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Vorwort zur 3. Auflage

Bei der Konstruktion mathematischer Modelle für Prozeßabläufe wird man zu-

nächst eine Idealisierung derart vornehmen, daß man in der Lage ist, das vorliegende
System für jeden Zeitpunkt t durch endlich viele Funktionen x,(t), ..., x„(t) (Ge-
schwindigkeit, Temperatur, Dichte, Spannung, Warenmenge usw.)‚ im einfachsten
Fall durch eine einzige Funktion x(t) zu beschreiben. Eine grundlegende Frage ist
die nach der Voraussage des Systemverhaltens, wenn man gewisse gesetzmäßige
Zusammenhänge zwischen dem Systemzustand und der Systemänderung kennt.
Nehmen wir an, daß im idealisierten Fall die Zeit nicht diskontinuierlich, sondern
kontinuierlich gemessen wird, so kommt als Maß der Systemveränderung die Ab-
leitung der den Zustand beschreibenden Funktionen nach der Zeit in Frage, beim

dx
dt

sierende Annahme, X(t) hänge einzig und allein vom augenblicklichen Zustand x(t)
des Systems und auf keinen Fall von dessen Vorgeschichte ab, so wird man auf die
gewöhnliche Differentialgleichung = f(x‚ t) geführt (vgl. dagegen die Beispiele
1.3 und 1.4).

In der allgemeinen Theorie werden die gesuchten Funktionen durch y(x) oder
y,(x), y2(x), bezeichnet. In den Beispielen und Aufgaben werden jedoch häufig
andere Bezeichnungen gewählt — z. B. x = x(t), (p = <p(t)‚ w = w(x) - um für die
Anwendungen auch in dieser Hinsicht genügend Flexibilität zu erreichen.

Der vorliegende Teil l der Gewöhnlichen Differentialgleichungen ist insbesondere
für Studierende im Direkt- und Fernstudium bestimmt, die in ihrer Fachwissenschaft
mathematische Hilfsmittel benötigen. Der Fernstudent wird den Lehrstofi" syste-
matisch studieren, wobei die Stoffauswahl von der jeweiligen Einrichtung vorge-
schrieben wird. Der Direktstudent wird die in der Vorlesung erworbenen Kenntnisse
mit Hilfe des vorliegenden Textes an gewissen Stellen wiederholen, ergänzen oder
auch dadurch erweitern, daß er Unterschiede in der Darstellung, die zwischen der
Vorlesung und dem vorliegenden Text auftreten, aufsucht und sich mit ihnen aus-
einandersetzt. Vielleicht nutzt der jeweilige Dozent auch die Möglichkeit, gewisse
Teile im Selbststudium erarbeiten zu lassen.

Der Band ist in einen Grundteil und einen Zusatzteil gegliedert. Der zum Zusatz-
teil gehörige Text ist durch Kleindruck gekennzeichnet. Es ist dabei berücksichtigt,
daß sich der Grundteil niemals prinzipiell auf den Zusatzteil stützt; gelegent-
liche Bezugnahmen auf einzelne Formeln können ohne Verständnisschwierig-
keiten überlesen werden. Die für die Durcharbeitung des Grundteils benötigte Zeit
liegt unter der geplanten Selbststudienzeit. Die einzelnen Grundstudienrichtungen
haben die Möglichkeit, aus dem Zusatzteil gewisse Auswahlvarianten zusammen-
zustellen.

Durch die Darstellungsweise soll das folgerichtige mathematische Denken ge-
schult werden. Auf Beweise und Beweisskizzen wird nur dann eingegangen, wenn es

für das Verständnis erforderlich ist. Besonderer Wert wird auf die Anwendung ge-
legt. Das Inhaltsverzeichnis zeigt, daß Vollständigkeit nicht angestrebt wurde. Dem
Bausteincharakter entsprechend werden die Anschlußstellen zu den anderen Bänden
des Lehrwerkes aufgezeigt.

Vorliegen nur einer Funktion x(t) also m). Macht man weiterhin die ideali-

Dresden, September 1979 Der Autor
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1. Einleitung

1.1. Grundbegrilfe und erste Einteilung

1.1.1. Implizite und explizite Diflerentialgleichungen n-ter Ordnung

Eine gewöhnliche Differentialgleichung dient —— ähnlich wie algebraische Glei-
chungen — der Bestimmung mathematischer Objekte. Die gesuchten Größen sind
jedoch nicht spezielle Zahlenwerte, sondern Funktionen von einer unabhängigen
Veränderlichen. Diese Funktionen treten einschließlich gewisser Ableitungen in der
Gleichung auf. Darin liegt die Spezifik der Difierentialgleichung, die ihr auch den
Namen gab. Derartige Gleichungen ergeben sich bei der Modellierung zahlreicher
physikalischer und technischer Prozesse; aber auch in der Ökonomie und anderen
Wissenschaftsdisziplinen treten sie mit zunehmender Anwendung der Mathematik
immer häufiger auf.

.7/ m X

ä l‘ Bild 1.10

Beispiel 1.1: An einem Teilchen mit der Masse m, das längs einer waagerechten x-

Achse reibungsfrei beweglich ist (Bild l.1)‚ greife eine Feder an. Sie sei im entspannten
Zustand, wenn sich das Teilchen am Ort x = 0 befindet. Die Lage x des Teilchens ist

eine Funktion der Zeit t. Seine Geschwindigkeit ist%€- = 2': und seine Beschleuni-
2

gung ä; = Ist F = —kx (k > 0, Federkonstante) die zum Punkt x = 0 ge-

richtete rücktreibende Federkraft, so kann die Newtonsche Grundgleichung Kraft
gleich Masse mal Beschleunigung hier durch die gewöhnliche Differentialgleichung

—kx = m56, d. h.‚ mic’ + kx = 0

für die gesuchte Funktion x = x(t) angegeben werden. i

Allgemein formulieren wir die folgende

Definition 1.1.: Unter einer gewöhnlichen Differentialgleichung n-ter Ordnung für eine
Funktion y = y(x) versteht man eine Gleichung zwischen der unabhängigen Veränder-
lichen x, der abhängigen Veränderlichen y und den Ableitungen y’, y”, ...‚ y"" für jeden
Wert x des Definitionsbereiches von y = y(x), wobei y"" in der Gleichung tatsächlich
vorkommt, die Ableitungen niederer Ordnung jedoch nicht unbedingt auftreten müssen.
Also kann mittels einer Funktion F, die von n + 2 unabhängigen Veränderlichen ab-
hängt, eine gewöhnliche Difierentialgleichung n-ter Ordnung in der Gestalt

F(x‚y‚y’‚ ....y‘"’) = 0 (1-1)

angegeben werden.

D.1.1
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Definition 1.2: Man sagt, in (1.1) liege die Differentialgleichung in impliziter Gestalt
vor. Ist eine Auflösung von (1.1) nach y"” möglich, d. h.‚ kann man

y"" = f(x,y.y’. -...y"“”) (1-2)

schreiben, wobei f eine Funktion von n + l unabhängigen Veränderlichen ist, so sagt
man, die Diflerentialgleichung liege in expliziter Gestalt (nach y“) aufgelöster Gestalt)
vor.

>1

5\n Bild 1.2

Aufgabe 1.1: Für ein im Schwerefeld (Erdbeschleunigung g) befindliches mathemati-
sches Pendel (Bild 1.2), bestehend aus einer Punktmasse m und einer masselosen
Stange (Länge I), das an einem festen Punkt drehbar aufgehängt ist und sich in einer
Ebene bewegt (Ausschlagwinkel (p), gilt bei Vernachlässigung der Reibung der Ener-
giesatz (der Mechanik): kinetische Energie plus potentielle Energie ist gleich der
(konstanten) Gesamtenergie E, d. h.‚ für die Funktion zp = ¢(t) (t: Zeit) besteht die
gewöhnliche Differentialgleichung

(1.3)%l’rp2 — mgl costp = E (E = const).

a) Welche Bezeichnung für y aus Definition 1.1 wird in (1.3) benutzt?
b) Welche Ordnung hat die Differentialgleichung (1.3)?
c) Wie sieht die linke Seite von (1.1) im vorliegenden Fall (1.3) aus?
d) Man löse (1.3) nach 9b auf. Welche Differentialgleichungen der Gestalt (1.2)
ergeben sich?

Es folgen Beispiele, die auf gewisse Probleme und Abgrenzungen zum Begriff der gewöhnlichen
Dilferentialgleichungen hinweisen sollen.

Beispiel 1.2: Die gewöhnliche Differentialgleichung

l8-2111». _ W + (3 _ x2) y» = 63x (L4)

hat nicht die Ordnung 2, weil wegen

' l
¢-Zlny" = In(y”") _—_ "-2 = ——e y _ ‘w;

die Größe y" sich auf der linken Seite von (1.4) heraushebt und damit in (1.4) tatsächlich nicht vor-

kommt, Es liegt eine gewöhnliche Differentialgleichung erster Ordnung vor.

Beispiel 1.3: Durch

i0) .= x(r) mit 1' = t — 1

wird keine gewöhnliche Differentialgleichung für x = x(l) gegeben, weil die Gleichung nicht x und x

an der gleichen Stelle t, sondern an den voneinander verschiedenen Stellen rund t — 1 des Definitions-
bereiches von x = x(t) in Beziehung setzt. Man spricht in diesem Zusammenhang von einer Diffe-
rentialgleichung mit naeheilendem Argument. Sie gehört zu den Differenzen-Differentialgleichungen‚
die Verzögerungserscheinungen beschreiben (Totzeitgleichungen).



1.1. Grundbegrifle und erste Einteilung 9

Beispiel 1.4: Durch

'f
.'r‘(t) + _| f(r, z) x(z) d1: = o

a

wird keine gewöhnliche Diflerentialgleichung für x = x(t) gegeben, obwohl die zweite Ableitung von

x = x(t) in (1.5) vorkommt, weil die Gleichung nicht ‚i? und x an der Stelle t in Beziehung setzt,
sondern 5€ an der Stelle t mit x an allen Stellen r des Intervalles a g z g b koppelt. Hier liegt eine
Sogenannte Integrodifl"eremiaIgIeichung vor. Sie wird z. B. benötigt, wenn die Vorgeschichte des
Systems zu berücksichtigen ist.

(1.5)

Beispiel 1.5: Es werde eine Funktion u = u(x‚ y) gesucht, für die

Özu + 6211

bx‘ öy’

gilt. (L6) ist keine gew Difierent" ‘ ‘ ' ‘ weil die Funktiorru von mehr als
einer unabhängigen Variablen — im Beispiel sind es zwei — abhängt. Gleichung (1.6) ist ein Beispiel
für eine partielle Differentialgleichung.

= 0 (1.6)

«y n: .

1.1.2. Lösungen von Differentialgleichungen

Definition 1.3: Lösung (auch Integral, Lösungskurve oder Integralkurve genannt)
einer gewöhnlichen Dzflerentialgleichung n-ter Ordnung '

F(x‚y‚y’‚ .-..y"") = 0 (1-1)

ist jede Funktion y = ‚y(x), x e J, mit folgenden Eigenschaften:
a) Die Funktion y = y(x) ist in ihrem Definitionsbereich J n-inal diflerenzierbar, d. h.,

die Funktionen y(x)‚ y’(x)‚ ..., y""(x) (x e J) existieren.
b) Die beim Einsetzen von y(x)‚ y’(x)‚ ..., y""(x) in die linke Seite von (1.1) entstehende

mittelbare Funktion von x

F(x‚ y(x)‚ y’(x). m. y‘"’(x))
ist für alle x e J stets gleich 0.

Beispiel 1.6: Gegeben sei die gewöhnliche Differentialgleichung erster Ordnung

y’—x=0, d.h. y'=x. (1.73

Das Lösen der Differentialgleichung (1.7) ist gleichbedeutend mit der Aufgabe, von
g(x) = x (-00 < x < +00) alle Stammfunktionen zu ermitteln. Infolgedessen hat
(1.7) die unendlich vielen Lösungen

2

y(x)=x—2—+ C (—oo <x< +00),

wobei C eine beliebige Konstante ist.

Beispiel 1.7: Gegeben sei die gewöhnliche Differentialgleichung erster Ordnung

X = 3(1) (1.3)

mit -

1für—oo<t<O
3(1) = (1-9)

t für0 g t < +00

(Bild 1.3).
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M)

Bild 1.3

Im Intervall —oo < t < 0 hat (1.8) die unendlich vielen Lösungen

x(t)=t+ C1 (—oo <t<0) (1.10)

und im Intervall 0 g r < + 0c die unendlich vielen Lösungen

‘Z
x(t):—„-+C2 (0§t< +00). (1.11)

Wir prüfen, ob die Funktionen (1.10) und (1.11) durch Zusammensetzung Lösungen von (1.8) im
Intervall — 0o < t < + so liefern (vgl. Bd. 1, Kap. 9.1.).

Wenn

2

:l—+C; f‘L'1r0§t< +00 0'12)

r+C1 fI'jr—oc<t<0
x(r) = [

(Bild 1.4) eine Lösung von (1.8) im Intervall — oo < t < + so sein soll, so muß wegen Definition 1.3
die durch (1.12) gegebene Funktion an der Stelle t = 0 diflerenzierbar und damit dort stetig sein. Die
Forderung der Stetigkeit von (1.12) an der Stelle t = O führt zu

C, = Cg.

Es ergibt sich somit

t+C, f1'.1r—oo<t<0
x(t)= [ t’ (1.13)—„-+Cl fI‘.'u‘0§t<+co.

Jedoch ist die durch (1.13) gegebene Funktion immer noch keine Lösung von (1.8) im Intervall
— x < t < + o0, da (1.13) an der Stelle t = 0 zwar stetig, aber nicht differenzierbar ist, denn dort
ist die linksseitige Ableitung gleich 1 und die rechtsseitige Ableitung gleich 0 (Bild 1.5). Als Ergebnis
‘ oen uir: Die Differentialgleichung (1.8) hat wegen Definition 1.3 im Intervall —oo < t < +00
L ne Lösung, obwohl sie in den Teilintervallen —oo < t < O und 0 g t < ‘+60 jeweils unendlich
viele Lösungen besitzt,

1(1)

M!)

an: 1.4 ' g Bild 1.5
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Um in diesem Beispiel und in anderen Fällen nicht auf eine Lösung der Differentialgleichung Ver-

zichten zu müssen, forrnulieren wir

Definition 1.4: Bei einer Lösung im weiteren Sinn wird in Definition 1.3 zugelassen, daß die Funktion
v‘"‘”(x) an gewissen Stellen von J nicht dtflerenzierbar ist; es wird jedoch gefordert, daß dort die ein-
seitigen Ableitungen von y"""(x) existieren und daß y"“”(x) überall in J stetig ist. Weiterhin wird die
Forderung b) der Definition 1.3 nur für alle Exirtenzstellen der Funktion y""(x) (x E J) aufrecht er-

halten. '

Bei Benutzung dieses erweiterten Lösungsbegiffs liefert (1.13) im Intervall —oo < t < +00 un-

endlich viele Lösungen der Differentialgleichung (1.8). Beim Nachprüfen dieser Tatsache beachte
man, dal3 unter der nullten Ableitung einer Funktion x(t) die Funktion x(f) selbst zu verstehen ist.

1.2. Anwendungsbeispiele

Es werden einige mathematische Modelle vorgestellt, und es wird gezeigt, wie sie
durch gewöhnliche Differentialgleichungen oder Differentialgleichungssysteme be-
schrieben werden können.

1.2.1. Wachstumsgesetze

Bei wachsenden lebenden Systemen, beschrieben in Abhängigkeit von der Zeit t
durch y = y(t) [yz z. B. Bevölkerungszahl], ist die Geschwindigkeit y(t) des Wachs-
tums bei unbeschränktem Lebensraum proportional zu y(t). Das führt zur gewöhn-
lichen Differentialgleichung j = ocy mit dem Vermehrungskoeffizienten oc. Ist der
Lebensraum beschränkt, so hat man empirisch die Proportionalität der relativen
Wachstumsgeschwindigkeit jzy“ zur Zahl der noch unbesetzten Existenzplätze
gefunden, d. h.‚ falls yo die Zahl der Existenzplätze des Lebensraumes bezeichnet,
die Differentialgleichung

1y"=oc(

Auflösung von Salz in Wasser

(1.14)

1.2.2.

Zur Zeit t = O mögen sich x0 Gramm Salz in M Gramm Wasser befinden. Sind zum Zeitpunkt t

noch x Gramm Salz im Wasser, so ist die Lösungsgeschwindigkeitg- = 2 einerseits prloportional

zu x und andererseits proportional der Differenz zwischen der Sättigungskonzentration V X [X ist

diejenige Salzmenge, die gerade Sättigung hervorrufen würde] und der tatsächlich erreichten Kon-
1

zentration [diese ist g1eich——AZ(xo — x)] . Beim Aufstellen der Differentialgleichung für x = x(t) ist

' dx
zu beachten, daB—d7 = i: hier negativ ist. Mit dem positiven Proportionalitätsfaktor k ergibt sich
somit

X _ .

‚e: —kx(fi— x°M*> (1.15)

1.2.3. Chemische Reaktionen

Chemische Reaktionen heißen homogen, wenn nur eine einzige Phase beteiligt ist. Bei ihnen kann
man weiter Reaktionen erster, zweiter, dritter, Ordnung unterscheiden.

D.l.4
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Bei einer Reaktion zweiter Ordnung werden aus den Substanzen A und B Moleküle der Substanz X
gebildet. Sind a und b die ursprünglichen Konzentrationen von A und B und ist x die Konzentration
von X zum Zeitpunkt r, so gilt

.\'"=k(a—x)(b-—X). (1.16

Analog lautet die Differentialgleichung für Reaktionen dritter Ordnung

X=k(a—x)(b—x)(c—x) (1.17)

und beispielsweise für Reaktionen erster Ordnung

>‘c=k(a—x). (1.18)

Führt man in (1.18) durch y(1) = a ~ x(t) eine neue Funktion ein, so ergibt sich

y = —ky. (1.19)

l . 2. 4. Technisch-physikalische Beispiele

Beispiel 1.8: Gesucht ist die Bewegungsgleichung eines im Schwerefeld (Erdbeschleu-
nigung g) befindlichen mathematischen Pendels (Bild 1.2), bestehend aus der Punkt-
masse m und einer masselosen Stange (Länge I), das an einem festen Punkt drehbar
aufgehängt ist und sich in einer Ebene bewegt (Ausschlagwinkel go). Infolge der
Stange ist die Punktmasse gezwungen, sich auf einem Kreis mit dem Radius I zu
bewegen. Eine Parameterdarstellung dieses Kreises wird relativ zum Koordinaten-
system aus Bild 1.6 durch

x = lcosga

y = lsincp (1.20)

geliefert. Die momentane Lage der Punktmasse kann durch die Bogenlängenkoordi-
nate s des Kreises angegeben werden (Bild 1.6).

Bild 1.6

Es ist

s =1zp‘). (1.21)

In dem Newtonschen Grundgesetz Kraft gleich Masse mal Beschleunigung ist als
Beschleunigung die Tangentialbeschleunigung zu wählen:

1) Wem (1.21) nicht geläufig ist, dem sei empfohlen, dies unter Heranziehung von (1.20) mittels
der Formel für die Berechnung von Bogenlängen herzuleiten.
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sie wird durch ‘s'(t) und damit wegen (1.21) durch

's' = lq'r5(t) _ (1.22)

angegeben. Für die Kraft im Newtonschen Grundgesetz ist jetzt nur die Tangential-
komponente der Schwerkraft maßgebend; die andere Komponente wird durch die
Festigkeit der Stange kompensiert. Zur Festlegung der gewünschten Tangential-
komponente ist das Skalarprodukt

mg - t ' (1.23)

zu bilden. Hierbei ist g der Erdbeschleunigungsvektor

g = ge,,. (1.24)

Mit t wird in (1.23) der Tangenteneinheitsvektor an den Kreis bezeichnet. Ist r der
Ortsvektor des laufenden Punktes auf dem Kreis, so gilt wegen (1.20)

r = Icoszpe, + lsimpe,

und damit (vgl. Bd. 6, Kap. 3.)

dr

_ 7175

T T
.E

Einsetzen von (1.24) und (1.25) in (1.23) fiihrt mit (1.22) zur Bewegungsgleichung,
d. h. zu folgender (nichtlinearer) Differentialgleichung zweiter Ordnung für die
Funktion q: = <p(t):

t = —sinq2e„+ coscpey. (1.25)

—mg sincp = mlqfi. (1.26)

Beispiel 1.9: Ein elektrisches Teilchen (Ladung Q, Masse m, Ortsvektor r = r(t))
bewegt sich im konstanten magnetischen Feld

—Be‚ (B = const > 0).

Auf das Teilchen wirkt die Lorentzkraft

Qi >< (—Be‚).

Damit ergibt sich die Bewegungsgleichung für das elektrische Teilchen zu

mi'= Qr >< (—Be‚). (1.27)

Wir gehen zu kartesischen Koordinaten über. Zunächst notieren wir

i-(t) = x0) e,_. + y(t) e, + z'(t) e,, (L28)

7(1) = 550?) e; + J50) ey + 5(1) e.

und

e, e, e,

Qi- >< (—Be‚) = Q2‘: Q}? Qz‘ = —BQye‚„ + BQxe,. (1.29)

0 0 —B '
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Einsetzen von (1.28) und (1.29) in (1.27) führt zu

mic‘ e, + mji e, + mi e, = —BQ)'1e,, + BQ)€e,. (1.30)

Vergleicht man die Koordinaten der Vektoren beider Seiten von (1.30), so ergibt sich

m56 + BQ)‘: = O

— BQx = 0 (1.31)

mi = 0.

(1.31) ist ein System von drei Differentialgleichungen für die drei unbekannten Funk-
tionen x(t), y(t) und z(t).

1.2.5. Ökonomisches Beispiel

Ist X,(t) (i = 1, 2, ..., m) das Volumen der Bruttoproduktion des i-ten Produk-
tionszweiges im Zeitintervall Ito, t], so ist x‚(t) = X‚(t) deren Intensität. Es sei B,,(t)
die Intensität der Lieferung des i-ten Zweiges an den j-ten Zweig, die jener für seine
Produktion benötigt. Weiterhin bezeichne A„(t) die Intensität der Lieferung des
i-ten Zweiges, die für Investitionen im j-ten Zweig benutzt werden sollen. Schließlich
werde mit g,(t) die gewünschte Intensität der Nettoproduktion des i-ten Zweiges
angegeben. Mit diesen Festlegungen gilt

x.(r> = ä am) + Am) + gm (i = 1. ....m). (L32)

Im Rahmen einer dynamischen Verflechtungsbilanz wird man in der Regel zunächst
annehmen, daß die Intensität der Materiallieferung B,,(t) proportional zur Intensität
x,(t) der Produktion und die Intensität der Investitionslieferungen A,_,(t) propor-
tional zur Beschleunigung X’‚(t) = >':,(t) der Produktion des jeweils verbrauchenden
Zweiges j ist:

BuÜ) = buxJÜ) (bu = C0350. (1-33)

Ax-1(7) = 5111*/(T) (an = C0115‘): . (1-34)

Einsetzen von (1.33) und (1.34) in (1.32) führt zu

xm = E (bu-xj(t) + a.,>e,<r)> + w) (z‘=1,...,m>,
i=i

d. h. ausführlich

xi = b„x1 + blzxz + + b1,,,x,,, + aux, + + a1,,,)'c,,, + g1(t)

-7f: = b2lx1+ 1722752 + + bzmxm + 11213.51 + + azmxm ‘i’ 820)

= b,,,x, + bmzxz + + b,,,,,,x,,. + a,,,,)'c1 + + a,,,,,,)'c,,, + g,,,(t)

und damit

aux, + + a,,,,J'c,,, + (b1, — l)x1 + buxz + + b,,,,x,,, = —g,(t)

921331 ‘i’ + azmxm + b2lx1 + (I722 —1)x2 + + bzmxm = "'g2(.’)

¢i,,,,x, + + a,,.,,.X,,, + b,.,x. + b,,.2x2 + + (b_,,,,,, — 1)x‚„ = —g,,Ez).

In (1.35) steht ein System von m Differentialgleichungen für die m unbekannten
Funktionen x‚(t), x2(t), ..., x,,,(t).
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1.2.6. Geometrisches Beispiel

Gegeben sei eine ebene Kurvenschar S1 derart, daß durch jeden Punkt (x, y) des Bereiches B einer
(x, y)—Ebene genau eine Kurve der Schar S1 geht. Gesucht ist in B eine weitere Kurvenschar S2 derart,
daß jede Kurve aus S2 in jedem ihrer Punkte die jeweilige Kurve aus S1 unter dem konstanten Winkel

7/ (IM ä schneidet (Bild 1.7). Man bezeichnet die Kurven der Schar S2 als isagonale Trajektorien
TE

zur Schar S1. Ist insbesondere Iyl = 7, so spricht man von orthogonalen Trajektorien.

55m7”! Bild 1.7

Zur Lösung dieser Aufgabe kann man etwa folgendermaßen vorgehen. Man greift einen belie-
bigen Punkt (x„‚ yo) aus B heraus, bestimmt diejenige Kurve K1 aus S1, die durch (x0, yo) geht,
bestimmt den Anstieg der Tangente T1 an K1 im Punkte (x0 , yo), dreht T1 im Punkte (x0 . yo) um den
Winkel y in die neue Lage T2 und ermittelt den Anstieg von T2 , d. h. den Anstieg der Tangente T2 an

die gesuchte Kurve K2 aus der Schar S2, die durch (x0, yo) geht. Denkt man sich in der Umgebung
von (x0, yo) die Kurve K2 durch y = y(x) dargestellt, so kennt man nunmehr die Ableitung y’(x) an

der Stelle x = x0. Insgesamt hat man auf diese Weise die zum Punkt (x0, yo) gehörige Ableitung der
Funktion y = y(x) an der Stelle x = x0 bestimmt. Da (x0, yo) aus B beliebig herausgegriffen wird,
gilt diese Zuordnung für jeden Punkt aus B, also wird jedem Punkt (x, y) aus B die Ableitung y’
einer Funktion y = y(x) zugeordnet, d. h.‚ man erhält eine Gleichung

y’ = f(x. y). (1.36)

(1.36) ist eine gewöhnliche Differentialgleichung erster Ordnung für y = y(x). Die gesuchten Kurven
der Schar S2 werden durch Lösungen der Diflerentialgleichung (1.36) dargestellt. Die obige Kon-
struktion versagt, falls T2 parallel zur y-Achse verläuft, weil in diesem Fall y’ nicht existiert. Diese
Ausnahrnepunkte werden entweder am Ende gesondert behandelt oder man arbeitet in diesem Fall
mit einer Funktion x = x(y), die dann einer Difierentialgleichung der Gestalt x’(y) = g(x‚ y) genügt.

Beispiel 1.10: Als Kurvenschar S1 sei die Schar aller durch den Koordinatenursprung der (x, y)-
Ebene gehenden Geraden gewählt. Formelmäßig wird man die Schar etwa durch

y = Cx . (1.37),

(C: Scharparameter) angeben. Allerdings wird durch (1.37) die y-Achse nicht erfaßt. Wir nehmen
deshalb als Bereich B alle Punkte der (x, y)-Ebene außer der Geraden x = 0. Wir wählen einen be-
liebigen Punkt (xu,yo) (xo i}: 0) aus B aus. Durch ihn geht diejenige Kurve K1 der Schar S1, die
wegen (1.37) den Scharparameter

y
C = c, = ä- (1.38)

besitzt.
Der Anstieg der Kurve K1 im Punkte (x0, ya) ist wegen (1.37) und (1.38) gleich der Ableitung

der Funktion

=——xy x0
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an der Stelle x = x0, also gleich:—°. Folglich ist der Anstieg der Tangente T, an K1 (T, fällt in
O .

unserem Beispiel mit K1 zusammen) im Punkte (x0, ya) gleich

tan oco = 3-0-, (1.39)
X0

wobei a0 den (orientierten) Winkel zwischen der positiven Richtung der x-Achse und der (im Sinne
wachsender x orientierten) Tangente T, angibt. Durch Drehung von T, um den Punkt (x0, ya) mit
dem Winkel y ergibt sich eine neue Lage T2, wobei der Anstieg von T; durch

t + t
tan fig = tan (oco + y) = . (1.40)

geliefert wird. Einsetzen von (1.39) in (1.40) führt zu

0 y0+x0tany
=———j—=j‚ 1.41‘an/30 x0 _ yo tan? ( )

l—~ —tany

tan Bo ist gleich dem Anstieg y’(x) an der Stelle x = x0 der durch y = y(x) dargestellten Kurve K
aus S2, die durch den Punkt (x0, yo) geht. Ersetzt man (x0, yo) durch einen beliebigen Punkt (x, y)
aus B, so ergibt sich wegen (1.41) somit für y = y(x) die gewöhnliche Difierentialgleiehung erster
Ordnung

‚_ y+Xtan7
y _ x—ytan~/' (L42)

Die:in'_der Gestalt y u: y(x) dargestellten gesuchten Kurven der Schar S2 sind Lösungen von (1.42).

Unsere Herleitung versagt an denjenigen Stellen, an denen one + y gleich % oder gleich — äist,
d. h., wir müssen aus dem Bereich B noch eine Gerade g entfernen (Bild 1.8). Es versagt unsere Her-

leitung noch im Falle M = —:—, weil dann tan y nicht gebildet werden kann.

Aufgabe"? .2: Man leite eine gewöhnliche Differentialgleichung erster Ordnung y’ = f(x, y) für die
orthogonalen Trajektorien der Schar (1.37) her.

Bild 1.8
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1.3. Besondere Aufgabenstellungen

Wir haben gesehen, daß Differentialgleichungen im allgemeinen unendlich viele
Lösungen haben. In der Praxis interessiert man sich jedoch weniger für alle Lösungen;
vielmehr stellt man Zusatzbedingungen, die nur von einem Teil der Lösungsgesamt-
heit — oft nur von einer einzigen Lösung — der Dilferentialgleichung erfüllt werden.
In der Regel ist die Anzahl der Zusatzbedingungen gleich der Ordnung der Differen-
tialgleichung.

1.3.1.

Gibt man in der Differentialgleichung 2. Ordnung (1.26) als Zusatzbedingungen
die Anfangslage und die Anfangsgeschwindigkeit vor, d. h., fordert man, daß die
Lösungsfunktion q? = 9:0‘) zum gegebenen Zeitpunkt t = to einem vorgeschriebenen
Wert «pg und ihre Ableitung ebenfalls einen vorgeschriebenen Wert cpo hat,

9700) = ‘Po ‚

(<i7(t))i=z„ = ¢o (KUTZ5 ¢(1‘o) = <i7o). (1-43)

so gibt es, wie man zeigen kann, nur eine einzige Lösung von (1.26), die auch (1.43)
erfüllt.

Anfaugswertaufgaben

Definition 1.5: Wenn man beim Vorliegen einer gewöhnlichen Diflerentialgleichung
oder bei einem gewöhnlichen Dyferentialgleichungssystem Zusatzbedingungen für eine
einzige Stelle des Definitionsbereiches der Lösungen stellt, so spricht man von An-
fangsbedingungen. Eine Differentialgleichung mit Anfangsbedingungen bildet eine
Anfangswertaufgabe.

Aufgabe 1.3: Man löse die Anfangswertaufgabe für die Funktion x = x(t), bestehend
aus der Differentialgleichung

5c = cos t) und der Anfangsbedingung x(—l) = 3.

1.3.2. Randwertaufgaben

Definition 1.6: Werden im Gegensatz zur Definition 1.5 Zusatzbedingungen an mehreren
Punkten des Definitionsintervalls der Lösungen gestellt, so spricht man von Rand-
bedingungen. Eine Differentialgleichung mit Randbedingungen heißt Randwertaufgabe.

Beispiel 1.11: Für die Durchbiegung w = w(x) eines Balkens, der sich längs der x-
Achse erstreckt (0 g x g I) und das Flächenträgheitsmoment J(x) besitzt, gilt die
gewöhnliche lineare Differentialgleichung vierter Ordnung

(EJ(x)w”)” = p(x) [E2 Elastizitätsmodul], (1.44)

wobei p(x) die senkrecht zur Balkenachse wirkende Streckenlast ‘angibt. Beim Her-
leiten der Differentialgleichung (1.44) macht man gewisse Vernachlässigungen; man
spricht in diesem Zusammenhang von einer Balkentheorie erster Ordnung.

1m vorliegenden Beispiel setzen wir voraus, daß einerseits das Flächenträgheits-
moment konstant ist und daß andererseits auch die Streckenlast eine konstante
Funktion darstellt. Schließlich sei der Balken beiderseits eingespannt, d. h.‚ daß an
den Stellen x = 0 und x = I die Durchbiegung w(x) und die Balkenneigung w’(x)
2 Wenze1,Gew.Difl.1

D.l.5
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gleich null ist. Somit ergibt sich für das vorliegende Problem eine Randwertaufgabe;
bestehend aus der Differentialgleichung vierter Ordnung

ww = ä (ä = const) (1.45)

und den vier Randbedingungen an den Stellen x = 0 und x = l
w(0) = 0, w’(0) = 0, w(l) = 0, w’(l) = 0. (1.46)

Das Lösen der Differentialgleichung (1.45) bedeutet das Ausführen von viermaliger
unbestimmter Integration. Infolgedessen kann die Lösungsgesamtheit von (1.45)
durch

w(x)= i-x‘ + -1—C x3 + 1—C2x2 + Clx + C
24EJ 6 ‘ 2 3 ‘

angegeben werden. Einsetzen von (1.47) in (1.46) liefert vier lineare Gleichungen zur
Bestimmung von C, bis C4: -

(1.47)

C4 = 0,

C3 = 0.-

1’ 4 L 3 _1_ _2415]] + 6 C1l+ 2 C21’ —0‚

P13 10.11 CI-0 148F}? + '2' 1 ‘i’ 2 - - ( ~ l

Die Lösung von (1.48) lautet:

I l1c, = — 2’}’3—J, C; = {ff c3 = o, c. = o. (1.49)

Einsetzen von (1.49) in (1.47) ergibt die Lösung der Randwertaufgabe (1.45), (1 .46):
2

w(x) = % (x‘ — 21x’ +12x2)= 22;] (1 — x)’.

1.3.3. Eigenwertaufgaben

Definition 1.7: Eine Eigenwertaufgabe ist eine Randwertaufgabe mit folgenden Eigen-
schuften:
a) Eine Konstante Z (Eigenwertparameter genannt), deren Werte einer Menge von

reellen Zahlen oder auch komplexen Zahlen zu entnehmen sind, tritt entweder in
der Diflerentialgleichung oder in den Randbedingungenoder sowohl in der Dtfle-
rentialgleichung als auch in den Randbedingungen auf.

b) Für jeden möglichen Wert Ä aus a) hat die Randwertaufgabe mindestens die Lösung

x(t) E 0. (1.50)

(1.50) heißt triviale Lösung.

Alle diejenigen Ä- Werte, für die es darüberhinaus nichttriviale Lösungen der Randwert-
aufgabe, d. h. Lösungen

x(t) mit x(t) $ 0 (1.51)

gibt, heißen Eigenwerte, die zugehörigen Lösungen der Randwertaufgabe heißen Eigen-
lösungen.
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Beispiel 1.12: Ein vertikal angebrachter Stab (0 g x g I) wird oben (x = I) durch
eine Einzclkraft F auf Druck (F > 0) belastet. Mit dem Elastizitätsmodul E führt
bei konstantem Flächenträgheitsmoment J das Knickproblem auf die Differential-
gleichung 4. Ordnung für die Durchbiegung w(x)

w’”’ + Aw” = o, o g x g 1, ;. = T; > o (1.52)

und — falls der Stab unten (x = 0) eingespannt und oben (x = I) frei ist — auf die vier
Randbedingungen

w(0) = o, w'(0) = o, M1) = o, w"’(1) + zw'(1) = o. (1.53)

Da w(x) E 0 stets sowohl (1.52) als auch (1.53) genügt, ist durch (1.52), (1.53) eine
Eigenwertaufgabe gegeben.

1.4. Ziel der weiteren Untersuchungen

Es gibt bei den gewöhnlichen Dilferentialgleichungen und Ditferentialgleichungs-
Systemen Klassen von Aufgaben, deren Lösungen (oder deren Umkehrfunktionen-
durch elementare Funktionen oder wenigstens durch Integrale über elementare
Funktionen darstellbar sind. Die Angabe solcher Klassen, das Studium ihrer Lösungs-
struktur und die Angabe von Lösungswegen ist ein erstes Ziel der weiteren Unter-
suchungen.

Darüber hinaus muß aber die Theorie durch weitere Lösungsmethoden angerei-
chert werden, die auch im Falle der weitaus größeren Mannigfaltigkeit der nicht
in dieser Weise lösbaren Differentialgleichungen angewendet werden können. Man
denke an das Verfahren von Picard—Linde1c'if (Satz 2.2; Zusatz zu Satz 3.1 ; Satz 4.1)
in Verbindung mit numerischer Integration (Bd. 18, Kap. 4.), an das Verfahren von

Runge-Kutta (Abschn. 2.5.3.; 3.4.; 4.4.; Bd. 18, Kap. 5.), an Diflerenzenverfahren
(Bd. 7/2, Kap. 6.4.) und an Reihenentwicklungen (Bd. 7/2, Kap. 5.).
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2. Differentialgleichungen erster Ordnung

2.1. Allgemeine Bemerkungen und Richtungsfeld

Aus (l.l) und (1.2) ergibt sich, daß die implizite gewöhnliche Differentialgleichung
erster Ordnung für y = y(x) durch

FOnJny’) = 0 (2-1)

und die explizite gewöhnliche Dilferentialgleichung erster Ordnung für y = y(x)
durch

J” = f(x‚ y) (2-2)

gegeben ist. Wir gehen nunmehr zur geometrischen Deutung der expliziten gewöhn-
lichen Difierentialgleichung (2.2) über.

In der Differential- und Integralrechnung ist es üblich, die Funktion f(x, y) an-
schaulich als Funktionsgebirge über dem in der (x, y)—Ebene liegenden Definitions-
bereich B zu deuten. Hier empfiehlt sich eine andere anschauliche Darstellung. An-
genommen, wir würden eine Lösungskurve von (2.2) kennen, die durch den Punkt
(x, y) der (x, y)—Ebene geht, dann gibt y’ den Anstieg der Tangente an die Lösungs-
kurve im Punkte (x, y) an. Man wird also im jetzigen Zusammenhang f(x, y) als
Gesamtheit von Richtungselementen (Linienelementen), d. h. Punkten mit angehef-
teten Geradenstücken, die den Anstieg y’ = f(x, y) besitzen, deuten. Man spricht
von einem Richtungsfeld. Die Difierentialgleichung (2.2) lösen heißt in geometrischer
Sprechweise: Es sind Kurven y = y(x) gesucht, die auf das Richtungsfeld passen,
d. h. Kurven, deren Tangentenrichtung im Punkte (x, y) mit der dort vorliegenden
Richtung des Richtungsfeldes zusammenfällt (Bild 2.1).

Beispiel 2.1: Bei der Differentialgleichung

y’ = y (2.3)

für die Funktion y = y(x) hängt die rechte Seite f(x, y) nicht von x ab:

f(x, y) = y-

Der Definitionsbereich der rechten Seite von (2.3) ist die gesamte (x, y)-Ebene.
Parallelen zur x-Achse werden durch die Differentialgleichung (2.3) jeweils Richtungs-
elemente mit dem gleichen Anstieg zugeordnet (Bild 2.2).

Aufgabe 2.1: Skizzieren Sie das Richtungsfeld von y’ = x längs der Geraden x = —l,
x = 0 und x = 1!
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Aufgabe 2.2: In welchen Punkten (x, y) können sich Lösungskurven der expliziten
gewöhnlichen Differentialgleichung erster Ordnung y’ = f(x, y) unter einem von
null verschiedenen Winkel schneiden?

re
l

///?//////
//‘/7%/////
///»(//////

Bild 2.2

Ergänzung: Zur Deutung der impliziten Difierentialgleichung (2.1) wird man zu-

nächst eine Auflösung nach y’ vornehmen. Eskann vorkommen, daß sich dabei
mehrere Difierentialgleichungen der Gestalt (2.2) ergeben, die dann ihrerseits in
obiger Weise durch Richtungsfelder dargestellt werden können.

2.2.

Von der geometrischen Vorstellung des Richtungsfeldes geleitet, wird man folgende
Vermutungen aufstellen:
a) Es gibt unendlich viele Lösungen y = y(x) von y’ = f(x, y). .

b) Es gibt durch jeden Punkt des Definitionsbereiches B von f(x, y) genau eine

Lösung y = y(x) von y’ = f(x, J‘)-

Es zeigt sich, daß die Vermutungen das Richtige treflen, falls man geeignete Vor-
aussetzungen macht. Es gelten die folgenden zwei Sätze:

Existenz und Unität der Lösungen

Satz 2.1: Durch jeden Punkt (x, y) des betrachteten Definitiansbereiehes B von f(x, i")
geht mindestens eine Läsungskurie y = y(x) der Differentialgleichung y’ = f(x‚_r).
falls f(x, y) in B stetig ist.

Satz 2.2: Ist neben der Stetigkeit von f(x, y) im betrachteten Bereich B gesichert, daß

in B existiert und dort stetig ist, so gelzt durch jeden Punkt (x, y) ran B genau

eine Läsungskurve y = y(x) der Diflerentialg/eichung y’ = f(x, y), d. h.‚ die Unität
(Einzigkeit) der Lösung der Anfangswertaufgabe, bestehend aus der Diflerential-
gleichung *

y’ = f(x.y), (x. y) e B. (2.4)
und der Anfangsbedingung

y(xo) = yo: (xv: yo) E B: (3-5)

ist gesichert.
Für die Lösung von (2.4), (2.5) gilt y(x) = lim y„(x)‚ (Ix - xgl < r, r hinreichend

k-ooo
klein), wobei die Funktionenfolge y0(x), y1(x), y2(x), schrittweise gemäß

‚vo(x) = you yk(x) = yo + ff(t,yk-1(t))dt (k = 1, 2. m)
*0

zu berechnen ist (Verfahren von Picard-Lindelöf).

(2.6)

*

S.2.l

5.2.2
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Aufgabe 2.3: Wie lauten yo(x), y1(x), y;(x) des Verfahrens von Picard-Lindelöf,
falls die Anfangswertaufgabe

y’ = i052 + y’) ‚V(0) = 0

vorliegt?
Wir haben im Beispiel 1.6 gesehen, daß die Lösung einer Differentialgleichung

l. Ordnung eine beliebige Konstante C enthaltenkann. Allgemein nennen wir

Definition 2.1: Man sagt

d5(x‚ y) = C ((x, y) E B; C: Scharparameter) (2.7)

gibt relativ zu B die allgemeine Lösung (das allgemeine Integral) von (2.4) an, wenn die
durch Auflösen von (2.7) nach y entstehenden diflerenzierbaren Funktionen y = y(x)
Lösungen von (2.4) sind.

Satz 2.3: Sind die Voraussetzungen von Satz 2.2 erfüllt, so ist jede Lösung von

y’ = f(x, y), (x, y) e B, in der allgemeinen Lösung enthalten.

Sind jedoch die Voraussetzungen von Satz 2.2 nicht überall in B erfüllt, so kann es vorkommen,
daß von der allgemeinen Lösung einige Lösungen der Diflerentialgleichung nicht erfaßt werden.
lm Beispiel 2.3 sind es die Lösungen (2.39) und (2.41).

2.3. Elementare Integrationsmethoden

2.3.1. Trennung der Veränderlichen

Im Sinne von 1.4. beschäftigen wir uns zunächst mit solchen Spezialfällen von

y’ = f(x‚ y), (2-2)

deren Lösungen (oder deren Umkehrfunktionen) durch elementare Funktionen oder
wenigstens durch Integrale über elementare Funktionen darstellbar sind. Wir be-
ginnen mit

Definition 2.2: Unter einer gewöhnlichen Differentialgleichung erster Ordnung mit
trennbaren Veränderlichen für die Funktion y = ‚i'(.x) versteht man eine Diflerential-
gleichung der Gestalt

y’ = g(x) h(y)- (2-8)

Es handelt sich also um eine explizite gewöhnliche Differentialgleichung erster
Ordnung

y’ = f(x‚ y).

wobei die gegebene rechte Seite die spezielle Struktur

f(x‚ y) = g(x) h0’)

besitzt, d. h.‚ darstellbar ist als Produkt einer Funktion g, die nur von x, und einer
Funktion h, die nur von y abhängt. i

(2.2)
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Aufgabe 2.4: Welche der folgenden Differentialgleichungen sind Differentialglei-
chungen mit trennbaren Veränderlichen?

x
T:a>y'=ß‚ b>y'=1+y‚ c>y'=x+y, d)y'=

e) y’ = sin (xy),

g) 93 = - A/1% x/#33 - e’ (g, lure konstant).

Die Lösungstheorie von Differentialgleichungen mit trennbaren Veränderlichen
beginnt mit dem

‘V
:

f)y’ = sinx-siny,

Satz 2.4: Ist y = yo eine Nullstelle der gegebenen Funktion h(y) aus (2.8), d. /1., gilt

/1(ya) = 0, (Z9)
so ist die konstante Funktion

‚v = y(x) = yo (x6 Da):
auch geschrieben ‚

‚v(x) E yo (x e Da) (2.10)

(gelesen: y ist identisch gleich yo im Definitionsbereich D, der Funktion g = g(x)),
eine Lösung der Differentialgleichung (2.8).

Zum Beweis setze man (2.10) in die Differentialgleichung (2.8) ein. Die linke Seite

dy
E _

g(x) h(yo) = 0, wobei x dem Definitionsbereich D, der Funktion g = g(x) zu ent-
nehmen ist. Also wird (2.8) tatsächlich von (2.10) erfüllt. I

ergibt y’ 1%;-(y[,)= 0. Die rechte Seite von (2.8) ist. wegen (2.9) gleich

Aufgabe 2.5: Gesucht sind konstante Funktionen, die jeweilsiLösungen der folgenden
Differentialgleichungen mit trennbaren Veränderlichen sind:

a>y'=1+y, b)y’=(y’-5y+6)e"‘‚

d)y’=x/5‚ e)¢= ‘A/‘§‘\/‘P¢2>"<P2 (g,l,<Pok0nStant)-

c)y’ = sinx-siny,

Wir werden nach Behandlung des Spezialfalles (2.9) nunmehr die Voraussetzung

l1(y) 4= 0 (2.11)

machen. Die Lösungstheorie wird im Kleindruck fortgesetzt und danach erfolgt die
Zusammenfassung zu einem Lösungsschema.

Ist y = y(x) eine Lösung Von

y’ = 50v) h0), (2.8)

so ist (2.8) beim Einsetzen von y = y(.x) erfüllt, d. h., es gilt

.v'(x) = £(-V) /I(y(x)) (2.12)

fürialle x des Definitionsbereiches der Lösung y = y(x). Wegen der Voraussetzung (2.11) ist (2.12)
gleichbedeutend mit

.v’(X)m) = 8(96). (2-13)

-J
r

S.2.4
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d. h., (2.13) folgt aus (2.12), und umgekehrt kann (2.12) aus (2.13) gefolgert werden. Von der linken
Seite von (2.13) bilden wir eine Stammfunktion (Verzicht auf Integrationskonstante)

y’(x)I WES dx (2.14)

und ebenso eine Stammfunktion der rechten Seite von (2.13) (Verzicht auf Integrationskonstante)

f g(x) dx. (2.15)

Gestützt auf die Theorie der Stammfunktionen ergibt sich aus (2.13), (2.14) und (2.15), daß sich
(2.14) und (2.15) nur um eine additive Konstante unterscheiden:

J‘ h}(:’v((:)» dx = fg(x) dx + C. (2.16)

Auf der linken Seite von (2.16) wird durch die Substitution y = y(x) die neue Integrationsvariable y
eingeführt:

f—‚% = fgoadx + c (y = y(x)). (2,17)

Zusammengefaßt ergibt sich die Äquivalenz der Gleichungen (2.12) und (2.17). Folglich ist die Frage
nach der Existenz und der Unität von Lösungen der Differentialgleichung (2.8) im Falle h(y) 1+ 0
äquivalent mit der Frage, ob im Falle h(y) # O durch

<P(x.y) = C (2.18)

mit

a><x,y> = — fgoodx‘

ditferenzierbare Funktionen y = y(x) implizit dargestellt werden, d. h. die Frage nach der Möglich-
keit der Auflösung von (2.18) nach y. Über die theoretische Möglichkeit der Auflösung von (2.18)
nach y geben die Sätze über implizit dargestellte Funktionen Auskunft (Band 4, 3.7.). Wir erwähnen
hier lediglich die in diesem Zusammenhang wichtige Bedingung

6¢‘(x, y) 1
by =T(‘;)-‘#0. (2.19)

Zur Durchführung der Methode der Trennung der Veränderlichen notieren wir

y’ = g<x> h(y), h(y) e o, —-=~ "i = g<x> h(y)
= _dy_ dx

d):

Trennen von x und y dy
__jj— —. = ( d
% als Bruch behandeln g x) x

dy76 = fg(x)dx + C, ß (2.20)

wobei in der Gleichung (2.20) C eine Konstante ist und die Integrale jeweils eine
Stammfunktion darstellen, also selbst keine Integrationskonstante enthalten. Die
Gleichung (2.20) gibt im Falle h(y) + O die allgemeine Lösung (Definition 2.1) von
y’ = g(x) h(y) an. Der weitere Schritt

| „(2.20) nach y auflösen“ (2.21)

ist in einfachen Fällen durchführbar und sollte gegebenenfalls erfolgen.
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Beispiel 2.2: Gegeben ist eine Anfangswertaufgabe, bestehend aus der Differential-
gleichung *

r%J3u>m (am
und der Anfangsbedingung

y(l) = 4. (2.23)

Wegen der in (2.22) angegebenen Bedingung y > 0 sind die Voraussetzungen zur

Anwendung der Methode der Trennung der Veränderlichen erfüllt.
Die Durchführung ergibt

d " "

E-y—=\/E (y>O) =» —1=dx => '—dZ-=.Jdx+C
x x/y v x15

= 2 y=x+C = y=Hx+O9
Beim Anblick der Ergebnisformel sind Sie vielleicht geneigt, diese durch den

Zusatz —oo < x < +oo zu ergänzen; Das ist jedoch falsch. Die vorletzte Formel
des Rechnungsganges, nämlich 2 Jy = x + C, zeigt in Verbindung mit y > O

aus (2.22), daß x + C > O und damit x > —C ist. Also lautet das Ergebnis

y=:}(x+Q’ mit -—C<x< +oo. (2.24)

Um sich vor solchen Fehlern zu schützen, kann man auch anders vorgehen. Man
nimmt zunächst in Kauf, daß sich beim formalen Rechnen gemäß obigem Lösungs-
schema gewisse „Scheinlösungen“ — im vorliegenden Beispiel y = fix + C)’ mit
x g —C — ergeben, die in Wahrheit keine Lösungen sind, Das Eliminieren dieser
Scheinlösungen geschieht durch die Probe. In unserem Beispiel hatten wir (fälsch-
licherweise) zunächst das Ergebnis y = i(x + C)’ mit — o0 < x < +oo erhalten.
Wir setzen dies in (2.22) ein. Es ergibt sich:

linke Seite von (2.22): y’ = fix + C), (2.25)

rechte Seite von (2.22); J} = (an: + C)’ = gx + c1. (2.26)

Aus (2.25) und (2.26) folgt zunächst, daß gewiß keine Gleichheit im Falle x < —C
besteht, weil in diesem Falle

%HG=%%0
ist. Damit ist also bewiesen, daß

y = ;§(x + C)’ (x < —C) (2.27)

keine Lösung von (2.22) ist. Andererseits zeigt die durchgeführte Probe, daß

y = %(x + C)’ (x ä -C) (2-28)

Lösung der Differentialgleichung

r=¢§@;m (wo
(man beachte das Gleichheitszeichen in y g 0) ist. Für die Differentialgleichung (2,22)
ist y = O auszuschließen, also wegen (2.28) x = — C. Damit zeigt die Probe, daß (2.24)
Lösung von (2.22) ist.

Aus der allgemeinen Lösung (2.24) der Differentialgleichung (2.22) ist noch die-
jenige spezielle Lösung herauszugreifen, die der Anfangsbedingung (2.23) genügt.
Einsetzen von (2.24) in (2.23) führt zu

in + C)’ = . (2.30)
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Das ist eine quadratische Gleichung für C mit den Lösungen

C= 3 und C = -5. (2.31)

Setzt man die Werte aus (2.31) in (2.24) ein, so erhält man einerseits

y = :1-(x + 3)2 mit $3‘< x < +00 (2.32)

und andererseits .

y=i(x——5)2 mit —(—5)<x< +00. (2.33)

Hat die Anfangswertaufgabe also zwei Lösungen? Das widerspräche der Aussage
von Satz 2.2, dessen Voraussetzungen hier erfüllt sind. Also muß sich bei unserer
Berechnung wieder eine Scheinlösung ergeben haben. Machen wir die Probe! Sowohl
(2.32) als auch (2.33) genügen der Diflerentialgleichung (2.22), denn es sind ja ledig-
lich herausgegritfene Lösungen aus der allgemeinen Lösung (2.24). Die Anfangs-
bedingung (2.23) wird aber nur von (2.32) erfüllt. Bei (2.33) ist das nicht mehr der
Fall, denn die Funktion (2.33) ist nur für x > 5 definiert, kann also unmöglich
y(1) = 4 erfüllen. Hätten wir übrigens in (2.30) sorgfältiger gearbeitet, so hätte
sich die Scheinlösung (2.33) erst gar nicht ergeben. Wegen (2.24) gehört nämlich
zu (2.30) noch der sich aus —C < x < +00 [siehe (2.24)] für x = 1 ergebende
Zusatz

——C<l‚ d.h. C>—l. (2.34)

(2.34) zeigt, daß von den Lösungen (2.31) der quadratischen Gleichung (2.30) der
Wert C = — 5 unbrauchbar ist. Die Anfangswertaufgabe (2.22), (2.23) hat also genau
eine Lösung. Sie wird durch (2.32) formelmäßig dargestellt.

Aufgabe 2.6: Man bestimme die allgemeine Lösung der Differentialgleichung

y’ = x(y +1‘) (—oo <y < -1).

Welche Werte kann die Konstante in der allgemeinen Lösung annehmen?

Das Herausgreifen derjenigen Lösung aus der allgemeinen Lösung, die der An-
fangsbedingung genügt, kann oft bereits beim Vorliegen der impliziten Darstellung
der allgemeinen Lösung erfolgen. Verfahren Sie so in der folgenden

Aufgabe 2.7: Man löse die Anfangswertaufgabe

y’ = sinx-sin y (0 < y <7:), y(0) =

Beachten Sie, daß In tan eine Stammfunktion von Sinx ist!

Aufgabe 2.8: Bei kleinen Pendelschwingungen mit dem Maximalausschlag 11700170 > 0) kann man aus

dem Ergebnis von Aufgabe l.l die Differentialgleichung

<?=—„/%\/‘Pä-<F2

gewinnen, falls man diejenigen Abschnitte der Pcndelschwingungen erfassen will, in denen 4p(t)
monoton fällt. /

(2.35)
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Mittels der Methode der Trennung der Veränderlicheniermittele man unter der Voraussetzung

-Wo < IP < wo (2.36)

die allgemeine Lösung von (2.35) und beachte beim Übergangivon der impliziten zur expliziten
Gestalt der Lösung neben (2.36) die Ungleichungen, die im Zusammenhang mit der Einführung der
Arkussinusfunktion auftreten, nämlich

_\

y=sinx(—%§x§7)~:>x=arcsiny. (2.37)

Wie lang ist das t-Intervall der erhaltenen Lösung? Es gibt die Dauer einer Halbschwingung des
Pendels an.

Zur Illustration des Unterschiedes der Sätze 2.1 und 2.2 dient das folgende

Beirpiel 2.3: Gegeben ist die Diflerentialgleichung

y’ = J3 (y 2 o). (2.38)

Aus dem Ergebnis von Aufgabe 25d) und aus den Gleichungen (2.28) und (2.29) entnehmen wir
zunächst die folgenden Lösungen der Difierentialgleichung (2.38)

y(x) = 0 (-00 < x < +00), (2.39)

.v(x) = £06 + C)’ (x ä -C). ('2-40)

Damit sind aber noch nicht alle Lösungen von (2.38) erfaßt. Weitere Lösungen sind (Bild 2.3):

0 für —oc<x<—C
2.41i(x+C)’ für —C§.\-<+:>o. ( )

m) = {

Bild 2.3

Zum Nachweis setzt man (2.41) in (2,38) ein und weist nach, daß die Gleichung (2.38) dadurch
erfüllt wird. Insbesondere sei bemerkt, daß (2.4-1) an der „Stoßstelle“ x = — C diflerenzierbar ist,
weil dort sowohl die rechtsseitige Ableitung als auch die linksseitige Ableitung existieren und den
gleichen Wert 0 haben. Mit (2.39), (2.40), (2.41) sind alle Lösungen der Differentialgleichung (2.38)
erfaßt.

In (2.40) steht die allgemeine Lösung von (2.38) relativ zu B: — oc < x < + oo, 0 g y < + o0, denn
. . . l‘ .. . .

(2.40) 1st äquivalent zu (2.7) mit l15(x, y) = 2 (l y — x. Langs y = 0 sind die Voraussetzungen von

Ö ‚ Ö — . . . . . . . .

Satz 2.2 verletzt, denn dort ist ff; y) = ~67 x/y mcht bildbar — auch nicht im Sinne einseitiger

Ableitung. Es ist deshalb verständlich, daß die Unität der Anfangswertaufgabe (2.4), (2.5) im Fall
y’ = VI)‘, y(x„) = 0 verletzt ist; in der Tat, in jedem Punkt der x-Achse münden zwei Lösungen von

y’ = \/y ein, nämlich (2.39) und (2.41) [siehe auch Bild 2.3].
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2.3.2. Explizite homogene und inhomogene lineare Diiferentialgleichungen

2.3.2.1. Definition

Die in 2.3.1. begonnene Diskussion im Sinne von 1.4. wird fortgesetzt. Wir nennen
hierzu die

Definition 2.3: Unter einer gewöhnlichen linearen Diflerentialgleic/mng erster Ordnung
für eine Funktion y = _v(x) versteht man eine Gleichung der Gestalt i

a1(x) y’ + ao(x)y = g(x) (2.42)

mit

a1(x) i 0 (x e D) (2.43)

(in Worten: in D ist a1(x) nicht überall gleich null), wobei D der gemeinsame Defini-
tionsbereich der Koeffizientenfunktionen a,(x), a,,(x) und des Störgliedes g(x) ist. Die
Dzflerentialgleichung (2.42) heißt darüber hinaus

inhomogen, falls g(x) $ 0 (x e D), (2.44)

homogen, falls g(x) E 0 (x e D) (2.45)

gilt. Wird die Bedingung (2.43) zu

a1(x) # 0 (x e D) (2.46)

(in Worten: a1(x) ist für jeden Wert x e D verschieden von null) verschärft, :0 karm
(2.42) in die explizite lineare Dzflerentialgleiclzung

g(x)
111(35)

I _ _ ao(x)
”1(-7‘)

umgeformt werden.

(2.47)

Aufgabe 2.9." Ist die Diflerentialgleichung (1.3) aus Aufgabe l.l linear?

Aufgabe 2.10: Ist die Differentialgleichung für y = y(x)

(l — x2)y’(x) + 1 = 0

linear? Wenn ja, ist sie inhomogen oder homogen? Für welche x aus dem Intervall
-1 g x g 1 ist eine Überführung in die explizite Gestalt möglich?

Aufgabe 2.11: Ist die Behauptung, jede Lösung jeder gewöhnlichen linearen Diffe-
rentialgleichung erster Ordnung ist eine lineare Funktion, richtig?

Bemerkung: Bezeichnet man die linke Seite von (2.42) durch L(y) = a1(x)y’ + a„(x) y,
so wird durch L(y) ein linearer (Dtflerential-) Operator (Band 1, 8.2;. 8.4.) gegeben,
d. h., es gilt

a1(€1}’1 + C2y2)’ ‘i’ a0(clyl + Czyz)

51(a1.V'1 ‘i’ aoyi) + cziai)": + aoyz)

ciLiyil + czLiyzl-

Liclyl ‘i’ czyz]

(2.48)
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2.3.2.2. Allgemeine und partikuläre Lösung

Zunächst behandeln wir den homogenen Fall. Die Definition 2.3 zeigt, daß eine
explizite gewöhnliche lineare homogene‘Differentialgleichung erster Ordnung für
eine Funktion y„(x) (der Index h weist auf die homogene Difierentialgleichung hin)
durch

a0(x)
a1(-75)

angegeben werden kann. Hierbei ist D der gemeinsame Definitionsbereich der beiden
Koeffizientenfunktionen a‚(x) und a„(x). D ist entweder ein Intervall J oder ist Ver-

‚Via = ' yh, a1(x) # 0 (xe D) (2.49)

einigung von Intervallen J‚ ‚ J2, . .. . Ohne Verlust an Information werden wir unsere
Untersuchungen für ein solches Intervall J durchführen:

„ _ _ 170(95)
J h — „im yi (xeJ). (2.50)

(2.50) ist eine Differentialgleichung mit trennbaren Veränderlichen, denn sie ist
ein Spezialfall von Formel (2.8) mit

ao(x)
g(x) = - „Im, h(yh) = yn. (2-51)

Die Anwendung der Lösungstheorie aus 2.3.1. ergibt, daß

y„(x) E 0 (x e J) (2.52)

eine Lösung von (2.50) ist. Im Falle y,, # 0 ist die Theorie der Trennung der Ver-
änderlichen anwendbar. Danach erhält man ausgehend von (2.50)

dyi. _ ao(x)
7 - m“ ‘x E ”’

woraus nach Integration zunächst

U" dyh = _ J. a0(-7‘) dx + C1

- yn 111(35)

und weiter

_ __ 50b‘)
1n;y,,1 _ jam dx+ C,

folgt. Somit ergibt sich

_ ‚man _ ,‘ao_Wd,
|y,,l = ecu e - M") ‚ d. h. y„(x) = C2 e - “im (2.53)

mit

- C, fll
c2: e’ a S y">° und xeJ. (2.54)

—eCx, falls yg. < 0

Die bisher erhaltenen Lösungen aus (2.52) und (2.53) können in der Formel

.. I. “L004”
I y,,(x) = C e - M") (x e J; C beliebige Konstante) ' (2.55)

zusammengefaßt werden. Wir haben damit relativ zum Bereich B der (x, y)-Ebene
mit x e J und — o0 < y < + oo die allgemeine Lösung der Diflerentialgleichung (2.50)
gefunden, denn die rechte Seite von (2.50) erfüllt die Voraussetzungen von Satz 2.2,
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falls die Koeffizienten a„(x) und a1(x) (a‚(x) + 0) als stetig vorausgesetzt werden.
Mit Hilfe von (2.55) kann die Lösung von (2.50) also leicht ermittelt werden, ohne
jedesmal die Herleitung von (2.55) durchführen zu müssen. ‘

. Aufgabe 2.12: Prüfen Sie, welche der folgenden Differentialgleichungen linear homo-
gen sind, und geben Sie deren allgemeine Lösung an:

a) e"‘y' + e2"y = O, b)>'c + tzx _= O, c)'>'c — tx“ = 0.

Wir diskutieren nun den inhomogenen Fall. Die Definition 2.3 zeigt, daß eine
explizite gewöhnliche lineare inhomogene Differentialgleichung ersterOrdnung für
eine Funktion y = y(x) durch (2.47) und damit auch durch

a1(x)y’ + 0o(x)y = g(x) ‘ (155)
mit ‚

111(94) + 0. g(x) i 0 (x61) (2-57)

angegeben werden kann, wobei wir uns ohne Verlust an Information in (2.57) auf
ein Intervall J beschränken.

Satz 2.5: Die allgemeine Lösung y(x) der expliziten gewöhnlichen linearen inhomogenen
Differentialgleichung (2.56), (2.57) ist gleich einer partikulären (speziellen) Lösung
y„(x) der inhomogenen Dzflerentialgleichung (2.56), (2.57) plus der allgemeinen Lösung
y„(x) der zugehörigen homogenen Diflereniialgleichung

a;(x)y£. + ao(x)yn = 0, a1(x) + 0 (x SJ). (2.58)
also

y(x) = yp(x) + yu(x)- (2-59)

Beweis: Ist y„(x) eine partikuläre (spezielle) Lösung von (2.56), (2.57), d. h., gilt
wegen (2.48)

Llyp(x)l = g(x) (2-60)
und ist y,,(x) eine beliebige Lösung der zugehörigen homogenen Differentialgleichung
(2.58), d. h.‚ gilt

L[yn(x)l = 0,
so ist (2.59) stets eine Lösung von (2.56), (2.57), denn es gilt wegen (2.48)

Lly] = Llyp + Yb] = 1-[yp] + 1-[yn],

und das ist wegen (2.60) und (2.61) gleich g(x).
Es ist noch zu zeigen, daß durch (2.59) alle Lösungen von (2.56), (2.57) erfaßt

werden, wenn y„(x) sämtliche Lösungen von (2.58) durchläuft. Ist fix) irgendeine
Lösung von (2.56), (2.57), d. h„ gilt

L[?(x)] = g(x),

LU’ - ya] = LD7] - LLVpl = g(X) - g(x) = 0,

Es ist also die Differenz j — y, eine Lösung von (2.58), d. h. gleich einer Lösung
y„(x) von (2.58), und damit gilt

flx) = yp(x) + y..(x)-

Also ist in der Tat )7(x) durch (2.59) erfaßt. Es ist damit bewiesen, daß (2.59) die
allgemeine Lösung von (2.56), (2.57) ist. I

(2.61)

so ist
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Aufgabe 2.13: Ist jede explizite gewöhnliche lineare inhomogene Differentialgleichung w:

erster Ordnung in eine Differentialgleichung mit trennbaren Veränderlichen über-
führbar?

2.3.2.3. Variation der Konstanten

Zur Ermittlung einer partikulären Lösung y‚(x) der expliziten gewöhnlichen
linearen inhomogenen Differentialgleichung erster Ordnung

ax(x),V' + ao(x)y = g(x). a1(x) # 0, g(x) $ 0 (x61). (2-62)

läßt man sich von der Struktur der Lösung (2.55) anregen, die wir im jetzigen Zu-
sammenhang mit den Bezeichnungen

}’n(x) = C5’h(x) V (2-63)
und

9.xx) = Ei 3353 "‘ (2.64)

erneut aufschreiben. Man stellt einen Ansatz für y„(x) her, indem man (2.63) benutzt
und dort C durch die noch zu bestimmende Funktion u(x) ersetzt (Variation der
Konstanten C):

I yp(x) = u(x)y'n.(x)- / (2-65)

Dies soll eine partikuläre Lösung der Differentialgleichung aus (2.62) sein. Wir
setzen deshalb (2.65) in die linke Seite der Differentialgleichung aus (2.62) ein:

ai(j’”h)' ‘i’ aoujfin = “(aifiz + aüfih) + “W117i:

= “Lifihi + 41114371: = aiuifih-

Dies soll gleich der rechten Seite der Differentialgleichung aus (2.62), d. h. gleich
g(x) sein. Somit ergibt sich für u(x) die Differentialgleichung (es ist a‚(x) j2„(x) + 0)

‚= g(x)
I “ a.(x>&.<x>‘ (M)
Aus (2.66) erhält man u(x) durch unbestimmte Integration. Auf die Integrations-
konstante kann man hierbei verzichten, weil ja in (2.65) auch nur eine einzige Lösung
y„(x) der Differentialgleichung aus (2.62) gesucht wird. Bei bekanntem y‚(x) ergibt
sich die allgemeine Lösung der expliziten gewöhnlichen linearen inhomogenen Diffe-
rentialgleichung (2.62) durch Einsetzen von y‚(x) und y„(x) in die Formel (2.59).

Beispiel 2.4: Gesucht ist die allgemeine Lösung der Differentialgleichung

f: + tzx = 2t2. (2.67)

Die allgemeine Lösung der zugehörigen homogenen Differentialgleichung

x’. + t2x,, = 0 ' (2.68)

entnehmen wir dem Ergebnis von Aufgabe 212b):

x,,(t) = Ce‘*”. " (2.69)

Der Ansatz [Variation der Konstanten in (2.69); vgl. (2,63), (2.64)]

x„(t) = u(t) 6'5” (2.70) i
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wird in (2.67) eingesetzt. Es ergibt sich

u e"*" + u [(-37 e-%r’)+ :2 e-W] = 2:2. (2.71)

Die eckige Klammer in (2.71) verschwindet. Das kann man entweder durch direktes
Nachrechnen überprüfen, oder man kann die Tatsache benutzen, daß die Funktion
e“5" der zugehörigen homogenen Gleichung (2.68) genügt. Dieser Umstand tritt
bei der Methode der Variation der Konstanten stets auf, und das direkte Nachrechnen
kann deshalb als RechenkantroI/e benutzt werden. Die Gleichung (2.71) vereinfacht
sich somit zu (vgl. (2.66))

u = 2:1 cw. (2.72)

In (2.72) ist der Faktor t2 gleich der Ableitung des Exponenten der Exponential-
funktion. Infolgedessen führt hier die unbestimmte Integration zu elementaren Funk-
tionen. Man erhält (Verzicht auf Integrationskonstante)

u(t) = 2 et". (2.73)

Einsetzen von (2.73) in (2.70) ergibt die partikuläre Lösung ‚

x„(t) = 2.

Damit ist die allgemeine Lösung von (2.67)

x(t) = x‚(t) + x,,(t) = 2 + Ce‘5’“. < (2.74)

Aufgabe 2.14: In einem Stromkreis genügt die Stromstärke I als Funktion der Zeit t
der Differentialgleichung

i(t) + %I(t) = (2.75)

Man bestimme unter der Voraussetzung, dal3 der Widerstand R, die Selbstinduktion L
und die Spannung U konstant sind, diejenige Lösung von (2.75), die der Anfangs-
bedingung [(0) = 0 genügt.

Aufgabe 2.15: Bestimmen Sie die allgemeine Lösung y = y(x) der Difierential-
gleichung (1 + x2) y’ + xy = x!

2.3.3. Exakte Differentialgleichung und integrierender Faktor

2.3.3.1. Exakte Diflerentialgleichung

Wir verallgemeinern zunächst den Begrifi" der Differentialgleichung . Mit

P(x. y) dx + Q(x,y) dy = 0. (x, y) e B, (2.76)
meint man die Aufgabe, bei bekannten Funktionen P(x‚ y), Q(x, y) entweder Funk-
tionen y = y(x) zu bestimmen, die der Differentialgleichung [Division von (2.76)
durch dx]

P(x‚y) + Q(x‚y)y’ = 0» (X. y) EB, (2-77)

genügen, oder aber auch die Aufgabe, Funktionen x = x(y) zu ermitteln, die der
Difierentialgleichung [Divison von (2.76) durch dy]

P(x, y) x’(y) + Q(x,y) = 0. (x.y) EB. (2.78)
genügen.
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Definition 2.4: Die Dzflerentialgleichung

P(x,.V) dx + Q(x,y) dy = 0, (X, y) E B, (2.79)

heißt exakt, falls es in B eine Funktion U = U(x, y) mit

öU(x‚y) _ öU(x‚y) _ ‚| —Ö—x— — P(x,y) und 7- Q(x,)) (2.80)

gibt.

Differenziert man die erste Identität (2.80) partiell nach y sowie die zweite partiell
. . » . . . ö’ Ö’U

nach x und sind die erhaltenen Ableitungen stetig Ill B, so folgtW = w,
und es gilt der

Satz 2.6: Wenn die partiellen Ableitungen existieren und stetig'3P(x, y) und ÖQ(x‚ y)
Öy Ox

sind, dann ist die Integrabilitätsbedingung

öP(x‚ y) _ öQ(x‚ y)
Öy _ öx .

notwendig dafür, daß (2.76) eine exakte Dtflerentialgleichung ist.

(2.31)

Darüber hinaus gilt

Satz 2.7: (2.81) ist hinreichend für das Vorliegen einer exakten Diflerentialgleichung,
falls der zur Diflerentialgleichung gehörige Bereich einfach zusammenhängend (Band 4,
1.1.3.) ist.

Der Beweis kann mit Hilfe des Integralsatzes von Stokes geführt werden.

Beispiel 2.5: Die Differentialgleichung

e” dx + (1 — xe") dy = 0 (2.82)

ist exakt, denn als B kann die ganze (x, y)-Ebene genommen werden (diese ist einfach
zusammenhängend), und die Integrabilitätsbedingung ist wegen

we” = —e" und £0 — xe") = —e"

erfiillt.

(2.83)

Aufgabe 2.16: Die Differentialgleichung mit trennbaren Veränderlicheny’ = g(x) h(y),
(h(y) # 0, a < x < b, c < y < d) werde einerseits in der Gestalt

g(x) h(y) dx — dy = 0, (2.84)

andererseits in der Gestalt

l
g(x) dx — W dy = (2.85)

angegeben. Was kann man über die Exaktheit von (2.84) und (2.85) sagen?

Aus der Definition 2.4 folgt, daß die exakte Differentialgleichung (2.79) wegen
(2.80) in der Gestalt

OU ÖU
-0-; dx + — 0

3 Weuzex, Gew. Diff. 1

(2.86)

S.2.6

S. 2.7



34 2. Differentialgleichungen erster Ordnung

angegeben werden kann. Ist y = y(x) bzw. x = x(y) eine Lösung von (2.86), so kann
für (2.86) bei Beachtung der verallgemeinerten Kettenregel (Bd. 4, Kap. 3.6.)

ÖU BU dy __ d _b? + Ü E; —— 0, d. h. E; U(x, y(x)) — O (2.87)

bzw.
ÖU dx GU dE H; + W = 0, d. h. Fy- U(x(y)‚ y) = 0 (2.88)

geschrieben werden. Wegen (2.87) und (2.88) werden also die Lösungen y = y(x)
bzw. x = x(y) durch

| U(x‚ y) = const = c (2.89)

implizit dargestellt. In einfachen Fällen wird man (2.89) nach y bzw. nach x auflösen
können. Über die theoretische Auflösungsmöglichkeit gibt die Theorie der implizit
dargestellten Funktionen Auskunft (Band 4, 3.7.).

Beispiel 2.6: Es sollen die Lösungen von (2.82) ermittelt werden. Da eine exakte
Differentialgleichung vorliegt, existiert eine Funktion U = U(x‚ y) mit

967g- = e" (2.90)

und

90% = 1 — xe". (2.91)

Zunächst wird (2.90) diskutiert. Wir machen die partielle Ableitung nach x rück-
gängig, indem wir nach x integrieren und y hierbei als Konstante behandeln. Somit
folgt aus (2.90)

U(x‚ y) = xe" + C(y). (2.92)

Man beachte, daß in (2.92) die Integrationskonstante C nur bezüglich x konstant ist.
Sie hängt im allgemeinen noch von y ab. Zur Bestimmung von C(y) setzen wir
(2.92) in (2.91) ein und erhalten

—x e" + C’(y) = 1 — xe"’

und damit

C’(y) = 1. (2.93)

Aus (2.93) folgt für C(y) (Verzicht auf Integrationskonstante, da nur ein U(x‚ y)
benötigt wird) '

C(y) = ‚v- (2-94)

Einsetzen von (2.94) in (2.92) liefert

U(x‚ y) = xe" + y. (2.95)

Also werden die Lösungen y = y(x) bzw. x = x(y) implizit durch

x e" + y = c (2.96)

dargestellt. In (2.96) ist eine Auflösung nach x sofort möglich:

x = x(y) = e’(c — y).
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Aufgabe 2.17: Man prüfe, ob die Differentialgleichung

x(x + 2v) dx + (x3 — y?)dy = 0

exakt ist und gebe gegebenenfalls eine implizite Darstellung der Lösung an.

2.3.3.2. Integrierender Faktor

Definition 2.5: Mulripliziert man die gegebene nicht-exakte Dzflerentialgleic/zzmg

P(x‚ y) dx + Q(x, y) dy = 0, (x, y) E B, (l9fi
mit einer Funktion

‚u(x‚ y) =l: 0, (x, y) e B, 12.95»

und ist die sich hierdurch ergebende Dlflerentialgleichung

(uP) dx + (,uQ) d)" = 0, (x, y) E B, (2.99)

exakt, so heißt ‚u = ‚u(x, y) integiierender Faktor (Eulerscher Multiplikator) der Difle-
rentialgleichung (2.97) relativ zu B.

Die Forderung (2.98) garantiert, daß nicht nur jede Lösung von (2.97) auch Lö-
sung Von (2.99) ist, sondern daß auch umgekehrt jede Lösung von (2.99) die Diffe-
rentialgleichung (2.97) löst.

Satz 2.8: Der integrierende Faktor ‚u(x, y) genügt der partiellen Dtflerentialgleiclmng

by b)» OP ÖQ _PW- Ö—x+ E) —0. (2.100)

Der Beweis ergibt sich aus der lntegrabilitätsbedingung

Ö(MP) _ 0(/tQ)by — öx (2.101)

für die Differentialgleichung (2.99).
Es ist schwierig, die partielle Diflerentialgleichung (2.100) für u = ‚u(x, y) zu

lösen. Man versucht, mit speziellen Ansätzen für ,u(x, y) zum Ziel zu kommen. Ob
diese Versuche gelingen, hängt von der Struktur von P und Q ab. Als Beispiele für
Ansätze seien genannt

‚u = Mx), ‚u = n0’), M = M2) mit Z = xy.

‚u = ‚u(z) mit z = —xy—, ‚u = ‚u(z) mit z = x2 + y’. (2.102)

Ein solcher Ansatz führt zum Ziel, wenn damit (2.100) in eine gewöhnliche DilTe-
rentialgleichung für die nur von einer unabhängigen Variablen abhängige Funktion ‚u
umgeformt werden kann, wobei neben ‚u und ‚u’ nur die unabhängige Variable von ‚u
vorkommt.

Aufgabe 2.18: Man zeige, daß die nicht-exakte Diflerentialgleichung

(yz —2x—2)dx+2ydy=0
einen integrierenden Faktor der speziellen Struktur ‚u(x) besitzt. Man gebe einen solchen Faktor an.

Aufgabe 2.19: Die Differentialgleichung

xy3 dx + (l + Zxzy’) dy = 0 (x + 0,y + 0) (2.103)

D.2. u
:

S.2.8
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ist nicht exakt (warum?) Gibt es einen integrierenden Faktor der speziellen Gestalt ‚u = ‚u(x) oder
g! = My)? Wenn ja, bestimmen Sie einen solchen und lösen Sie damit (2.103). Die Darstellung der
Lösung in impliziter Gestalt genügt.

Wir weisen noch auf eine Anwendung in der Thermodynamik hin.
Wählt man bei einem reversiblen thermodynamischen Prozeß die absolute Temperatur Tund den

Druck p als unabhängige Veränderliche, so nimmt bei einer (diiferentiell kleinen) Änderung der
Temperatur Tum dT und des Druckes p um dp das System die Wärmemenge

Cp(T‚ 17) dT + }~r(T,11) d1’ (2-104)

und gleichzeitig die Arbeit

by dT ÖV d 2 105p M. + Öp p ( . )

auf.
Hierbei bedeuten

V: spezifisches Volumen,
V = V(T, p): Zustandsgleichung,
c„(T‚ p): spezifische Wärmekapazität bei konstantem Druck,
}.T(T, p): spezifische latente Wärme (d. h. T = const) bei Druckänderung.

Addiert man (2.104)‚und (2.105), so ergibt sich die Änderung der inneren Energie zu

Ö V ö V _

c„(T,p)dT+ÄT(T,p)dp+p fi-dTwk adp . (2.106)

Aufgabe 2.20: Faßt man (2.106) als linke Seite einer Differentialgleichung (2.97) auf, so entsteht
eine exakte Differentialgleichung (Erster Hauptsatz der Wärmelehre). Welche Beziehung liefert
somit die Integrabilitätsbedingimg zwischen p, V, T, c,, /“.1?

Aufgabe 2.21: Faßt man (2.104) als linke Seite einer Differentialgleichung (2.97) auf, so ist Tein
1

integrierender Nenner, _d. h.,7ist ein integrierender Faktor (Zweiter Hattptratz der Wärmelehre).

Welche Beziehung ergibt sich somit zwischen p, T, cp, 7.,?

2.4. Spezielle nichtlineare Differentialgleichungen erster Ordnung

Wir gehen von einer gewöhnlichen linearen Differentialgleichung erster Ordnung für eine Funk-
tion ‚f = i(r) aus:

amä + aw): = go), zen. (2.107)
mit

n1(t) s; 0 (te D) ‚ (2.108)

[siehe auch (2.42) und (2.43)). Nunmehr werde

(2.109)i = t/(x) .

gesetzt, wobei u(x) eine gegebene Funktion mit I/(x) # O sei. Einsetzen von (2.109) in’_(2.107) führt
zur folgenden Differentialgleichung für x = x(t):

a1(t) u'(x) f: + ao(t) u(x) = g(t). (2.110)

Alle Differentialgleichungen, die sich in der Gestalt (2.110) angeben lassen, können folgendermaßen
behandelt werden: Zunächst löst man die lineare Diflerentialgleichung für 2U) und gewinnt dann
durch Auflösen von (2.109) nach x und Einsetzen von i = ‚\’(t) schließlich die Lösungen x(t) von

(2.110).



2.4. Spezielle nichtlineare Differentialgleichungen erster Ordnung 37

Beispiel 2.7: Wählt man speziell u(x) = e", dann folgt gemäß (2.109)

x = e‘, (2.111)

und die Gleichung (2.110) spezialisiert sich (nach Division durch e‘) zu

4110))? + ao<t) = g(t)e"- (1113)

Sind 2(1) Lösungen von (2.107), so ergeben sich die Lösungen von (2.112) durch Auflösen von (2.111)
nach x und Einsetzen‘ von a’c(t) zu

x(I)=1n(2"c(t)), (2.113)

wobei wegen (2.111) nur Lösungen 2(1) > 0 brauchbar sind.

Beispiel 2.8: Wählt man speziell

i = x“ (x > 0,04 # 0, =1=1,reell), (2.114)

so spezialisiert sich (nach Division durch x"“‘) die Gleichung (2.110) zu

rI,(t)ocx + ao(t)x '= g(t)x“"”. (2.115)

Mit den Bezeichnungen

i? = 1 " Ü‘; 171(1): 3“11(T)= Ü — )3) ‘?1(7)a 1700‘) = 170(1) (2-115)

erscheint (2.115) inGestalt der Berrmullischeiz Dzflerentialgleichung

| 121a) x + b„(z)x.= gmxfi (x > 0,13 a; 0,=1=1,ree11). (2.117)

Sind 2(1) > 0 Lösungen von (2.107), so ergeben sich die Lösungen von (2.117) durch Auflösen von

(2.114) nach x und Einsetzen von 51(1) zu

l l

x(t) = (20))? = (x(1))T—7 . (2.113)

Aufgabe 2.22: Man löse die Bernoullische Differentialgleichung für x = x(t)

(1 —12)1'c — tx — atxz = 0, '15 =# 1.

Da in dieser Aufgabe ß eine ganze Zahl ist, kann hier neben x > 0 auch x < 0 zugelassen werden.

Gegeben sei die explizite gewöhnliche Difierentialgleichung erster Ordnung

I y’ =f(%). (2.119)

m.Jeder Lösung y = y(x) von (2.119) wird durch

1

z = z(x) = ;y(x) (2.120)

eine Funktion z = z(x) zugeordnet. Auflösen von (2.120) nach y(x) führt zu

y(x) = xz(x). . (2.121)

Die Dilferentiation ergibt

y’(x) = z(x) + xz’(x). - (2.122)

Durch Einsetzen von (2.122) und (2.121) in (2.119) erhält man für z(x) die Differentialgleichung mit
trennbaren Veränderlichen

1

z’ = -x-(f(z) — z). (2.123)

Die Lösungen z(x) von (2.123) ergeben mittels (2.121) Lösungen y(x) von (2.119).

Aufgabe 2.23: Die Differentialgleichung (1.42)

‚' y+xlany
y x—ytan7
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ist in die Gestalt y’ = umzuformert, es ist eine implizite Darstellung der Lösung anzugeben.

Nun sei die explizite gewöhnliche Differentialgleichung erster Ordnung

| y’ = f(ux + by + c) (2.124)

gegeben. Jeder Lösung y = y(x) von (2.124) wird durch

z = z(x) = ax + by(x) + c (2.125)

eine Funktion z = z(x) zugeordnet. Auflösen von (2.125) nach y(x) führt zu

y(x)= T1)-(z(x) —— ax — c). (2.126)

Man muß wegen (2.126) die Voraussetzung b ä 0 machen. Das ist jedoch keine Einschränkung, weil
(2.124) im Falle b = O sofort durch eine unbestimmte Integration lösbar ist. Differentiation von

(2.125) ergibt

z’(x) = a + by’(x). (2.127)

Aus (2.124) und (2.125) folgt y’ = f(z). Einsetzen in (2.127) ergibt für z(x) die Differentialgleichung
mit trennbaren Veränderlichen

z’(x) = a + bf(z).

Die Lösungen z(x) von (2.128) ergeben mittels (2.126) Lösungen y(x) von (2.124).

(2.128)

Aufgabe 2.24: Man löse die folgende Anfangsvcertaufgabe für y = _r(.\')

y’=(x—y)2+1 mit y(0)=1.

2.5. Das Runge -Kutta -Verfahren

2.5.1. Vorbemerkungen

Bisher haben wir Spezialfälle von y’ = f(x‚ y) behandelt. Sie werden vielleicht zur
Auffassung gelangt sein, dal3 man zum Teil recht kunstvolle Methoden entwickelt
hat, um die Lösung durch elementare Funktionen und gewöhnliche Integrationen
darstellen zu können. So wichtig und nützlich diese Methoden auch sind, so muß
doch gesagt werden, daß formelmäßiges Lösen einer Differentialgleichung geradezu
als Ausnahme anzusehen ist. So sind beispielsweise die Lösungen einer so einfachen
Difierentialgleichung wie y’ = x2 + y’ nachweisbar nichrdurch elementare Funktionen
und auch nicht durch Integrale über elementare Funktionen angebbar.

Man ist im allgemeinen auf numerische Verfahren angewiesen (Einzelheiten hierzu
im Band 18). Sie liefern Näherungswerte der gesuchten Funktion anstelle ihrer
exakten Werte. Wir behandeln hier das klassische Runge-Kutta-Verfahren. Aller-
dings soll nicht nur die Rechenvorschrift mitgeteilt werden; wir wollen Sie darüber
hinaus mit den Grundgedanken des Verfahrens vertraut machen. Zunächst ist die
gegebene Anfangswertaufgabe in eine für numerische Zwecke geeignete „iterierfahige
Gestalt“ zu überführen. Das Ergebnis steht in (2.132).

Ist y = y(x) eine Lösung der Anfangswertaufgabe

JV’ = f(x, y), (X. y) 6 B, (2-129).V(xo) = ‚Vo s
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so gilt für alle x aus dem Definitionsbereich von y(x)

y’(x) = f(x, y(x)) (2.130)
mit g

)’(xo) = yo- - (2.131)

Wird in (2.130) die unabhängige Variable x durch 56 ersetzt und danach die so ent-
standene Gleichung in den Grenzen von xg bis x integriert, so erhält man

X

‚V(x) - y(Xo) = f f(f. y(5C)) 415C. d. 11.,

-“o

}‘(x) = yo + fxf(J"C, y(J”6)) Ü. (2.132)

Umgekehrt folgt aus (2.132) einerseits sofort (2.131) und andererseits durch Diffe-
renzieren die Gleichung (2.130). Also sind Gleichung (2.132) und Anfangswert-
aufgabe (2.129) bezüglich ihrer Lösungen äquivalent.

Da in (2.132) die unbekannte Funktion im Integranden eines bestimmten Integrals
vorkommt, sagt man, (2.132) sei eine Integralgleichung.

Die Aufgabe für numerische Verfahren kann wie folgt formuliert werden. An
gegebenen Stellen

x1,x2,x3,... (2.133)

des Definitionsbereiches der Lösung y(x) der Anfangswertaufgabe (2.129) sollen
Näherungswerte — sie seien durch

.v1.yz,ys,.-- (2.134)

bezeichnet — für die (exakten) Werte

}'(x1). 3'(xz)‚ 31x3). (2.135)

ermittelt werden. Darüber hinaus sind Aussagen über die Abweichungen der Nähe-
rungswerte von den exakten Werten erwünscht. Die Diflerenz

Ax. = xv“ — x, (v = O, 1, 2,...) (2.136)

heißt Sc/zrittweite (auch: Maschenweize) h.

Oft wird es genügen, h konstant, d. h. unabhängig von v zu wählen. In der Regel
wird /1 > 0 vorausgesetzt.

2.5.2. Polygonzugverfahren

Aus (2.132) folgt für den (exakten) Wert y(x1) die Gleichung
Xi

y(x1) = yo + ff(J?,y(J"r))dJ"c4 ‘ (2.137)
Xe

Ersetzt man bei der Herleitung in 2.5.1. den Anfangspunkt (x0, yo) durch den auf
der Lösungskurve liegenden Punkt (xv, y(xv)), so ergibt sich analog zu (2.137) die
Gleichung

x„.,

y(x...1)=y(x.>+ l f(i,y(>?))d>? <v=o,1,2,...). (2.138)
xv
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Beim Polygonzugverflzhren berechnet man das Integral in (2.137) näherungsweise,
indem man in gröbster Weise den Integranden f(>“c, y(5€)) durch eine konstante Funk-
tion ersetzt, die gleich dem Wert von f(x, y(fc)) an der unteren Integrationsgrenze‚
nämlich gleich f(x0, yo) ist. Damit geht (2.137) in eine Gleichung für den Näherungs-
wert y, von y(x,) über:

J’: = yo ‘l’ (x1 _ xo)f(xo:)’o): (2-139)

.}’1 = yo + hf(xD9y0)' (1140)

Beim nächsten Schritt des Polygonzugverfahrens überträgt man die bisherige Rolle
von (xo,y„) auf (x„ y,). Es ergibt sich somit der Nähefungswert yz von y(x2) zu

d.h

Y2 = yl ‘l’ hf(x1‚y1)‚

wobei vorausgesetzt wurde, daß eine konstante Schrittweite vorliegt. Nunmehr ist
verständlich, daß im Rahmen des Polygonzugverfahrens

J’v+1 = yv + hf(xuyv) (v = 0‚ 1.‚ 2‚ m) (2-141)

aufzuschreiben ist.
Die Gewinnung der Näherungen y, , yz, gemäß (2.141) kann geometrisch inter-

pretiert werden (Bild 2.4). Man geht zunächst vom Anfangspunkt (x0, yo) längs eines
Geradenstückes, das den Anstieg f(xo‚ yo) besitzt, bis man zu einem Punkt P, mit
der Abszisse x, = x0 + h gelangt. Die y-Koordinate von P, wird y, genannt, d. h.‚
P, ist durch (x, , y,) dargestellt.

Vom Punkt P, aus geht man nunmehr längs eines Geradenstückes, das den Anstieg
f(x„ y,) besitzt, bis zu einem Punkt P2 mit der Abszisse x2 = x, + h. Die y-Ko-
ordinate von P2 wird mit y; bezeichnet.

In dieser Weise fortfahrend, gelangt man zu einem Polygonzug, der eine Nähe-
rungskurve für die Lösungskurve der Anfangswertaufgabe (2.129) ist.

Yz * - - ' - - 7 — r r - I/a/Ierunyi/za/yyan

Plllk/€ Msmy

Bild 2.4

Für elektronische Rechenautomaten, bei denen man wegen der hohen Rechen-
geschwindigkeit die Schrittweite h sehr klein und dementsprechend die Anzahl der
erforderlichen Schritte sehr groß wählen kann, ist dieses (gewöhnliche) Polygonzug-
verfahren durchaus brauchbar. Für die Rechnung ohne Automaten empfehlen sich
Verfahren, bei denen man mit größerer Schrittweite h, also kleinerer Schrittanzahl,
dieselbe Genauigkeit erreicht. Hierzu gehört das Verfahren von Runge-Kutta‚
das aber wegen des völlig schematischen Ablaufs der Rechnung auch leicht für
Rechenautomaten programmierbar ist. Um die Grundgedanken stärker in den
Vordergrund rücken zu können, behandeln wir zunächst eine Verbesserung des
Polygonzugverfahrens.

Beim (gewöhnlichen) Polygonzugverfahren stellt man aus (2.138) eine Näherung
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her, indem man y(x„) durch die Näherung yv ersetzt und weiterhin für den Integranden
den Wert an seiner unteren lntegrationsgrenze nimmt, Es entsteht für die Näherung
yvi, die Gleichung (2.141), die in neuer Bezeichnung nochmals notiert wird:

yin = Jfv + hf(x„‚y„)- (2.142)

Der obere Index I auf der linken Seite von (2.142) weist darauf hin, daß es sich
hier zunächst um einen ersten Näherungswert für y(x„„) handelt. Es soll ihm ein
zweiter Näherungswert öan die Seite gestellt werden. Beim (gewöhnlichen) Poly-
gonzugverfahren ist beim bergang zur Näherung die untere Integrationsgrenze in
(2.138) ausgezeichnet. Beim Herstellen der Näherung y,‘,I+, sol] der Integrand von
(2.138) durch einen Wert ersetzt werden, der mit der oberen Integrationsgrenze
zusammenhängt. i

Es ist naheliegend, hierbei die Kenntnis von (2.142) auszunutzen und f(J"c‚ y(5?))
durch die konstante Funktion

f(x»-+x,y5+1) (2-143)

zu ersetzen. Somit ergibt sich für ‚L, die Formel

y?“ = y» + hf(x„+i‚y1+i). (2-144)

Durch eine geeignete Linearkombination der in (2.142) und (2.144) erhaltenen Werte
soll die Näherung y„„ für y(x„+1) berechnet werden:

‚Vvu = I-‘1)’£+1 + c2.Vy+1- (2-145)

Die Konstanten c, und c2 in (2.145) sollen so bestimmt werden, daß die Taylor-
entwicklung der durch den Punkt (xv , yv) gehenden (exakten) Lösung von y’ = f(x‚ y) '

und die Taylorentwicklung der Näherung (2.145), die beide an der Entwicklungs-
stelle xv ausgeführt werden, bis zu Gliedern mit möglichst hohen Potenzen von /1

übereinstimmen. Die Taylorentwicklungen stehen in (2.149) und (2.151).

Für die Taylorentwicklung der (exakten) Lösung ‚v(x) mit y(x„) = y‘, ergibt sich

y(xv+1) = yv + y’(xv) h + %y”(xv)h’ + m, (2.146)

wobei die Werte y’(x„)‚ y”(x„), mit Hilfe der Differentialgleichung y’ = f(x, y) ermittelt werden.
Die Rechnung liefert I

y’(X,.) = f(x.., J’,-) (2.147)

und wegen i i

y” z ädgflx’ y(x)) = ( >:*=y(x) + ( )y=r(x)y’(x)
unter Beachtung von (2.147)

Ö . 0 ‚)

y=J’v J’=}’v

Werden (2.147) und (2.148) in (2.]4§) eingesetzt, so ergibt sich

y(xm) = y. + h 'f(x„y„)
1 2 öf öf

+ Th {(E)Wv + (‘a—y/)X=Xvf(x..,yv)} + . (2.149)

.v=.Vv )'=yy

my)’ =
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Die Taylorentwicklung von yä+ 1 kann (2.142) entnommen werden. Um die Taylorentwicklung von

y‚‘.‘_‚_l aus (2.144) herstellen zu können, wird zunächst die Funktion j(x, y) an der Stelle (xv, yv)
entwickelt (Band 4, 4.1.):

f(x.y) = f(x.,,yv) + <%)X=Xv (x — xv) + (g—£)x:xv (‚v — n.) +

3'=}’v }"—“)'v

Hieraus folgt mit (2.142)

Ö ö
f(xv+1.y£+x)=f(x,,yv)+ _ + mm9} +

y=y.” ‚n:
und damit wegen (2.144) k

ö ’ ö
y5‘+. :yv + h/ow.) + W _ + (%)x_x man} + (2.150)

.v=.v» }'=J’v v

Mittels (2.142) und (2.150) ergibt sich schließlich für die Taylorentwicklung von (2.145)

yv+1 = (01 ‘l’ C2) yv + /7(C1 + c2)f(xv9yv)

+ /1262 {(%)mv + (§—£)x=xvf(xv,y,)} . (2.151)

.V'}’v J’=J’v

Nun kann der Taylor-Abgleich erfolgen. Es werden die Koeffizienten der Potenzen
von h von der Entwicklung des exakten Wertes in (2.149) mit den entsprechenden
Koeffizienten der Entwicklung des Näherungswertes (2.151) verglichen. Es ergibt
sich

y. = (c1 + c2)y„
f(xv.,v») = (c1 + 62)f(x„„v„)‚

%{...} = c2 {...}, (2.152)

wobei in der letzten Gleichung die durch Punkte angedeuteten geschweiften Klam-
mern einander gleich sind. Da die Herleitung für beliebige Anfangswertaufgaben
(2.129) gelten soll, kann angenommen werden, daß die Werte yv, f(x„, y„) und
in (2.152) jeweils ungleich null sind. Hieraus folgt cl + C2 = 1, §~ = c2 und damit

cl = c2 = 4}. (2.153)

V l’

H»:

. y„„

14a

yv

Bild 2.5
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Einsetzen von (2.153) in (2.145) und Berücksichtigung von (2.142) und (2.144) führt
zu

ym = 1075+; + y$‘+1)= 1U» + hf(x„y„) + y. + hf(x.+1.)'}+1))

und weiter mit den Abkürzungen

kl = hf(xv,yv), k: = hf(x.-+1.y5+1,) = hf(xv+; 9y\‘ + kl) (2-154)

zum Ergebnis

i'm = Hin + kl + yv + k2] = y» + k (2-155)

mit

k = §(k1 + k2) (2.156)

(Bild 2.5).

2.5.3. Klassisches Runge-Kutta—Verfahren

Beim Verfahren von Runge und Kutta werden zunächst vier Näherungen für
y(xv+1)‘hergeste11t; sie seien durch y£+ 1 ‚ yfll, yfilfil, }_2f,‘,’,1 bezeichnet. Die Näherung
ß“ wird ebenso wie beim Polygonzugverfahren ermittelt:

yLi = y. + hf(x„yv)- (2-157)

Die Idee für die Vorschrift von y?“ ist wie beim verbesserten Polygonzugverfahren;
die Rolle des Punktes (xv+1,y§+,) wird jedoch vom Halbierungspunkt der Ver-
bindungsstrecke zwischen (xv, yv) und (xv+,,y§+1) übernommen, d. h. vom Punkt

I I . . .. . .

(xv + 71,70; + y}+1)). Also wird _|CtZt fur 373,1“ die folgende Rechenvorschrift

gewählt:
. ‚ I .

‚via. = y. + h/(x. + 7‘. 7o. + m»). (2.158)

Die Rechenvorschrift füry {E}; ist ebenso wie für y,‘,‘+,, lediglich wird auf der rechten
Seite der Wert y‚‘‚+ 1 durch ylfr, ersetzt:

x12. = y. + hf(x. + §<y. + yim). (2.159)

Schließlich wird yfl, so gebildet wie yfll im Abschnitt 2.5.2., wobei y£+, aus 2.5.2.
jetzt durch yflll ersetzt wird:

ya,-1 = yv + hf(Xv+1 y J’:I+E1)- (2-160)

Analog dem Vorgehen in 2.5.2. wird die Näherung yv+1 durch eine Linearkombination
der vorliegenden vier Näherungen gebildet:

yv+l = C1yI1v+l + Czygn-1 + C3}’5I4§1 + C¢,V5¥1~ (2-161)

Die Koeffizienten werden nach der Methode des Taylor—Abgleichs ermittelt. Es zeigt
sich, daß die Taylorentwicklung des exakten Wertes und die des Näherungsaus-
druckes bis zur vierten Potenz von h in Übereinstimmung gebracht werden können.
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Die Rechnung ühergehen wir. Für die Koeffizienten aus (2.l6l) ergeben sich die
Werte c1 = g, c2 = :1, c3 = ä, c4 = 15. Somit geht (2.161) in

yv+l = %(y£+1 ‘i’ ZYPH + 2 vgl ‘i’ yflx) 12-162)
über.

Wir fassen die aus (2.157), (2.158), (2.159), (2.160) und (2.162) bestehende Rechen-
vorschrift zusammen und führen hierzu analog 2.5.2. noch die folgenden Abkür-
zungen ein:

k. z = 121m, yo, (2.163)

k2: = h/(x. +9,51. + y£+.>)= h/(x. + —'2'—,y. + (2.164)

1 1 1 i k
kg: = hfix. + —’‚ —<y. + 151a) = hf(x„ + —’‚ly„ + -2), <2.16s>

2 2 2 2

k4: = hf(xv + h, 24551) = hf(x,. + /uyv + kg). (2-166)

Damit ist

.V£+1 = ‚Vv + kuyiii = y» + k2,y5‘+‘x = yv ‘i’ ks.

y1‘i; = yv + k4

ym = Ja + k ' (2-167)

k = %(k1 + 2k2 + 2/:3 + 1:4). Ä (2.168)

Zur Durchführung der Rechnung ist folgendes Schema zu empfehlen (Ä, = 2„ = 1,

Z, = 23 = 2):

und

mit

I

1 k =

x y f kg = hf 2„k„ i %:‚1„1„„

xv yv f(xvsyv) k1 kl i

h k, 1 11 klxv+‘i‘ yv+T f(xv+7’}’.-+7) k: 2k: i

1 k 1 k
xv+71 yv+72 f(xv+7'.yv+7’) k; 2k;

xv +1: y„ + ka f(x„ + my. + k.) k. k. i k

xu+1 yv+1=yv+k

Ausgehend von (x„+1 ‚ yv“) kann das Verfahren in gleicher Weise fortgesetzt werden.

Beispiel 2.9: Von der Lösung der Anfangswertaufgabe

y’ = %(x’ + y’), y(0) = 0. (2.169)

sollen mit Hilfe des Runge-Kutta-Verfahrens die Funktionswerte an den Stellen
x = 0,5 und x = l näherungsweise berechnet werden. Als Schrittweite werde h = 0,5
gewählt. Führt man die Rechnung mit 6 Dezimalstellen hinter dem Komma durch.
so ergibt sich:
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x y f=&(x2+y2) k„ = hf 2.„k„ k = 452m,

0,00 0,000 000 0,000 000 0,000 000 0,000 000
0,25 0,000000 0,0l5625 0,007 813 0,0I5625
0,25 0,003 907 0,015629 0,007815 0,015629
0,50 0,007815 0,062515 0,031258 0,031258 0‚0l04l9

0,50 0,010 419 0,062 527 0,031264 0,031264
0,75 0,02605l 0,140 795 0,070398 0,140 795
0,75 0,045 618 0,141 145 0,07057} 0,141146
1,00 0,080 992 0,251640 0,125 820 0,125 820 0,073171

1,00 0,083 590

Aufgabe 2. 25: Durch Anwendung des Runge—Kutta-Verfahrens auf

‚ 1

J’ =fiy\/2y -x, y(0)=1. (2-170)

mit der Schrittweite h = 0,5 bestimme man unter Mitnahme von vier Dezimalen
näherungsweise y(1).

2.5.4. Schrittweite und Fehlergröße

Als grober Anhaltspunkt für die Schrittweite h beim Runge<Kutta-Verfahren wird
oft die angenäherte Übereinstimmung der Werte k, und k3 angesehen; genauer: der
absolute Betrag des Unterschiedes zwischen k, und k3 soll möglichst die Größen-
ordnung .von einigen Prozent des absoluten Betrages des Unterschiedes zwischen k,
und k; nicht überschreiten, d. h. etwa

k, — k, -I kl _ k: < 0,05, (2.171)

andernfalls sollte man zu einer kleineren Schrittweite übergehen.

Beispiel 2.10: Im Beispiel 2.9 ergeben sich für die linke Seite von (2.171) grüßen-
ordnungsmäßig die Werte

l l
2 -1047,80 und 1,7 - 10“‘%)_—2,

genügen also der Ungleichung (2.I71).i Eine Schrittweitenverkleinerung ist nicht
erforderlich.

Brauchbare Fehlerabschätzungen liegen für das Runge-Kutta-Verfahren noch
nicht vor. Um wenigstens einen Anhaltspunkt für die Größe des begangenen Fehlers
zu haben, wiederholt man die Rechnung mit der doppelten Sehrittweite 2h und stützt
sich auf die Tatsache, daß beim Runge-Kutta-Verfahren die Taylorentwicklung des
exakten Wertes und die Taylorentwicklung des Näherungswertes (2.162) bis zur
vierten Potenz von h übereinstimmen. Dann kann man sagen, daß der Fehler bei
Schrittverdoppelung auf annähernd den 25 = 32fachen Wert ansteigt. Da gleich-
zeitig zum Durchlaufen von 2h zwei Schritte der ursprünglichen Feinrechnung ge-
hören, wobei sich der Fehler angenähert verdoppelt, so ist der Fehler bei der zuletzt
durchgeführten Grobrechnung ungefähr 16mal so groß wie derjenige der Fein-
rechnung. Der Unterschied zwischen einem gefundenen y-Wert y, der ursprünglichen
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Feinrechnung und dem zugehörigen gröberen Wert y, der zuletzt durchgeführten
Grobrechnung beträgt somit angenähert das 15fache des Fehlers Öy der Feinrech-
nung. Man kann dies sogar zu einer Korrektur der Feinwerte benutzen: y, wird
ersetzt durch

. 1 'I y, + Öy mit Öy = fi(yf — yg). (2.172)

Beispiel 2.11: Beispiel 2.9 wird nochmals mit der doppelten Schrittweite E = 2h = 1

durchgeführt:

x y f=%(x’+y’) k‚. = ilf Ä„k„ k = 02704194

0,00 0,000 000 0,000000 0‚000000 0,000000
0,50 0‚000000 0,062 500 0‚062500 0,125000
0,50 o,0312s0 0,062744 0‚062744 0,125488
1,00 0,062744 o,2509s4 0,2509s4 0,25o9s4 0,083 579

1,00 0,0s3579

=—L~ 1,1 -10‘5 z 7-10"7Damit ergibt sich y(1,0) z 0‚083590 + öy mit öy 15

und damit y(1,0) z 0,083 59l.

Aufgabe 2.26: Man löse die Anfangswertaufgabe

y’=x+y‚ y(0)=0
nach dem Verfahren von Runge-Kutta. Es sind zwei Schritte mit h = 0,2 durch-
zuführen, anschließend ist eine Korrektur durch Rechnung mit der doppelten
Schrittweite vorzunehmen (Rechnung mit 6 Dezimalstellen). Die Ergebnisse sind
mit der exakten Lösung zu vergleichen.
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2.6. Zusammenfassung bisheriger Ergebnisse

Auflösen ‚_ _ ‚

nach y’ IL—:implizite Dgl.

nein z———-——
i xDgl. linear?)
l

! ‚

. Ja

Dgl. mit trennbaren Trennen der Veränderlichen bei
Veränderlichen? zugehöriger homogener Dgl.

nein

_ ja nein _

Spezialfälle von 2.4.? homogen?
nein

ja partikuläre Lösung mittelsexakt Variation der Konstanten „

nein

Mittels integrierendem
Faktor exakte Dgl. her—

stellbar?

nein iallgemeine Lösung

"a nein
Anfangswertaufgabe? J Anfangswertaufgabe?

nein ja

7

Mehrere Anfangs- Bestimmen der Konstanten
wertaufgaben herstellen der allgemeinen Lösung

durch Anfangsbedingungen

Aufabe elöstRunge-Kutta oder Picard-Lindelöf
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D.3.l

S.3.2

3. Differentialgleichungen höherer Ordnung

3.1. Existenz und Unität der Lösungen

Wir beschäftigen uns mit der bereits aus Definition 1.2 bekannten expliziten Diffe-
rentialgleichung n-ter Ordnung für die Funktion y = y(x)

y‘"’ = f(x,y, y’. .-..y‘”“’)-
Analog zu den Sätzen 2.2, 2.3 undider Definition 2.1 notieren wir hier

(3.1)

Satz 3.1: Ist die Funktion f(x. y, y’, ...‚ y("‘”) — als Funktion ihrer n + I Argumente
x, y, y"“" ~ in ihrem Definitionsbereich B stetig, existieren dort auch ihre par-

tiellen Ableitungen g, bi;-, ..., —(§(l—,,f_17 und sind diese dort stetig‘), so ist die Existenz

und Unität der Lösung der Anfangswertaufgabe, bestehend aus der Diflerentialgleichung

y“) = f(x‚ )3 y’. -~-, )""‘“) (3-2)

und den Anfangsbedingungen

m) = yo.y’(xo> = ya, .--,y""“(xo) = yE£"", (3.3)

gesichert, falls für die gegebenen Kon 1 yo, yß, ...‚ y(5"‘)

(xo,yo,y£»,-..,)".!““)eB (3.4)
gilt. .

Zusatz zu Satz 3.1: Das Verfahren von Picard-Lindelöf aus Satz 2.2 ist übertragbar. Wir formulieren
es für den Fall n = 2: Für die Lösung von y" = f(x, y, y’), y(xo) = yo, y’(x¢,) = ‚v; gilt y(x)
= lim yk(x) (Ix — xo[ < r, r hinreichend klein), wobei die Funktionenfolge yo(x), y1(x), unter

k W '

Hin-zluziehen der Hilfsfunktionenfolge zo(x)‚ z1(x), gemäß yo(x) E yo, zo(x) E ‚v3,
x

y..<x> = ‚V0 + f z.-.(r>dz‚
*0

2m = y; + J” /<r,.u-1(r>,zk-1<r>)dz (k = 1, 2, ...>
*0

zu berechnen ist.

Definition 3.1: Man sagt

@(x‚y‚Ci‚--.‚C‚.)=0 (C1:-- (3-5)

gibt relativ zu B die allgemeine Lösung (das allgemeine Integral) von (3.1) an, wenn die
durch Auflösen von (3.5) nach y entstehenden dzflerenzierbaren Funktionen y = y(x)
Lösungen von (3.1) sind und wenn diese nicht mit weniger als n solchen Parametern
dargestellt werden können.

.‚ C„: Scharparameter)

Satz 3.2: Sind die Voraussetzungen von Satz 3.1 erfüllt, so ist jede Lösung von (3.1)
in der allgemeinen Lösung enthalten.

1) x, y, y’, ...‚ ‚v""" sind in diesem ‘mm als .„.‚.: ‘ “ Variable auf ‘ nach
denen die rechte Seite von (3.2) insbesondere partiell differenziert werden kann.
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3.2. Einige Sonderfälle von im allgemeinen nichtlinearen Differentialglei-
chungen zweiter Ordnung

Analog zu 2.3. beschäftigen wir uns mit solchen Spezialfällen von

y” = f(x‚ y. y’), (36)

deren Lösungen (oder deren Umkehrfunktionen) durch elementare Funktionen oder
wenigstens durch Integrale über elementare Funktionen darstellbar sind. Weiterhin
interessieren wir uns für solche Spezialfälle, deren Lösungen sich aus gewissen Diffe-
rentialgleichungen erster Ordnung ergeben.

3.2.1. Die Differentialgleichung y” = f(x)

Die allgemeine Lösung von y” = f(x) kann durch zweimalige Integration gewon-
nen werden, wobeidie stückweise Stetigkeit von f(x) vorausgesetzt wird. Man kann
sie auch in der Gestalt

x

y(x) = i (x - t)f(t)dt + C1(x - xo) + C2 (3-7)
X0

(x0 ist eine feste Zahl aus dem Definitionsbereich von f(x)) angeben.

Aufgabe 3.1: Man bilde in (3.7) die zweite Ableitung y”(x) und zeige, daß (3.7) Lösungen von

y” = f(x) darstellt.

3.2.2. Die Diflemetialgleichung y” = f(y), Energiemethode

Ist die Funktion y(x) zweimal differenzierbar, so liefert die Kettenregel für die
Ableitung der Funktion %(y’(x))2 die Formel

:7 (y'(x))”] = ,V’(x)y”(x)- (3-3)

Multiplizieren wir daher die Differentialgleichung für y = y(x)

y” = f0’) (f stetig) (3-9)

mit y’, so kann das Ergebnis y’y" = f(y) y’ wegen (3.8) in der Gestalt

d 1 ‚. _ ‚a[3<y)] —f(y)y I) (3.10)

geschrieben werden. Ist y = y(x) eine Lösung von (3.9), so auch von (3.10). Ist
umgekehrt y = y(x) eine Lösung von (3.10) und damit von y’y” = f(y) y’ so ist
im Fall

y’(x) =l= 0 (3.11)

gesichert. daß y = y(x) auch (3.9) lost. Zum Beweis ist y y = f(y) y mit—‚zu
multiplizieren. y

‘) Geht man davon aus, daß y(x) — falls x als Zeit und y als Weg gedeutet wird — die geradlinige
Bewegung eines Massenpunktes mit der Masse l bezeichnen soll, so stellt der Term «}(y’)’ die kine-
tische Energie dieses Punktes dar. Darauf beruht u. a. die Bezeichnung Energiemethode.

4 Wenzel, Gew. Diff. 1
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Beim Übergang von (3.9) zu (3.10) kann es vorkommen, dal3 sich Scheinlösungen
ergeben, d. h. Funktionen y = y(x), die zwar (3.10), aber nicht (3.9) genügen. So
ist

y(x) E const = c (3.12)

eine Lösung von (3.l0)‚_jedoch im Fall f(c) ¢ 0 keine Lösung von (3.9).

Zusammenfassend können wir sagen:

Unter der Voraussetzung (3.11) sind die Diflerentialgleiclzungen (3.9) und
(3.10) bezüglich ihrer Lösungen einander äquivalent. (3.13)

Wir knüpfen nun an (3.10) an. Wenn wir eine Stammfunktion der linken Seite von
(3.10) — unter Verzicht auf eine Integrationskonstante - bilden, ebenso mit der
rechten Seite von (3.10) verfahren und beachten, dal3 zwei Funktionen, deren Ab-
leitungen einander gleich sind, sich höchstens um eine additive Konstante unter-
scheiden (Bd. 2, Satz 6.5), so erhalten wir

%(y’)‘ = ff(y)y’ dx + C. (3.14)

Im Integral aus (3.14) wird die Substitution y = y(x) ausgeführt:

|_ w? = jf<y>dy + C. (3.15)

Auflösen von (3.15) nach'y’ liefert

entweder y’ = j2ff(y) dy + 2C oder y’ = —J2ff(y)dy + 2C. (3.16)

Die Differentialgleichungen in (3.16) sind Differentialgleichungen mit trennbaren
Veränderlichen. Wegen (3.13) interessieren wir uns nur für den Fall y’ # 0 und kön-
nen daher in (3.16) gemäß 2.3.1. die Methode der Trennung der Veränderlichen an-
wenden. Wir verzichten auf die allgemeine Durchführung und bringen zur Illustrie-
rung als Beispiel die Lösung einer Anfangswertaufgabe. Um Fallunterscheidungen
zu vermeiden, ist es zweckmäßig, einerseits bereits in (3.15) C aus den Anfangs-
bedingungen zu bestimmen und andererseits zu ermitteln, welche der beiden Diffe-
rentialgleichungen aus (3.16) für die Anfangswertaufgabe maßgebend ist.

Beispiel 3.1: Gegeben sei die Anfangswertaufgabe für y = y(x)

y” = 2y’„v(-2) = l‚y’(-2) = -1- (3.17)

Der Übergang von (3.9) zu (3.15) führt im vorliegenden Beispiel zu

%(y’)’ = zy‘ + C- (3-18)

An der Stelle x = —2 muß (3.18) die Anfangsbedingungen aus (3.17) erfüllen. Also
ist C = 0 und damit

entweder y’ = y’ oder y’ = —y2. (3.19)

Wegen der Anfangsbedingung y’(—2) = —l < 0 ist aus (3.19) nur y’ = —y2
maßgebend. Man erhält weiter

d 1y'=—y’=>f—v%=—fdx=>—;=—x+C‚.
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Die Anfangsbedingung y(—2) = l liefert C, = —3‚ so daß sich als Lösung der
Anfangswertaufgabe (3.17) schließlich

= ————— —— 3) V 3.20y x + 3 (x > ‚ _ ( )

ergibt.

Aufgabe 3.2: Man löse die Anfangswertaufgabe für y = y(x)

n
y = —‘\/7,y<1>=1.,v'<1>= -2.

Beispiel 3.2: Wir knüpfen an Beispiel 1.8 an und behandeln die Differentialgleichung (1.26), d. h.

. . S’ .

mlq‘: = —mgs1nq: und damit q‘: =- — Tsm zp (3.21)

für den Ausschlagwinkel (p (Bild 1.6) des vorliegenden mathematischen Pendels. Wir schreiben vor,
daß zur Zeit t = 0 der Ausschlagwinkel gleich 0 und die Geschwindigkeit lg‘: gleich no ist. Wir fordern
mit anderen Worten die Anfangsbedingungen .

(p(0) = 0 (3,22)
und

l(q3(t)).=„ = v0, kurz: I¢~(0) = yo. (3.23)

Der Übergang von (3.9) zu (3.15) führt im vorliegenden Beispiel zu

l7 q')2 = -g;—cosvp + C. ‚ (3.24)

Multipliziert man (3.24) mit m12, so ergibt sich mit der Abkürzung ml2C = E die Gleichung (1.3).
Hiermit wird erneut der Name Energiemethode für die vorliegende Lösungsmethode verdeutlicht.
Mit den Anfangsbedingungen (3.22), (3.23) folgt aus (3.24)

l vo 2 g
C — 7 — 7. (3.25)

Wir setzen C aus (3.25) in (3.24) ein und lösen danach (3.24) nach q‘; auf. Es ergibt sich

1 a

(p = i —‚„/2g1(—1 + coszp) + v5. (3.26)

Wegen der Anfangsbedingung (3.23) ist in (3.26) das obere oder das untere Vorzeichen zu wählen,
je nachdem, ob v9 > 0 oder vo < 0 ist. In (3.26) führt Trennen der veränderlichen zu

di1f =;+c„ (3,27)
J2gl(—l +cos4p) + v},

C, wird mittels der Anfangsbedingung (3.22) bestimmt und danach in (3.27) eingesetzt. Das Ergebnis
ist durch ein bestimmtes Integral mit Variabler oberer Grenze formulierbar:

‘Pt=:lf , (3.23)
O \/2gI(—1 + cosö) + v3

Das Integral in (3.28) gehört zu den elliptischen Integralen, die im allgemeinen nicht durch elementare
Funktionen angebbar sind. Durch (3.28) wird die gesuchte Funktion q: = «p(t) der Anfangswert-
aufgabe (3.21), (3.22), (3.23) in der nach t aufgelösten Gestalt t = mp) dargestellt. Im Fall v3 > 4g]
ist der Integrand aus (3.28) stets positiv, also t = t(zp) und damit auch q: = Lp(!) für alle t monoton.
4!
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Das bedeutet ein ständiges Überschlagen des Pendels. Ist v3 < 4gl, so ist die kleinste positive Null-
stelle des Nenners im Integranden aus (3.28)

1

T2! ”3)°
Das Pendel schwingt von q: = 0 bis zum Maximalausschlag mit dem absoluten Betrag w, ‚ hat dort
die Geschwindigkeit O und schwingt danach wieder zurück. Die benötigte Zeit T, für eine Viertel-
schwingung von up = 0 bis q) = (pl wird wegen (3.28) durch

(pl = arccos (l — (3.29)

dm
2 (3.30)

+ cos 4P) + v0

W1

T, =1 f
\/2gl(—]

0

gegeben, wobei ohne Mißverständnisse befürchten zu müssen in (3.30) die Integrationsvariable
mit q: bezeichnet wurde und der Wert von (pl der Formel (3.29) zu entnehmen ist.

Aufgabe 3.3: Man kann bei „kleinem“ v0 mit guter Näherung die Kosinusfunktion durch die ersten
beiden von null verschiedenen Glieder ihrer Taylorentwicklung (Entwicklungsstelle null) ersetzen.

a) Man werte die dadurch aus (3.28) entstehende Näherungsformel aus und löse die erhaltene
Gleichung nach (p auf.

b) Welche Näherungsformel ergibt sich für (pl [siehe (3.28), 0.29)]?
c) Welchen Näherungswert erhält man für T1 aus (3.30)? '

3.2.3. Die Difierentialgleichung y“ = f(x, y’)

Die Difierentialgleichung

y” = f(x‚ y’) (3.31)
ist für die Funktion

p(x) = y’(x) (3-32)

eine Differentialgleichung erster Ordnung, nämlich die Differentialgleichung

P’ = f(x,P)- (3-33)

Sind die Lösungen p(x) von (3.33) mittels der Methode von Kapitel 2 bestimmt, so

ergeben sich die gesuchten Lösungen von (3.31) durch unbestimmte Integration von
(3.32).

Aufgabe 3.4: Man löse die Anfangswertaufgabe für x = x(t)
(t2 + 2t + 5))? + (2t + 2))": = 4, x(l) = 0, = 1. (3.34)

3.2.4. Die Differentialgleichung y” = f(y, y’)

Beim Vorliegen der Differentialgleichung

y” = f(.V‚ y’) (3-35)

prüft man zunächst, ob es Lösungen y(x) E const = c gibt. Durch Einsetzen von y(x) E c in (3.35)
erkennt man, daß tatsächlich eine solche Lösung vorliegt, falls

f(c, 0) = 0 (3.36)

gilt. Bei der weiteren Diskussion von (3.35) beschränkt man sich auf solche x-Intervalle der Lösungs-
funktion y(x)‚ für die stets

y’(x) * 0 (3.37)

gilt. Dann kann man sich nämlich die Gleichung

y = y(x) (3-33)
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nach x aufgelöst denken:

x = x(y). (3.39)

In die Funktion p(x) mit

y(x) = y(x) (3.40)

setzen wir (3.39) ein und erhalten eine mittelbare Funktion von y, nämlich

q(y) = p(x) mit x = x(y). (3.41)

Es wird versucht, eine gewöhnliche Differentialgleichung für q(y) herzustellen. Zunächst ergibt sich
aus (3.41), (3,40) und (3.35)

dq_dp dx_d2y1_ /,1_f( )1
dy_dx dy_dx2_dl_y p_ y’Pp

dx

und damit wegen (3.41) die folgende Differentialgleichung für q(y):

dq l
Ty = 7f(y,l1)- (3-43)

Ist diese Differentialgleichung mit den Methoden aus Kapitel 2 gelöst, so können die gesuchten
Lösungen y(x) von (3.35) wegen (3.41) und (3.40) mit Hilfe der gewöhnlichen Differentialgleichung
erster Ordnung mit trennbaren Veränderlichen

y’ = q(,v)

ermittelt werden.

(3.43)

3.3. Explizite homogene und inhomogene lineare Differentialgleichungen n-ter
Ordnung

3. 3. 1. Definition

Wir untersuchen, inwieweit die Ausführungen aus 2.3.2. auf Difierentialgleichungen
n-ter Ordnung übertragen werden können. Der Definition 2.3 entspricht jetzt die

Definition 3.2: Unter einer gewöhnlichen linearen Differentialgleichung n-ter Ordnung
für eine. Funktion y = y(x) versteht man eine Gleichung der Gestalt

61‚.(J6) y“) + 0,.—1(X)J""‘1’ + + 411(96))?’ + 610(36))’ = 8(16), (3.44)
kurz

ä a.(x)y<"> = g<x> (3.45)

mit V-0

a,,(x) i 0 (xeD)‚ (3.46)

wobei D der gemeinsame Definitionsbereich der bekannten Koeffizientenfunktionen
a,,(x), a,,_1(x), .‚., a1(x)‚ a0(x) und des bekannten Störgliedes g(x) ist. Die Differential-
gleic/zung (3.44) heißt darüber hinaus

inhomogen, falls g(x) i O (x e D)

falls g(x) s 0 (x e D)

gilt. Wird die Bedingung (3.46) zu

a„(x) # 0 (x e D)

(3.47)

homogen, (3.48)

(3.49)

D.3.2
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verschärft, so kann (3.45) in die explizite lineare Dzflerentialgleichung

y(n)(x) = _"_l((1v(X) ym) + g(X)
v=0 “n(-7‘) “n(X)

umgeformt werden. Es ist üblich, bereits dann von einer expliziten linearen Diflerential-
gleichung zu sprechen, wenn (3.50) in der Gestalt (3.45). (3.49) angegeben wird.

(3.50)

3.3.2. Allgemeine Liisung im inhomogenen Fall

Der Satz 2.5 ist unmittelbar übertragbar. Es gilt

Satz 3.3.: Die allgemeine Lösung y(x) der expliziten gewöhnlichen linearen inhomo-
genen Diflerentialgleichung

Z av(x)y‘”’ = g(x)» Mr) #= 0 (x E D), (3-51)
r=0

ist gleich einer partikulären (speziellen) Lösung _x'„(x) der inhomogenen Diflerenrial-
gleichung (3.51) plus der allgemeinen Lösung y„(x) der zugehörigen homogenen Difie-
rentialgleichung

ioarxn-r = o. a..<x> 4= 0 (x e m, (3.52)

also _

I y<x) = y..(x> + um. (3.53)

Zum Beweis benutzen wir den linearen Differentialoperator (vgl. Bemerkung in
2.3.2.1.)

n

LLVI = §0av(x)y‘”’- (3.54)

Die Fortführung des Beweises kann nunmehr wörtlich dem Beweis von Satz 2.5
entnommen werden. Es sei auf die völlige Analogie zu dem entsprechenden Ergebnis
für lineare algebraische Gleichungssysteme (vgl. Bd. l3) hingewiesen. Die berein-
stimmung der Lösungsstrukturen beruht einzig und allein auf der Linearität der be-
trachteten Gleichungen.

3.3.3. Struktur der Lösung im homogenen Fall

Die Methode der Trennung der Veränderlichen aus 2.3.2.2. kann nicht übertragen
werden. Es gilt jedoch der

Satz 3.4: Die Lösungen der homogenen linearen Diflerentialgleiclzung (3.52) bilden
einen linearen Raum, d. h. rnit je zwei Lösungen y,„(x) und y,,2(x) von (3.52) ist auch
jede Linearkombination C1y,,,(x) + C2y,,3(x) Lösung von (3.52).

Beweis: Mit (3.54) gilt

L[Ci}’ni,+ Czyhzi = C1L[)’h1] ‘i’ CZLiyhZis

woraus wegen L[y,_1] = L[y,,z] = 0 auch L[C1y,,1 + C2y,,2] = 0 folgt. I
Man kann die Aussage von Satz 3.4 noc'h ergänzen. Hierzu erinnern wir zunächst

an die Vektorrechnung im gewöhnlichen euklidischen dreidimensionalen Raum R3.



3.3. Homogene und inhomogene lineare Difierentialgleichungen n—ter Ordnung 55

Gegeben seien drei linear unabhängige Vektoren a1 ‚ a2, a3, d. h., aus

e131 + e222 + e323 = 0 (3.55)
soll

_C1 = C2 = C3 = 0 (356)

folgen. Die Aufgabe, jeden beliebigen Vektor v e R3 in der Gestalt

v = C1211 + Czaz + C3a3 (3.57)

darzustellen, ist auf genau eine Weise lösbar. Im jetzigen Zusammenhang legen wir
nur auf die Existenz und Unität der Lösung (C1 , C2 , C3) Wert und interessieren uns
nicht für die etwa mittels Spatprodukten angebbaren Lösungsformelh für C1 ‚ C2 , C3.
Angeregt durch (3.55), (3.56) formulieren wir die folgende

Definition 3.3: Die Funktionen f1(x), ..., f„(x) heißen relativ zu ihrem gemeinsamen
Dejfinitionsbereiclz D linear unabhängig, wenn bus

c1f,(x) + c3f2(x) + + c,,f,,(x) E o (xéo) (3.58)

die Gleichungen

c1=c2=...=c,,=0 (3.59)

gefalgert werden können.

Die Prüfung, ob lineare Unabhängigkeit vorliegt, ist prinzipiell mit Hilfe der
Definition 3.3 möglich, jedoch im allgemeinen recht aufwendig. Sie wird erleichtert
durch

Satz 3.5: Sind die Funktionen f1(x), ..., fi,(x) in ihrem gemeinsamen Definitionsbereich
D jeweils (n — l)-mal diflerenzierbar und ist die „Sogenannte Wronskische Determinante

f1(x) fz(x) ---f..(x)
W: f’i(x) f§(x) ---f.'I(x)

/i"-“<x> /Q"-‘>(x>.../i"-*>(x)

in D überall ungleich null, so sind die Funktionen f,(x), ..., f„(x) in D linear unabhängig.

(3.60)

Zum Beweis wird die Identität (3.58) (n — l)-mal differenziert. Es entsteht ein
lineares homogenes Gleichungssystem von n Gleichungen für die n unbekannten
Konstanten cl , ..., c,,, wobei die Koeffizientendeterminante die Wronskische Deter-
minante (3.60) ist; diese ist nach Voraussetzung ‘für alle x e D ungleich null. Hier-
aus folgt (3.59) (vgl. Band l3), also sind fl(x), ..., f„(x) linear unabhängig. I

Beispiel 3.3: Die Funktionen f1(x) = 1, f2(x) = x, f„(x) = x2, f„(x) = x3 sind
für alle x e (— o0, + oo) linear unabhängig. In der Tat, der Satz 3.5 liefert

l x x2 x3

O 1 2x 3x’
0 O 2 6x
O 0 0 6

womit unsere Behauptung bewiesen ist.

W= =12#=0 füralle xe(—oo, +00),

D. 3.3

S.3.5
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Zum Beispiel 3.3 sei noch bemerkt, daß für jedes n = 2, 3, die Funktionen x"
(1220, 1, 2, ..., n) für alle xe (—oo, +00) linear unabhängig sind, gleiches gilt für
sin(vx) (v =1, 2, ...,n),cos(vx) (v = O, 1,2, ..., n).

Aufgabe 3.5: Man zeige, daß die Funktionen eh”, e‘2", e‘3" linear unabhängig sind,
falls cl 4= c2, c, =l= c3, c2 + c3 ist.

Angeregt durch den Text im Zusammenhang mit (3.57) kommen wir zur

Definition 3.4: Ein linearer Raum, dessen Elemente Funktionen g(x)‚ h(x)‚ mit dem
gemeinsamen Definitionsbereich D sind, heißt n-dimensional, wenn es im Raum n

Funktionen f,(x), ..., fi‚(x) derart gibt, daß die Aufgabe, irgendeine Funktion u(x) des
Raumes in der Gestalt

v(x) = C,f1(x) + C'2f2(x) + + C,,f,,(x) (xED) (3.61)

darzustellen, stets auf genau eine Weise lösbar ist. Die Funktionen f1(x),j”,.(x)
heißen Basis (Fundamentalsystem) des linearen Raumes.

Im Anschluß an Definition 3.4 nennen wir den

Satz 3.6: Greift man aus einem n-dimensionalen linearen Raum n linear unabhängige
Elemente g1, ..., g„ heraus, so bilden sie eine Basis des Raumes. Je n + l Elemente
des Raumes sind stets linear abhängig (d. h. : nicht linear unabhängig).

Jetzt sind wir in der Lage, Satz 3.4 zu ergänzen. Es gilt

Satz 3.7: Die Lösungen der homogenen linearen Diflerentialgleichung n-ter Ordnung
(3.52) bilden einen n-dimensionalen linearen Razzm, d. h., die allgemeine Lösung kann
in der Gestalt

I )’h(x) = C1}’n1(x) + + Cn}’nm(x) (362)
angegeben werden, wobei

ym(x), yhz(x), ..., yn„(x) (3-63)

eine Basis (Fundamentalsystem) des Lösungsraumes ist und C,,...,C,, beliebige
Konstanten sind.

Zusammenfasse d hat sich ergeben:
Bei der Behandlung der homogenen linearen Differentialgleichung n-ter Ordnung

(3.52) genügt es, eine Basis (3.63) herzustellen. Wegen Satz 3.6 und Satz 3.5 liegt
gewiß eine Basis (3.63) vor, wenn jede der Funktionen aus (3.63) die Differential-
gleichung (3.52) löst und die aus ihnen gebildete Wronskische Determinante für alle
x e D ungleich null ist. Ohne Beweis teilen wir mit, daß das Nichtverschwinden der
Wronskischen Determinante für das Vorliegen einer Basis (3.63) nicht nur hin-
reichend, sondern aueh notwendig ist.

Im allgemeinen ist die Herstellung einer Basis durch elementare Funktionen nicht
möglich. Dies gelingt jedoch, falls die Koeffizientenfunktionen a„(x)‚ ..., a„‚(x) alle
konstant sind. Damit werden wir uns im nächsten Abschnitt beschäftigen.

Different‘ ‘ ‘ ' ‘e o3.3.4. mit lt ‘ Koeffizienten

Gegeben sei für die gesuchte Funktion y„(x) die gewöhnliche lineare homogene
Difierentialgleichung n-ter Ordnung

a..y‘."’(«\‘) + a..—xy§."'“(x) + + 01yL(X) + “o.Vn(x) = 0 (an 4‘ Ü).

Lineare ‘

(3.64)
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kurz

i a.y::>(x> = o (a. + o), (3.65)
v=0 -

wobei die Koeffizienten

a‚„a„_„...,a„ao (3.66)

als konstant vorausgesetzt werden. Die Lösungstheorie wird besonders übersichtlich,
wenn man sich entschließt, zunächst alle Lösungen y(x) zu suchen, die komplexe
Funktionen der reellen unabhängigen Veränderlichen x sind. In der Regel werden
die Koeffizienten (3.66) zwar reell sein, die Untersuchungen sind aber auch dann
gültig, wenn die Koeffizienten komplexe Zahlen sind.

Die Lösungstheorie beginnt mit dem Ansatz

I y,,(x) = e“. (3.67)

Die eventuell komplexe Konstante I. soll so bestimmt werden, daß (3.67) die Diffe-
rentialgleichung (3.64) löst. Einsetzen von (3.67) in (3.64) führt 21/11)

a„/"." e“ + a,,_1Z”" e“ + + all e“ + an e“ (3.68)

Jeder Summand auf der linken Seite von (3.68) besitzt den Faktor e“, und dieser ist
von null Verschieden, also ist (3.68) genau dann erfüllt, wenn

| a„/'." + a„_‚h"“ + + a‚Ä + an = 0

gilt. .

Damit ist es uns gelungen, die Lösung der Differentialgleichung (3.64) auf die
Lösung einer algebraischen Gleichung (3.69) zurückzuführen. (3.69) heißt charak-
teristische Gleichung der Differentialgleichung (3.64). Das bisherige Ergebnis lautet:

(3.69)

Satz 3.8: Es gibt Lösungen von (3.64) der Gestalt (3.67), wenn h der Gleichung (3.69)
genügt.

Über die Gesamtheit der Lösungen von (3.69), d. h. von

_ P„(/".) = O (3.70)
mit

P„().) = a„h" + a,,_1l"“ + + a1}. + a0 (3.71)

gibt der Fundamentalsatz der Algebra Auskunft. Für den bei seiner Formulierung
benötigten Begriff der Vielfachheit nennen wir die — bereits aus Bd. 2 bekannte —

Definition 3.5: Eine Lösung h,‘ von (3.69) und damit von (3.70) hat die Vielfachheit I,“
falls P„(Ä) und die Ableitungen’) von P„(Ä) bis zur Ordnung [k — l an der Stelle Ä = /1,.

aIIe den Wert null liefern, d. 11., wenn

P„(Ä„) = P,§(}.,,) = = P,f’k‘“(}.k) = 0 (3.72)

gilt, jedoch die lk-te Ableitung von P„(h) an der Stelle Ä = Äk von null verschieden ist:

P(’~>(Z.) =l= 0. (3.73)

1 d g . z, ‚ . . .

) E (e ) = /. e gilt auch, falls die Konstante Ä nicht reell ist.

z) Die Ableitungen von P„(Ä) sind beim Vorliegen der komplexen unabhängigen Variablen i.
ebenso zu bilden wie bei reellem l. ‘

S.3.8

D.3.5
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Damit kann der Fundamentalsatz der Algebra formuliert werden:

Satz 3.9: Hat (3.69) die r voneinander verschiedenen (im allgemeinen komplexen)
Lösungen

}.1,Zz,...,}., (3.74)

mit den zugehörigen Vielfachheiten

l,,l1,...,l,, (3.75)

so gilt
I1 +1, +... +l‚=n; (3.76)

mit anderen Worten: Jede Gleichung n-ten Grades hat mit Berücksichtigung der Viel-
fachheit genau n (im allgemeinen komplexe) Lösungen.

Beispiel 3.4: Gegeben sei die Difierentialgleichung der freien gedämpften Schwingung
für y = y(t) ‘

j; + 26y’ + wfiy z o (ö g 0, wo > o). (3.77)

Ehe wir (3.77) lösen, nennen wir mathematische Modelle, die durch (3.77) erfaßt
werden:
a) Beispiel 1.1 mit Berücksichtigung einer geschwindigkeitsproportionalen Reibungs-

kraft: + 0c)’: + kx = 0 (Reibungskraft: —zx)'c, zx > 0),
b) Beispiel 1.8 für kleine Ausschläge — dann kann in guter Näherung sin q: durch q:

ersetzt werden — mit Berücksichtigung der Reibung: mlzji + alt)’: + mgqp = 0
(Reibungskraft: —ocs' == —ocIq'2, (x > 0),

ä; q = 0 (Ladung q auf der Konden-

satorplatte, Selbstinduktion L, Widerstand R, Kapazität C).

Einsetzen von y(t) = e“ in (3.77) führt zur charakteristischen Gleichung

22 +’ 257 + mg = o. (3.78)

Die Lösungsformel für quadratische Gleichungen liefert für die Lösungen von (3.78)

c) elektrischer Schwingungskreis: Ltj + Rt] +

am = —ö i (457753. (3.79)

Im Fall I

ö’ — w}, > 0 (große Dämpfung, Kriechfall) (3.80)

sind die beiden Lösungen (3.79) reell:

1m = —a i „W273, a2 — wg > o, (3.81)

irn Fall
Ö2 — cog < 0 (dämpfungsfrei [ö = 0] oder kleine Dämpfung [ö > 0]) (3.82)

sind die beiden Lösungen (3.79) nichtreell und zueinander konjugiert komplex:

_ 7.,_2 = -6 i 52 — wg < o, (3.83)

im Fall

Ö2 — wä = 0 (aperiodischer Grenzfall) (3.84)

fallen diebeiden Lösungen (3.79) zusammen, d. h.‚ es gibt genau eine Lösung

/I1 = -6 mit der Vielfachheit l, = 2. (3.85)
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Aufgabe 3.6: Man bestimme bzw. bestätige mittels der Definition 3.5 die Vielfach-
heiten der Lösungen der charakteristischen Gleichung (3.78) in den obigen drei
Fällen,

Aufgabe 3.7: Eine Gleichung n-ten Grades habe die n voneinander verschiedenen
Nullstellen 2., ‚ ..., Ä„. Was kann man über die zugehörigen Vielfachheiten I1 ‚ l2, ..., I„
aussagen?

Die Bestimmung der Lösungen der charakteristischen Gleichung im Falle n g 3

ist im allgemeinen nur mit den Hilfsmitteln der numerischen Mathematik möglich.
Kennt man eine Lösung Z1 der ‘charakteristischen Gleichung (3.69) (z. B. durch

Raten), so dividiere man das auf der linken Seite von (3.69) stehende Polynom (3.71)
durch 2 — Z1. Das Ergebnis ist ein Polynom vom (n — l)-ten Grad:

a,,}." + a,,_1}."‘1 + + a1}. + a0
Ä _ A = b,,_1}."“1 + b,,_z7."*Z + + b1}. + b0.

g (3.86)

Zur praktischen Bestimmung der Koeffizienten bv des Ergebnispolynoms in (3.86)
benutzt man zweckmäßig das Homer-Schema, das aus Bd. 2 bekannt ist.

Die weiteren Lösungen der Gleichung

k a,,}." + a,,_1l"'1 + + a1/1 + a0 = O

sind wegen (3.86) auch Lösungen von

b„_‚/1"-‘ + b„_‚7."-2 + + b,/‘. + b0 = 0. (3.87)

Man kann also beim Bestimmen der weiteren Lösungen der charakteristischen
Gleichung (3.69) die Gleichung (n —— l)-ten Grades (3.87) benutzen.

Aus den Sätzen 3.8 und 3.9 folgt, daß von der Differentialgleichung

§odvJ2£"(X) = 0 (an 9F 0) (3-65)

mittels des Ansatzes (3.67) die r (r g n) Lösungen

ein", e12‘, ..., e’-r‘ (r g n;/’.„ [v = I, ..., r] alle verschieden) (3.88)

gefunden wurden.

im Falle r = n — also lauter einfachen Lösungen von'(3.69) — stehen in (3.88) die
n Lösungen =

ein‘, e12”, ..., eh". (3.89)

Die Wronskische Determinante der Lösungen (3.89) ist, wie man zeigen kann (vgl.
Aufgabe 3.5), für alle x von null verschieden. Also bilden diese Funktionen sogar eine
Basis des Lösungsraumes, und deshalb kann im Falle r 2 n die allgemeine Lösung
von (3.65) durch

| y„(x) = C1 9’--" + C2 e12‘ + + C„ e’-~" ‘ (3.90)

an gegeben werden.

Aufgabe 3.8: Für y” + 2y’ — 3y = O ist die allgemeine Lösung zu bestimmen.

Im Falle r < n fehlen zur Herstellung einer Basis noch n — r Lösungen. Diese
liefert der
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Satz 3.10: Hat die zur Diflerentialgleichung (3.65) gehörige charakteristische Glei-
chung (3.70)

P„(_Ä) = O (3.70)
mit ‚

P„(7.) = a„2" + a,,_1}."" + + 1211 + a0 (3.71)
die

Lösung 2,, mit der Vielfachheit 1,, > 1, (3.91)

so hat (3.65) außer den Lösungen (3.88) noch die weiteren Lösungen

x eh‘, x’ e’-k"‚ ..., x’~" e‘~". (3.92)

Der Beweis von Satz 3.10 soll hier nur im Fall 1„ = 2 durchgeführt werden. Es ist also zu zeigen,
daß die Funktion

x eh" (3.93)

der Differentialgleichung (3.65) genügt. Zur v-maligen Differentiation von (3.93) benutzen wir die
aus der Differentialrechnung bekannte Formel für die v-malige Difierentiation eines Produktes
(Band 2, 4.8.3.):

" v
(,,,_,)(v) = Z ( >„(u)„<v—;u_

‚uH=0
(3.94)

Da die ‚u-te Ableitung der Funktion x nach x im Falle ‚u > 1 identisch null ist, führt die Anwendung
von (3.94) auf (3.93) zu

l
(x e’»kx)(v) = 2

l‘ = 0

= xi: eine‘ + 112;“ e19‘ (v > 0).

(V) w) (e7-~x)(-'—u)
‚u (3.95)

Einsetzen von (3.93) in die linke Seite von (3.65) ergibt wegen (3.95)

H

2 a„(x e‘r«")(”) = a0 x elk‘ + 2 a„(x e‘-~*)(”)
7 = D I’ = l

u
= aux e‘-M + 2 a„(x/".{ ehe + v/'.‘,;“ eine)

f: 1

_ n ’ n 1

= eü" {aux + x 2 av/‚z + 2 avv}.;“‘}
..=1 ..= 1

n n

= e‘-A‘ {X 2 avl: + 2 avv/3;‘ ‘}
v = 0 v= l

= ‘3)"‘X{v\’Pn(’z-1:) ‘i’ P;I.(_Ak)}>

Das ist aber gleich null, weil wegen 1„ = 7 gemäß Definition 3.5

P..(7-k) = 0 und m1,‘) = 0
gilt. I

Wir fassen zusammen: Für die Differentialgleichung (3.65) haben sich bisher
die n Lösungen '

611x’ x 65x, x2 e;.,x , xI,—1 eng’

‚ x e“, x2 eh‘, ‚x’=" W‘. (3.96)
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kurz

| x“e"~* (k =1,...,r,,u = 0,1,...,Ik —- 1;I1 +12 + + l, = n), (3.97)

ergeben.
In (3.96) stehen n Lösungen. Ihre Wronskische Determinante ist, wie man zeigen

kann, für alle x ungleich null. Infolgedessen bilden sie sogar eine Basis des Lösungs-
raumes. Die allgemeine Lösung ergibt sich somit als Linearkombination der Funk-
tionen aus (3.96) bzw. (3.97).

Man kann hierfür kurz schreiben
y 1.-:

yh(x) = 2 {z c...x”e*~x}
k u=0=1

(Ck, (k = 1, ..., r; ,u\ = 0, 1, ..., l,,_1) beliebige komplexe Konstanten).
(3.98)

Beispiel 3.5:

y’” — 3y’ —— 2y = 0. (3.99)

Der Ansatz y = e“ liefert die charakteristische Gleichung 7.3 —— 3}. — 2 = 0 mit den
Lösungen Z1 = -1, Ä; = 2 und den dazugehörigen Vielfachheiten ll = 2, I2 = 1.

Somit lautet die allgemeine Lösung von (3.99)

y = C‚e”‘ + Czx e“ + C3 e“.

Beispiel 3.6 (Fortsetzung von Beispiel 3.4): Für die Differentialgleichung

+ 26)‘) + wäy = 0

ergibt sich mit den Abkürzungen

w = /afl, y = \/(BT33 (3.100)

wegen (3.80) bis (3.85) in den drei Fällen jeweils die folgende Basis der Lösungs-
gesamtheit:

l. Fall: Ö2 — wg > 0, Basis: e"" e", e"‘ e‘7‘, (3.101)

2. Fall: ö’ — m3 <_0, Basis: e"" c‘°", e"’ e““"‚ (3.102)

3. Fall: (32 — (.03 = 0, Basis: e"", te"" (3.103)

und damit die allgemeine Lösung

I. Fall: a1 — wä > o; y,,(z) = C, e“" e" + c2 6"‘ e‘7‘, (3.104)

2. Fall: a2 — mg < o: y„(t) = c. e"” e“"‘ + C. e“" e"""‚ (3.105)

3. Fall: ö’ — (of, = 0: y,,(t) = C5 e“" + C„te"" (3.106)

(C1 , ..., C6 beliebige komplexe Konstanten).

Aufgabe 3.9: Man bestimme die allgemeine Lösung x(t) von

2;€—55é—2X+15x=0.

Aufgabe 3.10: Man bestimmt die allgemeine Lösung y(x) von
ym _ 3y„ + 4), = 0‘

Aufgabe 3.11: Man bestimme die allgemeine Lösung x(t) von

xun _ xo--2) = 0_
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3.3.5. Übergang zur reellen Basis

Wie in 3.3.4. betrachten wir die homogene lineare Differentialgleichung mit kon-
stanten Koeffizienten (3.65), (3.66), setzen jedoch darüber hinaus voraus, daß die
Koeffizienten

a„, a„_1 ‚ .. reell (3.107)

sind. Es soll versucht werden, im jetzigen Fall aus der im allgemeinen komplexen
Lösung (3.98) alle reellen Lösungen zu bestimmen. Eine Möglichkeit hierfür ist der

bergang von (3.96) zu einer reellen Basis. Als Hilfsmittel aus der Algebra benutzen
Wir den

'sa1saD

Satz 3.11: Sind in der Gleichung

a,,Z” + a,,_,}."‘1 + + all + a0 = 0 (a,, # 0) (3.108)

alle Koejfizienten reell und ist Ä = Z,‘ eine nichtreelle Lösung von (3.108) mit der

Vielfachheit 1k, so ist die zu Äk konjugiert komplexe Zahl h‘) ebenfalls Lösung van

(3.108), und zwar mit der Vielfac/zheit l„.

Der Übergang zur reellen Basis kann nun folgendermaßen geschehen. In (3.96)
werden alle Zeilen, für die der Ä-Wert reell ist, unverändert in die neue Basis über-
nommen. Ist in der Tabelle (3.96) der Ä-Wert 2-, nicht reell, d. h., gilt

1„ = a,‘ + im, an, reell, ‚B,‘ reell, /3;. =l= 0, (3.109)

so gibt es wegen Satz 3.11 in (3.96) zu jedem Basiselement

x" eh” = x" e(""<+‘5k)" (a = 0, 1, ..., 1,. — 1) (3.110)

noch das weitere Basiselement

x#e1Tx=xMe<~k-WV (,4=0,1,...,1.,— 1). (3.111)

Aus (3.110) und (3.111) bildet man einerseits die halbe Summe und andererseits
mal halbe Diflerenz: 1

1W: ecxmsnx + „u e(”‘k—iflk)x), (3,112)

%(xu e("‘k+iI3k)x _ xu e(~.—iB;.>x), (3,113)

In (3.112) und (3.113) stehen Lösungen der Differentialgleichung, denn es sind
spezielle Linearkombinationen der Lösungsbasis (3.96). Sie sind auch reell, wie die
folgende Rechnung unter Beachtung der Eulerschen Formel e‘? = cosq: + isintp
zeigt:

| §(x" eh" + x" en‘) = %x" e°‘k"(e‘+"k" + e—‘5k") = x" e"‘~" cos (ßkx) (3.114)

und

I (x" eh‘ — x" J") = -217-x“ e‘k"(e‘I’k" — e““‘~") = x" M’ sin (fikx). (3.115)

Auf diese Weise entstehen insgesamt aus (3.96) n reelle Lösungen. Diese bilden sogar
eine Basis, denn man kann zeigen, daß ihre Wronskische Determinante für alle
x ungleich null ist. Die allgemeine reelle Lösung entsteht aus der reellen Basis durch
Linearkombination‚ wobei nunmehr die n beliebigen Konstanten reell sein müssen.

‘) In der Literatur wird die zu z konjugiert komplexe Zahl oft durch 2* bezeichnet.
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Beispiel 3. 7:

y” + 4y’ + 13y = 0. (3.116)
Der Ansatz y = e“ liefert die charakteristische Gleichung i.’ + 4}. + 13 = 0 mit
den Lösungen Z, = -2 + 3i, ‚I; = ——2 - 3i und den zugehörigen Vielfachheiten

~ l1 = 1, l2 = 1. Das ergibt die komplexe Basis
e(—2+3i)x’ e(—-2—3i)X.

Für den Übergang zur reellen Basis bilden wir in (3.117) einerseits die halbe Summe,
also

%(e’“ c3" + c4‘ e‘3"‘) = <5 e‘2" (cos 3x + isin 3x + cos 3x — isin 3x)
c4” cos 3x,

und andererseits mal halbe Dzflerenz, also I

%(e‘2-‘ e“ — c4" e“°“) = 31i—e“" (cos 3x + i sin 3x — cos 3x + i sin 3x)

= 6-2’ sin 3x.

Somit lautet die allgemeine reelle Lösung von (3.116)

y = C1 e-Z" cos 3x + C2 e‘2" sin 3x.

Beispiel 3.8 (Fortsetzung von Beispiel 3.6, Fall 2): Der Übergang von der komplexen
Basis (3.102) zur reellen Basis führt zu

e“" cos (wt), e“" sin (wt).

Also kann im Falle ö’ — wä < 0, die allgemeine reelle Lösung der Differential-
gleichung (3.77) mit den Abkürzungen (3.100) in der Gestalt

y(t) = C, e"" cos (wt) + C2 e“" sin (wt) (3.118)

angegeben werden.

Der Anwender formt das Ergebnis (3.118) meist noch um. Hierzu fasse man das Zahlenpaar
(C1, C2) als kartesische Koordinaten eines Ortsvektors r einer (x1, x2)-Ebene auf:

r = C1 e, + Czez. (3.119)

Division von (3.119) durch den Betrag |r| = JG,’ + C22 ergibt den folgenden Vektor mit dem ab-
soluten Betrag 1:

r C‘ + C’ (3120)e e_ ‚

i" Jene: ‘ Jene: ’

Die Spitze des Ortsvektors (3.120) liegt also auf dem Einheitskreis (Mittelpunkt: Koordinaten-
ursprung; Radius gleich 1; Bild 3.1). Bei Beachtung der Einführung von Kosinus und Sinus am Ein-

Bild 3.1
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heitskreis kann der Einheitsvektor Tr; aus (3.120) in der Gestalt

TE? =cos¢pe, + singe; (3.121)

angegeben werden. ‚

Aus (3.120) und (3.121) folgt

C1 C2 .

e; = cosqr, T = smq), (3.122)Jcf+cg \/Cf-+—C§

d. h.,

C1 = A cosqz, C2 = A sinzp, (3.123)

wobei A = \/Cf + c; gesetzt wurde. Einsetzen von (3.123) in (3.118) ergibt y(x) = A F" {eos (p

cos (wt)+ sin q; sin (wr)} und damit aufgrund der Additionstheoreme für trigonometrische Funktionen
TE

y(t) = A e“" cos (wt — tp). Setzt man in = —q: oder (p; = —ap + ——‚ so erscheint die allgemeine
Lösung von (3.77) in der Gestalt 2

y(x) = A e“" cos (wt + (pl) (3.124)

oder y(t) = A e“" sin (wt + 972).

~
x- Aufgabe 3.12: Man bestimme eine reelle Basis des Lösungsraumes der Differential-

gleichung aus der Aufgabe 3.9.

Aufgabe 3.13: Ist die Aussage: „Als Basis für den n-dimensionalen komplexen
linearen Raum der Lösungen von (3.65), (3.66) mit (3.107) kann auch die reelle
Basis genommen werden.“ richtig?

-x
-

«x
» Aufgabe 3.14: lst die Aussage: „Man erhält die allgemeine reelle Lösung der Diffe-

rentialgleichung (3.65), (3.66) mit (3.107), indem man in (3.98) alle Konstanten
reell wählt.“ richtig?

* Aufgabe 3.15: Von der Diflerentialgleichung X + 112x = 0 sind alle diejenigen Lö-
sungen gesucht, die den folgenden Randbedingungen genügen:

a) x(0) = 1, x(:}) = 0, b) x(0) = 1, x(1) = 0, c)x(0) = 0, x(1) = O.

3.3.6. Ansatzmethode zur Herstellung einer partikulären Lösung

Es wird die gewöhnliche lineare inhomogene Differentialgleichung n-ter Ordnung
mit konstanten Koeffizienten

a„y"”(x) + a‚._1y‘“‘“(x) + + a1y’(x) + ao.v(x) = g(x) (a..#=0) (3-125)

untersucht, wobei das Störglied g(x) die spezielle Struktur

| g(x) = (b0 + blx + + b„‚x"‘) e“ (b„‚ # O) (3.126)

besitzt. Die Konstanten a0, a. , ..., a„‚ be , b, , ..., b,,,, q dürfen auch nicht-reell sein.
Wir suchen die allgemeine Lösung y(x) = y,,(x) + y,,(x) von (3.125); im vorher-

gehenden Abschnitt wurde gezeigt, wie y„(x) konstruiert werden kann. Jetzt wird eine
spezielle Methode zur Bestimmung einer partikulären Lösung y‚(x) entwickelt.
Grundlage hierfür ist der

S.3.12 Satz 3.12: Für die Dzflerentialgleichung (3.125) mit (3.126) führt der Ansatz

y„(x) = (Bo + B.x + + B,,.x"') e"‘x' I (3.127)
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stets zu einer speziellen (partikuläreiz) Lösung. Zur Bestimmung von l des Ansatzes
(3.127) ist die zur zugehörigen honzogenen Diflerentialgleichung

ü„yi."’(x) + tI,.-x)»'1{"”(x) + + ax)'{.(X) + 0oy».(x) = 0 (3-128)

(der Index h weist auf die Homogenität der Dflerentialgleichung (3.128) hin) gehörige
charakteristische Gleichung '

a,,/'." + a,,_1}."‘1 + + a1/'. + a0 = 0' (3.129)

hinzuzuzielzen. Ist die Zahl q des Stärgliedes (3.126) keine Lösung von (3.129), so ist
I = O zu setzen. Wenn jedoch q eine Lösung der Gleichung (3.129) ist, so ist l gleich der
Vielfachheit dieser Lösung q zu setzen. Zur Bestimmung der B0, ..., B„‚ setzt man

den Ansatz (3.127) in die Diflerentialgleichung (3.125) ein, dividiert anschließend beide
Seiten durch e“, ordnet danach nach Potenzen von x und führt schließlich einen K0-
effizientenuergleich durch. Es ergibt sich ein lineares Gleichungssystem zur Bestimmung
von Bo, ..., B‚„.

Zusatz zu Satz 3.12: Im Ansatz (3.127) sind alle (unbekannten) Koeffizienten B0,
B1 , ..., B‚„ auch dann mitzuführen, wenn im Störglied (3.126) einige der (bekannten)
Konstanten b0, ..., b,,,_1 gleich null sein sollten (vgl. hierzu später Beispiel 3.15).

Zum Beweis von Satz 3.12 setzt man den Ansatz (3.127) in (3.125) ein und zeigt,
daß die Koeffizientendeterminante des Gleichungssystems für die Koeffizienten
Bo, ...„ B‚„ stets ungleich null ist, so daß es immer genau eine Lösung für B0, B„,
gibt. I

Beispiel 3.9: Es soll eine partikuläre Lösung von

y” — 2y’ + 2y = 2x2 e‘ (3.130)

ermittelt werden. Die charakteristische Gleichung der dazugehörigen homogenen
Differentialgleichung hat die Lösungen /'.,_2 = 1 i i ä: 1, also ist hier der Ansatz

yp = (B0 + 5.x + B3x2)e"' (3.131)

zu machen. Wir setzen (3.131) in (3.130) ein und erhalten — wenn wir links e" aus-

klammern und gleich nach x-Potenzen ordnen —

(Bzxz + Blx + B0 + 2B2) e’ = 2x7 e". (3.132)

In (3.132) wird nach Division durch e“ der Koeffizientenvergleich durchgeführt.
Er liefert schließlich B; = 2, B, = 0, B0 = —4 und damit y, = (——4 + 2x’) e‘.

Beispiel 3.10: Es ist die allgemeine Lösung von

3y”’ —— 12y’ = 18x‘ + 16x (3.133)

gesucht. Wegen 37.3 — 12/‘. = 0 ist /‘.1 = 0, /".2 = 2, 7.3 = —2. Hier ist der Wert von q
aus (3.126) gleich 0 und damit gleich der Lösung /‘.1 = 0 (Vielfachheit l1 = 1) der
charakteristischen Gleichung. Also ist hier der Ansatz

yp = (Bo + Blx + Bzxz) x (3.134)

zu machen. Einsetzen von (3.134) in (3.133) liefert nach dem Koeffizientenvergleich
schließlich B2 = —%‚ B, = ——§—, B0 = ——% und damit

y = C, + C3 e“ + C363‘ — —§—x3 -— %x’ — %x.

Beispiel 3.11: Gesucht ist eine partikuläre Lösung y„(t) von

‚f‘ + 26} + cog)‘ = be‘"’1’ (0 < Ö < w,,,w1 > 0,17 reell). (3.135)

5 Weuzel, Gew . Diff. 1
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Wegen Am = -6 i iw (w = \/wt’, —— 62) [siehe (3.83)] und ö > 0 ist q = im, keine
Lösung der charakteristischen Gleichung. Folglich wird der Ansatz

y„ = Bo e'"’z' (3.136)

in (3.135) eingesetzt und anschließend durch e‘“’1‘ dividiert. Es ergibt sich

—w}B„ + Zöiwßo + wäBO = b. (3.137)

Gemäß Satz 3.12 ist nunmehr ein Koeffizientenvergleich durchzuführen. Dieser ist
hier jedoch trivial, da auf beiden Seiten von (3.137) ein Polynom nullten Grades
steht. Das Ergebnis des Koeffizientenvergleichs ist damit bereits die Gleichung (3.137).
Auflösung von (3.137) nach B0 ergibt

1J b(wä — wf — Zdwli)
B = . = ,

° —wf + 26w11 + wä (wä — auf)’ + 462m}
(3.132)

wobei mit dem konjugiert komplexen Wert des Nenners erweitert wurde, um einen
reellen Nenner zu erhalten. Wir setzen (3.138) in (3.136) ein und erhalten das Ergebnis

b(wä — w} — Zöwli) am“
(tug — (uf)2 + 4(§zwf '

Für den Anwender soll (3.139) noch in der trigonometrischen Darstellung angegeben werden.
Für den ersten Nenner aus (3.138) gilt

yp(f) = (3-139)

tog — w} + 2130111 = — m? + 201.911‘ e” = \"(co§ — elf)’ + 4620)} e”
mit

cotx-mä-wl wb'0 - 3140zéwl , Oel <.\<,. (. )

gefordert werden kann, da der Imaginärteil 26m1 > 0 ist. Folglich ergibt sich schließlich

b e‘i"‘ gyp(g): e""1’. k (3.141)
\/(wfi — wf)2 + 462(1)}

Aufgabe 3,16: Man führe Beispiel 3.11 im Falle Ö = 0, wg > 0, w) > 0 durch und setze hierbei
wo # ml voraus. Ist Formel (3.141) auch jetzt noch gültig? Welchen Wert nimmt x in dieser Formel
dann gegebenenfalls an’?

Aufgabe 3.17: Man führe Aufgabe 3.16 für den Fall durch, daß wo = w, > 0 vorausgesetzt wird.

Aufgabe 3.18: Man bestimme eine partikuläre Lösung y„(x) der Difierentialgleichung
5

2y" + 5y’ = c2 x (3.142)

Aufgabe 3.19: Man bestimme eine partikuläre Lösung y„(x) der Differentialgleichung
‚ 5

2y" + 5y’ = e 7” (3.143)

Die Möglichkeit der Anwendung von Satz 3.12 wird erweitert durch den

Satz 3.13: Hat in der Dlflerentialgleic/11/11g (3.125) das Sriirgl1'edg(x) die Gestalt

g(x) = (b0 + b‚x + + b,,,‘x’") e“ cos fix (b„‚ # 0, a, ß reel!) (3.144)

oder

g(x) = (b0 + 171x + + b,,,x'") e" sin (3x (bnx # 0, x, ß reell) (3.145)
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und sind alle'Koe/‘fizienten

ao,...,a,,,bo,...,b,,,reell, (3.146)

so kann eine partikuläre Lösung y„(x) von (3.125)

im Fall (3.144) durch _1'„(x) = Re (Y,(x)), (3.147)

im Fall (3.145) durch y„(x) = Im (Y„(x)) (3.148)

angegeben werden, wobei Y„(x) eine parrikuläre Lösung von

a„Y‘"’ + + a0Y= (b0 + + b‚„x'")e"" mit q = o: + if} (3.149)

ist. ,

Zum Beweis bildet man von beiden Seiten der Differentialgleichung (3.149) einer-
seits den Realteil und andererseits den Imaginärteil und benutzt (3.146). I

Beispiel 3.12: Gesucht ist eine partikuläre Lösung y„(x) von

y" + 4_v’ + 8y = 20 sin 2x. (3.150)

Gemäß Satz 3.13 bestimmen wir zunächst eine partikuläre Lösung Y„(x) von

Y” + 4Y’ + 8Y = 20 e2“. (3.151)

Da die Lösungen der charakteristischen Gleichung im z —2 i 2i lauten, machen
wir den Ansatz Y = B0 e“, setzen ihn in (3.151) ein und erhalten nach Division des
Ergebnisses durch e“

20 _

4(1 + 2i) _

W obei mit 1 — 2i erweitert wurde (warum?) Damit ist nach Satz 3.13

y„ = Im (YD) = Im ((1 — 2i) (cos 2x + isin 2x))

= —2cos2x + sin2x

—4B„ + 880i + BB0 = 20, d. h. B0 = 1 — 2i,‘

eine partikuläre Lösung von (3.150).

Beispiel 3.13: Gesucht ist eine partikuläre Lösung y„(t) der Diflerentialgleichung
der erzwungenen gedämpften Schwingung für eine harmonische äußere Kraft:

j‘ + 26;‘ + wäy = b cos wit (0 < Ö < wog», > 0,b reell). (3.152)

Ehe wir (3.152) lösen, erweitern wir die in Beispiel 3.4 angegebenen Modelle a) und c).

a) Im Beispiel 1.1 wird jetzt nicht nur die Reibung berücksichtigt; der Befestigungs-
punkt der Feder an der Wand wird nunmehr beweglich gestaltet und im Rhythmus
z = z(t) bewegt. Infolgedessen wirkt auf das Teilchen zusätzlich die Kraft F(t)
= kz(t)‚ und damit lautet die Differentialgleichung mic’ + a)’: + kx = F(t).

c) 1m elektrischen Schwingkreis wird die Rolle der äußeren Kraft von der Spannung

U(t) einer Stromquelle übernommen: Lij + Rt] + ~16-q = U(t).

Gemäß Satz 3.13 ist zunächst eine partikuläre Lösung Y„(t) von Y + ZÖY + wäY
= b e‘“’x’ zu bestimmen. Dies ist bereits — mit y anstatt Y- im Beispiel 3.11 geschehen.
Wir lesen somit aus (3.139) ab:

b i202 (mg — (of — Zéwli) e“"\'. (3.153)
’ iW ‘
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Für eine partikuläre Lösung der Differentialgleichung (3.152) erhält man daher
wegen (3.147)

b{(cuä — w?) cos(w1t) + 2c3a)1 sin {(910}
t = R Y t = 3.154y.( ) e( .‚( )) (wä _ „m. + 46,0)? < )

Benutzt man in (3.153) anstatt (3.139) jetzt (3.141), so erhält man für (3.154) die Gestalt

b cos(w1t — x) (3.155)
y(t)=Re(Y(f))= L.

p D \/(wä — u)f)2 + 4620)}

Für o: ergibt sich hierbei aus (3.140) unter Beachtung der Definition des Arkuskotangens die Dar-
stellung '

wg — auf
cc = arccot .

20m,
(3.156)

Ist das Störglied eine Linearkombination solcher Teilstörglieder, wie sie in den
Sätzen 3.12 und 3.13 behandelt werden, s0 löst man die Differentialgleichung gemäß

Satz 3.14: Gegeben seien die r linearen in/tomagenert Differentialgleic/uingen n-ter
Ordnung

a„_v""’(x) + a„-ly‘""’(x) + + a‚y’(x) + aoy(x) = g9(x) (a,, =k 0)

(g=1,...,r), (3.157)

die sich nur in den Stärgliedern unterscheiden, während die linken Seiten der Dzfle-
rentialgleichungen übereinstimmen. Eine partikuliire Lösung von (3.157) sei

y„(x) (g :1,...,r), (3.158)

wobei der Index in (3.158) auf das Störglied gg(x) in (3.157) hinweist. Für die Diffe-
rentialgleic/zung

I <?.,y‘”’(x) + a.._1y"'""(x) + + aiflx) + ”0}’(x) = X’ €gé’o(x), (3-159)(‘=1

wobei also das Störglied gleich einer Linearkombinalian aller Störglieder aus (3.157)
ist, kann dann eine partikuläre Lösung durch

l y(x) = ‚um x G; c.y.<x> (3160)

angegeben werden.

Zum Beweis ist (3.160) in die Differentialgleichung (3.159) einzusetzen. l

Beispiel 3. J4: Gesucht ist eine partikuläre Lösung y„(x) von

y" + 2y’ + 2y = 4cosx — 3 sin x. (3.161)

Zunächst ist wegen der Sätze 3.14 und 3.13

Y” + 2Y’ + 2Y = e“ (3.162)

zu behandeln. Da die Lösungen der charakteristischen Gleichung /11,; = -1 i i =!: i

lauten, setzen W11’ Y = Bo e” in (3.162 ein und erhalten schließhch B0 = —(1 — 21).
V 5



3.3. Homogene und inhomogene lineare Differentialgleichungen n-ter Ordnung 69

Damit ergibt sich gemäß (3.160)

yp = 4Re(Yp) — 3Im(Yp)

= 4Re [(i——2—i)(cosx + isin Ü] — 31n1[(i——%—i)(cosx + isinx)
5 5 ‚ ' 5 5 '

—— x —1 — x——s1nx=_c sx s ..4cos +8s‘nx+6cos 3' 70 +'
5 5 5 5 m‘

Aufgabe 3.20: Gesucht ist eine partikuläre Lösung der Differentialgleichung

2y" + sy’ = 3 cosh x). (3.163)

Aufgabe 3.21: Man bestimme eine partikuläre Lösung der Differentialgleichung

+ 45¢ + 5x = (sinht) cos t.

Bemerkung 3.1: Eine partikuläre Lösung von

a„y"" + + agy = c, cos fix + c2 sin fix (a,,, ..., au, cl, c2 reelLß > O) ‚ (3.164)

hat gemäß den Sätzen 3.12 bis 3.14 die Struktur

‚v, = {c1 Re [B0(cos fix + i sin ßx)] + c2 Im [Bo(Cos fix + i sin f3x)]} x‘

= {[61 Re (B0) + c2 Im (B„)] cos fix + [—c1 Im (Bo) + c2 Re (BÜ)] sin fix} x’.

Bezeichnet man die letzten beiden eckigen Klammern — sie stellen reelle Zahlen dar — durch K1

und K2, so ist

yp = {K1 cos fix + K; sin fix} x‘ (K, , K; reell), (3.165)

wobei I = 0 zu setzen ist, falls ifi die charakteristische Gleichung nicht löst; andernfalls ist [gleich
der Vielfachheit der Lösung iß der charakteristischen Gleichung. Wer das Rechnen mit komplexen
Zahlen möglichst vermeiden will und bereit ist, gegebenenfalls längere Rechnungen auszuführen,
kann beim Lösen von (3.164) die Formel (3.165) als Ansatz benutzen. Es sei betont, daß auch dann
beide Konstanten K1, K; anzusetzen sind, wenn c, oder c2 gleich null sein sollte.

Bemerkung 3.2: Ist (3.125) mit (3.144) oder (3.145) zu lösen, ist jedoch die Voraussetzung (3.146)
verletzt, so ist der Satz 3.13 nicht anwendbar. In diesem Falle drücke man cos fix und sin fix durch
all” und e“5" gemäß

1 _ l
cos fix = 3 (e‘5‘ + rm"), sin ßx = -E(e‘(”‘ —- e“5") (3.166)

(vgl. (3.114), (3.115)) aus und führe die Lösung mittels Satz 3.14 auf Satz 3.12 zurück.

Gemäß Satz 3.3 sind wir in der Lage, auch die allgemeine Lösung von inhomogenen
linearen Differentialgleichungen herzustellen und schließlich Anfangswertaufgaben
zu lösen. Wir behandeln dazu abschließend das

Beispiel 3.15: Gesucht ist" die Lösung der Anfangswertaufgabe

5€ — 4x + 4x = t3, x(l) = ä, 5c(l) = —{;. (3.167)

Zunächst wird die zu (3.167) gehörige homogene Differentialgleichung 56h — 4.t,,
+ 4x,, = 0 gelöst. Der Ansatz xh = e“ führt zur charakteristischen Gleichung
i.’ — 4}. + 4 = 0. Die beiden Lösungen dieser quadratischen Gleichung fallen zu-

sammen. Es ergibt sich l1 = 2 mit der Vielfachheit ll = 2. Infolgedessen kann wegen
(3.96) eine Basis des zweidimensionalen Lösungsraumes durch e”, tel‘ angegeben
werden. Also ist

x„(t) = C.e2* + Cztez’. (3.168)
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Die rechte Seite t3 von (3.167) hat die Struktur von (3.126) mit m = 3 und q = 0.
Da q = 0 keine Lösung der charakteristischen Gleichung ist, wird für eine partikuläre
Lösung von (3.167) wegen Satz 3.12 der Ansatz [man beachte den „Zusatz zu Satz
3.12“)

x‚(r) = B0 + B‚t + B312 + Bat’

gemacht. Einsetzen von (3.169) in (3.167) ergibt

2B; + 613,: — 4(B1 + 2B2: + 3B3t2) + 4(B0 + B1t+ Bzt’ + B313): 13.

Wird die linke Seite dieser Gleichung nach Potenzen von t geordnet, so erhält man

48313 +(—12B3 + 483)!’ + (683 — 882 + 4B1)t + (2122 — 481+ 4B0) = x3.

(3.170)

(3.169)

Gemäß Satz 3.12 erfolgt jetzt in (3.170) ein Koeffizientenvergleich, d. h., die Koeffi-
zienten gleicher t-Potenzen der beiden Seiten von (3.170) werden einander gleich
gesetzt. Dabei ergibt sich das folgende gestaffelte lineare algebraische Gleichungs-
system fiir die Unbekannten B0, ..., B3:

483 = 1

4B2 ’— 12B3 = 0
(3.171)

4B, — 8B2 + 683 = 0

480 — 481 + 232 = 0.

Das Gleichungssystem liefert der Reihe nach

l 3 « 9 3
B3 = Z, B; = I,’ B, = E, B0 = T. (3.172)

Einsetzen von (3.172) in (3.169) führt zu der folgenden partikulären Lösung:

9
—I+

3 3 1

x,,(t) = K + 8 -4-t2 + :13. (3.173)

Wegen Satz 3.3 ergibt sich die allgemeine Lösung der Diflerentialgleichung (3.167)

3 ' 3
x(t) = x,,(z) + x,,(z) = C1 e“ + Cztez’ + K + %t + 7:2 + ätä (3.174)

(3.174) ist noch den Anfangsbedingungen anzupassen. Einsetzen von (3.174) in
die Anfangsbedingungen aus (3.167) ergibt das folgende- Gleichungssystem für C1

und C2: '

ezCl + eZCZ = —2,

2e2C, + 3e’C2 = -4. (3.175)

Aus (3.175) folgt C, z —2e’3, C2 = 0 und somit für die Lösung der Anfangswert-
aufgabe (3.167)

3 9 3x(t) = —-2e""1’ + I + §r + -442 + —{4—t3.

Aufgabe 3.22: Gegeben ist die Randwertaufgabe

5c" + 4x = 2t‚ x(O) = O, x(b) == O,

wobei die Konstante b aus dem Intervall O < b g 7T entnommen wird. Für welche b

(3.176)
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gibt es genau eine Lösung der Randwertaufgabe, für welche b gibt es mehrere und
für welche b keine Lösung?

Aufgabe 3.23: Man löse die Anfangswertaufgabe für y(x)
5
4 ‚y” + 3y’ — 4y = 12x + 25 cos (2x), y(0) = y’(0) = 2.

3.3. 7. Eulersche Differentialgleichung

Im letzten Absatz von 3.3.3. wurde mitgeteilt, daß bei Variablen Koeffizienten
eine Herstellung der Lösungsbasis durch elementare Funktionen im allgemeinen nicht
möglich ist. Das gelingt jedoch beim Vorliegen einer Eulerschen Differentialgleichung.
Zunächst nennen wir die

Definition 3.6: Die Eulersche Diflerentialgleichung hat die Gestalt

C‚.x"y""(x) + C.._xx"“‘,v‘"""(x) + + C1xy'(x) + Co}’(x) = g(x)

(a. + 0)‚
wobei c‚„ c„‚1 ‚ cl , co Konstanten sind.

(3.177)

Es handelt sich also um eine lineare Differentialgleichung n-ter Ordnung (3.44),
wobei der Koeffizient a„(x) (v = 0, ..., n) die spezielle Struktur cvx“ (e„ = const) hat.

Zur Lösungstheorie der Eulerschen Differentialgleichung benötigen wir die

Definition 3.7: Unter der Potenz x" (x > 0, i. beliebig kanzplex) versteht man

x" = cm”. ‘ (3.178)

Beim Lösen der homogenen Eulerschett Differentialgleichung

c.x"y£.'"(x> + c.-1x"*‘y1."‘“(x) + + c1xyi.(x) + Co)’n(X) = 0 (x > 0)
(3.179)

geht man von dem bekannten Ansatz y„(x) = e“ für die Lösung der linearen homo-
genen Differentialgleichung mit konstanten Koeffizienten aus und

ersetzt x durch ln x (x > 0), (3.180)

man macht also jetzt den Ansatz y„(x) = e"‘"", d. h. wegen Definition 3.7

y„(x) = x‘ (x > 0). (3.181)

Im Falle x < 0 wird (3.181) durch ‘

y„(x) = (—x)" (x < 0) (3.182)

ersetzt. Der Ansatz (3.181) führt tatsächlich zum Ziel, denn nach dem Einsetzen
von (3.181) in (3.179) liefert die Division durch x‘ die charakteristische Gleichung

C„Ä(Ä — l)(Ä — 2)...(Ä — [n — 1]) + C,,_1Z(Z —. l)(Ä — 2)...(Ä — [n — 2])

+ + 0211M — l) + e11 + co = 0. (3.183)

Hat die Gleichung n-ten Grades (3.183) r(§ n) voneinander verschiedene Lösungen
Ä, , ..., Ä, mit den zugehörigen Vielfachheiten ll ‚ ..., l, ‚ so ist wegen des Fundamental-
Satzes der Algebra (Satz 3.9) l1 + I; + + l, = n.

D.3.6

D.3.7
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An die Stelle der Tabelle (3.96) tritt bei der Eulerschen Differentialgleichung eine
Tabelle, die aus (3.96) durch die Ersetzung (3.180) entsteht:

x71, xix ln x, x‘1(ln x)2, ..., x’U(ln x)’1“
x’72, x12 ln x, x"1(ln x)’, ‚..‚ x"2(ln x)’2"

xir, x’? ln x, x‘r(1n x)’, ..., x’~(ln x)’v“

(X > 0). (3.184)

Die Funktionen aus (3.184) bilden eine Basis des n-dimensionalen Lösungsraume
der homogenen Eulerschen Diflerentialgleichung (3.179). '

Sind die c„, co in (3.179) alle reell, so ist es sinnvoll, von (3.184) zu einer reellen
Basis überzugehen. Wir verzichten auf eine allgemeine Darstellung und demonstrieren
es nur an folgendem

Beispiel 3.16: Es soll die allgemeine Lösung von

+ 3xzy” xy’ —— + 4y = 0 (x > 0) (3.185)

ermittelt werden. Der Ansatz y z x" führt zur charakteristischen Gleichung
2.3 — 2/". + 4 = 0 mit den Lösungen 7.1 = -—2‚ 112 1 + i, /13 = 1 —- i. Damit lautet
eine Basis des Lösungsraumes von (3.185)

mx3).

x4, x“',x1“. (3.186)

Wie im Abschnitt 3.3.5. bilden wir aus den beiden letzten Elementen einerseits die
. 1

halbe Summe und andererseits —i mal halbe Differenz:

;(x1;: + x14) 2 (xi + x-i) = %(c1|nX + e-11nx)

N
|x

w
|>

<

[cos(1nx) + isin (lnx) + cos (lnx) — i sin (1nx)]

= x cos (ln x),

%(x1¢i _ X14) : %(ei1n.\- _ e-iiirx) = xsin(1nx)_

Daraus ergibt sich die allgemeine Lösung von (3.185) zu

1':
1 ‚

C1 y + Cgx cos (lnx) + Csx sin (lnx). (3.187)

Die Übertragung vom Satz 3.12 zur Bestimmung der partikulären Lösung der
inhomogenen Differentialgleichung mittels (3.180) auf die Eulersche Differential-
gleichung ergibt den

Satz 3.15: Für die Eulersc/1e inhomogene Dtfleremialg/eic/mng (3.177) mit der spe-
ziellen Srrukzur des Störg/iedes g(x)

| g(x) = (b0 + b, In x + + b„‚(ln x)"‘) x“ (b‚„ =l= 0) (3.188)

ff}/Ir! der Ansatz

| _1>„(x) = (B0 + B, In x + + B‚„(1n x)'") x"(ln x)‘ (3,189)

stets zu einer partikulären Lösung.
Zur Bestimmung von I des Ansatzes (3.189) ist die zur zugehörigen homogenen

Diflerentialgleichung (3.179) gehörige charakteristische Gleichung (3.183) hinzu-
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zuziehen. lst die Zahl q des Störgliedes (3.189) keine Lösung von (3.183), so ist l = 0.
Wenn jedoch q eine Lösung der Gleichung (3.183) ist, so ist l gleich der Vielfachheit
dieser Lösung q. Zur Bestimmung der B0, ...‚ B„‚ setzt man den Ansatz (3.189) in
die Differentialgleichung (3.177), (3.188) ein, dividiert anschließend beide Seiten
durch x", ordnet danach nach Potenzen von In x und führt schließlich bezüglich der
Potenzen von lnx einen Koeffizientenvergleich durch. Es ergibt sich ein lineares
Gleichungssystem zur Bestimmung von B0 ‚ ...‚ B„‚.

Der Satz 3.13 kann im Zusammenhang mit der Eulerschen Differentialgleichung
herangezogen werden, indem man dort a, durch c„x” (c, reell) und in (3.144), (3.145)
sowie der rechten Seite von (3.149) x durch lnx (x > O) ersetzt. Auch Satz 3.14
bleibt gültig, wenn dort a, durch c„x" ersetzt wird.

Beispiel 3.1 7: Gesucht ist die allgemeine Lösung der Eulerschen Differentialgleichung

xzy” — 2y = x2 +% (x > 0). g (3.190)

Für die zugehörige homogene Differentialgleichung x2y,(,'~ — 2y,, = 0 führt der Ansatz
y„ = x‘ zur charakteristischen Gleichung M}. — 1) — 2 = 0. Diese hat die Lösungen
Z1 = 2, A2 = -1. Folglich ist

1
y,,(x) = Clxz + C2 y. (3.191)

Zur Bestimmung einer partikulären Lösung y‚(x) der inhomogenen Eulerschen Diffe-
rentialgleichung (3.l90) können wir — wie bereits oben erwähnt — den Satz 3.14
heranziehen. Wir bestimmen hierzu partikuläre Lösungen der beiden Teilaufgaben

x’y{’ — Zy, = x’ (x > 0), (3.192)

m; — 2y.. = g (x > o) (3.193)

und addieren anschließend die Ergebnisse:

.}’p(x) = }’1(-7‘) + yn(x)- (3-194)

Die rechte Seite der Differentialgleichung aus (3.192) hat die Struktur des Störgliedes
(3.188) mit m = O und q = 2. Nun ist q = 2 eine Lösung der charakteristischen
Gleichung mit der Vielfachheit l = 1. Also ist mit (3.189) für y‚(x) der folgende
Ansatz zu machen:

y‚(x) = Box’ In x. (3.195)

Einsetzen von (3.195) in (3.192) ergibt

B0x2(2 In x + 3) — 2B0x’ In x = x2

und damit nach Division durch x’
3Bo = 1, d. h. Ba = g. _ (3.196)

Dieses Ergebnis wird in (3.195) eingesetzt. Es ergibt sich die folgende partikuläre
Lösung von (3.192)

y‚(x) = äx’ ln x. ‚ (3.197)

Die rechte Seite der Dilferentialgleichung aus (3.193) hat die Struktur des Stör-
gliedes (3.188) mit m = 0 und q = — 1. Da q = —l eine Lösung der charakteristi-
6 \Venze1,Gew.Diff.1
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sehen Gleichung mit der Vielfachheit l = l ist, ist für eine partikuläre Lösung von
(3.193) der Ansatz

1 .

y"(x) = B0 —)—C-In x (3.198)

zu machen. Einsetzen von (3.198) in (3.193) ergibt schließlich für die Unbekannte Bo
den Wert ‚

B0 = —%,-. (3.199)

Aus (3.199) und (3.198) folgt

1 1
y,,(x) = —— -3- §1n x. (3.200)

Setzt man (3.197) und (3.200) in (3.194) ein, so ergibt sich eine partikuläre Lösung
y„(x) von (3.190). Addieren von (3.191) führt dann schließlich zu der folgenden
allgemeinen Lösung der Differentialgleichung (3.190):

y(x) = ä-(xz — In x + C,x2 + C2 (3.201)

Aufgabe 3.24: Man löse die Anfangswertaufgabe

xzy" + xy’ + y = y<1)= 3. y'<1> = -2.

Aufgabe 3.25: Man bestimme die allgemeine Lösung von

i256 + t)? + x = 4c0s(lnt).

3.3.8. Variation der Konstanten

In diesem Abschnitt soll gezeigt werden, wie man eine partikuläre Lösung y„(x)
der expliziten gewöhnlichen linearen inhomogenen Differentialgleichung n—ter Ord-
nung [mit im allgemeinen variablen Koeffizienten] herstellen kann, falls die allgemeine
Lösung y„(x) der zugehörigen homogenen Differentialgleichung bekannt ist:

J’h(x) = C1)’n1(X) + C2yh2(x) + + CuJ’nn(x): (3-62)

wobei die Funktionen

)’h1(X)a yn2(x)> - - o > yh„(x) (3-63)

eine Basis (ein Fundamentalsystem) des Lösungsraumes bilden.
Wie bei einer linearen Differentialgleichung erster Ordnung lassen wir uns von der

Struktur der Formel (3.62) anregen, ersetzen die dortigen Konstanten durch Funk-
tionen u1(x), ..., u,,(x) und versuchen diese so zu bestimmen, daß sich eine partiku-
läre Lösung yp(x) der inhomogenen Differentialgleichung

>:3„°»(x)y<"> = g<x>. a.<x> e o (x e my (3.51)

ergibt (Variation der Konstanten):

,v..(x) = 141(96) y..1(x) + u2(x)y:.2(x) + + u,.(x)y....(x). (3.202)

Beim Einsetzen von (3.202) in (3.51) ergeben sich recht unübersichtliche Ausdrücke.
Kann man dies vermeiden? Ja! Es sind doch n Funktionen u„(x) (v = 1, ..., I1) zu
bestimmen. Hierzu gibt es aber nur die einzige Bedingung (3.51). Wir haben damit
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die Freiheit, von uns aus noch n — 1 weitere Forderungen zu stellen. Wir werden
diese natürlich so wählen, daß der Rechnungsgang möglichst Vereinfacht wird.

Wählt man für die n — 1 Bedingungen die ersten n —— 1 Gleichungen des im
folgenden angegebenen Systems (3.203), so zeigt die Rechnung — sie werde hier
übergangen w, daß sich beim Einsetzen von (3.202) in (3.51) die letzte Gleichung
aus (3.203) ergibt:

u;<x)y.‚<x> + uaixiyizoc) + + u;<x>y..„<x> s o

u:<x)y;..<x) + u;(x).»~;.2<x> _ + + ur,|(x)y{1n(x) s o

u;<x>y;"‚"’<x> + u;<x>y§;;"><x) + + z«;<x>y§,';‘2’<x> s o <3-203)

i g(x)
u;<x>y.E"r"<x) + u;(x>.v;";"<x> + + u;<x) y§,".""(x> = a (x) .

Dieses System ist ein lineares Gleichungssystem (kein Differentialgleichungssystem)
für u}, ..., u‚’‚. Seine Koeffizientendeterminante ist die Wronskische Determinante
der Basis (3.63) und damit für alle x ungleigh null. Damit liefert (3.203) genau eine
Lösung u’,, ...‚ u;,. Durch unbestimmte Integration ergeben sich Funktionen ul,
..., u,,. Auf die Integrationskonstante kann jeweils verzichtet werden. Man setzt
M1 ‚ ..., u„ in (3.202) ein und erhält eine partikuläre Lösung von (3.51).

Beispiel 3.18: Gesucht ist die allgemeine Lösung von

If 7- A ~ 'y +y=m(—%<x<%). (3.204)

Die charakteristische Gleichung Ä’ + 1 = Omit den Lösungen 2.,‘, = iiführt schließ-
lich zu yh = C1 cosx + C2 sinx und gemäß (3.202), (3.203) zu y, = u,(x) cosx
+ u2(x) sin x mit

u’1cosx+u§sinx=0,

u((—sin x) + u; cosx = Cos x . (3.205)

Aus (3.205) folgt u; = —2tan x, u’, = 2 und damit u, = 2ln (cos x), u, = _2x.

Also ist die allgemeine Lösung von (3.204) y = C, cos x + C2 sinx +
2 cos x In (cos x) + 2x sin x.

Aufgabe 3.26: Gesucht ist die allgemeine Lösung von

ll 3 r 2 = _¢_'/
‘v + ‘V + y 1 + e"

Beispiel 3.19: Gegeben sei die Randwertaufgabe aus Beispiel 1.11

EJw”” = p(x) (E! = const), w(0) = 0, w’(0) = 0, w(l) = 0, w’(l) = 0,

(3.206)

wobei jetzt p(x) eine beliebige stetige oder auch nur stückweise stetige Funktion ist. Die allgemeine
Lösung w„(x) der zu (3.206) gehörigen homogenen Differentialgleichung lautet

w..(x) = C, + C295 + 63x’ + 64x3. (3.207)

Eine partikuläre Lösung w„(x) von (3.206) liefert gemäß (3.202) die Formel

Wptx) = u1(x) + u2(x)x + "am x’ + u4(x)x’‚ (3.208)

wobei die Ableitungen u’‚(x)‚ ...‚ u’„(x) wegen (3.203) dem folgenden linearen Gleichungssystem
6».
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genügen: u; + xu’, + x214; + x314; = 0,11; + 2x113’ + 3x211; = 0, 2113’ + 6x14; = 0, 6a; = pg? .

Hieraus folgt

170c) xp(x) , x2p(x) , x’p(x)
"4 ‘ 6EJ’ "3 ’ ’ 251 ’ “Z ‘ 251 ’ “X ' ” 6EJ ' (3209)

Wir benötigen von den rechten Seiten jeder Gleichung aus (3.209) eine Stammfunktion, wobei auf
die Integrationskonstante verzichtet werden kann, weil nur eine einzige partikuläre Lösung gesucht
ist, Die Stammfunktion kann jeweils als bestimmtes Integral mit der variablen oberen Grenze x

angegeben werden. Die Integrationsvariable nennen W11’ i, weil die Bezeichnung x bereits für die
obere Integrationsgrenze verbraucht ist. Die Wahl der festen unteren Integrationsgrenze ist nicht
vorgeschrieben; wir wählen hierfür 2 = 0.

X Z

1 l "

u1(x) = - 6—EJ- I >?°p(>?)d>‘r, um = E] .?2p(f)d.i‚
' n o

x

l l "

u3(x) = — 757 f xpoadx, u4(x) = 357- J pmdx. (3.210)

_ o o

Wir setzen (3.210) in (3.208) ein und erhalten
x

1 . . .

W„(x) = T] f (x — x)3 p(x) dx. (3.211)

0

Wenn man zu (3.211) w|‚(x) aus (3.207) addiert, so‘ ergibt sich die allgemeine Lösung von (3.206):
x

l
w(x) = _C1 + Czx + C3X2 + C4x3 + ä {(16 — i)3p(i) di. (3.212)

5

Setzt man (3.212) in die Randbedingungen aus (3.206) ein, so erhält man mit (3.211) für C1 , ..., C4
die folgenden Gleichungen:

C1 = 0, C2 = O, I2C3 + PC. = —wp(I), 2IC3 + 312C. = —w‚'(l). (3.213)

Aus (3.213) ermitteln wir C1 , ...‚ C4 und setzen sie in (3.212) ein. Die Rechnung ergibt

1 ‚ 1 ‚

w(x) = l7 (—3w„(l) + lw‚(l)) x2 + T; (—lw,,(l) + 2wp(l)) x3 + w„(x)

und damit
X I '

w(x) = f G(x, 2) 170?) d)? + f G(x,£)p(.f)dfc,
0

also x

l

w(x) = j G(x‚i)p(i)d5c (3.214)
0

mit der zur Randwertaufgabe (3.206) gehörigen Greenschen Funktion (Einflußfunktion)

G _ _ 1 (—2x3i3 + 3Ix3i’ + 3lx2)I'3 - 612x222 + 313x32 —— I323) 3215
Ü’ X) _ 613E] 1(—22'c“x3 + 3l)‘c3x2 + 31222? —— 6l222x2 + 3l3ix2 — 13x2), ( ' )

wobei in (3.215) der obere Teil für 0 g 2 g x g I und der untere Teil für 0 g x g f: g I zu be-
nutzen ist.

Aufgabe 3.27: Man zeige, dal3 die im Falle p(x) = p = const von (3.214) gelieferte Lösung mit
derjenigen aus dem Beispiel 1.11 übereinstimmt.
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3.3.9. 6-Distributionen

Eine Reihe physikalischer Erscheinungen erfordert für ihre mathematische Be-
schreibung neue mathematische Objekte, die sich vorn Funktionsbegriff wesentlich
unterscheiden und mit ö-Distributionen bezeichnet werden. Um einige Grundgedanken
hierüber darlegen zu können, betrachten wir das

Beispiel 3.20: Im Beispiel 3.19 soll jetzt die Belastung des Balkens durch eine Einzelkraft der Größe F,
(senkrecht zur Balkenachse) an der Stelle x = xv (0 < xv < l) hervorgerufen werden. Man schreibt
in diesem Fall anstatt (3.206)

EJw"" = Fv6(x — xv) w(O) = 0, w’(0) = 0, w(l) = O, w’(l) = O. (3.216)

(3.216) ist keine gewöhnliche Differentialgleichung im Sinne von Definition 1.1, denn auf der rechten
Seite von (3.216) steht keine Funktion. Das hängt damit zusammen, da13 auf der rechten Seite der
Difierentialgleichung (3.206) eine Streckenlast steht. Wie sieht nun die zu einer Einzelkraft Fv ge-
hörige Streckenlast aus? Ein Erklärungsversuch lautet etwa: „Die zu einer Einzelkraft Fv an der
Stelle xv gehörige Streckenlast p(x) ist null für alle x mit 0 g x g I, ausgenommen die Stelle .\-„;
an der Stelle xv ist p(x) gleich unendlich,“ Man erkennt, daß man dies nicht als Definition einer
Funktion p(x) anerkennen kann. Was ist zu tun? Es muß definiert werden, was man unter der Lösung
w(x) von (3.216) versteht, wobei auf der rechten Seite keine Funktion, sondern die d-Distibution
Ö(x — xv) steht.

Definition 3.8: Unter der Lösung des Problems (3.216) versteht man eine Funktion w(x), die nach
folgender Vorschrift ermittelt wird:

1. Man ersetzt F„Ö(x — xv) aus (3.216) durch die Streckenlast .

pg=const für x„—sgxgx„+s
MK) _ {O sonst (0 g x g l), 6'217)

wobei die durch die Streckenlast (3.217) hervorgerufene Gesamtkraft‘ gleich Fv sein soll, also

I x„_+a

fpoc) dx = J po dx = 26170 = a, (3.218)
o Xv*E

d. h.

po = z. (3.219)

2. Man löst die Randwertaufgabe (3.206), wobei p(x) (3.217), (3.219) zu entnehmen ist. Die er-

haltene Läsung sei durch w5(x) bezeichnet.

3. Man bildet lim wgx), wobei der Grenzübergang folgendermaßen vorgenommen wird: Bei‘ fest-
:-» + 0

gehaltenem x strebt s —> +0 und gleichzeitig pg —> + 0o derart, daß beim Grenzübergang in (3.219)
_ ‘ Fv fest bleibt.

Für die in der Definition 3.8 unter Punkt 2 eingeführte Funktion w£(x) liefert die Formel (3.214)
mit (3.217), (3.219)

I x‚+z.

w‚(x)= l G(x‚i)p(i)di = 5% J G(x,i)dX'.
0 Xv-e

(3.220)

Führt man in (3.220) den in der Definition 31.8 unter Punkt 3 genannten Grenzübergang aus, so

beachte man, da13 Fv ein konstanter Faktor ist und daß bezüglich a -+ +0 die Regel von 1’Hospita1

D.3.8
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anwendbar ist. Die Rechnung ergibt

Zy+K x.+I
1 l Ö

w(x) = ow,(x) = Fvzgxfo E; f G(x, i) d} = FVTEETO E f G(x‚ i) d)":

Xv- 3 Xv‘ I’

F
= T" lim (G(x, xv + E) — G(x, xv — e) (—1)) = FvG(x, xv). (3.221)

a—. + o

Aus dem Ergebnis (3.221) kann man die folgende Deutung der Greenschen Funktion ablesen: Die
zur Randwertaufgabe (3.206) gehörige Greensche Funktion (3.215) ist bezüglich x als Durchbiegung
des Balkens deutbar, wobei die Belastung in einer Einzelkraft mit dem Zahlenwert l besteht, die an

der Stelle x = ‚i des Balkens angreift.

3.4. Zusammenfassung bisheriger Ergebnisse

Die Zusammenfassung der bisherigen Ergebnisse in Gestalt des Ablaufplanes auf
Seite 7S zeigt, in welchen Fällen die dargelegten Methoden zur Lösung der Differential-
gleichungen führen. Sie zeigt aber auch, wo die entwickelten Methoden versagen.
Deshalb wird in Kapitel 5 (Bd. 7/2) als weitere Lösungsmethode die Entwicklung
in Potenzreihen dargelegt.

Weiterhin erwähnen wir, daß das Verfahren von Runge-Kutta auch für Anfangswertaufgaben
bei expliziten Differentialgleichungen n-ter Ordnung (3.2), (3.3) durchführbar ist. Man wird hierzu
gemäß Abschn. 4.l. zunächst (3.2) in ein System von Difierentialgleichungen je erster Ordnung
(4.8) verwandeln, die Anfangsbedingungen (3.3) in Anfangsbedingungen für (4.8) transformieren
und danach das Runge-Kutta-Verfahren für explizite Differentialgleichungssysteme benutzen, das
im Abschn. 4.4. angegeben wird.



D.4.1

4. Gewöhnliche Diiferentialgleichungssysteme

Es sei ein System gegeben, dessen gesuchter Bewegungsablauf durch m gesuchte
Funktionen x‚(t), ...‚x„‚(t) beschrieben werden kann. Der Elektrotechniker denkt
in diesem Zusammenhang etwa an elektrische Schaltungen und identifiziert x1(t),
...,x,,,(t) beispielsweise mit Stromstärken oder auch Spannungen. Der Ingenieur
hat beispielsweise den durch eine Funktion w = w(x, t) gegebenen Schwingungs-
Verlauf eines Balkens vor Augen, entwickelt w bezüglich x in eine Fourierreihe,
und er identifiziert x‚(t), ..., x„‚(t) mit den m ersten von der Zeit t abhängigen Fourier-
koeffizienten dieser Entwicklung, wobei die Darstellung von w(x‚ t) um so genauer
ausfällt, je größer m gewählt wird. Ein Mechaniker identifiziert x10), ...,x„‚(t)
vielleicht mit den verallgemeinerten Koordinaten q„ und den verallgemeinerten
Impulsen pk eines Systems starrer Körper. Der Ökonom wird an ein dynamisches
Verflechtungssystem denken. Die mathematische Formulierung der das System
beherrschenden Gesetze führt oft auf ein gewöhnliches Diflerentialgleichungssystem
für x,(t), ..., x„‚(t). Das Anliegen dieses Kapitels besteht daher darin, wesentliche
Begriffe und Aussagen, die wir für Differentialgleichungen kennengelernt haben, auf
Differentialgleichungssysteme zu übertragen. t

4.1. Allgemeine Bemerkungen

Wir übertragen zunächst die Definition l.l auf Systeme.

Definition 4.1.: Mittels m Funktionen F,‘ (‚u = 1, ..., m), die jeweils von n + m + I unabhängigen
Veränderlichen abhängen, wird durch

F„(x‚yi‚y’„.-.„vi""‚y2.y;‚mich“)....‚Y‚„‚y{‚.„.‚yf‚7"’) = 0

(n‚+n2+...+n„,=n; ,u=1,.. (4.1)

ein gewöhnliches Diffu ' ' ' ' ' ( ’ ' Dsfu .' ' ' ' ' ‘ ' Dx'fle-
r tialgleichungen) für ein Funktianen-m-tupel (y1(x‘)‚ y2(x), ..., y„‚(x)) gegeben. Konzmen die Ablei-
tungen höchster Ordnung yifli), y(2"2), ..., yfgm’ jeweils in mindestens einer der m Gleichungen (4.1) vor,

so heißt das System bezüglich yl van n1-ter Ordnung, bezüglich y; von nz-ter Ordnung, ..., bezüglich
y„. von (n,,,)-fer Ordnung. Die Summe n1 + n; + + n„‚ = n gibt die Ordnung des Systems an.

.‚ m)

i Beispiel 4.1: Das System (1.31) ordnet sich dem System (4.1) unter; man kann es angeben durch

F„(T‚ X. 55, f, L555. Z. Z’, i) = 0 (M = 1, 2, 3) (4-2)
mit i

F, = mit" + BQJ}; F; = m)? — BQX; F3 = (4.3)

Eine Verwechslung der Masse m aus (4.3) mit dem Numerierungsindex m aus (4.1) ist v» ohl nicht
zu befürchten. Die Werte für m, n1, ..., n„„ n aus (4.1) lauten im Falle (4.2), (4.3) m = 3, n, = n2

= n; = 2 n = 6.

Zum System (4.1) kann ein äquivalentes konstruiert werden, das nur Ableitungen erster Ordnung
enthält. Im allgemeinen Fall ergeben sich verhältnismäßig unübersichtliche Formeln; wir zeigen
deshalb den Übergang zum genannten äquivalenten System nur am

Beispiel 4.2: Führt man im Beispiel 4.1 der Reihe nach für die 6 Funktionen

X0), 550L y(t), J"/(F). 1(1)» 5U) (4-4)

die Abkürzungen

mt ). .vz(I ). ys(t ). y4(t). ys(t>. M!) (4.5)
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ein, so ergibt sich aus (4.2), (4.3) ein System von drei Difierentialgleichungen für (_v;(t), ..., y6(t)),
nämlich -

m)": 1L BQY4 = Ü; "U74 ‘ BQJ’: = Ü; mit = Ü. l (4-5)

Aus (4.4) und (4.5) folgen die drei Differentialgleichungen

‘ }71—)’z=0; y3—)’4=0s 4‘-’s—.Vs=0» ' (417)

Die sechs Diflerentialgleichungen (4.6), (4.7) sind (4.2), (4.3) äquivalent, denn es folgen einerseits
(4.6), (4.7) mittels (4.4), (4.5) aus (4.2), (4.3) und andererseits kann man umgekehrt mittels (4.7)
in (4.6) für y2‚y4‚y6 der Reihe nach _¢,,y3,)>5 schreiben; also ergibt sich wegen (4.4), (4.5) wie-
derum (4.2) (4.3).

Wir diskutieren nun eine umgekehrte Fragestellung. Wir gehen von einem Differentialgleichungs<
System für (_v1(x), .. ., y„‚(x)) aus, das nur Ableitungen erster Ordnung enthält. Es sei in der folgenden
expliziten (d. h. nach y; ‚ y; aufgelösten) Gestalt gegeben:

J". = fv(x.y1.»--,y,..) (v =1,...,m). ‚ (4.8)

Es soll nunmehr gezeigt werden, wie man unter gewissen Voraussetzungen ~ diese werden erst im
Laufe der Untersuchung genannt — aus dem System (4.8) eine Differentialgleichung m-ter Ordnung
für y1(x) herstellt. Wir denken uns eine Lösung (y‚(x), ..., y„‚(x)) von (4.8) in die erste Gleichung
(v = 1) von (4.8) eingesetzt. Danach soll die erhaltene Identität nach x differenziert werden. Die
verallgemeinerte Kettenregel führt zu

‚_a/. m er. _a/. m M.
”*' ‘ ox 2;. any“ ox +..§.$.’*' (*9)

Da fi, bekannt ist, steht auf der rechten Seite von (4.9) eine bekannte Funktion; sie werde mit
g2(x, y,, ..., y,,,) bezeichnet: '

yi’ = g2(x‚h‚ ...‚y„.)- (4.10)

Die Gleichung (4.10) werde nunmehr ebenso behandelt, wie es soeben mit der ersten Gleichung
aus (4.8) geschehen ist. Es ergibt sich '

mh =ga(x‚yi‚...‚y‚„). (4.11)

In dieser Weise fortfahrend gelangt man schließlich zu

y‘{”'“ = g„.-i(x‚y1‚...‚y‚„). (4.12)

‚v‘{"’ = g„.(x‚ h, --.. y...). (4.13)

Wir stellen die Ergebnisse ,,(4.8) im Falle v = 1“ und (4.10) bis (4.12) zusammen:

y’; = f1(xIyls -~-sym)

y{= g2(x‚h. ....y...) (4.14)

y‘{""’ = g...-;(x,y1, ..-.ym).

Es sei betont, daß (4.13) in (4.14) nicht aufgenommen wurde. Nun nennen wir die bereits angekün-
digte Voraussetzung:

Das System der m — 1 Gleichungen (4.14) sei nach ‚v2, ..., y„‚
eindeutig aufläsbar. (4.15)

Das Ergebnis der Auflösung heiße

h = ¢2(x.y1.y’,. .-..y‘,”“"), ---..vm = %..(x.y1,y’,. ....y&”""). (4.16)

Schließlich setzen wir (4.16) in (4.13) ein und erhalten eine Difierentialgleichung m-ter Ordnung
für y‚(x):

.v‘{"‘ = gm(x.y1,<p2(x,y1.....y§”“").--.,<P...(X.y;.....y§’"‘“)),
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kurz

y‘{"’ = <15(x,y1. -~,,v‘,"‘“”). (4.17)

Beispiel 4,3: Aus dem Diiferentialgleichungssystem für das Funktionenpaar (y,(x)‚ y2(x))

y’1=' h + yz, s"; = y; + ‚v2 + X 14.18)

— es ist also jetzt m = 2 — soll eine Diflerentialgleichung zweiter Ordnung für y1(x) hergestellt werden.
Gemäß der allgemeinen Theorie ist die erste Gleichung von (4.18) nach x zu diflerenzieren, und
danach sind im Ergebnis für y; und y; jeweils die rechten Seiten von (4.18) einzusetzen:

y’1’ = 2(y, + h) + x. (4,19)

(4.19) entspricht dem System (4.10) bis (4.13) der allgemeinen Theorie. Die erste Gleichung aus (4,18)

y’, = y; + ‚v; (4.20)

entspricht dem System (4.14) der allgemeinen Theorie und ist infolgedessen jetzt nach y, aufzulösen
und in (4.19) A diese Gleichung entspricht im jetzigen Zusammenhang (4.13) — einzusetzen. Es ergibt
sich somit für die Differentialgleichung (4.17) im vorliegenden Beispiel

y;' = 2y; + x. (4.21)

Aufgabe 4.1: Man zeige, daß beim Versuch, aus dem nach i1, ...‚)'/5i aufgelösten System (4.6),
(4.7) eine Differeutialgleichung sechster Ordnung für y1(t) herzustellen, die Voraussetzung (4.15)
nicht erfüllt ist.

Wir fahren in der allgemeinen Theorie fort. Hat man die Difierentialgleichung n-ter Ordnung
(4.17) für y‚(x) gelöst, so setze man die nunmehr bekannte Funktion in (4.16) ein. Der Beweis dafür,
daß die auf diese Weise ermittelten Funktionen y1(x), . . . , y,,(x) Lösungen von (4,8) sind, sei hier fiber-
gangen.

Beispiel 4.4 (Fortsetzung von Beispiel 4.3): Die allgemeine Lösung der Differentialgleichung (4.21)
kann mit den Hilfsmitteln aus Kapitel 3 hergestellt werden:

y1(x) = C1 + C; e“ —‘ :1-(x + x2). (4.22)

(4.16) ergibt sich hier durch Auflösen von (4.20) nach y„ alsoy, = y; — y, . In diese Gleichungist
gemäß der allgemeinen Theorie (4.22) einzusetzen. Man erhält

y2(x) = —C1 + C2 e“ + %(x’ — x -1), (4.23)

4.2. Existenz und Unität der Lösungen

In Analogie zu Satz 3.1, Definition 3.1 und Satz 3.2 notieren wir

Satz 4.1: Sind die Funktionen f1(x,y1‚ ...‚j1„‚), ...‚f„‚(x‚ yl, ..., y,,,) des Systems

y; = fv(x=y1, ym)

in ihrem gemeinsamen Definitionsbereich B nicht nur stetig, sondern existieren dort

(v = 1, ...‚m)

auch ihre partiellen Ableitungen 5?/—f„(x, yx , . . . ‚ y,,,) (v = 1, ..., m; ‚u = l, ..., m) und

sind diese dort stetig, so ist die Eiiislenz und Unität (Einzigkeit) der Lösung der An-
fangswertaufgabe, bestehend aus dem System

y; = f„(x‚y1‚..-‚y...)‚ (x.y1, z-4,y...)6B (v = 1. ...‚m) (4-24)

und den m Anfangsbedingungen

.V1(Xo) = yio, .V2(Xo) = 720: ---9 J’m(xo) = yml) (425)
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gesichert, falls (x0, ym, ..., y,,,o) e B ist. Für die Lösung von (4.24), (4.25) gilt y„(x)
= lim _v„„(x) (Ix — xol < r, r hinreichend klein, v = 1, ...‚'m), wobei yvk(x)

k —v3C

(v =1.....m;k = 0‚1‚2—..)gemäßy.o(x)E m.

)‘vk(-75) = yv0 ‘i’ _i/X‘: y1.k—1(t)s-~-:ym.k—1(t)) d’ ("=1a -~-ymik =1‚2‚
*0

zu berechnen ist (Verfahren von Picard-Lindeliif ).

Definition 4.2: Man sagt

<.Ö„(x‚ y1, ..., y‚„, C1,..., C,,,)=0 (v: 1, ..., m;C‚ ‚..., C„‚Scharparameter)
(4.26)

gibt relativ zu B die allgemeine Lösung (das allgemeine Integral) von (4.24) an, wenn

die durch Auflösen des Gleichungssystems (4.26) nach y„ ..., y„‚ entstehenden dif-
ferenzierbareti Funktionen y„(x) (11 = 1, ..., m) Lösungen von (4.24) sind und wenn

diese nicht mit weniger als m solchen Parametern dargestellt werden können.

Satz 4.2: Sind die Voraussetzungen von Satz 4.1 erfüllt, so ist jede Lösung von (4.24)
in der allgemeinen Lösung enthalten.

4.3. Explizite lineare Differentialgleichungssysteme

4.3.1. Definition

Ausgehend von der Definition 3.2 wird man in naheliegender Weise zur Definition
von expliziten linearen Differentialgleichungssystemen geführt. Das Wesentliche
tritt bereits bei der Behandlung des Falles n = 2 deutlich hervor. Gemäß der Defi-
nition 3.2 gehen wir deshalb von der expliziten linearen Diflerentialgleichung zweiter
Ordnung füry = y(x) aus. Sie lautet mit einer naheliegenden Bezeichnungsänderung

004))“ + 7706))’ + C00)’ = 304L 610€) #= 0 (X6 D)- (4.27)

Definition 4.3: Man erhält aus (4.27) ein explizites gewöhnliches lineares Differential-
gleichungssystem van m Gleichungen für das Funktionen-m-Iupel (y,(x), ..., y,,,(x)),
wobei das System bezüglich y„ (‚u = 1, ..., m) jeweils von zweiter Ordnung ist, insge-
samt also ein System der Ordnung 2m vorliegt, auffolgende Weise:

a) Man ersetzt y(x)‚y'(x)‚y”(x),g(x) durch die folgenden einspaltigen Matrizen
(Spaltenvektoren) :

y1(x) y1(x)‘ J*’{(x) g1(x)
y<x)= z y’<x>= z y"<x>= z g(x>= a .

y.„(x) y’„.(x) yl; x) g„.(x)
(4.28)

b) Man ersetzt a(x)‚ b(x)‚ c(x) durch quadratische Matrizen mit m Zeilen und m Spalten,
wobei die Elemente im allgemeinen Funktionen von x sind.‘

/a1, ...a1‚„\ bu
A(x>=(: z B(x)=(s

am, ...a,„‚„ b,,,,

/C11 - clmb1,,, ..

E ), C(x) =K . E (4.29)
bmm Cm: cmm

D.4.2

S.4.2

D.4.3
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c) Die wegen a) und b) entstehenden Produkte zwischen (4.28) und (4.29) sind im
Sinne der Matrizenmultiplikation aufzufassen.

d) In (4.27) wird a(x) 4 0 jetzt durch det A(x) # 0 ersetzt.

Sind alle Elemente des Störgliedes g(x) gleich null, so spricht man von einem homo-
genen linearen System, andernfalls von einem inhomogenen linearen System.

Beispiel 4.5: (1.31) ist ein Beispiel für ein System aus der Definition 4.3. Mit der
Bezeichnungsänderung

X30) 20)x1(t) = x(t), x2(t) = y(t), (4.30)

lautet es ausführlich

171561 + BQfcz = 0, mix‘; — BQX1 = O, M1553 = 0. (4.31)

Schreibt man gemäß der Definition 4.3 das System (4.31) in der Matrizenschreibweise

Aii + B)‘: + Cx,= g, (4.32)

‘m0 0 0 BQO 000 0

A=(0 m 0), B=(—BQO 0), C=(000), g=(0). (4.33)

0 0 m O 0 0 O00 0

Beispiel 4.6: Das Difierentialgleichungssystem aus (1.35) ist ein gewöhnliches lineares
Differentialgleichungssystem von m Gleichungen für das Funktionen-m-tupel
(x'‚(t)‚ ...‚ x„,(t)), wobei das System bezüglich x„ (‚u = 1, ...‚ m) jeweils von erster
Ordnung ist, insgesamt also ein System der Ordnung m vorliegt. Mit den Bezeich-
nungen aus (4.28) und (4.29) und mittels der aus m Zeilen und m Spalten bestehenden
Einheitsmatrix E lautet das System (1.35) in Matrizenschreibweise

Aik+ (B—E)x= —g.

Es handelt sich in (4.34) um ein explizites System, falls det A + O gilt.

so ist

(4.34)

4.3.2. Lösungsstrulttur

Es gelten zu 3.3.2. und 3.3.3. analoge Sätze. Wir beschränken uns auf die Über-
tragung der Sätze 3.3 und.3.7.

Satz 4.3: Die allgemeine Lösung y(x) eines expliziten linearen inhomogenenß}"Steins ist
gleich einer partikulären (speziellen) Lösung yp(x) des inhomogenen Systems plus der all-
gemeinen Lösung y„(x) des zugehörigen homogenen Systems.‘

I y(x) = y„(x) + y..(x>. (4.35)

Satz 4.4: Die Lösungen y„(x) eines expliziten linearen homogenen Diflerentialglei-
clzungssystems n - m-ter Ordnung (in der Definition 4.3 ist n = 2, im Beispiel 4.6
ist n = 1) bilden einen n - m-dimensionalen linearen Raum, d. h. die allgemeine Lösung
y„(x) kann in der Gestalt

I y..<x> = glqmx) 14.36)

angegeben werden, wobei

3/m(X), yn2(x). ~ yh. ..m(X) (4-37)
eine Basis des Lösungsraumes und C1 , ‚ C„„‚ beliebige Konstanten sind.
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Im allgemeinen ist die Herstellung der Basis durch elementare Funktionen nicht
möglich. Dies gelingt jedoch, falls die Koeffizientenmatrizen nur konstante Elemente
haben. Wie in der Definition 4.3 führen wir die Theorie im Falle n = 2 vbr. Die Me-
thode läßt sich aber sofort auch auf die Fälle n = 1, 3, 4, 5, übertragen. In den
Beispielen und Aufgaben wollen wir auch den Fall n = l betrachten,

4.3.3. Lineare h D Difl‘en---f’ '_,‘ ' ' g „Mm mit l
Koeffizienten

Mit den Bezeichnungen (4.28), (4.29) liege das explizite lineare homogene Diffe-
rentialgleichungssystem

Ay’,,’ + Byf, + Cyh = 0, detA * 0, (4.38)

vor, wobei alle Elemente der Matrizen A, B, C konstant sein sollen. Eine unmittel-
bare Ubertragung des Ansatzes (3.67) durch y = e“ ist abzulehnen, da ein Spalten-
vektor y nicht dem Skalar e“ gleich sein kann. Es liegt nahe, jetzt den Ansatz

| y = y(x) = d e“, d 4 o; (4.39)

zu machen, wobei d eine einspaltige Matrix ist, die die m unbekannten, im allgemeinen
komplexen Konstanten d1, ...‚ d„‚ besitzt. Einsetzen von (4.39) in (4.38) führt zur
Matrizengleichung

A/11d e“ + Bid e” + Cd e“ = 0. (4.40)

Wie beim Übergang von (3.68) zu (3.69) ist es möglich, die Matrizengleichung (4.40)
beiderseits durch e“ zu dividieren. Weiterhin soll die einspaltige Matrix d aus-
geklammert werden; da es sich um eine Matrizengleichung handelt, muß genauer
gesagt werden, dal3 d nach rechts auszuklammern ist, weil in der Matrizengleichung
Faktoren i. allg. nicht vertauscht werden dürfen. Damit folgt aus (4.40)

(A/‘.2 + Bl + C) d = (T. (4.41)

(4.41) stellt in Matrizengestalt ein lineares homogenes Gleichungssystem von m

Gleichungen für die m Unbekannten d1 , . . . , dm dar. Ist die Koeffizientendeterminante
von null verschieden, so gibt es nur die triviale Lösung d1 = a‘, = = dm = 0,’d. h.
d = 0; dieser Fall wurde jedoch bereits im Ansatz (4.39) ausgeschlossen, weil er
lediglich zur uninteressanten trivialen Lösung y,,(x) E 0 des Differentialgleichungs-
systems führt. Folglich ist nur der Fall

| det (A22 + Bl + C) = 0 ‚ (4.42)

interessant. Die Gleichung (4.42) heißt in Analogie zu (3.69) charakteristische Glei-
chung. Auf der linken Seite von (4.42) steht ein Polynom in i. vom Grade 2m.

Es sei Äk eine Lösung der charakteristischen Gleichung (4.42) mit der Vielfachheit
I,‘ = 1. Einsetzen von 1.„ in (4.41) führt zu

(A22 + B/Ik + C) d = 0. (4.43)

Aus dem bisherigen Rechengang folgt, daß die Determinante von A/lf + B1,‘ + C
gleich null ist. Infolgedessen hat das durch (4.43) gegebene lineare homogene Glei-
chungssystem unendlich viele Lösungen. Man kann zeigen, dal3 die Lösungen d von
(4.43) einen eindimensionalen Lösungsraum bilden, von dem ein Basiselement mit
d, bezeichnet werde. Setzt man im Ansatz (4.39) für A den Wert ‚I,‘ und für d die ge-
fundene einspaltige Matrix d,‘ ein, so ergibt sich das Basiselement

I Yk(-7‘) = dk 31*‘ (4-44)

des zu /1,‘ gehörigen ‚eindimensionalen Lösungsraumes von (4.38).
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Eine unmittelbare Übertragung vom Satz 3.10 ist nicht möglich. Im allgemeinen
ist der Sachverhalt jetzt komplizierter. Ist 7.„ eine Lösung der charakteristischen
Gleichung mit der Vielfachheit 1,, > l, so kommt man nur dann mit dem Ansatz
(4.39) aus, wenn die Lösungen d aus (4.43) einen Ih-dimensionalen Lösungsraum
bilden, von dem eine Basis mit d,” (v = 1, ...‚ 1k) bezeichnet werde. An die Stelle des
einen Basiselements aus (4.44) treten nun die I,‘ (linear unabhängigen) Basiselemente

I m06) = du 6"” (v = 1, -~~, 1k)» ‘ (445)

Sie spannen den zu 2k gehörigen Ik-dimensionalen Lösungsraum von (4.38) auf. Sollte
jedoch der Lösungsraum für d die Dimension r mit r < l„. besitzen, so stehen in (4.45)
nur r (linear unabhängige) Basiselemente

I Yu..(x) = dhve“ (v = 1. r). (4-46)

obwohl der zu 7.„ gehörige Lösungsraum von (4.38) auch im jetzigen Fall die Dimen-
sion 1„ besitzt. Die dann in (4.46) noch fehlenden I,‘ — r Basiselemente kann man durch
den komplizierteren Ansatz

| y(x) = (am) + amx + + d"~")x’~“) em . (4.47)

ermitteln. Die bei d in Klammern stehenden Zahlen sind lediglich der Numerierung
dienende Indizes, eine Verwechslung mit der Ableitungsbildung ist in diesem Zu-
sammenhang nicht zu befürchten. Der Ansatz (4.47) wird in (4.38) eingesetzt; danach
ist durch eh‘ zu dividieren, nach Potenzen von x zu ordnen und schließlich ein Koef-
fizientenvergleich bezüglich x durchzuführen. Es ergibt sich ein lineares homogenes
Gleichungssystem von Ik-m Gleichungen für die Ik~m Elemente der 1„ einspaltigen
Matrizen aus (4.47). Man kann zeigen, daß der zu diesem Gleichungssystem gehö-
rende Lösungsraum die Dimension 1k besitzt. Wir sind daher in der Lage, die in
(4.46) noch fehlenden Basiselemente in der Gestalt

y‚„(x) = ((1,22) + d§3,)x + + d§!:"’x’*“) e“ (v = r + 1,1‘) (4.48)

anzugeben. Mit (4.44) bzw. (4.45) bzw. (4.46), (4.48) sind damit die Basiselemente
(4.37) beim Vorliegen des Systems (4.38) ermittelt. .

Wir behandeln drei Beispiele, wobei wir zur Reduzierung des Rechenaufwandes
in den ersten beiden n = 1 wählen.

Beispiel 4.7: Es ist die allgemeine Lösung von

7,1: 2.7i ‘i’ 8Y2
(4.49)

y’; = 3yi — 8y; 2 8

zu bestimmen. In der Matrizengestalt von (4.49), d. h. y’ = Ay mit A = (3 _8)
machen wir den Ansatz y = d e“ und erhalten M e“ = Ad e“, also

_ _ (2—i)d‚+ 8d2=0, _ d,
(A }.E)d—0, d.h.. 3d1+(_8_A)d2=0 [d—(d2)].

. (4.50)

Die charakteristische Gleichung det (A — IE) = 0, d. h. Ä’ + 61 — 40 = 0 hat die
Lösungen Ä] = 4 und 22 = -10. Für die zu Z1 = 4 und Ä; = —l0 gehörenden je-

. . . . ‚ 4
weils eindimensionalen Lösungsräume von (4.50) können als Basiselemente d, = (I)
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bzw. d2 = (_§) genommen werden. Also lautet die allgemeine Lösung von (4.49)

y1 = 4C1 e“ + 2C2 e“°"‚4 2y —_- Cl (1)e4x + C2 (—3)e-10x’ d.h.Z yz z Cl e“ _ 3C2 e_10x-

Beispiel 4,8: Zur Bestimmung der allgemeinen Lösung von

‚v3 = y; + ya,
y’; = y1 + ya, kurz: y’ = Ay (4.51)

J’; = yl ‘i’ .}'2 s

führt der Ansatz y = d e“ zum Gleichungssystem (A —— itE) d = 0 und zur charak-
teristischen Gleichung ——Ä3 + 31 + 2 = O. Diese hat die Lösungen l1 = -1 und
Z2 = 2 mit den dazugehörigen Vielfachheiten l1 = 2 und l2 = 1. Zu l1 gehört ein
zweidimensionaler Lösungsraum von (A — Ä1E)d = 0 — die Ansatzerweiterung

1 l
(4.47) ist also hier nicht erforderlich —‚ wobei als Basis d1 1 = (-1) und (I12 = ( Ü)

O ' —l
genommen werden kann. Für den zu 12 gehörigen eindimensionalen Lösungsraum

l
von (A — Ä2E) d = 0 kann als Basis d2 = 1 gewählt werden. Also lautet die allge-
meine Lösung von (4.51) 1

yl = (C1 ‘l’ C2) Ü-x ‘l’ C3 52x:

J’: = “C1 e"): + C3 32x.

y; = —C2 e“ + C3 e“.

Beispiel 4.9: Zwei Punktmassen m1 und m2 befinden sich an den Stellen 01 und O2
(01 < 02) einer Zahlengeraden in Ruhe und sind durch eine entspannte Feder
(Federkonstante c > O) verbunden. Zur Zeit t= 0 erfährt die Punktmasse m1
eine Anfangsgeschwindigkeit v0 in Richtung der Zahlengeraden. Gesucht sind die
Bewegungen x1 = x1(t) und x2 = x2(t), wobei x1 bzw. x2 den orientierten Abstand
der Masse m1 bzw. m2 vom Punkt 01 bzw. 02 messen. Mathematisch gesprochen
ist folgende Anfangswertaufgabe zu lösen:

M1551 + c(x1 — x2) = 0, 1712562 + c(x2 — x1) = 0, (4.52)

x1(0) = O, x1(0) = v0, x2(0) = O, .\"2(0) = 0. (4.53)

(4.52) lautet in Matrizenschreibweise

_ AX + BX + Cx = 0 (4.54)
mit

~13“ s.» H33)’ ca-21» x=<:::>~

Der Ansatz x = d e“ führt zu

(A/".2 + C)d = o. (4.56)
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Für die charakteristische Gleichung erhält man

det (A12 + C) = O, d. h. 7.3(m1m2/'.2 + c(m, + m2)) = 0. (4.57)

Mit der Abkürzung

a, = (453)
1 2

ergeben sich die Lösungen von (4.57) zu 111 = 0, 7.2 = iw, 2.3 = —iw mit den zuge-
hörigen Vielfachheiten ll : 2, /2 = 1, I3 = 1

Für Ä = Ä, = 0 entsteht aus (4.56) das Gleichungssystem Cd = 0. Es besitzt einen

eindimensionalen Losungsraum, wobei d1 = 1 eme Basis ist. Folglich ist ein zu

ll = 0 gehöriges Basiselement des Lösungsraumes des Diflerentialgleichungssystems
(4.54), (4.55)

e’-1‘ = (4.59)

Wegen I1 = 2 ist der zu A = 0 gehörige Lösungsraum von (4.54), (4.55) zweidimen-
sional. Ein neben (4.59) weiteres Basiselement ist gemäß (4.47) durch den Ansatz

x(t) = (am + amt) em = am + d"’t (4.60)

zu bestimmen. Setzt man (4.60) in (4.54) ein, so ergibt sich C(d‘°’ + d“’t) = 0 und
nach dem Koeffizientenvergleich bezüglich der t-Potenzen

Cd<°>= o und Cd“): 0. e (4.61)

In (4.61) stehen insgesamt I, -m = 2 - 2 = 4 Gleichungen für die 11 -m = 4 unbe-
kannten Elemente von d‘°’ und d“). Ein Basiselement des Lösungsraumes von (4.61)
ist bereits bekannt, denn der Ansatz x = d e“ wird wegen Ä = A1 auch von (4.60)
mit d‘°’ = d und dm = 0 erfaßt. Dieses bekannte Basiselement wird also durch

d‘‚°‚’ = und da‘; 2 angegeben. Ein weiteres (vom ersten linear unabhängiges)

Basiselement des Lösungsraumes von (4.61) wird durch d‘,°2’ = tiff =

geliefert. Folglich ergibt sich mit (4.60) ein von (4.59) linear unabhängiges weiteres
Basiselement des Lösungsraumes von (4.54), (4.55) zu

G)te"I' = z. (4.62)

Für Ä; = iw und Ä,‘ = ——iw Iautet (4.56)

(—Aw2 + C)d = o. (4.63)

Als Basis des eindimensionalen Lösungsraumes von (4.63) kann man dz = d3

= ( Z2) nehmen (rechnen Sie das unter Benutzung von (4.58) nachl). Zu
— 1

l2 = iw und 13 = —iw ergeben sich also als Basiselemente des Lösungsraumes des
Diflkrentialgleichungssystems (4.54), (4.55)

x,(t) = e“, x3(t) = e““”'. (4.64)



4.3. Explizite lineare Differentialgleichungssysteme 89

Die Funktionen aus (4.59), (4.62), (4.64) bilden eine Basis des zu (4.54), (4.55) ge-
hörenden vierdimensionalen Lösungsraumes. Wir brechen jetzt die Untersuchungen
ab, um sie im Beispiel 4.10 wieder aufzunehmen.

Aufgabe 4.2: Bestimmen Sie die allgemeine Lösung des Systems

3&1 = —2x1 + 3x2

x, = 2x1 + 3x2.

4.3.4. Übergang zur reellen Basis

Wir setzen nunmehr voraus, daß in dem Diflerentialgleichungssystem (4.38) die
Elemente der Matrizen A, B, C alle reell sind. Wie in 3.3.5. werden die reellen Basis-
elemente aus (4.44) und (4.45) bzw. (4.46), (4.48) unverändert in die neue Basis
übernommen. Ist das Element y,„(x) aus (4.44)‘), (4.45), (4.46), (4.48) nicht-reell, so

kann man zeigen, daß y,,,(x) als weiteres Element der alten Basis gewählt werden
kann, Nunmehr berechnet man wie in (3.112), (3.113) die beiden reellen Elemente
der neuen Basis

l %(y‚„(x) + man), %<y..<x> — y..<x». (4.65)

Beispiel 4.10 (Fortsetzung von Beispiel 4.9): Die beiden Basiselemente aus (4.59),
(4.62) werden unverändert in die neue reelle Basis übernommen. Im Einklang mit der
allgemeinen Theorie ist neben dem (nicht-reellen) Basiselement x‚(t) aus (4.64) auch
F0‘) ein Basiselement; dieses stimmt hier mit x3(t) aus (4.64) überein. Folglich er-
geben sich die beiden noch fehlenden Elemente der neuen reellen Basis wegen (4.65)
zu

1 mz ‚w mg _,, _ m,

7{(—m,)e r+{—m,)e m}—(-m1)c°S(wt)’

ä. Hi) — <-Z:> = <-::)<«»>~
Die allgemeine reelle Lösung des Systems (4.52) erhält man durch Linearkombination
der Basiselemente aus (4.59), (4.62) und (4.66):

x(t) = c, + c2“): + c. cos(wt) + C4(_::)sin(wt). (4.67)

In (4.67) sind C, , ..., C4 beliebige reelle Konstanten. Wir setzen (4.67) in die An-
fangsbedingungen (4.53) ein, lösen das sich ergebende lineare Gleichungssystem für
C„ ..., C4 auf und erhalten somit wegen (4.67) als Lösung der Anfangswertauf-
gabe (4.52), (4.53) [co siehe (4.58)]

(4.66)

x‚(t) = (m1t + %Z—sin (001)),

v m .

x2(t) =‘m(mit — Tlsin (m0).

Aufgabe 4.3: Im System (1.31) führe man die Funktionen p,(t),p2(t), 1730‘) durch
pl = 5c, p; = j», p, = z’ ein und bestimme von dem entstehenden System die all-

’) Man schreibe in (4.44) für y„ jetzt y“.

7 Wenze1,Gew.Diff.1
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gemeine reelle Lösung (p1,p2,p3). Was ergibt sich somit für die allgemeine reelle
Lösung (x, y, z) des Differentialgleichungssystems (1.31)?

4.3.5. Lineare inhomogene Systeme

Eine unmittelbare Übertragung vom Satz 3.12 ist zwar nicht möglich, jedoch gilt
folgender

Satz 4.5: Für das Diflerentialgleiclzungssystent

Ay” + By’ + Cy = g(x), det A + 0 (4.68)

mit den konstanten quadratischen Matrizen A, B, C und

I g(x) = (be + blx + + bsx‘) e“

(by: konstante einspaltige Matrizen), b, =i= 0 (4.69)

führt der Ansatz‘) -

| y„(x) = (B0 + B‚x.+ + B,x= + B„‚x‘“ + + B‚+‚x‘+’) e“ (4.70)

(By: unbekannte konstante einspaltige Matrizen) z)

stets zu einer partikulären Lösung. Zur Bestimmung von l des Ansatzes (4.70) ist die
zum zugehörigen homogenen System

Ayf,’ + Byf, + Cyh = O (4.71)

(der Index h weist auf die Homogenität des Systems hin) gehörige charakteristische
Gleichung

det (A22 + B}. + c) = 0 (4.72)

hinzuzuziehen. Ist die Zahl q des Stärgliedes (4.69) keine Lösung von (4.72), so ist
I == 0 zu setzen. Wenn jedoch q eine Lösung der Gleichung (4.72) ist, so ist I gleich der
Vielfachheit dieser Lösung q zu setzen. Zur Bestimmung der Bo, ..., B_,, . . . , B“, setzt
man den Ansatz (4.70) in das System (4.68) ein, dividiert anschließend beide Seiten
durch e“, ordnet danach nach Potenzen von x und führt schließlich bezüglich x einen
Koejfizientenoergleich durch. Es ergibt sich ein lineares Gleichungssystem zur Be-
stimmung der Elemente der einspaltigen Matrizen B0, . . . , B‚+‚.

Beispiel 4.11: Es soll eine partikuläre Lösung von

x, = —2x‚ + 3x2 + 12t

x2 = 2x, + 3x2 + 1 (4.73)

bestimmt werden. (4.73) lautet in Matrizengestalt .

X = Ax + g(t), g(t) = be + blt V (4.74)
mit

-2 3 so 12A=( 2 3), b0 = b, =(0). (4.75)

Der Ansatz

x„(t) = Bo + B,t (4.76)

‘) Man beachte den Unterschied zu (3.127).
z) Um die Analogie mit (3.127) hervorzuheben, wird B‘, benutzt, obwohl einspaltige Matrizen in

der Regel durch kleine Buchstaben bezeichnet werden.
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— hier ist q = 0 keine Lösung der zugehörigen charakteristischen Gleichung (vgl.
Lösung von Aufgabe 4.2) und damit ist l = 0 — wird in (4.74) eingesetzt und ergibt

B, = A31, + AB,t + bu + blt. ’ (4.77)_

In (4.77) führt der Koeffizientenvergleich zu

0 = AB, + bl,
’ (4.78)

B, = ABO + bu.

Aus (4.78) folgt mit (4.75)
3

B, = —A-1b‚ 1.. B0 z A"(B, — b0) = (" i) (4.79)
‘ 0

und damit wegen (4.76)

3 3

xp(t) = v?) + (3)1, d. 11. “mm " _ 3 + 3”
0 x2,,(t) = —2t.

Satz 4.6: Die Sätze 3.13 und 3.14 lassen sich unmittelbar auf das System (4.68) über-
tragen. »

Aufgabe _4.4: Man führe die in Satz 4.6 genannte unmittelbare Übertragung tatsächlich durch.

Aufgabe 4.5: Es ist die Lösung der Anfangswertaufgabe x, = 4x1 + x2 + 31,

x2 = ——2x, + x2 + e“, x1(0) = 0, x)(0) = T52 zu bestimmen.

4.3.6. Variation der Konstanten

Analog zu 3.3.8. kann man formulieren: Gegeben sei das explizite gewöhnliche
lineare inhomogene Difierentialgleichungssystem 2m—ter Ordnung mit im allge-
meinen Variablen Koeffizienten. von m Differentialgleichungen für die m Funktionen
y1(x)‚ y„1(x)

A(x) y” + B(x) y’ + C(:c) y z g(x)‚ det A(x) =i= O, g(x) i 0 (xe D).
(4.80)

Eine partikuläre Lösung von (4.80) kann man mit dem Ansatz

I yp(x) = 1410‘) V1110‘) + 1420‘) V1120‘) + 142m(7‘)y11‚2m(3‘) (4-81)

finden, wobei die einspaltigen Matrizen

M110‘): 35120‘): - - — n Yh. 21110‘) (4-82)

eine Basis (Fundamentalsystem) des Zm-dimensionalen Lösungsraumes des zugehöri-
gen homogenen Systems

A(x) 71'.’ + B(x) yi. + C(x) y1. = 0 (4-83)

bilden. Die Ableitungen u;(x), ...‚ u’z‚„(x) ergeben sich als Lösung des folgenden
linearen inhomogenen Gleichungssystems (A-‘z reziproke [inverse] Matrix von A):

1/1(~x)yn1(X) + 14,20‘) Yn2(x) + + 14421110‘) yh.2m(x) E 0

141(36) y§u(X) + U506) yi.z(x) + + u'z...(x)yi1.zm(x) = A"(x) g(x)- (4-84)
71v

5.4.6
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Aufgabe 4.6: Im Anschluß an Beispiel 4.10 bestimme man eine partikuläre Lösung
von

mlxl + €(x1 ‘ x2) = 75x725;

.. m m
mzxz + c(xz — x1) = T1057, (4.85)

wobei w der Gleichung (4.58) zu entnehmen ist.

4.4. Runge-Kutta-Verfahren für Diflerentialgleichungssysteme

Um das Anfangswertproblem des expliziten (nicht notwendig linearen) Dilferential-
gleichungssystems (vgl. (4.8))

yic =fit (x: Yr: ~ — «a yin): .Vk(xo) = yko (k = ls -~ w m) (4-85)

mittels des Verfahrens von Runge-Kutta zu behandeln, wird man zunächst (4.86) im
Sinne der Bezeichnung aus (4.28) durch

y’ = f(x, y), y(xo) = yo (4.87)

zusammenfassen. Man kann jetzt das Schema auf der Seite 44 benutzen, falls man
dort

‚W: f(x»‚yv)‚ kp = hf. 6k = Z?-pkg (4.33)

der Reihe nach durch

y„, f(x„‚ y„)‚ k„ = hf, 6k = 2Ä‚„k_„ (4.89)

CFSCIZI.



Lösungen der Aufgaben

m 1 7 T
l.1:a)q2; b)l; C)—2—I’q'2’—mgIcos<p—E; d)Ip=i—[A/Tn-\/E+mglcos<p.

1.2: tan e40 = :—°, tan/30 = tan (a0 + ‘

0

coszxo _ I _

u —sinag _ _ tans.) _

2 _ 1: 2 Ä z 2
l.3:x(t)=—sm —t +C=>3=——sm—+C=>C=3+—

TE 2 7: 2 n:

2 4 ’z=x(t)=3+: 1+sm(7z .

2.2: nirgends
1 3 1 3 I 7

2-33}’o(X)E0» .V1(X)=fiX. y2(A‘)='3‘x +"47x-
2-4=a), b).d).f).g)‘
2-5=a)yE —1,b)yE 2,yE 3.c)yE k7=(k = 0. :1.„.)‚d)yE 0,e)¢Ev2o,¢E -<Po-

d „

2.6:‚:’=x(y+1), -—oo<y<—1=> yfl =Jxdx+C1, —2<x><y<—1=>1njy+1J

=AT+C,,—oo<y<-1,—ua<C,<+oo==-1n(—y—1)=%+C,,—oo<C'1<+oo
„2 ,2

=>—y—1=C2e‘,C2=eCx,0<C2<+oo=>y=—1+Ce’,C=—C;,—oo<C<0.
, . . dy . y2.7:y =SlnX'Slny =>J‘ Siny = fs1nxdx+CrK7‘=ln(tan? = —cosx+C

m»: E2‘: C=1=>tan-Q-)= e-e'°°"‘%-(T>y = Zarctan (e-e‘°°"‘).

..__ _s:T2_z_ W __A/E -3;1.8-¢— A/I‘/Wu SP» Wo<¢<¢o’J\\/W2) — I dt+C=arcsm%
_ _ ‘P_ _

I z
=—,/-gT(r—t.,) mit l‘°=A[—g‘C:>4p=-—q9uSin[A/%({—Io):|, —A/—g—%+z.,<:

A/7 TL’ I W _ A/7
< g 2 +10. nterva ange.i. g .

2.9: nein.

2.10: linear, inhomogen, Überführung in explizite Gestalt möglich für ——I < x < 1.

2.11: nein. Gegenbeispiel: Aufgabe 1.3.

.. „I. c3); _ 1,:
'2.12: a)y = Ce 3 ‚ b)x = Ce 3 ‚ c)nicht1inear.

2.13: nein. Gegenbeispiel: Aufgabe Z.4c).

E ä-1 -1 U
2.14:1„(r)=ce I-', I,(t)=u(t)e L‘ mit u(t)= Re , I(t)=I,(t)+Ih(t)=T

R R
_— U U -.__

+Ce L',1(o)=o=>c=-7, I(t)=7(l—e L’).
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1 1 ——— C
2.1s:y,,(x) = c———2—,y,,(x) = u(x)—/_—w mil u(x) = /1+ x2,y(x) = 1 + .12.

„/1+x „1+ - J1+x
2.16: (2.84) ist i. allg. nicht exakt, (2.85) ist exakt.

Ö Ö
2.17: E; [x(x + 2y)] = 2x, Ö7 (x2 — y’) = 2x = Dgl. ist exakt, da B einfach zusammenhängend.

°—U—x=+2x =>U-x—3+x’ +c( )1 2+c'(y)—x2~ 1=cov)— —y—3
Öx ‘a ‘v — 3 y y E: -,-2 x h. y y 3

‚=x’-y’ 2 x’—y“ 2 =°’ . .. ..

=:- L T3 + x y=>e} + x y const (implizite Darstellung der Losung).

Ö ö
2.18: g [,u(x)(y1 — 2x — 2)] = —a—x— [;¢(x) 2y] => 21¢(x) y = 2/1’(x) y =~ u’ = /4 => ‚u = e" ist inte-

grierender Faktor.
2.19: u = ,u(x) führt nicht zum Ziel.

Ö

-£7 My) xy"] = 3; [/AU) (1 + 2x’.v’)] ä xwmfi + 3/I0’) J”) = /4(.v)4x,v’ fiy‘.u’(y) - ,v’M(,v)

d d
=0.y;o~—>7”= 7y=>1ny,14 = lnly} + c1=>,..= Cy; es genügt c=1 zu wählen: 11 =y,

1

xy‘ dx + (y + 2x’y3) dy = 0 ist exakt. -5: = xy‘: U: Txzy‘ + C(y) 2x’y3
_ ‘Z 1 Z =.v+2x2.\‘3

+ C’(y) = y + 2x2y3 2 C'(y) = y: C(y) = ,7: U(x, y) = —2—y2(x2y’ + 1). Die Gleichung

y’(x2y‘ + 1) = const ist implizite Darstellung der Lösung.

no o< + or!) eo + am’ oc„+av+ 62V az‚+ 62V ac,
. i? —=—-, ——=>—— i -j:-Z -—-——=—

ap c’ par or T Pop Op or Paper ÖT “crop op
+OV_6lT

er‘???
a 1 o1 1ac,, 1_ 1.3/1, Öc, 1_ oz,

“‘-$(7c»)-fi(7*r)=’73,7-“F’r+7s?=’3; 741+?
1 1 ‘2.22:fi=2,oc=1—fi=——1,i=x‘=—;=>x=?=>.i=—-)%.

y . . d‘
(1—t’))E~tx—atx’=0=>—(1—t2)i—t.E=ar. —(1—z=)x.,—:s,,=om—?T~_>%

t _ . 1 _ /——— _ —— “
=!,—_Tdz=>1u1x,,|=-2—In1:=-11+c,=>x,,=c\»1r=—11.x,=u(1)\/11=—1;=»

-(1_;2)fiJ|x3—1|=gr=u=_%—=Xp=—a=>)?=—a+C\/|!2—1}=
1 1 x/U -1

“-5 —a+C\/Jr‘-1;

"+13"? z+tany2.23zy=:m‚ y=xz(x), y=z+xz=>z+xz’= 
X

‚ l’ z+tany I l 2’-4-1 l-ztany tany
=>z=— jjaz z=—j——tan;2=>—zj—- z= dx

x l-ztany x 1—z_!an;u z +1 x

1

2 arctan z — 7(tan y) In (22 + I) = (tan y) In M 4- C

l
=> arctan% — T (tan y) {ln (x1 + y’) —- Z In M} = (tan y) In [x| + C

l
= arctan ä — 7 (tan y) In (x1 + y’) = C.
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1
2.24:y’ = (ä —’y)2 +1, y(0)=1,-f"TT:~z’ = —z2‚ 2(0) = ——1:>z:-x——_—1-y—=x—:>

y = x _ i‘
2.25: y(0,5) z 1,0698, y(1) z 1,1363.

2.26: _

x y f=x+y kfl=hf 771k’, k=%z/'.,,k,,

0,00 0,000 000 0‚000000 0000000 0,000000
0,10 0‚000000 0‚100000 0020000 0‚040000
0,10 0,01 0000 0,1 10000 0‚022000 0,044 000
0,20 0,o22000 0,222000 0,044400 0‚044400 0,021 400

0,20 0,021 400 0,221400 0,044280 0,0442s0
0,30 0,043 540 0,343 540 0,068 703 0,137416
0,30 0,055754 0‚355754 0,071 151 0‚142302
0,40 0092551 0‚492551 0‚098510 0,098510 0‚070418

0,40 0,091 818

Rechnung mit der doppelten Schrittweite I7: 2h = 0,4

x y f=x+y kß=hf Ämkß k=§2}.,,k,,

0,00 0,000 000 0‚000000 0‚000000 0‚000000
0,20 0000000 0‚200000 0080000 0160000
0,20 0040000 0‚240000 0096000 0192000
0,40 0095000 0‚496000 0,19s400 0,19s400 0,091733

0,40 0,091 733

I
=> öy = F(0,091818 — 0,091733) = 5,7 - 10“ => y(O,4) z 0,0918237.

y; = yh=>y., = Ce".y,, = u(x)e" mit u’e" = X. u= J~xe"‘dx = --xe"‘ + Ie"‘dx
= —e"‘(l + x)=-y,,= —(1+x)=>y= —(1+x)+ Ce". y(0) = 0=~C=1=>y
= —(1 + x) + e‘=-y(0,4) = 0,09182469....

3.1: y(x) = g(x, x) + C1(x — xo) + C2 mit

g<u‚v>= f<v—0/<0dz=-y’ =(°g(a";”))
t-xo

= (v — u) f(u)‚

5304. U)

Du
u-x
u=;:

( Ogg: v) )„-„ + C, mit
‚.3:

x
1'". Ö "

J E: (v- !)f(t)dI = Jf(t)dI=>y’= J1 f(l)d!+ C1=>.v"=f(X)-

tuxo r=x,, I-xa

1 ._n_ 1 _‘_d —

3.2:y"=—T—=y'y«'=y'y 2::-—2—(y’)2=J.y 2 ‘T’:-dx+C=(y’)2=4x/y+2C
y

Ög(u‚ v) _

Öv -

T(—2)2 = 4 + 2C=> C = O: y’ = i2 Q/;, wegen y’(l) < 0 nur unteres Vorzeichen

-1. 4 3- 4 l0
brauchbar==-y 4dy= —2dx==-Ty‘= —2x+C1y—f>?= —2+ C1=>C1= T:

_ 3 ä 5
— —2x+7 ,—oo<x<-3-.
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U’

3.3: a) i! f J}=1 (,,+“, falls vo > 0, ,,—“, falls vo < 0)
_ \/2gI(—1 + [1— 54:11) + vä

¢=u
q: N _ _

n}: ‘ =z:A/%arc5in(.\_:% )=;
1-17”)

17-0 ‘

_ vo - Z _1 Z=:-q2(t)—\/;—lSln(A/ll). ( A/g§t§2 g.

b) Kleinste positive Nullstelle «p; von 2gl(—1 + cos tr) + vä 2 kleinste positive Nullstelle «p, von

cp’ 2 |”0|
2gI(—1 + [1 + vo»qp1 =fi‘.

N
|.1

|"o_[ |"o_|

g’ a 1 Jg] d

C) T‘ =1 (Z 2 = — (P - 2J-glw + vo |"o| \/g]
‘ * 7W

q): 1p=o0

=A/Larcsin<fi[-—|ll_|_-)=—:A/-1-,
g ll7o}\/g1 2 g

3.4:(r’+2t+5)5e+(2z+2);&=4;>(t’+2r+5)p+(2r+2)p=4. )'c(1)=I=p(1)=l,
xEp

(t2+2!+5)p'„+(2t+2)p„=0
‚dm. 21+ 2 c2I = —~ dt=1nJph| = -ln 112 + 2! + 51+ C1=>ph(t) = :Pp(?)

1 42 41+ C2
= u(t) =>1'1 = 4=:~ u = 4t=>pp(t) = =p(t)= i.~>Cz = 4

_ 4(t+1)
=>x=p= =x(r) =2lnl!’ +2r+ 5] + C31 C3 = —2ln8 =

x(t)=21n———?—t2+:t+ 5 .

eh" e”2" e‘—‘s* 1 1 1 l 0 0

3.5: W= c1e°n"‘c,e°2" c3 e'=:* = e'-‘1"e‘2;‘e°3" c1 c2 c3 = e‘”1+‘72+“:s)" c1 c; — c1 c3 — cl
cf aw‘ cä e42‘ cä e°s* ‚cf c2 c§ cf cä — cf c§ —c§

= e(°x+=2+°a)-V (C2 — c1) (c3 — cl) (c3 - c2) 4= 0.

3.6: m1) = 12 + 261 + wg (6 g 0,wo > o), P11) = 21 + 2a. 1. Fall: 5* — wg > o:m1.)'= o,

1111,): 2‘/67773 + o. m1,) = o. P112) = -2 „E1173 + o. 2. Fall: 51 — wg < o;

m1,) = o, P’(}.1)= zu: a; o. m12) = o, P112) = -21‘/a;.=,:—(§ a; o.

3. Fall: a2 — wg = o: m1,) = o, P’(J.1) = o, 1="(,1,) = 2 + o.

3.7:I‚ =1 (v =1,..., n).

3.8:y” + 2y’ — 3y= 0, y=e“=}.’ + 21- 3 = 0==»A1 =1, Ä; = —3=y= C,e"+ C253".
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‚ _ ll
3.9: x(t) = C, e 2 + C, e"+"' + C3 e”‘”‘.
3.10: y(x) = C1 e" + C2 e“ + C3x e“.
3.l1:x(t) = C, + C21 + + C„_2t""’ + C„_‚ e‘ + Cue".

3.12: 6- ä‘, e“ cos t, e“ sin t.

3.13: ja, da die Konstanten in der Linearkombination der Basiselemenle beliebige komplexe Zahlen
sein können.

3.14: ja, falls alle Basiselemente reell sind; andernfalls nein.

3.15: a) x = e“ => Ä’ + 71:’ = 0=> Ä, = in, 12 = —i1: =» Basis: e""', e“’" => reelle Basis cos (m),

sin (7rt)==-x(t) = C, cos (m) + C2 sin (m). Lösung a) x(0) = 1=> C, = 1; x = 0

=> cos -34: + C2 sin = 0=> C2 = 1. x(t) = cos (m) + sin (m) [genau eine Lösung].

b) x(0)=1=C, =1; x(l)= 0==-\cos1r + C2 5in7: = 0. ==- -1 + C;-0= 0=> keineLösung
C2 =:- im Fall b) existiert keine Lösung x(t).

c) x(0) = 0=> C, = 0; x(1)= 0=> C2 siurc = 0: C2 -0 = 0=> C2 = beliebig =>x(t) = C2 sin(rrt)
[unendlich viele Lösungen].

b
3.16: Bis (3.139) mitö = O siehe Beispiel 3.11 => y‚(t) = F-Femfl’. Formel (3.141) istmitä =0

0 “ 1

auch jetzt noch gültig; es ist-oc = 0, falls 0 < am, < wo, und cc = 7:, falls 0 < wg < co, gilt.

3.17: y” + wäy = beiwo’, yh = e", J.‘ + coä = O, im = iiwg, y,,(t) = Boreiwo!
b

=- Bo(2imo — twä + w§t)eWo‘ = be‘"’o‘=> Bo = -— —l-=> v,(t) = — bit e"°o’.
Ztuo ' Zwo

5
3.13: 2y;,' + 5y,', = 0, y,, = e""=2A2 + 5/1 = o=>;.1 = o, z, =1,/1, = — —2—‚ 12 = 1.

;. 2s ;,. s g. g 1 1 ;„y„(x)=Boe =Bo 2-Te +5--2—‘e =e =B0=75-=>y,(x)=—2?e .

-3 1 1 _:'L
3.19:y„(x)=Boe 3Xx=Bo=—?=:»y,,(x)=r-5-xe 3x

H ‚ 5 5 3(ix Li, 3 3 _

3.20:2y +5y =3cosh ix , 3cosh Ex =-5- e? +e 2 =y,,=—2-y,+—2-y; nut

i _i 1 i _i
2y;'+sy§=;=2‘, 2y;'+§y;=e *‘%>yx=E°’x’ ”2“?"° “x

äy-FTifiw-fim"?
3.21: (sinh t) cos I = (sinh t) Re [e“] = Re [(sinh t) e"] = Re [-}(e' — e") e“]

2 = Re e(1+|)I _ %e(—14-Dr].

X, + 4X. + 5X. = «}e“+'>', /12 + 41. + 5 = o=>;.‚_‚ = -2 i i=>X„, = Bo e(”‘"'
l 3 -— 21

_ e‘ i

1 1 .. . 1 -

Xlv = ‘ 3351“"; }G1+ 4351 + 5x11 = — 7€('1+m= Xup = Bo €(‘1+m =>

- . . 1 - 1Bo[(—l+1)2+4(—1+1)+5]=—-f=»Bo=— l+2i

11 1 1 ' l 1Xup = (_‚_E + e(—1-)-1):; xv“) = Re __ E c(l+l)t + (_ W + e<—1+m]

1

= —T)-(1--2i)=>N
|-

-

1

=e’(Ecost+—33sint) —e" Tacos: +-Fsint).
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3.22: in + 4x1. = 0, x1, = e” => F + 4 = 0 2 I12 = :2i:> Basis e”, e‘“‘=> reelle Basis cos (21),
sin (2t)=> x1, = C1 cos (21) + C2 sin (21). x, = Bo + B1t= 4Bo + 4B1t = 2I=> Koeffizientenvergleich:

l t
48g = 0, 4B1 = 2=:rBo = 0, B1 = 7=>x„= 72X0) = -2: + C1 cos (Zr) + C2 sin (21).

b
x(O)=0=>C1 =O=>x(!)‚=%+ C; sin(2t).x(b)=0=>?+ C;sin(2b) =0. =>C2

= —— i ———1— falls Nenner i 0=> x(r) = —t— —— i sin (z!)
2 sin (2b) ’ ' 2 2 sin (2b) '

T?

7 _

Randwertaufgabe für kein b. Keine Lösung der Randwertaufgabe für b = und b = 1:.

Genau eine Lösung der Randwertaufgabe fiir 0 < b < und g < b < 7:. Mehrere Lösungen der

3.23:y;'+ 3y1’‚ — 4y1‚ = 0, ya = e""=>/‘.2 + 3}. — 4= 0:11 =1, I1 = 1, /".2 = -4, I; =1,
y„1 = B0 + B1x=> 3B1 — 48° — 481x = 12x==- Koeffizientenvergieich: 381 — 43° = O, —4B1

9 9
=12=>B1=-—3,Bo= —T=>y,,,=—T-—3x.

Yp11= Boe2":B„(—4e2“+ 6ie“"~— 4e"")= 25e“"=:-Bo = -2 — %i=> Y“, = — (2 + c2"

3 . 9
=>y„11 = Re [Y„11] = -2 cos (2x) + Tsin (2x)=>y=y,. + y1‚„+ yh = — 7 — 3x — Zcos (Zx)

+ isin (2x) + C1e" + C; e“"‘.
2 5 5 9 24y(0)=-I, y’(0)=2=~T= —«T—2+C, +Cz,2= —3+3+ C1—4C2=>C,=?,

7 9 3 _ 24 x 7 _4xC2=1—0=y(x)=-7-3x—'lcos(2x)+-?s1n(2x)+—Te,+fie .

3,24; xzyg + xy; + n = o, y„ = x’-=> J.’ + 1 = 0=>A1 = i, A, = —i=> Basis: x‘, x“ 2 reelle
' 1

Basis: cos (In x), sin (ln x) => ‚v1, = C1 cos (In x) + C1 sin (In x), y, = Box" = Bo = l => y1, = :
l=y=C1cos(lnx)+Czsin(lnx)+ :— 3=C1+ l, —2= C2—1=C1=2,

C2: —1=>y= 2cos(Inx) ~sin(lnx)+%.

3.25:z“x,, + rx-,,+-.\-,,=0, x,.= z*=>).().— 1) +2+ 1 =o=>21 +1 =o=>/11_2= i i=>
Basis: t‘ = e“'", I" = e‘""‘=>reelleBasis: cos (In t), sin(ln t)=>x„ = C1 cos (ln t) + C2 sin(1nt).

4cos(1nt) = Re(4e"“‘) = Re(4z*).wi"+ rX’+ X= 4t‘=X,, =Bgt‘1nr=-Bo [z={i<i — 1):‘-21:1:

+ 2it“‘% + t'(— + I {W4 In: fflä} + t‘lnt = 4z‘==-B021 = 4=>B° = —2i==.

X,,«= —-2it‘ln r = —2ie""‘ In t=> x, = Re(—2ie“'"ln t) = 2(1r1t)sin (lnr)=>

x(t) = 2(lnt)sin(In't) + C1 cos(ln r)'+ C2 sin (Int).

3.26: y,','+ 3y; + 2y., = 0,;-,, = e’—*=7.2 + 3A + 2 = 0:11 = —I‚ 2, = —2=~,v.. = C16“
+ C2 F2". y, = u1(x) e"‘ + 1110:) e"", u; e" + u; e"" = 0, —u’l e“ — u; 2 e‘2" = (l + e’)“
$1/1= e"(1+ e")", _ = — e”‘(1 + e")“‘=>u, = h: (1 te‘), u; = —— e"+ ln(l + e")=>y = C1 e"
+ C‚e"’ + (In (1 + c")) e“ + (—e" + In (l + e‘))e‘2" = C1 e“ + c‚e-1* + (e"‘ + e-2*) ln (1 + e‘).

X I

3.27: w(x) = p J G(x, has + p] G(x‚ ‚au: =

x 0

P
I

fi,—[f(—2x3i3 + 31x322 + 31x“ — 611x13’) d:
0

a
..

X 1 1

+ J (313112: — 1323) d5’ + J (313218 — 13x3) d2 = 6LE‚{(—2x3 + 31x2)? + (3lx3 — 612x’)?
Ö x PX:

24EJ
(x2 — 21x + I2) =

1 1 2
+x‘—71-x‘+3x2?(!2 —x’)—x3(I-—x)}= 22;] (X-‘l)2-
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. .. . BQ .. BQ BZQ’ B’ 1
4-17.“: = .V2=’J’1 : ‚V2 = — -"Ty4=>.V1 = “ TIY4 = — mg ,V2=>J’(14) = — m? 92

BJQS Bags I B4Q4 BQ
= 7-y¢=>y‘,” = m3 Y4 = —mr-yz= (4-14) lautet hier: y; = y2.y"'1 = - T)?“
w B2Q2 B3Q:s ‚ B4Q4
J’: = ‘ m; Y2, y?) = m3 J’4‚ ya” = m. ‚V2-

Dieses lineare Gleichungssystem ist nicht eindeutig nach y;, ..., yg auflösbar; die Koeffizienten-
determinante ist gleich null.

_ -2 3 -2 — '. 3
4.2: x = Ax, A: 2 s), x = de"’=:~(A _ ma = o. char. Gl.: 2 ’ 3_/1l= 0:22

— 7- - l2 = 0=/11 = 4./‘-2 = -3. (A — 4E)d = 0:» —6d‚ + 3d; = o, 2d, — d, = 0=>Basis:
1

d1 =1,d, = 2:411 = -2-. (A+ 3E)d = 02:1, + 3d2 = 0,2d1 + 6:12 —_- o_—..Ba51s;d1 = -3,
-3 1 -3d3=1=>d2=< )=~x=C,(>e""+C_2( )e‘3’=x1=C1e"—3C2e'3',x2=2C,e"

+C;e'3'. l 2 1

m0 0

4.3:mp5,+BQpz=0,mp2—BQp,=0,mp3=0=>Ai)+Bp=0 mitA=<0 m0),
O BQO Pl 0 0 m

B=(-BQO Ü), p=(p; . p=deÄ‘=:-(AZ+B)d=0=»char. GL: det(A}.+B)=0
o o o p;

m). BQO BQ
=>l —BQ m}. 0 =0=>In}.(1n2Ä2+B2Q2)=0=>/'.‚ =0,l1 = 1,12 =iw (w=7), I, =1,

0 0 m}. ‘

0 0

}.,=~ico, 13:1. (A}.1+B)d=0:.>Bd=0, Basis: d,=<0):p1(r)=<0). (A}.2+B)d=0
l I

l i —i‘
= (Aim + B)d = 0, Basis: d, =(1)=- p2(t) = (1>e"'". (A23 + B)d = 0=p3(t) =( 1)e"""

\ O, 0,

O l I —sin (wt) 1 - cos (w!)
= reelle Basis: m(t) = (G) —(p2(t) + mm) = K cos (con), E0120) — 93(1)) = <sin(wr) 5

1 o o ‚i

=> allgemeine reelle Lösung:

p,(r) = —C1 sin (cut) + C; cos (wt),p2(t) = C, cos (w!) + C2 sin (wt),p3(t) = C3=> allgemeine

reelle Lösung von (1.31) [E1 = Z1; C1, E; = ä C2] : x(t) = Ü, cos (wt) + C: sin (wt) + C4,

y(() = C, sin (mt) — C; cos (wt) + C5, z(r) = C31 + C5.

4.4: Hat in dem Differentialgleichungssystem Ay” + By’ + Cy = g(x), detA # O, das Störglied
g(x) in einem ersten Fall die Gestalt g(x) = (ho + hlx + + b,x“) e“ cos (fix) (b, 1+ 0, a, ß reell)
oder in einem zweiten Fall die Gestalt g(x) = (ho + blx + b‚x‘) e" sin (fix) (b, # 0, zx, ß reell)
und sind die Elemente aller Matrizen A, B, C, bu, ..., b, reell, so kann eine partikuläre Lösung
y‚(x) im ersten Fall durch y„(x) = Re (Y„(x)) und im zweiten Fall durch y„(x) = Im (Y‚(x)) an-

gegeben werden, wobei Y‚(x) eine partikuläre Lösung des Systems AY” + BY’ + CY =

(ho + blx + + b,x’) e""mit q = o; + iß ist. .

Gegeben seien die r linearen inhomogenen Differentialgleichungssysteme Ay” + By’ + Cy = g¢(x),
(g = l, ...‚ r), die sich nur in den Störgliedern unterscheiden, während die linken Seiten über-
einstimmen. Eine partikuläre Lösung des jeweiligen Systems sei yo(x) (g = l, ...‚ r). Für das Dif-
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‚- y

feremialgleichungssystem Ay” + By’ + Cy = 2 c9gg(x) ist y(x) = Z c„y‘‚(x) eine partikuläre
Lösung. 9:‘ 9”“

5A, B __ A_ 10 B_ ——4—1 _ 3x A, _

4.. x+ x—g(t), _ o], — 2_1‚g(t)—— e). x„+Bx„—0,

1

—r

A _ 1-4 —1 2
x,,=de’=>(AZ+B)d=0=>det(A/»+B)=0=> 2 ._1 0==>/".—5}.+6=0,

Z, =2, I, =1‚ A; = 3,12 =1. (AZ, + B)d = 0=>Basis: d1 = (_2 , (A12 + B)d= 0=>Basis:

dz = 3 X110) = C132‘ + C1 Cst- g(’)=gl(’) + EHO) mi‘ 31(1): i, 811(7)

3
= I) e“. AR,‘ + Bxp, = g,(t). xp, = Bo + B1t=>AB1 + B(Bo + B1!) = (o) t=> Koeffizientem

_ 3 —-— 1 l 1 ' 1

verglenchz AB, +BBo= 0, BB, = O =>B‚ = Z , Bo =17 =:-x,,, =—(
_1’l 1 -10 12 ._—10

—?(2)!. I

. 0 0 \

Axpll + Bxpll = gm Xpu = Bo 94 =’ A(-Bo) + BB0 = 1 =” (B — A) Ba = 1 =3’ B0

1(1) _11_‚ _ _‘11 1{1 (1)__}
’ 12 —5V=”""'" 12 -5 5 =”‘"""°‘+x""’"7 2 ’+ 12 —1o ‘L -5 e ‘

51 1 1

x=xh+xp=>x1(t)=C1e2’+C2e3'+fie“‘—-it+13-, x2(t)= —2C1e“—C2e3' ——§e"

1 5 3 4
__;_._, c1+c2=_—, _2c1_c2=?=> c1: __ c2=_3.5 ‚

6 x,(o>=o.x‚(o>- E 6 2

„ m, 0 c —c 1111m; I 1

4.6: Ax+Cx=g(r), A: (0 mg), C = (__c c), g(t)=m(_1). x,,(I)=u1(I)(1)
1 m; m2 _ _ 1 _ 1 _ ( m;

+ u1(t)(1) t + u3(t)(_m‘) cos(wr) + u4(t)(_ml) sm (wt). 141(1) + u2(1) t+ u; ‘_m1y)cos(wI)

_ m; _ 0 _ 1 „ m2 _ _ m; A
+u4 _ml sm (wt) = 0 , I42 1 — 143m _m1 s1n(wt)+ um: _m1 cos (w!) = A g(I)

_ A_1 (t)_ I 0 mlmz 1 _ I ' m;

m” g — 0 1 cos (w!) —1 _ cos (w!) (-111, '

m2
1 1

=> 111 E 0, ü, -—_- 0,113 = — 5- tan (wt), 1'44 E z. Damit kann verwendet werden: u; s 0, uz s 0,

1 1

a3 = Fln icos (wt)], 14,. = E t» partikuläre Lösung:

x, = ä [In icos (wt)[-cos (wt) + wt sin (wt)], x2 = — g; [In \cos (wt)! cos (wt) + wt sin (wt)].
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