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Vorwort

Uber das Arbeiten mit diesem Band und die Bedeutung von GroB- und Klein-
druck sei auf das Vorwort von Teil 1 verwiesen.

Im vorliegenden Band werden fiir gewohnliche Differentialgleichungen neue
Losungsmethoden entwickelt und neue Aufgaben behandelt. Beide haben ihren Ur-
sprung in entsprechenden Problemen der Praxis. Deshalb werden bereits hier drei
typische Vertreter derartiger Probleme dargelegt. Sie werden im Verlaufe des Bandes
mehrfach bearbeitet.

Ist der Balken im Beispiel 3.20 am Rand x = / eingespannt, hat er einen Rechteck-
querschnitt mit einer groBen Querschnittshéhe — im Vergleich zu seiner Breite — und
wird er beispielsweise lediglich am Rand x = 0 durch eine Einzelkraft F auf Bie-
gung beansprucht, so kann bei groBem F der Balken seitlich auskippen. Bezeichnet
man mit 9(x) den Torsionswinkel, mit GJ, die Torsionssteifigkeit, mit EJ die Biege-
steifigkeit und mit » die Querkontraktionszahl, so ergibt sich — unter der Voraus-
setzung unbehinderter Torsion an der Einspannung — die folgende lineare homogene
Differentialgleichung

GJEJO"(x) + (1 — ) F2x*0(x) = 0, (v.1)

deren Koeffizienten nicht alle konstant sind, selbst wenn die Steifigkeiten konstant
sein sollten. Der Exponentialansatz (3.67) fiir die Losung fiihrt hier also nicht zum
Ziel.

Behandelt man die kleinen Schwingungen eines mathematischen Pendels (Beispiel
1.8; Aufgabe 3.3) und ersetzt man die masselose Stange durch ein Seil, so- ergibt
sich fiir die seitliche Auslenkung w = w(x, t) des Seiles — falls man sich fiir syn-
chrone Schwingungen interessiert, wo alle Seilteilchen mit derselben Kreisfrequenz »
und einheitlicher Phase schwingen — w(x, 1) = y(x) cos(w(t — 1,)), wobei y = y(x)
der linearen homogenen Differentialgleichung mit variablen K oeffizienten

2
(L—x)y"—y’+%y=0mitL=l+% (V.2)
geniigt, falls man voraussetzt, daB3 die Seildichte ¢ konstant ist.
Bei der quantentheoretischen Behandlung eines Elektrons (Masse ) im Coulomb-
2
feld U= — Z]—ﬁe (Z: Anzahl der Protonen im Kern; e: Elementarladung) des Kerns

wird die Schrodingergleichung mit dem Ansatz y(r, 9, ¢) = R(1Y,(9,¢) (I =0, 1,2,
.3 Y, ¢): Kugelflichenfunktionen [siehe Definition 6.14]; (r,, ¢) rdumliche
Polarkoordinaten) geldst, wobei R(r) = Ry(r) der folgenden linearen homogenen
- Differentialgleichung mit variablen Koeffizienten geniigt:

PR+ 2R + [r? + 2ar — I+ )]R=0 (I=0,1,2,..) (V.3)
mit
2 2
= 87;'2”' E und a= 4’;2’” Ze? (V.4)

(E: Gesamtenergie des Elektrons; /: Planksches Wirkungsquantum).



4 Vorwort

Im Kapitel 5 werden die Losungen solcher Differentialgleichungen durch Ent-
wicklung in Reihen bestimmt. Zunéichst wird an Beispielen die Koeffizienten-
berechnung ausfithrlich behandelt. Die zugehdrige Theorie gehért in das Gebiet
der Gewohnlichen Differentialgleichungen im Komplexen. Um jedoch Kenntnisse
aus dem Band Funktionentheorie nicht voraussetzen zu miissen, werden die
Formulierungen im Reellen durchgefiihrt; sie sind jedoch so angelegt, daB nach
Kenntnis der Funktionentheorie der Ubergang zur komplexen Darstellung keine
Schwierigkeiten bereitet. Auf Beweise muBte zwar verzichtet werden, jedoch ist
dies ohne EinbuBle an Verstindnis mdglich.

Die Differentialgleichungen (V.1), (V.2), (V.3) sind durch Zusatzbedingungen zu
ergidnzen. Zum Kipp-Problem (V.1) gehdren die Randbedingungen

90) =0, 90)=0 (V.5
und zu den Schwingungen des herabhdngenden Seiles (V.2)
¥0) =0, gy'() = (), (v.6)
wahrend zur Differentialgleichung aus (V.3) die Forderungen
lim R(r) existiert .7
und o
R(r) bleibt beschrankt fiir r > + (V.8)

hinzuzunehmen sind. .

Wie aus 1.3.3. zu entnehmen ist, werden durch (V.1), (V.5) sowie (V.2), (V.6) und
schlieBlich auch durch (V.3), (V.7), (V.8) Eigenwertaufgaben formuliert. Als Eigen-
wertparameter kann in (V.1) das positive F, in (V.2) das positive o und in (V.3) das
reelle E angesehen werden. Den Rand- und Eigenwertaufgaben (siehe auch 1.3.2.
und 1.3.3.) ist das Kapitel 6 gewidmet. Es beginnt mit Beispielen und Aufgaben;
unter ihnen befindet sich eine nichtlineare Randwertaufgabe und eine Eigenwert-
aufgabe, die nichtreelle Eigenwerte besitzt. Es wird gezeigt, wie man eine Eigenwert-
theorie in Analogie zu den Eigenwertaufgaben bei Matrizen (Band 13) aufbauen
kann. Auch hier kann man — wie z. B. in (6.30) — zu einer Eigenwertgleichung gelan-
gen, die — im Gegensatz zu Matrizen-Eigenwert-Gleichungen — im allgemeinen un-
endlich viele Eigenwerte als Losungen besitzen. Allerdings kann es auch vorkommen,
daB die Eigenwerte bei Differentialgleichungen auch aus anderen Bedingungen — wie
z. B. in (V.7), (V.8) - zu ermitteln sind. Beziiglich numerischer Verfahren konnten
nur die theoretischen Grundlagen vermittelt werden; zur praktischen Durchrechnung
sei auf Band 18 und die dort angegebene Literatur verwiesen. Der Entwicklungssatz
(Satz 6.9) kann als Verallgemeinerung der Fourierentwicklung aus Band 3 angesehen
werden. Die wichtigsten Beispiele im Zusammenhang mit dem Entwicklungssatz
werden angefiihrt. Sie werden fiir die Theorie der partiellen Differentialgleichungen
(Band 8) bereitgestellt. Auf eine ausfiihrliche Durchrechnung, insbesondere bei den
vorkommenden Normen, muBte verzichtet werden.

Bei den Beispielen und Aufgaben wird weniger auf innermathematische Pro-
bleme Wert gelegt, vielmehr stehen Anwendungsaufgaben im Vordergrund. Hin-
weise auf Band 7/1 beziehen sich auf die dritte und vierte Auflage.

Dresden, Februar 1984 Der Autor
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5. Potenzreihenansiitze und Verallgemeinerungen

5.1. Potenzreihenentwicklung der Losung

5.1.1.  Koeffizientenberechnung

Im Band 7/1 standen elementare Integrationsmethoden im Mittelpunkt. Fiir
nicht in dieser Weise 1osbare Differentialgleichungen wird man — wie bereits im
Abschnitt 1.4. des Bandes 7/1 erwihnt wurde — neben numerischen Verfahren
auch an gewisse Reihenentwicklungen der Losungen denken. Wir studieren hier
zunéchst die Entwicklung der Losung in Potenzreihen. Zu Beginn wird die Methode
an der Anfangswertaufgabe aus dem Beispiel 2.9 illustriert, also an einer Differential-
gleichung, deren Losung nachweisbar nicht durch elementare Funktionen und Inte-
grationen angebbar ist (Abschnitt 2.5.1.).

Beispiel 5.1: Unter der Annahme, daB die Losung y = y(x) der Anfangswertaufgabe
Y =31x*+5*, »0) =0 6.1
an der Stelle x = 0 in eine Potenzreihe (Band 3, Abschnitt 4.) .

Y(x) = Vg‘bc,x' G.2)

entwickelbar ist, sollen die Koeffizienten ¢, (v = 0, 1, ...) berechnet werden. Man
setzt hierzu den Ansatz (5.2) in die Differentialgleichung aus (5.1) ein, ordnet danach
auf beiden Seiten nach Potenzen von x und fiihrt schlieBlich einen Koeffizienten-
vergleich durch. Wir erldutern jetzt die einzelnen Schritte ausfiihrlich. Einsetzen
von (5.2) in die Differentialgleichung aus (5.1) ergibt

(éo c"xv)l = % ("2 - <:, cvx”)z) : (5.3)

Um die linke Seite nach Potenzen von x zu ordnen, brauchen wir nur daran zu er-
innern, daB Potenzreihen innerhalb ihres Konvergenzbereiches gliedweise diffe-
renziert werden diirfen (Band 3, Satz 4.8). Also ergibt sich fiir die linke Seite von (5.3)
der Ausdruck

0
Yy vx"L : (5.4)

In (5.4) kénnte man den Summationsbuchstaben » auch erst von » = 1 an laufen lassen; das ist
klar, denn der konstante Summand ¢, der Potenzreihe aus (5.2) fillt bei der Differentiation weg.
Es ist aber auch nicht falsch, mit der Formel aus (5.4) zu arbeiten, denn fiir » = 0 ist das allgemeine
Glied gleich 0 - cox~! und damit gleich null. Der Einwand, daB der Ausdruck 0 - cox~! im Falle
x = 0 nicht erklirt ist, muB3 zwar anerkannt werden, diese Tatsache ist hier jedoch als ,,Schonheits-
fehler** aufzufassen. Um nicht auf die Schreibweise in (5.4) verzichten zu miissen, wird festgesetzt,
daB in diesem Zusammenhang unter 0 - cox~* auch dann noch der Wert 0 verstanden werden soll,
wenn x = 0 ist.
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Beim Ordnen der rechten Seite von (5.3) nach Potenzen von x wird man zunédchst
das Quadrat der dortigen Potenzreihe auswerten. Das macht keine grundsétzlichen
Schwierigkeiten, wenn man die Multiplikation von Potenzreihen (Band 3, Abschnitt
4.4.1.) beherrscht. Es ergibt sich

(co + 1% + c2x? + ..)2 = 2 + (cocy + €160) X
+ (coC2 + €161 + c2c0) X2 4 ...,

das ist zusammengefaf3t

<% (zcﬂcv M)x .5)

y=0

Damit kann die rechte Seite von (5.3) nach Potenzen von x geordnet werden. Sie
ist in ausfiihrlicher Schreibweise

=%c§ + % (cocs + €100) X + (1 + cocs + ¢} + €200) X2 + ...
und zusammengefaBt

- {( T e “) +6,2} 56)
wobei in (5.6) das Kroneckersymbol

: 0 fir k1 )
* {1 fir k=1 ’
benutzt wurde. Wegen (5.4) und (5.6) folgt aus (5.3)
T egxri= 3 A4 {( Ty “) + 8, %, (.8)
V=0 v=o04

Dem Koeffizientenvergleich in (5.8) steht im Wege, daB links die Potenzen x*~%,
rechts dagegen die Potenzen x” auftreten. Es wird deshalb auf der linken Seite von
(5.8) der neue Summationsbuchstabe p durch

o=v—-1, dh »=p+1, (5.9)
eingefithrt. Lauft » von O bis unendlich, so lauft ¢ von —1 bis unendlich. Also
geht (5.8) in

0o oo 1 v
2 coule + D0 = 5 {( 2 cucres) + 0 (5.10)
o=—1 =0 p=0

iiber. Auf die Bezeichnung des Summationsbuchstabens kommt es nicht an. Wir
konnen also ohne einen Fehler zu begehen auf der linken Seite von (5.10) ¢ durch
einen anderen Summationsbuchstaben ersetzen. Im Hinblick auf die Vorbereitung
des Koeffizientenvergleichs ersetzen wir ¢ durch »:

0=r. ) (5.11)
Es ergibt sich

vi_fvn(" + 1) x =§.‘ v {( ioc,.cv_,,) + 0,2 } X", (12
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Wer einen Widerspruch zwischen (5.9) und (5.11) zu erkennen glaubt, dem sei gesagt, daB ab
Gleichung (5.10) die Gleichung (5.9) ihre ,,Schuldigkeit‘* getan hat und ,,vergessen* werden sollte.
Ein solches Vorgehen ist tatsichlich zuldssig, denn (5.9) dient lediglich zum Nachweis, daB die
linken Seiten von (5.8) und (5.10) einander gleich sind. Davon kann man sich auch direkt iber-
zeugen, indem man beide unendlichen Reihen ausfiihrlich aufschreibt. In analoger Weise dient (5.11)
lediglich zum Nachweis dafiir, daB die linken Seiten von (5.10) und (5.12) iibereinstimmen.

Dem Koeffizientenvergleich in (5.12) steht jetzt nur noch der verschiedene Sum-
mationsbeginn (bei » = —1 bzw. » = 0) im Wege. Da jedoch das allgemeine Glied
der linken Seite von (5.12) im Falle » = —1 gleich null ist, kann auf der linken Seite
von (5.12) die Summation bei » = 0 beginnen:

0o oo 1 v

Yo+ =3+ {( T c,,c,_,,) +8, }x'. .13)

V=0 =04 [\ace
Nun ist der Koeffizientenvergleich in (5.13) durchfithrbar (Band 3, Abschnitt 4.2.2.).
Es ergibt sich

(v + 1) = 1 {( > c,,cv_,,) - 6\.2} r=012.)

4 \/Zo
und damit
1

i = T {(z Cuche ,,) + avz} #=012..). (5.14)

Aus (5.14) kann ¢,,; nicht unmittelbar entnommen werden. Die Berechnung gelingt
erst, wenn bereits ¢, ..., ¢, bekannt sind. Formeln mit diesem Sachverhalt heiBen
Rekursionsformeln. Einsetzen des Ansatzes (5.2) in die Anfangsbedingung aus (5.1)
fiihrt zu

¢ =0. (5.15)
Man schreibt nunmehr (5.14) der Reihe nach fiir v =0, » = 1, » = 2, ... auf und
benutzt bei der Berechnung die jeweils bereits bekannten c-Werte. Es ergibt sich:

y=0: ¢ = Lc(z, = 0 [siche (5.15)],

4-1

=1: ol (. + ¢160) =0
vy =1 02—4‘20001 1€0) = Y,

=12 __1 + 1l = .l.
v=2 ¢3= W{(COCZ + ciey 4 €200) + 1} = 7°
=3 7 14 (cocs + c1¢2 + cacq + €3¢0) = 0. (5.16)

* Aufgabe 5.1: Man fiihre die in (5.16) begonnene Rechnung fort und zeige, dal
1

cs=0, ¢c¢6=0 und ¢; = 05 (5.17)

gilt.
Einsetzen von (5.15), (5.16) und (5.17) in (5.2) liefert den folgenden Beginn der
Potenzreihenentwicklung der Losung:

1 1
=% LU 5.18
W) =17t m (5.18)
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Um einen Vergleich mit dem Ergebnis des Beispiels 2.9 zu haben, werten wir (5.18)
an der Stelle x = } aus:

(‘_)_L(l_)3+_l_(£)7+ R S S
Yz2)712\3) Tw03:2\2) T T 96 516006
= 1,04166 - 10-2 + 1,9376 ... - 10-6 + ... (5.19)

Damit ergibt sich fiir y(}) der Naherungswert 1,04186 + 10-2.

Bemerkung zu Beispiel 5.1: Bei der Betrachtung von (5.18) wird man intuitiv ver-
muten, daB die Potenzreihe in einer gewissen Umgebung von x = 0 konvergiert.
Aus (5.19) glaubt man entnehmen zu kénnen, daB die Potenzreihe an der Stelle
x = } konvergiert, und zwar so stark, daB die nicht beriicksichtigten Glieder ins-
gesamt keinen wesentlichen EinfluB auf die mitgefiihrten Stellen des Néherungs-
wertes haben. Es ist wiinschenswert, eine Theorie zu haben, mit deren Hilfe die
genannten Vermutungen bewiesen werden konnen. Wir verweisen in diesem Zu-
sammenhang auf den Satz 5.1., das Beispiel 5.4. und auf die im Band 3 (4.3.2.)
gemachten Aussagen iiber die gendherte Funktionswertberechnung mittels Taylor-
reihen (Potenzreihen).

Aufgabe 5.2: Unter der Annahme, daB die Losung y(x) der Anfangswertaufgabe
A=x3)y"—xy' =2 y0O) =1 y0)=0 (5.20)

an der Stelle x = 0 in eine Potenzreihe entwickelbar ist, berechne man die Ent-
wicklung von y(x) bis zum Glied csx®. Weiterhin gebe man mit den Hilfsmitteln
aus Band 7/1 die Lésung von (5.20) durch eine elementare Funktion an und entwickele
sie an der Stelle x = 0 in eine Potenzreihe bis zur sechsten Potenz. Man vergleiche
die Ergebnisse beider Losungsmethoden.

Im Beispiel 5.1 muBten wir beim Ubergang von (5.3) zu (5.8) eine Potenzreihe
quadrieren. Im folgenden Beispiel ist eine kompliziertere Operation durchzufiihren,
namlich das Einsetzen einer Potenzreihe in eine andere (Band 3, 4.4.3.).

Beispiel 5.2 (vgl. Beispiel 3.2): Unter der Annahme, daB die Losung ¢(¢) der Anfangswertaufgabe
mlp = —mgsing, @0) =0, I§0) =uvo+0 (.21)

an der Stelle # = 0 in eine Potenzreihe
@
P = 2 e (5.22)
y=0 .

entwickelbar ist, sollen die Koeffizienten ¢, (v = 0, 1,2, ...) berechnet werden. Zunéchst liefern
die Anfangsbedingungen aus (5.21) fiir die Koeffizienten ¢, und c; aus (5.22) die Werte

Vo

co=0,¢ = - (5.23)

Zur Vorbereitung fiir das Einsetzen von (5.22) in (5.21) wird man die Funktion sin ¢ an der Stelle
@ = ¢o — das ist wegen (5.23) hier die Stelle ¢ = 0 — in eine Potenzreihe entwickeln:
o (=1

sing = 3

S A YT
R A ¢:24)
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Beim Einsetzen von (5.22) in die Differentialgleichung aus (5.21) erhilt man unter Beriicksichtigung
von (5.23) und (5.24) in ausfihrlicher Schreibweise zunéchst

ml(2c; + 6est + 12¢4t? + 20cst® + 30c6t* + 42¢,t° + ...)
Uy
= —mg{[-—lo—t + cat? + c3t® + eyt + cst® + ]

Log, 1o s |
3 [P+ 5 | +...], (5.25)
wobei der durch Punkte angedeutete Inhalt der eckigen Klammern auf der rechten Seite von (5.25)
gleich dem Inhalt der dortigen ersten eckigen Klammer ist. Wir wollen nun an diesem Beispiel
zeigen, daB es vorteilhaft sein kann, bereits wihrend des Ordnens der rechten Seite von (5.25) nach
Potenzen von ¢ mit dem Koeffizientenvergleich zu beginnen und dessen Ergebnisse beim weiteren
Ordnen zu benutzen. Es ist klar, daB die dritten und hoheren Potenzen der eckigen Klammern
auf der rechten Seite von (5.25) keinen Beitrag zur nullten, ersten und zweiten Potenz von # ergeben.
Damit kann in (5.25) der Koeffizientenvergleich beziiglich der Potenzen ¢°, # und ¢ sofort ausgefiihrt
werden. Es ergibt sich

U,
=0, c3=—%—2—, s =0. (5.26)

Also vereinfachen sich die eckigen Klammern auf der rechten Seite von (5.25) zu
Vo 8o

PR S 5
Ld=—t-gattest®+. ) (5.27)
und die Entwicklungen von [...]° und [...]° beginnen folgendermaBen:
Lp= s B8, (5.28)
P = g _— &
v3
[]5=—=215+ ..., (5.29)

15
withrend die hoheren Potenzen von [...] erst von ¢7 ab Glieder liefern. Unter Beachtung von (5.27),

(5.28) und (5.29) kann somit in (5.25) der Koeffizientenvergleich beziiglich der Potenzen ¢3, #4 und ¢3
weitergefiihrt werden. Wir erhalten

1 (g% 803 1 (g% g%  evd .
Cs—_120<"13_+1—4’ c6 =0, ¢ =~ S50 ",TTU 5 te ) 630
Also beginnt die Potenzreihenentwicklung (5.22) folgendermaBen:
Yo, 8o, 1 (g #),
o0 = lt—612’+120<l3 =)
1 2300 g3 gv3
_W<l—‘+ U=+ =g )T ' (5.31)

Aufgabe 5.3: Man lse durch elementare Methoden die zu (5.21) gehérige linearisierte Anfangswert-
aufgabe

mly = —mgp, @0) =0, Ip0) = vy (5.32)
und entwickle das Ergebnis an der Stelle 7 = 0 in eine Potenzreihe. Weiterhin ist die Potenzreihen-
entwicklung

0
>dy” (5.33)
0=0
der Differenz zwischen der Losung (5.31) von (5.21) und der Losung von (5.32) zu bilden, und es
sind die Koeffizienten d, bis d7 zu berechnen.
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In den Beispielen 5.1 und 5.2 wurden die Losungen y(x) bzw. ¢(z) an den Stellen
x=x,=0 bzw. t =1, = 0 entwickelt. Im nachsten Beispiel wird die Stelle
x = Xo = 1 genommen. Das Beispiel soll weiterhin zeigen, daB es nicht geniigt,
sich lediglich mit dem Formalismus der Koeffizientenberechnung zu beschiftigen;
man muB dariiber hinaus gewisse Sitze zur Kenntnis nehmen, die ab 5.1.2. behandelt
werden.

‘

Beispiel 5.3: Unter der Annahme, daBl die Lésung der Anfangswértaufgabe

x=—2x+ 1)y =y—-x+1, y1)=0 (5.34)
an der Stelle x = 1 in eine Potenzreihe

0

yx) = X efx — 1y (5.35)
entwickelbar ist, sollen die Koeffizienten ¢, (» = 0, 1, ...) berechnet werden. Die
Anfangsbedingung aus (5.34) fithrt mit (5.35) zu

¢o = 0. (5.36)

Unter Beriicksichtigung von (5.36) wird (5.35) in die Differentialgleichung aus (5.34)
eingesetzt:

(x2 = 2x + ey + 2¢a(x — 1) + 3es(x — 1)? + ...]
=leix =1 +ecx =12+ c3(x—1)P°+..]—x+ 1. (5.37)

Zur Vorbereitung des Ordnens beider Seiten von (5.37) nach Potenzen von x — 1
werden zunichst die beiden Ausdriicke x> — 2x 4+ 1 und —Xx + 1 aus (5.34) an der
Stelle x = 1 in eine Potenzreihe (Taylorreihe) entwickelt. Es ergibt sich

X2 =2x+1=(x—1)?
- x+1=—-(x-1. < (5.38)

DaB in (5.38) die Entwicklungen abbrechen, ist nur durch die Einfachheit der zu
entwickelnden Ausdriicke bedingt. Natiirlich sieht man (5.38) auch direkt ein; aber
in komplizierteren Féllen wird man tatsichlich an die genannte Taylorentwicklung
der Ausdriicke in der Differentialgleichung denken miissen. Nunmehr wird (5.38)
in (5.37) eingesetzt und beiderseits nach Potenzen von x — 1 geordnet:

c(x = 1)? + 2¢5(x — 1)® + 3ea(x — D* + ...
=@ = D=1+ calx = D> + ca(x = 1)° + cu(x — D* + ... (5.39)

In (5.39) wird beziiglich der Potenzen von x — 1 der Koeffizientenvergleich durch-
gefiihrt. Man erhalt

0=c — 1, ¢;.=c¢s, 2¢; =c3.
Ja, es ist hier sogar mdoglich, allgemein

vey=cy (P=123,..)
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anzugeben. Folglich ergibt sich fiir die unbekannten Koeffizienten c,:

=1, c2=1, ¢3=2, ¢, =31, ¢cs=4!
und allgemein

c,=@-=1! (»=123..). (5.40)
Einsetzen von (5.36) und (5.40) in den Ansatz (5.35) liefert das Ergebnis

W= E 6= D= (s41)

Nun ist aber die Reihe (5.41) fiir alle x mit x + 1 divergent, d. h., der Konvergenz-
radius der erhaltenen Potenzreihe ist gleich null. Dies ist beispielsweise mittels des
Quotientenkriteriums fiir das Konvergenzverhalten unendlicher Reihen sofort
nachpriifbar. Also stellt sich die Annahme, da y(x) an der Stelle x = 1 in eine
Potenzreihe entwickelbar sei, als falsch heraus. Das Ergebnis (5.41) ist unbrauchbar.

Aufgabe 5.4: Man fiihre das Beispiel 5.3 durch, indem man die Anfangsbedingung
y(1) = Ojetzt in y(1) = 1 abandert. Man zeige, dal nunmehr bereits der Rechnungs-
gang zu einem Widerspruch fiihrt.

Nach dem Beispiel 5.3 erhebt sich die Frage, wie man im allgemeinen rechtzeitig
erkennen oder vermeiden kann, daB ein Potenzreihenansatz unbrauchbar wird.
Hierzu miiite man der Anfangswertaufgabe selbst schon entnehmen kénnen, ob
eine Potenzreihenentwicklung der Losung existiert. Hiermit beschéftigt sich der
nédchste Abschnitt.

5.1.2.  Existenz- und Unitiitssiitze

Wir wollen Sitze iiber die Mdglichkeit von Potenzreihenansitzen beim Ldsen
von gewdhnlichen Differentialgleichungen formulieren. Es gilt

Satz 5.1: Die Anfangswertaufgabe fiir die Funktion y = y(x), bestehend aus der
expliziten Differentialgleichung n-ter Ordnung

¥ =f%y, . y*) (5.42)
und den n Anfangsbedingungen )
D)) xexe = Y0 (3o gegebene Zahlen, v = 0,1, ...,n — 1), (5.43)

hat in einer x-Umgebung von x = x, genau eine Losung y = y(x), und diese ist an
der Stelle x = x, in eine Potenzreihe

»(x) =§0cv(x — Xo)" (5.44)

(Konvergenzradius groffer als null) entwickelbar, falls die rechte Seite f von (5.42)
beziiglich x an der Stelle x,, beziiglich y an der Stelle y{, beziiglich y' an der Stelle
&9, ..., beziiglich y™1) an der Stelle y§~V) jeweils in eine Potenzreihe entwickelbar
ist.
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Beispiel 5.4: Jede Anfangswertaufgabe
Y =%+, y(x) =0 (5.45)

hat genau eine Losung; sie ist an der Stelle x = X, in eine Potenzreihe entwickelbar,
denn die Funktion

16+ )
ist an der Stelle x = x, und an der Stelle y = y, jeweils in eine Potenzreihe ent-

wickelbar. Damit ist gesichert, daB die Losung (5.18) der Anfangswertaufgabe (5.1)
aus Beispiel 5.1 in einer gewissen Umgebung von x = 0 konvergiert.

Beispiel 5.5: Gegeben sei die Anfangswertaufgabe
2 =2x+ 1)y =p—x+1, ¥(xo) = Yo- (5.46)

Um den Satz 5.1 anwenden zu kdnnen, 16sen wir die Differentialgleichung aus (5.46)
nach y’ auf:
y—-x+1

X o+l (5.47)

S
Die rechte Seite von (5.47) ist fiir alle x = x, und y = y, in eine Potenzreihe ent-
wickelbar mit Ausnahme der Nullstelle des Nenners, d.h. mit Ausnahme von
xo = 1. Also ist jede Losung der Anfangswertaufgabe an der Stelle x = x, in eine
Potenzreihe entwickelbar, falls x, =& 1 ist. Damit ist verstindlich, daB der Potenz-
reihenansatz im Beispiel 5.3 versagte.

Aufgabe 5.5 (vgl. Aufgabe 5.2): Gegeben sei die Anfangswertaufgabe

(1 =x7)y" = xy' =2, y(x0) =yo, »(x0)=s. (5.48)
Fiir welche Wertetripel (xo, yo, ¥o) sind die Voraussetzungen vom Satz 5.1 ver-
letzt?

Es entsteht naturgemiB die Frage, ob man bereits der Anfangswertaufgabe (5.42),
(5.43) den Konvergenzradius des Losungsansatzes (5.44) entnehmen kann. Eine
vollstindige Antwort liefert die Theorie im allgemeinen Fall nicht. Man kann aller-
dings angeben, wie grof3 der Konvergenzradius mindestens ist. Wenn die vorliegende

Differentialgleichung nichtlinear ist, so ist die- gelieferte Formel verhéltnismaBig
kompliziert; wir geben sie hier nicht an.

Zur Illustration dieses Sachverhaltes betrachten wir die Anfangswertaufgabe
Y =1+, y0)=0. (5.49)
Obwohl die rechte Seite der Differentialgleichung aus (5.49) fiir alle Stellen x = x, und y = y,
jeweils in eine Potenzreihe entwickelbar ist, so ist jedoch die Losungsreihe y(x) = E c,x? keinesfalls
iiberall konvergent. Die Losung von (5.49) ist namlich y = tan x, und der Ko;;:rgenzradius der

Potenzreihenentwicklung von tan x an der Stelle x = 0 ist gleich =/2.

Ist die Differentialgleichung linear, so sind die Verhéltnisse wesentlich iibersicht-
licher. Wir formulieren den hierher gehorigen Satz nur im Falle von linearen Diffe-
rentialgleichungen zweiter Ordnung, denn hiermit ist einerseits die Methode fiir
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lineare Diﬁ‘erentialg]eichungen n-ter Ordnung bereits gut erkennbar, andererseits
geniigen die in den Anwendungen wichtigen Funktionen der mathematischen Physik
gewdhnlichen Differentialgleichungen zweiter Ordnung.

Satz 5.2: Wenn in der gewdhnlichen linearen Differentialgleichung zweiter Ora’nung

Jir y = y(x)
PoX) " + pi(¥) ¥ + pa(x) y = g(x) (5.50)
die Quotienten

pi(x)  pa(x)  g(x)
Po(X) 7 po(x) 7 po(x) i (5.51)

an der Stelle x = x, alle in Potenzreihen entwickelbar sind, so kann die allgemeine
Lésung von (5.50) an der Stelle x = x, in eine Potenzreihe

»(x) = ;focv(x - Xo) (5.52)

entwickelt werden. Der Konvergenzradius der Losungspotenzreihe (5.52) ist mindestens
gleich dem kleinsten Konvergenzradius der Entwicklungen aus (5.51).

Beispiel 5.6: Gegeben sei die gewdhnliche lineare homogene Differentialgleichung
zweiter Ordnung

Y +y=0. (5.53)

1
2 "
a+x»)y"+ P
An der Stelle x = 0ist die allgemeine Losung von (5.53) in eine Potenzreihe entwickel-
bar. Der Konvergenzradius ist mindestens gleich 1, denn die Entwicklungen der
Funktionen
1 1 0
x=2)(1+x»)" 1+x*" 1+x2

an der Stelle x = 0 haben die Konvergenzradien 1, 1 und o

(5.54)

Bemerkung zu Beispiel 5.6: Man kann beim Vorliegen von rationalen Funktionen —
solche liegen in (5.54) vor — den Konvergenzradius der Entwicklung direkt aus den
Formeln ablesen, ohne erst die Entwicklung praktisch durchzufiihren und Konver-
genzkriterien zu benutzen. Sind namlich in der Darstellung der rationalen Funktion

R(x) durch R(x) = QE ; die Polynome P(x) und Q(x) teilerfremd, d. h. haben sie

keine gemeinsamen reellen oder komplexen Nullstellen, so ist der Konvergenz-
radius der Entwicklung von R(x) an der Stelle x = x, gleich dem Abstand zwischen
Xo und der x, nichstgelegenen Nullstelle des Nenners Q(x). Wesentlich ist hierbei

" jedoch, daBB man auch alle nichtreellen Losungen von Q(x) = 0 in Betracht zieht.

So sind in (5.54) bei der rationalen Funktion

1
G-2d =+
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die Nulistellen des Nenners gleich 2, i und —i. Also ist der Abstand zwischen x = 0
und der x = 0 néchstgelegenen Nulistelle des Nenners — es ist dies hier i (oder auch
—i) — gleich 1. Der Beweis der hier mitgeteilten Bemerkung kann mit Hilfsmitteln
der Funktionentheorie (Band 9) gefiihrt werden.

Linearen homogenén Differentialgleichungen Zweiter Ordnung, deren Koeffi-
zienten Polynome sind, geniigen wichtige Funktionen der mathematischen Physik
(Band 12). Hier besteht somit die Moglichkeit, einen Zugang zu ihnen mittels der
Theorie der Differentialgleichungen herzustellen. Wir zeigén dies am

Beispiel 5.7: Fiir die Legendresche Differentialgleichung

x2=1Dy"+2xy —=n(n+ 1)y =0 (5.55)
sind bei Wahl von x, = 0 die Voraussetzungen von Satz 5.2 erfiillt. Da die Ent-
wicklungen der Funktionen

2x nn + 1) 0
-1  x¥-1° x-1 3:56)

an der Stelle x = 0 die Konvergenzradien 1, 1 und oo haben, ist die Konvergenz
der Losungspotenzreihe .

y=2Xcx . (5.57)
v=0
fiir alle x mit |x] < 1 gesichert. Einsetzen von (5.57) in (5.55) fithrt zunéchst zu
=Dy —Dex=24+2x Y vex™t —nn +1)Y c,x” =0. (5.58)
v=0 r=0 v=0

Allgemein gesprochen miissen nunmehr in (5.58) die Koeffizienten der gegebenen
Differentialgleichung (5.55) an der Stelle x = x, (im vorliegenden Fall ist x, = 0)
in Potenzreihen (Taylorreihen) entwickelt werden. Das ist im jetzigen Beispiel
trivial, denn die genannten Koeffizienten x? — 1, 2x, —n(n + 1) stimmen bereits
mit den herzustellenden Taylorentwicklungen iiberein. Als Vorbereitung zum
Koeffizientenvergleich wird in (5.58) nach Potenzen von x geordnet. Die Rechnung
ergibt zunéchst

oy —=1ex’ =Xy —Dex” =2+ Y 2vex’ — Y nn + 1)ex” =0.
v=0 y=0 v=0 y=0
(5.59)

Die zweite Summe aus (5.59) wird umgeformt. Zunichst wird durch ¢ = » — 2,
d.h. » = ¢ + 2, der neue Summationsbuchstabe o eingefiihrt und anschlieBend
o durch » ersetzt:

T = Dex =% (0+2)(0+ 1)cpuaxe
v=0 e=—2

= 3 0+ D0+ Deyr (5.60)
y==2
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Beachtet man, daB in der letzten Summe aus (5.60) im Falle v = —2 und » = —1
das allgemeine Glied jeweils den Wert O ergibt und somit dort die Summation erst
bei » = 0 zu beginnen braucht, so ist durch Einsetzen von (5.60) in (5.59) ein Ordnen
nach Potenzen von x nunmehr méglich. Es ergibt sich

go @ =1De,—@+2)(» + Deysr + 2v¢, — n(n + 1) ¢, ] x* = 0.
” . (5.61)

In (5.61) fithrt der Koeffizientenvergleich zur Rekursionsformel

_ v+ D) —nn+1)
ST LI D+

Zur bequemen Auswertung von (5.62) wird der Zéhler der rechten Seite umgeformt.
Hierzu fassen wir ihn beziiglich » als Polynom zweiten Grades auf. Seine beiden
Nullstellen liegen bei n = » und n = —» — 1. Aus der bekannten Tatsache, daB
man mittels der Nullstellen von Polynomen eine Produktdarstellung der Polynome
herstellen kann, folgt somit aus (5.62)

@=01,2..). (5.62)

v

m—v)(n+v+1)

Cyp2 = — WCV (v =0,1,2, ) (563)

Wir setzen zundchst in (5.63) der Reihe nach » =0, » = 2, ..., » = 2u und be-
kommen
¢z = —%n(n+1)co,
1 1

3‘4_(n—2)(n+3)c2 =—H(n—2)n(n+ 1)+ 3)co,

= —

5.16(n—4)(n+5)c4

s = —

——%—(n-—4)(n-—2)n(n+ 1)(n+ 3)(n + 5)co,

. (—w(;w(n — p = 2D — 2 — 4] .

cm=2nmn+1)m+3)..(n+2u—1Dco (p=1,2,..).
(5.64)

Setzen wir andererseits in (5.63) der Reihe nach v =1, v =3, ..., »=2u + 1,
so folgt schlieBlich

Gsprs = (=P ooy (1= P = 1D 0 = 20 = 3D .

=D +2)(n+4)...(n+2wec, (w=12,..). (565
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GemaB Satz 5.2 ergibt sich aus (5.57), (5.64) und (5.65) die allgemeine Losung der
Legendreschen Differentialgleichung (5.55) zu

o o
YX)=co+ T X 4 ox + Y ¥, x| < 1
u=1 u=1

[c2, und ¢4, aus (5.64) und (5.65)]. (5.66)

Die Losungen (5.66) der linearen homogenen Differentialgleichung (5.55) bilden
einen zweidimensionalen linearen Raum (Satz 3.7), und eine Basis (Fundamental-
system) wird durch die beiden Funktionen

Co+ X c2,x%* 3, aus (5.64)], [x| <1, (5.67)
u=1
und
X + X X [eg,yq aus (5.65)], x| <1, (5.68)
=1

gebildet, falls man sich fiir ¢, und ¢, jeweils eine von null verschiedene Zahl einge-
setzt denkt.

Bemerkung 5.1: Der Losungsgang ist sinnvoll, wenn fiir » eine beliebig reelle (oder
auch komplexe) Zahl genommen wird. In den Anwendungen ist aber meist
n=20,1,2,...

Bemerkung 5.2: Istn =2mmitm =0, 1, 2,..., so reduziert sich die Potenzreihe in
(5.67) auf ein Polynom P,(x) vom n = 2m-ten Grade. Wahlt man nunmehr ¢, derart,
daB dieses Polynom an der Stelle x = 1 den Wert 1 annimmt, d. h.

P,(1) = Pop(l) = 1 ) (5.69)

gilt, so ergibt sich das Legendresche Polynom vom n = 2m-ten Grad (Legendresche
Funktion erster Art mit dem Index n = 2m)

Py(x) = Pap(X) = co + X €2,X** [c2, mitn = 2m aus (5.64)],  (5.70)
p=1
wobei fiir ¢, im Falle m = 0 der Wert 1 und im Falle m > 0
1
co = (="

2"m!
einzusetzen ist.

“1-3-5-..-Qm—1) (5.71)

Bemerkung 5.3: Ist n eine positive ungerade Zahl,alson = 2m + Imitm = 0, 1,2,...,
so reduziert sich die Potenzreihe in (5.68) auf ein Polynom P,(x) vomn = (2m + 1)-ten
Grade. Wihlt man dann ¢, derart, daB3

Po(1) = Popia(1) = 1 (5.12)
gilt, so ergibt sich das Legendresche Polynom vomn = (2m + 1)-ten Grad (Legendre-
sche Funktion erster Art mit dem Index n = 2m + 1)

Py(X) = Poms(X) = €1X + X €241 X2#+ ! [C2,4, mitn = 2m + 1 aus (5.65)],

p=1

(5.73)

2 Wenzel, Gew, Diff. 2
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wobei fiir ¢, der Wert
¢y = (—1) m-1~3~5-...~(2m+1) (5.74)
einzusetzen ist.
Aufgabe 5.6: Man beweise die Formel von Rodrigues
2 _ —
P = [0 — Y] (1=0,1,2..) (5.75)

in den Féllen n =0, 1, 2, 3, 4 mittels der Formeln (5.70), (5.71), (5.73), (5.74) und durch
direkte Berechnung der rechten Seite von (5.75).

Aufgabe 5.7: Es ist zu zeigen: Das Basiselement (5 68) ist im Falle n = 0 eine ele-
mentare Funktion. Setzt man fiir ¢, den Wert 1 ein, so ergibt sich

Qo(x)——-ln1+x (-1<x<1) (5.76)

(Legendresche Funktion zweiter Art mit dem Index null fiir x| < 1).

Aufgabe 5.8: Es ist zu zeigen: Das Basiselement (5.67) ist im Falle n = 1 eine ele-
mentare Funktion. Setzt man fiir ¢, den Wert —1 ein, so ergibt sich

0:1(x) =x00(x) =1 (-l<x<1) (5.77)
(Legendresche Funktion zweiter Art mit dem Index eins fiir |x| < 1).

Bemerkung 5.4: In Fortfilhrung der Bemerkungen 5.2 und 5.3 sowie der Auf-
gaben 5.7 und 5.8 148t sich mit (5.67) und (5.68) zeigen:

Satz 5.3: Im Falle n = 0, 1, 2, ... kann eine Basis des Losungsraumes der Legendre-
schen Differentialgleichung (5.55) durch das Legendresche Polynom Py(x) und die
Legendresche Funktion zweiter Art Q,(x) angegeben werden. Q,(x) ist eine elementare
Funktion. Speziell gilt

02(x) = P>(x) Qo(x) — % x,

03(x) = P3(x) Qo(x) — 5 x> + 3,

35 55 )
Qu(¥) = Pa(x) Qox) — == x* + 7 x (=1 <x<1). (5.78)
Aufgabe 5.9: Mit der Abkiirzung 2* = (;_/—vE)JF (GJ,EJ = const) entwickele man
T

die Losung der Differentialgleichung (V.1) des Vorwortes in eine Potenzreihe 9(x)
0

=Y ¢,x", die der Bedingung ¢#'(0) = 0 aus (V.5) geniigen soll. Wie groB ist der
v=0

Konvergenzradius der erhaltenen Reihe mindestens? Was ergibt sich fiir ¢, mit
»=0,1,2,..,16?

5.2. Verallgemeinerte Potenzreihenansitze
5.2.1.  Stellen der Bestimmtheit

Die Theorie aus 5.1.2. muB erweitert werden. Oft interessieren namlich gerade
die Losungen in der Umgebung solcher Stellen x,, fiir die die Voraussetzungen aus
5.1.2. nicht erfiillt sind. Es wire in einem solchen Fall nicht rationell, in der Nach-
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barschaft von x, eine Stelle x; zu wihlen, fiir die man die Theorie aus 5.1.2. an-
wenden konnte. Der Konvergenzbereich der Entwicklung der Lésung an der Stelle x;
wird im allgemeinen bereits an x, anstoBen, also erfaBt man nur einen Teil der
interessierenden Umgebung von x,. Als Beispiel seien die Differentialgleichung (V.3)
des Vorwortes beziiglich der Entwicklungsstelle » = 0 und die Legendresche Diffe-
rentialgleichung (5.55) beziiglich x = 1 und x = —1 genannt. Weitere Beispiele
hierzu enthalten die Bénde 8 und 12 bei der Behandlung von Zylinder- und Kugel-
problemen.

Wir behandeln nur den homogenen Fall. Das ist keine wesentliche Einschrankung,
da der inhomogene Fall mittels der Variation der Konstanten (3.3.8.) auf den
homogenen Fall zuriickgefiihrt werden kann. Ausgangspunkt ist die

Definition 5.1: Gegeben sei die lineare homogene Differentialgleichung zweiter Ord-
nung fiir die Funktion y = y(x):

Po(¥) ¥ + pi(x) ¥ + pa(x) y = 0. (5.79)

Die Stelle x = x, heifit Stelle der Bestimmtheit der Differentialgleichung (5.79),
falls in der Umgebung von x, (xo selbst ausgenommen) folgende Entwicklungen gelten:

) 2 _ pa(x) o
) —V=Z_1av(x Xo)’, e Z by(x — xo)". (5.80)
P1(x)

Ist in (5.80) a_, * 0, so sagt man,

hat an der Stelle x, einen Pol erster Ordnung;
Pol(x)

steht jedoch nicht fest, ob a_, von null verschieden ist, so spricht man von einem Pol
PZE ; aus (5.80) habe an

der Stelle x = x, einen Pol zweiter Ordnung oder einen Pol hichstens zweiter Ordnung,
Jje nachdem, ob b_, = O feststeht oder nicht.

hochstens erster Ordnung. Analog sagt man, die Funktion

Im folgenden Beispiel wird vorgefiihrt, wie die Entwicklungen (5.80) in praktischen
Féllen hergestellt werden.

Beispiel 5.8: Die Legendresche Differentialgleichung (5.55) werde in der Umgebung
von x = x, = 1 untersucht. Hierzu sind geméf (5.80) die Entwicklung von

pix)  2x pa(x) _ nn+1)
pox) x*—1 und Po(x) x2 —1

mit xo = 1 herzustellen. Zunachst werden die Nenner in (5.81) an der Stelle x, = 1
in Potenzreihen (Taylorreihen) entwickelt:

P _ 2x pa(x) _ —n(n + 1)

Po®) 266 =D+ =127 polx)  2x -1 +x-1)7
Im néchsten Schritt muB in den Nennern aus (5.82) eine moglichst hohe Potenz
der GréBe x — xo, also hier von x — 1, ausgeklammert werden; und zwar soll der
noch iibrigbleibende Faktor des Nenners eine Potenzreihe in x — x, sein — hier
im Beispiel ist es speziell ein Polynom — deren absolutes Glied von null verschieden
o

(5.81)

(5.82)

D.5.1.
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ist. GeméB dieser Vorschrift muB also in den Nennern von (5.82) die erste Potenz
von x — 1 ausgeklammert werden:

p(x) 1 2x pa(x) 1 —n(n + 1)
Pox)  x—12+@x—=1)"po(x) x—-1 2+(@x—1)

In (5.83) sind auf den rechten Seiten die zweiten Briiche an der Stelle x, = 1 jeweils
in Potenzreihen entwickelbar. Man kann die praktische Herstellung der Entwicklung
mit Hilfe der Taylorformel vornehmen oder auch sich der Methode der Potenz-
reihendivision bedienen, falls man vorher noch die Zahler an der Stelle x, = 1
entwickelt. Insgesamt ergibt sich

(5.83)

p1(x) 1 1
_‘p;(x) =y (1 +t5-D+ )
izg; -— 1_ T (_ —n(n + 1) + —n(n + D=1 +. ) (5.84)

wobei gemédll der Bemerkung zu Beispiel 5.6 die Konvergenz der Reihe in (5.84) fiir
alle x mit 0 < |x — 1| < 2 gesichert ist.

Also sind die Briiche (5.82) an der Stelle x, = 1 tatsdchlich in der Gestalt (5.80)
entwickelbar. Es ist somit x, = 1 fiir die Legendresche Differentialgleichung (5.55)
eine Stelle der Bestimmtheit.

5.2.2. Lisungsansatz fiir ein Basiselement

Satz 5.4: Ist x = x, fiir die Differentialgleichung (5. 79) eine Stelle der Bestimmtheit,
so kann minde ein Basisel. des zweidi) len Lisungsraumes in der
Gestalt
@
() =[x = Xo|* 20 e(x = x0)’, ¢o * 0, (5.85)

angegeben werden. Der Konvergenzradius der unendlichen Reihe aus (5.85) ist min-
destens gleich dem kleinsten Konvergenzradius der Entwicklungen der beiden Funk-
tionen .
p1(x) ) Pa(x) (5.36)
Po(x) * po(x)

an der Stelle x = x,.

Zusatz 1 zu Satz 5.4: GemaB (5.80) sind die Entwicklungen von (5.86) — abgesehen
von héchstens zwei Summanden — Potenzreihen; der Begriff des Konvergenz-
radius ist also sinnvoll.

Zusatz 2 zu Satz 5.4: In (5.85) muB man damit rechnen, daB « auch nichtreelle
Werte annimmt. Zur Berechnung von |x — x,|* verweisen wir auf die Definition 3.7.
Ist  der Konvergenzradius der unendlichen Reihe aus (5.85), so ist die Losung y(x)
aus (5.85) fiir alle x mit 0 < |[x — xo| < r (die Stelle x = x, selbst also ausgenom-
men) giiltig.
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Zusatz 3 zu Satz 5.4: Zur Bestimmung von ¢, und « aus (5.85) geniigt es, sich auf
den Fall x > x, zu beschrinken und damit bei der Herleitung

% = xol* = (x — x0)* (5.87)

zu setzen. Wir kénnen somit fiir die Bestimmung von ¢, und & den Ansatz (5.85)
in der Gestalt

y(x) = Zocv(x — Xo)"*% ¢o ¥ 0, (5.88)
angeben. Man entwickelt die Koeffizienten po(x), p;(x) und p,(x) der Differential-
gleichung (5.79) an der Stelle x = x,, setzt danach (5.88) in (5.79) ein, kiirzt durch
(x — Xo)% ordnet nach Potenzen von x — x, und fithrt anschlieBend einen Ko-
effizientenvergleich beziiglich der Potenzen von x — x, durch. Es zeigt sich, daB
wegen ¢, + 0 [siche (5.85)] der Exponent « einer quadratischen Gleichung geniigen
muf. Thre Losungen «, und «, seien so bezeichnet, daB fiir ihre Realteile Re &,

und Re «, die Beziehung
Rea; = Rex, (5.89)

gilt. Hiermit formulieren wir den

Zusatz 4 zu Satz 5.4: In (5.85) ist der Exponent « gleich der Losung «; der qua-
dratischen Gleichung fiir o zu setzen.
Beispiel 5.9: GemaB Satz 5.4 soll fiir die Legendresche Differentialgleichung

X2 =Dy +2xy —nn+1)y=0 (5.90)

an der Stelle der Bestimmtheit x, = 1 (sieche Beispiel 5.8) ein Basiselement des
zweidimensionalen Losungsraumes bestimmt werden. Nach der Entwicklung der
Koeffizienten an der Stelle x, = 1, d. h. nach Herstellung von

X =1=2x-D+(x—-1)>2%42x=2+2(x - 1),
—n(n+1)= —n(n + 1) (5.91)
wird der Ansatz (siche 5.88)

y(x) = focv(x — 1)+ ¢ + 0, (5.92)

in (5.90) eingesetzt und anschlieBend die Glelchung durch (x — 1)* dividiert. Es
erglbt sich

Z‘,Och(v +x)v+a—1)x-=1)"1+ Z cv+a)v+a—1)(x—1)
y= v=0

©

+ T 200+ ) (x - Dt y%:;uzc,(v +a)(x—1y

+ i—n(n + Dey(x — 1) = 0. (5.93)
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In der ersten und dritten Summe von (5.93) wird mit o =» — 1, d. h. » =p + 1,
der neue Summationsbuchstabe g eingefiihrt und danach ¢ durch » ersetzt:

%_‘,120‘,“(1' +14+x)(@+a)(x—1)7+ iocv(v +)(r+a—1(x-=1)y

+ EIZC‘,H(v Fl4a) -1+ izcv(v o) (x— 1y

+3 —n(m + el — 1) =0. (5.94)
v=0

Der Vergleich der Koeffizienten der Potenzen von x — 1 in (5.94) ergibt im Falle
y=—1

2cox(—1 + &) + 2co =0
und damit wegen ¢, # 0 [siche (5.92)]
«? =0. (5.95)

Die Gleichung (5.95) ist fiir unser Beispiel die im Zusatz 3 zu Satz 5.4 genannte
quadratische Gleichung. Also gilt hier

oy =a; =0. (5.96)

GeméB dem Zusatz 4 zu Satz 5.4 ist nunmehr in (5.92) fiir « der Wert &, = 0 ein-
zusetzen. Damit fiihrt in (5.94) der Koeffizientenvergleich in den Fillen » = 0,1,2,...
schlieBlich zur Rekursionsformel .

1 1
G = 3 (v—+-1—)2—[v(v + 1) — n(m + D]ec,. (5.97)
Unter Hinweis auf den Ubergang von (5.62) zu (5.63) ist einzusehen, daB fiir (5.97)

1

1
e =5 e —
2 v+ 1)

Wh+v+1e, =012..) (5.98)

geschrieben werden kann. Aus (5.98) ergibt sich fiir ¢y, c3, ...

¢y =%n(n+ 1)co,

e =g pr =D+ Dy = g5 o (n = Dl + D + 2 co,
cs =;—3L2(n—2)(n+3)cz
=2L3(31!)2 m=2)(n—=Dnn+ 1) (n+2) @+ 3)co,
” =2_1v__(v’1)2 =+ D)= +2) (= D+ 1) (n+v—1)

n+v)ee (P=1,2,..). (5.99)
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SchlieBlich ist (5.99) und & = «; = 0 im Falle x, = 1 in (5.85) einzusetzen. Da
nur ein Basiselement des zweidimensionalen Losungsraumes gefordert wurde, ist
¢o * 0 noch festzulegen, man sagt, zu normieren, z. B.

co=1. (5.100)

Also lautet das gesuchte Basiselement des Losungsraumes

y(x) =1 +v‘;% Gllv(n —rv+1)@m—r+2) ...tj(n +1)...(n+
e =1 (5.101)

Aufgabe 5.10: Wie groB ist der Konvergenzradius der Potenzreihe aus (5.101)
mindestens?

Aufgabe 5.11: Im Fall n = 0, 1, 2, ... stimmt (5.101) mit den Legendreschen Poly-
nomen iiberein (siche Bemerkungen 5.2 und 5.3 sowie Aufgabe 5.7). Man weise
dies in den Fillen n = 0, 1, 2, 3 nach.

Aufgabe 5.12: Man beginne gemiB Satz 5.4 ein Basiselement im allgemeinen Fall
(5.79), (5.80) herzustellen und zeige, daB die quadratische Gleichung fiir « die folgende
Gestalt hat

o+ (ay — Do+ b, =0. (5.102)

Aufgabe 5.13: Fiir die Differentialgleichung (V.3) des Vorwortes bestimme man ein
Basiselement R,(r) des Losungsraumes durch Entwickeln an der Stelle r = 0. Es
geniigt fiir die Koeffizienten ¢, der Entwicklung die Angabe einer Rekursionsformel.

5.2.3. Herstellung eines zweiten Basiselementes

Zur Herstellung eines zweiten (vom ersten linear unabhéngigen) Basiselementes
ist eine Fallunterscheidung erforderlich. Es handelt sich um die Differenz der Lésun-
gen der quadratischen Gleichung fiir o (siche Zusatz 3 zu Satz 5.4):

1. Fall: &, — «, ist nicht ganzzahlig, (5.103)
2. Fall: &y — «, ist ganzzahlig. (5.104)

Davon ist der Fall (5.103) einfacher zu behandeln als (5.104). Das mag verwunderlich erscheinen.
Man denke in diesem Zusammenhang an den Ansatz y = e** bei linearen homogenen Differential-
gleichungen zweiter Ordnung mit konstanten Koeffizienten, wo die Losungen Z; und 4, der qua-
dratischen Gleichung fiir 7 im Falle 2; — 4, # 0 sofort zur Basis e*1*, e*2* Anla geben, wihrend
der Fall 4; — A, = 0 als komplizierter angesehen werden kann, weil dann die Basis e*1*, x e*s*
vorliegt.

Satz 5.5 (Fortsetzung von Satz 5.4): Ist die Differenz o« — o, der Losungen der qua-
dratischen Glezchung fiir « nicht ganzzahlig, so hat ein zweites (vom ersten linear

bhiingiges) B I t des Losungsraumes der Differentialgleichung (5.79) die
Gestalt des Ansatzes (5.85). Fiir « ist jetzt «, einzusetzen. Die Koeffizienten ergeben
sich wiederum durch einen Koeffizientenvergleich. Auch im jetzigen Fall ist der Kon-
vergenzradius der unendlichen Reihe aus (5.85) mindestens gleich dem kleinsten Kon-
vergenzradius der Entwicklungen der beiden Funktionen (5.86).

S.5.5
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Der Fall (5.104) ist, wie bereits oben bemerkt wurde, komplizierter. Es gilt nimlich
der

Satz 5.6 (Fortsetzung von Satz 5.5): Ist die Differenz x, — :xz der Losungen der
quadratischen Gleichung fiir o ganzzahlig und bezeichnet man das gemdfp Satz 5.4
existierende Baszselement (5.85) jetzt durch

i(x) = |x — xo|* gocv(al) (x = x0)", coles) * 0, (5.105)
so hat ein zweites Basiselement y,(x) die Gestalt
c fm(x)
X) = yi(x 7o }dx, Cc+0. 5.106
7 =10 [ [ (5.106)
Man kann als zweites Basiselement auch
y2(x) = Ayi(x) In |[x — x| + (x — x0)* f.;)cv(m) (x = xo) (5.107)

angeben.) In der letzten Reihe aus (5.107) ist der Konvergenzradius mindestens gleich
dem kleinsten Konvergenzradius der Entwicklungen der beiden Funktionen (5.86).

Wir vertiefen die Einsicht in Satz 5.6 durch einige Erlduterungen:

Bemerkung 5.5: In (5.106) und (5.107) sind die beiden Falle x > x, und x < x,
jeweils in einer einzigen Formel zusammengefaBt. Es ist moglich, die Integrations-
konstanten in den genannten Fillen jeweils verschieden zu wihlen.

" Bemerkung 5.6: In (5.107) kann es vorkommen, daB 4 = 0 ist, daB also das logarith-

*

mische Glied wegféllt und damit die einfachere Struktur des Satzes 5.5 vorliegt,
obwohl (5.104) gilt.

Bemerkung 5.7: Die Bestlmmung von y,(x) kann be1 bekanntem y,(x) durch Be-
rechnung des Integrals in (5.106) geschehen. Man kann aber auch (5.107) als Ansatz
auffassen, ihn in die Differentialgleichung (5.79) einsetzen und schlieBlich einen
Koeffizientenvergleich beziiglich der Potenzen von x — x, vornehmen. Wie im
Zusatz 3 zu Satz 5.4 geniigt es, wenn man sich bei der Rechnung auf den Fall x > x,
beschrankt, also |x — x|*2 durch (x — x,)* ersetzt. Um zu priifen, ob 4 =0
oder 4 =+ 0 ist, kann man entweder das Integral (5.106) diskutieren oder 4 beim
Einsetzen von (5.107) in die Differentialgleichung als Parameter auffassen und bei
der weiteren Rechnung mitnehmen.

Bemerkung 5.8: Im Gegensatz zu co(x,) & 0 [siche (5.105)] kann es vorkommen,
daB co(x,) = 0 [siehe (5.107)] gilt. Es ist allerdings co(x,) # O gesichert, falls die
Losungen «; und «, (der quadratischen Gleichung fiir «) nicht zusammenfallen.

Aufgabe 5.14: Fiir die Entwicklungen der Losungen der Legendreschen Differential-
gleichung (5.90) an der Stelle x = 1 wurde in (5.96) &; = «, = 0 berechnet und in
(5.101) ein Basiselement y(x) = y,(x) angegeben. Man iiberlege sich ohne Rechnung,
ob im vorliegenden Fall 4 = 0 oder 4 = 0 gilt!

1) Im Fall x < xo ist unter (x — Xo)* der Ausdruck |x — Xo|* ¢™* zu verstehen.
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Beispiel 5.10: Fiir die Legendresche Differentialgleichung im Falle n = 1
x2=1Dy" +2xy —2y=0 (5.108)
ist
y1(x) =P (x) =x (-0 <x< +0) (5.109)
eine Losung (Bemerkung 5.3; Aufgabe 5.6). Mittels (5.106) soll ein von P,(x) linear

unabhéngiges Basiselement des zweidimensionalen Ldsungsraumes von (5.108)
hergestellt werden. Die Rechnung ergibt

N .
y2(%) =xf[x£2e f"’ 1 }dx = fo e z-lldx

1 1
- cxfxz—lxz—_—”dx = ifomdx, (5.110)
wobei nach dem letzten Gleichheitszeichen in (5.110) das obere bzw. untere Vor-
zeichen zu nehmen ist, je nachdem ob |x| > 1 bzw. |x| < 1 gilt. Die Partialbruch-
zerlegung fiihrt weiter zu

_ 1 1 1 1 1
2x) = +C"f(x—z”5——x_ Tt3%FT 1)‘“

1

=+Cx(—l+~1 2ol

-1

D +C,. .111)

Im Falle [x| < 1 — also im Falle der Giiltigkeit des unteren Vorzeichens — ergibt
sich aus (5.111) die Legendresche Funktion zweiter Art Q,(x) aus (5.77), wenn man
C =1 und C; =0 wihlt und beachtet, daB man sich wegen |x| < 1 von den
Absolutstrichen in (5.111) folgendermaBen befreien kann:

Q(x)_i L:L;_-L [xl< 1. (5.112)
Im Falle |x| > 1 — also im Falle der Giiltigkeit des oberen Vorzeichens in (5.111) —
wihlen wir C = —1 und C; = 0und erhalten bei Beachtung der Befreiungsmdglich-
keit von den Absolutzeichen aus (5.111)

Q(x)——lnx+1 1, Jx>1 (5.113)

(Legendresche Funktion zweiter Art mit dem Index 1 fiir |x| > ).

Aufgabe 5.15: Man zeige, dall man bei Wahl von x, = 1 die Funktionen aus (5.112)
und (5.113) in der Gestalt (5.107) angeben kann. Wie lauten 4 und c¢,(x,)?

Aufgabe 5.16: Man leite analog zum Beispiel 5.10 die Legendreschen Funktionen
zweiter Art mit dem Index 2 her [vgl. (5.78)]:

Qz(x)~—(3x — 1) 1+x —ix, % < 1, (5.114)

2

+1 3 .
T 5% > 1, (5.115)

0,(x) = I(sz —pm>EF
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Graphische Darstellungen von P,(x) (0 < x < 1) und Qy(x), O,(x) (|x| > 1) sind
im Band 12 angegeben.

* Aufgabe 5.17: In Fortfiihrung von Aufgabe 5.13 bestimme man in den Fillen

D.5.2

I=1,2,3, ... ein zweites Basiselement R,(r) des Losungsraumes von (V.3) an der
Stelle r = 0 in der Darstellung (5.107) durch Angabe von Rekursionsformeln.

5.3. Entwicklung im Unendlichen
5.3.1. Problemstellung und Begriffsbildung

Benétigt man die Funktionswerte y(x) der Losung der Differentialgleichung

Po(x) Y + pi(¥) ¥ + pa(x)y =0 (5.116)

fiir groBe Werte von x, etwa fiir alle Werte x mit x > X, (z. B. in (V. 3) Funktions-
werte von R(r) fiir groBe r), so ist die Anwendung von 5.1. und 5.2. nicht geeignet.
Entwickelt man namlich an einer Stelle x = x, und ist der Konvergenzradius r der
Losungsreihe kleiner als unendlich, so wird y(x) im Intervall x, — r < x < xo + r
dargestellt; insbesondere ist also die gefundene Losungsformel fiir x > x, + r nicht
brauchbar. Auch wenn der Konvergenzradius der Losungsreihe gleich unendlich
sein sollte, ist das Ergebnis nicht befriedigend, denn wenn x von der Entwicklungs-
stelle x, weit entfernt ist, so ist in diesem Fall zwar die Konvergenz der Losungs-
reihe gesichert, jedoch ist die Konvergenz so ,,schlecht, da man zur Herstellung
eines brauchbaren Naherungswertes fiir y(x) eine vom Aufwand her nicht vertretbare
groBe Anzahl von Gliedern beriicksichtigen muB.

Um hier weiterzukommen, werden wir einerseits den Begriff ,,Unendlich ist
Stelle der Bestimmtheit* (5.3.2.) einfithren und andererseits eine Klasse von Diffe-
rentialgleichungen herausgreifen, fiir die Unendlich keine Stelle der Bestimmtheit
ist, fiir die aber an der Stelle Unendlich eine asymptotische Entwicklung (5.3.3.;
5.3.4.) moglich ist. Wir beginnen dieses Programm mit der Erlauterung, was man
unter der Entwicklung der Losung y(x) im Unendlichen versteht. Setzt man

u(t) = y(x) mit t=%, (5.117)

so geniigt die Funktion u(¢) einer Differentialgleichung der Gestalt
Do) u'" + Pr(t)u' + pa(t)u = 0. (5.118)

Definition 5.2: Unter einer (einseitigen) Umgebung von + oo versteht man die Menge
aller reellen x mit x > X,.
1 . . . . .
Durch ¢t = ¥w1rd die Menge aller x mit x > X, (X, > 0) auf die rechtsseitige
1 . f . .
Umgebung 0 < ¢ < - von t = 0 abgebildet. Hieraus folgt: Die Differential-

0
gleichung (5.116) und deren Lisungen verhalten sich in einer Umgebung von x = + oo
wie die Differentialgleichung (5.118) und deren Lisungen in einer rechtsseitigen Um-
gebung von t = 0.
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Aufgabe 5.18: Wie wird man zweckmaBig die Definition 5.2 und den anschlieBenden
Text auf den Fall einer Umgebung von x = — oo iibertragen?

Beispiel 5.11: Fiir die Legendresche Differentialgleichung
x2=1y" +2xy' —nn+1)y=0 (5.119)

werde die zugehdrige Differentialgleichung der Gestalt (5.118) hergestellt. Die
Anwendung der Kettenregel liefert wegen (5.117)

, _ du dr Iy s,
V) = 430 = g ul®) = G g2 = w0 (- 5) = 0,
(5.120)
e G e B e | . dt
»"(x) =3 (x) —E‘( t2u(t)) = E(_t W) 4x
= (=20(t) — t2u"(t)) (—1%) = %" + 2t3'(¢). (5.121)
Einsetzen von (5.121), (5.120), (5.117) und x = tiin (5.119) ergibt
@ —tHu" —2t% —n(n + N)u=0 (5.122)
und damit eine Differentialgleichung der Gestalt (5.118) mit
Po(t) = t2(1 — t2), pi(t) = =2t3, po(t) = —n(n + 1). (5.123)

Aufgabe 5.19: Man fiihre das Beispiel 5.11 durch, falls (5.119) durch (5.116) ersetzt
wird. Was ergibt sich somit fiir po(?), p;(?), p.(¢) aus (5.118)?

5.3.2.  Unendlich ist Stelle der Bestimmtheit

Definition 5.3: Die Differentialgleichung (5.116) hat im Unendlichen (d. h. sowohl fiir
plus unendlich als auch fiir minus unendlich) eine Stelle der Bestimmtheit, wenn fiir
die Differentialgleichung (5.118) die Stelle t = 0 eine Stelle der Bestimmtheit ist.

Beispiel 5.12 (Fortsetzung von Beispiel 5.11): Die Legendresche Differentialgleichung
(5.119) hat im Unendlichen eine Stelle der Bestimmtheit, denn wegen [siehe (5.123)]

i’l(t) =213 =2t < 20 _ _ s _ 743
0] ———2(1 e =T—z= 2ty20t 2t — 2t3—
pat) _  nn+1) n(n + 1) § 2
o) (-1 =0

= —n(nt—jl)——n(n+ 1)-—..

ist fiir die Differentialgleichung (5.122) die Stelle ¢ = 0 eine Stelle der Bestimmtheit.
Als Anwendung der Definition 5.3 sollen die Lsungen der Legendreschen Diffe-

rentialgleichung (5.119) im Spezialfall » = 1 im Unendlichen entwickelt werden.
Das geschieht im .

D.5.3
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Beispiel 5.13: Zur Differentialgleichung (5.119) im Fall n = 1

x=1Dy"+2xy'—2y=0 (5.124)
gehort mit (5.117) wegen (5.122) die folgende Differentialgleichung fiir u = u(t)
@ —tHu”" —2t3% — 2u= 0. (5.125)

Wegen Satz 5.4 wird der Ansatz

u(t) = |t]“”i e’y co*0, |t <1, (5.126)
gemacht und die Rechnung gemaB dem Zusatz 3 zu Satz 5.4 mit

u(t) = yi et o0, 0<t<1, (5.127)

begonnen. Einsetzen von (5.127) in (5.125), anschlieBende Division durch ¢* und
Ordnen nach Potenzen von ¢ ergibt schlieBlich

YO +)OFa et — % G+a—20+a—3) e
y=0 »

=2
=2y W+a—2)c,ot" =23 c,t* =0. (5.128)
y=2 y=0

Beim Beginn des Koeffizientenvergleichs in (5.128) mit » = 0 erhélt man wegen
co # 0 eine quadratische Gleichung fiir & mit den Ldsungen

® =2,0,=—1, (5.129)
wobei die Bezeichnung in (5.129) gemaB der Verabredung (5.89) gewihlt wurde.
Einsetzen von «; = 2 fiir « in (5.128) und Weiterfilhrung des Koeffizientenver-
gleichs liefert
v+ 1
v+ 3

=0, ¢, = er (0=12,3,..) ‘ (5.130)

und damit

=0 (u=0,1,2,..), ¢z, = w=12..). (5.131)

3 ¢
2u+3"°
Wir setzen (5.131) sowie & = «; = 2 in (5.126) ein und erhalten [wegen & = 2 sind
jetzt in (5.126) die Absolutstriche entbehrlich]

o 3
— 2 2
) tco(l +3 2M+3t"), o0, <1, (5.132)
so daB sich wegen (5.117)
1 s 3 1
w0 = (1+ X gy ) @#0 W>1 (1)

ergibt. Das gefundene Basiselement (5.133) des Losungsraumes von (5.124) kann
in geschlossener Form angegeben werden. Hierzu gehe man von den Entwicklungen
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©

-
T <,

v=1

m+n=3 (‘l)mtT" n(l -1 =

und damit

1. 1+t & 1 e

7111——'7_,,=o 1 t , <1, (5.134)
aus. Aus (5.134) folgt mit ¢ = é—

x, x+1 d 1 1

5 In —1i= S+ 1 <2k

2 x-1 =1 2u + 1 X2

L S B
T3 X2 21 2u+ 3 xR
Die rechte Seite von (5.135) stimmt mit (5.133) iiberein, falls man dort ¢, = % wihlt.

Dann ist also wegen (5.113) das Basiselement (5.133) mit der Legendreschen Funktion
zweiter Art Qy(x) (fiir |x| > 1) identisch:

|x] > 1. (5.135)

¥(x) = y1(x) = Qi(x) = —}ln% -1, |x>1 (5.136)

Zur Bestimmung eines weiteren (vom ersten linear unabhéngigen) Basiselements u,(z)
des Losungsraumes der Differentialgleichung (5.125) wird der Satz 5.6 herangezogen.
Die Gleichung (5.106) lautet fiir unsere jetzige Anwendung bei Beachtung von (5.123)

wslt) = wy(t) f [——C-——e'f i ‘"J dt (5.137)
! (()? ’
wobei u,(t) mit dem u(¢) aus (5.132) im Falle ¢, = % zu identifizieren ist. "

Aufgabe 5.20: Man zeige, daB in der eckigen Klammer in (5.137) eine gerade Funk-
tion von 7 steht.

Aus dem Ergebnis von Aufgabe 5.20 folgt, daB3 bei der gliedweisen Integration
der Entwicklung (an der Stelle 7 = 0) der eckigen Klammer aus (5.137) kein logarith-
misches Glied auftreten kann. Infolgedessen ist im vorliegenden Fall bei Anwendung
der Gleichung (5.107) 4 = 0 zu setzen, obwohl die Differenz &, — &, = 3 ganz-
zahlig ist (vgl. Bemerkung 5.6). Es kann also zur Bestimmung des zweiten Basis-
elementes die Gleichung (5.128) herangezogen werden, wo nunmehr fiir « der Wert

o, = —1 einzusetzen ist. Der Koeffizientenvergleich liefert
¢ =0 (5.138)
und

W —3e,=@-3)@—-2c,—2 (¥ S 2,3,..). (5.139)
Im Falle » = 2 ergibt (5.139) )

W -Ne=2 =32 —2co
d.h.,
e =0. _ (5.140)
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Im Falle » = 3 folgt aus (5.139) 0 = 0, d. h., man erhilt keine Information. Mit
anderen Worten: Im Falle » = 3 ist (5.139) fiir

c3 = beliebig (5.141)
giiltig. Von » = 4 ab kann (5.139) nach ¢, aufgelést werden:
a=2=2 . w=45.) (5.142)

Aus (5.140) und (5.142) ergibt sich

2, =0 (u=1,2..) (5.143)
(5.141) und (5.142) fithren schlieBlich zu
3
Caps1 = Wfs (v=12,..). (5.144)

Einsetzen von (5.138), (5.143), (5.144) in (5.126) mit & = «, = —1 ergibt fiir das ge-
suchte weitere Basiselement u,(¢)

— 1 B 2u+1
uz(t)—]—t—l(co+ca"§l 2,u+lt ), 1l <1,
und .damit wegen (5.117)

= 3 1 .
7200 = x| (co +es Eﬁﬂ—lW) x> L (5.145)
Das ist unter Beachtung von (5.135) und (5.136) gleichbedeutend mit
V2(x) = colx| + 3¢301(x) = colx| + 3e3y,(x). (5.146)

Wihlt man in (5.146) ¢, & 0 und c; beliebig, so hat man das gewiinschte von y,(x)
linear unabhéngige weitere Basiselement y,(x). Wir setzenc =1 im Falle x >0 und

¢o = —1 im Falle x < 0 sowie ¢; = 0. Es ergibt sich fiir y,(x) das Legendresche
Polynom ersten Grades (Aufgabe 5.6):
ya(x) = Py(x) = x. (5.147)

5.3.3.  Unendlich ist Stelle der Unbestimmtheit vom Rang 1

Gegeben sei die Differentialgleichung
PoX) Y + pi(x) Y + pa(x)y = 0, (5.148)
wobei fiir x > X, die konvergenten Entwicklungen

P s, Lop S ] (5.149)

2o(®) S0 T po) 5o X

vorliegen sollen.
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Aufgabe 5.21: Man zeige, daf} fiir die Differentialgleichung (5.148) mit (5.149) die

Stelle x = + oo genau dann eine Stelle der Bestimmtheit ist, wenn
a,=0,b,=0,b,=0 (5.150)

gilt.

Definition 5.4: Is7 (5.150) nicht erfiillt, so heift in (5.148), (5.149) die Stelle x = + «©

Stelle der Unbestimmtheit vom Rang 1.

Eine grobe Naherung entsteht, wenn wir in (5.149) nur die absoluten Glieder
beriicksichtigen, d.h. wenn wir uns zunéchst mit der folgenden Differentialgleichung
mit konstanten Koeffizienten beschiftigen:

7'+ aoF + boy = 0. (5.151)
Der aus dem Band 7/1 bekannte Ansatz

F(x) = ef* (5.152)
liefert eine Losung von (5.151), falls § der quadratischen Gleichung

B2 + aof + bo =0 (5.153)
geniigt. Durch (5.152), (5.153) lassen wir‘uns anregen, fiir die Lésungen y(x) aus (5.148)

y(x) = ef* u(x) (5.154)

zu schreiben, in der Hoffnung, daB die Differentialgleichung fiir u(x) einfacher!) als
(5.148), (5.149) ausfallt. Setzt man (5.154) — wobei § eine Losung von (5.153) ist —
in die Differentialgleichung (5.148), (5.149) ein, so ergibt sich fiir u(x) wiederum
eine Differentialgleichung der Struktur (5.148), (5.149), wobei aber der ,,neue Wert b,
gleich null ist:

" Do) U + P ()t +P(x)u=0 (5.155)
mi

P1 > 1 ©

;083 3 v=oav—xT’ iz?\()) El —" (x> Xo). (5.156)

Man beachte, daB in der zweiten unendlichen Rexhe aus (5.156) die Summation
erst bei » = 1 beginnt.

Aufgabe 5.22: Man zeige: Der Koeffizient @, aus (5.156) ist genau dann von null
verschieden, wenn die Losungen der quadratischen Gleichung (5.153) voneinander
verschieden sind.

Sollte ~
Go=0 und b, =0 (5.157)

sein, so hat die Differentialgleichung (5.155), (5.156) gemaB3 Aufgabe 5.21 fiirx = + oo
eine Stelle der Bestimmtheit. Wegen Definition 5.3 und Satz 5.4 hat dann mindestens
ein Basiselement des Ldsungsraumes von (5.155), (5.156) die Gestalt

) Im Falle ap = 0, by = 0, by = 0 ist wegen (5.153) f = 0 und damit gemiB (5.154) y(x) = u(x).
Also ist in diesem Fall die Dxﬁerentlalglelchung fir u(x) nicht einfacher als diejenige fiir y(x), aber
auch nicht schwieriger.

D.5.4
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u(x) = a(t) = 1* gocvt" (t = Jl?) s (5.158)
d.h. -

u(x) = x*o(x) (x = —a) (5.159)
mit

W) = Te xl . (5.160)

Angeregt durch (5.159), (5.160) versuchen wir auch dann, wenn (5.157) nicht erfiillt
ist, mit dem Ansatz (5.159), (5.160) weiterzukommen, in der Hoffnung, & so be-
stimmen zu konnen, daB die Differentialgleichung fiir »(x) einfacher als die Diffe-
rentialgleichung (5.155), (5.156) ist. Einsetzen von (5.159) in (5.155) fiihrt auf eine
Differentialgleichung fiir v(x), deren Struktur mit derjenigen von (5.155), (5.156)
iibereinstimmt. Es zeigt sich, daB man durch geeignete Wahl von « erreichen kann,
daB der ,,neue Koeffizient b, gleich null ist, allerdings benotigt man hier die Vor-
aussetzung

do + 0. (5.161)
Es gilt also

Po(X) v + pi(X) V' + pa(x)v =0 (5.162)
mit -

2 sl o _gpl (5.163)

Po(x) =0 X7 po(x) =2 ¥

wobei darauf hingewiesen sei, daB in der zweiten Reihe aus (5.163) die Summation
erst bei » = 2 beginnt.

Ist (5.161) nicht erfiillt, so setze man
u(x) = 5@ mit 7 =+/x. (5.164)

Es zeigt sich, daB die Differentialgleichung fiir $(z) mit der obigen Theorie weiter behandelt wer-
den kann.

In Fortfilhrung des im AnschluB an (5.159), (5.160) begonnenen Versuches wird
(5.160) in (5.162) eingesetzt. Es ist tatsachlich nur ein Versuch, denn im allgemeinen
wird x = + oo fiir (5.162), (5.163) keine Stelle der Bestimmtheit sein. Es zeigt sich,

daB nach dem Ordnen nach Potenzen von —)1? und anschlieBendem Koeffizientenver-

gleich ein Gleichungssystem entsteht, das nach den Koeffizienten ¢, aufgeldst werden
kann. Damit ist die Theorie aber noch nicht beendet. Die Kenntnis, daB die Koeffi-
zienten des Ansatzes (5.160) stets berechenbar sind, geniigt nicht. Es ist noch die
Konvergenzfrage zu diskutieren. Wenn die unendliche Reihe (5.160) abbricht, d. h.
wenn nur endlich viele Summanden von null verschieden sind, so ist die Konvergenz
trivialerweise fiir alle x & O gesichert.

Falls die Reihe (5.160) nicht abbricht, so wird sie im allgemeinen fiir jedes x
divergieren, d. h. mit

k

ux)=2% m% + Ry(x) i (5.165)

y=0
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gilt im allgemeinen nicht
lim Ry(x) = 0, ) (5.166)
k= + o0
ja, in den meisten Féllen gilt sogar
lim [Ry(x)| = + 0. (5.167)
k= + 00

Beim ersten Kennenlernen dieses Sachverhaltes ist man iiberzeugt, daB die herge-
stellte Entwicklung im Falle der Divergenz unbrauchbar ist. Dem ist jedoch nicht so.
Man kann namlich zeigen, daf3 eine asymptotische Entwicklung vorliegt. Das bedeutet:
Fiir jedes feste k = 1, 2, ... strebt in (5.165) das Restglied Ry(x) fiir x - + o0
gegen null, und zwar von héherer Ordnung als der Ausdruck ?des letzten Summan-
k
den aus der Naherung Y. c,,;l; fiir v(x); es gilt also fiir jedes k = 1, 2, ...
=0

Rd%) _ lim Ryx) x* = 0 (vgl. Band 3; 4.6.2.). (5.168)
X x>+

)

lim

x4 00

Aus (5.168) kann man entnehmen, daB bei fest gewdhltem k die Néherung
k
HEIESDY cvi, (5.169)
y=o0 ' X

um so besser ist, je grofer x gewahlt wird. Allerdings wird man sich insbesondere
dafiir interessieren, wie bei festem x in der Naherung (5.169) das k zweckmaBig zu
wihlen ist. Wegen (5.167) darf man k gewiB nicht zu groB wihlen. Das giinstigste &
ergibt sich bei festem x durch Bestimmung des Minimums von |R,(x)| als Funktion
von k. Besonders iibersichtliche Verhéltnisse liegen vor, wenn es sich um eine alter-
nierende (Band 3, 2.5.) asymptotische Reihe handelt (vgl. (5.231) und den dort an-
schlieBenden Text). Hinsichtlich weiterer Einzelheiten iiber die Restgliedherstellung
und die Untersuchung asymptotischer Reihen wird auf die Binde 3 (Abschnitt 4.6.),
10 und 12 verwiesen.

Sind die beiden Lésungen von (5.153) voneinander verschieden, so erhilt man auf
diese Weise eine Basis des Losungsraumes der Differentialgleichung (5.148), (5.149).

Beispiel 5.14: Die Gleichung (V.3) des Vorwortes, nimlich
PR+ 2R + [+ 2ar — I+ D]R=0 (I=0,1,..) (5.170)
hat die Struktur von (5.148), (5.149) mit
a=0,a,=2,a,=0w=2,3,..),bp=4,b, =2a,b, = —I(l + 1),
b,=00=3,4,..).
Die quadratische Gleichung (5.153) lautet somit im vorliegenden Fall
B +4=0. (5.171)

3 Wenzel, Gew. Diff. 2
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Einsetzen von R(r) = e u(r) (vgl. (5.154)) in (5.170) fiihrt wegen

R = ef"(Bu + u'), R = e’(B%u + 2pu’ + u'") (5.172)
unter Beachtung von (5.171) zu
U+ 2B+ 20w + QB+ a)r = I+ D))u=0, (5.173)

wobei bereits durch e dividiert wurde.
Um (5.161) zu garantieren, setzen wir wegen (5.173) und (5.171) zunéchst
A%0 (5.174)

voraus. (Der Fall 2 = 0 wird in der Aufgabe 5.23 behandelt.) Einsetzen von u(r)
= r*u(r) [vgl. (5.159)] in (5.173) fiihrt schlieBlich zu

2" + (2B + 2(x + D)’

+ R+ DB +a)r+ ale+ 1) =11 + D]v=0. (5.175)
GemaB der allgemeinen Theorie muB3 « so bestimmt werden, daf
Ao+ Dp+a)=0,dha=—1-2 (5.176)

[

ist. Beim Einsetzen von v(r) = ¥ ¢,r=" [vgl. (5.160)] in (5.175), (5.176) beginnt die
v=0

Rechnung folgendermaBen:

w
" =Yy + ) er,
»=0

=26 + 1) ¢uar™’,
= e (5.177)
2@+ D' =Y =2 + 1) ver,
»=0

0
20K =3 =2fvertt =
¥=0 v

(a+1) =10+ )v= i(a(a F D)= I0+ D) er.

Durch Addition der vier linken Seiten von (5.177) erhélt man bei Beachtung von
(5.176) die linke Seite der Differentialgleichung aus (5.175), die gleich null sein soll.
Folglich muB3 die Summe der rechten Seiten aus (5.177) gleich null sein. Der an-
schlieBende Koeffizientenvergleich fithrt zu

¢o = beliebig
1

Co =2/3(v—+1_)(a2 +al =29+ @—Dv =10+ 1),

»=0,1,2,...). (5.178)
Folglich erhélt man die allgemeine Losung von (5.170) in der Gestalt
R() = CR,(0) + CR(0) (5.179)

mit -
LR = () (k= 1,2), (5.180)
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wobei

a4
Br
ist. Hierbei sind 8, und 8, = —f, Losungen von (5.171), und fiir Coi(r) (k = 1,2)
liegt die asymptotische Reihe

o= —1-

(5.181)

~ ©
Co(r) =X ¢r" (5.182)
»=0
vor, wobei einerseits

Cppp = 2/3—"(;1_*_—1)(05,2( +oa(l =2+ @-=Dyv—=Il+1)e,

»=0,1,..;k=1,2) (5.183)
gilt und andererseits ‘
o=0C (k=12 (5.184)

zu setzen ist.

Aufgabe 5.23: Die Differentialgleichung (5.170) soll im Fall 2 = 0 durch Entwickeln an der Stelle
r = oo geldst werden. GeméB der allgemeinen Theorie stelle man zunéchst aus (5.170) eine Diffe-

rentialgleichung fiir R(r) her, wobei R(r) = R(r) mit 7 = /7 ist, und bestimme R(r).

5.3.4. Unendlich ist Stelle der Unbestimmtheit vom Rang & + 1.
Definition 5.5: Liegt die Differentialgleichung

o)y + X¥pi(x) Y + xHp(x)y =0 (k=1,2,..) (5.185)
mit (5.149) vor und sind die Koeffizienten

agy v s Ag_15 bo, .., bay_y nicht alle gleich null, (5.186)
so heift x = oo eine Stelle der Unbestimmtheit vom Rang k + 1.

Ein Basiselement des Losungsraumes der Differentialgleichung (5.185) kann in der Gestalt

y1(x) = ePr+1™ xe p(x) (5.187)
angegeben werden. Hierbei ist
Pipy(x) = dig X+ dix* + L+ dix (5.188)
mit
Aoy = ——, .189
k41 P S )

wobei f eine Losung von (5.153) ist. Weiterhin wird »(x) durch die asymptotische Reihe
0
o(x) = X ¢, x7" (co # 0) (5.190)
»=0

dargestellt. Haben die beiden Losungen von (5.153) voneinander verschiedene Realteile, so erhilt
man auf diese Weise eine Basis des Losungsraumes.

3%
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Beispiel 5.15: Die Hermitesche Differentialglei
Y =2xy' +2ny =0 n=0,1,2,..) - (5.191)
besitzt an der Stelle x = co eine Stelle der Unbestimmtheit vom Rang k + 1 mit k£ = 1, denn

mit den obigen Bezeichnungen ist ap = —2,a, =0 (v = 1,2,...),bo = b; = 0,b, = 2n, b,=0
(v = 3.4....). Also lauten hier die Lésungen von (5.153)

=0 und B, =2 (5.192)

Die Rechnung wird im Fall f; = 0 weitergefiihrt. Wegen (5.187), (5.188), (5.189) wird jetzt der
Ansatz

©
y=ed*Y c,x7"* ¢o * 0, (5.193)
v=0 \

gemacht. Einsetzen in (5.191) fithrt nach Division durch e?:+*x? schlieBlich zu

0 0 0
A2y ex 2 3 e, (v + L+ )X+ X (v +2+0)(—v+ 1 +0) ey x
¥=0 v=1 V=2

o © o
=2d1 Y ¢, x = 2% c,(—v+x"+ 21X cx°=0. (5.194)
v=—1 v=0 =0 c
Der Beginn des Koeffizientenvergleichs (v = —1, 0, 1) liefert
—2d,co = 0, d. h. wegen ¢ = 0ist d; = 0 und ¢, = beliebig, (5.195)
—2¢0 + 2nco = 0,d. h. wegen ¢p + Oisto = n, (5.196)
2¢; =0,d.h.c; = 0. (5.197)

Bei Beachtung der Ergebnisse (5.195), (5.196), (5.197) ergibt die Fortfithrung des Koeffizienten-
vergleichs schlieBlich die Rekursionsformel

¢, = — 21—(~v +2+m(-v+1+mec,_, (¥=23,..). (5.198)
v
Aus (5.197), (5.198) folgt
Camp1 =0 (m=0,1,2,..), (5.199)
(5.198) zeigt — in Verbindung mit (5.199) -, daB von» = n + 1 aballe ¢, verschwinden, also
¢,=0 w=n+1,n+2.) (5.200)

ist. Das bedeutet schlieBlich, daB sich in (5.193) ein Polynom vom Grad » ergibt. Wihlt man ¢ = 2",
so spricht man vom Hermiteschen Polynom H,(x).

Aufgabe 5.24: Mittels Beispiel 5.15 berechne man H,(x) in den Fillen n = 0, 1, 2, 3, 4.

5.4. Fakultiitenfunktion, Besselsche Differentialgleichung

Als Vorbereitung zur Behandlung der Besselschen Differentialgleichung nennen
wir den

Satz 5.7: Es gibt genau eine Funktion (Fakultitenfunktion [auch Gammafunktion
genannt])

x!=TI(x+1), (5.201)
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die fiir jedes x = —1, —2, ... in eine Potenzreihe entwickelbar ist, an den Stellen

x = —1, =2, ... jeweils einen Pol erster Ordnung besitzt und die folgende Eigenschaften
hat:

x!'=n! fir n=0,1,2,.., (5.202)

x4+ D'=xl(x+1) firalle x+ —1,-2,..., (5.203)

-1 <x< 4. . (5.204)

Zusatz zum Satz 5.7: Fir x > —1 gilt
x] = _|' e 't* dt (5.205)
0

(Eulersches Integral zweiter Gattung), speziell

(-5)t- f—f/—t dr'= /7. (5.206)

Aufgabe 5.25: Es gilt (n + ) \/rf(n) (n=0,1,2,...). Man bestimmte f(n).

Die Losungen der Besselschen Differentialgleichung
X2y +xy + 2 —n)y=0 " (5.207)

heiBen Zylinderfunktionen (mit dem Index n). Fiir x = 0 liegt in (5.207) eine Stelle der
Bestimmtheit vor. Infolgedessen hat mindestens ein Basiselement des Losungsraumes
der Differentialgleichung (5.207) die Gestalt

y(x) = Ix[* T eyx’, o * 0. (5.208)
y=0

Da in der Differentialgleichung n? auftritt, konnen wir ohne Beschrdnkung der
Allgemeinheit

nz0 (5.209)

voraussetzen. Die Losungen der zum Ansatz (5.208) gehdrigen quadratxschen
Gleichung fiir « lauten mit (5.209)

&y =N, &y = —0N. (5.210)
Einsetzen von (5.208) im Falle «; = n fiihrt mit der Festsetzung c, = % zur
Besselfunktion (Zylinderfunktion erster Art [mit dem Index n]) Lk

x\" & 1
= = — I — X208 :
309 =10 = (5) Z-V g >0 621D

Bemerkung 1 zu- (5.211): Der Konvergenzradius der unendlichen Reihe ist gemiB
Satz 5.4 gleich unendlich. Ist n = 0 nicht ganzzahlig, so muB} Satz 5.7 beachtet
werden, der dem Ausdruck (n + )! aus (5.211) auch dann noch einen Sinn verleiht,
wenn der Wert von n + u nicht ganz ist.
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x\n

Bemerkung 2 zu (5.211): Der Faktor (?) ist fiir uns bei nichtganzem » nur sinnvoll, wenn x > 0
n

ist. GemaB (5.208) ist es naheliegend, im Falle x < 0 diesen Faktor durch (%) zu ersetzen. Dann

lage zwar wieder eine Losung der Besselschen Differentialgleichung vor, sie wiirde aber (verab-
redungsgemiB) nicht mehr als Besselfunktion anzusehen sein. Es sei hier lediglich mitgeteilt, daB

x n
man aus funktionentheoretischen Griinden (Band 9) auch im Falle x < 0 in (5.211) mit (7) arbeitet
und unter dieser Potenz den sogenannten Hauptwert

A\ Wy
(—2—) = (T) e (x < 0) (5.212)
versteht.
Die Differenz der a-Werte aus (5.210) betrigt
&y — &y = 2n. (5.213)
Ist sie nicht ganz, also
n%0,4,1,4,243, ..., (5.214)

so hat ein weiteres Basiselement des Losungsraumes der Besselschen Differential-
gleichung wegen Satz 5.5 die Struktur (5.208) mit &« = —n. Die Rechnung zeigt,
daB in diesem Fall als zweites Basiselement

Y2(x) = J_u(x) (5.215)

genommen werden kann. Oft ist es iiblich, anstatt im Falle (5.214) mit den beiden
gefundenen Basiselementen

Ju(x) und J_,(x) (5.216)
zu arbeiten, als Basiselemente die Funktionen
Ju(x), No(x) (5.217)

zu wihlen, wobei N,(x) durch

N,(x) = [cos (n) J(x) — J_,(x)] (5.218)

1

sin (n7)
definiert ist und Neumannsche Funktion (Zylinderfunktion zweiter Art [mit nicht-
ganzzahligem Index n]) heit. Beim ersten Kennenlernen entsteht die Frage, welche
Griinde es gibt, fiir N,(x) die relativ umstidndliche Formel (5.218) zu wihlen. Es
ist mit (5.218) mdglich, durch den Grenziibergang in (5.225) vom nichtganzzahligen n
zu ganzzahligem n iiberzugehen.

Statt (5.216) oder (5.217) kann man auch als Basis die sog. Hankelschen Funk-
tionen (Zylinderfunktionen dritter Art)

HP(x) = Jy (x) + 1 Ny(x) (5.219)
d
. HP(x) = J, (x) — i Ny(x) (5.220)
nehmen. Gilt
n=m+4% (m=012..), (5.221)
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so ist die Differenz (5.213) ganzzahlig. Man muB3 daher geméB Satz 5.6 damit rechnen,
daB der Ansatz (5.208) durch einen komplizierteren — mit logarithmischem Glied —
zu ersetzen ist. Hier tritt jedoch der bereits in Bemerkung 5.6 erwdhnte Fall auf,
daB 4 = 0ist, daB also das logarithmische Glied wegfallt und damit (ausnahmsweise)
auch im Falle (5.221) mit dem Ansatz (5.208) gearbeitet werden kann. Als Ergebnis
notieren wir:

Auch bei halbzahligem Indexn = m + % (m = 0,1, 2, ...) kénnen als Basiselemente
des Losungsraumes der Besselschen Dlﬁ'erentlalglexchung die Funktionen aus (5.216)
oder (5.217) oder (5.219), (5.220) genommen werden.

Aufgabe 5.26: Man beweise Jy(x) = A/ ey sinx, Jy(x) = A/ ix cOSs X,
. .

Ny(x) = — A/?Zx— cos x, HN(x) = —i A/;:z; e, HP(x) = lA/n—Zx e*.

Wenn sich im Band 7/1 als Basis des Losungsraumes einer gegebenen linearen homo-
genen Differentialgleichung zweiter Ordnung die beiden Funktionen e'* und e™'*
ergeben, so ist bekannt, daB cosx, sinx eine zugehorige reelle Basis ist. Dieser
Hinweis vermittelt im Zusammenhang mit Aufgabe 5.26 einen Eindruck von der
Wahl der Basen (5.216) oder (5.217) oder (5.219), (5.220).

Wir gehen zur Behandlung des Falles
n=0,1,2,.. (5.222)

iiber. Die Funktionen aus (5.216) konnen jetzt nicht mehr als Basis des Losungs-
raumes der Besselschen Differentialgleichung benutzt werden. Es kann zwar mit
(5.211) J_,(x) (n=10, 1, 2, ...) gebildet werden, wenn man daran erinnert, dal

die Fakultatenfunktion x! gemaB Satz 5.7 an den Stellen x = —1, —2, ... Pole
besitzt, und wenn man im Einklang damit in (5.211)
1
—_— 0 5.223
e (5.223)

setzt, falls n + p in (5.223) gleich einer negativen ganzen Zahl ist; die Rechnung
zeigt aber, dal

Jox) = (=17 J(x) (n=0,1,2..) (5.224)

gilt. Also sind in diesem Fall J,(x) und J_,(x) voneinander linear abhingig und
konnen somit keine Basis des Losungsraumes bilden.

Im Falle (5.222) versagt die Definition der Neumannschen Funktion N,(x) aus
(5.218) [der Nenner verschwindet], so daB auch (5.217) und (5.219), (5.220) als Basis
im Falle (5.222) ausscheiden.

Definiert man nun im Falle (5.222) durch [vgl. (5.218)]

Ny(x) = Ilm (p ) [cos (pr) J(x) — J_,(x)] (n=0,1,2,...) (5.225)
die Neumannsche Funktion (Zylinderfunktion zweiter Art mit dem Indexn = 0,1,2,...),

so kann man die Funktionen aus (5.217) und (5.219), (5.220) als Basis fiir den Lsungs-
raum der Besselschen Differentialgleichung benutzen.
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Der Grenzwert in (5.225) kann etwa mittels der Regel von I’Hospital berechnet werden. Der Satz 5.6
zeigt, daBB N,(x) in der Gestalt (5.107) angebbar sein muB. Zur Illustration fithren wir die folgenden
Formeln an:

2 2 o ((=1) 2 v
Noo) = = o) (c +1In %) —=3 {.(#_ (%) 5 7} , x>0, (5226
. 2 _

T oy=1
wobei in (5.226) die Konstante C gleich der Eulerschen Konstanten

m 1
C = lim { S—-hn m} =0,5772... (5.227)
m=coo \y=1 V .
ist. Firn = 1,2, 3, ... gilt
: 2 x 17zl (m—v =1 [x\>™"
MW-;%WMT‘:ﬁ——W——EJ

l oo 1 X n+2y
- Y —_— [ )
- Eo( 1) PCET) ( 2) [PO) + P +n)], x>0, (5.228)
wobei in (5.228) die (GauBsche) Psi-Funktion ¥(x) benutzt wurde, das ist die logarithmische Ab-
leitung der Fakultitenfunktion (vgl. Satz 5.7)

Y(x) = %ln x)=—-C- :?ol (x—l-l—l—c - %—) mit C aus (5.227). (5.229)
Bemerkung zu (5.226) und (5.228): Man kann (5.226) und (5.228) auch fiir x < 0 benutzen, wenn
man unter In (x/2) in diesem Falle den sogenannten Hauptwert des Logarithmus versteht:
IR I 5.230
n—-=Iln—-+ir (x < 0). (5.230)
Fiir groBe positive x konvergieren die J,(x), N,(x), H{(x), H{®)(x) darstellenden
Reihen. Jedoch hat dies nur theoretischen Wert. Fiir die numerische Auswertung sind
diese Reihen fiir groBe x nicht geeignet, da infolge zu grofier Entfernung von
der Entwicklungsstelle x = 0 die Konvergenzgeschwindigkeit zu langsam ist. In
diesem Fall benutzt man asymptotische Entwicklungen an der Stelle 4 o00. Es sei
noch die asymptotische Entwicklung der Besselfunktion angegeben:
[z _m w2 (=) (22 =P ]
Tenl) ‘A/nx {°°S (x o 4) [.E"o @ @) (=2 - D!
. T 13 (=1 (n+2v + 3! ]}
o (x T3" T) L:o T @+ Dl — 2 — 3)!
n>0. } (5.231)
Bricht man die asymptotischen Reihen [...] aus (5.231) ab, so ist der absolute Betrag

des Fehlers der entstehenden Néherung kleiner als der Betrag des jeweils ersten ver-
nachléssigten Gliedes.

Aufgabe 5.27: Es gilt
Zix) = =Zpa () + 5 Z,), (5.232)

wobei Z,(x) eine beliebige Losung der Besselschen Differentialgleichung ist. Man
beweise dies im Fall Z,(x) = J,(x).
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Aufgabe 5.28:

a) Mittels (5.227) beweise man

2z 1 1 m 1 1
k§1(1«'+k—7)+k§1(p+k+1_7)

v o1 1 m+v)m+v+1) o

= —2";17(—— P +1n—m2—+ Fpy it ’il_{nwrm =0.

b) Was ergibt sich aus a) fir P(») + P(» + 1) (» = 1,2, ...)?
¢) Mittels b) fiihre man den Beweis in Aufgabe 5.27 im Fall Zy(x) = No(x).

Aufgabe 5.29: y = y(x) sei Losung der Differentialgleichung (V.2) des Vorwortes.
a) Welcher Differentialgleichung geniigt w = w(u), falls man y(x) = w(x) mit u
=L — x setzt?

b) Welcher Differentialgleichung geniigt Z = Z(z), falls Z(z) = w(u) mit z = a\/ u
sein soll?

¢) Fiir welche Werte a aus b) ergibt sich fiir Z(z) eine Besselsche Differentialgleichung?
d) Mittels der Ergebnisse von a) bis ¢) gebe man die allgemeine Lésung von (V.2) an.

Aufgabe 5.30: Es sind die positiv-reellen Nullstellen von Jo(x) gesucht,
a) Aus (5.231) ermittele man fiir sie erste Naherungen x,, indem man von den
asymptotischen Reihen hur die absoluten Glieder beriicksichtigt.

b) Man verbessere die Naherung aus a), indem man in den asymptotischen Reihen
jeweils die ersten beiden von null verschiedenen Glieder beriicksichtigt und da-
nach einen Iterationsschritt des Newton-Verfahrens (Band 2) durchfiihrt.

c) Man werte die Ergebnisse fiir die ersten vier Nullstellen numerisch aus und gebe
jeweils vier Dezimalstellen an.

*



6. Rand- und Eigenwertaufgaben

Es ist aus Band 7/1 bekannt, daBB Anfangswertaufgaben genau eine Ldsung be-
sitzen. Bei Randwertaufgaben ist der Sachverhalt komplizierter (sieche Aufgabe 3.15).
Beschiftigt man sich mit /inearen Randwertaufgaben, so ergeben sich Sitze, die vollig
analog zu denen bei linearen Gleichungssystemen (Band 13) sind. In Analogie zur
allgemeinen Eigenwertaufgabe bei Matrizen (Band 13) kann man eine Eigenwert-
theorie bei gewdhnlichen Differentialgleichungen aufbauen und Fourierentwicklun-
gen nach Systemen von Eigenfunktionen vornehmen.

6.1. Beispiele

Bereits im Band 7/1 werden in den Definitionen 1.6 und 1.7 Rand- und Eigenwert-
aufgaben eingefithrt. Wir beginnen mit einer Randwertaufgabe.

Beispiel 6.1 (Kettenlinie): Ein vollkommen biegsames Seil mit konstanter Dichte
und der Lange / hangt im Schwerefeld zwischen zwei Masten, die die jeweiligen
Hohen 4, und 4, besitzen und deren gegenseitige Entfernung a betrigt. Die Gestalt
des Seiles werde durch die Funktion w = w(x) (0 < x < a) angegeben. Die Gleich-
gewichtsbedingungen zeigen, daB die unbekannte Horizontalkomponente der Seil-
kraft einerseits konstant ist und andererseits durch w”/[1 + (w’)?]-* angegeben werden
kann. Somit ergeben sich fiir w = w(x) (0 £ x < a) die nichtlineare Differential-
gleichung

WII ’
—) =0, 6.1)
< V1 + (w')? )
die Randbedingungen
w(0) = hy, w(a) = h: (6.2)

und als (Rand)-Bedingung in Integralgestalt
[¥T+ () dx =1 6.3)
0

Aufgabe 6.1: Man gebe zwischen a, 4y, h, und / eine Ungleichung an, die garantiert,

daB die Randwertaufgabe (6.1), (6 2), (6.3) keine Losung besitzt.
GemaB Abschnitt 3.2.3. setzen wir

px) = w'(x) (6.4)
und erhalten aus (6.1)
P =CiVT+p (6.3)

Trennung der Verdnderlichen (Abschnitt 2.3.1.) fiihrt von (6.5) zu
arsinhp = C;x + C>,
und damit ist
p(x) = sinh (Cyx + C»). (6.6)
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Aus (6.6) ergibt sich mit (6.4) im Falle C; = 0
w(x) = x sinh C; + Cs, und es ist 6.7)
w(x) = C—lcosh (Cyx + C) + Cs, falls Cy + 0 6.8)
1

gilt. Die Konstanten C;, C,, C; sind mittels der Randbedingungen (6.2), (6.3) zu
berechnen. Der Fall (6.7) liegt vor, falls

I =~a + (hy — hy)? 6.9)
gilt, und es ergibt sich die geradlinige Verbindung der Aufhéngepunkte

w(x) = 'j;(hz — hy)x + hy. (6.10)
Einsetzen von (6.8) in (6.2) fithrt zu den beiden Gleichungen
hy — C3 = Lcosh C, 6.11)
C,
und
hy — C3 = ~Cl,—cosh (Cia + Cs). (6.12)
1
Beachten wir die Bezichung
cosh? x — sinh? & = 1 (6.13)

und die Tatsache, daB der Kosinushyperbolikus stets positiv ist, so erhalten wir
aus (6.8) und (6.3)

Fl—(sinh (Cia + C;) —sinh C,) = 1. 6.14)
z

Zur Vorbereitung fiir die Bestimmung von C;, C,, C; aus dem nichtlinearen Glei-
chungssystem (6.11), (6.12), (6.14) notieren wir zunéchst (s. Bd. 1.)

cosh — cosh f = 2 sinh “2L £ ik ;‘3 (6.15)
und

sinh o — sinh § = 2 cosh % ;“5 sinh £ L (6.16)
Nunmehr bilden wir die Differenz von (6.12) und (6.11) und wenden (6.15) an:

2 . 1 . 1

hs = Iy = o—sinh (7 Cua+ cz) sinh (7 Cla) i 6.17)

Mittels (6.16) wird die linke Seite von (6.14) umgeformt:
2 1 . 1
A cosh (—2— Cia + Cz) sinh (7 Cla) =S)/s (6.18)
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Das Quadrat von (6.17) wird vom Quadrat von (6.18) subtrahiert. Es ergibt sich bei
Beachtung von (6.13)

— (hy = hy)? = ismh (1 Cla) (6.19)

Die Gleichung (6.19) zeigt, daB 12 — (h, — h;)? positiv sein muB; in Ubereinstim-
mung mit dem Ergebnis von Aufgabe 6.1 und dem bereits behandelten Fall (6.7),
(6.9), (6.10). Mit der Abkiirzung

z=13Cua (6.20)
kann man fiir (6.19)

2 2
sinh z = 2,/ (1) - (=) (621)
a a

schreiben. Wir weisen darauf hin, daB die Folgerung (6.21) auch dann noch richtig
ist, wenn C; und damit z negativ sein sollte. Aus dem Ergebnis von Aufgabe 6.1
kann abgelesen werden, daB der Wert der Wurzel in (6.21) groBer als 1 ist. Damit
ist klar, da die transzendente Gleichung (6.21) genau zwei reelle, von null ver-
schiedene Losungen z, und z, besitzt, die sich lediglich im Vorzeichen unterscheiden.
Die Ermittelung des Wertes von z; und damit von z, kann bei gegebenen Zahlen-
werten fiir @, 4, , h, und / mit einem numerischen Verfahren (Band 2) geschehen. Also
ergibt sich wegen (6.20)

2 2
C, =£z, oder C,=—z,=——z,,
a a a

kurz
+ %zl (z, > 0). (6.22)

CE=

Bei bekanntem C,; erhdlt man C, aus (6.17) in eindeutiger Weise. Nunmehr kann
C; aus (6.11) berechnet werden. Die Werte fiir C;, C,, C; sind schlieBlich in (6.8)
einzusetzen. Wegen (6.22) haben sich insgesamt zwei Losungen der Randwertaufgabe
(6.1), (6.2), (6.3) ergeben. Im Falle C; > 0 ist wegen (6.8) die erhaltene Kurve
w = w(x) nach oben gedffnet, im Falle C; < 0 jedoch nach unten.

Im erstgenannten Fall sind die Seilkrifte Zugkrifte, im zweiten Fall Druckkrifte.
Wenn man beriicksichtigt, daB Seile nur Zugkrifte ubertragen konnen, so ist klar,
daB die Losung mit C; < 0 unbrauchbar ist.

Beispiel 6.2 (Eulerscher Knickstab): Ein vertikal angebrachter Stab (0 £ x £ 1)
ist am unteren Rand (x = 0) eingespannt und an seinem oberen Rand (x = /) frei.
Er wird oben durch eine vertikale Einzelkraft F auf Druck (F > 0) belastet. Die
Biegesteifigkeit EJ sei konstant. Die Kraft F sei richtungstreu, d. h. auch dann noch
vertikal gerichtet, wenn der Stab eine Durchbiegung w = w(x) (0 < x < /) erfahrt.
Bei Vernachlassigung des Eigengewichtes fiihrt das zugehorige Stabilitiatsproblem
gemdf3 der Theorie zweiter Ordnung der technischen Mechanik auf die Differential-
gleichung
F

e H___ < <. [ N
WL =0, 0Sx<l A=25>0 (6.23)
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und die Randbedingungen
w(0) = 0, w(0) =0, w'(l) =0, w’() + Aw'() = 0. (6.24)

Die Randwertaufgabe (6.23), (6.24) hat fiir jedes A die Losung w(x) = 0 (0 £ x < /).
Damit ergibt sich aus der Definition 1.7, daB durch (6.23), (6.24) eine Eigenwert-
aufgabe mit dem Eigenwertparameter A > 0 gegeben ist.

Der Ansatz w = e fiihrt mit (6.23) zur charakteristischen Gleichung (3.69):

4+ 2 =0. (6.25)
Wegen 4 > 0 hat (6.25) die Lésungen

ry = 0, Vielfachheit /; = 2 (6.26)
und _ B

ro=iva, L =1;ry = —ivi, I; = 1. 6.27)

Hieraus ergibt sich schlieBlich fiir die Gesamtheit der reellen Losungen der Diffe-
rentialgleichungen aus (6.23)

w(x) = D; + D,x + Dj cos Vix+ D, sin Vix. (6.28)
Einsetzen von (6.28) in die Randbedingungen (6.24) liefert das folgende lineare

homogene Gleichungssystem fiir die Unbekannten D,, ..., D,, wobei die dritte
Gleichung durch —2 und die vierte Gleichung durch A dividiert wurde (2 > 0):

D, + D, =0,
D, +vAD, =0,

cos (W2) D, + sin WAD D, = 0, 6.29)
D, =0.

Ist die Koeffizientendeterminante des Systems (6.29) ungleich null, so sind alle
D, (» =1, ..., 4) gleich null und damit liegt wegen (6.28) die triviale Losung w = 0
(0 £ x £ 1) vor; das ist uninteressant, hierdurch wird keine Eigenlosung geliefert.
Bei der weiteren Untersuchung ist daher die Koeffizientendeterminante von (6.29)
gleich null zu setzen:

10 1 0

01 0 NI |_g (6.30)
0 0 cos(VAl) sin WAl

01 0 0

Die Gleichung (6.30) heiB3t Eigenwertgleichung. Ihre Losungen 4 sind die Eigenwerte
der Eigenwertaufgabe (6.23), (6.24). Entwickelt man die Determinante aus (6.30)
nach ihrer ersten Spalte, so reduziert sie sich auf eine Determinante dritter Ordnung,
die man zweckmiBig nach ihrer letzten Zeile entwickelt. Man erhilt

—JAcos (V) =0, d.h. cos (v = 0. (6.31)
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Wegen 4 > 0 folgt aus (6.31)
Vil = % +kn (k=0,1,2,..). (6.32)

Also ergeben sich die Eigenwerte
h=h=gr ( + kn) (k=0,1,2,.). 6.33)

Zur Bestimmung der zum Eigenwert 4, gehorigen Eigenlosungen wy(x) ist zunéchst
der Wert fiir 4, aus (6.33) in das Gleichungssystem (6.29) einzusetzen. Man erhalt

D, +D; =0,

Dz+%(%+kn)1)4=o,
(6:34)

0~D3+sin(—"—

5 +k1|:)D4=0,

D, =0.

Aus der vierten, zweiten, dritten und ersten Gleichung von (6.34) ergibt sich der
Reihe nach

D, =0,D, =0, D3 = C, (Cy beliebig), D; = —C;. (6.35)
Wir setzen (6.35) und (6.33) in (6.28) ein und erhalten alle zum Eigenwert 4, ge-
hérigen Eigenfunktionen
2k + 1) nx

21

Nimmt man zu (6.36) noch die Funktion w = 0 hinzu, so bilden alle diese Funk-
tionen einen eindimensionalen Raum, den zum Eigenwert 4, gehorigen Eigenraum.

Wenn man aus ihm eine Funktion, die nicht identisch null ist, herausgreift, z. B.
die Funktion mit C; = 1, so ergibt sich als Basis des zu 1, gehorigen Eigenraumes:

w(x) = Ci (—1 + cos ) (C, + 0). (6.36)

2k + 1) nx
1+ cos—(% (k=0,1,2,..). , (637)
2
Bemerkung 1 zu Beispiel 6.2: Ist A = — (snehe (6.23)) kleiner als der kleinste Eigenwert 4o = =
(siehe (6.33)), d. h., gilt 4
n?EJ
Fe<—pm, (6.38)

so ist w = 0 die einzige Losung, d. h., der Stab knickt nicht aus. Wird der Wert von F aus (6.38)
groBer und nimmt er schlieBlich die Eulersche Knicklast
n*EJ

412
an, so weist das Vorhandensein der zu 4, gehdrigen Losungen wo(x) aus (6.36) darauf hin, daB der

Stab auszuknicken beginnt. Da jedoch die Eigenwertaufgabe unendlich viele Losungen liefert —
die Konstante C ist beliebig — wird durch das vorliegende mathematische Modell die konkrete

F = Fee. = (6.39)
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Knickfigur nicht erfaBt. Woran liegt das? Beim Aufstellen der Differentialgleichung wurde fiir die
Kriimmung der Kurve w = w(x) nicht die Formel

’

Y 6.40)
Jisw® ©

benutzt, sondern unter der Voraussetzung, daB |w’| gegeniiber 1 sehr klein ist, anstatt (6.40) w”
genommen. Das ist auch der Grund dafiir, daB die Eigenwertaufgabe (6.23), (6.24) den iiberkritischen
Bereich . n?EJ ) 6

T S
nicht wirklichkeitsgetreu beschreibt; denn es ist in der Praxis sicher nicht so, daB bei geringfiigiger
Uberschreitung der Eulerschen Knicklast (6.39) nur die Losung w = 0 existiert, also kein Aus-
knicken vorliegt.

Bemerkung 2 zu Beispiel 6.2: Die Bemerkung 1 darf nicht dahingehend verall inert werden,
daB bei Eigenwertaufgaben nur der kleinste Eigenwert interessant sei und die Eigenfunktionen
keine praktische Bedeutung hitten. Bei der Zuriickfithrung von partiellen Differentialgleichungen
(Band 8) auf gewohnliche Differentialgleichungen treten Eigenwertaufgaben auf, deren Eigenwerte
und Eigenrdume alle benétigt werden. So miissen dort Funktionen — nach Art der Fourierentwick-
lungen aus Band 3 — durch unendliche Reihen dargestellt werden, deren Teilsummen Linear-
kombinationen von Eigenfunktionen der Eigenwertaufgabe sind.

Es kann vorkommen, daB8 Eigenwertaufgaben auch nichtreelle Eigenwerte besitzen. Wir stellen -
hierzu die folgende

Aufgabe 6.2: Man zeige, daB durch °
Y +ay+iy=0 O=x=sla=*0) (6.42)
und
¥0) = y() =0, y©0) —y()=0 (6.43)
eine Eigenwertaufgabe gegeben ist, und daB
4n? 2
AR l'; k’—-—%ki (k=0,+1,+2,..) (6.44)

Eigenwerte sind, zu denen jeweils eindimensionale Eigenrdume gehéren, deren Basen durch

2 okmix S
el k=0,+1, £2,..) (6.45)

angegeben werden konnen.
Aufgabe 6.3: Im Beispiel 6.2 sei nunmehr der Stab oben nicht frei sondern gelenkig
gelagert. In (6.24) ist daher die Randbedingung w'"’(/) + Aw'(/) = 0 durch

wl) =0 (6.46)
zu ersetzen.

a) Man zeige, daf es eine Funktion von 4

=u(2) (A>0) (6.47)
derart gibt, daB die Eigenwertgleichung in die Gestalt
tanu = f(u) (u > 0) (6.48)

umgeformt werden kann. Wie lautet f(u)?
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b) Man skizziere die Funktionen y = tanu und y = f(u) (v > 0). Man lese aus
der Skizze und mittels einer Zahlentafel die kleinste Losung von tan u = f(u) ab.
Wie groB ist damit der kleinste positive Eigenwert A.;, und damit die Eulersche
Knicklast Fi;,.?

Aufgabe 6.4: Von der Eigenwertaufgabe fiir y = j)(x)
Y 4dy=0 OSx=1i>0), (649)
»0) =0, y'(0) =0, y"(l) =0, y() = 0 (6.50)

bestimme man die beiden kleinsten positiven Eigenwerte 4 und reelle Basen der zugehérigen Eigen-
raume. Man arbeite mit den Funktionen cos, sin, cosh und sinh.

Aufgabe 6.5: In Fortfithrung von Aufgabe 5.9 soll deren Lésung 9(x) auch noch der
weiteren Randbedingung 9(/) = 0 aus (V.5) geniigen.

a) Welche Eigenwertgleichung ergibt sich fiir F, falls man mit der Abkiirzung u = A4/*
arbeitet? ’

b) Man bestimme eine erste Naherung u, fiir die kleinste positive Losung u des Er-
gebnisses von a), indem man die dortige Potenzreihe nach dem quadratischen
Glied abbricht.

¢) Man 16se die Gleichung des Ergebnisses von a) nach dem u des linearen Gliedes
der Potenzreihe auf. Es entsteht eine Gleichung des Gestalt # = ¢(«). Man iiber-
zeuge sich, daB in der Nahe von u = u, die Ableitung ¢'(#) dem absoluten Betrag
nach kleiner als 1 ist und damit das Iterationsverfahren u,., = ¢(u,) (n = 1,2, ...)
eine Zahlenfolge u,, u,, ... liefert, die gegen die kleinste positive Losung kon-
vergiert (Band 2). Man breche die Reihe von ¢(u) nach dem Glied, das u* enthalt
ab, und berechne u,, ..., uq.

- d) Aus c) ermittele man die kritische Kipplast Fy,;. (vgl. die Bemerkung 1 zum Bei-

spiel 6.2).

6.2. Behandlung von Randwertaufgaben durch Zuriickfithren auf Anfangs-
wertaufgaben

Beherrscht man die Behandlung von Randwertaufgaben (RWA) durch Zuriick-
fithren auf Anfangswertaufgaben (AWA), so kann man beispielsweise bei der numeri-
schen Losung von RWA auch alle Methoden heranziehen, die sich mit der numeri-
schen Losung von AWA befassen (Band 7/1, 2.5.; Band 18). Zunachst erlautern wir
den Fall der /inearen RWA am

Beispiel 6.3 (vgl. Beispiel 1.11): Fiir die Durchbiegung w(x) eines Balkens, der sich
langs der x-Achse erstreckt (0 < x < /) und das Flachentragheitsmoment EJ(x) (E:
Elastizititsmodul) besitzt, gilt die gewohnliche lineare Differentialgleichung vierter
Ordnung

(ET(w")" = p(x), (6.51)
wobei p(x) die senkrecht zur Balkenachse wirkende Streckenlast angibt. Der Balken
sei am linken Rand (x = 0) fest eingespannt, d. h. es gilt

w(0) = 0, w(0) = 0. (6.52)
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Am rechten Rand (x = [) liege eine elastische Senk- und Drehstiitzung vor, d. h.
es gelten mit den Bezeichnungen fiir die Momentenfunktion

M(x) = EJw" (6.53)

und die Querkrafitfunktion
O(x) = M'(x) (6.54)

die weiteren Bedingungen
Q) — c;w(l) =0 (c,: Druckfederkonstante), (6.55)
M(l) + c2w'(I) = 0 (c2: Drehfederkonstante). (6.56)

Zunichst werden drei Anfangswertaufgaben gelost. Bezeichnet man deren Losungen
mit w,(x), wy(x) und w,(x), so sei
L (EJ(x) wp)" = p(x), wy(0) = 0, wy(0) = 0, M,(0) =0, 0,(0) =0,
(6.57)

IL (EJ(x)wy)" = 0, w;(0) = 0, wi(0) = 0, M,(0) = 1, 0,(0) = 0, (6.58)

IIL (EJ(x)w5)" = 0, wa(0) = 0, w5(0) =0, M,(0) = 0, 0,(0) ='1. (6.59)
Aus (6.57), (6.58), (6.59) in Verbindung mit (6.53), (6.54) folgt, daB alle Funktionen
w(x), die sowohl der Differentialgleichung (6.51) als auch den Anfangsbedingungen
(6.52) geniigen, durch

w(x) = wy(x) + Cywy(x) + Cowa(x)

(Cy, C> beliebige Konstanten) (6.60)
angegeben werden konnen. Zur Losung der RWA (6.51), (6.52), (6.55), (6.56) wird
(6.60) in (6.55) und (6.56) eingesetzt. Es ergibt sich ein lineares Gleichungssystem
fiir C; und C,. Setzt man schlieBlich die ermittelten Werte fiir C; und C, in (6.60)

ein, so erhilt man die Losung der urspriinglich gegebenen Randwertaufgabe (6.51),
(6.52), (6.55), (6.56).

Aufgabe 6.6: Man 16se die RWA des Beispiels 6.3 und ermittele M(x) und Q(x) im folgenden
Spezialfall: .

MN

I = 5m, EJ(x) = const = 1250 MNm?, ¢, = SOOT , ¢z = 5000 MNm (6.61)

und
1 ) MN

px) =g + Fo|x — 5 mit g = const = 2T und F = 5MN, (6.62)

wobei
1
Fé(x - —2—) (6.63)

folgendes bedeutet (vgl. 3.3.9.): Man arbeite zundchst mit derjenigen Streckenlast, die im (kleinen)
Intervall
4 3
272
4 Wenzel, Gew. Diff. 2

A

x + (6.64)

A
o)~
| o
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F
den konstanten Wert r annimmt und in den librigen Punkten des Intervalls 0 < x < / gleich
null gesetzt wird. Im Ergebnis ist dann der Grenziibergang ¢ — +0 durchzufiihren. Technisch be-

!
deutet (6.63) den Angriff einer Einzellast F senkrecht zur Balkenachse im Punkte x = 7

Der nichtlineare Fall ist komplizierter, da man dann nicht mehr das Superposi-
tionsprinzip zur Verfiigung hat. Wir illustrieren das am

Beispiel 6.4: Fiir y = y(x) (0 £ x < a) sei eine RWA gegeben, bestehend aus der
(im allgemeinen nichtlinearen) expliziten Differentialgleichung zweiter Ordnung

V"= fx, ) (6.65)
und den Randbedingungen

»0) =0, (6.66)

»a)=b. (6.67)

Zunichst beschiftigt man sich  mit einer Schar von Anfangswertaufgaben. Ist o
der Scharparameter, so sei die Losung der zu o gehorigen AWA durch

Y = Y(x,w) (6.68)
bezeichnet. Damit kann die Schar von AWA angegeben werden. Y geniige als Funk-
tion von x der Differentialgleichung (6.65), d. h. es gelte

%Y

- f(x, Y, %—:) . (6.69)

Als Anfangsbedingung fiir Y(x, w) werde
Y(0,w) =0, da_x Y0,0) =w (6.70)

vorgeschrieben. Man wird nun fiir einige w-Werte die AWA (6.69), (6.70) 16sen
und priifen, fiir welches = w, die Losung Y(x, w,) an der Stelle x = a der Zahl b
aus der Randbedingung (6.67) am nichsten kommt, also

Y(a,wo) = b + Ab mit ,,|Ab| klein* (6.71)
gilt.
Zur Verbesserung des Wertes w = wg studieren wir, wie sich Y bei festem x dndert, falls o in
der Umgebung von @ = w, variiert. Hierzu wird man die Funktion

oY
n(x, ) = vy (6.72)

diskutieren. Aus (6.72) folgt durch partielle Differentiation von (6.69) nach w:

%y Y (x,w) b .0
7 e " om f@x, Yx, &), 5= Y(x, 0) (6.73)
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und weiter mit der Kettenregel
_ YY) + of(x, Y, Y) oy

=~y 3T ox’ 674
8f(, Y,Y)  of(x, Y, Y’ .
Fobellithsh &4z Beyechuimag Ven L. ("ay L (xa = ) fiir ¥ baw. ¥” die Ausdriicke ¥(x,)

0
bzw. a—x- Y(x, o) einzusetzen sind. Im Falle w = ), ergibt sich somit wegen (6.72), (6.73), (6.74) fir

n(x) = n(x, wo) . (6.75)

die gewohnliche explizite lineare Differentialgleichung zweiter Ordnung

7(x) = A(x) n(x) + B(x) 7'(x), . . (6.76)

0
wobei man A(x) bzw. B(x) dadurch herstellt, daB man in die Funktionen Wf(x, Y, Y’) bzw.
7 f(x, Y, Y') fir Y den Ausdruck Y(x, wo) und fiir ¥ den Ausdruck x Y(x, wo) einsetzt. Durch
partielle Differentiation der Anfangsbedingungen (6.70) nach  ergeben sich bei Beachtung von
(6.72) die folgenden Anfangsbedingungen fiir (6.75)

7(0) =0, 70) =1. 6.77)
Dle Funktlon 7(x) genugt also einer /inearen AWA, bestehend aus der zu (6.65) gehorigen Storungs-
(Variati ichung) (6.76) und den Anfangsbedingungen (6.77). Hat man 7(x) be-
rechnet, so interessiert insbesondere der Funktionswert an der Stelle x = a, d. h. [siehe (6.75)]
n(a@) = n(a, wo). (6.78)
Der Ausdruck Y(a, wo + Aw) wird jetzt beziiglich Aw nach Taylor an der Stelle Aw = 0 entwickelt.
Die Rechnung ergibt wegen (6.72), (6.75), (6.78)

Y(a,wo + Aw) = Y(a, wo) + n(a@) Ao + ... (6.79)
und damit wegen (6.71)
Y(a,w0 + Aw) = b + Ab + n(a) Ae + .... (6.80)

Die Funktion Y(x, wo + Aw) ist also dann eine bessere Néherung als Y(x, ) fiir die Losung y(x)
der RWA (6.65), (6.66), (6.67), wenn man

Ao = — ——p (6.81)
7

setzt.

6.3. Behandlung von Randwertaufgaben durch Diskretisation (Differenzen-
verfahren)

Wir legen eine weitere Methode zur Lsung von RWA vor. Thr Wesen besteht
darin, in der Differentialgleichung und in den Randbedingungen alle Differential-
quotienten durch (verallgemeinerte) Differenzenquotienten zu ersetzen. Ehe wir im
Beispiel 6.6 die Methode vorfiihren, nennen wir als Vorbereitung die folgende

Definition 6.1: Unter einem finiten Ausdruck r-ter Ordnung (r = 0, 1, ...) fiir die
n-te Ableitung der Funktion y(x) an der Stelle x = x, versteht man eine Summe der
Gestalt

n+r+1

kZI Coy(x, + ah), (6.82)

4%

D.6.1
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deren Taylorentwicklung beziiglich h mit der Entwicklungsstelle h = 0 folgendermaflen
beginnt:
n+r+1

k; Cuy(xy + oh) = yP(X) B+ st 4+ ™42+

(6.83)

Bemerkung 1 zur Definition 6.1.: Bei gegebenen Werten fiirr o (k = 1, ...,n + r + 1)
gibt es mindestens ein (n + r + 1)-tupel (Cy, Cs, ..., Cp,pyy) derart, daB (6.83) gilt.

Bemerkung 2 zur Definition 6.1: (6.83) liefert die Moglichkeit, die n-te Ableitung
der Funktion y(x) an der Stelle x = x, ndherungsweise durch einen finiten Ausdruck
r-ter Ordnung darzustellen:

1 mirtt )
YO (x,) = ¥ kgx Cy(xy + oh) + R mit R = —d, ., i+ ...

(6.84)

Beispiel 6.5: Im Falln = 2,r = 0und &¢; = —1, &, = 0, 3 = 1 liefert die Taylor-
entw1ck]ung

3 3

kZ Co(x, + (k — 2)h) = y(x,) Z Ci + hy'(x,) Z Gk — 2)

+ ih y"(x,) Z Gk — 2 + h“ Y (x,) Z Ci(k — 2)°

+ —h“y’”’(x,) Z Culk = 2)* + ... (6.85)

4! k=1

Um in (6.85) die Struktur aus (6.83) zu erhalten, muf3

3 3 3

2 G=0, ¥ Gk-2=0, Z Cuk — 2)* = 2! (6.836)

k=1 k=1 k=1
gefordert werden. In (6.86) stehen drei lineare Glelchungen fiur C;, C,, C;3. Es
ergibt sich

C;=1,C=-2,Cy=1. (6.87)

Beachtet man, daB ,,zuféllig* Z Cy(k — 2)* = 0 ist, lautet (6.84) im vorliegenden
Beispiel

y'(x,) = F(y(xv —h) = 29(x,) + y(x, + ) + R (6.88)
mit X
1
R=-— ﬁhzy”"(xv) + ... (6.89)
*  Aufgabe 6.7: Analog zum Beispiel 6.5 behandle man die folgenden Fille:
aAn=1,r=0,0, = -l =1,
n=1Lr=206=-20,=—-1,a3 =104 =2,

n=4r=0,0, =k —-3(k=1234)5.
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Die Anwendung der Definition 6.1 bei der Lésung von Randwertaufgaben zeigen
wir am

Beispiel 6.6: Gegeben sei die Randwertaufgabe fiir y(x)
V"' =fx), ¥0) =0, y(@) = b. (6.90)

Es wird eine Diskretisation vorgenommen, d. h., man teilt das Intervall 0 £ x < a
in n Teile durch die n + 1 Teilpunkte

0=x0 <X <X2 <10 <Xpy < Xp=a. (6.91)

Wihlt man die Teilintervalle alle gleich lang, so gilt
x,=vh (#=0,1,..,n) mit h=;"7. (6.92)

Man begniigt sich nun damit, fiir die Lésung y(x) der RWA lediglich an den Stellen
x, (» = 0, 1, ..., n) Ndherungswerte ¥, (v = 0, 1, ..., n) fiir die Funktionswerte y(x,)
(» =0, ..., n) zu bestimmen. Man néhert hierzu alle Ableitungen, die in der RWA
vorkommen, durch finite Ausdriicke (siehe Definition 6.1) an. Ersetzt man beispiels-
weise y’’-aus (6.90) an den Stellen x, = vA (v = 1,2, ...,n — 1) durch die rechte
Seite von (6.88) [ohne R], so ergibt sich nach Multiplikation mit 4% mit den oben
eingefiihrten Bezeichnungen

Y1 = 2Y, + Yyuu = W¥f(x), (?=1,.,n—1). (6.93)
Die Randbedingungen aus (6.90) geben zu
Y=0,Y,=b (6.94)

AnlaB. Fiir n = 8 beispielsweise lautet (6.93) unter Beachtung von (6.94) aus-
fiihrlich

=2Y, + Y, = h*f(xy),
Y, —2Y, + Y53 = B*f(x,),
Y, = 2Y; + Y, = IPf(x3),
Yy — 2Y, + Y5 = h*f(x,),
Yy = 2Ys + Y5 = h*f(xs),
Ys — 2Ys + Yo = ¥(xe),
Ys — 2Y, = h*f(x;) — b. (6.95)

Im Gleichungssystem (6.95) sind in jeder Gleichung hochstens drei Unbekannte
miteinander verkniipft. Die Matrix des Gleichungssystems enthilt viele Nullen;
die von null verschiedenen Elemente ordnen sich in einem Band an, das von links
oben nach rechts unten fiihrt. Derartige Bandmatrizen treten immer auf, wenn eine
Randwertaufgabe der Diskretisation unterworfen wird. Mit diesen grundsitzlichen
Erorterungen miissen wir uns hier begniigen. Zur numerischen Auswertung und
Fehlerabschdtzung verweisen wir auf die Binde 13 und 18 und die dort zitierte
Literatur.
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6.4. Lineare Rand- und Eigenwertaufgaben

Definition 6.2: Eine Randwertaufgabe fiir eine Funktion y = y(x) (Definition 1.6)
heif3t linear, wenn die Differentialgleichung linear ist, also

Zoav(x) yOx) = g(x), alx) £ 0, (6.96)
gilt und wenn beim Einsetzen der allgemeinen Lisung

V(X)) = yu(x) + yp(x) (6.97)
mit

() = Ciypi(®) + ..o + Cuyplx) (6.98)

Iy die vorliegenden Randbedingungen sich ein lineares Gleichungssystem fiir die
Cy, ..., Cyergibt.

Die lineare Randwertaufgabe heifSt homogen, falls die Differentialgleichung homogen
ist und wenn das Gleichungssystem fiir die C,, ..., C, homogen ist; andernfalls heifst
sie inhomogen.

Definition 6.3: Unter einer linearen Eigenwertaufgabe versteht man eine lineare
homogene Randwertaufgabe, wobei eine Konstante ). (Eigenwertparameter 1 genannt),
deren Werte einer Menge von reellen Zahlen oder auch komplexen Zahlen zu ent-
nehmen sind, entweder in der Differentialgleichung oder in den Randbedingungen oder
sowohl in der Differentialgleichung als auch in den Randbedingungen auftritt. Alle
diejenigen A-Werte, fiir die es nichttriviale Lisungen der Randwertaufgabe, d. h.
Losungen

y(x) mit y(x)E0
gibt, heiflen Eigenwerte, die zugehdrigen nichttrivialen Losungen der Randwertaufgabe
heiffen Eigenlosungen.

Zusatz zur Definition 6.3: Nimmt man zu den Eigenlgsungen, die zum Eigenwert 4,
gehoren, noch die Losung y = 0 hinzu, so bilden sie einen linearen Raum, Eigen-
raum genannt. Die Dimension des Eigenraumes heilit Vielfachheit des zugehdrigen
Eigenwertes 4.

Aufgabe 6.8: Wird durch (6.1), (6.2), (6.3) aus Beispiel 6.1 eine lineare Randwertaufgabe gegeben?
Ist sie gegebenenfalls linear homogen oder linear inhomogen?

Aufgabe 6.9: Wird durch (6.23), (6.24) aus Beispiel 6.2 eine lineare Eigenwertaufgabe
gegeben?

Eine lineare inhomogene Randwertaufgabe behandeln wir im

Beispiel 6.7: In einer Vollkugel vom Radius R werde in ihrem Inneren pro Volumen-
und Zeiteinheit die konstante Warmemenge Q erzeugt. Im stationdren Zustand
stellt sich infolge der Warmeleitung ein nur vom Abstand r vom Mittelpunkt
abhéngiges Temperaturfeld 7 = T(r) ein, das der linearen inhomogenen Differential-
gleichung

0

T+ 2T =~ =r 0<r<R (6.99)
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und der Randbedingung
—oT'(R) = fT(R) (6.100)

geniigt. Hierbei sind « > 0 bzw. p > 0 konstante Warmeleitungs- bzw. Ubergangs-
zahlen. Die Differentialgleichung (6.99) ist zwar beziiglich 0 < r < R eine explizite,
beziiglich 0 < r < R jedoch eine implizite Differentialgleichung (Definition 1.2). Da-
mit ist die Existenz- und Unitatsaussage aus Satz 3.1 fiir die Stelle » = 0 nicht an-
wendbar. Insbesondere kann aus (6.99) fiir die Stelle » = 0 nicht die Stetigkeit jeder
Lésung 7 = T(r) gefolgert werden. Es ist deshalb nicht uberﬁussng, neben (6.100)
noch die Randbedingung

LHlim T(r) existiert (6.101)
r=+0

zu fordern. Multiplikation von (6.99) mit r liefert eine Eulersche Differentialgleichung.
Mit den Hilfsmitteln aus Band 7/1 ergibt sich fiir (6.99) die allgemeine Losung

= G Y 2
‘ T(r) =C; + —r- - al’ . (6102)
In (6.102) existiert der Grenzwert (6.101) genau im Fall
C, =0. (6.103)
Danach setzen wir (6.102) mit (6.103) in die Randbedingung (6.100) ein und erhalten
= 1 2
C = [3 5+ R } (6.104)

Aus (6.102), (6.103), (6.104) folgf als Losung der linearen inhomogenen Rand-
wertaufgabe (6.99), (6.100), (6.101)

R 1 '
T(r) = Q|=5 + —(R* — r? ] 3
(r) Q[3ﬁ + 55 ) (6.105)
Aufgabe 6.10: Fiir das zur Kugel aus Beispiel 6.7 gehdrige Verschiebungsvektorfeld u(r) ergibt sich *
ur) =fr (r=lr) (6.106)
mit
lim u(r) = o (6.107)
r—+ow
und
1+
of () + 4f ) = 75 vT'®) (6.108)
[0 < » < %: Querdehnzahl, y > 0 Wir: deh hl, T(r) siche (6.105)]. Gesucht ist die

Radialspannung (G: Schubmodul)
or) = (1 +0f)+ A =) () — A+ ) VT(r)L (6.109)

falls auf der Kugeloberfliche der konstante Druck p > 0 wirkt, also die Randbedingung

o R) = —p (6.110)
gilt. .
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Im Beispiel 6.1. ergaben sich genau zwei Losungen. Bei /inearen Randwertaufgaben
kommt dies nicht vor. Es gilt der

Satz 6.1 (Alternativsatz): Entweder hat die lineare inhomogene Randwertaufgabe genau
eine Losung — und damit die zugehirige homogene Randwertaufgabe nur die triviale
Losung y = 0 — oder die zugehiorige homogene Randwertaufgabe hat nichttriviale Lo-
sungen, wihrend die inhomogene nur noch fiir besondere Werte der rechten Seiten des
Gleichungssystems losbar ist — ndmlich genau dann, wenn die Ringe der Koeffizienten-
matrix und der erweiterten Koeffizientenmatrix einander gleich sind (Band 13) — und
dann unendlich viele Losungen besitzt.

Beispiel 6.8: Die Durchbiegung w = w(x) des beiderseitig gelenkig gelagerten Druck-
stabes (Druckkraft F) mit der konstanten Biegesteifigkeit £/ und einer Querbelastung
g = ¢q(x) geniigt der linearen Randwertaufgabe

F
i o <x<li=_21_ :

W I =q(x), 0 s x S 2= 57, (6.111)

w(0) = 0, w’(0) = 0, w(l) = 0, w'(l) = 0. (6.112)
Wir fithren die Rechnung im Fall

q(x) = q, sin—zlgc— + 4, sin-2~7;i (q1, q> Konstanten) (6.113)
durch. Mit den Hilfsmitteln aus Band 7/1 erhalten wir im Fall

m\2 27\ 2 ’
;.>0,H.(T) ,H(T) (6.114)

fiir (6.111) die allgemeine Losung
Wx) = C; + Cox + C cos (v/2x) + Cy sin (v/7%)

[Fe o TX {5 . 2mx

MLy = iy B L ey T Uy IS
Einsetzen von (6.115) in die Randbedingungen (6.112) ergibt das lineare Gleichungs-
system fiir Cy, ..., Cq:

(& + G, =0,
—1C; =0,
Cy + Gyl + Cscos (V1) + Cysin(\/AD) =0,
— Cyhcos (1) — Culsin (/A1) = 0. (6.116)
Die Koeffizientendeterminanten von (6.116) ist gleich
— 221 sin (/1) , (6.117)
und damit im vorliegenden Fall (6.114)
ungleich null, falls 4 + (k—l")z & = 3,4,..), (6.118)

. km\?
gleich null, falls 2 = (T) k =3,4,..) (6.119)
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ist. Falls (6.118) gilt, hat das Gleichungssystem genau eine Losung, ndmlich C; = C,
= C; = C, = 0. Mit diesen Werten fiihrt (6.115) zu genau einer Losung der linearen
Randwertaufgabe. Falls jedoch (6.119) gilt, erhélt man aus (6.116) die unendlich
vielen Losungen C, = 0, C; = 0, C3 = 0, C, = beliebig, die in (6.115) eingesetzt
zu unendlich vielen Lésungen der Randwertaufgabe fithren. Damit haben wir im
Fall (6.114) die Losungen der Randwertaufgabe (6.111), (6.112) gefunden. Liegt der
Fall

i= (})2 (6.120)

vor, so lautet die allgemeine Losung von (6.111)

3
wx) =C; + Cox + Cs cos% + Cy sin%—}— a1 #xcos%

* . 2mx
+ @2y sin =~ (6.121)
und fiithrt nach dem Einsetzen in die Randbedingungen zu
C, +C; =0,

2
(i) eno
l4

Cy + Gyl —C3=F¢]1,
m)2 = -
(F) &= - 5=a (6122)
Aus (6.122) liest man die folgenden beiden Falle ab:
,,(6.122) ist nicht 16sbar, falls g, = 0 ist* (6.123)
,,(6.122) hat unendlich viele Lsungen, falls ¢, = 0 ist*, (6.124)

namlich C; = C, = C3 = 0, C, = beliebig. Also erhalt man im Fall (6.123) keine
und im Fall (6.124) unendlich viele Lésungen der Randwertaufgabe.

2
Die Diskussion des Falles 4 = (277‘:) kann dem Leser iiberlassen werden.

Bemerkung 1 zum Beispiel 6.8: Analog der Bemerkung 1 zum Beispiel 6.2 ist die Aufgabe (6.111),
T 2
(6.112) fiir die Anwendung nur im Fall 0 < 2 < T) brauchbar. Aus (6.115) folgt:
Selbst wenn im Storglied (6.113) das ¢; = 0 seinem absoluten Betrag nach sehr klein ist, so {iber-

T 2
wiegt in der Losungsformel der ¢; enthaltende Summand, falls nur 4 nahe genug bei (T) liegt. Es

2
i
wird empfohlen, mit 0 < 4 < (T) die Losung (6.115) zunéchst im Fall g; = 0 zu skizzieren

T 2
und sich dann zu iiberlegen, wie im Fall ,,sehr kleines |q1| =+ 0, aber 4 in der Nihe von (7) “in

der Losungsformel (6.115) ein Durchschlagen von w(x) infolge des g; enthaltenden Summanden
eintritt.

5 Wenzel, Gew. Diff. 2
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Bemerkung 2 zum Beispiel 6.8: Das Phinomen des Durchschlagens ist auch bei Storgliedern anderer
Gestalt zu beobachten. Man denke sich hierzu diese in Fourierreihen derart entwickelt, daB} (6.113)
als Beginn dieser Entwicklungen aufgefa8t werden kann.

Aufgabe 6.11: In Fortsetzung der Aufgaben 5.27 und 5.29 soll die lineare Eigen-
wertaufgabe (V.2), (V.6) aus dem Vorwort behandelt werden.
a) Wie lautet die Eigenwertgleichung fiir den Eigenwertparameter «?

b) Wie lautet das Ergebnis von a) im Fall des Seiles ohne daranhdangendem Massen-
punkt, d. h., was ergibt sich beim Grenziibergang m — +0 und damit L — [?

¢) Im Fall, daB3 die Punktmasse m die Seilmasse o/ sehr stark iiberwiegt, — es ist dann
L groB3 — benutze man im Ergebnis von a) die asymptotischen Entwicklungen (5.231),
wobei von den dortigen asymptotischen Reihen nur die absoluten Glieder zu be-
riicksichtigen sind, und beachte Aufgabe 5.27 sowie die Gleichung (5.225). Man
notiere das Ergebnis in der Gestalt w = f(w).

d) In f(w) aus c) ersetze man \/L — lund \/Z — \/L — Idurch die ersten von null
verschiedenen Glieder ihrer Taylorentwicklungen beziiglich / an der Stelle / = 0.

€) Zur Bestimmung einer Naherung fiir die kleinste positive Lsung der Gleichung
1 .
o = f(w) aus d) ersetze man Ty durch das erste von null verschiedene Glied

seiner Potenzreihenentwicklung beziiglich @ an der Stelle w = 0. Man vergleiche
das gefundene o mit der Kreisfrequenz des mathematischen Pendels.

Beispiel 6.9: Im AnschluB an die Aufgaben 5.13, 5.17 und das Beispiel 5.14 wird die lineare Eigen-
wertaufgabe (V.3), (V.4), (V.7), (V.8) behandelt. Zunichst setzen wir

E <0 unddamit 4 <0 (6.125)
voraus. Mit
ﬁ1=\/:‘—}hﬂz= —\/__2 (6.126)

ergibt sich wegen (5.180), (5.181) beim Einsetzen von (5.179) in (V.8) fiir C, der Wert null, weil
Ry(r) fir r > + oo nach Unendlich divergiert. Also haben die Eigenfunktionen die Struktur

CaRolr) = e VFrmn(r), o= —1 4 —ee (6.127)
=
mit
4 ©
Cov(r) =Y Er". (6.128)
=0

Andererseits zeigt die Losung der Aufgaben 5.13 und 5.17, daB8 die Eigenfunktionen infolge der
Randbedingung (V.7) in der Gestalt

@
CiRi()=r'Y e’ (0=r< o) (6.129)
v=0
angebbar sein miissen. Aus (6.127), (6.129) folgt fiir die Entwicklung von () an der Stelle r =0

© a
o) =rottY g, o= —14 —=. (6.130)
7
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Einsetzen von (6.130) in (5.175), (5.176) fiihrt schlieBlich zur Rekursionsformel
B 2CA -0 —1)
ST l—motl—a D+ 2+ Dot -Dta@+ DI+ D!
v=12..) (6.131)

Sollte in (6.131) der Zahler fiir kein » verschwinden, so ist (6.127) mit (6.130) gewiB keine Eigen-
funktion, weil dann im Widerspruch zu (6.128) lim v(r) = oo gelten wiirde. Als Beweisskizze weisen

row

wir darauf hin, daB fiir groBe » in (6.131) das a, im wesentlichen durch

2=
v

festgelegt ist und daB damit dann @, im wesentlichen durch

ay = Qy_1

< \/m L (6.132)
angegeben werden kann. SchlieBlich ist

i ¢ \/ M SR (6.133)
eine Funktion mit lim r—%+! e2‘/:7" = + o0.

ro
Also ist fiir die Eigenfunktion notwendig, da in (6.130) und damit auch in (6.128) die unendliche
Reihe abbricht.
Der Zihler in (6.131) verschwindet fiir » = k (k = 1, 2, ...), falls
a=k+1-1 (6.134)
ist. Dann liefern (6.127) und (6.130)

2 o2 -4 . k=1
GR()=e *F1 T ap. (6.135)
r=0
(6.135) geniigt sowohl der Differentialgleichung (V.3) als auch den Randbedingungen (V.7), (V.8),
liefert also Eigenfunktionen. Die zugehdrigen Eigenwerte ergeben sich aus (6.134), (6.130) und (V.4)
zu
2m2mZ? e*

E=— e (I=0,1,...; k= 1,2, ...; Elementarladung). (6.136)
Damit ist die Diskussion des Falles (6.125) abgeschlossen.
Im Fall
E>0 und damit 4> 0 (6.137)

ist in (5.180) By = in/4 bzw. B, = —i /7.

Fiir r% sind jetzt die Formeln
1 1 ai ai
—r Wi, —rivi,dh —evi, —e V2 (6.138)

einzusetzen. Infolgedessen geniigt nun die Losung (5.179) der Differentialgleichung (V.3) der
Beschrinktheitsbedingung (V.8). Aus der Losung von Aufgabe 5.13 kann damit gefolgert werden:

jedes E > 0 ist Eigenwert. ) (6.139)
& '
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Die zugehéorigen Eigenfunktionen haben die Struktur
0
Ri(r)=r'Y e (0OSr< + o). (6.140)
=0

Auch E = 0 ist Eigenwert, wie sich séhliefslich aus den Ergebnissen der Aufgaben 5.23 und 5.13 ab-
lesen laft.

6.5. Hermitesche Differentialoperatoren

Um einer gegebenen Eigenwertaufgabe bereits ohne Rechnung Aussagen iiber
die Eigenwerte und die dazugehérigen Eigenfunktionen entnehmen zu kdnnen,
wird man gewisse Klassen von Eigenwertaufgaben studieren und jeweils zugehdrige
Satze beweisen.

Wir beginnen mit der

Definition 6.4: Ist eine lineare Eigenwertaufgabe gegeben, deren Randbedingungen
nicht den Eigenwertparameter 1. enthalten und deren Differentialgleichung die Gestalt

L[y] = 2M[y] (6.141)
mit
Lyl = Z a,(x)y” und M[y] =X b,(x)y® (n < n) (6.142)
»=0

besitzt, so sind L[u] und M[u] Zuordnungsvorschriften, die zu linearen Differential-
operatoren gehdren. Den Definitionsbereich bilden neben u = 0 die Vergleichsfunk-
tionen u % 0, das sind geniigend oft differenzierbare Funktionen, die den gegebenen
Randbedingungen, jedoch nicht notwendig der Differentialgleichung (6.141) geniigen.

Zusatzforderung fiir die Definition 6.4: Die Vergleichsfunktionen sollen iiber die
Definition 6.4 hinaus so beschaffen sein, daB die Integrale

[lul? dx,  [IM[u]?dx, [|L[u]* dx (6.143)
J J J

- gegebenenfalls als uneigentliche Integrale — existieren, wobei J das zur Eigenwert-
aufgabe gehorige Intervall ist.

Bemerkung zur Zusatzforderung: Durch diese Forderung kann es vorkommen, daf3
man gewisse Eigenwerte nicht erfa3t, weil deren Eigenfunktionen nicht (6.143) ge-
niigen. Wir weisen hierzu auf die Eigenwerte E > 0 aus (6.139) des Beispiels 6.9 hin.
Man vergleiche damit auch die Begriffe Punktspektrum und kontinuierliches Spek-
trum im Band 22.

Damit ist die Grundlage geschaffen fiir die

Definition 6.5: Ein linearer Differentialoperator heift (beziiglich des Intervalles J) her-
mitesch, falls fiir alle Vergleichsfunktionen u(x), v(x) stets

[ I]vdx = [ uL[v] dx . (6.144)
J J

gilt.

Bemerkung zur Definition 6.5: In der klassischen mathematischen Literatur findet
man anstatt ,hermitescher Differentialoperator auch die Bezeichnungen ,,sym-
metrischer Differentialoperator und ,,selbstadjungierter Differentialoperator<.
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Definition 6.6: Ein hermitescher Differentialoperator heifit positiv definit, wenn fiir D. 6.6
alle Vergleichsfunktionen u

[ ZuJudx >0 (6.145).
Fe

gilt; er heifst negativ definit, wenn in (6.145) das >-Zeichen durch das <-Zeichen zu
ersetzen ist. Nimmt das Integral aus (6.145) fiir einige u positive Werte, fiir andere u
jedoch negative Werte an, so heifit der hermitesche Differentialoperator indefinit.

Gilt neben (6.145) auch fL[—u] udx = 0, jedoch nicht fL_[E]-u dx < 0, so spricht

J J
man von einem positiv semidefiniten hermiteschen Differentialoperator. Schlieflich
liegt ein negativ semidefiniter hermitescher Differentialoperator vor, wenn genau die

Fille [Lfu]udx <0 und [ L[u]udx =0 vorkommen.
J J

Beispiel 6.10: Wir diskutieren die Eigenwertaufgabe fiir w(x) der Aufgabe 6.3.
Sie besteht aus der Differentialgleichung (6.23)

w' = =" 0=x=1) (6.146)
und den vier linearen homogenen Randbedingungen

w(0) = 0, w'(0) =0, w(l) =0, w'(l) =0. (6.147)
Der durch

Mlu] = —u", u(0) =0, '(0) =0, u(l) =0, () =0 (6.148)

gegebene lineare Differentialoperator zweiter Ordnung ist hermitesch, denn es gilt
fiir beliebige Vergleichsfunktionen u(x), v(x) (0 < x < /) zunéchst
1 t

1
Mulvdx = [ —u"vdx = [—uvlh+ [ v dx
0 0 (]

1

= = (Do) + u ) o(0) + @) v'(l) = u(©0) v'(0)) ~ [ w” dx.

0

(6.149)

Da nicht nur u(x), sondern auch v(x) Vergleichsfunktionen sein sollen, so geniigen
nicht nur u(x), sondern auch v(x) den Randbedingungen (6.147). Infolgedessen
verschwinden auf der rechten Seite von (6.149) alle auBerhalb des Integrals stehenden
Summanden. Also kann die Rechnung folgendermafBien fortgesetzt werden:

1 L 1

[ Miulvde = [ u(— v")de = [ uM[v]da. (6.150)

1] ) ]
Damit ist die Hermitezitit von (6.148) bewiesen. M[u] ist dariiber hinaus positiv
definit, denn zunéchst gilt fiir beliebige Vergleichsfunktionen u(x)

1 . 1 1

[ Miudx = [ — W udx = [-duly + [ w' dx

0 J ]

1]

= [w]Pdx 2 0. . (6.151)
0
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In (6.151) wird in =0 das Gleichheitszeichen von keiner Vergleichsfunktion u(x)
realisiert, denn sonst miiBte der Integrand, der ja niemals negative Werte annimmt,
fiir 0 < x </ gleich null sein. Infolgedessen wire u(x) = const. Aber diese Kon-
stante miiBte gleich null sein, weil u(x) als Vergleichsfunktion den Randbedingungen
(6.147) geniigt. Da nach Definition 6.4 eine Vergleichsfunktion nicht identisch
null ist, kann in der Tat (6.151) zu

[ w2 dx >0 (6.152)

o

abgedndert werden, und damit ist die positive Definitheit von (6.148) bewiesen.

Aufgabe 6.12: In Fortfithrung der Untersuchungen des Beispiels 6.10 zeige man,
daB der durch

Liu] = v, u(0) =0, w'(0) = 0, u(l) = 0, (/) = 0 (6.153)

gegebene lineare Differentialoperator vierter Ordnung hermitesch und positiv definit
ist.

Nachdem wir in diesem Abschnitt den Begriff hermitescher Differentialoperator
eingehend studiert haben, setzen wir in den nichsten Abschnitten das am Anfang
von 6.5. genannte Programm fort.

6.6. Rayleighscher Quotient

Zur Berechnung der Eigenwerte einer Eigenwertaufgabe haben wir bisher zunéchst
die allgemeine Losung der zugehdrigen linearen homogenen Differentialgleichung
bestimmt, mit Hilfe der Randbedingungen die Eigenwertgleichung aufgestellt und
diese schlieBlich geldst. Selbst bei Differentialgleichungen mit konstanten Koeffi-
zienten kann dieses Vorgehen zu aufwendigen Rechnungen fithren. Man vergleiche
hierzu die Aufgaben 6.3 und 6.4. Interessiert man sich nur fiir den kleinsten Eigen-
wert, so kann man das Losen der Differentialgleichung und das Aufstellen der
Elgenwertglelchung umgehen (Bemerkung 1 zum Satz 6.5). Zunéchst bendtigen
wir die

Definition 6.7: Gegeben sei eine lineare Eigenwertaufgabe aus der Definition 6.4.
Jeder Vergleichsfunktion u(x) der Eigenwertaufgabe wird durch dze Zuordnungsvor-
schrift

[ Lu] udx

s 6.
Riu) = fM[u]udx (6.154)

eine Zahl zugeordnet, falls der Nenner in (6.154) nicht verschwindet. Das durch (6.154)
gegebene Funktional (Band 1) heifit Rayleighscher Quotient.
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Hieraus folgt der

Satz 6.2: Sind in der linearen Eigenwertaufgabe der Definition 6.4 die Operatoren L S. 6.2

und M hermitesch sowie M positiv definit, so werden vom zugehdrigen Rayleighschen
Quotienten stets nur reelle Werte geliefert. .

Zum Beweis von Satz 6.2 wird nachgewiesen, daB in (6.154) der Zahler reell ist.
Die Rechnung liefert infolge (6.144)

[ Zludx = [ uLlu]dx = | uLfu]dx. (6.155)
J J J
Also ist J‘Im:tdx gleich seinem konjugiert-komplexen Wert und damit reell.

J
Der Nenner in (6.154) ist positiv, denn M[u] ist nach Voraussetzung positiv definit.
Im Zusammenhang mit dem Satz 6.2 steht der

Satz 6.3: Alle Eigenwerte von Eigenwertaufgaben aus Satz 6.2 sind reell. S.6.3

Zum Beweis sei A ein Eigenwert und y(x) eine zugehdrige Eigenfunktion. Wir
gehen in (6.141) beiderseits zum konjugiert komplexen Wert iiber, multiplizieren
danach beide Seiten mit y(x) und integrieren iiber das zur Eigenwertaufgabe gehérige
Intervall J:

[Ihlydx =1 [ My]ydx. (6.156)
J J
Also ist
[ Iy dx
A (6.157)
| Mlylydx

Aus (6.157) folgt in Verbindung mit Satz 6.2, daB 7 reell und damit Z = 2 ist. Als
Folgerung entnehmen wir dem Beweisgang zu Satz 6.3 noch den

Satz 6.4: Ist fiir eine Eigenwertaufgabe 1 ein Eigenwert und y(x) eine zugehdrige S. 6.4

Eigenfunktion, so liefert der Rayleighsche Quotient (6.154) an der Stelle u = y den
Eigenwert A:
[ Iplydx
A= — (6.158)
[ MD]ydx

J
Zur Vereinfachung der Sprechweise nennen wir die

Definition 6.8: Eine Eigenwertaufgabe aus Satz 6.2 heift positiv definit [5zw. positiv D.6.8

semidefinit], wenn der durch L[u] aus (6.141) erzeugte hermitesche Differentialoperator
positiv definit [bzw. positiv semidefinit] ist.

Aufgabe 6.13: Man zeige: Alle Eigenwerte A einer positiv definiten (bzw. positiv *
semidefiniten) Eigenwertaufgabe sind gréBer als null (bzw. groBer oder gleich null).
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Wir nennen den fiir numerische Verfahren wichtigen

Satz 6.5: Gegeben sei eine positiv definite Eigenwertaufgabe fiir y(x) (a < x < b). Der
Rayleighsche Quotient nimmt auf der Menge der Vergleichsfunktionen seinen kleinsten
Wert an; dieser ist gleichzeitig der kleinste Eigenwert, wobei die Funktion u, fiir die
der Rayleighsche Quotient seinen kleinsten Wert annimmt, eine zu diesem Eigenwert
gehorende Eigenfunktion ist.

Bemerkung 1 zum Satz 6.5: Die Minimaleigenschaft im Satz 6.5 wird bei der nihe-
rungsweisen Berechnung des kleinsten Eigenwertes ausgenutzt. Setzt man in den
Rayleighschen Quotienten fiir u(x) eine ziemlich grobe Naherung fiir eine zum klein-
sten Eigenwert gehorige Eigenfunktion ein, so liefert (6.154) dennoch eine relativ
gute Naherung fiir den kleinsten Eigenwert.

Bemerkung 2 zum Satz 6.5: Es ist zweckmiBig, in (6.154) den Zihler und den
Nenner durch partielle Integration umzuformen und danach die Randbedingung
heranzuziehen, ehe man den Rayleighschen Quotienten zur numerischen Auswer-
tung benutzt.

Zur Illustration der Bemerkungen 1 und 2 nennen wir

Beispiel 6.11: Gegeben sei die positiv definite Eigenwertaufgabe
y'=1y, 0 =x 1), 30) =0, y'0) =0, y'(1) = 0, y'(1) = 0.

(6.159)
Bei Beachtung von Bemerkung 2 liefert die Rechnung
1
f T udx 1 L
e _ {u,,,u]o ja ]
[ uudx [ urdx b =°
0 0 .
— 1 p—
_ 1 [_[ ”u’“)"' J‘ ' dx]
1 N~ o
[ luf? dx =0
0
und damit
1
[ w2 dx
()
R[u] = +——. (6.160)
J' Jul? dx

[

Als Vergleichsfunktion u(x), die eine zum kleinsten Eigenwert gehérige Eigenfunktion
anndhern soll, wihlen wir ein Polynom von méglichst niedrigem Grad. Die Gleichung
(6.160) zeigt, daB Funktionen u(x), die sich nur um konstante Faktoren unterscheiden,
zu iibereinstimmenden Werten R[u] fithren. Vier Randbedingungen sind zu erfiillen.
Wir miissen also ein Polynom ansetzen, das mindestens fiinf Koeffizienten enthilt,
d. h. ein Polynom vom mindestens vierten Grad. Die Rechnung zeigt, dafl

u(x) = x* — 4x3 + 6x* (6.161)
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alle Randbedingungen erfiillt, also eine Vergleichsfunktion ist. Wir setzen (6.161)
in (6.160) ein und erhalten schlieBlich

1 1
144 104 162
"2 _ 2 - = =
f|u| dx = - ,f[u[ dx = <, Rl = o = 12,46 ..
0 0

Zum Vergleich teilen wir den exakten Wert des kleinsten Eigenwertes mit:
A=1236...

Bemerkung 3 zum Satz 6.5: Wihlt man in (6.161) ein Polynom von gréBerem Grad, so bleiben beim
Einsetzen in (6.160) noch einige Koeffizienten unbestimmt, die dann so zu wihlen sind, daB der
Wert fiir R[u] moglichst klein ist. Das hier angedeutete Vorgehen gehort zum Verfahren von Ritz.
Wir miissen hierzu auf Band 18 und die dort angegebene Literatur verweisen.

Auch die in den folgenden Bemerkungen genannten Hinweise kdnnen hier nicht erdrtert werden.

Bemerkung 4 zum Satz 6.5: Bei Beachtung von Bemerkung 2 gilt der Satz 6.5 auch dann noch,
wenn man Funktionen «(x) benutzt, die nur einen Teil der Randbedingungen, sie heiBen wesentliche
Randbedingungen, zu erfiillen brauchen. Man spricht in diesem Zi thang von zuldssi;

. n
Funktionen u(x). Die wesentlichen Randbedingungen enthalten nur Ableitungen bis zur (? - 1)-ten

Ordnung, wenn 7 (gerade) die Ordnung der Differentialgleichung (6.141) ist. In (6.159) sind y(0) = 0,
»'(0) = 0 die wesentlichen Randbedingungen.

Bemerkung 5 zum Satz 6.5: Man kann den Satz 6.5 auch auf alle Fille iibertragen, wo in den rest-
lichen Randbedingungen (das sind die nichtwesentlichen) der Eigenwertparameter A auftritt.
‘

Bemerkung 6 zum Satz 6.5: Die Minimaleigenschaft des kleinsten Eigenwertes kann auf Minimal-
eigenschaften der weiteren Eigenwerte iibertragen werden.

6.7. Einschliefungssatz

Im vorigen Abschnitt liefert der Rayleighsche Quotient beim Einsetzen einer
Niherung fiir eine zum kleinsten Eigenwert gehorige Eigenfunktion stets einen
Wert, der grifler als der gesuchte kleinste Eigenwert ausfallt. Der jetzt zu disku-
tierende EinschlieBungssatz liefert dariiber hinaus einen weiteren Naherungswert,
der kleiner ausfillt als der gesuchte Eigenwert.

Gegeben sei eine positiv definite Eigenwertaufgabe aus Satz 6.2 fiir y = y(x)
(a £ x £ b). Die Ordnung des Differentialausdruckes M aus (6.142) sei gleich null,
d. h. (6.141) werde jetzt spezialisiert zu

Lyl = Ago(x)y (go(x) Z 0). (6.162)
Es sei nun A, ein Eigenwert und y,(x) eine zu 4, gehorige Eigenfunktion:
Lly,] = 24,80(x) yy- (6.163)

Fiir (6.163) kann man auch

L[] - o 6.164)
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schreiben. Mit der Abkiirzung

% = Fi(x), »,x) = Fo(x) ' (6.165)
lautet (6.164) .
LIF,(%)] = go(x) Fo(x), (6.166)
und es ist wegen (6.165)
_ Fo(x)
R (6.167)

Aus (6.165) folgt, daB Fy(x) und Fy(x) Vergleichsfunktionen sind.
Der EinschlieBungssatz geht nun davon aus, daB in (6.166) F,(x) durch irgend-
eine Vergleichsfunktion F,(x) ersetzt wird und in Anlehnung an (6.166) Fy(x) durch
L[F(x)] = go(x) Fo(x) (6.168)
definiert wird. Fo(x) wird im allgemeinen keine Vergleichsfunktion sein. Bildet man
in Analogie zu (6.167) den Quotienten
Fo(x)
Fy(x)’

so ist diese Funktion im allgemeinen nicht konstant. Es gilt jedoch

(6.169)

Satz 6.6 (EinschlieBungssatz): Hat die Funktion (6.169) im Intervall nur positive
Funktionswerte, so liegt zwischen ihrem Maximum und ihrem Minimum mindestens
ein Eigenwert ., der betrachteten positiv definiten Eigenwertaufgabe, d. h., es gilt

max £ox) (6.170)

. Fo(x)
<= :
o _aéxngl(x)

agxso Fi(x) =7

Bemerkung zu Satz 6.6: Es ist zweckmiBig, - zunidchst die Funktion Fy(x) so zu
wihlen, daBl sie moglichst viele Randbedingungen erfiillt. Aus (6.168) ergibt sich
dann F;(x), wobei die entstehenden Integrationskonstanten derart zu wihlen sind,
daB F,(x) alle Randbedingungen erfiillt, also Vergleichsfunktion ist.

Beispiel 6.12 (Fortsetzung von Beispiel 6.11): Die Funktion (6.161).ist Vergleichs-
funktion, wir wéhlen sie fiir Fy(x):

Fo(x) = x* — 4x3 + 6x2. (6.171)

Die Funktion F;(x) ist gemaB (6.168) jetzt wegen der Differentialgleichung aus (6.159)
derart zu bestimmen, da3

Fy"(x) = Fo(x) = x* — 4x3 + 6x2 (6.172)
gilt und F;(x) alle Randbedingungen aus (6.159) erfiillt. Die Rechnung liefert

F(x) = léw(xs — 8x7 + 28x% — 336x3 + 728x?). (6.173)
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Wegen (6.170) ergibt sich aus (6.171), (6.173), daB es mindestens einen Eigenwert 1
der Eigenwertaufgabe (6.159) gibt, fiir den -

min 1680(x* — 4x + 6)

osx=1 X° — 8x% + 28x* — 336x + 728

< max 1680(x* — 4x + 6)

= oszx=1 Xx® — 8x% + 28x* — 336x + 728 ’
d. h. (der Bruch ist fiir 0 < x < 1 monoton fallend)

<

und damit
122 <2 <139 (6.174)
gilt. In Verbindung mit dem Ergebnis aus dem Beispiel 6.11 kann (6.174) zu
12,2 < 1 < 12,46 (6.175)

verscharft werden.

6.8. Entwicklungssatz

Im Rahmen unserer Theorie werden nunmehr die Kenntnisse iiber Fouriersche
Reihen aus Band 3 erweitert. Als Vorbereitung nennen wir die

Definition 6.9: Unter dem relativ zum positiv definiten hermiteschen Differential-
operator M[u] gebildeten Skalarprodukt zweier Vergleichsfunktionen u(x), v(x) ver-
steht man .

Culp) = [ Mu]vdx,b) (6.176)

7
wobei J das zum Operator M gehdérige Intervall ist.
Zusatz 1 zur Definition 6.9: Ist speziell M[u] = o(x)u (o(x) = 0), so heifit
ulpy= [ o(x) mw dx (6.177)

J
das mit dem Gewicht o(x) gebildete Skalarprodukt von # und v.

Zusatz 2 zur Definition 6.9: Ist in (6.177) o(x) =1 (xeJ), so spricht man vom
Skalarprodukt

Culpy = [ avdx. (6.178)
J

1) Anstatt (ulv) ist auch die Bezeichnung («, v) gebriuchlich

D. 6.9
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Hieran schlieBen sich die beiden folgenden Definitionen an:

Definition 6.10: Zwei Funktionen u und v heifien relativ zu einem vorliegenden Skalar-

produkt zueinander orthogomal, wenn ihr Skalarprodukt gleich null ist:
{ulpy = 0. (6.179)

Definition 6.11: Unter der Norm (relativ zu einem vorliegenden Skalarprodukt) ver-

steht man die nichtnegative (reelle) Zahl
llull = ~/<uluy.

Wenn in den folgenden Definitionen von einer Indexmenge Ind gesprochen wird,
so denke man beispielsweise an solche Mengen wie:

(6.180)

0, 1, 2R3
1, 23, 4,
0, +1, 2, +3,
-2, -1, 0, 1, 2,
(v,p) mit »=0,1,2,3,... und u=1,2. (6.181)

Definition 6.12: Ein System von Funktionen @,(x) (x €J, v €Ind) heifit (relativ zu
einem vorliegenden Skalarprodukt) ein Orthogonalsystem, wenn

=0 fir v+u

{plpu> S0 fir v=u (6.182)

gilt.

Definition 6.13: Ein System von Funktionen y,(x) (x€J, veInd) heift (relativ zu
einem vorliegenden Skalarprodukt) ein Orthonormalsystem, wenn

., Pl > =6y, (6.183)
gilt.

Mit diesen Definitionen formulieren wir den
Satz 6.7: Bei Eigenwertaufgaben aus Satz 6.2 sind Eigenfunktionen, die zu verschie-
denen Eigenwerten gehéren, relativ zum Skalarprodukt (6.176) zueinander orthogonal.

Zum Beweis gehen wir von zwei voneinander verschiedenen Eigenwerten 4; und 2,
aus, die jeweils die zugehdrigen Eigenfunktionen y,(x) bzw. y,(x) besitzen mogen.
Es gilt also

Ly,] = 24M[y,]

L[y,] = 2.M[y,]. (6.185)

Wir gehen unter Beachtung von Satz 6.3 in (6.184) zum konjugiert-komplexen
Wert iiber, multiplizieren danach mit y,(x) und integrieren iiber das zur Eigenwert-
aufgabe gehorige Intervall J:

“ Ly ]y, dx =2, f Mly]y: dx.
J J

(6.184)
und

(6.186)
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(6.185) wird mit y; multipliziert, und danach wird iiber J integriert:

[ PiLly2) dx = 2, [ yiMy] dx. (6.187)
J J

Die Gleichungen (6.186) und (6.187) werden nunmehr voneinander subtrahiert: Da
Y1, ¥, spezielle Vergleichsfunktionen und L, M hermitesche Differentialoperatoren
sind, ergibt sich [vgl. (6.144)]

0= — %) [ MIy,]y, dx
J

und damit wegen 4, # 4,
[ My.]y. = 0. (6.188)

J

Zusatz zu Satz 6.7: Nimmt man zur Gesamtheit der zu einem Eigenwert gehorigen
Eigenfunktionen die identisch verschwindende Funktion hinzu, so bilden sie einen
linearen Raum mit der Dimension d. Im Fall d > 1 verabreden wir, stets eine solche
Basis des Eigenraumes zu wihlen, daB je zwei Basiselemente zueinander orthogonal
sind.

Bei den beiden folgenden Sitzen beachte man den Zusatz auf Seite 75.

Satz 6.8: Gegeben sei eine positiv semidefinite Eigenwertaufgabe aus Satz 6.2. Dann
gibt es in vielen Fillen unendlich viele Eigenwerte; sie sind alle positiv oder null und
haben keine Hiufungsstelle im Endlichen. Man kann also alle Eigenwerte der Grofe
nach ordnen:

02 <Ay <43 <, (6.189)
und es gilt
lim4, = +o0. (6.190)

Aus dem Satz 6.7 und dem Zusatz zu Satz 6.7 kann man entnehmen, daB alle
(gewihlten) Basen aller Eigenrdaume der Eigenwertaufgabe ein Orthogonalsystem
bilden. Wegen Satz 6.8 hat es unendlich viele Elemente. In diesem Zusammenhang
nennen wir den

Satz 6.9 (Entwicklungssatz): Bei positiv definiten Eigenwertaufgaben der Gestalt
(6.141) kann man in vielen Fillen jede Vergleichsfunktion u(x) in eine unendliche
Reihe (Fourierreihe) nach demjenigen Orthogonalsystem entwickeln, das aus allen
(gewdhlten) Basiselementen aller Eigenrdume besteht; mit anderen Worten: Bezeichnet
man die Elemente des Orthogonalsystems durch @,, wobei u alle Elemente einer
gewissen Indexmenge Ind durchlauft, so gilt fiir jede Vergleichsfunktion u(x) eine
Darstellung durch die Fourierreihe

u(x) = gngm(x). (6.191)

S.6.8

S.6.9
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Die Reihe 3. |c,||pu(x)| konvergiert im zugehirigen Intervall gleichmdpig. Die Zahlen
uelnd .

¢, heifien Fourierkoeffizienten und es gilt (in Verallgemeinerung aus Band 3)

_ Lpuluy
= (6.192)

wobei das Skalarprodukt (6.176) zugrunde liegt.

u

Beispiel 6.13: Die positiv semidefinite Eigenwertaufgabe, bestehend aus der linearen
homogenen Differentialgleichung

L[y] = AM[y] mit L[u] = —u", M[u] = u, — d -

— <y < =
FEX S (6.193)

und den beiden linearen homogenen Randbedingungen

Ao (-4 )

hat die Eigenwerte
42

Ay = 2

Zu 1y = 0 gehort ein eindimensionaler Eigenraum. Als Basis dieses Eigenraumes

kann man die Funktion identisch 1 wahlen oder aber auch — um den AnschluB
an Band 3 herzustellen — die Funktion

1 1 1
= — ——=<x=—=). .
Po(x) = = ( FSx= 2) (6.196)
Zu jedem A, mit » = 1,2, 3, ... gehort jeweils ein zweidimensionaler Eigenraum.

Bei der Bezeichnung einer orthogonalen Basis des jeweiligen Eigenraumes nutzen
wir die in (6.181) angegebene Mdoglichkeit, als Indizes Zahlenpaare zu verwenden:

¥ (¥=0,1,2,..). (6.195)

Ponn(®) = cos 2"1’”‘ . P®) = sin 2"1”" 0=12.). (6.197)

Im vorliegenden Beispiel ist

12 12 2
Culpy = [ MuJvdx = [ avdx, |u| =\/ | 1wl dx,
i i =12
1 2 T
e -!H‘ =5Vl lgan@l = e A/T

- A/é (6.198)

Beim Aufschreiben der Fourierentwicklung von beliebigen Vergleichsfunktionen ist
zu beachten, daB8 die Numerierung von Eigenfunktionen durch Zahlenpaare zur
Folge hat, daB auch die zugehérigen Fourierkoeffizienten durch Zahlenpaare zu

cos

. 2mvx
sin

lpa. @) =
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numerieren sind. Bei der Summation ist darauf zu achten, daf3 eine Doppelsumme
auftritt:

oo 2
um=%mm+;ﬁgmwwmﬂ (6.199)
mit 1 '
C uy, c, ol 6.200
0 ﬂ<p Hg {poluy k) = ”‘P(v,k)”z <<P( k)l > (¢ )
Wir fithren die Abkiirzungen
ay = Co, Ay = C,1ys by =ci2y P =1,2,..) (6.201)
ein und schreiben damit (6.199), (6.200) in der Gestalt
)= %ao iy (av cos 2"1” + b, sin 2";" ) (6.202)
v=1
mit
12
o = o Gpuliy = 7 [ i) d,
-2
12
. = 1 - 2nvx .2 ) 2myx d
e T e A iy u——l—fuxcos 7 dx
cos 12
]
r=12..,
12
_ 1 L 2mvx |\ 2 . 2mvx
Y= ~—5mrx P <sm 7 |u> =T fu(x) sin 7 dx
Sin -2
r=12..) (6.203)
(Band 3). In (6.197) konnte man auch die orthogonale Basis
27vix 2mvix
%(x)—e‘ se®=e T (r=12.) (6.204)

wihlen. Wir haben in (6.204) zur Numerierung zwar keine Zahlenpaare benutzt,
haben jedoch neben den positiven -auch die negativen ganzen Zahlen herange-
zogen. Die Funktionen (6.204) kann man gemeinsam mit @o(x) = 1 in

2mpix
P = L (u=0,£1,%2,..). (6.205)
zusammenfassen. An die Stelle von (6.199) bis (6:203) tritt jetzt
- 2mpix 1 2mpix 1 2 2mpix
u(X)=_); e b, e = 21:;4ix2<e E ”>=7 fc bou(x)dx
#= e T iz
1 iz 2mpix '
-7 / we T dx (6.206)

=12
(vgl. Band 3).



72 6. Rand- und Eigenwertaufgaben

Beispiel 6.14: Die positiv semidefinite Eigenwertaufgabe, bestehend aus der Legendre-
schen Differentialgleichung

Lly] =2M[y] mit L] = —[(1 = x) '], Mlul =u, -1 = x <1

(6.207)
und den Randbedingungen
lim  p(x) existiert, lim y(x) existiert (6.208)
x=—1+0 x-1-0

hat die Eigenwerte
h=nm+1) (mn=0,1,2,..). (6.209)

Zu jedem 4, (n = 0,1, 2,...) gehort jeweils ein eindimensionaler Eigenraum. Als
Basiselement kann das Legendresche Polynom P,(x) (Legendresche Funktion erster
Art mit dem Index n) genommen werden [(5.75)]. Im vorliegenden Beispiel ist

1 1 S
Culpy = [ MuJvdx = [ @wdx, [lu = [ [ |u?dx,
-1 =1 =
PN =y 2 = 171 = (6210)

Fiir beliebige Vergleichsfunktionen u(x) gilt

f u(x) Py(x) dx.
1 (6211

Beispiel 6.15: Die positiv definite Eigenwertaufgabe, bestehend aus der Differentialgleichung
2

) = 3 ab) (-1Sxs1), ¢ =201
n=0

Lyl = AM[y] mit L[u] = —[(1 — x*) ') + > U *k=12,..),

1—x

Mul=u -—-1=x=1 (6.212)
und den Randbedingungen

»=1)=0,y1)=0, (6.213)
hat die Eigenwerte -

dh=nn+1) (m=kk+1,..). . (6.214)

Zu jedem 4, (n =k, k + 1, ...) gehort jeweils ein eindimensionaler Eigenraum. Als Basiselement
kann die zugeordnete Funktion von Legendre
& gk
(1-x*2 e P(x) (n=k,k+1,...) (P(x): Legendresches Polynom) (6.215)

genommen werden. Das hier maBigebende Skalarprodukt stimmt mit demjenigen aus Beispiel 6.14

liberein. Es ist
2wtk
- I ath eb R

_eyr
(= x%) 2 7o Pol)
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Fiir beliebige Vergleichsfunktionen u(x) gilt
o & gr
. — x2)2
ux) = Ek el —x%)% o
mit 1
2n4+1 (n—k)! 2—’;— dk
= 3 e ux) (1 — x?) o Py(x)dx. (6.217)

-1

Pyx) (-1=x=1)

Definition 6.14: Wenn man_in (6.215) x = cos ¥ setzt, danach einerseits-mit A,,.,‘eikw *k=01,...,n
und andererseits mit B,,‘,‘e""‘»" (k = 1, ..., n) multipliziert, wobei A,y und B, beliebige Konstanten
sind, so ergeben sich durch Addition der Ergebnisse Kugelffich i n-ter O

Y,(9,¢) = ApoPu(cos #)

n dk
+ 3 {(An.k “? 4 B, e7#9) (sin §)* <_k Pn(x))xecos 3}
k=1 dx

O=9=70=¢=2n). (6.218)

Aufgabe 6.14: Man zeige:
Yo(#,9) = Ao, (6.219)
Yi(9,¢) = Ay,0c08 & + (Ay,; €% + By ; €79)sind, (6.220)

3 1
Y2(%,¢) = Az0 (7 cos? 9 — 7) + (Az,1 €'% + B,,1 €7'%) 3 cos & sin &

+ (42,2 €%1% + B, , e721%) 3sin? ¢

3 1 .3
= Ao - o0 29) + T + (43,1 €% + By, €719) - sin 29)

D.6.14

S.6.10

3
+ (4,2 €%? + B, , e7219) 7 (1 = cos (28)). (6.221)
Aufgabe 6.15: Man zeige: Mit der Festsetzung
T S 2m g
Gy = | (ju(ﬁ, @) v(®, @) sin 9 dq;) do (6.222)
#=0 \p=0
giltimFalle m+n(m=0,1,2,...; n=0,1,2,...) stets
(YlYpy = 0. (6.223)
Aufgabe 6.16: Man bestimme in der Fourierreihe
©
u@, @) = 3 Y,(8,9) [Y,siche (6.218)] (6.224) -
n=0
die Fourierkoeffizienten 4, x (k = 0,1, ...,m) und B, ; (k = 1, ..., n).
Im AnschluB an die Definition 6.14 nennen wir den
Satz 6.10: Geht man von kartesischen Koordinaten (x,y,z) durch
x=rsindcosp, y =rsindsing, z=rcos? (6.225)

zu raumlichen Polarkoordinaten (r, 9, @) iiber, so wird durch

Un(x, 3, 2) = r"Ya(®,9) (n=0,1,2...) (6.226)
6 Wenzel, Gew. Diff. 2
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eine Funktion definiert, die der partiellen Differentialgleichung
U, U, U,
AU, =0 (AU,,—*(');T‘P'V-F 32 )

geniigt. (6.226) heift innere Kugelfunktion n-ter Ordnung.

(6.227)

Aufgabe 6.17: Im AnschluB an die Aufgabe 6.16 bestimme man alle inneren Kugelfunktionen der
Ordnung n mitn = 0, 1, 2.

Beispiel 6.16: Die positiv semidefinite Eigenwertaufgabe, bestehend aus der hermiteschen Differen-
tialgleichung (vgl. Beispiel 5.15)

Lly] = AM[y] mit Lu] = —(e~**«’)’, M[u] = e *%u, —0 < x, < +00 (6.228)
und der Forderung der Normierbarkeit als Randbedingung, d.h. der Forderung
+00
f e*2 |y|? dx existiert, (6.229)
-

hat die Eigenwerte
=21 (n=0,1,2..). (6.230)

I

Die zugehorigen Eigenrdume sind jeweils eindimensional; als B kann das Hermitesch
Polynom H,(x) aus Beispiel 5.15 genommen werden. Im vorliegenden Beispiel ist

+00 + 00 +o©
oy = [ Midvdr= [ e avdx, lull = [ [ e lu? dx,
- - -0

@ — 4= '
LI = (=17 &2 == @) = 201z (6.231)

Fiir beliebige Vergleichsfunktionen u(x) gilt:

+00
ux) = g CilHy(x) (—0< x < +00), ¢, = —-——1-—= f e *2u(x) Hy(x) dx. (6.232)
n=0 . 2”n!\/ b

Beispiel 6.17: Die positiv definite Eigenwertaufgabe, bestehend aus der linearen
homogenen Differentialgleichung [vgl. (5.207)]

L[y] = AM[y] mit L[u] = —(xu') + px—zu, Mlu] = xu,

(p = 0, sonst beliebig reell, 0 < x < /) - (6.233)
und den Randbedingungen
lim y(x) existiert, y(/) =0 (6.234)
x-+0
hat die Eigenwerte
A= Il_z(ag»)z (=123 .), (6.235)

wobei o die der GréBe nach geordneten positiven Nullstellen der Besselfunktion J,(x)
[vel. (5.4)] sind:

J,(a®) = 0. (6.236)
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Die zugehdrigen Eigenrdume sind eindimensional. Als Basis kann jeweils die Funktion
J, (as,n %) ©0sx<l) (6.237)

genommen werden. Im vorliegenden Beispiel ist

1 1 Y
{ulpy = f?\T[ﬂv dx = fxﬁv dx, |ul| = \/fx|u|2dx,
o 0 0

x A
7, (as,mT = 5| Joes 9. (6.238)
Fiir beliebige Vergleichsfunktionen u(x) gilt
ux) = 3 o, (49 7) ©sxsD,
n=1
. 1
2 1 X
= (p) .

= f xu(x) J, (a,, 1) dx. (6.239)

0

Aufgabe 6.18: Im AnschluB an (5.231) bestimme man &% (n = 1,2, ...) im Fall’

p = % und nédherungsweise im Fall p = 3.

Zusatz zu den Sitzen 6.8 und 6.9: Die Formulierung ,,in vielen Fillen weist
einerseits darauf hin, daB3 die Aussagen dieser beiden Sitze in wichtigen Fallen der
Praxis gelten. Einen Eindruck hiervon vermitteln die Beispiele 6.13 bis 6.17. Anderer-
seits wird damit gesagt, daBl in diesen Sétzen fiir die Garantie ihrer Aussagen weitere
Voraussetzungen fehlen. Es muf in diesem Zusammenhang auf die Literatur (z. B.
[2], [3], [4], [7], [8]) verwiesen werden, wo auch teilweise diskutiert wird, in welchen
Fillen Fourierentwicklung in die Darstellung durch ein zugehdriges Fourierintegral
iibergeht. Weiterhin sei auf den Band 22 hingewiesen. Zur Illustration dient
Beispiel 6.18: In (6.239) geht beim Grenziibergang [ — co die Fourierreihe in das zugehérige
Fourierintegral (Hankel-Transformation) iiber:

© — © __
u) = J e0) Ve Jyo &y mit ) = [u) Vv Ty .

Aufgabe 6.19: Mittels Aufgabe 5.26 behandle man im Beispiel 6.18 die Falle p = +(1/2).

6*

*
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1 1
S51:cs = 75 (CoCa + .. + €aco) =0, [ ﬁ(cocs + ... + ¢sc0) = 0,
_ 1 1 1
c7——r7(cocs+...+c;c;+...+ceco)=§c3=763-2—. )

3 a
52:y= 3 ¢x’;30) =1, y0)=0=c¢o =1, ¢; =0.
y=0
@ @
A =Xy =2y’ =2= 3 20+ D+ Dx" = S —D+1]x* =2>c,=1, ¢4z
vaz2 y=0

»? 1 8
ST De+D " =12 .)=c3=c5=0,c4= 3% =g;y’=p=>(1—x2)p'—xz1

=2,p(0)=0;
dpy x - C
(1= x*)py — xpp = 0= = ———= dx=p, = P
" i Pn 1-x B \/Il — x2|  x€ Umgebg. von 0 "
G ) u(x) , 2 2 .
= =—; = ——/—— = U = ———— = y = 2 arcsin x =
J1-x2 ? N J1-x ’

2arcsin x + Cy X
=————.p0) =0=>C;, =0=y = (arcsinx)® + C;. y(0) = 1 = C, = 1 = y(x)

\/l—x2

1 3 . 2 1 8
- in x)2 = X3 45 = 2 4 x4 4 —_x6
1 + (arcsin x) 1+<x+ ] + 40x +) 14 x4+ 3x + 75" + e

5.3:9(1) = l—'::—sin (wt) mit @ = A/% .

= Yo 1 55, 1 _ss L _ 8% 3 1 &
7= 7, (“” O SO g ettt )= T Sy U oy

1 g%, . 1 g0d
S e d =00=0,1,23,4,d = 5 5, de = 0,d; =

1 11g%03 gv3
T 5040 \ B © )"
5.4: An die Stelle von (5.39) tritt ¢;(x — 1)2 + ... = 1 + (¢; = 1) (x — 1) + ... Der Beginn des
Koeffizientenvergleichs fithrt zum Widerspruch 0 = —1.
5.5: (1,50, 0), (—1,%0,75) (¥o, yq beliebig).

. . 1 3 3 5
5.6: Po(x) = 1, Py(x) = x, Pp(x) = — 7 + —2—-x2, P3(x) = — 7x + Exa, Py(x)
3 5 , 3

I SR T

. . (=1
5.7: Einerseits: ¢; = 1 =¢34 = m(—[Z,u = IN(=Ru—=3D: .- (=1)+2:4-... - (2p)

___1 2, 1112 3] 1024+ (2 __1._1.2.3. ) ——(2'“)!
—(2”+1)![M— 120 = 3] ... @) = G D (")_(zu+1)!
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77
1 = et x?
S = JE—— 7775 its: =x = =
W =X + Z C2y 1 X2 ED 1 X ; andererseits: In (1 + x) X 3
2 & In (1 AN A In(1 In(l - x)
+ T T % + ., -x=—-x— > T3 T % —...=In(1+x) - In( X
X x5 ’® 1 1, 14+x 2 1
— — = < 2p+1 — = e 2,‘+1‘
("+3 5+“'> R P N e N RS
. . (=DF
5.8: Einerseits: co = —1 = ¢, = — (_ZM)T A-DPep-=-2DA -2u—-4) ... 1 =2)1
1
'(1+1)(1+3)'...'(1+[2,u—1])=m(2[4—3)(2/4——5)-...'(2—l)'l'(1+1)'
1 Qu)! 1 © o 1
(1 +3)-. 2U) = —— ———— = ———— Do+ 3 Cy X = X2,
A+ 3@ = For 307 2 —1 g ,El 2w Eu 2u—1
x 1+x () 1 o 1
oo = i 2p+1 _ 2
andererseits: —1 + — In ——— 1+x[‘§O PP v_”“—*» 1+’2l 51~
L 1 ) 1
- 2y _ - o
RN S L A rrey S
o e Ao
5.9: 9”7 + 1*x29 = 0, r = 0. ¢, beliebig, ¢; = ¢, = ¢3 =0, c4=—ﬁ,c5=c6=t7=0,
8¢y A%,
=3 == =0 o= —Fomar e s == as =0,
_ FRLI
=3 478 11-12-15-16
5.10: 2. '
- B _ 1 ) 1 11
SIL P =1, P@ =145 1-2x =N =x P(x) =1+ 523G =D+ 57 Gpr
c1:2-3-4x—1)% = 1+32P();1+l34 1+l 12345
SRzt 2 @ =D+ 5 g
Cx =12+ ! 1:2-3:4-5-6(x — 1)* = 2 +is
* = (3!)2 2 ¥t

5.12: {co(x — 1) (x — x0)*% + ..} + {a_i(x — xo)!

+ o} {eox(x — x0)*! + ..}
+ {b_alx — x0)2 + ....} {cox — x0)* +

_1% + b_s)
HE R
*(x — x0)~2 +...=0. Koeffizientenvergleich ——=>a(x — 1) + a_y& + b_, =0 = a&?+ (a_; — 1) «
coE0
+b_p=0.
0
513: Ri(r) =r* Y ety = Loy = =+ 1);
=0
L a Aey_» + 2ac, 4
¢ beliebig, ¢; = — T Cos Cy= — m »=23,..).

Setzt man ¢o # 0 fest, z. B. ¢o = 1, s0 ergibt sich ein Basiselement R, (r).
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5.14: A + 0, sonst wiirde die Rechnung fiir y,(x) bis auf einen konstanten Faktor wieder y;(x)
liefern.

1
515:0< |x - 1] <2=>Q1(x)=i(— Inix—-1+In(d+x)-1= -—Z-Pl(x)lnlx— 11 -1

—2—(1+(x—-1))ln[2+(x——1)] mit n[24+ (x —-1)]=In2+ In [I + %(x-l)] =1n2
«© L 11 1 1 1 1
2 S 77(}:— 7. =0(x) = —?P,(x)]n]x— 11-1 +71n2+ (-4—+71n2>

1
=A= —7,00(0‘1)

® L1 ® 1
x—=1) +,'§2 g =D+ Z (=D 5oy

1 v+ 1
S In2, cfa;) = (~1)” 2”1 prog ia

+5 ¥=23,..).

1
= -1+ 502 o) =

G [ 1 4dx
5.16: y:() = Pax) f o7 [Freg o Lae oy ¢ [ ar—tr=Ti

= +—-C3x%* - 1) = + 2 c@3x® - 1)

9 R 1\2 -9
( —--—:} (x+—§-) x+1Dx-=1)

"-””W ' 37

1
dx = -:-4—C(3x2 -1

1 1 { 3 Dl -1 3 }
|x+11 e L (x> < Din +1+2"'
_—— X+ —
\/3
1 t Vi iche : 3x2 — 1)1 L e x
_—= =— - -—x,
|x| < 1 = unteres Vorzeichen p— 0Q,(x) 2 (3x° )In == >
’ ’ 1 +1 3 S
bl > 1= oberes Vorzeichen —— = 0;(x) = Rl PR ) S PN A
4 x-1 2
5.17: Ry(r) = AR(r)In r + r*2 2 () r¥, wobei «, = —I — 1, co(x,;) beliebig, c;(xz)"
G ) _ }'cv 2(0‘2) + 2ac,_1(x2) e
=T co(xy), cy(x) = _”W v = 2,3, ..,2]), cy,q(x;) beliebig,
1 Aey_s(0y) + 2ac,_(x ) + 24(v — 2D ey_»
A=- ?(521-1(0‘2) + 2acy(x2)), ¢(x2) = =2 v(vl 7221 ) =

(v =20+ 2,...). Es kann ¢, gleich null gesetzt werden, denn c,;,, # 0 ist insgesamt nur An-
laB zu einem Zusatzsummanden der Gestalt CRy(r). Setzt man dariiber hinaus co(x,) * 0 fest,
etwa ¢o(x,) = 1, so ergibt sich das Basiselement R,(r).

5.18: Unter einer (einseitigen) Umgebung von —oco versteht man die Menge aller reellen x mit

x < Xo. Durch t = — wird die Menge aller x mit x < X, (Xo < 0) auf die linksseitige Umgebung

XL <t<Ovonr=0 abgeblldet Hieraus folgt : Die Differentialgleichung (5.116) und deren Losungen
o

verhalten sich in einer Umgebung von x = —oo wie die Differentialgleichung (5.118) und deren
Lsungen in einer linksseitigen Umgebung von ¢ = 0.
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1 1 1\ _ 1
5.19: po(1) =t po( ) i) =2t Po( )— t%py (T),pz(t)=pz (7)

—2t3
S.ZO.WM ungerade = f - —m

gerade = Behauptung.

213 . -fCaar

dt ist gerade=¢ ist gerade. uy(f) ist

1
pi\—
) 2 1 <’) 2 1 2 a, 2-a
S ST N\~ E M m T a e
Po r
1
o PA\T 19 by b b, bs
o) (1) LR T Tt Tt bt
50
t
2
522180 =26+ 0. do=0wfi= = > . (Y = fi= —“ziiA/(%> — bo.

5.23: 72R” + 3tR + (8ar? — 4l(l + 1)) R=0, R = &P, p2 + 8a = 0, v24” + (2fr2 + 30) &’
+ G — 4l + 1) i =0, 4 =1, 720" + (2x + 3)T + 272 0" + [&? + 20 — 4I(l + 1) + (2f
+30115=0, 208 +3f =0, o = —%, 25" + 287’ + (— %— 4l + 1)) =0,

P = %c\r“, ¢ beliebig, ¢y, =

1
»=0 26 + 1)

R(r) ='E‘11~11(") + CoRy(r), 6::R~k(r) = eﬂ”/;’"% 20 Cy (\/'_')"v mit f; = 2\/5\/‘—1 i, B2 = —p1,

(v(v +1) —%1(1 + l))c\, »=0,1,2,..),

1 3 -
T X PRy (1'(1/ +y -0+ 1)) cyund ¢ = Gy (k = 1,2).

5.24: Hy(x) = 1, Hy(x) = 2x, H,(x) = 4x% — 2, H3(x) = 8x3 — 12x, Hy(x) = 16x* — 48x% + 12.

)b e - B -

305 -
=7 TVE
1 135 m+1y ~ =
— e s 5
(2+n). S ( > )Jn per 123250 Qu 4 1)
Jr @+t Jr @n+ 1

271 2-4-6-...-@n) 2271 pl

(=1) 1 1 1/1 1
5.26: J3(x) = J—zo 22#M,G+#),xu,(7+ﬂ)!=<-7)!7<-2—+1)<—2—+2>....

1 T Qu+ 1) T Qu+ D!
,(7”)_%{%,1. e VE @t N @+

2T 2.4-.. 2 Qm+l P Jy(x)
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_ =2 1 2 1y,
"A/n zo(—l)" G ! x#= p=—s #Zo ChE D! x4+l = A/— sin x. (-— -5+ ,u).

G+m__2 (1 _ = e 2 >
= o e (2 +,u)!—-—2“— 2l =>J_%(x)=,‘/7”=20(—1)u

2 2 W,

1 o
Pr—E+ @t

iz L
= A/ = cosx. Nj(x) = = [cos -5 J3(x) — J_f(x):l = —J_3(x).

TN L @l =N o n T
—_— S 2 o—

HM(x) = A/-E- (sinx —icos x) = —i A/i (cos x + isinx) = —i A/—2~— e*, H(2)(x)

¥ X T TX I
= A/i(sinx +icosx)= iA/ie"".

X X

5127:0T0= —1—! i (—.1)#____1.___._x2,“,._1

R T 226 — D (n + p)!

+n i (—1)“—-——‘1 x’”’"“Il 1)
o 2241 (n + p)! K

1 & 1
—Jp1(x) = —2_",u§0 (—Dp+t 226 1(n +__M T x2utntl

= 1 S 1 V; 2vin-1 2
R AR e T @

nJ . n = (—1p 1 2utn-1 @
Y9 =7 ,Eo 2240 (0 + o)} :

Aus (1), (2), (3) folgt die Behauptung.

1 m 1 1 miv 1 mertl ] N 1
5:28: 2) Z( +k _7)+2 (V+k+1 _?)_k:2v:+17+k:zv+27_ kgl?
myv 1 v 1 m+v+1 1] v4+1 1 m 1
=Y =3 -+ e Y — =23 —=C+In(m+)
=1k kgl k k2=:1 k IZ‘I k k=21 k
Sl i cimmirin— (5 -+ — 2C +Inm) +
-»kgl—k—+ +Inm+v+1)— k§17+1’+1 —2C+1Inm)+ ry
v 1 1 m+v)y(m+v+1) o
= —2[217-— o) —Hn————mz——+r,,l mltmlirr;r,,,=0A

) m 1 1 2 1 1
b)P@r) + P + 1) = =2C — lim (kgl (T+_k - 7) Tk§1 (—v+_k—+—l - ?))

m= + o
v.1 1
==-2C+ 2,;::1? + T
© —1yWV 2v-1
©) Ng(x) = %Jﬁ(x) (C+ In %) + ;Z—Jo(x)— -f— ; {—v'(v 1)1)' (l) E‘ ,17} 1)
x 2 1 -1 s A\ v 1 1
Nl(x)——Jl(x)ln——;;—Tv olv'(v+1)' 3) [ 2C +2 ;7 v+1”’ )

J§(x) = —Jy(x) (siehe Aufgabe 5.27), 3)
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S =1y x\2+1 1 —1y w41y
=2 STerr (_) S _?zo{ '(v+1)'( #:17}

v

=0
(-1y x\2¥=1v=1 11 2 » (-1 x\2-1 » 1
{(v— D! (_.) 2T E A {<v— DIv! (7) EJ}

(_Uu 2v—-1 2 ®© (—1)” x\2"-1 » 1
o)? (7) :?El{(wl)!v! (7) 27;

1
< (Jo(x) = 1) (5). Aus (1) bis (5) folgt Ng(x) = — Ni(x).

d 2
5.29:2) y'(x) = w'(n) d_j: = —wu), y'(x) = w’(u), uw”’ + w' + %— w=0.b) w(u)

g g e @@ a1 & _aa @,
B i St i S A el
a1 a ? i
+l-——+—)Z+ —2Z=0. 222"+ zZ' + o 2?2Z=0.
4 z 2z g

C)a-+\g d)y= Cljo(\/_\/L«x)+C2N0(\/_\/L—x)

3n L7 9 1
5.30: x; = vy + kx (k=0,1,...). b) f(x) = cos (x - —4—) {1 - 7}

) =\ (1 75 751
+sin (x = ) (g ¥~y ) A0 = -
f(xl) 5 11 225 4
Xe=ximgEy SO0 = -l gt T

c) 2,4041; 5,5201, 8,6537; 14,9309.

6.1:1< \/a® + (hy — hy)?.

62:y=e¢*=>r2+ar+Ai=0,Losungenr,r,=>r2+ar+Ai=@F—r)@r—r)=r*—( +r)r
+ rira=>ry + ry = —a(l),rir, =AQ2). 1.Fall:ry =r, =y =e"*(Cy + Cox)=> (1 —em¥) Cy — [ e"/C,
=0,r(1 —e) Cy +(1 = [yl + 1] ") C, = 0 = Koeff.-Det. = (1 — e")? £ 0, denn ry =1,

= - % +0=C;, =C,=0=y=0= 1. Fall liefert keine Eigenwerte. 2. Fall: ry % r, =y
=C e+ CGer=(1—e)C + (1 —e)C,=0, (1 —er) Cy +r,(1 —e)C, =0
= Koeff.-Det. = D = (1 —ert) (1 —e2)(r, — ry).FallsD £ 0=>C; = C, =0=>y=0=>D %0
liefert keinen Eigenwert. D = 0 => (1 — er!) = 0 oder (1 — e"?) = 0.

Fall2a: 1 — er! = 0 = eRe(iD+1Im(r1) = | = eRe(r) elImCr1d) = [ = eRe(r1)(cos(Im(ry/))

1

+ isin Jm(r,/))) = 1 = Re(ry]) = 0 und Im(ryl) = 2kn (k = 0,+1, +2,..)=>r = T 2kmi
k - —2km (k=0, £1, +£2,...). Fall 2b:

1
=r,=—a-— T 2kmi = Eigenwerte A, = ryr; = 12
(2)

)
1 — e = 0. Im Fall 2a r, mit r; vertauschen = Fall 2b liefert nichts Neues. Zu 4, gehdrige

Eigenfunktionen: 0+ C; + (1 — e'ﬂ) C, =0, r;-0°Cy + ry(l —em?) C; = 0= C; = beliebig

2k7!lx
C, =0=y=C,e*= Basis:e l
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e 1 2 N
63:a) uh) = /AL, f(u) = u. b) tan u = u= Uy ¥ 4,493 = I ¥ (T 4,493) = Fene.

EJ , EJrn?
2 Mmin X (0 702 -

6.4: Eigenwertgleichung: cosh (:/Z 1) cos (Wl) = —1. 4\/2; 1~ 1,875, :/A_z | ~ 4,694. Basis der
zugehdrigen eindimensionalen Eigenrdume: y,(x) = a; (cos (f/ 71 x) — cosh (:/Z X)) + a;
+ (sin /4 %) — sinh (3/7; x)) mit a, = sinh (}/7; 1) — sin (4/7 1) ~ 4,148, a5 = cos (3/; 1)
— cosh (/2 1) x —3,037;

y2x) =as (cos(:/): x) — cosh (t/l—z x)) + a4 (sin (:/A—z x) — sinh (t/z x)) mitas = sinh (:/ )—; 1)
— sin (/7. 1) & 53,640, a5 = cos (4/7,1) — cosh (4/721) x —54,631.

1 1 1
. —— N 2 3
e i Pvue B M P uL Y TS TR
1
+ u* — + ... =0. b) u® — 56u + 672 = 0,u; = 17,417 (die weitere

3:4-7-8-11-12-15-16
Losung der quadratischen Gleichung ist unbrauchbar, da die kleinste positive Losung gesucht ist).
C) uy = 16,75, uz = 16,42, uy = 16,25, us = 16,17, ug = 16,14.
4,017 A/ﬁ

& Fain =~ T
1 1 !

6.6: wyi(x) = 25 X2, wy(x) = B X3, Wy = Wpr + Wou, EJwgt{ = q, EJwgyy = F8 (x — 7/ .

= 4 - —_ q 4 2 3 o o

Wpr = Box* = EJ+24By = q = wy; = —54—E7—x . Wen = Uy + Xup + X*uz + X ug, uy + xup

F 1
+ x%us + x%uy = 0, wy + 2xuz + 3x%uh = 0, 2uy + 6xuy =0, 6uf = Yoid ) (x - 7) .

J
x
. I, 1 X F I
=>Fur0§x<715tu1=u2=u3=u¢=0.Fﬁr?<xslgllt g =—= | 6{x - =
. o

= 6EJ
x x 2
F F ! IF F ! 2F
= —_— = — — X |x—-—|dx= - — = — 3 (x——=—]dx= —
6EI * 2E7 "‘5(" 2)"" 4E7 szfx‘s(" 2)"" SEJ’
o o
- f's" % - o) rr Fiir 0 < Ly - 0. Fir — <
u = — SEJ X x—2 x = — RET = Fir0 = x < > ist wypp = 0. Fur > X
o
: F 3 2 2 3
=< list w,,"=zm(—l + 6/°x — 12Ix? + 8x3). w = Cyw; + Cowy + wpr + wpnn

(2412Cy + 8I3C, + 2qI* + FI?) =0,Cy + IC;, + — I2 + = Fl

1
==C,+4ql+F—c
FRIC UL 1 48ET
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22 265

b A o 24EJ (24ICy; + 12I*C, + 4qI® + 3FI}) =0 = -5 — C1 5 C,= o1 MN, 21C,
. 800 97075 26435
+ 55miC, = — = MNm. = C; = 3712 MNm =z 11,014 MNm, C, = — 2904
MN 5
X =9103 MN, = M(x) = 11,014 MNm —9,103 MN x + o x? fir 0 £ x < 5 m, M(x)
MN s
= —0,486 MNm —4,103 MNx + sz fi}erm < x = 5m.
MN S 2MN S
Q(x) = —9,103 MN + 2 e xfir0 = x < 5 m, Qx) = —4,103 MN+ x fur 7 m

< x = 5m.

6.7: a) Cx, — h) + Colx, + h) = )x) (€1 + C) + W(x) (=C + C)

1 1
+orhY @) €+ C) + 3k ) (=CL+ C) + o = G+ G =0, —C + G

1 1

1
= 1=Cz=—7, Cz=7-=>y’(xv)=ﬂ(—y(xv-—h) +y(x, + h) + R mit R

1 2,777,
= —-—6—hy (x,) + ...
b) Cyy(x, — 2h) + C2 ¥(x, — h) + C3y(x, + h) + Cay(x, + 2h) = y(x,)(Cy + C; + C3 + Cs) + hy'(x,)

1
(=2C; — Cy + C3 +2Cy) + T ry'(x,) 4C; + C, + C3 + 4Cy) + By (x,)

1

3|
1

*(—8C, — C, + C3 + 8Cy) + ar h*y"'(x,) (16C; + C, + C3 + 16Cs) + F K5y (x,)

(=326, -G+ G+ 32C) + .. > Ci+ G+ C3+ Co=0,-2C; = C, + C3 +2C, =1

) 1 2

4cl+cz+cg+4c4=0,—sc,—cz+cg+8c4=o=>cl=ﬁ,c = -3
2 1

Com 3, Com = gy y) = O, = ) = 85(x, — ) + BoCx, + ) —3(x, + 20)

3 1
+ Rmit R= —5-0—h4y(5’(xv) + ..
5 s 5 1 s
9 3 Colr,+ k=M =xx) 3 CG+hx) 3 Gk=3)+57hy"x) 3 Gk - 3)?
k=1 k=1 k=1 L k=1
1 8 1 s 1 s, 2
+ oy Bye) 3 Gk =3 + o B 3 Gk = 3)* + - BYx,) 3 Gk - 3
3! = 4! V=1 5! k=1
1 5 5 5
+ kYO 3 Gk =3+ = 3 Go=0, 3 Gk =3 =0, 3 Gk~ 37 =0,
k=1 k=1 x=1
ZCk(k—3)3~0 z Glk=3t=4=>Ci=1, C=-4C=6 Ci=—4Cs =1
=y"(x,) = F(y(xv — 2h) — 4y(x, — k) + 6y(x) — 4¥(x, + k) + y(x, + 2h) + Rmit R

1
= =)+
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6.8: Die Randwertaufgabe ist niéht linear.
6.9: Es handelt sich um eine lineare Eigenwertaufgabe.

1+ 26
6.10: (6.108),(6.105) = r2f"(r) + 4rf"(r) = — T‘—‘% y%ﬂ; (6.109),(6.105),(6.110) = RB:

-2
R C. 1 1+
[a+nr@+ a0 rEOn -0+ S = prn= s o1
R __Mi=2 13-y 0 .. 0k
il et }gr:) f(r)ex1stlert=>C2—0.—:—; Cl__—Z—G—(T—:v_)+ % l—vy — R4y =
p(1—2)  yOR 1 Q
= fr) = - GaTn T 0 aaoy G =) R* = (1 + ) r?].=0(r)
2690 1+
=P T Ty B

611:a) J§ = —Jy, Ny = =N, ) = — ! {CJ (2") VL )
dita)Jo = =Ji, No = =Ny, Yy = —F= —F7— 0y | == - X
Ve JL-x Ve

+ Gy (T/z—: Jf:)}: Eigenwertgleichung: o/ E\/_LITT N (% \m)
o i) o BT 37) g (B

: (ﬁ \/z) + Ny (T \/Z) A (T JL—_,) .
b (5:228) = lim (—— N/A=ypA (\/_ NPT )) =- —f- (5.226) = lim

(\/ V/L—INO(\/g IR ))=0'(5'2“)=>Llif’lo(%\/ﬁj"(%\/m))
\/7)=o.

sm( /_ Tl—%)cos(%\/_—%)—w sm(\/_\/L—I——)
cos(\/ \/L )—m\/gﬁcos(\/g \/L l——)sm(\/g\/z—-})

—(Lsm(\/g N/ l——)cos(\z/w_ JZ—;—) =0.0= /z/§ lcot(%[\/Z—\/IT—_l])'

d)f(w):,\/icotw—i_‘ 1w+ w—A/_
L JeL f(w) g

!
Mathematisches Pendel im Fall kleiner Ausschlage: T = 27 A/ E (T: Schwingungsdauer), Frequenz:

1
_— isfr 2 ="
T Kreisfrequenz: 2: T

2w
=0 (v = 0,1). Eigenwertgleichung nach dem Grenziibergang: Jo( I
Ve

c)w\/g \/
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1 1 1
6.12: L) = v, [ Lilvdx = [ & vdx = "ol - [ w” v dx = ~[" ']}, +
0 0 =0 0 =5
1
J.u” v'dx = [u'v” fz?’ v dx = — [u oL + fu v dx = fuL[v] dx. J Ll udx = f wu'd

-0 -D
1 1
= [|u? dx 2 0. Falls [ WP dx = 0= 4" = 0=u = C; + Cyx C, =0 G
o o u(0)=0 u’(0)=0
=0=>u=0.

6.13: In (6.158) ist jetzt der Nenner groBer als null; der Zahler ist groBer (bzw. groBer oder gleich)
null.

6.14: Man benutzt die Losung von Aufgabe 5.6.

™ 2
6.15: Y, Y, = | [ | { noPacos #) + z (A €149 + B, . c*9) (sin 9)* ( (x)> }
#=0 Lg=0 x=cosd

d —
{ om0 Pm(C0S ) + z (A, "% + B, e71%) (sin 19)’( (x)) 0: sin & qu:I d9 = 27d,0 Amo
-cos

2 2n 1
. - __ =z d
. J Py(x) Pp(x)dx + 2 [ Ay f e?dp + By, J e dg | 4,0 J Pn(X)(\/l = X?')IW Pp(x)dx
=1 p=0 =0 x=—1
SE= s (S —_——
-0 -0 =0

k=1

2n 2n 1
nf— 1 . — A om|__
+ 3 ( A,.,;‘J e *Pdg + By f e""”d¢> Ao f P (Y1 = x’)"g (%) dx +kz1 lz ApAmi
A =0 =0 T

xm—1
=0 =0
27 21 27 2n
: f 9 dp + BB, f P dp + ApuBp f DT dp + Buudny | 470 dp
=0 =0 =0 T oe=0
N~——
=0,falls Ik =0,falls Ik =0 =0

kil gk dat [ _
: f 1-x? 2 oF Py(x) o Pp(x) dx = kz (AnxAmp 27 + ByyBpy * 270)

x==1 r=min(n,m)

f(] — x%)k d Po(x) dx“ Pp(x)dx = 0.

x=—1
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_ ST dF
6.16: (6.224) multiplizieren mit e~ (sin 9)¥ [F P,;(x)]
X xm

cosd

2n T
sin &, danach f [ f(...)dﬂ}dtp.
=0

g=0

2m T di 2
= f [ f e~ (sin 9)F [E? P,;(x)] L, S ud 9 dﬂ} dp = { f e v dg
g=0 Lo=o Xamoos "
b 1 . 2n
i gk ! n . 2 =
(1 = X3)2—= P;(x) Ay oP(x) dx + 3 f [Ap, €499 + B, , e"1:+09] dgp
i dxk k=xw=0
1

[IVE

¢=0

f a x‘)k—;g & P~(x) & P,(x)dx %27:,4 f (1 2)E di P;(x)
- —= Iy —= Iy = g -X —= Iy
dxF " dxk nzo " dxF

gk

&— ,,(x) dx

x=-1 x=—1

1 g 5 X

=2mA;x f (1 — x?)* (—~P;;(.x)> dx === 21d;; —= — =
d dxk (6.216) T2n+1 (n—k)!

2 i+ k) 2+ 1
k= T

x==1

2m kg

LBt — 1k (sin §)k+1 _di .

WY fo LJD e (sin 9)+ oF P,,(x)] - u(®, ) d? | dp analog:
9= =

kg kg
2n+1 (n—k)! i gk
By = yral oY f [ J e~ (sin 9)F+1 [W ,,(x)] et u(®, o) dﬁ} de.
® 6=0

6.17: Uo(x, y, 2) = Yo(&, ¢) = Ao,0, Ui(x, y, 2) = rY (&, @) = Ay or cos & + (4y,1 + By,1)
crcosgsind + i(dy,; — By rsingsind = A; oz + (4;,1 + By1) X + i(4y,1 — By, ) »

3 1
Uy(x, y, 2) = r2Y,(8, 9) = Az.o(‘f’z cos? & — —i—rz) + (A3,1 + Bz,;1) 3r? cos ¢ cos & sin &

+i(dz,1 — Bz,1) 3r*sin g cos & sin & + (Az2 + Bs ) 3r?cos (29) sin? & + i(Ayz-— B,,2)
) 3 1
-3r2sin(2@)sin?9 =40 (7z2 - W z‘)) + (A2,1 + B2,1)3xz+i(Az,1 — By,1) 3yz
+ (Az,2 + B,2) 3(x* = ¥*) + (422 — By 2) 3xp.

6.18:J A/T e 2w H 1,2 J?
H i1_():)— s |\ x— 7)) = Npsinx=oa} =nn (n=1, ,...),J%(x)— =

) 2! 2 [sinx 3
. {cos (x — m) — [sin (x — )] Z} == — cos x):wx} (n=1,2,...) geniigt der

. X

Gleichung tan x = x (x > 0) [vgl. Lésung zur Aufgabe 6.3].
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Gammafunktion 36
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Hankelsche Funktionen 38

hermitesch 60

hermitesche Differentialgleichung 36, 74
hermitescher Differentialoperator 60
hermitesches Polynom 36

indefinit 61
Indexmenge 68
Integral, Eulersches, zweiter Gattung 37

Kettenlinie 42

Koeffizientenvergleich 8

Konvergenzradius der Lésungspotenzreihe 14
Kroneckersymbol 7

Kriimmung 47

Kugelflichenfunktion n-ter Ordnung 73
Kugelfunktion, innere, n-ter Ordnung 74

Legendre, zugeordnete Funktion von 72
Legendresche Differentialgleichung 15, 21, 72
— Funktion 17, 18, 25

Legendresches Polynom 17, 18

Jlinearisierte Anfangswertaufgabe 10

Momentenfunktion 49
Multiplikation von Potenzreihen 7

negativ definit 61

— semidefinit 61
Neumannsche Funktion 38, 39
Norm 68

normieren 23

orthogonal 68
Orthogonalsystem 68
Orthonormalsystem 68

Pol erster bzw. zweiter Ordnung 19
Polynom, hermitesches 36

—, Legendresches 17, 18

positiv definit 61

— semidefinit 61

Potenzreihenansatz, unbrauchbarer 13
-, verallgemeinerter 18
Potenzreihenentwicklung 6
Psi-Funktion 40

Querdehnzahl 55
Querkraftfunktion 49

Radialspannung 55

Randbedingungen 4

— in Integralgestalt 42

—, lineare homogene bzw. inhomogene 54
—, nichtlineare 42

—, restliche 65

—, wesentliche 65

Rayleighscher Quotient 62

Reihe, alternierende asymptotische 33, 40
—, divergente 12

Rekursionsformeln 8

richtungstreu 44

Ritz, Verfahren von 65

Rodrigues, Formel von 18

Schrodinger-Gleichung 3
Schubmodul 58

Senk- und Drehstiitzung 49
Skalarprodukt 67
Spektrum 60

Stab, eingespannter 44

-, gelenkig gelagerter 47
Stabilitatsproblem 44
Storungsgleichung 51
Streckenlast 48

Umgebung von + o 26
Unbestimmtheit, Stelle der 30

Variationsgleichung 51
Vergleichsfunktion 60
Verschiebungsvektorfeld 55

Wirmeausdehnungszahl 55 -

Zylinderfunktion 37



