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Yorwort zur 3. Auflage

Bei der Konstruktion mathematischer Modelle fiir ProzeBabldufe wird man zu-
néchst eine Idealisierung derart vornehmen, dafl man in der Lage ist, das vorliegende
System fiir jeden Zeitpunkt ¢ durch endlich viele Funktionen x;(z), ..., x,(z) (Ge-
schwindigkeit, Temperatur, Dichte, Spannung, Warenmenge usw.), im einfachsten
Fall durch eine einzige Funktion x(z) zu beschreiben. Eine grundlegende Frage ist
die nach der Voraussage des Systemverhaltens, wenn man gewisse gesetzmaBige
Zusammenhédnge zwischen dem Systemzustand und der Systemdnderung kennt.
Nehmen wir an, daB im idealisierten Fall die Zeit nicht diskontinuierlich, sondern
kontinuierlich gemessen wird, so kommt als MaB der Systemverdnderung die Ab-
leitung der den Zustand beschreibenden Funktionen nach der Zeit in Frage, beim
dx
T
sierende Annahme, x() hinge einzig und allein vom augenblicklichen Zustand x(¢)
des Systems und auf keinen Fall von dessen Vorgeschichte ab, so wird man auf die
gewohnliche Differentialgleichung X = f(x, 7) gefiihrt (vgl. dagegen die Beispiele
1.3 und 1.4).

In der allgemeinen Theorie werden die gesuchten Funktionen durch y(x) oder
1(x), y2(x), ... bezeichnet. In den Beispielen und Aufgaben werden jedoch héufig
andere Bezeichnungen gewéhlt — z. B. x = x(¢), ¢ = ¢(¢), w = w(x) — um fiir die
Anwendungen auch in dieser Hinsicht geniigend Flexibilitdt zu erreichen.

Der vorliegende Teil 1 der Gewdhnlichen Differentialgleichungen ist insbesondere
fiir Studierende im Direkt- und Fernstudium bestimmt, die in ihrer Fachwissenschaft
mathematische Hilfsmittel benotigen. Der Fernstudent wird den Lehrstoff syste-
matisch studieren, wobei die Stoffauswahl von der jeweiligen Einrichtung vorge-
schrieben wird. Der Direktstudent wird die in der Vorlesung erworbenen Kenntnisse
mit Hilfe des vorliegenden Textes an gewissen Stellen wiederholen, erginzen oder
auch dadurch erweitern, da3 er Unterschiede in der Darstellung, die zwischen der
Vorlesung und dem vorliegenden Text auftreten, aufsucht und sich mit ihnen aus-
einandersetzt. Vielleicht nutzt der jeweilige Dozent auch die Méglichkeit, gewisse
Teile im Selbststudium erarbeiten zu lassen.

Der Band ist in einen Grundteil und einen Zusatzteil gegliedert. Der zum Zusatz-
teil gehorige Text ist durch Kleindruck gekennzeichnet. Es ist dabei beriicksichtigt,
daB sich der Grundteil niemals prinzipiell auf den Zusatzteil stiitzt; gelegent-
liche Bezugnahmen auf einzelne Formeln konnen ohne Verstindnisschwierig-
keiten iiberlesen werden. Die fiir die Durcharbeitung des Grundteils bendstigte Zeit
liegt unter der geplanten Selbststudienzeit. Die einzelnen Grundstudienrichtungen
haben die Méglichkeit, aus dem Zusatzteil gewisse Auswahlvarianten zusammen-
zustellen.

Durch die Darstellungsweise soll das folgerichtige mathematische Denken ge-
schult werden. Auf Beweise und Beweisskizzen wird nur dann eingegangen, wenn es
fiir das Verstandnis erforderlich ist. Besonderer Wert wird auf die Anwendung ge-
legt. Das Inhaltsverzeichnis zeigt, daB Vollstandigkeit nicht angestrebt wurde. Dem
Bausteincharakter entsprechend werden die AnschluBstellen zu den anderen Bénden
des Lehrwerkes aufgezeigt.

Vorliegen nur einer Funktion x(7) also X(#). Macht man weiterhin die ideali-

Dresden, September 1979 Der Autor
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i 3 Einleitung

1.1. Grundbegriffe und erste Einteilung

1.1.1. Implizite und explizite Differentialgleichungen #-ter Ordnung

Eine gewohnliche Differentialgleichung dient — dhnlich wie algebraische Glei-
chungen - der Bestimmung mathematischer Objekte. Die gesuchten GréBen sind
jedoch nicht spezielle Zahlenwerte, sondern Funktionen von einer unabhingigen
Verénderlichen. Diese Funktionen treten einschlieBlich gewisser Ableitungen in der
Gleichung auf. Darin liegt die Spezifik der Differentialgleichung, die ihr auch den
Namen gab. Derartige Gleichungen ergeben sich bei der Modellierung zahlreicher
physikalischer und technischer Prozesse; aber auch in der Okonomie und anderen
Wissenschaftsdisziplinen treten sie mit zunehmender Anwendung der Mathematik
immer héufiger auf.

NN\ 4 .
vVl % Bild 1.1

Beispiel 1.1: An einem Teilchen mit der Masse m, das ldngs einer waagerechten x-
Achse reibungsfrei beweglich ist (Bild 1.1), greife eine Feder an. Sie sei im entspannten
Zustand, wenn sich das Teilchen am Ort x = 0 befindet. Die Lage x des Teilchens ist

eine Funktion der Zeit ¢. Seine Geschwindigkeit ist% = X% und seine Beschleuni-
2
gung it;‘ = X. Ist F = —kx (k > 0, Federkonstante) die zum Punkt x = 0 ge-

richtete riicktreibende Federkraft, so kann die Newtonsche Grundgleichung Kraft
gleich Masse mal Beschleunigung hier durch die gewéhnliche Differentialgleichung

—kx =mx, d.h.,, mi+kx=0

fiir die gesuchte Funktion x = x(r) angegeben werden.
Allgemein formulieren wir die folgende

Definition 1.1.: Unter einer gewohnlichen Differentialgleichung n-ter Ordnung fiir eine
Funktion y = y(x) versteht man eine Gleichung zwischen der unabhingigen Verdnder-
lichen x, der abhiingigen Verdnderlichen y und den Ableitungen y',y"”, ..., y™ fiir jeden
Wert x des Definitionsbereiches von y = y(x), wobei y™ in der Gleichung tatsdchlich
vorkommt, die Ableitungen niederer Ordnung jedoch nicht unbedingt auftreten miissen.
Also kann mittels einer Funktion F, die von n + 2 unabhdngigen Verdnderlichen ab-
hdéngt, eine gewéhnliche Differentialgleichung n-ter Ordnung in der Gestalt

FO, 3,500 y™) =0 (1.1)

angegeben werden.

D.1.1
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Definition 1.2: Man sagt, in (1.1) liege die Differentialgleichung in impliziter Gestalt
vor. Ist eine Auflosung von (1.1) nach y™ méglich, d. h., kann man

¥ =, ¥, ..y ) (1.2)

schreiben, wobei f eine Funktion von n + 1 unabhdngigen Verdnderlichen ist, so sagt
man, die Differentialgleichung liege in expliziter Gestalt (nach y™ aufgeloster Gestalt)
vor.

N\

poom Bild 1.2

Aufgabe 1.1: Fiir ein im Schwerefeld (Erdbeschleunigung g) befindliches mathemati-
sches Pendel (Bild 1.2), bestehend aus einer Punktmasse m und einer masselosen
Stange (Lénge /), das an einem festen Punkt drehbar aufgehéngt ist und sich in einer
Ebene bewegt (Ausschlagwinkel ), gilt bei Vernachldssigung der Reibung der Ener-
giesatz (der Mechanik): kinetische Energie plus potentielle Energie ist gleich der
(konstanten) Gesamtenergie E, d. h., fiir die Funktion ¢ = @(t) (¢: Zeit) besteht die
gewohnliche Differentialgleichung

L;_12¢2 — mglcosp = E (E = const). (1.3)

a) Welche Bezeichnung fiir y aus Definition 1.1 wird in (1.3) benutzt?

b) Welche Ordnung hat die Differentialgleichung (1.3)?

c) Wie sieht die linke Seite von (1.1) im vorliegenden Fall (1.3) aus?

d) Man 16se (1.3) nach ¢ auf. Welche Differentialgleichungen der Gestalt (1.2)
ergeben sich?

Es folgen Beispiele, die auf gewisse Probleme und Abgrenzungen zum Begriff der gewShnlichen
Differentialgleichungen hinweisen sollen.

Beispiel 1.2: Die gewohnliche Differentialgleichung
1 :
e—2lny” _ T + (3 —x)y =e¥ (1.49)
hat nicht die Ordnung 2, weil wegen .
1

e— 2y = eln(y=2) — -2 = y,-,z

die GroBe y” sich auf der linken Seite von (1.4) heraushebt und damit in (1.4) tatsdchlich nicht vor-
kommt. Es liegt eine gewohnliche Differentialgleichung erster Ordnung vor.

Beispiel 1.3: Durch
(1) =x(@) mit r=¢-1

wird keine gewbhnliche Differentialgleichung fiir x = x(¢) gegeben, weil die Gleichung nicht x und x
an der gleichen Stelle t, sondern an den voneinander verschiedenen Stellen f und ¢ — 1 des Definitions-
berelchm von x = x(t) in Beziehung setzt. Man spricht in diesem Zusammenhang von einer Diffe-

mit nacheilendem Ar; Sie gehort zu den Differenzen-Differentialgleichungen,
die Verzdgerungserscheinungen beschreiben (Totzeitgleichungen).




1.1. Grundbegriffe und erste Einteilung 9

Beispiel 1.4: Durch
2
) + | (6, 7) x() dv = 0 (1.5)
a
wird keine gewohnliche Differentialgleichung fiir x = x(¢) gegeben, obwohl die zweite Ableitung von
x = x(t) in (1.5) vorkommt, weil die Gleichung nicht % und x an der Stelle ¢ in Beziechung setzt,
sondern & an der Stelle ¢ mit x an allen Stellen T des Intervalles @ < 7 < b koppelt. Hier liegt eine
sogenannte Integrodifferentialgleichung vor. Sie wird z. B. bendtigt, wenn die Vorgeschichte des
Systems zu berticksichtigen ist.

Beispiel 1.5: Es werde eine Funktion # = u(x, y) gesucht, fir die

o%u o%u

i e 1.6

= T o7 0 (1.6)
gilt. (1.6) ist keine gewdhnliche Differentialgleict weil die hte Funktion, # von mehr als

einer unabhingigen Variablen — im Beispiel sind es zwei — abhéngt. Gleichung (1.6) ist ein Beispiel
fiir eine partielle Differentialgleichung.

1.1.2.  Losungen von Differentialgleichungen

Definition 1.3: Losung (auch Integral, Lisungskurve oder Integralkurve genannt)
einer gewdhnlichen Differentialgleichung n-ter Ordnung

F(x, 9, ..,5™) =0 1.1

ist jede Funktion y =.y(x), x € J, mit folgenden Eigenschaften:
a) Die Funktion y = y(x) ist in ihrem Definitionsbereich J n-mal differenzierbar, d. h.,
die Funktionen y(x), y'(X), ..., y™(x) (x € J) existieren.
b) Die beim Einsetzen von y(x), y'(x), ..., y®(x) in die linke Seite von (1.1) entstehende
mittelbare Funktion von x
F(x, y(x), y'(x), ..., y™(x))

ist fir alle x € J stets gleich 0.

Beispiel 1.6: Gegeben sei die gewdhnliche Differentialgleichung erster Ordnung
y—x=0, d.h y =x. .7

Das Losen der Differentialgleichung (1.7) ist gleichbedeutend mit der Aufgabe, von
g(x) = x (—o < x < +o0) alle Stammfunktionen zn ermitteln. Infolgedessen hat
(1.7) die unendlich vielen Losungen

2
y(x)=i2—+ C (—w <x< +o),
wobei C eine beliebige Konstante ist.

Beispiel 1.7: Gegeben sei die gewohnliche Differentialgleichung erster Ordnung
x=g(t) 1.8)
mit .
1 fir—0<t<0 g
EO=1, farosr<+ a9

(Bild 1.3).
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o)

Bild 1.3

Im Intervall —o0 < ¢ < 0 hat (1.8) die unendlich vielen Losungen
x(t)=t+C; (-0 <t<0) (1.10)

und im Intervall 0 = ¢t < + 0 die unendlich vielen Losungen
‘2
x(t)=—=5+C, (0=1t< +00). (1.11)

Wir priifen, ob die Funktionen (1.10) und (1.11) durch Zusammensetzung Losungen von (1.8) im
Intervall —o0 < ¢ < + 00 liefern (vgl. Bd. 1, Kap. 9.1.).
Wenn

t+Cl fir—0 <t<0
x(r)—{ (1.12)

5 +C, fir0=t< 400

(Bild 1.4) eine Losung von (1.8) im Intervall —00 < ¢ < + 0 sein soll, so muBl wegen Definition 1.3
die durch (1.12) gegebene Funktion an der Stelle # = 0 differenzierbar und damit dort stetig sein. Die
Forderung der Stetigkeit von (1.12) an der Stelle # = 0 fithrt zu

C, = Cs.

Es ergibt sich somit

t+C1 fir —0 <2<0
x(t) = [ . (1.13)

5 +G fuir0 =t < +o00.

Jedoch ist die durch (1.13) gegebene Funktion immer noch keine Ldsung von (1.8) im Intervall
— % < t < +00,da (1.13) an der Stelle = 0 zwar stetig, aber nicht differenzierbar ist, denn dort
ist die hnkssemge Ableitung gleich 1 und die rechtsseitige Ableitung gleich 0 (Bild 1.5). Als Ergebnis
haben wir: Die Differentialgleichung (1.8) hat wegen Definition 1.3 im Intervall —o0 < t < +®
keine Losung, obwohl sie in den Teilintervallen —co < # < 0 und 0 = ¢ < + o0 jeweils unendlich
viele Losungen besitzt.

X0

x(t)

Bild 1.4 Bild 1.5
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Um in diesem Beispiel und in anderen Fiillen nicht auf eine Losung der Differentialgleichung ver-
zichten zu miissen, formulieren wir

Definition 1.4: Bei einer Losung im wei Sinn wird in Definition 1.3 zugele dap die Funktion
V®=1(x) an gewissen Stellen von J nicht differenzierbar ist; es wird jedoch gefordert, daf dort die ein-
seitigen Ableitungen von y™=)(x) existieren und daff y"~V)(x) iiberall in J stetig ist. Weiterhin wird die
Forderung b) der Definition 1.3 nur fiir alle Existenzstellen der Funktion y™(x) (x € J) aufrecht er-
halten. :

Bei Benutzung dieses erweiterten Losungsbegriffs liefert (1.13) im Intervall —oc < ¢ < +00 un-
endlich viele Losungen der Differentialgleichung (1.8). Beim Nachpriifen dieser Tatsache beachte
man, daB unter der nullten Ableitung einer Funktion x(#) die Funktion x(¢) selbst zu verstehen ist.

1.2. Anwendungsbeispiele

Es werden einige mathematische Modelle vorgestellt, und es wird gezeigt, wie sie
durch gewdhnliche Differentialgleichungen oder Differentialgleichungssysteme be-
schrieben werden konnen.

1.2.1. Wachstumsgesetze

Bei wachsenden lebenden Systemen, beschrieben in Abhéngigkeit von der Zeit ¢
durch y = y(t) [y: z. B. Bevolkerungszahl], ist die Geschwindigkeit y(z) des Wachs-
tums bei unbeschrianktem Lebensraum proportional zu y(¢). Das fiihrt zur gewdhn-
lichen Differentialgleichung y = «y mit dem Vermehrungskoeffizienten «. Ist der
Lebensraum beschrankt, so hat man empirisch die Proportionalitdt der relativen
Wachstumsgeschwindigkeit yy=! zur Zahl der noch unbesetzten Existenzplitze
gefunden, d. h., falls y, die Zahl der Existenzplitze des Lebensraumes bezeichnet,
die Differentialgleichung

sr=a(i-2). (1.14)

—.‘7 Yo/
1.2.2.  Auflésung von Salz in Wasser

Zur Zeit t = 0 mogen sich xo Gramm Salz in M Gramm Wasser befinden. Sind zum Zeitpunkt ¢
noch x Gramm Salz im Wasser, so ist die Ldsungsgeschwindigkeit% = X einerseits prloportional
zu x und andererseits proportional der Differenz zwischen der Sattigungskonzentration i X [X ist
diejenige Salzmenge, die gerade Sittigung hgrvorrufcn wiirde] und der tatsdchlich erreichten Kon-
zentration [diese ist gleich—% (x0 — x)] . Beim Aufstell‘en der Differentialgleichung fiir x = x(¢) ist

' dx . . "
zu beachten, daﬁ—a = X hier negativ ist. Mit dem positiven Proportionalititsfaktor & ergibt sich
somit

(1.15)

1.2.3.  Chemische Reaktionen

Chemische Reaktionen heilen homogen, wenn nur eine einzige Phase beteiligt ist. Bei ihnen kann
man weiter Reaktionen erster, zweiter, dritter, ... Ordnung unterscheiden.

D.1.4



12 1. Einleitung

Bei einer Reaktion zweiter Ordnung werden aus den Substanzen 4 und B Molekiile der Substanz X'
gebildet. Sind a und b die urspriinglichen Konzentrationen von A und B und ist x die Konzentration
von X zum Zeitpunkt ¢, so gilt

X =k(a—=x)(b - x). (1.16
Analog lautet die Differentialgleichung fiir Reaktionen dritter Ordnung

X=kla—x)(b—-x)(c—x) (1.17)
und beispielsweise fiir Reaktionen erster Ordnung

%= kia — x). (1.18)
Fiihrt man in (1.18) durch y(t) = a — x(¢) eine neue Funktion ein, so ergibt sich

¥ = —ky. (1.19)

1.2.4.  Technisch-physikalische Beispiele

Beispiel 1.8: Gesucht ist die Bewegungsgleichung eines im Schwerefeld (Erdbeschleu-
nigung g) befindlichen mathematischen Pendels (Bild 1.2), bestehend aus der Punkt-
masse m und einer masselosen Stange (Lénge /), das an einem festen Punkt drehbar
aufgehdngt ist und sich in einer Ebene bewegt (Ausschlagwinkel ). Infolge der
Stange ist die Punktmasse gezwungen, sich auf einem Kreis mit dem Radius / zu
bewegen. Eine Parameterdarstellung dieses Kreises wird relativ zum Koordinaten-
system aus Bild 1.6 durch

x =lcosg
y=Ilsing (1.20)

geliefert. Die momentane Lage der Punktmasse kann durch die Bogenldngenkoordi-
nate s des Kreises angegeben werden (Bild 1.6).

J‘/ y

X Bild 1.6

Es ist
s = lpt). (1.21)

In dem Newtonschen Grundgesetz Kraft gleich Masse mal Beschleunigung ist als
Beschleunigung die Tangentialbeschleunigung zu wihlen:

') Wem (1.21) nicht geldufig ist, dem sei empfohlen, dies unter Heranziehung von (1.20) mittels
der Formel fiir die Berechnung von Bogenlingen herzuleiten.
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sie wird durch §(#) und damit wegen (1.21) durch
§ = 1¢(1) . (1.22)

angegeben. Fiir die Kraft im Newtonschen Grundgesetz ist jetzt nur die Tangential-
komponente der Schwerkraft maBgebend; die andere Komponente wird durch die
Festigkeit der Stange kompensiert.” Zur Festlegung der gewiinschten Tangential-
komponente ist das Skalarprodukt

mg -t ' (1.23)
zu bilden. Hierbei ist g der Erdbeschleunigungsvektor
g =gex. (1.24)

Mit t wird in (1.23) der Tangenteneinheitsvektor an den Kreis bezeichnet. Ist r der
Ortsvektor des laufenden Punktes auf dem Kreis, so gilt wegen (1.20)
r=Icospe, + Isinge,
und damit (vgl. Bd. 6, Kap. 3.)
dr
_ v
RS
I dy

t = —singe, + cosge,. (1.25)

Einsetzen von (1.24) und (1.25) in (1.23) fiihrt mit (1.22) zur Bewegungsgleichung,
d.h. zu folgender (nichtlinearer) Differentialgleichung zweiter Ordnung fiir die
Funktion ¢ = ¢(7):

—mgsing = mig. (1.26)
Beispiel 1.9: Ein elektrisches Teilchen (Ladung Q, Masse m, Ortsvektor r = r(z))
bewegt sich im konstanten magnetischen Feld
—Be, (B = const>0).
Auf das Teilchen wirkt die Lorentzkraft
Qi x (—Be,).
Damit ergibt sich die Bewegungsgleichung fiir das elektrische Teilchen zu
mit = Qi x (—Bey). (1.27)
Wir gehen zu kartesischen Koordinaten tiber. Zundchst notieren wir
i) = X(1) ex + y(1) ey + (1) €z, (1.28)
(1) = %(t) ex + J(t) e, + 2(t) e,
und
e, € €
Qi x (—Be;) =|0x Qy Qz |= —BQye, + BQxXe,. (1.29)
0 0 -B :
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Einsetzen von (1.28) und (1.29) in (1.27) fiihrt zu

mie, + mje, + mze, = —BQye, + BQxe,. (1.30)
Vergleicht man die Koordinaten der Vektoren beider Seiten von (1.30), so ergibt sich
mi + BQy =0
my — BQx =0 (1.31)
mz =0.

(1.31) ist ein System von drei Differentialgleichungen fiir die drei unbekannten Funk-
tionen x(t), y(¢) und z(z).

1.2.5.  Okonomisches Beispiel

Ist Xy(t) (( = 1,2,...,m) das Volumen der Bruttoproduktion des i-ten Produk-
tionszweiges im Zeitintervall [t,, 7], so ist x,(f) = X,(¢) deren Intensitét. Es sei B,(r)
die Intensitdt der Liéferung des i-ten Zweiges an den j-ten Zweig, die jener fir seine
Produktion bendtigt. Weiterhin bezeichne A,;(t) die Intensitdt der Lieferung des
i-ten Zweiges, die fiir Investitionen im j-ten Zweig benutzt werden sollen. SchlieBSlich
werde mit g,(¢) die gewiinschte Intensitit der Nettoproduktion des i-ten Zweiges
angegeben. Mit diesen Festlegungen gilt

x(t) = él (Biy(t) + A1) + &gt) (G =1,.00,m). (1.32)

Im Rahmen einer dynamischen Verflechtungsbilanz wird man in der Regel zunichst
annehmen, daf} die Intensitit der Materiallieferung B, (¢) proportional zur Intensitit
x,(t) der Produktion und die Intensitdt der Investitionslieferungen A;;(¢) propor-
tional zur Beschleunigung X;(f) = x,(¢) der Produktion des jeweils verbrauchenden
Zweiges j ist:

Byj(t) = byx;(t) (b;; = const), (1.33)
A1) = ayx,(t) (a;; = const). ) (1.34)
Einsetzen von (1.33) und (1.34) in (1.32) fiihrt zu

x(t) = ‘21 (Buix(1) + aixy ) + gt) (=1,...,m),
e
d. h. ausfiihrlich

Xy =by1Xy + bioXy + oo+ bigXw + Q11X + s+ QX + 84(2)
X, = byyXy + boaXy + oo A bomXn + Ar1%; 4+ oo+ pmXm + 22(2)

X = Bp1Xy 4 BuaXs + oo + BumXem + @i Xy + oor F Qi + D)
und damit

A%y + oo F Gy + by — D)X + bioxs + oo+ BypX, = —g41(2)

A%+ eon F Gopdi + b2aXy + (b2 — D X2+ o o+ bow¥n = —£2(1)

X1 F oov F G + byi Xy + BpaXz + oo + B — 1) X = —gm(?).
: (1.

In (1.35) steht ein System von m Differentialgleichungen fiir die m unbekannten
Funktionen x,(), x,(2), ..., Xn(?).
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1.2.6.  Geometrisches Beispiel

Gegeben sei eine ebene Kurvenschar §; derart, daBl durch jeden Punkt (x, y) des Bereiches B einer
(x, y)-Ebene genau eine Kurve der Schar Sy geht. Gesucht ist in B eine weitere Kurvenschar S, derart,
daB jede Kurve aus S, in jedem ihrer Punkte die jeweilige Kurve aus S; unter dem konstanten Winkel

14 (lyl = —;—) schneidet (Bild 1.7). Man bezeichnet die Kurven der Schar S, als isogonale Trajektorien

ks
zur Schar Sy . Ist insbesondere |y| = 2 so spricht man von orthogonalen Trajektorien.

Sehar Bild 1.7

Zur Losung dieser Aufgabe kann man etwa folgendermaBen vorgehen. Man greift einen belie-
bigen Punkt (xo, yo) aus B heraus, bestimmt diejenige Kurve K; aus Sy, die durch (xo, o) geht,
bestimmt den Anstieg der Tangente 7y an K; im Punkte (xo, yo), dreht 7; im Punkte (xo, ¥o) um den
Winkel y in die neue Lage T, und ermittelt den Anstieg von 7>, d. h. den Anstieg der Tangente 7, an
die gesuchte Kurve K, aus der Schar S, die durch (xo, yo) geht. Denkt man sich in der Umgebung
von (xo, o) die Kurve K, durch y = p(x) dargestellt, so kennt man nunmehr die Ableitung y'(x) an
der Stelle x = x,. Insgesamt hat man auf diese Weise die zum Punkt (xo, yo) gehdrige Ableitung der
Funktion y = y(x) an der Stelle x = x, bestimmt. Da (xo, o) aus B beliebig herausgegriffen wird,
gilt diese Zuordnung fiir jeden Punkt aus B, also wird jedem Punkt (x, y) aus B die Ableitung y”
einer Funktion y = y(x) zugeordnet, d. h., man erhilt eine Gleichung

Y =fx. (1.36)
(1.36) ist eine gewohnliche Differentialgleichung erster Ordnung fiir y = y(x). Die gesuchten Kurven
der Schar S, werden durch Lo der Differentialgleict (1.36) dargestellt. Die obige Kon-

struktion versagt, falls 7, parallel zur y-Achse verlduft, weil in diesem Fall y” nicht existiert. Diese
Ausnahmepunkte werden entweder am Ende gesondert behandelt oder man arbeitet in diesem Fall
mit einer Funktion x = x(y), die dann einer Differentialgleichung der Gestalt x'(y) = g(x, ) geniigt.

Beispiel 1.10: Als Kurvenschar S; sei die Schar aller durch den Koordinatenursprung der (x, y)-
Ebene gehenden Geraden gewihlt. FormelméBig wird man die Schar etwa durch

y=Cx 2 1(1.37),

(C: Scharparameter) angeben. Allerdings wird durch (1.37) die y-Achse nicht erfaBt. Wir nehmen
deshalb als Bereich B alle Punkte der (x, y)-Ebene auBler der Geraden x = 0. Wir wihlen einen be-
liebigen Punkt (xo, o) (xo =+ 0) aus B aus. Durch ihn geht diejenige Kurve K, der Schar Sy, die
wegen (1.37) den Scharparameter

C=C, = %‘:— (1.38)

besitzt.
Der Anstieg der Kurve K; im Punkte (xq, yo) ist wegen (1.37) und (1.38) gleich der Ableitung
der Funktion

=-—x
ot
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an der Stelle x = x,, also gleichz—o. Folglich ist der Anstieg der Tangente 7; an K; (7 fallt in
0 .

unserem Beispiel mit X; zusammen) im Punkte (xo, yo) gleich

tanog = %;- (1.39)

wobei & den (orientierten) Winkel zwischen der positiven Richtung der x-Achse und der (im Sinne
wachsender x orientierten) Tangente 7; angibt. Durch Drehung von 77 um den Punkt (xo, o) mit
dem Winkel y ergibt sich eine neue Lage T,, wobei der Anstieg von 7, durch

tan oo + tany
tan fp = tan (xo + ) = dzm R (1.40)

geliefert wird. Einsetzen von (1.39) in (1.40) fithrt zu
Yo + Xp tany

o
= = . 1.41
tan fo Yo — yotany ( )]

tan By ist gleich dem Anstieg y’(x) an der Stelle x = x, der durch y = y(x) dargesteliten Kurve K
aus S, die durch den Punkt (xo, o) geht. Ersetzt man (xo, yo) durch einen beliebigen Punkt (x, y)
aus B, so ergibt sich wegen (1.41) somit fiir y = y(x) die gewohnliche Differentialgleichung erster
Ordnung

- ¥y + xtany
y = x—ytany® (1.42)

Die:in'_der Gestalt y = y(x) dargestellten gesuchten Kurven der Schar S, sind Losungen von (1.42).

Unsere Herleitung versagt an denjenigen Stellen, an denen «, + 7 gleich % oder gleich — %ist,
d. h., wir miissen aus dem Bereich B noch eine Gerade g entfernen (Bild 1.8). Es versagt unsere Her-
leitung noch im Falle |y = —;—, weil dann tan y nicht gebildet werden kann.

% Aufgabe’].2: Man leite eine gewdhnliche Differentialgleichung erster Ordnung y’ = f(x, y) fiir die
orthogonalen Trajektorien der Schar (1.37) her.

Bild 1.8
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1.3. Besondere Aufgabenstellungen

Wir haben gesehen, daB Differentialgleichungen im allgemeinen unendlich viele
Losungen haben. In der Praxis interessiert man sich jedoch weniger fiir alle Losungen ;
vielmehr stellt man Zusatzbedingungen, die nur von einem Teil der Lésungsgesamt-
heit — oft nur von einer einzigen Losung - der Differentialgleichung erfiillt werden.
In der Regel ist die Anzahl der Zusatzbedingungen gleich der Ordnung der Differen-
tialgleichung.

1.3.1.  Anfangswertaufgaben

Gibt man in der Differentialgleichung 2. Ordnung (1.26) als Zusatzbedingungen
die Anfangslage und die Anfangsgeschwindigkeit vor, d. h., fordert man, daB die
Losungsfunktion ¢ = ¢(#) zum gegebenen Zeitpunkt ¢ = #, einem vorgeschriebenen
Wert ¢, und ihre Ableitung ebenfalls einen vorgeschriebenen Wert ¢, hat,

@(10) = @o,
@(O)e=1, = po  (kurz: @(t6) = ¢o), (1.43)

so gibt es, wie man zeigen kann, nur eine einzige Losung von (1.26), die auch (1.43)
erfiillt.

Definition 1.5: Wenn man beim Vorliégen einer gewdhnlichen Differentialgleichung
oder bei einem gewdohnlichen Differentialgleichungssystem Zusatzbedingungen fiir eine
einzige Stelle des Definitionsbereiches der Liosungen stellt, so spricht man von An-
fangsbedingungen. Eine Differentialgleichung mit Anfangsbedingungen bildet eine
Anfangswertaufgabe.

Aufgabe 1.3: Man 16se die Anfangswertaufgabe fiir die Funktion x = x(¢), bestehend
aus der Differentialgleichung

X = cos (% t) und der Anfangsbedingung x(—1) = 3.

1.3.2. Randwertaufgaben

Definition 1.6: Werden im Gegensatz zur Definition 1.5 Zusatzbedingungen an mehreren
Punkten des Definitionsintervalls der Lisungen gestellt, so spricht man von Rand-
bedingungen. Eine Differentialgleichung mit Randbedingungen heifft Randwertaufgabe.

Beispiel 1.11: Fiir die Durchbiegung w = w(x) eines Balkens, der sich langs der x-
Achse erstreckt (0 < x < /) und das Flachentrigheitsmoment J(x) besitzt, gilt die
gewohnliche lineare Differentialgleichung vierter Ordnung

(EJ(x)w”)” = p(x) [E: Elastizitdtsmodul], (1.44)

wobei p(x) die senkrecht zur Balkenachse wirkende Streckenlast angibt. Beim Her-
leiten der Differentialgleichung (1.44) macht man gewisse Vernachldssigungen; man
spricht in diesem Zusammenhang von einer Balkentheorie erster Ordnung.

Im vorliegenden Beispiel setzen wir voraus, daB einerseits das Flichentragheits-
moment konstant ist und daB andererseits auch die Streckenlast eine konstante
Funktion darstellt. SchlieBlich sei der Balken beiderseits eingespannt, d. h., daB an
den Stellen x = 0 und x = / die Durchbiegung w(x) und die Balkenneigung w'(x)
2 Wenzel, Gew. Diff.1

D.1.5

D.1.6
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gleich null ist. Somit ergibt sich fiir das vorliegende Problem eine Randwertaufgabe,
bestehend aus der Differentialgleichung vierter Ordnung

W = 2 (L = )
57 \&7 const (1.45)
und den vier Randbedingungen an den Stellen x = 0 und x =/
w0) =0, w(0)=0, wl)=0, w(l)=0. (1.46)

Das Losen der Differentialgleichung (1.45) bedeutet das Ausfiihren von viermaliger
unbestimmter Integration. Infolgedessen kann die Losungsgesamtheit von (1.45)
durch

W(x) = Mwﬂ+ Qx+—Qx+Cﬁ+Q (1.47)

angegeben werden. Einsetzen von (1.47) in (1.46) liefert vier lineare Glelchungen zur
Bestimmung von C, bis C,:

C,=0,
Ca e 0.-

2 P+lCP+iCV=o

24EJ ! 2 ’

3 2 =
6EJI + = 2 Cll + Cyl=0. (1.48)
Die Losung von (1.48) lautet:

- s _ -

Ci=-p5 C=qopp> C:=0, C.=0. (1.49)

Einsetzen von (1A49) in (1.47) ergibt die Lésung der Randwertaufgabe (1.45), (1.46):

W(X) = === (x* — 2Ix® +

24EJ 24EJ

1.3.3.  Eigenwertaufgaben

Definition 1.7: Eine Eigenwertaufgabe ist eine Randwertaufgabe mit folgenden Eigen-

schaften:

a) Eine Konstante J (Eigenwertparameter genannt), deren Werte einer Menge von
reellen Zahlen oder auch komplexen Zahlen zu entnehmen sind, tritt entweder in
der Differentialgleichung oder in den Randbedingungen. oder sowohl in der Diffe-
rentialgleichung als auch in den Randbedingungen auf.

b) Fiir jeden mdoglichen Wert 4 aus a) hat die Randwertaufgabe mindestens die Losung

x(t) = 0. ) ) (1.50)
(1.50) heifpt triviale Losung.
Alle diejenigen A-Werte, fiir die es dariiberhinaus nichttriviale Losungen der Randwert-
aufgabe, d. h. Losungen
x(t) mit x(t) %0 (1.51)
gibt, heifien Eigenwerte, die zugehorigen Losungen der Randwertaufgabe heifien Eigen-
lésungen.
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Beispiel 1.12: Ein vertikal angebrachter Stab (0 < x £ /) wird oben (x = /) durch

eine Einzelkraft F auf Druck (F > 0) belastet. Mit dem Elastizitdtsmodul E fiihrt

bei konstantem Flachentragheitsmoment J das Knickproblem auf die Differential-
gleichung 4. Ordnung fiir die Durchbiegung w(x)
R F

r00r " <x< = 52

w' o+ Aw 0, 0=sx=1, 7 EJ>0 (1-52)

und - falls der Stab unten (x = 0) eingespannt und oben (x = /) frei ist — auf die vier

Randbedingungen

w0) =0, w(0)=0, w'(l)=0, w"({)+iw()=0. (1.53)

Da w(x) = 0 stets sowohl (1.52) als auch (1.53) geniigt, ist durch (1.52), (1.53) eine
Eigenwertaufgabe gegeben.

1.4. Ziel der weiteren Untersuchungen

Es gibt bei den gewohnlichen Differentialgleichungen und Differentialgleichungs-
systemen Klassen von Aufgaben, deren Losungen (oder deren Umkehrfunktionen-
durch elementare Funktionen oder wenigstens durch Integrale iiber elementare
Funktionen darstellbar sind. Die Angabe solcher Klassen, das Studium ihrer Losungs-
struktur und die Angabe von Losungswegen ist ein erstes Ziel der weiteren Unter-
suchungen.

Dariiber hinaus muf3 aber die Theorie durch weitere Losungsmethoden angerei-
chert werden, die auch im Falle der weitaus groBeren Mannigfaltigkeit der nicht
in dieser Weise 19sbaren Differentialgleichungen angewendet werden kénnen. Man
denke an das Verfahren von Picard-Lindelof (Satz 2.2; Zusatz zu Satz 3.1; Satz 4.1)
in Verbindung mit numerischer Integration (Bd. 18, Kap. 4.), an das Verfahren von
Runge-Kutta (Abschn. 2.5.3.; 3.4.; 4.4.; Bd. 18, Kap. 5.), an Differenzenverfahren
(Bd. 7/2, Kap. 6.4.) und an Reihenentwicklungen (Bd. 7/2, Kap. 5.).
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2. Differentialgleichungen erster Ordnung

2.1. Allgemeine Bemerkungen und Richtungsfeld

Aus (1.1) und (1.2) ergibt sich, daB die implizite gewdhnliche Differentialgleichung
erster Ordnung fiir y = y(x) durch

F(x,9,5)=0 @.1)

und die explizite gewohnliche Differentialgleichung erster Ordnung fiir y = y(x)
durch

Y= fxy) . 2.2)

gegeben ist. Wir gehen nunmehr zur geometrischen Deutung der expliziten gewShn-
lichen Differentialgleichung (2.2) iiber.

In der Differential- und Integralrechnung ist es iblich, die Funktion f(x, y) an-
schaulich als Funktionsgebirge iiber dem in der (x, y)-Ebene liegenden Definitions-
bereich B zu deuten. Hier empfiehlt sich eine andere anschauliche Darstellung. An-
genommen, wir wiirden eine Losungskurve von (2.2) kennen, die durch den Punkt
(x, y) der (x, y)-Ebene geht, dann gibt )’ den Anstieg der Tangente an die Losungs-
kurve im Punkte (x, y) an. Man wird also im jetzigen Zusammenhang f(x, y) als
Gesamtheit von Richtungselementen (Linienelementen), d. h. Punkten mit angehef-
teten Geradenstiicken, die den Anstieg ' = f(x, y) besitzen, deuten. Man spricht
von einem Richtungsfeld. Die Differentialgleichung (2.2) 16sen heiBt in geometrischer
Sprechweise: Es sind Kurven y = y(x) gesucht, die auf das Richtungsfeld passen,
d. h. Kurven, deren Tangentenrichtung im Punkte (x, y) mit der dort vorliegenden
Richtung des Richtungsfeldes zusammenfalit (Bild 2.1).

x Bild2.1

Beispiel 2.1: Bei der Differentialgleichung

Y=y (2:3)
fiir die Funktion y = y(x) hingt die rechte Seite f(x, y) nicht von x ab:

Sx9) = y.

Der Definitionsbereich der rechten Seite von (2.3) ist die gesamte (x, y)-Ebene.
Parallelen zur x-Achse werden durch die Differentialgleichung (2.3) jeweils Richtungs-
elemente mit dem gleichen Anstieg zugeordnet (Bild 2.2).

Aufgabe 2.1: Skizzieren Sie das Richtungsfeld von )’ = x ldngs der Geraden x = —1,
x=0und x = 1!
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Aufgabe 2.2: In welchen Punkten (x, y) kénnen sich Losungskurven der expliziten *
gewohnlichen Differentialgleichung erster Ordnung )’ = f(x, y) unter einem von
null verschiedenen Winkel schneiden?

y
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Bild 2.2

Ergénzung: Zur Deutung der impliziten Differentialgleichung (2.1) wird man zu-
nichst eine Auflésung nach )’ vornehmen. Es kann vorkommen, daB sich dabei
mehrere Differentialgleichungen der Gestalt (2.2) ergeben, die dann ihrerseits in
obiger Weise durch Richtungsfelder dargestellt werden kénnen.

2.2. Existenz und Unitiit der Losungen

Von der geometrischen Vorstellung des Richtungsfeldes geleitet, wird man folgende
Vermutungen aufstellen:
a) Es gibt unendlich viele Losungen y = y(x) von 3’ = f(x, y).
b) Es gibt durch jeden Punkt des Definitionsbereiches B von f(x, y) genau eine
Lésung y = y(x) von y' = f(x, ).
Es zeigt sich, daB die Vermutungen das Richtige treffen, falls man geeignete Vor-
aussetzungen macht. Es gelten die folgenden zwei Sitze:

Satz 2.1: Durch jeden Punkt (x, y) des betrachteten Definitionsbereiches B von f(x,v) S.2.1
geht mindestens eine Ldsungskurve y = y(x) der Differentialgleichung y' = f(x, ¥).

falls f(x, y) in B stetig ist.

Satz 2.2: Ist neben der Stetigkeit von f(x, y) im betrachteten Bereich B gesichert, dafj S.2.2
ofx, y) (x )

————>in B existiert und dort stetig ist, so geht durch jeden Punkt (x, y) von B genau

eine Losungskurue y = y(x) der Dﬁerenna/glelchung v = f(x, ), d. h., die Unitit
b

(Einzigkeit) der Lisung der Anfangsw hend aus der Dlﬂerennal-
gleichung
Y = flx,y), (x,y)eB, 2.4)
und der Anfangsbedingung
¥(xo) = Yo, (¥o,0)€ B, (2.5)

ist gesichert.
Fiir die Losung von (2.4), (2.5) gilt y(x) = hm yu(x), (Ix — xo| < r, r hinreichend
k-

klein), wobei die Funktionenfolge y,(x), y1(x), yz(x), ... Schrittweise gemaf

Yo®) = Yo, »(¥) =¥o + J'f(t, Yeer()dt (k= 1,2,..) (2.6)

*o
zu berechnen ist (Verfahren von Picard-Lindelof).
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Aufgabe 2.3: Wie lauten yo(x). y,(x), y,(x) des Verfahrens von Picard-Lindelsf,
falls die Anfangswertaufgabe
V=3 + %, »0) =0
vorliegt?

Wir haben im Beispiel 1.6 gesehen, daB die Losung einer Differentialgleichung
1. Ordnung eine beliebige Konstante C enthalten kann. Allgemein nennen wir

Definition 2.1: Man sagt
D(x,y) = C ((x,y) e B; C: Scharparameter) ‘ 2.7)

gibt relativ zu B die allgemeine Losung (das allgemeine Integral) von (2.4) an, wenn die
durch Auflosen von (2.7) nach y entstehenden differenzierbaren Funktionen y = y(x)
Lésungen von (2.4) sind.

Satz 2.3: Sind die Voraussetzungen von Satz 2.2 erfiillt, so ist jede Liosung von
y' = f(x, ), (x, ) € B, in der allgemeinen Lisung enthalten.
Sind jedoch die Voraussetzungen von Satz 2.2 nicht iiberall in B erfiillt, so kann es vorkommen,

daB von der allgemeinen Losung einige Losungen der Differentialgleichung nicht erfaBt werden.
Im Beispiel 2.3 sind es die Losungen (2.39) und (2.41).

2.3. Elementare Integrationsmethoden
2.3.1. Trennung der Verinderlichen

Im Sinne von 1.4. beschéftigen wir uns zunichst mit solchen Spezialfillen von
V=[x, (2.2)

deren Losungen (oder deren Umkehrfunktionen) durch elementare Funktionen oder
wenigstens durch Integrale iiber elementare Funktionen darstellbar sind. Wir be-
ginnen mit

Definition 2.2: Unter einer gewdéhnlichen Differentialgleichung erster Ordnung mit
trennbaren Verinderlichen fiir die Funktion y = y(x) versteht man eine Differential-
gleichung der Gestalt

V' = g(x) h(y). (2.8)

Es handelt sich also um eine explizite gewdhnliche Differentialgleichung erster
Ordnung

V=17, (2.2)
wobei die gegebene rechte Seite die spezielle Struktur
Sfx, y) = g(x) h(y)

besitzt, d. h., darstellbar ist als Produkt einer Funktion g, die nur von x, und einer
Funktion 4, die nur von y abhingt. )
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Aufgabe 2.4: Welche der folgenden Differentialgleichungen sind Differentialglei- *
chungen mit trennbaren Verédnderlichen?

X
2

)y =y By=1+y oy=x+y &)=
e) y' = sin (xy), f)y' =sinx-siny,
99 =~ A/%J 78— ¢* (g1, 9o konstant).

Die Losungstheorie von Differentialgleichungen mit trennbaren Verdnderlichen
beginnt mit dem

<

Satz 2.4: Ist y = y, eine Nullstelle der gegebenen Funktion h(y) aus (2.8), d. h., gilt S.2.4
h(ye) =0, (2.9)
so ist die konstante Funktion
y=yx) =y (x€Dy,
auch geschrieben j
wx) =y, (xeD,) (2.10)
(gelesen: y ist identisch gleich y, im Definitionsbereich D, der Funktion g = g(x)),
eine Losung der Differentialgleichung (2.8).

Zum Beweis setze man (2.10) in die Differentialgleichung (2.8) ein. Die linke Seite
ergibt y' = g—i = —c%-(yo) = 0. Die rechte Seite von (2.8) ist wegen (2.9) gleich

8(x) h(yo) = 0, wobei x dem Definitionsbereich D, der Funktion g = g(x) zu ent-
nehmen ist. Also wird (2.8) tatsdchlich von (2.10) erfiillt. m

Aufgabe 2.5: Gesucht sind konstante Funktionen, die jeweils Losungen der folgenden
Differentialgleichungen mit trennbaren Verénderlichen sind:

Ay =1l+y, by =0"-5+6c* o) =sinx-siny,

Oy =5 90= = JEVA=F (& Lo konstany).

Wir werden nach Behandlung des Spezialfalles (2.9) nunmehr die Voraussetzung

h(y) %0 ' @.11)

machen. Die Lésungstheorie wird im Kleindruck fortgesetzt und danach erfolgt die
Zusammenfassung zu einem Losungsschema.

Ist y = y(x) eine Lésung von

V' = gx) h(»), (2.8)
s0 ist (2.8) beim Einsetzen von y = y(x) erfiillt, d. h., es gilt
V'(x) = g(x) h(¥(x)) ' 2.12)

fﬁr{alle x des Definitionsbereiches der Losung y = y(x). Wegen der Voraussetzung (2.11) ist (2.12)
gleichbedeutend mit
Y'(x)

o) &(x), (2.13)
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d. h., (2.13) folgt aus (2.12), und umgekehrt kann (2.12) aus (2.13) gefolgert werden. Von der linken
Seite von (2.13) bilden wir eine Stammfunktion (Verzicht auf Integrationskonstanté)

Y )
f e dx (2.14)

und ebenso eine Stammfunktion der rechten Seite von (2.13) (Verzicht auf Integrationskonstante)
[ g dx. (2.15)

Gestiitzt auf die Theorie der Stammfunktionen ergibt sich aus (2.13), (2.14) und (2.15), daB sich
(2.14) und (2.15) nur um eine additive K9nstante unterscheiden:

V(%)
f ) dx = fg(x) dx + C. (2.16)

Auf der linken Seite von (2.16) wird durch die Substitution y = y(x) die neue Integrationsvariable y
eingefiihrt:

d
f—}% - fg(x) dx + C (= y(). @.17)

ZusammengefaBt ergibt sich die Aquivalenz der Gleichungen (2.12) und (2.17). Folglich ist die Frage
nach der Existenz und der Unitdt von Losungen der Differentialgleichung (2.8) im Falle A(y) = 0
dquivalent mit der Frage, ob im Falle A(y) + 0 durch

D(x,y) = C (2.18)
mit

D(x,y) = f - fg(x) dx-

dy
h(y)
differenzierbare Funktionen y = y(x) implizit dargestellt werden, d. h. die Frage nach der Méglich-
keit der Aufldsung von (2.18) nach y. Uber die theoretische Moglichkeit der Auflosung von (2.18)
nach y geben die Sitze {iber implizit dargestelite Funktionen Auskunft (Band 4, 3.7.). Wir erwihnen
hier lediglich die in diesem Zusammenhang wichtige Bedingung
AD(x, y) 1

3 = T(;)— + 0. (2.19)

Zur Durchfithrung der Methode der Tremnung der Verinderlichen notieren wir

Y = 800, )+ 0, == = 5 0)
ax

Y
x
Trennen von x und y d g(x) dx
L7 als Bruch behandeln h(y)
dx
Twsrieen | HO) fg(x) dx + C, ’ (2.20)

wobei in der Gleichung (2.20) C eine Konstante ist und die Integrale jeweils eine
Stammfunktion darstellen, also selbst keine Integrationskonstante enthalten. Die
Gleichung (2.20) gibt im Falle 4(y) + 0 die allgemeine Losung (Definition 2.1) von
' = g(x) h(y) an. Der weitere Schritt

] ,,(2.20) nach y auflosen‘ (2.21)

ist in einfachen Féllen durchfiihrbar und sollte gegebenenfalls erfolgen.
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Beispiel 2.2: Gegeben ist eine Anfangswertaufgabe, bestehend aus der Differential-
gleichung !

Y=\ >0 @)
und der Anfangsbedingung
(1) = 4. (2:23)

Wegen der in (2.22) angegebenen Bedingung y > 0 sind die Voraussetzungen zur
Anwendung der Methode der Trennung der Verdnderlichen erfiillt.
Die Durchfiihrung ergibt

dy _ N dy [ dy [

— =y (>0 == —==dx = —-=de+€

CE NG [ N

= 2.Jy=x4+C = y=2%x+ 0>

Beim Anblick der Ergebnisformel sind Sie vielleicht geneigt, diese durch den

Zusatz —0 < X < +o0 zu erginzen. Das ist jedoch falsch. Die vorletzte Formel
des Rechnungsganges, ndmlich 2 \/ y =x+ C, zeigt in Verbindung mit y > 0
aus (2.22), daB x + C > 0 und damit x > —Cist. Also lautet das Ergebnis

y=%x+C)? mit —C<x< +0, (2.24)

Um sich vor solchen Fehlern zu schiitzen, kann man auch anders vorgehen. Man
nimmt zunédchst in Kauf, daB sich beim formalen Rechnen geméfBl obigem Losungs-
schema gewisse ,,Scheinldsungen‘ — im vorliegenden Beispiel y = #(x + C)* mit
x = —C - ergeben, die in Wahrheit keine Losungen sind. Das Eliminieren dieser
Scheinldsungen geschieht durch die Probe. In unserem Beispiel hatten wir (félsch-
licherweise) zundchst das Ergebnis y = 3(x + C)?> mit —o0 < x < +oo erhalten.
Wir setzen dies in (2.22) ein. Es ergibt sich:

linke Seite von (2.22): y' = 3(x + C), (2.25)
rechte Seite von (2.22): \/; = \/i(x + 02 =1lx +C|. (2:26)

Aus (2.25) und (2.26) folgt zundchst, daB gewiB keine Gleichheit im Falle x < —C
besteht, weil in diesem Falle

Hx+ Cl= =3 + O
ist. Damit ist also bewiesen, dafl

y=4ix+0C;? (x<-0) (2.27)
keine Losung von (2.22) ist. Andererseits zeigt die durchgefiihrte Probe, daf3

y=3#x+C? (xz -0 (2.28)
Losung der Differentialgleichung

Y=y 20 2.29)

(man beachte das Gleichheitszeichen in y = 0) ist. Fiir die Differentialgleichung (2.22)
isty = 0 auszuschlieBen, also wegen (2.28) x = — C. Damit zeigt die Probe, daB (2.24)
Losung von (2.22) ist.

Aus der allgemeinen Losung (2.24) der Differentialgleichung (2.22) ist noch die-
jenige spezielle Losung herauszugreifen, die der Anfangsbedingung (2.23) geniigt.
Einsetzen von (2.24) in (2.23) fiihrt zu

30+ 0 =4. (2.30)
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Das ist eine quadratische Gleichung fiir C mit den Lésungen

C=3 und C= -5. 2.31)
Setzt man die Werte aus (2.31) in (2.24) ein, so erhilt man einerseits

y= Hxb 3R mit —3<x< teo (2.32)

und andererseits .
y=3x—-5?% mit —(=5)<x< +00. (2.33)

Hat die Anfangswertaufgabe also zwei Losungen? Das widerspriche der Aussage
von Satz 2.2, dessen Voraussetzungen hier erfiillt sind. Also muB sich bei unserer
Berechnung wieder eine Scheinldsung ergeben haben. Machen wir die Probe! Sowohl
(2.32) als auch (2.33) gentigen der Differentialgleichung (2.22), denn es sind ja ledig-
lich herausgegriffene Losungen aus der allgemeinen Losung (2.24). Die Anfangs-
bedingung (2.23) wird aber nur von (2.32) erfiillt. Bei (2.33) ist das nicht mehr der
Fall, denn die Funktion (2.33) ist nur fiir x > 5 definiert, kann also unmdglich
¥(1) = 4 erfiillen. Hitten wir ibrigens in (2.30) sorgfiltiger gearbeitet, so hitte
sich die Scheinlésung (2.33) erst gar nicht ergeben. Wegen (2.24) gehort ndmlich
zu (2.30) noch der sich aus —C < x < +o [siche (2.24)] fir x = 1 ergebende
Zusatz

-C<l1,'dbh C>-1. (2.34)

(2.34) zeigt, daB von den Ldsungen (2.31) der quadratischen Gleichung (2.30) der
Wert C = —5 unbrauchbar ist. Die Anfangswertaufgabe (2.22), (2.23) hat also genau
eine Losung. Sie wird durch (2.32) formelmaBig dargestellt.

Aufgabe 2.6: Man bestimme die allgemeine Losung der Differentialgleichung
YV=x(y+1 (-0 <y<-—1).
Welche Werte kann die Konstante in der allgemeinen Lésung annehmen?

Das Herausgreifen derjenigen Lésung aus der allgemeinen Losung, die der An-
fangsbedingung geniigt, kann oft bereits beim Vorliegen der impliziten Darstellung
der allgemeinen Losung erfolgen. Verfahren Sie so in der folgenden

Aufgabe 2.7: Man 16se die Anfangswertaufgabe

Y =sinx-siny (0<y<m), »0) =

x| . . i
tan — | eine Stammfunktion von ist!

Beachten Sie, dal} In 3

sin x

Aufgabe 2.8: Bei kleinen Pendelschwingungen mit dem Maximalausschlag ¢o (o > 0) kann man aus
dem Ergebnis von Aufgabe 1.1 die Differentialgleichung

b= i a9

gewinnen, falls man diejenigen Abschnitt¢ der Pendelschwingungen erfassen will, in denen ¢(f)
monoton fllt. ,
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Mittels der Methode der Trennung der Verénderlichen‘ermittele man unter der Voraussetzung
—Po <P < Qo (2.36)

die allgemeine Ldsung von (2.35) und beachte beim Ubergan'g‘von der impliziten zur expliziten
Gestalt der Losung neben (2.36) die Ungleichungen, die im Zusammenhang mit der Einfiihrung der
Arkussinusfunktion auftreten, namlich

i\

?) < x = arcsin y. .37

IA

. ki =
y=sinx({—==x=
2

Wie lang ist das t-Intervall der erhaltenen Losung? Es gibt die Dauer einer Halbschwingung des
Pendels an.

Zur Tllustration des Unterschiedes der Sitze 2.1 und 2.2 dient das folgende

Beispiel 2.3: Gegeben ist die Differentialgleict

y =y ozo. @.38)

Aus dem Ergebnis von Aufgabe 2.5d) und aus den Gleichungen (2.28) und (2.29) entnehmen wir
zunichst die folgenden Losungen der Differentialgleichung (2.38)

Yx) =0 (-0 <x< +00), (2.39)
yx) =3x+0?* (xz -0). (2.40)
Damit sind aber noch nicht alle Losungen von (2.38) erfaB3t. Weitere Lésungen sind (Bild 2.3):

0 fir —0<x<-C

241
Hx+ 0?2 fir —C<x< +©. @4

wx) = {

Bild 2.3

Zum Nachweis setzt man (2.41) in (2.38) ein und weist nach, daB die Gleichung (2.38) dadurch
erfiillt wird. Insbesondere sei bemerkt, daB (2.41) an der ,,StoBstelle” x = — C differenzierbar ist,
weil dort sowohl die rechtsseitige Ableitung als auch die linksseitige Ableitung existieren und den
gleichen Wert 0 haben. Mit (2.39), (2.40), (2.41) sind alle Losungen der Differentialgleichung (2.38)
erfafit.
In (2.40) steht die allgemeine Losung von (2.3§_) relativzu B: —o0 < x < +00,0 = y < + 00, denn
(2.40) ist dquivalent zu (2.7) mit D(x, y) = 2 \/ y — x. Lings y = 0 sind die Voraussetzungen von
oflx, )
oy b
Ablextung Es ist deshalb verstindlich, daB die Unitit der Anfangswertaufgabe (2.4), (2.5) im Fall
y = \/ Vs ¥(xo) = 0 verletzt ist; in der Tat, in jedem Punkt der x-Achse miinden zwei Losungen von
¥ =/ ein, nimlich (2.39) und (2.41) [siehe auch Bild 2.3].

Satz 2.2 verletzt, denn dort ist \/ ynicht bildbar — auch nicht im Sinne einseitiger
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2.3.2.  Explizite homogene und inhomogene lineare Differentialgleichungen

2.3.2.1.  Definition

Die in 2.3.1. begonnene Diskussion im Sinne von 1.4, wird fortgesetzt. Wir nennen
hierzu die

Definition 2.3: Unter einer gewdhnlichen linearen Differentialgleichung erster Ordnung
fiir eine Funktion y = y(x) versteht man eine Gleichung der Gestalt

a,(x) " + ao(x) y = g(x) (2.42)
mit .

a;(x) =0 (xeD) (2.43)

(in Worten: in D ist a,(x) nicht iiberall gleich null), wobei D der gemeinsame Defini-
tionsbereich der Koeffizientenfunktionen a,(x), ao(x) und des Storgliedes g(x) ist. Die
Differentialgleichung (2.42) heift dariiber hinaus

inhomogen, falls g(x) =0 (xe D), (2.44)

homogen, falls g(x) =0 (xeD) (2.45)
gilt. Wird die Bedingung (2.43) zu

a;(x) 0 (xeD) (2.46)

(in Worten: a,(x) ist fiir jeden Wert x € D verschieden von null) verschdrft, so kann
(2.42) in die explizite lineare Differentialgleichung

,_ _ 4(x) g(x)
PR E RPN

umgeformt werden.

(2.47)

Aufgabe 2.9: Ist die Differentialgleichung (1.3) aus Aufgabe 1.1 linear?

Aufgabe 2.10: Ist die Differentialgleichung fiir y = y(x)

(I=x)yx)+1=0
linear? Wenn ja, ist sie inhomogen oder homogen? Fiir welche x aus dem Intervall
—1 < x £ 1ist eine Uberfithrung in die explizite Gestalt méglich?

Aufgabe 2.11: Ist die Behauptung, jede Losung jeder gewdhnlichen linearen Diffe-
rentialgleichung erster Ordnung ist eine lineare Funktion, richtig?

Bemerkung: Bezeichnet man die linke Seite von (2.42) durch L(y) = a,(x)y’ + ao(x)y,
so wird durch L(y) ein linearer (Differential-) Operator (Band 1, 8.2;. 8.4.) gegeben,
d. h., es gilt
Lic,ys + c2p2] = ar(e1yy + €22) + aolc1ys + €292)
= cy(ayy + aoy:) + c2arys + aoyz)
= ciL[y1] + c:L[y:]. (2.48)
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2.3.2.2, Aligemeine und partikulire Losung

Zunichst behandeln wir den homogenen Fall. Die Definition 2.3 zeigt, daB eine
explizite gewohnliche lineare homogene Differentialgleichung erster Ordnung fiir
eine Funktion yy(x) (der Index h weist auf die homogene Differentialgleichung hin)
durch

ao(x)
a(x)

angegeben werden kann. Hierbei ist D der gemeinsame Definitionsbereich der beiden
Koeffizientenfunktionen a,(x) und a,(x). D ist entweder ein Intervall J oder ist Ver-

y'h = —

Yy, a1(x) =0 (xeD) (2.49)

einigung von Intervallen J,, J,, ... . Ohne Verlust an Information werden wir unsere
Untersuchungen fiir ein solches Intervall J durchfiihren:
, ao(x)
= - . 2.50
V' IO (xeJ) (2:50)

(2.50) ist eine Differentialgleichung mit trennbaren Verdnderlichen, denn sie ist
ein Spezialfall von Formel (2.8) mit

_ ao(x) .
gx) = OR h(yn) = Y- (2.51)
Die Anwendung der Losungstheorie aus 2.3.1. ergibt, daB
mx) =0 (xeld) (2.52)

eine Losung von (2.50) ist. Im Falle y, #+ 0 ist die Theorie der Trennung der Ver-
dnderlichen anwendbar. Danach erhilt man ausgehend von (2.50)

dye _ _ aox)
Yn al( )
woraus nach Integration zunéchst

J'd}’h =_fao(x) dx + C,

——=dx (xeJ),

Yn a(x)
und weiter
ay(x)
In [yl = — f o) dx + C
|7l (%) 1
folgt. Somit ergibt sich
l () 4 _ ( () 4
bl =ee lam Y, dh pm=Ce la® @53)
mit
e, falls y, >
C, = d J. 2.54
2 {—ecx, falls y, <O und xe 2:54)

Die bisher erhaltenen Losungen aus (2.52) und (2.53) konnen in der Formel

o[22,
yu(x) =Ce J a® (x € J; C beliebige Konstante) - (2.55)

zusammengefaBt werden. Wir haben damit relativ zum Bereich B der (x, y)-Ebene
mitx e Jund —o0 < y < + oo die allgemeine Lésung der Differentialgleichung (2.50)
gefunden, denn die rechte Seite von (2.50) erfiillt die Voraussetzungen von Satz 2.2,
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falls die Koeffizienten ao(x) und a,(x) (a,(x) + 0) als stetig vorausgesetzt werden.
Mit Hilfe von (2.55) kann die Losung von (2.50) also leicht ermittelt werden, ohne
jedesmal die Herleitung von (2.55) durchfiihren zu miissen.

- Aufgabe 2.12: Priifen Sie, welche der folgenden Differentialgleichungen linear homo-

gen sind, und geben Sie deren allgemeine Losung an:
a)e*y +e*y=0, b)x+2x=0, ¢)x —tx?=0.

Wir diskutieren nun den inhomogenen Fall. Die Definition 2.3 zeigt, da} eine
explizite gewShnliche lineare inhomogene Differentialgleichung erster '‘Ordnung fiir
eine Funktion y = y(x) durch (2.47) und damit auch durch

\

ay(x) Y + ao(x) y = g(x) (2.56)

() #0, gx)£0 (xelJ) 2.57)

angegeben werden kann, wobei wir uns ohne Verlust an Information in (2.57) auf
ein Intervall J beschrinken.

mit

Satz 2.5: Die allgemeine Losung y(x) der expliziten gewohnlichen linearen inhomogenen
Differentialgleichung (2.56), (2.57) ist gleich einer partikuldren (speziellen) Losung
Yp(x) der inhomogenen Differentialgleichung (2.56), (2.57) plus der allgemeinen Lisung
yu(x) der zugehdrigen homogenen Differentialgleichung

a(x) yh + @)y =0, a;(x) £0 (xeJ), (2.58)
also

Y(x) = yp(x) + m(®). C259)

Beweis: Ist y,(x) eine partikuldre (spezielle) Lésung von (2.56), (2.57), d. h., gilt
wegen (2.48)

Llyy(x)] = g(x) ' ) . (2.60)

und ist y,(x) eine beliebige Losung der zugehorigen homogenen Differentialgleichung
(2.58), d. h., gilt

L{yn(x)] = 0, (2.61)
s0 ist (2.59) stets eine Losung von (2.56), (2.57), denn es gilt wegen (2.48)
L[y] = LIy, + ys] = Llys] + Lyul,

und das ist wegen (2.60) und (2.61) gleich g(x).

Es ist noch zu zeigen, daB durch (2.59) alle Losungen von (2.56), (2.57) erfaBt
werden, wenn y,(x) simtliche Losungen von (2.58) durchlduft. Ist j(x) irgendeine
Losung von (2.56), (2.57), d. h., gilt

L[p(x)] = g(x),
L[y = yo] = L[] — Lly,] = g(x) — g(x) = 0,

Es ist also die Differenz j — y, eine Losung von (2.58), d. h. gleich einer Losung
yu(x) von (2.58), und damit gilt

F(x) = yp(x) + yu(x).

Also ist in der Tat j(x) durch (2.59) erfaBt. Es ist damit bewiesen, daB (2.59) die
allgemeine Lésung von (2.56), (2.57) ist. m

S0 ist
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Aufgabe 2.13: Ist jede explizite gewdhnliche lineare inhomogene Diﬂ'erentiafgleichung *
erster Ordnung in eine Differentialgleichung mit trennbaren Verdnderlichen tiber-
fihrbar?

2.3.2.3. Variation der Konstanten

Zur Ermittlung einer partikuldren Losung y,(x) der expliziten gewohnlichen
linearen inhomogenen Differentialgleichung erster Ordnung

ay(x) Y + a)(x)y = g(x), ai(x) £0, gx)£0 (xeJ), (2.62)

1aBt man sich von der Struktur der Losung (2.55) anregen, die wir im jetzigen Zu-
sammenhang mit den Bezeichnungen

Va(x) = Ci(x) (2.63)
und
__J' a0(®) 4
ju) = e Jam (2.64)

erneut aufschreiben. Man stellt einen Ansatz fiir y,(x) her, indem man (2.63) benutzt
und dort C durch die noch zu bestimmende Funktion u(x) ersetzt (Variation der
Konstanten C):

| Vo(x) = u(x) Pu(x). (2.65)

Dies soll eine pamkulare Losung der Dlﬁerentlalglexchung aus (2.62) sein. Wir
setzen deshalb (2.65) in die linke Seite der Differentialgleichung aus (2.62) ein:

a;(up)’ + aoupy = u(a, Py, + aofn) + au'Py
= uL[js] + asu'fn = ayu'fy.

Dies soll gleich der rechten Seite der Differentialgleichung aus (2.62), d. h. gleich
g(x) sein. Somit ergibt sich fiir u(x) die Differentialgleichung (es ist a;(x) y,(x) #+ 0)

R ()]
I PREEXEOR (2.66)

Aus (2.66) erhidlt man u(x) durch unbestimmte Integration. Auf die Integrations-
konstante kann man hierbei verzichten, weil ja in (2.65) auch nur eine einzige Losung
¥p(x) der Differentialgleichung aus (2.62) gesucht wird. Bei bekanntem y,(x) ergibt
sich die allgemeine Losung der expliziten gewohnlichen linearen inhomogenen Diffe-
rentialgleichung (2.62) durch Einsetzen von y,(x) und y,(x) in die Formel (2.59).

Beispiel 2.4: Gesucht ist die allgemeine Lsung der Differentialgleichung

%+ t2x = 212, (2.67)
Die allgemeine Losung der zugehdrigen homogenen Differentialgleichung

%o+ 2xy =0 y (2.68)
entnehmen wir dem Ergebnis von Aufgabe 2.12b):

xXn{t) = Ce~3 h (2.69)
Der Ansatz [Variation der Konstanten in (2.69); vgl. (2.63), (2.64)]

xy(1) = u(t) e (2.70)



32 2. Differentialgleichungen erster Ordnung
wird in (2.67) eingesetzt. Es ergibt sich

de=¥ 4y [(-37 e—%r3)+ r e'*”] =2, @1

Die eckige Klammer in (2.71) verschwindet. Das kann man entweder durch direktes
Nachrechnen iiberpriifen, oder man kann die Tatsache benutzen, daB die Funktion
e ¥ der zugehdrigen homogenen Gleichung (2.68) geniigt. Dieser Umstand tritt
bei der Methode der Variation der Konstanten stets auf, und das direkte Nachrechnen
kann deshalb als Rechenkontrolle benutzt werden. Die Gleichung (2.71) vereinfacht
sich somit zu (vgl. (2.66))

U =217 e, (2.72)

In (2.72) ist der Faktor ¢? gleich der Ableitung des Exponenten der Exponential-
funktion. Infolgedessen fiihrt hier die unbestimmte Integration zu elementaren Funk-
tionen. Man erhélt (Verzicht auf Integrationskonstante)

u(t) = 2 ¥, 2.73)
Einsetzen von (2.73) in (2.70) ergibt die partikuldre Lsung .

xy(t) = 2.
Damit ist die allgemeine Losung von (2.67)

x(t) = x,(t) + x,(t) = 2 + Ce~3, : (2.74)

Aufgabe 2.14: In einem Stromkreis geniigt die Stromstédrke / als Funktion der Zeit ¢
der Differentialgleichung

) R U
10+ 10 =1 @.75)

Man bestimme unter der Voraussetzung, daB der Widerstand R, die Selbstinduktion L
und die Spannung U konstant sind, diejenige Losung von (2.75), die der Anfangs-
bedingung 1(0) = 0 geniigt.

Aufgabe 2.15: Bestimmen Sie die allgemeine Losung y = y(x) der Differential-
gleichung (1 + x2) )" + xy = x!
2.3.3.  Exakte Differentialgleichung und integrierender Faktor

2.3.3.1. Exakte Differentialgleichung

Wir verallgemeinern zunéchst den Begriff der Differentialgleichung . Mit
P(x,y)dx + Q(x,y)dy =0, (x,»)eB, (2.76)

meint man die Aufgabe, bei bekannten Funktionen P(x, y), Q(x, y) entweder Funk-
tionen y = y(x) zu bestimmen, die der Differentialgleichung [Division von (2.76)
durch dx]

Px, )+ Q(x,» )y =0, (x,y)€B, @.77)
geniigen, oder aber auch die Aufgabe, Funktionen x = x(y) zu ermitteln, die der
Differentialgleichung [Divison von (2.76) durch dy]

P(x,p) X(») + Q(x,») =0, (x,y)€B, (2.78)
gentigen.
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Definition 2.4: Die Differentialgleichung
P(x,y)dx + Q(x,y)dy = 0, (x,y)€ B, (2.79)
heifst exakt, falls es in B eine Funktion U = Ul(x, y) mit
Ul Ul
W) _ P(x,y) und Uy _ 0, ») (2.80)
ox 0,
gibt.
Differenziert man die erste Identitét (2.80) partiell nach y sowie dle zweite partiell
02U
nach x und sind die erhaltenen Ableitungen stetig in B, so folgt ——— bx 5 by 5%’

und es gilt der

Satz 2.6: Wenn die partiellen Ableitungen existieren und stetig

OP(x,») . 00(x,)
oy ox
sind, dann ist die Integrabilititsbedingung

| OP(x,y) _ 0Q(x,5)
oy Tox

notwendig dafiir, daf§ (2.76) eine exakte Dtﬁ”erentlalglewhung ist.

(2.81)

Dartiber hinaus gilt

Satz 2.7: (2.81) ist hinreichend fiir das Vorliegen einer exakten Differentialgleichung,
falls der zur Differentialgleichung gehérige Bereich einfach zusammenhdngend (Band 4,
1.1.3.) ist.

Der Beweis kann mit Hilfe des Integralsatzes von Stokes gefiihrt werden.
Beispiel 2.5: Die Differentialgleichung
e?dx + (1 —xe?)dy =0 ) (2.82)

ist exakt, denn als B kann die ganze (x, y)-Ebene genommen werden (diese ist einfach
zusammenhingend), und die Integrabilitidtsbedingung ist wegen

0. 0
— eV = —e-¥ — _ —Y) — eV
3 e e und P” (1—-xe?) € (2.83)
erfiillt.
Aufgabe 2.16: Die Differentialgleichung mit trennbaren Verdnderlichen y’ = g(x) A(y),
(h(y) # 0, a < x < b, ¢ < y < d) werde einerseits in der Gestalt
g(x) h(y)dx — dy =0, -(2.84)
andererseits in der Gestalt
x) dx — =0 2.85
#3) dx = - | (2385)
angegeben. Was kann man iber die Exaktheit von (2.84) und (2.85) sagen?
Aus der Definition 2.4 folgt, daB die exakte Differentialgleichung (2.79) wegen
(2.80) in der Gestalt
(())U dx + %l—/—dy =0 ‘ (2.86)

8  Wenzel, Gew. Diff. 1

S.2.6

S.2.7
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angegeben werden kann. Ist y = y(x) bzw. x = x(y) eine Losung von (2.86), so kann
fiir (2.86) bei Beachtung der verallgemeinerten Kettenregel (Bd. 4, Kap. 3.6.)

U U dy d 3

IR 0, dh —-Uxyx)=0 (2.87)
bzw.

oU dx U d

F T T 0, d.h. T U(x(»), ) =0 (2.88)

geschrieben werden. Wegen (2.87) und (2.88) werden also die Lsungen y = y(x)
bzw. x = x(y) durch

] U(x, y) = const = ¢ (2.89)

implizit dargestellt. In einfachen Fallen wird man (2.89) nach y bzw. nach x auflésen
kénnen. Uber die theoretische Auflssungsméglichkeit gibt die Theorie der implizit
dargestellten Funktionen Auskunft (Band 4, 3.7.).

Beispiel 2.6: Es sollen die Losungen von (2.82) ermittelt werden. Da eine exakte
Differentialgleichung vorliegt, existiert eine Funktion U = U(x, y) mit

%‘é — e (2.90)
und
%% =1-xe> _ 2.91)

Zunéchst wird (2.90) diskutiert. Wir machen die partielle Ableitung nach x riick-
géngig, indem wir nach x integrieren und y hierbei als Konstante behandeln. Somit
folgt-aus (2.90)

Ulx,y) = xe + C(p). (2.92)

Man beachte, daB in (2.92) die Integrationskonstante C nur beziiglich x konstant ist.
Sie hdngt im allgemeinen noch von y ab. Zur Bestimmung von C(y) setzen wir
(2.92) in (2.91) ein und erhalten

=xe?+C()=1—-xe?
und damit
C(y) =1. (2.93)

Aus (2.93) folgt fiir C(y) (Verzicht auf Integrationskonstante, da nur ein U(x, y)
bendtigt wird) '

Cy) =y. (2.94)
Einsetzen von (2.94) in (2.92) liefert

Ulx,y) =xe™ + y. (2.95)
Also werden die Losungen y = y(x) bzw. x = x(y) implizit durch

xev+y=c (2.96)

dargestellt. In (2.96) ist ¢ine Auflésung nach x sofort moglich:
x = x(y) = (c — ).
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Aufgabe 2.17: Man priife, ob die Differentialgleichung
x(x 4+ 2y)dx + (x2 — ) dy =0
exakt ist und gebe gegebenenfalls eine implizite Darstellung der Lésung an.

2.3.3.2. Integrierender Faktor

Definition 2.5: Multipliziert man die gegebene nicht-exakte Differentialgleichung

P(x,y)dx + O(x,y)dy =0, (x,y)€B, 2.97)
mit einer Funktion .

u(x,y) £0, (x,y)€eB, (2.98)
und ist die sich hierdurch ergebende Differentialgleichung

(uP)dx + (uQ)dy =0, (x,y)eB, (2.99)

exakt, so heifit u = p(x, y) integrierender Faktor (Eulerscher Multiplikator) der Diffe-
rentialgleichung (2.97) relativ zu B.

Die Forderung (2.98) garantiert, daB3 nicht nur jede Lésung von (2.97) auch Lé-
sung von (2.99) ist, sondern daB auch umgekehrt jede Losung von (2.99) die Diffe-
rentialgleichung (2.97) 16st.

Satz 2.8: Der integrierende Faktor u(x, y) geniigt der partiellen Differentialgleichung

o Ot 0P 00\ _
P - a—xﬂ‘(a a)_o. (2.100)
Der Beweis ergibt sich aus der Integrabilitidtsbedingung
QuP) _ d(uQ)
oy ox (2.101)

fiir die Differentialgleichung (2.99).

Es ist schwierig, die partielle Differentialgleichung (2.100) fiir x = u(x, y) zu
16sen. Man versucht, mit speziellen Ansitzen fiir u(x, y) zum Ziel zu kommen. Ob
diese Versuche gelingen, hingt von der Struktur von P und Q ab. Als Beispiele fiir
Ansitze seien genannt

po=px), p=pp), p=mpuz mt z=xy,
po=pu(z) mit z= —xJi, ©o=u(z) mit z=x>+ y% (2.102)

Ein solcher Ansatz fiihrt zum Ziel, wenn damit (2.100) in eine gewdhnliche Diffe-
rentialgleichung fiir die nur von einer unabhéingigen Variablen abhédngige Funktion x
umgeformt werden kann, wobei neben x und ' nur die unabhingige Variable von u
vorkommt.
Aufgabe 2.18: Man zeige, daB die nicht-exakte Differentialgleichung

(2 —2x —2)dx + 2ydy=0
einen integrierenden Faktor der s_peziellen Struktur u(x) besitzt. Man gebe einen solchen Faktor an.

Aufgabe 2.19: Die Differentialgleichung

xp¥dx + (1 +2x%%)dy =0 (x+ 0,y + 0) (2.103)

D.2.
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ist nicht exakt (warum?). Gibt es einen integrierenden Faktor der speziellen Gestalt 4 = u(x) oder
2= u(y)? Wenn ja, bestimmen Sie einen solchen und 18sen Sie damit (2.103). Die Darsteltung der
Losung in impliziter Gestalt geniigt.

Wir weisen noch auf eine Anwendung in der Thermodynamik hin.

Wihlt man bei einem reversiblen thermodynamischen ProzeB die absolute Temperatur 7 und den
Druck p als unabhingige Verinderliche, so nimmt bei einer (differentiell kleinen) Anderung der
Temperatur 7um d7 und des Druckes p um dp das System die Wairmemenge

(T, p) AT + 21(T, p) dp (2.104)
und gleichzeitig die Arbeit
el dar ol d, 2.10
P57 +. TS (2.105)

auf.
Hierbei bedeuten

V: spezifisches Volumen,

V = V(T, p): Zustandsgleichung,

cp(T, p): spezifische Warmekapazitit bei konstantem Druck,

21(T, p): spezifische latente Wirme (d. h. 7 = const) bei Druckénderung.

Addiert man (2.104),und (2.105), so ergibt sich die Anderung der inneren Energie zu

T, p) dT + A7(T, p) 4, anT 6Vd> 2.1
(T, p) +r(,p)p+pﬁ +¥p/. (2.106)

Aufgabe 2.20: FaBt man (2.106) als linke Seite einer Differentialgleichung (2.97) auf, so entsteht

eine exakte Differentialgleichung (Erster Hauptsatz der Wirmelehre). Welche Beziehung liefert

somit die Integrabilititsbedingung zwischen p, V¥, T, ¢,, A1?

Aufgabe 2.21: Fafit man (2.104) als linke Seite einer Differentialgleichung (2.97) auf, so ist 7 ein
1

integrierender Nenner, d. h.,— ist ein integrierender Faktor (Zweiter Hauptsatz der Warmelehre).

Welche Beziehung ergibt sich somit zwischen p, T, ¢,, A7?

2.4. Spezielle nichtlineare Differentialgleichungen erster Ordnung

Wir gehen von einer gewdhnlichen linearen Differentialgleichung erster Ordnung fiir eine Funk=

tion X = X(¢) aus:

ay(t) % + ao(t) ¥ = gt), 1€D, 2.107)
mit 8

a(t) =0 (teD) : (2.108)
[siehe auch (2.42) und (2.43)]. Nunmehr werde

X = u(x) . (2.109)
gesetzt, wobei u(x) eine gegebene Funktion mit #'(x) % 0 sei. Einsetzen von (2.109) in;(2.107) fiihrt
zur folgenden Differentialgleichung fiir x = x(7):

ay(t) w'(x) X + ao(t) u(x) = g(t). (2.110)

Alle Differentialgleichungen, die sich in der Gestalt (2.110) angeben lassen, konnen folgendermafen
behandelt werden: Zunichst 16st man die lineare Differentialgleichung fiir %(¢) und gewinnt dann
durch Aufldsen von (2.109) nach x und Einsetzen von ¥ = %(t) schlieBlich die Ldsungen x(#) von
(2.110).
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Beispiel 2.7: Wihlt man speziell u(x) = e¥, dann folgt gemaB (2.109)

x=¢e% (2.111)
und die Gleichung (2.110) spezialisiert sich (nach Division durch e¥) zu
ay(t) % + ao(t) = gt)e™. (2.112)

Sind %(t) Losungen von (2.107), so ergeben sich die Lésungen von (2.112) durch Auflésen von (2.111)
nach x und Einsetzen' von %(¢) zu

x(t) = In(x(1)), (2.113)
wobei wegen (2.111) nur Losungen %(t) > 0 brauchbar sind.

Beispiel 2.8: Wihlt man speziell

x=x* (x> 0,& %0, *1,reell), (2.114)
so spezialisiert sich (nach Division durch x*~!) die Gleichung (2.110) zu

ay(t) ok + ag(t) x = g(t) x~o+1, (2.115)
Mit den Bezeichnungen

B=1-q, by(t) = xay(t) = (1 — ) ay(t), bo(t) = ao(t) (2.116)
erscheint (2.115) in.Gestalt der Bernoullischen Differentialgleichung
] by(t) X + bo(t) x. = gt) x* (x > 0,8 % 0, # 1, reell). (2.117)

Sind %(t) > 0 Losungen von (2.107), so ergeben sich die Lésungen von (2.117) durch Aufldsen von
(2.114) nach x und Einsetzen von %(t) zu
x(t) = (2(!))_‘1‘_ = (i(t))# . (2.118)
Aufgabe 2.22: Man lose die Bernoullische Differentialgleichung fiir x = x(1)
(1—tHx—tx—ax?*=0, t]+1.
Da in dieser Aufgabe f eine ganze Zahl ist, kann hier neben x > 0 auch x < 0 zugelassen werden.

Gegeben sei die explizite gewdhnliche Differentialgleichung erster Ordnung

YA
I ¥y —f(x). (2.119)

R

Jeder Losung y = y(x) von {2.119) wird durch

1
z=z(x) = ;y(X) (2.120)
eine Funktion z = z(x) zugeordnet. Auflésen von (2.120) nach y(x) fiihrt zu
y(x) = xz(x). . .121)
Die Differentiation ergibt
Y (x) = z(x) + xz'(%). . (2.122)

Durch Einsetzen von (2.122) und (2.121) in (2.119) erhilt man fiir z(x) die Differentialgleichung mit
trennbaren Verinderlichen
1
2= -;(f(z) —2). (2.123)
Die Losungen z(x) von (2.123) ergeben mittels (2.121) Losungen y(x) von (2.119).
Aufgabe 2.23: Die Differentialgleichung (1.42)

,/ y+xtany

4 x — ytany
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ist in die Gestalt y’ = f(?) umzuformen, es ist eine implizite Darstellung der Lésung anzugeben.

Nun sei die explizite gewohnliche Differentialgleichung erster Ordnung

i ¥ = flax + by + o) (2.124)
gegeben. Jeder Losung y = y(x) von (2.124) wird durch

z=1z(x) = ax + by(x) + ¢ (2.125)

eine Funktion z = z(x) zugeordnet. Aufldsen von (2.125) nach y(x) fithrt zu
1
y(x)= —b-(z(x) - ax —.¢). (2.126)

Man muf wegen (2.126) die Voraussetzung b = 0 machen. Das ist jedoch keine Einschrinkung, weil
(2.124) im Falle b = 0 sofort durch eine unbestimmte Integration ldsbar ist. Differentiation von
(2.125) ergibt

Z'(x) = a + by'(x). (2.127)

Aus (2.124) und (2.125) folgt 3 = f(z). Einsetzen in (2.127) ergibt fiir z(x) die Differentialgleichung
mit trennbaren Veranderlichen

Z'(x) = a + bf(z). (2.128)

Die Losungen z(x) von (2.128) ergeben mittels (2.126) Losungen y(x) von (2.124).

Aufzabe 2.24: Man 16se die folgende Anfangswertaufgabe fiir y = y(x)
Y=x=»*+1 mit p0) =1.

2.5. Das Runge-Kutta - Verfahren
2.5.1.  Vorbemerkungen

Bisher haben wir Spezialfille von )’ = f(x, y) behandelt. Sie werden vielleicht zur
Auffassung gelangt sein, dal man zum Teil recht kunstvolle Methoden entwickelt
hat, um die Losung durch elementare Funktionen und gewdhnliche Integrationen
darstellen zu kénnen. So wichtig und niitzlich diese Methoden auch sind, so muB3
doch gesagt werden, daB formelmédBiges Losen einer Differentialgleichung geradezu
als Ausnahme anzusehen ist. So sind beispielsweise die Losungen einer so einfachen
Differentialgleichung wie y’ = x? + y? nachweisbar nicht durch elementare Funktionen
und auch nicht durch Integrale iiber elementare Funktionen angebbar.

Man ist im allgemeinen auf numerische Verfahren angewiesen (Einzelheiten hierzu
im Band 18). Sie liefern Néherungswerte der gesuchten Funktion anstelle ihrer
exakten Werte. Wir behandeln hier das klassische Runge-Kutta-Verfahren. Aller-
dings soll nicht nur die Rechenvorschrift mitgeteilt werden; wir wollen Sie dariiber
hinaus mit den Grundgedanken des Verfahrens vertraut machen. Zunichst ist die
gegebene Anfangswertaufgabe in eine fiir numerische Zwecke geeignete ,,iterierfahige
Gestalt* zu tiberfithren. Das Ergebnis steht in (2.132).

Ist y = y(x) eine Losung der Anfangswertaufgabe

Y= f(x,9), ¥xo) =Yo, (x,¥)€B, (2.129)
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so gilt fiir alle x aus dem Definitionsbereich von y(x)

Y'(x) = fx, ¥(x)) (2.130)
mit )
¥(X0) = Yo : (2.131)
Wird in (2.130) die unabhéngige Variable x durch % ersetzt und danach die so ent-
standene Gleichung in den Grenzen von x, bis x integriert, so erhélt man
x

¥(x) = ¥(x0) = [ f(% y(®)d%, d.h,

o

¥X) = yo + [ (% ¥(%) d%. (2.132)

Umgekehrt folgt aus (2.132) einerseits sofort (2.131) und andererseits durch Diffe-
renzieren die Gleichung (2.130). Also sind Gleichung (2.132) und Anfangswert-
aufgabe (2.129) beziiglich ihrer Losungen dquivalent.

Da in (2.132) die unbekannte Funktion im Integranden eines bestimmten Integrals
vorkommt, sagt man, (2.132) sei eine Integralgleichung.

Die Aufgabe fiir numerische Verfahren kann wie folgt formuliert werden. An
gegebenen Stellen

X1 X205 X3y een (2.133)

des Definitionsbereiches der Losung y(x) der Anfangswertaufgabe (2.129) sollen
Niherungswerte — sie seien durch

Y15Y2, V35 00e (2.134)
bezeichnet — fiir die (exakten) Werte
(1), 9(x2), ¥(x3), ... (2.135)

ermittelt werden. Dariiber hinaus sind Aussagen iiber die Abweichungen der Nahe-
rungswerte von den exakten Werten erwiinscht. Die Differenz

Ax,=x,,, — %, »=0,1,2,...) (2.136)
hei3t Schrittweite (auch: Maschenweite) h.

Oft wird es gentigen, 4 konstant, d. h. unabhéngig von » zu wihlen. In der Regel
wird /1 > 0 vorausgesetzt.

2.5.2. . Polygonzugverfahren

Aus (2.132) folgt fiir den (exakten) Wert y(x,) die Gleichung
*1
¥()) = yo + [ S5, y(%) dx. @13
*o
Ersetzt man bei der Herleitung in 2.5.1. den Anfangspunkt (x,, yo) durch den auf
der Losungskurve liegenden Punkt (x,, ¥(x,)), so ergibt sich analog zu (2.137) die
Gleichung
Xvey
Wxe) = 3(x) + [ fEByE)dE (0=0,1,2,..). (2.138)

Xv
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Beim Polygonzugverfahren berechnet man das Integral in (2.137) néherungsweise,
indem man in grébster Weise den Integranden f(%, y(%)) durch eine konstante Funk-
tion ersetzt, die gleich dem Wert von f(X, (X)) an der unteren Integrationsgrenze,
namlich gleich f(x,, yo) ist. Damit geht (2.137) in eine Gleichung fiir den Ndherungs-
wert y; von y(x,) liber:

Y1 = Yo + (X1 — Xo) f(Xo, Yo), (2.139)

y1= Yo + hf(xo, ¥o). (2.140)

Beim néchsten Schritt des Polygonzugverfahrens iibertragt man die bisherige Rolle
von (xo, o) auf (x;, y;). Es ergibt sich somit der Niherungswert y, von y(x,) zu

d.h

Y2 = y1 + bf(x1, 1),

wobei vorausgesetzt wurde, daB eine konstante Schrittweite vorliegt. Nunmehr ist
verstandlich, daB im Rahmen des Polygonzugverfahrens

Yvsr =¥y + Wx ) (v=0,1,2,..) (2.141)

aufzuschreiben ist.

Die Gewinnung der Néherungen y,, y,, ... gemiB (2.141) kann geometrisch inter-
pretiert werden (Bild 2.4). Man geht zunéchst vom Anfangspunkt (x,, y,) lings eines
Geradenstiickes, das den Anstieg f(xo, yo) besitzt, bis man zii einem Punkt P; mit
der Abszisse x; = x, + & gelangt. Die y-Koordinate von P; wird y, genannt, d. h.,
P, ist durch (x,, y,) dargestellt.

Vom Punkt P, aus geht man nunmehr ldngs eines Geradenstiickes, das den Anstieg
f(xy, yy) besitzt, bis zu einem Punkt P, mit der Abszisse x, = x; + h. Die y-Ko-
ordinate von P, wird mit y, bezeichnet.

In dieser Weise fortfahrend, gelangt man zu einem Polygonzug, der eine Néhe-
rungskurve fiir die Losungskurve der Anfangswertaufgabe (2.129) ist.

/) S Niherungspolygon
exakte lisung

Bild 2.4

\

Fiir elektronische Rechenautomaten, bei denen man wegen der hohen Rechen-
geschwindigkeit die Schrittweite /4 sehr klein und dementsprechend die Anzahl der
erforderlichen Schritte sehr groB wéhlen kann, ist dieses (gewdhnliche) Polygonzug-
verfahren durchaus brauchbar. Fiir die Rechnung ohne Automaten empfehlen sich
Verfahren, bei denen man mit gréBerer Schrittweite 4, also kleinerer Schrittanzahl,
dieselbe Genauigkeit erreicht. Hierzu gehort das Verfahren von Runge-Kutta,
das aber wegen des vollig schematischen Ablaufs der Rechnung auch leicht fiir
Rechenautomaten programmierbar ist. Um die Grundgedanken stirker in den
Vordergrund riicken zu kénnen, behandeln wir zundchst eine Verbesserung des
Polygonzugverfahrens.

Beim (gewdhnlichen) Polygonzugverfahren stellt man aus (2.138) eine Néherung
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her, indem man y(x,) durch die Naherung y, ersetzt und weiterhin fiir den Integranden
den Wert an seiner unteren Integrationsgrenze nimmt. Es entsteht fiir die Ndherung
Yy+1 die Gleichung (2.141), die in neuer Bezeichnung nochmals notiert wird:

Vowr =¥y + Wx,, 1) (2.142)

Der obere Index I auf der linken Seite von (2.142) weist darauf hin, daB es sich
hier zunéchst um einen ersten Néherungswert fiir y(x,.,) handelt. Es soll ihm ein
zweiter Naherungswert p% | an die Seite gestellt werden. Beim (gewdhnlichen) Poly~
gonzugverfahren ist beim Ubergang zur Néherung die untere Integrationsgrenze in
(2.138) ausgezelchnet Beim Herstellen der Naherung yI; soll der Integrand von
(2.138) durch einen Wert ersetzt werden, der mit der oberen Integrationsgrenze
zusammenhéngt.

Es ist naheliegend, hierbei die Kenntnis von (2.142) auszunutzen und f(&, (X))
durch die konstante Funktion

Sxys1s Vie1) (2.143)
zu ersetzen. Somit ergibt sich fiir yI%, ; die Formel
Vit =0+ W e, Vs (2.144)

Durch eine geeignete Linearkombination der in (2.142) und (2.144) erhaltenen Werte
soll die Néherung y,,, fir y(x,,,) berechnet werden:

Voe1 = Ci¥ist + C2Yrya- (2.145)

Die Konstanten ¢; und ¢, in (2.145) sollen so bestimmt werden, daB3 die Taylor-

entwicklung der durch den Punkt (x,, »,) gehenden (exakten) Lésung vony’ = f(x, y)
und die Taylorentwicklung der Naherung (2.145), die beide an der Entwicklungs-

stelle x, ausgefiihrt werden, bis zu Gliedern mit méglichst hohen Potenzen von /&

iibereinstimmen. Die Taylorentwicklungen stehen in (2.149) und (2.151).

Fiir die Taylorentwicklung der (exakten) Lésung y(x) mit y(x,) = y, ergibt sich
Wors) = 2y + V) B+ &R+, (2.146)

wobei die Werte y'(x,), »”(x,), ... mit Hilfe der Differentialgleichung y* = f(x, y) ermittelt werden.
Die Rechnung liefert .
Yy = flxy, ) (2.147)

und wegen

L_ 4 [ 0f(x, ) [0/, ») ,
A= dx S, ) = ( ox >y=y(x) N ( oy )y=y(x)y(X)

unter Beachtung von (2.147)

Af(x, ») 0f(x, »)
Men) (D) e

y=yy y=yv
Werden (2.147) und (2.148) in (2.146) eingesetzt, so ergibt sich
Yxp) =y + h 'f(xv,yv)
of of
—_— 2 —
+h {(bx),, Lt (Oy )vaf(xv, yv)} +o (2149

y=yv y=yv

e = (
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Die Taylorentwicklung von y} 4 ; kann (2.142) entnommen werden. Um die Taylorentwicklung von

7% 1 aus (2.144) herstellen zu konnen, wird zunichst die Funktion f(x,y) an der Stelle (x,, »,)
entwickelt (Band 4, 4.1.):

9
f(x,Y)=f(xv,yv)+<—f) _ ("—Xv)+(g—£) I RN

0x
y=yy Y=y
Hieraus folgt mit (2.142)
of of
fGys1s Vowr) = f(x,,3) + h {(a‘)}cxv + (B—;)x=xv f(X‘,,yv)} + ...
y=yv y=yy
und damit wegen (2.144) ‘
of | of
Wt =y + By, vy + I {(a)x% " (E)x% fe, yv)} o @.150)
Y=yv ry=yv .

Mittels (2.142) und (2.150) ergibt sich schlieBlich fiir die Taylorentwicklung von (2.145)

Yy = (€1 + ¢2) ¥y + h(ey + ¢2) f(xy, 1))

of of ‘
2 — —_—
+ e, {(ax)mv + (Oy )xngf(xv,yv)} T @.151)
y=yv y=yv

Nun kann der Taylor-Abgleich erfolgen. Es werden die Koeffizienten dér Potenzen
von & von der Entwicklung des exakten Wertes in (2.149) mit den entsprechenden
Koeffizienten der Entwicklung des Niherungswertes (2.151) verglichen. Es ergibt
sich

»o=1(c1 +c2) s
Gy 3y) = (ex + ) f(xy, 1),
Hol=ol{.}h (2.152)

wobei in der letzten Gleichung die durch Punkte angedeuteten geschweiften Klam-
mern einander gleich sind. Da die Herleitung fiir beliebige Anfangswertaufgaben
(2.129) gelten soll, kann angenommen werden, daB die Werte y,, f(x,, »,) und {...}
in (2.152) jeweils ungleich null sind. Hieraus folgt ¢, + ¢, = 1, 4 = ¢, und damit

1= 0y = . (2.153)
oy
et vl
/ k
W
; // X
}’)’u; —
/- /«z}

L .
Yy

’P_h_.

fy X1 ° Bild 2.5
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Einsetzen von (2.153) in (2.145) und Beriicksichtigung von (2.142) und (2.144) fiihrt
zu

Yys1 = z(J’I+1 + J’v+1 =30, + Wf(x, ») +y, + hf(an.}'}q-l))
und weiter mit den Abkiirzungen

ki =b(x,0), ko= (3., i) = H(xe, 0 + k) (2.154)
zum Ergebnis

wa=3n+k+y+kl=y+k (2.155)
mit

k= 4(ks + k3) (2.156)
(Bild 2.5).

2.5.3. Klassisches Runge-Kutta-Verfahren

Beim Verfahren von Runge und Kutta werden zunichst vier Naherungen fir
¥(x,.,) hergestellt; sie seien durch y!.,, y& ;, yI,, yIY | bezeichnet. Die Niherung
%1 wird ebenso wie beim Polygonzugverfahren ermittelt:

Vewr = I + B (x,, ). (2.157)

Die Idee fiir die Vorschrift von yI%, ist wie beim verbesserten Polygonzugverfahren;
die Rolle des Punktes (x,,{,¥i,;) wird jedoch vom Halbierungspunkt der Ver-
bindungsstrecke zwischen (x,, y,) und (x,.;, ¥L,;) tibernommen, d. h. vom Punkt

(x + g 5 =, + y,H)) Also wird jetzt fiir yIL, die folgende Rechenvorschrift
gewihlt:

’ ho1 \ e
Wt =p A (5 + 30 00+ Hao)- (2.158)

Die Rechenvorschnft firy ml ist ebenso wie fiir yI% ,, lediglich wird auf der rechten

Seite der Wert 3!, ; durch yIL ; ersetzt:

W =0+ B (5 s O+ R )- 2.159)

SchlieBlich wird yIY, so gebildet wie yLL; im Abschnitt 2.5.2., wobei !, , aus 2.5.2.
jetzt durch y!'I, ersetzt wird:

Wi =y + X v)- (2.160)

Analog dem Vorgehen in 2.5.2. wird die Ndherung y,,, durch eine Linearkombination
der vorliegenden vier Ndherungen gebildet:

Voe1 = Cilbsr + QUi+ GV + CaiYa- (2.161)
Die Koeffizienten werden nach der Methode des Taylor-Abgleichs ermittelt. Es zeigt
sich, daB die Taylorentwicklung des exakten Wertes und die des Naherungsaus-
druckes bis zur vierten Potenz von /4 in Ubereinstimmung gebracht werden konnen.
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Die Rechnung iibergehen wir. Fiir die Koeffizienten aus (2.161) ergeben sich die
Werte ¢; = &, ¢, = %, ¢3 = %, ¢4 = . Somit geht (2.161) in

Yysr = 5O + 2050 + 2)’5 + }'EH) ' (2.162)
iiber.
Wir fassen die aus (2.157), (2.158), (2.159), (2.160) und (2.162) bestehende Rechen-
vorschrift zusammen und fiihren hierzu analog 2.5.2. noch die folgenden Abkiir-
zungen ein:

kit = hf(x,, »,), (2.163)
i hol Lo h k,
ki = 1f (3, + 7,7(yv RD)= (5t S) @6
ki = hf(x + (yv + y.,“)) hf(x i 2 o+ k;} (2.165)
kot = hf(x, + h,yiﬂ) = hf(x, + h, ¥, + k). (2.166)
Damit ist

Mer=n kv =y, + ke, M =y, + ks,

wh=ntk

T =ntk ) (2.167)
k =3k, + 2k, + 2k; + ks). | (2.168)

Zur Durchfiithrung der Rechnung ist folgendes Schema zu empfehlen (4; = 2, = 1,
dy =23 =2):

und

mit

k=

x ¥ f ky=hf| Ak, | 33X 2k,
Xy Yy S5 ») ky ky

h k, ( h ky
Xy +‘i‘ »y + 5 f(xv Tt T) k> 2k,

h ks, h k,
xv+7 yv+T f(xv+73}v+7) ks 2k,
X, +h |y, + ks SfCe, + by, + k3) ky kq k
Xy4+1 Yy =ntk

Ausgehend von (x,,;, y,.,) kann das Verfahren in gleicher Weise fortgesetzt werden.
Beispiel 2.9: Von der Lésung der Anfangswertaufgabe
Y =4x*+ ), ¥0)=0, (2.169)

sollen mit Hilfe des Runge-Kutta-Verfahrens die Funktionswerte an den Stellen
x = 0,5und x = 1 ndherungsweise berechnet werden. Als Schrittweite werde 7 = 0,5

gewihlt. Fithrt man die Rechnung mit 6 Dezimalstellen hinter dem Komma durch,
so ergibt sich:
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x y [=3(x*+y?) k, = hf Dk, k=342 uky

0,00 0,000000 0,000000 0,000000  0,000000
0,25 0,000000  0,015625 0,007 813 0,015625
0,25 0,003907  0,015629 0,007815 0,015629
0,50 0,007815  0,062515 0,031258 0,031258 0,010419

0,50 0,010419 0,062527 0,031264 0,031264
0,75 0,026051 0,140795 0,070398 0,140795
0,75 0,045618 0,141145 0,070573 0,141146
1,00  0,080992 0,251640 0,125820 0,125820 0,073171

1,00 0,083590
Aufgabe 2.25: Durch Anwendung des Runge-Kutta-Verfahrens auf

, 1
¥ =Wy\/2y—x, y0) =1, (2.170)
mit der Schrittweite # = 0,5 bestimme man unter Mitnahme von vier Dezimalen
ndherungsweise y(1).
2.5.4, Schrittweite und Fehlergrofe

Als grober Anhaltspunkt fiir die Schrittweite 4 beim Runge-Kutta-Verfahren wird
oft die angendherte Ubereinstimmung der Werte k, und k; angesehen; genauer: der
absolute Betrag des Unterschiedes zwischen k, und k; soll moglichst die GroBen-
ordnung von einigen Prozent des absoluten Betrages des Unterschiedes zwischen k&,
und &, nicht iiberschreiten, d. h. etwa

I ke = ks | < 0,05, ' (2.171)

andernfalls sollte man zu einer kleineren Schrittweite tibergehen.

ky — k,

Beispiel 2.10: Im Beispiel 2.9 ergeben sich fiir die linke Seite von (2.171) gréBen-
ordnungsmaBig die Werte
oo ! g L
2-10 T8I0 und 1,710 39102
geniigen also der Ungleichung (2.171). Eine Schrittweitenverkleinerung ist nicht
erforderlich.

Brauchbare Fehlerabschitzungen liegen fiir das Runge-Kutta-Verfahren noch
nicht vor. Um wenigstens einen Anhaltspunkt fiir die GroBe des begangenen Fehlers
zu haben, wiederholt man die Rechnung mit der doppelten Schrittweite 24 und stiitzt
sich auf die Tatsache, daB3 beim Runge-Kutta-Verfahren die Taylorentwicklung des
exakten Wertes und die Taylorentwicklung des Naherungswertes (2.162) bis zur
vierten Potenz von 4 ibereinstimmen. Dann kann man sagen, daBl der Fehler bei
Schrittverdoppelung auf anndhernd den 2° = 32fachen Wert ansteigt. Da gleich-
zeitig zum Durchlaufen von 2/ zwei Schritte der urspriinglichen Feinrechnung ge-
horen, wobei sich der Fehler angendhert verdoppelt, so ist der Fehler bei der zuletzt
durchgefiihrten Grobrechnung ungefihr 16mal so groB wie derjenige der Fein-
rechnung. Der Unterschied zwischen einem gefundenen y-Wert y, der urspriinglichen
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Feinrechnung und dem zugehdrigen gréberen Wert y, der zuletzt durchgefiihrten
Grobrechnung betrigt somit angendhert das 15fache des Fehlers dy der Feinrech-
nung. Man kann dies sogar zu einer Korrektur der Feinwerte benutzen: y, wird
ersetzt durch

. 1
| Yo + 0y mit Oy == = vy (2.172)

Beispiel 2.11: Beispiel 2.9 wird nochmals mit der doppelten Schrittweite 7 = 24 = 1
durchgefiihrt:

x y f=iP ) k=0 Ak, k=X 2k

0,00 0,000000 0,000000  0,000000  0,000000
0,50  0,000000  0,062500  0,062500 0,125000
0,50 0,031250  0,062744  0,062744 0,125488
1,00 0,062744  0,250984  0,250984  0,250984 0,083579

1,00 0,083579

Damit ergibt sich y(1,0) ~ 0,083590 + dy mit dy = -%5— ,L1-10-5~ 7-10°7
und damit y(1,0) ~ 0,083591.
Aufgabe 2.26: Man 16se die Anfangswertaufgabe
Y=x+y, y0=0
nach dem Verfahren von Runge-Kutta. Es sind zwei Schritte mit 2 = 0,2 durch-
zufiihren, anschlieBend ist eine Korrektur durch Rechnung mit der doppelten

Schrittweite vorzunehmen (Rechnung mit 6 Dezimalstellen). Die Ergebnisse sind
mit der exakten Losung zu vergleichen.
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2.6. Zusammenfassung bisheriger Ergebnisse

Auflésen T
nach y’ =S )

implizite Dgl.

F(x, 3, ) =0?
nein .
i Dgl. linear?)
|
| ,
[ ja
Dgl. mit trennbaren Trennen der Veridnderlichen bei
Verinderlichen? zugehdriger homogener Dgl.
nein
j;\ ja nein ,_:
Spezialfille von 2.4.?) J > {Dgl. inhomogen?
nein ja
ja partikuldre Losung mittels
D ———— B
exakte Del 7 Variation der Konstanten .
nein
Mittels integrierendem

Y=ty

nein Iallgemeine Losung

ja nein
Anfangswertaufgabe? Anfangswertaufgabe?

Faktor exakte Dgl. her-
stellbar?

nein ja
Mehrere Anfangs- Bestimmen der Konstanten
wertaufgaben herstellen der allgemeinen Losung
durch Anfangsbedingungen

|Runge-Kutta oder Picard-Lindelof Aufgabe geldst




S.3.1

D.3.1

S.3.2

3. Differentialgleichungen héherer Ordnung

3.1. Existenz und Unitiit der Lﬁsuﬂgen

Wir beschéftigen uns mit der bereits aus Definition 1.2 bekannten expliziten Diffe-
rentialgleichung n-ter Ordnung fiir die Funktion y = y(x)
¥ = ¥,y ). (3.1)
Analog zu den Sitzen 2.2, 2.3 und der Definition 2.1 notieren wir hier

Satz 3.1: Ist die Funktion f(x, y, ', ..., y* V) — als Funktion ihrer n + 1 Argumente
X, Yy ... YU — in ihrem Definitionsbereich B stetig, eXistieren dort auch ihre par-

. : of of of s : S
tiellen Ableitungen W’ O_y” S BW‘T’— und sind diese dort stetig'), so ist die Existenz

und Unitiit der Losung der Anfangswertaufgabe, bestehend aus der Differentialgleichung
Y® =[x, 3, yD) 7 (3.2)
und den Anfangsbedingungen
¥(Xo) = o, ¥'(Xo) = ¥o, ..., " Vxo) = y§ =1, (3.3)
gesichert, falls fiir die gegebenen Konstanten yo, o, ..., y5=1
(X0, Y0, 0, .-, ¥§ ™) e B (3.4)
gilt. Y
Zusatz zu Satz 3.1: Das Verfahren von Picard-Lindelof aus Satz 2.2 ist iibertragbar. Wir formulieren

es fiir den Fall n = 2: Fir die Losung von y” = f(x, », ), ¥(xo) = o, ¥ (x0) = yg gilt y(x)
= lim yy(x) (Ix — xo| < r, r hinreichend klein), wobei die Funktionenfolge yo(x), ¥1(x), ... unter
k-0 =

Hinzuziehen der Hilfsfunktionenfolge zo(x), z;(x),... gemidB yo(x) = yo, zo(x) = y§,
x

) = yo + [ za() ds,

*o0

) = ¥y + [ f yer), Za@N dr K =1,2,..)
*o

zu berechnen ist.

Definition 3.1: Man sagt

D(x,y,Cy,...,C) =0 (Cy,..., C,: Scharparameter) 3.5)
gibt relativ zu B die allgemeine Losung (das allgemeine Integral) von (3.1) an, wenn die
durch Auflésen von (3.5) nach y entstehenden differenzierbaren Funktionen y = y(x)
Lésungen von (3.1) sind und wenn diese nicht mit weniger als n solchen Parametern
dargestellt werden kdnnen.

Satz 3.2: Sind die Voraussetzungen von Satz 3.1 erfiillt, so ist jede Losung von (3.1)
in der allgemeinen Losung enthalten.

Y x,,,..., "V sind in diesem hang als bhingige Variable aufzuf: nach
denen die rechte Seite von (3.2) insbesondere partiell differenziert werden kann.
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3.2 Einige Sonderfiillle von im allgemeinen nichtlinearen Differentialglei-
chungen zweiter Ordnung

Analog zu 2.3. beschiftigen wir uns mit solchen Spezialfillen von
"= f(x%,)), (3.6)

deren Losungen (oder deren Umkehrfunktionen) durch elementare Funktionen oder
wenigstens durch Integrale {iber elementare Funktionen darstellbar sind. Weiterhin
interessieren wir uns fiir solche Spezialfille, deren Lsungen sich aus gewissen Diffe-
rentialgleichungen erster Ordnung ergeben.

3.2.1.  Die Differentialgleichung y" = f(x)
Die allgemeine Losung von y'" = f(x) kann durch zweimalige Integration gewon-

nen werden, wobei die stiickweise Stetigkeit von f(x) vorausgesetzt wird. Man kann
sie auch in der Gestalt

y(x) = f (x = ) f() dt + Cy(x = xo) + C, (3.7

(x, ist eine feste Zahl aus dem Definitionsbereich von f(x)) angeben.

Aufgabe 3.1: Man bilde in (3.7) die zweite Ableitung y”(x) und zeige, daB (3.7) Losungen von
Y’ = f(x) darstellt.

3.2.2. Die Differnetialgleichung '’ = f(y), Energiemethode

Ist die Funktion y(x) zweimal differenzierbar, so liefert die Kettenregel fiir die
Ableitung der Funktion 4(»'(x))? die Formel

= [3o@?] = v . (38)

Multiplizieren wir daher die Differentialgleichung fiir y = y(x)

Y =f(y) (fstetig) (3.9)
mit ', so kann das Ergebnis y'y"" = f(y) » wegen (3.8) in der Gestalt

= [zo7] =y (3.0

geschrieben werden. Ist y = y(x) eine Losung von (3.9), so auch von (3.10). Ist
umgekehrt y = y(x) eine Losung von (3.10) und damit von y'y"" = f(»)y' so ist
im Fall

y(x)*0 (3.11)

gesichert, daB y = y(x) auch (3.9) 16st. Zum Beweis ist y'y" = f(») ' miti,zu
multiplizieren. y

') Geht man davon aus, daB y(x) - falls x als Zeit und y als Weg gedeutet wird - die geradlinige
Bewegung eines M ktes mit der Masse 1 bezeichnen soll, so stellt der Term $(")? die kine-
tische Energle dieses Punktes dar. Darauf beruht u. a. die Bezeichnung Energiemethode.

4  Wenzel, Gew. Diff. 1
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Beim Ubergang von (3.9) zu (3.10) kann es vorkommen, daB sich Scheinlsungen
ergeben, d. h. Funktionen y = y(x), die zwar (3.10), aber nicht (3.9) geniigen. So
ist

y(x) = const = ¢ (3.12)
eine Losung von (3.10), jedoch im Fall f(¢) = 0 keine Losung von (3.9).
Zusammenfassend konnen wir sagen:

Unter der Voraussetzung (3.11) sind die Differentialgleichungen (3.9) und
(3.10) beziiglich ihrer Losungen einander iz'qut_'valent. (3.13)

Wir kniipfen nun an (3.10) an. Wenn wir eine Stammfunktion der linken Seite von
(3.10) — unter Verzicht auf eine Integrationskonstante — bilden, ebenso mit der
rechten Seite von (3.10) verfahren und beachten, daB zwei Funktionen, deren Ab-
leitungen einander gleich sind, sich héchstens um eine additive Konstante unter-
scheiden (Bd. 2, Satz 6.5), so erhalten wir

310 = [ /)y dx + C. (3.14)
Im Integral aus (3.14) wird die Substitution y = y(x) ausgefiihrt:
I 1072 = [f0)dy + C. (3.15)

Auflosen von (3.15) nach’y’ liefert

entweder y = J2[ f(3) dy + 2C oder y' = — 2] f(3) dy + 2C. (3.16)

Die Differentialgleichungen in (3.16) sind Differentialgleichungen mit trennbaren
Verdnderlichen. Wegen (3.13) interessieren wir uns nur fiir den Fall 3’ # 0 und kon-
nen daher in (3.16) gemdB 2.3.1. die Methode der Trennung der Verédnderlichen an-
wenden. Wir verzichten auf die allgemeine Durchfithrung und bringen zur Illustrie-
rung als Beispiel die Losung einer Anfangswertaufgabe. Um Fallunterscheidungen
zu vermeiden, ist es zweckméiBig, einerseits bereits in (3.15) C aus den Anfangs-
bedingungen zu bestimmen und andererseits zu ermitteln, welche der beiden Diffe-
rentialgleichungen aus (3.16) fiir die Anfangswertaufgabe maBgebend ist.

Beispiel 3.1: Gegeben sei die Anfangswertaufgabe fiir y = y(x)

V' =23%(-2) = 1L,y(-2) = -1. (3.17)
Der Ubergang von (3.9) zu (3.15) fiihrt im vorliegenden Beispiel zu
300 =Ht+ C. (3.18)

An der Stelle x = —2 muB (3.18) die Anfangsbedingungen aus (3.17) erfiillen. Also
ist C = 0 und damit

entweder y' = y* oder y = —y*. (3.19)

Wegen der Anfangsbedingung »'(—2) = —1 < 0 ist aus (3.19) nur y' = —y?
maBgebend. Man erhilt weiter

y = —yzsf-i—i}-=—fdx=>—%=—x+cl.
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Die Anfangsbedingung y(—2) = 1 liefert C, = =3, so daB sich als Losung der
Anfangswertaufgabe (3.17) schlieBlich
1 .
= > —3) 3.20
Y=g >3 (320

ergibt.
Aufgabe 3.2: Man 16se die Anfangswertaufgabe fiir y = y(x)

’r

1
y= —\/—;—,y(l) =1Ly{)= -2

Beispiel 3.2: Wir kniipfen an Beispiel 1.8 an und behandeln die Differentialgleichung (1.26), d. h.

mlp = —mgsing und damit ¢ = — %sin [ 3.21)

fiir den Ausschlagwinkel ¢ (Bild 1.6) des vorliegenden mathematischen Pendels. Wir schreiben vor,
daB zur Zeit ¢ = 0 der Ausschlagwinkel gleich 0 und die Geschwindigkeit /¢ gleich v, ist. Wir fordern
mit anderen Worten die Anfangsbedingungen

@0) =0 (3.22)
und

Hp(t)emo = vo, kurz: [(0) = vo. (3.23)
Der Ubergang von (3.9) zu (3.15) fithrt im vorliegenden Beispiel zu

1
5 ¢ = -&;—cosrp + C. R (3.24)

Multipliziert man (3.24) mit mi?, so ergibt sich mit der Abkiirzung m/>C = E die Gleichung (1.3).
Hiermit wird erneut der Name Energiemethode fiir die vorliegende Losungsmethode verdeutlicht.
Mit den Anfangsbedingungen (3.22), (3.23) folgt aus (3.24)

1 (0)\* g
c=5(3) -5 (325
Wir setzen C aus (3.25) in (3.24) ein und 16sen danach (3.24) nach ¢ auf. Es ergibt sich
1 S ————
§== T\/Zgl(—l ¥ cosg) + 03, (3.26)

Wegen der Anfangsbedingung (3.23) ist in (3.26) das obere oder das untere Vorzeichen zu wihlen,
je nachdem, ob vy > 0 oder vy < 0 ist. In (3.26) fithrt Trennen der Verdnderlichen zu

do

—ttC,. (3.27)
\/Zgl(—l + cos @) + v

C; wird mittels der Anfangsbedingung (3.22) bestimmt und danach in (3.27) eingesetzt. Das Ergebnis
ist durch ein bestimmtes Integral mit variabler oberer Grenze formulierbar:

? d
t= fﬁf____————— (3.28)
\/Zgl(—l + cos @) + v3

Das Integral in (3.28) gehort zu den elliptischen Integralen, die im allgemeinen nicht durch elementare
Funktionen angebbar sind. Durch (3.28) wird die gesuchte Funktion ¢ = ¢(f) der Anfangswert-
aufgabe (3.21), (3.22), (3.23) in der nach  aufgelosten Gestalt # = #(p) dargestellt. Im Fall v3 > 4g/
ist der Integrand aus (3.28) stets positiv, also ¢ = #(g) und damit auch ¢ = ¢(¢) fiir alle 7 monoton.
4%
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Das bedeutet ein stindiges Uberschlagen des Pendels. Ist 3 < 4gl, so ist die kleinste positive Null-
stelle des Nenners im Integranden aus (3.28)
1
— JRCVEARON
(@, = arccos (1 7] vo). (3.29)
Das Pendel schwingt von ¢ = 0 bis zum Maximalausschlag mit dem absoluten Betrag ¢, , hat dort

die Geschwindigkeit 0 und schwingt danach wieder zuriick. Die bendtigte Zeit T fiir eine Viertel-
schwingung von ¢ = 0 bis ¢ = ¢, wird wegen (3.28) durch

L 2% d
P
T, =1 ————
! f \/Zgl(—l + cos @) + v}
0

gegeben, wobei ohne MiBverstindnisse befiirchten zu missen in (3.30) die Integrationsvariable
mit @ bezeichnet wurde und der Wert von ¢, der Formel (3.29) zu entnehmen ist.

(3.30)

Aufgabe 3.3: Man kann bei ,,kleinem* v, mit guter Néiherung die Kosinusfunktion durch die ersten

beiden von null verschiedenen Glieder ihrer Taylorentwicklung (Entwicklungsstelle null) ersetzen.

a) Man werte die dadurch aus (3.28) entstehende Niaherungsformel aus und lose die erhaltene
Gleichung nach ¢ auf.

b) Welche Néherungsformel ergibt sich fur ¢, [siehe (3.28), (3.29)]?

¢) Welchen Néherungswert erhélt man fiir 7; aus (3.30)? >

3.2.3. Die Differentialgleichung "' = f(x, )")
Die Differentialgleichung

Y= fx)) (3.31)
ist fiir die Funktion

px) = y'(x) (3.32)
eine Differentialgleichung erster Ordnung, namlich die Differentialgleichung

P = f(x,p). (3.33)

Sind die Losungen p(x) von (3.33) mittels der Methode von Kapitel 2 bestimmt, so
ergeben sich die gesuchten Losungen von (3.31) durch unbestimmte Integration von
(3.32).

Aufgabe 3.4: Man 16se die Anfangswertaufgabe fiir x = x(r)

(P2 +2t+ 5%+ Qt+2)x=4,x(1)=0,%1)=1. (3.34)
3.2.4. Die Differentiaigleichung y'' = (), )")

Beim Vorliegen der Differentialgleichung
Y =f0,) . (3.35)

priift man zunichst, ob es Losungen y(x) = const = ¢ gibt. Durch Einsetzen von y(x) = ¢ in (3.35)
erkennt man, daB tatsichlich eine solche Losung vorliegt, falls

fle,0)=0 - (3.36)

gilt. Bei der weiteren Diskussion von (3.35) beschrinkt man sich auf solche x-Intervalle der Losungs-
funktion y(x), fur die stets

Y(x)+0 (3.37)
gilt. Dann kann man sich namlich die Gleichung
y =yx) . (3.38)
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nach x aufgeldst denken:

x = x(y). (3.39)
In die Funktion p(x) mit
- p(x) =y'(x) (3.40)
setzen wir (3.39) ein und erhalten eine mittelbare Funktion von y, nimlich
q() = p(x) mit x = x(y). (3.41)

Es wird versucht, eine gewdhnliche Differentialgleichung fiir g(») herzustellen. Zunéchst ergibt sich
aus (3.41), (3,40) und (3.35)

dg _ dp dx_dzy 1 ”]-f
dy — dx dy dx? dy =7 p (y’P)p
dx
und damit wegen (3.41) die folgende Differentialgleichung fiir g(y):
dg _
2
vl f<y, 9. (3.42)

Ist diese leferennalglenchung mit den Methoden aus Kapitel 2 geldst, so konnen die gesuchten
Losungen y(x) von (3.35) wegen (3.41) und (3.40) mit Hilfe der gewdhnlichen Differentialgleichung
erster Ordnung mit trennbaren Veranderlichen

Y =4q0) (3.43)
ermittelt werden.

3.3. Explizite homogene und inhomogene lineare Differentialgleichungen n-ter
Ordnung

3.3.1.  Definition

Wir untersuchen, inwieweit die Ausfiihrungen aus 2.3.2. auf Differentialgleichungen
n-ter Ordnung iibertragen werden konnen. Der Definition 2.3 entspricht jetzt die

Definition 3.2: Unter einer gewihnlichen linearen Differentialgleichung n-ter Ordnung
fiir eine. Funktion y = y(x) versteht man eine Gleichung der Gestalt

@(X) YO + @p () YOV 4+ @ (%) Y+ ao(x) y = g(x), (3.44)
kurz

go a,(x) Y = g(x) (3.45)
mit

a,(x) =0 (xeD), (3.46)

wobei D der gemeinsame Definitionsbereich der bekannten Koeffizientenfunktionen
a,(x), @_1(x), ..., a;(x), ao(x) und des bekannten Storgliedes g(x) ist. Die Differential-
gleichung (3.44) heifit dariiber hinaus

inhomogen, falls g(x) £0 (xeD) (3.47)

homogen, falls g(x) =0 (xeD) (3.48)
gilt. Wird die Bedingung (3.46) zu

a(x) £ 0 (xeD) (3.49)

D.3.2
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verschdrft, so kann (3.45) in die explizite lineare Differentialgleichung
() a (-x)
yO(x) = Z ( @)

umgeformt werden. Es ist tiblich, bereits dann von einer expliziten linearen Differential-
gleichung zu sprechen, wenn (3.50) in der Gestalt (3.45), (3.49) angegeben wird.

m) + f,,(();)) (3.50)

3.3.2.  Aligemeine Losung im inhomogenen Fall

Der Satz 2.5 ist unmittelbar tibertragbar. Es gilt

Satz 3.3.: Die allgemeine Losung y(x) der expliziten gewohnlichen linearen inhomo-
genen Differentialgleichung

T a,x)y” =g(x), ax)*0 (xeD), (3.51)
»=0
ist gleich einer partikulidren (speziellen) Ldsung y,(x) der inhomogenen Differential-

gleichung (3.51) plus der allgemeinen Lisung v.(x) der zugehorigen homogenen Diffe-
rentialgleichung

Z a,x) ¥ =0, afx)+0 (¥ e D), (3.52)

.also

i X)) = yo(x) + yu(x). (3.53)

Zum Beweis benutzen wir den linearen Differentialoperator (vgl. Bemerkung in
2.3.2.1.)

Lyl = éo a,(x) y. (3.54)

Die Fortfiihrung des Beweises kann nunmehr wértlich dem Beweis von Satz 2.5
entnommen werden. Es sei auf die véllige Analogie zu dem entsprechenden Ergebnis
fiir lineare algebraische Gleichungssysteme (vgl. Bd. 13) hingewiesen. Die Uberein-
stimmung der Lésungsstrukturen beruht einzig und allein auf der Linearitdt der be-
trachteten Gleichungen.

3.3.3.  Struktur der Losung im homogenen Fall

Die Methode der Trennung der Verdnderlichen aus 2.3.2.2. kann nicht iibertragen
werden. Es gilt jedoch der

Satz 3.4: Die Lésungen der homogenen linearen Differentialgleichung (3.52) bilden
einen linearen Raum, d. h. mit je zwei Lisungen yy,(x) und yy,(x) von (3.52) ist auch
Jjede Linearkombination C,yy(x) + C,yya(x) Losung von (3.52)

Beweis: Mit (3.54) gilt
L[Ciyu1. + Copnal = CiLlyni]l + CoLlysa],

woraus wegen L{yy;] = L[yy2] = 0 auch L[C,yy, + C,p,.] = 0 folgt. m
Man kann die Aussage von Satz 3.4 noch erginzen. Hierzu erinnern wir zunichst
an die Vektorrechnung im gewohnlichen euklidischen dreidimensionalen Raum R®.
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Gegeben seien drei linear unabhingige Vektoren a,, a,, a3, d. h., aus

cia; + ca; +c3a3; =0 (3.55)
spll

c=c=c=0 : (3.56)

folgen. Die Aufgabe, jeden beliebigen Vektor v € R® in der Gestalt
v = C,a; + C,a, + Cza; (3.57)

darzustellen, ist auf genau eine Weise 16sbar. Im jetzigen Zusammenhang legen wir
nur auf die Existenz und Unitit der Lésung (C,, C,, C3) Wert und interessieren uns
nicht fiir die etwa mittéls Spatprodukten angebbaren Losungsformeli fiir Cy, C, Cs.
Angeregt durch (3.55), (3.56) formulieren wir die folgende

Definition 3.3: Die Funktionen fi(x), ..., f,(x) heiflen relativ zu ihrem gemeinsamen
Definitionshereich D linear unabhanglg, wenn aus

fi®) + 2fs() + oo + Gfi(x) =0 (xeD) (3.58)
die Gleichungen

Ci = = =Cy=10 (3.59)

gefolgert werden konnen.

Die Priifung, ob lineare Unabhiangigkeit vorliegt, ist prinzipiell mit Hilfe der
Definition 3.3 mdglich, jedoch im allgemeinen recht aufwendig. Sie wird erleichtert
durch

Satz 3.5: Sind die Funktionen f(x), ..., fu(x) in ihrem g i Definitionsbereich
D jeweils (n — 1)-mal differenzierbar und ist die sogenannte Wronskische Determinante

f() fx) e fulx)
W= f;(x) flz(x) .. f::(x) (3.60)

o) ey e
in D iiberall ungleich null, so sind die Funktionen f,(x), ..., f,(x) in D linear unabhiingig.

Zum Beweis wird die Identitdt (3.58) (n — 1)-mal differenziert. Es entsteht ein
lineares homogenes Gleichungssystem von n Gleichungen fiir die #» unbekannten
Konstanten ¢y, ..., ¢,, wobei die Koeffizientendeterminante die Wronskische Deter-
minante (3.60) ist; diese ist nach Voraussetzung fiir alle x € D ungleich null. Hier-
aus folgt (3.59) (vgl. Band 13), also sind f;(x), ..., f;(x) linear unabhéngig. m
Beispiel 3.3: Die Funktionen fi(x) =1, fo(x) = x, f3(x) = x2, fu(x) = x* sind
fiir alle x € (— 0, + o0) linear unabhéngig. In der Tat, der Satz 3.5 liefert

1x % x
2
W= g (1) 22" 36’; =120 firalle xe(—oo, +o0),
000 6

womit unsere Behauptung bewiesen ist.

D.3.3
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Zum Beispiel 3.3 sei noch bemerkt, daB fiir jedes » = 2, 3, ... die Funktionen x”
(»=0,1,2, ..., n) fir alle xe (— 0, + o) linear unabhéngig sind, gleiches gilt fiir
sin(v»x) (v =1,2,...,n),cos(»x) (»=0,1,2,...,n).

Aufgabe 3.5: Man zeige, daBl die Funktionen e“:*, e°2~, es* linear unabhéngig sind,
falls ¢; # ¢,, ¢; + ¢35, ¢, + c5ist.
Angeregt durch den Text im Zusammenhang mit (3.57) kommen wir zur

Definition 3.4: Ein linearer Raum, dessen Elemente Funktionen g(x), h(x), ... mit dem
gemeinsamen Definitionsbereich D sind, heifft n-dimensional, wenn es im Raum n
Funktionen fi(x), ..., fu(x) derart gibt, daf} die Aufgabe, irgendeine Funktion v(x) des
Raumes in der Gestalt

v(x) = C1/i(x) + Cofa(x) + ... + C,fu(x) (x€ D) (3.61)
darzustellen, stets auf genau eine Weise [dsbar ist. Die Funktionen fi(x), ..., f,(x)
heiflen Basis (Fundamentalsystem) des linearen Raumes.

Im AnschluB an Definition 3.4 nennen wir den

Satz 3.6: Greift man aus einem n-dimensionalen linearen Raum n linear unabhdngige
Elemente g, ..., g, heraus, so bilden sie eine Basis des Raumes. Je n + 1 Elemente
des Raumes sind stets linear abhdingig (d. h.: nicht linear unabhingig).

Jetzt sind wir in der Lage, Satz 3.4 zu ergidnzen. Es gilt

Satz 3.7: Die Losungen der homogenen linearen Differentialgleichung n-ter Ordnung
(3.52) bilden einen n-dimensionalen /inearen Raum, d. h., die allgemeine Losung kann
in der Gestalt

i Iu(x) = Ciyni(x) + .o + Coyna(x) (3.62)
angegeben werden, wobei
Y1 (%), Pua(%), - Vanlx) (3.63)

eine Basis (Fundamentalsystem) des Lésungsraumes ist und Cy, ..., C, beliebige
Konstanten sind.

Zusammenfassend hat sich ergeben:

Bei der Behandlung der homogenen linearen Differentialgleichung n-ter Ordnung
(3.52) geniigt es, eine Basis (3.63) herzustellen. Wegen Satz 3.6 und Satz 3.5 liegt
gewiB eine Basis (3.63) vor, wenn jede der Funktionen aus (3.63) die Differential-
gleichung (3.52) 16st und die aus ihnen gebildete Wronskische Determinante fiir alle
x € D ungleich null ist. Ohne Beweis teilen wir mit, dal das Nichtverschwinden der
Wronskischen Determinante fiir das Vorliegen einer Basis (3.63) nicht nur hin-
reichend, sondern auch notwendig ist.

Im allgemeinen ist die Herstellung einer Basis durch elementare Funktionen nicht
moglich. Dies gelingt jedoch, falls die Koeffizientenfunktionen a,(x), ..., ay(x) alle
konstant sind. Damit werden wir uns im nédchsten Abschnitt beschaftigen.

3.3.4. Lineare h Differentialgleich mit k ten Koeffizienten

5! -

Gegeben sei fiir die gesuchte Funktion y,(x) die gewdhnliche lineare homogene
Differentialgleichung n-ter Ordnung

@) + @ 0O + e+ @) + @) =0 (@, +0), (3.64)
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kurz
2 a(x) =0 (a, + 0), (3.65)

wobei die Koeffizienten

Aps Qn_ys .5 015 Ao (3.66)
als konstant vorausgesetzt werden. Die Lésungstheorie wird besonders tibersichtlich,
wenn man sich entschlieBt, zundchst alle Losungen y(x) zu suchen, die komplexe
Funktionen der reellen unabhidngigen Verdnderlichen x sind. In der Regel werden
die Koeffizienten (3.66) zwar reell sein, die Untersuchungen sind aber auch dann
giiltig, wenn die Koeffizienten komplexe Zahlen sind.

Die Losungstheorie beginnt mit dem Ansatz

] P(x) = e, (3.67)
Die eventuell komplexe Konstante 4 soll so bestimmt werden, da3 (3.67) die Diffe-
rentialgleichung (3.64) 16st. Einsetzen von (3.67) in (3.64) fiihrt 21},1)

" e™ 4+ a, A e 4 L+ ahe + gy e = 0. (3.68)
Jeder Summand auf der linken Seite von (3.68) besitzt den Faktor e**, und dieser ist
von null verschieden, also ist (3.68) genau dann erfiillt, wenn
i a" + a,_ A"t + o+ ad+a, =0 (3.69)

gilt.

Damit ist es uns gelungen, die Losung der Differentialgleichung (3.64) auf die
Losung einer algebraischen Gleichung (3.69) zuriickzufiihren. (3.69) heiBt charak-
teristische Gleichung der Differentialgleichung (3.64). Das bisherige Ergebnis lautet:

Satz 3.8: Es gibt Losungen von (3.64) der Gestalt (3.67), wenn A der Gleichung (3.69)
geniigt.

Uber die Gesamtheit der Losungen von (3.69), d. h. von
P(A) =0 (3.70)
mit
P,(A) = @™ + a,_ A"t + ...+ a,d + a, 3.71)
gibt der Fundamentalsatz der Algebra Auskunft. Fiir den bei seiner Formulierung
benétigten Begriff der Vielfachheit nennen wir die — bereits aus Bd. 2 bekannte —

Definition 3.5: Eine Losung A von (3.69) und damit von (3.70) hat die Vielfachheit I,
falls P,(2) und die Ableitungen®) von P,(2) bis zur Ordnung I, — 1 an der Stelle 1 =
alle den Wert null liefern, d. h., wenn

o) = Pi(h) = ... = P4=D() = 0 372
gilt, jedoch die I,-te Ableitung von P,(2) an der Stelle . = 4, von null verschieden ist:
PUW(A) # 0. (3.73)

d
1) — (e"‘) = A e** gilt auch, falls die Konstante 4 nicht reell ist.

%) Dxe Ableitungen von P,(%) sind beim Vorliegen der komplexen unabhanglgen Variablen 4
ebenso zu bilden wie bei reellem A.

S.3.8
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Damit kann der Fundamentalsatz der Algebra formuliert werden:

Satz 3.9: Hat (3.69) die r voneinander verschiedenen (im allgemeinen komplexen)
Lésungen

Ayshsyveisds (3.74)
mit den zugehdrigen Vielfachheiten

Lo, (3.75)
so gilt

L+L+...+1 =n; . (3.76)

mit anderen Worten: Jede Gleichung n-ten Grades hat mit Beriicksichtigung der Viel-
fachheit genau n (im allgemeinen komplexe) Losungen.

Beispiel 3.4: Gegeben sei die Differentialgleichung der freien gedimpften Schwingung

fir y = p(t) -

4200 + 0y =0 (6=0,w,>0). 3.77

Ehe wir (3.77) 16sen, nennen wir mathematische Modelle, die durch (3.77) erfaBt

werden:

a) Beispiel 1.1 mit Beriicksichtigung einer geschwindigkeitsproportionalen Reibungs-
kraft: m% + ax + kx = 0 (Reibungskraft: —ax, x > 0),

b) Beispiel 1.8 fiir kleine Ausschldge — dann kann in guter Néherung sin ¢ durch ¢
ersetzt werden - mit Beriicksichtigung der Reibung: mlg + xlg + mgp = 0
(Reibungskraft: —as = —alp, & > 0),

¢) elektrischer Schwingungskreis: L§ + Rqg + —é— g = 0 (Ladung ¢ auf der Konden-
satorplatte, Selbstinduktion L, Widerstand R, Kapazitit C).

Einsetzen von y(t) = €** in (3.77) fiihrt zur charakteristischen Gleichung

22 {200 + w§ =0. (3.78)
Die Lésungsformel fiir quadratische Gleichungen liefert fiir die Losungen von (3.78)

A= =0+ /0% — wl. (3.79)
Im Fall ’

0% — w3 >0 (groBe Dimpfung, Kriechfall) (3.80)
sind die beiden Losungen (3.79) reell:

, Moo= -0+ —wl 62 —o0wi>0, (3.81)

im Fall

0% — w3 < 0 (ddmpfungsfrei [0 = 0] oder kleine Dampfung [0 > 0]) (3.82)
sind die beiden Ldsungen (3.79) nichtreell und zueinander konjugiert komplex:
) A= —0+iJod - 0%, 6°—wf<0, (3.83)
im Fall
0% — w? =0 (aperiodischer Grenzfall) (3.84)
fallen die beiden Losungen (3.79) zusammen, d. h., es gibt genau eine Losung
2y = —0 mit der Vielfachheit /, = 2. (3.85)
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Aufgabe 3.6: Man bestimme bzw. bestitige mittels der Definition 3.5 die Vielfach-
heiten der Losungen der charakteristischen Gleichung (3.78) in den obigen drei
Fillen.

Aufgabe 3.7: Eine Gleichung n-ten Grades habe die n voneinander verschiedenen
Nullstellen 4,, ..., 4,. Was kann man tiber die zugehérigen Vielfachheiten /,, ,, ..., /,
aussagen?

Die Bestimmung der Lésungen der charakteristischen Gleichung im Falle n > 3
ist im allgemeinen nur mit den Hilfsmitteln der numerischen Mathematik moglich.

Kennt man eine Losung 4, der charakteristischen Gleichung (3.69) (z. B. durch
Raten), so dividiere man das auf der linken Seite von (3.69) stehende Polynom (3.71)
durch 2 — Z,. Das Ergebnis ist ein Polynom vom (n — 1)-ten Grad:

A"+ ay AN+ L+ ad +ag

T = b A"+ b, A2+ L+ biA + by

(3.86)

Zur praktischen Bestimmung der Koeffizienten b, des Erge‘bnispolynoms in (3.86)
benutzt man zweckmifBig das Horner-Schema, das aus Bd. 2 bekannt ist.

Die weiteren Losungen der Gleichung
X A" + @y A" 4+ L+ aih 4+ a, =0
sind wegen (3.86) auch Lésungen von
by A"+ by A2+ o+ byA + by = 0. (3.87)

Man kann also beim Bestimmen der weiteren Losungen der charakteristischen
Gleichung (3.69) die Gleichung (n — 1)-ten Grades (3.87) benutzen.

Aus den Sitzen 3.8 und 3.9 folgt, daB von der Differentialgleichung
T W) =0 (a, % 0) (3.65)
v=0

mittels des Ansatzes (3.67) die  (r < n) Losungen
et ek .. e (r < n;d, [v=1,...,r] alle verschieden) (3.88)
gefunden wurden.

Im Falle r = n - also lauter einfachen Losungen von (3.69) — stehen in (3.88) die
n Losungen :
eh*, eh*, ., eh*, (3.89)
Die Wronskische Determinante der Losungen (3.89) ist, wie man zeigen kann (vgl.
Aufgabe 3.5), fiir alle x von null verschieden. Also bilden diese Funktionen sogar eine
Basis des Losungsraumes, und deshalb kann im Falle » = n di¢ allgemeine Losung
von (3.65) durch

i ru(x) = Cy eh™ + Crem* + ... + C,eh™ & (3.90)
angegeben werden.

Aufgabe 3.8: Fir y" + 2y’ — 3y = 0 ist die allgemeine Losung zu bestimmen.

Im Falle r < n fehlen zur Herstellung einer Basis noch #» — r Losungen. Diese
liefert der
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Satz 3.10: Hat die zur Differentialgleichung (3.65) gehérige charakteristische Glei-
chung (3.70)

Py2) =0 (3.70)
mit .

P,(2) = a" + a,_ "t + ... + a;A + a, (3.71)
die

Lésung 2y, mit der Vielfachheit I, > 1, (3.91)

so hat (3.65) aufer den Losungen (3.88) noch die weiteren Losungen
X b, x2 ehx, L xh1eh, (3.92)

Der Beweis von Satz 3.10 soll hier nur im Fall /, = 2 durchgefiihrt werden. Es ist also zu zeigen,
dafB} die Funktion
x ehX (3.93)

der Differentialgleichung (3.65) geniigt. Zur »-maligen Differentiation von (3.93) benutzen wir die
aus der Differentialrechnung bekannte Formel fiir die »-malige Differentiation eines Produktes
(Band 2, 4.8.3.):

v
w)® =3y (v) Wy (3.94)
‘M

u=0
Da die u-te Ableitung der Funktion x nach x im Falle 2 > 1 identisch null ist, fithrt die Anwendung
von (3.94) auf (3.93) zu

1
(xehr)® = 3 (”) X0 (ehex) G=10)
=0\l

= xiehx + vimlehx (v > 0).

(3.95)

Einsetzen von (3.93).in die linke Seite von (3.65) ergibt wegen (3.95)

n n
> afx edn)® = ag xehx + Y ay(x ehx)®
v=o ¥=1

5 ] -
= apx el + Y a(xiy ehx + vi= 1 ehx)
y=1
M n N n ]
= ehx {aox +xXal+ 3 avv}.;"‘]
v=1 v=1

n n
= fe 3 aj+ 3 apgi)
v=0 v=1
= el {xPy(h) + Py2)}.
Das ist aber gleich null, weil wegen /, = 2 geméB Definition 3.5

Pu%) =0 und Py(k) =0
gilt. m

Wir fassen zusammen: Fiir die Differentialgleichung (3.65) haben sich bisher
die n Losungen -

eh¥, xeh®, x2 ehi¥, .. xhol ek,

e‘z", x elzx, x2 elzx, can xl2-1 el,x’ (396)

ehx, x ehx, x? ehF, .. xh1 ek,
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kurz

i xter (k=1,...,r,u=0,1,..., —1;, + L+ ...+, =n), 3.97)
ergeben.

In (3.96) stehen n Losungen. Thre Wronskische Determinante ist, wie man zeigen
kann, fiir alle x ungleich null. Infolgedessen bilden sie sogar eine Basis des Losungs-
raumes. Die allgemeine Lésung ergibt sich somit als Linearkombination der Funk-
tionen aus (3.96) bzw. (3.97).

Man kann hierfiir kurz schreiben

roo(h=1
3w = £ ['E Cut o]
k p=0

=1

(Cyy (k=1,...,r;.=0,1,..., ) beliebige komplexe Konstanten).

(3.98)

Beispiel 3.5:
Y =3y —2y=0. (3.99)
Der Ansatz y = e** liefert die charakteristische Gleichung 2> — 34 — 2 = 0 mit den
Losungen 4, = —1, 4, = 2 und den dazugehérigen Vielfachheiten /; = 2, [, = 1.

Somit lautet die allgemeine Lésung von (3.99)
y=Ce™ + Cyxe™ + C; e
Beispiel 3.6 (Fortsetzung von Beispiel 3.4): Fiir die Differentialgleichung
V4 20y + wdy =0
ergibt sich mit den Abkiirzungen
o =+/0i -8, y=0 -0} (3.100)

wegen (3.80) bis (3.85) in den drei Fillen jeweils die folgende Basis der Losungs-
gesamtheit:

1. Fall: > — w3 > 0, Basis: e~ e¥, e~ =7, (3.101)

2. Fall: 6> — 03 < 0, Basis: e eie?, e=% e~iet, (3.102)

3. Fall: > — w2 = 0, Basis:e %, te% (3.103)
und damit die allgemeine Losung

1. Fall: 82 — w3 > 0: yy(1) = Cy e~ e + C, e~ -7, (3.104)

2.Fall: 0% — w2 < 0: yy(t) = Cs e~ elot 4 C, e=% e-iot, (3.105)

3.Fall: 62 — w2 = 0: y(t) = Cs e~ + Cgt e~ (3.106)

(Cy, ..., Cs beliebige komplexe Konstanten).

Aufgabe 3.9: Man bestimme die allgemeine Losung x(¢) von
2% — 5% — 2% + 15x = 0.

Aufgabe 3.10: Man bestimmt die allgemeine Losung y(x) von
Y= 3y 4 4y = 0.

Aufgabe 3.11: Man bestimme die allgemeine Losung x(¢) von
x® — x=2 =0,
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3.3.5.  Ubergang zur reellen Basis

Wie in 3.3.4. betrachten wir die homogene lineare Differentialgleichung mit kon-
stanten Koeffizienten (3.65), (3.66), setzen jedoch dariiber hinaus voraus, daB die
Koeffizienten

Ay ly_yy.enydy, ay Teell (3.107)

sind. Es soll versucht werden, im jetzigen Fall aus der im allgemeinen komplexen
Lésung (3.98) alle reellen Lésungen zu bestimmen. Eine Moglichkeit hierfiir ist der

bergang von (3.96) zu einer reellen Basis. Als Hilfsmittel aus der Algebra benutzen
wir den

Satz 3.11: Sind in der Gleichung

a4+ ay_ "t + o+ ah+a, =0 (a, +0) (3.108)
alle Koeffizienten reell und ist A = 4 eine nichtreelle Losung von (3.108) mit der
Vielfachheit I, so ist die zu Jy konjugiert komplexe Zahl 1,') ebenfalls Losung von
(3.108), und zwar mit der Vielfachheit .

Der Ubergang zur reellen Basis kann nun folgendermaBen geschehen. In (3.96)
werden alle Zeilen, fiir die der A-Wert reell ist, unveridndert in die neue Basis iiber-
nommen. Ist in der Tabelle (3.96) der A-Wert 4, nicht reell, d. h., gilt

Ay = o + 1Py, o reell, Sy reell, B, £ 0, (3.109)
so gibt es wegen Satz 3.11 in (3.96) zu jedem Basiselement

x#eht = xt e tif)y (u=0,1,...,5 — 1) (3.110)
noch das weitere Basiselement

Xt el = xpeln=ifdx (u=0,1,...,5 —1). (3.111)

Aus (3.110) und (3.111) bildet man einerseits die salbe Summe und andererseits i
mal halbe Differenz:
L(xk e@+ibx 4 xi el —ibOx), (3.112)

%(xu e +iBy — i el —iBx) (3.113)

In (3.112) und (3.113) stehen Losungen der Differentialgleichung, denn es sind
spezielle Linearkombinationen der Losungsbasis (3.96). Sie sind auch reell, wie die
folgende Rechnung unter Beachtung der Eulerschen Formel e'? = cos¢g + ising
zeigt:

] L(am ehs 4 xt eh) = Lok ex (et + i) = x# e% cos (Bix) (3.114)
und
I % (x# et — xt ehr) = —zl—{x“ enx(eifir — e=ib¥) = x# em* sin (Bix). (3.115)

Auf diese Weise entstehen insgesamt aus (3.96) n reelle Lésungen. Diese bilden sogar
eine Basis, denn man kann zeigen, daB ihre Wronskische Determinante fiir alle
x ungleich null ist. Die allgemeine reelle Losung entsteht aus der reellen Basis durch
Linearkombination, wobei nunmehr die » beliebigen Konstanten reell sein miissen.

1) In der Literatur wird die zu z konjugiert komplexe Zahl oft durch z* bezeichnet.
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Beispiel 3.7:

V' + 4y + 13y =0. (3.116)
Der Ansatz y = e** liefert die charakteristische Gleichung 4> + 44 + 13 = 0 mit
den Losungen 4; = —2 + 3i, 4, = —2 — 3i und den zugehérigen Vielfachheiten
- Iy = 1,1, = 1. Das ergibt die komplexe Basis

(-2+3D% g(=2=3Dx, (3.117)
Fiir den Ubergang zur reellen Basis bilden wir in (3.117) einerseits die halbe Summe,
also

(e e 4 e 2¥e~3*) = L e~2* (cos 3x + isin 3x + cos 3x — isin 3x)
e~2* cos 3x,

und andererseits —:— mal halbe Differenz, also .

1 1 iy .
f(e‘z" el — g2 em3) = Ee‘z" (cos 3x + isin 3x — cos 3x + isin 3x)

= e~**sin 3x.

Somit lautet die allgemeine reelle Losung von (3.116)

y = C,e**cos3x + C, e **sin 3x.
Beispiel 3.8 (Fortsetzung von Beispiel 3.6, Fall 2): Der Ubergang von der komplexen
Basis (3.102) zur reellen Basis fiihrt zu

e cos(wt), e % sin(wit).
Also kann im Falle 6% — w < 0, die allgemeine reelle Lésung der Differential-
gleichung (3.77) mit den Abkiirzungen (3.100) in der Gestalt

W(t) = C, €% cos (wt) + C, e~ sin (wf) (3.118)
angegeben werden.

Der Anwender formt das Ergebnis (3.118) meist noch um. Hierzu fasse man das Zahlenpaar
(Cy, C,) als kartesische Koordinaten eines Ortsvektors r einer (x;, x,)-Ebene auf:

r=Cie; + Cre;. (3.119)

Division von (3.119) durch den Betrag [r| = \/ Cf + CZ ergibt den folgenden Vektor mit dem ab-
soluten Betrag 1:

r Cy N C,
— e €z.
W= Jzrca ' Jara

Die Spitze des Ortsvektors (3.120) liegt also auf dem Einheitskreis (Mittelpunkt: Koordinaten-
ursprung; Radius gleich 1; Bild 3.1). Bei Beachtung der Einfithrung von Kosinus und Sinus am Ein-

(3.120)

. r
sinpl-———— i

=
—

Bild 3.1
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r
heitskreis kann der Einheitsvektor i aus (3.120) in der Gestalt
|
| ¢
7 =coseen +singe, (3.121)
angegeben werden. 5
Aus (3.120) und (3.121) folgt

C, C.
—— = cos¢, ——=—— =sing, (3.122)
Jery ez Jery ez
d.h.,
C; = Acosg, C, = Asing, (3.123)

wobei 4 = \/Cf + C2? gesetzt wurde. Einsetzen von (3.123) in (3.118) ergibt y(r) = A e™% {cos ¢
cos (wt)+ sin @ sin (wt)} und damit aufgrund der Additionstheoreme fiir trigonometrische Funktionen
™

(1) = Ae% cos (wt — ). Setzt man ¢; = —g oder ¢, = —¢ + 5> so erscheint die allgemeine
Losung von (3.77) in der Gestalt .
(1) = Ae % cos(wt + @) (3.124)

oder ¥(t) = Ae % sin (ot + @,).

*

Aufgabe 3.12: Man bestimme eine reelle Basis des Losungsraumes der Differential-
gleichung aus der Aufgabe 3.9.

Aufgabe 3.13: Ist die Aussage: ,,Als Basis fiir den n-dimensionalen komplexen
linearen Raum der Losungen von (3.65), (3.66) mit (3.107) kann auch die reelle
Basis genommen werden.‘ richtig?

*

*

Aufgabe 3.14: Ist die Aussage: ,,Man erhilt die allgemeine reelle Losung der Diffe-
rentialgleichung (3.65), (3.66) mit (3.107), indem man in (3.98) alle Konstanten
reell wahlt. richtig?

*

Aufgabe 3.15: Von der Differentialgleichung % + w2x = 0 sind alle diejenigen L6-
sungen gesucht, die den folgenden Randbedingungen geniigen:

a)x(0) =1, x(3) =0, b)x(0) =1, x(1) =0, ¢)x(0) =0, x(1) = 0.
3.3.6.  Ansatzmethode zur Herstellung einer partikuliren Losung

Es wird die gewShnliche lineare inhomogene Differentialgleichung n-ter Ordnung

mit konstanten Koeffizienten
@y (%) + 5 yIX) + o+ @) (%) + aoyp(x) = g(x) (4,+0)  (3.125)

untersucht, wobei das Stdrglied g(x) die spezielle Struktur
] g(x) = (bo + byx + ... + byx")e® (b, £ 0) (3.126)
besitzt. Die Konstanten aq, ay, ..., @y, bo, by, ..., by, g diirfen auch nicht-reell sein.

Wir suchen die allgemeine Losung y(x) = p,(x) + yu(x) von (3.125); im vorher-
gehenden Abschnitt wurde gezeigt, wie y,(x) konstruiert werden kann. Jetzt wird eine
spezielle Methode zur Bestimmung einer partikuldren Losung y,(x) entwickelt.
Grundlage hierfiir ist der

S.3.12 Satz 3.12: Fiir die Differentialgleichung (3.125) mit (3.126) fiihrt der Ansatz
Yo(X) = (Bo + Bix + ... + Bx™) e®x! ) (3.127)
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stets zu einer speziellen (partikuldren) Losung. Zur Bestimmung von | des Ansatzes
(3.127) ist die zur zugehdrigen homogenen Differentialgleichung

a, () + @, PO + ..+ apa(x) + agy(x) = 0 (3.128)
(der Index h weist auf die Homogenitdit der Differ entlalglezchung (3.128) hin) gehorige
charakteristische Gleichung

a4+ a, "+ 4 ah+a, =0 (3.129)

hinzuzuziehen. Ist die Zahl q des Storgliedes (3.126) keine Losung von (3.129), so ist
[ = 0 zu setzen. Wenn jedoch q eine Lisung der Gleichung (3.129) ist, so ist I gleich der
Vielfachheit dieser Losung q zu setzen. Zur Bestimmung der By, ..., B, setzt man
den Ansatz (3.127) in die Differentialgleichung (3.125) ein, dividiert anschlieflend beide
Seiten durch e**, ordnet danach nach Potenzen von x und fiihrt schlieflich einen Ko-
effizientenvergleich durch. Es ergibt sich ein lineares Gleichungssystem zur Bestimmung
von By, ..., B,.
Zusatz zu Satz 3.12: Im Ansatz (3.127) sind alle (unbekannten) Koeffizienten B,,
B, ..., B, auch dann mitzufiihren, wenn im Stérglied (3.126) einige der (bekannten)
Konstanten by, ..., b,_, gleich null sein sollten (vgl. hierzu spiter Beispiel 3.15).
Zum Beweis von Satz 3.12 setzt man den Ansatz (3.127) in (3.125) ein und zeigt,
daBl die Koeffizientendeterminante des Gleichungssystems fiir die Koeffizienten
By, ..., B, stets ungleich null ist, so daB es immer genau eine Lésung fiir By, ..., B,
gibt. m

Beispiel 3.9: Es soll eine partikuldre Losung von

Y= 2y 4 2y = 2% e (3.130)

ermittelt werden. Die charakteristische Gleichung der dazugehdrigen homogenen
Differentialgleichung hat die Lésungen 4, , = 1 + i % 1, also ist hier der Ansatz

= (B, + B,x + B,x?) & (3.131)

zu machen. Wir setzen (3.131) in (3.130) ein und erhalten — wenn wir links e* aus-
klammern und gleich nach x-Potenzen ordnen —

(B,x*> + Byx + By + 2B,)e* = 2x? e~ (3.132)
In (3.132) wird nach Division durch e* der Koeffizientenvergleich durchgefiihrt.
Er liefert schlieBlich B, = 2, B, = 0, B, = —4 und damit y, = (—4 + 2x?)e*.
Beispiel 3.10: Es ist die allgemeine Losung von

3y — 12y" = 18x* + léx (3.133)

gesucht. Wegen 343 — 12 = 0 ist 4; = 0, A, = 2, A3 = —2. Hier ist der Wert von ¢
aus (3.126) gleich 0 und damit gleich der Losung 4, = 0 (Vielfachheit /; = 1) der
charakteristischen Gleichung. Also ist hier der Ansatz

o = (Bo + Bix + Byx?) x (3.134)

zu machen. Einsetzen von (3.134) in (3.133) liefert nach dem Koeffizientenvergleich
schlieBlich B, = —%, B, = —%, B, = —3% und damit

=C; + Ce®™ + Cye — Ix® — 3x% — 3x.
Beispiel 3.11: Gesucht ist eine partikuldre Losung y,(¢) von
J 200 + w3y =ber (0<d<wy,m; >0,b reell). (3.135)

5 Wenzel, Gew. Diff. 1
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Wegen 4;,, = —0 + iw (0 = \/wﬁ — 0?) [siehe (3.83)] und 6 > 0 ist ¢ = iw, keine
Losung der charakteristischen Gleichung. Folglich wird der Ansatz

Vo = By elet (3.136)
in (3.135) eingesetzt und anschlieBend durch ei®:* dividiert. Es ergibt sich
—w2B, + 20iw,By + wiB, = b. (3.137)

GemdB Satz 3.12 ist nunmehr ein Koeffizientenvergleich durchzufiihren. Dieser ist
hier jedoch trivial, da auf beiden Seiten von (3.137) ein Polynom nullten Grades
steht. Das Ergebnis des Koeffizientenvergleichs ist damit bereits die Gleichung (3.137).
Auflésung von (3.137) nach B, ergibt

b b(w3 — w} — 20w,i)

B, = - = X
O 0 + 20w + 0F (w3 — w?)? + 45%w?

(3.138)

wobei mit dem konjugiert komplexen Wert des Nenners erweitert wurde, um einen
reellen Nenner zu erhalten. Wir setzen (3.138) in (3.136) ein und erhalten das Ergebnis
b(w§ — w} = 20w4i)

W) = G T g O (3.139)

Fir den Anwender soll (3.139) noch in der trigonometrischen Darstellung angegeben werden.
Fir den ersten Nenner aus (3.138) gilt

0 — 0} + 200,i = |0 — 0} + 200w, e = \”(wg — w})? + 46%w} '
mit
cot = 8 = % bei 0 3.140
200, , Wobel <X <T (3.140)
gefordert werden kann, da der Imaginirteil 20w, > 0 ist. Folglich ergibt sich schlieBlich
be-ix
Pp(t) = —F————=cioy!, (3.141)

V(@3 — 0})? + 46%w?

Aufgabe 3.16: Man fiihre Beispiel 3.11 im Falle 6 = 0, wy > 0, @; > 0 durch und setze hierbei
wq = w; voraus. Ist Formel (3.141) auch jetzt noch giiltig? Welchen Wert nimmt ~ in dieser Formel
dann gegebenenfalls an?

Aufgabe 3.17: Man fithre Aufgabe 3.16 fiir den Fall durch, daBl @y = ®; > 0 vorausgesetzt wird.
Aufgabe 3.18: Man bestimme eine partikuldre Losung y,(x) der Differentialgleichung
’ 5

2 4 5y =e2 - : (3.142)

Aufgabe 3.19: Man bestimme eine partikuldre Losung y,(x) der Differentialgleichung
. 5

2 45y =e 2. (3.143)

Dig Moglichkeit der Anwendung von Satz 3.12 wird erweitert durch den

Satz 3.13: Hat in der Differentialgleichung (3.125) das Storglied g(x) die Gestalt

g(x) = (bo + byx + ... + byx™)e**cos fx (b, £ 0, x, f reell) (3.144)
oder

g(x) = (bo + byx + ... + byx")e*sinfx (b, * 0,«, 3 reell) (3.145)
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und sind alle Koeffizienten

gy eves Uy, bo,y ..., by reell, (3.146)
so kann eine partikulire Losung y,(x) von (3.125)

im Fall (3.144) durch  y,(x) = Re (Y,(x)), (3.147)

im Fall (3.145) durch  y,(x) = Im (Y,(x)) (3.148)

angegeben werden, wobei Y(x) eine partikulire Losung von
a, Y™ + .+ a)Y = (bo+ ... + bx™)e™ mit g=on+if (3.149)
ist. /
Zum Beweis bildet man von beiden Seiten der Differentialgleichung (3.149) einer-
seits den Realteil und andererseits den Imaginirteil und benutzt (3.146). m

Beispiel 3.12: Gesucht ist eine partikuldre Losung y,(x) von

¥ + 4y + 8y = 20 sin 2x. (3.150)
GemiB Satz 3.13 bestimmen wir zundchst eine partikuldre Losung Y,(x) von

Y + 4Y' + 8Y = 20 e?ix, (3.151)
Da die Losungen der charakteristischen Gleichung 4,,, = —2 + 2i lauten, machen

wir den Ansatz Y = B, e*'*, setzen ihn in (3.151) ein und erhalten nach Division des
Ergebnisses durch e?!*

20 B
4(1 + 2i)
wobei mit 1 — 2i erweitert wurde (warum?). Damit ist nach Satz 3.13
¥Yp = Im (¥,) = Im ((1 — 2i) (cos 2x + isin 2x))
= —2cos2x + sin 2x

—4By + 8B,i + 8B, =20, d.h. B, = 1—2i,

eine partikuldre Losung von ¢3.150).

Beispiel 3.13: Gesucht ist eine partikulire Losung y,(¢) der Differentialgleichung
der erzwungenen geddmpften Schwingung fiir eine harmonische dulere Kraft:

J + 208 + wdy = bcoswit (0 <6 <wy,w; > 0,b reell). (3.152)
Ehe wir (3.152) 16sen, erweitern wir die in Beispiel 3.4 angegebenen Modelle a) und c).

a) Im Beispiel 1.1 wird jetzt nicht nur die Reibung beriicksichtigt; der Befestigungs-
punkt der Feder an der Wand wird nunmehr beweglich gestaltet und im Rhythmus
z = z(t) bewegt. Infolgedessen wirkt auf das Teilchen zusitzlich die Kraft F(r)
= kz(t), und damit lautet die Differentialgleichung mx + «x + kx = F(¢).

¢) Im elektrischen Schwingkreis wird die Rolle der duBleren Kraft von der Spannung
U(t) einer Stromquelle tibernommen: LG + Rg + —é—q = U(1).

GemiB Satz 3.13 ist zunichst eine partikulire Losung Y,(f) von ¥ + 20Y + w2¥

= b el®:* zu bestimmen. Dies ist bereits — mit y anstatt ¥ - im Beispiel 3.11 geschehen.

Wir lesen somit aus (3.139) ab:

3 .

_ 2
Yi(t) = (02 — w?)? + 40%w? (s

— w3 — 20m,i) ei*r!, (3.153)

@
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Fiir eine partikulire Losung der Differentialgleichung (3.152) erhdlt man daher
wegen (3.147)

b{(w§ — w}) cos (w,1) + 20w, sin(w, )}

t) = Re(Y,(1)) = 3.154
yn( ) ( D( )) (w% — (})?)2 + 4570)% ( 5 )
Benutzt man in (3.153) anstatt (3.139) jetzt (3.141), so erhdlt man fiir (3.154) die Gestalt
b cos (w1 — o
AR (3.155)

yp(r):Re(Yp(f))=\/( 0
@5

— 0})? + 46%w? :
Fiir « ergibt sich hierbei aus (3.140) unter Beachtung der Definition des Arkuskotangens die Dar-

stellung
2 2
wg — W
« = arccot 2 L

S (3.156)

Ist das Storglied eine Linearkombination solcher Teilstorglieder, wie sie in den
Sdtzen 3.12 und 3.13 behandelt werden, so 16st man die Differentialgleichung gemaf3

Satz 3.14: Gegeben seien die r linearen inhomogenen Differentialgleichungen n-ter
Ordnung
@y (x) + @, yI) + o+ @Y () + aoy(x) = gy(x) (a, + 0)
e=1,..,r), (3.157)

die sich nur in den Storgliedern unterscheiden, wdhrend die linken Seiten der Diffe-
rentialgleichungen iibereinstimmen. Eine partikulire Losung von (3.157) sei

yox) e=1,...,n), (3.158)

wobei der Index in (3.158) auf das Storglied g,(x) in (3.157) hinweist. Fiir die Diffe-
rentialgleichung

| @,y P(x) + @, YTV o+ @Y () aoy(x) = T cg(x),  (3.159)
e=1

wobei also das Storglied gleich einer Linearkombination aller Storglieder aus (3.157)
ist, kann dann eine partikuldre Losung durch

| == Faw (3.160)
e= .
angegeben werden.

Zum Beweis ist (3.160) in die Differentiaigleichung (3.159) einzusetzen. m

Beispiel 3.14: Gesucht ist eine partikuldre Losung y,(x) von

V' 4+ 2y 4+ 2y =4cosx — 3sinx. (3.161)
Zunichst ist wegen der Sétze 3.14 und 3.13

Y +2Y +2Y = (3.162)
zu behandeln. Da die Losungen der charakteristischen Gleichung 4,,, = —1 £ i i

lauten, setzen wir ¥, = B, ¢'* in (3.162) ein und erhalten schlieBlich B, = —5—(1 — 2i).
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Damit ergibt sich gemaB (3.160)
y, = 4Re(Y,) — 3Im (Y,)
1

_ 4Re[(_—3i)(cqsx + isinx)] s Im[(

2A( )
573 -—S-I)COSX 1smx]

i
3

4cosv+85inx+écosx 3sinx 2cosx + si
=-cosx + — - x — = =2 b in x.
5 5 5 5

Aufgabe 3.20: Gesucht ist eine partikuldre Lsung der Differentialgleichung
5
2y" + 5y’ = 3cosh (Ex). (3.163)

Aufgabe 3.21: Man bestimme eine partikuldre Losung der Differentialgleichung

X+ 4x + 5x = (sinh #) cos 7.
Bemerkung 3.1: Eine partikuldre Losung von

a,y™ + ...+ agy = ¢; cos fx + ¢y sinfx  (ay, ..., ag, ¢1, 5 reell, f > 0) . (3.164)
hat gemiB den Sitzen 3.12 bis 3.14 die Struktur

¥p = {1 Re [Bo(cos fx + isin fx)] + ¢, Im [By(cos fx + i sin fx)1} x*

= {le1 Re (By) + ¢z Im (By)] cos fx + [—c; Im (Bo) + ¢, Re (Bo)] sin fx} x'.

Bezeichnet man die letzten beiden eckigen Klammern - sie stellen reelle Zahlen dar — durch K
und K, so ist

Yo = {Ky cos fx + K, sin fx} x! (K, K, reell), (3.165)
wobei [ = 0 zu setzen ist, falls if die charakteristische Gleichung nicht 18st; andernfalls ist / gleich
der Vielfachheit der Ldsung if der charakteristischen Gleichung. Wer das Rechnen mit komplexen
Zahlen moglichst vermeiden will und bereit ist, gegebenenfalls lingere Rechnungen auszufiihren,
kann beim Losen von (3.164) die Formel (3.165) als Ansatz benutzen. Es sei betont, daf} auch dann
beide Konstanten K;, K, anzusetzen sind, wenn ¢; oder ¢, gleich null sein solite.

Bemerkung 3.2: Ist (3.125) mit (3.144) oder (3.145) zu Idsen, ist jedoch die Voraussetzung (3.146)
verletzt, so ist der Satz 3.13 nicht anwendbar. In diesem Falle driicke man cos fx und sin fix durch
e#* und e~'#* gemiB

1 1
cosfx = = (e'P* + e=16%), sin fx = z(e‘ﬂ" — eibx) (3.166)

(vgl. (3.114), (3.115)) aus und fithre die Losung mittels Satz 3.14 auf Satz 3.12 zuriick.

GemiB Satz 3.3 sind wir in der Lage, auch die allgemeine Ldsung von inhomogenen
linearen Differentialgleichungen herzustellen und schlieBlich Anfangswertaufgaben
zu 16sen. Wir behandeln dazu abschlieBend das

Beispiel 3.15: Gesucht ist die Lésung der Anfangswertaufgabe

F—dx+4x =1 x(1)=1% ()= -3. (3.167)
Zunichst wird die zu (3.167) gehorige homogene Differentialgleichung X, — 4:x,
+ 4x, = 0 geldst. Der Ansatz x, = e* fiihrt zur charakteristischen Gleichung
}? — 42 + 4 = 0. Die beiden Losungen dieser quadratischen Gleichung fallen zu-
sammen. Es ergibt sich 2; = 2 mit der Vielfachheit /; = 2. Infolgedessen kann wegen
(3.96) eine Basis des zweidimensionalen Losungsraumes durch e?’, fe?' angegeben
werden. Also ist

xu(t) = Cre® + Cyre®, (3.168)
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Die rechte Seite 7> von (3.167) hat die Struktur von (3.126) mit m = 3 und ¢ = 0.
Da g = 0 keine Losung der charakteristischen Gleichung ist, wird fiir eine partikuldre
Losung von (3.167) wegen Satz 3.12 der Ansatz [man beachte den ,,Zusatz zu Satz
3.124]

x,(t) = By + Byt + B,t* + B,t? (3.169)
gemacht. Einsetzen von (3.169) in (3.167) ergibt

2B, + 6B3t — 4(B, + 2Byt + 3B;t?) + 4(B, + Byt + B,t* + B3t?)=1¢3.
Wird die linke Seite dieser Gleichung nach Potenzen von ¢ geordnet, so erhdlt man

4B3t3 + (—12B3 + 4B,)t*> + (6B; — 8B, + 4B,)t + (2B, — 4B, + 4B,) = 1.

(3.170)

Gemil Satz 3.12 erfolgt jetzt in (3.170) ein Koeffizientenvergleich, d. h., die Koeffi-
zienten gleicher #-Potenzen der beiden Seiten von (3.170) werden einander gleich

gesetzt. Dabei ergibt sich das folgende gestaffelte lineare algebraische Gleichungs-
system fiir die Unbekannten By, ..., B;:

4B, =1
4B, — 12B; = 0

(3.171)
B, — 8B, + 6B; =0
4B, — 4B, + 2B, =0.
Das Gleichungssystem liefert der Reihe nach
1 3 9 3
B; = T B, = T, B, = T By = T (3.172)

Einsetzen von (3.172) in (3.169) fiihrt zu der folgenden partikuldren Losung:

3.9 SR
x5(2) —Z+§I+7t + 5 ) (3.173)
Wegen Satz 3.3 ergibt sich die allgemeine Losung der Differentialgleichung (3.167)
x(1) = xy(t) + x,(t) = C, e + Cyre** + % + %t + %t” + %t"’. (3.174)

(3.174) ist noch den Anfangsbedingungen anzupassen. Einsetzen von (3.174) in
die Anfangsbedingungen aus (3.167) ergibt das folgende Glexchungssystem fiir C,
und C,:

e*C, + e2C, = —

2¢*C, + 3e*C, = —4. (3.175)
Aus (3.175) folgt C; = —2¢~2, C, = 0 und somit fiir die Lésung der Anfangswert-
aufgabe (3.167) G

3.9 3 1

— _—ne2t-1 4 =~ 4 7 242 4~ 43
x(1) 2e + 4+ 8r+ 4t +4t. (3.176)

Aufgabe 3.22: Gegeben ist die Randwertaufgabe
X 4+ 4x =2t, x(0)=0, x(b) =0,
wobei die Konstante b aus dem Intervall 0 < » £ = entnommen wird. Fiir welche &
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gibt es genau eine Losung der Randwertaufgabe, fiir welche b gibt es mehrere und
fiir welche & keine Losung?
Aufgabe 3.23: Man 16se die Anfangswertaufgabe fiir y(x)

V' 4 3y — dy = 12x + 25cos (2x), (0) = %, ¥(0) = 2.

3.3.7.  Eulersche Differentialgleichung

Im letzten Absatz von 3.3.3. wurde mitgeteilt, daB bei variablen Koeffizienten
eine Herstellung der Losungsbasis durch elementare Funktionen im allgemeinen nicht
mdglich ist. Das gelingt jedoch beim Vorliegen einer Eulerschen Differentialgleichung.
Zunéchst nennen wir die

Definition 3.6: Die Eulersche Differentialgleichung hat die Gestalt
EXYO(X) + Cpo X" IYOTI() + L+ ey (x) + cop(x) = g(x)
(cn #0), (3.177)
wobei €y, Cy_ys ..., Cq, Co Konstanten sind.
Es handelt sich also um eine lineare Differentialgleichung n-ter Ordnung (3.44),
wobei der Koeffizient a,(x) (v = 0, ..., n) die spezielle Struktur ¢,x” (¢, = const) hat.
Zur Losungstheorie der Eulerschen Differentialgleichung benétigen wir die
Definition 3.7: Unter der Potenz x* (x > 0, 2 beliebig komplex) versteht man
X = elnx, i (3.178)
Beim Lésen der homogenen Eulerschen Differentialgleichung
X0 + oy X TR L () + o) =0 (x> 0)
(3.179)

geht man von dem bekannten Ansatz y,(x) = e** fiir die Losung der linearen homo-
genen Differentialgleichung mit konstanten Koeffizienten aus und

ersetzt x durchln x (x > 0), (3.180)
man macht also jetzt den Ansatz y,(x) = e*"*, d. h. wégen Definition 3.7

w(x) = x* (x> 0). (3.181)
Im Falle x < 0 wird (3.181) durch S

w(x) = (=x)* (x<0) (3.182)

ersetzt. Der Ansatz (3.181) fiihrt tatsdchlich zum Ziel, denn nach dem Einsetzen
von (3.181) in (3.179) liefert die Division durch x* die charakteristische Gleichung

A —1D)@A=2)...d—n—=1D)+ ikt =1)A—-2)...(A—[n=2])
+oo QM= 1)+ cid + ¢ =0. (3.183)
Hat die Gleichung n-ten Grades (3.183) r(< n) voneinander verschiedene Losungen

Ay, ..., A, mitden zugehorigen Vielfachheiten/;, ..., /,, so ist wegen des Fundamental-
satzes der Algebra (Satz3.9)/, + L, + ... + . =n.

D.3.6

D.3.7
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An die Stelle der Tabelle (3.96) tritt bei der Eulerschen Differentialgleichung eine
Tabelle, die aus (3.96) durch die Ersetzung (3.180) entsteht:
x4, x*nx, xM(In x)?, ..., x4i(ln x)h-t

x*2, x%Inx, x2(In x)?, ..., x2(In x)==1 (x> 0). (3.184)

Xty X In x, x*(In x)2, ..., x*(In x)+1
Die Funktionen aus (3.184) bilden eine Basis des n-dimensionalen Losungsraumes
der homogenen Eulerschen Differentialgleichung (3.179).
Sind die ¢, ..., ¢ in (3.179) alle reell, so ist es sinnvoll, von (3.184) zu einer reellen
Basis ﬁberzugehen. Wir verzichten auf eine allgemeine Darstellung und demonstrieren
es nur an folgendem

Beispiel 3.16: Es soll die allgemeine Lésung von

xs) "4 3x%yxy — +4y =0 (x>0) (3.185)
ermittelt werden. Der Ansatz y = x* filhrt zur charakteristischen Gleichung
73 —2J + 4 = 0 mit den Lésungen 4, = —2, 4, = 1 + i, 43 = 1 — i. Damit lautet
eine Basis des Losungsraumes von (3.185)

X2, X1yl (3.186)

Wie im Abschnitt 3.3.5. bilden wir aus den beiden letzten Elementen einerseits die

halbe Summe und andererseits % mal halbe Differenz:

%(X“' + x'-) = %(xi +x7) = %(e‘ Inx 4 g-ilnx)
= ; [cos (Inx) + isin (Inx) + cos (Inx) — isin (lnx)]
= xcos (In x),
%(x‘*i — xl-) = —(e‘ ¥ _ e~i1n¥) — xsin (Inx).

Daraus ergibt sich die allgemeine Lésung von (3.185) zu

1 .
y =C; = + C,x cos (Inx) + Csx sin (Inx). (3.187)
Die Ubertragung vom Satz 3.12 zur Bestimmung der partikulidren Losung der

inhomogenen Differentialgleichung mittels (3.180) auf die Eulersche Differential-
gleichung ergibt den

Satz 3.15: Fiir die Eulersche inhomogene Differentialgleichung (3.177) mit der spe-
ziellen Struktur des Storgliedes g(x)

i g(x) = (bo + byInx + ... + b,(In X)") x* (b, + 0) (3.188)
fiihrt der Ansatz

i Vo(x) = (Bo + By Inx + ... + B,(In x)™) x%(In x)* (3.189)

stets zu einer partikuldren Losung.
Zur Bestimmung von / des Ansatzes (3.189) ist die zur zugehorigen homogenen
Differentialgleichung (3.179) gehorige charakteristische Gleichung (3.183) hinzu-
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zuziehen. Ist die Zah] g des Storgliedes (3.189) keine Losung von (3.183), so ist / = 0.
Wenn jedoch ¢ eine Losung der Gleichung (3.183) ist, so ist / gleich der Vielfachheit
dieser Losung ¢. Zur Bestimmung der By, ..., B, setzt man den Ansatz (3.189) in
die Differentialgleichung (3.177), (3.188) ein, dividiert anschlieBend beide Seiten
durch x?, ordnet danach nach Potenzen von In x und fiihrt schlieBlich beziiglich der
Potenzen von In x einen Koeffizientenvergleich durch. Es ergibt sich ein lineares
Gleichungssystem zur Bestlmmung von By, ..., By.

Der Satz 3.13 kann im Zusammenhang mit der Eulerschen leferentlalglelchung
herangezogen werden, indem man dort a, durch ¢,x” (¢, reell) und in (3.144), (3.145)
sowie der rechten Seite von (3.149) x durch In'x (x > 0) ersetzt. Auch Satz 3.14
bleibt giiltig, wenn dort a, durch ¢,x” ersetzt wird.

Beispiel 3.17: Gesucht ist die allgemeine Losung der Eulerschen Differentialgleichung
201 _ 9y = 52 +% (x> 0). » (3.19)

Fiir die zugehdorige homogene Differentialgleichung x?y1" — 2y, = 0 fiihrt der Ansatz
Ya = x* zur charakteristischen Gleichung A(4 — 1) — 2 = 0. Diese hat die Lésungen
Ay = 2,24, = —1. Folglich ist

(x) = Cix* + Cz%- (3.191)

Zur Bestimmung einer partikuldren Losung y,(x) der inhomogenen Eulerschen Diffe-
rentialgleichung (3.190) konnen wir — wie bereits oben erwdhnt — den Satz 3.14
heranziehen. Wir bestimmen hierzu partikuldre Losungen der beiden Teilaufgaben

¥y = 2p=x* (x> 0), (3.192)
, 1
Xy == (x>0 (3.193)

und addieren anschliefend die Ergebnisse:

Pp(%) = yi(x) + yu(x). (3.194)
Die rechte Seite der Differentialgleichung aus (3.192) hat die Struktur des Storgliedes
(3.188) mit m = 0 und ¢ = 2. Nun ist ¢ = 2 eine Losung der charakteristischen
Gleichung mit der Vielfachheit /= 1. Also ist mit (3.189) fiir y,(x) der folgende
Ansatz zu machen:

yi(x) = Box? In x. (3.193)
Einsetzen von (3.195) in (3.192) ergibt

Box?(2Inx 4+ 3) — 2Box*Inx = x?
und damit nach Division durch x?

3Bp =1, d.h. B, =1%. . (3.196)
Dieses Ergebnis wird in (3.195) eingesetzt. Es ergibt sich die folgende partikulire
Lésung von (3.192)

»(x) = Ix*In x. (3.197)

Die rechte Seite der leferennalglelchung aus (3.193) hat die Struktur des Stor-
gliedes (3.188) mit m = O und ¢ = —1. Da ¢ = —1 eine Losung der charakteristi-

6  Wenzel, Gew. Diff. 1
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schen Gleichung mit der Vielfachheit / = 1 ist, ist fiir eine partikuldre Losung von
(3.193) der Ansatz

yu(x) = B, ~1n X (3.198)

zu machen. Einsetzen von (3.198) in (3.193) ergibt schlieBlich fiir die Unbekannte B,
den Wert

By = —%. (3.199)
Aus (3.199) und (3.198) folgt

11
) = -5 —nx. (3.200)
Setzt man (3.197) und (3.200) in (3.194) ein, so ergibt sich eine partikuldre Losung
Yp(x) von (3.190). Addieren von (3.191) fiihrt dann schlieBlich zu der folgenden
allgemeinen Losung der Differentialgleichung (3.190):
1 1 ) 1
) =5 (x2 - ;) Inx + Cix* + C; = (3.201)
Aufgabe 3.24: Man 16se die Anfangswertaufgabe
2
Y Exy+y=—, y1)=3 y(1)=-

Aufgabe 3.25: Man bestimme die allgemeine Losung von
2% + 1% + x = 4 cos (In?).

3.3.8.  Variation der Konstanten

In diesem Abschnitt soll gezeigt werden, wie man eine partikuldre Losung y,(x)
der expliziten gewdohnlichen linearen inhomogenen Differentialgleichung n-ter Ord-
nung [mit im allgemeinen variablen Koeffizienten] herstellen kann, falls die allgemeine
Losung y,(x) der zugehorigen homogenen Differentialgleichung bekannt ist:

(%) = Crypi(x) + Coypa(x) + .o + Cuyna(x), (3.62)
wobei die Funktionen
Pu1(X); Pn2(%)s s YualX) (3.63)

eine Basis (ein Fundamentalsystem) des Losungsraumes bilden.

Wie bei einer linearen Differentialgleichung erster Ordnung lassen wir uns von der
Struktur der Formel (3.62) anregen, ersetzen die dortigen Konstanten durch Funk-
tionen u,(x), ..., u,(x) und versuchen diese so zu bestimmen, daB sich eine partiku-
lare Losung y,(x) der inhomogenen Differentialgleichung

T a0y = g(). @@ +0 (xeD), @.51)
v=0
ergibt (Variation der Konstanten):

Yo%) = uy(X) pr1(x) + 1200) p2(x) + ...+ Ua(X) Yia()- (3.202)

Beim Einsetzen von (3.202) in (3.51) ergeben sich recht uniibersichtliche Ausdriicke.
Kann man dies vermeiden? Ja! Es sind doch n Funktionen u,(x) (v = 1,...,n) zu
bestimmen. Hierzu gibt es aber nur die einzige Bedingung (3.51). Wir haben damit
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die Freiheit, von uns aus noch n — 1 weitere Forderungen zu stellen. Wir werden
diese natiirlich so wihlen, dal der Rechnungsgang mdéglichst vereinfacht wird.

Wihlt man fiir die n — 1 Bedingungen die ersten #» — 1 Gleichungen des im
folgenden angegebenen Systems (3.203), so zeigt die Rechnung — sie werde hier
iibergangen —, daB sich beim Einsetzen von (3.202) in (3.51) die letzte Gleichung
aus (3.203) ergibt:

HE WG + 1))+ e+ 6D ) =0

WE M) W) F o+ W) () =0

W) 0) + )G V@) + e+ ) P = 0 (3.203)
g(x)

WA ) + AT )+ + () 2O = s
Dieses System ist ein lineares Gleichungssystem (kein Differentialgleichungssystem)
fiir uj, ..., u,. Seine Koeffizientendeterminante ist die Wronskische Determinante
der Basis (3.63) und damit fiir alle x ungleich null. Damit liefert (3.203) genau eine
Lésung uy, ..., u,. Durch unbestimmte Integration ergeben sich Funktionen u,,
..., u,. Auf die Integrationskonstante kann jeweils verzichtet werden. Man setzt
Uy, ..., U, in (3.202) ein und erhilt eine partikuldre L3sung von (3.51).

Beispiel 3.18: Gesucht ist die allgemeine Lésung von

7 __ 2 (T ___F
y +y—m( 7<x<2). (3.204)

Die charakteristische Gleichung 22 + 1 = 0 mit den Lésungen Z,:z = +ifiihrtschlieB-
lich zu y, = C;cos x + C, sin x und gemdB (3.202), (3.203) zu y, = u,(x) cos x
+ uy(x) sin x mit

ujycosx + upsinx =0,

uj(—sin x) + uy cos x =

—. (3.205)

Aus (3.205) folgt uj = —2tanx, ub =2 und damit u; = 21In(cos x), u, = 2x.
Also ist die allgemeine Losung von (3.204) y = C,cosx + C,sinx +
2cos x In (cos x) + 2x sin x.

Aufgabe 3.26: Gesucht ist die allgemeine Lsung von

ey 2y =
y E s
Beispiel 3.19: Gegeben sei die Randwertaufgabe aus Beispiel 1.11
EJw”” = p(x) (EJ = const), w(0) = 0, w'(0) = 0, w(l) =0, w'(l) =0,
(3.206)

wobei jetzt p(x) eine beliebige stetige oder auch nur stiickweise stetige Funktion ist. Die allgemeine
Losung wy(x) der zu (3.206) gehorigen homogenen Differentialgleichung lautet

wa(x) = C; + Cox + C3x? + Cax3. (3.207)
Eine partikulire Losung wy(x) von (3.206) liefert gemaB (3.202) die Formel
Wp(x) = uy(x) + ux(x) X + uz(x) X2 + ugy(x) x3, (3.208)

wobei die Ableitungen «(x), ..., #}(x) wegen (3.203) dem folgenden linearen Gleichungssystem
6
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geniigen: ) + xuy + x*uy + x3uf = 0,u; + 2xu; + 3x%ul = 0, 2uj + 6xu, = 0, 6u; = pé? ;
Hieraus folgt
,_Pp® @ Xpe X
Ya=TeErc ST T T2E7 > 2T T2E5 0 T T TeET (3209

Wir benétigen von den rechten Seiten jeder Gleichung aus (3.209) eine Stammfunktion, wobei auf
die Integrationskonstante verzichtet werden kann, weil nur eine einzige partikuldre Losung gesucht
ist. Die Stammfunktion kann jeweils als bestimmtes Integral mit der variablen oberen Grenze x
angegeben werden. Die Integrationsvariable nennen wir X, weil die Bezeichnung x bereits fiir die
obere Integrationsgrenze verbraucht ist. Die Wahl der festen unteren Integrationsgrenze ist nicht
vorgeschrieben; wir wihlen hierfiir £ = 0.

x

x
1 F
uy(x) = -5 fx p(%) A%, wuy(x) = EJ %%p(%) dx,
' 0

1 f 1 [
uy(x) = — S5 fxp(X)dx, Ug(x) = 6EJJp(\)dA (3.210)
0

Wir setzen (3.210) in (3.208) ein und erhalten

x

1
wp(x) = GET f(x — %)% p(x) dx. : (3.211)

Wenn man zu (3.211) wy(x) aus (3.207) addiert, so ergibt sich die allgemeine Losung von (3.206):

x

1
w(x) = C; + Cox + C3x? + Cax® + BT ((x — %) p(%) dx. (3.212)

Setzt man (3.212) in die Randbedingungen aus (3.206) ein, so erhdlt man mit (3.211) fur Cy, ..., Cy
die folgenden Gleichungen:

Ci =0, Co=0, I*C3+3Cy = —wyl), 20C; + 3Cs = —wy(). | (3.213)
Aus (3.213) ermitteln wir Cy, ..., C4 und setzen sie in (3.212) ein. Die Rechnung ergibt
1 , 1 ,
w(x) = = (=3wy(D) + Iwg(D)) x> + = (=bwg(D) + 2wy(D) X3 4 wy(x)
und damit
x 1 .
w() = [ G, ) p(®) di + [ Glx, 1) p(3) d,
o x
also
1
w() = [ Gx, %) p(¥) di (3.214)
o
mit der zur Randwertaufgabe (3.206) gehdrigen Greenschen Funktion (EinﬂuBfunkﬁon)
- 1 [( —2x3%3 + 3Ix3%2 + 3Ix2%3 — 612422 + 33xx2 - I°%3) 325
5 %) = REF (-2 + 318%x2 + 31x2° — 61283 4 32 — Px3), O

wobei in (3.215) der obere Teil fir 0 = ¥ = x = / und der untere Teil fir 0 < x < X = [ zu be-
nutzen ist.

Aufgabe 3.27: Man zeige, daB die im Falle p(x) = p = const von (3.214) gelieferte Losung mit
derjenigen aus dem Beispiel 1.11 Gbereinstimmt.
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3.3.9.  4-Distributionen

Eine Reihe physikalischer Erscheinungen erfordert fiir ihre mathematische Be-
schreibung neue mathematische Objekte, die sich vom Funktionsbegriff wesentlich
unterscheiden und mit 0-Distributionen bezeichnet werden. Um einige Grundgedanken
hieriiber darlegen zu kénnen, betrachten wir das

Beispiel 3.20: Im Beispiel 3.19 soll jetzt die Belastung des Balkens durch eine Einzelkraft der Grofle F,
(senkrecht zur Balkenachse) an der Stelle x = x, (0 < x, < /) hervorgerufen werden. Man schreibt
in diesem Fall anstatt (3.206)

EJw"" = F(x —x,) w0)=0, w(0)=0, wl)=0, w'(l)=0. (3.216)

(3.216) ist keine gewdhnliche Differentialgleichung im Sinne von Definition 1.1, denn auf der rechten
Seite von (3.216) steht keine Funktion. Das hidngt damit zusammen, daf auf der rechten Seite der
Differentialgleichung (3.206) eine Streckenlast steht. Wie sieht nun die zu einer Einzelkraft F, ge-
horige Streckenlast aus? Ein Erklarungsversuch lautet etwa: ,,Die zu einer Einzelkraft F, an der
Stelle x, gehorige Streckenlast p(x) ist null fiir alle x mit 0 = x = /, ausgenommen die Stelle x,;
an der Stelle x, ist p(x) gleich unendlich. Man erkennt, da} man dies nicht als Definition einer
Funktion p(x) anerkennen kann. Was ist zu tun? Es muB3 definiert werden, was man unter der Lsung
w(x) von (3.216) versteht, wobei auf der rechten Seite keine Funktion, sondern die d-Distibution
d(x — x,) steht.

Definition 3.8: Unter der Liosung des Problems (3.216) versteht man eine Funktion w(x), die nach
folgender Vorschrift ermittelt wird:
1. Man ersetzt F,0(x — x,) aus (3.216) durch die Streckenlast N
_ [Po = const fir x,—e=x=x,+¢ ’
LIS {o sonst Osx=D, @27
wobei die durch die Streckenlast (3.217) hervorgerufene Gesamtkraft gleich F, sein soll, also
! xvte
[p@dx = [ podx=2epo = F,, (3.218)
0 xy—e
d. h.
e -
(3.219)

Po= g
2. Man lost die Randwertaufgabe (3.206), wobei p(x) (3.217), (3.219) zu entnehmen ist. Die er-
haltene Losung sei durch w(x) bezeichnet.

3. Man bildet lim w(x), wobei der Grenziibergang folgendermafen vorgenommen wird: Bei fest-
&= +0

gehaltenem x strebt ¢ > +0 und gleichzeitig po — + 0 derart, dafi beim Grenziibergang in (3.219)
= F, fest bleibt.

Fiir die in der Definition 3.8 unter Punkt 2 eingefiihrte Funktion w,(x) liefert die Formel (3.214)
mit (3.217), (3.219)
1 xvte
M
We(x) = f G(x, ) p(®) 4% = F, 57 J G(x, %) dx. (3.220)
0 xy—¢

Fiihrt m:in in (3.220) den in der Definition 3‘.8 unter Punkt 3 genannten Grenziibergang aus, so
beachte man, daBl F, ein konstanter Faktor ist und daB beziiglich ¢ > +0 die Regel von I'Hospital

D.3.8
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anwendbar ist. Die Rechnung ergibt

. xy+e K xy+e
. . I o qs
wi(x) =,l_l'nl°w,(x) = FvgBTo o5 f G(x, %) dx = F, 5 EETO 3 f G(x, x)dx
xy—8 xy—8
F,
= T" lim (G(x, x, + &) — G(x, x, — &) (—1)) = F,G(x, x,). (3.221)
&> +0

Aus dem Ergebnis (3.221) kann man die folgende Deutung der Greenschen Funktion ablesen: Die
zur Randwertaufgabe (3.206) gehorige Greensche Funktion (3.215) ist beziiglich x als Durchbiegung
des Balkens deutbar, wobei die Belastung in einer Einzelkraft mit dem Zahlenwert 1 besteht, die an
der Stelle x = % des Balkens angreift.

3.4.  Zusammenfassung bisheriger Ergebnisse

Die Zusammenfassung der bisherigen Ergebnisse in Gestalt des Ablaufplanes auf
Seite 78 zeigt, in welchen Fillen die dargelegten Methoden zur Losung der Differential-
gleichungen fiihren. Sie zeigt aber auch, wo die entwickelten Methoden versagen.
Deshalb wird in Kapitel 5 (Bd. 7/2) als weitere Losungsmethode die Entwicklung
in Potenzreihen dargelegt.

Weiterhin erwidhnen wir, daB3 das Verfahren von Runge-Kutta auch fiir Anfangswertaufgaben
bei expliziten Differentialgleichungen n-ter Ordnung (3.2), (3.3) durchfiihrbar ist. Man wird hierzu
gemdlB Abschn. 4.1. zundchst (3.2) in ein System von Differentialgleichungen je erster Ordnung
(4.8) verwandeln, die Anfangsbedir (3.3) in Anfangsbedingungen fiir (4.8) transformieren
und danach das Runge-Kutta-Verfahren fiir explizite Differentialgleichungssysteme benutzen, das
im Abschn. 4.4. angegeben wird.
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4. Gewohnliche Differentialgleichungssysteme

Es sei ein System gegeben, dessen gesuchter Bewegungsablauf durch m gesuchte
Funktionen x,(?), ..., x,(¢) beschrieben werden kann. Der Elektrotechniker denkt
in diesem Zusammenhang etwa an elektrische Schaltungen und identifiziert x,(¢),
.., X,(1) beispielsweise mit Stromstdrken oder auch Spannungen. Der Ingenieur
hat beispielsweise den durch eine Funktion w = w(x, ) gegebenen Schwingungs-
verlauf eines Balkens vor Augen, entwickelt w beziiglich x in eine Fourierreihe,
und er identifiziert x,(?), ..., X,,(t) mit den m ersten von der Zeit ¢ abhéngigen Fourier-
koeffizienten dieser Entwicklung, wobei die Darstellung von w(x, f) um so genauer
ausfillt, je groBer m gewdhlt wird. Ein Mechaniker identifiziert x,(), ..., X,(t)
vielleicht mit den verallgemeinerten Koordinaten ¢, und den verallgemeinerten
Impulsen p, eines Systems starrer Kérper. Der Okonom wird an ein dynamisches
Verflechtungssystem denken. Die mathematische Formulierung der das System
beherrschenden Gesetze fiihrt oft auf ein gewohnliches Differentialgleichungssystem
fir x,(2), ..., x,(t). Das Anliegen dieses Kapitels besteht daher darin, wesentliche
Begriffe Lmd Aussagen, die wir fiir Differentialgleichungen kennengelemt haben, auf
Differentialgleichungssysteme zu iibertragen.

4.1. Allgemeine Bemerkungen

Wir tibertragen zunéchst die Definition 1.1 auf Systeme.

Definition 4.1.: Mittels m Funktionen s (W =1,...,m), die jeweils von n + m + 1 unabhdngigen
Veranderlichen abhdngen, wird durch

() B )

F 6,715 Vs s 00, 92, Vs oo s 520 oy Ty Vg o V™) = 0

m+mt .o tny=n p=1,..,m 5

(ny + + 1 ) “.1)
ein gewdhnliches Differenti ich ( lte Differentialgleich imull Diffe-
rentialgleich n) fiir ein Funkti ! (yl(x), Y2(X), ...y Ym(x)) gegeben. Kommen die Ablei-
tungen hochster Ordnung yi”n), y(z"z), e y‘;m) Jeweils in mindestens einer der m Gleichungen (4.1) vor,
s0 heifit das System beziiglich y, von ny-ter Ordnung, beziiglich y, von ny-ter Ordnung, ..., beziiglich

Ym vOn (y,)-ter Ordnung. Die Summe ny; + ny + ... + n, = n gibt die Ordnung des Systems an.

) Beispiel 4.1: Das System (1.31) ordnet sich dem System (4.1) unter; man kann es angeben durch

Ft,x, %, %,9,9,5,2,568) =0 (u=1,2,3) 4.2)
mit G

F, = m¥ + BQy; F, =mj — BQx; F3= m:. (4.3)
Eine Verwechslung der Masse m aus (4.35 mit dem Numerierungsindex m aus (4.1) ist wohl nicht
zu befiirchten. Die Werte fiir m, ny, ..., niy, n aus (4.1) lauten im Falle (4.2), (4.3) m = 3,n; = n,
=n=2,n=6.

Zum System (4.1) kann ein dquivalentes konstruiert werden, das nur Ableitungen erster Ordnung
enthilt. Im allgemeinen Fall ergeben sich verhiltnismdBig uniibersichtliche Formeln; wir zeigen
deshalb den Ubergang zum genannten dquivalenten System nur am

Beispiel 4.2: Fiihrt man im Beispiel 4.1 der Reihe nach fiir die 6 Funktionen

x(t), X(2), y(t), 3(t), z(2), £(t) 4.9
die Abkiirzungen

Y1), 20, y3(), ya(t), ys@®), ys(t) - @.5)
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ein, so ergibt sich aus (4.2), (4.3) ein System von drei Dlﬂ"erentlalglelchungen fur (vi(t), ..., ve(t)),
namlich

my, + BQys =.0; myy — BQy, = 0; mys = 0. ' (4.6)
Aus (4.4) und (4.5) folgen die drei Differentialgleichungen
: Pi—y2=0, J35ya=0, y5—ps =0. : @7
Die sechs Differentialgleichungen (4.6), (4.7) sind (4.2), (4.3) dquivalent, denn es folgen einerseits
(4.6), (4.7) mittels (4.4), (4.5) aus (4.2), (4.3) und andererseits kann man umgekehrt mittels (4.7)

in (4.6) fir y,, y4, ¥ der Reihe nach y,, y3, ys schreiben; also ergibt sich wegen (4.4), (4.5) wie-
derum (4.2) (4.3).

Wir diskutieren nun eine umgekehrte Fragestellung. Wir gehen von einem Differentialgleichungs-
system fiir (y4(x), ..., ym(x)) aus, das nur Ableitungen erster Ordnung enthilt. Es sei in der folgenden
expliziten (d. h. nach y1, ..., y;, aufgeldsten) Gestalt gegeben:

Y= KV V) =1, m). ) 4.8)

Es soll nunmehr gezeigt werden, wie man unter gewissen Voraussetzungen — diese werden erst im
Laufe der Untersuchung genannt — aus dem System (4.8) eine Differentialgleichung m-ter Ordnung
fiir y;(x) herstellt. Wir denken uns eine Losung (y1(x), ..., yu(x)) von (4.8) in die erste Gleichung
(» = 1) von (4.8) eingesetzt. Danach soll die erhaltene Identitit nach x differenziert werden. Die
verallgemeinerte Kettenregel fithrt zu

o mod o oD ‘
"= f1 Zaf’ f‘ + 2 f‘ @9

Da f; bekannt ist, steht auf der rechten Seite von (4.9) eine bekannte Funktion; sie werde mit
£2(%, ¥1, ..., Ym) bezeichnet:
1= 820X, V15 eees V) (4.10)

Die Gleichung (4.10) werde nunmehr ebenso behandelt, wie es soeben mit der ersten Gleichung
aus (4.8) geschehen ist. Es ergibt sich

e

PN RIS R ) @11
In dieser Weise fortfahrend gelangt man schlieBlich zu

WD = gu i (X, P15 eees Vi), 4.12) -

PP = X, 15 ey V) @)

Wir stellen die Ergebnisse ,,(4.8) im Falle » = 1 und (4.10) bis (4.12) zusammen:

= fi(X, Y15 eees Vi)
y’{= &2(%, Y15 +ees Ym) 414

.v""“’ = Gn1(X, V15 ens Ym)+

Es sei betont, daB (4.13) in (4.14) nicht aufgenommen wurde. Nun nennen wir die bereits angekiin-
digte Voraussetzung:

Das System der m — 1 Gleichungen (4.14) sei nach VaseeesVm
eindeutig auflésbar. (4.15)

Das Ergebnis der Auflosung heiBe

V2 = Q2% Y1, Vs oo s YTV, s Vi = PmlX, Y15 VY5 o D). (4.16)

SchlieBlich setzen wir (4.16) in (4.13) ein und erhalten eine Differentialgleichung m-ter Ordnung
fir y(x):
WP = g, y1, 0206, Y1, -5 PPV, e @n(X, 31, -, KT D)),
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kurz
¥ = D(x, y1, ., YY) 4.17)
Beispiel 4.3: Aus dem Differentialgleichungssystem fiir das Funktionenpaar (y;(x), y,(x))
YViZE+y, Vi=n+y+x 4.13)

— es ist also jetzt m = 2 - soll eine Differentialgleichung zweiter Ordnung fiir y;(x) hergestellt werden.
GemiB der allgemeinen Theorie ist die erste Gleichung von (4.18) nach x zu differenzieren, und
danach sind im Ergebnis fiir y; und yj jeweils die rechten Seiten von (4.18) einzusetzen:

=20+ 3+ X @19
(4.19) entspricht dem System (4.10) bis (4.13) der allgemeinen Theorie. Die erste Gleichung aus (4.18)
Yi=y1+x : (4.20)

entspricht dem System (4.14) der allgemeinen Theorie und ist infolgedessen jetzt nach y, aufzulosen
und in (4.19) - diese Gleichung entspricht im jetzigen Zusammenhang (4.13) - einzusetzen. Es ergibt
sich somit fiir die Differentialgleichung (4.17) im vorliegenden Beispiel

V=29 + x. @21
Aufgabe 4.1: Man zeige, daBl beim Versuch, aus dem nach y;, ...,)'/5‘ aufgeldsten System (4.6),

(4.7) eine Differentialgleichung sechster Ordnung fiir y,(#) herzustellen, die Voraussetzung (4.15)
nicht erfillt ist.

Wir fahren in der allgemeinen Theorie fort. Hat man die Differentialgleichung n-ter Ordnung
(4.17) fiir y;(x) geldst, so setze man die nunmehr bekannte Funktion in (4.16) ein. Der Beweis dafir,
daB die auf diese Weise ermittelten Funktionen y;(x), ..., y,(x) Losungen von (4.8) sind, sei hier iiber-
gangen.

Beispiel 4.4 (Fortsetzung von Beispiel 4.3): Die allgemeine Losung der Differentialgleichung (4.21)
kann mit den Hilfsmitteln aus Kapitel 3 hergestellt werden:

»1(x) = Cy + Cre = Hx + x?). 4.22)

(4.16) ergibt sich hier durch Aufldsen von (4.20) nachy,, alsoy, =y} — y;. Indiese Gleichungist
gemiB der allgemeinen Theorie (4.22) einzusetzen. Man erhilt

y2x) = —C + Cr e + 3x* —x — 1). (4.23)

4.2 Existenz und Unitiit der Losungen

In Analogie zu Satz 3.1, Definition 3.1 und Satz 3.2 notieren wir

Satz 4.1: Sind die Funktionen fi(X; V15 .er Ym)s «+v» flXs Y1 -ov3 Ym) des Systems
Vo= 1 e yn) (0=1,..,m)

in ihrem gemeinsamen Deﬁnitionsbereich B nicht nur stetig, sondern existieren dort

auch ihre partiellen Ableitungen -——fv(x ViseesVm@=1,...omyu=1,...,m)und

sind diese dort stetig, so ist die Exzslenz und Unitit (Einzigkeit) der Losung der An-
fangswertaufgabe, bestehend aus dem System

s =GP, s e (G Y s ImEB (V=15 m) (4.24)
und den m Anfangsbedingungen

y1(X0) = Y105 ¥2(X0) = Y205 s Ym(Xo) = Ymo (4.25)
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gesichert, falls (xXo, Y105 --+s Ymo) € B ist. Fiir die Lé'sung von (4.24), (4.25) gilt y,(x)
= lxm Yo (Ix — x0l < r, r hinreichend klein, v = 1, ..., m), wobei yu(x)

(7 ST mik = 0,1,2....) gemdB y,o(x) = o,
PulX) = yyo + j/:,(t, Yiket(®) serss V() dt (=1, ..omik = 1,2,...)
\ 5 *o

zu berechnen ist (Verfahren von Picard-Lindelof ).

Definition 4.2: Man sagt

DXy Viseeis Vs C1yeees C) =0 (v=1,...,m;Cy,..., C, Scharparameter)
’ (4.26)

gibt relativ zu B die allgemeine Losung (das allgemeine Integral) von (4.24) an, wenn
die durch Auflosen des Gleichungssystems (4.26) nach y,, ..., y, entstehenden dif-
ferenzierbaren Funktionen y(x) (v = 1, ..., m) Lisungen von (4.24) sind und wenn
diese nicht mit weniger als m solchen Parametern dargestellt werden konnen.

Satz 4.2: Sind die Voraussetzungen von Satz 4.1 erfullt so ist jede Losung von (4.24)
in der allgenteinen Losung enthalten.

4.3, Explizite lineare Differentialgleichungssysteme

4.3.1.  Definition

Ausgehend von der Definition 3.2 wird man in naheliegender Weise zur Definition
von expliziten linearen Differentialgleichungssystemen gefiihrt. Das Wesentliche
tritt bereits bei der Behandlung des Falles n = 2 deutlich hervor. Gemd8 der Defi-
nition 3.2 gehen wir deshalb von der expliziten linearen Differentialgleichung zweiter
Ordnung fiir y = yp(x) aus. Sie lautet mit einer naheliegenden Bezeichnungsdnderung

a(x)y" + b(x)y + c(x)y = g(x), a(x) =0 (xeD). 4.27)

Definition 4.3: Man erhdlt aus (4.27) ein explizites gewohnliches lineares Differential-

gleichungssystem von m Gleichungen fiir das Funktionen-m-tupel (y,(X), ..., yu(x)),

wobei das System beziiglich y, (u = 1, ..., m) jeweils von zweiter Ordnung ist, insge-

samt also ein System der Ordnung 2m vorliegt, auf folgende Weise:

a) Man ersetzt y(x),y'(x), y"(x), g(x) durch die folgenden einspaltigen Matrizen
(Spaltenvektoren):

1(x) yl( )\ Y1(%) g.(x)
y(x)=( s ) Y@ = ) v ="} ) g(x) = ( )
Im(X) ym( X) V%), gnl)

(4.28)

b) Man ersetzt a(x), b(x), ¢(x) durch quadratische Matrizen mit m Zeilen und m Spalten,
wobei die Elemente im allgemeinen Funktionen von x sind:

[A11 e Qim\ fc11

byy oibim e C1m
A(x)=(£ : ), B(x):( : : ),C(x)=\ : : ) (4.29)
Gm1 +++ Oom DN [y K Cm1 +++ Cnm

D.4.2
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c) Die wegen a) und b) entstehenden Produkte zwischen (4.28) und (4.29) sind im
Sinne der Matrizenmultiplikation aufzufassen.
d) In (4.27) wird a(x) % 0 jetzt durch det A(x) = O ersetzt.

Sind alle Elemente des Storgliedes g(x) gleich null, so spricht man von einein homeo-
genen /inearen System, andernfalls von einem inhomogenen /inearen System. !

Beispiel 4.5: (1.31) ist ein Beispiel fiir ein System aus der Definition 4.3: Mit der
Bezeichnungsidnderung

xi(1) = x(1),  x2(1) = (1), x3(r) = 2(¥) (4.30)

lautet es ausfiihrlich
mX, + BQx, =0, mx, — BOx; =0, mi; = 0. (4.31)
Schreibt man gemaB der Definition 4.3 das System (4.31) in der Matrizenschreibweise
Ax +Bx + Cx =g, (4.32)

S0 ist

/m 0 0 0 BQO 000 0
A= (0 m 0), B= (—BQO 0), C = (0 0 0), g = (0) (4.33)
00 m 0 0 O 000, 0,

Beispiel 4.6: Das Differentialgleichungssystem aus (1.35) ist ein gewdhnliches lineares
Differentialgleichungssystem von m Gleichungen fiir das Funktionen-m-tupel
(X,(2), ..., xu(t)), wobei das System beziiglich x, (x = 1, ..., m) jeweils von erster
Ordnung ist, insgesamt also ein System der Ordnung m vorliegt. Mit den Bezeich-
nungen aus (4.28) und (4.29) und mittels der aus m Zeilen und m Spalten bestehenden
Einheitsmatrix E lautet das System (1.35) in Matrizenschreibweise

Ax+ (B-E)x = —g. - (4.34)
Es handelt sich in (4.34) um ein explizites System, falls det A + 0 gilt.

4.3.2. Lﬁsungsstruktur

Es gelten zu 3.3.2. und 3.3.3. analoge Sitze. Wir beschrinken uns auf die Uber-
tragung der Sétze 3.3 und.3.7.

Satz 4.3: Die allgemeine Losung y(x) eines expliziten linearen inhomogenen Systems ist
gleich einer partikuliren (speziellen) Losung y,(x) des inhomogenen Systems plus der all-
gemeinen Losung y.(x) des zugehiorigen homogenen Systems:

I ¥(x) = yp(%) + yulx). (4.35)

Satz 4.4: Die Losungen yu(x) eines expliziten linéaren homogenen Differentialglei-
chungssystems n - m-ter Ordnung (in der Definition 4.3 ist n = 2, im Beispiel 4.6
ist n = 1) bilden einen n - m-dimensionalen linearen Raum, d. h. die allgemeine Lisung
Yu(x) kann in der Gestalt

I Vo) = 3 Co¥nal) (4.36)
angegeben werden, wobei
Ya1(X); Yn2(X)s - o5 Yo, nm(X) (4.37)

eine Basis des Losungsraumes und Cy, ..., C,, beliebige Konstanten sind.
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Im allgemeinen ist die Herstellung der Basis durch elementare Funktionen nicht
mdoglich. Dies gelingt jedoch, falls die Koeffizientenmatrizen nur konstante Elemente
haben. Wie in der Definition 4.3 fiihren wir die Theorie im Falle n = 2 vbr. Die Me-
thode 146t sich aber sofort auch auf die Fille n = 1, 3,4, 5, ... tibertragen. In den
Beispielen und Aufgaben wollen wir auch den Fall n = 1 betrachten.

4.3.3. Lineare homogene Differentialgleichungssystem e mit k
Koeffizienten

Mit den Bezeichnungen (4.28), (4.29) liege das explizite lineare homogene Diffe-
rentialgleichungssystem

AyY + By, + Cy, = 0, detA + 0, (4.38)
vor, wobei alle Elemente der Matrizen A, B, C konstant sein sollen. Eine unmittel-

bare Ubertragung des Ansatzes (3.67) durch y = e* ist abzulehnen, da ein Spalten-
vektor y nicht dem Skalar e** gleich sein kann. Es liegt nahe, jetzt den Ansatz

i Y=y =de, d=+0, (4.39)
zu machen, wobei d eine einspaltige Matrix ist, die die m unbekannten, im allgemeinen

komplexen Konstanten d,, ..., d, besitzt. Einsetzen von (4.39) in (4.38) fiihrt zur
Matrizengleichung

Ai’d e™ + Bid e™ + Cde** = 0. (4.40)
Wie beim Ubergang von (3.68) zu (3.69) ist es méglich, die Matrizengleichung (4.40)
beiderseits durch e** zu dividieren. Weiterhin soll die einspaltige Matrix d aus-
geklammert werden; da es sich um eine Matrizengleichung handelt, mufl genauer
gesagt werden, daB d nach rechts auszuklammern ist, weil in der Matrizengleichung
Faktoren i. allg. nicht vertauscht werden diirfen. Damit folgt aus (4.40)

(A22 +Bi+ C)d = 0. (4.41)
(4.41) stellt in Matrizengestalt ein lineares homogenes Gleichungssystem von m
Gleichungen fiir die m Unbekannten d, , ..., d,, dar. Ist die Koeffizientendeterminante
von null verschieden, so gibt es nur die triviale Lésungd; = d, = ... = d,, = 0,d. h.
d = 0; dieser Fall wurde jedoch bereits im Ansatz (4.39) ausgeschlossen, weil er
lediglich zur uninteressanten trivialen Losung y,(x) = 0 des Differentialgleichungs-
systems fiihrt. Folglich ist nur der Fall

i det (A2> + BA+C) =0 (4.42)
interessant. Die Gleichung (4.42) heif3it in Analogle zu (3 69) charakteristische Glei-
chung. Auf der linken Seite von (4.42) steht ein Polynom in A vom Grade 2m.

Es sei 4, eine Losung der charakteristischen Gleichung (4.42) mit der Vielfachheit
I, = 1. Einsetzen von 4, in (4.41) fiihrt zu

(A4 + BA + C)d = 0. (4.43)

Aus dem bisherigen Rechengang folgt, daB3 die Determinante von A2 + B4, + C
gleich null ist. Infolgedessen hat das durch (4.43) gegebene lineare homogene Glei-
chungssystem unendlich viele Losungen. Man kann zeigen, daB die Lésungen d von
(4.43) einen eindimensionalen Losungsraum bilden, von dem ein Basiselement mit
d, bezeichnet werde. Setzt man im Ansatz (4.39) fiir 2 den Wert 4, und fiir d die ge-
fundene einspaltige Matrix d, ein, so ergibt sich das Basiselement
i Yi(x) = dg ek (4.44)
des zu 4 gehdrigen eindimensionalen Losungsraumes von (4.38).
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Eine unmittelbare Ubertragung vom Satz 3.10 ist nicht moglich. Im allgemeinen
ist der Sachverhalt jetzt komplizierter. Ist 4, eine Losung der charakteristischen
Gleichung mit der Vielfachheit /, > 1, so kommt man nur dann mit dem Ansatz
(4.39) aus, wenn die Losungen d aus (4.43) einen /,-dimensionalen Losungsraum
bilden, von dem eine Basis mit dy; (v = 1, ..., ;) bezeichnet werde. An die Stelle des
einen Basiselements aus (4.44) treten nun die /, (linear unabhéngigen) Basiselemente

I Vi(X) = di, b (v = 1,..., ). . (4.45)

Sie spannen den zu 4, gehdrigen /,-dimensionalen Lésungsraum von (4.38) auf. Sollte
jedoch der Losungsraum fiir d die Dimension r mit » < /; besitzen, so stehen in (4.45)
nur r (linear unabhéngige) Basiselemente

I Vi) = diy i (v = 1,..., 1), (4.46)

obwohl der zu 4, gehorige Losungsraum von (4.38) auch im jetzigen Fall die Dimen-
sion /, besitzt. Die dann in (4.46) noch fehlenden /, — r Basiselemente kann man durch
den komplizierteren Ansatz

i ¥(X) = @@ + dDx + ... + dh-Dxh=1) ¢hr : (4.47)

ermitteln. Die bei d in Klammern stehenden Zahlen sind lediglich der Numerierung
dienende Indizes, eine Verwechslung mit der Ableitungsbildung ist in diesem Zu-
sammenhang nicht zu befiirchten. Der Ansatz (4.47) wird in (4.38) eingesetzt; danach
ist durch e** zu dividieren, nach Potenzen von x zu ordnen und schlieBlich ein Koef-
fizientenvergleich beziiglich x durchzufiihren. Es ergibt sich ein lineares homogenes
Gleichungssystem von [, - m Gleichungen fiir die /, - m Elemente der /;, einspaltigen
Matrizen aus (4.47). Man kann zeigen, dal der zu diesem Gleichungssystem geho-
rende Losungsraum die Dimension /;, besitzt. Wir sind daher in der Lage, die in
(4.46) noch fehlenden Basiselemente in der Gestalt

Vio(®) = @D + d0x + .. + a3 O w=r 4+ 1,.,0)  (4.48)

anzugeben. Mit (4.44) bzw. (4.45) bzw. (4.46), (4.48) sind damit die Basiselemente
(4.37) beim Vorliegen des Systems (4.38) ermittelt.

Wir behandeln drei Beispiele, wobei wir zur Reduzierung des Rechenaufwandes
in den ersten beiden n = 1 wihlen.

Beispiel 4.7: Es ist die allgemeine Losung von

Y1 =2y + 8y,

(4.49)
Y2 =3y — 8y, -
zu bestimmen. In der Matrizengestalt von (4.49), d.h. y' = Ay mit A = (3 —8)

machen wir den Ansatz y = d e** und erhalten Ad e** = Ad e**, also
B @ -Nd + 8d, =0, [, [(d,
(A—JE)d=0, dh: Ay SN s [d—(dz)].
(4.50)
Die charakteristische Gleichung det (A — 2E) = 0, d. h. 22 + 64 — 40 = 0 hat die
Losungen 4, = 4 und 4, = —10. Fiir die zu 4; = 4 und 1, = —10 gehoérenden je-

. . . . ] 4
weils eindimensionalen Losungsrdume von (4.50) konnen als Basiselemented, = ( 1)
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bzw. d, = (_;‘) genommen werden. Also lautet die allgemeine Lsung von (4.49)

o 4 4x 2 —10x IRV 4C, e** 4+ 2C, e~1%%,
v=C, (1)e ¥ Cz(_3)e A S e

Beispiel 4.8: Zur Bestimmung der allgemeinen Lsung von

Y= Y2 + Y3,
Vo= +ys, kurz:y = Ay (4.51)
V5 =y1 + V2,

fiihrt der Ansatz y = d e** zum Gleichungssystem (A — AE)d = 0 und zur charak-
teristischen Gleichung —A43 + 34 + 2 = 0. Diese hat die Lésungen 2, = —1 und
A, = 2 mit den dazugehérigen Vielfachheiten /; = 2 und /, = 1. Zu 1, gehort ein
zweidimensionaler Losungsraum von (A — A;E)d = 0 - die Ansatzerweiterung

1 1
(4.47) ist also hier nicht erforderlich —, wobei als Basisd,; = (— l) undd,, = ( 0)

0, ' -1
genommen werden kann. Fir den zu 2, gehérigen eindimensionalen Losungsraum

1
von (A — 4,E)d =0 kann als Basis d, = | 1 | gewihlt werden. Also lautet die allge-
meine Losung von (4.51) 1

71 =(C, + Cy)e™ + Cy e,
y, = —-Cie* + C;e%,
y3=—Cre* + C; e,

Beispiel 4.9: Zwei Punktmassen m; und m, befinden sich an den Stellen O, und O,
(0, < 0,) einer Zahlengeraden in Ruhe und sind durch eine entspannte Feder
(Federkonstante ¢ > 0) verbunden. Zur Zeit ¢z = 0 erfahrt die Punktmasse m,
eine Anfangsgeschwindigkeit v, in Richtung der Zahlengeraden. Gesucht sind die
Bewegungen x; = x,(¢) und x, = x,(¢), wobei x; bzw. x, den orientierten Abstand
der Masse m, bzw. m, vom Punkt O, bzw. O, messen. Mathematisch gesprochen
ist folgende Anfangswertaufgabe zu 16sen:

myX; + co(x; — x3) =0, myX%, + e(x, — x;) =0, (4.52)
x1(0) =0, %;(0) = vy, Xx,(0)=0, x,(0)=0. (4.53)
(4.52) lautet in Matrizenschreibweise
) AX+Bx +Cx =0 (4.54)
mit
A=) B0 (07D x=() e

Der Ansatz x = d e* fiihrt zu

(A2 + C)d = 0. (4.56)
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Fiir die charakteristische Gleichung erhdlt man

det (A2 + C) =0, d.h. 22(mumy2* + c(m; + m,)) = 0. (4.57)
Mit der Abkiirzung
= A/ ol + ma) (4.58)
mym,
ergeben sich die Losungen von (4.57) zu Ay = 0, A, = iw, A; = —iew mit den zuge-

horigen Vielfachheiten /; = 2,1, = 1,/; = 1
Fiir A = A, = 0 entsteht aus (4.56) das Gleichungssystem Cd = 0. Es besitzt einen

eindimensionalen Losungsraum, wobei d; = 1 eine Basis ist. Folglich ist ein zu

A; = 0 gehoriges Basiselement des Lsungsraumes des Differentialgleichungssystems
(4.54), (4.55)

(;)e"x’ = (1) (4.59)

Wegen /; = 2 ist der zu 4; = 0 gehdrige Lésungsraum von (4.54), (4.55) zweidimen-
sional. Ein neben (4.59) weiteres Basiselement ist geméB (4.47) durch den Ansatz

X(f) = (@@ + dD) et = d© + Ay (4.60)

zu bestimmen. Setzt man (4.60) in (4.54) ein, so ergibt sich C(d® + d¥7) = 0 und
nach dem Koeffizientenvergleich beziiglich der z-Potenzen

Cd®» =0 und CdD = 0. - (4.61)

In (4.61) stehen insgesamt /, - m = 2 -2 = 4 Gleichungen fiir die /, - m = 4 unbe-
kannten Elemente von d© und 4. Ein Basiselement des Losungsraumes von (4.61)
ist bereits bekannt, denn der Ansatz x = d e** wird wegen A = 4, auch von (4.60)
mit d° =d und d¥ = 0 erfaBt. Dieses bekannte Basiselement wird also durch

dQ = i) und df} = (g) angegeben. Ein weiteres (vom ersten linear unabhingiges)

Basiselement des Ldsungsraumes von (4.61) wird durch d{% = (g), Y = (i)
geliefert. Folglich ergibt sich mit (4.60) ein von (4.59) linear unabhingiges weiteres

Basiselement des Losungsraumes von (4.54), (4.55) zu

1 2 1)
(l)te ‘(1)" (4.62)
Fiir A, = io und 1; = —io lautet (4.56)
(—A0? + C)d = 0. (4.63)

Als Basis des eindimensionalen L@sungsraumes von (4.63) kann man d, = dj

=( Zz) nehmen (rechnen Sie das unter Benutzung von (4.58) nach!). Zu
=y

A, = iw und A3 = —iw ergeben sich also als Basiselemente des Losungsraumes des
Difftrentialgleichungssystems (4.54), (4.55)

—{ ™2) o _ ( mz) ot 4.64

%) = () et xao) = () e (4.64)



4.3. Explizite lineare Differentialgleichungssysteme 89

Die Funktionen aus (4.59), (4.62), (4.64) bilden eine Basis des zu (4.54), (4.55) ge-
hérenden vierdimensionalen Losungsraumes. Wir brechen jetzt die Untersuchungen
ab, um sie im Beispiel 4.10 wieder aufzunehmen.

Aufgabe 4.2: Bestimmen Sie die allgemeine Losung des Systems
X = —2x; + 3x,
X, = 2x; + 3x,.

4.3.4. Ubergang zur reellen Basis

Wir setzen nunmehr voraus, daB in dem Differentialgleichungssystem (4.38) die
Elemente der Matrizen A, B, C alle reell sind. Wie in 3.3.5. werden die reellen Basis-
elemente aus (4.44) und (4.45) bzw. (4.46), (4.48) unverdndert in die neue Basis
iibernommen. Ist das Element y,,(x) aus (4.44)'), (4.45), (4.46), (4.48) nicht-reell, so
kann man zeigen, daB y;,(x) als weiteres Element der alten Basis gewahlt werden
kann. Nunmehr berechnet man wie in (3.112), (3.113) die beiden reellen Elemente
der neuen Basis

| 0w w® 5ouw-wm. (4.65)

Beispiel 4.10 (Fortsetzung von Beispiel 4.9): Die beiden Basiselemente aus (4.59),
(4.62) werden unverindert in die neue reelle Basis ibernommen. Im Einklang mit der
allgemeinen Theorie ist neben dem (nicht-reellen) Basiselement x,(¢) aus (4.64) auch
X,(7) ein Basiselement; dieses stimmt hier mit x5(¢) aus (4.64) iiberein. Folglich er-
geben sich die beiden noch fehlenden Elemente der neuen reellen Basis wegen (4.65)

zu
1 ma\ Lior Mo\ iet| _ my
3 {(—m;)e + (_ml)e } = (_ml)cos(wt),

e = (et = (L) sacon.

Die allgemeine reelle Losung des Systems (4.52) erhilt man durch Linearkombination
der Basiselemente aus (4.59), (4.62) und (4.66):

x(t) = C, (:) G, ( i )x + G, (—:Zj) cos () + Cs (_;"11) sin(wr). (4.67)

In (4.67) sind Ci, ..., C, beliebige reelle Konstanten. Wir setzen (4.67) in die An-
fangsbedingungen (4.53) ein, 18sen das sich ergebende lineare Gleichungssystem fiir
Cy,-.., C, auf und erhalten somit wegen (4.67) als Losung der Anfangswertauf-
gabe (4.52), (4.53) [w siehe (4.58)]

(4.66)

Vo

my .
—————|m;t + —sin (wt)},
m1+m2( ! [0} ( ))

x,(t) =
Yo

my .
— (mlt — —Lsin (wt)).
my + my (4]

x,(t) =

Aufgabe 4.3: Im System (1.31) filhre man die Funktionen py(t), p.(¢), ps(t) durch
p1 =X, p, = J, p3 = Z ein und bestimme von dem entstehenden System die all-

1) Man schreibe in (4.44) fiir y; jetzt yi;.
7  Wenzel, Gew. Dif. 1



S.4.5

90 4. Gewohnliche Differentialgleich ysteme

gemeine reelle Losung (py, p,, p3). Was ergibt sich somit fiir die allgemeine reelle
Losung (x, y, z) des Differentialgleichungssystems (1.31)?

4.3.5. Lineare inhomogene Systeme

Eine unmittelbare Ubertragung vom Satz 3.12 ist zwar nicht méglich, jedoch gilt
folgender

Satz 4.5: Fiir das Differentialgleichungssyster

Ay’ + By + Cy = g(x), detA 0 (4.68)
mit den konstanten quadratischen Matrizen A, B, C und
1 g(x) = (b + byx + ... + bx*) e®*

(by: konstante einspaltige Matrizen), bs + 0 (4.69)
fiihrt der Ansatz*) .
i Vo(x) = By + Byxet ... + Bx® + By x*t + ... + By xtt) e  (4.70)

(B,: unbekannte konstante einspaltige Matrizen) )

stets zu einer partikuliren Losung. Zur Bestimmung von | des Ansatzes (4.70) ist die
zum zugehorigen homogenen System

Ayy + Byy + Cy, = 0 @.71)

(der Index h weist auf die Homogenitit des Systems hin) gehorige charakteristische
Gleichung

det (A2 + BA + C) = 0 @.12)

hinzuzuziehen. Ist die Zahl q des Stirgliedes (4.69) keine Lésung von (4.72), so ist
1 = 0 zu setzen. Wenn jedoch q eine Losung der Gleichung (4.72) ist, so ist | gleich der
Vielfachheit dieser Losung q zu setzen. Zur Bestimmung der By, ..., B, ..., B, setzt
man den Ansatz (4.70) in das System (4.68) ein, dividiert anschliefend beide Seiten
durch €%, ordnet danach nach Potenzen von x und fiihrt schlieflich beziiglich x einen
Koeffizientenvergleich durch. Es ergibt sich ein lineares Gleichungssystem zur Be-
stimmung der Elemente der einspaltigen Matrizen By, ..., Bg,,.

Beispiel 4.11: Es soll eine partikuldre Lésung von

X = —=2xy + 3x, + 12¢

X, =2x; + 3x, + 1 (4.73)
bestimmt werden. (4.73) lautet in Matrizengestalt .

X = Ax + g(v), g(t) = by + byt 479
mit

-2 3 0 12

A=( 5 3), by = (1) b, _(0). (4.75)
Der Ansatz

Xp(t) = By + Bt ) (4.76)

1) Man beachte den Unterschied zu (3.127).
2) Um die Analogie mit (3.127) hervorzuheben, wird B, benutzt, obwohl einspaltige Matrizen in
der Regel durch kleine Buchstaben bezeichnet werden.
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— hier ist ¢ = 0 keine Losung der zugehorigen charakteristischen Gleichung (vgl.
Lésung von Aufgabe 4.2) und damit ist / = 0 — wird in (4 74) eingesetzt und ergibt

B; = AB, + AB;? + by, + b;7. (4.77).
In (4.77) fiihrt der Koeffizientenvergleich zu
0 =AB, + by,
) (4.78)
B, = AB, + b,.
Aus (4.78) folgt mit (4.75)
3
B, = —A-'b, = (_;) B, = A-X(B, — by) = (' 7) (4.19)
‘ 0

und damit wegen (4.76)

3 3

- /3 ; = _ 243

x,(1) =( 2) + (_;)z, d.p. TeW= g
0 X,p(1) = —2t.

Satz 4.6: Die Sitze 3.13 und 3.14 lassen sich unmittelbar auf das System (4.68) iiber-
tragen.

Aufgabe 4.4: Man fithre die in Satz 4.6 genannte unmittelbare Ubertragung tatsichlich durch.
Aufgabe 4.5: Es ist die Losung der Anfangswertaufgabe x; = 4x, + x, + 31,

Xy = —2x; + X, + e, x,(0) = 0, x,(0) = % zu bestimmen.

4.3.6.  Variation der Konstanten

Analog zu 3.3.8. kann man formulieren: Gegeben sei das explizite gewdhnliche
lineare inhomogene Differentialgleichungssystem 2m-ter Ordnung mit im allge-
meinen variablen Koeffizienten von m Differentialgleichungen fiir die m Funktionen
P1(x), o Yulx)

AR Y +B@)y + C)y = gx), detAx) #0, g(x)£0 (xeD).

(4.80)
Eine partikulire Losung von (4.80) kann man mit dem Ansatz
[ Yo%) = u1(%) Y1 (%) + 22(X) Yn2(X) + ... U2m(X) Yn, 2m(X) (4.81)
finden, wobei die einspaltigen Matrizen
Yo1(%),  Yn2(%)s o5 Yo, 2m(%) ’ (4.82)

eine Basis (Fundamentalsystem) des 2m-dimensionalen Lésungsraumes des zugehdri-
gen homogenen Systems

AX)yy + B(x) yp+ C(x) yn = 0 (4.83)
bilden. Die Ableitungen (), ..., u5,(x) ergeben sich als Losung des folgenden
linearen inhomogenen Gleichungssystems (A~!: reziproke [inverse] Matrix von A):

u3(X) ¥n1 (%) + 42(X) ¥n2(x) + - + Uapm(X) Vi, 2m(X) = 0

u3(%) Yna(X) + ua(X) Ya(X) + .-+ Uzm(X) Yo, 2m(X) = A71(x) g(x).  (4.84)
*

S.4.6
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Aufgabe 4.6: Im AnschluB an Beispiel 4.10 bestimme man eine partikulire Losung
von

my¥; + c(xg — x;) = ——Cosl(wzt) B
. mym;
— = 4.85
myX; + (X, — xy) s (@)’ (4.85)

wobei o der Gleichung (4.58) zu entnehmen ist.

4.4. Runge-Kutta-Verfahren fiir Differentialgleichungssysteme

Um das Anfangswertproblem des expliziten (nicht notwendig linearen) Differential-
gleichungssystems (vgl. (4.8))
Ve=fi @Y1 Vm)y Yix0) =Yio (k=1,...m) (4.86)

mittels des Verfahrens von Runge-Kutta zu behandeln, wird man zunichst (4.86) im
Sinne der Bezeichnung aus (4.28) durch

Yy =1(xy), ¥(xo)=Yo (4.87)

zusammenfassen. Man kann jetzt das Schema auf der Seite 44 benutzen, falls man
dort

Vs f(xv’YV)’ k,‘l = hf: 6k = z;wk,u (488)
der Reihe nach durch
Voo f(x,,y,), k,=hf, 6k=37k, (4.89)

ersetzt.
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. N Ry —
Ll b5 a2 — melcosg — £ d)¢=¢—1A/7n-\/E+mglcos¢,
1.2: tanog = y_o’ tanfo = tan (0‘0 +
Xo
_ cosxg
T —sinag
2 (= 2 = 2
1.3:x(t)= —sin|=t) + C=3=——=sin—+ C=>C=3 + —
T 2 & 2 T
2 T
=x(t)=3+— l+sm(7! .
2.2: nirgends
Yer - N Lo b ! 7
31 y0(x) =0, y1(x) = 2 X%, yalx) = ]2" + 4032):
2.4: a), b), d), ), g).
25:a)y=-1,b)y=2y=3,0y=knk=0,%1,..),y=0,0)p =90, 9= —¢o.
26:y =x(y+1), —0<y< _1=J =deX+C1, —®0<y<-l=njy+1
2 y+1 x2
=5 +C,m0<y< -1, —0<CG<to=n(-y - )= +C,-0< G <+
x2 =2

= —y—1=Ce?,C=¢1,0<C< +0=>y= ~1+Ce? ,C=—-C;,—0< C<O0.

d
2.7:y’=sinx~sinyFm=>f .y = fsmxdx-&— C=——=

== (tan 1) = —cosx + C
sin y 2

ﬂ=>C=I=>tan-%-=e'e‘° s ) = 2arctan (e - e %),
0= 5
T d
2-8=¢=—JiJwﬁ—w’,—¢o<¢<¢o: z =—,\/£fdt+c=arcsini
. -9 I o
g . 1 . g Il =
_A/T('—to) mit ro=A/;_C:(p=-—Lpusm[A/T(l—to)], _A/"g—7+’°<'
A/Iw+tlt 114 A/l
SN it . Intervallange: = ./ —.
7 2 0 g e

2.9: nein.

2.10: linear, inhomogen, Uberfiihrung in explizite Gestalt moglich fir —1 < x < 1.
2.11: nein. Gegenbeispiel: Aufgabe 1.3.

1 3x 1 3
. - -t
2.12:a)y=Ce % ,b)x=Ce 3> ,c)nichtlinear.
2.13: nein. Gegenbeispiel: Aufgabe 2.4¢).

(]

_R, _R, v x,
24: L) =Ce” T, L) =u)e” T omit u@)=—el’, 1) =L+ () =&

R R
- U U -
sCT T, M@ =0mc= -2, 1= (i-e ).
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1 1 . S c
2.15: yp(x) = C—\/]—T;,yp(x) = u(x):/l_i_=2 mit u(x) = \/1 +x2, ) =1+ \/IT.

2.16: (2.84) ist i. allg. nicht exakt, (2.85) ist exakt.

0 9
2.17: Fy— [x(x + 2y)] = 2x, > (x% — y?) = 2x = Dgl. ist exakt, da B einfach zusammenhingend.

U £ »?
— =x2+2xy=2U=—+x+ ) ==+ C() =2 - 2= C() = — —
ox 3 U 3
X3 =y X3 — 3 n
=U= —5 + x%y=> e + x2y = const (implizite Darstellung der Losung).

d d
2.18: > [u(x) 0* — 2x = 2)] = > [u(x) 2y]= 2u(x) y = 20'(X) y=>p' = p=>p = e* ist inte-
grierender Faktor. g

2.19: u = p(x) fithrt nicht zum Ziel.

9 4]
5 Lo X% = 5= 0) A+ 2%)] = X 0) ¥® + 3u0) %) = k) 4xy* = v2u'0) = y2u(»)

*+0
dp dy . s
= OfﬁT——- 7=>1n lul =Iny| + C;=p = Cy; es geniigt C=1 zu wihlen: pu =y,
1
xy*dx + (v + 2x%%) dy = 0 ist exakt. = xyt= U= 7x2y4 + ) s—— 22y

L APIRAPY ¥
. 2 1 T
+CMN=y+22H3=>CH) =y=C0O) = ’T=> Ux,y) = —Z—yz(xzy2 +1). Die Gleichung

»*(x?y? + 1) = const ist implizite Darstellung der Losung.

220 0( LA (; OV\’ dp XV _dx BV
2\t Pyr) s\t P )T tar P por - o TP aTr T
o g

Yo

2 (1 \ 2 (1 Lo, 1. 13 o 1. ip
2'21'bp(7c”)_0 ( Z’) - T o Tt o

T
1 |
2.22:ﬁ=2,o‘=1-—ﬁ=——1,,\"=x’=;=>x=~—€-=>.i'=—

} . . ds
=i —tx—ax?=0=—(1—t)i—ti=a. —(1 — 13§y — 1% = 0 =—m> —>
lef#1 Xn

t .1 ———— —_—
=opd=hignl=Shi? -1+ G=5 = VI =1l 2 =u) 2 — 1] =
— a —_
-—(1—tz)ﬁJ|12—1|=at=u=—J—ﬁ==-ip=—a=>)'c=—a+ ciE = 1=
1 1 -
x=—==
E N TEEY
Ed z 4+ tany
223y = —m8M8, =xz(x), YV =z+xz'=>z+ xz = —"—
¥ T y (x), ¥ T
55 v
17/ z+ tany 1 z2+1 1—ztany tany
== |-z == tany = 5 dz = ——dx
x \1 —ztany x 1—ztany z2 +1

1
= arctan z — T(tan Yin(z? + 1) = (tanp) In |x| + C
1
=>arctan% - T(tan ) {In(x* + y*) — 2In|x|} = (tanpy) In [x| + C

1
= arctan % ey (tany) In (x* + y?) = C.
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2241y = (/\1, —¥? 41, y0) = 1’_;_;___772/ = —z2, z(0) = —l:z:.x——_l—;T—"‘:’
Yo &= Tt

2.25: y(0,5) ~ 1,0698, y(1) = 1,1363.

2.26: 8

X y f=x+y k,=hf 2k, k=3 Ak,

0,00 0,000000  0,000000  0,000000  0,000000
0,10 0,000000  0,100000  -0,020000  0,040000
0,10 0,010000  0,110000  0,022000  0,044000
0,20 0,022000  0,222000  0,044400  0,044400 0,021400

0,20 0,021400 0221400  0,044280  0,044280
0,30 0,043540  0,343540  0,068708  0,137416
0,30 0,055754 0355754  0,071151  0,142302
0,40 0,092551  0,492551  0,098510  0,098510 0,070418

0,40 0,091818

Rechnung mit der doppelten Schrittweite h=2h= 0,4
x y f=x+y k,,:hf Z“k” k=§2}.,,k,,

0,00 0,000000  0,000000  0,000000  0,000000
0,20 0,000000  0,200000  0,080000  0,160000
0,20 0,040000  0,240000  0,096000  0,192000
0,40 0,096000  0,496000  0,198400  0,198400 0,091733

0,40 0,091733

1

=0dy = 3(0,091 818 — 0,091733) = 5,7 - 1075 = »(0,4) ~ 0,0918237.
Yh=nw=>m=Cey,=ux)e* mituw e =x. u= Jﬁxe“‘dx =—xe~¥ 4+ fe”‘dx
=—e*(l+x)=yp=-(+x=2y==-10+x)+Ce" y0)=0=C=1=y

= —(1 + x) + ¢*= y(0,4) = 0,09182469....

3.1: y(x) = g(x, x) + Cy(x — xo) + C, mit

u
Og(u, 0g(u, . Og(u, v
cwo= [ o-nimu=y = (L) + (ERD),, + comie S
=x

ou o= o ou

t=xq

= (v —u) f(u),

g, v)

. ‘ :
3 J % @@= fde = ~[f(t)dt=>y'= Jl f@)dt + Cy=y" = f(x).

t=xq t=xg t=x,
1 po ey | —rid: -
320y = —= =)y =Yy TS0 = fy & Eydx +C= () =4y +2C
Vr )
S (-2*=4+20=>C=0=>) = 2 t/y, wegen »(1) < 0 nur unteres Vorzeichen

-1 4 3 4 10
brauchbar =y 4 dy = —2dx==-Ty‘= —2x+C1ym=_‘>?= -24+C=>Cy = T=

(-3 5 5
= Tx+5), e <x<a.
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3.3:a) +/ f 49 = =1 (,+ falls v > 0, ,,—, falls vy < 0)
V2gl(=1 + [1 — 2D + o2

:"_7-0/1 ror
e B (223

b) Kleinste positive Nullstelle ¢; von 2g/(—1 + cos ¢) + v} = kleinste positive Nullstelle ¢; von

st (=14 [1 = Z]) + e g =2
&h\ — ) 1’09%*\/31-

ST

Iogl ool
Vel g , Vel g
QT =1 d =T 2 =
NErr T Je Y
1-\—¢
Vo
=0 =0

?

T i
=A/-—arcsin(\/g |U°|)=—7-—A/—
& [vo] \/gl 2
34: (12 +2t+ )i+ QU+ 2Dk =4=—==(2+2t+5)p+ 2t +2p=4. (D) =1=pl)=1,

x=p
(2 +2t+5pa+ Qt+2)py=0

dpy 2t +2 C,
:-;;— = - mdl:ln}phl = —In[t2 + 2t + 5| + Cy = py(t) = m:pp(t)
1 . 4t 4t + C,
Su) gy s s Amus A=) = a s = rO0= mog s e =4
. 4+ 1)
=>i=p= m:x(r) =2In(t2 + 2t + 5| + Cizs== G = 28—
x(t)=21nt—2—+—§ti.
eax  ef2* efs¥ 7 O O § 10 0
3.5: W= |cqe1¥ cpe02% cyefa* | = efr¥ena¥es¥ | ¢y ¢, c3|=elataatedx|e ¢y — ¢y c3—cy
c?eerx cdecax cdecs* it} 3 ctci—cici-c

= e€1tezteddx (¢, — ¢;) (3 — ¢1) (c3 — ¢3) + 0.
3.6:P(3) = 72 + 200 + w3 (0 = 0,00 > 0), P'(3) = 24+ 20. L.Fall: & — wd > 0: P(3) = 0,
PUy) =2/ — @3+ 0. PU;)=0. P(l;) = —2+/3 — w3 +0. 2. Fall: 6> — 0} < 0:
P(y) =0, P(Gy) =2 — % +0. P(;) =0, P(iy)= —2iy/w§— 02 0.
3.Fall: 82 — w3 = 0: P(3) =0, P() =0, P"(A)=2=+0.
3li=1 @ =1,..,n).
38:) +2) =3y =0,y=eF=2+21-3=0=4 =1, = =3=y=C e*+ C &%
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3,
3.9:x(t) = Cre 2 + C,eltht 4 C;e-1,
3.10: p(x) = Cy e* + C, €2 + Cax e**
311:x(t) = C; + Cot + oo + Cpat™3 + Cpoy € + G
3
312t 2',e*cost, e sint.

3.13: ja, da die Konstanten in der Linearkombination der Basisel beliebige komplexe Zahlen
sein konnen.

3.14: ja, falls alle Basiselemente reell sind; andernfalls nein.
315:a)x = eM =A% + 72 = 0=}, =in, 4, = —in= Basis: e!™, e~!7* = reelle Basis cos (r?),

) 3

sin (nt) = x(t) = C; cos (xt) + C, sin (xt). Losunga) x(0) = 1= C, = 1; x (T) =0
3 3n

= Cos Tﬂ + C, sin—4—- =0=C, =1. x(t) = cos(nt) + sin (nr) [genau eine Losung].

b) x0)=1=C;=1; x(1)= 0= cosm + Cysint=0. = —1+ C,+0=0= keine Losung
C, = im Fall b) existiert keine Losung x(z).

¢) x(0)=0=C, =0; x(1)=0=C,sinw=0=C, 0= 0= C, = beliebig = x(t) = C; sin(xt)
[unendlich viele Losungen].
b
3.16: Bis (3.139) mit 6 = 0 siehe Beispiel 3.11 = y,(t) = w—276“”x'. Formel (3.141) ist mit§ =0
0 — W1
auch jetzt noch giiltig; es istx = 0, falls 0 < w; < wg, und &« = 7, falls 0 < wy < w; gilt.
3.17: ¥ + wdy = beiwot, y, =M, A2 + 0§ =0, 21,2 = +iwy, yp(t) = Byt ei®ot

i
= Bo(2iwy — twf + w§t) ei®ot = beivot = By = — ——=> yi(t) = — —— bit el@ot,
2wg 2wo
5
3.18: 2y + 5y, =0, yp=eF=22 4+ 54=0=2=0, , =1,/ = — 5 h=1

L 25 5, 5 5N 5, 1 18
Yp(x) = By e2? :BQ(Z-TEZ +5-—2—e2 )=ez =Bo=f=>)p(\’) —ez

-3 1 1 e
3.19: y,(x) = By e 2xx=Bo=—?=>y,(x)=f—5-xe 2%
., , 5 5 3 (i,‘ i 3 3 .
3.20: 2y + 5y’ = 3cosh{—=—x), 3cosh|=x)=—=1e2"+¢ 2 =Yp =5 )1 + 5y, mit
2 2 2 2 2
5 5
2y +5y;"e’ P9 =eT T e s e, s e T

= ?"
0 ¢

3.21: (sinh #) cos ¢ = (sinh 7) Re [e!*] = Re [(sinh #) '] = Re [4(e" — e e']
= Re [} e(#DF _ 1 g-14Dr],
X, + 4Xp + 5X; = Jetthe, 22 4 41 +5=0=4,, = =2 % i=> Xj, = By e+

Fx

THRT5C

= Bol(1 + )? + 4(1 + 5~1=>B —i—l——ﬁl:
G (L +D+3] ° =2 9+ 61 78
1 1 1 .
le = (.2_6_ - _3.9_1) e(1+l)r; Xu+ 4X" + 5Xy; = — 76(_1“":’1\'", =By e(=1+Dt o,
- : 1 - 11 1
—_ i)? — i = — — = - — =——- - 2i
Bol(=1 +i)* + 4(—1 + i) + 5] 5= Bo RETT (1-2i)=

1 1 1 1 £ 1
Xu, = (_E + ?l) e(-l-}-l)t, X, (t) = Re [( % _ El) e(+br o (_ ,ﬁ_ + —l) el- 1+l)z]

=e’(26 cost+—335mt) —e! To 08! +?sint).
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3.22: % + dxpn = 0,xy = ¥ = 22 + 4 = 0= A, = +2i=> Basis e*", e=2! = reelle Basis cos (21),

sin (2t)= x, = C; cos (2t) + C,sin(2t). x, = By + Byt= 4B, + 4B;t = 2t=>Koeffizientenvergleich:
1 t t

4By =0, 4B; =2=B, =0, B, = TEN= g x(t) = 7 + Cj cos (2t) + C,sin (2t).

b
X(O)—0=>C1—O=>x(r) —-J—Casm(Zt) x(b)_-0=>—+ Cysin (2b) = 0. = C,

b t b sin (2t)
=<5 —s—m(_zb) falls Nenner %= 0= x(t) = 2T TS

Genau eine Losung der Randwertaufgabe fiir 0 < b < -72:- und % < b < =. Mehrere Lsungen der

Randwertaufgabe fiir kein . Keine Losung der Randwertaufgabe fiir b = -;— und b = 7.

323:y) + 3y — 4y =0, yy=e*=>2 +3-4=0=4 =1, =1, i, =4, I,=1,
Vo1 = Bo + Byx=3B; — 4B, — 4B;x = 12x = Koeffizientenvergleich: 3B, — 4B, =0, —4B,

9 9
=12= By = =3, By = —T=>yp|=—7-—3xA

3 &)
You = Boe?¥=> Bo(—4e?!* + 6ie?*— 4e21%)=25e2¥= By = —2 — Ti: You=— (2 + 71) HE

2 . 9
= ypu = Re [Yn] = —2cos (2x) + TSin )=y =Y+ Ypou+Vu= — T 3x — 2 cos (2x)
i %sin @2x) + Cye* + Cye*

5 5 9 24
YO =7, YO =2=7=-F-2+C+C,2=-3+3+C-40=>C=—,
e O e rcos a4 Sosin a4 Do 1 Lot
Z_W»y(x) -7 x—._cos(x)+zsm(x)+—5—e,+ 108 B
324: X% + Xy + =0, yp=x*=M2+1=0=4 =i, A, = —i= Basis: x|, x'= reelle

1
Basis: cos (In x), sin (In x) =y, = C; cos (Inx) + Cpsin (In x), y, = Box™' = By = 1 = y, = <

. 1
=y = C;cos(Inx) + C,sin(Inx) + XW3—Q+I —-2=C;-1=C =2,

C,=—1=y=2cos(Inx) ~sin(lnx)+%.

3.25: 12%, + :x,,+'x,,=0, ==l -1 +A+1=0=2+1=0=4,=+i=
Basis: ¢! = el!at ¢~ = e~ilat = reelle Basis: cos(Int), sin(In¢)=>x, = Cycos(Int) + C,sin(Int).
4cos(Int) = Re(4e''™) = Re (411). 12X + tX + X = 4t'= X, = Byt'Int= B, [t’{i(i —1)t-2In¢
+2it"‘i+t'(— 712—)} —t{u' Tint + t‘i}—(-t‘lnt =4t'= By2i=4= By = —2i=>
Xy= —2it'lnt = —2iel™*Int= x, = Re(—2ie!™™*In7r) =2(n¢)sin (In¢) =

x(t) =2(nt)sin(nt) + C; cos (In r) + Cysin(Int).

326y + 3y, + 2 =0,y =e¥=>22+ 30 +2=0=>7 = —1, A= -2=y,=Ce”

+ Ce .y, = () e + uy(x) e, uie* 4 uhe =0, —ujeF — up2e2* = (1 + %)t

=uy =1+, wh=—-e*(1+e)'=muyy=In(1+e"), u=—-e"+n(1+e)=>y=Ce™

+ Ce 3+ (In(l +e¥))e* + (—e*+ In(l + eM))e2* = Cye* + Coe72* + (7 + e~2¥) In (1 + &),
x 1

3.27: w(x) =p J Gy, H)d5 + pJ Glx, §)ds =

x o I x

6I3EJ [f( 2x3%3 + 31352 + 3Ix*%3 — 612x2%%) dx

1
+ f BI3x%% — 13%3%) d% + f(}l’ix — 3x%)dx) = 6_E./{(_2x + 3lx2)— + (3lx3 — SIZXZ)T
0 x

1 1
+ x* —z-x‘+3x27(12 - x?) - x3(l——x)}

2 =2x +1*) =

(x = D2

24EJ 24EJ
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) .. . BQO - BO B*Q? B*Q?
4'1:.“1=Yz°}’1=}’2=—7}’4=>."1=—T}"4=— 2 Y2:J’(14)=— . Va2
BSQS 3Q3 B4Q4 B
Ty,,::»y(l’) Vo= 2= (4.14) lautet hier: y; = y,,j, = — ”—IQy4,
~ BZQZ BSQ3 . B4Q4
gyl TYZ, .V(;‘) e Ya, y(f) = s V2.
Dieses lineare Gleichungssystem ist nicht eindeutig nach y,, ..., ye auflésbar; die Koeffizienten-
determinante ist gleich null.
. —23 —-2-13
4.2:k = Ax, A= 23), x =de’ = (A — JE)d = 0. char. GL: 5 3_2 =0=42
—2—-12=0=4 =4,/ = —-3. (A—4E)d= 0= —6d; +3d, =0, 2d, — d, = 0= Basis:

4,
1
di=1,d,=2=4d, = (-2- A+ 3E)d=0=>d, +3d, =0, 2d, + 6d, = 0= Basis: d; = —3,

-3 1 =3
dz=1=>dz=< ):x=Cl(7)e4’+C2( )6_3'$X1=C1e“—3cze‘3‘, X, = 2C; et
+ Cye3. 1 . 1

m0 0
4.3: mp; + BQp, = 0, mp, — BQp; = 0, mp; = 0=>Ap + Bp = 0 mitA=<0 mO),
0

0 BQ J 2 0 0 m,
B:(—BQO 0), p=(p2 . p=de*= (Al + B)d = 0= char. GlL: det(Ai+ B) =0
0 0 o P
mh BQ 0
=|—BQ mi 0 |= 0= mi(m?4> + B?Q*) = 0=17; =0, ll=1,lz=1w (w: ) L, =1,
l 0 0 mi

0 0
l3=—in, I3=1. (A +B)d=0=Bd=0, Basis: d1=<>:p1(t)—(0> (A2, +B)d=0
1 1

i i =i
= (Aiw + B)d = 0, Basis: d, = (1)=~ pa(t) = (1>e"’”. (AZz + B)d = 0= p3(t) = ( l)e""”
0/ ) .0

0 | /—sin (wt) 1 . cos (wt))
=> reelle Basis: p,(t) = (0>, = @2() + p3(1) = ( cos (wt)), E(Dz(t) —p3(t) = <sin (wt) )
0 /

\

1 0
= allgemeine reelle Losung:

pi(t) = —Cysin(wt) + C, cos (wt), pa(t) = Cy cos (wt) + C, sin (wr), ps(t) = C3= allgemeine
~ 1 ~ 1 ~ -

reelle Losung von (1.31) [Cl i Cy, C = o Cz] :x(t) = Cy cos (wt) + C, sin(wt) + Cq,

¥(t) = Cysin(wt) — C; cos (f) + Cs, z(t) = Cat + Cs.

4.4: Hat in dem Differentialgleichungssystem Ay” + By’ + Cy = g(x), det A # 0, das Storglied
g(x) in einem ersten Fall die Gestalt g(x) = (bo + byx + ... + byx®) e** cos (Bx) (bs + 0, x,  reell)
oder in einem zweiten Fall die Gestalt g(x) = (bg + byx + ... bx®) e** sin (Bx) (bs + 0, &, f reell)
und sind die Elemente aller Matrizen A, B, C, b, ..., b reell, so kann eine partikulire Losung
¥p(x) im ersten Fall durch yu(x) = Re (Y,(x)) und im zweiten Fall durch y,(x) = Im (Y,(x)) an-
gegeben werden, wobei Y(x) eine partikulire Losung des Systems AY” + BY' + CY =
(bo + byx + ... + bx*) e mitg = & + if ist. -

Gegeben seien die r linearen inhc Differentialgleict y Ay” + By’ + Cy = g,(x),
(@ =1,...,r), die sich nur in den Storgliedern unterscheiden, wihrend die linken Seiten uber-
einstimmen. Eine partikulire Losung des jeweiligen Systems sei yq(x) (0 = 1,...,r). Fiir das Dif-
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r
ferentialgleichungssystem Ay” + By’ + Cy = 2 €o8(x) ist y(x) = Z €o¥o(¥) eine partikulire
Losung. =1

; 10 —4 -1 :
4.5:Ax+Bx=g<t),A=(01), B=( 2_1), (x)-( ) Aky + Bxp = 0,

xh=deh=>(A/’-+B)d=0:>det(A/1+B)=0=>l l 0=>/42—-54+6=0,

M=21=1,2=3,1=1 (Al + B)d = 0= Basis: d; = (_2 , (A4, + B)d = 0= Basis:
1 1 1 3

d; = (_1)=>x,,(t)= Cy (_2) e+ G (~1) €. g(t) = gi(r) + gu(r) mit g(1) = (0) 1, gu(?)

3
= ) e, AXpr + Bxp = 21(1). Xp1 = Bo + By#=> AB, + B(B, + Byt) = ( ) t = Koeffizienten-

1 0

leich: AB, + BBo = 0, BB, = () =B = 2, Bo= —( ! _1(1
vergieiehs A+ BBo =0 BB = o) =B ) BT hi0) T T e
—7(2);. |
. 0 0 \
AXppp + Bxpn = g1, Xpu = Bo €' = A(—By) + BBy = e B —-A)B, = (1) = B,

1 1) 11, 101 1 { 1 ( 1) _,}
S s o - .

1z \—s) %=1 {_s5) %=Xt Xm= T ) It |\ _10) T\ 5/ €
x=xh+x,,=>xl(t)=CleZ'+C2e3'+Ee“——;t +4 X5(t) = —2C €2 — Cpe?! ST J

5 1 5 3 4

—teg ——— G+ G= -, 26 -G=7=> (=5, G=.

#,©=0,x0=

4.6: A% + Cx =g(t), A (0 m;) ( ¢ ”c>, g(r):-—"’i"z—(_i). X,(0) = 1(0) (:)

-c ¢ cos (wt)

+ u;(t)( )t + u3(t)( )cos(wr)+ u,,(r)( 'nf) sin (w1). 11y (:) + iy (:) t+ s (_::) cos (1)

ny my\ . my
+ 1y ( ) sin (wt) = ( ), Ty ( ) - ugw( - ) sin (wt) + tiaw (_ml) cos (wt) = A~ 'g(t)
: !

T Y mym 1 1 [ m
T = & L2 = :
mit A~'g(r) o L) st (_1) cos (wt) (—mx)'
my
. . RS l it 1 i
=1, =0, =013 = — - tan (wt), lg= = Damit kann verwendet werden: u; =0, u, =0,

1 1
Uz = —l;‘ln |cos (w?)], us = == partikuldre Losung:

X = 7’:‘)—2 [In [cos (wt)|:cos (wt) + wt sin (wt)], x; = — i(:—; [In [cos (wt)| cos (wt) + wt sin (w1)].
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Impuls 80
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lineares Differentialgleichungssystem 83
— inhomogenes System 90 Schaltungen, elektrische 80
Lincarkombination 55, 61 Schar 15
Linienelement 20 Scharparameter 15
linksseitige Ableitung 10 Scheinlsung 25, 50
Loésung 9 Schrittweite 39, 45
-, allgemeine 22, 25, 30, 48, 54, 84 Selbstinduktion 58
-, - reelle 62 simultane Differentialgleichungen 80
- im weiteren Sinne 11 Spannung 67
-, nichttriviale 18 v Spatprodukt 55
~, partikuléire 29, 54, 90 spezielle Ansitze 35
—, spezielle 29, 54, 90 - Losungen 29, 54, 90
-, Struktur der 54 spezifische latente Warme 36
-, triviale 18 - Wirmekapazitat 36
Losungen, Zusammensetzung von 10, 27 Stokes, Integralsatz von 33
Losungsbegriff, erweiterter 11 Storglied 28, 53
Losungskurve 9 Streckenlast 17
Lésungsraum 61 Stromstarke 32
Lorentzkraft 13 Struktur der Losung 54

System von Differentialgleichungen 14, 80, 83

Maschenweite 39
mathematisches Pendel 8, 12, 51
Matrizengleichung 84

Taylor-Abgleich 42, 43
Taylorentwicklung 41

Temperatur 36

Thermodynamik 36

Trajektorien 15

Trennung der Verdnderlichen 22, 53
triviale Losung 18

Niherungsgleichung 41
Néherungswerte 39
n-dimensionaler Raum 56
Newtonsche Grundgleichung 7

Newtonsches Grundgesetz 12 Unitiit 21, 82
nicht einfach zusammenhéngend 33
nichtlineare Differentialgleichungen 13, 36, 49 Variation der Konstanten 31, 74, 91
nichttriviale Losung 18 Vektorrechnung 55
nullte Ableitung 11 verallgemeinerte Impulse 80
numerische Verfahren 38 — Koordinaten 80

. verbessertes Polygonzugverfahren 40
orthogonale Trajektorien 15 Verfahren, numerische 38

— von Picard-Lindelsf 21, 48, 83

partielle Differentialgleichung 9 — — Runge-Kutta 38
partikuldre Losung 29, 54, 90 Verflechtungsbilanz, dynamische 14

Pendel, mathematisches 8, 12, 51 Vielfachheit 57



104 Register

Wirme, spezifische latente 36
Wirmekapazitit, spezifische 36
Wirmelehre, Hauptsitze der 36
‘Wirmemenge 36

Widerstand 58

Wronskische Determinante 55

Zahl, komplexe 62

-, konjugiert komplexe 62

Z ung von Lo 10, 27
Zusatzbedingungen 17
Zustandsgleichung 36

Zweiter Hauptsatz der Warmelehre 36




