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1. Einfiihrung

Der vorliegende Band enthdlt die fiir den Ingenieur und Naturwissenschaftler
wichtigsten Gebiete der komplexen Funktionen und konformen Abbildungen.

Die Theorie der komplexen Funktionen (Funktionentheorie) steht als Teilgebiet
der Mathematik in wechselseitigen Beziehungen zu fast allen Gebieten der Mathe-
matik und besitzt fir viele theoretische sowie praktische Untersuchungen grofle
Bedeutung. Komplexe Funktionen und konforme Abbildungen treten in vielen
praktischen Anwendungen der Mathematik auf und stellen fiir Ingenieure und
Naturwissenschaftler unentbehrliche Hilfsmittel dar. Untersuchungen in der Stré-
mungslehre, der Elektrotechnik, der Regelungstechnik, der Elastizitatstheorie und
in anderen Gebieten sind heute ohne Anwendung der Funktionentheorie kaum mehr
denkbar.

Bedeutende Mathematiker der Vergangenheit, wie z. B. L. Euler (1707—1785),
J.-L. Lagrange (1736 —1813), C. F. GauB (1777—1855), A.-L. Cauchy (1789 —1857),
K. WeierstraB3 (1815—1897), B. Riemann (1826 —1866) u. a. haben entscheidend zur
Entwicklung dieses Teilgebietes der Mathematik beigetragen.

Im Band 1 der vorliegenden Reihe wurden die komplexen Zahlen eingefiihrt, so
daB in diesem Band dazu nur eine kurze Ergdnzung enthalten ist. Da vor allem Inge-
nieure und Naturwissenschaftler angesprochen werden sollen, wurde bei der Erarbei-
tung besonderer Wert auf Anschaulichkeit und praktische Beispiele gelegt. Es findet
sicher beim genannten Leserkreis Verstindnis, wenn auch durch die notwendige
Beschrankung des Umfangs auf viele theoretische Untersuchungen verzichtet werden
mubBte. Hierzu sei auf die im Anhang genannte Literatur verwiesen. Ziel des vorlie-
genden Bandes ist es, diejenigen Verfahren und Methoden der Funktionentheorie zu
vermitteln, die insbesondere fiir den angesprochenen Leserkreis von Bedeutung sind.
Vollstandigkeit konnte dabei natiirlich nicht angestrebt werden. ‘

Der Leser wird feststellen, daB3 sich viele Formeln und Sétze, die bei der Betrach-
tung reeller Funktionen erhalten wurden, auf das Komplexe ausdehnen lassen und
daB Ergebnisse gewonnen werden, die uns weitere Zusammenhénge zwischen den
Funktionen vermitteln. Es ist sehr zu wiinschen, daB neben den Miihen, die das
Studium der Funktionentheorie sicher erfordert, auch die Eleganz und Schénheit
funktionentheoretischer Methoden vom Leser erkannt und empfunden werden und
daB ihm die Funktionentheorie ein unentbehrliches Hilfsmittel in seiner Arbeit
wird.



2. Komplexe Zahlen
2.1. Grundbegriffe

Im Band 1 des Lehrwerkes wurden die wichtigsten Grundbegriffe {iber das Rech-
nen mit komplexen Zahlen gebracht. Diese Grundbegriffe werden im folgenden

vorausgesetzt.
Unter Beriicksichtigung der imagindren Einheit j *) mit der Definitionsgleichung
P?=-1 (2.1)
besitzt eine komplexe Zahl z die Form
z=a+jb=r(cosg+ jsing) =re?, (2.2)
/ /
arithmeti- trigonometri- Exponential-
sche Form sche Form form

wobei @ = Re (z) und b = Im (z) reelle' Zahlen sind und fiir den Winkel ¢ = argz
das Intervall =7 < ¢ < = gelten soll. Fiir den Betrag der komplexen Zah! gilt

2l = r = Ja + b7 = /22, (2.3)
wobei Z = a — j b die konjugiert komplexe Zahl zu z = a + j b ist.

Da jede komplexe Zahl durch ein Paar reeller Zahlen (a, b) bestimmt wird, kann sie
in einer komplexen Zahlenebene, der sog. GauBschen Zahlenebene, als Punkt oder als
gerichtete Strecke (vgl. Bild 2.1) dargestellt werden. Derartige gerichtete Strecken
in der komplexen Zahlenebene nennt man Zeiger. Haufig ist es auch tiblich, den
komplexen Zahlen zweidimensionale Vektoren zuzuordnen und diese in der Zahlen-
ebene darzustellen.

imagindre Achse

reelle  Bild 2.1. Zeigerdarstellung in der komplexen Ebene
Achse

Zur Umrechnung der komplexen Zahlen von der arithmetischen in die trigono-
metrische Form und umgekehrt geniigt bei Beriicksichtigung der Vorzeichen von a
und b ein Quadrant. Aus einem Nomogramm, das man durch Ubereinanderlegen eines

1) Anstelle von i (vgl. Bd. 1) wird j als imaginire Einheit eingefiihrt. Diese Bezeichnung ist in der
Elektrotechnik iiblich, um Verwechslungen mit der Stromstiirke i (Momentanwert) zu vermeiden.



2.1. Grundbegriffe 7
kartesischen und eines Polarkoordinatennetzes mit passenden MaBstiben (vgl.
Bild 2.2) erhélt, werden der zu einem Punkt mit |Re (z)| = |al, |Im (z)| = |b| gehorige
Radius r und der Winkel ¢ abgelesen. Den Winkel ¢ = arg z berechnet man tiber

b T
H = |—|=> = — <p<
tan ¢ \a’=>¢ arctan 0=(=2
mit folgender Ubersicht:
1. Quadrant | 2. Quadrant 3. Quadrant 4. Quadrant
‘//* o | T 7. [ 7,
z P _ _
] INLAT | §3T NG| @9
ol Oy\;\Ji 7 Noz
a>0,b>0 |a<0,b>0 |a<0,b<0 |a>0,b<0
argz = ¢ argz =7 — (| argz argz = — ¢
=—-n+¢

161

A .
ol

S F
=i

|
!

Bild 2.2. Nomogramm zur Umrechnung kom-
plexer Zahlen

K]

"‘ﬁ

Wie in der Einleitung schon erwihnt wurde, spielen die komplexen Zahlen u. a.
in der Elektrotechnik eine besondere Rolle. Sowohl in der Nachrichtentechnik als
auch in der Starkstromtechnik und in anderen Disziplinen der Elektrotechnik lassen
sich viele Probleme in anschaulicher Weise mit Hilfe des Zeigerbildes 16sen. Die
Anwendung der komplexen Zahlen fiir die Berechnung von Widerstdnden soll an
einem einfachen Beispiel gezeigt werden.
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Beispiel 2.1: Der komplexe Widerstand der in Bild 2.3 dargestellten Schaltung berechnet sich

(analog den Gesetzen der Gleichstromlehre) nach 3 = 8, + % . Fir 3; = (50 + j-200)Q,
2 3

82 =1(20 + j-100)Q und 83 = (80 — j - 100) Q ist der komplexe Gesamtwiderstand in der arith-

metischen und in der Exponentialform anzugeben.

%
¥
b2 Bild 2.3. Schaltung komplexer Widerstinde
Losung: .
3283
B=Bi+ o
! B2+ 83

(20 + j- 100) (80 — j - 100)

B/QA=50+j200+——" " —°
20 + - 100 + 80 — j - 100

=50+ j-200 + 116 + j- 60,
B/Q =166 + j-260.
Wirkwiderstand 166 Q, Blindwiderstand 260 Q (induktiv).

Die Umrechnung in die Exponentialform kann mit Hilfe des Rechenstabes erfolgen. Diese Um-

rechnung beruht darauf, daB |al|, [b|, r und § GroBen im rechtwinkligen Dreieck (vgl. Bild 2.4)
sind.

ib1

Bild 2.4
lal

Im vorliegenden Beispiel sind |a| = 166 und |b| = 260.
Wir erhalten r = 309 und, da ¢ = ¢ =57,5° ist, als Gesamtwiderstand in der Exponentialform:

B/Q = 309 ei*575° (Scheinwiderstand 309 Q).

Da0 < ¢ < = gilt, hat der Gesamtwiderstand induktiven Charakter.
Fiir den Bereich 0 = ¢ < 5,7°ist beim Ablesen auf dem Rechenstab zu beachten, dal sowohl fiir

sing als auch fiir tan ¢ die ST-Teilung zu wihlen ist. Fiir diesen Bereich gilt tan ¢ < —-1— ,d. h,

a > b, und damit folgt r & a. Analog gilt fiir 84,3° < ¢ < 90° tang > 10,d.h.a < b und r X b.
2.2. Betriige. Ungleichungen

Der Betrag einer komplexen Zahl war in (2.3) erkldrt worden. Beachten wir, da3
le¥| = \/cos? p + sin® ¢ = 1 gilt, dann folgt mit r; = |z;| und r, = |z,]:
[2122] = |ryeioiry €192 = ryrp [I®140] = ryra,
[zl |z2] = |ry €] |2 €2 = ryra.
Somit erhélt man

|z122] = |z |z2]. (2.5)
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Analog gilt
z EAl
—| =1, 0. 2.6
- |22! Zy F (2.6)

Um einige fiir das Rechnen mit Betragen komplexer Zahlen geltende Ungleichun-
gen herzuleiten, betrachten wir die Addition zweier Zeiger im Bild 2.5. Da in jedem

/mag. Achse

reelle Achse gl 2.5, Addition komplexer Zahlen

ebenen Dreieck eine Dreieckseite kleiner oder gleich der Summe der anderen beiden
Dreieckseiten ist, folgt aus Bild 2.5 die sogenannte Dreiecksungleichung

Iz + 22| S |zi] + |22l 2.7
Durch mehrfache Anwendung dieser Formel ergibt sich

|2y + 22 + oo+ 2l S lzg] + |22 + oo+ |zl
Weiter folgt

Izl =lzy = z2 + 22| S |zy = 22| + |22] = |z — 22| Z |z4] = 22|
Da auch |z, — z,| = |z2| — |z;| und |z; — z5| = |z, — z,| gelten, ergibt sich die
Ungleichung

|20 = 2|2 |lz4] = 2| (2.8)
Daraus folgt wegen |z, + z,| = |z; — (—=z2)| 2 ||z,] = |—2z||

|2 + z2| 2 [lzs] = |22|- (2.9)

Aus der Dreiecksungleichung erhalten wir
lzy = 22| = |2y + (22| £ |zs] + [—22],

lzy = 22| S |z4] + |z2]. (2.10)
Aus (2.3) folgt

Re(@)| < |zl und |Im(2)| < |z]. .11
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Beispiel 2.2: Zu beweisen ist die Identitéit
lzy + 21 + 1z = 2 = 2z + |22,
wobei z;, z, beliebige komplexe Zahlen sind.
Losung:
Mit 23) und z; + 2, = 7, + 2, gilt
lzs+ 2 + 2y = 2P = (2 + 22) G + 22) + (21 — 22) B1 — 22)
= 2217 + 25) = 2z + |22%). |
Aufgabe 2.1: Von folgenden Ausdriicken sind die absoluten Betrige zu bilden:
2) _ a *}i) 3+ 4j)‘ )
A +§)(=2-2j)
Ry +jon( R + L)
b) 3= 7ch (Ry, Ry, w, L,C reell).

Ry +joL + Ry, + ——
joC

2.3.  Die Riemannsche Zahlenkugel

Bisher hatten wir die komplexen Zahlen in der Zahlenebene dargestellt. Ins-
besondere fiir die Betrachtung komplexer Zahlen mit sehr groem absoluten Betrag
erweist sich eine weitere Darstellungsmoglichkeit als vorteilhaft. B. Riemann schlug
als erster vor, durch stereographische Projektion die Zahlenebene umkehrbar ein-
deutig auf eine Kugel, die sogenannte Zahlenkugel, abzubilden. Wir betrachten eine
Kugel vom Radius 1, deren Mittelpunkt mit dem Nullpunkt der Zahlenebene zusam-
menfillt (vgl. Bild 2.6). Jeder Punkt P der Zahlenebene wird mit dem Pol N’ der

(o1

= P(xy) Bild 2.6. Riemannsche Zahlenkugel

xE
Kugel verbunden, dadurch wird die Kugel eindeutig in einem Punkt P’ geschnitten.

Umgekehrt entspricht jedem Punkt P’ der Kugel, wenn wir zundchst N’ aufler acht
lassen, eindeutig einem Punkt P der Zahlenebene. Die Zuordnung ist also eineindeutig.
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Dabei wird die untere Halbkugel auf das Innere des Binheitskreises der Zahlenebene
und die obere Halbkugel auf das AuBere des Einheitskreises abgebildet. Wir verein-
baren noch, daBl dem Punkt N’ (Nordpol) der Punkt z = oo entsprechen soll. Dieser
Punkt unterscheidet sich in nichts von den anderen Punkten der Zahlenkugel. Damit
wird die Zahlenebene durch einen einzigen Punkt z = oo abgeschlossen. Die Zahlen-
ebene geht in die sog. ,,Vollebene* oder auch ,funktionentheoretische Ebene
iiber. Ebenso wie der Nordpol der Riemannschen Zahlenkugel gegeniiber den anderen
Punkten der Kugel nicht ausgezeichnet ist, ist auch der Punkt z = oo nicht gegeniiber
den komplexen Zahlen ausgezeichnet. .

Dem Einheitskreis der Ebene entspricht der Aquator der Kugel, dem tiefsten Punkt
S’ (Stidpol) der Kugel der Punkt z = 0.

Man sieht auBerdem ohne weiteres, daB3 die Breitenkreise der Kugel in Kreise
der Ebene um den Nullpunkt und die Meridiane der Kugel in Geraden durch den
Nullpunkt ibergehen. Verbinden wir N’ mit den Punkten einer Geraden g in der
Ebene, dann bilden N’ und g eine Schnittebene, die von der Kugel einen Kreis
abschneidet. Geraden der Ebene gehen also in Kreise durch N’ auf der Kugel tiber.
Es soll nun noch gezeigt werden, daf3 die betrachtete eineindeutige Abbildung der
Vollebene auf die Zahlenkugel winkeltreu, ist, d. h., zwei beliebige Kurven in der
Zahlenebene schneiden sich unter demselben Winkel wie die entsprechenden Bild-
kurven auf der Kugel und umgekehrt. Schneiden sich in der Ebene zwei Geraden g,
und g, im Punkt P unter dem Winkel ¢, so schneiden sich die entsprechenden Bild-
kreise g; und g, auf der Kugel im Punkt P’ und natiirlich auch in N’ unter dem
gleichen Winkel ¢" = ¢, denn werden in N’ die Tangenten an die beiden Bildkreise
angelegt, dann verlaufen dieselben parallel zu g, und g,, da die Tangentialebene
der Kugel in N’ zur Ebene parallel verlduft (vgl. Bild 2.7).

Bild 2.7. Schnitt zweier Ebenen mit der Riemann-
schen Zahlenkugel

Da jede Tangente in P an eine beliebige Kurve C bei der Abbildung auf die Kugel
in einen Kreis durch N’ tibergeht, der die Bildkurve C” in P’ beriihrt, folgt, daB zwei
Kurven Cj und C; auf der Kugel sich unter dem gleichen Winkel wie ihre entsprechen-
den Bilder C, und C, der Ebene schneiden.

Ohne Beweis sei noch angegeben, daB3 die Abbildung der Vollebene auf die Zahlen-
kugel auch kreisverwandt ist, jedem Kreis auf der Zahlenkugel entspricht in der
Vollebene ebenfalls ein Kreis bzw. als Sonderfall eine Gerade (Kreis mit unendlich
groBem Radius).
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2.4, Punktmengen

In 2.1. hatten wir gezeigt, daB3 die komplexen Zahlen als Punkte der Zahlenebene
oder als Punkte der Zahlenkugel gedeutet werden konnen. Durch Hinzunahme des
Punktes z = oo hatten wir die Zahlenebene zur Vollebene erweitert. Tm folgenden
bezeichnen wir mit K die Menge der komplexen Zahlen und mit K die Menge der
Punkte der Vollebene, d. h. die Menge der komplexen Zahlen einschlieBlich z = oo.
Wir wollen nun einige Teilmengen betrachten. Zuerst soll die Teilmenge der kom-
plexen Zahlen, die der Beziehung |z| < d (d > 0, reell) geniigt, geometrisch veran-
schaulicht werden. Da |z| die Entfernung des Punktes z vom Nullpunkt darstellt
(vgl. Bild 2.1), liegen alle Punkte z, die der Gleichung |z| = d geniigen, auf einem
Kreis mit Radius d um den Nullpunkt (vgl. Bild 2.8), wihrend |z| < d fiir alle im
Innern des Kreises liegenden Punkte gilt.

imag. Achse

Bild 2.8. Punktmenge |z| < d

Bei der Subtraktion der beiden komplexen Zahlen z; und z, kann man leicht aus
dem Bild 2.9 ablesen, daB |z; — z,| gleich dem Abstand der beiden Punkte z, und z,
ist. Ist zo ein Punkt der Zahlenebene und d > 0, reell, dann geniigen diejenigen
Punkte der Zahlenebene, die von z, den Abstand d haben, der Gleichung

|z = 20| = d. (2.12)

imag. Achse

Z
A
T eI ‘ reelle
Jlore)e N Achse
L B Bild 2.9. Subtraktion komplexer Zahlen
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(2.12) stellt somit die Gleichung eines Kreises um z, mit Radius d dar (vgl. Bild 2.10).
Die Punkte im Innern des Kreises gentigen der Ungleichung

|z — 24| < d. (2.13)

imag. Achse

Mo

i —z| <
7 7 % el Bild 2.10. Punktmenge |z — zo| = d

Achse

Wie einleitend im vorliegenden Band schon betont wurde, kdnnen viele Erklarungen,
Formeln und Sitze aus dem Reellen in das Komplexe formal ibertragen werden.
Analog den Betrachtungen im Reellen sollen nun einige Begriffe eingefiihrt werden
(vgl. u. a. Band 4).

1. Eine Menge M < K von komplexen Zahlen nennt man beschrinkt, wenn fiir
Jjedes ze M und k > 0, reell,

2] < k (2.14)
gilt.

Geometrisch bedeutet dies, daB alle die komplexen Zahlen zur genannten
beschriankten Menge gehdren, die im Innern des Kreises mit Radius & um den
Nullpunkt liegen.

2. Unter einer kreisformigen e-Umgebung eines Punktes z, der Zahlenebene verstehen
wir alle diejenigen Punkte, die der Bedingung

|z =zl < (2.15)
geniigen (vgl. Bild 2.11). Der Kreis um z, mit Radius & selbst gehért dabei nicht

imag. Achse

Bild 2.11. Kreisformige e-Umgebung von z,
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kel

IS

mit zur e-Umgebung und wurde deshalb gestrichelt gezeichnet.
Die punktierte e-Umgebung von z, wird durch .
0<|z—1z <¢ (2.16)
charakterisiert.

Hier gehéren also die Punkte auf der Peripherie des Kreises um z, mit Radius &
und der Punkt z, selbst nicht mit zur punktierten e-Umgebung von z,.
Fiir
Zo=«-+jf und z=a+jb (v p, a,breell)
stellt
la—«| <e und |b—pl <06 (e,0 >0, reell) (2.17)
eine Rechteckumgebung von z, dar (vgl. Bild 2.12).

imag. Achse

Bild 2.12. Rechteckumgebung von zq

-
reelle
Achse

Wir wollen nun noch den Begriff der (Kreis-) Umgebung des unendlich fernen
Punktes einfithren. Unter einer (Kreis-) Umgebung des unendlich fernen Punktes
z = oo verstehen wir die Gesamtheit der Punkte z, fiir die die Ungleichung

|z} > igll’t Die Umgebung des unendlich fernen Punktes kénnen wir uns auf

der Zahlenkugel als Kugelkappe deren Mittelpunkt der Nordpol ist, vorstellen.

Im Band 1, 10.8., wurde der Begriff Hdufungspunkt eingefiihrt. Analog definie-
ren wir im Komplexen:

Ein Punkt ( heifst Hiufungspunkt der Menge M, wenn in jeder e-Umgebung
von ihm unendlich viele Punkte der Menge M liegen.

Das heiBit, anders ausgedriickt, daB fiir unendlich viele natiirliche Zahlen n
bei ¢ > 0 die Ungleichung

lzs =Ll <e (2.18)

gilt. Die Haufungspunkte missen dabei, wie im Reellen auch, nicht unbedingt
in M selbst liegen.

. Liegt in einer e-Umgebung eines Punktes z, der Menge M kein weiterer Punkt von

M, so heifst dieser Punkt isoliert.

Ein Punkt z, von M heifst innerer Punkt von M, wenn eine e-Umgebung von z,
ganz zu M gehirt.

Ein Punkt z, heifpt Randpunkt von M, wenn jede e-Umgebung von z, mindestens ei-
nen Punkt enthilt, der zu M gehort, und mindestens einen, der nicht zu M gehért.

Die Menge aller Randpunkte von M heifst Rand von M.
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5. Gehdren alle Randpunkte einer Menge M zu M, dann heiit M-abgeschlossen, be-
steht sie nur aus inneren Punkten, dann heifst M offen.
6. Eine Punktmenge M heifit zusammenhingend, wenn je zwei ihrer Punkte durch

einen Polygonzug mit nur endlich vielen Eckpunkten verbunden werden konnen,
der ganz in M verliuft.

An einigen Beispielen sollen die eben eingefiihrten Begriffe erldutert werden:

Beispiel 2.3: Untersuchen Sie die nachstehend aufgefiihrten Mengen auf Hiufungspunk'e, isolierte
Punkte, innere Punkte und Randpunkte. Geben Sie an, ob die betrachteten Mengen beschrinkt,

abgeschlossen oder offen sind.
1
a) M = {z =—|neN An£0 }, by M = {z]Re (z), Im(z) ganzzahlig}, ) M = {z]lz| < 1}.
a n
Losung:
a) z = { = 0 Haufungspunkt. Alle Punkte sind isoliert und Randpunkte, M ist beschrinkt

([21 =—1T§l).

b) Kein Héufungspunkt. Alle Punkte sind isoliert und Randpunkte. M ist nicht beschrdnkt (vgl.
Bild 2.13).

609 S
00000000000t

00008 0 o 066t
B o e s
00000 00— O+

MARRRARN °T 7. Bild 2.13. Menge isolierter Punkte

1

¢) Alle Punkte (der Einheitskreisfliche) mit |z| = 1 sind Haufungspunkte. M besteht nur aus inneren

Punkten. Fiir Randpunkte gilt |z| = 1 (gehdren nicht zu M). M ist offen und beschrinkt (|z| < 1)
(vgl. Bild 2.14).

1mag. Achse

reelle
Achse

Bild 2.14. Offene und beschrankte Punktmenge |z| < 1

An den Beispielen konnen wir erkennen, daB z. B. in b) die Menge M nicht
beschrinkt ist und keinen Hiufungspunkt besitzt, wihrend in den anderen beiden
Beispielen beschriinkte Mengen vorliegen und Haufungspunkte auftreten. Eine nicht-
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beschriankte Menge kann also ohne Hiaufungspunkte sein. Jedoch gilt fiir beschrinkte
unendliche Punktmengen der grundlegende

Satz 2.1 (Satz von Bolzano-WeierstraB): Jede beschrinkte unendliche Punktmenge
besitzt wenigstens einen Héufungspunkt.

Der Beweis dieses Satzes kann tiber den Bolzano-Weierstrafischen Satz im Reellen
(vgl. [9]) oder nach dem Prinzip ineinandergeschachtelter Rechtecke (vgl. [12],
Bd. 1) erfolgen.

Den Begriff des Haufungspunktes einer beschrinkten unendlichen Folge {z,}
komplexer Zahlen erklart man folgendermaflen:

In jeder e-Umgebung eines Haufungspunktes liegen unendlich viele Zahlen der
Folge {z,}. Der Satz von Bolzano-Weierstra} besagt dann, daB jede beschrinkte
unendliche Zahlenfolge mindestens einen Hiaufungspunkt besitzt. Mit diesen Uber-
legungen 146t sich der Begriff des Grenzwertes einer komplexen Zahlenfolge definie-
ren.

Definition 2.1: Eine komplexe Zahl y = n + jf heifst Grenzwert der Zahlenfolge {z,}.
wenn fiir jede beliebig klein wihlbare Zahl ¢ > 0 die Ungleichung
|z, —y| < & fiirallen = N(¢),
also fiir hinreichend grofes n, erfiillt ist.
Man schreibt dafiir
lim z, =y oder z,—7vy firn— o (2.19)

n-sco
und bezeichnet diesen Sachverhalt als Konvergenz der Zahlenfolge {z,} gegen den
Grenzwert .

Unter Bezugnahme auf diesen Grenzwertbegriff konnen die im Reellen giiltigen
Satze tiber Grenzwerte sinnentsprechend ins Komplexe iibertragen werden.

Eine wichtige Konvergenzaussage iiber komplexe Zahlenfolgen erhélt man iber
den Satz 2.2.

Satz 2.2 (Cauchysches Konvergenzkriterium): Die notwendige und hinreichende Be-
dingung fiir die Konvergenz der Zahlenfolge {z,} lautet:
Fiir jede beliebig kleine Zahl ¢ > 0 existiert eine natiirliche Zahl N = N(¢|2) derart,
dap3 fiir alle n = N(¢/2) und m > 0 die Ungleichung
[Zn+m - Zn‘ <é (220)
erfiillt ist.

Beweis: Falls lim z, = y existiert, gibt es eine natiirliche Zahl N = N (¢/2), so daB |z, — y| < ¢/2
n—ow

fiir n = N(e/2) gilt. Mit der Dreiecksungleichung folgt

|Zntm = Zal = |zaem — ¥ — @ = V)N = [Zpgm — VI + |2 = 7],
also

[Znem — 2ol < €/2 + €2 =¢ firn = N(g/2).
Damit ist die Badingung (2.20) notwendig. Zum Nachweis, daB (2.20) auch hinreichend ist, schliefen
wir zunéchst aus der erfiillten Bedingung (2.20) auf die Beschrinktheit der Folge {z,}, denn alle
Punkte von {z,} miissen wegen (2.20) vom Punkt zy an im Inneren des Kreises mit dem Radius ¢ um
den Mittelpunkt zy liegen. Damit basitzt {z,} nach dem Satz von Bolzano-Weierstral3 mindestens
einen Hiufungspunkt y, .
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Die Annahme eines weiteren Haufungspunktes y, # y; mit einem Abstand [y; — y,| > 2¢
(£: Schranke aus (2.20)) von y, fiihrt zu einem Widerspruch. Wegen (2.20) kénnen sich aulerhalb des
Kreises |zy.m — zy| < & nur endlich viele Punkte der Folge {z,} befinden. Daher miissen die beiden
Haufungspunkte 74, 7, im Inneren oder hochstens auf dem Rand dieses Kreises liegen, womit der
angenommene Abstand |y; — y,| > 2 nicht haltbar ist. Die Folge {z,} besitzt damit nur einen Héu-
fungspunkt. ®

Eine nichtbeschrinkte unendliche Folge {z,} enthilt Zahlen, die sich auBerhalb
eines Kreises um den Nullpunkt mit beliebig groBem Radius befinden. Eine derartige
Zahlenfolge braucht keinen Haufungspunkt zu besitzen.

Falls sich zu jeder beliebig groBen Zahl p > 0 eine natiirliche Zahl N(p) angeben
1aBt, so daB |z,| > p fiir n > N(p) gilt, dann vereinbaren wir, da die Zahlenfolge
{z,} gegen unendlich strebt, und schreiben

lim z, = bzw. z,> o0 firn- w.
nooo

Beispiel 2.4: Man untersuche die Folge

-1
- J
) =la=t

n=1,2, 3,...}—‘1,—2,~' =——...

auf Konvergenz !

! + ! < 2 (m > 0). Firn > N(e) = 2
n+m n n e 9=
folgtdann |z,.,, — z,| < W < ¢. Die Folge ist also konvergent.

Losung: |Zpem — Zl £ |Zpenl + |22 =

Fiir das praktische Rechnen ist die Anwendung des folgenden Satzes von Bedeu-
tung:

Satz 2.3: Eine Folge komplexer Zahlen {z,} = {a, + jb,} strebt dann und nur dann
gegen den Grenzwert y = « + j 8, wenn die reellen Zahlenfolgen {a,} und {b,} gegen
die Grenzwerte x bzw. f} streben.

Der Beweis kann auf die Untersuchung zweier reeller Folgen {a,} und {b,} zuriick-
gefiihrt werden.

Zahlenfolgen, die nicht konvergieren, nennt man wie im Reellen divergent. Gilt
lim z, = 0, dann liegt eine Nullfolge vor.

n—o0

2.5, Kurven, Bereiche, Gebiete in der komplexen Zahlenebene
2.5.1. Kurven

Im Beispiel 2.1 wurde mit Hilfe komplexer Zahlen der Gesamtwiderstand eines
einfachen Netzwerkes berechnet und dabei vorausgesetzt, daB3 die einzelnen Wider-
stinde konstant sind. In der Praxis treten aber in vielen Fillen z. B. Anderungen
der Betriebsfrequenzen auf, so daB dadurch Widerstands-, Strom- und Spannungs-
dnderungen hervorgerufen werden, wie man leicht bei Betrachtung der entsprechen-

2 Greuel/Kadner, Komplexe Funktionen

S.2.3
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den Formeln erkennen kann. Andert sich beispielsweise in der im Bild 2.15 dar-

R L
o—{——— WS Bj|d 2.15. Reilienschaltung von Widerstinden

gestellten Reihenschaltung die Frequenz, so konnen die dadurch hervorgerufenen
Anderungen des Widerstandszeigers

Bw)=R+jwL O0=Zw< oo und R,L>0,reell, (2.21)

geometrisch veranschaulicht werden (vgl. Bild 2.16). Da in (2.21) der Realteil kon-
stant ist, wandert die Zeigerspitze auf einer Geraden parallel zur imagindren Achse.

Man kann sich leicht vorstellen, daB z. B. der Widerstandszeiger eines komplizier-
teren Netzwerkes keine Gerade beschreibt, da das Verhalten des Widerstandes einer
solchen Schaltung dann nicht mehr durch solch eine einfache Beziehung wie in (2.21)
beschrieben werden kann. Derartige Kurven in der Zahlenebene bezeichnet man in
der Elektrotechnik als ,,Ortskurven‘.

Jwl ‘ Jy
5 b

z(t)=x (1) +]y(t)

%
%
0 2 z \ x
2 n
Bild 2.16. Widerstandsortskurve Bild 2.17. Bild einer stetigen Kurve

einer Reihenschaltung

Definition 2.2: Sind x(t) und y(t) stetige reelle Funktionen des Parameters t, so
heifit die Menge der Punkte, die der Gleichung

z=z(t) = x(t) + jy(t) = r(t) &°0), te [xp], (2.22)

geniigen, eine stetige Kurve in der Vollebene (vgl. Bild 2.17). Wird dabei vorausgesetzt,
daf} zwei verschiedenen Werten des Parameters t (mit Ausnahme von t = x und t = f§)
stets zwei verschiedene Punkte der Kurve entsprechen, dann liegt eine Jordansche
Kurve vor. Gilt insbesondere z(x) = z(f), dann ist die Kurve geschlossen.

Der Punkt z einer stetigen Kurve durchlduft also ausgehend vom Anfangspunkt
2z(») die Kurve bis zum Endpunkt z(f); dadurch wird eine positive Richtung auf der
Kurve bestimmt. Ist die Kurve geschlossen, so sei festgelegt, dal bei positivem
Durchlaufen der Kurve die Innenseite der Kurve zur Linken liegt.

Im Bild 2.18 a, b sind stetige Kurven abgebildet. Bild 2.18 a stellt die Gerade

z(t) = x(t) + jec, ¢ > 0, reell, te (— o0, + ), (2.23)
und Bild 2.18 b den Kreis )
2(t) = ro (cos t + jsint) = ro &%, 1€[0, 27] (2.24)

dar.
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imag. Achse
7=1, et
imag. Achse
z=x(t) +jc
T F reelle
. J Achse
X L &
7 reelle Achse E
Bild 2.18a. Abbildung der Geraden Bild 2.18 b. Abbildung eines Kreises z = roe’*
z=x(t)+jc

Die allgemeine Gleichung einer Geraden in Parameterform kann leicht angegeben
werden, wenn man sich an die vektorielle Darstellung einer Geraden erinnert
[Band 13,2.3.7.]. Nach Bild 2.19 gilt fiir g, wenn z,, z, konstante komplexe Zahlen
und ¢ ein reeller Parameter sind, die Gleichung

3
z=1z + H(z2 — z,). (2.25)
imag. Achse
g
7
Z %
Bild 2.19
ol reelle Achse Abbildung der Geraden z = z; + #(z, — z;)

z, — z; liegt parallel zu g, das gilt auch fir #(z, — z,), da durch Multiplikation
mit 7 die Richtung von z, — z, nicht geédndert wird.

Beispiel 2.5: Fiir den im Bild 2.20 dargestellten Kreis mit Mittelpunkt z, ist die Gleichung in Para-
meterform anzugeben.

imag. Achse

reelle
Achse

Bild 2.20. Abbildung des Kreises z = z + ro &l®

Losung: Fir den Kreis k” gilt (2.24). Verschiebt man &’ so, daB} er mit & zusammenfillt, d. h.
addiert man in (2.24) auf der rechten Seite zo, dann ergibt sich fir & die Gleichung
2(f) = zo + ro (cos t + jsint) = zo + ro €, t€[0, 2x] (2.26)
oder -
2(t) = xo + rocost + j(yo + Fosint). 2.27)
2‘
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In (2.22) sind x(r) und p(¢) stetige reelle Funktionen. Sind beide Funktionen auf
einem gemeinsamen Intervall («, f) definiert, dann bezeichnet man (2.22) als kom-
plexe Funktion z einer reellen Variablen t. Analog zum Reellen werden die Begriffe
Grenzwert, Ableitung und Integral definiert. Mit z(r) = x(#) + jy(¢) und reellen
a, b, ¢ wird erklart:

lim z(7) = lim x(¢) + j lim y(¢). (2.28)
2(1) = dfi(,') = X(0) + )Y, (2.29)
[z de = [x()dr +j [ w(n) dr, (2.30)
b b b

[z()di = [ x(t) di + j [ ¥(1) dr. (2.31)

Definition 2.3: Die durch (2.22) festgelegte Kurve heifit glattes Kurvenstiick, wenn
(2.22) doppelpunkifrei und nicht geschlossen ist und wenn die Ableitungen x(t) und
¥(t) fiir alle t aus [, f] stetig und in keinem Punkt dieses Intervalls zugleich null
sind. Unter einem Weg verstehen wir eine aus endlich vielen glatten Kurvenstiicken
zusammengesetzte stetige Kurve.

¥ Aufgabe 2.2: Welcher Wegwirddurch a) z=r+j(t—3), 1 =t=4, b)z= -2+ j+ 3cost

3T
+ 3jsinz, 0 £ ¢t = -5 beschrieben? Geben Sie Skizzen an!

Aufgabe 2.3: Fir die im Bild 2.21 dargestellten Wege sind die Gleichungen in Parameterform
aufzustellen.

" h
J X
N

Bild 2.21. Abbildung von Wegen

=3/ ¥ C(0-3))

2.5.2. Bereiche und Gebiete

Definition 2.4: Jede ebene Punktmenge G, die nur aus inneren Punkten besteht und
zusammenhdngend ist, nennt man Gebiet. Nimmt man die Randpunkte von G zur
Punktmenge G hinzu, dann erhdlt man ein abgeschlossenes Gebiet oder einen Bereich.

An einigen Beispielen sollen diese Begriffe erlautert werden. Wihrend |z| < 1 ein
beschrinktes Gebiet (vgl. Bild 2.14) und |z — z,| < d ein beschrinktes abgeschlos-
senes Gebiet (vgl. Bild 2.10) darstellen, wird z. B. durch Re (z) > 1 ein unbeschrank-
tes Gebiet angegeben (vgl. Bild 2.22).
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Bild 2.22. Unbeschrdnktes Gebiet Re (z) > 1

Man unterscheidet zwischen einfach und mehrfach zusammenhingenden Gebie-
ten. Ein n-fach zusammenhingendes Gebiet ist durch n geschlossene Rénder
bestimmt (vgl. Band 4). Die Punktmenge G im Bild 2.23 ist ein einfach zusammen-
héngendes und beschriinktes Gebiet, wihrend G im Bild 2.24 ein dreifach zusammen-
hiangendes abgeschlossenes Gebiet darstellt, da drei geschlossene Rénder ¢;, ¢2, ¢3
vorhanden sind. Man beachte, daB3 nicht jede Punktmenge der Vollebene ein Gebiet

o @
g

< <

I3 3

£ g

0% reelle Acnse ! reelleAchse <

Bild 2.23. Einfach zusammen- Bild 2.24. Dreifach zusammenhingendes
hiingendes Gebiet Gebiet

bzw. ein abgeschlossenes Gebiet (Bereich) sein muB. So ist z. B. 1 < |z — zo| £ 2
weder abgeschlossen noch offen, also nach Definition 2.4 kein Gebiet (vgl. Bild 2.25).

Die Gesamtheit aller Randpunkte eines Gebietes G bezeichnet man als Rand von G.
In der Vollebene kénnen wir auch nichtbeschrinkte Gebiete betrachten, die den
unendlich fernen Punkt als inneren Punkt oder als Randpunkt besitzen. Der Punkt
z = oo bildet mit seiner (Kreis-) Umgebung ein einfach zusammenhingendes Ge-
biet, die Umgebung des unendlich fernen Punktes (ohne z = w0) ist zweifach zu-
sammenhdngend.

imag. Achse

reelle Achse Bild 2.25. Ebene Punktmenge
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Beispiel 2.6 Welche Punktmengen werden durch a) |z —j| £ 4 A |z — 2 = 2j| = 1,
b) [z—1+j2/ <3 A Jarg(z—1+4+j-2)|=<w/4 v 1<Re(z) <2 A |[Im(z +j-2)|
< 3,¢) |z — 1| < |z| beschrieben?

Lésung: a) |z — (2 + 2j)| = 1, Kreis um z, = 2 + 2j mit Radius 1. |z — j| = 4,
Kreis um z, = j mit Radius 4. Das Gebiet G ist abgeschlossen und zweifach zusam-
menhéngend (vgl. Bild 2.26).

imag. Achse

Bild 2.26
Zweifach zusammenhéngendes abgeschlossenes Gebiet

b) B={z:[z—1+j-2|S3Ajarg(z—1+j"2)| < =/4] v[l<Rez) <2
A [Im (z + j-2)| < 3]}. Hinweis: A logisches ,,und®, v logisches ,.oder*. B wurde
im Bild 2.27 schraffiert dargestellt.

imag. Achse

imag. Achse

/ reelle
7, Achse

Bild 2.27. Ebene Punktmenge Bild 2.28. Ebene Punktmenge

©) |z — 1] < |z|. Nach (2.3) gilt |z| = \/zZ, also folgt
Je—DE-D<fzE=zz-Z—z+1<zZE=>-2x+1<0
=x>1
(vel. Bild 2.28).

Beispiel 2.7: Durch welche Gleichung bzw. Ungleichung werden alle Punkte der Zahlenebene mit
Ausnahme der Punkte auf der negativen reellen Achse (einschlieBlich Nullpunkt) erfafBt?

Losung: Die negative reelle Achse kann durch arg z = = (z & 0) angegeben werden. Somit gilt
fiir die Menge der Punkte z # 0 der Zahlenebene, die nicht auf der negativen reellen Achse liegen,

—m<argz<mw.
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Es liegt ein einfach zusammenhingendes Gebiet G vor (vgl. Bild 2.29).

Bild 2.29. Einfach zusammenhingendes Gebiet

Aufgabe 2.4: Welche Punktmengen werden durch

a) By <Im(z) < B, (0 <Py <Py reell), b)lz+j| <4, wobei 1 < Re(z) < 2 ausgeschlossen
wird, ¢)|1 — 2z| = |1 + z| beschrieben?

Aufgabe 2.5: Die im Bild 2.30a, b, ¢ dargestellten schraffierten Punktmengen sind durch Glei- *
chungen bzw. Ungleichungen zu erfassen.

Aufgabe 2.6: Welches Gebiet G wird durch Re (z2) < a (a # 0, reell) beschrieben?

imag.Achse . N
imag. Achse imag Achse /—jj

7 reelle
Achse

Bild 2.30a, b, c. Ebene Punktmengen
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3. Funktionen einer komplexen Verinderlichen

3.1.  Definition und geometrische Veranschaulichung

Im Band I, 8.4., wurde jede eindeutige Abbildung als Funktion erkldrt.

Definition 3.1: Unter einer komplexen Funktion einer komplexen Verinderlichen
verstehen wir eine eindeutige Abbildung aus einer Teilmenge D von K in eine Teil-
menge W von K und bezeichnen sie mit

w = f(2). (€8)]

z heifst unabhdngige und w abhingige Verdnderliche. Die Menge D der Original-
punkte bezeichnen wir als Definitionsbereich und die Menge W der Bildpunkte als
Wertevorrat der komplexen Funktion f(z).

Héufig werden komplexe Funktionen einer komplexen Verdnderlichen einfach
,,komplexe Funktionen“ oder ,,Funktionen einer komplexen Veridnderlichen
genannt. Im Reellen wurden auch reelle Funktionen einer Verdnderlichen einfach
als reelle Funktionen bezeichnet. Bei einer komplexen Funktion wird also jedem
reellen Zahlenpaar (x, ), fiir das z = x + jy zu D gehort, eindeutig ein reelles
Zahlenpaar (u,v) mit w = u + jv € W zugeordnet. Eine eineindeutige oder um-
kehrbar eindeutige komplexe Funktion liegt vor, wenn auch jedem Wert w nur ein
Wert z entspricht.

In w = u + jv wurde eine Trennung in Real- und Imagindrteil vorgenommen.
u und v sind dabei reelle Funktionen der beiden reellen Veranderlichen x und y,
also

ulx,y),  v=u(x,p),

=
I

so daB
f@) = flx +jy) = ulx, y) + ju(x, ) (3.2

=
Il

ist.
Beispiel 3.1: Von folgenden komplexen Funktionen sind Real- und Imaginirteil anzugeben:

1+:z Izl
= s b) w= R

Losung: a)

T+x+jy  [M+x+jylll—x+jy]  1=x*—y>+j-2y
w= = =
1-x—jy (1= x)?%+ y* (1=2x)?%+)?

1—2x%2—y? 2y

s [
1= x)2+ "’ (1= x)2+)?
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lz| lz| |z|

b W= - = -
) 22 —1 x+jp?P—-1 =y =1)+j 2xy

2GR =y = 1) = - 2]
(x2 — 2 — 1) + 4x%)?

s

lz2l(x* —y* = 1) . —2xylz]
(xz _ yZ _ 1)2 + 4x2y2 ’ (x2 — yz — 1)2 + 4x2y2 -

Es sei besonders darauf hingewiesen, daB3 eine Funktion nicht durch eine Formel
gegeben sein mufB. Wichtig ist allein, daB3 jedem Wert z aus D ein w aus W eindeutig
zugeordnet ist. Die Funktion kann also auch in Worten oder grafisch erkldrt sein.

Die geometrische Veranschaulichung komplexer Funktionen bereitet zunéchst
Schwierigkeiten, da bei einer komplexen Funktion zwei unabhingige (x, )
und zwei abhingige (u, v) reelle Veranderliche auftreten. Die am héufigsten benutzte
Form fiir die geometrische Darstellung einer komplexen Funktion ist die Dar-
stellung in zwei Vollebenen. Jedem Punkt z der z-Ebene aus dem Definitions-
bereich D wird ein Punkt w der w-Ebene aus dem Wertevorrat W zugeordnet (vgl.
Bild 3.1). In einem Beispiel soll die Abbildung demonstriert werden. Einander

Bild 3.1. Abbildung w = f(z)

entsprechende Punkte werden dabei mit gleichen Indizes bezeichnet. Die Abbildung
wird anschaulicher, wenn man nicht einzelne Punkte, sondern bestimmte Kurven
und Gebiete betrachtet. Ist )

Z(t) = x(t) + jy(r) mit x =1 =p

die Parameterdarstellung einer stetigen Kurve C in der z-Ebene, dann erhilt man
die Bildkurve C’ in der w-Ebene durch Einsetzen von z(¢) in (3.2):

w = flz(0] = fIx(6) + j3®)] = ulx(0), YO + jolx(0), ¥O)), 6« S t £ . (3.3)
Auch durch Abbildung ganzer Kurvennetze gewinnt man gute Vorstellungen.
1 ;= G R
Beispiel 3.2: Bilden Sie die Punkte z; = > S ,Z3=¢€ % und 73 = 76 '8 der z-Ebene durch die
1
Funktion w = - (z# 0) auf die w-Ebene ab (Bild 3.2a). Stellen Sie fest, welche Gebiete der w-Ebene

den im Bild 3.3a gekennzeichneten Gebieten entsprechen. In welche Kurve geht der orientierte Kreis
2(t) = re¥ (r > 1), 0 = t < 2 durch die gegebene Funktion in der w-Ebene iiber (Bild 3.4a)?
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Losung: :
1 1
z=r, S W=—=—e % = RelPw,
z rn
Fir die einzelnen Punkte folgt:
1 4z I= 2 3 2n
Wy =—=2¢ 4, wy,=¢e 6, w3 =—e ©
z; 3

1 1 :
(vgl.Bild 3.2b). Da |z| = r, = 7| =% und ¢,, = —@, gelten, werden alle Punkte aulerhalb (inner-
halb) des Einheitskreises der z-Ebene in der w-Ebene innerhalb (auBerhalb) des Einheitskreises

W v
4 Wy 9 Wz
3 4
-5 X -g T
g %
73
z-Ebene w-Ebene M
Bild 3.2a. z-Ebene Bild 3.2b. w-Ebene

Jy

© o o o'

~__~
w-Ebene

Bild 3.4a. Kreis in der z-Ebene Bild 3.4b. Kreis in der w-Ebene
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abgebildet. Der Einheitskreis wird in sich selbst abgebildet, andert aber seine Orientierung (Bild 3.3 b).
Fiir die Abbildung des Kreises & folgt:

1 1 1
W) = —— = =—e? (p=-1,0z92 —2m).
(1) relt r

Es liegt also ein Kreis £” mit dem Radius -i— um den Nullpunkt vor. k”ist entgegengesetzt zu k orien-
tiert (Bild 3.4b). Der gegebene Kreis k der z-Ebene geht in den Kreis k" der w-Ebene iiber.

Wir werden in 6.1.2. zeigen, dafB3 jeder Kreis der z-Ebene durch die Funktion w = %in einen
Kreis der w-Ebene abgebildet wird. Durch die Einfiihrung des unendlich fernen Punktes haben wir
die Moglichkeit, die ganze Vollebene vermittels der Funktion w = %abzubildem Wir ordnen dem
Punkt z = 0 der z-Ebene den unendlich fernen Punkt w = co der w-Ebene und dem Punkt w= 0 der
w-Ebene den unendlich fernen Punkt z = oo der z-Ebene zu. Bei der Anwendung der Abbildung
W= izin der Elektrotechnik werden wir mit Vorteil gerade auch diese unendlich fernen Punkte mit
benutzen.

Weitere Formen der geometrischen Veranschaulichung einer komplexen Funktion
w = f(2), ze D, im dreidimensionalen Raum gewinnt man durch folgende Uber-

legung. Wir betrachten im R? [f(z)| = \/uz + v? als Funktion der beiden Variablen
x und y. Variiert z = x + jy in D, dann wird durch die Koordinaten x, y und | f(z)|
eine Fliche, die sogenannte ,,Betragsfliche* beschrieben. Tragt man tiber dem Punkt
z = X + jy nicht |f(z)|, sondern [f(z)|* auf, so entsteht die Betragsquadratfliche,
die nach Jensen auch ,,analytische Landschaft* genannt wird. Bei diesen Darstel-
lungsarten gehen gewisse Eigenschaften der Funktionen verloren. Man kann den
Informationsgehalt dieser Betragsflichen z. B. dadurch erhéhen, daB8 auf der Flache
Kurven, sog. ,,Linien konstanten Arguments, eingezeichnet werden, also Kurven,
auf denen das Argument der komplexen Funktion konstante Werte besitzt. Die

Funktion w =—l ist im Bild 3.5 als analytische Landschaft dargestellt. Weitere

Beispiele findet man u. a. in [8].

1
Bild 3.5. Analytische Landschaft der Funktionw = —
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Aufgabe 3.1: Geben Sie Real- und Imaginirteil der komplexen Funktion w :#an!
7

Aufgabe 3.2: Gegeben ist die Funktion w = z2, ze D. In welche Kurven der w-Ebene gehen
die im Bild 3.6 dargestellte Geradenschar und der Halbkreis k (0 < ¢ < =) der z-Ebene iiber? Wel-
ches Bild ergibt sich aus der reellen Achse der z-Ebene in der w-Ebene?

7y

K
—/ PG
==

z-Ebene

| Bild 3.6. z-Ebene
%

3.2. Grenzwert, Stetigkeit

Wir hatten mehrfach betont, daB sich viele Formeln und Sitze, die bei der Betrach-
tung reeller Funktionen gewonnen werden, auf das Komplexe ausdehnen lassen. Es
sei jedoch darauf hingewiesen, dal wir uns bei Betrachtungen im Komplexen von
der anschaulichen Darstellung reeller Funktionen durch eine Kurve freimachen
miissen, da eine komplexe Funktion im allgemeinen nicht durch eine Kurve ver-
anschaulicht werden kann. So ist es also auch nicht mdglich, z. B. bei dem Begriff
Stetigkeit, die anschauliche Beschreibung aus dem Reellen zu iibertragen. Formal
sind die folgenden Definitionen analog denen im Reellen.

Definition 3.2: Die komplexe Funktion w = f(z) sei mindestens in einer punktierten
Umgebung von z, definiert. w = f(z) strebt fiir z > z, gegen den Grenzwert g, wenn
fiir jede Zahl ¢ > 0 eine Zahl 6(¢) > 0 derart existiert, dafs

1fz) — gl <e
fiir alle z % z, erfiillt ist, fiir die |z — zo| < 0(¢) gilt. Man schreibt dann
lim f(z) = g.

7oz

Mit Hilfe des (Kreis-) Umgebungsbegriffes 18t sich die Definition des Grenz-
wertes auch auf den Fall ausdehnen, daB z, oder g oder beide in unendlich fernen
Punkten liegen. Wir treffen folgende Festlegung: Eine Funktion f(z) besitzt an einer
Stelle z, den Wert co, wenn lim f(z) = oo gilt. Ferner ordnen wir einer Funktion f{(z)

) . . .
fiir z = oo den Grenzwert lim f(z) zu, falls dieser Grenzwert existiert.

Z50
Zum Nachweis des Grenzwertes einer komplexen Funktion kann man mit Vorteil
folgenden Satz anwenden, der ohne Beweis angegeben wird.

Satz 3.1: w = f(2) = u(x, y) + ju(x, y) sei mindestens in einer punktierten Umgebung
von z, definiert. w = f(z) besitzt genau dann fiir z — z, den Grenzwert g = x + jfi,
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wenn
1. die reellen Verdnderlichen x und y im Punkt Py(x,, yo) existieren
und wenn
2. lim  wu(x,y) =« und lim u(x,y)=f
: (%, )= (x0,70) (x,5)= (x50
ist.

Ohne Beweis sei auch bemerkt, daB} die im Band 2 in 2.5. formulierten Grenzwert-
sitze auf komplexe Funktionen iibertragen werden konnen. Man vergleiche dazu
auch die Ableitung dieser Sitze aus den entsprechenden Sétzen fiir Zahlenfolgen.

Der Begriff der Stetigkeit einer komplexen Funktion stiitzt sich ebenfalls auf die
analoge Definition wie im Reellen.

Definition 3.3: Die in einer Umgebung von z, definierte komplexe Funktion w = f(z)
ist an der Stelle z = z, stetig, wenn der Grenzwert g fiir z — z, existiert und gleich
dem Funktionswert an dieser Stelle ist.
lim f(z) = f(z,). (3.4)
PR
Gilt (3.4) nicht oder existiert der Grenzwert nicht, so ist w = f(z) an der Stelle z, un-
stetig.

Ist w = f(z) an jeder Stelle eines Gebietes G stetig, so heifit f(z) stetig in G.

Die Definition der Stetigkeit kann geometrisch entsprechend Definition 3.3 wie
folgt erklart werden: Allen Punkten z, die in einer hinreichend kleinen Umgebung
von z, liegen, also im Innern eines Kreises mit [z — z,| < d(¢) (vgl. Bild 3.7), ent-
sprechen nur Punkte w = f(z) der w-Ebene, die im Innern eines Kreises um w, = f(z,)
mit [ f(z) — f(zo)| < ¢ (vgl. Bild 3.8) liegen. Nach Definition 3.3 strebt w bei belie-
biger Anndherung des Punktes z — z, gegen wy,.

Jv
JY
/. A
G
R
9e%%
SR 1o
0% 9,
PR K /
XX, X/ /i
O 0. .0
RS 7 2
7 4
N/
7

Bild 3.7. 6-Umgebung von z, Bild 3.8. e-Umgebung von wq

Aus lim f(z) = f(z,) = u(xg, yo) + jt(xo, o) folgt mit Satz 3.1

724

lim u(x, y) = u(xo, yo) und limo(x, y) = v(xo, yo),

e e
d. h., u(x, y) und v(x, y) sind stetig in (x,, o). Die Umkehrung gilt ebenfalls, so dall
der Satz formuliert werden kann:

D.3.3
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Satz 3.2: Sind in einer komplexen Funktion w = f(z) = u + j v Real- und Imagindgrteil
in zo stetige Funktionen der-beiden reellen Variablen x und y, so ist auch w = f(z)
stetig an der Stelle z, und umgekehrt.

Die Untersuchung der Stetigkeit einer komplexen Funktion kann somit auf die
Untersuchung der Stetigkeit von zwei reellen Funktionen mit zwei reellen Variablen
zuriickgefiihrt werden.

Ohne Beweis sei auch darauf hingewiesen, daB8 ¢f(z), £1(2) £ f2(2) und £1(2) /2 (2)
stetige Funktionen in z, sind, wenn f{(2), f,(z) und f5(z) in z, stetig sind und c eine

komplexe Konstante darstellt. Ist f1(zy) + 0, so ist auch ;——E% in z, stetig. Ebenfalls

gilt fiir mittelbare Funktionen, daB eine stetige Funktion einer stetigen Funktion
wieder stetig ist.

Eine Unstetigkeit der Funktion f(z) an der Stelle z = z, kann bei existierendem
Grenzwert lim f(z) = g behoben werden, indem man der Funktion f(z) bei z = z,

Z-2Z
anstelle des eventuell vorhandenen Funktionswertes den Grenzwert g zuordnet und
dadurch eine bei z = z, stetige Funktion erzeugt. Die Funktion f(z) besitzt dann
bei z = z, eine hebbare Unstetigkeit, und z = z, heifit hebbare Unstetigkeitsstelle

von f{(z).
Beispiel 3.3: Gegeben ist die Funktion w = f(z) = {(z -9 fir z+a mit

m,neN und m = n > 0. a) Man bestimme limf(z) ! 1 fir z=a
z—a

b) Ist f(2) fiir z = a stetig?
Losung: a) m > n: limf(z) = 0, m = n: hmf(z)

z=a

b)m = n: llmf(’) = fla) =1, d. h,, f(2) 1st fir m = n an der Stelle z = a stetig.
m > n: Da fur diesen Fall der Grenzwert 11mf(z) existiert und hmf(z) * fla) gilt,

liegt eine hebbare Unstetigkeit vor. Durch Abdnderung des Funktlonswertes an
der Stelle z = a erhdlt man fiir m > n die iiberall stetige Funktion

flz) fir z+a

w=fe) = 0 fir z=a

=(z—a"™"

3.3.  Differentiation im Komplexen

3.3.1. Definition der Ableitung. Holomorphe Funktionen

Definition 3.4: Die Funktion w = f(z) sei in einer Umgebung von z,, definiert. w = f(z)
heifit an der Stelle z, € G differenzierbar, wenn unabhingig von der Art der Anndherung
Az = z — zy — 0 der Grenzwert

1 [0 + A2) = fzo)

df(Z)
Az = J'(z0) = (3.5

Az—»o zZ=2zp

existiert.
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Der Grenzwert (3.5) heifpt Differentialquotient oder Ableitung der Funktion w = f(z)
an der Stelle z = z,

Ist f(z) in jedem Punkt z eines Gebietes G differenzierbar, so heift f(z) in G dif-

ferenzierbar. Man sagt dann, w = f(z) ist eine in G holomorphe oder analytische

- Funktion. w = f(z) heift in einem Punkt z, holomorph, wenn eine Umgebung von z,
existiert, in der f'(z) gebildet werden kann.

Die Forderung der Differenzierbarkeit im Komplexen bedeutet eine wesent-
lich einschrinkendere Forderung als im Reellen. Im Reellen ist bei der Bildung des
Grenzwertes (vgl. Bd. 2) nur die Anndherung Ax — 0 auf der reellen Achse
zu untersuchen, im Komplexen dagegen haben wir alle Anndherungen Az — 0 in
einem gewissen Kreis-um z, zu betrachten. Aus der Differenzierbarkeit der Funk-
tion f(z) im Sinne der reellen Analysis folgt somit im allgemeinen noch nicht die
Differenzierbarkeit der Funktion f(z) im Komplexen.

Fiir die Bezeichnung holomorphe Funktion findet man auch noch die Ausdriicke
reguliire Funktion oder regulire analytische Funktion. Stellen, an denen f'(z) nicht
existiert, heilen singulére Stellen.

Satz 3.3: Eine in z, differenzierbare Funktion w = f(2) ist in z, auch stetig. S.3.3

Beweis:

f0) = fleg + Az) = LD ZSCD 5 4 g 4z 4 0),

lim f(z) = lim MATZZ—?M& + lim £(z,),
2z Az=0 z Az-0
lim f(z) = f'(20) 0 + f(z0) = f(z0),
220
d. h., nach (3.4) ist f(z) in z, stetig. =
Wie auch im Reellen gilt die Umkehrung von Satz 3.3 nicht. Es gibt Funktionen,
die iiberall stetig, aber nirgends differenzierbar sind (z.B. w = f(z) = z). Wir
werden im folgenden noch néher darauf eingehen.

Beispiel 3.4: Untersuchen Sie die Funktion w = f(z) = Re (2) auf a) Stetigkeit, b) Differenzierbar-
keit.
4
Losung: a) w = f(z) = Re(z) = x, f(z0) = xo. lim f(z) = lim x = x,. Somit gilt

) s ox
lim £(2) = f(z0), d. h., es ist (3.4) erfiillt; die Funktion w = f(z) = Re (z) ist tiberall stetig.
b) (3.5) schreiben wir mit Az = z, — z, in der Form

k Zp) — J(Z,
Feo— tim L@ S@

2, 2¢ Zn — Zo
Die Grenzwertbildung soll auf zwei verschiedenen Wegen erfolgen, einmal parallel zur reellen und
einmal parallel zur imaginédren Achse.

Xp — X,
1. Zy=Xn fz) =%, und f(zo) = xo: f'(z) = lim ——"% = lim 1=1.
Xpmrxg Xn T Xo Xy Xg

. 0
2. Zn=J¥Yn, flza) =f(20) =0: f'(z0) = lim ————= =0.
Y=o 1 (n = o)
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Da die beiden auf verschiedenen Wegen ermittelten Grenzwerte nicht gleich sind, ist f(z) an der
Stelle zo nicht differenzierbar. Da z, beliebig gewiihit war, ist f(z) = Re(z) nirgends differenzier-
bar.

3.3.2.  Allgemeine Differentiationsregeln

Die allgemeinen Differentiationsregeln und die Regeln fiir das Differenzieren der
elementaren Funktionen stimmen wiederum formal mit den entsprechenden Regeln
fiir reelle Funktionen iiberein; auf eine Herleitung dieser Formeln soll deshalb ver-
zichtet werden. Mit komplexen Konstanten ¢,, ¢, und holomorphen Funktionen
f(2), g(2) gilt:

L0 £ @] = e () £ eage), @)
L0 = 156 + 126, )
L[] SO 0 o9

Die komplexe Funktion w = f(1) sei an der Stelle 5 = 7, differenzierbar und habe
die Ableitung f”(,). Ist die komplexe Funktion# = g(z) an der Stelle z = z, differen-
zierbar mit der Ableitung g'(z,), dann ist die mittelbare Funktion w = f(g(z)) an der
Stelle z = z, differenzierbar, und es gilt die Kettenregel

(@] |:=z, = f"(8(20)) &'(z0)- (3.9)

Hohere Ableitungen f(z), ..., f™ (z) werden ebenfalls wie im Reellen gebildet. Wir
werden spéter noch zeigen, daBl eine in G holomorphe Funktion dort beliebig oft
differenzierbar ist. Eine analoge Aussage konnte im Reellen nicht gemacht wer-
den! Summe, Differenz und Produkt zweier in G holomorpher Funktionen sind
wegen (3.6) und (3.7) ebenfalls holomorph in G. Sind f(z) und g(z) holomorph, dann
ist der Quotient % fiir g(z) + 0 ebenfalls holomorph.

Fiir einige elementare komplexe Funktionen sollen die Ableitungen bestimmt
werden.

1. w = f(z) = ¢ (komplexe Konstante). Dann gilt f(z + Az) = ¢, und nach (3.5)
folgt

fl(2) = hm CA— —Alnr:) 0= 0—»—[c] =0. (3.10)

2.w=f(z) = 2" (n + 0, ganz). Es gilt
d o s
a»[z]—nz N (3.11)

Der Beweis erfolgt formal wie im Reellen:

a) ne N. Fiir diesen Fall kann (3.11) leicht durch vollstindige Induktion bewiesen
werden.
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B 1 ,_ =@
byn=-m<0.w=fz)=2"=z "‘=Z—m. Nach (3.8) folgt w' = . Da

2m
g m—1
m > 0, ganz, gilt nach a) Formel (3.11) und somit w’' = ':+ = —mz™™ 1,
Diese Gleichung ist fiir m = —n identisch mit (3.11). m
3.3.3. Die Cauchy-Riemannschen Differentialgleick Die Lapl h

Differentialgleichung
Fiir eine komplexe Funktion kann nach 3.1. geschrieben werden
w = f(z) = u(x,y) + jo(x, ). (3.12)

Es soll nun untersucht werden, welchen Bedingungen u(x, y) und v(x, y) geniigen
miissen, damit w = f(z) eine holomorphe Funktion ist. Mit z = x + jy und
Az = Ax + jAy folgt aus (3.12) fir einen Punkt z, € G

flzo + Az) = ulxo + Ax, yo + Ay) + ju(xo + Ax, yo + Ay).
Nach (3.5) gilt dann fiir die Ableitung
_ fzo + Az) — flz,)
f'(z0) hznlo —

— lim u(xo + Ax, yo + Ay) = u(xo, yo) + j[v(xe + Ax, yo + Ay) — v(xo, yo)]
Az=0 Ax +jAy

(3.13)

Die Annédherung Az — 0 soll nun auf zwei Wegen (parallel zur x-Achse bzw. parzallel
zur y-Achse) erfolgen:

1. Ax - 0, Ay = 0. Fiir f'(z,) folgt dann

f(zo) = lim u(xo + Ax, yo) — u(Xg, Yo) +j lim 000 + AX, o) = (o, ¥o)
Ax—0 Ax Axms0 Ax

Diese beiden Grenzwerte auf der rechten Seite der letzten Gleichung sind nach

Definition (Bd. 4, 3.1.) die partiellen Ableitungen B_ bzw. ilm Punkt z, =
Xo +]jVo, s0 dal ox ox

ey = (3 182)

(3.142)

(x0-Y0)

gilt.
2. Ax = 0,Ay — 0. Fir f'(z,) ergibt sich

e = lim L0 Yo + AN uio, ) ool vy + ) = o)
Ay jAy Ay=0 jAy
. O0u  Ov
@)= |- s>+ . 3.14b
o) ( ! oy Oy) (x0+¥0) ( )

Da beide Grenzwerte (3.14a) und (3.14b) gleich sein miissen, also fiir z, € G
ou .0v  Ov . O0u )
b_x+10_x_5y_—J$ (3.15)

3 Greuel/Kadner, Komplexe Funktionen
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gilt, kann der folgende Satz ausgesprochen werden:

Satz 3.4: Ist eine Funktion w = f(z) in G holomorph, so gelten die partiellen Differen-
tialgleichungen
ou o o ou

a—:-g; und W=_O_y (3.16)

fiir alle Punkte des Gebietes G. Man nennt (3.16) die Cauchy-Riemannschen Differen-
tialgleichungen.

(3.16) muB3 notwendigerweise erfiillt sein, wenn w = f(z) holomorph ist. Es kann
nun auch gezeigt werden, daB aus der Giiltigkeit der Cauchy-Riemannschen Differen-
tialgleichungen auf die Differenzierbarkeit der Funktion w = f(z) geschlossen werden
kann. Ohne Beweis sei der wichtige Satz ausgesprochen:

Satz 3.5: Besitzen die Funktionen u(x, y) und v(x, y) in G an der Stelle (x, y) stetige
partielle Ableitungen erster Ordnung und geniigen dieselben den Cauchy-Riemannschen
Differentialgleichungen (3.16), so ist die komplexe Funktion f(z) = u(x, p) + ju(x, y)
an der Stelle z = x + jy differenzierbar und besitzt die Ableitung

oo Oov . O0u

ooy Ou
f(z)—b—x‘i'la—g“ka;- (17

Die Sitze 3.4 und 3.5 ermdglichen es in vielen Fillen leicht zu entscheiden, ob

die Funktion w = f(z) an der Stelle z, differenzierbar ist und wie die Ableitung f”(z)
lautet.

Beispiel 3.5: Untersuchen Sie, ob di¢ iiberall stetigen Funktionen a) f(z) = Re (2), b) f(z) = z* und
¢) f(z) = Z differenzierbar sind.

Losung: a) f(z) = x, u(x,p) = x, uy =1, uy =0, v(x,y) = vy = v, = 0. Da u, * v, ist, gilt
(3.16) nicht, also ist f(z) = x eine iiberall stetige, aber nirgends differenzierbare Funktion. Dieses
Ergebnis hatten wir schon im Beispiel 3.4 erhalten. Die Anwendung von Satz 3.4 fiihrte jedoch zu
einer wesentlich einfacheren Losung.

b) fR)=22=(x+jy?=x2—p>+j-2xy, u=x*—y% u.=2x, uy= —2y, v=2xy,
vy = 2y, vy = 2x. Die partiellen Ableitungen 1. Ordnung sind stetige Funktionen der beiden reellen
Variablen x und y und erfiillen Gleichung (3.16). f(z) = z2 ist also eine iiberall in der z-Ebene holo-
morphe Funktion. Die Ableitung lautet nach (3.17)

fl2)=2x+j-2y=2x+jy) =2z.

Das gleiche Ergebnis wiirde sich nach (3.11) ergeben.

Of@=zi=x—-jy,u=x,u=1,u=0,0= -y v, =0, v, = —1. Die Cauchy-Riemann-
schen Differentialgleichungen (3.16) werden an keiner Stelle erfillt, denn es gilt u, * v,. f(z) = Z
ist also eine tiberall stetige, aber nirgends differenzierbare Funktion.

Es kann gezeigt werden, daf3 eine in G holomorphe Funktion stets samtliche Ab-
leitungen beliebig hoher Ordnung besitzt. Wir kénnen somit auch die Cauchy-Rie-
mannschen Differentialgleichungen differenzieren und erhalten

'u 0% 0*u 0 0w 0%u o 0%u

OxZ ~ dyox > Oxdy  OpyF  oxr  Oyox’ Oxoy 02
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Unter Anwendung des Satzes von Schwarz (Bd. 4, 3.2.) folgt

Pu _ v o o%u (.18)
| oxZ  0yox oxoy  0y? '
n ,
! v w0 3.19)
0% dxdoy  oyox  oxt . ‘

Bei Benutzung des Laplace-Operators Au (vgl. Bd. 8, 4.2.,4.4.) bzw. Av ergibt sich
aus (3.18) bzw. (3.19)

0%u  0%u
= — =0 3.20
Au 552 + T 0 (3.20)
bzw. 2 o2
v v
) = — =0. 3.21
Av 52 + 37 0 (3.2
Definition 3.5: Jede Funktion ¢(x, y). die in einem Gebiet G der Laplaceschen Differen-
tialgleichung
0% O
A = — = 3.22
Agp 5 + 02 0 (3.22)

geniigt, heifit harmonische Funktion oder Potentialfunktion. Eine regulire Potential-
funktion liegt im Gebiet G vor, wenn sie dort stetige partielle Ableitungen zweiter
Ordnung besitzt.

Aus den Gleichungen (3.20) und (3.21) folgt das wichtige Ergebnis: Real- und
Imaginirteil einer holomorphen Funktion sind reguldre Potentialfunktionen.

Potentialfunktionen spielen eine herausragende Rolle bei der Behandlung sta-
tiondrer Prozesse in Physik und Technik. Zum Beispiel konnen elektrostatische
Felder, stationdre Stromungen, stationdre Temperaturverteilungen und Gravi-
tationspotentiale durch Ldsungen der Potentialgleichung Au = f mit entsprechenden
Randbedingungen beschrieben werden. Man vgl. dazu auch Bd. 8.

Der Zusammenhang zwischen der Potentialtheorie und der Theorie der komplexen
Funktionen kann iiber die Behandlung der praktisch wichtigen ebenen Potential-
stromung erhalten werden. Bei diesen Stromungen geniigt die Untersuchung in einer
Ebene, da in parallelen Ebenen die Bewegung ebenso erfolgt. Die zu ebenen Po-
tentialstromungen gehdrigen Potentialfunktionen erfiillen die Gleichung (3.22)
und kénnen deshalb durch holomorphe Funktionen beschrieben werden.

Gentigen zwei reguldre Potentialfunktionen den Cauchy-Riemannschen Diffe-
rentialgleichungen, dann nennt man sie konjugierte Potentialfunktionen. Im allge-
meinen ist eine aus zwei beliebigen harmonischen Funktionen u(x, y) und u(x, y)
zusammengesetzte komplexe Funktion f(z) = u(x, y) + jo(x, y) nicht holomorph,
da holomorphe Funktionen die Cauchy-Riemannschen Differentialgleichungen
(3.16) erfillen missen.

Falls eine reguldre Potentialfunktion wu(x, y) gegeben ist, kann die konjugierte
Potentialfunktion v(x, y) mit Hilfe der Cauchy-Riemannschen Differentialgleichun-
gen (3.16) bis auf eine additive Konstante berechnet werden. f(z) = u(x, y) + ju(x, )
stellt dann als holomorphe Funktion ein komplexes Potential dar.

Beispiel 3.6: Gegeben ist die Funktion u(x, y) = x> — »* + xy. Ist u eine Potentialfunktion? Wenn
ja, dann bestimmen Sie die zu wu(x, y) konjugierte Potentialfunktion unter der Bedingung, daB
f0) = 0ist (f(z) = u(x, y) + jolx, y).

3*

D.3.5
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Losung: u=x2— 2 + xp, Uy =2X+p, Uy =2, Uy = =2y +x, wuy, = —2. Wegen
Uex + Uy, =2 — 2 =0 liegt also eine Potentialfunktion vor. Nach (3.16) gilt fiir die zugehorige
konjugierte Potentialfunktion

vy =y =2x+y (3.23)
und \
Uy = —Uy =2y — Xx. (3.24)

Aus (3.23) folgt durch Integration nach y, wenn x zunichst als konstant angesehen wird und ¢(x)
eine noch zu bestimmende Funktion von x ist,

v(x,y) = 2xy + 1% + @(x). (3.25)
Daraus folgt :
vx =2y + ¢'(x),

und durch Gleichsetzen mit (3.24) erhalten wir
.\'2

2y — x =2y 4+ ¢'(x) = gx) = — - + C (C = const).
Einsetzen in (3.25) ergibt

o(x,y) = 2xy + 1 — Ix? + C.
Weiter folgt

f@ =u+jo=x=y*+xp+j0?* - x?) +2x + C).
Mit f(0) = 0 erhalten wir

0=jC=C=0,

f@ =2 =y +ay + G007 - x%) + 20p) = 27 = )7 +j'2xy—%(x2—y2 + - 2xp),

fa=2-22=2@e-)
Bildet man das Skalarprodukt der beiden Gradienten grad u = (2[— ai)
o 0v\ - . . 0x” oy
und grad v = (W $> = 0 zweier konjugierter Potentialfunktionen  und v, dann

folgt
ou ov ou Ov

du-gradv = —~— + —~—
gradu-gracy ox Ox oy Oy

und bei Beriicksichtigung von (3.16)

ou ov B ov _ﬁi B

ox ox ( Ox) ox

d.h., fiir beliebige Konstanten C,, C, schneiden sich die Kurvenscharen u(x, y) = C,
und v(x, y) = C, rechtwinklig; sie bilden ein Orthogonalsystem. Diese Eigenschaft
konjugierter Potentialfunktionen finden wir z. B. bei Niveau- und Feldlinien. Jeder
beliebige in der z-Ebene durch eine Kurvenschar u(x, y) = C, oder u(x, y) = C,
darstellbare Potentialverlauf kann somit in der w-Ebene als Geradenschar abgebildet
und z. B. als Potentialverlauf eines unendlich ausgedehnten Plattenkondensators
gedeutet werden.

gradu-gradv =
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Fiir bestimmte Anwendungen der Potentialfunktionen ist die Darstellung in
Polarkoordinaten zweckmiBig. Mit x = rcosg, y = rsing und z = re’ konnen
wir schreiben

f@) = u(x, ) + jolx, y) = a(r, @) + j5(r, @).
Wir bilden

d

U X, + Uy, = U, COS @ + Uy Sin ¢,

It

<

=
I

= UxX, + Uy, = — U SN @ + urcos ¢,

D, = UyX, + Uy, = U, COS @ + Uy Sin @,
Uy = U:X, + U0y), = =0 Sin @ + 0,5 COS .
Unter Beachtung von (3.16) folgen daraus die Cauchy-Riemannschen Differential-
gleichungen in Polarkoordinaten
il Ll i oD
Fom =2 und = —p—. 3.26
o 0 op or (3:26)
Aufgabe 3.3: Untersuchen Sie, in welchen Punkten die Funktionen a) f(z) = x3y% — j x2y3,
z 1
b) f(z) = ;, z+0,0)f(z)=1— - nach z differenzierbar sind. Wie lauten ihre Ableitungen?
Aufgabe 3.4: Gegeben sind die Potentialfunktionen a) u(x, y) = g(x), b) v(x, y)'= ax? + bxy + cy*.
Bestimmen Sie die dazugehérigen holomorphen Funktionen f(z) = u + j v. Wie lautet g(x)? Welchen
Bedingungen miissen b und ¢ in b) geniigen, damit f(z) eine holomorphe Funktion mit f(1 + j) =0
ist? Wie lautet fur diesen Fall w = f(z) (a, b, ¢ const)?

3.4. Konforme Abbildungen

Im Abschnitt 3.1. wurde die geometrische Deutung einer komplexen Funktion
mit Hilfe ihres Betrages erldutert. Nachdem anschlieBend die Stetigkeit und Diffe-
renzierbarkeit behandelt wurden, sollen jetzt grundlegende Abbildungseigenschaften
einer holomorphen Funktion w = f(z) in ihrem Regularititsgebiet G unter der
Voraussetzung f'(zo) * 0, z, € G, untersucht werden.

Durch einen Punkt z, € G legen wir zwei glatte Kurvenstiicke €; und €, die mit
der reellen Achse die Winkel ~; und «, einschlieBen. Die entsprechenden Bild-
kurven in der w-Ebene €} und €3 schlieBen mit der reellen Achse der w-Ebene die
Winkel «] und &3 ein. Im gleichen Abstand ¢ von z, wéhlen wir auf €, und auf €,
je einen Punkt z, und z,. Dann gilt

zy —zo = pe? und z, — zo = g e,
wobei f, = «; und £, - «,-fiir o — 0 streben (Bild 3.9). Fiir die entsprechenden
Bildpunkte in der w-Ebene gilt

. f(z1) = flzo) = oF &1* und  f(z2) — flzo) = of /P2,
wobei
Bf—>af,  pFooar  und  gF,0f >0 fir 00
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gehen (Bild 3.10). Da Differenzierbarkeit vorausgesetzt war, gilt

. z,) — flz, . flz,) —
f(z0) = lim flz,)) = flzo) — lim (2.) = flzo)
1o Z; — 2o 23520 Z — Zo
Jv £
/orF
Vi
/
o
Mol T
= 5%
7
I
u 0
Bild 3.9. z-Ebene Bild 3.10. w-Ebene

Mit f'(z0) = |f'(z0)| € = re¥ & 0 erhalten wir

relv = ],m eJ(w.' 8D = lim ieJ(ﬂz —Ba)
=0 0 =0 0

Daraus folgt wegen der Gleichheit von Betrag und Argument

* *
[z = r = limZ5 = lim & > 0, (3.27)
00 0 0-0 0
9= ling B - B = liﬂ; (BF = pa)- (3.28)
[nd e—

Die Betragsbeziehung (3.27) besagt, daB der ,,MaBstabsfaktor r** nur von der Lage
des Punktes z, abhingig ist. Aus der Argumentbeziechung (3.28) folgt fir ¢ — 0
pi— ot f1— «, sowie fi5— a3, f, >, und damit aj — a3 =a; —a,. Der
Winkel zwischen den beiden Kurvenstiicken bleibt bei der Abbildung durch eine
holomorphe Funktion erhalten.

Es gilt der Satz:

S.3.6 Satz 3.6: Ist w = f(z) eine holomorphe Funktion in G und f'(z,) % 0 (z, € G), dann ist
die Abbildung w = f(z) winkeltreu, d.h., zwei sich in z, unter dem Winkel « schneidende
stetige, orientierte Kurven €, €, gehen durch die Abbildung w = f(2) in zwei stetige,
orientierte Kurven G, € iiber, die sich in wo = f(z,) unter dem gleichen Winkel
schneiden.

Bezeichnen wir mit Az = z — z, und Af = f(z) — f(zo) die in den Bildern 3.11
und 3.12 eingezeichneten Vektoren bzw. Zeiger, dann driickt das Verhéltnis |Af/Az|
die Langeninderung aus, die |[Az| bei der Abbildung erfahrt. Nach (3.5) gilt unab-
hingig von der Art der Anndherung z - z,

i LD _ oy oger SIS e .
724 Zy
Dieser Grenziibergang kann also auf einer beheblgen stetigen Kurve C erfolgen.
Aus
1) — fzo) f(zo)

= 1f"(zo)]

z — z
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folgt fiir das Verhiltnis der Lingen der beiden Vektoren Af und Az:
IAfl _ /@) = fz)l | 110l
-

1Az] lz = 2o

Lingenelemente der z-Ebene werden bei der Abbildung in die w-Ebene um den
Faktor f'(z) verzerrt (gestreckt oder gestaucht). Die durch eine analytische Funktion
vermittelte Abbildung erzeugt daher in jedem Punkt z,, fiir den f'(z,) =+ 0 gilt, eine
von der Richtung unabhingige Verzerrung. Abbildungen, die diese Eigenschaften
besitzen, heiBen in kleinsten Teilen maBstabstreue Abbild

z-Fbene
Bild 3.11. z-Ebene Bild 3.12. w-Ebene

Definition 3.6: Eine Abbildung, die in z, winkeltreu und in kleinsten Teilen mafstabs-
treu ist, heifit konform (oder dhnlich im Kleinen).

Damit kann der grundlegende Satz ausgesprochen werden:

Satz 3.7: Die durch holomorphe Funktionen erzeugten Abbildungen sind fiir f'(z) + 0
konform.

Jede durch eine holomorphe Funktion erzeugte Abbildung ist fiir f'(z) # 0 aber
nicht nur schlechthin in kleinsten Teilen mafBstabs- und winkeltreu, sondern es
bleibt auch der Drehsinn des Winkels erhalten. Man spricht in diesem Fall auch von
konformer Abbildung 1. Art oder eigentlich konformer Abbildung.

Ist neben der MaBstabstreue in kleinsten Teilen bei einer Abbildung Winkeltreue
vorhanden, wobei sich aber der Drehsinn des Winkels umkehrt, dann spricht man
von konformer Abbildung 2. Art. .

Ist w = f(z) eine holomorphe Funktion, dann wird durch w = f(z) eine konforme
Abbildung 2. Art realisiert, was sich leicht zeigen 1aBt: Wir zerlegen die Abbildung
w = f(z) in die zwei nacheinander folgenden Abbildungen w* = f(z) und w = w¥,
Da f{(z) eine holomorphe Funktion darstellt, ist die erste Abbildung w* = f(z) u. a.
winkeltreu mit gleichem Drehsinn. Bei der zweiten Abbildung w = w* bleibt zwar
der Winkel erhalten, aber der Drehsinn dndert sich, da w* konjugiert komplex zu w*

ist. Bei der resultierenden Abbildung w = f(z) geht also der Drehsinn in den ent-
gegengesetzten (ber. Bei allen betrachteten Abbildungen ist MaBstabstreue in
kleinsten Teilen vorhanden; es liegen also konforme Abbildungen vor. Ohne Beweis
sei der folgende Satz angegeben:

Satz 3.8: Jede durch eine holomorphe Funktion w = f(z) erzeugte Abbildung ist fiir
f'(z) # O eine konforme Abbildung erster Art. Jede durch eine zu einer holomorphen

D.3.6

S.3.7

S.3.8
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Funktion konjugiert komplexe Funktion w = f(z) erzeugte Abbildung stellt fiir
f'(z) * 0 eine konforme Abbildung zweiter Art dar.

Ein Beispiel fiir die konforme Abbildung zweiter Art ist die Spiegelung am Kreis,
auf die wir in 6.1.2. noch niher eingehen. In Physik, Mechanik, Elektrotechnik,
Kartografie u. a. Gebieten spielt die konforme Abbildung eine groBe Rolle. Es sei

hier nur auf die sog. Joukowski-Funktion f(z) = z + %, z # 0, verwiesen. Mit ihrer

Hilfe kann die Aufgabe, die Geschwindigkeit der Luftteilchen, die einen Tragfliigel
umstrémen, zu berechnen, darauf zuriickgefithrt werden, die Umstrémung eines
Kreiszylinders zu betrachten (vgl. Bild 3.13 und 3.14).

Wy

Bild 3.13. Konforme Abbildung eines Krelses Bild 3.14. Joukowski-Profil
auf ein Joukowski-Profil

Die Theorie der konformen Abbildung, deren Grundproblem darin besteht,
zwei gegebene Gebiete konform aufeinander abzubilden, hat insbesondere auch fiir
die Realisierung praktischer Anwendungen erhebliche Bedeutung. Zur Existenz
solcher Abbildungen miissen allerdings fiir die aufeinander abzubildenden Gebiete
gewisse Eigenschaften vorausgesetzt werden. Zum Beispiel gelingt es nicht, ein mehr-
fach zusammenhéngendes Gebiet konform auf ein einfach zusammenhidngendes
Gebiet abzubilden. Jedoch 148t sich jedes zweifach zusammenhéngende Gebiet ohne
isolierte Randpunkte umkehrbar eindeutig und konform auf einen konzentrischen
Kreisring abbilden. Die praktisch wichtige Aufgabe, eine umkehrbar eindeutige
und konforme Abbildung zweier einfach zusammenhdngender Gebiete zu kon-
struieren, wird auf die Grundaufgabe zuriickgefiihrt, eine eineindeutige Abbildung
eines derartigen Gebietes auf eine Kreisfliche zu berechnen. Als theoretische Grund-
lage dazu dient der von Riemann in seiner Dissertation 1851 bewiesene Abbildungs-
satz.

Satz 3.9 (Ri her Abbildungssatz): Jedes einfach zusammenhdngende schlichte
(d. h. einblittrige) Gebiet mit mindestens zwei Randpunkten lifit sich durch eine
analytische Funktion umkehrbar eindeutig auf die Fliche eines Kreises abbilden.

Mit dem Riemannschen Abbildungssatz, der Poissonschen Integralformel (siche
4.4.) und weiteren Sitzen tiber die konforme Abbildung erhélt man ein systematisches
Hilfsmittel zur Lésung von Randwertaufgaben fiir ebene Felder. Hierzu muB auf
die einschldgige Literatur, z. B. [2], [12], verwiesen werden.
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Beispiel 3.7: Unter den Anwendungen der Funktionentheorie soll die stationdre
inkompressible und wirbelfreie ebene Potentialstromung hervorgehoben werden.
Das Geschwindigkeitspotential U(x, y) genligt der Laplaceschen Gleichung

02U 0*U
AU=—-—5+—=0.
UV=sa to7 =0
Zwischen U(x, y) und den Komponenten v, und v, des Feldvektors v(x, y) gelten die
Beziehungen

L _ou .
T dx Yoy

Die Feld- oder Stromfunktion V(x,y), die als konjugierte Potentialfunktion mit
U(x, y) tiber die Cauchy-Riemannschen Differentialgleichungen (3.16)

U oV U v

ox oy’ oy ox
zusammenhingt, geniigt ebenfalls der Laplaceschen Differentialgleichung

0’V 0V
AV =+ —=
ot oy? 0

Mit
w=U(x.») + jV(x.»)

erhalten wir das komplexe Geschwindigkeitspotential als holomorphe Funktion,
deren Realteil das (reelle) Geschwindigkeitspotential und deren Imaginarteil die
Feld- bzw. Stromfunktion ist.

Wie wir in 3.3.3. gezeigt haben, bilden die Linien U = const und ¥ = const ein
orthogonales Netz. Bei Anwendungsaufgaben wird nun versucht, diese Linien
U = const und V' = const mit Hilfe der konformen Abbildung zu gewinnen. Das
Problem besteht dabei darin, die fiir den jeweiligen Fall geeignete Abbildung zu
finden. Umgekehrt kann man natiirlich auch eine konforme Abbildung als Strémung
in der z-Ebene auffassen.

Im Bild 3.15 ist ein Strémungsvorgang angedeutet, der z. B. entsteht, wenn eine
Parallelstromung auf ein Hindernis trifft, das die Form eines Kreiszylinders hat.

A

Bild 3.15. Parallelstromung
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Wiihrend die Stromlinien in unmittelbarer Nihe des Hindernisses kreisférmig sein
miissen, sind sie in groBer Entfernung vom Hindernis Parallele zur reellen Achse.
Derartige Stromungen lassen sich durch Funktionen der Form

W= f(z) = a(z + g) (@, b reell) (3.29)

beschreiben. Im Falle @ = 1 und b = 1 ergibt sich aus (3.29) die sog. Joukowskische
Funktion. Trennen wir (3.29) in Real- und Imaginirteil, so erhalten wir

f@) = ax(1 +7_[:_—yz)+jy(1 'T:‘y_l)]

U=ax <1 + —}Zi_yz) ist somit die Potentialfunkfion und V= ay (1 - ;Z—i—;z—)
die Stromfunktion. Die Schar der Stromlinien folgt aus ¥ = ¢ (reell, const). Insbe-
sondere liefert ¥ = 0 die Gleichung

—-x2—+7=0=x2+y2:b,

eine Kreisgleichung mit Radius \/b.

“ Aufgabe 3.5 Eine ebene Potentialstromung sei durch ihr komplexes Potential w = f(z) = U(x, ¥)

+ jV(x, y) bestimmt. Man bestimme fiir die Funktion w = f(z) = iz die Stromlinien V(x, y)
z

= const und die Aquipotentiallinien U(x, y) = const.

3.5. Elementare Funktionen komplexer Veriinderlicher

3.5.1. Die Potenzfunktion w = z"

Analog zum Reellen bezeichnen wir die fiir n € G definierte Funktion
w=flz) = 2" (3.30)

als Potenzfunktion der komplexen Verdnderlichen z. Fiir n > 0 ist w = z" in der
ganz en z-Ebene holomorph, fiir n = 0 gilt w = z° = 1, und fiir n < 0 liegt eine
fir z #+ 0 holomorphe Funktion vor. Wihrend fiir n = 1 durch die lineare Potenz-
funktion w = z die z-Ebene umkehrbar eindeutig auf die w-Ebene abgebildet werden
kann, es liegt in diesem Fall ja sogar eine identische Abbildung vor, ist die Abbildung
vermittels der Funktion w = z" fiir n = 2 nicht mehr umkehrbar eindeutig, wie wir
auch schon in Aufgabe 3.2 fiir n = 2 festgestellt hatten. Setzt man z = rei? und
w = pel, dann folgt w = (rei?)" = r"ei® und damit o = r" und 6 = np + 2km.

Das bedeutet, daB der durch 0 < ¢ < 2n—n festgelegte Winkelbereich der z-Ebene

(vgl. Bild 3.16) auf die gesamte w-Ebene (vgl. Bild 3.17) umkehrbar eindeutig
abgebildet wird. Die gesamte z-Ebene kann in » solche Winkelbereiche aufgeteilt
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werden, jeder derartige Bereich wird bei der Abbildung w = z" in die volle w-Ebene
iibergehen. Das bedeutet, daB die w-Ebene n-fach iiberdeckt ist. Eine umkehrbar
eindeutige Abbildung der gesamten z-Ebene erhilt man, wenn die z-Ebene in die
n-blittrige Riemannsche Fliche abgebildet wird.

Bild 3.16. z-Ebene Bild 3.17. w-Ebene

Am Beispiel w = f(z) = z* wollen wir uns das veranschaulichen. Setzt man
z = re?inw = z2 ein, so folgt

w=r2e?? wl =r2  argw = 2.

Durchliuft z den in der rechten Halbebene Re (z) > 0 gelegenen Halbkreis K: |z| = r
mit — ‘22 <@ < % dann durchlduft w den auf der negativen reellen Achse auf-
geschnittenen Vollkreis K*: |w| = r? fiir —7 < argw < = (vgl. Bild 3.18 und 3.19).
K und K* sind eineindeutig aufeinander abgebildet. Da r alle Werte 0 < r < o
durchlaufen kann, wird also durch w = z2 die rechte Halbebene Re (z) > 0 einein-
deutig auf die lings der negativen reellen Achse aufgeschnittenen w-Ebene abgebil-
det. Nimmt man zur Halbebene Re (z) > 0 noch die positive imaginire Achse und

w=z? ﬂT

Va7

Bild 3.18. z-Ebene Bild 3.19. w-Ebene

in der aufgeschnittenen w-Ebene den oberen Rand (im Bild gestrichelt gezeichnet)
hinzu, dann bleibt die Eineindeutigkeit der Abbildung w = z? erhalten. Da f(z)
= (z%)' = 2z fiir z # 0 nirgends verschwindet, ist die Abbildung konform.
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Analog kann auch die linke Halbebene Re (z) < 0, zu der wir die negative imaginire

Achse hinzunehmen (% <= 3—7—), durch w = z? eineindeutig in die lings der

negativen reellen Achse aufgeschnittene w-Ebene, zu der wieder der obere Rand der
negativen reellen Achse der w-Ebene gehort, abgebildet werden. Die Abbildung ist
wieder fiir z + 0 konform. Die w-Ebene wird also mit Ausnahme des Punktes w =0
doppelt iiberdeckt. Denkt man sich die beiden aufgeschnittenen Ebenen iiberein-
andergelegt, die Nullpunkte zusammengeheftet, den oberen Rand des 1. Blattes
mit dem unteren Rand des 2. Blattes und den unteren Rand des 1. Blattes mit dem
oberen Rand des 2. Blattes kreuzweise verbunden, so erhilt man eine zweiblittrige
Flache, die sog. Riemannsche Fliche der Funktion w = z2. Auf diese zweiblittrige
Riemannsche Fldche kann mittels der Abbildungsvorschrift w = z? die z-Ebene ein-
eindeutig abgebildet werden. Diese Abbildung ist mit Ausnahme des ,,Verzweigungs-
punktes* oder des ,,Windungspunktes* w = 0 konform (Bild 3.20). Die endlich-
blattrigen Verzweigungspunkte rechnet man zur Riemannschen Fliche mit hinzu.

!a
’ Bild 3.20
Zweiblittrige Riemannsche Fliche

Da die Funktion w = z" (ne N) die z-Ebene eineindeutig auf die n-blattrige
Riemannsche Fliche - abbildet, konnen sofort auch Aussagen dariiber gemacht
werden, wenn w als der gegebene und z als der zugeordnete Wert betrachtet werden.
Ist w & 0 gegeben, dann gibt es n verschiedene Werte z, fiir die z” = w ist. Jeder
dieser Werte heif3t n-te Wurzel aus w. In der Literatur ist es haufig tblich, dafiir
z= Uw zu schreiben und darunter fiir k = 0, 1,2, ...,n — 1 die n verschiedenen
Wurzeln aus (3.30) zu verstehen.

3.5.2.  Ganze rationale Funktionen

Ein Polynom oder eine ganze rationale Funktion n-ten Grades der komplexen
Veriinderlichen z ist fiir i =0,1,2,...,n und mit a; als komplexen Konstanten
erklart durch

W= Py2) =ao + a,z + az* + ... + a,2" = Y a;z'. (3.31)
i=0

P,(2) ist in der ganzen z-Ebene holomorph. Bedeuten z; die Nullstellen von P,(2),
dann kann nach dem Hauptsatz der Algebra fiir (3.31) geschrieben werden

w=P)=az—z,)(z - z)..(z - z,). (3.32)
Die z; miissen dabei nicht alle voneinander verschieden sein, d. h., es konnen mehr-

fache Nullstellen auftreten.
Die Funktion Py(z) = a, + a,z heiBt ganze lineare Funktion.



3.5. Elementare Funktionen 45

3.5.3. Rationale Funktionen

Der Quotient zweier ganzer rationaler Funktionen der komplexen Verdnder-
lichen z heiB3t rationale Funktion der komplexen Verinderlichen z:

o
P(z) Gy + a2+ @z’ + ..+ a2 _ an,z (.33)
0(z)  bo + bz + byz?+ ... +b,z" i bzt . |
i=0

w = R(z) =

R(z) ist mit Ausnahme der Nullstellen des Nenners in der ganzen z-Ebene holomorph.
Sind z; die Nullstellen des Zéhlerpolynoms und z; die *Nullstellen des Nenner-
polynoms, dann kann fiir (3.33) unter der Voraussetzung, daB3 die Nullstellen des
Ziéhlerpolynoms verschieden von den Nullstellen des Nennerpolynoms sind, ge-
schrieben werden:

az —z)(z—2) ... (2= z)
bz —z) (2= 2) . G = z)

Nullstellen des Nennerpolynoms nennt man Pole von R(z). Pole kénnen ebenfalls
wie Nullstellen mehrfach auftreten. Rationale Funktionen sind bis auf den Faktor
a,/b,, durch ihre Nullstellen und Pole charakterisiert, wenn deren Vielfachheit
bekannt ist. Vor allem fiir die Anwendungen ist es tiblich, die sog. Pol-Nullstellen-
Diagramme rationaler Funktionen anzugeben. Man triagt zu diesem Zweck Pole
und Nullstellen der rationalen Funktion unter Angabe ihrer Vielfachheiten in die
z-Ebene ein. Die Darstellung rationaler Funktionen als analytische Landschaft
findet man u. a. in [8].

Fir die folgenden Betrachtungen setzen wir weiter voraus, dal Zahlerpolynom
und Nennerpolynom von R(z) keine gemeinsamen Nullstellen besitzen. Wir nennen
R(z) eine echt gebrochen (unecht gebrochen) rationale Funktion von z, je nachdem,
ob der Grad des Zihlerpolynoms kleiner (groBer oder gleich) als der Grad des
Nennerpolynoms ist. Es gilt analog zum Reellen (vgl. Band 2) der Satz:

(3.34)

w= R(z) =

Satz 3.10: Jede echt gebrochen rationale Funktion R(z), deren Nennerpolynom die S.3.10
p verschiedenen Nullstellen z; mit den Vielfachheiten k; besitzt, kann eindeutig in
Partialbriiche derart zerlegt werden, so dafs gilt
L Ay Az Au
"= £ et v

i=1

: ] (3.35)

7
z—1z

Der Beweis dieses Satzes kann mit Hilfe der Laurent-Entwicklung erfolgen (vgl.
54.).
Beispiel 3.8: Zerlegen Sie
2+ (=3+j)z+2-3j
DA (=5+2)2+(T—6j)z—3+4j

f(z) =

in Partialbriiche. Anmerkung: Eine Nullstelle des Nenners ist reell.
Losung: Der Nenner besitzt an der Stelle z; = 1 eine Nullstelle. Durch

[P+ (=5+2)22+(T—-6))z=3+4)]:(z=1) =22 -4 -2))z+ 3 —4))
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und Nullsetzen der so erhaltenen Funktion 2. Grades konnen die restlichen beiden Nullstellen
bestimmt werden. Man erhilt

Zp=z3=2-—]j
Damit gewinnen wir den Ansatz (nach (3.35)):
z? =34] - 3j A
1&0=37 : ;p z2++l)(;i zj)z - 34 z% femaor z_‘?f-j) '
Durch Multiplikation mit dem Hauptnenner folgt
2+ (=3+)z+2=-3=Aulz = Q=)P + A4z =1
- + Aza(z = D[z = 2= D] (*)

Wird die rechte Seite von (*) nach Potenzen von z geordnet und anschlieBend Koeffizientenvergleich
durchgefiihrt, so kénnen die Konstanten A;; (im allgemeinen komplex) bestimmt werden. Man kann
auch mit Hilfe der Grenzwertmethode zwei von den drei Konstanten ermitteln. Durch Ordnen
finden wir aus (*):

22+ (=34 )2+ 2= 3= 22(Ayy + Ayo) + 2[4+ 2) Ay + Ay — B — j) A22)

+ B =4 Ay — Az + 2 =) Az
Koeffizientenvergleich:

1 = Ay + Az
=3+j =-(@4-2)A1 + Ay + (=3 +)) Az
. 2-3j= (B-4j)dy — Ay +Q2=]) A
Daraus ergibt sich
Ay =1, Ay =1—j und A, =0.
Die Partialbruchzerlegung lautet somit
2+ (=34+)z+2-3j 1 1—j
PG WA 314 -1 -G

Ist n = m = 1, dann erhalten wir aus (3.33) die gebrochen lineare Funktion

w=16) =

a, + a,z
_— 3.36
by + b,z ( )

3.5.4. Die Exponentialfunktion

Mit den beiden konjugierten Potentialfunktionen u(x, y) = e*cosy und uv(x,y)
= e*sin y definieren wir die Exponentialfunktion im Komplexen:

Definition 3.7: Die durch w = e*(cosy + jsiny), x,y reell, erklirte komplexe
Funktion w heifst Exponentialfunktion und wird mit e* bezeichnet:

w = e* = e¥¥ = ¢e¥(cos y + jsiny). (3.37)

Die bekannten Eigenschaften der Exponentialfunktion mit reellen Exponenten

werden durch diese Definition nicht eingeschrinkt, aber wir werden wichtige neue

Eigenschaften kennenlernen. Da fiir beliebige reelle x, y stets ¢*= 0 und

cos y + jsiny = 0 gelten, ist ¢* in der gesamten z-Ebene nullstellenfrei. Man kann
auch leicht zeigen, daB w = f(z) = ¢* in der gesamten z-Ebene holomorph ist.
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Mit u(x, y) = e* cos y und v(x, y) = e*sin y folgt
u,=e*cosy, u,=e*(—siny), v,=c¢e*siny, v, =e*cosy.

Da die ersten partiellen Ableitungen stetige Funktionen der beiden reellen Ver-
anderlichen x, y sind und die Cauchy-Riemannschen Differentialgleichungen erfiillt
sind, folgt nach (3.17)

f(z) = (e?) =e*cosy + je*siny = e*(cosy + jsiny),

(e7) = ¢e* (3.38)
Analog zeigt man
() = ae®. (3.39)

Wie im Reellen gilt auch im Komplexen das sog. Additionstheorem der Expo-
nentialfunktion
ef1ez = ef1t7z, (340)

denn fiir
est = e*i1 (cos y; + jsiny;) und ez = e*z(cosy, + jsiny,)
folgt

e?1 g2 = e*1 X2
X [cos y; cos y, — sin yy sin y, + j (sin y, cos y, + cos y, sin y2)],
e e’z = extafcos (y; + y2) + jsin(yy + y2)].

Nach (3.37) kann fiir die rechte Seite dieser Gleichung e*1+%2 geschrieben werden,
so daB (3.40) bewiesen ist.
Mit (3.37) und (3.40) weist man nach

et =—, ‘ (3.41)
Z

:z: =en-a, (3.42)

(e*)" = e™ (n ganze Zahl). (3.43)

Setzt man in (3.37) der Reihe nach —;j, ], 77:} bzw. 27 j fiir z ein, dann erhalten wir

T 3 .
7 =j, en=—1, ¢7"= —j und e =1. (3.44)
Da e'?* = 1 ist, gilt fiir jedes z
ee2nl = er+in — ez, (3.45)

Die Exponentialfunktion w = e? ist also periodisch mit der Periode 27 j. Fiir die
Abbildung w = f(z) = e = e*e” = g ¢/’ bedeutet das, daB der Periodenstreifen
—7 < y < 7 umkehrbar eindeutig auf die w-Ebene abgebildet wird. Bei dieser Ab-
bildung gehen parallele Geraden zur x-Achse (y = y,) in Halbstrahlen ¢ = y, iber,
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und Geradenstiicke parallel zur p-Achse (x = x,) mit —= < y <= werden in
Kreise p = e, (—= < ¢ < =) abgebildet (vgl. Bild 3.21, 3.22).
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Bild 3.21. z-Ebene Bild 3.22. w-Ebene

Analog lieBen sich die Periodenstreifen = < y < 3%, 3n < y < 5x, ... der z-Ebene
eindeutig auf die lings der negativen reellen Achse aufgeschnittenen w-Ebene ab-
bilden. Um eine eineindeutige Abbildung der gesamten z-Ebene auf die w-Ebene zu
erhalten, miissen wir die w-Ebene als unendlichbléttrige, ldngs der negativen reellen
Achse verheftete Riemannsche Fliche darstellen. Auf jedes Blatt der w-Ebene wird
ein Periodenstreifen der z-Ebene abgebildet.

Beispiel 3.9: Welche Kurven der z-Ebene werden in der w-Ebene als rechtwinkliges Koordinaten-
netz im 1. Quadranten abgebildet, wenn die Abbildungsfunktion w = f(z) = e lautet?

Losung: f(z) = e* (cos y + jsiﬁ y) = u + jv. Werden die u- bzw. v-Achse nicht mit beriick-

sichtigt, so gilt fiir das rechtwinklige Koordinatennetz im 1. Quadranten « = k; > 0 (const) und
v = k, > 0 (const). Da e* > 0 ist, folgt aus

e*cosy=k; >0 (3.46)
und
e¥siny =k, >0 . (3.47)
0 T i
cosy>0=> ——<y<— T
7 25757 0<y<7.
siny > 0= O<y<m

Der 1. Quadrant der w-Ebene wird somit in einen Streifen der z-Ebene abgebildet, der von der
reellen Achse (x-Achse) und der Geraden y = 7 begrenzt wird. Es geniigt, fiir ein bestimmtes &,

(bzw. k;) einen Kurvenast zu berechnen. Durch Pérallelverschiebung langs der reellen Achse kann
dann die gesamte Kurvenschar daraus gewonnen werden. Bei Beriicksichtigung von
3

sin (y + 2) cos y ldBt sich auch die Kurvenschar fiir (3.46) (bzw. (3.47)) durch geeignetes Ver-
schieben und Drehen gewinnen (vgl. Bild 3.23 und 3.24).
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Bild 3.23. z-Ebene Bild 3.24. w-Ebene

3.5.5. Die Logarithmusfunktion

In 3.5.4. hatten wir geschen, daB mit w = f(z) = ¢* der Periodenstreifen
—7 < y £ = umkehrbar eindeutig auf die w-Ebene abgebildet wird. Eine umkehrbar
eindeutige Abbildung der gesamten z-Ebene konnte dadurch erreicht werden, dafB
die Abbildung auf die unendlichbléttrige, lings der negativen reellen Achse der
w-Ebene verheftete Riemannsche Fliche erfolgte. Jedem Streifen = + k- 2% <y
<3z + k-2x(k =0, £1, +£2, ...) der z-Ebene wiirde also ein Blatt der Riemann-
schen Fliche zugeordnet. Bilden wir also umgekehrt die w-Ebene (Riemannsche
Fliche) auf die z-Ebene ab, so ist genau zu unterscheiden, welches Blatt der w-Ebene
abgebildet wird. In Umkehrung der eben angestellten Betrachtung definieren wir
deshalb

w=Logz=Inr+jo=Inlz| +jargz=u+jv, z%0, (3.48)

als Hauptwert der Logarithmusfunktion. Damit wird die im Nullpunkt punktierte
z-Ebene eineindeutig auf den Streifen —oo < v < 00, —7 < v £ 7© der w-Ebene
abgebildet. Der im Bild 3.25 dargestellte lings der negativen reellen Achse aufge-
schnittene Kreisring wird z. B. durch die Funktion w = Logz konform in ein

Jv

Bild 3.25. z-Ebene Bild 3.26. w-Ebene

Rechteck der w-Ebene -abgebildet (Bild 3.26). Man kann leicht feststellen, daB (3.48)
eine in der lings der negativen reellen Achse aufgeschnittenen z-Ebene holomorphe
Funktion ist.

4 Greuel/Kudner, Komplexe Funktionen
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Fiir die Ableitung der Logarithmusfunktion folgt nach (3.17) und (3.16)
oy — . 0lnfzl .0lnz]
S@m et o = e =y = 2L E - 2
_bln\/x2+y2 .bln\/x2+y2_ x—jy
T Ty T eI T

1

7 .
L1

(Logz) =—. (3.49)

Die im Reellen giiltigen Rechengesetze fiir Logarithmen konnen nicht ins Komplexe
ibernommen werden. Es gilt

Satz 3.11: Sind z, z,, z, + 0 und komplex, dann gilt

Log(z,z,) = Logz, + Logz, + 2k=j, (3.50)
Log?— = Logz, — Logz, + 2k=j, (3.51)
2
Logz" =nLlogz + 2k~j, (3.52)
Loge® = z + 2k=j. (3.53)

k ist dabei als ganze Zahl so zu wdihlen, daff der Imagindrteil der rechten Seiten von
(3.50) bis (3.53) zwischen — (ausschlieflich) und = (einschlieflich) liegt.
Der Beweis der Formeln (3.50) bis (3.53) soll nur fiir (3.51) gefiihrt werden:

Z1

zy . zy
Jlud S PN k8 ).
LogZZ n22|+Jarg(zz),

daraus folgt
Log -;—‘—’: In|z,| + jargz, — (In|z,] + jargz,) + 2k =]
2

=Logz; — Logz, + 2k=j. m

Beispiel 3.10: In welchem Gebiet ist die Funktion w = Log(z + @) mit @ = « + jf («, f reell)
holomorph? Geben Sie die Ableitung w’ an.
Losung: w = Log (z + a) kann als mittelbare Funktion w = Log# mit 7 = a + z aufgefaBt
werden:
w=DLogn=Inly| +jargn (1+0)

=Inlz+al +jarg(z+a) (z+ a=0).

Da fiir w = Log 7 in der ldngs der negativen reellen Achse aufgeschnittenen #-Ebene mit 7 # 0
Holomorphie besteht, folgt nach den bisherigen Betrachtungen, daB Log (z + a) fir z+ —a in
der lings der Halbgeraden z = —a + ¢ (—o0 < t < 0, reell) aufgeschnittenen z-Ebene holomorph
ist (Bild 3.27).

Fiir alle Punkte des Gebietes —n < arg(z + @) < w gilt mit z + —a

d—dz (Log (z + ) = (3.54)

z4+a’
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Bild 3.27. z-Ebene

3.5.6. Die trigonometrischen Funktionen

Durch Addition bzw. Subtraktion der beiden Gleichungen
e =cosx +jsinx und e*=cosx—jsinx
und anschlieBendes Auflésen nach cos x bzw. sin x erhélt man
cos x = 4 (&% + eI¥), (3.55)
1,
1 = —(eI¥ — p-ix
sin x 5 (e} e ). (3.56)

Diese Gleichungen haben formal betrachtet Ahnlichkeit mit den Definitionsglei-
chungen der hyperbolischen Funktion (vgl. Bd. 1, 9.5.). Wir setzen die Funktionen
sin x und cos x ins Komplexe fort (vgl. 5.3.) und erkldren:

cos z = (e + e¥),” (3.57)

sinz = 2i].(e"z — e7iz), (3.58)

Es wird sich zeigen, daBl die eben getroffenen Festlegungen sich im folgenden als
sehr zweckmaBig erweisen werden, da viele wesentliche Eigenschaften der trigono-
metrischen Funktionen der reellen Verdnderlichen auf die trigonometrischen Funk-
tionen der komplexen Verdnderlichen tibertragen werden. So gelten fiir die Funk-
tionen cos z und sin z die gleichen goniometrischen, Formeln, wie sie fiir die reellen
Funktionen cos x und sin x bestehen.

Beispiel 3.11: Beweisen Sie die Richtigkeit der Formeln

a) cos?z + sinz=1 und I

b) sin (z; + z;) = sin z; cos z; + cos z; sin z,

wenn z, z; und z, beliebige komplexe Zahlen sind. )
Losung: Bei Beriicksichtigung von (3.57) und (3.58) folgt:

) el7 4 e7i7)\2 el — eIz \2
a) cos? z + sin? z = + -
2 2j

1 .
= [ 2 4 e ?F — (2 — 24 e 2 =1. m

4%
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e —ein el el el 4 enin ein — ei
2j 2 2 2j

b) sin z; cos z; + €Os zy sinz, =

1 . . . .
= CXOT [eirtz) — eilz:=21) + eiG1m72) — e~i(1t7a)
t2)

+ eizitz) 4 ei(zamz) — e i(z1—7) — e-i(lﬁzz)]
1. .

= — [elG1tz2) — emi(@rt2)]
2j

=sin(z; + z,). W

Auf die Ableitung weiterer goniometrischer Formeln soll verzichtet werden
(s. [4]).

Da die Funktionen e’* und e~ fiir jede komplexe Zahl z differenzierbar sind, sind
auch cosz und sinz in der ganzen z-Ebene differenzierbar, d. h. in der ganzen
z-Ebene holomorphe Funktionen.

Aus (3.57) folgt durch Differenzieren

iz — ez

(cos z)' = (e“+—2e‘”)’ = 17 (7 —e )= — 2—] = — sin z.
Analog kann die Ableitung von sin z gebildet werden.

(cosz) = —sinz, (3.59)

(sinz)’ = cos z. (3.60)
Als Nullstellen von f(z) = cos z erhalten wir

0=cosz = _12(61: + ef.i:) = el = —e T 2T = ],

Nach (3.44) folgt e*™+™ = e/ Mit (3.45) gilt /7 = ¢/#+270 und somit folgt

e?¥ g2y = eI®i270) Diese Gleichung ist erfiillt fir y =0 und x = (1 + 2k)E
(k ganze Zahl). Die Nullstellen von cos z liegen also alle auf der reellen Achse:

zo=(1+ 2k)§. . (3.61)

Ausgehend von 0 = sinz = —%(e’" — e797) erhilt man die Nullstellen von sin z:
Ze=kmw. (3.62)

Die Nullstellen von sin z liegen also ebenfalls alle auf der reellen Achse und stimmen
mit den Nullstellen der reellen Funktion f(x) = sin x tiberein.

Zu beachten ist, daB3 einige im Reellen giiltigen Relationen, wie z. B. [sin x| < 1,
nicht ins Komplexe tibertragen werden diirfen. Darauf sei eindringlich hingewiesen!
Zum Beispiel gilt
(L -t 1 1
— 7 T )| = — -
2(el+e )‘ 2(e+e>>l.

Analog zum Reellen definieren wir auch die Funktionen tan z und cot z und deren
Ableitungen.

o5
cos —| =
J
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Wird x = 0 in (3.57) bzw. (3.58) eingesetzt, dann ergibt sich
cosjy =4 (eliv + eiiY) =} (e + ¢) = cosh y,

also
cosjy = cosh y. (3.63)
Analog findet man
sinjy = jsinh y. (3.64)
Mit Hilfe der Additionstheoreme erhalten wir
cos z = cos (x + jy) = cos x cosh y — jsin x sinh y, ) (3.65)
sinz = sin (x + jy) = sin x cosh y + jcosxsinh y. (3.66)

Damit haben wir die Mdglichkeit, die komplexen Funktionen sinz und cos z in
der Form u + jv darzustellen.

Beispiel 3.12: Berechnen Sie a) ¢ und p, wenn cos (1,1 + j- 1,44) = ce!” bzw. b) x und », wenn
sin (x + jy) = 1,5l 75 gegeben sind.
Losung: a) Nach (3.65) folgt
cos (1,1 +j-1,44) = cos 1,1 cosh 1,44 — jsin 1,1 sinh 1,44
= 2670,

b) sin (x + jy) = sei’,

sin x cosh y-+ jcos x sinh y = s(cos ¢ + jsin o).
Der Vergleich der Real- bzw. Imaginirteile ergibt

sinxcoshy = scoso bzw. cosxsinhy = ssino. *)

Fiir die weiteren Betrachtungen fithren wir folgende Substitutionen ein:

sin? x =1 (1 — cos2x), cos? x =% (1 + cos 2x),
sinh? y = % (cosh 2y — 1), cosh? y = % (cosh 2y + 1). (**)
Aus der ersten Gleichung von (*) folgt:
'S COS O s? cos? o
coshy = — =cosh? y = ———.
sin? x

Mit (**) ergibt sich daraus

3 5%(1 + cos 20) 25%(1 + cos 20) — 1 + cos 2x
= cosh2y =
3 (1 — cos 2x) 1 — cos 2x

1
7(cosh 2y+ 1) =

Aus der zweiten Gleichung von (*) erhalten wir analog
25%(1 — cos 20) + 1 + cos 2x
1 + cos 2x

cosh2y =

Setzen wir die beiden Ausdriicke fiir cosh 2y gleich, so folgt
[252(1 + cos 20) — 1 + cos 2x] (1 + cos 2x)
= [25%(1 — cos 20) + 1 + cos 2x] (1 — cos 2x)
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und daraus
cos? 2x + 252 cos 2x + 252 cos 20 — 1 = 0,

cos 2x = —s2+ /s* — 252 cos 20 + 1.

A;lalog findet man
cosh2y = s% + \/x‘— 2s%cos20 + 1,

Durch Einsetzen der Werte s = 1,5 und ¢ = 75° erhalten wir x; = 0,22, x, = 2,92, y, = 1,18
und y, = —1,18. DaB beide Wertepaare die Ausgangsgleichung erfiillen, kann leicht gezeigt werden,
wenn man beachtet, daB sinx = sin(z — x), cos(x — x) = —cos x, cosh (—y) = coshy und
sinh (=) = —sinh y sind.

Unter Benutzung der im Beispiel 3.12 angegebenen Substitutionen (**) kdnnen
auch Formeln zur Bestimmung von s und o, wenn x und y gegeben sind, fiir
sin (x + jy) = sei® hergeleitet werden. Im folgenden sind die entsprechenden For-
meln fiir die trigonometrischen Funktionen zusammengestellt:

1. cos(x +jy) = cel’:

cos 2x + cosh 2y —sin x sinh y
= = = =, tany = —————— = —tan xtanhy,
2 cos x cosh y (367

cos2x =c? + \/c“ —2¢%cos 2y + 1, cosh2y = ¢* + \/c“ —2¢%cos2y + 1
2.sin(x +jy) = sei:
| e ———

— cosxsinhy  tanhy
o= / cos 2x + cosh 2y’ tang = Yy _ J
2 sin x cosh y tan x

cos 2x = —s2 + 4/s* — 252 cos20 + 1, (3.68)

cosh2y = 5% + \/54 — 2s%c0s20 + 1.

)

3.tan(x +jy) = re¥:

—cos 2x + cosh 2y
t= ——, tant =
cos 2x + cosh 2y

taniy (1 + tan®x) _ sinh 2y
tan x (1 — tanh?y) ~ sin 2x
(3.69)
2y = 2tcost  —cosT ¢ hzy_Ztsint B sint
B2y = T Ty MY ST T on@mn
Da die tan-Funktion periodisch in = ist, kann die Anwendung der Formeln fiir
tany, tan ¢ und tan 7 leicht zu falschen Werten fiihren, wenn man z. B. bei den
Formeln fiir tany bzw. tan ¢ nicht die entsprechenden Formeln (3.65) bzw. (3.66)
beachtet. Es wurde deshalb in den Formeln fiir tany bzw. tan ¢ das Verhiltnis
Imaginirteil zu Realteil aus den Formeln (3.65) bzw. (3.66) mit angegeben. Damit ist
die eindeutige Bestimmung der Winkel méglich, wenn die Vorzeichen von Real- und
Imagindrteil mit beriicksichtigt werden. Das Analoge gilt fiir die Anwendung der
Formel fiir tan 7.

2
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Betrachten wir die Funktion w = cos z in einem Streifen der Breite 2=, z. B. in
—7 < x £, so nimmt die Funktion jeden von 41 verschiedenen Wert an genau
zwei verschiedenen Stellen an, da

w=1(e +ed)=eif = w+ w1

gilt und da jede Quadratwurzel aus einer komplexen Zahl immer zwei Losungen
besitzt. cos z = +1 folgt fiir z = 0 und cos z = —1 fiir z = =. Da cos z; = c0s z,
genau dann gilt, wenn z, = z; + 2k = (k ganz) ist, kénnen die beiden Werte +1
und —1 an keiner anderen Stelle des Streifens angenommen werden. Ahnliche
Betrachtungen kann man fiir die Funktion w = sinz anstellen. Wegen (3.59),
(3.60), (3.61) und (3.62) ist die durch die Funktion w = cos z (w = sin z) festgelegte

Abbildung iiberall — aufBler an den Stellen z = k= (z =(1+ 2k) %) — konform.
Man kann leicht zeigen, daB z. B. zur jy-Achse parallele Geraden der z-Ebene durch

die Funktion w = cos z in konfokale Hyperbeln der w-Ebene tibergehen.
3.5.7. Die hyperbolischen Funktionen

Die Definition der hyperbolischen Funktionen oder Hyperbelfunktionen der kom-
plexen Verinderlichen erfolgt ebenfalls analog zum Reellen (vgl. Bd. 1, 9.5.):

coshz = % (e + e?), ’ (3.70)
sinhz = §(e* —e~7), (3.71)
tanhz = SoBz _ & —e7F (3.72)
T coshz  ef4e’ ’
coshz e +e~~
coth z = Sh: — e (z7:t= 0). (3.73)

Aus (3.70) und (3.71) folgt
cosh? z + sinh? z = %(e2z +24eFE +eF -2+ )= —;—(e“ +e7%%)

= cosh 2z,

cosh? z + sinh? z = cosh 2z. (3.74)

Analog zum Reellen gelten die weiteren Beziehungen:

cosh? z — sinh?z = 1, (3.75)
cosh (z; + z,) = cosh z, cosh z, + sinh z, sinh z,, (3.76)
sinh (z; + z,) = sinh z; cosh z, + cosh z, sinh z,. . 3.77)

Die Beweise konnen analog (3.74) gefiihrt werden.
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Aus der Periodizitdt von e und e~* folgt, daB8 auch cosh z und sinh z periodische
Funktionen mit der komplexen Periode 27 j sind. Es gilt also fiir ganzzahliges k&

cosh z = cosh (z + k- 2wj), - (3.78)

sinh z = sinh (z + k - 2%j). (3.79)
Aus (3.70) ergibt sich fiir z = jy: coshjy = 4 (e” + e %). Daraus folgt

coshjy =4 (cosy + jsiny + cosy — jsiny),

coshjy = cos y. (3.80)

Analog erhélt man

sinhjy =jsiny, (3.81)
tanhjy = jtany, (3.82)
cothjy = —jcoty. (3.83)

Damit ergeben sich aus (3.76) bzw. (3.77) die Additionstheoreme
cosh (x & jy) = cosh x cos y + jsinh x sin y, (3.84)
sinh (x + jy) = sinh x cos y + jcosh x sin y. (3.85)
Fiir die hyperbolische Tangensfunktion folgt

sinh 2x +i sin 2y
cosh 2x + cos 2y — I Cosh 2x + cos 2y

tanh (x + jy) = (3.86)

Der Aufwand beim Rechnen mit den Kreis- bzw. Hyperbelfunktionen komplexer
Argumente ist relativ groB, da immer erst mit Additionstheoremen umgeformt
werden muf3. Stehen keine Hilfsmittel zur Verfiigung, die das Berechnen derartiger
Funktionen mit komplexen Argumenten gestatten, empfiehlt sich die Anwendung
der Sinus- bzw. Tangensreliefs (vgl. [7]). In der Elektrotechnik, vor allem in der
Ubertragungstechnik, wird hiufig mit hyperbolischen Funktionen und mit Kreis-
funktionen mit komplexen Argumenten gerechnet, so daf3 insbesondere fiir Elektro-
techniker ein sicheres Beherrschen geeigneter Methoden zur Berechnung derartiger
Funktionen erforderlich ist.

Beispiel 3.13: In der Ubertragungstechnik berechnet sich der Eingangswiderstand W einer Leitung
nach der Gleichung

Z,coshg + Zsinh g
hg + —sinhg '
COs! sin
z

Berechnen Sie den Eingangswiderstand, wenn gegeben sind:

g =0,97 + j- 0,99 (UbertragungsmaB), Z = (600 — j + 910) Q (Wellenwiderstand),
Z, = 560 e!1°° Q) (AbschluBwiderstand).
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Losung: Nach (3.84) bzw. (3.85) folgt
cosh (0,97 + j-0,99) = cosh 0,97 cos 0,99+ j sinh 0,97 sin 0,99
= 10,8277 + j-0,9442 = 1,26 €i"48.8°,
sinh (0,97 + j-0,99) = 0,6197 + j-1,2612 = 1,41 I"63.8°,
Mit Z = (600 — j - 910) Q = 1090 e}-56:69) Q) ergibt sich dann
706 el 58,8 4 1537 ¢l *7:2°

= . Q = 1170 ei-319Q,
0,8277 + j - 0,9442 + 0,514 - 66,6°

Da e” und e~* in der ganzen z-Ebene holomorph sind, gilt dies nach (3.70) und
(3.71) auch fiir die Funktionen cosh z und sinh z. Fiir die Ableitungen dieser Funk-
tionen konnen wiederum die analogen Regeln aus dem Reellen {ibernommen
werden.

Analog Beispiel 3.12 konnen auch fiir die hyperbolischen Funktionen entsprechende
Formeln hergeleitet werden (vgl. [7]).

Aufgabe 3.6: Geben Sie die Partialbruchzerlegung der Funktion
1G) = Q-2 —@+T7)z2+ 122+ 4j—4
(22 = 22) (2% = 2(1 = j)z = 2j)

an!
Aufgabe 3.7: Beweisen Sie folgende Beziehungen:

1+ 2k

a) e =¢, b)sin(z+2m)=sinz, c)tan (z +27) = tanz(z % 5

=, k ganz),
k3 ™
d) Log(—j) = —71', e) cosh (x + jy) = sin (7+ y—jx).
Aufgabe 3.8: Berechnen Sie = a) cos (3‘7) , bysin(l —j), c¢)cosh[=(l + j)].
Aufgabe 3.9: Bestimmen Sie x und y aus tan (x + jy) = 2 eJ-80%),
Aufgabe 3.10: Bilden Sie die Ableitungen von folgenden Funktionen

sinh z 1

b) w= , O w=
) 1 — cosh 2z )

) W= ———— .
1—cosz’ e —1



4. Integration im Komplexen
4.1. Bestimmtes Integral

Fiir die unbestimmte Integration im Komplexen lassen sich die Methoden aus dem
Reellen formal iibertragen. Da bei der bestimmten Integration im Komplexen die
Integrationsgrenzen Punkte der komplexen Ebene sind und der die Grenzen ver-
bindende Weg beriicksichtigt werden muB, sind hier noch Analogiebetrachtungen zu
Linienintegralen im Reellen méglich.

Es sei w = f(2) eine in einem Gebiet G definierte stetige Funktion und € ein Weg
von z, = a nach z, = b, der ganz in G liegt (Bild 4.1). Fiir € gilt die Parameter-
darstellung '

zZ()=x(t) +jyt) mit a=t,<t=<1t,=p.

Wir teilen das Intervall [, f] in n Teile, so daB o =15 < t, < ... < t, = f gilt und
der Weg € in n Teilstiicke €; (i = 1, 2, ..., n) zerlegt wird. Den maximalen Abstand

Bild 4.1. z-Ebene

zweier benachbarter Teilpunkte z;_,, z; bezeichnen wir mit
d, = max (|z; = zo|, 122 = z1l, .05 |20 — Zu-a])

_ und nennen d, das Feinheitsmaf3 der Einteilung E,. Auf jedem €, wihlen wir einen
beliebigen Zwischenpunkt {;, zu dem der Parameterwert 7; mit 7,-; < 7, < 1,
gehort. Man kann sich fiir jede natiirliche Zahl » eine Einteilung E, vorgenommen
denken. Fiir die zugehdrige Zahlenfolge d, der FeinheitsmaBe soll gelten

limd, = lim max(|z, — zo|, |z — 24l w5 |20 — Zu-qg]) = 0.
Ao n-wo

Bildet man zu jeder Einteilung E, die Summe
I, = Zl (zi = zi-0) fG1), .1
i= .

dann kann gezeigt werden, daB 7, fiir » — oo unter den obengenannten Voraussetzun-
gen gegen den gleichen Grenzwert I strebt, wie auch die Teilungspunkte z; und die
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Zwischenpunkte {; auf € gewdhlt werden. Diesen Grenzwert nennt man bestimmtes

Integral von f(z) ldngs des Integrationsweges € und schreibt

I=1liml, = llm Z (zi — 2= fC) = (f(z) dz. 4.2)

n—o0

Ist € in der Parameterdarstellung z = z(r), 7 € [, f] gegeben, so gilt fir f(z) auf €
f(z) = f(z(t)) = u(r) + ju(r). Fir das bestimmte Integral folgt dann '

B B
[ dz = [ A=) 20 dr = [ (o) + o) @) + @) dr. @3)
(&3 x «

Ist € ein geschlossener doppelpunktfreier Weg, so schreibt man

Prerdz baw. 4 fo) dz.
¢ [

Der eingezeichnete Pfeil gibt an, in welcher Richtung der Weg € durchlaufen wird.
Wird der Weg € in mathematisch positivem Sinn durchlaufen, so schreibt man auch

cinfach f(z) dz.
g

1 \
Beispiel 4.1: Berechnen Sie 96}’(:) dz fiur f(z) = v und C: Kreis um Nullpunkt mit Radius ¢ > 0.

Losung:
C:z(t) =pel!, 0=tZ2m.
A1) = joel.
Nach (4.3) ergibt sich

27

27
sl joel
:— dt = 2xj.
z oel’

(S

Die nachstehend aufgefiihrten vier Sdtze koénnen mit vorausgesetzter Stetigkeit
von f(z) langs des Weges € aus der Definition des bestimmten Integrals hergeleitet
werden.

Satz 4.1: Ersetzt man den von a nach b verlaufenden Weg € durch den entsprechenden

von b nach a fiihrenden Weg —C (€ wird in umgekehrter Richtung durchlaufen), so
dndert sich das Vorzeichen des Integrals:

[fe)dz = ~ [ fz) de. (4.4)

S.4.1
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S.4.2 Satz 4.2: Wird der von a nach b fiihrende Weg € durch den Punkt c in die beiden
Wege §, und €, geteilt, so gilt (€ = €, + €,)

[ f2)dz = [f(z) dz + [ f(z) dz 4.5)
4 [0 (73

(vgl. Bild 4.2).

Bild 4.2. z-Ebene

S.4.3 Satz 4.3: Ist c eine beliebige komplexe Konstante, so gilt

[ ef@)dz = ¢ [ fz) dz. (4.6)
&1 ¢

S.4.4 Satz 4.4:

[Ui@ + £:2)1dz = [ fi(2) dz + [ fu(2) dz. 4.7
& ¢

&4

Fiir die Abschitzung von Integralen kann folgender wichtige Satz ausgesprochen
werden:

S.4.5 Satz 4.5: Ist | f(z)| < M fiir alle Punkte z von € und | die Liinge des Weges €, dann
gilt die Abschitzung

l(!f(z) dz| £ 4|f(z)| |dz] < M. s

dz

Beispiel 4.2: Geben Sie fiir das Integral f langs des im Bild 4.3 angegebenen Weges fiir

[

"=z

|2"| > |zo| eine Abschitzung an (zo = g, €''s komplexe Konstante)!
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Losung: Weg €:

. ™
2(t) =pell, ——=1t
() =e¢ 3

IIA
IA
Sk

Mit (2.8) gilt [2" — zo| = [|2"] — |||, und damit ist
1 1 _ 1
Tl =zl e —eo

Die Linge / des Weges € betrigt | = o=, so daB sich nach (4.8)

1f@) = i =

-z

dz < ow

"=z 0" —

€

ergibt.

Je

‘ £
4
Je
Bild 4.3. z-Ebene Bild 4.4. z-Ebene

61

In der Einleitung zum vorliegenden Abschnitt hatten wir darauf hingewiesen, daB
im allgemeinen die Integration nicht nur von den Grenzen, sondern auch noch von
dem die Grenzen verbindenden Weg abhidngt. Wir wollen dies an einem Beispiel

demonstrieren.

Beispiel 4.3: Berechnen Sie I Zdz, wenn €
¢
a) die geradlinige Verbindungsstrecke von —1 nach 1 + j,
b) der Streckenzug von —1 tiber +1 nach 1 + j ist (Bild 4.4).
Losung: a) Nach (2.25) folgt fiir

Criz(t)= =1+t +j+1)=—=14+2t+jt,

1
s 1
L= [[=1+0@Q=-)Q+j)di=—01=2j.
; 2

b) Coyzz(t)= =1+ 21, flz()) = =1 + 2, ) =2,

1

Ly=[(-1+2n2dr=0.
0

Cpiz)=1+jt, fl2)=1-jt, =],
1

Lp=[(U=jnjde=30+2). L=IL+6hy=2%(1+2.
0

=—14+2t—jt=—=14+1t2-)), () =2+j,
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Obwohl die Integrationsgrenzen und die Integranden in a) und b) iibereinstimmen, ergeben sich
fiir die beiden Integrale verschiedene Ergebnisse.

Aufgabe 4.1: Lings des Weges © ist das Integral { e*dz zu berechnen: a) € = C,, b) € =C,; +C,,
(Bild 4.4). [

Aufgabe 4.2: Berechnen Sie das Grundintegral der Funktionentheorie¢ (z — zo)" dz (n ganzzahlig)

langs eines Kreises mit Radius ¢ und Mittelpunkt z, (komplexe Konstante)!

Aufgabe 4.3: Geben Sie eine Abschitzung fiir | J. z"dz| (neN), wenn € der Kreis um z, = 0 mit
Radius p ist!

4.2, Cauchyscher Integralsatz und Folgerungen

In Aufgabe 4.1 konnte festgestellt werden, daBl das betrachtete Integral mit
f(z) = e bei gleichem Anfangs- und Endpunkt des Integrationsweges fiir die beiden
verschiedenen Wege €, und €, das gleiche Ergebnis lieferte, wihrend dies im Bei-
spiel 4.3 fiir f(z) = Z nicht zutraf. Wihrend f(z) = e? eine liberall stetige und differen-
zierbare komplexe Funktion ist, stellt f(z) = Z eine zwar tberall stetige (vgl. Bei-
spiel 3.5¢)), aber nirgends differenzierbare Funktion dar. Es taucht also die Vermutung
auf, daB die Abhingigkeit eines Integralwertes vom Integrationsweg im Zusammen-
hang mit der Differenzierbarkeit der Funktion f(z) steht. Nach Cauchy gilt folgen-
der fundamentaler Satz fiir die Theorie und die Anwendungen der Funktionen kom-
plexer Veranderlicher:

Satz 4.6 (Cauchyscher Integralsatz): Ist die Funktion f(z) in einem emfach zusammen-
hiingenden Gebiet G der z- Ebene holomorph, so hat das Integral

lf(Z) dz = Jf(Z) dz (4.9)

fiir jeden ganz in G von a bzs b (komplexe Konstanten) verlaufenden Weg € densel-
ben Wert.

Aus diesem Satz folgt unmittelbar eine zweite Form. Wihlen wir in G zwei verschie-
dene Wege von a nach b, etwa €, und €, so gilt fiir holomorphe Funktionen f{(z)

[fz)dz = [f(z)dz und daraus [f(z)dz + [ f)dz = 0. Es gilt somit, da

[ G, [A -G,
€, — G, eine geschlossene Kurve darstellt (Bild 4.5), der folgende Satz:

Satz 4.7 (Cauchyscher Integralsatz): Ist f(z) in einem einfach zusammenhdingenden
Gebiet G holomorph, so hat das Integral iiber f(z) lings jeder geschlossenen, ganz in G
verlaufenden Kurve € den Wert null:

$ s dz = 0. @.10)
¢

Beweis: Aus (4.3) folgt
jf(z)dz = J (ux — vy)dt +]f(uy + vx) dt,

.} flz)dz = J (udx — vdy) +JJ (udy + vdx). 4.11)
3 é [
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Aus der Theorie der Kurvenintegrale (man vgl. z. B. Band 5) ist bekannt, da3 der

Wert des iiber eine geschlossene Kurve € in einem einfach zusammenhangenden Ge-
biet G erstreckten Integrals

S e+ ey

gleich null ist, falls die Integrabilitdtsbedingung P, = Q, erfiillt ist.

Bild 4.5. Geschlossene Kurve in der Bild 4.6. Mehrfach zusammenhidngendes
z-Ebene Gebiet in der z-Ebene

Wendet man dieses Ergebnis auf die beiden reellen Linienintegrale auf der rechten
Seite von (4.11) an, dann folgen daraus die Gleichungen

Uy = Uy, u, = — Uy

die als Cauchy-Riemannsche Gleichungen fiir holomorphe Funktionen f(z)
= u(x, y) + jo(x, y) erfillt sind. m

Ein Beweis mit weiteren funktionentheoretischen Betrachtungen wird z. B. in [13],
Teil 11, gefiihrt.

Wegen seiner Bedeutung nennt man den Cauchyschen Integralsatz auch Haupt-
satz der Funktionentheorie. Die Beschrinkung des Cauchyschen Integralsatzes auf
einfach zusammenhéngende Gebiete ist wesentlich, denn wir hatten schon im Bei-

spiel 4.1 gesehen, dafB3 das Integral § —lz— dz % 0 ist, wenn der Weg € z. B. der Kreis

©
um den Nullpunkt mit Radius g ist. f(z) = ITist in diesem Fall in der ganzen z-Ebene

mit Ausnahme des Punktes z = 0 holomorph. Das Gebiet G ist also die im Punkt
z = 0 gelochte z-Ebene, ein zweifach zusammenhidngendes Gebiet. LaBt sich in
einem mehrfach zusammenhidngenden Gebiet G’ (Bild 4.6) ein einfach zusammen-
hiangendes Gebiet G derart angeben, daB die Integrationswege vollstindig in G ver-
laufen, dann kann in diesem Gebiet natiirlich ebenfalls der Cauchysche Integralsatz
angewandt werden. Ohne Beweis sei angegeben, daB3 der Satz auch gilt, wenn €
ganz oder teilweise auf dem Rand von G liegt. Dazu wird vorausgesetzt, daB f(z)
in dem einfach zusammenhingenden und abgeschlossenen Gebiet G holomorph ist.

Aus dem Cauchyschen Integralsatz konnen eine Reihe Folgerungen gezogen
werden, die vor allem auch fiir die praktische Anwendung dieses Satzes von Bedeu-
tung sind:

Satz 4.8: €, und €, seien zwei geschlossene doppelpunktfreie Wege in einem beliebigen S.4.8
(auch mehrfach zusammenhiingenden) Gebiet G der z-Ebene, wobei €, ganz im Innen-
gebiet von C, liegt und beide im gleichen Sinn orientiert sind. Dann gilt fiir eine in G
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holomorphe Funktion f(z)
$f@) dz = §£) dz, @.12)
¢ o8

falls das durch €, und €, gebildete Ringgebiet ganz zu G gehdirt, unabhingig davon,
ob das im Innern von G, liegende Gebiet ganz zu G gehdrt oder nicht (Bild 4.7).

Bild 4.7. z-Ebene Bild 4.8. z-Ebene

Beweis: Falls das Innengebiet von €, = €, + €,, ganz zu G gehort, gilt der Cauchy-
sche Integralsatz:

5§f(z)dz= ij(z) dz =0.
¢ (0%

Gehort das Innengebiet von €, = €,; + C,, nicht zu G, so verbinden wir €, und €,
durch zwei Wege S, und S, (Bild 4.8), so daB3 das zweifach zusammenhéngende
Ringgebiet in zwei einfach zusammenhidngende Teilgebiete zerlegt wird, in denen
jeweils f(z) holomorph ist. Nach Bild 4.8 folgt mit

Cu=S8 46,8 -6, und G, =S5, +6, — S, -Gy,
$ f@dz+ § @) dz = § /() dz + § frdz =0, (4.13)
G, o g, -G,

da sich die beiden Integrale lings der Wege S, und S, aufheben und f(z) in den
einfach zusammenhangenden, von G, und €, umrandeten Gebieten holomorph ist.
Aus (4.13) ergibt sich damit

$ 1@ dz =§ f(2) ez m
o o

Der Wert des Integrals in (4.12) ist von der Form des Weges, der den Innenbereich
umfaBt, unabhingig. So kann z.B. das Ergebnis von Aufgabe 4.2 dahingehend
erweitert werden, dall

ff(z — zo)"dz = ’0 fir n+ -1 (n ganz) (4.14)
¢ 27 fir n= -1 ,
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fiir alle geschlossenen doppelpunktfreien Wege gilt, die den Punkt z = z, um-
schlieBen (mathematisch positiv).
Satz 4.8 kann verallgemeinert werden. Es gilt der

Satz 4.9: Sind € und €, (i = 1,2, ...,n) geschlossene doppelpunkifreie und gleich-
sinnig orientierte Wege in einem abgeschlossenen Gebiet G, wobei die C; ganz im
Innengebiet von § liegen und sich gegenseitig nicht kreuzen, dann gilt fiir eine in G
holomorphe Funktion f(z)

§ f(2)dz = :zl fﬁ £(2) dz. @.15)
[ G

Der Beweis dieses Satzes kann analog wie der Beweis von Satz 4.8 gefiihrt werden.
Satz 4.9 sagt aus, daB in einem mehrfach zusammenhéngenden Gebiet der Wert
des auf einem geschlossenen Weg gebildeten Integrals nur davon abhingt, welche
nicht zu G gehorende Bereiche umschlossen werden (Bild 4.9).

Jy

&

Bild 4.9. z-Ebene Bild 4.10. z-Ebene

zdz
‘_ = fir a) € =C;: Kreis um z = 0 mit Radius 0 <o < I.

Beispiel 4.4: Berechnen Siei’ i
¢

b) € = C,: Kreis um z = 0 mit Radius ¢ > 1, ¢) € = G3: Kreis um z = 1 mit Radius 0 < » < 2,
d) € = (¢, Streckenzug 0, 2 — 2j, 2 + 2j, 0 (Bild 4.10).

Losung: f(z) = ist mit Ausnahme der beiden Punkte z; = 1 und z; = —1 in der gesamten

z
1-22
z-Ebene holomorph. Durch Partialbruchzerlegung folgt

1 1 I
f(2)=l—j7= ~—-( +—),

z 2\z—-1 z+1
also gilt
# zdz 1 f dz dz
I=¢ ——=-— + .
1 -2z 2{ z-"1 §z+l}
c c E 61

a) Da (; die Punkte z; und z, nicht einschlieBt, folgt nach dem Cauchyschen Integralsatz

dz dz
ff; =f§ —0=1=0.
z—1 z+1

Gy 6,
5 Greuel/Kadner, Komplexe Funktionen

S.4.9
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d
b) Nach Satz 4.8 und (4.14) folgt 5{;2_11“ = 27j und analog
G

=2rj=>1= —1 2mj+ 2mj) = —2xj
1 J :(fJ 7 J) T
(023

dz
¢) Nach (4.14) folgt 4;;?1— = 2mj. Da z; = —1 auBerhalb von €5 liegt, folgt
Gy

dz 1 . .
5€ f=0=>1=——2~(2ﬁ‘]+0)=—77j‘

z+
(SJ
d) Nach (4.12) kann anstelle von €, auch G5 als Integrationsweg gewihlt werden, so daB wiederum
I = —=jfolgt.
dz
*  Aufgabe 4.4: Berechnen Sie f(z—z); (ne N) lings folgender Wege (positiv orientiert)
=2

(4
a)C=C,:Ellipse (1) = acos ¢ + jbsintmit0 < ¢ < 2mund |a| < |z], |b] < |z]. b)CE = E,: Kreis
um z = z, mit Radius ¢ > 0. ¢) € = ¢5: Quadrat um z = z, mit den Eckpunkten zo — (1 + j),
zo+ (1 —]), 20+ (1 +j)und zo — (1 —j).

4.3. Berechnung von Integralen mit Hilfe von Stammfunktionen

D.4.1 Definition 4.1: Jede in G holomorphe Funktion F(z), deren Ableitung die Gleichung

.

F'(z) = f(2) (4.16)
erfiillt, heifft Stammfunktion von f(z).

Ohne Beweis wollen wir folgenden Satz angeben:

S.4.10 Satz 4.10: Ist f(z) in einem einfach zusammenhingenden Gebiet G holomorph und z,
ein fester Punkt von G, dann ist auch

Fe) =[Oy de

eine in G holomorphe Funktion der oberen Grenze z, sofern der Integrationsweg nur
ganz in G verliuft, aber sonst beliebig ist. F(z) ist Stammfunktion zu f(z), d. h., es gilt
F'(z) = f(2).

Die Ermittlung der Stammfunktion erfolgt analog zum Reellen. Ist F;(z) eine
Stammfunktion von f(z), dann gilt F;(z) = f(z), und fir jede komplexe Konstante C,
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folgt [F,(z) + C1 = f(z), also ist auch F,(z) + C, Stammfunktion von f(z) Stellt
F(2) ebenfalls eine Stammfunktion von f(z) dar, dann gilt mit [F,(z) + C.]' = f(z):

0 =[F2) + ] = [Fi(2) + C1] = [Fa(2) = Fi(2) + C, = G4

Nach (3.10) folgt, daBl F,(z) — F,(z) gleich einer Konstanten sein muB. Zwei Stamm-
funktionen unterscheiden sich damit nur um eine additive Konstante:

Fy(z) = Fy(2) + C. ' (4.18)

Wir hatten schon mehrfach Sétze aus der reellen Analysis in das Komplexe iiber-
tragen konnen. Bezeichnen wir mit F(z) irgendeine Stammfunktion von f(z), dann
nennt man die Summe F(z) + ¢, wobei ¢ eine beliebig wihlbare Konstante ist,
unbestimmtes Integral:

_l'f(z) dz = F(z) + c. (4.19)
Fiir die unbestimmten Integrale im Komplexen kdénnen ebenfalls Sétze aus dem
Reellen tibernommen werden, so z. B. die allgemeinen Integrationsregeln, die For-
meln fiir die Grundintegrale (vgl. Bd. 2) und der Satz tiber die partielle Integration.
Es gilt also

[f2)g'(z) dz = f(z) ¢(z) = [ 2(2)f(z) dz. (4.20)

Die Frage nach dem Giiltigkeitsbereich der entsprechenden Formeln mufl immer
beachtet werden.

Satz 4.11: Ist f(z) in einem einfach zusammenhingenden Gebiet G holomorph und S.4.11
besitzt in G die Stammfunktion F(z), dann gilt

b

_|Af(z) dz = F(b) — F(a) = F(2)2, (4.21)

fallsa,b (komplexe Konsranten) und € in G liegen. Das Integral ist vom Weg unabhdingig.

Beweis: Aus F(z) + C= |f(,)d/‘ folgt fiir z = a: F(a) + C =0, also gilt C= —F(a),
und fiir z = b: lf(Z)d“ = F(b) + C. und damit ff(:) di = F(b) — F(a). m

a

Beispiel 4.5: Das Integral fe dz ist lings folgender Wege zu ermitteln: a) ¢, : Geradlinige Verbin-
€
dung von 1 nach j, b) €, : Kreisbogen um den Nullpunkt von 1 nach j (Bild 4.11).

Jy
J
L2
Bild 4.11. z-Ebene
14 7 X
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Losung: Fiir f(z) = e® ist F(z) = e* eine Stammfunktion, da (e*)’ = e gilt. Somit folgt nach
(4.19)
! "
| erdz = e? H =¢ —e=cosl +jsinl —e= —2,178 + j- 0,841
1
fiir alle Wege €, die 1 und j verbinden und ganz im Holomorphiegebiet von f{z) = e liegen. Das
trifft auch fiir die unter a) und b) genannten Wege zu.

, 2 % zo (komplexe Kon-

Aufgabe 4.5: Bestimmen Sie eine Stammfunktion zu a) f(z) = !
. Z = Z
stante), b) f(z) = z %+ + ja (komplexe Konstante) und geben Sie das Gebiet an, in dem

diese giiltig ist.
Bemerkung: Benutzen Sie bei b) das Ergebnis von a).

1
a* + 72

Aufgabe 4.6: Berechnen Sie J

dz
Ty (neN, z + z;, komplexe Konstante) fiir den Fall, daBC
— <o
¢

liegt. Geben Sie ein einfach zusammenhingendes Holomorphiegebiet fiir f(z) an. (z =)

Aufgabe 4.7: Berechnen Sie | zsin zdz, wenn € a) die Punkte 1, —1 verbindet und b) ein ge-
[
schlossener Weg in der z-Ebene ist.

4.4. Cauchysche Integralformel

Als wichtigste Folgerung aus dem Cauchyschen Integralsatz ergibt sich der

Satz 4.12 (Cauchysche Integralformel): Es sei f(z) in einem einfach zusammenhdin-
genden abgeschlossenen Gebiet G holomorph, das von einem doppelpunktfreien positiv
orientierten Weg € begrenzt wird. Dann gilt die Beziehung

fo) = &1‘“ 4 4.22)
V1

Beweis: Mit f(¢) = f(z) + [f($) — f(z)] und (4.7) gilt

f@de _ f(Z)ds 1@ - f@)
f—z ¢ .(ﬁ {—z d

Mit (4.14) folgt

.
FOL o+ § L1 g ™
(-2 Joi-z
© o
Nach (4.12) kénnen wir fiir das rechts stehende lnteglal als Weg € einen Kreis um
den Punkt z mit Radius g, {(f) — z =p " (0 < 7 < 2%), und wegen der voraus-

gesetzten Stetigkeit von f() diesen Radius beliebig klein wihlen, so daB £ — f(2)]
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< ¢ fur alle ¢ gilt, die auf dem Kreis liegen. Nach (4.8) gilt mit [{ — z| = o die Ab-
schétzung

’fﬁf(é‘) f@ 4

d¢

ff;f(é) /@ 4o _ o,

e
< —2zp =2rne=>
0

Aus (¥) folgt dann (4.22). m

Die Cauchysche Integralformel besagt, daB fiir eine in G holomorphe Funktion
f(z) alle Funktionswerte f(z) im Innern eines geschlossenen Weges € berechnet
werden konnen, wenn nur die Funktionswerte /() auf dem Rand € bekannt sind.
Die Eigenschaft der Holomorphie beinhaltet eine starke innere Verkettung der
Funktionswerte. Im Reellen kann eine derartige Aussage nicht gemacht werden.

Durch Bezeichnungsidnderungen von z durch z, und £ durch z erhilt die Cauchy-
sche Integralformel (4.22) die Gestalt

1 f@ ,
f(zo) = g 4) _— dz. (4.22)
Die Cauchysche Integralformel 1aBt sich auf mehrfach zusammenhidngende ab-
geschlossene Gebiete ausdehnen. Ist f(z) in einem zwischen den beiden Kurven €,
und €, liegenden Ringgebiet G (Bild 4.12) einschlieBlich der Rénder holomorph, so
kann unter Anwendung des Cauchyschen Integralsatzes die Giiltigkeit von .

f(C) 1 f©)
27'J “Z'rrj%C—zdc
G,

(4.23)

nachgewiesen werden.
Dabei ist £ im ersten Integral ein Randpunkt auf €, und im zweiten Integral ein
Randpunkt auf €, . Beide Randkurven €, und €, werden gleichsinnig durchlaufen.

Bild 4.12. z-Ebene

Beispiel 4.6: Fur eine in der gesamten z-Ebene holomorphe Funktion g(z) mit g(2) = 0 und
g(—j) % 0 berechne man

_ ﬁ) &2
=2+ J)
wenn € der mathemansch positiv orientierte Kreis
) =0zl =0 mit 0<o<1, bDE=0,z=2=0 mit 0<p<1,

)C=Cslz+jl=0 mit 0<o<1, A =0zl =0 mit o> 2
ist.
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Losung: Partialbruchzerlegung:

1 N 1 1
c-2G+) 2+j(z—2 z+j)‘

1=<§ £@)dz =*1_‘[\4; g d"ff &) dz].
J z=2)z+)) 2+ z—2 z+j

I c [ b
a) Die Pole zp; =2 und zp, = —j liegen nicht innerhalb von (,, also gilt nach (4.10)
I=1 =0. b)Danurz,; =2von(C, umschlossen wird, ist
5{; £9 4o,
z+]
[
. . 2(2) L
und mit (4.22) folgt g(2) - 27 j = 3 dz; somit ergibt sich
o zZ—=
[0
1 2(2) 1 2
I=1= ———dz=——g(@2) 2nj=—j2 - =g
2 2+j§z_2 z 2+jg() j=5iC-img@
[0
I=1=@2/501+2)mgQ).
-1 2(2) =1 2
c I=I;= dz=——g(-j) 2nj= ——(0 +2))mg(—)).
) 3 2+j§2+j z 2+jg( 0)2=] 5( =g (=)
(65

d) I=5L+1I=02/5 + 2j)=[g2) — g(-))].

Aus der Cauchyschen Integralformel kann eine weitere grundlegende Beziehung
hergeleitet werden, die hier nicht bewiesen werden soll. Unter den gleichen Bedin-
gungen wie in Satz 4.12 gilt
Satz 4.13: Besitzt f(z) im einfach zusammenhingenden abgeschlossenen Gebiet G die

erste Ableitung f'(z), so existieren in G auch simtliche Ableitungen héherer Ordnung,
und es gilt W

(g = ! o .
f®(z) = ijmd* (4.24)
bzw. ¢

n! f(z)dz

=) (2 =z
&4

f®(o) =

n=12,..). (4.24")

Scimtliche Ableitungen einer holomorphen Funktion f(z) sind wieder holomorph.

Dieser Satz zeigt deutlich, welche Auswirkungen die Holomorphieforderung be-
sitzt. Eine derartige SchluBfolgerung konnte bei Funktionen einer reellen Variablen

keineswegs gezogen werden.

z3%dz
Beispiel 4.7: Mit Hilfe von Gleichung (4.24") berechne man (£ — 3 Als WegC wird die Ellipse
()= 2cost +j-3sint, 0 < 1 < 2r, gewihlt. s G-D

Losung: Nach (4.24) gilt n+ 1 =3 und f(z) = z23= f”(z) = 6z, und mit z, = j folgt

0= fﬁ—"‘d Frimi= 6
- = = mj= —6m.
Vtmit ey T emy T

[ €
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Mit (4.24) kann gezeigt werden, daB der Cauchysche Integralsatz umkehrbar ist:

Satz 4.14 (Satz von Morera): Ist fiir eine in einem einfach zusammenhéngenden Gebiet
G stetige Funktion f(z) und fiir alle in G liegenden geschlossenen Wege €

$fedz =0,

dann ist f(z) in G holomorph. .
z
Beweis: Das Integral F(z) = f f(¢) d¢ ist nach Voraussetzung vom Weg unabhéngig,

Z
also gilt nach Satz 4.10 fiir die in G holomorphe Funktion F(z): F'(z) = f(z). Nach
Satz 4.13 miissen dann aber auch F”, F'”, ..., d. h. also auch f'(2), f(z), ... exi-
stieren ; somit ist f(z) in G holomorph. m
Satz 4.15 (Cauchysche Ungleichung): Ist f(z) im Innern und auf dem Rand eines
Kreises © mit Radius o und Mittelpunkt z, holomorph und gilt auf € |f(z)] < M
(Konstante), dann gilt die Ungleichung

1
o) < M

n=0,1,2,..). (4.25)
Beweis: Nach (4.24') folgt mit z = z, + 0 e" (0 < ¢t < 27)

2n
n! [ f(zo +0¢e") . .
(), — s -7 jt
7o) = o | F et dr
0
Durch Betragsbildung und Anwendung von |f(z)] £ M und (4.8) ergibt sich

n! M

@"

Aus der Cauchyschen Integralformel kann eine Bezichung hergeleitet werden, die
fiir die Berechnung von Randwertaufgaben fiir ebene Felder von Bedeutung ist.
Fiir eine im Innern eines Kreises K: z = R e analytische Funktion w = f(z) gilt
fiir einen beliebigen Punkt z = r ei? (R > r) nach (4.22)

2m .
1) = _“ff(k &) j Relw _ zl—nff(R eiv)_R,de__ .26)
0

Relv — reW Relv — reiv
R* .
Geht z* durch Spiegelung aus K hervor, d. h., gilt z* = — ei?, dann liegt z* auBer-
halb von K, und Zf © ist eine im Innern und auf dem Krels K selbst holomorphe

Funktion. Somit gilt

1 f(C)d~
&= 2—1 — z*

reiv

1 .
= f fR &)~y @.27)

S.4.14

S.4.15
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Aus der Differenz (4.26) —(4.27) folgt dann bei entsprechender Umformung

R* —r?

— 2Rrcos(y — ¢) + 1? dy-

2
1) = 5= [FR &M 22
0

Mit f(z) = u(r, p) + ju(r, @) erhilt man durch Vergleich der Realteile beider Seiten
die sog. Poissonsche Integralformel
27
R? — p2

1
ur,9) = —2_7':_[”(& ¥) R* — 2Rrcos(y — ¢) + r?
0

dy. (4.28)

Die Werte einer beliebigen harmonischen Funktion im Innern eines Kreises K
konnen also durch die Randwerte dieser Funktion ausgedriickt werden. Die Poisson-
sche Integralformel kann u. a. auch fiir die rechte Halbebene (vgl. [16]) oder die
obere Halbebene (vgl. [12]) entwickelt werden. Bei der 1. Randwertaufgabe der
Potentialtheorie (Dirichletsches Problem) sind die Randwerte vorgegeben, so dall mit
Hilfe der Poissonschen Integralformel unmittelbar eine harmonische Funktion ge-
wonnen werden kann, die diese Randwerte annimmt.

Ohne Beweis wollen wir noch das Prinzip vom Maximum angeben. Ist in (4.26)
z =0, d.h., untersuchen wir die holomorphe Funktion f(z) im Mittelpunkt des
Kreises €, dann folgt

27 27

1 [ f(ReW)jRedy 1 .

f0) = EIT = —z‘;ff(R &) dy.
0 0

Also ist der Wert einer holomorphen Funktion f(z) im Mittelpunkt des Kreises €
(z = 0) gleich dem arithmetischen Mittel ihrer Werte auf dem Kreisrande. Mit
Hilfe der eben hergeleiteten Formel kann ein duBerst wichtiges Prinzip der Theoric
der analytischen Funktionen aufgestellt werden, das sog.

Prinzip vom Maximum: Ist die nichtkonstante Funktion f(z) im einfach zusammen-
hiingenden abgeschlossenen Gebiet G holomorph, dann nimmt der Absolutbetrag von
f(z) seinen griften Wert in keinem inneren Punkt von G, sondern nur auf dem Rand von

G an. )
Diese Aussage 146t sich auch auf mehrfach zusammenhidngende Gebiete ausdeh-

nen.

*

- 2%+ jz)dz

Aufgabe 4.8: Berechnen Sie I = 4; #—)-— fiir den Fall, daB € ein mathematisch positiv
¢ &= dI+j)z+]

orientierter Kreis mita)€,: |z — 1] =90,0 <0< 1;b)C: [zl =0,0<p < 1;0)C5: |z =]l =0,
0<p<1;d)Cy:lzl =p,0 > 1,ist.
zcosz

P dz fiir a) €, : Kreis um den Nullpunkt mit dem Radius

*

Aufgabe 4.9: Bestimmen Sie I = §

0 < o < 2; b)C,: Quadrat mit den Ecken 5, 5j, —5, —5j (€ mathematisch positiv orientiert).

e*dz . .

% Aufgabe 4.10: Man berechne -(—z——2)3~, wenn € der Kreis |z = 2| = 0,0 > 0, ist.
¢ -



5. Reihenentwicklungen. Singulire Stellen

5.1. . Reihen mit komplexen Gliedern

Ankniipfend an die Ausfiihrungen im Abschnitt 2.3. und die Aussagen im Reellen
iiber Zahlenfolgen und Reihen, werden jetzt Reihen mit komplexen Gliedern be-
trachtet. Wir bilden also analog zum Reellen aus einer komplexen Zahlenfolge
Zoy Z15 Z2, ... (z, komplexe Zahl, » = 0, 1, 2, ...) den Ausdruck

z, (5.1)
0

M8

Zo+zZy+ 22+ ... =

und nennen (5.1) unendliche Reihe mit komplexen Gliedern. Unter einer Teilsumme
oder Partialsumme von (5.1) verstehen wir
n
Sh=Zo+ 2z + ...+ 2= 2 2. (5.2)

y=0

Definition 5.1: Eine unendliche Reihe (5.1) heifit konvergent, wenn die Folge ihrer
Teilsummen konvergiert. Der Grenzwert

s = lims, (5.3)

n-w

heifit Summe der Reihe (5.1).
Mit Hilfe von Satz 2.3 kann leicht der folgende Satz nachgewiesen werden.

Satz 5.1: Eine Reihe komplexer Glieder

0 0
; z, = go(xv + i)

¥=0
komergzert darm und nur dann, wenn die Reihen der Real- und Imagindrteile, also
Z X, und Z Yy, konvergieren.

v=0

Wird (5. 1) als konvergent vorausgesetzt, so gilt fiir die Partialsummen

lims, =s und lims,; =s,
n— o n—

und daraus folgt die notwendige (aber nicht hinreichende) Konvergenzbedingung

lim (s, — $,-y) = lim z, = 0. (5.4)

n— o n—ow

Betrachten wir die aus der Reihe (5.1) durch Betragsbildung entstehende Reihe

0
[zol + lz4] + |22 + ... = Zo |z, (5.5)
=

D.5.1
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so erhalten wir eine Reihe mit nur positiven Gliedern. Es gilt
© o«
Satz 5.2: Aus der Konvergenz der Reihe Z |z,| folgt die Konvergenz der Reihe Y z,.
v=0

Bewels: Da |z,| = \/xz + y? gllt folgt daraus lzyl |x,] und |z,| = |y, so daB
00 T T

Z |z,] cine Majorante von Z [x,] und von Z |v | ist. Da (5.5) als konvergent
=0 =0

vorausgesetzt war, mussen also auch Z Xy und Z », absolut konvergieren, d. h.,
r=0 v=

daB nach Satz 5.1 auch Z z, konvergiert. m
=0

Fiir das Rechnen mit konvergenten Reihen im Komplexen kann man die glelchen
Regeln wie im Reellen anwenden. Es gelten die folgenden Sétze:

Satz 5.3: Sind Z z, und Z z¥ konvergente Reihen mit komplexen Gliedern und a, b
v=0 V=0
beliebige komplexe Zahlen, dann gilt

aY z,+ b3 zt =73 (az, + bz}). (5.6)
v=0 v=0 v=0

Der Beweis kann erfolgen, indem die Untersuchung durch z, = x, + jy, und
z¥ = x¥ + jy¥ auf Reihen mit reellen Gliedern zuriickgefiihrt wird. Fiihren Sie dies
aus!

Definition 5.2: Eine Reihe mit komplexen Gliedern (5.1) konvergiert absolut, wenn die
Reihe der Absolutbetrige der einzelnen Glieder (5.5) konvergiert.

Man beachte, daB die Umkehrung der Aussage in Def. 5.2 nicht gilt. Es gibt kom-
plexe Reihen, die zwar konvergent, aber nicht absolut konvergent sind. Derartige
Reihen nennen wir dann bedingt konvergent, andernfalls unbedingt konvergent.

Satz 5.4: Fiir absolut konvergente Reihen mit komplexen Gliedern § z,, i z¥ gilt
. . . y=0 =0
(57 (27) =22 / 6
mit
%= anoz, 2 (=0,1,2..). (5.9)

5.2. Funktionenreihen. Potenzreihen

Analog zum Reellen lassen sich auch im Komplexen Funktionenreihen definieren.
Sind £,(2), f2(2), ... in einem Gebiet G definierte komplexe Funktionen einer kom-
plexen Verdnderlichen z, dann nennen wir

£1Q) + £2) + ... =,§, 1) (59

eine Funktionenreihe. Die Menge aller z € M, fiir die die Reihe (5.9) konvergiert,
nennen wir wie im Reellen Konvergenzbereich.
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Fiir das Rechnen mit Reihen war im Reellen der Begriff der gleichméBigen Kon-
vergenz von Bedeutung (Bd. 3, Abschnitt 3). Wir definieren analog:

«©
Definition 5.3: Eine Funktionenreihe mit komplexen Gliedern Y, f,(z) heiftin einem
=0

Gebiet G gleichmiBig konvergent mit der Summenfunktion s(z), wenn zu jedem ¢ > 0
eine von z unabhdngige natiirliche Zahl N(¢) existiert, so daf§

[5) = $u@)] = 1fis1(2) + fri2(2) + .| <&

fiir alle n = N(e) unabhéngig von z € G gilt.

Der absolute Fehler, der bei der Ersetzung der Reihensumme s(z) durch die Teil-
summe s,(z) gemacht wird, ist also bei gleichmaBig konvergenten Reihen unabhingig
von z € G kleiner als e.

Ohne Beweis seien die beiden folgenden Sitze angegeben:

Satz 5.5: Sind die Glieder f,(z) einer gleichmdfig konvergenten Reihe stetige Funk-
tionen in G, dann ist auch die Summenfunktion s(z) der Reihe eine in G stetige Funktion.

Satz 5.6: Gilt fiir alle Glieder einer Funktionenreihe
| f2)] £a, (a, > 0, const) (5.10)

0 0
und ist die Reihe 'Y a, konvergent, dann ist die Reihe Y f.(z) gleichmdfig (und
v=0 =0
absolut) konvergent.
Als Sonderfall der Funktionenreihen spiclen wie im Reellen die Potenzreihen eine
besondere Rolle. Wir erkldren

Definition 5.4: Eine Reihe der Form
o+ ez —z) + ez —2) + o= Y ¢z — zp)", (5.11)
¥=0

wobei ¢, und z, beliebige komplexe Konstanten sind, heifpit Potenzreihe nach Potenzen
von (z — z,) oder Potenzreihe mit dem Mittelpunkt z,.

Die im Reellen aufgestellten Sitze tiber Potenzreihen gelten auch im Komplexen.
Ohne Beweis seien einige Sétze tiber komplexe Potenzreihen angegeben:

Satz 5.7: Zu jeder Potenzreihe, die weder bestindig (d. h. in jedem Punkt der z-Ebene)
noch nirgends (d. h. in keinem Punkt z % z,) konvergiert, gibt es eine positive Zahl r
derart, daf} die Potenzreihe

fiir alle z mit |z — zo| < r absolut konvergiert und
fiir alle z mit |z — zo| > r divergiert (Bild 5.1).

Bild 5.1. Konvergenzkreis

D.5.3

S.5.5

S.5.6

D.5.4

S.5.7
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Den Kreis z — z, = r nennt man Konvergenzkreis mit dem Konvergenzradius r. In
den Randpunkten des Konvergenzkreises kann die Potenzreihe konvergieren oder auch
divergieren. Im Gegensatz zum Reellen, wo ein Konvergenzintervall vorlag, bestimmt
der Konvergenzbereich im Komplexen ein Kreisgebiet, fiir dessen innere Punkte
die komplexe Potenzreihe konvergiert.

Fiir den Konvergenzradius gilt

1

- — 5.12
"= im sup 2/ [e,] G12

o0
Satz 5.8: Eine Potenzreihe (5.11) stellt im Innern des Konvergenzkreises eine dort
holomorpke Funktion f(z) dar. Es gilt also

fl@) = éo ¢ (z = zo) (5.13)

f(z) hat im Innern des Konvergenzkreises Ableitungen jeder Ordnung, die durch
gliedweise Differentiation der Potenzreihe gewonnen werden. Fiir die p-te Ableitung
gilt

L
@) =% ("0 ey ¢ = 2oy BT
Wird in (5.14) z = z, gesetzt, so folgt

1
fP(zo) =ple, = ¢, = Ffm(zo), V
und mit (4.24’) erhalten wir

1 1 f(z)dz
= W) = A
f =20 fPA(zo) Zﬁjc Gz i (5.15)

Nach (4.25) folgt weiter
M

o

@

Icpl <

i

Aufgabe 5.1: Die Reihe S

v=1 ¥

ist auf Konvergenz zu untersuchen!

Aufgabe 5.2: Man bestimme den Konvergenzbereich der Potenzreihe

S G-

17

5.3. Entwicklung holomorpher Funktionen in Potenzreihen

Im Reellen war die Differenzierbarkeit einer Funktion an einer Stelle x, notwendige,
aber nicht hinreichende Bedingung dafiir, daB eine Funktion in einer Umge-
bung dieses Punktes in eine Potenzreihe nach Potenzen von (x — x,) entwickelt
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werden konnte. ITm Komplexen dagegen laBt sich jede in z, holomorphe Funktion
in eine Potenzreihe nach Potenzen von (z — z,) entwickeln. Es gilt der fiir die Funk-
tionentheorie grundlegende

Satz 5.9 (Entwicklungs-atz): Ist f(z) in G holomorph und z, innerer Punkt von G, S.5.9
dann gibt es stets eine und nur eine Potenzreihe der Form

o
X ez = zo)
v=0

(Taylorreihe), die mindestens im Innengebiet des grofiten Kreises um zo, der ganz
in G liegt, konvergiert und dort die Funktion

f@@) = go oz = zp) (5.16)
darstellt, wobei nach (5.15) .

(»),
cv=# r=0,1,2,..) (5.17)
gilt.

Beweis: z sei ein beliebiger innerer Punkt des Kreises € mit Radius r um den Mittel-
punkt z,. Wir wihlen einen Kreis ¢’ um z, mit Radius ¢ so, daB ¢ < r gilt und der
Punkt z im Innern des Kreises €' liegt (Bild 5.2).

Bild 5.2. Konvergenzkreis

Wird f(z) im Innern von € als holomorph vorausgesetzt, dann gilt nach (4.22)

_ (1o ~ .
1) =55 § T2 ®
!
Betrachten wir
[ - oy "
R A T NP Y A &
-z

als Summe einer unendlichen geometrischen Reihe, dann ist diese Reihe bei kon-
stantem z, gleichgiiltig wie { auf dem Kreis €’ gewihlt wird, gleichmiBig konvergent,

z—z
da ‘ -

{—z

< 1 ist. Multipliziert man (**) mit f() und integriert lings €', dann
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erhilt man nach Division durch 27 j

f(i)dC $ 1 _So (=
27fJ = 027'3 J =z

— zo)dC.
Nach (*) und (4.24) folgt daraus

SO = £ = fOe) ¢ = 207 = 30 - o)

DaB dies die einzig mogliche Entwicklung ist, ergibt sich aus dem folgenden Satz
(vgl. Band 3):

Satz 5.10 (Identitiitssatz fiir Potenzreihen): Besitzen die beiden Potenzreihen

8

@
Y ez — z0)Y und Y ef(z — zo)”
0 420

v=

einen positiven Konvergenzradius und stimmen ihre Summen fiir alle Punkte einer
konvergenten Folge {z,} mit dem Grenzwert lim z, = z, (z, % z,) iiberein, dann sind
beide Reihen identisch. dadl

Beispiel 5.1: Entwickeln Sie folgende Funktionen in Potenzreihen um z, und geben Sie den Kon-
vergenzbereich an:

2z -1
a) f@) =coshz (=0, b)f)=——m (z=-1.
z2(z—1)
Losung:
a) f@) =f'(@)=..=f()=coshz (neN), f@©O)=1,
@) =@ =..=f@() =sinhz, £@00) = 0.
Mit (5.17) und (5.16) folgt
2 Z‘ o0 zz’i
f(z) =coshz =1 +?+ F+ o= ’Eo—zzl)—!,

und mit (5.12) folgt r = o

b) Die Entwicklung kann wie unter a) mit Hilfe der Taylorreihe erfolgen, wir wollen jedoch
-1 1

anders vorgehen. Durch Partialbruchzerlegung folgt f(z) = _— = T Die rechts
z z -
stehenden Ausdriicke entwickeln wir nach
1 1 1
(z)——=~——— —_———— (5.18)
—a Zp—a 1- z— 2y
a—zy

z
und fassen ¢ = 7

-z

-2
°_als Quotienten und g(z) als Summe einer geometrischen Reihe auf, so da3
- %0
z
mit 1
a —

< 1gilt

g = — 35( S )” (5.19)
zo —

@ p=0\a—2Zp
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Fiir zo = —1 folgt dann

1 1\ o]
£:(2) = =———§(z+ )=—Z E+ 1" (z+1<2).
=0

nop 21

f2) = g:1(2) + g2(2) = — § (1 + )(z+ 1 (z+ 1< D).
n=0

1
2n-‘-1

Die Aussage des Entwicklungssatzes 5.9, dai die Taylorentwicklung:(5.16) inner-
halb des groBiten Kreises um z, konvergiert, in dem f(z) noch analytisch ist, fihrt
zu einer wichtigen SchluBfolgerung. Sdmtliche im Innern des Konvergenzkreises
liegenden Punkte sind reguldre Punkte der durch die Potenzreihe dargestellten Funk-
tion f(z). Auf dem Rande des Konvergenzkreises liegt mindestens ein singuldrer
Punkt von f(z), d. h. ein Punkt, der nicht mehr zum Regularititsgebiet von f(z)
gehort.

Aus dem Cauchyschen Integralsatz und der Entwicklung einer holomorphen
Funktion in eine Potenzreihe konnen wesentliche Folgerungen gezogen werden.
Wihrend aus dem Verhalten einer beliebigen komplexen Funktion in einem bestimm-
ten Teil des Gebietes G der Zahlenebene im allgemeinen nicht auf das Verhalten der
Funktion in anderen Teilen des Gebietes G geschlossen werden kann, weist die
Klasse der holomorphen komplexen Funktionen eine starke innere Gebundenheit
auf. Mit der Cauchyschen Integralformel war gezeigt worden, daB3 simtliche Werte
einer holomorphen Funktion im Innern einer geschlossenen Kurve € bestimmt
werden kénnen, wenn man ihre Werte auf der Kurve kennt. Auf Grund des Ent-
wicklungssatzes 5.9 kann dann gezeigt werden, daf3 eine in einem Gebiet G holo-
morphe Funktion f(z) vollstindig bestimmt ist, wenn man die Werte dieser Funk-
tion auf einem beliebig kleinen in € gelegenen Kurvenbogen I” kennt. Neben dem
Cauchyschen Integral stellt dies eine der wichtigsten Aussagen in der Theorie der
holomorphen Funktionen dar. Stimmen also zwei holomorphe Funktionen in einer
beliebig kleinen Umgebung eines Punktes iiberein, so sind sie identisch. Diese
wichtige Eigenschaft soll nun niher untersucht werden.

Wie wir gesehen haben, kann die Darstellung einer holomorphen Funktion durch
eine Potenzreihe mit dem Mittelpunkt z, nur innerhalb des Konvergenzkreises mit
Radius r erfolgen. Der Konvergenzkreis K, wird dabei durch die zu z, nichstgele-
gene Singularitét von f(z) bestimmt, im Bild 5.3 sei dies die Stelle z5. In den meisten
Fillen reicht jedoch der Regularititsbereich (Holomorphiegebiet) tiber den Bereich
des Konvergenzkreises hinaus. Wahlen wir einen Punkt z, innerhalb von K,, dann
kann um z, innerhalb des neuen Konvergenzkreises K, , der durch die nichstgelegene

i

o > Bild 5.3. Analytische Fortsetzung
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singuldre Stelle z; bestimmt wird, eine neue Entwicklung von f{z) erfolgen. Der
neue Konvergenzkreis K, kann dabei natiirlich tiber den alten Konvergenzkreis K,
hinausragen, er muB nur innerhalb des Regularitdtsgebietes (Holomorphiegebiet)
G liegen. Im Durchschnitt G’ beider Konvergenzkreise miissen nun nach dem Ent-
wicklungssatz beide Potenzreihen die gleiche Funktion f(z) darstellen. Man sagt,
die durch die Potenzreihe in K, dargestellte Funktion f,(z) ist die analytische Fort-
setzung der durch die Potenzreihe in K, dargestellten Funktion fu(z). Wie in Bild
5.3 eingezeichnet, kénnten wir uns diesen Vorgang noch fortgesetzt denken.

Unter Anwendung des Identitétssatzes kann man leicht zeigen, dafl eine analy-
tische Fortsetzung, wenn sie iberhaupt méglich ist, nur auf eine einzige Weise erfolgen
kann. Sind Funktionen durch Potenzreihen gegeben, dann kann eine analytische
Fortsetzung, falls iiberhaupt moglich, durch Umbilden der Potenzreihe vor-
genommen werden. Man wihlt aus dem Konvergenzbereich der vorliegenden
Potenzreihe f(z) einen Punkt z, aus und bildet die Potenzreihe nach Potenzen von
(z = z,) um. Aus dem Konvergenzbereich der so gewonnenen neuen Potenzreihe
/1(z) wihlt man wieder einen Punkt z, aus und bildet die Potenzreihe nach Potenzen
von (z — z,) um. Die so gewonnenen Konvergenzbereiche (Kreise) konnen dabei
tiber den Konvergenzbereich der vorhergehenden Potenzreihe hinausragen, so dafl
wir das in Bild 5.4 dargestellte , Kreiskettenverfahren* erhalten. Das Kreisketten-

Bild 5.4. Kreiskettenverfahren

verfahren kann auch, falls méglich, lings eines vorgegebenen Kurvenstiickes er-
folgen. An einem Beispiel soll der Begriff der analytischen Fortsetzung vorgefiihrt
werden.

0
Beispiel 5.2: Untersuchen Sie, ob die Funktion fy(z) = 3 z” analytisch fortgesetzt werden kann.
v=0

«
Losung: f,(z) stellt die geometrische Reihe ) z¥ = 1 .|zl < 1 dar. Damit kann f (z) = =2
¥=0 -z

(Iz| < 1) geschrieben werden. Die Funktion f(z) = besitzt nur bei z = 1 eine Singularitit

1-2z
(d.h.,mit Ausnahme von z = 1 ist die gesamte z-Ebene Regularititsgebiet). f(z) stimmt im Gebiet
|zl < ' mit fy(z) liberein. Damit kann £, (z) iiber den zugehorigen Konvergenzkreis hinaus analytisch
fortgesetzt werden. Fiir die neue Potenzreihenentwicklung wihlen wir nun als Mittelpunkt z; mit
|zy| < 1 und bestimmen nach (5.17) die Koeffizienten c,, so daB nach (5.16) als neue Potenzreihe

©

1
@)= 3 —mr(z—z) (5.20)

Zo (1 = zp)*t
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folgt. Der Konvergenzradius dieser Reihe ist r; = |1 — z;|. K geht iiber den Konvergenzkreis K,
der ersten Potenzreihe hinaus, wenn z; nicht zwischen 0 und 1 liegt (vgl. Bild 5.5).

/
\\\\ ‘{//K’Z Bild 5.5. Analytische Fortsetzung

Eigentlich hétten wir im eben betrachteten Beispiel das Verfahren der analytischen
0

Fortsetzung nicht anzuwenden brauchen, da wir ja fiir Y z die Summe, nidmlich

v=0

kennen. Ist jedoch fiir eine Reihe ein solcher geschlossener Ausdruck nicht

I1—2z
bekannt, dann kann eine analytische Fortsetzung durch Umordnen der vorliegenden
Potenzreihe gewonnen werden.

Eine analytische Fortsetzung ist natiirlich nur dann moglich, wenn-ein Teil des
Kreisbogens des Konvergenzkreises keine singuliren Stellen enthélt. Im Beispiel 5.2
lag auf dem Konvergenzkreis nur eine singuldre Stelle, ndmlich z = 1.

Dagegen ldft sich die Potenzreihe f(z) = Z z", die im Innern des Einheitskreises
n=0

konvergiert, nicht analytisch fortsetzen, da jeder Randpunkt auf dem Einheitskreis
singuldrer Punkt von f{(z) ist. Der Einheitskreis ist ihre natiirliche Grenze.

Wir hatten festgestellt, daB es fiir die eindeutige Definition einer holomorphen
Funktion ausreicht, die Werte dieser Funktion auf einem beliebig kleinen Kurven-
bogen zu kennen. Wir setzen nun voraus, daB g(z) in einem Gebiet G auf einem belie-
big kleinen Kurvenstiick /" gegeben ist. Dann existiert in G entweder gar keine Funk-
tion f{(z), die in G holomorph ist, oder es gibt genau eine derartige Funktion f(z).
die auf I" mit g(z) iibereinstimmt. Man sagt dann, die lings " definierte Funk-
tion g(z) wurde in das Gebiet G fortgesetzt. Nehmen wir an, daB /7 ein Teil der
reellen Achse ist (x; £ x < x,) und g(x) die Funktionswerte darstellt, die diesem
Teil der reellen Achse entsprechen, dann liegt eine analytische Fortsetzung der
Funktion g(x) ins Komplexe vor. Falls iberhaupt moglich, kénnen also auch Funk-
tionen einer reellen Verdnderlichen x ins Komplexe analytisch nur auf eine einzige Art
fortgesetzt werden. Beispiele dafiir sind

e* - e,  sinx —>sinz, COSX —COSZ.

Die in den Abschnitten 3.5.4. und 3.5.6. erfolgte rein formale Definition dieser
Funktionen war also nicht nur sinnvoll wegen der analogen Rechnungen im Reellen
und Komplexen, sondern sie sind die einzig moglichen Definitionen, wenn man die
Differenzierbarkeit dieser Funktionen in der komplexen Zahlenebene verlangt.

6 Greuel/Kadner, Komplexe Funktionen
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* Aufgabe 5.3: Entwickeln Sie folgende Funktionen in Potenzreihen mit dem Mittelpunkt z, = 0.
Geben Sie den Konvergenzradius an!

1
P — — 74in2
a)f(2) T b) f(z) = 2sin? z.
* Aufgabe 5.4: Bilden Sie die analytische Fortsetzung fiir die im Beispiel 5.2 betrachtete Funktion
fira)zy = —%,b) z; = —j.
5.4. Entwicklung holomorpher Funktionen in Laurentreihen

_ Ein Ringgebiet G, , das von zwei konzentrischen Kreisen K, und K, begrenzt wird,
liege in einem zweifach zusammenhéngenden Gebiet G (Bild 5.6). Fiir alle Punkte z

L0
ROERx77
KLz
QR
LS

Bild 5.6. Ringgebiet in einem zweifach zusam-

[ Xz x menhingenden Gebiet

im Innern von G, gilt nach (4.23) unter der Voraussetzung, daB3 f(z) im Ringgebiet
G, einschlieBlich der Rénder holomorph ist,

_ 1 f(©) d¢ 1 f(©) dZ
f(Z)—i:rT =z w5 Pz (5.21)
K, K,
Fiir das erste Integral fiihren wir folgende Umformung durch:
1 1 1
[=z T-2 | _2-2 " (5.22)
{—12

Da die Bedingung
z—2z
{—12o i
immer erfiillt ist, wenn { sich auf K Bewegt, kann (5.22) als Summe einer innerhalb
von K, gleichmiBig konvergenten geometrischen Reihe aufgefa3t und somit

<1 = |z—2z| <l -z

q=

L g -2 (5.23)

t—z /S (€ — zoy+!
geschrieben werden. Im zweiten Integral ist £ ein Punkt von K. Mit

a=[EE < ietni <l -al
erhilt man die auBerhalb von K, gleichmiBig konvergente Darstellung
1 — 1 N | =_§ (& — zo) (5.24)
{—z z—zol_c—zo yo (2 = zo)H1T ’

zZ— 2z
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Setzen wir die Reihendarstellungen (5.23) und (5.24) in (5.21) ein, so erhalten wir

(—zp/@dd 1 S €=z /) dl
o-mr $ B m § AT O

1 K

Durch Vertauschen von Summation und Integration folgt aus (5.25)

s ——{}: (= - =y ﬁ(fﬂ@—zdf
+ ,20(4—_”7 5§ € = 20 f©) df} (526

Da f(z) im Kreisringgebiet reguldr ist, kann anstelle der Integrationswege K; und K,
ein gemeinsamer Integrationsweg € gewidhlt werden. In der zweiten Summe sub-
stituieren wir noch —» = n'+ 1 und erhalten

0

v 0(2—2)“'1

§§<E —arfOE= G- 2 (L)df—

Durch Einsetzen in (5.26) und Zusammenfassung der beiden Summen ergibt sich

SO =5 ¥ (Z—~o)"§7(;~ S (5.27)

Daraus folgt die sog. Laurentreihe

S dg

f(z) = ;I}}w afz = zo)'s Cn 27'J C= zo)n+1 5

(5.28)

die im Ringgebiet zwischen K, und K, gleichmiBig konvergiert und dort die holo-
morphe Funktion f(z) darstellt. Die Laurentreihe besteht also formal aus zwei
Potenzreihen, von denen

fie)= X c;,(z — zo)" (Hauptteil der Laurentreihe)
n=-w
auBerhalb des Kreises K, und

0
f2(2) = X ¢z — zo)" (reguldrer Teil der Laurentreihe)
- n=0

innerhalb des Kreises K, gleichméBig konvergiert. Es kann somit der Satz formuliert
werden:

Satz 5.11: Eine im Kreisringgebiet 0 < r, < |z — z4| < ry holomorphe Funktion S.5.11
[(2) gestattet die Entwicklung in eine gleichmdfig konvergente Laurentreihe.

6%
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Man erkennt leicht, daB die Laurentreihe fiir den Fall, daB f{z) im gesamten
Innengebiet von K, (duBerer Kreis), also auch im Punkt z = z,, holomorph ist, in
die fiir |z — z,| < r, konvergierende Taylorreihe tibergeht, da alle ¢, mit negativem n
gleich Null werden.

3z
Beispiel 5.3: Geben Sie die Laurentreihe mit Mittelpunkt z, = 2j fiir f(z) = — T2 an!
z
Losung: Durch Umformung nach Potenzen von (z — 2j) erhalten wir
3z 3z 3[(z — 2j) + 2j]
f@)=— = . — = - - .
22+ 4 2+ 2)(z—2) (z=2)(z—2j+4)
_3 (z—-2)+2) 1
I
4
3 2j 1
f(Z)=—.(1+ )—
4j z = 2j) I_J(Z*ZJ)
Fiir 4
_lie=2m|
— s

d. h., fur alle Punkte = mit [z — 2j| < 4 gilt die Reihenentwicklung (geometrische Reihe)
\

1 i 1 i
—_— =l (-2 — (=2 - — (=2 + ..,
] i vl e Vel )

4

und damit folgt dann

(z —2j)* —

3 2j
ﬂz)_‘Tj[l - —2j

J J
1+ —(z—2j)— =2+ .|,
][ 4(2 J) T 64( )7+ ]

I D
T 2ty

3 J
=— =2 - —(z =2+ ... |.
f(2) 5 [ ( A ]
Wir haben an diesem Beispiel gesehen, daB die Laurentreihe fiir die gegebene
Funktion allein durch geeignete Umformungen und Anwendung der geometrischen
Reihe gewonnen werden konnte.

Beispiel 5.4: Geben Sie fir die Funktion f(z) =
holomorph ist, die Laurentreihe an.

1
m, die im Ringgebiet 1 < [z| < 3

Losung: Durch Partialbruchzerlegung und einfache Umformungen erhalten wir

1y 1 1y 1 -1 1
o=5(- =) =

z—1 z—3

Fiir |z] > 1 gilt
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Fir |z] < 3 gilt
1 0 z\?
=5 ([—
z  yZo ( 3 )
) ——
3
1 1(2 1 © /fz\"
=— = — S =+ = .
e z=DE=-3) 2{,.:12" 3 z( );
Um eine Laurententwicklung von f(z) in einer Umgebung von z = oo durchfiihren

o P | . . .
zu konnen, fiihren wir die Substitution { = — durch und bilden die Laurententwick-

lung von %({) =f(-17) in einer Umgebung v.on ;=0

1
Aufgabe 5.5: Geben Sie die Laurententwicklung der Funktion f(z) = m fir
0 < |a| < |z| < |b| nach Potenzen von z (zo = 0) an. o z
z
Aufgabe 5.6: Fiihren Sie die Laurententwicklungen um die Polstellen der Funktion f(z) = T2
fiir f(z) aus. z

5.5. Isolierte singuliire Stellen und Residuum

5.5.1.  Isolierte singulire Stellen und Verhalten im Unendlichen

Wenn eine Funktion f(z) in der Umgebung eines Punktes z, holomorph ist, in
z, selbst aber nicht, so nennen wir z, eine isolierte singuliire Stelle der Funktion f{(z).
In der Umgebung derartiger isolierter singuldrer Stellen ist f(z) dann in eine Laurent-
reihe entwickelbar. Durch diese Entwicklung ist eine Klassifizierung der isolierten
Singularitaten moglich.

1. Die Laurentreihe (5.28) enthilt keine Glieder mit negativen Potenzen von
(z — z,). Damit folgt eine Potenzreihe fiir f(z)

flz) = é ez — z0), O0<|z—1zo| <. (5.29)
v=0

Die Summe der Potenzreihe (5.29) ist eine in der Umgebung von z, und in z, selbst
holomorphe Funktion, die fiir z = z, den Wert ¢, besitzt und fiir z + z, mit f(z)
identisch ist.

Gilt f(z) = ¢, dann ist f(z) im gesamten Kreisgebiet |z — z,| < r holomorph.
Anderenfalls kann durch Festlegung von f(z,) = ¢, eine fiir |z — zo| < r holomor-
phe Funktion erzeugt werden. Bei z = z, liegt dann eine sog. hebbare Singularitit
von f{(z) vor.

2. Die Laurentreihe (5.28) enthilt endlich viele Glieder mit negativen Potenzen
von (z — z,). Sie lautet mit ¢_,, + 0 als erstem Koeffizienten

Com C-1

f(z) = +...+

(z = z)" =2

+¢o+ey(z=z0) + ca(z = 29)*+... (5.30)
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In diesem Fall sagt man, die Funktion f(z) besitzt an der Stelle z = z, einen Pol
m-ter Ordnung (oder m-fachen Pol). Die Reihe konvergiert also in einem Kreisring-
gebiet um z,.

3. Die Laurentreihe (5.28) besitzt unendlich viele Glieder mit negativen Potenzen
von (z — z,). Bei z = z, liegt dann eine wesentliche Singularitit der Funktion f(z)
vor.

Bei Anndherung an einen Pol wichst |f(z)| iiber alle Grenzen, wihrend bei An-
ndherung an eine wesentlich singulare Stelle die Funktion f(z) jeder beliebigen
komplexen Zahl beliebig nahe kommt.

Erginzend zu diesen Erdrterungen sei bemerkt, dafl die singuldren Stellen einer
Funktion keinesfalls isoliert liegen miissen. Zum Beispiel kann jeder Punkt einer
Kurve ein singuldrer Punkt einer Funktion sein. Eine solche Kurve bezeichnet man
als singuldre Linie. Im Fall einer geschlossenen singuldren Linie ist eine analytische
Fortsetzung von f(z) tiber diese natiirliche Grenze hinaus nicht moglich. Man ver-

gleiche dazu auch das bereits in 5.3. angegebene Beispiel f(z) = > z".
n=0

Ein nicht isolierter singuldrer Punkt einer Funktion liegt z. B. an einem Héufungs-
punkt von Polen vor, wie etwa an der Stelle z = 0 fir f(z) = 1/sin(1/z). Nicht
isolierte singuldre Stellen liegen auch an Verzweigungspunkten vor, wie z. B. bei
z =0 fiir f(z) = Logzund \/z .

Fiir die Klassifizierung isolierter singuldrer Stellen einer Funktion f(z) war ihre
Laurent-Entwicklung zugrunde gelegt worden.

Beispiel 5.5: Bestimmen Sie die isolierten singuliren Stellen von folgenden Funktionen:

9 f0=1T e
: o :Zv
Losung: a) Fiir cosh z lautet die Potenzreihenentwicklung cosh z =v Z_‘OW , so daB
z z} ZS 0 221'-!
f(z) = — (? + o + o + ) = _.EomA

folgt. f(z) besitzt an der Stelle zo = 0 eine hebbare isolierte singulire Stelle. Setzt man also f(0) = 0,
dann ist f(z) fiir alle z holomorph.

z” s
— - Damit ergibt sich ¢z =
v.

1

oz

n8

b) Fir e lautet die Reihenentwicklung e* = .d.h., bei

z=0 liegt eine wesentliche Singularitit vor. ¥

i
°
I8

»

Wir hatten in 2.3. den Begriff des unendlich fernen Punktes eingefiihrt und ver-
stehen unter der Umgebung des unendlich fernen Punktes den Teil der Vollebene,
der sich auBerhalb eines gewissen Kreises mit Radius R befindet, d. h. auBerhalb
eines Kreises |z| > R. Setzen wir voraus, daB f(z) in der Umgebung des unendlich
fernen Punktes z = oo holomorph ist, dann kann diese Umgebung als Kreisring
um den Nullpunkt betrachtet werden. In diesem Kreisring ist eine Laurententwick-
lung méglich:

f@) = ez + ezt 4 0o + gz + 2P+

Wir unterscheiden wieder drei Fille:
1. Die Laurentreihe enthilt keine Glieder mit positiven Potenzen von z, also

FG) = o a2 + cyzt + o
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In diesem Fall strebt f(z) fiir z - oo gegen ¢,. Man sagt dann, f(z) ist im unendlich
fernen Punkt holomorph, und schreibt f(c0) = ¢,.

N

. Die Laurentreihe enthilt endlich viele Glieder mit positiven Potenzen von z
f@) = ..caz?+c izt +co + 1z + 2% + ... + CpZ”
=2"(. + ez M ez oz o CpegZ G-
Daraus folgt llm f(z)

In diesem Fall bezelchnen wir den unendlich fernen Punkt als Pol m-ter Ordnung
von f(z) und schreiben f(c0) = 0. w = f(z) bildet in diesem Fall den unendlich
fernen Punkt auf sich selbst ab.

3. Enthilt die Laurentreihe unendlich viele Glieder mit positiven Potenzen von z, also
f@)=..coiz7t + o+ ez + a2 + .,

dann bezeichnen wir den unendlich fernen Punkt als wesentlich singuliiren Punkt
der Funktion.

0
Die Funktion w = f(z) = ¢* = ZLz" hat im Punkt z = oo eine wesentlich
=0?

singuldre Stelle, da sie unendhch viele Glieder mit positiven Potenzen von z besitzt.

Fiir eine rationale Funktion, deren Zihlerpolynom m-ten Grades und Nenner-
polynom n-ten Grades keine gemeinsamen Nullstellen haben, gelten folgende Uber-
legungen:

Die Funktion

_ a2
1@ = p(2)

besitzt im Endlichen an den Nullstellen des Nenners singuldre Punkte. Fiir z > oo
unterscheiden wir zwei Fille:

a) m < n: In diesem Fall kann f(z) in der Form
fe) =ao +az7t + arz7? + ..
wiedergegeben werden. Wir erhalten also einen endlichen Grenzwert
lim f(2) = ao;

Z= 0
f(z) ist somit im Endlichen holomorph.
b) m > n: Wir erhalten die Form
f(2) = @puepZ™ ™ + Goyy 2™+ L+ @2+ @z + G + azt + L

= 2" MQpp + Aop-12"t + ...

Damit erhalten wir limf(z) = oo, es liegt also ein Pol (m — n)-ter Ordnung
vor. e
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Allgemein entspricht dem Verhalten einer Funktion f(z) fiir z —» co das Verhalten

der Funktionf(%) = @({) fiir { >0, wenn z = —égesetzt wird. Die Funktion ¢({)
besitzt im Punkt { = 0 die gleiche Singularitit, die f(z) im Punkt z = co hat. Ab-
schlieBend sei noch erklirt, was wir unter einer mehrfachen Nullstelle einer Funktion
im Unendlichen verstehen. Eine m-fache Nullstelle einer Funktion f(z) im Unend-
lichen liegt vor, wenn die entsprechende Funktion ¢({) fiir £ — 0 eine m-fache
Nullstelle besitzt.

5.5.2. Residuum
Es sei f(z) in einer punktierten Umgebung U von z, holomorph und € ein geschlos-

sener doppelpunktfreier Weg in U, der z, im Innengebiet enthdlt; dann kann das
Integral

- %J fﬁ f(2) dz (5.31)
(4 .

verschieden von null sein, und f(z) 148t sich in eine Laurentreihe entwickeln, d.h.,
es giltin U

fiz) = :i_wcn Z — Zo)" (5.32)

Es soll nun der Zusammenhang zwischen den Koeffizienten ¢, und dem Integral 7
untersucht werden. Aus (5.31) und (5.32) folgt

1 1 i .
= —E.Sﬁf(z)dz - m§"=z_wcn(z ~ zp)dz.
[ c
Durch gliedweise Integration ergibt sich

- J%f(z)dz-——l—, 5 c,,fﬁ(zhzo)"dz.
[0

Nach (4.14) ist das rechts stehende Integral fir n 4 —1 gleich null und fir
n= -1 gleich 27 ], so daB} wir

ff;f(z) dz = L mi=c, (5.33)

erhalten. W1r nennen den Wert dieses Integrals das zur Stelle z = z, gehdrige
Residuum der Funktion f(z) und schreiben

Res f(D)]sos, = €1 = %} 3@ 1) dz. (5.34)

Beispiel 5.6: Bestimmen Sie dic Laurententwicklung und das Residuum der Funktion f(z) =
fir zo= 0.

sinz
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ZS zS
I

besitzt, konnen wir den Ansatz formulieren

Losung: Es gilt sinz=2z— — .... Dasinz fir z= 0 nur eine einfache Nullstelle

1 Cc_1 3
_—— = —— gtz + 2" .
3 S z
z=—+ -
3! 5!
Aus
1 ( 2.z )c"+ +oz+ 2+>
=(z—-—+ ——— ... ) |—+¢ Z+ ¢z
RETIET! AW o
folgt durch Koeffizientenvergleich:
20: 1=c,, ey =1,
zt: 0=co, co=0,
2. 0_ 1 -
z° »——¥+L‘x, CI_T,
z3: 0=c,, ¢c; =0,
1 c 1 1
z4: 0= ———t+ocs, 3= =—,
Y 3 51
z5: 0=cy, ¢y =0,
1 1 1 1 1
7) = =—t —z+|——-—)23+ ...,
o=~z ((3!)2 5!)2 N
1
Res — =c; =1
sinz |, _,

Mit Hilfe des Residuums kann nach 5.34 der Wert eines Integrals tiber einen
geschlossenen Weg, der einen isolierten singuldren Punkt umschlieBt, berechnet
werden. Liegt die Aufgabe vor, den Wert eines Integrals iiber einen geschlossenen
Weg zu berechnen, ip dessen Innengebiet mehrere singuldre Punkte liegen (Bild 5.7),

Sy

Bild 5.7. Singuldre Punkte
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dann kann Satz 4.9, (4.15) angewandt werden, so aaﬁ sich formulieren 148t

S.5.12 Satz 5.12 (Residuensatz): Es sei f(z) im Innengebiet des doppelpunktfreien geschlossenen
und positiv orientierten Weges € und auf © selbst mit Ausnahme von endlich vielen im
Innengebiet von © gelegenen isolierten singuliren Stellen z,, z., ..., z, holomorph.

Dann gilt
. . n
ff; f@dz =2%] 3 Resf2)ems, (5.35)
J v
- i 22+ 1
Beispiel 5.7: Berechnen Sie %Tz_—Tléings des im Bild 5.8 skizzierten Weges € !
c

Bild 5.8. Gebiet in der z-Ebene

Losung: Partialbruchzerlegung

2+ 1 22+ 1 -1 1 1
= _————
2(z2 - 1) Zz—=1)(z+ 1) z z—1 z+1

Alle drei Pole werden von € umschlossen, also gilt

fj;(zz +1)dz

———— = 2mj[Res f(2)|; .o + Res f(2)], oy + Res f(2)];,. 4]
z(z> = 1) * N

=2nj(—=1+1+1)=2xj.

Fir die Berechnung des Residuums an einer Polstelle m-ter Ordnung soll eine
einfache Regel hergeleitet werden. In einer punktierten Umgebung von z, gilt dann
die Gleichung (5.30), und daraus folgt durch Multiplikation mit (z — zo)™ die in z,
holomorphe Funktion,

28(2) = (2 = 20)" f(2) = Com + Coms1(Z = 20) + Copia(z — 20)* +
+ eoy(z = zo)™ 1 + oz — zo)™ + c1(z — zo)™t + ... (5.36)

Den gesuchten Koeffizienten ¢_; erhdlt man durch Bilden der (m — 1)-ten Ab-
leitung von (5.36) und Grenziibergang z — z,.
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Fiir einen Pol m-ter Ordnung gilt somit

¢-1 = Res f(@)]z=z, = lim [(z = zo)" f(2)]""-P. (5.37)

L
(m—=1D! .
Fiir Polstellen erster Ordnung ergibt sich daraus

Res f(2)]z=z, = llm [z = 20 /)] (5:38)

[ (* - 1)dz
Beispiel 5.8: Man berechne I = 4>

e —————— | Stz = jt <t <27
z T — langs C: z(r) = 2¢3* (0 = 7 = 27).

Losung: Isolierte singulire Stellen liegen bei z; = 0, z; 53 = 3(—1 + /3 j) innerhalb von
¢. Um das Residuum an der Stelle z; = 0 (Pol 3. Ordnung) zu bestimmen, wenden wir (5.37) an.

Z2+z+1

1 -1 1
=—lim [z* =z 4+ ————| =0.
2Z24+z+1

1 -1 ”
Resf(z)i,_,x = Tlim {—]
2 z0

An der Stelle z, = & (=1 + \/gj) folgt nach (5.38) fiir das Residuum:

_ 4 _ -
Res f(z2)]. =lim w=%(l +\/3j).

1=z, 2z =)z - 2z)

Fir die Stelle z = z3 erhalten wir analog

1 T
Resf(2)|:=z, = 7(1 - /3.
Nach (5.35) folgt also

1 — -
I=2ﬁj(0+7(l +3i+1- \/31)) =2j.
Neben dem in (5.34) definierten Residuum wird noch das sog. logarithmische

Residuum erklart. Wir verstehen darunter den folgenden Ausdruck und schreiben

: j}((zz)) = Log Resf(2)|,_ (5.39)

2z
I

f(z) sei eine holomorphe Funktion mit den im Satz 5.12 genannten Eigenschaften.
Zusitzlich werde vorausgesetzt, daB f(z) auf € nicht verschwindet.

Im Fall eines Poles m-ter Ordnung an der Stelle z = z, entwickeln wir f(z) in eine
Laurentreihe um z = z,.
Mit

f6) = ¥ ale—zr  (m=1,23.),

v=—m

F@ =% vl =zt

v=—=m
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folgt fiir den Integranden in (5.39)

fl@ _ —m >
70 - T—z + Ao+ A (z — zo) + Aa(z — z0)* + ...
Das Residuum von f'(z)/f(z) ist gleich —m. Wegen
d _ S
o7 Log /) = 6]

bezeichnet man das Integral

L (/@

=jJ f@2)
c

das die Vielfachheit m des Poles an der‘Stelle z =2 angibt; als logarithmisches
Residuum der Funktion £(z).
Besitzt f(z) in z = z, eine m-fache Nullstelle, dann kénnen wir ansetzen

&) = ¥ otz - 2o,

dz = Log Res f(2)|.=-, = —m,

F@ = 3 volz - zp-t,

v=m

f'@)  me,(z — zo)™t + (m + 1) Cper(z = o)™ + (M + 2) oz — z0)™ ' + ..

o enlz = 20)" + Cui1(z = Zo)™ ! + Cpia(z = Z)™E 4+
= By 4 Bz~ zo) + Bz — 20)* + ...
z—2zq
Also folgt »
f'@)
Res = Log Res f(2)|.~., = m.
oy |, = Log Res @),

Zusammenfassend konnen wir also feststellen: Bezeichnen wir (5.39) als logarith-
misches Residuum einer Funktion f(z) an der Stelle z = z,, dann gibt Log Res f(2)|.--,
an der Stelle z = z, den Grad der Vielfachheit des Pols an, falls Log Res f(z)|._., < 0
und den Grad der Vielfachheit der Nullstelle, falls Log Res f(z)|..., > 0 ist. Um-
schlieBt € p verschiedene Nullstellen und Pole der Funktion f(z), dann ergibt das
Integral (5.39) die Summe der logarithmischen Residuen an den Nullstellen und
Polen der Funktion f{(z), also

RIS
=170

Dabei ist N gleich der Anzahl der Nullstellen und P gleich der Anzahl der Pole,
die von € umfaBt werden. Die Nullstellen und Pole sind dabei so oft zu zihlen, wie
ihre Ordnung vorgibt.

Fiir Stabilitatsuntersuchungen bei mechanischen und elektrischen Systemen ist es
auferordentlich wichtig, die Lage der Nullstellen einer gebrochen rationalen Funk-
tion oder eines Polynoms zu kennen. Hier kann nicht ndher auf diese Problematik
eingegangen werden; es sei u. a. auf Band 10 und [12] verwiesen.

dz = ¥ LogResf(2).on. = N — P. (5.40)
v=1



5.5. Isolierte singulire Stellen und Residuum 93

Beispiel 5.9: Man beweise, jedes Polynom vom Grade »n hat n Nullstellen (Fundamentalsatz der
Algebra).

Losung: Fassen wir P(zj Z a,z”, (a, + 0, n = 1) als Laurententwicklung um z = oo auf,

dann ist der unendlich ferne Punkt ein Pol n-ter Ordnung fiir das Polynom P(z), es gilt also

lim |P(z)| = 0.

2z
Es. muB somit einen Kreis C: |z| = R geben, so daB P(z) auBerhalb dieses Kreises keine Nullstelle
mehr besitzt. Es gilt weiter

P(z) z z

" 2 va,z't
Pz S n b b,
@ et (1 —l+—2+ ):cl:n

Nach (5.40) ist damit die Summe der logarithmischen Residuen an den Nullstellen und Polen der
Funktion f(z) gleich n. Nach den getroffenen Voraussetzungen ist dies aber im vorliegenden Fall
gleich der Anzahl der Nullstellen des Polynoms P(z). Damit ist der Fundamentalsatz der Algebra
bewiesen.

AbschlieBend soll noch das Residuum der Funktion f(z) fiir den unendlich fernen

Punkt z = oo, den wir als isolierte singuldre Stelle der Funktion f(z) annehmen, be-
trachtet werden.
Definition 5.5: Die Funktion f(z) sei in einer Umgebung des Punktes z = oo, eventuell
mit Ausnahme dieses Punktes selbst, holomorph. €= sei ein in der Umgebung von
z = oo liegender Kreis |z| = r, der im Uhrzeigersinn zu durchlaufen ist, so daf$ die
Umgebung von z = oo zur Linken liegt. Dann bezeichnen wir mit

Res f(o0) = % ff(z) dz

das Residuum im Unendlichen. )

Aus der Definition folgt, dal das Residuum von f(c0) gleich dem mit — 1 multi-
plizierten Koeffizienten von z=! in der Laurententwicklung um z = oo ist.

Liegen im Innern von €: |z| = r endlich viele Singularitéten z,, z,, ..., z,, dann
folgt aus dem Residuensatz und der Definition des Residuums im Unendlichen:

—%f(z) dz +—§>‘f(4) dz

= Resf(z)|;, + Res f(2)|:, + ... + Resf(2)]:, + Resf(c0) = 0.
Es gilt also der
Satz 5.13: Ist die Funktion f(z) in der z-Vollebene mit Ausnahme endlich vieler
singuldrer Stellen holomorph, so ist die Summe der Residuen, einschlieflich des
Residuums im Unendlichen, gleich null.

Aufgabe 5.7: Bestimmen Sie die Residuen der in den Aufgaben 5.5 und 5.6 betrachteten Funk-
tionen f(z) an den Stellen z, fiir die die Laurententwicklung durchgefiihrt wurde.

Aufgabe 5.8: Bestimmen Sie die Residuen der folgenden Funktionen an den angegebenen Stellen:

a)f(z) = ez, 20 =0,b) f(z) = tan z, z5 = % + ke (k ganz).

¥4
Aufgabe 5.9: Berechnen Sie fﬁm fiir folgende Integrationswege: a)z() = %, 0 < ¢ = 2w,
L s z

b)z(r) =2j+ e 0= 1= 2m.

D.5.5

S.5.13
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5.6.  Berechnung reeller Integrale mit Hilfe der Integration im Komplexen

Der Cauchysche Integralsatz und der Residuensatz sind Grundlage vieler Anwen-
dungen der Theorie der analytischen Funktionen. Als Beispiel soll in diesem Ab-
schnitt die Berechnung bestimmter reeller Integrale behandelt werden.

2n
5.6.1. Integrale der Form ~|‘ R(cos t, sin 7) dt
0

R (cos 1, sin 7) sei eine in 0 < ¢ < 27 stetige rationale Funktion. Substituieren wir
et =z(t)=zZ/(t) =jet =jz(1) (5.41)
und beachten (3.57) und (3.58), dann erhalten wir
1 1 . 1 1
cost = -2-(2 + ?) und sin? = a5 (z - ?), (5.42)
und fiir das zu betrachtende Integral 7 folgt

2n 2n
_ . _ 1 Iy 1/ 1) i\
1= fR(cos t,sint)dr = fR[E (z + ?>, 7]—(2 ?)} (— ?>z (1) dt.
0 0,
Nach (4.3) kann fir das letzte Integral 7 = §R*(z) dz geschrieben werden, da

€
z = e’ als Integrationsweg den Einheitskreis und R*(z) eine rationale komplexe
Funktion von z darstellt. Da fiir R(z) Stetigkeit in 0 < 7 < 27 vorausgesetzt war,
besitzt R*(z) auf dem Einheitskreis keine Pole. Mit (5.35) folgt dann

[=27j 5 Res R*@)|ees, . (5.43)
v=1

Beispiel 5.10: Berechnen Sie

2m

. f dr
) 2—cost+sint
- 0
Losung: Mit (5.41) und (5.42) ergibt sich

—Jsz

5 z . —2jdz
= = - — =@ R*(z) dz.
1 1 1 1 (—1—j)2+4z—1+j
2—7 +—=lz-—

z+ —
2j z

z
Pole von R*(z): z,,, = (=2 * \/5) (=1 + j). Von den beiden Polen liegt nur einer im Innengebiet
des Einheitskreises, denn es gilt
l=4|(-2+2) =1+ <1,
Il =2 ](-2 = /2) (=1 + )| > 1.
Nach (5.38) erhalten wir _
Res R¥(D)os, = lim [z = 2;) R¥@)] = —3+/2]

zoz)

und mit (5.35) folgt
1 s -
=2 (— 7\/21)= =2,
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[
5.6.2.  Uneigentliche Integrale der Form [ f(x) dx

Die Funktion f(z) sei eine in der oberen Halbebene (reelle Achse eingeschlossen)
bis auf endlich viele Punkte z,, z,, ..., z, holomorphe Funktion. Wenn € den im
Bild 5.9 eingezeichneten geschlossenen Weg € = €, + €, darstellt und die Punkte

-R ol I R x Bild 5.9. Geschlossener Weg in der z-Ebene

Zy, Z2, ..., Z, alle im Innengebiet des Weges € liegen, dann gilt nach dem Residuen-

satz (

1=§1@)d - [roa+ [ )4z = 255 3 Res @)
[ €y (5% r=t

Da auf €; f(z) = f(x) gilt, kann geschrieben werden
R

I= [ £ dx + f f(2) dz = 2% ilRes s (5.44)

Zur Abschitzung des Integrals ff(z) dz konnen je nach Beschaffenheit des Inte-
granden geeignete Hilfssitze herangezogen werden. '
Zum Beispiel lautet das
Lemma von Jordan: Strebt F(z) in der oberen Halbebene und auf der reellen Achse fiir
z — oo gleichmapig gegen null und ist m eine positive Zahl, so gilt fiir R — o0
[ F(z) e dz = 0.
K
Dabei ist K der in der oberen Halbebene gelegene Halbkreis um den Nullpunkt mit
dem Radius R.

Unter der Voraussetzung, daB der unendlich ferne Punkt eine mindestens zwei-
fache Nullstelle von f(z) ist, kann eine weitere Abschitzungsméglichkeit bereit-
gestellt werden.

Fiir die Laurententwicklung f(z) = Cz;zz + c-;ai + ... gilt dann die Abschitzung

|C—2| le_s) le-2| 1 fle-sl | le-dl
16l S T+ et (B )
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Fiir hinreichend grofie R gilt

1= [c_al
( ®R TR

+ )< &,

und wir erhalten

e < llre

Satz 4.5 gestattet die Abschdtzung

les| + & leoa] + &
Uf(z)dz R e
und damit gilt
lim [f(z)dz = 0.
R—aooﬁ'z

Aus (5.43) gewinnen wir damit eine fiir die Berechnung des uneigentlichen reellen
Integrals geeignete Formel

J S(x) dx =27] Z Res f(2)lz-z., (5.45)

-

falls das auf der linken Seite stehende Integral nicht nur als Cauchyscher Hauptwert
existiert (vgl. Bd. 2, 11.1.2.).

Ist f(x) eine rationale Funktion der reellen Verdnderlichen x, dann sind die
gemachten Voraussetzungen fiir f(z) insbesondere dann erfiillt, wenn der Grad des
Nennerpolynoms in f(x) um mindestens 2 gréBer als der Grad des Zihlerpolynoms
1st.

Beispiel 5.11: Bestimmen Sie f T

-

Losung: f(z) = ist in der oberen Halbebene iiberall auBer im einfachen Pol zo = j

1 ) 1 1
Z—]zhm( )=——
+z PINAVE S 2j

Mit (5.45) erhalten wir somit fiir das reelle Integral

1
T+22
holomorph. Nach (5.38) gilt dann

1
= lim [(z -1J)
- 1

Res ———
14220 2oj

0
f Ui ]
e S
1+ 5
-

Auch fiir den Fall, daB endlich viele isolierte singulire Punkte auf der reellen
Achse liegen, kann die eben betrachtete Methode zur Berechnung reeller Integrale
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angewandt werden. Man weicht dann, wie im Bild 5.10 eingezeichnet, diesen iso-
lierten singuldren Punkten auf der reellen Achse auf kleinen in der oberen Halbebene

Bild 5.10. Veranschaulichung des Integrations-

" weges bei einem sog. Hakenintegral

gelegenen Halbkreisbogen vom Radius ¢ aus und fithrt anschlieBend den Grenz-
tibergang o — O und R — oo durch. Derartige Integrale, die vor allem in der Operator-
rechnung eine Rolle spielen, nennt man Hakenintegrale. Wir wollen hier nicht naher
darauf eingehen und verweisen z. B. auf [13], Teil II.

Aufgabe 5.10: Berechnen Sie folgende Integrale mit Methoden der Funktionentheorie:

27

0
) dt b) J’ 1 d
a s x.
5+ 4cost (1 + x%)3
0 -0

5.7. Einteilung der Funktionen

Die holomorphen Funktionen teilt man nach ihren Singularitdten in Klassen ein.
Eine in der gesamten endlichen z-Ebene holomorphe Funktion heil3t ganze Funktion.

Treten in der Potenzreihenentwicklung fiir die Funktion f(z) nur endlich viele
Glieder auf, dann spricht man von einem Polynom oder einer ganzen rationalen
Funktion; beim Vorhandensein unendlich vieler Glieder in der Potenzreihenent-
wicklung fiir f(z) liegt eine ganze transzendente Funktion vor (z. B. f(z) = ¢°).

Eine ganze rationale Funktion besitzt als einzigen singuldren Punkt einen Pol
(z = o), wihrend eine ganze transzendente Funktion eine einzige Singularitit,
namlich eine wesentlich singuldre Stelle, im unendlich fernen Punkt hat.

Die Klasse der meromorphen Funktionen umfafit die Klasse der ganzen Funk-
tionen. Eine meromorphe Funktion besitzt im Endlichen nur Pole als Singularitaten.
Beispiele fiir meromorphe Funktionen sind f(z) = 7—1?, g(z) =tanz u. a.

Von einer rationalen Funktion spricht man, wenn f(z) in der durch z = o ab-
geschlossenen z-Ebene nur endlich viele Pole besitzt.

7 Greuel/Kadner, Komplexe Funktionen



6. Beispiele zu konformen Abbildungen

In der Ubertragungstechnik treten beispielsweise bei der Betrachtung von Vier-
polen (Bild 6.1) Gleichungen der Form
M? WolWii — W)
W, = W,, — =W, - .
1 e 1 W+ Z, (6.1)
auf, wobei W,;, W5, Wy, und M konstante komplexe GroBen eines Vierpols und
Z, und W, verdnderliche komplexe Grofien sind. Fiir den Elektrotechniker ist es

o—o] -
Wy—> Vierpol @ 7

nun notwendig zu wissen, welchen Verlauf W, fiir verdnderlichen AbschluBwider-
stand Z, nimmt. Gelingt es z. B., diesen Verlauf grafisch darzustellen, dann ist die
Aufgabenstellung gelost.

In 3.4. hatten wir den Begriff der konformen Abbildung erldutert und insbesondere
den grundlegenden Satz 3.8 ausgesprochen, dal die durch holomorphe Funktionen
f(z) erzeugten Abbildungen fiir f'(z) + 0 konform sind. Jetzt wollen wir spezielle
konforme Abbildungen untersuchen, die z. B. auch die eben genannte Aufgaben-
stellung mit erfassen.

Bild 6.1. Vierpol

6.1. Abbildungen durch gebrochen lineare Funktionen

Die linearen Funktionen sind, wie in 3.5.3. schon ausgefiihrt, ein Sonderfall der
rationalen Funktionen. Sind a, b, ¢ und d komplexe Konstanten mit (ad — bc) + 0,
dann stellt

az + b
cz+d ©.2)

eine umkehrbar eindeutige gebrochen lineare Funktion dar. Zunichst betrachten wir
den Sonderfall der ganzen linearen Funktion.

6.1.1.  Abbildung durch ganze lineare Funktionen
Eine ganze lineare Funktion sei gegeben durch
w=az+b, (6.3)

wobei a, b komplexe Konstanten und @ # 0 sind. Wir betrachten nun einige Sonder-
falle:

1.a = 1, b = 0. Die Abbildung lautet dann
w=z. (6.4)
Damit gilt mit z = x + jyund w = f(z) = u + jv
u+jv=x+jy u=x und v=y.
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Es liegt eine identische Abbildung vor. Bild und Original sind also kongruente
Figuren.
2.a =1, b % 0. Wir erhalten die Abbildung
w=z+b. (6.5)
Erinnern wir uns an die geometrische Addition komplexer Zahlen, so erkennen wir,
daB die Abbildung (6.5) eine Translation darstellt. Original- und Bildfigur sind wieder
zueinander kongruent. Betrachten wir einen Kreis mit der Gleichung z(¢) = z, + re'*

(0 £t £ 27), wobei z, eine komplexe Konstante und r > 0 reell ist, dann bewirkt
die Abbildung (6.5) die im Bild 6.2 dargestellte Translation.

imag. Achse

reelle
Achse

Bild 6.2. Translation

3.a =~ > 0,reell, b = 0. Die Abbildungsfunktion lautet
W=z, (6.6)

Den Bildpunkt zu z gewinnt man jetzt, indem der Ortsvektor des Punktes z im
Verhiltnis 1:x gestreckt (x > 1) bzw. gestaucht (x < 1) wird. Die Abbildung ist
nicht mehr kongruent, aber Original und Bildfigur sind einander dhnlich. Man
kann leicht zeigen, daB durch diese Abbildung Geraden der z-Ebene in Geraden
der w-Ebene, Kreise der z-Ebene in Kreise der w-Ebene und parallele Geraden in
parallele Geraden tibergehen. Wenden wir die Abbildung (6.6) z. B. auf den Kreis
z(t) = zo + re' an, dann erhalten wir w = a(zy + re') = az, + ar e’ (Bild 6.3).

Jv

W

"

W,  Bild 6.3. Streckung
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Im Bild 6.3 wurden ein Kreis und ein Dreieck vermittels der Funktion (6.6) abgebil-
det. Da eine Ahnlichkeitsabbildung vorliegt, bleiben natiirlich auch die Winkel sich
schneidender Geraden erhalten.

4.a + 0,b = 0. Fiir die Abbildungsfunktion ergibt sich dann
w = az. (6.7)

Stellen wir @ und z in der Exponentialform dar, dann folgt
W = r, e ei? = r,rei@ate),

Im Fall r, = 1, d. h. |a| = 1, bewirkt (6.7) also eine reine Drehung, wie auch schon
im Abschnitt 2.1. erldutert wurde. Fiir |a| = 1 kommt zur Drehung noch eine
Streckung hinzu, (6.7) stellt also den Fall der Drehstreckung dar.

Beispiel 6.1: Der Punkt z; = 1 + j wird durch eine Drehstreckung in den Bildpunkt w, = 2 ab-
gebildet. In welche Bildpunkte gehen z, = —1 + jund z; = —j durch die gleiche Abbildung iiber?
Geben Sie die Abbildungsfunktion an!

Losung: Mit a = « + fj folgt aus (6.7)
w=(x+jp) (x + j»),
=(a+jpHd+]J),

2 =x—-f+jx+p).

Durch Koeffizientenvergleich erhilt man o = 1 und f = —1, @ = 1 — j. Die Abbildungsfunktion
lautet somit w = (1 — j) z. Fur die beiden anderen Bildpunkte erhdlt man w, = 2jund w3 = —1 — j.

Die allgemeine ganze lineare Funktion stellt somit eine Abbildung dar, die sich
aus einer Drehstreckung und einer Translation zusammensetzt. Das bedeutet, da3
durch die Abbildungsfunktion (6.3)

w=az+b

eine Ahnlichkeitsabbildung erfolgt. Da (6.3) eine in der gesamten z-Ebene holomorphe
Funktion darstellt, ist die Abbildung (6.3) fiir ¢ % 0 iiberall konform.

Werden spezielle Punktmengen abgebildet, so ist es nicht immer notwendig, die
Abbildung punktweise vorzunehmen, wenn man sich daran erinnert, daf eine Ahn-
lichkeitsabbildung vorliegt und somit Kreise der z-Ebene in Kreise der w-Ebene
und Geraden der z-Ebene in Geraden der w-Ebene tibergehen. Wir wollen dies an
einem Beispiel demonstrieren.

Beispiel 6.2: Das durch die drei Punkte z; = —1 + 3j, z; = 1 + 2j, z3 = 4 + 2j gegebene Drei-
eck soll durch die Funktion w = \/2 (1 = j)z + 2 + jin die w-Ebene abgebildet werden (grafisch).

Losung: Da der allgemeine Fall der ganzen linearen Funktion gegeben ist, ist eine Drehstreckung
und Translation durchzufiihren. Wir fithren zunéchst die Drehstreckung aus. Da a = \/7 a-j
die Drehstreckung bewirkt, bilden wir die Exponentialform von @ und erhalten a = 2¢7*%°, d. h.,
jeder Ortsvektor in der z-Ebene (also auch jeder durch einen Zeiger dargestelite Eckpunkt des
Dreiecks) wird um —45° gedreht und im Verhaltnis 1: 2 gestreckt. Das kann grafisch leicht durch-
gefithrt werden (Bild 6.4). Das so gefundene Dreieck mit den Eckpunkten wi¥, w¥ und w¥ erfihrt
dann noch durch den Zeiger b = 2 + j eine Translation, so daf} wir das abgebildete Dreieck w,,
w,, wy in der w-Ebene erhalten (z- und w-Ebene wurden tbereinander gezeichnet).
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%  Bild 6.4. Drehstreckung

Soll eine Kreisscheibe der z-Ebene in die w-Ebene durch (6.3) abgebildet werden,
dann geniigt die Abbildung des Mittelpunktes und die Bestimmung des Kreisradius
in der w-Ebene. Liegt die Kreisgleichung in der Form z(t) = zo + reit (0 £ t < 2x)
vor, dann erhalten wir mit (6.3)

w=a(zy + re’) + b =azy + b + are'.

Der Mittelpunkt des Bildkreises ist also az, + b, und der Radius des Bildkreises
kann aus |a| r bestimmt werden.

Ist der Kreis durch die Gleichung |z — z,| = r gegeben, so findet man bei Anwen-
dung der Abbildungsfunktion w = az + b den Mittelpunkt des Bildkreises in der
w-Ebene auch wieder einfach durch Einsetzen des Mittelpunktes z, in die Abbil-
dungsgleichung und erhdlt w = az, + b. Da der Kreisradius von der Drehung
unabhanglg ist, hat wiederum nur |a| auf die Anderung des Radius EinfluB, und wir
erhalten r' = |a| r fir den Radius des Kreises in der Bildebene (w-Ebene).

6.1.2.  Abbildung durch die Funktion w =

-

Sind zwei komplexe Zahlen z, und z, durch die Beziehung
2,2, =13, (6.8)

wobei ro reell und konstant ist, miteinander verkniipft, dann sagt man, z, (z,) ist mit
der Inversionspotenz rj zu z, (z,) invers. Durch die Funktion

W=— (6.9)

erhalten wir somit eine sog. inverse Abbildung. Mit der Einfithrung des unendlich
fernen Punktes w = oo haben wir die Mdglichkeit, die gesamte z-Ebene vermittels
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(6.9) auf die w-Ebene abzubilden. Durch die Festlegung nach Definition 3.2 ist die
Funktion (6.9) in der ganzen z-Ebene erklirt.

Geometrisch kann man sich w = l— aus der Division der beiden komplexen

Zahlen z, = 1 und z, = z entstanden denken, so daBl w nach der im Bild 6.5 an-
gegebenen Konstruktion gewonnen werden konnte. Unter Anwendung des Katheten-
satzes kann eine vor allem auch in der Ortskurventheorie {ibliche Konstruktion
hergeleitet werden. Stellen wir w und z in (6.9) in der Exponentialform dar, dann folgt
mit z = re? und w = Rel"

W= Relv — %e—jw, (6.10)

d.h.ypy=—¢ und R = —1— y = —¢ kann leicht dadurch realisiert werden, daB
der Zeiger z an der reellen Achse gespiegelt wird. Auch die zweite Aussage R = -

kann mit Hilfe des Kathetensatzes geometrisch interpretiert werden, im Bild 6.6

imag. Achse

imag. Achse

reelle
Achse

1
Bild 6.5. w = - Bild 6.6. Inversion am Einheitskreis

wurde die Konstruktion ausgefiihrt. Die Reihenfolge der beiden genannten Schritte

ist dabei gleichgiiltig. Es empfiehlt sich, folgendermafen vorzugehen:

1. Ausgehend von z wird derjenige Punkt z* bestimmt, der dasselbe Argument
wie z besitzt, dessen Betrag aber gleich dem reziproken Wert des Betrages von z
ist, wir erhalten also

z¥ = i ei? .
P’
Dieser Vorgang heiBt Spiegelung am Einheitskreis, oder man nennt z* den beziig-
lich des Einheitskreises inversen Punkt von z.
2. Zum Punkt z* ermitteln wir denjenigen Punkt w, der den gleichen Betrag wie z*,
aber negatives Argument hat:

w=z¥ = —ei?,
-
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S . . 1 .
Wenden wir die Operation der Kehrwertbildung auf 7noch einmal an, dann
N 1 . . . .
erhalten wir wieder z, d. h., z = - kann auf die analoge Weise gebildet werden wie
1 . . . . . .
W= Diese involutorische Eigenschaft gilt auch zwischen z und z*; man sagt,

die Spiegelung am Einheitskreis ist involutorisch. Soll also z. B. der beziiglich des
Einheitskreises inverse Punkt z* fiir einen Punkt z im Innern des Einheitskreises
bestimmt werden, dann braucht man in Bild 6.6 nur die Bezeichnung der beiden
Punkte z und z* zu vertauschen.

Die eben betrachtete inverse Abbildung ist z. B. fiir viele Untersuchungen in der
Elektrotechnik von Bedeutung. Betrachten wir z. B. das Ohmsche Gesetz « = ir und
nehmen an, daBl « konstant und 7 und r verdnderliche komplexe GréBen sind, dann
wird der Zusammenhang i = %durch die inverse Abbildung (6.9) charakterisiert,
da u durch einen entsprechenden MaBstab beriicksichtigt werden kann. Ist r z. B.
abhéngig von der Frequenz, dann erhdlt man fiir r in der komplexen Zahlenebene
eine Kurve. Bei der Bestimmung von i besteht dann die Aufgabe, zu allen Punkten
der Kurve fiir r die inversen Punkte zu ermitteln. Durch Inversion lieBe sich also
bei geeigneter Wahl des MaBstabes aus der Kurve fiir r diejenige fiir i bestimmen
(und umgekehrt).

Man kann leicht zeigen, daB alle Punkte des Einheitskreises bei der Abbildung
z — z* in sich selbst tibergehen. Sowohl durch die Abbildung z — z* als auch durch
z — w gehen alle Punkte im Innern (auBerhalb) des Einheitskreises in Punkte auBer-
halb (innerhalb) des Einheitskreises tiber. Im Beispiel 3.2 wurde dies ja auch schon
untersucht (Bild 3.3).

Als Fixpunkte der Abbildung, d. h. Punkte, die bei der Abbildung in sich selbst
iibergehen, erhélt man aus

w=7=z:>22=11 zy=1,z, = —1.

Die beiden Punkte z = 1 und z = —1 gehen somit bei der Abbildung (6.9) in sich
selbst lber.’

Im Beispiel 3.2 hatten wir gesehen, daB sich durch die Abbildung (6.9) der Umlauf-
sinn des Einheitskreises umkehrt. Die Bildpunkte des Einheitskreises der z-Ebene
gewinnt man durch einfache Spiegelung an der reellen Achse.

Bei der Anwendung der inversen Abbildung geht es hiufig darum, nicht einzelne
Punkte, sondern Kurven abzubilden. Fiir einfache Kurvenformen soll das nédher
untersucht werden. .

Zunachst wollen wir noch eine andere Form einer Kreisgleichung kennenlernen.
Wir behaupten,

yZZd+az+aE+0=0 (la*—yd>0), (6.11)

wobei y, 0 reelle Konstanten und @ komplexe Konstanten sind,
ist fiir  y # 0 die Gleichung eines Kreises und fiir
» = 0 die Gleichung einer Geraden in der z-Ebene.
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Beweis: Mit a = « + jf und z = x + jy folgt aus (6.11)
YE+ENE =)+ @+ +y) + @@= —iy) +6=0,
y(x2 + y?) + 2ax — fy) + 6 = 0. (6.12)

Das ist fiir y # 0 eine Kreisgleichung und fiir y = 0 eine Geradengleichung. m
Man kann nun noch zeigen, dal der Radius dieses Kreises gleich

1 S
o=—=la* = (6.13)
7l
und der Mittelpunkt
a
Zp = —— 6.14
o 5 (6.14)

ist. Was ergibt nun die Abbildung dieses Kreises (6.11) mit der Abbildungsfunktion
. 1 1. . .
(6.9)? Wir setzen w = S =z=-;in (6.11) ein und erhalten mit der Voraussetzung

|al* =0 >0
11 1.1 o
y—=+a—+ad=+0=0=y+av+aw + dwp =0.
w W w W

Wir erhalten also als Bildkurve ebenfalls einen Kreis (9 + 0) bzw. eine Gerade
(6 = 0). Der Bildkreis in der w-Ebene hat den Radius

1 N
0 =337 V/1al* =7 ©6.15)
und den Mittelpunkt
wo = =2, (©.16)

Nehmen wir die uneigentlichen Punkte der z- bzw. w-Ebene zu diesen Ebenen hinzu
und fassen wir jede Gerade als Kreis mit unendlich groBem Radius auf, dann kann
also der Satz ausgesprochen werden:

Satz 6.1: Die Gesamtheit der Kreise der z-Ebene wird durch die inverse Abbildung
W= %auf die Gesamtheit der Kreise der w-Ebene abgebildet. Man sagt, die Abbildung

ist kreisverwandt.

Fiir das praktische Arbeiten mit der inversen Abbildung sind nun noch folgende
spezielle Aussagen von Bedeutung, die sich aus den hergeleiteten Formeln leicht
erkennen lassen:

1. Alle Geraden durch den Nullpunkt der z-Ebene werden in Geraden der w-Ebene

abgebildet, die durch den Nullpunkt gehen (y = 0,0 = 0).

2. Jede Gerade der z-Ebene, die nicht durch den Nullpunkt geht, wird in einen

Kreis der w-Ebene abgebildet, der durch den Nullpunkt geht (y = 0, 6 & 0).
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Da die Abbildung involutorisch ist, gilt dann natiirlich auch die Umkehrung
von 1. und 2.
3. Jeder Kreis der z-Ebene, der durch den Nullpunkt geht, wird in eine Gerade der

w-Ebene abgebildet, die nicht durch den Nullpunkt geht (y % 0, 6 = 0).
Die Abbildungseigenschaften der Funktion w = 1/z finden unmittelbare praktische
Anwendungen. Zum Beispiel wird eine unter dem Winkel o gegen die reelle Achse
der z-Ebene geneigte Geradenschar in eine Kreisschar durch den Nullpunkt abge-
bildet. Dabei ist die gemeinsame Tangente aller Kreise im Nullpunkt als Symmetrie-
gerade um den Winkel —x gegen die reelle Achse der w-Ebene geneigt. Praktisch
1aB3t sich dieses Ergebnis als konforme Abbildung einer Parallelstromung in eine
Dipolstromung interpretieren. Weiterhin kann man die Abbildung durch w = 1/z auf
eine Quellstromung mit der Quelle im Punkt z, anwenden. Die Stromlinien, die in der
z-Ebene als Geraden vom Punkt z, nach o verlaufen, sind in der w-Ebene Kreise
durch wy = 1/z5 und durch den z = co entsprechenden Punkt w = 0. Man erhalt
damit die konforme Abbildung einer Quell-Senken-Strémung in eine Quellstrémung.

Bei der konstruktiven Durchfiihrung der inversen Abbildung eines Kreises wihlt
man am zweckmaBigsten den dem Ursprung am nichsten liegenden und den am
weitesten entfernten Punkt des Kreises, der zu invertieren ist, da dadurch der Durch-
messer des Bildkreises gewonnen wird. Diese Uberlegung trifft auch zu, wenn der
Sonderfall der Geraden vorliegt.

Beispiel 63_ In der z-Ebene ist das_(_}uadrat mit den Eckpunkten z; = % \/5_(1 +3),

= f\/z A +3), z= %\/2 (=1 + 3j), 24 =%\/2_(—1 + j) gegeben. Bilden Sie dieses
Quadrat durch w = 1/z in die w-Ebene ab. Eine Skizze ist anzufertigen!

Losung: Zunichst verschaffen wir uns einen Uberblick iiber die Lage der einzelnen Punkte
(Bild 6.7). z; und z, liegen auf dem Einheitskreis, somit konnen die Bildpunkte w, und w4 durch

A imag.Achse 92

%
e
4 1z
] 94
2]
{ [ reelle
BN\ PPN N/ g, Achse
Wy i
X/
gl‘ . .
Bild 6.7. Konforme Abbildung

Spiegelung der Punkte z; und z, an der reellen Achse gefunden werden. Die durch die Eckpunkte
des Quadrats gehenden Geraden der z-Ebene miissen nach 2., S. 104, in Kreise durch den Nullpunkt
iibergehen. Damit sind von dem Kreis, der durch die Abbildung von g, 4 entsteht, schon drei Punkte
bekannt, so daB er konstruiert werden kann. Von den Kreisen, die durch die Abbildung der Geraden
£12 und g3, entstehen, sind zwei Punkte bekannt (Nullpunkt und w; bzw. wy). Es empfiehlt sich
hier, die Punkte z, und z3 invers abzubilden, da sie fiir das Bild der Geraden g,3 ja auch benétigt
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werden. Die Punkte w, und w; werden nach der in Bild 6.6 gezeigten Konstruktion ermittelt. Das
Ergebnis ist somit grafisch gewonnen worden.

6.1.3.  Abbildung durch die allgemeine gebrochen lineare Funktion w = Z I ‘l;
Wir betrachten jetzt den allgemeinen Fall der gebrochen linearen Funktion (6.2),
also az + b
Wmos (ad — be +0). (6.17)

Dabei sind a, b, ¢, d komplexe Konstanten, und wir setzen ¢ + 0 voraus, um schon
behandelte Fille auszuschlieBen. Durch die allgemeine gebrochen lineare Funktion
wird die z-Vollebene eineindeutig und konform auf die w-Vollebene abgebildet. Man
kann zeigen, daB nur die allgemeinen gebrochen linearen Funktionen diese Eigen-
schaft besitzen.

Durch die gebrochen lineare Funktion wird eine eineindeutige Abbildung festge-
legt, d. h., jedem Punkt der z-Ebene entspricht genau ein zugehdriger Bildpunkt in
der w-Ebene und umgekehrt. Durch Auflésen von (6.17) nach z erhédlt man

—dw + b
Z=—

(6.18)
ow—a
Daraus folgt  lim il = lim —d+biw = — ﬁ, d. h., der Bildpunkt des
woo CW—a wowo € — alw c
Punktes z = — dJc ist in der w-Ebene der uneigentliche Punkt. Der Bildpunkt des un-
eigentlichen Punktes z = co kann aus
. . a+b . a+blz a
1 =] = = = 03
zilgw zirgcz+d e CH+dlz C )

ermittelt werden. Fiir die Fixpunkte der gebrochen linearen Abbildung ergibt sich
aus (6.17)

_az+b 5 o
S e +d—-az—-b=0. (6.19)
Fallunterscheidung:

1. ¢ = 0: Aus (6.19) folgt z = ppes

7 Ein weiterer Fixpunkt ist z = oo, denn fiir

¢ — 0 folgt aus (*) w > oo.
2. ¢ # 0: Aus (6.19) erhalten wir zwei komplexe Ldsungen. z = oo ist, wie in (¥)
gezeigt wurde, kein Fixpunkt.
Die Abbildung der z- in die w-Ebene durch die allg. gebrochen lineare Funktion
wird nun in mehreren Schritten vorgenommen: Wir formen deshalb (6.17) um:

az +b a z + bla a(] bc — ad 1 )

cz+d=_c—z+d/c c a cz+d
~a  bc—ad 1
=Tt % =+a
p .a be — ad i
Zur Vereinfachung setzen w1r7 = a, und R a,, so dal} wir

1
cz+d

(6.20)

w=a +a
erhalten.
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Es kann nun leicht abgelesen werden, welche Operationen erforderlich sind, um
die Abbildung des Punktes z in die w-Ebene vorzunehmen:

1. Der Nenner z* = ¢z + d ist eine ganze lineare Funktion und kann somit aus z
durch eine Drehstreckung und anschlieBende Translation gewonnen werden
(Ahnlichkeitsabbildung). Wir erhalten dadurch

w=ua; +a, Tl; (6.21)

2. Setzen wir jetzt w* = %, dann folgt aus (6.21)
W= a, + aw*. (6.22)

w* kann nach (6.9) durch eine inverse Abbildung aus z* gewonnen werden.

3. Um nun von w* noch zu w zu kommen, ist noch eine Drehstreckung und an-
schlieBende Translation erforderlich (nach (6.22)).

Da alle elementaren Abbildungen, aus denen sich die allgemeinen gebrochen linearen

Abbildungen zusammensetzen lassen, kreistreu sind, gilt der

. . az+b . . . .
Satz 6.2: Die durch Gleichung w = —rd vermittelte Abbildung ist kreistreu.
. X . (z—= DA +j) . .
Beispiel 6.4: Durch die Funktion w = — '2("——1) ist das durch die Eckpunkte z; =1,

2, = 1 + j, z3 = (1 + j) festgelegte Dreieck der z-Ebene in die w-Ebene abzubilden. Skizze!
Losung: Durch Umformung nach (6.20) erhalten wir

‘._—(l+j)z+(l+j) B 1+j+(|+j)~2—(1+j)-2jA 1

v 2z — 2 - 2 2 22— 2
1+ 1

-T2 +z—j.

1. Zunichst bilden wir z* = z — j. Das Dreieck wird also parallel verschoben (Translation).

1
2. Durch Inversion gewinnen wir w* = —- (Bild 6.8). Da nach Vergleich mit (6.20) a, = 1 ist, folgt
nur noch :
1+]
2

3. eine reine Translation w = — + owk.

1 1
Die Bildpunkte sind w, = 0, w, = 7(1 —iwy =5 +)).

Teilen wir Zahler und Nenner in (6.17) durch eine der komplexen Konstanten,
£
z. B. durch a, dann erhalten wir einen Ausdruck der Form w = —Cj_l;—bd* Das be-
z

deutet, daB die allgemeine gebrochen lineare Funktion von drei Parametern abhingt.
Wir koénnen also die Aufgabe formulieren, drei vorgegebene Punkte der z-Ebene durch
die allgemeine gebrochen lineare Funktion in drei vorgegebene Punkte der w-Ebene
abzubilden. Wir erhalten aus dieser Interpolationsaufgabe die drei Gleichungen

az; + b

g (=129

w; =

S.6.2
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imag. Achse

/2=27=wj, -
reelle Achse

1
AN
A8
Jaz,‘
Bild 6.8. Konforme Abbildung Bild 6.9. Kreisschar

Durch Elimination von a, b, ¢ und d folgt die gesuchte Transformation
W= W, Wy =Wy Z—2 Z—Z

W= Wy Wy — W,  Z—23 2, — 2,
bzw. (6.23)
W— W W, — Wy Z—2zy | Z,— 124

Wo— Wy W, — Wy  zZ—2z3 Z,—2Z3
z—2zy z,—1z4 . - ;
P bezeichnet man auch als Doppelverhiltnis (oder anharmonisches
— <3 2 T 43
Verhiltnis) von vier Punkten und schreibt dafiir (z,, z,, z, z3). Das Doppelverhiltnis
ist eine Invariante der allgemeinen gebrochen linearen Abbildung.

Beispiel 6.5: Gegeben sind die drei Punkte z; = 1, z; = —j und z3 = 1 + j. Bestimmen Sie

die allgemeine gebrochen lineare Transformation, die diese Punktein w; = —1 — 2j, w, = —1+2j,
w3 = —j der w-Ebene tberfiihrt.
Losung: Aus (6.23) erhalten wir durch Einsetzen der gegebenen Punkte nach entsprechender
z4+1-j

Umformung w = ——— .
z—1+4]

Aufgabe 6.1: Im Bild 6.9 ist in der z-Ebene eine Kreisschar durch die beiden Punkte z; und z,
bestimmt. Welches Bild ergibt sich durch eine gebrochen lineare Abbildung in der w-Ebene, wenn
z; und z, Fixpunkte sind?

Aufgabe 6.2: Bestimmen Sie die gebrochen lineare Funktion, die die Punkte z; = —1, z, =1,

4
z3 = 0 in die entsprechenden Bildpunkte w;, = 0, w, = — —3-j und w3 = —j abbildet.

6.1.4. Hinweise auf weitere praktisch wichtige Abbildungen

Die allgemeine gebrochen lineare Funktion, deren Eigenschaften im Abschnitt
6.1.3. durch drei aufeinanderfolgende Abbildungen untersucht wurden, ist ein Bei-
spiel fiir zusammengesetzte Funktionen. Durch eine Folge von Zwischenabbildungen
lassen-sich systematisch praktisch wichtige konforme Abbildungen erzeugen. Als
Beispiel soll auf die im Abschnitt 3.4. erwdhnte Joukowski-Funktion f(z) = z + 1/z
verwiesen werden.
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Im Abschnitt 3.5. wurden Abbildungseigenschaften einiger elementarer Funk-
tionen untersucht. Solche einfache konformen Abbildungen lassen bereits zahlreiche
praktische Anwendungen zu. Zum Beispiel konnen die Eigenschaften der Exponential-
funktion w = e* genutzt werden, um eine Parallelstromung mit konstanter Ge-
schwindigkeit in der z-Ebene parallel zur x-Achse in eine Quellstromung in der
w-Ebene abzubilden, d. h. in eine Strémung, bei der alle Stromlinien radial vom
Nullpunkt der w-Ebene ausgehen.

Eine wesentliche Anwendung der Funktion w = e* gewinnt man iber ihre Periodi-
zitatseigenschaft, die in der Theorie der Kreiselrdder zur Untersuchung von Stro-
mungen um periodisch angeordnete Korper, wie z. B.umsog. Fliigelgitter, genutzt wird.

Durch Zusammensetzen von Exponentialfunktionen erhdlt man weitere interes-
sante Abbildungen. Die Funktion w = tan z liefert die konforme Abbildung einer
Dipolreihe auf eine Parallelstromung oder einer Quell-Senken-Reihe auf eine ein-
zelne Quelle. Desgleichen erhilt man liber w = cot z die konforme Abbildung einer
Dipolreihe auf eine Parallelstromung oder einer Quell-Senken-Reihe auf eine ein-
zelne Senke.

Praktisch bedeutungsvolle Anwendungen erfordern jedoch ein weiteres intensives
Studium der Theorie der konformen Abbildungen. Deshalb muB hier auf die ein-
schlagige Literatur, wie z. B. [2], verwiesen werden.

6.2. Schwarzsches Spiegelungsprinzip

Wir wollen einen Satz kennenlernen, der es uns erlaubt, unter gewissen Bedin-
gungen aus dem Verhalten der Abbildung in einem Gebiet G auf das Verhalten der-
selben Abbildung in einem anderen Gebiet G’ zu schlieBen.

Satz 6.3 (Schwarzsches Spiegelungsprinzip): G sei ein Gebiet, zu dessen Rand ein
Stiick einer Geraden g oder eines Kreises k gehdrt; eine Funktion f(z) sei in G holo-
morph und auf g bzw. k stetig. Wenn g auf die Gerade g' bzw. k auf den Kreis k' ab-
gebildet wird, dann werden Punkte aus G, die zu g bzw. k spiegelbildlich liegen, in
Punkte von G abgebildet, die spiegelbildlich zu g' bzw. k' liegen.

Unter dem zu z, beziiglich des Kreises k& gehdrenden Spiegelpunkt z, verstehen
wir dabei denjenigen, der auf der Verbindungsgeraden durch z, und z, liegt und
der Bedingung

lzi = Zol lz2 — 2o = 1? (6.24)
gentigt (vgl. Bild 6.10).

ol z-Ebene
z-Ebene
Bild 6.10. Spiegelung am Kreis Bild 6.11. Spiegelung am Kreis

S.6.3
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Satz 6.3 kann mit Vorteil bei der Anwendung der konformen Abbildung an-
gewandt werden, er erleichtert die Berechnung ebener Felder mit kreisférmiger
und geradliniger Begrenzung.

Die in 5.3 betrachtete analytische Fortsetzung von Funktionen f(z) mit Hilfe von Potenzreihen
ist hdufig umstdndlich. Man gewinnt die analytische Fortsetzung von f(z) auch mit Hilfe des Schwarz-
schen Spiegelungsprinzips. Ordnet man dem Spiegelbild z* von z an k denjenigen Punkt w* zu, der
aus w = f(z) durch Spiegelung an &’ hervorgeht, dann ist w* = f*(z*) analytische Fortsetzung

von f(z).

Da fiir 2 > 0, reell, z, — z, = A(z2 — z,) gilt, folgt aus (6.24) |z, — z,| |z, — 2]
=1lzy — zo|* = r% Mit |z, — zo* = (z; — z) (2, — Zo) erhalten wir

(22 = 20) (Z; — Zo) = ™. (6.25)

Ebenfalls ohne Beweis, der Leser kann ihn leicht selbst fiihren, sei noch folgender
Satz angefiihrt:

Satz 6.4: Sind z, und z, zwei beziiglich des Kreises k spiegelbildlich gelegene Punkte,
dann schneidet jeder durch z, und z, gehende Kreis k,,» den Kreis k senkrecht. Um-
gekehrt folgt, daf3 zwei Punkte z, und z, spiegelbildlich zu einem Kreis k liegen, dessen
Mittelpunkt auf der Verbindungsgeraden durch z, und z, liegt, wenn dieser Kreis k
einen durch z,, z, gehenden Kreis k,, senkrecht schneidet (Bild 6.11).

Beispiel 6.5: Bestimmen Sie die gebrochen lineare Funktion w = f(2), die das Kreisringgebiet G der
2 9

z-Ebene, das von den beiden Kreisen k,: |z| = 1 und k,: \z + ?{ =3 begrenzt wird (Bild 6.12),

auf das Kreisringgebiet G’ der w-Ebene, das von den beiden konzentrischen Kreisen k7 und k; mit

Mittelpunkt w, = 0 begrenzt wird, abbildet. Dem Punkt z; = —1 entspreche bei der Abbildung

der Punkt w; = j, und k{ sei der kleinere der beiden Kreise k{, k3 (Bild 6.13).

w-Ebene
Bild 6.12 Bild 6.13
Abbildung eines Kreisringgebietes Abbildung eines Kreisringgebietes
Lésung: Mitz, = —1 — wy = j liegt fest, daB k{ der Einheitskreis der w-Ebene ist. Beziiglich der

beiden Kreise k7 und k; sind w, = 0 und w3 = co'Spiegelpunkte in der w-Ebene. Konnen die zu
w, und ws gehorenden Bildpunkte z, und z; in der z-Ebene bestimmt werden, dann liegen drei
Punktepaare —1 —j, z, > 0 und z3 — 0 fest, und nach (6.23) kann die gebrochen lineare
Funktion ermittelt werden. Da z, und z3 nach Satz 6.3 ebenso wiew, und w; Spiegelpunkte sind, folgt
aus (6.25)

2 2 81
25 =1 und (zz + ?) (z} + ?) - (626)
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Aus beiden Gleichungen eliminieren wir Z3 und erhalten
2 1 2 81
(o335
5)\z, s 25

1
Daraus folgen die beiden Losungen z;; = 5 und z;, =

Da wir nach (6.25) auch von den Gleichungen 5
2 2 81
5 =1 d 7, + — 6.27
232, un (23 + -——5) (z2 5) 3 (6.27)

hitten ausgehen konnen, stellen z,; und z,, die beiden gesuchten Punkte z, und z3 der z-Ebene
dar. Um zu entscheiden, welcher der beiden Punkte z,; und z,, gleich z, bzw. z3 ist, lassen wir in

1
der z-Ebene einen Punkt die Strecke auf der reellen Achse von 5 bis 5 durchlaufen. Von diesem

Punkt wird der Kreis k, als erster iiberschritten. Der zugehorige Bildpunkt in der w-Ebene wiirde
sich bei dieser Bewegung auf einer Geraden von 0 nach co bewegen und dabei den Kreis k{ als ersten
iiberschreiten. Wir hatten nun vorausgesetzt, da ki der kleinere der beiden Kreise k1, k; sein soll,
somit kann der sich bewegende Bildpunkt in der w-Ebene nur dann den Kreis k] vor dem Kreis k3
tiberschreiten, wenn er sich vom Punkt 0 nach dem Punkt oo bewegt. Somit folgt

—=0 5 0.
3 >
) 1 : i )
Mitz; = =1, 2, = 5 zz3 = 5und wy = j, w, = 0, w3 = 00 erhdlt man aus (6.23)
\
o ow—w wy—90 z—2zy Z;— 123 w— Wy z—2z1 Z— 123
lim = = - X
G W—0 Wy — wy z—2z3 -1, Wy — Wy z—2z3 zZ;—2;
5z—1
w = .
5

Aufgabe 6.3: Gesucht ist die gebrochen lineare Funktion w = f(z), durch die das Innengebiet des
Kreises k: |z + 1| = 2 der z-Ebene auf die obere Halbebene der w-Ebene so abgebildet wird, da3
der Punkt z; = —j in den Punkt w; = j und der Punkt z; = 1 in den Punkt w, = 0 iibergeht.

6.3. Abbildung einfach zusammenhingender Gebiete auf das Innere eines
Kreises

Nach dem Riemannschen Abbildungssatz konnen einfach zusammenhidngende
Gebiete mit mindestens zwei Randpunkten durch holomorphe Funktionen einein-
deutig und konform auf das Innere eines Kreises abgebildet werden.

In 6.1.3. hatten wir den Satz ausgesprochen, da3 die Abbildung durch die allgemeine
gebrochen lineare Funktion kreistreu ist. Legen wir also durch drei Punkte z,, z»
und z; der z-Ebene einen Kreis k, dann geht dieser durch die Abbildung (6.17) in
einen Kreis k' iber. Durchliuft ein Punkt den Kreis k£ von z; nach z, und nach z;,
dann wird der Kreis k" in der w-Ebene von w, nach w, und nach w; durchlaufen. Wir
kénnen also einen gegebenen orientierten Kreis k& der z-Ebene, der durch die drei
Punkte z,, z,, z3 geht, stets so abbilden, daB er in einen Kreis k’ der w-Ebene iibergeht,
von dem ebenfalls drei Punkte vorgegeben wurden, sofern auf beiden Kreisen die
vorgegebene Orientierung eingehalten wird. Ohne Beweis geben wir folgenden Satz an:
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Satz 6.5: Bei der Abbildung ecines orientierten Kreises k der z-Ebene vermittels der
allgemeinen gebrochen linearen Transformation (6.17) in den Kreis k' der w-Ebene geht
das beim Durchlaufen von k zur Linken (Rechten) liegende Gebiet der z-Ebene in das
beim Durchlaufen (mit gleicher Orientierung) von k' zur Linken (Rechten) liegende
Gebiet der w-Ebene iiber.

1. FaBt man die reelle Achse der z-Ebene als Kreis k auf und legt auf k drei Punkte
zy =, z; =1, z; =0 und in der w-Ebene die drei Punkte w, =1, w, = —j
und wy = —1 fest, d. h., die reelle Achse der z-Ebene soll in den Emheltskreis der
w-Ebene abgebildet werden, dann kénnen wir nach (6.23) die Abbildungsfunktion
bestimmen. Man erhalt

w—1 —j+1 " z—01-0

oy s R

z—0
Da lim Ao = L ergibt, erhalten wir die Abbildungsgleichung
b0 z

.:z_j_ )
=i (6.28)

Durchlduft man auf der reellen Achse die Punkte in der Reihenfolge z,, z,, z,
dann liegt die obere Halbebene der z-Ebene zur Rechten. Beim Durchlaufen der
drei Punkte w,, w,, w; auf dem Einheitskreis in der w-Ebeneliegt das Innere des Ein-
heitskreises zur Rechten. Die obere Halbebene der z-Ebene wurde somit durch die
Transformation (6.28) in das Innere des Einheitskreises der w-Ebene abgebildet. Um
also die Aufgabe zu 16sen, ein einfach zusammenhéingendes Gebiet in das Innere
eines Kreises abzubilden, kann auch die Aufgabe betrachtet werden, das abzu-
bildende Gebiet in die obere Halbebene der komplexen Ebene abzubilden, da
durch eine anschlieBende Abbildung die obere komplexe Halbebene in einen Kreis
abgebildet werden kann.

Es konnen weitere Funktionen angegeben werden, die eine Abbildung auf das
Innere eines Kreises bewirken.

2. Die in 3.5.1. betrachtefe Potenzfunktion w = z" (n € N) bildete die z-Ebene auf
die n-bléttrige Riemannsche Flache ab. Ein durch 0 £ ¢ < 2—; festgelegter Winkel-
bereich der z-Ebene konnte auf die einblattrige w-Ebene abgebildet werden, d. h.,
wir konnen den durch 0 < ¢ < -;- festgelegten Winkelbereich der z-Ebene durch die

Funktion w = z" auf die obere Halbebene der w-Ebene abbilden.

3. Durch die Funktion w = e konnte ein Parallelstreifen (vgl. 3.54.) —= <y = =
umkehrbar eindeutig auf die gesamte w-Ebene abgebildet werden. Bilden wir nun
den Parallelstreifen 0 < y < = durch die Funktion w = e auf die w-Ebene ab, dann
erhalten wir als Bild die obere Halbebene der w-Ebene.

4. Als abschlieBendes Beispiel wollen wir die Abbildung eines beschrinkten Poly-
gons in die obere Halbebene der w-Ebene erwihnen. Die Schwarz-Christoffelsche
Formel, die die eben erwiithnte Abbildung bewirkt, sei hier ohne Beweis genannt.
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In der z-Ebene sei ein Polygon mit den n ,,AuBlenwinkeln o= (i = 1,2, ..., n)

gegeben. Da fiir ein n-Eck die Summe der ,,AuBenwinkel* gleich 27 ist, gxlt Z o =2,
Durch die sog. Schwarz-Christoffelsche Formel

dt
I [ e e 6.29)
0

wird das Innere G des Polygons (vgl. Bild 6.14) in die obere Halbebene abgebildet
(vgl. Bild 6.15). Die u; sind die den Ecken des Polygons zugeordneten Punkte der
reellen Achse der w-Ebene. Die komplexen Konstanten K, und K, bewirken eine
Drehstreckung und Translation, hidngen also nicht von der Form, sondern nur von
der GroBe und Lage des Polygons in der z-Ebene ab.

Drei Punkte der z-Ebene konnen drei beliebigen Punkten der w-Ebene zugeordnet
werden. Ordnet man einem Eckpunkt des Polygons den unendlich fernen Punkt der
w-Ebene zu, z. B. u,, = oo, dann ist das entsprechende Glied (# — uy)*= in der

Bild 6.14. Zur Anwendung der Bild 6.15. Zur Anwendung der
Schwarz-Christoffelschen Formel Schwarz-Christoffelschen Formel

Abbildungsformel (6.29) zu streichen. Artet das Polygon aus, z. B. in einen Halb-
streifen, d. h., ein Eckpunkt des Polygons riickt in das Unendliche, dann ist der
zugehorige AuBenwinkel gleich = und damit o = 1. Beispiele aus der Elektrotech-
nik zur Anwendung der Schwarz-Christoffelschen Formel findet der Leser z. B. in
[15, S. 212fF.].

Dieser Aufgabenstellung kommt insofern groBe Bedeutung zu, da in vielen Fillen
praktisch wichtige Untersuchungen und Uberlegungen oft an einfachen geometri-
schen Figuren durchgefiihrt werden koénnen.

8 Greuel/Kadner, Komplexe Funktionen
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Losungen der Aufgaben
2.1: a) Nach (2.5), (2.6) und (2.3) folgt:

) = ML=l + 4l _\/(1+1)(9+16)_

11 +jl1-2-2j 1+D@E+4
X 1 S— 2 1
|Ry + joL| R2+jw_C \/Rf + w2 RS+ el
b) 181 = ] = RO
Ry + R)) +j|oL — — 2 -
(Ry + Ry) J( wC)l A/(R1+R2) +(wL wC)
(R2+ 2L2 R2 l
ekt e
13l = TR
(Ry + Ry)* + (wL - —)
C
2.2:a) Strecke von z; =1 — 2jbisz, =4 + j(Bild L 1).
b) Es liegt ein orientierter Teilkreis mit Mittelpunkt zo = —2 + j und Radius ro = 3 vor
(Bild L 2).

Bild L 1. z-Ebene Bild L 2. z-Ebene

2.3: Fiir die Strecke s gilt allgemein bei linearer Teilung (2.25):
z=z1+Hz, —z) = =3j+ (=2 +4j), O0=r=1.
Fiir den Kreis k lautet die Gleichung nach (2.26)

-
2p) =z + roe® =1+ ¢, ~—;§¢§n.

777
i7

z-Fbene
Bild L 3. z-Ebene Bild L 4. z-Ebene Bild L 5. z-Ebene
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24:a)BildL3

b) Bild L 4

) HN=2=l+z, z=x+]y;

(1-2)0-2)=A+2(0+5)=>x2=2x+)*=0,
(x — 1)? + 2 < 1. (Kreisflache) Bild L 5.

2.5:a) Kreisgleichung k: z — 1 = 2. Geradengleichung fir g: Re(z) > 1. Fiur das Gebiet G
gilt somit: G = {z: |z — 1] £ 2ARe(2) > 1}.
b) Kreisgleichung k: |z — (=1 + 2j)l = 3. Die Fliache des Rechtecks R wird beschrieben durch
—3 < Re(z) <1 A 1< Im(z) < 3. Fiir das zweifach zusammenhingende Gebiet G gilt also

G={zijz+1-2j<3a=3<Re(z) <1nl<Im(z) <3}

¢) z= 0. S, kann durch argz = % und S, durch argz = IT beschrieben werden. Fiir das schraffierte

Gebiet gilt somit -—6—- <argz < % und z £ 0.

26:Re(z?) =x*—y*<a BildL6und L7

%

Fa<0:

I

Bild L 6. z-Ebene Bild L 7. z-Ebene

3.1 i i =zl =)
2=zl x—ld+iy (= 2P + 2]

y . x = |z|
(x = lz)? + »*° (x = lz? + »*

3.2: Nach (2.23) lautet die Parametergleichung einer zur reellen Achse parallelen Geraden in der
z-Ebene g: z(1) = x(1) + jc (c reell). Wihlt man auf g eine lineare Teilung und faBt ¢ als Schar-
parameter auf, dann stellt z() = 7 + je mit ¢ > 0 (reell), —c0 < ¢ < o0, die Gleichung der in
Bild 3.6 abgebildeten Geradenschar dar.

Die Abbildung ergibt

w=2z2=t>—c2+j-2ct=u+jv.
8%
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Mit u = t?> — ¢ und v = 2¢t folgt durch Elimination von ¢ eine nach rechts offene Parabelschar
1

P

deren Brennpunkte mit dem Nullpunkt zusammenfallen. Fiir das Bild der reellen Achse der z-Ebene,

d. h. fiir ¢ = 0, folgt aus u=12v=0

u+ct=

w=1t2
d. h. die positive reelle Achse der w-Ebene. Durchliuft ein Punkt die reelle Achse von links nach
rechts, dann durchlauft der entsprechende Bildpunkt wegen e (— 00, +c0) die positive reelle Achse
der w-Ebene zunichst von rechts (w = c0) nach links bis w = 0 und anschlieBend von links (w = 0)
nach rechts (w = o) (Bild L 8).

Jv

Bild L 8. w-Ebene

12
\ Bild L 9. z-Ebene

Parametergleichung des Halbkreises der z-Ebene
k:iz=re" r>0, 0=Zt<m.
Die Abbildung w = z2 ergibt
k':w=z>=r2e? = Re?, R=r*>0, 0<g¢<2r.

k’ stellt die Gleichung eines Kreises um den Nullpunkt mit Radius R = r? in der w-Ebene dar.
Die Halbkreise k der z-Ebene werden somit in Kreise k" der w-Ebene abgebildet. Wird in k ein
Kreisbogen mit dem Mittelpunktswinkel 7 = « (« konstant) durchlaufen, dann durchlduft der ent-
sprechende Bildpunkt auf £’ den zum doppelten Mittelpunktswinkel ¢ = 2¢ = 2x gehorenden
Kreisbogen im gleichen Umlaufsinn (Bild L 9).

3.3:2) f(2) = x3y? — jx23, u = x3y%, uy = 3x%2, uy, = 20%, v = —x%3, v, = —2x)3,

v, = —3x2y2. Die Cauchy-Riemannschen Differentialgleichungen sind nur fiir Punkte der reellen
und der imaginidren Achse erfiillt, also ist f(z) auch nur fiir diese Punkte differenzierbar. Nach
(3.17) folgt fiir diese Punkte .

f(2)=0.
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E ox—jy  (x—-p)? X2 —y? 4xy?
b) f@)=—= — = — 7 W= 3 2 W= Ye
z X+ jy x* +y x? +y (x% + y?)
—4x3y
Uy =3 7
&+ y%)
—2xy x? —y? —x% +y?

. =

=" 2 K v, = 2x .
P e O A g

Die Cauchy-Riemannschen Differentialgleichungen (3.16) werden nicht erfillt, d. h., f(z) ist nirgends
differenzierbar.

1 1
o)f(za)=1- 7,/’(2) = Z—z.f(z) ist holomorph fiir z % 0.

3.4:a) u=g(x), Uy=g'(x), txx=g"(x), ty=thyy = 0. Aus tyc+ uy, = 0 folgt g”’(x) = 0 und durch
zweimalige Integration g(x) = C;x + C,. Mit u = g(x) gilt u, = Cy, uy, = 0. Unter Anwendung
von (3.16) folgt vy, = u, = Cyund daraus v = Cyy + @(x), v, = @'(x) = —u,, ¢'(x) = 0, p(x) = C;.
Damit ergibt sich v = Cyy+ C,und f(2) = Cyx+ C, + j(Ciy + C3) = Cyz+ Cy(1 +j) = Cyz+C.

b) v=ax? + bxy + %, vx=2ax + by, vxe=12a, v, =bx+ 2y, v, =2c.
Uex + Uy =0:2a+ 2c=0=>c= —a, v=a(x®—y?) + bxy.
Nach (3.16) gilt
Uy =vy=bx —2ay, u=3%bx*—2axy + (), u,= —2ax+ ¢'(y)= —v,.
—2ax + ¢'(y) = —2ax — by =¢'(y) = by,  ¢(») = —}by* + C.
Fir u folgt dann
u = %bx? — 2axy — }by* + C =} b(x* — y*) — 2axy + C.
f(2) = $b(* = y?) = 2axy + C + jla(x* = y*) + bxy].
Mit f(1 + j) = 0 erhdlt man
» 0=-2a+C+jb=C=2a, b=0. f(z) =2a(l — xy) + ja(x* — y?).
3.5: W=f(2)=~12—=—12—e‘2”” :—t-(cosZ«p—jsinZ(p).
z r r

f@) = U,y + jV(x,y) = Ulr,g) + iV (r,9).

. ~ 1
Aquipotentiallinien: U= const = c¥: ¢} = —5-Cos 2¢ = r? = ¢y cos 2¢;
r
Stromlinien: ¥ = const = ¢¥: ¥ = — ! in2p=r?= in 2
V= =cF: F = —;2—51 @ =>r® = —c,sin 2¢p.
3.6: Nullstellen des Nenners: (z2 — 2z) [z2 — 2(1 — j)z — 2j] = 0.

1. 2z=2)=0=>1z =0, z =2;

2, 2221 =)z -2=0=z=z=101—]).
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Ansatz:

3.7:a)

Losungen der Aufgaben

A Ay A3z Asz
&=t Tt A i a-y

Ar=1+], Ap=-2+4]j, Au=]j, A»=0,

LS et R S
e R (e T

e =e" =e¥(cosy + jsiny), ef=e"" =e*(cosy—jsiny),

e’ =e*(cosy — jsiny) = e’ = e’

b) Nach (3.58) gilt

. )
sin(z + 2x) = 5 [elc+2D _ g-ic+2]

Unter Anwendung von (3.45) folgt daraus

1
sin (z + 27) = — (e — e,
2j

und nach (3.58)

sin(z + 27) = sin z.

¢) Nach (3.45), (3.57) und (3.58) gilt

1 ei(z+2.n) _ e—j(1+2:1) 1 elz . e_it
tan (z + 27) = —
J

- =—— = tanz.
e](uln) + e—x(:+2n) j eJ. + e—lz

dMitz=—j 2l =1,argz = — % und (3.48) folgt

k3
Log(-)=Inl+jl——)=—j—.
og (—j) = In J( 2) i3

e) Nach (3.57) und (3.70) gilt

cos jz = % (" + e7) = L(e* + ¢*) = cosh z.

™
Unter Beachtung von cos & = sin (— - a) ergibt sich

3.8:a)

b)
c)

2
™
cosh (x + jy) = cos j(x + jy) = cos (—y + jx) = sin (7 +y- jx).
(W T kg
cos (j —) = cosh — = 2,5092;
2 2

sin (1 — j) = sin1cosh1 — jcos I sinh 1 = 1,2985 — j - 0,6350;
cosh [7(1 + j)] = coshmcos = + jsinhwsinw = —11,5920.

3.9: a) Nach (3.69) folgt

_ 4cos80°

tan 2x = = —0,2315= x = 0,1137,

4sin (—80°)
tanh 2y = ————— = 07878 = y = 0,6837.
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1 ’ —sin z

3.10: a) ) = .
1 — cosz, (1 — cos 2)*
sinh z -1 cosh z

b) w= =_— N W= — .

1 —cosh2z  2sinhz 2sinh? z

—2¢*
[9 W=
) e

41:a) Cpiz()=—-1+1t2+]j), 0=r=1, H)=2+].
1
1 . 1 " 1
I == &f2+h Q2+ jdt=— [el(2+i)]o = _(ez+} - 1).
€ e e
0

b) Copiz(t)==14+2t, 0=r=1, =2,
1

1 1
Ly =-—-fe2‘2dt=—(ez =
e €
0

Chpiz(t) =1 + 1], 1) =], 0=r=1
1
L, = fe“"'jdz: ee — 1) = l(e2+j —e?).
J e
I =1 + !2z~
4.2: Gleichung des Kreises z(f) = zo + 0 ¥, 0 = ¢ < 27, £(t) = gj &'*. Nach (4.3) folgt

%n 27
I= J (20 + ge" _ Zo)"@j etdr = gn+1j | elnt i de,
0 0
27
nE =10 I=jg" [ [eos (n+ 1) ¢+ jsin(n + 1) #lde,
0
et .
I=-= 1 [sin(n + 1)t — jcos (n + 1) ]3" = 0.

n+
27

1 1 N
n=—-1:1= dz = ei e dr = 2mj.
z— 1z o

¢ 0

0 fiur n¥ -1,

%(z— zo)"dz = { X
& 2nj fur n= —1.
4.3:C: z(1) = 0 &, 0 £ ¢ < 2%, dz = gj &' dr. Nach (4.8) ergibt sich
. 27
’ J dZI = j lo" ™| |oj € de|,
(61 0

27
“ dz| < f "t de = 2mp™t.
64 0

119
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4.4:f(z) = ist fiir z + zo holomorph.

1
(z = zo)"

a) Da der Punkt zo von der Ellipse nicht umschlossen wird, gilt nach (4.10)

§ dz _
-z

Gy
b) Nach dem Ergebnis von Aufgabe 4.2 gilt fiir z & z°
f dz _ {0 fir n<1,

(z — zp)" - 2nj fir n=1.
2

¢) Es gilt nach (4.14) das gleiche Ergebnis wie unter b).
4.5: a) Nach (3.49) ist F(z) = Log (z — z,) in —= < arg(z — z,) < = eine Stammfunktion zu

f@=

z—2z
b) Partialbruchzerlegung
1 1 1 1
D)= ——— = — [ —— — —— ],
1@ a? + 72 2aj (z—ja z+ja)
1 . .
F(z) = — [Log (z — ja) — Log (z + ja)].
2aj
Da Log (z — ja) in —% < arg(z — ja) = w (z 4% ja) und Log (z + ja) in —m < arg(z + ja) < =

(z # —ja) holomorph sind, kann das Holomorphiegebiet fiir F(z) als einfach zusammenhédngendes
Gebiet angegeben werden (Bild L 10).

~4 =

|
[ 7
\/
—_————— Y Bild L 10. z-Ebene
~ja

4.6: Schneiden wir die z-Ebene langs des von z = z, ausgehenden parallel zur reellen Achse nach
links bis ins Unendliche verlaufenden Strahles auf, so ist f(z) in dieser aufgeschlitzten z-Ebene holo-
morph, und dort gilt fiir*

b

dz
n=1: f
7 —

a

5
= Log (b — zp) — Log (a — zp).

= Log (z — z)
0

1
— (b~ 20"~ (a = z0)"™").

a

b
dz 1 .
1: —— = ———(z = 7)™
n f(z_m" — G-
a
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4.7: Nach (4.20) folgt

‘.zsinzdz=zcosz+ ‘.coszdz= —zCosz + sinz.
-1 .

a) f zsinzdz=(—zcosz-+—sinz)|1 = —1,683.
i

b) &zsinzdz=0.

4.8: Partialbruchzerlegung:
1 1 ( 1 1 )
2Z2—(+)z+j 1-j\z—=1 z-j/)

22 + jz 1 22 + jz 22 +jz -
I=@p——"—"——dz=— <——dz — dz( = .
fﬁz2—<1+j>z+; 1—j{3gz—1 f}; z=] z} foeh
€ € [

a) I'’=1,, da I, = 0, Punkt z, = j wird von G, nicht umschlossen. Mit f(z) = z* + jz folgt
aus (4.22)

22 4 jz

i#;__l_dz -
z—1

Gy
b) I” = 0, da €, die beiden Punkte zo; = 1 und zp, = j nicht umschliefit.

27j(1 + j) = —2=.

-1 22 + jz -1
) "= =— —dz = - 27if(j) = 2n(—1 + j).
1-j z—] 1-j
[ g
d) I=I+1"=2r(-2+j) (BildL1I).
4
&
7
Fa z
z-Ebene
Bild L 11. z-Ebene Bild L 12. z-Ebene
4.9: Partialbruchzerlegung:
zCos z 1 (zcosz zcosz Bild L 12)
= - 1 X
z2-n 2x\z-=x z+1r)

1 ZCOos z zCos z
I=—{§—-———dz—§ dz},
2% z—m z+m

€ [
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a) I = 0, die beiden Punkte zp; = = und zp, = —= werden von €; nicht umschlossen.

1 zCos z zCos z
b) I=-——:{§ dz —§ dz},und mit f(z) = z cos z folgt

z—%
€,y 2

z+ 7

I=—%—ij~{f(r:) f(—m)} = —{-cos-r+1rcosr:} — 2mj.
2r

4.10: Nach (4.24) gilt mit f(z) = &

2! & e? 1" (@ 2nj
f"2) = — dz = dz =
2nj | (z—2)° (z-2)° 2!
[}
vj v o 2 M »
: = > =
5'l'v+j v2+l-{L1112+1'Dav’+1:vz+l_1)24—1:2

divergente Minorante, somit ist die gegebene Reihe ebenfalls divergent.

= ne?j.

1
= — gilt, existiert eine
2v g

1 1
5.2:¢c,= > Nach (5.12) folgt r = —————=== lim » = 0. Die Reihe ist bestindig konvergent.

) 1 Voo
lim
(2

®
53:a) f(2) = s z)" véo( ) r=1 (z2l <1).

22n

b) f(z) = 2sin? z = 2( 1yt —— @i 2" =0,

5dia)  ful) = z o %)m ( i)":?_ (%)I(H%) . =%(Bild L 13),

=0

b) fi2(2) = 2

1 . rulipu
T ra=+/2 BIdL13).
n=0

z- fﬂm Bild L 13. z-Ebene
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5.5: Da |a| < |b| gilt, kann die Laurententwicklung fir das im Bild L 14 eingezeichnete Ring-
gebiet G erfolgen. Partialbruchzerlegung:

1 1 1 1 1

f(z)=(z—a)(z—b):a—b z~a_a—-bz—b_a—b (1 a)
z(1 = =

4

n

I Y ——— A b
T EToGc-bn a-b {m 7 5 b"“}’ Al
= rore Bild L14. -Ebene
5.6: Polstellen:
z

224 1=0= 2oy =j, Zop= —j. e
01 =] 02 ] f@) CrG=)

Entwicklung an der Stelle z5; = j:

i)t 1 .
fo= —SZhl (1 ).
Z—=j+2j) =) . j-z z—]
21 - —
2j
Fir| 2| < 1=z - jl <2
2j

gilt dann die Reihenentwicklung
1 i j—z\" 1 j (i
0= (1+) (5 =5 (14 ) = () e-n
2j z=j ,Eo 2j 2j z—j ,Eo 2

SR i RIS IO | o3
f(~)~2j(1+ A)[1+2(z Do §<z—n+...],

z—)

LN I RS S P SN HP
f@@) [ +=+=(@-j 8(z J)+E(Z J)+A..],

2ilz—;) "2 4
1 1 1 1 1
= — [ —_1 —— -2 - —1)3
=5 Y zay TP oy CTV T agr e
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Entwicklung an der Stelle zp, = —j:
1 J 1 . j s w3
ﬂz)_Z(z—+j)+F+F(z+J)_?(z+J) —-2?(z+1) + o
1 L ) 1 1
5.7:a) z) =————! —_— s Res —MMM— =—
@ a—b nz=:1 2" ,Z:o bt (z—a)(z—b) L:O a—b
b) R z 1
T =
1+22) o 2
) R z 1
c s ——— =—.
1+22|-_; 2
S8:0) f@=cl=14 sy ] Rese., g = 1
.8:a z)=¢e/* = —z—+—2—!7z—+w+..., esef; —o = 1.

b) Fir jédes k =0,1,2,... liegt eine einfache Polstelle vor.

(sin z) (z - ; - kn-)

Res (tan z) = lim ——————— = —1 (firjedes k.
x a cos z
0=3 tha 1o Tk
P A
5.9: Wegen cosz— 1= — e + T + ... liegt bei z=0 eine Polstelle zweiter Ordnung vor.

a) zo = 0 wird von € umschlossen, also folgt nach (5.37)

1

€5 ————r =0.
cosz— 1

. (z=02%7 . (cosz—1)2z+ z?sinz
=1 = lim
150 1m0 (cosz — 1)?

20=0 cosz — 1

(Der Grenzwert kann mit Hilfe einer Reihenentwicklung ermittelt werden.) Fiir das Integral erhalten
wir somit

=0.

dz ) 1
——— = 27jRes ———
cosz— 1 cosz—1

¢

29=0

b) Da € keine singuldren Stellen des Integranden umschlieft, folgt nach (4.10)

§ dz
— =0.
cosz— 1

¢
5.10: a) Mit (5.41) und (5.42) ergibt sich

2 .
N

dt z —jdz

5+4cost .1( 1)_ 222 +52+2°

[
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-1
d.h., es liegen Pole bei z; = - und z, = —2. Da nur z; innerhalb des Einheitskreises liegt, folgt
nach (5.43)
N —jd 1 =j
3—24—172-(-5 = 2rtj Res R¥(z) = 2rj lim (z + —2—) —I—J———
S ] AL TR P
¢
2r
=5
1
b) f(z) = T ist in der oberen Halbebene tberall auBer in zo = j (Pol 3. Ordnung) holo-
morph. Nach (5.37) folgt
R 1 1 i {( i 1 L i 12 3.
es———| =—Iim{(z -jP}——————F =—Ilim—— = — —j.
T+ 2 |y 20 GCrhG—r| 2. ey 16

Mit (5.45) erhalten wir

0
dx i 3 3
—_ =127 - —j)=—m.
fa+ff ”( 10 8
-0

6.1: Nach Satz 6.2 ist die gebrochen lineare Abbildung kreistreu. Die Kreisschar der z-Ebene geht
also in eine Kreisschar der w-Ebene iiber. Die gesamte Kreisschar geht als Ganzes betrachtet in
sich iiber, die einzelnen Kreise nicht.

6.2: Nach (6.23) folgt

—_—1 + 1 .
w—o0o 3TN siri-0 0 2+
Wi 4 S z-01+1 -+ 2
—-——j—0
3
6.3: Zunichst bestimmen wir den zu z; = —j gehorenden Spiegelpunkt z; am Kreis k. Nach
(6.25) gilt dann
r? 4 i
(23— 20) (2, —Zo) =r*=ry =z + ——— = —1 + - =1-2j
-2 i+1

Damit sind drei Punktepaare
—ji=i 1-0 und 1 —2j— —j

gegeben. Nach (6.23) kann dann die Abbildungsfunktion ermittelt werden:
w—j 0+] z+4]j 1-01-=2j z—1

w+j 0—j z—(1-2j 1+ zZ2+j) -2+ 3
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