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Aus dem Vorwort zur ersten Auflage

Vor mehreren Jahrzehnten wurden in der mathematischen Ausbildung der Nicht-
mathematiker nur einige Ergebnisse aus dem Bereich der linearen Algebra berück-
sichtigt, und zwar im wesentlichen solche, die zur Herleitung und Formulierung von
Sätzen der Differential- und Integralrechnung erforderlich waren. Seit etwa 20 Jahren
ist die lineare ‚Algebra ein selbständiges und geschlossen dargestelltes Teilgebiet im
Rahmen der obengenannten Ausbildung geworden, Das ist einmal Ausdruck der
Tatsache, daß neue, besonders praxiswirksame Teilgebeite der Mathematik wie.zum
Beispiel lineare Optimierung, ‘Graphentheorie und Netzplantechnik, Spieltheorie,
Tensoralgebra und -analysis umfassende Grundkenntnisse der linearen Algebra vor-
aussetzen. Zum anderen gibt es vielfältige Bestrebungen für eine zielbewußte und
systematische Umgestaltung der mathematischen Ausbildung der Nichtmathematiker
in bezug auf Inhalt, Methode und Organisation. Und ferner kann-der Einfluß der
Entwicklung der Rechentechnik und der stärkeren Beachtung des Systemaspektes
nicht übersehen werden. So ist es diesen und sicher noch manchen anderen Fakten
zu danken, daß die lineare Algebra gegenwärtigzu den wichtigsten Ausbildungs-
gebieten der Mathematik für Nichtmathematiker gehört.

Zahlreiche Kollegen und Mitarbeiter haben das Zustandekommen dieses Bandes
unterstützt. Besonders sei Doz. Dr. B. Bank, Berlin, Dipl.-Math. H. Ebmeyer,
Dresden, Dipl. agr. ing. H. Seythal, Bernburg, sowie Dr. H. Henning, Dr. M. Holz,
Dr. F. Juhnke, Dipl.Math. M. Klaus, Dr. I. Paasche, sämtlich Magdeburg, für
Hinweise und Anregungen gedankt.

Vier Studenten waren dankbare Diskussionspartner bei der Erarbeitung des Manu-
skriptes: Gisela Hinz, Dirk Lau, Hartmut Ortlofl‘ und Jürgen Scharf; ihnen gebührt
Anerkennung und Dank.

Magdeburg, im Frühjahr 1974 Die Verfasser

Vorwort zur fünften Auflage

Für die vorliegende fünfte Auflage wurde eine generelle ‚Überarbeitung vorge-
nommen. Das Kapitel „Vektoren“ ist an den Anfang gestellt worden; damit wird
der .Reihenfolge der Stoifbehandlung in der Ausbildung entsprochen. DenpAnwen-
dungen der Vektoren in der Geometrie ist mehr Raum gewidmet. In den Kapiteln
„Matrizen und Determinanten“ sowie „Systeme von linearen Gleichungen und line-
aren Ungleichungen“ werden Grundkenntnisse vermittelt; die Bezüge zwischen den
drei einleitenden Kapiteln sind wesentlich erweitert und ausgebaut. Das Kapitel
„Lineare Vektorräume und lineare Abbildungen“ dient der Systematisierung des
gebotenen Stoffes, betrachtet ihn unter übergeordneten Gesichtspunkten und bereitet
eine abstrakte Betrachtungsweise vor. Von den vielfältigen, differenzierten und be-
deutsamen Anwendungen der linearen Algebra kann im folgenden Kapitel nur eine
kleine Auswahl. geboten werden. Bemerkungen zur historischen Entwicklung be-
schließen die Darstellung.

Von der l. bis zur 5. Auflage haben uns viele Kollegen Anregungen und
Vorschläge zukommen lassen; allen möchten wir dafür danken und in diesem
Zusammenhange besonders Prof. Dr. Göhde, Zwickau, Dr. Kuhrt‚ Berlin, Doz.
Dr. Purkert, Leipzig, Doz. Dr. Reibiger, Dresden, Prof. Dr. Schoch’, Freiberg,
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Prof. Dr. Schultz-Piszachich‚ Köthen‚ Prof. Dr. Sieber, Leipzig, Prof. Dr. Stolle,
Rostock, Dr. Uebrick und Dr. Werner, beide Magdeburg, erwähnen.

Dem verantwortlichen Herausgeber, Prof. Dr. H. Kadner‚ Dresden, sowie der
Leiterin des Lektorates Mathematik des Verlages, Frau D. Ziegler, sei für die stetige
und das gesamte Vorhaben fördernde Zusammenarbeit besonders gedankt.

Magdeburg, im Frühjahr 1984 Die Verfasser
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1. Vektoren

In diesem einleitenden Kapitel wird an bekanntes Wissen über Vektoren ange-
knüpft, um es auszubauen, zu vertiefen und zu systematisieren. Für das Rechnen mit
Vektoren gelten z. T. Gesetze, die anders sind als die, welche vom Zahlenrechnen her
bekannt sind; die Rechengesetze bringen Eigenschaften des Rechnens mit Vektoren
zum Ausdruck, die teilweise beim Zahlenrechnen nicht zu finden sind, nicht zu finden
sein können.

Der Vektorbegriff ist in vieler Hinsicht ein qualitativ neuer Begriff; ganz besonders
kommt das in der Vielfalt seiner Anwendungen zum Ausdruck, z. B. in der Techni-
schen Mechanik, der Thermodynamik, der Elektrotechnik, der Ökonomie und der
Mathematik — um nur einige Gebiete zu nennen. ‘

d

1.1. Skalare Größen und Vektoren

1.1.1.. Skalare Größen

Betrachtet man Größen, die in Naturwissenschaft und Technik vorkommen, so
findet man einmal die skalaren Größen, wie z. B. Länge, Masse, Zeit, Temperatur,
Energie, Leitvermögen, Elektrizitätsmenge. Jede skalare Größe besteht aus Maßzahl
und Maßeinheit. Die Maßzahl ist eine reelle Zahl und gibt die Quantität der skalaren
Größe an. Diese Größen können umkehrbar eindeutig den Punkten einer geraden
Linie — der Zahlengeraden — zugeordnet werden. Die Maßeinheit gibt die qualitativen
Merkmale der skalaren Größen an.

Beispiel 1.]:

Längel=lcm =/l-l0"m =l’m;
i. ist eine reelle Zahl. Bei Änderung der Maßeinheit für die gleiche Größe I muß auch die Maßzahl
umgerechnet werden.

l. 1.2. Vektoren

Andere Größen sind durch Angabe von Maßzahl und Maßeinheit nicht vollständig
bestimmt, wie z. B. die Kraft. Sie kann durch die Geschwindigkeitsänderung ge-
messen wcrden, die sie bei einer Masse hervorruft, auf die sie wirkt. Zur Charakteri-
sierung der Kraft benötigt man die Richtung, in der sie wirkt, die Orientierung oder
den Richtungssinn und den Betrag der Geschwindigkeitsänderung‚ die sie hervorruft.
Solche Größen werden als Vektoren bezeichnet. Vektoren sind z. B. auch Geschwin-
digkeit, Beschleunigung, Strömung, Feldstärke. Die vektoriellen Größen kann man
nicht den Punkten der Zahlengeraden zuordnen.

Definition 1.1: Zur vollständigen Bestimmung eines Vektors benötigt man drei An—. D.1.1
gaben:

a) die Länge oder den Betrag;
b) die Richtung;
c) den Richtungssinn oder die Orientierung.

Vektoren werden durch gerichtete Strecken dargestellt. Gerichtete Strecken werden
oftmals auch als Vektoren interpretiert und z. B. mit PIP, bezeichnet. Die positive
Maßzahl der Länge der gerichteten Strecke gibt den Betrag des Vektors an.
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Der Betrag des Vektors ist ein Skalar. Die Richtung des Vektors gibt seine Lage
im Raum an. Der Richtungssinn gibt an, nach welcher Seite der Richtung der Vektor
positiv zu nehmen ist.

Vektoren werden in diesem Buch durch halbfett gedruckte kleine lateinische Buch-
staben gekennzeichnet.

Die Bezeichnung Vektor wurde vermutlich zuerst in England benutzt; sie geht zurück auf das
lateinische Verb „vehere“ — bewegen (vgl. auch „Vehikel“).

Die beiden Vektoren a und b (Bild 1.1) haben zwar die gleiche Richtung, aber ver-
schiedenen Richtungssinn; sie sind kollinear.

n

Bild 1.1

Im folgenden werden — falls nicht ausdrücklich ein Hinweis angebracht ist - nur Vektoren in
rechtwinkligen, im mathematisch positiven Sinne orientierten kartesischen Koordinatensystemen
betrachtet. Werden die für die Darstellung eines Vektors verwendeten Längeneinheiten geändert, so
führt dies lediglich zu einer einfachen Umrechnung für den Betrag (vgl. Umrechnung bei Skalaren),
geänderte Richtung oder anderer Richtungssinn führen jedoch zur Koordinatentransformation.

Nach. der Art der Anwendungen unterscheidet man gebundene Vektoren (z. B. Ortsvektoren und
Feldvektoren, die einen festen Anfangspunkt haben’, sowie linienflüchtige Vektoren, z. B. Kräfte,
die längs ‚ihrer Wirkungslinie verschiebbar sind) und freie Vektoren (beliebige Vektoren). Auf die
Rechengesetze derVektoren hat diese Einteilung keinen Einfiuß. Im folgenden beziehen wir uns i. allg.
auf freie ‘Vektoren.

Definition 1.2: Zwei Vektoren werden als gleich angesehen, wenn sie in Betrag, Rich-
tung und Orientierung übereinstimmen. Dabei soll es gleichgültig sein, wo ihre Anfangs-
punkte liegen.

Bei Parallelverschiebung ändert ein Vektor den Anfangspunkt und damit seine
Lage irnKoordinatensystem, unverändert bleiben Betrag, Richtung und Orientierung.

1.2. Grundgesetze der Vektorrechnung

1.2.1. Multiplikation eines Vektors mit einem Zahlenfaktor

Gegeben sei ein Vektor a mit dem Betrag la] > 0. Wenn i. eine reelle Zahl ist, dann
besitzt der Vektor b = la die gleiche Richtung wie der Vektor a, d. h., a und b sind
parallel.

Definition 1.3: Wenn b = la ist, dann heißen a und b kollinear, falls i. 4: 0; für Ä. = 0
ergibtsich der sog. Nullvektor.

Für 1 > O haben a und‘ b die gleiche Orientierung; für 2 < 0 sind die Orientie-
rungen von a und b entgegengesetzt (vgl. Bild 1.2).

~«\
x\\.„

Der Nullvektor hat den Betrag Null; er besitzt weder Richtung noch Orientierung
(vgl. auch 1.3.2.).
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1.2.2. Der Einheitsvektor

Setzt man 1 = —l-‚ dann wird
Ial

— la! ’

und sein Betrag ist

l|bl=W|a|=1.

Definition 1.4: Ein Vektor, der mit a die gleiche Richtung und die gleiche Orientierung D.l.4
hat und vom Betrag 1 ist, wird der zu a gehörige Einheitsvektor a° genannt:

b

0

Multipliziert man a° mit la}, so erhält man den Vektor a:

a°|a] = a.

Der Vektor a ist bestimmt durch seinen Betrag la] und durch die Richtung und die
Orientierung seines zugehörigen Einheitsvektors. Jeder Vektor läßt sich als Produkt
aus einem Skalar (seinem Betrag) und einem Vektor (seinem zugehörigen Einheits-
vektor) darstellen. Der Vektor a und sein zugehöriger Einheitsvektor a° sind kol-
linear.

Sind zwei Vektoren a und b zueinander kollinear (a II b), so gilt a° = +b°, wenn a
und b gleiche Orientierung haben, und a° = —b°, wenn a und b entgegengesetzte
Orientierung haben.

Nehmen wir an, e sei ein Einheitsvektor (|e| = I), der mit a die Richtung gemein-
sam hat. Dann kann a dargestellt werden durch a = ace. Je nachdem, ob die Orien-
tierung von a mit der von e übereinstimmt oder nicht, ist a = + la! oder a = — |a|.

Satz 1.1: Jeder Vektor — mit Ausnahme des Nullvektors — ist als Produkt aus einer S.l.l
Maßzahl, deren Betrag gleich dem Betrag des Vektors ist, und einem (gleichgerichteten)
Einheitsvektor darstellbar: a = one mit a = ilal, je nach der Orientierung von e;
im Falle von a = + |a| ist e der zugehörige Einheitsvektor a° von a.

(Für den Nullvektor ist eine Darstellung o = 0e möglich, nur werden hier keine
Voraussetzungen über die Richtung von e gemacht)

1.2.3. Addition und Subtraktion von Vektoren

Gegeben seien die Vektoren a und b (vgl. Bild 1.3). Die Addition der beiden
Vektoren kann als geometrische Addition gerichteter Strecken aufgefaßt werden.

DefinitionLS: Verschiebt man den Vektor b parallel bis sein Anfangspunkt im End- D.l.5
punkt von a liegt, dann stellt der vom Anfangspunkt von a zum Endpunkt von b füh-
rende Vektor s die Summe der Vektoren a und b dar (vgl. Bild 1.4):

s=a+b.
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Dabei ist es gleichgültig, ob b an a oder a an b angetragen wird: a + b = b + a = s
(vgl. Bild 1.5). Das kommutative Gesetz der Addition hat also Gültigkeit. Stellen a
und b Kräfte dar, dann ist s die Resultierende in diesem durch a und b bestimmten
Kräfteparallelogramm.

b a

_—. z?’° ß4 a

Bild 1.3 i ’ Bild 1.4 Bild 1.5

Das assoziative Gesetz der Addition gilt ebenfalls. Das läßt sich für drei Vektoren
leicht veranschaulichen (vgl. Bild 1.6): l

—->
(a + b) + c = AG,

—>
a + (b + c) = AG,

-—>
a+b+c=AG.

Weiterhin kann man die Reihenfolge der Vektoren (bei festem Ausgangspunkt A)
beliebig wählen, ihre Summe ist davon unabhängig:

a+b+c=b+c+a=c+a+b=a+c+b=b+a+c=c+b+a.’

Die Subtraktion des Vektors b vom Vektor a kann als Addition des Vektors —b
zum Vektor a aufgefaßt werden:

a — b = a + (—b) = d. Dann ist d der Vektor, der vom Anfangspunktades Vektors a
zum Endpunkt des Vektors —-b gerichtet ist (vgl. Bild 1.7).

Summe s und Differenz d zweier Vektoren a und b lassen sich als die Diagonalen in
dem von diesen beiden Vektoren bestimmten Parallelogramm darstellen (vgl. Bild 1.8).

I.(}.ip)a=}.ai‚ua‚
II. Ä(a 1- b) = la i lb,
a, b Vektoren; Ä, ‚u Skalare.
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Die Gültigkeit dieser Relationen ist leicht einzusehen. Im besonderen kann das Er-
gebnis von Vektoradditionen (oder Vektorsubtraktionen) der Nullvektor sein, z. B.
a + b + c = o; d. h.‚ die Vektoren sind so aneinandergefügt, daß der Endpunkt
von c mit dem Anfangspunkt von a zusammenfällt (vgl. Bild 1.9). Durch a + b + c
= o wird ein Dreieck beschrieben. Gilt allgemein

n

23v = o:
r=l

so liegt ein geschlossener n-teiliger Polygonzug vor (vgl. Bild 1.9 und 1.2.7.", Def. 1.7).

1.2.4. Darstellung in vektorielleu Komponenten

Für praktische Rechnungen ist es üblich, Vektoren mittels ihrer Komponenten in
Koordinatensystemen darzustellen. Dazu benutzen wir ein rechtwinkliges Rechts-
system (rechtwinkliges kartesisches Koordinatensystem). Wir zeichnen“ einen Vektor
in der Ebene, also dem zweidimensionalen Raum R2, und zerlegen ihn in die Kompo-
nenten a ‚ und a, parallel z‘u den Koordinatenachsen (vgl. Bild 1.10). Dann gilt:

a = a, + a2.

Der Betrag [a] kann nach Bild 1.10 berechnet werden:

|al"= lax!’ + |a2[2§

|31| = lxz " xi‘, I92] = I)’: ‘ yil?

1a: = x/Iam + I82!‘-

Bild 1.9 Bild „1.10

Wenn wir nun den R2, also die Ebene, verlassen, dann bereitet die anschauliche
Übertragung der gefundenen Ergebnisse auf den dreidimensionalen Raum R3 bzw.
die formale Übertragung auf den n-dimensionalen Raum R" keine Schwierigkeiten.
Für die Darstellung eines Vck: rs im R3 gilt:

a a1 + a2 + 33

bei analoger Interpretation wie im R’, und für den R“ gilt:
a=a1+a2+...+a„.
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1.2.5. Grundvektoren

Jeder Vektor läßt sich mit Hilfe eines Einheitsvektors gleicher Richtung darstellen
(vgl. 1.2.2.), also, auch die Vektorkomponenten a, und a2.

e, sei Einheitsvektor in Richtung der x-Achse,
e, sei Einheitsvektor in Richtung der y-Achse. Dann ist

a1 = am, und a, = azez,

wobei

°‘1-'-‘X2-x1 und 0‘2=J’2"y1

sind, und es gilt

131| = |°‘1|o |a2| = lazl-

Wegen der Zerlegung

a = a, + a,

in Vektorkomponenten gilt
a = {X191 + G232.

Die Größen von, und a, sind die skalaren Komponenten des Vektors a, die man auch
als Koordinaten des Vektors bezeichnet. Die Einheitsvektoren e ‚ und e, werden als
Grundvektoren bezeichnet. Mit ihrer Hilfe kann jeder Vektor im rechtwinkligen
ebenen Koordinatensystem dargestellt werden.

Die Vektordarstellung mit Hilfe der skalaren Komponenten hat die Form:

a = a(<x,; a2) oder — wenn Verwechslungen ausgeschlossen —

a = (a1? a2)-

Als Beispiele seien angeführt:

a = 3e, + Sez; a = (3; 5);

b = 2e, — 3a,; b = (2; —3).

Für einen Vektor im R3 kommt noch ein dritter Grundvektor c3 dazu, der dann also
senkrecht auf e, und e, steht (vgl. Bild 1.11):

a = ale, + azez + oL3e_-,,

3 = 3(°‘1S°‘2§0‘3) = (°‘130‘2§0‘3)-

Z

Bild 1.11
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Die skalaren Komponenten der Grundvektoren e, ‚ ez, e, sind:

e; = (1; 0; 0);
ez = (0; 1; 0);
c3 = (0; O; 1).

Satz 1.2: Im R“ wird ein Vektor a folgendermaßen dargestellt: S.l.2
I II

I 3=23t=2°‘t°n
i= l i= l _

wobei a, (i = 1, 2, ..., n) die vektoriellen Komponenten, a, (i = 1, 2, ..., n) die skalaren
Komponenten von a sind, |a,[ = |a,| gilt und die e, die n Grundvektoren, d. h. die Ein-
heitsvektoren in Richtung der Koordinatenachsen sind; Komponentenschreibweisefür a:

I a = im; a2; a.) = (41342; 4.).
' für den ‘Nullvektor:

I o = (0; 0; ...; 0).

Bei ganzzahligen Komponenten oder wenn keine Verwechslungen möglich sind,
kann man die Komponenten auch durch Kommata voneinander trennen.

Es ist auch möglich, die Komponenten eines Vektors in einer Reihe anzuordnen,
und zwar entweder in einer senkrechten Reihe, einer Spalte, oder in einer waage-
rechten Reihe, einer Zeile. Dann ist z. B.

a1
a1 1 0 0 a

a= a2. e.= 0 ‚ ez= l . e3= 0; a= f.
(X3 0 0 1 a.

die Anordnung der Komponenten in einer Spalte. Die zeilenweise Anordnung der
Komponenten bezeichnen wir im Unterschied dazu mit

a’ = [a,, a2, a3] usf. sowie a’ = [a„ a2, ...‚a„].
(Die Begründung für diese Darstellung wird im Kapitel 2 gegeben.)

Bild l.l2
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Die Addition von Vektoren in Komponentenschreibweise kann man anschaulich
darstellen. Die beiden Vektoren -

a=a1 +a2+a3=e,+3e,+3e3=(1;3;3),
b=b1‘I"b2'I'b3=e1'I'2e2—e3=(1;2;

sollen addiert werden (vgl. Bild 1.12). Es gilt
a+b=s=2e,+5e2+2e3=(2;5;2).

Satz 1.3: Vektoren werden addiert, indem ihre entsprechenden Komponenten addiert
werden:

a+b=S=(a‚+b1)+(a2+b2)+(a3+b3)
= (“i + fl1)e1 ‘I’ (ü: ‘I’ I32) 92 ‘I’ (“s ‘I’ I33) es
= ale, + 112e, + 03c;

oder mit der vorhin eingeführten Darstellung

0‘: A61 °‘1'I'I91- U1

L~1+w=wJ+]a3 ß: 0‘3+l93 0'3

bzw. im R"

0‘: ß: a1 + ß: (71

4.2 + °‘2 I92 0'?

an ß; a. 4 ß. a;

Für die Subtraktion gilt das Entsprechende.
Im R3 enthält eine Vektorgleichung drei skalare Gleichungen. Im R" enthält eine

Vektorgleichung n skalare Gleichungen.
a = bodera — b = obedeutetin Komponentendarstellunga, = ß„i = 1, 2, ..., n.

Daraus folgt:

Satz 1.4: Zwei Vektoren a und ’ b sind gleich, wenn sie in ihren Komponenten
(cal; a2; ...; an) und (/31; ßz; ...; /3,.) fibereinstimmen.' -

1.2.6. Die Richtungskosinus eines Vektors

Betrachten wir einen Vektor in der Ebene. Er soll parallel so verschoben werden,
daß sein Anfangspunkt im Ursprung des Koordinatensystems liegt (vgl. Bild 1.13).

y

u.
‘

l I I I I I I I I I I

g
I

L_
._

__
__

.._
__

_

" Bild 1.l3
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Definition 1.6: Die Größen . D.l.6

cos (x; a) = cos(e1; a) = -Er,

cos (y; a) = cos (e2; a) = 1%‘

heißen Richtungskosinus des Vektors a.

(Man beachte, daß als Zähler die — vorzeichenbehafteten — skalaren Komponenten
des Vektors auftreten; es darf nicht mit den Beträgen lcxl gerechnet werden, weil sonst
nicht zu erkennen wäre, in welchem Quadranten die Winkel liegen.)

Dabei sollen die Winkel (c1; a), (e2; a) stets im Intervall [0; 1t] liegen. Die Winkel
werden zwischen den positiven Achsen und dem Vektor gemessen (vgl. Bild 1.14).

y
I cas(e,,a)<I7

ma, u >0
m (e,,a)>0 ‘m a

cas(e„a)>a «am ” ’ m a)
[I

4a„ a)

I x I K

y y

4“’I«“’ 4(e,,a)

X x4(!7,a) 4(g,,¢)

5-g5(g’lg)<g C05(l,,G)>U

a cos (e„ui<a cos re,,a)<a

Bild 1.14

Dadurch kann jede Lage eines Vektors im R’ mit Hilfe der Richtungskosinus charak-
terisiert werden (vgl. Bild 1.14). Durch die Angabe der beiden Richtungskosinus sind
Richtung und Orientierung des Vektors a festgelegt. Berücksichtigt man, daß nach
dem Satz von Pythagoras

lallz "l" lazlz = lazl

ist, dann lassen sich die folgenden Beziehungen zwischen den Richtungskosinus her-
leiten: .

cos’(e 'a) + cos2(e2'a) =—3‘—§—+—a§——=1
1 ’ ’ lal’ Ial’

Multipliziert man die Richtungskosinus mit a1 bzw. a, , so erhält man:

a? + a2
a1 cos (cl; a) + a, cos (c2; a) =T= lal.

Beispiel 1.2.:

a=4e‚+3e‚; la! = \/41+ 31=5;
cos(e1;a)=§; cos(ez;a)=%;
(§)2+(§)’=l;4-§+3-§-=5.
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Ein Vektor im Raum besitzt drei Richtungskosinus (vgl. Bild 1.15):

“icos(e,;a) = W;

cos(e..a)=-‘I’:-;

cos(e3; a) = 2.
lal Bild 1.15

Mit an} + a5 + cx§ = lal’ gelten für den Vektor im R3 analoge Beziehungen wie für
den Vektor in der Ebene:

cos’ (c‚; a) + cos’ (c2; a) + cos’ (c2; a) = 1,

a, cos (c2; a) + on, cos (c2; a) + a, cos (c2; a) = la].

Mit Hilfe der Richtungskosinus läßt sich eine Komponentcndarstcllung der Vek-
toren herleiten. Aus der Definition der Richtungskosinus ergibt sich:

a1 = l3lc°s(e1§3)s
a2 = Ial cos (es; a).
a3 = |a| cos (e3; a).

Damit haben wir neben den Darstellungen eines Vektors durch seine vektoriellen und
skalaren Komponenten eine Darstellung durch seine Richtungskosinus:

I a = (III cos (ex; a); la! cos (e23 a); lal cos (es; a))‚
a = [a] (cos (c2; a) e, + cos (c2; a) c2 + cos (c3; a) c2).

Aus der Darstellung der c„ i = l, 2, 3, erkennt man, daß die Komponenten der
Grundvektoren die Werte ihrer jeweiligen Richtungskosinus sind:

ex = (cos (ex; ex); cos (es; ex); cos (es; ex)) = (1; 0; 0).
c2 = (cos (c‚; c2); cos (c2; c2); cos (c3; c2)) = (0; 1; O),

es = (cos (ex; es); cos (es; es); cos (es; es)) = (0; 0; l)-
Die Übertragung auf den R" führt zu folgenden Darstellungen: Es ist cos (c‚; a)

= fl- für i = 1, 2, ..., n und 2 cos’ (ex; a) = 1.
i=lIII

S.l.5 Satz 1.5: Im R“ gilt für a die folgende Darstellung:

I a=|a|ie,cos(e,;a), i= l‚2‚...‚n.
i=l

Die skalaren Komponenten der Grundvektoren c, (i = 1, 2, ..., n) sind die Werte
der jeweiligen n Richtungskosinus:

| c, = (cos (c2; c,); cos (c2; c‚); ...; cos (c„; c‚)), i = l, 2, ...‚n.

Beispiel 1.3.:

I = 301 ‘i’ 20; -' 603;

|aI=\/9+4+36=7;k
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3 2c_os(e,;a)=7; cos(e;;a)-=7; cos(e3;a)= -7;
a: (ex; a) z 64° 37’; a: (e2;a) z 73° 24'; <)= (e3;a) z 149°;

2 3 2 2 2 6 2

cos (e‚;a)+cos2(e2;a)+cos’(e3;a)=(7) + 7 + =1;

0c, cos (c1; a) + a; cos (c2; a) + a5 cos (ea; a)

_3.3 2.2 ( _6...7_l‘
— '77-'+ 7+ —6)< —7')— -R.

1.2.7. ‘ Lineare Abhängigkeit

Zwei Vektoren a und b, für die b = la gilt, heißen’ linear abhängig. Zwei linear
abhängige Vektoren sind kollinear. Sind die beiden Vektoren a und b nicht vonein-
ander linear abhängig, so bestimmen sie eine Ebene. Liegt ein dritter Vektor c in
dieser Ebene, so muß er von a und b linear abhängig sein.

Drei linear abhängige Vektoren heißen komplanar. Für drei linear abhängige Vek-
toren a, b, c gibt es immer eine Lösung der Gleichung

}.a+,ub+vc=o,
. wobei 2., y, v nicht alle zugleich null sein dürfen (Z2 + [£2 + v’ =l= 0).

Es sei v =i= O, dann Iäßt sich cals Linearkombination von a und b darstellen:

c = — i: — -’—u——b.

v

Für die Bestimmung von A, n, v ergibt sich aus der Gleichung la + ‚ab + vc = o ein
System von drei linearen Gleichungen:

im +1491 + W1 =0,
)~0‘2 +1152 + W2 =0;
M3 +,u,B3 + v)»; = 0.

Dieses Gleichungssystem hat nur dann von null verschiedene Lösungen, wenn seine
Koeffizientendeterminante verschwindet (vgl. Abschnitt 3.1.).

Aus Zweckmäßigkeitsgründen wollen wir jetzt den Begrifl‘ der Determinante
einführen, und zwar anhand einer Determinante 3. Ordnung (vgl. auch 2.4.).

Unter einer Determinante 3. Ordnung versteht man folgenden Ausdruck:

an an ans

D = 421 ‘I22 023 9

an 032 033

wobei die Elemente an, (i,k = l, 2, 3) Zahlen, Rechengrößen oder sonstige mathe-
matische Objekte sind. . /

Den Wert einer solchen Determinante berechnet man folgendermaßen nach einem
einfachen Schema, das der französische Mathematiker Sarrus angegeben hat. Man
schreibt die erste und zweite Spalte der Determinante noch einmal hinter die Deter-
minante.
Die Produkte aus den Elementen der drei sogenannten Hauptdiagonalen (a,,a22a33,
a12a23a3,, a13a21a32) werden addiert, die Produkte aus den Elementen der so-

2 Manteufie}, Lineare
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an an /. an ‚an ‚ am

\ v’ I
an /an /an / an an
l/ x \

genannten drei Nebendiagonalen (a, 3a22a3, , auauaaz , a,2a2,a3 3) Werden sub-
trahiert‚ und das Ergebnis ist der Wert der Determinante, d. h.

D = an a2: a3: + a1: a2: a3: + ais a21 vaaz

- an a22 a31 "' an a2: a32 ‘ a12 azi ass-

Dieses Verfahren heißt Regel von Sarrus und gilt nur für Determinanten dritter
Ordnung.

Beispiel 1.4:

134 31 3 ‚4 /1 I

22\o>\l/ 2/ 0
/ / x

1x2’ 3\1
+ + +

D=l-0-2+3-1-3+4-2-1-4-0-3-1-1-1-3-2-2
=0+9+8—0—1—12=4.

Mit Hilfe des Begriffs der Determinanten 3. Ordnung können wir folgenden Satz
formulieren:

D=20l;

_312 3’

S.1.6 Satz 1.6: Drei Vektoren a, b, c im R3 sind linear abhängig, wenn die aus den Koordi-
naten der drei Vektoren gebildete Determinante

a1 ßl 71

D = a2 ßz 72 = 0

_ 0‘: I33 73
1st. - .

Ist D =#= 0, so gibt es nur die Lösung i. == ‚u = v = O, d. h.‚ die drei Vektoren sind
voneinander linear unabhängig; sie liegen nicht in einer Ebene. Allgemein gilt

D.l.7 Definition 1.7: n Vektoren a1, a2, ..., a„ im R" hez',Ben'voneinander linear abhängig,
wenn es eine Lösung der Gleichung

n

2 Ävav = o
I=l

derart gibt, daß nicht alle 1„ v = l, 2, ..., n, zugleich null sind. Gibt es nur die Lösung
Ä, = 0, v = 1, 2, ..., n, dann heißen die Vektoren voneinander linear unabhängig.

Wenn n Vektoren linear abhängig sind, so stimmt der Endpunkt von 2.„a„ mit
dem Anfangspunkt von ).,a1 überein; es liegt also ein geschlossener Polygonzug
vor (vgl. 1.2.3. und Bild 1.9).
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Vier Vektoren im R3 sind immer voneinander linear abhängig, denn 1,211 + 12:12

+ 13:13 + 2.4214 = o hat immer Lösungen derart, daß nicht alle diese Koeffizienten
gleichzeitig null sind. In den drei Gleichungen mit vier Unbekannten" ist eine Un-
bekannte ungleich null wählbar. Im R3 gibt es höchstens drei voneinander linear
unabhängige Vektoren.

Entsprechende Überlegungen im R" führen zu

Satz 1.7: Im R" sind höchstens n Vektoren voneinander linear unabhängig, n + 1 s‚1‚7
Vektoren sind stets linear abhängig.

Beispiele für linear abhängige bzw. linear unabhängige Vektoren:

Beispiel ‘L5:

1 0 0

e, = 0 ‚ e; = 1 ; e, = 0 ;

0 0 I

die Gleichung Ac, + 12c, + 13c; = o hat nur die Lösung Ä, = 2., = 13 = 0, weil

1 0 0

0 1 0 = l
0 0 1

ist; e, , e; und e, sind also linear unabhängig.

l 0 0

o 0 1 c

Beispiel 1.6: Die Vektoren e, = _ ‚ e, = ‚ ‚ ..., e„ = ‚ sind ebenfalls linear

o 6 i
unabhängig, weil die Gleichung

ll

Z lie, = 0
i=l .

nur für Ä, = 0, i = 1, 2, ..., n, erfüllt ist.

l 0 3 l 0 3

Beispiel 1.7: Ffir die Vektoren e, = 0 , e, = l , a = 2 ist 0 1 2 = 0; sie sind

0 0 0 0 0 0
l

linear abhängig. Mit z, = —3‚ z, = -2, 23 = 1 und a.= 3e, + ze, gilt 43¢, - 2e, + a = o.

Beispiel 1.8: Die Vektoren

a1: e1"e3+e3"2B4‚
82 = 301 — Se; + 233 —‘ C4,

B3 = "'28; + e; — 283 + 284,

a..'= "‘ e, '- e3 + 34

sind linear unabhängige Vektoren; denn

4

Z/1,a,= o gilt nur für Z, = Z, = 2.3 = A. = 0.
I-1
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Beispiel 1.9: Dagegen sind die vier Vektoren

~a,= e,— e2+ e3—2e.„,

a, = 3e. — Se; + 2e; —— c4,

a3 = —2e‚ + e, —— 2e3 + 2e4‚

a4 = e, — Se; - e4

linear abhängig; denn es gilt

231+a2+233"34=0.

1.3.

Im Hinblick auf die Anwendungen sind für die multiplikative Verknüpfung zweier
Vektoren zwei verschiedene Produkte erklärt. Die erste Verknüpfungsart — das ska-
lare Produkt zweier Vektoren — liefert als Produkt einen Skalar; die zweite Verknüp-
fungsart — das vektorielle Produkt zweier Vektoren — liefert als Produkt einen Vektor.
Bei der Produktbildung von Vektoren werden wir Eigenschaften feststellen, die sich
von den bei der Multiplikation von Zahlen auftretenden Eigenschaften unter-
scheiden.

Multiplikation von Vektoren

1.3.1.

Wenn ein Körper, an dem eine konstante Kraft angreift, um eine Strecke s ver-
schoben werden soll, so muß Arbeit aufgewendet werden; die Kraftk sei konstant,
und k und s (Isl = s) sollen den Winkel z? einschließen (vgl. Bild 1.16). Die in Rich-
tung s wirkende Kraftkomponente ist |k| cos 29 -.s°‚ wenn s = ls] s° gilt.

Die zu leistende Arbeit A ist dann Betrag der Kraft in Richtung des Weges mal
Betrag des Weges, d. h. ’

A = [kl cost? [s°| - [Isl s°| = |k| ls] cos 29.

Für 29 = O wird die Arbeit A = |k| Isl geleistet.
Da auch bei vielen anderen Anwendungen eine solche multiplikative Verknüpfung

auftritt, definiert man das skalare Produkt zweier Vektoren a und b:

Das skalare oder innere Produkt

Definition 1.8: Das skalare oder innere Produkt ab = a - b = (ab) der Vektoren a
und b ist folgendermaßen erklärt:

| ab = |a| |b| cos(a; b), o g <):(a; b) "g n.

Dabei versteht man ‚unter cos (a; b) den Kosinus des von den Vektoren a und‘ b
eingeschlossenen Winkels. Dieses Produkt liefert eine skalare Größe. Der Wert dieses
Produktes hängt von den Beträgen der Vektoren und dem Kosinus des von ihnen
eingeschlossenen Winkels <3: (a; b) ab, aber nicht von der Lage der Vektoren im
Koordinatensystem.

_-
__

_.
‘s

k i
I

|A
s’ /Ir/M5293“ ‘i Bildl.l6 b'=lb|'WH>‘~a° G Bild1.l7
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Satz 1.8: Das skalare Produkt zweier Vektoren ist invariant gegenüber Koordinaten- S.l.8
transformationen (Translation und Drehung).

Das skalare Produkt läßt sich geometrisch deuten (vgl. Bild 1.17). Wenn wir ‘

e: (a; b) = v9 setzen, dann läßt sich das skalare Produkt als Produkt des Betrages
von a mit dem Betrag der Projektion b’ von b auf ja (die Projektion von b auf a
ist ihrem Betrage nach gleich |b[ cos 19) auffassen.

Demnach läßt sich die Arbeit als skalares Produkt aus der aufgewendeten Kraft k
und dem zurückgelegten Weg s bestimmen:

A=ks.

Aus der Definition des skalaren Produktes ergibt sich sofort die Gültigkeit des
kommutativen Gesetzes, weil die Reihenfolge der Faktoren [a], [b], cos (a; b) be-
liebig ist: ‘

| ab

Wenn nun z. B. der Vektor a mit der reellen Zahl i. multipliziert wird, dann folgt aus
der Definition des skalaren Produktes für d‘as Produkt (la) b sofort:

| (la) b = }.(ab) = lab.

ba.

Dagegen kann es für das skalare Produkt zweier Vektoren kein assoziatives Gesetz
geben, weil dieses Produkt eben nur für zwei Vektoren erklärt ist. Wollte man aus
drei gegebenen Vektoren a, b, c ein skalares Produkt bilden, dann müßte man auf
Grund der Definition des skalaren Produktes entweder a mit b oder b mit c skalar
multiplizieren; ‚in beiden Fällen wäre das Ergebnis dieser Multiplikation ein Skalar,
der dann jeweils mit dem dritten Vektor (also mit c oder mit a) zu multiplizieren wäre.
Aber das Ergebnis der letzten Multiplikation ist dann in beiden Fällen ein Vektor.

Das distributive Gesetz gilt (vgl. Bild 1.18): '

| a(b+c)=ab+ac=as mit b+c=s.

Die Gültigkeit dieses Gesetzes läßt sich durch Ausrechnen (mit Hilfe der Komponen-
tendarstellung) oder geometrisch nachweisen; denn die Summe der Projektionen
von b und c auf a ist gleich der Projektion der Summe s = b + c auf a.“

Satz 1.9: Es gibt keine eindeutige Umkehrung der skalaren Multiplikation.

Wenn a ein gegebener Vektor und x ein gegebener Skalar ist, dann ist die Frage
nach der Existenz eines eindeutig bestimmten Vektors x, der die Gleichung ax = z

erfüllt, die Frage nach der eindeutigen Umkehrung der Multiplikation. Es gibt
jedoch entweder keinen oder unendlich viele Vektoren, die obige Gleichung erfüllen,
d. h. also, es kann keine eindeutige Umkehrung geben. Für a = o und x =i= O gibt
es keine Lösung. Für a = o und x = 0 gibt es unendlich viele Vektoren x, die diese
Gleichung erfüllen. Für a # o und x a‘: 0 erfüllt der zu a parallele Vektor x, = la die

. . W
Gleichung, wobei). = I?

I“!
wenn y“) L a ist, so ist auch x") = x, + y") eine Lösung von ax = x wegen

ist. Aber es gibt unendlich viele weitere Lösungen; denn

a(X1 + y“’) = aX“’ = lal|X“’l COS (a; X“’) = Iallxil = ax.

(vgl. _Bild 1.19).

S.1.9
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Bild 1.19

Bild 1.18

Unter welchen Voraussetzungen ist ab = 0? .

Für a = o oder b = o oder a = b = o ist die obige Gleichung erfüllt. Außerdem kann
auch cos (a; b) = 0 sein, und a und b sind beide ungleich dem Nullvektor (a =i= o

undb 4: o); dann muß <): (a; b) = 12 sein, also a J. b.

S.l.l0 Satz 1.10: Gilt ab = 0für a =|= o und b =l= o, so stehen die Vektoren a und b aufeinander
senkrecht; sie sind zueinander orthogonal.

Die Grundvektoren e, ‚ e; , es sind zueinander orthogonal; für ihre Skalarprodukte
gilt demnach: i

1 f_ür.i = k,
°‘°" = 6"‘ = {o für i + k Ü)

(6,, ist das sog. Kronecker-Symbol.)

Wenn a H b ist, wird

ab = ilal Ibl,

je nachdem, ob cos (a; b) = +1 oder -1, d. h.‚ ob <): (a; b) = O oder er (a; b) = 7:

ist. Ist im besonderen b = e ein Einheitsvektor, dann gilt

ae = im.
Für b = a erhalten wir

aa = la!’

oder

lal = J55.
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1.3.2. Das skalare Produkt in Komponcntendarstellnng

Wenn der Winkel zwischen zwei Vektoren nicht bekannt ist, kann man das skalare
Produkt unter Benutzung der skalaren Komponenten der Vektoren berechnen. Aus

a = LX191 + a2c2 + (1.383,

b = /3191 + 19292 ‘i’ 5393‘

bilden wir

ab = 4115x0191 + °‘1/929192 + 0‘1/333193

‘i’ “2519291 + “2329292 ‘i’ 521339233

+ 531619361 + 431929392 + 53/339393;

berücksichtigen wir (*), so ergibt sich

I ab = “i161 + 4252 ‘i’ ‘x353,

also eine skalare Größe.

Für a = b wird aa = |a|2 = auf + a2 + a: = lad‘ + |a2|2 + |a3|2. Für b = o er-
gibt sich ao = 0, wie bereits vorher festgestellt.

Satz 1.11: Die Orthogonalitätsrelation lautet in Komponentendarstellung S.l.ll

“i131 + 42/32 + G353 = 0-

Aus der Definition des skalaren Produktes und aus der Definition des Betrages eines
Vektors ‘ergibt sich für a + o und b =i= o durch Auflösung nach cos (a; b):

ab _ “i151 + 42/32 + “3/33

alibi ~/«E + a: + a: Jß: + ßä + 5:‘
Damit ist es möglich, den Winkel zwischen zwei Vektoren a und b zu berechnen.

’ . . 0
Setzen wir z. B. a = c2, b = c2, dann wird cos (c1; c2) = —£‘—e3— = -— = 0

und ä: (c‚;c2) = %,ffira = b = c2 wigdcos(e2;e2) = fig = 1 und 9: (e2;c2) = 0;

ü = -0-, d. h., es ergibt sich ein unbestimmter Aus-

druck, womit auch rechnerisch gezeigt ist, daß dem Nullvektor keine Richtung
zukommt (vgl. auch 1.2.1.). „

Die Darstellung des Winkels zwischen zwei Vektoren ist allgemein mit Hilfe der
Richtungskosinus der beiden Vektoren möglich. Mit

a = |a| (c, cos (c1; a) + c2 cos (c2; a) + c2 cos (c3; a)),
b = |bl(e1 cos (c2; b) + c2 cos (c2; b) + c2 cos (c2; b))

cos (a; b) = l

für b = o wird cos (a; o) =

wird
ab = [a1 [bl (cos (c1; a) cos (c2; b) + cos (c2; a) cos (c2; b) -:- cos (c3; a) cos (c3; b));

andererseits ist ab = |a| [bl cos (a; b), d. h. also

cos (a; b) = cos(e1; a) cos( :-) + cos <92; a) cos (c2: _) +1
'17 7

os( :__) ggs (g,-
\ I \ J" ‘31 5 ");

für b = a gilt: .

| cos (a; a) = cos’ (c2; a) + cos’ (c2; a) + cos’ (c2; a) = 1.

Die Summe der Quadrate der Richtungskosinus eines Vektors ist gleich eins.
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Entsprechende Beziehungen gelten im R”; z. B. ist

cos (a. b) = ab = 51.51 + “zßz "i" ‘i’ “nßn
lallbl \/a§+a§+ +a: \/fl§+;3§+ ...+{>’:

und

cos (a; b) = cos (e, ; a) cos (e, ; b) + cos (e2; a) cos (e2; b) + + cos (e„; a) cos (e„; b).

Beispiel 1.10:

Wenn a = 4e; — 2e; + 4e; und b = 3e‚ + 2e, + 6e3 ist, dann werden

2
cos(e3;a) = —‚

1.
. cos(e2;a)=-3, 3lal = 6, cos (91; a) =

_ 2 ' 6
‚ cos(e2;b) =7, cos(e3;b) =7.xx

lw
w

|N
lbl = 7. cos (e12 b) =

16
cos (a; b) = -2? (mit Hilfe der Richtungskosinus), <1: (a; b) = 40° 20’,

ab = la! lb] cos (a; b) = 32, ab = oqßl + oczß; + 0:3/33 = 32.

1.3.3. Die Cauchy-Scbwarzsche Ungleichung

Für zwei Vektoren a und b gilt

(ab) (ab) ä (a8) (bb);
dabei gilt das Gleichheitszeichen, wenn einer der beiden Vektoren gleich dem Null-
Vektor ist (a = o oder b = o) oder wenn a und b kollinear sind (a H b, d. h. a = 2b,
Ä =l= 0).

Durch Ausrechnen erhalten wir:
(ab) (ab) = Ial’ lbl’ 00s’ (a; b).
(a8) (bb) = la!’ lbl’.

woraus wegen O g cos’ (a; b) g l die Behauptung folgt.

1.3.4. Vektorielles Produkt

Definition 1.9: Als vektorielles oder äußeres Produkt p = a x b = [ab] der beiden
Vektoren a und b wird der folgende Vektor p definiert:

P = a >< b = lal Ibl SiI1(a; b)P°;
dabei ist p° der zu p gehörige Einheitsvektor (vgl. Definition 1.4 und Satz 1.1), und
es giItO ä <)< (a; b) g 7c.

Der Vektor p hat folgende Eigenschaften:

P i a.
P J- b,

U a, b, p bilden (in dieser Reihenfolge) ein Rechtssystem (vgl. Bild 1.20),

IPI = la! lbl Sin (a; b);

der Betrag des Produktvektors ist gleich der Maßzahl der Fläche des von den Vektoren a
und b aufgespannten Parallelogramms (vgl. Bild 1.20).
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Aus der Definition des vektoriellen Produktes folgt, daß dies weder im R’ noch im
R", n > 3, definiert werden kann.

Äuch für die vektorielle Multiplikation gibt es keine eindeutige Umkehrung. Denn
es müßte dann a x x = k bei gegebenem a und k eine eindeutige Lösung haben.
Diese Gleichung ist nur lösbar, wenn k .L a; ist x0 eine Lösung, dann ist auch
(x0 + }.a)eineL6sung,dennes ista x (xo +}.a) = a xxo + a xla = a x xo + o = k
(die Gültigkeit des distributiven Gesetzes wird später nachgewiesen).

Bild l.20

Satz 1.12: Für die vektorielle Multiplikation gibt es keine eindeutige Umkehrung. S-1-12

Das vektorielle Produkt der beiden Vektoren a und b ist gleich dem Nullvektor o,
wenn einer der beiden Vektoren oder beide zugleich o sind oder wenn sin (a; b) = 0 ist.

Satz 1.13: Gilt a x b = o für a =i= o und b + o, so sind die beiden Vektoren a und b S-1-13
kollinear.

Durch die obige Relation können kollineare Vektoren charakterisiert werden.
Sind a =I= o und b =l= o zueinander senkrecht, a J. b, dann ist [pl = la] |b|, weil

sin—:— = 1 ist.

Wird einer der Vektoren a und b mit der reellen Zahl Ä multipliziert, dann folgt aus
der Definition des vektoriellen Produktes '

(la) x b =Z(a x b),
a x (lb) = ).(a x b).

Ebenfalls folgt daraus, daß

| axb=i=bxa,
aber

|g axb=—bxa

gilt; das kommutative Gesetz besitzt keine Gültigkeit. Die vektorielle Multiplikation
ist alternativ.

Für die vektoriellen Produkte der Grundvektoren gilt (vgl. Schema):

e1Xe1=e2Xe2=e3Xe3=0,.
e, xe‚=e3’= —e2 x e,, e, x e, = —e3,

e2Xe3=e1="‘e3Xe2‚ e3Xe2="'e1, e
7e3xe1=e2=—e,xe3, e‚xe3=——e;. E;

Die Frage nach der Gültigkeit des assoziativen Gesetzes ist hier berechtigt, denn
beide Produkte a x (b x c) und (a x b) x c existieren und sind jeweils wieder
Vektoren. Aber im allgemeinen ist (vgl. 1.3.6.)

1>1=a><(b.><c)=I=(a><b)><c=p2,
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das assozitztiize Gesetz besitzt keine Gültigkeit. Wenn z. B.

a= 4e,-—2e2+4e3,
b = 3e, + 2e; + 6e3,

c = —2e1 .+ e, —— 3e3

ist, dann gilt (vgl. 1.3.5.)

a x (b x c) = —2e, — 76c, —— 36e3,

aber

22e1 — 88c; — 44e3.

Das distributive Gesetz dagegen besitzt Gültigkeit, d. h., es gilt
| ax(b+c)=axb+axc. I

Um dies einzusehen, bedenken wir, daß a mit dem Vektor b dieselbe Ebene aufspannt wie mit der

Projektion?) von b in die zu a (in dessen Anfangspunkt) senkrechte Ebene; dann haben a x b und
a x b dieselbe Richtung. Durch a und b wird ein Parallelogramm, durch a und i; ein Rechteck auf-
gespannt, die aber flächengleich sind (vgl. Bild 1.21). Dann haben die beiden Vektoren a x b und
a x b auch denselben Betrag, und es ist

(axb)xc

axb=axb.
Bereits bei der Untersuchung des skalaren Produktes hatten wir festgestellt, daß die Projektion

einer Summe von Vektoren gleich der Summe der Projektionen der Summanden ist; damit gilt:

ax(b+c)=ax(b+c)=ax(_b+c).
Nun ist noch die Gültigkeit von

a-x(‘b+c)=axl_n+axe
nachzuweisen. Ohne Einschränkung der Allgemeinheit dürfen wir annehmen, daß b und E in einer zu a

senkrechten Ebene liegen; dann liegen a x b und a x c in derselben Ebene (vgLBild 1.22). Außerdem
gelten (a x b) .Lb,(a x c) J.c,{a x (b+ c)} .L(b+c),wobeia x b,a x cunda x (b + c)im

gleichen Sinne gegenüber T), 2,7: +2 um gedreht sind. Auf Grund der Ähnlichkeit der durch

a xb, a x2, ax (b + E) und durch b, E, b + eaufgespanntenDreiecke folgt a x (b + E) = a xi; + a xc
und damit die Gültigkeit des distributiven Gesetzes.

Bild l.2l Bild 1.22

1.3.5. Das vektorielle Produkt in Komponentendarstellung

Wenn wir
a = (x161 + 0:262 + 01363,

b = ß‚e1 ‘i’ [3292 + [3303
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vektoriell miteinander multiplizieren, dann ergibt sich

a X b = a1ß1(e1 X ex) + 0‘2I31(92 X 91) + °‘3l31(°3 X er)

‘i’ “1ß2(e1 X 92) + 0‘:/92(e2 X C2) + 0‘3fi2(e3 X 92)

‘i’ 0‘1fl3(e1 X 93) + 0‘2l33(¢2 X es) + °‘3I3a(°3 X 93)

= (52163 ‘ as/32)e1 + (43.51 “ 4153) 92 ‘l’ (“:52 — G251) es

oder, unter Benutzung der Determinantenschreibweise (vgl. 1.2.7.),

e, e, c3

a x b = a1 a2 as .

fix ß: b’:

Wenn z. B. a = 4e1 — 2e, + 4e, und b = 3e, + 2e, + 6e, ist, dann wird

er 92 93 er 92 es er 32

axb=4—24; 4-244-2,
3 2 6 3 2 6 3 2

a X b = ‘"2091 -1282 +1483.

Mit Hilfe der skalaren Komponenten der Vektoren a und b läßt sich der Betrag
ihres vektoriellen Produktes folgendermaßen berechnen:

(3 X b)’ = (4253 ‘ asfiz): + (“sßr " 0‘u63)2 + (‘x152 " 42.31):

= (“i + 3‘: + ‘i’ + "' (‘*1/5'1'+ “zßz + 33/33)2a

d. h.

| (a >< b): = la!’ Ibl’ — (ab?

oder

(a >< b)’ = (lal lbl + ab)(lal Ibl - ab)-

Wegen .

[a x bl = 1a[ |b[ sin (a; b)

gilt stets

l8 >< bl S. Iallbl-

1.3.6. Gemischte und mehrfache Produkte

Durch drei vom Nullpunkt ausgehende Vektoren a, b, c, die nicht alle in einer
Ebene liegen, wird ein Parallelepiped aufgespannt (vgl. Bild 1.23). Das durch b und c
bestimmte Parallelogramm wollen wir als Grundfläche betrachten; dann ist f = b x c
die zugehörige Plangröße. Zur Berechnung des Volumens V des Parallelepipeds ist
deren Betrag mit der Höhe h = lal cos 19 zu multiplizieren, d. h.

V = iai ibi ici cosü sin (b; c) = aCb x c).

Da aber auch die durch c, a bzw. a, b bestimmtenParallelogramme als Grundfläche
genommen werden können, gilt
| V=a(bxc)=b(cxa)=c(axb).
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Wegen der Kommutativität der skalaren Produkte folgt daraus

| (axb)c=a(bxc);
das ist der Sogenannte Vertauschungssatz.

f-bxt.‘

Bfldl23

S.l.l4 Satz 1.14: Bei gleicher Reihenfolge dreier Vektoren mit je einer skalaren und vektoriel-
Ien multiplikativen Verknüpfung können die skalare und die vektorielle Multiplikation
in ihrer Reihenfolge vertauscht werden, d. h. (a x b) c = a(b x c).

Wegen der Charakterisierung des Volumens eines Parallelepipeds oder Spates
nennt man das Produkt a(b x c) Spatprodukt und bezeichnet es folgendermaßen:

[abc] = [bca] = [cab].

Da die vektorielle Multiplikation nicht kommutativ, sondern alternativ ist, gilt
[abc] = — [ach] = —[bac] = —[cba].

S.1.l5 Satz 1.15: Das Spatprodukt [abc], a + o, b 4: o, c 4: o, ist genau dann gleich null,
— wenn die drei Vektoren in einer Ebene liegen, d. h., wenn sie komplanar sind.

Das Spatprodukt hat auch den Wert Null, wenn es zwei gleiche Vektoren enthält,
d. h. [aab] = O, a =t= b, a =4: o;b + o.

Für die Grundvektoren e, , e, ‚ c3 gilt: [e1e2e3] = l.
In Komponentendarstellung ist wegen ~

b x c = (/3273 " I3372)e1 " (/9173 - .5371) 92 + (5172 " F9271) es

und .

a(b X e) = (‘x191 + ‘X292 ‘i’ 4393) [(13273 "' 13372) er

‘k (5173 - 5371) e: + (‚B172 " 5271) 93]

= 4106273 "fl372) — °‘2(.3173 " /3371) + 4\3(/3172 ‘ 271)’
und damit gilt
I 0:1 0&2 (X3

' Übe] = I31 ß: I33 Q

U i71 72 73|
das Verschwinden dieser Determinante hatten wir bereits in 1.2.7. als notwendige und
hinreichende Bedingung für komplanare Vektoren, also linear abhängige Vektoren
erkannt.
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Wenn die Vektoren a, b, c miteinander vektoriell multipliziert werden, so sind die
beiden Produkte a x (b x c) und (a x b) x c möglich. Wir betrachten zunächst
p = a x (b x c); Ergebnis dieser Multiplikation ist sicher ein Vektor. Dieser Vek-
tor p muß senkrecht auf a und senkrecht auf (b x c) stehen (vgl. Bild 1.24), d. h.,
er muß in der durch b und c aufgespannten Ebene liegen. Daher läßt sich p darstellen
in der Form p = lb + ‚uc, Ä und ‚uskalare Faktoren. Dann ist

c1 e, c3

a x (b x c) = oz, a2 one ,

$9273 “ 5372 5371 " /9173 .3172 " [3271

woraus sich die Komponenten n1 ‚ n2 ‚ 7:3 ergeben zu

751 = caßi — “W1, 752 '= C3132 ‘ “W2: 753 = ca/33 " 3W3;

damit ist i. = ca, ‚u = —ab‚ und es" gilt

Satz 1.16: s‚1.16
a x (b x c) = (ca)b —- (ab)c;

das ist der Entwicklungssatz.

bx:

u; (bxc)

Wenden wir diesen Satz auf das Produkt (a x b) x c an, dann ergibt sich

.(axb) x c= —cx(axb)= —(bc)a+(ca)b.

Mit Hilfe der soeben ‘abgeleiteten Sätze können wir auch vierfache Produkte be-
rechnen. Zum Beispiel ist

(a x b) (c x d) = (a x b)p = [abp],

wenn wir p = c x d setzen; weiter wird
[abp] = afb x p) = a{b x (c x d)} = a{(db)c — (bc) d},

also p

(a >< we >< d) = (scuba) — (adxbc) = f: 2:.
Um (a x b) x (c x d) zu berechnen, gehen wir folgendermaßen vor: Wir setzen
an u I. _. a. - ‘A nnn ux ‚im-I
I Ä II —" Ill, uauu vvuu

(a x b).x (c x d) = p, x (c x d) = (dp,)c — (p‚c)d = [dab]c - [abc]d;

setzen wir c x d = pz, dann wird
(a x b) x (c x d) = (a x b) x p2 = —(bp2)a+ (p2a)b = —[bcd]a+ [cda]b;
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bilden wir die Differenz aus der ersten und der zweiten Gleichung, dann erhalten wir
| afbcd] —- b[cda] + c[dab] - d[abc] = o;

diese Beziehung sagt aus, daß vier Vektoren im R3 stets voneinander linear abhängig
sind.

1.4. Anwendungen der Vektoralgebra

1.4.1. Moment einer Kraft. Tangentialgeséhwindigkeit

In einem Punkte P eines Körpers, derin dem Punkte 0 festgehalten wird, greift
unter dem Winkel a9 zum Vektor r = 0P eine Kraft k an. Dann entsteht ein Dreh-
moment vom Betrage lrl |k| sin 29, dessen Achse auf der von den Vektoren r und k
aufgespannten Ebene senkrecht steht (vgl. Bild 1.25). Das Drehmomentm kann also
durch das vektorielle Produkt m = r x k dargestellt werden.

.9

l v
(l

P
0 f’ l

Ir!

0!’

Bild 1.25 (P Bild 1.26

Wenn sich ein starrer Körper als Ganzes um eine Gerade g mit einer Winkel-
geschwindigkeit u dreht, so spricht man von einer Kreisbewegung oder Rotation,
und die Gerade heißt Dreh- oder Rotationsachse. Die Winkelgeschwindigkeit u

ist an eine Trägergerade — in diesem Fall an die Rotationsachse — gebunden. (u ist
also nicht parallel verschiebbar.) Jeder Massenpunkt des Körpers beschreibt in einer
Ebene, die senkrecht zur Rotationsachse liegt, eine Kreisbahn um den Durchstoß-
punkt 0 der Achse durch die Ebene; 0 heißt Dreh- oder Rotationszentrum. Die
Bahngeschwindigkeit v eines beliebigen Punktes P des Körpers, der nicht auf der
Rotationsachse liegt, ist zu bestimmen (vgl. Bild 1.26).

Da P eine Rotationsbewegung ausführt, wirkt v in Richtung der Tangenten
in P an den Kreis, d. h.‚ es gilt v = u x r.

Ist nicht O, sondern ein anderer Punkt 0* der Drehachse Ursprung des Orts-
Vektors nach P (vgl. Bild 1.26), dann gilt v = u x r*; v steht senkrecht auf der
durch u und r* bestimmten Ebene.

1.4.2. Reziproke Vektorsysteme‘)

Wie wir gesehen haben, sind vier Vektoren im R5 stets voneinander linear abhängig,
d. h.‚ jeder Vektor (=l= o) läßt sich durch drei nicht komplanare Vektoren darstellen.
In der Beziehung '

a[bcd] — b[cda] + c[dab] — d[abc] = o

1) Vgl. Bd. 23, 6.
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ersetzen wir d durch den Vektor r, während a, b, c drei nicht komplanare Vektoren
sein sollen (über die Winkel, die diese Vektoren miteinander bilden, werden keine
Voraussetzungen gemacht). Dann wird

[rbc]a + [rca]b + [rab]c = r[abc]

oder — da nach Voraussetzung abc =t= 0 ist —

_ (b xc) (c x a) (a x b)r—f a+r b+r -C,
wofür wir '

r = (ra*)a + (rb*)b + (rc*)c (1.2)

schreiben mit
a*.Lb, a’f.Lc, b*J.c, b*_La, c*J.a, c*.Lb

und
(bxc) (cxa) (axb)*=j, *=—————‚ *=————; 1.3
[abc] [abc] ° [abc] ( i)

beziehen wir r auf die Grundvektoren e 1 ‚ e, ‚ e, , dann ist

r = 9191 + 9202 + 9393» (1-4)

und es gilt
Q1 = rcos (cl; r) = rel, Q2 = rcos (ez; r) = rez, 93 = rcos (c3; r) = re;

und damit
rg= (re‚) c1 + (reg) e; + (re3) c3. (1.5)

Setzen wir im besonderen a = c1, b = ez, c = c3, dann wird a* = e1, b* = e2,
c* = e3 , und (1.2) geht in (1.5) über. Bei unserem Ansatz (1.1) bzw. der Darstellung '

(1.2) handelt es sich also um eine gegenüber (1.5) allgemeinere Darstellung.
Die Systeme a, b, c und a*‚ b*, c* heißen zueinander reziprok. Wir wollen nunmehr

den Vektor r bezüglich der Vektoren a*, b*, c* zerlegen: '

r = ‚u,a* + p2b* + ,u;c*; (1.6)

darin setzen wir für a*, b*, c* die Werte aus (1.3) ein und erhalten nach Multipli-
kation mit [abc] »

[abc]r = ‚u‚(b x c) + ,u2(c x a) + y,(a >< b). (1.7)

(1.7) multiplizieren wir nacheinander skalar mit a, b, c und erhalten

‚u,‘ = ra, (l.7a)
‚u; = rb, (l.7b)
‚u; = rc. (l.7c)

Damit geht (1.6) über in

r = (ra)a* + (rb)b* + (rc)c*, (1.8)

und diese Beziehung heißt zu (1.2) reziprok.
Mit Hilfe der Gleichungen (1.3) berechnen wir die skalaren Produkte aa‘, bb‘,

cc*‚ a*a, b*b, c*c und erhalten

aa* = bb* = cc* = 1 = a*a = b*b = c*c; A _ (1.9)
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ebenso berechnen wir die skalaren Produkte a*b‚ ba*, a*c, ca’, b*a, ab‘, b*c, cb*,
c*a, ac*, c*b, bc*: A

a*b = ba* = a*c = ca* = b*a = ab* = b*c = cb* = c*a_

= ac* = c*b = bc*- = 0; (1.10)

denn bei der entsprechenden Multiplikation der Gleichungen (1.3) werden alle Zähler
gleich null. Ferner gelten

b* x c* c* _x a* a* x b*
“='[:.T:.TcT ‘TE’ °=TFF*'*E='*T 0-“)

und
[abc] [a*b*c*] = 1. (1.12)

Aus (1.3), (1.11), (l.l2) ergibt sich, daß entweder beide Systeme Rechts— oder beide
Systeme Linkssysteme sein müssen. Wenn a, b, c zueinander orthogonal sind, dann
ergibt sich dasselbe System, d. h., a*, b*, c* sind durch dieselben Vektoren a, b, c
darstellbar, nur sind die entsprechenden Beträge zueinander reziprok; so wird aus
(1.3) z. B. l

* b >< c a a 1 O
a = -——-—-—-— = -—-———-— =. —-—— = ——a

[abc] a(b x c) aa |a[

und entsprechend b* = -lli—’b°, c* = -i:—lc°. Orthogonale Systeme sind also zu sich

selbst reziprok. (Für den Fall der Darstellung durch die Grundvektoren el, c2, e3,
d. h., für a == c1 , b = ez, c = e, wird, wie wir oben bereits gesehen haben, a* = e, ,

b* = ez, c* = e3, weil ja |e,| = lezl = le3| = 1 und das von den Grundvektoren
gebildete Orthogonalsystem zu sich selbst reziprok ist.)

1.4.3. Die Höhen im Dreieck

Da h, und h, Vektoren in Richtung der Höhen bis zum Höhenschnittpunkt H sind
(vgl. Bild 1.27), gilt

h, .L a, h; _L c oder baa = 0, hcc = 0.

Es soll gezeigt werden, daß x (der Vektor vom Eckpunkt B bis zum Höhenschnitt-
punkt H) senkrecht auf bist, die drei Höhen eines Dreiecks sich also in einem Punkte
schneiden.

Es ist h, = x —— a und ha = x + e; werden diese Werte für h, und he in die obigen
Gleichungen eingesetzt, ergeben sich

a(x+c)=ax+_ac=0
und

c(x-a)=cx—ca=0.
Durch Addition beider Gleichungen erhält man

x(a + c) = O;

nun ist a + b + c = o, also a + c = —h‚ womit sich

x(—b) = —(xb) = 0

ergibt. Wegen b =l= o ist x J. b, d. h., x ist ein Vektor in Richtung der Höhe vorn
Punkte B auf die Seite b; damit ist die obige Behauptung bewiesen.
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Bild 1.28Bild 1.27

1.4.4. Additionstheorem der Sinusfunktion

Für die beiden Einheitsvektoren e. und e, gilt (vgl. Bild 1.28):

e4 = e, cosqz + e, sincp,

e, = e, costp + e, sinzp;

das vektorielle Produkt ist

91 e: es

c4 x e, = cosq: sincp 0 = (costp sinip — sin¢;ocos1p)e_.,;

cos 1p sin cp 0

nach der Definition des vektoriellen Produktes ist e4 x e, = 1 - l sin (e4; e5) c3
= c3 sin (y: —— (p). Der Vergleich beider Ergebnisse liefert

sin (tp — (p) = sinnpcoszp — coszp sinqa.

(Der Beweis gilt für 0 g zp — q) g TC.)

1.4.5. Gleichungen einer Geraden

Jeder Punkt P derEbene oder des Raumes kann bei gegebenem Koordinatenanfangs-
punkt 0 durch einen Vektor a = 0P, den Ortsvektor, festgelegt werden. Es gilt dann

r = 91c, + gze, bzw. r = me, + 92¢, + e363,

wenn (9,, 92) bzw. (e. , 92, 93) die Koordinaten von P in der Ebene bzw. im Raum
sind. Damit sind zugleich die Zerlegungen von r in seine vektoriellen Komponenten
gegeben.

Wenn P Punkt der durch den Koordinatenanfangspunkt 0 gehenden Geraden g ist
und a der Richtungsvektor von g, dann erhält man durch

r=}.a‚ —oo<).<+oo‚
alle Punkte der Geraden g, also die vektorielle Darstellung einer Geraden durch O.

Die Koordinatendarstellung in der Ebene ergibt sich folgendermaßen: P habe
die Koordinaten (x, y) in der Ebene. Es ist

"a = age, + 412e; = la] {cos (e,, a) e, + cos (c2, a) c2}

Richtungsvektor von g und damit

r = Ä |a| {cos (e1, a) e, + cos.(e,, a) e2}

3 Manteullel, Lineare
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bzw., wenn man die Koordinaten von P berücksichtigt,

r = xe, + ye,

Ortsvektor von P. Dann giltx = Mal cos (e, , a), y = Mal cos (ez, a) = 2.|al sin (e, , a),
weil a: (c1, a) und «a: (e24, a) Komplementwinkel sind.

Schließlich wird -':— = tan (c1, a) = m für cos (e„ a) =l= O und y = mx die Glei-

chung einer Geraden durch O.
Ist a wiederum der Richtungsvektor der Geraden g und P1 ein Punkt auf g, der

durch den Ortsvektor r, = xlel + y,e2 + z,e3 bestimmt ist, dann lautet die Vektor-
form der Punkt-Richtungsgleichung (vgl. Bild 1.29)

r=r‚+}.a‚ —oo<}.<+oo.
\

(Die Koordinatenform dieser Geradengleichung in der Ebene ergibt sich wie oben
aus '

r — r, = /Ia und r = xe, + yez.)

P, und P2 seien zwei voneinander verschiedene Punkte (der Ebene oder des
Raumes), deren Lage durch die Ortsvektoren rl und r, bestimmt ist (vgl. Bild 1.30).

Dann ist der Ortsvektor r = ÖP zu einem beliebigen Punkt P der durch P, und P3
bestimmten Geraden g wie folgt zu bestimmen;

——> —-> =>

r = 0P = OP, + APIPZ, d. h. r = r, + }.(1-2 — rl),
(Zwei-Punkte-Gleichung der Geraden in der Vektorform).

Aus

r — r, = Z(r2 — r1) und r, = xle, + y‚e2

‘z = X291 + ‚V292

läßt sich die Koordinatenform der Zwei-Punkte-Gleichung einer Geraden in der
Ebene herleiten.

Bild 1.29 Bild 1.30

Liegen insbesondere die Punkte P, und P2 auf der Abszissen- bzw. Ordinaten-
achse (vgl. Bild 1.31) und setzt man

TI)-1 -= a, -0-P2 =' b,

dann lautet die Vektorform der Achsenabschnittsgleichung

r = ae, + l(be2 — ae1)= (1 ~ Z)ae1 + Zbez.
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Die Koordinatenform der Geradengleichung erhält man unter Berücksichtigung der
Gleichung des Ortsvektors zu einem beliebigen Punkt P dieser Geraden r = xe, + ye, :

x=(l—}.)a, y=}.b;

i: _ Ä:-a l Ä, b Ä,

x y'_-7+-b--1

(Achsenabschnittsgleichung einer Geraden mit a =i= 0, b =l= O).

Die Gerade g gehe durch die Punkte P, und P2, die durch die Ortsvektoren r,
und r; festgelegt sind; P3 ist ein beliebiger zwischen P1 und P2 gelegener Punkt,
der durch den Ortsvektor r gegeben ist und P‚P2 (innen) im Verhältnis n: m teilt
(vgl. Bild 1.32). Es gilt

(r " 1'1) = 3-(T2 ‘ 1'1),

I": --Ä)r1 +312,

r=mr1 +/zzrz mit m +u2 =1;
n

m+n
unter Berücksichtigung des Teilverhältnisses i. = ist

__mr1+nl'2
m+n °

J

Bild 1.31 Bild 1.32‘

Die letzte Darstellung gestattet folgende Deutung:
P3 kann als Massenmittelpunkt der mit den Massen m und n belegten Punkte P,

und P2 aufgefaßt werden; setzt man m + n = -1, dann stellt

1-r+mr‚+nr,=o mit l+m+n=0

die Gleichung dreier Vektoren r, rl, r; dar, deren Endpunkte auf einer Geraden
liegen.

Der Punkt P, sei ein fester Punkt der Geraden g, der durch den Ortsvektor r, fest-
gelegt ist; durch PlPz = ‘a sei die Richtung von g bestimmt, wenn P2 ein beliebiger
anderer Punkt der Geraden g ist (vgl. Bild 1.33). Dann ist (r — r,) || a, d. h., es gilt

(r — n) x a = o.

3!
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Die Hessesche Normalform einer Geradengleichung in der Vektorform entsteht
aus der Gleichung

r=r1+Äa, ——oo<Ä<+od‚

wobei r, der Ortsvektor eines Geradenpunktes P1 und a Richtungsvektor der Ge-
raden g ist. r ist Ortsvektor eines beliebigen Punktes auf g, n sei der vom Nullpunkt
weg positiv orientierte Normaleneinheitsvektor auf g, |n|2 = nn = 1 (vgl. Bild 1.34).

>
<

l

Bild 1.33 Bild 1.34

Multipliziert man die umgeformte Gleichung

r —— 1'1 = la

mit dem Normaleneinheitsvektor n skalar, so entsteht
(r — r1)n = Äan = O,

da n L a. ‚

Diese Gleichung gilt für alle Punkte, die auf der Geraden g liegen, und wird als
Hessesche Normalform der Geradengleichung bezeichnet.
Aus (r — I1) n = O erhält man

rn = ‘In =l.r1|' Cos (t1: n) = p:

wobei p der senkrechte Abstand der Geraden -vom Koordinatenursprung ist.
Ist Q ein durch den Ortsvektor q bestimmter Punkt, der nicht auf g liegt, dann gilt

q = r, + la + ön

(vgl. Bild 1.35), wobei ö den Abstand des Punktes Q von der Geraden g bedeutet.
Multipliziert man diese Gleichung skalar mit dem Normaleneinheitsvektor n, so ent-
steht

qn = rln + Äan + önn,

qn=p+O+ö oder qn—p=ö;
dabei ist ö < O, wenn 0 und Q auf derselben Seite von g liegen, und ö > 0, wenn 0
und Q auf verschiedenen Seiten von g liegen.

1.4.6. Gleichungen einer Ebene

P, ‚ P2 und P3 seien drei durch die Ortsvektoren r, , r, und r3 festgelegte Punkte
einer Ebene; P4 sei ein beliebiger, durch den Ortsvektor r gegebener Punkt derselben
Ebene (vgl. Bild 1.36). Dann ist
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(r ‘“ 1'1) = K‘: — 1'1) ‘l’ .“(1'3 ‘ 71);

r=(1—/'1-.u)l'1+3J‘;+/Al’;
oder

r=Ä1r1 +34‘; +Ä3r3 A1 +}-2+2-3 =

da man diese Ebenengleichung ‘auch in der Form

r _ 11!‘; + 221'; + 13l‘;
" 1.1 + 2.2 + 2.,

schreiben kann, erhält man mit —}.4 = Ä, + Ä, + 13

Äll’; + 12l’; + 131-3 + A41. = 0

die Bedingung dafür, daß die vier Punkte P, , P2 , P3 ,'P4 in einer Ebene liegen.
Ist die Ebene durch einen Punkt Po mit dem Ortsvektor to und einem Normalen-

vektor n — senkrecht zur Ebene — bestimmt (vgl. Bild 1.37), so gilt .

n(r ——— to) = 0 oder nr = nro

als Gleichung der Ebene (Hessesche Normalform der Ebenengleicliung).
. P3

’.'7"'1

P1 äq

f7 I}

>
<

r

e

Bild 1.35 Bild 1.36

Der Normalenvektor n (auch Stellungsvektor der Ebene genannt) habe die Glei-
chung

n = ale; + azez + a3e3;

für r gelte

r = xlel + xze; + x3e3.

Wir setzen

nro = b = Inl p, p Abstand der Ebene vom Nullpunkt;-

dann folgt ausider Ebenengleichung

nr = nro = b
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als Gleichung einer Ebene in kartesischen Koordinaten

alx, + azxg + a3x3 = b,

wobei a1 ‚ a2, a, die Skalarkomponenten des Stellungsvektors der Ebene sind.
Mit Hilfe der Gleichung

nl'=nro

läßt sich z. B. auch der Abstand eines Punktes P1 von der Ebene bestimmen. Der
Vektor des von P, auf die Ebene gefällten Lotes sei d, wobei dun. Dann gilt:

n(ro — r1) = nd,

da d gleich der Projektion von (ro —— 1-,) auf n ist (vgl. 1.3.1. und Bild 1.17) und
nd = In] [d]. Der Abstand des Punktes P, von der Ebene ist demnach [d], und es ist

_ |n(r '31)‘
Id! - -—-9T-

l.4.7. Abstand zweier windschiefer Geraden

Zwei Geraden seien gegeben durch l

813 = 1'1 + 13:
g2: r = r; + ‚ab.

a und b spannen eine Ebene auf". Es gibt unendlich viele parallele Ebenen, die a bzw. b
enthalten, davon enthält genau eine Ebene g, und eine dazu parallele Ebene g2. Der
Abstand dieser beiden Ebenen ist zugleich der Abstand der beiden Geraden (vgl.
Bild 1.38).

0

Bild 1.37 Bild 1.38



1.5. Aufgaben 39

n = a x b ist ein Vektor, der senkrecht auf beiden Ebenen steht. Es gilt:

(T2 — 1'1) n = (T2 " U)»: n-

((r2 — r‚)„ ist die Projektion des Vektors (r, — r!) auf n, eine Komponente d dieses
Vektors in Richtung von n. Der Betrag dieser Komponente ist gleich dem Abstand.)
Daraus folgt:

(r, — r,)n = dn,

und da n||d ist, gilt

(u—nh=+MWlN=Elfi2fl
und mit n = a x b

Jm—maxwW-—7:fir“-
1.4.8. Gleichungen von Kreis und Kugel

Wenn der Koordinatenanfangspunkt O Mittelpunkt eines Kreises vom Radius a

und r der Ortsvektor von 0 zu einem beliebigen Punkt P dieses Kreises ist (vgl.
Bild 1.39), dann gilt

|r| = a, und r’ = a’

ist die Gleichung des Kreises in-vektorieller Form. '

Im R3 stellt r‘ = a’ die vektorielle Form der Gleichung der Kugel dar, deren
Mittelpunkt 0 und deren Radius a ist.

Fallen Mittelpunkt Mdes Kreises bzw. der Kugel und Koordinatenanfangspunkt O

nicht zusammen (vgl. Bild 1.40), und ist 011i = m der Ortsvektor von M, dann wer-
den Kreis bzw. Kugel durch die Gleichung (r — m)’ = a’ beschrieben.

R

Bild 1.39 Bild 1.40

1.5. Aufgaben i

1.1: Man zeige, daß die Ortsvektoren

l0 -ll - 2

a1 = " 5 ‚ a2= "‘ 2 und a3:

1o +10 — 5 '

die Kanten eines Würfels bilden, und bestimme dessen Volumen.
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1.2: Zwei Ortsvektoren a, b weisen nach den Endpunkten einer gegebenen Strecke AB. Auf der

BP

1.3: Unter dem Flächenvektor f einer ebenen Fläche F versteht man einen Vektor, der senkrecht
auf der Fläche steht und dessen Betrag gleich der Maßzahl des Flächeninhaltes von F ist. Man
beweise: Für ein beliebiges Tetraeder ist die Summe der nach außen orientierten Flächenvektoren
f1 , ...‚ f4 gleich dem Nullvektor.

AP Ä
Strecke AB liege der Punkt P, und es sei —-—'- =_ 7‘- . Wie heißt der Ortsvektor zum Punkt P?

1.4: Ein starrer Körper rotiere mit n = 250 Umdrehungen pro Minute um eine Achse a, deren
Gleichung in vektorieller Form a = Ä(e1 —- 3e; + 2e3) ist. Blickt man in der orientierten Richtung
des Vektors a, so soll die Drehung als Rechtsdrehung erscheinen. Man gebe den Geschwindigkeits-
vektor v der augenblicklichen Bewegung des Punktes P(—- 1, 4, 3) an und bestimme den Betrag der
Geschwindigkeit (Längeneinheit = 1 m).

1.5: Verbindet man eine Ecke eines Parallelogramms mit den Mittelpunkten der beiden nicht von

dieser Ecke ausgehenden Parallelogrammseiten, so wird die von diesen Verbindungsgeraden im
Parallelogramminneren geschnittene Diagonale des Parallelogramms in drei gleiche Teile zerlegt.
Das ist vektoriell zu beweisen.

1.6: In welchem Verhältnis schneiden sich die Höhen im gleichseitigen Dreieck?

1.7: In Richtung der Kanten 0A, OB und 0C eines regelmäßigen Tetraeders OABC mögen Kräfte
mit den Beträgen 1, 2 und 3 kp wirken. Man bestimme den Betrag der Resultierenden R dieser Kräfte
und die Richtungskosinus von R bezüglich der Kanten 0A, OB und OC (vgl. Bild 1.41).

Bild 1.4l

1.8: Welche Fläche überstreicht ein Ortsvektor x vom Betrage 1 im Raum, wenn sein Skalarprodukt
mit e1 stets den Wert 4} hat?

1.9: a, b, c seien drei gegebene Vektoren, die nicht in einer Ebene liegen. Gesucht ist ein Vektor g
mit g J. b, g J. c; ga = k sei eine gegebene Konstante.

1.10: Man beweise vektoriell: Das Produkt der Abstände zwischen einem festen Punkt P und den
Schnittpunkten einer veränderlichen Geraden durch P mit einem festen Kreis ist konstant („Sekanten-
Tangentensatz“). -

1.11: Gegeben sind zwei Ebenen E1 und E}:

E1: x = e; + l1(e1 + c2) + ,u1(e‚ + c3),

E2: x = e1 + 12c, + ,u2(e, + ea).

a) Die Schnittgerade von E1 und E; ist zu bestimmen;
b) der Winkel «p zwischen E1 und E2 ist zu berechnen;
c) P2(3‚ —2‚ 2) und Q2(l, 0, 0) seien zwei Punkte in E2.

l ’ ‘l2 ist ein Vektor is

l 1

Welchen Schatten P1Q1 wirft P‚Q2 in E1? Wie lang ist dieser Schatten?

1.12: Man bestimme die vektorielle Form der Gleichung der Ebene durch die Punkte P1(a‚ 0, 0),
Pz(0, b, 0) und P3(0, 0, c). i

n:„_.



2. Matrizen und Determinanten

Nach dem Rechnen mit Vektoren werden wir uns nunmehr mit dem Rechnen mit
Matrizen vertraut machen.

Die Matrizen treten uns ebenfalls als Hilfsmittel entgegen, das sich vorzüglich für
die Beschreibung und Darstellung praktischer Probleme eignet.

Da sich die Matrizen als Systeme von endlich vielen Vektoren auffassen lassen,
müssen wir zunächst die entsprechenden Rechengesetze und ihre Eigenschaften her-
leiten. Wir lernen einen Kalkül kennen, der umfassend einsetzbar ist.

2.1. Einführende Betrachtungen und Definitionen

2.1.1. Einführende Betrachtungen

Wenn nach den Rohstoffmengen gefragt wird, die in einem Betrieb bereitzustellen
sind, der aus fünf Rohstoffen zwei Zwischenprodukte herstellt und diese zu einem Teil
zu drei Endprodukten weiterverarbeitet, dann werden Angaben über die Produktions-
auflagen und über die Materialverbrauchsnormen benötigt. Wir wollen mit R, , R2 ,

R3, R4, R, die Rohstoffe, mit Z, ‚ Z2 die Zwischenprodukte und mit E, ‚ E, , E3 die
Endprodukte bezeichnen (Bild 2.1). Die Verbrauchsnormen von Rohstoffen zu
Zwischenprodukten sowie von Zwischenprodukten zu Endprodukten sind in den
beiden folgenden Tabellen enthalten:

@:R2rfirRa:&

\

Tabelle 2.1 Tabelle 2.2

IZI I22 IE1 IE2 lEs
R, 2 l Z, l 2 4
R2 0 2 Z2 6 3 2
R3 3 1

R4 5 O

R5 3 4

Zum Beispiel werden zur Herstellung von einer Gewichtseinheit Z, zwei Gewichts-
einheiten R, und zur Herstellung von einer Gewichtseinheit Z2 eine Gewichtseinheit R,
benötigt usf.

Die Produktionsauflagen sind:

Tabelle 2.3 Tabelle 2.4

Z, l 150 E, 80

Z2 90 E2 20

E3 100
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Die Produktionsauflagen für die Zwischenprodukte sind unabhängig von den für
die Endprodukte benötigten Zwischenprodukten. '

Mit diesen Angaben können wir die Frage nach den für die Erfüllung der Pro-
duktionsauflage bereitzustellenden Rohstoifmengen beantworten.

Für die Erzeugung der geforderten Mengen von Z, und Z2 ergibt sich aus den
Tabellen -2.l und 2.3 die Notwendigkeit, folgende Mengen der einzelnen Rohstoffe
bereitzustellen :

für R1: (2- 150 + l -90) Gewichtseinheiten,

für R2: (O - 150 + 2 - 90) Gewichtseinheiten‚

für R3: (3 - l5O + 1 - 90) Gewichtseinheiten,

für R4: (5 - 150 + 0 - 90) Gewichtseinheiten,

für R5: (3 - 150 + 4 - 90) Gewichtseinheiten.

Wenn wir die Tabelle der Verbrauchsnormen und die Angaben über die Produk-
tionsauflagen sowie die oben erhaltenen Ergebnisse ohne Tabelleneingänge auf-
schreiben, dann erhalten wir:

2 1 390

0 2 150 180

3 1 [ 90] —> 540 ‚ (2.1)
5 0 750 ‘

3 4 810

Verbrauchsnormen Produktions- Rohstoffbedarf
zwischen auflage für die Zwischen-
R, und Z), für Z); produkte Z‚-.

Daraus ist zu ersehen, daß die Elemente rechts vom Pfeil durch die oben erklärte
Verknüpfung der Elemente aus jeweils einer Zeile der Tabelle 2.1 mit den Elementen
aus der einen Spalte der Tabelle 2.3 ermittelt werden können.

Um die Rohstoffmengen für die Endprodukte angeben zu können, müssen wir die
Verbrauchsnormen zwischen Rohstoffen und Endprodukten kennen. Da die End-
produkte über Zwischenprodukte erzeugt werden und wir die Verbrauchsnormen
zwischen Rohstoffen und Zwischenprodukten sowie Zwischen- und Endprodukten
kennen, wollen wir versuchen, daraus die Verbrauchsnormen zwischen Rohstoffen
und Endprodukten zu ermitteln. Wir müssen Angaben über Beziehungen erhalten, die
zwischen den fünf Rohstoffen und den drei Endprodukten bestehen. Dazu benutzen
wir die Tabellen 2.1 und 2.2. Daraus ergeben sich z. B. die Verbrauchsnormen

zwischenR‚undE‚zu2-l+l-6= 8,

zwischenR‚undE2zu2-2+ l-3= 7,

zwischen R1 und E3 zu2-4 +1-2 =10,
zwischen R2 und E, zu0-1+ 2-6 =12,
zwischen R2 und E; zu 0- 2 +12 -3 = 6,

. . . - o . . . . . - . . . - . . . . - - . . . . . . . . . - - . - . .-

zwischen R5 und E3 zu 3 -4 + 4-2 = 20,

so daß wir folgende Verbrauchsnormen zwischen den Rohstoffen R, (i = 1, ..., 5)
und den Endprodukten Ek (k = l, 2, 3) erhalten:
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Tabelle 2.5

' E, E2 E3

R, s 7 10

R2 12 6 4

R, Y 9 9 1'4-

12. ' 5 1o 2o

R, 27 1s 2o ’

Unter Verzicht auf die Zeilen; und Spalteneingänge läßt sich die Beziehung zwischen
den Tabellen 2.1, 2.2 und 2.5 folgendermaßen schreiben, wenn wir die Werte der
Tabelle 2.5 wie oben angegeben ermitteln:

2 1 8 7 10

0 2 1 2 4 12 6 4

3 1 [ 3 z] —» 9 9 14 , (2.2)
5 0 5 l0 20

3 4 _ _ 27 l 8 20

Verbrauchs- Verbrauchs- Verbrauchs-
normen zwischen normen zwischen normen zwischen
R, und Z‚-‚ Z, und E,,; R; und Eh.

s

Auch hier entstehen die Zahlen rechts vom Pfeil durch die gleichen Verknüpfungen
der Elemente von Zeilen und Spalten, wie sie vorhin erläutert wurden.

Die für die Erzeugung der Endprodukte E,‘ bereitzustellendcn Gcwichtseinheiten
der Rohstoffe R,- erhalten wir aus den Tabellen 2.5 und 2.4; daraus ergibt sich für
die Erzeugung der geforderten Mengen von E, , E2 , E3 die Bereitstellung

von ( 8 - 80 + 7 - 20 + l0 - 100) Gewichtseinheiten von R1,
von (12 - 80 + 6 - 20 + 4 - 100) Gewichtseinheiten von R2 ‚

von ( 9 - 80 + 9 - 20 + 14- 100) Gewichtseinheiten von R3,
von ( 5 - 80 + l0 - 20 + 20 - 100) Gewichtseinheiten von R4,
von (27 - 80 + 18 - 20 + 20 - 100) Gewichtseinheiten von R5.

Unter Verzicht auf die Zeilen- und Spalteneingänge der Tabellen 2.5 und 2.4 ergibt
sich folgende Darstellung»:

8 7 10 _ ' 1 780

12 6 4 80 1480

9 9 14 [ 20] —> 2300 ‚ (2.3)
5 10 20 100 2600

L27 1s 2o_ |_4s2o_I
Verbrauchsnormen Produktions- Rohstoff‘bedarf
zwischen auflage für die
R, und E„, für Ek; Endprodukte E,,.
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Um die ursprünglich gestellte Frage vollständig beantworten zu können, ist noch
der Rohstoffbedarf für "die Zwischenprodukte und der für die Endprodukte zu
addieren:

390 1 780 _ 2170

180 " 1480 1660

540 + 2300 —> 2840 (2.4)
750 2600 3 350

810 _ 4 520 5 330

Rohstoffbedarf Rohstoffbedarf gesamter
für die Zwischen- für die Rohstoff-
produkte Zj, Endprodukte E,,; bedarf.

Wir erhalten die. einzelnen Werte für den Gesamtbedarf, indem wir die Summe der
jeweils entsprechenden Zahlen bilden, d. h. z. B. 390 + 1780 = 2170 usf. Das ist
möglich, weil an der 1., 2., 3., 4., 5. Stelle der obigen Zahlenschemata jeweils die
für R1, R2, R3, R4, R5 bereitzustellenden Mengen stehen.

Es werden also benötigt:

2 170 Gewichtseinheiten R, ,

1660 Gewichtseinheiten R2 ,

2840 Gewichtseinheiten R3,

3350 Gewichtseinheiten R4,

5330 Gewichtseinheiten R5 ,

um die Produktionsauflagen gemäß den bestehenden Verbrauchsnormen zu erfüllen.
Unsere Überlegungen führen zu der Frage, ob es nicht sinnvoll wäre, für solche

Zahlenschemata, wie sie uns entgegengetreten sind, Rechenregeln zu entwickeln,
um ohne Umwege und zusätzliche Erläuterungen mit diesen Schemata, mit diesen
Systemen von Zahlen zu rechnen. _

Aber versuchen wir zunächst, durch Anwendung unserer oben angestellten Über-
legungen ein anderes Problem zu lösen. In einer landwirtschaftlichen Produktions- '

genossenschaft soll der Bedarf an Futtermitteln für das kommende Jahr geplant
werden; dabei wollen wir uns in diesem Beispiel auf die Milch- und Rindfleisch-
produktion der Genossenschaft beschränken. Es werden in die Bedarfsermittlung
einbezogen: die vorhandenen Milchkühe, das zu erzeugende Rindfleisch und die
aufzuziehenden Jungtiere. Im einzelnen werden an Futtermitteln benötigt:

Tabelle 2.6

für 1 Stck. Milchvieh __ __ _

der Kategorie fu_r 1 t fuflr eine
I n. | In Rindermast Farse

Cirünfutter [t] 10 10 12 l0 15

Silage [t] 5 5 6 10 5

Heu [t] 1,8 1.5 1,5 1 1,5

Getreide [t] 0,4 0,6 0,8 1 0,7
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Folgender Tierbestand ist vorhanden bzw. folgende Mast- und Aufzuchtleistungen
sind zu erbringen:

Tabelle 2.7

Milchvieh, Kat. I [Stck.] 150

Milchvieh, Kat. II [Stck.] 150

Milchvieh, Kat. III [Stck.] 150

Rindermast [t] 50

Färsenaufzucht [Stck.] 90

Die Frage nach den Futtermengen, die zu erzeugen sind, beantworten wir durch ent-
sprechendes Vorgehen wie beim vorigen Problem; wir schreiben die Zahlenschemata
der Tabellen 2.6 und 2.7 nebeneinander und führen die Berechnung wie beim vorigen
Beispiel durch:

1o 1o 12 1o 15 E3 T6650“
5 5 6 l0 5 150 q l 3 350

1,8 1,5 l‚5 1 1,5 50 L 905 , (2.5)
0,4 0,6 0,8 1 0,7 90 383

Bedarf der einzelnen Tier- Tierbestand Bedarf an
gruppen an Futtermitteln; bzw. Auflagen; Futtermitteln.

Die Berechnung erfolgt also wie vorhin; z. B. ist

5-150 + 5-150 + 6- 150+ 10-50+ 5-90 = 3350usf.

Für die Fütterung des Milchviehs, d. h. also für die Sicherung der Milchproduktion,
für die Erfüllung der Rindfleischproduktion und für die Jungtieraufzucht müssen
bereitgestellt werden

6650 t Grünfutter,
3350 t Silagefutter,

905 t Heu, '

383 t Getreide.

Wir sehen, daß wir mit‘ entsprechendem Vorgehen wiederum ‘zum Ziele gekommen
sind, und wir erkennen, daß die zu entwickelnden Methoden auf unterschiedliche
Problemstellungen aus verschiedenen Gebieten angewendet werden können. Deshalb
beschäftigen wir uns in diesem und den beiden folgenden Kapiteln zunächst mit den
für den Ingenieur, Naturwissenschaftler, Ökonomen und Landwirt erforderlichen
Grundlagen der linearen Algebra und wollen im vierten Kapitel einige Anwendungen
der linearen Algebra kennenlernen.

2.1.2. Definitionen

Definition 2.1: Ein rechteckiges System von m - n Zahlen, Rechengrziißen oder sonstigen D.2.l
mathematischen Objekten heißt Matrix.
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Die Objekte einer Matrix bezeichnet man als Elemente. Folgende Systeme z. B.
sind ‚Matrizen:

5 3 2 a, a2

l 6 4, a, a,
a‘ a5 .

Im allgemeinen setzt man Matrizen in Klammern, und zwar sind folgende Bezeich-
nungen üblich:

[an x au]
02i "22 -

( 1 5 7) 2 3

6 3 8 4 5

9 8

0 I

Wir werden Matrizen immer durch eckige Klammern kennzeichnen. In einer Matrix
unterscheiden wir Horizontalreihen oder Zeilen und Vertikalreihen oder Spalten
(oder Kolonnen). Der besseren Übersicht halber verwendet man bei der Bezeichnung
der Elemente einer Matrix doppelte Indizes; dabei gibt der erste Index die Nummer
der Zeile an, in der das Element steht (man nennt ihn daher auch Zeilenindex),
‘während der zweite Index die Nummer der Spalte angibt, in welcher sich das Ele-
ment befindet (daher auch Spaltenindex).

Unter einer beliebigen Matrix A wollen wir folgendes System verstehen:

an an ... au‘ ... a“,
(111 C22 ... an ...a2,.
. . . . . . . . . . . . . . . . . .

A = [am]

. . . . . - . . . . . . . . . . . .

a„„ a,,,2 am... a„„‚_

Das Element an, steht also in der i-ten Zeile und in der k-ten Spalte. Wenn eine
Matrix m Zeilen und n Spalten hat, so wollen wir sagen, die Matrix hat das Format
(m, n). Häufig bezeichnet man eine solche Matrix als (m, n)-Matrix, als Matrix
[a„‚](„‚_„, oder A(‚„_„, oder man sagt, die Matrix ist vom Typ (m, n).

Eine Matrix A(,,,_,,, kann auch aufgefaBt werden als aus m Zeilenvektoren a„-‚„
i = 1, 2, ..., m, bestehend, wobei

au) = [arm au; ---‚ am]

eine Matrix vom Format (1, n), d. h. eine einzeilige Matrix, und

Am. n) =

a(m)

ist; natürlich kann A„„_„, auch als aus n Spaltenvektoren a"", k = l, 2, ..., n, be-
astehend aufgef fit werden mit

au:

au) = a"

am]:



2.1. Einführende Betrachtungen und Definitionen 47

d. h., a“) ist eine Matrix vom Format (m, 1), eine einspaltige Matrix, und
A(,,,_,,, = [a‘“, am, ...‚ a‘"’]. Beide Auffassungen sind für das Arbeiten mit Matrizen
außerordentlich bedeutungsvoll.

Definition 2.2: Zwei Matrizen A = [am] und B = [bik] sind dann undnur dann gleich, D.2.2
wenn sie gleiches Format haben und alle entsprechenden Elemente gleich sind.

Gilt die Matrix-Relation

x, y, 1 0

x2 yZ = 3 *1 9

x3 ‚v3 3 l

so bestehen die folgenden sechs Gleichungen:

x1=1; x2=3; x3=3;
y; =0; y; = -1; ya = 1-

Definition 2.3: Wenn in der Matrix A = [am] die Zeilen und Spalten miteinander ver- D.2.3
tauscht werden, so nennt man die so entstehende Matrix die gestürzte oder transponierte
Matrix AT = [a‚„]. Sie wird auch mit A’ oder TA bezeichnet. '

| Hieraus ergibt sich die Beziehung: (AT)T = A.

Beispiel 2.1:

an a” an a2: 1131

A = [ails] = 021 022 v AT = [au] = -

4112 022 032
031 032

Definition 2.4: Ist in einer Matrix m = n, so nennt man sie quadratische Matrix von der D.2.4
Ordnung n oder vom Format (n, n).

In einer quadratischen Matrix

lau

A =

a„‚ a,„‚

bilden die Elemente an, an, ...‚ am ...‚ a‚„‚ die Hauptdiagonale und die Elemente
a‚„, a2„‚_‚ , ...‚ a,-,,,_,.+, , ..., a„‚ die Nebendiagonale.

Satz 2.1: Die Transponierte einer quadratischen Matrix entsteht durch Spiegelung S.2.l
der Elemente an der Hauptdiagonalen.

Die Richtigkeit dieser Aussage ergibt sich unmittelbar aus den Definitionen 2.3
und 2.4.

Definition 2.5: Wennfür eine quadratische Matrix A gilt: A = AT, so nennt man diese D.2.5
Matrix symmetrisch.
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Durch Spiegelung an der Hauptdiagonalen geht also eine symmetrische Matrix in
sich selbst über. Dies ergibt sich unmittelbar aus Satz 2.1 und Definition 2.5. Die
Matrix

afeMedc

ist eine symmetrische Matrix. Für die Elemente einer symmetrischen Matrix gilt:
| a,-,, = a“ (i, k =1, 2, ...,n).

Definition 2.6: Gilt für die Transponierte einer quadratischen Matrix die Beziehung
A = —AT, dann nennt man die Matrix A schiefsymmetrisch oder antimetrisch.

Die einzelnen Elemente haben die Eigenschaft an = —a,,,, an = 0 (i, k = 1,2, ..., n).
Die Matrix

0 a b

—a 0 — c

—b c 0

ist eine schiefsymmetrische Matrix (vgl. auch Def. 2.14).

l__)efinition 2.7: Enthält eine Matrix A = [a,,,] komplexe Elemente, so heißt die Matrix
A = [am], die die jeweiligen konjugiert komplexen Elemente enthält, konjugierte
Matrix.

| Daraus folgt unmittelbar die Gleichung Ä = A.

Definition 2.8: Die Transponierte der Konjugierten einer Matrix A ; [am] mit kam-
plexen Elementen heißt assoziierte Matrix A*. Es gilt also

l A*=ÄT=[ä‚q].

[ai 2 l-i

8+i 4i 3

_ —3i 8—i

Ä"=A"= 2 —4i .

1+i 3

Definition 2.9: Wenn für eine Matrix A = [am] gilt: A* = A, d. h. a“ = fin für alle
i, k = 1, 2, ..., n, so nennt man diese Matrix hermitesch.

3 1+i
9 n 71-12 _

Beispiel 2.2:

—3i 2 1 + i

8 —- i -—4i 3= w J~

Beispiel 2.3:

3 l-i
A= _ A._1+12

[3 1-1]
" 1+i 2
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Definition 2.10: Eine Matrix A = [am], für die A* = —A gilt, heißt antihermitesch D.2.10
(schieflzermitesch), d. h., die Elemente genügen der Bedingung an = —-6,, (vgl. auch

Beispiel 2.4:

Def. 2.7 und 2.14).

[i y [—i —y] [-1 —§
= = ‘ = = —- _

A %i m i’ —§i —fi ' A —gi -2] A

Aus den vorausgestellten Definitionen ergeben sich vier Folgerungen:
I. Hermitesche und antihermitesche Matrizen sind quadratisch.
2. Bei hermiteschen Matrizen sind die Elemente der Hauptdiagönalen reell.
3. Bei antihermiteschen Matrizen sind die Elemente der Hauptdiagonalen

rein imaginär.
4. Reelle symmetrische Matrizen sind Spezialfälle hermitescher Matrizen,

reelle schiefsymmetrische Matrizen sind Spezialfälle schiefhermitescher
Matrizen. ‘

>
|

2.2. . Rechnen mit Matrizen

2.2.1. Addition und Subtraktion

Es seien A = [am] und B = [bu] zwei Matrizen mit jeweils m Zeilen und n Spalten.

Definition 2.11: Zwei Matrizen, die das gleiche Format haben, nennt man gleichartige D.2.l1
Matrizen.

A und B sind demnach gleichartige Matrizen. Nur für gleichartige Matrizen ist
eine Addition und eine Subtraktion erklärt.

Definition 2.12: Unter der Summe der Matrizen A und B versteht man die Matrix S, D.2.12
deren Elemente jeweils die Summen einander entsprechender Elemente von A und B
sind:

A + B = S

agk+bgk=sik 1,2, ...,n1;_k= 1,2, ...,n).
Analog versteht man unter der Diflerenz der beiden Matrizen A — B = D, daß für
entsprechende Elemente die folgende Gleichung besteht:

au‘ ""‘ bik '—— dgk I, 2, ...‚m;k =1‚2,...,n).
(Man vergleiche mit Satz 1.3, Addition bzw. Subtraktion von Vektoren.)

Satz 2.2: Für die Addition von Matrizen gelten das kommutative Gesetz S.2.2

A + B = B + A V

sowie das assoziative Gesetz

m+m+C=A+m+Q=A+B+C
Auf Grund der Definition entspricht die Addition von Matrizen der Addition

ihrer Elemente, für die das kommutative und das assoziative Gesetz gelten.

4 Mantaeuflel, Lineare
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Definition 2.13: Eine Matrix, deren Elemente alle gleich null sind, heißt Nullmatrix.

A — A = 0 ist Nullmatrix. Für das Rechnen mit der Nullmatrix gilt bezüglich
der Addition und der Subtraktion

A+0=A—0=0+A=A
l und

0—A=—A‚

wenn —A = [—a„‚] bedeutet (vgl. Definition 2.14). Bezüglich der Addition und der
Subtraktion verhalten sich die Matrizen wie Zahlen.

Satz 2.3: Jede quadratische Matrix A ist in die Summe aus einer symmetrischen Matrix
und einer antisymmetrischen (schiefisymmetrischen) Matrix zerlegbar, d. h.

I A=AS+AAa
wobei As den symmetrischen und AA den antisymmetrischen (schiefisymmetrischen) An-
teil darstellt. Dabei ist

As = %(A + AT).

AA = %(A - AT)-

(2.7)

(2.8)

So gilt für die Matrix

3 —l 4

A= '5 7 8

-4 0 5

die folgende Zerlegung:

3 2 0 0 -3 4

0 4 5 -—4 -4 0

2.2.2. Multiplikation einer Matrix mit einem Skala:

Diese Multiplikation erklären wir durch wiederholte Addition. Es sei

dann ist

Jahn

.. 3.}‚„„l
A+A+A=3A II

und allgemein wird definiert:
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Definition 2.14: Eine Matrix wird mit einem Skalar nzultipliziert, indem man jedes
Element der Matrix mit dem Skalar multipliziert:

I QA = A9 = [9a:k]-

Diese Definition gilt für beliebige Faktoren (rationale, irrationale, komplexe Zahlen);
ist g = —l, so wird die Matrix 9A mit —A bezeichnet.

2.2.3. Multiplikation zweier Matrizen

In den einführenden Betrachtungen 2.1.1. wurden Schemata Verwendet, die später
(vgl. Definition 2.1) als Matrizen definiert wurden. Durch Verknüpfungen der
Elemente zweier Reihen dieser Schemata ergaben sich Systematisierung und Über-
sichtlichkeit für die vorzunehmenden Berechnungen. Derartige Verknüpfungen wer-
den zur Definition der Multiplikation zweier Matrizen verwendet.

Es seien (a„ a2, ..., a„) und (b„ b2, ..., b„) zwei Reihen von je n Größen, zwei
Zahlen-n-Tupel.

Definition 2.15: Unter dem innerer: oder skalaren Produkt der beiden n-Tupel
(a, ‚ a2, ..., a„) und (b, , b2, ..., b„) versteht man den Ausdruck '

H

01b; + 612b; + n. +-ü„b„ aibi.
1-.-

(Diese Definition ergibt sich sofort, wenn wir das uns im dreidimensionalen Raum
bekannte Produkt zweier Vektoren in Komponentendarstellung auf Vektoren mit n

Komponenten erweitern.) -

R sei eine Matrix mit n Spalten, während die Anzahl m der Zeilen beliebig ist,
und S eine Matrix mit n Zeilen und einer beliebigen Anzahl q von Spalten.

Definition 2.16: Unter dem Produkt RS’ versteht man die Matrix. die im Kreuzungs-
punkt der a-ten Zeile und der ß-ten Spalte — an der Stelle „x, ß —5 das skalare Produkt
der Zeile o: von R mit der Spalte ß von S enthält.

Das heißt also: Die Zeilen von R werden mit den Spalten von S multipliziert. und
das Produkt RS ist nur erklärt, wenn die Anzahl der Spalten von R mit derAnzahl
der Zeilen von S übereinstimmt; man sagt dann, die Matrizen R und S sind ver-
kettbar: i

an 012 aln bu bu---bu
RS = E . E S E E

am, am; a„„‚ b‚„ b,,2 b...

I" n n n ‘I
Z 91-y}—’-vi 2 Qn-‚Jlv: 2 glvbü

v=l v=l v=l

.' .' ; p '

zlamvbyl zlamvbvl "' Ellamvbra
__V= l'=

4C

D.2.l4

D.2.l5

D.2.l6
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Satz 2.4: Wenn RS = P ist und die Matrix R das Format (m, n) hat und S das Format
(n, q), dann hat die Produktmatrix P das Format (m, q).

Damit sind Rechenregeln für die Matrizen so aufgestellt, daß sie auch den in den einführenden
Beispielen verlangten Anforderungen genügen. Vergleicht man mit dem Einführungsbeispiel, so
ergibt sich das Zahlenschema in Tab. 2.5 (S. 43) z. B. als Matrixprodukt aus den Zahlenschemata
in Tab. 2.1 und 2.2 (S. 41):

2 1 8 7 l0

0 2 l 2 4 12 6 4

3 l - = 9 9 l4
6 3 2

5 0 5 10 20

3 4 27 18 20

Bei der praktischen Berechnung des Produktes zweier Matrizen hat es sich als günstig erwiesen,
dies in einem von Falk angegebenen Schema durchzuführen. Die Elemente der Produktmatrix

II

P = RS = [c-„,](„‚_ v, die die allgemeine Form c“ = 2 a„.b„, (i = 1, 2, ...‚ m; k = 1, 2, ...‚ q) haben,
v-l

treten im Schema jeweils im Schnittpunkt der i-ten-Zeile der Matrix R und der k-ten Spalte der
Matrix S auf.

q Spalten

b“ bl; ... b"; b“,
n Zeilen f 3 f f S

’ _ b“ b,.¢ b,.,, .. b,,.,

n Spalten

an “i2 an. €11 C12 01k ~- Ciq

. . . . . „ :
. a

„m Zellen an 012 “tn cu C12 Cu: = L aivbvk -- Ciq
. . . . . 5-=1 .

aml "m2 amn cm1 Cruz cmt cm1

R P = RS
D

Beispiel 2.5:
. x1

Rx = [a1»02,¢13]§S1 X2 ‚

X3

R, hat das Format (1,3), und das Format von S1 ist (3,1). Die Produktmatrix P, lautet:

R151 = P1 = [0131 + 02X2 + 03X3];

d. h.‚ P, hat das Format (l ,1). Betrachten wir das Format der einzelnen Matrizen, so ergibt sich
folgender Zusammenhang: (1,3) o (3,1) —~> (1,1). (Diese Darstellung besagt: Bei einer multiplikativen
Verknüpfung einer Matrix vom Format (1,3) mit einer Matrix vom Format (3,1) ergibt sich eine
Produktmatrix vom Format (1‚l).)

Beispiel 2.6:

01

R2 = a2 ä S2 = [x1»X2.x3]§

a:
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dann ist

41X1 01x2 01X3

R1Sz=P1= azx; 81x; 02X3

03x1 03x2 “ax:

mit dem Format (3,1) o (1,3) —>(3‚3).

BeispieI2.7:

3 1 5 x1.J’x Z1 a

R3=264;S3-'-‘xz.Y2Zzb;
X3 J’: Z3

RS _P _[3x,+x;+5x3 3y1+y2+5y3 3z,+z2+5z, 3a+b+5c]
33 3 Zx;+6x2+4x_~, 2y1+6y;+4y3 2Z1+6Z2+4Z3 ’

(2.3) ° (3.4) -+ (2.4)-

Beispiel 2.8: Wenn man die Vektoren als einspaltige Matrizen auffaßt, dann läßt sich das skalare
Produkt zweier Vektoren-in Matrixschreibweisc folgendermaßen darstellen: '

“i A51 51

3 = 0‘: ‚ b = /32 1 31-1’ = [0‘1.°‘2.°‘3] 52 = N151 + 05252 ‘1’ 43/33;

0‘; ß; 53

(1,3) ° (3,1) -* (1.1)

l 0 '- I -

o 1 ’ o

e, = 0 ‚ e; = 0 ; efe, = [l‚0‚0‚...,O] 0 =1;

0 0 - 0 -

(1.71) ° (ml) -’ (1,1)

_ 0 _

1

efe, = [1‚o, o, ..‘.,o] o = o.

_ 0 _

Beispiel 2.9:

O
N

O 0 0ll R4S4=P4=[0 o];
J

0
R [305] s [1
4= §4=001 L0

Bei diesem Beispiel ist das Ergebnis der Multiplikation die Nullmatrix, d. h. also die Matrix, deren
Elemente alle gleich null sind; aber R4 und S4 sind keine Nullmatrizen.

(2,3) o (3,2) —+ <2.2)'.



D.2.l7

54 2. Matrizen und Determinanten

Definition 2.17: Zwei von der Nullmatrix verschiedene Matrizen A =1= 0, B =l= 0
heißen Nullteiler, wenn

AB = o oder BA = o

ist.

Demnach sind R4 und S4 (in dieser Reihenfolge!) Nullteiler (vgl. Beispiel 2.5). —

Für Zahlen gibt es eine entsprechende Aussage nicht; wenn ein Produkt von zwei oder
mehr Zahlen gleich null ist, dann muß mindestens eine der Zahlen gleich null sein.

Wir wollen in unseren Beispielen die Reihenfolge der Faktoren vertauschen:

Beispiel 2.10: S‚R, = Q, und (3,1) o (1,3) —> (3,3); dabei ist

flxxi 02x1 03X1

Q1 = 41x2 02x2 Wax: ‚

01X3 a2x3 a3x3

d. h. Q; =i= P1.

Beispiel 2.1l;

S2R2 = Q2 = [(11941 + 02x2 03x3];

wobei (1,3) o (3,1) -> (1,1) und Q, 4: P2 ist. Man vergleiche mit den Beispielen 2.5 und 2.6.

Beispiel 2.12: Wenn wir beim Beispiel 2.7 die Reihenfolge der Faktoren ändern, d. h., wenn wir
versuchen. das Produkt S3R3 zu bilden, so stellen wir fest, daß eine Matrix vom Format (3,4) zu
multiplizieren wäre mit einer Matrix vom Format (2,3). Das Produkt S3113 existiert nicht.

Beispiel 2.13: Wir bilden S4114 = Q4, (3,2) o (2,3) -> (3,3);

oo ooo
305

12 _=3o7,
001 t

oo ooo
und wir sehen wiederum, daß Q4 4: P4 ist. Man vergleiche mit Beispiel 2.9!

Die Beispiele zeigen, daßpS nicht mit R verkettbar sein muß, wenn R und S mit-
einander verkettbar sind; d. h., wenn RS existiert, braucht SR nicht zu existieren.
Wenn RS und SR beide existieren, gilt im allgemeinen

RS4=SR.

RS und SR existieren stets, wenn R und S quadratische Matrizen von gleicher Ord-
nung sind. Insbesondere kann gelten: -

RS = SR;

dann nennt man die Matrizen R und S miteinander vertauschbar. Im allgemeinen
gilt jedoch auch für quadratische Matrizen RS =l= SR.

2.2.4. Eigenschaften der Multiplikation

Im Gegensatz zur Multiplikation der Zahlen ist die Multiplikation der Matrizen
nicht kommutativ, wovon wir uns anhand der Beispiele überzeugt haben. Dagegen
sind die beim Zahlenrechnen gültigen Gesetze der Distributivität und der Assozia-
tivität (vgl. Bd. l, Kap. 5.) auch bei Matrizen erfüllt.
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Satz 2.5: Für die Multiplikation von Matrizen gelten das distributive Gesetz _ s_2‚5

| (R+S)T=RT+STh
und das assoziative Gesetz

| (RS)T = R(ST) = RST,

falls die einzelnen Summen und Produkte der Matrizen existieren.

Beweis: a) ‘Die Gültigkeit des distributiven Gesetzes ergibt sich folgendermaßen:

(R + S)T = (lrikl + [sikD [tilt] = [rm + 51k] Ulk]
n II n

= [';l("1v + 5':v)7v1c] = [Zlrivtvk + Zlsivtvk]

= [ir,,_t,.,,] + [iS,,t,,, = "l" ST.
v=lv=l

b) Die Gültigkeit des. assoziativen Gesetzes läßt sich folgendermaßen zeigen:
Wir setzen RS = P = [p„‚], ST = Q = [q,,,].
Dann gilt

Pik‘ = 272931.:, qm = Zsmtuu,
v u

Zpmiux = Z(2"1v-Vvll) ‚All:
ß VI‘

= 2"wSvutuk = 27h: Zsvlltllk = Ermitt-
II,’ V I‘ Ü

Daraus ergibt sich

(RS)T = [gpilfitßk] = ('2rivSvI4) tllk]

= ivsvlltllk] = [grzv Z5»-uiuxj

= [Z':"tvq»-1:] = R(sT)- ß ä

(Dabei erstreckt sich die Summation für v über die Anzahl der Spalten von R bzw.
der Zeilen von S; die Summation für ‚u erstreckt sich über die Anzahl der Spalten
von S bzw. der Zeilen von T.) I

Zuletzt wollen wir die Frage nach der Transponierten eines Produktes stellen.

Satz 2.6: Unter der Voraussetzung, daß das Produkt S.2.6

P = S,S2S3 S„

existiert, lautet die Transponierte des Produktes

P’ = S,TS,T_, S}'S','S','. (2.9)

Beweis: a) Zuerst soll die Richtigkeit der Behauptung für n = 2 gezeigt werden.
Dann ist P = S182, und zu zeigen wäre, daß i

PT = S}?
gilt.
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Die Matrix S, = [s§.”] besitze das Format (I, p) und die Matrix S, = [s9] das
Format (p, m). Die Matrizen S, und S, sind daher verkettbar.

Für die transponierten Matrizen gilt
Sf = [SW]. S? = Es}? -

Jetzt können wir die Transponierte des Produktes umformen:
T

cs.s‚)* = ([s2’] [saw = [ism s::>]
v= l

= s9] = [59 szv].
I =v-1 l

Da £2.99,’ .93’ Produkt der i—ten Spalte von S, mit der k-ten Zeile von S , bzw. Produkt
v r- l

der i-ten Zeile von S} mit der k-ten Spalte von Sf ist, gilt
(S1S2)T = SIST- '

S} und Sf sind miteinander multiplizierbar, denn S} ist vom Format (m, p) und Sf
‘ vom Format (p, I): das Produkt SISI = PT besitzt das Format (m, I).

Beispiel 2.14:

12 3,

P=S‘s’ o 21

PT = [14 9] = (s.s2>T;
19 7

o
2 =[14 9] =P,_
l 19 7

s,s,=/341
i‘ [215

b) Die Gültigkeit des Satzes 2.6 für n Faktoren (n > 2) zeigen wir mit der vollständi-
gen Induktion (vgl. Band 1, 4.3.), nachdem sie für zwei Faktoren bewiesen wurde.
Wir nehmen an, daß die Aussage für k = n — l Faktoren richtig ist, d. h.

(S182 S,,)"' = SIS,f_, SIS};
dann wird

(S152 SkSk+l)T = {(5152 Sic) Sk+1}T

= If+1(S1S2 Sk)T = Sins: S2rSf§

die Aussage ist auch richtig für k + 1 = n Faktoren. I
Für die Multiplikation von Matrizen muß man sich besonders merken:

1. Eine Matrix wird mit einem Skalar multipliziert, indem man jedes Element
einer Matrix mit diesem Skalar multipliziert.

2. Das Produkt zweier Matrizen ist nur erklärt, wenn die Anzahl der Spal-
ten des ersten Faktors gleich der Anzahl der Zeilen des zweiten Faktors ist.

3. Ein Produkt zweier Matrizen ist gleich der Nullmatrix‚ wenn entweder
die Elemente von mindestens einer Matrix alle gleich null sind oder wenn
die Faktoren Nullteiler sind.

4. Wenn P = RS ist, dann ist PT = STRT die zugehörige Transponierte.
5. Das kommutative Gesetz gilt im allgemeinen nicht, aber das assoziative

und das distributive Gesetz sind gültig. ’

3 2

4 l
l 5

]=[1:‘:]=

B
IN

)
’-
‘



2.3. Besondere Matrizen 57

2.3. Besondere Matrizen

Diagonalmatrix

Definition 2.18: Eine Matrix, in der alle Elemente am = 0 sindfür i =|= k, heißt Dia- D.2.18
gonalmatrix.

(Nur die Elemente an können von null verschieden sein. Selbstverständlich dürfen
einige oder sogar alle Elemente an gleich null sein; z. B. ist die Nullmatrix auch eine
Diagonalmatrix.) . -

Dabei wollen wir ohne Rücksicht auf das Format der Matrix die Diagonale, die
vom ersten Element der ersten Zeile ausgeht, als Hauptdiagonale bezeichnen.

Besonders wichtig sind die quadratischen Diagonalmatrizen.

21,, o o o o

o dz, o o o

D=w~1= .°
o g o .d,,_, ,,-, o
o o o .. o d‚„‚

Multiplikationsmatrix (M-Jllgtrix)

Definition 2.19: Eine quadratische Diagonalmatrix nennt man Multiplikationsmatrix ]),2_19
M(d11: d22s ---9 dun)-

Multiplizieren wir eine Matrix A vom Format (m, n) von links mit einer Multi-
plikationsmatrix M(„‚_„‚„ dann werden alle Elemente der i-ten Zeile jeweils mit dem
Faktor d„ multipliziert; multiplizieren wir A(,,.,,., von rechts mit M(„_„„ so werden
alle Elemente der i-ten Spalte jeweils mit dem Faktor 11„- multipliziert.

Beispiel 2.15:

d 0a) Mum = [ 11 ] , Adm = I:011 012 013],
0 d2: 021 022 023

011011 011012 011013]_
M12 2) Au 3) = [

1122021 022022 022023

du O 0

b) A(2.3)=[Zu z” :13]: M(3.3)= o d“ 0 5
“ 21 22 23 0 O d3;

A M _ 011011 012022 013033

am (am 021011 022022 023033 '

Zur Veranschaulichung verwende man das Falksche Schema.

Wenn in einer Multiplikationsmatrix M(,,_,,, alle Elemente d,-, = c, i = 1, 2, ...‚ n,
sind, so gilt für die Multiplikation mit einer Matrix A(,,_,,,

MA = AM = cA,

d. h.‚ alle Elemente von A werden mit dem Faktor c multipliziert (vgl. Definition 2.14).
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Bei Matrizen A mit dem Format (m, n) gilt entsprechend

M(m.m)A(m,n) = cA(m.n)s du = ca = I: 29 -;-a ma

sowie

A(m.n)M(n.n) = CA(m.n)9 du‘! =Ic9 = I: 2a ---sn-

Deshalb werden solche Multiplikationsmatrizen auch als Skalarmatrizen bezeichnet.
Ist in einer Skalarmatrix c = 1, so gilt

M(m.m)A(m.n) = A(m,n)

bzw.

A(m.n)M(n.u) = A(m.n) s

d. h., A bleibt unverändert. Bezüglich der Multiplikation der Matrizen spielt die
Skalarmatrix mit c = 1 die Rolle des neutralen Elements. Setzen wir

M(‚„_„„ = E, und M(,,_,,, = E,, wobei alle d,-, = l ,

dann gilt also

E‚A = A = AE,.

D.2.20 Definition 2.20: Matrizen E, bzw. E„ die bei Iinksseitiger bzw. rechtsseitiger Multi-
plikation eine Matrix A„„„„ unverändert lassen, heißen ‘Einheitsmatrizen.

Wenn A eine quadratische Matrix ist, dann ist I

E] = Er:

denn dann haben E, und E, dasselbe Format.

Beispiel 2. I6: ‘

123
A'[1 o 3I’

dann ist

f’! i‘ II

r
Z

-
u .
_

>
-
o

c
_
_
..
..
_
:

G
‘

:3 O
.

F
’

II

O
0

’-
‘

O
‘-
O

und es gilt: E,A = A = AE‚.

Vertauschungsmatrix (V-Matrix)

D.2.2l Definition 2.21: Vertauscht man in einer Einheitsmatrix die Zeile (Spalte) a mit der
Zeile (Spalte) ß. so erhält man eine ‚Vertausehungsnzatrix, die mit V55 bezeichnet wird;, -_ ---_

V_,,,=V,;,=VI.

Bei Iinksseitiger Multiplikation einer Matrix A mit V„, werden in A die Zeilen a undß,
bei rechtsseitiger Multiplikation die Spalten a und ß miteinander vertauscht.
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Beispiel 2.17: Die Wirkungsweise der Vertauschungsmatrizen wird mit dem Falkschen Schema be-
sonders gut verdeutlicht:

G11 G12 G13

G21 G22 G23 A
G31 G32 G33

1 0 0 G11 G12 G13

0 0 1 a3, an an

0 1 0 G21 G22 G23

V23 V23’A
I’

1 0 0

0 0 1 V23

0 1 O

G11 G12 G13 G11 G13 G12

G21 G22 G23 G21 G23 G22

G31 G32 G33 G31 G33 G32

A A-V23

Additionsmatrix (A-Matrix)

Definition 2.22: Aus der Einheitsmatrix erhält man die Sogenannte Additionsmatrix D.2.22
A„p(t)‚ indem man das Element an der Stelle a, ß durch die Größe t ersetzt (a =l= ß).

Beispiel 2.18:

1Aug): I: I], A: [G11 412]’
0 1 G21 G22

G11 + tan G12 + W22]
I

G21 G22
A12(1)A = [

G11 W11 + G12]

G21 ‘G21 + G22
A1512“) = I:

Eine Anwendungfür A-, M- und V-Matrizen

Für die Lösung vor. Gleichungssystemen erweist es sich als notwendig,‘ein.e Ma-
trix A in eine Sogenannte Dreiecksmatrix umzuformen, das ist eine Matrix, bei der
ober- bzw. unterhalb der Hauptdiagonalen alle Elemente gleich null sind.

Beispiel 2.19.-
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Man multipliziert A jetzt von links mit der V-Matrix V12:
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4-.2-

7
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—Vl2 ‘A = Ai-

Nun multipliziert man die erhaltene Matrix A1 mit der A-Matrix A31(—3) und danach mit der A-
Matrix A.„( — 2):

A:u(-3)

A«u(—2)
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44_

A1

A31(*3) ‘ A1

A41(—-7-) ' A31(—3) ‘ A1 = A2

Die erhaltene Matrix A2 muß jetzt noch nacheinander mit der V-Matrix V34, mit der A-Matrix
A53(-5‘-) und der A-Matrix A54(%) multipliziert werden:

A546‘) Asa(%) V34 ' A2 = A3-

Insgesamt ist A546-> Am?) V34A41(.“2)A31(“‘3) V12A = A3, und

A3:

‘1
o

O

O

0

3 3

0 2

0-3

0 0-4

0 0

ist die gesuchte Dreiecksmatrix.
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Diese Umformungen sind Grundlage für den Gaußschen Algorithmus (vgl. 3.2.);
mit ihrer Hilfe erhält man aus beliebigen linearen Gleichungssystemen gestaffelte
Gleichungssysteme.

Orthogonale Matrizen

Definition 2.23: Eine quadratische Matrix A, die mit ihrer Transponierten multipliziert D.2.23
die Einheitsmatrix ergibt, heißt orthogonale Matrix: AA’ = E.

Beispiel 2.20:

cos «p —- sin rp cos «p sin «p

A = . ; A’ = . .
sm (p cos «p —sin (p cos zp

AAT [coszw + sinztp coszpsincp — sintpcosqfj

sin «p cos q: — cos «p sin go sin’ <p + cos’ (p

„B

Reziproke Matrix (Kehrmatrix oder inverse Matrix)

Zur quadratischen Matrix A wollen wir die Matrizen A, und A, bestimmen,
so daß A,A = E und AA, = E wird.

Multiplizieren wir die erste Gleichung von rechts mit A, und die zweite Gleichung
von links mit A, ‚ so erhalten wir die beiden Gleichungen

A,AA, = A,, A,AA, = A1,

aus denen folgt, daß A, = A, ist. Wenn also zu einer gegebenen Matrix A der-
artige Matrizen A, und A, existieren, so sind diese notwendig gleich, und wir
schreiben:

A1=A; -'=,A.“l.

Definition 2.24: A“ heißt die zur quadratischen Matrix A reziproke Matrix, wenn 112,24
gilt

A-‘A = AA" = E.

Die reziproke Matrix wird häufig auch als Kehrmatrix oder inverse Matrix be-
zeichnet. Nicht jede quadratische Matrix hat eine Reziproke.

Satz 2.7: SindA und B Nupllteiler, so existieren keine reziproken Matrizen A“ undB". s‚2_7

Beweis: Nimmt man an, es existiere A“, so ergibt sich folgender Widerspruch:
A..1An_/A_1A\n;n
A AD-Vl A)n—-_n

A-IAB = A"‘(AB) = o.

B ist jedoch nach Voraussetzung ungleich der Nullmatrix; d. h. also, die inverse
Matrix kann nicht existieren. Entsprechend zeigt man es für B". I



S.2.8

S.2.9

S.2.l0

62 2. Matrizen und Deterrninanten

Satz 2.8: Wenn die quadratische Matrix A eine Reziproke besitzt, so ist diese eindeutig
bestimmt.

Beweis: Angenommen A besäße die beiden reziproken Matrizen A,“ und A2“,
dann müßte gelten:

AA‚"=A‚“A=E und AA,”
Daraus ergibt sich:

A2"AAf‘ = (Aa"A)Af‘ = Ar‘.
Az”‘AAf‘ = AI‘(AAf‘) = A2“,
A,“ = A;‘. I

Die Reziproke von A“ ist A (nach Def. 2.24 und Satz 2.8).
Ferner gelten folgende Sätze für quadratische Matrizen:

A;‘A = E.

Satz 2.9: Die reziproke Matrix eines Produktes ist gleich dem Produkt der reziproken
Matrizen in umgekehrter Reihenfolge:

| (A,A2 Au)“ = A,;"A,',‘_‘, A;‘A,". ‘ (2.10)

Beweis: Es ist *

(AIA, A,,) (A,,"A,,'_‘, A;‘A;")
3: A1A2 ... An..1(AnA,,_l) u. z-lAl-l
= A,A2 A,,_,EA,,'_‘, AfA,“
= AIA2 ... An_2(An_1A__l1) ... 1A1-I

AIA,-'1 =

Wir sehen, daß die reziproke Matrix einer Produktmatrix nur existieren kann, wenn
die reziproken Matrizen sämtlicher Faktoren vorhanden sind. Umgekehrt gilt

Satz 2.10: Die Reziproken der einzelnen Faktoren eines Matrizenproduktes existieren,
wenn die reziproke Matrix des Produkts existiert.

Beweis: a) Das wollen wir zunächst für zwei Faktoren beweisen:

Die Reziproke R zu A,A2 soll existieren; dann gilt:
R(A1A2) = (A1132) R = E-

Wegen der Gültigkeit des assoziativen Gesetzes ist

(RA1)A2 = A1(A2R) = E,
l d. h.,

A,“ = RA,

und
f‘ = A‚R

sind vorhanden.

t b) Den Beweis für ein Produkt von n Faktoren führt man mit der vollständigen
Induktion. I

Die Reziproke einer Einheitsmatrix E ist diese selbst, d. h.

E" E.
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Beispiel 2.21 : Berechnung der Reziproken für n = 2. Es seien_

011 012 x11 x12 1 0
A = , A“ = , E = .

021 022 x21 x22 0 1

A“ soll so bestimmt werden, daß

A"1A = AA"1 = E

wird. Wir benutzen AA" = E und erhalten daraus die folgenden vier Gleichungen

I- 011x11 + 012x21 = 1. IH- 011x12 + 012x22 ='- Ü, '

II. 011x11 + aux“ = 0, IV. aux” ‘i’ 012x22 = 1.

Aus I. und II. ergeben sich:

(011022 “ 012021) x11 = 022.

(011022 ‘ 012021) x21 = -021-

Zur Abkürzung führen wir ein:

D = 011022 " 012021-

D ist demnach eine ganze rationale Funktion vom Grade n = 2 der n’ = 4 Elemente von A und
besitzt für gegebene an‘ einen bestimmten Zahlenwert. Damit können wir den letzten beiden Glei-
chungen folgende Gestalt geben:

0x11 = 022. 17x21 = "0217

Aus den Gleichungen III. und IV. erhalten-wir:

D1512 = "012, Dxzz ’-’ 011-

Wenn die reziproke Matrix existieren soll, mull’

D =l= 0

sein. (Das hier angewendete Verfahren zur Lösung von Systemen von linearen inhomogenen Glei-
chungen werden wir später in 3.4. als „Cramersche Regel“ kennenlernen.) .

Beispiel 2.22:

1 0 . . . . . . .

l. Für A = [ l o] 1st D = 0; d1e reziproke Matrix existiert nicht.

21-" A- 1 2 'tD- 1 dA“- "3 2... ur — 2 3 1s - , un — 2 _l .

4 1 . ä —§-3.1:" A.-=[ ]1stD=5,undA"=[ '

“‘ 3 2 —% t

Potenzen einer Matrix

Wenn die quadratische Matrix A mehrfach mit sich selbst multipliziert wird, so
sprechen wir wie bei den Zahlen von den Potenzen der Matrix. Es ist also

A’ = AA, A3 = AzA = AA’ usf.

Wir betrachten nur Matrizen, deren Format endlich ist; für gewisse Anwendungen sind die so-
genannten unendlichen Matrizen von Wichtigkeit, für welche die Definitionen und Rechenregeln,
die wir für endliche Matrizen kennenlemten, nur mit gewissen Einschränkungen gelten (s. [10]).
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2.4. Determinanten ..

2.4.1. Definition der Determinanten

Im vorigen Abschnitt war bei der Berechnung der Elemente der reziproken Matrix
vom Format (2.2) der Ausdruck '

D = 011022 ‘ 012021

von besonderer (bestimmender) Bedeutung; deshalb wird er als Determinante 2. Ord-
nung bezeichnet. Derselbe Ausdruck tritt bei der Lösung des Gleichungssystems

011x1 + 012-752 = b1;

021-751 + 022-752 = b2

auf. Werden beide Gleichungen nach x2 aufgelöst und die beiden Ausdrücke gleich-
gesetzt, so erhalten wir

b a b a1___11x__ 2__21
1 1

012 012 022 022

und daraus blazg — allazzxl = bzalz "' alzazlxl, d. h.
(011022 - 012021) 751 = 01022 ‘ b2012 oder

D751 = 171022 “ b20123

entsprechend ergibt sich

Dx, = —b‚a2‚ + bzau.

Wir führen deshalb für D folgende Schreibweise ein:

Unter einer Determinante zweiter Ordnung versteht man den Ausdruck:

011 012
z 011022 “ 012021-detA ä

(L2) 021 022

Die Determinante zweiter Ordnung ist eine homogene ganze rationale Funktion
zweiten Grades der vier Elemente a1 1 ‚ an, an ‚ an , die einen bestimmten Zahlen-
wert besitzt.

Bei der Lösung des Gleichungssystems

011-751 + 012-752 + 013753 = b1,

021-751 + 022752 + 023753 = b2:

031751 + 032-752 ‘l’ 033-753 = b3

tritt ein Ausdruck der Form

D = 011(022033 " 023032) — 012(021033 — 023031) + 013(021032 ‘ 022031)

auf; dieser Ausdruck wird als Determinante 3. Ordnung bezeichnet, und man
schreibt (analog zur Schreibweise der Determinante 2. Ordnung):

I .. .. ‚. I

011 012 013

d€tA(3_3, = 021 022 023

031 032 033

= 011022033 — 011023032 " 012021033 _

+ 012023031 + 013021032 — 013022031-

Die Berechnung dieses Ausdruckes liefert den Wert der Determinante.
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Beispiel 2. 23.-

=1-o-2—1-1-1—3-2-2+3-1-3
+4-2-1-4-o-3=4.

I9
’-
‘~

#1 3

detA(‚_3)-_- 2 o

3 1

Die Berechnung des‚Wertes einer Determinante dritter Ordnung kann nach der
Regel von Sarrus (vgl. 1.2.7.) erfolgen.

Um Klarheit über die Vorzeichen der einzelnen Summanden einer Determinante
zu gewinnen, betrachten wir noch einmal den Ausdruck:

d“ A(3.3) = 011022033 ‘ 011023032 — 012021033 + 012023031

+ 013021032 ‘ 013022031-

Die vorderen Indizes jedes Summanden stehen jeweils in der natürlichen Reihenfolge
1 2 3. Die Reihenfolge der hinteren Indizes in den verschiedenen Summanden ist:

123132 213 231312 321.

Hier treten alle Anordnungsmöglichkeiten der Zahlen 1 2 3 auf.
Solche Anordnungen bezeichnet man als Permutationen (vgl. Band l, Kap. 6).
Jeder Permutation der Indizes entspricht also genau ein Summand der Deter-

minante. Den Gliedern mit positiven Vorzeichen entsprechen die Permutationen

123 231312,
also die geraden Permutationen (gerade Anzahl von Inversionen). Das negative Vor-
zeichen tritt auf bei

132 213 321,
also bei den ungeraden Permutationen (ungerade Anzahl von Inversionen).

Wenn wir mit I die Anzahl der Inversionen bezeichnen, so ist das Vorzeichen der
entsprechenden Summanden

(-1)'-
Diese Begriffe kann man ohne Schwierigkeiten auf Permutationen von n Elementen

übertragen, so daß wir jetzt die Determinanten allgemein definieren können.

Definition 2.25: Es sei ß, ß; ‚B„ eine beliebige Permutation dern Indizes 1, 2, ..., n.
Dann wird die Determinante der quadratischen Matrix A mit det A bezeichnet und
darunter der folgende Zahlenwert verstanden:

1

011 012 01a

azl 022 ... a,
detA = " = 2 (—-l)’ am am a,,,9,,.

c . . . . . . . o . . . o. p1p‘ ß”

a„1 an; am,

(LI ist die Anzahl der Inversionen, die der Permutation entspricht; die Summation
erstreckt sich über alle n! Permutationen fihßz ‚B?‘ der Indizes 1, 2, 3, H).

Betrachtet man diesen Ausdruck genauer, so zeigt sich:

Jedes Element tritt in einem Summanden nur einmal auf; man sagt, es liegt linear
vor. Jeder Summand hat n Faktoren, wobei aus jeder Zeile und jeder Spalte immer
genau ein Faktor stammt.

v.’ Manteuflel, Lineare

D.2.25-
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Die Determinante ist eine lineare homogene Funktion der Elemente jeder Reihe;
sie ist eine ganze rationale Funktion n-ten Grades ihrer n’-Elemente.

. Für Determinanten ist auch die Bezeichnung [Al üblich. Wenn die Ordnung
hervorgehoben werden soll, so gibt man diese als Index an: det A(„_„‚ oder |A„‚_„,I.
Der Wert der Determinante ist ein Skalar, er hängt von allen Elementen der Matrix
ab.

2.4.2. Eigenschaften der Detenninanten

Wenn der Wert einer Determinante zu berechnen ist, dann kann die Ausrechnung
dadurch erleichtert werden, daß die Determinante umgeformt wird, ohne ihren Wert
zu ändern. Diese Umformungen beruhen auf bestimmten Eigenschaften der Deter-
minanten, die wir nun kennenlernen wollen.

Satz 2.11: Der Wert der Determinante bleibt unverändert, wenn Zeilen und Spalten
vertauscht werden (Stürzen der Determinanten oder Spiegelung an der Hauptdiagonalen).

Beweis: Wir gehen von der Determinante

a11 a1: aln
(121 (I23 ... a2

det AOL") = n =ß Z (-—1)ta1fisa25|"'a’|fin
. . . . . . . . . . . . .. I

an an, a‚„‚

aus. Die gestürzte Determinante ist dann

an an an
a12 a22 anz I

det AT = = 2 (-1)! ap_1a,g_, ftp“.
. . . . . . . . . . . . .. pugzmgn

aln azn arm

Die vorderen und hinteren Indizes sind also vertauscht. Wir können jetzt in jedem
Glied der Summe die Reihenfolge der Faktoren so ändern, daß die vorderen Indizes
l, 2, 3, ..., n lauten, also alle Inversionen von ß,ß2...fl„ rückgängig gemacht
werden. Dabei entsteht für die hinteren Indizes eine gerade Permutation, wenn
ß,ß‚...ß„ eine gerade Permutation ist, d. h. eine gerade Anzahl von Inversionen
enthält. Entsprechendes gilt für ungerade Permutationen. Das Vorzeichen eines
jeden Summanden bleibt demnach erhalten. Für die hinteren Indizes entstehen alle
möglichen n! Permutationen, d. h., det AT enthält dieselben Glieder wie det A, und
es gilt _

det AT = det A. I (2.11)

Satz 2.12: Vertauscht man zwei benachbarte parallele Reihen (Zeilen oder Spalten)
untereinander, so ändert sich das Vorzeichen der Determinante.

Bewéis: Führt man eine solche Vertauschung durch, so werden in allen Permu-
tationen zwei benachbarte Elemente vertauscht — jede gerade Permutation geht
damit in eine ungerade und jede ungerade in eine gerade über. Es ändert sich also
das Vorzeichen eines jeden Summanden, und damit ändert die gesamte Determi-
nante ihr Vorzeichen. I
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Satz 2.13: Stimmen zweiparallele Reihen einer Determinante überein, dann ist der Wert
der Determinante gleich null.

(Diese beiden einander gleichen Reihen sind voneinander linear abhängig!)
Beweis: Vertauscht man die beiden übereinstimmenden Reihen, dann bleibt

die Determinante ungeändert; wegen des Satzes 2.12 müßte diese Vertauschung
aber eine Vorzeichenänderung bewirken; _es besteht demnach die Gleichung
det A = —det A, die nur für det A = 0 erfüllt ist. I

Satz 2.14: Wenn alle Elemente einer Reihe gleich null sind, dann ist der Wert der
Determinante gleich null.

Beweis:‘Da in jedem Summanden ein Element der Reihe vorkommt, ist jeder Sum-
mand und somit die Determinante gleich null. I '

Satz 2.15: Multiplizieren wir alle Elemente einer Reihe mit demselben Faktor, so wird
die Determinante mit diesem Faktor multipliziert.

Beweis: Diese Eigenschaft ergibt sich ebenfalls aus der Definition der Determi-
nante; wir wollen den Faktor mit A bezeichnen. Da bei der Berechnung der Deter-
minante injedem Summanden ein Element jeder Reihe vorkommt, tritt auch i. in
jedem Summanden auf, und die Determinante insgesamt ist also mit Ä multipliziert.
(Man beachte den Unterschied zur Multiplikation einer Matrix mit einem Faktor,
vgl. Definition 2.14.). I

Satz 2.16: Enthält eine Determinante zwei proportionale parallele Reihen, so ist sie
gleich nuII.

(Diese beiden einander proportionalen Reihen sind voneinander linear abhängig!)
Beweis: Wenn für die Elemente zweier Zeilen gilt

a,.,=}.ak,, j=1,2,...‚n,
so kann der Faktor 2. herausgezogen werden, und es entsteht eine Determinante,
in der zwei parallele Reihen übereinstimmen. Ihr Wert ist nach Satz 2.13 gleich null.
In entsprechender Weise läßt sich der Satz für zwei proportionale Spalten beweisen. I

Satz 2.17: Die Summe zweier Determinanten‚ die sich nur in den Elementen ein und
derselben Reiheunterscheiden, ist gleich einer Determinante, bei der in dieser Reihe
die Summen der entsprechenden Elemente derselben Reihen der beiden ursprünglichen
Determinanten stehen. '

Das heißt also:

an - a1» 011 - an an 012 - am
a2 l 02a 021 “zu a2 1 022 “zu

an - am: am arm an +ahl at-2 +an2 ahn+a ( )

a,“ ... a,,,, a„‚ .. a‚„‚ an an; . a‚„‚

Die Richtigkeit folgt aus der Definition der Determinante.
5k

8.2.13

8.2.14

S.2.l5

S.2.l6

S.2.l7
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Satz 2.18: Eine Determinante ändert ihren Wert nicht, wenn zu den Elementen einer
Reihe die mit einem beliebigen Faktor multiplizierten Elemente einer parallelen Reihe
addiert werden.

(Es wird zu einer Reihe ein Vielfaches einer parallelen Reihe, also eine von der
parallelen Reihe linear abhängige Reihe addiert!)

Beweis: Nach Satz 2.17 läßt s'ich eine solche Determinante ohne Einschränkung
der Allgemeinheit als Summe zweier Determinanten wie folgt darstellen:

an + la” an a,,, an an a„‚ an an a„‚

021 ‘i’ 3-022 022 azn 021 ‘-422 “zu + Ä €122 “22 - “zu

aul + Äanz anz am: anl an2 arm da2 “n2 ann

’ = detA + 0;

denn die zweite Determinante hat nach Satz 2.13 den Wert Null. I

Satz 2.19: Wenn alle Elemente, die oberhalb (bzw. alle Elemente, die unterhalb) der
Hauptdiagonalen stehen, gleich null sind, dann ist der Wert der Determinante gleich
dem Produkt der Hauptdiagonalelemente:

detA = auazz a‚„‚.

Beweis: In jedem anderen Summanden steht nämlich mindestens einmal eine Null,
und die Determinante hat somit den o. a. Wert. — Eine solche Determinante bezeich-
net man auch als „Dreiecksdeterminante“. I

Die hier behandelten Eigenschaften der Determinanten sind wichtig für ihre Be-
rechnung. Denn wenn n > 3 ist, dann ist die Berechnung des Wertes der Determinante
unter Benutzung der Definition 2.25 sehr umständlich. Man formt deshalb die Deter-
minante um, ohne ihren Wert zu verändern, um eine Determinante zu erhalten, die
sich einfacher berechnen läßt. So versucht man durch diese sog. elementaren Um-
formungen zu erreichen, daß in einer Reihe der Determinante möglichst viele Nullen
stehen bzw. daß das Ergebnis der Umformungen eine sog. Dreiecksdeterminante
(vgl. Satz 2.19) ist. '

Wenn A und B gleichartige quadratische Matrizen sind, dann gilt

Satz 2.20: Das Produkt der Determinanten zweier Matrizen A und B ist gleich der
Determinante des Produktes der beiden Matrizen, d. h.

| det A det B = det (AB).

Den Beweis dieses Satzes wollen wir hier nicht führen.

Da die Multiplikation von Determinanten eine Multiplikation von Zahlen ist
(im Unterschied zur Multiplikation von Matrizenl), gilt das kommutative Gesetz:

| det A det B = det B det A.

Deswegen und wegen Satz 2.20 ist:

| det (AB) = det (BA).
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Beispiel 2.24:

a) zu Satz 2.11:

I3 4

A= 2 01, detA=4,
3 l 2

l2 3

detAT= 3 01=0+8+9—0--l2—l=4;
412

b) zu Satz 2.12: Spalte 2 von det A vertauscht mit Spalte 3:

3

0 =+l+O+12—9-—8—O=—4;
l

2

3 1N
’-
‘J

i

c) zu Satz 2.13: Zeile 1 stimmt überein mit Zeile 2:

l 3 4

134=6+36+4—36—6—4=O;
3 1 2

d) zu Satz 2.15: Zeile 1 von det A mit 2 multipliziert:

2 6 8'
201=0+l8+16—0—24—2=8;
3 ‘l 2

e) zu Satz 2.16: Zeile 1 und Zeile 3 sind proportional:

13 4

20 1=o+9+72—o—72—9=o;
3 912

f) zu Satz 2.17:

+9b+2a—0—6c—b+0+9e-é-2d—0—6f—e

+9{b+e)+2(a-’.-d)-0-6(c+f)-—(b+e)
13 a+d

= 2 0 b+e

31 c+fV
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g) zu Satz 2.18: Zu Spalte l von det A wird die mit (-2) multiplizierte Spalte 3 addiert:

-—7 3 4

0 0 1=o—3+o—o—o+7=4;
-112

h) zu Satz 2.19: Wir formen die Determinante von g) weiter um: Zur Spalte l wird Spalte 2 addiert,
und wir erhalten

—434

001

012

Vertauschung von zweiter und dritter Zeile (Vorzeichenänderung) und Multiplikation der Elemente
der l. Spalte mit (-1) (Rückgängigmachen der Vorzeichenänderung) führt zur

434

detA= 012 =4.
0,0l

2.4.3. Entwicklung einer Determinante nach Unterdeterminanten

Um auch den Wert von Determinanten höherer Ordnung bestimmen zu können
betrachten wir’ noch einmal eine Determinante 3. Ordnung.

011 012 013

‚detA(3.3> = 021 022 023

031 032 033

= 011(022033 " 023032) ‘“ 012(021033 " 023031) ‘l’ 013(021032 ‘ 022031)

läßt „sich in anderer Form schreiben, wenn man die Klammerausdrücke als Deter-
minanten 2. Ordnung auffaßt:

022 023 021 023 021 022
det A(3.3) = 011 " 012 ‘i’ 013

032 033 031 033 031 032

Die Determinanten 2. Ordnung, die als Unterdeterminanten bezeichnet werden, ent-
stehen dadurch, daß man in det A(3_3, Zeile und Spalte des Elementes streicht, das
jeweils als Faktor vor der zweireihigen Determinante steht. Man spricht in diesem
Falle von der Entwicklung einer Determinante nach den Elementen der ersten
Zeile (oder von der Entwicklung einer Determinante nach Unterdeterminanten der
ersten Zeile).

Diese Entwicklung kann auch folgendermaßen geschrieben werden:

det A<3.3) = 0111411 + 0121412 + 013.413:

wenn unter Am (i, k = 1, 2, 3) die vorzeichenbehafteten Unterdeterminanten ver-
standen werden. g

Man kann zeigen, daß det A„_3‚ nach den Elementen bzw. Unterdeterminanten
jeder Reihe entwickelt werden kann. Im folgenden sollen die allgemeinen Gesetz-
mäßigkeiten einer solchen Entwicklung für det A(,._,,, uniersucht werden.
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Nach 2.4.1. ist jede Determinante eine homogene lineare Funktion der Elemente
eine ihrer Reihen. Greifen wir die Zeile Ä heraus, dann können wir schreiben:

dCt A(„_„) = i a‚„A„„ = 011A“ + a,uA;,2 ‘i’ ... + a„‚A,1„.
9=l

Das kann man entsprechend mit jeder Zeile und mit jeder Spalte machen. Wie sehen
die A‚o aus?

au, ist das Element, das an der Stelle 2., Q, d. h. in der Zeile Ä an g-ter Stelle steht.
Weil jeder Summand von det A aus jeder Zeile und Spalte genau ein Element enthält,
ist AM demzufolge unabhängig von der Zeile 2. und der Spalte g. Also muß Ah, cine
ganz rationale Funktion (n — 1)-ten Grades der (n — I)’ Elemente der Determinante
sein, die man aus der ursprünglichen erhält, wenn man die Zeile Ä und die Spalte g
streicht. Eine solche Determinante nennt man eine Unterdeterminante (n — l)-ter
Ordnung.

Welche Vorzeichen kommen den Summanden in der o. a. Zerlegung zu?
Durch Ä — 1 Vertauschungen bringen wir die Zeile A an die erste Stelle. Dann gilt

det A = (f- l)“‘ det A’.

Entwickeln wir det A nach den Elementen der ersten Zeile, dann- erhalten wir

det A, = ä ah
e=l .

denn die Zeile i. ist jetzt die erste Zeile der Determinante.
Entwickeln wir det A nach der 2.-ten Zeile, so erhalten wir

detA = i „AM = (—1)*-1 det A’ = (—1)*-1 f W45,
p == l q = l

d. h., es ist

AM = (—1)“‘ A300

Durch (g — 1) Vertauschungen bringen wir jetzt die Spalte g in det A’ an die erste
Stelle, und es gilt

det A’ = (-—1)°“‘ det A”.

Entwickeln wir det A’ und det A” jeweils nach den Elementen ihrer ersten Zeilen, so
erhalten wir
det A’ = a,uA,'u + a,uA,'u + + a,,A,’1, + + a,1,,A,’1,, = (——l)“‘ det A”

= (—I)°" (aus; + aziAÄi + + a„..‚-.A2;‚-‚ + a„„Ai„’‚+. + + a.„A5.'.)‚

d. h., es ist

As. = (—1)°-1 A5;
und

Ah = (—l)"1 A}, = (-1)“+9A;.{,

wo„i A}; die ‚TnLi-determinante (n —— l)-ter „dnung ist, die entst.-ht, wem". ma... die
/'.- e eile und die g-te Spalte streicht.

Definition 2.26: Die vorzeichenbehaftete Unterdeterminante AM wird als Adjunkte D.2.26
oder algebraisches Komplement von ah bezeichnet.
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Es sei nachdrücklich darauf hingewiesen, daß das Vorzeichen zu AM gehört.
Die Entwicklung einer Determinante dritter Ordnung nach den Elementen der

zweiten Zeile hat folgendes Aussehen:

dCtA = 0211421 ‘l’ agzAz; + 0231423.

Natürlich kann man eine Determinante auch nach den Elementen einer Spalte ent-
wickeln. Die Zerlegung lautet allgemein nach den Elementen der Spalte g:

det aw“ = (110/11¢ + a29A2Q + n. + a„„A„‚ .

Die Adjunkten, die bei dieser Entwicklung auftreten, haben folgende Eigenschaften:
Es gilt:

" detA für i. = ‚u
= u ’ 2.15

,,§;a"A“° {O fur Ä 4: ‚u. ( )

Die Richtigkeit dieser Aussage verifizieren wir an der Determinante dritter Ordnung:

für i. = ‚u ist es die o. g. Zerlegung nach den Elementen einer Zeile,

für i. 4: ‚u hätten wir z. B. folgende Zerlegung:

an/121 ‘l’ 012/122 ‘+ 01344233

in Form einer Determinante geschrieben, bedeutet das

an 4112 013

an 012 als ‚

‘131 "32 033

und der Wert dieser Determinante ist nach Satz 2.13 gleich null. Entsprechend gilt
für die Entwicklung nach den Elementen einer Spalte

" det A für g = a,
;§."‘9A‘° {o fürg s5 a, m6)

d. h., das Produkt aus den Elementen einer Reihe mit den zugehörigen Adjunkten
ergibt den Determinantenwert, während das Produkt einer Reihe mit den Adjunkten
einer parallelen Reihe den Wert Null ergibt.

Ähnlich wie sich eine Determinante n-ter Ordnung nach den Elementen einer Reihe
und deren algebraischen Komplementen entwickeln läßt, gibt es eine Entwicklung
nach Unterdeterminanten m-ter (m < n) Ordnung und deren algebraischen Kom-
plementen (Laplacescher Entwicklungssatz‚ vgl. [ l7], S. 33).

Beispiel 2.25: Wir wollen den Wert der Determinante

2 0

N
N

&
'-
‘1

2 0 3

3 1 5

0 2 0
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durch Entwicklung nach den Elementen einer Zeile berechnen. det A formen wir zuerst um. Durch
Subtraktion der 4. Spalte von der 1. Spnlte erhalten wir die Determinante

0201

—2o34

11~52'
-3203

Subtrahieren wir nun das Doppelte der 4. Spalte von der 2. Spalte, dann erhalten wir die Deter-
minante:

o oo1

—2—s34

1-352
—3—4‘o3

Diese Determinante entwickeln wir zweckmäßigerweise nach den Elementen der ersten Zeile; es

wird dann:

dCtA=0‘A11 + 0'A;2 ‘i’ 0'141; +I'A14,

also detA = A14.

Esist I

-2 ——8 3

A14=(..1)1+4 1 —3 5 =—41‚

-—3 -4 0

Demnach ist detA = -41.

2.4.4. Anwendungen

2.4.4.1. Berechnung der reziproken Matrix

In 2.3. hatten wir bei der Berechnung der reziproken Matrix gesehen, daß dabei
die Determinanten eine Rolle spielen. Da wir seinerzeit noch nicht über den Deter-
minantenbegriff verfügten, soll jetzt die Berechnung der reziproken Matrix allgemein
dargestellt werden unter der Voraussetzung, daß

det A 4: O

ist. Dann stellt die reziproke Matrix A“ die Lösung der Matrixgleichung

AX = E

dar. Die reziproke Matrix ist

Au ‘A21 A,,,

Ar‘ = ‘ . (2.17)
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Von der Richtigkeit dieser Behauptung überzeugen wir uns leicht dadurch, daß wir
das Produkt AA" bilden. Es ist ’

detA an! ‚anz am: Alu A211 Ann

Z a,aA1Q 0 O O
e:

1 n

_ det A o ‘Elanzne o o

0 0 o a„„A„„

detA . . . . . . . . . . . . . . . . . . . . . ..

0 0 0 ..detA

1 0 0 ...0

= ‘.’..T..‘.’.:':.‘.’ =E, -

O A0 O l
was wir zeigen wollten.

Beispiel 2.26 :

1 3 4

A=[2 01]; detA=4.
3 1 2 '

0 1 3 4 3 4
Au--12 -—1‚ A21--' 2 ="2. A31‘-"0 1‘-‘=3.

2 1 l 4 1 4
A12=—3 2‘ 1./122=3 2=‘10»-432="2 1=7.

2 0 1 3 I 3 ’

I A13-u31l=2» 4423-- 31:8: A33-‘-' 2 ol="5‚
dannist i

—l -—-2 3

A“: [-1 -10 71
2 8 -6

und(Probe)

1 3 4 -1 -2 3 4 O 0 l O 0

AA“=}':20lJ[—l —l0 7]=}[040]=[0]0]=E.
3 1 2 2 8 -6 0 O 4 0 0 l
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2.4.4.2. Orthogonale Transformation von Vektoren

Bei Ausführung einer Parallelverschiebung ändert sich zwar die Lage eines Vektors
im Koordinatensystem, aber Betrag, Richtung und Orientierung bleiben ungeändert.
Wir wollen nun die Darstellung des Vektors a in einem anderen, ebenfalls recht-
winkligen Koordinatensystem untersuchen, das mit dem ursprünglichen System den
Koordinatenanfangspunkt gemeinsam hat. Solche Systeme gibt es beliebig viele,
und es sollen hier die Formeln für alle diese Transformationen angegeben werden.
die man als orthogonale Transformationen bezeichnet.

Es sei V

2 = G191 + age; + 3393

die Darstellung von a im alten Koordinatensystem und

a = oe;"e;" + c\;"e;" + nie?

die Darstellung von a im neuen Koordinatensystem. Wir setzen

a1 ' e, A? e}
a= a2 ‚ B= e; ‚ a‘: a; ‚ B*= e: ‚

a3 e, a3" e}

ä: (6,; cg’), i = l,2‚3.ö: = ‘)5 (et; eh 51: 9: (eii 02x111

Die Matrizen

e‚e}" ezef‘ e‚e’‚" cos 6, cos ö; cos ö,
D = B*BT = e,c;" egeg‘ e3e§' = cos s, cos E; cos s3

eleg" ezeg" e_~,e;" cos 1;, cos 1;; cos n,

und D’ = BB“ bezeichnen wir als Transformationsmatrizen: Dann gilt wegen

_{o füri=l=k H__;o füri=l=k
°'°*“ 1 ffirz'=k’ °'°~‘11 füri=k’

DTD=E.
a=aTB==.\1e, +a3e; +:<,e3 -

ist die Darstellung von a im alten System und

a = a‘TB* = .\‘,"e;" + ;\;‘e;“ + afef!‘

die Darstellung von a im neuen System; ferner ist

e‘: cos Ö, cos Ö; cos Ö, e,

3* = DB, e; = cos r, cos s; cos s, e;

e; cos 1}, cos I]; cos i}, e,

die Darstellung von e,’ n“ alten System und ‘wegen DTPH‘ = {FEB = EB = B m

e, cos ö, cos q cos i], e,‘

B = DTB*__ c3 = cos Ö; cos s; cos 2;; e,‘

c3, C0563 cos», cos 773 e,‘
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die Darstellung von e, im neuen System. Da a = aTB = a*TB* und B* = DB ist,
gilt aTB = a*TDB; daraus folgt aT = a*TD, d. h. a = DTa*,

a, cos Ö, cos e, cos m ‚xf

a, = cos Ö2 cos £2 cos n2 a3‘

a, cos Ö3 cos s3 cos 273 x’;

Aus aTB = a*TB* und B = DTB* folgt aTDTB* = a*TB* und daraus

a" = aTDT, d. h. a* = Da,

a1‘ cos ö, cos Ö2 cos Ö3 x1

a; = cos s, cos s: cos 53 .x2

a: cos 1;, cos n, cos 773 a3

Damit sind die Beziehungen zwischen den skalaren Komponenten des Vektors a

in den beiden Koordinatensystemen hergeleitet.
Betrachten wir die Determinanten der beiden Transformationsmatrizen, so gilt

cos ö, cos Ö2 cos Ö3 cos Ö1 cos 6, cosy],

de: D = cos e, cos e, cos s3 und de; DT = cos ö; cos e; cos >72 ‚

cos n, cos n2 cos n, cos Ö3 cos c3 cos 213

und es ist

det (DTD) = det E = (det DT) (det D) = (det D)’ = l.

Daraus erhält man

det D = i l,
wobei durch detD = +1 Drehungen und durch det D = —l Spiegelungen charak-
terisiert werden.

2.4.4.3. Gleichung einer Geraden durch zwei Punkte (in der Ebene)

Die Gleichung einer geraden Linie in der Ebene läßt sich in der Form D = O

darstellen, wobei D eine dreireihige Determinante ist. Wir gehen aus von der soge-
nannten Zwei-Punkte-Gleichung

y — y: _ J‘: - J‘:
x — x2 ‘ x2 — x1

-O’ - I2) (Xi - -V2) + Ü‘: — 3'2) (-\' - ~\':) = 0-

9

In dieser Gleichung schreiben wir die linke Seite als Determinante

X — X2 x1 “ X;

‚V “ )'2 3‘: “ J‘:

Diese Determinante zweiter Ordnung liißt sich in ‘eine dreireihige Determinante um-

formen, ohne den Wert zu ändern: Eine Zeile und eine Spalte werden so angefügt.
daß die zweireihige Determinante Unterdeterminante einer dreireihigcn Determinante
wird und bei der Entwicklung nach den Elementen dieser angefügten Zeile bzw.
Spalte mit dem Faktor l multipliziert wird, während die anderen Unterdeterminanten
den Faktor 0 erhalten. Man nennt diese Umformung Rändern der Determinante.

=0.
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Hier wird die folgende dreireihige Determinante durch Rändern gebildet:

0 0 1

x—x2 x1—x2 x, =0;
J’ "' ‚V2 J’: ‘ ‚V2 J’:

i wir addieren die letzte zur 1. und 2. Spalte und erhalten:

1 I l
x x, x2 = 0_

J’ ‚V1 J’:

Man wählt aus Symmetriegründen im allgemeinen diese dreireihige Determinante für
die Darstellung.

2.4.4.4. Fläche eines Dreiecks

Wir betrachten zuerst die Fläche eines Dreiecks, dessen einer Eckpunkt im Ur-
sprung des Koordinatensystems liegt (Bild 2.2). Dann ist

xi Y1
f= ax,» — ~\'2y1) = a; x2 y:

-V /5 (x2,yz)

P7 (’1,y1}

o: ; Bild 2.2

Sind P1, P2, P3 Eckpunkte eines Dreiecks in beliebiger Lage, deren Koordinaten
(xi; yl), (x2; yz), (x3; y3) sind (Bild 2.3), so verschieben wirfldas Koordinatensystem
so, daß etwa P, mit dem Ursprung des Systems zusammenfallt; damit haben P1 ‚ P2
und P3 jetzt die Koordinaten

(0:0), (x2 " x1; J72 '71): “ x1; IVS “.V1)-

‘y ‘P1 *1-J1)

6(x2:y2) :

X‚) Bild 2.3

Diese Werte werden in die oben hergeleitete Determinante eingesetzt:

1 xx J’: 1 x1 yl
=4; 0 xz-xi yz-yi =1; 1 x2 ‚V2.

O x3"x1 J’3"‘J’1 1x3 J’3

x2"'x1 J’2“J’1
353'951 J’3‘y1

f=%
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Ist der Wert der Determinante größer als. O, so wird die Fläche im mathematisch
positiven Sinne umlaufen, ist der Wert der Determinante kleiner als 0, so wird die
Fläche im mathematisch negativen Sinne umlaufen, und ist schließlich der Wert der
Determinante gleich 0, so liegen die drei Punkte auf einer Geraden.

2.4.4.5. Lineare Abhängigkeit von Vektoren

Die Beispiele 1.6, 1.8 und 1.9 aus 1.2.7. lassen sich ebenfalls mit Hilfe von Deter-
minanten lösen. Man überprüft nur, ob der Wert der Determinanten aus den Kom-
ponenten der Vektoren gleich null oder ungleich null ist; ist D = O, dann sind die
Vektoren linear abhängig.

Beispiel 1.6: Es ist

l O O .. 0

0 1 0 .. 0

dezA„„„,- o o 1.. o =1=eo‚

o 6 6...;
c1, e; , ...‚ e,. sind linear unabhängig.

Beispiel 1.8:

l —l l -2

3 -‚5 2 -l
det A(4_4) = 2 l _2 2 = -1 ‘k 0,

-1 0 —-1 l

also a, ‚ a2 , a, ‚ a4 sind linear unabhängig.

Beispiel 1.9:

l —1 1 —2

detA(44,= 3 "5 2 -1 =0;
’ —2 1 -2 2

1 -5 o —1

a„ a2, as. a4 sind linear abhängig, denn 2a; + a; + 2a3 — a4 = 0.

Wenn eine quadratische Matrix A(„„„ als System von n Spaltenvektoren, auf-
gefaßt wird, dann bedeutet det A(„_„‚ =i= 0, daß diese n Spaltenvektoren linear un-
abhängig sind; natürlich sind die n Zeilenvektoren dann auch linear unabhängig
(nach Satz 2.11.). Man sagt in diesem Fail: die Matrix A(„_„, hat den Rang n (vgl.
Kap. 3). Im Falle det A(„_„‚ = 0 ist der Rang <n; sein Wert ist gleich der Anzahl
der linear unabhängigen Vektoren. (Diese letzte Aussage ist natürlich allgemein
gültig, denn wenn det A(„„„ =i= 0 ist eben die Anzahl der linear unabhängigen Vek-
toren gleich n.)
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2.5. Aufgaben

2.1: Für die Matrizen

27-3-4 1234
26-4-5 2345A’: B: "64—3—2""d 1356
85—6—l 2467

ist die Produktmatrix C = AB zu berechnen!

2.2: Für die Matrizen A, B, C ist das Produkt P = ABC zu berechnen, wenn

4 3 —2s 93 7 3
A= ,' 13- , c= ;

a) [7 s] [ 38 -126] [2 I]
O 2 -1 70 34 —107 27 —l8 10

b)A= —2 -1 2 ‚ B= 52 26 - 68 , C= -46 31 -17
3 -2 -1 101 50 -140 3 - 2 l

2.3: Zur Matrix A berechne man die Matrix A3 für

a 1 a’ l 1 —2a)A= [0 a], b)A=[0 a2], c)A=[3 _4].

2.4: Gegeben ist A = [°.°s"’ 'sm°”]. Man berechne A”!
sm q: cos «p

2 ' 1

2.5: Es seien a = 2 ‚ b = -2 . x. A, ‚u und der Vektor c sind so zu bestimmen, daß

1 n

M = Ma, uh, c] eine orthogonale Matrix ist.

2.6: Es sei Aeine schiefsymmetrische n—reihige Matrix. E + A habe den Rang n (vgl. 3.1.1.; E n-reihige
Einheitsmätrix). Man zeige, daß (E + A ‘1 (E — A) eine orthogonale Matrix ist.

2.7: Ist A eine n-reihige quadratische Matrix, so ist det (A -— 1E) = ¢p(A) ein Polynom n-ten Grades
in Z mit den Nullstellen Ä, , ...‚ }.,,(,,E1’genwerte“ vgl. _5.2.). Man zeige:

a) ist A schiefsymmetrisch, so ist mit A, auch —1‚ eine Nullstelle von (pa);
l

b) ist A orthogonal, so ist mit Ä’, # O auch T eine Nullstelle von 990.).
l

2.8: Es ist A“ zu berechnen für

’ laa2a3
152

)A 2 s 3 b)A 01”“;a= s = a001a
-3-8-4

ooo1

1-a-az-a3 13927
411

_)A_ o 1-a a2 d)A_141 )A_ 013 9

‘"001-a’ ‘ ’°'oo13'
114

ooo1 ooo1

ü
*
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A 1 3 2 A 1 o o

2.9: Zu den Matrizen A = 2 5 3 und B = 0 2 0 ist die Inverse C" = (AB)“‘
—‘3 -8 -4 ' o o 1

für die Produktmatrix C = AB zu berechnen!

2.10: Welchen Wert hat die Determinante det A der Matrix

-3 1 l

A = 1 —-3 1 "

l l —-3

2.11: Berechnen Sie den Wert det C der Produktmatrix C = AB, wenn

l 3 2 l 0 0

A = 2 5 3 und B = 0 2 0 ist.

-3 -8 -4 0 0 l

-21 -2 —9 -8

11 o 3 12

21 6 6 4 ‘

1o 2 3 4

2.12: Man berechne

2.13: Berechnen Sie x aus den folgenden Beziehungen:

x 3 4 ——x 3 4

a) —5 6 7 =2l6; b) -—5 6 7 =2l6.
2 -3 x 2 —-3 —-x

2.14: Formen Sie det A in eine Dreiecksdeterminame um!

002

det A=

U
1

l~
)
t\

)
\l

3 3

3 9 9

2 6 3
I

2.15:Manbeweise‚daßax(b + c) = a x b + a x cist!

2.16: Berechnen Sie [abc] [abc]!

2.17: Es ist zu beweisen: Für alle natürlichen Zahlen n gilt: .

x + a,,_, a,,_2 a,,_3 a; a1 no

— l x 0 O O O

0 -1 x 0 0 0

„) 9 9 -3 <3 9 f’

0 0 0 x 0 O

0 0 0 — 1 x 0

0 0 0 0 — 1 x

= x" + a„_,x"" + a,.._‚x"" + + a0;
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l l’ 0 0 0

— l 1 2’ 0 0

0 ' -1 1 3’ 0
b) S'_‘..'._'.. =n;

0 0 — 1 1 (n —- 1)’

0 0 0 -1 l

coscp 1 0 I 0 0

l Zcosrp 1 0 0

0 1 Zcosqa 1 0

c) =cosmp.

0 0 1 2cos¢ 1

0 0 0 1 2 coscp

2.18: Es ist‘ zu zeigen, daß folgende Beziehung gilt:

x1 x2 X3 xu-1 Xn

X1 X3 X4 X“ X1

( - 1) (n - 2)
„ = (-1) -1,-j*'—9’(°‘x)'P(°‘z) ...w<a.>.

xn—X xn x1 xn—3 xn—2

Xn Xi X2 «In-z Xn-i

wobei

<p(oc,) = x, + oc,x; + afar, + + oc:,"1x,.

und ac, , ..., o¢,, die n verschiedenen Wurzeln von x" = 1 sind. (Hinweis: Es gibt zu jedem natürlichen n

stets eine n-te Einheitswurzel („primitive“ Einheitswurzel) derart, daß a, cx',a", ...,oL" gerade sämt-
liche Lösungen von x" = 1 sind.)

2.19: Man beweise, daß die Determinante einer hermiteschen Matrix stets einen reellen Wert besitzt!

(Hinweis: Wenn man in einer Determinante mit dem Wert D jedes Element an durch sein konjugiert
komplexes a',,, ersetzt, dann hat die so entstehende Determinante den konjugiert komplexen Wert D.)

2.20: In einer Determinante D n-ter Ordnung gelte: a‚.‚ = 0, a„‚ = ia‚„ für v > ‚u, wobei die aw, reelle
Zahlen sind. Man bestimme die natürlichen Zahlen n, für die D
a) einen reellen Wert hat,
b) einen rein imaginären Wert besitzt!

2.2l: Es sei A = [am] eine quadratische Matrix und B = [Au], wobei Au die zu a,,, gehörende
Adjunkte von A ist. Man zeige, daß det B = (det A)"“ gilt.

2.22; Es ist. zu beweisen, da, I: in I’) E ID w
"?

~
< W u
. I.‘ m {D 3" ID

6 Vanteuuel, Lineare

‘II



3. Systeme linearer Gleichungen und Ungleichungen

Die Ermittlung der Lösung von zwei und drei linearen Gleichungen mit zwei bzw.
drei Unbekannten gehört zu dem Wissen, das vor dem Studium vermittelt wird.
Jetzt untersuchen wir endlich viele lineare Gleichungen mit endlich vielen Un-
bekannten. Mit Hilfe des Matrixkalküls gewinnen wir Aussagen über die Lösbar-
keit solcher Gleichungssysteme, über die Anzahl der vorhandenen Lösungen und
über deren Ermittlung. l

Wir lernen als Berechnungsverfahren u. a. den Gaußschen Algorithmus kennen,
den Gauß u. a. bei der Landvcrmessung anwandte und der seitdem erfolgreich
eingesetzt wird. Zur Zeit der elektrischen Rechenmaschinen benötigte ein Rechner
für die Lösung eines Gleichungssystems aus 17 bis 20 Gleichungen mit ebenso
vielen Unbekannten etwa drei Wochen. Die Hilfsmittel der Rechentechnik gestatten
heute die Lösung von Systemen mit einigen tausend Gleichungen und entsprechend
vielen Unbekannten in wenigen Minuten.

Neben den Gleichungssystemen haben auch Systeme von linearen Ungleichungen
große praktische Bedeutung. Wir stellen lediglich eine Verbindung zu den Glei-
chungssystemen her und führen einige Vorbetrachtungen zur Linearen Optimierung
(vgl. Band 14) durch. -

3.1., Lineare Gleichungssysteme

Wenn Beziehungen zwischen verschiedenen Matrizen in der Form der Beispiele
von Abschnitt 2.1.1. betrachtet werden (vgl. (2.1) bis (2.5)), so sind bei praktischen
Fragestellungen zunächst nicht alle vorkommenden Matrizen bekannt. Nehmen wir
z. B. die Beziehung (2.3): Die Matrix der Verbrauchsnormen zwischen den Roh-
Stollen R„ i = 1, ...5‚ und den Endprodukten E,_., k = 1, 2, 3, ist

F 8 7 l0" 1780"
12 6 4 1480

A = 9 9 14 ; wenn durch b = 2300
5 l0 20 2600

27 18 20 _4520_

die für diesen Prozeß zur Verfügung stehenden Mengen der Rohstoffe R„ i = 1, .. .. 5.
angegeben werden, dann kann man die folgende Aufgabe stellen: Aus der Beziehung

Ax = b

-X1

ist der Vektor x = x2 so zu bestimmen, daß x,, x2, x3 die Mengen der End-

X3
produkte E,, E2, E3 angeben, die auf Grund der Verbrauchsnormen (Matrix A)
und der vorhandenen Rohstoffmengen (Vektor b) erzeugt werden können. Während
wir in 2.1.1. nach den Rohstoffmengen gefragt haben, d. h. aus (gegebenem) A
und (gegebenem) x den Vektor b als Produkt von A mit x berechnet haben, lautet
die Fragestellung jetzt: Zu gegebener Matrix A und gegebenem Vektor b ist auf
Grund des Bestehens der Relation

Ax=b
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der Vektor x zu bestimmen. Mit den gegebenen Werten von A und b erhalten wir das
folgende Gleichungssystem:

8x, + 7x2 + 10x3 = 1780,
12x, + 6x2 + 4x3 = 1480,
9x1 + 9x2 + 14x3 = 2300,
5x1 + 10x2 + 20x3 = 2600,

27x1 + 18x2 + 20x3 = 4520.

Durch Einsetzen können wir nachprüfen, daß

- 80
x = 20

100

den gestellten Bedingungen genügt.

Definition 3.1: Ein Gleichungssystem der Form

anxl "IT 012x; + ... + a„‚x„ = b},
aux, ‘i’ azzxz + ... + a2„X‚| = b2,

amlxl + am2x2 + -'- + anmxn = bm

heißt lineares Gleichungssystem, wobei die linken Seiten der einzelnen linearen Glei-
chungen t

i am = b„; am b‚e R, i= 1, m (3.2)
k=l

Linearformen heißen. (R ist die Menge der reellen Zahlen, vgl. Abschnitt 4.1.) Eine
äquivalente Darstellung des linearen Gleichungssystems (3.1) liefert die Matrizen-
gleichung

\

Ax = b,

an 012 an x1
. a a a . . . x

wobei A = 2‘ 22 2" die Koeffizzentenmatrtx, x = .2 der Vektor der

aml “m2 amn 90„ b l

gesuchten Unbekannten bzw. der Lösungsvektor des Gleichungssystems und b = f

b
der Spaltenvektor der auf der rechten Seite von (3.1) stehenden Elemente b, EMR,

i = 1, ...‚ m, sind.

3.2. Der Gaußsche Algorithmus

Betrachten wir zunächst folgendes einfache Beispiel:

2x1 + x2 = 4,

3X1 + X2 = 5.
6C

D.3.l
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Multiplizieren W11’ die erste Gleichung mit — 5- = — 32-‘- und addieren sie zur zweiten,
dann entsteht eine neue zweite Gleichung. all

2x, + x, = 4,

l
— Ex} = — l .

Jetzt kann aus der zweiten Gleichung x, und damit aus der ersten x, leicht bestimmt
werden:

x2 = 29

2X, + 2 z 4,

x1 = l.

Wir wollen noch das folgende Gleichungssystem lösen:

3x,+ x2+2x3=1, i

x, + 2x3 + 4x3 = 2,

2x, + x3 + 3x3 = O.

Dieses Gleichungssystem stellen wir zweckmäßigerweise um und setzen die zweite
Gleichung an die erste Stelle; dann gehen wir entsprechend wie vorhin vor: Wir

multiplizieren die erste Gleichung mit -—3 = — S1 und addieren sie zur zweiten
11

Gleichung; dann multiplizieren wir die erste Gleichung mit -2 = — —a—3i und
addieren sie zur dritten Gleichung: a“

x, + 2x, + 4x3 = 2,

" 5x2 — 10x3 = *5,
"" 3x2 “ 5x3 _—' -‘4.

Wir lassen nun die erste Gleichung unverändert, multiplizieren die nunmehrige

zweite Gleichung mit — ä, addieren sie zur dritten Gleichung und erhalten das

gestaffelte Gleichungssystem

x, + 2x2 + 4x3 = 2,

— 5x2 — 10x3 = -—5,

x3 = — 1 .

Daraus ergibt sich sofort die Lösung x3 = —- l, x3 = 3, x, = 0.
Diese Vorgehensweise heißt Gaußscher Algorithmus, der folgendermaßen be-

schrieben werden kann: Liegt das Gleichungssystem

aux; + alzxz + ... + aux, = a„

anx, + (122.76-2 + ... + a2„x„ = (12,
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vor, dann soll durch geeignete Maßnahmen das folgende gestaffelte System gewonnen
werden:

buxl + blgxz + b13.X3 ‘l’ ... + b,,,x,, = b1,
bgzxz + b23x3 + ... + b2,,x,, = b2,

bssxa + ‘i’ b3nxn = baa (3~4)

Die n Gleichungen von (3.4) sind voneinander linear unabhängig. Die Anzahl der
linear unabhängigen Gleichungen eines solchen Gleichungssystems wird als Rang r

bezeichnet. Aus dem System (3.4) können die Unbekannten schrittweise — angefangen
mit x„ aus der letzten Gleichung bis x, aus der ersten Gleichung — bestimmt werden.

Das System (3.4) erhält man auf die folgende Art:
Wir wählen in (3.3) eine Gleichung, die Sogenannte Eliminationsgleichung aus. Diese
wird nacheinander mit Faktoren c2, , c3, ‚ ..., c„‚ multipliziert und zur 2., 3., ..., n-ten
Gleichung addiert.

Wählt man die Faktoren so, daß cu = — —?—‘— ist, wenn die erste Gleichung die
l1

Eliminationsgleichung und an =I= 0 ist, dann erhält man ein neues Gleichungs-
system, in dem — außer in der ersten Gleichung — x, nicht mehr enthalten ist:

aux; + aux; + aux; + ... + a„‚x„ = (l1,

agzx; + a;3x3 + + a§,,x,, = ag,

I I I _ ranzxz + a,,3x3 + + a‚„‚x„ — a„.

Die Koeffizienten ergeben sich nach den Formeln:

021 031
a;x=a21-an—"=0§ a;1=a31"'a11“'=0 “SW-au an

, _ 021 _ ‚ __ 031
a2: — 022 ‘ 012 " 9 an - 032 "' 012 “SW-au an

Jetzt wird die erste Gleichung weggelassen, und die restlichen n — l Gleichungen
werden auf dieselbe Art behandelt. Ist dieser Schritt (n — l)mal durchgeführt worden,
dann erhält man das Gleichungssystem (3.4); wenn man die vor jedem neuen
Schritt weggelassenen Gleichungen untereinander schreibt.

bu a a„, i=‘ 1,2, ...,n;

b2, e 425., i = 2, ...,n;

b3‘ E ax: i: 3, ...,n; USW.

b, e a1; b2 a a; usw.

Es ist zweckmäßig, daß die Faktoren cg, nicht zu groß sind, damit keine zu hohen
Rundungsfehler auftreten. Die c,-,- sollen möglichst kleincr als l sein. Das läßt sich
dadurch erreichen, daß man als Eliminationsgleichung diejenige auswählt, die dem
D‚.4-‚.-‚. ....‚.‘L A... .._:: ._ ..- IT... .13.... ‚n. -......I‚. .......

DCU age uauu dun großteil c1Str’3i‘1 Koeffizienten hat. um Luca Lu cuciuheü, müsscü
evtl. Zeilenvertauschungen vorgenommen werden, was für die weitere Rechnung
ohne Einfluß ist. Bei evtl. erforderlichen Spaltenvertauschungen beachte man die
damit verbundene Anderung der Reihenfolge der Unbekannten. (Man vergleiche
hierzu [9] und [23] sowie Bd. 18 dieser Reihe, Kap. 2.)
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Für die Zahlenrechnung benutzt man das folgende Schema, in das nur die Koef-
fizienten eingetragen werden. Es wird für die ersten beiden Eliminationsschritte an-
gegeben. (Für Handrechnung ist es ggf. zweckmäßig, die Eliminationsgleichung so
zu wählen, daß deren erster Koeffizient dem Betrage nach gleich eins ist, um am
Anfang Brüche bei der Elimination zu vermeiden.)

Die Eliminationsgleichungen werden im Rechenschema mit * bezeichnet. Anstelle
‘der Striche unter den Koeffizienten schreibt man Produkte aus den cu und den am
der Eliminationsgleichung.

Wichtig für jede Rechnung sind Kontrollen. Eine abgekürzte Schlußkontrolle
erhält man dadurch, daß man die erhaltenen x-Werfe in die Spaltensummen des
Ausgangssystems einsetzt:

01x1 + 02x2 + + a„x„ = a,

wobei

Gk=a1k+ a2k+'... + am‘, k = 1,2, ...‚n,

a=a‚+a2+...+a‚„
ist.

k = 1 2 3 n a, s, Probe

c1 0'2 <73 0,, 0' Z ‘7

* an 012 an am a1 S1 0
C21 021 022 023 “zu a2 52 O

— — — — — — -— — — — — — .2
5-:

C31 03i 032 033 “an a3 53 0 fi
_ _ _ _ _. _ _.. ._ _ _. _ ._ m

cn 1 an 1 an 2 an 3 arm an Sn 0

* 0 a2: “$3 92a a; s2 9
4-3

C32 0 “i2 “i: 03. a; S’ 9

" ‘ " ‘ “ " ‘ ‘ ‘ ‘ ‘ '5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. m

I I I I I o

cnZ 0 azn an} arm an Sn 9 N

‘§-3
I:

‚g 0 II II II II 9 E
a33 a3n an s3 U0)

«i

Laufende Kontrollen während des Rechenganges erhöhen die Rechensicherheit
und vermeiden unnötige Mehrarbeit. Diese Kontrollen werden in Form sogenannter
Summenproben durchgeführt. In der (n + 3)-ten Spalte werden die Zeilensummen
des Ausgangssystems eingetragen:

S; = a“ + a” + u. + am + 0;.
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Auf diese Werte wird dann die Eliminationsrechnung ebenfalls angewendet, und es
ergeben sich neue Werte s,’ . Diese Werte müssen aber gleich der Zeilensumme des
neuen Systems sein: „

‘s,’ =a‚.'‚+a‚'‚ + +a,’,,+a,’.
In der letzten Probenspalte wird die Differenz der beiden Werte — durch ? ange-
deutet — eingetragen, die bis auf die letzten Stellen gleich null sein müssen; denn
die a,’,, ergeben sich nach der Formel

“h: = an: + 01101k-

Durch Summation über k ‚erhält man sofort-
Si’ = Si + C1151.

Algorithmische Beschreibung des Gaußschen Algorithmus für m = n = r:

I. Schritt.‘ .

Das gegebene System wird als‘„neues“ Gleichungssystem betrachtet; der Index i hat
den Wert i = 1. '

Im neuen Gleichungssystem kommen die Unbekannten x, bis x„ vor.

2. Schritt:
In mindestens einer der Gleichungen des neuen Gleichungssystems ist der Koeffi-
zient von x, ungleich 0. Von diesen Gleichungen wird die mit dem betragsmäßig
größten Koeffizienten als Eliminationsgleichung gewählt. __

Ggf. sind auch Spaltenyertauschungen erforderlich, die mit Anderungen der Reihen-
folge der Unbekannten verbunden sind (vgl. auch 5.3.).

3. Schritt: ’

Ist i = n?
Wenn ja, dann liegt das gestaffelte System vor, das Verfahren bricht ab.
Wenn nein, dann folgt der
4. Schritt:
Jede der (n — i) übrigen Gleichungen wird dem beschriebenen Eliminationsprozeß
unterworfen, ebenso die Spalte der Zeilensummen (zu Kontrollzwecken). In den
(n — i) Gleichungen kommt x, nicht mehr vor.

5. Schritt: .

Der Index wird von z’ auf i + 1 erhöht; das Verfahren wird mit dem 2. Schritt fort-
gesetzt.

Wir sind beim Gleichungssystem (3.4) von n Gleichungen mit n Unbekannten
ausgegangen und haben außerdem vorausgesetzt, daß der Rang des Gleichungs-
sytems r = n ist, also n linear unabhängige Gleichungen vorliegen. Man vergleiche
dazu das ausführliche Beispiel 3.5 in Abschnitt 3.5.

Da der Gaußsche Algorithmus ein Verfahren ist, das bei Anwendung auf ein System
aus endlich vielen linearen Gleichungen nach endlich vielen Schritten "abbricht, wollen
wir überlegen, welche Möglichkeiten beim Abbruch des Verfahrens auftreten können,
wenn wir von m linearen Gleichungen mit n Unbekannten ausgehen.

Wir haben das Ausgangssystem

1111-751 + 012352 + + aluxn = an
aux, + aux; + + a2„x„ = a2, (3.5)

amixl + am2x2 + --' + amnxu ‘._‘ am;

dann sind beim Abbrechen des Verfahrens folgende Fälle möglich:
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(1) Es sei m g n, und das Verfahren bricht nach (r —— 1) Schritten ab, dann müssen
wir (wegen r g min (m, n), d. h., wegen m g n muß r g n gelten) die beiden Fälle
r = n und r < n unterscheiden.

(a) Zunächst sei r = n; dann erhalten wir nach (n — 1) Schritten das gestaffelte
Gleichungssystem

b11x1 ‘i’ b12.x2 + ... ‘i’ b1„x„ = bl,
bzzxz + ... + bznxn f b2, (3.6a)

b..‚.x.. 4 b‚.;

die restlichen (m — n) Gleichungen enthalten als Koeffizienten der linken Seite und
auf der rechten Seite nur Nullen, dürfen also weggelassen werden. Die n Gleichungen
von (3.6a) sind voneinander linear unabhängig, d. h., die Matrix A von (3.5) hat
den Rang r = n; daher heißen diese n Gleichungen die Ranggleichungen. Das Glei-
chungssystem hat eine eindeutig bestimmte Lösung (vgl. Satz 3.1 und Beweis zu

Satz 3.1, Teil a)). (Für m = n erhalten wir den Fall r = m = n, von dem wir zu-
nächst ausgegangen waren.)

(b) Wenn r < n ist, dann erhalten wir nach (r —— 1) Schritten das folgende ge-
staffelte Gleichungssystem:

buxl + blzxz + ... + 171,96, + b1_‚+1x‚+1 + ... ‘i’ b1„x„ = bl,
bzzxz ‘i’ ... + b2,x, ‘i’ b2_,-+1x;+1 ‘i’ ... + b2„x„ =: b2,

bnxf ‘i’ b‚_‚+1x‚+1 ‘i’ ... ‘i’ b„‚x„ =- b,..

Weitere Gleichungen sind aus denselben Gründen wie unter (a) nicht vorhanden.
Für den Rang gilt r < n, das System ist unterbestimmt. Wir schreiben es in der
Form '

bllxl ‘i’ b12x2 ‘i’ ‘i’ bxrxr = bx “ b1.r+1xr+1 " “ blnxn:
1722752 ‘i’ ‘i’ bzrxr = b2 " b2.r+1xr+l ‘ ‘ bznxna

bflxf = b, "‘ b,_,+1x,+1 * an: ‘“ b„‚x„,

x1 ‚ ..., x, sind eindeutig bestimmbar, x‚„‚ ..., x„ können beliebig gewählt werden.
"In diesem Falle gibt es also r Ranggleichungen. Das Gleichungssystem (3.5) hat (vgl.
Satz 3.1 und Teile c und d des zugehörigen Beweises) in diesem Falle (n — r)-fach
unendlich viele Lösungen (die Gesamtheit der Lösungen bildet einen (n —— r)-dimen-
sionalen Nebenraum).

(2) Das Verfahren bricht nach (r — 1) Schritten (r g n) ab, weil alle Koeffizienten
der linken Seite den Wert Null haben, auf der rechten Seite sind nicht alle b,“ ‚ ..., b‚„
zugleich null. Dann erhalten wir das folgende gestafielte Gleichungssystem:

buxr ‘i’ brzxz ‘i’ ‘i’ blrxr ‘i’ bl‚r+1xr+l ‘i’ + blnxn = bis
bgzxg ‘i’ ... ‘i’ b2‚x‚ ‘i’ bg_‚+1x‚+1 + ... + bznxn = b2,

+ b,,x, + b,_,+1x,+1 + + b,,,x,, b,., (3.6c)

0 =. br+la

o='b,,.
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Das Gleichungssystem (3.5) ist unlösbar.

Beispiel 3.1: Ein unlösbares Gleichungssystem ist

2x1 ‘i’ 3x2 = i,
2x1 ‘i’ 3x2 = -2.

Beide Gleichungen können niemals zugleich erfüllt sein.

(3) Wenn m < n ist, dann sind (n — m) der Unbekannten beliebig wählbar, falls
r = m ist. Ist r < m, dann sind (n — m) + (m — r) = (n — r) der Unbekannten be-
liebig wählbar.

Daraus ergibt sich, daß der Gaußsche Algorithmus keine besonderen Fallunter-
Scheidungen (m < n, m = ‘n, m > n) erfordert. (Man vgl. hierzu Beispiel 3.3.)

Der Gaußsche Algorithmus bricht in jedem Falle nach (r — 1) Schritten ab; aus
dem entstehenden gestaffelten Gleichungssystem (3.6a) bzw. (3.6b) lassen sich nicht
nur die Lösungen bestimmen, sondern auch der Rang der Matrix A von (3.5), und
es lassen sich die Ranggleichungen ablesen, während im Falle des gestaffelten Glei-
chungssystems (3.6c) ein Widerspruch und damit die Unlösbarkeit des Gleichungs-
systems (3.5) erkennbar ist.

Beispiel 3.2 (m < n):

'-SX1 ‘i’ 6x2 ‘i’ 3X; " 9x4, = 1,

'— x,+4x2+ X3+7x4=—'l,
3X1 ”‘ 5x2 — 2x3 ‘i’ X4 = 0.

Rechenschema :

k = I 2 3 4 a, S;

—3 5 2 -1 0 3

" --5 6 3 ——9 1 -4

—o,2 -1 4 1 7 -1 1o
1 -1,2 - 0,6 1,8 — 0,2 0,8

0,6 3 -5 -2 1 o — 3

-3 3,6 1,8 —5,4 0,6 - 2,4

‘ 0 2,8 0,4 8,8 —-1,2 10,8

0,5 O -1,4 —0,2’ —4‚4 0,6 — 5,4
1,4 0,2 4,4 -0,6 5,4

0 0 O 0 0 0

Das entstehende gestaflelte Gleichungssystem lautet:

—5x, + 6x2 + 3x3 — 9x4

2‚8x; + O‚4x3 + 8,8x4 = —l,2;
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es enthält zwei linear unabhängige Gleichungen und hat also den Rang r = 2. Das
Gleichungssystem ist unterbestimmt, zwei Unbekannte sind beliebig wählbar; es
gibt 2fach unendlich viele Lösungen. x2 und x4 seien die frei wählbaren Unbekannten.
Dann erhalten wir

-5x1 + 3x3 = l — 6x2 + 9x4,

x3 = -—3 — 7x2 — 22x4,

xx = "2 "' 3x2 " 15x4.

3.3. Lösbarkeit linearer Gleichungssysteme

Wir wollen nunmehr den Begriff des Ranges definieren und Aussagen über die
Lösbarkeit von linearen Gleichungssystemen und über die Anzahl von Lösungen
formulieren.

Definition 3.2: Die maximale Anzahl r der linear unabhängigen lZeilenvektoren
am = am (an , an , ..., a,,,), i = 1, ..., m, heißt der Rang der Koeffizientenmatrix dieses
Gleichungssystems: R(A) = r (vgl. Satz 1.7 und anschließende Bemerkungen).

Bei elementaren Umformungen, sog. Äquivalenztransformationen‚ wie sie beim
Gaußschen Algorithmus angewendet werden, bleibt der Rang erhalten (Invarianz
gegenüber elementaren Umformungen). Betrachten wir eine Matrix A vom Rang r,
dann sind r + 1 Zeilenvektoren voneinander linear abhängig, d. h.‚ die Gleichung

113(1) + 323(2) + + 7~ra(r) + }*r+1a(r+1) = 0

muß Lösungen haben, in denen nicht alle 1,-, i = 1, 2, ..., r + l zugleich null sind.
Eine Vertauschung der Zeilenvektoren am hat keinen Einfluß auf die Lösung

und Lösbarkeit.
Multipliziert man einen Zeilenvektor mit dem Zahlenfaktor Ä, so bleibt der Rang

ebenfalls ungeändert. Auch die Addition des Vielfachen eines Zeilenvektors zu einem
anderen Zeilenvektor hat keine Rangänderung zur Folge.

Mit Hilfe dieser elementaren Umformungen läßt sich die Matrix A in eine Dreiecks-
matrix transformieren (vgl. Abschnitt 2.3.), wobei ihr Rang R(A) ungeändert bleibt.
Sie erhält schließlich die Form

bl} b1; ... b1,- b1_‚+1 . . bl"
. b b b br Zellen 22 I 2!‘ 2.!‘-‘I-1 2n

O O b". b,_,.+1 ... b", , b” 4: 0, i=1, 2, ..., r,
0 0 0 0 O

m — f’ . . . . .

Zeilen ' ' ' '

_o o o o o _ _

I... A..- Ala ’7A3lA.-. 1 Lin u AC4. I:o\nnuI unnkl-.5-‘msninnn ’7a:l:;v|Iu;lr4'r\rov\ nvd-LnH-aa- unangn Agu-
1u UC1 U16 L.CuCu 1 Uib I ulc uuca uu Una |515Cu l_4Cl1CuVCl\LU.lC11 Cutuaucu, wcsou uux

linearen Abhängigkeit der restlichen m — r Zeilenvek oren kann durch Vertauschen
von Zeilen- oder Spaltenvektoren kein von null verschiedenes Diagonalelement ge-
funden werden; daraus folgt, daß alle Elemente dieser m — r Zeilen gleich null sein
müssen.
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Diese Matrix besitzt mindestens eine nicht verschwindende Unterdeterminante
r-ter Ordnung, z. B.

bll 00| b“.

o" b},

während alle Unterdeterminanten (r + l)-ter und höherer Ordnung verschwinden.
Deshalb kann man den Rang von A auch mit Hilfe ihrer Unterdeterminanten be-
stimmen: Enthält die Matrix A vom Format (m, n) wenigstens eine nicht verschwin-
dende Unterdeterminante der Ordnung r, während alle Unterdeterminanten höherer
Ordnung verschwinden, dann hat A den Rang r; außerdem erkennt man, daß stets
r g min (m, n) sein muß. .

Da die entsprechenden Betrachtungen für die transponierte Matrix AT durchgeführt
werden können, ergibt sich ebenfalls das Vorhandensein von mindestens einer nicht
verschwindenden Unterdeterminante r-ter Ordnung und von r linear unabhängigen
Zeilenvektoren; die Zeilenvektoren der transponierten Matrix AT sind aber die Spal-
tenvektoren der Matrix A, d. h.‚ die maximale Anzahl r der linear unabhängigen
Zeilenvektoren ist gleich der maximalen Anzahl der linear unabhängigen Spalten-
vektaren, und diese Anzahl r ist der Rang der Matrix A.

Wir wollen in unseren Überlegungen bezüglich der Lösbarkeit zuerst von dem
folgenden Gleichungssystem mit n Gleichungenund n Unbekannten ausgehen:

aux, + aux; + + a„‚x„ = bl,
azlx, + aux; + + a2,,x,, = b2, (3.7)

a„‚x1 + a„2x2 + + a‚„‚x„ = b„.

Als notwendige und hinreichende Bedingung für die Lösbarkeit des Gleichungs-
Systems (3.7) gilt der folgende

Satz 3.1: Das Gleichungssystem (3.7) hat dann und nur dann eine Lösung, wenn der S‚3‚1
Rang der beiden Matrizen '

an 012 am an 012 au. b1

a a a a a a bA = 21 22 2n um] B = 2x 22 2n 2

an 1 an 7 arm an l anZ am: bn

gleich ist (A ist die Koejfizientenmatrix, B die erweiterte Koeffiziemenmatrix) (vgl.
mit Satz 4.8 und Satz 4.15).

Wenn diese Bedingung erfüllt ist und der Rang der beiden Matrizen r = n ist, dann
besitzt das Gleichungssystem’(3.7) genau eine Lösung.

Ist er < n, dann besitzt das System (3.7) (n — r)-faclt unendlich viele Lastnzgeit. Es
können nämlich (n —— r) der Unbekannten beliebig gewählt werden, während die rest-
lichen Unbekannten dann eindeutig bestimmt sind.

Beweis: a) Die Richtigkeit dieser Aussagen kann man durch folgende Über-
legungen einsehen: Da die Matrix B die Matrix A vollständig enthält, gilt R(B)
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g R(A). Die Matrix B enthält genau eine Spalte mehr als die Matrix A, daher kann
R(B) höchstens um l größer sein als R(A):

R(B) g R(A) + 1.

Wir schreiben das Gleichungssystem (3.7) in der folgenden Form:

a‘“x1 + amxz + + a""x„ = b.

Eine Lösung dieses Systems ist aber nur dann vorhanden, wenn b linear von den
Vektoren a"), k = 1, 2, ...‚ n, abhängt; das bedeutet aber

R(A) = R(B).

Ist R(A) = R(B) = n, so gilt

det A =l= O,

und das Gleichungssystem

Ax = b

hat eine eindeutige Lösung

x = A"b.

Ist der Rang der beiden Matrizen kleiner als n,

R(A) = R(B) = r < n,

dann kann man annehmen, daß die ersten r Gleichungen linear unabhängig sind und
daß in der linken oberen Ecke von A die Unterdeterminante det A(,_„ # 0 steht,

loo a".
I. (121 (122 ... a,

detA(,_„ = . . .' +0. (3.8)

|qr1 arz an

Die r ersten Gleichungen von (3.7) lassen sich in der folgenden Form schreiben:

an-751 + 012-X2 ‘l’ + alrxr = bx “ a1,r+1xr+1 ‘ " alnxns

021x: + 022-X2 + + azrxr = b2 “ a2.r+1xr+l ‘ " aznxm (3 9)

a,1x1 + a,2x2 + + a,,x, = b, — a,_,„x‚„ — —_a„‚x„.

Man erkennt, daß man die (n — r) Unbekannten x,„ , ...‚ x„ beliebig wählen kann.
Dier Unbekannten x, , x2, ...‚ x, sind dann eindeutig bestimmt. Zum Beispiel erhält
man für x,“ = x,+2 = = x„ = O das Gleichungssystem

“uxi + 012352 + + dlrxr = b1:
a2'1x1 + 02.2.7472 + ..‚ + azrx, = #2,

arlxl + ar2x2 + -°- + arrxr = br
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und als eindeutige Lösung dieses Gleichungssystems

351 b1

x, _ _ l b2
. ‘ A(r.r) :

x, b,

Diese Lösung erfüllt die restlichen (n — r) Gleichungen des Systems (3.7), weil
diese von den r ersten Gleichungen von (3.7) linear abhängig sind, also sich durch
diese linear darstellen lassen. .

Für jeden anderen Wert der Unbekannten x‚„ , x‚„ , ..., x„ erhält man eine andere
eindeutige Lösung von (3.9). Das Gleichungssystem (3.7) hat infolgedessen insgesamt
(n - r)-fach unendlich viele Lösungen.

b) Nun kehren wir zum Gleichungssystem (3.1) mit m Gleichungen und n Unbe-
kannten zurück. Auch für dieses Gleichungssystem gilt der Satz 3.1. Ist m > n, dann
sind m — n Gleichungen überflüssig. Da der Rang r der Koeffizientenmatrix A in
diesem Falle nicht größer als n werden kann, ist es möglich, die überflüssigen m — n

Gleichungen wegzulassen, ohne daß der Rang r von A verändert wird. Ist aber m < n,
dann können von vornherein n -— m Unbekannte willkürlich gewählt werden, und
man erhält mindestens (n — m)-fach unendlich viele Lösungen, da der Rang r der
Matrix A höchstens noch den Wert m annehmen kann. l

3.3.1.

Definition 3.3: Gilt im Gleichungssystem (3.1) b,
Gleichungssystem homogen.

Allgemeine Lösung homogener Gleichungssysteme

0, i= 1, ..., m, so heißt das

Nun wenden wir uns einem Beispiel im dreidimensionalen (linearen) Vektorraum
(vgl. auch 4.1.) zu. _

Es seien

5111-751 + aizxz ‘l’ 013353 = o,
5121351 ‘i’ 022952 + 5723753 = 0s

5131351 ‘i’ 5132-752 + 5733753 = 0

(3.11)

gegeben.
Die lineare Gleichung a„x‚ + aux, + aux; = b,; a‚-‚ ‚ au, am b, e R, stellt geo-

metrisch eine Ebene dar, wobei xi, x2 und x, als Komponenten der Vektoren
xT = (x1, x2, x3)eR3 aufzufassen sind, deren Spitzen Punkte der Ebene sind;
die am sind die Normalen- oder Stellungsvektoren der Ebenen (vgl. 1.4.6.),
am = a„‚(a„ ‚ an, 11,3), i = 1, 2, 3. Die Ebene enthält den Nullpunkt, wenn b, = 0.

Wenn wir die Ebenen (3.11) miteinander zum Schnitt bringen, so bestimmen die
Vektoren x, deren Spitzen allen Ebenen gemeinsam sind, entweder die Punkte einer
Ebene, einer Geraden oder auch nur den Nullpunkt, je nachdem ob die Ebenen iden-
tisch sind, ihr Schnitt eine Gerade bestimmt oder sie nur einen Punkt, nämlich den
Nullpunkt gemeinsam haben. (In jedem Falle ergeben sich also wiederum Vektor-
räume.)

Wir wollen diese Verhältnisse am Beispiel der beiden Ebenen

511x551 ‘l’ 012752 + 013353 = 0.
anxl + aux; + a23x3 = O

genauer untersuchen.

D.3.3
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Als Schnittfigur (geometrische Figur, die von den gemeinsamen Vektoren gebildet
wird) erhalten wir entweder eine Gerade, oder, wenn die Ebenen gleich sind, eine
Ebene. Nun untersuchen wir, welche Beziehungen zwischen den Koeffizienten an
bestehen müssen, wenn die Ebenen gleich sind (d. h. dieselben Vektoren x ent-
halten).

Da die Stellungsvektoren am und am jeweils auf den Ebenen senkrecht stehen,
müssen sie in diesem Falle parallel sein. Es gilt also:

aH) =;"a(2)a /‘-ER)

am und am sind voneinander linear abhängig. Sind am und am linear unabhängig
dann sind die Ebenen voneinander verschieden.

Analoges läßt sich für drei Vektoren

3(1) = a(l)(al1a "12: 013)»

3(2) = a(2)(a2la 022a (123),

3(3) = a(3)(“31 ‚ (132, (133)

aussagen:

a) Sind die drei Vektoren am, am, am linear unabhängig, dann schneiden sich die
Ebenen so, daß als gemeinsamer Vektor x der drei Ebenen nur der Nullvektor vor-
handen ist.

«b) Wenn zwei Vektoren linear unabhängig sind und ein Vektor am von diesen
beiden Vektoren linear abhängig ist, so liegen die Lösungsvektoren x auf einer
Geraden (Schnittfigtir) (d. h. der Vektorraum der Lösungsvektoren x ist ein ein-
dimensionalcr Unterraum, vgl. 4.1.).

c) Wenn nicht zwei Vektoren am voneinander linear unabhängig sind, so bildet
die Menge der Lösungsvektoren eine Ebene (der Vektorraum der Lösungsvektoren
ist von der Dimension zwei). '

Nach dieser anschaulichen Interpretation wollen wir uns allgemein mit der Lösung
des homogenen Gleichungssystems beschäftigen.

Es sei das Gleichungssystem

aux, + 012x; + + a„‚x„ = 0,
aux, + aux; + + a2,,x,, = 0, (3.12)

aux,‘ + a,,2x2 + + a‚„‚x„ = 0

gegeben. Es sind alle b, gleich 0, das ‚Gleichungssystem ist homogen. Für dieses
Gleichungssystem gelten die gleichen Überlegungen wie für das Gleichungssystem
(3.7).

Das System (3.12) ist immer lösbar, da der Rang der Matrizen A und B nicht
verschieden sein kann. Ist der Rang r = n, so hat das System (3.12) — wie in Satz 3.1
gezeigt — nur die Sogenannte triviale Lösung

x,=x2=...=x,,=0, denn x=A"o=o.

Soll das System (3.12) eine Lösung haben, in der nicht alle x,, gleich null sind, so muß
der Rang der Matrix A kleiner als n sein, d. h., die Zeilen- bzw. Spaltenvektoren von A
müssen linear abhängig sein, und es gilt det A = 0."
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Ist x"‘1’ eine Lösung von (3.12) dann ist auch }.x""’ eine Lösung; denn wenn

Ax""’ = o,

dann gilt auch

A}.x"“’ = lAx""’ = , Ä e R.

Kennt man zwei Lösungen x"‘=’ und x"‘*’ des Systems (3.12), dann ist auch 11km’
+ 7.‚x"‘=’ eine Lösung; denn

A(}.,x"‘" + fl.2x"‘*’) = LAX“ + 22min» = o; 2., ‚ z, e R.

Wir hatten oben festgestellt, daß nur dann eine nichttriviale Lösung von (3.12) exi-
stiert, wenn der Rang rder Koeffizientenmatrix kleiner als n ist; es gibt in diesem Falle
(n — r)-fach unendlich viele Lösungen.

Das System (3.12) läßt sich in der Form

allxl + al2x2 + + alrxr = _a1.r+lxr+1 — '-' "' alnxrn
aux, + aux; + + a2,x, = —a2_,+1x,+1 —— — a2,,x,,, ' (3.13)

arlxl + ar2x2 + ---_+ arrxr = 'Tar.r+lxr+1 _ ~-- "' arnxn

darstellen. Die fehlenden n — r Gleichungen sind von den obigen Gleichungen (3.13)
linear abhängig, und die Lösungen von (3.13) erfüllen ebenfalls diese n — r Glei-
chungen.

Es sei det A(‚_„ =l= O. Um die Lösungen von (3.13) zu bestimmen, kann man x,+, ,

...., x,, beliebig wählen. Wählt man z. B. nacheinander

xr+l = ]:xr+2 = =xn=0a
xH-l = 0, xr+2 =1; xr+3 = = xn = 0,

xr-+-1: = ‘XII-I = 0: xn =1:
so erhält man jedesmal für x, , x2 , ...‚ x, eine eindeutige Lösung, und insgesamt er-
geben sich n — r linear unabhängige Lösungen. Allgemein gilt

Satz 3.2a: Ein homogenes lineares Gleichungssystem mit n Unbekannten, dessen S.3.2a
Koeffizientenmatrix A den Rang r hat, hat genau (n —— r) linear unabhängige Lösungen,
die man als ein Fundamentalsystem bezeichnet.

Jede andere Lösung läßt sich-als Linearkombination der linear unabhängigen
Lösungen darstellen, und man erhält die allgemeine Lösung des homogenen Systems
in der Form

| x„ = 2.x" + 2.,x<2> + + Ä„-‚x‘""’. " (3.14)

Wenn das homogene Gleichungssystem aus m Gleichungen mit n Unbekannten be-
steht und m < n ist, so ist R(A) höchstens gleich m, also. r < n, und das System
besitzt immer nichttriviale Lösungen.

3.3.2. Allgemeine Lösung inhomogener Gleichungssysteme

Definition 3.4: Ist in (3.1) mindestens eine Konstante b, =1: 0, i = l, ...‚ m, so heißt D.3.4
das Gleichungssystem inhomogen.
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Mit seiner Lösung wollen wir uns jetzt befassen. Die Lösungsmenge des homo-
genen Gleichungssystems haben wir im vorigen Abschnitt schon untersucht. Zu-
nächst wollen wir voraussetzen, daß das inhomogene Gleichungssystem Lösungen
hat, d. h.‚ daß R(A) = R(B) ist.

Wie wir sehen, erfüllt jetzt die Sogenannte triviale Lösung (x, = x2 = = x„ = O)

das Gleichungssystem nicht. Speziell für n = 3 heißt das, die Ebenen, Geraden, die
Punkte, die die Lösungsmenge darstellen, enthalten den Nullpunkt nicht; sie sind
aus dem Ursprung des Koordinatensystems verschoben. .

In welchem Zusammenhang stehen nun die Lösungsmenge des inhomogenen und
des zugehörigen homogenen Gleichungssystems (das zugehörige homogene System
entsteht, indem wir alle b. =|= O durch 0 ersetzen)?

Satz 3.2b: Alle Lösungen des inhomogenen Gleichungssystems ergeben sich, wenn zu
einer speziellen Lösung des inhomogenen Systems alle Lösungen des zugehörigen
homogenen‘Gleichungssystems addiert werden.

Die Richtigkeit dieser Aussage wollen wir uns folgendermaßen überlegen:
Wenn x0 eine spezielle Lösung des inhomogenen Gleichungssystems ist und

xh = Ä‚x‘“ + + 2,,_,x""" die allgemeine Lösung des zugehörigen homogenen
Gleichungssystems, dann gilt für jeden Wert der 1„ i = 1, ..., n — r,

A(x„+x„)=Ax,+Ax„=b+o=b. (3.15)

Für r = n gibt es eine eindeutige Lösung des inhomogenen Gleichungssystems (in
diesem Falle ist x„ = o), und für r < n gibt es (entsprechend Satz 3.1) (n — r)—fach
unendlich viele Lösungen. I

In diesem Zusammenhang sei auf die Beispiele im Abschnitt 3.5. hingewiesen.

3.4. Die Cramersche Regel

Die Cramersche Regel ergibt sich aus der Matrixdarstellung des Gleichungssystems
in recht anschaulicher Weise und wird insbesondere bei theoretischen Erörterungen
verwendet. Allerdings ist sie zur praktischen Lösung linearer Gleichungssysteme
weniger geeignet, weil der Rechenaufwand bei mehr als 3 Unbekannten unvertretbar
hoch wird und sie nicht auf jedes beliebige lineare Gleichungssystem anwendbar
ist, wie wir sehen werden.

Es ist ein System von n Gleichungen mit n Unbekannten gegeben:

anxl + 012x; + an: + a,,,x,, = bl,
021351 + 5122752 ‘i’ + aznxu = bza
. . . . . . . - . . . . . . . . . . . . . . . . . . . . . u .

(3.16)

Ein Wertsystem x1 ‚ x2 ‚ ...‚ x„, das (3.16) identisch erfüllt, nennt man eine Lösung
von (3.16). Wir wollen zunächst annehmen, daß die Determinante det A = D,

an 012 an

021 022 a2 jD = _ " =j= 0,

anl 07:2 - am:
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verschieden von null ist. Multipliziert man in (3.l6_) jeweils die ‚u-te Zeile mit den
algebraischen Komplementen Age der Elemente a“ der g-ten Spalte der Deter-
minante D und addiert die Gleichungen (3.16), so erhält man die folgende Gleichung:

DX0 = b1A1Q + bzAze + u: + bnAna = De,

denn nach 2.4.3. gilt:

D für}. =‚u‚
‚E: a°’1A°" = {O 'f1'irl =|= ‚u.

Man erkennt leicht, daß De eine Determinante ist, _die durch Austausch der g-ten
Spalte in D mit der rechten Seite von (3.16) entsteht. '

Die n-malige Durchführung des Multiplikationsvorganges liefert die Gleichungen

Dxl = D1:
Dxz = D2, (3.17)

Dx,, — D,,

Wenn alle b, der rechten Seite von (3.16) null sind — wenn also ein homogenes
Gleichungssystem vorliegt —, dann sind auch alle D, von (3.17) null. Die Gleichungen
(3.17) sind dann nur durch

x,=x2=...=x,,=0

erfüllt. Ist mindestens ein b, von null verschieden, das Gleichungssystem demnach
inhomogen‚ dann lautet die Lösung von (3.16):

D1 _ D2 ‚ ‚ Dn
T’ *2 = T’ "

(3.18)‚X1 z

Das ist die Cramersche Regel; ihre Anwendung setzt voraus, daß r = n, d. h. det A =l= O

ist.
Das System (3.16) hat in Matrixdarstellung die folgende Form:

Ax = b. (3.19)

Dabei bedeuten

an an an x1 bx

A: azl K122 ... am. ; x: x; ; b: b2

an}. anz --- am: xn bu

Da nach Voraussetzung detA = D =|= O ist, existiert die inverse (reziproke) Matrix
A“, und man erhält durch linksseitige Multiplikation der Gleichung (3.19) mit dieser
die Lösung mit der einspaltigen Matrix x als Lösungsvektor:

A‘iAx = A‘1b; x = A‘1b.

Wenn D = 0, d. h. r < n ist und demzufolge lineare Abhängigkeiten zwischen den
Zeilenvektoren der Matrix bestehen, kommt man mit der Cramerschen Regel nicht
zum Ziel.
7 Manteuflel, Lineare



98 3. Lineare Gleichungs- und Ungleichungssysteme

3.5. Beispiele

Beispiel 3.3: Jetzt wollen wir unsere allgemeinen Betrachtungen auf den FaJl n = 3 anwenden und
behandeln das inhomogene Gleichungssystem mit drei Gleichungen und drei Unbekannten. Es liege
das folgende Gleichungssystem vor:

011X1 + 012x: + 01333 = bx.

021171 + 02232 023x3 = b2, (3-20)

03111 + 031.172 + a_~,3x3 —'= b3.

Mindestens ein b, soll ungleich null sein.

a) Die beiden Matrizen

011 012 013 011 012 013 b1

A = 021 022 023 , B = 021 .022 023 b2

031 032 033 031 032 033 b3

haben den Rang r = 3. Dann existiert eine eindeutige Lösung, die mit Hilfe der Cramerschen Rege!
(vgl. 3.4.) bestimmt wird: I

D = detA =i= 0,

b1 012 013 011 b1 013 011 012 [Ml

D1= b2 ‘022 023 ; D2= 021 b2 023 ; D3='021 022 b2 ;

b3 032 033 031 b3 033 031 032 b3

D, D; D3
x1=‘E‘;X2=7)‘§x3=3-

Die Richtigkeit der Lösung kann man nachweisen, indem man dic Lösung in die erste der Glei-
chungen (3.20) einsetzt:

l

D D
011—D!'+ 012324‘ 01333

1

(01101-411 + 01102/421 + 011031431)

+

3
l

B(012b1A12 ‘l’ 012021422 + 012031432)

1

+ 3(013b1-413 + 0131721423 + 013b3A33)

‚ l
=Bb1D=b1. ’

Addiert man nämlich die untereinanderstehenden Glieder, so ergibt die erste Spalte b1D, und die
beiden anderen Spalten ergeben null.

Für die beiden anderen Gleichungen von (3.20) läßt sich das Entsprechende zeigen.

b) Der Rang der beiden Matrizen sei verschieden.

m) = 2,

R(B) = 3.
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Das bedeutet, daß die Lösung des Systems (3.20) in der Form

DX; = D1,

DA’; = D2,

DX3 = D3

einen Widerspruch besitzt, denn die Voraussetzung besagt, daß D gleich null ist, aber nicht alle
Dcterminanten D, , D, ‚ D, gleich null sind. Für diesen Fall hat das System (3.20) also kelne Lösung.

Auch für die Fälle

R(A)= l, R(B)=2,

sowic

R(A) = O, R(B) = I

enthält das Gleichungssystem (3.20) einen Widerspruch, und es existiert keine Lösung.

c) Der Rang der beiden Matrizen ist gleich, aber kleiner als 3.

(a) R(A) = R(B) = 2.

Das bedeutet, daß

D=D‚=D‚=D3=0

ist. Aber mindestens eine Unterdeterminante zweiter Ordnung muß ungleich null sein. Nehmen wir
an, A33 + 0. Man kann die beiden ersten Gleichungen von (3.20) in folgender Weise schreiben:

0xxxx + 0x2X2 = b1 "' 013x31.

02x351 + azzxz = bz "‘ 023x39

x3 ist also beliebig wählbar, während x, und x; dann eindeutig bestimmt sind.
Das Gleichungssystem (3.20) hat einfach unendlich viele Lösungen. Die dritte Gleichung von (3.20)

ist von selbst erfüllt.
Multipliziert man die Gleichungen (3.20) mit A13, A23 und A33 und addiert sie, dann erhält man

die folgenden vier Gleichungen als Summen der vier Spalten:

b1A13 + 021423 + 031433 -‘= D3 = 0,

0111413 + 021A23 + 0311433 = 0,

0121413 + 0221423 + 031-433 = 0.

‘,“13A13 + 023A23 + 0331433 = D = 0-

Wir dividieren durch A33 ‚ das nach Voraussetzung ungleich null ist, und erhalten:

A13 A23
— b —-+b -——= -b ,1A33 2A33 3

a A13 a A23__ a
11-- 2x"—- " 31.

A33 A33

a A13 a A23_ a
12—- 22'—-- — 32.

A33 A33

A13 A23
013*‘ + 0z3* = ‘033-

A33 A33
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Die dritte Gleichung von (3.20) ist von der ersten und zweiten Gleichung linear abhängig. Sie ergibt
A13 23

sich, wenn die erste mit — und die zweite mit —— A multipliziert und danach addiert werden
3 3 3 3

(gemäß Satz 3.1 und Beweis).

(5) R(A) = R(B) = 1 .

Das bedeutet, daß keine von null verschiedene Unterdeterminante zweiter Ordnung existiert. Es muß
aber mindestens ein Element der Matrix A ungleich null sein. Nehmen wir an, an ’l= 0. Dann kann
die erste Gleichung von (3.20) wie folgt geschrieben werden:

allxl = b1 " 1112952 — 013x3-

Die Unbekannten x2 und x3 kann man willkürlich wählen, und x, ist dann eindeutig bestimmt. Das
System (3.20) hat (n — r)-fach‚ also zweifach unendlich viele Lösungen. Die zweite und dritte Glei-

I .. 7- u u - o a n a
Chung sind von der ersten linear abhangig. Multipliziert man die erste Gleichung mit —2-1-, dann
erhält man: a“

02 i 02 i a2 i 02 i
a„-x1 + a12—x2 + a13—x_:, = 111:.

an an au an

Das ist aber die zweite Gleichung

aux; ‘i’ aux; ‘i’ G23X3 = b2.

Denn nach Voraussetzung sind alle Unterdeterminanten zweiter Ordnung gleich null. Aus

an “i2 »-—

= 33 = 0
02i i122

ergibt sich

G21
022 = au" -

an

Für die restlichen Faktoren ergeben sich ähnliche Determinanten. Die dritte Gleichung erhält man

auf entsprechende Weise, wenn die erste mit dem Faktor %- multipliziert wird.
ii

(7) R(A) = R(B) = 0-

Es sind alle Elemente an. gleich null, und auch alle b, sind gleich null. x, ‚ x; und x3 sind beliebig
wählbar, das Gleichungssystem (3.20) hat dreifach unendlich viele Lösungen.

Beispiel 3.4: Darstellung der allgemeinen Lösung eines inhomogenen Gleichungssystems als Summe
der allgemeinen Lösung des zugehörigen homogenen Systems und einer speziellen Lösung des in-
homogenen Systems:

X1+2X2— x3— X4: "3, ’

3X1+ X2+2X3+ x4=4,
2x1— x2+ x3- X4=]‚

'-2X1 " 4-X2 + 2x3 + 2x4, = 6.

x„+2x2— x3— x4=-3,
—5x2+5x3+4x4= 13,

— 2x3 — 3x4 = —6.\
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Das zugehörige homogene System lautet

x1+2x2— x3— x.=0,
— 5X2 + 5x_~, ‘i’ 4x4 = 0,

—2X3—3X4=0

_ 9 7 3
und hat die allg. Lösung x, = We“ x2 = — Tö-cl, x3 = — —2—c„ x4 = c, oder

K B
‘ u Q F
‘

l

i-
l

|—
fl

-

~
l~

=
ol

~
o|

~
°

Zur Bestimmung der speziellen Lösung des inhomogenen Systems setzen wir x4 = 0 und erhalten

x,=-—;—, x2=%, x3—3,

_ 4..

""5"

3.
xo= 5 .

3

0 I

Damit ergibt sich als Lösung x des obigen Systems

9 " 4

l0 5

7 2

x—xh+xo=c‚ 1° + 5

3
———— 3

2

1 0

Beispiel 3.5:

0‚783x‚ + 2‚525xz — 1‚253x3 + 2,0O0x4 = 1,361,

5,777x1 — 1,300x; + 2,710x3 — 3,987x4 = 8,477,

2,655x1 + l,875x2 + x3 + X4 = 8,988,

x, — x2 + 0,73lx3 — x4 = 1,111.

Die zweite Gleichung wird als erste Eliminationsgieichung benutzt.



102 3. Lineare Gleichungs- und Ungleichungssysteme

Rechenschema :

k = 2 3 4 a, s, Probe

10,215 2,100 3,188 —— 1,987 19,937 33,453 0,006

* 5,777 — 1,300 2,710 -— 3,987 8,477 11,677 0

—0‚1355 0,783 2,525 — 1,253 2,000 1,361 5,416 0
—0‚783 0,176 —0,367 0,540 — 1,149 — 1,582 v2

—O‚4596 2,655 1,875 1,000 1,000 8,988 15,518 0 '-*

—2,655 0,597 — 1,246 1,832 —3‚896 —5,367
—0,l733 1,000 —1,000 0,731 —- 1,000 1,111 0,842 0

— 1,000 0,225 —0‚470 0,691 - 1,469 -2,024

* 0 2,701 — 1,620 2,540 0,212 3,834 0,001

— 0,9152 0 2,472 —0‚246 2,832 5,092 10,151 0,001
—2,472 1,483 —2,325 —0,l94 — 3,509 ti:

0,2869 0 —0‚775 0,261 —-0,309 —0,358 — 1,182 0,001 oi
0,775 —0,46S 0,729 0,061 1,100

"‘ 0 1,237 0,507 4,898 6,642 0,000 3
. ‚a

‚s:
0,1649 0 —0‚204 0,420 —0,297 —0‚082 0,001 Ö1’

0,204 0,084 0,808 1,095 0,002 er;

‘ 0 0,504 0,511 1,013 0,002

Die Gleichungen, die mit * versehen sind, ergeben das System (3.4):

5,777x‚ — 1,300x2 + 2,710x3 — 3,987x4 = 8,477,

2,7o1x, — 1,620x3 + 2,540x4 = 0,212,

1,237x3 + 0,507x4 = 4,898,

0,504x,. = 0,511.

Jetzt kann schrittweise die Lösung bestimmt werden:

x4 = 1,013,

x3 = 3,544,

x, = 1,251,

x, = 0,785.

Setzt man die erhaltenen x-Werte in die Summenprobe ein, dann erhält man eine Differenz von

0,006. Durch das Mitführen von mehr Stellen läßt sich die Genauigkeit steigern.
‚ .

Beispiel 3.6:

3x =6;
A = [3], B =[3;61;
R(A)=R(B)= n=1;
D = 3; D, = 6;

x=—=-—=2.
D 3

Das System hat eine eindeutige Lösung.
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Beispiel 3.7:

3x = 0;

R(A) = R(B) = n =1.

Es existiert nur die triviale Lösimg x = 0.

Beispiel 3.8:

0x -; 0;

R(A)=R(B)=n—1=0.
Das System besitzt einfach unendlich viele Lösungen, es ist für jedes x erfüllt.

Beispiel 3.9:

0x = 3;

KM) # R(B);

R(A) = O; R(B) = 1.

Das System enthält einen Widerspruch; es ist nicht lösbar.
x

Beispiel 3.10:

I. 3x1 -' 4X; + X3 = 9,

II. x, + x; -— 5x3 = -10,
III. 6X1 + 2x2 + 4x3 =

'3 -4 1

6 2 4

3 -4 1 - 9 -4 1

6 2 4 12 2 4

3 9 l 3 -4 9

D2: l -10 -5 = -174; D3: 1 1 -10 =343;

6 12 _ 4 6 2 12

D D D
x,=——‘_1, x2=—3‘=—1, x,_—5’—=2

Probe: 3+4+ 2= 9,

1-1--l0=—10‚
6-—2+ 8= 12.
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Beispiel 3.11:

I. x, —3x;+2x3a= 3,

II. —9x1 + 6x, — 3x3 = l2,_

III. 5x1 — 8x2 + 5x3 = 2.

R(A) = 3(3) = 2;

D = 0,

A13 = 42v

A
D. = o. ” = —2‚

A33

A23 = '-7!
D2 = 0.

A23 l
A = -21; = —,33 A” 3

D3 = 0

1 .

Das heißt: Gleichung I mit 2 und Gleichung II mit — 3- multipliziert und dann beide addiert, ergibt
Gleichung III.

X1"'3X2=
'-9X1 + 6x2 = + 3x3;

D‘=—2l;

3—2x3 -3
;"=12+3x3 6 =18—l2x3+36+9x3=54-—3x3;

l 3—2x3
D2*= _9 12+3x3

D: 18 1

”‘='1)"'""7"”7"3’
D: 13 5

x2=‘p7=-7+7“

m n t

n=—7.n=—7;

18 39 21

'7+7‘7=“
162 78' 84

7”7’7=m
90 104 14

-‘+“-7‘=7=2-
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Beispiel 3.12:

x1 " 5X2 + X3 =0‚ 1 "-5 1

x1+x2—-2x3=0, D: l l —'2

x1“ Xz- x_~,=0; 1 *1 —l

R(A)=n—l =2;
—-5 l

A31 = 1 __2 = 9 = X1?

Diese Berechnung der Lösung ist nur im
1 l . ..

A32 = __ = 3 = x2; Falle homogener Gleichungssysteme mog-
l -2 lich, deren Rang r = n — 1 ist.

l -5
1433:1 1'=6=X3.

Probe: 9-5-3+6=0;
9 + 3 —- 2- 6 = 0;

9 — 3 — 6 = 0.

Berechnung für zwei Unbekannte bei beliebiger Wahl von x3:

x3 = 1 gewählt;

x1 — 5x2 = —l ,

x, + x2 = 2.

Lösung nach Cramer:

1-5 3 1

D‘: =6 Probe:——5-——+l=O
1 1 ’ 2 2 ’

*__ —1——5 _ _ 3 3 {1 „L

D!‘ 2 1-9’ *1”? 7*?‘-*0’
D*_1 -1 __ 1 3 1 L0

2 1 2 ‘s’ 2"?’ '3"”5’_1_

‘m: 3 Z ‘zu:

Man erkennt, daß die beiden Lösungsvektoren sich nur durch einen konstanten Faktor c unter-
scheiden:

X“, = cxzh für c = 6;

r91 W
m“ —;—

1

Durch willkürliche Wahl von c lassen sich unendlich viele Lösungen finden.
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3.6. Systeme von linearen Ungleichungen und Altemativsätze

Nachdem wir uns bisher mit linearen Gleichungssystemen beschäftigt haben,
wollen wir uns nun Systemen von linearen Ungleichungen zuwenden.

Betrachten wir wiederum die Beziehung (2.3); wenn durch den Vektor

1780

1480

2300
2600
4520

Höchstmengen der zur Verfügung stehenden Rohstoffe R,, i = I, 2, ..., 5, angegeben
werden und durch den Vektor

x1
X = X2

X3

die zu bestimmenden Mengen der Produkte E„ E2, E3, dann stellt die Beziehung

Ax g b

ein System von linearen Ungleichungen dar, wenn wiederum

" 8 7 1o"
12 6 4

A = 9 9 14

5 l0 20

_ 27 18 20

die Matrix der Verbrauchsnormen zwischen den Rohstoffen R„ i = I, ..., 5, und den
Endprodukten Ek, k = 1, 2, 3, ist. In ähnlicher Weise können auch die anderen
Beispiele aus dem Abschnitt 2.1.1. abgewandelt werden.

Definition 3.5: Ein System

anxl + aux; + + a,,,.\',, g b1,
azlxl + aux; + + a2,,x,, g b2,
‚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. (3.21)

amlxl + am2x2 + '-' + amnxn g bin!

x19 x29 ---x xn g 09

mit den Konstanten a„- (i: 1, ..., m,j = l, ..., n), b,- (i = l, ...,m) und den Varia-
blen x, (j = 1, ..., n) heißt lineares Ungleichungssystem mit m Ungleichungen und
n Nichtnegativitätsbediizgungen.

Sim’ alle h- (i = m) gleich null, so heil}! ns : n w uo Iv w‘ \u v’ ., ..., Inna

anderenfalls inhomogen.

‘o E
‘

Q
9 t3
‘

..
..

(‘
i B
"

Definition 3.6: Ein Vektor (eine Matrix) heißt nicht-negativ, wenn alle Komponenten
(Elemente) nicht-negativ sind.
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Wir können das System (3.21) folgendermaßen schreiben:

Ax g b, x g o

an an a1,, x, » b1

mit A = a“ a" a2" ‚ x = x22 und b = b?

am, am; a„„‚ x.,, b„‚

Jedes lineare Ungleichungssystem läßt sich mit Hilfe der folgenden Umformungen
auf die anfangs angegebene Form bringen:

l. Tritt in einem linearen Ungleichungssystem eine Ungleichung

aux, + a,,2x2 + + a‚„‚x„ g b„

auf, so erhält man nach Multiplikation mit -1:

——a‚„x‚ — —- a,,,,x,, g -—b„.

2. Tritt eine Bedingung der Form

aux, + akzxz + ... ‘l’ a‚„‚x„ = bk

auf, so kann man diese Gleichung durch die folgenden beiden Ungleichungen er-
setzen:

bk:

—b,,.

3.LOft ergibt es sich aus der praktischen Aufgabenstellung, daß die Variablen x,
nicht negativ sein dürfen. Ist dies nicht der Fall, so kann man die Erfüllung der
Nichtnegativitätsbedingung durch folgende Substitution erreichen:

amxl + aux; + + a‚„‚x„ g
g—ak1x, — akzxz "' ... — a‚„‚x„

x,=x}—x," mit x,7,x;’;O.
Wie man sieht, kann x, jetzt sowohl positive als auch negative Werte annehmen. Wir
wollen diese Möglichkeiten an einem Beispiel erläutern:

Beispiel 3.13:

x, + 2x2 g 40,

2X1 + X2 ll .
.
.

o

x1 + x2 5, (3.22)

IIV
llV

x1 beliebig.

x, + x2 g 5 geht in —x1 — x2 g —'5 über; 2x1 + x2 = l0 wird ersetzt durch 2x1 + x2 g l0,
—2x‚ — x2 g —l0; für x; setzen wir x; = x; — x'2’ mit x; g 0, x’; g 0. So erhalten wirdas Un-‚
gleichungssystem

x1 + 2x; —— 2x; 40,

2x, + X; -‘ x; 10,

—2x1 - x; + xä’ g —l0‚
l—x1— x2+ X,

'<

’<

IIV
ll/

\‘

1

I

O
u
:

I Hx1, x2, X2
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Definition 3.7: Jeder Vektor x, für den Ax g b gilt, heißt Lösung des linearen Un-
gleichungssystems Ax g b; ist außerdem x g o, dann heißt x zulässige Lösung.

Im betrachteten Beispiel ist

x1=—1, x§=l5, x;’=3
eine Lösung des Systems, denn sie erfüllt die ersten vier Ungleichungen, aber nicht
die Nichtnegativitätsbedingungen, was auch nicht Verlangt war.

x‚=4, x;=5, x;'=3
ist eine zulässige Lösung, denn es werden sowohl die ersten vier Ungleichungen als
auch die Nichtnegativitätsbedingungen erfüllt. i

Wenn wir ein System linearer Ungleichungen lösen wollen, führen wir es bei den
gebräuchlichsten Verfahren zuerst mittels sogenannter Schlupfvariabler in ein
lineares Gleichungssystem über. Aus dem linearen Ungleichungssystem Ax" g b;
x g o, wird das lineare Gleichungssystem Ax + u = b; x g o, u gio. Der Vektor u
heißt Schlupfvektor, seine Komponenten heißen Schlupfvariable.

Zu jeder zulässigen Lösung von Ax g b, x g o gehört eine zulässige Lösung x,
u mit u = b —— Ax von Ax + u = b und umgekehrt. Dabei heißt x der primale Teil
der Lösung (primale Lösung), u der duale Teil der Lösung (duale Lösung).

Das betrachtete Beispiel läßt sich in der Form

x1 + 2x; — 2x5’ + u, = 40,

2x1 + x; — x3’ +142 ’ = 10,

—2x1 — x; + x5’ + u, = -10,
—x1—x;+ x§_' +u4=—S,

x1,x;,x§_',u,,u2,u_~,,u4 g O

schreiben.

x1=4, x;=5, x;'=3,
u,=32, u2=0, u3=0, u‘—1

ist eine zulässige Lösung;
32

4 0
x“) = 5 ist der primale Teil und um = der duale Teil dieser Lösung.

3
1

Jetzt wollen wir das lineare Ungleichungssystem (3.22) lösen, indem wir es auf ein
lineares Gleichungssystem zurückführen. Das System geht durch Einführen von einer
Schlupf- und einer Überschußvariablen in das folgende _lineare Gleichungssystem
über:

X1 + ZX2 + Ill = 40,

x1 + x2 — u; = 5,

2x, + x2 = l0,
x1, 14,, u; g O; x; beliebig

(u; : Schlupfvariable, uz: Überschußvariable).

Dieses lineare Gleichungssystem lösen wir mit Hilfe des Gaußschen Algorithmus.
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X1 x2 "1 "2 b: 5:

* l 2 1 0 40 44

-1 1 1 0 ——1 5 6

——l- —2 —l O -— 40 —-44

——2 2 1 0 O 10 13

‚——2 -—4 -2 O — 80 ——88

* O —l —l ——1 - 35 -38

-3 0 -3 -2 0 — 70 —75
+3 +3 +3 +105 114

" 0 1 3 35 39

Wir erhalten:

u; = /1;

ul = 35 - 31;

x2=35——35+37.——/1:21;

x1=40-—4Z—35+3/1=5—}.,

Aus x1, ul, u; g O kann man sofort ersehen, daß O g 2 g 5 gilt. Aus x2 = 21 und x, = 5 -- /I

X2folgtzx, = 5 - ‘-2’-‘,0 g X2 §10.

Wir erhalten bei diesem Beispiel als Lösungsmenge des linearen Ungleichungs-

Systems den Abschnitt der Geraden x1 = 5 — 3525 ‚ der von den positiven Richtungen

der xl- und x2-Achsen begrenzt wird (Bild 3.1). Im allgemeinen erhält man als
Lösungsmenge bei Systemen mit zwei Variablen konvexe Polygone und bei Systemen
mit mehr als zwei Variablen konvexe Polyeder (vgl. auch Bd. 14, 1., und Bd. l,
7.9.2.). Diese konvexen Polyeder können dann natürlich von beliebiger endlicher
Dimension sein. Es können auch Lösungsmengen auftreten, die in einer oder auch
mehreren Variablen unbeschränkt sind.

Für den Fall von zwei Variablen wollen wir folgende Beispiele betrachten:

Beispiel 3.14:

—x1 + x2 g 3, (I)

xi + 2x2 _S_ 8, (Il)

xi, x2 2 0;

es ergibt sich der schraffierte Lösungsbereich (vgl. Bild 3.2).

Beispiel 3.15:

X1 " xz ä 2. (I)
X1 + 2X2 ä -10,

xx. x2 ä 0;

es ist kein Lösungsbereich vorhanden (vgl. Bild 3.3).
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Beispiel 3.16:

x1 + x2 g 49

x, + 2x; _S_ 6, (II)
"X; + X2 § 0,

xi: X2 ä 0;

es ergibt sich der schraffierte Lösungsbereich, die Gleichung (II) ist überflüssig (vgl. Bild 3.4).

Beispiel 3.17:

-xx + 2x2 ä 2, (I)
x, —- 4x2 g 4, (II)

xx: x2 .2. Ü;

es ergibt sich kein endlicher Lösungsbereich (vgl. Bild 3.5). (Man vergleiche hierzu auch Band 14,

Abschnitt 2.1.)

Bild 3.1 Bild 3.2

X31

„Ä M

\ Y 71

Bild 3.3 Bild 3.4

Doch zurück zu dem gelösten Ungieiehungssystem. So verlockend es erscheint,
solche Systeme linearer Ungleichungen nach wenigen Umformungen als Systeme
linearer Gleichungen zu behandeln, so unbrauchbar wird dieses Verfahren bei
größerer Anzahl der Variablen. Wie man sich leicht überlegt, ergeben sich aus den
Nichtnegativitätsbedingungen für die frei wählbaren Parameter Ä, ‚u, wieder Neben-
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bedingungen in Systemen von linearen Ungleichungen. Außerdem erhält man nicht
unmittelbar einen Überblick über die Gestalt der Lösungsmenge. Daher benutzt
man in der Praxis andere Verfahren, die aber hier nicht besprochen werden sollen.

Bild 3.5

Abschließend wollen wir uns mit zwei sogenannten Alternativsätzen beschäftigen.
Der erste Alternativsatz lautet:

Satz 3.3: Entweder das Gleichungssystem Ax = b besitzt eine Lösung x e R", oder S.3.3
das Gleichungssystem ATy = o, bTy = l besitzt eine Lösung y e R"'.

Dabei ist A eine Matrix vom Format (m, n), b eine Matrix vom Format (m, 1), also
ein (Spalten-)Vektor aus dem R’". .

Beweis: Zuerst zeigen wir, daß nicht beide Systeme gleichzeitig lösbar sein
können, und als zweites, daß aus der Unlösbarkeit des Systems Ax = b die Lösbar-
keit des Systems ATy = o, bTy = l folgt. .

a) Angenommen x e R" und y e R"' seien zugleich Lösungen der entsprechen-
den Systeme, und es gelte ATy = o. Dann gilt auch

o = xTo = xTATy = (Ax)Ty.

Da Ax = b ist, folgt 0 = bTy = 1, und wir haben einen Widerspruch.
b) Nun nehmen wir an. das System Ax = b sei nicht lösbar. Dann folgt aus der

Theorie der linearen Gleichungssysteme, daß b nicht Linearkombination der Spalten-
vektoren der Matrix A sein kann. Wenn wir mit r = R(A) den Rang der Matrix A
bezeichnen und die Koeffizientenmatrix des Systems ATy = o, bTy = I betrachten.
bemerken wir, daß diese aus den Matrizen A‘ und bT zusammengesetzt ist und den
Rang r + l hat. Die erweiterte Koeffizientenmatrix, als Block geschrieben

i“ °l' bT 1 *

hat auch den Rang r + l. Da nun beide Ränge übereinstimmen. ist das zugehörige
lineare Gleichungssystem lösbar. Damit ist der erste der Alternativsätze bewiesen. I

Der zweite Alternativsatz gibt eine Möglichkeit, entscheiden zu können. ob ein
System linearer Ungleichungen positive Lösungen besitzt oder nicht. Er sei hier ohne
Beweis mitgeteilt:

Satz 3.4: Entweder besitzt das System Ax = b eine positive Lösung x g o im R" oder S.3.4
das System ATy g o, bTy < O mit y _e R"' besitzt eine Lösung im R"'.



112 3. Lineare Gleichungs- und Ungleichungssysteme

3.7. Aufgaben

3.1: Es sind die Lösungen des Gleichungssystems

2x1+ x;+ x3=2,
x1+3xg+ x3=3‚
x1+ xg+7x3=7

zu bestimmen!

3.2: Gegeben ist das lineare inhomogene Gleichungssystem

X1’ xg+ .\.'3= 4,

II u
-n b
.)x1 + 2x2 + x3

2x1 + 4X; ‘i’ 2x3 = 26,

4x1 + 5x2 + 4x3 = 43.

Es sind die Lösungen für xi mit x3 = p als Parameter zu ermitteln!

3.3: Für welche Werte von k hat das Gleichungssystem

36x1 — 7x2 + x3 = O,

-—9x1 + 5x2 — kx; = O,

6x1 + x2 — 9x3 = 0

nichttriviale Lösungen?

3.4: Vorn Gleichungssystem

x1 —- x;+ x3= —-‚4‚

x1 + 2x2 + x3 = —l3‚
2x1 +_4x2 + 2x3 = —26,

4x1 + 5x; + 4x3 = —43

ist die Lösung für x1 mit x3 = p als Parameter zu ermitteln.

3.5: Man berechne x, , wenn im linearen Gleichungssystem

X1 + X2 + X3 = I,
x1+x2— X3=!2,
x1 — x; — axs =13

a = l gesetzt wird.

3.6: Für welchen Wert von k hat das homogene lineare Gleichungssystem

15x1 + 7x; — 3x3 = 0,

—3x1 — 4x2 + kx, = 0,

5x1+2xz— x1=0
nichttriviale Lösungen? Außerdem berechne man x, für den ermittelten Wert von k!

3.7: Für welchenWert von k ist der Rang der Matrix A R(A) = 2, wenn

3 2 3

A = 1 k -1

1 2 2

ist?
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3.8: Man bestimme diejenigen Werte Ä, für die das Gleichungssystem Ax = 1x mit *

2 1 —§

A = 2 3 —-%

3 3 -1

nichttriviale Lösungen hat, und berechne für die gefundenen Werte i. jeweils die vollständige Lösung.

3.9: Man löse das Gleichungssystem

3x + 4y + 2z = 1,

x — y — 3z = 7,

2x + z = 4

a) nach dem Gaußschen Algorithmus;

b) mit Hilfe der Cramerschen Regel.

3.10: Für welche Werte von Ä ist das System

3x + 2y + z = 0,

x + y + z = 0,

2x + y + Äz = 0

nichttrivial lösbar? Man bestimme für die gefundenen /I die Lösung.

II

3.11: Man beweise: Es seien L, = Z aux, (i = 1, 2, 3, ..., n) n Linearformen („linke Seiten“ eines *
n = l

Gleichungssystems). Gilt Z x,L, = 0, so sind L1 ‚ L2, ..., L„ bei ungeradem n linear abhängig.
l=l

8 M-amem'IeI, Lineare
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4. Lineare Vektorräume und lineare Abbildungen

Ohne eine entsprechende Definition haben wir in den vorhergehenden Abschnitten
mehrfach einen Raumbegriff verwendet. Von zunächst anschaulichen Interpretationen
ausgehend, war versucht worden, eine Loslösung vom bekannten zwei- und drei-
dimensionalen Raum durch formale Übertragung bestimmter Begrifle vorzunehmen.

In diesem Abschnitt soll eine Verallgemeinerung des in vorhergehenden Abschnitten
benutzten Raumbegriffes vorgenommen werden. Dabei werden wir durch gewisse
Abstraktionen zu allgemeineren Aussagen als früher gelangen. Gleichzeitig werden
in diesem und in den folgenden Abschnitten einige Grundlagen für die lineare Opti-
mierung erarbeitet. Wir werden mehrfach Ergebnisse und Zusammenhänge berichten,
ohne Einzelheiten zu beweisen.

4.1. Lineare Vektorräume

In der Menge R der reellen Zahlen gelten für die Addition der Zahlen folgende
Axiome:

(1) Wenn 2., ‚u e R, dann liefert Ä + ‚u = v ein eindeutig bestimmtes Element
v E R;

(2) für die drei Elemente 2., y, v e R gilt das assoziative Gesetz:

(l+‚u)+v=h+(‚u+v)=h+u+v;
(3) es gibt ein neutrales Element (die Zahl Null oder das Nullelement) 0 e R,

so daßÄ + O = Ä ist;

(4) zu jedem Element Ä e R gibt es ein entgegengesetztes oder inverses
Element (—Ä) e R, so daß Ä + (——l.) = O gilt.

Definition 4.1: Wenn die Elemente einer Menge diese Axiome erfüllen, dann sagt man,
sie haben Gruppeneigenschaft, oder sie bilden bezüglich der erklärten Verknüpfung (in
diesem Falle bezüglich der Addition) eine Gruppe.

Im vorliegenden Fall gilt noch das Axiom (5):

(5) i. + ‚u = ‚u + Ä (kommutatives Gesetz); daher gilt

Satz 4.1: Die reellen Zahlen bilden bezüglich der Addition eine kommutative (oder
abelsche) Gruppe (kommutative additive Gruppen werden auch Moduln genannt).

Das neutrale Element O sowie das entgegengesetzte Element (——Ä) sind jeweils ein-
deutig bestimmt.

Auch die Menge P der rationalen Zahlen und die Menge K der komplexen Zahlen
haben diese Eigenschaften, bilden ebenfalls bezüglich der Addition kommutative
Grunoen.

Satz 4.2: Bezüglich der Multiplikation bilden die reellen Zahlen -— unter Ausschluß
der Zahl Null — ebenfalls eine kommutative oder abelsche Gruppe.
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Die Axiome (l) bis (5) sind offensichtlich für die multiplikative Verknüpfung eben-
falls erfüllt.

Dasselbe gilt für die rationalen und füfdie komplexen Zahlen.
Für die Verbindung von Multiplikation und Addition gilt für reelle Zahlen das

distributive Gesetz:

(Ä +„u)v=}.v+uv.

Definition 4.2: Wenn die Elemente einer Menge bezüglich der Addition und unter
Ausschluß des Nullelementes bezüglich der Multiplikation jeweils kommutative Gruppen
sind und das distributive Gesetz gilt, so bilden sie einen Zahlkörper.

Satz 4.3: Die Menge der reellen Zahlen bildet einen Zahlkörper, den Körper R der
reellen Zahlen.

D.4.2

S.4.3

Die Menge P der rationalen Zahlen und die Menge K der komplexen Zahlen sind 4

natürlich auch Zahlkörper.
V sei eine Menge, deren Elemente die Vektoren x, y, sind. Je zwei Vektoren

von V ist eindeutig ein dritter Vektor zugeordnet, den wir als Summe von x und y
bezeichnen wollen. Es gelten folgende Axiome:

(Dx+y=u
(2)(x+y)+z=x+(y+z)=x+y+z;
(3) x + o = x (o Nullvektor);
(4) x + (—x) = o (—x entgegengesetzter Vektor);

(5) x + y = y + x.

Die Menge V ist also eine additive kommutative Gruppe, ein Modul.
Die Vektoren des R2, R3 oder R", mit denen wir in den Kapiteln 1. bis 3. gerechnet

haben, genügen selbstverständlich alle diesen Eigenschaften. Die hier dargestellten
Eigenschaften gelten für beliebige Vektoren einer wohlbestimmten Menge von Vek-
toren.

Wir führen jetzt die reellen Zahlen von R als Multiplikatoren in V ein.

Definition 4.3: In einer additiven kommutativen Gruppe V sei eine Multiplikation
mit reellen Zahlen erklärt, die folgenden Gesetzen genügt:

LpeR;
1 - x = X;

l(,ux) = (Au) x (Assoziativgesetz);

Z(x+y) =}.x+ly
(2.+,u)x =}.x+,ux

myefi

: (Distributivgesetze)

nnnu nun!n wnnn V nivmn
gurus ucluu "tun r CHIOIL

über dem Körper der reellen

a ‘innen-An Donn‘ nrlnr
ovuv uuwanhu 1\£|Illll Uucl

Zahlen R.

Diese Gesetze sind uns sehr wohl bekannt; wir haben sie bei der Multiplikation
eines Vektors mit einem Skalar kennengelernt.
st

D.4.3
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Die Elemente eines jeden anderen Zahlkörpers können ebenfalls als Multiplikatoren
eingeführt werden; mit dem Körper C der komplexen Zahlen erhalten wir z. B. einen
komplexen Vektorraum oder einen linearen Vektorraum über dem Körper der kom-
plexen Zahlen. Zunächst erkennen wir, daß die Menge der Vektoren eines zweidimen-
sionalen (euklidischen) Raumes R’, also der Ebene, genau wie die des R3 lineare
Vektorräume im Sinne der Definition bilden. Aber z. B. bildet auch die Menge P
aller Polynome

P(x) = aux" + a,x"“ + + a,,_,x + a„‚

deren Grad g n ist und deren Koeffizienten aus dem Körper R stammen, wenn man
diese Polynome beliebig addiert und mit Zahlen aus R multipliziert, einen linearen
Vektorraum P über dem reellen Zahlkörper R. Auch die Menge M aller Matrizen
vom Format (m, n) bildet, wenn die Elemente aus dem Körper R stammen und die
Addition dieser Matrizen sowie deren Multiplikation mit einer Zahl aus R erklärt
sind, einen linearen Vektorraum.

Wie sich aus den Distributivgesetzen ergibt, gilt

Satz 4.4: In einem Vektorraum kann ein Produkt aus Vektor undZahl nur verschwinden,
wenn mindestens einer der Faktoren gleich null ist.

Wenn zwei Vektorräume V1 und V3 über dem Zahlkörper R gegeben sind, dann
läßt sich daraus ein neuer Raum V3 auf folgende Weise konstruieren:

Wenn x e V, ‚ y e V3 Vektoren sind, dann ist das Vektorpaar (x, y) ein Vektor aus
V3; für die Vektoren aus V3 gilt:

(X1: Y1) + (X2, Y2) = (X1 ‘i’ X2: YI + Yz)

und -

}*(X1 9 Yr) = (AX1 a Äyl);

V3 ist also ein linearer Vektorraum über R.

Definition 4.4: Wenn xe V, , ye V2, dann ist das Vektorpaar (x, y) Element eines
linearen Vektorraumes V3, der das kartesische Produkt von V, und V2 genannt wird.

T Nun betrachten wir die Vektoren des linearen Vektorraumes V über dem Zahl-
körper R.

Definition 4.5: Ein Ausdruck der Form

J
5

A,-x, = 13x1 + 12x2 + + }.,,x,,
i lin

wird eine Linearkombination der Vektoren x, (i = 1, 2, ...‚ p) mit x, e V und Ä, e R
nnnnnnf5CI5$GIilIl n

Von einer Linearkombination sprechen wir auch dann, wenn alle Koeffizienten
verschwinden.

Wir unterscheiden zwei verschiedene Arten solcher Linearkombmationen.
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Definition 4.6: Die Gesamtheit der Vektoren {x1} (i = 1, 2, ..., p) heißt linear unab-
hängig, wenn eine Linearkombination der p Vektoren xi nur dann gleich dem Null-
vektor ist, wenn alle Koejfizienten Ä, verschwinden.

Ist dagegen eine der möglichen Linearkombinationen gleich dem Nullvektor, ohne
daß alle Koeffizienten h, gleichzeitig gleich null sind, so nennt man die Gesamtheit der
Vektoren {fig} (i = 1, 2, ..., p) linear abhängig (vgl. Abschnitt 1.2.7.).

Zunächst erkennen wir, daß der Nullvektor selbst sich stets als Linearkombination
beliebiger Vektoren darstellen läßt, er ist in jedem Falle von diesen Vektoren linear
abhängig. Ist mindestens ein Vektor aus einer Gesamtheit von Vektoren als Linear-
kombination der übrigen darstellbar, so sind diese Vektoren linear abhängig; ganz
sicher ist ein System von Vektoren linear abhängig, wenn es den Nullvektor enthält.

Satz 4.5: Ist ein System von Vektoren linear unabhängig, so ist jedes Teilsystem dieses
Systems wieder linear unabhängig.

Definition 4.7: Zwei Systeme von Vektoren heißen äquivalent, wenn sich jeder Vektor
des einen Systems als Linearkombination von Vektoren des anderen Systems darstellen
läßt und umgekehrt.

Die so definierte Äquivalenz hat folgende Eigenschaften: Sie ist reflexiu, denn jedes System von
Vektoren ist zu sich selbst äquivalent; sie ist symmetrisch, denn wenn das System S1 dem System S2

äquivalent ist: S1 g S2, dann ist auch S2 g S1; sie ist transitiv, denn wenn S1 g S2 und S2 g S3,
so ist auch S1 g S2.

Das System S1 von endlich vielen Vektoren x, (i = 1, 2, ..., n) sei linear unabhängig;
wenn sich alle Vektoren x, als Linearkombinationen von Vektoren eines Systems S2
darstellen lassen, dann kann die Anzahl der Elemente von S2 nicht kleiner als n sein.

Satz 4.6: Es lassen sich n der Vektoren von S2 durch die n Vektoren x, (i = 1, 2, ..., n)
von S1 derart ersetzen, daß das aus S2 hervorgehende System S2’ dem ursprünglichen
System S1 äquivalent ist (sog. Austauschsatz).

Wenn in einem Vektorraum V z. B. maximal n Vektoren x, (i = 1, 2, ..., n) eine
Menge von linear unabhängigen Vektoren bilden, so kann hier kein linear unabhän-
giges Teilsystem mehr als n Vektoren enthalten; denn wenn m Vektoren y, (i = 1,
2, ..., m) ein linear unabhängiges Teilsystem bilden, dann brauchen wir nur auf die y,
und x,- den Austauschsatz anzuwenden, und es ergibt sich m g n.

Definition 4.8: Die größtmögliche Anzahl von linear unabhängigen Vektoren einer
Menge von Vektoren nennt man deren Rang (vgl. Abschnitt 3.2. und 3.3.).

Wie wir wissen, gibt es für n = 1, 2, 3 in den zugehörigen Vektorräumen jeweils
maximal l, 2 oder 3 linear unabhängige Vektoren; dies gilt entsprechend auch für
jeden anderen endlichen Wert von n.

Definition 4.9: Man bezeichnet die Maximalzahl der linear unabhängigen Vektoren
eines Vektorraumes als Dimension dieses Raumes.

D.4.6

S.4.5

D.4.7

8.4.6

D.4.8

D.4.9



S.4.7

g Vektorraumes H, der durch die Lösungsvektoren x’ = (x, , x2,

. I

4. Lineare Vektorräume und lineare Abbildungen118

Die Dimension eines Raumes muß nicht endlich sein; wir wollen uns jedoch auf
Räume endlicher Dimension beschränken. Zum Beispiel sind die Grundvektoren

"I" "-0- —0—

0 l 0

C1: O , C2: 0 ‚ ,e„='0

6 ö i

stets voneinander linear unabhängig. Jeder Vektor x des Vektorraumes Vder Dimen-
sion n (wir schreiben auch dim V = n) läßt sich in der Form

II

x = Film,

darstellen. Diese Vektoren e, bilden wie jedes beliebige andere maximale, linear unab-
hängige System von Vektoren eine Basis des Vektorraumes V.

Satz 4.7: Wenn die Vektoren e, (i = 1, 2, ..., n) eine Basis von Vsind, und es sind e‚

(j = 1, 2, ...,m, m < n) m voneinander linear unabhängige Vektoren von V, dann
können die m Vektoren e, durch Hinzunahme geeigneter Vektoren e, zu einer Basis
ergänzt werden.

Die Richtigkeit dieser Aussage überlegt man sich folgendermaßen: Die e, bilden
eine Basis von V; daher können die e, aus den e, zusammengesetzt werden. Wegen
der linearen Unabhängigkeit der e‚- sind m der Vektoren e, auf Grund des Austausch-
satzes durch die e, ersetzbar, so daß das entstehende System linear unabhängiger
Vektoren dem System der Vektoren e, äquivalent ist. Daher ist das so konstruierte
System von Vektoren linear unabhängig, und da die Anzahl seiner Vektoren auch
maximal ist, so stellt es eine Basis von V dar. I

Schließlich wollen wir noch die Verbindung zu den Überlegungen und Ergebnissen
der Abschnitte 3.1. bis 3.3. herstellen und die Behandlung der linearen Abbildungen
vorbereiten.

Das lineare Gleichungssystem

Ax = b (4.1)

(A hat das Format (m, n), x hat das Format (n, 1), b hat das Format (m, 1)) erzeugt
einen linearen Vektorraum Vder Dimension n (vgl. hierzu Abschnitt 3.1. bis 3.3. und
die Beispiele in Abschnitt 3.5. und am Beginn dieses Abschnittes). Wenn die Dimen-
sion dieses Vektorraumes mit der Dimension des durch das Gleichungssystem

Ax = o (4.2)

erzeugten Vektorraumes übereinstimmt, so ist das Gleichungssystem (4.1) lösbar
(vgl. Satz 3.1).

Das Gleichungssystem (4.2) besitzt in jedem Falle mindestens eine Lösung (vgl.
Satz 3.1 und Abschnitt 3.3.1). Die Dimension des Lösungsraumes, also des linearen

..., x„) erzeugt wird,
sei s; sie hängt ab von der Dimensiondes durch die Vektoren am = (an , an , ..., a,-,,),

i = l, 2, ..., m, erzeugten linearen Vektorraumes K; die Dimension von K ist

dimK = r.
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Wie wir im Abschnitt 3.5.1. an dem Beispiel im R3 und den allgemeinen Über-
legungen erkennen, ist also '

dim V= dimK+ dimH
oder

n = r + s.

H ist ein Unterraum von V, d. h., H enthält eine Teilmenge der Elemente von V, die
selbst die Eigenschaften eines linearen Vektorraumes besitzt, und damit gilt:

Satz 4.8: Die Dimension r des durch die Vektoren am = ((111 , a,2, ..., a„‚), i = 1, 2,
..., m, erzeugten linearen Vektorraumes K (des Koeffizientenraumes) addiert zur

Dimension s des durch die Lösungsvektoren x" = (x1 ‚ x2, ..., x,,) erzeugten linearen
Vektorraumes H (des Lösungsraumes) ist gleich der Dimension n des linearen Vektor-
raumes V, in dem das Gleichungssystem Ax = o existiert.

Die Lösungsmenge I von (4.1) hat nicht die Eigenschaften eines linearen Vektor-
raumes, sondern sie stellt eine lineare Mannigfaltigkeit dar; sie wird erzeugt durch
die Gesamtheit der Vektoren von H, also vom Lösungsraum von (4.2) und durch
eine spezielle Lösung x1, von (4.1) (vgl. Satz 3.2), d. h.

I=H+ x1, mit xoeK.

x0 e K ist Ausdruck der Tatsache, daß b als Linearkombination der Spaltenvektoren
a“", k = l, 2, ..., n, darstellbar sein muß, falls (4.1) lösbar ist; dies wird in Ab-
schnitt 4.2. gezeigt. _

Eine lineare Mannigfaltigkeit innerhalb eines linearen Vektorraumes Vwird erzeugt
durch die Elemente eines Unterraumes HC Vund einen Vektor x0 e V. Die Elemente
einer linearen Mannigfaltigkeit besitzen i. allg. nicht die Eigenschaften eines linearen
Vektorraumes; dennoch ist für eine lineare Mannigfaltigkeit auch der Begriff „Neben-
raum“ üblich. Nur wenn im besonderen x0 e H gilt, dann ist die durch H und x1,

erzeugte lineare Mannigfaltigkeit ein Unterraum.

4.2. Lineare Abbildungen und Systeme linearer Gleichungen

Es seien zwei lineare Vektorräume V1 und V2 fiber demselben Koeffizientenkörper K
‘gegeben (unter K soll ein beliebiger kommutativer Zahlkörper verstanden werden).
Jedem Vektor x e V, sei ein eindeutig bestimmter Vektor ye V2, der Bildvektor
von x, zugeordnet, der mit

y = 0x _

bezeichnet werde. Es sollen für alle x1 ‚ x2 e V1 und alle z e K die Linearitätsbedin-
gungen gelten:

I. ¢(X1 ‘i’ X2) = 0X; + 45x2;

II. 0(zx1) = x(0x1)‚

d. h., die Zuordnung 0 hat die Eigenschaften einer linearen Funktion.

Definition 4.10: Wenn x e V1, y e V2 und y = 0x und 0 den Linearitätsbedingungen I
und II genügt, dann heißt 0 eine lineare Abbildung des (linearen) Vektorraumes V1

in den (linearen) Vektorraum V2. (0 wird auch lineare Transformation von V1 in V2

genannt.) (Vgl. Def. 8.1, 8.2 und 9.l im Band l dieser Reihe!)

8.4.8

D.4.l0
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d) ist eine Linearform.
Jede lineare Abbildung von V1 in sich selbst wird Endomorphismus genannt. Ist ‘I’

ebenfalls eine lineare Abbildung von V1 in V2, dann gilt

(@+‘I’)x=<15x+Y’x.

Solche Abbildungen werden durch Matrizen dargestellt; wenn z. B.
y1,,,,1, = A1,,1_,,,x1,,,1, gilt, dann wird durch A die lineare Abbildung repräsentiert. In
2.4.4.2. ist die orthogonale Transformation behandelt, die ebenfalls eine lineare Ab-
bildung darstellt.

Satz 4.9: Die Menge aller linearen Abbildungen F( V1’, V2) von V1 in V2 bildet einen
linearen Vektorraum über K; dieser lineare Vektorraum wird mit V1* bezeichnet.

Wenn x e V1 und x* e V1“, dann können wir jedem Vektorpaar (x, x*) ein Ele-
ment aus K, also einen Skalar zuordnen, den wir mit (x, x*) bezeichnen. Für diesen
Skalar sollen gelten:

la) (ZX1 + ‚ux2‚ x*> = Ä(x1‚ x*> + u(x2, x*);
lb) (X. 1X?‘ + MK?) = KX, X?) + MK. XI);
2a) wenn (x1 ‚ x*> = O für einen Vektor x1 e V1 und für alle Vektoren x* e V1" ,

dann ist xf = o;

2b) wenn (x, x1") = 0 für alle Vektoren xe V1 und für einen Vektor x3‘ e V1",
dann ist x2‘ = o; .

hierbei sind Ä, ‚u Elemente aus K, x, x1 , x2 Vektoren aus V1, x*, xf, x2‘ Vektoren
aus V3‘.

Definition 4.1l: Die beiden Räume V1 und V1" heißen zueinander dual. Das Element
(X, x*) e K ist das skalare Produkt der Vektoren x und x*.

Wenn nun (Z5 den Raum V1 in V2 und ‘Pwiederum V2 in V3 abbilden, dann wird
durch

(w) x = wenn

eine lineare Abbildung von V1 in V3 erklärt, und zwar durch das „Produkt“ WG’)

Dafür gilt
(Y’Q5)x = ?I’(n¢) = (xT)¢;

ferner ist diese Produktbildung assoziativ. (Für die praktische Rechnung ist also eine
Multiplikation von Matrizen auszuführen.)

Wird in II. 7. = 0 gesetzt, so ergibt sich (Do = o; der Null)/ektor von V1 wird dem-
nach in den Nullvektor von V2 überführt. Das System linear abhängiger Vektoren

i z,,x, = o aus V1 geht vermittels d5 über in i d5(x_„x1‚) = o, also wiederum in ein
v = 1 v= l
System linear abhängiger Vektoren in V2. Linear unabhängige Vektoren aus V1

brauchen jedoch nicht in linear unabhängige Vektoren überzugehen; z. B. gibt es

eine Abbildung <15 = O, die Sogenannte Nullabbildung, die jeden Vektor in den (linear
abhängigen) Nullvektor überführt.
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Definition 4.12: Man spricht von regulären linearen Abbildungen, wenn verschiedenen
Vektoren von V1 auch verschiedene Bildvektoren von V2 entsprechen.

Der Nullvektor von V1 ist dann der einzige Vektor von V1 ‚ der in den Nullvektor
von V2 abgebildet wird; die Umkehrung ist ebenfalls richtig.

Satz 4.10: Eine reguläre lineare Abbildungführt ein System linear unabhängiger Vek-
raren von V1 in ein System linear unabhängiger Vektoren von V2 über.

Beweis: Wenn x1, x2, ..

Bildvektoren gilt
.‚.x‚ voneinander linear unabhängig sind und für die

p

Em * = 0*,
v=l

d. h. also, der Vektor x = 2p) x,,x, geht in den Nullvektor über, dann müßte wegen
v=l p

der Regularität der Abbildung Z z,x, = o, sein, woraus wegen der oben voraus-
v=I

gesetzten linearen Unabhängigkeit’ der x, (v = 1, ...,p) folgen würde: ac, = z2
.. = x = 0. I

Es kami also darüber hinaus gefolgert werden, daß im Falle einer regulären
linearen Abbildung von V1 in V2 die Dimension von V2 mindestens gleich der von V1

sein muß.

Definition 4.13: Wenn jeder Vektor y e V2 Bildvektor eines Vektors von V1 ist, dann
wird V1 auf V2 abgebildet; ist diese Abbildung noch regulär, dann wird sie auch Iso-
morphismus genannt.

Ist Q5 eine reguläre lineare Abbildung von V1 auf V2 , also ein Isomorphismus, dann
ist zu jedem Bildvektor y e V2 ein Ausgangsvektor x e V1 bestimmbar, so daß

y=Q5x

gilt. Daher kann jedem Vektor e V2 auf diese Weise ein Vektor x e V1 zugeordnet
werden; man erhält eine Abbildung von V2 auf V1 , die wiederum linear ist und die
wir als inverse lineare Abbildung oder als inversen Isomorphismus <15“ bezeichnen.

Definition 4.14: Wenn (D ein Isomorphismus von V1 auf V2 ist, dann ist G“ ein Iso-
morphismus von V2 auf V1 und heißt inverser Isomorphismus.

Die beiden linearen Vektorräume V1 und V2 heißen dann zueinander isomorph:
V1 (T) V2.

Der Begriff der regulären Matrix erfährt hier eine beiieutungsvolle neue Inter-
pretation. -

Satz 4.11: Isomorphe Räume müssen von gleicher Dimension sein.

Die Richtigkeit dieser Aussage erkennt man durch Betrachtung der Transfor-
mation der linear unabhängigen Vektoren von V, durch den Isomorphismus Ö und
derjenigen von V2 durch den Isomorphismus <1)”. Die Umkehrung ist ebenfalls
richtig, d. h., es gilt

D.4.l2
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Satz 4.12: Lineare Räume gleicher Dimension sind zueinander isomorph.

Beweis: Wenn {x,}, {y,,}, v = 1, 2, ..., n, _ jeweils Basen in V1 bzw. V2 sind, dann
gilt für jeden Vektor

II

xe V1:x =2.5„x„.
v=l

Durch 0x = i E‚y‚ ist eine lineare Abbildung von V1 auf V2 bestimmt, die regulär
v—l

i st; denn aus 0x = o folgt E, = 0 (v = 1. ..., n) und damit x = o. Also stellt diese
lineare Abbildung einen Isomorphismus dar. I

Wenn nun 0 eine beliebige lineare’Abbildung von V1 in V2 ist, dann wollen wir
jetzt alle Vektoren x-e V1 betrachten, die in den Nullvektor von V2 übergehen.
Gehen z. B. x1 und x2 in den Nullvektor über, dann gehen auch alle Linearkombi-
nationen x1x1 + x2x2 in den Nullvektor über. Somit gilt

Satz 4.13: Die Gesamt/zeit aller Vektoren x, x e V1 ‚ mit 0x = o, o e V2 , bildet einen _

Unterraum U1 von V1 , den Kern oder den Nullraum der linearen Abbildung 0.

Wenn x1, x11 e V1 ‚ x1 e U1, dann gilt 0x1 = 0(x1 + x1), weil 0x1 = o ist. Wird
also zu einem Vektor aus V1 ein Vektor des Kerns addiert, dann ist der Bildvektor
der Summe gleich dem Bildvektor des ursprünglichen Vektors.

Wenn x1 =l= x2, x1 e V1 , x2 e V1 und wenn 0x1 = 0x2 gilt, dann unterscheiden
sich x1 und x2 um einen Vektor des Kerns, d. h. x2" = x1 + x11.

Betrachten wir die Bildvektoren, so sind z. B. mit 0x1 und 0x2 auchalle Linear-
kombinationen 0(x1x1 + x2x2) Bildvektoren, und die Gesamtheit dieser Bildvektoren
stellt einen Unterraum von V2 dar, den sog. Bildraum 0V1 C V2. Mit [0 V1] soll die
Dimension des Bildraumes bezeichnet werden, und zwar sei

[Q V1] = r .

Definition 4.15: Die Dimension des Bildraumes heißt Rang der linearen Abbildung.

Wenn [V1] = n, [V2] = m, dann gilt
r _S_ m und r g n.

Wegen 0V1 C V2 ist die erste Relation einzusehen; das Gleichheitszeichen gilt für
0V1 V2, d. h.‚ wenn 0 eine Abbildung von V1 auf V2 ist. Wegen [V1] = n stellt
{x‚} (v = 1, 2, ...‚ n) eine Basis von V1 dar; der Bildraum wird dann von den Vektoren
0x, (v = 1, 2, ...‚ n) erzeugt, so daß seine Dimension höchstens gleich n sein kann.

Dann kann also geschrieben werden r = n — k, wobei k die Dimension des Faktor-
raumes V1 /U1 von V1 nach U1 ist, der folgendermaßen konstruiert wird:

Wir fassen alle Vektoren zu einer Klasse zusammen, die denselben Bildvektor haben;
die Vektoren jeder Klasse sind bezüglich U1 äquivalent (die Abbildung der Differenz
zweier Vektoren einer Klasse liefert den Nullvektor). Jeder Klasse wird das Bild eines
beliebigen, als ihren Repräsentanten ausgewählten Vektors — das also Vektor von V2
ist — zugeordnet. Damit erhält man eine eindeutige Abbildung des Faktorraumes
V1 / U1 in V2 , die linear und regulär ist. Der Bildraum 0V1 und der Faktorraum V1] U1
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sind zueinander isomorph. Der Rang der Abbildung (P ist genau gleich n, wenn k = 0
ist, d. h., wenn d5 regulär ist. Hat V2 im besonderen dieselbe Dimension wie V1 ‚ d. h.
[V1] = [V2] = n, so handelt es sich um eine Abbildung von V1 auf VzjAlso gilt

Satz 4.14: Zwei lineare Vektorräume derselben Dimension werden genau dann durch
eine lineare Abbildung aufeinander abgebildet, wenn diese Abbildung regulär ist.
(Eine derartige Abbildung stellt eine Aquivalenztransformation dar.)

Wenn nun ein System von m linearen Gleichungen mit n Unbekannten gelöst
werden soll, d. h.

aux, + a22x2 +
a21x1 + a22x2 +

... + a1„x„ = bl,
‚n + a2,,x,, ='—' b1,

a‚„1x1 + a,,,2x2 + + a,,,,,x,, b‚„,

dann fassen wir zunächst einmal die Koeffizienten spaltenweise zu Vektoren zu-
sammen. Das Gleichungssystem stellt sich folgendermaßen dar:

a‘“x1 + a‘2’x2 + + a‘"’x,, = b. (4.3)

Daraus ergibt sich, daß das obige Gleichungssystem oflensichtlich nur Lösungen
besitzt, wenn sich der Vektor b als Linearkombination der Vektoren
‚ au), au)’ m’ am

darstellen läßt. Das ist genau dann der Fall, wenn der Rang der Vektorsysteme
au)’ am, m’ am au), am’ ___‚ am), b

übereinstimmt. (Diese Ranggleichheit entspricht der Ranggleichheit. von Koeffi-
zientenmatrix [a1J] und erweiterter Koeffizientenmatrix [a1], b1].) Unter Benutzung
des Raumbegriffcs läßt sich diese Aussage folgendermaßen formulieren:

und

Satz 4.15: Das Gleichungssystem (4.3) hat nur dann eine Lösung, wenn der Vektor b
in dem von den Vektoren am, am, ...‚ a"" erzeugten Unterraum liegt.

Man vergleiche hierzu die Beispiele aus 3.1. bis 3.3.
Wir wollen noch einen Schritt weitergehen und den Zusammenhang zwischen

linearen Gleichungssystemen und linearen Abbildungen von Vektorräumen her-
stellen. Wir gehen von zwei linearen Vektorräumen V1 und V2 über demselben Koef-
fizientenkörper K aus; die Dimension von V1 sei m, die von V2 sei n; Q5 sei eine lineare
Abbildung von V1 in V2.

Durch {x1} (i: 1, 2, ..., m) und {y‚} (j = 1, 2, ...‚ n) seien je eine Basis aus V1

und eine aus V2 gegeben. Dann ist jeder Bildvektor d5x,, eine Linearkombination der
Vektoren yj:

I!

d5x1=__5_:la1‚-y‚-; i: 1,2, ...‚ ÜUEK,
J2

ausführlich geschrieben:

9x1 = a1ly1‘+ üizyz + + alnyrn

G57‘: = azlyl ‘l’ azzyz +.--- + aZnyna

Öxm = amlyl + am2y2 --- + amnyn

S.4.14

S.4.l5
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p Ein beliebiger Vektor xie V, ist gegeben durch ’

S.4.l6

x =i:E.-xi;

sein Bild ist dann

<I>x = £1;-‘id5x, i; j: a,.,§,.y,.

Das heißt:

Satz 4.16: Die Abbildung Q5 ist durch die Koeffizientenmatrix [a,-J] vollständig bestimmt.

Sind {m} (j = 1,2, ...‚n) die Komponenten des Bildvektors in der Basis y,
(j = 1, 2, ..., n), dann gilt für die Komponenten V

N1

7])" =__2l 0115i = l: 2a -"3 n)

oder

“i151 ‘i’ 412152 + ‘i’ amlgma

“i251 ‘i’ 472252 ‘i’ ‘i’ am2Em9

nu = alngl + 021152 + --- + amném;

. . . . . . . . . . . . . . . . .

die Koeffizientenmatrix [aji] ist zur ursprünglichen transponiert.
II

Ist nun b = Z ßjy, ein Vektorin V2 , so ist dieser ein Bildvektor, wenn es Lösungen E,

(i = 1, 2, ...,JI;a) für das Gleichungssystem
m

auf: = I31
.=

gibt; dem letzten Gleichungssystem ist die Vektorgleichung
(Dx = b

äquivalent.
Die Vektoren des Kerns U, lassen sich (b = o) daher wegen 915x = o durch das

homogene Gleichungssystem
m

210m5: = 0
‚=

charakterisieren. Oben haben wir gesehen, daß eine lineare Abbildung eines m-dimen-
sionalen Raumes in einen n-dimensionalen Raum für m > n. nicht regulär sein kann;
das heißt für unsere Überlegungen, daß ein homogenes lineares Gleichungssystem
von n Gleichungen mit m Unbekannten für n < m stets nichttriviale Lösungen hat.

Wir wollen noch im besonderen den Fall m = n betrachten. Ist die Abbildung
regulär, dann ist

Ö V1 z V2

oder

-Zlauél-='-771'; j=1,2,...,n.
p.-
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Wenn das zugehörige homogene System

0115: = O
l = 1

nur die triviale Lösung hat, also

d“ [au] ‘F 0

ist, dann besteht der Kern U, der Abbildung nur aus dem Nullvektor. In diesem
Falle hat das Gleichungssystem genau eine Lösung.

Zu den Betrachtungen über lineare Gleichungssysteme sei noch folgender Hinweis
gestattet: '

Die Koeffizienten und absoluten Glieder eines Systems von linearen Gleichungen
gehören einem Körper K an; wenn es in diesem Körper K keine Lösungen des Glei-
chungssystems gibt, so gibt es auch in einem anderen, umfassenderen Körper keine
Lösungen. (Auch die sich aus der Betrachtung von zwei linearen Vektorräumen V1

und V2 über einem kommutativen Körper K und einer linearen Abbildung d5 und V,
und V2 ergebenden diesbezüglichen Überlegungen lassen sich entsprechend formu-
lieren.)

Erweiterungen von K ändern weder den Rang der Koeffizientenmatrix noch den
Rang der erweiterten Koeffizientenmatrix. (Im Gegensatz hierzu denke man etwa
an die Lösungen einer quadratischen Gleichung

ax2+bx+c=0,
wenn a, b, c dem Körper der reellen Zahlen angehören, aber die Diskriminante

A = b2 —— 4ac < 0 '

ist.)
Aus dem Gesamtgebiet der linearen Algebra sind nur einige einführende Betrach-

tungen dargestellt worden, hauptsächlich’ unter dem Gesichtspunkt, die künftigen
Ingenieure, Ökonomen, Naturwissenschaftler und Landwirte mit diesen vertraut zu

machen und um Voraussetzungen für Anwendungen der linearen Algebra und für
eine Einführung in die lineare Optimierung (Bd. 14) und die Tensoralgebra (Bd. I1)
zu schaffen. Im Literaturverzeichnis finden sich Hinweise auf einige weiterführende
Werke.

4.3. Aufgaben

4.1: Man untersuche, ob die Vektorsysteme „‚

a) a? —-'— (—l, 1), a} = (1,1);

b) a? = (-%‚ 1‚%)‚ a} =(1.%,—%), a} = (ä 0: ä“);

c) a‘; = (1, 1,0, 0), a} = (0, -1, 1,0), a} = (0,0,1, —l), a} = (0,0, 1, 1);

d) a1" = (1,0, 0, ...‚ 0), a}: (0,1, O, ...‚ 0), ...‚ a} = (O, 0, ...‚0, 1)

jeweils Basen eines zwei—‚ drei-, vier- und n-dimensionalen Vektorraumes darstellen.

4.2: Man prüfe, ob der Nullvektor o für sich einen linearen Vektorraum darstellt. g.

4.3: Es ist zu zeigen:

a) Wenn a, , a; e Vlinear unabhängig sind, sind auch a, + a; und a, — a; linear unabhängig. ‚g,

b) Wenn a, , a2 ‚ ...‚ a, e V linear unabhängig sind, sind auch r beliebige, voneinander verschiedene
Linearkombinationen dieser Vektoren linear unabhängig.
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4.4: Die Vektoren a: = (1, -1, 1, -l), a} = (1, —l, -1, 1) und a} = (-1,-1,1, -1) sind durch
einen Vektor a. zur Basis eines vierdimensionalen Vektorraumes zu ergänzen.

4.5: Es ist nachzuweisen, daß a} = (—2, 3, l), a} = (4, 1, 0), a} = (l, -1, 2) die Basis eines drei-
dimensionalen Vektorraumes bilden, und es sind die Koordinaten von a} = (5, 7, 4) bezüglich dieser
Basis zu berechnen. '

I

4.6: Welches der Vektorsysteme

a? = (1. 4, 3. 0), a} = (2.0,1.1).a'§ = (l‚ 0‚0‚ -1)‚ a} =_ (0‚2‚ 3.1)bZW-b'f = (2.1.0,l),
b} = (-1, 3, 1, 0), b} = (0, 1, 1, 1), b} = (4, l0, 3, 4) bildet eine Basis eines vierdimensionalen
Vektorraumes? Der Vektor a" = (3, 1, 1, 2) ist bezüglich der ermittelten Basen zu zerlegen.

4.7: Man weise nach, daß die Abbildungen

oo...o ‘1oo...o
oo...o o1o...o

(Do=.. . und<D,= .. .

oo...o 'ooo...1
linear sind.



5. Anwendungen der linearen Algebra

5.1. Bilineare und quadratische Formen

Die Menge der reellen Zahlen kann als linearer Vektorraum R aufgefaßt werden;
denn die Axiome für einen linearen Vektorraum (vgl. 4.1.) werden von den reellen
Zahlen erfüllt. Zum Beispiel ist mit zwei reellen Zahlen g, und 92 auch deren Linear-
kombination oc,g, + egg; in R enthalten. Dann kann ein beliebiger Vektorraum V
vermittels der linearen Abbildung (D auf R abgebildet werden:

¢>:V——>R

Eine solche Abbildung ist eine Linearform und genügt den Eigenschaften I und II
von 4.2. Man bezeichnet Q5 auch als Linearform auf V. Die Gesamtheit F( V, R) aller
dieser linearen Abbildungen von V auf R bildet einen linearen Vektorraum über R,
nämlich den zu V dualen linearen Vektorraum V‘? (vgl. 4.2.).

Wenn V, und V2 zwei lineare Vektorräume über R sind, dann versteht man unter
dem Produkt V, x V2 die Menge aller geordneten Paare (x„ x2) mit x, e V, und
x2 e V2.

Eine Abbildung

Q5: V, x V2 —+ R

heißt eine Bilinearfarm auf demRaumpaar (V, , V2), wenn sie für jedes feste x, e V,
eine Linearform auf V2 und für jedes feste x2 e V2 eine Linearform auf V, ist. Wenn
x„ x, e V„ x2, x; E V2 und a e R, dann gelten

¢(X1 + Xi: X2) = q)(X1s X2) 91509’; X2).

¢(x1» X2 + xi) = ¢(x1s X2) ‘i’ ¢(x1 a Xi):
001x12 x2) = a<1’(X1 a X2),
(13(x„ ax2) w = a<15(x„ x2). i

Führen wir in V, und V2 je eine Basis ein, wobei E, bzw. 17„ die zugehörigen Vektor-
komponenten sind, dann ist mit beliebigen Koeffizienten an, e R

¢(X1 ‚ X2) = ä aufi771:

eine Bilinearform auf (V, , V2). Und jede Bilinearfarm läßt sich in dieser Iform dar-
stellen.

Wenn V, = V2 = Vist, dann heißt die Abbildung

d5:Vx V—>R

eine Bilinearform auf V.
Sind nun x, y e V, dann heißt Ö eine symmetrische Bilinearfarm auf V, wenn

<P(x. y) = ¢(y, X)

ist. Wenn {e„ e2‚ ..., e„} eine Basis von Vist, also die e„ i = l, 2, ..., n, voneinander
linear unabhängig sind, und E, und 17„ sind die Komponenten von x bzw. y bezüglich
dieser Basis, dann ist _

y n n

¢(x: Y) = 2 2 anc5i’7k
i=1 k=1

mit am = ¢(e,, e„); z’, k =1, 2, ..., n.
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Mit [a„‚]„‚_„‚ = A, ‘E,’ =-x und n.’ = y kann die Bilinearform auf V folgen-

s; n".
dermaßen dargestellt werden:

d5(x, y) = xTAy.

Diese Bilinearform ist genau dann symmetrisch, wenn die zugehörige Matrix A
symmetrisch ist, d. h.‚ wenn gilt A = AT. Zum Beispiel ist das Skalarprodukt

2

<1’(x, y) = E‘ 5m:

eine symmetrische Bilinearform auf R (V = R; Basis e, = (1, O), e, = (O, 1)).
Wenn ¢(x, y) eine symmetrische Bilinearform auf V ist, dann heißt

Q(x) = ¢(X, X)

eine quadratische Form auf V. Ausführlich geschrieben:

Q(x) = aux? + 2012x1352 + 2013x1353 + + 201nx1xn
+ azzxä ‘i’ 2023x2753 + "' + 2a2,,x2x,,

‘l’ 033x? + ‘ ' ' + 2a3nx3xn

+ a,...;cfi

oder in Matrixdarstellung

Q(x) = TAX.

Dabei ist AT = A, und die [Matrix A heißt Matrix der quadratischen Form Q. Wir
wollen grundsätzlich annehmen, daß V = R, also x reell ist; da der Grundkörper
über dem der lineare Vektorraum errichtet wird, der reelle Zahlkörper R ist, ist Q(x)
eine in den x, homogene reellwertige Funktion 2. Grades der n Veränderlichen x‚-.

Für physikalische und technische Anwendungen (z. B. für die Beschreibung der
Energie in mechanischen Systemen) sind solche quadratischen Formen von Bedeu-
tung, die für beliebige reelle Werte der x, nur positive Werte annehmen oder höchstens
gleich null werden, d. h.

wenn Q(x) g 0 für x, e R,
Q(x) > 0 für beliebige x =l= o und
Q(x) = 0 nur für x = o,

dann heißt Q(x) positiv definit; wird der Wert 0 auch für x 4: o angenommen und ist
sonst Q(x) > 0, dann heißt Q(x) positiv semidefinit. Die zur Form Q(x) gehörige
Matrix A heißt dann ebenfalls positiv definite oder positiv semidefinite Matrix. Eine
positiv definite Matrix ist stets regulär. (Wenn also die Matrix singulär ist, dann kann
die zugehörige Form höchstens positiv semidefinit sein.)

Wenn eine symmetrische Matrix A gegeben ist, dann ist die zugehörige quadratische
Form Q(x) dann und nur dann positiv definit, wenn die Determinanten A], i = l,
2, ..., n, alle größer als null (d. h. streng positiv) sind; dabei ist

A, = am A, = det ["11 "”] A, = detA.
021 022
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Eine quadratische Form Q(x) kann durch Ähnlichkeitstransformationen (vgl. 5.2.4.,
5.2.5.1. und 5.2.8.1.) oder reelle lineare Transformationen (oder durch geeignete
Basiswechsel) so umgeformt werden, daß die Matrix A eine Diagonalmatrix wird,
die quadratische Form also nur noch quadratische Glieder aufweist (sog. Reduktion
quadratischer Formen). Besonders bemerkenswert ist die Eigenschaft, daß in der
reduzierten Darstellung die Anzahl der positiven Glieder und der negativen Glieder
konstant ist, diese Anzahlen also invariant gegenüber den durchgeführten Trans-
formationen sind (Trägheitsgesetz der quadratischen Formen).

5.2. Eigenwertprobleme

5.2.1. Aufgabenstellung

Wir betrachten eine quadratische Matrix A mit n Zeilen und n Spalten, deren
Elemente reelle oder komplexe Zahlen sind. Durch die Multiplikation der Matrix
mit einem n-dimensionalen, i. allg. komplexwertigen Vektor xentsteht ein neuer n-di-‘
mensionaler Vektor y, wobei wir unterscheiden müssen, ob die Multiplikation von

rechts oder von links durchgeführt wird. Bei Multiplikation von rechts schreiben wir
y = Ax

und bei Multiplikation von links

y’ = xTA.

Bei solchen linearen Transformationen

X ‘* Y

tritt bei vielen praktischen und theoretischen Aufgabenstellungen die Frage auf, ob
es Vektoren gibt, die bei der Transformation unverändert bleiben oder bei der
Transformation in ein Vielfaches ihrer selbst übergehen. Die letztgenannte allgemeinere
Fragestellung heißt Eigenwertaufgabe.

Die Eigenwertaufgabe wird zunächst für den Fall der rechtsseitigen Multiplikation
formuliert: Gesucht sind alle (oder nur einige) vom Nullvektor verschiedenen (kom-
plexwertigen) Vektoren r und zugehörigen (komplexen) Zahlen 7., so daß

Ar = Zr (5.1)

bzw. in ausführlicher Schreibweise

a„r‚ + nur; + + a„‚r„ = Zr,

aur, + azzr, + + a2,.r,, = /Ir; (5.1’)

a,,1r, + a,,2r2 + + a‚„‚r„ = in,

gilt. Solche Vektoren r werden rechtsseitige Eigenvektoren und die zugehörigen
Zahlen Ä Eigenwerte, charakteristische Zahlen oder charakteristische Wurzeln der
Matrix A genannt. Man überlegt sich leicht, daß bei dieser Definition der Null-
vektor o als Eigenvektor ausgeschlossen werden mafia Ohne diese Einseluänkung wäre
r = o Eigenvektor jeder Matrix und damit alle reellen Zahlen zugehörige Eigenwerte.

Die Formulierung der Eigenwertaufgabe für die linksseitige Multiplikation lautet:
Gesucht sind alle (oder nur einige) vom Nullvektor verschiedenen Vektoren l, für die

FA = ‘MIT (5.2)
9 Mameuflel, Lineare
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gilt. Vektoren l, die (5.2) erfüllen, heißen Iinksseitige Eigenvektoren und die zuge-
hörigen Zahlen ‚u Eigenwerte.

Diese Aufgabenstellungen kommen häufig in modifizierter Form vor; z. B. ist oft
nur nach den Eigenwerten und nicht nach den Eigenvektoren gefragt (daher auch der
Name „Eigenwertaufgabe“).

Beispiel 5.1: Für

0 -1 0 » 1

A: -1 -—l l ‚ |-= 2 ‚ ,1=.._2

0 1 0 —l

gilt

-2 1

Ar= -4‘ =--2 2 =—2r.
2 -1

Der Vektor r ist also ein Eigenvektor von A und l der zugehörige Eigenwert. Ersetzen wir in diesem
Beispiel den Vektor r durch den Vektor s = 2r, so ergibt sich, daß auch s ein Eigenvektormit dem
Eigenwert). = -2 ist:

——4 2

As: -8 =..2 4 =_2s_

4 —-2

Diese Eigenschaft gilt offenbar nicht nur für den Faktor 2 und nicht nur für dieses
Beispiel, sondern für alle reellen oder komplexen Faktoren c ä: O und für beliebige
Matrizen. Die Eigenvektoren sind also nur bis aufeinen (von null verschiedenen) Faktor
eindeutig bestimmt.

Eine weitere Eigenschaft der Eigenvektoren läßt sich ebenfalls unmittelbar er-
kennen.

Durch Transportieren vonr(5.2) erhält man

(lTA)T = ‚ul

und daraus

AT] = ‚ul.

Die Iinksseitigen Eigenvektoren einer Matrix A stimmen also mit den rechtsseitigen
Eigenvektoren ihrer transportierten Matrix AT überein, und auch die zugehörigen Eigen-
werte sind die gleichen. Aus diesem Grund genügt es, im weiteren bis auf wenige
Ausnahmen nur die Eigenwertaufgabe für rechtsseitige Eigenvektoren zu betrachten.
Es wird kurz von Eigenvektoren gesprochen, wenn rechtsseitige Eigenvektoren ge-
meint sind und kein Anlaß zu Verwechslungen vorliegt.

(A —— }.E)r = o (5.3)
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geschrieben werden. Dieses lineare homogene Gleichungssystem für r hat genau dann
nichttriviale Lösungen r =1= o, wenn die Determinante seiner Koeffizientenmatrix
gleich null ist, d. h., wenn

det (A — 1E) = 0, (5.4)

bzw. ausführlich

an - A an als . a„‚
an an - Ä an an = O (54,)
‘.1’;. . . . . ..‘;".2. . . . .

gilt. Diese Gleichung heißt charakteristische Gleichung der Matrix A. Die in (5.4)
auftretende Determinante ergibt bei ihrer Auflösung ein Polynom 120.) n-ten Grades
bezüglich Ä,

m) = det (A — 2E), (5.5)

das Sogenannte charakteristische Polynom von A. Die Eigenwertefür die rechtsseitigen i

Eigenvektoren sind also die Nullstellen des charakteristischen Polynoms p(Ä).
Über die zu den linksseitigen Eigenvektoren gehörigen Eigenwerte ‚u wissen wir

bereits, daß sie mit den zu den rechtsseitigen Eigenvektoren von AT gehörigen Eigen-
werten ‚u übereinstimmen. Für diese Eigenwerte ‚u von AT gilt aber entsprechend (5.5)
die charakteristische Gleichung

det (AT -— pE) = 0

woraus sich nach der Umformung

det (AT — ‚uE) = det (A —— ‚uE)T = det (A — ‚uE)

(vgl. 2.4.2.) für die linksseitigen Eigenwerte ‚u die gleiche charakteristische Gleichung

det (A —— ‚uE) = 0, i

wie für die zu den rechtsseitigen Eigenvektoren gehörigen Eigenwerte i. ergibt. Wir
fassen die Ergebnisse zusammen:

Satz 5.1: Die zu den rechtsseitigen Eigenvektoren gehörigen Eigenwerte /1 stimmen
mit den zu den Iinksseitigen Eigenvektoren gehörigen Eigenwerten ‚u überein.

Satz 5.2: Die Eigenwerte von A sind die Nullstellen des charakteristischen Polynoms
p(Ä) = det (A —- 2E).

Mit den Rechenregeln für Determinanten läßt sich die charakteristische Gleichung
von A noch genauer beschreiben. Man erhält

p(}.) = (—1)"Ä" + (—1)"" Ä""(a„ + an + + a„„) + + detA

und damit die charakteristische Gleichung

l" —- 1"“ sp (A) + + (—l)" det (A) = 0, (5.6)
9‘

S.5. 1

S.5.2
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wobei sp (A), gelesen „Spur von A“, als Abkürzung für die Summe der Hauptdiagonal-
elemente von A verwendet wird. Nach dem Wurzelsatz von Vieta‘) gilt folglich für die
Eigenwerte ‚i,

ä A, = Sp (A), fiz. = detA. (5.7)
i=l i=l

3 4
Beispiel 5.2: Gesucht werden die Eigenwerte der Matrix A = [ 1 3 J .

Das charakteristische Polynom von A ist

3 —- Ä.

l 3 — Ä

p(Ä) =Äz — 63. + 5.

Es hat die Nullstellen Ä, = 1 und A2 = 5.

=(3-Ä)(3-Ä)-4‚

Beispiel 5.3: Die Eigenwerte der Matrix

0 -—1 0

A: -1 -—1 1

0 1 0

sind zu berechnen. Zunächst bestimmen wir das charakteristische Polynom 120.) = det (A -— IE),
indem wir die Determinante nach ihrer ersten Zeile entwickeln (s. Entwicklungssatz für Determinan-
ten, 2.4.3.)

-1 —1 o
-l——Ä l -l I

-1—1—‚1 1=_1 Ä —(—1) Ä

o 1 —z 1 ’ ° "

—fi.((1+l)}.—1)-(—1)}.
= -13 — 2.2 + 22. =p(Ä).

Als Nullstellen von p(Ä) erhält man die drei Eigenwerte von A

2.,: —2‚ 12:0, 13:1.

Beispiel 5.4: Wir berechnen die Eigenwerte der Matrix
0 -1 1

A = -7 0 5

—5 ——2 5

Das charakteristische Polynom ergibt sich zu

—1 —l 1

-7 —2‚ 5 .= -13 + 5,12 — 8}. + 4 =p()1).

-5 -2 5 — i.

1) Wenn xx, x2, ...‚ x„ Nullstellen des Polynoms f(x) = x" + a1x"“ + + a,,_,x + 11,, sind,

a, = —(x, + x2 + + x,.),

a2 = +(x1xz + X1953 + + xn-lxn):

(— l)" xlx; x„.‚a II
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Hier hat\p().) die Nullstellen v

3-1-=1, l2=2, A3=2.

Daß dabei 1 = 2 doppelt zu zählen ist, folgt aus der Zerlegung

P(1)= -(1 -1)(1 - 2)(Ä - 2)-

Beispiel 5.5: Wir betrachten die Matrix

A=[-i Z]-
Das charakteristische Polynom ist

5 — Ä 4

-4 5 — Z.
U=ÄZ—IOÄ+4I‚

und seine Nullstellen sind

}.‚=5+4i‚ }.;=5—4i.

Die Eigenwerte reellwertiger Matrizen können auch komplex sein. Da bei reell-
wertigen Matrizen das charakteristische Polynom stets reelle Koeffizienten hat, treten
bei reellwertigen Matrizen komplexe Eigenwerte immer paarweise, d. h. konjugiert
komplex auf.

5.2.3.

In diesem Abschnitt werden spezielle Eigenschaften der Eigenvektoren, insbeson-
dere Beziehungen zwischen linksseitigen und rechtsseitigen Eigenvektoren und die
Berechnung der Eigenvektoren behandelt.

Eigenvektoren

Satz 5.3: Die zu verschiedenen Eigenwerten gehörigen rechtsseitigen und linksseitigen
Eigenvektoren sind zueinander orthogonal.

Beweis: Wir betrachten einen rechtsseitigen Eigenvektor r mit dem Eigenwert i.
und einen linksseitigen Eigenvektor l mit dem Eigenwert ‚u, wobei Ä + ‚u sein soll.
Es gilt also

Ar = Ar,

17A = ‚uf‘.

Bilden wir in der ersten Gleichung auf beiden Seiten das Skalarprodukt mit l und
in der zweiten Gleichung mit r, so erhalten wir

lTAr = llTr,
lTAr = plTr.

Die zweite dieser Gleichungen, von der ersten subtrahiert, ergibt

(Ä — y) lTr = 0.

Das ist aber wegen Z — ‚u, =|= 0 nur dann möglich, wenn

IT = 0

gilt, also I und r orthogonal sind, womit unsere Behauptung bewiesen ist. I

S.5.3
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‘Da die linksseitigen‘Eigenvektoren und Eigenwerte von A mit den rechtsseitigen
Eigenvektoren und Eigenwerten von AT übereinstimmen, kann der Inhalt ‘von Satz 5.3
auch folgendermaßen formuliert werden:

Satz 5.4: Die zu verschiedenen Eigenwerten gehörigen Eigenvektoren von A und A’
sind zueinander orthogonal.

Beispiel 5.6: Für die Matrix A von Beispiel 5.4 ist

2

r, = 1 mit 7., =l

3

ein Eigenvektor mit zugehörigem Eigenwert, und für AT gilt Entsprechendes für

4

r; = l mit Ä; = 2.

—-3

Dies bestätigt man leicht durch Einsetzen in Ar, = Ar, und A1}, = 121-, . Folglich müssen r, und r;
zueinander orthogonal sein, was man auch bestätigt findet:

r',"r2=2-4+1-1-3-3=0.
Wir wollen jetzt auf die_ Berechnung von Eigenvektoren eingehen. Bereits im vorher-

gehenden Abschnitt wurde festgestellt, daß

(A — ).E)r = o (5.3)

ein lineares homogenes Gleichungssystem für r bzw. für die Komponenten r, ‚ ..., r„
von r ist. Dieses Gleichungssystem hat die Gestalt

(an — Ä) r, + nur, + + a‚„r„ = 0

a„r, + (an — i.) r, + + a2,,r,, = 0 (5.3’)

a‚„r, + a„r2 + + (a„„ — Ä)br„ = 0.

Die Erfüllung dieses Gleichungssystems durch eine nichttriviale Lösung ist gewähr-
leistet, falls i. ein Eigenwert, also eine Nullstelle des charakteristischen Polynoms ist.
Man hat folglich zuerst Ä zu berechnen, dann i. in das Gleichungssystem (5.3’) einzu-
setzen und schließlich die Lösung r, , ..., r„ von (5.3’) zu bestimmen. Bei der Lösung
von (5.3’) ist besonders zu beachten, daß die Koeffizientendeterminante (5.4’) von
(5.3’) gleich null und deshalb mindestens eine Gleichung linear abhängig ist. Deshalb
ist mindestens eine der Unbekannten r1, ..., r,, frei wählbar. Mit dem Begrifl" des
Ranges R(A) einer Matrix A läßt sich die Anzahl der linear abhängigen Gleichungen
bzw. der frei wählbaren Unbekannten angeben. (vgl. 3.1.); sie ist gleich dem so-
genannten „Rangabfall“ n — R(A — 1E). Dies ist gleichzeitig auch die Anzahl der
voneinander linear unabhängigen Lösungsvektoren des Gleichungssystems. Wir
halten das für die Eigenvektoren resultierende Ergebnis im folgenden Satz fest.

Satz 5.5: Die Anzahl der zu einem Eigenwert Ä gehörigen linear unabhängigen Eigen-
vektoren ist

n —— R(A —— 1E). (5.8)
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Ohne Beweis geben wir einen Sachverhalt an, der etwas über den Zusammenhang
zwischen der Vielfachheit eines Eigenwertes und der Zahl der dazu maximal exi-
stierenden linearunabhängigen Eigenvektoren aussagt:

Satz 5.6: Die durch (5.8) gegebene Zahl der zu einem Eigenwert Ä gehörigen linear S.5.6
unabhängigen Eigenvektoren ist nicht großer als die algebraische Vielfachheit des
Eigenwertes.

(l m Beispiel 5.4 hat der Eigenwert 1 = 2 die algebraische Vielfachheit 2.)
Zu einem einfachen Eigenwert Ä gibt es folglich genau einen Eigenvektor, abgesehen

von den Eigenvektoren, die man erhält, wenn man den einen Eigenvektor mit einer
von null verschiedenen Zahl‘ multipliziert. Denn wegen det (A — IE) = O ist das
Gleichungssystem (5.3) nichttrivial lösbar, und es gibt also mindestens einen Eigen-
vektor; andererseits schließt Satz 5.6 aus, daß es mehr als einen Eigenvektor gibt.
Hat eine Matrix nur einfache Eigenwerte, so gibt es insgesamt n Eigenvektoren, nämlich
zu jedem der n Eigenwerte einen. Diese n Eigenvektoren sind linear unabhängig, was
wir am Ende dieses Abschnitts beweisen werdenL Durch diese. Eigenschaft, n linear
unabhängige Eigenvektoren zu besitzen, ist eine wichtige Klasse von Matrizen ge-
kennzeichnet, die sogenannten diagonalähnlichen Matrizen, mit denen wir uns in
Abschnitt 5.2.5.1. ausführlicher befassen werden. Es kannaber vorkommen, daß es
beispielsweise zu einem zweifachen Eigenwert nur einen Eigenvektor gibt. Ein solcher
Fall liegt in dem unten angegebenen Beispiel 5.9 vor. Die Matrix hat dann weniger
als n linear unabhängige Eigenvektoren.

Um zwei Eigenvektoren sofort ansehen zu können, ob sie kollinear sind, d. h. sich
nur um einen Faktor unterscheiden, führt man eine Normierungsvorschrift ein
(dafür liegen natürlich noch wesentlichere, z. B. rechentechnische Gründe vor). Dazu
bieten sich viele Möglichkeiten an. Die verbreitetsten Normierungsvorschriften sind

1) (Arm + |r2|2 + + my =1,
2) max |r‚| = l,

i=l‚...‚n N

3) |r1l+Ir2|-l-...+|r„[=l.
Wir wählen die erste Möglichkeit: Die euklidische Länge der normierten Eigen-

vektoren soll stets eins sein.

Beispiel 5.7: Wir bestimmen die Eigenvektoren der Matrix A aus Beispiel 5.2. Die Eigenwerte von A
sind bereits bekannt,

ll = 1, Ä; = 5.

Die beiden Komponenten des zu Ä, gehörigen Eigenvektors r; bezeichnen wir mit ru und m:

'1 1

['1 = n

'21

Das lineare Gleichungssystem (5.3’) lautet dann

21'“ + 4rg1 = 0,

f” ‘i’ 2721 =-' 0.

Diese Gleichungen sind voneinander linear abhängig. Wir können also eine der beiden Unbekannten
beliebig wählen. Setzen wir r}, = 1, so erhalten wir aus der zweiten Gleichung ru = -2, also

r, - I: ‘zjund normiert: r‘,"’ = [ —2/\/5:, .

1 1/\/5
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Für den Eigenwert Ä; = 5 ergibt sich bei gleicher Bezeichnungswcise das Gleichungssystem

‘-271; + 4F}; = 0,

T12 "‘ 2721 = 0.

Wir wählen rn = l und erhalten damit n, = 2, also
q _

'- . 2/ 5r; =[ l Jund normiert: r‘2"’ =[
1 /\/5

Daß r; und r; linear unabhängig sind, kann leicht nachgeprüft werden (vgl. 1.2.7.):

—2
=—2—2=—4 o.

11 *‘|’1.l'z|=

Beispiel 5.8: Dieses Beispiel zeigt, daß auch beim Auftreten mehrfacher Eigenwerte ein System \on

n linear unabhängigen Eigenvektoren existieren kann. Die Matrix

-4 ——3 3

A= 2 3 -—6

—-l -3 0

hat das charakteristische Polynom

det(A — AF.) = -0. + 3)(z + 3)(/1 — 5)

und folglich die Eigenwerte

/1, = -3, 2.2 = —-3‚ Ä, = 5.

Wir bezeichnen die Komponenten der zu Ä; = -—- 3 gehörigen Eigenvektoren mit r“ , r2, , r3, . Das
Gleichungssystem (5.3') hat dann die Form

—r„l — 31-1, + 3r31 = 0.

2'11 ‘l’ 5'21 " 5'31 = 0. (")

—rn — 3r“ + 3r_~,, = 0.

In diesem Gleichungssystem sind offenbar zwei Gleichungen von der dritten linear abhängig, es gilt
R(A — IE) = l. Damit ist nach Satz 5.5 die Zahl der zum Eigenwert /'1, = -—-3 gehörigen linear
unabhängigen Eigenvektoren gleich

n—R(A-}.E)=3- 1 =2.

Diese Eigenvektoren sind wegen der jetzt möglichen freien Wahl von zwei Komponenten auch bei
Normierung nicht eindeutig bestimmt. Um den ersten Eigenvektor zu erhalten, wählen wir

721:]. "31=0
und erhalten damit aus dem Gleichungssystem r. 1 = -— 3, womit der erste Eigenvektor

-3 —3/„/T5
r, = 1 und normiert: H,” = 1/\/Ia

0 0 '

ist. Um zum gleichen Eigenwert 1, = -3 einen zweiten, von diesem linear unabhängigen Eigen-
vektor r; zu erhalten, müssen wir das Gleichungssystem mit den gleichen Koeffizienten wie ("‘),
jedoch mit den Komponenten rn, ru, r32 verwenden; wir setzen jetzt

T22 = o: T32 =1,
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woraus nach Einsetzen in das Gleichungssystem ru = 3 folgt, also

3 3MB
"2 = 0 und normiert: t2" = 0

1 g i/JE

Daß sich r, und r; nicht etwa nur um einen Faktor unterscheiden, ist offensichtlich; sie sind also
linear unabhängig. Für die Berechnung des Eigenvektors zu l2 = 5 erhält man das Gleichungs-
system

—-9r,3 —‘ 3I'z3 + 3f33 = 0,

2713 — 2723 - 6733 = 0,

-‘V13 -' 3r23 "' 5I'33 = 0.

Da A, = 5 ein einfacher Eigenwert ist, wissen wir bereits, daß esnur einen linear unabhängigen
Eigenvektor gibt, das Gleichungssystem den Rang 2 hat und folglich nur eine Komponente beliebig
gewählt werden kann. Wir wählen r33 = l und erhalten aus den ersten beiden Gleichungen das in-
homogene Gleichungssystem

‘9713 ‘ 3723 = -3.
2r,3 -— 2rz3 = 6

mit der Lösung r13 = l, r13 = -2. Der dritte Eigenvektor lautet also

1 1/\/E i

I‘: = *2 und normiert:_r§“’ = -2/\/K

1 IN’?

Das System der Eigenvektoren r, , r; ‚ 1'3 ist linear unabhängig, denn die aus diesen Vektoren gebildete
Deterrninante

D
J

3 1

l|'1.|’zs1’3I= 1 0 ‘z’ '-‘ *3
0 l 1

ist von null verschieden.

Beispiel 5.9: An der Matrix A von Beispiel 5.4 werden wir sehen, daß es zu einem Eigenwert weniger
linear unabhängige Eigenvektoren geben kann, als seine algebraische Vielfachheit beträgt. Die Eigen-
werte von A sind

Ä1=l‚ l2=2, 23=2.

Die Berechnung des zum einfachen Eigenwert Ä, = 1 gehörigen Eigenvektors erfolgt wie im voran-
gegangenen Beispiel aus einem linearen homogenen Gleichungssystem vom Range 2. Nach Wahl
von T31 = 3 erhält man die Lösung n, = 2, rz, = 1, also

2 2/\/171

r, = 1 und normiert: r‘,"’ = 1/\/1: .

3 3/\/F
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Für den Eigenwert Ä, = 2 hat das System (5.3') die Gestalt

"2’x2 " T22 + V32 = 0a

-—7r,, —'2r¢; + Sr“ = 0,

"571: — 2'22 + 3'32 = Q.

Die Koeffizientenmatrix dieses Systems hat den Rang 2, denn es gibt zweireihige Unterdeterminanten‚
die von null verschieden sind, beispielsweise gilt für die Unterdeterminante A33

—2 —1

-7 —2

Nach (5.8) gibt es zum Eigenwert Ä; = 2 also nur einen linear unabhängigen Eigenvektor. Wir erhal-
ten ihn, wenn wir eine der Komponenten frei wählen und in das Gleichungssystem einsetzen. Wir
wählen r22 = 1 und erhalten als Lösung des resultierenden Gleichungssystems r„ = -1, r3, = -1.
Der einzige zu Ä; = 2 existierende Eigenvektor (abgesehen von seinen Vielfachen) lautet also

-1 ‚ "'1/\/E
r, = 1 und normiert: r‘2"’ = l /\/ 3

_—1 —1/.\/3'

Mithin hat die Matrix A nur zwei linear unabhängige Eigenvektoren.

= -3.

Beispiel 5.10: Sind die Eigenwerte einer Matrix A komplexwertig‚ so müssen wegen Ar = Ar bei
reeller Matrix A auch die entsprechenden Eigenvektoren komplexwertig sein. Da die bisher für die
Bestimmung der Eigenvektoren angegebenen Regeln aus der Lösungstheorie der linearen Gleichungs-
systeme abgeleitet wurden und diese Theorie auch für Gleichungssysteme mit komplexen Koeffizienten
gültig ist, können wir Eigenvektoren für komplexe Eigenwerte (und ganz allgemein Eigenvektoren
komplexer Matrizen) nach den gleichen Regeln wie bisher berechnen. Wir haben dabei nur die beson-
deren Rechenregeln der komplexen Zahlen untereinander zu beachten.

Wir wollen die Eigenwerte und Eigenvektoren der Matrix

A=[-§ J2]
berechnen. Das charakteristische Polynom

5 — i. 4
=‚12__5 _3_z 2z+5

hat die konjugiert komplexen Nullstellen

Z,=l+2i, }.2=1—2i.

Das Gleichungssystem für die Komponenten rm und ru des zu i, gehörigen Eigenvektors r, lautet

(4 — 2i) n, + 4r„ = o,

—sr„ ——‘(4 + 2i)r,, = o.

Sein Rang ist eins, denn die zweite Gleichung geht durch Multiplikation mit —1‘— i/2 aus der
ersten Gleichung hervor. Wählen wir r-,1 = 5, so folgt aus der zweiten Gleichung ru = -4 — 2i,
der erste Eigenvektor ist also

r‚=l“f”‘l.
L 5 J

Entsprechend erhält man durch das Gleichungssystem

(4 + 2i) n; + 4r„ = 0,

—sr„ —(4 — 2i)r,, =6
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den zu Ä, gehörigen Eigenvektor

-4 + 2i
.‚ - [ 5 ] .

Nach diesen Beispielen wollen wir nach dem Grade der Unbestimmtheit bzw.
Bestimmtheit der Eigenvektoren fragen. Wir haben bereits erkannt, daß jeder Eigen-
vektor nur bis auf einen allen Komponenten gemeinsamen Faktor genau bestimmbar
ist, daß also jedes von null verschiedene Vielfache eines zu einem Eigenwert Ä. gehörigen
Eigenvektors wieder ein Eigenvektor zum gleichen Eigenwert Ä ist. Diese Regel gilt
in allgemeinerer Form auch für den Fall, daß aus zum gleichen Eigenwert i. gehörigen
Eigenvektoren Linearkombinationen gebildet werden.

Wir nehmen an, r, , I2, ...‚ r„‚ seien Eigenvektoren zum gleichen Eigenwert l, es
gelte also

Ark = Ark:

Aus den Eigenvektoren rk bilden wir mit den Zahlen c, , c2, ...‚ c„„ von denen min-
destens eine ungleich null sein muß, die Linearkombination

r = c‚r‚ + czrz + + c„‚r„‚.

r‚„=l= o für k = l‚2,...‚m.

(5.9)

Für den so gebildeten Vektor r gilt nun

Ar A(c‚r‚) + A(c‚r2) + + A(c„‚r„‚)
c,Ar1 + c2Ar2 + + c,,,Ar,,,

=‘c,}.r, + 021:; + + c‚„}.r‚„

= ).(c1r‚ + czr; + + c„‚r„‚)
= Zr.

II

Der Vektor r ist demnach auch wieder ein Eigenvektor zum Eigenwert Ä, falls er nicht
gerade der Nullvektor ist. Wir fassen zusammen:

Satz 5.7: Jede vom Nullvektor verschiedene Linearkombination von Eigenvektoren,
die alle zum gleichen Eigenwert Ä gehören, ist wieder ein Eigenvektor zum Eigenwert 1.

Durch eine solche Linearkombination entsteht aber stets ein von den zur Linear-
kombination herangezogenen Eigenvektoren linear abhängiger Eigenvektor. Man
kann also von einem bekannten System linear unabhängiger Eigenvektoren durch
Linearkombination seiner Vektoren nicht zu einem umfassenderen linear unabhän-
gigen System gelangen.

Der folgende Satz gibt Aufschluß über die lineare Unabhängigkeit von Eigen-
vektoren, die zu verschiedenen Eigenwerten gehören.

Satz 5.8: Sind 2.„ (k = l, 2, ...‚ m) paarweise voneinander verschiedene Eigenwerte
und r,, (k = 1, 2, ...‚ m) zugehörige Eigenvektoren, so ist das System der Eigenvektoren
{r‚ , r2, ..., r„‚} linear unabhängig.

Beweis: Wir müssen zeigen; daß die Vektorgleichung

c‚r‚ + czr, + + c„‚r‚„ = o (5-‘")
nur gilt, wenn alle Koeffizienten c, verschwinden. Durch Multiplikation beider Sei-
ten dieser Gleichung von links mit A folgt

c,i.,r, + czlzrz + + c,,,A,,,r,,, = o. (5.11).

S.5.7

S.5.8
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Multiplizieren wir nun Gleichung (5.10) mit 2., und subtrahieren sie dann ‘von (5.l l),
so erhalten wir

C2(Ä2 — A1) I’; + 630.3 -.3.1)l'3 + n. + C,,,(Z.,,,’ " l1)l',,, = 0.

Die gleichen Operationen, die wir mit Gleichung (5.10) vorgenommen haben, wieder-
holen wir nun mit Gleichung (5.12), nur mit dem Unterschied, daß wir zur zweiten
Multiplikation nicht Ä, ‚ sondern A, verwenden. Es ergibt ‘sich dann

c3(}.3 — }.,)(13 —— 2.,) r3 + + c,,,(2.,,, — 2,) (1,, — Z2) r,,, = o.

Diese Operationen können wir offenbar fortsetzen, bis zuletzt

c,,,(}.,,, — 2.,) (1,, — A2) (im — ).,,,_1) r„‚ = o

entsteht. Da alle 1„ voneinander verschieden sind und r„‚ =l= o ist, läßt diese Gleichung
nur den Schluß

c‚„ = 0

zu. Durch Umnumerierung in (5.10) und gleiches Vorgehen können wir auch das
Verschwinden jedes anderen Koeffizienten ck zeigen. Es gilt also

C1=C2=...=Cm=0,
womit der Satz bewiesen ist. I

Der eben dargestellte Sachverhalt läßt eine wichtige Folgerung für den Spezialfall
einer Matrix mit nur einfachen Eigenwerten zu. Die zu den n einfachen Eigenwerten
1,, (k = 1, ..., n) gehörigen Eigenvektoren r,‘ bilden nach Satz 5.8 ein linear unabhän-
giges Vektorsystem, also eine Basis des komplexen Vektorraumes C".

5.2.4. Ähnlichkeitstransformationen

Wir wenden uns jetzt wieder der durch die Matrix A im Raume R" vermittelten
linearen Abbildung

y = Ax (5.13)

zu. Es soll zunächst untersucht werden, wie diese Abbildung zu beschreiben ist, wenn
man bezüglich der Darstellung der Vektoren x und y zu einem anderen Koordinaten-
system übergeht.

Verwenden wir statt des „alten“ Koordinatensystems mit den Grundvektoren

" 1 O 0 “

0 l O
e]. = : O e2 = : I "'5 ell = :

-6 b i
das „neue“ Koordinatensystem mit den linear unabhängigen Grundvektoren

F C11 €12 Cu

c1: : a c2: s-"scn:

— ein Caz can
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(Darstellung im alten Koordinatensystem), so bestehen zwischen den Darstellungen
x, y im alten Koordinatensystem und x’, y’ im neuen Koordinatensystem die Be-
ziehungen

y = CY’,

wobci C die spaltenweise aus den neuen Koordinateneinheitsvektoren c„ ..., c,
gebildete Matrix ist. Wir sind damit in der Lage, die im alten Koordinatensystem
durch (5.13) vermittelte Abbildung x —+ y auch im neuen Koordinatensystem als
Abbildung x’ -—> y’ durch eine Multiplikation „Matrix mal Vektor“, also

x = Cx’,

y/ _-___ Bx!

beschreiben zu können. Um B zu ermitteln, setzen wir die Darstellungen (5.14)
in (5.13) ein und erhalten

Cy’ = ACX’,

y’ = C“‘ACx’.

Die gesuchte Matrix B hat demnach die Gestalt

B = C“‘AC. (5.15)

Durch die Änderung des Koordinatensystems werden sowohl die Vektoren als auch
die Matrizen einer Transformation unterworfen.

Definition 5.1: Die durch (5.15) beschriebene Mzgtrizenoperation A —> B heißt Ähnlich-
keitstransformation; zwei durch eine solche AhnIichkeitstransformation verknüpfte
Matrizen A, B heißen ähnliche Matrizen.

Bevor wir uns wieder den Eigenwertproblemen zuwenden, halten wir noch die
bei einer Ahnlichkeitstransformation vorliegende Dualität fest. Aus (5.15) folgt durch
Auflösung nach A

A = CBC” (5.16)

und, wenn wir F = C"‘ setzen,

A = F‘1BF.

Es geht also auch A durch Ähnlichkeitstransformation aus B hervor, und zwar durch
Transformation mit der zu C inversen Matrix C-1. Es ist noch zu bemerken, daß
eigentlich erst durch diese Feststellung die oben eingeführte Bezeichnung „A und B
sind ähnlich“ gerechtfertigt wird.

Für die Eigenwerte und Eigenvektoren von ähnlichen Matrizen gelten grundlegende
Beziehungen, die häufig bei theoretischen und praktischen Problemen (z. B. in der
Geometrie und in der Rechentechnik) als Hilfsmittel benutzt werden.

Satz 5.9: Ähnliche Matrizen haben die gleichen Eigenwerte.

Beweis: Es sein}. ein Eigenwert und r ein Eigenvektor der Matrix A, und die Matrix B
sei durch die Ahnlichkeitstransformation (5.15) aus A hervorgegangen. Dann gelten
für den Vektor '

s = C"r

(5.14) l

D.5. l

S.5.9
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die Beziehungen

Bs = C“ACC"r = C"Ar = ÄC-‘r,

und folglich
Bs = is .

Ferner gilts 4: o, denn auss = owürder = Cs = ofolgen, wasim Widerspruch dazu
steht, daß r ein Eigenvektor ist. Der Vektor s ist also ein Eigenvektor von B und /1

der zugehörige Eigenwert. Damit ist bewiesen, daß die Eigenwerte von A auch Eigen-
werte von B sind. Auf Grund der bestehenden Dualität ist dann aber auch jeder
Eigenwert von B ein Eigenwert von A. Die Matrizen A und B besitzen also die gleiche
Menge von Eigenwerten. I

Aus dem eben geführten Beweis kann noch die Beziehung zwischen den Eigen-
vektoren ähnlicher Matrizen ersehen werden. lst r ein Eigenvektor von A zum
Eigenwert Ä, so ist s = C"r ein Eigenvektor mit dem gleichen Eigenwert /'. der
Matrix B. Für die Rücktransformation (5.16) gilt die entsprechende duale Aussage:
Wenn B einen Eigenvektor s mit dem Eigenwert 7. hat, so ist der Vektor r = Cs ein
Eigenvektor von A mit dem gleichen Eigenwert Z.

Es sei nun {r} , ..., rm} ein linear unabhängiges System von Eigenvektoren von A.
Wir betrachten das durch s„ = C"r,, zugeordnete System {s‚ ‚ ..., s„‚} von Eigen-
vektoren der Matrix B = C"AC und wollen zeigen, daß dieses linear unabhängig
ist. Dazu ersetzen wir in der Vektorgleichung

C151 + C252 + ..‚ + C„‚S‚„ = 0

die Eigenvcktoren s„ gemäß s,‘ = C“‘r‚„ und erhalten so

c‚C“r‚ + c‚C“r‚ + + c,,,C“r,,, = o.

Aus dieser Gleichung entsteht nach Multiplikation mit der Matrix C

c‚r1 + czr; + + c„‚r„‚ = o,

woraus wegen der linearen Unabhängigkeit der Eigenvektoren r, , 1'2,

daß alle Koeffizienten cl, C2, .

haben damit gezeigt, daß in der Vektorgleichung (5.17) notwendig alle Koeffizienten
c„ ..., ..., c„‚ gleich null sind. Das Vektorsystem {s„ ..., s„‚} ist also linear un-
abhängig. Beachtet man zusätzlich noch die Umkehrbarkeit der Ähnlichkeitstrans-
formation, so ergibt sich

..., r‚„ folgt,

Satz 5.10: Ähnliche Matrizen haben zu gleichen Eigenwerte}: die gleiche Anzahl linear
unabhängiger Eigenvektoren.

5.2.5. Eigenwertprobleme für spezielle Matrizen

5.2.5.1. Diagonalähnliche Matrizen. Hauptachsentransformation

Die fundamentale Bedeutung der Ähnlichkeitstransformation für Eigenwert-
probleme und die besonders übersichtlichen Verhältnisse bei Diagonalmatrizen legen
an .-.n|-. II {nnnnn nmnfiv;rnnn x nlin In ‘was. „In A2..- I-..s;~n..A..—..z. .. ......n I t. t...n ... VI......‚..‚
CD HGUC, GIIC LU JJJGEUIIGIIJICLLAJLUII G uu\.uc LVIG ILCII d!) CJIIC UCDUIIUCIC l\ld33C VUH

Matrizen zu behandeln.

Definition 5.2: Eine Matrix A, die durch eine Ähnlichkeitstransformatian (5.15) in
eine Diagonalmatrix übergeführt werden kann, heißt diagonalähnlich.

..‚ c‚„ dieser Gleichung verschwinden müssen. Wir-
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Es gibt demnach für jede diagonalähnliche Matrix A eine nichtsinguläre Matrix C,
so daß

D = C'1AC (5.18)

eine Diagonalmatrix istfDa die Diagonalelemente von D gleichzeitig die Eigen-
werte von D sind, müssen sie wegen der Invarianz der Eigenwerte gegenüber einer
Ahnlichkeitstransformation mit den Eigenwerten 7.1, ...‚ 1„ von A übereinstimmen.
D hat also die Form

z, o ...o
D: o z‚...o

o o 2„

Linear unabhängige Eigenvektoren von D sind e, , e, ‚ ...‚ e„‚ von A folglich
Ce„ Cez, ...‚ Ce„;

das sind aber gerade die n linear unabhängigen Spaltenvektoren ck von C.
Im vorangehenden Abschnitt ist gezeigt worden, daß bei einer Koordinaten-

transformation der Form x’ = C“x die Matrix B = C“AC im neuen Koordinaten-
system die gleiche lineare Abbildung wie die Matrix A im alten Koordinatensystem
vermittelt. Ist B nun eine Diagonalmatrix, B = D = diag {}.,}, so ist die durch B
erzeugte lineare Abbildung x’ —> y’ = Bx’ besonders einfach, nämlich durch

y; = fax," (k =1, 2, ...‚ n)

zu beschreiben. Diese Abbildung ist längs der neuen Koordinatenachsen c,‘ eine reine
Streckung bzw. Stauchung mit dem Zentrum im Koordinatenursprung und dem
Streckungs- bzw. Stauchungsverhältnis 1,‘. Die gesamte lineare Abbildung x’ —> Bx’
und damit auch die lineare Abbildung x —> Ax stellt eine Überlagerung von n ein-
fachen Streckungen bzw. Stauchungen längs der Achsen c,‘ dar. Die c, — die Eigen-
vektoren von A —— werden aus diesem Grund auch als Hauptachsen von A und die
Ähnlichkeitstransformation auf Diagonalform als Hauptachsemransformation oder
als Diagonalisierung bezeichnet.

Es soll jetzt gezeigt werden, wie man für eine (n, n)—Matrix A mit n linear unab-
hängigen Eigenvektoren" die Hauptachsentransformation (5.18) durchführen kann,
indem man die für die Ahnlichkeitstransformation benötigten Matrizen C und C"‘
konstruiert." Es sei {ab a2, ...‚ a„} ein System von n linear unabhängigen Eigen-
vektoren von A. Da die zu A transportierte Matrix AT das gleiche charakteristische
Polynom, also die gleichen Eigenwerte mit gleicher Vielfachheit wie A hat und auch
der Rangabfall (5.8) für AT bei jedem Eigenwert der gleiche ist wie für A, hat auch
AT ein System von n linear unabhängigen Eigenvektoren {b, , ..., b,,}. Zuerst betrach-
ten wir den Fall, daß alle Eigenwerte einfach sind. Dann gilt nach Satz 5.4 zwischen
allen Eigenvektoren a,, bk die Orthogonalitdtsrelatian

afbk = O für j+ k. - (5.19)

Durch Multiplikation der a,, b,, mit gewissen Faktoren, z. B.

r, = 2„ t„ = ßkb,‘

kann man noch die spezielle Normierufngsvorschrif‘

’ r]‘t,= l (j= l,...,n)
erfüllen, also insgesamt

rftk = 6,,‘ (6_,,,: Kroneckersymbol, vgl. 1.3.1.). r (5.20)
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Aus diesen Eigenvektoren rj, t„ werden nun die Matrizen

ff
tiR=[r19 --urn]: T: .

t3
gebildet. Es gilt dann

TAR = T[Ar„ ...‚ Ar„] = T[}„r„ ...,l,,r,,]

Atfr, lztfrz }.,,t,Tr,, 2.1 0 0
= }.1t',‘r, lztfrz l,,t§r,, = 0 7., 0 = D.

Ä1t„r1 A2t„l‘2 .. }.,,t,,r,, 0 0 1,,

Entsprechend erhält man

TR = E,

was gleichbedeutend mit
T = R“

ist. Insgesamt gilt also

R"AR = D,
und C = R ist die gesuchte Transformationsmatrix. ‚

Wir haben noch den Fall eines mehrfachen Eigenwertes l1 = Z2 = = Ä, zu
untersuchen. Zwischen den zugehörigen Eigenvektoren a1 ‚ ...‚ a, und b, , ...‚ b, be-
steht zunächst keine Orthogonalität der Form (5.19), sondern man muß erst durch
geeignete Linearkombinationen neue Eigenvektoren r, ‚ ...‚ r, und t, , ...‚ t, be-
stimmen, die die gewünschte Eigenschaft (5.20) besitzen. Dazu können wir folgender-
maßen vorgehen. Wir setzen

1'1 = 31: t1 = yribia
X211": + 32a t2 = yzltl + .V22b29

x,,1r, + + x,,,,,_1r,,_, + 3,; t, = ypltl + + y,,,,_,t -1 + y,,,b,,

und bestimmen die unbekannten Koeffizienten x‚-‚„ y‚k nacheinander aus den For-
derungen

‘iti = 1?

rftl = 0, rft, = 0, rät; = 1, (5.21)

usw.‘

Es kann dabei vorkommen," daß eine Forderung rftk = 1 nicht zu erfüllen ist. Dann
hat man die Reihenfolge der Vektoren b, , j g k, geeignet zu vertauschen und danach
die Rechnung fortzusetzen. '

Es ist zu bemerken, daß die Konstruktion von C und C‘1 nicht notwendig mit Hilfe
der Eigenvektoren von A’ geschehen muß, wie wir es hier getan haben. Man kann die
Matrix C auch spaltenweise aus einem beliebigen System linear unabhängiger Eigen-
vektoren von A aufbauen und dann C-1 durch Inversion, d. h. durch direkte Be-
rechnung der zu C reziproken Matrix C”‘ gewinnen.

Wir fassen die Ergebnisse zusammen.
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Satz 5.11: Eine (n, n)—Matrix ist genau dann diagonalähnlich, wenn sie n linear unab— S.5.ll
hängige Eigenvektoren hat.

Die Existenz von n linear unabhängigen Eigenvektoren r, ‚ ...‚ r„ bei einer diagonal-
ähnlichen Matrix hat zur Folge, daß das System der Eigenvektoren {rl , ...‚ r„} eine
Basis des R" bildet. Diese Feststellung führt zu dem sogenannten Entwicklungssatz.

Satz 5.12 (Entwicklungssatz): Jeder n-dimensionale Vektor x läßt sich in eindeutiger S.5.12
Weise als Linearkombination

x = clrl + czr; + + c„r„

der Eigenvektoren einer diagonalähnlichen Matrix darstellen.

Satz 5.13: Zujeder diagonalähnlichen (n, n)—Matrix A läßt sich ein linear unabhängiges S,5.13
System r, , ..., 1",, von Eigenvektoren von A und ein ebensolches System t, , ...‚ t, von
Eigenvektoren von AT angeben, so daß

I31-tk = 61k U =1, ...‚”; k -=1, ...‚ n)

gilt. Die spalten- bzw. zeilenweise aus den Eigenvektoren r, bzw. t,‘ aufgebauten Ma-
trizen R und T vermitteln die Ahnlichkeitstransformation von A auf Diagonalform,
d. h., es gilt T = R" und

TAR = D = diag (1,).

Beispiel 5.11: Wir führen die Ähnlichkeitstransformation für die Matrix

3 4
A =

1 3

(vgl. Beispiele 5.2 und 5.7) durch. Wir kennen bereits die Eigenwerte Ä, = l, /I2 = 5 und die zuge-
hörigen Eigenvektoren a} = [— 2, 1], a} = [2, 1]. Die Eigenvektoren von A‘ sind noch zu berechnen,
und zwar erhält man für b, bzw. b, die Gleichungssysteme

21711 + b2; = 0» “Z1712 + I722 = 0»

4b11 + Zbzl = 0, 4b12 —' 21722 = 0.

Setzt man bu = bu = 1, so ergibt sich

'~=[-i]’ b2=[i]—
Folgen wir der oben dargestellten Konstruktion, so haben wir

T1 = 31. T2 = 32» t1 = ßrbr: t2 = 52b:

mit

l
ßi=—-f-—="—‘ I32‘-‘ -1- =7‘

zu setzen, also schließlich

-2 2 —1/4 1/4

"=l1l’ "=[1]‘ "=l1/2l’ "=[1/2.1’
10 Mnnteuflcl, Lineare
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Damit erhalten wir die Matrizen

-2 2 -1/4 1/2

R=[11]’ T=[1/41/2]’
für welche man tatsächlich RT = E und TAR = D = diag(/1,) bestätigt findet. Für die zur Berech-
nung der Matrix TAR erforderlichen Matrizenmultiplikationen AR und T(AR) verwenden wir zwei-
mal das Fa.lksche_ Schema (siehe Abschnitt 2.2.3.) und ordnen die beiden Schemata zweckmäßiger-
weise untereiander an: -

— 2 2

[ 1 1]“
3 4 — 2 10

A l 1 3 l [ 1 s ] AR

— 1/4 1/2 1 0

T[ 1/4 .1/2] [ o 5]TAR

Beispiel 5.12: An Hand der Matrix A von Beispiel 5.8 soll das beim Auftreten mehrfacher Eigenwerte
auszuführende Orthogonalisierungsverfahren demonstriert werden. Die Eigenwerte sind ‚i, = /‘.2

= -3, 2.3 = 5, und die Vektoren

——3 3 1

a, = 1 , a;= O , a3 = -2
0 1 1

bilden ein System linear unabhängiger Eigenvektoren von A. Ein ebensolches System bezüglich A
wird von den Vektoren

-1 2

b1: 0 ‚ b1: l , b3: 3

1 ‘ 0 -3

gebildet. Mit den zum gleichen Eigenwert gehörigen Eigenvektoren a, ‚ a2 , b, ‚ b, ist die oben be-
schriebene Orthogonalisierung durchzuführen. Wir setzen

T1 = a1; tn = yllbla

1'2 = X2171 + 32, t2 = yzxtx + }’22b2

und berechnen die Koeffizienten y„ , x21 , yn, yn aus den Bedingungen (5.21):

1.
r-11-tl = 3.V11 =1 "’ ‚V11 = ?‚ t-1r= [-1/3.0.1/3].

2
1'211 =x21 "'3—=0 -’ x21 ="3"‚ ‘;= [ls2/3al]y

8 3
1';-32 = yzzlgbz = 3h: = 1 "’ ‚V22 = -8-‘.

rftz = 721 — i8’- = o —+ yn = t: = [l/8‚ 3/8. 5/81.

Schließlich ist noch b3 zu normieren. Wir setzen

|'3 = 33. ta = V3353
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und erhalten aus der Forderung rät; = l den Wert y33 = — 1/8. Aus den neuen Eigenvektoren r,
und t„ werden die Matrizen R und T gebildet (siehe Schema). Die Überprüfung von RT = E ergibt,
daß T die zu R inverse Matrix ist, T = R‘1. Für die zweifache Multiplikation TAR wird wieder das
Falksche Schema verwendet:

-3 1 1

1 2/3 —2 R

_ o 1 1„

—4 —3 3 i 9 -3 s‘
A 2 3 -6’ -3 -2 -10 AR

-1 -3 o _ o —3 s_ _

—1/3 ' o 1/3 '—3 o o’
T 1/s 3/8 5/s o -3 o TAR

-1/8-3/8 3/8 _ o o s.

Diese Rechnung bestätigt, daß die Matrix A durch TAR = R“‘AR auf Diagonal-
form transformiert wird, wobei die Hauptdiagonalelemente gerade die Eigenwerte
von A sind.

5.2.5.2. Symmetrische und hermitesche Matrizen

Für den Fall einer symmetrischen Matrix, also einer Matrix mit der Eigenschaft '

AT = A

ist aus Satz 5.4 eine wichtige Eigenschaft der Eigenvektoren sofort ablesbar.

Satz 5.14: Zu verschiedenen Eigenwerten gehörige Eigenvektoren einer symmetrischen S-5-14
Matrix sind zueinander orthogonal.

Eine weitere Besonderheit der Eigenwertaufgaben bei symmetrischen Matrizen
besteht darin, daß ihre Eigenwerte alle reell sind, falls die Matrix selbst reell ist.
Wir wollen diese Eigenschaft herleiten. Es sei 2. ein Eigenwert und r =i= o ein zuge-
höriger Eigenvektor der reellen symmetrischen Matrix A, also Ar = 2.1‘. Wir wissen,
daß im allgemeinen Ä und die Komponenten r,‘ von r komplexe Zahlen sein können.
Bei unserer Herleitung der Reellwertigkeit von 2. werden deshalb auch die zu i.
und r,‘ konjugiert komplexen Zahlen Ä und 7„ auftreten. Für die konjugiert kom-
plexen Zahlen verwenden wir dabei als wichtigste Rechenregel die folgende Um-
formung des komplexen Skalarprodukts‘)

Fr = i ‘rm = i nur. (5.22)
‚ k = l k =l

Durch Transponierung beider Seiten von Ar = Ar entsteht

(A1')" = 7-IT.

[TAT = Z1”

‘) Hier und im folgenden kann nach Def. 2.8 für T-T, E’, K’, auch r’, R‘, A‘. geschrieben
Werden.

10*
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und daraus wegen der Symmetrie von A

rTA = ÄrT.

Zu den auf beiden Seiten stehenden Vektoren bilden wir nun die konjugiert kom-
plexen Vektoren, also

(fix) = (IF),
— PTA = ET. p

Da wir hier nur reelle Matrizen betrachten, gilt A = Ä und demnach

PA = Err.

Auf beiden Seiten wird nun das Skalarprodukt mit r gebildet:

PTA!‘ = Em. (5.23)

Andererseits erhält man direkt aus Ar = Är durch Multiplikation von links mit i‘
fTAr = ETr.

Aus den letzten beiden Gleichungen folgt

(Ä — Ä) Fr = O. (5.24)

Da r =l= o gilt, hat r mindestens eine von null verschiedene Komponente r„. Dann gilt
aber nach (5.22) FT: > O, und damit folgt aus (5.24)

}T=}.;

die konjugiert komplexe Zahl von Ä stimmt also mit Ä selbst überein. Das gilt aber
nur, wenn Ä reellwertig ist. Wir formulieren das Ergebnis im

Satz 5.15: Die Eigenwerte einer reellen symmetrischen Matrix sind stets reell.

Für die Eigenvektoren einer reellen symmetrischen Matrix erhält man ein ähn-
liches Ergebnis, wenn man das Gleichungssystem (A — 1E) r = o für die Berechnung
der Eigenvektoren genauer betrachtet. Da die Eigenwerte}. reell sind, sind alle Koef-
fizienten des Gleichungssystems reell, und man erhält als Lösungen zunächst nur
reelle Vektoren. Trotzdem wäre es falsch zu behaupten, alle Eigenvektoren von A
wären reell; denn multiplizieren wir einen solchen reellwertigen Eigenvektor mit
einer beliebigen komplexen Zahl, so entsteht wieder ein Eigenvektor, dessen Kompo-
nenten aber jetzt komplexe Zahlen sind. Da wir uns bei den bisherigen Betrachtungen
stets auf den komplexen Vektorraum C" bezogen haben, dürfen wir an dieser Stelle
die komplexen Eigenvektoren nicht vernachlässigen. Wir können den Sachverhalt
in folgender Weise formulieren:

Satz 5.16: Jeder Eigenvektor einer reellen symmetrischen Matrix kann in reeller Form
dargestellt werden.

Beispiel 5.13:.Wir wollen die Eigenwerte der reellen symmetrischen Matrix

[Zn b
A:

b 2c
:l , a, b, c reelle Zahlen,



5.2. Eigenwertprobleme 149

berechnen. Das charakteristische Polynom ist

2a — i. b
=}.’—2 Z. —b’.b 2c_1 (a+c) +4ac

Seine Nullstellen Ä, , Ä, sind die Eigenwerte von A:

/'l,_,=a+ci\/b2+(a—c)2.
Diese beiden Eigenwerte sind reell, denn der unter der Wurzel stehende Ausdruck kann nicht negativ
werden.

Bisher wurde in diesem Zusammenhang nur von reellwertigen Matrizen gesprochen
und unter diesen eine spezielle Klasse von Matrizen, nämlich die der symmetrischen
Matrizen angegeben, die diese Eigenschaft besitzen. Es besteht also Grund zu der
Frage, ob auch unter den komplexwertigen Matrizen eine Klasse von Matrizen mit
nur reellen Eigenwerten vorhanden ist und durch eine ähnliche einfache Eigenschaft
beschrieben werden kann. Diese Frage läßt sich beantworten, indem wir im Beweis
von Satz 5.15 prüfen, an welchen Stellen benutzt wurde, daß A reell und symmetrisch
ist. Für die Herleitung der den Schlüssel zum Beweis darstellenden Beziehung (5.23)
wurde einmal AT = A und ein andermal an gleicher Stelle Ä = A verwendet. Es hätte
also zum Beweis auch ausgereicht, wenn v

AT = A (5.25)

gilt. Matrizen mit dieser Eigenschaft heißen bekanntlich hermitesche Matrizen
(siehe Abschnitt 2.1.2.). Es gilt demnach der

Satz 5.17: Die Eigenwerte einer hermiteschen Matrix sind stets reell.

Da die hermiteschen Matrizen im allgemeinen nicht symmetrisch sind, ist für sie
Satz 5.14 nicht anwendbar. Eine dem Satz 5.14 entsprechende Orthogonalitäts-
aussage läßt sich jedoch treffen, wenn man einen den komplexen Vektoren angepaßten
allgemeineren Orthogonalitéitsbegriff verwendet.

S.5.l7

Definition 5.3: Man bezeichnet zwei komplexe Vektoren r, s als (komplex) orthogonal D.5.3
oder als unitär, wenn

57s = O

gilt.

Für diese Orthogonalität gilt folgende Aussage:

Satz 5.18: Zu verschiedenen Eigenwerten gehörige Eigenvektoren einer hermiteschen
Matrix sind zueinander (komplex) orthogonal.

Die Gültigkeit dieses Satzes kann der Leser ohne Mühe aus der Herleitung der
Sätze 5.3, 5.4, 5.14 und aus den vorhergehenden Betrachtungen bestätigen. Für einen
zu Satz 5.16 äquivalenten Satz über die Eigenvektoren reicht die Eigenschaft (5.25)
allerdings nicht aus.

Beispiel 5.14: Wir berechnen die Eigenwerte und Eigenvektoren der hermiteschen Matrix

4 1 + 2i
A'= _

1 — 21 0

S.5.l8
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Die Eigenwerte werden als Nullstellen des charakteristischen Polynoms

‘4 — l. l + 2i
:2: a—1_2i _l i. 4.1 s

bestimmt,

ll = — l, 7.2 = .

Für Ä, =' -l ist der zugehörige Eigenvektor if = [r, 1 , r,1] aus dem Gleichungssystem

Sr“ + (l + 2i) r„ = 0,

(l -— 2i) n, + rz, = 0

zu berechnen. Da eine Gleichung linear abhängig ist, wählen wir z. B. für r“ eine beliebige kom-
plexe Zahl und bestimmen dazu n, aus dem Gleichungssystem. Die Rechnung vereinfacht sich,
wenn wir rz, = 1 - 2i setzen. Es ergibt sich dann r„ = -1, also .

-1

"=1—2i'
Analog wird der zweite Eigenvektor

1+ 2i
f1: l

ermittelt. Es ist offensichtlich, daß hier die Eigenvektoren durch Multiplikation mit einer kom-
plexen Zahl nicht in reelle Vektoren überführt werden können. Auch die (komplexe) Orthogonalität
von r, und r, findet sich bestätigt: _

l + 2i
Ffr;=[-1;l+2i][ l ]= -1.-2i+l+2i=0.

Eine weitere Besonderheit der reellen symmetrischen und auch der hermiteschen
Matrizen ist, daß es zu jedem p-fachen Eigenwert auch p linear unabhängige Eigen-
vektoren gibt. Der Beweis dazu würde zu weit führen. -— Eine direkte Folgerung
aus dieser Eigenschaft ist die Existenz eines vollständigen Systems linear unabhängiger
Eigenvektoren. Die reellen symmetrisehen und die hermiteschen Matrizen gehören also
zur Klasse der diagonalähnlichen Matrizen. Führen wir die in Abschnitt 5.2.5.1. be-
schriebene Hauptachsentransformation für eine symmetrische Matrix A durch,
so kann wegen der Übereinstimmung der Eigenvektoren von A und A’ jetzt b„ = a,‘
gewählt werden. Normiert man vorher noch diese Eigenvektoren (es gilt dann
afak l), so führen die Forderungen (5.21) auf r„ = t„ (k = 1, ..., n), also RT = T.
Da außerdem T = R“ gilt, erhalten wir

RT = R“, (5.26)

d. h'., die Matrix R ist orthogonal (siehe Abschnitt 2.3.). Wir fassen zusammen:

Satz 5.19: Jede reelle symmetrische Matrix besitzt ein vollständiges System paarweise
orthogonaler Eigenvektoren ‘und kann durch AImlichkeitstransformation mit einer
reellen orthogonalen Matrix auf Diagonalform gebracht werden (orthogonale Haupt-
achsentransformation).

Das eben festgehaltene Ergebnis läßt sich auch geometrisch interpretieren. Jede
durch eine reelle symmetrische Matrix A erzeugte lineare Transformation x —-> Ax
kann vermittels einer geeigneten Drehung des Koordinatensystems als Überlagerung
von Streckungen längs der Koordinatenachsen beschrieben werden.
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Für hermitesche Matrizen gilt Analoges, nur daß man jetzt auf Grund der anderen,
der komplexen Orthogonalität der Eigenvektoren statt (5.26) für die Transformations-
matrix R

ET = R-1 V r i (5.27)

erhält. Matrizen mit dieser Eigenschaft heißen unitäre Matrizen.

Satz 5.20: Jede hermitesche Matrix kann durch eine ÄhnIichkeitstransformaiion mit S.5.20
einer unitären Matrix auf Diagonalform gebracht werden.

Beispiel 5.15: Die reelle symmetrische Matrix

hat die charakteristische Gleichung

}.’—3}.‘—9}.+2'/=0‘

mit den Nullstellen

11:3, 12:3, l3: "3.

Aus den beiden Gleichungssystemen (A — IE) r = o erhält man die Eigenvektoren

1 — 3 2

a, = J2 , a2 = 0 ‚ a3 = —ß .

o J? ‘ J6-

Die Vektoren a, und a2, die zum gleichen Eigenwert gehören, sind nun noch zu orthogonalisieren
und zu normieren, während a3 nur normiert werden muß. Wir setzen zunächst

51 =31.

52 = X213: + 32

und bestimmen den Koeffizienten x2, aus der Bedingung sfs; = 0. Es ergibt sich x2, = 1, also

s} = [—2, J2‘, JE]. Die Vektoren s1, s, und a3 werden schließlich noch normiert. Als Ergebnis
erhalten wir das orthonormale System von Eigenvektoren (Hauptachsen)

-1/\/5 '- -1/\/5 _ 1/\/3—

t1 = Z/JE ‚ r, = l/Jg ‚ r3 = -1/\/6-

_ ° _ w; I/fl-
Die spnltenweise ans diesen Vektoren gebildete Matrix R. (siehe Schema) ist orthogmal, denn es

gilt RRT = E. Davon kann man sich leicht ‘durch Ausmultipliziercn von RRT überzeugen. Mit
dieser Matrix wird nun die Ähnlichkeitstransformation R“AR = RTAR = D durchgeführt, bei
der die aus den Eigenwerten von A gebildete Diagonalmatrix D = diag (3, 3, —3) entstehen muß.
Die beiden dazu erforderlichen Matrizenmultiplikationen nehmen wir wieder im Falkschen
Schema vor.
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"i/J? —1/„/3— i/J?"
z/J? i/JE —1/„/?' R

_ o i/\/2_ 1/\/5'_

n J2" -¢z ' Ja" „ß -J3‘
A x/5 2 «/3 x/3 x/3/2 ~/52 AR

„E J? o _ o 3/„/2— —3/„/5_

i/fl z/J? 0 " 3 o o ’

RT -1/\/3' 1/\/31/\/5 o 3 o RTAR

1/\/3- -1/\/31/\/5 _ o o -3 _

Positiv definite Matrizen

In Abschnitt 5.1. wurden für reelle symmetrische Matrizen die Begriffe „positiv
definit“ und „positiv semidefinit“ eingeführt. Zwischen diesen speziellen Matrizen-
eigenschaften und den Eigenwerten besteht ein enger Zusammenhang. Wir nehmen
an, r sei ein Eigenvektor einer positiv definiten symmetrischen Matrix A und Ä der
zugehörige Eigenwert. Für die quadratische Form xTAx gilt also

xTAx > 0 für alle reellen Vektoren x # o, und für r gilt Ar = Ar, r 4: o.

Nach Satz 5.16 kann angenommen werden, daß r reell ist. Der Eigenvektor r ver-
mittelt also der quadratischen Form xTAx einen positiven Wert, den wir wie folgt
darstellen können:

O < rTAr = r"(Ar) = r"(}.r) = ArTr.

Wir dividieren durch die positive Zahl rTr und erhalten 0 < h.

Die Eigenwerte positiv definiter Matrizen sind also sämtlich positiv. Aus der Her-
leitung ist klar, daß für positiv semidefinite Matrizen nur i. g 0 gefolgert werden kann.

Wir wollen nun umgekehrt nachweisen, daß jede reelle symmetrische Matrix A
mit nur positiven Eigenwerten eine positiv definite Matrix ist. Dazu benutzen wir den
Entwicklungssatz (Satz 5.12), wonach sich — da A als symmetrische Matrix diagonal-
ähnlich ist — jeder beliebige Vektor x als Linearkombination

X = Clrl + C21‘; + ... + Cnru

der Eigenvektoren von A darstellen läßt. Dabei muß im Falle x =i= o mindestens
einer der Koeffizienten ck von null verschieden sein. Diese Darstellung von x setzen
wir in die quadratische Form xTAx ein:

Ax = clArl + c,Ar2 + + c,.Ar,, = c1}.,r, + czlzrz + + c,,A,,r,,,

xTAx = cfllrfr, + c§}.2r'{r2 + + c§}.,,r3'r,, (*)
= cfll + e212 + + c,’,Z,,.

Dieser Ausdruck ist aber immer positiv, wenn x =i= o ist, weil dann mindestens ein c5

positiv ist und die Eigenwerte 2.„ nach unserer Voraussetzung alle positiv sind. Wir
haben damit gezeigt, daß xTAx > 0 für alle Vektoren x =}= o gilt. Die Matrix A
ist also positiv definit. Falls von den Eigenwerten nur Nichtnegativität vorausgesetzt
wird, kann aus (*) nicht der Schluß xTAx > 0, sondern nur xTAx g 0 gezogen
werden; dann ist die Matrix A also positiv semidefinit. Wir fassen zusammen:
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Satz 5.21: Eine reelle symmetrische Matrix ist genau dann positiv definit (semidefinit),
wenn ihre sämtlichen Eigenwerte positiv (nichtnegativ) sind.

Dieser Satz kann als hinreichendes Kriterium für die positive Definitheit bzw. Semi-
definitheit einer Matrix verwendet werden, wenn man die Eigenwerte kennt oder
einfach berechnen kann. Wenn die Eigenwerte unbekannt sind, Iäßt sich aber trotz-
dem eine einfache notwendige Bedingung für die positive Definitheit bzw. Semi-
definitheit aus Satz 5.21 ableiten. Wegen (5.7) muß nämlich für jede positiv definite
(semidefinite) Matrix A

detA > 0 (detA go)
gelten. Die sich ebenfalls aus (5.7) ergebende Bedingung sp (A) > 0 (sp (A) g 0)
können wir unbeachtet lassen, denn ein anderes notwendiges Kriterium ist, daß alle
Hauptdiagonalelemente von A positiv (nichtnegativ) sind. Die Bedingung sp (A) > 0
(sp (A) g 0) stellt also nur ein sehr schwaches notwendiges Kriterium dar.

l

Beispiel 5.16: Die Matrix

6 -2 4

A = -—-2 2 0

4 O 3

ist zwar symmetrisch, aber nicht positiv definit‚ denn ihre Determinante ist negativ: de: A = —8.

Beispiel 5.17: Zum gleichen Ergebnis gelangt man bei der Matrix

2 2 5

A= 2 3 -1 ,

5 —-1 ~6

weil sie ein negatives Hauptdiagonalelement hat.

Beispiel 5.18: Für die Matrix

31-1

A= 11-1
-1 -1 3

sind die notwendigen Bedingungen erfüllt, es ist det A = 4 und alle Hauptdiagonalelemente sind
positiv. Um behaupten zu können, daß A positiv definit ist, muß aber ein hinreichendes Kriterium
herangezogen werden. Die Berechnung der Eigenwerte 2k von A ergibt

z, =.}(5 —\/1'7), .1, 2 2, z, =g(5 + JE)
und nach Satz 5.21 ist A positiv definit.

5.2.5.3. Schiefsymmetrische und schiefhermitesche Matrizen

Eine reelle schiefivymmetrisc/ze Matrix, also eine reelle Matrix mit der Eigenschaft

A = —AT

hat nur rein imaginäre Eigenwerte. Wir erkennen das, wenn wir die Herleitung der
Reellwertigkeit der Eigenwerte symmetrischer Matrizen (Satz 5.15) von der Stelle
an abändern, wo A = A’ gesetzt wurde. Wir erhalten dann statt (5.23)

—'TAr = 1F}

S.5.2l
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und statt (5.24)

(z? + 2.) Fr = o.

Daraus folgt

2' = —/1.

Setzen wir Z = a + if}, so erhält diese Gleichung Klie Form

-zx—iß=—a-—iß‚

woraus sich a = O ergibt. Jeder Eigenwert-Ä ist also rein imaginär. Bei den kom-
plexen Matrizen kommt man für die sogenannten schiefhermiteschen Matrizen, die
durch

Z: -AT
definiert sind, zum gleichen Ergebnis. Es _gilt also

Satz 5.22: Die Eigenwerte jeder reellen schiefsymmetrischen Matrix und jeder schief-
hermiteschen Matrix sind rein imaginär.

Für die Eigenvektoren läßt sich bei den schiefsymmetrischen Matrizen keine Eigen-
schaft angeben, die unmittelbar mit der Reellwertigkeit der Eigenvektoren symmetri-
scher Matrizen im Sinne von Satz 5.16 vergleichbar ist. Es gibt aber wie bei den
symmetrischen Matrizen wieder zu jedem Eigenwert eine der Vielfachheit des Eigen-
wertes entsprechende Anzahl linear unabhängiger Eigenvektoren. Deshalb gehören
die reellen schiefsymmetrischen Matrizen und die schiefhenniteschen Matrizen auch
zur Klasse der diagonalähnlichen Matrizen. Es gilt

Satz 5.23: Jede reelle schiefsymmetrische und jede schiefhermitesche Matrix kann
durch eine Ahnlichkeitstransformation mit einer unitären Matrix auf Diagonalform
gebracht werden.

Bezüglich der Orthogonalität der Eigenvektoren gilt folgendes:

Satz 5.24: Die zu verschiedenen Eigenwerten gehörigen Eigenvektoren reeller schief-
symmetrischer Matrizen und schiefhermitescher Matrizen sind (komplex) orthogonal.

Beweis: Da die reellen schiefsymmetrischen Matrizen spezielle schiefhermitesche
Matrizen sind, braucht der Beweis nur für letztere Matrizenklasse geführt zu werden.
Es seien also A eine schiefhermitesche Matrix und r, s zwei Eigenvektoren von A
mit den Eigenwerten Z und ‚u, /‘L =l= ‚u. Dann gilt

§"Ar = §"'(}.r) =: }.§Tr = Zr‘? H (5.28)

und andererseits, da §TAr eine Zahl ist und demnach am = (sTAr)T ist,

§"'Ar = rwi = -rTK's' = -—,71="§ = ,urT§; (5.29)

dabei wurde zuletzt verwendet, daß ‚u rein imaginär ist, also ;7 = —‚u gilt. Durch
Differenzbildung von'(5.28) und (5.29) entsteht

(A — ,u)rT§ = o,

woraus sich wegen 7. # ‚u die Orthogonalitätsrelation r"'§ = i-Ts = 0 ergibt. l
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Beispiel 5.19: Wir führen die Hauptachsentransformation für die reelle schiefsymmetrische Matrix

0 2

A = i -2 oi
durch. Das charakteristische Polynom

pa.) = det (A -— AE) = 7.2 + 4

hat die rein imaginären Nullstellen.

A, = 2i‚ l2 = —2i.

Als zugehörige normierte Eigenvektoren ermittelt man (Normierungsvorschrift rTr = 1)

M «lr’ _ i/\/-2- ’ r’ — —i/„/5 '

Diese Eigenvektoren sind nicht im reellen, sondern im komplexen Sinn orthogonal, d. h. unitär,
WlC aus

‘irz = i: + ä e o,

H72 = i ’ ‘i? = 0

hervorgeht. Die spaltenweise aus rl, r; gebildete Matrix R (siehe Falksches Schema) ist unitär,
da RTR = E erfüllt ist, und erzeugt die Ähnlichkeitstransformation

R"AR = im: = diag 0.„ 1,).

Cm dies zu bestätigen, legen wir wieder das Falksche Schema an.

[ 1/\/2- 1/\/2-] R «

i/J2 — i/\/2

o 2 i\/2- — i\/E
A _ _ AR

-2 o — J2 — J2

ET [1/\/E -1/x/E] [ 2a o JFJAR _

1/\/2 i/\/2 o ——2i

5.2.5.4. Orthogonale und unitäre Matrizen

Die reellen orthogonalen Matrizen bzw. die unitären Matrizen sind durch die
Eigenschaft

AT = A“ bzw. AT = A“

definiert. Da für reelle Matrizen wegen AT = AT beide Definitionen übereinstimmen
sind die reellen orthogonalen Matrizen spezielle unitäre Matrizen. Es reicht also aus
wenn wir die Herleitung einer einfachen Eigenschaft der Eigenwerte dieser Matrizen
nur für die unitären Matrizen vornehmen; denn diese Eigenschaft besitzen dann auch
die Eigenwerte der reellen orthogonalen Matrizen. Es sei also A eine unitäre Matrix
und r ein Eigenvektor von A mit dem Eigenwert /'., d. h. es gilt Ar = /Ir, r =l= o. Wir
transportieren beide Vektoren Ar und Ar und gehen zu den konjugiert komplexen
Werten über, so daß

<5)’ = (ET
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oder nach Auflösen der Klammern
i-‚TÄT = j_’l.-‘r

entsteht. Diese Zeilenvektoren werden nun mit den entsprechenden Spaltenvektoren
von Ar = Ärmultipliziert, woraus sich

rTÄTAr = 21i”:-

ergibt. Aus ÄTA = A“A = E und iTr =l= 0 (wegen r # o) folgt unmittelbar

2.71 = 1.

Setzen wir hier noch ü: = Ml’, so ist damit die Gültigkeit des folgenden Satzes er-
wiesen: ‘

Satz 5.25: Die Eigenwerte reeller orthogonaler Matrizen und unitärer Matrizen sind
dem Betrage nach gleich eins; sie sind also in der Form

Ä = e“" = cosrp + isincp

darstellbar.

Mit diesem Satz ist der wichtigste Unterschied zu den bisher behandelten speziellen
Eigenwertproblemen genannt. Für die Eigenvektoren reeller orthogonaler und unitärer
Matrizen gelten ähnliche Aussagen wiefür die hermiteschen oder die schiefhermitesehen
Matrizen. Wir verzichten darauf, diese Aussagen ausführlich zu formulieren, sondern
begnügen uns mit einer kurzen Aufzählung: Es gibt ein vollzähliges System linear
unabhängiger Eigenvektoren; zu verschiedenen Eigenwerten gehörige Eigenvektoren
sind (komplex) orthogonal; "eine unitäre Hauptachsentransformation ist stets durch-
führbar.

Beispiel 5.20: Wir betrachten die reelle orthogonale Matrix

[ cos (p J

sin tp '

Aus der charakteristischen Gleichung

Ä’ — Zlcostp +1 = 0

-—sin<p

cos zp

ergeben sich die Eigenwerte zu

7., = costp + isinzp = e"”,

/12 = coscp — isimp = e“?

Die zugehörigen normierten Eigenvektoren’ sind

l " ___ r 2 — __ n

—i /\/2 i /„/2

__ 1 1

Diese Eigenvektoren sind wegen

1 —— -- —— =1 0Fxrr2=[1/\/3.3/\/31"]/\/-£1 2 2
i/x/2—



5.2. Eigenwertprobleme 157

(komplex) orthogonal. Die Hauptachsentransformation demonstrieren wir wieder mit dem Falk-
schen Schema: .

U: 1/„/2— 1 /„/2— J R

——i A/E i /„/'2'

A [coszp —sin<pJ [ 9”’/\/.2: €49’/\/{JAR

sin IP cos?’ “fie”/\/2 i°‘w/\/>2

eine v5] [er 0]....
1A/2 — i/J2 o e-"P

5.2.5.5. Inverse Matrizen

In diesem Abschnitt wollen wir untersuchen, welche Beziehungen zwischen dem
Eigenwertproblem

Ar = Zr (5.1)

und dem Eigenwcrtproblem für die zu A inverse Matrix A",
A"s = ns (5.30)

bestehen. Dabei müssen wir natürlich von Beginn an voraussetzen, daß A nicht sin-
gulär ist, daß also det A + 0 gilt; denn nur in diesem Fall gibt es zu A die inverse
Matrix A“. Wir überlassen es dem Leser als Übung, sich zu überlegen, daß aus der
Existenz von Ar‘ für die Eigenwerte l von A die Folgerung i. =l= 0 gezogen werden

l
i.

wir beide Seiten von (5.1), so daß nach Vertauschung der Seiten

kann. Dann existiert aber auch die Matrix A". Mit dieser Matrix multiplizieren

A-‘r = 71:1-

entsteht. Der Vergleich dieser Beziehung mit (5.30) ergibt r = s und ‚u = Es gilt
demnach

Satz 5.26: Die Matrizen A und A“ haben die gleichen Eigenvektoren. Die zugehörigen S.5.26
Eigenwerte sind zueinander reziprok.

Da A und A“ die gleichen Eigenvektoren haben, sind A und A“ entweder beide
diagonalähnlich oder beide nicht diagonalähnlich. Sind sie diagonalähnlich, so kön-
nen sie durch die gleiche Hauptachsentransformation auf Diagonalform gebracht
werden.

5.2.5.6. Vertauschbare Matrizen

Der Satz 5.26 im vorangehenden Abschnitt gibt zu der Frage Anlaß, ob es außer
der inversen Matrix A“ noch weitere Matrizen gibt, die mit einer gegebenen Matrix A
sämtliche Eigenvektoren gemeinsam haben. Zur Beantwortung dieser Frage nehmen
wir an, daß A diagonalähnlich ist. Es gibt also eine nichtsinguläre Matrix R, deren
Spalten r„ ...‚ r„ Eigenvektoren von A sind, so daß D = R"AR eine Diagonal-
matrix ist.
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Es wird jetzt eine mit A vertauschbare Matrix B betrachtet, also eine Matrix B,
für die

AB = BA

gilt. Wir bilden

R“ABR = R"BAR,
und daraus durch Einfügen der Einheitsmatrix E = RR” zwischen A und B

R“‘ARR“‘BR = R"‘BRR“AR.
In dieser Gleichung wird nun R“AR durch die Diagonalmatrix D ersetzt,

D(R"BR) = (R“BR)D.

V Die Matrix R-‘BR ist demnach mit der Diagonalmatrix D vertauschbar, also selbst

S.5.27

eine Diagonalmatrix:

‚u, 0 0

R"BR= 0 "2 '0 =1").

Wir multiplizieren nun diese Gleichung von links mit der Matrix R, erhalten dadurch

BR=RD
und lesen die neue Gleichung einzeln für jede Spalte r,‘ von R. Sie zerfällt dann in die
n Gleichungen '

Brk = ‘l1.kl'k.

Die Eigenvektoren rk von A sind also auch Eigenvektoren von B, allerdings im all-
gemeinen mit anderen Eigenwerten. Wir fassenzusammen:

Satz 5.27: Vertauschbare diagonalähnliche Matrizen haben die gleichen Eigenvektoren.

An dieser Stelle bringen wir ein andersgeartetes Beispiel. Es soll mit diesem Bei-
spiel gezeigt werden, daß im Satz 5.27 die Voraussetzung der Diagonalähnlichkeit
tatsächlich erforderlich ist. Dazu werden zwei spezielle vertauschbare, aber nicht
diagonalähnliche Matrizen angegeben, die unterschiedliche Eigenvektoren haben.
Es ist also ein Gegenbeispiel zu der falschen Behauptung „vertauschbare Matrizen
haben stets die gleichen Eigenvektoren“. Obwohl solche Gegenbeispiele immer nur
negative Aussagen liefern, spielen sie in der Mathematik eine wichtige Rolle, da
durch sie die Grenzen der als positive Aussagen formulierbaren Ergebnisse abgesteckt
werden können.

Beispiel 5.21: Die beiden Matrizen

[1101 [3011
A=010,B=030

001 oo3

sind vertauschbar, denn es gilt AB = BA. Zu den Eigenwerten z, = 7.2 = l3 = l von A und
‚a1 = ‚u, = ‚u, = 3 von B gibt es jeweils nur zwei linear unabhängige Eigenvektoren n, t2 und
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s1, s2, da der Rangabfall wegen R(A — E) = R(B —— 3E) = 1 in beiden Fällen zwei ist. Linear
unabhängige Systeme von Eigenvektoren werden beispielsweise gebildet durch

I 0 1 0

r,= 0 ‚ I'2= 0 ; S1: 0 , S;= 1

0 I 0 0

Die beiden Matrizen sind also nicht diagonalähnlich‚ denn jede von ihnen müßte sonst drei linear
unabhängige Eigenvektoren haben. Es ist offensichtlich, daß A und B unterschiedliche Mengen
von Eigenvektoren aufweisen. Denn trotz der Möglichkeit, weitere Eigenvektoren durch Linear-
kombination aus den bereits bekannten erzeugen zu können, haben alle Eigenvektoren von B als
letzte Komponente die Null, während es unter den Eigenvektoren von A solche gibt, deren letzte
Komponente von null verschieden ist.

5.2.6. Extremaleigenschaft der Eigenwerte. Rayleigh-Quotient

In diesem Abschnitt betrachten wir nur Matrizen A, die reell und symmetrisch
sind. Die n reellen Eigenwerte A wollen wir nach ihrer Größe numerieren, es wird also

_z‚gz‚g„.gz„
angenommen. Von den zugehörigen Eigenvektoren wird vorausgesetzt, daß sie bereits
orthogonalisiert sind, d. h.‚ daß auch die zu einem mehrfachen Eigenwert gehörigen
Eigenvektoren paarweise zueinander orthogonal sind. Ausgehend von diesen Vor-
aussetzungen lassen sich für den Rayleigh-Quotienten

i x"Ax ‚

R(x) = (5.31)

außerordentlich weittragende Eigenschaften nachweisen, die vor allem bei den nume-
rischen Methoden zur Berechnung von Eigenwerten eine wichtige Rolle spielen.

Zuerst wollen wir in den Rayleigh-Quotienten für x die Eigenvektoren x = r‚.
von A einsetzen, also R(r„) berechnen. Wir erhalten

T: x Tii-(Äkrk)
R(l'„) = -f = T? — Äk. \ (5.32)

Der Rayleigh-Quotient stimmt für die n Eigenvektoren x = r„ mit den zugehörigen
Eigenwerzen 1k überein. Zur näheren Untersuchung des Rayleigh-Quotienten für
beliebige Vektoren x ziehen wir den Entwicklungssatz (Satz 5.12) aus Abschnitt
5.2.5.1. heran. Seine Verwendung ist erlaubt, da die Matrix A symmetrisch und mithin
auch diagonalähnlich ist. Wir können einen beliebigen Vektor x in der Form

x = c‚r1 + czrz + + c„r„ (5.33)

darstellen. Für das Einsetzen in den Rayleigh-Quotienten bringen wir Ax in die
unter Verwendung der Eigenwertbeziehung und (5.33) entstehende Form

AX = C1111] + €23.21‘; ‘i’ --. ‘i’ c,,l,,r,,

und beachten beim Ausmultiplizieren von x"'(Ax) die Orthogonalität der Eigen-
Vektoren;

R0‘) = [c1r, + + c,,r,,]" [c,A,r, + + c,,}.,,r,,]

[clrl + + c,,r,,]"'[c1r1 + + c„r„]

Älcfrfrl + }.2c§r','r2 + + A,,c,’,r,'fr,.

cfrfr, + c§1-$1‘, + + cit}:-,,
. (5.34)
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Da keiner der Koeffizienten cf:-fr, von 1.,. negativ ist, kann dieser Ausdruck nach
unten abgeschätzt werden, indem wir alle 2.„ durch ll ersetzen, es entsteht so

llcfrfrl + llcfirfrz + +}.,c,fr,Tr,.

cfrfr, + c§r;’r2 + + .c,fx-Ir,
R(x) g = 2.,.

Entsprechend läßt sich R(x) nach oben durch R(x) g 1„ abschätzen. Zusammen mit
den Relationen (5.32) für k = 1 und k = n gelangen wir damit zu

Satz 5.28: Der kleinste (größte) Eigenwert einer reellen symmetrischen Matrix ist
das Minimum (Maximum) des Rayleigh-Quotienten R(x)

Ä, = min R(x), 2.„ = max R(x).
x e R" x e R"

Dieses Minimum (Maximum) nimmt der Rayleigh-Quotient für jeden zum kleinsten
(größten) Eigenwert gehörigen Eigenvektor an, d. h.‚ es gilt für alle reellen Vektoren x

Ä; = R(I'x) .5.-R(x) é RU») = Än-

(5.35)

Für dieses Extremalprinzip gibt es einige Verallgemeinerungen, auf die hier nur
hingewiesen wird:

1) Der Ausdruck (5.34) kann in gleicher Weise nach unten durch 12 abgeschätzt
werden, wenn c, = 0 gilt. In der Darstellung (5.33) eines Vektors x gilt aber cl = 0
genau dann, wenn r'fx = O ist, d. h.‚ wenn x zu r 1 orthogonal ist. Das Minimum des
Rayleigh-Quotienten bezüglich aller zu r, orthogonalen Vektoren x ist also gleich l2.
Dieses Verfahren läßt sich offenbar fortsetzen, so daß man jeden Eigenwert als
Minimum oder — falls man die Abschätzung nach oben verwendet — als Maximum des
Rayleigh-Quotienten darstellen kann.

2) Der Rayleigh-Quotient läßt sich auch für hermitesche Matrizen sinnvoll er-
klären, wenn man ihn in der Form

SETAX

R(x) = I‘):
definiert. Sein Wert ist dann für alle komplexen Vektoren x reell.

3) Der Rayleigh-Quotient (5.31) kann ferner so definiert werden, daß das in
Satz 5.28 festgehaltene Extremalprinzip auch für allgemeine Eigenwertaufgaben
gültig ist (siehe Abschnitt 5.2.7.).

Auf Grund der dargestellten Extremaleigenschaft besitzt der Rayleigh-Quotient
große Bedeutung bei der numerischen Lösung von Eigenwertaufgaben; denn es ist
dadurch möglich, ohne großen Rechenaufwand beispielsweise für den kleinsten
Eigenwert eine obere Schranke anzugeben. Dazu hat man lediglich einen beliebigen
Vektor x auszuwählen und den zugehörigen Rayleigh-Quotienten R(x) auszurechnen.
Ebenfalls mit Hilfe von (5.34) kann unter gewissen Voraussetzungen an die gegen-
seitige Lage der Eigenwerte gezeigt werden, daß die so erhaltenen Schranken für 1.„

auch ausgezeichnet gute Näherungswerte für 1,, sind,_wenn x nur annähernd mit dem
zugehörigen Eigenvektor übereinstimmt.

Beispiel 5.22: Die Eigenschaften des Rayleigh-Quotienten sollen an Hand der Matrix A von Bei-
spiel 5.18 gezeigt werden. Die Eigenwerte von A sind

Z1 = 0,44; 7.; = 2; 13 = 4,56.



A

5.2. Eigenwertprobleme I6 l

a) Wir setzen xT = [— l; 0; 1] in R(x) ein und erhalten

xTA = [—4; —2; 4], xTAx = 8,

8
R(X)=—2-=4.

xTx = 2,

ln gleicher Weise wird für x" = [l; —2; 0] der Rayleigh-Quotient

3
.R(x) = —-5— = 0,6

berechnet. Aus beiden Ergebnissen folgt, daß der kleinste Eigenwert von A kleiner als 0,6 und der
größte Eigenwert größer als 4 ist. »

b) Es werden jetzt einige Vektoren x in den Rayleigh-Quotienten eingesetzt, die bereits gute
Näherungen für den zum Eigenwert 1.2 = 2 gehörigen Eigenvektor sind. Wir stellen uns dabei
vor, daß diese Vektoren x durch ein Verfahren zur näherungsweisen Berechnung des Eigenvektors
entstehen und der Eigenvektor selbst einschließlich des Eigenwerts 7.2 noch unbekannt sind.

x} = (2; 1; l] —» R(x,) = 2,3333,

x} = [4; l; 3] —> R(x2) = 2,0769,

x§ = [1o; 1; 91 .. R(x3) ='2,o11o,

x} = [100;l;99]-> R(x4) = 2,0001.

Zum Vergleich:

r§=[l;O;1]—>R(r2)= 2.

5.2.7. Die allgemeine Eigenwertaufgabe

Viele aus praktischen Aufgabenstellungen herrührenden Eigenwertprobleme treten
nicht in der Form (5.1) auf, wie sie bisher betrachtet wurde, sondern sie haben die
Gestalt

Ax = ÄBx . (5.36)

Setzt man hier für B speziell die Einheitsmatrix E ein, so entsteht wieder die Eigen-
wertaufgabe (5.1), die wir in diesem Abschnitt im Unterschied zur Aufgabe (5.36) als
spezielle Eigenwertaufgabe bezeichnen wollen. Eine Eigenwertaufgabe von der Form
(5.36) heißt allgemeine Eigenwertaufgabe. Wie bei den speziellen Eigenwertaufgaben
werden nur solche Lösungen Ä, x von (5.36) gesucht, für die x =i= o ist.

Bei der allgemeinen Eigenwertaufgabe erfolgt die Berechnung der Eigenwerte
und Eigenvektoren sinngemäß wie bei der speziellen Eigenwertaufgabe. Die Eigen-
wertaufgabe (5.36) ist nämlich äquivalent mit der Aufgabe, das homogene lineare
Gleichungssystem

(A — AB) x = o (5.37)

zu lösen. Dieses Gleichungssystem hat genau dann nichttriviale Lösungen x, wenn

det (A -— ÄB) = 0 (5.38)

oder ausführlich

lau.‘ Äbll “i2 ‘ (U712 aln " Zbln

021 " 7-I721 022 " /‘U722 “zu ‘ Äbzn 0

an}. _ Äbnl “n2 — n2 am: Äbnn

ll Manteuflel, Lineare
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gilt. Man hat also zuerst die verallgemeinerte charakieristische Gleichung (5.38) zu

lösen, dann die so gefundenen Eigenwerte in (5.37) einzusetzen und für jeden Eigen-
wert einen oder, je nachdem wie der Rangabfall n —- R(A — AB) ausfällt, mehrere
Eigenvektoren zu bestimmen. i _

Beispiel 5.23: Gesucht sind Eigenwerte und Eigenvektoren der allgemeinen Eigenwertaufgabe für
die Matrizen

5 5 2 —l
A= und B: J.

5 l0 l 2

Die verallgemeinerte charakteristische Gleichung ist

5 -— 2}. 5 + Ä

=25—30}. 5z==o,
5-1 10-2/1 +

sie hat die Nullstellen

Z1 = l, Ä: = 5.

Damit sind die Eigenwerte des Problems gefunden. Der zu 11 = 1 gehörige Eigenvektor r, wird
aus dem linearen homogenen Gleichungssystem (A — 1113):’; = o berechnet (es wird ff = [r, 1 , r; 1]

gesetzt):

3711 + 6)}; = 0,

4711 ‘i’ gfgl = 0.

Eine Komponente kann frei gewählt werden; wählt man ru = 1, so folgt n 1 = -2 und damit

—2 _ —2/ s-
r, = [ Jund norrmert: ti“) = l: \/_J .

1 1/J5

Auf gleiche Weise ergibt sich für den zu Ä; = 5 gehörigen Eigenvektor das Gleichungssystem

""5r12 +10r22 --' 0,

0'71; ‘i’ 0'I'22 =0.

Wählt man ru = 1, so ergibt sich ru = 2, also

rz =[ z] undnormiert: r(;"’= [2/\/E] .

1 _ 1/\/5

‚Wenn die Determinante von B nicht verschwindet, kann die allgemeine Eigenwert-
aufgabe in eine spezielle Eigenwertaufgabe umgewandelt werden, indem man (5.36)
von links mit 3"‘ multipliziert. Es entsteht dann

B“‘Ax = 1.x,

also eine spezielle Eigenwertaufgabe mit der Matrix Ä = B“‘A. Diese Umformung
weist allerdings den Nachteil auf, daß bei dem in der Praxis häufig auftretenden Fall
nivcnnwvna‘-onclnf\‚‘fia— ‘AI;-4.-in.-su A D A...-AL ‚II,‘ llvulb:axl:|rnf:t\n D-l A A}; Cuanamabnia tynvwlnt-Anbylll1.l.lCLllb\allC1 IVIGLLILCU. I1, I) UUIULI UIC LVLUILIPIIILGLIUII I.) £1 LUG Q_y11.llll.ULl [Ü VGA LUICH‘

geht, die Matrix Ä also im allgemeinen nicht mehr symmetrisch ist. Die allgemeine
Eigenwertaufgabe für symmetrische Matrizen A, B läßt sich dagegen sowohl theo-
retisch als auch praktisch in ihrer ursprünglichen Form (5.36) leichter behandeln,
wenn man gewisse Begriffe wie beispielsweise die Orthogonalität und den Rayleigh-
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Quotienten in einer anderen, der Aufgabenstellung angepaßten Weise definiert.
Multipliziert man nämlich die Eigenwertrelation

Axk = ÄkBXk

von links mit einem Eigenvektor x,, der zu einem von 1.„ verschiedenen Eigenwert
2., =i= im gehört, so entsteht

xfAxk = l,,x}‘Bxk. (5.39)

Geht man andererseits von Ax, = 1,-Bx, aus, so ergibt sich durch Multiplikation von
links mit XI

XIAX, = }.,xfBx, . (5.40)

(subtrahiert man nun (5.40) von (5.39) und setzt die infolge der Symmetrie von A
und B geltenden Beziehungen

xZBx,- = xfBx,,, x',‘,Ax, = x,TAx,,

ein, erhält man

O = (1„ — 2.,) xfBxk. ‚_

Wegen 2.„ =l= 2.,- gilt also

XTBXk = 0. 5.41)J

Zu verschiedenen Eigenwerten gehörige Eigenvektoren sind demnach nicht unmittel-
bar orthogonal, sondern nur in dem durch (5.41) festgelegten Sinn.

Auch der Rayleigh-Quotient läßt sich in die Untersuchung der allgemeinen Eigen—
wertaufgabe einbeziehen, wenn man ihn in der Form

xTAx
xTBx

definiert. Um garantieren zu können, daß der Nenner von R(x) nicht null wird, ist
dazu allerdings die zusätzliche Voraussetzung erforderlich, daß die Matrix B positiv
definit ist. Die sich unter dieser Voraussetzung insgesamt für die Eigenwerte und
Eigenvektoren ergebenden Aussagen werden ohne Beweis im folgenden Satz an-
gegeben. '

R(x) = (x =|= o) (5.42)

Satz 5.29: Es werde vorausgesetzt, daß die in der allgemeinen Eigenwertaufgabe (5.36)
stehenden Matrizen A, B symmetrisch sind und die Matrix B zusätzlich positiv definit
ist. Dann sind alle Eigenwerte 3.„ der allgemeinen Eigenwertaufgabe (5.36) reeIl‚ und die
Eigenvektoren rk können in reeller Form dargestellt werden. Ferner existiert stets ein
vollständiges System linear unabhängiger Eigenvektoren, die der verallgemeinerten
Orthvgonalitätsbeziehung

r,"Br,, = 0 für j+ k

genügen und die Normierungsvorschrzft‘

rfBrk = l

erfüllen. Der verallgemeinerte Rayleigh-Quotient (5.42) besitzt die gleichen Extremal-
eigenschaften (5.35) wie der Rayleigh-Quotient für die spezielle Eigenwertaufgabe.

11*

S.5.29
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5.2.8. Anwendungen

5.2.8.1. Hauptachsentransformation quadratischer Formen

Unter einer n-dimensionalen quadratischen Gleichung versteht man eine Gleichung
der Gestalt ’

n n ‚ n

2 2 aJ-„xjxk + 2 bkxk + co = 0. (5.43)
j=l k=l k=l

Der quadratische Anteil dieser Gleichung besteht dabei aus einer sogenannten
quadratischen Form. Bei dieser Schreibweise kommt das Produkt zweier verschiedener
Variablen x), x„ zweimal vor: einmal im Summanden ajkxjxk und einmal im Sum-
manden a,,,xkx,-, was zunächst natürlich unzweckmäßig erscheint, da bei der Zu-
sammenfassung beider Summanden die Form kürzer geschrieben werden könnte.
Das doppelte Auftreten der Summanden benutü man jedoch dazu, die Symmetrie-
beziehung

am = “n: (f =l= k)

herzustellen. Bildet man nun aus den Koeffizienten der Gleichung (5.43) die Matrix
A = (a,-,,) und den ‘Vektor b’ = [bl , ..., b,,], so kann (5.43) in der Gestalt

XTAX + bTx + co = 0 (5.44)

geschrieben werden, wobei A eine symmetrische Matrix ist. Die Bedeutung der im
Abschnitt 5.2.4. eingeführten Ähnlichkeitstransformation (Darstellung für symme-
trische Matrizen im Abschn. 5.2.5.1.) besteht nun gerade darin, daß durch den Über-
gang zu einem speziellen Koordinatensystem die Matrix A Diagonalform erhält
und somit die quadratische Form nur noch rein quadratische Glieder aufweist. Faßt
man diese dann noch mit den linearen Gliedern zusammen (quadratische Ergänzung !),-

so weist die gesamte quadratische Gleichung nur noch Quadrate und eine Konstante
auf. Im einzelnen sind dabei folgende Schritte auszuführen.

Schritt l. Berechnung der Eigenwerte 1„ und Eigenvektoren rk von A.

Schritt 2. Orthogonalisierung derjenigen Eigenvektoren, die zu einem mehrfachen
Eigenwert gehören; Normierung sämtlicher Eigenvektoren.

Schritt 3. Koordinatentransformation (yT = [y,, ..., y,,] neue Koordinaten)

x = Ry, R = [13, ...,r,,]. (5.45)

Ergebnis: Quadratische Gleichung der Gestalt

Ihyf + }.2y§>+ + Z,.y,’, + d,y1 + dzyz + + d,,y,. + co = 0. (5.46)

Schritt 4. Gilt 7.„ + O, so können durch

2 dk 2
3k)’: + dm. = 44%: + " T";

die linearen Glieder von (5.46) mit den quadratischen Gliedern vereinigt werden.
Will man später gewisse im y-Koordinatensystem beschriebene Punkte wieder

im ursprünglichen x-Koordinatensystem angeben, so erfolgt dies ebenfalls mit der
Beziehung (5.45);

Dadurch, daß in (5.45) die Koeffizienten der quadratischen Terme gerade die
Eigenwerte der Matrix A sind, läßt sich bei den quadratischen Gleichungen mit zwei
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Veränderlichen — den Gleichungen der Kurven 2. Ordnung oder Kegelschnitts-
gleichungen - die Art des durch sie beschriebenen Kegelschnitts erkennen. Geht man
z. B. von der Gleichung r

aux} + 2aux,x2 + aux: + b,x, + bzxz + co = 0

aus, so kann man diese in der Form

xTAx + bTx + co = 0 A (aw)

mit AT = A schreiben. Die Eigenwerte von A werden aus der Gleichung

det (A —- AE) = O

bestimmt. Die zugehörigen normierten und orthogonalisierten Eigenvektoren seien r,
und rz. Bildet man R = [rl ‚ 1'2] und x = Ry‚ so geht

xTAx + bTx + co = 0

über in

yTRTARy + bTRy + co = 0; (M)

dabei ist RTAR eine Diagonalmatrix‚ deren Diagonalelemexite die Eigenwerte von A
sind. Aus

aux} ‘l’ 2012x1262 + azzxfi + b1.X'1 + bzxz C0 = 0

wird dann ‘

117i + 12)’: + (71151 + 721172) J’1 + (712171 + "22b2) J’2 "l" Co = 0-

Für Z, , A, =1: O läßt sich die letzte Gleichung umformen in

Ä1<y1 +Ä2<y2 + Co=0‚

wenn

d,’ d}
d1 = rllbl + "21b2a d2 = 71251 + "22b2» Co = “' —/-" ‘i’ 4} )+ Co
M ' x ‘l '2 n

gesetzt wird.

Wir unterscheiden folgende Kegelschnitte:

I. C0 ä: 02

(1)11 ‘l’ /7-2: 3-:12 > 0

Äl > O, 7.2 > 0, Co < 0 — (reelle) Ellipse,

(hier wie’ im folgenden sind die jeweils entsprechenden Fälle weggelassen; z. B. ergibt
Z, <' 0, Ä; < 0, Co > 0 natürlich ebenfalls eine reelle Ellipse)

Ä, > 0, 22 > 0, Co > O — imaginäre Ellipse,

(2) 11 =|= 22, 1,12 < 0 — Hyperbel;

Z1 = A2 ä: 0

A1 = Ä; > 0, Co < 0 — (reeller) Kreis,

Z1 = Ä; > 0, Co > 0 —-‘ imaginärer Kreis,

I
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II. für Co = O:

(4) Ä, # l2, 7.1 .z > 0 — zwei imaginäre Gerade,

lzlz < 0 — zwei reelle Gerade;

III. aus der Gleichung

Zzyf + /1zyz’+ dzyz + dzyz + c0 = 0

erhält man b

(5)‚für 2., + o, 22h = o, dz 4: o — Parabel;

(6) für Äl # O, lz = 0, d, .= dz = 0, Zzco < O — zwei parallele reelle Gerade,

7., =l= 0, }.z = 0, d, = dz = 0, Zzco > 0 — zwei parallele imaginäre Gerade;

(7) für ll O, lz = 0, dz = dz = co = 0 — zwei zusammenfallende Gerade

(yz-Achse).

Im Falle dreier Veränderlicher (n = 3) erhält man ganz analog für Z, , /'.z, /".3 # O

aus (nur) die Diagonalform (m), dann durch quadratische Ergänzung
Z - '2 3

}.z(yz +%1) +x‘.z(yz +}.z(y3 +%’:) + C0 =0

mit -

d1 = 711b; + V2152 +"31b3s d: = 712171 + 72252 ‘i’ 73253:
2 2 2

dz = rzzbz + rzzbz + rzzbz, C0 = — + + + co

und hieraus die folgenden Flächen 2. Ordnung:

I. Für Co 4: 0:

(1) Z1 > O, Zz > 0, 7.3 > 0, C0 < 0 ~ (reelles) Ellipsoid,

2.1 > 0, lz > 0, /".3 > 0, Co > 0 —- imaginäres Ellipsoid,

(2) Ä, > 0, lz > O, 23 <0, Co < 0 — einschaliges Hyperboloid,

Ä‚ > O, lz > O, Z, < 0, C0 > 0 — zweischaliges Hyperboloid;

II. für Co = O:

(3) 21 > o, 2, > o, 2., < o —V(ree1ler) Kegel,

Zz > 0, Az > 0, 23 > O — imaginärer Kegel;

III. aus der Gleichung

11)’? 7*‘ 3-zyzz + 23)’? + d1)’: + d2}'2 + dsya ‘i’ Co = 0

erhält man 1

(4) für /‘L, > 0, A, > O, Z3 = 0, dz + 0 — elliptisches Paraboloid,

Z, > 0, Ä, < 0, /‘.3 = 0, dz =l= 0 — hyperbolisches Paraboloid,

(5) für 2., =l= 0, lz = 0, 2.3 = O, dz = O, dz, # 0 — parabolischer Zylinder,
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' (6)fl'iI‘}»1>0,l2>0,l3=0,d1=d2=d3=0, C0<0
— (reeller) elliptischer Zylinder,

L>QL>Q%=Qm=@=@=Q%>O
— imaginärer elliptischer Zylinder,

}.,>0, }L2<0, 513:0, d‚=d‚=d3=O, c„<0
hyperbolischer Zylinder;

(7) mm, >0, 22:0, 13:0, d, =d2=d_.,'=O, co<0
— Paar paralleler (reeller) Ebenen,

21>0,/'12=0, 13:0, d1=d2=d3=0, co>‘0
' — Paar paralleler imaginärer Ebenen;

(8) fürl, >0, }.2<O, Z3=0, d, =d2=d3=0, co?-0
4 Paar sich schneidender (reeller) Ebenen,

}.,>0, }.2>O, 13:0, d1=d2=d3=O,.co=0,
— Paar sich schneidender imaginärer Ebenen,

Ä1>O‚}.‚=O, l3=0‚d1=d‚=d3=O, co=0
— zwei zusammenfallende Ebenen.

Beispiel 5.24 f Wir betrachten den durch die Gleichung

5:3,+2x§—4x,x2+2x,—6x,+4=o

beschriebenen Kegelschnitt. Diese Gleichung erhält die Form (5.44), wenn

A=LZ z]. b=l-:l»
gesetzt wird. Aus der charakteristischen Gleichung -

[5 — 7. -—2
‘=2——Ä =_22__Z] i. 7+6 0

c

ergeben sich die Eigenwerte

i»! = 1, 1.2 = 6.

Da sie voneinander verschieden und beide positiv sind, handelt es sich um eine Ellipse. Aus den
beiden Gleichungssystemen (A — }.,,E) n, = o werden die Eigenvektoren

1 1 J 1 2

""„/5- 2 "’”\/3‘ -1

berechnet. Als Transformationsgleichungen erhält man gemäß (5.45)

1 1 -

Jr‘; = —= (71 + 2»). xz E "—-‘ (Zn — n).\/5 \/5

f
\

fa
?! .5
;

S
,

Wir setzen nun diese Substitutionen in diegegebene Kegelschnittgleichung ein. Es entsteht dann

yf+6yä—2„/;y‚+2\/5—‚v;+4'=0
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und daraus

_ 2

(y1__\3')2+ (Y2+———6) -1

11 11 '

6 3'6

Aus dieser Forrn der Ellipsengleichung können die Koordinaten y?” yg-=> des Ellipsenmittelpunkts
und die Längen a, b der Halbachsen abgelesen werden: ’

'y§“" = v’: a = x/1-175.

n" = "w/5—/5: b = x/1_1/5- 1

Der Ellipsenmittelpunkt kann mit Hilfe der Formeln (5.47) auch im x-Koordinatensystem beschrie-
ben werden:

x‘‚'"> = 2/3, x§,_'=> = 13/'6.

Die Längen der Halbachsen sind auch im x-System die gleichen, da die beiden Koordinatensysteme
durch eine orthagonale Transformation auseinander hervorgehen. Die Richtung der Ellipsen-Haupt-
achsen wird im x-System durch die Eigenvektoren r, ‚ r; angegeben. —

Als Anwendungsbeispiel in der Mechanik sei auf die Ermittlung der Haupt-
spannungsrichtungen im Rahmen der Untersuchungen des allgemeinen Spannungs-
und Deformationszustandes hingewiesen.

5.2.8.2. Trägerschwingung mit Einzelmassen

Von den in der mathematischen Praxis auftretenden Eigenwertproblemen darf
behauptet werden, daß sie zum großen Teil aus der Technik, und dort wiederum aus
der Physik, Chemie und den verwandten Gebieten Mechanik und Elektrotechnik
stammen. Es sind in den meisten Fällen Schwingungsvorgänge, aber auch Probleme
bei Knickungs- oder bei Dehnungsvorgängen in der Mechanik oder bei energetischen
Untersuchungen in der Physik, die auf Eigenwertprobleme führen. In nahezu allen
dieser Fälle erfolgt die Beschreibung des praktischen Problems zunächst durch diffe-
rentielle Beziehungen, die letztlich zu einem Eigenwertproblem bei Differential-
gleichungen führen‚ und erst bei der mathematischen Lösungieines solchen Problems,
sei es durch Diskretisierung oder durch Ansatzmethoden, treten Matrizeneigenwert—
probleme auf.

m, m; /n,,

74')/7:\1x1\\i,2 . . ._fyLL,/$7
~____..g~/’ „ BiId5.1

Als typisches Beispiel für das Auftreten von Eigenwertaufgaben bei Schwingungs-
Vorgängen wählen wir die Schwingung eines Trägers mit Einzelmassen (Bild 5. l).
Der Träger sei beiderseits gelenkig gelagert, habe die Länge I und die Biegesteifigkeit
EJ; seine Masse soll gegenüber den Einzelmassen vernachlässigbar sein. Die n Einzel-
massen seien, vom linken Aufpunkt an gerechnet, in den Entfernungen x, , x; , ..., x„
angebracht. Die Ausbiegung y des Trägers soll nur an den Stellen untersucht werden,
an denen die Massen angebracht sind, es sind also nur die Auslenkungen y1 , y; , _v,,
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zu bestimmen. Auf die Berechnung der Einflußkoeffizienten am, die über die Be-
ziehung

yk = ajkKj

den Einfiuß einer an der Stelle x, wirkenden Kraft Kj auf die Auslenkung yk an der
Stelle x„ angeben, können wir hier nicht eingehen, sondern müssen das Ergebnis
angeben:

x*(l —— x )2 x x x’. __ ‚ ‚ajk= (2Tä+7%xj-_ ) ‘We!’
und sonst gilt- a“ = am. Zusammen mit dem Trägheitsprinzip

K} = ——mjj5j

und der Symmetrie der Einflußkoeffizienten a,-k = aky ergibt sich daraus das lineare
System von Difierentialgleichungen zweiter Ordnung

‚V1 = "allmlfil — axzmzyz " “ ‘11nmn)7n

yz = —a12m1j;1 " 02277125‘: "' " aznmnjiu

yn = _a1nmly1 _ a2n7n2.‘."'2 _ — annlnnyna

welches mit den Matrizen

an an an m, O O '

A_ a1; an an M _ O m, 0

(11,, (12,, ...a,,,, .0 0 m„

und dem Vektor yT = [y„ yz, ..., y,,] in der Gestalt

y = ‘-AMy (5.48)

geschrieben werden kann. Wir wollen nur die sogenannten Eigenschwingungen be-
trachten, bei denen alle Massen mit gleicher Frequenz w und gleicher Phase schwin-
gen. Für den zeitlichen Verlauf der Durchbiegung y,„(t) kann dann der Ansatz

yk(t) = y,, cos wt

gemacht werden. Eingesetzt in (5.48) ergibt sich wegen )7,‘ = -w‘y,, das Eigenwert-
problem

y = w2AMy‚
. . l . . . .

das nach der Substitution Ä = w: die Form einer speziellen Eigenwertaufgabe an-
nimmt:

AMy = Äy; (5.49)

dabei ist jedoch die Matrix AM im allgemeinen nicht symmetrisch. Eine für die wei-
teregBehandlung günstigere Form der Aufgabe entsteht durch die Substitution

2==My,

denn damit erhält (5.49) die Form einer allgemeinen Eigenwertaufgabe

Az = ÄM“z
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mit einer symmetrischen Matrix A und der positiv definiten Matrix
-1 _

B: o...o

1M4: o;;...o

o1o...mi

Dieses Eigenwertproblem erfüllt somit alle Voraussetzungen des für diese Aufgaben
im Abschnitt 5.2„7. angegebenen Satzes 5.29.

5.2.9. Aufgaben

=i= 5.1: Man berechne die Eigenwerte und zugehörigen Eigenvektoren der Matrix

5 --1 -1

l 3 1

—2 2 4

4: 5.2: Zur Matrix

4o 2

—6A1—4
-60 —3

\

sind die Eigenwerte und ein vollständiges System von Eigenvektoren (d. h.‚ ein System mit maxi-
maler Zahl linear unabhängiger Eigenvektoren) zu berechnen.

* 5.3: Man berechne die Eigenwerte und Eigenvektoren der Matrix

12-1

—231
-381

* 5.4:Die Matrix

1 -1 0

-1 3 5

o J5 1

ist durch eine Ähnlichkeitstransformation in Diagonalgestalt zu überführen. Wie lautet die Trans-
formationsmatrix R?

at 5.5: Man beweise: Eine quadratische Matrix A ist genau dann regulär, wenn ihre Eigenwerte
sämtlich von null verschieden sind. '

a: 5.6: Die beiden Matrizen

A=[ 2 \/3/2]’ B=[ 2/\/3" —1/2]

\/3/2 1 -1/2 J?
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sind vertauschbar und diagonalähnlich; sie haben folglich nach Satz 5.27 gleiche Eigenvektoren.
Manüberzeuge sich von diesen Eigenschaften durch Nachprüfen der Vertauschbarkeit und Berech-
nung der Eigenvektoren.

5.7: Es ist zu zeigen, daß die quadratische Gleichung

5x2 + 6y2 + 722 — 4xy — 4yz = 36

ein Ellipsoid darstellt, dessen Halbachsen die Längen 2 - v”? V/-6- und 2 haben und in Richtung
der Vektoren .

2 2 ' —1

rt: 2 , r2= —-1 , r3=

1 -2 —2

weisen.

5.8: Das in Abschnitt 5.2.8.2. beschriebene Problem der Balkenschwingung erhält bei einander
gleichen’ Einzellasten die Form einer speziellen Eigenwertaufgabe. Für den Fall von drei gleichen
und gleichabständig verteilten (s. Bild 5.2) Lasten berechne man die charakteristischen Kreis-
frequenzen w und die zugehörigen Ausbiegungs-Vektoren.

+
-
-

5.3. Austauschverfahren

5.3.1. Der Austauschschritt

Eine lineare Funktion

y, = (aux, + alzxz + k, an, an, k konstant,

stellt geometrisch eine Ebene im Raum dar. Für k = 0 enthält die Ebene den Null-
punkt; es wird in diesem Fall von einer Lfnearform oder einer homogenen linearen
Funktion gesprochen.

Es seien zwei Linearformen gegeben:

J‘: '-" auxx + 012-"2 (5-50)

und

J": = (121351 ‘i’ a22-\'2- (5-5.1)

Für an =l= 0 ist

l 012 -x, — a“ y, — ‘Exp (5.52)

(5.52) setzen wir in (5.51) ein und erhalten

012021)
an

021
J’: 7‘ ‚V1 + a2: ‘

. ' an
x2. (5.53)
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(5.52) und (5.53) stellen zwei abgeleitete Linearformen dar; xi ist abhängige Ver-
änderliche, yl unabhängige Veränderliche geworden. x, und y, sind also ausgetauscht
worden, daher die Bezeichnung „Austauschschritt“. Die folgende schematische Dar-
stellung erleichtert die Übersicht:

‘X1 x2 I)’: x2

l an
yl 011 012 x1 -——— ————

"" I111 011 (5154)

021 012021
‚V2 021 022 .72 022‘—*‘

011 011

Als Stützelemeiit oder Piuotelement‘) bezeichnet man das im Kreuzuiigspunkt der
Spalte (Pivotspalte) und der Zeile (Pivotzeile) der miteinander auszutauschenden Ele-
mente (hier: Spalte unter xi bzw. Zeile neben y,) stehende Element (hier: a„).

Bei der Durchführung der Austauschschritte gilt für alle Elemente, die nicht in der
Pivotzeile oder in der Pivotspalte stehen, die sog. Reeliteckregel:

Diagonal gegenüber dem Sriitz- oder Pivotelement (hier: beim Element an) wird
folgende „Korrektur“ angebracht: Es wird das durch das Pivotelement dividierte
Produkt der beiden in der anderen Diagonale als das Pivotelement stehendenElemente

. . . a _a
(von diesem Element) subtrahiert (hier: a2; -

ll

Linearformen von mehreren Variablen:
4

yi = 2 a,kx,_.; = 1, 2, 3.
k=l

Beliebiger Austausch z. B. von x3 mit yz: Voraussetzung ist, daß an (3. Spalte ist
„Pivotspalte“, 2. Zeile ist „Pivotzeile“) ungleich null ist.

Schema:
X1 X2 x3 x4

‚V1 011 012 013 014 _ _

*- (3.36)
J"2 021 02: 023 024

f3 031 032 033 034

x1 -"2 J‘: -"4

021013 022013 013 024013
J'1 0n“—‘—— 012-—‘*——‘ i ”n4*"'—“-‘

023 023 023 023

021 022 l 0 -

—+ x3 — — — —— — -11 (3.57)
023 023 023 023

„3 ah _ _“.-Mi an - "35 an _ 2&2
"23 023 023 023

Die am Austausch nicht beteiligten Elemente x, , x2, x4 verhalten sich wie ‚v; vom
Beispiel (5.54) und y, , ys wie y; vom Beispiel (5.54).

‘) pivot, frz. Angel, Zapfen, Stütze
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Regel:

a) Das Pivotelement (Stützelement) geht in seinen reziproken Wert über;

b) die übrigen Elemente der Pivotspalte werden durch das Pivotelement divi-
diert;

c) die übrigen Elemente der Pivotzeile werden durch das Pivotelement divi-
diert und mit dem entgegengesetzten Vorzeichen versehen.

d) Die restlichen Elemente der Matrix werden transformiert, indem man
jeweils das Rechteck aus 4 Elementen derart bildet, daß in der dem zu
transformierenden Element gegenüberliegenden Ecke das Pivotelement
steht; dann wird die Rechteckregel angewendet.

Der Austauschprozeß ist reversibel; wenn man auf (5.57) den Austausch mit dem

Pivotelement -1— ausübt, gelangt man zu (5.56), d. h., wenn x, , x3 ‚ x3, x4, y,., y, , y3
a

die Relationen (5.57) erfüllen, so erfüllen sie auch die Relationen (5.56).

5.3.1.1. Beispiel

Beispiel 5.25:

Xi x2 X3 Xi ‚V3 X3

‚v1 2 l 3 y; 0,5 0,5 2,5 _

y, 4 E 5 -> y; 1 1- 4 (558)

‚v3 i E l x2 — 1,5 0,5 —O,5

~ 1,5 — —0‚5

In (5.58) ist unter die alte Matrix die neue Pivotzeile — ohne das Element der Pivot-
spalte — geschrieben, die sog. „Kellerzeile“. Nun ist z. B. a1 1 folgendermaßen“ zu
transformieren :

a a a
an —’ an “' 31 l2 = an ‘i’ (_"3L)a12;

032 032

oder a2, folgendermaßen:

’ a a aa2l_)a2l"L2=a21+(— 3l)a22§
032 032

oder a2 3 folgendermaßen:

a a aa23‘*a23“3:i=a23+(‘ 33)a22~

. . a [l . .

Dabei sind —- -(1-35 nd -— a” die unter den zu transformierenden Elementen stehen-
32 32 '

den Elemente der Kellerzeile und an sowie an die neben den zu transformierenden
Elementen stehenden Elemente der Pivotspalte. Damit kann die letzte Teilregel (d)
für einen Austauschschritt folgendermaßen formuliert werden:

d) Ein Element im Rest der Matrix wird transformiert, indem man zu die-
sem das Produkt addiert, welches aus dem darunterstehenden Element der
Kellerzeile unddem danebenstehenden Element der Piuotspalte gebildet wird.
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Die Berechnung eines transformierten Elementes erfordert hiernach genau eine
Multiplikation oder Division; also ergibt sich: Ein Austauschsclzritt für m Funktionen
und n Veränderliche erfordert mn Multiplikationen und Divisionen, für m = n also
n’ Operationen.

5.3.1.2. Der Austauschschritt wird rückgängig gemacht

Wir vertauschen y3 wieder mit x2.

l xx )"3 xs X1 x2 x3

yl V095 _(_)_9§ 295 y}. 2

y. 1 1 4 ” J’2

x2 —l‚5 9E —0,5 y3 3 2

\ 3 1

Als Transformierte erhalten wir die Ausgangsmatrix.

5.3.1.3. Summenkontrollen

Wenn die Zeilensumme gleich 1 ist und alle x,, = 1 gesetzt werden, dann sind alle
‚n a 1. Da die Zeilensummen nur in Ausnahmefällen gleich 1 sind, machen wir sie
zu 1, indem wir eine Spalte (die a-Spalte) anfügen; bei dem Austauschschritt wird
die angefügte a—Spalte wie jede x-Spalte transformiert. Die Rechenkontrolle besteht
darin, daß nach der Transformation die Zeilensummen der transformierten Matrix
ebenfalls gleich l sein müssen. Wir betrachten wiederum (5.58)

I x, x2 x3 o’ I x, y; x3 o’

yl 2 1 3 -5 q yl 0,5 0,5 2,5 —2,5 (5.59)

y, g 5 -10 yz 1 1 4 -5
y; 3 g _1 —_5 x2 -1,5 0,5 —0,5 2,5

—l‚5 -0,5 2,5

5.3.2. Transponierte Beschriftung

Aus der Matrix (5.56) können auch Linearformen gebildet werden, indem man sie
nach Spalten statt nach Zeilen liest:

I U1 U2 * U3 7.74

‘"1 011 012 013 014 (5 6o)

"02 021" 022 023 024

“'03 031 032 033 034
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Ausgeschrieben :

Z. B.: U1 = —a11u1 " (121112 — £13,113

oder allgemein:
3

v,= —;_la,,,u,, für 'z'=1',2, 3,4. 4 (5.61)

Die Formen v, in (5.61) heißen die zu den ursprünglichen Formen (5.56) transpo-
nierten Formen. Es soll mit (5.61) ein Austauschschritt vorgenommen werden, und
zwar soll wiederum mit dem Pivotelement n23 gearbeitet werden, d. h. v3 soll unab-
hängige und u, abhängige Variable werden. Durchführung nach den Regeln a) bis d),
nur daß in b) und c) die Wörter „Spalte“ und „Zeile“ vertauscht werden:

I U1 i V172 173 U4 I v1 02 ‘"2 U4

‘013
‘01 011 012 013 014 ‘"1 011 012 "“‘a 014

— 23
—)

a a l (124
‘02 021 022 023 024 U3 ‘Z3- ‘E’ "‘ ——

'— “ Z “ - 023 023 023 023

‘033
‘"3 031 032 033 034 ‘"3 031 032 ‘a 034

-— 23

mit

021013 022013
011 =011 ‘i: 0‘12=012 ‘i’:

' 023 023

024013 021033
014=014“““a 031 =031 ‘L

023 023

022033 024033
0:52:03: ‘T: 034=034‘?-

23 23

Nachträgliche Vorzeichenänderung ergibt schließlich:

I "1 U2 02 U4
1

0 3
‘"1 011 012 f‘ 014

23

_+ __v3 ‘021 ‘022 1 ‘024 (5.62)

023 023 023 023

a
‘"3 031 032 '-33‘ 034

023

Damit stimmt (5.62) genau mit (5.57) überein. Es gilt der folgende

Satz 5.30 (Dualitätssatz): Ein Austauschschrittfür gegebene Einearformen stimmt voII- S.5.30
ständig überein mit dem Austauschschritt für die transpqnierten Formen, der dasselbe
Pivotelement benutzt.
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Den entstehenden Nachteil, daß nach (5.54) die Vorzeichen in der Pivotzeile ge-
ändert werden müssen, d. h. die Pivotzeile anders behandelt werden muß’ als die
Pivotspalte, kann man vermeiden, indem (5.57) folgendermaßen geschrieben wird:

[xi x2 yz x4

013
‚V1 “i1 “i2 '—"‘ “i4

023

x 02i 022 -1 024
_ 3 __.. i 2. _..._

023 023 023 023
/

a
ya “ax ‘X32 ‘i3- 034

023

Man spricht hier von einem modifizierten Austausch.

5.3.3. Inversion

Bei n gegebenen Linearformen von n Variablen soll versucht werden, durch wieder-
holte Austauschschritte alle x an den linken Rand und alle y an den oberen Rand

. zu bringen. Wir greifen zurück auf Beispiel 5.25 (Vgl. (5.58)).

Nach Austausch von x2 und y3 ergab sich

I Xi X2 X3 I Xi ‚V3 x3

y, 2 1 3 y, 0,5 0,5 2,5

y; 4 2 5 " ‚V2 i 1 4

y_~, 3 2 x; -1,5 0,5 —0,5

-1,5 _ —0,5

Wir wenden das Verfahren noch einmal an; zu diesem Zweck suchen wir ein Pivotelement, das
ungleich 0 ist, z. B. a, 1:

x1 ‚V3 x3 yi ‚V3 x3

y, (L5 E Ei x, 2 ——l —5

y, T 1 4 "’ y, 2 o -1

x2 llä 0,5 —0,5 x2 —3 2 7

—— l —5

I ‚Vi }’3 X3 I J’: J’3 ‚V2

‚x; | 2 ——l —5 ‚x, l —s —1 5

y, 2 _o_ 3- " _x3 2 0 —-l

x2 —: 2 T x2 ll 2 -7

2 0
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Das Resultat schreiben wir in folgender Form:

xx = "3}'1 + 5}’: — Y3

11)’: " 7J’2 + 2}’: (5-63)

x3 = 2J’: — .72

x2

Die zugehörige Matrix

——8 5 -1

11 -7 2 (5_54)

2 -1 0

ist die inverse Matrix von (5.58).

Für einen Austauschschritt bei einer Matrix vom Format (n, n) brauchen wir n’
Multiplikationen und Divisionen, für die Inversion einer solchen Matrix demnach n3
Divisionen und Multiplikationen, da n Austauschschritte erforderlich sind.

Beispiel 5.26: Das folgende Gleichungssystem soll durch Inversion gelöst werden:

-2x1+x;+3x3= 4-,_

4x, + 2x2 + 5x3 = 6, ’ (5.65)

3x1 + 2x2 + x3 —3.

Die Kocffizientenmatrix A ist die Ausgangsmatrix von (5.58) (Beispiel 5.25). Es wird verlangt,
daß y; , y; , ‚v3 die Werte 4, 6, —3 haben sollen. Setzt man diese Werte in die inversen Formen (5.63)
ein, so ergibt sich ‘

x, = l, x2 = —4‚ x3 = 2 (5.66)

als Lösung des Gleichungssystems. Wegen der eingangs (vgl. 5.3.1.) nachgewiesenen Reversibilität
des Austauschprozesses stellt (5.66) tatsächlich eine Lösung von (5.65) dar. - Das Einsetzen in die
inversen Formen verlangt n2 Multiplikationen.

Wenn k Gleichungssysteme mit derselben Koeffizientenmatrix A und k verschiedenen rechten
Seiten aufzulösen sind, müssen also

n3 + knz

Multiplikationen und Divisionen durchgeführt werden.

Beispiel 5.27: Wenn in (5.65) die rechten Seiten alle gleich null sind, also das zugehörige homo-
gene Gleichungssystem

2x1 + X2 + 3x3 = O,

4X; + 2X; + 5x3 = O,

3X1+2X2+ x;‘=0 /

zu lösen ist, so gibt es bei diesem Beispiel nur" die triviale Lösung (oder Null-Lösung)

x, =x2=x3=0,

weil sich aus (5.63) ergibt, daß für yl = y; = y; = O auch

x, = x2 = x3 = O

folgt.

12 M-anteuffel, Lineare
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Beispiel 5.28: Es soll die Inversion für folgende Linearformen durchgeführt werden:

X1 X2 x3 x4 Xi Xz J’: X4

yr j :_' .1 3. *3 4 1 1 -3
y, — l6 — 14 2 7 _‚ ‚v2 :_8 — 12 g _l

y; -—60 -55 7 25 y, —32 —48 7 4

y4 —-28 -17 5 16 y. -8 -12 5 l

4 1 — 3 8 l 2 — 2

xx x2 ‚V1 Y2

x3 — 20 — 35 — 3

_. x4 3 12 — 2 1 (5.68)

}'3 0 _ _ l 4

Die Inversion von (5.68) kann nicht weitergeführt werden, weil alle Elemente, die als Pivotelement
in Frage kommen, gleich null sind.

Folgerungen :

a) Die verbleibenden y—Zeilen ergeben die Relationen

y: = —y1 + 4)’2§ ‚v4 = 3m + ya

d. h., die gegebenen Linearformen sind voneinander abhängig.

b) Die sich für die y-Zeilen ergebenden Relationen können als „partielle Inversion“ angesehen
werden.

Beispiel 5.29: Nun soll das zum Beispiel 5.28 gehörige homogene Gleichungssystem betrachtet
werden:

Wenn in (5.68) y, = y; = y; = y4 = 0 gesetzt wird, so ergibt sich

(5.69)x3 == —20x1 — 35x2, x4 = 8x1 + 12x2.

Werden x, und x2 beliebig gewählt und x3 und x. dann ausgerechnet, so stellen diese 4 Werte eine
nichttriviale Lösung des homogenen Gleichungssystems dar (wegen der Reversibilität des Austausch-
prozesses); (5.69) stellt bei beliebigen x, ‚ x; die allgemeine Lösung dar (zweifach unendlich viele
Lösungen).

Es gilt also:

Satz 5.31: Wenn der Inversionsprozeß bei einem homogenen Gleichungssystem voll-
ständig durchgeführt werden kann, so besitzt dieses Gleichungssystem nur die triviale
Lösung.

Beispiel 5.30: Das inhomogene‘ lineare Gleichungssystem

~— x1+2x2— x_-,=3,

—-2x, -—— x2 —- x3 = 0, (5.70)

3x1— x;+2x3=2
ist nicht lösbar (Addition ergibt 0 = 5, eine unsinnige Aussage).
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Daraus ergibt sich nun folgendes hinreichende Kriterium für die Lösbarkeit linea-
rer Gleichungen:

Ein System von n linearen Gleichungen mit n Unbekannten ist eindeutig läs-
bar, wenn das zugehörige homogene System nur die triviale Lösung besitzt.

Man vergleiche die hier erhaltenen Ergebnisse mit den Sätzen 3.1 und 3.2 sowie
den diesbezüglichen Überlegungen in den Abschnitten 4.1. und 4.2.

5.3.4. Abschließende Bemerkungen

1. Der Austauschschritt versagt, wenn das Pivotelement gleich null ist. g

2. Der Austauschschritt wird ungenau, wenn der Betrag des Pivotelements
klein ist, d. h.‚ wenn sein Wert nahe bei der Null, dem Ausnahmewert,
liegt.

3. Unter allen als Pivotelement in Frage kommenden Elementen wählt
man stets das absolut größte aus.

4. Wenn die als Pivotelemenfe in Frage kommenden Elemente gegen-
über den übrigen Elementen klein sind, so befindet man sich in der
Nähe eines Ausnahmefalles (2). Die Inversion wird in ihrem weiteren
Verlauf unsicher. ’

5.4. Matrizen und Vektoren in der Betriebswirtschaft

I. Matrizen und andere Hilfsmittel der linearen Algebra können in der Betriebs-
wirtschaft zur übersichtlichen Darstellung bekannter betriebswirtschaftlicher Größen
und Zusammenhänge benutzt werden (z. B. Gewinn, Leistungsbilanzen);

II.betriebswirtschaftliche Aufgaben lassen sich oftmals mit Hilfe elementarer
Methoden der linearen Algebra lösen (z. B. Selbstkostenermittlung, Planungs-
aufgaben);

III. es ist möglich, mit den einmal eingeführten BegriiTen der linearen Algebra
mathematisch und betriebswirtschaftlich sinnvolle Fragen zu stellen (z. B. lineare
Optimierungsprobleme), zu deren Lösung die dafür entwickelten mathematischen
Methoden herangezogen werden können.

Im folgenden werden zu diesen drei Punkten Beispiele angegeben und an einem
Modellbetrieb erläutert.

5.4.1. Modellbetrieb, Definitionen‘)

Vorgelegt sei als Modellbetrieb ein Betrieb mit kontinuierlicher Fertigung, der aus
zwei Teilbetrieben besteht und aus zwei Eingangsleistungen (Rohbraunkohle, Geld)
zwei Ausgangsleistungen (Dampf, elektr. Energie) erzeugt. Die Beziehungen zwischen

‘) Bemerkungen zur Schreibweise

Ä, (Skalar): Durchlaufmenge der Leistung a, im Gesamtbetrieb
I, (Vektor): Leistungsvektor des i-ten Teilbetriebes;
r (Skalar): Produktionsdauer (= Durchsatzkomponente);
t (Vektor): Durchsatzvektor der nichtbeeinflußbaren Durchsatzgrößen.

l2‘
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den Teilbetrieben können in einem Flußbild (Bild 5.3) oder in einer sogenannten
Leistungstabelle (Tab. 5.1) angegeben werden. Dabei soll ein fester Rechnungs-
abschnitt (z._B. l Stunde) zugrunde liegen. A

Im folgenden werden Erzeugung durch ein positives und Verbrauch durch ein
negatives Vorzeichen gekennzeichnet; Aufwände und Fertigprodukte sollen schlecht-
hin als Leistungen bezeichnet werden.

Ein Betrieb bestehe nun allgemein aus n Teilbetrieben und erzeuge (bzw. verbrauche)
in kontinuierlichem Fertigungsprozeß m Leistungen cal , a2 ‚ a3 , ...‚ am; Z, sei die (vor-
zeichenbehaftete) Durchlaufmenge der Leistung a, während eines festen Rechnungs-
Zeitraumes im Gesamtbetrieb, gemessen in Einheiten der Leistung 04,; 1,-, sei die

&‘e/d (L ‚—,) /iamram/«on/e {L 3 )

500 M 627 t

4219M ‚ 9Mw/7

7?/'/rm‘/~/cl: I r Kasse/anlegen)

200:

.150!
7

72’//tvaf/‘/‘eh I ./ 71/ra/ne/7)

so/ww/7

Bild 5.3

1 Dampf/u) [/zerg/eltz)

5a: 21MV//2

Tabelle 5.1

Gesamt- Teilbetrieb Teilbetrieb Mengen-
betrieb I II einheiten

3
ä L,Dampf 50 200 -150 t

ä
.29 .g 1-; L2 elektr. Energie 21 ._9 30 Mwh

eo a:G
3
3 o L. Rohbraunkohle —3o -so tg J

1%’

ä’ L4 Geld -600 -420 -180 M
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entsprechende Menge im k-ten Teilbetrieb (i = l, 2, ...‚ m; k = 1,2, ...‚ n). (Im
Modellbetrieb giltn = 2, m = 4und z.B.}.2.= 21,14 = —600, 13, = —-80,122 = 30
usw.).

Gemäß unserer Vorzeichenvereinbarung gilt dann

z. = i. am (5.71)
k=l

oder

l = i 1,, (Kopplungsgleichung),

wobei i

Äl ilk
l = d2 ’ 1k = 421:

im int]:

als Leistungsvektoren des Gesamtbetriebes bzw. k-ten Teilbetriebes eingeführt werden;
l und lk (k = 1, ..., n) sind also die als Vektoren aufgefaßten Spalten der Leistungs-
tabelle. V

i L = [1, l1, ...‚ l„] heißt Leistungsmatrix des Betriebes während des vorgegebenen
Rechnungsabschnittes.

In unserem Beispiel ist

50 200 -150
21 -9 30

L: [l9 11312]: O

—600 -420 —18O

Die auf zwei (oder mehrere) Rechnungsabschnitte bezogene Leistungsmatrix erhält
man durch einfache Addition der Leistungsmatrizen der zugehörigen einzelnen
Rechnungsabschnitte. Die Leistungen in der Leistungstubelle wollen wir der Einfach-
heit halber so angeordnet annehmen, daß a1 ‚ a; , .. .‚ a, Endprodukte und oc,.+1, ...‚ am

Aufwände bedeuten. Dabei wird (einschränkend) vorausgesetzt, daß keine Zwischen-
produkte oder dgl. auftreten, die weder zu den Fertigprodukten noch zu den Auf-
wänden gerechnet werden könnten, d. h.‚ alle in den verschiedenen Teilbetrieben her-
gestellten Erzeugnisse sollen verkaufbar sein. Die Vektoren

Äl ilk
f = s fk =

Av Ävk

sollen als Fertigproduktvektoren und

)*v+1 }‘v+1,k
a = f ‚ a„ = f

ill! Ämk

als Aufwandvektaren des Gesamtbetriebes bzw. des k-Ie/z Teilbetriebes (k. = 1, ...‚ n)
bezeichnet werden; es gilt also

l= 1„ = [Ä] (kV= l, ...,n). (5.72)
3k
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In unserem Modellbetrieb ist v = 2 und z. B.

200
200 -80 r, -9

f‘: —9’ a‘: -420’ I‘: a, = —80

—- 420

5.4.2. Darstellung des Gewinns

Ist 9,- der zu zahlende bzw. zu fordernde Preis pro Einheit der Leistung a, (i = l.
..., m) (9, unabhängig von sign 2.,-), so ergibt sich der Gewinn G des Gesamtbetriebes zu

G = f eilt = PT‘
i=1

= [pa pl] = par + pza (5.73)

und der Gewinn Gk des k-ten Teilbeiriebes zu

G}: = E Qizik = PTlk ‘

1=1

= M, pi] = pm + Piiak: i (5.74)

wenn

p‘ = [91, wem] = {v}; pl],
(mit pf = [9, , ..., 9„]‚ p} = [9‚„ , ..., 9„‚]) als Preisvektor eingeführt wird.

Die Gleichungen (5.73) und (5.74) lassen sich zusammenfassen zu

[G‚ G1, ..., G„] = pTL. (5.75)

Unter Beachtung von (5.74) und der Kopplungsgleichung (5.71) erhält man aus (5.73)
noch die nahezu selbstverständliche Beziehung

G = i G„. (5.76)
k=l

Nimmt man in unserem Modellbetrieb folgende Preise an:

91 = 6Mprot Dampf, 93 = 4Mprot Kohle,

92 = 4OMpro MWh‚ 94 = l Mt(pro M),

so ergibt sich ein Gewinn (stündlich) von

l i9]
2l

=1-‘I = [6, 4o, 4,11 l _80J

-600

=6-50+A4O-21+4-(—80)+1-(—600)=220M.
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5.4.3. Kostenrechnung

Kostenrechnung beinhaltet eine Bewertung der Fertigprodukte (= Ermittlung der
Selbstkosten für die Fertigprodukte), die hier so durchgeführt wird, daß

a) gleiche Erzeugnisse (etwa aus verschiedenen Teilbetrieben) auch gleich bewertet
werden und

b) der Gewinn jedes Teilbetriebes verschwinden würde, wenn man die Fertig-
produkte zum Selbstkostenpreis verkaufen würde (Kostendeckung).

Es sei I

PM = (an ---a “vs 9v+1s ---29m) = (ST: PD-

Gesucht ist mithin ein Selbstkostenvektor

sT = [01, ...,a,.]

derart, daß

G}: = G*Tl,, = [st pi] Ü] = sTf,,. + pIak = o (5.77)
k

für k =1, 2, ...‚ n gilt.
(5.77) ist ein lineares inhomogenes Gleichungssystem mit n Gleichungen und

v Unbekannten; mit den Matrizen F = (f1, ...‚ f„]‚ A = [a„ ...‚ a„] läßt es sich in
der Form

FTs = ——A"p‚ (5.78)

schreiben. Im Falle v = n und det FT + 0 erhält man die eindeutige Lösung

s = —FT*’ATp..

Weiterhin kann (5.77) mehrdeutig lösbar sein; dann können, je nach Rangabfall
des Systems, für einen Teil der Fertigprodukte Selbstkosten vorgegeben werden.
Sollte (5.77) unlösbar sein, so läßt sich nach Pichler (Pichler, 0.: Mathematik in
der Betriebswirtschaft, MTW-Mitteilungen III, 1956. S. 105-112. S. 170-175) durch
Aufspaltung von Leistungsarten („Pooling“) oder Zusammenfassung von Teil-
betrieben (oder beides zugleich) das Gleichungssystem (5.77) in ein lösbares System
überführen.

Im angegebenen Modellbetrieb erhält man p“ = [sT, pl] = [cr,. Ü}. 4. I]. das
Gleichungssystem (5.77) ergibt sich zu

S-rfl + _-= Ü,

sTfz = pxag = 0,

also

200 —- 80
[01902] [ + = 09

-I50 O

[mmzll 1nl+[4’l]l_12nl= o’

d.h.
20001 —‘ 90.3 =

—150¢n + 30a_, = 180.
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Das System ist eindeutig lösbar, die Lösungen sind die Selbstkosten für Dampf

o1 = 5,12 M pro t

und für Energie

oz = 31,61 M pro MWh.

Mit Hilfe der Selbstkosten läßt sich der Gesamtgewinn noch auf die einzelnen
Fertigprodukte aufteilen; aus den Gleichungen (5.77) und (5.74) ergibt sich

G =p:r+ pza = (pi —.sT>r= i (e: — am = i 6.,
i=1 i=1

Öi ist der Gewinnanteil des i-ten Fertigprodukts a, (i = 1, ..., v).

5.4.4. Planungsaufgaben

Die Produktionshöhe eines Betriebes bzw. Teilbetriebes hängt ab von gewissen
Parametern, z. B. Einsatzmengen der unterschiedlichen Rohstoffe in den einzelnen
Teilbetrieben, Produktionsdauer (Zeit), Rohstoifeigenschaften, Luftdruck, Luft-
temperatur u. a., die im folgenden als Durchsatzgrößen bezeichnet werden sollen.
Diese Abhängigkeit kann nach Pichler als linear angenommen werden, wenn nur
genügend viele, das Betriebsgeschehen beeinflussende Parameter als Durchsatzgrößen
berücksichtigt werden. Sind ö„„ ...‚ öskk diese Durchsätze im k-ten Teilbetrieb, so gilt
demnach

in: = wilföik ‘i’ W952i: + ‘i’ wifiöski (5-79)

mit gewissen Konstanten wg?’ (i = l, ...‚ m; j = I, ...,s‚„.; k = l, ...‚ n), deren Er—°

mittlung ein technologisches Problem ist bzw. auf Erfahrungswerten oder statistischen
Erhebungen beruht. Wir stellen uns hier auf den Standpunkt, daß diese Konstanten
bekannt sind.

Mit den sogenannten Kopplungsmatrizen Wk = [co§}"] lassen sich die Gleichungen
(5.79) zu V

1,, = Wkdk (k = 1, ...‚ n) ' (5.80)

zusammenfassen ;

61k

d); =

öskk

ist der Durchsatzvektor des k-ten Teilbctriebcs. i

Für den Gesamtbetrieb erhält man aus der Kopplungsgleichung (5.80)

e S
J:

0'
4

n
.

~
./

II n d1

l: Elk = Zwkdk = [wia °--9wn][
k=l k=l d

FdJ
Es ist möglich, daß einzelne Durchsatzgrößen im Vektor l f J mehrfach auftreten.

d„
2. B. ist es denkbar, daß die Lufttemperatur für mehrere Tcilb triebe Durchsatzgröße
ist; die Zeit (Produktionsdauer) kann in jedem Teilbetrieb Durchsatzgrößc sein.
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d; d;
Aus l f J soll nun ein Vektor d abgeleitet werden, der jede in [ f J vorkommende

dll d"
Durchsatzgröße genau einmal als Komponente enthält. Addiert man in der Matrix
[W,, ..., W,,] die zu gleichen Durchsatzgrößen gehörigen Spalten und ordnet alle

Spalten entsprechend der Konstruktion von d an, so erhält man die Gesund-Kopp-
lungsmatrix W; Gleichung (5.81) läßt sich damit vereinfachen zu

1 = WE. (5.82)

Weiterhin wollen wir die vorgegebenen niclztbeeinflußbaren Durchsatzgrößen (z. B.

Lufttemperatur) des Vektors d zu einem Vektor t zusammenfassen und die restlichen,
sogenanntenfreien Durchsätze zu einem Vektor d. Ohne Beschränkung der Allgemein-
heit sei d so angeordnet, daß

H3]
gilt. Gleichung (5.82) läßt sich dann in der Form

f ‘I11 ‘I12 d

'= l l = l l l l 5-833 ‘l2: ‘I22 t ( )

schreiben (mit f = qud + qlzt). Gleichung (5.83), die Grulzdg/eichung für den Be-
triebsablauf, zeigt:

Sind die freien und niclztbeeinflußbaren Durclzsatzgrößen festgelegt, so lassen sich
die daraus ergebende Produktionshöhe und der erforderliche Aufwand a sofort ablesen.

Größere Bedeutung hat (5.83) aber bei der Lösung folgender Planungsaufgabe: A

Wie hoch sind die Aufwendung (a) und die einzelnen Durchsätze (d) festzulegen,
um eine vorgegebene Produktions/zähe (f) zu erreichen?

Ist q„ quadratisch und det ‘I11 =i= 0, so läßt sich die Lösung dieser Aufgabe sofort
angeben; es ist (vgl. (5.83))

qrflf = d + qrflqnt
und also

"d ".1 — *1 . f f

l w -1 W M J:3 ‘lziqu ‘I22 " ‘lziqu ‘h2 t . t

P wird Strukturmatrix genannt. K

In allen anderen Fällen hat man das inhomogene Gleichungssystem f = q„d zu
untersuchen, das entweder eindeutig oder mehrdeutig lösbar ist (zur Erreichung der
vorgegebenen Produktionshöhe f können je nach Rangabfall des Systems noch einige
freie Durchsätze beliebig festgelegt werden) oder überhaupt nicht lösbar ist (die vor-
gegebene Produktionshöhe kann nicht erreicht werden, wie auch immer die Durch-
sätze gewählt werden mögen).

Anwendung im Jllodellbetrieb

Als Durchsatzgrößen im Teilbetrieb I werden
Ö1 = abgegebene Dampfmenge,
‘L’ = Produktionsdauer
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und im Teilbetrieb II

ö, = erzeugte Energie,
1: = Produktionsdauer

angenommen, also

«nems «am
(in Bild 5.3: ö, = “O0 t, Ö2 = 30 MWh, r = 1 Std.).

Mit den Kopplungsmatrizen

1,00 0 -5 0
—0,04 ——l ‚ 1 0

W, = _0,40 und W2 = O 0 (5.85)

—1,00 —220 —2 —l20

.. . 200 30 . .

erhalt man bei d1 = I , d; = 1 die Leistungsvektoren 1,, (vgl. (5.80)) zu

1,00 g 0 200 '——5 0 - ——l5O

l _ —0,04 ——l [200] _ -9 l _ l 0 [30] _ 30

‘ — —0,40 0 l _ -80 ’ 2 — 0 0 1 — 0

—l,00 —220 —420 —2 -120 -180

und

d1 —l=l1 + l2: [W„W2] [d] =Wd

und

1,00 -5 0 Ö1 200
w = —0,04 l —l a = Ö = 30

—0‚40 0 0 ’ T2 1

—l,00 —2 ——34O

(die 2. Spalte von W1 und die 2. Spalte von W2 gehören beide zur gleichen Durch-
satzgröße 1:, diese beiden gleichartigen Einflußspalten werden addiert und ergeben die
3. Spalte von W; entsprechend erscheint r als 3.’ Komponente im Durchsatzvektor d).

Nimmt man 61 ‚ Ö2 als freie Durchsätze an, also d = t = 1:, so liefert (5.83)
2

_ _f1,00 -51 _ _f 01
‘l11—l__0,O4 1J: q12"L__l_|a
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q , 1 ist quadratisch und det q, 1 =l= 0, gemäß (5.84) erhält man die Strukturmatrix P zu

P = [Q51 "q1_11‘l12:|

qzxqfil ‘I22 " 92101-11912

1,25 6,25 s 6,25 '

0,05 1,25 i 1,25
= . .„.................... ................. .. _ (535)

— 1,35 —8,75 E-348,75

Als Produktionshöhefür den Gesamtbetrieb im Produktidnszeitraum von 2 Stunden

seien 200t Dampf und l0 MWh elektrische Energie vorgeschrieben, d. h. f = ‚

t = [2]. Gesucht sind die dazu erforderlichen Aufwände a, die Durchsätze d und die
Leistungsvektoren l 1 und l3.

Die Gleichungen (5.84) und (5.86) liefern sofort
1,25 6,25 5 6,25 325 ö

= 200 1

[d] =5 555,595??? 555555 5.753.555;555555555 5'555? ‚o = 25 = Ö2

a —0,5o -2,50§ -2,50 2 -130 is
_-1,35 -8,75 —348,75__ ‘1055 '14

aus (5.80) und (5.85) folgt 5

1,00 0 325

—0,04 -1 325, -15
‘I = W1“! = —0,40 0 [ 2) = -130 ’

-1,00 -220 -765

-5 0 —125

1 0 25 25

'3=W2"’= 0 0 [2]: 0
-2 -120 -290

Erforderlich sind mithin 130t Rohbraunkohle und 1055 M. Teilbetrieb I muß
325t Dampf abgeben und Teilbetrieb II 25 MWh Energie — alles bezogen auf
2Stunden.

5.4.5. Ein Optimierungsproblem

Jeder Betrieb ist bestrebt, einen möglichst hohen Gewinn zu erreichen. Diesem
Bestreben sind naturgemäß Grenzen gesetzt: Kapazitätsgrenzen für gewisse Durch-
Sätze, Zuteilungsgrenzen für bestimmte Aufwände, Mindestforderungen nach
einigen wenig Gewinn bringenden Fertigprodukten usw. Es müssen also folgende
(komponentenweise zu verstehende) Ungleichungen erfüllt werden:

ln§l§lO3 ‘

(Unter den Komponenten von l„, 5„ kann auch - co auftreten, ebenso + 0o unter den
Komponenten von l„, d0; die entsprechenden Komponenten von 1 oder t-l sind dann
nach oben bzw. unten unbeschränkt.)

n
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Mittels Gleichung (5.82) läßt sich das Bestreben, einen möglichst großen Gewinn
zu erzielen, folgendermaßen formulieren:

Es ist ein Durchsatzvektor d zu bestimmen, der der linearen Form

G = 117l == (pTW) d

unter den Nebenbedingungen

In g WE g Io,

«säen
einen maximalen Wert erteilt.

Das ist ein sogenanntes lineares Optimierungsproblem, für das in Band 14 Lösungs-
methoden bereitgestellt werden.

5.5. Matrizen in der Mechanik — Lösung des Biegeproblems
eines beliebig gestützten geraden Trägers

5.5.1. Zur Theorie der Balkenbiegung

Der elementaren Balkentheorie liegt die lineare Diflerentialgleichung der elastischen
Linie zugrunde. Unter der elastischen Linie versteht man eine Kurve durch die Punkte
der einzelnen Trägerquerschnitte, die bei einer Biegung des Trägers spannungsfrei
bleiben. Mit den Bezeichnungen nach Bild 5.4 lautet die Differentialgleichung

M(E)
" = —- -——-—— 5.87n (E) 3(5) (_ )

mit
B(E) = EJ(§) (Biegesteifigkeit),
M(5) — Biegemoment‚
E — Elastizitätsmodul,
J(.E) —Flé'1chentr§'1gheitsmoment.

Bei kleinen Durchsenkungen v; gilt für den Biegewinkel (p:

1)’ = tancp z singe z (p > 17’(§) z q2(E).

Unter diesen Voraussetzungen soll das Zeichen „ z “ in den folgenden Ausführungen
durch „ =“ ersetzt werden, d. h.

7l'(E) = <P(5)- (583)

Um zwischen den mechanischen Größen Biegemoment, Querkraft und Srreckenlast
analytische Beziehungen herleiten zu können, ist es erforderlich, ein Balkenelement

3 ‘ E arg» M) M? E

-\V W). l M6)’ l 5 T \ ()rdM()

‘\\Lwfl_ I kl i J gl " 7\V~L I „S: a(§)+da(§)

n „l
Bild 5.4 Bild 5.5
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mit den dazugehörigen Schnittgrößen (Biegemoment und Querkraft) zu betrachten
(Bild 5.5). g

Die in Bild 5.5 eingetragenen Schnittgrößen müssen mit der äußeren Last p(E)
im Gleichgewicht stehen.

Es gilt demzufolge:

-Q(§) + 12(5) as + 9(5) + dQ(§) = o,

MG‘) + Q(5>3§ + Qual; + dQ<s)—d23 — Mos) — «was = o.

Man erhält dann wegen T:- dQ(E) d5 z 0

dms) _

dQ(£) (5.89)

Setzt man diese Beziehungen in die zweimal differenzierte Differentialgleichung (5.87)
ein, so erhält man die lineare Differentialgleichung 4. Ordnung der elastischen Linie

{B(€)77"(E)}” = P(E)- (5-90)

Für den Fall konstanter Bicgestezfigkeit, auf den wir uns im weiteren beschränken
wollen, erhält (5.90) die Form

Bn<4><s> = ‚am. . (5.91)

5.5.2. Herleitung der Feldmatrix

Einen Balken, der sich aus n Teilabschnitten konstanter Biegesteifigkeit B, (v = l,
2, ..., n) zusammensetzt, zeigt Bild 5.6.

®
Bild 5.6

Ein Stück konstanter Biegesteifigkeit des Trägers, z. B. der durch v gekennzeichnete
Abschnitt, soll das v-te Feld genannt werden. Die Feldgrenzen sollen die Indizes
„v — l“ für die linke Seite und „v“ für die rechte Seite erhalten. Die Länge des or-ten
Feldes ist dann IV = 5„ -— £,,_,. Die Diflerentialgleichung (5.91) läßt sich dann für den
v-ten Abschnitt in folgender Form schreiben:

B-.-775.-“’(€-.-) = .D-.‘(§-.v)- (5-92)

Integriert man (5.92) und führt als Integrationskonstanten die mechanischen Größen
an der linken Feldgrenze (Index „v — l“) ein, so erhält man für die Größen

m(~Ev), ¢y(5.-), Mv(§.»), Qs-(Ev) und 1215.-)
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an einer beliebigen Stelle 5‚_1 innerhalb des v-ten Feldes fünf lineare Gleichungen:

m5.): 17H + 532.-., — —— 39-1 + ms»- 1

_ Ev s: _

‘Pv(5v) -' ‘Pv-x — T-Mv-l ‘ EQv-d ‘l’ ’/’y(5v) ' I (5.93)

Mv(§v) = Mv-l + Ev Qv--1 ‘l’ 17-;(§u) ' l

am = Q.-. + §.(5,)- 1

l = l

Die überstrichenen Glieder auf der rechten Seite von (5.93) haben ihren Ursprung in
der Belastung des v-ten Feldes. Sie bedeuten im einzelnen:

6..

ms.) = — J‘ p,<z)dz,
0

e.

ms» = j a:<z> dz,
0

Ev (5.94)

l
mu) = — „v f“.<z>dz,

Ü

6V

m.) = f<7vZ(z) dz.
0

Die letzte der Gleichungen (5.93) resultiert aus der Differentialgleichung (5.92),
die durch p‚(5„) =l= 0 dividiert wurde.

Da bei der Berechnung der Biegung gerader Träger die mechanischen Bezie-
hungen linear sind, erhalten wir auch ein lineares Gleichungssystem.’

Faßt man die mechanischen Größen einschließlich der „l“ zu einem Vektor zu-

sammen — einem sogenannten Zustandsvektor, da er den mechanischen Zustand an
einer bestimmten Stelle widerspiegelt, —' so kann (5.93) als Produkt zweier Matrizen
wegen der Linearität der Gleichungen wie folgt geschrieben werden:

77X5) W l Ev _ zggv — 6£Be:v -I _ nv-l-l

ms.) 0 I — — ms.) w;
v v ____ (5.95)

Mv(§v) = 0 0 1 ‘Ev Mv(§v) My-1

Qv(€v) 0 0 0 1 E35.-) Qv—l

_1 o o o 0 1 l _1

Die Zustandsvektoren sollen mit x, bezeichnet werden. Die transponierten Vektoren
aus (5.95) lauten dann:

= [77v(£v)s (pv(Ev)9 Mv(Ev)s Qv(6I‘)s I]:
XE-i =[7]v-1 2 ¢v-1 a Mv-1 s Qv-1 a
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Die in (5.95) vorkommende Dreiecksmatrix ist eine Übertragungsmatrix (speziell
eine Feldmatrix), da sie den mechanischen Zustand vorn Anfang des v-ten Feldes
auf eine beliebige Stelle im Innern des v-ten Feldes überträgt. Die Feldmatrix für das
v-te Feld soll mit F,(E,) bezeichnet werden. Damit läßt sich dann das Matrixprodukt
(5.95) schreiben:

X45») = F.(§v) X»—1- (5-95')

Den Zustandsvektor x,,(A,) = x, erhält man dadurch, daß man in der Feldmatrix
E, = Ä, setzt:

xv = Fv(}"v)xv-1 = Fvxv-1 -

Für den in Bild 5.6 dargestellten Träger mit n Feldern‘) kann man dann schreiben

xn = Fnxn-1 a

xn-1 = Fn-1x -2:

X1 = FIXO:
X" = FnFn_1Fn-1Fn_3 ... Flxo.

Dabei läßt sich das Produkt der n Feldmatrizen noch zusammenfassen zu einer
Gesamtübertragungsmatrix U. Es gilt dann

x„ = Uxo (5.96)

Für die praktische Behandlung eines Trägers nach Bild 5.6, der z. B. an beiden
Seiten gestützt ist, wäre es aber sehr vorteilhaft, die in (5.96) vorkommende Über-
tragungsmatrix U zu bilden. Die Rechnung verläuft wesentlich einfacher, wenn man
nach dem Falkschen Schema für die Matrjzenmultiplikation zunächst bildet

X1 = FIXO:

X2 = F2(F1xo) = Fzxu

xn = n(Fn-Ix -2) = Fnxn-1'

Da die Elemente der Zustandsvektoren und der Feldmatrizen mechanische Größen
bzw. Querschnittsgrößen und Längen sind, haben sie unterschiedliche Dimensionen.
Es macht sich dabei erforderlich, dimensionslose Größen einzuführen. Um aber auch
in den Matrizen Elemente zu erhalten, die größenmäßig nicht zu unterschiedlich sind,
werden die folgenden Vereinbarungen getroffen:

Äo [m] und Q [kN] werden Bezugsgrößen,

77:: = 1023<T177v» Ü’: = 1029W:

M: = M(Ql0)~l: = QviQ-ls

ß _ z, = 3,104
v — Äo a v a

5,05,) f: %‚ A (v = 1,2, ...,n). ‘(5.97)

’) ohne Zwischenstützen
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Der dimensionslose, transportierte Zustandsvektor wird mit xi’ bezeichnet, und die
dimensionslose FeIdmatrix heißt F;"(§,) bzw. F3’ :

Xi" = [?7‘.',<;v:“, MS“, Q3311,

-1 ms.) — — 3“")2M T 73050

0 l _ N5.) _ fi3(£.) qT,*(§,)

F: s, = °" 2°" _ , 5.98
( ) 0 0 1 flv(£v) M.*(E») ( )

0 0 0 1 _?(§v)

o o o o 1

—1 ß __._3_ .._E {it-
’ 20¢, 60¢, "

„a _ ß: -

F‚‘‚'(/1„)=F:‘= 0 1 “v 2°‘v if . (5.98’)
o o 1 ß„ M:
o o o 1 Q:

o o o o‘ 1

Die Elemente der letzten Spalte der Feldmatrizen errechnet man mit den dimensions-
losen mechanischen Größen entsprechend (5.94). Für (5.95”) hat man somit zu
schreiben

x: = F.*x:=-1; (5.99)

analog dazu gilt:
x: = F‚1‘F‚‘‚"_‚ ;"F;"x:.

Für die wichtigsten Belastungsfälle sind die Elemente der letzten Spalte der Feld-
matrix in der Tabelle 5.2 angegeben (die Größen in der Tabelle sind nach (5.97)
bezeichnet).

Mit den oben entwickelten Feldmatrizen kann man einen geraden Träger voll-
ständig behandeln, wenn dessen Felder lediglich durch Anderungen der konstanten
Biegefestigkeit B, (v = l, 2, ...‚ n) gekennzeichnet sind. Wenn dagegen neben der
Änderung der Biegefestigkeit an einem Feldende noch eine Zwischenbedingung auf-
tritt, reichen die bisher entwickelten Hilfsmittel nicht mehr aus (vgl. hierzu Manteulfel/
Seiffart, Einführung in die lineare Algebra und lineare Optimierung, Abschnitt 4.2.3.
bis 4.2.5.).

l3 Manwuflel, Lineare
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Zu den Teilgebieten der Mathematik, die in den letzten Jahrzehnten Eingang in
die mathematische Grundausbildung der Ingenieure, Naturwissenschaftler, Öko-
nomen und Landwirte gefunden haben, gehört die lineare Algebra. Methoden und
Modelle aus diesem Gebiet liegen zahlreichen und unterschiedlichen Anwendungen
in den verschiedenartigsten Bereichen der gesellschaftlichen Praxis zugrunde.

Im wesentlichen sind es wohl drei Komponenten, die die lineare Algebra im Laufe
der Entwicklung geprägt haben. Da sind zunächst diejenigen Methoden und Hilfs—
mittel, die jeweils zur Bewältigung von anfallenden praktischen Problemen benötigt
wurden. So wurde der Begriff der geometrischen Addition von gerichteten Strecken
von Simon Stevin (1548-1620) für das Kräfteparallelogramm und das Kräftepolygon
gebraucht. Der eigentliche Auf- und Ausbau der Vektorrechnung begann im
19. Jahrhundert, als man die geometrische Addition von gerichteten Strecken zur
Darstellung von Zusammenhängen in der Geometrie, in der Mechanik, in der Elektro-
technik benutzte. Die anschauliqhe Interpretation von Netzplänen basiert auf der
Betrachtung von Knoten und (gerichteten) Kanten, und verschiedene Rechen-
operationen mit komplexen Zahlen gestatten eine vektorielle Deutung.

Determinanten wurden bereits von‘- G. W. v. Leibniz (1646-1716) verwendet.
Einige zahlentheoretische Untersuchungen über quadratische Formen von C. F. Gauß
(1777-1855) lassen vermuten, daß ihm der Begrifi’ der Matrix vertraut war; explizit
hat er ihn nicht benutzt. ’

Im 19. Jahrhundert erfolgten die ersten Anwendungen des Matrixbegriffes in der
Geometrie (Transformationen) und in der Elektrotechnik; in der Gegenwart sind
Technische Mechanik, Netzplantechnik, Spieltheorie und viele andere Gebiete ohne
das Hilfsmittel Matrizen nicht mehr denkbar. Die theoretischen Untersuchungen
wurden durch G. Frobenius (1849-1917), I. Schur (1875-1941) und viele andere
etwa bis zum gegenwärtigen Stand gebracht.

Die Untersuchungen von Zahlen werden seit frühester Zeit durchgeführt, und so-

lange es schriftliche Überlieferungen gibt, befinden sich darunter auch Darstellungen
von Rechengesetzen‚ Aussagen über Eigenschaften von Zahlen. Das ist auch völlig
verständlich, sind doch „Zahl und Figur nirgends anders hergenommen als aus der
wirklichen Welt“ (F. Engels).

Aus den Überlieferungen der Baby1onier‚ der Chinesen, der Ägypter, der Griechen
entnehmen wir'die Kenntnis vieler Ergebnisse der elementaren Zahlentheorie. Linear-
formen mit zwei und mehr Unbestimmten untersuchte schon Diophant (um 250 u. Z.),
um Aussagen über lineare Kongruenzen, über Dreiecks- und Pyramidalzahlen zu

machen. Daneben haben quadratische Formen z. B. bei der Untersuchung von Kon-
gruenzen,,bei der Zerlegung einer Zahl in eine Summe von zwei und mehr Quadraten.
bei Untersuchungen über Primzahlen eine Rolle gespielt. Viele berühmte Namen
finden sich unter denen, die Ergebnisse zu diesen Problemen verlegten: Pythagoras
(570-501 v. u. Z.), G. W. Leibniz (1646-1716), P. de Fermat (1601-1665), L. Euler
(1707-1783), C. F. Gauß (1777-1855), J. L. Lagrange (1736-1816), A. M. Legendre
(1752-1833), Ch. Hermite (1822-1901), J. J. Sylvester (1814-1897), P. L. Tscheby-
scheff (1821-1894) und viele andere.

Die zweite wesentliche Komponente ist die Entwicklung und Herausbildung
des allgemeinen Raumbegriffs. Schon Diophant versuchte, neben den zweiten bzw.
dritten Potenzen als Quadrate und Kuben sich auch für höhere Potenzen eine ent-
sprechende anschauliche Terminologie zu verschaffen. Bei Stifel (1487-1545) wurden
diese Bestrebungen ebenfalls sehr deutlich. Als J. d’Alembert (1717-1783) verschlug,
die Zeit als vierte Dimension einzuführen und J. L. Lagrange (1736-1813) mecha-
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nische Systeme mit allgemeinen Koordinaten beschrieb, war die Herausbildung des
Begriffs des n-dimensionalen Raumes fast vollendet. C. G. Jacobi (1804-1850)
berechnete das Volumen einer n-dimensionalen Kugel und A. Cayley (1821-1895)
prägte den Begriff der n-dimensionalen Geometrie. Die gegenseitigen Lagebezie-
hungen mehrdimensionaler Ebenen zueinander wurden für den n-dimensionalen
Raum von H. Graßmann (1809-1877) untersucht, und L. Schlaefli (1814-1895)
klassifizierte die regelmäßigen Polyeder. Die mehrdimensionale Geometrie erwies
sich vor allem auch für die moderne Physik als von außerordentlicher Bedeutung
(Relativitätstheorie, Quantenmechanik), und die Formulierung der Axiome des
n-dimensionalen Euklidischen Raumes geht auf Publikationen von H. Weyl (1885
bis 1955) (Raum, Zeit, Materie; 1918) und J. v. Neumann (1903-1957) (Mathe-
matische Grundlagen der Quantenmechanik, 1932) zurück. Wesentlich für die For-
mulierung der Axiome ist der Begriff der linearen Abhängigkeit von Vektoren. Eine
weitere Verallgemeinerung und Abstrahierung führt zur Betrachtung topologischer
Räume, die wir u. a. D. Hilbert (1862-1943) und J. Dieudonné verdanken.

Als dritte Komponente ist die Entwicklung der Mengenlehre anzusehen. Das Be-
mühen, mathematische Aussagen nicht für einzelne Objekte, sondern für Gesamt-
heiten von Objekten, die eindeutig charakterisiert werden können, zu formulieren,
ist wohl so alt wie die Mathematik selbst. Und es ist keineswegs ein bemerkens-
wertes, sondern im Gegenteil das übliche, gerechtfertigte und durchdachte Vorgehen,
daß z. B. eine Aussage über die Summe der Innenwinkel nicht für ein spezielles Drei-
eck, sondern allgemein für die Menge aller möglichen Dreiecke gemacht wird. Um
so erstaunlicher ist es, daß der Mengenbegrifi‘ und damit die Mengenlehre erst im
letzten Drittel des 19. Jahrhunderts entstanden sind. Der Begründer der Mengenlehre
ist G. Cantor (1845-1918). Die von ihm gegebenen Begriffsbildungen und Schluß-
weisen wurden zunächst nicht nur mißverstanden, sondern sogar abgelehnt. Aber
mit dem 20. Jahrhundert begannen sich diese Ideen durchzusetzen, und sie erwiesen
sich als grundlegend für die gesamte Mathematik. Ohne Mengenlehre sind die
Teilgebiete der Mathematik heute nicht mehr denkbar; sie hat der Zersplitterung
der Mathematik in viele nebeneinanderstehende Gebiete entgegengewirkt und
ist - wenn auch meist nur implizit — wesentlicher Bestandteil unserer Schulmathe-
matik.

Als theoretische Grundlagen der gesamten heutigen linearen Algebra darf man
die Betrachtung von Substitutionen und Transformationen in topologischen line-
aren Räumen ansehen.

Die Anwendungen der entwickelten Methoden und Theorien sind - wie wir
gesehen haben - i. allg. recht schnell erfolgt. Bemerkt sei noch, daß in der im
1. Jahrtausend v. u. Z. in China geschriebenen „Mathematik in neun Büchern“ be-
reits lineare Gleichungssysteme von n Gleichungen mit n Unbekannten gelöst werden.

i, Auch den indischen Mathematikern des 7. Jahrhunderts u. Z. ist die Lösung solcher
Gleichungssysteme bekannt.

Erwähnen wollen wir den Beginn des umfassenderen Einsatzes gerade von Ver-
fahren der linearen Algebra auf ökonomische Problemstellungen. L. W. Kantoro-
witsch beschäftigte sich 1939 mit der Anwendung mathematischer Methoden auf
Fragen der Planung und Organisation der Produktion; O. Pichler untersuchte 1942
Fragen der Planung beim kontinuierlichen Fertigungsprozeß in der chemischen
Industrie. Gerade die aus ökonomischen Aufgabenstellungen kommenden Impulse
und Anforderungen erwiesen sich in der Folgezeit und besonders in den letzten
40 Jahren als außerordentlich wesentlich für die Erweiterung des Einsatzbereiches
der Mathematik.

Technik, Physik, Ökonomie und die Mathematik selbst sind zum Einsatzgebiet

l3‘
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der linearen Algebra geworden, es wird immer wieder bestätigt, daß „... alle wissen-
schaftlichen Abstraktionen die Natur tiefer, getreuer, vollständiger widerspiegeln“
(W. I. Lenin). —

Die allseitige Entwicklung der Informationswissenschaft und die immer bessere
Beherrschung der mathematisch—kybernetischen Betrachtungsweise sind wesent-
liche Voraussetzungen für den erfolgreichen und effektiven Einsatz mathematischer
Methoden. Die Mathematik ist durch den Einbau abstrakter Begriffe wie Menge,
Matrix, Körper, Raum nicht weltfremd geworden, sondern sie hat ihre Anwendungs-
bereiche erweitert. Die entwickelten mathematischen Hilfsmittel haben die Denk-
und Arbeitsmöglichkeiten erweitert; ihr Einsatz zeigt uns, daß der dialektische Weg
der Erkenntnis der Wahrheit, der Erkenntnis der objektiven Realität von der leben-
digen Anschauung zum abstrakten Denken und von diesem zur Praxis führt. i



7. Lösungen der Aufgaben

1.1: Es ist am, = a,a3 = a;a3 = 0 und a, = a; = a3 (= 15), Volumen V = 3375.

lb
1.2: g =

,u + i.

1

1.3: 0.413; r, = E (b x a),

l
OBC: f, = -2-(c x b),

1 l ’ABC:f3=3{(c-b)x(a—b)} =3{cxa—cX b—b xa},

l .

OAC:f4 = -5(a x c),

1 .

f1+f2+f3+f4,=—2-{bxa+cxb+cxa—cxb-—bxa+axc}s0.

A 1

1.4: w = 21m = 5001: ist die Winkelgeschwindigkeit der Rotation; führt man

—- 3 + 2 '

w=w als Vektor der Winkelgeschwindigkeit ein, so gilt v = w x r, wobei
I81 — 392 + 263]

r = der Ortsvektor zum Punkt P ist.

5007:‘ + J”) I‘ 5001:‘/33- _26 m
v= ,_ e e ; v = _ z 1 —— .

\/I4 l 2 3 I U14 min

1.5: b+7.(a—b)=,u<b+-:2‘-); (1)

ba+v(b—a)=x<a+3); (2)

1 2
(l)liefert(7.—-'%-)a+(1—Z—;c)b=o, d.h. i=3-, /.z=—3—;

1
(2) entsteht aus (1) durch Vertauschung von a und b, d. h. v = Ä =

1.6: Verhältnis 1 : 2.
-—> —>

Höhensehnittpunkt; H sei der Sch i punkt zweier Höhen h; = A1-I und h; = BH. d sei der Velc-

tor Es gilt h1(d — h3) = 0 und hz(d — 11,) = 0, d. h. hld = hlh; = hzd oder d(h‚ — h2) = 0.
——>

d steht mithin senkrecht auf der Gegenseite AB; d ist Höhe, da die Höhe im Dreieck eindeutig be-
stimmt ist.
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1.7: Wählt man ein Tetraeder mit der Kantenlänge 1 und ein Koordinatensystem wie im Bild an-
gegeben, so gilt: l

— _ 1

‘ ‘z’

—~> I —-> -2- ‘—) /'3-
0A= 0 ‚ 0B: J3 2 0C: i? o

2 _

0

‘1
"1 5 7

2 _ 2
_ /3R=0+2\/ +31’-—3—=§3—,

2

0

n
.

Q;

._, 8
R 5 RÜÄ 7 R0 5-5 911"“ 9 CoS( 7 )—'l'69 COS( 1 C05(Ra )—fi'

1.8: Kegelmantel; Öffnungswinkel 120°, Seitenlänge s = [xi = ‘l.

b x c

(übe) '

1.10: a sei der Ortsvektor zum Mittelpunkt des Kreises, g der Ortsvektor zum Punkt P. Kreis:
(x — a): — r’ = o, Gerade durch P: x = p + Äe, dabei sei e ein veränderlicher Einheitsvektor.
Schnittpunkte :

(p+/le—a)’—r2=o

oder i.’ + 2Äe(p — a) + (p — a)’ — r’ = o; das ist eine quadratische Gleichung mit den Lösungen

1.9:g = k

2„ A2; M1}, M2] sind die fraglichen Abstände, ihr Produkt ist 1112 = (p —- a)’ — r’ = const (nach ‘

Vieta unabhängig von e).

1 l

1.11: (a) Schnittgerade x = 2 + t 2 ;

0 1

(b) "W _ 2a

. 1
—->

(c) P;(—1. 1,6), Qt(0‚2‚ I); Schatten P1Q1 = -4 ;

f»

Schattenlänge |P1Q,§ =

1.12: r = ael + übe; — ae‚) + ‚u(ce3 — ael) = (1 — i. — u) ac, + Äbe; + uce3 (Achsen-
abschnittsgleichung der Ebene).
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2.3:

' 2.4:

2.5:
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5 0 -5 -3
0 —lO -20 —2lC:
7 7 7 12

l0 9 8 14

2 10 0

a)P=[ :|; b)P= 020
0 3

0 0 5

3 2 6 34 13 —14w z]; „m

A" = [cfm mp -51“ mp] . Man benutze vollständige Induktion.
sm mp cos mp

_ _ 2 _ g

V 3 s

1:1 x=2 ,u=-1- c,= 1 c2= --1-
3’ ’ 3 ’ 3 3

2 2

3 E

2.6: Man beachte, daß hier (E —- A) (E + A) = (E + A) (E — A) und (E — A)‘ = (E + A) gilt.

2.7: a) Es gilt (—1)" det (A + /LE) = det(—A — 1,11) = det (AT — /LE) = det (A — a,E)T = o

2.8:

also tp(—-1,) = 0.

1 . 1 T 1b)(-Ä;)"d€t(A-ZE) —d€t(-Ä;A+E)—— gag det(--/'I,E+A)— det(A1-)

det (A -—Z,E)"' = 0, also

(w97 Ä’ '- -

_ 8 4 I"

l 3 3 3 i r: —a o o1
1 2 l _a)A_1= __3__ _3__ T , b)A_1= 0 l a 0 3

o l —a

_3_ _L _i o o o 1

3 3 3
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l a 2a’ 2a’ _5 1 I
o 1 a o -1

A"1 = ‚ d A"1 = ——— l —5 1 ,

°) o o 1 a ) 1 1s l 5

o o o 1

2.9:

1 —3 o o -4 4 1

o 1 -3 o 1 1
A“: AB-1- —— -1-—

°) o o 1 -3 ( ) 2 2

o o o 1 1 1 1

2.10: detA u: —16. 2.11: detC = —2.

2.12: 24. 2.‘13:a')x,=3, b)x,= -3,
Xz='-9, x2=9.

214.:

1 3 3 2

o o 7
detA= =O.

o o —3 1

o o o -4

2.15: Man schreibe a x (b + c) mit Hilfe einer Determinante und forme um.

2.16:

aa ab ac

[abc] [abc] = ba bb bc

ca cb cc

7.17: Man benutze vollständige Induktion.

2.18: D kann aufgefnßt werden als Polynom n-ten Grades in x,., ¢p(a) ist dann Polynom 1. Grades
in x...
Multipliziert man in D die k-te Zeile mit a," (k = 1, ..., n) und addiert anschließend alle Zeilen
zur ersten Zeile, so kann aus der ersten Zeile der gemeinsame Faktor q>(oc„) herausgezogen werden.
D ist also durch ¢p(o:,) (v = 1, ..., n) teilbar; da die ¢(oc,,) lineare Polynome in x‚. sind, ist D auch durch
<p(a1)cp(oc‚) ¢p(oc,,) teilbar. Das Produkt q>(oc,) <p(oc,,) ist selbst ein Polynom n-ten Grades in x‚„
also gilt

D = C°<P(0¢1)---¢(<%u), (1)

wobei C nih‘ “(r x, abhängt. D”“h Veriexch des Koeffizxent“ von x: au: beiden ‘Seiten von z’ i)
0|- l) (n- 2)

ergibt sich C = (-1) 2

2.19: Man bilde die Transponierte, D = D’ = D, also D = D.
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2.20: Es sei D = a + iß. Multipliziert man jede Zeile von D mit (-i), so erhält man (——i)"D

={37)=D=oc— ifi.Esgilt:
1 für n = 4m,

—i für n = 4m + l,
H) = -1 fürn = 4m+ 2,

i fürn = 4m + 3,

damit ergibt sich:

zu a) D = D (nur) für n = 4m, D reell;

b) D = —D (nur) für n = 4m + 2, D rein imaginär.

2.21: Es ist

detA o o ~ _

n 0 detA O

AB = 01:41h] = 0 . - a

=1

0 0 det

also det (AB) E det A i det B = (det A)";

l. Fall det A + 0 —> det B = (det A)"”;
" detA = 0 für i = 1

2. Fall d A = 0 A = I =

et qkglalk u‘ l 0 sonst } 0

(für alle i; die Spalten vori B sind also linear abhängig, d‘. h. det B = 0, d. h. auch det B = (det A)"‘1
(= o). -

2.22: Es gilt detA = dct (AT) = det (—A) = (—1)" der A = -—det A, also detA = 0.

l 5 73.l:x1=?‚ x2=—8-,x3=—8-. 3.2:x,=7—p.

1
3.3: k =14. 3.4: x, = -7 + p. 3.5: x, = — -2- (I3 + t).

3.6: k = 2; x2 = O. 3.7: k = —2.

3.8: det (A — ÄE) = 0 ist zu lösen.

det (A — 1E) = —(}.3 — 412 + 5). — 2) _=. —(Z —1)’(}. — 2).
/'., = 7.2 = l: Rang der Koeffizientenmatrix des Gleichungssystems ist 1; Lösung:

2
"31 " 3'12

x Z

t, ’

_t2
n v .t, ‚ t2 beliebig;

Z3 = 2: Rang der Koeffizientenmatrix des Gleichungssystems ist 2; Lösung:

1

x=t 2 , tbelicbig.
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23 1o * 1

3-93X=-9—‚ J’=Z="';- 3.l0:Ä=0; y =/1. -2 , ‚ubeliebig.

z 1

II fl II n

3.11:ZX‘L; =Za,,,x,xk =2 t1“X,-2 + -1 (au; + am) xix, E 0,
t=l i,k=l i‚=1 i,_k=k1

l<
d. h. an = 0, am = —a‚„ (i‚k ä 1,2, ...‚n). Die Matrix [am] ist also schiefsymmetrisch, also
det [au] = 0, da n ungerade.

4.l:Die Vektoren aller Systeme sind jeweils voneinander linear unabhängig, stellen demnach
Basen dar.

4.2: Der Nullvektor erfüllt alle Axiome und Gesetze.

4.3: Bestätigung durch Ausrechnen.

4.4: Zum Beispiel ist a4 = (— 1, 1, -1, 1) ein geeigneter Vektor.

4.5.:a.„ = 2a; + 2a; + a3.

—a3 - 24; die Vektoren
3 7

4.6: Die Vektoren a,, i= I, 2, 3,4, sind eine Basis; a = Ea, + -a2 — 4
b„ i = 1, 2, 3, 4, sind linear abhängig. 4

4.7: Die Abbildungen (D0 und ID, genügen den Linearitätsbedingungen.

5.1: Eigenwerte: l1 = 2, 12 = 4, 13 = 6; Eigenvektoren: i

O 1 1

r1= l , r2= 1 , r3= 0

-1 0 —1

5.2: Eigenwerte: 1, = 0, A, = 2.3 = 1;

Eigenvektoren:

1 0 2

f1 = —2 ‚ ['2 = 1 , f3 = 0

—2 o -3

5.3: Eigenwerte: Äl = Ä; = 0, 1.3 = 5

Eigenvektoren: Zum doppelten Eigenwert Ä = 0 existiert nur ein Eigenvektor t1;

5 0

f1: 1 , I'3= l
l

7 2

5.4: Transformationsmatrix

-1/2 2/\/6_ —\/3"/5

R= -1/2 o \/3‘/2

1/\/2‘ am‘ w:
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5.5: a) A regulär, Ar = 7.:", r + o —+ A“ existiert —> A“Ar = 7.A‘1r -> o ‘=l= r = ZA“r —> 7. # 0.
b) Es sei Ä # 0 für alle Eigenwerte —-> Das homogene lineare Gleichungssystem Ar = o hat nur die
triviale Lösung (denn wäre r eine nichttriviale Lösung, so hätte A den Eigenwert 7. = 0 mit r als zu—

gehörigem Eigenvektor) —> A ist regulär.

5.6: Vertauschbarkeit: ‚

3 3- 1 2AB=[ ‘/ / _ = BA;
1/2 3J3/4

Eigenwerte von A: 7.1 = 1/2, 7.2 = 5/2;

Eigenwerte von B: ‚u, = 7\/3/6, ‚u; = J3/2.

Da beide Matrizen nur einfache Eigenwerte haben, sind sie diagonalähnlich. Gemeinsame Eigen-
vektoren von A und B sind

_ L’: ' _ V52]
rl~[“\/3/2], ‘Pi 1/2 '

5.7: Zugehörige symmetrische Formmatrix:

5—2o

A= —2 6-2;
0-27

Eigenwerte: 7., = 3, 7., = 6, 7.3 = 9;
Eigenvektoren: rl , r2, r3 (siehe Aufgabenstellung);

Transformierte quadratische Form (5.46):

syf + 6y; + 9y; = 36.

. 8E1
5.8: Mit der Abkürzung/z - —— = jg = -Wergibt sich

‚u, I6 + 1l\/I-Z. (Grundschwingung),

‚u; = 2 (1. Oberschwingung)‚

„a = 1s — 11 J2‘ (2. Oberschwingung).

Die zugehörigen Ausbiegungs-Vektoren sind

23/44 2 — 23/44

r1= J;‚r2= 0,r3=
23/44 —l —23/44
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