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Vorwort

In diesem Band werden einige spezielle Funktionen dargestellt, denen man bei
der Integration von Differentialgleichungen der mathematischen Physik und in den
Ingenieurwissenschaften begegnet. Dabei wird dem allgemeinen Anliegen dieser Lehr-
buchreihe weitgehend Rechnung getragen, daB die Studierenden ihre mathematischen
Kenntnisse und Fertigkeiten im Zusammenhang mit deren Anwendungen erwerben
sollen. Die Theorie wird nur soweit behandelt, wie sie zum Verstidndnis der physika-
lischen und technischen Probleme erforderlich ist.

Reihenentwicklungen und Integraldarstellungen der zu beschreibenden Funk-
tionen, die als Losungen von Differentialgleichungen auftreten, stehen ebenfalls im
Vordergrund der Betrachtungen. Von den Eigenschaften konnten nur die wichtigsten,
fiir praktische Erfordernisse notwendige angegeben werden. Die mathematischen
Untersuchungen werden insbesondere in den Kapiteln 2 bis 5 vorwiegend im Kom-
plexen durchgefiihrt. Jedoch wird mit Riicksicht auf die physikalisch-technischen
Anwendungen immer auf die Darstellung im Reellen bezug genommen. Die Auswahl
der Funktionen wurde ebenfalls von den Anwendungsmdoglichkeiten bestimmt. Das
erklart insbesondere die breitere Darstellung der Besselschen und der Kugelfunk-
tionen. Bedingt durch diesen Grundsatz konnte daher nicht in allen Kapiteln ein
einheitliches mathematisches Vorgehen eingehalten werden. Vielmehr werden die-
jenigen Methoden bevorzugt, die den Besonderheiten der jeweiligen Funktionen
angepaBt sind. Das hat andererseits den Vorteil, daB die wesentlichen Kapitel 3
und 4 unabhingig voneinander lesbar sind.

Im ersten Kapitel werden einige wichtige Begriffe zu orthogonalen Funktionen-
systemen bereitgestellt, die zum Verstdndnis der Reihenentwicklung beitragen. Dabei
werden die Laguerreschen, Hermiteschen und Tschebyschewschen Polynome als
Beispiele ausfiihrlicher besprochen. Das Kapitel 2 behandelt die wichtigsten Eigen-
schaften der Gamma- und Betafunktion, die in den nachfolgenden Abschnitten bend-
tigt werden. Die Zylinderfunktionen werden im Kapitel 3 als Losungen der Bessel-
schen Differentialgleichung eingefithrt und ihre wichtigsten Darstellungen und
Eigenschaften hergeleitet bzw. angegeben. Einigen physikalisch-technischen Anwen-
dungen wird breiter Raum gewidmet. Entsprechend werden die Kugelfunktionen
im Kapitel 4 als Losungen der Potentialgleichung eingefiihrt und danach ausfiihr-
lich beschrieben. AbschlieBend wird im Kapitel 5 die hypergeometrische Funktion
kurz dargestellt und auf ihren Zusammenhang mit anderen Funktionen verwiesen.

Der vorliegende Band wendet sich in erster Linie an Studenten der Physik und
solcher ingenieurtechnischen Spezialrichtungen, in denmen die behandelten Funk-
tionen Anwendung finden.

AbschlieBend danken wir den Herren Prof. Dr. Glaeske, Jena, und Prof. Dr.
Kadner, Dresden, fiir zahlreiche wertvolle Hinweise zur Gestaltung des Manuskripts.

Leipzig, im August 1975 Die Verfasser



Vorwort zur zweiten Auflage

Die Neuauflage des Lehrbuches wurde vorwiegend zur Fehlerkorrektor genutzt.
Wir bedanken uns bei Herrn Dr. W. S. Wittig fiir die sorgféltige Durchsicht des
Textes.

Leipzig, im Juni 1979 Die Verfasser
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1. Orthogonale Funktionensysteme

1.1. Grundbegriffe

1.1.1.  Einleitung

Fiir viele Anwendungsfille ist es von theoretischer und praktischer Bedeutung,
daB man eine in einem Intervall weitgehend willkiirlich angenommene Funktion
einer Veranderlichen durch eine lineare Kombination von vorgegebenen — meist
einfacheren — Funktionen darstellen kann. Dabei zeichnen sich gewisse Analogien
zu dem Sachverhalt ab, daB man in einem n-dimensionalen Raum jeden Vektor
durch n linear unabhingige Vektoren ausdriicken kann. Die Menge der vorgegebenen
Funktionen ist im allgemeinen unendlich. Die genannte Fragestellung fiihrt zu dem
Problem der Reihenentwicklung einer auf dem Intervall [a, b] gegebenen Funktion
f(x) nach dem ebenfalls vorgegebenen Funktionensystem

@1(x), @2(x), @3(x), ...

Mit geeignet bestimmten Entwicklungskoeffizienten ¢y, c,, ¢3, ... bildet man den
Ausdruck

£ = E e,

der dann eine Anndherung von f(x) darstellt. Die Giite der Anndherung hingt zu-
dem von der Stelle x ab. Wenn

£ = B ep()

ist, so sagt man, f(x) ist in eine Reihe nach den Funktionen ¢,(x) entwickelbar oder
f(x) wird durch die unendliche Reihe Z c,p,(x) dargestellt. Die Kenntnis der Koef-
fizienten ¢, ermdglicht es dann, dle Funktlon f(x) mittels der Funktionen ¢ (x)
beliebig genau zu berechnen, was auch héufig praktisch durchgefiihrt wird.

Ein einfaches, bekanntes Funktionensystem bilden beispielsweise die Potenzen von (x — a): 1,
(x — a), (x — @), (x — a)?, ... Mit ihnen gewinnt man die Darstellung einer beliebig oft differen-
zierbaren Funktion f(x) als Taylorsche Reihe [Band 2, 3]

f(v)(a)

»!

f(x) = i c(x — @’ mit ¢, =
v=1

n
Die — leicht zu berechnende — ganze rationale Niherungsfunktion Y c,(x — )" ist hier dadurch
V=1

gekennzeichnet, daB sie an der Entwicklungsstelle x = g mit der Funktion f(x) den Funktions-
wert f(a) und die Ableitungen f*(a), ..., f™(a) gemeinsam hat. In der unmittelbaren Umgebung des
Punktes x = a werden deshalb gute Anniherungen erreicht. Die Abweichungen der Niherung von
der Funktion f(x) nehmen mit der Entfernung von x = a zu.

Nach dem WeierstraBschen Approximationssatz kann sogar jede auf dem Intervall [a, b] stetige
Funktion f(x) dort gleichmafig durch Polynome approximiert werden. Allerdings ist die Anniherung
von f(x) formelmiBig nicht so einfach wie im Falle der Taylorschen Darstellung (vgl. Band 3).
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Eine weitere bekannte Art der Reihenentwicklung einer Funktion nach einem Funktionssystem
ist die Fourierreihe [Band 3). Sie besteht darin, daB man — vorwiegend periodische — Funktionen
f(x) durch das Funktionensystem

1, cos x, cos 2x, cos 3x, ..., sin x, sin 2x, sin 3x, ...
in der Weise darstellt:

w  ©
flx) = —21 + Y (@,cosvx + b, sinvx).
y=1

Die Entwicklungskoeffizienten a, und b, erhilt man fiir das Intervall —x < x < + aus den Euler-
Fourierschen Formeln
+7
1
a,=— J.f(x)cosvx dx (»=0,1,2,...),
T
-7
+n
1
b, =— J‘ f@)sinvxdx (»=1,2,3..).
T
-7

Weitere Beispiele kennt man aus der Theorie der Eigenwertprobleme, wo die zugehérigen Eigen-
funktionen die Entwicklungsfunktionen @ (x) bilden, nach denen sich andere Funktionen f(x) mit
bestimmten Eigenschaften entwickeln lassen [4, Bd. 1]. -

1.1.2.  Anniherung nach der Methode der kleinsten Abweichungsquadrate

In diesem Abschnitt soll eine Annéherung einer Funktion f(x) gefunden werden,
die nicht nur an einer bestimmten Stelle eine besondere Giite — wie bei der Taylor-
schen Darstellung — erreicht, sondern im Gesamtintervall [a, b] in einer gewissen
Weise méglichst gut wird (vgl. Band 4, Abschnitt 4.3).')

Gegeben sei auf dem Intervall @ < x < b eine Funktion f(x) und ein System
von n Funktionen ¢,(x), ¢,(x), ..., p,(x). Zur Anndherung an die Funktion f(x) soll
der Ausdruck

fu(x) = c191(x) + c202(x) + ... + cpa(x) D
gebildet werden. Nach GauB wird im Sinne der Methode der kleinsten Quadrat-
summe das Integral

0= [ [f(x) — )] dx i (1.2)

zum Minimum gemacht. Fassen wir Q als Funktion der zu bestimmenden Koeffi-
zienten c, auf, so fiihrt die obige Forderung zu den notwendigen Bedingungen

b
g—% =2 [0 S PW dx =0 (= 1.2,m) (13a)

oder

b b
100 _ v _ _
T " f(p,fdx—z:‘,lc” fq;v%dx_o =1,2..,n  (13b)

1) Es geniigt fiir unsere Betrachtungen, die quadratische Integrierbarkeit von f(x) vorauszusetzen.
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Wir fiihren folgende Abkiirzung ein:
b
(& h) = [ () h(x) dx, (1.4)
a

Damit lauten die ,,Normalgleichungen‘ fiir die Koeffizienten ¢, nach (1.3b):
(@1, @1) + (@1, @2) + o+ (@1, @) = (91,f)
c1(®2, @1) + (@2, 2) + oo + @2, @n) = (92.f) (1.5)

cl((pm ‘pl) + Cz(‘Pm ¢2) + ..o+ Cn(‘pm ‘Pn) = (‘me)
Die Koeffizientendeterminante

(@15 91) (@1, 92) - (P15 Pn)
G = ((Pz:,‘l’l) (‘Pz:’ ®2) ... (?’2:’ )] (1.6)

@ns ) @ns 92) - (Ps P0)

ist symmetrisch und wird Gramsche Determinante der Funktionen ¢, ¢, ..., ¢,
genannt.

Diese Determinante verschwindet nur dann, wenn die Funktionen ¢, ¢,, ..., @,
linear abhingig sind. Sind diese linear unabhéngig, so ist sie positiv. Damit das
System (1.5) eindeutig losbar ist, miissen also die n Funktionen ¢, ¢,, ..., ¢, auf
[a, b] linear unabhéngig sein.

Wir setzen in (1.2) den Ansatz (1.1) ein, quadrieren aus, ordnen um und bertick-
sichtigen die Normalgleichungen (1.5). Dann ergibt sich fiir den Minimalwert der
quadratischen Abweichung:

Quin = (£f) = 1(@1:f) = €2(@2,f) = .. = cul@ns ) (1.7)

Als mittleren Fehler definiert man

Beispiel 1.1: Es soll die Annidherung einer Funktion f(x) auf [—1, +1] durch ein Polynom (n — 1)-
ten Grades vorgenommen werden. Dazu setzen wie ¢ (x) = x*~! fiir » = 1,2, ..., n, und es wird
fox) = ¢1 + cax + ¢3x% + ... + ¢x"'. Um die Normalgleichungen (1.5) aufzustellen, ermitteln
wir

2
+1 +1 .
———  fir » + ugerade
@00 = [ ¥ tatdx= [ 22dx={ v =1
-1 -1 0 fir » + p ungerade.

Damit zerfallen die Normalgleichungen (1.5) in ein System fiir die Koeffizienten mit geradem und
in eines fiir die Koeffizienten mit ungeradem Index.

1.1.3.  Anniiherung durch orthogonale Funktionen

Die Bestimmung der Approximationskoeffizienten ¢, mit Hilfe der Normal-
gleichungen unterscheidet sich von der in 1.1.1. angegebenen Ermittlung der Fourier-
koeffizienten a, und b, wesentlich. Hier ist ein Gleichungssystem zu l8sen, dort sind
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explizite Formeln vorhanden. Ein weiterer Unterschied besteht darin, daB sich bei
Anderung des Approximationsgrades n die Koeffizienten ¢, im allgemeinen alle
andern werden, also neu berechnet werden miissen. Dagegen bleiben die bereits
berechneten Fourierkoeffizienten bei Hinzunahme weiterer Glieder in der Annihe-
rung unverandert.

Dieser Vorteil der Fourierreihen beruht auf der Orthogonalititseigenschaft der
trigonometrischen Funktionen im Intervall [—=, +x]:

4
[ cosmxcosnxdx = {

-7

firm=+n
n© firm=n,

+n e
[ sin mx sin nx dx = {0 ﬁfr bl (m, n ganz) (1.8)
— n firm=n,
+n
f sinmxcosnxdx = 0 fiir alle m, n.

-7
Die Bezeichnung ,,orthogonal® ist im Zusammenhang mit der Vektorrechnung
zu sehen, wo im dreidimensionalen Raum fiir zwei Vektoren x = (x;, x5, x3)
und y = (¥4, ¥2, ¥3), die senkrecht aufeinander stehen, also zueinander orthogonal
sind, das skalare oder innere Produkt verschwindet:

X'y =Xy + X¥2 + X393 = 0.

Wir wollen zunichst allgemein den Begriff der orthogonalen Funktionen einfiihren.
Dazu wird definiert:

Unter dem skalaren oder inneren Produkt (f, g) zweier Funktionen f(x) und g(x)
wird das iiber das Intervall @ £ x < b genommene Integral

b
(£,8) = [f(x) g(x) dx (1.9)
verstanden.

Aufgabe 1.1.: Beweisen Sie die Schwarzsche Ungleichung (f, £)? = (f,f) (g, &)

Zwei Funktionen, fiir welche das skalare Produkt (1.9) verschwindet, also (f; g) =0
ist, heiBen orthogonal beziiglich des Intervalls [a, b].
Das skalare Produkt einer Funktion f(x) mit sich selbst ist

b
12 = (£ = [ £2() dx. (1.10)

lIfIl heiBt Norm von f. Ist |f|| = 1, so heiBt die Funktion normier:.

Ein System von endlich oder unendlich vielen Funktionen ¢,(x), ¢,(x), ¢3(x), ...,
die auf [a, b] definiert sind und auf dem je zwei verschiedene Funktionen orthogonal
sind, wird als orthogonales Funktionensystem oder Orthogonalsystem auf [a, b]
bezeichnet.
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Die Funktionen ¢ (x) heien Orthogonalfunktionen. Fiir ein Orthogonalsystem
gilt:

0 fir p = »

ot ={jpp ey ».

Multipliziert man ¢ (x) mit dem Faktor 1/|lg,|, so erhdlt man ein normiertes Ortho-

gonalsystem auf [a, b], dessen charakteristische Beziehungen mit ¢, = ¢,/[g,|
lauten

'(l.lla)

0 firu+v
AR ” 1.11b
CRARS e (L11b)
Beispiel 1.2: Ein Beispiel fiir ein normiertes Orthogonalsystem auf dem Intervall —x < x < +~x
bilden die Funktionen

1 cos x cos 2x sin x sin 2x

\/i;- s \/; s \/; » e \/;, \/; s s
wie man aus den Euler-Fourierschen Formeln (1.8) sofort abliest.

Nehmen wir nun fiir den Néherungsansatz (1.1) ein Orthogonalsystem ¢;(x),
@2(X), ..., @a(x), so vereinfachen sich die Normalgleichungen (1.5) wesentlich. Es
folgt sofort

_ (p./) _
“ = el T Tey ||2f @y(x) f(x) dx (1.12)

fir » = 1, 2, ..., n. Ist das System normiert, also [l¢,| = 1, so folgt

=(¢,f) firv=12,..,n. (1.13)
Der Ausdruck (1.12) entspricht nun den Formeln (1.8) fiir die Fourierkoeffizienten,
und man nennt daher die Koeffizienten ¢, hiufig auch die verallgemeinerten Fourier-
koeffizienten von f(x) beziiglich des Orthogonalsystems ¢ (x).

Fiir derartige Funktionensysteme sind also im Fall der Konvergenz die Ent-
wicklungskoeffizienten fiir jeden Anndherungsgrad endgiiltig. Die nachtrégliche Er-
hohung des Approximationsgrades n hat auf die bereits berechneten Koeffizienten
¢, (v £ n) keinen EinfluB mehr. Fiir den Minimalwert der quadratischen Abweichung
gilt jetzt:

Qo = (1) = X Il <3 (114

1.1.4.  Orthogonalisierung von linear unabhingigen Funktionen

Aus einem System von Funktionen v, (x), ¥,(x), ¥3(x), ..., von denen fiir jedes m
je m beliebig herausgenommene Funktionen linear unabhdngig sind, kann man durch
einfache lineare Kombinationen ein normiertes orthogonales Funktionensystem
gewinnen. Bekanntlich [Band 7.1] sind n Funktionen y,(x), %,(x), ..., a(x) auf
[a, b] genau dann linear unabhdngig, wenn es kein System von Konstanten C,,

., Comit 3 C? > 0 gibt, derart, daB
y=1

Ciypi(x) + Copa(x) + ... + Capul(x) = 0
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fiir x € [a, b] ist. Das bedeutet, daB es fiir diese Funktionen keine lineare Abhéngig-
keit in der angegebenen Form gibt. Beispielsweise sind die Potenzfunktionen 1,
x, x2, ..., x"~1 auf jedem endlichen Intervall linear unabhingig.

Der ,,OrthogonalisierungsprozeB* soll jetzt beschrieben werden. Fiir das gesuchte System von
normierten Orthogonalfunktionen ¢ (x) wird der Ansatz gemacht:
PL=
P = a9 + ¥z
@3 = a3191 + a3202 + Y3
P4 = G41P1 + Q4292 + Aa3Ps + Ya

Die Konstanten a;;, werden nun der Reihe nach so bestimmt, daB die Funktionen ¢,(x) paarweise
orthogonal werden und jede Funktion @ (x) normiert ist. Im einzelnen ergeben sich die folgenden
Schritte: -

71 Y1
1. Q1= ="

llpy |l lpy
2. Aus (91, 9) = a2y + (p1,%2) = 0 folgt a3y = —(py,y,) und somit

¥ =2 — (@1,%2) @1 und

’

P2
P2 = —W .
3. (@1,93) = a3y + (@1,43) =0 azy = —(@1,%3)
Aus (@2,93) = az2 + (P2,y3) = 0 folgt azy = —(p2,¥3)
und somit

@5 =3 — @1, ¥3) @1 — (@2, ¥3) @2 und

Allgemein ergibt sich die Rekursionsvorschrift :

n=1 g

2
Th=vn— 2 @Y P P =—1. (1.15)
y=1 llpn Il

Da die Funktionen y,, ¥, ..., ¥, und somit auch die aus ihnen gewonnenen Linearkombinationen
@, @2, ---, @ linear unabhingig sind, ist ¢}, % 0 und |g;ll > 0, so daB der beschriebene Weg immer
moglich ist.

Beispiel 1.3: Als Beispiel wollen wir zu den vier Funktionen 1, x, x2, x3 ein normiertes Orthogonal-
system fiir das Intervall [—1, +1] gewinnen. Wir setzeny; = 1,9, = x, 3 = x2,y, = x>
Dann wird

+1

1. 2= f dx =2 undsomit ¢, =
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Weiter ergibt sich nach jeweils kurzer Rechnung:

+1
1 1
2. P2 =% — (@1, 92) —=; (‘Px,'l'z)=——=-fxdx= 0,
V2 NE
-1
+1

¥y =X, gyl = fxzdx—? tpz—A/——x

-1

+1
1
3. @1,93) = —— x’dx=£; (@2,v3) =0,
V2 3
-1
+1 "
1 1 8 5
P3=x" ==, leéll‘=f(x’—;) dx=—_=, %=./?(3x2—1>.
-1
— +1 N—
3 . 2 /3
4. @1,%4) = (@3,94) =0, @294) = [ = xtdx=— [—,
2 SN 2
-1
+1

2

d.x—1 H %—J——(Sx — 3x).

3 3
Fo= - x \1¢§Ii=f(x3——5-x)

-1

Wir formen die normierten Orthogonalfunktionen ¢,, ¢, ¢3, 5, um und schreiben

T
P = '\/_2— Po(x) . mit  Po(x) =1,

/3
N Pi(x) mit  Py(x) = x, ‘ (1.16)
RERSYE _J? , 13, 1
@3 = 7—2—(.( —?)-— EPZ(X) mit P;(x)—T(x —T)’
_A/7135 s A/P pg o L35 (53
LN T x ——x — P3(x) mit Pi(x) = ETE Gl )

Die Polynome P (x) werden als Legendresche Polynome bezeichnet. Sie sind spezielle Kugelfunktionen
(siehe auch Abschnitt 4.2.1.). Sie lassen sich auch fiir ganzzahliges » > 4 herleiten und erfiillen die
Orthogonalitatsbeziehung

1 0 fir v+ pu

[ PPmdx={ 2 ) (1.17)
1 fur v =pu.
v+ 1
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Will man eine Anndherung einer willkiirlichen Funktion f(x) auf [—1, +1] durch die normierten
Legendreschen Polynome durchfiihren, so lauten die Entwicklungskoeffizienten (1.12):

+1
2v +1
¢, = > f P(x)f(x)dx (»v=0,1,2,...).

-1
Die Funktion f(x) wird dann im Sinn der Methode der kleinsten Quadrate durch
+1

[ 2w s ex

) -1

angenéhert. Der Minimalwert (1.14) der quadratischen Abweichung lautet:
+1

» 2
Onin é_J; S3(x) dx —z_oml—‘tf-

v+ 1
2

A = io PG

Aufgabe 1.2.: Es soll die Funktion y = 2 — cosh x auf dem Intervall [—2, +2] durch eine ganze
rationale Funktion 4. Grades mit kleinstem Abweichungsquadrat sowie durch die Taylorentwicklung
bei x = 0 bis zum 4. Glied angenihert werden. Vergleichen Sie beide Naherungen!

1.2 Spezielle Orthogonalsysteme

Die Orthogonalisierung der Potenzen 1, x, x2, x3, ... fiihrte im Abschnitt 1.1.4.
zu den Legendreschen Polynomen (1.16). Die Aufgabe 148t sich wie folgt erweitern:
Es sollen Funktionensysteme gebildet werden, die durch Orthogonalisierung der
linear unabhingigen Funktionen \/p(x), x /p(x), x*/p(x), ... fiir [a, b] entstehen,
wenn p(x) auf [a, b] eine nichtnegative Funktion ist. p(x) wird Belegungsfunktion
genannt. Dabei sind im orthogonalisierten System die Faktoren von \/ p(x) Poly-
nome, die als die zur Belegung p(x) gehorigen orthogonalen Polynome bezeichnet
werden.

So ergeben sich fiir

a= —-1,b= lundp(x)=1 die Legendresche Polynome P.(x),
a= 0, b= ooundp(x)=e> die Laguerreschen Polynome L,(x),
a= —00,b=coundp(x) = e die Hermiteschen Polynome H,(x),

I

a

—1,b=1 undp(x) = ——l—die Tschebyschewschen Polynome
\/ 1—x? T,(x).

Wir werden die Funktionen aus anderen Zusammenhéngen herleiten und ihre
Orthogonalitdt nachtriglich nachweisen. Wegen der Eindeutigkeit des Orthogonali-
sierungsprozesses (sieche Abschnitt 1.1.4.) miissen die Funktionen jeweils iiberein-
stimmen.

Ein einfaches Verfahren zur Gewinnung der Funktionen beruht auf der Verwen-
dung erzeugender Funktionen. Das sind Funktionen von zwei Verdnderlichen, die
bei Entwicklung in eine Potenzreihe nach einem Argument als Koeffizienten die
darzustellenden Funktionen besitzen. Diese Funktionen enthalten das andere Ar-
gument.
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1.2.1. Die Laguerreschen Polynome

Die Laguerreschen Polynome besitzen eine einfache erzeugende Funktion

Xt

wix, ) = “‘t. (1.18)
Entwickeln wir diese nach Potenzen von ¢, so ergibt sich (vgl. Band 3):
_ © (_I)kxk t"
vl = X S T e
w kyk [ o _
-5 S (D))
k=0 =0 v
® (_1)k w
-5 ”""[E( 2 )]
k=0 Lr=0 v
_ 00 (_l)kxk 0 (n> . 0 n (__l)k (n> -
= Tw AW T EE TR WY
~EED e <,
wobei wir
_ oy (=D,
—7L"(x)—k§oT—<k)x (1.19)

gesetzt haben. Die L,(x) heien Laguerresche Polynome, die Funktionen e~ 2 L,(x)
Laguerresche Funktionen. Nach der Leibnizschen Multiplikationsregel der Differen-
tialrechnung gilt weiterhin

E"(ie_) Z( 1y ( )n(n 1) (ke + 1) = L(x) (1.20)

oder

Li(x) = Z(—l)" *( )n(n )=k 4+ D)t

ED = 1) =k + D (1.21)

n n*(n — 1)? - .
1! _2'— 2 + . + (_l)n! .
- Fiir niedrige n ergibt sich

T Ly(x) =1,Ly(x) = —x + 1, Ly(x) = x? — 4x + 2,

Ly(x) = —x® + 9x? — 18x + 6, Ly(x) = x* — 16x3 + 72x> — 96x + 24.
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Wir zeigen nun die Orthogonalitéit der Funktionen e™ 2 L,(x) und berechnen dazu
mittels partieller Integration unter Beachtung von (1.23) fiir n > k:

©

f e x*L,(x) dx = fx" —w dx
o

d-1(re=) - ‘(x"e"‘)
= x*———d—#_—— —k f o T
= k(k — 1)fx*-2%"f_§1dx . =(—1)*k'f—d—%d
-0, ’ (1.22)

Daraus folgt
0 0 x x
[ e Lu(x) Lu(x)dx = [ €™ Z Ly(x) €™ Z La(x) dx = 0 fiir n > m,
0 0

weil sich dieses Integral als lineare Kombination von Integralen obiger Gestalt dar-
stellen 1dBt. Damit ist die Orthogonalitdt der Laguerreschen Funktionen bewiesen.
Weiter ist wegen (1.24) und (1.25)

f ~523(x) dx = f (= 1y LXET) d(""; D g
0

=n! fx"e"‘dx = n!nfx"“e"‘ dx = ... = (n!)2
o ¢

-3
Somit bilden die Funktionen —e—& (n=0,1,2, ...) ein normiertes Orthogo-
nalsystem. n:

Die Beziehung
L LA Y
liefert die Rekursionsformel
Ly(x) —@n+ 1 = x)Ly(x) + n?L,_(x) =0, n=1. (1.23)
Weiter gilt (1 — t)z'pg;;t) = —my(x, 1), und daraus gewinnt man

L1 () — nLfy_y(x) = —nL,_y(x), nzl. (1.24)
Differenzieren wir (1.23) nach x und beriicksichtigen (1.24), so erhalten wir
xL)(x) = nL,(x) — n*L,_4(x), nzl (1.25)
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Die Differentiation dieser Beziehung ergibt
xL;/(x) + Ly(x) = nLj(x) — n*L;,_(x)
= n(Ly(x) — nLy_y(x)) = —n*Ly_y(x)
= xLj(x) — nL,(x)

bei Beachtung von (1.24) und (1.25). Daraus erhdlt man die homogene lineare
Differentialgleichung 2. Ordnung, der die Laguerreschen Polynome geniigen:

xp'+ (1 =x)y +ny=0 n=012..) (1.26)
(Band 7.2). Funktionen von Bedeutung fiir die Quantenmechanik sind die zugeord-

neten Laguerreschen Funktionen, denn sie beschreiben die Bewegung des Elektrons
im Wasserstoffatom [8]:

T
y".k = JeAxxk_l ‘EXT ’l(x) -

1.2.2. Die Hermiteschen Polynome

Wir gehen wie im Abschnitt 1.3.2. vor und geben zunichst eine erzeugende Funk-
tion fiir diese Polynome an:

"/’(x» t) = e—12+2x — gxtg—(t-0)?

=3 9 < o, (1.27)
n=o n!
Daraus entnimmt man
_ O"w(x, t) B X;b"C_(’_")z PR dre—**
Hy(x) = T o~ e Y T e¥’(—1) i (1.28)

Die Hermiteschen Polynome H,(x) werden demnach so gewonnen, daB man die
n-te Ableitung von e~** mit (—1)7e** multipliziert. Die ersten Hermiteschen Poly-
nome erhilt man wie folgt:

e Hy=1

Yy = —2xe* H; =2x

Y= =26 4 d4x%e H, =4x* -2
¥ = 12xe™ — 8x3e¥ Hy = 8x% — 12x

YO = 127 — 48x%e~* 4 16x*e™*  H, = 16x* — 48x2 + 12

Die Funktionen e~**2 H,(x) heien Hermitesche Funktionen.
Wir wollen nun die Orthogonalititseigenschaft dieser Polynome nachweisen.
2  Sieber, Funktionen
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Zunichst gewinnt man aus (1.27) wegen%
Hy(x) = 2nH,_y(x), n2=1. (1.29)
Dann wird fiir n > m bei Beachtung von (1.28) und (1.29) sowie der Tatsache, da

v

= 2ty(x, f) die Beziehung

lim
x>t dX7

e™** = 0, mittels partieller Integration

o o
f e H,(x) Hy(x) dx = (—1)" J' H, (%) 'd;e: dx
A . -
= (=1)*12m f H,,,_,(x)d;;—e:dx -
—m+m
= (= 1y-m2rm! J' H,,(x)g%:;;e:;dx —o. (1.30)

Die Orthogonalitit ist gezeigt. Fiir n = m wird ebenso
+ o + o
[ e H(x)dx = 2%n! [ Hy(x)e* dx = 2l /%,
— o0 -0

Damit sind die Funktionen des normierten Orthogonalsystems:
x2

H(xe = (n=0,1,2,..).

J2ml /=
Aus w + 2(t — x)p(x, ) = 0 findet man die Rekursionsvorschrift

H,(x) = 2xH,(x) + 2nH,_(x) =0, nx1, (1.31)
und durch Kombination mit (1.29) ergibt sich
H;'(x) — 2xH,(x) + 2nH,(x) =0 oder y" —2xy' +2ny =0 (1.32)

als lineare homogene Differentialgleichung 2. Ordnung fiir die H,(x), (Band 7.2).
Auch diese Funktionen finden in der Quantenmechanik ihre Anwendung [8].

1.2.3.  Die Tschebyschewschen Polynome

Die T'schebyschewschen Polynome werden mit x = cos ¢ erkldrt durch:
cosn® _ cos(narccos x .
T (x) = T = ( = ) fiir n=1,To(x) = 1. (1.33)

Aufgrund der Formel (Band 1, 5.3.4.)

n

cos nd = cos™ P — (2

)cos"~2 9 sin?d + (Z) cos"* ¢ sin* 9 + ...
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sind sie tatsdchlich Polynome in x. Fiir niedrige n ergibt sich
Ty(x) = cos? = x,
Ty(x) = 3 cos 29 = 1 (cos? ¥ — sin? @) = cos? P — § = x2 — &,
T3(x) = % cos 39 = % (cos®* ¥ — 3 cos?sin® &) = cos® & — } cos?

I

x - 3x,
Y cos4d = § (cos* ¥ — 6cos? P sin?d + sin* )
cos* @ — cos? ¥ + ¢ = x* — x* + §.

Die Orthogonalititseigenschaft wird leicht aus

Ta(x)

£

+1
f ——L—z— Tp(x) Tp(x) dx = —2;;1;,_—2- f cos n cos m¥ dd
—x

J1

x=—1 9=0
1 i 0 fir n+m
= T J‘ cos nd cos md dd) = T . (1.34)
2 el > fir n=m

ersichtlich. Die Funktionen

1 2" T,(x) 2
—_— — = g7—=——==c08 nd -
NES V2w Y- 7 sin
bilden ein normiertes Orthogonalsystem.
Aufgabe 1.3.: Leiten Sie die Rekursionsformel

Thi1(x) — xTy(x) + i Th-1(x) = 0

fiir n = 2 her. Wie lauten die entsprechenden Beziech firn=0und n=1?

Aufgabe 1.4.: Zeigen Sie, daB die Tschebyschewschen Polynom > als Entwicklungskoeffizienten der
erzeugenden Funktion
2

) =—, |t/ <1
Ve 1) 1—2tx + 12 <1,

auftreten.

Die Tschebyschewschen Polynome haben die besondere Eigenschaft, daB3 bei ihnen
das Maximum des absoluten Betrages im Intervall [—1, 1] den kleinsten Wert an-
nimmt, der bei einem Polynom n-ten Grades mit héchstem Koeffizient 1 {iberhaupt
mdglich ist. Es gilt also Max |T,(x)| = Min, wobei zur Minimumbildung die Poly-

—1,+11
nome n-ten Grades mit hochstem Koeffizienten 1 zugelassen sind.
Das ist das Kennzeichen der sogenannten gleichmaBigen oder Tschebyschewschen
Approximation fiir eine beliebige Funktion f(x):

Max |p,(x) — f(x)| = Min.
[-1,11



2. Gammafunktion -

2.1. Definition und Darstellungen

2.1.1.  Definition als Verallgemeinerung der Fakultit

Die im Folgenden zu untersuchende Funktion besitzt fiir uns eine besondere Be-
deutung, da sie in den verschiedenen Darstellungen spezieller Funktionen auftritt.
Thre Eigenschaften bestimmen damit die Eigenschaften dieser fiir Anwendungen in
Technik und Naturwissenschaften bedeutenden Funktionen.

Wir gehen aus vom gut bekannten Begriff der Fakultit. Fir natiirliche Zahlen n
giltn! =1-2 ... nfirn = 1. Offenbar ist:

nl=nn-1)! fir n=22 mit 1!=1. (2.1)
Nun besteht die Notwendigkeit, zur Losung verschiedener Aufgaben eine Funktion
f(2) zu besitzen, die die in (2.1) gegebene Funktionalgleichung fiir beliebige komplexe
Argumentwerte z (zumindest aber fiir reelle Argumentwerte x) erfiillt, und fiir die
f(1) =1 gilt, d. h. gesucht ist f(z) mit

flz+1)=zf(z) und f(1)=1. 2.2)

Spezialisieren wir zum Zwecke der Anschaulichkeit zunédchst unser Problem so,
indem wir z = x reell wihlen, so besteht die Aufgabe, zur bekannten diskreten
Funktion n! eine Funktion f(x) zu finden, fiir die (2.2) gilt, also (2.1) erhalten bleibt
(Bild 2.1).

-t fx

- N W e o
T
T

n ‘IT ,4, 1 1 7’ |

0 723 4 n X
Bild 2.1. Interpolation der Fakultit

Eine Funktion f(z), die die Eigenschaft (2.2) besitzt, wird durch das uneigentliche
Integral (vgl. Band 5, 1.5)

©
[rtetdt
0

erklart. Nach Euler wird dieses Integral mit /'(z) bezeichnet und definiert die so-
genannte Gammafunktion

@) = f:z-l et dr. @3
0
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Es gilt:

a) ra = _Fi" etdt = —e* [;° = —(lim e — e‘°) =1.
0

-0

0
b) Das uneigentliche Integral f 1*~1 et dz konvergiert fiir Re(z) > 0 und stellt in

0
diesem Gebiet eine holomorphe Funktion dar.
¢) Mittels partieller Integration kann man folgendermaBen rechnen:

o
0 tl
+ J.—— efdr
0 z
0

e = f F1etde = 1;—e~'
0

®©
=0 +ift(z+l)-1e—ldt
z
0

= %F(z +1). 2.4

Aus a) und c) ergibt sich unmittelbar
Iz+1)=z:0, I(H=1,
also (2.2) fir f(z) = I'(2).

Aufgabe 2.1: Man beweise die oben bene Ei haft b) der Funktion I'(z).

Durch die obigen Betrachtungen ist die Gammafunktion eingefiihrt. Sie besitzt
aufBler den genannten Eigenschaften a), b) und c) noch die beiden folgenden wesent-
lichen Merkmale:

1) I'(z) ist holomorph fiir alle komplexen z mit Ausnahme vonz =0, —1, -2, ...,
und fiir dieselbe Menge komplexer Zahlen z gilt:

Ie) = %I’(z ).

2) Fiir z + 0 gilt in |Re(z)| < % I'(z) =% +0()Y).

Merkmal 1) bedeutet nichts anderes als die Beziehung (2.4), die unter gleichzeitiger
Beibehaltung der Holomorphie auf alle komplexen z auBler z =0, —1, -2, ...
ausgedehnt wird. Merkmal 2) besagt, daB die Funktion |I'(z) — % im Parallel-

streifen |Re(z)] < 4 mit Ausnahme des Puriktes z = 0 nach oben beschrinkt ist.
Wir weisen nun Merkmal 1) nach und betrachten dazu (2.4). Da I'(z + 1) fiir
Re(z) > —1 durch (2.3) erklart ist, leistet (2.4) die analytische Fortsetzung des
Integrals (2.3) in die z-Ebene mit Ausnahme der Punkte z = —n, n =0, 1, 2, ...,
wo die Funktion je einen einfachen Pol besitzt (vgl. Band 9). Wegen (2.4) ist der

1) Beziiglich der Landauschen Ordnungssymbole o und O verweisen wir auf Band 3.
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Punkt z = 0 namlich einfacher Pol von F(z) Ersetzen wir in (2.4) I'(z + 1) durch

F(z +2) (partlelle Integration von J' et di), so gilt:

I'(z) = -Z— < + i I'(z +2). (2.5)
Demzufolge ist auch z = —1 einfacher Pol von I'(z). So fortfahrend zeigt man die
obige Behauptung. Demzufolge ist Merkmal 1) nachgewiesen und gleichzeitig die
Art der Singularititen der Funktion /'(z) (einfache Pole) bestimmt.

Merkmal 2) zeigt man ausgehend von der mit (2.4) gefundenen Beziehung

©

p— l Z ot
I’(z)—?ft e~fdr.
0
Da | etdt =1+ 0(1) fir |Re(z)] <4 gilt,ist
0

Ie) = %(1 +0(1) = % +0(1)

nachgewiesen.
Wir hatten schon festgestellt, daB I'(z) die Funktionalgleichung

I'(z + 1) =zI(2)
erfiillt. Fiir natiirliche Zahlen z = n gilt speziell:‘
I'(n) =@ - 1)! (2.6)

Wegen dieser Beziehung ist es auch sachgemidB 1 = I'(1) = 0!, d. h.0! durch 1
zusdtzlich zu definieren. Somit haben wir auch gezeigt, dal die Gammafunktion
die anfangs gestellte Forderung — Ubereinstimmung mit der Fakultit fiir natiirliche
Argumente — erfiillt. Im Bild 2.2 wird die Gammafunktion fiir reelle Zahlen z = x
und ebenso die Funktion [/(z)]~! dargestellt.

AbschlieBend sei der mathematisch interessante Sachverhalt bemerkt, daB3 es auch moglich wire,
die Gammafunktion I'(z) durch die Merkmale 1) und 2) zu definieren. Es 148t sich nidmlich zeigen,
daB es hochstens eine Funktion gibt, die diese Merkmale besitzt, und daB diese Funktion angegeben
werden kann. (Die Beziehung I'(1) = 1 folgt aus 1 und 2,

1
zI'(z)=1+2z-0(1) fiir [Re(2)| < 50 *0,
Q) =1mI(z+ 1) =limzI'(z) = lim(1 + z-0(1)) = 1
z-0 20 z-0

braucht also nicht als zusitzliches Merkmal gefordert zu werden.) DaB die Funktion angegeben
werden kann, haben wir oben gezeigt (2.3). Den Beweis dafiir, daB es hochstens eine solche Funktion
gibt, fithren wir hier nicht vor.
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y

|
>

Bild 2.2. Die Funktionen I'(x) und [I'(x)]~* fiir x reell

2.1.2.  Residuen von I'(z), Formel von Euler, Weierstrafische Produktform,
Hankelsche Integraldarstellung

Zunichst stellen wir uns die Aufgabe, das Residuum von I'(z) am Pol z = —n,
n=0,1,2, ..., zu berechnen (vgl. Band 9). Wir betrachten:

©

1 ©
I = [e'rtdr= [ et tdr + [ e tde.
0 0 1

Hierbei ist 17~ = el ynd fiir # > 0 ist log ¢ reell. Die Funktion
©
o@) = [ et tde
1

erweist sich als ganze Funktion von z. Das Integral
1
[ etr-tdt
0
kann nach Einsetzen von

—~1 3 n t”
=L E0ST
und gliedweiser Integration als unendliche Reihe
1
el — n
je-' rrar=y ED 1 e Re@) >0

nzo n! z4+n

o
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dargestellt werden. Demzufolge gilt fiir Re(z) > 0
(=n"

n!

©
. & I —t y2—1
e =% P f et dr. 2.7)
1

Die unendliche Reihe konvergiert fiir jedes beschrinkte Gebiet der z-Ebene absolut
und gleichmaBig, sofern man einige der ersten Glieder wegldBt, die in den Punkten
z = —n einfache Pole haben. Also gilt: I'(z) ist eine meromorphe Funktion mit den
einfachen Poleninz = —n,n =0,1,2, ..., und

Res I'(z) B =(;n!1):'

Aufgabe 2.2: a) Man zeige, daB w(z) eine ganze Funktion von z ist! b) Man beweise die absolute
und gleichmiBige Konvergenz der Reihe aus (2.7) in jedem beschriinkten Gebiet der z-Ebene nach
Weglassen einiger Glieder, die einfachen Polen entsprechen.

Nachfolgend sollen weitere Darstellungen der meromorphen Funktion I'(z) an-
gegeben werden. Nach dem Prinzip der analytischen Fortsetzung (Identititssatz fiir
holomorphe Funktionen) geniigt es hierzu die Ubereinstimmung mit der Integral-
darstellung (2.3) auf einer Punktfolge {z,}, die einen Héufungspunkt z, besitzt,
z,,29 ¥ 0, —1, —2, ..., nachzuweisen. Wir betrachten die fiir positive p und ¢
giltige Ungleichung

£ t
er >1+4+—,
aus der sofort

t\P
e < (1 +—)
p

folgt. Setzen wir 1 + -
wie folgt abschitzen: P

@ |-

und betrachten (2.3) mit z > 0, so kann man I'(z)

©

© 1
=P
Ie) = fe" #1dr < f (1 +%) £1d = pr J'sv—l—'a — syt ds.
0 0 0

Denken wir uns p so gewéhlt, daB n = p — 1 — z ganzzahlig und positiv wird, so
erhélt man durch fortgesetztes partielles Integrieren:
1

1
fx"(l —sytds =2 fs"“(l —syds = ...
0

n!
zZz+1)...(z+n)’

1
n—1 1 z+n—1 —
s e L A
0

Also gilt

1
T2 <@+n+ 1)*#

(z+n)’ @8



2.1. Definition und Darstellungen 25

Auf dhnliche Weise erhalten wir eine untere Abschétzung fiir I'(z).
Es ist

e’§1+t+t2+...=1—l_—t— fir 0gt<1
und daher

ezl -1t fir 05¢t=1
und

_L t

e"gl——; fir 057 n.

a1, pn .. . t
Demzufolge gilt fiir positive z, wenn wir 1 — 7=° setzen

n n 1

n
e > fe" Fid 2 fzz—l (1 - 7’) dr = n’J-s"(l s
0 0 0

Wie oben ergibt sich
n!
Z2(z+1)...(z+n) "

Damit ist insgesamt fiir natiirliche Zahlen n, n > 0, folgende Einschachtelungsrela-
tion ermittelt worden:

n z n’n!
P(z)(z+n+1) <z(z+1)...(z+n)

Durch Grenziibergang n — oo folgt hieraus die von Gauss als Definition der Gamma-
funktion benutzte Darstellung

I'(z) > n* (2.8")

<TG fir z>0. (28")

. nn!
re=lm s ern @8
Nach dem oben erwihnten Prinzip der analytischen Fortsetzung ist diese Darstel-
lung auch fiir alle z + 0, —1, —2, ... giiltig, da hierfiir der Grenzwert auf der rechten
Seite von (2.8) sinnvoll ist.

als unendliches Produkt. Es ist

Aus (2.8) erhélt man eine Darstellung von !
I'Gz)

r ! n
S R e
@ now 2+ D). @+n—-1) z+n
-t
= lim

SIS P N

Ersetzt man noch z durch z + 1 und verwendet (2.4), so wird

R e M T R S
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Weiter ist

n

C = lim ( >

n—w \k=1

die Eulersche Konstante (die mit —I"(1) Gibereinstimmt), und somit folgt aus (2.9') die Weierstrap-

1
— —lan) % 05772157
k ")

sche Produktdarstellung von 1) :

A 29
o (R D ¢
Besonders niitzlich zur Darstellung von Funktionen sind Kurvenintegrale. Wir
betrachten das uneigentliche Kurvenintegral
[((Ao)
I= [ (=n=tetd (2.10)
0
mit endlichem z, Re(z) > 0 und z nicht ganzzahlig. Hierbei ist 7 komplex und das
%)

Symbol f bezeichnet die Integration lidngs eines Weges € der 7-Ebene, wie er im

0
Bild 2.3 dargestellt ist. Dieser Weg kommt vom Punkt co aus dem 1. Quadranten,
umlduft den Nullpunkt positiv und geht zum Punkt co im 4. Quadranten zuriick.

Schnitt

p < arclt)=-x

~3[ 0
Schnift
oL arc(-t) =+
s
~

Bild 2.3. Integrationsweg zur Darstellung Bild 2.4. Deformierter Integrationsweg

der I-Funktion als Kurvenintegral
Die -Ebene wird lings der positiven reellen Achse aufgeschnitten und (—7)*~!
= e=Dlos-D mit log (—1) reell fiir 1 < O festgesetzt. Damit wird die mehrdeutige
Funktion (—7)*! eindeutig gemacht. Mit Hilfe des Cauchyschen Integralsatzes
wird der Weg € auf den in Bild 2.4 dargestellten Weg deformiert. Auf den Teilwegen
G,,C,, €, erhalten wir (—7)*~* dann folgendermaBen:

@13 (_t)z—l — e(:-l)(loslll+i(—"))’
@:2: (—t)"l = e(z—D(loglr|+im) ,
@3 = K;: (__’)z—l = e(z-D(logé+iarc(~1)
auf )
Ksy: —1=08¢"%, —x <arc(—1) £ +m, arc(—1) = ¢.
Es gilt
0% . P
I= ’ (__,)z-l e~tdt = ‘ e—im(z-1) ],lz—l e~tdt + ‘ eim(z=1) Mx-l e~tdr
@ [ [
+ [ 8l eGbiv et dg 2.11)

Ks
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Weiter gilt:

+n
l' 571 glz=Dipgd-eiv 4y — f §7=1 g(z=Dipgd(cosg+ising) | § gie d¢
Ks -
+7
=io* I' eizo+0(cosp+ising) d(F
-n
+5
Fiir 6 - 0 geht 6 - 0 und J e‘”"‘"(c““’*‘s‘“") d¢ — ] e *? dg. Demzufolge geht

das Integral liber K; gegen 0, und es gilt somit:

1= lim[ [ e™ED [t e=tds + [ ei™E=D |71 et di]
-0 (S G2
0 ©
= e-in(z=1) J‘ 7i-le=7dy + ein(z=1) ’ 7717 |
0 0

©
— (ein(z-—l) _ e—in(z—l)) f' -le-tdr
0
©
= (e—iﬂz — eim) ’ 77=1e-tdr
0

= =2isinnz I(z).
Unsere Uberlegung fiihrt zur Hankelschen Integraldarstellung
[(}a]
— 1)1 o=t
e f( 1yt et dr @2.12)

fiir die Gammafunktion. Diese fiir Re(z) > 0 bewiesene Darstellung leistet die
analytische Fortsetzung der durch (2.3) erklirten I-Funktion in die endliche z-
Ebene mit Ausnahme der ganzzahligen Punkte z = 0, +1, +2, ..., da das Schleifen-
integral auf der rechten Seite von (2.12) fiir endliche z holomorph ist.

2.2 Eigenschaften der Gammafunktion

AuBer den in 2.1.1. behandelten Grundeigenschaften der Gammafunktion gibt es
noch einige weitere wesentliche Eigenschaften, die fiir die Behandlung anderer
spezieller Funktionen eine groBe Rolle spielen und deshalb hier zusammengestellt
bzw. hergeleitet werden. Diese Beziehungen gelten fiir simtliche Darstellungen der
Gammafunktion.

1. Beziehung zu den trigonometrischen Funktionen
Es gilt )
POIU-2==", 240, %1, £2,.. @13)

nmwz
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Beispiel 2.1: Fiir z = % erhilt man aus (2.13)

PO on )7

sin —
2

Weiterhin folgt durch Anwendung von I'(z + 1) = zI'(z) hieraus
3 1 1 1 1 —
I'=)|=I'{l4+—)==TI|—)=—
(2) ( +2) :7(3) =37
31
r(-3-+1)=ir(i) 3L
2 2 2 2 2

3 Qn+1D@2n—-1..31 — ) y
1’(7 + n) — \/1: fir n 2 1, ganzzahlig. (2.13)
Aufgabe 2.3: a) Man beweise Formel (2.13) unter Verwendung von (2.9) und der Darstellung der
Sinusfunktion als unendliches Produkt.

b) Mit Hilfe von (2.13) weise man die folgende Integraldarstellung nach:

[(ho]
1 i ‘
Tﬂ:;f(_,) etdr. @149
=

2. Multiplikationstheorem von Gauf3 und Legendre
Firn=1,2,... gilt

r(z)r(z + %) F(z + %) ...r(z 2o 1) R L)
(2.15)
Beispiel 2.2: Fiir n = 2 ergibt sich die als Legendresche Relation bzw. als Verdoppe-
lungssatz bekannte Formel
225-1(2) Iz + ) = /7 T'Q22). (2.16)
Aufgabe 2.4: Man beweise (2.16) ausgehend von der Darstellung (2.8) der Gammafunktion!

3. Asymptotische Entwicklung des Logarithmus der Gammafunktion — Stirlingsche
Reihe :
Fiir log I'(z) gilt die als Stirlingsche Reihe bekannte asymptotische Entwicklung

lo, I’(z)~(z——i)lo z—z+—l—lo 27\:+§‘, —LAB"-—

g 7) o8 3 0BTt L 3oy — 1) 2T

fiir z— o0 in |arcz] £ 7 — 9, § > 0, wobei B, die Bernoullischen Zahlen (vgl.

Band 3, Beispiele 4.16 und 4.24) sind. Hiermit besitzen wir natiirlich auch sofort die

asymptotische Entwicklung fiir '(z). Nachfolgend schreiben wir diese in der Art auf,

daf} wir die asymptotische Reihe nach dem 5. Glied abbrechen. Es gilt

il L 1 1 139 571
= 2 2 Pl . —
@ =2"2e¢ (m [1 * 12z T 2887 T 318402 | 24883202

+0 (%)] @.18)

flirz— oo in |arcz] < =4, 6 > 0.

@.17)
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Insbesondere besitzen wir mit dieser Formel auch die Méglichkeit, die Fakultdt abzuschitzen.
So ist beispielsweise

L 3 2% f21\21 1
e =200 % 21% Ze-ll(Zn)2-1=,/2—f(—) > 5T (2.19)
€

AbschlieBend sei bemerkt, daB man das Fehlerglied bei Abbrechen der Stirlingschen Reihe mittels
Formeln abschitzen kann [1].

Diese asymptotischen Aussagen iliber das Wachstum der Gammafunktion fiir
groBe Argumentwerte werden sich als unumgéngliches Hilfsmittel bei der Behand-
lung weiterer spezieller Funktionen erweisen.

2.3. Betafunktion

Sehr eng mit der Gammafunktion im Zusammenhang stehen die Eulerschen
Integrale erster Art, erklart durch

1
B(p,q) = [ x*-'(1 — x)*-1dx, Re(p) >0, Re(q) > 0. (2.20)
0

Hierbei verstehen wir unter x?~! bzw. (1 — x)?~! die Werte von e® V18> bzw.
e@- D=0 dije der reellen Definition des Logarithmus entsprechen. Man zeigt
unter diesen Voraussetzungen leicht, daB B(p, q) (eventuell im uneigentlichen Sinne)
existiert. Einfache Eigenschaften von B(p, ¢) sind

B(p,q) = B(¢,p), .21)
Bp.g+1) =2 Bp+1,9), 22)
B(p,q) = B(p +1,9) + B(p,q + 1). (2.23)

Besonders wichtig ist der Zusammenhang der so erkldrten Betafunktion (so wird
das Eulersche Integral ebenfalls genannt) mit der Gammafunktion. Es gilt: Fir

Re(p) und Re(q) + % ist
B(p,q) = %‘?—f;%. (2.24)

2.4. Anwendungen der Gamma- und Betafunktion in der Wahrscheinlichkeits-
rechnung und Statistik

Wir werden uns nachfolgend darauf beschrinken, einige Beispiele zu nennen, wobei Gamma-
bzw. Betafunktionen als bzw. in Verteilungsfunktionen zufélliger Variabler auftreten. Im technischen
und 6konomischen Bereich kommen hiufig stetige Zufallsvariable vor, deren Realisierungen nicht
negativ sind. Eine wichtige solche Verteilung ist die Gammaverteilung. Eine Zufallsvariable X
mit der Dichtefunktion

0 fir x =0,
f&x) ={ b°
)
wobei p > 0 und b > 0 ist, heiBt gammaverteilt.

xP~le=*  fiir x>0,
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Es gilt: f(x) = 0 fiir alle x und mit der Substitution bx = ¢ wird
+ 0 0 0
b? 1
f)dx = —— f xPle ¥ dy = —— — f tP-le~tdr = 1.
j I'(p) I'(py b°
— 00 0 0
Fir die speziellen Parameter p = 3 und b = 2 ist im Bild 2.5 die entsprechende Dichte gezeichnet.

fix)

Bild 2.5. Spezielle Dichtefunktion zur Gammaverteilung
0 7 2 3 4 5x

Als Verteilungsfunktion der Gammaverteilung ergibt sich

x bx
F(x) = L f tP-le-btdr = ; f P-le~"dr.
I'(p) I'(p)
0 0

Wichtige Spezialfille, die insbesondere in der Bedienungstheorie eine groBe Rolle spielen, sind die
Exponentialverteilung (p = 0) und die Erlangverteilung (p = 1, ganzzahlig).

Zufdllige Variable, deren Realisierungen auch nach oben beschrinkt sind, kénnen héufig durch
Betaverteilungen beschrieben werden. So wird in der Netzplantechnik, bei stochastischer Betrachtungs-
weise, die Vorgangsdauer hiufig als betaverteilte ZufallsgroBe angenommen.

Eine ZufallsgroBe X mit der Dichtefunktion

1
—xP(1 — x)* fir 0<x<1;p,q>0.
fx)={B+1,q+1) ’
0o - sonst

heiBt standardisiert betaverteilt. Eine Vorstellung von solchen Verteilungen liefert Bild 2.6. Die

fx)
p=1.9=2 p=ig=l

=~
<

=
Py

Bild 2.6. Spezielle Dichtefunktionen zur Betaverteilung
0 025 95 07% 1 X

Berechnung der Momente dieser Verteilungen oder auch spezieller Funktionswerte erfordert die
Kenntnis der Gamma- und Betafunktionen. Diese treten auch insbesondere in den Priifverteilungen
der mathematischen Statistik auf.



3. Zylinderfunktionen

3.1. Aligemeine Bemerkungen und Einfiihrung der Zylinderfunktionen 1. Art

Das Studium der Zylinderfunktionen ist insbesondere fiir Naturwissenschaftler
und Techniker von groBer Bedeutung, weil diese Funktionen zur Losung konkreter
Probleme erforderlich sind. Beispielsweise fiihren Schwingungsprobleme, Knick-
probleme, die Bewegung eines Elektrons in einem Magnetfeld oder die Untersuchung
von Flichentragwerken auf Differentialgleichungen, deren Losungen die Zylinder-
funktionen sind, die auch Besselsche Funktionen genannt werden.

Bekannterweise spielt in der Physik die Lapl he Differentialgleich
pp YL Ya 8

ox2 oy 0z2
eine groBe Rolle bei der Beschreibung von Feldern. Ist das vorgelegte Problem zylindersymmetrisch,

so ist die Einfithrung von Zylinderkoordinaten ¢, ¢, z anstelle der kartesischen Koordinaten x, y, z
zweckmiBig. Hierbei ist

=0 @3.1)

x=pcosp, @*=x+)?%

y =psing, qz=arctanl, 0=p9,0=p<2n,
x

Bild 3.1. Zylinderkoordinaten

Die partielle Differentialgleichung Ai = 0 wird nun in Zylinderkoordinaten geschrieben. Dazu
setzen wir

a(x, y, z) = (o cos g, g sin g, z) = u(o, 9, 2).
Wir erhalten nach elementarer Rechnung die Laplacesche partielle Differentialgleichung fiir # in
Zylinderkoordinaten:

1 1
Ugo + ? Uy + ?‘”ww + Uz = 0. (3.2)

Losungen dieser Differentialgleichung findet man durch Separation, indem man den Produktansatz
uo, ¢, 2) = R Pp) Z(z) £ 0 33)
in (3.2) eintrigt. Man erhilt dann (vgl. Band 8, Beispiel 3.16)

1 1
R"(0) D(p) Z(2) + 7 R(0) D(p) Z(2) + z R(o) D"(p) Z(z) + R(e) Plg) Z"(z) = 0
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und

1 1
R(o) 2(p) Z(2) [R”(e) R@Q—— + D(p) =+ Z"(2) ] =0
R, R(e) ‘P(w) Z(2)

Da (3.3) nicht identisch null sein soll, muB dies fiir die eckige Klammer gelten. Wir schreiben des-
halb:

R 1RQ 196G __ 20 e

R@ ¢ R@ ¢ 9 Z(z) * ’
Da diese Gleichung identisch in g, @, z gelten soll, die linke Seite aber nur von ¢ und ¢ und die rechte
Seite nur von z abhingt, miissen in Wirklichkeit beide Seiten gleich einer Konstanten, die wir —42?
nennen wollen, sein. Demzufolge entsprechen (3.8) die beiden Gleichungen

R'@ 1 R 1 9"@g)

O T, Loy ) 3.5
Re) o R@ o> D) * ’ .
z'e

7o " 2, (3.6)

Die Gl. (3.6), die in Z"(z) — 42Z(z) = 0 umgeformt werden kann, ist eine homogene Differential-
gleichung zweiter Ordnung mit konstanten Koeffizienten und fiir unsere Betrachtungen uninteres-
sant. Aus (3.5) folgt

R"(9) R ()
2——+9¢ + A%% = — s (3.7
o x0T e )
und nach dem gleichen SchluB wie oben folgt, wenn wir die Konstante gleich k? wihlen,
, R'(0) R'(0)
—_—t + %% = +k?, 3.8
“To o T €9
D"(¢) + k*D(g) = 0. 3.9)
Die Differentialgleichung (3.8) fiir R(g) schreiben wir in der Form
¢’R"(0) + eR'(p) + (W%¢* — k) R(e) = 0 (3.10)
bzw.
1 k*
R"(0) + ?R'(Q) + (12 - F) R(o) = 0. (3.11)
Mit x = A9 und R(p) = R(x) = J(x) wird hieraus
1 k*
J(x) + —;J'(x) + (1 - —x—z) J(x) = 0. (3.12)

Da die Differentialgleichung (3.12) aus der Laplaceschen partiellen Differentialgleichung hervorgeht,
spielen ihre Losungen offenbar fiir physikalisch-technische Probleme eine wichtige Rolle.

Diese gewohnliche Differentialgleichung zweiter Ordnung mit nichtkonstanten
Koeffizienten fiir die gesuchte Funktion J(x) hei3t Besselsche Differentialgleichung.
Die Gesamtheit ihrer Losungen sind die Zylinderfunktionen oder Besselschen Funk-
tionen, die nachfolgend behandelt werden (vgl. Band 7/1, Band 8, 4.4.3.). Lésungen der
Differentialgleichung (3.12) findet man folgendermaBen: Wir multiplizieren (3.12)
mit x2 und erhalten

x2J(x) + xJ'(x) + (x* — k?) J(x) = 0. (3.13)
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Zur Losung machen wir einen Potenzreihenansatz der Form

o
J(x) = x93 a,x" (g reell).
n=0
Dann sind
o L
J(x) =gx? 1Y opx" + x4 Y onxt,
n=0 n=1

d L 0
J'(x) =q(g — 1) x972 3 a,x" + 2gqx91 3 anx" 1 + x4 Y an(n — 1) x" 2
n=0 n=1 n=2
Einsetzen in die Differentialgleichung liefert
0 0 0 0
X2 Y g(q — 1) agx™ + 2x9 Y, gynx™ + x2 Y. apn(n — 1) x™ + x9g Y x,x"
n=0 n=1 n=2 n=0
- 0
+ x7 Y onx" + (x2 — k*)x?T Y x,x" = 0. (3.14)
n=1 n=0

Der Faktor x? + 0 auf der linken Seite dieser Gleichung kann weggelassen werden.
Betrachten wir nun zunichst den Koeffizienten von x° in der so entstehenden Glei-
chung, welcher natiirlich verschwinden muf3:

x%: g(g — 1) oo + govo — k?0g =0, d.h. g% = k2

Diese ,,charakteristische Gleichung® besitzt die Losungen g = +k, wobei wir
zuerst ¢ = +k auswihlen. GI. (3.14) geht dann nach leichter Rechnung iiber in

3 [(n? + 2kn) o, + wpor] X = 0. (3.15)
n=1

Der Koeffizientenvergleich fiir die Potenzen x" mit n = 1 liefert:
(1+2k)a; +a-y =0 mit «_y =0,
22 +2k-2)x; + x5 =0,

(n* + 2kn) x, + ®,—, = 0.
Da «, frei wahlbar ist, setzen wir &, = 1 und erhalten damit

1 1
“ra 2T e ST Im ik

0y =0, a, =
allgemein
0ypp =0 fiir r=12,..,

b= (=1 !

24 (2r —2)(2r) 2 + 2k) (& + 2k) - 2r + 2k)
fir r =0,1,2, ...
Wir erhalten ebenfalls Losungen der Rekursionsformeln fiir die «,, wenn wir mit

3 Sieber, Funktionen
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[2¢I'(k + 1)]* durchmultiplizieren (wir schreiben I'(k + 1), da k nach Defi-
nition nicht ganzzahlig und groBer 0 sein muB). Das ergibt:

1

X2, =—2—,‘m0‘zr
_ =1y
T2k + 1) 24 (2r — 2)(2r) 2 + 2k) (4 + 2k) - 2r + 2k)
_ =1y
T2k + 1) 2 2(1 + k)2 + k) (r + k)

_ -1y
2642\ P(r + k + 1)
fiir n gerade (n = 2r, r = 0, 1, 2, ...). Wir erhalten also die Lsung
=koo_"= oo_' 2r_k°0 (—1)’x2’
J(x) X! ngoanx xkr§00‘2rx =X r:ZO r!F(r Tk + l)227+k
oder anders geschrieben
_ 0 (—1)" X 2n+k
0= 5 e ey (2) (316)

Um die Abhéngigkeit dieser Funktion J(x) vom Parameter k anzudeuten, schreiben
wir nachfolgend

@ (—])" X 2n+k
) =,,E=:o n!ll'(n + k + 1) (—2—) ’ @17

Damit haben wir eine Losung der Besselschen Differentialgleichung erhalten, die
wir Besselfunktion 1. Art nennen. Fiir ¢ = —k ergibt sich ebenfalls eine Losung
der Besselschen Differentialgleichung.

Aufgabe 3.1: Man leite eine Losung der Besselschen Differentialgleichung her, indem man in der
charakteristischen Gleichung g = —k setzt.

Die reelle Zahl, die sich bei der Separation der Differentialgleichung (3.7) ergeben
hatte, machte es notwendig, fiir die Darstellung von J(x) die Gammafunktion zu
verwenden.

Beispiel 3.1: Ist speziell k ganzzahlig, so wird
I'tk +n+1)=(k+ n)!.
Fiir k = 0 ergibt sich die recht einfache Potenzreihe
\n 2i
Tolx) = ,.%::o%—!l))’— (%) " omit L0 =1
und unendlichem Konvergenzradius. Andere Beziehungen, wie z. B. ein Vergleich von Ji(x) und
J_i(x) fiir ganzes k werden spéter angegeben.

Es ist offenbar notwendig, sich zunéchst die Eigenschaften der durch (3.17) er-
kldrten Besselfunktionen 1. Art klarzumachen, wobei es erforderlich sein wird, auch
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andere Darstellungen dieser Funktionen zu finden. Hierzu ist es sachgemiB, die
Variable x komplex zu betrachten (wir schreiben dann dafiir z) und den Fall reeller
Variabler wieder, wie schon bei der Gammafunktion, als Spezialfall zu behandeln.

3.2. Zylinderfunktionen 1. Art, Besselsche Funktionen

3.2.1. Definition und Eigenschaften bei ganzzahligem Index

Es zeigt sich, dal man die gleichen Funktionen, die wir in 3.1. als Losungen der
Besselschen Differentialgleichung (3.16) erhalten hatten, auch gewinnt, wenn man
eine in den komplexen Variablen z und ¢ holomorphe Funktion f{(z, ) in eine Laurent-
reihe entwickelt. Deshalb nennen wir diese Funktion die erzeugende Funktion,

flz,0) = e%('— —:') fiir z, ¢t komplex, endlich und # % 0. (3.18)
Wir entwickeln f(z, 7) in eine Laurentreihe mit 0 < |#| < o0 nach Potenzen von ¢.
Dann gilt
fen= 3 K¢ (3.19)
mit e
K@) = % ¢ et 7Dy, (3.20)
o+

Das Zeichen é bedeutet, daB3 langs eines geschlossenen Weges, der den Nullpunkt

o+
enthilt und mathematisch positiv durchlaufen wird, zu integrieren ist. Dieses Er-
gebnis folgt aus dem Entwicklungssatz fiir Funktionen in Laurentreihen (siehe
Band 9). Wir bezeichnen die Entwicklungskoeffizienten wie in 3.1. mit Ji(z) und
nennen sie Besselkoeffizienten bzw. Besselfunktionen. Wir werden nun die durch
das Integral in (3.20) erkldrten Besselfunktionen durch eine Reihe darstellen, die
mit (3.17) ibereinstimmt, und damit zeigen, daB es gerechtfertigt.ist, die durch (3.20)
dargestellten Funktionen ebenfalls Besselfunktionen zu nennen. Hierzu verwenden

wir die Substitution # = — ¢ und die Taylorreihe

2
z2 w (1) 2\n
e W = 20 ( n}) (j_u) fir u =+ 0.
Dann gilt R
k z
J(2) = —21; (-;—) ¢ uk-1e"" F dy
o+
1 z k 0 —1) 22 n
- (7) et o3 ( n!) (Zu“) du. (3.20)
o+

Da Integrations- und Summationsreihenfolge vertauschbar sind, gilt

J(2) = 27" ”Zo C l)n (—2—)“”‘ ¢ ukn=lev dy,

0+
3%
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Nach dem Residuensatz kénnen wir das Integral iiber den.geschlossenen, den Null-
punkt einschlieBenden Weg ausrechnen:
1

w1 et dy = 2mi Res (e* u™*"1) |20 = 2mi{ (k + m)!~’
0+ 0, k+n <.

Fiir kK + n < 0 tritt die (—1)-te Potenz in der Laurententwicklung von e* y~*-"-1
nicht auf. k + n = 0 heit,dan = 0, 1, 2, ... ist, k = 0, und wir erhalten fiir diesen

Fall
z 2n+k
Jlz) = E (=" (7) o612 ot
‘ nso n! (k+n!’ 1,2, . g

Da die unendliche Reihe in (3.21) fiir |z] < co konvergiert, sind die Ji(z) ganze
(genauer: ganze transzendente) Funktionen von z.

Fiir negative k, wir setzen k = —k’, bedeutet —k’' + n<0 n<k’, d.h,
fiir n < k’ sind die Residuen von e*u*-"-! gleich 0. Deshalb gilt in diesem Falle

z 2n-k
o iy (3)
I =2 S o

k+nz0,

Fiihren wir die Indextransformation m = n — k ein, so ergibt sich hieraus

RN UL

2mik :
B B 7) — (=G, k=1,2,... (322

Aufgabe 3.2: Man beweise die Konvergenz der Potenzreihe in (3.21).

Mit Hilfe (3.21) und (3.22) haben wir also die Besselfunktionen Ji(z) fiir ganzes k
durch Potenzreihen dargestellt. Wegen der Konvergenz dieser Reihen fiir |z|] < oo
besitzen die Ji(z) in der endlichen z-Ebene keine Singularititen, sind holomorph und
besitzen bei co eine wesentliche Singularitit. Vergleichen wir (3.21) und (3.17), so
sehen wir, daB (3.21) mit (3.17) identisch ist, wenn man k = 0, 1, 2, ... wihlt, da
dann I'(n + k + 1) = (n + k)! ist, und wenn man auBerdem z = x + iy mit
y = 0 setzt. Wir haben also durch unsere Betrachtungen in diesem Abschnitt (Ent-
wicklung einer erzeugenden Funktion in eine Laurentreihe) die gleichen Funktionen
erhalten, die sich auch als Losung der Differentialgleichung (3.16) ergeben.

Wir wollen nun zeigen, daB3 Integraldarstellungen, wie (3.20"), Vorteile besitzen,
wenn man nachweisen will, daB sie Lésungen einer Differentialgleichung darstellen.
Natiirlich wissen wir wegen der Ubereinstimmung des Integrals in (3.20") mit der
Potenzreihe (3.21) bereits, daB dieses Integral eine Losung der Besselschen Differen-
tialgleichung darstellt. Wir betrachten zu diesem Zwecke die Differentialgleichung
(3.12) im Komplexen und ersetzen x durch z (z komplex) und J(x) durch eine kom-
plexwertige Funktion y(z). Dann besitzt die Besselsche Differentialgleichung die
Form

V(@) + %y’(Z) + (1 - —i%—) () =0, (3.23)

wobei der Strich die komplexe Ableitung bedeutet.
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Beispiel 3.2: Wir zeigen, da3

1 [z\* P
Ji(z) = - ¢ wk-le 4 dy (3.20")
o 2
o+ °
Eosung dieser Differentialgleichung ist. Durch elementare Rechnungen zeigt man, da3

1k [z\*! P 1 [z\k+! wo 1
7 Z ¢ k1" T F qy — Z ¢ ~k-1e" T T __dy
Ke) = 2mi 2 (2) “ 2mi (2) “ u
o+ 0+

2
J”(z)—_]_ﬁk_—__l_( h2¢u“‘-1e"_17du
2= 2 2 2

0+
22
- -.14 %(7) ¢u_""eu_7—l——du
2ri It u
K 22
- ZL k : ! (%) 96 wtere ™ gy
i J u
k+2 22
+;. i) 9§u"‘“eu_—‘7—l—du
27 \ 2 u?
o+

gilt. Setzt man diese Beziehungen fiir »(z) in die Differentialgleichung (3.23) ein, so ergibt sich:

z\k k+1 22) u- 22
) oukt - . )
2z (2) ﬁ {l u -'-41}e du

o
1 /z\k d _ a2
=— (-—) \ﬁ—{u‘*“l ¢ "}du: 0. (3.24)
27\ 2 du
o

22
Das Integral ist null, da der Ausdruck uk-1e eindeutig ist.

Mit diesem Beweis haben wir ein Beispiel dafiir, wie man Kurvenintegrale als Losungen von
Differentialgleichungen nachweist. Wie man sieht, ist hierbei die komplexe Behandlung ganz ent-
scheidend.

Einige weitere Eigenschaften der Besselschen Funktionen fiir z = x reell erkennen
wir sofort aus der Reihendarstellung (3.21)

X 2n+k
< i (3)
W =¥ == e

Fir k = 1,2, ... gilt ndmlich J,(0) = 0. Weiterhin gilt fiir die gerade Funktion
Jo(x): Jo(0) = 1. Wegen der umfangreichen Anwendungsmaglichkeiten hat man die
Funktionen Ji(x) tabelliert. Siehe hierzu [1]. Wir geben hierzu als Beispiel eine
Wertetabelle (Tabelle 3.1) und Funktionsskizze (Bild 3.2) fiir Ji(x), k = 0,1, 2,3,
an.

k=0,1,2,..
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Tabelle 3.1. Die Besselfunktionen Ji(x), k = 0, 1, 2, 3; x reell

x Jo(x) J1(x) Ja(x) J3(x)
0 1,0000 0,0000 0,0000 0,0000
1 0,7652 0,4401 0,1149 0,0196
2 0,2239 0,5767 0,3528 0,1289
3 —0,2601 0,3391 0,4861 0,3091
4 —0,3971 —0,0660 0,3641 0,4302
5 -0,1776 —0,3276 0,0466 0,3648
6 0,1506 —0,2767 —0,2429 0,1148
7 0,3001 —0,0047 —0,3014 —0,1676
8 0,1717 0,2346 —0,1130 —-0,2911
9 —0,0903 0,2453 0,1448 —0,1809
10 —0,2459 0,0435 0,2546 0,0584
Jplx), 75 (x)

J5(x),75(x)
a0 200

Bild 3.2. Die Besselfunktionen Jy(x), J;(x),
J(x), J3(x), x reell

Eine weitere wichtige Eigenschaft ist ein Additionstheorem fiir Besselfunktionen.
Hierzu setzen wir z wiederum komplex voraus und betrachten die erzeugende Funk-

1
tione™ 7 - der Besselfunktion Ji(z; + z,). Wegen
ok (- %) e (- IT) & (- -l[—)

gilt auch fiir die entsprechenden Laurentreihen
+00 + o +o0
S s rmt=( % ser) (5 new)
k=—wo v=—00 p=—0

Multiplizieren wir die Reihen auf der rechten Seite dieser Gleichung, so koénnen
wir weiter schreiben

('+§=k‘,v(zl) Ju(zz)) k.

k=-o
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Durch Koeffizientenvergleich folgt hieraus das Additionstheorem

+ o0
Jizy + 25) = z_ka(Zx) J(z2). (3.25)
et
In dieser Formel sind eine Reihe interessanter Spezialfille enthalten, die uns auch
wieder zu Eigenschaften fiihren, die wir bereits in den obigen Bildern gesehen haben.
Setzen wir z;, = —z, = z und k = 0. Dann folgt aus (3.25)

Jo(0) = 1 = Jo(2) Jo(—2) +;ZO?l V-i(2) I(=2) + J(2) J-(—2)]

= Jo(2) Jo(=2) + (V1) 11(=2) + Ji(@) T_1(=2)) + -

Wegen J,,(z) = (—=1)*J(—2) und (3.22) folgt Jo(0) = 1 = J3(2) + 2J3(z) + 2J3(2) + -
Indem wir z = x reell setzen, folgen hieraus insbesondere die emfachen Abschat-
zungen

[Jox)| £1 und |Ji(x)| £ \/2 k=+1,4+2,..

3.2.2. Darstellung der Besselschen Funktionen mit ganzzahligem Index durch
trigonometrische Integrale

Wir betrachten die Laurentreihe (3.19) der erzeugenden Funktion

(= l) he k
2T = Y g . (3.26)
k=—o
Setzen wir t = €'?, d. h. |¢| = 1, so ergibt sich hieraus
elzsing — Z J(2) ek, (3.27)

Sind z und ¢ reell und trennt man in (3.27) Real- und Imaginérteil, so erhdlt man

< -0
cos (zsing) = Jo(2) + 2 J(z)coskp + 3 Ji(z) cos kg, (3.28)
k=1 k=—1

sin(zsing) = 3 J@) sinkg + 3 Ju() sin k. (3.29)
k=1 k=-1
Wegen (3.22) kénnen wir schreiben

cos (zsing) = Jo(z) + 2 E J2,(z) cos 2k,

. k=t (3.30)
sin (z sing) = ZkZ Jox-1(2) sin (2k — 1) ¢).

=1

Diese Formeln enthalten einige interessante Spezialfille.
Beispiel 3.3: Wihlt man ¢ = 0, so entsteht

0
1=Jo(2) + ZkZlJu(z).
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Fir ¢ = —-2— erhdlt man Darstellungen der trigonometrischen Funktionen sin z, cos z als Reihen von

Besselfunktionen

0
cosz = Jo(z) + 23 (—1D)"au(2),
k=1

w (3.30)
sinz = =2 % (= D)au(2). '
k=1
Ersetzt man schlieBlich in (3.30) ¢ durch —721 — @, so erhalt man
0
cos (zcos @) = Jo(z) + 2 Y (—1)"/au(2) cos 2kp,
k=1
(3.30")

sin (zcosg) = —2 czo: (= 1D*Jk_1(2) cos 2k — 1) p.
k=1

Die Formeln (3.30) sind aber gerade die Formeln fiir die Entwicklung einer Funk-
tion in eine Fourierreihe. Die Besselschen Funktionen erweisen sich daher auch als
spezielle Fourierkoeffizienten, fiir die man nach den allgemeinen Eulerschen For-
meln iiber Fourierkoeffizienten folgende Integraldarstellung erhilt:

Julz) = ]? f cos (zsing)cos 2kpdp, k =0,1,2,...,

0 (3.31)

kd
Toa@ =L J' sin(zsing)sin 2k — ) gdg, k=12, ...
0
Weiterhin erhélt man durch die Fourieranalyse die Integralbeziehungen

—717 f cos (zsing) cos 2k — 1) p dg
0

=71_—fsin (zsing)sin (2k — 1) dp = 0. (3.32)
0

Die Formeln (3.31) haben den Nachteil, dal man die Besselfunktionen mit ge-
radem und ungeradem Index jeweils durch eine andere Formel darstellt. Wir nehmen
deshalb jetzt eine Vereinigung beider Formeln (3.31) vor.

Wir betrachten

ki kg
% f cos (kg — zsing) dp = —7]? f cos (z sin @) cos ke dg
0 0

+L f sin (z sin ) sin kg dg. (3.33)
J ,
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Fiir gerades k ist der erste Summand auf der rechten Seite von (3.33) gleich Ji(z),
der zweite wegen (3.32) gleich 0. Fiir ungerades k dagegen ergibt der zweite Summand
Ji(z), wihrend der erste verschwindet. Deshalb gilt fiir jedes k = 0, 1, 2, ...

kd

I = ni J' cos (kg — z sing) dp. (3.34)
0

Wir haben die Integraldarstellung (3.34) fiir reelles z bewiesen. Auf Grund der
Holomorphie des durch (3.34) dargestellten Integrals in z gilt diese Darstellung nach
dem Prinzip der analytischen Fortsetzung fiir alle endlichen z. Da der Integrand eine
gerade Funktion ist, haben wir somit fiir endliches z die folgende Integraldarstellung

gewonnen:
+7

Ji(z) = ZL f cos (kg — zsing)dp = — f eitkg=zsing) gy (3.34)

-7
Vorwegnehmend se1 hier bereits bemerkt, da3 die Forme] (3.34') fiir nicht ganzes k
falsch ist.

3.2.3.  Definition und grundlegende Eigenschaften der Besselfunktionen bei beliebigem
komplexem Index

In 3.1., wo wir die speziellen Besselfunktionen (3.17) als Lésungen der Differen-
tialgleichung (3.12) einfiihrten, war der Index k nicht notwendig ganzzahlig. Also
reicht unsere bisherige Behandlung des ganzzahligen Falles zur Losung physikali-
scher bzw. technischer Probleme nicht aus. Die Gleichung (3.17) definiert uns Bessel-
funktionen J(x) fiir beliebige komplexe k, da wir die Gammafunktion fiir komplexe
Argumente kennen.

Wir zeigen hier die Ausdehnung der Definition der Besselfunktion auf beliebige
komplexe Indizes k ausgehend vom Kurvenintegral (3.20")

k
I) = 21:1( 22) Pursr e W du. (3.35)
o

Wenn k nicht notwendig ganzzahlig ist, werden wir nachfolgend » (v beliebig,
komplex) anstelle von k schreiben. Der Integrand von (3.35) wird fiir k = » (nicht
ganzzahlig) mehrdeutig. Wir schneiden deshalb die # Ebene entlang der negativen
reellen Achse auf und setzen |arc u| < =. Als Integrationsweg € wihlen wir einen
Weg der aus dem Unendlichen kommend den Nullpunkt positiv umlduft, Bild 3.3,
und setzen schlieBlich fiir arc z den Hauptwert. Ist speziell » ganzzahlig, so kann der
Schnitt wieder wegfallen und der Weg € auf einen Kreis um den Nullpunkt zu-
sammengezogen werden (Cauchyscher Integralsatz).

0
s / 0
v nicht ganzzahlig k=v, ganzzahlig

Bild 3.3. Integrationswege




42 3. Zylinderfunktionen

Folgerichtig definieren wir deshalb die Besselfunktionen mit nicht notwendig
ganzzahligem Index
| 0+) C o,
=L (EY (e 3
J(2) P ( 2) f u?te 4wdu  (z,v komplex). (3.36)
©0*)
(Fiir das Integral f ... du wird hier die gebriuchliche Symbolik f ... du verwendet.)

(4 -0
Wie in 3.2.1. stellen wir diese Funktion als Potenzreihe dar, wobei wir uns hier bei
entsprechenden Schritten kiirzer fassen. Es ist

©o*)
z 2n
1 z\* & =1y (—2—)
- Z —v-n-1 gu
T@) = ( 2) z - wr et e du, (3.37)
Nach (2.14) gilt
. C oY
- -z ot
G = f( 1retdr.
Deshalb wird
©*) ©*) o
~v—n=1 au —_ — ) ¥-n-1 o-1 = Ul
fu e du = f( portetdr = s (3.38)
- 00 0
und damit gilt
. 2\ 204y
. Cr(3)

1O =X e ans D

Da diese Reihe fiir |z| < oo fiir beliebige » konvergiert, erweist sich die Funktion
z=*J(z) als eine ganze transzendente Funktion von z fiir beliebige komplexe ».
Fiir » ganzzahlig ist die in 3.2.1., 3.2.2. behandelte Besselfunktion mit ganzzahligem
Index in den Formeln (3.36) und (3.39) jeweils als Spezialfall enthalten.

Wir bemerken bereits an dieser Stelle, daB die oben eingefiihrten J,(z) auch fiir
beliebige komplexe » Losungen der Besselschen Differentialgleichung sind. Fiir
nicht ganzzahliges » sind die Besselfunktionen J,(z), J-,(z) zwei linear unabhingige
Losungen und bilden somit ein Fundamentalsystem von Losungen fiir diese Diffe-
rentialgleichung. Im Falle » = k, ganzzahlig, muB man nach weiteren Lésungen
suchen (vgl. 3.3.1.).

Nachfolgend entwickeln wir einige wichtige Relationen (auch Rekursionsformeln
genannt) zwischen Besselfunktionen, wobei wir zum Nachweis die Potenzreihe (3.39)
benutzen. Wir bilden ausgehend von (3.39)

J@ _ 3 = 2
2" S0 n'T(v+n+1) 22+ ° (3.40)
Bekanntlich ist die auf der rechten Seite von (3.40) stehende Potenzreihe mit

(3.39)
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|z| < oo beliebig oft gliedweise differenzierbar, wobei jede Ableitung wiederum
fiir |z] < oo konvergiert. Wir bilden

d [J,(2) @ (=1)"2n z2n-1

E( zv )=,,=[ T +n + 1) 22"

© (=120 + 1) 22141

=I=EO a7+ 1)!1"(1, +1+2) 221+v+2

1 . (_1)" (%)ZDH»N-I

1
= _7,,7:0n!l’(v+ T+n+1) = I

Wir erhalten also

J

@) = —J(d) + 222 “(z) (341)
Entsprechend findet man, wenn man z'J,(z) nach z differenziert,

d_dz(zv (2) = 27,-4(z) baw. JU2) = J,..(2) — il “(z) (3.42)
Durch Addition von (3.41) und (3.42) folgt

JU2) = 3(J-1(2) — J,+4(2)), (3.43)
und durch Gleichsetzen der beiden rechten Seiten von (3.41), (3.42) erhalten wir

20J,

250 _ @) + 1) (3.44)
Aufgabe 3.3: a) Man beweise die Formeln (3.42)!
b) Man zeige die Giiltigkeit von

—~V—m — (—1)m a- ~V

27V 4 ml2) = (— 1) P (=™ 1(2) (3.45)

fir ganzzahliges m.

Dies sind einige einer groBen Anzahl von Funktionalgleichungen (Rekursions-
formeln) fiir Besselfunktionen. Sie geniigen, um einen wichtigen Spezialfall zu be-
handeln. Die Besselfunktionen, deren Index » gleich der Hilfte einer ungeraden Zahl
ist, konnen durch elementare Funktionen ausgedriickt werden,

v = iz’"z—“, m=01,2, ..
Nach (3.39) ist
7 _ ) (_l)n z\3+2n (3 46)
@ =X ST+ (7) : :
Wegen (2.13") kénnen wir I'(n + 3) als Produkt entwickeln und erhalten
(=1 Zh+2n
Ji(2) = Z

A=0 nl-2m-1-3..Qn+1)/r 27%
_ 2 ® (_1)n22n+1
‘V?:‘Eo @n + 1!
2 .
= /7:; sin z. (3.47)
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Aufgabe 3.4: a) Durch mehrfache Anwendung der Beziehung (3.41) beweise man:

2 amil gm sinz
Jamir (@) = (-D)" J—z 2 —), m=0,1,2,.. (3.48)
- = zmdz" z
b) Man zeige:

2
J 1(2) = A/—— cos z, (3.49)
-7 wz
7 @ /T -3"'2—“ dan cosz) (3.50)

z)= [— z —_— ). -

—-Z'L;i = z"dz" z

3.2.4. Weitere Integraldarstellungen fiir Besselfunktionen mit beliebigem Index

Wir stellen in diesem Abschnitt einige weitere Integraldarstellungen der Bessel-
funktionen mit beliebigem Index zusammen, ohne auf Beweise einzugehen.

Integraldarstellung von Schlifli (1871). Fiir Re(z) > 0 und beheblgen Index » gilt

J(2) = — f cos (v — zsin @) dp + _sm(v+])‘n: f ervomsinhy dyy o (3.51)
0
Ist » ganzzahlig, so fallt der zweite Term in (3.51) weg, und es entsteht die Besselsche
Integraldarstellung (3.34). Ist Re(z) < 0, so benutzen wir die mit Hilfe von (3.36)
leicht einzusehende Beziehung
em™J(—z) fiir % <arc(z) <,
J(2) = (3.52)

e™J () fir —m <arc(z) < — z,
so daB wir auch in diesem Fall die Darstellung (3.51) verwenden konnen. Dem-

W - T LI
zufolge steht nur fiir rein imagindres z, arc (z) = —Eoder arc(z) = — ikeme Inte-
graldarstellung der Form (3.51) zur Verfiigung.

Weiterhin ist die von Hankel (1869) gefundene Integraldarstellung der Bessel-

funktionen J,(z) von Bedeutung:
a*,-17)

"))

Ne) = —2— 2 (2 = 1)'=4 cos (zf) dr (3.53)
2 I (7)
(A4>0)

fir » 4 4+ k, k =0,1,2, ... Der Integrationsweg ist in Bild 3.4 dargestellt. Fiir

die gleichen Werte von » gilt
(1*,-17)

dehlvi)

] 12— 1)yr—tel= dr. (3.54)
2mi F(i)

Jy(2) =

(4>0)
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K».\/I/\ (O | % /7
1 e g T\
K?/ K‘,,y

Bild 3.4. Integrationswege zur Hankelschen Integraldarstellung

3.2.5. Asymptotisches Verhalten der Besselschen Funktionen

Das asymptotische Verhalten einer Funktion ist sowohl fiir mathematische Unter-
suchungen als auch fiir naturwissenschaftlich technische Anwendungen dieser Funk-
tionen duBerst wichtig. Wir konnen hier keine systematische Behandlung zur Her-
leitung asymptotischer Aussagen von Funktionen, wofiir insbesondere die Integral-
darstellungen wichtig sind, durchfiihren und verweisen diesbeziiglich auf [1, 10, 11].

Zunichst betrachten wir das asymptotische Verhalten der Besselfunktionen fiir
kleine |z|. Fiir komplexe z, z + oo, gilt die Potenzreihenentwicklung (3.39):

CorE L o)

JO=2 e rasn ~\2) | Tosn V.2 aloTnsD
(3.55)

Wir wollen diese Aussage nun vergrobern, indem wir nur noch das Verhalten des

Ausdrucks
z 2(n-1)
. C0(3)

21 nl'(n+v+1)

-\ 2u
P =
=(3) ZWW(%)TQT

fiir kleine |z| untersuchen. Da diese Reihe auf der rechten Seite von (3.56) ebenfalls
fiir endliche z konvergiert, stellt die rechte Seite von (3.56) ein O(z?) bzw. o(z) fiir
|z] = 0 dar. J,(z) besitzt demzufolge fiir |z| - 0 das asymptotische Verhalten

z (_1),,(%)" =(Z)2,,

ac1 n!ll'(v +n+ 1) 2

(3.56)

z¥ >
J(2) = m[l + 0(z%)]

bzw. (3.57)

z" .
Jy(z) = m[l + o(z)] fur |z|] - 0.
Selbstverstandlich kann man diese Formeln noch verbessern, indem man weitere
Glieder der Taylorreihe (3.55) verwendet.
Von besonderem Interesse ist das Verhalten von J,(z) fiir |z| — 0.
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i ‘J ! (= 5=%) 1), ¢ —Di 3
R P —a [P(r+5) + 52 0(+3)

b s OZDOD0don D) (Zi:)nl’(v+n+—21—)
e e I M C LA
A [ R L ELLS) <(;zi)):r(7+n+§)
+ O(Z_.._I)H (3.58)

fiir [z| > 1, Re(z) > 0, |arc z| <z , Re(») > —%
Fiir viele Untersuchungen ist es zweckmaﬂlg, diese Formel umzuschreiben, indem
man die Summen und die Exponentialfunktionen anders schreibt.

T

J(2) =F—(VT;—)72_;[[COS(Z %v —-T) +1sm(z ——;iv _T)]

x{]’( )+[E](v-%)(v—%) =3 —20+1) (=1}

! @)™
n—1

+i [ ](v—%)(v—%) -3 -2)Iv+20+3 (=1
2 @+n! @z

+ 0(z"‘“)}

+lcos(z =Z» = Z) —isin —Ev—f—)] F(v+l)
[on(e =30 -2) - vinfe-Zr - 3] fr e+ 4

[ ](v—%)(v—%) =3 +2+ DI +21+% (-
1=1 Q! (2z)2

n—1
[il(v—%)(v—%) -3 -2 +20+3 (-1
=0 @+ (2271

+ 0(2“"‘1)}]. (3.59)
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Nach elementaren Umformungen erhilt man hieraus

Jv(z)=m[2f(v +—;—)cos(z—%v—-%)

g T ’ _ . _E _IC_ "
+ 2 cos (z —5r - —4—) A, 4(2) — 2sin (z 57 4) B, ,(2)

+ 0(z"'“)] , (3.60)
wobei 4, ,(z) und By ,(z) die Summen in (3.59) bezeichnen. Klammert man noch

I'(v + %) aus, so entsteht das folgende Ergebnis: Fiir J,(z) gilt fiir groBe |z|, Re(z) > 0
und Re(v) > —1% die asymptotische Entwicklung

J(2) = A/—th [cos (z - %v - %) {1 + 4,2}

— sin (z — 2 %) B,,(2) + 0(z"'“)] 3.61)
mit

- oD -3 -2+ )6+ 2+ (1)
An@ = X, e Te+ D P
1 (3.62)

Tl o-po-p-o-1-mre+ary 1y

Bua@) = X CERACET) Q)

(3.63)

Durch fortlaufende Anwendung der Beziehung I'(w + 1) = wl'(w) kann man in
(3.62), (3.63) die Gammafunktionen noch vollstindig eliminieren.

Beispiel 3.4: Wir wollen abschlieBend zwei wichtige Spezialfille von (3.61) notieren, die entstehen,
wenn man n = 0 oder n = 1 setzt. Fiir n = 0sind 4, o(z) = B, o(z) = 0, und es entsteht die Forme)

Iz) = A/ % [cos(z - % v — %) + O(z“)] (3.64)

fiir |z] — oo in Re(z) > 0 mit Re(v) > —%. Die Besselfunktionen mit dem beschriebenen Parameter-
bereich verhalten sich also fiir betragsmaBig groBe z mit Re(z) > 0 wie die Funktion

A/2 ki 7:)
—cos|z——v——].
Tz ( 2 4

Die Aussage wird genauer, wenn man n = 1 setzt. Es gilt:

J _A/Z_ L . w w\ » -1} o 365
(2) = ;[cos(z——z—v 7)—-sm(z——2—v—7) > + (Z)] (3.65)

fir |z| > oo in Re(z) > 0 mit Re(») > — %

/ - CG-BHro+ P00 -1
(wegen Ap@ =0, B = e = )
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Mit diesen Betrachtungen konnte nur ein kleiner Einblick in die Theorie der
asymptotischen Entwicklungen fiir Besselfunktionen gegeben werden. Immerhin
verfiigen wir nun beispielsweise im Falle reeller positiver z {iber asymptotische For-
meln fiir J(z) fiir groBe |z|, die wir wegen J,(—z) = (—1)"J,(z) auch auf negative
reelle z ausdehnen koénnen. Sollten weitere asymptotische Eigenschaften, insbeson-
dere fiir die hier nicht behandelten Bereiche fiir z bzw. auch solche fiir groBe »
benotigt werden, verweisen wir auf [1].

3.2.6.  Orthogonalitit und Bemerkungen iiber Nullstellen

Im Zusammenhang mit Reihenentwicklungen nach Besselschen Funktionen, die
erforderlich sind, um Anfangsbedingungen konkreter physikalischer Aufgaben zu
erfiillen, spielt deren Orthogonalitéit eine entscheidende Rolle. Orthogonalitdt und
Nullstellen sind damit wichtige Eigenschaften auch bei Anwendungen dieser Funk-
tionen.

Wir betrachten die Funktion J,(kz), indem wir das Argument z durch kz ersetzen.
Diese Funktion geniigt dann der Besselschen Differentialgleichung

dks) 1 i) (kz

dz? z dz
Diese Differentialgleichung folgt unmittelbar aus (3.11), womit auch feststeht, da
sie von praktischem Interesse ist. Multiplizieren wir diese Gleichung mit z, so kénnen
wir sie auch in der Form

4 [z dJ“(kz)] n (kzz . ”72) T (kz) =0 (3.67)

- ;-) T (kz) = 0. (3.66)

dz dz
schreiben. Es sei nun » = 0. Wir wihlen zwei Werte k,, k, fiir k. Dann gilt (3.67)
natiirlich sowohl fiir k = k, als auch k = k,. Multiplizieren wir nun die Differential-
gleichung (3.67), in der k = k, gesetzt wurde, mit J,(k,z) und die Differentialgleichung
(3.67), in der fiir k = k, steht, mit J,(k,z), so entstehen die Gleichungen

. d [ Ik _
= [zT] T (ksz) + (k,z - —) T (ki2) I (ksz) = 0, (3.68)
d 1 dJks2)
= [z = ] Tki2) + (kzz - —) (ka2) I (k12) = 0. (3.69)

Nach Substraktion und Integration iiber das endliche Intervall [0, /] entsteht hieraus
1

Jpurd 22 - o [ 42

1
+ (K — K3) [ 2J,(k2) T (kyz) dz = 0. (3.70)
0

Das erste dieser Integrale kann man sofort ausrechnen und erhélt
dJ(k,z dJ (k,z =
[ 2552 g sz) - 2 2D )

+ (K - k%)fzJV(k,z) J(ksz) dz = 0. (3.71)
0
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it 394(k2)
dz
ment bezeichnet, geht (3.71) iiber in
k12Ji(k2) I (k2) — kazTi(ks2) T (K 12)],

= kJj(kz), wobei der Strich wie iiblich die Ableitung nach dem Argu-

1
+ (& = K) [ 2J,(k2) J (k,z) dz = 0. (3.72)
0
Erinnern wir uns an die Taylorreihe (3.55) fir J(z),

z 2n
ve (D7 (—) (3.55)
7,2) = (i) o \2)
v 2) Son!'l(»+n+1)°
so folgt, da » = 0 vorausgesetzt wurde,

lim [k,zJ)(k,z) J (k2z) — kyzJ)(k,z) J (kiz)] = 0.
240

Somit entsteht aus (3.72)
Ik y T (kD) T (kal) — ko Ji(ka1) T (k)]

1
+ (k3 = K3) [ 2J,(ky2) J (kz2) dz = 0, (3.73)
0

speziell fiir / = 1
[y Jy(ky) I (k2) — kady(kz) T (k1))

1
+ (& = K3) [ 2J,(ky2) J (ky2) dz = 0. (3.74)
0

(Wir bemerken, daB die bisherigen Ergebnisse auch fiir » = —1 giiltig bleiben.)
Um die angestrebte Orthogonalitéitseigenschaft zu erhalten, benétigen wir Aussagen
iiber Nullstellen der Besselfunktionen. Es gilt der folgende Satz.

Satz: Eine Besselsche Funktion J (z),v > —1, besitzt unendlich viele reelle Nullstellen,
die symmetrisch zum Nullpunkt liegen. Dariiberhinaus gibt es keine weiteren Null-
stellen.

Wir beweisen den Satz indirekt. Angenommen J,(z) besitze eine komplexe Null-
stelle @ + ib mit a #+ 0. In der unendlichen Reihe

1= Cir(z)” O )

ZATo s D 5

Zon TG + 0 ¥ 12 (3.55)

sind wegen » > —1 alle Koeffizienten reell. Deshalb miiBte J,(z) auch die Nullstelle
a — ib besitzen. Setzen wir nun in (3.74) k; = a + ib und k, = a — ib, so ist
k3 — k3 = 4abi + 0, und wir erhaiten

(a + ib) Ji(a + ib) J(a — ib) — (a — ib) Ji(a — ib) J (a + ib)
1
+ dabi [ zJ,((a + ib) 2) J ((a — ib) z) dz = 0,

0

4 Sieber, Funktionen
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also
1

| zJ((a + ib) z) J((a — ib) z) dz = 0. (3.75)

0
Die Funktionen J,((a + ib) z), J,((a — ib)z) sind auf dem Integrationsintervall
konjugiert komplex, so daB3 der Integrand in (3.75) auf dem Integrationsweg (0, 1)
positiv ist. Demzufolge bedeutet (3.75) einen Widerspruch zur Annahme a # 0
und b % 0. Folglich miissen wir nur noch zeigen, daB3 auch Nullstellen der Form
+ib, b % 0, unmoglich sind. Dazu betrachten wir wieder die Taylorreihe fiir J,(z)
und setzen z = ib. Dann gilt:

. iy @ 1 b2n
Jib) = ()" ¥ e Ty 2
Die Reihe in (3.76) besitzt aber nur positive Glieder (vgl. auch Eigenschaften der
Gammafunktion), so daB3 der Nachweis gefiihrt ist.

Es bleibt noch zu zeigen, daBl es unendlich viele Nullstellen gibt. Man iiberlegt
sich unter Verwendung der Entwicklung (3.55) leicht, daB Nullstellen von J(z)
dem absoluten Betrag nach paarweise gleich und dem Vorzeichen nach entgegen-
gesetzt sein miissen (Entwicklung (3.55) enthilt nur gerade z-Potenzen). Demzufolge
geniigt es, die positiven Nullstellen zu betrachten. Wir benutzen die asymptotische
Formel (3.64), die speziell auch fiir grofle positive z gilt:

J(z) = Jg [cos (z - —72-"—1 —%) + 0(2“)] .

Fiir groBe positive z wird O(z~!) beliebig klein, wihrend cos (z - %r — %) be-

kanntermaBen unendlich viele Nullstellen besitzt. Demzufolge ist der Satz bewiesen.
Nach dieser Zwischenbetrachtung kénnen wir uns wieder der Orthogonalitits-
beziehung (3.73) zuwenden. Sind z = k, und z = k, zwei verschiedene positive
Waurzeln von J,(z/) = 0, dann folgt aus (3.73) sofort die Orthogonalititseigenschaft
!
szv(klz) Jy(kyz)dz = 0. (3.77)
0

Wir betrachten jetzt verallgemeinernd die Gleichung
o (zl) + pzJy(zl) = 0, «, B reell, fest.

Es seien z = k; und z = k, zwei verschiedene Wurzeln dieser Gleichung. Dann
gilt

(3.76)

kyJy(keiD) T (ko) — kaJy(koD) T (kD) = 0,
so daB auch in diesem Fall die Orthogonalitdtsrelation (3.77) aus (3.73) folgt.

Beispiel 3.5: Die folgende Tabelle gibt die ersten positiven Nullstellen j,,, (« = 1,2,3, ...),
0 < jn1 <Jnz <Jnz <.

von J,,(x) fiir die ersten Werte n = 0, 1, 2, ... an. Da J,(z) keine echt komplexen Nullstellen besitzen
kann, geniigt es, z = x reell zu setzen.
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Tabelle 3.2. Nullstellen der Besselschen Funktionen

" 0 1. 2 3 4 5
"

1 2,404 826 3,831706 5,135622 6,380162 7,588342 8,771484
2 5,520078 7,015587 8,417244 9,761023 11,064709 12,338604
3 8,653728 10,173468 11,619841 13,015201 14,372537 15,700174

4 11,791534 13,323692 14,795952 16,223466 17,615966 18,980134
5 14,930918 16,470630 17,959819 19,409415 20,826933 22,217800

3.3. Die allgemeine Losung der Besselschen Differentialgleichung

3.3.1. Fund talsysteme von Losungen der Besselschen Differentialgleichung

Wir haben gesehen, daBl die Funktion

. C(3)”
1@)= ,Eo n!I'(v +n+1)

mit beliebigem komplexem » Losung der Besselschen Differentialgleichung
” 1 v?
LO) = '@ + 5@ + (1 - Z5) 5 = 0 (378)

ist. Ist » nicht ganzzahlig, so ist J_ (z) eine linear unabhéingige (diese Aussage wird
unten bewiesen) zweite Losung der Differentialgleichung (3.78), so daB wir als
allgemeine Losung
¥@) = CJ\(2) + CJ-\(2) (3.79)

erhalten. Im Falle ganzzahliger » ist diese Aussage nicht richtig, da in diesem Falle
(3.22), J_(2) = (= 1*Ji(2), » = k, ganzzahlig, gilt.

Wir hatten in 3.1. jede Losung von L(y) = 0 eine Zylmdcrfunktlon genannt.
Eine solche Zylinderfunktion 148t sich, wie aus der Theorie der homogenen linearen
Differentialgleichungen 2. Ordnung bekannt ist, immer in der Form

¥y =2Zz) = C,y:(2) + Coy5(z) mit L(y;) = 0, i = 1,2
und y,, y, linear unabhingig, darstellen (Band 7/1).
Ein Kriterium fiir die lineare Unabhingigkeit von Ldsungen der Differential-
gleichung L(y) = 0 ist, wie ebenfalls aus der allgemeinen Theorie bekannt, das Nicht-
verschwinden der Wronskischen Determinante W(y,, y,) fir zwei Losungen y,, y,:

Y1y
W(ys,¥,) = y‘ HEX (3.80)
1

’

4%
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Diese Wronskische Determinante soll nun fiir unsere Differentialgleichung (3.78)
berechnet werden. Wir bilden ausgehend von (3.78)

d »?
zL(y) =a(zy) + (Z —‘—z')y =0
den Ausdruck
da d_
2(y1L(y2) = y2L(1)) = 31 E(Zh) — )2 a;(z}’l) =0,

der gleich null ist, weil y, und y, Lésungen von L(y) = 0 sind. Nun bilden wir

d d S, d , d ,

3 @01 22) = - @O — yarD) = g7 01@2) — g2 021)
=L @) + YD) — e ) — 2
=V g; @2) +3i@32) — v g7 zy1) — ya(zy1)

d d
=M E(Zyz) - )2 E(Z,Vn)-
Es gilt deshalb:

d .

E(zW(yl,yz)) =0, (3.81)
und hieraus folgt:

ZW(y1,y2) = const, also W(y,,y,) = —g— (3.82)

Damit hat sich unsere Aufgabe darauf reduziert, C zu berechnen. Dies ist méglich,
indem wir ein konkretes z einsetzen. ZweckmaBig ist folgender Weg:

C= lirr; W31, ,))- (3.83)
Fiir y, und y, wihlen wir die beiden Losungen J,(z) und J_(z). Dann ist:
C =limz(J,J., — J_,J})

z-0
. 1 —» v
= 1im 2 [7 {1‘(1 T =% A+ Ia= v)} + 0(22)] (.84)
—2v -2

=lm o Ta =% ~ o) Ta =) (3.85)
Hiermit ist C berechnet.

Aufgabe 3.5: Mit Hilfe (3.57) rechne man das Ergebnis (3.85) nach!

Wegen des Erginzungssatzes (2.13) fiir die Gammafunktion gilt weiterhin

C=— @ und damit
Wy, J) = 2sinmy (0 fiir v ganz, (3.86)

nz  |# 0 sonst.

Aus dieser Formel folgt sofort die lineare Unabhangigkeit der Lésungen J,(z), J. W(2)
der Besselschen Differentialgleichung fiir nicht ganzzahlige » und die lineare Ab-
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héngigkeit fiir ganzzahlige » aus den entsprechenden allgemeinen Sitzen (siehe
Bd. 7/1).

Nun will man natiirlich auch im Falle ganzzahliger » ein Fundamentalsystem von
Losungen haben. Wir definieren zu diesem Zwecke die Besselfunktionen zweiter Art
(Neumannsche Funktionen) wie folgt:

,2) cosmv — I2) fiir » nicht ganzzahlig,
sin 7wy (3.87)
Ni(z) = lim N,(z) fiir k ganzzahlig.

v-rk

Niz) =

Selbstverstandlich ist N(z) fir nicht ganzzahliges » Losung von L(y) = 0, da
N,(z) als Linearkombination der Losungen J,(z) und J_ (z) dargestellt ist. Fiir ganz-
zahliges » = k konnen wir den Grenzwert mit der ’'Hospitalschen Regel ausrechnen,
da im Zéhler und Nenner ganze transzendente Funktionen in » stehen. Es wird

(=1kt D
% (J-(2)) s (3.88)

1 0
Ni(z) = = —6_17(',"(2)) ek +
Wegen des Prinzips der analytischen Fortsetzung ist auch N,(z) Losung der Bessel-
schen Differentialgleichung L(y) = 0. Deshalb ist also auch Ny(z) eine Zylinder-
funktion. Wir zeigen jetzt noch, daB J,(z) und N,(z) fiir beliebige » ein Fundamental-
system von Lasungen zu (3.78) bilden. Wir berechnen hierzu W(J(z), N (2)):

Jycosvm — J_,

WL Ny = LN 7 sin ¥t
DTN T, Jicosvm — T,
4 sin »
Jycosvm — J., , [ Jycosvm — J_,
n J'[ sin ¥ ]— J’[ sin v ]
1 2

=-J, J’_,—Tl—— + J,J, (3.89)
sin »7

sinvm | wz
Da die Wronskische Determinante unabhéngig von » ist, haben wir mit J,(z) und
N,(2) fiir beliebige » ein Fundamentalsystem von Losungen von L(y) = 0 gefunden
und erhalten die allgemeine Losung

Z,(z)- = CyJy(2) + C,N,(2) (3.90)

fiir » beliebig (insbesondere also auch ganzzahlig).

Die Definitionsformeln (3.87) sind natiirlich nicht die einzige Méglichkeit zu von
J,(z) linear unabhingigen Losungen der Besselschen Differentialgleichungen zu
kommen. Wir definieren jetzt die Besselfunktionen 3. Art (Hankelfunktionen) als
weitere Losungen der Besselschen Differentialgleichung, die eine besondere Bedeu-
tung fiir Anwendungen besitzen, da sie im Unendlichen ein besonders einfaches
Verhalten besitzen:

HY(z) = J(2) + iN(2),
H®(z) = J(2) — iN,(2), (39D
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A.ds Ligearkombiqationen von Losungen linearer, homogener Differentialgleichungen
sind diese Funktionen Lsungen der Differentialgleichung. Des weiteren sind sie
ganze tra}]szendente Funktionen in » und bilden ein Fundamentalsystem der Diffe-
rentialgleichung, d. h.,

Z(z) = CLH{)(z) + C,HP(z) (3.92)

ist allgemeine Losung der Besselschen Differentialgleichung.

Aufg:abe 3.6: Man zeige, daB die Hankelschen Funktionen H{"(z) und H{?(z) fiir beliebige » ein
Fi Isystem von L& der Besselschen Differentialgleichung darstellen!

Insgesamt haben wir fiir alle » die folgenden Fundamenta(systeme von Ldsuagen
der Besselschen Differentialgleichung:

Jo» N,; HO,H®;
H®, J,; H®,J,;
H®, N,; H®,N,.

Aus den Definitionsformeln (3.87), (3.91) leitet man leicht die folgenden weiteren
Beziehungen zwischen Besselschen Funktionen 1., 2. und 3. Art ab:

J_(2) — e J(2)

HPE) = isin v ’
HO®) = e™ J,(2) — J_,(2)
” isin v >
JAz) = HHP(E) + HP(2)), (3.93)

T = He™ HOG) + e HO(),
N@) = 5 (HOE) — HPG)).

AbschlieBend sei noch auf eine interessante Analogie hingewiesen. Die Bessel-
schen Funktionen J,(z) entsprechen den Losungen cos »z der einfacheren Differen-
tialgleichung
dl
>y =0 (3.94)
Ebenso entsprechen die Neumannsche Funktion N,(z) den Lésungen sin »z und die
Hankelschen Funktionen H{V(z), H®(z) den Losungen e'*?, e~i** von Differential-
gleichung (3.94). Die Aussage wird begriindet durch die Rekursionsformeln und
durch asymptotische Entwicklungen. Man beachte hierzu insbesondere die nach-
folgend angegebenen Eigenschaften der Neumannschen und Hankelschen Funk-
tionen [(3.64), (3.103), (3.104), (3.105)].

Ohne auf eine nihere theoretische Begriindung einzugehen bemerken wir, daB die

Besselsche Differentialgleichung
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durch die Variablentransformation u = — , y(z) = y(vu) = w(u) in die Differential-
gleichung
w”+1w’+2w-vzw—0 (3.95)
u v uwr ’

iibergeht. Da groBe |z| auch groBen |u| entsprechen, sehen wir, daB (3.95) in
w' + 2w =0

2
iibergeht, wenn man fiir groBe u die Glieder%w’ und %w weglaBt.

3.3.2. Kinige Eigenschaften der Neumannschen und Hankelschen Funktionen

Im folgenden Abschnitt werden einige wichtige Darstellungen dieser Funktionen
und deren asymptotisches Verhalten diskutiert, ohne daB wir auf Beweise ausfiihr-
lich eingehen werden. Wir beginnen mit Integraldarstellungen von Hankelschen und
Neumannschen Funktionen. Man kann zeigen, da3 auBer den Besselfunktionen auch
die Funktionen

(=1%)
y1(@) = C2" ex=dii [ (¢ — 1p~#eide, arc(z? — 1) = 0, firz > 1,
@

(3.96)
a-)
¥2(2) = —Cz¥ enr-dij f (z? — 1)’-#eizndr, arc (z2 — 1) = 2, fiire > 1

fiir |arc (z)] < 12‘7- — ¢, & > 0, der Besselschen Differentialgleichung geniigen. Wéhlen

JIm(r)

‘) ke

Bild 3.5. Integratmnswege zu einer Integraldarstellung der Hankelfunktionen

wir fir » + —;— + k, k ganzzahlig, C = e~*=i ﬂ% , so entstehen die beiden
Losungen mil'(3)
(=1%)
I'G —v) f 2 -
(7)) = _ {y-teirr
HYG) = ~Ft- ( ) (& — 1y—re=rdr

mit arc(z? — 1) = 0, T>1,
i o (3.97)
o2 (3] T

mit arc(v? = 1) =2m, 7 > 1,



56 3. Zylinderfunktionen

mit [Re(z)| < ; — & ¢ > 0, der Besselschen Differentialgleichung. Man kann zeigen,

daB fiir diese Integrale die Beziehungen (3.93) gelten, z. B.
F(HPE) + HP@) = 1,(2),

daB damit die Formeln (3.97) die durch (3.91) definierten Hankelfunkuonen fiir den
angegebenen Parameterbereich darstellen.

Andere Integraldarstellungen fiir die Besselfunktionen zweitet und dritter Art
findet man, indem man von der Integraldarstellung (3.51)

©

J,2) = %jcos (vp — zsing) dp + i‘_'ﬂnil)_" fe—rw—zximw dy,

0
Re(z) > 0, (3.98)
ausgeht und die Definitionsformeln (3.87), (3.91) benutzt.
Wir tragen (3.98) in
N2) = J(2) cosmy — J_(2)
sin Ty
ein und erhalten

cot 74 . cos T
N,(2) = fcos (zsing — vp)dp — = sinh vy gy
0
i 0
7 1
— ———— | cos (z sin dp — — e~? sinh p+vy .
nsmrwf (zsing + »p) dg — — f dy
° 0
Aufgabe 3.7: Man leite die Schliflische Integraldarstell der N hen Funktion N,(z)
g ©
1 1
Ny(2) = — f sin (z sinp — vp)dp — — f esInh Y (W 4 e~ cos ) dy (3.99)
"’ w
0

fiir Re(z) > 0 her.

Aus der Integraldarstellung (3.99) erhélt man nun auch weitere Integraldarstel-
lungen der Hankelschen Funktionen. Man bekommt nach (3.91) durch elementare
Umformungen

b ©
1 1
(1), = = l(zslnw vg) — —zsinhy [avy —v(yp+mi)
H"(z) "J. dp — che [e + e ]dy
o

e sinh—vie d(jig)

=||.—-

s
—g Ly e

]
:||_.

J. zslnv-wp d'l’
-

ezsinh(w+7ﬂ)—\'(w+n|) d(w + 7“)

+
al-

0

<
[l



3.3. Allgemeine Losung der Besselschen Differentialgleich 57

Indem wir mit ¢ = ¢ + ip eine komplexe Variable einfiihren, kénnen wir H{!(z)
als Kurvenintegral folgendermaBen schreiben:

HO(z) = _T:_l fe"‘"‘"—" ds, Re(z) > 0. (3.100)
(611
Fiir HP(z) erhilt man auf entsprechendem Wege

HO(z) = 7:1; f e=simhi=v ds  Re(z) > 0. (3.101)
G2

m(f) 1) Jm (f) 1)

+00

0 Relt) 0 Relf)

T

+00

Bild 3.6. Integrationswege zu einer Integraldarstellung der Hankelfunktionen

Die Integrationswege €, , €, sind in Bild 3.6 dargestellt. Es gibt noch einige weitere
Integraldarstellungen der Hankelfunktionen, die aus dieser durch Substtiution her-
vorgehen:

+ 0
i3

A

e 2
H(,‘)(z) = = J glzcoshu—vu du,

-

+ o

v i
e 2
Hsz)(z) - - ’ J‘ e—izcoshu=vu g,
1
-0

Wie bei den Besselfunktionen ist auch fiir die Neumannschen und Hankelschen
Funktionen das Verhalten fiir groBe bzw. kleine |z| bei Anwendungen wichtig.
Zuerst geben wir eine Reihenentwicklung der Neumannschen Funktion N, (z), k&
ganz, an, wobei wir auf den von (3.88) ausgehenden Beweis hier nicht eingehen
werden. Es gilt

z 2n-k z 2n+k
it = =1!(3) L C0(3)
M) = - = ,Eo n! +?:—,Z‘o (k + n)!n!
z I I
X [2 log 5~ (1 + 1) = (n+ Kk + 1)], k=0,1,2, ...,

(3.102)
No@) = (-1)N(2), k=1,2,...,
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mit
I ,
TO ==y,
I 1 | S,
—F(m+ )=-y+1 +—2—+A.. +; fir m=1,2,...

Auf dhnlichen Wegen wie fiir die Besselfunktionen gewinnt man auch asymptoti-
sche Aussagen iiber die Neumannschen und die Hankelfunktionen fiir groBe |z|,
[1], wobei wir uns hier auf die Angabe spezialisierter Formeln vom Typ (3.64) be-
schranken werden. Es gilt

N
E

Iz = A/ % [cos (z T, 1) + 0(z-1)] fir |2/ - (3.64)
in Re(z) > 0, Re(») > —1,

Nyz) = J% [sin(z - ;) n 0(z-1)] fir 0 <z,
L (3.103)
HO(z) = A/ﬂ:_zz ¢TI 4 0] fir 0<z- o, (3.104)

HP() = A/ ﬂ_zz T 40 fir 0<zow. (3105

Wie fiir die Besselfunktionen (3.64) lassen sich auch diese Formeln auf gewisse
Sektoren fiir z ausdehnen. Sie bestitigen die These iiber die ,,Ahnlichkeit* zwischen
trigonometrischen und Besselfunktionen, die am Ende des vorangehenden Ab-
schnitts aufgestellt wurde.

3.3.3. Rein imaginires Argument. Modifizierte Besselsche Funktionen
Die Differentialgleichung

d?w 1 dw , P
—d;z—+7$+(k ——zy)w_o (3.106)
besitzt die Zylinderfunktion Z,(kz) als Losung. Setzen wir k = i, dann ist Z (iz)
Losung der Differentialgleichung

d?w 1 dw v

?+7$—(1+z—2)w_0. (3.107)
Diese Differentialgleichung kommt héufig in der mathematischen Physik vor. Wie
wir gesehen haben, war gerade der Fall des rein imagindren Argumentes (dieser
entsteht fiir z reell) bei den Zylinderfunktionen immer besonders schwierig zu be-
handeln. Wahlen wir zunéchst die Besselfunktion J,(iz) als Losung aus und benutzen
deren Darstellung als Taylorreihe, so erhalten wir

Jis) = i (=1 ivize (_;—)\H-Zn _ ivéom (i)v+2n

a0 n!\I(v +n + 1) 2
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Fiir Anwendungen ist es nun wichtig, eine Lésung von (3.107) zu haben, die fir
z > 0 und reelles » reell ist. Deshalb multiplizieren wir J,(iz) mit i-* = e~#7™ und
erhalten die modifizierte Besselfunktion

. 0 1 z V42n
— i J (i 7) = (£
1) = eI = ¥ e T ( 2) . (3.108)

Selbstverstandlich ist /,(z) Losung von (3.107), und ist » ¢ G, also nicht ganzzahlig,
so sind 7,(z) und I_,(z) zwei linear unabhidngige Losungen dieser Differentialglei-
chung. Wihlen wir nun Z,(z) gleich der Hankelschen Funktion H{(z), so gelangt
man ebenfalls nachMultiplikation mit einem Faktor zur Losung

K(2) = iz edmiHO (iz)
= dni e+ HW (i), (3.109)

Mit Hilfe der Formeln (3.93) kann man den Zusammenhang zwischen den Funk-
tionen K,(z) und 7,(z) herstellen. Es ist:

1 L) -1
K(2) = — T e (3.110)

In die asymptotische Formel

HOG) = /;2; ST 4 002, G.111)

die auch im gesamten Winkelraum —7w + ¢ <arc(z) <w —¢ fir ¢ > 0 gilt,

konnen wir anstelle von z die Variable iz mit z > 0 und arc (iz) = > einsetzen. Dem-

nach erhélt man durch Einsetzen in (3.109) eine asymptotische Formel fiir K,(z)
fiir groBe z > 0

1 . Lo A/_2_ ~Ei (v Z- I
= — 2 [ 4 2 4 ~1

K,(2) F e = ¢ e [1 4+ O0(z"1)],
d. h. o

K,(z) = /% e[l + 0EY)] fir z> 0. (3.112)

Wegen dieser Eigenschaft des exponentiellen Abfallens von K (z) fiir0 < z > + o«

besitzen die modifizierten Besselfunktionen K,(z) groBe Bedeutung bei der Anwen-
dung auf physikalische Probleme.

Mit dieser Behandlung der modifizierten Besselfunktionen haben wir einen gewis-
sen AbschluB erreicht.

3.4. Einige Anwendungen

3.4.1. Eine Randwertaufgabe der Potentialtheorie fiir einen Zylinder
Wir betrachten das folgende Randwertproblem der Potentialtheorie: Gesucht ist

u=ulr,z) mit u._,=0, U= o = folr), U=y = fi(r) und Au=0.
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Bild 3.7. Kreiszylinder

Zur Losung betrachten wir die Potentialgleichung in Zylinderkoordinaten, wobei vom Problem

her bekannt sei, daB hier keine Abhingigkeit von ¢ auftreten soll, d. h. O_u = 0 gilt. Demzufolge
wird (3.6) op
0%u N 1 du N Qu
or? r or  0z*

Wir machen den Separationsansatz u = R(r) Z(z) und erhalten

R(r) Z(z) + —lr—R’(r)Z(z) + R(r)Z"(z) = 0,

R() 1 RGt)  Z'() _
RO 7 Rz
Nach dem schon in 3.1. vorgefiihrten SeparationsschluB erhilt man hieraus die beiden Differential-
gleichungen
1) Z"(z) — 22Z2(z) =0,

—A%

2) R'(r) + %R’(r) + A?R(r) = 0.

Die erste Differentialgleichung besitzt die Losung
Z = Ccosh Az + Dsinh iz,

die zweite geht nach der Variablentransformation o = Ar iiber in
AR"(0) + é R(o) + R(@) = 0
oder mit  R(g) = R(Ar)
R’ + —:)-R'(e) + R@ =0.
Vergleichen wir diese letzte Differentialgleichung mit (3.12), so sehen wir leicht, daB es sich um die

Besselsche Differentialgleich mit k2 = 0 handelt. Allgemeine Losung dieser Differentialgleichung
ist deshalb

R(e) = AJo(@) + BNo(@), 020,
wobei Jo(0), No(0) die Besselsche bzw. die N he Funktion zum Index O bezeichnen. Des-
halb ist
R(r) = AJo(Ar) + BNo(Ar).
Es gilt:
lim Jo(dr) =1, lim No(Ar) = 0.

r—0 r—
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Da diese letzte Eigenschaft physikalisch nicht sinnvoll ist, folgt B = 0. Wir erhalten damit als
Losung von Au = 0
u(r, z) = aJo(Ar) cosh (Az) + BJo(Ar) sinh (Az).

Nun sind noch die Randbedingungen zu erfiillen. Betrachten wir zunéchst u|,—, = u(a, z) = 0
fiir alle z. Hieraus folgt als nichttriviale Losung Jo(4a) = 0. Da es abzihlbar viele positive Null-
stellen x, von Jo(x) gibt, wihlen wir die entsprechenden 4,:
X,
=", n=1,2,..
a

Demzufolge erfiillen die abzidhlbar unendlich vielen Lésungen

= (F) o ) (o 2

die Gleichung Au,, = 0 und u,(a, z) =
Falls u(r, z) = 2 u,(r, z) konvergiert, stellt diese Reihe ebenfalls eine Losung von Ax = 0 mit

u(a, z) = 0 dar. Nun sei Konvergenz vorausgesetzt. Dann bestimmen wir die noch freien Para-
meter &,, f,, n =1, 2, ..., so, daBauch die beiden anderen Randbedingungen erfiillt werden:

u(r,0) = 3 uy(r, 0) = fo(r),

u(r, D) = 3 un(r, ) = fi(r)
n=1

oder ausfiihrlich

):oc..Jo( ) fo(r), (3.113)

n=1
') cosh ( ) + Bulo ( _ ') sinh ( )) fe). (3114
a a

0 X,, -
nd
ngl ( ¢ ( a
Aus (3.113) werden die «, und danach aus (3.114) die Koeffizienten f8, bestimmt.
Mit Formel (3.77) haben wir die Orthogonalitit der Besselfunktionen in folgendem Sinne
festgestellt.
Es seien z = k; und z = k, zwei verschiedene positive Wurzeln von J,(z/) = 0. Dann folgt
1
[ 20,(k12) I (k22) dz = 0.

0
Xn . . ..
Speziell gilt also auch: Sind ry = — L und ry = 2 7wei verschiedene positive Wurzeln von
Jo(ra) = 0, dann gilt a
a
Xny
rlo\—r)Jo{—=r)dr=0, a>0. (3.115)
a a
0

‘Nachdem wir diese Orthogonalitit kennen, ist die Bestimmung der «, und 3, unter Voraussetzung
der Konvergenz der Reihen und Existenz der Integrale unproblematisch. Wir multiplizieren beide

X,
Seiten von (3.113) mit rJ, (T' r) und integrieren tiber » von 0 bis @. Dann gilt

2 anrJy (— r) Jo (—r) dr = f rJo (-);1 r) Sfo(r)dr.
n=1
0
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Die linke Seite dieser Gleichung wird wegen der nach Voraussetzung erlaubten Vertauschung von
Integration und Summation unter Ausnutzung der Orthogonalitatsrelation (3.115) zu

a a
& X, X, X,
> o f rlo (—m r) Jo (—"r) dr = ap f rJ? (—ﬂ- r) dr.
n=1 a a a
0 )

Somit erhalten wir die «, nach
a

f rlo (—XL r) fo(r)dr
a
0

a

Xn
Ji(—r) d
[ () o
o

Genauso verfahrt man mit (3.114) und berechnet die ,, wobei die «, bereits bekannt sind. Als
letzter Schritt bleibt nachzupriifen, ob die mit den so ermittelten «, und f, entstehende Losung

= & (o () o (2) .t (22 i ()

auch die geforderten Konvergenzbedingungen erfiillt.

Bemerkung: Das Ermitteln der «, nach (3.113) ist mathematisch betrachtet die Frage der Ent-
wicklung einer Funktion f5(r) in eine unendliche Reihe nach Besselfunktionen. Zur Theorie dieser
Entwicklungen verweisen wir auf [1, 11]. Praktisch kann wie oben vorgegangen werden, da die
Orthogonalitat der Besselfunktionen bekannt ist. Man sollte aber stets auch die notwendigen Kon-
vergenzuntersuchungen im Auge behalten.

&Ky =

3.4.2. Zum Problem der Stabknickung

Gegeben: einseitig eingespannter Stab, freies Ende bei x = /, konstanter Querschnitt F, axiales
Fldchentrigheitsmoment J, Massendichte o.
Aufgabe: Unter Beriicksichtigung der am oberen Ende angreifenden Kraft P, und des Eigen-

gewichtes soll die Schwi differentialgleichung fiir y(x, r) aufgestellt werden. y(x, f)-kleine
Auslenkung aus der Ruhelage.
X
f
[ —————————
1
P ’
oF #d} d-‘ ~yFd§
A t
o |
| |
Pl
[
ol
] . Bild3.8. Stabknickung
7 J
Es gilt:
— Am Stabelement ds ~ d§ wirkt vertikal nach unten das Gewicht yF d& mit gg =

%y
— Horizontal wirkt die Trigheitskraft oF —5

FYE dE
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Als Momeﬂt der oberhalb der Stelle x angreifenden Krifte erhidlt man

1
Mx,1) = —Po(3(l, 1) = ¥(x, 1)) = ¥F [ (3(& 1) = ¥, 1) &

*¥(&, ) 0%y(x, 1)
+9Ff > x)dE=—EJ——ax—2—.
X
Durch Differentiation nach x folgt:
1
o3y oy oy(x, 1) 0%y, 1)
ErS2 = Py _F dt + oF 5
o °%x 7 j f e
X x
oy oy oy, )
=—Py— —yF(l — x)— + oF | ———d
rean el ")ax”j e
x
Nochmaliges partielles Differenzieren nach x liefert
b‘y dy ?y
F(l — F— — .
Py — [Po + YF( X)} +y o oF —- pve
Wir erhalten also fiir y(x, ) die lineare partielle Differentialgleichung 4. Ordnung
%y 0%y ay %y
EJ—— P, F(l — — —yF— F—- = 0.
pye: + [Po + yF(I — X)) o " o +e 52

Vernachlissigt man die Kraft Py (Po = 0) und laBt die Trégheitskrifte unberiicksichtigt, so erhilt
man speziell mit

d*y
dx*
die Differentialgleichung fiir die Knickung eines Stabes unter seinem Eigengewicht.

Um nun die Stabilitit eines schweren, lotrechten Stabes mit konstantem Querschnitt F und
Linge / zu ermitteln, gehen wir von der Differentialgleichung

EJv"” + yF(l — x) @' = 0

[(I = x) —] =0, y=yx), (3.116)

aus.

Hierzu wurde in (3.116) y’ durch @ ersetzt und der Term —yF@ vernachldssigt. Mit @’ =7
wird hieraus

vF
EJ
Wir wenden hierauf die Variablensubstitution

7'+ Al—x)n =0 mit 4=

2 1L 3
= AT~ 97

an mit
13 1 1 3\2 -1 2
_d;=_ AT (- 97, ([_x)=(.§.)314 TET
dn dgp L 1
R Y X (5 Y
Friair A
d* 1 dp L L d%
el Lo ol
dx? 2 dé dge?
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Damit erhalten wir

dy 1 1 -3dy d*p 1 dy
—+—A4 2(-x) 2—+n=0 oder — +——+7=0.
g v A TP g R I T T
Mittels der Substitution
7@ = wee) ¥
entsteht die Besselsche Differentialgleichung
1 1
w +—§-w+(1—-9—£7)w=0 (3.117)

mit dem Parameter » = +4. Die allgemeine Losung ist also
W) = Cuy &) + CI_y(©). @.118)

Indem wir die Substitutionen riickwirts ausfiihren erhalten wir

1 4\ 3n
JA\F o (—7) = x

7(x) = y'(x) = Cy (‘3—) (D) e E——
n=0 n!l"(—3— + n)

A\"
— b - —) (= x*
NZRA R 9
+C =3 > —_— (3.119)
"= ar (— + n)
3
Da das Biegemoment am freien Ende null ist, muB y’(/) = 0 sein. Einspannbedingungen sind

¥(0) = »'(0) = 0. Der erste Term von y'(x) liefert bei nochmaliger Differentiation fiir x = /einen
festen Wert, der zweite verschwindet fiir x = /. Aus y"(0) = 0 folgt deshalb C; = 0. Der Einspann-

— 3 — 3
stelle x = O entspricht & = §\/A 12, so daB sich, falls J_§ (§ \/A 11) nicht null ist, C; =0

ergibt. Das hieBe aber y = const oder wegen der zweiten Einspannbedingung y = 0. Der nicht aus-
gelenkte Stab stellt deshalb eine stabile Gleichgewichtslage dar. Ist dagegen

746Gy dy=0, aso 34} =1, (3.120)

eine der positiven Nullstellen 4,, 4,, ... von J_ k(x), so braucht C, nicht 0 zu sein, und es werden

Stabauslenkungen als Gleichgewichtslage mdglich. Praktisch von Bedeutung ist nur der kleinste
Wert 4; = 1,87. Die Knickbedingung

gﬁ%: 1,87

fihrt zur Knickldnge

EJ
hr 23— . 3.121
A oF @3.121)

Derartige Knickvorginge sind fiir die Praxis von Bedeutung. Auf hohe Schornsteine und auf Bohr-
gestinge im Bergbau sind solche Untersuchungen anwendbar.

3.4.3.  Elektron im magnetischen Wechselfeld

© Die Kraft K, die ein magnetisches Feld H auf ein Elektron mit der Elementarladung e und der
Masse m ausiibt, ist 0, wenn das Elektron ruht, und nach den Gesetzen der Elektrodynamik gleich
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K = eH x v, wenn es die Geschwindigkeit v besitzt. H sei in Richtung der positiven x-Achse
orientiert, und das Elektron befinde sich zur Zeit # = 0 im Ursprung mit

Xi=0=0, Jl=o=0b, Zlj=0=0.

Bild 3.9. Elektron im magnetischen Feld

Das homogene magnetische Feld soll ein Wechselfeld mit der Kreisfrequenz w entsprechend
H(t) = H, cos wt

sein. Dann sind :
do N
K=md—1= mii + myj + mik,

H = Hycoswti,
v=Xi+yj+ k.
Hieraus folgt das Bewegungsgesetz
i Jjk
dv
m-— =e|Hycoswt 00},
dr
x vz
oder skalar geschrieben

=0,

e
y=——Hpycoswt z, (3.122)
m

e
Z=—Hycoswty.
m

Aus % = 0 folgt x = at + b. Die Bedingung X|;=o = 0 ergibt @ = 0, und aus x|,=o = 0 erhilt
man b = 0. Also folgt x = 0, und deshalb ist die y,z-Ebene die Bahnebene. Division der zweiten
Gleichung von (3.122) durch die dritte ergibt

J9+ 2 =0, d.h y*+ %= const.

Einbau der Anfangsbedingungen: y? + 2 = b2, Die kinetische Energie des Elektrons ist deshalb
wihrend der Bewegung konstant. Da der Kraftvektor zu jeder Zeit senkrecht auf dem Geschwin-
digkeitsvektor steht, verrichtet das Feld H keine Arbeit. Ersetzt man in (3.122) z durch (b> — y?)},
so folgt:
P
\/ b* — y?

5  Sieber, Funktionen

e
= — — Hpcoswt = —xcoswt.
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Die Integration liefert

‘o, o
y = bcos (——smwt) R 2=bsin (— sinwt),

w w

und hieraus folgt
t t
& o -
x=0, y=b f cos (; smw'r) dr, =b f sin (—— sin wr) dr (3:123)
w
0 0

e
mit & = w H,. Alle Anfangsbedingungen sind erfiillt. Wir berechnen die Integrale in (3.123) durch
Entwicklung der Erzeugenden nach (3.30)

cos (isinwr) Jo( )+22 Jz,,(a)cosbtwt
o n=1

. o . el o .
sin (—sinwt) =2 Y Jopyy (—) sin(2n +1) ot.
) n= )
Setzt man diese Reihen in die obigen Integrale ein, vertauscht und fiihrt die Integration durch, dann
erhilt man

o\ sin2nwt
Y—bf-’o( )+—le..( )—,

n=1 n
26 2 a\ 1 —cos(2n+ 1) wt
z=— 3 Doy (—) —_— (3.124)
n=0 2n+ 1

Fiir den Physiker ist es nun wichtig, diese Bahnkurven zu diskutieren, d. h. die Lage des Elektrons

2
jeweils nach Ablauf einer vollen Periode T = — des magnetischen Wechselfeldes festzustellen.
Eine ausfiihrliche Diskussion findet man in [4]. @

3.4.4. Kreisplatten auf elastischer Bettung bei nichtrotationssymmetrischer
Belastung

Nachfolgend soll eine weitere Anwendungsproblematik nur angerissen werden. Eine ausfiihrliche
Darstellung findet man in [13]. Bei turmartigen Bauwerken, wie Schornsteinen und Fernsehtiirmen,
mit weit auskr den Griind 1 kann i. allg. nicht von der Voraussetzung eines absolut
starren Griindungskdrpers und einer daraus resultierenden linearen Bodenpressung ausgegangen
werden. Das Zusammenwirken von Bauwerk und Boden muBl im Ansatz beriicksichtigt werden,
wobei auBer den Lastfillen Eigengewicht und Nutzlast vor allem die Beanspruchung durch Wind

| !

Windlast

Bild 3.10 Kreisplatte auf elastischer Bettung

interessiert. Die Untersuchungen konnen sich dann auf sogenannte ,,Randangriffe* beschrinken.
Ausgehend von der durch das Bettungsglied ergidnzten Kirchhoffschen Plattengleichung und den
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Schnittkraftgleichungen erhilt man nach gewissen Umformungen und Separation u. a. die Bessel-
sche Differentialgleichung
dw, e dw,
dé? d¢
fiir eine Funktion w,(§), die von Interesse ist. Die allgemeine Losung dieser Differentialgleichung ist

7, = B, (x /i) + B.K, (x /1)
mit den modifizierten Besselfunktionen I, und X,.
Wir bemerken noch, daB in physikalischer und technischer Literatur eine Fiille von Anwendun-
gen der Zylinderfunktionen zu finden sind. So wird z. B. in [10] die Schwingung einer kreisférmigen
Membran ausfiihrlich mit Hilfe der Besselfunktionen behandelt.

52

+E-Mw, =0, E=x/i

5*



4. Kugelfunktionen

4.1. Allgemeine Bemerkungen

Fiir eine Reihe von Anwendungen in der Physik und in der Technik sind — wie
auch schon im Kapitel 3 betont — spezielle Lésungen der Laplaceschen Differential-

gleichung
_ 0 du Ol

Au= =0 @.1)

oxz T 0y* | 09z2
von Bedeutung. Diese partielle Differentialgleichung wird auch als Potentialglei-
chung bezeichnet. Jede Losung u(x, y, z), die innerhalb eines Bereiches des R* ein-
deutig erkldrt ist und dort stetige partielle Ableitungen 2. Ordnung besitzt, heif3t
Potentialfunktion oder harmonische Funktion. Der historische Ausgangspunkt fiir
diese Bezeichnung liegt in der Theorie der Kraftfelder, die sich hiaufig durch Poten-
tiale mit der erwidhnten Eigenschaft beschreiben lassen.

Eine Funktion f(x, y, z) heiBt homogen vom »-ten Grade (v reell), wenn fiir alle
X, y, z und 4 des Definitionsbereiches gilt

fx, 2y, 42) = Xf(x,y, 2). (4.2)

Ist nun eine Potentialfunktion zudem homogen vom »-ten Grade, so nennt man sie
eine Kugelfunktion vom »-ten Grade. Die ersten Untersuchungen iiber diese Funk-
tionen stammen von Laplace. Die Bezeichnung Kugelfunktion geht auf Gauf3 zu-
riick, der ebenfalls zahlreiche Eigenschaften und Anwendungen entdeckte. Es erweist
sich fiir die weiteren Betrachtungen als zweckmiBig, Kugelkoordinaten anstelle der
kartesischen einzufiihren (vgl. Band 4, 3.8.3.3.)

x =rcosgsind,
y=rsingsind, 0=5r0<¢p<2r,0=<9=m 4.3)

z =rcos?,

Bild 4.1. Kugelkoordinaten
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Die Potentialgleichung (4.1) hat nach Einfilhrung von Kugelkoordinaten nunmehr
folgendes Aussehen:

ou 1 0 du 1 0%
2 —_———— =

o (’ ar) t g o7 (5”“9 o«a) t o T @4
Dabei wird u jetzt als Funktion von r, 9, ¢ aufgefalit. Hingt die Losung nur von r
ab, so ergibt sich aus (4.4)

d du du , d?u ‘

E;(r dr)-ZrEr—+r = 0. @.5)
Die allgemeine Losung dieser gewohnlichen Eulerschen Differentialgleichung
[Band 7/1] gewinnt man aus dem Ansatz u = r* und der sich daraus ergebenden
charakteristischen Gleichung x(x + 1) = 0 zu

u= +c,
r :
1 1

Insbesondere hat man mitu = — = ——— eine Kugelfunktion vom Grade
—1 gewonnen. /3 +y:+z

1
Aufgabe 4.1: Man begriinde, daB die partiellen Ableitungen vonTebenfalls Kugelfunktionen sind.
Wir wollen nun eine homogene Funktion u, vom n-ten Grade (n ganz, positiv)

betrachten. Dann gilt

Un(x, ¥, 2) = uy(r cos @ sin 9, r sin @ sin &, r cos J)

= r"u,(cos @ sin ¥, sin ¢ sin 9, cos ) (4.6)
= rS,(d, @).
Weiter wird
O (,0u,\ . dun | , 0%,
> or)‘z’ o T oe

= 2rnr"1S, + r?a(n — 1) 125,
= 2nu, + n(n — 1) u, = n(n + 1) u,.

Setzen wir also u, = r"S,(9, ¢) in (4.4) ein, so erhalten wir fiir S,(&, ¢) die Differen-
tialgleichung

=0. @.7)

2
nn + 1) S, + —— 6(8"“968) 1 0%,

19 o7 3 )t snTs o2
Die Funktion S,(8, ¢) hingt nur von & und ¢ ab, sie wird als die zu u, gehdrige
Kugelfiichenfunktion oder Laplacesche Kugelfunktion bezeichnet. Ersetzt man in
(4.7) n durch —(n + 1), so verandert sich die Differentialgleichung nicht. Mit u,
genitigt auch

1 Un
Uepm1 = 2oy Su@,9) =
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der Laplaceschen Differentialgleichung (4.5). Die Funktion u_,_, ist zudem homogen
vom Grade —n — 1, also ebenfalls eine Kugelfunktion. Zu jeder Kugelflichen-
funktion S, gibt es demnach die beiden rdumlichen Kugelfunktionen u, = r"S,
und u_,_, = r-@"S . Von besonderer Bedeutung sind die ganzen rationalen
Kugelfunktionen n-ten Grades, die sich aus in x, y, z homogenen Polynomen der
Dimension n aufbauen.

Beispiel 4.1: Fiir n = 2 hat das allgemeine homogene Polynom die Gestalt:

Uy = Gz00X* + G110XY + Go20)* + @101XZ + A011¥Z + Go0222 = Y, apx'yzF.
i+j+k=2

Soll u, eine Kugelfunktion sein, so muB3 Au, = 0 werden, und man erhilt

Auy = 2az00 + 2a020 + 28002 =0 oder agoz = —@z00 — @oz0-
Setzen wir dies in den Ausdruck fiir u, ein, so wird die gesuchte allgemeine ganze rationale Kugel-
funktion 2. Grades:

5
Uy = Gr00(x* = 22) + @o200% — 2) + 110Xy + @101%Z + Go11¥Z = X ¢y,
v=
dargestellt als Entwicklung nach fiinf linear unabhingigen Kugelfunktionen, also homogenen har-
monischen Polynomen 2. Grades x? — z2, y? — z2, xy, xz und yz.
Aufgabe 4.2: Man bestimme eine Entwicklung der allgemeinen ganzen rationalen Kugelfunktion
3. Grades nach linear unabhingigen homogenen harmonischen Polynomen 3. Grades.

Eine homogene ganze rationale Funktion n-ten Grades hat die Form
Uy = 3 azu.x‘y“z'.

Atpu+v=n
Die Anzahl der Koeffizienten ist 142+ ... + n+ (n + 1) = 2F DO+
wie man leicht durch Abzihlung der moglichen Indexkombinationen nachpriift.
Soll u, eine Kugelfunktion sein, so muB die Bedingung Awu, = 0 erfiillt werden. Es ist
Auy = ¥ M= Dagx*2z" + 3 plp — 1) ayuxiy =22
Atp+rv=n Atp+v=n
+ 3 vy — 1) axtyrz-2.
Atp+v=n
Wenn wir in den entsprechenden Summen die Indizes A — 2 = A, u — 2 = p’ und
» — 2 = » setzen und danach die Striche bei A’, u’,»" wieder weglassen, so ergibt

ich
Y M= B (04D Dara + 1+ Dt Daes,
+utv=n—
+ (4 2) (v + Dagupi2] x4z,

Dieses Polynom (n — 2)-Grades kann nur dann identisch fiir alle x, y, z verschwin-
den, wenn die in den eckigen Klammern auftretenden Koeffizienten gleich null sind.
Somit erhalten wir fiir die a;,, insgesamt @ _21) 5 homogene Gleichungen:

A+ A+ Darszup +(@+2)(p+ Darpszy + @ +2) @ + Dasyps2 =0
mitd+u+v=n-—2
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= 2n + 1 frei wihlbare

n+1)@+2) (n—1)n
2 2
unabhingige Koeffizienten a;,, von u,. Die allgemeine ganze rationale Kugelfunk-
tion n-ten Grades kann also in der Form
2n+1

Up = Z cvuf.') (48)
v=1

Es bleiben also hochstens

mit beliebigen reellen Konstanten c, dargestellt werden. Dabei sind die homogenen
Polynome u{” selbst Kugelfunktionen, denn mit Au, = 0 muB auch Auf?
(» =1,2,...,2n + 1) verschwinden, da die ¢, willkiirliche Konstanten sind. Somit
gibt es hochstens 2n + 1 linear unabhéngige ganze rationale Kugelfunktionen
n-ten Grades u{’(x, y, z), aus denen sich alle iibrigen linear zusammensetzen lassen.

4.2 Zonale Kugelfunktionen

Wir suchen zunichst fiir die Differentialgleichung (4.7) solche Lésungen S,(&),
die nur von ¢ abhingen. Diese werden als zonale Kugelfunktionen bezeichnet, da
ihre ,,Nullinien* auf der Kugeloberfliche parallel zum Aquator liegende Kreise
sind, die die Oberfliche in Kugelzonen einteilen. Die Differentialgleichung wird
dann

1 d /. ,dS, _
WW(S“”? d79)+n(n +1)S, =0. 4.9)
Weiter ersetzen wir nun ¢ durch ¢ = cos?d und S,(9) durch P,(cos?) = P,(¢).
oo dz  dz dt  dz si2a PR
Damit wird @ arar - " asin 9, und (4.9) geht mit sin?& = 1 — ¢2 iiber in
d 5 AP, _
‘d?[(' — )T] +nn+1)P, =0 (4.10)
oder
d2p, dp,
— 2 n —_— n =
(1-173) e 2t T +n(m+ 1) P, =0. (4.11)

Das ist die Legendresche Differentialgleichung fiir die Funktion P,(?).

4.2.1. Legendresche Polynome

Wir setzen fiir die Losung von (4.11) eine Potenzreihe an:

e}
P,(1) = Y ot (4.12)
k=0
Mit
0 0
P) = 3 akt* = 3 auk + 1) ¢
k=1 k=0
und

Pr() = 2, Gl + 1) ktt = L aealk +2) (k + e
=1 =

k
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ergibt sich nach Einsetzen dieser Ausdriicke in (4.11) fiir den Koeffizienten von 7*
Gea(k +2)(k + 1) — k(k — 1) = 2k + gn(n + 1) =0, ¢ 20,
und damit die Rekursionsvorschrift fiir die Koeffizienten

_kk+D)—nn+1) _ (-K@+k+1)
R (Y o W ity v,y v s m TR G

Bei fortlaufender Anwendung ergibt sich nun daraus fiir k = 2I:

- (- 1),n(n -2)(n—4)..(n=21+2)(n+ )(m+3)...(n+ 2] — l)c
€2 = @n! 0>
und fiirk = 2/ + 1:

m-—1)m-3)..n=20+1)m+2)(n+4)..(n +20)
Ca1p1 = (=1)! @I+ 1) €1

Wir erhalten zwei linear unabhéngige Losungen, wenn wir einmal ¢, + 0, ¢; = 0
und dann ¢, = 0, ¢; * 0 setzen, ndmlich

cokio(-l)kn(n — ) =2k + D+ D)+ 3)
= 2k

o (n + 2k — 1)(-2’k-)-!

und
clki(—l)"(n -1 -=3).(n=-2k+1)(n+2)(n+4)

12k+1

(n+ Zk)ml_)!'

Die beiden Reihen konvergieren fiir |f| < 1 und sind damit tatsichlich Lésungen
von (4.11), wie wir der Theorie der gewdhnlichen Differentialgleichungen entnehmen
[Band 7/2]. i

Die erste Reihe bricht bei geradem n fiir k = — ab, die zweite bei ungeradem n

_ 2
fiir k = 2 3 ! . Die Differentialgleichung (4.11) besitzt also fiir jedes n eine Poly-

nomldsung n-ten Grades, fiir die wir die Bezeichnung P,(f) vorbehalten wollen.

Es sei an dieser Stelle ausdriicklich darauf hingewiesen, daB wir damit zunéchst
fiir festes n nicht die allgemeine Lsung der Differentialgleichung angegeben haben,
die ja von 2. Ordnung ist.

Indem wir die Rekursionsformel (4.13) fiir die Koeffizienten in umgekehrter
Richtung anwenden, gewinnen wir fiir die genannten Polynome eine einheitliche
Darstellung.

Die einheitliche Darstellung fiir die Polynomlssungen P,(¢) lautet

‘
n

2.
P(1) = ¢y X dp_py ™%,
i=0
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wobei ¢,_,; = d,_,,¢, ist. Die eckige Klammer bedeutet das GauBsche Klammer-
n
[2]
zient d,_,,; 1Bt sich wie folgt umformen

dyyy = (—1) nn—1)mn-2)...(n =21+ 1)

" 2:4:6...202n—1)(2n—-3)...2n -2/ + 1)

=(__1),_1__ n! (2n — 20! n! 2!

21 (n =200 @2n)t(n =)

_ n\ (2n - 20! n!
=0 (7)== G

symbol, wonach die groBte ganze Zahl kleiner oder gleich -;i ist. Der Koeffi-

und damit wird

L BN
20 = gy £,0) e

=cn[tn mn—1 ., nn-1)@=-2n-3)

) TaEn - D=3

(4.14)
Nach einer noch vorzunehmenden Fixierung der Konstanten ¢, sind die Funktionen
P,(r) die Legendreschen Polynome.
Erzeugende Funktion
Zur Berechnung eines Potentials wird hdufig der reziproke Abstand —;— (Bild 4.2)

zweier Punkte benotigt. Wir werden jetzt diese reziproken Entfernungen in Potenz-
reihen entwickeln, wobei sich die entstehenden Koeffizienten als die Legendreschen
Polynome erweisen. Damit haben wir einen weiteren Zugang zu diesen Funktionen
gefunden.

Der Punkt P habe den Abstand r < 1, der Punkt Q den Abstand 1 vom Nullpunkt;
die beiden zugehorigen Radiusvektoren schlieBen den Winkel ¢ ein. Dann ist die
Entfernung ¢ der Punkte P und Q gegeben durch:

o=+/1+47r*=2rcosd .

[4

P(xyz) Bild 42. Entfernung ¢ der Punkte P und Q

0

. . 1. . .
Wir setzen cos @ = ¢ und entw1ckeln?1n eine Potenzreihe nach r:

1 1

L S——F YT 4.15
e J1+r2—2n ;Eo @ @13
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wobei wir die Entwicklungskoeffizienten mit P,(f) bezeichnen. Um diese Entwick-
lung im einzelnen durchzufiihren, setzen wir z = 2rt — r? und erhalten bei An-
wendung der Taylorschen Entwicklung [Band 2, 3]:

1 < (=% 1 1-3
—_—— = (1 —2)t = me_1)ym = — 22
N ,,Eo(m)z( Dr=ltgztggs+t

LL3s.em-n,
. 2:4- 6 .2m

oder mit z = 2rt — r?:

=[N -Qrt—-r)t=1+ %r(Zt i r?(2t = r)* +

1:3-5...2m — 1)

T a6 am A

.+
Die Konvergenzbedingung |z| < 1 ist fiir diejenigen r und # mit r > 0 und |¢| £ 1
sicher erfillt, fir .die |2rt — r?| < 2r|t] + 72 < 2r +r2 <1 gilt, also fir
r<y2 —lundf 1.
Da somit die Reihe fiir die angegebenen r, ¢ absolut konvergiert, ist sie auch nach
Losung der Klammern absolut konvergent, also eine Umordnung der Glieder er-
laubt. Nach dem binomischen Satz gilt

@t ==y - (;n) @Ot 4+ (e

und somit
1 = 1-3.02m-1) .
T E T T

1-3...2m — 1)
2:4..2m

Il
+
ﬁ[v]s

rméo( 1)‘( )(2:)'" ip

=1+ § r"'zr‘,"C,,,,,(t) r.
m=1 [=0

Um eine Reihe in r zu erhalten, fassen wir alle Glieder mit 7" zusammen, dabei gilt

m+1=noderm=n—1mit 0 </ < m. Der Zihlindex / lduft von 0 bis [%—],
wie man sich leicht verstdndlich macht. Somit wird

+ 575 Cd) = ErB0) mit o) = 1.

|-
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Fiir Cy,_(?) finden wir:

— 1-3...@2n 1)) 1\ on-21n-21
Crna(t) = —2'—4—(7——‘( 1) ( ) !
(n — 1) @n - 2)! .
= (=1 n—21m-21
R )y ey v e
1 @n — 21!
—1) -21
=D 2"n'() w—anr
und somit erhalten wir
[ ] (@2n —2D! 21)
1\
PO = gy 2.1 () G e @“.16)
Dies sind die Legendreschen Polynome,lwird auch erzeugende Funktion genannt.
Setzen wir nun in (4.14) e
_ @mt 1-3-5..2n— l)
= DT = n' .17

so ergibt sich Ubereinstimmung der beiden Formelausdriicke fiir die Funktion P,(r).
Mithin geht (4.14) iiber in:

_1:3-5..@2n—=1) nn—1)
B = a1 [ T =D’
nn—1)(n—-2)(n—-3) .,
.+ 34 2n — D@ =3 "4+ ] (4.18)
Beispiel 4.2 (siehe auch (1.16)):
P =1 P, = P 13 2 ! = 3 2 l—l 32 1
o) =1, (0 =1, 2(’)—T —T)_?t "7—;(' - D,
1-3-5 3 5 3 1
= 3—— =—3—_ = e— 3 _
Pi(1) o (I 5:) 21 2: 2(51» 3r),
10357006 3\ 35 15 3 1
P4(t)————4! (t t 35)— 3 t Tr +—8———8-(351 — 302 + 3),

1 1
Ps(t) = ?(6315 — 706 + 15¢), Pg(1) ='ﬁ (231¢° — 315¢% + 105¢2 — 5).

Aus dem Zusammenhang mit der erzeugenden Funktion%ergibt sich fiir

1 1 @
d=0t=1l;—=——=3rm P()=1, (4.19a)

o l—-r /S

1 1 g - — (1)
Pemi= —Lim=qmr = T (-1 R(-D= (-1, @19b)
_T o _o 1 1 _ 2 () _
#=7,1=0; 3_——(1“2)_*—’2‘)("% i Pap(0) = 0 und
P(0) = (—1yr 1 =@ (4.19¢)

2'4 .. 2n
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Ferner zeigt der Ausdruck (4.18) unmittelbar, da3 P,,(f) ein gerades und P,,.,(7)
ein ungerades Polynom ist. Die Entwicklung (4.15) gestattet die Herleitung einer
Reihe wichtiger Eigenschaften der Legendreschen Polynome.
4.2.2. Eigenschaften der Legendreschen Polynome
Fourierentwicklung
Schreibt man
p?=147r>—=2rcos® = (1 —re?)(l —re'?,
so gewinnt man zunichst
% = —re?)+(l —rei?)-
) 0 L
= ( 3 aar" e"") ( 3 " c"""’)
n=0 n=0
. -3 1-3...2n=1)
= -_— i = —_—
mit &, = ( 1)(11) 2:4..2n
Wegen der Konvergenz der beiden Reihen fiir » < 1 kann man sie wie folgt um-

formen:
(oo + oy € + oy €128 + .+ o, €7 + ) (o + &y €71 + , 7120

+ oot e )

[2xpcx, cOS NP + 20050051 COS (1 — 2)F + 20,004 COS (n — 4)F + ... 11"

Ms

n=0

g8 1

=Y P,(cosH)r (nach (4.15)).
n=0

Somit gewinnen wir die Fourierentwicklung
P,(cos ) = 2y, cos ni

+ 20,0, COS (n — 2) @ o2, fiir n gerade
2
+200gcos(n = HF + ... + 20 n—1 ns1 cO8 ¥ fiir 7 ungerade (:20)
oder E :
L 1:3..@2n—1) 1n -
P,(cos ) = ZW [cos nd + —l—mcos n-2)9
1-3n(n—1) -
R EE s ot cos(n——4)19+...]. @.21)

Die Koeffizienten f in (4.20) sind alle positiv, so daB wir folgern kénnen:
|P,(cos B)| < B™ |cosnd| + BP,|cos (n — 2)F| + ...
S+, + ... =P() =1,
also gilt
PO = 1. ) 4.22)
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Damit ergibt sich fiir die Konvergenz von (4.15) mit |[r] < ¢ < 1:
00 0
> POl = X g
n=0 n=0

d. h., die Reihe (4.15) konvergiert absolut und gleichmaBig fiir [¢f| < 1 (¢ reell) und
alle [r] £ g mit festem g, 0 < ¢ < 1. Dabei sei bemerkt, daB » auch komplex sein

kann.

Rekursionsformeln

Es werden jetzt Beziehungen zwischen zonalen Kugelfunktionen verschiedener
Ordnung gewonnen, die sich auch als Rekursionsformeln interpretieren lassen. Aus
(4.15) erhilt man bei Differentiationen beider Seiten nach r:

1
O—Q— . ©
—_— — — P, n—1

5 Py (t=r ’Eon (1) 7
oder
1 0
(t=r)—=0*XnP,)r",
e n=0

(=P P = (1 = 20 + 1) 3 nPo(1) -1,
n=0 n=0 A

(t = 1) [Po(t) + Py()r + Pr(0)r* + ... + Poey(O) 1™ + P,() 1" + ...]
= (1 =2rt +r¥)[Py(t) + 2P, () r + oo + (n — 1) Ppey(t) r"2
+nP,O)rt +(m+ 1) P, () + .1,
Der Koeffizientenvergleich fiir 7" ergibt nach dem Identitédtssatz:
IP(t) = Ppy(t) = (n + 1) Ppiy () — 2n2P,(1) + (n — 1) P,y (1),
2n + 1) tP(1) = (n + 1) Ppiy(f) + nP,_y(2) (4.23)
(Formel von Bonnet). Sie gilt auch fiir n = 0, wenn man P_, = 0 setzt. In der Form
(n+ 1) Pyy(t) = 2n + 1) tPy(t) — nP,_4(f) kann man sie mit P, =1 und
P, =t fiir die Gewinnung der Legendreschen Polynome benutzen, z. B. fir n = 1:
2P,(f) = 3tPy(t) — Po(?) = 31> — 1,
also P,(7) = 31> — % usf.
Differenziert man in (4.15) beide Seiten nach ¢ — die Berechtigung hierfiir ergibt
sich aus Konvergenzbetrachtungen in Komplexen —, so erhélt man

e _r _&.,,
—_—=—= Pyt)yr
t 4 n§0 ®
oder

Py P = (1 = 2rt + 1) féop,;(r) .
n=0 n=
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Der Vergleich der Koeffizienten fiir r"+! ergibt jetzt:
P(1) = Py (1) — 2tP(1) + Pp_y(0). (4.24)

Diese Formel gilt auch fiir n = 0 (P_; = 0).
Durch Differentiation von (4.23) nach ¢ erhalten wir

@n 4+ 1) P,(t) = (n + 1) Ppy(2) + nPp_y(1) — (2n + 1) tP(2).
Ersetzen wir nach (4.24) P, (t), so wird
2n + 1) P,(1) = (n + 1) [P,(t) + 2tPy(t) — Pp_y(t)] +nP,_i(2)
= @n + 1) 1P,

also

nP,(1) = tP,(t) — P;_y(2). (4.25)
Setzen wir tP, = nP, + P,_; in (4.24) ein, so ergibt sich:

@n + 1) Py(t) = Ppyy(t) — Pry(0), (4.26)
und schlieBlich ersetzen wir in (4.24) P,_; aus (4.25), das ergibt

(n + 1) P,(2) = P, 4(2) — tPi(2). 4.27)

Die Formeln (4.25), (4.26), (4.27) gelten ebenfalls fiir » = 0, wenn man P_; = 0
beachtet.

Aufgabe 4.3: Man leite die Differentialgleichung (4.11) fiir P,(¢) aus den angegebenen Rekursions-
formeln her.

Aufgabe 4.4: Man entwickle aus (4.26) die Formel

n+1
2
Pi)= Y (n— 4k + 3) Pu_siy1(0). (4.28)
k=1
Orthogonalitit

Die Orthogonalitit der Legendreschen Polynome (siche auch Abschnitt 1.1.4.)
148t sich jetzt ebenfalls unter Verwendung von (4.15) sehr einfach nachweisen. Es
gilt namlich

1 1 0 0
=X P(O)r P, (1) s™
\/I—r2—2rt \/1+s2—23t n§0 @ mé:o ©

= S P Po(l) 5™

nm=0
Die Integration der linken Seite von —1 bis +1 ergibt:
+1

dr
fJ1+r2—2rtJ1+s2—2xt

-1

S ﬁm [V2s(U+ r2 = 2r) + /2r(1 + 52 =20 |2\
(N s+ Jri+s) 1 N 1+ /rs

Jrs s =n+Jri—s) s 1-rs’
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Entwickeln wir diesen Ausdruck in eine Potenzreihe nach rs mit \/ rs < 1, so ergibt

sich
1 1+ /s _
\/— \/— 2 Z

woraus durch Koeffizientenvergleich die Orthogonalitatsrelation folgt:
41 0 fir n+ m,
[ Pu(t) Pu(f) di = { 2 . (4.29)
=t

1 fir n=m.

% +1 (rs)* = z J' Po(t) Po(t) di rs™,

+1
Wir beachten, daB insbesondere J' P,(t)dr = O fiir n + 0 ist. Hier ist m = 0 gesetzt.
-1

Aufgabe 4.5: Zeigen Sie, daB
+1

[a-m@ora-22 2

2n+1

ist.

Formel von Rodrigues
Offenbar ldBt sich jedes Polynom g,(f) vom Grade m linear aus P,(1),

P,_(1), ..., P, kombinieren. Denn aus dem Ansatz g,(f) = Z a,P,(f) kann man
die Koefﬁ21cnten a, wegen (4.29) wie folgt ermitteln:

f ROV IOLTE A j PO PO dt =

firl =0,1,2,...,m, also

g=5t1 2"“ f e P dt, Kk =0,1,2,...,m

Somit gilt firn > m

+1
f P,(1) gn(r)dt = 0. : (4.30)
-1

Wir benutzen nun die Orthogonalitatseigenschaft zur Gewinnung einer weiteren
wichtigen Darstellung der Legendreschen Polynome. Dazu definieren wir

t
OP,(1) = P1); ®P,(1) = [ ®*VPm)dr fiir k=1,2,..,n
-1
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und zeigen durch vollstindige Induktion, daB das Polynom ®P,(r) vom Grade
(n + k) zu jedem Polynom g,_+1y(f) von hochstens [n — (k + 1)]-tem Grade
orthogonal ist und ®P,(+1) = 0 fiir k = 1,2, ..., n gilt. Wir bezeichnen jetzt mit
gX() ein Polynom von héchstens s-tem Grade, dann ist g¥ (1) = f g¥(7)dr ein
Polynom von héchstens (s + 1)-tem Grade. Fiir k = 1 ist

+1
WP ()= [ P)dt=0
-1
und
+1 L +1
| OPgrodr = [OPgt ] — [ Pghydi=0
-1 -1

rach (4.30). Also ist fiir k = 1 die Behauptung richtig. Wir nehmen an, die Behaup-
tung gilt fir k — 1, dann ist

+1
®p,(1) = [ &P, dr=0
-1
und

+1 +1
1 _

f ©P, g8 rydt = [PP,gh )" — [ *DPgk  dr = 0.

-1 -1

+1
SchlieBlich folgt MP,(1) = f (-Dp dr = 0.
-1

Das Polynom ™P,(7) hat demnach bei 7 = +1 jeweils Nullstellen von n-ter Ord-
nung. Als Polynom (2n)-ten Grades muB es folglich die Gestalt

OP, (1) = C,(* — 1)

haben. Fiir die Legendreschen Polynome ergibt sich somit die Darstellung

d- " a -
P)=Cgm (@ -1y =C, [Wt + ]

=C2m@n—1)...(n+ )" + ...].

Der Vergleich mit (4.18) und (4.17) ergibt fiir die Konstante

@n! @) 1
T S renz 0 Go= g
Die Formel
P == L2 1y (431
T T T ’

stammt von Rodrigues.
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Beispiel 4.3: Die Entwicklung eines Polynoms nach Legendreschen Polynomen.
Wir wollen eine Formel fiir die Entwicklung von ¢* nach Legendreschen Polynomen angeben
und setzen an:

"= ﬁ aP(t). (4.32)

Dann ergibt sich wegen (4.29)
+1

+1 .
a; = 3 f t"P()dt fir k=0,1,2,...,n.
-1

Eine kurze Rechnung ergibt

n! 1 2n —
"= [P() + 2n — 3)7 P+ Q@Qn—T)

1
135.@-D 7 g D@ ] (43

Diese Formel hat bereits Legendre angegeben.
Kurvenbild

Aus der Formel (4.31) kénnen wir mit dem Satz von Rolle [Band 2] auf die Lage
der Nullstellen von P,(¢) schlieBen. Das Polynom (#2 — 1)" = (¢ — 1)" (¢ + 1)" hat
je eine n-fache Nullstelle bei # = +1. Mithin hat seine 1. Ableitung je eine (n — 1)-
fache bei +1 und eine einfache dazwischen. Die 2. Ableitung besitzt je eine (n — 2)-
fache Nullstelle bei +1 und zwei einfache dazwischen. SchlieBlich besitzt die n-te
Ableitung — also P,(f) — genau n einfache reelle Nullstellen zwischen —1 und +1.

-1 - +1

1. Ableitun
-7 ) g

2. Ableitung

n-te Ableitung

d’l
Bild 4.3. Lage der Nullstellen von PO @2 -1

Die Werte der Nullstellen (auf 6 Dezimalstellen genau) ergeben sich im Intervall
[0, 1] fiir die ersten 6 Polynome P,(¢):

n=1:14=0

n=2:t; =0,577350

n=3:1=0 1, = 0,774597

n=4:1 =0339981 1, =0,861136

n=51=0 t, = 0,538469 13 = 0,906180

n=6:1 =0,238619 ¢ =0,661209 ¢, = 0,932470.

6  Sieber, Funktionen
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Die Kurven der Polynome P,() haben folgenden Verlauf:

Bild 4.4. Kurvenverlauf der
Legendreschen Polynome

7t

4.2.3. Integraldarstellungen

Weitere Darstellungen der Legendreschen Kugelfunktionen erhilt man — analog
zum Vorgehen in Kapitel 3 —, wenn die Betrachtungen zu den Funktionen auf
komplexe Verdnderliche ausgedehnt und Sitze der Funktionentheorie genutzt wer-
den. Insbesondere wird ¢ im folgenden als komplexe Verinderliche aufgefaBt.

So erhalten wir durch Anwendung der Cauchyschen Integralformel [Band 9] auf
die Rodriguessche Formel

1 d

— 2 e
P,(1) = Tl P [z 1] (4.34)
eine erste Integraldarstellung fiir die Funktionen P,(f), ¢t komplex:
2" __ 1\ 2 _ 1)y
! ¢ D) ! ¢ ) d¢, (4.35)

PO = g ) e & = | o
c 41
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wobei der Integrationsweg € in der komplexen {-Ebene den Punkt { = ¢ einmal im
positiven Sinne umliduft. Dieser Ausdruck stammt von Schlafli (1881).

5

Bild 4.5. Integrationsweg ©

Ebenso ergibt sich durch Anwendung der Cauchyschen Integralformel auf die
Potenzreihenentwicklung
.
\/ 1 — 2zt + 22
eine weitere Integraldarstellung

= TP
n=0

1 =
-=

1 g
P1) = 5— J Py (4.36)

&
wobei €’ eine Kurve ist, die den Nullpunkt der komplexen Zahlenebene einmal im
1

positiven Sinne umliuft, ohne einen singuldren Punkt von (1 — 21 +{?)" 2 zu
umschlieBen.

Aufgabe 4.6: Man leite (4.35) aus (4.36) durch die Substitution \/rl — 25 + &2 =z — | furdie
neue Variable z her.

Wie betrachten wieder die Darstellung (4.35) und wihlen € als Kreis mit dem

1
Mittelpunkt 7 und dem Radius [> —1|Z (¢ + + 1), so daB lings € gesetzt werden
kann:
t=1+JP—1e% —n<gg+r.

Die Wahl des Zweiges von \/tl — 1 ist fiir die weiteren Betrachtungen ohne Be-
deutung. Nach der Substitution erhalten wir fiir alle Werte von 7 # +1

+m
2 _ 2] el 2 _ 2ip \ "
Py =t =1 4+2/ =1 e+ (12— 1)e dp
2 lgg V=1 e

-

+7
:7‘:_17:_ f (VP =Tew 4+ 2 +/F = 1 &) dg

-7

+m

=2L_' j (t + /1 =1 cos¢)" dp.

6%
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Da der Integrand eine gerade Funktion von ¢ ist, erhalten wir schlieBlich

P, =% f (t +/72 = Tcosg)" dg. (4.37)
0

Dies ist die Laplacesche Integraldarstellung. Sie gilt fiir alle komplexen Werte von ¢
einschlieBlich # = +1. Setzen wir ¢t = cos# mit —1 < ¢t £ +1, so ergibt sich

k)
P,(cos ) = % f (cés ¥ + isin ¥ cos @) dg. (4.38)
0

Wir erhalten eine weitere Integraldarstellung, wenn wir in (4.37) die neue Verdnder-
liche z=1+iy/1—#cosq einfihren. Dann wird dz = —i/T — 2 singdg
= —iy/1 — 2zt + z>dp — der Zweig der Quadratwurzel wird so gewihlt, daB er

. T P
firp = —2—m1t z = t positiv wird, —
L =iime

1 z"
P(t) =— —_———dz
9 ki f \/l——2zt+z2
t+i/1- 1

oder, wie oben mit ¢ = cos &,

e-id
i "
P,(cos?) = — —_—_— dz
( ) ﬂf \/1--2200s19+z2
e+id
!h,
‘ @
2 <)
ST, 7
¥ Bild 4.6

Der Integrationsweg ist die Strecke von z = e'® bis z = e™'%.

SchlieBlich setzen wir z = €'* und integrieren lings des Kreisbogens von e'?
nach e ', was nach dem Cauchyschen Integralsatz mdoglich ist. Dabei ist zu be-
achten, daB der Integrand in den Encpunkten nicht holomorph ist. Wegel:n

1 —2zcos® + 22 = (z — €¥) (z — e~¥) verhilt er sich dort wie (z — )" 2,
Wenn man den Integrationsweg wie in Bild 4.6 fiihrt, wobei der Radius ¢ der ,,ein-
gedriickten* Gebiete bei e*!® gegen null geht, so 1dBt sich zeigen, daB die Integrale
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langs dieser Wegeinschnitte ebenfalls gegen null gehen und somit die Deformation
nach dem Cauchyschen Integralsatz erlaubt ist:
49 +0
l(n~1)w ~ ei(n+«;)r¢

1
dep =— d
'\/l — 2e'cos ¥ + el27 ’ "J V2(cos ¢ — cos )

P,(cosit) = —

+9
dg +,J2 sin(@1 + D) g

- —_—
Vcos g — cos \/cosqo——cosﬁ
o

_\/_5_ - cos ((n + 1) @)
- [

Das zweite Integral verschwindet, da der Integrand ungerade in ¢ ist, somit wird

9
2 ¢ cos(n + Do
P,(cos ¢ Al b AR VA S
)= ' NCTErT (4.392)
0
Substituieren wir ¢ = = — ¢’ und ersetzen & durch = — &', so ergibt sich nach Weg-
lassen der Striche bei ¢’ und 9’ aus (4.39a)
i
Pylcos §) = N2 /2 JML_@; (4.39b)
\/cos J — cosg

Die letzten beiden Formeln stammen von Mehler (1872).

4.3. Zugeordnete Kugelfunktionen

Wir hatten im vorangegangenen Abschnitt fiir die Differentialgleichung (4.7) zu-
néchst nur solche Lésungen gesucht, die lediglich von & abhiéingen. Um allgemeinere
Losungen zu finden, die zudem auch von ¢ abhéngen, machen wir den Separations-
ansatz S,(9. ¢) = O(3) D(p), wobei @ nur von & und @ nur von ¢ abhingen soll.
Setzen wir diesen Ansatz in (4 7) ein, so ergibt sich

d@) 0O 00

nn+1)O0D + —— rEl WV

0
smz? 00 (smﬂ

2
oder nach Multiplikation m1t ’ und einer Umstellung, die die Trennung der

Verénderlichen bedingt: é)d)
n(n + 1) sin? 9 + sind _d (smﬁ d@) _1 9%
! 6 a5 as @ dg?

Beide Seiten miissen somit konstant sein. Wir setzen die Konstante gleich m?. So
erhélt man fiir @ die einfache gewohnliche Differentialgleichung
d;pq: +m*® =0,
deren allgemeine Losung
D,(¢) = A, cosmg + B, sinmg mit konstantem A4,,, B, (4.40)
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ist. Fir O(%) ergibt sich folgende etwas kompliziertere gewdhnliche Differential-
‘gleichung

1 d /. de m?
— W(sm ﬂw) + [n(n +1) - —sm] 0 =0, @.41)

deren Losungen fiir ganzzahlige m mit 0 < m < n im folgenden betrachtet werden
sollen. Wir fithren wieder 7 = cos¢ ein und erhalten mit den Bezeichnungen
O(9) = Py(cos 9) = PX1)

d L. dpm myo
E[“") T ]+[n(n+1)-m]1’"_o 4.42)
oder
dzpr dpr m?
— 2 n . n — m —
(- ST - B [n(n +1) -2 12] Pm=0. 4.43)

Zur weiteren Behandlung machen wir fiir die Funktion P;' den Ansatz
Pr(t) = (1 — )*R™(1), 0<m<n,
wobei o reell und R{™ die m-te Ableitung einer Funktion R, sein soll.

Setzen wir 2o = m und die Funktionen R, = P,(f), so wird gemaB (4.10) die
vorstehende Gleichung erfiillt und wir haben — wie man leicht nachweist — mit

Pr)=(1-1)2PM(1), 0sm<n, (4.44)

eine Losung der Differentialgleichung (4.42) gefunden. Man nennt sie zugeordnete
Legendresche Funktion m-ter Ordnung. Wie eben bedeutet (m) die m-te Ableitung.

Beispiel 4.4: Wir geben einige Beispiele fiir diese Funktionen an:

PYO) =P und PH)=(1-t)Z1:3-5...2n—1).

Es sind ferner fiir

n=0: Py=1, n=2: P=P,=%1>-14,
n=1: P =P =1, Pi=J1—¢% 3%, .

Pl=/1-¢, Pr=J1-1% 3,

Pi=(1-1t)15,

3
2

Pi=(1-1t»)2-15,
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n=4: PJ=Py=}(@5*-30 +3),

Pi=/1-¢ ~i(7:3 - 3),
P=0-m2 (7:2 -1,

Pi=(- :2)7- 105¢,
P=(1 —12)?2-105.
Setzt man wieder ¢ = cos 9, so ergibt sich
P(cos®) = sin™ P P{(cos?¥), O0=<m=n, (4.45)

und man erhélt als Losung der partiellen Differentialgleichung (4.7) bei Beachtung
von (4.40)

S0, ¢) = 2" (A cos mgp + B sin me) Pi(cos9), (A®, BY konstant). (4.46)
m=0

Mit dem Zeichen (m) in (4.45) ist die m-fache Differentiation nach cos ¥ gemeint.

Dies stellt die allgemeine Kugelfiichenfunktion oder Laplacesche Kugelfunktion dar.
Man beachte auch Abschnitt 4.5.

Wir wollen einige weitere Eigenschaften der zugeordneten Legendreschen Kugel-
funktionen angeben. So folgt aus P,(—¢) = (—1)"P,(r) und der Beziehung (4.44)

P(—1) = (=)™ PD). (4.47)

Bekanntlich hat P,() n einfache Nullstellen, die zwischen +1 und —1 liegen. Da
zwischen zwei Nullstellen immer mindestens eine solche der Ableitung liegt, hat
Pp(t) n — m einfache, zwischen —1 und +1 gelegene Nullstellen, wenn man von
den beiden Randpunkten +1 absieht. Diese Nullstellen liegen wegen (4.47) spiegel-
bildlich zum Nullpunkt.

Ohne Schwierigkeiten 148t sich die Rodriguessche Formel (4.31) iibernehmen

m gm P,,(t) (-7 grm

Pr(r) = (1 — t?)2 = e 2 = 1. (4.48)
Ferner folgt aus (4.18) und (4 44) die Darstellung
oy 1°3°5 1 oy [pem_ (A=m)—m—1) .,
P —_Tm—)'—(l )2 [’ =1 !
(n —-—mmn—-—m—-1)mn—-—m—2)(n—m-—3) p——
. 2:4(2n—1)(2n—3) =
(4.49)

Differenziert man (4.23) (2n + 1) tP,(t) = (n + 1) Pp4+4(?) + nP,_4(t) m-mal nach ¢,
so ergibt sich

(2n+1)z‘“’(’)

dm-1P,(1)
dgm-1

+m@n+ 1) - +1)dP"“(’)
den—l
dm
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Ferner differenzieren wir (4.26) (2n + 1) P,(f) = Pp11(2) — Pj-1(t) (m — 1)-mal
nach ¢
d™P(f) _ d"Pha(r)  d™P()

drm-1 7 dm drm
Multiplizieren wir die letzte Gleichung mit m und ziehen sie von der oberen ab,
so erhalten wir

@n+1)

P (n_m+1)dP"“

+(n—m)

d"P,-1(2)
drm

m
und nach Multiplikation beider Seiten mit (1 — #)Z die Rekursionsvorschrift
@n+ )tPf=m—m+1)Py + (n+m)Pyr_,. (4.50)

Die Orthogonalititsrelationen (ohne Herleitung) der zugeordneten Legendreschen
Funktionen lauten insgesamt

1 0 fiir n < r,
[ Por) PR(r) de = { 2 (amt @.51)
-t WAl m—my TT
Ferner gilt
dt i
[ Pro PO =5 =0 firm+r. .52)
Integraldarstellung

Aus der Integraldarstellung (4.35) fiir P,(z), # komplex, folgt sofort

2 n
PO(p) = 2""1‘1:i + D)@ +2)..(n+ m)f(T(%'_—t—)n*‘l% . (4.5)
€

oder
1 m — n
Py = Sty %,— a, (4.54)
44

wobei € eine geschlossene Kurve ist, die den Punkt ¢ einmal im positiven Sinne um-

kreist. Mit der Substitution { =t + /12 — 1) €' fiir £ > 1 erhalten wir wie in
Abschnitt 4.2.3.

Py =M= DT 16y JE T cos gl emedg.
n! 2n(r* — )2

-7

Wegen e™'™? = cos mp — isin me und weil sin mg ungerade ist, haben wir

+7 I " e
3 [ [t+/P —Tcosgl'e™ dp = | [t + /12 =1 cos ¢]" cos mp do.
Zn 0
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Ferner ist in (4.54) |¢| < 1, so daB wir /7> — 1 durch i4/1 — #* ersetzen und

erhalten

T
1 N
PM(r) = %i“ f (t + i</1 = 12 cos @)" cos mep dp (4.55a)
) 0
bzw. mit # = cos ¥
P = (n'-:-—m) i f (cos® + isin® cos @) cos mp de. (4.55b)

Entwickeln wir (7 + \/ 12 — 1cos <p) in eine Fourierreihe, so ergibt sich aus dem
Ansatz

(t+22 —1cosg) = 32"— + Zn)la,,.cos me
e
fiir die Koeffizienten
kd
a, = %j(z + /12 = 1cos )" cos mp dg
0
2n!

T+ m!
und daher tauchen die P7(f) in den Koeffizienten der Fourierentwicklung

mP™n, (m=0,1,2,..),

(t+/72 = lcosq)) = P,(f) + 2n! E
auf (Heine 1842).

JEmT —————— P™(f) cos mg

4.4. Legendresche Funktionen 2. Art

Die Legendreschen Polynome P,(f) erwiesen sich in 4.2.1. als eine spezielle Lo-
sung der Legendreschen Differentialgleichung (4.11), die wir jetzt in folgender Weise
schreiben:

1=y =2ty +n(n+ 1)y =0, nganz. (4.56)

Um die allgemeine Losung der linearen Differentialgleichung 2. Ordnung zu er-
halten, machen wir fiir y einen Potenzreihenansatz mit fallenden Potenzen von ¢

©
y=3 ar’* =at’ + a;’! + ayt’* + ..., (4.57)
k=0
wobei der Exponent » und die Koeffizienten @, zu bestimmen sind. Mit

00 0
Y=% 0-Kar* ! und y'=3 @ —k—1)@-kar+:?
k=0 k=0



90 4. Kugelfunktionen

erhalten wir nach Einsetzen von y, y’ und y"’ in (4.56) fiir den Koeffizienten von ¢
die Bedingung

ap[—v(» — 1) = 2v + n(n + 1)] =0
oder

W+ 1) —nm+1)=0@—-—n@+n+1)=0.
Damit ergeben sich fiir beliebiges a, fiir den Exponenten » die Werte

v=n und v = —(@n+1). (4.58)
Fiir den Koeffizienten von 7~ ergibt sich ebenso

a[n(n + 1) —»(v — 1)] =0,

woraus fiir beide Werte von » aus (4.58) a, = 0 folgt.
Fiir die Koeffizienten g, mit k # 0,1 erhélt man durch Vergleich entsprechend die
Bedingung
al-(v—k)(» —k—1) = 2(» — k) + n(n + 1)]
+a v —k+1)@—-k+2)=0
oder
“=a v—k+2)(p—k+1)
KRG TR —k+ ) —n(m+ 1)
»—k+2)(v -k +1)
(P—k—-nmn@E-—-—k+n+1)
fir k = 2, 3,.... Wahlt man » = n, so kann man leicht die Beziehung (4.59) auf
die Formel (4.13) zuriickfiihren. Man erhdlt dann die Legendreschen Polynome.
Interessant ist fiir uns jetzt die Losung der Differentialgleichung, die sich aus der
Koeffizientenfolge (4.59) mit » = —(n + 1) ergibt:
_ m+k—-D@n+k ..
®= e kAT
Mit den angegebenen Werten von @, und a, erhilt man:

(4.59)

= k-2

k=23, ...

a3 =05 = ...=axy+ =0,
_  (n+Hm+2) .  m+ ) +2)(n+3)(mn+4)
G =l T T ) et s
- m+1D)m+2)(n+3)(n+.4)..(n+ 2])
n =y T A v )@+ 5. Gnr A+ 1)

So erhalten wir eine zweite Losung der Differentialgleichung als Potenzreihe mit
negativen Exponenten:

a

1 m+D)@n+2) 1

00 = e [ + gy
+ m+ 1)@ +2)..(n+2]) 1, ]
T 2942120 + 3) ... (2n + 21 + 1) grrivt 0T
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oder

a m+1)m+2)..(n+2) 1
2.(1) = TfT [l tE T T @n ¥ 2+10) 7*‘]

a @en)! 2 m+1  (n+2D)! 1
oo =z [+ SE L ("] e,  @ow

(4.60a)

oder

wobei a, noch geeignet zu wihlen ist. Wegen lim a_a,,_ = 1 konvergiert die Reihe
k—>o0 Gg-2

Lo 1 . . .
(4.60a) fiir |7 > 1, und als Potenzreihe in — ist sie gleichmédBig konvergent fiir
[l =1 +9 @ > 0, fest). !
Beispiel 4.5: Fiir n = 0 erhilt man bis auf die Konstante ao die Entwicklung

Qo() 1+1+1+1+ [ >1
T T3 T T T )

Bedenken wir, da3

far |¢| > 1 ist, so ergibt sich
t+1

1
Qo) = —2-ln P = Arcoth ¢
und ebenso
t t+1
Q1) = 71n P + 1 — 1 =tArcotht —1. (4.61)

Wir beschreiten noch einen zweiten Weg zur Ermittlung der allgemeinen Lésung
der Legendreschen Differentialgleichung. Dazu verwenden wir die Methode der
Variation der Konstanten, also den Ansatz y(f) = P,(f) u(f), wobei P,(f) die Legen-
dreschen Polynome sind. Um u(f) zu bestimmen, gehen wir mit diesem Ansatz in
die Differentialgleichung (4.56) und erhalten .

(1 — ) [P}lu + 2Pju’ + Pu"] — 26(Pju + P') + n(n + 1) Pu =0
und daraus bei Beachtung der Tatsache, daB P,(¢) die Differentialgleichung erfiillt,

(1 = £2) [P + 2Piu') — 2P’ = 0
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und nach Trennung der Verdnderlichen

2t P,
1-1r P,

Die Integration ergibt
Inw'=-In(l — ) —In(P) +InC,

u
u

oder
e G
- POP
und somit

dr
“0 = & [ = mr O

Damit erhalten wir

»(1) = CP(0) + Can(’)J"(—I_T‘;'W

Wt) = C1P(1) + C20,(0), (4.62)
wobei jetzt
00 =20 [ =7

gesetzt wurde. Da P,(¢) und Q,(?) linear unabhéngig sind, stellt (4.62) die allgemeine
Losung der Legendreschen Differentialgleichung dar.

Fiir den Integranden im Ausdruck von Q,(7) 148t sich die folgende Partialbruch-
zerlegung angeben:

oder

(4.63)

\

(l—tZ)I[P,(t)P =%(zi1 - 1)+.§n,(tf"[xv + (t—b:x,)z)’

wobei die «, die Nullstellen von P,(¢) sind. Man erkennt weiterhin, daB die a, ver-
schwinden miissen, da sonst in der Losung fiir y(f) die «, singuldre Stellen wiren.
Fiir Q,(7) erhilt man demnach fiir [¢| > 1 den Ausdruck .

t+1

2,(0) =+ P W(1) In =
Dabei ist
Woeal)) = B 5 2

= Wt (D). (4.64)

v

ein Polynom (n — 1)-ten Grades in ¢ (die «, sind die Nullstellen von P,(?)).
Fiir n = 0 erhélt man

1. 141
0o(0) = 5 In
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und fiirn =1
t t+1
0. = 7111 =1

in Ubereinstimmung mit den Ausdriicken (4.61).

-1

4

; Bild 4.7. Kurvenverlauf von Qy(t) und Q4(t)

Entwickeln wir (4.63) in eine Potenzreihe nach % , s0.ergibt sich

dt
Qm=h®fﬁTﬁﬁﬁF
dr

n—2
(" + cprt™? + )f TP EF T ot T )

1 1
et + 0‘..-21"_2 + ...)J‘—:—cm (1 +ﬂ’t—2 + ...) di
n

1 1 1
Ta@mE D e Y e
1:3:5...2n — 1)
n!
wendig mit der von (4.60a) iibereinstimmen, somit ersetzen wir

1 . n!
Te@n+1)  1-3-5..@n—-1)@n+1)
und erhalten aus (4.60a) endgiiltig die Potenzreihendarstellung
n! 1
SO=T35 @D 7

5 D@42 .. (+2) 1
x [1 t X a dlon ). Gt 1)7]'

wobei wegen (4.17) ¢, = ist. Diese Entwicklung muB not-

ao

(4.65)
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Die Funktion Q,(r) nennt man Legendresche Funktionen 2. Art, dagegen wird P,(f)
als Legendresche Funktion 1. Art bezeichnet.

Die Legendreschen Funktionen 2. Art haben bei ¢ = +1 logarithmische Singula-
rititen, was mit dem Charakter der singuldren Punkte +1 der Differentialgleichung
zusammenhdngt. FaBt man die Veranderliche ¢ komplex auf, so ist Q,(f) in der von
t = —1 bis t = +1 aufgeschnittenen komplexen Zahlenebene holomorph. Im Un-
endlichen hat Q,(7) eine (n + 1)-fache Nullstelle. Fiir die Logarithmen sollen die
Hauptwerte genommen werden. Fir |f| < 1 soll Q,(f) durch den reellen Teil von
(4.64) erklart sein,

0.(1) ———P W(0)In— ! + s Wo-1(2), (4.66)
der wegen%lni:- = %ln% + i—; ebenfalls Losung der Differentialglei-
chung (4.56) ist.

Integraldarstellungen

Ausgehend von der Integraldarstellung (4.35) fiir die Funktion P,(f) machen wir fiir
die Differentialgleichung (4.56) den Losungsansatz in Form eines Integrals der
Gestalt

@ -n
) = (C z)" +1 d&' . (4.67)
Wir setzen diescn in (4.56) ein und erhalten
A=)y =2ty +n(n+ 1)y

- (S 2 2
—(m+1) J'@ t)"+3[(n+2)(1—t)—2t\C—t)+n(C—t)]dC

=@+ l)f t)"“ R+ DU -1 — (n+2) (& - D]

d 2_1n+l —
=("+])fd_4“((CC—t)")+2 a
5

Der obige Ansatz (4.67) ist demnach eine Losung der Differentialgleichung, falls der
Ausdruck

(&2 — 1+t

(C _ t)n+2
seinen Ausgangswert wieder annimmt, nachdem { die Kurve € durchlaufen hat.
Er verschwindet fiir { = +1, so daB wir als Weg € das Intervall —1 £ ¢ £ +1
nehmen konnen. Somit kénnen wir fiir (4.67) schreiben

+1
1 —¢2)e

0 - € [ =g
-1
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wobei die Konstante C noch zu bestimmen ist. Dieser Ansatz verhilt sich wit:i

tn+l

fiir £ > oo und muB daher als Losung von (4.56) mit Q,(¢) bis auf die Konstante C
ubereinstimmen. Diese gewinnt man nun leicht aus der Entwicklung (4.65) von

QO,(t), wonach

+1 1
n! _ _FwmAgr — _ F2ym
TrsoEn ¢ Je-era=c [a-ora
-1 0
/2 2 \
—_ Tn2n+1 - "n’
‘2Cfs‘“ 9dp =201y
0
Somit wird C = T und
+1
1 a-=or

00 = 5t Wdt'
-1

(4.68)

Diese Formel, die von Schléfli stammt, gilt fiir alle komplexen Werte ¢ auBerhalb

der Strecke zwischen = —1 und.¢ = +1.
Wir substituieren nun fiir [7] > 1:

2—(1t_:—c—fl=t+\/t2—-lcoshn

oder
H(1-2% -2 1+¢ [t—1

hy = , =

coshn (1 -/ =1 CTTTINTFI
und daraus

wdn _ 2 A/z—l_ 2¢7

da T - NT+1l 1=
also

d¢ = 3(1 - %) dn.

Damit wird aus der obigen Darstellung

+
L 1
2 (t + /1> — 1 coshy)+t
©

= [ (t++/7 =1 coshy)=+Vdy).
0

Setzen wir ferner

(t + /72 =1 coshy) (t — /1> — 1 coshyp) = I,

0.(n) = dn

Sy

(4.69)
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so geht (4.69) nach kurzer Zwischenrechnung tiber in

Yo
0.0 = [ (t —=/1* = Tcoshp)" dy (4.70)
g .
. 1 t+1 . .
mit p, = =In Dieses entspricht der Laplaceschen Integraldarstellung

2 t—1"
(4.37) von P,(1).

Zugeordnete Legendresche Funktionen 2. Art

Auch die Differentialgleichung (4.43) muB3 noch eine zweite von PJ(¢) linear un-
abhingige Losung besitzen, die wir mit Q(r) bezeichnen wollen. Sie kann auf dhn-
liche Weise wie die P(t) aus den P,(r) durch m-malige Differentiation von Q,(r)
hergeleitet werden. Dabei wird fir0 < m < n

o) = @ - 0T So0,0) @

gesetzt. Die Verdnderliche 7 kann dabei in der komplexen Zahlenebene jeden Wert
annehmen, der nicht im Intervall von = —1 bis # = +1 liegt. Die Q7(¢) heiBen
zugeordnete Legendresche Funktionen 2. Art. Sie haben bei ¢t = +1 logarithmische
Singularitaten und sind deshalb von den P2(¢) linear unabhingig.

4.5. Kugelflichenfunktionen

4.5.1. Herleitung und Darstellung

Bereits in 4.1. haben wir gesehen, daB die allgemeine ganze rationale Kugelfunktion
n-ten Grades in der Gestalt (4.6) u,(x,y, z) = r"S,(J, ¢) dargestellt werden kann.
Die Funktion S,(9,¢) wird als die zu wu, gehorige Kugelflichenfunktion oder als
Laplacesche Kugelfunktion n-ten Grades bezeichnet. Sie geniigt der Differential-
gleichung

1 0 (. 0S, 1 03,
nn+1)8S, + T 39 (sm 59 ) + 7T 0t 0. 4.7)
Wir hatten zunichst Losungen gesucht, die nur von ¢ abhingen. Die dadurch aus
(4.7) hervorgehende gewohnliche Differentialgleichung lieferte die Legendreschen
Funktionen 1. und 2. Art. Der Produktansatz S,(9, ¢) = @(9) @(¢) fihrte in Ab-
schnitt 4,3. zu folgender allgemeinen Ldsung der partiellen Differentialgleichung
@7):

S0, q) = 3 (AP cos mg + B sin mg) Pr(cos ) (4.46)
m=0
mit den zugeordneten Kugelfunktionen P(cos ) = sin™ 9P{"™ (cos 9), 0 < m < n.

Sie enthdlt 27 + 1 willkiirliche Konstanten 4§, ..., A7, B{, ..., B". Der aus
2n + 1 Gliedern linear zusammengesetzte Ausdruck (4.46) stellt die allgemeine
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Laplacesche Kugelfunktion dar, weil er mit r* multipliziert ein homogenes Polynom
in x,y, z ist und die Glieder linear unabhingig sind. Letzteres folgt aus der Tat-
sache, daB die Funktionen cos mg Pyi(cos ) und sin me PJ(cos#) in bezug auf ¢
paarweise orthogonal sind. Setzt man S,(¢, ¢) = 0, multipliziert ferner beide Seiten
von (4.46) mit cos mg bzw. sin me und integriert nach ¢ von —m bis +m, so ergibt
sich 4, = B, =0 fir m =0,1,2,...,n Bilden wir r"S,(d, ¢), so sind die ent-
stehenden Funktionen r"S7(9,¢) = r" {C.O s m(p}
sin mg
nome n-ten Grades in x, y, z und somit ganze rationale Kugelfunktionen. Denn
wegen (cos @ + ising)™ = cos me + isinmg sind cos mp und sin mp homogene
Polynome m-ten Grades in cos ¢ und sin ¢. Deshalb sind die Faktoren r™ {:;15 :Z} X
x sin™ ¥ homogene Polynome in x = rcos ¢ sin# und y = r sin ¢ sin?. Die Funk-
tion P{"(cos) ist wegen (4.49) andererseits ein Polynom (n — m)-ten Grades in
cos @, das nur gerade oder ungerade Potenzen von cos ¢ enthilt. Der von S7(%, ¢)
verbleibende Faktor r"~™P{™(cos ¢}) ist demnach ein homogenes Polynom (7 — m)-ten
Grades in x, y, z, wie man durch Einsetzen in (4.49) sieht. Somit ist auch r"S,(d, )
ein homogenes Polynom n-ten Grades in x, y, z und somit unter Beachtung von
(4.8) die allgemeine ganze rationale Kugelfunktion. Danach haben die homogenen
Polynome in den Verdnderlichen x, y, z, welche die Laplacesche Dgl. (4.1) erfiillen,
die allgemeine Gestalt r"S,({, ¢), wobei S,(¢,¢) durch die Formel (4.46) erklirt
ist.
Man bezeichnet die 2n Losungsfunktionen

sin™ 9P{™ (cos¥) homogene Poly-

cos mg
sin mg

Sr(@, ¢) = { }sin"‘ﬂPﬁ,""(cosﬂ), m=12,..n,

als resserale Kugelfunktionen. Sie verschwinden fiir ¥ = 0 und 9 = = und ferner an
den n — m innerhalb des Intervalls 0 < ¢ < = spiegelbildlich zu ¥ = % liegenden

Nullstellen von P{")(cos #). Weiterhin verschwinden sie bei den 2m Nullstellen von

" g 3n 4m — 1 . . T
(;osmq; f;r cpl=—2—';l-, DT iy ek bzw. von sin me fir ¢, =0’7’
7“ Yy (”T‘)_,:_ Auf der Kugeloberfliche haben die tesseralen Kugelfunktionen

demnach 2m Meridiane mit gleichem Winkelabstand und n — m spiegelbildlich
zum Aquator gelegene Breitenkreise als Nullinien. In einem sphirischen Viereck,
das von je zwei solchen unmittelbar aufeinanderfolgenden Meridianen und Parallel-
kreisen begrenzt wird, wechselt die tesserale Kugelfunktion ihr Vorzeichen nicht,
und daher stammt ihr Name. Fiir m = 0 bekommen wir die zonalen Kugelfunktio-
nen (siehe auch 4.2.), deren Nullinien auf der Kugel » symmetrisch zum Aquator
liegende Breitenkreise sind. Die Kugeloberfliche wird durch sie in n + 1 Kugel-
zonen eingeteilt, in denen die zonalen Kugelfunktionen ihr Vorzeichen beibehalten.
Fir m = n erhalten wir als Nullinien der zugehorigen Funktionen 2n Meridiane
und die fiir die Funktionen vorzeichenbestindigen Vierecke entarten in 2n Kugel-
sektoren. cos ng
Deshalb nennt man die Funktionen {sin mp} sin" & sektorielle Kugelfunktionen.

7  Sieber, Funktionen
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4.5.2.  Orthogonalitiit

Die 2n + 1 Grundfunktionen
sz = |

cos me

. } sin™ 9Pr(cosd), O0=m=<n,
sin me

sind auf der Einheitskugel orthogonal. Aus den bekannten Orthogonalititsrelationen
fiir die trigonometrischen Funktionen und fiir die zugeordneten Legendreschen

Polynome (4.51) erhdlt man

2 ©

[ | cos mg Py(cos 9) sin kpPf(cos 9) sin @ di dp = 0 fiir alle n, m, k, r

¢=08=0

mit m #+ kodern % r,

.2 @
coSmP| o o [COSkg| . .
f f {sin m(p} P (cc{sil{sin k(p} P¥(cos &) sin § di dg
~09=0

firn=r, m=k,m=0,
A

2 (n + m)!
= {Zn +1 (n—m)!

0 sonst,

‘ | P,(cos ¥) Pi(cos 9)sin dI dp ={ 4x
v=00=0 2n+1

womit die behauptete Orthogonalitdt nachgewiesen ist.
Betrachten wir zwei Laplacesche Kugelfunktionen

= 0 firn + k,
{ firn =k,

Su(d, ) = 1)'_:0 (4§™ cos Ip + BY™ sin Ig) PLcos 9),

S,(0,9) = 3 (AP cos kg + B sin k) P(cos 9)
k=0
und bilden

2r =

[ ] Su0,¢) Su(®, @) sin 9 d9 dgp

=09=0
m™ o om oy,

=7 [z(A;")cos/«;+B<,:>sinkq)P:(cos,9)] %
p=09=0

k=

X [Z (AY™ cos lp + B{™ sin Ig) Pl (cos 19)] sin 9 d9 dg
<o

=X

k=01=04,29

5
n m ~ T

(A cos kg + BY sin k) (A cos Iy + B{™ sinlp)

x [ Pk (cos®) Ph(cos 9)sin i d dyp.
=0

@.72)

4.73)
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Fiir k¥ + / verschwindet das erste Integral, fiir k = /und n + m das zweite. Somit gilt
fiir die Laplacesche Kugelfunktionen die Orthogonalitétsrelation iiber der Einheits-
kugel:

¢=09=0

2n L
[ Si®9) Su(®,¢)sind dd dp = 0 fiir n + m. 4.74)

4.5.3. Entwicklung nach Kugelfliichenfunktionen

Wir nutzen diese Orthogonalititsrelationen (4.72), (4.73) und (4.74), um auf der
Einheitskugel definierte Funktionen nach Laplaceschen Kugelfunktionen zu ent-
wickeln. Jede auf der Einheitskugel definierte Funktion ist dort eine Funktion der
Koordinaten 9 und ¢ und kan: somit mit f(¢, ) bezeichnet werden. Wir nehmen an,
daB (9, ¢) in eine Reihe nach Kugelfunktionen entwickelt werden kann und setzen
an

f0,9)= 5 S@e)= 5 3 (AP cosmg + B sinmg) Py(cos )
n=0 n=0 m=0
(4.75)
oder

[, 9) = E APP,(cos P) + E i‘, (A% cos mp + B sin me) Pr(cos &).
n=0 n=0m=1

Die Koeffizienten 4% und B werden in der iiblichen Weise ermittelt. Multipli-
zieren wir zundchst beide Seiten von (4.75) mit Py(cos ) und integrieren iiber die
Einheitskugel, so ergibt sich nach (4.73)

2r ™

f J' f(8, ¢) Pofcos 9) sin 9 dé dg. (4.762)

9=0 9=0

2n + 1

n) —
44 4r

Durch Multiplikation mit cos kg P¥(cos®#¥) bzw. sin kpP¥(cos?¥) und jeweils an-
schlie@ende Integration ergibt sich aus (4.72)

2r w™
o 1
AD = 2"2:1 % f f f(®, ¢) cos mp P(cos #) sin 9 dé dgp,
TeZoe=0
(4.76b)
/ 2w
/ —m)!
35,7):2"2:1_% f J' 9, ¢) sin mp Pr(cos 9) sin 9 49 dg.
) Tp0si0

Unter welchen Voraussetzungen iiber die Funktion f(#, ¢) die Reihe (4.75) gleich-
maBig konvergiert und deren Summe die Funktion darstellt, soll an dieser Stelle
nicht erértert werden. Auf jeden Fall gilt die Entwicklung (4.75) fiir jede auf der
Einheitskugel zweimal stetig differenzierbare Funktion. Die Ausdehnung dieses
Resultats auf allgemeine Funktionen soll uns hier ebenfalls nicht beschéftigen [10].

*
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Fiir den Fall, daB die Funktion / nur von ¢ abhingt, lautet die Entwicklung nach
Legendreschen Polynomen

2n+1
2

f £(8) Pycos 8) sin 9 d¥.

9=0

f(¥) =X A,P(cosd) mit A, =
n=0

(4.77)

Es soll noch eine weitere wichtige Integralrelation angegeben_werden. Dazu
betrachten wir zwei Punkte P(r, 9, ¢) und Q(R, ¥, ¢’). Der Punkt Q liegt auf einer
Kugel mit dem Radius R. Den Abstand ¢ beider Punkte gewinnt man aus
0? =r? + R* — 2rRcosy. Fiir cosy ergibt sich, wenn (x,y,z) bzw. (x',y',z")

die kartesischen Koordinaten von P bzw. Q sind: cosy = W—
Bild 4.8
%
oder in Kugelkoordinaten
cosy = cos ) cos ¥’ + sindsin 9’ cos (p — ¢'). (4.78)

Liegt Q im Nordpol, also §" = 0, so wird cos y = cos §. Der reziproke Abstand von
P und Q ist

1
Jr* + R* — 2rRcosy

Man kann die Reihenentwicklung (4.15) ibernehmen und erhalt

1o
o=

l 1 0 r n+1 7
it (7) P,(cosy), r<R. (4.79)
Es laBt sich einfach nachweisen [4], daB r"P,(cos y) ein homogenes Polynom #-ten
Grades in x, y, z ist, das der Potentialgleichung geniigt. Somit ist "P,(cos y) eine
Kugelfunktion n-ten Grades und P,(cos y) als Funktion von J und ¢ (und ebenso
von ¥, ¢') eine Kugelflichenfunktion. :

Hierbei kann man sagen, daBl die Reihe (4.77) in jedem abgeschlossenen Intervall,
in dem die Funktion f(¥) stetig ist und das im Intervall —= < § < += liegt, gleich-
maBig gegen den Funktionswert konvergiert.
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Nun sei S,(9, ¢) eine Kugelflichenfunktion, dann gilt nach (4.46)

S.(9, ¢) = APP,(cos ) + ﬁ: (A® cos me + B sin mep) Pr(cos 9).
m=1
Um A4§” zu bestimmen, bemerken wir, daB fiir 4 = 0 P7(1) = 0 und P,(1) =1
wird. Damit wird A§® = S,(0, #). Multiplizieren wir beide Seiten der Gleichung mit
P,(cos ) und integrieren iiber die Einheitskugel, so erhalten wir

2w 2n w
[ [ S,®, @) Pcos®)sind dd dp = AP [ | (P,(cos))?sin d¥ de
J
9=00=0 p=08=0
47 47
=4 =
R rary Sl rary 510, 9)

2n 2n

wegen | sinmg dg = J cos mg dg = 0. Wir ziehen nun folgenden Schlu3: Wegen
¢=0 =0

der Willkiirlichkeit der Wahl des Nordpols auf der Kugel muB das Resultat fiir

einen beliebigen Kugelpunkt (¥, ¢') bei Beachtung von (4.78) gelten:

47

2w
.[ J' S0, 9) Po(cos y) sin9 9 dp = =2 S, ). (4.80)
=0 9=0

Da P,(cos y) eine Kugelflichenfunktion n-ten Grades ist, muB ferner
mom
|| Su@. @) Py(cosy)sinddddg =0 fir m=+n (4.81)

¢=09=0

sein. Wir betrachten nun wieder die Entwicklung (4.75)
-]
J0,9) = 20 Si@, 9),
n=

multiplizieren beide Seiten mit P,(cosy) und integrieren danach wiederum beide
Seiten tiber die Einheitskugel. Das ergibt wegen (4.80) und (4.81)

2n =n
S\, ¢") = 2”4_:; ! J‘ f S, ¢) Py(cosy) sind dif d. (4.82)
#=00=0

Damit erhélt man sofort durch ein Integral die fiir die Entwicklung (4.75) erfor-
derlichen Kugelflichenfunktionen S,(¥, ¢). Ersetzen wir andererseits in

S, ¢) = APP,(cos ¥') + 21 (A cos mg’ + B sin mg') Pr(cos 9')

m=
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die aus (4.76a) und (4.76b) ermittelten Koeffizienten, so wird

2r £
S0 ) =2 4“:1 f f (8, %) Pacos 9) sind dd dg Py(cos )
e=098=0

2r w

2 1 =z — m)!
+2 n4: m; % f J.f(ﬁ,r;) P(cos 9) PM(cos¥')
#=0 6=0

x [cos mg' cosmg + sinmg’ sin mg] sin®d d¥ dg
(4.83)

_ n+1 J‘ ff(ﬂ @) P,(cos¥’) P,(cos ?) sin 9 dff dg

¢g=09=

2 1 4 n
$=06=0

x Py (cos &) Pr(cos9’) sind dif dg.
Der Vergleich von (4.82) und (4.83) ergibt folgenden Ausdruck:
P,(cosy) = P,(cos ) P,(cos ')

(n —m)!
* mz:l(n"'

(4.84)
P;"(cos ) PP(cos 9') cos m(gp — ¢')

mit cosy = cos¥ cosd’ + sind sind’ cos (¢ — ¢'). Diese Formel wird Additions-
theorem der Legendreschen Polynome genannt; sie stammt von Legendre selbst
(1782).

4.6. Anwendungen der Kugelfunktionen

4.6.1. Randwertaufgaben fiir die Kugel

Die Kugelfunktionen werden bei Problemen der mathematischen Physik angewendet, die fiir die
Kugel mit der Laplaceschen Differentialgleichung behandelt werden. Als Beispiele dazu konnen
wir die drei Randwertaufgaben der Potentialtheorie betrachten, wobei die Kugeloberfliche als
Randbereich aufgefaBt wird (vgl. Band 8, 4.4.).

Die erste Randwertaufgabe (Dirichletsches Problem) besteht dann darin, daB3 innerhalb oder
auBerhalb einer Kugel mit dem Radius R eine harmonische Funktion u(r, &, ¢) ermittelt werden
soll, deren Randwerte durch eine stetige Funktion f(#’,¢') auf der Kugeloberfliche vorgegeben
sind. Dazu wird f(#, ¢’) nach Kugelfunktionen entwickelt

o
@&, ¢ = Zo S, ),
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wobei die S, nach Formel (4.82) ermittelt werden konnen. Bilden wir fiir das Innere der Kugel mit
r<R

0 ’Jl
u(r, 9,9) = 3, — Si®,9), r<R, (4.85)
n=0 K
; o S8, @) h it di : .
so ist, weil = ein harmc Polynom ist, die Funktion (4.85) harmonisch. AuBerdem

erfiillt die Reihe fiir » = R die Randbedingungen, so daB eine Losung fiir das Kugelinnere gefunden
ist.

Um das gleiche Problem fiir das KugelduBere (r > R) zu l6sen, miissen wir eine Funktion be-
stimmen, die dort harmonisch ist und zudem im Unendlichen verschwindet.

Da andererseits »~"~15,(#, ¢) eine harmonische Funktion ist, die im Unendlichen verschwindet,
so ergibt sich jetzt als Losung der ersten Randwertaufgabe

0

R
ua(r, 0,9) = 3 Y,,Tsn(ﬂdl’), r>R. (4.86)
n=0

Wir verwenden weiter in (4.85) und (4.86) nun die Beziehung (4.82) in der Form

s =2t L f f £, ¢') Pu(cos y) sin ' 48’ dg?’

¢'=0 =0
und erhalten
2n b
g f J‘ ¥, ¢) ( Y @n+1) ( ) P,(cos 7)) sin & d¥ dp’  bzw.
@'=09=0 n=0
2n T
By R\ "1
Uy = j f [, 9) ( Y @n+1) (——) P,(cos 7)) sin & d¢’ dg’.
=0 N

Dabei ist unter Voraussetzung gleichmiBiger Konvergenz fiir r < ry < 1 bzw. r = 7o > 1 Inte-
gration und Summation vertauscht worden. Letztere 148t sich ausfithren, denn es ist (4.79)
1-2z2

0
2n + 1) z"Py(cos y) = ————
:Eo( e (1 — 2zcosy + z2)*1?

. ro. R
und somit — wird z = —in u; bzw.z = - in u, gesetzt —

R
2r k3
R* —r2 sin & dé’ dg’
= ———R R e e A R, 4.87
“ 4z J- J.f( 7 (R? + r* — 2Rr cos y)*2 re “87)
=0 ¥=0
27 ks
rz — | sin #’ dd’ dg’
Uy = —— - f ff(ﬂ q))m, r>R. (4.88)

Dies sind die Poissonschen Integrale. Sie stellen ebenfalls — wie sich direkt zeigen 148t — eine Losung
der ersten Randwertaufgabe fiir das Innere bzw. AuBere der Kugel mit dem Radius R dar. Zu beach-
ten ist, daB3 die Integrale keinerlei Bezugnahme auf die Kugelfunktionen nehmen!
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. Die zweite Randwertaufgabe (Neumannsches Problem) lautet: Es soll eine im Inneren oder
AuBeren der Kugel harmonische Funktion u(r, 9, ¢) gefunden werden, deren Ableitung lings der
Normalen auf der Kugeloberfliche
ou |
or
gegeben ist. Aus der Potentialtheorie weil man, daB fiir eine harmonische Funktion das Integral
uber die Ableitung in Richtung der Normalen verschwinden muf3:

M 4F=o
Jlfﬁ_n -
F

d. h. fiir die vorgegebene Funktion (¥, ¢') muB jetzt gelten:
2n k3
[ [ f@,¢)sing do dg’ = 0. (4.89)
@'=0 #'=0

r=

=f&,9)
R

Wenn wir also f(#, ¢") nach Kugelflichenfunktionen entwickeln wollen, so muB jetzt nach (4.82)
bei der Entwicklung So(¢’, ¢) fehlen, so daB

«©
[@&,¢) =L S, ¢) (4.90)
n=1
gilt.
Man kann nun leicht sehen, daB die Losung der 2. Randwertaufgabe fiir das Kugelinnere durch
folgende Funktion gegeben ist:

vy
w,9,9)= Y ———5S,0,9)+ C, r<R. @91)
n=1n R

Die Reihe erklirt namlich eine harmonische Funktion, und die Differentiation in Normalrichtung
fallt mit der nach r zusammen. Fihrt man diese durch und setzt r = R, so wird die Randbedingung
wegen (4.90) erfiillt.
Beim duBeren Neumannschen Problem braucht die Bedingung (4.89) nicht erfullt zu sein. Man
erhilt dann als Losung
o 1 R'l+2

us(r, 9, ¢) = —El e r”Ts,,(B, ¢), r>R. (4.92)

Die dritte Randwertaufgabe verlangt, eine im Innern bzw. AuBern der Kugel harmonische Funk-
tion u(r, #, ¢) zu bestimmen, so daB3 der Ausdruck

ou
au + b—, a,b reell,
or

auf der Kugeloberfliche vorgegebene Werte f(#’, ¢’) annimmt. Wir nehmen wieder an, f(¥#', ¢’)
4Bt sich durch eine gleichmiBig konvergente Entwicklung nach Kugelflichenfunktion darstellen:

o
f@&,9) =2 S, ¢).

n=0
Fiir das Innere r < R setzen wir

® .
=3 (%) S,(0,¢)

n=0\
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und erhalten wegen der Randbedingung

(a +b ) 5.0,9) = 5.0, ).

n
R
Es sei aR + nb % 0. Somit wird
89 =RS ——— L Sb.g), r<R
nv, Q)= — 0, 9), I .
“ 7 n=o aR + nb R" K
Fiir das AuBere r > R liefert der Ansatz
@ R n+l1
ey (—) 5.0,9)
n=0\T
wegen der Randbedi die Bezieh

b(n + 1
[ —R—)] 5.0,9) = 5.0.9).
Es sei Ra — b(n + 1) + 0, so daf3
1 R’l+1

S, =RY ————— ——S,(8,9),
uy(r, 4, ¢) "g,o Ra—bm i1 (@, ¢)

4.6.2. Potential einer inhomogen belegten Kugelfiiche

Das Potential der in einem beschriankten raumlichen Bereich
mit der Dichte o(Q) stellt sich durch das dreifache Integral

,mzf”i?ldg
Q
B

dar, wobei ¢ der Abstand des in B veridnderlichen Punktes Q(x"

105

(4.93)

r>R. (4.94)

B vorhandenen Massenverteilung

(4.95)

, ¥, z") vom ,,Aufpunkt* P(x, y, z)

ist, in dem der Wert des Potentials bestimmt ist (Bild 4.9). Wir fithren mit dem Koordinaten-
ursprung O die Entfernungen OP = r und OQ = r’ sowie den Winkel y zwischen beiden Strecken
ein. Dann erhalten wir fiir Punkte P, fir die r groBer als das Maximum von r’ ist, die gleichmaBig

konvergente Entwicklung (4.79):

1 1 1 2 r
—_——— = — Y Py(cosy) |—
o Jr?—2r'cosy + r? r n=0 r

Bild 4.9

8  Sieber, Funktionen

J
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Setzen wir diese in (4.95) ein, so erhalten wir
u(P) = f f f o(Q) Py(cosy) r"dB = Z

mit T, = [ j | #(@) Pu(cos y) " dB. (4.96)
B

Aufgabe 4.7: Man bestimme die ersten 3 Glieder fiir die Entwicklung (4.96). Geben Sie dabei
'To, Ty und T, an, wenn der Koordinatenursprung O so gewihlt ist, daB er im Schwerpunkt liegt

und die Deviationsmomente D, = | jay’z’ dB, D, —fffaxz dB, D, -—J | ‘ ox’y’ dB
verschwinden [10].

Wir nehmen nun an, die Oberflache einer Kugel mit dem Radius R sei mit einer Masse der Dichte
o(¥, ¢’) belegt. Das Potential dieser Schicht !dBt sich durch folgendes Integral iiber der Kugel-
oberfliche ausdriicken:

u(p) = f f 29 4
Fr ¢

PIr%y)

A\

QR 39")
?’ 9

Bild 4.10

Zunichst sei r < R, dann gilt

1 L B . ;3o
— =3 Py(cos y) — sowie  dF= R?sin 9’ d¥’ dg
e n=0
und somit
2n k3
0 r’l . , ,
uP)=73 oy J. f o, ¢’) P(cosy) sind dd’ de’.
=0
" ¢=0'=0

Entwickelt man (¢, ¢’) nach Laplaceschen Kugelfunktionen,
0
o, 9) =3 S{,¢),
n=0

so wird wegen (4.82)

2n Ed

f f a(®', ) P,(cosy) sin®’ d&’ dg

@'=08=0

2n + 1
Si(9,¢) =
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und damit

0 1 '.n
P)=4zR Y ———— — S,(%, 9), R. .97,
u(P) = 4 n§0 Wil R’ W@ @), r< 4.97)

Ebenso erhilt man fir r > R

o 1 Rn+l
wP) = 47:R"§0 T S.@,9), r>R. (4.98)

Wir bemerken, daB man aus beiden Formeln fiir » = R erhalt

2 5.0, 9
Po) = 4zR Y 2P
u(Po) D e

wobei ?, @ die beiden Koordinaten vom Punkte P, sind, der auf der Kugeloberfliche liegt. Wenn
der Punkt P durch die Kugeloberfliche hindurchgeht, so dndert sich das zugehorige Potential stetig.
Diese Eigenschaft des Potentials einer einfachen Schicht gilt auch fiir allgemeinere Flichen. Ist
ferner o(&’, @) = Sa(¥’, ¢'), so gilt
47R r\" 5.0 %) R
\>5 m(Vs @), T < K,
2m+1 \R ?
u(P) = (4.99)

4nR [ R\
( ) Sn@,9), r>R.

2m+1 \r

In dem Spezialfall, daBB ¢ = const ist, also fiir eine homogen verteilte Massenbelegung, gilt — mit
m=0—
47 Ro, r <R,
u(P) = { 4=R? (4.100)
——o0, r>R,
r

was man auch einfacher finden kann.

4.6.3. Wasserstoffatom
Zur Beschreibung der Bewegungsvorgidnge der Partikel spielt in der Atommechanik die
Schrodingersche Differentialgleichung
8m2mq
h2
eine fundamentale Rolle. Dabei ist & die Plancksche Konstante, m, diec Masse des Elektrons, U

seine potentielle Energie, E eine das Energieniveau bestimmende Konstante und u(r, #, ¢) die
sogenannte Wellenfunktion. Zur Beschreibung des Wasserstoffatoms verwenden wir das Coulomb-

Ay + E-Uyp=0 (4.101)

2
e
sche Potential U = — - wobei e die Ladung des Elektrons und r sein Abstand vom positiven Kern
ist.
Die Schrédingersche Differentialgleichung muB eine Lsung haben, die im gesamten Raum
erkldrt ist und im Unendlichen beschrinkt bleibt. Fiir Polarkoordinaten geht sie nach (4.4) iiber in:

% 209 1 (1 D o 1 o
oV 2 % (e )Y
YR P ‘sinﬂ Y (s"' w) t e w]

N 8n2mg Ea e? O
h? P AR

8*
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Setzt man darin ¢ = R(r) S, ) und separiert die Variablen, so erhilt man:

r? (d*R 2 dR  8n*m, e? 1 1
R G B e R G
b E}
sin? ¢ 0p? [’
Beide Seiten miissen gleich derselben Konstanten « sein. Fiir die rechte Seite ergibt sich daraus die
Differentialgleichung

10 (. 054,9) 1 %58, 9)
— [sind S, ¢) =0,
sind 0d (Sl o ) sin?d  og? + oS0, 9)
die nur fiir = —n(n + 1) auf der gesamten Kugeloberfliche eindeutige und regulire Losungen

hat. Somit erhalten wir als Losungen die Kugelflichenfunktion S,(#, ¢).
Aus der linken Seite obiger Gleichung erhalten wir dann zur Bestimmung von R(r) die gewShnliche
Differentialgleichung:
d?R 2 dR 8n2my 8m2moe*  n(n + 1)
+ — ‘R=0,
h? h*r r?

deren Losung hier nicht untersucht werden soll [10]. Im Fall £ < 0 (Ellipsenbahnen) findet man mit-

dr? r dr

2r
tels des Ansatzes R = e~/2-¢"- w(p), p = —, fiir w(g) Polynomldsungen. Die Abbruchbedingung
To
der Potenzreihenentwicklungen fiir die Losungen fiihrt zu allein moglichen Werten fiir die Energie:
2n2mie*
h*1?
mit / = p + n + 1 (Hauptquantenzahl), p Grad des Polynoms. Dies sind die bekannten Energie-
stufen des Wasserstoffatoms, die auch aus dem Bohrschen Modell gewonnen werden konnen.

Die zum ,,Eigenwert** E; gehorenden ,,Eigenfunktionen** lauten

cosm @
sin m g

E =

wz=e“’“9"'wp(9)1’7(cosﬂ){ ip=Il-n-1
Der Faktor e~¢/2 gewihrleistet das Verschwinden im Unendlichen. Bei jedem vorgegebenen Wert
von / kann n wegen / = p + n + 1 von 0 bis / — 1 laufen, und zu jedem Wert von n gibt es 2n + 1
Kugelfunktionen, so daB die Zahl der moglichen Eigenfunktionen E; durch
-1
z=YQ@n+ 1)=1

n=0

gegeben ist.



5. Hypergeometrische Funktionen

5.1. Definition

Wir betrachten die von GauB eingefiihrte hypergeometrische Differentialgleichung
d%u

dz?

wobei a, b, ¢ gegebene komplexe Zahlen und u(z) eine gesuchte, zweimal differen-

zierbare Funktion der komplexen Variablen z bezeichnet.

z{1 —2) +{c—(a+b+l)z}%—abu= s 5.1)

Diese Differentialgleichung gehort zu einer umfangreichen Klasse von Differentialgleichungen
2. Ordnung, fiir die es eine Losungstheorie gibt, die wir aber hier nicht darstellen [10, 11].
Wir beschrinken uns darauf, Losungen von (5.1) in der Nidhe des Nullpunktes z = 0 zu suchen
und machen aus diesem Grunde den Potenzreihenansatz:

©
u(z) = z"(l + Y a,.z") mit o reell. 5.2)

n=1
Es gilt:
u 0 0
— = az*1 (1 + Y a,.z") + 2%y amz"?,
dz n=1 n=1
P (o — 1) z%2 (1 + a,,z") +az* 1Y anz"t + az® 1Y aunztt

n= n=1 n=1
0
+ 2% Y agn(n — 1) z"2,
n=2
Einsetzen in die Differentialgleichung (5.1) ergibt:

[:x(a -1zl —-2) (l + E a,,z“) + 20z%(1 — 2) E aynz"1t
n=1 n=1

0 -
+z2* (1 +2)Y amin — Nz"2 +{c— @+ b+ 1)z} (o‘z"‘“ (1 + > a,.z")
n=2 1

n=

+z* E a,,nz"'l) — abz* (l + E a,z" )] =0. (5.3)

n=1 n=1

Gelingt es, «, ay, a;, ... so zu wihlen, daB Gleichung (5.3) identisch in z erfiillt ist, so fiihrt der
obige Ansatz (5.2) zum Ziel. Wir fithren nun einen Koeffizientenvergleich durch, indem wir fordern,
daB nach Umordnung nach z-Potenzen alle Faktoren dieser Potenzfunktionen gleich null sind.
Die Fleinste in (5.2) auftretende z-Potenz ist « — 1. Als Faktor fiir z#~! erhilt man aus (5.3) nach
einfacher Rechnung

a(x = 1) + cx = 0. (5.4)

Dies ist die ,,charakteristische Gleichung* [10] fiir die Differentialgleich (5.1). Ihre L5
«y =0, &, = 1 — ¢ fiihren uns zu zwei i. allg. voneinander verschied Ls von Differen-
tialgleichung (5.1). Wir betrachten nachfolgend, da wir uns insbesondere fiir bei z = 0 holomorphe
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Losungen interessieren, den Fall x; = 0. In diesem Fall vereinfacht sich Gleichung (5.3) wesentlich
und geht iiber in

0 0 0
ann(n — 1) 2" = Y an(n — 1) 2" + ¢ Y, anz"""
n=2 n=2 n=1
0 0
—@+b+1)Y amnz" —ab—aby a,"=0. (5.5)
n=1 n=1
Wegen
0 0
an(n — 1) 2" = 3 tpyy(n + 1) n"
n=2 n=1
und

e 0
Y amz"t =a; + Y apy(n + 1) 2"
n=1 n=1

kann (5.5) unter Konvergenzvoraussetzungen auch in der Form
0
Y {ani(n + 1) n — agn(n — 1) + capyq(n + 1) — (@ + b + 1) a,n — abay} ="
n=1

+ca; —ab=0 (5.6)

geschrieben werden. Der erwihnte Koeffizientenvergleich kann nun sofort durchgefiihrt werden,
und man erhalt:

ab
cay —ab=0=a; =—; c¢=*0, .7
¢
py((n+ n+ cn+ 1)) —ay(nn = 1) + (@a+ b+ lyn+ab) =0 (5.8)
firn=1,2,3,..

Gl. (5.8) liefert uns unmittelbar die Rekursionsformel

(@+ n)(b+n)
it = ————————— @, =1,2,... 5.9
Gnt1 (n+l)(c+n)a n=12 69

Benutzen wir noch (5.7), so kann man hieraus leicht die explizite Darstellung der a, gewinnen:

_ a(a+1)...(a+n—-1)b(b+1)...(b+n—I).

n=12.. (5.10)
nlec+1)...(c+n-1)

Die unendliche Reihe

X a@a+1)..(a+n—0)bb+1...6+n-1
1 2" 5.11
+n§, nlec+1)..(c+n—1 G111

ist also Losung von Differentialgleichung (5.1).

Setzt man @ = 1 und b = c so reduziert sich (5.11) auf die bekannte geometrische
Reihe. Da Formel (5.11) also eine Verallgemeinerung der geometrischen Reihe
darstellt, nennt man sie hypergeometrische Reihe, und die durch sie in |z| < 1 definierte
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holomorphe Funktion heif3t Aypergeometrische Funktion. Wir bezeichnen diese mit
F(a, b, c; z). Also ist

uy(z) = F(a, b, c; z)

a@+1)...(a+n—-10bb+1)...(b+n-1) o
=1 nlec+1)...(c+n—-1)

(5.12)

eine in |z| < 1 holomorphe L&sung von (5.1). Es erweist sich weiterhin, da F bei
z = 1 einen Verzweigungspunkt besitzt und daB, wenn die z-Ebene von +1 nach
+ oo entlang der reellen Achse aufgeschnitten wird, F(a, b, c; z) eine holomorphe
Funktion in der aufgeschnittenen Ebene darstellt.
Wir bemerken abschlieBend, daB3 die zweite Losung &, = 1 — ¢ der charakteri-
stischen Gl. (5.4) fiir ¢ & 1 zur von F(a, b, c; z) linear unabhéngigen Losung
u(z) =z'"Fla—c+1,b—c+ 1,2 —c¢;2) (5.13)
fiihrt, so daB im Falle ¢ & 1 die allgemeine Losung der Differentialgleichung (5.1)
u(z) = AF(a,b,c;z) + Bz'"Fla—c + 1,b—c+ 1,2 — ¢;2) (5.19)
fiir |z] < 1 vorliegt.

Aufgabe 5.1: Man leite die Losung u,(z) der Differentialgleichung (5.1) her!

5.2. Einige Eigenschaften

Die hypergeometrische Funktion F(a, b, c; z) enthilt als Spezialfille eine groBe
Anzahl z. B. auch elementarer Funktionen [1].

Beispiel 5.1:

F(=np,p;—2) =1+ 2), (5.15)
2F(1,1,2; —2) = log (1 + 2), (5.16)
lim F(1,5,1;i) =, .17
-0 B

Zum Beweis betrachten wir beispielsweise (5.16)

N © (1-2e.m)(1-2.n)(—2)"
L2 = =2t ZE, n12-3...n(n+ 1)

PR s gy
n=1 n+1 n=on+1
@ (=11

-5

n=1 n

" =log (1 + 2).



112 5. Hypergeometrische Funktionen

Benutzen wir die in Abschnitt 2. behandelte I-Funktion, so erhalten wir
I'd + 1) = dI'(d),
I'd+2)=Wd+ 1)I'd+1) =+ 1)dl'd),

I’(;i +n) =+ n‘—- 1)...(d+ 1)dI'(d). (5.18)

Indem wir uns fiir d die Werte a, b, ¢ eingesetzt denken und Formel (5.18) anwenden, erhalten wir
fiir Re(c — a — b) > 0 die folgende Darstellung der hypergeometrischen Funktion:
I'c) & I'@a+mI(b+n)

F(a,b,c;2) = T@T® Eo T ", (5.19)

Unter der gleichen Bedingung Re(c — a — b) > 0 kann man zeigen, daf3
I'(c)l(c—a-b)

F(a,b,c;1) = m (5.20)

gilt.

5.3. Integraldarstellungen und asymptotische Formeln

Von besonderer Bedeutung ist die Darstellung der hypergeometrischen Funktion
mit Hilfe von Integraldarstellungen (Mellin-Barnes-Integral). Wir betrachten dazu
+ coi
1 J‘ I(a+s)(b + s)I(—s)
2mi I'(c + )
—ooi
mit |arc (—z)| < w. Der Integrationsweg ist (wenn notwendig) gekriimmt, um zu
garantieren, daB8 die Pole s = —a—n, —b—n (n=0,1,2,...) von I'(a + s)
x I'(b + s) links, die Pole s = 0, 1, 2, ... von I'(—s) rechts von diessm Weg liegen
(Bild 5.1). Dabei sind @, b = 0 und c reell.

(-2 ds (5.21)

Jms)
+ooi
~b-m -b-1-h 7l Bild 5.1
-e-n -0-2-a-1-aN\J| 1 2 n Rels)
o~Pole vonI(a+s) x=Pole von F (~s)
£
~oof

Mit Hilfe des Residuensatzes erhalten wir bei Verwendung der asymptotischen
Eigenschaften der Gammafunktion (vgl. [11]) die folgende Integraldarstellung der
hypergeometrischen Funktion F(a, b, c; z):

+ i

I'(c) 1 J‘ I(a+s)I'(b + s) I'(—

I'(a)I'(b) 2mi I'(c +s)

—ooi

Fla, b, ¢;2) = 9) (= zyds.

(5.22)



5.3. Integraldarstellungen und asymptotische Formeln 113

Diese Darstellung leistet die analytische Fortsetzung der in |z| < 1 durch (5.12)
definierten hypergeometrischen Funktion F(a,b,c;z) in |arcz| <m —4, 6 >0,
und sie ist auch sinnvoll fiir Re(a) > 0, Re(b) > 0, ¢ beliebig komplex.

Nachteil unserer bisherigen Betrachtungen ist es, daB noch keine Formeln bekannt
sind, die das Verhalten der hypergeometrischen Funktion fiir |z| > 1 geniigend
genau und geniigend einfach beschreiben. Zu diesem Zwecke betrachten wir

1 J‘I’(a + 8)I'(b + 5) I'(—s)
2ri I'(c + 5)
1

mit a, b > 0, ¢ reell. Hierbei ist €, ein Halbkreis mit Radius N;, der links von der
imaginéren Achse liegt und dessen Mittelpunkt der Nullpunkt ist. Mit entsprechenden
Methoden wie oben kann man zeigen, daB das Integral in (5.23) gegen O geht, sofern
N, in der Weise gegen unendlich geht, daB ein positiver Abstand von €, zu den
Polen s = —a —n, s= —b —n, n=0,1,2, ..., existiert, sofern nur |z| > 1 und
l]arc (—z)| < = gilt. Deshalb gilt (wiederum nach dem Residuensatz)

(—z'ds (5.23)

1 7'M+ 5)TG + ) T(=s)
2ri J. T(c +9)

—ooi

(=2 ds

e Ila+mI'l1—-c+a+n) sin(c—a—nn(-z*"

TE5TO+nI(-b+a+n cosnmsn(d—a—mw (524
+ E: I'b+mIl—c+b+n  sin(c—b-nm=x (—z)r

n=0l'Q+n)I'(1 —a+b+n) cosnxsin(@—b—n)w

fiir |arc (—z)| < =, |z|] > 1. Man erkennt nach Vereinfachungen von (5.24), daB
die analytische Fortsetzung der Reihen, durch die die hypergeometrische Funk-
tion urspriinglich definiert wurde, auch durch folgende Funktionalgleichung gegeben
ist:

I'(a) I'(b) o T@I(@a—b) a n
__TWF(a,b,c,z)——I,(a:—T (—2) F(a,l—-c+a,l—b+a,7)
ﬂ%ilf—zja—)(—z)“’F(b,l —c+b1 —a+b;17), (5.25)

larc (—z)| < 7. Man sieht auBerdem, daB jeder der drei Terme in Gleichung (5.25)
Losung der hypergeometrischen Differentialgleichung (5.1) ist.
Eine andere Integraldarstellung ist

1

T

Fla, b, c;2) =Wi’_b) [ e - o - ear
0

(Re(c) > Re(b) > 0). (5.26)

Diese Integraldarstellung liefert ebenfalls eine analytische Fortsetzung der durch
die (fiir |z] < 1 konvergente) Taylorreihe (5.11) definierte hypergeometrische Funk-
tion F (a, b, c; 2).
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Das Integral in (5.26) stellt nimlich eine holomorphe Funktion in der entlang der
positiven reellen Achse von 1 nach co aufgeschnittenen z-Ebene dar.

AbschlieBend erwdhnen wir noch zwei einfach zu handhabende asymptotische
Formeln fiir die hypergeometrische Funktion:

R = CAl ) (527
+ ?8 et (b2)=< [1 + O(lbz|Y)] (— 3 <arebr) < 3

Fa,b,c;1) = °i"“% (b2 [1 + O(lbz| )] (5.28)
+ I'(c) e (b2)*< [1 + O(|bz|*)] (—3r < arc (bz) < 37).

I'(a)

5.4. Darstellung der Kugelfunktionen als hypergeometrische Reihen

Es gibt viele Moglichkeiten, die verschiedenen Typen von Kugelfunktionen durch
hypergeometrische Reihen darzustellen. Es sollen einige wichtige hier angegeben
sein. _

Setzt man in F(a, b,c;z) a = — -'—l-, b= ) 5 n , ¢ =-;——n, so ergibt sich

n 1—-n 1 AYE nn —1) nn—1)mn-2)(n-3) ,
F(_T’T’?'"z>‘l'2(2n-1)’+ T A @n—D@n =3 T

und mit z = %wird wegen (4.18)

)1 1-n 1 1
) X0) =%:‘—1)!—t"17(— T g = —12—) (5.29)

Der Nenner kann in (5.12) nicht verschwinden, da ¢ niemals ganz ist. Im Falle ganz-
zahliger nichtnegativer n bricht die Reihe fiir gerades n — da a negativ ganz oder 0
ist — und fiir ungerades n — weil dann b negativ ganz oder 0 ist — ab.

Setztmana=n+1,b=l+1,c=2+—3-,soergibtsich
2 2 . 2

n+1 n 2n + 3 n+1)(n+2)

F - ’ = ——a

( 7zt T3 ”) " =Gy

m+1D)m+2)(n+3)(n+4) 24
2:4-2n+3)(2n +5) v

+

und mitz = tlz wird wegen (4.65)

2"(n!)? 1 (n+1 n 2n + 3 | 1) (5.30)

%0 =Gy nr 7zt %E)
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Setzt man in der hypergeometrischen Differentialgleichung (5.1)

d?u du
z(1 —Z)F+[c—(a+b+ 1)z] = — abu = 0,
a=m—nb=m+n+1,¢c=m+ 1, so erhdlt man

’)-g—‘_l— + [n(m + 1) — m(m + 1Ju = 0.

2(
. . 1—1¢
Wir substituieren z = —5 und bekommen:

(1 -t

- tl)

SchlieBlich fiihrt die erneute Substitution v(r) = (1 — 2)Z 2 u(r) nach kurzer Rechnuna
zu der Dlﬁ"erentlalglelchung fiir v(r)
m?
dt2 —Zt—d—t+ [n(n +1) — T IZ:IL =0.

Dies ist die Differentialgleichung (4.43) fiir die zugeordneten Legendreschen Poly-
nome P™(r). Wir beachten, daB eine Losung von (5.1) die Reihe F(a, b, c; 2) ist,
und daher ist bei Beriicksichtigung der vorgenommenen Einsetzungen

m —
PIG) = Con(l — tl)TF((m —mmAn et m 1 5 ’).

Die Konstante C,,, erhilt man aus der Ubereinstimmung der hochsten Entwick-
lungskoeffizienten. Zunéchst beachten wir, daB die hypergeometrische Reihe fiir

0 < m < n abbricht, und zwar mit dem Glied ( ! ; ’) ) . Der entsprechende Ko-
effizient ist
m—-n(m-n+1)..(=)m+n+1)m+n+2)..2n
2.m—mm+1)(m+2)..n

- o __mI2m)Y
=D nl(m + n)!”’

_ . m!(2n)! L. .
t"-™ hat daher den Koeffizienten ————————— . Nach (4.49) ist der Koeffizient
2""nl(m + n)!

. -m (2n)! .
n—m il —_ 12 (R, it A
von "™ in Pm(1) (1 — 1?) Tl =T . Es wird
C = 2""nl(m + n)! (2n)! _ (m+n)!
e m!(2n)! 2"l —m)!  2"ml(n — m)!

Somit ergibt sich eine Darstellung der zugeordneten Legendreschen Funktionen
mittels einer hypergeometrischen Reihe:

1 (n+ m)!

P = 2"m! (n — m)!

m 1 -1
1 -2 F(m—n,m+n +1,m+ 1;—2-—-). (3.31)



Anhang: Zusammenstellung wichtiger Formeln

1. Orth I
Skalares Produkt zweier Funktionen f(x) und g(x) auf [a, b]:
b
(9 = [ fxg0)dx
a

Norm von f(x):

—
Ifl=/(5h) = / [ £2 ax

Normiertes Orthogonalsystem @,(x), » = 1,2, 3, ..., auf [, b]:
@) 0 fir p+v»
o) = {1 fir p=v
2. Gammafunktion

Eulersche Integraldarstellung der Gammafunktion I'(z):

©
I@)= [tletdr fir Re() >0
0
Funktionalgleich der G funktion:

I'(z + 1) = zI'(2), Q=1
Spezielle Werte: z = n, natiirliche Zahl
I'(n) = (n—1)! Irqy=0'=1

Darstell der G funktion fiir beliebige z als meromorphe Funktion:
0
® (—1)y 1
I'iz)=3% k) + J. e~'t*1dr
n=0 n! z+4+n

1

ResI'(2) ;= —p = (¢ :)n (Residuum von I'(z))

n

Darstellung als Grenzwert (nach GauB):
n*n!
I'(z) = im ————  fir z#%0,—-1,-2,..
@ now 2Z+1)..(z+n)
WeierstraBsche Produktdarstellung
1 kd z\ =% i 1
— = ze* (1 e —) e ", ¢ = lim ( —_ —lnn) % 0,5772157
I'z) nl;ll n nsoo \k=1 K

(Eulersche Konstante)

(1.9)

(1.10)

(1.11b)

23)

24

(2.6)

@.7)

2.8)

.9)
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Anhang: Zusammenstellung wichtiger Formeln

Zlo=u
(11'%) 0= 0= D (Cra 0 =du + 1my Sunyoi|s
A0+ + AT — AGX — 1) | €U+ A — £GX —1) 0 = dug + Ax7 — A + L =1+ Ax “[enuRIRPIQ
0="0%x—-Tg
- =up+ -
(347 JOUUOY UOA [QUNIO] g =u (e g T = (€T g I=u
o= 0= ()""qu + ‘0= @I+ 0=()"HuZ + | 0= )" "Tu + (%)'T x [owi0}
X)'qx (1 + ug) — ()"™'a (1 + u) @iy — @)™ Q'HXT — )"'H | (¢ =1 +ug) — ()7 -SuoISINYOY
I3x ‘[1+ ‘1-]1 =7 jne
e =u
cpusx QU SO0 = [00+ ‘c0—] jne
_c upim N
u WoISAS
X — el .
[1+ -1 Jne (g — Pl Y A T . a('H | [oo0lne (07 , o -feuo3oylQ
1+ (€944 uC I = - SOJIAIULION
ST'P) 1—1
IXT— 1+ 1 - :
— g IS [y AT 81°T) R gonyung
I =1 ©wzn xig 4= T opuoagnozIyg
i — U . =)0 ‘1S u
o1'p) .T.x..oa ) 3 o €D T= 1=
i(rg — ug) \u ‘ 1-ul _
0=%iu (xs00 18 1) 500 (821 61°T)
A1) W | MN = ()'q 1l . XD o\v iy 0=x
= (x] 9 =) = (¥)4, iU = s
7] gusos = O | T op 1) = VR M T J—
QUosaIpuaga Y QYISMIYISAQaYIS ], QUOSANUWISH syosarronge]

swouAjod o[euosoylIQ
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Hankelsche Integraldarstellung
0%)

-1
I'z) = 50— f (=1y~te'dr,  z#0, %1, £2,...
2isinwz
0
Beziehung zu den trigonometrischen Funktionen:

I'ra -z = , zF0,+1,£2,...

sinmz

==  I@=1J=

Multiplikationstheorem von GauB und Legendre:

1 2 n-—
I'(z)I‘(z+—)I‘(z+—) ...T(z+

n n
fir n=123,...

1 L-n L
)=(27r)2( Y w2 Mnz)

Speziell fur n = 2 (Verdopplungssatz):
2P I + 3 = /7 122)
Stirlingsche Formel:
1 1 » (=1y-'B,
logI'(z) ~ [z — —]) | —z+ —log(2n) + —_—
ke (z 2) o8z st lsCN L e 1

firz— o in Jarczj<w -0, 6> 0; B, — Bernoullische Zahlen
speziell:

I(z) "%e“(z )% 1+ P i SLAT
2)=1z ) e

12z 28822 5184023 2488320z
fir z—> o in J|arczl<wm -6, 6>0

Betafunktion:
1

B(p,q)= [ 711 — x"tdx, Re(p)>0, Relg)>0
0

Zusammenhang mit der Gammafunktion:

I'(p) I'(q)

. 1
Toia fir Re(p), Re(q)#—z-

B(p,q) =

3. Zylinderfunktionen
Besselsche Differentialgleichung:
1 k? .
@+ —Tm + (1 - _2) I =0
x x
oder
X2J(x) + xJ(x) + (x> — k*) J(x) =0

Zylinderfunktionen 1. Art bzw. Besselfunktionen als Potenzreihe:

7, d (=n" x| 2ntk ;
K= ’Eom (7) , Xxree

(2.12)

(2.13)

(2.15)

(2.16)

(2.17)

()]

(2.18)

(2.20)

(3.12)

(3.13)

(3.17)
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Darstellung mit Hilfe einer erzeugenden Funktion mit ganzem Index:

Jz)= L r""e%('_%) dr, kganz, zkomplex

R » KB P (3.20)
0+

(Besselfunktionen, Besselkoeffizienten)

Potenzreihe fiir £ = 0, ganzzahlig:

7\ 2nk
2 (-1 (7)

3.21
Jilz) =Y _, k=012,.., zl<w G.2h
o nt (k+n)!
J-i2) = (=), k=12.. (3.22)
Integraldarstellung:
Ji(z) 1 z k¢ -k-:e“‘:—zd
)= —|— u i du .
RYT R 2 (3.20)
0+
Additionstheorem:
+ o0
Tz +22)= X J.(Zl)-’,,(zz) (3.25)
vdp=k
vu=—»
Jo0) = 1 = J2%2) + 2J%2) + 2J3(z) + ...
2
VoI =1, WX gé. k= t1,+2,..
Trigonometrische Funktionen als Reihen von Besselfunktionen:
0
cosz = Jo(2) + 23 (= D)* Jau(2)
k=1
20
sinz= =2 (=) Jp_y(2) (3.30")
k=1
Integraldarstellungen:
=
1
Jol(z) = — f cos (zsing) cos 2kpdp, k=0,1,2,...
ki
[
. (3.31)
1
Jok_1(2) = — J‘ sin (zsing)sin 2k — Dedp, k=1,2,...
T
o
=
1
Ji =— ke — zsi d k=0,1,2,..
«(2) - j cos (kg — zsin @) dp, ,1,2, (3.39)
0
Integraldarstellung der Besselfunktionen bei komplexem Index k = »:
0+
1 z\¥ @ umtl
J(2) = — (—) f u¥le 4 dy; z vkomplex (9:93)
2ni \ 2

—
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Rekursionsformeln:
d (J,(2) 1 vJ,(2) .
E( ’z, )= - 1(z) bzw.  Jy(z) = —J, ,(2) + ; (341)
d J,
o @) = 21,0@) baw. 1) =) - '_z(.zl (3.42)
T2 = $(Jy-1() = Jy1a(2) (3.43)
Spezielle Werte:
2 2
J1(2)= A/— sin z, J 1(@= [— cosz (3.46), (3.48)
2 k174 -7 k174
Integraldarstellung (Schiafli):
n ) ©
1 i + )=
HO == J. cos (vp — zsing) dp + SnC T DT f vz sinh ¥ gy @.s1)
0 0 .

» komplex, Re(z) > 0.
Hankelsche Integraldarstellung:

) (5)

2l 3)

1+, -17)
P
J(2) = (t?*—1) Zcos(zt)dr fiir
(4>0)

Asymptotisches Verhalten fiir |z| —» 0:

o
2T + 1)

Asymptotisches Verhalten fiir |z| — 00

2 T T
J(2)= [— [cos (z - — = —) + O(z“)] fir |z| - ©
k174 2 4

in Re(z) > 0 mit Re(») > —%

Orthogonalitétseigenschaft :

J(2) = [l +0()] fir [z1-0

1
[ 20,062 1, kp2) dz = 0
0
mit kyq, k, verschiedene positive Wurzeln von J (/) = 0.
Wronskische Determinante:
2sin 7y
wi,,J,) = ——
nz
Neumannsche Funktion (Zylinderfunktionen 2. Art):
Jy(z)cosmy — J_ (2
N(z)= .L___"()_ , v nicht ganzzahlig
sin 7ty

Ni(z) = lim N,(z), k ganzzahlig
v—k

v+ 4 (3.53)
nicht ganzzahlig

(3.57)

(3.64)

3.77)

(3.86)

(3.87)
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Hankelsche Funktionen (Zylinderfunktionen 3. Art):

HM(z) = J,(2) + iN,(2), HP(z) = J,(z) — iN,(2) (3.91)
Fundar, y von L der Besselschen Differentialgleichung fiir beliebiges »:
7y, N3 HO, HY; HY, I,
HP, 1, HO,N,; H{, N,
Integraldarstellung der Hankelfunktionen:
n (=1%) A
—_ v -t
HD(z) = __._G ?) (-—z— f @ —-1)"Zedr mit arc(® —1) =0
I'hrni \2 .
© : fir z>1
a-) 3.97)
I —v» 4
HP(z) = — ;—i@);)— (%) f (@2 - 1)’~te* dr mit arc(z? — 1) =2r fiir 7> 1
©

Re() < — —¢ &>0, »+}+k kganz

2
+ 0
v
e 2
HY) = — iz cosh u=vu 4y,
-
+
k3
v—1
e 2
H‘yz’(z) = - . iz cosh u~vu g,
mi
-

Asymptotische Formeln:
20 = om
NJ(z) = [— |sin|z—= —v— —)+ 0@"") fir 0<z-
Tz 2 4
2 (-
H®(z) = J-- D) [1 + 0@ fir 0<z- o (3.103-105)
nz
2 (-l
H‘f’(z)=A/——el(, z” ‘)[1+0(z“)] fir 0<z—
Tz
Modifizierte Besselfunktionen

omi 0 1 z v+2n
1) = et = Y ——— (=
(@) =¢ Jiz) nz::o Ty T—— (2 ) (3.108)

1 L1

K/(2)= __7;__"_(2?__"(_22_ (3.110)
2 sin vz

K2 = A/——Z" e [l + 0] fir 0<z- G.112)

9  Sieber, Funktionen
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4. Kugelfunktionen

Differentialgleichungen
Kugelkoordinaten: x = r cos ¢ sin® 0=r
y = rsingsind 0Z¢p<2rn
z=rcosd 0=<9%=rw
Potentialgleichung in Kugelkoordinaten:
i(rz—o—‘f-) + ——l—i(sinﬂb—u) + l— ﬂ =
or or sind 08 o sin?d 0¢?
u=ur,?,¢)
Differentialgleichung fiir Kugelflichenfunktion S,(#, ¢):
u, = r"S,(%, ¢):

(n + 1) S, + L2 (s'nﬁasn + L%, 0
n(n —— —— | Sl =
" sin® 09 o0 sin?d  Op?

Differentialgleichung fiir zonale Kugelfunktion:
S,(#) = P,(cos &) = P,(1), cosd =1,

415+ —— & (sina35) o
o4 -
o " e @ O ap

Legendresche Differentialgleichung:

4P, dp,
—2%—" 4 nn+ )P, =0

1 -1
( )d12 dr

Legendresche Polynome (siehe auch S. 13), Legendresche Funktionen 1. Art

P"(t)=]~3'5.‘.(2n—1) - nin — 1) w2
n! 2(2n — 1)
—Dm—2)(n—-3
Mo D=2 -3 ., i] =123,
2-4(2n — 1) (2n - 3)
Py=1
Fourierentwicklung der P,(f):
1:3...2n—1) 1n
Py(cos?) = 2 —— —— nd + —— —-2)9
(cos &) 77 [cos + Ten =1 cos (n )
1-3n(n—1)

+ TG D=5 ey =) cos (n — 4) 1.9]

Rekursionsformeln der P,(t):
Py(1) = Ppyy(t) = 2tP,(t) + Py_y(1)
nP,(t) = tP)(t) — P,_y(t)
2n + D)P,(t) = P, ((t) — P,_(t)
(n + 1) Py(t) = Py (1) — tPy(1)

4.3)

4.4)

“.7

4.9)

(4.11)

(4.18)

4.21)

(4.24)
(4.25)
(4.26)
4.27)
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Formel von Rodrigues:
dn

Py(t) = — — (2 - 1) 4.31
(1) Sl dt"( ) 4.31)
Formel von Legendre:

"= " P+ Cn— D P+ =D b i+

T13s5..@a-n " 2 2 2.4 T
(4.33)
Integraldarstellung fir P,(¢):
1 -1
Pyt) = @ - ————dl  (Schlifli) (4.35)

"'Hm (4 = L

Integrationsweg € siche S. 83 (Bild 4.5.)

1 [ile
B = Ff 41 \/1 —ul+ 2 “:36)
&

Integrationsweg (' siehe S. 83

=
1 ——e
Pyt) = —-—f (t + \/12 — lcosg)"dp (Laplace) 4.37)
™
0
3
Po(cos #) = _CSUHDP 4 (Mehter) (4.392)
cos @ — cos cosg — cosd
.
+
Pycos ) = St D? 0 (Mehten) (4.390)
\/ cos? — cos
8

Zugeordnete Kugelfunktionen
Differentialgleichung:

dz P dapy m?
1-1? T + [n(n +1) - _ITt’_:I PI'=0 (4.43)
Zugeordnete Kugelfunktion m-ter Ordnung:
d™Py(t
PRy =/t =" dt"'( ), ozmzn (4.44)

Formel von Rodrigues:

JaA=r

My o 2 _ 1y

Pr() = T e (t 1) (4.48)
Rekursionsformel :

Q@n+ 1)tP) = (n—m+ 1)P 1 T (n+ m)Py (4.50)

9%
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Orthogonalitdtsrelation:
+1 0 fir n¥%r
[ProPrwde={ 2 m+my .51
21 RIS fir n=r
2n+1 (n—m)!

Integraldarstellung fiir P7(t):

(n + m)! @ -y
m, - 2
Pr(t) = g \/( —2)" ijdc (4.54)
- (n+ m)!
PI(t) = n— (t + 1\/1 — t2cosg)" cos mp dp (4.55a)
Additionstheorem der Legendreschen Polynome:
P,(cos p) = Py(cos ) P,,(cos ¥)
n —m)!
23— P'(cos ) Py(cos ') cos m (¢ — @) (4.84)
m=1 (" + m)!
cosy = cos# cos® + sindsin®’ cos (p — ¢’)
Legendresche Funktionen 2. Art:
! 1 * 1 2)... 2k 1
0(t) = n —l+x (n+1)(m+2)..(n+ 2k e
1 5..Q2n+ 1) ¢+t Ko12°4..2%Qn+3)...Qn+ 2k + 1) 12*
(4.65)
t+1 t t+1
Qo(t)— ln =T = Arcoth 7, Qi) = —z-ln 1 — 1 =tArcotht — 1 (4.61)
t Pt —_——— ol
0.(1) = i >J‘ T 2) i @63
Rekursionsformel:
@n + D 10u(t) = (1 + 1) Qnys(t) + nQn_y (1), 7> 0
Integraldarstellungen fiir Q,(¢): (4.68) (4.70)
+1
1 (=23 1 t+1
Qn(’)='i,,—+1' (_t_)”—‘ f(! \/tz—lcoshw) dy, g;‘,:—z-lnt_l

Zugeordnete Legendresche Funktionen 2. Art (m-ter Ordnung):
00 =/ = P S 0,0) @
Tesserale Kugelfunktionen:
cos
ST, @) = { X qu} PMcos®), O0=m=n
sin mp

Sektorielle Kugelfunktionen:

{cos W} sin nd

sin np
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Zonale Kugelfunktionen:
P,(cos )
Laplacesche Kugelfunktionen:

S, @) = 3 (A% cos mg + B sin mg) PM(cos#),  A®, BY = const (4.46)
m=0
Orthogonalitit:
2n w
j j S,(®,9) Su(®, @) sin®dddp =0 fir n+m (4.74)
9=06=0

5. Hypergeometrische Funktion

Hypergeometrische Differentialgleichung:
2

z(l — d -5 t{c- @+b+1) z}— —abu = 0 a, b, c komplex 5.1)
Hypergeometrische Funktion in Potenzreihendarstellung: (5.12)
© ala+1)..a+n—=10)bb+1)...6 +n-1)
F(a,b, =1 " fu <1
@b,c;2)= +,,21 nle(c+ 1)...(c+n—J) 2 fir |2

Allgemeine Losung der hypergeometrischen Differentialgleichung in |z| < 1:
u(z) = AF(a,b,c;z) + Bz**Fla—c+1, b—c+1, 2—c;2) (5.14)
Darstellung mit Hilfe der Gammafunktion fiir Re(c — @ — b) > 0:
I'e) & I'(a+nI(b+ n)
I'(@)I'(b) n=0 n!I'(c + n)

Integraldarstellung (Mellin-Barnes Integral) fiir larcz] £ © — 6, § > 0:
+o0i

F(a,b,c;z) = z" fir |z] <1 (5.19)

s T 1 I'@+ 5)I'(b + s) I'(—s) 5
Fla, b, c;z) = Im e f T( z)*ds (5.22)
—oof
Funktionalgleichung fiir |arc (—z)| <m:
I'(a) I'(b) . I'@)I'(a — b) a 1
TF(a,b,c,z)—m—( z) F(a,l—c+a,1 b+a,7)
I I~ a) Y ( 1
T (—)*F(b1 - 1- s — .
TG -0 (-2) b, c+b, a+ b; z) (5.25)
Zusammenhang zu den Kugelfunktionen:
Pyt = (Zn)!t"F( n 1—-n 1 ”.1) 520
Y] 2’72 "2 U 629)
2%(n!)? 1 n+1 n 2n+3 1
L e 26)

1 i+ m! 1—1¢
PO = e (n_:;' Ja= ’)”'F( —n,m+n+],m+1;—2—) (5.31)
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1.1: Es gilt
4
| (f+g?dx =0,

a
2 beliebig reell.
Daraus folgt

AN+ 2Mf8) + (,0) 2 0.

Diese Ungleichung kann fiir alle reellen 4 nur gelten, wenn

, G =) @ a)=0

ist.
2: a) Die Taylorentwicklung bei x = 0 lautet:
x? x*
=1 -

I PR

b) Zur Entwicklung von y nach Legendreschen Polynomen berechnen wir

+1

J. P,(x) f(x) dx.

-1

2v+1
¢, =
2

x
Dabei ist f(x) auf das Intervall [—1, +1] zu bezichen, also mit & = ?wird f(%) = 2 — cosh 2§,

also ¢; = ¢3 = 0 und

+1
1
co = 7 J‘ (2 — cosh 2x) dx = 0,18655,
-1
Cz=_f ( (2—cosh2x)dx— —1,7595,
+1
2 105 (1o 6 2 + 3 [#3 osh 2x) dx 0,18535
cg=— | — (x* = —=x*+ — — c x)dx = -0, .
M) 24 7 35
-1
Wir erhalten
0,18655 — 1,7595 3 (s ! 0,18535 105 ( 4 L + 3
p, = — — - —] -0, —_—x* - —x ——
=5 PRI TS % 7 35

= 0,99675 — 1,94419 x> — 0,81091 x*,
und fiir das Intervall [—2, +2] wird schlieBlich
Yo = 0,99675 — 0,48605 x? — 0,05068 x*
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die gesuchte Anndherung. Ein Vergleich des unterschiedlichen Verlaufs ergibt die folgende Werte-
tabelle:

x ¥y Jr Ja

0,0 1,000 1,000 1,000
0,2 0,980 0,980 0,977
0,5 0,872 0,872 0,872
0,38 0,633 0,663 0,665
1,0 0,457 0,458 0,460
1,2 0,189 0,194 0,192
1,5 -0352 —0,336. —0,353
1,8 -1,107 -1,08 —1,110
2,0 -1,762 —1,667 —1,758

1.3: Setzt man in die trigonometrische Formel
2cosdcosn? =cos(n+ 1)& + cos(n—1) /

cos ni}

x=cos? und T,(x)= =

(1.33)

ein, so folgt die angegebene Rekursionsformel.

Fir n = 1 gilt:
T,—xTy +%To= -4,
fir n = 0 gilt:
T, — xT, =0.
14:
1-1¢2 21 — xt)
(x, t) = = -1+
v 9 1 — 2xt + 12 1 — 2xt + 12
2(1 — xt
14 (1 — xt)

1—te® 41 47re'?
=1 —re)
1 1

=14 —f —
1 —tei® 1—te®

© o
1+ 2 rnelnﬂ + Z rne—lnﬂ

n=1 n=1

£
=142 t"cosnd
1

n=

1+ 3 @y T
n=1

20(2’)" To(x).
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2.1: Wir schreiben
0 1 0
I@ = [rtetdi= [1=tetdr+ [l e
0 0 i
1 1
Fiir Re(z) > 0 konvergiert f t*~1¢~t d¢ absolut und gleichmiBig, da j t*~1g~t d¢ fiir beliebig kleines

0 T
7 > 0 monoton wichst und nach oben beschrinkt ist:

1
’fr’-‘ etdr
*

T
Da der Integrand in z holomorph ist, konnen wir dies auch fiir das Integral behaupten, da absolute
und gleichméiﬂige Konvergenz vorliegt.

Re(@)
= ft"“”“ dt=1—- —— fiir Re(z) > 0.
Re(2)

Das Integral f t*~1¢~t df konvergiert ebenfalls absolut und gleichmiBig, ohne daB eine Einschrin-
i

kung fiir z gemacht werden muB. Da der Integrand auch im Integrationsbereich [1, o) holomorph

in z ist, konnen wir die Holomorphie des Integrals beziiglich z folgern.

(Hinweis: Fiir w; < w,; w;, o, beliebig groB schitze man

w2 o1 w2
|[r=terar—| t“le“dt[ =| [r==tet dtl
i i o1

ab.)

©

2.2: a) w(z) ist die in 2.1 betrachtete Funktion w(z) = ft"‘e“ dt, die fir alle z holomorph ist.

Also ist w(z) nach Definition eine ganze Funktion. 1
®  (=1)"
b) Wir betrachten Z ( n') gl Hierbei werden die Glieder z = —n, n =10, 1,2, ...
sofern solche vorkommen weggelassen, (z = —n).
Es gilt
1
=1 1| <1 1 v L )
| nt z4n|[Tal z+n T on

sofern |z + n| = 1 gilt. |z 4+ n| = 1 bedeutet (Re(z) + n)? + (Im(z))> = 1. Diese Ungleichung
ist fiir endliches z immer erfiillbar, wenn man n so groB wihlt, daB fiir Re(z) = 0 n*> = 1 — |z|?
und fiir Re(z) < 0 n* — 2Re(z)n = 1 — |z|? gilt. Unsere Abschitzung gilt also bestimmt fiir ein
endliches Ny, d. h. fiir alle n = Nj.
1 2 (=" 1
Da Z n_ konvergiert, ist die absolute und gleichméaBige Konvergenz von 2 PYRR———
noo !

fiir

Jedes endhche Gebiet der z-Ebene gezeigt.
2.3: a) Wir zeigen

1 1 _ sinmz
Te) Ta-2 =
Dann bilden wir
! 1 — = z\ -5 ca-n T 1-2 ‘l_:'
To Ta-9 € "I;[(l+;)e (1—-2)¢ n];[l(l+ - )e
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Man vergleiche diesen Ausdruck mit dem unendlichen Produkt fiir sin =z und zeige die Gleichheit
durch geeignete Umformungen.
b) Nach (2.12) gilt

0*)
-1
I@) = ——— f (= tetdt fir z#0,£1,£2, ...
2isinmz
-]
Aus
I'(z)I'(1 — 2) = —
sinwz
folgt
1 sin 7tz
= ra - z).
I'(z) ( 2
Ersetzen wir oben z durch 1 — z und benutzen diese Formel, so entsteht
0*) 0*)
1 in 7. -1
Jdnmz D e -*d:_— (=) 7edr.
I'(z) = 2isinz(l —2) sinm (1 — z)
3.1: Wir setzen ¢ = —k und dividieren sofort durch x~*. Dann entsteht
0 0 0
S (—k)(=k = Doax" + 2 Z (—k) ognx™ + Y ann(n — 1) x"
n=0 n= n=2

00
+(- k)Zax"+Zo¢,,nx"+Zax"*’ > kPax" = 0.

n=1 n=0
Mit x_; = 0 ist diese Gleichung dquivalent mit
0
> [(n* — 2kn) o + q_z] X" = 0.
n=1

Diese Gleichung geht wiederum aus (3.15) hervor, wenn man dort k¥ durch —k ersetzt. Deshalb
geniigt es, in der Losung (3.17) k durch —k zu ersetzen.

3.2: Wir schreiben die komplexe Potenzreihe in der Form

« z\* . (=1 1 n
(an") (‘2‘) Mt = e

Fur festes z tiberpriifen wir die absolute Konvergenz anhand des Quotientenkriteriums
[ 2nsa n! 2"k + n)! 2= lz[?
o | "+ D22k +mik+n+ D) e+ D2G+n+ D)

Ist z fest und endlich, so gilt also

nt1

lim =0<1 fir k+0,-1,-2,...,

n—ow
so daB fir beliebiges endliches z die absolute Konvergenz und damit auch die Konvergenz folgt.
3.3: a) Wir betrachten

1
= ( ;(f)) === hn@.

L
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Es gilt:

—dc—lz— ( Jvz(vz)) = dd—z(z“’./v(z)) = —vz ") + 270 0)2) = 277 T ya(2).
Daraus folgt:

BE@ = =T + = 1,0).

b) Setzen wir in der zu beweisenden Formel m = 1, so erhalten wir die schon bewiesene Formel
(3.41) und benutzen diese als Induktic f: Dann neh wir die Giiltigkeit unserer zu be-
weisenden Formel fiir festes m an und zeigen, daB diese dann auch fiir m + 1 gilt. Hierzu ist die
Reihenentwicklung von J, , ,(z) zu verwenden.

3.4: a) Fir m = 0 stimmt die Formel mit (3.47) iberein und ist demnach richtig. Fiir m = 1 be-
rechne man (3.48) mit Hilfe von (3.41) und wende danach fiir allgemeines m wiederum die Methode
der vollstandigen Induktion an.

b) Formel (3.49) beweist man analog zum Beweis von (3.47), indem man wiederum die Potenzreihe
von J,(z) verwendet. Die Beziehung (3.48) wird danach, wie unter a) beschrieben, gezeigt.

3.5: Wir verwenden die asymptotische Formel

z .
J(2)= —m—+1) [1 +o(2)] fir [z/—0.

Demnach sind

- v o — yz'-1

J_[(2) = Ta =y [1+o0(2)], J)2) BToT D [1+oW)],
, v -V-1

J(2) = Ta = [1 +o(D].

Wir erhalten

C = lim (z [ z¥ (=») 27"t B z=v yz'1 ])
o\ 2T+ 1) 27TU —»  2°T0—-» 2210+ 1)
-2 _ -2
TTo+DI0-»n TOI0-»n"

3.6: Mit
A - J_,—e ™,
y =
isinmy
und
ey —J,
AP =
isinmy
bilden wir
HO  go 1
W gy |7 vl o —vmel Vg gt
W(H,", H?) = IH,(W H?y liioens e (-, —e"™I) ™I, = J.)

- L, — e ™I, - J)]
1 eml _ e—ml
= = i U | i I F = T T
sin2 v l[ 2i ]( vl = 1)
2i 2i  2sinmy 4i

=——W({,J. )= —— ——=—%0.
sin T sin v >4 Tz




Losungen der Aufgaben 131

Da die Wronskische Determinante fiir jedes » verschieden von 0 ist, sind die Funktionen Hf"(z)
und H{?(z) linear unabhingig.

3.7: Wir erhalten die Schliflische Integraldarstellung (3.144) fiir Re(z) > 0, indem wir in der
Formel

k3 ‘. o«
cot v X cos v .
N(z) = —— | cos(zsing — vg)dp — ——— | e~=sinh @17 dg
™ 3
0
kg oc
[ ) 1
— ———— |.cos(zsing + vp) dp — — | e~=sinh¥=V gy
T sin 7Ty kg
)

den ersten und dritten sowie den zweiten und vierten Term zusammenfassen.
% 1 o2 1 0?2
o by 2 0-

1

T= 0 ist, sind auch samtl’~he
1

Ableltungen von — nach x, y, z Potentialfunktionen. Dies folgt, wenn man die Differentialgleichung

1
4.1: Da— eine Potentialfunktion, also —5

entsprechend dlﬂ'erenzwrt. Ferner sind die ersten Ableitungen einer homogenen Funktion »-ten Grades
homogene Funktionen (v — 1)-ten Grades. Somit sind die Ableitungen von r~! Kugelfunktionen
von den Graden —2, —3,....

4.2: Das allgemeine homogene Polynom 3. Grades lautet :
Uy = a300X> + az10%%y + @120Xy* + @o305°
+ @201%%2 + @102X2% + @921¥%Z + G012Y2% + G032 + ayyyxyz.
Nach Einsetzen in die Potentialgleichung (4.1) erhilt man
uz = x(6az00 + 2ay20 + 2a102) + ¥(2az10 + 6a030 + 2do12)

+ 2(2a301 + 24021 + 6a03) = 0,
also
azo0 = — 3(a120 + @102),  @ozo = — $(@210 + Go12),  @oos = — }(@201 + Go21).

Daraus ergibt sich die allgemeine ganze rationale Kugelfunktion 3. Grades als lineare Kombination
von 7 linear unabhingigen Kugelfunktionen 3. Grades:

uy = ag20(xy* — 1 x3) + ayo2(xz2 — 1 x3) + azp0(x?y — 1)
+ ag12(yz? — ‘3‘)’3) + a301(x%z — %23) + @92, (¥?z — %ZZ) + ay11xyz
é cuz ™.
v=1
4.3: Ersetzt man in (4.27) n durch n — 1, so ergibt sich
nP,_, = P, — tP)_,
Nach (4.25) ist P,_; = tP, — nP,, also
nP,_y = Py — t*P) + ntP, = (1 — t*) P, + ntP,

Il

oder
(1=t P, + ntP, — nP,_; = 0.
Diese Gleichung wird nach ¢ differenziert und (4.25) angewendet:
(1 —t?) P, — 2t P} + nP, + ntP, + n*P, — nt P, = 0,
also (I =t?) P —2tPy+n(n+1)P,=0. (4.10)
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4.4: Nach (4.25) ist Ppyy = Py + 21 + 1) P,.
Wir ersetzen n durch n — 1:
P, =P, +@Qn—1)Py,
Pry=Py i+ Q@n—5) Py,
P =P+ @Qn—-T7P,,,
n gerade nungerade
P, =P, +7P;, P{=P]+5P,,
= P{+ 3P, P{=P,.
Beide Seiten werden summiert

7P; + 3P,, ngerade

=@2n =Py +Q2n—=5)P, 3+ ... +
( ) 1+ @n ) Py 5P, + Py, nungerade

oder
n+1
2
= kZI (2n — 4k + 3) Pp_zkqs- (4.28)
4.5:

+1 +1 +1
[ a - @Ee*dt = =) Pipa| + 0+ 1) [ PG,
-1 -1 -1

u=(1-1t»P, v =P,
w = —n(n+ 1) P, v=P,,
_ 2n(n+ 1)

= h (4.29).
1 nach (4.29).

4.6: Die angegebene Substitution ergibt

-t d 2 -2z 41 —e 2 -2zt + 1
z . (z z )und \/1—214'-9-52:1 Z1

(=2 > e e
22 -1 a4z (z2 - 1)? 22 -1

Zur Angabe des Integrationsweges € beachte man, daB8 durch die Substitution eine geniigend kleine
Umgeb U des Nullp tes der {-Ebene konform auf eine Umgebung U’ des Punktes z = oo
der z-Ebene abgebildet wird. Die Quadratwurzel hat fiir { = 0 den Wert 1. Ist U nur entsprechend
klein gewihlt, so liegt U’ auBerhalb eines Kreises mit dem Mittelpunkt z = 0 und einem beliebig
groBen Radius r. Liegt €’ innerhalb von U, so wird sie auf € innerhalb U’ umkehrbar eindeutig
abgebildet. € umschlieBt also den Punkt z = ¢ der z-Ebene, falls r geniigend gro8 ist. Dem positiven
Umlauf auf ¢’ um ¢ = 0 entspricht der positive Umlauf auf € um z = 0, und das wiederum ent-
spricht dem negativen Umlauf um z = ¢. Damit erhilt man die Darstellung (4.35), wobei nach dem
Cauchyschen Integralsatz fiir € irgendeine Kurve gewihlt werden kann, die den Punkt z = ¢ im
positiven Sinne umlauft.

xx' + yy' + zz'
r ’

4.7: Wegen cosy =

xx' +yy' + zz'
Xy rE y’ ist Po(cosp) = 1, Py(cos:’) =
rr

1 3(xx’ + py’ + zz') — (n)?
Pycosy) = - 3¢ 7T L
2 (rr’)
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Damit wird Tp = J'.” o(Q) dB = M, der Gesamtmasse von B.

B x y z
T, = fffoPdcosy)r’dB:——fffa‘x'd8+-—f fﬂy’d8+—f". oz’ dB =0,
r r r
B B B B

da der Koordinatenursprung im Schwerpunkt liegt, also f f f ox’ dB = 0 ist usw.
B

Um T, zu berechnen, ist die Einfiihrung der Trigheitsmomente I, I,, I, und der Deviationsmo-
mente Dy, D, D, der Masse beziiglich der Koordi hsen zweckmiBig:

I = f” o(y? + z2)dB; I, = J‘”a(x'z + 2'?)dB;
B B

I = f” o(x2 + y*)dB; Dy = ”J‘ oy'z dB; D, = f” ox'z’ dB;
B B B

D, = Hf ox’y’ dB.
B

Das Koordinatensystem kann so gewahit werden, da Dy = Dy = D, = 0 wird. Dann ist

1 Uy + I = 2L)x? + (I + I, — 2L)y* + (I« + I, — 21,)z%
2 B

T, = -

r
Fiir das Potential u(P) lauten die ersten drei Glieder der Entwicklungen (4.96)

wpy =M ¢ _;_ Uy + L = 2A)x* + (e + 1 - 20y + (I + I, — 21)2% .
r

r

5.1: Wir setzen in Gleichung (5.3) fiir « = 1 — ¢ ein und fihren dann die gleiche (etwas umfang-
reichere) Rechnung wie in (5.5) durch
©

> {ni(r+ Dn—aun —1) + 2= ) apy(n+ 1) — @+ b -2+ Dan

n=
—@—c+Db-—c+ayz"+Q—-c)ag—(a—c+1)(b—-c+1)=0.
Der Koeffizientenvergleich liefert
i (a — c+21)_(bc—~c+ 1); c42,
G+ Dn+Q2—-c)(m+1) —ann—1)+@+b—2c+1)n+
+@—c+1)(b—-c+1)=0.
Hieraus folgt die Rekursionsformel
nn—ND+@+b—-2c+3)n+@—c+Hb-c+1)
n+DC—c+n é
(@a—c+1+nmb-c+1+n
- n+DC—c+n

a;

any1 = n

a,.

Dies ist aber gerade die Rekursionsformel (5.9) mit
a=>a—c+1l;b=>b—-c+1,c=>2—c¢,

und demzufolge ist die Losung u,(z) hergeleitet.
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