Stufe

VT = e0,7;5€:€; = OxT;;€,€:€;. (4.10)

Da die Basisvektoren Konstante sind, werden nur die Tensorkoordinaten differen-
ziert. Durch Verallgemeinerung erhalten wir den

Satz 4.3: Das Produkt des Nablaoperators mit einem Tensor n-ter Stufe ergibt einen
Tensor der Stufen + 1:

VA(") = Okailizmi,lekeileiz'“ein' (4'”)
Das innere Produkt ergibt hingegen einen Tensor der Stufe n — 1:
VA" = 0y...in8in - 4.12)
Speziell entsteht also ein Tensor 2. oder 0. Stufe, wenn wir
Vv = 0uee, (4.13)
oder
Vv =0 =divv (4.14)

bilden. Das Tensorfeld (4.13) heif3t ,,lokale Dyade*, gelegentlich auch ,,Vektorgra-
dient**. Das Skalarfeld div v wird ,, Divergenz des einstufigen Tensorfeldes v** genannt.
Wir schreiben

V =grad, V-=div, V x =rot, (4.15)

um auf Gradientenfelder, Quellenfelder, Wirbelfelder hinzuweisen. Sind ¢(x) bzw.
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v(x) Tensorfelder der Stufe 0 bzw. 1, so gelten folgende
Definitionen 4.3:
Vv = grad v = e;d0; = 0,0k,
Vo =grade =0,p = 0,0, - (4.16)
Vv =divy = 0w; = d;0;,
VX v=r0tv=ee;d = & u0,0k

nach (2.28). Man nennt grad ¢ ,,Gradient des Skalarfeldes ¢** und rot v ,,Rotor des
einstufigen Tensorfeldes v*“. Die Ausdriicke (4.16) stellen nach der Reihe Tensorfelder
der Stufe 2, 1, 0, 1 dar.

4.2. Einfache Nabla-Operationen

Der Nabla-Operator wirkt nach der Produktregel der Differentialrechnung auf alle
GroBen, die rechts von V stehen. Es ist aber rechentechnisch zweckmaBig, wenn man
wie in Band 4 die GréBe mit einem Pfeil kennzeichnet, die differenziert werden soll,
z. B.

W v ¥

Vo (gv) = (Vg) v+ (V-3) . @.17)
AuBerordentlich wichtig ist die Unterscheidung von Operatorbildung und Anwen-
dung des Operators, wobei der Operator auch nach links wirken kann:

V-V = 0, aber V-V =5, = 0.
Falls v nicht differenziert werden soll, schreibt man v,0;, denn 0,v, = 0v,/0x; ist
eindeutig festgelegt, entsprechend Vv = W. In dieser Bezeichnungsweise gilt mit
Pfeilmarkierung:

Vo =Vi=¢V, Vov=V-v=v-V,

Vxy=V x $= —(* X V), aber V###V.

Nur in Ausnahmefallen miissen wir den Wirkoperator vom Blindoperator unterschei-
den und Blindoperatoren, die in dem jeweils angeschriebenen Ausdruck nicht wirken
sollen, besonders kenntlich machen durch 0f oder V€. So ist 9,0, = 0%p/0x,0x; ein
Skalarfeld, aber 0,p0; = 0,0fp ein Operator. Als Ausnahmefall bezeichnet das Spat-
produkt

[vewd] = [wve] = (V x ¥) - ¥ (4.18)
einen Operator, aber es gilt
W] = (v x »)- ¥ = 0. (4.19)

Wir wenden uns den ,,Nabla-Operationen®, d. h. den Rechenregeln mit dem Nabla-
Operator zu. Die Zuldssigkeit jedes Rechenschritts muf3 in der Koordinatendarstel-
lung bewiesen werden!
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Beispiel 4.1: Um (4.17) zu beweisen, berechnen wir

Vo (pv) = €0, " (pueer) = Olpv) = () v + (Oi) @,
also auch

div(gv) = v-gradp + @ divv. (4.20)
Beispiel 4.2: Der Ausdruck div (u x v) ist umzuformen:

div (u x V) = 0&; ;0 = &;40;(14;0x)

= &0ty + &0 = &;50,0 U — &;julhiO ;U

= U8 0 Uy — Ui 350 Uk
also
div(u x v) =v-rotu —u-rotv. (4.21)

Beispiel 4.3: Es gilt
0, (P0) = PE0 0k — €130 ,0kP
folglich (bei Multiplikation mit e; und Summation nach Vereinbarung)
rot (pv) = grotv — v x grad¢. (4.22)

Aufgabe 4.1: Welche Nabla-Operationen sind nach (4.20) bis (4.22) erlaubt? Man leite
diese Formeln durch Anwendungen des Operators V her.
Mit Hilfe des Nabla-Operators berechnen wir

grad (gy) = V(59) = (Vo) v + o(V3),

(4.23)
grad (¢y) = ¢ grady + y grad .
Wird der Verbindungssatz (1.30) herangezogen, so ergibt sich
rot(u x v) =V x (tl X #) = (Vé)n‘x - (V\Ji)i’
Nach der Produktregel der Differentialrechnung folgt weiter
rot (u x v) = (V-i’)u +(v-V)|¢1 - (V~|ﬁ)v— (u~V)¢'
und mittels Dyadenschreibweise
rot(u x v) =udivv + v-Vu — vdivu —u- Vv. (4.24)

Aufgabe 4.2: Die Formeln (4.23) und (4.24) sind in Koordinatendarstellung zu
beweisen.

Aufgabe 4.3: Fiir den Ortsvektor x = x,e; = rx° bestétige man die Formeln:

a) 0;x, =0y, O = xr, (4.25a)
b)divx =3, rotx =0, Vx =1, (4.25b)
c) gradr = x° gradf(r) = f(r) x°. (4.25¢)

In c) bedeutet f*(r) die Ableitung der Funktion f(r).



4.2. Einfache Nabla-Operationen 55

Nach dem Verbindungssatz (1.30) wird

uxrotv=ux(Vx#):V(w*)—u-Vt,

(4.26)
v X rotu =v x (V X ﬂ) = V(v~|¢1) —-v~Vil.
Wir wollen das Vektorfeld grad (u - v) zerlegen:
grad (u-v) = V(#x%') = VGI'V) + V(u-%') = V(u-#) + V‘V#l)
Die letzten beiden Summanden werden (4.26) entnommen; es folgt
grad(u-v)=uxrotvy +u-Vv+vxrotu+v-Vu (4.27)

und daraus speziell die Lambsche Formel )
v-Vv=J}gradv? — v x rotv. (4.28)

Beispiel 4.4: Wir untersuchen instationdre Felder, z. B. das Skalarfeld der Massen-
dichte o(x(¢),¢) und das instationdre Vektorfeld w = w(x(¢),#) der Strémungsge-
schwindigkeit in der Komponentendarstellungw = wie; = X;e; mit X; = dx;/d¢ = w,,
das ein Tensorfeld 1. Stufe darstellt. Das totale Differential do = 3—§de + %dt
i
fiihrt auf die totale Zeitableitung
do 0o dx; 00 0o 00

=2 - C L TN T L )0 = — - Vo.
dr ot dr ox; ot +owioe ot +weVe

Ist v = v(x(¢), t) ein instationares Vektorfeld, so gilt entsprechend

dv _ ov
E W + w- Vy. (429)

Der 1. Summand ist das lokale oder instationire Glied. Der 2. Summand heiBt
,.konvektives Glied** oder ,, Transportglied. Vo bzw. Vv sind Tensorfelder 1. bzw.
2. Stufe.

Bei instationarer Stromung benutzt man den Operator der totalen Zeitableitung

d 0

mit w- V = w;0;. Aus (4.29) folgt speziell

dw ow

et e AL 431
Die Eulersche Bewegungsgleichung der Hydrodynamik fiir die reibungsfreie Stromung
lautet
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wenn p den hydrostatischen Druck, also —grad p das Druckgefille bezeichnet. Mit
(4.31) wird

dw  ow 1
a9 VW = — — 4.32
a 3 + w-Vw . grad p (4.32)
und nach der Lambschen Formel (4.28)
dw ow w? 1 )
—d7———SZ~+gradT—wxrotw——?gradp. (4.33)

AuBere Krifte wie z. B. die Schwerkraft werden hier und im folgenden nicht aufge-
schrieben.

4.3. Mehrfache Nabla-Operationen

Zweifache Nabla-Operationen werden sehr oft benétigt. Der Tensoroperator

VV = e;0,0, (4.34)
wird zu
0? 0? 0?
V-V=0,0,=— 4+ — + ——
V=00 ox? + 0x2 + ox?
verjiingt. V2 ist der skalare Laplace-Operator. Das Zeichen A bleibt fiir Differenz-
terme reserviert, z. B.

Af(x) = flx + h) = f(x),
AV = V(x; + Axy, x5 + Axy, x5 + Axz) — V(xy, X2, X3).

=v? o (435)

Mit den Bezeichnungen (4.15) kann man schreiben
V2 = V-V =divgrad, VV- = graddiv. (4.36)
Als Grundformeln gelten

rotgradg = 0,. divroty =0 (4.37)
wegen .

rotgradg =V x Vil = (Vx V) § = 0p = 0,

divroty = V- (V X V) = [VVV'} =0.
Nach (1.30) und (4.36) wird

rotrotv =V x (V X Lv‘) = V(V- ¢v‘) - (V-V) lvi,

rotrotv = grad divv — divgradv. (4.38)
Aufgabe 4.4: In Koordinatendarstellung sind die Formeln

V- (VW) = divgradv, V-(¥V) = grad divv (4.39)

zu beweisen.
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Der Tensor der Deformationsgeschwindigkeiten wird definiert:
D = VW + WV = 0w, + 0w esey. (4.40)
Dieses zweistufige Tensorfeld ist symmetrisch. Daneben benufzen wir
def w = 3(Vw+ wV) = iD. @40)
Nach (4.39) gilt somit
V-D=V- (Vw-ﬁ— tvtV) = div grad w + grad divw. (4.41)
Man schreibt auch V- D = div D.
Beispiel 4.5: Die Bewegungsgleichung fiir die reibungsbehaftete Stromung lautet

g% = divs. (4.42)

Der symmetrische Spannungstensor 2. Stufe

S=-—pI+ D — 35y (divw)I (4.43)
heiBt Navier-Stokes-Tensor, siehe (5.28). Hier bedeuten p den hydrostatischen Druck,
w die Stromungsgeschwindigkeit, # die (orts- und zeitunabhidngige) dynamische
Zahigkeit; » = /o heiBt kinematische Zahigkeit. Wir berechnen

divS=V-S = —(V-pI) + VD — 35V - [(divw) I]
mittels

div (pI) = V- (pI) = €0, - pduese;

= 0;p0udpe, = 0;pdue;, = (0xp) €,

also

V- (pl) = gradp, V- [(divw)I] = grad divw. (4.44)
Mit (4.41) und (4.44) wird V - S nach (4.43):

V-S = —gradp + 7 (div grad w + grad divw — % grad div w).
Wir erhalten damit die Bewegungsgleichung (4.42) nach Navier-Stokes:

%~ = — —(—)]-gradp +v (div grad w + %grad div w). (4.45)
Bewegungsgleichungen miissen so formuliert werden, da sie vom speziellen KS
unabhéngig sind. Die Invarianz der rechten Seite von (4.45) kommt in der Schreib-
weise mit grad und div zum Ausdruck.

Die Ortsfunktionen seien jetzt dreimal stetig differenzierbar, so daB z. B. div grad
rot v ein stetiges Vektorfeld darstellt. Aus (4.38) folgt die Vertauschbarkeit der linearen
Operatoren V2 und rot gemiB

VZrotv = rot V3v, (4.46)
wenn wir einmal von der Identitat (4.38) den Rotor bilden

rot rot rot v = rot grad divv — rot div grad v,
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wenn wir andererseits in (4.38) v durch rot v ersetzen
rot rot rot v = grad div rot v — div grad rot v

und die beiden Identitaten (4.37) beriicksichtigen. Dann bleibt
—rot div grad v = —div grad rot v

in Ubereinstimmung mit (4.46).

Aufgabe 4.5: Die Vertauschbarkeit des Laplace-Operators V2 mit grad und div ist
durch Nabla-Operationen nachzupriifen.

4.4. Invarianz des Nabla-Operators. Integralsitze nach Gaufl

Im folgenden bezeichnet der Buchstabe 4 den Flicheninhalt (area). Der Vektor des
Flichenelements sei

dA = d4n (4.47)

mit dem Normaleneinheitsvektor n, der bei einer geschlossenen Oberflache (Hiille H)
immer nach auflen weist. Diese Orientierungsvorschrift fiir n bleibt erhalten, wenn wir
H in Teilflichen zerlegen. d4 ist der Flacheninhalt eines infinitesimalen Parallelo-
gramms in der Tangentenebene, siche Definition 7.1.

In einer stationdren Strémung mit dem Geschwindigkeitsfeld w = w(x(¢), x,(?),
x3(1)) wird der kinematische FluB, der in der Zeiteinheit durch ein Flichenelement
stromt, gemal

w-dA =w-nd4d =w,d4

definiert. Wenn die Zeitabhangigkeit nicht weiter interessiert, schreibt man einfach
w = w(x), wobei es sich aber nicht um ein statisches Feld handeln soll. Der Hiillen-
fluB §f w - dA ist der kinematische FluB durch eine geschlossene Oberfliche. Wenn im

"
Inn(ergx keine Quellen (oder Senken) vorhanden sind, ist das Hiillenintegral gleich
null, aber auch dann, wenn im Innern die Summe der Quellstiarken gleich der Summe
der Senkenstirken ist. Nur wenn im Innenbereich ein Uberschuf an resultierender
Quellstarke eines Vorzeichens besteht, wird das Hiillenintegral
fFdA-w={fw-dA = fw,dd =0, (4.48)
() () (|
ungleich null. Es dient daher als direktes MaB fiir den UberschuB an Quellstirke
0; =20, +20_=2]0.| — Z|0_| im Bereich (V). H sei die Oberfiache des
Volumens V. Mit (H) und (V) bezeichnen wir die zugehdrigen Bereiche (kontinuier-
liche Punktmengen, die durch Ungleichungen beschrieben werden).

Der grundlegende Integralsatz von Gauf8

[[[divwdy = {fdA-w (4.49)
K% H)
ist aus der Analysis (Band 5) bekannt. Neben der Quellstirke Q wird die Quelldichte
Ao _do

lim

Jim 5 =g = 4 (4.50)
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eingefiithrt. Durch den Grenziibergang AV = Ax; Ax, Ax; — 0 soll das Volumen-
element auf den , Tragerpunkt“ (x,, x,, x3) zusammenschrumpfen, so daB alle
Kantenlingen des infinitesimalen Quaders gegen null streben:

Ax, -0, Ax, >0, Ax;—0.

Satz 4.4: Die Divergenz des Geschwindigkeitsfeldes einer stationdren Stromung stellt
eine kinematische Quelldichte dar:

divw = ¢(x). (4.51)

Allgemein wird div v als ein Quellenfeld angesprochen, das ein zugeordnetes Vektorfeld v
erzeugt. '

Setzen wir namlich (4.51) in den Integralsatz (4.49) ein, so folgt
o
fjjqu_ffdeV—Qﬁ_ﬁdA W
@) ) ¢4}

in Ubereinstimmung mit (4.48). Aus (4.51) V- w = g folgt weiter in Verbindung mit

(4.50):
AQ
Vow = lim Ry =l (AV fﬁ el W) @52

[0
wenn (4.48) in der Form ﬁ dA - w = AQ auf das Volumelement AV mit der Ober-

fliche AH und dem Quellantexl AQ ibertragen wird. Da w ein beliebiges Vektorfeld
ist, erhalten wir aus (4.52) die koordinatenfreie Darstellung des Nabla-Operators

v =Al'£rl‘10 (ﬁ ﬁ dA) s (4.53)
(A .

d. h., V ist ein Tensor 1. Stufe, wie es der Hauptsatz verlangt. Die Koordinaten des
Nabla-Tensors V = e;0; miissen sich also nach den Gesetzen (4.9)

Bi = ey, 0; = Cma_k

transformieren.
Weitere Integralsitze nach Gauf sind in (5.9), (5.10) und (5.11) formuliert.



5. Ausgewihlte Anwendungen

5.1. Lorentztransformationen

Programmatischer Satz 5.1: Der Ubergang von einem kartesischen KS B auf ein
relativ zu B mit konstanter Geschwindigkeit u im Sinne der Mechanik bewegtes KS B
lipt sich deuten als Ubergang von einem Bezugssystem BM des Minkowskiraumes auf
ein um eine Achse durch den Ursprung gedrehtes Bezugssystem BM, wenn der Ubergang
nach der Lorentztransformation erfolgt. Damit wird eine Translattonsbeu egung des
Bezugssystems im dreidimensionalen euklidischen Raum in eine Drehung des Bezugs-
systems im vierdimensionalen Minkowskiraum iibersetzt. Da Tensoren gegeniiber sol-
chen Drehtransformationen des Bezugssystems invariant sind, lassen sich die Gesetze der
Elektrodynamik und Mechanik lorentzinvariant formulieren, wenn es gelingt, die zu-
gehdrigen physikalischen Tensoren des vierdimensionalen Minkowskiraumes aufzu-
stellen. Insbesondere muf3 ein vierdimensionaler Nabla-Tensor existieren.

Definition 5.1: Das kartesische KS B habe, von B aus beurteilt, die konstante Transla-
tionsgeschwindigkeit w = ue,. Bedeutet ¢ die Lichtgeschwindigkeit im Vakuum, so
lautet die Lorentztransformation

X — ut t — ux/c?

g=—2" ¥ 5oy =2 5.1
\/l—uz,/cz ks \/l—uz/c G

Dabei wird die Zeitkoordinate t mittransformiert. Die Lichtgeschwindigkeit c ist nach
Einstein eine Invariante:

c=c. 5.2)

Wir gehen von einem vierdimensionalen euklidischen Punktraum R* mit der
orthonormierten Basis e, , e,, e, e, als Bezugssystem aus. Dieser Punktraum wird
durch die Definition der Punktkoordinaten

X, =X, X;=), X3=2, X4=Iict (5.3a)
zu einem pseudoeuklidischen Raum R} modifiziert, der als vierdimensiona/i Min-
kowskiraum bezeichnet wird. Der Faktor i ist die imaginire Einheit (i = \/ —1 und
i2 = —1). Durch Drehung des Bezugssystems BM mit der Basis e, , e,, €5, e, in die

neue Lage BM mit &,, &,, &, &, wird eine orthogonale Koordinatentransformation
durchgefiihrt, wobei (5.3a) in

X=X, Xy=J, X3=2, X,=ici (5.3b)
iibergeht. Mit den Abkiirzungen
1

\/1 — u?/c?

und den Umbezeichnungen nach (5.3a, b) liefert (5.1) die Transformationsgleichungen

=K, (1-m)K>=1

Il

m|§

Xy = K(xy + ihx,), Xo = X5, X3 = X3, X4 = K(x4 — ihx;). (5.4a)
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Aufgabe 5.1: Man schreibe das lineare Gleichungssystem (5.4a) in Matrizenform mit
der Transformationsmatrix CM und zeige, dal

CM=CM=K Ch=CM=1 CM=iKk=—-CH, (5.5)
alle anderen C} = 0.

Man iiberpriife, daB die Quadratsumme der Elemente jeder Zeile oder Spalte der
Matrix CM eins ergibt und daB die Produktsumme zweier verschiedener Zeilen oder
Spalten immer gleich null wird. Die Transformationsmatrix CM istalso orthogonal :
(CM)~1 = (CM)T, Man berechne det CM = 1. Die Matrix CM vermittelt also eine
Drehung des KS BM in die Lage BM.

Mit der transpoﬁierten Matrix erhélt man sofort die Auflésung von (5.4a) nach
x; = K(X, — ihX,), X, = X», X3 = X3, x5 = K(X, + ihx,). (5.4b)

Satz 5.2: Die Koordinaten der Vierertensoren geniigen der Invarianzforderung gegeniiber
Lorentztransformationen, wenn die Transformationsgesetze

4 4
&= 3 Ce, =3 Cife, (5.6a)
- 4 4 -
=3 Q. Vo= X GV, (5.6b)
— 4 N 4 —
Bu= 3 CYCNBy, Bu= 3 CHCKB, (5.6¢)
yl= g b=

usw. mit den Transformationskoeffizienten (5.5) erfiillt sind, speziell nach (5.6b) fiir
Vierertensoren 1. Stufe:

V="Ve + Ve, + Vies + Vye,.

Aufgabe 5.2: Mit Hilfe der konkreten Transformationsformeln (5.6b)
Vi=KWV, +ihVy), Vo,=V,, Vi=Vs, Vi=KV,—ihVy),
V=KWV, —ihV,), V,=V,, Vy=Vs, V,=KWF,+ihV,)

und (5.5) beweise man die Invarianz des Skalarprodukts
UV, + UV, + UsVy + UV = UV, + UV, + UsVs + UV,

Mit 0, = 0/0x4 = 0/0(ict) wird der vierdimensionale Nabla-Operator

O = e0; + €0, + €303 + €404 (5.8)

erklart. Er ist ein Tensor 1. Stufe, wenn er gegeniiber Lorentztransformationen in-
variantist: 0 = [J. Das ist der Fall, wenn seine Koordinaten mit V', = 0., V, = 0,,
V3.= 03, V4 = 04 den Transformationsgesetzen (5.7) geniigen. Alle Bezugssysteme,
die sich relativ zueinander mit konstanter Translationsgeschwindigkeit bewegen,
heiBlen Inertialsysteme. Die Grundgesetze der Physik miissen unabhingig von dem
zufallig benutzten Inertialsystem gelten. Das trifft fir die Maxwellschen Grundglei-
chungen der Elektrodynamik zu, da sie sich vollstindig in Vierertensoren darstellen
lassen. Insbesondere muBl O ein Tensor 1. Stufe sein.
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Erginzung: Der Tensorkalkiil 148t sich auf den n-dimensionalen euklidischen Raum
R erweitern. Dafiir wird zunichst die Summenvereinbarung verallgemeinert: iiber
zwei gleiche Buchstabenindizes soll immer von 1 bis n summiert werden, wenn der
Raum R" zugrunde gelegt wird. Die Summenform eines beliebigen Tensors und das
Produkt zweier Tensoren behalten ihre bisherige Darstellung; speziell besitzt die
Dyade uv = u;.e,€, jetzt n> Summanden.
Auch die Formulierung des Skalarproduktes
UV = uUl; = Uy + Uy + ... + U0,

bleibt mit e; - ¢, = d;, erhalten.
Die Konstruktion des Vektors u x v ist jedoch an den Raum R*® gebunden. Fiir
n > 3 wird das vektorielle Produkt u x v durch den Bivektor <uv) nach (2.36)
ersetzt:
uv) = E-(uxv) =uv —vu = (uv, — vy ee,
Vo (2.36)
(VW) =E-(Vxv)=Vv—vV=E-rotv.
Statt des Wirbelfeldes rot v wird somit das antisymmetrische zweistufige Tensorfeld

Vv — VvV eingefiihrt. Der Speziellen Relativitdtstheorie liegt der vierdimensionale
Minkowskiraum R} zugrunde, wo jeweils bis n = 4 zu summieren ist. An Stelle von

i J
rot v muB hier das Tensorfeld OV — VO mit (5.7) und (5.8) benutzt werden.

5.2. Kriifte- und Momentengleichgewicht

Eine Verallgemeinerung des Satzes von GauB} in der Form (4.49) besteht in der
Operatoridentitdt

[[[dvy.. =ddA.., (5.9)
W) (H)

so daB auch folgende Integralsitze gelten:
[[[dVgradg = {fdA, [[[dVrotw = {fdA x w, (5.10)
i3] (H) ) (H)
[[[dvdivT = {4 dA-T, (5.11)
W) (H)

wo @, w, T Tensoren 0., 1., 2. Stufe bedeuten.

Beispiel 5.1: Wir legen als Volumenelement eines elastischen Kérpers nochmals das
Tetraeder nach Bild 3.2 zugrunde. Es sei wieder p, der Spannungsvektor beziiglich
der schragen Randfliche mit dem Stellungsvektor n. Die duBlere Kraftdichte sei f, so
daB f vektorielle Kraft je Volumeneinheit und p vektorielle Kraft je Flicheneinheit be-
deuten. Die Bedingungen des Krafte- und Drehmomentengleichgewichts am Gesamt-
volumen ¥ des Korpers mit der Oberflache H lauten

[[[tdV +§p.da =0 (5.12)
w) (H)

und
[[J e x £)dV + §f(x x p,)dd = 0. (5.13)
(H)

W)
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Durch Vergleich des Integralsatzes (5:11) in der Form
—[[[divSdV +{fn-Sdd =0
W) (H)
mit (5.12) erhalten wir die Beziehungen
f=—divS, p,=n-S, (5.14)

von denen wir schon Gebrauch gemacht haben, z. B. in der dynamischen Bewegungs-
gleichung
dw dw .
9T+f—0, QF—dIVS. (5.15)
Bei Anwendung des Integralsatzes (4.49) von GauB3 kénnen wir nach (5.14)
dA(p, x x) =dA(m-S) x x =dA- (S x x)
schreiben

fFdA@, x x) =ffdA-(S x x) = [[[dVdiv(S x x)
(H) (H) vy

(42
und nach (5.13) und (5.14)

ffda, x x) = [[[dV(x x £) = [[[dV (divS) x x.
() [} (2

Durch Vergleich der beiden Ergebnisse finden wir

div (S x x) = (divS) x x,
also

V(s x %) =o0. (5.16)
Wir hatten S = e;p; und setzen ST = pe;. Damit wird (5.16)
V(Sxx)=8"-Vxx=0,
Pie; €0 X X = (P0uOk) X X = P; X 0,X
=P X € =0 X € = —0ou€; X €
= —(023 — 032) € — (03, — 013) €, — (01, — 02;) €5 = 0,

also oy; = oy ; der Spannungstensor ist symmetrisch.

5.3. Kugeltensor. Deviator. Verzerrungstensor. Navier-Stokes-Tensor

Durch
Sy =oue; X € (5.17)

wird die Stufe des Tensors S = o;e,e, um 1 erniedrigt; durch die Verjiingung
SPS = oue; € = O (5.18)

erniedrigt sich die Tensorstufe um 2; sp S heift ,,Spur des Tensors 2. Stufe*. Kugel-
tensor S, und Deviator S, werden wie folgt erklart:

S.=36pSL S, =S-1 (sp9I, (5.19)
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so daB die identische Zerlegung

S=S,+S, (5.20)
in Kugeltensor und Deviator besteht. Es gilt
spS,=spS, spS, =0, (5.21)

denn nach (5.18) und (5.19) wird
spS, = oy —3-%ou =0.

Die Spur des Tensors der Deformationsgeschwindigkeiten

D = @y + Ouwy) eee = VW + WV

ist

spD = 2divw. (5.22)
Auch hier kénnen wir (5.19) entsprechend in Kugeltensor und Deviator zerlegen:

"D, = 3divw) I, D, =D — 3(divw)I. (5.23)

Fiir viskose Strémungen gilt in einem isotropen Medium das rheologische Prinzip

S, = 1Dy, (5.24)
also

S, =S -8, =7[D — %(divw)I]. (5.25)
Wird der hydrostatische Druck

p = —}ou (5.26)
eingefiihrt, so folgt

S, = Joudl = —pl (5.27)

und damit nach (5.25) der Navier-Stokes-Tensor

S = —pl + y[Vw + WV — 3(divw 1] (5.28)

in Ubereinstimmung mit (4.43).

In der Elastizitatslehre wird der Verzerrungstensor defs = -}(Vs + éV) mit dem
Verschiebungsvektor s benutzt, sofern man sich auf linearisiert elastische Verformun-
gen in einem isotropen Medium beschrankt. Man erhdlt mit véllig entsprechenden
Uberlegungen die Tensorbeziehung

S = loul + 2G[def s — }(divs) I]. (5.29)

Schubmodul (Gleitmodul) G und dynamische Zahigkeit # seien zeit- und ortsunab-
hiangige Kenngréfen. Der Kugeltensor bewirkt hier eine Deformation mit Volumen-
anderung ohne Gestaltsinderung, wobei eine Kugel wieder in eine (kleinere oder
groBere) Kugel iibergeht. Der Deviator bewirkt umgekehrt eine Gestaltsinderung
ohne Volumenidnderung, z. B. die Verformung einer Kugel in ein Ellipsoid mit glei-
chem Volumen.
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Satz 5.3: Ein beliebiger asymmetrischer Tensor 2. Stufe lifit sich immer in einen
symmetrischen und antisymmetrischen Tensor 2. Stufe zerlegen.

Eine solche Zerlegung ist A = B + C mit A = ayee;, by = Hay + a) = by,
i = ¥ay — @) = —cpy, s0 daB B = byee, einen symmetrischen und C = ¢ ee,
einen antisymmetrischen Tensor 2. Stufe darstellt. Spaltet man in der Zerlegung

Vs = 1(Vs + V) + 3(vs — &V) (5.30)
den antisymmetrischen Rotationsanteil %(Vs - éV) ab, so bleibt der symmetrische

Verzen ungstensor defs = %(Vs + éV) we;e, librig. Die Tensorkoordinaten
dy = 305 + Opsy) fiir 7 + k heiBen Scherungen und bedeuten relative Winkeldnde-
rungen gegeniiber einem urspriinglich rechten Winkel.
dyy = 05y, dyy = 0,8,, d33 = 0353 sind relative Langenidnderungen in den Ach-
senrichtungen und heilen Dehnungen (bzw. Stauchungen).,—
Es seien A und B Tensoren 2. Stufe. Wir bilden das innere Produkt und erhalten

wieder einen Tensor 2. Stufe
A B = a;ee; - byee, = aybyee;. (5.31)

Die Koordinaten des Produkttensors erhalt man auch durch Matrizenmultiplikation.
Wird nochmals verjiingt, so entsteht das doppeltskalare Produkt

A:B = abye; e, = ayby;. (5.32)

Bei energetischen Betrachtungen spielt das doppeltskalare Produkt, das eine skalare
physikalische GroBe darstellt eine grofe Rolle.

Beispiel 5.2: Mit S = o,e.e, und Vw = 0,w,e e, sowie I = 6,ke i€, berechnen wir nach
(5.32):
S:Vw = 0,0,w;,

I: Vw = 6,00w; = 0wy = divw. (5.33)
Aufgabe 5.3: Man berechne die Dissipation

e=S,:Vw = 2y[def w — 3(divw) I]: Vw, (5.34)
wo S, den Deviator (5.25) bezeichnet.
Aufgabe 5.4: Es sei S der Navier-Stokes-Tensor. Man bilde die Energiebilanz

S:Vw = —pdivw + . (5.35)
Aufgabe 5.5: Man bringe die Kontinuitdtsgleichung

% + div(ow) =0 (5.36)
or
mit v = iauf die Formen

—_— — = — =divw. (5.37)

Was bedeutet S, : Vw = —p div w physikalisch?

5 Schultz-Pisz., Tensoren
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Die Dissipation ¢ nach (5.34) bedeutet die durch Reibung in Wirme verwandelte
mechanische Energie je Volumen- und Zeiteinheit. Die Kontinuitétsgleichung bringt
den Satz von der Erhaltung der Masse in einem stromenden Medium zum Ausdruck.

5.4. Die Maxwellschen Gleichungen der Elektrodynamik

Wir benutzen das internationale MafBsystem nach Giorgi. Als Materialkonstante
definiert man die absolute und relative Dielektrizititskonstante sowie die absolute
und relative Permeabilitdt mit den Buchstaben &, und & sowie x, und p. Die Ver-
bindungsgréBen sind

D =¢p¢E, B = pouH. (5.38)
Die Vektorfelder E und H sowie B und D sind die elektrische und magnetische Feld-

stirke sowie die magnetische Induktion und die dielektrische Verschiebung. Im
Vakuum gilt ¢ = = 1. Die Lichtgeschwindigkeit im Medium ist

¢ = 1\ eeopto, (5.39)

im Vakuum ¢ = 1 /\/ gofto- Es wird die elektrische Raumladungsdichte p, als elektri-
sche Ladung je Volumeneinheit eingefiihrt, auBerdem das Vektorfeld j, der elektrischen
Stromdichte. Dann lauten die Maxwellschen Gleichungen fiir eine im Laborsystem
ruhende Anordnung: )

divD = g,, (5.40)
divB =0, (5.41)
rotH =j, + D, (5.42)
rot E = —B. (5.43)

Die partielle Ableitung% wird durch Punktierung gekennzeichnet. Gl. (5.41) besagt,

dafB es keine magnetischen Ladungen eines Vorzeichens gibt, sondern nur magnetische
Dipole, Quadrupole usw. existieren konnen. (5.40) bringt nach Satz 4.4 zum Ausdruck,
daB elektrische Ladungen ein elektrisches Feld erzeugen. Nach (5.43) sind Ladungen
aber nicht die einzig moglichen Ursachen fiir ein elektrisches Feld.

Beispiel 5.3: Wegen div rot H = 0 folgt aus (5.42)

divrot H = divj, + divD = divj, +%divD =0,
also mit (5.40) die Kontinuititsgleichung

divj, + 6. = 0, (5.44)
die hier deﬁ Satz von der Erhaltung der elektrischen Ladung zum Ausdruck bringt,
wenn ein elektrischer Strom flieBt. Wegen div rot E = 0 muB nach (5.43) auch gelten

divrotE = div (—=B) = —%divB =0.

Diese Bedingung ist aber bereits mit (5.41) erfiillt.
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Beispiel 5.4: Durch Einfiihrung des Poyntingschen Energiestrahlungsvektors S*
= E x H haben wir nach (4.21)

divS* =H-rotE — E -rot H
und mit (5.42) und (5.43)
divS* = —-H-B-E-j,—E-D= —(E-D+H-B) —E-j,.

Wird das Ohmsche Gesetz j, = »E als Feldgleichung beriicksichtigt, so erhalten wir
mit (5.38) die Bilanzgleichung

“Wem = div S* + xE2, (5.45)
wenn

Wem = 3(e0eE? + pouH?) (5.46)
die elektromagnetische Energiedichte bezeichnet. In Integralform geht (5.45) in

~Wem = [[[ divS*dV + [[[ xE>dV (5.47)

(%) Wy

und nach dem Integralsatz von GauB (4.49) in

-% Wem = fﬁjgs*; dA + Qs (5.48)

(H)

iiber. Die Abnahme der elektromagnetischen Energie ist nach (5.48) auf elektromagne-
tische Energieausstrahlung und Umwandlung in Joulesche Wirme zuriickzufiihren.
Bewegt sich die Anordnung gegeniiber dem Laborsystem mit der Geschwindigkeit

u, so miissen wir D in (5.42) und B in (5.43) durch

dD oD dB 0B

T T VD und T T VB (5.49)
ersetzen. Wihrend die Lorentztransformation (5.1) die Grundlage der Speziellen
Relativitatstheorie darstellt, basiert die ,,Absoluttheorie** auf der Galileitransforma-
ton s _x—ut, y=y Z=z I=t, (5.50)
die aus (5.1) unter der Voraussetzung u?/c? < 1 hervorgeht. Diese Niherung ist in der
Elektrotechnik gut erfillt, wenn man den EinfluB der Parallelverschiebung eines

i
elektromagnetischen Systems mit konstanter Geschwindigkeit (u = const) unter-
sucht.

Aufgabe 5.6: Man benutze (4.24) fiir u - VD und u - VB beziiglich (5.49) in der Form

u-Vv =udivy — vdivu + v-Vu — rot (u x v), (4.24)
um die Maxwellschen Gleichungen

rotH =j, + D + g,u + rot (D x u), (5.51)

rotE = —B + rot (u x B) (5.52)

mit 2 Zusatzgliedern gegeniiber (5.42) und einem Zusatzglied gegeniiber (5.43)
herzuleiten.

5*
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5.5. Bilanzgleichungen

Wir fithren eine stetig differenzierbare Orts- und Zeitfunktion G = G(x(¢), ¢) ein,
iber deren physikalische Bedeutung noch verfiigt werden kann. Fiir

d@G6) _do | dG
a ~ %@t

erhalten wir nach (4.30)

d(eG) _ 0(eG)
dt ot

Wegen (4.20) gilt
div (oGw) = w - grad (0G) + oG divw,

+ w- grad (0G).

folglich
do dG  9(eG) . .
G_&t— T o + div (oGw) — oG divw.
Damit ergibt sich die Beziehung
dG _ 0(eG) . N . do
0 g = o+ div(eGw) G[gdww + W}'

Der Ausdruck in der eckigen Klammer verschwindet, wenn die Kontinuititsglei-
chung in der Gestalt (5.37) beriicksichtigt wird. Als neue Formulierung der Kon-
tinuitdtsgleichung erhalten wir nunmehr

dG _ 0(eG)

O Pal v + div (oGw) (5.53)

mit der verfiigbaren Transportgrifie G. TransportgroBen sind z. B. Masse, Impuls,
innere Energie, Enthalpie, Entropie, bezogen auf die Masseneinheit. Temperatur und

. 1. . N
spezifisches Volumen v = - sind keine TransportgroBen.

Beispiel 5.5: Ersetzen wir G durch die vektorielle Stromungsgeschwindigkeit w als
Impuls je Masseneinheit, so folgt aus (5.53)
dw _ 0(ow)

a o + div (oww) (5.54)

mit dem Tensorfeld der Dyade ww = w;we;e,. Damit geht die Bewegungsgleichung
o dw/dt = div S in die Impulsbilanzgleichung

_LSZV?_ = div (oww) — div S (5.55)
iiber. Gl. (5.45) hat die Form einer elektromagnetischen Energiebilanzgleichung.

Aus der Bewegungsgleichung nach Navier-Stokes (4.45) soll die ,,Wirbeltransport-
gleichung® hergeleitet werden. Wir ziehen die Lambsche Formel (4.28) heran und
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erhalten fiir (4.45)

ow 1 N
X-Figradw — W X rotw

= - %gradp + vdivgradw + %vgrad divw. (5.56)

v und g seien Konstante. Durch Rotorbildung iiber (5.56) entsteht

ow

ot
Aufgabe 5.7: Mit rotw = y leite man die Rayleighsche Wirbelgleichung her:

rot — 1ot (w x rot w) = » rot (V?w).

dy _or
dr ot

Speziell fiir das ebensymmetrische (aber rdumliche) Problem

+w:Vy =»V2y + y - Vw. (5.57)

y = Y(x1, X;) €3 = (0w — 0,wy) €3,

W= W(Xg, X2) = wi(Xy, x5) e + waxy, x;) e,
wird
¥ VW = y(xq, X2) 03W(xy, x,) = 0. (5.58)

Nur beim ,,ebenen Problem* stellen y eine TransportgréBe und

- %{— —w-Vy — W2y (5.59)

eine Bilanzgleichung dar.

5.6. Wirbelfelder. Integralséitze nach Stokes. Inkompatibilititstensor

Dem Wirbelfeld yp(x) wird mittels » = rotw ein Geschwindigkeitsfeld w(x) zu-
geordnet. Die Feldlinien des Vektorfeldes y(x) heilen Wirbellinien. Eine einzelne
gerade Wirbellinie senkrecht zur Zeichenebene ist in der Zeichenebene von konzen-
trischen kreisformigen Stromlinien des Geschwindigkeitsfeldes w(x) umgeben. Eine
im allgemeinen gekriimmte Wirbellinie erzeugt das Geschwindigkeitsfeld einer
Zirkulationsstrémung mit der Wirbelstirke (Zirkulation) /". Bei einer kontinuierlichen
Wirbelverteilung wird die Wirbeldichte

Iyl =

dr |
H! (5.60)

als Zirkulation je Flacheneinheit erklart, wobei man sich vorstellt, daB zundchst eine
Schar diskreter Wirbellinien mit den Wirbelstirken 7", , I',, I, ... das Flichenelement
d4 durchsetzt, die dann durch ,,Auffiillung zu einer liickenlosen Packung* im Grenz-
iibergang ein Kontinuum bilden, wobei keine Uberschneidungen auftreten. Diese
Hilfsvorstellungen werden durch den Integralsatz von Stokes

[[rotw:-dA = § w-ds (5.61)

(4) ©
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prizisiert, der nach Band 5 bekannt ist, siehe auch (7.7). Hier bezeichnet C die ge-
schlossene Randkurve der offenen Flache A. Das geschlossene Linienintegral wird mit
mathematisch positivem Umlaufsinn (Gegenuhrzeigersinn) definiert; andernfalls
erhilt das Integral negatives Vorzeichen. Ahnlich wie die Integrale des GauBschen
Satzes den UberschuB an Quellen eines Vorzeichens messen, definieren die Integrale
des Satzes von Stokes

[[7-da = §w ds_§wds_r- . (5.62)
(4)

den UberschuB an Wirbelstirken eines Drehsinns. Werden von der Randkurve C
nimlich entgegengesetzt drehende Wirbel eingeschlossen, so gibt das geschlossene
Linienintegral die Summe aller im Integrationsbereich vorhandenen vorzeichenbe-
hafteten Wirbelstirken an, also den UberschuB der Wirbelstirken eines Vorzeichens,
sofern Iy # 0 ist.

Wegen

dA-V x w = [dAVW] = (dA x V)-w

gilt auch
[J (A x V)-w=¢dx-w. (5.63)
(A4) © .

Verallgemeinert l1aBt sich die Operatoridentitit

[[dA x V= §dx l (5.64)

(4)

begriinden, aus der sich weitere Integralsitze ergeben, z. B.

jjdAxV¢_§dx<p

4)

oder
— [[gradg x dA = g dx, (5.65)
(4) (©)
ferner
[(@A x V) x w=§dx xw (5.66)

4 ©)

und fiir ein zweistufiges Tensorfeld T:

i
[[(dA x V)T = §dx-T. (5.67)
@ ©
Satz 5.4: Der Rotor des Geschwindigkeitsfeldes einer stationdren Stromung stellt eine
Wirbeldichte dar:
rotw = y(x). (5.68)

Allgemein wird rot v als Wirbelfeld angesprochen, das ein zugeordnetes Vektorfeld v
erzeugt.
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Beispiel 5.6: Bei stationdrer elektrischer Stromung lautet die Maxwellsche Glei-
chung (5.42)

rot H = j,(x). ' (5.6%)
Der elektrische ,,Strom*‘, nimlich die Stromstirke
1= [[j.daA, (5.69)

(4
entspricht bei Vergleich von (5.68) mit (5.68) der Zirkulation I". Elektrodynamisch
und hydrodynamisch entsprechen sich die GroBen

jez=y, 121, Hzw, (5.70)
man denke an das Biot-Savartsche Gesetz in beiden Fassungen! Die elektrische

Stromdichte j, stellt also ein Wirbelfeld dar, das ein zugeordnetes Magnetfeld H
erzeugt. .

Satz 5.5: Der Rotor eines Tensorfeldes 1. Stufe ergibt ein Tensorfeld 1. Stufe.

Das folgt aus der koordinatenfreien Darstellung (4.53) des Nablatensors 1. Stufe
und dem Tensorcharakter des Vektorfeldes w(x), so daBl Vw, V x w = rotw und
V- w = div w Tensorfelder 2., 1. und nullter Stufe sind.

Von grofler Bedeutung fiir Theorie und Anwendung ist die Erweiterung des
Wirbelfeldbegriffes rot w = V x w auf Tensorfelder 2. Stufe durch den Begriff der
Inkompatibilitit des Tensorfeldes T gemiB

123
VxTxV=inkT. (5.71)

Wenn wir auch def s = %(Vé + éV) als eine Erweiterung des vektoriellen Gradienten-
begriffes grad ¢ auf Tensoren 2. Stufe ansehen, gelten folgende sich entsprechende
Identititen:

rot grad = 0, divrot =0,
ink def = 0, divink = 0.
Beispiel 5.7: Wegen seiner Bedeutung berechnen wir fiir D = d;ee, den Inkompati-
bilitdtstensor
inkD =V x D x V = ee(0:02d5 + 0,03d23 — 0303d>, — 0,0,d33)
+ €1€2(0303dy1 + 010,d33 — 0302d3; — 0,03d23)
+ €1€3(020,d31 + 0,032, — 0,03da; — 0,02d3,)
+ €2€1(0303d12 + 0,01d33 — 0301d3, — 0,03d,3)
+ €,€5(0301d31 + 0,03d;3 — 0303d1; — 0,0,d33) (5.73)
+ €,€3(0,0,d35 + 0,03d;; — 0,0,d3; — 0,03d,2)
+ €3€1(0,02d13 + 0301d55 — 0302d;, — 0,0,d53)
+ €3€5(0101d23 + 030,d11 — 0301dz; — 0,02, 3)
+ €3€3(0201d21 + 010,d15 — 0,0,d;; — 010,d5,).

(5.72)
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Aufgabe 5.8: Man beweise mittels (5.73) und bestitige mit Nablaoperationen die
Indentitaten

ink defw = 0 und divink D = 0. (5.74)
Aufgabe 5.9: Man iiberpriife an drei ausgewdhlten Komponenten, daf ink D = 0 ist,
wenn D = % (V§ + gV) eingesetzt wird, z. B.

dyy = 0151, oy = 035, 2di3 = 0,155 + 0y

fir die letzte Komponente in (5.73).
Wenn D ein symmetrischer Tensor 2. Stufe ist, ist es auch ink D. Welche Koordina-
ten des Tensors ink D gehen durch zyklische Vertauschung auseinander hervor?

Wir wollen d,; = dj; voraussetzen. Die Tensorgleichung
inkD =0 (5.75)

heiit Kompatibilititsbedingung. Nach (5.73) erhalten wir die Bedingungsgleichungen
der Kompatibilitét:

R ipg = 0:0,dy + 0,0,y — 04ty — 040,dy; = 0, (5.76)

z. B. fiir kipg = 1212, 2323, 3131, 1123, 2231, 3312 bei Beachtung der Reihenfolge,
also 6 unabhéngige Bedingungen nach (5.73). Andererseits geniigen die Koordinaten
R};,q nach (5.76) den Symmetriebeziehungen

R¥ipa = —Rien = — Ripa = + Rap> (5.77)
Ripg + Ripai + Riqip = 0,

wie man durch Vertauschungen von Indizes in (5.76) sofort bestatigt. Wegen (5.77)
gibt es auch nur 6 unabhingige Bedingungsgleichungen der Form R¥;,, = 0. Die
R}ipq sind die Koordinaten eines Tensors 4. Stufe, der aus den Koordinaten Ry;,,
des Riemann-Tensors (8.18) durch Linearisierung bei Annahme kleiner Verzerrungen
|di| hervorgeht.

Eine ausfiihrliche Darstellung findet sich in dem vierbdndigen Werk ,,Ein Kurs {iber
Kontinuumsmechanik* von L. I. Sedow, Universitat Moskau (Englische Ubersetzung: Wolters-
Noordhoff Publishing Groningen The Netherlands). Der Tensorkalkiil wird hier weitgehend in
unserer Auffassung benutzt. Wéahrend wir uns in den Anwendungen auf die Eulersche Darstellung
beschranken muBten, wird in dem genannten Werk auch die Lagrangesche Darstellung ausfiihrlich
erortert und angewandt.



6. Einfiihrung in die Tensoralgebra mit ko- und
kontravarianter Basis

6.1. Ko- und kontravariante Basisvektoren und Tensorkoordinaten
Es wird unter der Voraussetzung [b;b,b;] + 0 eine beliebige Basis b, , b,, b; zu-
grunde gelegt. Die Basisvektoren b; (i = 1, 2, 3) haben beliebige Lingen (Normen)

und definieren im allgemeinen ein schiefwinkliges KS B. In diesem Bezugssystem habe
ein Vektor v die Komponentendarstellung

v = »;b; + v,b; + v3b3 (6.1)

mit den Koordinaten »,, v,, v5. Die Losung dieser Vektorgleichung ist uns aus
(3.15), (3.16) bekannt:

[vb2bs] [byvbs] _[bybyv]

y, = L vy = , vy = . 6.2
Y Thibobs]” P [bybobs]” P bybsby] €2

Wir fithren die neue Bezeichnung
yi=ol (6.3)

ein und verabreden das neue Summationsiibereinkommen als

Vereinbarung 6.1: Uber zwei gleiche lateinische Buchstabenindizes wird nur dann
automatisch von 1 bis 3 summiert, wenn einer der Indizes tiefgestellt, der andere
hochgestellt ist. (Uber 2 gleiche Buchstabenindizes, die in gleicher Hohe stehen, darf
kiinftig nicht summiert werden!).

Damit wird (6.1)

v = v'b, + v’b, + v3b; = v'b, (6.4)
und (6.2)
b, x b b; x b b, xb
1 2 3 2 3 1 3 1 2
— o , P =v- , =y 6.5
[b,b.b;] [b,bbs] [b:bb.] ©9
Wir definieren die zu den Basisvektoren b, reziproken Vektoren b' gemafy
b, X by * b; x b b, xb
bl = 22 3 p2 =2 Lops =1 2 . (6.6
[b.bb:] [b,b,b;] [b.bb;] .
und erhalten fiir (6.5)
vl =v-bl, 02 =v-b% v =v-b3
also
v =v-b (6.7)

beziiglich (6.4). Diese urspriingliche Darstellung enthilt keine offenen Fragen mehr.
Der Vektor v ist aber auch mit den Koordinaten

v'b, =1y (6.8)
vollstandig bestimmt. Sie entsprechen den Parallelprojektionen in einem schiefwink-

ligen KS, wahrend die o' den senkrechten Projektionen entsprechen. Wie sieht die
Darstellung eines Vektors v mittels (6.8) aus?
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Zur Beantwortung dieser Frage wird (6.5) skalar mit b; multipliziert, z. B.

[bibsb,] [b>bsb, ]
by b2 =121 —( b, b2 =2 =
! [b,b2bs] : [bib,bs]
usw. Es gilt
b, - b* = 6% = b*- b, (6.9)

wo jetzt 8% das Kroneckersymbol bedeuten soll. Bilden wir nach (6.4)
v b, = yb*- b, = = v,
so wird die gestellte Frage mit der Komponentendarstellung
v = v;b (6.10)

des Vektors v beantwortét, d. h. die Koordinaten v * b; = v; hat der Vektor nicht im
urspriinglichen Basissystem B der Vektorenb,, b,, b, sondernim zugeordneten rezi-
proken System B* der Basisvektoren b', b?, b* (vgl. Bd. 13,2.3.7.2.).

Aufgaben 6.1: Es ist nachzuweisen, daB3 die Reziprozititsbeziehungen

b, - b* = 8% [b;b,bs] [b'b2b3] = 1 (6.11)
und die Korrespondenzformeln zu (6.6)
2 3 3 1 1 2 i
_b*xb _b*xb b' x b 6.12)

b, = [b'b?b*]” > [b'b?b*]° > [b'b%b?)
gelten.

Ist by, by, bs eine Basis, so bilden auch die reziproken Vektoren b', b?, b® eine
Basis nach (6.11), und zwar beide ein (R) oder beide ein (L), denn aus [b;b,b;] = 0
folgt [b'b?b3] = 0. In den Darstellungen

v =ub' = 0v'b; (6.13)
heillen die v; kovariante, die v' kontravariante Koordinaten des Vektors v. Entspre-
chend heilen die b; kovariante, die b* kontravariante Basisvektoren. Diese Bezeich-
nungen werden sich aus dem Transformationsverhalten bei Ubergang von B auf B
und B* auf B* ergeben. Wenn es sich um kartesische Einheitsvektoren handelt, fallen

die Parallelprojektionen mit den Normalprojektionen zusammen, und es gilt nach
(6.6) und (6.12)

e; = b, = b’
6.2. Die Transformationsgesetze fiir die Tensorkoordinaten

An Stelle der fritheren ¢y, miissen wir neue Transformationskoeffizienten Bf ein-
fithren, mit denen der Ubergang von B auf B durch eine homogene lineare Koordina-
tentransformation gemif

b, = b, b = fib, (6.14)
und von B* auf B* gemiB
b’ = fib*, b = pib* (6.15)
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fir i = 1, 2, 3 vollzogen wird. Der Buchstabe f§ soll an Basis und Bezugssystem
erinnern. Die Transformationsmatrix Z = ((8) sei regulr, also [f¥| # 0. Das
2. Gleichungssystem von (6.14) ist die Auflésung des 1. Gleichungssystems, so dal3
Bk die Elemente der inversen Matrix zur Ausgangsmatrix mit den Elementen 8 be-
deuten. Da die b; und b in einer festen Beziehung zueinander stehen, ist (6.15) aus der
Vorgabe (6.14) zu folgern. Auch in den neuen Bezugssystemen B und B* muB

b, - b* = & (6.16)
gelten. Da die Transformationsmatrizen Z = ((8%)) und Z~' = ((f¥) zueinander
invers sind, bestehen die Beziehungen ZZ™' = Z7'Z = I, also

BiBf = Bit = oF. (6.17)
Aufgabe 6.2: Mit dem Ansatz b= yib* bestitige man das erste Gleichungssystem
von (6.15) als Folgerung aus (6.14) mittels (6.16) und (6.17).

Jetzt konnen wir die Transformationsgesetze angeben, nach denen sich die Koordi-

naten eines Vektors v transformieren miissen, um der Invarianzforderung v = ¥ an
einen Tensor 1. Stufe zu gentigen. Mit (6.14) und (6.15) folgt

¥ = i'b; = #'fkb, = v = v*b,
5t = v,fibk = v = p,b¥,
v = v'b; = vk, = ¥=i*b,
v = bt = 0,fib* = ¥ = §,b*.
Durch Vergleich der Faktoren von b* bzw. b erhalten wir die Transformationsgesetze
i = e, v = Pliy, (6.18)
ot = Pk, o' = BTk (6.19)
fiir die Koordinaten eines Tensor$ 1. Stufe.

I

v

Il

Durch Vergleich von (6.18) und (6.19) allein mit (6.14), d. h. mit den ,,urspriinglichen** Basisvek-
toren b;, nennt man das Transformationsverhalten der Koordinaten v; kovariant (zu den b;), das
Transformationsverhalten der Koordinaten v* dagegen kontravariant (zu den by). Verschiedene Gro-
Ben, die sich gemeinsam nach dem Transformationsgesetz (6.18) oder gemeinsam nach (6.19) richten,
heiBlen kogredient. Transformiert sich eine GroBe nach (6.18), eine andere GroBe nach (6.19), so
verhalten sie sich zueinander kontragredient. Die Matrix (Z=1)T = ((f})) heiBt nimlich die kontra-
grediente Matrix zu Z = ((8¥)). Mit diesen Matrizen sind die in (6.18) und (6.19) untereinander ste-
henden Vergleichssummen gebildet. Rein duBerlich erkennt man Kovarianz in (6.18) daran, daf3 die
Summe nur mit ungestrichenen oder nur mit gestrichenen GroBen gebildet wird, wahrend bei Kon-
travarianz nach (6.19) in der Summe gestrichene und ungestrichene GroBen zusammentreten. In b;
und v; bzw. b’ und v* weist bereits der tief bzw. hoch gestellte Index auf das ko- bzw. kontravariante
Verhalten dieser GroBen hin.

Das Produkt zweier Vektoren u und v wird vollig analog zu (2.13) definiert. Jetzt
gibt es aber vier Darstellungsméglichkeiten fiir die Dyade uv, namlich

uv = u'b*b, = u't*bb,, uv = u;vb'b,
auBerdem die gemischten Darstellungen
uy = u,v*b'b,, uv = u'yb;b*
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Da das Flachenelement d4 im folgenden nicht auftritt, konnen wir mit A einen
Tensor 2. Stufe bezeichnen. Entsprechend den Darstellungsméoglichkeiten fiir uv
gibt es fiir einen Tensor 2. Stufe die Komponentendarstellungen

A = a*b, = azb'd* = a;*b'b, = a',bb. (6.20)
Die Schreibweise a¥ ist nur erlaibt, wenn @;* = a*; gilt wie z. B. fiir das Kronecker-
symbol 6¥. Die Transformationsgesetze fiir die Koordinaten eines Tensors 2. Stufe
ergeben sich mit (6.14), (6.15) aus der Invarianzforderung A = A, also z. B.

A = abb; = afibfb,,

oder

A = a b = a,Bi5,

A= aijﬂ;;ﬂﬁ)ki’l =A = GbD.
Wir stellen die Transformationsgesetze fir die Koordinaten eines Tensors 2. Stufe in
den 4 moglichen Darstellungen zusammen:

ay = Pibiay, au = Piblay;,

a = BifleY, o = g,

‘ikl = /31551{(1.'], a! = ﬁ;cﬂ]la_ij;

e Akpi e orBist

a*, = pkpia'y, d = Bifla';.
Ersichtlich braucht man immer nur eine der nebeneinander stehenden Transforma-
tionsgleichungen aufzuschreiben, da jeweils eine aus der anderen hervorgeht, wenn

man alle Tragerbuchstaben mit einem zusétzlichen Querstrich versieht und @ = q,

(6.21)

B = p beachtet. Auch ohne Rechnung entnimmt man aus den Transformationsgeset-
zen (6.21) das Bildungsgesetz der Transformationsformeln, was wir am Beispiel eines
vierstufigen Tensors zeigen.

Beispiel 6.1: Es sei R ein Tensor 4. Stufe. Seine Koordinaten geniigen z. B. folgenden
Transformationsgesetzen

iijkl = ﬁ:n ){,ﬂl‘c’ﬂ?’mnpq’ PR = 5;5{;51;5{1”@:;)

P = BuBiBsbirte P = BTBIB .
Ein Tensor 4. Stufe hat 3* = 81 Koordinaten. Fiir seine Charakteristik beziiglich
Ko- und Kontravarianz gibt es 2* = 16 Mdglichkeiten, von denen wir in (6.22) nur

4 angegeben haben. Die Komponentendarstellung geht aus der Koordinatendar-
stellung eindeutig hervor, z. B.

R = r,;b'bb*b = r'*b bbb,
bbb = r5bibbb,,

(6.22)

so daB man die Basisvektoren jederzeit hinzufiigen oder weglassen kann, wenn man
nur in Koordinaten rechnen will. Die Varianten sind die Tensorkoordinaten und
Basisvektoren. /nvariant sind die Tensoren und die von ihnen erzeugten Multilinear-
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formen. Der Vergleich von (6.18) und (6.19) mit (6.14) und (6.15) zeigt, daB sich die
kovarianten (kontravarianten) Koordinaten eines Tensors 1. Stufe nach dem gleichen
Gesetz transformieren wie die kovarianten (kontravarianten) Basisvektoren. Das ist
eine Verallgemeinerung des Satzes 1.2. Alles iiber Multilinearformen im Zusammen-
hang mit Tensoren Gesagte konnte hier in sinngemafer Verallgemeinerung wiederholt
werden. Die Erweiterung von kartesischen auf beliebige Basissysteme, von orthogona-
len auf beliebige homogene lineare Koordinatentransformationen ist erheblich. Es
wire aber ermiidend und aus Platzgriinden gar nicht méglich, alle Ubertragungen mit
Definitionen, Satzen und Beweisen sinngema zu wiederholen. Wir miissen uns darauf
beschranken, den Kalkiil mitzuteilen und das wesentlich Neue hervorzuheben.

6.3. ©  Tensor der Metrikkoeffizienten

Es fehlt noch die Komponentendarstellung eines Basisvektors b in B und eines
Basisvektors b; in B*. Diesen Zusammenhang sollen die Koeffizienten g* und g
herstellen gemaB

b' = g*b,, b; = gub. (6.23)

Methodisch gesehen, 1Bt sich mittels g*b, = b’ der Index von by ,,heraufziehen und
mittels g;b* = b; der Index von b* , herunterziehen*, indem man mit g’ bzw. g,
,.iiberschiebt*. Schreiben wir (6.23) in der Form b* = g*'b,, b, = g,;b und b* = §5b’,
so folgt

b* = kb, = gMg;b' = 55""[»
also

e = of, (6.24)

d. h. die Matrizen ((g*)) und ((g;;)) sind zueinander invers, wie es nach (6.23) sein
mufB. Nun konnen wir auch das Skalarprodukt der Basisvektoren in B oder B* mit
(6.9) angeben

b by = g b - by = g0 = gu

bi- bt = gijbj Cbr = gij(s;c — gik,
so daB die Beziehungen b;-b; = b, b;, gy = g und b'-b* = b*-b’, gk = gk
gelten. Aus spiter ersichtlichen Griinden heillen die in (6.23) eingefiihrten Koeffizien-
ten ,,Metrikkoeffizienten‘‘, und zwar die g, kovariante Metrikkoeffizienten und die
g'* kontravariante Metrikkoeffizienten. Die Metrikkoeffizienten sind symmetrisch:

b by = gy = gu, b'-bF =g =gt (6.25)
Nach (6.8) und (6.23) wird

v =V by = v'b - gub* = v'gudf = t*gu,
analog

o' = v-b' = bt g*b, = v,g% = vg'*.

Mit Hilfe der Metrikkoeffizienten 1a8t sich der Index auch bei den Koordinaten eines
Vektors herauf- und herunterziehen:

08" = v, thgy = v, (6.26)
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Wir untersuchen den ,,Einheitstensor G, der den Forderungen

G'v=v-G=v (6.27)
geniigen soll, in der ko- und kontravarianten Gestalt

G = y,b*' = »'byb,.
Es folgt
G v =y b - v'b; = y0'b*6} = p'bt = v = pbt,

v G =o' y¥bb, = Fodib, = yub, = v = v'b,,
also nach (6.26)
o= yatt = gut', v = Mo = ghly,.
Wegen v,, = gu, y*' = g" bilden die Metrikkoeffizienten einen Tensor 2. Stufe
G = gub'd* = g"*bjby, (6.28)

der als ,,Metriktensor* (Tensor der Metrikkoeffizienten) bezeichnet wird und die
Eigenschaft des Einheitstensors nach (6.27) besitzt. Wegen (6.25) ist der Metriktensor
G symmetrisch.

Die neuen Kroneckersymbole ¢% geniigen der Symmetriebedingung

o = o = oF. (6.29)
Sie sind die Koordinaten des Einheitstensors
1 = 84b'b, = o¥bb' = b*b, = b bk, (6.30)

Da auch I-v = v-I = v gelten muB, wie man leicht nachrechnet, besteht der Zu-
sammenhang

G =1 (6.31)

I wird gemischt, G wird rein kovariant oder kontravariant dargestellt.

6.4. Tensorprodukte. Der ko- und kontravariante E-Tensor

DaB nur ,,gleichartige** Tensoren addiert werden konnen, besagt auch, da3 man
sich auf die gleiche Basis beziehen muB, z. B.

a;*b’b, + 7,%bb, = (0;% + 7,%) biby.
‘Wenn statt der e; die Basisvektoren b’ und b, eingefiihrt werden, 148t sich das Produkt
zweier Tensoren vollig analog definieren, z. B.

o; *b'bt,,,b, ™" = o, %7, bbb, b™b"

bei Beachtung der Reihenfolge. Das innere Produkt der beiden Tensoren wird nach

(6.25) .
a;%biby - 7, bbb = 0,7, g, bbb
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Fiir das skalare Produkt (zweier Vektoren) haben wir die Darstellungsmdglichkeiten

u-v =ub,  *b, = u'v*b; - b, = guu'vh,

, . A (6.32)
u-v =ub - ob* =uub b = g%up,
und die gemischten Darstellungen
u-v = ub; - vb* = uiyb, - b* = u'ndf = uiv,,
. . . ) (6.33)
u-v =ub okb, = uM' - by = u*oh = u',
also gilt auch
ghu, = ttvy,  guu'v* = udt. (6.34)

Satz 6.1: Mit Hilfe der Metrikkoeffizienten lassen sich die Indizes der Tensorkoordina-
ten systematisch herauf- oder herunterziehen nach dem Muster

g = ag, gig%a, = a*,
8ij8k ‘ u; . le A (6.35)
gijg”ajl =4a;, gugklaj = d'.

Die 6¥ bewirken nur einen Austausch der Indizes, z. B.
okall = @M, okdt' = a', -

i o (6.36)
Oay, = ap, Ofdjay = ay.
Das vektorielle Produkt berechnen wir in der Form
u x v=ub; x v*b, = u'vh(b; x b)) = (u'v? — u?v') (b; x by)
+ W0 — ?0?) (b, x bs) + (WPv' — u'v?) (bs x by)
und nach (6.6)
bt u' v!
u x v = [bb,bs]|b?u? 2|, (6.37)
b3 u? 03
analog
by u; vy
u x v=uu(b x b*) = [b'b*b?] |by 1, v, |. (6.38)
) b u3 v3
Das Spatprodukt wird nach (6.37)
w out vt
(a x v)-w = [uvw] = [b;b,bs] | b?-w u? 02
b3 W u3 US
wegen (6.7)
u' vt ow!
[uvw] = [byb,bs] | u? v? w? (6.39)
w3 wd
und entsprechend
Uy vy Wy
[uvw] = [b'b2b®] | uy v; wa |. (6.40)
Uy U3 W3
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Der MaBfaktor [b;b,bs] bzw. [b'b?b®] ergibt sich hier ganz von selbst. Mit (6.37)
bis (6.40) werden die vorweggenommenen Formulierungen (1.35a, b) legitimiert.
Wir bilden das doppelte Spatprodukt

[xyz] [uvw] xi xi xz Uy vy Wy
Torbabs o]~ |2 e Lal| e v v
19293 zt 22 23 || us v3 wy
X'y x'o; xtw; X U X'V X'W
= |y ylog yiwi | =y u y- vy -wl (6.41)
zhuy Z'; Z'w, lz-uzvzw
Speziell wird
uruu-vu-w
[uvw]> = |v -u v -vv-w|, (6.42)
Weu WV owWew|
also ist nach (6.25)
[bibobs]? = [b; - by = [gul -
Die Determinante der kovarianten Metrikkoeffizienten wird mit
lgull = g (6.43)
bezeichnet, so daf3
[bib:bs)* = [gul =g >0 (6.44)
und wegen (6.44)
. 1
bHD] = g = E >0 (6.45)

gilt. Die Matrix der Metrikkoeffizienten ist regulir. Bilden die Basisvektoren in der
Index-Reihenfolge 1, 2, 3 ein Rechts- oder Linkssystem, so erhalten wir die ,,MaB-
faktoren

[bibobs] = + Vg (R) oder = —/g (L),
[b‘bzbJ] = + % (R) oder = — L (L).
/g '

N Je

Wie sieht der E-Tensor in ko- und kontravarianter Darstellung aus? Wir scﬁr'eiben
E = bbb, = ;bbb (6.47)

Zur Unterscheidung von den fritheren Koordinaten ¢, benutzen wir den Buchsta-
ben e. Nach (6.46) treffen wir die

Vereinbarung 6.2: Die Basisvektoren by, b,, b; und b, b2, b3 sollen in dieser Reihen-
folge ein Rechtssystem bilden, so daB gilt

(biboba] = ++/g, [b'b2h°] = +1//2 (6.48)

Definition 6.1: Die Koordinaten des vollstindig antisymmetrischen Tensors 3. Stufe E
nach®(6.47) sind )
ept = [bibb], e = [bbH'], N (6.49)

(6.46)
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und zwar nach (6.48)

€123 = \/E’ el = 1/\/53

€123 = €231 = €312 = —€213 = —€331 = —€132," (6.50)

123 132
>

e = 231 =

312 = _ 213 = _g321 = _,

ey, = 0 und e*' = 0, wenn zwei oder drei Indizes gleichzahlig sind.
Diese Tensorkoordinaten miissen also entsprechend (6.21) und (6.22) den Trans-
formationsgesetzen

s = BrBIB emys €nr = B?Bl’éﬁﬁmw
1kl /3: ﬁkﬁlem’"’ eikl = in/gﬁ/g)laém”p
geniigen. Der Beweis ist etwas anspruchsvoller; darauf kénnen wir nicht mehr ein-
gehen.
Die Rechenregeln mit den Tensorkoordinaten (6.49) werden methodisch véllig

analog aufgestellt, wie wir es frither an den ¢, j; gezeigt haben. So ergibt sich fiir das
vektorielle Produkt u x v =w = w'b, = wb' die Koordinatendarstellung

(6.51)

W= ey, wy = egutt (6.52)

und fiir das Spatprodukt
[uvw] = e*upw, = ey u'viw'. (6.53)

Sind u, v, w Tensoren 1. Stufe, so ist [uvw] ein (invarianter) Skalar. Die Basisvektoren
by, b,, by oder b', b2, b? sind insgesamt nicht Tensoren 1. Stufe. Folglich stellen
[bb;b,] = e;5 und [b‘b’b"] = e"* keine skalaren Invarianten dar. In der Tat sind sie
die varianten Koordinaten des E-Tensors, die sich nach (6.51) transformieren miissen.
Nach Satz 6.1 erhalten wir

&g e = €%, gugmEme™ = i (6.54)
Statt (2.33), (2.35), (2.39), (2.40) gelten die entsprechenden Produktformeln
o 5 4
€™ = |07 O oF (6.55)
8 op op
e _,,,e‘"‘" = Of"0f — OfOF, (6.56)
e;jxe™ n"_ =20%, et =6. (6.57)
Zum Beispiel nimmt die Beziehung (2.41) jetzt die Form an
My, = vk, v, = Jey v, (6.58)

6  Schultz-Piss., Tensoren



7. Einfiihrung in die Tensoranalysis mit ko- und
kontravarianter Basis

7.1. Krummlinige Flichenkoordinaten. Vektor des Flichenelements.
Zirkulation

Wir erinnern an Kugelkoordinaten (rdumliche Polarkoordinaten) r, 9, ¢, die mit

x; =rsindcosg, x,=rsindsing, x3 =rcosd (7.1)
fir 0sr<ow, 09 =, 0=¢ <27 erklart sind. Auf der Kugelfliche r = R
= const kénnen wir krummlinige Fldchenkoordinaten 9, ¢ mittels

x; = Rsind cosg, x, = Rsindsing, x; = Rcos? (7.2)
in der Form x; = x,(¢, ¢), x, = x»(9, ¢), x3 = x3(9, ¢) einfithren. Ein Festwert
9 =1, ergibt einen Breitenkreis, wihrend ¢ = ¢, einen Meridiankreis der Kugel
r = R definiert. Allgemein wird mit

X1 = x1(u,0), Xp = x3(u,0), X3 = x3(u,0) (7.3)
oder vektoriell mit x = x(u, v) die Gleichung einer Flache im R® mit den krummlipi-
gen Koordinaten u und v beschrieben. Fiir v = v, erhalten wir in x = x(u, v,) eine
Raumkurve mit dem freien Parameter u, die wir wu-Linie nennen, fir u = Uy in
x = X(uy, v) entsprechend eine v-Linie. Die u-Linien (v = vy, v,,...) und v-.Lmlen
(u = uy, us,...) bedecken die Fliche mit einem Netz von Koordinatenlinien, dlc? ganz
der Flache in Bild 7.1 angehdren. Die mit » = v, markierte u-Linie und die mit

e x*dv,xx"
:d'ﬁ dy <

K oy <

B=(up)V,
0> (Us)Vs)

i ’/

veip =/ \\f/ =ty ,\
Bild 7.1: Bild 7.2:

Flachenelement in krummlinigen Koordinaten ~ Zum Integralsatz von Stokes

u = uy markierte v-Linie schneiden sich in dem Flichenpunkt Py, der mit den krumm-
linigen Koordinaten u,, v, bestimmt ist. Wir wollen « und v hier als Flichenkoordina-
[
K3
Ist nidmlich x = x(7) irgendeine Parameterdarstellung fiir eine Raumkurve, so ist
dx
dr
tielle Tangentenvektoren

ox ox
Wdu und dx = E)—db (7.4)

ten bezeichnen. Auf der Fliche sind g—z und Tangentenvektoren der u- und v-Linie.

Tangentenvektor in jedem Punkt der Kurve. Damit sind auf der Fliche differen-

dx =
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der u- und v-Linie definiert. Tragen wir d,x und d,x von einem Flichenpunkt P ab,
so spannen‘sie ein infinitesimales Parallelogramm in der Tangentenebene, die in P
gelegt wird, auf, wie in Bild 7.1 ersichtlich.

Definition 7.1: Mit
dx . x dx = dA (7.5)

definieren wir das vektorielle Flichenelement in einem Punkt der Fliche. Der Vektor
dA = dA n des Flichenelements ist Stellungsvektor der Tangentenebene, also normal
gerichtet. Der Normaleneinheitsvektor n wird so definiert, daf$ die Vektoren d,x,d,x,nin
dieser Reihenfolge ein Rechtssystem bilden.

Beispiel 7.1: Auf der Kugel r = R sind die u- und v-Linien (mit u =9, v = ¢)
Meridiankreise (¢ = const) und Breitenkreise (¢ = const). In Kugelflichenkoordi-
naten (7.2) ist d,s = dgs = Rd¥ das Linienelement des Meridiankreises durch P.
Der Radius eines Breitenkreises ist R sin¢). Das Linienelement des Breitenkreises
durch P wird daher d,s = d,s = Rsin# dp. Der Durchlaufungssinn der »- und
v-Linien wird so festgelegt, daB d,s > 0 und d,s > 0 sind. Bezeichnen e, = e; und
e, = e, die Tangenteneinheitsvektoren der u- und v-Linie, so gilt

ey’X e, =€, =1°
mit e, in Richtung des Kugelradius. Wir erhalten das vektorielle Flichenelement
dA = d,x x d,x = dsx x dox

= Rddey x Rsin¥ dge, = R?sin ¢ d¥ dge; x e,
also

dA = R?sin9 d9 dge, = dAr°. (7.6)

Beispiel 7.2: Die in Bild 7.1 angedeutete gekriimmte Flache besitzt das von den
infinitesimalen Tangentenvektoren d,x und d,x in P aufgespannte Parallelogramm
als Flachenelement mit dem Inhalt A4. Thre Randkurve AC umschlieBt nach Bild 7.2
in einer wirbelbehafteten Stromung den Zirkulationsanteil

A= § w-dx

(A0

w(x) - d,x + w(x + d,x) - dx — w(x + dx) - d,x — w(x) - d,x
wx + d,x) — wx)] - d,x — [w(x + d,x) — w(x)] - d,x,
wobei wir fiir das vektorielle Linienelement jetzt dx (statt ds) schreiben. Fiir den
nachfolgenden IntegrationsprozeB3 geniigt es, die nach Taylor linearisierten Anteile
gemal

w(x + dx) — w(x) = dx - Vw + ...
zu nehmen, da die Glieder hoherer als 1. Ordnung in (dx - V) keinen Beitrag zum
Integral liefern. Wir schreiben also

= (d,x-Vw)-dx — (d,x- Vw)-dx

= (@ V) (V- dpx) — (@x- V) (- dyx)
=(@-c)d-b)—(b-c)(d-a)=(axb)(c xd)
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mit der Umwandlungsformel (1.41). Setzen wir fiir a, b, ¢, d die dariiber stehenden
Vektoren ein, so folgt mit (7.5)
dl' = § wodx = (d,x x dx) - (V x w) = dA - rot w. 7.7
(dc) .
Durch Integration iiber den gesamten Flachenbereich (A4) leitet man mittels (7.7) den
Integralsatz von Stokes (5.61) her.

Es sei bemerkt, daB es sich bei 61" = rot w - dA und 6Q = div w d¥ um Differentialformen, nicht
um Differentiale handelt. Bei linearen Differentialformen soll das Zeichen 6 andeuten, daB nicht ein
totales Differential vorliegt; z. B. ist die differentielle Kompressionsarbeit 6W, = —p dv in der
Thermodynamik kein totales Differential der Zustandsvariablen p, v, T. Zustandsfunktionen lassen

sich als totales Differential darstellen, z. B. die innere Energie und die Entropie. Trotz dieser Bemer-
kungen wird man auf die bequeme Schreibweise g(x) = dQ/dV nicht gern verzichten wollen.

7.2. Krummlinige Koordinaten des Raumes R* und der Ebene R>

Statt der vorher besprochenen Fliachenkoordinaten u, v legen wir jetzt rdumliche
krummlinige Koordinaten u, v, w mit den Transformationsgleichungen

xy = XU, 0,w), X2 = x,(4,0,w), X3 = x3(u, 0, ) (7.8)
oder vektoriell
X = X(u, v, W) 7.9

zugrunde. Als Beispiel denken wir an die Kugelkoordinaten (7.1) mit u = &, v = ¢,
w = r. Jetzt bedeutet allgemein w = w, mit x = x(u, v, w,) eine Flache im R3, die wir
,,Koordinatenfliche* nennen. Ebenso stellen u = u, mit x = x(u,, v, w) und v = v,

w=Linie

av*=[dq,xd,xd, x]

Bild 7.3: Bild 7.4:
Differentielle Tangentenvektoren Volumelement in krumm-=
linigen Koordinaten

mit X = X(u, vy, w) Koordinatenflichen dar, die sich nach Bild 7.3 im Punkt P,
schneiden, der also mit den krummlinigen Koordinaten u,, vy, wo bestimmt ist. Die
Koordinatenflichen » = v, und w = w, schneiden sich in der Raumkurve
x = X(u, vy, Wo) mit dem freien Parameter u, die wir jetzt als u-Linie bezeichnen.
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Entsprechend erhalten wir die anderen Koordinatenlinien, ndmlich die v-Linie als
Schnitt der Koordinatenflichen w = w, und u = u, sowie die w-Linie als Schnitt der
Koordinatenflichen = u, und v = v,. Die so konstruierten drei Koordinatenlinien
schneiden sich ebenfalls im Punkt P,, wo wir die differentiellen Tangentenvektoren
der u-, v-, w-Linie gemaf
ox 0x ox

d,‘x—s—du, dx—b—dv d,,x=—o—;v—dw (7.10)
nach Bild 7.3 abtragen. Wir ergénzen sie in Bild 7.4 zu einem infinitesimalen Parallel-
epiped (Spat) mit dem Spatvolumen

. ox 0x Ox
dV* = [dx dx dx] = {bu ma ]dudv dw. @.11)
Hier ist das Volumenverhaltnis
[dxdxd,x] _[0x Ox E‘_] O(x1, X2, X3) CANN
du dv dw [bu 0 owl O, o, w) (7.11)

gleich der Jacobischen Funktionaldeterminante

0x;/0u 0x,/0u 0x3/0u
= [0x,/0v 0x,/0v Ox3/0v|.
0x1 /0w 0x,/0w 0x3/0w

O(xy, Xz, X3) _

o(u, v, w) (.12)

Die eindeutige Auflésung des Gleichungssystems (7.8) x = x(u, v, w) nach den
Koordinaten u, v, w (oder umgekehrt) ist nur méglich, wenn die Funktionaldeter-
minante

O(xy, X2, X3)
o(u, v, w)

ist, da sonst die ,,Abbildung* degeneriert. Der Ubergang von einem Rechtssystem zu
einem Rechts- oder Linkssystem wird dadurch angezeigt, daB (7.13) speziell >0 oder
<0 ist. Die krummlinigen Koordinaten u, v, w heiBen orthogonal, wenn die Be-
dingungen

ox Ox _ ox 0x -0 ox  0x _

du ov > o ow  ow ou
erfiillt sind. Dann stehen die Tangentenvektoren der u-, v-, w-Linien in jedem Punkt
des Definitionsbereichs aufeinander senkrecht. Die Koordinaten der folgenden Bei-
spiele sind orthogonal. Spiter wollen wir die Tangentenvektoren 0x/Ou, 0x/0v,

0x/0Ow der u-, v-, w-Linie durch P als neue Basisvektoren by, b,, b, einfiihren, so daf3
die Funktionaldeterminante (7.12) in [bib,b;] iibergeht. Die neue Basis ist dann im

allgemeinen nach (7.11) weder orthogonal noch normiert.

+=0 (7.13)

(7.14)

Aus Band 5 ist die Umrechnung eines raumlichen Bereichsintegrals auf krummlinige Koordinaten

bekannt:
ffd)(xl,xz,x:;) dx, dx, dxs = j”tp (u, v,w) 6(;(1”‘2”;3) du dv dw, (7.15)

7  Schultz-Pigs., Tensoren
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wenn
D(axy (u, v, W), X2, v, w), X3(u, v, W) = P*(u, v, w)

und (V*) den Bereich (¥), ausgedriickt in krummlinigen Koordinaten u, v, w, bedeuten.

Aufgabe 7.1.: Bei Einfihrung von Kugelkoordinaten (7.1) definiere man die Koordinatenflichen

(Kugel, Kegel, Meridianebenen) und Koordinatenlinien (Radialstrahlen, Breiten- und Meridian-

kreise). Mittels (7.14) zeige man die Orthogonalitit der Kugelkoordinaten.

Aufgabe 7.2: Man berechne das Volumenelement

O(xy, X2, X3)

dV* = [dyx dyx dyx] = —2"=">"_dudvdw (7.16)
Au, v, w)
in Kugelkoordinaten mit dem Ergebnis
dV* = r?sind dr d9 dg. (7.17)

Bei ebenen Problemen fithrt man ebenfalls krummlinige Koordinaten «, v mit
X1 = x1u,0), X2 = x(,0), x3=0 (7.18)
ein, wobei ein krummliniges Koordinatennetz die x;, x,-Ebene iiberdeckt. Die vorstehenden For-
meln lassen sich leicht tibertragen, z. B. auf das ebene Bereichsintegral
f f D(xy, x5) dxy dx, = f f o, ) 250X g, 4, (7.19)
JJ o, v)

[42] V)
wo die Jacobische Funktionaldeterminante

Oxg, %) _ 0xg 0x, Ox,  Oxy (7.20)

o(u, v) ou o ou v

auftritt. Jetzt bedeutet (V) bzw. (V*) einen Bereich der x; , x,-Ebene, ausgedriickt in x; , x, bzw. u, v.
Der Inhalt des Flichenelements in krummlinigen Koordinaten ist

AV = Pdax, d) = 280 %) g, g, (.21
Au, v)
Beispiel 7.3: Wir definieren (normierte) elliptische Koordinaten u = 7, v = ¥ gemaB
x; = coshAcos®, x, = sinhsin# (7.22)
fiir 0 < 2 < o0, 0 £ 9 < 2x=. Die Koordinatenlinien sind konfokale Ellipsen (2 = 4,) und Hyper-
beliste ( = #,). Die Brennpunkte liegen auf der x;-Achse in den Punkten x; = —1und x; = +1.

Die Orthogonalitit dieser Koordinaten folgt aus
dpx- dgx = ( O x| Oxa O ) didb=0.

oL 09 oL b
Aufgabe 7.3: Man berechne den Inhalt des Flichenelements in elliptischen Koordinaten

avs = 250X 43 49 — [(cosh 1)? — (cos #)2] di .

A4, 9)
Aufgabe 7.4: In ebenen Polarkoordinaten r, ¢ mit
x;=rcosp, x;=rsing fir 0=r<o, 0=¢ <2t (7.23)

berechne man den Inhalt des Flichenelements dV* = r dr dp und zeige d,x - dgx = 0.
Aufgabe 7.5: In Zylinderkoordinaten r, ¢, z mit

X; =FCOSQ, Xy =rsing, x3=z (7.24)
fir 0=r < ,0=¢ < 2%, —0 <z < + o0 berechne man das Volumenelement dV'* = r dr dp dz
und zeige die Orthogonalitit dieser Koordinaten. Welche Koordinatenflichen und Koordinaten-
linien treten bei Zylinderkoordinaten auf?
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7.3. Ortsabhingige Bezugssysteme

Die krummhmgen Koordinaten u, v, w wcrden kunftlg mit x!, x2, x3 bezeichnet.
Bei Ubergang zu einem anderen Bezugssystem X', X2, X3, in den folgenden Beispielen
speziell zu einem Kartesischen KS, miissen die Transformatzonsglezchungen gegeben

sein:
F o= x), B o= Beanr), B =P x0)

bzw.

2 = x2(x4, 2, %%), x® = XL xR (7.25)

Zwischen dieser allgemeinen Koordinatentransformation und den verallgemeinerten
Transformationskoeffizienten ¥ muB3 ein Zusammenhang bestehen, siehe (7.41).

Das Bild 7.3 der krummlinigen Koordinaten, dargestellt in einem kartesischen
Bezugssystem, entsteht durch Abbildung des Raumes mit den Punktkoordinaten
u, v, w auf den Punktraum mit den Koordinaten x,, x,, x3. In Bild 7.5 siecht man die

xt = x'(x%, %2, %%, x

P . ox O0x Ox
Ortsabhangigkeit eines Bezugssystems, das mit den Tangentenvektoren 0 o
u v
der u-, v-, w-Linien gebildet wird, am Beispiel der Kugelkoordinaten #, ¢, r
&
bi
bZ
/ D2 .
L b e TP
P
YA
—— i
_
I/ - n | \\\
&
2
/
oo
DJ
Bild 7.5: Kugelkoordinaten &, g, r:
0x ox ox
b, = , by =—, by = —
P8 ? op ? or

Definition 7.2: In der Bezeichnung x*, x*, x> statt u, v, w werden die ortsabhingigen
kovarianten Basisvektoren b, b,, by als Tangentenvektoren der Koordinatenlinien
definiert:

ox 0x 0x

W=b“ 7))7=b2’ — =b,. (7.26)

T*
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Wir verabreden die Schreibweise

2 —b, ox=n. (1.27)
Es gilt also

b, = by(x*, x2, x%). (7.28)
Den Ortsvektor schreiben wir jetzt in kartesischen Koordinaten

X = X'e;. (7.29)

Beispiel 7.4: In eb Polarkoordinaten haben wir nach (7.23)

1 1 2

xt=r, x*=¢, X'=x'cosx? Xx*=x!'sinx?
also

x = X'e; + X%, = e,;x' cos x> + e,x' sin x2,
Die kovarianten Basisvektoren erhalten nach (7.27) die Darstellung
b, = 0,x = e, cos x> + e, sin x>
P ’ (7.30)
b, = 0,x = —e;x!sin x> + e,x' cos x2.
Das ist wegen by = by(x*, x?), b, = b,(x!, x?) ein Beispiel fiir die Ortsabhingigkeit
der Basisvektoren.
Mit X' = X'(x', x2, x*) nach (7.25) kénnen wir

x = e;X(x', x%, x%) = x(x!, x2, x*) (7.31)

schreiben. Damit erhélt der Vektor des Linienelements die Form
dx = (04x) dx* = dx*by. (7.32)
Definition 7.3: Um das totale Differential einer skalaren Ortsfunktion ’
dp = dx+gradp = dx'0,p (7.33)

herzustellen, definieren wir den Gradienten und Nabla-Operator

grad ¢ = b'0,p, V =D, (7.34)
so daf3
dx - grad ¢ = dx'b; - b0 = dx'0pdf = dx'0,p

mit (7.33) iibereinstimmt, wenn
b, «b* = b¥e b, = ¥ ) (7.35)
gefordert wird. Das ist der Fall, wenn wir die kontravarianten Basisvektoren wieder als

reziproke Vektoren zu den kovarianten Basisvektoren nach (6.6) definieren. Die Basis-
vektoren b*, b2, b® werden demgemdf per Definition nach (6.6) eingefiihrt.

Satz 7.1: Auch fiir ortsabhingige Basissysteme gelten die Reziprozitiitsbeziehungen
(6.11) und (6.12). Unabhingigkeit vom KS bedeutet jetzt auch Unabhéngigkeit davon,
ob wir Kugel- oder Zylinderkoordinaten oder sonstige Koordinaten wihlen.
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Satz 7.2: Auch in der Form V = bid, ist der Nabla-Operator ein Tensor 1. Stufe, so dafy
seine Koordinaten den Transformationsgesetzen (6.18)
0y = B, 0; = Py (7.36)
genu’gen Ist v ein Tensorfeld 1. Stufe, so sind Vv, V x v, V - v Tensorfelder der Stufe
]1)160 gebrauchliche Schemdeﬁnltlon grad x* = b* konnen wir nicht akzeptieren;
denn sie besagt .
b0, x* = biok = bk
Man kann aber nicht b* mittels b’ definieren! Wie frither gilt auch jetzt
0xk = oF. (7.37)
Nach (7.32) erhalten wir das Quadrat des Linieneléments
ds? = dx - dx = b; dx' - b, dx* = (b, - by) dx’ dx*,
ds? = gy dx' dxk.
Die Koeffizienten g;; der quadratischen Form (7.38) heiBlen Metrikkoeffizienten, weil
sie die Struktur des Linienelements in der Differentialgeometrie bestimmen. Da die b;

Tangentenvektoren der Koordinatenlinien sind, gilt speziell fiir orthogonale K oordi-
naten

(7.38)

b by =gu=0 fiir i+k (7.39)
und
ds? = g;1(dx")* + g22(dx?)* + gas(dx®)>. - (7.40)

Bei Benutzung orthogonaler Koordinaten vereinfachen sich die folgenden Rechnun-
gen erheblich. Wir wollen diesen Vorteil aber nur in Beispielrechnungen ausnutzen.

Bei Ubergang von einem Bezugssystem B zu einem anderen B (und umgekehrt)
hatten wir die Transformationsformeln (6.19) fiir die Vektorkoordinaten

=B, o = pit

bereitgestellt. Der Vektor des Linienelements dx hat nach (7.25) die Tensorkoordina-

ten

ox! ; oxt
dx! _Fx—"—dxk dx —b——dx

Satz 7.3: Durch Vergleich werden die Transformationskoeffizienten bei Benutzung
krummliniger Koordinaten in

Pe=5g> Pe==z (7.41)

festgelegt, wobei ((BY)) und () zueinander inverse Matrizen bedeuten, so daf die
Beziehung (6.17) mit (7.41) in

s =57 s = (7.42)

iibergeht.
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7.4. Die Christoffelsymbole

Die Tensoranalysis bietet eine systematische Methode, Tensorfelder von kartesi-
schen auf krummlinige Koordinaten umzurechnen. Wenn wir die Divergenz
eines

V-v =divv = b, - (b*)

Vektorfeldes bilden, miissen wir (hier und im folgenden) die Ortsabhéngigkeit der
Basisvektoren beachten:

divv = b'- (3;b) v* + (b' - by) 0,0
= v*b'-0;b, + 6L0,0F = 0* + v*b'-0/by.
Wir zerlegen 0;b, im System der Basisvektoren b, b,, b; gemal
by, = I'lih, (7.43)

mit Hilfe der Christoffelsymbole I'}. Es sei darauf hingewiesen, daB d;b, kein Tensor
1. Stufe ist und die I’} keinen Tensor 3. Stufe bilden. Unter den Voraussetzungen des
Satzes von Schwarz gilt auf Grund der Definition (7.27)

Ogb; = d/by. (7.44)
Wegen (7.43) gilt auch '
b, = I'Lb,.
Damit folgt aus (7.43) und (7.44) die Symmetrieeigenschaft
Il =T} (7.45)

der Christoffelsymbole. Fiir die Divergenz des Vektorfeldes v erhalten wir nunmehr
den Ausdruck

divy = 0F + o' - bl = O0p* + . (7.46)
Wie 148t sich 0,b* zum Unterschied von (7.43) darstellen? Wir machen den Ansatz
o.b% = I'skp! (7.47)
und beachten
0y(b  bY) = (0;by) - b' + b, - 9;b! = 0,(8;) = 0,

0;b) - b = —(0;b) - by. (7.48)
Mit (7.43) bzw. (7.47) bilden wir die Skalarprodukte
© Oy -bt=TYb, b =T,
bt by =I5 - b, = Iy
und finden wegen (7.48)
Iy = —I, (7.49)
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also

Ob, = I'kb,, ObF = —I%bt. (7.50)
Satz 7.4: Die Christoffelsymbole lassen sich durch die Metrikkoeffizienten ausdriicken
gemdf

T = 18™0igun + Ok&in — 0ugir)- (7.51)

Zum Beweis bilden wir die partielle Ableitung
v
0i8kn = 04(by * b,) = ;b by + by - 0;b,
und berticksichtigen (7.43)

0igkn = Ifby b, + by Ilby = Thgry + Thgu,
analog . . , ,
i = Lingui + Liignis Onguc = Iniguc + Lngur-

Uberschieben wir den Ausdruck
0i8n + 0uui — Ouite = 21 k81
mit g™, so folgt
&"(0iin + Oigni — 0ngir) = 2L hging™ = 20407,
= 38"™(0:8kn + Ongui — 0,&u) oder (7.51).

Nachtraglich kénnen wir (7.51) als Definitionsgleichung der Christoffelsymbole und
(7.50) als Anwendungsformeln ansehen.
Aufgabe 7.6: Fiir [ = k ist aus (7.51) die Formel

1 1 -
Il= Tgknaigkn = 7;01 \/g (7.52)

herzuleiten. Man zeige, daB sich (7.51) fiir orthogonale Koordinaten auf
T = 32"(0:g + 0gu — 018w (7.53)

reduziert, wo nicht iiber / zu summieren ist!

Um V2yp = div grad y zu ermitteln, wird fiir (7.46) statt v = grad v = bkwb" = yb*
die Form u"bk bendtigt. Dafiir bilden wir durch Heben des Index v* = g'v, = g0y
und erhalten

divv = (™) + g"(0w) I'f; = div grady
oder mit (7.52)
= @0 + 00 + g (O /D)ow. (754
Beispiel 7.5: Es soll V?yp in ebenen Polarkoordinaten r, ¢ berechnet werden. Nach
Beispiel 7.4 wird
b, - b, = —x* cos x? sin x* + x* sin x? cos x* = 0,

by by =g, =g =0;
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die Koordinaten x! =r, x2 = ¢ sind orthogonal. Es bleibt g;; = b, b, =1,
822 = by by = (x1)?,

lewl =g = (N2 Jg=x'=r (7.55)
Nach (6.23) sind die Matrizen ((gy)) und ((g*)) zueinander invers, also gilt
0 ’ 10
(@) = (g (aye) ) = @) = (g (oya)- (1.56

Wegen g'' = 1, g2 = (x!)"? und 0,g'! = 0,¢'! = 0,¢%2 = 0 bleibt von (7.54) nur
Vi = g'0,01p + 720,009 + = \/— ((3 \/g)bﬁp

iibrig, so daB sich mit (7.55) und (7.56)
0%y 1 0% 1 oy

or? +7_ 0p? N T or (7.57)

Viy =
ergibt.

Aufgabe 7.7: Die Poissonsche Dgl. V2@ = ¢(x) ist auf Zylinderkoordinaten (7.24)
und Kugelkoordinaten (7.1) umzurechnen mit dem Ergebnis

0P 1 0P 1 00 00

t— —+ 5 5+ =5 =909, 2) (7.58)
or r or r* O 0z
und
0o 2 0 1 0@ cotd 0P n 1 LR 9
or? ty o T 30 2 09 " rPsind 0g? =qr.9).
(7.59)

Bei orthogonalen Koordinaten ergeben sich aus (7.53) folgende Vereinfachungen zur
Berechnung der Christoffelsymbole I :

ry= ?g(”)algii fir i=k=1I,

= “Tlg"“a,gﬁ fir k=i [+, (7.60)

Iy = g"”bkgu fir /=i, k=+i,

I, = 0, wenn alle 3 Indizes voneinander verschieden sind. Bei geradlinigen (schief-
winkligen oder orthogonalen) Koordinaten sind die g; konstant, so daB alle 7%, nach
(7.51) verschwinden.
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8.1. Kovariante Ableitungen
Das Feld der lokalen Dyade Vv ist zu berechnen:
Vv = b, (") = bi{0,bb¢ + 5,00
Mit (7.50) ergibt sich
Vv = bi(0dbt — %)
oder
Vv = bib* 0w, — v, 0. .

Man bezeichnet die Koordinaten dieses Tensors 2. Stufe als kovariante Ableitungen
der kovarianten Vektorkoordinaten

OFv, = 0,0, — v, (8.1)
und schreibt
Vv = b'b*0Fu,. (8.2)

In gemischter Tensordarstellung bilden wir mit (7.50) die lokale Dyade
Vv = b0(*hy) = (0,5, + v*O.by)
= (0,4, + *Tb,) = bib(d0* + 'I%).

Man bezeichnet

oFvk = 0k + LF 8.3)
als kovariante Ableitung der kontravarianten Vektorkoordinaten und schreibt
Vv = b'b0¥v*. . (8.4)

Beispiel 8.1: Um das Wirbelfeld rot w = V x w zu berechnen, wird das Produkt Vw
nach (8.2) und (8.1) auf das vektorielle Produkt gemif3

V x w=(b" x b¥)0Fw, = (b* x b*) 0w, — (b' x b*) w, [,
spezialisiert. Wegen

I, x b%) + I%,(b? x b) = I'L,[(b* x b?) — (b! x bz)] =0
usw. wird (b* x b*) 7'}, = 0, also

V x w= (b x b)0w. (8.5)
Es gilt

b; x by = ey b', b’ x b = ¢*lp, (8.6)
denn aus

(bi X bk) b = e”"b, b = eiklé;n

8  Schultz-Pisz., Tensoren
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folgt (6.49)

[b'b*b"] = e'*™  analog [b;bb,] = € (8.7)
und speziell (6.11)

[biboby] [b1b2h3] = e1550'23 = \/g-—m = 1.

1
. : Je
Dieser Beziechung entspricht
0(xy, X2, X3) 0w, v, W) _
oy v, w)  O(xy,x2,%3)

mit den zugehorigen Funktionaldeterminanten in fritherer Schreibweise (7.12).
Mit (8.6) geht (8.5) in

V x w = ¥ b, (8.8)
und
rotw = —1_— [b1(0,w3 — 03w3) + by(03wy — 0yw3) + b3(0,ws — 0ow)]
g
iiber. (8.9)

8.2. Der Riemann-Christoffel-Tensor (RCT)

Wir bilden jetzt das Produkt VA, wo A = a,'b*b, ein zweistufiges Tensorfeld in
gemischter Darstellung sei:

VA = b'd,(a, b*b,)

— b0, b, + @ /0b, + a,'bob,)
= biWbda,’ — a, ' T5Wb, + a,'BI%b))
= b'bb,(0,a,.' — &' + I},
also das dreistufige Tensorfeld
VA = bib*b,0¢¥a,’ (8.10)
mit den kovarianten Ableitungen
ofap' = 0! — ;') + @ T (8.11)

der geMischten Tensorkoordinaten a'.
Nun setzen wir @' = 0fv' und berechnen 0¥a, ' = 0}0%v' nach (8.11). Das ergibt
bei Berticksichtigung von (8.3):

oot = 0,08v" — (00" I + (%) I}
=0,000" + VL) — (00" + v"IL) Il + (O’ + v ) I
= aiOkU' + (ai”j) Fj’k + (akuj) F.I] - (ajvl) F{k + Ujoink
+ 0" (Ll = Tyl
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also
oFoxet = 0,00 + O)) Iy + (O’) Iy — (00" Il

+ "l g + Dol — il (8.12)
Durch Vertauschung der Reihenfolge der kovarianten Ableitungen erhalten wir
0500 = 000" + (0,07) Il + (Op0)) Iy — (0,04 I,
+ "0y + T3l — Tyl (8.13)

wobei wir den 3. vor dem 2. Summanden aufgeschrieben haben. Der 1., 2., 3., 4. und
7. Summand von (8.12) und (8.13) sind einander glelch so dal} die leferenz dieser
beiden Gleichungen das wichtige Resultat

0FO¥vt — OFOF!
= ™00y — O Ly + Ty — T0) = v™ Rl (8.14)
liefert'). Auf Grund der Herleitung stellt (8.14) ein dreistufiges Tensorfeld dar.
Definition 8.1: Folglich sind die
Rbixe = 0. by — Oy + Doy Il — 1,0, (8.15)

nach der Quotientenregel die Koordinaten eines vierstufigen Tensors R® = R bbb,
der als Riemann-Christoffel-Tensor (RCT) bezeichnet wird.

Aus (8.14) konnen wir den SchluB ziehen, dal die Reihenfolge der kovarianten
Ableitungen genau dann vertauschbar ist, wenn der RCT verschwindet, d. h. aus
R = 0 folgt auch

OFOFvt = 0FoFul.
Laut Definition (8.15) gilt

Ry = — R (8.16)
so daB alle
Ry =0 (8.17)
sind. .
Durch Uberschieben mit g,, erhalten wir die Koordinaten
ZuRbike = Rumir (8.18)

des vollstandig kovarianten RCT, den wir als Riemannschen Kriimmungstensor
4. Stufe R = R,,;b"b"b'b* bezeichnen wollen. Durch Verjiingung geht aus (8.15)
der Riemannsche Kriimmungstensor 2. Stufe R® = R,,b™b* mit den Koordinaten

Rike = R = 0L pe = 0Ly + Doy — Tl (8.19)

hervor. Es sei erwihnt, daf3 dieser Tensor nach Einstein mit R, = 0 verschwindet,
wenn das Gravitationsfeld im Vakuum nach der Allgemeinen Relativititstheorie
untersucht wird. In (5.76) finden Sie eine Erginzung.

1) Wir schreiben hier ausnahmsweise R.; statt R ;.
8*



96 8. Riemannsche Kriimmungstensoren
8.3. Berechnung des RCT in zweidimensionalen Beispielrdumen

Es soll nun je ein einfaches Beispiel dafiir angegeben werden, daB die Koordinaten
(8.15) des RCT in euklidischen Raumen samtlich gleich null sind, hingegen in Rie-
mannschen Ridumen nicht samtlich gleich null sind.

Beispiel 8.2: Als zweidimensionalen euklidischen Raum betrachten wir die e, ,e,-
Ebene, wo wir nach Beispiel 7.4 Polarkoordinaten r, ¢ einfithren. Dann verfiigen wir
bereits in (7.56) iiber die Metrikkoeffizienten und kdnnen, da es sich um orthogonale
Koordinaten handelt, die Christoffelsymbole nach (7.60) berechnen. Wir erhalten

Ta=—xY, I =15 =G (8.20)

alle anderen I}, sind gleich null. Im zweidimensionalen euklidischen Raum hat der
vierstufige RCT 2* = 16 Koordinaten R’,;. Nach (8.17) kennen wir bereits

Riyy = Riz = Réu = Rlzzz =0,
R}y = R},, = R}y, = R3,, = 0.
Von den verbliebenen 8 Koordinaten berechnen wir nach (8.15) z. B.
Rl =0, — L'y, + I 0; — I 1.
Bei Beachtung von (8.20) folgt
Riy, =00, = 0,1t + I, 1Y, — I\ T3
=TIty + IR, = Iy, — 1113, =0,

weil in jedem Summanden mindestens ein Faktor verschwindet. Entsprechend findet
man wegen (8.16)

R}u = —ha =0, R%n = —Réu =0,
R%zx = —R%IZ =0, R3y = —Rgll =0.

Effektiv braucht man also nur 4 Koordinaten R!,; auszurechnen.

Jede gekriimmte Flache kann als zweidimensionaler Raum aufgefafit werden, wo
wir nach Abschnitt 7.1. Flichenkoordinaten u, v einfithren konnen. Wir betrachten
nur geschlossene Oberflichen. Der einfachste gekriimmte zweidimensionale Raum ist
dann die Kugel (mit konstanter Kriimmung). Wenn wir gekriimmte Flichen als
zweidimensionale Riemannsche Riume ansprechen, liegt der Gedanke nahe, auch
dreidimensionale gekriimmte Riemannsche Rdume zu definieren, wo der Riemann-
Christoffel-Tensor nicht verschwindet.

Beispiel 8.3: Als Beispiel betrachten wir die Kugelfliche r = R als zweidimensionalen
Riemannschen Raum, indem wir die Kugelflichenkoordinaten x' =49, x* =¢
nach (7.2)

X! = Rsin x' cos x?, X? = Rsinx'sinx? X* = Rcosx!
mit x = x'e, + X%e, + X’es, also

X = Rsin x! cos x%e; + Rsin x* sin x%e, + R cos x'e;
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einfithren. Die Tangentenvektoren der u- und v-Linien sind jetzt

b, = 0,x = Rcos x' cos x’¢, + R cos x' sin x?¢, — R sin x'e;,

b, = 0,x = — Rsin x! sin x%e; + R sin x! cos x2e,.

Es handelt sich um orthogonale Koordinaten, so daB fiir die Metrikkoeffizienten
by - by = g,> = g2, = 0 gilt sowie

by by =g, = R?, by b, =g, = (Rsinx")?,

1 0
= 2
((glk)) =R <0 (Sil’l xl)z)’.
L 0 (8.21)
ik = )= —
@) = (@) =75 (o im-2):
Im zweidimensionalen Raum gibt es 2% = 8 Christoffelsymbole I, wobei wir die
Symmetrieeigenschaft (7.45) und die speziellen Formeln (7.60) fiir orthogonale
Koordinaten beriicksichtigen. Wir berechnen

1. = _Tlg”(),g“ = —_2—1 R~204(R sin x')?,
I'}, = —sin x* cos x'. (8.22)
1 1 1
2 22 - - . 12
Iy, = 58 01822 2 (Rsin ¥ 04(R sin x1)?,
'3, = 1'%, = cotx'. (8.23)

Analog berechnet man die iibrigen /74 nach (7.60) und stellt fest, daB sie alle auBer
(8.22) und (8.23) verschwinden.

Um zu zeigen, daB8 der RCT im betrachteten Beispielraum nicht verschwindet,
geniigt es, nur eine Tensorkoordinate herauszufinden, die ungleich null ist. Zum Bei-
spiel erhalten wir nach (8.15)

Ry, =003, — 0.1, + I, — I, T}

=000 + I3ty + T30 1, — 1505 — 15,05,
R%:z = 0111212 - F%lrzlz

= —0,(sin x* cos x') + cot x* sin x* cos x*

= —(cos x')? + (sin x')? + (cos x')* = (sin x')* £ 0.

Damit ist bewiesen, dal der RCT in dem zugrunde gelegten zweidimensionalen
Riemannschen Raum nicht identisch verschwindet.

Aufgabe 8.1: Als Ergénzung zum Beispiel 8.3 berechne man die Tensorkoordinaten
Rij, = =Rl = (sinx')?, R}y = —R};,=1, Rl =0sonst. —
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8.4. Zum Ricci-Kalkiil

Durch den Zusammenhang
enieun™ = Ry (8.24)

wird in der Metallphysik dem Riemannschen Kriimmungstensor 4. Stufe mit den
Koordinaten (8.18) der zweistufige Tensor Y = #"b,b,, zugeordnet.

Aufgabe 8.2: Das Gleichungssystem (8.24) ist aufzuldsen nach
7t = LelekmR, . (8.25)

Die krummiinigen Koordinaten einer Fliche seien &' und £2. Damit lassen sich
zweidimensionale Flachenvektoren und Flachentensoren definieren. Der RCT der
gekriimmten Flache erhilt die gleiche Gestalt wie (8.15) mit dem einen Unterschied,
daB man als Indizes griechische Buchstaben wihlt, iiber die nur von 1 bis 2 zu sum-
mieren ist. Die Fliche ist ein zweidimensionaler Riemannscher Raum mit dem Linien-
element ds gemal

ds? = g,pdé* def, (8.26)
Der RCT der im dreidimensionalen euklidischen Raum eingebetteten gekriimmten
Flache existiert, wihrend der RCT des einbettenden euklidischen Raumes identisch

verschwinden muB. Aus dieser Bedingung leitet Gaull den Zusammenhang der (einzig
wesentlichen) Koordinate R,,,, des Riemannschen Kriimmungstensors der Fliche

her, wo 1/R, und l/R, die

. . 1

mit dem ,,GauBlschen KriimmungsmaB*“ K = R
1482

Hauptkriimmungen bedeuten. Mit dieser Andeutung miissen wir uns hier begniigen.
Flachentheorie, Differentialgeometrie, Riemannsche Geometrie sind Gegenstand
selbstandiger Lehrbiicher. In dieser Reihe behandelt Band 6 die Differentialgeome-
trie.

Als Satz von Ricci bezeichnet man den

Satz 8.1: Die kovarianten Ableitungen der Metrikkoeffizienten verschwinden identisch:
Ongu = 0, 05¢" =0. (8.27)

Zum Beweis werden die kovarianten Ableitungen eines ko- und kontravarianten
Tensors 2. Stufe benotigt:

0¥y, = Optry — L Mpttin — Lty (8.28)
Okt =0,a" + I'ld" + I'ka". " (8.29)
Aufgabe 8.3: Man beweise 0%g,, = 0.
Aufgabe 8.4: Man beweise 0%g" = 0.

Der Ricci-Kalkiil besteht darin, da man weder Basissysteme noch Buchstaben-
symbole fiir Tensoren benutzt, sondern konsequent in ko- und kontravarianter
Koordinatendarstellung rechnet. Wenn man die kovarianten Ableitungen besitzt,
besteht kaum noch ein Bediirfnis, die Ausdriicke in den Koordinaten mit Basisele-
menten zu ergidnzen. Das Rechnen mit Tensorkoordinaten haben wir erldutert. Im
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Ricci-Kalkiil fithrt man noch eine Stenographie fiir partielle und kovariante Ablei-
tungen ein, z. B.

) Owtliy = Qi Und  0,0,a" = akl.mn
sowie (8.30)
Ok = Gy und 0X0%a™ = d',,,.

Diese Schreibweise bringt eine erhebliche Platzersparnis. Damit wird das Schriftbild
aber so konzentriert, dal der Anfénger Schwierigkeiten hat, den Inhalt herauszulesen.
Man beachte die Umkehrung der Reihenfolge der Indizes gegeniiber der Operator-
schreibweise!

Ein Tensor n-ter Stufe des R® wird wie frither als abstraktes System von 3" Zahlen
definiert, die Tensorkoordinaten genannt werden, die bestimmten Transformations-
gesetzen geniigen und einer invarianten Multilinearform entnommen werden. Man
bezeichnet jetzt einfach die Tensorkoordinaten als ,,den Tensor‘. Mit ,,dem Tensor*
ay. ist dann das System von neun Zahlen gemeint, das eine doppelt indizierte GrofBe
umfafit. Der Ricci-Kalkiil ist das geeignete Instrument, bei ortsabhéngiger Basis in
krummlinigen Koordinaten zu rechnen und weiterfiihrend die Tensorrechnung mit der
Variationsrechnung zu verbinden, um die Grundgleichungen der Schalentheorie oder
Metallphysik, der Hamiltonschen Theorie oder der Allgemeinen Relativititstheorie
nach Einstein zu formulieren, wobei Probleme der Dynamik in Probleme der Rie-
mannschen Geometrie iibersetzt werden. — .

Eine ganz andere Situation liegt vor, wenn man wie in den Kapiteln 1 bis 5 karresi-
sche Basissysteme zugrunde legt. Da es sich bei den meisten physikalisch-technischen
Anwendungen um Drehungen des Bezugssystems handelt, da bei orthogonalen
Transformationen aber die Beziehung

Bi = Bt (83D

fiir die Transformationskoeffizienten besteht, versagt der ,,Mechanismus* der
Summenkonvention mit hoch- und tiefgestellten Indizes, wenn man (8.31) beriick-
sichtigt. AuBerdem hat es keinen Sinn, ko- und kontravariante Basisvektoren und
Tensorkoordinaten zu benutzen, wenn b’ = b, = e, gilt. Als Musterbeispiel sei auf das
Werk P [10] von Landau/Lifschitz hingewiesen, wo die ko- und kontravariante
Schreibweise erst dann eingefiihrt wird, wenn sie bei Benutzung krummliniger Koordi-
naten Nutzen bringt, wihrend bei Bezug auf kartesische Basissysteme die Methoden
angewandt werden, die wir in den Kapiteln 1 bis 5 erlautert haben.
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1.1: Man vertausche die Indizes beziiglich 4 in Beispiel 1.1. In der dreifachen Summe durchlaufen
die Indizes ijk die 27 Tripel

111, 112, 113, 121,122, 123, 131,132, 133,
211, 212, 213, 221, 222,223, 231, 232, 233,
311, 312, 313, 321, 322, 323, 331, 332, 333.

1.2: Nach (1.17) gilt det C det CT = det I. Wegen det C = det CT folgt [lcull> = 104l = 1, also
det C = [lewll = 1.

1.3: (a + b)> =a? + 2a-b + b? = |a|> — 2Jalb| cosy + [b|? = |¢[> mit cos (a, b) = cos (T — )
= —cos y. Die Diagonalvektoren sind a + bund a — b, also ist fiir einen Rhombus (a + b) : (a — b)
= |a|2 — [b|? = 0 mit |a| = [b].

1.4: Ist [e;eze;] = —1, so wird [€,&&] = —1 oder +1 bei Drehung oder Spiegelung mit [lc;|
= +1 oder —1.

1.5: Die Vektoren p, q und r = x — a sind komplanar, so daB sich V(p, q, x — a) = 0 ergibt. AuS
V(x, p, @) = const folgt, wenn man die Determinante entwickelt, Ax; + Bx, + Cx; = const, also
Axy 4+ Bx; + Cx3 + D = 0 oder x,/a + x,/b + x3/c = 1.

1.6: Nach Aufgabe 1.5 gilt V(x, p, q) = [xpq] = x - (p x q) = x N = const, also ist x - N° = / die
Hessesche Normalform.

1.7: In (1.30) (a x b) x ¢ = (c-a)b — (c-b)a ersetze man ¢ durch ¢ x d. Das ergibt bereits
(1.40a). Nach (1.30) gilt auch a x (¢ x d) = (a-d) ¢ — (a- ¢)d. Ersetzen wir hier a durch a x b,
so folgt (1.40b). Der Vergleich von (1.40a) mit (1.40b) zeigt, daB der Vektor (a x b) x (¢ x d) die
Richtung der Schnittgeraden der von den Vektoren a, b und ¢, d aufgespannten Ebenen besitzt.
1.8: Mittels (1.30)wird(a x b)-(c x d)=(@ax b)-f=a-(bxf)=a-[bx (c x d)]=a-[(b-d)c
—(b-c)d] =(a.c)(b-d) — (a-d)(b-c), speziell

(@ x b2 = a2 — (a-b) ©.
2.1: A = audd, = AikCij€iCk® = AiCijCrie e, = ajee, = A, 9.2)
A = apeey = aucy€iCp = apCicpd;€ = ;8,8 = A. 9.3)
2.2: B = byjeieiey = by juCpi€pCqi€aCril = byjCpiCaiCri€y€els = Bparereser = B. ©.4)

2.3: Aus(2.20) folgt £1,3 = [|0,]l = 1. Die Determinante (2.20) wechselt (wie jede Determinante) ihr
Vorzeichen, wenn man zwei Spalten vertauscht. Thr Wert bleibt ungedndert, wenn man zweimal
zwei Spalten vertauscht. Er ist gleich null, wenn zwei oder drei Spalten gleich sind. Damit folgt (1.60)
aus (2.20).

2.4: Ei UiV @k = E123U102€3 T £231Us03€1 + £312U301€;
T €213Uz01€3 + £321U302€1 T €132U103€;.
2.5: (EV) U = €€y * U = Eallpi€i0hm = Enatiyti€; = V - U,
(E-w) v =gpuue; = —eguve; =U-v=—V-u,
u-(E-v) = upe,  &pvee, = &V
Durch Vergleich findet man
u-V=c¢guve; =U-v.
2.6: Vertauschung von a und b in (2.38) ergibt
bac + ach + cba — abc — cab — bca = —(abc + bca + cab — bac — cha — ach),
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also {(bac) = —{abc). Entsprechend zeigt man
{ach) = —<abe), {cha) = —(abc).
2.7: (u-v)w = (u;v;) wee,

u- (VW) = ue;  vywieie, = uwwile; - €;) e = wwwidy e, = (Uv;) Wiy, UsW.
u-(vw) =@u-vy)yw=((v-u)w=v-(uw).
2.8: (W X V) = &0 OimntliOn = & EimliOltVm = (0101m — OimOp) UV
= uuv; — wwugv; = W) W;) — () W) = w?vz — (u-v)>?
bei Anwendung der Strukturformel.
2.9: Mit (2.35) wird (a x b) - (¢ x d)
=g j,"e,,,,,,d,-,ajbkc,,.d,, = & jkEimnjbrCmtly
= (OmOkn — OnOkm) Aibrcmdy = ajbrc;dy = — abyerd;
= (ayc;) (bdy) — (a;d;) (byey) = (@~ ) (b-d) — (a-d) (b ©).
3.1: €€; " ke = v€;0; = Upy =V,
vi€; - el = 008 = U;€; = V.
0ije.€; - apee; = 0y ;a0 8, = agee; = A,
a;ei8; Opiexe; = O Opeie; = apee; = A.
3.2: VS = ve; - speiey = Sui01€ = Sili€,
SV = suee; - vie; = Suvied; = Skiviek,
alsov-S =S -v, falls 5p; = sy gilt.
U SV = ue; spesey e, = w000k,
U-SV=us, VS u = vaysiy
= UplSp; = UDkSi; = U+ S - vim Falle s = 5.

3.3: Gleichung (3.20) geht fiir sehr kleine ||, wenn wir ¢ durch dg ersetzen, in x' — x = dp(a® x x)
iiber. Fiir infinitesimale Drehungen gilt also 0x = (dpa®) x x. Mit v = dx/ds und o = dg/dr folgt
v=0a’ X X =u x x.

3.4: Unter den Voraussetzungen X3 = x3, X; = x3 erhilt man
( ( cosx sinx 0) cosa —sino 0)
cy)=| —sinx cosx O, ((ay) =|sinx cosx 0
0 0 1)/ 0 0 1
mit ¢cy = anag = oy und [lepl| = llawll = 1.
3.5: x'=M-x, S-x=17"x,
(S — AD) - x = (0y, — A0y) €€y * Xy
= 01y — A01,) Xp@1Om = (01 — A01) X1
= (OXy — Ax) €, = 0
fithrt auf ein homogenes Gleichungssystem vom Typ (3.26).
3.6: 2Eiin=u-T-u=0w?n-T- n) =o?. 9.5)
Nach (3.30) gilt auch 2E;, = mw?(n x x)2. Wegen q = T - u = oT - n folgt
n'q=g,=on-T-n=o0b. 9.6)
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T. w
3.7: Ist n = es, so gilt speziell © = e; - T - e;3 = 733, g3 = T330, Fyj, = ;3 w? = R

4.1: Erlaubt sind folgende Nabla-Operationen nach (4.20) bis (4.22):
V’((;é)=(pV'V+V'V¢,
v 4 Vv 4 ¥ ¥ v
V'(u X V) = [Vuv = [Vuv] + [Vuv] = [vVu] - [qu] =v-(Vxu—u-(Vxyv),
Vox (V) = gV x v) — v x (Vo).

4.2: 0igy) = @Oy + pdip. Mit u x v = & ;e = we, = W erhilt 'V x w = g,,0,we, nach
(2.35) die Koordinaten &; &0, (uiv;) = u,d0; + 0041ty — 0,0:1; — UOVy.

4.3: a)0ux =0 fir i<k, 0px; = 0x; = 03x3 = 1.
r=Vx} + x2 + x3,0r/0x, = x,/r, usw.
b) 0px; =3, Oixy — Opx; = 0, Opxy = Ok, 0.7

VX = 0ixpee, = Opeiey = ey = 1.
¢) 0 = x;/r, €0y = x/r=x°,
€0, f(r) = () edir = f'(r) x°.
4.4: V- (VV) = €;0; * (Oxviexe;) = 00x(vie)) = div gradyv,
V- (JV‘V) = ¢0;" (*vlka,eke,) = 0,(0xvy) €, = grad div v.
4.5: Nach (4.38) gilt
rot rot (grad ¢) = 0 = grad div (grad ¢) — div grad (grad ¢),

grad Vg =V2gradg 9.8)
und

div (rot rot v) = 0 = div (grad div v) — div (div grad v),

V2divy = div V?v. 9.9)
5.1: Wenn man (5.4a)

X1 = Kx; + ihKxy, %2 = x5, X3 = X3, Xa = —ihKx; + Kx,
als Matrizengleichung schreibt, erhilt man die Matrix CM. Man beachte (1 — 4?) K? = 1.
5.2: UV + UyVa + U,V + UsVs = KU, + ihUy) (Vy + ihVy)

+ KX (U, — ihUy) (V4 — ihVy) + UV, + UsVs
= K2(1 — 12 (UyVy + UgVa) + UsVa + UsVy mit K2(1 — %) = 1.
5.3: Nach (5.33) ist (divw) 1: Vw = (div w)?, also

& = Qi + Opw) dw; — %7 (div w)2. (9.10)
5.4:S,:Vw= —pl:Vw= —pdivw, S,: Vw =& S: Vw = —p divw + & Nach (5.37) bedeutet
) do —pdo oWy
—pdivw = _pv_dt_zv—dt:v_dt ©.11)

die Kompressions- bzw. Expansionsarbeit (0W; > 0 bzw. < 0) je Volumen- und Zeiteinheit.
5.5: div (ow) = w - grad ¢ + ¢ div w. Die Kontinuitétsgleichung lautet

Oy dq
i-*— div (ow) =——Q~+ odivw = 0.
ot dr
9.12)
1 do 1 dv

ov=1, gdo+vdo=0, ar TRl
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5.6: u'VD = udivD — Ddivu + D Vu — rot (u x D),
u-VB =udivB — Bdivu + B-Vu — rot (u x B),

divu =0, divB=0, D'V!i:B.Vl&:O.

oy .
5.7: ST rot (w x y) = »V2y. Wegen divy = 0 und divw = 0 wird nach (4.24) rot (w x y)

=y:Vw — w-Vy, also
oy
e + w-Vy — y - Vw=1V2y. (9.13)
5.8: 2inkdefw = V x (VW V)xV—Vx(Vw)xV—i—Vx(wV)xV
— v x W xv)+(V>< WO x V)= 0.

Nabla-Operationen haben nur dann ,,Beweiskraft*, wenn man sich auf schon bewiesene Beziehungen
stiitzen kann. — Nach (5.73) wird divink D = V - ink D

= €,01(0302d32 + 0,03d23 — 0303d22 — 020,4033)

+ €,02(0303d12 + 0,01d33 — 0301d32 — 0203d;3)

+ €,03(0202d;5 + 0301d25 — 0302d15 — 0,01ds3) + ... = 0.
5.9: Fur die letzte Komponente in (5.73) gilt

€3€3(20,0,d15 — 0,05d11 — 0101d22)

= 33001050152 + 0251) — 02020151 — 0,01025,] = 0.
Durch zyklische Vertauschung gehen z. B. die Koordinaten des Tensors ink D beziiglich esey, es¢,,
ese3 nach (5.73) ineinander tiber.

6.1: Nach dem Musterbeispiel fiir (6.9) berechnet man z. B. by -b®> = 0, b, -b*> = 0, b; - b> = [ mit
(6.6). Aus (6,6) folgt

[b'b?b] = [(b, x b3) (b3 x by) (by x by)]/[bybybs]?,
[(bz x b3) (b3 x by) (by x by)] = (by x bs) - ((bs x by) x (by x by))
und nach (1.40a)

hw iy

(bs x by) x (by x by) = [b3b;by]b; — [byb;b,]bs = [bybybs] by, 9.14)
also

[b'b*b*] = (by x by) - bl/’[blebS]z = [bybybs] ™" 9.15)
Ferner gilt mit (9.14)

b ps = 3 X b0 X (g x b)) [bybabslby

[bib,b;]? [bibsb3]*
also nach (9.15)
' b2 x b3
b, = [bybyb3] (b? x b%) = W usw.

6.2: Wegen b;-b' = o) und b, - b* = 0% wird mit (6.14) b, - b* = b, - pib¥ = b, - yib* = piyiok,
b, - b = flyi = 0. Nach (6.17) ist S4Bk = o}, also 7 = fi und B = fib¥, siehe (6.15).
71:r =1y, & =, p = @, stellen eine Kugel, einen Kegel, eine Meridianebene dar. Die Schnitt-
kurven von je zwei dieser Koordinatenflichen ergeben eine ¢-Linie (Breitenkreis), #-Linie (Meridian-
kreis), r-Linie (Radialstrahl). Mittels (7.1) bestitigt man (7.14) firu = r,v =9, w = ¢
7.2: Nach (7.1) und (7.12) berechnet man

Oxy, X2, Xx)

30 0) 2 sin 9 fiir Kugelkoordinaten. (9.16)
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7.3: Nach (7.20) und (7.22) berechnet man

%:1;%) = (sinh 2)? (cos #) + (cosh /)2 (sin 9)2. ©.17)

7.4 und 7.5: Alle Rechenhinweise sind in den vorhergehenden Beispielen enthalten. In Zylinder-
koordinaten treten Zylinder, Ebenen durch die x3;-Achse und Ebenen senkrecht zur x;-Achse als
Koordinatenflichen auf.

7.6: Nach (7.51) wird I'f = $¢"(0igkn + Ogin — Ongir) = 38""0igkn wegen g"0ygi, = £™Ongix

= g"0,g,x, da es auf die Bezeichnung gleicher Indizes nicht ankommt, und mit g™ = g*". —Wegen
(6.23) ist die Matrix ((g%)) invers zu ((gy)), also

my -1_i kn Im_l_ kn
@) = ()" = z (G*™), & = P

wenn G*" die Minoren (Adjunkten) zu den Elementen g, bezeichnen. Man bildet

0811 821 831
0i812 822 &32
0813 823 &33

&11 821 01831
812 822 01832
£13 £23 0i833

811 0i821 &31
812 0i822 &32
&13 0823 &33

0 = + +

und entwickelt den 1., 2., 3. Summanden nach der 1., 2., 3. Spalte. Damit folgen 0, = G*"0,gyn
= gg"d,g,, und der zweite Ausdruck von (7.52). —Bei orthogonalen Koordinaten gilt g =0,
g™ = 0fiir i 4 k, so daB in (7.51) n = I gesetzt werden kann, wobei nicht mehr iiber n = / summiert
wird.

7.7: In Zylinderkoordinaten x* = r, x* = @, x> = x> haben wir

x =x'cosx?e, + x'sinx?e, + xe;, by = 0;x = cos x? e, + sinx?e,,

b, = d,x = —x'sinx?e; + x!cosx?e,, by = 03;x = e;.

1 _ _ o — o1

g1y =by by =1, g =by by =" gx=bsbs=1, \/s'—xv
Wegen (™) = ((gw)) ™" folgt g't = 1,87 = (x) 72, g% = 1.
In Kugelkoordinaten (71.1) x* = r, x* = 4, x* = g gilt

x = x!sin x?cos x* e; + x'sin x?sin x® e, + x' cos x? e;,

b, = 0;x = sin x2 cos x> e; + sin x?sin x> e, + cos x? €3,

= 0,x = x' cos x? cos x> e x! cos x% sin x® e, — x* sinx? ej,
b, 2, 1 2 3¢, + x! 2 3 1 2
3 = 03X = —x!'sinx?sinx3 e; + x!sinx?cosx?e;.

b. a 1 2 3 + 1 2 3

g1 =1, g2 =" gz = sinx?? Vg = (x)?sinx>

gll =1, g22 = (Xl)—Z’ g33 - (Xl sin x2)72.

Gleichung (7.54) vereinfacht sich wegen g** = 0 fiir i = k zu
3 1 -
R L R A o], ©.18)
= &g

wobei nur das Summenzeichen wirken soll. Durch Differenzieren erhilt man die Ergebnisse (7.58)
und (7.59).

8.1: Nach (8.15) wird mit (8.22) R}y, = 0,1 — 0%y + ' Ify — I}, = 0y cot x' — 0
+ cot x' cotx! — 0 = —(sinx)~2 + (cotx!)? = —1, R}; = — R}, = +1. Zur Ubung berechne
man noch R}, = Ry = 0.
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8.2: Nach (8.24) wird

MIKIMR 1y = eMek™Me ey PT = eMe, ek ™My 1Pt = 20%20mPY,

eMigkmR, 1y = 4™, (9.19)
8.3: In der Kurzschrift nach (8.30) leitet man aus gy, = by + by mit by, = I'},,b, her:

Eklym = bk,m *by 4 b+ bl,m = F;{lmb" b, + Ivl’rlnbk * by,

&ktm — Lkem&nt — Lim&in = 0,
also

&kizm = 0. (9.20)
8.4: g =bk-bl, bk, = —Tkb

gkl.m _ bk,m “b' 4+ bk bl,m = Tk b bl — F’lm'hk b,

&+ Thng™ + Tyug® = 0,
also

£ = 0. ©21)
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Vektorfunktion, multilineare 30
Vektorgradient 52
Verbindungssatz 16, 20, 36
Verjlingung 26
Verschiebungsvektor 64
Verzerrungstensor 64, 65
Vierertensoren 61

w-Linie 85
Winkelgeschwindigkeit 16
Wirbeldichte 52, 69

Wirbelfeld 69

Wirbelgleichung, Rayleighsche 69
Wirbeltransportgleichung 68
Wirkoperator 53

Zeitableitung, totale 55

Zirkulation 69
Zylinderkoordinaten 86, 104



