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1. Einführung

Der vorliegende Band enthält die für den Ingenieur und Naturwissenschaftler
wichtigsten Gebiete der komplexen Funktionen und konformen Abbildungen.

Die Theorie der komplexen Funktionen (Funktionentheorie) steht als Teilgebiet
der Mathematik in wechselseitigen Beziehungen zu fast allen Gebieten der Mathe-
matik und besitzt für viele theoretische sowie praktische Untersuchungen große
Bedeutung, Komplexe Funktionen und konforme Abbildungen treten in Vielen
praktischen Anwendungen der Mathematik auf und stellen für lngenieure und
Naturwissenschaftler Lmentbehrliche Hilfsmittel dar. Untersuchungen in der Strö-
mungslehre, der Elektrotechnik, der Regelungstechnik, der Elastizitätstheorie und
in anderen Gebieten sind heute ohne Anwendung der Funktionentheorie kaum mehr
denkbar.

Bedeutende Mathematiker der Vergangenheit, wie z. B. L. Euler (1707~1785),
J.-L. Lagrange (1736— 1813), C. F. Gauß (1777-1855), A.-L. Cauchy (1789-1857),
K. Weierstraß (1815-1897), B. Riemann (1826-1866) u. a. haben entscheidend zur

Entwicklung dieses Teilgebietes der Mathematik beigetragen.
Im Band 1 der vorliegenden Reihe wurden die komplexen Zahlen eingeführt, so

daß in diesem Band dazu nur eine kurze Ergänzung enthalten ist, Da vor allem lnge-
nieure und Naturwissenschaftler angesprochen werden sollen, wurde bei der Erarbei—
tung besonderer Wert auf Anschaulichkeit und praktische Beispiele gelegt. Es findet
sicher beim genannten Leserkreis Verständnis. wenn auch durch die notwendige
Beschränkung des Umfangs auf viele theoretische Untersuchungen verzichtet werden
mußte. Hierzu sei auf die im Anhang genannte Literatur verwiesen. Ziel des vorlie-
genden Bandes ist es, diejenigen Verfahren und Methoden der Funktionentheorie zu

vermitteln, die insbesondere für den angesprochenen Leserkreis von Bedeutung sind.
Vollständigkeit konnte dabei natürlich nicht angestrebt werden.

Der Leser wird feststellen, daß sich viele Formeln und Sätze, die bei der Betrach-
tung reeller Funktionen erhalten wurden, auf das Komplexe ausdehnen lassen und
daß Ergebnisse gewonnen werden, die uns weitere Zusammenhänge zwischen den
Funktionen vermitteln. Es ist sehr zu wünschen, daß neben den Mühen, die das
Studium der Funktionentheorie sicher erfordert, auch die Eleganz und Schönheit
funktionentheoretischer Methoden vom Leser erkannt und empfunden werden und
daß ihm die Funktionentheorie ein unentbehrliches Hilfsmittel in seiner Arbeit
wird.



2. Komplexe Zahlen

2.1. Grundbegriffe

Im Band l des Lehrwerkes wurden die wichtigsten Grundbegriffe über das Rech-
nen mit komplexen Zahlen gebracht. Diese Grundbegriffe werden im folgenden
vorausgesetzt.

Unter Berücksichtigung der imaginären Einheitj 1) mit der Definitionsgleichung

jz : —1 (2.1)

besitzt eine komplexe Zahl z die Form

z=a+jb:r(cosqI+jsin¢)=re5", (2.2)
,/ /

arithmeti- trigonometri- Exponential-
sche Form sche Form form

wobei a = Re (z) und b = lm (z) reelle Zahlen sind und für den Winkel q = arg z

das Intervall —7r < (p g n gelten soll. Für den Betrag der komplexen Zahl gilt

|z| = r = Ja’ + b2 = JE, (2.3)

wobei E = a — j b die konjugiert komplexe Zahl zu z = a + j l2 ist.
Da jede komplexe Zahl durch ein Paar reeller Zahlen (a, b) bestimmt wird, kann sie

in einer komplexen Zahlenebene, der sog. Gaußschen Zahlenebene, als Punkt oder als
gerichtete Strecke (vgl. Bild 2.1) dargestellt werden. Derartige gerichtete Strecken
in der komplexen Zahlenebene nennt man Zeiger. Häufig ist es auch üblich, den
komplexen Zahlen zweidimensionale Vektoren zuzuordnen und diese in der Zahlen-
ebene darzustellen.

imaginäre A M52

0 7 g W/,5 Bild 2.1. Zcigerdarstellung in der komplexen Ebene
A m55

Zur Umrechnung der komplexen Zahlen von der arithmetischen‘ in die trigono-
metrische Form und umgekehrt genügt bei Berücksichtigung der Vorzeichen von a

und b ein Quadrant. Aus einem Nomogramm. das man durch Ubereinanderlegen eines

‘) Anstelle von i (vgl. Bd. l) wirdj als imaginäre Einheit eingeführt. Diese Bezeichnung ist in der
Elektrotechnik üblich, um Verwechslungen mit der Stromstärke i (Momcntanwen) zu vermeiden.



2.1. Grundbegrifie 7

kartesischen und eines Polarkoordinatennetzes mit passenden Maßstäben (vgl.
Bild 2.2) erhält, werden der zu einem Punkt mit lRe (z)l = |al, |Im (z)| = lb| gehörige
Radius r und der Winkel q? abgelesen. Den Winkel qr = arg z berechnet man über

tang?) = b =>‘—arctan
a; (p-

o ||/
\

||/
\

N
1

7|

mit folgender Übersicht:

1. Quadrant | 2. Quadrant 3. Quadrant 4. Quadrant

(2-4)

a>0‚b>O a<0‚b>0 a<O,b<0 a>0‚b<0
argz=¢ argz=7:—r;3 argz argz=——q‘2

Bild 2.2. Nomogramm zur Umrechnung kom-
m plexer Zahlen

Wie in der Einleitung schon erwähnt wurde, spielen die komplexen Zahlen u. a.
in der Elektrotechnik eine besondere Rolle. Sowohl in der Nachrichtentechnik als
auch in der Starkstromtechnik und in anderen Disziplinen der Elektrotechnik lassen
sich viele Probleme in anschaulicher Weise mit Hilfe des Zeigerbildes lösen. Die
Anwendung der komplexen Zahlen für die Berechnung von Widerständen soll an
einem einfachen Beispiel gezeigt werden.



‘8 2. Komplexe Zahlen

Beispiel 2.1: Der komplexe Widerstand der in Bild 2.3 dargestellten Schaltung berechnet sich

(analog den Gesetzen der Gleichstromlehre) nach 8 = 81 + . Für 3, = (50 + j - 200) Q,
2 3

8; = (20 + j - 100)!) und 33 = (80 — j- 100)!) ist der komplexe Gesamtwiderstand in der arith-
metischen und in der Exponentialform anzugeben.

52

i;
i’ Bild 2.3. Schaltung komplexer Widerstände

Lösung: ‚

8283
3 = s + ————;

1 82 + 33
(20 + j - 100) (80 j-IOO)3/o=5o+j—2o0+g+
20+_l‘100+80—_]‘100

=50+j'200+ ll6+j'60,

3/Q =166 +j-260.

Wirkwiderstand 166 Q, Blindwiderstand 260 Q (induktiv).
Die Umrechnung in die Exponentialform kann mit Hilfe des Rechenstabes erfolgen. Diese Um-

rechnung beruht darauf, daß la}, lbl, rund ifi Größen im rechtwinkligen Dreieck (vgl, Bild 2.4)
sind.

Bild 2.4
Ia!

Im vorliegenden Beispiel sind la] = 166 und [bl = 260.
Wir erhalten r = 309 und, da ip = ö :57,5° ist, als Gesamtwiderstand in der Exponentialform:

3/£2 = 309 ei'57r5‘ (Scheinwiderstand 309 Q).

Da O < q: < rr gilt, hat der Gesamtwiderstand induktiven Charakter.
Für den Bereich 0 g (p < 5,7‘ ist beim Ablesen auf dem Rechenstab zu beachten, daß sowohl für

Slfltp als auch für tan (p die ST-Teilung zu wählen ist. Für diesen Bereich gilt tan (p < 717 , d. h.‚

a > b, und damit folgt r z a. Analog gilt für 84‚3° < (p g 90° tanap > l0, d.h. a < b und r z b.

2.2. Beträge. Ungleichungen

Der Betrag einer komplexen Zahl war in (2.3) erklärt worden. Beachten wir, daß

|e"‘Fl = = 1 gilt, dann folgt mit r, = lz,| und r; = I22]:

[Zizzl = I’) eiw”: em‘ = 7172 leW‘+w’)] = VH2»

|Z1| |Z2| : |"1eW‘l lrzejml = 7172-

Somit erhält man

lzizzl = |z1l|z2|- (25)



2.2. Beträge. Ungleichungen 9

Analog gilt

Z1

Z2
= :Z—'1—, Z2 =# O. (2.6)

221

Um einige für das Rechnen mit Beträgen komplexer Zahlen geltende Ungleichun-
gen herzuleiten, betrachten wir die Addition zweier Zeiger im Bild 2.5. Da in jedem

Ewig. Achse

”°1"”1‘”"'” Bild 2.5. Addition komplexer Zahlen

ebenen Dreieck eine Dreieckseite kleiner oder gleich. der Summe der anderen beiden
Dreieckseiten ist, folgt aus Bild 2.5 die Sogenannte Dreiecksungleichung

I21 + 221 ä 1211 + 1221- (2-7)

Durch mehrfache Anwendung dieser Formel ergibt sich

121+ 22 + + 2„| ä 1211 + 1221 + + 12‚.|-

Weiter folgt

1Z11=1Z1 — Z2 + Z21§1Z1 ‘ Z21'1'1Z21=1Z1 " Zz1§1Z11"1Z21-

Da auch 122 — z1| g |z2| — |z1| und lzl — z2| = |2; — 21| gelten, ergibt sich die
Ungleichung

121- 2211211211-12211- (2-8)

Daraus folgt wegen lzl + 22| = lzl — (—zz)| g [|z1| — [-221]

121 + 221 ä112r1-1221|- (2-9)

Aus der Dreiecksungleichung erhalten wir

131‘ Z21 =1Z1 +(‘Z2)1§1Z11+1"Z21s

121 - 221 ä 121| + 122|. (2-10)

Aus (2.3) folgt

IRe (2)1 g Izl und |Im (z)I g I21. (2.11)



I0 2. Komplexe Zahlen

Beispiel 2.2: Zu beweisen ist die Identität

l2, + 22l’ +lz1 — 22|’ = 202m3 +1221‘).

wobei z, ‚ z; beliebige komplexe Zahlen sind.
Lösung:

Mit (2.3) und z, i z; = i; i E2 gilt

lZi ‘l’ Zzlz + lZi " Z21 = (Z1 ‘l’ Z2) (1-1 + 52) + (Z1 — Z2)(51— 52)

= 2(Z1Z_1 ‘l’ Z252) = 2('Z1[2 + lZ2lz)- I

* Aufgabe 2.1: Von folgenden Ausdrücken sind die absoluten Beträge zu bilden:

a) (1 e j)(3 + 4J’)

<1+j>(—2 — 21>’

1

(R1 +jwL>(R2 +
_|wC

b) 8 =e (R1, R2, w,L,C reell).

R1+jwL+R;+.T
_]wC

2.3. Die Riemannsche Zahlenkugel

Bisher hatten wir die komplexen Zahlen in der Zahlenebene dargestellt. Ins-
besondere für die Betrachtung komplexer Zahlen mit sehr großem absoluten Betrag
erweist sich eine weitere Darstellungsmöglichkeit als vorteilhaft. B. Riemann schlug
als erster vor, durch stereographische Projektion die Zahlenebene umkehrbar ein-
deutig auf eine Kugel, die Sogenannte Zahlenkugel, abzubilden, Wir betrachten eine
Kugel vom Radius 1, deren Mittelpunkt mit dem Nullpunkt der Zahlenebene zusam-
menfiillt (vgl. Bild 2.6). Jeder Punkt P der Zahlenebene wird mit dem Pol N’ der

/V’(0,0,7)

Bild 246. Riemannsche Zahlenkugel

X. 5

Kugel verbunden, dadurch wird die Kugel eindeutig in einem Punkt P’ geschnitten.
Umgekehrt entspricht jedem Punkt P’ der Kugel, wenn wir zunächst N’ außer acht
lassen, eindeutig einem Punkt P der Zahlenebene. Die Zuordnungiist also eineindeutig.



2.3. Die Riemannsche Zahlenkugel ll

Dabei wird die untere Halbkugel auf das Innere des Einheitskreises der Zahlenebene
und die obere Halbkugel auf das Außere des Einheitskreises abgebildet. Wir verein-
baren noch, daß dem Punkt N’ (Nordpol) der Punkt z = v3 entsprechen soll. Dieser
Punkt unterscheidet sich in nichts von den anderen Punkten der Zahlenkugel. Damit
wird die Zahlenebene durch einen einzigen Punkt z = eo abgeschlossen. Die Zahlen-
ebene geht in die sog. „Vollebene“ oder auch ‚‚funktionentheoretische Ebene“
über. Ebenso wie der Nordpol der Riemannschen Zahlenkugel gegenüber den anderen
Punkten der Kugel nicht ausgezeichnet ist, ist auch der Punkt z = oo nicht gegenüber
den komplexen Zahlen ausgezeichnet. N

Dem Einheitskreis der Ebene entspricht der Aquator der Kugel, dem tiefsten Punkt
S’ (Südpol) der Kugel der Punkt z = .

Man sieht außerdem ohne weiteres, daß die Breitenkreise der Kugel in Kreise
der Ebene um den Nullpunkt und die Meridiane der Kugel in Geraden durch den
Nullpunkt übergehen. Verbinden wir N’ mit den Punkten einer Geraden g in der
Ebene, dann bilden N’ und g eine Schnittebene, die von der Kugel einen Kreis
abschneidet. Geraden der Ebene gehen also in Kreise durch N’ auf der Kugel über.
Es soll nun noch gezeigt werden, daß die betrachtete eineindeutige Abbildung der
Vollebene auf die Zahlenkugel winkeltreu. ist, d. h., zwei beliebige Kurven in der
Zahlenebene schneiden sich unter demselben Winkel wie die entsprechenden Bild-
kurven auf der Kugel und umgekehrt. Schneiden sich in der Ebene zwei Geraden g1

und g; im Punkt P unter dem Winkel (p, so schneiden sich die entsprechenden Bild-
kreise g, Lind g; auf der Kugel im Punkt P’ und natürlich auch in N’ unter dem
gleichen Winkel rp’ = (p, denn werden in N’ die Tangenten an die beiden Bildkreise
angelegt, dann verlaufen dieselben parallel zu g, und gg. da die Tangentialebene
der Kugel in N’ zur Ebene parallel verläuft (vgl. Bild 2.7).

Bild 2.7. Schnitt zweier Ebenen mit der Riemann-
sehen Zahlenkugel

Dajede Tangente in P an eine beliebige Kurve C bei der Abbildung auf die Kugel
in einen Kreis durch N’ übergeht, der die Bildkurve C’ in P’ berührt, folgt, daß zwei
Kurven C1’ und Cg aufder Kugel sich unter dem gleichen Winkel wie ihre entsprechen-
den Bilder C1 und C3 der Ebene schneiden.

Ohne Ben eis sei noch angegeben, daß die Abbildung der Vollebene auf die Zahlen-
kugel auch kreisverwandt ist, jedem Kreis auf der Zahlenkugel entspricht in der
Vollebene ebenfalls ein Kreis bzw. als Sonderfall eine Gerade (Kreis mit unendlich
großem Radius).
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2.4. Punktmengen

In 2.1. hatten wir gezeigt, daß die komplexen Zahlen als Punkte der Zahlenebene
oder als Punkte der Zahlenkugel gedeutet werden können. Durch Hinzunahme des
Punktes z = oo hatten wir die Zahlenebene zur Vollebene erweitert. Im folgenden
bezeichnen wir mit K die Menge der komplexen Zahlen und mit K die Menge der
Punkte der Vollebene, d. h. die Menge der komplexen Zahlen einschließlich z = oo.

Wir wollen nun einige Teilmengen betrachten. Zuerst soll die Teilmenge der kom-
plexen Zahlen, die der Beziehung |z| g d (d > 0, reell) genügt, geometrisch veran-

schaulicht werden. Da [z| die Entfernung des Punktes z vom Nullpunkt darstellt
(vgl. Bild 2.1), liegen alle Punkte z, die der Gleichung |z| = d genügen, auf einem
Kreis mit Radius d um den Nullpunkt (vgl. Bild 2.8). während lzf < a’ für alle im
Innern des Kreises liegenden Punkte gilt.

/mag. A chse

Bild 2.8. Punktmenge ‚lzl g d

Bei der Subtraktion der beiden komplexen Zahlen z, und z, kann man leicht aus
dem Bild 2.9 ablesen, daß |z1 — 23| gleich dem Abstand der beiden Punkte z, und z;
ist. Ist zo ein Punkt der Zahlenebene und a’ > 0, reell, dann genügen diejenigen
Punkte der Zahlenebene‚ die von zo den Abstand d haben, der Gleichung

[z — 20| : a’. (2.12)

/mag. A am’

Bild 2.9. Subtraktion komplexer Zahlen
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(2.12) stellt somit die Gleichung eines Kreises um zu mit Radius d dar (vgl. Bild 2.10).
Die Punkte im Innern des Kreises genügen der Ungleichung

lz — 20| < d. (2.13)

imng. /1:/vse

»

0 7 X0 “fee//E Bild 2.10. Punktmenge [z -— Zol ä d

A L‘/75.?

Wie einleitend im vorliegenden Band schon betont wurde, können viele Erklärungen,
Formeln und Sätze aus dem Reellen in das Komplexe formal übertragen werden.
Analog den Betrachtungen im Reellen sollen nun einige BegrilTe eingeführt werden
(vgl. u. a. Band 4).

1. Eine Menge M g K von komplexen Zahlen nennt man beschränkt, wenn für
jedes z e M und k > 0, reel],

121 < k (2.14)
gilt.

Geometrisch bedeutet dies, dal3 alle die komplexen Zahlen zur genannten
beschränkten Menge gehören, die im Innern des Kreises mit Radius k um den
Nullpunkt liegen.

N. Unter einer kreisförmigen s-Umgebung eines Punktes 20 der Zahlenebene verstehen
wir alle diejenigen Punkte, die der Bedingung

[z — 20| < e (2.15)

genügen (vgl. Bild 2.11). Der Kreis um Z0 mit Radius e selbst gehört dabei nicht

innig. Athse

Ü 7 hW/E Bild 2.11. Kreisförmige e-Umgebung von :0

A [me
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mit zur 8- Umgebung und wurde deshalb gestrichelt gezeichnet.
Die punktierte a-Umgebung van zu wird durch .

O< [z-zol <5 (2.16)

charakterisiert. ‚

Hier gehören also die Punkte auf der Peripherie des Kreises um zo mit Radius e

und der Punkt zo selbst nicht mit zur punktierten e-Umgebung von zo.

Für

zo =o<+jf3 und z = a +jb (ac,/5’,a,bree11)
stellt

Ia — ocl < e und |b — 13] < ö (5,6 > 0, reeII)

eine Rechteckumgebung von 20 dar (vgl. Bild 2.12).

(2.17)

i770]. Achse

Z» Bild 2.12. Rechteckumgebung von 2.,
real/e

A m52

Wir wollen nun noch den Begriff der (Kreis—) Umgebung des unendlich fernen
Punktes einführen. Unter einer (Kreis—) Umgebung des unendlich fernen Punktes
z = 0o Verstehen wir die Gesamtheit der Punkte z, für die die Ungleichung

l . . . .

|z[ > Fgilt. Die Umgebung des unendlich fernen Punktes können wir uns auf

der Zahlenkugel als Kiigelkappe, deren Mittelpunkt der Nordpol ist, vorstellen.

. Im Band 1, 10.8., wurde der Begrifl” Häufungspunkt eingeführt. Analog definie-
ren wir im Komplexen:

Ein Punkt C heißt Häufungspunkt der Menge M, wenn in jeder e-Umgebuizg
von ihm unendlich viele Punkte der Menge M liegen.

Das heißt, anders ausgedrückt, daß für unendlich viele natürliche Zahlen n

bei e > 0 die Ungleichung

lz„ — i! < e (2.18)

gilt. Die Häufungspunkte müssen dabei, wie im Reellen auch, nicht unbedingt
in M selbst liegen.

. Liegt in einer e-Umgebung eines Punktes :0 der Menge M kein weiterer Punkt von
M, so heißt dieser Punkt isoliert.

Ein Punkt zo von M heißt innerer Punkt von M, wenn eine e-Umgebung von Z0

ganz zu M gehört.
Ein Punkt zo heißt Randpunkt von M. wenn jede e-Umgebung von 20 mindestens ei-

nen Punkt enthält, der zu M gehört, und mindestens einen. der nicht zu M gehört.
Die Menge aller Randpunkte von M heißt Rand van M.



Z.4. Punktmengen l5

5. Gehören alle Randpunkte einer Menge M zu M, dann heißt M- ‘e schlossen, be-
steht sie nur aus inneren Punkten, dann heißt M offen.

6. Eine Punktmenge M heißt zusammenhängend, wenn je zwei ihrer Punkte durch
einen P0/ygonzug mit nur endlich vielen Eckpunkten verbunden werden können,
der ganz in M verläuft.

An einigen Beispielen sollen die eben eingeführten Begriffe erläutert werden:

Beispiel 2.3: Untersuchen Sie die nachstehend aufgeführten Mengen auf Häufungspunke, isolierte
Punkte, innere Punkte und Randpunkte. Geben Sie an, ob die beta ' l Mengen beschränkt,
abgeschlossen oder offen sind.

a) M: {g =71l—[neN An 4: 0 }‚ b) M: {z]Re (z),Im(z) ganzzahlig}, c) M = {z]|z\ < l}.

Lösung:

a)z=€ = Oflfiufungspunkt. Alle Punkte sind isoliert und Randpunkte. M ist beschränkt

([21 =-1n-ä1).

b) Kein Häufungspunkt. Alle Punkte sind isoliert und Randpunkte. M ist nicht beschränkt (vgl.
Bild 2.13).

‚i . 1,. .».,, „J ‚ ‚nk, -

„Ü Q ‘ l

.._.4>_o—o—or%A)~,j» <f«>—<» ..

e »—¢—0-4} vo—-¢—‘ -A0 #~<‘x »—<‘s—fi

—~—o—<x—<ro+-< Jo. o #4 ‚o «

W 444 ‚e474 »o g O’°’ «>—~‘

v o—<»o o «>4 o——o~4>—{?.fi> »

*‘*0—O—0—O~O'* -o 4»-0-9 o o

——or 0/0 e o
‘_"‘_. ‘ff Bild 2.13. Menge isolierter Punkte

c) Alle Punkte (der Einheitskreisfiäche) mit 12] g 1 sind Häufungspunkte. M besteht nur aus inneren
Punkten. Für Randpunkte gilt [zl = I (gehören nicht zu M). M ist offen und beschränkt (izl < 1)

(vgl. Bild 2.14).

/mag. Amy

NEE//'5'

A ms:

Bild 2.14. Offene und beschränkte Punktmenge izl < 1

An den Beispielen können wir erkennen, daß z. B. in b) die Menge M nicht
beschränkt ist und keinen Häufungspunkt besitzt, während in den anderen beiden
Beispielen beschränkte Mengen vorliegen und Häufungspunkte auftreten. Eine nicht-
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beschränkte Menge kann also ohne Häufungspunkte sein. Jedoch gilt für beschränkte
unendliche Punktmengen der grundlegende

Satz 2.1 (Satz von Bolzano-Weierstraß): Jede beschränkte unendliche Punktmenge
besitzt wenigstens einen Häufungxpunkt.

Der Beweis dieses Satzes kann über den Bolzano-Weierstraßschen Satz im Reellen
(vgl. [9]) oder nach dem Prinzip ineinandergeschachtelter Rechtecke (vgl. [l2],
Bd. l) erfolgen.

Den Begriff des Häufungspunktes einer beschränkten unendlichen Folge {Zn}
komplexer Zahlen erklärt man folgendermaßen:

In jeder s-Umgebung eines l-läufungspunktes liegen unendlich viele Zahlen der
Folge {z„}. Der Satz von Bolzano-Weierstraß besagt dann, daß jede beschränkte
unendliche Zahlenfolge mindestens einen Häufungspunkt besitzt. Mit diesen Über-
legungen läßt sich der Begriff des Grenzwertes einer komplexen Zahlenfolge definie-
ren.

Definition 2.1: Eine komplexe Zahly = x + j/ä’ heißt Grenzwert der Zahlenfolge {Zn},
wennfiir jede beliebig klein wählbare Zahl e > 0 die Ungleichung

|z„ — 7| < e für alle n g N(s),
also für hinreichend großes n, erfüllt ist.

Man schreib! dafür
lim 2„ = y oder z,,ay f£irn—> 7J (2.19)
400

und bezeichnet diesen Sachverhalt als Konvergenz der Zahlenfolge {z„} gegen den
Grenzwerty.

Unter Bezugnahme auf diesen Grenzwertbegriff können die im Reellen gültigen
Sätze über Grenzwerte sinnentsprechend ins Komplexe übertragen werden.

Eine wichtige Konvergenzaussage über komplexe Zahlenfolgen erhält man über
den Satz 2,2.

Satz 2.2 (Cauchysches Konvergenzkriterium): Die notwendige und hinreichende Be-
dingung für die Konvergenz der Zahlenfolge {z„} lautet:

Fürjede beliebig kleine Zahl e > 0 existiert eine natürliche Zahl N = N(e/2) derart,
daßfiir alle n g N(£/2) und m > 0 die Ungleichung

[zum '" Zn‘ < 5

erfüllt ist.
(2.20)

Beweis: Falls lim z„ 2 7 existiert. gibt es eine natürliche Zahl N = N(r/2), so daß 11„ — 7' < 5/2
/X47?/.

für n g N(r/2) gilt. Mit der Dreiecksungleichung folgt

‚In-m: - Zn: = 2..-... - 7’ e (2.. e 7) ä Zn+m r 7 + 1.2,. - 7-,
also

,z„+‚„ — z„l < 8/2 + e/2 2 s für n g }V(t:‚i2).
Damit ist die Bedingung (2.20) notwendig, Zum Nachweis, daß (2.20) auch hinreichend ist, schließen
wir zunächst aus dcr erfüllten Bedingung (2.20) auf die Beschränkthcit der Folge {z„)‚ denn alle
Punkte von {z„} müssen wegen (2.20) vom Punkt 2„- an im Inneren des Kreises mit dem Radius s’ um

den Mittelpunkt 2N liegen. Damit besitzt {z„) nach dem Satz von Bolzano-Weierstraß mindestens
einen Häufungspunkt 7,.
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Die Annahme eines weiteren Häufungspunktes -/2 # 7, mit einem Abstand lyl — 721 > 2+-

(s: Schranke aus (2.20)) von 71 führt zu einem Widerspruch. Wegen (2.20) können sich außerhalb des

Kreises izum — z.,[ < E nur endlich viele Punkte der Folge {z,,} befinden. Daher müssen die beiden
Häufungspunkte 7, .72 im Inneren oder höchstens auf dem Rand dieses Kreises liegen, womitder
angenommene Abstand l7, ~ ~/21 > 2e nicht haltbar ist. Die Folge {z„} besitzt damit nur einen Hau-
fungspunkt. l

Eine nichtbeschränkte unendliche Folge {z„} enthält Zahlen. die sich außerhalb
eines Kreises um den Nullpunkt mit beliebig großem Radius befinden. Eine derartige
Zahlenfolge braucht keinen Häufungspunkt zu besitzen.

Falls sich zu jeder beliebig großen Zahl p > O eine natürliche Zahl N(p) angeben
läßt, so daß lz„| > p für n > N(p) gilt, dann vereinbaren wir, daß die Zahlenfolge
{z„} gegen unendlich strebt, und schreiben

lim 2,, = c7; bzw.
n-voc

z„—>w fürn-vm.

Beispiel 2.4: Man untersuche die Folge

l
___ l3, ‚m,n = 1‚2‚3, = 44

-.

auf Konvergenz!
I

n + m

folgt dann |z„.„‚ —- z„l < g < a. Die Folge ist also konvergent.

1 2 2
Lösung: — z..| s lz„+.„l + lz„l = + 7 < 7 (m > o). Fern > N(e) z 7

Für das praktische Rechnen ist die Anwendung des folgenden Satzes von Bedeu-
tung:

Satz 2.3: Eine Folge komplexer Zahlen {Zn} = {an + jb,,} strebt dann und nur dann
gegen den Grenzwert y = a + j ß, M'€l’lI1 die reellen Zahlenfolgen {a„} und {b„} gegen
die Grenzwerte a bzw. ß streben.

Der Beweis kann auf die Untersuchung zweier reeller Folgen {m} und [b„’‚- zurück-
geführt werden.

Zahlenfolgen, die nicht konvergieren, nennt man wie im Reellen divergent. Gilt
lim 2„ = 0, dann liegt eine Nullfolge vor.
nwoo

2.5. Kurven, Bereiche, Gebiete in der komplexen Zahlenebene

2.5.1. Kurven

Im Beispiel 2.1 wurde mit Hilfe komplexer Zahlen der Gesamtwiderstand eines
einfachen Netzwerkes berechnet und dabei vorausgesetzt, daß die einzelnen Wider-
stände konstant sind. In der Praxis treten aber in vielen Fällen z. B. Änderungen
der Betriebsfrequenzen auf, so daß dadurch Widerstands—, Strom— und Spannungs-
änderungen hervorgerufen werden, wie man leicht bei Betrachtung der entsprechen-

2 {‘:rem~l;'K2nlnv1r, Komplexe Funktionen

S.2.3
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den Formeln erkennen kann. Ändert sich beispielsweise in der im Bild 2.15 dar-

R L

°——4:-‘-—1—*> Bild 2.15. Reihenschaltung von Widerständen

gestellten Reihenschaltung die Frequenz, so können die dadurch hervorgerufenen
Anderungen des Widerstandszeigers

3(10) = R + j coL und R‚L >0‚ reell, (2.21)

geometrisch veranschaulicht werden (vgl. Bild 2.16). Da in (2.21) der Realteil kon-
stant ist, wandert die Zeigerspitze auf einer Geraden parallel zur imaginären Achse.

Man kann sich leicht vorstellen, daß z. B. der Widerstandszeiger eines komplizier-
teren Netzwerkes keine Gerade beschreibt, da das Verhalten des Widerstandes einer
solchen Schaltung dann nicht mehr durch solch eine einfache Beziehung wie in (2.21)
beschrieben werden kann. Derartige Kurven in der Zahlenebene bezeichnet man in
der Elektrotechnik als „Ortskurven“.

0§w<oo

Jy
J2 i:

z(t) um wir)
52

51

3 E E 2 X
I2 .0

Bild 2.16. Widerstandsortskurve Bild 2.17. Bild einer stetigen Kurve
einer Reihenschaltung

Definition 2.2: Sind x(t) und y(t) stetige reelle Funktionen des Parameters t, s0

heißt die Menge der Punkte, die der Gleichung

z = z(t) = x(t) + jy(t) = r(t) e5‘V(’3, te [o<,/3], (2.22)

genügen, eine stetige Kurve in der Vallebene (vgl. Bild 2.17). Wird dabei vorausgesetzt,
daß zwei verschiedenen Werten des Parameters t (mit Ausnahme von t = a und t = ß)
stets zwei verschiedene Punkte der Kurve entsprechen, dann liegt eine Jordansche
Kurve vor. Gilt insbesondere z(rx) = 2(6), dann ist die Kurve geschlossen.

Der Punkt z einer stetigen Kurve durchläuft also ausgehend vom Anfangspunkt
z(oc) die Kurve bis zum Endpunkt z(ß); dadurch wird eine positive Richtung auf der
Kurve bestimmt. Ist die Kurve geschlossen, so sei festgelegt, daß bei positivem
Durchlaufen der Kurve die Innenseite der Kurve zur Linken liegt.

Im Bild 2.18 a, b sind stetige Kurven abgebildet. Bild 2.18 a stellt die Gerade

z(t) = x(t) + j c, c > 0, reell, te(—oo, +00), (2.23)

und Bild 2.18 b den Kreis ‚

z(t) = ro (cos t + j sin t) = ro e“, te [0, 27:] (2.24)
dar.
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fmag. Arm:

z=r„ e“?

fmagmthse

2=X(f) +jc

T, rar/l?
A J Achse

‚L. ,

7 reelle At/755' J

Bild 2.18 a. Abbildung der Geraden Bild 2.18 b. Abbildung eines Kreises z = ro e”
: = xrt) + j c

Die allgemeine Gleichung einer Geraden in Parameterform kann leicht angegeben
werden, wenn man sich an die vektorielle Darstellung einer Geraden erinnert
[Band 13, 2.3.7.]. Nach Bild 2.19 gilt für g, wenn z„ 22 konstante komplexe Zahlen
und t ein reeller Parameter sind, die Gleichung ä

z : z, + t(2z — 21). (2.25)

mag. Aam

2,7,
Bild 2.19

res//EA:/759 Abbildung der Geraden z = 21 + t(22 — 2,)

z; — 21 liegt parallel zu g, das gilt auch für t(z; — 21), da durch Multiplikation
mit t die Richtung von z; — 21 nicht geändert wird.

Beispiel 2.5: Für den im Bild 2.20 dargestellten Kreis mit Mittelpunkt zo ist die Gleichung in Para-
meterform anzugeben.

fmag. Achse

_l——: ——>
res//9
A c/7.59

Bild 2.20. Abbildung des Kreises 2 = 20 + ro e!“

Lösung: Für den Kreis k’ gilt (2.24). Verschiebt man k’ so, daß er mit k zusammenfällt, d. h.
addiert man in (2.24) auf der rechten Seite 20, dann ergibt sich für k die Gleichung

2(1) = 20 + ro (cost + jsin t) = 20 + ro e”, te [0, 27v] (2-25)

oder V

2(1) = X0 + n, cosl + j (yo + n, sin x). (2.27)

2X
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In (2.22) sind x(t) und y(t) stetige reelle Funktionen. Sind beide Funktionen auf
einem gemeinsamen Intervall (a, ß) definiert, dann bezeichnet man (2.22) als kom-
plexe Funktion z einer reellen Variablen t. Analog zum Reellen werden die Begriffe
Grenzwert, Ableitung und Integral definiert. Mit z(t) = .\*(t) +jy(r) und reellen
a, b. c wird erklärt:

lim z(t) = lim x(t) + j lim y(1). (2.28)

am : “ff,” : xm + wir). (2.29)

A|‘:(t) dr z _lx(r)d1 + j ‘|‘y(f) dz, (2.30)

f’ ." .”

_| z(t) dz = _| x(t) dz + j ‘l )'(l) dr. (2.31)

Definition 2.3: Die durch (2.22) festgelegte Kurve heißt glattes Kurvenstück‚ wenn

(2.22) doppelpunklfrei und nicht geschlossen ist und irenn die Ableitungen ‚'v(t) und
}'(t) für alle taus [zx,{3] stetig und in keinem Punkt dieser Intervalls zugleich null
sind. Unter einem Weg verstehen wir eine aus endlich vielen glatten Kurvenstiieken
zusammengesetzte stetige Kurve.

= Aufgabe 2,2: Welcher Wegwird durch a) 4 : t + j(t — 3). I g I g 4, b) z : -2 +j + 3 cost
3:

+ 3j sin t. 0 g t g T beschrieben? Gcben Sie Skizzen an!

Aufgabe 2.3: Für die im Bild 2.2l dargestellten Wege sind die Gleichungen in Parameterform
aufzustellen.

5 Hd")

Bild 2.21. Abbildung von Wegen

2.5.2. Bereiche und Gebiete

Definition 2.4: Jede ebene Punktmenge G, die nur aus inneren Punkten besteht und
zusammenhängend ist, nennt man Gebiet. Nimmt man die Randpunkte von G zur
Punktmenge G hinzu, dann erhält man ein abgeschlossenes Gebiet oder einen Bereich.

An einigen Beispielen sollen diese Begriffe erläutert werden. Während |zl < l ein
beschränktes Gebiet (vgl. Bild 2.14) und |z — zo| g d ein beschränktes abgeschlos-
senes Gebiet (vgl. Bild 2.10) darstellen, wird z. B. durch Re (z) > 1 ein unbeschränk-
tes Gebiet angegeben (vgl. Bild 2.22).
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Bild 2.22. Unbeschränktes Gebiet Re (z) > 1

Man unterscheidet zwischen einfach und mehrfach zusammenhängenden Gebie-
ten. Ein n-fach zusammenhängendes Gebiet ist durch n geschlossene Ränder
bestimmt (vgl. Band 4). Die Punktmenge G im Bild 2.23 ist ein einfach zusammen-
hängendes und beschränktes Gebiet, während G im Bild 2.24 ein dreifach zusammen-
hängendes abgeschlossenes Gebiet darstellt, da drei geschlossene Ränder cl, c2, c3

vorhanden sind. Man beachte, daß nicht jede Punktmenge der Vollebene ein Gebiet

(J
fm

ag
A

rm
!

/'/
na

g.
A

v/
75

5

FEE//E‘ Amme ,-gg//Mg,~,5g

Bild 2.23. Einfach zusammen- Bild 2.24. Dreifach zusammenhängendes
hängendes Gebiet Gebiet

bzw. ein abgeschlossenes Gebiet (Bereich) sein muß. So ist z. B. 1 < |z — 20l g 2
weder abgeschlossen noch olfen, also nach Definition 2.4 kein Gebiet (vgl. Bild 2.25).

Die Gesamtheit aller Randpunkte eines Gebietes G bezeichnet man als Rand von G.
ln der Vollebene können wir auch nichtbeschräitkte Gebiete betrachten, die den
unendlich fernen Punkt als inneren Punkt oder als Randpunkt besitzen. Der Punkt
z = so bildet mit seiner (Kreis-) Umgebung ein einfach zusammenhängendes Ge-
biet, die Umgebung des unendlich fernen Punktes (ohne z = 7J) ist zweifach zu-

sammenhängend.

„um, Am” Bild 2.25. Ebene Punktmenge
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Beispiel 2.6:{Welche Punktmengen werden durch a) |z — j| g 4 A |z — 2 —- 2j| g 1,

b) Iz—1+jf-2I g 3 A Iarg(z— 1 +1"-2)! §r:/4 v 1<Re(z)<2 /\ |Im (z +j-2)|
< 3, c) [z — 1| < |z| beschrieben?

Lösung: a) Jz —— (2 + 2j)| = 1, Kreis um 2„ = 2 + 2j mit Radius 1. [z — jl = 4,
Kreis um zo = j mit Radius 4. Das Gebiet G ist abgeschlossen und zweifach zusam-
menhängend (vgl. Bild 2.26).

/mag. Achse

Bild 2.26
Zweifach zusammenhängendes abgeschlossenes Gebiet

b) B={z:[|z— l +j-2{§3 /\ |arg(z—1+j'2)|§ n/4]v[1<Re(z) <2
/\ [Im (z + j - 2)] < 3]}. Hinweis: /\ logisches „und“, v logisches „oder“. B wurde
im Bild 2.27 schraffiert dargestellt.

imay. Arm-e

Bild 2.27. Ebene Punktmenge Bild 2.28. Ebene Punktlnenge

c) {z — 1| < lz|. Nach (2.3) gilt |zl = J7, also folgt

\/(z——l)(z—l)< z2=>zi—E—z+1<zE=>—2.\‘+l<0
=> x > ä-

(vgl. Bild 2.28).

Beispiel 2. 7: Durch welche Gleichung bzw. Ungleichung werden alle Punkte der Zahlenebene mit
Ausnahme der Punkte auf der negativen reellen Achse (einschließlich Nullpunkt) erfaßt‘!

Lösung: Die negative reelle Achse kann durch arg z = n: (z ä: 0) angegeben werden. Somit gilt
für die Menge der Punkte z =l= 0 der Zahlenebene, die nicht auf der negativen reellen Achse liegen,

—7E< argz<:.
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Es liegt ein einfach zusammenhängendes Gebiet G vor (vgl. Bild 2.29).

Bild 2.29. Einfach zusammenhängendes Gebiet

Aufgabe 2.4: Welche Punktmengen werden durch

a) ß! < Im (z) < ß, (O < ß, < ßz, reell), b) lz + j[ < 4, wobei l < Re (z) < 2 ausgeschlossen
wird, c) |1 — Zzl g |1 + zl beschrieben?

Aufgabe 2.5: Die im Bild 230a, b, c dargestellten schraffierten Punktmengen sind durch Glei- a:

chungen bzw, Ungleichungen zu erfassen.

Aufgabe 2.6: Welches Gebiet G wird durch Re (22) g a (a # 0, reell) beschrieben? ‚z.

imayflmse /‘mag. Acne . 57
/may Acme /_ ;

Bild 2.30a, b, c. Ebene Punktmengen
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3. Funktionen einer komplexen Veränderlichen

3.1. Definition und geometrische Veranschaulichung

Im Band 1, 8.4., wurde jede eindeutige Abbildung als Funktion erklärt.

Definition 3.1: Unter einer komplexen Funktion einer komplexen Veränderlichen

verstehen wir eine eindeutige Abbildung aus einer Teilmenge D von K in eine Teil-
menge W ton K und bezeichnen sie mit

w = f(z).

z heißt unabhängige und w abhängige Veränderlic/ie. Die Menge D der Original-
pnnkre bezeichnen wir als Definitionsbereich und die Menge W der Bildpunkte als
Wertevorrat der komplexen Funktion f(z).

(3.1)

Häufig werden komplexe Funktionen einer komplexen Veränderlichen einfach
„komplexe Funktionen“ oder „Funktionen einer komplexen Veränderlichen“
genannt. lm Reellen wurden auch reelle Funktionen einer Veränderlichen einfach
als reelle Funktionen bezeichnet. Bei einer komplexen Funktion wird also jedem
reellen Zahlenpaar (x, y), für das z = x + jy zu D gehört, eindeutig ein reelles
Zahlenpaar (u, v) mit w = u + jv e W zugeordnet. Eine eineindeutige oder um-

kehrbar eindeutige komplexe Funktion liegt vor, wenn auch jedem Wert w nur ein
Wert z entspricht.

In w = u + j v wurde eine Trennung in Real< und Imaginärteil vorgenommen.
u und v sind dabei reelle Funktionen der beiden reellen Veränderlichen x und y,
also

u(x‚y)‚ v = über).
so daß

f(Z) =f(X +15‘) = M(X=y) + J'L'(X:)‘) (3-2)E II

ist.

Beispiel 3.1: Von folgenden komplexen Funktionen sind Real- und Imaginärteil anzugeben:

l+z ‘Z!
a) w=1~z, b) w=:2_l.

Lösungza)

I+x+jy [1+x+jy][1—x+Jy] 1—x2~y2+j-2y_
w: 2 =

1—x—jy (1—x)2+y2 (l—x)2+y2

1—.\*2-y2 2y
u=——T, =—?-T.

<1—x)2+y-’ <1—x>2+y-
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lzl lzl lzl
h v: = =

l “ zur <x+jy)’—1 (x2—y2—I>+j-2x,v

_ ‘Z5 [062 ‘r ‚V2 —1)—j'2X,V]
(x2 — ‚v2 — 1)’ + 4x2y2

‚

u 1zl(x’ — yz — i) u _ -2xylzl
(x2 __ yz _1)2 + 4x2y2 ’ _ (x2 _ yz _1)2 + 4x2y2 ‘

Es sei besonders darauf hingewiesen, dal3 eine Funktion nicht durch eine Formel
gegeben sein muß. Wichtig ist allein, daßjedem Wert z aus D ein w aus Weindeutig
zugeordnet ist. Die Funktion kann also auch in Worten oder grafisch erklärt sein.

Die geometrische Veranschaulichung komplexer Funktionen bereitet zunächst
Schwierigkeiten, da bei einer komplexen Funktion zwei unabhängige (x, y)
und zwei abhängige (u, u) reelle Veränderliche auftreten. Die am häufigsten benutzte
Form für die geometrische Darstellung einer komplexen Funktion ist die Dar-
stellung in zwei Vollebenen. Jedem Punkt z der z-Ebene aus dem Definitions-
bereich D wird ein Punkt w der w-Ebene aus dem Wertevorrat W zugeordnet (vgl.
Bild 3.1). In einem Beispiel soll die Abbildung demonstriert werden. Einander

Bild 3,1. Abbildung w =f(z)

entsprechende Punkte werden dabei mit gleichen Indizes bezeichnet. Die Abbildung
wird anschaulicher, wenn man nicht einzelne Punkte, sondern bestimmte Kurven
und Gebiete betrachtet. Ist '

z(t) = x(t) + jy(t) mit o: g t g [3

die Parameterdarstellung einer stetigen Kurve C in der z-Ebene, dann erhält man
die Bildkurve C’ in der w-Ebene durch Einsetzen von z(t) in (3.2):

W =f[Z(t)] =f[x(t) +jy(t)] = u[X(!),y(t)] +jv[X(t),y(t)],oc ä t ä ß- (3-3)

Auch durch Abbildung ganzer Kurvennetze gewinnt man gute Vorstellungen.
7!7:1; I1 _ _ _ _.

Beispiel 3.2: Bilden Sie die Punkte z; = 7 e ‚z, = e 5 und z3 = 7e j E der z-Ebene durch die
„ 1

Funktion w = 7 (z+ 0) aufdie w-Ebene ab (Bild 3.2a). Stellen Sie fest, welche Gebiete der w-Ebene

den im Bild 3.321 gekennzeichneten Gebieten entsprechen. In welche Kurve geht der orientierte Kreis
z(t) = re” (r > l), 0 g r 5 Zn durch die gegebene Funktion in der w-Ebene über (Bild 14a)?
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Lösung:
l 1

z = r, e“”=, w = — = ——-e‘”’- = Re“”w .

z r,
Für die einzelnen Punkte folgt:

1 ‚ _ L 2 _w‚=—=2e’4, w‚=e'6‚ w3=-5-35“
Z1

1 l -

(vgl. Bild 3.2b). Da |zl = r, = 7| = I und yaw = —qa_, gelten, werden alle Punkte außerhalb (inner-

halb) des Einheitskreises der z-Ebene in der w-Ebene innerhalb (außerhalb) des Einheitskreises

jv

W3 ya W7

4|‘q u

w - [Dene

Bild 3.2b. w»Ebene

B
o
o
n
‘

\ _/
wvfl/en:

Bild 3.4a. Kreis in der z-Ebene Bild 3.4 b. Kreis in der w-iibene
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abgebildet. Der Einheitskreis wird in sich selbst abgebildet, ändert aber seine Orientierung (Bild 3.3 b).
Für die Abbildung des Kreises k folgt:

1 .

w(t) =—1—=%= -6” (W: -t‚.0äwä —27r).
z(I)‘ re r

Es liegt also ein Kreis k’ mit dem Radius -:- um den Nullpunkt vor. k’ ist entgegengesetzt zu k orien-

tiert (Bild 3.4 b). Der gegebene Kreis k der z-Ebene geht in den Kreis k’ der w-Ebene über.

Wir werden in 6.1.2. zeigen, daß jeder Kreis der z-Ebene durch die Funktion w : éifl einen

Kreis der w-Ebene abgebildet wird. Durch die Einführung des unendlich fernen Punktes haben wir
_ 1

die Möglichkeit, die ganze Vollebene vermittels der Funktion w = 7 abzubilden. Wir ordnen dem

Punkt z = 0 der z-Ebene den unendlich fernen Punkt w = o0 der w-Ebene und dem Punkt w= O der
w-Ebene den unendlich fernen Punkt z : oo der z-Ebene zu. Bei der Anwendung der Abbildung

1

w = : in der Elektrotechnik werden wir mit Vorteil gerade auch diese unendlich fernen Punkte mit

benutzen.

Weitere Formen der geometrischen Veranschaulichung einer komplexen Funktion
w = f(:)‚ ZED, im dreidimensionalen Raum gewinnt man durch folgende Über-
legung. Wir betrachten im R3 lf(z)| = Jul + v’ als Funktion der beiden Variablen
x und y. Variiert z = x + jy in D, dann wird durch die Koordinaten x, y und |f(z)|
eine Fläche, die sogenannte „Betragsfiäche“ beschrieben. Trägt man über dem Punkt
z = x + D’ nicht ]f(z)l, sondern |f(z)|2 auf, so entsteht die Betragsquadratfiäche,
die nach Jensen auch „analytische Landschaft“ genannt wird. Bei diesen Darstel-
lungsarten gehen gewisse Eigenschaften der Funktionen verloren. Man kann den
Informationsgehalt dieser Betragsfiächen Z. B. dadurch erhöhen, dal3 auf der Fläche
Kurven, sog. „Linien konstanten Arguments“, eingezeichnet werden, also Kurven,
auf denen das Argument der komplexen Funktion konstante Werte besitzt. Die

Funktion w =—: ist im Bild 3.5 als analytische Landschaft dargestellt. Weitere

Beispiele findet man u. a. in [8].

1

Bild 3.5. Analytische Landschaft der Funktion w = —_—
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Aufgabe 341: Geben Sie Real- und Imaginärteil der komplexen Funktion w : an!
z — lzf

Aufgabe 3.2: Gegeben ist die Funktion w = z’, 2e D. In welche Kurven der w-Ebene gehen
die im Bild 3.6 dargestellte Geradenschar und der Halbkreis k (0 g t < r) der :-Ebene über’? Wel-
ches Bild ergibt sich aus der reellen Achse der z-Ebene in der w-Ebene?

Jr

Bild 3.6. z-Ebene

3.2. Grenzwert, Stetigkeit

Wir hatten mehrfach betont, daß sich viele Formeln und Sätze, die bei der Betrach-
tung reeller Funktionen gewonnen werden, auf das Komplexe ausdehnen lassen. Es
sei jedoch darauf hingewiesen, daß wir uns bei Betrachtungen im Komplexen von
der anschaulichen Darstellung reeller Funktionen durch eine Kurve freimachen
müssen, da eine komplexe Funktion im allgemeinen nicht durch eine Kurve ver-
anschaulicht werden kann. So ist es also auch nicht möglich, z. B. bei dem Begriff
Stetigkeit, die anschauliche Beschreibung aus dem Reellen zu übertragen. Formal
sind die folgenden Definitionen analog denen im Reellen.

Definition 3.2: Die komplexe Funktion w = f(z) sei mindestens in einer punktierten
Umgebung von zo definiert. w = f(z) strebt fiir z —> zo gegen den Grenzwert g, wenn

für jede Zahle > 0 eine Zahl 6(5) > 0 derart existiert, daß

lf(z) - 8| < 8

für alle z # 20 erfüllt ist, für die Iz — 20| < 6(5) gilt. Man schreibt dann

lim f(z) z g.
„Z0

Mit Hilfe des (Kreis-) Umgebungsbegriffes läßt sich die Definition des Grenz-
wertes auch auf den Fall ausdehnen, daß zo oder g oder beide in unendlich fernen
Punkten liegen. Wir treffen folgende Festlegung: Eine Funktionf(z) besitzt an einer
Stelle zo den Wert 0o, wenn limf(z) = oo gilt. Ferner ordnen wir einer Funktionf(z)

H;

für z = oo den Grenzwert limfU(z) zu, falls dieser Grenzwert existiert.
zaoo

Zum Nachweis des Grenzwertes einer komplexen Funktion kann man mit Vorteil
folgenden Satz anwenden, der ohne Beweis angegeben wird.

Satz 3.1: w = f(z) = u(x, y) + jv(x, y) sei mindestens in einer punktierten Umgebung
von 20 definiert. w = f(z) besitzt genau dann für z —> zu den Grenzwert g = x + jfi,
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wenn

1. die reellen Veränderlic/ten x und y im Punkt Po(x„, yo) existieren

und wenn

2. lim u(x, y) = o: und lim v(x, y) = ß
_ (x.Y)-°(x.,.y.,) (x..v)-(xo.ro)
ist

Ohne Beweis sei auch bemerkt, daß die im Band 2 in 2.5. formulierten Grenzwert-
sätze auf komplexe Funktionen übertragen werden können. Man vergleiche dazu
auch die Ableitung dieser Sätze aus den entsprechenden Sätzen für Zahlenfolgen.

Der Begrifl" der Stetigkeit einer komplexen Funktion stützt sich ebenfalls auf die
analoge Definition wie im Reellen.

Definition 3.3: Die in einer Umgebung von 20 definierte komplexe Funktion w = f(z) D-3-3
ist an der Stelle z = zo stetig, wenn der Grenzwert g für z —> 20 existiert und gleich
dem Funktionswert an dieser Stelle ist.

lim f(z) =f(Zo)- (3-4)
„m,

Gilt (3.4) nicht oder existiert der Grenzwert nicht, s0 ist w = f(z) an der Stelle 20 un-

stetig.
Ist w = f(z) an jeder Stelle eines Gebietes G stetig, so heißt f(z) stetig in G.

Die Definition der Stetigkeit kann geometrisch entsprechend Definition 3.3 wie
folgt erklärt werden: Allen Punkten z, die in einer hinreichend kleinen Umgebung
von 20 liegen. also im Innern eines Kreises mit |z — 2o] < 6(2) (vgl. Bild 3.7), ent-
sprechen nur Punkte w = f(z) der w-Ebene, die im Innern eines Kreises um wo =f(z„)
mit |f(z) _ f(Zo)| < 8 (vgl. Bild 3.8) liegen. Nach Definition 3.3 strebt w bei belie—

biger Annäherung des Punktes 2 —> 20 gegen wo.

5

‚o; ‘w!’
’:’:’:‘v o9.0.04.am; I

‚o

O‚Q

O O

«es?!
Ii

Bild 3.7. Ö-Umgebung von :„ Bild 3.8. e-Umgebung von wo

Aus lim f(z) =f(z„) = u(xo,yo) + j r(x„‚y„) folgt mit Satz 3.1

lim u(X,,v) = u(xo. yo) und 11m über) = v(xo‚ yo),
x—~x xaxn
y-xv: Y"‘)’o

d. h., u(x, y) und r(x, y) sind stetig in (x0, yo). Die Umkehrung gilt ebenfalls, so daß
der Satz formuliert werden kann:
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Satz 3.2: Sind in einer komplexen Funktion w = f(z) = u + j z: Real- und Imaginärteil
in zu stetige Funktionen dersbeiden reellen Variablen x und y, so ist auch w = f(z)
stetig an der Stelle zo und umgekehrt.

Die Untersuchung der Stetigkeit einer komplexen Funktion kann somit auf die
Untersuchung der Stetigkeit von zwei reellen Funktionen mit zwei reellen Variablen
zurückgeführt werden.

Ohne Beweis sei auch darauf hingewiesen, dal3 cf(z), f1(z) i f2(z) und f,(z)f3(z)
stetige Funktionen in zo sind, wenn f(z), f‚(z) und f2(z) in zo stetig sind und c eine

f1(1)

f2(Z)
gilt für mittelbare Funktionen, daß eine stetige Funktion einer stetigen Funktion
wieder stetig ist.

komplexe Konstante darstellt. Ist f2(z„) # 0, so ist auch in zo stetig. Ebenfalls

Eine Unstetigkeit der Funktion f(z) an der Stelle z = zo kann beiexistierendem
Grenzwert lim f(z) = g behoben werden, indem man der Funktion f(z) bei z = z.)

1-01

anstelle des evelntuell vorhandenen Funktionswertes den Grenzwert g zuordnet und
dadurch eine bei z = z„ stetige Funktion erzeugt. Die Funktion f(z) besitzt dann
bei z = zo eine hebbare Unstetigkeit, und z = zo heißt hebbare Unstetigkeitsstelle
von f(z).

Beispiel 3.3: Gegeben ist die Funktion w = f(z) = {
m, n e N und m g n > 0. a) Man bestimme limf(z) !

(‘FE

(z —— a)’"‘" für z # a mit
1 für z = a

b) Istf(z) für z = a stetig?

Lösung: a) m > n: limf(z) = 0, m = n:
z-oa

limf(z) : 1.
z-va

b) m_ = n: limf(z) =f(a) = 1, d. h., f(z) ist für m = n an der Stelle z = a stetig.

m > n: Da für diesen Fall der Grenzwert limf(z) existiert und limf(z) +f(a) gilt,
‘NI

liegt eine hebbare Unstetigkeit vor. Durchh/{béinderung des Flinktionswertes an
der Stelle z 2 a erhält man für m > n die überall stetige Funktion

f(z) für z¢a
O für z=a

w\=f(z) =
= (Z __ a)m—n.

3.3. Differentiation im Komplexen

3.3.1. Definition der Ableitung. Holomorphe Funktionen

Definition 3.4: Die Funktion w = f(z) sei in einer Umgebung von zo definiert. w = f(z)
heißt an der Stelle zo e G differenzierbar, wenn unabhängig von der Art der Annäherung
Az = z — zo —> 0 der Grenzwert

um f(Zo + AZ) “ f(Zo)
Az—~0 AZ

existiert.

= f'<zo) = (3.5)
z-:9
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Der Grenzwert (3.5) heißt Dilferentialquotient oder Ableitung der Funktion w x f(z)
an der Stelle z = zo

Ist f(z) in jedem Punkt z eines Gebietes G diflerenzierbar, so heißt f(z) in G dif-
ferenzierbar. Man sagt dann, w = f(z) ist eine in G holomorphe oder analytische

V Funktion. w = f(z) heißt in einem Punkt 20 holomorph, wenn eine Umgebung von z._-,

existiert, in der f '(z) gebildet werden kann.

Die Forderung der Differenzierbarkeit im Komplexen bedeutet eine wesent-
lich einschränkendere Forderung als im Reellen. Im Reellen ist bei der Bildung des
Grenzwertes (Vgl. Bd. 2) nur die Annäherung Ax -+0 auf der reellen Achse
zu untersuchen, im Komplexen dagegen haben wir alle Annäherungen Az —> O in
einem gewissen Kreis<um zo zu betrachten. Aus der Differenzierbarkeit der Funk-
tionf(z) im Sinne der reellen Analysis folgt somit im allgemeinen noch nicht die
Diiferenzierbarkeit der Funktion f(z) im Komplexen.

Für die Bezeichnung holomorphe Funktion findet man auch noch die Ausdrücke
reguläre Funktion oder reguläre analytische Funktion. Stellen, an denen f’(z) nicht
existiert, heißen singuläre Stellen.

Satz 3.3: Eine in zu diflerenzierbare Funktion w = f(z) ist in zo auch stetig. 53-3

Beweis:

f(z) = f(Zo + Az) eAz+ {(20) (A2, * o).

lim f(z) = limAz+ lim f(z ),
Az—>0 AZ ' Abo °

1imf(Z) =f’(Zo) ' 0 +f(Zo) =f(zo),

d. h., nach (3.4) istf(z) in zo stetig. I
Wie auch im Reellen gilt die Umkehrung von Satz 3,3 nicht. Es gibt Funktionen,

die überall stetig, aber nirgends diiferenzierbar sind (z. B. w = f(z) = Z). Wir
werden im folgenden noch näher darauf eingehen.

Beispiel 3.4: Untersuchen Sie die Funktion w = f(z) = Re (z) auf a) Stetigkeit, b) Difierenzierbar-
keit. I

Lösung: a) w =f(z) = Re (z) = x, [(20) = xu. lim f(z) = lim x = x0. Somit gilt
‚ I"! x—»x

Iim f(z) = /(20), d. 11., es ist (3.4) erfüllt; die Funktionow = f(z) =° Re (z) ist überall stetig.

b) (3.5) schreiben wir mit Az = z„ — zo in der Form

mo) = m m.) — f<zo)_

z,,~z,, Zn “ Z0

Die Grenzwertbildung soll auf zwei verschiedenen Wegen erfolgen, einmal parallel zur reellen und
einmal parallel zur imaginären Achse.

_ — x
1. z. = x„‚ m.) = x. und f(zo) = X05 f'(zo> = hm x” ° = um 1= 1.

x„—vx„ Xn ’ X0 x_,—.xo

2. 2,. =1», f(z..)=f(zo) =0: f’(zo)= lim +0—— =0.
y„..y„ J(y.. - yo)
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Da die beiden auf verschiedenen Wegen ermittelten Grenzwerte nicht gleich sind, ist f(z) an der
Stelle 20 nicht difierenzierbar. Da zu beliebig gewählt war, istf(z) = Re(:) nirgends differenzier-
bar.

3.3.2. Allgemeine Differentiationsregeln

Die allgemeinen Differentiationsregeln und die Regeln für das Differenzieren der
elementaren Funktionen stimmen wiederum formal mit den entsprechenden Regeln
für reelle Funktionen überein: auf eine Herleitung dieser Formeln soll deshalb ver-
zichtet werden. Mit komplexen Konstanten c„ c2 und holomorphen Funktionen
f(z). g(z) gilt:

d-dz [C1f(z) i C28(Z)1 = c.r'(z> i czgtz). (3.6)

di_,[r<z>g<z>1 =/<z>g'<./~> +/'<z>g<z>. (3.7)

d /(2) _ g(z>/'<z> — g’(z)f(z) .(T — [g(Z)]2 mit g(z) # 0. (3.8)

Die komplexe Funktion w =f(n) sei an der Stelle n = m, difierenzierbar und habe
die Ab1eitungf’(no). Ist die komplexe Funktion 7/ = g(z) an der Stelle z = zu differen-
zierbar mit der Ableitung g’(z„)‚ dann ist die mittelbare Funktion w :f(g(z)) an der
Stelle z = zo differenzierbar, und es gilt die Kettenregel

[f(g(='))]'lz=„‚ = f'(g(zo)) g’<zo)- (3-9)

Höhere Ableitungenf"(z), ...,f‘"> (z) werden ebenfalls wie im Reellen gebildet. Wir
werden später noch zeigen, daß eine in G holomorphe Funktion dort beliebig oft
difierenzierbar ist. Eine analoge Aussage konnte im Reellen nicht gemacht wer-

den! Summe, Differenz und Produkt zweier in G holomorpher Funktionen sind
wegen (3.6) und (3.7) ebenfalls holomorph in G. Sindf(z) und g(z) holomorph, dann

ist der Quotient g für g(z) + 0 ebenfalls holomorph.

Für einige elementare komplexe Funktionen sollen die Ableitungen bestimmt
werden.

1. w =f(z) = c (komplexe Konstante). Dann gilt f(z + A2) z c, und nach (3.5)
folgt

c‚ _. c— _ . _ d _

f(z)—A1:I:1o AZ —lZ1_Ig0—0—>E[c]—0. (3.10)

2. w =f(z) = z" (n ä 0, ganz), Es gilt

d n __‘ n-a>[z]—nz 1. p (3.11)

Der Beweis erfolgt formal wie im Reellett:

a) n e N. Für diesen Fall kann (3.11) leicht durch vollständige Induktion bewiesen
werden.
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1 — m’
b)n = —m < 0. w =f(z) = z" = z“"‘ = Z—m. Nach (3.8) folgt w’ = (zzm) . Da

__ m—l

m > 0, ganz, gilt nach a) Formel (3.11) und somit w’ : 2+ z —mz‘"" 1.

Diese Gleichung ist für m = —n identisch mit (3.11). I

3.3.3. Die Cauchy-Riemannschen Differentialgleichungen. Die Laplacesche
Differentialgleichung

Für eine komplexe Funktion kann nach 3.1. geschrieben werden

w :f(z) = u(x, y) + j v(x,y). (3.12)

Es soll nun untersucht werden, welchen Bedingungen u(x, y) und v(x, y) genügen
müssen, damit w =f(z) eine holomorphe Funktion ist. Mit z = x + jy und
Az = Ax + j Ay folgt aus (3.12) für einen Punkt 20 e G

f(z0 + A2) = u(xo + Ax,y0 + Ay) + j v(xo + Ax,y0 + Ay).

Nach (3.5) gilt dann für die Ableitung

. A —W0) 2 Einlage. + f(zo)

= um “(x0 ‘i’ Axalo ‘i’ ÄJ’) — u(Xo.J'o) ‘i’ [Uixo ‘i’ A-Vs yo i‘ Ay) ‘ v(X0s,Vo)]
„-0 Ax + j Ay

(3.13)

Die Annäherung Az —> 0 soll nun auf zwei Wegen (parallel zur x-Achse bzw. parallel
zur y-Achse) erfolgen:
1. Ax —> O, Ay = O. Fürf’(z„) folgt dann

f‚(z ) = “m “(X0 ‘i’ Axayfl) — u(xo‚yo) +j “m 7v'(-X0 ‘i’ Axsyu) ‘ L'(/Voayo)

O Ax—»0 AX A»-o —\X i

Diese beiden Grenzwerte auf der rechten Seite der letzten Gleichung sind nach

Definition (Bd. 4, 3.1.) die partiellen Ableitungen Öl bzw. flim Punkt 20 =

x0 +jy0, so daß ox Öx
, '3 . Of (zo) = (%:—+J%) (3.14a)

1Xu«)’g)

gilt.
2. Ax = 0, Ay —> 0. FL'irf’(z0) ergibt sich

U(Xo‚yo + Ay) — l‘(Xo,yo)‚ . (x‚y +Ay)-u(x,yo) . .

= 1 “ ° ° _ ° 1 .f (Z0) „"30 JA)’ + -lA}lJ!:10 JA)’

f'<zo> = —j Öl + 9'1) . (3.14b)
Ü)’ Ü)’ (xou-o)

Da beide Grenzwerte (3.14a) und (3.14b) gleich sein müssen, also für zo e G

Du . Oz: Öv ‚ bu ‚

Ö—X+JÖ—X—5—JE (3.15)

3 L+reue1/‘manor, Komplexe Funktionen
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gilt, kann der folgende Satz ausgesprochen werden:

Satz 3.4: Ist eine Funktion w = f(z) in G holomorph, so gelten die partiellen Difleren-
tialgleiehungen

3:3’. und E’.-
öx Öy Ox

öu
— — 3.„y < 16>

für alle Punkte des Gebietes G. Man nennt (3.16) die Cauchy-Riemannschen Differen-
tialgleichungen.

(3.16) muß notwendigerweise erfüllt sein, wenn w =f(z) holomorph ist. Es kann
nun auch gezeigt werden, daß aus der Gültigkeit der Cauchy-Riemannschen Differen-
tialgleichungen auf die Differenzierbarkeit der Funktion w = f(z) geschlossen werden
kann. Ohne Beweis sei der wichtige Satz ausgesprochen:

Satz 3.5: Besitzen die Funktionen u(x‚ y) und v(x, y) in G an der Stelle (x, y) stetige
partielle Ableitungen erster Ordnung und genügen dieselben den Cauchy-Riemannschen
Differentialgleichungen (3.16), so ist die komplexe Funktion f(z) = u(x, y) + jv(x, y)
an der Stelle z = x + j y dzfferenzierbar und besitzt die Ableitung

ö_v_öv_.öu
öx-W J5?"f(z) = g:- +1 (3.17)

Die Sätze 3.4 und 3.5 ermöglichen es in vielen Fällen leicht zu entscheiden, ob
die Funktion w = f(z) an der Stelle 20 difierenzierbar ist und wie die Ableitung f’(z)
lautet.

Beispiel 3.5: Untersuchen Sie, ob die überall stetigen Funktionen a)f(z) = Re (z), b)f(z) = z’ und
c)f(z) = z’ ditferenzierbar sind.

Lösung: a) f(z) = x, u(x, y) = x. ux = I, u, = 0, L'(X, y) = v, = v, : 0. Da u, # v, ist, gilt
(3.16) nicht, also istf(z) = x eine überall stetige, aber nirgends differenzierbare Funktion. Dieses
Ergebnis hatten wir schon im Beispiel 3.4 erhalten. Die Anwendung von Satz 3.4 führte jedoch zu

einer wesentlich einfacheren Lösung.

b) f(Z)=Z2 = («\'+Jy)2=X2 "Y2 +.i'2-U’, M=-Y2 -Y2. llx= 2X» “y: ‘ZY, v=2X,V.
U, = 2y, z", = 2x, Die partiellen Ableitungen l. Ordnung sind stetige Funktionen der beiden reellen
Variablen x und y und erfüllen Gleichung (3.16).f(z) = z: ist also eine überall in der z-Ebene holo-
morphe Funktion. Die Ableitung lautet nach (3.17)

f(z):2x+j'2y=2(x+jy)=2z.

Das gleiche Ergebnis würde sich nach (3.11) ergeben.

c)f(z) = z" = x — jy, u = x, u, :1, u, = 0.1:: —y, L‘, 0, v, = —l. Die Cauchy-Riemann-
schen Differentialgleichungen (3.16) werden an keiner Stelle erfüllt, denn es gilt u, i: Uyn f(z) = z
ist also eine überall stetige, aber nirgends diffcrenzierbare Funktion.

Es kann gezeigt werden, dal5 eine in G holomorphe Funktion stets sämtliche Ab-
leitungen beliebig hoher Ordnung besitzt. Wir können somit auch die Cauchy-Rie—
mannschen Differentialgleichungen differenzieren und erhalten

özu özv ölu _ 02v
— ÖZU _

OX2 _ Öyöx ’ ÖxOy _ Oyz’ 0x2 _

Özu O21: i_ _ Özu

öyöx’ oxöy ‘ 57"
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Unter Anwendung des Satzes von Schwarz (Bd. 4, 3.2.) folgt
Özu _ (VD _ 62v _ _ özu (318)

d 0x2 — öyöx — Öxöy _ Dy’ '

un fl_il=L%=#fl (319)
Oyz W Ox Öy Öyöx bx” '

Bei Benutzung des Laplace-Operators ‚Au (vgl. Bd. 8, 4.2., 4.4.) bzw. Au ergibt sich
aus (3.18) bzw. (3.19)

Özu Ölu
E .—_ = ' 3.20

A" bx: + Öyz O ( )
bzw. Ö2 Ö2

v u
~ 3 — — = . 3.21

Ab Öxz + by‘ 0 ( )

Definition 3.5: Jede Funktion «p(x, y), die in einem Gebiet G der Laplaceschen Differen-
tialgleichung

62¢ 62¢
1 5 1 Z = 3.22

A? Öxz + öy’ ( )

genügt, heißt harmonische Funktion oder Potentialfunktion. Eine reguläre Potential-
funktion liegt im Gebiet G vor, wenn sie dart stetige partielle Ableitungen zweiter
Ordnung besitzt.

Aus den Gleichungen (3.20) und (3.21) folgt das wichtige Ergebnis: Rea1- und
lmaginärteil einer holomorphen Funktion sind reguläre Potentialfunktionen.

Potentialfunktionen spielen eine herausragende Rolle bei der Behandlung sta-
tionärer Prozesse in Physik und Technik. Zum Beispiel können elektrostatische
Felder, stationäre Strömungen. stationäre Temperaturverteilungen und Gravi-
tationspotentiale durch Lösungen der Potentialgleichung Au = fmit entsprechenden
Randbedingungen beschrieben werden. Man vgl. dazu auch Bd. 8.

Der Zusammenhang Zwischen der Potentialtheorie und der Theorie der komplexen
Funktionen kann über die Behandlung der praktisch wichtigen ebenen Potential-
strömung erhalten werden. Bei diesen Strömungen genügt die Untersuchung in einer
Ebene, da in parallelen Ebenen die Bewegung ebenso erfolgt. Die zu ebenen Po-
tentialströmungen gehörigen Potentialftinktionen erfüllen die Gleichung (3.22)
und können deshalb durch holomorphe Funktionen beschrieben werden.

Genügen zwei reguläre Potentialfunktionen den Cauchy-Riemannschen Diffe-
rentialgleichungen. dann nennt man sie konjugierte Potentialfunktionen. Im allge-
meinen ist eine aus zwei beliebigen harmonischen Funktionen L/(x,y) und 1:(x. y)
zusammengesetzte komplexe Funktion _/'(z) = 1/(x.,1‘) + jl‘(X._l‘) nicht holomorph,
da holomorphe Funktionen die Cauchy-Riemannschen Differentialgleichungen
(3.16) erfüllen müssen.

Falls eine reguläre Potentialfunktion u(x.y) gegeben ist. kann die konjugierte
Potentialfunktion v(x,y) mit Hilfe der Cauchy-Riemannschen Differentialgleichun-
gen (3.16) bis aufeine additive Konstante berechnet werden.f(z) = u(x, y) + jv(x‚ y)
stellt dann als holomorphe Funktion ein komplexes Potential dar.

Beispiel 3.6: Gegeben ist die Funktion u(x, y) = X2 — y’ + xy. Ist u eine Potentialfunktion? Wenn
ja, dann bestimmen Sie die zu u(x, y) konjugierte Potentialfunktion unter der Bedingung, daß

I10) = 0 ist (f(z) = über) + jv(x,y)).
3*

D.3.5
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Lösung: u: xi — y_2 + xy, ux = 2x + y, 11x, = 2, u, = —2y + x, uy, = ~2. Wogen
14„ + u„ = Z — 2 = 0 hegt also eine Potentialftinktion vor. Nach (3.16) gilt für die zugehörige
konjugierte Potentialfunktion

n- = zu = 2x + y (3.23)
und \

v; = —u‚ = Zy — x. (3.24)

Aus (3.23) folgt durch Integration nach y, wenn x zunächst als konstant angesehen wird und <p(x)

eine noch zu bestimmende Funktion von x ist, '

vbny) = Zxy + %y‘ + <p(x). (3.25)

Daraus folgt '

v; = Zy + WK),

und durch Gleichsetzen mit (3.24) erhalten wir
.2

2y — x = 2y + <p’(x) =<p(.\') = — i; + C (C : const).

Einsetzen in (3.25) ergibt

v(x, y) = Zxy + §y2 — '3/:2 + C.

Weiter folgt

f(Z) =14 +51‘ = X1 - Y2 + X)’ + JQU/2 - X2) + 2X)’ + C)-

Mitf(0) = 0 erhalten wir

o = jC=> C = 0,

. ‚ . j .

f(z) = X2 -yl +xy+J(i(y’-X‘)+2.\'y)=xZ -y‘ +J‘2X}’— 30" -y‘ +J‘3X.V)»

/<z)=z* —%z2 =7<2— J)

Bildet man das Skalarprodukt der beiden Gradienten grad u =

m )» A _ _ . . _ ‘Y
und grad i; = # 0 zweier konjugierten’ Potentialfunktionen u und v, dann
folgt

Ö1: bu Öu Öv
d- d =~=% ————

gm u gm U 6x (‘Ix Öy by

und bei Berücksichtigung von (3.16)

Oz: Öv (_ Ö1) pi _

i757 Ox) Ox — ’

d. h., für beliebige Konstanten C, , C2 schneiden sich die Kurvenscharen u(x‚ y) = C,
und u(x, y) = C2 rechtwinklig; sie bilden ein Orrhoganalsystem. Diese Eigenschaft
konjugierter Potentialfunktionen finden wir .z. B. bei Niveau- und Feldlinien. Jeder
beliebige in der z-Ebene durch eine Kurvenschar u(x,y) = C, oder u(x, y) = C;
darstellbare Potentialverlauf kann somit in der w-Ebene als Geradenschar abgebildet
und z. B. als Potentialverlauf eines unendlich ausgedehnten Plattenkondensators
gedeutet werden.

grad u ' grad v =
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Für bestimmte Anwendungen der Potentialfunktionen ist die Darstellung in
Polarkoordinaten zweckmäßig. Mit x = rcos (p, = rsin qv und z = re” k0nnen
wir schreiben

f(Z) = “(In y) + j v(X‚ y) = am <r) + j W. <1?)-

Wir bilden

1 uxx, + u,.y, = u, cos <79 + u, sin (p,ll

=
1 l‚p — uxxw + u,.y,p z —u,r sin (p + u‚.r cos (p,

z}, = rxx, + z‘,,y, = z", cos (p + v, sin 99,

£3}, = rxxv + L',.y,, = —z‘,r sin (p + z-‚rcos (p.

Unter Beachtung von (3.16) folgen daraus die Cauchy-Riemannschen Differential-
gleichungen in Polarkoordinaten

Öü ÖÜ und Oü I O17
1‘ — = — — — — '—.

Ör Ö9? Öqy Ör

Aufgabe 3.3: Untersuchen Sie, in welchen Punkten die Funktionen a) f(z) = x3y2 —j x2y3,
1

b) f(z) = i, z =l= 0, c) f(z) = l — 7 nach z diflerenzierbar sind. Wie lauten ihre Ableitungen?
z

(3.26)

Aufgabe 3,4: Gegeben sind die Potentialfunktionen a) u(x‚ y) = g(x), b) v(x, y)‘: ax‘ + bxy + Cy’.
Bestimmen Sie die dazugehörigen holomorphen Funktionenflz) = u + j L‘. Wie lautet g(x)? Welchen
Bedingungen müssen b und c in b) genügen, damitf(z) eine holomorphe Funktion mitf(1 + j) = 0
ist’! Wie lautet für diesen Fall w = f(z) (a, b, c const)?

3.4. Konforme Abbildungen

Im Abschnitt 3.]. wurde die geometrische Deutung einer komplexen Funktion
mit Hilfe ihres Betrages erläutert. Nachdem anschließend die Stetigkeit und Difle-
renzierbarkcit behandelt wurden, sollen jetzt grundlegende Abbildungseigenschaften
einer holomorphen Funktion w =f(z) in ihrem Regularitätsgebiet G unter der
Voraussetzung f’(z0) + 0, zo e G, untersucht werden.

Durch einen Punkt 20 e G legen wir zwei glatte Kurvenstücke (S; und 62. die mit
der reellen Achse die Winkel m und a2 einschließen. Die entsprechenden Bild-
kurven in der w—Ebene G} und G; schließen mit der reellen Achse der w—Ebene die
Winkel a; und ‚x; ein. Im gleichen Abstand g von 20 wählen wir auf (E, und auf 62
je einen Punkt z, und Z3. Dann gilt

21- zo = gem und Z2 — zu = gem,
wobei ß, —> cc, und ß; —> ocrfür g -> 0 streben (Bild 3.9). Für die entsprechenden
Bildpunkte in der w-Ebene gilt

_ f(z1) ‘f(Zo) = Qi. 9m“ und flzzl —f(zo) = 9; em",
wobei

/5’I‘—>o<f‘, fi;*—>o<; und 9.*‚9ä‘->0 für 9->0
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f’(Zo) = lim
11*Zo

Bild 3.9. z-Ebene

gehen (Bild 3.10). Da Differenzierbarkeit vorausgesetzt war, gilt

für) — fizo) = f(z;) "f(Zo)lim
-1 — Z0 zz-‚zl, Z2 ‘ Zo

_ a;

JV "[2

/ 3*
/ z

/
w? ‚

W _ /‘TE?// I511/O

’ l

{gg
u, U ‚_

Bild 3.10. w-Ebcne

Mitf/(Zo) = lf'(zo)l e” : r e” + 0 erhalten wir
. ‚ 1* . „ ‚ 0* .

r e"? = l1mJ—1e’(”n“”r) = 11m i e’(”2"”2>.
«*0 Q aao Ü

Daraus folgt wegen der Gleichheit von Betrag und Argument

‚ _,_1. ei*_,. e?
o — — —— — .|f(z)| I Prange im >O

. a~09

¢ =1im(43i‘- ßi)=1im(5ä‘ - /31)-
9*0 n~0

Es gilt der Satz:

(3.27)

(3.28)

Die Betragsbeziehung (3.27) besagt. daß der „Maßstabsfaktor r“ nur von der Lage
des Punktes zo abhängig ist. Aus der Argumentbeziehung (3.28) folgt für g —> 0
131-» x}, fl1—> at sowie fi§—> zxg./1’; —» A2 und damit Af ~ a; = A’, - AZ. Der
Winkel zwischen den beiden Kurvenstücken bleibt bei der Abbildung durch eine
holomorphe Funktion erhalten.

Satz 3.6: Ist w = f(z) eine holomorphe Funktion in G zmdf’(z0) # 0 (20 E G), dann irt
die Abbildung w = f(z) winkeltreu, d.h.‚ zwei sieh in :0 unter dem Winkel 04 schneidende
stetige, orientierte Kurven QC, , (S; gehen durch die Abbildung w = f(z) in zwei stetige,
(Jricntierze Kurven 6;, (S; über, die sich in wo =f(z0) unter dem gleichen Winkel re

schneiden.

Bezeichnen wir mit Az = z — zo und Af=f(z) «f(z0) die in den Bildern 3.1l

zazn

Z-Z

f(z) e. (zu)

O

1in1 =f’(z0) oder —>_/"(z0).

-> lf’(zo)l

und 3.12 eingezeichneten Vektoren bzw. Zeiger, dann drückt das Verhältnis lAf/Azl
die Längenänderung aus, die lAzl bei der Abbildung erfährt. Nach (3,5) gilt unab-
hängig von der Art der Annäherung z —> zu

(*)

Dieser Grenzübergang kann also auf einer beliebigen stetigen Kurve (S erfolgen.
Aus
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folgt für das Verhältnis der Längen der beiden Vektoren Af und Az:

lAf| = [f(z) —f(Zo)| __ lf'(zo)i
—?—— ——-1 .

IAZI IZ - zol

Längenelemente der z-Ebene werden bei der Abbildung in die w-Ebene um den
Faktor f’(z) verzerrt (gestreckt oder gestaucht). Die durch eine analytische Funktion
vermittelte Abbildung erzeugt daher in jedem Punkt 20, für den f’(z„) + 0 gilt, eine
von der Richtung unabhängige Verzerrung. Abbildungen, die diese Eigenschaften
besitzen, heißen in kleinsten Teilen maßstabstreue Abbildungen.

Bild 3.11. z-Ebene Bild 3.12. w-Ebene

Definition 3.6: Eine Abbildung, die in zo winkeltreu und in kleinsten Teilen maßrtabs-
treu ist, heißt konform (oder ähnlich im Kleinen).

Damit kann der grundlegende Satz ausgesprochen werden:
Satz 3.7: Die durch holomorphe Funktionen erzeugten Abbildungen sindfür f’(z) 5F 0
konform.

Jede durch eine holomorphe Funktion erzeugte Abbildung ist für f’(z) # O aber
nicht nur schlechthin in kleinsten Teilen maßstabs— und winkeltreu, sondern es

bleibt auch der Drehsinn des Winkels erhalten. Man spricht in diesem Fall auch von
konformer Abbildung 1. Art oder eigentlich konformer Abbildung.

lst neben der Maßstabstreue in kleinsten Teilen bei einer Abbildung Winkeltreue
vorhanden, wobei sich aber der Drehsinn des Winkels umkehrt, dann spricht man
von konformer Abbildung 2. Art. __

lst w = f(z) eine holomorphe Funktion, dann wird durch w = f(z) eine konforme
Abbildung 2. Art realisiert, was sich leicht zeigen läßt: Wir zerlegen die Abbildung
w =JT) in die zwei nacheinander folgenden Abbildungenw* =f(z) und w = F‘.
Da f(z) eine holomorphe Funktion darstellt. ist die erste Abbildung u'* =f(z) u. a.

winkeltreu mit gleichem Drehsinn. Bei der zweiten Abbildung w = W“ bleibt zwar

der Winkel erhalten, aber der Drehsinn ändert sich, da n—-* konjugiert komplex zu w*

ist. Bei der resultierenden Abbildung w = /(2) geht also der Drehsinn in den ent—

gegengesetzten über. Bei allen betrachteten Abbildungen ist Maßstabstreue in
kleinsten Teilen vorhanden; es liegen also konforme Abbildungen vor, Ohne Beweis
sei der folgende Satz angegeben:

Satz 3.8: Jede durch eine holomorphe Funktion w = f(z) erzeugte Abbildung ist für
f'(z) + 0 eine konforme Abbildung erster Art. Jede durch eine zu einer holomorphen

D.3.6

S.3.7

S.3.8
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Funktion konjugiert komplexe Funktion w = E5 erzeugte Abbildung xtellt für
f'(z) # 0 eine konforme Abbildung zweiter Art dar.

Ein Beispiel für die konforme Abbildung zweiter Art ist die Spiegelung am Kreis,
auf die wir in 6.1.2. noch näher eingehen. In Physik, Mechanik, Elektrotechnik,
Kartografie u. a. Gebieten spielt die konforme Abbildung eine große Rolle. Es sei

hier nur auf die sog. Joukowski-Funktion f(z) = z + L, z + O, verwiesen. Mit ihrer
z

Hilfe kann die Aufgabe, die Geschwindigkeit der Luftteilchen, die einen Tragfiügel
umströmen, zu berechnen, darauf zurückgeführt werden, die Umströmung eines
Kreiszylinders zu betrachten (vgl. Bild 3.13 und 3.14).

Bild 3.13. Konforme Abbildung eines Kreises
aufein Joukowski-Profil i

Bild 3.14, Joukowski-Profil

Die Theorie der konformen Abbildung, deren Grundproblem darin besteht,
zwei gegebene Gebiete konform aufeinander abzubilden. hat insbesondere auch für
die Realisierung praktischer Anwendungen erhebliche Bedeutung. Zur Existenz
solcher Abbildungen müssen allerdings für die aufeinander abzubildenden Gebiete
gewisse Eigenschaften vorausgesetzt werden. Zum Beispiel gelingt es nicht. ein mehr-
fach zusammenhängendes Gebiet konform auf ein einfach zusammenhängendes
Gebiet abzubilden. Jedoch läßt sich jedes zweifach zusammenhängende Gebiet ohne
isolierte Randpunkte umkehrbar eindeutig und konform auf einen konzentrischen
Kreisring abbilden. Die praktisch wichtige Aufgabe. eine umkehrbar eindeutige
und konforme Abbildung zweier einfach zusammenhängender Gebiete zu kon-
struieren, wird auf die Grundaufgabe zurückgeführt, eine eineindeutige Abbildung
eines derartigen Gebietes auf eine Kreisfläche zu berechnen. Als theoretische Grund-
lage dazu dient der von Riemann in seiner Dissertation 1851 bewiesene Abbildungs-
satz.

Satz 3.9 (Riemannscher Abbildungssatz): Jedes einfach zusammenhängende schlichte
(d. h. einblättrige) Gebiet mit mindestens zwei Randpunkten läßt sich durch eine
analytische Funktion umkehrbar eindeutig auf die Fläche eines Kreises abbilden.

Mit dem Riemannschen Abbildungssatz, der Poissonschen Integralformel (siehe
4.4.) und weiteren Sätzen über die konforme Abbildung erhält man ein systematisches
Hilfsmittel zur Lösung von Randwertaufgaben für ebene Felder. Hierzu muß auf
die einschlägige Literatur, Z. B. [2], [l2], verwiesen werden.
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Beispiel 3.7: Unter den Anwendungen der Funktionentheorie soll die stationäre
inkompressible und wirbelfreie ebene Potentialströmung hervorgehoben werden.
Das Geschwindigkeitspotential U(x‚ y) genügt der Laplaceschen Gleichung

ÖZU ÖZU
AU=»Ö»X7+E—_Z— = 0.

Zwischen U(x, y) und den Komponenten z; und 1‘, des FeldVektors v(x, y) gelten die
Beziehungen

U _ au 3 _ au
X " ex” “V ’ by '

Die Feld- oder Stromfunktion V(x,y), die als konjugierte Potentialfunktion mit
U(x‚ y) über die Cauchy-Riemaitnschen Differentialgleichungen (3.16)

OU_OV ac/_ 0V
öx by ’ ‚G? _ Ox

zusammenhängt. genügt ebenfalls der Laplaceschen Differentialgleichung

ÖZV ÖZV

AV‘W+W‘
Mit

W = U031‘) + jV(X, .1‘)

erhalten wir das komplexe Geschwindigkeitspotential als holomorphe Funktion,
deren Realteil das (reelle) Geschwindigkeitspotential und deren lmaginärteil die
Feld- bzw. Stromfunktion ist.

Wie wir in 3.3.3. gezeigt haben, bilden die Linien U = const und V = const ein
orthogonales Netz. Bei Anwendungsaufgaben wird nun versucht, diese Linien
U = const und V = eonst mit Hilfe der konformen Abbildung zu gewinnen. Das
Problem besteht dabei darin, die für den jeweiligen Fall geeignete Abbildung zu
finden. Umgekehrt kann man natürlich auch eine konforme Abbildung als Strömung
in der z-Ebene auffassen.

Im Bild 3.15 ist ein Strömungsvorgang angedeutet, der z. B. entsteht, wenn eine
Parallelströmung auf ein Hindernis trifft, das die Form eines Kreiszylinders hat.

l

Bild 3.15. Parallelströmung
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Während die Stromlinien in unmittelbarer Nähe des Hindernisses kreisförmig sein
müssen, sind sie in großer Entfernung vom Hindernis Parallele zur reellen Achse.
Derartige Strömungen lassen sich durch Funktionen der Form

w = f(z) = a(z + (a, b.reell) (3.29)

beschreiben. Im Falle a = 1 und b = 1 ergibt sich aus (3.29) die sog. Joukowskische
Funktion. Trennen wir (3.29) in Real- und Imaginärteil, so erhalten wir

f(z)=a[x(1 +7—_b;?)+jy(l

b . . . . .

U = ax <1 + ist somit die Potentialfunktion und V: ay (1 —

die Stromfunktion. Die Schar der Stromlinien folgt aus V = c (reell, const). Insbe-
sondere liefert V = 0 die Gleichung

*x2’+?=°=~<Z+y2=bs
eine Kreisgleichung mit Radius

' Aufgabe 3.5: Eine ebene Potentialströmung sei durch ihr komplexes Potential w = f(z) = U(x, y)

+jV(x‚ y) bestimmt. Man bestimme für die Funktion w = f(z) = ä die Stronilinien V(x,y)

= const und die Äqiiipotentiallinien U(x‚ y) = const.

3.5. Elementare Funktionen komplexer Veränderlicher

3.5.1. Die Potenzfunktion w : z"

Analog zum Reellen bezeichnen wir die für n E G definierte Funktion

w =f(z) = z" (3.30)

als Potenzfunktion der komplexen Veränderlichen z. Für n > 0 ist w = z" in der
ganz en z-Ebene holomorph, für n = 0 gilt w = z° = 1, und für n < 0 liegt eine
für z =l= O holomorphe Funktion vor. Während für n = 1 durch die lineare Potenz-
funktion w = z die z-Ebene umkehrbar eindeutig auf die w-Ebene abgebildet werden
kann, es liegt in diesem Fall ja sogar eine identische Abbildung vor, ist die Abbildung
vermittels der Funktion w = z" für n g 2 nicht mehr umkehrbar eindeutig, wie wir
auch schon in Aufgabe 3.2 für n = 2 festgestellt hatten. Setzt man z = reW’ und
w = g ei", dann folgt w = (r eiw)" = r" e!" und damit g = r" und ö z mp + 2k7:.

Das bedeutet, daß der durch 0 g tp < 2+ festgelegte Winkelbereich der z-Ebene

(vgl. Bild 3.16) auf die gesamte w-Ebene (vgl. Bild 3.17) umkehrbar eindeutig
abgebildet wird. Die gesamte z-Ebene kann in n solche Winkelbereiche aufgeteilt
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werden, jeder derartige Bereich wird bei der Abbildung w = z" in die volle w-Ebene
übergehen. Das bedeutet, daß die w-Ebene n-fach überdeckt ist. Eine umkehrbar
eindeutige Abbildung der gesamten z-Ebene erhält man, wenn die z-Ebene in die
n-blättrige Riemannsche Fläche abgebildet wird.

Bild 3.16. z-Ebene Bild 3.17. w-Ebene

Am Beispiel w =f(z) = z’ wollen wir uns das veranschaulichen. Setzt man
z = r e“? in w : 22 ein, so folgt

w = 1'2 e’"” |w| :1-3, arg w = 29v.

Durchläuftzden in der rechten Halbebene Re (z) > 0 gelegenen Halbkreis K: lz] = r

mit — '2: < «p < dann durchläuft w den auf der negativen reellen Achse auf-

geschnittenen Vollkreis K*: |w| : r2 für —rr < arg w < -r: (vgl. Bild 3.18 und 3.19).
K und K* sind eineindeutig aufeinander abgebildet. Da r alle Werte .0 < r < oo

durchlaufen kann, wird also durch w = Z2 die rechte Halbebene Re (z) > 0 einein-
deutig auf die längs der negativen reellen Achse aufgeschnittenen w-Ebene abgebil-
det. Nimmt man zur Halbebene Re (z) > 0 noch die positive imaginäre Achse und

Bild 3.18. z-Ebene Bild 3.19. w-Ebene

in der aufgeschnittenen w-Ebene den oberen Rand (im Bild gestrichelt gezeichnet)
hinzu, dann bleibt die Eineindeutigkeit der Abbildung w = z’ erhalten. Da f’(z)
= (z2)’ = 22 für z =}= 0 nirgends verschwindet, ist die Abbildung konform.
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Analog kann auch die linke Halbebene Re (z) < 0, zu der wir die negative imaginäre

Achse hinzunehmen < qa < durch w = 21 eineindeutig in die längs der

negativen reellen Achse aufgeschnittene w-Ebene. zu der wieder der obere Rand der
negativen reellen Achse der w—Ebene gehört, abgebildet werden. Die Abbildung ist
wieder für z + O konform. Die w-Ebene wird also mit Ausnahme des Punktes w = 0
doppelt überdeckt. Denkt man sich die beiden aufgeschnittenen Ebenen überein-
andergelegt, die Nullpunkte zusammengeheftet, den oberen Rand des 1. Blattes
mit dem unteren Rand des 2. Blattes und den unteren Rand des l. Blattes mit dem
oberen Rand des 2. Blattes kreuzweise verbunden, so erhält man eine zweiblättrige
Fläche, die sog. Riemannsche Fläche der Funktion w = z’. Auf diese zweiblättrige
Riemannsche Fläche kann mittels der Abbildungsvorschrift w = z’ die z-Ebene ein-
eindeutig abgebildet werden. Diese Abbildung ist mit Ausnahme des „Verzweigungs-
punktes“ oder des „Windungspunktes“ w = 0 konform (Bild 3.20). Die endlich-
blättrigen Verzweigungspunkte rechnet man zur Riemannschen Fläche mit hinzu.

5,"of‘
Da die Funktion w = z" (ne N) die z-Ebene eineindeutig auf die n-blättrige

Riemannsche Fläche abbildet, können sofort auch Aussagen darüber gemacht
werden, wenn w als der gegebene und z als der zugeordnete Wert betrachtet werden.
Ist w + 0 gegeben, dann gibt es n verschiedene Werte z, für die z" = w ist. Jeder
dieser Werte heißt n-te Wurzel aus w. In der Literatur ist es häufig üblich, dafür
z = Uw zu schreiben und darunter für k = O, l, 2, n — 1 die n verschiedenen
Wurzeln aus (3.30) zu verstehen.

Bild 3.20
Zweiblättrige Riemannsche Fläche

3.5.2. Ganze rationale Funktionen

Ein Polynom oder eine ganze rationale Funktion n-ten Grades der komplexen
Veränderlichen z ist für i= 0, l, 2, ...,n und mit a,- als komplexen Konstanten
erklärt durch

w = P„(z) = a0 + a‚z + azzz + + a„z" = i a,.z‘. (3.31)
:=o

P,,(z) ist in der ganzen z-Ebene holomorph. Bedeuten z,- die Nullstellen von P,,(z),
dann kann nach dem Hauptsatz der Algebra für (3.31) geschrieben werden

w = P,,(z) = a„(z — 2,) (z — Z1) (z — z„). (3.32)

Die z, müssen dabei nicht alle voneinander verschieden sein, d. h.‚ es können mehr-
fache Nullstellen auftreten.

Die Funktion P,(z) = ao + alz heißt ganze lineare Funktion.
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3.5.3. Rationale Funktionen

Der Quotient zweier ganzer rationaler Funktionen der komplexen Veränder-
lichen z heißt rationale Funktion der komplexen Veränderlichen z:

n n‘

_ P(z) _ do + 41,2 + agzz + + a„z" _ Egg; (3 33)

_ Q(z) _ b0 + blz + b2zZ+ +b,,,z"‘ _ ’” bi‘. ' '

'—o,_

w = R(z)

R(z) ist mit Ausnahme der Nullstellen des Nenners in der ganzen z-Ebene holomorph.
Sind z, die Nullstellen des Zählerpolynoms und z,’ die ‘Nullstellen des Nenner-
polynoms, dann kann für (3.33) unter der Voraussetzung, daß die Nullstellen des
Zählerpolynoms verschieden von den Nullstellen des Nennerpolynoms sind, ge-
schrieben werden:

a„(z — 2,) (z — 22) (z — z„)

M2 — 21> (z — 2;) (z — 2:.) ' (m)
Nullstellen des Nennerpolynoms nennt man Pole von R(z). Pole können ebenfalls
wie Nullstellen mehrfach auftreten. Rationale Funktionen sind bis auf den Faktor
a„/b„‚ durch ihre Nullstellen und Pole charakterisiert, wenn deren Vielfachheit
bekannt ist. Vor allem für die Anwendungen ist es üblich, die sog. Pol-Nullstellen-
Diagramme rationaler Funktionen anzugeben. Man trägt zu diesem Zweck Pole
und Nullstellen der rationalen Funktion unter Angabe ihrer Vielfachheiten in die
z-Ebene ein. Die Darstellung rationaler Funktionen als analytische Landschaft
findet man u. a. in [S].

Für die folgenden Betrachtungen setzen wir weiter voraus, daß Zählerpolynom
und Nennerpolynom von R(z) keine gemeinsamen Nullstellen besitzen. Wir nennen

R(z) eine echt gebrochen (unecht gebrochen) rationale Funktion von z, je nachdem,
ob der Grad des Zählerpolynoms kleiner (größer oder gleich) als der Grad des
Nennerpolynoms ist. Es gilt analog zum Reellen (vgl. Band 2) der Satz:

w = R(z) =

Satz 3.10: Jede echt gebrochen rationale Funktion R(z), deren Nennerpolynom die S.3.10
p verschiedenen Nullstellen 2,5 mit den Vielfachheiten k,- besitzt, kann eindeutig in
Partialbrüche derart zerlegt werden, so daß gilt

P Ax‘ Ail Am,R(z) = i; [(2 _ 21,)“ + (Z _ $1-1 + + Z _ 2;]. (3.35)

Der Beweis dieses Satzes kann mit Hilfe der Laurent-Entwicklung erfolgen (vgl.
5.4.).

Beispiel 3.8: Zerlegen Sie

z2+(——3+j)z+2—3j
/(Z):z3+(—5+Zj)zZ+(7—6j)z—3+4j

in Panialbriiche. Anmerkung: Eine Nullstelle des Nenners ist reel].

Lösung: Der Nenner besitzt an der Stelle z; = l eine Nullstelle. Durch

[z3+(—5+2j)z2+(7—6j)z—-3+41] :(z-l)=z‘-(4—2j)z+(3—4j)
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und Nullsetzen der so erhaltenen Funktion 2. Grades können die restlichen beiden Nullstellen
bestimmt werden. Man erhält

‚z; = z; = 2 — j.

Damit gewinnen wir den Ansatz (nach (3.35)):

z2+(—3+j)z+2—3j
__ An A21 A22f(Z)- =jz+(—5+2J)z+(7—6j)z—3+4J z-

+ ———_~— + TA .

1 [z- (2 -J)]‘ Z-(Z-J)
Durch Multiplikation mit dem Hauptnenner folgt

z’ + (-3 +J')z + 2 - 3J = Aulz- (2 -j)l2 + Azi(z - 1)

~ + A2z(z - 1) [z - (2— 1)]. (*)

Wird die rechte Seite von (*) nach Potenzen von z geordnet und anschließend Koeffizientenvergleich
durchgeführt, so können die Konstanten A,k (im allgemeinen komplex) bestimmt “erden. Man kann
auch mit Hilfe der Grenzwertmethode zwei von den drei Konstanten ermitteln. Durch Ordnen
finden wir aus (*): _

Z2 + (*3 ‘i’ DZ ‘i’ 2 — 3.1: Z2(/111 + A22) ‘i’ Z[(-4 ‘i’ 23)/111+ A21 * (3 ‘D/‘zzi
‘i’ (3 — 4})/111 ‘ A21+(2 ‘ji/‘zz-

Koeffizientenvergleich:

1 = A“ + A22

-3 +j = —(4 — 2j)A,1 + A21 + (-3 +j)A„
_ 2—3j= (3—4j)A1,—A21+(2—j) A22.

Daraus ergibt sich

A„=l‚ A2,=l—j und A22=0.

Die Partialbruchzerlegung lautet somit

zz+(—3+j)z+2—3j =_1__ I—j
z3—(5—2j)z2+<7—6j)z—3+4j z-l [z—(2—j)]2'

lst n = m = l. dann erhalten wir aus (3.33) die gebrochen lineare Funktion

w = /<2) z. <3.s6>

3.5.4. Die Exponentialfunktion

Mit den beiden konjugierten Potentialfunktionen u(x.y) = e‘ cos y und L‘(‚\'.}‘)
= e‘ sin y definieren wir die Exponentialfunktion im Komplexen:

Definition 3.7: Die durch w = e" (cos y + j sin y), x, y reell, erklärte komplexe
Funktion w heißt Exponentialfunktion und wird mit e’ bezeichnet."

w = e’ = e"+" = e" (cosy + j sin y). (3.37)

Die bekannten Eigenschaften der Exponentialfunktion mit reellen Exponenten
werden durch diese Definition nicht eingeschränkt, aber wir werden wichtige neue

Eigenschaften kennenlernen. Da für beliebige reelle x, y stets e" + 0 und
cos y + j sin y # 0 gelten, ist e’ in der gesamten z—Ebene nullstellenfrei. Man kann
auch leicht zeigen, daß w =f(z) = e’ in der gesamten z-Ebene holomorph ist.
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Mit u(x, y) = e" cos y und v(x, y) = e" sin y folgt

u,. = e" cos y, u, = e"(—sin y), v, = e’ sin y, Uy = e" cosy.

Da die ersten partiellen Ableitungen stetige Funktionen der beiden reellen Ver-
änderlichen x, y sind und die Cauchy-Riemannschen Differentialgleichungen erfüllt
sind, folgt nach (3.17)

f’(z) = (e‘)’ = e‘ cosy + j e’ siny = e‘ (cosy + j sin y),

(e‘)’ = e‘ (3.38)

Analog zeigt man

(e’")’ = ac“. (3.39)

Wie im Reellen gilt auch im Komplexen das sog. Additionstheorem der Expo-
nentialfunktion

e’: e’: = e‘n+’2, (3.40)

denn für
e’: = e"1(cosy, + j sin yl) und e‘: = e’: (cos y; + j sin yz)

folgt
eh e12 = e)‘: e‘:

>< [cos y, cos y; — sin yl sin y; + j (sin yl cos y; + cosy, sin y2)],

e‘1e"= = e***‘2[C0s(y‚ + yz) + j Sin 0'1 + M].
Nach (3.37) kann für die rechte Seite dieser Gleichung e11“: geschrieben werden,
so daß (3.40) bewiesen ist.

Mit (3.37) und (3.40) weist man nach

e‘: = F, ‘ (3.41)

Z

z; : en-=2, (3.42)

(e‘)" = e” (n ganze Zahl). (3.43)

Setzt man in (3.37) der Reihe nach gj, rrj, gzj bzw. 27:j fürzein, dann erhalten wir

e’; =j, e”: —1‚ 6%”: —j und em = 1. (3.44)

Da e?“ = l ist, gilt für jedes z

6:62.11 = ez+J"21t z ez_ (145)

Die Exponentialfunktion w = e‘ ist also periodisch mit der Periode 27rj. Für die
Abbildung w = f(z) = e’ = e‘ e” = g e“ bedeutet das, daß der Periodenstreifen
—7r < y g 71: umkehrbar eindeutig auf die w-Ebene abgebildet wird. Bei dieser Ab-
bildung gehen parallele Geraden zur x-Achse (y = yo) in Halbstrahlen i9 = yo über,
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und Geradenstücke parallel zur y-Achse (x =.x0) mit -7: < y g 7: werden in
Kreise g = e-‘n, (—.-. < 1? g n) abgebildet (vgl. Bild 3.21, 3.22).

‚ i/‘fr ’I;’I/I/’I,’i'

’////’
. I I /
\ ‘o’/”//,,’//i”’%,~.,,VL.,///’r ,,

x ’4’//‚”/«‚/«‚”/r’d"‚'o/«‚'Io"9 we

x s€':\
s ”Iz,”‘//.'>’4:/z”¢* ‘=\\

\\ II{”0-‘7//" \\\\\
x. \\\\ . .\\\\

Bild 3.2l. z~Ebene Bild 3.22. w-Ebene

Analog ließen sich die Periodenstreifen 7: < y g 37:, 37: < y g n, der znEbene
eindeutig auf die längs der negativen reellen Achse aufgeschnittenen w-Ebene ab-
bilden. Um eine eineindeutige Abbildung der gesamten z-Ebene auf die w-Ebene zu
erhalten, müssen wir die w-Ebene als unendlichblättrige, längs der negativen reellen
Achse verheftete Riemannsche Fläche darstellen. Auf jedes Blatt der wir-Ebene wird
ein Periodenstreifen der z-Ebene abgebildet.

Beispiel 3.9: Welche Kurven der z-Ebene werden in der w~Ebene als rechtwinkliges Koordinaten-
netz im 1. Quadranten abgebildet, wenn die Abbildungsfunktion w = [(2) = e‘ lautet?

Lösung: f(z) = e‘ (cosy + jsin y) = u + j l‘, Werden die u- bzw, v-Achse nicht mit berück-
sichtigt, so gilt für das rechtwinklige Koordinatennetz im l. Quadranten u = kl > 0 (const) und
v = k; > 0 (const). Da e" > 0 ist, folgt aus

e"cosy= k, > 0 (3.46)

und
e"siny =kz > 0 _ (3.47)

cos > =>——< <— t
0 r: 7c

y 2 y 2 0<y<7.
siny>0=« O<y<n

Der l. Quadrant der w-Ebene wird somit in einen Streifen der z-Ebene abgebildet, der von der

reellen Achse (x-Achse) und der Geraden y = begrenzt wird. Es genügt, für ein bestimmtes k;

(bzw. k,) einen Kurvenast zu berechnen. Durch Parallelverschiebung längs der reellen Achse kann
dann die gesamte Kurvenschar daraus gewonnen werden. Bei Berücksichtigung von

sin (y + = cos y läßt sich auch die Kurvenschar für (3.46) (bzw. (3.47)) durch geeignetes Ver-

schieben und Drehen gewinnen (vgl. Bild 3.23 und 3.24).
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JV

Ü u

Bild 3.23. z-Ebene Bild 3.24. w-Ebene

3.5.5. Die Logarithmusfunktion

In 3.5.4. hatten wir gesehen, daß mit w =f(z) = e‘ der Periodenstreifen
—n < y g n umkehrbar eindeutig auf die w-Ebene abgebildet wird. Eine umkehrbar
eindeutige Abbildung der gesamten z-Ebene konnte dadurch erreicht werden, daß
die Abbildung auf die unendlichblättrige, längs der negativen reellen Achse der
w-Ebene verheftete Riemannsche Fläche erfolgte. Jedem Streifen 7-. + k - 27: < y
g 3: + k - 27c (k = 0, i 1, i2, ...) der z-Ebene würde also ein Blatt der Riemann-
schen Fläche zugeordnet. Bilden wir also umgekehrt die w-Ebene (Riemannsche
Fläche) auf die z-Ebene ab, so ist genau zu unterscheiden, welches Blatt der w-Ebene
abgebildet wird. In Umkehrung der eben angestellten Betrachtung definieren wir
deshalb

w=Logz=lnr+jz/=ln|z| +jargz=u+jL', 2+0. (3.48)

als l-lauptwert der Logarithmusfunktion. Damit wird die im Nullpunkt punktierte
z—Ebene eineindeutig auf den Streifen —oo < u < oo, —n < v g 7: der w-Ebene
abgebildet. Der im Bild 3.25 dargestellte längs der negativen reellen Achse aufge-
schnittene Kreisring wird z. B. durch die Funktion w = Log: konform in ein

Bild 3.25. z-Ebene Bild 3.26. w-Ebene

Rechteck der w-Ebene abgebildet (Bild 3.26). Man kann leicht feststellen, daß (3.48)
eine in der längs der negativen reellen Achse aufgeschnittenen z-Ebene holomorphe
Funktion ist.

4 ozeuei/Kaiiuur, Komplexe Funktionen
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Für die Ableitung der Logarithmusfunktion folgt nach (3.17) und (3.16)

, . . ax .a1
f(z>=u.+;v.=u.—;uy=—(,“;'z—'— %'Z'

_61n\/x2+y2_.b1n\/x’+y2__ x—-jy _i
' öx by _(x+J'y)(x-jy) _ z

,_1
(Logz)——z—. (3 .49)

Die im Reellen gültigen Rechengesetze für Logarithmen können nicht ins Komplexe
übernommen werden. Es gilt

S-3-11 Satz 3.11: Sind z, z, , z; # O und komplex, dann gilt

Log (2122) = Log z] + Log z; + Zkrrj,

Log—:-1- = Logzl — Log z; + 2k7-.j,
2

Logz" = nLogz + Zkrrj,

Loge‘ = z + 2k7rj.

(3.50)

(3.51)

(3.52)

(3.53)

k is! dabei als ganze Zahl so zu wählen, daß der Imaginärteil der rechten Seiten von
(3.50) bis (3.53) zwischen -11 (ausschließlich) und r: (einschließlich) liegt.

Der Beweis der Formeln (3.50) bis (3.53) soll nur für (3.51) geführt werden:

Z1z
Log;:— = ln Z2

. z,
+_] arg(—z—2—);

daraus folgt

Log —:—5-’= In lzll + jargz, — (ln [22] + jargzg) + 2k :rj
Z

: Logzl — Logz; + 2k:j. I

Beispiel 3,10: In welchem Gebiet ist die Funktion w = Log (z + a) mit a = o: + jfi (m)? reell)
holomorph? Geben Sie die Ableitung w’ an,

Lösung: w = Log (z + a) kann als mittelbare Funktion w = Logn mit q = u + z aufgefaßt
werden:

w = Logn =ln1nl+jargn (n + 0)

=lnlz+u|+jarg(z+a) (z+a+0).

Da für w = Log 17 in der längs der negativen reellen Achse aufgeschnittenen n-Ebene mit v; # 0
Holomorphie besteht, folgt nach den bisherigen Betrachtungen, dal3 Log (z + a) für z # -—a in
der längs der Halbgeraden z = —a + t (— no < I < 0, reell) aufgeschnittenen z-Ebene holomorph
ist (Bild 3.27).

Für alle Punkte des Gebietes —rr < arg (z + u) g 7: gilt mit z # —a

d (Lo ( +a))-
dz gz _z+a (3.54)
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Bild 3.27. z-Ebene

3.5.6. Die trigonometrischen Funktionen

Durch Addition bzw. Subtraktion der beiden Gleichungen

e“ = cosx + j sinx und e"" = cosx — j sinx

und anschließendes Auflösen nach cos x bzw. sin x erhält man

cos x = He" + e”")‚ (3.55)

sin x = 2iJ.(e"" — e""). (3.56)

Diese Gleichungen haben formal betrachtet Ähnlichkeit mit den Definitionsglei-
chungen der hyperbolischen Funktion (vgl. Bd. l, 9.5.). Wir setzen die Funktionen
sin x und cos ‚r ins Komplexe fort (vgl. 5.3.) und erklären:

cos z = ä (e5’ + 6"‘), I (3.57)

sin z = 2ij(e“ — cf”). (3.58)

Es wird sich zeigen, daß die eben getroffenen Festlegungen sich im folgenden als
sehr zweckmäßig erweisen werden, da viele wesentliche Eigenschaften der trigono-
metrischen Funktionen der reellen Veränderlichen auf die trigonometrischen Funk-
tionen der komplexen Veränderlichen übertragen werden. So gelten für die Funk-
tionen cos z und sin z die gleichen goniometrischen‘ Formeln, wie sie für die reellen
Funktionen cos x und sin x bestehen.

Beirpiel 3.11: Beweisen Sie die Richtigkeit der Formeln

a) e052 z + sin’ z = 1 und i

b) sin (Z1 + 22) = sin z, cos z; + cos :1 sin 22,

wenn z, Z1 und z; beliebige komplexe Zahlen sind.

Lösung: Bei Berücksichtigung von (3.57) und (3.58) folgt:

er; + e—Jz)Z + (er: _ e42 )2
a) cos’ z + 5in2 z = _

2 2]

1 .

= T {e252} 2 + 3-2l; _ (em _ 2 + C-213} = L I

4*



52 3. Funktionen einer komplexen Veränderlichen

e51: — e‘ilx e512 + e‘l—‘2 e11’: + e‘iIx ei-'2 w e‘5~'2

Zj 2 2 2j
b) sin zl cos z; + cos z, sin z; =

1 . . . .

= [e:(:.+::) —— extra) + euzra) — e‘!l-’1+Zs)
' J

.4. ei(-‘x*z2J + ei(!2-2.) — extra)- e-iüfiry]

1 _ .

= —7 [eJ(-‘x+Iz> — e‘J(=1+~‘:?]

23

= sin (21 + zz). I

Auf die Ableitung weiterer goniometrischer Formeln soll verzichtet werden
(s. [4]).

Da die Funktionen e” und e‘” fürjede komplexe Zahl z differenzierbar sind, sind
auch cosz und sinz in der ganzen z-Ebene differenzierbar, d. h. in der ganzen
z-Ebene holomorphe Funktionen.

Aus (3.57) folgt durch Differenzieren

(cos z)’ = (jg:+26’. 5, = J7 (e5: — e“) = —L._2je¢ = — sin z.

Analog kann die Ableitung von sin z gebildet werden.

(cos z)’ = — sin z, (3.59)

(sin z)’ = cos z. (3.60)

Als Nullstellen von f(z) = cos z erhalten wir

0 == cosz z —‘;(e*‘ + er”) => e’: = —e”" s em = -1.

NNach (3.44) folgt e“"‘+”’ : e". Mit (3.45) gilt ei“ = e“? ‘k’, und somit folgt

e“"e‘2’ = e"‘"+2"“’. Diese Gleichung ist erfüllt für y : 0 und x = (1 + 2k)£
(k ganze Zahl). Die Nullstellen von cos z liegen also alle auf der reellen Achse:

z,‘ = (1 + 21¢); . (3.61)

Ausgehend von 0 = sin z z —2}J¢(e"‘ — 8"“) erhält man die Nullstellen von sin z:

2„ = kn. (3.62)

Die Nullstellen von sin z liegen also ebenfalls alle auf der reellen Achse und stimmen
mit den Nullstellen der reellen Funktionf(x) = sin x überein.

Zu beachten ist, daß einige im Reellen gültigen Relationen, wie z. B. |sin x| g l,
nicht ins Komplexe übertragen werden dürfen. Darauf sei eindringlich hingewiesen!
Zum Beispiel gilt

1 -L _-L 1 1cos%}=‘?(e’i +e ’1)‘=3<e + F) > l.

Analog zum Reellen definieren wir auch die Funktionen tan z und cot z und deren
Ableitungen.
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Wird x = 0 in (3.57) bzw. (3.58) eingesetzt, dann ergibt sich

cosjy = «HeÜY + Vii”) = He? + e’) : cosh y,
also

cosjy = cosh y. (3.63)

Analog findet man

sinjy = j sinh y. (3.64)

Mit Hilfe der Additionstheoreme erhalten wir

cos z = cos (x + jy) = cos x coshy —— j sin x sinh y, g (3.65)

sin z = sin (x + jy) = sin x cosh y + jcosx sinhy. (3.66)

Damit haben wir die Möglichkeit, die komplexen Funktionen sinz und cosz in
der Form u + jv darzustellen.

Beispiel 3.12: Berechnen Sie a) c und 7, wenn cos (1,1 + j - 1,44) = cs” bzw. b) x und y, wenn

sin (x + jy) = 1,5 e545" gegeben sind.

Lösung: a) Nach (3.65) folgt

cos (1,1 + j ' 1,44) = c_os 1,1 cosh 1,44 — j sin 1,1 sinh 1,44

= 2 e‘5"‘°°.

b) sin(x+jy)=se5“,
sin x cosh y—+ j cos x sinh y = s (cos a + j sin o").

Der Vergleich der Real» bzw. Inraginärteile ergibt

sin x coshy = s cos o’ bzw‚ cos x sinh y = s sin a. (")

Für die weiteren Betrachtungen führen wir folgende Substitutionen ein:

sin’): =%(1—c0s2x)‚ coszx :—}-(1+cos2x),

sinhzy = §(cosh 2y -— l), cosh‘ y = 4)-(cosh 2y + 1). G“)

Aus der ersten Gleichung von (*) folgt:

vs cos o‘ s2 C052 o’
coshy= ‘ =>cosh2y=—+2—.

sin x

Mit C”) ergibt sich daraus

{im + cos 2:7) 2s’(l + cos 2a) — 1 + cos 2x
j h2 2

g-(1—cos2x) 3ms y l—~cos2x

1

—(cosh 2y +1):
2

Aus der zweiten Gleichung von (*) erhalten wir analog

2s2(1 ä cos 20') + 1 + cos 2x
cosh 2 y =i2

1 + cos 2x

Setzen wir die beiden Ausdrücke für cosh 2y gleich, so folgt

[2:2(l + COS 2o) — 1 + cos 2x] (1 + cos 2x)

= [2s’(1 — cos Z0) + l + cos 2x](1 — cos 2x)
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und daraus

cos’ 2x + 2:2 cos 2x 4- 2:2 cos 2:: -1 = 0,

cos2x= -511,/:“~2s2cos2o'+1.
Analog findet man

cosh2y=s2 jg \/s‘— Zs2cos2a+1,

Durch Einsetzen der Werte s = 1,5 und a = 75° erhalten wir xi = 0,22, x2 : 2,92, y, = 1,18
und y; = -— 1,18. Daß beide Wertepaare die Ausgangsgleichung erfüllen, kann leicht gezeigt werden,
wenn man beachtet, daß sin x = sin (1: — x), cos (n — x) = ——cos x, cosh (——y) = coshy und
sinh (—y) = —sinhy sind.

Unter Benutzung der im Beispiel 3.12 angegebenen Substitutionen (**) können
auch Formeln zur Bestimmung von s und a, wenn x und y gegeben sind, für
sin (x +jy) = s ei" hergeleitet werden. Im folgenden sind die entsprechenden For-
meln für die trigonometrischen Funktionen zusammengestellt:

1. cos(x+jy) = cei’:

cos 2x + cosh 2v - Sin X Sinh y
= 7', tany=H-(F: —tanxtanhy.

- - (3.67)

cos2x= c2 i „/c“ — 2c2cos2y +1, cosh2y= c3 i’\'/C4 — 2c2cos2;r +1.

2. sin(x+jy) =se5”:

S = N/—cos 2x + cosh 2y, tan U = cos x sinh y = tanh J.

2 sin x cosh y tan x

cos 2x = -5‘ i ‚l5‘ — 2s’ cos2a + 1, Gag)

cosh2y =5’ i ‘/34 — 23200520‘ +1.

7

3. tan(x+jy) = tei’:

t fl —co‘s 2x + cosh 2y m" T _

_ cos 2x + cosh 2y ’ _

Izm'ny(1 + tanz x) _ sinh 2_\'

tan x (l — tanhz y) — sin 2x

(3.69)

a

tan 2x = 2t cos 7: = —cosr tanhzv = 2tSl1’1T = sin?

1 — t2 sinh (ln r) ’ ' l + t2 cosh (ln t) '

Da die tan—Funktion periodisch in n ist, kann die Anwendung der Formeln für
tan y, tan D‘ und tanr leicht zu falschen Werten führen, wenn man z. B. bei den
Formeln für tany bzw. tan c nicht die entsprechenden Formeln (3.65) bzw. (3.66)
beachtet, Es wurde deshalb in den Formeln für tany bzw. tana das Verhältnis
Imaginärteil zu Realteil aus den Formeln (3.65) bzw. (3.66) mit angegeben. Damit ist
die eindeutige Bestimmung der Winkel möglich, wenn die Vorzeichen von Real- und
Imaginärteil mit berücksichtigt werden. Das Analoge gilt für die Anwendung der
Formel für tan T.
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Betrachten wir die Funktion w = cos z in einem Streifen der Breite 27:, z. B. in
—-7: < x g TC, so nimmt die Funktion jeden von i1 verschiedenen Wert an genau
zwei Verschiedenen Stellen an, da

w = %(e3’ + e‘!")=>ei'= w +\/w’—1

gilt und da jede Quadratwurzel aus einer komplexen Zahl immer zwei Lösungen
besitzt. cos z = +1 folgt für z = 0 und cos z = —1 für z = 1:. Da cos 21 = cos Z2

genau dann gilt, wenn z; = z, + 2k-rc (k ganz) ist, können die beiden Werte +1
und ——1 an keiner anderen Stelle des Streifens angenommen werden. Ahnliche
Betrachtungen kann man für die Funktion w = sinz anstellen. Wegen (3.59),
(3.60), (3.61) und (3.62) ist die durch die Funktion w = cos z (w = sin z) festgelegte

Abbildung überall — außer an den Stellen z = k-rc (z = (1 + 2k) — konform.

Man kann leicht zeigen, daß z. B. zur jy-Achse parallele Geraden der z-Ebene durch
die Funktion w = cos z in konfokale Hyperbeln der w-Ebene übergehen.

3.5.7. Die hyperbolischen Funktionen

Die Definition der hyperbolischen Funktionen oder Hyperbelfunktionen der kom-
plexen Veränderlichen erfolgt ebenfalls analog zum Reellen (vgl. Bd. I, 9.5,):

cosh z = <}(e’ + e"), i (3.70)

sinhz = i(e’ — e"), (3.71)

sinh z e’ — e"
tanh z = — T,

cosh z e‘ + e"
(3.72)

coshz e’ + e“
coth z = m = E? (zgi 0). (3.73)

Aus (3.70) und (3.71) folgt

cosh’ z + sinh? z = %(e2‘ + 2 + e‘2‘ + e“ — 2 + F“) = —ä—(e“ + F“)

= cosh 22,

coshz z + sinhz z = cosh 22. (3.74)

Analog zum Reellen gelten die weiteren Beziehungen:

coshz z — sinhl z = 1, (3.75)

cosh (z, i 22) = cosh zl cosh z; i sinh zl sinh 22, (3.76)

sinh(z1 i 22) = sinh zl cosh z; i cosh 21 sinh 2;. - (3.77)

Die Beweise können analog (3.74) geführt werden.
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Aus der Periodizität von e‘ und e" folgt, daß auch cosh z und sinh z periodische
Funktionen mit der komplexen Periode 27tj sind. Es gilt also für ganzzahliges k

cosh z = cosh (z + k - 2-rrj), r (3.78)

sinh z = sinh (z + k ' Zrtj). (3.79)

Aus (3.70) ergibt sich für z = jy: coshjy = i (e5" + 6'”). Daraus folgt

coshjy = %(cosy+jsiny + cosy —jsiny)‚

coshjy = cos y. (3.80)

Analog erhält man

sinhjy = j sin y, (3.81)

tanhj y = j tan y, (3.82)

cothjy = —j cot y. (3.83)

Damit ergeben sich aus (3.76) bzw. (3.77) die Additionstheoreme

cosh (x i jy) = cosh x cosy i j sinh x sin y, (3.84)

sinh (x i jy) = sinh x cosy i jcosh x sin y. (3.85)

Für die hyperbolische Tangensfunktion folgt

sinh 2x + „ sin 2y

cosh 2x + cos 2y "J cosh 2x + cos 2y '

tanh (x i j y) = (3.86)

Der Aufwand beim Rechnen mit den Kreis— bzw. Hyperbelfunktionen komplexer
Argumente ist relativ groß, da immer erst mit Additionstheoremen umgeformt
werden muß. Stehen keine Hilfsmittel zur Verfügung, die das Berechnen derartiger
Funktionen mit komplexen Argumenten gestatten, empfiehlt sich die Anwendung
der Sinus- bzw. Tangensreliefs (vgl. [7]). In der Elektrotechnik, vor allem in der
Ubertragungstechnik, wird häufig mit hyperbolischen Funktionen und mit Kreis-
funktionen mit komplexen Argumenten gerechnet, so daß insbesondere für Elektro-
techniker ein sicheres Beherrschen geeigneter Methoden zur Berechnung derartiger
Funktionen erforderlich ist.

Beispiel 3.13: In der Übertragungstechnik berechnet sich der Eingangswiderstand W einer Leitung
nach der Gleichung

Z, coshg + Zsinhg

h h + Z‘ ‘h lcos —sin.5’ Z A’

Berechnen Sie den Eingangswiderstand, wenn gegeben sind:

g = 0,97 + j -0,99 (Übertragungsmaß), Z = (600 — j - 910) Q (Wellenwiderstand),
Z, = 560 e"‘°° Q (Abschlußwiderstand).
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Lösung: Nach (3.84) bzw. (3.85) folgt

cosh (0,97 + j - 0,99) = cosh 0,97 cos 0,99+ j sinh 0,97 sin 0,99

= 0,8277 + j » 0,9442 = 1,26 ei'45-8°,

sinh (0,97 + j -0,99) = 0,6197 + j - 1,2612 = 1,41 ei’53v8°.

Mit Z = (600 — j - 910)!) = 1090 e"’5"°")Q ergibt sich dann

706 e!’ -533° + 1537 ei '71"
=Q= 1170 ei<-Wig.

0,8277 + J ~0,9442 + 0,514 - 66,6°

Da e‘ und e" in der ganzen z-Ebene holomorph sind, gilt dies nach (3.70) xund
(3.71) auch für die Funktionen cosh z und sinh z. Für die Ableitungen dieser Funk-
tionen können wiederum die analogen Regeln aus dem Reellen übernommen
werden.

Analog Beispiel 3.12 können auch für die hyperbolischen Funktionen entsprechende
Formeln hergeleitet werden (vgl. [7]).

Aufgabe 3.6: Geben Sie die Partialbruchzerlegung der Funktion
. _ 3 _ . 2 . __fa) = (Z3 l)z (4 + 7)): +122 + 4J 4

(z: — 22) (z: — Z(l — j) z — Zj)
an!

Aufgabe 3.7: Beweisen Sie folgende Beziehungen:

_ _ 1 2k
a) e‘ : e’, b) sin (z + 27:) = sin z, c) tan (z + 2:) = tan z (z 4: 2 n, k ganz),

d)Log(—j)=—%j, enoshoc+jy)=sin(%+y—jx).

Aufgabe 3.8: Berechnen Sie ' a) cos , b) sin (1 - j). c) cosh [::(l + j)].

Aufgabe 3.9: Bestimmen Sie x und y aus tan (x + jy) = 2 e"’5°".
Aufgabe 3.10: Bilden Sie die Ableitungen von folgenden Funktionen

sinh z 1

b =_._._, =

)W 1—cosh2z c)W
a)w=-?—— ,

1—cosz' e"—1



4. Integration im Komplexen

4.1. Bestimmtes Integral

Für die unbestimmte Integration im Komplexen lassen sich die Methoden aus dem
Reellen formal übertragen. Da bei der bestimmten Integration im Komplexen die
Integrationsgrenzen Punkte der komplexen Ebene sind und der die Qrenzen ver-
bindende Weg berücksichtigt werden muß, sind hier noch Analogiebetrachtungen zu
Linienintegralen im Reellen möglich.

Es sei w = f(z) eine in einem Gebiet G definierte stetige Funktion und (E ein Weg
von zo = a nach z„ = b, der ganz in G liegt (Bild 4.1). Für (S gilt die Parameter-
darstellung '

z(t)=x(r)+jy(t) mit oc=t„gtgt„=ß.
Wir teilen das Intervall [oc,fi’] in n Teile, so daß 0c = to < I1 < < t,, = ß gilt und
der Weg 6 in n Teilstücke (S, (i = l, 2, ...‚ n) zerlegt wird. Den maximalen Abstand

Bild 4. l . z-Ebene

zweier benachbarter Teilpunkte z‚_1 ‚ z, bezeichnen wir mit

du = m3X(|Z1“ 20l: |Z2 — Zlls w; ‘Zn - Z:-~11)

f und nennen d„ das Feinheitsmaß der Einteilung E„. Auf jedem L5,. wählen wir einen
beliebigen Zwischenpunkt Cf, zu dem der Parameterwert n mit t‚-_1 g 1,. g I,-

gehört. Man kann sich für jede natürliche Zahl n eine Einteilung E„ vorgenommen
denken. Für die zugehörige Zahlenfolge d„ der Feinheitsmaße soll gelten

limd„ = lim max(]z1 — zol, Izz —— 21], ..., [z,, - z,,_1|) = 0.
neue ‚Heu

Bildet man zu jeder Einteilung 15„ die Summe

1„ =‘:z1(z,- — z,--1)f(€.-), (4.1)

dann kann gezeigt werden, daß 1,, für n —> 3o unter den obengenannten Voraussetzun-
gen gegen den gleichen Grenzwert I strebt. wie auch die Teilungspunkte 2,. und die
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Zwischenpunkte C, auf (S gewählt werden. Diesen Grenzwert nennt man bestimmtes
Integral von f(z) längs des Integrationsweges (X und schreibt

I = “m In = um i C31“ z.-—1)f(Cx) = dlz" (42)
n2ucI=ln-ooo "c

Ist (S in der Parameterdarstellung z = z(t), te [x,;5] gegeben, so gilt für f(z) aufQI
f(z) = f(z(t)) = u(t) + jv(t). Für das bestimmte Integral folgt dann '

Ire) d: = _I§r(z(r>)z'<r) dr = Jfiluo) + j von [>?(t) +jy(r>1 dr.
(S a: o.

Ist (S ein geschlossener doppelpunktfreier Weg, so schreibt man

i f(z) dz bzw. {fif(z)dz.
(i f:

Der eingezeichnete Pfeil gibt an, in welcher Richtung der Weg Q durchlaufen wird.
Wird der Weg (S in mathematisch positivem Sinn durchlaufen, so schreibt man auch

einfach i ß f(z) dz.

ä“
1 \

Beirpiel 4.1: Berechnen Sie 9517:) dz ffirf(z) = 7 und (S: Kreis um Nullpunkt mit Radius g > 0.

G

Lösung: ‘

(i:z(t)={>e5’, 0§t§27:. i

2(1) = jg e3‘.

Nach (4,3) ergibt sich

v 27x

dr =jJdt= Zrrj.

t: o o

Die nachstehend aufgeführten vier Sätze können mit vorausgesetzter Stetigkeit
von f(:) längs des Weges C aus der Definition des bestimmten Integrals hergeleitet
werden.

Satz 4.1: Ersetzt man den von a nach b verlaufenden Weg (S durch den entsprechenden
von b nach a führenden Weg —CS (6 wird in umgekehrter Richtung durchlaufen), so

ändert sich da5 Vorzeichen der Integrals:

„|‘/<z)dz : — l f(z) dz. (4.4)
Je

(4-3) V

S.4.l
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S.4.2 Satz 4.2: Wird der von a nach b führende Weg (S durch den Punkt c in die beiden
Wege (S1 und (S; geteilt, so gilt (G = (S, + G2)

g f(z) dz = J/'(z) dz +@J'f(z) dz (4.5)

(vgl. Bild 4.2).

Bild 4.2. z-Ebene

S.4.3 Satz 4.3: Ist c eine beliebige komplexe Konstante, so gilt

E! cf(z) dz = c M2) dz. (4.6)
u’

S.4.4 Satz 4.4:

f [f1(z) +f2(2)] dz = ff1(z) dz + ff2(z) dZ- (4-7)
6 (Se

Für die Abschätzung von Integralen kann folgender wichtige Satz ausgesprochen
werden:

S.4.5 Satz 4.5: Ist [f(z)] g M für alle Punkte z ton CS und l die Länge des Weges (S, dann
gilt die Abschätzung

l f(z) dzl g 4 If(z)I ldzl g MI. (43)

dz
z"—./'0

Beispiel 4.2: Geben Sie für das Integral f längs des im Bild 4.3 angegebenen Weges für

(S

|z"J > lznl eine Abschätzung an (20 = go e"! komplexe Konstante)!
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Lösung: Weg (S:

z<r>=eei', ~32:
2

||/
\

N
]

P
I

Mit (2.8) gilt ]z" — 20i g Hz”! — [z0H, und damit ist

z = T z ___ = e,W >| 1 < l I
z" - zo 11z"\—\za|| e" -eo

Die Länge I des Weges (S beträgt 1 = g n, so daß sich nach (4.8)

dz g 97:

Z" “ 7o 9" — 90
(T,

ergibt.

‘J’?

Bild 4.3. z-Ebene Bild 4.4. 2-Ebene

In der Einleitung zum vorliegenden Abschnitt hatten wir darauf hingewiesen, daß
im allgemeinen die Integration nicht nur von den Grenzen, sondern auch noch von
dem die Grenzen verbindenden Weg abhängt. Wir wollen dies an einem Beispiel
demonstrieren.

Beispiel 4.3: Berechnen Sie J z‘dz‚ wenn Li
U

a) die geradlinige Verbindungssxrecke von -1 nach 1 + j,
b) der Streekenzug von -1 über +1 nach I + j ist (Bild 4.4).

Lösung: a) Nach (2425) folgt für

6,:z(r)= —1+t(I+j+ l)= -—I+21.+jI,
= —1+2t—j1= —l+t(2—j), z'(:)=2+j, 0§t§ 1.

. l
1x=j [-1+f(2 -j)](2+j)dI=7(1— 2J).

o ‘ .

b) (£21:z(r)=—1+2r, f(z(!))=—1+2t, z‘(r)=2, 0§t§1.

1„ =i(—1 + 2t)2dz=0.

<»S22:z(:)=1+jr. f(z(r>)=1—Jt. z'(r)=j. ogzgn

I,2=f(l—j1)jdr=l(1+2j). I,=I2,+I,,=§(1+2jn.
o
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Obwohl die Integrationsgrenzen und die Integranden in a) und b) übereinstimmen, ergeben sich
für die beiden Integrale verschiedene Ergebnisse.

Aufgabe 4.1: Längs des Weges Ci ist das Integral(Bld4 ) {e'dz zuberechnen:a)(£=(§,,b)(E=U“+622
i .4. 'G

Aufgabe 4.2: Berechnen Sie das Grundintegral der Funktionentheoriegs (. — :0)" dz (n ganzzahlig)

längs eines Kreises mit Radius g und Mittelpunkt zo (komplexe Konstante)!

Aufgabe 413: Geben Sie eine Abschätzung für l J. z" dz | (ne N), wenn‘ (S der Kreis um zo = 0 mit
Radius g ist‘. (s,

4.2. Cauchyscher Integralsatz und Folgerungen

In Aufgabe 4.1 konnte festgestellt werden, daß das betrachtete Integral tmit
f(z) = e’ bei gleichem Anfangs- und Endpunkt des lntegrationsweges für die beiden
verschiedenen Wege (S, und (S; das gleiche Ergebnis lieferte, während dies im Bei-
spiel 4.3 fürf(z) = Z nicht zutraf. Währendf(z) = e’ eine überall stetige und differen-
zierbare komplexe Funktion ist, stellt f(z) = E eine zwar überall stetige (vgl. Bei-
spiel 3.5c)), aber nirgends differenzierbare Funktion dar. Es taucht also die Vermutung
auf, daß die Abhängigkeit eines Integralwertes vom Integrationsweg im Zusammen-
hang mit der Differenzierbarkeit der Funktion f(z) steht. Nach Cauchy gilt folgen-
der fundamentaler Satz für die Theorie und die Anwendungen der Funktionen kom-
plexer Veränderlicher: _

Satz 4.6 (Cauchyscher Integralsatz): Ist die Funktionf(z) in einem einfach zusammen-
hängenden Gebiet G der z-Ebene holomorph, so hat das Integral

b

I = {f(z) dz z M2) dz
e a

(4.9)

für jeden ganz in G van a bis b (komplexe Konstanten) verlaufenden Weg G densel-
ben Wert.

Aus diesem Satz folgt unmittelbar eine zweite Form. Wählen wir in G zwei Verschie-
dene Wege von a nach b, etwa (S1 und 6;, so gilt für holomorphe Funktionen f(z)
J‘ f(z) dz=_|' f(z) dz und daraus _|’f(z)dz+ J‘ f(z)dz=O. Es gilt somit, da

e, et e, 4;,
(S1 —— (Ü; eine geschlossene Kurve darstellt (Bild 4.5), der folgende Satz:

Satz 4.7 (Cauchyscher Integralsatz): Ist f(z) in einem einfach zusammenhängenden
Gebiet G holomarph, so hat das Integral über f(z) längs jeder geschlossenen, ganz in G
verlaufenden Kurve G den Wert null:

gifiz) dz = 0. (4.10)

Beweis: Aus (4.3) folgt

Jf(z) dz = im — vy')dt + 1' f(uy' + w'c)dt,

:‘f(z)dz i‘ (u dx — u dy) + (u dy + udx). (4.11)
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Aus der Theorie der Kurvenintegrale (man vgl. z. Band 5) ist bekannt, daß der
Wert des über eine geschlossene Kurve G in einem einfach zusammenhangenden Ge-
biet G erstreckten Integrals

. f; (Pony) dx + Qbny) dy)

gleich nuIl ist, falls die Integrabilitätsbedingung P, = Q, erfüllt ist.

Bild 4.5. Geschlossene Kurve in der Bild 4.6. Mehrfach zusammenhängendes
z-Ebene Gebiet in der z-Ebene

Wendet man dieses Ergebnis auf die beiden ‘reellen Linienintegrale auf der rechten
Seite von (4.1 l) an, dann folgen daraus die Gleichungen

“x = Dy) "y = —vx:

die als Cauchy—Riemannsche Gleichungen für holomorphe Funktionen f(z)
= u(x, y) + jv(x‚ y) erfüllt sind. I

Ein Beweis mit weiteren funktionentheoretischen Betrachtungen wird z. B. in [13],
Teil ll, geführt.

Wegen seiner Bedeutung nennt man den Cauchyschen Integralsatz auch Haupt-
satz der Funktionentheorie. Dießeschränkung des Cauchyschen Integralsatzes auf
einfach zusammenhängende Gebiete ist wesentlich, denn wir hatten schon im Bei-

spiel 4.1 gesehen, daß das Integral f —]z— dz # 0 ist, wenn der Weg 6 z. B. der Kreis

um den Nullpunkt mit Radiusg ist.¢f(z) = 1T ist in diesem Fall in der ganzen z-Ebene

mit Ausnahme des Punktes z = 0 holomorph. Das Gebiet G ist also die im Punkt
z = 0 gelochte z-Ebene, ein zweifach zusammenhängendes Gebiet. Läßt sich in
einem mehrfach zusammenhängenden Gebiet G’ (Bild 4.6) ein einfach zusammen-
hängendes Gebiet G derart angeben, daß die Integrationswege vollständig in G ver-
laufen, dann kann in diesem Gebiet natürlich ebenfalls der Cauchysche Integralsatz
angewandt werden. Ohne Beweis sei angegeben, daß der Satz auch gilt, wenn (53

ganz oder teilweise auf dem Rand von G liegt. Dazu wird vorausgesetzt, daß f(z)
in dem einfach zusammenhängenden und abgeschlossenen Gebiet G holomorph ist.

Aus dem Cauchyschen Integralsatz können eine Reihe Folgerungen gezogen
werden, die vor allem auch für die praktische Anwendung dieses Satzes von Bedeu-
tung sind:

Satz 4.8: G21 und (S; seien zwei geschlossene doppelpunktfreie Wege in einem beliebigen S.4.8
(auch mehrfach zusammenhängenden) Gebiet G der z—Ebene, wobei (S; ganz im Innen-
gebiet von (S, liegt und beide im gleichen Sinn orientiert sind. Dann gilt für eine in G
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halomarphe Funktion f(z)

(im) dz = 43f(z) dz, (4.12)
u G}

falls dar durch CS1 und 62 gebildete Ringgebiet ganz zu G gehört, unabhängig davon,
ab das im Innern von (S; liegende Gebiet ganz zu G gehört oder nicht (Bild 4.7).

Bild 4.7. z-Ebene Bild 4.8. z-Ebene

Beweis: Falls das lnnengebiet von (i. = (S1 1 + (S12 ganz zu G gehört, gilt der Cauchy-
sche Integralsatzz

3§f(z)dz = ff/(z) dz = 0.
Li 022

Gehört das Innengebiet von (£2 = (S21 + €22 nicht zu G, so verbinden wir (S, und (S;

durch zwei Wege S, und S2 (Bild 4.8), so daß das zweifach zusammenhängende
Ringgebiet in zwei einfach zusammenhängende Teilgebiete zerlegt wird, in denen
jeweils f(z) holomorph ist. Nach Bild 4.8 folgt mit

L:‚=s.+(s„—s2—c2„ und 6,,=S2+6,1—S, -621,

5‘;f(z)dz+ 5in2) dz = f(z) dz + im) dz = o, (4.13)

G: 511 G1 -52

da sich die beiden Integrale längs der Wege S1 und S; aufheben und f(z) in den
einfach zusammenhängenden, von LE, und 6„ umrandeten Gebieten holomorph ist.
Aus (4.13) ergibt sich damit

93/<2) dz = 545 f(z) dz. -
Q‘, u’;

Der Wert des Integrals in (4.12) ist von der Form des Weges, der den Innenbereich
umfaßt, unabhängig. So kann z. B. das Ergebnis von Aufgabe 4.2 dahingehend
erweitert werden, daß

f§(z — zu)" dz = i0 für n * -1 (n ganz) (4.14)
(g l2rzj für n = —1 y
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für alle geschlossenen doppelpunktfreien Wege gilt, die den Punkt z = 2„ um-
schließen (mathematisch positiv).

Satz 4.8 kann verallgemeinert werden. Es gilt der

Satz 4.9: Sind (S und Ci (i = 1, 2, ..., n) geschlossene doppelpunktfreie und gIeic/z- S.4.9
sinnig orientierte Wege in einem abgeschlossenen Gebiet G, wobei die G, ganz im
Innengebiet von ES liegen und sich gegenseitig nicht kreuzen, dann gilt für eine in G
holomorphe Funktion f(z)

im) dz = ffflz) dz. (4.15)

[31 (X,-

Der Beweis dieses Satzes kann analog wie der Beweis von Satz 4.8 geführt werden.
Satz 4.9 sagt aus, dal3 in einem mehrfach zusammenhängenden Gebiet der Wert
des auf einem geschlossenen Weg gebildeten Integrals nur davon abhängt, welche
nicht zu G gehörende Bereiche umschlossen werden (Bild 4.9),

Bild 4.9. z-Ebene Bild 4.10. z-Ebene

-d
‘_ i; für a) U" = 6,: Kreis um z = 0 mit Radius 0 < g < l.Beispiel 4.4: Berechnen Sie?’ 1

G
b) Li = L52: Kreis um z = 0 mit Radius g >1, c) Li = 63: Kreis um z = l mit Radius 0 < g < 2,

d)Q = 4. Streckenzug 0, 2 — Zj, 2 + Zj, O (Bild 4,10).

L6sung:f(z) = l :22 ist mit Ausnahme der beiden Punkte :1 = 1 und :3 = -1 in der gesamten

z-Ebenc holomorph. Durch Partialbruchzerlegung folgt

z l l l ‘

f( > = = — _ (———— + ‚

Z l — z’ 2 z — 1 z + 1

also gilt
I __ § zd: i l dz + dz

_ 1-—z2_ 7{ 241 2+1}
(X Ki ’ 02

a) Da G, die Punkte z; und z; nicht einschließt, folgt nach dem Cauchyschen Imegralsatz

dz dz
= ._; = o 2 1 = o_

z — l z + l
G! Ü:

5 Greuel/Kmln: r, Komplexe Funktionen
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dz

z—~1
b) Nach Satz 4.8 und (4.14) folgt ä = 2:j und analog

(S:

d’ 2'1 12' 2‘ 2'2+] — n]: ———5(7r]+1._])——7T].

G2

c) Nach (4.14) folgt j; z _ 1 = 27:j. Da z; ‚= -1 außerhalb von L’; liegt, folgt

(Sa

dz 1

j«=0 I=——— t’ =—7:‘.

(S3

d) Nach (4.12) kann anstelle von [S4 auch CS3 als Integrationsweg gewählt werden, so daß wiederum
I = —rr j folgt.

a: Aufgabe 4.4; Berechnen Sie fife); (ms N)längs folgender Wege (positiv orientiert)
— o

(E

a) 0L = 0L1:Ellipse z(t) = a cos t + j b sin tmitO g t g Zn und lal < 120l, jbl < lzgl, m6 = (S2: Kreis
um z = zo mit Radius g > 0. c) G : (S3: Quadrat um z = zo mit den Eckpunkten zu — (1 + j),
zo +(1—j),ZD +(1+j)undz0 — (1 —j).

4.3. Berechnung von Integralen mit Hilfe von Stammfunktionen

D.4.1 Definition 4.1: Jede in G holamorphe Funktion F(z), deren Ableitung die Gleichung
c

F’(Z) = f(z) (4-16)

erfüllt, heißt Stammfunktion von f(z).

Ohne Beweis wollen wir folgenden Satz angeben:

S.4.10 Satz 4.10: 1st f(z) in einem einfach zusammenhängenden Gebiet G holomorph und 20
ein fester Punkt von G, dann ist auch

F(z) = f<c> d:

eine in G holomorphe Funktion der oberen Grenze z, sofern der Integrationsweg nur
ganz in G verläuft, aber sonst beliebig ist. F(z) ist Stammfunktion zuf(z)‚ d. h., es gilt
F ’(Z) = f(z).

Die Ermittlung der Stammfunktion erfolgt analog zum Reellen. Ist F1(z) eine
Stammfunktion von f(z)‚ dann gilt F{(z) = f(z)‚ und für jede komplexe Konstante C1
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folgt [F‚(z) + C1]’ =f(z), also ist auch F1(z) + C1 Stammfunktion von f(z). Stellt
F3(z) ebenfalls eine Stammfunktion von f(z) dar, dann gilt mit [F2(z) + C2]’ =f(z):

o = [Fz(z) + C21’ — [F,(z) + c‚]' = [Fz(z) — F1(z) + C2 — C11’.

Nach (3.10) folgt, daß F„‚(z) — F1(z) gleich einer Konstanten sein muß. Zwei Stamm-
funktionen unterscheiden sich damit nur um eine additive Konstante:

F_‚(z) = F,(z) + C. (4.18)

Wir hatten schon mehrfach Sätze aus der reellen Analysis in das Komplexe über-
tragen können. Bezeichnen wir mit F(z) irgendeine Stammfunktion von f(z), dann
nennt man die Summe F(z) + c, wobei c eine beliebig wählbare Konstante ist,
unbestimmtes Integral:

_['f(z) dz = F(z) + c. (4.19)

Für die unbestimmten Integrale im Komplexen können ebenfalls Sätze aus dem
Reellen übernommen werden, so z, B. die allgemeinen Integrationsregeln, die For-
meln für die Grundintegrale (vgl. Bd. 2) und der Satz über die partielle Integration.
Es gilt also

_lf(z)g’(z) dz =f(Z) g(Z) - „I. g(Z)f'(z)dZ» (4-20)

Die Frage nach dem Gültigkeitsbereich der entsprechenden Formeln muß immer
beachtet werden.

Satz 4.11: Ist f(z) in einem einfach zusammenhängenden Gebiet G holamorph und S.4.ll
besitzt in G die Srammfunktion F(z), dann gilt

b

_|‘/(2) dz = F(b) — 1-‘(a) = F(z)}, (4.21)

falls a, b (komplexe Konstanten) und (S in G liegen. Das Integral ist vom Weg unabhängig.

Beweis: Aus F(z) + C : |‘f(;“)d;° folgt für z : a: F(a)i1— C = 0, also gilt C = —F(a)‚
b .

a

‚ u

und für z = b: ‘l f(Z) d: = I-"(b) + C. und damit ffG) d: = F(b) — F(a). I
a

Beispiel 4.5: Das Integral je‘ dz ist längs folgender Wege zu ermitteln: a) 0",: Geradlinige Verbin-
L5}

dung Von I nach j, b) (S2: Kreisbogen um den Nullpunkt von 1 nachj (Bild 4.1l).

JLV

j
-[2

Bild 4.11. z-Ebene
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S.4.12

' die Punkte a, b (komplexe Konstanten) verbindet und ganz im Holoinorphiegebiet von f(z) =
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Lösung: Für [(2) = e‘ ist F(z) = e’ eine Stammfunktion, da (e’)’ = e’ gilt. Somit folgt nach
(4.19)

i ,.

|e‘dz= e’ =e' —e=cos1'+jsin1 ——e= —2,178+j-0,841
1

für alle Wege (i, die l und j verbinden undvganz im Holotnorphicgebiet von /"(z) = e‘ liegen. Das
trifit auch für die unter a) und b) genannten Wege zu. .

, : =% zu (komplexe Kon—Aufgabe 4.5: Bestimmen Sie eine Stammfunktion zu a)f(z) = l
s z ~ "

1

stame), b) f(z) = 7z2—2—, z 4: i ja (komplexe Konstante) und geben Sie das Gebiet an, in dem
+ z

diese gültig ist. '

Bemerkung: Benutzen Sie bei b) das Ergebnis von a),

‘ dz
Aufgabe 4.6: Berechnen Sie J (Z_ zu)"

x’

(rte N, z # :0. komplexe Konstante) für den Fall, daßki

liegt. Geben Sie ein einfach zusammenhängendes Holomorphiegebiet fürflz) an. l: 4 2°)"

Aufgabe 4,7: Berechnen Sie zsin zdz, wennfl" a) die Punkte l. -1 verbindet und b) ein ge-
(S

schlossener Weg in der z-Ebene ist.

4.4. Caucltysche Integralformel

Als wichtigste Folgerung aus dem Cauchyschen Integralsatz ergibt sich der

Satz 4.12 (Caucltysche Integralformel): Es sei f(z) in einem einfach zusammenhän-
genden abgeschlossenen Gebiet G hoIomorp/i. das von einem doppelpunktfreien positiv
orientierten Weg (S begrenzt wird. Dann gilt die Beziehung

1 f(:) d“f(z) = mä 5 _ (4.22)

Beweis.‘ Mitf(C) =f(z) + [f(C) —f(z)] und (4.7) gilt

f(C) d: _ f(z) d: + im“) -f(z) d.
„ L‘ — z fi ‚ f — z L:— z "

G CS KS

Mit (4.14) folgt

5f’}%‘— = 2:1‘/<2) + d: <*>

(S (i

Nach (4.12) können wir für das rechts stehende Integral als Weg (S einen Kreis um
den Punkt z mit Radius g, 5(1) — z = g e" (0 g I; 2:), und wegen der voraus-
gesetzten Stetigkeit von f(;°) diesen Radius beliebig klein wählen. so daß |f(,“) — f(z)[
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< s für alle I Gilt, die auf dem Kreis liegen. Nach (4.8) gilt mit |§ — 2| = g die Ab-
Schätzung

Wo) ~f(z) d/’~<

5- z 5
U

f(C) “f()§—:—2:Q =2ne=§1%dI= 0.

G

Aus (*) folgt dann (4.22). I
Die Cauchysche lntegralformel besagt, daß für eine in G holomorphe Funktion

f(z) alle Funktionswerte f(z) im Innern eines geschlossenen Weges (S berechnet
werden können. wenn nur die Funktionswerte f(£) auf dem Rand CS ‚bekannt sind,
Die Eigenschaft der Holomorphie beinhaltet eine starke innere Verkettung der
Funktionswerte. lm Reellen kann eine derartige Aussage nicht gemacht werden.

Durch Bezeichnungsänderungen von z durch :0 und C durch z erhält die Cauchy-
sehe Integralformel (4.22) die Gestalt

_ l " f(z) _ ‚‚am — 2m. Z _ Z0 d-. (4.22)

Die Cauchysche Integralformel läßt sich auf mehrfach zusammenhängende ab-
geschlossene Gebiete ausdehnen. Ist f(z) in einem zwischen den beiden Kurven (S, _

und (S, liegenden Ringgebiet G (Bild 4.12) einschließlich der Ränder holomorph, so

kann unter Anwendung des Cauchyschen lntegralsatzes die Gültigkeit von .

f(z) = (5)2 d: — L f“) d: (4.23)

(S: .

27cj C — z
G:

nachgewiesen werden.
Dabei ist C im ersten Integral ein Randpunkt auf (S1 und im zweiten Integral ein

Randpunkt auffiz. Beide Randkurven (5„ und (S; werden gleichsinnig durchlaufen.

Bild 4.12. z-Ebene

Beispiel 4.6: Für eine in der gesamten z-Ebene holontorphe Funktion g(z) mit g(2) d; 0 und
g(- j) # 0 berechne man

'_ ‘ g(z) _

I':'(z—2)(z+j)d"
wenn (E der mathematisch positiv orientierte Kreis

a)(§=C¥1:[zl=g mit 0<g<1‚
c)(\I=G3:lz+jl=g mit 0<g<l, d)ü=ki„clzl=g mit g>2
ist.
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Lösung: Partialbruchzerlegting:

1 _ 1 1 1

‘2im(7—-2‘—T+j)'
I=(£ g(z)dz =_1_[§ g(z) “ü; 5(2) dz}

V ..—2)(z+j) 2+‘ z~2 z+j
e o; J

a) Die Pole 201 : 2 und 202 = —j liegen nicht innerhalb von 6„ also gilt nach (4,10)
I = I, = 0. b) Da nur zm = 2 von (£2 umschlossen wird, ist

fig g(z>A (11:08
z+j

G32

. . g(z) , ‚ ‚

und mit (44220 folgt g(2) t 27:1 = 2 dz; somit ergibt sich
. Z‘

(52

1 g(z) 1 2
I=I= d= -:'=—’ —': ..z 2+J.3€z_2 z 2+J.g(2) 2 J 51(2 J) gm,

(52

1= 12 = (2/5) (1 + 2j)T‘g(2).

-1 3(2) -1 . . 2 . .

C) 1=Is= z+j ä z+j dz= 2+jg(~J)-2wJ= ~;(1+25):g<—J)<
Ü:

d) 1=I2+13 =(2/5)(1+2j)r=[g(2)~g(~jJ].
Aus der Cauchyschen Integralformel kann eine weitere grundlegende Beziehung

hergeleitet werden, die hier nicht bewiesen werden soll. Unter den gleichen Bedin-
gungen wie in Satz 4.12 gilt

S.4.l Satz 4.13: Besitzt f(z) im einfach zusammenhängenden abgeschlossenen Gebiet G die
erste Ableitung f’(z), so existieren in G auch sämtlielie Ableitungen höherer Ordnung,
und es gilt ‘Lg’-

1 7‘

f<n)(z) = ff d: (4.24)

bzw. n‘ 6 f(z) dz

f"')(zD) = ' (n = l. 2. .„). (4.24')
2m’ V (z — zor“

LL

Sämtliche Ableitungen einer holamorplien Funktion f(z) sind nieder /zolomorph.

Dieser Satz zeigt deutlich, welche Auswirkungen die Holomorphieforderung be-
sitzt. Eine derartige Schlußfolgerung konnte bei Funktionen einer reellen Variablen
keineswegs gezogen werden,

3

Beispiel 4.7: Mit Hilfe von Gleichung (4424) berechne man (g

z(t)=2cosr+j-3sint,0§t§27:, gewählt. e; Z J’

Lösung: Nach (4.24’) gilt n + 1 = 3 und f(z) = 23 => f”(z) : 6:. und mit :0 =j folgt

IMO 2! (f; z3dz § 23 dz fno _ 6
= T T: —_._.— = 1: = — 7:.

’ my (z-ir (z-Jr ’ ’
(S GE

Als WegQ wird die Ellipse
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Mit (4.24) kann gezeigt werden, da13 der Cauchysche Integralsatz umkehrbar ist:

Satz 4.14 (Satz von Morera): Ist für eine in einem einfach zusammenhängenden Gebiet
G stetige Funktion f(z) undfür alle in G liegenden geschlossenen Wege G

«:fif(z) dz = 0,

dann ist f(z) in G holomorph.
z

Beweis: Das Integral F(z) = ff(Z) di ist nach Voraussetzung vom Weg unabhängig,

also gilt nach Satz 4.10 für die in G holomorphe Funktion F(z): F’(z) = f(z). Nach
Satz 4.13 müssen dann aber auch F”. F", ..., d. h. also auch f’(z)‚ f”(z). exi-
stieren; somit ist f(z) in G holomorph. I

Satz 4.15 (Cauchysche Ungleichung): Ist f(z) im Innern und auf dem Rand eines
Kreises (S mit Radius Q und Mittelpunkt zo holamorph und gilt auf (E I f(Z)| S M
(Konstante), dann gilt die Ungleichung

n! M
en

Beweis: Nach (4.24’) folgt mit z = zo + g e“ (O g t g 27:)

|f""(zo)| g (n = o, 1,2,...) (4.25)

27: _

n! f(Zo + 9 e")
(Q ej:)..+1f‘”’(Zo) = 2W. 0J e“ d! -

0

Durch Betragsbildung und Anwendung von |f(z)[ g M und (4.8) ergibt sich
211

m _ M 2 n! Mlf can g 2x f 9, at 9.

0

Aus der Cauchysehen Integralformel kann eine Beziehung hergeleitet werden, die
für die Berechnung von Randwertaufgaben für ebene Felder von Bedeutung ist.
Für eine im Innern eines Kreises K: z = R eh” analytische Funktion w = f(z) gilt
für einen beliebigen Punkt z = r e5‘? (R > r) nach (4.22)

27: R I I 27: _

w ' w W
f(z) z %j_f dw = 21_Wff(R eiw) 

o o

Raw _ r CW. (4.26)
R eilt — r e59’

2

Geht 2* durch Spiegelung aus K hervor, d. h., gilt 2* = 1% e50’, dann liegt 2* außer-
7‘

halb von K, und {L ist eine im Innern und auf dem Kreis K selbst holomorphe
— z

Funktion. Somit gilt
27:

1 f(C)d;‘ 1 . re“"
° ‘F; ‚u?‘ Zn ff‘R°’”)j‘resw_Rew

K

du). (4.27)

S.4.14

S.4.lS
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Aus der Differenz (4.26)—(4.27) folgt dann bei entsprechender Umformung

— 2Rr eos (zp — (p) + r’ du)"

21':

1 . R2 — r’
f(2) = E f/(R ein R.

0

Mit f(z) = u(r, m) + j v(r, (p) erhält man durch Vergleich der Realteile beider Seiten
die sog. Poissonsche Integralformel

27c 2 Z

1 R — r

“l” 9”) - E l "m, w)
0

du). (4.28)

Die Werte einer beliebigen harmonischen Funktion im Innern eines Kreises K
können also durch die Randwerte dieser Funktion ausgedrückt werden. Die Poisson—
sehe Integralformel kann u. a. auch für die rechte Halbebene (vgl. [16]) oder die
obere Halbebene (vgl. [12]) entwickelt werden. Bei der 1. Randwertaufgabe der
Potentialtheorie (Dirichletsches Problem) sind die Randwerte vorgegeben, so dal3 mit
Hilfe der Poissonschen Integralformel unmittelbar eine harmonische Funktion ge-
wonnen werden kann, die diese Randwerte annimmt.

Ohne Beweis wollen wir noch das Prinzip vom Maximum angeben. Ist in (4.26)
z = 0, d. h.‚ untersuchen wir die holomorphe Funktion f(z) im Mittelpunkt des
Kreises (E, dann folgt

2.1 2:2

1 R 5“’ "R 3"d l .f(0) =mf = .2.;.yf(R 6-Jv)d1/,_

0 0

Also ist der Wert einer holomorphen Funktion f(z) im Mittelpunkt des Kreises (f,

(z = 0) gleich dem arithmetischen Mittel ihrer Werte auf dem Kreisrande. Mit
Hilfe der eben hergeleiteten Formel kann ein äußerst wichtiges Prinzip der Theorie
der analytischen Funktionen aufgestellt werden, das sog.

Prinzip vom Maximum: Ist die nie/nkonstazzte Funktion f(z) im einfach zusammen-

hängenden abgeschlossenen Gebiet G /10/omorp/1, dann nimmt der Absolutbetrag von

f(z) seinen größten Wert in keinem inneren Punkt von G. sondern nur aufdem Rand von

G an. '

Diese Aussage läßt sich auch auf mehrfach zusammenhängende Gebiete ausdeh-
nen.

s5

» 2 + ' d
Aufgabe 4.8: Berechnen Sie I = 43' (Z H) z für den Fall, daßö ein mathematisch positivéz2—(1+j)z+j
oriemierxerKreismi1a)(S,:1z—1|=g,0<9<];b)G2:iz1=g,0<g<1;c)G3:lz—jJ=g,
0<g< l;d)Ü42lzI=g,g> List.

Aufgabe 4.9: Bestimmen Sie I = f Zzzcjs; dz für a) (S1: Kreis um den Nullpunkt mit dem Radius-7
:

0 < g < 2; b) CS2: Quadrat mit den Ecken 5, 53', -5, —5j (G mathematisch positiv orientiert).

v? Aufgabe 4.10: Man berechne (i; wenn (T, der Kreis lz '— Zl = Q, g > 0, ist.

(i

__;
(z —.- 2)”
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5.1. _ Reihen mit komplexen Gliedern

Anknüpfend an die Ausführungen im Abschnitt 2.3. und die Aussagen im Reellen
über Zahlenfolgen und Reihen, werden jetzt Reihen mit komplexen Gliedern be-
trachtet. Wir bilden also analog zum Reellen aus einer komplexen Zahlenfolge
:0, 2,, 23, (z, komplexe Zahl, v = 0, l‚ 2, ...) den Ausdruck

(5.1)
F

M
s

z0+z,+z2+...: z,
0

und nennen (5.1) unendliche Reihe mit komplexen Gliedern. Unter einer Teilsumme
oder Partialsumme von (5.1) Verstehen wir

s„=z0+z1 + (5.2)

Definition 5.1: Eine unendliche Reihe (5.1) heißt konvergent, wenn die Folge ihrer
Teilsummen konvergiert. Der Grenzwert

s = lim 5,, (5.3)
„am

heißt Summe der Reihe (5.1).
Mit Hilfe von Satz 2.3 kann leicht der folgende Satz nachgewiesen werden.

Satz 5.1: Eine Reihe komplexer Glieder

LL
M

S w .a:gm+w»
„

konvergiert dann und nur dann, wenn die Reihen der Real- und Imaginärteile, also
J.‘ eo

2 x„ und Z y„ konvergieren.
i O =

V=Wird (5.vl) als konvergent vorausgesetzt, so gilt für die Partialsummen

und lim s,,_1 = s,
n—»oo

Iim 3,, = s
„am

und daraus folgt die notwendige (aber nicht hinreichende) Konvergenzbedingung

1mm—ua= am
naoo

lim 2„ = 0.
n~>00

Betrachten wir die aus der Reihe (5.1) durch Betragsbildung entstehende Reihe

ü)

lzol + 121l + I22! + = Xolzyl, (5.5)
..

D.5.l
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so erhalten wir eine Reihe mit nur positiven Gliedern. Es gilt

Satz 5.2: Aus der Konvergenz der Reihe Z6 |z„| folgt die Konvergenz der Reihe Z z...
y=o I/=0

Beweis: Da |z„| = \/x3 + y? gilt, folgt daraus lz„| g |x„| und |z‚l g |y„l‚ so daß
warmem? _ o0 l7) g

Z |z„| eine Majorante von Z |x„I und von Z |y,.| 1st. Da (5.5) als konvergent
v=0 v=0 ac I/=0 no

vorausgesetzt war, müssen also auch Z x, und Z y, absolut konvergieren, d. h.‚
V—0 V

daß nach Satz 5.1 auch Z z. konvergiert. l
-=0

Für das Rechnen mit konvergenten Reihen im Komplexen kann man die gleichen
Regeln wie im Reellen anwenden. Es gelten die folgenden Sätze: i

Satz 5.3: Sind Z z, und Z0 z: konvergente Reihen mit komplexen Gliedern und a, b
„zu V=Ü

beliebige komplexe Zahlen, dann gilt
00 U3 d)

a Z z, + b‚Z z; = Z (112,, + bzfi‘). (5.6)
v=0 I/=0 v=0

Der Beweis kann erfolgen, indem die Untersuchung durch z, = x, + jy, und
z,’,* = xi‘ + j y’; auf Reihen mit reellen Gliedern zurückgeführt wird. Führen Sie dies
aus!

Definition 5.2: Eine Reihe mit komplexen Gliedern (5.1) konvergiert absolut, wenn die
Reihe der Absolutbeträge der einzelnen Glieder (5.5) konvergiert.

Man beachte, daß die Umkehrung der Aussage in Def. 5.2 nicht gilt. Es gibt kom-
plexe Reihen, die zwar konvergent, aber nicht absolut konvergent sind. Derartige
Reihen nennen wir dann bedingt konvergent, andernfalls unbedingt konvergent.

CC O0

Satz 5.4: Für absolut konvergente Reihen mit komplexen Gliedern Z 2,, Z 2;" gilt
v=0 v=0

(z z.) ( 2 n) = 2 (5.7)
14:0 I/=0 n=0

mit

2„ = ;0z,z;«_, (n: o, 1,2, ...). (5.8)

5.2. Funktionenreihen. Potenzreihen

Analog zum Reellen lassen sich auch im Komplexen Funktionenreihen definieren.
Sind f1(z), f2(z), in einem Gebiet G definierte komplexe Funktionen einer kom-
plexen Veränderlichen z, dann nennen wir

m2) +f2(z) + m)
eine Funktionenreihe. Die Menge aller ze M, für die die Reihe (5.9) konvergiert,
nennen wir wie im Reellen Konvergenzbereieh.

(5.9)
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Für das Rechnen mit Reihen war im Reellen der Begriff der gleichmäßigen Kon-
vergenz von Bedeutung (Bd. 3, Abschnitt 3). Wir definieren analog:

Definition 5.3: Eine Funktionenreihe mit komplexen Gliedern f f„(z) heißtin einem
—o

Gebiet G gleichmäßig konvergent mit der Summenfunktion s(z)‚ ir-enn zu jedem e > 0
eine von z unabhängige natürliche Zahl N(E) existiert, so daß

15(2) - 5..(Z)l = |f..+1(-') +f..+2(:) + ---I < 6

für alle n g N(e) unabhängig von z e G gilt.
Der absolute Fehler, der bei der Ersetzung der Reihensumme s(z) durch die Teil-

Summe s„(z) gemacht wird. ist also bei gleichmäßig konvergenten Reihen unabhängig
von z e G kleiner als e.

Ohne Beweis seien die beiden folgenden Sätze angegeben:

Satz 5.5: Sind die Glieder f„(z) einer gleichmäßig konvergenten Reihe stetige Funk-
tionen in G, dann ist auch die Summenfunktion s(z) der Reihe eine in G stetige Funktion.

Satz 5.6: Gilt für alle Glieder einer Funktionenreihe

lfy(z)l g a. (m > 0, const)
a0 ac

und ist die Reihe Z a, konrergent, dann ist die Reihe 21X2) gleichmäßig (und
11:0 v=0

absolut) konrergent.
Als Sonderfall der Funktionenreihen spielen wie im Reellen die Potenzreihen eine

besondere Rolle. Wir erklären

Definition 5.4: Eine Reihe der Form

(5.10)

co + c1(z — zo) + c2(z — z0)Z + 2 _:oc,,(z —— Z0)”, (5.11)

wobei c„ und 20 beliebige komplexe Konstanten sind, heißt Potenzreihe nach Potenzen
von (z — zu) oder Potenzreihe mit dem Mittelpunkt 2o.

Die im Reellen aufgestellten Sätze über Potenzreihen gelten auch im Komplexen.
Ohne Beweis seien einige Sätze über komplexe Potenzreihen angegeben:

Satz 5.7: Zu jeder Potenzreihe, die weder beständig (d. h. in jedem Punkt der z-Ebene)
noch nirgends (d. h. in keinem Punkt z # 2o) konvergiert, gibt es eine positive Zahl r

derart, duß die Potenzreihe

fiir alle z mit l: —— 20| < r absolut konvergiert und
für alle z mit [Z — zol > r dirergiert (Bild 5.1).

Bild 5.1. Konvergenzkreis

D.5.3

S.5.5

5.5.6

D.5.4

S.5.7
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76 5. Reihenentwicklungen. Singuläre Stellen

Den Kreis z — zo = r nennt man Konvergenzkreis mit dem Konvergenzradius r. In
den Randpunkten des Konvergenzkreises kann die Porenzreilze konuergieren oder auch
divergieren. Im Gegensatz zum Reellen, wo ein Konvergenzintervall vorlag, bestimmt
der Konvergenzbereieh im Komplexen ein Kreisgebiet, für dessen innere Punkte
die komplexe Potenzreihe konvergiert.

Für den Konvergenzradius gilt

_ 1
r _ _ y _.

hm sup:l [c,.]
1-~00

(5.12)

Satz 5.8: Eine Potenzreihe (5.11) stellt im Innern des Konuergenzkreises eine dort
holomorphe Funktion f(z) dar. Es gilt also

eo

f(z) = 20c» (Z - zu)”. (5-13)

f(z) hat im Innern des Konvergenzkreises Ableitungen jeder Ordnung, die durch
gliedweise Differentiation der Potenzreihe gewonnen werden. Für die p-te Ableitung
gilt

f"’(z) = win ( ” If I’) Cv+p (z - 2o)". (5.14)

Wird in (5.14) z = 2,, gesetzt, so folgt

f"”(za)=17!cp = v, = %/<v>(z„>‚ .

und mit (4.24’) erhalten wir

1 1 d
c, : F W20) = „ (5.15)

(S

Nach (4.25) folgt weiter

M
Slcpl _ 9„

Aufgabe 5.1: Die Reihe E '-
v:1 1'

ist auf Konvergenz zu untersuchen!

Aufgabe 5.2: Man bestimme den Konvergenzbereich der Potenzreihe

°° 1 .

2 f (Z ‘ ‚Üvv
V = l '1’

5.3. Entwicklung holomorpher Funktionen in Potenzreihen

Im Reellen war die Diflerenzierbarkeit einer Funktion an einer Stelle x0 notwendige,
aber nicht hinreichende Bedingung dafür, daß eine Funktion in einer Umge-
bung dieses Punktes in eine Potenzreihe nach Potenzen von (x — x0) entwickelt
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werden konnte. Im Komplexen dagegen läßt sich jede in zo holomorphe Funktion
in eine Potenzreihe nach Potenzen von (z — zo) entwickeln. Es gilt der für die Funk-
tionentheorie grundlegende

Satz 5.9 (Entwicklungs"atz): Ist f(z) in G holamorph und zo innerer Punkt von G, S-5-9
dann gibt es stets eine und nur eine Potenzreihe der Farm

no

Z cv(z - zu)’
v=0

(Taylorreihe), ‘die mindestens im Innengebiet des größten Kreises um zu, der ganz
in G liegt, konvergiert und dort die Funktion

f(Z) = go C-‘(Z - zu)’ (545)

darstellt, wobei nach (5.15) i

(v)c„=# (v=0,l,2,...) (5.17)

gilt.

Beweis: z sei ein beliebiger innerer Punkt des Kreises (S mit Radius r um den Mittel-
punkt 20. Wir wählen einen Kreis C2’ um zu mit Radius g so, daß g < r gilt und der
Punkt z im Innern des Kreises Ü’ liegt (Bild 5.2).

Bild 5.2. Konvergenzkreis

Wird f(z) im Innern von OZ als holomorph vorausgeselzt, dann gilt nach (4.22)

_ 1 f(§)d§ 'f(Z) — Ü‘)
G.

Betrachten wir

1 _ l l _ °° (z — Z0)“ W

5-2‘:-zo1_z—zo‘.§o(:—zo>"+* M
Ü’ 30

als Summe einer unendlichen geometrischen Reihe, dann ist diese Reihe bei kon-
stantem z, gleichgültig wie: auf dem Kreis 6’ gewählt wird, gleichmäßig konvergent,

z—z
da °C‘zo < 1 ist. Multipliziert man (**) mit f(C) und integriert längs 0;’, dann
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erhält man nach Division durch 2: j
1 f(€)d€_°° 1 m) _ _‚

27163€: “E ff<:—zo)"+"""°>‘”'
Q;

— Z ..=o

Nach (*) und (4.24) folgt daraus
W l w

f(Z) = ;0‘vTf(v)(Zo) (Z " Zn)" = ;0Cy(Z ‘ 3o)’~ I

Daß dies die einzig mögliche Entwicklung ist, ergibt sich aus dem folgenden Satz
(vgl. Band 3):

Satz 5.10 (Identitätssatz für Potenzreihen): Besitzen die beiden Porenzreihen

W O0

Eo c‚(z — 20)” und ;0c;‘(z — zu)”

einen positiven Konvergenzradius und stimmen ihre Summen für alle Punkte einer
konvergenten Folge {z„} mit dem Grenzwert lim 4„ : 20 (z„ =l= 20) überein. dann sind
beide Reihen identisch. “" TV

Beispiel 5.1: Entwickeln Sie folgende Funktionen in Potenzreihen um 2„ nnd geben Sie den Kon-
vergenzbereich an:

2z—l
a) f(z)=coshz (zu =0), b) f(z)=T (20: -1).

z(z — 1)

Lösung:

a) f(z) =f"(Z) = =f‘2'” (Z) = Coshz (MEN), fa") (0) = 1‚

f’<z) =f‘3‘ (z) = =f”"*" (z) = sinh 2, f“"“’(0) = o.

Mit (5.17) und (5.16) folgt
Z2 Z4 v: Z27;

f(z)=c0shz=1+2—!+F+ *"§0(2n)!

und mit (5,12) folgt r = o0.

b) Die Entwicklung kann wie unter a) mit Hilfe der Taylorreihe erfolgen, wir vrollen jedoch
22 — 1 l l

anders vorgehen. Durch Partialbruchzerlegung folgt [(2) = ( I) : — 1 .Die rechts
Z Z — Z Z —

stehenden Ausdrücke entwickeln wir nach

1 1 l
g(z) = — = —~ (5.18)

z — a zo — a I z — 20

a — zu

und fassen q = z — :0 als Quotienten und g(z) als Summe einer geometrischen Reihe auf, so daß
_ ‘ o

mit Z° < 1 gilta _

1 eo » _ n

g<z> = z ( Z 2° (5.19)
zl, — a „=o a — zo
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Fiir 1o = ~1 folgt dann

Z (Z+1)" ({Z+1\<1),
w.

a

1 1 1 1 1

g2(:)= =.._ Ex” )= _ äwun)” (J:+1l<2).

/<2) =g1<z) +g2<z) = — zo(1+ 2n_,)(z+1)" 112+ 11 < 1).

Die Aussage des Entwicklungssatzes 5.9, daß die Taylorentwicklung (5.16) inner-
halb des größten Kreises um 20 konvergiert, in dem f(z) noch analytisch ist, führt
zu einer wichtigen Schlußfolgerung. Sämtliche im lnnern des Konvergenzkreises
liegenden Punkte sind reguläre Punkte der durch die Potenzreihe dargestellten Funk-
tion f(z). Auf dem Rande des Konvergenzkreises liegt mindestens ein singulärer
Punkt von f(z), d. h. ein Punkt, der nicht mehr zum Regularitätsgebiet von f(z)
gehört.

Aus dem Cauchyschen Integralsatz und der Entwicklung einer holomorphen
Funktion in eine Potenzreihe können wesentliche Folgerungen gezogen werden.
Während aus dem Verhalten einer beliebigen komplexen Funktion in einem bestimm-
ten Teil des Gebietes G der Zahlenebene im allgemeinen nicht auf das Verhalten der
Funktion in anderen Teilen des Gebietes G geschlossen werden kann, weist die
Klasse der holomorphen komplexen Funktionen eine starke innere Gebundenheit
auf. Mit der Cauchyschen Integralformel war gezeigt worden, daß sämtliche Werte
einer holomorphen Funktion im Innern einer geschlossenen Kurve CS bestimmt
werden können, wenn man ihre Werte auf der Kurve kennt. Auf Grund des Ent-
wicklungssatzes 5.9 kann dann gezeigt werden, daß eine in einem Gebiet G holo-
morphe Funktion f(z) vollständig bestimmt ist, wenn man die Werte dieser Funk-
tion auf einem beliebig kleinen in G gelegenen Kurvenbogen F kennt. Neben dem
Cauchyschen Integral stellt dies eine der wichtigsten Aussagen in der Theorie der
holomorphen Funktionen dar. Stimmen also zwei holomorphe Funktionen in einer
beliebig kleinen Umgebung eines Punktes überein, so sind sie identisch. Diese
wichtige Eigenschaft soll nun näher untersucht werden.

Wie wir gesehen haben, kann die Darstellung einer holomorphen Funktion durch
eine Potenzreihe mit dem Mittelpunkt 20 nur innerhalb des Konvergenzkreises mit
Radius r erfolgen. Der Konvergenzkreis K0 wird dabei durch die zu zu nächstgele-
gene Singularität vonf(z) bestimmt, im Bild 5.3 sei dies die Stelle z[,. In den meisten
Fällen reicht jedoch der‘ Regularitätsbereich (Holomorphiegebiet) über den Bereich
des Konvergenzkreises hinaus. Wählen wir einen Punkt z, innerhalb von K0, dann
kann um z. innerhalb des neuen Konvergenzkreises K, ‚ der durch die nächstgelegene

Bild 5.3. Analytische Fortsetzung
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singuläre Stelle z,’ bestimmt wird, eine neue Entwicklung von f(z) erfolgen. Der
neue Konvergenzkreis K, kann dabei natürlich über den alten Konvergenzkreis K0
hinausragen, er muß nur innerhalb des Regularitätsgebietes (Holomorphiegebiet)
G liegen. lm Durchschnitt G’ beider Konvergenzkreise müssen nun nach dem Ent-
wicklungssatz beide Potenzreihen die gleiche Funktion f(z) darstellen. Man sagt,
die durch die Potenzreihe in K, dargestellte Funktion f,(z) ist die analytische Fort-
setzung der durch die Potenzreihe in K0 dargestellten Funktion f„(z)‚ Wie in Bild
5.3 eingezeichnet, könnten wir uns diesen Vorgang noch fortgesetzt denken.

Unter Anwendung des Identitätssatzes kann man leicht zeigen, daß eine analy-
tische Fortsetzung, wenn sie überhaupt möglich ist, nur auf eine einzige Weise erfolgen
kann. Sind Funktionen durch Potenzreihen gegeben, dann kann eine analytische
Fortsetzung, falls überhaupt möglich, durch Umbilden der Potenzreihe Vor-

genommen werden. Man wählt aus dem Konvergenzbereich der vorliegenden
Potenzreihe f(z) einen Punkt z, aus und bildet die Potenzreihe nach Potenzen von
(z — z,) um. Aus dem Konvergenzbereieh der so gewonnenen neuen Potenzreihe
f,(z) wählt man wieder einen Punkt z; aus und bildet die Potenzreihe nach Potenzen
von (z — 2;) um. Die so gewonnenen Konvergenzbereiche (Kreise) können dabei
über den Konvergenzbereich der vorhergehenden Potenzreihe hinausragen, so daß
wir das in Bild 5.4 dargestellte „Kreiskettenverfahren“ erhalten. Das Kreisketten-

Bild 5.4. Kreiskettenverfahren

verfahren kann auch, falls möglich, längs eines vorgegebenen Kurvenstückes er-

folgen. An einem Beispiel soll der Begriff der analytischen Fortsetzung vorgeführt
werden.

w

Beispiel 5.2: Untersuchen Sie, ob die Funktion fotz) = Z z’ analytisch fortgesetzt werden kann.
v-O

7.

Lösung: f;‚(z) stellt die geometrische Reihe 2 z" = —| i: < 1 dar. Damit kann fa (z): l _

y=o ‘A

(lz, < 1) geschrieben werden, Die Funktion f(z) = besitzt nur bei z = 1 eine Singularität
l — z

(d. h.‚mit Ausnahme von z = 1 ist die gesamte z-Ebene Regularitätsgebiet). f(z) stimmt im Gebiet
lz“ < 1 mitf0(z) überein. Damit kann f0(z) über den zugehörigen Konvergenzkreis hinaus analytisch
fortgesetzt werden. Für die neue Potenzreihenentwicklung wählen wir nun als Mittelpunkt z, mit
12,1 < 1 und bestimmen nach (5. l7) die Koeffizienten c„‚ so daß nach (5.16) als neue Potenzreihe

Q

f1(Z) = VEO (Z’ Z1)’ (5-20)
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folgt. Der Konvergenzradius dieser Reihe ist r, = ‘,1 — 21 . K1 geht über den Konvergenzkreis K0
der ersten Potenzreihe hinaus, wenn 2, nicht zwischen 0 und l liegt (vgl. Bild 5.5).

Bild 5.5. Analytische Fortsetzung

Eigentlich hätten wir im eben betrachteten Beispiel das Verfahren der analytischen
3D

Fortsetzung nicht anzuwenden brauchen, da wir ja für 2 z” die Summe, nämlich
v 0

keimen. Ist jedoch für eine Reihe ein solcher geschlossener Ausdruck nicht
l — z

bekannt, dann kann eine analytische Fortsetzung durch Umordnen der vorliegenden
Potenzreihe gewonnen werden.

Eine analytische Fortsetzung ist natürlich nur dann möglich, wenn ein Teil des
Kreisbogens des Konvergenzkreises keine singulären Stellen enthält. Im Beispiel 5.2
lag auf dem Konvergenzkreis nur eine singuläre Stelle, nämlich z : l.

Dagegen läßt sich die Potenzreihe/(z) = 2"’, die im Innern des Einheitskreises
n:0

konvergiert, nicht analytisch fortsetzen, da jeder Randpunkt auf dem Einheitskreis
singulärer Punkt von f(z) ist. Der Einheitskreis ist ihre natürliche Grenze.

Wir hatten festgestellt, dal3 es für die eindeutige Definition einer holomorphen
Funktion ausreicht, die Werte dieser Funktion auf einem beliebig kleinen Kurven-
bogen zu kennen. Wir setzen nun voraus, daß g(z) in einem Gebiet G auf einem belie-
big kleinen Kurvenstück T‘ gegeben ist. Dann existiert in G entweder gar keineiFunk-
tion f(z), die in G holomorph ist, oder es gibt genau eine derartige Funktion f(z).
die auf I" mit g(z) iibereinstimmt. Man sagt dann, die längs T’ definierte Funk-
tion g(z) wurde in das Gebiet G fortgesetzt. Nehmen wir an, dal3 1‘ ein Teil der
reellen Achse ist (x, g x g x_‚) und g(x) die Funktionswerte darstellt. die diesem
Teil der reellen Achse entsprechen, dann liegt eine analytische Fortsetzung der
Funktion g(x) ins Komplexe vor. Falls überhaupt möglich, können also auch Funk-
tionen einer reellen veränderlichen x ins Komplexe analytisch nur aufeine einzige Art
fortgesetzt werden. Beispiele dafür sind

eX-ve’, sinx—>sinz‚ cosx—>cosz_.

Die in den Abschnitten 3.5.4. und 3.5.6. erfolgte rein formale Definition dieser
Funktionen war also nicht nur sinnvoll wegen der analogen Rechnungen im Reellen
und Komplexen, sondern sie sind die einzig möglichen Definitionen, wenn man die
Differenzierbarkeit dieser Funktionen in der komplexen Zahlenebene verlangt.

6 (lrenel, Kunliinr, Komplott‘ Vunktiom-u
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* Aufgabe 5.3: Entwickeln Sie folgende Funktionen in Potenzreihen mit dem Mittelpunkt 2o = 0.
Geben Sie den Konvergenzradius an!

l
i1)f(2’) = W , b)f(z) = Zsinz z.

* Aufgabe 5.4: Bilden Sie die analytische Fortsetzung für die im Beispiel 5.2 betrachtete Funktion
für a)z1 = -5-, b) z, = —j.

5.4. Entwicklung holomorpher Funktionen in Laurentreihen

_ Ein Ringgebiet G1 ‚ das von zwei konzentrischen Kreisen K1 und K2 begrenzt wird,
liege in einem zweifach zusammenhängenden Gebiet G (Bild 5.6). Für alle Punktez

///
~/«V ‚ 090

. v: took
/o‘¢'o’o‘o’o’:‘o’ ‘t
N woo...» ‘xooze’:/,o 4., z.‘

‚ ‚e33‘. 490c‘ ‘

‘ogtfiäoxäztägtej’

4V%&@vI’ A 1 Bild 5.6. Ringgebiet in einem zweifach zusam-

menhängenden Gebiet

im Innern von G1 gilt nach (4.23) unter der Voraussetzung, daß f(z) im Ringgebiet
G1 einschließlich der Ränder holomorph ist,

„P1 mm_; mm
———.— . . 5.21
27:] C — z 27:3 L’ — z ( )

K: K2

Für das erste Integral führen wir folgende Umformung ‘durch:
l 1 I:_Z=:_Z0T_—Z—:Z—o. (5.22)

C "‘ zu
Da die Bedingung

z — zo

C " Z0

immer erfüllt ist, wenn L’ sich auf K1 bewegt, kann (52.2) als Summe einer innerhalb
von K1 gleichmäßig konvergenten geometrischen Reihe aufgefaßt und somit

q= <1=>|z—zol<IC—zol

1 °° (Z “ zu)"

F? = ‘m’
geschrieben werden. Im zweiten Integral ist C ein Punkt von K2. Mit

q=i_:<1=m—m<u—a1.
erhält man die außerhalb von K, gleichmäßig konvergente Darstellung

1 =__ 1 g l =_§ (C-zo)” (524)

C-z z—zo1_C-zo »=o(Z-Zo)"“' '

z-zo
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Setzen wir die Reihendarstellungen (5.23) und (5.24) in (5.21) ein, so erhalten wir

_ _ 1 -°° (-3‘-o)"f(C)dC ; °° (:—.am/<c)dc
f“"2wjK§’,§o (c-zore +27?jK.(j;v=o <z—zo>v+‘ ‘($25)

1

Durch Vertauschen von Summation und Integration folgt aus (5.25)

1 w ‚ ‚ f(C)dCf(z) = (z — Lo)

+(c— zo)"f(€) da}. (5.26)

Da f(z) im Kreisringgebiet regulär ist, kann anstelle der Integrationswege K1 und K;
ein gemeinsamer Integrationsweg 6 gewählt werden. In der zweiten Summe sub-
stituieren wir noch —v = n’ + 1 und erhalten

m ‘um i“? e Z°>“f<<>d¢ = . <2 e
)‘=0 (Z — Z

Durch Einsetzen in (5.26) und Zusammenfassung der beiden Summen ergibt sich

f(z) = (z — (5.27)

e

Daraus folgt die sog. Laurentreihe I

f(z) = ‘Wim c„(z - ,0)", cu = , (5.28)

(S

die im Ringgebiet zwischen K1 und K2 gleichmäßig konvergiert und dort die holo-
morphe Funktion f(z) darstellt. Die Laurentreihe besteht also formal aus zwei
Potenzreihen, von denen

— 1 V

f‚ (z) = Z c„(z — 2o)" (Hauptteil der Laurentreihe)
n : — so

außerhalb des Kreises K; und

fz(z) = ä c,,(z — zo)” (regulärer Teil der Laurentreihe)
- „=o

innerhalb des Kreises K, gleichmäßig konvergiert. Es kann somit der Satz formuliert
werden:

Satz 5.11: Eine im Kreisringgebiet 0 < rz < |z — zo| < r, holamorphe Funktion S.5.ll
f(2) gestattet die Entwicklung in eine gleichmäßig konvergente Laurentreihe.
6*
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Man erkennt leicht, daß die Laurentreihe für den Fall, daß f(z) im gesamten
Innengebiet von K, (äußerer Kreis), also auch im Punkt z = zo, holomorph ist, in
die für |z —— zol < r, konvergierende Taylorreihe übergeht, da alle c„ mit negativem n

gleich Null werden.
3:

Beispiel 5.3: Geben Sie die Laurentreihe mit Mittelpunkt z.) 2 2j für [(1) = 2 + 4 an!
z

Lösung: Durch Umformung nach Potenzen von (z — 2j) erhalten wir

3 3 3 — 2' 2‘/(Z): 22 = ‘z ‘= [(2. JJ+‘ 1]‘
z +4 Z+2_])(Z-2j) (z—2_])(z~2J+4_])

_ i (z — 2j) + 2j 1

45 z-zi‘ 1_ 312-21)’
4

3 2j l
f(Z)=—.(1+

41 Z-ZJ, l_1(z—2J)
Für 4

j(z - 2j)
= e < l,

4

d. h.‚ für alle Punkte : mit iz — 2j; < 4 gilt die Reihenemwicklung (geometrische Reihe)
\

1

i.Z _ 2.
1 _

4

und damit folgt dann

j 1 i
=l —z—2'———:—2‘2——:—2'3 ...‚+4( J) l6( J) 64( J)+

3 2J j 1 . J
=71 1 — —2'— :—22— :—2'3f(z) 4j[ +Z_2J.][ + 4(z i) 16i J) 64( i) + J

3 2j I j l j
=— — —z—_'—::—2'2——~:——2‘3 .f<z) 4jL_2j+2+8( 7)) 32i J) l28( J)+ J

Wir haben an diesem Beispiel gesehen, daß die Laurentreihe für die gegebene
Funktion allein durch geeignete Umformungen und Anwendung der geometrischen
Reihe gewonnen werden konnte.

Beispiel 5.4: Geben Sie für die Funktionf(z) = , die im Ringgebiet l < lzi < 3

holomorph ist, die Laurentreihe an. (Z u I) (Z _ 3)

Lösung: Durch Partialbruchzerlegung und einfache Umformungen erhalten wir

f_( ) 1 ’ 1 + I ¥ 1 —l 1

Z " 2 i z — 1 z — s)

Für lzi > 1 gilt
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Für lzl < 3 gilt

1 °° (: ’
= j _

1 _ i v:ü 3)
3

l l { l I g <2)":
f(‘)_(z—1)(z—3)_ _ 2 „Z, z" T 3 „O 3

Um eine Laurententwicklung von f(z) in einer Umgebung von : = so durchführen
‚ . . . ‚_ l . . .

zu können, führen wir die Substitution g = f durch und bilden die Laurententwick-

lung von wC) =f(1 ) in einer Umgebung vbnl = O.
7

1

Aufgabe 5.5: Geben Sie die Laurententwicklung der Funktion f(z) = für
0 < [a] < izi < ibi nach Potenzen von z („-0 = 0) an.

Aufgabe 5.6: Führen Sie die Laurententwicklungen um die Polstellen der Funktion f(z) = I _:z2
fiirf(z) aus.

5.5. Isolierte singuläre Stellen und Residuum

5.5.1.. Isolierte singuläre Stellen und Verhalten im Unendlichen

Wenn eine Funktion f(z) in der Umgebung eines Punktes zo holomorph ist, in
zo selbst aber nicht, so nennen wir zu eine isolierte singuläre Stelle der Funktionf(z).
In der Umgebung derartiger isolierter singulärer Stellen istf(z) dann in eine Laurent-
reihe entwickelbar. Durch diese Entwicklung ist eine Klassifizierung der isolierten
Singularitäten möglich.

l. Die Laurentreihe (5.28) enthält keine Glieder mit negativen Potenzen von

(z — 20). Damit folgt eine Potenzreihe für f(z)

f(z) = go c,(z — 20)”, 0 < |z — 20| < r. (5.29)

Die Summe der Potenzreihe (5.29) ist eine in der Umgebung von zo und in zo selbst
holomorphe Funktion. die für z = 2D den Wert ('0 besitzt und für z # zu mit f(z)
identisch ist.

Gilt f'(z„) = c0, dann ist f(z) im gesamten Kreisgebiet |z -— zol < r holomorph.
Anderenfalls kann durch Festlegung von _/(20) = c0 eine für |z — 20| < r holomor-
phe Funktion erzeugt werden. Bei z = zo liegt dann eine sog. hebbare Singularität
von f(z) vor.

2. Die Laurentreihe (5.28) enthält endlich viele Glieder mit negativen Potenzen
Von (z —— 2o), Sie lautet mit am # O als erstem Koeffizienten

f(z) "'" .+% +c0+c,(z—z0)+c;(z——z0)2+... (5.30)TW H z-
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In diesem Fall sagt man, die Funktion f(z) besitzt an der Stelle z : :0 einen Pol
m-ter Ordnung (oder m-fachen Pol). Die Reihe konvergiert also in einem Kreisring-
gebiet um zo.

3. Die Laurentreihe (5.28) besitzt unendlich viele Glieder mit negativen Potenzen
von (z —— zo). Bei z = zo liegt dann eine wesentliche Singularität der Funktion f(:)
vor.

Bei Annäherung an einen Pol wächst lf(z)l über alle Grenzen, während bei An-
näherung an eine wesentlich singuläre Stelle die Funktion f(z) jeder beliebigen
komplexen Zahl beliebig nahe kommt.

Ergänzend zu diesen Erörterungen sei bemerkt, dal3 die singulären Stellen einer
Funktion keinesfalls isoliert liegen müssen. Zum Beispiel kann jeder Punkt einer
Kurve ein singulärer Punkt einer Funktion sein. Eine solche Kurve bezeichnet man
als singuläre Linie. Im Fall einer geschlossenen singulären Linie ist eine analytische
Fortsetzung von f(z) über diese natürliche Grienze hinaus nicht möglich. Man ver-

gleiche dazu auch das bereits in 5.3. angegebene Beispiel f(:) = i 2'”.
o

Ein nicht isolierter singulärer Punkt einer Funktion liegt z. B. an einem Häufungs-
punkt von Polen vor, wie etwa an der Stelle z = 0 für f(z) = I/sin (lfz). Nicht
isolierte singuläre Stellen liegen auch an Verzweigungsptmkten vor. wie z, B. bei

z = 0 fürf(z) = Logz und U2.
Für die Klassifizierung isolierter singulärer Stellen einer Funktion _f(:) war ihre

Laurent-Entwicklung zugrunde gelegt worden.

Beispiel 5.5: Bestimmen Sie die isolierten singulären Stellen von folgenden Funktionen:

1 — h L
a) /<2) = ——°‘1‘—i, b)f(z) = u.

z

1 .2!’

Lösung: a) Für cosh z lautet die Potenzreihenenmicklung cosh z = E —(—_’—)—‘ ‚ so dal3
‚.:0 ._l' .

3 5 _ „2 u!

fg): _ i+z_+i_+‚„)= _ ä 4;,
2! 4! 6! ,,,g (2v+2)!

folgt.f(z) besitzt an der Stelle zo = O eine hebbare isolierte singuläre Stelle. Setzt man also f(0) = 0,
dann ist fiz) für alle z holomorph,

y l

—z—‚—. Damit ergibt sich e? =

o l'- v!

l

1'!:' i

[V
18

b) Für e‘ lautet die Reihenentwicklung e’ =

:=0 liegt eine wesentliche Singularität vor. ”

d.h.,bei

u u
IA

8

0

Wir hatten in 2.3. den Begriff des unendlich fernen Punktes eingeführt und ver-
stehen unter der Umgebung des unendlich fernen Punktes den Teil der Vollebene.
der sich außerhalb eines gewissen Kreises mit Radius R befindet, d. h, außerhalb
eines Kreises |z| > R. Setzen wir voraus, daßflz) in der Umgebung des unendlich
fernen Punktes z : v: holomorph ist, dann kann diese Umgebung als Kreisring
um den Nullpunkt betrachtet werden. ln diesem Kreisring ist eine Lattrententwick-
lung möglich:

f(:) = C..gZ_2 + c_,z" + do + c,z + czzz +

Wir unterscheiden wieder drei Fälle:
l. Die Laurentreihe enthält keine Glieder mit positiven Potenzen von z, also

f(z) = 6-22" + 6-12" + Co-
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In diesem Fall strebtf(z) für z —> oo gegen co. Man sagt dann,f(z) ist im unendlich
fernen Punkt holomorph, und schreibt f(oo) = co.

k
)

. Die Laurentreihe enthält endlich viele Glieder mit positiven Potenzen von z

f(z) = c_2z‘2 + c_1z‘1 + co + c1z + czz’ + + c„‚z"‘

= z"’(... + c_2z‘2"" + c_1z“"" + c0z"” + + c,,,_,z" + cm).

Daraus folgt limf(z) = oo.

In diesem Fall bezeichnen wir den unendlich fernen Punkt als Pol m-ter Ordnung
von f(z) und schreiben f(oo) = oo. w = f(z) bildet in diesem Fall den unendlich
fernen Punkt auf sich selbst ab.

3. Enthält die Laurentreihe unendlich viele Glieder mit positiven Potenzen von z, also

f(z) = c_‚z‘1 + co + c,z + C222 + ...,

dann bezeichnen wir den unendlich fernen Punkt als wesentlich singulären Punkt
der Funktion.

°° 1
Die Funktion w = f(z) = e’ = Z—'z” hat im Punkt z = an eine wesentlich

»=oV
singuläre Stelle, da sie unendlich viele Glieder mit positiven Potenzen von z besitzt.

Für eine rationale Funktion, deren Zählerpolynom mvten Grades und Nenner-
polynom n-ten Grades keine gemeinsamen Nullstellen haben, gelten folgende Über-
legungen:

Die Funktion

= <p„.(z)

f(z) M2)

besitzt im Endlichen an den Nullstellen des Nenners singuläre Punkte. Für z —+ oo

unterscheiden wir zwei Fälle:

a) m g n: In diesem Fall kannf(z) in der Form

f(z) = a0 + 11-12" + a_2z'2 + V

wiedergegeben werden. Wir erhalten also einen endlichen Grenzwert

limf(z) = “o;
z-voo

f(z) ist somit im Endlichen holomorph.

b) m > n: Wir erhalten die Form

f(z) = a„‚_„z""" + a‚„‚„‚1z"""“ + + azz’ + alz + a0 + a-,z“ +

= z"“"(a,,,_,, + a,,,_,,-1z“ + ...).

Damit erhalten wir limf(z) = o0, es liegt also ein Pol (m — n)-ter Ordnung
vor. "'°°
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Allgemein entspricht dem Verhalten einer Funktion f(z) für z —> oo das Verhalten

der Funktionf(%) = Lp(C) für §—> 0, wenn z = -érgesetzt wird. Die Funktion ¢(§)

besitzt im Punkt C = 0 die gleiche Singularität, die f(z) im Punkt z = oo hat. Ab-
schließend sei noch erklärt, was wir unter einer mehrfachen Nullstelle einer Funktion
im Unendlichen verstehen. Eine m-faehe Nullstelle einer Funktion f(z) im Unend-
lichen liegt vor, wenn die entsprechende Funktion z;p(f) für :—> O eine m-fache
Nullstelle besitzt.

5.5.2. Residuum

Es seif(z) in einer punktierten Umgebung U von 20 holomorph und (S ein geschlos-
sener doppelpunktfreier Weg in U, der 20 im Innengebiet enthält; dann kann das
Integral

1
1 =m§f(z) dz g (5.31)

verschieden von null sein, und f(z) läßt sich in eine Laurentreihe entwickeln, d.h.‚
es gilt in U

f(z) = Ewe. z — Zo)"- (5.32)

Es soll nun der Zusammenhang zwischen den Koeffizienten c„ und dem Integral I
untersucht werden. Aus (5.31) und (5.32) folgt

1 1 ”
: ——— = ——~ —— " dz.I zfij ff(z) dz 27:]. f Film c,,(z 20)

(S (i

Durch gliedweise Integration ergibt sich

gffcyizxäifijni c„ (z—z0)"dz.
5

= w
(S

Nach (4.14) ist das rechts stehende Integral für 11+ «l gleich null und für
n = ——1 gleich Zvrj, so daß wir

1 1 .

_ =_ - ‚—„ = _ 5.332m.ff§f(z)dz med 2 _] c1 ( )

Q

erhalten. Wir nennen den Wert dieses Integrals das zur Stelle z = zo gehörige
Residuum der Funktion f(z) und schreiben

Res f(z)\,,,0 = a. = im) dz. (5.34)

G

Beispiel 5.6: Bestimmen Sie die Laurententwicklung Lind das Residuum der Funktion f(z) =

für :0: 0. _

sin z
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. . z’ 25
L0sung: Es gilt sin z = z — +

besitzt, können wir den Ansatz formulieren

— Da sinz für z = 0 nur eine einfache Nullstelle

1 C-1 2.=:+co+c,z+c2z T<4I~
zz: Z5

z——+é—
3! 5!

Aus
( Z3 z‘ c,1 2

1- .>z—?+§—...l —Z—+co+c,.+c2z +...

folgt durch Koeffizientenvergleich:

z": 1=c_1, c_1=l,

z‘ 0:00, co-O,

z’ 0= -L+c c =—3! i; 1 3' .

z’ 0=c;, c2=0,

Z4 o: _._C_1 C3, = 1 L
5‘ 3! (3l)2 5!

z’ 0=c4, 04:0,

f() 1 + +( ‘ 3z = =— -—z ' ‚

sinz z 3! (302 5' T

Res ‚ =c_,=1
smz ‚wo

Mit Hilfe des Residuums kann nach 5.34 der Wert eines Integrals über einen
geschlossenen Weg, der einen isolierten singulären Punkt umschließt, berechnet
werden. Liegt die Aufgabe vor, den Wert eines Integrals über einen geschlossenen
Weg zu berechnen, in dessen Innengebiet mehrere singuläre Punkte liegen (Bild 5.7),

Bild 5.7. Singuläre Punkte
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dann kann Satz 4.9, (4.15) angewandt werden, so daß sich formulieren läßt

3.5.12 Satz (Residuensatz): Es seif(z) im Innengebiet des doppelpunktfreien geschlossenen
und positiv orientierten Weges (S und auf (S selbst mit Ausnahme ran endlich vielen im
Innengebtet von (S gelegenen isolierten „ringulären Stellen 21, z; ‚ ..., z„_ holomorph.
Dann gilt

. . U

ff/<z> dz = 2m 21 Res/(z>|‚=‚„. (5.35)
G y-

‚ Ä _ z’ + 1

39151719’ 5»7-‘ Berechnen 51€ 4; längS des im Bild 548 skizzierten Weges (i !

f:

Bild 5.8. Gebiex in der z-Ebene

z(z’—l)=z(z—l)(z+l)=T+z—1 z+1"

Alle drei Pole werden von (S umschlossen, also gilt

5302 + l)dz
r= Zrrj [Resf(z)l‚.„ + Resf(z)l„.„-. + Resflzll, ._1]
z(z — l) ‘ ' “

= 27rj(—1 + 1 + 1) = Znj.

Für die Berechnung des Residuums an einer Polstelle nz-ter Ordnung soll eine
einfache Regel hergeleitet werden. In einer punktierten Umgebung von zo gilt dann
die Gleichung (5.30), und daraus folgt durch Multiplikation mit (z —— z0)"' die in z‘,
holomorphe Funktion.

8(2) = (Z “ Zo)mf(Z) = C-m ‘l’ ¢‘—m+1(Z " Z0) ‘l’ C—m+2(z ‘ Z0): +

-F c_1(z — z0)""‘ + C0(z — zu)” + c‚(z — zo)"'+‘ + . (5.36)

Den gesuchten Koeffizienten c4 erhält man durch Bilden der (m —— 1)-ten Ab-
leitung von (5.36) und Grenzübergang z —> 20.
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Für einen Pol m—ter Ordnung gilt somit

c-1 = Resf(z)|z=,0 = [(2 — 2o)"'f(z)]<m—1>. (5.37)

Für Polstellen erster Ordnung ergibt sich daraus

ReSf(Z)l:=_-„ = lim [(2 - Zo)f(z)l- (5-33)
z»

(z‘ —1)dz
längs G: z(t) = 2e" (0 g t g 2:).Beispiel 5.8.‘ Man berechne I = 43

(i

Lösung: Isolierte singuläre Stellen liegen bei z, = 0, 235 = -}(—1 iy/3—j) innerhalb von

Um das Residuum an der Stelle :4 = O (Pol 3. Ordnung) zu bestimmen, wenden wir (5.37) an.

‘ 1 ‚ z‘ -1 ”

RÖS/(Zfiz-I; = P?

1 _ 2 z—l "

=—'l|m z—z+j- =0.
2..,.,o z + A +1

An der Stelle z; = 7L (-1 + V/gj) folgt nach (5.38) für das Residuum;

. (Z — 22) (z‘ - 1) 1 ’.
R i.-. =l j= — l 3 .

esfizknz x22 13C‘ ' Z2) (Z " Z3) 2 ( + \/ J)

Für die Stelle z = Z3 erhalten wir analog

1 _

Resf(z)|z=,, = 7U ~ \/31').

Nach (5.35) folgt also

1 _ _

1=2.'0 —l 3' l-— 3' =2n'."J(+2(+\/J+ \/J)) J_

Neben dem in (5.34) definierten Residuum wird noch das sog. logarithmisclie
Residuum erklärt. Wir verstehen darunter den folgenden Ausdruck und schreiben

L f’(z)
2:1 M f(z)

u

dz = Log Resf(z)|z=za. (5.39)

f(z) sei eine holomorphe Funktion mit den im Satz 5.12 genannten Eigenschaften.
Zusätzlich werde vorausgesetzt. daß f(z) aufö nicht verschwindet.

im Fall eines Poles m-ter Ordnung an der Stelle z = zu entwickeln wir f(z) in eine
Laurentreihe um z = Z0.

Mit

f(z) = E c..<z—zo>" (m=1,2,3,...>,
v=_

f’(z) = A vc‚(z — zu)“
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folgt für den Integranden in (5.39)

f’(z) = um

f(z) z - zo

Das Residuum von f’(z)/f(z) ist gleich —m. Wegen

d _ f’(z)
d—zL0gf(Z) — f(z)

bezeichnet man das Integral

1 f ’(z)

W1" f(z)
G i .

das die Vielfachheit m des Poles an der Stelle z = zu angibt, als logarithmisches
Residuum der Funktion f(z).

Besitzt f(z) in z = 20 eine m-fache Nullstelle, dann können wir ansetzen

f(z) m: — Z0)",

+ A0 + A1(z — 20) + A2(z — z,,)2 +

dz = Log Rcsf(z)|z:Zo = —m,

f’(z) = m2 — zu“.

f ’(z) _ mc‚„(z - zo)'"" + (m + 1) c„+.(z — zu)" + (m + 2) c...+z(z - 20W‘ +
f(z) " c„‚(z - zu)“ + c‚„+i(z — zu)“ + c‚„+z(z - zo)"’*’ +

= z :"Z0 + B0 + B,(z — zo) + B2(z — z0)2 +

Also folgt g

Res Fr“ = Log Resf(z)|‚=‚° = m.

Zusammenfassend können wir also feststellen: Bezeichnen wir (5.39) als logarith-
misches Residuum einer Funktionflz) an der Stelle z = zo , dann gibt Log Res/’(z)|,,,o
an der Stelle z = zo den Grad der Vielfachheit des Pols an, falls Log Resf(z)l„,„ < O

und den Grad der Vielfachheit der Nullstelle, falls Log Resf(z)|,=_,.u > 0 ist. Um»
schließt (S p verschiedene Nullstellen und Pole der Funktion f(z), dann ergibt das
Integral (5.39) die Summe der logarithmischen Residuen an den Nullstellen und
Polen der Funktion f(z), also

L f(z)
2:16 f(z)

Dabei ist N gleich der Anzahl der Nullstellen und P gleich der Anzahl der Pole,
die von (S umfaßt werden. Die Nullstellen und Pole sind dabei sooft zu zählen, wie
ihre Ordnung vorgibt.

Für Stabilitätsuntersuchungen bei mechanischen und elektrischen Systemen ist es

außerordentlich wichtig, die Lage der Nullstellen einer gebrochen rationalen Funk-
tion oder eines Polynoms zu kennen. Hier kann nicht näher auf diese Problematik
eingegangen werden; es sei u. a. auf Band l0 und [12] verwiesen.

dz : „f; Log Resf(z)l_.=_.„ : N — P. (5.40)
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Beispiel 5.9: Man beweise, jedes Polynom vom Grade n hat n Nullstellen (Fundamentalsatz der
Algebra).

. n

Lösung: Fassen wir P(z) = Z a„z"‚ (a„ # 0, n ä 1) als Laurententwicklung um z = o0 auf,
i 0. =

dann ist der unendlich ferne Punkt ein Pol n-ter Ordnung für das Polynom P(z), es gilt also
lim \P(z)\ = oo.

z-rm

Es muß somit einen Kreis (S: [zl = R geben, so daß P(z) außerhalb dieses Kreises keine Nullstelle
mehr besitzt. Es gilt weiter

‚ r-l

Pilz) vgl m": n bl b2
- 1+-+—2+...:c_,=n.

z z

r=u

Nach (5.40) ist damit die Summe der logarithmischen Residuen an den Nullstellen und Polen der
Funktion f(z) gleich n. Nach den getroffenen Voraussetzungen ist dies aber im vorliegenden Fall
gleich der Anzahl der Nullstellen des Polynorns P(z). Damit ist der Fundamentalsatz der Algebra
bewiesen.

Abschließend soll noch das Residuum der Funktion f(z) für den unendlich fernen
Punkt z = 73, den wir als isolierte singuläre Stelle der Funktion f(z) annehmen. be-
trachtet werden.

Definition 5.5: Die Funktion f(z) sei in einer Umgebung des Punktes z z ca, eventuell D.5.5
mir Ausnahme dieses Punktes selbst, holomorph. G,‘ sei ein in der Umgebung von

z = o0 liegender Kreis lzl = r, der im Uhrzeigersinn zu durchlaufen ist, so daß die
Umgebung von z = o0 zur Linken liegt. Dann bezeichnen wir mit

Resf(oo) = fflz) dz
a.

das Residuum im Unendlichen. _

Aus der Definition folgt, daß das Residuum vonf(oo) gleich dem mit —l multi-
plizierten Koeffizienten von 2*‘ in der Laurententwicklung um z = oc ist.

Liegen im Innern von Ü: |z| = r endlich viele Singularitäten z, , zz, ..., z‚„ dann
folgt aus dem Residuensatz und der Definition des Residuums im Unendlichen:

l nfflz) dz + %_ff(z) dz2:
o. u’

= Resf(z)l‚„ + Resf(z)l‚1 + + Res/"(jlzn + Resf(oo) = 0.
Es gilt also der
Satz 5.13: Ist die Funktion f(z) in der zJ/ollebene mit Ausnahme endlich vieler S.5.l3
singulärer Stellen holomarplz, so ist die Summe der Residuen, einschließlich des
Residuums im Unendlichen, gleich null.
Aufgabe 5.7: Bestimmen Sie die Residuen der in den Aufgaben 5.5 und 5.6 betrachteten Funk- i‘

tionen f(z) an den Stellen 20, für die die Laurententwicklung durchgeführt wurde.

Aufgabe 5.8." Bestimmen Sie die Residuen der folgenden Funktionen an den angegebenen Stellen: *

a)f(z) = e‘/’‚ zo = 0, b)f(z) = tan z, 20 = i + in’: (k ganz).
2

Aufgabe 5.9: Berechnen Sie (ß CO; 7 _ 1 fürfolgende Integrationswege: a):(t) = e", O g I g 27:, *

(i
b) z(t) = 2j+ e",0§ I; 2:.
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5.6. Berechnung reeller Integrale mit Hilfe der Integration im Komplexen

Der Cauchysche Integralsatz und der Residuensatz sind Grundlage vieler Anwen-
dungen der Theorie der analytischen Funktionen. Als Beispiel soll in diesem Ab-
schnitt die Berechnung bestimmter reeller Integrale behandelt werden.

27:

5.6.1. Integrale der Form f R(cos t, sin t) dt
I]

R (cos t, sin t) sei eine in 0 g t g 27: stetige rationale Funktion. Substituieren wir
e“ = z(t) => z’(t) = j e“ = j z(t) (5.41)

und beachten (3.57) und (3.58), dann erhalten wir
1 1 ‚ 1 1

cos t — -—2—<z + y) und sin t — (z — 2-), (5.42)

und für das zu betrachtende Integral I folgt
21: 27:

_ . _ 1 1 1 _ 1 \ ’ j ‚

I — J‘R(cos t, sin t) dt — -[R[3 (z + ?>, <— ;)z (t) dt.

o o_

Nach (4.3) kann für das letzte Integral I = §5R*(z) dz geschrieben werden, da
(X

z = e” als Integrationsweg den Einheitskreis und R*(z) eine rationale komplexe
Funktion von z darstellt. Da für R(t) Stetigkeit in 0 g t g 27: vorausgesetzt war,
besitzt R*(z) auf dem Einheitskreis keine Pole. Mit (5.35) folgt dann

1 = 21-rj g] Res R*(z)|‚=,„. (5.43)

Beispiel 5.10: Berechnen Sie
27v

1_ f dt

_ 2—cosI+sinr'
- o

Lösung: Mit (5.41) und (5.42) ergibt sich

. —iaz . .

= z = —2’dZ = R*(z)d:.W I) 1( 1 (—1—j)z2+4z—1+j
2——z+—— 4-—‘:-——

2 2_] z)Z

Pole von R*(z): zu = e}(—2 ‚t (-1 + j), Von den beiden Polen liegt nur einer im Innengebiet
des Einheitskreises, denn es gilt

am = 4,|(—2 + \/§)(—1 +j)| < 1,

:22: = 5|(—2 — \/2)<—1 +1); > i.

Nach (5.38) erhalten wir _

Res R*(z)|‚_„ = lim [(2 — 2,) R*(z)] = —g J2 j

und mit (5.35) folgt H,’

1 = 2r:j- (—
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no

5.6.2. Uneigentliche Integrale der Form f(x) dx
—ao

Die Funktion f(z) sei eine in der oberen Halbebene (reelle Achse eingeschlossen)
bis auf endlich viele Punkte z„ 22, ..., 2,, holomorphe Funktion. Wenn Q’, den im
Bild 5.9 eingezeichneten geschlossenen Weg (S = (S, + G; darstellt und die Punkte

I, I? x Bild 5.9. Geschlossener Weg in der z-Ebene

21, Z2, ..., z„ alle im Innengebiet des Weges (S liegen, dann gilt nach dem Residuen-
Satz (

1 = f§f(z) dz = Im) dz + ff(z) dz = 27: j i Resf(z)1,_,,.

Q ‘i; G; v=l

Da auf (S; f(z) = f(x) gilt, kann geschrieben werden

R

1 = [f(x) dx + ff(z)dz = 27: j ;lResf(z)Iz=zv. (5.44)

—'R (S2 v’

Zur Abschätzung des Integrals _ff(z) dz können je nach Beschaffenheit des Inte-

granden geeignete Hilfssätze heranzgezogen werden. '

Zum Beispiel lautet das

Lemma von Jordan: Strebt F(z) in der oberen Halbebene und auf der reellen Achse für
z —> oo gleichmäßig gegen null und ist m eine positive Zahl, so gilt für R —> oo

_[F(z) c5“ dz = O.
K

Dabei ist K der in der oberen Halbebene gelegene Halbkreis um den Nullpunkt mit
dem Radius R.

Unter der Voraussetzung, daß der unendlich ferne Punkt eine mindestens zwei-
fache Nullstelle von f(z) ist, kann eine weitere Abschätzungsmöglichkeit bereit-
gestellt werden.

Für die Laurententwick1ungf(z) = ä- + C-2-31 + gilt dann die Abschätzung

|c_| Ic-l |c—| 1 lc—I lc_|
W)‘; R5 + R5 +“'=T:+F(T3+T:+"‘)‘
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Für hinreichend große R gilt

(|C[»23| + + m)<£y

und wir erhalten

m2): <

Satz 4.5 gestattet die Abschätzung

ital + I-' 1c:z|+ sUf(z)dz <T.—.R=,—.T,
l1’:

und damit gilt

Iim {f(z) dz = 0.
—»o0u‘2

Aus (5.43) gewinnen wir damit eine für die Berechnung des uneigentlichen reellen
Integrals geeignete Formel

0c

J f(x) dx = 27: j V; Res f(z)[,,,v, (5.45)
-—oo

falls das auf der linken Seite stehende Integral nicht nur als Cauchyscher Hauptwert
existiert (vgl. Bd. 2, 1l.1.2.).

Ist f(x) eine rationale Funktion der reellen Veränderlichen x, dann sind die
gemachten Voraussetzungen für f(z) insbesondere dann erfüllt, wenn der Grad des
Nennerpolynoms in f(x) um mindestens 2 größer als der Grad des Zählerpolynoms
ist.

o0

d
Beispiel 5.11: Bestimmen Sie f x 2 .

l + x
— ac

Lfisung:/"(z) = ist in der oberen Halbebene überall außer im einfachen Pol z.) = i

l
1 + 23

holomorph. Nach (5.38) gilt dann

= im Z—_] —- = im g =—¢.
' r[<>‘J*(‘>‘:=j ,_.,' 1+-Z2 ,-_.j Z+.l 2J

Res T1+ Z2

Mit (5.45) erhalten wir somit für das reelle Integral

W

f l d '2‘l—x=n——=n.
l+x2 ’2j

-00

Auch für den Fall, daß endlich viele isolierte singuläre Punkte auf der reellen
Achse liegen, kann die eben betrachtete Methode zur Berechnung reeller Integrale
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angewandt werden. Man weicht dann, wie im Bild 5.10 eingezeichnet, diesen iso-
lierten singulären Punkten auf der reellen Achse auf kleinen in der oberen Halbebene

Bild 5.10. Veranschaulichung des Integrations-
weges bei einem sog. Hakenintegral

gelegenen Halbkreisbogen vom Radius g aus und führt anschließend den Grenz-
übergangg -> 0 und R —> v; durch. Derartige Integrale, die vor allem in der Operator
rechnung eine Rolle spielen, nennt man Hakenintegrale. Wir wollen hier nicht näher
darauf eingehen und verweisen z. B. auf [I3]. Teil ll.
Aufgabe 5.10: Berechnen Sie folgende Integrale mit Methoden der Funktionentheorie:

2:: U.)

a ————-————, An x.
)J‘ d! b) J‘ l d

5+ 4cosr (l + x2)3
0 —ao

5.7. Einteilung der Funktionen

Die holomorphen Funktionen teilt man nach ihren Singularitäten in Klassen ein.
Eine in der gesamten endlichen z-Ebene holomorphe Funktion heißt ganze Funktion.

Treten in der Potenzreihenentwicklung für die Funktion f(z) nur endlich viele
Glieder auf. dann spricht man von einem Polynom oder einer ganzen rationalen
Funktion; beim Vorhandensein unendlich vieler Glieder in der Potenzreihenent-
wicklung für f(:) liegt eine ganze transzendente Funktion vor (z. E. f(z) = e‘).

Eine ganze rationale Funktion besitzt als einzigen singulären Punkt einen Pol
(z = oo), während eine ganze transzendente Funktion eine einzige Singularität,
nämlich eine wesentlich singuläre Stelle, im unendlich fernen Punkt hat,

Die Klasse der meromorphen Funktionen umfaßt die Klasse der ganzen Funl<~
tionen. Eine meromorphe Funktion besitzt im Endlichen nur Pole als Singularitäten.

Beispiele für meromorphe Funktionen sindf(:) : , g(z) = tan z u. a.
l — e‘

Von einer rationalen Funktion spricht man, wenn f(z) in der durch z 2 3o ab-
geschlossenen z-Ebene nur endlich viele Pole besitzt.

1 Greuelyllfiqtlvu-r, Komplexe Funknunpxi



6. Beispiele zu konformen Abbildungen

In der Übertragungstechnik treten beispielsweise bei der Betrachtung von Vier-
polen (Bild 6.1) Gleichungen der Form

M’ W21(W11 - Wu)
W1" W1" - W1" W’

auf, wobei W11, W21, Wm und M konstante komplexe Größen eines Vierpols und
Z2 und W. veränderliche komplexe Größen sind. Für den Elektrotechniker ist es

o.‘ l _

w,» Vier/Nil Q 4

nun notwendig zu wissen, welchen Verlauf W1 für veränderlichen Abschlußwider-
stand Z; nimmt. Gelingt es z. B., diesen Verlauf grafisch darzustellen, dann ist die
Aufgabenstellung gelöst.

In 3.4. hatten wir den Begriff der konformen Abbildung erläutert und insbesondere
den grundlegenden Satz 3.8 ausgesprochen, daß die durch holomorphe Funktionen
f(z) erzeugten Abbildungen für f’(z) + 0 konform sind, Jetzt wollen wir spezielle
konforme Abbildungen untersuchen, die z. B. auch die eben genannte Aufgaben-
stellung mit erfassen.

Bild 6.1. Vierpol

6.1. Abbildungen durch gebrochen lineare Funktionen

Die linearen Funktionen sind, wie in 3.5.3. schon ausgeführt, ein Sonderfall der
rationalen Funktionen. Sind a, b, c und d komplexe Konstanten mit (ad — bc) $ O,

dann stellt
az + b

w cz + d (62)

eine umkehrbar eindeutige gebrochen lineare Funktion dar. Zunächst betrachten wir
den Sonderfall der ganzen linearen Funktion.

6.1.1. Abbildung durch ganze lineare Funktionen

Eine ganze lineare Funktion sei gegeben durch

w = a": + b, (6.3)

wobei a, b komplexe Konstanten und a + 0 sind. Wirbetrachten nun einige Sonder-
fälle:

l. a = 1, b = 0. Die Abbildung lautet dann

w = z, (6.4)

Damit gilt mit z = x + jy und w =f(z) = u +j17

u+ju=x+_iy, u=x und v=y.
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Es liegt eine identische Abbildung vor. Bild und Original sind also kongruente
Figuren.

2. a = l, b + O. Wir erhalten die Abbildung

w = z + b. (6.5)

Erinnern wir uns an die geometrische Addition komplexer Zahlen, so erkennen wir,
daß die Abbildung (6.5) eine Translation darstellt, Original- und Bildfigur sind wieder
zueinander kongruent. Betrachten wir einen Kreis mit der Gleichung z(t) = 29 + r e“
(0 g r g 2:), wobei 20 eine komplexe Konstante und r > 0 reell ist, dann bewirkt
die Abbildung (6.5) die im Bild 6.2 dargestellte Translation.

fmag. A :/759

Bild 6.2. Translation

3. a = x > O, reell, b = 0. Die Abbildungsfunktion lautet

w = .\Z. (6.6)

Den Bildpunkt zu z gewinnt man jetzt, indem der Ortsvektor des Punktes z im
Verhältnis l za gestreckt (o; > 1) bzw. gestaucht (o: < 1) wird. Die Abbildung ist
nicht mehr kongruent, aber Original und Bildfigur sind einander ähnlich. Man
kann leicht zeigen, daß durch diese Abbildung Geraden der z-Ebene in Geraden
der w-Ebene. Kreise der z-Ebene in Kreise der w—Ebene und parallele Geraden in
parallele Geraden übergehen. Wenden wir die Abbildung (6.6) z. B. auf den Kreis
z(t) = 20 + r e“ an, dann erhalten wir w = zx(z„ + re") = oczo + are” (Bild 6.3).

Bild 6.3. Streckung
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Im Bild 6.3 wurden ein Kreis und ein Dreieck vermittels der Funktion (6.6) abgebil-
det. Da eine Ahnlichkeitsabbildung vorliegt, bleiben natürlich auch die Winkel sich
schneidender Geraden erhalten.

4. a =l= 0, b = 0. Für die Abbildungsfunktion ergibt sich dann

w = az. (6,7)

Stellen wir a und z in der Exponentialform dar, dann folgt

w = r" eivareiv = fur ei(w.+¢).

Im Fall r,, = 1, d. h. [a| = l, bewirkt (6.7) also eine reine Drehung, wie auch schon
im Abschnitt 2.1. erläutert wurde. Für lal 4: 1 kommt zur Drehung noch eine
Streckung hinzu, (6.7) stellt also den Fall der Drehstreckung dar.

Beispiel 6.1: Der Punkt z, = l +j wird durch eine Drehstreckung in den Bildpunkt w, : 2 ab-
gebildet. ln welche Bildpunkte gehen :2 = —l + j und :3 : —j durch die gleiche Abbildung über?
Geben Sie die Abbildungsftinktion an!

Lösung: Mit a = o: + ßj folgt aus (6.7)

w=(o«+J'/3’)(X+j,v).

2 =(A+jfl)(1+j).
2=a—ß+j(oc+ß).

Durch Koeffizientemergleich erhält man o» : I und ,5 = v l, a = 1 — j. Die Abbildungsfunktion
lautet somit w = (I — j) z. Für die beiden anderen Bildpunkte erhält man w; = 2j und w, : v l — j.

Die allgemeine ganze lineare Funktion stellt somit eine Abbildung dar, die sich
aus einer Drehstreckung und einer Translation zusammensetzt. Das bedeutet, daß
durch die Abbildungsfunktion (6.3)

w=az+b

eine Ähnlichkeitsabbildung erfolgt. Da (6.3) eine in der gesamten z-Ebene holomorphe
Funktion darstellt, ist die Abbildung (6,3) für u # 0 überall konform.

Werden spezielle Punktmengen abgebildet, so ist es nicht immer notwendig, die
Abbildung punktweise vorzunehmen, wenn man sich daran erinnert, daß eine Ahn-
lichkeitsabbildung vorliegt und somit Kreise der z-Ebene in Kreise der w-Ebene
und Geraden der z-Ebenc in Geraden der w-Ebene übergehen. Wir wollen dies an

einem Beispiel demonstrieren.

Beispiel 6.2: Das durch die drei Punkte z, = —l + 3j, z; = 1 + 2j, 23 = 4 + 2j gegebene Drei-
eck soll durch die Funktion w = V/2 (1 — j) z + 2 + j in die w-Ebene abgebildet werden (grafisch).

Lösung: Da der allgemeine Fall der ganzen linearen Funktion gegeben ist, ist eine Drehslreckung

und Translation durchzuführen. Wir führen zunächst die Drehstreckung aus. Da a = „(Z (I — j)
die Drehstreckung bewirkt, bilden wir die Exponentialform von a und erhalten u = 2e"J“5°, d. 11.,

jeder Ortsvektor in der z-Ebene (also auch jeder durch einen Zeiger dargestellte Eckpunkt des

Dreiecks) wird um -45” gedreht und im Verhältnis l : 2 gestreckt. Das kann grafisch leicht durch-
geführt werden (Bild 6.4). Das so gefundene Dreieck mit den Eckpunkten wi‘, w? und w?‘ erfährt
dann noch durch den Zeiger b = 2 + j eine Translation, so daß wir das abgebildete Dreieck m,
wz, w; in der w-Ebene erhalten (z- und w-Ebene wurden übereinander gezeichnet).
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W3 Bild 6.4. Drehstreckung

Soll eine Kreisscheibe der z-Ebene in die w-Ebene durch (6.3) abgebildet werden,
dann genügt die Abbildung des Mittelpunktes und die Bestimmung des Kreisradius
in der w-Ebene. Liegt die Kreisgleichung in der Form z(t) = 20 + r e!" (0 g t g 27:)
vor, dann erhalten wir mit (6.3) ”

w = a(z0 + r e”) + b = azo + b + ar e".

Der Mittelpunkt des Bildkreises ist also azo + b, und der Radius des Bildkreises
kann aus |a| r bestimmt werden.

Ist der Kreis durch die Gleichung Iz — 20| = r gegeben, so findet man bei Anwen-
dung der Abbildungsfunktion w = az + b den Mittelpunkt des Bildkreises in der
w-Ebene auch wieder einfach durch Einsetzen des Mittelpunktes zo in die Abbil-
dungsgleichung und erhält w = azo + b. Da der Kreisradius von der Drehung
unabhängig ist, hat wiederum nur |al auf die Anderung des Radius Einfiuß, und wir
erhalten r’ = la] r für den Radius des Kreises in der Bildebene (w-Ebene).

6‚l.2. Abbildung durch die Funktion w =

m
l..

.

Sind zwei komplexe Zahlen z, und :2 durch die Beziehung

11:2 = re’. (6.8)

wobei ro reell und konstant ist, miteinander Verknüpft, dann sagt man, z, (zz) ist_ mit
der Inversionspotenz rä zu :3 (:1) invers. Durch die Funktion

u" = _ (6.9)

erhalten wir somit eine sog. inverse Abbildung. Mit der Einführung des unendlich
fernen Punktes w = m haben wir die Möglichkeit, die gesamte z-Ebene vermittels
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(6.9) auf die w-Ebene abzubilden. Durch die Festlegung nach Definition 3.2 ist die
Funktion (6.9) in der ganzen z-Ebene erklärt.

. . l . . . .

Geometrisch kann man sich w = — aus der DlVlSl0n der beiden komplexen
Z

Zahlen z, = 1 und z; = z entstanden denken, so daß w nach der im Bild 6.5 an-

gegebenen Konstruktion gewonnen werden könnte. Unter Anwendung des Katheten-
Satzes kann eine vor allem auch in der Ortskurventheorie übliche Konstruktion
hergeleitet werden. Stellen wir w und z in (6.9) in der Exponentialform dar, dann folgt
mit z = r e” und w: R elV’

w = ReW = %e’J"F, (6.10)

d. h. zp = —q2 und R = y; = —«p kann leicht dadurch realisiert werden, daß

der Zeiger z an der reellen Achse gespiegelt wird. Auch die zweite Aussage R = T
kann mit Hilfe des Kathetensatzes geometrisch interpretiert werden, im Bild 6.6

imag. A 5/755

‚mag. A m59

real/e
A 5/755

Bild 6.5. w = — Bild 6.6. Inversion am Einheitskreis

wurde die Konstruktion ausgeführt. Die Reihenfolge der beiden genannten Schritte
ist dabei gleichgültig. Es empfiehlt sich, folgendermaßen vorzugehen:

1. Ausgehend von z wird derjenige Punkt 2* bestimmt, der dasselbe Argument
wie z besitzt, dessen Betrag aber gleich dem reziproken Wert des Betrages von z

ist, wir erhalten also

l .

2* = _ ein
‚.

Dieser Vorgang heißt Spiegelung am Einheitskreis, oder man nennt 2* den bezüg-
lich des Einheitskreises inversen Punkt von z.

2. Zum Punkt 2* ermitteln wir denjenigen Punkt w, der den gleichen Betrag wie 2*,
aber negatives Argument hat:

w = z—* = _ e‘i'l7_
‚.
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. . . . 1 .

Wenden wir die Operation der Kehrwertbildung auf ?noch einmal an, dann
‚ . 1 . . . .

erhalten wir wieder z, d. h., z = W kann auf die analoge Weise gebildet werden wie

l . . . . . .

w = ?. Diese involutorische Eigenschaft gilt auch zwischen z und z*; man sagt,

die Spiegelung am Einheitskreis ist involutoriseh. Soll also z. B. der bezüglich des
Einheitskreises inverse Punkt 2* für einen Punkt z im Innern des Einheitskreises
bestimmt werden, dann braucht man in Bild 6.6 nur die Bezeichnung der beiden
Punkte z und 2* zu vertauschen.

Die eben betrachtete inverse Abbildung ist z. B. für viele Untersuchungen in der
Elektrotechnik von Bedeutung. Betrachten wir z. B, das Ohmsche Gesetz u = ir und
nehmen an. daß u konstant und iund r veränderliche komplexe Größen sind, dann

wird der Zusammenhang i = ädurch die inverse Abbildung (6.9) charakterisiert,

da u durch einen entsprechenden Maßstab berücksichtigt werden kann. lst r z. B.
abhängig von der Frequenz, dann erhält man für r in der komplexen Zahlenebene
eine Kurve. Bei der Bestimmung von i besteht dann die Aufgabe, zu allen Punkten
der Kurve für r die inversen Punkte zu ermitteln. Durch Inversion ließe sich also
bei geeigneter Wahl des Maßstabes aus der Kurve für r diejenige für i bestimmen
(und umgekehrt).

Man kann leicht zeigen, daß alle Punkte des Einheitskreises bei der Abbildung
z —> 2* in sich selbst übergehen. Sowohl durch die Abbildung z —> 2* als auch durch
z —> w gehen alle Punkte im Innern (außerhalb) des Einheitskreises in Punkte außer-
halb (innerhalb) des Einheitskreises über. Im Beispiel 3.2 wurde dies ja auch schon
untersucht (Bild 3.3).

Als Fixpunkte der Abbildung, d. h. Punkte, die bei der Abbildung in sich selbst
übergehen, erhält man aus

Die beiden Punkte z = 1 und z = -1 gehen somit bei der Abbildung (6.9) in sich
selbst über.’

Im Beispiel 3.2 hatten wir gesehen, daß sich durch die Abbildung (6.9) der Umlauf-
sinn des Einheitskreises umkehrt. Die Bildpunkte des Einheitskreises der z-Ebene
gewinnt man durch einfache Spiegelung an der reellen Achse.

Bei der Anwendung der inversen Abbildung geht es häufig darum, nicht einzelne
Punkte, sondern Kurven abzubilden. Für einfache Kurvenformen soll das näher
untersucht werden. .

Zunächst wollen wir noch eine andere Form einer Kreisgleiehung kennenlernen.
Wir behaupten,

yzE+az+äE+ö=O Gal‘ —y6>0), (6.11)

wobei y, Ö reelle Konstanten und a komplexe Konstanten sind,
ist für y + 0 die Gleichung eines Kreises und für

y = 0 die Gleichung einer Geraden in der z-Ebene.
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Beweis: Mit a = zx +jfi und z = x + jy folgt aus (6.11)

7(x +.1.V)(X -jy) +(0¢ +J'5)(X +1y)+(£‘< -J'fi)(x -jy) + Ö = 0,

'y(x2 + yz) + 2(o<x — fiy) + ö = 0. (6.12)

Das ist für y 4: 0 eine Kreisgleichung und für y = 0 eine Geradengleichung. I
Man kann nun noch zeigen, daß der Radius dieses Kreises gleich

9 =fi\/|aI2~~/6 (6.13)

und der Mittelpunkt

Zo = ‘g (6.14)

ist. Was ergibt nun die Abbildung dieses Kreises (6.11) mit der Abbildungsfunktion

(6.9)? Wir setzen w = %==-z = T:-in (6.11) ein und erhalten mit der Voraussetzung

jal’ ~ yö > 0

1 1 1 1

y——_—+a——+5=+r3=0=>y+an?+dw+:§w»?=O.
w4w w w

Wir erhalten also als Bildkurve ebenfalls einen Kreis (ö a1: 0) bzw. eine Gerade
(ö = 0). Der Bildkreis in der w-Ebene hat den Radius

1 „K

9w = WJW — «/6 (6.15)

und den Mittelpunkt

m, —% (6.16)

Nehmen wir die uneigentlichen Punkte der z- bzw. w-Ebene zu diesen Ebenen hinzu
und fassen wir jede Gerade als Kreis mit unendlich großem Radius auf, dann kann
also der Satz ausgesprochen werden:

Satz 6.1: Die Gesamtheit der Kreise der z-Ebene wird durch die inverse Abbildung
l

w = ? aufdie Gesamtheit der Kreise der w-Ebene abgebildet. Man sagt, die Abbildung

ist kreisverwandt.

Für das praktische Arbeiten mit der inversen Abbildung sind nun noch folgende
spezielle Aussagen von Bedeutung, die sich aus den hergeleiteten Formeln leicht
erkennen lassen:
1. Alle Geraden durch den Nullpunkt der z-Ebene werden in Geraden der w-Ebene

abgebildet, die durch den Nullpunkt gehen (y = 0, ö = O).

2. Jede Gerade der z—Ebene, die nicht durch den Nullpunkt geht, wird in einen
Kreis der w-Ebene abgebildet, der durch den Nullpunkt geht (y = 0, ö # 0).
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Da die Abbildung involutorisch ist, gilt dann natürlich auch die Umkehrung
von 1. und 2.

3. Jeder Kreis der z-Ebene, der durch den Nullpunkt geht, wird in eine Gerade der
w-Ebene abgebildet, die nicht durch den Nullpunkt geht (y # 0, Ö = 0).

Die Abbildungseigenschaften der Funktion W = l/z finden unmittelbare praktische
Anwendungen. Zum Beispiel wird eine unter dem Winkel 0c gegen die reelle Achse
der z-Ebene geneigte Geradenschar in eine Kreisschar durch den Nullpunkt abge-
bildet. Dabei ist die gemeinsame Tangente aller Kreise im Nullpunkt als Symmetrie-
gerade um den Winkel —o; gegen die reelle Achse der w-Ebene geneigt. Praktisch
läßt sich dieses Ergebnis als konforme Abbildung einer Parallelströmung in eine
Dipolströmung interpretieren. Weiterhin kann man die Abbildung durch w = l/z auf
eine Quellströmung mit der Quelle im Punkt zo anwenden. Die Stromlinien, die in der
z-Ebene als Geraden vom Punkt zo nach oc verlaufen, sind in der w-Ebene Kreise
durch wo == 1/20 und durch den z = o0 entsprechenden Punkt w = 0. Man erhält
damit die konforme Abbildung einer Quell-Senken-Strömung in eine Quellströmung.

Bei der konstruktiven Durchführung der inversen Abbildung eines Kreises wählt
man am zweckmäßigsten den dem Ursprung am nächsten liegenden und den am
weitesten entfernten Punkt des Kreises, der zu invertieren ist, da dadurch der Durch-
messer des Bildkreises gewonnen wird. Diese Überlegung trifft auch zu, wenn der
Sonderfall der Geraden vorliegt.

Beispiel In der z-Ebene ist das Quadrat mit den Eckpunkten z, = {- \/2’(l +j),
z, = J,\/2(1 + 3J’), z, = ;„/2(—1 + 3J‘), z. =5\/2—(—1 +j) gegeben. BildenSiedieses
Quadrat durch w = 1/z in die w-Ebene ab. Eine Skizze ist anzufertigen!

Lösung: Zunächst verschaffen wir uns einen Überblick über die Lage der einzelnen Punkte
(Bild 6.7). z, und 24 liegen auf dem Einheitskreis, somit können die Bildpunkte w, und w4 durch

g!‘ /mag.Ac/Lye E”

I} "Ü;

7o y 71

‚ 974

92s

l fEH/P

954 W W2 ' gé Ar/Me

We W7

// r’ 9, l

" Bild 6.7. Konforme Abbildung

Spiegelung der Punkte z, und 24 an der reellen Achse gefunden werden. Die durch die Eckpunkte
des Quadrats gehenden Geraden der z-Ebene müssen nach 2., S. 104, in Kreise durch den Nullpunkt
übergehen. Damit sind von dem Kreis, der durch die Abbildung von gm entsteht, schon drei Punkte
bekannt, so daß er konstruiert werden kann. Von den Kreisen, die durch die Abbildung der Geraden
gm und g“, entstehen, sind zwei Punkte bekannt (Nullpunkt und wl bzw, W4), Es empfiehlt sich
hier, die Punkte z; und 23 invers abzubilden, da sie für das Bild der Geraden ‚e13 ja auch benötigt
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werden. Die Punkte w; und W3 werden nach der in Bild 6.6 gezeigten Konstruktion ermittelt. Das
Ergebnis ist somit grafisch gewonnen worden.

6.1.3. Abbildung durch die allgemeine gebrochen lineare Funktion w = f: : ‘I;

Wir betrachten jetzt den allgemeinen Fall der gebrochen linearen Funktion (6.2),

also w—“‘+b (ad—b+0 (617)
_ cz + d c ) ' '

Dabei sind a, b, c,d komplexe Konstanten, und wir setzen c 1+ 0 voraus, um schon
behandelte Fälle auszuschließen. Durch die allgemeine gebrochen lineare Funktion
wird die z—Vollebene eineindeutig und konform auf die w-Vollebene abgebildet, Man
kann zeigen, daß nur die allgemeinen gebrochen linearen Funktionen diese Eigen-
schaft besitzen.

Durch die gebrochen lineare Funktion wird eine eineindeutige Abbildung festge-
legt, d. h.‚ jedem Punkt der z-Ebene entspricht genau ein zugehöriger Bildpunkt in
der w-Ebene und umgekehrt. Durch Auflösen von (6.17) nach z erhält man

—dw+b
z=-—:——-. (6.18)

cw — a

Daraus folgt lim ü] = lim fl= — 1, d.h., der Bildpunkt des
W...” cw — a „m, c — a/w c

Punktes z = — d/c ist in der w-Ebene der uneigentliche Punkt. Der Bildpunkt des un-

eigentlichen Punktes z = eo kann aus

. . b . a + b/z a1 : 1 az + = Tz _ ‚k

„i?“ .5§icz+d ,1i“lc+d/z c Ü
ermittelt werden. Für die Fixpunkte der gebrochen linearen Abbildung ergibt sich
aus (6.17)

az + b_

cz + d
Fallunterscheidung:

1. c = 0: Aus (6.19) folgt z = a

= cz2+(d—a)z—b=0. (6.19)

— d
c —> 0 folgt aus (*) w —> oo.

2. c # 0: Aus (6.19) erhalten wir zwei komplexe Lösungen. z z oo ist, wie in (*)
gezeigt wurde, kein Fixpunkt.

Die Abbildung der z- in die w-Ebene durch die allg. gebrochen lineare Funktion
wird nun in mehreren Schritten vorgenommen: Wir formen deshalb (6.17) um:

az+b az+b/a a(1+bc—ad 1 )

. Ein weiterer Fixpunkt ist z = oo, denn für

cz+d:_c‘z+d/c c a cz+d
a bc — ad 1

= — + — .

c c cz + d
. . a bc — ad .

Zur Vereinfachung setzen wir? = a, und —-—c——- = a2, so daß Wll‘

l
cz+d

w '= a1 + a; (6.20)

erhalten.
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Es kann nun leicht abgelesen werden, welche Operationen erforderlich sind, um

die Abbildung des Punktes z in die w-Ebene vorzunehmen:

1. Der Nenner 2* = cz + dist eine ganze lineare Funktion und kann somit aus z

durch eine Drehstreckung und anschließende Translation gewonnen werden
(Ahnlichkeitsabbildung). Wir erhalten dadurch

w: a, + a2 (6.21)

2. Setzen \virjetzt w* 2 37, dann folgt aus (6.21)

w = a, + a3w*. (6.22)

w* kann nach (6.9) durch eine inverse Abbildung aus 2* gewonnen werden.

3. Um nun von w“ noch zu w zu kommen, ist noch eine Drehstreckung und an-

schließende Translation erforderlich (nach (6.22)).
Da alle elementaren Abbildungen, aus denen sich die allgemeinen gebrochen linearen
Abbildungen zusammensetzen lassen, kreistreu sind, gilt der

. . +b . . . .

Satz 6.2: Die durch Gleichung w = Zffi vermittelte Abbildung ist kreirtreu.

. . . . (Z m l)(| + j) . .

Beispiel 6.4: Durch die Funktion w: — ist das durch die Eckpunkte z, = l,

:2 = l + j, :3 : #_(l + j) festgelegte Dreieck der z-Ebene in die w-Ebene abzubilden. Skizze!

Lösung: Durch Umformung nach (6.20) erhalten wir

_—(l+j)z+(l+j) _ l+j+(l+j)-2—(l+j)-2jÄ 1

’ h—u ‘ 2 2 u—u
1+j l

F’ 2 +z—j.
l. Zunächst bilden wir 2* : z — j. Das Dreieck wird also parallel verschoben (Translation).

l
2. Durch lmersion gewinnen wir w* = —~; (Bild 6.8). Da nach Vergleich mit (6.20) u; = l ist, folgt

nur noch Z

l + j
3. eine rcinc Translation w = — + w‘ .

_
.
N

l

Die Bildpunkte sind w, = 0, wl = EU — j), w; = 7U +j).

Teilen wir Zähler und Nenner in (6.17) durch eine der komplexen Konstanten,

Z + b* Das be
c*z + d* ' —

deutet, daß die allgemeine gebrochen lineare Funktion von drei Parametern abhängt.
Wir können also die Aufgabe formulieren, drei vorgegebene Punkte der z-Ebene durch
die allgemeine gebrochen lineare Funktion in drei vorgegebene Punkte der w-Ebene
abzubilden. Wir erhalten aus dieser lnterpolationsaufgabe die drei Gleichungen

azi + b
w,- = (i = 1,2, 3).

z. B. durch a, dann erhalten wir einen Ausdruck der Form w =

S.6.2
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/mag. A:/759

' z, -z;- w;

ree//9 Ac/759

Bild 6.9. KreisscharBild 6.8. Konforme Abbildung

Durch Elimination von a, b, c und d folgt die gesuchte Transformation
w—w,w2-—w3 2—2122—23
w—w3 w2—w1 _z—23 22-2,

bzw. (6.23)
w—w1 .w2—w1 2—2, 22-21
w—w3'w2—w3 2-23 22-23

2-21 z;
z Z : bezeichnet man auch als Doppelverhältnis (oder anharmonisches

_ 3 2 _

3

Verhältnis) von vier Punkten und schreibt dafür (2,, 22, z, 23). Das Doppelverhältnis
ist eine lnvariante der allgemeinen gebrochen linearen Abbildung.

Beispiel 6.5: Gegeben sind die drei Punkte 21 = 1, z; = —j und 23 = 1 + j. Bestimmen Sie
die allgemeine gebrochen lineare Transformation, die diese Punkte in wl = -1 — 2j‚ w; = —- l +2j,
w; = —j der w-Ebene überführt.

Lösung: Aus (6.23) erhalten wir durch Einsetzen der gegebenen Punkte nach entsprechender
z + 1 —j

Umformung w = ja- .

2 — l +_|

Aufgabe 6.1: Im Bild 6.9 ist in der z-Ebene eine Kreisschar durch die beiden Punkte 21 und 22

bestimmt. Welches Bild ergibt sich durch eine gebrochen lineare Abbildung in der w-Ebene, wenn

z, und z; Fixpunkte sind’!

Aufgabe 6.2: Bestimmen Sie die gebrochen lineare Funktion, die die Punkte z, = —l, z; = 1,

4
23 = 0 in die entsprechenden Bildpunkte wt = 0, w, = — —3—j und W3 = —j abbildet.

6.1.4. Hinweise auf weitere praktisch wichtige Abbildungen

Die allgemeine gebrochen lineare Funktion, deren Eigenschaften im Abschnitt
6.1.3. durch drei aufeinanderfolgende Abbildungen untersucht wurden, ist ein Bei-
spiel für zusammengesetzte Funktionen. Durch eine Folge von Zwischenabbildungen
lassen-sich systematisch praktisch wichtige konforme Abbildungen erzeugen. Als
Beispiel soll auf die im Abschnitt 3.4. erwähnte Joukowski-Funktion f(z) = 2 + I/2
verwiesen werden.
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Im Abschnitt 3.5. wurden Abbildungseigenschaften einiger elementarer Funk-
tionen untersucht. Solche einfache konformen Abbildungen lassen bereits zahlreiche
praktische Anwendungen zu, Zum Beispiel können die Eigenschaften der Exponential-
funktion w = e’ genutzt werden, um eine Parallelströmung mit konstanter Ge-
schwindigkeit in der z-Ebene parallel zur x-Achse in eine Quellströmung in der
w-Ebene abzubilden, d. h. in eine Strömung. bei der alle Stromlinien radial vom

Nullpunkt der w-Ebene ausgehen.
Eine wesentliche Anwendung der Funktion w = e’ gewinnt man über ihre Periodi-

Zitätseigenschaft, die in der Theorie der Kreiselräder zur Untersuchung von Strö-
mungen um periodisch angeordnete Körper, wie Z. B.um sog. Flügelgitter, genutzt wird.

Durch zusammensetzen von Exponentialfunktionen erhält man weitere interes-
sante Abbildungen. Die Funktion w = tan z liefert die konforme Abbildung einer
Dipolreihe auf eine Parallelströmung oder einer Quell-Senken-Reihe auf eine ein-
zelne Quelle. Desgleichen erhält man über w = cot z die konforme Abbildung einer
Dipolreihe auf eine Parallelströmting oder einer Quell-Senken-Reihe auf eine ein-
zelne Senke.

Praktisch bedeutungsvolle Anwendungen erfordern jedoch ein weiteres intensives
Studium der Theorie der konformen Abbildungen. Deshalb muß hier auf die ein-
schlägige Literatur. wie z. B. [2]. verwiesen werden.

6.2. Schwarzsches Spiegelungsprinzip

Wir wollen einen Satz kennenlernen, der es uns erlaubt, unter gewissen Bedin-
gungen aus dem Verhalten der Abbildung in einem Gebiet G auf das Verhalten der-
selben Abbildung in einem anderen Gebiet G’ zu schließen.

Satz 6.3 (Schwarzsches Spiegelungsprinzip): G ‚rei ein Gebiet, zu dexsen Rand ein
Stück einer Geraden g oder eines Kreises k gehört; eine Funktion f(z) sei in G h0lo—

marp/1 und auf g bzw. k stetig. Wenn g auf die Gerade g’ bzw. k auf den Kreis k’ ab-
gebildet wird. dann werden Punkte aus G, die zu g bzw. k wiege/bildlich liegen, in
Punkte von G’ abgebildet, die „vpiegelbildlic/i zu g’ bzw. k’ liegen.

Unter dem zu z, bezüglich des Kreises k gehörenden Spiegelpunkt z; verstehen
wir dabei denjenigen, der auf der Verbindungsgeraden durch 20 und z, liegt und
der Bedingung

L‘; - Zol IZ2 - Zol = r’ (614)
genügt (vgl. Bild 6.10).

"l z-Ebene

z-fbenf
Bild 6.10. Spiegelung am Kreis Bild 6.1l. Spiegelung am Kreis

5.6.3
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Satz 6.3 kann mit Vorteil bei der Anwendung der konformen Abbildung an-
gewandt werden, er erleichtert die Berechnung ebener Felder mit kreisförmiger
und geradliniger Begrenzung.

Die in 5.3 betrachtete analytische Fortsetzung von Funktionen /(2) mit Hilfe von Potenzreihen
ist häufig umständlich. Man gewinnt die analytische Fortsetzung vonf(2) auch mit Hilfe des Schwarz-
schen Spiegelungsprinzips. Ordnet man dem Spiegelbild 2* von z an k denjenigen Punkt w* zu, der
aus w =f(z) durch Spiegelung an k’ hervorgeht, dann ist w* =f*(2*) analytische Fortsetzung
von /(z).

Da für i. > 0, reell, z, — 20 = }.(z; — zu) gilt, folgt aus (6.24) |z, —— z„| |2; — 20|

= Ä |z, — z0[2 = r’. Mit |z, » 20|’ = (z, —— 20) (z, —— E0) erhalten wir

(z; — zo) (z, — Eo) = r’. (6.25)

Ebenfalls ohne Beweis, der Leser kann ihn leicht selbst führen, sei noch folgender
Satz angeführt:

Satz 6.4: Sind z, und z; zwei bezüglich des Kreises k spiegelbildlich gelegene Punkte,
dann schneidet jeder durch z, und z; gehende Kreis k,; den Kreis k senkrecht. Urn-
gekehrt folgt, daß zwei Punkte z, und z; Spiegelbild/ich zu einem Kreis k liegen, dessen
Mittelpunkt auf der Verbindungsgeraden durch z, und z; liegt, wenn dieser Kreis k
einen durch z, ‚ z; gehenden Kreis k, ; senkrecht schneidet (Bild 6.1 1).

Beispiel 6.5: Bestimmen Sie die gebrochen lineare Funktion w = f(z), die das Kreisringgebiet G der
2 9

z-Ebene, das von den beiden Kreisen k,: Iz} = l und k;: z + —{ = F begrenzt wird (Bild 6.l2),
5

auf das Kreisringgebiet G’ der w-Ebcne, das von den beiden konzentrischen Kreisen k, und k; mit
Mittelpunkt w; = 0 begrenzt wird, abbildet. Dem Punkt z, = -1 entspreche bei der Abbildung
der Punkt w, = , und k, sei der kleinere der beiden Kreise k{, k; (Bild 6.13).

w-Eüene

Bild 6.13
Abbildung eines Kreisringgebietes

Bild 6. l 2

Abbildung eines Kreisringgebietes

Lösung: Mit z, = ——l —> w, = j liegt fest, daß k, der Einheitskreis der w-Ebene ist. Bezüglich der
beiden Kreise k, und k; sind w; = 0 und w, = ac Spiegelptinkte in der w-Ebene. Können die zu

w; und w; gehörenden Bildpunkte z; und 23 in der ZAEb€l'18 bestimmt werden, dann liegen drei

Punktepaare —1 -+ j, z; —> 0 und z, —> 00 fest, und nach (6.23) kann die gebrochen lineare
Funktion ermittelt werden. Da z; und 23 nach Satz 6.3 ebenso viiew; und w; Spiegelpunkte sind, folgt
aus (6425)

‘-1 d +2 "+2 —Z223- UIl (Z2 -3- Z3 5)- 81
— . (6.26)
25
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Aus beiden Gleichungen eliminieren wir 23 und erhalten

2 l 2 81

<zz+—><—+;>:—5 2; 5 25

l
Daraus folgen die beiden Lösungen 2;, = 5 und 2;; = ?.

Da wir nach (6,25) auch von den Gleichungen

2 2 81
232; = l und (z; + (i; + = T5 (6.27)

hätten ausgehen können, stellen 2;; und 2;; die beiden gesuchten Punkte z; und 23 der z-Ebene
dar. Um zu entscheiden, welcher der beiden Punkte 2;; und 2;; gleich 2; bzw. z; ist, lassen wir in

1

der 2-Ebene einen Punkt die Strecke auf der reellen Achse von ? bis 5 durchlaufen. Von diesem

Punkt wird der Kreis k; als erster überschritten. Der zugehörige Bildpunkt in der w-Ebene würde
sich bei dieser Bewegung auf einer Geraden von O nach oo bewegen und dabei den Kreis k} als ersten
überschreiten. Wir hatten nun vorausgesetzt, daß k,’ der kleinere der beiden Kreise kf, k; sein soll,
somit kann der sich bewegende Bildpunkt in der w-Ebene nur dann den Kreis k{ vor dem Kreis k;
überschreiten, wenn er sich vom Punkt O nach dem Punkt o0 bewegt. Somit folgt

l_—>0, 5—>oo,
5

1 .

Mit 21 = —1, 2; = —5—,\ 23 = 5 und w; = j, w; = 0, w; —> a: erhält man aus (6.23)

_ w-wl w;—ö 2-2; 2;—23 w-wl 2-2, 2;-z3
lllll = 2 = ,

(„n w — Ö w; — w, z — 23 2; — z, w; — w; z — 23 z; — 21

‚ 52 — l

Aufgabe 6.3: Gesucht ist die gebrochen lineare Funktion w = f(2)‚ durch die das lnnengebiet des

Kreises k: l2 + ll = 2 der z-Ebene auf die obere Halbebene der w-Ebene so abgebildet wird, daß
der Punkt z, = —j in den Punkt w; =j und der Punkt 2; = l in den Punkt w; = 0 übergeht.

6.3. Abbildung einfach zusammenhängender Gebiete auf das Innere eines

Kreises

Nach dem Riemannschen Abbildungssatz können einfach zusammenhängende
Gebiete mit mindestens zwei Randpunkten durch holomorphe Funktionen einein-
deutig und konform auf das Innere eines Kreises abgebildet werden.

ln 6.1.3. hatten wir den Satz ausgesprochen, daß die Abbildung durch die allgemeine
gebrochen lineare Funktion kreistreu ist. Legen wir also durch drei Punkte 21, 2;
und 23 der 2-Ebene einen Kreis k, dann geht dieser durch die Abbildung (6.17) in
einen Kreis k’ über. Durchläuft ein Punkt den Kreis k von z, nach 2; und nach 23,
dann wird der Kreis k’ in der w-Ebene von w, nach w; und nach w; durchlaufen. Wir
können also einen gegebenen orientierten Kreis k der z-Ebene, der durch die drei
Punkte 21 , 2;, 23 geht, stets so abbilden, daß er in einen Kreis k’ der w-Ebene übergeht,
von dem ebenfalls drei Punkte vorgegeben wurden, sofern auf beiden Kreisen die
vorgegebene Orientierung eingehalten wird. Ohne Beweis geben wir folgenden Satz an:
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Satz 6.5: Bei der Abbildung eines orientierten Kreises k der z-Ebene vermittels der
allgemeinen gebrochen linearen Transformation (6.17) in den Kreis k’ der w-Ebene geht
das beim Durchlaufen von k zur Linken (Rechten) liegende Gebiet der z-Ebene in das
beim Durchlaufen (mit gleicher Orientierung) von k’ zur Linken (Rechten) liegende
Gebiet der w-Ebene über.

1. Faßt man die reelle Achse der z-Ebene als Kreis k auf und legt aufk drei Punkte
z, = oo, z; = l, 23 = 0 und in der w-Ebene die drei Punkte w, = 1, W2 = —j
und w; = -1 fest, d. h., die reelle Achse der z-Ebene soll in den Einheitskreis der
w-Ebene abgebildet werden, dann können wir nach (6.23) die Abbildungsfunktion
bestimmen. Man erhält

w—]—j+1_“mz—6I—0
w+l «j»! jamz-öi-ö‘

. : — l . ‚ . ‚ .

Da lim -———. = — ergibt, erhalten wir die Abbildungsgleichung
ä-ocx. z(1 — a) z

z-i
z + J.-. (6.28)w =

Durchläuft man auf der reellen Achse die Punkte in der Reihenfolge zl, zl, 23,
dann liegt die obere Halbebene der z-Ebene zur Rechten. Beim Durchlaufen der
drei Punkte w, ‚ wg, w3 aufdem Einheitskreis in der w-Ebeneliegt das Innere des Ein-
heitskreises zur Rechten. Die obere Halbebene der z-Ebene wurde somit durch die
Transformation (6.28) in das Innere des Einheitskreises der n-«Ebene abgebildet. Um
also die Aufgabe zu lösen, ein einfach zusammenhängendes Gebiet in das Innere
eines Kreises abzubilden. kann auch die Aufgabe betrachtet werden, das abzu-
bildende Gebiet in die obere Halbebene der komplexen Ebene abzubilden, da
durch eine anschließende Abbildung die obere komplexe Halbebene in einen Kreis
abgebildet werden kann.

Es können weitere Funktionen angegeben werden, die eine Abbildung auf das
Innere eines Kreises bewirken.

2. Die in 3.5.1. betrachtete Potenzfunktion w = z" (n e N) bildete die z-Ebene auf

die n-blättrige Riemannsche Fläche ab. Ein durch O g (p < festgelegter Winkel-

bereich der z-Ebene konnte auf die einblättrige w-Ebene abgebildet werden, d. h.,

wir können den durch 0 g z; < festgelegten Winkelbereich der z-Ebene durch die

Funktion w = z" auf die obere Halbebene der w-Ebene abbilden,

3. Durch die Funktion w = e’ konnte ein Parallelstreifen (vgl. 3.5.4.) —.-: < y g 7:

umkehrbar eindeutig auf die gesamte w-Ebene abgebildet werden. Bilden wir nun

den Parallelstreifen 0 < y g v: durch die Funktion w = e’ auf die w-Ebene ab, dann
erhalten wir als Bild die obere Halbebene der w-Ebene.

4. Als abschließendes Beispiel wollen wir die Abbildung eines beschränkten Poly—

gons in die obere Halbebene der w-Ebene erwähnen. Die Schwarz-Christoffelsche
Formel. die die eben erwähnte Abbildung bewirkt, sei hier ohne Beweis genannt.
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In der z-Ebene sei ein Polygon mit den n „Außenwinkeln“ 0a,: (i = l, 2, ..., n)

gegeben. Da für ein n-Eck die Summe der „Außenwinkel“ gleich 27: ist, gilt E": a,» = 2.
Durch die sog. Schwarz-Christoffelsche Formel i =1

W dt=Kf——————— K 6.29

Z 1.,<t~u1>~(t—u.)~z...<r—um» + Z ‘ ’

wird das Innere G des Polygons (vgl. Bild 6.14) in die obere Halbebene abgebildet
(vgl. Bild 6.15). Die u, sind die den Ecken des Polygons zugeordneten Punkte der
reellen Achse der w-Ebene. Die komplexen Konstanten K‚ und K; bewirken eine
Drehstreckung und Translation, hängen also nicht von der Form, sondern nur von
der Größe und Lage des Polygons in der z-Ebene ab.

Drei Punkte der z-Ebene können drei beliebigen Punkten der w-Ebene zugeordnet
werden. Ordnet man einem Eckpunkt des Polygons den unendlich fernen Punkt der
w-Ebene zu, z. B. 14„ = o0, dann ist das entsprechende Glied (t — u.„,)"w in der

Bild 6.14. Zur Anwendung der Bild 6.15. Zur Anwendung der
Schwarz-Christofielschen Formel Schwarz-Christoflelschen Formel

Abbildungsformel (6.29) zu streichen. Artet das Polygon aus, z. B. in einen Halb-
streifen, d. h., ein Eckpunkt des Polygons rückt in das Unendliche, dann ist der
zugehörige Außenwinkel gleich n und damit o; = 1. Beispiele aus der Elektrotech-
nik zur Anwendung der Schwarz-Christoffelschen Formel findet der Leser z. B. in
[15, S. 21211.].

Dieser Aufgabenstellung kommt insofern große Bedeutung zu. da in vielen Fällen
praktisch wichtige Untersuchungen und Überlegungen oft an einfachen geometri-
schen Figuren durchgeführt werden können.

S V3‘-reunl/Kadm-r, Komplexe Funktinm-n
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2.1: a) Nach (2.5), (2.6) und (2.3) folgt:

_ |1—j||3+4j| _ (1+1)(9+1a)_ s _s\/E-
|1+j||—2—2j| (1+1)<4+4) _ " '

1 ?_.._ 1

Mr x/R?+w‘L’~/R§+Tc2
1 _

<R1+R2>+j(wL—E)| A/(R,+R2)2+(wL~a+C)2

[R1 +

b) 18l =

l
(Rf + (011.2) (R; + E?)

‘3' = Ti?»
(R, + R2)’ + (mL — :)

wC

2.2: a) Strecke von z, = 1 — 2j bis z; = 4 + j (Bild L 1).

b) Es liegt ein orientierter Teilkreis mit Mittelpunkt 2., = —2 + j und Radius ro = 3 vor

(Bild L 2).

Bild L 1, z-Ebene Bild L 2. z-Ebene

2.3: Für die Strecke s gilt allgemein bei linearer Teilung (2.25):

z=z, +t(z;—z1)= —3j+z(—2+4j). 05:51.

Für den Kreis k lautet die Gleichung nach (2.26)

2(41)) = zu + ro e” =1 + e17’,

Bild L 3. z-Ebene Bild L 4. zeEbene Bild L 5. z-Ebene
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2.4: a) Bild L 3

b) Bild L 4

c) 11-2zE§l1+zl, z=x+j.v;
(1« 2z)(1— 22); (1 + z)(1+ 2):)? — 2x +y2 g o,

(x — 1)’ + ‚v2 g 1. (Kreisfläche) Bild L 5.

2.5: a) Kreisgleichung k: z — 1 = 2. Geradengleichung für g: Re (z) > l. Für das Gebiet G
gilt somit: G = (z: lz —1l; 2/\Re(z) > 1}.

b) Kreisgleichung k: lz — (~1 + 2j)l = 3. Die Fläche des Rechtecks R wird beschrieben durch
—3 < Re (z) < 1 /\ 1 < Im (z) < 3. Für das zweifach zusammenhängende Gebiet G gilt also

G:{z:]z+1—2j\<3A—3<Re(z)<IA1<Im(z)<3).

c) z ä O. S, kann durch argz = % und S; durch arg z : beschrieben werden. Fürdas schraffierte

Gebiet gilt somit < argz < und z ¢ O.

2.6: Re (22) = x2 — y’ g a. Bild L 6 und L 7

m—/J’

[7<

Bild L 6. z-Ebene Bild L 7. z—Ebene

3~1= W: ‚i = j _ j(x — lzl —jy)

z—m x—m+n u—mV+fi’

: y L__ x-lzl
u—mfi+ß' u—vW+fi'

3.2: Nach (2.23) lautet die Parametergleichung einer zur reellen Achse parallelen Geraden in der
z-Ebene g: z(t) = x(t) + jc (c reell). Wählt man auf g eine lineare Teilung und faßt c als Schar-
parameter auf, dann stellt z(t) = I + j: mit c > 0 (reell), —oo < t < 0o, die Gleichung der in
Bild 3.6 abgebildeten Geradenschar dar.
Die Abbildung ergibt

w=z2=t1—c2+j-2ct=u+jv.
g*
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Mit u = I’ — c2 und v = 2c: folgt durch Elimination von t eine nach rechts offene Parabelschar

+ 2 = —,ll C 462

deren Brennpunkte mit dem Nullpunkt zusammenfnllen, Für das Bild der reellen Achse der z-Ebene,
d. h. für c = 0, folgt aus u=Iz‚ t'=0

w = I’,

d. h. die positive reelle Achse der w-Ebene. Durchläuft ein Punkt die reelle Achse von links nach
rechts, dann durchläuft der entsprechende Bildpunkt wegen re (— oo, + co) die positive reelle Achse
der w-Ebene zunächst von rechts (w = 0o) nach links bis w = 0 und anschließend von links (w = 0)
nach rechts (w = o0) (Bild L 8).

Bild L 9. z—Ebene

Bild L 8. w-Ebene

Parametergleichung des Halbkrcises der z-Ebene

k:z=re". r>0, 0§t<:.

Die Abbildung w = zZ ergibt

k’:w=z3=rZe"'=Re"°’‚ R=r2>0, 0§q3<27t.

k’ stellt die Gleichung eines Kreises um den Nullpunkt mit Radius R = r2 in der wAEbene dar.
Die Halbkreise k der z-Ebene werden somit in Kreise k’ der w-Ebene abgebildet. Wird in k ein
Kreisbogen mit dem Mittelpunktswinkel t = o: (o: konstant) durchlaufen, dann durchläuft der em-
sprechende Bildpunkt auf k’ den zum doppelten Mittelpunktswinkel op = Zt = 2a gehörenden
Kreisbogen im gleichen Umlaufsinn (Bild L 9).

3-3: a>f(z) = xiv‘ - jxzys, u = x3.v2, u; = 3x2)”. "y = 2X“.v. v = —x’y3, v; = -2X‚v’‚
v, = —3x2yz. Die Cauchy-Riemannschen Differentialgleichungen sind nur für Punkte der reellen
und der imaginären Achse erfüllt, also ist f(z) auch nur für diese Punkte difierenzierbar. Nach
(3.17) folgt für diese Punkte

f'(z) = 0.
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f x—‘ (x—jy)‘ x‘-y’ 4xy’
b» /<z>=—= ’.y= , „ u= , „ u‚= , „‚

z x-l-Jy x+y x+y (x +y)
—4x1y

"v=zT2z~(x +y)

"v —2Xy 1:-2y xz_y2 U-‘2x —x2+yzx2+yz’ r‘ (x2+yz)2’ 3’ (x2+y2)2‘

Die Cauchy-Riemannschen Differentialgleichungen (3.16) werden nicht erfüllt, d. h.,f(z) ist nirgends
differenzierbarr

1 1

e) f(z) = l — ?,f’(z) = Z—2.f(z) ist holomorph für z # 0.

3.4: a) u = g(x), u„=g’(x), u„,= g”(x), u,= uy, = 0. Aus u,,,+ uy, = O folgtg”(x) = 0 und durch
zweimalige Integration g(x) = C,x + ‘C1. Mit u = g(x) gilt u, = C, , 11,, = 0. Unter Anwendung
von (3.16) folgt v, = u, = C, und daraus v = C‚y + <,p(x), v, = q2’(x) = -11,, :p’(x) = 0, zp(x) = C2.
Damitergibtsich v= C,y+ C1undf(z)= C‚x+ C2 + j(C|y + C;) = C,z+ C;(l + j) = C1z+C.

b) v = ax‘ + bxy + cyz, v, = 211x + by, Lg, = 2a, v, = bx + Zcy, 12,, = 2c.

v,,,+v,,=0:2a+2c=0=vc=—a, v=a(x2—y2)-1-bxy.

Nach (3.16) gilt

u,= v,=bx-—2ay, u=-3-bx’ —2ax,v+q2(y), u,= —2ax+1p’(y)= —v,.

*2“ + M!) = -2aX - by=>lF’(y) = -by, W0’) = —%b.V1 + C-

Für u folgt dann

u = i-bx’ — Zaxy — -}by’ + C= -}b(x’ — y’) ~ 2axy + C.

f(z) = im’ - y’) - Zaxy + C + j[a(x’ — y’) + bxy].

Mitf(l + j) = O erhält man

’ o= —2a+ C+jb=>C=2a, b=O. f(z)= 2u(l —xy)+ja(x2 —y’).

1 1 1 4 _

3.5: w=f(z)=-;2—=—r5—e‘2"” =7—(cos2¢—_1s1n2<,v).

ftz) = vom) + jV(x, y) = Tm, w) + Wo, m).

— . . . . ~ 1

Aquipotentiallinien: U: const = cf: cf = ‚T cos 29v ==- r2 = c, cos Ztp;

_ 1
Stromlimenz V = const = cg; cf = — ———sin 2<p => r’ = —c‚ sin 24p.

‚.2

3.6: Nullstellen des Nenners: (21 —— 22) [22 — 2(1 — j) z — Zj] = 0.

1. z(z—2)=0=:,=0, z2=2;
2. z’—2(l—j)z—2_i=0=>z3=z.,=/l—j).
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A1 A2 A31 A32A t: =——+——+g——+———‚
“s” K” z 2-2 {z—<1—5)12 z-(I-n

A‚=l+j‚ A;=—2+j‚ A3‚=j‚ Aa2=0.
1+j 2—j j

fü): ‘S+ .
3.7: a) e’ = e"*" = e‘ (cosy + j sin y), ei = e""’ = e" (cos y — jsin y),

Ü: e"(cosy —jsiny):e; = e_‘.

b) Nach (3.58) gilt

1 . .sin (z + 2:) = _4 [e:(:+zn) _ e~:u+2:r)]_

2J

Unter Anwendung von (3.45) folgt daraus

1

sin (z + 27-.) = —_(e” — v").
2J

und nach (3.58)

sin(z + 27:) = sin z.

C) Nach (3.45), (3.57) und (3.58) gilt
t n( + 2 ) 1 61mm; _ e—}(z+-2:1) l e]: _ 5.3: t
3. Z 7T =-—j=—.——?—= anz.j eJ(:+2.-z) + e—1(z+2n) e): + e-lz

. ‚ n
d) M11 z = -3,1,2} = 1, arg z = — 7 und (3.48) folgt

7T.‘

L —'=l1'—— =—'—.og( J) n +J( z) J2

e) Nach (3.57) und (3.70) gilt

cos jz = -}~(e“' + e""') = fie" + e‘) = cosh z.

Unter Beachtung von cos zx = sin -— a) ergibt sich

cosh (x + jy) = cosj(x + jy) = cos (—‚v + jx) = sin + y — jx).

’ n: 1:
3.8: a) cos (j —) = cosh — = 2,5092;

2 2

b) sin (1 — j) = sin 1 cosh 1 - j cos 1 sinhl = 1,2985 — j -0,6350;

c) cosh [n(1 + j)] = cosh 7: cos 7: + j sinh z sin 7: = —II,5920.

3.9: a) Nach (3.69) folgt

i 4 cos 80”
tan 2x — = —0,23l5=>x =0,1137,

4 sin (—80°)
tanh 2y = ———5———— = 0,7878 => y = 0,6837.
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_ 1 ’ —sin z
3.10. a) —————Z) = LE_ ms Ö2 .

1 — cos

b) sinh z -1 I cosh z
w = -——: = j, w = —_——.

l — cosh 2z 2 sinh z 2 smh‘ z

_2 c2:
c) w = f”_ D2 .

4.1:a) (S1:z(t)=—l+I(2+j). 0§I§1, z'(t)=2+j.
1

1 1 1
11 = __J.eu2+i) (2 + Dd, = ___ [enamlä = _(ez+} _ I)‘

C e C

0

b) Ü;1:z(t)=—-1+2t‚ 05151, z'(t)=2,
1

l 1

I“ =--fe"2dt=—(e’ -1).
e e

o

(5221Z(’)=1+1j‚ i(V)=j. 0§f§1
1

. ‚ 1

I22 = felmjdl: e(e’ — 1) = :(e“’ — e’).

o

I1 = I21 + ‘I22-

4.2: Gleichung des Kreises 2(1) = zo + g e", 0 ä t ä Zn, z'(t) = gj e". Nach (4.3) folgt

2]! Zn
I: j (zu + gen _ Zo)»9j end, = gn+lj esmm d,‘

o o‘

25‘
n# "l: I=jg"+‘J [cos(n +1)t+jsin(n +1)r]dI,

o

1= —j9m [sin(n + 1)!-—jcos (n +1)z]3" =0.
n + 1

2::
l l ‚n _

n=—l:I= z Z dz= Q5“ Q16 d!=27l_].
—' 0

Q 0

0 für n # —- 1 ,

f(z — zu)" dz = { _ U

g 21:5 fur n = —l.

4.3: (S: 2(1) = g e“, 0 ä I ä 21-r, dz = gj e“ dt. Nach (4.8) ergibt sich

. z."

| I z"dz[ s j Ia"e""J m" e"dz1,
ti o

2a

H z"dz g J. 9"*1dI = 27r9"“.
G 0
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1 . ..4.4:f(z) = W ist fur z + zu holomorph.

a) Da der Punkt zu von der Ellipse nicht umschlossen wird, gilt nach (4.10)

5; dz _

(Z -Z0)" —

G;

b) Nach dem Ergebnis von Aufgabe 4.2 gilt für z 4: 2°

dz 0 für 11+ 1,125km’ für n= 1.
2

c) Es gilt nach (4414) das gleiche Ergebnis wie unter b).

4.5: a) Nach (3.49) ist F(z) = Log (z — 2o) in —z < arg (z — 20) g r: eine Stammfunktion zu

f(z) =

z — zu"

b) Partialbruchzerlegung

1 1 1 l
( = -——- = Z. — ——).f2) a2+z2 2a_| z—_|a z+ja

1

F(Z) = z]: [Los (z - ja) - L08 (Z +J'I1)1-

Da Lbg(z —ja) in —rr < arg (z — ja) g n (z 4: ja) und Log (z + ja) in —.-. < arg (z + ja) g 7r

(z =1: —ja) holomorph sind, kann das Holomorphiegebiet für F(z) als einfach zusammenhängendes
Gebiet angegeben werden (Bild L l0).

Bild L 10. z-Ebene

4.6: Schneiden wir die z-Ebene längs des von z = zo ausgehenden parallel zur reellen Achse nach
links bis ins Unendliche verlaufenden Strahles auf, so istf(z) in dieser aufgeschlitzten z-Ebene holo-
morph, und dort gilt für‘

b

dz
n=1: f

z-zo
a

b

= Log (b — zu) — Log (a — 2o).= Log (z — zu)

i n [(b - zu)” - (a - zo)""]-
a

b

dz 1 bl: = _ —n-+1

n 3F j (z — zu)" -n +1(z 2°)
a
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4.7: Nach (4.20) folgt

lzsinzdz=zcosz+ ..coszdz= —zcosz+sinz.

-1 l

a) {zsinzdz=(—zcosz+sinz)|; = —1,683.
i

b) c§zsinzdz=0.

4.8: Partialbruchzerlegung:

1 1 < 1 1 )
z‘—(1+j)z+j_1—jz—-1 z—j'

z2+jz I z2+jz 22-1-jz
I= {d =-——— ' d — 1.1 = _

.C§z‘—<1+5>z+1' z 1—j{3g z—1 z fßz-j z} "+11
6 E <5

a) I’ = 1„ da I, = 0, Punkt zu =j wird von Ki, nicht umschlossen. Mit f(z) = z’ + jz folgt
aus (4.22’)

1 2 + ' 1

I'=—-—. flink = .2njf(l)= .

1 -1 z — 1 I —_| l —_|

51

b) I” = 0, da (S; die beiden Punkte zo, = 1 und zu; =j nicht umschließt.

211j(1 + j) = —2r:.

-1 1+’ -1
c) 1'" = I, = —, Z——’,—z-dz = _2n:jf(j) = 2rr(—l +5).l-j z-J _ 1-1

Ü:

d) 1 = 1' + 1'" = 21r(—2 + j) (Bild L 11).

Bild L ll. z—Ebene Bild L l2. z-Ebene

4.9: Panialbruchzerlegung:

zcosz 1 zcosz zoosz _

= —H —— ———) (Bnld L l2).
+1:2-7? Z
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a) I = 0, die beiden Punkte zu, = 7: und zu; = —1r werden von 6, nicht umschlossen.

l z cos z z cos z
b) I=——{§ dz —§ dz},und mit[(z)=zcoszfolg\

n z — 1: z + r:

x (S.

2nj 27:j _

I= -—~{f(n:) —f(—7r)} = j {xcosn + 1: cosr.-} = — 27:1.
27: 27'. v

4.10: Nach (4.24) gilt mitf(z) = e’

H 2! e‘ e‘ f" (2) Zrrj _

’ ‘z’ ‘T,-f}€@“Z’§(,%,s‘” = T="°’J-
<2 c

vj v _ v’ D v’ > v v 1 ‘It _l. t _v+j—v2+l+_|v2+l. av,+1:v2+l=v2+v2_2vg1,ex1s1ereme
divergente Minorante, somit ist die gegebene Reihe ebenfalls divergent.

5.1:

1

5.2: c‚= -;_,—. Nach (5.12) folgt r = _ = lim v = o0. Die Reihe ist beständig konvergent.
1 r_.ao

lim V T
v—.m v

l ‘C —n V

5.3:a) f(z)=W=Z ( v )z'‚ r=1 („zl<1).
V=0

’2 en ‘l 2n 2

b) f(z)=2s1n z=nz=:l(—l) an)! z ‚ r=00.

cc 1 - 1 n co 2 I191 1 n 3 >

5.4:a) /,1(z)=n§0fiT%)—"+T(z+3) =")=:0(7) (H3), r,1=—2—(B1ldL 13),

ü 1 _

b) f‚2(z)=2?j)„H-(z+j)", r„=„/2 (BildL13).
n=0

H’/Fm Bild L 13. z-Ebene
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5.5: Da [al < [bl gilt, kann die Laurententwicklung für das im Bild L 14 eingezeichnete Ring-
gebiet G erfolgen. Partialbruchzerlegungz

f(z) = (z—a)(z—b):a—b zva a—bz—b a-b (l a)
z __

l eo all-l o0 ZII

—— ‚ b .

a — b {,5} z" +,,§0 b"*‘} lal < ‘z! <l l

Bild L 14. z-Ebene

5.6: Polstellen:

2+1=o =3 =_" =?..Z_____Z 3 Z01 J Z02 J f(Z) (Z + j) (Z _

Entwicklung an der Stelle 201 = j:
_ . + . l .

/<2»: =——.—(1+» ’
(z—1+2J)(z—J) . J-z z-J

2J l - ‚

2J

„ J - z .

Fur _ <1=>|z—_||<2
2J

gilt dann die Reihenentwicklung

„i s j—z~=L J °ci"_."
“Z)‘2j(”z—j)n§.7< 2; l 2j(”z—j).§o(2)(‘ ”‘

l ' l '

/<z>=2—j(1 + 2:1.) [1 +J3<z—j)-7<z«j>2—%<z—j)3+

1 i 1 ‘ . 1 . ' .f(z)=2—j[z_j +7+J:(Z‘J)“8—(z“.l)1++6(z-_|)3+...]‚

1 1 1 _ l _ l ‚f(Z)—fi+%‘W(Z‘J)+W(Z"J)z‘fi(Z".l)3+
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Entwicklung an der Stelle 2°; = ——j:

I J 1 . j .‚ 1 .3f(z)—m+?+F(z+J)—?(z+J) ——2—5—(z+J) +....

1 eo an-l so Zn ' 1 1

5.7: = ——— , R ———— =___—.
a) KZ) a—b:,,Z=:1 z" ,,§ob"“ es(z—a)(z—b)L=0 a-b

b) R z L 1

es =—.
l+z2 0:; 2

c esj =——.
) R z 1

1+z2 ,:_j 2

1/2 l 1 1 1/:5.8:a) f(z)=e =1+—z-+—2—!—z—z—+fi+..., Rese ,°=.,=1.

b) Für jedes k = 0, 1, 2, liegt eine einfache Polstelle vor.

(sin z) (z — ä — Im)

Res (tan z) = lim e= — l fürjedes k.
_ n n cos z

.,— T +k:t 1-» 7 +kn

Z2 Z4 Z6

5.9: Wegen cos z — 1 = — -27 + T — F + liegt beiz=0eine Polstelle zweiter Ordnung vor.

a) zo = 0 wird von G umschlossen, also folgt nach (5.37)

1 ‚ (z-O)’ ’ ‚ (cosz—1)2z+z2sinz
es——: - l = limj= 0.

C052 ‘1 :°=a ;—»o 1-.0u cosz -1 (cosz -1)’

(Der Grenzwert kann mit Hilfe einer Reihenentwicklung ermittelt werden.) Für das Integral erhalten
wir somit

=0.
dz _ 1

e=2mkese
cosz-l cosz-l

Ü
ro-O

b) Da L" keine singulären Stellen des lnlegranden umschließt, folgt nach (4.10)

L=Q
cosz-l

§ dz

(-5

5.10: a) Mit (5.41) und (5.42) ergibt sich

2,, .

wen: ~ .dt Z —-_|dz

5+4cosI_ _1( I)" 2z2+5z+2’
6S
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-1
d. h., es liegen Pole bei z; = —2- und zz = -2. Da nur z, innerhalb des Einheitskreises liegt, folgt
nach (5.43)

‘ —'d 1 —-'
= Znj Res R“(z) = 27:} lim (z + +-

‘P’ fi-l 2 (z + (z + 2)

C

27:
._ 3 .

l
b)/(2) = W ist in der oberen Halbehene überall außer in zo =j (Pol 3. Ordnung) holo-

morph. Nach ($.37) folgt

R 1 1 1_ F ‚P 1 ” 1 r 12 3
ese- =— 1m Z—_| T =——|m:—.—-= ——.

<1 + 2*)’ „‚ 2! „- 1<z + n (z — m’ 2! :4)’ (z +1)’ 16’
Mit (5.45) erhalten wir

ü)

dx _2Ä 3_ _3__W "Jl T1)-?"'
>30

6.1: Nach Satz 6.2 ist die gebrochen lineare Abbildung kreistreu. Die Kreisschar der z-Ebene geht
also in eine Kreisschar der w-Ebene über, Die gesamte K. ' char geht als Ganzes betrachtet in
sich über, die einzelnen Kreise nicht.

6.2: Nach (6.23) folgt

2' + .

»—o 3” z+l1—0 _2j(z+l)
w+j 4_ _z—0l+1 _—(z+2)'

_ _J _ 0
3

6.3: Zunächst bestimmen wir den zu 21 = —j gehörenden Spiegelpunkt z; am Kreis k. Nach
(6.25) gilt dann

2

(zs-zoflz]-fo)=r’=r3=zo+%=—l+‚ =1—2j«
z‘ — zu _|+l

Damit sind drei Punktepaare

—j—»j. 1—»o und 1 «Zja «j
gegeben. Nach (6.23) kann dann die Abbildungsfunktion erminelt werden:

w——j0+j z+j l-(l-Zj) z-l
T’ . . =>”— . .-w+30—; z—(1~—2]) 1+] Z(2+J)-2+3j
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