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Vorwort

Über das Arbeiten mit diesem Band und die Bedeutung von Groß- und Klein-
druck sei auf das Vorwort von Teil 1 verwiesen.

Im vorliegenden Band werden für gewöhnliche Differentialgleichungen neue

Lösungsmethoden entwickelt und neue Aufgaben behandelt. Beide haben ihren Ur-
sprung in entsprechenden Problemen der Praxis. Deshalb werden bereits hier drei
typische Vertreter derartiger Probleme dargelegt. Sie werden im Verlaufe des Bandes
mehrfach bearbeitet.

Ist der Balken im Beispiel 3.20 am Rand x = leingespannt, hat er einen Rechteck-
querschnitt mit einer großen Querschnittshöhe — im Vergleich zu seiner Breite — und
wird er beispielsweise lediglich am Rand x = 0 durch eine Einzelkraft F auf Bie-
gung beansprucht, so kann bei großem F der Balken seitlich auskippen. Bezeichnet
man mit 19(x) den Torsionswinkel, mit GJ, die Torsionssteifigkeit, mit EJ die Biege-
steifigkeit und mit v die Querkontraktionszahl, so ergibt sich — unter der Voraus-
setzung unbehinderter Torsion an der Einspannung — die folgende lineare homogene
Differentialgleichung

GJ,EJ ”(.\') + (1 — v’) I-'2x219(x) = 0, (V.l)

deren Koeffizienten nicht alle konstant sind, selbst wenn die Steifigkeiten konstant
sein sollten, Der Exponentialansatz (3.67) für die Lösung führt hier also nicht zum
Ziel.

Behandelt man die kleinen Schwingungen eines mathematischen Pendels (Beispiel
1.8; Aufgabe 3.3) und ersetzt man die masselose Stange durch ein Seil, so ergibt
sich für die seitliche Auslenkung w = w(x, t) des Seiles — falls man sich für syn-
chrone Schwingungen interessiert, wo alle Seilteilchen mit derselben Kreisfrequenz w

und einheitlicher Phase schwingen - w(x, t) = y(x) cos(w(t — t0)), wobei y = y(x)
der linearen homogenen Differentialgleichung mit variablen Koeffizienten

2

(L—x)y"—y'+%y=0mitL=1+% (v.2)

genügt, falls man voraussetzt, daß die Seildichte g konstant ist.
Bei der quantentheoretischen Behandlung eines Elektrons (Masse m) im Coulomb-

Z 2

feld U z — f
wird die Schrödingergleichung mit dem Ansatz zp(r, 19, o) = R(r)Y,(19, (p) (l = 0, 1, 2,
..‚; Y‚(z9,q:): Kugelflächenfunktionen [siehe Definition 6.14]; (r,19,qo) räumliche
Polarkoordinaten) gelöst, wobei R(r) = R‚(r) der folgenden linearen homogenen

(Z: Anzahl der Protonen im Kern; e: Elementarladung) des Kerns

' Difierentialgleichung mit variablen Koeffizienten genügt:

ma" + 2rR’ + [M + 2ar — 1(1+ 1)} R = o (1 = o, 1,2, ...) (v.3)
mit

„ 8 2m 4 z
‚. = E, E und a = 22'” zez (v.4)

(E: Gesamtenergie des Elektrons; h: Planksehes Wirkungsquantum).



4 Vorwort

Im Kapitel 5 werden die Lösungen solcher Differentialgleichungen durch Ent-
wicklung in Reihen bestimmt. Zunächst wird an Beispielen die Koeffizienten—
berechnung ausführlich behandelt. Die zugehörige Theorie gehört in das Gebiet
der Gewöhnlichen Differentialgleichungen im Komplexen. Um jedoch Kenntnisse
aus dem Band Funktionentheorie nicht voraussetzen zu müssen, werden die
Formulierungen im Reellen durchgeführt; sie sind jedoch so angelegt, daß nach
Kenntnis der Funktionentheorie der Übergang zur komplexen Darstellung keine
Schwierigkeiten bereitet. Auf Beweise mußte zwar verzichtet werden, jedoch ist
dies ohne Einbuße an Verständnis möglich.

Die Differentialgleichungen (V.l), (V.2), (V.3) sind durch Zusatzbedingungen zu
ergänzen. Zum Kipp-Problem (V.l) gehören die Randbedingungen

19’(0) = 0, 0(1) = 0 (V.5)

und zu den Schwingungen des herabhängenden Seiles (V.2)

y(0) = 0, 2;y'(1) = w“y(1), (V-6)

während zur Dilferentialgleichung aus (V.3) die Forderungen

lim R(r) existiert (V.7)

und H +0
R(r) bleibt beschränkt für r —> + o0 (V.8)

hinzuzunehmen sind. .

Wie aus 1.3.3. zu entnehmen ist, werden durch (V.l), (V.5) sowie (V.2), (V.6) und
schließlich auch durch (V.3), (V.7), (V.8) Eigenwertaufgaben formuliert. Als Eigen-
wertparameter kann in (V.l) das positive F, in (V.2) das positive w und in (V.3) das
reelle E angesehen werden. Den Rand- und Eigenwertaufgaben (siehe auch 1.3.2.
und 1.3.3.) ist das Kapitel 6 gewidmet. Es beginnt mit Beispielen und Aufgaben;
unter ihnen befindet sich eine nichtlineare Randwertaufgabe und eine Eigenwert-
aufgabe, die nichtreelle Eigenwerte besitzt. Es wird gezeigt, wie man eine Eigenwert-
theorie in Analogie zu den Eigenwertaufgaben bei Matrizen (Band l3) aufbauen
kann. Auch hier kann man — wie z. B. in (6.30) ~ zu einer Eigenwertgleichung gelan—

gen, die — im Gegensatz zu Matrizen-Eigenwert-Gleichungen ~ im allgemeinen un-

endlich viele Eigenwerte als Lösungen besitzen. Allerdings kann es auch vorkommen,
dal5 die Eigenwerte bei Differentialgleichungen auch aus anderen Bedingungen — wie
z. B. in (V.7), (V.8) ~ zu ermitteln sind. Bezüglich numerischer Verfahren konnten
nur die theoretischen Grundlagen vermittelt werden; zur praktischen Durchrechnung
sei auf Band 18 und die dort angegebene Literatur verwiesen. Der Entwicklungssatz
(Satz 6.9) kann als Verallgemeinerung der Fourierentwicklung aus Band 3 angesehen
werden. Die wichtigsten Beispiele im Zusammenhang mit dem Entwicklungssatz
werden angeführt. Sie werden für die Theorie der partiellen Differentialgleichungen
(Band 8) bereitgestellt. Auf eine ausführliche Durchrechnung, insbesondere bei den
vorkommenden Normen, mußte verzichtet werden.

Bei den Beispielen und Aufgaben wird weniger auf innermathematische Pro-
bleme Wert gelegt, vielmehr stehen Anwendungsaufgaben im Vordergrund. Hin-
weise auf Band 7/ l beziehen sich auf die dritte und vierte Auflage.

Dresden, Februar 1984 Der Autor
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5. Potenzreihenansätze und Verallgemeinerungen

5.1. Poteuzreihenentwicklung der Lösung

5. 1. 1. Koeffizientenbereclmung

Im Band 7/1 standen elementare Integrationsmethoden im Mittelpunkt. Für
nicht in dieser Weise lösbare Differentialgleichungen wird man — wie bereits im
Abschnitt 1.4. des Bandes 7/1 erwähnt wurde — neben numerischen Verfahren
auch an gewisse Reihenentwicklungen der Lösungen denken. Wir studieren hier
zunächst die Entwicklung der Lösung in Potenzreihen. Zu Beginn wird die Methode
an der Anfangswertaufgabe aus dem Beispiel 2.9 illustriert, also an einer Differential-
gleichung, deren Lösung nachweisbar nicht durch elementare Funktionen und Inte—

grationen angebbar‘ ist (Abschnitt 2.5.1.).

Beispiel 5.1: Unter der Annahme, daß die Lösung y = y(x) der Anfangswertaufgabe

y’ = 3:06‘ + y’), y(0) = 0 (5-1)

an der Stelle x = 0 in eine Potenzreihe (Band 3, Abschnitt 4.) .

y(x) = äcm (5.2)

entwickelbar ist, sollen die Koeffizienten Cy (v = 0, 1, ...) berechnet werden. Man
setzt hierzu den Ansatz (5.2) in die Differentialgleichung aus (5.1) ein, ordnet danach
auf beiden Seiten nach Potenzen von x und führt schließlich einen Koeffizienten-
vergleich durch. Wir erläutern jetzt die einzelnen Schritte ausführlich. Einsetzen
von (5.2) in die Differentialgleichung aus (5.1) ergibt

(vgl) ax“), = ä (x2 /-l— (:0 c,x”)2) . (5.3)

Um die linke Seite nach Potenzen von x zu ordnen, brauchen wir nur daran zu er-
innern, daß Potenzreihen innerhalb ihres Konvergenzbereiches gliedweise diffe-
renziert werden dürfen (Band 3, Satz 4.8). Also ergibt sich für die linke Seite von (5.3)
der Ausdruck

00,. vx’ *1. ‘ (5.4)

|‘
lf
l8

v

In (5.4) könnte man den Summationsbuchstaben v auch erst von 11 = 1 an laufen lassen; das ist
klar, denn der konstante Summand co der Potenzreihe aus (5.2) fallt bei der Difierentiation weg.
Es ist aber auch nicht falsch, mit der Formel aus (5.4) zu arbeiten, denn für v = 0 ist das allgemeine
Glied gleich 0 - cox” und damit gleich null. Der Einwand, daß der Ausdruck 0 i cox“ im Falle
x = O nicht erklärt ist, muß zwar anerkannt werden, diese Tatsache ist hier jedoch als „Schönheits-
fehler" aufzufassen. Um nicht auf die Schreibweise in (5.4) verzichten zu müssen, wird festgesetzt,
daß in diesem Zusammenhang unter 0 - cox“ auch dann noch der Wert 0 verstanden werden soll,
wenn x = 0 ist.
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Beim Ordnen der rechten Seite von (5.3) nach Potenzen von x wird man zunächst
das Quadrat der dortigen Potenzreihe auswerten. Das macht keine grundsätzlichen
Schwierigkeiten, wenn man die Multiplikation von Potenzreihen (Band 3, Abschnitt
4.4.1.) beherrscht. Es ergibt sich

(co + clx + 02x2 + ...)2 = c3 +(c.,c1 + c1c0)x

+ (cocg + clcl + czco) x’ + ...,

das ist zusammengefaßt

=E:0 ( iocflcwu) x". (5.5)
,,=

Damit kann die rechte Seite von (5.3) nach Potenzen von x geordnet werden. Sie
ist in ausführlicher Schreibweise

_= icä + -k(coc1 + c,co)x +<;1(I+ cocz + cf + cgco) x2 +

und zusammengefaßt
O0 I V .

wobei in (5.6) das K1-oneckersymbol

0 für k + I

a“ 1 für k = l m)
benutzt wurde. Wegen (5.4) und (5.6) folgt aus (5.3)

no 00 l v

vgocvvxfl = E07 {(,§oc“”""‘) + ö" x" (5.8)

Dem Koeffizientenvergleich in (5.8) steht im Wege, daß links die Potenzen x"’,
rechts dagegen die Potenzen x” auftreten. Es wird deshalb auf der linken Seite von
(5.8) der neue Summationsbuchstabe g durch

g=v—-1, d.h.1I=g+1, (5.9)

eingeführt. Läuft a: von 0 bis unendlich, so läuft g von -1 bis unendlich. Also
geht (5.8) m

00 00 l V

2 cm9 + 1m = 2 7{( 2 am-..) + a.2}xv (5.10)
9=—1 y=o u=o

über’. Auf die Bezeichnung des Summationsbuchstabens kommt es nicht an. Wir
können also ohne einen Fehler zu begehen auf der linken Seite von (5.10) 9 durch
einen anderen Summationsbuchstaben ersetzen. Im Hinblick auf die Vorbereitung
des Koeffizientenvergleichs ersetzen wir g durch v:

g = v. _ (5.11)

Es ergibt sich

+ U x’ {l fir
/1

«

suck") + (L; } x’. (5.12)
D .
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Wer einen Widerspruch zwischen (5.9) und (5.11) zu erkennen glaubt, dem sei gesagt, daß ab
Gleichung (5.10) die Gleichung (5.9) ihre „Schuldigkeit“ getan hat und „vergessen“ werden sollte.
Ein solches Vorgehen ist tatsächlich zulässig, denn (5.9) dient lediglich zum Nachweis, daß die
linken Seiten von (5.8) und (5.10) einander gleich sind. Davon kann man sich auch direkt über-
zeugen, indern man beide unendlichen Reihen ausführlich aufschreibt. In analoger Weise dient (5.11)
lediglich zum Nachweis dafür, daß die linken Seiten von (5.10) und (5.12) übereinstimmen.

Dem Koeffizientenvergleich in (5.12) steht jetzt nur noch der verschiedene Sum-
mationsbeginn (bei v = -1 bzw. v = 0) im Wege. Da jedoch das allgemeine Glied
der linken Seite von (5.12) im Falle v = ——l gleich null ist, kann auf derlinken Seite
von (5.12) die Summation bei v = 0 beginnen:

väcmo + 1) x” = E 71- {(é0c,,c,_,,) + 6.; }x”. (5.13)

Nun ist der Koeffizientenvergleich in (5.13) durchführbar (Band 3, Abschnitt 4.2.2.).
Es ergibt sich

c„„(v + 1) = ä {(”;:Oc,,c,,_,,) + 6,2} (v = 0,1, 2,...)

und damit

am = 4(%1—) {(§‘,oc,‘c,_,,) + 6.2} (v = o, 1, 2, ...). (5.14)

Aus (5.14) kann 0.„ nicht unmittelbar entnommen werden. Die Berechnung gelingt
erst, wenn bereits co, ..., c. bekannt sind. Formeln mit diesem Sachverhalt heißen
Rekursionsformeln. Einsetzen des Ansatzes (5.2) in die Anfangsbedingung aus (5.1)
führt zu

co = 0, (5.15)

Man schreibt nunmehr (5.14) der Reihe nach für v = 0, v = 1, v = 2, auf und
benutzt bei der Berechnung die jeweils bereits bekannten c-Werte. Es ergibt sich:

1 .

v = 0: c1 = 4—.—1c¢1,= 0 [siehe (5.l5)]‚

1’ =1i C2 = (C001 + C150) = 0a
I

4-2
1 l

v = 2: c3 =4%3{(c„c; + clc, + C2Co)+1}= E,

1
v = 3: c4 = fi(CoC3 + C162 + C201 + e300) = 0. (5.16)

* Aufgabe 5.1: Man führe die in (5.16) begonnene Rechnung fort und zeige, daß

l
C5 = 0, C5 = 0 und C7 = W2-

gilt.

Einsetzen von (5.15), (5.16) und (5.17) in (5.2) liefert den folgenden Beginn der
Potenzreihenentwicklung der Lösung:

l 1
y(x) = 1—2-x3 + Wax’ + (518)
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Um einen Vergleich mit dem Ergebnis des Beispiels 2.9 zu haben, werten wir (5.18)
an der Stelle x = % aus:

<i>+<1>%~‘ (11% -i+—1 +y 2 "12 2 4032 2 ""96 516096

= 1,o4166“-10-2 + 1,9376 - 10-6 + (5.19)

Damit ergibt sich für y(-}) der Näherungswert 1,04186 - 10"’.

Bemerkung zu Beispiel 5.1: Bei der Betrachtung von (5.18) wird man intuitiv ver-
muten, daß die Potenzreihe in einer gewissen Umgebung von x = 0 konvergiert.
Aus (5.19) glaubt man entnehmen zu können, daß die Potenzreihe an der Stelle
x = f konvergiert, und zwar so stark, daß die nicht berücksichtigten Glieder ins-
gesamt keinen wesentlichen Einfluß auf die mitgeführten Stellen des Näherungs-
wertes haben. Es ist wünschenswert, eine Theorie zu haben, mit deren Hilfe die
genannten Vermutungen bewiesen werden können. Wir verweisen in diesem Zu-
sammenhang auf den Satz 5.1., das Beispiel 5.4. und auf die im Band 3 (4.3.2.)
gemachten Aussagen über die genäherte Funktionswertberechnung mittels Taylor-
reihen (Potenzreihen).

Aufgabe 5.2: Unter der Annahme, daß die Lösung y(x) der Anfangswertaufgabe

(1 - x’)y" - xy' = 2. y(0) = L y’(0) = 0 (5-20)

an der Stelle x = 0 in eine Potenzreihe entwickelbar ist, berechne man die Ent-
wicklung von y(x) bis zum Glied cgxfi. Weiterhin gebe man mit den Hilfsmitteln
aus Band 7/ l die Lösung von (5.20) durch eine elementare Funktion an und entwickele
sie an der Stelle x = O in eine Potenzreihe bis zur sechsten Potenz. Man vergleiche
die Ergebnisse beider Lösungsmethoden.

Im Beispiel 5.1 mußten wir beim Übergang von (5.3) zu (5.8) eine Potenzreihe
quadrieren. Im folgenden Beispiel ist eine kompliziertere Operation durchzuführen,
nämlich das Einsetzen einer Potenzreihe in eine andere (Band 3, 4.4.3.).

Beispiel 5.2 (vgl. Beispiel 3.2): Unter der Annahme, daß die Lösung <p(!) der Anfangswertaufgabe

m11"? = -my Sim)’, <P(0) = 0. 193(0) = vo =l= 0 (5-21)

an der Stelle t = 0 in eine Potenzreihe

(D

<p(t) = ED c,,t' g (5.22)

entwickelbar ist, sollen die Koeffizienten c, (v = 0,1, 2,...) berechnet werden. Zunächst liefern
die Anfangsbedingungen aus (5.21) für die Koeffizienten co und cl aus (5.22) die Werte

Do
co = 0, c1 = —l- . (5.23)

Zur Vorbereitung für das Einsetzen von (5.22) in (5.21) wird man die Funktion sin q: an der Stelle
«p = q, — das ist wegen (5.23) hier die Stelle zp = 0 — in eine Potenzreihe entwickeln:

eo (_1)u
sinap = 2 j- “IM. 5.24

„-.‚ (zu +1)!” l )
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Beim Einsetzen von (5.22) in die Differentialgleichung aus (5.21) erhält man unter Berücksichtigung
von (5.23) und (5.24) in ausführlicher Schreibweise zunächst

ml(2cz + 6531+ 12cm + 2oc,r3 + 30:61‘ + 42c-,t5 + ...)

= —mg{[%J-t + cztz + £313 + c4!‘ + c5!‘ +

1 1

— —:T[...]3 + ~5!— [...]5 — + (5.25)

wobei der durch Punkte angedeutete Inhalt der eckigen Klammern auf der rechten Seite vou (5.25)
gleich dem Inhalt der dortigen ersten eckigen Klammer ist. Wir wollen nun an diesem Beispiel
zeigen, dal3 es vorteilhaft sein kann, bereits während des Ordnens der rechten Seite von (5.25) nach
Potenzen von I mit dem Koeffizientenvergleich zu beginnen und dessen Ergebnisse beim weiteren
Ordnen zu benutzen. Es ist klar, daß die dritten und höheren Potenzen der eckigen Klammern
auf der rechten Seite von (5.25) keinen Beitrag zur nullten, ersten und zweiten Potenz von t ergeben.
Damit kann in (5.25) der Koeffizientenvergleich bezüglich der Potenzen r°, t und t2 sofort ausgeführt
werden. Es ergibt sich

E110c,=o, c,=——6l—,—, c4=0. (5.26)

Also vereinfachen sich die eckigen Klammer-n auf der rechten Seite von (5.25) zu

v0 gv
[...] = .7: — —6I—:—t3 + c,z5 + ' t (5.27)

und die Entwicklungen von [...]3 und [...]’ beginnen folgendermaßen:

v3 gag
[...]3 = ,—3t'~‘ — 2],, t5 + (5.28)

5 "ä 5[...] =l—,r + (5.29)

während die höheren Potenzen von [...] erst von t7 ab Glieder liefern. Unter Beachtung von (5.27),
(5.28) und (5.29) kann somit in (5.25) der Koeffizientenvergleich bezüglich der Potenzen z’, t‘ und t 5

weitergeführt werden. Wir erhalten

1 gzvo gv3 l g-"v I gzv-3 gv5 Nc‚=m(—l3—+l—f, c6=0, c7: —EÖE "%Tl1l5O +]—;’. (5.50)

Also beginnt die Potenzreihenentwicklung (5.22) folgendermaßen:

v gv 1 gzv gas

'P<'>=7°“" ?°”+m( 12° + 14°)”
1 g3v gzv’ gv5_W(T°+ 11 15° + 15° )r7+ (5.31)

Aufgabe 5.3: Man löse durch elementare Methoden die zu (5.21) gehörige linearisierte Anfangswert-
aufgabe

mit? = -mgw‚ 412(0) = 0. I¢(0) = Vo (5.32)

und entwickle das Ergebnis an der Stelle t = 0 in eine Potenzreihe. Weiterhin ist die Potenzreihen-
entwicklung

w

2 dvt’
v-O

der Differenz zwischen der Lösung (5.31) von (5.21) und der Lösung von (5.32) zu bilden, und es

sind die Koeffizienten do bis d-, zu berechnen.

(5.33)
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In den Beispielen 5.1 und 5.2 wurden die Lösungen y(x) bzw. ¢(t) an den Stellen
x = xu = 0 bzw. t = to = 0 entwickelt. Im nächsten Beispiel wird die Stelle
x = x0 = l genommen. Das Beispiel soll weiterhin zeigen, daß es nicht genügt,
sich lediglich mit dem Formalismus der Koeffizientenberechnung zu beschäftigen;
man muß darüber hinaus gewisse Sätze zur Kenntnis nehmen, die ab 5.1.2. behandelt
werden.

/

Beispiel 5.3: Unter der Annahme, daß die Lösung der Anfangswertaufgabe

(x2—2x+1)y'=y——x+1, y(1)=0 (5.34)

an der Stelle x = 1 in eine Potenzreihe

y<x) = E c.<x — w (5.35)
v=0

entwickelbar ist, sollen die Koeffizienten e, (v = 0, 1,...) berechnet werden. ‘Die
Anfangsbedingung aus (5.34) führt mit (5.35) zu

‘co = 0. (5.36)

Unter Berücksichtigung von (5.36) wird (5.35) in die Differentialgleichung aus (5.34)
eingesetzt:

(x2 — 2x + 1) [c‚ + 2c2(x — 1) + 3c3(x — 1)” + ...]

= [c1(x — 1) + c2(x —- I)’ + c3(x — 1)’ + ...] — x + 1. (5.37)

Zur Vorbereitung des Ordnens beider Seiten von (5.37) nach Potenzen von x — 1

werden zunächst die beiden Ausdrücke x’ — 2x + 1 und —x + 1 aus (5.34) an der
Stelle x = 1 in eine Potenzreihe (Taylorreihe) entwickelt. Es ergibt sich

x2—2x+l=(x—l)2,
— x+1= —(x—l). - (5.38)

Daß in (5.38) die Entwicklungen abbrechen, ist nur durch die Einfachheit der zu
entwickelnden Ausdrücke bedingt. Natürlich sieht man (5.38) auch direkt ein; aber
in komplizierteren Fällen wird man tatsächlich an die genannte Taylorentwicklung
der Ausdrücke in der Differentialgleichung denken müssen. Nunmehr wird (5.38)
in (5.37) eingesetzt und beiderseits nach Potenzen von x — 1 geordnet:

c1(x — I)’ + 2c;(x — l)3 + 3c3(x —— 1)‘ +

= (c, — l)(x — 1) + c3(x —- l)’ + C3(X —- 1)3 + c4(x — 1)‘ + (5.39)

In (5.39) wird bezüglich der Potenzen Von x — 1 der Koeffizientenvergleich durch-
geführt. Man erhält

0 = cl — 1, c,_= c2, 2c; = c3.

Ja, es ist hier sogar möglich, allgemein

Wu = Cw-1 (v =1.2,3,.--)
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anzugeben. Folglich ergibt sich für die unbekannten Koeffizienten c„:

e1=l‚ c;=1, c3=2, c4=3!, c5=4!
und allgemein

e, = (a: — 1)! (v = 1,2, 3, ...). (5.40)

Einsetzen von (5.36) und (5.40) in den Ansatz (5.35) liefert das Ergebnis

y(x) = E10: — 1)! (x — l)”. (5.41)

Nun ist aber die Reihe (5.41) für alle x mit x 4: 1 divergent, d. h.‚ der Konvergenz-
radius der erhaltenen Potenzreihe ist gleich null. Dies ist beispielsweise mittels des
Quotientenkriteriums für das Konvergenzverhalten unendlicher Reihen sofort
nachprüfbar. Also stellt sich die Annahme, daß y(x) an der Stelle x = 1 in eine
Potenzreihe entwickelbar sei, als falsch heraus. Das Ergebnis (5.41) ist unbrauchbar.

Aufgabe 5.4: Man führe das Beispiel 5.3 durch, indem man die Anfangsbedingung
y(l) = 0 jetzt in y(l) = 1 abändert. Man zeige, daß nunmehr bereits der Rechnungs-
gang zu einem Widerspruch führt.

Nach dem Beispiel 5.3 erhebt sich die Frage, wie man im allgemeinen rechtzeitig
erkennen oder vermeiden kann, daß ein Potenzreihenansatz unbrauchbar wird.
Hierzu müßte man der Anfangswertaufgabe selbst schon entnehmen können, ob
eine Potenzreihenentwicklung der Lösung existiert. Hiermit beschäftigt sich der
nächste Abschnitt.

5.1.2. Existenz- und Unitätssätze

Wir wollen Sätze über die Möglichkeit von Potenzreihenansätzen beim Lösen
von gewöhnlichen Diflerentialgleichungen formulieren. Es gilt

Satz 5.1: Die Anfangswertaufgabe für die Funktion y = y(x), bestehend aus der
expliziten Differentialgleichung n-ter Ordnung

y‘”’ =f(x. y, y""“) (5.42)

und den n Anfangsbedingungen '

(y“°(x)),„‚„ = yo"’ (yo‘”’ gegebene Zahlen, v = 0, 1, ..., n — 1), (5.43)

hat in einer x-Umgebung von x = x0 genau eine Lösung y = y(x), und diese ist an

der Stelle x = x0 in eine Potenzreihe

y(x) = ¥0Cv(x — X0)’ (5-44)

(Konuergenzradius größer als null) enzwickelbar, falls die rechte Seite f von (5.42)
bezüglich x an der Stelle x0, bezüglich y an der Stelle yf,°), bezüglich y’ an der Stelle
y§,=>, ..., bezüglich y"“‘) an der Stelle yo ‘Ü jeweils in eine Potenzreihe entwickelbar
ist
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Beispiel 5.4: Jede Anfangswertaufgabe

y’ = i (x2 + y’), y(xo) = yo (5.45)

hat genau eine Lösung; sie ist an der Stelle x = x0 in eine Potenzreihe entwickelbar,
denn die Funktion

i (xi + y2>

ist an der Stelle x = x0 und an der Stelle y = yo jeweils in eine Potenzreihe ent-
wickelbar. Damit ist gesichert, daß die Lösung (5.18) der Anfangswertaufgabe (5.1)
aus Beispiel 5.1 in einer gewissen Umgebung von x = 0 konvergiert.

Beispiel 5.5: Gegeben sei die Anfangswertaufgabe

(x’-2x+1)y’=y—x+1‚ y(xo)=yo. (5-46)

Um den Satz 5.1 anwenden zu können, lösen wir die Differentialgleichung aus (5.46)
nach y’ auf:

, y — x + 1

y = 7-274“ ‘ (5.47)

Die rechte Seite von (5.47) ist für alle x = x0 und y = yo in eine Potenzreihe ent-
wickelbar mit Ausnahme der Nullstelle des Nenners, d. h. mit Ausnahme von
x0 = 1. Also ist jede Lösung der Anfangswertaufgabe an der Stelle x = x0 in eine
Potenzreihe entwickelbar‚ falls x0 + 1 ist. Damit ist verständlich, daß der Potenz-
reihenansatz im Beispiel 5.3 versagte.

Aufgabe 5.5 (vgl. Aufgabe 5.2): Gegeben sei die Anfangswertaufgabe

(1 - x’)y” — xy’ = 2, y(xo) = yo, y’(xo) = Y6. (5-48)

Für welche Wertetripel (x0, yo, y(,) sind die Voraussetzungen vom Satz 5.1 ver-
letzt?

Es entsteht naturgemäß die Frage, ob man bereits der Anfangswenaufgabe (5.42),
(5.43) den Konvergenzradius des Lösungsansatzes (5.44) entnehmen kann. Eine
vollständige Antwort liefert die Theorie im allgemeinen Fall nicht. Man kann aller-
dings angeben, wie groß der Konvergenzradius mindestens ist. Wenn die vorliegende
Differentialgleichung nichtlinear ist, so ist die gelieferte Formel verhältnismäßig
kompliziert; wir geben sie hier nicht an.

Zur Illustration dieses Sachverhaltes betrachten wir die Anfangswertaufgabe

y’ = 1 + y’, v(0) = o. (5.49)

Obwohl die rechte Seite der Differentialgleichung aus (5.49) für alle Stellen x = x0 und y = yo

jeweils in eine Potenzreihe entwickelbar ist, so ist jedoch die Lösungsreihe y(x) = E c,,x" keinesfalls

überall konvergent. Die Lösung von (5.49) ist nämlich y = tan x, und der Konäergenzradius der
Potenzreihenentwicklung von tanx an der Stelle x = 0 ist gleich 7:/2.

Ist die Differentialgleichung linear, so sind die Verhältnisse wesentlich übersicht-
licher. Wir formulieren den hierher gehörigen Satz nur im Falle von linearen Diffe-
rentialgleichungen zweiter Ordnung, denn hiermit ist einerseits die Methode für
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lineare Differentialgleichungen n-ter Ordnung bereits gut erkennbar, andererseits
genugendie in den Anwendungen wichtigen Funktionen der mathematischen Physik
gewohnhchen Dilferentialgleichungen zweiter Ordnung.

Satz 5.2: Wenn in der gewöhnlichen linearen Differentialgleichung zweiter Ordnung
17")’ = ‚V(X) '

Po(x)y” + 171(x)y’ + P2(x),v = g(x) (5-50)

die Quotienten

p1(x) p2(x) g(x) (5.51)

P00‘) ’ P00‘) , 170(95)

an der Stelle x = x0 alle in Patenzreihen entwickelbar sind, so kann die allgemeine
Lösung von (5.50) an der Stelle x = x0 in eine Potenzreihe

y(x) = 2 6.0! - xo)’ (5-52)
1/=0

entwickelt werden. Der Konvergenzradius der Lösungspotenzreilie (5.52) ist mindestens
gleich dem kleinsten Konvergenzradius der Entwicklungen aus (5.51).

Beispiel 5.6: Gegeben sei die gewöhnliche lineare homogene Differentialgleichung
zweiter Ordnung

(5.53)(1+x2)y”+ y’+y=0-x—2

An der Stelle x = O ist die allgemeine Lösung von (5.53) in eine Potenzreihe entwickel-
bar. Der Konvergenzradius ist mindestens gleich 1, denn die Entwicklungen der
Funktionen

1 I 0

(x—2)(1+x2) ’ 1+x” 1+x2
an der Stelle x = 0 haben die Konvergenzradien 1, 1 und w.

(5.54)

Bemerkung zu Beispiel 5.6: Man kann beimlVorliegen von rationalen Funktionen —

solche liegen in (5.54) vor — den Konvergenzradius der Entwicklung direkt aus den
Formeln ablesen, ohne erst die Entwicklung praktisch durchzuführen und Konver-
genzkriterien zu benutzen. Sind nämlich in der Darstellung der rationalen Funktion

R(x) durch R(x) = die Polynome P(x) und Q(x) teilerfremd, d. h. haben sie

keine gemeinsamen reellen oder komplexen Nullstellen, so ist der Konvergenz-
radius der Entwicklung von R(x) an der Stelle x = x0 gleich dem Abstand zwischen
x0 und der x0 nächstgelegenen Nullstelle des Nenners Q(x). Wesentlich ist hierbei

‘ jedoch, daß man auch alle nichtreellen Lösungen von Q(x) = 0 in Betracht zieht.
So sind in (5.54) bei der rationalen Funktion

l
(x — 2) (1 + x2)
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die Nullstellen des Nenners gleich 2, i und —i. Also ist der Abstand zwischen x = 0
und der x = 0 nächstgelegenen Nullstelle des Nenners — es ist dies hier i (oder auch
—i) — gleich 1. Der Beweis der hier mitgeteilten Bemerkung kann mit Hilfsmitteln
der Funktionentheorie (Band 9) geführt werden. ‚

Linearen homogenen Difierentialgleichungen zweiter Ordnung, deren Koeffi-
zienten Polynome sind, genügen wichtige Funktionen der mathematischen Physik
(Band 12). Hier besteht somit die Möglichkeit, einen Zugang zu ihnen mittels der
Theorie der Differentialgleichungen herzustellen. Wir zeigen dies am

Beispiel 5.7: Für die Legendresche Difierentialgleichung

(x2 — 1) y" + 2xy’ — n(n + 1)y = 0 (5.55)

sind bei Wahl von x0 = 0 die Voraussetzungen von Satz 5.2 erfüllt. Da die Ent-
wicklungen der Funktionen

2x n(n + 1) 0

xz-l’ x2-1’ x2—1
(5.56)

an der Stelle x = 0 die Konvergenzradien 1, 1 und oo haben, ist die Konvergenz
der Lösungspotenzreihe .

y = Z0c,.x” ‚ (5.57)

für alle x mit |x| < 1 gesichert. Einsetzen von (5.57) in (5.55) führt zunächst zu

(xi — 1) Z0v(v —— 1)cvx"2 + 2x Z01Ic,,x"1 — n(n + 1) ¥0c,,x' = O. (5.58)

Allgemein gesprochen müssen nunmehr in (5.58) die Koeffizienten der gegebenen
Differentialgleichung (5.55) an der Stelle x = x0 (im vorliegenden Fall ist x0 = 0)
in Potenzreihen (Taylorreihen) entwickelt werden. Das ist im jetzigen Beispiel
trivial, denn die genannten Koeffizienten x2 — 1, 2x, —n(n + 1) stimmen bereits
mit den herzustellenden Taylorentwicklungen überein. Als Vorbereitung zum
Koeffizientenvergleich wird in (5.58) nach Potenzen von x geordnet. Die Rechnung
ergibt zunächst

Ev(v — 1) cvx” -— §v(v —— l)c„x" ‘Z + E2vc,,x' — §n(n + 1) cvx” = 0.
v=0 v O v=0 v=O

(5.59)

Die zweite Summe aus (5.59) wird umgeformt. Zunächst wird durch g = v — 2,
d. h. v = g + 2, der neue Summationsbuchstabe g eingeführt und anschließend
g durch v ersetzt:

ZOVÜ’ “ 1) CvxvA2 = Zz(Q + 2) (9 ‘i’ 1) cel-Zxe
v= g=-

0o

= Z (v + 2) (v +’ l)c„.‚zx'. (5.60)
v=—-2
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Beachtet man, dal3 in der letzten Summe aus (5.60) im Falle v = -2 und v = -1
das allgemeine Glied jeweils den Wert 0 ergibt und somit dort die Summation erst
bei v = 0 zu beginnen braucht, so ist durch Einsetzen von (5.60) in (5.59) ein Ordnen
nach Potenzen von x nunmehr möglich. Es ergibt sich

go [v(v — 1) c, — (v + 2) (v + 1) €v+2 + 2vc,, — n(n + 1) cv] x’ = .

' (5.61)

In (5.61) führt der Koeffizientenvergleich zur Rekursionsformel

c =v(v+l)—n(n+1)
"*2 (v+ l)(v+2)

Zur bequemen Auswertung von (5.62) wird der Zähler der rechten Seite umgeformt.
Hierzu fassen wir ihn bezüglich n als Polynom zweiten Grades auf. Seine beiden
Nullstellen liegen bei n = v und n = —v — 1. Aus der bekannten Tatsache, daß
man mittels der Nullstellen von Polynomen eine Produktdarstellung der Polynome
herstellen kann, folgt somit aus (5.62)

c„, (v = o, 1, 2, ...). (5.62)

(n—v)(n+v+1)cw; = —c, (v = 0, I, 2, (5.63)

Wir setzen zunächst in (5.63) der Reihe nach v = 0, v = 2, ...‚ v = 2‚u und be—

kommen

c2 = —%n(n + 1) co,

1
c4: —ä(n—2)(n+3)c2 =4—!(n—2)n(n+1)(n+3)co,

5_16(n—4)(n+5)c4cs=_.

——61—'(n—4)(n—2)n(n+1)(n+3)(n+5)co,

c2. = (—1>”(21W(n — m» — 21><n — 12v — 41)-...

-(n — 2) n(n +1)(n + 3) (n + [2‚u — 1]) co (‚u = 1,2, ...).

(5.64)

Setzen wir andererseits in (5.63) der Reihe nach v = 1, v = 3, ...‚ v= 2‚u + 1,

so folgt schließlich

€2u+1 = <—1)v(2l%1)!(n— m» — 11>(n — [zu — 31):

-(n— 1) (n + 2) (n + 4) (n + 2‚u) c, (p =1,2‚...). (5.65)
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Gemäß Satz 5.2 ergibt sich aus (5.57), (5.64) und (5.65) die allgemeine Lösung der
Legendreschen Diflerentialgleichung (5.55) zu

cc m

y(x) = co + E! cz„x”‘ + clx + Z1 c2#+1x2"+‘, Ix] < l
;t= u=

[czu und cu“ aus (5.64) und (5.65)]. (5.66)

Die Lösungen (5.66) der linearen homogenen Difierentialgleichung (5.55) bilden
einen zweidimensionalen linearen Raum (Satz 3.7), und eine Basis (Fundamental-
system) wird durch die beiden Funktionen

co + Z‘,1c2flx"‘ [cu aus (5.64)], [x| < 1, (5.67)
„=

und

c-‚x + Z c2„„x2"“ [c2„„ aus (5.65)]‚ ]x[ < l, (5.68)
“=1

gebildet, falls man sich für co und c1 jeweils eine von null verschiedene Zahl einge-
setzt denkt.

Bemerkung Der Lösungsgang ist sinnvoll, wenn für n eine beliebig reelle (oder
auch komplexe) Zahl genommen wird. In den Anwendungen ist aber meist
n = O, l, 2,

Bemerkung 5.2: Ist n = 2m mit m = 0, 1, 2,..., so reduziert sich die Potenzreihe in
(5.67) auf ein Polynom P„(x) vom n = 2m-ten Grade. Wählt man nunmehr co derart,
daß dieses Polynom an der Stelle x = l den Wert 1 annimmt, d. h.

P„(1) = P2„.(1) = 1 _ (5-69)

gilt, so ergibt sich das Legendresche Polynom vom n = 2m-ten Grad (Legendresche
Funktion erster Art mit dem Index n = 2m)

P„(x‚) = P2„‚(x) = co + ä czuxz" [c2,, mit n = 2m aus (5.64)]‚ (5.70)
,.=1

wobei für co im Falle m = O der Wert l und im Falle m > 0

Co = (-l)"' 12”‘m!
einzusetzen ist.

-1~3-5-...-(2m—1) (5.71)

Bemerkung 5.3: Ist n eine positive ungerade Zahl, alson = 2m + l mitm = 0, 1, 2‚...‚
so reduziert sich die Potenzreihe in (5.68) aufein Polynom P„(x) vom n = (2m + 1)-ten
Grade. Wählt man dann cl derart, daß

P„(1) = P2m+1(1) = 1 (5-72)

gilt, so ergibt sich das Legendresche Polynom vomn = (2m + 1)-ten Grad (Legendre-
sehe Funktion erster Art mit dem Index n = 2m + 1)

P,,(x) = P2,,,+l(x) = clx + ä c2„„x2"“ [c;‚;„ mitn = 2m + laus (5.65)],
u=-1

(5.73)

2 Wenzel, Cew. nur, 2
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wobei für cl der Wert

cl=(—1)"'fi%§-1-3-5-...~(2m+ 1) (5.74)

einzusetzen ist.

Aufgabe 5.6: Man beweise die Formel von Rodrigues

P„(x) = 1 d: [(x2 — 1)") (n = o, 1,2...) (5.75)
2"n! E17

in den Fällen n = 0, 1, 2, 3, 4 mittels der Formeln (5.70), (5.71), (5.73), (5.74) und durch
direkte Berechnung der rechten Seite von (5.75).

Aufgabe 5.7: Es ist zu zeigen: Das Basiselement (5.68) ist im Falle n = 0 eine ele-
mentare Funktion. Setzt man für cl den Wert 1 ein, so ergibt sich ’

1 1 +
Qo(x) = 71n1_:

(Legendresche Funktion zweiter Art mit dem Index null für |x| < 1).

Aufgabe 5.8: Es ist zu zeigen: Das Basiselement (5.67) ist im Falle n = 1 eine ele-
mentare Funktion. Setzt man für an den Wert -1 ein, so ergibt sich

Q1(x) = xQo(x) -1 (-1 < x <1)
(Legendresche Funktion zweiter Art mit dem Index eins für |x| < 1).

Bemerkung 5.4: In Fortführung der Bemerkungen 5.2 und 5.3 sowie der Auf-
gaben 5.7 und 5.8 läßt sich mit (5.67) und (5.68) zeigen:

Satz 5.3: Im Falle n = O, 1, 2, kann eine Basis des Lösungsraumes der Legendre-
sehen Differentialgleichung (5.55) durch das Legendresche Palynam P„(x) und die
Legendresche Funktion zweiter Art Q„(x) angegeben werden. Q,,(x) ist eine elementare
Funktion. Speziell gilt

Q20‘) = P205) QOÜ‘) " i‘ X,
Q3505) = P30‘) Q00‘) ‘ %x2 ‘i’ 33355

(5.76)(—1<x<1)

(5.77)

Q4(x) = P4(x) Q„(x) — 385—x3 + ü): (—1 < x < 1). (5.78)

_ 2 2

Aufgabe 5.9: Mit der Abkürzung 14 : (GJ,EJ = const) entwickele man
I

die Lösung der Differentialgleichung (V.l) des Vorwortes in eine Potenzreihe 19(x)
O’)

= 2 qx", die der Bedingung z9’(0) = 0 aus (V.5) genügen soll. Wie groß ist der
v=0

Konvergenzradius der erhaltenen Reihe mindestens? Was ergibt sich für c‘, mit
v = O, 1, 2, ..., 16?

5.2. Verallgemeinerte Potenzreihenansätze

5.2.1. Stellen der Bestimmtheit

Die Theorie aus 5.1.2. muß erweitert werden. Oft interessieren nämlich gerade
die Lösungen in der Umgebung solcher Stellen x0, für die die Voraussetzungen aus
5.1.2. nicht erfüllt sind. Es wäre in einem solchen Fall nicht rationell, in der Nach-
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barschaft Von x0 eine Stelle x1 zu wählen, für die man die Theorie aus 5.1.2. an-

wenden könnte. Der Konvergenzbereich der Entwicklung der Lösung an der Stelle xi
wird im allgemeinen bereits an x0 anstoßen, also erfaßt man nur einen Teil der
interessierenden Umgebung von x0. Als Beispiel seien die Differentialgleichung (V.3)
des Vorwortes bezüglich der Entwicklungsstelle r = O und die Legendresche Diffe-
rentialgleichung (5.55) bezüglich x = 1 und x = -1 genannt. Weitere Beispiele
hierzu enthalten die Bände 8 und 12 bei der Behandlung von Zylinder- und Kugel-
problemen.

Wir behandeln nur den homogenen Fall. Das ist keine wesentliche Einschränkung,
da der inhomogene Fall mittels der Variation der Konstanten (3.3.8.) auf den
homogenen Fall zurückgeführt werden kann. Ausgangspunkt ist die

Definition 5.1: Gegeben sei die lineare homogene Differentialgleichung zweiter Ord-
nung für die Funktion y = y(x):

po(x) y” + 11106) y’ + p2(x)y = 0- (5-79)

Die Stelle x = x0 heißt Stelle der Bestimmtheit der Diiferentialgleich g (5.79),
falls in der Umgebung von x0 (x0 selbst ausgenommen) folgende Entwicklungen gelten:

P10‘) _

170(35)
m“) ~ E bv(x - xo>'.21 “(x — x0)”, 170(95) äv=—2v=_

(5.80)

p1(x)
Poo‘) ‚

steht jedoch nicht fest, ob a_1 van null verschieden ist, so spricht man von einem Pol

Fifi;-aus (5.80) habe an
o

der Stelle x = x0 einen Pol zweiter Ordnung oder einen Pol höchstens zweiter Ordnung,
je nachdem, ob b_z + 0 feststeht oder nicht.

Ist in (5.80) a4 ä: 0, so sagt man, hat an der Stelle x0 einen Pol erster Ordnung;

höchstens erster Ordnung. Analog sagt man, die Funktion

Im folgenden Beispiel wird vorgeführt, wie die Entwicklungen (5.80) in praktischen
Fällen hergestellt werden.

Beispiel 5.8: Die Legendresche Differentialgleichung (5.55) werde in der Umgebung
von x = x0 = 1 untersucht. Hierzu sind gemäß (5.80) die Entwicklung von

p.(x> _ 2x d p2(x) = _'n<n+1)
po(x) _ X2 — 1 po(x) x’ - 1

mit x0 = 1 herzustellen. Zunächst werden die Nenner in (5.81) an der Stelle x0 = 1

in Potenzreihen (Taylorreihen) entwickelt:

p.(x> = 2x P20‘) = —n(n + 1)

170(96) 2(x -1)+(x.— 1)’ ' 1Io(x) 2(x — 1) +(x-1)‘ '

Im nächsten Schritt muß in den Nennern aus (5.82) eine möglichst hohe Potenz
der Größe x — x0, also hier von x — 1, ausgeklammert werden; und zwar soll der
noch übrigbleibende Faktor des Nenners eine Potenzreihe in x — x0 sein — hier
im Beispiel ist es speziell ein Polynom —— deren absolutes Glied von null verschieden
2.

(5.81)

(5.82)

D. 5.1.
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ist. Gemäß dieser Vorschrift muß also in den Nennern von (5.82) die erste Potenz
von x — l ausgeklammert werden:

p,(x) = l 2x P2(x) z 1 —n(n + 1)

po(x) x—l 2+(x—1)’po(x) x—l 2+(x—1)'
In (5.83) sind auf den rechten Seiten die zweitenBrüche an der Stelle x0 = l jeweils
in Potenzreihen entwickelbar. Man kann die praktische Herstellung der Entwicklung
mit Hilfe der Taylorformel vornehmen oder auch sich der Methode der Potenz-
reihendivision bedienen, falls man Vorher noch die Zähler an der Stelle x0 = 1

entwickelt. Insgesamt ergibt sich

(5.83)

%(:E—:;—=;i—1(1 +%(x— 1)+

:8 =ff%n(n + 1) + %n(n + 1) (x — 1) + (5.84)

wobei gemäß der Bemerkung zu Beispiel 5.6 die Konvergenz der Reihe in (5.84) für
alle x mit 0 < [x — 1| < 2 gesichert ist.

Also sind die Brüche (5.82) an der Stelle x0 = 1 tatsächlich in der Gestalt (5.80)
entwickelbar. Es ist somit x0 = 1 für die Legendresche Differentialgleichung (5.55)
eine Stelle der Bestimmtheit.

5.2.2. Lösungsansatz für ein Basiselement

Satz 5.4: Ist x = x0 für die Dzflerentialgleichung (5.79) eine Stelle der Bestimmtheit,
so kann ' J ein Rn ' ’ des z ‘J’ ' ' Läsungsraumes in der
Gestalt

y(x) = Ix - xol“ go c.(x - xo)”. co + 0, (5-35)

angegeben werden. Der Konvergenzradius der unendlichen Reihe aus (5.85) ist min-
destens gleich dem kleinsten Konvergenzradius der Entwicklungen der beiden Funk-
tionen

pdx) p2(x)
Po(x) ’ 1Io(x)

an der Stelle x = x0.

(5.86)

Zusatz ] zu Satz 5.4: Gemäß (5.80) sind die Entwicklungen von (5.86) —— abgesehen
von höchstens zwei Summanden —— Potenzreihen; der Begriff des Konvergenz-
radius ist also sinnvoll.

Zusatz 2 zu Satz 5.4: In (5.85) muß man damit rechnen, daß o: auch nichtreelle
Werte annimmt. Zur Berechnung von [x — xol“ verweisen wir auf die Definition 3.7.
Ist r der Konvergenzradius der unendlichen Reihe aus (5.85), so ist die Lösung y(x)
aus (5.85) für alle x mit 0 < |x — xol < r (die Stelle x = x0 selbst also ausgenom-
men) gültig.
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Zusatz 3 zu Satz 5.4: Zur Bestimmung von c.‚ und o; aus (5.85) genügt es, sich auf
den Fall x > x0 zu beschränken und damit bei der Herleitung

Ix — xov = (x — x0)“ (5.87)

zu setzen. Wir können somit für die Bestimmung von c„ und o; den Ansatz (5.85)
in der Gestalt

y(x) = ZoC»(x - xo)”"°‘, co + 0, (5-38)

angeben. Man entwickelt die Koeffizienten p0(x)‚ p1(x) und p2(x) der Differential-
gleichung (5.79) an der Stelle x = x0, setzt danach (5.88) in (5.79) ein, kürzt durch
(x —— x0)“, ordnet nach Potenzen von x — x0 und führt anschließend einen Ko-
effizientenvergleich bezüglich der Potenzen von x — x0 durch. Es zeigt sich, daß
wegen co + 0 [siehe (5.85)] der Exponent o: einer quadratischen Gleichung genügen
muß. Ihre Lösungen (x1 und 0c; seien so bezeichnet, daß für ihre Realteile Re (x1

und Re 1x2 die Beziehung

Re (x1 2 Re (x2 (5.89)

gilt. Hiermit formulieren wir den

Zusatz 4 zu Satz 5.4: In (5.85) ist der Exponent ac gleich der Lösung ex, der qua-
dratischen Gleichung für ac zu setzen.

Beispiel 5.9: Gemäß Satz 5.4 soll für die Legendresche Differentialgleichung

(xi — 1)y" + 2xy’ — n(n + 1)y = O ‘ (5.90)

an der Stelle der Bestimmtheit x0 = 1 (siehe Beispiel 5.8) ein Basiselement des
zweidimensionalen Lösungsraumes bestimmt werden. Nach der Entwicklung der
Koeffizienten an der Stelle x0 = l, d. h. nach Herstellung von

x’—1=2(x—l)+(x—l)2,2x=2+2(x——1),
—n(n + l) = —n(n + 1) (5.91)

wird der Ansatz (siehe 5.88)

y(x> =y20c.<x — 1>"+~. Co # o, (5.92)

in (5.90) eingesetzt und anschließend die Gleichung durch (x — l)“ dividiert. Es
ergibt sich .

22c.<v+a>(v +oc—1><x—1)v-1+ Em +oc>(v+a —1)(x—1>"
v:0 v=0

+ §02c,,(v + 0c) (x — nv-l + 202cm + xx) (x — 1)v

+ ;0—n(n + 1)cv(x — l)" = 0. (5.93)
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In der ersten und dritten Summe von (5.93) wird mit g = v — 1, d. h. v = 9 + 1,

der neue Summationsbuchstabe ‚g eingeführt und danach g durch v ersetzt:

E 2c...<«r + 1+ a) (v + «w: — w + §0c.<v + a) (v + a — n (x —1>~
v=-1 v=

+ EEcv+1(v + l + 0c) (x — 1):’ + /§:02c,,(v + xx) (x — 1)’

+ EO —n(n + 1) c„(x — 1)’ =_ 0. (5.94)

Der Vergleich der Koeffizienten der Potenzen von x — 1 in (5.94) ergibt im Falle
v = —l

2cooc(—1 + xx) + Zcooc = 0

und damit wegen co + 0 [siehe (5.92)]

0:2 = 0. (5.95)

Die Gleichung (5.95) ist für unser Beispiel die im Zusatz 3 zu Satz 5.4 genannte
quadratische Gleichung. Also gilt hier

1x1 = cc; = 0. (5.96)

Gemäß dem Zusatz 4 zu Satz 5.4 ist nunmehr in (5.92) für zx der Wert cc, = 0 ein-
zusetzen. Damit führt in (5.94) der Koeffizientenvergleich in den Fällen v = 0, 1,2,...
schließlich zur Rekursionsformel

c„„ = — ä Ti-1?[v(v + 1) — n(n + 1)] c„. (5.97)

Unter Hinweis auf den Übergang von (5.62) zu (5.63) ist einzusehen, daß für (5.97)

1c,+1=%W(n — v) (n + v + 1) e. (v = o, 1, 2, ...) (5.98)

geschrieben werden kann. Aus (5.98) ergibt sich für cl, c2,

c, = «}_-n(n + I)c0,

C2 =;——21~(n—1)(n+2)c, =2L2%(n—1)I1(n+1)(n+2)c0,

c3 =;—3iz(1z—2)(n+3)c2

=2%(—31?(n—2)(n——1)n(n+1)(n+2)(n +3)c0,

c,,>=f1y—T1}!1T(n-11+1)(n—v+2)...(n—— l)n(n+ l)...(n+v— 1)

"(n + v) co (v =1,2,...). (5.99)
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Schließlich ist (5.99) und ex ä cc, = 0 im Falle x0 = 1 in (5.85) einzusetzen. Da
nur ein Basiselement des zweidimensionalen Lösungsraumes gefordert wurde, ist
co # O noch festzulegen, man sagt, zu normieren, z. B.

(5.100)co = 1.

Also lautet das gesuchte Basiselement des Lösungsraumes

y(x) = 1 +vfi]% E10701 — v +1)(n — v+2) ...n(n +1)...(n + v)

-(x — l)”. (5.101)

Aufgabe 5.10: Wie groß ist der Konvergenzradius der Potenzreihe aus (5.101)
mindestens?

Aufgabe 5.11: Im Fall n = 0, 1, 2, stimmt (5.101) mit den Legendreschen Poly-
nomen überein (siehe Bemerkungen 5.2 und 5.3 sowie Aufgabe 5.7). Man weise
dies in den Fällen n = 0, I, 2, 3 nach.

Aufgabe 5.12: Man beginne gemäß Satz 5.4 ein Basiselement im allgemeinen Fall
(5.79), (5.80) herzustellen und zeige, daß die quadratische Gleichung für ex die folgende
Gestalt hat

xx’ + ((1-1 —1)zx + 11-2 = . (5.102)

Aufgabe 5.13: Für die Diflerentialgleichung (V.3) des Vorwortes bestimme man ein
Basiselement R1(r) des Lösungsraumes durch Entwickeln an der Stelle r = 0. Es
genügt für die Koeffizienten c‚. der Entwicklung die Angabe einer Rekursionsformel.

5.2.3. Herstellung eines zweiten Basiselementes

Zur Herstellung eines zweiten (vom ersten linear unabhängigen) Basiselementes
ist eine Fallunterscheidung erforderlich. Es handelt sich um die Differenz der Lösun-
gen der quadratischen Gleichung für on (siehe Zusatz 3 zu Satz 5.4):

(5.103)

(5.104)

Davon ist der Fall (5.103) einfacher zu behandeln als (5.104). Das mag verwunderlich erscheinen.
Man denke in diesem Zusammenhang an den Ansatz y = e“ bei linearen homogenen Differential-
gleichungen zweiter Ordnung mit konstanten Koeffizienten, wo die Lösungen 21 und h, der qua-
dratischen Gleichung für Z im Falle 7., — Z2 #- 0 sofort zur Basis eh". e"1" Anlaß geben, während
der Fall 11 —— 1.2 = 0 als komplizierter angesehen werden kann, weil dann die Basis ell‘, xe‘I"
vorliegt.

1. Fall: «x, — cc; ist nicht ganzzahlig,

2. Fall: a1 — u; ist ganzzahlig.

Satz 5.5 (Fortsetzung von Satz 5.4): Ist die Dzflerenz (x1 — [x2 der Lösungen der qua-
dratischen Gleichung für on nicht ganzzahlig, so hat ein zweites (vom ersten linear
unabhängiges) Basiselement des Lösungsraumes der Differentialgleichung (5.79) die
Gestalt des Ansatzes (5.85). Für at ist jetzt (x2 einzusetzen. Die Kaeffizienten ergeben
sich wiederum durch einen Koejfizientenvergleich. Auch im jetzigen Fall ist der Kon-
vergenzradius der unendlichen Reihe aus (5.85) mindestens gleich dem kleinsten Kon-
vergenzradius der Entwicklungen der beiden Funktionen (5.86).

S. 5.5
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Der Fall (5.104) ist, wie bereits oben bemerkt wurde, komplizierter. Es gilt nämlich
der

Satz 5.6 (Fortsetzung von Satz 5.5): Ist die Diflerenz ax, — ac; der Lösungen der
quadratischen Gleichung für o: ganzzahlig und bezeichnet man das gemäß Satz 5.4
existierende Basiselement (5.85) jetzt durch

y1(x) = lx ‘ xola‘ Z_:o¢'v(0‘1) (x " x0)’, ¢'o(°‘1) 4’ o: (5-105)

so hat ein zweites Basiselement y2(x) die Gestalt
C _ mm d):

y‚(x) = y.(x) f [ e vow Jdx, C 4: o. (5.106)

Man kann als zweites Basiselement auch

y;(x) = Ay,(x)1n [x — x0] + (x — x0)“ §)c,(oc2) (x —— x0)” (5.107)

angeben‘) In der letzten Reihe aus (5.107) ist der Konvergenzradius mindestens gleich
dem kleinsten Kanvergenzradius der Entwicklungen der beidenFunktionen (5.86).

Wir vertiefen die Einsicht in Satz 5.6 durch einige Erläuterungen:

Bemerkung 5.5: In (5.106) und (5.107) sind die beiden Fälle x > xu und x < x0
jeweils in einer einzigen Formel zusammengefaßt. Es ist möglich, die Integrations-
konstanten in den genannten Fällen jeweils verschieden zu wählen.

V Bemerkung 5.6: In (5.107) kann es vorkommen, daß A = 0 ist, daß also das logarith-

3i
-

mische Glied wegfällt und damit die einfachere Struktur des Satzes 5.5 vorliegt,
obwohl (5.104) gilt.

Bemerkung 5.7: Die Bestimmung von y2(x) kann bei bekanntem y1(x) durch Be-
rechnung des Integrals in (5.106) geschehen. Man kann aber auch (5.107) als Ansatz
auffassen, ihn in die Differentialgleichung (5.79) einsetzen und schließlich einen
Koeffizientenvergleich bezüglich der Potenzen von x — x0 vornehmen. Wie im
Zusatz 3 zu Satz 5.4 genügt es, wenn man sich bei der Rechnung auf den Fall x > x0
beschränkt, also lx — xo|"‘1 durch (x — x,,)"‘2 ersetzt. Um zu prüfen, ob A = O

oder A =l= 0 ist, kann man entweder das Integral (5.106) diskutieren oder A beim
Einsetzen von (5.107) in die Diflerentialgleichung als Parameter auffassen und bei
der weiteren Rechnung mitnehmen.

Bemerkung 5.8: Im Gegensatz zu co(«x1) $ 0 [siehe (5.l05)] kann es vorkommen,
dal3 co(oc2) = 0 [siehe (5.l07)] gilt. Es ist allerdings co(oc2) =+= 0 gesichert, falls die
Lösungen ax; und ocz (der quadratischen Gleichung für oc) nicht zusammenfallen.

Aufgabe 5.14: Für die Entwicklungen der Lösungen der Legendreschen Differential-
gleichung (5.90) an der Stelle x = 1 wurde in (5.96) a1 = ac; = 0 berechnet und in
(5.101) ein Basiselement y(x) = y1(x) angegeben. Man überlege sich ohne Rechnung,
ob im vorliegenden Fall A = 0 oder A 4: O gilt!

‘) Im Fall x < x0 ist unter (x - xo)‘ der Ausdruck |x - xo|°‘ 6"” zu verstehen.
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Beispiel 5.10: Für die Legendresche Differentialgleichung im Falle n = 1

I (x2 — 1)y” + 2xy’ — 2y = O (5.108)
1st

y1(x) = P1(x) = x (—oo < x < +00) (5.109)

eine Lösung (Bemerkung 5.3; Aufgabe 5.6). Mittels (5.106) soll ein von P1(x) linear
unabhängiges Basiselement des zweidimensionalen Lösungsraumes von (5.108)
hergestellt werden. Die Rechnung ergibt

2x

}’2(x) = xf e—fK7dxJ dx = CxJ‘xi2e—In|xz_l| dx

1 1
= Cxfmm = J_rCxfxT(x2—_—1)—dx, (5.110)

wobei nach dem letzten Gleichheitszeichen in (5.110) das obere bzw. untere Vor-
zeichen zu nehmen ist, je nachdem ob 1x1 > -1 bzw. 1x1 < 1 gilt. Die Partialbruch-
Zerlegung führt weiter zu

_ 1 1 1 l 1

W) - +C"f(7“§x—.T+§3::‘1)“"
1

=iCx<—%+—2—1n x+1 + C1. (5.111)

Im Falle |x1 < 1 — also im Falle der Gültigkeit des unteren Vorzeichens — ergibt
sich aus (5.111) die Legendresche Funktion zweiter Art Q,(x) aus (5.77), wenn man
C = 1 und C1 = 0 wählt und beachtet, daß man sich wegen 1x] < 1 yon den
Absolutstrichen in (5.11 1) folgendermaßen befreien kann:

1+x
Q1(x) = §1n1——_—; -1, |x|< 1. (5.112)

Im Falle |x| > 1 — also im Falle der Gültigkeit des oberen Vorzeichens in (5.111) —

wählen wir C = ——1 und C1 = Ound erhalten bei Beachtung der Befreiungsmöglich-
keit von den Absolutzeichen aus (5.111) ‘

+ 1
Q1(x) = gm :—_—T -1, 1x1 >1 (5.113)

(Legendresche Funktion ‘zweiter Art mit dem Index 1 für |x| > 1).

Aufgabe 5.15: Man zeige, daß man bei Wahl von x0 = 1 die Funktionen aus (5.112)
und (5.113) in der Gestalt (5.107) angeben kann. Wie lauten A und c..(oc,)?

Aufgabe 5.16: Man leite analog zum Beispiel 5.10 die Legendreschen Funktionen
zweiter Art mit dem Index 2 her [vgl. (5.78)]:

1 1 3
Q2(x) = 7(3x2 — l)ln l — ix, [x1 < 1, (5.114)

1 1 3 .

Q2(x) = 7(3x2 —1)1n:“:1 — ix, |x| > 1. (5.115)
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Graphische Darstellungen von P„(x) (0 g x g 1) und Q„(.x), Q1(x) (lxl > l) sind
im Band 12 angegeben.

"~' Aufgabe 5.17: ln Fortführung von Aufgabe 5.13 bestimme man in den Fällen

D. 5.2

l= 1, 2, 3, ein zweites Basiselement R2(r) des Lösungsraumes von (V.3) an der
Stelle r = O in der Darstellung (5.107) durch Angabe von Rekursionsformeln.

5.3.

5.3.1.

Entwicklung im Unendlichen

Problemstellung und Begriflsbildung

Benötigt man die Funktionswerte y(x) der Lösung der Differentialgleichung

170(34) y” + p1(x)y’ + p2(x) y = 0 (5-116)

für große Werte von x, etwa für alle Werte x mit x > X0 (z. B. in (V. 3) Funktions-
werte von R(r) für große r), so ist die Anwendung von 5.1. und 5.2. nicht geeignet.
Entwickelt man nämlich an einer Stelle x = x0 und ist der Konvergenzradius r der
Lösungsreihe kleiner als unendlich, so wird y(x) im Intervall x0 — r < x < x0 + r

dargestellt; insbesondere ist also die gefundene Lösungsformel für x > x0 + r nicht
brauchbar. Auch wenn der Konvergenzradius der Lösungsreihe gleich unendlich
sein sollte, ist das Ergebnis nicht befriedigend, denn wenn x von der Entwicklungs-
stelle x0 weit entfernt ist, so ist in diesem Fall zwar die Konvergenz der Lösungs-
reihe gesichert, jedoch ist die Konvergenz so „schlecht“, daß man zur Herstellung
eines brauchbaren Näherungswertes für y(x) eine vom Aufwand her nicht vertretbare
große Anzahl von Gliedern berücksichtigen muß.

Um hier weiterzukommen‚ werden wir einerseits den Begriff „Unendlich ist
Stelle der Bestimmtheit“ (5.3.2.) einführen und andererseits eine Klasse von Diffe-
rentialgleichungen herausgreifen, für die Unendlich keine Stelle der Bestimmtheit
ist, für die aber an der Stelle Unendlich eine asymptotische Entwicklung (5.3.3.;
5.3.4.) möglich ist. Wir beginnen dieses Programm mit der Erläuterung, was man
unter der Entwicklung der Lösung y(x) im Unendlichen versteht. Setzt man

u(t)= y(x) mit z=%, (5.117)

so genügt die Funktion u(t) einer Dilferentialgleichung der Gestalt

fio(t) u” + '171(t) u’ + 1"7'2(t)u = 0. (5.118)

Definition 5.2: Unter einer (einseitigen) Umgebung von +00 versteht man die Menge
aller reellen x mit x > Xo.

Durch t = éwird die Menge aller x mit x > X0 (X0 > 0) auf die rechtsseitige

Umgebung 0 < t < Xlvon I = 0 abgebildet. Hieraus folgt: Die Diflerentiaß
O

gleichung (5.116) und deren Lösungen verhalten sich in einer Umgebung von x = + o0

wie die Differentialgleichung (5.118) und deren Lösungen in einer rechtsseitigen Um-
gebung von t = 0.
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Aufgabe 5.18: Wie wird man zweckmäßig die Definition 5.2 und den anschließenden
Text auf den Fall einer Umgebung von x = ——oo übertragen?

Beispiel 5.11: Für die Legendresche Diflerentialgleichung

(x2 — 1) y" + 2xy’ — n(n + 1)y = O (5.119)

werde die zugehörige Difierentialgleichung der Gestalt (5.118) hergestellt. Die
Anwendung der Kettenregel liefert wegen (5.117)

y’(x) = gym = f—xu(r) = 7d} ä- = um (— = —r2u'(r),

(5.120)

y"<x> = -($1-'(x> = d—‘:<—r2u'<r)> = %<—z2u'<r)>—§§

= (—2n/(t) — t2u”(t))(—t2) = mu’ + 2t3u’(t). (5.121)

Einsetzen von (5.121), (5.120), (5.117) und x = tiin (5.119) ergibt

(t3 — t“) u” — 2t3u’ — n(n + 1)u = 0 (5.122)

und damit eine Diflerentialgleichung der Gestalt (5.118) mit

13o(t) = t2(1 — t‘). ih(t) = —2t3,13z(t) = -n(n + 1)- (5-123)

Aufgabe 5.19: Man führe das Beispiel 5.11 durch, falls (5.119) durch (5.116) ersetzt
wird. Was ergibt sich somit für 1'200), fi1(t), 132(t) aus (5.118)?

5.3.2. Unendlich ist Stelle der Bestimmtheit

Definition 5.3: Die Difierentialgleichung (5.116) hat im Unendlichen (d. h. sowohlfür
plus unendlich als auch für minus unendlich) eine Stelle der Bestimmtheit, wenn für
die Differentialgleichung (5.118) die Stelle t = 0 eine Stelle der Bestimmtheit ist.

Beispiel 5.12 (Fortsetzung von Beispiel 5.11): Die Legendresche Differentialgleichung
(5.119) hat im Unendlichen eine Stelle der Bestimmtheit, denn wegen [siehe (5.123)]

- __ 3 _

+g=.T<12tT2>=T%= '2' E ‘“= “ü”o ”. — v=°

132(t) = _ n(n + 1) = _ n(n + 1) E: th
170(5) t2(1'"’2) t2 y=o

1_n(n+_)—n(n+ 1)—

ist für die Differentialgleichung (5.122) die Stelle t = 0 eine Stelle der Bestimmtheit.
Als Anwendung der Definition 5.3 sollen die Lösungen der Legendreschen Difle-

rentialgleichung (5.119) im Spezialfall n = 1 im Unendlichen entwickelt werden.
Das geschieht im _

D. 5.3
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Beispiel 5.13: Zur Differentialgleichung (5.119) im Fall n = 1

(x2 — 1)y” + 2xy’ — 2y = 0 (5.124)

gehört mit (5.117) wegen (5.122) die folgende Differentialgleichung für u = u(t)

(t2 — t‘) u” —— 2t3u’ — Zu = 0. (5.125)

Wegen Satz 5.4 wird der Ansatz

u(t) = |:|~v§; am, co + o, m < 1, (5.126)

gemacht und die Rechnung gemäß dem Zusatz 3 zu Satz 5.4 mit

u(t) = Vic cf”, co + o, 0 < z < 1, (5.127)

begonnen. Einsetzen von (5.127) in (5.125), anschließende Division durch 2* und
Ordnen nach Potenzen von t ergibt schließlich

äo(v+oc)(v+oc— l)c„t"— E (v+1x—2)(v+oc-—3)c,.-2t“
=2

-2 f (v + 1x — 2) c„_2t" — 2 E cvt" = o. (5.123)
v=2 v=0

Beim Beginn des Koeffizientenvergleichs in (5.128) mit v = 0 erhält man wegen
co =l= 0 eine quadratische Gleichung für ac mit den Lösungen

(x, = 2, 1x2 = -1, (5.129)

wobei die Bezeichnung in (5.129) gemäß der Verabredung (5.89) gewählt wurde.
Einsetzen von (xi = 2 für 1x in (5.128) und Weiterführung des Koeffizientenver-
gleichs liefert

v + 1

v + 3
cl = 0, c„ = „-2 (v = 2,3,...) i (5.130)

und damit

c2u+1= O (‚u = 0,1,2,...), c2}, = o (‚u = l‚2,...). (5.131)3 c
2,u + 3

Wir setzen (5.131) sowie ex = «xi = 2 in (5.126) ein und erhalten [wegen ex = 2 sind
jetzt in (5.126) die Absolutstriche entbehrlich]

u(t) =z=c.,(1 +21 2”” xiv), c,, + o, 12| < 1, (5.132)

so dal3 sich wegen (5.117)

1 w 3 1
y(x) =§2—c., (1 + E1 2M + 3 co + o, 1x|> 1, (5.133)

ergibt. Das gefundene Basiselement (5.133) des Lösungsraumes von (5.124) kann
in geschlossener Form angegeben werden. Hierzu gehe man von den Entwicklungen
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oo ,7 co t,
1n(1+f)= Z (-1)’“—‚ 1n(1-t)= - 2 —‚ |t|<1,

* y=1 ‘V v=l 1’

und damit

i1n1—+i= E 1 1211+! |1J<1 (5.134)
2 1-1 „o 2;» +1 ’ ’

aus. Aus (5.134) folgt mit t = ä-

x +1 °° 1 1

71“x—1 ‘1",,§1 2,1+1W
1 1 °° 1 1

= T7 + #§1fi—?fi; , Ix] > 1. (5.135)

Die rechte Seite von (5.135) stimmt mit (5.133) überein, falls man dort co = 5» wählt.
Dann ist also wegen (5.113) das Basiselement (5.133) mit der Legendreschen Funktion
zweiter Art Q1(x) (für lxl > 1) identisch:

y<x> = y1<x)= Q1(x) = —’2‘—1n’3j%i — 1, Ixl > 1. (5.136)

Zur Bestimmung eines weiteren (vom ersten linear unabhängigen) Basiselements uz(t)
des Lösungsraumes der Differentialgleichung (5.125) wird der Satz 5.6 herangezogen.
Die Gleichung (5.106) lautet für unsere jetzige Anwendung bei Beachtung von (5.123)

m) = 111a) f [Tarife Jdz, (5.137)

wobei u‚(t) mit dem u(t) aus (5.132) im Falle co = ä zu identifizieren ist.‘

Aufgabe 5.20: Man zeige, daß in der eckigen Klammer in (5.137) eine gerade Funk-
tion von t steht.

Aus dem Ergebnis von Aufgabe 5.20 folgt, daß bei der gliedweisen Integration
der Entwicklung (an der Stelle t = 0) der eckigen Klammer aus (5.137) kein logarith-
misches Glied auftreten kann. Infolgedessen ist im vorliegenden Fall bei Anwendung
der Gleichung (5.107) A = O zu setzen, obwohl die Difierenz 1x1 — ac; = 3 ganz-
zahlig ist (vgl. Bemerkung 5.6). Es kann also zur Bestimmung des zweiten Basis-
elementes die Gleichung (5.128) herangezogen werden, wo nunmehr für (x der Wert
an; = —l einzusetzen ist. Der Koeffizientenvergleich liefert

c, = 0 (5.138)
und

v(1I — 3) c„ = (v — 3) (v — 2) c,_2 (v _= 2, 3, ...). (5.139)

Im Falle v = 2 ergibt (5.139) ' '

2(2 — 3)c2 = (2 —- 3)(2 —- 2)co
d. h.‚

c2 = 0. _ (5.140)
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Im Falle v = 3 folgt aus (5.139) 0 = 0, d. h.‚ man erhält keine Information. Mit
anderen Worten: Im Falle v = 3 ist (5.139) für

c3 = beliebig (5.141)

gültig. Von v = 4 ab kann (5.139) nach c, aufgelöst werden:

c„ = ” ; 2 cv_2 (v = 4, 5, ...). (5.142)

Aus (5.140) und (5.142) ergibt sich

an = 0 (‚u = 1, 2, (5.143)

(5.141) und (5.142) führen schließlich zu

3
£‘z,.+1 = fit‘: (M =1, 2: ---)~ (5-144)

Einsetzen von (5.138), (5.143), (5.144) in (5.126) mit o: = ac; = -1 ergibt für das ge-
suchte weitere Basiselement u2(t)

co_1 3 2+1u2(:)_]7l(c.,+c3El ZMH z u |z|< 1,

und damit wegen (5.117)

oo

m) = Ixl (Co + C3 2 Ixi > 1. (5.145)
1

„l 2/A +1 x2"+’) ’

Das ist unter Beachtung von (5.135) und (5.136) gleichbedeutend mit

LV2(x) = ColXl + 3C3Q1(x) = Colxl + 353,V1(x)- (5-146)

Wählt man in (5.146) co =1: O und c3 beliebig, so hat man das gewünschte von y1(x)
linear unabhängige weitere Basiselement y2(x). Wir setzenc 0 = 1 im Falle x > 0 und
co = —1 im Falle x < 0 sowie c3 = 0. Es ergibt sich für y2(x) das Legendresche
Polynom ersten Grades (Aufgabe 5.6):

yz(x) = P,(x) = x. (5.147)

5.3.3. Unendlich ist Stelle der Unbestimmtheit vom Rang 1

Gegeben sei die Differentialgleichung

po(x) v” + p1(x) v’ + p2(x)y = 0. (5.148)

wobei für 9; > X0 die konvergenten Entwicklungen

= —o v?’ = —o v}? 6'149)

vorliegen sollen.
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Aufgabe 5.21: Man zeige, daß für die Differentialgleichung (5.148) mit (5.149) die
Stelle x = + oo genau dann eine Stelle der Bestimmtheit ist, wenn

an = 0, b0 = O, bl = 0 (5.150)
gilt.

Definition 5.4: Isl (5.150) nicht erfüllt, so heißt in (5.148), (5.149) die Stelle x = + co

Stelle der Unbestimmtheit vom Rang I.

Eine grobe Näherung entsteht, wenn wir in (5.149) nur die absoluten Glieder
berücksichtigen, d. h. wenn wir uns zunächst mit der folgenden Differentialgleichung
mit konstanten Koeffizienten beschäftigen:

)7” + a0?’ + boy = O. (5.151)

Der aus dem Band 7/1 bekannte Ansatz

y(x) = eß’ (5.152)

liefert eine Lösung von (5.151), falls ß der quadratischen Gleichung

192 + aoß + b0 = 0 (5.153)

genügt. Durch (5. 1 52), (5.153) lassen wiriuns anregen, für die Lösungen y(x) aus (5.148)

y(x) = e” u(x) (5.154)

zu schreiben, in der Hoffnung, daß die Differentialgleichung für u(x) einfacher‘) als
(5.148), (5.149) ausfällt. Setzt man (5.154) — wobei ß eine Lösung von (5.153) ist —

in die Differentialgleichung (5.148), (5.149) ein, so ergibt sich für u(x) wiederum
eine Differentialgleichung der Struktur (5.148), (5.149), wobei aber der „neue Wert b0“
gleich null ist:

_ 1"7o(x)u”+I71(x)u’+fi2(x)u = o (5.155)
mit

" DO N 1 " O0 M 1

ELE3 = 0av—x7, = Elm? (x > X0). (5.156)

Man beachte, daß in der zweiten unendlichen Reihe aus (5.156) die Summation
erst bei v = 1 beginnt. v

Aufgabe 5.22: Man zeige: Der Koeffizient do aus (5.156) ist genau dann von null
verschieden, wenn die Lösungen der quadratischen Gleichung (5.153) voneinander
verschieden sind.

Sollte _

äo = 0 und b, = 0 (5.157)

sein, so hat die Differentialgleichung (5.155), (5.156) gemäß Aufgabe 5.21 fürx = + 0o

eine Stelle der Bestimmtheit. Wegen Definition 5.3 und Satz 5.4 hat dann mindestens
ein Basiselement des Lösungsraumes Von (5.155), (5.156) die Gestalt

‘) Im Falle ac = 0, be = 0, b, # .0 ist wegen (5.153) ß = 0 und damit gemäß (5.154) y(x) = u(x).
Also ist in diesem Fall die Differentialgleichung für u(x) nicht einfacher als diejenige für y(x), aber
auch nicht schwieriger. '

D. 5.4
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u(x) = 17(1) = ti iocvt” (r = i (5.153)

d. h. i’

u(x) = x°‘v(x) (o: = -0?) (5.159)
mit

v(x) = ;ocy%u (5.160)

Angeregt durch (5.159), (5.160) versuchen wir auch dann, wenn (5.157) nicht erfüllt
ist, mit dem Ansatz (5.159), (5.160) weiterzukommen, in der Hoffnung, o: so be-
stimmen zu können, daß die Differentialgleichung für v(x) einfacher als die Diffe-
rentialgleichung (5.155)‚ (5.156) ist. Einsetzen von (5.159) in (5.155) führt auf eine
Diflerentialgleichung für v(x), deren Struktur mit derjenigen von (5.155), (5.156)
übereinstimmt. Es zeigt sich, daß man durch geeignete Wahl von o: erreichen kann,
daß der „neue Koeffizient 5,“ gleich null ist, allerdings benötigt man hier die Vor-
aussetzung

5., =1: 0. (5.161)

Es gilt also

_ 54x) v” + 51(x) v’ + 54x) v = o (5.152)
mit N N

21"" = E a“,i,, ’;“"’ = E 5.1,. (5.163)
P00‘) ”=° x Po(x) "=2 x

wobei darauf hingewiesen sei, daß in der zweiten Reihe aus (5.163) die Summation
erst bei v = 2 beginnt.

Ist (5.161) nicht erfüllt, so setze man

u(x) = ‚am mit r = J}. (S.164)

Es zeigt sich, daß die Differentialgleichung für 52h) mit der obigen Theorie weiter behandelt wer-

den kann.

In Fortführung des im Anschluß an (5.159), (5.160) begonnenen Versuches wird
(5.160) in (5.162) eingesetzt. Es ist tatsächlich nur ein Versuch, denn im allgemeinen
wird x = +00 für (5.162), (5.163) keine Stelle der Bestimmtheit sein. Es zeigt sich,

daß nach dem Ordnen nach Potenzen von 31? und anschließendem Koeffizientenver-

gleich ein Gleichungssystem entsteht, das nach den Koeffizienten cu aufgelöst werden
kann. Damit ist die Theorie aber noch nicht beendet. Die Kenntnis, daß die Koeffi-
zienten des Ansatzes (5.160) stets berechenbar sind, genügt nicht. Es ist noch die
Konvergenzfrage zu diskutieren. Wenn die unendliche Reihe (5.160) abbricht, d. h.
wenn nur endlich viele Summanden von null verschieden sind, so ist die Konvergenz
trivialerweise für alle x # 0 gesichert.

Falls die Reihe (5.160) nicht abbricht, so wird sie im allgemeinen für jedes x

divergieren‚ d. h. mit
k

v(x) = Z cvä + R„(x) ' (5.165)
y=O
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gilt im allgemeinen nicht

lim R„(x) = 0, _ (5.166)
h -9 + co

ja, in den meisten Fällen gilt sogar

1im]R,,(x)[ = +00. (5.167)
It-* + 00

Beim ersten Kennenlernen dieses Sachverhaltes ist man überzeugt, daß die herge-
stellte Entwicklung im Falle der Divergenz unbrauchbar ist. Dem istjedoch nicht so.
Man kann nämlich zeigen, daß eine asymptotische Entwicklung vorliegt. Das bedeutet:
Für jedes feste k = 1, 2, strebt in (5.165) das Restglied R„(x) für x —> +00

gegen null‚ und zwar von höherer Ordnung als der Ausdruck yd:-.s1etztenSumman—
" 1

den aus der Näherung Z c,,:,—ffir v(x); es gilt also für jedes k = 1, 2,
v=O

lim
x—v+oo

g = lim R,‘(x) x" = 0 (vgl. Band 3; 4.6.2.). (5.168)
x—v+oo

Aus (5.168) kann man entnehmen, daß bei fest gewähltem k die Näherung

k

v(x) z Z cviv (5.169)
v=O x

um so besser ist, je größer x gewählt wird. Allerdings wird man sich insbesondere
dafür interessieren, wie bei festem x in der Näherung (5.169) das k zweckmäßig zu
wählen ist. Wegen (5.167) darf man k gewiß nicht zu groß wählen. Das günstigste k
ergibt sich bei festem x durch Bestimmung des Minimums von |R,‘(x)|‚ als Funktion
von k. Besonders übersichtliche Verhältnisse liegen vor, wenn es sich um eine alter-
nierende (Band 3, 2.5.) asymptotische Reihe handelt (vgl. (5.231) und den dort an-
schließenden Text). Hinsichtlich weiterer Einzelheiten über die Restgliedherstellung
und die Untersuchung asymptotischer Reihen wird auf die Bände 3 (Abschnitt 4.6.),
10 und 12 verwiesen.

Sind die beiden Lösungen von (5.153) voneinander verschieden, so erhält man auf
diese Weise eine Basis des Lösungsraumes der Differentialgleichung (5.148), (5.149).

Beispiel 5.14: Die Gleichung (V.3) des Vorwortes‚ nämlich

rZR” + 2rR’ + [M + Zar — 1(l+ 1)]R = 0 (1 = 0,1,...) (5.170)

hat die Struktur von (5.148), (5.149) mit

ac =0,a1 = 2,a,,=0(v = 2,3,...),b0 =Ä,b‚ = 2a,b2 = —I(l+ 1),

b, = 0 (v = 3,4, ...).

Die quadratische Gleichung (5.153) lautet somit im vorliegenden Fall

192 + /1 = 0. (5.171)

3 Wenzel. uew. Diff. 2
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Einsetzen von R(r) = e/"u(r) (vgl. (5.154)) in (5.170) führt wegen

R’ = e"'(/3u + u’), R” = e"’(fi2u + Zßu’ + u”) (5.172)

unter Beachtung von (5.171) zu

rzu" + (2flr2 + 2r) u’ + (2(/3 + a) r — [(1 + 1)) u = 0, (5.173)

wobei bereits durch e“ dividiert wurde.

Um (5.161) zu garantieren, setzen wir wegen (5.173) und (5.171) zunächst

Ä =1= 0 (5.174)

voraus. (Der Fall Ä = 0 wird in der Aufgabe 5.23 behandelt.) Einsetzen von u(r)
= r"‘u(r) [vgl. (5.159)] in (5.173) führt schließlich zu

rzv” + (Zfirz + 2(a + l)r)v’
+[2((<z+1)fi+a)r+oc(a:+l)—l(l+1)]u=0. (5.175)

Gemäß der allgemeinen Theorie muß a so bestimmt werden, daß

2((a+1)ß+a)=o‚d.h.a=—1_i (5.176)

ist. Beim Einsetzen von v(r) = E: c„r"’ [vgl. (5.l60)] in (5.175), (5.176) beginnt die
1:0

Rechnung folgendermaßen:
0o

rzv” = 20110» + 1) c,,r‘”,
v:

(Ü C7)

2ßr2v’ = ;o—2/5’vc„r‘“1 =_Y_l—2fi(v + 1) c,,Hr“’,

w (5.177)

2(<z + 1) rv’ = 2 —2(1x + 1) vc,r‘”,
1:0

(ac: + 1) — 1(1+ 1)) v = 3001m + 1) — zu + 1)) c„r"’.

Durch Addition der vier linken Seiten von (5.177) erhält man bei Beachtung von

(5.176) die linke Seite der Differentialgleichung aus (5.175), die gleich null sein soll.
Folglich muß die Summe der rechten Seiten aus (5.177) gleich null sein. Der an-

schließende Koeffizientenvergleich führt zu

c0 = beliebig

C,“ = (aZ + «(l — 2v)+(1I — 1)v —l(l+1))c,,

(a: = 0,1, 2, ...). (5.178)

Folglich erhält man die allgemeine Lösung von (5.170) in der Gestalt

R(r) = 511310) + 52§2(r) (5-179)
mit __

. R„(r) = e5k’r“kvk(r) (k = 1,2), (5.180)
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wobei

o: — 1 “ (5181)
k 5k '

ist. Hierbei sind 131 und ß, = -13, Lösungen von (5.171), und für Ö„v„(r) (k = 1, 2)
liegt die asymptotische Reihe

ä,„u„(r) = f c„r‘” (5.182)
v=D

vor, wobei einerseits

1

q“ = (a‚2‚ + ock(1— 211) + (v —— 1)v — [(1 + 1)) c,

(v=0,1,...;k= 1,2) (5.183)

gilt und andererseits

co = ö. (k = 1,2) (5.184)

zu setzen ist.

Aufgabe 5.23: Die Differentialgleichung (5.170) soll im Fall Ä = 0 durch Entwickeln an der Stelle
r = o0 gelöst werden. Gemäß der allgemeinen Theorie stelle man zunächst aus (5.170) eine Diffe-
rentialgleichung für R(r) her, wobei R(t) = R(r) mit r = r-ist, und bestimme R(r).

5.3.4. Unendlich ist Stelle der Unbestimrntheit vom Rang k + 1.

Definition 5.5: Liegt die Diflerentialgleichung

Po(X)J’” + -V"P1(X) Y’ + X2kl12(X)y = 0 (k = 1, 2. m) (5-135)

mit (5.149) vor und sind die Koeffizienten

ac, , a;.-1 . bu, ..., b2,,_1 nicht alle gleich null, (5.186)

so heißt x = o0 eine Stelle der Unbeslimmtheir vom Rang k + 1.

Ein Basiselement des Lösungsraumes der Differentialgleichung (5.185) kann in der Gestalt

y‚(x) = e”k+1""x9 v(x) (5.187)

angegeben werden. Hierbei ist

P,„„(x) = d‚.„x"“ + d„x" + + 111x (5.188)
mit

du“ = 1:7; (5139)

wobei ß eine Lösung von (5.153) ist. Weiterhin wird v(x) durch die asymptotische Reihe

w

u(x) = 2 c„x“’ (co # 0) (5.190)
v=0

dargestellt. Haben die beiden Lösungen von (5.153) voneinander verschiedene Realteile, so erhält
man auf diese Weise eine Basis des Lösungsraumes.
3*
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Beispiel 5. J 5 : Die Hermitesche Differentialgleichung

(n = 0,1‚2‚ ...)

besitzt an der Stelle x = 0a eine Stelle der Unbestimmtheit vom Rang k + 1 mit k = 1. denn
mit den obigen Bezeichnungen ist no = -2, (1,, = 0 (v = 1, 2, ...),bo = b1 = 0,b2 = 2n,b,, = 0
(v = 3. 4. ...). Also lauten hier die Lösungen von (5.153)

ßl = 0 und ß; = 2. (5.192)

Die Rechnung wird im Fall ß, = 0 weitergeführt. Wegen (5.187). (5.188), (5.189) wird jetzt der
Ansatz

y” - Zxy’ + Zny = O (5.191)

oc

y = e"x~‘Z c,,x’”*9, co i; 0, (5.193)
v = o ~

gemacht. Einsetzen in (5.191) führt nach Division durch e"I"x9 schließlich zu

(X3 O0 00

dfZc,,x"’ + 2d12c,,_1(—V +1+ g)x“" + Z(—v + 2 + g)(—v +1+ Q)c,,_2x"’
v:0 v=1 v=2

ac oo o0

—2d1 Z c1,,+1x“” — 220c,,(—v + Q) x” + 2n20c„x“‘ = 0. (5.194)
v: — v= v:

Der Beginn des Koeffizientenvergleichs (a: = -1, 0, 1) liefert

—2d‚c„ = O, d. h. wegen co =1: 0 ist d, = 0 und co = beliebig, (5.195)

—2cog + 2116g = 0, d. h. wegen co + 0 ist g = n, (5.196)

2c. = o, d. h. e, = o. (5.197)

Bei Beachtung der Ergebnisse (5.195), (5.196), (5.197) ergibt die Fortführung des Koeffizienten-
vergleichs schließlich die Rekursionsformel

"v: —21—(~v+2+n)(—v+1+II)c,_2 (v=2,3,. (5.198)
,1

Aus (5.197), (5.198) folgt

c2„‚„ = 0 (m = 0,1 ,2,...), (5.199)

(5.198) zeigt - in Verbindung mit (5.199) —, da13 von v = n + 1 ab alle c„ verschwinden, also

cy=0 (v=n+1,n+2,...) (5.200)

ist. Das bedeutet schließlich, daß sich in (5.193) ein Polynom vom Grad n ergibt. Wählt man co = 2",
so spricht man vom Hermiteschen Polynom H,,(x).

Aufgabe 5.24; Mittels Beispiel 5.15 berechne man H„(x) in den Fällen n = 0, 1, 2, 3, 4.

5.4. Fakultéitenfunktion, Besselsche Differentialgleichung

Als Vorbereitung zur Behandlung der Besselschen Differentialgleichung nennen
wir den

Satz 5.7: Es gibt genau eine Funktion (Fakultätenfunkfion [auch Gammafunktion
genannIJ)

x! = I'(x +1),



5.4. Fakultätenfunktion. Besselsche Differentialgleichung 37

die für jedes x =+= —l‚ ——2‚ in eine Putenzreihe enlwickelbar ist, an den Stellen
x = —— l; ——2‚ jeweils einen Pol erster Ordnung besitzt und diefolgende Eigenschaften
hat:

x! = n! für n = 0, 1,2, ...‚ (5.202)

(x + 1)! = x!(x +1) für alle x # —l‚ —2‚ ...‚ (5.203)
Z

x!>0 und d':2ln(x.')>0 für —l <x<+oo. . (5.204)

Zusatz zum Satz 5.7: Für x > —l gilt

x! = _|' e“t" dt (5.205)
0

(Eulersches Integral zweiter Gattung), speziell

l m e" —-

(— E): =°f—\/—;dt=\/... (5.206)

Aufgabe 5.25: Es gilt (n + = \/7—:f(n) (n = 0, l, 2, ...). Man bestimmtef(/1).

Die Lösungen der Besselschen Differentialgleichung

xzy” + xy’ + (x2 — n’)y = 0 ' (5.207)

heißen Zylinderfunktionen (mit dem Index n). Für x = 0 liegt in (5.207) eine Stelle der
Bestimmtheit Vor. Infolgedessen hat mindestens ein Basiselement des Lösungsraumes
der Differentialgleichung (5.207) die Gestalt

y(x) = |3c]"‘ gocvx", c0 4: 0. (5.208)

Da in der Differentialgleichung n’ auftritt, können wir ohne Beschränkung der
Allgemeinheit

n g 0 (5.209)

voraussetzen. Die Lösungen der zum Ansatz (5.208) gehörigen quadratische
Gleichung für (x lauten mit (5.209) '

xx, = n, 0:2 = —n. (5.210)

Einsetzen von (5.208) im Falle on, = n führt mit der Festsetzung co = % zur
Besselfunktion (Zylinderfunktion erster Art [mit dem Index n]) n‘

II O1) 1

y(x) = J„(x) = lE°(—l)I‘ x21‘ (x > o). (5.211)

Bemerkung I zu- (5.211): Der Konvergenzradius der unendlichen Reihe ist gemäß
Satz 5.4 gleich unendlich. Ist n g 0 nicht ganzzahlig, so muß Satz 5.7 beachtet
werden, der dem Ausdruck (n + ,u)! aus (5.211) auch dann noch einen Sinn verleiht,
wenn der Wert von n + ‚u nicht ganz ist.
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n

Bemerkung 2 zu (5.211): Der Faktor ist für uns bei nichtganzem n nur sinnvoll, wenn x > 0

ist. Gemäß (5.208) ist es naheliegend, im Falle x < 0 diesen Faktor durch (gym ersetzen. Dann

läge zwar wieder eine Lösung der Besselschen Differentialgleichung vor, sie würde aber (verab-
redungsgemäß) nicht mehr als Besselfunktion anzusehen sein. Es sei hier lediglich mitgeteilt, daß

n

man aus funktionentheoretisehen Gründen (Band 9) auch im Falle x < 0 in (5.21 1) mit arbeitet
und unter dieser Potenz den sogenannten Hauptwert 2

x " IxI " ..
= e"* (x < 0) (5.212)

versteht.

Die Differenz der oc-Werte aus (5.210) beträgt

cc, — ax; = 2n. (5.213)

Ist sie nicht ganz, also

n 4= 0,&. In}, 2, g, 3, ...‚ (5.214)

so hat ein weiteres Basiselement des Lösungsraumes der Besselschen Differential-
gleichung wegen Satz 5.5 die Struktur (5.208) mit zx = —n. Die Rechnung zeigt,
daß in diesem Fall als zweites Basiselement

y2(x) = LAX) (5.215)

genommen werden kann. Oft ist es üblich, anstatt im Falle (5.214) mit den beiden
gefundenen Basiselementen

J„(x) und J_„(x) (5.216)

zu arbeiten, als Basiselemente die Funktionen

J„(x), N„(x) (5.217)

zu wählen, wobei N„(x) durch

N„(x) = [cos (mt) J,,(x) — J_,,(x)] (5.218)
1

sin (mr)

definiert ist und Neumannsche Funktion (Zylinderfunktion zweiter Art [mit nicht-
ganzzahligem Index n]) heißt. Beim ersten Kennenlernen entsteht die Frage, welche
Gründe es gibt, für N„(x) die relativ umständliche Formel (5.218) zu wählen. Es
ist mit (5.218) möglich, durch den Grenzübergang in (5.225) vom nichtganzzahligen n
zu ganzzahligem n überzugehen.

Statt (5.216) oder (5.217) kann man auch als Basis die sog. Hankelschen Funk-
tionen (Zylinderfunktionen dritter Art)

H‘,,‘)(x) = J,. (x) + iN„(x) (5.219)
und

H‘,,2’(x) = J„ (x) - iN„(x) (5.220)

nehmen. Gilt

n = m + i (m = 0, 1, 2, ...)‚ (5.221)
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so ist die Dilferenz (5.213) ganzzahlig. Man muß daher gemäß Satz 5.6 damit rechnen,
daß der Ansatz (5.208) durch einen komplizierteren — mit logarithmischem Glied —

zu ersetzen ist. Hier tritt jedochder bereits in Bemerkung 5.6 erwähnte Fall auf,
daß A = 0 ist, daß also das logarithmische Glied wegfällt und damit (ausnahmsweise)
auch im Falle (5.221) mit dem Ansatz (5.208) gearbeitet werden kann. Als Ergebnis
notieren wir:

Auch bei halbzahligem Index n = m + <5 (m = O, l, 2, ...) können als Basiselemente
des Lösungsraumes der Besselschen Differentialgleichung die Funktionen aus (5.216)
oder (5.217) oder (5.219), (5.220) genommen werden. .

Aufgabe 5.26: Man beweise J;(x) = A/ix sin x, J_;(x) = A/ix cos x,
Tl’ 7T

NM = - (f; Hm = —i/:3; Hm = i/%
Wenn sich im Band 7/ 1 als Basis des Lösungsraumes einer gegebenen linearen homo-

genen Differentialgleichung zweiter Ordnung die beiden Funktionen e“ und e“"
ergeben, so ist bekannt, daß cos x, sinx eine zugehörige reelle Basis ist. Dieser
Hinweis vermittelt im Zusammenhang mit Aufgabe 5.26 einen Eindruck von der
Wahl der Basen (5.216) oder (5.217) oder (5.219), (5.220).

Wir gehen zur Behandlung des Falles

n = 0, 1, 2, (5.222)

über. Die Funktionen aus (5.216) können jetzt nicht mehr als Basis des Lösungs-
raumes der Besselschen Differentialgleichung benutzt werden. Es kann zwar mit
(5.211) J_„(x) (n = 0, 1, 2, ...) gebildet werden, wenn man daran erinnert, daß
die Fakultätenfunktion x! gemäß Satz 5.7 an den Stellen x = —l, —2, Pole
besitzt, und wenn man im Einklang damit in (5.211)

1
-—————-— = 0 5.223
(n + u)! ‘ ’

setzt, falls n + ‚u in (5.223) gleich einer negativen ganzen Zahl ist; die Rechnung
zeigt aber, daß

J_„(x) = (—1)"J„(x) (n = o, 1, 2, ...) (5.224)

gilt. Also sind in diesem Fall J„(x) und J_„(x) voneinander linear abhängig und
können somit keine Basis des Lösungsraumes bilden.

Im Falle (5.222) versagt die Definition der Neumannschen Funktion N„(x) aus

(5.218) [der Nenner verschwindet], so daß auch (5.217) und (5.219), (5.220) als Basis
im Falle (5.222) ausscheiden.

Definiert man nun im Falle (5.222) durch [vgl. (5.2l8)]

. 1
N„(x) = [cos (PT!) J,,(x) — J_,(x)] (n = 0, l, 2, ...) (5.225)

die Neumannsche Funktion (Zylinderfunktion zweiter Art mit dem Index n = 0, 1, 2, ...),
so kann man die Funktionen aus (5.217) und (5.219), (5.220) als Basis für den Lösungs-
raum der Besselschen Differentialgleichung benutzen.
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Der Grenzwert in (5.225) kann etwa mittels der Regel von l‘Hospital berechnet werden. Der Satz 5.6
zeigt, daß N,,(x) in der Gestalt (5.107) angebbar sein muß. Zur Illustration führen wir die folgenden
Formeln an:

2 x zw pm x”’lmuy_;nu%c+m3)—;EA7E7(3)FÄIL x>m (mm)

wobei in (5.226) die Konstante C gleich der Eulerschen Konstanten

m1
C = lim { Z — — ln m} = 0,5772... (5.227)

rn-too I-I '

ist. Für n = 1, 2, 3, gilt

' 2 x 1"—1(n—v—1)! x‘2"‘"mm=:amm7—;£——W—~E)
l d) 1 x II1‘-2!‘

_ _ _ an _ xn '§o( 1) v!(y+ n)! (z) [‘I’(v) + ‘I’(v + rl)l‚ x > 0, (5.228)

wobei in (5.228) die (Gaußsche) Psi-Funktion ’I’(x) benutzt wurde, das ist die logarithmische Ab-
leitung der Fakultätenfunktion (vgl. Satz 5.7)

d 00

‘I’(x) = Elm (x!) = —- C — 2 ( 1 mit C aus (5.227). (5.229)„‚x+k"k
Bemerkung zu (5.226) und (5.228): Man kann (5.226) und (S.228) auch für x < O benutzen, wenn

man unter In (x/2) in diesem Falle den sogenannten Hauptwert des Logarithmus versteht:

1 x—1'M 'n—2—— n—E—-+17!(x<0). (5.230)

Für große positive x konvergieren die J„(x), N„(x)‚ H,‘,‘)(x), H,‘,2)(x) darstellenden
Reihen. Jedoch hat dies nur theoretischen Wert. Für die numerische Auswertung sind
diese Reihen für große x nicht geeignet, da infolge zu großer Entfernung von
der Entwicklungsstelle x = 0 die Konvergenzgeschwindigkeit zu langsam ist. In
diesem Fall ‘benutzt man asymptotische Entwicklungen an der Stelle +00. Es sei
noch die asymptotische Entwicklung der Besselfunktion angegeben:

2 -rr v: °° — ’ — l

W) = (a: l°°s (x i 3" ‘ I) l2.
_ 7: Tr °° (— I)’ (n + 21' +

+7"'?iLw?EF“_Ö7TÜW775:3FH
‚ (5.231)

Bricht man die asymptotischen Reihen [...] aus (5.231) ab, so ist der absolute Betrag
des Fehlers der entstehenden Näherung kleiner als der Betrag des jeweils ersten ver-
nachlässigten Gliedes.

— sin (x

n>0.

Aufgabe 5.27: Es gilt

z;<x) = —z...<x> + ;z.<x), (5.232)

wobei Z„(x) eine beliebige Lösung der Besselschen Differentialgleichung ist. Man
beweise dies im Fall Z„(x) = J„(x).
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Aufgabe 5,28:

a) Mittels (5.227) beweise man

m 1 1 m 1 1

k§1(1’+ k- I) +2. (Trin- I)
"_l__ 1 +1n(m+v)(m+v+|)

v +1 m2

b) Was ergibt sich aus a) für 'I’(v) + Y’(v + l) (v = l, 2, ..‚)'.7

c) Mittels b) führe man den Beweis in Aufgabe 5.27 im Fall Zo(x) = N0(x).

+ rm mit lim rm = 0.
m-o o0

Aufgabe 5.29: y = y(x) sei Lösung der Differentialgleichung (V.2) des Vorwortes.

a) Welcher Differentialgleichung genügt w = w(u), falls man y(x) = w(u) mit u

= L — x setzt?

b) Welcher Differentialgleichung genügt Z = Z(z), falls Z(z) = w(u) mit z = ax/;
sein soll?

c) Für welche Werte a aus b) ergibt sich für Z(z) eine Besselsche Differentialgleichung?

d) Mittels der Ergebnisse von a) bis c) gebe man die allgemeine Lösung von (V.2) an.

Aufgabe 5.30: Es sind die positiv-reellen Nullstellen von J„(x) gesucht.

a) Aus (5.231) errnittele man für sie erste Näherungen x1, indem man von den
asymptotischen Reihen nur die absoluten Glieder berücksichtigt.

b) Man Verbessere die Näherung aus a), indem man in den asymptotischen Reihen
jeweils die ersten beiden von null verschiedenen Glieder berücksichtigt und da-
nach einen Iterationssehritt des Newton-Verfahrens (Band 2) durchführt.

c) Man werte die Ergebnisse für die ersten vier Nullstellen numerisch aus und gebe
jeweils vier Dezimalstellen an.

it



6. Rand- und Eigenwertaufgaben

Es ist aus Band 7/1 bekannt, daß Anfangswertaufgaben genau eine Lösung be-
sitzen. Bei Randwertaufgaben ist der Sachverhalt komplizierter (siehe Aufgabe 3.15).
Beschäftigt man sich mit linearen Randwertaufgaben‚ so ergeben sich Sätze, die völlig
analog zu denen bei linearen Gleichungssystemen (Band 13) sind. In Analogie zur
allgemeinen Eigenwertaufgabe bei Matrizen (Band l3) kann man eine Eigenwert-
theorie bei gewöhnlichen Differentialgleichungen aufbauen und Fourierentwick1un-
gen nach Systemen von Eigenfunktionen vornehmen.

6.1. Beispiele

Bereits im Band 7/ 1 werden in den Definitionen 1.6 und 1.7 Rand- und Eigenwert-
aufgaben eingeführt. Wir beginnen mit einer Randwertaufgabe.

Beispiel 6.1 (Kettenlinie): Ein vollkommen biegsames Seil mit konstanter Dichte
und der Länge I hängt im Schwerefeld zwischen zwei Masten, die die jeweiligen
Höhen h1 und h2 besitzen und deren gegenseitige Entfernung a beträgt. Die Gestalt
des Seiles werde durch die Funktion w = w(x) (0 g x g a) angegeben. Die Gleich-
gewichtsbedingungen zeigen, daß die unbekannte Horizontalkomponente der Seil-
kraft einerseits konstant ist und andererseits durch w”[l + (w’)1]'% angegeben werden
kann. Somit ergeben sich für w = w(x) (0 g x g a) die nichtlineare Differential-
gleichung

‘VII I

A; = 0, (6.1)
< ~/1 + (w’)2 )

die Randbedingungen

W(0) = h1, W(a) = h2 (6-2)

und als (Rand)-Bedingung in Integralgestalt

fJ1+wvm=L am
0

Aufgabe 6.1: Man gebe zwischen a, h, ‚ h2 und I eine Ungleichung an, die garantiert,
daß die Randwertaufgabe (6.1), (6.2), (6.3) keine Lösung besitzt.

Gemäß Abschnitt 3.2.3. setzen wir

17(x) = W’(x) (6-4)

und erhalten aus (6.1)

y=qw+w. mm

Trennung der Veränderlichen (Abschnitt 2.3.1.) führt von (6.5) zu

arsinhp = Clx + C2,

und damit ist

p(x) = sinh (C‚x + C2). (6.6)
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Aus (6.6) ergibt sich mit (6.4) im Falle C1 = 0

w(x) = x sinh C2 + C3, und es ist (6.7)

w(x) = g-cosh (Clx + C2) + C3, falls C, # O (6.8)
1

gilt. Die Konstanten C1, C2, C3 sind mittels der Randbedingungen (6.2), (6.3) zu
berechnen. Der Fall (6.7) liegt vor, falls

1= Jal + (h; — 11,)’ (6.9)

gilt, und es ergibt sich die geradlinige Verbindung der Aufhängepunkte

1
w(x) = Z012 — h,)x + h). (6.10)

Einsetzen von (6.8) in (6.2) führt zu den beiden Gleichungen

h, — C3 = icosh C2 (6.11)
C1

und
1

h; — C3 = ~C—cosh (Cla + C;). (6.12)
1

Beachten wir die Beziehung

cosh’ zx — sinh’ ex = 1 (6.13)

und die Tatsache, daß der Kosinushyperbolikus stets positiv ist, so erhalten wir
aus (6.8) und (6.3)

F1l—(sinh (Cla + C1) — sinh C2) = I. (6.14)

Zur Vorbereitung für die Bestimmung von C1 , C2, C3 aus dem nichtlinearen Glei-
chungssystem (6.11), (6.12), (6.14) notieren wir zunächst (s. Bd. 1.)

coshzx — coshß = 2 sinh-“Eisinhä (6.15)

und

sinhzx — sinhß = 2cosh "‘ J2”; sinh “ g ß. (6.16)

Nunmehr bilden wir die Differenz von (6.12) und (6.11) und wenden (6.15) an:

2 . 1 . 1
h, — h, = Es1nh(-§C1a + c.) s1nh (7 C111). (6.17)

Mittels (6.16) wird die linke Seite von (6.14) umgeformt:

z? coshC1a + C2) sinh au) = I. (6.18)
l
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Das Quadrat von (6.17) wird vom Quadrat von (6.18) subtrahiert. Es ergibt sich bei
Beachtung von (6.13)

4 . l
12 — (h; — h1)2 = asmhl (7 C112). (6.19)

Die Gleichung (6.19) zeigt, daß I 1 — (h, —- h1)’ positiv sein muß; in Übereinstim-
mung mit dem Ergebnis von Aufgabe 6.1 und dem bereits behandelten Fall (6.7),
(6.9), (6.10). Mit der Abkürzung

z = 4„ c,a (6.20)

kann man fiir (6.19) _

sinhz = zA/(l)2_ (h2 - h1)’ (6.21)
a a

schreiben. Wir weisen darauf hin, daß die Folgerung (6.21) auch dann noch richtig
ist, wenn C, und damit z negativ sein sollte. Aus dem Ergebnis von Aufgabe 6.1
kann abgelesen werden, daß der Wert der Wurzel in (6.21) größer als 1 ist. Damit
ist klar, daß die transzendente Gleichung (6.21) genau zwei reelle, von null ver-
schiedene Lösungen z, und z; besitzt, die sich lediglich im Vorzeichen unterscheiden.
Die Ermittelung des Wertes von z, und damit von 22 kann bei gegebenen Zahlen-
werten für a, h 1 , h2 und I mit einem numerischen Verfahren (Band 2) geschehen. Also
ergibt sich wegen (6.20)

C, = äz, oder C, = äzz = — ä-zl,
kurz

C, = i%z1 (z, > 0). (6.22)

Bei bekanntem C, erhält man C2 aus (6.17) in eindeutiger Weise. Nunmehr kann
C3 aus (6.11) berechnet werden. Die Werte für C1, C2, C3 sind schließlich in (6.8)
einzusetzen. Wegen (6.22) haben sich insgesamt zwei Lösungen der Randwertaufgabe
(6.1), (6.2), (6.3) ergeben. Im Falle C, > 0 ist wegen (6.8) die erhaltene Kurve
w = w(x) nach oben geölTnet, im Falle C, < 0 jedoch nach unten.

Im erstgenannten Fall sind die Seilkräfte Zugkräfte, im zweiten Fall Druckkräfte.
Wenn man berücksichtigt, daß Seile nur Zugkräfte übertragen können, so ist klar,
daß die Lösung mit C, < 0 unbrauchbar ist. ’

Beispiel 6.2 (Eulerscher Knickstab): Ein vertikal angebrachter Stab (0 g x g I)
ist am unteren Rand (x = 0) eingespannt und an seinem oberen Rand (x = I) frei.
Er wird oben durch eine vertikale Einzelkraft F auf Druck (F > O) belastet. Die
Biegesteifigkeit E] sei konstant. Die Kraft F sei richtungstreu, d. h. auch dann noch
vertikal gerichtet, wenn der Stab eine Durchbiegung w = w(x) (0 g x g I) erfährt.
Bei Vernachlässigung des Eigengewichtes führt das zugehörige Stabilitätsproblem
gemäß der Theorie zweiter Ordnung der technischen Mechanik auf die Differential-
gleichung

Fw”"+Äw”=0, Ogxgl; 2=E—J>o ' (6.23)
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und die Randbedingungen

w(0) = 0, w’(0) = O, w”(l) = 0, w"’(l) + Äw’(l) = O. (6.24)

Die Randwertaufgabe (6.23), (6.24) hat für jedes Ä die Lösung w(x) s 0 (0 g x g I).
Damit ergibt sich aus der Definition 1.7, daß durch (6.23), (6.24) eine Eigenwert-
aufgabe mit dem Eigenwertparameter /1 > 0 gegeben ist.

Der Ansatz w = e" führt mit (6.23) zur charakteristischen Gleichung (3.69):

r“ + Ar“ = 0. (6.25)

Wegen Ä > 0 hat (6.25) die Lösungen

r, = 0, Vielfachheit I, = 2 (6.26)
und _ _

r2=i~/Z, I2=1;r,=—ix/1, 13:1. (6.27)

Hieraus ergibt sich schließlich für die Gesamtheit der reellen Lösungen der Diffe-
rentialgleichungen aus (6.23)

w(x) = D; + Dzx + D3 cos \/ix + D4 sin ~/ix. (6.28)

Einsetzen von (6.28) in die Randbedingungen (6.24) liefert das folgende lineare
homogene Gleichungssystem für die Unbekannten D1, ...‚ D4, wobei die dritte
Gleichung durch —}. und die vierte Gleichung durch Ä dividiert wurde (Ä > 0):

D1 + D3 = 0,

D; + x/ÄD4 = 0,

cos (x/X1) D3 + sin (x/Z1) D4 = 0, (6.29)

D; = 0.

Ist die Koeffizientendeterminante des Systems (6.29) ungleich null, so sind alle
D, (v = 1, ..., 4) gleich null und damit liegt wegen (6.28) die triviale Lösung w E 0
(0 g x g l) vor; das ist uninteressant, hierdurch wird keine Eigenlösung geliefert.
Bei der weiteren Untersuchung ist daher die Koeffizientendeterminante von (6.29)
gleich null zu setzen:

i o 1 0

° 1 ° ‘Ü =o. (6.30)
0 o cos (fit) s1n(\/11)

0 1 o o

Die Gleichung (6.30) heißt Eigenwertgleichung. Ihre Lösungen Ä sind die Eigenwerte
der Eigenwertaufgabe (6.23), (6.24). Entwickelt man die Determinante aus (6.30)
nach ihrer ersten Spalte, so reduziert sie sich auf eine Determinante dritter Ordnung,
die man zweckmäßig nach ihrer letzten Zeile entwickelt. Man erhält

—-\/ä cos («/Z1) = o, d. h. cos (#21) = o. (6.31)
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Wegen Ä > O folgt aus (6.31)

J711=%+kn (k =o‚1,2‚...). (6.32)

Also ergeben sich die Eigenwerte

l 1|: 2,1:/1.=—l;(3+kn) (k=0, 1,2‚...). (6.33)

Zur Bestimmung der zum Eigenwert 1k gehörigen Eigenlösuugen w‚„(x) ist zunächst
der Wert für 1,, aus (6.33) in das Gleichungssystem (6.29) einzusetzen. Man erhält

D1 + D3 = 0,

1D2+T(%+k1t)D4=0,
(6.34)

0-D3 + sin(—g+ kn)D,, = o,

D2 = 0.

Aus der vierten, zweiten, dritten und ersten Gleichung von (6.34) ergibt sich der
Reihe nach

D2 = 0, D4 = O, D3 = Ck (C, beliebig), D, = —C,,. (6.35)

Wir setzen (6.35) und (6.33) in (6.28) ein und erhalten alle zum Eigenwert 1k ge-
hörigen Eigenfunktionen

(2k + 1)1-cx

21

Nimmt man zu (6.36) noch die Funktion w E O hinzu, so bilden alle diese Funk-
tionen einen eindimensionalen Raum, den zum Eigenwert 1„ gehörigen Eigenraum.
Wenn man aus ihm eine Funktion, die nicht identisch null ist, herausgreift, z. B.
die Funktionmit Ck = 1, so ergibt sich als Basis des zu 1„ gehörigen Eigenraumes:

w„(x) = c. (-1 + cos ) (ck + 0). (6.36)

(2k + 1)1I:x
—l + cos) (k = 0,1, 2, V (6.37)

F 2

Bemerkung I zu Beispiel 6.2: Ist Ä = E (siehe (6.23)) kleiner als der kleinste Eigenwert A0 = :72
(siehe (6.33)), d. h.‚ gilt

x215]
F < 4,, , (6.38)

so ist w E 0 die einzige Lösung, d. h.‚ der Stab knickt nicht aus. Wird der Wert von F aus (6.38)
größer und nimmt er schließlich die Eulersche Knicklast

1|:2EJ
F = Fxm. = T (5-39)

an, so weist das Vorhandensein der zu ll, gehörigen Lösungen wo(x) aus (6.36) darauf hin, daß der
Stab auszuknicken beginnt. Da jedoch die Eigenwertaufgabe unendlich viele Lösungen liefert —

die Konstante Co ist beliebig — wird durch das vorliegende mathematische Modell die konkrete
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Knickfigur nicht erfaßt. Woran liegt das? Beim Aufstellen der Differentialgleichung wurde für die
Krümmung der Kurve w = w(x) nicht die Formel

n

w 640Java (- )

benutzt, sondern unter der Voraussetzung, daß |w'l gegenüber 1 sehr klein ist, anstatt (6.40) w”
genommen. Das ist auch der Grund dafür, daß die Eigenwertaufgabe (6.23), (6.24) den überkritischen
Bereich "QEJ ‘

F > TIT‘ (6.41)

nicht wirklichkeitsgetreu beschreibt; denn es ist in der Praxis sicher nicht so, daß bei geringfügiger
Überschreitung der Eulerschen Knicklast (6.39) nur die Lösung w 5 0 existiert, also kein Aus-
knicken vorliegt.

Bemerkung 2 zu Beispiel 6.2: Die Bemerkung 1 darf nicht dahingehend verallgemeinert werden,
daß bei Eigenwertaufgaben nur der kleinste Eigenwert interessant sei und die Eigenfunktionen
keine praktische Bedeutung hätten. Bei der Zurückführung von partiellen Diflerentialgleichungen
(Band 8) auf gewöhnliche Differentialgleichungen treten Eigenwertaufgaben auf, deren Eigenwerte
und Eigenräume alle benötigt werden. So müssen dort Funktionen — nach Art der Fourierentwick-
Jungen aus Band 3 — durch unendliche Reihen dargestellt werden, deren Teilsummen Linear-
kombinationen von Eigenfunktionen der Eigenwertaufgabe sind.

Es kann vorkommen, daß Eigenwertaufgaben auch nichtreelle Eigenwerte besitzen. Wir stellen —

hierzu die folgende

Aufgabe 6.2: Man zeige, daß durch ‘

y”+ay’+ly=O (0§x._<=l,a#0) (6.42)
und

‚V(0) - NU) = 0. y’(0) - y'(1) = 0 (5-43)

eine Eigenwertaufgabe gegeben ist, und daß

4 2 2
A:/1,,=—l':—k=—%ki (k=0,i1,:2,...) (6.44)

Eigenwerte sind, zu denen jeweils eindimensionale Eigenräume gehören, deren Basen durch

„L Zkfllx s

e’ (k=0‚ i], i2‚...) (6.45)

angegeben werden können.

Aufgabe 6.3: Im Beispiel 6.2 sei nunmehr der Stab oben nicht frei sondern gelenkig
gelagert. In (6.24) ist daher die Randbedingung w”’(l) + Äw’(1) = 0 durch

w(I) = 0 (6.46)

zu ersetzen.

a) Man zeige, daß es eine Funktion von Ä

= um (Ä > O) (6.47)

derart gibt, daß die Eigenwertgleichung in die Gestalt

tan u = f(u) (u > 0) (6.48)

umgeformt werden kann. Wie lautet f(u)?
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b) Man skizziere die Funktionen y = tan u und y = f(u) (u > 0). Man lese aus
der Skizze und mittels einer Zahlentafel die kleinste Lösung von tan u = f(u) ab.
Wie groß ist damit der kleinste positive Eigenwert im, und damit die Eulersche
Knicklast F,„„_?

Aufgabe 6.4: Von der Eigenwertaufgabe für y = _v(x)

y””+Zy=0 (0§x§I,/". > 0), (6.49)

.v(0) = Ü, }"(0) = 0‚ ‚V"(l) = Ü» y'"(1) = 0 (5-50)

bestimme man die beiden kleinsten positiven Eigenwerte Ä und reelle Basen der zugehörigen Eigen-
räume. Man arbeite mit den Funktionen cos, sin, cosh und sinh.

Aufgabe 6.5: In Fortführung von Aufgabe 5.9 soll deren Lösung 19(x) auch noch der
weiteren Randbedingung 19(1) z 0 aus (V.5) genügen.

a) Welche Eigenwertgleichung ergibt sich für F, falls man mit der Abkürzung u 2 /".414

arbeitet? '

b) Man bestimme eine erste Näherung ul für die kleinste positive Lösung u des Er-
gebnisses von a), indem man die dortige Potenzreihe nach dem quadratischen
Glied abbricht.

c) Man löse die Gleichung des Ergebnisses von a) nach dem u des linearen Gliedes
der Potenzreihe auf. Es entsteht eine Gleichung des Gestalt u = r;(u). Man über-
zeuge sich, daß in der Nähe von u = ul die Ableitung (f(u) dem absoluten Betrag
nach kleiner als 1 ist und damit das lterationsverfahren u„„ = <;(u„) (n = l, 2, ...)
eine Zahlenfolge ul, n2, liefert, die gegen die kleinste positive Lösung kon-
vergiert (Band 2). Man breche die Reihe von <p(u) nach dem Glied, das u“ enthält
ab, und berechne uz, ..., ué.

o d) Aus c) ermittele man die kritische Kipplast F‚„„_ (vgl. die Bemerkung l zum Bei-
spiel 6.2).

Behandlung von Randwertaufgahen durch zurückführen auf Anfangs-
wertaufgahen

Beherrscht man die Behandlung von Randwertaufgaben (RWA) durch Zurück-
führen auf Anfangswertaufgaben (AWA), so kann man beispielsweise bei der numeri-
schen Lösung von RWA auch alle Methoden heranziehen, die sich mit der numeri-
sehen Lösung von AWA befassen (Band 7/ l, 2.5.; Band 18). Zunächst erläutern wir
den Fall der linearen RWA am

6.2.

Beispiel 6.3 (vgl. Beispiel 1.1l): Für die Durchbiegung w(x) eines Balkens, der sich
längs der x-Achse erstreckt (0 g x g l) und das Flächenträgheitsmoment EJ(x) (E:
Elastizitätsmodul) besitzt, gilt die gewöhnliche lineare Differentialgleichung vierter
Ordnung

(EJ(x)W")" = P(x), (6-51)

wobei p(x) die senkrecht zur Balkenachse wirkende Streckenlast angibt. Der Balken
sei am linken Rand (x = 0) fest eingespannt, d. h. es gilt

w(0) = 0, w’(0) = 0. (6.52)
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Am rechten Rand (x = l) liege eine elastische Senk- und Drehstützung vor, d. h.
es gelten mit den Bezeichnungen für die Momentenfunktion

M(x) = EJw” (6.53)

und die Querkraftfunktion

Q(x) = M’(x) (6-54)

die weiteren Bedingungen

Q(l) — c1w(l) = O (cl: Druckfederkonstante), (6.55)

M(l) + c2w’(l) = 0 (c2: Drehfederkonstante). (6.56)

Zunächst werden drei Anfangswertaufgaben gelöst. Bezeichnet man deren Lösungen
mit w„(x), w1(x) und w2(x), so sei

I. (EJ(x) w}! ” = 1I(x), w,(0) = 0, w,’,(0) = 0. Mp(0) = 0. Q..(0) = 0.
(6.57)

11- (EJ(x)W§’)” = 0, wr(0) = 0. Wi(0) = 0. M1(0) = 1. Q1(0) = 0. (6-53)

III. (EJ(x)w§’)" = 0, wz(0) = 0, w’z(0) = 0, M2(0) = 0, Q2(0) =‘1. (6.59)

Aus (6.57), (6.58), (6.59) in Verbindung mit (6.53), (6.54) folgt, daß alle Funktionen
w(x), die sowohl der Differentialgleichung (6.51) als auch den Anfangsbedingungen
(6.52) genügen, durch

W(x) = Wp(x) + C1W1(x) + C2Wz(x)

(C1, C; beliebige Konstanten) (6.60)

angegeben werden können. Zur Lösung der RWA (6.51), (6.52), (6.55), (6.56) wird
(6.60) in (6.55) und (6.56) eingesetzt. Es ergibt sich ein lineares Gleichungssystem
für C1 und C2. Setzt man schließlich die ermittelten Werte für C1 und C2 in (6.60)
ein, so erhält man die Lösung der ursprünglich gegebenen Randwertaufgabe (6.51),
(6.52), (6.55), (6.56).

Aufgabe 6.6: Man löse die RWA des Beispiels 6.3" und ermittele M(x) und Q(x) im folgenden
Spezialfall: '

MN
l= 5m,EJ(x) = const = 1250 MNm2,L'1 = 500T , c2 = 5000 MNm (6.61)

und
I g MN

p(x) = q + F6 x — 3- mit q = const = 2T und F: 5 MN, (6.62)

wobei
l

Fa(x — T) (6.63)

folgendes bedeutet (vgl. 3.3.9.): Man arbeite zunächst mit derjenigen Streckenlast, die im (kleinen)
Intervall

l e

7 " 7
4 Wenzel,Gew.Difi'.2

IIA x + (6.64)IIA N
lN

~
|<

v-
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F
den konstanten Wert : annimmt und in den übrigen Punkten des Intervalls 0 g x g I gleich

null gesetzt wird. Im Ergebnis ist dann der Grenzübergang e —> +0 durchzuführen. Technisch be-
I

deutet (6.63) den Angriff’ einer Einzellast F senkrecht zur Balkenachse im Punkte x = -2- .

Der nichtlineare Fall ist komplizierter, da man dann nicht mehr das Superposi-
tionsprinzip zur Verfügung hat. Wir illustrieren das am

Beispiel 6.4: Für y = y(x) (0 g x g a) sei eine RWA gegeben, bestehend aus der
(im allgemeinen nichtlinearen) expliziten Differentialgleichung zweiter Ordnung

y” = f(x‚ y, y’) (6-65)

uud den Randbedingungen

y(0) = 0, (6.66)

y(a) = b. (6.67)

Zunächst beschäftigt man sichmit einer Schar von Anfangswertaufgaben. Ist w

der Scharparameter, so sei die Lösung der zu w gehörigen AWA durch

Y = Y(x, w) (6.68)

bezeichnet. Damit kann die Schar von AWA angegeben werden. Y genüge als Funk-
tion von x der Differentialgleichung (6.65), d. h. es gelte

a2 Y DYW = f(x, Y, a—x). (6.69)

Als Anfangsbedingung für Y(x‚ w) werde

Y(0‚ w) = 0, :7 Y(0‚ w) = w (6.70)

vorgeschrieben. Man wird nun für einige w-Werte die AWA (6.69), (6.70) lösen
und prüfen, für welches w = wo die Lösung Y(x, wo) an der Stelle x = a der Zahl b
aus der Randbedingung (6.67) am nächsten kommt, also

Y(a, wo) = b + Ab mit »lAb] klein“ (6.71)
gilt.

Zur Verbesserung des Wertes w = wo studieren wir, wie sich Y bei festem x ändert, falls w in
der Umgebung von w = wo variiert. Hierzu wird man die Funktion

o?
n(x. w) = w (6472)

diskutieren. Aus (6.72) folgt durch partielle Difierentiation von (6.69) nach w:

O21) Ö3 Y(x,w) Ö , Ö

ax; =W= 35/04. Y(X‚w)‚ K Y(x. 10)) (6-73)
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und weiter mit der Kettenregel

a/(x. r, Y’) gÖ/(x. Y. Y’)
’F” + '" or Öx’ “'74)

Ö ‚Y‚Y’ n ‚Y‚Y’ . ..

wobei nach der Berechnung von Äiäy-J und für Y bzw. Y’ die Ausdrucke Y(x,w)

ö
bzw. K; Y(x‚ w) einzusetzen sind. Im Falle w = wo ergibt sich somit wegen (6.72), (6.73), (6.74) für

n(x) = n(x. wo) (6.75)

die gewöhnliche explizite lineare Differentialgleichung zweiter Ordnung _

7I"(x) = AG‘) 77(X) + B06) ’7'(X), (675)
' a

wobei man A(x) bzw. B(x) dadurch herstellt, daß man in die Funktionen a—),f(x, Y, Y’) bzw.
Ö

TV
partielle Differentiation der Anfangsbedingungen (6.70) nach w ergeben sich bei Beachtung von

(6.72) die folgenden Anfangsbedingungen für (6.75)

'l(0) = 0, 7i’(0) = 1- (6-77)

Die Funktion 11(x) genügt also einer linearen AWA, bestehend aus der zu (6.65) gehörigen Störungs-
gleichung (Variationsgleichung) (6.76) und den Anfangsbedingungen (6.77). Hat man i;(x) be-
rechnet, so interessiert insbesondere der Funktionswert an der Stelle x = a, d. h. [siehe (6.75)]

77(0) = 770L 500)- , (6-73)

Der Ausdruck Y(a, wo + Aw) wird jetzt bezüglich Aw nach Taylor an der Stelle Aw = 0 entwickelt.
Die Rechnung ergibt wegen (6.72), (6.75), (6.78)

f(x, Y, Y’) für Y den Ausdruck Y(x, (o0) und für Y’ den Ausdruck E; Y(x, wo) einsetzt. Durch

Y(u‚ wo + Aw) = Y(a,a)o) + 17(a) Aw + (6.79)

und damit wegen (6.71)

Y(a,w„ + Aw) = b + Ab + 71(a)Aw + (6.80)

Die Funktion Y(x‚ an, + Aw) ist also dann eine bessere Näherung als Y(x,w0)' für die Lösung y(x)
der RWA (6.65), (6.66), (6.67), wenn man

Aw: ——Ab (6.81)
v7

SEIZI.

6.3. Behandlung von Randwertaufgaben durch Diskretisation (Differenzen-
verfahren)

Wir legen eine weitere Methode zur Lösung von RWA vor. Ihr Wesen besteht
darin, in der Differentialgleichung und in den Randbedingungen alle Differential-
quotienten durch (verallgemeinerte) Diflerenzenquotienten zu ersetzen. Ehe wir im
Beispiel 6,6 die Methode vorführen, nennen wir als Vorbereitung die folgende

Definition 6.1: Unter einem finiten Ausdruck r-ter Ordnung (r = 0, l, ...) für die
n-te Ableitung der Funktion y(x) an der Stelle x = x. versteht man eine Summe der
Gestalt

n+r+1

k2 Cky(x» + Wick): (6-82)
g l

4x

D. 6.1
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deren Taylorentwicklung bezüglich h mit der Entwicklungsstelle h = O folgendermaßen
beginnt:

n+r+ 1

Z CiJ/(Xv + rxkh), = y""(X») h" + dn+mh”*’“ + d..+.+zh"*'” +
k= 1

(6.83)

Bemerkung I zur Definition 6.1.: Bei gegebenen Werten für oak (k = l, ..., n + r + 1)
gibt es mindestens ein (n + r + l)-tupel (C1 , C2, ..., C,,,,,+1) derart, daß (6.83) gilt.

Bemerkung 2 zur Definition 6.1: (6.83) liefert die Möglichkeit, die n-te Ableitung
der Funktion y(x) an der Stelle x = x, näherungsweise durch einen finiten Ausdruck
r-ter Ordnung darzustellen:

n+r+l
y""(x„) = —h17 k?! C„y(x„ + ockh) + R mit R = —d,,+,+1h’“ + .

(6.84)

Beispiel 6.5: Im Fall n = 2, r = 0 und ac; = -1, «x2 = 0, ac, = 1 liefert die Taylor-
entwicklung '

3 3 3

‚(Z1 Cky(xv + (k — 2)/I) = y(xv) E1 Cu + hy’(xv) E1 Cu(k - 2)

1 o u 3 2 1 3 m 3 3

+ 7h'y (xv) Z C:.(k - 2) + -3-,/I y (xv) Z Cx(k - 2)
. Iz=l . k=1

3

+ %-h“y””(x,) 2 C„(k — 2)‘ + (6.85)
. k-l

Um in (6.85) die Struktur aus (6.83) zu erhalten, muß

3 3 3

kg! C,‘ = 0, IE1 Ck(k — 2) = 0, kg C,,(k — 2)‘ = 2! (6.86)

gefordert werden. In (6.86) stehen drei lineare Gleichungen für C,, C2, C3. Es
ergibt sich ~‘

C, =1, C2 = -2, C3 =1. (6.87)

3

Beachtet man, daß „zufällig“ Z C„(k — 2)’ = O ist, lautet (6.84) im vorliegenden
Beispiel "=‘

l
v”(x.) = 704x» - h) - ZJ/(xv) + y(x„ + h)) + R (6-88)

mit

R = — —Il7h‘y””(x.) + . (6.89)

* Aufgabe 6.7: Analog zum Beispiel 6.5 behandle man die folgenden Fälle:

a)n=1,r=0,o:, = —1,oc‚= l,
b)n=1,r=2,oc1 = —2,zx2= —1,a3 =1,0¢4= 2,

c)n=4,r=0,cx,,=k—3(k=1,2,3,4,5).
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_Die Anwendung der Definition 6.1 bei der Lösung von Randwertaufgaben zeigen
wir am

Beispiel 6.6: Gegeben sei die Randwertaufgabe für y(x)

y” =f(x)‚ .v(0) = 0, y(a) = b. (6,90)

Es wird eine Diskretisation vorgenommen, d. h.‚ man teilt das Intervall O g x g a

in n Teile durch die n + 1 Teilpunkte

0=x„<x1 <x;< ...<x,,_1 <x,,=a. (6.91)

Wählt man die Teilintervalle alle gleich lang, so gilt

x„= vh (v=0, 1,...,n) mit h=:17. (6.92)

Man begnügt sich nun damit, für die Lösung y(x) der RWA lediglich an den Stellen
x, (a: = 0, 1, ...‚ n) Näherungswerte Y, (v = 0, 1, ...‚ n) für die Funktionswerte y(x‚)
(v = O, ...‚ n) zu bestimmen. Man nähert hierzu alle Ableitungen, die in der RWA
vorkommen, durch finite Ausdrücke (siehe Definition 6.1) an. Ersetzt man beispiels-
weise y” aus (6.90) an den Stellen x, = vh (v = 1, 2, ...‚ n — 1) durch die rechte
Seite von (6.88) [ohne R], so ergibt sich nach Multiplikation mit h’ mit den oben
eingeführten Bezeichnungen

Yv-l - 2Yv + Ym = h”f(xv). (v = 1. m," - 1). (6-93)

Die Randbedingungen aus (6.90) geben zu

Yo = 0, Y„ = b (6.94)

Anlaß. Für n = 8 beispielsweise lautet (6.93) unter Beachtung von (6.94) aus-
führlich

—2Yl + Y: = hzflxi),
Y1 —2Y2 + Y; = h’f(x;),

Y: ‘ 2Y3 ‘l’ Y4 = h2f(x3)9

Y, — 2x, + Y5 = /1’f(x4),

Y4 — 2Y5 ‘l’ Y6 = h2f(xs)a

Y5 — 2Y5 + Y7 = /z2f(x5),

Y5 — 2Y-‚ = /12f(x7) —- b. (6.95)

Im Gleichungssystem (6.95) sind in jeder Gleichung höchstens drei Unbekannte
miteinander verknüpft. Die Matrix des Gleichungssystems enthält viele Nullen;
die von null verschiedenen Elemente ordnen sich in einem Band an, das von links
oben nach rechts unten führt. Derartige Bandmatrizen treten immer auf, wenn eine
Randwertaufgabe der Diskretisation unterworfen wird. Mit diesen grundsätzlichen
Erörterungen müssen wir uns hier begnügen. Zur numerischen Auswertung und
Fehlerabschätzung verweisen wir auf die Bände 13 und 18 und die dort zitierte
Literatur.
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6.4. Lineare Rand- und Eigenwertaufgaben

Definition 6.2: Eine Randwertaufgabe für eine Funktion y = y(x) (Definition 1.6)
heißt linear, wenn die Diflerentialgleichung linear ist, also

§,a»<x> y‘”’(x) = gcx). am + o, (6.96)

gilt und wenn beim Einsetzen der allgemeinen Lösung

m) = ynbr) + yp(x) (6.97)
mit

.\’n(X) = C1y1u(x) + + C,.ym.(X) (6-93)

in die vorliegenden Randbedingungen sich ein lineares Gleichungssystem für die
C, , ...‚ C„ ergibt.

Die lineare Randwertaufgabe heißt homogen, falls die Diflerentialgleichung homogen
ist und wenn das Gleichungssystem für die C1, ..., C„ homogen ist; andernfalls heißt
sie inhomogen.

Definition 6.3: Unter einer linearen Eigenwertaufgabe versteht man eine lineare
homogene Randwertaufgabe, wobei eine Konstante Ä (Eigenwertparameter Ä genannt),
deren Werte einer Menge von reellen Zahlen oder auch komplexen Zahlen zu ent-
nehmen sind, entweder in der Dzflerentialgleichung oder in den Randbedingungen oder
sowohl in der Diflerentialgleichung als auch in den Randbedingungen auftritt. Alle
diejenigen Ä-Werte, für die es nichttriviale Lösungen der Randwertaufgabe, d. h.
Lösungen

y(x) Wt y(x) ab 0 .

gibt, heißen Eigenwerte, die zugehörigen nichttrivialen Lösungen der Randwertaufgabe
heißen Eigenlösungen.

Zusatz zur Definition 6.3: Nimmt man zu den Eigenlösungen, die zum Eigenwert 1,,

gehören, noch die Lösung y E 0 hinzu, so bilden sie einen linearen Raum, Eigen-
raum genannt. Die Dimension des Eigenraumes heißt Vielfachheit des zugehörigen
Eigenwertes 1k.

Aufgabe 6.8: Wird durch (6.1), (6.2), (6.3) aus Beispiel 6.1 eine lineare Randwertaufgabe gegeben?
Ist sie gegebenenfalls linear homogen oder linear inhomogen?

Aufgabe 6.9: Wird durch (6.23), (6.24) aus Beispiel 6.2 eine lineare Eigenwertaufgabe
gegeben?

Eine lineare inhomogene Randwertaufgabe behandeln wir im

Beispiel 6.7: In einer Vollkugel vom Radius R werde in ihrem Inneren pro Volumen-
und Zeiteinheit die konstante Wärmemenge Q erzeugt. Im stationären Zustand
stellt sich infolge der Wärmeleitung ein nur vom Abstand r vom Mittelpunkt
abhängiges Temperaturfeld T = T(r) ein, das der linearen inhomogenen Differential-
gleichung

QrT”(r) + 2T’(r) = — :4 0 g r g R (6.99)
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und der Randbedingung

—ocT’(R) = ßT(R) (6.100)

genügt. Hierbei sind ac > 0 bzw. ß > 0 konstante Wärmeleitungs- bzw. Übergangs-
zahlen. Die Differentialgleichung (6.99) ist zwar bezüglich 0 < r g R eine explizite,
bezüglich 0 g r g R jedoch eine implizite Difierentialgleichung (Definition 1.2). Da—

mit ist die Existenz- und Unitätsaussage aus Satz 3.1 für die Stelle r = 0 nicht an-

wendbar. Insbesondere kann aus (6.99) für die Stelle r = 0 nicht die Stetigkeit jeder
Lösung T = T(r) gefolgert werden. Es ist deshalb nicht überflüssig, neben (6.100)
noch die Randbedingung .

„lim T(r) existiert“ (6.101)
P-9 + 0

zu fordern. Multiplikation von (6.99) mit r liefert eine Eulersche Differentialgleichung.
Mit den Hilfsmitteln aus Band 7/1 ergibt sich für (6.99) die allgemeine Lösung

C’ — 62x1. (6.102)T(’)=C1+—r‘ a

In (6.102) existiert der Grenzwert (6.101) genau im Fall

C; = 0. (6.103)

Danach setzen wir (6.102) mit (6.103) in die Randbedingung (6.100) ein und erhalten

_ R 1 2C, —Q[§+ER (6.104)

Aus (6.102), (6.103), (6.104) folgt als Lösung der linearen inhomogenen Rand-
wertaufgabe (6.99), (6.100), (6.101)

R 1 i

T = —— — Z — 2 . .(r) Q[3fi + 6“ (R r )] (6105)

Aufgabe 6.10: Für das zur Kugel aus Beispiel 6.7 gehörige Verschiebungsvektorfeld u(r) ergibt sich '

lI(|”) =f(r)l’ (r = |I'|) (5-106)
mit

lim u(r) = o (6.107)
I-v+®

und
1 + v

rf”(r) + 4f’(r) = 1 __ V 7T'(r) (6.103)

[0 < v < §:Querdehnza.h1, y > 0 Wärmeausdehnungszahl, T(r) siehe (6.105)]. Gesucht ist die
Radia1spannung(G: Schubmodul)

Mr) = 1+2; [(1 + V)f(r) + (1 - 1')rf’(r) - (1 + v)1IT(r)1.. (6-109)

falls auf der Kugeloberfiäche der konstante Druck p > 0 wirkt, also die Randbedingung

a,(R) = -p (6.110)
gilt. .
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Im Beispiel 6.1. ergaben sich genau zwei Lösungen. Bei linearen Randwertaufgaben
kommt dies nicht vor. Es gilt der

Satz 6.1 (Altemativsatz): Entweder hat die lineare inhomogene Ramlwertaufigabe genau
eine Lösung — und damit die zugehörige homogene Randwertaufgabe nur die triviale
Lösung y E 0 — oder die zugehörige homogene Randwertaufgabe hat nichttriviale Lö-
sungen, während die inhomogene nur noch für besondere Werte der rechten Seiten des
Gleichungssystems lösbar ist ~ nämlich genau dann, wenn die Ränge der Koeyfizienten-
matrix und der erweiterten Koejfizientenmatrix einander gleich sind (Band 13) « und
dann unendlich viele Lösungen besitzt.

Beispiel 6.8: Die Durchbiegung w = w(x) des beiderseitig gelenkig gelagerten Druck-
stabes (Druckkraft F) mit der konstanten Biegesteifigkeit EJ und einer Querbelastung
q = q(x) genügt der linearen Randwertaufgabe

w"" + Äw" = q(x)‚ 0 g x g 1,2 = —£—J~, (6.111)

11(0) = 0, w”(0) = 0, w(l) = O, w”(l) = 0. (6.112)

Wir führen die Rechnung im Fall

. . 2 t

q(x) = q, 5in2?- + q; s1n—~:i (ql, q; Konstanten) (6.113)

durch. Mit den Hilfsmitteln aus Band 7/1 erhalten wir im Fall

TE 2 27c 2;.>o,2.+(7) ,z+(T) (6.114)

für (6.111) die allgemeine Lösung

w(x) = C. + Czx + c3 cos(\//}1x)+ C4 sin (\/Ax)
I‘ . TEX I‘ . 271x

+ q, s1n—T + l]; s1n—l—.
Einsetzen von (6.115) in die Randbedingungen (6.112) ergibt das lineare Gleichungs-
system für C,, ..., C4:

C. + C3 = o.

— 1c. = o,

c, + 021+ C3c0s(\//'—.l) + C.,sin(\/I-11) = o,

— C31 cos (fix) — C41 sin ((51) = o. (6.116)

Die Koeffizientendeterminanten von (6.116) ist gleich

-121 sin (\/Z1) (6.117)

und damit im vorliegenden Fall (6.114)

. k: Z
ungleich null, falls 2. a; (T) (k = 3, 4, ...), (6.118)

. kn’ Z
gleich nu1],fal1s}1 = (k = 3,4,...) (6.119)
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ist. Falls (6.118) gilt, hat das Gleichungssystem genau eine Lösung, nämlich C) = C2
= C3 = C4 = 0. Mit diesen Werten führt (6.115) zu genau einer Lösung der linearen
Randwertaufgabe. Falls jedoch (6.119) gilt, erhält man aus (6.116) die unendlich
vielen Lösungen C) = 0, C2 = 0, C3 = 0, C4 = beliebig, die in (6.115) eingesetzt
zu unendlich vielen Lösungen der Randwertaufgabe führen. Damit haben wir im
Fall (6.114) die Lösungen der Randwertaufgabe (6.111), (6.112) gefunden. Liegt der
Fall

7: x 2

2 = (T) (6.120)

vor, so lautet die allgemeine Lösung von (6.111)
3

w(x) = C) + Czx + C3 cosfl + C4 sinK+ q) Es-xcosfl
l l l

Z‘ , 2
+ q, „D? sm -735 (6.121)

und führt nach dem Einsetzen in die Randbedingungen zu

C) + C3 = 0,
Tc 2

“ (T) C3 ' 0’
l4

C1+C2I "C3=F‘I1:
2 [2 /

C3 = — Er-ql. (6.122)

Aus (6.122) liest man die folgenden beiden Fälle ab:

„(6.122) ist nicht lösbar, falls £11 $ 0 ist“ (6.123)

„(6.122) hat unendlich viele Lösungen, falls q) = 0 ist“, (6.124)

nämlich C) = C2 = C3 = 0, C4 = beliebig. Also erhält man im Fall (6.123) keine
und im Fall (6.124) unendlich viele Lösungen der Randwertaufgabe.

2 Z

Die Diskussion des Falles Ä = kann dem Leser überlassen werden.

Bemerkung 1 zum Beispiel 6.8: Analog der Bemerkung 1 zum Beispiel 6.2 ist die Aufgabe (6.1 l 1),

(6.112) für die Anwendung nur im Fall 0 < Ä < ;)2 brauchbar. Aus (6.115) folgt:

Selbst wenn im Störglied (6.113) das q) =l= 0 seinem absoluten Betrag nach sehr klein ist, so über-

wiegt in der Lösungsformel der q) enthaltende Summand‚ falls nur}. nahe genug bei liegt. Es

2

wird empfohlen, mit 0 < i. < die Lösung (6.115) zunächst im Fall q) = 0 zu skizzieren

2

und sich dann zu überlegen, wie im Fall „sehr kleines |q)| ä: 0, aber Ä in der Nähe von “ in

der Lösungsformel (6.115) ein Durchschlagen von w(x) infolge des q) enthaltenden Summanden
eintritt.

5 Wenzel. Gew. Diff. 2
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Bemerkung 2 zum Beispiel 6.8: Das Phänomen des Durchschlagens ist auch bei Störgliedern anderer
Gestalt zu beobachten. Man denke sich hierzu diese in Fourierreihen derart entwickelt, daß (6.113)
als Beginn dieser Entwicklungen aufgefaßt werden kann.

Aufgabe 6.11: In Fortsetzung der Aufgaben 5.27 und 5.29 soll die lineare Eigen-
wertaufgabe (V.2)‚ (V.6) aus dem Vorwort behandelt werden.

a) Wie lautet die Eigenwertgleichung für den Eigenwertparameter w?

b) Wie lautet das Ergebnis von a) im Fall des Seiles ohne daranhängendem Massen-
punkt, d. h., was ergibt sich beim Grenzübergang m -—> +0 und damit L —> I?

c) Im Fall, daß die Punktmasse m die Seilmasse gl sehr stark überwiegt, - es ist dann
L groß — benutze man im Ergebnis von a) die asymptotischen Entwicklungen (5.231),
wobei von den dortigen asymptotischen Reihen nur die absoluten Glieder zu be-
rücksichtigen sind, und beachte Aufgabe 5.27 sowie die Gleichung (5.225). Man
notiere das Ergebnis in der Gestalt w = f(w).

d) 1nf(w) aus c) ersetze man „/L — lund \/Z —- \/L — ldurch die ersten von null
verschiedenen Glieder ihrer Taylorentwicklungen bezüglich l an der Stelle l = 0.

e) Zur Bestimmung einer Näherung für die kleinste positive Lösung der Gleichung

w = f(w) aus d) ersetze man ü durch das erste von null verschiedene Glied

seiner Potenzreihenentwicklung bezüglich w an der Stelle a) = 0. Man vergleiche
das gefundene w mit der Kreisfrequenz des mathematischen Pendels.

Beispiel 6.9: Im Anschluß an die Aufgaben 5.13, 5.17 und das Beispiel 5.14 wird die lineare Eigen-
wertaufgabe (V.3), (V.4)‚ (V.7)‚ (V.8) behandelt. Zunächst setzen wir

E < 0 und damit Ä < O (6.125)

voraus. Mit

fil = d: I32 = ‘ J:
ergibt sich wegen (5.180), (5.181) beim Einsetzen von (5.179) in (V.8) für CM] der Wert null, weil

R10’) für r —> + o0 nach Unendlich divergiert. Also haben die Eigenfunktioncn die Struktur

ß:

(6.126)

E2§,(r) = e- ‘/’—""r”‘v(r), 0c = —1 + (6.127)

mit
N an

C; v(r) = Z E,r"’. ' (6.128)
11:0

Andererseits zeigt die Lösung der Aufgaben 5.13 und 5.17, daß die Eigenfunktionen infolge der
Randbedingung (V. 7) in der Gestalt

oo

C,R,(r) = r' Zoom’ (0 g r < oo) (6.129)
.,=

angebbar sein müssen. Aus (6.127), (6.129) folgt für die Entwicklung von v(r) an der Stelle r = 0

(6.130)
U)

v(r) = r‘”‘“ Z a„r", o; = -1 +
v=0 frat‘
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Einsetzen von (6.130) in (5.175), (5.176) führt schließlich zur Rekursionsformel

_ 2(/'-71(v+1—o.—1)
”(v+1—1x)(v+1—a—1)+2(a+1)(v+1—o.)+a(.x+ l)—l(I+

(v = 1, 2, ...). (6.131)

Sollte in (6.131) der Zähler für kein v verschwinden, so ist (6.12_7) mit (6.130) gewiß keine Eigen-
funktion, weil dann im Widerspruch zu (6.128) lim v(r) = oo gelten würde. Als Beweisskizze weisen

av 1) 111--1

wir darauf hin, daß für große v in (6.131) das 5:1: wesentlichen durch

2 "-7
a

’V
"v = v-l

festgelegt ist und daß damit dann av im wesentlichen durch

(6.132)

angegeben werden kann. Schließlich ist

co (2 jy _Z _‘/'_r_ =e2~/—}.r (6.133)
,,=0 7/.

eine Funktion mit lim r“*‘ e2‘/""' ’= + oo.
I-V Q)

Also ist für die Eigenfunktion notwendig, daß in (6.130) und damit auch in (6.128) die unendliche
Reihe abbricht.

Der Zähler in (6.131) verschwindet für v = k (k = 1, 2, ...)‚ falls

a=k+l—1 (6.134)

ist. Dann liefern (6,127) und (6.130)

„ „ c L k-1
C2R2(r) = e *+’r1"vZ:0a,1‘”. (6.135)

(6.135) genügt sowohl der Differentialgleichung (V.3) als auch den Randbedingungen (V.7)‚ (V.8),
liefert also Eigenfunktionen. Die zugehörigen Eigenwerte ergeben sich aus (6.134), (6.130) und (VA)
zu

27r2mZ2 e‘
= - Wm (I = 0,1, ...; k = 1, 2, ...;Element.ar1adung). (6.136)

Damit ist die Diskussion des Falles (6.125) abgeschlossen.

Im Fall
E > 0 und damit I". > 0‘ (6.137)

ist in (s.1so)r3, = i(/1-. bzw.flz = —i JZ
Für rau sind jetzt die Formeln

l ‘<1- l ——"_ 4.11:; 1 ‘LE-_lnr7r m2, Trwa, d‚h. 7e~/A ,7e «U. (6.138)

einzusetzen. Infolgedessen genügt nun die Lösung (5.179) der Differentialgleichung (V.3) der
Beschränktheitsbedingung (V.8). Aus der Lösung von Aufgabe 5.13 kann damit gefolgert werden:

jedes E > 0 ist Eigenwert. ' (6.139)

5* '
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Die zugehörigen Eigenfunktionen haben die Struktur

im) = r’ f c„r” (o g r < + co). (6.140)
1/=0

Auch E = O ist Eigenwert, wie sich schließlich aus den Ergebnissen der Aufgaben 5.23 und 5,13 ab-
lesen läßt.

6.5. Hermitesche Diflerentialoperatoren

Um einer gegebenen Eigenwertaufgabe bereits ohne Rechnung Aussagen über
die Eigenwerte und die dazugehörigen Eigenfunktionen entnehmen zu können,
wird man gewisse Klassen von Eigenwertaufgaben studieren und jeweils zugehörige
Sätze beweisen.

Wir beginnen mit der

Definition 6.4: Ist eine lineare Eigenwertaufgabe gegeben, deren Randbedingungen
nicht den Eigenwertparameter Ä enthalten und deren Differentialgleichung die Gestalt

L[y] = }.M[y] (6.141)
mit

L[y] =y§0av<x>y<" und Mir] =„;Ob„(x)y<"> (m < n) (6.142)

besitzt, so sind L[u] und M[u] Zuordnungsvorschriften, die zu linearen Diflerential-
Operatoren gehören. Den Definitionsbereich bilden neben u E 0 die Vergleichsfunk-
tionen u $ O, das sind genügend oft diflerenzierbare Funktionen, die den gegebenen
Randbedingungen, jedoch nicht notwendig der Diflerentialgleichung (6.141) genügen.

Zusatzforderung für die Definition 6.4: Die Vergleichsfunktionen sollen fiber die
Definition 6.4 hinaus so beschafien sein, daß die Integrale '

f W dx, f:M[u]V dx, f |L[u]|’ dx
J J J

— gegebenenfalls als uneigentliche Integrale — existieren, wobei J das zur Eigenwert-
aufgabe gehörige Intervall ist.

Bemerkung zur Zusatzforderung: Durch diese Forderung kann es vorkommen, daß
man gewisse Eigenwerte nicht erfaßt‚ weil deren Eigenfunktionen nicht (6.143) ge-
nügen. Wir weisen hierzu auf die Eigenwerte E > O aus (6.139) des Beispiels 6.9 hin.
Man vergleiche damit auch die Begriffe Punktspektrum und kontinuierliches Spek-
trum im Band 22.

Damit ist die Grundlage geschaffen für die

(6.143)

Definition 6.5: Ein linearer Diflerentialoperator heißt (bezüglich des Intervalles J) her-
mitesch, falls für alle Vergleichsfunktionen u(x), v(x) stets

. fmudx = faL[u]dx (6.144)
J J

gilt.

Bemerkung zur Definition 6.5: In der klassischen mathematischen Literatur findet
man anstatt „hermitescher Ditferentialoperator“ auch die Bezeichnungen „sym-
metrischer Difl‘erentialoperator“ und „selbstadjungierter Diflerentialoperator“.
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Definition 6:6: Ein hermitescher Diflerentialoperator heißt positiv definit, wenn für D. 6.6
alle Vergleichsfunktionen u

jmudx>o (6.145).
, .

gilt; er heißt negativ definit, wenn in (6.145) das >—Zeichen durch das <-Zeichen zu
ersetzen ist. Nimmt das Integral aus (6.145) für einige u positive Werte, für andere u

jedoch negative Werte an, so heißt der hermitesche Diflerentialoperatar indefinit.
Gilt neben (6.145) auch u dx = O, jedoch nicht lL-[Üu dx < 0, so spricht

J J

man von einem positiv semidefiniten hermiteschen Diflerentialoperator. Schließlich
liegt ein negativ semidefiniter hermitescher Dzflerentialoperator var, wenn genau die

Fälle f [[7] u dx < O und f I47] u dx = 0 vorkommen.
J J

Beispiel 6.10: Wir diskutieren die Eigenwertaufgabe für w(x) der Aufgabe 6.3.
Sie besteht aus der Differentialgleichung (6.23)

w”” = —}.w” (O g x g I) (6.146)

und den vier linearen homogenen Randbedingungen

w(0) = 0, w’(0) = 0, w(l) = O, w”(l) = O. (6.147)

Der durch
M[u] = —u”, u(0) = 0, u’(0) = 0, u(l) = 0, u”(l) = 0 (6.148)

gegebene lineare Differentialoperator zweiter Ordnung ist hermitesch, denn es gilt
für beliebige Vergleichsfunktionen u(x)‚ v(x) (0 g x g l) zunächst

l ll

_l_]\—4[—u]vdx= f —7udx= [—17v]{,+ 1171/dx
Ü Ü O

l

= -371‘).-(1) + 1366(0) + (14(_l)v’(l) —T(o) 61(0)) — f 171/’dx.
0

(6.149)

Da nicht nur u(x)‚ sondern auch v(x) Vergleichsfunktionen sein sollen, so genügen
nicht nur u(x)‚ sondern auch v(x) den Randbedingungen (6.147). Infolgedessen
verschwinden auf der rechten Seite von (6.149) alle außerhalb des Integrals stehenden
Summanden. Also kann die Rechnung folgendermaßen fortgesetzt werden:

1 1 1

f M[u]vdx = f ü(— v”) dx = f uM[v]dx. (6.150)
0 O O

Damit ist die Hermitezität von (6.148) bewiesen. M[u] ist darüber hinaus positiv
definit, denn zunächst gilt für beliebige Vergleichsfunktionen u(x)

l . l l

fMmudx = f —E"udx = [-1711]; + [Wax
0 0 0

l

= f 1u'|2dxgo. ~ (6.151)
O



X
-

D. 6.7

62 6. Rand- und Eigenwertaufgaben

In (6.151) wird in _>_:0 das Gleichheitszeichen von keiner Vergleichsfunktion u(x)
realisiert, denn sonst müßte der Integrand‚ der ja niemals negative Werte annimmt,
für 0 g x g l gleich null sein. Infolgedessen wäre u(x) = const, Aber diese Kon-
stante müßte gleich null sein, weil u(x) als Vergleichsfunktion den Randbedingungen
(6.147) genügt. Da nach Definition 6.4 eine Vergleichsfunktion nicht identisch
null ist, kann in der Tat (6.151) zu

j’ M12 dx > 0
0

(6.152)

abgeändert werden, und damit ist die positive Definitheit von (6.148) bewiesen.

Aufgabe 6.12: In Fortführung der Untersuchungen des Beispiels 6.10 zeige man,
daß der durch

L[u] = u””, u(0) = 0, u'(0) = O, u(l) = 0, u”(l) = 0 (6.153)

gegebene lineare Difierentialoperator vierter Ordnung hermitesch und positiv definit
ist.

Nachdem wir in diesem Abschnitt den Begrifl" hermitescher Differentialoperator
eingehend studiert haben, setzen wir in den nächsten Abschnitten das am Anfang
von 6.5. genannte Programm fort. »

6.6. Rayleighscher Quotient

Zur Berechnung der Eigenwerte einer Eigenwertaufgabe haben wir bisher zunächst
die allgemeine Lösung der zugehörigen linearen homogenen Differentialgleichung
bestimmt, mit Hilfe der Randbedingungen die Eigenwertgleichung aufgestellt und
diese schließlich gelöst. Selbst bei Difierentialgleichungen mit konstanten Koeffi-
zienten kann dieses Vorgehen zu aufwendigen Rechnungen führen. Man vergleiche
hierzu die Aufgaben 6.3 und 6.4. Interessiert man sich nur für den kleinsten Eigen-
wert, so kann man das Lösen der Diflerentialgleichung und das Aufstellen der
Eigenwertgleichung umgehen (Bemerkung 1 zum ‘Satz 6.5). Zunächst benötigen
wir die

Definition 6.7: Gegeben sei eine lineare Eigenwertaufgabe aus der Definition 6.4.
Jeder Vergleichsfunktion u(x) der Eigenwertaufgabe wird durch die Zuordnungsvor-
Schrift -

im u dx

R = “_- (6.154
[u] f M[u] u dx )

J

eine Zahl zugeordnet, falls der Nenner in (6.154) (nicht verschwindet. Das durch (6.154)
gegebene Funktional (Band 1) heißt Rayleighscher Quotient.
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Hieraus folgt der

Satz 6.2: Sind in der linearen Eigenwertaufgabe der Definition 6.4 die Operatoren L S. 6.2
und M hermitesch sowie M positiv definit, so werden vom zugehörigen Rayleighsehen
Quotienten stets nur reelle Werte geliefert. V

Zum Beweis von Satz 6.2 wird nachgewiesen, daß in (6.154) der Zähler reell ist.
Die Rechnung liefert infolge (6.144)

j H7] u dx = j mu] dx = j’ u1T[u]dx. (6.155)
J J J

Also ist flmudx gleich seinem konjugiert-komplexen Wert und damit reell.
J

Der Nenner in (6.154) ist positiv, denn M[u] ist nach Voraussetzung positiv definit.
Im Zusammenhang mit dem Satz 6.2 steht der

Satz 6.3: Alle Eigenwerte von Eigenwertaufgaben aus Satz 6.2 sind reell. S. 6.3

Zum Beweis sei Ä ein Eigenwert und y(x) eine zugehörige Eigenfunktion. Wir
gehen in (6.141) beiderseits zum konjugiert komplexen Wert über, multiplizieren
danach beide Seiten mit y(x) und integrieren über das zur Eigenwertaufgabe gehörige
Intervall J:

fLTy]ydx =,7._[Wydx. (6.156)
J J

Also ist

l f Üflydx
32a. (6.157)

‚l Mlylydx

Aus (6.157) folgt in Verbindung mit Satz 6.2, daß 7. reell und damit Ä = Ä ist. Als
Folgerung entnehmen wir dem Beweisgang zu Satz 6.3 noch den

Satz 6.4: Ist für eine Eigenwertaufgabe Ä ein Eigenwert und y(x) eine zugehörige s. 6,4
Eigenfunktion‚ so liefert der Rayleighsche Quotient (6.154) an der Stelle u = y den
Eigenwert Ä:

f 317 y dx
i. = 1-——. 6.158

1 M1y1y dx ( )
J

Zur Vereinfachung der Sprechweise nennen wir die

Definition 6.8: Eine Eigenwertaufgabe aus Satz 6.2 heißt positiv definit [bzw. positiv D. 6.8
semidefinit], wenn der durch L[u] aus (6.141) erzeugte hermitesche Diflerentialoperator
positiv definit [bzw. positiv semidefinit] ist.

Aufgabe 6.13: Man zeige: Alle Eigenwerte Ä einer positiv definiten (bzw. positiv *

semidefiniten) Eigenwertaufgabe sind größer als null (bzw. größer oder gleich null). _
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Wir nennen den für numerische Verfahren wichtigen

Satz 6.5: Gegeben sei eine positiv definite Eigenwertaufgabefür y(x) (a g x g b). Der
Rayleighsche Quotient nimmt auf der Menge der Vergleichsfunktionen seinen kleinsten
Wert an; dieser ist gleichzeitig der kleinste Eigenwert, wobei die Funktion u, für die
der Rayleighsche Quotient seinen kleinsten Wert annimmt, eine zu diesem Eigenwert
gehörende Eigenfunktion ist.

Bemerkung 1 zum Satz 6.5: Die Minimaleigenschaft im Satz 6.5 wird bei der nähe-
rungsweisen Berechnung des kleinsten Eigenwertes ausgenutzt. Setzt man in den
Rayleighschen Quotienten für u(x) eine ziemlich grobe Näherung für eine zum klein-
sten Eigenwert gehörige Eigenfunktion ein, so liefert (6.154) dennoch eine relativ
gute Näherung für den kleinsten Eigenwert.

Bemerkung 2 zum Satz 6.5: Es ist zweckmäßig, in (6.154) den Zähler und den
Nenner durch partielle Integration umzuformen und danach die Randbedingung
heranzuziehen, ehe man den Rayleighschen Quotienten zur numerischen Auswer-
tung benutzt.

Zur Illustration der Bemerkungen 1 und 2 nennen wir

Beispiel 6.11: Gegeben sei die positiv definite Eigenwertaufgabe

y”” = fly, (0 é x ä 1). y(0) = 0. y’(0) = 0. y”(1)= 0, y'”(1)= 0-
(6.159)

Bei Beachtung Von Bemerkung 2 liefert die Rechnung
l

J i777 u dx 1 1

RM = ° 1 _ = T__ {[u:’:)u]}, — of "’u’ dx}

f uu dx f |u]2 dx ‘

0 0

1 — ’ —

= m1 -[ "u']},+ I u"u" dx
2 \—=V0‘J 0j Iul dx

0

und damit
1

j Iu"|2 dx

R[u] = —‘}—: (6.160)

J. Iulz dx
0

Als Vergleichsfunktion u(x), die eine zum kleinsten Eigenwert gehörige Eigenfunktion
annähern soll, wählen wir ein Polynom von möglichst niedrigem Grad. Die Gleichung
(6.160) zeigt, daß Funktionen u(x), die sich nur um konstante Faktoren unterscheiden,
zu übereinstimmenden Werten R[u] führen. Vier Randbedingungen sind zu erfüllen.
Wir müssen also ein Polynom ansetzen, das mindestens fünf Koeffizienten enthält,
d. h. ein Polynom vom mindestens vierten Grad. Die Rechnung zeigt, daß

u(x) = x“ — 4x3 + 6x2 (6.161)
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alle Randbedingungen erfüllt, also eine Vergleichsfunktion ist. Wir setzen (6.161)
in (6.160) ein und erhalten schließlich

1 1

[M12 dx = #,f|u12 dx = 3251i, R[u] = 17632 = 12,46

0 O

Zum Vergleich teilen wir den exakten Wert des kleinsten Eigenwertes mit:
Ä = 12,36

Bemerkung 3 zum Satz 6.5: Wählt man in (6.161) ein Polynom von größerem Grad, so bleiben beim
Einsetzen in (6.160) noch einige Koeffizienten unbestimmt, die dann so zu wählen sind, daß der
Wert für R[u] möglichst klein ist. Das hier angedeutete Vorgehen gehört zum Verfahren von Ritz.
Wir müssen hierzu auf Band 18 und die dort angegebene Literatur verweisen.

Auch die in den folgenden Bemerkungen genannten Hinweise können hier nicht erörtert werden.

Bemerkung 4 zum Satz 6.5: Bei Beachtung von Bemerkung 2 gilt der Satz 6.5 auch dann noch,
wenn man Funktionen u(x) benutzt, die nur einen Teil der Randbedingungen, sie heißen wesentliche
Randbedingungen, zu erfüllen brauchen. Man spricht in diesem Zusammenhang von zuläxsnren

Funktionen u(x). Die wesentlichen Randbedingungen enthalten nur Ableitungen bis zur — l)-ten

Ordnung, wenn n (gerade) die Ordnung der Differentialgleichung (6.141) ist. In (6.159) sind y(0) = O,

y’(0) = 0 die wesentlichen Randbedingungen.

Bemerkung 5 zum Satz 6.5: Man kann den Satz 6.5 auch auf alle Fälle übertragen, wo in den rest-
lichen Randbedingungen (das sind die nichtwesentlichen) der Eigenwenparameter Ä auftritt.

I

Bemerkung 6 zum Satz 6.5: Die Minimaleigenschaft des kleinsten Eigenwenes kann auf Minimal-
eigenschaften der weiteren Eigenwerte übertragen werden.

6.7. Einschließungssatz

Im vorigen Abschnitt liefert der Rayleighsche Quotient beim Einsetzen einer
Näherung für eine zum kleinsten Eigenwert gehörige Eigenfunktion stets einen
Wert, der größer als der gesuchte kleinste Eigenwert ausfällt. Der jetzt zu disku-
tierende Einschließungssatz liefert darüber hinaus einen weiteren Näherungswert,
der kleiner ausfällt als der gesuchte Eigenwert.

Gegeben sei eine positiv definite Eigenwertaufgabe aus Satz 6.2 für y = y(x)
(a g x g b). Die Ordnung des Differentialausdruckes M aus (6.142) sei gleich null,
d. h. (6.141) werde jetzt spezialisiert zu

Llyl = Ägo(x)y (go(x) ä 0)- (5-152)

Es sei nun /1,, ein Eigenwert und y‚(x) eine zu Ä, gehörige Eigenfunktion:

Llyd = /1vgo(x)y.,- (6-163)

Für (6.163) kann man auch

L = gotx) y. (6.164)
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schreiben. Mit der Abkürzung

ä = Fax), y.<x) = im (6.165)

lautet (6.164) ‚

L[F1(x)] = go(x) F00‘): (6-155)

und es ist wegen (6.165)

z, =. (6.167)

Aus (6.165) folgt, daß F1(x) und Fo(x) Vergleichsfunktionen sind.
Der Einschließungssatz geht nun davon aus, daß in (6.166) F1(x) durch irgend-

eine Vergleichsfunktion F1(x) ersetzt wird und in Anlehnung an (6.166) F(,(x) durch

L[F1(X)] = go(x) Fo(x) (6-168)

definiert wird. Fo(x) wird im allgemeinen keine Vergleichsfuriktion sein. Bildet man
in Analogie zu (6.167) den Quotienten

Fo(x)
F10‘) ’

so ist diese Funktion im allgemeinen nicht konstant. Es gilt jedoch

(6.169)

Satz 6.6 (Einschließungssatz): Hat die Funktion (6.169) im Intervall nur positive
Funktionswerte, so liegt zwischen ihrem Maximum und ihrem Minimum mindestens
ein Eigenwert 7.„ der betrachteten positiv definiten Eigenwertaufgabe, (I. 11., es gilt

- F00‘) 170(35)

F. x) é i‘;‘1F.<x) '

B (6.170)w:

u llA

Bemerkung zu Satz 6.6: Es ist zweckméiflig,-zunéichst die Funktion F„(x) so zu
wählen, daß sie möglichst viele Randbedingungen erfüllt. Aus (6.168) ergibt sich
dann F1(x), wobei die entstehenden Integrationskonstanten derart zu wählen sind,
daß F‚(x) alle Randbedingungen erfüllt, also Vergleichsfunktion ist.

Beispiel 6.12 (Fortsetzung von Beispiel 6.11): Die Funktion (6.161)-ist Vergleichs-
funktion‚ wir wählen sie für F0(x):

F0(x) = x“ — 4x3 + 6x2. (6.171)

Die Funktion F1(x) ist gemäß (6.168) jetzt wegen der Differentialgleichung aus (6.159)
derart zu bestimmen, daß

F1”’(x) = F„(x) = x‘ — 4x3 + 6x’ (6.172)

gilt und F1(x) alle Randbedingungen aus (6.159) erfüllt. Die Rechnung liefert

1

F1“) = m(x9 — 8x7 + 28x‘ — 336x3 + 728x’). (6.173)
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Wegen (6.170) ergibt sich aus (6.171), (6.173), dal3 es mindestens einen Eigenwert /1

der Eigenwertaufgabe (6.159) gibt, für den I

mm 1680(x2 — 4x + 6)

Oéxél x5 — 8x5 + 28x‘ — 336x + 728

< max 1680(x2 — 4x + 6)

= o§,,§1 x5 — 8x5 + 28x‘ — 336x + 728 ’

d. h. (der Bruch ist für 0 g x g 1 monoton fallend)

gl

H g i. s E
59 ‘ ‘ 13

und damit

12,2 < /'. < 13,9 (6.174)

gilt. In Verbindung mit dem Ergebnis aus dem Beispiel 6.11 kann (6.174) zu

12,2 < i. < 12,46 (6.175)

verschärft werden.

6.8. Entwicklungssatz

Im Rahmen unserer Theorie werden nunmehr die Kenntnisse über Fouriersche
Reihen aus Band 3 erweitert. Als Vorbereitung nennen wir die

Definition 6.9: Unter dem relativ zum positiv definiten hermiteschen Diflerential- D. 6.9
operator M[u] gebildeten Skalarprodukt zweier Vergleichsfunktionen u(x), v(x) ver-
steht man -

(ulv) = _|" W74] L‘ dx,‘) (6.176)
J

wobei J das zum Operator M gehörige Intervall ist.

Zusatz I zur Definition 6.9: Ist speziell M[u] = g(x)u (g(x) g 0), so heißt

(ulv): i g(X)17v dx (6.177)
i

das mit dem Gewicht g(x) gebildete Skalarprodukt von u und v.

Zusatz 2 zur Definition 6.9: Ist in (6.177) g(x) E 1 (xeJ), so spricht man vom
Skalarprodukt

(u|v> = if 17v dx. (6.178)

‘) Anstatt (ulv) ist auch die Bezeichnung (u, v) gebräuchlich
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Hieran schließen sich die beiden folgenden Definitionen an:

Definition 6.10: Zwei Funktionen u und v heißen relativ zu einem vorliegenden Skalar-
produkt zueinander orthogonal, wenn ihr Skalarpradukt gleich null ist:

(ulv) = 0. (6.179)

Definition 6.11: Unter der Norm (relativ zu einem vorliegenden Skalarprodukt) ver-

steht man die nichtnegative (reelle) Zahl

Hull ä V./ulu%

Wenn in den folgenden Definitionen Von einer Indexmenge Ind gesprochen wird,
so denke man beispielsweise an solche Mengen wie:

(6.180)

0, 1, 2,] 3,

1, 2 , 3, 4,

0, i1, i2, i3,
—2‚ -1, 0, l, 2,

(v„u) mit v = 0, l, 2, 3, und ‘u = 1, 2. (6.181)

Definition 6.12: Ein System von Funktionen q2„(x) (xe J, v e Ind) heißt (relativ zu
einem vorliegenden Skalarprodukt) ein Orthogonalsystem, wenn

=0 für v+u
<9%|%> >0 m, „H, (6.182)

gilt.

Definition 6.13: Ein System von Funktionen 1p‚.(x) (xeJ, velnd) heißt (relativ zu

einem vorliegenden Skalarprodukt) ein Orthonormalsystem, wenn

„ <w„|w‚.> = 6... (6.183)
gilt

Mit diesen Definitionen formulieren wir den

Satz 6.7: Bei Eigenwertaufgaben aus Satz 6.2 siml Eigenfunktionen, die zu verschie-
denen Eigenwerten gehören, relativ zum Skalarprodukt (6.176) zueinander orthogonal.

Zum Beweis gehen wir von zwei voneinander verschiedenen Eigenwerten Ä, und h2

aus, die jeweils die zugehörigen Eigenfunktionen y,(x) bzw. y2(x) besitzen mögen.
Es gilt also

Llyil z ÄLMÜI]

Llyz] = 12Min]. (6-185)

Wir gehen unter Beachtung von Satz 6.3 in (6.184) zum konjugiert-komplexen
Wert über, multiplizieren danach mit y2(x) und integrieren über das zur Eigenwert-
aufgabe gehörige Intervall J:

L[}’1].}’2 dx = Ä: lMlyilyz (ix-
J J

(6.184)
und

(6.186)
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(6.185) wird mit y_1 multipliziert, und danach wird über J integriert:

j y‘.L[y2] dx = z, f )2_1M[y;]dx. (6.187)
J J

Die Gleichungen (6.186) und (6.187) werden nunmehr voneinander subtrahiert: Da
y1, y; spezielle Vergleichsfunktionen und L, M hermitesche Differentialoperatoren
sind, ergibt sich [vg]. (6.144)]

0 = (i. — i2) J Mly1ly2 dx
J

und damit wegen Ä, + Z2

JM[y1]y2 = 0-
J

(6.188)

Zusatz zu Satz 6.7: Nimmt man zur Gesamtheit der zu einem Eigenwert gehörigen
Eigenfunktionen die identisch verschwindende Funktion hinzu, so bilden sie einen
linearen Raum mit der Dimension d. Im Fall d > 1 verabreden wir, stets eine solche
Basis des Eigenraumes zu wählen, daß je zwei Basiselemente zueinander orthogonal
sind.

Bei den beiden folgenden Sätzen beachte man den Zusatz auf Seite 75.

Satz 6.8: Gegeben sei eine positiv semidefinite Eigenwertaufgabe aus Satz 6.2. Dann
gibt es in vielen Fällen unendlich viele Eigenwerte; sie sind alle positiv oder null und
haben keine Häufungsstelle im Endlichen. Man kann also alle Eigenwerte der Größe
nach ordnen:

0 g 21 < Ä; < Z3 < m, (6.189)

und es gilt

lim 1„ = + oo. (6.190)
7|-‘D0

Aus dem Satz 6.7 und dem Zusatz zu Satz 6.7 kann man entnehmen, daß alle
(gewählten) Basen aller Eigenräume der Eigenwertaufgabe ein Orthogonalsystem
bilden. Wegen Satz 6.8 hat es unendlich viele Elemente. In diesem Zusammenhang
nennen wir den

Satz 6.9 (Entwicklungssatz): Bei positiv definiten Eigenwertaufgaben der Gestalt
(6.141) kann man in vielen Fällen jede Vergleichsfunktion u(x) in eine unendliche
Reihe (Fourierreihe) nach demjenigen Orthogonalsystem entwickeln, das aus allen
(gewählten) Basiselementen aller Eigenräume besteht; mit anderen Worten: Bezeichnet
man die Elemente des Orthogonalsystems durch <p,,, wobei ‚u alle Elemente einer
gewissen Indexmenge Ind durchläuft, so gilt für jede Vergleichsfunktion u(x) eine
Darstellung durch die Fourierreihe

u(x) = E; ‘ci'u<pu(x). (6.191)

S. 6.8

S. 6.9
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Die Reihe Z |c„| |q2„(x)j konvergiert im zugehörigen Intervall gleichmäßig. Die Zahlen
us Ind ‘

c,, heißen Fourierkoeflizienten und es gilt (in Verallgemeinerung aus Band 3)

e — <"’"'”> (6.192)
" _ MI!‘ ’

wobei das Skalarpradukt (6.176) zugrunde liegt.

Beispiel 6.13: Die positiv semidefinite Eigenwertaufgabe, bestehend aus der linearen
homogenen Differentialgleichung v

I I3 g x g T (6.193)L[y] = ÄMLV] mit L[u] = —u”, M[u] = u, —

und den beiden linearen homogenen Randbedingungen

1i(*%)=y(%)= y'(“%)=y'(%)’ <6-1%

hat die Eigenwerte
4 2

Av = —l7§~v2 (v = o, 1, 2, ...). (6.195)

Zu Äo = 0 gehört ein eindimensionaler Eigenraum. Als Basis dieses Eigenraumes
kann man die Funktion identisch 1 wählen oder aber auch — um den Anschluß
an Band 3 herzustellen — die Funktion

1 I I„(n53 (——2—gxg?). (6.196)

Zu jedem 2, mit v = l, 2, 3, gehört jeweils ein zweidimensionaler Eigenraum.
Bei der Bezeichnung einer orthogonalen Basis des jeweiligen Eigenraumes nutzen
wir die in (6.181) angegebene Möglichkeit, als Indizes Zahlenpaare zu verwenden:

2 . 2
(p„_„(x) = cos "im ‚ zp„‚2)(x) = 5in2 (v = 1, 2, ...). (6.197)

Im vorliegenden Beispiel ist
n2 11.2 1_/2

(ulv) = j M[u] vdx = üv dx, llull =\/ j lulz dx,
—I/2 ~1/2 -1/2

‚ 1 1 — T
.1;oo<x>11 = = 7w, ”‘p(v.1)(-X)” = = A/—2-,

= J (6.198)

Beim Aufschreiben der Fourierentwicklung von beliebigen Vergleichsfunktionen ist
zu beachten, daß die Numerierung von Eigenfunktionen durch Zahlenpaare zur
Folge hat, daß auch die zugehörigen Fourierkoeffizienten durch Zahlenpaare zu

COS
2rwx

l

sin
2

1I<m,2,<x)11 = "f"
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numerieren sind. Bei der Summation ist darauf zu achten, daß eine Doppelsumme
auftritt:

o0 2

u<x) = C’o‘Po(X) + s; c„_„‚w„‚„‚<x)) (6.199)

mit l 1 l

Co = W (Wohl): Cum = <<P<v‚x)|">u (5-200)

Wir führen die Abkürzungen

an = Co: av = c(v.l)! bv = C(v,2) (7 = 1: 2: (6-201)

ein und schreiben damit (6.199), (6.200) in der Gestalt

u(x) = äao + i§1(a,, cos 2",” + by sin 2",” ) (6.202)

mit
1/2

a =‘—<<p Iu>=3 [u(x)dx°umw ° I ’
—u2

1/2

a =e“— cos 2”” u = 2- f u(x)cos 2mm dx
V 2.-cvx 2 I l I

COS I ._1/2

(v =1, 2, ...)‚
1/2

1 . 27rvx 2 . 21-wx
b, — W7<s1n I u> -7 fu(x)s1n l dx

SUIT _1/2

(a: = 1, 2, ...) (6.203)

(Band 3). In (6.197) könnte man auch die orthogonale Basis
‚ 27-rvix _ Zrwix

%(x) = e ‘ ‚ ¢—v(x) = 6 ’ (v = 1,2,...) (6-204)

wählen. Wir haben in (6.204) zur Numerierung zwar keine Zahlenpaare benutzt,
haben jedoch neben den positiven auch die negativen ganzen Zahlen herange-
zogen. Die Funktionen (6.204) kann man gemeinsam mit (po(x) z 1 in

211-,,uix

<pu(x)= e ' (u =o‚ i1, :2,...). (6.205)

zusammenfassen. An die Stelle von (6.199) bis (6.203) tritt jetzt
+00 2.-mix 1 < 2mm; > 1 „Z 153

u(x)=_; cue ‘ figs e ‘ u =7 [C ‘ u(x)dx
ß- e ‘ -1/2

”2 zmx ’

=% f u(x)e I dx (6.206)

—1/2

(vgl. Band 3).
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Beispiel 6.14: Die positiv semidefinite Eigenwertaufgabe, bestehend aus der Legendre-
sehen Differentialgleichung

L[y] = ÄMLv] mit L[u] = —[(l — x2) u’]’‚ M[u] = u, —1 g x g 1

(6.207)

und den Randbedingungen

lim y(x) existiert, lim y(x) existiert (6.208)
X-r — l + 0 .2:->1 — 0

hat die Eigenwerte

2,, = n(n + 1) (n = 0, 1, 2, ...). (6.209)

Zu jedem 1„ (n = O, 1, 2,...) gehört jeweils ein eindimensionaler Eigenraum. Als
Basiselement kann das Legendresche Polynom P„(x) (Legendresche Funktion erster
Art mit dem Index n) genommen werden [(5.75)]. Im vorliegenden Beispiel ist

1 1 ld
(u|v)= f Wdvdx = üvdx, llull = f lulz dx,

‘-1 '-l-1

_ i. 6.210
_A/2n+l‘ ( )

l

f u(x) P„(x) dx.

‘ 1 (6.21 1)

Beispiel 6.15: Die positiv definite Eigenwertaufgabe, bestehend aus der Differentialgleichung

H P..(x)I| =

1 d" H

2TnzW[("2'1)]
Für beliebige Vergleichsfunktionen u(x) gilt

u(x) = ffocmoc) (-1 g x g I). c. = 2",“

LLv] = ÄM[y] mit L[u] = —[(l — x’)u’]’ +‘ $4 (k = 1, 2, ...),

M[u]=u, —1§x§1 (6.212)

und den Randbedingungen

Y(—1)= Ü. .V(1) = 0, (5-213)

hat die Eigenwerte i

1„ = n(n +1) (n = k,k + 1, ...). . (6.214)

Zu jedem 1„ (n = k,k + 1, ...) gehört jeweils ein eindimensionaler Eigenraum. Als Basiselement
kann die zugeordnete Funktion von Legendre

dk
dxk P„(x) (n = k, k + 1, ...) (P„(x): Legendresches Polynom) (6.215)

_"_
2

(1 - X’)

genommen werden. Das hier maßgebende Skalarprodukt stimmt mit demjenigen aus Beispiel 6.14
überein. Es ist

' 2 k!
= (n g k). (6.216)2% dku(1- x) E; ..(X)
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Für beliebige Vergleichsfunktionen u(x) gilt
eo L n

u(x)= Z c,,(1—x2)2 k P,.(x) (-léxél)
nxk d?‘ .

mit 1

Zn + 1 (n — k)! —"— d"
= 2 (n + k)! f u(x) (1 — xi) 2 dxk P,,(x) dx. (6.217)

-1

Definition 6.14: Wenn man in (6.215) X = cos i9 setzt, danach einerseits mit A,,_,‘e“‘“’ (k = O, 1, ..., n)
und andererseils mit B„_‚.e“"'»“ (k = l, ...‚ n) multipliziert, wobei AM und BM beliebige Konsmnten
sind, so ergeben sich durch Addition der Ergebnisse Kugelflächenfunktionen n-ter Ordnung:

Y..(r9‚4r) = A‚..oP..<cos 29)

n dk

+ Z {(A‚._‚. e“"" + Bn.k e'“‘<") (sin v9)” (— P,.(x))x.m.a}
kxl

D. 6.14

S. 6.10

dx"

(0 g 19 g 7:, 0 g q; g 211:). (6.218)

Aufgabe 6.14: Man zeige:

Yo(z9,q=) = Ao.o. (6-219)

Y,(x9, (p) = Am cos 19 + (Au e‘? + BH e"V) sin v9, (6.220)

3 1

Y2(l9,q1) = Am (7 cos’ 29 -— T) + (Am e” + B“ e“°’) 3 cos 19 sin 19

+ (Am e“°’ + B2‘, e’“‘P) 3 sin’ 19

3 1 . 3 ‚

= Am Tcos (229) + T + (Am e‘? + B“ e“"’) 7 sin (219)

3
+ (AL; em’ + BL; im’) 7 (1 — cos (219)). (6.221)

Aufgabe 6.15: Man zeige: Mit der Festsetzung
n 21: ’

(ulv) = f ( fu(z9,¢) v(19,q9)sin19 dqi) ma (6.222)
:9-0 lp=O

gilt im Falle m =1= n (m = 0, 1, 2, ...; n = 0,1, 2, ...) stets

(Y„|Y„‚) = 0. (6.223)

Aufgabe 6.16: Man bestimme in der Fourierreihe

um») = 3° w, w) [Y„ siehe<6.21s>1 (6.224) '

n=0

die Fourierkoeffizienten A” (k = 0, 1, ...‚ n) und BM (k = 1, ...‚ n).

Im Anschluß an die Definition 6.14 nennen wir den

Satz 6.10: Geht man von kartesischen Koordinaten (x, y, z) durch

x=rsm19cosq7,y=rsim9sinnp, z=rcos19 (6.225)

zu räumlichen Polarkoordinaten (r, 19, (p) über, so wird durch

U‚.(x‚y‚ z) = r"Y..(«9, er) (n = 0. 1, 2 ---) (6.226)

6 Wenzel, Gew. Difl‘. z
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eine Funktion definiert, die der partiellen Difierentiakleichung

ö’ U‚. ÖZU ÖZU
AU. = o (AU. = m T" + D2,")

Ox‘

genügt. (6.226) heißt innere Kugelfunkfion n-ter Ordnung.

(6.227)

Aufgabe 6.17: Im Anschluß an die Aufgabe 6.16 bestimme man alle inneren Kugelfunktionen der
Ordnung n mit n = 0, 1, 2.

Beispiel 6.16: Die positiv semidefinite Eigenwertaufgabe, bestehend aus der hermiteschen Dilferen-
tialgleichung (vgl. Beispiel 5.15)

L[y] = ÄM[y] mit L[u] = —(e‘*2u’)’, M[u] = e"“u, —-oo < x‘ < +00 (6.228)

und der Forderung der Normierbarkeit als Randbedingung, d. h. der Forderung
+00

J‘ e"" lyl“ dx existiert, (6.229)
—ou

hat die Eigenwerte

2„ = 2n (n = 0, 1, 2, ...). (6.230)

Die zugehörigen Eigenräume sind jeweils eindimensional; als Basiselement kann das Hermitesche
Polynom H„(x) aus Beispiel 5.15 genommen werden. Im vorliegenden Beispiel ist

+®

I e“: Iulz dx,
-9o

ML +03

(ulv) = I M[u}vdx = I e“: üv dx, Hull =

—ao —-:0

d.. _ _

d)? (e"‘2)|l = \/2"”: 1/.1.

Für beliebige Vergleichsfunktionen u(x) gilt:

IIH‚.(X)II = Il(-1)" 6*’ (6.231)

+ao

u(x) = 53° c„H„(x) (—oo< x < +00), c,, = ——1-= J‘ e"‘1u(x) H,,(x) dx. (6.232)
n-0 » 2"n!\/rt

Beispiel 6.17: Die positiv definite Eigenwertaufgabe, bestehend aus der linearen
homogenen Differentialgleichung [vgl (5.207)]

L[y] = }.M[y] mit L[u] = —(xu’)’ + px—2u, M[u] = xu,

(p g 0, sonst beliebig reell, 0 g x g l) ‘ (6.233)

und den Randbedingungen

lim y(x) existiert, y(I) = 0 (6.234)
x—>+0

hat die Eigenwerte

1„ = l1—2(zx£,”)2 (n = l, 2, 3, ...), (6.235)

wobei 04;,” die der Größe nach geordneten positiven Nullstellen der Besselfunktion J‚(x)
[vgl. (5.4)] sind:

J‚(ocf,")) = 0 . (6.236)
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Die zugehörigen Eigenräume sind eindimensional. Als Basis kann jeweils die Funktion

J„(ag‚v> (o g x g 1)

genommen werden. Im vorliegenden Beispiel ist

(6.237)

(ulv) =Jl1\l—[u.]—vdx = flx12vdx,J|ul| = \/flx|u|2dx,
O 0 0

J, (a?) 31i
= W

Für beliebige Vergleichsfunktionen u(x) gilt

J,“ (zxE,")) . (6.238)

u(x) = E c,,J,, (a?) (o g x g 1),
II = l

l

i l y xu(x) J, (a5!) dx.
0

‘" = I2 (“z”)

Aufgabe 6.18: Im Anschluß an (5.231) bestimme man zxf,” (n = 1, 2,...) im Fall‘
p = «1- und näherungsweise im Fall p = i.

Zusatz zu den Sätzen 6.8 und 6.9: Die Formulierung „in vielen Fällen“ weist
einerseits darauf hin, daß die Aussagen dieser beiden Sätze in wichtigen Fällen der
Praxis gelten. Einen Eindruck hiervon vermitteln die Beispiele 6.13 bis 6.17. Anderer-
seits wird damit gesagt, daß in diesen Sätzen für die Garantie ihrer Aussagen weitere
Voraussetzungen fehlen. Es muß in diesem Zusammenhang auf die Literatur (z. B.
[2], [3], [4], [7], [8]) verwiesen werden, wo auch teilweise diskutiert wird, in welchen
Fällen Fourierentwicklung in die Darstellung durch ein zugehöriges Fourierintegral
übergeht. Weiterhin sei auf den Band 22 hingewiesen. Zur Illustration dient

Beispiel 6.18: In (6.239) geht beim Grenzübergang l—> oo die Fourierreihc in das zugehörige
Fourierintegral (I-Iankel-Transformation) fiber:

K)

u<x>= Jc<y>x/EJ..<xy>dy mit ccy>=
0

°° __

J u(x) \/Xy J,,(xy) dx.
0

Aufgabe 6.19: Mittels Aufgabe 5.26 behandle man im Beispiel 6.18 die Fälle p = i(1/2).

6*

i



Lösungen der Aufgaben

1 1
5.1: cs = fi(Eo€4 + + c4co) = 0, cg = —7(coc5 + + c,co) = 0,

"
‘-
A

1 I
c-, = 2-.-7~(coc5 + + C3C3 + + csco) = Keg = m .

a, .

5.2:y = 2o c„x’; y(0) = 1, y’(0) = 0=-co =1, c, = 0.
v.

D 0o

(1— x2)y” — xy’ = 2=:- Z2cv+;(zI + 2)(v +1)x" — Zoc,[v(v — 1) + vlx’ = 2=>c; = 1, cw,
v-— y-

1 8 ‚ 2 ‚- %(1’— 1‚2‚---)=C3 =Cs =0‚€4= 7,65 -E„V -P=>(1-X)P -X17

=2.P(0)=0;
dPn X ' C11- 2 ’— =0 — = T d = r-

( x)!“ xph- ä Ph 1—x2 x=>ph \/|1-—x2[ x6 Umgebg. von o: p

C1 PO‘) u(x) I 2 2 _

„/1—x2 ” \/1—x2 \/l—x2 p

2arcsinx+ C1 Ä 2
= p(0) = 0 =>C‚ = 0=>y = (arcsmx) + C;.y(0)=1=>C2 =1=y(x)

—x

1 3 . 2 1 8
=1 +(arcsinx)’=1+<x+%-x3+Ex5+...) =1+x’+?x"+-‘Fx‘+...

5.3: qJ(t) = T::—sin(wt) mit w = A/é .

_”_° 1 33 L55 _1_77 _”° g”°3 1gzv°srp(t)— [w (wt- 3! wt + 5! [wt — 7! tut +... — l t- 612 t + 120 I3!
1 g3v 1 gv’—m3 I4“ 17+ ...=>d,. = ow = o,1,2,3,4),d, = l—mTf,d5=o,d,=

1 llgzvg gvä

' am 1s + 1s -

5.4: An die Stelle von (5.39) tritt c1(x — I)’ + = l + (c, —- 1) (x — 1) + Der Beginn des
Koeffizientenvergleichs führt zum Widerspruch O = -1.

5-53 (1‚yo‚y{‚)‚ (-1..Vo..V3) (.Vo.J"ob€1i6bI'8)-

‘ x 1 3 3 5
5.6: Po(x) E 1, P,(X) = X, P;(x) = —- 7 + -2-x2, P3(x) = — 7x + EX3, P.(x)

3 15 2 35 4
= ? — —4— x + T): .

. . (—1)“
5.7: Emersentszc, = l =>c2 +1 = -1-——(—[2,u —1]\,(-[2,u — 3]) - - (-1) ~ 2~4- - (2,4)

“ (2,u +1)!
1 _ l _ (Zu)!= [2y—1]{2/1-3]-...-1-2-4°...-(2,u)— ißD! l-2-3-...-(2;4)—r(2ß+1)!
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no
1 x2

= ___ zg+1= j 1;;-H. - . = ___2/‘+1 =>c,x+ El czuflx ED 2/‘+1 x ,andererse1ts. ln (1 +x) x 2

x3 x‘ x’ x3 x‘
+ T-‘T +...,ln(l—x)=—x—T— T — T —...=>1n(l+x)-—ln(1—x)

x3 x5 r°° 1 2 l 1 I+x °° 2 1

‘2"+T+T+"‘>‘2,,§° 2,1“ X“ =’7‘"1_x*,,§, 2,.+1*’”‘
. . (—1)"

5.8: Emersents: co = -1 => c‚„= — TW-(1—[2p — 2]) (l — [2‚u — 4]) - - (I -— 2) -1

1

~(1 + 1)(1 +3)-...~(1 + 1211- 11) =—(2„ — 3)(2„ — 5)-...-(2 — 1)~1-(1 +1)-
(2/0’

u+s> <2) 1 0'“)! +°z° 2/‘ °z° l z"- =——:._——=————-=>c ex: x;
" (zu)! 211-1 211-1 ° „H“ M 2/»—1

_ ‘ x 1+x w 1 1 1 w 1 2
andererse1ts.—1+ T111 lj- —l+xEO 2M+1 x’“‘ v_MH——-—l+,§l 2v_1x”

_ 0° 1 2V Do l 2}:

—v-o 21”‘1x -50 2.“‘1x .

H m2 _ _ Pea
5.9119 +/.x19=0,r= oo.c0 bel1eb1g,r1 :cz=c3=0,c4= —fi,c5 =c5 = t7=0,

lsco Zlzco€s=W, C9=C1o=€u =0, €12 = €13=€14=C1s =0-,

A1660

°“= '
5.10:2. '

1 ’ 1 1

5.l1:P„(x)E 1, 1>‚(x)= 1 +7-1-2(x— 1)=x, P,(x)= 1 + 7-2-3(x— 1)+ 7W
l 12_ 1 3 2 ‚_ 1 1 1

' -2-3-4(x— ) — - y + 7x,P3(x)-1+ -2- '3'4(x-l)+ 2:2-L-—(2!)2 2'3'4'5

-(x—1)2+-LL]-2-3~4-5-6(x—l)’=—ix+-ix’
23 (31)? 2 2 '

5.12: {coa(zx — 1) (x —— xo)"“2 + ...} + {a_1(x — xg)“ + ...} {coos(x —— x„)"‘“ + ...}

+ {b_,(x — x0)‘: + ...) {co(x — xg)“ + ...} = 0 c0[o4(oc — 1) + a_1oc + b_;._]

' :(:_xo) —

"(x — x0)" +...=0. Koefiizientenvergleich W —=> am — 1) + a_,oc + b_2 = 0 => oa’+ (a_, — 1) as

ca:f;0
+ 17-; = 0.

5.13:R‚(r) = r“ Ecvrflcxl = Lon; = —(l + 1);
11:0

7-.c,_; + 2ac,,_,7 (v — 2,3,

Setzt man so # 0 fest, z. B. co = 1, so ergibt sich ein Basiselement R,(r).

co beliebig, c1 = — #60, c,,= —
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5.14: A # 0, sonst würde die Rechnung für ‚v‚(x) bis auf einen konstanten Faktor wieder y,(x)
liefern.

1

5.15:0< Ix — 1| < 2=>Q‚(x)=%(— lnlx —1l+ln(l + x)) — 1= — —2-P,(x)ln|x— 1| -1

1

+—i—(1+(x——l))1n[2+(x—1)]mitl1:1[2+(x—1)]=1n2+1n[1+-;(x—l)]=ln2

n» 1 1 1 1 1 1

+ y_21(—1)"+' 77(x—1)v.=>Q,(x)= — 7P,(x)1n1x— 1| — 1 + 71n2+ (7+71n2)

w V l 1 1 w x 1 1 l 1

‘(X — 1) ‘i122 (‘D + 2v+l T0‘ - 1)’ + E1(‘1)" 2y+1 70¢ -1)"+ . =>A = -7,€o(°‘z)

1 1 1 1 v+1
= -1 + 7ln2, c,(zx2) = 7+ ?ln2,cv(a1) = (—-I)’-27;;--‘W-j , (v = 2, 3,...).

C - L4 1 4dx
5.16: yz(x) = P2(x) I £—(P2(x», e Ix‘-1 " dx = ? (w — 1) cf —ix‚_ I): Ix, _ 1|

2 dx 2
= i3C(3x‘ — 1) 1 = i 3 C(3x’ -1)

12 + 2 +1(1l 45H‘ s)“ ’”’
9’ 1 1 9 1 1 1 2

' ?(x—1_x+1—'8' 12+ 12 d”: ifcox ‘D{x- (x+——)
/ \/3

l

T
x-l 1 1 _+c{13‚ H x-l 3

"x+1 + +1’- 4("_)"x+1+2"}'
x — e‘ X -T

\/3 \/3
g 1 1 + x 3

Ixl < 1 2 unteres Vorzeichen ==> Q2(x) = —(3x2 -— 1) ln - —X‚
43-1 4 l — x 2

i ’ l + 1 3 ‘

Ixl > I => oberes Vorzeichen ——' —- —=> Q2(x) = — (3)52 ‘ 1) 111xj - -x.
=_1 4 X — l 2

S.17: R2(r) = AR1(r) In 1' + r"‘2 E c,.(oc2) r", wobei a; = —I — l, ro(zxz) beliebig, c,(m2)‘
v=0

a ~}. _( )+2a7v_(o¢) ‚ _

= H l com), L',.(oc;) z (v = 2, 3, ...,‘21), c2,+,(a2) beliebig.

1 Äc„‚;(zx;) + 2ac‚_1(oc2) + 2A(v — 21} tv_;,,,
A = - '2—(c2l—1(0‘2) + 2L1C21(0‘2))» G-(üz) = -

(v = 21 + 2, ...). Es kann cu“ gleich null gesetzt werden, denn c2,“ ä: O ist insgesamt nur An-
laß zu einem Zusatzsummanden der Gestalt CR1(r). Setzt man darüber hinaus noch) + 0 fest,
etwa couz) = I, so ergibt sich das Ih3.SiSCICl'T1C\Il R20’).

5.18: Unter einer (einseitigen) Umgebung von —oo versteht man die Menge aller reellen x mit

x < X„. Durch t = ; wird die Menge aller xmit x < X9 (X0 < 0) auf die linksseitige Umgebung

X; < t< 0 von I = 0 abgebildet. Hieraus folgt: Die Differentialgleichung (5.116) und deren Lösungen
O

verhalten sich in einer Umgebung von x = —oo wie die Diflerentialgleichung (5.118) und deren
Lösungen in einer linksseitigen Umgebung von t = 0.
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5-19=.P'o(f) = t“po (17).i1(t) = 213120 - t’p1 . m) = P2

3 32!
l2(l — 1’)“e

gerade a» Behauptung.

5.2 ist ungerade =>f — dr ist geradeze-Iß") d‘ ist gerade. u‚(r) ist

°° b b b b
—„‚ zb„r'=—f-+—;+—‚’—+—3+b4+b‚r+„.
I ‚=g I I I I

s.22:a„ =2ß+a„. ä„=0<=-ß= — aT° . (5.153): ß= — 32"- : —b„.

5.23: :21?“ + 3:1?’ + (81212 — 4l(l + 1))R = 0, R = e"'12,fl2 + sa = 0, 1212" + (25% + 3‘r)12’

+ (3)91 — 4l(1+ 1.)) ü = 0, 12 = I“$, 1:29” + ((204 + 3): + 251:’) Ü’ + [042 + 2o: — 4I(l + 1) + (Zacfi

+ 33):]; = 0, Zrxß + aß = o, xx = —%, #13" + 2/M5’ + (— %— 4l(I + 1)) 2- = o,

A v» 1 . . I 3
v =vgD(',.‘K'V, co belleblg, cw, = W; (1:01 + 1) ——4-I(l + 1)) 0„ (v = 0,1, 2, 111),

1ery)=XEJz,(r)+ E27220-), 6k1€,,(r) = e"W7r—% v§0cv(\/?)~v mit /11 = 2‘/Ex/Z i, ß, = —fi1,

3 „

c„„ = (m; + 1) — 74-1(1+1))cvund co = ck (k = 1,2).
1

2fl;,(v + 1)

5.24: Hu(x) = 1, H1(x) = 2x, H2(x) = 4x2 -— 2, H3(x) = 8x3 — 12x, H4(x) = 16x‘ — 48x2 + l2.

5.2s:(%)! = (—%+ 1):: (— %)!(—%+ 1) = -12-‘/;,(%+ 1)! = (%+ 1) =

%~%¢?»(% +2)! ää-äfi»
1 1 3 5 2n+l —+n)!= ———— 2 ),/1~.=W1-3-5-...-(2n+1)

' 2M 2-4-6-...-(2n) 21m n!

_ _ /x °° (—-1)!‘ z” 1 ‚ 1 I 1 1 1

5.25../§(X)— 7”=D X ,7+IJ .= -7 ."2‘ -2‘-Fl -2-+2

1 \/7: ‘/7? (2,1+1)! \/F(2,4+1)1.(7+,u)§FrT.1-3-,.~-(2,u+1)=F r -—TM—-=J§(x)
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_A/2.x °° 1 2 T °° (—1)# A/T. 1

‘ '?,,§,,('”"(2,4+1)!""“ 7:_x;.§.,(2,1+1)!"2"+l= §5‘“"‘<‘?+")!
_(§+;»)!_ 2 1 _\/1': (2,1): 2 w 1-fir-2,T(7+”)’-"2? 2m! °’—%<*>=J71§0“‘>”w7F1Tw*’”

T w (—1)u 2 A/T 1 7|:
._ E I‘ o am‘ x I‘ = E cos x. N1(x) = n. cos 3 J1(x) — J_1,(x)] = —J_1(x).

= ' sin-—
2

H(‘)(x) = (sinx — icos x) = —i (cosx + isin x) = —i e" H‘2)(x)i nx rrx m: ’ i

T T
= „/——(siux+ icosx)= i1/:e"“.

TCX ‘EX

1

5.27: J; = -21; {”fi0(—1)” x2”*""
w 1 2 +n—Il

+”,.§.,""”'2w?nW"" r “>

_. 1 w +1 1 2 +n+l
— ..+1(X) — ygio (’1)" X"

1 w 1 _

= ä <2)

fax) = fig) (—1)"xWW. <3)

Aus (1), (2), (3) folgt die Behauptung.

m 1 1 m 1 1 m+1v 1 m+v+1] 2 m 1

5'28.a)k§l(7’+k —?)+kz=1(7’+k+1 —?)—k:zv:+l-l:+k:2v+2?— k§1?
m+u1 u 1 m+v+1 1 v+11 m 1

= ——— —+ —— ——2 —=C+l( + '

k=l k kgx k kg: k kgxk k=z1k n m v)

v 1 v 1 1——k;l-E+C+ln(m+v+1)—(k;l7+v+l)»2(C+1nm)+r„

v 1 1 (m+v)(m+v+1)‘ A _

=— _-—— 1——:——— 1 „=o.221k 1141+ n m, +r„‚ MICMLIILI‘

m 1 1 m 1 1

b)‘I’(v) + 'I’(1I + 1) = —2C — lim (kgl — +k=l —

m—»+w

1v 1

=—2C+2 —+
kz=:1k V"+7-

, 2 ‚ 2 2 w (_1)v ‚ zv-I v 1

C) N0(X) = :JD(x) (C + In + ;;‘Jo(X) — 'T— ‘El fig‘ IT}, (I)

2 2 1w <—1)" M1 v1 1

W =:’1<*>‘“§.‘7=:‘:1§olm7T1_>:(§) ['”+ 2,.>;7+ u +1” <2’

J3(x) = —J1(x) (siehe Aufgabe 5.27), (3)
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0., (_l)v x 2v+1 1 w (_1)v x Zv+l .. I

’1‘*’-Z0720-—+fi(z) m’ ’?.2{v!<v+1)!(7) 2.5.71
i w j (_nv (3-)2v—1y_1i1_£ w! (_])v (i)2v—1 „

‚—. Z w- 1)!v! 2 ‚E1141‘ 7: z, (v—1)lv! 2 ,,§1,u
‚aß w (£)21:—l_ E‘ m { <;X—)2\'—l j!

z E, (v1)2 2 7 .1 ‚=, (v—-1)!v! 2 #2 ‚u
2 .

(J0(x) — 1) (5). Aus (1) bis (S) folgt Ng'(x) = — N1(x).

M

1

„x

2d
5.29: a) y’(x) = w’(u) d—:: = —w'(u), y”(x) = w”(u), uw” + w’ + i; W = 0. b) w’(u)

_Z, da, a z, - „ ‚ß ‚a _g Z,,a2 ‚aa
- "m.- N;- 22-"W" T‘ T” ' T" 42 4

all a2 w’ 4a)’
+ -——+—— Z’+~—Z=0.z2Z”+zZ’+ Z z2Z=0.

4 z 2: g ag
2w 2w /———— 2w

c)a= i»; d)y=C,./0<——_-\Lvx) +C2N,,(~—=\/L~x).
V3 ‘ x/B x/E

37: 1: 9 1

5.30: x, = 4 + k: (k: 0‚1‚...). b)f(x)=cos (x—— -4-){1— H};-}
_ z f1 75 1 1 75 1

“m ‘"4" n§"'m7’f‘*1’=§~‘1‘m‘:;"
f(x,) 1 1 225 i

*2 = *1’ f'(x1)’f,(/V1): ‘ ‘ + ET; +
c) 2,4041; 5,5201; 8,6537; 14,9309.

6.1: I < „h1 + (h; — hm.

6.2:y = e”‘=r’ + ar+}. = O, Lösungen r„r2=-r’ + ar+ i. = (r- r,)(r— rz) = r’ —— (r, + r;)r
+ r,r;=> r, + r; = —a(1),r,r‚ = 1(2). 1.Fal1:r, = r, =>y = e'I"(C, + C;x)=> (1 — e"') C, — le'“C2

= 0, r,(l — e'l’) C, +(1 —- [r,l + 1] e’1’) C2 = 0 => Koefi".-Det. = (1 — e"’)2 + 0, denn r, = r,

= — % * 0 => C, = C2 = 0=y ;-— 0 =:- 1. Fall liefert keine Eigenwerte. 2. Fall: r, * r, =y

= C, em‘ + C2 e"1*=> (1 —- e”‘) C, + (1 — e'1')C2 = 0, r,(1 — en’) C, + r2(1 — e'1’)C‚ = 0

= Koeff.-Det. = D = (1 — e”) (1 — ev2I)(r, — r,).FallsD + o=> C, = C2 = 0=>yE 0=>D*0
liefert keinen Eigenwert. D = 0 = (1 — en’) = 0 oder (l — an‘) = 0.

1:31] 2a: 1 _ en! = 0 => eRe(r1l)+Hrn(:-1!) = 1 => exemi) elJm(rxI) = 1=,eR=(nI)(C0s(_]m(rl[))

+ isin(Jm(r,I))) = 1 => Re(r,I) = 0 und Jm(r,I) = 2km: (k = 0,:l, :2, ...)=:»r, = -11- 2k1ri

1 _ _ 41:2 a _

=> r; = —a — — 2km => Eigenwerte l,‘ = r,r, = I2 k’ — 72km (k = 0, i1, :2, ...).Fal12b:
(1) I (2)
1 — e’1’ = 0. Im Fall 2a r; mit r, vertauschen => Fall 2b liefert nichts Neues. Zu 1,, gehörige

Eigenfunktionen: 0 - C, + (1 — e'1') C2 = O, r, - 0- C, + r2(1 —— e’2’) C; = 0 => C, = beliebig
l

. —2k7:|xCz=0=y=C,e'v==~Bas|s:e' .
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_ _ 1 2

5.3: a) 14(1) = \/41, f(u) = u. b) tan u = u==- um... z 4,493 => 1m... z (T 4,493) = r.....,

EJ 2 EJTEZ

'zT"m z

6.4: Eigenwertgleichung: cosh I) cos (WI) = -1. (Ü: I z 1,875, 1/A-2 I z 4,694. Basis der

zugehörigen eindimensionalen Eigenräume: y,(x) = a, (cos (:/ x) — cosh x)) + u;

» (sin (Q/T, x) — sinh(1//1_.x)) mit a. = sinh (1/if 1) — sin({//1-. 1) z 4,143, a2 _= cos ({/Z1)

— cosh (2//1-. 1).: —3,o37;

y,(x) = a; (cosC/fi: x) — cosh x)) + a4, (sin x) - sinh mit a3 = sinh (2/ I)

— siu (1/Z1) z 53,640, a. = cosG/Z 1) — cosh (1/7: I) z —54‚631.

6.5" a)1—;u+:]—u2—j-j—u3
I 3-4 3'4'7'8 3'4”/'8-11-12

1

+je—:—u‘— + =0. b) u2 — 56u+ 672 =0,u. =17,417(dieweitere3‘4'7-8-1l~l2-15-16
Lösung der quadratischen Gleichung ist unbrauchbar, da die kleinste positive Lösung gesucht ist).

(2)112 = 16,75, 143 = 16,42, 144 = 16,25, 115 = 16,17, 145 = 16,14.

4,017 A/ GJ‚EJ

12 1 — pl '

d) Fkrlt =

1
x’, w2(x) = : x3, w, = w,,, + Wu", E./w;,'{’ = q, EJw;,’;; = F6 (x — 75 .M‘ W10‘) = 251 6E]

= u; + xu; + x2u3 + X3114, u; + xu,’w„‚ = Box‘ => EJ- 24B.) = q =- wp, = Egg-j— x‘. w,"

F I
+ xi:/3 + x314; = 0, u’, + Zxu; + 3x214; = 0, Zu; + 6xu1= 0, 614L = —E-1- Ö (x — ?) .

x

I l F _ I .=:-F1'.ir0§x<7istu1=uz=u3=u4=O.Ffir?<x§lgi1tu4=?§if¢5<x—?§dx
0

x I x 1 12F F _ _ I _ F F _ _ _ F=-6:,u3=-TE? x6(x—-i—)dx=---iE,u2=T-J‘x2t5(x—-5-)dx=E,
0 O

F ‘ü _ I „ PF „ 1_ __1u,=—fi x6 x—? dx=—fi7.=>Fur0§x<?1stw,,“=0.Fur7<x
I)

F .

$115! wpll= (—l3+6l2x*12Ix2+8x:).W=C1W1+C2W1+Wp[+Wp[]
1 q l

_—_: C; + ql+ F— C1 Z§fi(24l2C1 + 813C; + 2qI‘+ F13) = 0, C1 +1C; + 712 + i F1
x=l
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1 1 22 265
+c2 HE (24lC, + 12I2C2 + 41113 + 31-72) = 0 = —-5 F C1 —- T C2 = Y MN,21C,

800 97075 26435
+ 55IhIC2 = — T MNm. => C1 = 8712 MNm z 11‚0l4MNm, C2 = — W MN

MN 5
z —9lO3 MN,=> M(x) = 11,014MNm —9‚103MNx + T x2 für 0 g x < 7 m, M(x)

MN ’ 5
= —o‚4s5 MNm —4‚103 MNx + 7x2 füräm < x g 5m.

MN _ 5 2MN __ 5
Q(x) F —9,103MN+ 2 T xfur0 g x < 7 m, Q(x) = —4‚103 MN+ m xfur 7.m

<x§5m.

5-71 a) C1‚V(X„ - h) + Cu/(xv + h) = )’(X„) (C1 + C2) + /IJ"(X„) (-C1 + C2)

1 1

+'iTh2J’”(Xv)(C1 + C2)+3Th3y’”(X.) (-C1 + C2) + => C: + C2 = 0‚ -C: + C2

1 1 1i, C2 = 7 . => y'(xv) = 2—h (—y(xv —— h) +y(xv + h)) + R mit R

l 2 H!
= -'6“hy (IV) +

=1=.c,=_

b) C1y(xv — 2h) + C2y(x‚. —- h) + C3y(x, + h) + C4y(x,, + 2h) = y(x„)(C‚ + C2 + C3 + C4) + hy'(x„)

1 1

'("‘2C1 - C2 + C3 + 2C4) + F‘ h2}"'(Xv) (4C1 + C2 + C3 + 4C4) + -3-" hay’/,(xv)

1 1

> (—8C1 — C2 + C2 + 8C4) + F h‘y””(xv) (16C2 + C2 + C3 + 16C.) + F h5y")(x„)

~(—32C, — C2+ C3 + 32C4)+ ...=C, + C2 + C3 + C4=0, ——2Cx—C; + C3+2C4=1,
1 24C1-+<Cz+C3+4C4‘=0,—8C,—C2+C3+8C4=0=>C,=f,C;=-3-,

2 1 1

C3 = 3, C. = — E:->y'(xv) = WW, — 2h) — sy(x„ — h) + sy(x„ + h) —y(x„ + 2h))

1

+ R mit R = -36-h‘y‘5*(xv) +

5

C) Ck,v(xv + (k - 3) h) = y(x„) Z Ca + /Iy'(x„) Z CkUc - 3) + %hzy”(xv) Z C:(k - 3):
l k: l k= l - k = lx

.-
lI
[x

/1
“

s 1 s 1 5_ ‘

+ —‚ h3y'"(x„) Z Cx(/< '- 3)3 + ‘T h‘,V'"'(Xy) Z CM‘ - 3)‘ + —, h’y‘5’(x„) Z C204 — 3)’
3A k-l 4- k=1 5- k=1

1 s 5 s

+ -—‚h‘y‘°’(x„) Z CkUf — 3)‘; + =' Z Ck = 0» Z CW‘ - 3) = 0, Z C206 — 3)2 = Ü.
5« k=1 k=1 k=1 x=l

5 5

k§1Ck(k "‘ 3)3 = Ü, kZlCpÄk " 3)‘ = 4! => C1 =1, C2 = -4‚ C: = 5‚ C4 = -4‚ C: = 1

1 .:y’"’(Xv) = FQ/(Xv - 2h) - 4y(x„ — /I) + 6y(x,) - 4y(xv + h) + y(xv + 2h))„+ Rmit R

1

= ._ —6—},2y(6)(xv) + _
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6.8: Die Randwertaufgabe ist nieht linear.

6.9: Es handelt sich um eine lineare Eigenwertaufgabe.

1 + v Q 2G
6.10: (6.l08),(6.105)=r’f”(r) + 4rf’(r) = — 1 _ v 'yw3—;r2; (6.l09),(6.105),(6.110) » RB: l _ 2V

< [<1 + v)/<R)+<1— v)R<f'(r)),=R — <1 + m%] = —P-/<r>= 61+ % — 3% 1-}:
p(1—2v) 1 3-1: Q 2 QR

'2G(1—v)+3o 1—vyocR+/ aß
-y ~Q— r’, Iim f(r) existiert:- C; = 0. => C1 =

0‘ ‚an xua

(1-2) QR 1 Q
=>f(r) = — + 7-2; 5217:7) [(3—v)R‘—(1+v)r‘].=>a,(r)

2G l
=_”"15yaQ1-—F:(R2_'2"

I I / w l 20) /j
6.11:a)Jg=—J1,N0=—N1,y =T?—{C1J1( \/L—x)

g V/L ‘ X x/E

+ CzNl i \/L — x I Eigenwertgleichung: N1 L). \’/LT!/\/E \/L ‘l V E

_ 2 ä _ _ g Z

J0 (%\/L) _ w2,\/0 (TCEJL —1)J„(—:%„/L) — wx/g —\—/,;:_[J1 (:;)—E\/L — I) M,

2a) — 2w — 2w j
. —_\/L +w2N0 (-:\/1.) Jo (T „/L — z) = o.

x/E \/E \/ S

‘ 2w ———— 2o) T _ _ i 3 _

b) (s.22s)=LE;.:0 V/L —lN1(E\/L — 1)) _ n .(5.226) L330

2 — 2 — 4 2 —— 2 .—.(\/LEV/L— IN.) (7;7—\/L— 1)) = 0.(5.211)=>L_i'1r1l0(T2\/L—IJ„ (TEVL- 1))

2 -

= 0 (v = 0,1). Eigenwertgleichung nach dem Grenzübergang: J0 N/I) = 0.
V

— I 2w Z 37: 2a) — z 2w ——— n:c)w\/g—isin <T_\/L — l — —) cos <—..\/L — —) — w’ sin (fix/L - /— —)\/L _ 1 Jg 4 V/g 4 Jg 4

.cGS<%\/Z—%)—w\/E#cos<%\/lj—%)sin(%\/Z—%)

+sin cos <%\/Z——:~>=0.w= cot{-%[\/Z—\/IT--1])
\/L — 1

d)f(w)=A/Ecoti e)—1—=iw+
L „Ei m» g z

7
Mathematisches Pendel im Fall kleiner Ausschiäge: T = Zn A/E (T: Schwingungsdauer), Frequenz:

1

T.
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I I I

6.12:L[u] = j L[u] vdx = f u””vdx = [u'”v](, — f u”’v'dx = —1u"u'1{‚ +
D O -D D -0

__ — I I ‘I I

Ja” v” dx = [u’v”]{‚ — ‘[1?’ v”’ dx = — [ü v"’]{, + {ü 12"” dx = J.12L[v] dm] im u dx = f ’ u” dx
o ‘m’ o :9‘ o o o ö

II

= f |u”|’ dx g o.1=a11sj|u"11dx = o=> u”: o=> u = C, + c2»: —=- C, = o
o 0 u(0)==O IHKO)-D

=C;

II o $1450.

6.13: In (6.158) ist jetzt der Nenner größer als null; der Zähler ist größer (bzw. größer oder gleich)
null.

6.14: Man benutzt die Lösung von Aufgabe 5.6.

1: z]: n i __ d,‘

6.15: <Y,,|Y,,,) = I { J {Amolflxcos i?) + Z (AM e'"‘°’ + B,,_,‘ am’) (sin 19)“ (Ü P„(x)> 1

‚H, „-0 k-l dx x-cos19

. "' d’ i

- {A,,,_oP,,,(cos 19) + Z (A„‚_‚e”‘7’ + B„‚_‚e“’°’) (sin 19)’( d ‚ P„‚(x)) isin 19 mp] d0 = 21:A„_„ A„‚_„
1-1 X e050x-

17l 27'! l
. „‚ T . d,

Pn(X)Pm(X)dX+ Z Arm! f 9"‘7d‘P+Bm.1 JVHWÜW Am!) J Pn(X)(\/1" X2)lTc,P,,,(x) dx
I-1 w-0 qz-O x--1

\—\,.__/ \_,_, e
-O -0 ‘O

21'! ZTI 1

n _ i _ j k die ‚. m _

+ Z 14...); J €‘""’d<P + Hm 6""”d97 Anm) Pm(X) (x/1 — J62) §Pu(X)dX+ Z 2 An.kAm,1
k-1 k=1 I-=1

\ qz-o tp-D x--1

-o so

2,. 21: 21: 21:

el(l—k)np dq, + 373m‘, J. ei(k—I)qz d‘? + REM’! J‘ e—l(k+l)o: da, + E;/4"“, J eiuc-(-I) d‘?

w-o w-o 4;:-o ‘ q;-o
I

-o.raus 1*): -0.t'alls 1:1: -o -o

l i d’ r ___ __

' f (1 - X2) 2 Ü P„(X) Ü 1’m(x) dX = ‚(Z (A„.uAm.k' 27v + 5MB“ ' 27?)

5"‘ I-mhI(II.m)

l dk dk
- f (1 — x2)" dx,‘ P,,(x)—d-x—,; P,,,(x)dx = o.

x-_1
„ex
-0



86 Lösungen der Aufgaben

_ 2T! TI

- - d"
6.16: (6.224) multiplizieren mit e‘”"1’ (sin 19)“ P,;(x)] sin a9, danach f [ f (...)d19J dcp.

x
"w"; ¢=o o=o

27‘ 1E - 27!
- _ dt eo -

=> j f e‘""7(sin 19)‘ P,;(x)] sin 19 u(19, (p) d1? dqa = 2 f e‘"‘°’dq2
qua 0:0 d x=cos0 n=O Wso

1 E d- k n 21:. - -

(1 — X523; P.7(X) ' An.o1’..(x) dx + Z f [/1.,u€“"""“’ + 31,: I‘-""”""’] d?’
k: l

x: - 1 o: o

l

l1 2"’§£dEp()dip dx—w2A-fl 2Ei'z—P()d—k-P()d(-x) -.xdx;..(x) —n§°1=,.,k (—x)dxk—,.xdx...x x
dx“

X=—l x=—l

1 - 2 ’ - -

2 A J (1 x2)‘ (dk I’ (3)) dx =>27rA 2 ("+k)!=A 2"+1= 7, -- - —_ ‚T = F? _ _ y =

""‘ dx" «am "‘ 2n+1 (n—k)! "" 4"
x=—l

27l T!

— k ! d"
. f0 LID 6-11:» (sin ,9)»: [HF ,,(x)] “mo u(19,q:)d19J dzp analog:

¢= =

n 1!

2 — k ! d"
B...» = n4: l + k; f [ I e‘""" (sin z‘})""1 [a1 ..(x)] x_ 01409, I?) <19] d97-

o h0 _eo|

6.17: U.,(x, y, z) = Yo(19, (p) = AM), U1(x, y, z) = rY1(19, w) = A,_or cos 1.9 + (AL; + BL.)
- r cos (p sin 29 + KAM - BM) r sin q: sin n? = A,_.,z + (AL, + BM) x + KAM — B‚_‚)y‚

U2(x, y, z) = r’Y2(19‚ qz) = A‚_„(% r’ cos: 19 — —;—r2) + (Au + Bu) 3r’ cos (‚v cos 19 sin ß

+i(A¢_1 — B2_,) 3r’ sin q: eos 19 sin 19 + (Am + B23) 3r‘ cos (242) 5in2 19 + i(A‚_‚.— Bu)

‘3r2sin(fi¢)sin20=A%_o (äz: — %(x’ + yz + 22)) + (AL, + B;_,)3xz + i(A2_, —— BL1) 3yz

+ (142.2 + 32.2) 3052 ‘ Y2) + i(/422 - 32,2) 3X)’-

618.! J7 fl-JT‘ ä 12 J —./7. . 2;_(x)— fixcos x-3 — nxs1nx=>1x,,—n-n: (n-— , ,...), %(x)— 7-‘;

_ 2! 7 sinx a
'{COS(X—7E)-ISII1(X—T‘Ü]Z}= F X —cosx =>oc}(n=1,2,...)geniigtder

Gleichung tan x = x(x > 0) Ivgl. Lösung zur Aufgabe 6.3].
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