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Aus dem Vorwort zur ersten Auflage

Vor mehreren Jahrzehnten wurden in der mathematischen Ausbildung der Nicht-
mathematiker nur einige Ergebnisse aus dem Bereich der linearen Algebra beriick-
sichtigt, und zwar im wesentlichen solche, die zur Herleitung und Formulierung von
Sitzen der Differential- und Integralrechnung erforderlich waren. Seit etwa 20 Jahren
ist die lineare Algebra ein selbstindiges und geschlossen dargestelltes Teilgebiet im
Rahmen der obengenannten Ausbildung geworden. Das ist einmal Ausdruck der
Tatsache, daB neue, besonders praxiswirksame Teilgebeite der Mathematik wie.zum
Beispiel lineare Optimierung, ‘Graphentheorie und Netzplantechnik, Spieltheorie,
Tensoralgebra und -analysis umfassende Grundkenntnisse der linearen Algebra vor-
aussetzen. Zum anderen gibt es vielfiltige Bestrebungen fiir eine zielbewufBte und
systematische Umgestattung der mathematischen Ausbildung der Nichtmathematiker
in bezug auf Inhalt, Methode und Organisation. Und ferner kann der EinfluB der
Entwicklung der Rechentechnik und der stirkeren Beachtung des Systemaspektes
nicht iibersehen werden. So ist es diesen und sicher noch manchen anderen Fakten
zu danken, daB die lineare Algebra gegenwairtig zu den wichtigsten Ausbildungs-
gebieten der Mathematik fiir Nichtmathematiker gehort.

Zahlreiche Kollegen und Mitarbeiter haben das Zustandekommen dieses Bandes
unterstiitzt. Besonders sei Doz. Dr. B. Bank, Berlin, Dipl.-Math. H. Ebmeyer,
Dresden, Dipl. agr. ing. H. Seythal, Bernburg, sowie Dr. H. Henning, Dr. M. Holz,
Dr. F. Juhnke, Dipl.Math. M. Klaus, Dr. I. Paasche, samtlich Magdeburg, fiir
Hinweise und Anregungen gedankt.

Vier Studenten waren dankbare Diskussionspartner bei der Erarbeitung des Manu-
skriptes: Gisela Hinz, Dirk Lau, Hartmut Ortloff und Jiirgen Scharf; ihnen gebiihrt
Anerkennung und Dank.

Magdeburg, im Friihjahr 1974 Die Verfasser

Vorwort zur fiinften Auflage

Fiir die vorliegende fiinfte Auflage wurde eine generelle Uberarbeitung vorge-
nommen. Das Kapitel ,,Vektoren* ist an den Anfang gestellt worden; damit wird
der .Reihenfolge der Stoffbehandlung in der Ausbildung entsprochen. Den Anwen-
dungen der Vektoren in der Geometrie ist mehr Raum gewidmet. In den Kapiteln
,,Matrizen und Determinanten‘‘ sowie ,,Systeme von linearen Gleichungen und line-
aren Ungleichungen‘ werden Grundkenntnisse vermittelt; die Beziige zwischen den
drei einleitenden Kapiteln sind wesentlich erweitert und ausgebaut. Das Kapitel
,Lineare Vektorraume und lineare Abbildungen‘* dient der Systematisierung des
gebotenen Stoffes, betrachtet ihn unter libergeordneten Gesichtspunkten und bereitet
eine abstrakte Betrachtungsweise vor. Von den vielfaltigen, differenzierten und be-
deutsamen Anwendungen der linearen Algebra kann im folgenden Kapitel nur eine
kleine Auswahl geboten werden. Bemerkungen zur historischen Entwicklung be-
schlieBen die Darstellung.

Von der 1. bis zur 5. Auflage haben uns viele Kollegen Anregungen und
Vorschlige zukommen lassen; allen mdchten wir dafiir danken und in diesem
Zusammenhange besonders Prof. Dr. G6hde, Zwickau, Dr. Kuhrt, Berlin, Doz.
Dr. Purkert, Leipzig, Doz. Dr. Reibiger, Dresden, Prof. Dr. Schoch, Freiberg,
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Prof. Dr. Schultz-Piszachich, K&then, Prof. Dr. Sieber, Leipzig, Prof. Dr. Stolle,
Rostock, Dr. Uebrick und Dr. Werner, beide Magdeburg, erwahnen.

Dem verantwortlichen Herausgeber, Prof. Dr. H. Kadner, Dresden, sowie der
Leiterin des Lektorates Mathematik des Verlages, Frau D. Ziegler, sei fiir die stetige
und das gesamte Vorhaben fordernde Zusammenarbeit besonders gedankt.

Magdeburg, im Friihjahr 1984 Die Verfasser
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1. Vektoren

In diesem einleitenden Kapitel wird an bekanntes Wissen iiber Vektoren ange-
kniipft, um es auszubauen, zu vertiefen und zu systematisieren. Fiir das Rechnen mit
Vektoren gelten z. T. Gesetze, die anders sind als die, welche vom Zahlenrechnen her
bekannt sind; die Rechengesetze bringen Eigenschaften des Rechnens mit Vektoren
zum Ausdruck, die teilweise beim Zahlenrechnen nicht zu finden sind, nicht zu finden
sein konnen.

Der Vektorbegriff ist in vieler Hinsicht ein qualitativ neuer Begriff; ganz besonders
kommt das in der Vielfalt seiner Anwendungen zum Ausdruck, z. B. in der Techni-
schen Mechanik, der Thermodynamik, der Elektrotechnik, der Okonomie und der
Mathematik — um nur einige Gebiete zu nennen. X

‘

1.1. Skalare Grofien und Vektoren
1.1.1. Skalare GriBen

Betrachtet man GroBen, die in Naturwissenschaft und Technik vorkommen, so
findet man einmal die skalaren GroBen, wie z. B. Linge, Masse, Zeit, Temperatur,
Energie, Leitvermogen, Elektrizitatsmenge. Jede skalare GroBe besteht aus MaBzahl
und MaBeinheit. Die MaBzahl ist eine reelle Zahl und gibt die Quantitét der skalaren
GroBe an. Diese GroBen konnen umkehrbar eindeutig den Punkten einer geraden
Linie — der Zahlengeraden — zugeordnet werden. Die MaBeinheit gibt die qualitativen
Merkmale der skalaren GroBen an.

Béispiel 1.1:
Linge/=Acm =1-10"2m = I’ m;

J ist eine reelle Zahl. Bei Anderung der MaBeinheit fiir die gleiche GroBe / muB auch die MaBzahl
umgerechnet werden.

1.1.2. Vektoren

Andere GroBen sind durch Angabe von MaBzahl und MaBeinheit nicht vollstindig
bestimmt, wie z. B. die Kraft. Sie kann durch die Geschwindigkeitsinderung ge-
messen werden, die sie bei einer Masse hervorruft, auf die sie wirkt. Zur Charakteri-
sierung der Kraft bendtigt man die Richtung, in der sie wirkt, die Orientierung oder
den Richtungssinn und den Betrag der Geschwindigkeitsinderung, die sie hervorruft.
Solche GroBen werden als Vektoren bezeichnet. Vektoren sind z. B. auch Geschwin-
digkeit, Beschleunigung, Strémung, Feldstarke. Die vektoriellen Gré8en kann man
nicht den Punkten der Zahlengeraden zuordnen.

Definition 1.1: Zur vollstindigen Bestimmung eines Vektors bendtigt man drei An- D.1.1
gaben:

a) die Ldnge oder den Betrag;

b) die Richtung;

c) den Richtungssinn oder die Orientierung.

Vektoren werden durch gerichtete Strecken dargestellt. Gerichtete Strecken werden

oftmals auch als Vektoren interpretiert und z. B. mit P, P, bezeichnet. Die positive
MaBzahl der Lange der gerichteten Streeke gibt den Betrag des Vektors an.
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Der Betrag des Vektors ist ein Skalar. Die Richtung des Vektors gibt seine Lage
im Raum an. Der Richtungssinn gibt an, nach welcher Seite der Richtung der Vektor
positiv zu nehmen ist.

Vektoren werden in diesem Buch durch halbfett gedruckte kleine lateinische Buch-
staben gekennzeichnet.

Die Bezeichnung Vektor wurde vermutlich zuerst in England benutzt; sie geht zuriick auf das
lateinische Verb ,,vehere* — bewegen (vgl. auch ,,Vehikel*).

Die beiden Vektoren a und b (Bild 1.1) haben zwar die gleiche Richtung, aber ver-
schiedenen Richtungssinn; sie sind kollinear.

.

Bild 1.1

Im folgenden werden - falls nicht ausdriicklich ein Hinweis angebracht ist - nur Vektoren in
rechtwinkligen, im mathematisch positiven Sinne orientierten kartesischen Koordinatensystemen
betrachtet. Werden die fiir die Darstellung eines Vektors verwendeten Lingeneinheiten geindert, so
fithrt dies lediglich zu einer einfachen Umrechnung fiir den Betrag (vgl. Umrechnung bei Skalaren),
geidnderte-Richtung oder anderer Richtungssinn fiihren jedoch zur Koordinatentransformation.

Nach der Art der Anwendungen unterscheidet man gebundene Vektoren (z. B. Ortsvektoren und
Feldvektoren, die einen festen Anfangspunkt haben, sowie linienfliichtige Vektoren, z. B. Krifte,
die l4ngs ihrer Wirkungslinie verschiebbar sind) und freie Vektoren (beliebige Vektoren). Auf dic
Rechengesetze der Vektoren hat diese Einteilung keinen EinfluB. Im folgenden beziehen wir uns i. allg.
auf freie Vektoren.

Definition 1.2: Zwei Vektoren werden als gleich angesehen, wenn sie in Betrag, Rich-
tung und Orientierung iibereinstimmen. Dabei soll es gleichgiiltig sein, wo ihre Anfangs-
punkte liegen.

Bei Parallelverschiebung dndert ein Vektor den Anfangspunkt und damit seine
Lage im Koordinatensystem, unverandert bleiben Betrag, Richtung und Orientierung.

1.2. Grundgesetze der Vektorrechnung

1.2.1. Multiplikation eines Vektors mit einem Zahlenfaktor

Gegeben sei ein Vektor a mit dem Betrag |a] > 0. Wenn A eine reelle Zahl ist, dann
besitzt der Vektor b = Aa die gleiche Richtung wie der Vektor a, d. h., a und b sind
parallel.

Definition 1.3: Wenn b = Aa ist, dann heifen a und b kollinear, falls 2 & 0; fiir A = 0
ergibt sich der sog. Nullvektor.

Fiir A > 0 haben a und b die gleiche Orientierung; fiir 2 < 0 sind die Orientie-
rungen von a und b entgegengesetzt (vgl. Bild 1.2).

b=2a b=-za

:\ Bild 1.2

Der Nullvektor hat den Betrag Null; er besitzt weder Richtung noch Orientierung
(vgl. auch 1.3.2)).
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1.2.2. Der Einheitsvektor

Setzt man A = T:I—, dann wird
1

b=-—a,

lal
und sein Betrag ist

1
b|=-—|a] = 1.
Ibl = 75 lal

Definition 1.4: Ein Vektor, der mit a die gleiche Richtung und die gleiche Orientierung D.1.4
hat und vom Betrag 1 ist, wird der zu a gehorige Einheitsvektor a° genannt:

1
a =-——a, a°’| = 1.
Ta] a°|

Multipliziert man a° mit |a|, so erhdlt man den Vektor a:
a’la] = a.

Der Vektor a ist bestimmt durch seinen Betrag |a| und durch die Richtung und die
Orientierung seines zugehdrigen Einheitsvektors. Jeder Vektor 148t sich als Produkt
aus einem Skalar (seinem Betrag) und einem Vektor (seinem zugehorigen Einheits-
vektor) darstellen. Der Vektor a und sein zugehoriger Einheitsvektor a°® sind kol-
linear.

Sind zwei Vektoren a und b zueinander kollinear (a || b), so gilt a° = +b°, wenn a
und b gleiche Orientierung haben, und a° = —b°, wenn a und b entgegengesetzte
Orientierung haben.

Nehmen wir an, e sei ein Einheitsvektor (je] = 1), der mit a die Richtung gemein-
sam hat. Dann kann a dargestellt werden durch a = ae. Je nachdem, ob die Orien-
tierung von a mit der von e iibereinstimmt oder nicht, ist « = +|a| oder « = —|a].

Satz 1.1: Jeder Vektor — mit Ausnahme des Nullvektors — ist als Produkt aus einer S.1.1
Mapzahl, deren Betrag gleich dem Betrag des Vektors ist, und einem (gleichgerichteten)
Einheitsvektor darstellbar: a = ae mit o = +|a|, je nach der Orientierung von e;

im Falle von « = +|a| ist e der zugehorige Einheitsvektor a° von a.

(Fiir den Nullvektor ist eine Darstellung 0 = Oe mdéglich, nur werden hier keine
Voraussetzungen iiber die Richtung von e gemacht.)

1.2.3. Addition und Subtraktion von Vektoren

Gegeben seien die Vektoren a und b (vgl. Bild 1.3). Die Addition der beiden
Vektoren kann als geometrische Addition gerichteter Strecken aufgefaBBt werden.

Definition 1.5: Verschiebt man den Vektor b parallel bis sein Anfangspunkt im End- D.1.5
punkt von a liegt, dann stellt der vom Anfangspunkt von a zum Endpunkt von b fiih-
rende Vektor s die Summe der Vektoren a und b dar (vgl. Bild 1.4):

s=a+b.
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Dabei ist es gleichgiiltig, ob b an a oder a an b angetragenwird:a+b=b+a = s
(vgl. Bild 1.5). Das kommutative Gesetz der Addition hat also Giiltigkeit. Stellen a
und b Krifte dar, dann ist s die Resultierende in diesem durch a und b bestimmten
Kréfteparallelogramm.

b a
a ]
Bild1.3 - Bild 1.4 Bild 1.5

Das assoziative Gesetz der Addition gilt ebenfalls. Das 148t sich fiir drei Vektoren
leicht veranschaulichen (vgl. Bild 1.6): |
——
(@a+b) +c=A4G,
-
a+(b+c)= AG,
s
a+b+c=A4G.
Weiterhin kann man die Reihenfolge der Vektoren (bei festem Ausgangspunkt 4)
beliebig wihlen, ihre Summe ist davon unabhingig:
at+b+c=b+c+a=c+a+b=a+c+b=b+a+c=c+b+a.”
Die Subtraktion des Vektors b vom Vektor a kann als Addition des Vektors —b

zum Vektor a aufgefalt werden:

a — b=a+ (—b) = d. Dann istd der Vektor, der vom Anfangspunkt-des Vektors a
zum Endpunkt des Vektors —b gerichtet ist (vgl. Bild 1.7).

Summe s und Differenz d zweier Vektoren a und b lassen sich als die Diagonalen in
dem von diesen beiden Vektoren bestimmten Parallelogramm darstellen (vgl. Bild 1.8).

Bild 1.7 Bild 1.8

Fiir die Multiplikation von Vektoren mit Skalaren gelten die distributiven Gesetze:
L@A+twa=12a+ pa,
II. A(a + b) = Za + 7b,
a, b Vektoren; A, u Skalare.
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Die Giiltigkeit dieser Relationen ist leicht einzusehen. Im besonderen kann das Er-
gebnis von Vektoradditionen (oder Vektorsubtraktionen) der Nullvektor sein, z. B.
a+ b+ c=o0; d. h, die Vektoren sind so aneinandergefiigt, daB der Endpunkt
von ¢ mit dem Anfangspunkt von a zusammenfallt (vgl. Bild 1.9). Durcha + b + ¢
= o wird ein Dreieck beschrieben. Gilt allgemein

n
2a, =o,
v=1

so liegt ein geschlossener n-teiliger Polygonzug vor (vgl. Bild 1.9 und 1.2.7., Def. 1.7).

1.2.4. Darstellung in vektoriellen Komponenten

Fiir praktische Rechnungen ist es iliblich, Vektoren mittels ihrer Komponenten in
Koordinatensystemen darzustellen. Dazu benutzen wir ein rechtwinkliges Rechts-
system (rechtwinkliges kartesisches Koordinatensystem). Wir zeichnen einen Vektor
in der Ebene, also dem zweidimensionalen Raum R?, uind zerlegen ihn in die Kompo-
nenten a; und a, parallel zu den Koordinatenachsen (vgl. Bild 1.10). Dann gilt:

a=a; +a,.

Der Betrag |a] kann nach Bild 1.10 berechnet werden:
[a]* = |a,|* + |a,|?;
[as] = |x2 — x4, [az] = |y2 = »ils

la] = +/la;® + [l

y

Yi———————— f a,

NS5 I
>

Bild 1.9 Bild 1.10

Wenn wir nun den R2?, also die Ebene, verlassen, dann bereitet die anschauliche
Ubertragung der gefundenen Ergebnisse auf den dreidimensionalen Raum R? bzw.
die formale Ubertragung auf den n-dimensionalen Raum R" keine Schwierigkeiten.
Fiir die Darstellung eines Vektors im R? gilt:

a = a,; + a, + a;
bei analoger Interpretation wie im R?, und fiir den R" gilt:
a=81+32+...+a".
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1.2.5. Grundvektoren

Jeder Vektor 148t sich mit Hilfe eines Einheitsvektors gleicher Richtung darstellen
(vgl. 1.2.2.), also. auch die Vektorkomponenten a, und a,.

e, sei Einheitsvektor in Richtung der x-Achse,
e, sei Einheitsvektor in Richtung der y-Achse. Dann ist

a, =o0e; und a, = a,e,,
wobei
&y =X, —Xx; und &, =y, —y,;

sind, und es gilt
[as] = |ag], |az] = |as].
Wegen der Zerlegung
a=a, +a,

in Vektorkomponenten gilt

a= _a,e, + %2€3.
Die GrofBen 'al und «, sind die skalaren Komponenten des Vektors a, die man auch
als Koordinaten des Vektors bezeichnet. Die Einheitsvektoren e; und e, werden als
Grundvektoren bezeichnet. Mit ihrer Hilfe kann jeder Vektor im rechtwinkligen

ebenen Koordinatensystem dargestellt werden.
Die Vektordarstellung mit Hilfe der skalaren Komponenten hat die Form:

a = a(a,; «,) oder — wenn Verwechslungen ausgeschlossen —

a = (a;a,).
Als Beispiele seien angefiihrt:

a = 3e; + Se,; a=(3;5);

b = 2e; — 3e,; b =(2; -3).
Fiir einen Vektor im R3 kommt noch ein dritter Grundvektor e; dazu, der dann also
senkrecht auf e, und e, steht (vgl. Bild 1.11):

a = x;e; + &€&, + x3es,

a = a(x;; a5 a3) = (053 625 *3).

Z4

X Bild 1.11
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Die skalaren Komponenten der Grundvektoren e, e,, €3 sind:
e, = (1;0;0);
e; =(0;1;0);
e; = (0;0; 1).

Satz 1.2: Im R" wird ein Vektor a folgendermafen dargestellt: S.1.2
n n
| a-ge-fee
i=1 i=1 )
wobei a, (i = 1, 2, ..., n) die vektoriellen Komponenten, o, (i = 1, 2, ..., n) die skalaren

Komponenten von a sind, |a;| = |a,| gilt und die e, die n Grundvektoren, d. h. die Ein-
heitsvektoren in Richtung der Koordinatenachsen sind; Komponentenschreibweise fiir a:

| a=a(xg; a2 s 0n) = (B35 325 .o On),
" fiir den’Nullvektor:
] o= (0;0;...;0).

Bei ganzzahligen Komponenten oder wenn keine Verwechslungen mdglich sind,
kann man die Komponenten auch durch Kommata voneinander trennen.

Es ist auch méglich, die Komponenten eines Vektors in einer Reihe anzuordnen,
und zwar entweder in einer senkrechten Reihe, einer Spalte, oder in einer waage-
rechten Reihe, einer Zeile. Dann ist z. B.

Oq

0y 1 0 0 “
a=|a,|, e=]|0]|, ea=|1], es=]0]; a= :’_
K3 0 0 1 a.

die Anordnung der Komponenten in einer Spalte. Die zeilenweise Anordnung der
Komponenten bezeichnen wir im Unterschied dazu mit

aT = [a,;, &y, 03] usf. sowie aT = [a, az, ..., &,].
(Die Begriindung fiir diese Darstellung wird im Kapitel 2 gegeben.)

“
Z
J
7 2 y
2
/] N_/
7 ‘ §/ P
¥ b
/] $§
; 1 2 3 ¢ § y

X Bild 1.12
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Die Addition von Vektoren in Komponentenschreibweise kann man anschaulich
darstellen. Die beiden Vektoren .

a=a +az+a3=e1+3e2+3e3=(1;3;3),

b=b1+b2+b3=e1+292—e3=(1;2; —1)
sollen addiert werden (vgl. Bild 1.12). Es gilt

a+b=s=2e + 5, + 2e; =(2;5;2).

Satz 1.3: Vektoren werden addiert, indem ihre entsprechenden Komponenten addiert
werden:

a+b=s=(a,+b1)+(82+b2)+(33+b3)
= (ar + f1)e; + (a2 + f2) ez + (a3 + f3) €3
= 0,e; + 0,e, + 03€;3

oder mit der vorhin eingefiihrten Darstellung

Oy B1 oy + By’ 0y
RGN SR
03 B3 o3 + B3 03

bzw. im R"
oy B1 ay + By oy
0‘.2 + Igz — | *2 + B2 _ 0'.2
an ﬂn an + ﬂﬂ Uﬂ

Fiir die Subtraktion gilt das Entsprechende.

Im R3 enthilt eine Vektorgleichung drei skalare Gleichungen. Im R enthilt eine
Vektorgleichung n skalare Gleichungen.

a = bodera — b = o bedeutetin Komponentendarstellunga; = f;,i = 1,2, ..., n
Daraus folgt:

Satz 1.4: Zwei Vektoren a und b sind gleich, wenn sie in ihren Komponenten
(15 023 - 0) und (By; Ba; -..; Ba) iibereinstimmen.

1.2.6. Die Richtungskosinus eines Vektors

Betrachten wir einen Vektor in der Ebene. Er soll parallel so verschoben werden,
daB sein Anfangspunkt im Ursprung des Koordinatensystems liegt (vgl. Bild 1.13).

Yy

a, a

|

|

|

|

& [ (g0 |
|

4(e,a) J

& a x Bild 1.13
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Definition 1.6: Die Grifien . D.1.6
cos (x; a) = cos (e;; a) = —E‘—_,
cos (y; @) = cos (e,; a) = aTZ'-

heiflen Richtungskosinus des Vektors a.

(Man beachte, daB als Zahler die — vorzeichenbehafteten — skalaren Komponenten
des Vektors auftreten; es darf nicht mit den Betragen |a| gerechnet werden, weil sonst
nicht zu erkennen wire, in welchem Quadranten die Winkel liegen.)

Dabei sollen die Winkel (e, ; a), (e,; a) stets im Intervall [0; =] liegen. Die Winkel
werden zwischen den positiven Achsen und dem Vektor gemessen (vgl. Bild 1.14).

o cos(e,al<0
cos(e,a >0

cos (e,a)>0 a (6,0

cos (e,a)>0 | $(&,0)
L(e,0)
<(e;,a)
| X | X
s y

4(?2,“)/- \4(@1‘a)
e g
4(&,0) 4le,a)

cos(e,al<o cos(e,@)>0
a cos(e,@)1<0 cos (&,a1<0

Bild 1.14

Dadurch kann jede Lage eines Vektors im R? mit Hilfe der Richtungskosinus charak-
terisiert werden (vgl. Bild 1.14). Durch die Angabe der beiden Richtungskosinus sind
Richtung und Orientierung des Vektors a festgelegt. Berticksichtigt man, daB nach
dem Satz von Pythagoras

[4]* + |az[? = |a?
ist, dann lassen sich die folgenden Beziehungen zwischen den Richtungskosinus her-
leiten: .

of | %

cos? (e;; a) + cos® (e;; a) = R 1.
Multipliziert man die Richtungskosinus mit a; bzw. «,, so erhilt man:
o} + o
oy cos (e;; @) + &, cos (e;; a) = - |a].

Beispiel 1.2.:
a = de, + 3e;; la| = \/42+ 32=35;
cos (e;;8) = §; cos(ez;8) = §;

@*+@*=1;4-$4+3-3 =5.
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Ein Vektor im Raum besitzt drei Richtungskosinus (vgl. Bild 1.15):

Oy
cos (e;; 8) = —

cos(ez,a)=—‘|";’|-;

o3 /J*{‘h") J
cos (e3; a) = —. .
la X Bild 1.15

Mit a} + & + &} = |a|? gelten fiir den Vektor im R® analoge Beziehungen wie fiir

den Vektor in der Ebene:
cos? (ey; a) + cos? (e,; @) + cos?(e;; a) = 1,
oy cos (e;; 8) + «, cos (e,; a) + a3 cos (e3; a) = |a].

Mit Hilfe der Richtungskosinus 148t sich eine Komponentendarstellung der Vek-
toren herleiten. Aus der Definition der Richtungskosinus ergibt sich:

oy = |a] cos (e,; a),

a; = |a] cos (e;; a),

a3 = |a| cos (e;; a).
Damit haben wir neben den Darstellungen eines Vektors durch seine vektoriellen und
skalaren Komponenten eine Darstellung durch seine Richtungskosinus:

a = (|a] cos (e,; a); [a] cos (e;; a); [a] cos (e5; a)),

a = [a| (cos (e;; a) e; + cos(e,; a)e, + cos (es; a) e3).
Aus der Darstellung der €;, i = 1, 2, 3, erkennt man, daB die Komponenten der
Grundvektoren die Werte ihrer jeweiligen Richtungskosinus sind:

e; = (cos (eg; e,); cos (e;; €,); cos (e3; €,)) = (15 0; 0),

e, = (cos (e;; e,); cos (e,; e,); cos (e3; e,)) = (0; 1; 0),

e3 = (cos (e, e3); cos (e;; e3); cos (e3; e3)) = (0; 0; 1).
Die Ubertragung auf den R" fiihrt zu folgenden Darstellungen: Es ist cos (e;; a)

n
=2 firi = 1,2,...,nund 3 cos? (e;; a) = 1.
|a i=1 )

S.1.5 Satz 1.5: Im R" gilt fiir a die folgende Darstellung:
n
l a=|aYecos(e;a), i=12,..,n.
i=1

Die skalaren Komponenten der Grundvektoren e, (i = 1,2, ...,n) sind die Werte
der jeweiligen n Richtungskosinus:

| e; = (cos(e;; e;); cos(ey; €); ...;cos(e,;e)), i=1,2,...,n.
Beispiel 1.3.:

a=3e1 +20; "'603;

al=9+4+36=7;
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3 2 6
cos (ey; a) = 75 cos(e;; a) = 7 cos (e3; a) = — =i
X (e;;3) ® 64°37; X (ez;8) R 73°24"; X (es; a) & 149°;

3\2 2\2 6\2
cos? (ey; a) + cos? (ez; a) + cos? (e;; a) = (7) + (7) + (—-7-) =1;

o5 cos (eg; @) + &, cos (ez; a) + «3cos (es; a)

—3 24224 cof-2) 1=

1.2.7.* Lineare Abhingigkeit

Zwei Vektoren a und b, fiir die b = Aa gilt, heiBen linear abhdingig. Zwei linear
abhingige Vektoren sind kollinear. Sind die beiden Vektoren a und b nicht vonein-
ander linear abhingig, so bestimmen sie eine Ebene. Liegt ein dritter Vektor ¢ in
dieser Ebene, so muB er von a und b linear abhingig sein.

Drei linear abhangige Vektoren heien komplanar. Fiir drei linear abhidngige Vek-
toren a, b, ¢ gibt es immer eine Lésung der Gleichung

Aa + ub + rc = o,

. wobei 4, u, v nicht alle zugleich null sein diirfen (A2 + u2? + 2 % 0).
Es sei v + 0, dann 148t sich ¢ als Linearkombination von a und b darstellen:

c = ——}'—a—ﬁ-b.
v

Fiir die Bestimmung von 4, u, » ergibt sich aus der Gleichung 4a + ub + »¢ = o ein
System von drei linearen Gleichungen:

ioy + pfy + vy, =0,
2“2 +[uﬁz + vy, =0,
Axz + ufs + vys = 0.

Dieses Gleichungssystem hat nur dann von null verschiedene Losungen, wenn seine
Koeffizientendeterminante verschwindet (vgl. Abschnitt 3.1.).

Aus ZweckmiBigkeitsgriinden wollen wir jetzt den Begriff der Determinante
einfiihren, und zwar anhand einer Determinante 3. Ordnung (vgl. auch 2.4.).

Unter einer Determinante 3. Ordnung versteht man folgenden Ausdruck:

Qi1 4yz Qg3
D=la,; a,, a|,
a3y dzz AQaszs

wobei die Elemente ax (i, k = 1,2, 3) Zahlen, Rechengré8en oder sonstige mathe-
matische Objekte sind. . .

Den Wert einer solchen Determinante berechnet man folgendermaBen nach einem
einfachen Schema, das der franzosische Mathematiker Sarrus angegeben hat. Man
schreibt die erste und zweite Spalte der Determinante nech einmal hinter die Deter-
minante.

Die Produkte aus den Elementen der drei sogenannten Hauptdiagonalen (a,:a,,a;5,
a;,0,3a51, Gy38,,03,) werden addiert, die Produkte aus den Elementen der so-

2  Manteuffel, Lineare
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an Gyo _ s | _Au . Gy
\ >\ ,’
ay a a an Qg
1 G O
-

genannten drei Nebendiagonalen (@;3a,,83;, @110,383;, @12031433) Werden sub-
trahiert, und das Ergebnis ist der Wert der Determinante, d. h

D = ay; ay; a33 + ay; ax3 a3y + ay3 Gz, a3,
= @y3 Gy G3; — Ay dz3 G3; — Qg3 Gy d33.
Dieses Verfahren hgiBt Regel von Sarrus und gilt nur fiir Determinanten dritter
Ordnung.
Beispiel 1.4:
1 3 4 3

\\

D=|2 0 1|; 2 4]
/ \

(3 1 2 37 3
+ o+ +

D=1-0-2+3-1-34+4-2-1-4-0-3-1-1-1-3-2-2
=04+9+8-0-1-12=

Mit Hilfe des Begriffs der Determinanten 3. Ordnung konnen wir folgenden Satz
formulieren:

S.1.6 Satz 1.6: Drei Vektoren a, b, ¢ im R3 sind linear abhangtg, wenn die aus den Koordi-
naten der drei Vektoren gethdete Determinante
ai B 1
D=|a, B, y2|=0
. a3 B3 v
ist. - .

Ist D # 0, so gibt es nur die Losung A = u = v = 0, d. h., die drei Vektoren sind
voneinander linear unabhdngig; sie liegen nicht in einer Ebene. Allgemein gilt

D.1.7 Definition 1.7: n Vektoren a,, a,, ..., a, im R" heifien voneinander linear abhiingig,
wenn es eine Losung der Gleichung

n
E zvav =0
r=1

derart gibt, daf nicht alle A,, v = 1, 2, ..., n, zugleich null sind. Gibt es nur die Losung
A =0,v = 1,2, ...,n, dann heifen die Vektoren voneinander linear unabhiingig.

Wenn n Vektoren linear abhingig sind, so stimmt der Endpunkt von 4,a, mit
dem Anfangspunkt von A;a, iiberein; es liegt also ein geschlossener Polygonzug
vor (vgl. 1.2.3. und Bild 1.9).
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Vier Vektoren im R3 sind immer voneinander linear abhingig, denn 4,a, + 4,3,
+ Asa; + A,a, = o hat immer Losungen derart, daB nicht alle diese Koeffizienten
gleichzeitig null sind. In den drei Gleichungen mit vier Unbekannten ist eine Un-
bekannte ungleich null wihlbar. Im R3 gibt es hochstens drei voneinander linear
unabhéngige Vektoren.

Entsprechende Uberlegungen im R* fiihren zu

Satz 1.7: Im R" sind hichstens n Vektoren voneinander linear unabhingig, n + 1 S.1.7
Vektoren sind stets linear abhdngig.

Beispiele fiir linear abhéngige bzw. linear unabhéngige Vektoren:

Beispiel 1.5:
1 0 0
e;=|01], ea=|11]; ea=]0]|;
0 0 1
die Gleichung 4;e; + A,e; + A3;e; = o hat nur die Lésung 4; = 1, = 4; = 0, weil
1 00
01 0j=1
0 0 1

ist; e, €2 und e; sind also linear unabhéngig.

1 0 0
) 0 1
Beispiel 1.6: Die Vektoren e; = 1,6 = e = . sind ebenfalls linear
0 0 1

unabhéngig, weil die Gleichung

Z‘e, =0

n
i=1

\

nur fird; = 0,i =1, 2, ..., n, ecfiillt ist.

1 0 3 1 0 3
Beispiel 1.7: Fiir die Vektorene; = | 0 |,e; =] 1 |,a=| 2 |ist{0 1 2|=0; sie sind
0 0 0 0 0 O

linear abhingig. Mit 4; = —3,4, = —2,4; = 1 und a. = 3e, + 2e, gilt —"3e1 — 2 +a=o0.

Beispiel 1.8: Die Vektoren

a = € — e2+ 93—'204,
a = 301 - 502 + 233 - €4,
a3 = —2e; + e, — 2e3 + 2e,,

= — e — €3+ €y

sind linear unabhingige Vektoren; denn
4
Aa;=o giltnurfir 4, =2, =23 =4, = 0.

i=1
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Beispiel 1.9: Dagegen sind die vier Vektoren

cag = e — e+ e3;— 2e4,
a, = 3e; — S5e; + 2e; — ey,
az; = —2e; + e; — 2e3 + 2e4,
A = e; — Se; - €4

linear abhingig; denn es gilt
231+82+223"a4=0.

1.3. Multiplikation von Vektoren

Im Hinblick auf die Anwendungen sind fiir die multiplikative Verkniipfung zweier
Vektoren zwei verschiedene Produkte erklart. Die erste Verkniipfungsart — das ska-
lare Produkt zweier Vektorer — liefert als Produkt einen Skalar; die zweite Verkniip-
fungsart — das vektorielle Produkt zweier Vektoren — liefert als Produkt einen Vektor.
Bei der Produktbildung von Vektoren werden wir Eigenschaften feststellen, die sich
von den bei der Multiplikation von Zahlen auftretenden Eigenschaften unter-
scheiden.

1.3.1. Das skalare oder innere Produkt

Wenn ein Korper, an dem eine konstante Kraft angreift, um eine Strecke s ver-
schoben werden soll, so muB3 Arbeit aufgewendet werden; die Kraft k sei konstant,
und k und s (Js| = s) sollen den Winkel # einschlieBen (vgl. Bild 1.16). Die in Rich-
tung s wirkende Kraftkomponente ist |k| cos & - s°, wenn s = |s| s° gilt.

Die zu leistende Arbeit A4 ist dann Betrag der Kraft in Richtung des Weges mal
Betrag des Weges, d. h. '

A = |k| cos @ |s°] - ||s] s°| = |Kk] |s]| cos ¥.

Fiir = 0 wird die Arbeit 4 = |k| |s| geleistet.
Da auch bei vielen anderen Anwendungen eine solche multiplikative Verkniipfung
auftritt, definiert man das skalare Produkt zweier Vektoren a und b:

Definition 1.8: Das skalare oder innere Produkt ab = a-b = (ab) der Vektoren a
und b ist folgendermapen erklirt:

i ab = |a| |b/cos(a; b), 0< ¥(a;b) <.

Dabei versteht man unter cos (a; b) den Kosinus des von den Vektoren a und b
eingeschlossenen Winkels. Dieses Produkt liefert eine skalare GroBe. Der Wert dieses
Produktes hingt von den Betrdgen der Vektoren und dem Kosinus des von ihnen
eingeschlossenen Winkels X (a; b) ab, aber nicht von der Lage der Vektoren im
Koordinatensystem.

kK
I
3 b ' ? ol

s Wasds " Bild 1.16 bbtcosP-a® @ Bild1.17
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Satz 1.8: Das skalare Produkt zweier Vektoren ist invariant gegeniiber Koordinaten- S.1.8

transformationen (Translation und Drehung).

Das skalare Produkt 148t sich geometrisch deuten (vgl. Bild 1.17). Wenn wir

¥ (a; b) = & setzen, dann 1aBt sich das skalare Produkt als Produkt des Betrages
von a mit dem Betrag der Projektion b’ von b auf a (die Projektion von b auf a
ist ihrem Betrage nach gleich |b| cos ¢) auffassen.

Demnach 148t sich die Arbeit als skalares Produkt aus der aufgewendeten Kraft k
und dem zuriickgelegten Weg s bestimmen:

A = ks.

Aus der Definition des skalaren Produktes ergibt sich sofort die Giiltigkeit des
kommutativen Gesetzes, weil die Reihenfolge der Faktoren |a], [b|, cos (a; b) be-
liebig ist: :

i ab = ba.

Wenn nun z. B. der Vektor a mit der reellen Zahl A multipliziert wird, dann folgt aus
der Definition des skalaren Produktes fiir das Produkt (2a) b sofort:

I (a) b = A(ab) = Jab.

Dagegen kann es fiir das skalare Produkt zweier Vektoren kein assoziatives Gesetz
geben, weil dieses Produkt eben nur fiir zwei Vektoren erklirt ist. Wollte man aus
drei gegebenen Vektoren a, b, ¢ ein skalares Produkt bilden, dann miifte man auf
Grund der Definition des skalaren Produktes entweder a mit b oder b mit ¢ skalar
multiplizieren; in beiden Fallen ware das Ergebnis dieser Multiplikation ein Skalar,
der dann jeweils mit dem dritten Vektor (also mit ¢ oder mit a) zu multiplizieren ware.
Aber das Ergebnis der letzten Multiplikation ist dann in beiden Féllen ein Vektor.
Das distributive Gesetz gilt (vgl. Bild 1.18): '

i ab +c)=ab+ac=as mit b+c=s.

Die Giiltigkeit dieses Gesetzes 148t sich durch Ausrechnen (mit Hilfe der Komponen-
tendarstellung) oder geometrisch nachweisen; denn die Summe der Projektionen
von b und ¢ auf a ist gleich der Projektion der Summe s = b + ¢ auf a.

Satz 1.9: Es gibt keine eindeutige Umkehrung der skalaren Multiplikation.

Wenn a ein gegebener Vektor und x ein gegebener Skalar ist, dann ist die Frage
nach der Existenz eines eindeutig bestimmten Vektors x, der die Gleichung ax = »
erfiillt, die Frage nach der eindeutigen Umkehrung der Multiplikation. Es gibt
jedoch entweder keinen oder unendlich viele Vektoren, die obige Gleichung erfiillen,
d. h. also, es kann keine eindeutige Umkehrung geben. Fiir a = o und » % 0 gibt
es keine Losung. Fiir a = o und » = 0 gibt es unendlich viele Vektoren x, die diese
Gleichung erfiillen. Fiir a #+ o und x ¥ 0 erfiillt der zu a parallele Vektor x; = Za die
Gleichung, wobei 1 = F’:IT ist. Aber es gibt unendlich viele weitere Losungen; denn
wenn y? 1 aist, so ist auch x® = x, + y® eine Losung von ax = » wegen

a(x, + y?) = ax® = [a||[x¥] cos (a; x) = |a||x,| = ax,
(vgl. Bild 1.19).

S.1.9



22 1. Vektoren

Bild 1.19

y@
Bild 1.18

Q)

Unter welchen Voraussetzungen ist ab = 0? .
Fira = ooderb = o odera = b = oist die obige Gleichung erfiillt. AuBerdem kann
auch cos (a; b) = 0 sein, und a und b sind beide ungleich dem Nullvektor (a + o

und b % 0); dann muf} ¥ (a; b) = % sein, alsoa L b.

S.1.10 Satz 1.10: Giltab = O fiira * oundb + 0, so stehen die Vektoren a und b aufeinander
senkrecht; sie sind zueinander orthogonal.

Die Grundvektoren e, e,, e; sind zueinander orthogonal; fiir ihre Skalarprodukte
gilt demnach: '

1 fiiri =k,
€€ = Ou = {o fiir i + k )

(0, ist das sog. Kronecker-Symbol.)

Wenn a || b ist, wird
ab = +[a] [b],

je nachdem, ob cos (a; b) = +1 oder —1,d. h.,ob ¥ (a;b) =0oder X (a;b) ==
ist. Ist im besonderen b = e ein Einheitsvektor, dann gilt

ae = t|a|.
Fiir b = a erhalten wir
aa = |a|?

oder

la] = /aa.
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1.3.2. Das skalare Produkt in Komponentendarstellung

Wenn der Winkel zwischen zwei Vektoren nicht bekannt ist, kann man das skalare
Produkt unter Benutzung der skalaren Komponenten der Vektoren berechnen. Aus

a = o;e; + aze; + x3e3,
b = fie; + fae; + faes
bilden wir
ab = «,f8,e,e; + «;5.e,€; + «;f3e,€;
+ ayf €., + xyf,e.e; + ayfiese3
+ a3fieze; + asfrese, + a3fiese;;
berticksichtigen wir (*), so ergibt sich
| ab = a,f; + a8, + a3fs,
also eine skalare GroBe.
Fiir a = b wird aa = |a]? = o} + a + o} = |a,]?> + |a,|®> + |a;]%. Firb =oer-
gibt sich ao = 0, wie bereits vorher festgestellt.

Satz 1.11: Die Orthogonalititsrelation lautet in Komponentendarstellung S.1.11
*3181 + a2f2 + a3f; = 0.

Aus der Definition des skalaren Produktes und aus der Definition des Betrages eines
Vektors ergibt sich fiir a & o und b % o durch Auflésung nach cos (a; b):

ab _ ®1B1 + 2B + x3fs
lalbl /o +al+ ok JEHBE+B

Damit ist es moglich, den Winkel zwischen zwei Vektoren a und b zu berechnen.

cos (a; b) =

Setzen wir z.B. a =e,, b =e,, dann wird cos(e;;e,) = ﬁ(;—:—i = —(11 =0
‘ 1 2
und X (e,;e,) = I fira=b= e, wird cos (e, e,) = €€ o lundx (e;;e,) =0;
2 ao 0 le2| IeZI

fiir b = o wird cos (a;0) = d. h., es ergibt sich ein unbestimmter Aus-

lallo| 0’
druck, womit auch rechnerisch gezeigt ist, daB dem Nullvektor keine Richtung
zukommt (vgl. auch 1.2.1.). .

Die Darstellung des Winkels zwischen zwei Vektoren ist allgemein mit Hilfe der
Richtungskosinus der beiden Vektoren moglich. Mit

a = |a] (e, cos (e;; a) + e, cos (e,; a) + e3 cos (es; a)),
b = |b] (e; cos (e;; b) + e, cos (e;; b) + e; cos (e3; b))
wird . )
ab = |a| [b] (cos (e;; a) cos (es; b) + cos (e,; a) cos (e,; b) + cos (e3; a) cos (es; b));
andererseits ist ab = |a] |b| cos (a; b), d. h. also

cos (a; b) = cos (e;; a) cos (e;; b) + cos (e,; a) cos (e,; b) + cos(e;; a) cos (e5; b);
fir b = a gilt: ;

i cos (a; a) = cos? (e;; a) + cos? (e,; a) + cos? (e;; a) = 1.

Die Summe der Quadrate der Richtungskosinus eines Vektors ist gleich eins.
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Entsprechende Beziehungen gelten im R"; z. B. ist
ab _ %181 + axB; + ... + Gafa
lal bl Ja2 4o+ ...+ 02 BB+ ..+ B

cos(a; b) =

und
cos (a; b) = cos (e;; a) cos (e;; b) + cos (e,; a) cos(e,; b) + ... + cos(e,; a) cos (e,; b).
Beispiel 1.10:

Wenn a = 4e; — 2e, + 4e; und b = 3e; + 2e, + 6e; ist, dann werden
2

2 1.
lal =6, 005(01§a)“-=—3-, COS(ez;a)=—?, cos(es;a)=?,
3 2 ' 6
bl =7, cos(es;b) =, COS(ezib)=7, cos (e3; b) = —,

16
cos (a; b) = TN (mit Hilfe der Richtungskosinus), ¥ (a; b) = 40°20’,

ab = |a| bl cos (a; b) = 32, ab = «;f; + x,f, + x3f3 = 32.

1.3.3. Die Cauchy-Schwarzsche Ungleichung

Fiir zwei Vektoren a und b gilt
(ab) (ab) < (aa) (bb);
dabei gilt das Gleichheitszeichen, wenn einer der beiden Vektoren gleich dem Null-
vektor ist (a = o oder b = 0) oder wenn a und b kollinear sind (a || b, d.h. a = /b,

A=£0).
Durch Ausrechnen erhalten wir:

(ab) (ab) = |a|? |b]2 cos? (a; b),
(aa) (bb) = |a|? [b]?,

woraus wegen 0 < cos? (a; b) < 1 die Behauptung folgt.

1.3.4. Vektorielles Produkt
Definition 1.9: Als vektorielles oder duferes Produkt p = a x b = [ab] der beiden
Vektoren a und b wird der folgende Vektor p definiert:
p =a x b = [a] |b] sin (a; b) p°;
dabei ist p° der zu p gehorige Einheitsvektor (vgl. Definition 1.4 und Satz 1.1), und
esgilt 0 < ¥ (a;b) <=
Der Vektor p hat folgende Eigenschaften:

pla,

pLlb,

a, b, p bilden (in dieser Reihenfolge) ein Rechtssystem (vgl. Bild 1.20),

[pl = la] [b] sin (a; b);
der Betrag des Produktvektors ist gleich der Mafzahl der Fliche des von den Vektoren a
und b aufgespannten Parallelogramms (vgl. Bild 1.20).
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Aus der Definition des vektoriellen Produktes folgt, daB dies weder im R? noch im
R", n > 3, definiert werden kann.

Auch fiir die vektorielle Multiplikation gibt es keine eindeutige Umkehrung. Denn
es miilte dann a x x = k bei gegebenem a und k eine eindeutige Lésung haben.
Diese Gleichung ist nur l6sbar, wenn k L a; ist X, eine Losung, dann ist auch
(xo + Aa)eine Losung, dennesista X (xo +4a) =axxo+axla=axx,+0=Kk
(die Giiltigkeit des distributiven Gesetzes wird spater nachgewiesen).

Bild 1.20

Satz 1.12: Fiir die vektorielle Multiplikation gibt es keine eindeutige Umkehrung. S.1.12

Das vektorielle Produkt der beiden Vektoren a und b ist gleich dem Nullvektor o,
wenn einer der beiden Vektoren oder beide zugleich o sind oder wenn sin (a; b) = 0 ist.

Satz 1.13: Gilta x b = o fiir a + o und b + o, so sind die beiden Vektoren a und b S.1.13
kollinear.

Durch die obige Relation konnen kollineare Vektoren charakterisiert werden.
Sind a + o0 und b =+ o zueinander senkrecht, a L b, dann ist |p| = |a] [b], weil

. T .
sin — = 1 ist.
i 3 i

Wird einer der Vektoren a und b mit der reellen Zahl A multipliziert, dann folgt aus
der Definition des vektoriellen Produktes '

(Aa) x b = A(a x b),
a x (Ab) = X(a x b).

Ebenfalls folgt daraus, daB

i axb%+bxa,
aber
B axb=-bxa

gilt; das kommutative Gesetz besitzt keine Giiltigkeit. Die vektorielle Multiplikation
ist alternativ.
Fiir die vektoriellen Produkte der Grundvektoren gilt (vgl. Schema):

€; X e =e, X e, =@e3; X e3; =0, . &
e, X e, =¢€3= —e, X e, e, X e; = —ej ,

€, X €3 =¢€; = —e3 X €,, e; X e, = —ey, e

e; X e =e, = —e; X €3, €e; X e3 = —e,. &

Die Frage nach der Giiltigkeit des assoziativen Gesetzes ist hier berechtigt, denn
beide Produkte a x (b x ¢) und (a x b) x ¢ existieren und sind jeweils wieder
Vektoren. Aber im allgemeinen ist (vgl. 1.3.6.)

Pr=ax(®xe)+@xb) xc=p,
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das assoziative Gesetz besitzt keine Giiltigkeit. Wenn z. B.
a= 4de; — 2e, + 4de;,
b= 3e, + 2e, + 6e;,
c= —2e + e, — 3e;
ist, dann gilt (vgl. 1.3.5.)
ax(bxc)= —2e — T76e, — 36e;,
aber
(a x b) x ¢ = 22¢, — 88e, — 44e,.
Das distributive Gesetz dagegen besitzt Giiltigkeit, d. h., es gilt
| ax(b+c)=axhb+axec. '

Um dies einzusehen, bedenken wir, daB a mit dem Vektor b dieselbe Ebene aufspannt wie mit der
Projektion b von b in die zu a (in dessen Anfangspunkt) senkrechte Ebene; dann haben a x b und

a x b dieselbe Richtung. Durch a und b wird ein Parallelogramm, durch a und b ein Rechteck auf-
gespannt, die aber flichengleich sind (vgl. Bild 1.21). Dann haben die beiden Vektoren a x b und

a x b auch denselben Betrag, und es ist
axb=ax B.

Bereits bei der Untersuchung des skalaren Produktes hatten wir festgestellt, daB die Projektion
einer Summe von Vektoren gleich der Summe der Projektionen der Summanden ist; damit gilt:

ax(b+c)=ax(—b—+;)=ax(i+;).
Nun ist noch die Giiltigkeit von

a-x(—l.)+2)=axl_)+ax;
nachzuweisen. Ohne Einschrinkung der Allgemeinheit diirfen wir annehmen, daBbund cineiner zua

senkrechten Ebene lxegen dann hegen axb und axc in derselben Ebene (vgl Bild 1.22). AuBerdem
gelten (a x b) .Lb (a x c) J.c,{a X (b+ c)} .L(b+c),wobe1a x b,a x cund a x (b + c)lm

gleichen Sinne gegeniiber b, ¢, b + c um —- gedreht sind. Auf Grund der Ahnlichkeit der durch

ax b, ax c, ax (b + c) und durch b, c, b+e aufgespanntenDrelecke folgt a x (b + c) =axb+axc
und damit die Giiltigkeit des distributiven Gesetzes.

b
I’ ol TTTT7
1/ i .
[
t,
-4 Bild 1.21

1.3.5. Das vektorielle Produkt in Komponentendarstellung

Bild 1.22

Wenn wir
a= a1e1 + a262 + 02363,
b = fBie; + f.e; + fses
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vektoriell miteinander multiplizieren, dann ergibt sich

axb=oape xe)+ api(e: x e) + a3fi(e; x e)
+ a1Ba(e; X ;) + ayf,(ex X €5) + azfa(es X €;)
+ a1B3(e; % e3) + ayf3(e; X €3) + asfs(es x e3)
= (a2f3 — azfz) er + (23f1 — x1f3) ez + (x1f, — x2f1) €3

oder, unter Benutzung der Determinantenschreibweise (vgl. 1.2.7.),

€; € €3
axb=|a;, a, asz].
By B2 Bs
Wenn z. B. a = 4e; — 2e, + 4e3 und b = 3e, + 2e, + 6e; ist, dann wird
€ e, €3 € € €3¢
axb=|4 -2 4 |; 4 -2 4 |4
3 2 6 3 2 6 |3

axb= —2091 - ]292 + 1493.

27

Mit Hilfe der skalaren Komponenten der Vektoren a und b 1a8t sich der Betrag

ihres vektoriellen Produktes fglgendermaBen berechnen:

(@ x b)? = (2283 — a3f2)* + (2381 — 2183)* + (%82 — a2f,)?
= (o} + o] + o)) (B + B3 + B3) — (2181 + a2fz + a3f3)%,

d. h.
| (a x b)> = [a]? [b|*> — (ab)?
oder
(a x b)> = (|a| [b] + ab) (|a] [b] — ab).
Wegen -
|a x b] = {a] |b| sin (a; b)
gilt stets

Ja x b] < [a] [b].

1.3.6. Gemischte und mehrfache Produkte

Durch drei vom Nullpunkt ausgehende Vektoren a, b, ¢, die nicht alle in einer
Ebene liegen, wird ein Parallelepiped aufgespannt (vgl. Bild 1.23). Das durch b und ¢
bestimmte Parallelogramm wollen wir als Grundfliche betrachten; dannistf = b x ¢
die zugehorige Plangrofe. Zur Berechnung des Volumens ¥ des Parallelepipeds ist

deren Betrag mit der Hohe & = |a| cos ¢ zu multiplizieren, d. h.

V = |a] |b] |e] cos & sin (b; ¢) = a(b x ¢).

Da aber auch die durch ¢, a bzw. a, b bestimmten Parallelogramme als Gﬁmdﬂiiche

genommen werden kénnen, gilt
i V=a x ¢) =b(c x a) =c(a x b).
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Wegen der Kommutativitit der skalaren Produkte folgt daraus
i (axb)c=a x ¢c);

das ist der sogenannte Vertauschungssatz.

f=bx¢ 1

Bild 1.23

S.1.14 Satz 1.14: Bei gleicher Reihenfolge dreier Vektoren mit je einer skalaren und vektoriel-
len multiplikativen Verkniipfung konnen die skalare und die vektorielle Multiplikation
in ihrer Reihenfolge vertauscht werden, d. h. (a x b)c = a(b x c).

Wegen der Charakterisierung des Volumens eines Parallelepipeds oder Spates
nennt man das Produkt a(b X ¢) Spatprodukt und bezeichnet es folgendermaBen:

[abc] = [bea] = [cab].
Da die vektorielle Multiplikation nicht kommutativ, sondern alternativ ist, gilt
[abc] = —[ach] = —[bac] = —[cha].

S.1.15 Satz 1.15: Das Spatprodukt [abc], a &= o, b =+ o, ¢ + o, ist genau dann gleich null,
wenn die drei Vektoren in einer Ebene liegen, d. h., wenn sie komplanar sind.

Das Spatprodukt hat auch den Wert Null, wenn es zwei gleiche Vektoren enthilt,
d.h. [aab] = 0,a % b, a ¥ o,b + o.
Fiir die Grundvektoren e, , e,, e, gilt: [e,e,e;] = 1.
In Komponentendarstellung ist wegen -
b x ¢ =(B.ys — Bsy2) ey — (Brys — Bayi) ex + (Bry2 — Bayi) es
und )
a(b x ¢) = (a8, + aze; + azes) [(Bays — Bsy2) ey
= (Brys — Bsy1) ez + (Bry2 — B2y1) €5
= &y (273 — Bay2) — %2(Brys — Bsy1) + as(Bry2 — Bayi),
und damit gilt
Oy Oy &3
[abe]l = |8, B2 Bs|s
Vi Y2 V3

das Verschwinden dieser Determinante hatten wir bereits in 1.2.7. als notwendige und
hinreichende Bedingung fiir komplanare Vektoren, also linear abhéngige Vektoren
erkannt.
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Wenn die Vektoren a, b, ¢ miteinander vektoriell multipliziert werden, so sind die
beiden Produkte a X (b x ¢) und (a x b) x ¢ mdglich. Wir betrachten zunéchst
p = a x (b x ¢); Ergebnis dieser Multiplikation ist sicher ein Vektor. Dieser Vek-
tor p muB senkrecht auf a und senkrecht auf (b x c¢) stehen (vgl. Bild 1.24), d. h,,
er muB in der durch b und ¢ aufgespannten Ebene liegen. Daher 138t sich p darstellen
in der Form p = Ab + uc, 4 und u.skalare Faktoren. Dann ist

e, e, €
ax (bxc)=|a 0y %a s
B2y — Bsv2 Bavi — Brvs Brvz — Bans
woraus sich die Komponenten 7z, , 7, , 7t; ergeben zu
7, = caf, — aby,, 7, = caff, — aby,, 73 = caf; — aby;;

damit ist A = ca, 4 = —ab, und es gilt

Satz 1.16:
ax((xec)= (ca)b — (ab)c;
das ist der Entwicklungssatz.

bxe

ax (bll.') Bild 1.24

Wenden wir diesen Satz auf das Produkt (a x b) x c an, dann ergibt sich
. (@axb)yxc=—cx(axb)= —(bc)a + (ca)b.

Mit Hilfe der soeben 'abgeleiteten Satze kénnen wir auch vierfache Produkte be-
rechnen. Zum Beispiel ist

(@ x b)(c x d) = (a x b)p = [abp],
wenn wir p = ¢ x d setzen; weiter wird

[abp] = a(b x p) = a{b x (¢ x d)} = a{(db) c — (bc)d},
also
ac ad
be bd

Um (a x b) x (¢ x d) zu berechnen, gehen wir folgendermaflen vor: Wir setzen
a x b = p,, dann wird

(axb) x (cxd)=p; x (¢ xd)=(dp,)c — (p,c)d = [dabjc — [abc]d;
setzen wir ¢ X d = p,, dann wird
(@axb)x(cxd)=(axb)xp,=—(bp,)a+ (p,a)b= —[bed]a + [cda]b;

(@ x b) (c x d) = (ac) (bd) — (ad) (bc) =

S.1.16
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bilden wir die Differenz aus der ersten und der zweiten Gleichung, dann erhalten wir
| a[bed] — b[cda] + c[dab] — d[abc] = o;

diese Beziehung sagt aus, daB vier Vektoren im R3 stets voneinander linear abhéingig
sind.

1.4. Anwendungen der Vektoralgebra

1.4.1. Moment einer Kraft. Tangentialgeschwindigkeit

In einem Punkte P eines Korpers, der_;in dem Punkte O festgehalten wird, greift
untér dem Winkel & zum Vektor r = OP eine Kraft k an. Dann entsteht ein Dreh-
moment vom Betrage [r| [k| sin ¢, dessen Achse auf der von den Vektoren r und k
aufgespannten Ebene senkrecht steht (vgl. Bild 1.25). Das Drehmoment m kann also
durch das vektorielle Produkt m = r x k dargestellt werden.

Bild 1.25 (P Bild 1.26

Wenn sich ein starrer Korper als Ganzes um eine Gerade g mit einer Winkel-
geschwindigkeit u dreht, so spricht man von einer Kreisbewegung oder Rotation,
und die Gerade heiBt Dreh- oder Rotationsachse. Die Winkelgeschwindigkeit u
ist an eine Tragergerade — in diesem Fall an die Rotationsachse — gebunden. (u ist
also nicht parallel verschiebbar.) Jeder Massenpunkt des Korpers beschreibt in einer
Ebene, die senkrecht zur Rotationsachse liegt, eine Kreisbahn um den DurchstoB-
punkt O der Achse durch die Ebene; O heit Dreh- oder Rotationszentrum. Die
Bahngeschwindigkeit v eines beliebigen Punktes P des Korpers, der nicht auf der
Rotationsachse liegt, ist zu bestimmen (vgl. Bild 1.26).

Da P eine Rotationsbewegung ausfiihrt, wirkt v in Richtung der Tangenten
in Pan den Kreis, d. h.,esgiltv =u x r.

Ist nicht O, sondern ein anderer Punkt O* der Drehachse Ursprung des Orts-
vektors nach P (vgl. Bild 1.26), dann gilt v = u x r*; v steht senkrecht auf der
durch u und r* bestimmten Ebene.

1.4.2. Reziproke Vektorsysteme!)

Wie wir gesehen haben, sind vier Vektoren im R5 stets voneinander linear abhéngig,
d.h., jeder Vektor (s0) 1aBt sich durch drei nicht komplanare Vektoren darstellen.
In der Beziehung '

a[bed] — b[cda] + c[dab] — d[abc] = o

1) vgl. Bd. 23, 6.
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ersetzen wir d durch den Vektor r, wiahrend a, b, ¢ drei nicht komplanare Vektoren
sein sollen (iiber die Winkel, die diese Vektoren miteinander bilden, werden keine
Voraussetzungen gemacht). Dann wird

[rbc]a + [rcalb + [rab]c = r[abc]

oder — da nach Voraussetzung abc =t= 0 ist -

_ bxo  (ex @xb)

r=r Tabe] a+r a bc] b+ [abc] (L.
wofiir wir

r = (ra*a + (@b*)b + (re*)c (1.2)

schreiben mit
a* L b, a* Le, b* Lec, b* L a, c* 1L a, ¢t Lb

und
t= (l[)a:c;) , b*= ((Ea:c?) » o= (t;a:cl])) (13)
beziehen wir r auf die Grundvektoren e, , e,, €3, dann ist
T = Qe + 0:8; + 03€3, 1.4
und es gilt
oy =rcos(e;;r) =re;, o, =Trcos(e,; r) =re,, g3 =rcos(es;;r) =re;
und damit

r = (re,) e, + (ve;) e, + (re;)e;. (L.5)

Setzen wir im besonderen a = e,, b = e,, ¢ = e;, dann wird a* = e, b* = e,,
¢* = e;, und (1.2) geht in (1.5) iiber. Bei unserem Ansatz (1.1) bzw. der Darstellung
(1.2) handelt es sich also um eine gegeniiber (1.5) allgemeinere Darstellung.

Die Systeme a, b, ¢ und a*, b*, ¢* heilen zueinander reziprok. Wir wollen nunmehr
den Vektor r beziiglich der Vektoren a*, b*, ¢* zerlegen:

r= /l,la* + /lzb* + ‘u3c* (1.6)

darin setzen wir fiir a*, b*, ¢* die Werte aus (1.3) ein und erhalten nach Multxph-
kation mit [abc]

[abe]r = py(b % €) + ux(c x a) + us(a x b). (1.7)
(1.7) multiplizieren wir nacheinander skalar mit a, b, ¢ und erhalten

py = Ta, (1.7a)

42 =1b, (1.7b)

U3 = Ic. (1.7¢)
Damit geht (1.6) tiber in

r = (ra)a* + (rb)b* + (rc)c*, (1.8)

und diese Beziehung heiBt zu (1.2) reziprok.
Mit Hilfe der Gleichungen (1.3) berechnen wir die skalaren Produkte aa*, bb*,
cc*, a*a, b*b, c¢*c und erhalten

aa* = bb* = cc* = 1 = a*a = b*b = c*c; .19
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ebenso berechnen wir die skalaren Produkte a*b, ba*, a*c, ca*, b*a, ab*, b*c, cb*,
c*a, ac*, c*b, be*: ‘
a*bh = ba* = a*c = ca* = b*a = ab* = b*c = ¢b* = c*a
= ac* = c*b = be* = 0; (1.10)
denn bei der entsprechenden Multiplikation der Gleichungen (1.3) werden alle Zahler
gleich null. Ferner gelten

_ b* x¢* c* x a* a* x b*
STl DT el © T e (.11
und
[abc] [a*b*c*] = 1. (1.12)

Aus (1.3), (1.11), (1.12) ergibt sich, daB entweder beide Systeme Rechts- oder beide
Systeme Linkssysteme sein miissen. Wenn a, b, ¢ zueinander orthogonal sind, dann
ergibt sich dasselbe System, d. h., a*, b*, c¢* sind durch dieselben Vektoren a, b, ¢
darstellbar, nur sind die entsprechenden Betrige zueinander reziprok; so wird aus
(1.3) z. B.

_ bxe _ a _a _ _1_ o
" [abc]  a(bxc) aa |a]
und entsprechend b* = -l;—’b° c* = Ill ¢°. Orthogonale Systeme sind also zu sich

selbst reziprok. (Fiir den Fall der Darstellung durch die Grundvektoren e,, e,, e;,
d. h., fira = e,;, b = e,, ¢ = e; wird, wie wir oben bereits geschen haben, a* = e,
b* = e,, ¢* = e;, weil ja |e;| = |e,| = |es] = 1 und das von den Grundvektoren
gebildete Orthogonalsystem zu sich selbst reziprok ist.)

1.4.3. Die Hohen im Dreieck
Dah, und h, Vektoren in Richtung der Héhen bis zum H6henschnittpunkt H sind
(vegl. Bild 1.27), gilt
h, La,h, Lcoderha =0,bec=0.
Es soll gezeigt werden, daB x (der Vektor vom Eckpunkt B bis zum Hoéhenschnitt-

punkt H) senkrecht auf b ist, die drei Hohen eines Dreiecks sich also in einem Punkte

schneiden.
Esisth, = x — a und h, = x + ¢; werden diese Werte fiir h, und h, in die obigen

Gleichungen eingesetzt, ergeben sich
ax +c¢)=ax+ac=0
und
¢(x —a)=cx —ca=0.
Durch Addition beider Gleichungen erhilt man
x(a + ¢ =0;
nunista + b + ¢ = ¢, also a + ¢ = —b, womit sich
x(—b) = —(xb) =0
ergibt. Wegen b % o ist x L b, d. h., x ist ein Vektor in Richtung der Hohe vom
Punkte B auf die Seite b; damit ist die obige Behauptung bewiesen.
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¥
Ec
) .
. YX ¢ .
Bild 1.27 —» Bild 1.28
€ X

1.4.4. Additionstheorem der Sinusfunktion
Fiir die beiden Einheitsvektoren e, und e; gilt (vgl. Bild 1.28):

e, = €;CosQ + e,sing,

es = e, COsSy + e, siny;
das vektorielle Produkt ist

€y €, €3
e, X es=|cosp sing O |=(cosgsiny — sing cosyp)e;;

cosy siny O

nach der Definition des vektoriellen Produktes ist e, x es = 1 1sin (e4; es) €3
= e3 sin (p — @). Der Vergleich beider Ergebnisse liefert

sin(y — @) =sinycosp — cosysing.
(Der Beweis gilt fir0 < — ¢ < w.)

1.4.5. Gleichungen einer Geraden

Jeder Punkt P der Ebene oder des Raumes kann bei gegebenem Koordinatenanfangs-
punkt O durch einen Vektor a = OP, den Ortsvektor, festgelegt werden. Es gilt dann
r =€ + 0.6, bzw. r =g, + ¢€; + ¢3€3,
wenn (e;,0,) bzw. (o4, 0,,03) die Koordinaten von P in der Ebene bzw. im Raum
sind. Damit sind zugleich die Zerlegungen von r in seine vektoriellen Komponenten
gegeben.

Wenn P Punkt der durch den Koordinatenanfangspunkt O gehendenr Geraden g ist
und a der Richtungsvektor von g, dann erhilt man durch

r=Ja, -0 <A< 400,
alle Punkte der Geraden g, also die vektorielle Darstellung einer Geraden durch O.

Die Koordinatendarstellung in der Ebene ergibt sich folgendermaBien: P habe
die Koordinaten (x, y) in der Ebene. Es ist

a=ae + aye, = [a] {cos(e;, a)e; + cos (e, a) e,}
Richtungsvektor von g und damit

r = A a] {cos (e,, a) e; + cos (e, a) e,}
3 Manteuffel, Lineare
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bzw., wenn man die Koordinaten von P berticksichtigt,
r = xe; + ye,
Ortsvektor von P. Dann gilt x = 1|a| cos (e, , a), y = 4|a] cos (e,, a) = A|a|sin(e,, a),
weil X (e;, a) und X (e;, a) Komplementwinkel sind.
SchlieBlich wird —‘3:— = tan (e,, a) = m fiir cos (e, a) = 0 und y = mx dié Glei-

chung einer Geraden durch O.

Ist a wiederum der Richtungsvektor der Geraden g und P, ein Punkt auf g, der
durch den Ortsvektorr; = x,e; + y,e, + z,e3 bestimmt ist, dann lautet die Vektor-
form der Punkt-Richtungsgleichung (vgl. Bild 1.29)

r=r, + Ja, -0 <A< +00.

\
(Die Koordinatenform dieser Geradengleichung in der Ebene ergibt sich wie oben
aus ‘

r—r;=/a und r = xe; + ye,.)
P, und P, seien zwei voneinander verschiedene Punkte (der Ebene oder des
Raumes), deren Lage durch die Ortsvektoren r; und r, bestimmt ist (vgl. Bild 1.30).
Dann ist der Ortsvektor r = OP zu einem beliebigen Punkt P der durch P, und P,

bestimmten Geraden g wie folgt zu bestimmen:
—> — ——
r=0P=0P1+AP1P2, d. h. l‘=l‘1+}u(l‘2-—l‘1),
(Zwei-Punkte-Gleichung der Geraden in der Vektorform).
Aus
r—r;, =Ar, —r;) und r, = x.e; + ye,
Py = X285 + )2€;

1aBt sich die Koordinatenform der Zwei-Punkte-Gleichung einer Geraden in der
Ebene herleiten.

Bild 1.29 Bild 1.30

Liegen insbesondere die Punkte P; und P, auf der Abszissen- bzw. Ordinaten-
achse (vgl. Bild 1.31) und setzt man

_0_1)-1 == a, _O—Fz = b’
dann lautet die Vektorform der Achsenabschnittsgleichung
r = ae, + Abe, — ae,) = (1 — 2) ae + Abe,.
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Die Koordinatenform der Geradengleichung erhilt man unter Beriicksichtigung der
Gleichung des Ortsvektors zu einem beliebigen Punkt P dieser Geradenr = xe; + ye,:

x=(1-2a, y = Ab;

*_1- Y-
~=1-4 > =1
x  y
Ztp=1

(Achsenabschnittsgleichung einer Geraden mit a = 0, b # 0).

Die Gerade g gehe durch die Punkte P, und P,, die durch die Ortsvektoren r,
und r, festgelegt sind; P; ist ein beliebiger zwischen P, und P, gelegener Punkt,

der durch den Ortsvektor r gegeben ist und P, P, (innen) im Verhéltnis »: m teilt
(vgl. Bild 1.32). Es gilt

(r—r) =ir, — 1),
r= (1 -l)rl +}-r2,
F=pF + pok, mit py +op, =15

. . A no .
unter Beriicksichtigung des Teilverhéltnisses 4 = pmgrem ist
r= mr, + nr,
m+ n
J
g \
b
0 X
r P
Bild 1.31 Bild 1.32

Die letzte Darstellung gestattet folgende Deutung:
P, kann als Massenmittelpunkt der mit den Massen m und » belegten Punkte P,
und P, aufgefaBt werden; setzt man m + »n = —1, dann stellt

l'vr+mr,+nr,=0 mit 1+m+n=0
die Gleichung dreier Vektoren r, r,, r, dar, deren Endpunkte auf einer Geraden
liegen.

Der Punkt P, sei ein fester Punkt der Geraden g, der durch den Ortsvektor r, fest-
gelegt ist; durch P, P, = a sei die Richtung von g bestimmt, wenn P, ein beliebiger
anderer Punkt der Geraden g ist (vgl. Bild 1.33). Dann ist (r — r,) || a, d. h., es gilt

*r—-r) xa=o.
3*
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Die Hessesche Normalform einer Geradengleichung in der Vektorform entsteht
-aus der Gleichung ‘

r=r, + Ja, —0 <A< +od,
wobei r; der Ortsvektor eines Geradenpunktes P; und a Richtungsvektor der Ge-

raden g ist. r ist Ortsvektor eines beliebigen Punktes auf g, n sei der vom Nullpunkt
weg positiv orientierte Normaleneinheitsvektor auf g, |n|?> = nn = 1 (vgl. Bild 1.34).

x|

Bild 1.33 Bild 1.34

Multipliziert man die umgeformte Gleichung
r—r, =/Ja

mit dem Normaleneinheitsyektor n skalar, so entsteht
(r—r,)n = Jan =0,
dan 1 a. .
Diese Gleichung gilt fiir alle Punkte, die auf der Geraden g liegen, und wird als

Hessesche Normalform der Geradengleichung bezeichnet.
Aus (r — ry)n = 0 erhélt man

m =rn =[5 cos(r;,m) =p,
wobei p der senkrechte Abstand der Geraden vom Koordinatenursprung ist.
Ist O ein durch den Ortsvektor q bestimmter Punkt, der nicht auf g liegt, dann gilt
q=r; +4a + dn
(vgl. Bild 1.35), wobei 6 den Abstand des Punktes Q von der Geraden g bedeutet.
Multipliziert man diese Gleichung skalar mit dem Normaleneinheitsvektor n, so ent-

steht
qn = r;n + Aan + Onn,

gn=p+0+0 oder gn— p =9d;

dabei ist 6 < 0, wenn O und Q auf derselben Seite von g liegen, und 6 > 0, wenn O
und Q auf verschiedenen Seiten von g liegen.

1.4.6. Gleichungen einer Ebene

P,, P, und P, seien drei durch die Ortsvektoren r,, r, und r; festgelegte Punkte
einer Ebene; P, sei ein beliebiger, durch den Ortsvektor r gegebener Punkt derselben
Ebene (vgl. Bild 1.36). Dann ist
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(r—r) =Ar; — 1) + ulrs —1y);
r=0—-A—-pry + ir; + ur;

oder
=20 + A0, +Ar; mit A; + 4, +4;=1;

da man diese Ebenengleichung auch in der Form
_ Mry ATy + AT
T M+ A+ A

schreiben kann, erhilt man mit —4, = 4; + 4, + 43
)hlr]_ + 3.21'2 + 231'3 + 141' =0

di¢ Bedingung dafiir, daB die vier Punkte P, P,, P3, P, in einer Ebene liegen.
Ist die Ebene durch einen Punkt P, mit dem Ortsvektor r, und einem Normalen-
vektor n - senkrecht zur Ebene — bestimmt (vgl. Bild 1.37), so gilt

n@r —ro) =0 oder nr = nr,

als Gleichung der Ebene (Hessesche Normalform der Ebenengleichung).

n5ory

N

fad /
Q

Bild 1.35 Bild 1.36

Der Normalenvektor m (auch Stellungsvektor der Ebene genannt) habe die Glei-
chung

n = aq.e; + ae, + ases;
fiir r gelte

r = Xx;€; + xe, + x3e;.
Wir setzen

nr, = b = |n|p, p Abstand der Ebene vom Nullpunkt;.
dann folgt aus der Ebenengleichung

nr = Ny = b
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als Gleichung einer Ebene in kartesischen Koordinaten
a;xy + a,x, + azx; = b, '
wobei a,, a,, a; die Skalarkomponenten des Stellungsvektors der Ebene sind.
Mit Hilfe der Gleichung
or = nr,

1aBt sichz. B. auch der Abstand eines Punktes P; von der Ebene bestimmen. Deg
Vektor des von P, auf die Ebene gefaliten Lotes sei d, wobei d||n. Dann gilt:

n(r, — ry) = nd,
da d gleich der Projektion von (r, — r,) auf n ist (vgl. 1.3.1. und Bild 1.17) und
nd = |n] |[d|. Der Abstand des Punktes P; von der Ebene ist demnach |d|, und es ist
[n(ro —ry)|
d] =
|d] ]

1.4.7. Abstand zweier windschiefer Geraden

Zwei Geraden seien gegeben durch ‘
g1 IT=10I; + la,
g2:T =1, + ub.

a und b spannen eine Ebene auf. Es gibt unendlich viele parallele Ebenen, die abzw. b
enthalten, davon enthilt genau eine Ebene g, und eine dazu parallele Ebene g,. Der
Abstand dieser beiden Ebenen ist zugleich der Abstand der beiden Geraden (vgl.

Bild 1.38).

a
Bild 1.37 Bild 1.38
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n = a x b ist ein Vektor, der senkrecht auf beiden Ebenen steht. Es gilt:
@ —r)n=(r; —Ty)n

((r, — ry), ist die Projektion des Vektors (r, — r,) auf n, eine Komponente d dieses
Vektors in Richtung von n. Der Betrag dieser Komponente ist gleich dem Abstand.)
Daraus folgt:

(r2 - rl)n = dn,
und da nj|d ist, gilt

(t2 —xOn = +|d] o], [d] = K'I"T”'-‘-'

und mitm=a x b

|(r; — r;) (@ x b)|
dl = [2 x b|

1.4.8. Gleichungen von Kreis und Kugel

Wenn der Koordinatenanfangspunkt O Mittelpunkt eines Kreises vom Radius a
und r der Ortsvektor von O zu einem beliebigen Punkt P dieses Kreises ist (vgl.
Bild 1.39), dann gilt

vl = a, und r? = g?

ist die Gleichung des Kreises in:vektorieller Form. :

Im R3 stellt ¥? = a® die vektorielle Form der Gleichung der Kugel dar, deren
Mittelpunkt O und deren Radius a ist.

Fallen Mittelpunkt M des Kreises bzw. der_’Kugel und Koordinatenanfangspunkt O
nicht zusammen (vgl. Bild 1.40), und ist OM = m der Ortsvektor von M, dann wer-
den Kreis bzw. Kugel durch die Gleichung (r — m)? = a? beschrieben.

>

Bild 1.39 Bild 1.40

1.5. Aufgaben

1.1: Man zeige, daB die Ortsvektoren

10 - 11 -2
a = - 5], a= — 2 | und az = —14
10 +10 -5 ’

die Kanten eines Wiirfels bilden, und bestimme dessen Volumen.
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1.2: Zwei Ortsvektoren a, b weisen nach den Endpunkten einer gegebenen Strecke AB. Auf der

AP A
Strecke AB liege der Punkt P, und es sei —E}T = W Wie heift der Ortsvektor zum Punkt P?

1.3: Unter dem Flichenvektor f einer ebenen Fliche F versteht man einen Vektor, der senkrecht
auf der Flache steht und dessen Betrag gleich der MaBzahl des Flicheninhaltes von F ist. Man
beweise: Fiir ein beliebiges Tetraeder ist die Summe der nach auBen orientierten Flichenvektoren
fy, ..., f4 gleich dem Nullvektor.

1.4: Ein starrer Korper rotiere mit #» = 250 Umdrehungen pro Minute um eine Achse a, deren
Gleichung in vektorieller Form a = A(e; — 3e, + 2e;) ist. Blickt man in der orientierten Richtung
des Vektors a, so soll die Drehung als Rechtsdrehung erscheinen. Man gebe den Geschwindigkeits-
vektor v der augenblicklichen Bewegung des Punktes P(—1, 4, 3) an und bestimme den Betrag der
Geschwindigkeit (Lingeneinheit = 1 m).

1.5: Verbindet man eine Ecke eines Parallelogramms mit den Mittelpunkten der beiden nicht von
dieser Ecke ausgehenden Parallelogrammseiten, so wird die von diesen Verbindungsgeraden im
Parallelogramminneren geschinittene Diagonale des Parallelogramms in drei gleiche Teile zerlegt.
Das ist vektoriell zu beweisen.

1.6: In welchem Verhiltnis schneiden sich die Hohen im gleichseitigen Dreieck?

1.7: In Richtung der Kanten OA4, OB und OC eines regelmiBigen Tetraeders O4 BC mogen Krifte
mit den Betriigen 1, 2 und 3 kp wirken. Man bestimme den Betrag der Resuitierenden R dieser Krifte
und die Richtungskosinus von R beziiglich der Kanten 04, OB und OC (vgl. Bild 1.41).

Bild 1.41

1.8: Welche Fliche iiberstreicht ein Ortsvektor x vom Betrage 1 im Raum, wenn sein Skalarprodukt
mit e; stets den Wert 4 hat?

1.9: a, b, ¢ seien drei gegebene Vektoren, die nicht in einer Ebene liegen. Gesucht ist ein Vektor g
mitg L b,g L ¢; ga = k sei eine gegebene Konstante.

1.10: Man beweise vektoriell: Das Produkt der Abstinde zwischen einem festen Punkt P und den
Schnittpunkten einer verdnderlichen Geraden durch P mit einem festen Kreis ist konstant (,,Sekanten-
Tangentensatz). :

1.11: Gegeben sind zwei Ebenen E; und E,:
Ey:x =¢e; + A(es + €2) + pyle; + e3),
Ez: X =e; + 1292 + [lz(el + 03).
a) Die Schnittgerade von E; und E, ist zu bestimmen;

b) der Winkel ¢ zwischen E; und E, ist zu berechnen;
¢) P,(3, —2,2) und Q,(1, 0, 0) seien zwei Punkte in E,,

a= 2 | ist ein Vektor in der orientierten Richtung eines Biindels paralleler Lichtstrahlen.

1
Welchen Schatten P,Q, wirft P,Q, in E;? Wie lang ist dieser Schatten?

1.12: Man bestimme die vektorielle Form der Gleichung der Ebenc durch die Punkte P,(a, 0, 0),
P5(0, b, 0) und P5(0, 0, c). ‘



2. Matrizen und Determinanten

Nach dem Rechnen mit Vektoren werden wir uns nunmehr mit dem Rechnen mit
Matrizen vertraut machen.

Die Matrizen treten uns ebenfalls als Hxlfsmlttel entgegen, das sich vorziiglich fiir
die Beschreibung und Darstellung praktischer Probleme eignet.

Da sich die Matrizen als Systeme von endlich vielen Vektoren auffassen lassen,
miissen wir zunichst die entsprechenden Rechengesetze und ihre Eigenschaften her-
leiten. Wir lernen einen Kalkiil kennen, der umfassend einsetzbar ist.

2.1. Einfiihrende Betrachtungen und Definitionen

2.1.1. Einfiihrende Betrachtungen

Wenn nach den Rohstoffmengen gefragt wird, die in einem Betrieb bereitzustellen
sind, der aus fiinf Rohstoffen zwei Zwischenprodukte herstellt und diese zu einem Teil
zu drei Endprodukten weiterverarbeitet, dann werden Angaben iiber die Produktions-
auflagen und iiber die Materialverbrauchsnormen bendétigt. Wir wollen mit R, , R,,
Rs3, R,, Rs die Rohstoffe, mit Z,, Z, die Zwischenprodukte und mit £y, E,, E; die
Endprodukte bezeichnen (Bild 2.1). Die Verbrauchsnormen von Rohstoffen zu
Zwischenprodukten sowie von Zwischenprodukten zu Endprodukten sind in den
beiden folgenden Tabellen enthalten:

[ Fro Rz'Ra'RznA’;W

Tabelle 2.1 Tabelle 2.2

Zl ZZ l El ‘ EZ ‘ E3
R, 2 1 Z, 1 2 4
R, 0 2 Z, 6 3 2
R, 3 1
R, 5 0
Rs 3 4

Zum Beispiel werden zur Herstellung von einer Gewichtseinheit Z, zwei Gewichts-
einheiten R, und zur Herstellung von einer Gewichtseinheit Z, eine Gewichtseinheif R,

bendtigt usf.
Die Produktionsauflagen sind:
Tabelle 2.3 Tabelle 2.4
Z, ' 150 E; 80
z, | % E, 20

E; 100
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Die Produktionsauflagen fiir die Zwischenprodukte sind unabhingig von den fiir
die Endprodukte bendtigten Zwischenprodukten. '
Mit diesen Angaben konnen wir die Frage nach den fiir die Erfiiliung der Pro-
duktionsauflage bereitzustellenden Rohstoffmengen beantworten.
Fiir die Erzeugung der geforderten Mengen von Z, und Z, ergibt sich aus den
Tabellen 2.1 und 2.3 die Notwendigkeit, folgende Mengen der einzelnen Rohstoffe
bereitzustellen:

fir R;: (2150 + 1 -90) Gewichtseinheiten,
fir R,: (0- 150 + 2 - 90) Gewichtseinheiten,
fir R5: (3-150 + 1 -90) Gewichtseinheiten,
fir R,: (5150 + 0-90) Gewichtseinheiten,
fir Rs: (3- 150 + 4 - 90) Gewichtseinheiten.

Wenn wir die Tabelle der Verbrauchsnormen und die Angaben iiber die' Produk-
tionsauflagen sowie die oben erhaltenen Ergebnisse ohne Tabelleneinginge auf-
schreiben, dann erhalten wir:

21 390
0 2 150 180
31 [ 9 0] - 540 |, 2.1
50 ~ 750 ‘
3 4 810
Verbrauchsnormen Produktions- Rohstoffbedarf
zwischen auflage fiir die Zwischen-
R;und Z;, fir Z;; produkte Z;.

Daraus ist zu ersehen, daBl die Elemente rechts vom Pfeil durch die oben erklarte
Verkniipfung der Elemente aus jeweils einer Zeile der Tabelle 2.1 mit den Elementen
aus der einen Spalte der Tabelle 2.3 ermittelt werden kénnen.

Um die Rohstoffmengen fiir die Endprodukte angeben zu kénnen, miissen wir die
Verbrauchsnormen zwischen Rohstoffen und Endprodukten kennen. Da die End-
produkte iiber Zwischenprodukte erzeugt werden und wir die Verbrauchsnormen
zwischen Rohstoffen und Zwischenprodukten sowie Zwischen- und Endprodukten
kennen, wollen wir versuchen, daraus die Verbrauchsnormen zwischen Rohstoffen
und Endprodukten zu ermitteln. Wir miissen Angaben iliber Beziehungen erhalten, die
zwischen den fiinf Rohstoffen und den drei Endprodukten bestehen. Dazu benutzen
wir die Tabellen 2.1 und 2.2. Daraus ergeben sich z. B. die Verbrauchsnormen

zwischen R, und E, zu2-14+1-6 = 8,
zwischen R, und E, zu2-2+1-3= 7,
zwischen R, und E;zu2-4 +1-2 = 10,
zwischen R, und E, zu0-1 4+ 2-6 = 12,
zwischen R, und E, z7u 0-2 + 2:3= 6,

.....................................

zwischen Rs und Eyzu3-4 + 4-2 = 20,

so daB wir folgende Verbrauchsnormen zwischen den Rohstoffen R, (i = 1, ..., 5)
und den Endprodukten E, (k = 1, 2, 3) erhalten:
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Tabelle 2.5

| E, E, Es
R, 8 7 10
R, 12 6 4
R, 9 9 14.
R, s 10 20
Rs 27 18 2
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Unter Verzicht auf die Zeilen- und Spalteneinginge 148t sich die Beziehung zwischen
den Tabellen 2.1, 2.2 und 2.5 folgendermaBen schreiben, wenn wir die Werte der
Tabelle 2.5 wie oben angegeben ermitteln:

S = N -

w
N

Verbrauchs-

normen zwischen

R;und Z;,

8 7 10
12 4 12 6 4
[6 3 2] - 9 9 14 |,
5 10 20
27 18 20
Verbrauchs- Verbrauchs-
normen zwischen normen zwischen
Z;und Eg; R, und E,.

<

22)

Auch hier entstehen die Zahlen rechts vom Pfeil durch die gleichen Verkniipfungen
der Elemente von Zeilen und Spalten, wie sie vorhin erldutert wurden.

Die fiir die Erzeugung der Endprodukte E, bereitzustellenden Gewichtseinheiten
der Rohstoffe R; erhalten wir aus den Tabellen 2.5 und 2.4; daraus ergibt sich fiir

die Erzeugung der geforderten Mengen von E;, E,, E; die Bereitstellung

20 + 10 - 100) Gewichtseinheiten von R,
20 + 4 -100) Gewichtseinheiten von R,,
20 + 14 - 100) Gewichtseinheiten von R;,
20 + 20 - 100) Gewichtseinheiten von R,
20 + 20 - 100) Gewichtseinheiten ven Rs.

von( 8-80+ 7-
von (12-80 + 6-
von(9-80+ 9-
von ( 5-80 + 10-
von (27 -80 + 18-

Unter Verzicht auf die Zeilen- und Spalteneingiange der Tabellen 2.5 und 2.4 ergibt

sich folgende Darstellung:
10
4
14
20
20

Verbrauchsnormen

8 7
12 6
9 9
5 10
27 18

zwischen

R, und E,,

, . — 1780
80 1480
20 — 2300 |,
100 2600
4520
Produktions- Rohstoffbedarf
auflage fir die
fir E;; Endprodukte E,.

(2.3)
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Um die urspriinglich gestellte Frage vollstindig beantworten zu kénnen, ist noch
der Rohstoffbedarf fiir -die Zwischenprodukte und der fiir die Endprodukte zu
addieren:

390 1780 7] 2170
180 ‘ 1480 1660
540 + 2300 - 2840 (2.4)
750 ' 2600 3350
810 | 4520 5330
Rohstoffbedarf Rohstoffbedarf gesamter
fir die Zwischen-  fir die Rohstoff-
produkte Z;, Endprodukte E;; bedarf.

Wir erhalten die einzelnen Werte fiir den Gesamtbedarf, indem wir die Summe der
jeweils entsprechenden Zahlen bilden, d. h. z. B. 390 + 1780 = 2170 usf. Das ist
moglich, weil an der 1., 2., 3., 4., 5. Stelle der obigen Zahlenschemata jeweils die
fir R,, R,, R3, R,, R; bereitzustellenden Mengen stehen.

Es werden also bendtigt:

2170 Gewichtseinheiten R,,
1660 Gewichtseinheiten R,,
2840 Gewichtseinheiten R,
3350 Gewichtseinheiten R,
5330 Gewichtseinheiten Rj,

um die Produktionsauflagen gemaB den bestehenden Verbrauchsnormen zu erfillen.
Unsere Uberlegungen fiithren zu der Frage, ob es nicht sinnvoll wire, fiir solche
Zahlenschemata, wie sie uns entgegengetreten sind, Rechenregeln zu entwickeln,
um ohne Umwege und zusitzliche Erlauterungen mit diesen Schemata, mit diesen
Systemen von Zahlen zu rechnen. N
Aber versuchen wir zunichst, durch Anwendung unserer oben angestellten Uber-
legungen ein anderes Problem zu ldsen. In einer landwirtschaftlichen Produktions- -
genossenschaft soll der Bedarf an Futtermitteln fiir das kommende Jahr geplant
werden; dabei wollen wir uns in diesem Beispiel auf die Milch- und Rindfleisch-
produktion der Genossenschaft beschranken. Es werden in die Bedarfsermittlung
einbezogen: die vorhandenen Milchkiihe, das zu erzeugende Rindfleisch und die
aufzuziehenden Jungtiere. Im einzelnen werden an Futtermitteln bendtigt:

Tabelle 2.6
fiir 1 Stck. Milchvieh . L
der Kategorie fur 1t fiir eine
I 1 | I Rindermast | Firse
Grl'infutter [t] 10 10 12 10 15
Silage [t] 5 5 6 10 5
Heu [t] 1,8 1.5 1,5 1 1,5
Getreide [t] 0,4 0,6 0,8 1 0,7
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Folgender Tierbestand ist vorhanden bzw. folgende Mast- und Aufzuchtleistungen

sind zu erbringen:
Tabelle 2.7

Milchvieh, Kat. I [Stck.] 150
Milchvieh, Kat. II [Stck.] 150
Milchvieh, Kat. III [Stck.] 150
Rindermast [t] 50
Farsenaufzucht [Stck.] 90

Die Frage nach den Futtermengen, die zu erzeugen sind, beantworten wir durch ent-
sprechendes Vorgehen wie beim vorigen Problem; wir schreiben die Zahlenschemata
der Tabellen 2.6 und 2.7 nebeneinander und fiihren die Berechnung wie beim vorigen
Beispiel durch:

10 10 12 10 15 150 6650 7|

5 5 6 10 5 150 | 3350

8 1,5 LS 1 1,5 128 - 905 |, (2.5)
04 06 08 1 07 % 383

Tierbestand Bedarf an
bzw. Auflagen; Futtermitteln.

Bedarf der einzelnen Tier-
gruppen an Futtermitteln;

Die Berechnung erfolgt also wie vorhin; z. B. ist
5-150 + 5-150 + 6-150 + 10-50 + 5-90 = 3350 usf.

Fiir die Fiitterung des Milchviehs, d. h. also fiir die Sicherung der Milchproduktion,
fiir die Erfiilllung der Rindfleischproduktion und fiir die Jungtieraufzucht miissen
bereitgestellt werden

6650 t Griinfutter,
3350 t Silagefutter,
905 t Heu, "
383 t Getreide.

Wir sehen, daB wir mit entsprechendem Vorgehen wiederum zum Ziele gekommen
sind, und wir erkennen, daB die zu entwickelnden Methoden auf unterschiedliche
Problemstellungen aus verschiedenen Gebieten angewendet werden kénnen. Deshalb
beschéftigen wir uns in diesem und den beiden folgenden Kapiteln zunachst mit den
fiir den Ingenieur, Naturwissenschaftler, Okonomen und Landwirt erforderlichen
Grundlagen der linearen Algebra und wollen im vierten Kapitel einige Anwendungen
der linearen Algebra kennenlernen.

2.1.2. Definitionen

Definition 2.1: Ein rechteckiges System von m + n Zahlen, Rechengré'ﬁen oder sonstigen D.2.1

mathematischen Objekten heifft Matrix.
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Die Objekte einer Matrix bezeichnet man als Elemente. Folgende Systeme z. B.
sind .Matrizen:

53 2 a, a,
1 6 4, as as
a, 4ag.

Im allgemeinen setzt man Matrizen in Klammern, und zwar sind folgende Bezeich-

nungen iiblich:
[ax 1 ‘112]
azy 4z2].

( 1 5 7) 2
6 3 8 4

9

0 1
Wir werden Matrizen immer durch eckige Klammern kennzeichnen. In einer Matrix
unterscheiden wir Horizontalreihen oder Zeilen und Vertikalreihen oder Spalten
(oder Kolonnen). Der besseren Ubersicht halber verwendet man bei der Bezeichnung
der Elemente einer Matrix doppelte Indizes; dabei gibt der erste Index die Nummer
der Zeile an, in der das Element steht (man nennt ihn daher auch Zeilenindex),
wiahrend der zweite Index die Nummer der Spalte angibt, in welcher sich das Ele-
ment befindet (daher auch Spaltenindex).

Unter einer beliebigen Matrix A wollen wir folgendes System verstehen:

3
5
8

Ay Ay ...Q55...0;1,

..................

A=[ay] =

..................

| Gm1 Az e Qi - Gy

Das Element a;, steht also in der i-ten Zeile und in der k-ten Spalte. Wenn eine
Matrix m Zeilen und n Spalten hat, so wollen wir sagen, die Matrix hat das Format
(m, n). Haufig bezeichnet man eine solche Matrix als (m, n)-Matrix, als Matrix
[@i)im,ny Oder A(m ny oder man sagt, die Matrix ist vom Typ (m, n).

Eine Matrix A, , kann auch aufgefat werden als aus m Zeilenvektoren a;),,
i=1,2, ..., m, bestehend, wobei

ag = [ai, aiz, ...y Q1)
eine Matrix vom Format (1, n), d. h. eine einzeilige Matrix, und
Ay

\
a2)
A(m. n = .

A(m)

ist; natiirlich kann A, , auch als aus n Spaltenvektoren a®, k = 1,2, ..., n, be-
stehend aufgefaBt werden mit

Ak

A
a® = ?

Ak
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d.h., a® st eine Matrix vom Format (m, 1), eine einspaltige Matrix, und
Ay = [aV, a®, .. a™]. Beide Auffassungen sind fiir das Arbeiten mit Matrizen
auBerordentlich bedeutungsvoll.

Definition 2.2: Zwei Matrizen A = [a,;]und B = [b,] sind dann und nur dann gleich, D.2.2
wenn sie gleiches Format haben und alle entsprechenden Elemente gleich sind.

Gilt die Matrix-Relation

X N 1 0
X2 y20=13 -1},
X3 Vi3 3 1

so bestehen die folgenden sechs Gleichungen:
x=1  x=3 x3=3;
yi=0 y=-1; ys=1
Definition 2.3: Wenn in der Matrix A = [a;.] die Zeilen und Spalten miteinander ver- D.2.3

tauscht werden, so nennt man die so entstehende Matrix die gestiirzte oder transponierte
Matrix AT = [ay;]. Sie wird auch mit A’ oder TA bezeichnet. :

| Hieraus ergibt sich die Beziehung: (AT)T = A.

Beispiel 2.1:

f11 qu ayy Gy Qasz;
A=lay]l=|ay az | AT = [ay] = .

Q12 Q422 Q32
asp asz

Definition 2.4: Ist in einer Matrix m = n, so nennt man sie quadratische Matrix von der D.2.4
Ordnung n oder vom Format (n, n).

In einer quadratischen Matrix
all “ee aln
A=|:
Ayy ooo Gpy

bilden die Elemente a,,, @23, ..., Qij, --., @y die Hauptdiagonale und die Elemente
Qipy Ay, n_1s <5 Qi n_is1s ---s Any die Nebendiagonale.

Satz 2.1: Die Transponierte einer quadratischen Matrix entsteht durch Spiegelung S.2.1
der Elemente an der Hauptdiagonalen.

Die Richtigkeit dieser Aussage ergibt sich unmittelbar aus den Definitionen 2.3
und 2.4.

Definition 2.5: Wenn fiir eine quadratische Matrix A gilt: A = AT, so nennt man diese D.2.5
Matrix symmetrisch.
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Durch Spiegelung an der Hauptdiagonalen geht also eine symmetrische Matrix in
sich selbst tiber. Dies ergibt sich unmittelbar aus Satz 2.1 und Definition 2.5. Die
Matrix

a f e
it
e d ¢

ist eine symmetrische Matrix. Fiir die Elemente einer symmetrischen Matrix gilt:
i ap=a, (Lk=12,..n).

Definition 2.6: Gilt fiir die Transponierte einer quadratischen Matrix die Beziehung
A = — AT, dann nennt man die Matrix A schiefsymmetrisch oder antimetrisch.

Die einzelnen Elemente haben die Eigenschafta,, = —a,, 0, =0@, k= 1,2,...,n).
Die Matrix

0 a b
—a 0 —c
-b ¢ 0

ist eine schiefsymmetrische Matrix (vgl. auch Def. 2.14).

Definition 2.7: Enthdlt eine Matrix A = [a,] komplexe Elemente, so heift die Matrix
A = [a,], die die jeweiligen konjugiert komplexen Elemente enthdlt, konjugierte
Matrix.

| Daraus folgt unmittelbar die Gleichung A=A

Definition 2.8: Die Transponierte der Konjugierten einer Matrix A = [a,] mit kom-
plexen Elementen heifit assoziierte Matrix A*. Es gilt also

l A* = ;&T = [a-“].

Beispiel 2.2:

3i 2 1-i _ -3 2 1+i
A= s A= 1
8+i 4i 3 } 8—i —4i 3

_ -3 8 —i
AT=A*= |2 —4i |.
141 3

Definition 2.9: Wenn fiir eine Matrix A = [ay] gilt: A* = A, d. h. a;, = a,; fiir alle
i,k =1,2,...,n, so nennt man diese Matrix hermitesch.

Beispiel 2.3:

3 1-i _ 3 141 3 1—i
A= . , A= . , A*= . = A.
1+i 2 1—-i 2 | 1+i 2
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Definition 2.10: Eine Matrix A = [a;], fiir die A* = — A gilt, heifit antihermitesch D.2.10
(schiefhermitesch), d. h., die Elemente geniigen der Bedingung a;, = —a, (vgl. auch
Def. 2.7 und 2.14).

Beispiel 2.4:

O R o PO B N

Aus den vorausgestellten Definitionen ergeben sich vier Folgerungen:
1. Hermitesche und antihermitesche Matrizen sind quadratisch.
2. Bei hermiteschen Matrizen sind die Elemente der Hauptdiagonalen reell.
3. Bei antihermiteschen Matrizen sind die Elemente der Hauptdiagonalen
rein imaginir.
4. Reelle symmetrische Matrizen sind Spezialfille hermitescher Matrizen,

reelle schiefsymmetrische Matrizen sind Spezialfille schiefhermitescher
Matrizen. *

2.2.. Rechnen mit Matrizen

2.2.1. Addition und Subtraktion

Es seien A = [a;] und B = [b;;] zwei Matrizen mit jeweils m Zeilen und n Spalten.

Definition 2.11: Zwei Matrizen, die das gleiche Format haben, nennt man gleichartige D.2.11
Matrizen.

A und B sind demnach gleichartige Matrizen. Nur fiir gleichartige Matrizen ist
eine Addition und eine Subtraktion erklart.

Definition 2.12: Unter der Summe der Matrizen A und B versteht man die Matrix S, D.2.12
deren Elemente jeweils die Summen einander entsprechender Elemente von A und B
sind:

A+B=S

agk+b1k=s"‘ (i= 1, 2, ...,m;_k= 1,2, ...,n). (2.6)
Analog versteht man unter der Differenz der beiden Matrizen A — B = D, dap fiir
entsprechende Elemente die folgende Gleichung besteht:

ay — by =dy (=12,....mk=12,..n).
(Man vergleiche mit Satz 1.3, Addition bzw. Subtraktion von Vektoren.)

Satz 2.2: Fiir die Addition von Matrizen gelten das kommutative Gesetz S.2.2
A+B=B+A

sowie das assoziative Gesetz
A+B+C=A+B+C)=A+B+C.

Auf Grund der Definition entspricht die Addition von Matrizen der Addition
ihrer Elemente, fiir die das kommutative und das assoziative Gesetz gelten.

4 Manteuifel, Lineare
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Definition 2.13: Eine Matrix, deren Elemente alle gleich null sind, heifit Nullmatrix.

A — A = 0 ist Nullmatrix. Fiir das Rechnen mit der Nullmatrix gilt beziiglich
der Addition und der Subtraktion

A+0=A—-0=0+A=A

‘und

0—- A= —-A,
wenn —A = [—ay] bedeutet (vgl. Definition 2.14). Beziiglich der Addition und der
Subtraktion verhalten sich die Matrizen wie Zahlen.
Satz 2.3: Jede quadratische Matrix A ist in die Summe aus einer symmetrischen Matrix
und einer antisymmetrischen (schiefsymmetrischen) Matrix zerlegbar, d. h.
i A=A+ A,, @7

wobei Ag den symmetrischen und A, den antisymmetrischen (schiefsymmetrischen) An-
teil darstellt. Dabei ist

As =3A + A7),
A, = 3(A — AT). (2.8)

So gilt fiir die Matrix

3 —1 4
A=| 5 78
-4 05

die folgende Zerlegung:

320 0 -3 4

0 4 5 4 -4 0

2.2.2. Multiplikation einer Matrix mit einem Skalar

Diese Multiplikation erklaren wir durch wiederholte Addition. Es sei

all LR aln
A=| : ol
N Amy oo Qpp

dann ist
3ay, ... 3a;,
A+A+A=3A=[ : : ]
3a,; ... 305,

und allgemein wird definiert:
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Definition 2.14: Eine Matrix wird mit einem Skalar multipliziert, indem man jedes D.2.14
Element der Matrix mit dem Skalar multipliziert:

l 0A = Ag = [pay].

Diese Definition gilt fiir beliebige Faktoren (rationale, irrationale, komplexe Zahlen);
ist p = —1, so wird die Matrix gA mit — A bezeichnet.

2.2.3. Multiplikation zweier Matrizen

In den einfiihrenden Betrachtungen 2.1.1. wurden Schemata verwendet, die spater
(vgl. Definition 2.1) als Matrizen definiert wurden. Durch Verkniipfungen der
Elemente zweier Reihen dieser Schemata ergaben sich Systematisierung und Uber-
sichtlichkeit fiir die vorzunehmenden Berechnungen. Derartige Verkniipfungen wer-
den zur Definition der Multiplikation zweier Matrizen verwendet.

Es seien (a,, a,, ..., a,) und (by, b, ..., b,) zwei Reihen von je n GroBen, zwei
Zahlen-n-Tupel.

Definition 2.15: Unter dem mneren oder skalaren Produkt der beiden n-Tupel D.2.15
(ay, ay, ..., a,) und (by, b,, ..., b,) versteht man den Ausdruck

albl + azbz + ... +-a”b,| =ZI aibi.
i=

(Diese Definition ergxbt sich sofort, wenn wir das uns im dreidimensionalen Raum
bekannte Produkt zweier Vektoren in Komponentendarstellung auf Vektoren mit »
Komponenten erweitern.)

R sei eine Matrix mit # Spalten, wihrend die Anzahl m der Zeilen beliebig ist,
und S eine Matrix mit # Zeilen und einer beliebigen Anzahl ¢ von Spalten.

Definition 2.16: Unter dem Produkt RS versteht man die Matrix, die im Kreuzungs- D.2.16
punkt der a-ten Zeile und der B-ten Spalte — an der Stelle ~, B — das skalare Produkt
der Zeile & von R mit der Spalte f von S enthiilt.

Das heiBit also: Die Zeilen von R werden mit den Spalten von S multipliziert, und
das Produkt RS ist nur erkldrt, wenn die Anzahl der Spalten von R mit der- Anzahl
der Zeilen von S lbereinstimmt; man sagt dann, die Matrizen R und S sind ver-

kettbar:
(a1, ay; ... a4 byy byy...by
RS : : : : : :
L Gy Az oe. A b,y bny...bng

™ n n n
2 anb,, Xayb,: ... 2 anb,
v=1 r=1 v=1

n n n
Z amvbvl E amvbvz E amvbrq
_v=1 v=1 y=1

4%
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Satz 2.4: Wenn RS = P ist und die Matrix R das Format (m, n) hat und S das Format
(n, q), dann hat die Produktmatrix P das Format (m, q).

Damit sind Rechenregeln fiir die Matrizen so aufgestellt, daB sie auch den in den einfithrenden
Beispielen verlangten Anforderungen geniigen. Vergleicht man mit dem Einfithrungsbeispiel, so
ergibt sich das Zahlenschema in Tab. 2.5 (S. 43) z. B. als Matrixprodukt aus den Zahlenschemata
in Tab. 2.1 und 2.2 (S.41):

21 8 7 10

0 2 1 2 4 12 6 4

31 . = 9 9 14
6 3 2

50 5 10 20

3 4 27 18 20

Bei der praktischen Berechnung des Produktes zweier Matrizen hat es sich als giinstig erwiesen,
dies in einem von Falk angegebenen Schema durchzufiihren. Die Elemente der Produktmatrix

n
P =RS = [ci}(m, oy» die die allgemeine Form ¢; = apby (i = 1,2, ...,m; k = 1,2, ..., q) haben,
1

v=
treten im Schema jeweils im Schnittpunkt der i-ten Zeile der Matrix R und der k-ten Spalte der
Matrix S auf.

g Spalten
[ byy bys... by ...blq-
n Zeilen | : : : F )
’ L by baz ... b ...b,,q_l
n Spalten
—011 az -~-a1n— —cll Cia ...Cltk. ...Clq—
: . . . . . . .
.m Zeilen | @iy iz ... 4y | Cp €z e Cip = 2 by ... Cyg
. . . - . = .
An1 Am2 «.. Qgp bcml Cm2 *** Cmk vee Cmg
R P=RS .
Beispiel 2.5:
) -

R, = [ay,az,a35]; S1 | x2 |;
Ry hat das Format (1,3), und das Format von S ist (3,1). Die Produktmatrix P; lautet:
R;S; =Py = [a1xy + axx; + asx3];

d. h., P; hat das Format (1,1). Betrachten wir das Format der einzelnen Matrizen, so ergibt sich
folgender Zusammenhang: (1,3) o (3,1) — (1,1). (Diese Darstellung besagt: Bei einer multiplikativen
Verkniipfung einer Matrix vom Format (1,3) mit einer Matrix vom Format (3,1) ergibt sich eine
Produktmatrix vom Format (1,1).)

Beispiel 2.6:

Ry=]ay|; S;=[x1,x:,x3];
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dann ist

apxy a;xXz Qagx3
R;S; =P, = | axx; axx, ax;3

asX; aszx; asxs

mit dem Format (3,1) o (1,3) —(3,3).

Beispiel 2.7:
31 5 X1 .Y1 Z; a
R; = 264;s3= x2 y2 22 b},
X3 Y3 Z3
RS_P_{3X1+Xz+SX3 3y1+y2+5y3 321+22+513 3a+b+50]
BT T 2%y + 6xp + 4xs 2y + 6y + 4ys 2z + 6z, + 423 20+ 6b+ 4c ]’
2,3) (3,4~ (29).

Beispiel 2.8: Wenn man die Vektoren als einspaltige Matrizen auffaBt, dann 148t sich das skalare
Produkt zweier Vektoren-in Matrixschreibweise folgendermaBen darstellen: '

31 B B1
a= oy |, b=|f|, aTb=[a;,%;,a3]| B2 | = x1f1 + x2f2 + x33;
%3 Bs Bs
(1,3) o (3,1) = (1,1)
1 0 1 7]
0 1 | 0
ee=] 0}, ee=| 0 |; efe; =[1,0,0,...,01}] 0 |=1;
0 0 0
1,n) 0 (n,1) = (1,1)
-0 -
1
efe, =[1,0,0,..,0]1] 0 |=0.
. 0
Beispiel 2.9:
0 0
305 0 0
R4=[ ]; Sy = L2 ; RiSa=P,= H
0 01 0 0 0 0

2,3) ° (3,2) = (2,2).

Bei diesem Beispiel ist das Ergebnis der Multiplikation die Nullmatrix, d. h. also die Matrix, deren
Elemente alle gleich null sind; aber R4 und S, sind keine Nullmatrizen.
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Definition 2.17: Zwei von der Nullmatrix verschiedene Matrizen A+ 0, B+ 0
heiffen Nullteiler, wenn

AB =0 oder BA=0
ist.

Demnach sind R, und S, (in dieser Reihenfolge!) Nullteiler (vgl. Beispiel 2.5). -
Fiir Zahlen gibt es eine entsprechende Aussage nicht; wenn ein Produkt von zwei oder
mehr Zahlen gleich null ist, dann muB mindestens eine der Zahlen gleich null sein.

Wir wollen in unseren Beispielen die Reihenfolge der Faktoren vertauschen:

Beispiel 2.10: S;R; = Q; und (3,1) o (1,3) - (3,3); dabei ist
a;x; GxXy azXxy

Q; = | ax; axx, azx; |,

ayxX3 QX3 azXxs
d.h.Q; + Py.
Beispiel 2.11;
S;R; = Q; = [ayx; + a2x; + asxs],

waobei (1,3) o (3,1) - (1,1) und Q, % P, ist. Man vergleiche mit den Beispielen 2.5 und 2.6.

Beispiel 2.12: Wenn wir beim Beispiel 2.7 die Reihenfolge der Faktoren dndern, d. h., wenn wir
versuchen, das Produkt S;R; zu bilden, so stellen wir fest, da3 eine Matrix vom Format (3,4) zu
multiplizieren wire mit einer Matrix vom Format (2,3). Das Produkt S;R; existiert nicht.

Beispiel 2.13: Wir bilden S4R4 = Qy, (3,2) 0 (2,3) — (3,3);

00 0 00
305

1 2 =13 0 7],
0 01 ,

00 0 00

und wir sehen wiederum, daB Q4 3 P, ist. Man vergleiche mit Beispiel 2.9!

Die Beispiele zeigen, daB S nicht mit R verkettbar sein muB, wenn R und S mit-
einander verkettbar sind; d. h., wenn RS existiert, braucht SR nicht zu existieren.
Wenn RS und SR beide existieren, gilt im allgemeinen

7 RS #+ SR.
RS und SR existieren stets, wenn R und S quadratische Matrizen von gleicher Ord-
nung sind. Insbesondere kann gelten: -
RS = SR;

dann nennt man die Matrizen R und S miteinander vertauschbar. Im allgemeinen
gilt jedoch auch fiir quadratische Matrizen RS # SR.

2.2.4. Eigenschaften der Multiplikation

Im Gegensatz zur Multiplikation der Zahlen ist die Multiplikation der Mairizen
nicht kommutativ, wovon wir uns anhand der Beispiele liberzeugt haben. Dagegen
sind die beim Zahlenrechnen giiltigen Gesetze der Distributivitit und der Assozia-
tivitat (vgl. Bd. 1, Kap. 5.) auch bei Matrizen erfillt.
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Satz 2.5: Fiir die Multiplikation von Matrizen gelten das distributive Gesetz . S.25
| (R + S)T = RT + ST

und das assoziative Gesetz

i (RS)T = R(ST) = RST,

falls die einzelnen Summen und Produkte der Matrizen existieren.

Beweis: a) .Die Giiltigkeit des distributiven Gesetzes ergibt sich folgendermaBen:
R + S)T = ([ru] + [sul) [tu] = [ruc + sud [2u]

n n»n n
= [';l(rlv + 51y) ’vk] = [Zl’:vak + zlslvtvk]

- [zr,v_t,,] + [Zs,,t,,, = RT + ST.
r=1 y=1

b) Die Giiltigkeit des. assoziativen Gesetzes 1aBt sich folgendermaBen zeigen:
Wir setzen RS = P = [p,], ST = Q = [gul.
Dann gilt

Pk = 2riSyks G = 2Sipluks
v u
Zpilltﬂk =3 (Zrtvs\m) Lux
u

= Zrivsvll Bk = Zrtv zsvlltllk = Zriquk
Wy

Daraus ergibt sich

RS)T = [%‘.Pmtﬂk] = [ % ('Zr ivSva) tl‘k]
= [I‘Z’r ivsvlltllk] = [;r v z”:‘stvutuk]
= [;riquk] = R(ST).

(Dabei erstreckt sich die Summation fiir  iiber die Anzahl der Spalten von R bzw.
der Zeilen von S; die Summation fiir x4 erstreckt sich iiber die Anzahl der Spalten
von S bzw. der Zeilen von T.) ®

Zuletzt wollen wir die Frage nach der Transponierten eines Produktes stellen.

Satz 2.6: Unter der Voraussetzung, daf das Produkt S.2.6
P=S,S,S;...S
existiert, Iautet die Transponierte des Produktes
= 878, ... S{S7ST. (2.9

Beweis: a) Zuerst soll die Rxchtlgkelt der Behauptung fiir n = 2 gezeigt werden.
Dann ist P S;S,, und zu zeigen ware, daf

= SIST
gilt.
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Die Matrix S; = [s] besitze das Format (/, p) und die Matrix S, = [s2] das
Format (p, m). Die Matrizen S, und S, sind daher verkettbar.

Fiir die transponierten Matrizen gilt

=[], SI=I[s7]
Jetzt konnen wir die Transponierte des Produktes umformen:
P T
(3,827 = (] 12" = [ Zetp 52|
1

y=

P 2 14 .
2] 1
= [Zs;'.’ s&*] - [Zs:.* sz:].

v=1 =1
r
Da Zs?,’ s Produkt der i-ten Spalte von S, mit der k-ten Zeile von S, bzw. Produkt

der z-ten Zeile von ST mit der k-ten Spalte von ST ist, gilt

(S:S.)" = S7S7.
ST und ST sind miteinander multiplizierbar, denn S} ist vom Format (m, p) und ST
- vom Format (p, /); das Produkt STST = PT besitzt das Format (m, [).

Beispiel 2.14:

P—-SS[123‘
TP 0 2 1

14 9
PT = [19 7] = (8:8);

10
s;sf=f[3 4 ‘] [2 2] - [‘4 9] _pr.
. 215 19 7
31
b) Die Giiltigkeit des Satzes 2.6 fiir # Faktoren (n > 2) zeigen wir mit der vollstandi-

gen Induktion (vgl. Band 1, 4.3.), nachdem sie fiir zwei Faktoren bewiesen wurde.
Wir nehmen an, daB die Aussage fiir k = n — 1 Faktoren richtig ist, d. h.

(S;S;...S)T = SISf_, ... SIST;
dann wird
(S:S; ... Sksk+l)T = {(stz e Se) Sk+1}T
= Si;1(8:S2 ... S)T = I+1S;r ... S387;
die Aussage ist auch richtig fiir ¥ + 1 = n Faktoren. m
Fiir die Multiplikation von Matrizen muf3 man sich besonders merken:
1. Eine Matrix wird mit einem Skalar multipliziert, indem man jedes Element
einer Matrix mit diesem Skalar multipliziert.
2. Das Produkt zweier Matrizen ist nur erklart, wenn die Anzahl der Spal-
ten des ersten Faktors gleich der Anzahl der Zeilen des zweiten Faktors ist.
3. Ein Produkt zweier Matrizen ist gleich der Nullmatrix, wenn entweder
die Elemente von mindestens einer Matrix alle gleich null sind oder wenn
die Faktoren Nullteiler sind.
4. Wenn P = RS ist, dann ist PT = STRT die zugehorige Transponierte.
5. Das kommutative Gesetz gilt im allgemeinen nicht, aber das assoziative
und das distributive Gesetz sind giiltig.

3 2
4 1
15



2.3. Besondere Matrizen 57
2.3. Besondere Matrizen

Diagonalmatrix

Definition 2.18: Eine Matrix, in der alle Elemente ay, = 0 sind fiir i % k, heifit Dia-
gonalmatrix.

(Nur die Elemente a;; kénnen von null verschieden sein. Selbstverstindlich diirfen

einige oder sogar alle Elemente a;; gleich null sein; z. B. ist die Nullmatrix auch eine

Diagonalmatrix.) : -
Dabei wollen wir ohne Riicksicht auf das Format der Matrix die Diagonale, die

vom ersten Element der ersten Zeile ausgeht, als Hauptdiagonale bezeichnen.
Besonders wichtig sind die quadratischen Diagonalmatrizen.

~d,, 0 0 ..0 0 7
0 d, 0 ...0 0
0 0 dsz...0 0
D=(dul=| ~ BRSTR
0 Q 0 eee d,,_l,n-l 0
0O 0 o0 ..0 o _

Multiplikationsmatrix (M-Mytrix)

Definition 2.19: Eine quadratische Diagonaliratrix nennt man Multiplikationsmatrix
M (dl.l’ d223 sy dnn)'

Multiplizieren wir eine Matrix A vom Format (m, n) von links mit einer Multi-
plikationsmatrix M, .,, dann werden alle Elemente der i-ten Zeile jeweils mit dem
Faktor d;; multipliziert; multiplizieren Wir A, von rechts mit M, ,,, so werden
alle Elemente der i-ten Spalte jeweils mit dem Faktor d;; multipliziert.

Beispiel 2.15:
dyy O
a) M(z,z) _ [ 11 ] , Ag.sy = [011 asz 013],

0 d2z az1 Q22 4az3

dyiayy diags duaxs].

M,2) Az,3) =
’ ' d220;1 dy28z; dyaa23

dyy O 0
b) Aa.s = [a“ a1z am]’ Mas=|0 do 0 |,
s @y Q22 Q23 0 0 dss
A M _ aydyy  Gy2dy;  ay3dss
@2TE az1dy; G224y, G23d33 ’

Zur Veranschaulichung verwende man das Falksche Schema.

Wenn in einer Multiplikationsmatrix My, ,, alle Elemente d;; = ¢, i = 1,2, ..., 1,
sind, so gilt fiir die Multiplikation mit einer Matrix A,,,,
MA = AM = cA,

d. h., alle Elemente von A werden mit dem Faktor ¢ multipliziert (vgl. Definition 2.14).

D.2.18

D.2.19
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Bei Matrizen A mit dem Format (m, n) gilt entsprechend
M(m.m)A(m.n) = CA(m.n)! dﬂ =C, i = ]’ 2’ [T m,
sowie

A(m.n)M(n.n) = CA(m.n)a dil =>C, i = ]y 2’ ey N

Deshalb werden solche Multiplikationsmatrizen auch als Skalarmatrizen bezeichnet.
Ist in einer Skalarmatrix ¢ = 1, so gilt

M(m.m)A%m.n) = A(m.n)
bzw.

A(m.n)M(n.n) = A(m.n) ’

d. h., A bleibt unverandert. Beziiglich der Multiplikation der Matrizen spielt die
Skalarmatrix mit ¢ = 1 die Rolle des neutralen Elements. Setzen wir

M n.m = E;und M, ,, = E,, wobei alle d;; = 1,

dann gilt also
EA = A = AE,.

D.2.20 Definition 2.20: Matrizen E, bzw. E,, die bei linksseitiger bzw. rechtsseitiger Multi-
plikation eine Matrix A,,,.,, unverdndert lassen, heiflen Einheitsmatrizen.

Wenn A eine quadratische Matrix ist, dann ist
El = Ers

denn dann haben E, und E, dasselbe Format.

Beispiel 2.16: !

1 23
A_[l 0 3]’

E1=[l OJ und E, =
01

und es gilt: EA = A = AE,.

dann ist

S O =
oS - O
- O O
| SOSSE— |

Vertauschungsmatrix (V-Matrix)

D.2.21 Definition 2.21: Vertauscht man in einer Einheitsmatrix die Zeile (Spalte) x mit der
Zeile (Spalte) B, so erhdlt man eine Vertauschungsmatrix, die mit V 5 bezeichnet wird:

V,ﬂ=V5,=V£.

Bei linksseitiger Multiplikation einer Matrix A mit V5 werden in A die Zeilen o und 8,
bei rechtsseitiger Multiplikation die Spalten x und 8 miteinander vertauscht.
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Beispiel 2.17: Die Wirkungsweise der Vertauschungsmatrizen wird mit dem Falkschen Schema be-
sonders gut verdeutlicht:

a1 Q12 Qg3
azy az; az; | A

1 00 aj;; Qi3 aps
0 01 asy, Q32 azz
010 L G231 dzz Q3 ]
v23 V23 A
1 0 0
0 0 1]V,
0 1 0
411 12 dy3 a1 Qi3 Qi
@z Gzz 4zs azy Qz3 Qzz
a3y 43z dss a3y Q433 Qasz
A AV,

Additionsmatrix (A-Matrix)

Definition 2.22: Aus der Einheitsmatrix erhilt man die sogenannte Additionsmatrix 1D.2.22
A,5(t), indem man das Element an der Stelle a, 8 durch die Grdpe t ersetzt (a + f).

Beispiel 2.18:

1 ¢ a a
A () = , A= [ Ar Tz s
01 Qg Qz;
ayy + tazy ay; + mzz]

azy azz

A (A = [

ayy tagy + anz]
az; taz; + az;

AA; () = [

Eine Anwendung fiir A-, M- und V-Matrizen

Fiir die Losung vor Gleichungssystemen erweist es sich als notwendig,‘ein'e Ma-
trix A in eine sogenannte Dreiecksmatrix umzuformen, das ist eine Matrix, bei der
ober- bzw. unterhalb der Hauptdiagonalen alle Elemente gleich null sind.

Beispiel 2.19:
0027
-13 3 2
A=| 399 2
26 35
00 4 4
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Man multipliziert A jetzt von links mit der V-Matrix Vy,:

©C o o = O
S OO O =

o O = O O

v12

o = O © O

-0 O © ©

0

O N W =

O N W O =

(=}

© AN O O W oo W

2

WO N W AW O W

4

7
2
2
5
4_.
-
7
2
5

4

_sz A=A

Nun multipliziert man die erhaltene Matrix A; mit der 4-Matrix Az;(—3) und danach mit der 4-
Matrix Ag:(—2):

A3i(-3)

Au(=2)

0
-2
0

S 0o o = O O o O = O

(=}

O = O O O O - O © O

- O O O

-0 O O ©

11

I—

O N O © = O N W O =

cC O O © =

©C O O O W O O © W O VY O Ww

e S RV R S B S N I S S

O N W A WO N W A& WO BNW

|
w
|
-

4 4

Ay

Az (=3) Ay

Agi(=2) Az (=3) Ay = A,

Die erhaltene Matrix A, muB jetzt noch nacheinander mit der V-Matrix V34, mit der A-Matrix
As;(-:') und der 4-Matrix A54(%) multipliziert werden:

A.u(%) Ass(%) Viat Az = Aj.

Insgesamt ist As4(';‘) Ass(%;) Viadas(—2) A31(—=3) Vi2A = Az, und

A3=

1
0
0
0
0

3
0

0 -3
0 —4
0

0
0

2

ist die gesuchte Dreiecksmatrix.
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Diese Umformungen sind Grundlage fiir den GauBschen Algorithmus (vgl. 3.2.);
mit ihrer Hilfe erhdlt man aus beliebigen linearen Gleichungssystemen gestaffelte
Gleichungssysteme.

Orthogonale Matrizen

Definition 2.23: Eine quadratische Matrix A, die mit ihrer Transponierten multipliziert D.2.23
die Einheitsmatrix ergibt, heifit orthogonale Matrix: AAT = E.

Beispiel 2.20:

cosp —sing cos@ sing
A= ; AT=| ,
sing  cosg —sing cosg@

AT [coszq) + sin? ¢ cos@sing — sintpcos«p]

sinpcosp — cospsing sin? @ + cos? ¢

SN

Reziproke Matrix (Kehrmatrix oder inverse Matrix)

Zur quadratischen Matrix A wollen wir die Matrizen A, und A, bestimmen,
so daB A;A = E und AA, = E wird.

Multiplizieren wir die erste Gleichung von rechts mit A, und die zweite Gleichung
von links mit A,, so erhalten wir die beiden Gleichungen

AjAA; = A, AJAA; = A,

aus denen folgt, dal A, = A, ist. Wenn also zu einer gegebenen Matrix A der-
artige Matrizen A,; und A, existieren, so sind diese notwendig gleich, und wir
schreiben:

Al = A; = A*l.
Definition 2.24: A~! heifit die zur quadratischen Matrix A reziproke Matrix, wenn D,2.24
gilt

A-'A = AA-' =E.

Die reziproke Matrix wird hiufig auch als Kehrmatrix oder inverse Matrix be-
zeichnet. Nicht jede quadratische Matrix hat eine Reziproke.

Satz 2.7: Sind A und B Nu’llteiler, so existieren keine reziproken Matrizen A~* und B~*. S.2.7

Beweis: Nimmt man an, es existiere A~*, so ergibt sich folgender Widerspruch:
A'AB=(A"'A)B=B
A'AB = A-'(AB) = 0.

B ist jedoch nach Voraussetzung ungleich der Nullmatrix; d. h. also, die inverse
Matrix kann nicht existieren. Entsprechend zeigt man es fiir B-!. m



S.2.8

S.2.9

S.2.10

62 2. Matrizen und Determinanten

Satz 2.8: Wenn die quadratische Matrix A eine Reziproke besitzt, so ist diese eindeutig
bestimmt.

Beweis: Angenommen A besiBe die beiden reziproken Matrizen A7 ! und A},
dann miifte gelten:

AAT'=A7'A=E und AA;'=A;'A=E.
Daraus ergibt sich:
A7'AAT! = (A7TA) AT = AT,
A7'AAT! = AT(AATY) = AT,
Ar'=A7'.®m
Die Reziproke von A-! ist A (nach Def. 2.24 und Satz 2.8).
Ferner gelten folgende Satze fiir quadratische Matrizen:
Satz 2.9: Die reziproke Matrix eines Produktes ist gleich dem Produkt der reziproken
Matrizen in umgekehrter Reihenfolge:
i (AJA; ... At = A7TAY, L ASTATL o (2.10)

Beweis: Es ist -
(AJA, . A) (ATTAY LLATTATY
=AJA; . A (AATD AL L ATTATY
= AA, ... A, EAY OASAT?

..................................

Wir sehen, daB die reziproke Matrix einer Produktmatrix nur existieren kann, wenn
die reziproken Matrizen samtlicher Faktoren vorhanden sind. Umgekehrt gilt

Satz 2.10: Die Reziproken der einzelnen Faktoren eines Matrizenproduktes existieren,
wenn die reziproke Matrix des Produkts existiert.

Beweis: a) Das wollen wir zunachst fiir zwei Faktoren beweisen:
Die Reziproke R zu A, A, soll existieren; dann gilt:
R(AA;) = (A;A))R =E.

Wegen der Giiltigkeit des assoziativen Gesetzes ist
(RA1) A, = A1(A2R) =E,

- d.h,

A7'=RA,
und
1= AR
sind vorhanden.

* b) Den Beweis fiir ein Produkt von n Faktoren fiihrt man mit der vollstindigen
Induktion. @
Die Reziproke einer Einheitsmatrix E ist diese selbst, d. h.

E-1 = E.
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Beispiel 2.21: Berechnung der Reziproken fiir n = 2. Es seien
a1 a2 X11 Xi12 10
A= , Al= , E= .
Q1 az2 X21 X22 01
A~ soll so bestimmt werden, daB
AA=AA1=E
wird. Wir benutzen AA~! = E und erhalten daraus die folgenden vier Gleichungen

1L Ay1X1y + @y2%x2; = l, I11. Ay1X12 + Qy2X32 = 0, -

IL azyx1y + @22%21 = 0,  IV.azix1; + a@z2x22 = 1.

Aus I. und II. ergeben sich:
(@11822 — a@12a2;) X1, = az2,
(@11822 — G12021) X271 = —a>].
Zur Abkirzung fithren wir ein:
D = ay,a8,; — ay20;;.

D ist demnach eine ganze rationale Funktion vom Grade n = 2 der n?> = 4 Elemente von A und
besitzt fiir gegebene ay; einen bestimmten Zahlenwert. Damit konnen wir den letzten beiden Glei-
chungen folgende Gestalt geben:

Dx;y = az,, Dxz; = —azx.
Aus den Gleichungen III. und IV. erhalten-wir:
Dxy3 = —aya, Dx;; = ay;.
Wenn die reziproke Matrix existieren soll, mufl
D+0

sein. (Das hier angewendete Verfahren zur Losung von Systemen von linearen inhomogenen Glei-
chungen werden wir spiter in 3.4. als ,,Cramersche Regel* kennenlernen.)

Beispiel 2.22:
1 07, . . o .
I.Fir A = [ 1 0] ist D = 0; die reziproke Matrix existiert nicht.
2rira=|) *|istp=-t,undar1=["2 2
2. Fir —23lSt = =1, un = > —1 |
4 17. ¢ -1
i = tD =35, nd A~! = . ”
3.Fir A [3 2]15 u [_% %]

Potenzen einer Matrix

Wenn die quadratische Matrix A mehrfach mit sich selbst multipliziert wird, so
sprechen wir wie bei den Zahlen von den Potenzen der Matrix. Es ist also

A? = AA, A% = A%A = AA? usf.
Wir betrachten nur Matrizen, deren Format endlich ist; fiir gewisse Anwendungen sind die so-

genannten unendlichen Matrizen von Wichtigkeit, fiir welche die Definitionen und Rechenregeln,
die wir fiir endliche Matrizen kennenlernten, nur mit gewissen Einschrankungen gelten (s. [10]).
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2.4. Determinanten

3

2.4.1.  Definition der Determinanten
Im vorigen Abschnitt war bei der Berechnung der Elemente der reziproken Matrix
vom Format (2.2) der Ausdruck
D = ay,a;, — ay,03,

von besonderer (bestimmender) Bedeutung; deshalb wird er als Determinante 2. Ord-
nung bezeichnet. Derselbe Ausdruck tritt bei der Losung des Gleichungssystems

ay1X; + a12%; = by,
ay1X; + @32X; = b,

auf. Werden beide Gleichungen nach x, aufgeldst und die beiden Ausdriicke gleich-
gesetzt, so erhalten wir

b, ayy bz azy

1 Xy
a2 a» aza azz

und daraus blazz - ailazle = bzalz - alza21xl, -d. h.
(@11a22 — a1,85,) X, = byay, — bya,, oder

Dx, = biaz; — byays;
entsprechend ergibt sich
Dx, = —bya;; + bay,.
Wir fiihren deshalb fiir D folgende Schreibweise ein:
Unter einer Determinante zweiter Ordnung versteht man den Ausdruck:

' Ay 4y
= Qy1Q33 — Qyalsy.

det A —-‘
(2,2)
‘121 a22

Die Determinante zweiter Ordnung ist eine homogene ganze rationale Funktion
zweiten Grades der vier Elemente a,,, @5, >, @5, die einen bestimmten Zahlen-
wert besitzt.

Bei der Losung des Gleichungssystems

a1 Xy + apax; + ag3x; = by,
A31X1 + 22X, + Ax3x3 = by,
@31Xy + 33X, + A33X3 = by
tritt ein Ausdruck der Form
D = a,,(ax2a33 — a33a32) — a12(a,033 — a33a31) + a13(a;~“a32 — @y,a3,)

auf; dieser Ausdruck wird als Determinante 3. Ordnung bezeichnet, und man
echrexbt (analog zur Schreibweise der Determinante 2. Ordnung):

ayy Ay Qg3
det As,3) = | G211 @22 Q23

a3y dzx a4z

= Q11032033 — Q11033032 — Q103,433
+ 12053031 + Q13021035 — (1302203, .

Die Berechnung dieses Ausdruckes liefert den Wert der Determinante.
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Beispiel 2.23:

=1:0:2—1-1-1—3-2-2+3-1-3
+4:2:1—4-0-3 =4,

N = n

13
det A(3'3) ={2 0
31

Die Berechnung des. Wertes einer Determinante dritter Ordnung kann nach der
Regel von Sarrus (vgl. 1.2.7.) erfolgen.

Um Klarheit iiber die Vorzeichen der einzelnen Summanden einer Determinante
zu gewinnen, betrachten wir noch einmal den Ausdruck:

det A(3,3y = @182,033 — Q1102383 — G12031033 + @1202303,
+ @1302103; — A13055034.

Die vorderen Indizes jedes Summanden stehen jeweils in der natiirlichen Reihenfolge
1 2 3. Die Reihenfolge der hinteren Indizes in den verschiedenen Summanden ist:

123 132 213 231 312 321.

Hier treten alle Anordnungsméglichkeiten der Zahlen 1 2 3 auf.
Solche Anordnungen bezeichnet man als Permutationen (vgl. Band 1, Kap. 6).
Jeder Permutation der Indizes entspricht also genau ein Summand der Deter-
minante. Den Gliedern mit positiven Vorzeichen entsprechen die Permutationen

123 231 312,

also die geraden Permutationen (gerade Anzahl von Inversionen). Das negative Vor-
zeichen tritt auf bei

132 213 321,

also bei den ungeraden Permutationen (ungerade Anzahl von Inversionen).
Wenn wir mit 7 die Anzahl der Inversionen bezeichnen, so ist das Vorzeichen der
entsprechenden Summanden

(=D~

Diese Begriffe kann man ohne Schwierigkeiten auf Permutationen von # Elementen
iibertragen, so daf3 wir jetzt die Determinanten allgemein definieren kénnen.

Definition 2.25: Es sei 8, B ... B, eine beliebige Permutation der n Indizes 1,2, ..., n.
Dann wird die Determinante der quadratischen Matrix A mit det A bezeichnet und
darunter der folgende Zahlenwert verstanden:

1
ayy Ayz ... Qi

azy Gzz ... Qg
detA = ;’—-pzp(— 1) ap, azp, ... Ayp, -

py Gpz ees Gy

(1 ist die Anzahl der Inversionen, die der Permutation entspricht; die Summation
erstreckt sich iiber alle n! Permutationen 8,4, ... 8, der Indizes 1, 2, 3, ..., n).
Betrachtet man diesen Ausdruck genauer, so zeigt sich:

Jedes Element tritt in einem Summanden nur einmal auf; man sagt, es liegt linear
vor. Jeder Summand hat n Faktoren, wobei aus jeder Zeile und jeder Spalte immer
genau ein Faktor stammt.

5 Manteuffel, Lineare

D.2.25.
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Die Determinante ist eine lineare homogene Funktion der Elemente jeder Reihe;
sie ist eine ganze rationale Funktion n-ten Grades ihrer n?>-Elemente.

Fiir Determinanten ist auch die Bezeichnung |A| iiblich. Wenn die Ordnung
hervorgehoben werden soll, so glbt man diese als Index an: det A, oder [A,p)l.
Der Wert der Determmante ist ein Skalar, er hingt von allen Elementen der Matrix
ab.

2.4.2. Eigenschaften der Determinanten

Wenn der Wert einer Determinante zu berechnen ist, dann kann die Ausrechnung
dadurch erleichtert werden, dal3 die Determinante umgeformt wird, ohne ihren Wert
zu dndern. Diese Umformungen beruhen auf bestimmten Eigenschaften der Deter-
minanten, die wir nun kennenlernen wollen.

Satz 2.11: Der Wert der Determinante bleibt unverindert, wenn Zeilen und Spalten
vertauscht werden (Stiirzen der Determinanten oder Spiegelung an der Hauptdiagonalen).

Beweis: Wir gehen von der Determinante
al 1 al 2 e al’l

a aza PN 02
21 "l= Y (=Dapas,...ap,
.............. B1B3...Bn

aus. Die gestiirzte Determinante ist dann

dyy Qzp ... 4py

012 022 “ee (I,,z

det AT = =ﬁ ,32 ,‘3(— D! ag18p,3 - QByp-
.............. N

Ayp Azp ... Qpy

Die vorderen und hinteren Indizes sind also vertauscht. Wir kénnen jetzt in jedem
Glied der Summe die Reihenfolge der Faktoren so andern, daB die vorderen Indizes
1, 2, 3, ..., n lauten, also alle Inversionen von f,f,...0, riickgingig gemacht
werden. Dabei entsteht fiir die hinteren Indizes eine gerade Permutation, wenn

P1B2..-B. eine gerade Permutation ist, d. h. eine gerade Anzahl von Inversionen

enthélt. Entsprechendes gilt fiir ungerade Permutationen. Das Vorzeichen eines
jeden Summanden bleibt demnach erhalten. Fiir die hinteren Indizes entstehen alle
moglichen n! Permutationen, d. h., det AT enthilt dieselben Glieder wie det A, und
es gilt

det AT = detA. m ' @.11)

Satz 2.12: Vertauscht man zwei benachbarte parallele Reihen (Zeilen oder Spalten)
untereinander, so dandert sich das Vorzeichen der Determinante.

Beweis: Fiihrt man eine solche Vertauschung durch, so werden in allen Permu-
tationen zwei benachbarte Elemente vertauscht — jede gerade Permutation geht
damit in eine ungerade und jede ungerade in eine gerade iiber. Es dndert sich also
das Vorzeichen eines jeden Summanden, und damit dndert die gesamte Determi-
nante ihr Vorzeichen. m
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Satz 2.13: Stimmen zwei parallele Reihen einer Determinante iiberein, dann ist der Wert
der Determinante gleich null.

(Diese beiden einander gleichen Reihen sind voneinander linear abhingig!)

Beweis: Vertauscht man die beiden iibereinstimmenden Reihen, dann bleibt
die Determinante ungeandert; wegen des Satzes 2.12 miiBte diese Vertauschung
aber eine Vorzeicheninderung bewirken; es besteht demnach die Gleichung
det A = —det A, die nur fiir det A = 0 erfiillt ist. =

Satz 2.14: Wenn alle EIel;tente einer Reihe gleich null sind, dann ist der Wert der
Determinante gleich null.

Beweis: Da in jedem Summanden ein Element der Reihe vorkommt, ist Jeder Sum-
mand und somit die Determinante gleich null. m

Satz 2.15: Multiplizieren wir alle Elemente einer Reihe mit demselben Faktor, so wird
die Determinante mit diesem Faktor multipliziert.

Beweis: Diese Eigenschaft ergibt sich ebenfalls aus der Definition der Determi-
nante; wir wollen den Faktor mit 4 bezeichnen. Da bei der Berechnung der Deter-
minante in jedem Summanden ein Element jeder Reihe vorkommt, tritt auch 4 in
jedem Summanden auf, und die Determinante insgesamt ist also mit A multipliziert.
(Man beachte den Unterschied zur Multiplikation einer Matrix mit einem Faktor,
vgl. Definition 2.14.). B

Satz 2.16: Enthdlt eine Determinante zwei proportionale parallele Reihen, so ist sie
gleich null.

(Diese beiden einander proportionalen Reihen sind voneinander linear abhingig!)
Beweis: Wenn fiir die Elemente zweier Zeilen gilt

Ay = lakl’ .] = 1921 ey I,

so kann der Faktor A herausgezogen werden, und es entsteht eine Determinante,
in der zwei parallele Reihen iibereinstimmen. IThr Wert ist nach Satz 2.13 gleich null.
In entsprechender Weise 1a8t sich der Satz fiir zwei proportionale Spalten beweisen. m

Satz 2.17: Die Summe zweier Determinanten, die sich nur in den Elementen ein und
derselben Reihe unterscheiden, ist gleich einer Determinante, bei der in dieser Reihe
die Summen der entsprechenden Elemente derselben Reihen der beiden urspriinglichen
Determinanten stehen.

Das heiBit also:

azy Qin Ayy - Qpp ayy a2 Qin

azy Q2n azy Q2n azy Q22 QAzn
.......... P P Ly L TS RRRLTRLSRE Sy @.12)
any Qhn ay Ay Gny + Gy Gz + Gy Ay + Qpy

Qpy .. Qpy Quy ooo Qpy /%% a,, vee Qpp

Die Richtigkeit folgt aus der Definition der Determinante.

5%

S.2.13

S.2.14

S.2.15

S.2.16

S.2.17
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Satz 2.18: Eine Determinante dndert ihren Wert nicht, wenn zu den Elementen einer
Reihe die mit einem beliebigen Faktor multiplizierten Elemente einer parallelen Reihe
addiert werden.

(Es wird zu einer Reihe ein Vielfaches einer parallelen Reihe, also eine von der
parallelen Reihe linear abhingige Reihe addiert!)

Beweis: Nach Satz 2.17 1aBt Sich eine solche Detérminante ohne Einschrinkung
der Allgemeinheit als Summe zweier Determinanten wie folgt darstellen:

a + Aay, ag, ... ap, a,; Qi3 ... Ay a1, Qyp ... Qg

ay, + Ay, ay, ... as, | @21 Gy ... g + yy Q33 ... dap

apy + Ay, @y, ... ay, Ayy  Gny .. Qg Qyy  Qny ... Gpy
’ = det A + 0;

denn die zweite Determinante hat nach Satz 2.13 den Wert Null. m

Satz 2.19: Wenn alle Elemente, die oberhalb (bzw. alle Elemente, die unterhalb) der
Hauptdiagonalen stehen, gleich null sind, dann ist der Wert der Determinante gleich
dem Produkt der Hauptdiagonalelemente:

det A = a,,a,, ... a,.

Beweis: In jedem anderen Summanden steht nimlich mindestens einmal eine Null,
und die Determinante hat somit den o. a. Wert. — Eine solche Determinante bezeich-
net man auch als ,,Dreiecksdeterminante*. ®

Die hier behandelten Eigenschaften der Determinanten sind wichtig fiir ihre Be-
rechnung. Denn wenn n > 3ist, dann ist die Berechnung des Wertes der Determinante
unter Benutzung der Definition 2.25 sehr umstandlich. Man formt deshalb die Deter-
minante um, ohne ihren Wert zu verindern, um eine Determinante zu erhalten, die
sich einfacher berechnen 1aBt. So versucht man durch diese sog. elementaren Um-
formungen zu erreichen, daBl in einer Reihe der Determinante moglichst viele Nullen
stehen bzw. daB das Ergebnis der Umformungen eine sog. Dreiecksdeterminante
(vgl. Satz 2.19) ist. '

Wenn A und B gleichartige quadratische Matrizen sind, dann gilt

Satz 2.20: Das Produkt der Determinanten zweier Matrizen A und B ist gleich der
Determinante des Produktes der beiden Matrizen, d. h.

i det A det B = det (AB).

Den Beweis dieses Satzes wollen wir hier nicht fiihren.

Da die Multiplikation von Determinanten eine Multiplikation von Zahlen ist
(im Unterschied zur Multiplikation von Matrizen!), gilt das kommutative Gesetz:

i det Adet B = det Bdet A.

Deswegen und wegen Satz 2.20 ist:
i det (AB) = det (BA).
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Beispiel 2.24:

a) zu Satz 2.11:

1 3 4
A=[2 0 1], detA=4,
312
1 23
detAT={3 0 1|=0+8+9-0—-12-1=34,
4 1 2

b) zu Satz 2.12: Spalte 2 von det A vertauscht mit Spalte 3:
3

Ol=+14+0+12-9-8—-0=—4;

1
2
3 1

N A

c) zu Satz 2.13: Zeile 1 stimmt iiberein mit Zeile 2:

4

13
1 3 4/=6+36+4-36—-6-4=0;
31 2

d) zu Satz 2.15: Zeile 1 von det A mit 2 multipliziert:
8 ]

2 6
2 0 1|=0+18+16—-0—-24—2=38;
3.1 2

e) zu Satz 2.16: Zeile 1 und Zeile 3 sind proportional:

1 3 4
20 1|=0+9+72-0-72-9=0;
3 9 12

f) zu Satz 2.17:

1 3 al |1 3 d
2 0 bl+l2 0 e
31 ¢ 31 f

=0+9%+2a—-0—6c—b+0+9+2d—0—6f—e
=0+9%b+e)+2a+d)—0—6(c+f)—(b+e)
1 3 a+d
=2 0 b+e
31 ¢+ f|
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'g) zu Satz 2.18: Zu Spalte 1 von det A wird die mit (— 2) multiplizierte Spalte 3 addiert:
-7 3 4

00 1/=0-34+40-0-0+7=4;
-1 1 2

h) zu Satz 2.19: Wir formen die Determinante von g) weiter um: Zur Spalte 1 wird Spalte 2 addiert,
und wir erhalten

-4 3 4
001
01 2

Vertauschung von zweiter und dritter Zeile (Vorzeichenidnderung) und Multiplikation der Elemente
der 1. Spalte mit (—1) (Riickgingigmachen der Vorzeichendnderung) fiihrt zur

4 3 4

detA=|0 1 2|=4,
0 0 1

2.4.3. Entwicklung einer Determinante nach Unterdeterminanten

Um auch den Wert von Determinanten héherer Ordnung bestimmen zu kénnen
betrachten wir noch einmal eine Determinante 3. Ordnung.

A11 G2 4y3
det Az.3) =| Q21 G2z G2
azy 4sx Az
= 011(822a33 — 02303;) — 12(82,a33 — A2303,) + a13(a2103; — @3,a3;)

1aBt sich in anderer Form schreiben, wenn man die Klammerausdriicke als Deter-
minanten 2. Ordnung auffafBt:

a> Qs Ay Q33 asy Qz»

+ a;;

det A, = ayy —as»

asz> Qi3 asy; Qass asy; as;

Die Determinanten 2. Ordnung, die als Unterdeterminanten bezeichnet werden, ent-
stehen dadurch, daB man in det Ay, 3y Zeile und Spalte des Elementes streicht, das
jeweils als Faktor vor der zweireihigen Determinante steht. Man spricht in diesem
Falle von der Entwicklung einer Determinante nach den Elementen der ersten
Zeile (oder von der Entwicklung einer Determinante nach Unterdeterminanten der
ersten Zeile).

Diese Entwicklung kann auch folgendermaBen geschrieben werden:

det As,3) = a3 411 + @124,5 + ay34;3,

wenn unter 4, (i, k = 1,2, 3) die vorzeichenbehafteten Unterdeterminanten ver-
standen werden. 7

Man kann zeigen, dafl det A.;,3, nach den Elementen bzw. Unterdeterminanten
jeder Reihe entwickelt werden kann. Im folgenden sollen die allgemeinen Gesetz-
méBigkeiten einer solchen Entwicklung fiir det A, untersucht werden.
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Nach 2.4.1. ist jede Determinante eine homogene lineare Funktion der Elemente
eine ihrer Reihen. Greifen wir die Zeile A heraus, dann kdnnen wir schreiben:

n
det A(,,_,,) = Zla;th = a,uA,n + anAn + ...+ a‘,.Az,,. (2.13)
o-——

Das kann man entsprechend mit jeder Zeile und mit jeder Spalte machen. Wie sehen
die 4,, aus?

a,, ist das Element, das an der Stelle 4, o, d. h. in der Zeile 4 an p-ter Stelle steht.
Weil jeder Summand von det A aus jeder Zeile und Spalte genau ein Element enthalt,
ist A4,, demzufolge unabhingig von der Zeile 4 und der Spalte ¢. Also muB 4,, eine
ganz rationale Funktion (n — 1)-ten Grades der (n — 1)? Elemente der Determinante
sein, die man aus der urspriinglichen erhélt, wenn man die Zeile 4 und die Spalte p
streicht. Eine solche Determinante nennt man eine Unterdeterminante (n — 1)-ter
Ordnung.

Welche Vorzeichen kommen den Summanden in der o. a. Zerlegung zu?

Durch 2 — 1 Vertauschungen bringen wir die Zeile 4 an die erste Stelle. Dann gilt

det A = (—1)"-! det A".

Entwickeln wir det A nach den Elementen der ersten Zeile, dann erhalten wir
n
det A" =3 ay, A3
e=1

denn die Zeile 4 ist jetzt die erste Zeile der Determinante.
Entwickeln wir det A nach der A-ten Zeile, so erhalten wir

detA = 3 aydz = (=11 det A’ = (=11 3 ay A,
e=1 e=1

d. h., es ist v
Azp = (— 1)1 Aj,.
Durch (p — 1) Vertauschungen bringen wir jetzt die Spalte g in det A’ an die erste
Stelle, und es gilt
det A’ = (—1)¢-! det A".
Entwickeln wir det A’ und det A" jeweils nach den Elementen ihrer ersten Zeilen, so
erhalten wir
det A’ = a3 Ay + @Ay + oo + @iy + oo + @uAdy, = (— 1)1 det A
= (=11 (@dip + audis + .o + @1 dipr + Gpprdipsr + oo + GwAL),
d. h.,, es ist
Afy = (1)1 4}
und
A = (1) Afy = (— 1) 45,

wobei A}, die Unterdeterminante (n — 1)-ter Ordnung ist, die entsteht, wenn man die
/-te Zeile und die p-te Spalte streicht.

Definition 2.26: Die vorzeichenbehaftete Unterdeterminante A,, wird als Adjunkte D.2.26
oder algebraisches Komplement von a;, bezeichnet.
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Es sei nachdriicklich darauf hingewiesen, daB das Vorzeichen zu 4,, gehort.
Die Entwicklung einer Determinante dritter Ordnung nach den Elementen der
zweiten Zeile hat folgendes Aussehen:

dctA = 021A21 + a22A22 + a23A23‘

Natiirlich kann man eine Determinante auch nach den Elementen ciner Spalte ent-
wickeln. Die Zerlegung lautet allgemein nach den Elementen der Spalte o:

det A=‘Zl akA‘e = a,oAle + azeAze + “ee + amA,,e . (2.14)
Die Adjunkten, die bei dieser Entwicklung auftreten, haben folgende Eigenschaften:
Es gilt:
n detAfir A = pu,
X, Bt = {o fir 4 + p. 2.15)
Die Richtigkeit dieser Aussage verifizieren wir an der Determinante dritter Ordnung:
fiir A = u ist es die o. g. Zerlegung nach den Elementen einer Zeile,
fiir 2 + p hitten wir z. B. folgende Zerlegung:

a1 Azy + a1342; + ay34;3;

in Form einer Determinante geschrieben, bedeutet das

ayy Qg2 Gy3
4y Q2 a3,
a3y 43z dzz

und der Wert dieser Determinante ist nach Satz 2.13 gleich null. Entsprechend gilt
fiir die Entwicklung nach den Elementen einer Spalte

n det A firp = o,
;g’la‘“Ak = {0 fiir 0 + o, (2.16)
d. h., das Produkt aus den Elementen einer Reihe mit den zugehdrigen Adjunkten
ergibt den Determinantenwert, wihrend das Produkt einer Reihe mit den Adjunkten
einer parallelen Reihe den Wert Null ergibt.

Ahnlich wie sich eine Determinante n-ter Ordnung nach den Elementen einer Reihe
und deren algebraischen Komplementen entwickeln 148t, gibt es eine Entwicklung
nach Unterdeterminanten m-ter (m < n) Ordnung und deren algebraischen Kom-
plementen (Laplacescher Entwicklungssatz, vgl. [17], S. 33).

Beispiel 2.25: Wir wollen den Wert der Determinante

20

(=]

—
W N -

1
2 3
3 5
0 0

N
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durchb Entwicklung nach den Elementen einer Zeile berechnen. det A formen wir zuerst um. Purch
Subtraktion der 4. Spalte von der 1. Spalte erhalten wir die Determinante

|
Y
(S )
S U W
[CRRS Y

Subtrahieren wir nun das Doppelte der 4. Spalte von der 2. Spalte, dann erhalten wir die Deter-
minante:

0 001
-2 -8 3 4
1 -3 5 2
-3 -4 0 3

Diese Determinante entwickeln wir zweckmiBigerweise nach den Elementen der ersten Zeile; es
wird dann:

dCtA=0'A11+O'A12+0'A1.3+1‘A14,

also det A = Ay4.

Es ist ‘
-2 -8 3
Ay =(—D* 1 =3 5}=—41.
-3 -4 0

Demnach ist det A = —41.

2.4.4. Anwendungen

2.4.4.1. Berechnung der reziproken Matrix

In 2.3. hatten wir bei der Berechnung der reziproken Matrix gesehen, daBl dabei
die Determinanten eine Rolle spielen. Da wir seinerzeit noch nicht iiber den Deter-
minantenbegriff verfiigten, soll jetzt die Berechnung der reziproken Matrix allgemein
dargestellt werden unter der Voraussetzung, daf3

det A% 0
ist. Dann stellt die reziproke Matrix A-! die Losung der Matrixgleichung
AX =E
dar. Die reziproke Matrix ist
Ayy Azy ... Ay
(2.17)
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Von der Richtigkeit dieser Behauptung iliberzeugen wir uns Iexcht dadurch, dal wir
das Produkt AA-* bilden. Es ist

1 Fall alz e al,' All Azl ves A"l
AA- = ] oo ] e
detA Qny 'anz Qup Aln A2u Ann
Y ay A5, 0 0.. 0
Q:{
1 n
= m 0 leazeAze 0 e 0
0 0 0.3 a,d
L ogl e |

detA | +ccccrerteriiiiiiiiean,
0 0 0 ...detA
1 0 0...0
S DT S N
000 1
was wir zeigen wollten.
Beispiel 2.26:
1 3 4
A=[2 0 l]; detA =4
31 2
01 3 4 3 4
Au'—l 2l 1, Azl“‘—'l = -2, A31-}0 l‘ 3,
21 1 4
Au——3 2— 1, Ay, = |=—10 Azz = ~1, 1—7,
20 1 3 1 3 '
| A13—|3 ll"Z, Azz = — 3 1 =8, Az 2 ol" 6,
dann ist
-1 -2 3
Al = [—l -10 7}
2 8 —6
und (Probe)
[134][—1—2 3} [400] [100
AA'=1]120 1|] -1 —10 7=}040=010]=E.
31 2 2 8 —6 00 4 001
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2.4.4.2. Orthogonale Transformation von Vektoren

Bei Ausfiithrung einer Parallelverschiebung andert sich zwar die Lage eines Vektors
im Koordinatensystem, aber Betrag, Richtung und Orientierung bleiben ungeédndert.
Wir wollen nun die Darstellung des Vektors a in einem anderen, ebenfalls recht-
winkligen Koordinatensystem untersuchen, das mit dem urspriinglichen System den
Koordinatenanfangspunkt gemeinsam hat. Solche Systeme gibt es beliebig viele,
und es sollen hier die Formeln fiir alle diese Transformationen angegeben werden,
die man als orthogonale Transformationen bezeichnet.

Es sei 4
a = &€, + *x-€, + XN3€3
die Darstellung von a im alten Koordinatensystem und
a = afef + afe¥ + a¥e¥

die Darstellung von a im neuen Koordinatensystem. Wir setzen

oy e, af ef
a=|a,|, B=|e,]|, a* = | a¥ |, B* =|eF|,
N3 €3 af ef

0; = X (e;;ef), e, = X (e eF), n = ¥ (e;e¥), i=1273.

Die Matrizen

ee¥ eyef ejef cosd; ¢€osd, Cosd;
D = B*BT = | e;e¥ e,ef ejef | =|cose;, cose, cose,
ee¥ e,ef ejef COS17; COSIN, COSa

und DT = BB*T bezeichnen wir als Transformationsmatrizen: Dann gilt wegen

_{o ficit k. (0 firi+k
G =1 firi=k" ST\ firi=k&
DD = E.

a=aTB=Alel +J:ez+a3e3 -

ist die Darstellung von a im alten System und

a = a*TB* = afef + aXer + afer

die Darstellung von a im neuen System; ferner ist

e¥. cosd; cosd, cosdy] e
B*=DB, |ef| =|cose c¢cOScy, COSey €,
ey COS7j; COS2, COSIy e,

die Darstellung von e¥ im alten System und wegen D'B* = D'DB = EB = B ist
e, cos 0, COS&y COS I, e¥

B = D'B*, | ¢,

ey Cos d; COSey COSTy et

li

cosd, cose, cosy, | | eX
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die Darstellung von e; im neuen System. Da a = aTB = a*"B* und B* = DB ist,
gilt aTB = a*™DB; daraus folgt aT = a*™D, d. h. a = DTa*,

oy cosd; cOse; COS7)y A¥
a, | =|cosd, cose, COSI, a¥
X3 cosd3 COSe3 COS M3 x¥

Aus a™B = a*™B* und B = D"B* folgt aTDTB* = a*TB* und daraus
a*T = a™DT, d. h. a* = Da,

a¥ cosd, cosd, c€osd3] [ ¥
a¥ | =] cose; coSe, COSey X,
a¥ COS?7; COS?%, COSN; g

Damit sind die Beziehungen zwischen den skalaren Komponenten des Vektors a
in den beiden Koordinatensystemen hergeleitet.
Betrachten wir die Determinanten der beiden Transformationsmatrizen, so gilt

cosd; cosd, c€osdy cosd, COSe; C€OS,
detD =|cose; cose, cose;|und det DT =|cosd, cose, cosn, |,
COS7; COS#, COS73 cosd; COsey COS I3

und es ist

dét (D™D) = det E = (det D7) (det D) = (det D)? = 1.
Daraus erhilt man

detD = +1,

wobei durch det D = +1 Drchungen und durch det D = —1 Spiegelungen charak-
terisiert werden.

2.4.4.3. Gleichung einer Geraden durch zwei Punkte (in der Ebene)

Die Gleichung einer geraden Linie in der Ebene 1iBt sich in der Form D = 0
darstellen, wobei D eine dreireihige Determinante ist. Wir gehen aus von der soge-
nannten Zwei-Punkte-Gleichung

Y=yi  ¥:—Ju
X — X, X, — X

=) =)+ 0 =) (v = x) = 0.

In dieser Gleichung schreiben wir die linke Seite als Determinante

’

X — XZ xl - .\'2

Y =J2 Yy — ¥
Diese Determinante zweiter Ordnung liBt sich in eine dreireihige Determinante um-
formen, ohne den Wert zu dndern: Eine Zeile und cine Spalte werden so angefiigt,
daB die zweireihige Determinante Unterdeterminante einer dreireihigen Determinante
wird und bei der Entwicklung nach den Elementen dieser angefiigten Zeile bzw.

Spalte mit dem Faktor 1 multipliziert wird, withrend dic anderen Unterdeterminanten
den Faktor O erhalten. Man nennt diese Umformung Rdndern der Determinante.

= 0.
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Hier wird die fofgende dreireihige Determinante durch Rindern gebildet:
0 0 1

X=X X3 —X; X|=0;

Y —=XY2 V1 — )2 Y2 ‘ )

“wir addieren die letzte zur 1. und 2. Spalte und erhalten:

1 1 1
X Xy X3 =0_
Y V1 )2

Man wihlt aus Symmetriegriinden im allgemeinen diese dreireihige Determinante fiir
die Darstellung.

2.4.4.4. Fliche eines Dreiecks

Wir betrachten zuerst die Fliche eines Dreiecks, dessen einer Eckpunkt im Ur-
sprung des Koordinatensystems liegt (Bild 2.2). Dann ist

X,y
F=40nys = vy =4[
J 6(x2ly2)
P1(x1,y4)
0| x Bild22

Sind P,, P,, P, Eckpunkte eines Dreiecks in beliebiger Lage, deren Koordinaten
(x1; ¥1), (x2; ¥2), (X33 y3) sind (Bild 2.3), so verschieben wir das Koordinatensystem
so, daB etwa P; mit dem Ursprung des Systems zusammenfillt; damit haben P, P,
und P, jetzt die Koordinaten

(0;0), (x2 = Xy ¥2 = ¥1), (X3 — X135 ¥3 — ¥1)-

Y4 Py (x,,y,)
Blaas) / -
v x
P (x3.y3) Bild 2.3
Diese Werte werden in die oben hergeleitete Determinante eingesetzt:
I x Y1 I xy »

X, — Xy Y2— 1
X3 — Xy Ya— N

=110 x;—x; y2=yi|=1%|1 x2 »2 .
0 X3—=x; y3—n 1 x3 ys

r=4
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Ist der Wert der Determinante groBer als 0, so wird die Fliche im mathematisch
positiven Sinne umlaufen, ist der Wert der Determinante kleiner als 0, so wird die
Flache im mathematisch negativen Sinne umlaufen, und ist schlieBlich der Wert der
Determinante gleich 0, so liegen die drei Punkte auf einer Geraden.

2.4.4.5. Lineare Abhingigkeit von Vektoren

Die Beispiele 1.6, 1.8 und 1.9 aus 1.2.7. lassen sich ebenfalls mit Hilfe von Deter-
minanten 16sen. Man iuberpriift nur, ob der Wert der Determinanten aus den Kom-
ponenten der Vektoren gleich null oder ungleich null ist; ist D = 0, dann sind die
Vektoren linear abhéngig.

Beispiel 1.6: Es ist
1 0 0..

01 0..

det Ay =10 O

o © ©

(S

0 0 O0..
ey, €, ..., &, sind linear unabhingig.

Beispiel 1.8:
1 -1 1 =2
3 =5 2 -1
det A gy = _s 1 -2 5= -1%0,
-1 0 -1 1

also a,, a,, a3, a4 sind linear unabhéangig.

Beispiel 1.9:
1 -1 1 =2
3 -5 2 -1
det Ay g = —s 1 -2 2 =0;
1 =5 0 -1

a;, a,, 43, a4 sind linear abhéngig, denn 2a; + a, + 2a; — a; = 0.

Wenn eine quadratische Matrix A, ,, als System von n Spaltenvektoren auf-
gefaBt wird, dann bedeutet det A, , + 0, daB diese n Spaltenvektoren linear un-
abhingig sind; natiirlich sind die n Zeilenvektoren dann auch linear unabhéngig
(nach Satz 2.11.). Man sagt in diesem Fall: die Matrix A, , hat den Rang n (vgl.
Kap. 3). Im Falle det A, ,, = 0 ist der Rang <n; sein Wert ist gleich der Anzahl
der linear unabhingigen Vektoren. (Diese letzte Aussage ist natiirlich allgemein
giiltig, denn wenn det A, ,, = 0 ist eben die Anzahl der linear unabhéngigen Vek-
toren gleich n.)



2.5. Aufgaben
2.5.  Aufgaben
2.1: Fir die Matrizen
2 7 -3
2 6 —4
A'=
6 4 -3
8 5 -6

-4 1 2
- 23
_s und B = 13
-1 2 4

ist die Produktmatrix C = AB zu berechnen!

2.2: Fiir die Matrizen A, B, C ist das Produkt P = ABC zu berechnen, wenn

4 3] _ [-28 93 B
a)A=[7 5]’ B_[ 38 —126]' C“[

0 2 -1
b)A=| -2 -1 21,
3 -2 -1

7 3

21
70 34 -107
B=} 52 26 - 68
10t 50 -140

2.3: Zur Matrix A berechne man die Matrix A3 fiir

)A_[a 1] bA__[azl] )A_[l
DA=1o 2" DA= |0 2| 947,

cosp —sing

2.4: Gegeben ist A = [sin o

2

25: Esseiena=|2], b=

1

cos ¢

AN L AW

]

] . Man berechne A"!

.

o S~ N I

C=

~18

-2

-17

79

1
—2 . %, A u und der Vektor ¢ sind so zu bestimmen, daB

®

M = [Aa, ub, c] eine orthogonale Matrix ist.

2.6: Es sei A eine schiefsymmetrische n-reihige Matrix. E + A habe den Rang n (vgl. 3.1.1.; E n-reihige

Einheitsmatrix). Man zeige, daB (E + A)~! (E — A) eine orthogonale Matrix ist.

2.7: Ist A eine n-reihige quadratische Matrix, so ist det (A — AE) = @(4) ein Polynom n-ten Grades

in A mit den Nullstellen 4,, ..

a) ist A schiefsymmetrisch, so ist mit 4; auch — 1, eine Nullstelle von ¢(4);

1
b) ist A orthogonal, so ist mit 4; + 0 auch —— eine Nullstelle von ¢(4).

A

2.8: Es ist A~! zu berechnen fiir

_ 1 a a* @
1 5 2
)A 2 8 3|, ma=|°te @
a = ’ =
0 01 a
| -3 -8 —4
0 0 0 1 ]
1 —a —a* -a° -
0 1 —-a a? 411
A= dA=|1 4 1
) 0 0 1 -a |’ )
1 1 4]
0 0 0 1

.» 4n (,,Eigenwerte** vgl. 5.2.). Man zeige:

e A=

S O O =

©C O = w

oS = W 0

- W \O

*

*
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. 1 3 2] 100
2.9: Zu den Matrizen A = 2 5 3lund B= |0 2 0] ist diec Inverse C~! = (AB)"!
-3 -8 -4 1o o 1

fir die Produktmatrix C = AB zu berechnen!

2.10: Welchen Wert hat die Determinante det A der Matrix

[ -3 1 1]
A= 1 -3 1]?
1 1 -3

2.11: Berechnen Sie den Wert det C der Produktmatrix C = AB, wenn

1 3 2] (1 0 0
A= 2 5 3jund B=}]0 2 0 jist.
| -3 -8 —4J 0 0 1

-21 -2 -9 -8
11 0 3 12
2 6 6 41"
0 2 3 4

2.12: Man berechne

2.13: Berechnen Sie x aus den folgenden Beziehungen:

x 3 4 —-Xx 3 4
a) | —5 6 7{=216; b)|-5 6 71 =216.
2 -3 x 2 -3 —x

2.14: Formen Sie det A in eine Dreiecksdeterminante um!

00 2

det A =

(VS S

33
3909
263 5|

2.15: Man beweise, daBax (b + ¢) =a x b + a x cist!

2.16: Berechnen Sie [abc] [abe]!

2.17: Es ist zu beweisen: Fiir alle natiirlichen Zahlen n gilt: .
X+ a,_ 4 ay_> a,_3 cos a a; ag

-1 x 0 0 0 0

0 -1 X 0 0 0

0 0 -1 0 0 0

a) . . . . ..

0 0 0 X 0o o0

0 0 0 e —1 x 0

0 0 0 0 -1 x

=X 4 @y X"+ Gy X"+ .+ ap;
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1 2 0 0 .. 0
-1 1 22 0 .. 0.
0 -1 1 3 0
Ol IR R
0 .. 0 -1 1 (=12
0 .. 0 0-1 1

cos @ 1 o o 0

1 2cosp 1 0 0
0 1 2cosp 1 0
L = cos np.

0 0 1 2cosp 1
0 0 0 1 2cosg

2.18: Es ist zu zeigen, daB folgende Bezichung gilt:

X1 X2 X3 .o Xpo1 Xp
X2 X3 X4 .. Xp X1
-1 -2
) B A A o)

Xpoi Xp X1 eee Xn_3 Xn_2
Xp X; X2 .. Xpoz Xy
wobei
(o) = xg + o xz + o2x3 + ... + 007 1x,
und &y, ..., &, die 7 verschiedenen Wurzeln von x" = 1 sind. (Hinweis: Es gibt zu jedem natiirlichen n

stets eine n-te Einheitswurzel (,,primitive* Einheitswurzel) derart, daB «, a2, &3, ..., «" gerade simt-
liche Losungen von x" = 1 sind.)

2.19: Man beweise, daB die Determinante einer hermiteschen Matrix stets einen reellen Wert besitzt!

(Hinweis: Wenn man in einer Determinante mit dem Wert D jedes Element a;, durch sein konjugiert
komplexes dy, ersetzt, dann hat die so entstehende Determinante den konjugiert komplexen Wert D.)

2.20: In ciner Determinante D n-ter Ordnung gelte: a,, = 0, a,, = ia,, fiir v > u, wobei die a,, reelle
Zahlen sind. Man bestimme die natiirlichen Zahlen n, fiir die D

a) einen reellen Wert hat,

b) einen rein imaginiren Wert besitzt!

2.21: Es sei A = [a,;] eine quadratische Matrix und B = [4,,], wobei A;; die zu a,, gehorende
Adjunkte von A ist. Man zeige, daB det B = (det A)"! gilt.

2.22: Es ist zu beweisen, daB schiefsymmetrische Determinanten ungerader Ordnung verschwinden.

6 Maxteuffel, Lineare



3. Systeme linearer Gleichungen und Ungleichungen

Die Ermittlung der Lésung von zwei und drei linearen Gleichungen mit zwei bzw.
drei Unbekannten gehért zu dem Wissen, das vor dem Studium vermittelt wird.
Jetzt untersuchen wir endlich viele lineare Gleichungen mit endlich vielen Un-
bekannten. Mit Hilfe des Matrixkalkiils gewinnen wir Aussagen iiber die Losbar-
keit solcher Gleichungssysteme, iiber die Anzahl dcr vorhandenen Ld&sungen und
iiber deren Ermittlung.

Wir lernen als Berechnungsverfahren u. a. den Gauﬂschen Algorithmus kennen,
den GauB u.a. bei der Landvermessung anwandte und der seitdem erfolgreich
eingesetzt wird. Zur Zeit der elektrischen Rechenmaschinen benétigte ein Rechner
fir die Losung eines Gleichungssystems aus 17 bis 20 Gleichungen mit ebenso
vielen Unbekannten etwa drei Wochen. Die Hilfsmittel der Rechentechnik gestatten
heute die Losung von Systemen mit einigen tausend Gleichungen und entsprechend
vielen Unbeckannten in wenigen Minuten.

Neben den Gleichungssystemen haben auch Systeme von linearen Ungleichungen
groBe praktische Bedeutung. Wir stellen lediglich eine Verbindung zu den Glei-
chungssystemen her und fithren einige Vorbetrachtungen zur Linearen Optlmleru"g
(vgl. Band 14) durch.

3.1. Lineare Gleichungssysteme

Wenn Beziehungen zwischen verschicdenen Matrizen in der Form der Beispiele
von Abschnitt 2.1.1. betrachtet werden (vgl. (2.1) bis (2.5)), so sind bei praktischen
Fragestellungen zundchst nicht alle vorkommenden Matrizen bekannt. Nehmen wir
z. B. die Beziehung (2.3): Die Matrix der Verbrauchsnormen zwischen den Roh-
stoffen R;, i = 1, ...5, und den Endprodukten £, &k = 1, 2, 3, ist

F 8§ 7 107 1780
12 6 4 1480
A= 9 9 14 |; wenndurch b= 2300
5 10 20 2600
27 18 20 | 4520 |
die fiir diesen ProzeB3 zur Verfligung stehenden Mengen der Rohstoffe R;,i = 1, ... 5,
angegeben werden, dann kann man die folgende Aufgabe stellen: Aus der Beziehung
Ax =b
X1
ist der Vektor x = [xz] so zu bestimmen, daBl x,, x,, x3 die Mengen der End-
X3

produkte E;, E,, E; angeben, die auf Grund der Verbrauchsnormen (Matrix A)
und der vorhandenen Rohstoffmengen (Vektor b) erzeugt werden konnen. Wahrend
wir in 2.1.1. nach den Rohstoffmengen gefragt haben, d. h. aus (gegebenem) A
und (gegebenem) x den Vektor b als Produkt von A mit x berechnet haben, lautet
die Fragestellung jetzt: Zu gegebener Matrix A und gegebenem Vektor b ist auf
Grund des Bestehens der Relation

Ax =b
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der Vektor x zu bestimmen. Mit den gegebenen Werten von A und b erhalten wir das
folgende Gleichungssystem:
8x; + 7x, + 10x; = 1780,
12x; + 6x, + 4x; = 1480,
9x; + 9x, + l4x; = 2300,
5x; + 10x, + 20x; = 2600,
27x; + 18x, + 20x; = 4520.

Durch Einsetzen kénnen wir nachpriifen, daf

[ 80
x=1] 20
100
den gestellten Bedingungen geniigt.

Definition 3.1: Ein Gleichungssystem der Form
a1 x; + Ay2X5 + ot agx, = b.l’
a1 X; + az,x, + ... + AypXy = bz, (3.1)

A1 X1 + ApaXy + oo + AupXy = by

heif3t lineares Gleichungssystem, wobei die linken Seiten der einzelnen linearen Glei-
chungen ‘

Z AuXy = bi; Ay b, € R, i= 1, ey m (3.2)
k=1

Linearformen /eiffen. (R ist die Menge der reellen Zahlen, vgl. Abschnitt 4.1.) Eine
dquivalente Darstellung des linearen Gleichungssystems (3.1) liefert die Matrizen-
gleichung

N

Ax = b,
. a dyp ... a R . . X,
wobei A = | 21 %2 " | die Koeffizientenmatrix,x = | "% | der Vektor der

Am1  Am2 Amn x. n b 1
gesuchten Unbekannten bzw. der Losungsvektor des Gleichungssystems und b =|

bn
der Spaltenvektor der auf der rechten Seite von (3.1) stehenden Elemente b, € R,
i=1,...,m,sind.

3.2. Der Gaullsche Algorithmus

Betrachten wir zunéchst folgendes einfache Beispiel:
2x 1 + Xy = 4,
3x1 + X, = 5.
8* ’

D.3.1



84 3. Lineare Gleichungs- und Ungleichungssysteme

NPT s . . 3 a . . .
Multiplizieren wir die erste Gleichung mit — 5= —2L und addieren sie zur zweiten,
dann entsteht eine neue zweite Gleichung. 411

2x 1 + xz = 4,
- E‘x 2= - l .

Jetzt kann aus der zweiten Gleichung x, und damit aus der ersten x, leicht bestimmt
werden:

X2 =29
2x, + 2 =4,
xl = l.

Wir wollen noch das folgende Gleichungssystem 1dsen:
3%, + xp +2x3=1,
X1+ 2x; + 4x3 =2,
2xy + x5 + 3x3 =0.

Dieses Gleichungssystem stellen wir zweckmaBigerweise um und setzen die zweite
Gleichung an die erste Stelle; dann gehen wir entsprechend wie vorhin vor: Wir

g . . . a . . .
multiplizieren die erste Gleichung mit —3 = — —2% und addieren sie zur zweiten

11
Gleichung; dann multiplizieren wir die erste Gleichung mit —2 = — 251 und

addieren sie zur dritten Gleichung: 411
Xy + 2x, + 4x3 =2,
— 5x, — 10x3 = =5,
— 3x;, — S5x3 = —4.
Wir lassen nun die erste Gleichung unverindert, multiplizieren die nunmehrige
zweite Gleichung mit — %, addieren sie zur dritten Glciéﬁung und erhalten das
gestaffelte Gleichungssystem
X, + 2x, + 4x3 = 2,

- SX2 - IOX3 = —5,
X3 = = 1.
Daraus ergibt sich sofort die Losung x3 = —1, x; = 3, x; = 0.

Diese Vorgehensweise heit GauBscher Algorithmus, der folgendermaBen be-
schrieben werden kann: Liegt das Gleichungssystem

Ay Xy + 12X + .o F QX = a4y,
r1Xy + Q22X + ...+ GrpXy = a3, (3.3)

...............................
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vor, dann soll durch geeignete MaBnahmen das folgende gestaffelte System gewonnen
werden:

buxl + b12x2 + b13x3 + ... + bl,.x,, = bla
bszz + b23x3 + ...+ bz,,x,, = bz,
bizxs + ... + banxy = by, (34

Die n Gleichungen von (3.4) sind voneinander linear unabhingig. Die Anzahl der
linear unabhangigen Gleichungen eines solchen Gleichungssystems wird als Rang r
bezeichnet. Aus dem System (3.4) konnen die Unbekannten schrittweise — angefangen
mit x, aus der letzten Gleichung bis x, aus der ersten Gleichung - bestimmt werden.
Das System (3.4) erhilt man auf die folgende Art:
Wir wihlen in (3.3) eine Gleichung, die sogenannte Eliminationsgleichung aus. Diese
wird nacheinander mit Faktoren ¢,, €31, ..., ¢,y multipliziert und zur 2., 3., ..., n-ten
Gleichung addiert.

. - a;, . . . ;

Wahlt man die Faktoren so, daB ¢;; = — —(—111- ist, wenn die erste Gleichung die
11

Eliminationsgleichung und a,; # 0 ist, dann erhilt man ein neues Gleichungs-

system, in dem — auBer in der ersten Gleichung — x; nicht mehr enthalten ist:
auxl + alzxz + 013X3 + “es + al,,x,, = al,
pX; + X3 + ... + ayx, = a,
UpaXy + isxs + ... + apX, = a.

Die Koeffizienten ergeben sich nach den Formeln:

' a2 R a3
Q= Q21 — A1y =0; 31 = A31 — Q1 =0 usw.
11 11
;v azy | , aszy
G = G2 — Q12 ;5 Gy = Q32 = Gy2,— USW.
11 11

Jetzt wird die erste Gleichung weggelassen, und die restlichen n — 1 Gleichungen
werden auf dieselbe Art behandelt. Ist dieser Schritt (n — 1)mal durchgefiihrt worden,
dann erhidlt man das Gleichungssystem (3.4)," wenn man. die vor jedem neuen
Schritt weggelassenen Gleichungen untereinander schreibt.

by, =ay,, =12 ..,n;

0
I
>

’ s .
= ay, i=2,..,hn;

~
4
I»

ay, i=3,..,n; usw.
by =ay; by, =a, usw.

Es ist zweckmaBig, daf die Faktoren c;; nicht zu groB sind, damit keine zu hohen
Rundungsfehler auftreten. Die ¢;; sollen moglichst kleiner als 1 sein. Das 1aBt sich
dadurch erreichen, daBl man als Eliminationsgleichung diejenige auswihlt, die dem
Betrage nach den groBten ersten Koeffizienten hat. Um dies zu erreichen, miissen
evtl. Zeilenvertauschungen vorgenommen werden, was fiir die weitere Rechnung
ohne EinfluB ist. Bei evtl. erforderlichen Spaltenvertauschungen beachte man die
damit verbundene Anderung der Reihenfolge der Unbekannten. (Man vergleiche
hierzu [9] und [23] sowie Bd. 18 dieser Reihe, Kap. 2.)
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Fiir die Zahlenrechnung benutzt man das folgende Schema, in das nur die Koef-
fizienten eingetragen werden. Es wird fiir die ersten beiden Eliminationsschritte an-
gegeben. (Fiir Handrechnung ist es ggf. zweckmaBig, die Eliminationsgleichung so
zu wihlen, daB deren erster Koeffizient dem Betrage nach gleich eins ist, um am
Anfang Briiche bei der Elimination zu vermeiden.)

Die Eliminationsgleichungen werden im Rechenschema mit * bezeichnet. Anstelle
‘der Striche unter den Koeffizienten schreibt man Produkte aus den ¢;; und den a;
der Eliminationsgleichung.

Wichtig fiir jede Rechnung sind Kontrollen. Eine abgekiirzte SchluBkontrolle
erhilt man dadurch, daB man die erhaltenen x-Werte in die Spaltensummen des
Ausgangssystems einsetzt:

O'lxl + szz + ...+ O',,x,, =0,

wobei
O'k=alk+ ar, + ...+ Auk s k = 1,2, T (N
oc=ay+ a; + ... + a,,
ist.
k=1]|2 3 n a; S Probe
oy 0, 03 Oy o 3 ?
* a1 a;» a3 Qyn a S 0
C2y azy azs a3 Qop a 52 0
IR DR G D =
ol
C31 asz; ass ass QA3p as S3 0 5
—_— —— — —_—— R —_— [77)
C,, 1 an 1 an 2 3 arm a S, n 0
’ ’ ! ’ ’
ST - B ol - b T E S P
C32 0 as; as; a3 as s ? =
—_— - | == —_ - — <
o
...................................................... 3
cn.’. 0 aén ar’u3 al'm al’l st’l ? (‘i
et
=
=
r r 'y 1
* 0 a33 aSn an S! ? UOJ
o

Laufende Kontrollen wahrend des Rechenganges erh6hen die Rechensicherheit
und vermeiden unnétige Mehrarbeit. Diese Kontrollen werden in Form sogenannter
Summenproben durchgefiihrt. In der (n + 3)-ten Spalte werden die Zeilensummen
des Ausgangssystems eingetragen:

\

S;=ay +ap + ...+ a, t+ a;.
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Auf diese Werte wird dann die Eliminationsrechnung ebenfalls angewendet, und es
ergeben sich neue Werte s;. Diese Werte miissen aber gleich der Zeilensumme des
neuen Systems sein: .

si =ap+ a5+ ... +a,+a.

In der letzten Probenspalte wird die Differenz der beiden Werte — durch ? ange-
deutet — eingetragen, die bis auf die letzten Stellen gleich null sein miissen; denn
die ay, ergeben sich nach der Formel

’
Ay = Ay + €110k

Durch Summation tber k erhilt man sofort

s, = 5; + ¢;15;.
Algorithmische Beschreibung des Gaufischen Algorithmus fiir m =n =r:
1. Schritt: ,
Das gegebene System wird als,,neues‘‘ Gleichungssystem betrachtet; der Index i hat
den Wert i = 1. '
Im neuen Gleichungssystem kommen die Unbekannten x; bis x, vor.
2. Schritt:
In mindestens einer der Gleichungen des neuen Gleichungssystems ist der Koeffi-
zient von x; ungleich 0. Von diesen Gleichungen wird die mit dem betragsmiBig
groBten Koeffizienten als Eliminationsgleichung gewdhlt.
Ggf. sind auch Spaltenyertauschungen erforderlich, die mit Anderungen der Reihen-
folge der Unbekannten verbunden sind (vgl. auch 5.3.).

3. Schritt:
Isti = n?
Wenn ja, dann liegt das gestaffelte System vor, das Verfahren bricht ab.
Wenn nein, dann folgt der
4. Schritt:
Jede der (n — i) iibrigen Gleichungen wird dem beschriebenen Eliminationsproze3
unterworfen, ebenso die Spalte der Zeilensummen (zu Kontrollzwecken). In den
(n — i) Gleichungen kommt x; nicht mehr vor.
5. Schritt:
Der Index wird von 7 auf i + 1 erhoht; das Verfahren wird mit dem 2. Schritt fort-
gesetzt.

Wir sind beim Gleichungssystem (3.4) von n Gleichungen mit n Unbekannten
ausgegangen und haben auBerdem vorausgesetzt, dal der Rang des Gleichungs-
sytems r = n ist, also n linear unabhanglge Gleichungen Vorliegen. Man vergleiche
dazu das ausfiihrliche Beispiel 3.5 in Abschnitt 3.5.

Da der Gaufsche Algorithmus ein Verfahren ist, das bei Anwendung auf ein System
aus endlich vielen linearen Gleichungen nach endlich vielen Schritten abbricht, wollen
wir iiberlegen, welche Maglichkeiten beim Abbruch des Verfahrens auftreten konnen,
wenn wir von m linearen Gleichungen mit n Unbekannten ausgehen.

Wir haben das Ausgangssystem

A1X; + agox; + .o+ apx, = ay,
21Xy + A22X3 + .o+ pXy = a3, 3.5)

am;xl + AmaX2 + .ot QAunXn ‘._‘ Qs
dann sind beim Abbrechen des Verfahrens folgende Fille moglich:
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(1) Es seim = n, und das Verfahren bricht nach (r — 1) Schritten ab, dann miissen
wit (wegen r < min (m, n), d. h., wegen m = n muB r < n gelten) die beiden Fille
r = nund r < n unterscheiden.

(a) Zunichst sei r = n; dann erhalten wir nach (n — 1) Schﬁtten das gestaffelte
Gleichungssystem
buxl + b12x2 + ... + bl,,x,, = bl, -
b22x2 + ... + bznx,, = bz, (3.63)

bunXs = by;

die restlichen (m — n) Gleichungen enthalten als Koeffizienten der linken Seite und
auf der rechten Seite nur Nullen, diirfen also weggelassen werden. Die n Gleichungen
von (3.6a) sind voneinander linear unabhiangig, d. h., die Matrix A von (3.5) hat
den Rang r = n; daher heiBen diese n Gleichungen die Ranggleichungen. Das Glei-
chungssystem hat eine eindeutig bestimmte Losung (vgl. Satz 3.1 und Beweis zu
Satz 3.1, Teil a)). (Fir m = n erhalten wir den Fall r = m = n, von dem wir zu-
nachst ausgegangen waren.)

(b) Wenn r < n ist, dann erhalten wir nach (r — 1) Schritten das folgende ge-
staffelte Gleichungssystem:

bux1 + blzxZ + ... + bl,x, + bl"+1x,+1 + ... + bl,,x,, = bl’
byaxs + coo + bayXe + by i1 Xepr + oo+ bopX, = b,, (3.6b)

brrxr + br.r+1xr+1 + ... + b,,.x,, =. b,.

Weitere Gleichungen sind aus denselben Griinden wie unter (a) nicht vorhanden.
Fiir den Rang gilt » < n, das System ist unterbestimmt. Wir schreiben es in der
Form '

biixy + bioxy + oo+ byeXy = by — by i1 Xess — oo = bigXa,
bypxs + oo 4 bopXy = by — by pi1Xeyy — oo = b2pXy,
brrxr = br - br.r+1xr+1 T e brnxm

Xy, ..., X; sind eindeutig bestimmbar, x,,,, ..., X, konnen beliebig gewihlt werden.
‘In diesem Falle gibt es also r Ranggleichungen. Das Gleichungssystem (3.5) hat (vgl.
Satz 3.1 und Teile ¢ und d des zugehorigen Beweises) in diesem Falle (n — r)-fach
unendlich viele Lésungen (die Gesamtheit der Losungen bildet einen (n — r)-dimen-
sionalen Nebenraum).

(2) Das Verfahren bricht nach (r — 1) Schritten (r < n) ab, weil alle Koeffizienten
der linken Seite den Wert Null haben, auf der rechten Seite sind nicht alle b, 4, ..., b,
zugleich null. Dann erhalten wir das folgende gestaffelte Gleichungssystem:

b“x, + blzxZ + ...+ b,,x, + bl,,“x,“ + ...+ bl,,x,, = bl’
b22x2 + ... + bzrx, + b2.'+1x,+1 + ... + bz,.x,, = bz,

+ byX, + brpysXepr + oo + byx, = by, (3.6¢)
0= br+1’

0=b,.
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Das Gleichungssystem (3.5) ist unlgsbar.

Beispiel 3.1: Ein unlosbares Gleichungssystem ist
le + 3x2 = l,
2x; + 3x, = =2,

Beide Gleichungen kdnnen niemals zugleich erfiillt sein.

3) Wenn m < n ist, dann sind (n — m) der Unbekannten beliebig wihlbar, falls
r=mist. Istr <m,dannsind(n —m) + (m —r) = (n —-r) der Unbekannten be-
liebig wahlbar.

Daraus ergibt sich, daB der GauBsche Algorithmus keine besonderen Fallunter-
scheidungen (m < n, m = 'n, m > n) erfordert. (Man vgl. hierzu Beispiel 3.3.)

Der GauBsche Algorithmus bricht in jedem Falle nach (r — 1) Schritten ab; aus
dem entstehenden gestaffelten Gleichungssystem (3.6a) bzw. (3.6b) lassen sich nicht
nur die Losungen bestimmen, sondern auch der Rang der Matrix A von (3.5), und
es lassen sich die Ranggleichungen ablesen, wihrend im Falle des gestaffelten Glei-
chungssystems (3.6¢) ein Widerspruch und damit die Unl6sbarkeit des Gleichungs-
systems (3.5) erkennbar ist.

Beispiel 3.2 (m < n):
—5x; + 6x5 + 3x; —9xg = 1,
- x1+4x2+ X3+7X4= "'1,

3xy — 5x3 — 2x3 4+ x4 = - 0.
Rechenschema :

k=1 2 3 4 a; Sy

-3 5 2 -1 0 3

* -5 6 3 -9 1 -4
-0,2 -1 4 1 7 -1 ’ 10
1 -1,2 -0,6 1,8 -0,2 0,8

0,6 3 -5 -2 1 0 -3
-3 3,6 1,8 —5,4 0,6 - 24
* 0 2,8 0,4 8,8 -1,2 10,8
0,5 0 —1,4 -0,2' —4,4 0,6 - 54
1,4 0,2 4,4 -0,6 5,4

0 0 0 0 0 0

Das entstehende gestaffelte Gleichungssystem lautet:
—5x1 + 6x; -+ 3JC3 - 9x4 = 1,
2,8x, + 0,4x; + 8,8x, = —1,2;
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es enthdlt zwei linear unabhingige Gleichungen und hat also den Rang r = 2. Das
Gleichungssystem ist unterbestimmt, zwei Unbekannte sind beliebig wihlbar; es
gibt 2fach unendlich viele Losungen. x, und x, seien die frei wihlbaren Unbekannten.
Dann erhalten wir

—le + 3x3 = 1 - 6x2 + 9X4,
x3 = =3 —Tx, — 22x,,
Xy = —2 — 3x, — 15x,.

3.3. Losbarkeit linearer Gleichungssysteme

Wir wollen nunmehr den Begriff des Ranges definieren und Aussagen tber die
Losbarkeit von linearen Gleichungssystemen und iiber die Anzahl von Ldsungen
formulieren.

Definition 3.2: Die maximale Anzahl r der linear unabhdngigen Zeilenvektoren
Ay = a4y (@1, Qs oo i), © = 1, ..., m, heifit der Rang der Koeffizientenmatrix dieses
Gleichungssystems: R(A) = r (vgl. Satz 1.7 und anschlieBende Bemerkungen).

Bei elementaren Umformungen, sog. Aquivalenztransformationen, wie sie beim
GauBschen Algorithmus angewendet werden, bleibt der Rang erhalten (Invarianz
gegeniiber elementaren Umformungen). Betrachten wir eine Matrix A vom Rang r,
dann sind r + 1 Zeilenvektoren voneinander linear abhéngig, d. h., die Gleichung

)u.la(l) + )nza(z) + ... + l,.a(,) + ;b,+la(,-+1) = 0

muf} Losungen haben, in denen nicht alle 4;, i = 1,2, ..., r + 1 zugleich null sind.

Eine Vertauschung der Zeilenvektoren a ;, hat keinen EinfluB auf die Losung
und Ldsbarkeit.

Multipliziert man einen Zeilenvektor mit dem Zahlenfaktor 4, so bleibt der Rang
ebenfalls ungedndert. Auch die Addition des Vielfachen eines Zeilenvektors zu einem
anderen Zeilenvektor hat keine Rangidnderung zur Folge.

Mit Hilfe dieser elementaren Umformungen 1a8t sich die Matrix A in eine Dreiecks-
matrix transformieren (vgl. Abschnitt 2.3.), wobei ihr Rang R(A) ungeidndert bleibt.
Sie erhilt schlieBlich die Form

by, bis . by byer o by
» Zeilend | @ B2z v bar bariy o ban
O 0 : b'r br,r+1 “ee bﬂl s b“ 4: 0, i= 1,2;”" .
0 0 ...0 0 .0
m—r . . : : :
Zeil S s :
eilen 0 0 .0 0 0

o Yy

in der die Zeilen 1 bis r die linear unabhingigen Zeilenvektoren enthalten; wegen der
linearen Abhingigkeit der restlichen m — r Zeilenvektoren kann durch Vertauschen
von Zeilen- oder Spaltenvektoren kein von null verschiedenes Diagonalelement ge-
funden werden; daraus folgt, daB alle Elemente dieser m — r Zeilen gleich null sein
miissen.
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Diese Matrix besitzt mindestens eine nicht verschwindende Unterdeterminante
r-ter Ordnung, z. B.

bll cee bl,-
0 ..b,

wihrend alle Unterdeterminanten (r + 1)-ter und hoherer Ordnung verschwinden.
Deshalb kann man den Rang von A auch mit Hilfe ihrer Unterdeterminanten be-
stimmen: Enthdlt die Matrix A vom Format (m, n) wenigstens eine nicht verschwin-
dende Unterdeterminante der Ordnung r, wdhrend alle Unterdeterminanten hoherer
Ordnung verschwinden, dann hat A den Rang r; auflerdem erkennt man, daf} stets
r < min (m, n) sein muf.

Da die entsprechenden Betrachtungen fiir die transponierte Matrix AT durchgefuhrt
werden kdnnen, ergibt sich ebenfalls das Vorhandensein von mindestens einer nicht
verschwindenden Unterdeterminante r-ter Ordnung und von r linear unabhéngigen
Zeilenvektoren; die Zeilenvektoren der transponierten Matrix AT sind aber die Spal-
tenvektoren der Matrix A, d. h., die maximale Anzahl r der linear unabhdngigen
Zeilenvektoren ist gleich der maximalen Anzahl der linear unabhdngigen Spalten-
vektoren, und diese Anzahl r ist der Rang der Matrix A.

Wir wollen in unseren Uberlegungen beziiglich der Losbarkeit zuerst von dem
folgenden Gleichungssystem mit #n Gleichungen und n Unbekannten ausgehen:

Ay Xy + agxs + .+ agx, = by,
Ay1Xy + @y5X; + ..o+ @ppXp = by, 3.7

Als notwendige und hinreichende Bedingung fiir die Losbarkeit des Gleichungs-
systems (3.7) gilt der folgende

Satz 3.1: Das Gleichungssystem (3.7) hat dann und nur dann eine Losung, wenn der S.3.1
Rang der beiden Matrizen

ayy dp Ayp ayy dg2 a,, by
a a a a a a,, b
A = 21 22 20 | ynd B = 21 22 2n 02
ay 1 an 2 Qpp ayy [ZP%) Aun bn

gleich ist (A ist die Koeffizientenmatrix, B die erweiterte Koeffizientenmatrix) (vgl.
mit Satz 4.8 und Satz 4.15).

Wenn diese Bedingung erfiillt ist und der Rang der beiden Matrizen r = n ist, dann
besitzt das Gleichungssystem (3.7) genau eine Losung.

Ist r < n, dann besitzt das System (3.7) (n — r)-fach unendlich viele Lésungen. Es
kénnen nimlich (n — r) der Unbekannten beliebig gewdihlt werden, wihrend die rest-
lichen Unbekannten dann eindeutig bestimmt sind.

Beweis: a) Die Richtigkeit dieser Aussagen kann man durch folgende Uber-
legungen einsehen: Da die Matrix B die Matrix A vollstindig enthilt, gilt R(B)
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= R(A). Die Matrix B enthilt genau eine Spalte mehr als die Matrix A, daher kann
R(B) hochstens um 1 gréfer sein als R(A):

R(B) < R(A) + 1.

Wir schreiben das Gleichungssystem (3.7) in der folgenden Form:

a®x, + a%x, + ... + a®x, = b,

Eine Losung dieses Systems ist aber nur dann vorhanden, wenn b linear von den
Vektoren a®, k = 1, 2, ..., n, abhingt; das bedeutet aber

R(A) = R(B).
Ist R(A) = R(B) = n, so gilt
det A += 0,

und das Gleichungssystem
Ax =)

hat eine eindeutige Losung
x = A~'b.

Ist der Rang der beiden Matrizen kleiner als n,
R(A) = RB) =r < n,

dann kann man annehmen, daB die ersten r Gleichungen linear unabhéingig sind und
daB in der linken oberen Ecke von A die Unterdeterminante det A, ,, + O steht,

all alz e alr

‘. azl 022 e az,-
detAg,,, =| 2 l+o0. (3.8)

| ‘_zrl Qrz ooo Qpr

Die r ersten Gleichungen von (3.7) lassen sich in der folgenden Form schreiben:

ayixy + QX2 + oo+ aX, = by — Ay Xepy — o = QpXa,
A%y + GrpX2 + oo+ A2 Xp = by — Qg 01X — o — AopX, (3.9)
Xy + AXy + o+ ApX, = b — A1 Xy — s = QX

Man erkennt, daBB man die (» — r) Unbekannten x,,,, ..., x, beliebig wihlen kann.
Die r Unbekannten x,, x,, ..., X, sind dann eindeutig bestimmt. Zum Beispiel erhilt
man fiir x,,; = X,,, = ... = X, = 0 das Gleichungssystem
auxl + alzxz + aee + dl,x, = bl!
ay1X1 + A32%5 + ... + axx, = b,,
T maene e R (3.10)

a4y Xy + G2x> + ... +ux, = b,
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und als eindeutige Losung dieses Gleichungssystems

Xy by
X 1 | b2
. = A(r.r) .
X, b,

Diese Losung erfiillt die restlichen (n — r) Gleichungen des Systems (3.7), weil
diese von den r ersten Gleichungen von (3.7) linear abhingig sind, also sich durch
diese linear darstellen lassen. .

Fiir jeden anderen Wert der Unbekannten x,,,, X,,,, ..., X, erhdlt man eine andere
eindeutige Lésung von (3.9). Das Gleichungssystem (3.7) hat infolgedessen insgesamt
(n — r)-fach unendlich viele Lésungen.

b) Nun kehren wir zum Gleichungssystem (3.1) mit m Gleichungen und n Unbe-
kannten zurtick. Auch fiir dieses Gleichungssystem gilt der Satz 3.1. Ist m > n, dann
sind m — n Gleichungen tiberfliissig. Da der Rang r der Koeffizientenmatrix A in
diesem Falle nicht groBer als n werden kann, ist es méglich, die iiberflissigen m — n
Gleichungen wegzulassen, ohne daB der Rang r von A verandert wird. Ist aber m < n,
dann kénnen von vornherein n — m Unbekannte willkiirlich gewahlt werden, und
man erhilt mindestens (n — m)-fach unendlich viele Losungen, da der Rang r der
Matrix A hochstens noch den Wert m annehmen kann. m

3.3.1. Allgemeine Losung homogener Gleichungssysteme

Definition 3.3: Gilt im Gleichungssystem (3.1) b; =0, i = 1,...,m, so heifit das
Gleichungssystem homogen.

Nun wenden wir uns einem Beispiel im dreidimensionalen (linearen) Vektorraum

(vgl. auch 4.1.) zu. .
Es seien
a11X1 + ax; + a;3%x3 =0,
ay1X; + dy5X; + a3%3 =0, 3.11)

a31x1 + a32x2 + a33X3 = 0

gegeben.

Die lineare Gleichung a;,x, + a;>Xx, + a;3x3 = b;; a;,, a;», a;3, b; € R, stellt geo-
metrisch eine Ebene dar, wobei x;, x, und x; als Komponenten der Vektoren
xT = (x;, x,, x3) € R® aufzufassen sind, deren Spitzen Punkte der Ebene sind;
die a;, sind die Normalen- oder Stellungsvektoren der Ebenen (vgl. 1.4.6.),
ag, = a;)(ai1, iz, ai3), i = 1, 2, 3. Die Ebene enthélt den Nullpunkt, wenn b; = 0.

Wenn wir die Ebenen (3.11) miteinander zum Schnitt bringen, so bestimmen die
Vektoren x, deren Spitzen allen Ebenen gemeinsam sind, entweder die Punkte einer
Ebene, einer Geraden oder auch nur den Nullpunkt, je nachdem ob die Ebenen iden-
tisch sind, ihr Schnitt eine Gerade bestimmt oder sie nur einen Punkt, namlich den
Nullpunkt gemeinsam haben. (In jedem Falle ergeben sich also wiederum Vektor-
raume.)

Wir wollen diese Verhaltnisse am Beispiel der beiden Ebenen

a;1xy + agax; + ay3x3 =0,
asiXy + Q32X + a33x3 = 0
genauer untersuchen.

D.3.3
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Als Schnittfigur (geometrische Figur, die von den gemeinsamen Vektoren gebildet
wird) erhalten wir entweder eine Gerade, oder, wenn die Ebenen gleich sind, eine
Ebene. Nun untersuchen wir, welche Beziehungen zwischen den Koeffizienten a;,
bestehen miissen, wenn die Ebenen gleich sind (d. h. dieselben Vektoren x ent-
halten).

Da die Stellungsvektoren a.;, und a,, jeweils auf den Ebenen senkrecht stehen,
miissen sie in diesem Falle parallel sein. Es gilt also:

a(” =/‘:a(2), ;-ER

a(y, und a(,, sind voneinander linear abhingig. Sind a(,, und a ,, linear unabhingig
dann sind die Ebenen voneinander verschieden.
Analoges 1Bt sich fiir drei Vektoren

a, = ay(@y1, ¢i2, a13),

Ay = a3)(4y,, 22, U23),

a3y = A3)(@3y, U3z, d33)
aussagen:

a) Sind die drei Vektoren agy,, &), 43, linear unabhingig, dann schneiden sich die
Ebenen so, daB} als gemeinsamer Vektor x der drei Ebenen nur der Nullvektor vor-
handen ist.

-b) Wenn zwei Vektoren linear unabhingig sind und ein Vektor a;, von diesen
beiden Vektoren linear abhingig ist, so liegen die Losungsvektoren x auf einer
Geraden (Schnittfigur) (d. h. der Vektorraum der Losungsvektoren x ist ein ein-
dimensionaler Unterraum, vgl. 4.1.).

c¢) Wenn nicht zwei Vektoren a;, voneinander linear unabhingig sind, so bildet
die Menge der Losungsvektoren eine Ebene (der Vektorraum der Losungsvektoren
ist von der Dimension zwei).

Nach dieser anschaulichen Interpretation wollen wir uns allgemein mit der Losung
des homogenen Gleichungssystems beschéftigen.
Es sei das Gleichungssystem

Ay Xy + AyaXs + oo+ apx, =0,
y1 X + 33X + oo+ Appx, = 0, (3.12)

Api Xy + ApaXs + oo + Appx, = 0

gegeben. Es sind alle b, gleich 0, das Gleichungssystem ist homogen. Fiir dieses
Gleichungssystem gelten die gleichen Uberlegungen wie fiir das Gleichungssystem
3.7).

Das System (3.12) ist immer losbar, da der Rang der Matrizen A und B nicht
verschieden sein kann. Ist der Rang r = n, so hat das System (3.12) — wie in Satz 3.1
gezeigt — nur die sogenannte triviale Losung

Xy =X,=..=Xx,=0, denn x = A"lo =o.

Soll das System (3.12) eine Losung haben, in der nicht alle x; gleich null sind, so muB3
der Rang der Matrix A kleiner als # sein, d. h., die Zeilen- bzw. Spaltenvektoren von A
miissen linear abhingig sein, und es gilt det A = 0.
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Ist x*2 eine Losung von (3.12) dann ist auch 2x* eine Losung; denn wenn
Ax® = o,

dann gilt auch
Alx® = JAx* =0, AeR.

Kennt man zwei Losungen x*’ und x®? des Systems (3.12), dann ist auch A,x®>
+ 2,x%2 eine Losung; denn

AQLX® + 1,x%) = 4, Ax® + 2,Ax* = 0; 1,,1,€R.

Wir hatten oben festgestellt, dal nur dann eine nichttriviale Lésung von (3.12) exi-
stiert, wenn der Rang r der Koeffizientenmatrix kleiner als n ist; es gibt in diesem Falle
(n — r)-fach unendlich viele Losungen.

Das System (3.12) 1aBt sich in der Form

Ay Xy + QuoXy + o+ Xy = Ay 01Xy < e = AppXy,
21X1 + A22X2 + oo Xy = —Appi1Xpy1 — hee = A2pXp, (3.13)
Xy F G Xy T o A Xy = — G i1 Xpp1 T e GppXy

darstellen. Die fehlenden n — r Gleichungen sind von den obigen Gleichungen (3.13)
linear abhéingig, und die Losungen von (3.13) erfiillen ebenfalls diese n — r Glei-
chungen.

Es sei det A,,,, &= 0. Um die Losungen von (3.13) zu bestimmen, kann man x,_,,
..., X, beliebig wahlen. Wahlt man z. B. nacheinander

Xpy1 = 15 Xpp2 = o0 = Xp = Oa
X1 =0, %=L X3 =..=x,=0,
Xpp1 = o0 = Xpog = 0, x, =1,

so erhalt man jedesmal fiir x;, x,, ..., X, eine eindeutige Losung, und insgesamt er-
geben sich n — r linear unabhéngige Losungen. Allgemein gilt

Satz 3.2a: Ein homogenes lineares Gleichungssystem mit n Unbekannten, dessen S.3.2a
Koeffizientenmatrix A den Rang r hat, hat genau (n — r) linear unabhdngige Losungen,
die man als ein Fundamentalsystem bezeichnet.

Jede andere Losung laBt sich -als Linearkombination der linear unabhéingigen
Losungen darstellen, und man erhilt die allgemeine Losung des homogenen Systems
in der Form

i Xy = A XV + 2,xP + L+ 4, ,x"0, (3.14)

Wenn das homogene Gleichungssystem aus m Gleichungen mit n Unbekannten be-
steht und m < n ist, so ist R(A) hochstens gleich m, also.r < n, und das System
besitzt immer nichttriviale Losungen.

3.3.2. Aligemeine Losung inhomogener Gleichungssysteme

Definition 3.4: Ist in (3.1) mindestens eine Konstante b; + 0, i = 1, ..., m, so heifit D.3.4
das Gleichungssystem inhomogen.
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Mit seiner Losung wollen wir uns jetzt befassen. Die Losungsmenge des homo-
genen Gleichungssystems haben wir im vorigen Abschnitt schon untersucht. Zu-
nichst wollen wir voraussetzen, daB das inhomogene Gleichungssystem Losungen
hat, d. h., daB R(A) = R(B) ist.

Wie wir sehen, erfiillt jetzt die sogenannte triviale Lésung (x; = x; = ... = X, = 0)
das Gleichungssystem nicht. Speziell fiir n = 3 heiBt das, die Ebenen, Geraden, die
Punkte, die die Losungsmenge darstellen, enthalten den Nullpunkt nicht; sie sind
aus dem Ursprung des Koordinatensystems verschoben.

In welchem Zusammenhang stehen nun die Lésungsmenge des mhomogenen und
des zugehorigen homogenen Gleichungssystems (das zugehérige homogene System
entsteht, indem wir alle b; + 0 durch 0 ersetzen)?

Satz 3.2b: Alle Losungen des inhomogenen Gleichungssystems ergeben sich, wenn zu
einer speziellen Liosung des inhomogenen Systems alle Lisungen des zugehdrigen
homogenenGleichungssystems addiert werden.

Die Richtigkeit dieser Aussage wollen wir uns folgendermaBen iiberlegen:

Wenn x, eine spezielle Losung des inhomogenen Gleichungssystems ist und
Xp = A4,x® + ... + 4,,x"" die allgemeine Losung des zugehdrigen homogenen
Gleichungssystems, dann gilt fir jeden Wertder 4,,i = 1,...,n —r,

AKX, + %) = Ax, + Ax, =b+o0=b. (3.15)

Fiir r = n gibt es eine eindeutige Losung des inhomogenen Gleichungssystems (in
diesem Falle ist x,, = 0), und fiir r < n gibt es (entsprechend Satz 3.1) (n — r)-fach
unendlich viele Losungen. &

In diesem Zusammenhang sei auf die Beispiele im Abschnitt 3.5. hingewiesen.

3.4. Die Cramersche Regel

Die Cramersche Regel ergibt sich aus der Matrixdarstellung des Gleichungssystems
in recht anschaulicher Weise und wird insbesondere bei theoretischen Erorterungen
verwendet. Allerdings ist sie zur praktischen Losung linearer Gleichungssysteme
weniger geeignet, weil der Rechenaufwand bei mehr als 3 Unbekannten unvertretbar
hoch wird und sie nicht auf jedes beliebige lincare Gleichungssystem anwendbar
ist, wie wir sehen werden.

Es ist ein System von n Gleichungen mit n Unbekannten gegeben:

auxl + 012x2 + .se + al,,x,, = bl’
Ay X1 + 22X + oo + AapXy = by, (3.16)

...............................

Ein Wertsystem X,, X5, ..., X,, das (3.16) identisch erfiillt, nennt man eine Losung
von (3.16). Wir wollen zundchst annehmen, daB die Determinante det A = D,

ay1 Qg2 ... Gy

A,y Qs ... 4y )
D= "1+ 0,

..............
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verschieden von null ist. Multipliziert man in (3.16) jeweils die u-te Zeile mit den
algebraischen Komplementen A4,, der Elemente a,, der o-ten Spalte der Deter-
minante D und addiert die Gleichungen (3.16), so erhilt man die folgende Gleichung:

DX‘, = b.lAlQ + bzAze + oo + bnAng = DO’
denn nach 2.4.3. gilt: '

D firk=ypu,

E: Goiclon = {0 fir A # p.
Man erkennt leicht, daB D, eine Determinante ist, die durch Austausch der p- -ten
Spalte in D mit der rechten Seite von (3.16) entsteht.

Die n-malige Durchfiihrung des Multiplikationsvorganges liefert die Gleichungen

Dx, = Dy,
Dx, = D,, 3.17)
Dx, = D,

Wenn alle b; der rechten Seite von (3.16) null sind — wenn also ein homogenes
Gleichungssystem vorliegt —, dann sind auch alle D; von (3.17) null. Die Gleichungen
(3.17) sind dann nur durch

X1 =Xy =..=%X,=0

erfiillt. Ist mindestens ein b; von null verschieden, das Gleichungssystem demnach

inhomogen, dann lautet die Losung von (3.16):

Dy D D,
D ’ 2 = D 5 eccy

(3.18)

X =

Das ist die Cramersche Regel; ihre Anwendung setzt voraus, daBr = n,d. h.detA + 0
ist.
Das System (3.16) hat in Matrixdarstellung die folgende Form:

Ax = b. (3.19)
Dabei bedeuten
ayy Qyy ... Qqp Xy b,
A= |t @2 8m | xo | %2 p= b.z
Gny  Qny e. Gyy ).C,. I;n

Da nach Voraussetzung det A = D = 0 ist, existiert die inverse (reiiproke) Matrix
A-!, und man erhilt durch linksseitige Multiplikation der Gleichung (3.19) mit dieser
die Losung mit der einspaltigen Matrix x als Losungsvektor:

A~'Ax = A-'b; x = A~'b.

Wenn D = 0, d. h. r < nist und demzufolge lineare Abhdngigkeiten zwischen den
Zeilenvektoren der Matrix bestehen, kommt man mit der Cramerschen Regel nicht
zum Ziel.

7 Manteuffel, Lineare
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3.5. Beispiele

Beispiel 3.3: Jetzt wollen wir unsere allgemeinen Betrachtungen auf den Fall » = 3 anwenden und

behandeln das inhomogene Gleichungssystem mit drei Gleichungen und drei Unbekannten. Es liege
das folgende Gleichungssystem vor:

ay1%; + a12%; + ay3x3 = by,
az1xy + @z2%3 + Az3x3 = by, (3.20)
Qa3iX; + Qa3a2Xy + A33X3 = b3.

Mindestens ein b; soll ungleich null sein.

a) Die beiden Matrizen

Qi1 412 433 ay, a;; ay;z by
A=|ax G ax3a|, B=| a6y 82 a3 b
a3y 43z Qass as; as; assz by

haben den Rang r = 3. Dann existiert eine eindeutige Losung, die mit Hilfe der Cramerschen Rege!
(vgl. 3.4.) bestimmt wird:

D =detA+ 0,
by ay; ay; ayy by ags ayy 4z bxl
D, =|b; Aazz azs|; D, =|@x by ax3|; Dy={a ax; by|;
by a3z ai; asy by as; asy as; bs
D, D, D
x1=_'D"; x2=_D‘§ X3 =5

Die Richtigkeit der Losung kann man nachweisen, indem man dic Lésung in die erste der Glei-
chungen (3.20) einsetzt:

’

D
1 2 3
Q11— + Q19— + Qg3 —

1

(ag1byAyy + ay1brA4zy + ay1b3A4sy)

+ 3(“121714412 + axzbzAzg + a12b34332)
1
+ B(axsbexs + ay3byAy3 + a13b3433)

1
=Bb1D=bl. ’

Addiert man namlich die untereinanderstehenden Glieder, so ergibt die erste Spalte b, D, und die
beiden anderen Spalten ergeben null.

Fiir die beiden anderen Gleichungen von (3.20) 1aBt sich das Entsprechende zeigen.
b) Der Rang der beiden Matrizen sei verschieden.

R(A) =2,

R(B) = 3.
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Das bedeutet, daB3 die Losung des Systems (3.20) in der Form

Dx, = Dy,
D.Xz = Dz,
DX3 = D3

cinen Widerspruch besitzt, denn die Voraussetzung besagt, dal D gleich null ist, aber nicht alle
Determinanten D, , D,, D, gleich null sind. Fiir diesen Fall hat das System (3.20) also keine Losung.
Auch fur die Fille

R(A)=1, R(B)=2,
sowie
R(A) =0, R(B)=1

cnthilt das Gleichungssystem (3.20) einen Widerspruch, und es existiert keine Losung.

¢) Der Rang der beiden Matrizen ist gleich, aber kleiner als 3.
(o) R(A) = R(B) = 2.
Das bedeutet, daB3
D=D‘=D2=D3=0

ist. Aber mindestens eine Unterdeterminante zweiter Ordnung muB ungleich null sein. Nehmen wir
an, A;3 + 0. Man kann die beiden ersten Gleichungen von (3.20) in folgender Weise schreiben:

a1 Xy + aypx; = by — agaxs,
ayyxy + azax; = by — az3xi;

x3 ist also beliebig wihlbar, wihrend x; und x, dann eindeutig bestimmt sind.
Das Gleichungssystem (3.20) hat einfach unendlich viele Losungen. Die dritte Gleichung von (3.20)

ist von selbst erfiillt.
Multipliziert man die Gleichungen (3.20) mit 4,3, 4,3 und 433 und addiert sie, dann erhilt man
die folgenden vier Gleichungen als Summen der vier Spalten:

byAys + byAzs + b3As; =D3 =0,
aygAys + az14z3 + a3y dsz =0,
ay2Ay3 + az2433 + a32A433 =0,
~ay3A;s + az3Azz + azzAs; =D =0.
Wir dividieren durch 433, das nach Voraussetzung ungleich null ist, und erhalten:

Ass Azs

- by ——+ b, = —b,,
a A3 a Azs a
11— 21—, = —4asz,
Ass Aas
" A3 “ Azs a
12— 22— = —ds2,
Ass Ass
Aia Az
+ A3 —— = —Aa3z3.

a3 —
A3 Ass
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Die dritte Gleichung von (3.20) ist von der ersten und zweiten Gleichung linear abhingig. Sie ergibt
23

. . . A . S | .
sich, wenn die erste mit — —A—li und die zweite mit — y multipliziert und danach addiert werden
33

33
(gemiB Satz 3.1 und Beweis).
(#) R(A) = R(B) = 1.
Das bedeutet, daB3 keine von null verschiedene Unterdeterminante zweiter Ordnung existiert. Es muB

aber mindestens ein Element der Matrix A ungleich null sein. Nehmen wir an, a;; % 0. Dann kann
die erste Gleichung von (3.20) wie folgt geschrieben werden:

a31%1 = by — ay2x; — aysx;.
Die Unbekannten x, und x3 kann man willkiirlich wihlen, und x; ist dann eindeutig bestimmt. Das
System (3.20) hat (n — r)-fach, also zweifach unendlich viele Lésungen. Die zweite und dritte Glei-

a
chung sind von der ersten linear abhingig. Multipliziert man die erste Gleichung mit i, dann
erhilt man: a1

azy + azi n azi b azy
Qi1 X1 T 4y X2+ 413 X3 =03 .
asa aa azy ag

Das ist aber die zweite Gleichung

az1X; + Q22X + Az3X3 = bz.

Denn nach Voraussetzung sind alle Unterdeterminanten zweiter Ordnung gleich null. Aus

a;y 4z —
= A33 =0
Qz1 4az2
ergibt sich
azi
Q2 = Q127 -
a

Fiir die restlichen Faktoren ergeben sich dhnliche Determinanten. Die dritte Gleichung erhélt man
a
=L multipliziert wird.

auf entsprechende Weise, wenn die erste mit dem Faktor 2
11

&) R(A) = R(B) = 0.

Es sind alle Elemente ay; gleich null, und auch alle b; sind gleich null. x;, x, und x; sind beliebig
wihlbar, das Gleichungssystem (3.20) hat dreifach unendlich viele Losungen.

Beispiel 3.4: Darstellung der allgemeinen Losung eines inhomogenen Gleichungssystems als Summe
der allgemeinen Losung des zugehorigen homogenen Systems und einer speziellen Losung des in-
homogenen Systems:

X1+ 2x; — X3 — X4= -3, P
3x; + x3 +2x3 4+ x4 =4,
2X; — X3+ X3 — Xxg4=1,
—2xy — 4x, + 2x3 + 2x4 = 6.
Wir erhalten nach Umformung das fofgende gestaffelte System
Xy + 2x; — X3 — X4= -3,
— 5x3 + Sx3 + 4x4 = 13,

— 2x3 — 3x4 = —6.



3.5. Beispiele 101

Das zugehdrige homogene System lautet
Xy +2x; — X3— Xx4=0,
—5x3 + 5x3+4x4 =0,

—2X3—3X4=0

3

9
und hat die allg. Losung x; = Wc" 2= =gl X3= =50, Xa=0 oder

Xp =0y

b —

.

Zur Bestimmung der speziellen Losung des inhomogenen Systems setzen wir x, = 0 und erhalten

4 2
X =g, 2=, x3 = 3;
— 4
s
Z
Xo = 5 |.
3
— 0._.

Damit ergibt sich als Losung x des obigen Systems

— 97 ™ 4
10 5
7 2
X=X, + Xo = ¢y 10 |+ 5
’ 3
2
11 L 0]

Beispiel 3.5:
0,783x; + 2,525x, — 1,253x5 + 2,000x, = 1,361,
5,777x; — 1,300x, + 2,710x3 — 3,987x4 = 8,477,
2,655x; + 1,875x, + X3 + x4 = 8,988,
Xy — x5 + 0,731x5 — x4 = 1,111.

Die zweite Gleichung wird als erste Eliminationsgleichung benutzt.
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Rechenschema:
k=1 2 3 4 a; S Probe
10,215 2,100 3,188 | —1,987 19,937 33,453 | 0,006
. 5,777 —1,300 2,710 | —3,987 8,477 11,6771 0
-0,1355 0,783 2,525 —1,253 2,000 1,361 5416 | 0 _g
-0,783 0,176 | —0,367 0,540 —1,149| -—1,582 ]
—0,4596 2,655 1,875 1,000 1,000 8,988 15,518 | 0 -
—2,655 0,597 | —1,246 1,832 —3,896| -—5,367
-0,1733 1,000 | —1,000 0,731 | —1,000 1,111 0,842 | 0
—1,000 0,225 | —0,470 0,691 —1,469 | -2,024
* 0 2,701 —1,620 2,540 0,212 3,834 | 0,001
-0,9152 0 2,472 | -—0,246 2,832 5,092 10,151 | 0,001 5
—2,472 1,483 | -—2,325§ —0,194| -3,509 A
0,2869 0 -0,775 0,261 -0,309§ -0,358| —1,182 0,001 «
0,775 | —0,465 0,729 0,061 1,100
* 0 1,237 0,507 4,898 6,642 | 0,000 =
; E
=
0,1649 0 —0,204 0,420§ —0,297| —0,082| 0,001 A
0,204 0,084 0,308 1,095 | 0,002 -
* 0 0,504 0,511 1,013 | 0,002

Die Gleichungen, die mit * versehen sind, ergeben das System (3.4):
5,777x; — 1,300x, + 2,710x;3 — 3,987x, = 8,477,
2,701x, — 1,620x5 + 2,540x, = 0,212,
1,237x3 + 0,507x4 = 4,898,
0,504x, = 0,511.

Jetzt kann schrittweise die Losung bestimmt werden:

x4 = 1,013,

x3 = 3,544,

x; = 1,251,

x; = 0,785. .

Setzt man die erhaltenen x-Werte in die Summenprobe ein, dann erhilt man eine Differenz von
0,006. Durch das Mitfiithren von mehr Stellen 148t sich die Genauigkeit steigern.
‘ ;

Beispiel 3.6:
3x =6;
A =1[3], B=][3;6];
R(A)=RB)=n=1;
D=3; D, =6;
x = Y = Y =2,

Das System hat eine eindeutige Losung.
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Beispiel 3.7:
3x =0;

R(A) = RB) =n=1.

Es existiert nur die triviale Losung x = 0.

Beispiel 3.8:
.
0x = 0;

RA)=RB)=n—1=0.

103

Das System besitzt einfach unendlich viele Losungen, es ist fiir jedes x erfiillt.

Beispiel 3.9:
Ox = 3;
R(A) + R(B);

R(A)=0; RB)=1.

Das System enthilt einen Widerspruch; es ist nicht Iosbar.

Beispiel 3.10:
L3xy —4x, + x;3
II. x3 + x; — 5x3
II. 6x; + 2x, + 4x3

3 —4 1
A=1|1 1 -5
| 6 2 4
3 —4 1
B=1|1 1 -5
| 6 2 4
3 -4 1
D=]1 1 -5
6 2 4
3 9 1
D,=|1-10 -5
6 12 4
D
m=p ol
Probe: 3 +4+ 2= 9,

1-1-10= -10,
6—-2+ 8= 12,

~

=9,
= -10,
=12;
, RA)=r=3;
9
~10 |, R@) = RA) = 3;
12
9 -4
= 174; Dy=|-10 1
12 2
3 —4
= —174; Dy =|1 1
6 2
D
X2=—32-=—1;

1
=5|=174;
4
9
= 348;
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Beispiel 3.11:
I. x3 —=3x;+2x;= 3,
II. —9x; + 6x; — 3x3 = 12,
I, 5x; — 8x; + 5x3 = 2..

R(A) = R(B) = 2;

D=0,
A13 = 42,
A
D, =0, 2= -2,
A33
A23 = '-79
D, =0,
A 1
Ay = =213 2 =2
A33 3
D3 =0.

1 .
Das heiBit: Gleichung I mit 2 und Gleichung II mit — T multipliziert und dann beide addiert, ergibt
Gleichung III.

x1—3x2= 3—2.X'3;
-—9x1 + 6x2 =12 + 3X3;

D* = -21;

* = 3o _3‘=18—12x3+36+9x3=54-—3x3;
12 + 3x; 6

Dy = b =12 4 3x3 + 27 — 18x3 = 39 — 15x3;
-9 12 4 3x; '
D 18 1

=pe =TT b
D} 13 5

x2='D—.=—7+7x3

18 13
Yp= -, X2 = - ’
18 39 21
777755
162 78 84
777 =12
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Beispiel 3.12:

X1 — 5X2 + X3 =0, 1 -5 1
x; + x2-—2x3=0, D=|1 1 =2 = 0;
Xy — Xz — X3=0; 1 -1 -1

RA) =n—-1 =2;

=5 1
Ay = =9 =x;;
31 1 -2 1
1 1 Diese Berechnung der Losung ist nur im
Asp = — =3 =x,; Falle homogener Gleichungssysteme mog-
1 =2 lich, deren Rang r = n — 1 ist.
1 -5
A 1=6=x3.
33 1 1 3
Probe: 9-5-3+6=0;

94+3-2-6=0;
9-3-6 =0.
Berechnung fiir zwei Unbekannte bei beliebiger Wahl von x;:
x3 = 1 gewdhlt;
Xy — 5x; = —1,
Xy + X3 = 2.

L6sung nach Cramer:

1 =5 3
D* = =6, Probe:— —-5-— +1 =0,
11 2 >
-1 =5 3 31
* —_ — o 2
=l , 4= n=m TrT o
1 -1 1 3 -
x __ — — P — —
DE=ly =% =5 S

Man erkennt, daB3 die beiden Losungsvektoren sich nur durch einen konstanten Faktor ¢ unter-
scheiden:

Xp = Xy, fUr ¢ =6;
2
=6 1
2
1
Durch willkiirliche Wahl von ¢ lassen sich unendlich viele Losungen finden.



106 3. Lineare Gleichungs- und Ungleichungssysteme

3.6. Systeme von linearen Ungleichungen und Alternativsiitze

Nachdem wir uns bisher mit linearen Gleichungssystemen beschaftigt haben,
wollen wir uns nun Systemen von linearen Ungleichungen zuwenden.
Betrachten wir wiederum die Beziehung (2.3); wenn durch den Vektor

1780
1480
b= 2300
2600
4520

Hochstmengen der zur Verfiigung stehenden Rohstoffe R;, i = 1,2, ..., 5, angegeben
werden und durch den Vektor

X1
X = xZ
X3

die zu bestimmenden Mengen der Produkte E,, E,, E£;, dann stellt die Bezichung
Ax < b

ein System von linearen Ungleichungen dar, wenn wiederum

— —

8 7 10

12 6 4

A=| 9 9 14
5 10 20

| 27 18 20

die Matrix der Verbrauchsnormen zwischen den Rohstoffen R;,i = 1, ..., 5, und den
Endprodukten E,, kK = 1,2, 3, ist. In dhnlicher Weise kdnnen auch die anderen
Beispiele aus dem Abschnitt 2.1.1. abgewandelt werden.

D.3.5 Definition 3.5: Ein System
a;1X; + A1pX; + .+ 1Y, S by,

Ay Xy + A33Xs + oo + Aypxy S b, :
............................... (3.21)

A1 Xy + Xy + oo + AuaXn < by,
xl’ xz, L] X,, g O’
mit den Konstanten a;; (i =1, ...m,j=1,..,n), b; (i =1, ..., m) und den Varia-

blen x; (j=1,...,n) heifit lineares Ungleichungssystem mit m Ungleichungen und
n Nichtnegativitdtsbedingungen.

Sind alle b, (i = 1, ..., m) gleich null, so heift das Ungleichungssystem homogen,
anderenfalls inhomogen.

D.3.6 Definition 3.6: Ein Vektor (eine Matrix) heifit nicht-negativ, wenn alle Komponenten
(Elemente) nicht-negativ sind.
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Wir kénnen das System (3.21) folgendermaBen schreiben:

Ax < b, X=0

ayy Ay ... Qg X1 [ by
mit A= | 92t %2 Gan , X = 21 und b= b.z

Apy o oee Qon Xy b

Jedes lineare Ungleichungssystem 146t sich mit Hilfe der folgenden Umformungen
auf die anfangs angegebene Form bringen:

1. Tritt in einem linearen Ungleichungssystem eine Ungleichung
Xy + GaXs + oo+ QX = by
auf, so erhdlt man nach Multiplikation mit —1:

— @ Xy — oo — AgpXpy = — by

2. Tritt eine Bedingung der Form
g1 Xy + ayrXo + ... + App Xy = bk

auf, so kann man diese Gleichung durch die folgenden beiden Ungleichungen er-
setzen:

bks
—by.

3.-Oft ergibt es sich aus der praktischen Aufgabenstellung, daB die Variablen x,
nicht negativ sein diirfen. Ist dies nicht der Fall, so kann man die Erfillung der
Nichtnegativititsbedingung durch folgende Substitution erreichen:

A1 Xy + GaXy + oo+ Xy S
<

—aklxx - akzxz T oees T ak"x,‘

x;=x;, —x;' mit xj,x;’=0.

Wie man sieht, kann x; jetzt sowohl positive als auch negative Werte annehmen. Wir
wollen diese Moglichkeiten an einem Beispiel erldutern:

Beispiel 3.13:

x; + 2x; = 40,

10,

5, (3.22)
Xy 0,

X, beliebig.

2X1 + X3

xX; + X3

v v

Xy + xp =5 geht in —x; — x, = —5 lber; 2x; + x, = 10 wird ersetzt durch 2x; + x, < 10,
—2x; — x, £ —10; fir x, setzen wir x, = x5 — x5’ mit x3 = 0,x5 = 0. So erhalten wir das Un-
gleichungssystem

X3+ 2x5 — 2x3' £ 40,
2%+ x3 — x3' =10,
—2xy — x5+ x3 £ —10,
- x1— x3+ x3)= -5,
X1, %, % 2 0.
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Definition 3.7: Jeder Vektor x, fiir den Ax < b gilt, heifit Losung des linearen Un-
gleichungssystems Ax < b; ist aufferdem x = o, dann heif}t x zuldssige Losung.

Im betrachteten Beispiel ist
x; = —1, X, = 15, X =3

eine Losung des Systems, denn sie erfiillt die ersten vier Ungleichungen, aber nicht
die Nichtnegativitatsbedingungen, was auch nicht verlangt war.

x; =4, X, =5, x)' =3

ist eine zuldssige Losung, denn es werden sowohl die ersten vier Ungleichungen als
auch die Nichtnegativitidtsbedingungen erfiillt. ,

Wenn wir ein System linearer Ungleichungen 16sen wollen, fithren wir es bei den
gebriuchlichsten Verfahren zuerst mittels sogenannter Schlupfvariabler in ein
lineares Gleichungssystem tiber. Aus dem linearen Ungleichungssystem Ax < b;
x = o, wird das lineare Gleichungssystem Ax + u = b; X = o, u =+0. Der Vektor u
heiBt Schlupfvektor, seine Komponenten heilen Schlupfvariable.

Zu jeder zuldssigen Losung von Ax < b, x = o gehort eine zuldssige Losung x,
umitu = b — Ax von Ax + u = b und umgekehrt. Dabei heift x der primale Teil
der Losung (primale Losung), u der duale Teil der Losung (duale Losung).

Das betrachtete Beispiel 148t sich in der Form

Xy + 2x5 — 2x5" + uy = 40,
2+ xy— x5 + uy ’ = 10,
—2x; — xy+ x; + U3 = —10,
- x = x3 4 x3 +ug=— 5,
Xy, Xpy Xy, Uy, Us, Uz, Uy P 0
schreiben.
x;=4, x3=15, x' =3,
Uy =32, up =0, uz3=0, ug=1
ist eine zuldssige Losung;
32
4 0
xM = | 5 | ist der primale Teil und u'?) = 0 der duale Teil dieser Losung.
3

1

Jetzt wollen wir das lineare Ungleichungssystem (3.22) I6sen, indem wir es auf ein
lineares Gleichungssystem zurtickfiihren. Das System geht durch Einfiihren von einer
Schlupf- und einer UberschuBvariablen in das folgende lineare Gleichungssystem
iber:

x; + 2x2 + Uy = 40,
X3+ X2 —upy= 5,
2x1 + X3 = 10,

Xy, Uy, u; = 0;  x, beliebig
(uy : Schlupfvariable, uy: UberschuBvariable).

Dieses lineare Gleichungssystem 16sen wir mit Hilfe des GauBschen Algorithmus.
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X1 X2 Uy Uz bl Si

* 1 2 1 0 40 44

-1 1 1 0 ~1 5 6

-1 =2 -1 0 — 40 —44

-2 2 1 0 0 10 13

-2 —4 -2 0 - 80 —88

* 0 -1 -1 -1 - 35 —38

-3 0 -3 -2 0 - 70 =175

+3 +3 +3 +105 114

* 0 1 3 35 39

Wir erhalten:
U, = 2;

uy = 35 — 34

X, =35—-35431—-1=21
Xy =40 — 4l — 35+ 34 =5—2,

Aus xy, uy, u; 2 0 kann man sofort ersehen, da 0 = 2 = 5 gilt. Aus x; =24 und x; =5 — 1
X2

folgt: x; = 5 — 3

,0§X2§10.

Wir erhalten bei diesem Beispiel als Losungsmenge des linearen Ungleichungs-
X2
2
der x;- und x,-Achsen begrenzt wird (Bild 3.1). Im allgemeinen erhilt man als
Loésungsmenge bei Systemen mit zwei Variablen konvexe Polygone und bei Systemen
mit mehr als zwei Variablen konvexe Polyeder (vgl. auch Bd. 14, 1., und Bd. 1,
7.9.2)). Diese konvexen Polyeder kénnen dann natiirlich von beliebiger endlicher
Dimension sein. Es konnen auch Lésungsmengen auftreten, die in einer oder auch
mehreren Variablen unbeschrinkt sind.
Fiir den Fall von zwei Variablen wollen wir folgende Beispiele betrachten:

systems den Abschnitt der Geraden x;, = 5 — , der von den positiven Richtungen

Beispiel 3.14:
—x;+ x; =3, ()
x; + 2x, =8, (D)
X1, x2 = 0;
es ergibt sich der schraffierte Losungsbereich (vgl. Bild 3.2).

Beispiel 3.15:

X — X3 = 2, ()
xy + 2x2 = -10, (”)
X1y Xz = 0;

es ist kein Losungsbereich vorhanden (vgl. Bild 3.3).
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Beispiel 3.16:
X1+ x; =4, (J)
X1 + 2x5 £ 6, (II)
—-x; + x5, £0, (1D

Xy, %2 205

es ergibt sich der schraffierte Losungsbereich, die Gleichung (1) ist iiberfliissig (vgl. Bild 3.4).

Beispiel 3.17:
—xy + 2x; £2, ()
x; — 4x, =4, (A1)

X1, X2 -Z- 01

es ergibt sich kein endlicher Losungsbereich (vgl. Bild 3.5). (Man vergleiche hierzu auch Band 14,
Abschnitt 2.1.)

X

\

20+

70

X\
0N~ %

Bild 3.1 Bild 3.2

X; I

o/ s ;
S N

Bild 3.3 Bild 3.4

Doch zuriick zu dem gelésten Ungleichungssystem. So verlockend es erscheint,
solche Systeme linearer Ungleichungen nach wenigen Umformungen als Systeme
linearer Gleichungen zu behandeln, so. unbrauchbar wird dieses Verfahren bei
gréBerer Anzahl der Variablen. Wie man sich leicht liberlegt, ergeben sich aus den
Nichtnegativititsbedingungen fiir die frei withlbaren Parameter A, u, ... wieder Neben-
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bedingungen in Systemen von linearen Ungleichungen. AuBerdem erhilt man nicht
unmittelbar einen Uberblick iiber die Gestalt der Losungsmenge. Daher benutz:
man in der Praxis andere Verfahren, die aber hier nicht besprochen werden sollen.

X4

/\/

Bild 3.5

AbschlieBend wollen wir uns mit zwei sogenannten Alternativsitzen beschiftigen.
Der erste Alternativsatz lautet:

Satz 3.3: Entweder das Gleichungssystem Ax = b besitzt eine Lisung X € R", oder S.3.3
das Gleichungssystem ATy = o, bTy = 1 besitzt cine Losung y € R™.

Dabei ist A eine Matrix vom Format (112, 1), b eine Matrix vom Format (m, 1), also
ein (Spalten-)Vektor aus dem R™.

Beweis: Zuerst zeigen wir, dal nicht beide Systeme gleichzeitig losbar sein
konnen, und als zweites, dall aus der Unldsbarkeit des Systems Ax = b die Losbar-
keit des Systems ATy = o, bTy = 1 folgt.

a) Angenommen X € R" und y € R™ seien zugleich Lo>ungen der entsprechen-
den Systeme, und es gelte ATy = o. Dann gilt auch

0 = x"0o = xTATy = (Ax)Ty.

Da Ax = b ist, folgt 0 = b"y = 1, und wir haben einen Widerspruch.

b) Nun nehmen wir an, das System Ax = b sei nicht Iésbar. Dann folgt aus der
Theorie der linearen Gleichungssysteme, daB b nicht Linearkombination der Spalten-
vektoren der Matrix A sein kann. Wenn wir mit r = R(A) den Rang der Matrix A
bezeichnen und die Koeffizientenmatrix des Systems ATy = o, bTy = | betrachten.
bemerken wir, daB diese aus den Matrizen AT und bT zusammengesetzt ist und den
Rang r + 1 hat. Die erweiterte Koeffizientenmatrix, als Block geschrieben

[ 1]
Lo

hat auch den Rang r + 1. Da nun beide Riinge lbereinstimmen, ist das zugehérige
lineare Gleichungssystem I6sbar. Damit ist der erste der Alternativsiitze bewiesen. @

Der zweite Aliernativsatz gibt eine Moglichkeit, entscheiden zu kénnen, ob ein
System linearer Ungleichungen positive Losungen besitzt oder nicht. Er sei hier ohne
Beweis mitgeteilt:

Satz 3.4: Enntweder besitzt das System Ax = b eine positive Losung X = o im R" oder S.3.4
das System ATy = o, b"y < 0 mity €R™ besitzt eine Losung im R™.
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3.7. Aufgaben

3.1: Es sind die Losungen des Gleichungssystems
2x; + x4+ x3 =2,
X1+ 3x;+ x3=3,
X1+ X2+ Txz=7

zu bestimmen!

3.2: Gegeben ist das lineare inhomogene Gleichungssystem
Xy — X2+ x3= 4,
x; + 2x; + x3 =13,
2x; + 4x; + 2x3 = 26,
4x; + 5x; + 4x; = 43.

Es sind die Losungen fiir x; mit x; = p als Parameter zu ermitteln!

3.3: Fir welche Werte von & hat das Gleichungssystem
36x; — Tx, + x5 =0,
—9x; + 5x;, — kx; =0,
6x; + x;— 93 =0

nichttriviale Losungen?

3.4: Vom Gleichungssystem
X — X2+ x3= — 4,
Xy + 2x; + x3= —13,
2x; + 4x; + 2x3 = =26,
4x; + Sx; + 4x3; = —43

ist die Losung fur x; mit x3 = p als Parameter zu ermitteln.

3.5: Man berechne x;, wenn im linearen Gleichungssystem
Xy +x2+ x3=1,
Xy 4+ x2— x3=1?
Xy — Xy —ax; =13
a = 1 gesetzt wird. .
3.6: Fiir welchen Wert von A hat das homogene lineare Gleichungssystem
15x; + 7x, — 3x3 =0,
—3x; —4x; + Avy; =0,
5x1 +2x; — x3;=0

nichttriviale Losungen? AuBerdem berechne man x, fiir den ermittelten Wert von 4!

3.7: Fir welchen Wert von & ist der Rang der Matrix A R(A) = 2, wenn

32 3
A=11 k =1
12 2

ist?
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3.7. Aufgaben
3.8: Man bestimme diejenigen Werte 4, fiir die das Gleichungssystem Ax = Ax mit *
21 -%
A=|2 3 -%

3 3 -1
nichttriviale Losungen hat, und berechne fiir die gefundenen Werte 4 jeweils die vollstindige Losung.
*

3.9: Man 16se das Gleichungssystem

3x+4y+2z=1,
x— y—3z=1,

2x + z=4
a) nach dem GauBschen Algorithmus;
b) mit Hilfe der Cramerschen Regel.
*

3.10: Fiir welche Werte von 4 ist das System

3x+2y+ z=0,
x+ y+ z=0,

2x+ y+4iz=0
nichttrivial 16sbar? Man bestimme fiir die gefundenen A die Losung.

n
3.11: Man beweise: Es seien L; =Y aux; (i = 1,2, 3, ..., n) n Linearformen (,,linke Seiten* eines *
k=1

n =
Gleichungssystems). Gilt >_ x;L; = 0, so sind Ly, L, ..., L, bei ungeradem 7 linear abhiingig.

i=1

8 Manteuifel, Lineare
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4. Lineare Vektorriume und lineare Abbildungen

Ohne eine entsprechende Definition haben wir in den vorhergehenden Abschnitten
mehrfach einen Raumbegriff verwendet. Von zunichst anschaulichen Interpretationen
ausgehend, war versucht worden, eine Loslésung vom bekannten zwei- und drei-
dimensionalen Raum durch formale Ubertragung bestimmter Begriffe vorzunehmen.

In diesem Abschnitt soll eine Verallgemeinerung des in vorhergehenden Abschnitten
benutzten Raumbegriffes vorgenommen werden. Dabei werden wir durch gewisse
Abstraktionen zu allgemeineren Aussagen als frither gelangen. Gleichzeitig werden
in diesem und in den folgenden Abschnitten einige Grundlagen fiir die lineare Opti-
mierung erarbeitet. Wir werden mehrfach Ergebnisse und Zusammenhéange berichten,
ohne Einzelheiten zu beweisen.

4.1. Lineare Vektorriume
In der Menge R der reellen Zahlen gelten fiir die Addition der Zahlen folgende
Axiome:
(1) Wenn 4, p € R, dann liefert A + p = v ein eindeutig bestimmtes Element
veR;
(2) fiir die drei Elemente A, u, v € R gilt das assoziative Gesetz:
A+p+r=1+@+r)=2+pu+r7;

(3) es gibt ein neutrales Element (die Zahl Null oder das Nullelement) O € R,
sodaf A+ 0 =2Aist;

(4) zu jedem Element A€ R gibt es ein enigegengesetztes oder inverses
Element (—2A) € R, so daff 2 + (—2) = 0 gilt.

Definition 4.1: Wenn die Elemente einer Menge diese Axiome erfiillen, dann sagt man,
sie haben Gruppeneigenschaft, oder sie bilden beziiglich der erklirten Verkniipfung (in
diesem Falle beziiglich der Addition) eine Gruppe.

Im vorliegenden Fall gilt noch das Axiom (5):
(5) 2 + p = u + A (kommutatives Gesetz); daher gilt

Satz 4.1: Die reellen Zahlen bilden beziiglich der Addition eine kommutative (oder
abelsche) Gruppe (kommutative additive Gruppen werden auch Moduln genannt).

Das neutrale Element 0 sowie das entgegengesetzte Element (—A) sind jeweils ein-
deutig bestimmt.

Auch die Menge P der rationalen Zahlen und dje Menge K der komplexen Zahlen
haben diese Eigenschaften, bilden ebenfalls beziiglich der Addition kommutative
Gruppen.

Satz 4.2: Beziiglich der Multiplikation bilden die reellen Zahlen — unter Ausschluf3
der Zahl Null — ebenfalls eine kommutative oder abelsche Gruppe.
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Die Axiome (1) bis (5) sind offensichtlich fiir die multiplikative Verkniipfung eben-
falls erfullt.

Dasselbe gilt fiir die rationalen und fiir'die komplexen Zahten.

Fiir die Verbindung von Multiplikation und Addition gilt fiir reelle Zahlen das
distributive Gesetz:

A+ pry=24+ ur.

Definition 4.2: Wenn die Elemente einer Menge beziiglich der Addition und unter
Ausschluf} des Nullelementes beziiglich der Multiplikation jeweils kommutative Gruppen
sind und das distributive Gesetz gilt, so bilden sie einen Zahlkorper.

Satz 4.3: Die Menge der reellen Zahlen bildet einen Zahlkorper, den Korper R der
reellen Zahlen.

D.4.2

S.4.3

Die Menge P der rationalen Zahlen und die Menge K der komplexen Zahlen sind

natiirlich auch Zahlkdorper.
V sei eine Menge, deren Elemente die Vektoren x, y, ... sind. Je zwei Vektoren

von V ist eindeutig ein dritter Vektor zugeordnet, den wir als Summe von x und y

bezeichnen wollen. Es gelten folgende Axiome:
Dx+y=z;
Qx+y+z=x+F+2=x+Yy+ z;
(3)x + 0 = x (o Nullvektor);
(4) x + (—x) = o (—x entgegengesetzter Vektor);
G)x+y=y+x.
Die Menge V ist also eine additive kommutative Gruppe, ein Modul.
Die Vektoren des R?, R? oder R", mit denen wir in den Kapiteln 1. bis 3. gerechnet
haben, geniigen selbstverstiandlich alle diesen Eigenschaften. Die hier dargestellten
Eigenschaften gelten fiir beliebige Vektoren einer wohlbestimmten Menge von Vek-

toren.
Wir fiihren jetzt die reellen Zahlen von R als Multiplikatoren in ¥ ein.

Definition 4.3: In einer additiven kommutativen Gruppe V sei eine Multiplikation
mit reellen Zahlen erklirt, die folgenden Gesetzen geniigt :

AUpER; X YEV;
1-x=x;

Mpx) = (Au) x (Assoziativgesetz);
AMx+y =ix+ 1y

A+ px =i+ ,ux} (Distributivgesetze)

Dann nennt man V einen reellen linearen Raum oder einen linearen Vektorraum V
iiber dem Korper der reellen Zahlen R. -

Diese Gesetze sind uns sehr wohl bekannt; wir haben sie bei der Multiplikation
eines Vektors mit einem Skalar kennengelernt.

8*

D.4.3
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Die Elemente eines jeden anderen Zahikorpers konnen ebenfalls als Multiplikatoren
eingefiihrt werden; mit dem Kérper C der komplexen Zahlen erhalten wir z. B. einen
komplexen Vektorraum oder einen linearen Vektorraum iiber dem Korper der kom-
plexen Zahlen. Zunichst erkennen wir, daB die Menge der Vektoren eines zweidimen-
sionalen (euklidischen) Raumes R?, also der Ebene, genau wie die des R® lineare
Vektorrdaume im Sinne der Definition bilden. Aber z. B. bildet auch die Menge P
aller Polynome

P(x) = apx" + a;x" ' + ... + a,_,x + a,,

deren Grad < nist und deren Koeffizienten aus dem Korper R stammen, wenn man
diese Polynome beliebig addiert und mit Zahlen aus R multipliziert, einen linearen
Vektorraum P iiber dem reellen Zahlkorper R. Auch die Menge M aller Matrizen
vom Format (m, n) bildet, wenn die Elemente aus dem Korper R stammen und die
Addition dieser Matrizen sowie deren Multiplikation mit einer Zahl aus R erklart
sind, einen linearen Vektorraum.

Wie sich aus den Distributivgesetzen ergibt, gilt

Satz 4.4: In einem Vektorraum kann ein Produkt aus Vektor und Zahl nur verschwinden,
wenn mindestens einer der Faktoren gleich null ist.

Wenn zwei Vektorraume ¥, und ¥V, liber dem Zahlkorper R gegeben sind, dann
1aBt sich daraus ein neuer Raum V7, auf folgende Weise konstruieren:

Wenn x € V,, y € V, Vektoren sind, dann ist das Vektorpaar (x, y) ein Vektor aus
V,; fiir die Vektoren aus V3 gilt:

(X1, ¥1) + (X2, ¥2) = (X; + X2, Y1 + ¥2)
und .
Mxg,y1) = (A%, Ayy);
V, ist also ein linearer Vektorraum {iber R.

Definition 4.4: Wenn xe V,, ye V,, dann ist das Vektorpaar (X,y) Element eines
linearen Vektorraumes V5, der das kartesische Produkt von V| und V, genannt wird.

Nun betrachten wir die Vektoren des linearen Vektorraumes V iber dem Zahl-
korper R.

Definition 4.5: Ein Ausdruck der Form

) .
Zﬂ.ix, = lel + 12X2 + ... + 2pxp
i=1
wird eine Linearkombination der Vektoren x; (i = 1,2, ...,p) mit x,€ V und ;€ R
genannt.

Von einer Linearkombination sprechen wir auch dann, wenn alle Koeffizienten

verschwinden.
Wir unterscheiden zwei verschiedene Arten solcher Linearkombinationen.
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Definition 4.6: Die Gesamtheit der Vektoren {x;} (i = 1,2, ..., p) heift linear unab-
hingig, wenn eine Linearkombination der p Vektoren x; nur dann gleich dem Null-
vektor ist, wenn alle Koeffizienten A, verschwinden.

Ist dagegen eine der moglichen Linearkombinationen gleich dem Nullvektor, ohne
daf alle Koeffizienten A, gleichzeitig gleich null sind, so nennt man die Gesamtheit der
Vektoren {x;} (i = 1,2, ..., p) linear abhingig (vgl. Abschnitt 1.2.7.).

Zunichst erkennen wir, daBl der Nullvektor selbst sich stets als Linearkombination
beliebiger Vektoren darstellen 148t, er ist in jedem Falle von diesen Vektoren linear
abhiangig. Ist mindestens ein Vektor aus einer Gesamtheit von Vektoren als Linear-
kombination der iibrigen darstellbar, so sind diese Vektoren linear abhingig; ganz
sicher ist ein System von Vektoren linear abhédngig, wenn es den Nullvektor enthalt.

Satz 4.5: Ist ein System von Vektoren linear unabhdngig, so ist jedes Teilsystem dieses
Systems wieder linear unabhdngig.

Definition 4.7: Zwei Systeme von Vektoren heiffen dquivalent, wenn sich jeder Vektor
des einen Systems als Linearkombination von Vektoren des anderen Systems darstellen
laft und umgekehrt.

Die so definierte Aquivalenz hat folgende Eigenschaften: Sie ist reflexiv, denn jedes System von
Vektoren ist zu sich selbst dquivalent; sie ist symmetrisch, denn wenn das System S; dem System .S,
dquivalent ist: Sy ~ S,, dann ist auch S, =~ S, ; sie ist transitiv, denn wenn S; ~ S, und S, =~ S;,
so ist auch S; =~ S3.

Das System .S, von endlich vielen Vektoren x; (i = 1, 2, ..., n) sei linear unabhéngig;
wenn sich alle Vektoren x; als Linearkombinationen von Vektoren eines Systems S,
darstellen lassen, dann kann die Anzahl der Elemente von S, nicht kleiner als # sein.

Satz 4.6: Es lassen sich n der Vektoren von S, durch die n Vektorenx,(i = 1,2, ..., n)
von Sy derart ersetzen, daf das aus S, hervorgehende System S, dem urspriinglichen
System S, dquivalent ist (sog. Austauschsatz).

Wenn in einem Vektorraum V z. B. maximal » Vektoren x; (i = 1, 2, ..., n) eine
Menge von linear unabhéngigen Vektoren bilden, so kann hier kein linear unabhan-
giges Teilsystem mehr als » Vektoren enthalten; denn wenn m Vektoren y; (i = 1,
2, ..., m) ein linear unabhéangiges Teilsystem bilden, dann brauchen wir nur auf die y,
und x; den Austauschsatz anzuwenden, und es ergibt sich m =< n.

Definition 4.8: Die grofitmdigliche Anzahl von linear unabhingigen Vektoren einer
Menge von Vektoren nennt man deren Rang (vgl. Abschnitt 3.2. und 3.3.).

Wie wir wissen, gibt es fiir » = 1, 2, 3 in den zugehérigen Vektorraumen jeweils
maximal 1, 2 oder 3 linear unabhingige Vektoren; dies gilt entsprechend auch fiir
jeden anderen endlichen Wert von #.

Definition 4.9: Man bezeichnet die Maximalzahl der linear unabhdingigen Vektoren
eines Vektorraumes als Dimension dieses Raumes.

D.4.6

S.4.5

D.4.7

S.4.6

D.4.8

D.4.9



S.4.7

. e
118 4. Lineare Vektorraume und lineare Abbildungen

Die Dimension eines Raumes muB nicht endlich sein; wir wollen uns jedoch auf
Raume endlicher Dimension beschranken. Zum Beispiel sind die Grundvektoren

17 07 i 07

0 1 0

€ = 0 , €3 = 0 , , € = 0
0 0 1

stets voneinander linear unabhingig. Jeder Vektor x des Vektorraumes V der Dimen-
sion n (wir schreiben auch dim V = n) 14Bt sich in der Form

n
x =Y e
i=1

darstellen. Diese Vektoren e; bilden wie jedes beliebige andere maximale, linear unab-
hiangige System von Vektoren eine Basis des Vektorraumes V.

Satz 4.7: Wenn die Vektoren e; (i = 1,2, ..., n) eine Basis von V sind, und es sind e,
(j=1,2, ....,m, m < n) m voneinander linear unabhdngige Vektoren von V, dann
konnen die m Vektoren e; durch Hinzunahme geeigneter Vektoren e, zu einer Basis
ergdnzt werden, :

Die Richtigkeit dieser Aussage iberlegt man sich folgendermaBen: Die e; bilden
eine Basis von V; daher konnen die e, aus den e; zusammengesetzt werden. Wegen
der linearen Unabhéngigkeit der e; sind m der Vektoren e, auf Grund des Austausch-
satzes durch die e; ersetzbar, so daBl das entstehende System linear unabhingiger
Vektoren dem System der Vektoren e; dquivalent ist. Daher ist das so konstruierte
System von Vektoren linear unabhéngig, und da die Anzahl seiner Vektoren auch
maximal ist, so stellt es eine Basis von V dar. &

SchlieBlich wollen wir noch die Verbindung zu den Uberlegungen und Ergebnissen
der Abschnitte 3.1. bis 3.3. herstellen und die Behandlung der linearen Abbildungen
vorbereiten.

Das lineare Gleichungssystem

Ax = b (4.1)

(A hat das Format (m, 1), x hat das Format (#, 1), b hat das Format (m, 1)) erzeugt
einen linearen Vektorraum ¥ der Dimension n (vgl. hierzu Abschnitt 3.1. bis 3.3. und
die Beispiele in Abschnitt 3.5. und am Beginn dieses Abschnittes). Wenn die Dimen-
sion dieses Vektorraumes mit der Dimension des durch das Gleichungssystem

Ax =0 : 4.2)

erzeugten Vektorraumes tbereinstimmt, so ist das Gleichungssystem (4.1) 16sbar
(vgl. Satz 3.1).

Das Gleichungssystem (4.2) besitzt in jedem Falle mindestens eine Losung (vgl.
Satz 3.1 und Abschnitt 3.3.1). Die Dimension des Losungsraumes, also des linearen

 Vektorraumes H, der durch die Losungsvektoren xT = (x,, x,, ..., X,) erzeugt wird,

sei s; sie hingt ab von der Dimension des durch die Vektoren a ;, = (a;;, ay3, -.., @;p),
i=1,2, ..., m, erzeugten linearen Vektorraumes K; die Dimension von X ist

dimK =r.
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Wie wir im Abschnitt 3.5.1. an dem Beispiel im R® und den allgemeinen Uber-
legungen erkennen, ist also '

dim V = dim K + dim H
cder
n=r-++s.

H ist ein Unterraum von V, d. h., H enthalt eine Teilmenge der Elemente von V, die
selbst die Eigenschaften eines linearen Vektorraumes besitzt, und damit gilt:

Satz 4.8: Die Dimension r des durch die Vektoren a;,, = (a;1, @2, ..., app), i = 1,2,
..., m, erzeugten linearen Vektorraumes K (des Koeffizientenraumes) addiert zur
Dimension s des durch die Losungsvektoren x* = (xy, X5, ..., X,) erzeugten linearen
Vektorraumes H (des Liosungsraumes) ist gleich der Dimension n des linearen Vektor-
raumes V, in dem das Gleichungssystem Ax = o existiert.

Die Losungsmenge 7 von (4.1) hat nicht die Eigenschaften eines linearen Vektor-
raumes, sondern sie stellt eine lineare Mannigfaltigkeit dar; sie wird erzeugt durch
die Gesamtheit der Vektoren von H, also vom Losungsraum von (4.2) und durch
eine spezielle Lésung x, von (4.1) (vgl. Satz 3.2), d. h.

I=H+ x, mit x,€K.

X, € K ist Ausdruck der Tatsache, daB b als Linearkombination der Spaltenvektoren
a®, k =1,2, ..., n, darstellbar sein muB, falls (4.1) I6sbar ist; dies wird in Ab-
schnitt 4.2. gezeigt.

Eine lineare Mannigfaltigkeit innerhalb eines linearen Vektorraumes ¥ wird erzeugt
durch die Elemente eines Unterraumes HC ¥V und einen Vektor x, € V. Die Elemente
einer linearen Mannigfaltigkeit besitzen i. allg. nicht die Eigenschaften eines linearen
Vektorraumes; dennoch ist fiir eine lineare Mannigfaltigkeit auch der Begriff ,,Neben-
raum‘* Gblich. Nur wenn im besonderen x, € H gilt, dann ist die durch H und x,
erzeugte lineare Mannigfaltigkeit ein Unterraum.

4.2. Lineare Abbildungen und Systeme linearer Gleichungen

Esseien zwei lineare Vektorrdaume ¥V; und ¥, liber demselben Koeffizientenkorper K
‘gegeben (unter K soll ein beliebiger kommutativer Zahlkérper verstanden werden).
Jedem Vektor x € V; sei ein eindeutig bestimmter Vektor y € ¥,, der Bildvektor
von X, zugeordnet, der mit

y = d?x R
bezeichnet werde. Es sollen fiir alle x,, x, € V/; und alle € K die Linearititsbedin-
gungen gelten:

L &(x; + X;) = Dx; + Dx;;

II. D(xx,) = #(Dx,),

d. h., die Zuordnung P hat die Eigenschaften einer linearen Funktion.

Definition 4.10: Wennx e V,,ye V, und y = @x und D den Linearititsbedingungen
und 11 geniigt, dann heifit ® eine lineare Abbildung des (linearen) Vektorraumes V,
in den (linearen) Vektorraum V,. (D wird auch lineare Transformation von V, in V,
genannt.) (Vgl. Def. 8.1, 8.2 und 9.1 im Band 1 dieser Reihe!)

S.4.8
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@ ist eine Linearform.
Jede lineare Abbildung von V, in sich selbst wird Endomorphismus genannt. Ist ¥
ebenfalls eine lineare Abbildung von ¥V, in ¥V,, dann gilt

@+ ¥P)x = Dx + Px.

Solche Abbildungen werden durch Matrizen dargestellt; wenn z. B.
Yom 1y = AmmX@, 1) gilt, dann wird durch A die lineare Abbildung représentiert. In
2.4.4.2. ist die orthogonale Transformation behandelt, die ebenfalls eine lineare Ab-
bildung darstellt.

Satz 4.9: Die Menge aller linearen Abbildungen F(Vy, V,) von V; in V, bildet einen
linearen Vektorraum iiber K; dieser lineare Vektorraum wird mit V¥ bezeichnet.

Wenn x € V; und x* € V¥, dann k6énnen wir jedem Vektorpaar (x, x*) ein Ele-
ment aus K, also einen Skalar zuordnen, den wir mit {x, x*)» bezeichnen. Fiir diesen
Skalar sollen gelten:

la)  {Ax; + pxp, X*) = A(Xy, X*) + ulx,, x*);
1b)  <(x,Ax¥ + uxF) = KX, x§) + pudx, x3);

2a) wenn {Xx;, x*)> = 0 fiir einen Vektor x; € ¥, und fiir alle Vektoren x* € V'},
dann ist x¥ = o;

2b) wenn <{x, x¥) = 0 fiir alle Vektoren x e V, und fiir einen Vektor x¥ € V¥,
dann ist x¥ = o;
hierbei sind 4, 4 Elemente aus X, x, x;, X, Vektoren aus V,, x*, x§¥, x¥ Vektoren
aus V¥.

Deﬁnitioh 4.11: Die beiden Riume V, und V¥ heifien zueinander dual. Das Element
{x, x*) € K ist das skalare Produkt der Vektoren x und x*.

Wenn nun @ den Raum ¥ in ¥V, und ¥ wiederum ¥, in ¥, abbilden, dann wird
durch

("P(D) x = YO(x)

eine lineare Abbildung von ¥V, in V; erklart, und zwar durch das ,,Produkt* ¥®
Dafiir gilt

(PD) » = YD) = (x¥)D;

ferner ist diese Produktbildung assoziativ. (Fiir die praktische Rechnung ist also eine
Multiplikation von Matrizen auszufiihren.)

Wird in II. 2 = 0 gesetzt, so ergibt sich @o = o; der Nullvektor von ¥ wird dem-
nach in den Nullvektor von ¥, iberfiihrt. Das System linear abhangiger Vektoren

Z #,X, = 0 aus V; geht vermittels @ iiber in Z D(x,x,) = 0, also wiederum in ein

y=1

System linear abhédngiger Vektoren in V,. Lmear unabhangige Vektoren aus V;
brauchen jedoch nicht in linear unabhéngige Vektoren iiberzugehen; z. B. gibt es
eine Abbildung @ = 0, die sogenannte Nullabbildung, die jeden Vektor in den (linear
abhangigen) Nullvektor tiberfiihrt.
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Definition 4.12: Man spricht von reguliren linearen Abbildungen, wenn verschiedenen
Vektoren von V, auch verschiedene Bildvektoren von V, entsprechen.

Der Nullvektor von V; ist dann der einzige Vektor von ¥V, der in den Nullvektor
von V, abgebildet wird; die Umkehrung ist ebenfalls richtig.

Satz 4.10: Eine reguldre lineare Abbildung fiihrt ein System linear unabhdngiger Vek-
toren von V, in ein System linear unabhdingiger Vektoren von V, iiber.

Beweis: Wenn X,, X,, ...,&X, voneinander linear unabhdngig sind und fiir die
Bildvektoren gilt

p
2 %X = 0%,
v=1

d. h. also, der Vektor x = 2 %X, geht in den Nullvektor iiber, dann miifite wegen
=1
der Regularitit der Abblldung Z #,X, = o, sein, woraus wegen der oben voraus-
=1

gesetzten linearen Unabhanglgkelt der x, (v =1, ..., p) folgen wiirde: »; = %,
=..=%=0=

Es kann also dariiber hinaus gefolgert werden, daB im Falle einer reguldren
linearen Abbildung von V; in ¥, die Dimension von ¥, mindestens gleich der von V;
sein muB.

Definition 4.13: Wenn jeder Vektor y € V, Bildvektor eines Vektors von V', ist, dann
wird V, auf V, abgebildet; ist diese Abbildung noch regulir, dann wird sie auch Iso-
morphismus genannt.

Ist @ eine regulare lineare Abbildung von V; auf V,, also ein [somorphismus, dann
ist zu jedem Bildvektor y € V, ein Ausgangsvektor x € V; bestimmbar, so daf3

y = dx

gilt. Daher kann jedem Vektor y € V, auf diese Weise ein Vektor x € V; zugeordnet
werden; man erhilt eine Abbildung von V, auf V,, die wiederum linear ist und die
wir als inverse lineare Abbildung oder als inversen Isomorphismus @-! bezeichnen.

Definition 4.14: Wenn @ cin Isomorphismus von V, auf V, ist, dann ist @~ ein Iso-
morphismus von V, auf V' und heifit inverser Isomorphismus.

Die beiden linearen Vektorriume Vi und V, heiffen dann zueinander isomorph:
Vl (’:I) Vz.

Der Begriff der reguliren Matrix erfahrt hier eine bedeutungsvolle neue Inter-
pretation. .

Satz 4.11: Isomorphe Rdume miissen von gleicher Dimension sein.

Die Richtigkeit dieser Aussage erkennt man durch Betrachtung der Transfor-
mation der linear unabhéngigen Vektoren von V; durch den Isomorphismus @ und
derjenigen von ¥, durch den Isomorphismus @-!. Dic Umkehrung ist ebenfalls
richtig, d. h., es gilt

D.4.12

S.4.10

D.4.13

D.4.14

S.4.11
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Satz 4.12: Lineare Rdume gleicher Dimension sind zueinander isomorph.

Beweis: Wenn {x,}, {y,}, v = 1,2, ..., n, jeweils Basen in ¥, bzw. ¥, sind, dann
gilt fiir jeden Vektor

xeV,:x= Zévx,.
v=1

Durch @x = )_ £y, ist eine lineare Abbildung von ¥V, auf ¥, bestimmt, die regulir

ist; denn aus ¢x = o folgt§, = 0 (v = 1. ..., n) und damit x = o. Also stellt diese
hneare Abbildung einen Isomorphismus dar u

‘Wenn nun @ eine beliebige lineare’ Abbildung von ¥V, in ¥, ist, dann wollen wir
jetzt alle Vektoren x€ V; betrachten, die in den Nullvektor von ¥, iibergehen.
Gehen z. B. x; und x, in den Nullvektor iiber, dann gehen auch alle Linearkombi-
nationen x»;X; + %,X, in den Nullvektor iiber. Somit gilt

Satz 4.13: Die Gesamtheit aller Vektoren x, xe V,, mit ®x = o, 0 € V,, bildet einen
Unterraum U, von V,, den Kern oder den Nullraum der linearen Abbildung . '

Wenn x,, x, € Vy, x, € U,, dann gilt Dx; = D(x; + x,), weil Dx; = o ist. Wird
also zu einem Vektor aus ¥V, ein Vektor des Kerns addiert, dann ist der Bildvektor
der Summe gleich dem Bildvektor des urspriinglichen Vektors.

Wenn x; * X,, X; € V;, X, € ¥; und wenn @x, = &Dx, gilt, dann unterscheiden
sich x; und x, um einen Vektor des Kerns, d. h. x; = x; + x,.

Betrachten wir die Bildvektoren, so sind z. B. mit @x, und @x, auch alle Linear-
kombinationen @(x%,x, + #,X,) Bildvektoren, und die Gesamtheit dieser Bildvektoren
stellt einen Unterraum von ¥, dar, den sog. Bildranm @V, C V,. Mit [@V,] soll die
Dimension des Bildraumes bezeichnet werden, und zwar sei

[@ VI] =r.
Definition 4.15: Die Dimension des Bildraumes heifst Rang der linearen Abbildung.

Wenn [Vi] = n, [V,] = m, dann gilt
r<m und r =n.

Wegen @V, C V, ist die erste Relation einzusehen; das Gleichheitszeichen gilt fiir
@V, = V,, d. h.,, wenn @ eine Abbildung von V; auf V, ist. Wegen [V,] = n stellt
{x}(» = 1,2, ..., n) eine Basis von ¥, dar; der Bildraum wird dann von den Vektoren
Dx, (v = 1, 2, ..., n) erzeugt, so daf3 seine Dimension hochstens gleich n sein kann.

Dann kann also geschrieben werden r = n — k, wobei k£ die Dimension des Faktor-
raumes V, /U, von V; nach U, ist, der folgendermaBen konstruiert wird:

Wir fassen alle Vektoren zu einer Klasse zusammen, die denselben Bildvektor haben;
die Vektoren jeder Klasse sind beziiglich U, dquivalent (die Abbildung der Differenz
zweier Vektoren einer Klasse liefert den Nullvektor). Jeder Klasse wird das Bild eines
beliebigen, als ihren Reprasentanten ausgewihlten Vektors — das also Vektor von V,
ist — zugeordnet. Damit erhélt man eine eindeutige Abbildung des Faktorraumes
V1|U, in V,, die linear und regulér ist. Der Bildraum @V, und der Faktorraum V, /U,
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sind zueinander isomorph. Der Rang der Abbildung @ ist genau gleich n, wenn k = 0
ist, d. h., wenn @ regular ist. Hat ¥, im besonderen dieselbe Dimension wie ¥, d. h.
[V1] = [V.] = n, so handelt es sich um eine Abbildung von ¥V auf V,. Also gilt

Satz 4.14: Zwei lineare Vektorrdume derselben Dimension werden genau dann durch
eine lineare Abbildung aufeinander abgebildet, wenn diese Abbildung regulir ist.
(Eine derartige Abbildung stellt eine Aquivalenztransformation dar.)

Wenn nun ein System von m linearen Gleichungen mit » Unbekannten geldst
werden soll, d. h.
d11x1 + alzxz + ... + al,,x,, = bl’
az1X4 + A3,X; + ... F AypX, = bz,

A1 X1 + AuaXs + oo + AupXn = by,

dann fassen wir zunichst einmal die Koeffizienten spaltenweise zu Vektoren zu-
sammen. Das Gleichungssystem stellt sich folgendermaBen dar:

a®x; + a®x, + ... + a™x, = b. ‘ 4.3)

Daraus ergibt sich, daBl das obige Gleichungssystem offensichtlich nur Lésungen
besitzt, wenn sich der Vektor b als Linearkombination der Vektoren
’ a® a@ _ am

darstellen 148t. Das ist genau dann der Fall, wenn der Rang der Vektorsysteme
al a® a® ynd a®, a® . a® p

iibereinstimmt. (Diese Ranggleichheit entspricht der Ranggleichheit von Koeffi-
zientenmatrix [a;;] und erweiterter Koeffizientenmatrix [a;;, b,].) Unter Benutzung
des Raumbegriffes 148t sich diese Aussage folgendermaBen formulieren:

Satz 4.15: Das Gleichungssystem (4.3) hat nur dann eine Losung, wenn der Vektor b
in dem von den Vektoren aV, a®, ..., a™ erzeugten Unterraum liegt.

Man vergleiche hierzu die Beispiele aus 3.1. bis 3.3.

Wir wollen noch einen Schritt weitergehen und den Zusammenhang zwischen
linearen Gleichungssystemen und linearen Abbildungen von Vektorriumen her-
stellen. Wir gehen von zwei linearen Vektorraumen ¥, und V, iiber demselben Koef-
fizientenkorper K aus; die Dimension von V¥, sei m, die von V, sein; @ sei eine lineare
Abbildung von ¥V, in V,.

Durch {x;} (i=1,2,...,m) und {y;} (j =1,2,...,n) seien je eine Basis aus ¥V
und eine aus ¥, gegeben. Dann ist jeder Bildvektor @x;, eine Linearkombination der
Vektoren y;:

n
¢x,=2(1,jyj; i= 1,2, ...,m; a,jGK,
j=1
ausfiihrlich geschrieben:
Dx; = a;,;y1 + a2y + ... + @1,Yn,
DX, = a3¥1 + @252 + ... + A24Yns

................................

S.4.14

S.4.15
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~ Ein beliebiger Vektor xe V', ist gegeben durch ~

S.4.16

x =3 &X;;
i=1
sein Bild ist dann

Dx = ;lficbx, = Z S‘ ai;Ey;.

11]-

Das heif3t:

Satz 4.16: Die Abbildung @ ist durch die Koeffizientenmatrix [a,;] vollstindig bestimmt.

Sind {n;} (j=1,2,...,n) die Komponenten des Bildvektors in der Basis y,
(j = 1,2, ..., n), dann gilt fiir die Komponenten ,

m
i =~Zl afc (J=12,...,n)
i=
oder

Ny = apé; + anés + .o + ik,
= 01251 + a22£2 + ... + a,,,zEm,

=
~
|

.............................

Nn = a1y + @y + ot Qb
die Koefﬁzientenmatrix [a;;] ist zur urspriinglichen transponiert.
Istnunb = Z By, ein Vektorin V,, so ist dieser ein Bildvektor, wenn es Losungen &;

j=
i=12,.., m) fiir das Gleichungssystem

Zl ai&; = By

i=

gibt; dem letzten Gleichungssystem ist die Vektorgleichung
Dx =

dquivalent.

Die Vektoren des Kerns U, lassen sich (b = o) daher wegen @x = o durch das
homogene Gleichungssystem

m
'glaijgi =0

charakterisieren. Oben haben wir gesehen, daB eine lineare Abbildung eines m-dimen-
sionalen Raumes in einen #-dimensionalen Raum fiir m > » nicht regulér sein kann;
das heiBt fiir unsere Uberlegungen, daB ein homogenes lineares Gleichungssystem
von n Gleichungen mit m Unbekannten fiir » < m stets nichttriviale Losungen hat.

Wir wollen noch im besonderen den Fall m = n betrachten. Ist die Abbildung
regular, dann ist

¢ V1 = V2
oder

.ZI aufl_ =n;; Jj=1L2,..,n
i<
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Wenn das zugehdrige homogene System

n

; auf; =0

nur die triviale Losung hat, also
det [ai j] 4: 0

ist, dann besteht der Kern U; der Abbildung nur aus dem Nullvektor. In diesem
Falle hat das Gleichungssystem genau eine Losung.

Zu den Betrachtungen uber lineare Gleichungssysteme sei noch folgender Hinweis
gestattet:

Die Koeffizienten und absoluten Glieder eines Systems von linearen Gleichungen
gehoren einem Korper K an; wenn es in diesem Korper K keine Losungen des Glei-
chungssystems gibt, so gibt es auch in einem anderen, umfassenderen Korper keine
Losungen. (Auch die sich aus der Betrachtung von zwei linearen Vektorrdumen ¥,
und ¥, iiber einem kommutativen Korper K und einer linearen Abbildung @ und ¥V,
und ¥, ergebenden diesbeziiglichen Uberlegungen lassen sich entsprechend formu-
lieren.)

Erweiterungen von K dndern weder den Rang der Koeffizientenmatrix noch den
Rang der erweiterten Koeffizientenmatrix. (Im Gegensatz hierzu denke man etwa
an die Losungen einer quadratischen Gleichung

ax* +bx + ¢ =0,

wenn a, b, c dem Korper der reellen Zahlen angehdéren, aber die Diskriminante
A=0b*—4dac <0
ist.)

Aus dem Gesamtgebiet der linearen Algebra sind nur einige einflihrende Betrach-
tungen dargestellt worden, hauptsiachlich unter dem Gesichtspunkt, die kiinftigen
Ingenieure, Okonomen, Naturwissenschaftler und Landwirte mit diesen vertraut zu
machen und um Voraussetzungen fiir Anwendungen der linearen Algebra und fiir
eine Einfiihrung in die lineare Optimierung (Bd. 14) und die Tensoralgebra (Bd. 11)
zu schaffen. Im Literaturverzeichnis finden sich Hinweise auf einige weiterfiihrende
Werke.

4.3. Aufgaben

4.1: Man untersuche, ob die Vektorsysteme .
a)al = (—1,1),a% =(1,1);

b)a] = (=4, 1,4),a] = (1,4, =9, a] = 3,0, });

c)aT =(1,1,0,0),al = (0, —1,1,0),al = (0,0,1, —1),a] = (0,0, 1, 1);

dyaT =(1,0,0,...,0),a% = (0,1,0, ..., 0), ..., a5 = (0,0, ..., 0, 1)

jeweils Basen cines zwei-, drei-, vier- und n-dimensionalen Vektorraumes darstellen.

4.2: Man priife, ob der Nullvektor o fiir sich einen linearen Vektorraum darstellt. *

4.3: Es ist zu zeigen:
a) Wenn a,, a, € ¥ linear unabhingig sind, sind auch a; + a, und a; — a, linear unabhingig. %

b) Wenn a,, a,, ..., a, € V linear unabhéngig sind, sind auch r beliebige, voneinander verschiedene
Linearkombinationen dieser Vektoren linear unabhingig.
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4.4: Die Vektoren aT = (1, —1,1, —1), a] = (1, —1, —1,1) und aT = (1,1, 1, —1) sind durch
einen Vektor a4 zur Basns eines v1erd1mensmnalen Vektorraumes zu erginzen.

4.5: Es ist nachzuweisen, daB a] = (-2, 3,1), a] = (4,1, 0), al = (1, —1, 2) die Basis eines drei-
dimensionalen Vektorraumes bxlden und es sind dle Koordmaten vonal = (5, 7, 4) beziiglich dieser
Basis zu berechnen.

i

4.6: Welches der Vektorsysteme
aT = (1,4,3,0),a] = (2,0,1,1),a] = (1,0,0, —1), a] = (0,2, 3,1) bzw. b = (2, 1,0, 1),

bl = (-1,3,1,0), bl = (0,1,1,1), bl = (4,10,3,4) bxldet eine Basis eines vierdimensionalen
Vektorraumes” Der Vektor aT (3,1, 1, 2) ist beziiglich der ermittelten Basen zu zerlegen.

4.7: Man weise nach, daB die Abbildungen

00 .. 0 100 ... 0
00 .. 0 010 ..0
Dy=1{ . . . und @, = .. .
00 .. 0 "Looo .1

linear sind.
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5.1. Bilineare und quadratische Formen

Die Menge der reellen Zahlen kann als linearer Vektorraum R aufgefaBt werden;
denn die Axiome fiir einen linearen Vektorraum (vgl. 4.1.) werden von den reellen
Zahlen erfillt. Zum Beispiel ist mit zwei reellen Zahlen p, und g, auch deren Linear-
kombination «,0; + &,0, in R enthalten. Dann kann ein beliebiger Vektorraum V
vermittels der linearen Abbildung @ auf R abgebildet werden:

P: V- R

Eine solche Abbildung ist eine Linearform und geniigt den Eigenschaften I und II
von 4.2. Man bezeichnet @ auch als Linearform auf V. Die Gesamtheit F(V, R) aller
dieser linearen Abbildungen von ¥ auf R bildet einen linearen Vektorraum iiber R,
namlich den zu ¥V dualen linearen Vektorraum V* (vgl. 4.2.).

Wenn V, und V, zwei lineare Vektorraume iiber R sind, dann versteht man unter
dem Produkt V; x ¥V, die Menge aller geordneten Paare (x,, X,) mit x; € V; und
X, € V,.

Eine Abbildung

D:V, x V,—> R
heiBt eine Bilinearform auf dem, Raumpaar (¥,, V), wenn sie fiir jedes feste x, € V;
eine Linearform auf ¥, und fiir jedes feste x, € V', eine Linearform auf ¥, ist. Wenn
X, X; € Vy, X,, X, € ¥V, und a € R, dann gelten

D(x; + X1, X;) = D(x;, X;) + DXy, X;),

D(xy, X, + X3) = (x4, X,) + DP(x4, X3),

D(ax,, X) = ad(x,, X,),

¢(x1 ’ aXZ) = a¢(x1 ’ x2)' '
Fiihren wir in ¥; und V, je eine Basis ein, wobei &; bzw. , die zugehorigen Vektor-
komponenten sind, dann ist mit beliebigen Koeffizienten a;; € R

D(x,, X,) = iZk M

eine Bilinearform auf (¥, V). Und jede Bilinearform 1aBt sich in dieser Form dar-
stellen. ' ‘
Wenn V, = V, = Vist, dann heifit die Abbildung

P:VxV->R

eine Bilinearform auf V.
Sind nun x, y € ¥, dann heilt @ eine symmetrische Bilinearform auf V, wenn

D(x,y) = (v, x)

ist. Wenn {e,, e,, ..., e,} eine Basis von Vist, also diee;, i = 1, 2, ..., n, voneinander
linear unabhéingig sind, und &, und 7, sind die Komponenten von x bzw. y beziiglich
dieser Basis, dann ist

D(x, y) = §1 k);lam&m

mit @y = D(e;, e); L,k =1,2,...,n.
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& N1
Mit [ay)mn = A, ‘5.2 —xund | 7| = y kann die Bilinearform auf V folgen-
& n
dermaBen dargestellt werden:
D(x,y) = x"Ay.

Diese Bilinearform ist genau dann symmetrisch, wenn die zugehérige Matrix A
symmetrisch ist, d. h., wenn gilt A = AT. Zum Beispiel ist das Skalarprodukt

2
D(x,y) = ig.l Em

eine symmetrische Bilinearform auf R (V' = R; Basise; = (1,0), e, = (0, 1)).
Wenn D(x, y) eine symmetrische Bilinearform auf V ist, dann heiB3t

0(x) = D(x, x)
eine quadratische Form auf V. Ausfiihrlich geschrieben:
O(X) = ay1x} + 2a,,%,%; + 2a;3%,1x3 + -+ + 2a1,X1X,
+ ay,x3 + 2a33%,X3 4+ + 2a2,X2X,
+ az3xt 4 o+ 2a3,x3x,

+ Apx2
oder in Matrixdarstellung
0(x) = xTAx.

Dabei ist AT = A, und die Matrix A heiit Matrix der quadratischen Form Q. Wir
wollen grundsitzlich annehmen, dal ¥ = R, also x reell ist; da der Grundkorper
iiber dem der lineare Vektorraum errichtet wird, der reelle Zahlkorper R ist, ist Q(x)
eine in den x; homogene reellwertige Funktion 2. Grades der n Veradnderlichen Xx;.

Fiir physikalische und technische Anwendungen (z. B. fiir die Beschreibung der
Energie in mechanischen Systemen) sind solche quadratischen Formen von Bedeu-
tung, die fiir beliebige reelle Werte der x; nur positive Werte annehmen oder héchstens
gleich null werden, d. h.

wenn  Q(x) = 0 fiir x; e R,
O(x) > 0 fiir beliebige x + o und
Q(x) =0 nurfir x =o,

dann heiBt Q(x) positiv definit; wird der Wert 0 auch fiir x & 0 angenommen und ist
sonst Q(x) > 0, dann heit Q(x) positiv semidefinit. Die zur Form Q(x) gehorige
Matrix A heiBt dann ebenfalls positiv definite oder positiv semidefinite Matrix. Eine
positiv definite Matrix ist stets regular. (Wenn also die Matrix singular ist, dann kann
die zugehorige Form hochstens positiv semidefinit sein.)

Wenn eine symmetrische Matrix A gegeben ist, dann ist die zugehdrige quadratische
Form Q(x) dann und nur dann positiv definit, wenn die Determinanten 4;, i = 1,
2, ..., n, alle gréBer als null (d. h. streng positiv) sind ; dabei ist

4, = ay,, 4 = det ["“ 42 ] o Ay = det A.

az; Az



5.2. Eigenwertprobleme 129

Eine quadratische Form Q(x) kann durch Ahnlichkeitstransformationen (vgl. 5.2.4.,
5.2.5.1. und 5.2.8.1.) oder reelle lineare Transformationen (oder durch geeignete
Basiswechsel) so umgeformt werden, daB die Matrix A eine Diagonalmatrix wird,
die quadratische Form alsc nur noch quadratische Glieder aufweist (sog. Reduktion
quadratischer Formen). Besonders bemerkenswert ist die Eigenschaft, daB in der
reduzierten Darstellung die Anzahl der positiven Glieder und der negativen Glieder
konstant ist, diese Anzahlen also invariant gegeniiber den durchgefiihrten Trans-
formationen sind (Trdgheitsgesetz der quadratischen Formen).

5.2. Eigenwertprobleme

5.2.1. Aufgabenstellung

Wir betrachten eine quadratische Matrix A mit n Zeilen und n Spalten, deren
Elemente reelle oder komplexe Zahlen sind. Durch die Multiplikation der Matrix
mit einem n-dimensionalen, i. allg. komplexwertigen Vektor x entsteht ein neuer n-di-
menstonaler Vektor y, wobei wir unterscheiden miissen, ob die Multiplikation von
rechts oder von links durchgefiihrt wird. Bei Multiplikation von rechts schreiben wir
y = Ax

und bei Multiplikation von links
yT = xTA.

Bei solchen linearen Transformationen
X—y

tritt bei vielen praktischen und theoretischen Aufgabenstellungen die Frage auf, ob
es Vektoren gibt, die bei der Transformation unverindert bleiben oder bei der
Transformationin ein Vielfachesihrer selbst iibergehen. Die letztgenannte allgemeinere
Fragestellung heiBit Eigenwertaufgabe.

Die Eigenwertaufgabe wird zunachst fiir den Fall der rzchtsseitigen Multiplikation
formuliert: Gesucht sind alle (oder nur einige) vom Nullvektor verschiedenen (kom-
plexwertigen) Vektoren r und zugehorigen (komplexen) Zahlen 4, so daB3

Ar = Jr ;.1
bzw. in ausfiihrlicher Schreibweise

ay ry + agor; + oo+ agr, = Arg

ayiry + Ayry + .o+ Gyly = A2 (5.1)

Ayiry + Quars + ... + ayr, = Ar,

gilt. Solche Vektoren r werden rechtsseitige Eigenvektoren und die zugehorigen
Zahlen A Eigenwerte, charakteristische Zahlen oder charakteristische Wurzeln der
Matrix A genannt. Man tberlegt sich leicht, daB bei dieser Definition der Null-
vektor o als Eigenvektor ausgeschlossen werden muB. Ohne diese Einschrankung wire
r = o Eigenvektor jeder Matrix und damit alle reellen Zahlen zugehérige Eigenwerte.

Die Formulierung der Eigenwertaufgabe fiir die linksseitige Multiplikation lautet:
Gesucht sind alle (oder nur einige) vom Nullvektor verschiedenen Vektoren 1, fiir die

I'A = ul” (5.2)

9 Manteuifel, Lineare
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gilt. Vektoren 1, die (5.2) erfiillen, heiBen linksseitige Eigenvektoren und die zuge-

hoérigen Zahlen u Eigenwerte.
Diese Aufgabenstellungen kommen hiufig in modifizierter Form vor; z. B. ist oft

nur nach den Eigenwerten und nicht nach den Eigenvektoren gefragt (daher auch der
Name ,,Eigenwertaufgabe**).

Beispiel 5.1: Fur

0 -1 07
A=|-1 -1 1}, r= 21, A=-2
0 1 0] -1
gilt
-2 -1
Ar=| =4 |= =2 2| =-=2r.
2 | —1

Der Vektor r ist also ein Eigenvektor von A und A der zugehdrige Eigenwert. Ersetzen wir in diesem
Beispiel den Vektor r durch den Vektor s = 2r, so ergibt sich, daB auch s ein Eigenvektor ntit dem

Eigenwert A = —2 ist:

-4 2
As=| -8 | = =2 4| = -2
4] -2

Diese Eigenschaft gilt offenbar nicht nur fiir den Faktor 2 und nicht nur fiir dieses
Beispiel, sondern fiir alle reellen oder komplexen Faktoren ¢ % 0 und fiir beliebige
Matrizen. Die Eigenvektoren sind also nur bis auf einen (von null verschiedenen) Faktor

eindeutig bestimmt.
Eine weitere Eigenschaft der Eigenvektoren 1aBt sich ebenfalls unmittelbar er-

kennen.
Durch Transponieren von (5.2) erhdlt man

ITA)" = ul
und daraus
ATl = ul.

Die linksseitigen Eigenvektoren einer Matrix A stimmen also mit den rechtsseitigen
Eigenvektoren ihrer transponierten Matrix A" iiberein, und auch die zugehorigen Eigen-
werte sind die gleichen. Aus diesem Grund geniigt es, im weiteren bis auf wenige
Ausnahmen nur die Eigenwertaufgabe fiir rechtsseitige Eigenvektoren zu betrachten.
Es wird kurz von FEigenvektoren gesprochen, wenn rechtsseitige Eigenvektoren ge-
meint sind und kein AnlaB zu Verwechslungen vorliegt.

5.2.2. Berechnung der Eigenwerte. Charakteristische Gleichung
Die Gleichung (5.1) kann mit Hilfe der Einheitsmatrix E in der Form
Ar = JEr

oder
(A-JE)r=o0 (5.3)



5.2. Eigenwertprobleme 131

geschrieben werden. Dieses lineare homogene Gleichungssystem fiir r hat genau dann
nichttriviale Lésungen r 3= o, wenn die Determinante seiner Koeffizientenmatrix
gleich null ist, d. h., wenn

det (A — AE) = 0, (5.4)

bzw. ausfiihrlich

ap, — A ag 413 - Qin
azy ay, — A Gy Qan

=0 (5.4
Qny (L% a3 Qpy — }'

gilt. Diese Gleichung heiit charakteristische Gleichung der Matrix A. Die in (5.4)
auftretende Determinante ergibt bei ihrer Auflésung ein Polynom p(2) n-ten Grades
beziiglich 4,

2(A) = det (A — iE), (5.5

das sogenannte charakteristische Polynom von A. Die Eigenwerte fiir die rechtsseitigen

Eigenvektoren sind also die Nullstellen des charakteristischen Polynoms p(2).

Uber die zu den linksseitigen Eigenvektoren gehdrigen Eigenwerte u wissen wir
bereits, daB sie mit den zu den rechtsseitigen Eigenvektoren von AT gehérigen Eigen-
werten yu ubereinstimmen. Fiir diese Eigenwerte x von AT gilt aber entsprechend (5.5)
die charakteristische Gleichung

det (AT — uE) =0

woraus sich nach der Umformung
det (AT — uE) = det (A — uE)T = det (A — uE)

(vgl. 2.4.2.) fiir die linksseitigen Eigenwerte u die gleiche charakteristische Gleichung
det (A — 1E) =0, |

wie fiir die zu den rechtsseitigen Eigenvektoren gehorigen Eigenwerte 4 ergibt. Wir
fassen die Ergebnisse zusammen:

Satz 5.1: Die zu den rechtsseitigen Eigenvektoren gehorigen Eigenwerte A stimmen
mit den zu den linksseitigen Eigenvektoren gehorigen Eigenwerten u iiberein.

Satz 5.2: Die Eigenwerte von A sind die Nullstellen des charakteristischen Polynoms
p(A) = det (A — AE).

Mit den Rechenregeln fiir Determinanten 1aBt sich die charakteristische Gleichung
von A noch genauer beschreiben. Man erhalt
pPA ==+ (=D Yay, + ay + ... + Apy) + ... + detA
und damit die charakteristische Gleichung

= 2"1sp(A) + ... + (—=1)"det (A) = 0, ' (5.6)
9*

S.5.1

S.5.2
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wobei sp (A), gelesen ,,Spur von A%, als Abkiirzung fiir die Summe der Hauptdiagonal-
elemente von A verwendet wird. Nach dem Wurzelsatz von Vieta') gilt folglich fir die
Eigenwerte A,

n n
> Ai=sp(A), TJIA =detA. 5.7
i=1 i=1
I . 3 4

Beispiel 5.2: Gesucht werden die Eigenwerte der Matrix A = [ 1 3 ] )

Das charakteristische Polynom von A ist

3-4

1 3-12

p(A) = A* — 64 + 5.

Es hat die Nullstellen 4; = 1 und 4, = 5.

l=(3—z)(3—z>—4,

Beispiel 5.3: Die Eigenwerte der Matrix

0 -1 0
A=] -1 -1 1
0 10

sind zu berechnen. Zunichst bestimmen wir das charakteristische Polynom p(4) = det (A — AE),
indem wir die Determinante nach ihrer ersten Zeile entwickeln (s. Entwicklungssatz fiir Determinan-
ten, 2.4.3.)

| 0

-1-1 1 -1
-1 —1-2 1|= =2 - (=1 X
0 1 —J 1 -2 0 -

M1 +AHA—1)=(=1)2
= =23 — 22 4 2 = p(d).

Als Nullstellen von p(Z) erhdlt man die drei Eigenwerte von A
Ay = =2, A, =0, Ay =

Beispiel 5.4: Wir berechnen die Eigenwerte der Matrix

0 -1 1
A=|-7 0 s
-5 =25
Das charakteristische Polynom ergibt sich zu
-4 -1 1
—7 =k 5 |= 24522 —81+ 4=pA).
-5 =2 5-14

1) Wenn Xy, X5, ..., X, Nullstellen des Polynoms f(x) = x" + a;x"! + ... + a,_1x + 4, sind,

dann gilt
a; = —(xy + x2 + ... + %),

a; = +(x1x3 + X1X3 + .. + Xp_1%n)s

a, = (—1)"x1X3 ... Xy
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Hier hat p(4) die Nullstellen
M=1, ly=2, 13=2.v

DaB dabei 4 = 2 doppelt zu zihlen ist, folgt aus der Zerlegung
H=-A-DA-2)@A-2).

Beispiel 5.5: Wir betrachten die Matrix

[

Das charakteristische Polynom ist
5—1 4
-4 5-—12

|=z=-1o/1+41,

und seine Nullstellen sind
}q=5+4i, ;»2=5—4i.
Die Eigenwerte reellwertiger Matrizen kénnen auch komplex sein. Da bei reell-
wertigen Matrizen das charakteristische Polynom stets reelle Koeffizienten hat, treten

bei reellwertigen Matrizen komplexe Eigenwerte immer paarweise, d. h. konjugiert
komplex auf.

5.2.3. Eigenvektoren

In diesem Abschnitt werden spezielle Eigenschaften der Eigenvektoren, insbeson-
dere Bezichungen zwischen linksseitigen und rechtsseitigen Eigenvektoren und die
Berechnung der Eigenvektoren behandelt.

Satz 5.3: Die zu verschiedenen Eigenwerten gehirigen rechtsseitigen und linksseitigen S.5.3
Eigenvektoren sind zueinander orthogonal.

Beweis: Wir betrachten einen rechtsseitigen Eigenvektor r mit dem Eigenwert 4
und einen linksseitigen Eigenvektor 1 mit dem Eigenwert u, wobei 4 £ u sein soll.
Es gilt also

Ar = Jr,

ITA = ™.
Bilden wir in der ersten Gleichung auf beiden Seiten das Skalarprodukt mit I und
in der zweiten Gleichung mit r, so erhalten wir

I"Ar = Al'r,
ITAr = ul™r.
Die zweite dieser Gleichungen, von der ersten subtrahiert, ergibt
A=wlr=0.
Das ist aber wegen 4 — g # 0 nur dann méglich, wenn
I'r=0

gilt, also 1 und r orthogonal sind, womit unsere Behauptung bewiesen ist. ®
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'Da die linksseitigen Eigenvektoren und Eigenwerte von A mit den rechtsseitigen
Eigenvektoren und Eigenwerten von AT iibereinstimmen, kann der Inhalt von Satz 5.3
auch folgendermaBen formuliert werden:

Satz 5.4: Die zu verschiedenen Eigenwerten gehorigen Eigenvektoren von A und AT
sind zueinander orthogonal.

Beispiel 5.6: Fiir die Matrix A von Beispiel 5.4 ist

2
ri=| 1 |mit 2;, =1
| 3
ein Eigenvektor mit zugehorigem Eigenwert, und fiir AT gilt Entsprechendes fiir
- 4
r, = 1 |mit 4, =2.

| -3

Dies bestiitigt man leicht durch Einsetzen in Ar; = A;r; und ATr, = A,r,. Folglich miissenr, undr,
zueinander orthogonal sein, was man auch bestitigt findet:

Tr,=2-441:1-3-3=0.

Wir wollen jetzt auf die Berechnung von Eigenvektoren eingehen. Bereits im vorher-
gehenden Abschnitt wurde festgestellt, daB

(A-JiE)r=o0 (5.3)

ein lineares homogenes Gleichungssystem fiir r bzw. fiir die Komponenten r,, ..., r,
von r ist. Dieses Gleichungssystem hat die Gestalt

(au ol }u)rl + agars + ... + Ayyl'y = 0
ayry + (@ =)y + .. + aytr, =0 (5.3)

Aufy + Aoty + ... + (@ — A r, = 0.

Die Erfiillung dieses Gleichungssystems durch eine nichttriviale Lésung ist gewahr-
leistet, falls A ein Eigenwert, also eine Nullstelle des charakteristischen Polynoms ist.
Man hat folglich zuerst 4 zu berechnen, dann 4 in das Gleichungssystem (5.3’) einzu-
setzen und schlieBlich die Lésung ry, ..., r, von (5.3') zu bestimmen. Bei der Losung
von (5.3') ist besonders zu beachten, daBl die Koeffizientendeterminante (5.4") von
(5.3") gleich null und deshalb mindestens eine Gleichung linear abhangig ist. Deshalb
ist mindestens eine der Unbekannten r,, ..., r, frei wahlbar. Mit dem Begriff des
Ranges R(A) einer Matrix A 148t sich die Anzahl der linear abhédngigen Gleichungen
bzw. der frei wihlbaren Unbekannten angeben. (vgl. 3.1.); sie ist gleich dem so-
genannten ,,Rangabfall“ n — R(A — AE). Dies ist gleichzeitig auch die Anzahl der
voneinander linear unabhingigen Losungsvektoren des Gleichungssystems. Wir
halten das fiir die Eigenvektoren resultierende Ergebnis im folgenden Satz fest.

Satz 5.5: Die Anzahl der zu einem Eigenwert A gehdrigen linear unabhdngigen Eigen-
vektoren ist

n — R(A — JE). (5.8)
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Ohne Beweis geben wir einen Sachverhalt an, der etwas iiber den Zusammenhang
zwischen der Vielfachheit eines Eigenwertes und der Zahl der dazu maximal exi-
stierenden linear unabhéngigen Eigenvektoren aussagt:

Satz 5.6: Die durch (5.8) gegebene Zahl der zu einem Eigenwert A gehorigen linear S.5.6
unabhdingigen Eigenvektoren ist nicht grofler als die algebraische Vielfachheit des
Eigenwertes.

(Im Beispiel 5.4 hat der Eigenwert 4 = 2 die algebraische Vielfachheit 2.)

Zu einem einfachen Eigenwert 4 gibt es folglich genau einen Eigenvektor, abgesehen
von den Eigenvektoren, die man erhilt, wenn man den einen Eigenvektor mit einer
von null verschiedenen Zahl multipliziert. Denn wegen det (A — AE) = 0 ist das
Gleichungssystem (5.3) nichttrivial 16sbar, und es gibt also mindestens einen Eigen-
vektor; andererseits schlieBt Satz 5.6 aus, daB es mehr als einen Eigenvektor gibt.
Hat eine Matrix nur einfache Eigenwerte, so gibt es insgesamt n Eigenvektoren, ndmlich
zu jedem der n Eigenwerte einen. Diese n Eigenvektoren sind linear unabhdingig, was
wir am Ende dieses Abschnitts beweisen werden. Durch diese. Eigenschaft, n linear
unabhingige Eigenvektoren zu besitzen, ist eine wichtige Klasse von Matrizen ge-
kennzeichnet, die sogenannten diagonaldhnlichen Matrizen, mit denen wir uns in
Abschnitt 5.2.5.1. ausfiihrlicher befassen werden. Es kann aber vorkommen, daB es
beispielsweise zu einem zweifachen Eigenwert nur einen Eigenvektor gibt. Ein solcher
Fall liegt in dem unten angegebenen Beispiel 5.9 vor. Die Matrix hat dann weniger
als » linear unabhingige Eigenvektoren.

Um zwei Eigenvektoren sofort ansehen zu kénnen, ob sie kollinear sind, d. h. sich
nur um einen Faktor unterscheiden, fiihrt man eine Normierungsvorschrift ein
(dafiir liegen natiirlich noch wesentlichere, z. B. rechentechnische Griinde vor). Dazu
bieten sich viele Méglichkeiten an. Die verbreitetsten Normierungsvorschriften sind

) VI 4R+ o+ =1,

2) max |r]| =1, '
i=1,..,n

3) [Pl + [ral + oo + o = 1.

Wir wihlen die erste Mdglichkeit: Die euklidische Linge der normierten Eigen-
vektoren soll stets eins sein.

Beispiel 5.7: Wir bestimmen die Eigenvektoren der Matrix A aus Beispiel 5.2. Die Eigenwerte von A
sind bereits bekannt,

;»1 = 1, 2.2 = 5.
Die beiden Komponenten des zu 4; gehdrigen Eigenvektors r; bezeichnen wir mit r;; und r,,:

o]

r = .

T2y

Das lineare Gleichungssystem (5.3") lautet dann
2}'11 + 4?'21 = 0,

rig + 2"21 = 0.

Diese Gleichungen sind voneinander linear abhédngig. Wir konnen also eine der beiden Unbekannten
beliebig wihlen. Setzen wir r,y = 1, so erhalten wir aus der zweiten Gleichung ry; = —2, also

-2 -2/5
r; = [ ]und normiert: r{? = [ /\/_] .
1 l/\/ 5
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Fur den Eigenwert 4, = 5 ergibt sich bei gleicher Bezeichnungsweise das Gleichungssystem
—2ry; + 4r;; =0,
ri2 — 2r;; = 0.
Wir wihlen r,, = 1 und erhalten damit r,, = 2, also
. =[ : [%/ E].
1 INE

DaB r, und r, linear unabhingig sind, kann leicht nachgepriift werden (vgl. 1.2.7.):
-2 2
11

r(n) —

und normiert: r3

2.

2=—-4%0.

[l’urz| =

Beispiel 5.8: Dieses Beispiel zeigt, daB auch beim Auftreten mehrfacher Eigenwerte ein System von
n linear unabhingigen Eigenvektoren existieren kann. Die Matrix

-4 -3 3
A=]| 2 3 -6
-1 =3 0

hat das charakteristische Polynom

det(A—2E)= —(A+3)A+3)(A-5)
und folglich die Eigenwerte

Ay = =3, A, =-3, A3=35.
Wir bezeichnen die Komponenten der zu 4, = —3 gehorigen Eigenvektoren mit ryy, a3, r35. Das
Gleichungssystem (5.3’) hat dann die Form

—ryg — 32y + 3r3; = 0.

2ryy + 6ryy — 6r3y =0, *)

—ryy — 3ryy + 3r3; = 0.

In diesem Gleichungssystem sind offenbar zwei Gleichungen von der dritten linear abhingig, es gilt
R(A — AE) = 1. Damit ist nach Satz 5.5 die Zahl der zum Eigenwert 4, = —3 gehdrigen linear
unabhingigen Eigenvektoren gleich

n—RA-ZE)=3-1=2,

Diese Eigenvektoren sind wegen der jetzt moglichen freien Wahl von zwei Komponenten auch bei
Normierung nicht eindeutig bestimmt. Um den ersten Eigenvektor zu erhalten, wihlen wir

ry =1,

und erhalten damit aus dem Gleichungssystem ry,

r3 =0

— 3, womit der erste Eigenvektor

-3 -31/10
= 1 | und normiert: r{® = i /\/ 10
0 0 -°
ist. Um zum gleichen Eigenwert 4; = —3 einen zweiten, von diesem linear unabhingigen Eigen-

vektor r, zu erhalten, miissen wir das Gleichungssystem mit den gleichen Koeffizienten wie (*),
jedoch mit den Komponenten r,,, r,,, 73, verwenden; wir setzen jetzt

ra; =0, r3; =1,



5.2. Eigenwertprobleme : 137

woraus nach Einsetzen in das Gleichungssystem r;, = 3 folgt, also

3 31/10

r2= | O | und normiert: r® = | 0
1 1/4/10

DaB sich ry und r, nicht etwa nur um einen Faktor unterscheiden, ist offensichtlich; sie sind also
linear unabhingig. Fiir die Berechnung des Eigenvektors zu 4, = 5 erhilt man das Gleichungs-
system

"‘9"13 - 3"23 + 3’33 = 0,

2ry3 — 2ry3 — 6r33 =0,

—ry3 — 3’23 - 5}'33 = 0.
Da 4, = 5 ¢in einfacher Eigenwert ist, wissen wir bereits, daB es nur einen linear unabhingigen
Eigenvektor gibt, das Gleichungssystem den Rang 2 hat und folglich nur eine Komponente beliebig

gewidhlt werden kann. Wir wihlen r;3 = 1 und erhalten aus den ersten beiden Gleichungen das in-
homogene Gleichungssystem

—=9r13 — 3rz3 = =3,
2ry3 — 2r;3 =6
mit der Losung r;3 = 1, r,3 = —2. Der dritte Eigenvektor lautet also
1 16 ]
r3 = | =2 | und normiert: r{® = —2/\/g
1 NG

Das System der Eigenvektorenr,,r,, r3 ist linear unabhingig, denn die aus diesen Vektoren gebildete
Determinante

w

3 1
Iry, 1y, T3] = 1 0-2|=-8
01 1
ist von null verschieden.

Beispiel 5.9: An der Matrix A von Beispiel 5.4 werden wir sehen, daB es zu einem Eigenwert weniger
linear unabhiingige Eigenvektoren geben kann, als seine algebraische Vielfachheit betrigt. Die Eigen-
werte von A sind

Al=17 }'2=2, }'3=2'

Die Berechnung des zum einfachen Eigenwert 4, = 1 gehorigen Eigenvektors erfolgt wie im voran-
gegangenen Beispiel aus einem linearen homogenen Gleichungssystem vom Range 2. Nach Wahl
von r3; = 3 erhidlt man die Losung ry; = 2, rpy = 1, also

2 2//14

r; = | 1 | undnormiert: £ = | 1 /\/]Z .

3 14
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Fiir den Eigenwert 4, = 2 hat das System (5.3") die Gestalt
=2ri3 —r3; +r3;; =0,
—Try2 —=2r33 + 5r3, =0,
—=5ry2 — 2r23 + 3r3; = Q,

Die Koeffizientenmatrix dieses Systems hat den Rang 2, denn es gibt zweireihige Unterdeterminanten,
die von null verschieden sind, beispielsweise gilt fiir die Unterdeterminante A3

-2 -1
-7 =2
Nach (5.8) gibt es zum Eigenwert A, = 2 also nur einen linear unabhidngigen Eigenvektor. Wir erhal-
ten ihn, wenn wir eine der Komponenten frei wihlen und in das Gleichungssystem einsetzen. Wir

wihlen r,, = 1 und erhalten als Losung des resultierenden Gleichungssystems ry, = —1,r3;, = —1,
Der einzige zu 4, = 2 existierende Eigenvektor (abgesehen von seinen Vielfachen) lautet also

-1 [ -11/3
= 1 | und normiert: rf = 1//3

-1 ~-1/3

Mithin hat die Matrix A nur zwei linear unabhingige Eigenvektoren.

= -3,

Beispiel 5.10: Sind die Eigenwerte einer Matrix A komplexwertig, so miissen wegen Ar = Ar bei
reeller Matrix A auch die entsprechenden Eigenvektoren komplexwertig sein. Da die bisher fiir die
Bestimmung der Eigenvektoren angegebenen Regeln aus der Losungstheorie der linearen Gleichungs-
systeme abgeleitet wurden und diese Theorie auch fiir Gleichungssysteme mit komplexen Koeffizienten
giiltig ist, konnen wir Eigenvektoren fiir komplexe Eigenwerte (und ganz allgemein Eigenvektoren
komplexer Matrizen) nach den gleichen Regeln wie bisher berechnen. Wir haben dabei nur die beson-
deren Rechenregeln der komplexen Zahlen untereinander zu beachten.
Wir wollen die Eigenwerte und Eigenvektoren der Matrix

a=[ ]

berechnen. Das charakteristische Polynom
5—-41 4

=12 —
5 —3-_2 24+ 5

hat die konjugiert komplexen Nullstellen
Ay=1+2i, 2;,=1-=2i

Das Gleichungssystem fiir die Komponenten ry; und r,; des zu 4; gehorigen Eigenvektors r; lautet
4 —=2)ryy +4ry; =0,
—5ryy = (4 + 2))ryy = 0.

Sein Rang ist eins, denn die zweite Gleichung geht durch Multiplikation mit —1 — i/2 aus der
ersten Gleichung hervor. Wihlen wir r,; = 5, so folgt aus der zweiten Gleichung ry; = —4 — 2i,
der erste Eigenvektor ist also

—4-2
r= 5 ].

Entsprechend erhalt man durch das Gleichungssystem
(4+2i)flz+4r22 =0,
—5r12 —(4 —2i)ry, =0
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den zu 4, gehdrigen Eigenvektor

—4 42
I = 5 .

Nach diesen Beispielen wollen wir nach dem Grade der Unbestimmtheit bzw.
Bestimmtheit der Eigenvektoren fragen. Wir haben bereits erkannt, daB jeder Eigen-
vektor nur bis auf einen allen Komponenten gemeinsamen Faktor genau bestimmbar
ist, daB also jedes von null verschiedene Vielfache eines zu einem Eigenwert A gehorigen
Eigenvektors wieder ein Eigenvektor zum gleichen Eigenwert A ist. Diese Regel gilt
in allgemeinerer Form auch fiir den Fall, daB aus zum gleichen Eigenwert 4 gehdrigen
Eigenvektoren Linearkombinationen gebildet werden.

Wir nehmen an, r,, r,, ..., I, seien Eigenvektoren zum gleichen Eigenwert 4, es
gelte also

Ark=h]‘, l'k=i=o fir k= 1,2,...,m.

Aus den Eigenvektoren r, bilden wir mit den Zahlen ¢,, c,, ..., ¢,,, von denen min-
destens eine ungleich null sein muB, die Linearkombination

Tr= C;l‘l + chz + ...+ C,,,l‘,,,. : (5.9)
Fiir den so gebildeten Vektor r gilt nun
Ar = A(eiry) + Ale,ry) + ... + Ale,rn)
= ClAl'l + CzA.l'z + ... + c,,,Al',,,
=‘ 617.1'1 + Czlrz + oo F C,,,}»l',,,
= Megry + coFy + .o+ Cln)
= ir.

Der Vektor r ist demnach auch wieder ein Eigenvektor zum Eigenwert A, falls er nicht
gerade der Nullvektor ist. Wir fassen zusammen:

Satz 5.7: Jede vom Nullvektor verschiedene Linearkombination von Eigenvektoren,
die alle zum gleichen Eigenwert A gehdren, ist wieder ein Eigenvektor zum Eigenwert A.

Durch eine solche Linearkombination entsteht aber stets ein von den zur Linear-
kombination herangezogenen Eigenvektoren linear abhingiger Eigenvektor. Man
kann also von einem bekannten System linear unabhangiger Eigenvektoren durch
Linearkombination seiner Vektoren nicht zu einem umfassenderen linear unabhin-
gigen System gelangen.

Der folgende Satz gibt AufschluB iiber die lineare Unabhangigkeit von Eigen-
vektoren, die zu verschiedenen Eigenwerten gehoren.

Satz 5.8: Sind A, (k = 1,2, ..., m) paarweise voneinander verschiedene Eigenwerte
undr, (k = 1,2, ..., m) zugehorige Eigenvektoren, so ist das System der Eigenvektoren
{ry, r2, ..., X} linear unabhingig.
Beweis: Wir miissen zeigen, daB die Vektorgleichung

Cry + Cfy + oo + Cp¥y =0 (5.10)

nur gilt, wenn alle Koeffizienten ¢, verschwinden. Durch Multiplikation beider Sei-
ten dieser Gleichung von links mit A folgt

CiAEy + €Ay + oo + Cphylm = O. (5.11)

S.5.7

S.5.8



140 5. Anwendungen der linearen Algebra

Multiplizieren wir nun Gleichung (5.10) mit 4, und subtrahieren sie dann von (5.11),
so erhalten wir

02(12 - }hl) r, + C3(13 _.2-1) rs + ... + C,,,(Z.m' - ).1) rm = 0. (5.12)
Die gleichen Operationen, die wir mit Gleichung (5.10) vorgenommen haben, wieder-

holen wir nun mit Gleichung (5.12), nur mit dem Unterschied, daB wir zur zweiten
Multiplikation nicht 4,, sondern 4, verwenden. Es ergibt sich dann

3z — A) (A3 — A)rs + oo + (A — A1) (3 — A) 1, = 0.
Diese Operationen konnen wir offenbar fortsetzen, bis zuletzt

P = 2) Gy = 22) oo. Ay — Ap_)) T = ©
entsteht. Da alle 4, voneinander verschieden sind und r,, # o ist, 148t diese Gleichung
nur den SchiuBl

cm=0

zu. Durch Umnumerierung in (5.10) und gleiches Vorgehen kénnen wir auch das
Verschwinden jedes-anderen Koeffizienten ¢, zeigen. Es gilt also

C’_=C2=...=Cm=0,

womit der Satz bewiesen ist.®

Der eben dargestellte Sachverhalt 148t eine wichtige Folgerung fiir den Spezialfall
einer Matrix mit nur einfachen Eigenwerten zu. Die zu den n einfachen Eigenwerten
A (k =1, ..., n) gehorigen Eigenvektoren r, bilden nach Satz 5.8 ein linear unabhdn-
giges Vektorsystem, also eine Basis des komplexen Vektorraumes C".

5.2.4. Ahnlichkeitstransformationen

Wir wenden uns jetzt wieder der durch die Matrix A im Raume R" vermittelten
linearen Abbildung

y = Ax (5.13)

zu. Es soll zunichst untersucht werden, wie diese Abbildung zu beschreiben ist, wenn
man beziiglich der Darstellung der Vektoren x und y zu einem anderen Koordinaten-

system tiibergeht.
Verwenden wir statt des ,,alten‘* Koordinatensystems mit den Grundvektoren
1 0 01~
0 1 0
e, = . » €2 = . y eeey € = .
L0 0 1

das ,,neue* Koordinatensystem mit den linear unabhingigen Grundvektoren

Ci1 C12 Cin

Cay Ca2 C2n
¢ = : y €= . s ey & = .

L Chy Cn2 Con



5.2. Eigenwertprobleme 141

(Darstellung im alten Koordinatensystem), so bestehen zwischen den Darstellungen
X, y im alten Koordinatensystem und x’, y’ im neuen Koordinatensystem die Be-
ziehungen

x=Cx, y=0, .14y

wobei C die spaltenweise aus den neuen Koordinateneinheitsvektoren ¢,, ..., ¢,
gebildete Matrix ist. Wir sind damit in der Lage, die im alten Koordinatensystem
durch (5.13) vermittelte Abbildung x — y auch im neuen Koordinatensystem als
Abbildung x’ — y’ durch eine Multiplikation ,,Matrix mal Vektor*, also

Yy = Bx’
beschreiben zu kénnen. Um B zu ermitteln, setzen wir die Darstellungen (5.14)
in (5.13) ein und erhalten

Cy' = ACx/,

y = C'ACx'.
Die gesuchte Matrix B hat demnach die Gestalt

B = C'AC. (5.15)

Durch die Anderung des Koordinatensystems werden sowohl die Vektoren als auch
die Matrizen einer Transformation unterworfen.

Definition 5.1: Die durch (5.15) beschriebene Matrizenoperation A — B heift Ahnlich-
keitstransformation; zwei durch eine solche Ahnlichkeitstransformation verkniipfie
Matrizen A, B heiffen dhnliche Matrizen.

Bevor wir uns wieder den Eigenwertproblemen zuwenden, halten wir noch die
bei einer Ahnlichkeitstransformation vorliegende Dualitdt fest. Aus (5.15) folgt durch
Auflésung nach A

A = CBC! (5.16)
und, wenn wir F = C-1! setzen,
A = F-'BF.

Es geht also auch A durch Ahnlichkeitstransformation aus B hervor, und zwar durch
Transformation mit der zu C inversen Matrix C-!. Es ist noch zu bemerken, da3
eigentlich erst durch diese Feststellung die oben eingefiihrte Bezeichnung ,,A und B
sind ahnlich** gerechtfertigt wird.

Fiir die Eigenwerte und Eigenvektoren von dhnlichen Matrizen gelten grundlegende
Beziehungen, die haufig bei theoretischen und praktischen Problemen (z. B. in der
Geometrie und in der Rechentechnik) als Hilfsmittel benutzt werden.

Satz 5.9: Ahnliche Matrizen haben die gleichen Eigenwerte.

Beweis: Es sei A ein Eigenwert und r ein Eigenvektor der Matrix A, und die Matrix B
sei durch die Ahnlichkeitstransformation (5.15) aus A hervorgegangen. Dann gelten
fiir den Vektor '

s=CIr

D.5.1

S.5.9
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die Beziehungen
Bs = C-'ACC-'r = C-'Ar = iC"'r,

und folglich
Bs = Js.

Ferner gilts # o,dennauss = owiirder = Cs = ofolgen, was im Widerspruch dazu
steht, daB r ein Eigenvektor ist. Der Vektor s ist also ein Eigenvektor von B und A
der zugehorige Eigenwert. Damit ist bewiesen, daB die Eigenwerte von A auch Eigen-
werte von B sind. Auf Grund der bestehenden Dualitét ist dann aber auch jeder
Eigenwert von B ein Eigenwert von A. Die Matrizen A und B besitzen also die gleiche
Menge von Eigenwerten.

Aus dem eben gefiihrten Beweis kann noch die Beziehung zwischen den Eigen-
vektoren dhnlicher Matrizen ersehen werden. Ist r ein Engenvektor von A zum
Eigenwert A, so ist s = C-!r ein Eigenvektor mit dem gleichen Eigenwert % der
Matrix B. Fiir die Riicktransformation (5.16) gilt die entsprechende duale Aussage:
Wenn B einen Eigenvektor s mit dem Eigenwert 2 hat, so ist der Vektor r = Cs ein
Eigenvektor von A mit dem gleichen Eigenwert 2.

Es sei nun {ry, ..., r,} ein linear unabhingiges System von Eigenvektoren von A.
Wir betrachten das durch s, = C'r, zugeordnete System {s,, ..., s,,; von Eigen-
vektoren der Matrix B = C~'AC und wollen zeigen, daB dieses linear unabhangig
iste Dazu ersetzen wir in der Vektorgleichung

18y +¢C38, + ... + CpS =0 (5.17)
die Eigenvektoren s, gemaB s, = C-'r;, und erhalten so

¢, C 'ty + ¢,C'ry + ... + ¢,C'r, = 0.
Aus dieser Gleichung entsteht nach Multiplikation mit der Matrix C

CiFy + Cfy + oo + Cpfy = O,
woraus wegen der linearen Unabhéangigkeit der Eigenvektoren r,, r,, ..., r,, folgt,
daB alle Koeffizienten €15 €25 -0y Cm dieser Gleichung verschwinden miissen. Wir
haben damit gezeigt, daB in der Vektorgleichung (5.17) notwendig alle Koeffizienten
€15 -5 «oes Cm gleich null sind. Das Vektorsystem {s,, ..., s,} ist also linear un-

abhingig. Beachtet man zusitzlich noch die Umkehrbarkeit der Ahnlichkeitstrans-
formation, so ergibt sich

Satz 5.10: Ahnliche Matrizen haben zu gleichen Eigenwerten die gleiche Anzahl linear
unabhdngiger Eigenvektoren.

5.2.5. [Eigenwertprobleme fiir spezielle Matrizen

5.2.5.1. Diagonalihnliche Matrizen. Hauptachsentransformation

Die fundamentale Bedeutung der Ahnlichkeitstransformation fiir Eigenwert-
probleme und die besonders iibersichtlichen Verhiltnisse bei Diagonalmatrizen legen
es nahe, alle zu Diagonalmatrizen dhnliche Matrizen als eine besondere Klasse von
Matrizen zu behandeln.

Definition 5.2: Eine Matrix A, die durch eine Ahnlichkeitstransformation (5.15) in
eine Diagonalmatrix iibergefiihrt werden kann, heifit diagonalihnlich.
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Es gibt demnach fiir jede diagonaldhnliche Matrix A eine nichtsingulire Matrix C,
so daB
D = C-!'AC (5.18)
.eine Diagonalmatrix ist."Da die Diagonalelemente von D gleichzeitig die Eigen-
werte von D sind, miissen sie wegen der Invarianz der Eigenwerte gegeniiber einer
Ahnlichkeitstransformation mit den Eigenwerten 1,, ..., 4, von A {ibereinstimmen.
D hat also die Form

i 0 .0
b |0 % .0
0 0 .2

Linear unabhéngige Eigenvektoren von D sind ey, e,, ..., €,, von A folglich
Ce,, Ce,, ..., Ce,;

das sind aber gerade die n linear unabhéngigen Spaltenvektoren ¢, von C.

Im vorangehenden Abschnitt ist gezeigt worden, daB bei einer Koordinaten-
transformation der Form x’ = C-!x die Matrix B = C-!AC im neuen Koordinaten-
system die gleiche lincare Abbildung wie die Matrix A im alten Koordinatensystem
vermittelt. Ist B nun eine Diagonalmatrix, B = D = diag {4,}, so ist die durch B
erzeugte lineare Abbildung x’ — y’ = Bx’ besonders einfach, namlich durch

ye=hx, (k=12,...,n)

zu beschreiben. Diese Abbildung ist lings der neuen Koordinatenachsen ¢, eine reine
Streckung bzw. Stauchung mit dem Zentrum im Koordinatenursprung und dem
Streckungs- bzw. Stauchungsverhaltnis 4. Die gesamte lineare Abbildung x’ — Bx’
und damit auch die lineare Abbildung x — Ax stellt eine Uberlagerung von  ein-
fachen Streckungen bzw. Stauchungen langs der Achsen ¢, dar. Die ¢, — die Eigen-
vektoren von A - werden aus diessm Grund auch als Hauptachsen von A und die
Ahnlichkeitstransformation auf Diagonalform als Hauptachsentransformation oder
als Diagonalisierung bezeichnet.

Es soll jetzt gezeigt werden, wie man fir eine (n, n)-Matrix A mit » linear unab-
hingigen Eigenvektoren die Hauptachsentransformation (5.18) durchfiihren kann
indem man die fir die Ahnlichkeitstransformation benétigten Matrizen C und C-!
konstruiert. Es sei {a,, a,, ..., a,} ein System von »n linear unabhingigen Eigen-
vektoren von A. Da die zu A transpomerte Matrix AT das glelche charakteristische
Polynom, also die gleichen Eigenwerte mit gleicher Vielfachheit wie A hat und auch
der Rangabfall (5.8) fiir AT bei jedem Eigenwert der gleiche ist wie fiir A, hat auch
AT ein System von n linear unabhéngigen Eigenvektoren {b,, ..., b,}. Zuerst betrach-
ten wir den Fall, daB alle Eigenwerte einfach sind. Dann gilt nach Satz 5.4 zwischen
allen Eigenvektoren a;, b, die Orthogonalitdtsrelation

a’b, =0 fir j+ k. : (5.19)
Durch Multiplikation der a;, b, mit gewissen Faktoren, z. B.
r;=a;, t=pfb
kann man noch die spezielle Normierungsvorschrift
y=1 (j=1,..,n)
erfiillen, also insgesamt
'ty = 8, (0;: Kroneckersymbol, vgl. 1.3.1.). / (5.20)
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Aus diesen Eigenvektoren r;, t, werden nun die Matrizen
t
= [rly Ty rn]a T=

gebildet. Es gilt dann
TAR = T[Ar,, ..., Ar,] = T[A;r,, ..., 1.0,]

Atiry Autir, ... A tTr, Ay 0 ... 0
_ MGr, AL6r, ... AT, _ 6 4, ...0 -D.
Mtir,  Aotir, ... Atir, 0 0 ..4,
Entsprechend erhalt man
TR =E,
was gleichbedeutend mit
T =R"!
ist. Insgesamt gilt also
R-!AR = D,
und C = R ist die gesuchte Transformationsmatrix. )
Wir haben noch den Fall eines mehrfachen Eigenwertes 4; =1, = ... = 1, zu

untersuchen. Zwischen den zugehorigen Eigenvektoren ay, ..., a, und by, ..., b, be-
steht zunachst keine Orthogonalitit der Form (5.19), sondern man mulB erst durch
geeignete Linearkombinationen neue Eigenvektoren r,, ...,r, und t,, ..., t, be-
stimmen, die die gewiinschte Eigenschaft (5.20) besitzen. Dazu kénnen wir folgender-
maBen vorgehen. Wir setzen

I, =a, t; = yuiby,
I, = X3,I; + a,, t, = yoity + yaobs,
Yp = XpiFy + oo + Xp poi¥poy + 855 t, = Yoty + oo Yy ot + Vpoby

und bestimmen die unbekannten Koeffizienten x;,, y; nacheinander aus den For-
derungen

nt; = 1;
l‘;tl = O, r’lrtz = 0, r;tz = 1, (5.21)
usw!

Es kann dabei vorkommen, daB eine Forderung rft, = 1 nicht zu erfiillen ist. Dann
hat man die Reihenfolge der Vektoren b;, j = k, geeignet zu vertauschen und danach
die Rechnung fortzusetzen.

Esist zu bemerken, daB die Konstruktion von C und C-! nicht notwendig mit Hilfe
der Eigenvektoren von AT geschehen muf, wie wir es hier getan haben. Man kann die
Matrix C auch spaltenweise aus einem beliebigen System linear unabhéngiger Eigen-
vektoren von A aufbauen und dann C-! durch Inversion, d. h. durch direkte Be-
rechnung der zu C reziproken Matrix C-! gewinnen.

Wir fassen die Ergebnisse zusammen.
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Satz 5.11: Eine (n, n)-Matrix ist genau dann diagonaldhnlich, wenn sie n linear unab- S.5.11
hingige Eigenvektoren hat.

Die Existenz von n linear unabhingigen Eigenvektorenr,, ..., I, bei einer diagonal-
ahnlichen Matrix hat zur Folge, daB das System der Eigenvektoren {r,, ..., r,} eine
Basis des R" bildet. Diese Feststellung fiihrt zu dem sogenannten Enthcklungssatz.

Satz 5.12 (Entwicklungssatz): Jeder n-dimensionale Vektor x ldpt sich in eindeutiger S.5.12
Weise als Linearkombination

X = CiF; + CoFy + ... + Cpfy

der Eigenvektoren einer diagonaldhnlichen Matrix darstellen.

Satz 5.13: Zu jeder diagonalihnlichen (n, n)-Matrix A lift sich ein linear unabhdngiges S.5.13
System ry, ..., T, von Eigenvektoren von A und ein ebensolches System t,, ..., t, von
Eigenvektoren von AT angeben, so da

l‘}-tk = 5_,,‘ (j= 1 ..-,n.k = 1 cesy n)

gilt. Die spalten- bzw. zeilenweise aus den Eigenvektoren x; bzw. t, aufgebauten Ma-
trizen R und T vermitteln die Ahnlichkeitstransformation von A auf Diagonalform,
d. h.,esgiltT =R *und

TAR = D = diag (4).

Beispiel 5.11: Wir fithren die Ahnlichkeitstransformation fiir die Matrix

3 4
A=
1 3
(vgl. Beispiele 5.2 und 5.7) durch. Wir kennen bereits die Eigenwerte 4; = 1, 4, = 5 und die zuge-

horigen Eigenvektoren aT = [—2, 1],a] = [2, 1]. Die Eigenvektoren von AT sind noch zu berechnen,
und zwar erhilt man fur b; bzw. b, dle Gleichungssysteme

2by1 + b2y =0, —2by; + b2y =0,
4b11 + 2b21 = 0, 4b12 - 2b22 = 0.

Setzt man b;; = by, = 1, so ergibt sich

MR

Folgen wir der oben dargesteliten Konstruktion, so haben wir
r,=a,, r; =a,, ty = fiby, t; = f2b,
mit
1 1 1

1
S

zu setzen, also schlieBlich

-2 2 —1/4 1/4
"=[ 1]’ "=[1]; "=[ 1/2]’ "=[1/2]'

10 Manteuffel, Lineare
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Damit erhalten wir die Matrizen

-2 2] —1/4 1)2
R = N T =
11 1/4 1)2]°
fir welche man tatsichlich RT = E und TAR = D = diag(4,) bestitigt findet. Fiir die zur Berech-
nung der Matrix TAR erforderlichen Matrizenmultiplikationen AR und T(AR) verwenden wir zwei-

mal das Falksche Schema (sieche Abschnitt 2.2.3.) und ordnen die beiden Schemata zweckméBiger-
weise untereiander an:

o g
1 14R
3 4 [ =2 10
A[ 1 3 ] |1 5_AR
T[—1/4 1/2] o1 OWTAR
14 12 | 0 5]

Beispiel 5.12: An Hand der Matrix A von Beispiel 5.8 soll das beim Auftreten mehrfacher Eigenwerte
auszufilhrende Orthogonalisierungsverfahren demonstriert werden. Die Eigenwerte sind 4; = /-
= —3, 23 = 5, und die Vektoren

-3 3 1
a; = 1}, a=10]}), az=}| -2
' 0 1 1

bilden ein System linear unabhingiger Eigenvektoren von A. Ein ebensolches System beziiglich A
wird von den Vektoren

-1 2
b, = 0f, b=]1}, by= 3
1 . 0 -3

gebildet. Mit den zum gleichen Eigénwert gehorigen Eigenvektoren ay, a,, by, b, ist die oben be-
schriebene Orthogonalisierung durchzufiihren. Wir setzen

r; =ag, ty = y11by,
Iy = Xpify + 8z,  ty = yit; + yaob,

und berechnen die Koeffizienten y;4, X251, ¥22, Y21 aus den Bedingungen (5.21):
N .
nty=3y,;=1 >y, = 3 t] = [-1/3,0,1/3],

2
ity = X33 — 3= 0 = xz = 3 r; =[1,2/3,1],

8 3
I3ty = yaorzby = '?J’zz =1 = y; = 3

15 15
fity =y — e 0=y = rat 7 = [1/8,3/8, 5/8].

SchlieBlich ist noch b; zu normieren. Wir setzen

r; = as, ts = yasbs
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und erhalten aus der Forderung rit; = 1 den Wert y;3 = —1/8. Aus den neuen Eigenvektoren ry
und t; werden die Matrizen R und T gebildet (siche Schema). Die Uberpriifung von RT = E ergibt,
daB T die zu R inverse Matrix ist, T = R™!. Fiir die zweifache Multiplikation TAR wird wieder das
Falksche Schema verwendet:

-3 1 1
1 2/3 =2|R
L 0 1 1]
[—4 -3 3 ] ( 9 -3 5]
Al 2 3 -6 -3 -2 —10| AR
S - o J L o -3 5 .
-1/3 0 1/3] (-3 0 0]
T 1/8 3/8 5/8 0 -3 0 | TAR
| —1/8 —=3/8 3/8 | 0 0 5]

Diese Rechnung bestitigt, daB die Matrix A durch TAR = R-'AR auf Diagonal-
form transformiert wird, wobei die Hauptdiagonalelemente gerade die Eigenwerte
von A sind.

5.2,5.2. Symmetrische und hermitesche Matrizen

Fiir den Fall einer symmetrischen Matrix, also einer Matrix mit der Eigenschaft
AT =A

ist aus Satz 5.4 eine wichtige Eigenschaft der Eigenvektoren sofort ablesbar.

Satz 5.14: Zu verschiedenen Eigenwerten gehdrige Eigenvektoren einer symmetrischen S.5.14
Matrix sind zueinander orthogonal.

Eine weitere Besonderheit der Eigenwertaufgaben bei symmetrischen Matrizen
besteht darin, daB ihre Eigenwerte alle reell sind, falls die Matrix selbst reell ist.
Wir wollen diese Eigenschaft herleiten. Es sei A ein Eigenwert und r # o ein zuge-
horiger Eigenvektor der reellen symmetrischen Matrix A, also Ar = Ar. Wir wissen,
daB im allgemeinen A und die Komponenten r, von r komplexe Zahlen sein konnen.
Bei unserer Herleitung der Reellwertigkeit von A werden deshalb auch die zu 4
und r, konjugiert komplexen Zahlen 4 und r, auftreten. Fiir die konjugiert kom-
plexen Zahlen verwenden wir dabei als wichtigste Rechenregel die folgende Um-
formung des komplexen Skalarprodukts?)

rr=3 nn=3 |nl* (5.22)
. k=1 =
Durch Transponierung beider Seiten von Ar = Ar entsteht
(Al')T — ).l'T,
rTAT = 2T

1) Hier und im folgenden kann nach Def. 2.8 fiir ¥¥, RT, AT, ... auch r*, R®, A¥, ... geschrieben
werden.

10*
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und daraus wegen der Symmetrie von A

r’A = ir".
Zu den auf beiden Seiten stehenden Vektoren bilden wir nun die konjugiert kom-
plexen Vektoren, also

(r7A) = ("),

- YA =", ‘
Da wir hier nur reelle Matrizen betrachten, gilt A = A und demnach
A = "
Auf beiden Seiten wird nun das Skalarprodukt mit r gebildet:
TTAr = Af'r. : (5.23)
Andererseits erhilt man direkt aus Ar = Ar durch Multiplikation von links mit T*
TTAr = Ar'r.
Aus den letzten beiden Gleichungen folgt
-2 =0. (5.24)

Dar # o gilt, hat r mindestens eine von null verschiedene Komponente r,. Dann gilt
aber nach (5.22) t'r > 0, und damit folgt aus (5.24)

2=

die konjugiert komplexe Zahl von 4 stimmt also mit 4 selbst {iberein. Das gilt aber
nur, wenn A reellwertig ist. Wir formulieren das Ergebnis im

Satz 5.15: Die Eigenwerte einer reellen symmetrischen Matrix sind stets reell.

Fiir die Eigenvektoren einer reellen symmetrischen Matrix erhilt man em ahn-
liches Ergebnis, wenn man das Gleichungssystem (A — AE) r = o fiir die Berechnung
der Eigenvektoren genauer betrachtet. Da die Eigenwerte 4 reell sind, sind alle Koef-
fizienten des Gleichungssystems reell, und man erhalt als Losungen zundchst nur
reelle Vektoren. Trotzdem wire es falsch zu behaupten, alle Eigenvektoren von A
wiren reell; denn multiplizieren wir einen solchen reellwertigen Eigenvektor mit
einer beliebigen komplexen Zahl, so entsteht wieder ein Eigenvektor, dessen Kompo-
nenten aber jetzt komplexe Zahlen sind. Da wir uns bei den bisherigen Betrachtungen
stets auf den komplexen Vektorraum C™" bezogen haben, diirfen wir an dieser Stelle
die komplexen Eigenvektoren nicht vernachlissigen. Wir kénnen den Sachverhalt
in folgender Weise formulieren:

Satz 5.16: Jeder Eigenvektor einer reellen symmetrischen Matrix kann in reeller Form
dargestellt werden.

Beispiel 5.13: Wir wollen die Eigenwerte der reellen symmetrischen Matrix
[ 2a b

A=
b 2¢c

] , a,b,creelle Zahlen,
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berechnen. Das charakteristische Polynom ist
2a—4 b
b 2c — 4

l=}.2—2(a+c)l+4ac-—b’.

Seine Nullstellen 4, , 4, sind die Eigenwerte von A:
/11.z=a+ci\/b2+(a—c)2.

Diese beiden Eigenwerte sind reell, denn der unter der Wurzel stehende Ausdruck kann nicht negativ
werden.

Bisher wurde in diesem Zusammenhang nur von reellwertigen Matrizen gesprochen
und unter diesen eine spezielle Klasse von Matrizen, namlich die der symmetrischen
Matrizen angegeben, die diese Eigenschaft besitzen. Es besteht also Grund zu der
Frage, ob auch unter den komplexwertigen Matrizen eine Klasse von Matrizen mit
nur reellen Eigenwerten vorhanden ist und durch eine dhnliche einfache Eigenschaft
beschrieben werden kann. Diese Frage 148t sich beantworten, indem wir im Beweis
von Satz 5.15 priifen, an welchen Stellen benutzt wurde, daf3 A reell und symmetrisch
ist. Fiir die Herleitung der den Schliissel zum Beweis darstellenden Beziehung (5.23)
wurde einmal AT = A und ein andermal an glelcher Stelle A = A verwendet. Es hitte
also zum Beweis auch ausgereicht, wenn

AT=A (5.25)

gilt. Matrizen mit dieser Eigenschaft heilen bekanntlich hermitesche Matrizen
(siche Abschnitt 2.1.2.). Es gilt demnach der

Satz 5.17: Die Eigenwerte einer hermiteschen Matrix sind stets reell.

Da die hermiteschen Matrizen im allgemeinen nicht symmetrisch sind, ist fiir sie
Satz 5.14 nicht anwendbar. Eine dem Satz 5.14 entsprechende Orthogonalitits-
aussage 148t sich jedoch treffen, wenn man einen den komplexen Vektoren angepafiten
allgemeineren Orthogonalititsbegriff verwendet.

S.5.17

Definition 5.3: Man bezeichnet zwei komplexe Vektoren x, s als (komplex) orthogonal D.5.3

oder als unitdr, wenn
r's=0

gilt.

Fir diese Orthogonalitit gilt folgende Aussage:

Satz 5.18: Zu verschiedenen Eigenwerten gehirige Eigenvektoren einer hermiteschen
Matrix sind zueinander (komplex) orthogonal.

Die Giiltigkeit dieses Satzes kann der Leser ohne Miihe aus der Herleitung der
Sétze 5.3, 5.4, 5.14 und aus den vorhergehenden Betrachtungen bestitigen. Fiir einen
zu Satz 5.16 dquivalenten Satz iiber die Eigenvektoren reicht die Eigenschaft (5.25)
allerdings nicht aus.

Beispiel 5.14: Wir berechnen die Eigenwerte und Eigenvektoren der hermiteschen Matrix

4 l+2i]
A= . .
1-2i 0

S.5.18
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Die Eigenwerte werden als Nullstellen des charakteristischen Polynoms

|4—}. 1+ 2i il
1-2i -4
bestimmt,
Ay=—1, %, =5.
Fiur 4, = —1 ist der zugehorige Eigenvektor rT = [ry,, r21] aus dem Gleichungssystem
Srgy+ (1 +20)r, =0,
(1 =2)ry, + r;; =0

zu berechnen. Da eine Gleichung linear abhéngig ist, wihlen wir z. B. fiir r,; eine beliebige kom-
plexe Zahl und bestimmen dazu ry; aus dem Gleichungssystem. Die Rechnung vereinfacht sich,
wenn wir r,; = 1 — 2i setzen. Es ergibt sich dann r;; = —1, also .

PR

Analog wird der zweite Eigenvektor

1+ 2i
r, = 1

ermittelt. Es ist offensichtlich, daB hier die Eigenvektoren durch Multiplikation mit einer kom-
plexen Zahl nicht in reelle Vektoren tiberfithrt werden konnen. Auch die (komplexe) Orthogonalitit
von ry und r, findet sich bestatigt:

1+2i

1 ]=—1=—-2i+1+2i=0.

i, = [—1;1 + 2i] [
Eine weitere Besonderheit der reellen symmetrischen und auch der hermiteschen
Matrizen ist, daB es zu jedem p-fachen Eigenwert auch p linear unabhingige Eigen-
vektoren gibt. Der Beweis dazu wiirde zu weit fiihren. — Eine direkte Folgerung
aus dieser Eigenschaft ist die Existenz eines vollstindigen Systems linear unabhéngiger
Eigenvektoren. Die reellen symmetrischen und die hermiteschen Matrizen gehdren also
zur Klasse der diagonalihnlichen Matrizen. Fiihren wir die in Abschnitt 5.2.5.1. be-
schriebene Hauptachsentransformation fiir eine symmetrische Matrix A durch,
so kann wegen der Ubereinstimmung der Eigenvektoren von A und AT jetzt b, = a,
gewdhlt werden. Normiert man vorher noch diese Eigenvektoren (es gilt dann
afa, = 1), so fiihren die Forderungen (5.21) aufr, = t, (k = 1, ..., n), also RT = T.
Da auBerdem T = R-! gilt, erhalten wir

RT =R}, (5.26)
d. h., die Matrix R ist orthogonal (siche Abschnitt 2.3.). Wir fassen zusammen:

Satz 5.19: Jede reelle symmetrische Matrix besitzt ein vollstindiges System paarweise
orthogonaler Eigenvektoren und kann durch Ahnlichkeitstransformation mit einer
reellen orthogonalen Matrix auf Diagonalform gebracht werden (orthogonale Haupt-
achsentransformation).

Das eben festgehaltene Ergebnis 148t sich auch geometrisch interpretieren. Jede
durch eine reelle symmetrische Matrix A erzeugte lineare Transformation x — Ax
kann vermittels einer geeigneten Drehung des Koordinatensystems als Uberlagerung
von Streckungen lings der Koordinatenachsen beschrieben werden.
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Fiir hermitesche Matrizen gilt Analoges, nur daBl man jetzt auf Grund der anderen,
der komplexen Orthogonalitit der Eigenvektoren statt (5.26) fiir die Transformations-
matrix R

RT = R - (5.27)

erhilt. Matrizen mit dieser Eigenschaft heiBen unitdre Matrizen.

Satz 5.20: Jede hermitesche Matrix kann durch eine Ahnlichkeitstransformation mit S.5.20
einer unitdren Matrix auf Diagonalform gebracht werden.

Beispiel 5.15: Die reelle symmetrische Matrix

hat die charakteristische Gleichung
B =32 -924+27=0 ‘
mit den Nullstellen
}.1=3, }»2=3, 13= -’3.
Aus den beiden Gleichungssystemen (A — AE) r = o erhilt man die Eigenvektoren
1 -3 2
a; = \/; y 43 = 0 s> A3 = “\/; .
0 Je NG
Die Vektoren a; und a,, die zum gleichen Eigenwert gehoren, sind nun noch zu orthogonalisieren
und zu normieren, wihrend a; nur normiert werden mufl. Wir setzen zunichst
§; = a,,
S = X218; + a,

und bestimmen den Koeffizienten x,; aus der Bedingung sis, = 0. Es ergibt sich x,; = 1, also

sl =[-2, \/ 5, \/ E], Die Vektorens;, s, und a; werden schlieBlich noch normiert. Als Ergebnis
erhalten wir das orthonormale System von Eigenvektoren (Hauptachsen)

BN T —1/3 3
n=| 26 |, n=| /6 |, n=| -14/6
_ IRRTNEY 1INz

Die spaltenweise aus diesen Vektoren gebildete Matrix R (siche Schema) ist orthogonal, denn es
gilt RRT = E. Davon kann man sich leicht durch Ausmultiplizieren von RRT iiberzeugen. Mit
dieser Matrix wird nun die Ahnlichkeitstransformation R*AR = RTAR = D durchgefiihrt, bei
der die aus den Eigenwerten von A gebildete Diagonalmatrix D = diag (3, 3, —3) entstechen muB.
Die beiden dazu erforderlichen Matrizenmultiplikationen nehmen wir wieder im Falkschen
Schema vor.
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(143 =13 14/3 ]
26 1/6 —1/6 | R
o 12 /2 ]
RN B NN
S N ) Jo e Ve | ar
| -Js V3 o | 0 34/2 -3n/2
BN N [ 3 0 0]
R | -14/3 166 14/2 0 3 0 | R'AR

INERS TN TNET) B R T S

Positiv definite Matrizen

In Abschnitt 5.1. wurden fiir reeile symmetrische Matrizen die Begriffe ,,positiv
definit* und ,,positiv semidefinit* eingefiihrt. Zwischen diesen speziellen Matrizen-
eigenschaften und den Eigenwerten besteht ein enger Zusammenhang. Wir nehmen
an, r sei ein Eigenvektor einer positiv definiten symmetrischen Matrix A und 4 der
zugehorige Eigenwert. Fiir die quadratische Form xTAx gilt also

xTAx > O fiir alle reellen Vektoren x # o, und fiir r gilt Ar = Ar, r + o.

Nach Satz 5.16 kann angenommen werden, daB r reell ist. Der Eigenvektor r ver-
mittelt also der quadratischen Form xTAx einen positiven Wert, den wir wie folgt
darstellen kénnen:

0 < r"Ar = rT(Ar) = rT(4r) =
Wir dividieren durch die positive Zahl r™r und erhalten 0 < 4.

Die Eigenwerte positiv definiter Matrizen sind also sdmtlich positiv. Aus der Her-
leitung ist klar, daB fiir positiv semidefinite Matrizen nur A = 0 gefolgert werden kann.

Wir wollen nun umgekehrt nachweisen, daf jede reelle symmetrische Matrix A
mit nur positiven Eigenwerten eine positiv definite Matrix ist. Dazu benutzen wir den
Entwicklungssatz (Satz 5.12), wonach sich — da A als symmetrische Matrix diagonal-
dhnlich ist - jeder beliebige Vektor x als Linearkombination

X = CiF; + CoFy + ... + CFy
der Eigenvektoren von A darstellen 148t. Dabei mufl im Falle x = o mindestens
einer der Koeffizienten ¢, von null verschieden sein. Diese Darstellung von x setzen
wir in die quadratische Form xTAx ein:

Ax = ClArl + CzArz + ... + C,.Ar,, = 013.11'1 + Czlzrz + ... + C,,A,,l',,,

xTAx = ¢, xir, + cAA,nr, + ... + cArir, (*)

= clA, + Ay + ... + 2.

Dieser Ausdruck ist aber immer positiv, wenn x # o ist, weil dann mindestens ein ¢}
positiv ist und die Eigenwerte 4, nach unserer Voraussetzung alle positiv sind. Wir
haben damit gezeigt, daB xTAx > 0 fiir alle Vektoren x % o gilt. Die Matrix A
ist also positiv definit. Falls von den Eigenwerten nur Nichtnegativitit vorausgesetzt

wird, kann aus (*) nicht der SchluB xTAx > 0, sondern nur xTAx = 0 gezogen
werden; dann ist die Matrix A also positiv semidefinit. Wir fassen zusammen:
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Satz 5.21: Eine reelle symmetrische Matrix ist genau dann positiv definit (semidefinit),
wenn ihre simtlichen Eigenwerte positiv (nichtnegativ) sind.

* Dieser Satz kann als hinreichendes Kriterium fiir die positive Definitheit bzw. Semi-
definitheit einer Matrix verwendet werden, wenn man die Eigenwerte kennt oder
einfach berechnen kann. Wenn die Eigenwerte unbekannt sind, 1a8t sich aber trotz-
dem eine einfache notwendige Bedingung fir die positive Definitheit bzw. Semi-
definitheit aus Satz 5.21 ableiten. Wegen (5.7) muB3 namlich fiir jede positiv definite
(semidefinite) Matrix A

detA >0 (detA =0)

gelten. Die sich ebenfalls aus (5.7) ergebende Bedingung sp (A) > 0 (sp(A) = 0)
konnen wir unbeachtet lassen, denn ein anderes notwendiges Kriterium ist, daB alle
Hauptdiagonalelemente von A positiv (nichtnegativ) sind. Die Bedingung sp (A) > 0
(sp (A) = 0) stellt also nur ein sehr schwaches notwendiges Kriterium dar.

4

Beispiel 5.16: Die Matrix

6 -2 4
A=| =2 20
4 03
ist zwar symmetrisch, aber nicht positiv definit, denn ihre Determinante ist negativ: det A = —8.

Beispiel 5.17: Zum gleichen Ergebnis gelangt man bei der Matrix

2 2 5
A=|2 3 -1},
5 -1 -6

weil sie ein negatives Hauptdiagonalelement hat.

Beispiel 5.18: Fur die Matrix

3 1 -1
A= 1 1 -1
-1 -1 3

sind die notwendigen Bedingungen erfiillt, es ist det A = 4 und alle Hauptdiagonalelemente sind
positiv. Um behaupten zu koénnen, daB A positiv definit ist, muB3 aber ein hinreichendes Kriterium
herangezogen werden. Die Berechnung der Eigenwerte 2, von A ergibt

b1 = V17), da=2, =405+ T9)

und nach Satz 5.21 ist A positiv definit.

5.2.5.3. Schiefsymmetrische und schiefhermitesche Matrizen

Eine reelle schiefsymmetrische Matrix, 2lso eine reelle Matrix mit der Eigenschaft
A= —AT
hat nur rein imagindre Eigenwerte. Wir erkennen das, wenn wir die Herleitung der

Reellwertigkeit der Eigenwerte symmetrischer Matrizen (Satz 5.15) von der Stelle
an abandern, wo A = AT gesetzt wurde. Wir erhalten dann statt (5.23)

—TTAr = AF'r

S.5.21
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und statt (5.24)
A+ AT =0.

Daraus folgt
A= —A.

Setzen wir A = « + if, so erhilt diese Gleichung die Form
o —if=—a—iB,

woraus sich « = 0 ergibt. Jeder Eigenwert 4 ist also rein imaginir. Bei den kom-
plexen Matrizen kommt man fiir die sogenannten schiefhermiteschen Matrizen, die
durch

A= —AT

definiert sind, zum gleichen Ergebnis. Es gilt also

Satz 5.22: Die Eigenwerte jeder reellen schiefsymmetrischen Matrix und jeder schief-
hermiteschen Matrix sind rein imagindr.

Fiir die Eigenvektoren 148t sich bei den schiefsymmetrischen Matrizen keine Eigen-
schaft angeben, die unmittelbar mit der Reellwertigkeit der Eigenvektoren symmetri-
scher Matrizen im Sinne von Satz 5.16 vergleichbar ist. Es gibt aber wie bei den
symmetrischen Matrizen wieder zu jedem Eigenwert eine der Vielfachheit des Eigen-
wertes entsprechende Anzahl linear unabhéngiger Eigenvektoren. Deshalb gehdren
die reellen schiefsymmetrischen Matrizen und die schiefhermiteschen Matrizen auch
zur Klasse der diagonaldhnlichen Matrizen. Es gilt

Satz 5.23: Jede reelle schiefsymmetrische und jede schiefhermitesche Matrix kann
durch eine Ahnlichkeitstransformation mit einer unitdren Matrix auf Diagonalform
gebracht werden.

Beziiglich der Orthogonalitit der Eigenvektoren gilt folgendes:

Satz 5.24: Die zu verschiedenen Eigenwerten gehorigen Eigenvektoren reeller schief-
symmetrischer Matrizen und schiefhermitescher Matrizen sind (komplex) orthogonal.

Beweis: Da die reellen schiefsymmetrischen Matrizen spezielle schiefhermitesche
Matrizen sind, braucht der Beweis nur fiir letztere Matrizenklasse gefiihrt zu werden.
Es seien also A eine schiefhermitesche Matrix und r, s zwei Eigenvektoren von A
mit den Eigenwerten 4 und g, 4 & u. Dann gilt

STAr = sT(Ar) =: A8™r = s (5.28)
und andererseits, da sTAr eine Zahl ist und demnach sTAr = (s"Ar)T ist,

STAr = rTATS = —r1TAS = —r"s = ir7s; (5.29)
dabei wurde zuletzt verwendet, daB u rein imagindr ist, also # = —pu gilt. Durch
Differenzbildung von (5.28) und (5.29) entsteht

(- wrs =0,

woraus sich wegen 2 & g die Orthogonalititsrelation r's = ©'s = 0 ergibt. m
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Beispiel 5.19: Wir fuhren die Hauptachsentransformation fiir die reelle schiefsymmetrische Matrix

0 2
A= [ -2 o}
durch. Das charakteristische Polynom
p(A) =det(A —ZE) =42 + 4
hat die rein imagindren Nullstellen‘
Ay =2i, A, = =2i.

Als zugehorige normierte Eigenvektoren ermittelt man (Normierungsvorschrift rr = 1)

[ 1/\/; ] [ 1/\/; ]

r = — 1, 2= j— .

i/\/2 ~il/2

Diese Eigenvektoren sind nicht im reellen, sondern im komplexen Sinn orthogonal, d. h. unitir,
wie aus

rn=%+3+0,
;T"z =3-1=0
hervorgeht. Die spaltenweise aus ry, r, gebildete Matrix R (siehe Falksches Schema) ist unitir,
da R™R = E erfiillt ist, und erzeugt die Ahnlichkeitstransformation
R-!AR = RTAR = diag (4, 4,).
Unm dies zu bestiitigen, legen wir wieder das Falksche Schema an.
[ /2 1/ 5] B :
iz -2
o 2 EENAENA
A — — | AR
-2 0 | -2 -2

- [1/\@ —i/\//g] [ 2 0]§‘AR~
12 il/2 | 0 -2

5.2.5.4. Orthogonale und unitire Matrizen

Die reellen orthogonalen Matrizen bzw. die unitiren Matrizen sind durch die
Eigenschaft

AT = A-! bzw. AT = A-!

definiert. Da fiir reelle Matrizen wegen AT = AT beide Definitionen iibereinstimmen
sind die reellen orthogonalen Matrizen spezielle unitire Matrizen. Es reicht also aus
wenn wir die Herleitung einer einfachen Eigenschaft der Eigenwerte dieser Matrizen
nur fiir die unitaren Matrizen vornehmen; denn diese Eigenschaft besitzen dann auch
die Eigenwerte der reellen orthogonalen Matrizen. Es sei also A eine unitdre Matrix
und r ein Eigenvektor von A mit dem Eigenwert £, d. h. es gilt Ar = ir, r & o. Wir
transponieren beide Vektoren Ar und Ar und gehen zu den konjugiert komplexen
Werten lber, so daf}

(An)T = (Ar)"
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oder nach Auflésen der Klammern
FTAT = 7T

entsteht. Diese Zeilenvektoren werden nun mit den entsprechenden Spaltenvektoren
von Ar = Ar-multipliziert, woraus sich

r"ATAr = 2ir'r
ergibt. Aus ATA = A-'A = E und ©'r # 0 (wegen r #+ o) folgt unmittelbar

M =1.

Setzen wir hier noch A4 = |4|?, so ist damit die Giiltigkeit des folgenden Satzes er-
wiesen: -

Satz 5.25: Die Eigenwerte reeller orthogonaler Matrizen und unitirer Matrizen sind
dem Betrage nach gleich eins; sie sind also in der Form

A=¢e =cosp + ising

darstellbar.

Mit diesem Satz ist der wichtigste Unterschied zu den bisher behandelten speziellen
Eigenwertproblemen genannt. Fiir die Eigenvektoren reeller orthogonaler und unitdrer
Matrizen gelten dhnliche Aussagen wie fiir die hermiteschen oder die schiefhermiteschen
Matrizen. Wir verzichten darauf, diese Aussagen ausfiihrlich zu formulieren, sondern
begniigen uns mit einer kurzen Aufzihlung: Es gibt ein vollzihliges System linear
unabhiingiger Eigenvektoren; zu verschiedenen Eigenwerten gehorige Eigenvektoren
sind (komplex) orthogonal; eine unitire Hauptachsentransformation ist stets durch-
fiihrbar.

Beispiel 5.20: Wir betrachten die reelle orthogonale Matrix
cosp —sing
A= . .
sin @ cos @
Aus der charakteristischen Gleichung
A2 —2icosp+1=0
ergeben sich die Eigenwerte zu
% =cosg + ising = ¢'?,
A, =cosp —ising = e 17,

Die zugehorigen normierten Eigenvektoren sind
L2
' izl T iz
Diese Eigenvektoren sind wegen

o = IEW] V2] 1L e

in/2



5.2. Eigenwertprobleme 157

(komplex) orthogonal. Die Hauptachsentransformation demonstrieren wir wieder mit dem Falk-

schen Schema: .
[ 12 182 ] =
-i/z iz
[ cos @ —sin«p} [ e’°’/\/2— _“’/\/2 ]

A —

sin @ cosp ——ie"’/\/ 2 ,e-iw/\/ 2
S[NT ST e

12 -il/2 0 elo

5.2.5.5. Inverse Matrizen

In diesem Abschnitt wollen wir untersuchen, welche Beziehungen zwischen dem
Eigenwertproblem

Ar = Ir 6.1
und dem Eigenwertproblem fiir die zu A inverse Matrix A~1,
A-'s = us (5.30)

bestehen. Dabei miissen wir natiirlich von Beginn an voraussetzen, da3 A nicht sin-
guldr ist, daB also det A = 0 gilt; denn nur in diesem Fall gibt es zu A die inverse
Matrix A-!. Wir iiberlassen es dem Leser als Ubung, sich zu iiberlegen, daB aus der
Existenz von A-! fiir die Eigenwerte 2 von A die Folgerung 1 % 0 gezogen werden

kann. Dann existiert aber auch die Matrlx-[A“. Mit dieser Matrix multiplizieren

wir beide Seiten von (5.1), so daB nach Vertauschung der Seiten
Ar = —;:-r

entsteht. Der Vergleich dieser Beziehung mit (5.30) ergibt r = s und py = 711- Es gilt
demnach

Satz 5.26: Die Matrizen A und A=* haben die gleichen Eigenvektoren. Die zugehorigen S.5.26
Eigenwerte sind zueinander reziprok.

Da A und A-! die gleichen Eigenvektoren haben, sind A und A-! entweder beide
dlagonalahnhch oder beide nicht diagonaldhnlich. Sind sie diagonaldhnlich, so kon-
nen sie durch die gleiche Hauptachsentransformation auf Diagonalform gebracht
werden.

5.2.5.6. Vertauschbare Matrizen

Der Satz 5.26 im vorangehenden Abschnitt gibt zu der Frage AnlaB, ob es auller
der inversen Matrix A~! noch weitere Matrizen gibt, die mit einer gegebenen Matrix A
simtliche Eigenvektoren gemeinsam haben. Zur Beantwortung dieser Frage nehmen
wir an, daBB A diagonaldhnlich ist. Es gibt also eine nichtsingulire Matrix R, deren
Spalten r,, ..., r, Eigenvektoren von A sind, so dal D = R~'AR eine Diagonal-
matrix ist.
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Es wird jetzt eine mit A vertauschbare Matrix B betrachtet, also eine Matrix B,

fur die
AB = BA

gilt. Wir bilden
R-'ABR = R'BAR,

und daraus durch Einfiigen der Einheitsmatrix E = RR-! zwischen A und B
R-!ARR-!BR = R-!BRR'AR.

In dieser Gleichung wird nun R-*AR durch die Diagonalmatrix D ersetzt,
D(R-'BR) = (R"!BR)D.

* Die Matrix R-!BR ist demnach mit der Diagonalmatrix D vertauschbar, also selbst

S.5.27

eine Diagonalmatrix:

p 0 .0
R-BrR= |0 # 0| _p
Lo o
Wir multiplizieren nun diese Gleichung von link's mit der Matrix R, erhalten dadurch
BR = RD

und lesen die neue Glelchung einzeln fiir jede Spalte r, von R. Sxe zerfallt dann in die
n Gleichungen

Brk = [l'krk.

Die Eigenvektoren r, von A sind also auch Eigenvektoren von B, allerdings im all-
gemeinen mit anderen Eigenwerten. Wir fassen zusammen:

Satz 5.27: Vertauschbare diagonaldhnliche Matrizen haben die gleichen Eigenvektoren.

An dieser Stelle bringen wir ein andersgeartetes Beispiel. Es soll mit diesem Bei-
spiel gezeigt werden, daBl im Satz 5.27 die Voraussetzung der Diagonalihnlichkeit
tatsachlich erforderlich ist. Dazu werden zwei spezielle vertauschbare, aber nicht
diagonaldhnliche Matrizen angegeben, die unterschiedliche Eigenvektoren haben.
Es ist also ein Gegenbeispiel zu der falschen Behauptung ,,vertauschbare Matrizen
haben stets die gleichen Eigenvektoren‘‘. Obwohl solche Gegenbeispiele immer nur
negative Aussagen liefern, spielen sie in der Mathematik eine wichtige Rolle,; da
durch sie die Grenzen der als positive Aussagen formulierbaren Ergebnisse abgesteckt
werden kénnen.

Beispiel 5.21: Die beiden Matrizen

110 301
A=]01 0, B=]0 3 0
0 01 0 03

sind vertauschbar, denn es gilt AB = BA. Zu den Eigenwerten 4, =41, =43 =1 von A und
My = Mz = p3 = 3 von B gibt es jeweils nur zwei linear unabhingige Eigenvektoren r,, r, und
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Sy, Sz, da der Rangabfall wegen R(A — E) = R(B — 3E) = 1 in beiden Fillen zwei ist. Linear
unabhingige Systeme von Eigenvektoren werden beispielsweise gebildet durch

1 0 1 0
ri=10{, r=101}; s = 0 , S2=11
0 1 0 0

Die beiden Matrizen sind also nicht diagonaldhnlich, denn jede von ihnen miiBte sonst drei linear
unabhingige Eigenvektoren haben. Es ist offensichtlich, daB A und B unterschiedliche Mengen
von Eigenvektoren aufweisen. Denn trotz der Moglichkeit, weitere Eigenvektoren durch Linear-
kombination aus den bereits bekannten erzeugen zu konnen, haben alle Eigenvektoren von B als
letzte Komponente die Null, wihrend es unter den Eigenvektoren von A solche gibt, deren letzte
Komponente von null verschieden ist.

5.2.6. Extremaleigenschaft der Eigenwerte. Rayleigh-Quotient

In diesem Abschnitt betrachten wir nur Matrizen A, die reell und symmetrisch
sind. Die n reellen Eigenwerte A wollen wir nach ihrer Gro8e numerieren, es wird also

’llélzé---éln

angenommen. Von den zugehorigen Eigenvektoren wird vorausgesetzt, daB sie bereits
orthogonalisiert sind, d. h., daB auch die zu einem mehrfachen Eigenwert gehdrigen
Eigenvektoren paarweise zueinander orthogonal sind. Ausgehend von diesen Vor-
aussetzungen lassen sich fiir den Rayleigh-Quotienten

xTAx .
x'x

R(x) = (5.31)
auBerordentlich weittragende Eigenschaften nachweisen, die vor allem bei den nume-
rischen Methoden zur Berechnung von Eigenwerten eine wichtige Rolle spielen.

Zuerst wollen wir in den Rayleigh-Quotienten fiir x die Eigenvektoren x = r;
von A einsetzen, also R(r;) berechnen. Wir erhalten

Iy Ty (Ax,
R = om0 (5.32)
k*k

Der Rayleigh-Quotient stimmt fiir die n Eigenvektoren x = x, mit den zugehdrigen
Eigenwerten J, iiberein. Zur naheren Untersuchung des Rayleigh-Quotienten fiir
beliebige Vektoren x ziehen wir den Entwicklungssatz (Satz 5.12) aus Abschnitt
5.2.5.1. heran. Seine Verwendung ist erlaubt, da die Matrix A symmetrisch und mithin
auch diagonaldhnlich ist. Wir konnen einen beliebigen Vektor x in der Form

X = ¢ + CFy + ... + CTy (5.33)
darstellen. Fiir das Einsetzen in den Rayleigh-Quotienten bringen wir Ax in die
unter Verwendung der Eigenwertbeziehung und (5.33) entstehende Form

AX = clﬂ.lrl + 0212r2 + ...+ C,,l,,l‘,,

und beachten beim Ausmultiplizieren von x"(Ax) die Orthogonalitit der Eigen-
vektoren:

[eixy + oo + et [C1Airy + ..o + CiAaTn]
[exry + oo + ex,]" [eaky + oo + cubal
B Aciriry + Amr, + ..+ Acirr,

cIriry + i, + ... + Cr,

R(x) =

. (5.34)
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Da keiner der Koeffizienten cirir, von A, negativ ist, kann dieser Ausdruck nach
unten abgeschitzt werden, indem wir alle 4; durch 4, ersetzen, es entsteht so

Actry + Acixir, + ...+ A,
rir, + cnr, + ...+ o,

R(X) g = 21 .
Entsprechend 148t sich R(x) nach oben durch R(x) < 4, abschitzen. Zusammen mit
den Relationen (5.32) fiir £k = 1 und k = n gelangen wir damit zu

Satz 5.28: Der kieinste (grofte) Eigenwert einer reellen symmetrischen Matrix ist
das Minimum (Maximum) des Rayleigh-Quotienten R(x)

Ay = min R(x), 2, = max R(x). (5.35)
X€ER" X € R"

Dieses Minimum (Maximum) nimmt der Rayleigh-Quotient fiir jeden zum kleinsten
(groften) Eigenwert gehdrigen Eigenvektor an, d. h., es gilt fiir alle reellen Vektoren x

Ay = R(ry) £ R(x) £ R(r,) = 4,.

Fiir dieses Extremalprinzip gibt es einige Verallgemeinerungen, auf die hier nur
hingewiesen wird:

1) Der Ausdruck (5.34) kann in gleicher Weise nach unten durch 1, abgeschétzt
werden, wenn ¢; = 0 gilt. In der Darstellung (5.33) eines Vektors x gilt aber ¢, = 0
genau dann, wenn rix = 0 ist, d. h., wenn x zu r, orthogonal ist. Das Minimum des
Rayleigh-Quotienten beziiglich aller zu r, orthogonalen Vektoren x ist also gleich ,.
Dieses Verfahren 148t sich offenbar fortsetzen, so daBB man jeden FEigenwert als
Minimum oder — falls man die Abschdtzung nach oben verwendet — als Maximum des
Rayleigh-Quotienten darstellen kann.

2) Der Rayleigh-Quotient 148t sich auch fiir hermitesche Matrizen sinnvoll er-
kldren, wenn man ihn in der Form
xTAx

Rx) = X'x

definiert. Sein Wert ist dann fiir alle komplexen Vektoren x reell.

3) Der Rayleigh-Quotient (5.31) kann ferner so definiert werden, daB das in
Satz 5.28 festgehaltene Extremalprinzip auch fiir allgemeine Eigenwertaufgaben
giiltig ist (siche Abschnitt 5.2.7.).

Auf Grund der dargestellten Extremaleigenschaft besitzt der Rayleigh-Quotient
groBe Bedeutung bei der numerischen Losung von Eigenwertaufgaben; denn es ist
dadurch méglich, ohne groBen Rechenaufwand beispielsweise fiir den kleinsten
Eigenwert eine obere Schranke anzugeben. Dazu hat man lediglich einen beliebigen
Vektor x auszuwahlen und den zugehorigen Rayleigh-Quotienten R(x) auszurechnen.
Ebenfalls mit Hilfe von (5.34) kann unter gewissen Voraussetzungen an die gegen-
seitige Lage der Eigenwerte gezeigt werden, daf3 die so erhaltenen Schranken fiir 4,
auch ausgezeichnet gute Niherungswerte fiir 4, sind, wenn X nur annidhernd mit dem
zugehorigen Eigenvektor iibereinstimmt.

Beispiel 5.22: Die Eigenschaften des Rayleigh-Quotienten sollen an Hand der Matrix A von Bei-
spiel 5.18 gezeigt werden. Die Eigenwerte von A sind

A =0,44; 2, =2; A3 =4,56.
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a) Wir setzen x¥ = [—1; 0; 1] in R(x) ein und erhalten
xTA = [—4; —2;4], x"Ax =8, x"x =2,

(x)-———4

In gleicher Weise wird fiir x™ = [1; —2; 0] der Rayleigh-Quotient

R(x) = } = 0,6
=5 =0

berechnet. Aus beiden Ergebnissen folgt, dal der kleinste Elgcnwert von A kleiner als 0,6 und der
eroBte Eigenwert groBer als 4 ist.

b) Es werden jetzt einige Vektoren x in den Rayleigh-Quotienten eingesetzt, die bereits gute
Niherungen fiir den zum Eigenwert 4, = 2 gehorigen Eigenvektor sind. Wir stellen uns dabei
vor, daf} diese Vektoren x durch ein Verfahren zur ndherungsweisen Berechnung des Eigenvektors
entstehen und der Eigenvektor selbst einschlieBlich des Eigenwerts 2, noch unbekannt sind.

T =[2;1; 1] > R(x,) = 2,3333,
= [4; 1; 3] » R(x,) = 2,0769,
xT = [10; 1; 9] » R(x3) = 2,0110,
xI = [100; 1; 99] —» R(x,) = 2,0001.

Zum Vergleich:
1 =[1;0;1] - R@) =

5.2.7. Die aligemeine Eigenwertaufgabe

Viele aus praktischen Aufgabenstellungen herriithrenden Eigenwertprobleme treten
nicht in der Form (5.1) auf, wie sie bisher betrachtet wurde, sondern sie haben die
Gestalt

Ax = 1Bx. . (5.36)

Setzt man hier fiir B speziell die Einheitsmatrix E ein, so entsteht wieder die Eigen-
wertaufgabe (5.1), die wir in diesem Abschnitt im Unterschied zur Aufgabe (5.36) als
spezielle Eigenwertaufgabe bezeichnen wollen. Eine Eigenwertaufgabe von der Form
(5.36) heildt allgemeine Eigenwertaufgabe. Wie bei den speziellen Eigenwertaufgaben
werden nur solche Losungen A, x von (5.36) gesucht, fiir die x ¥ o ist.

Bei der allgemeinen Eigenwertaufgabe erfolgt die Berechnung der Eigenwerte
und Eigenvektoren sinngemiB wie bei der speziellen Eigenwertaufgabe. Die Eigen-
wertaufgabe (5.36) ist nimlich dquivalent mit der Aufgabe, das homogene lineare
Gleichungssystéem

(A-/B)x=o0 (5.37)
zu l6sen. Dieses Gleichungssystem hat genau dann nichttriviale Losungen x, wenn

det (A — iB) =0 (5.38)
oder ausfiihrlich

layy — Abyy @y — by .. @y, — Aby,

a21 - Zb2l azz - Abzz s aZ" - }bb')n

Qpy — nt On2 — n2 +-e GQpp — Z'bnn
11 Masteuifel, Lineare
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gilt. Man hat also zuerst die verallgemeinerte charakteristische Gleichung (5.38) zu
16sen, dann die so gefundenen Eigenwerte in (5.37) einzusetzen und fiir jeden Eigen-
wert einen oder, je nachdem wie der Rangabfall n — R(A — AB) ausfillt, mehrere
Eigenvektoren zu bestimmen. ‘ .

Beispiel 5.23: Gesucht sind Eigenwerte und Eigenvektoren der allgemeinen Eigenwertaufgabe fiir
die Matrizen

5 5 2 -1
A= und B = .
5 10 1 2
Die verallgemeinerte charakteristische Gleichung ist

5-22 5+4

=25 — 304 + 542 =
5—24 10-24 + 0,

sie hat die Nullstellen
;»1 = 1, Z.z = 5.
Damit sind die Eigenwerte des Problems gefunden. Der zu 4; = 1 gehorige Eigenvektor ry wird

aus dem linearen homogenen Gleichungssystem (A — 4;B) r; = o berechnet (es wird rT = [r;,754]
gesetzt):

3’11 + 6)‘21 = 0,
4’11 + 8)’21 = 0.

Eine Komponente kann frei gewahlt werden; wihlt man r,; = 1, so folgt r;; = —2 und damit

r = [ —Z]und normiert: r® = [ _2/\/5—] .
1 1/\/5

Auf gleiche Weise ergibt sich fiir-den zu 4, = 5 gehorigen Eigenvektor das Gleichungssystem

""5)'12 + 10’22 = 0,
0-r12+0'r22=0.

Wahlt man r,; = 1, so ergibt sich ry;, = 2, also

= [ ? ] und normiert: = [2/\/5] .
1 _ 11/5

Wenn die Determinante von B nicht verschwindet, kann die allgemeine Eigenwert-
aufgabe in eine spezielle Eigenwertaufgabe umgewandelt werden, indem man (5.36)
von links mit B~* multipliziert. Es entsteht dann

B-1Ax = ix,

also eine spezielle Eigenwertaufgabe mit der Matrix A = B-'A. Diese Umformung
weist allerdings den Nachteil auf, dal bei dem in der Praxis hiufig auftretenden Fall
symmetrischer Matrizen A, B durch die Multiplikation B-*A die Symmetrie verloren-

geht, die Matrix A also im allgemeinen nicht mehr symmetrisch ist. Die allgemeine
Eigenwertaufgabe fiir symmetrische Matrizen A, B 1aBt sich dagegen sowohl theo-
retisch als auch praktisch in ihrer urspriinglichen Form (5.36) leichter behandeln,
wenn man gewisse Begriffe wie beispielsweise die Orthogonalitdt und den Rayleigh-
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Quotienten in einer anderen, der Aufgabenstellung angepaBten Weise definiert.
Multipliziert man namlich die Eigenwertrelation

AXk = Zkak

von links mit einem Eigenvektor x;, der zu einem von J; verschiedenen Eigenwert
Aj #* A gehort, so entsteht

XTAx, = 4, XIBx,. (5.39)

Geht man andererseits von Ax; = 4;Bx; aus, so ergibt sich durch Multiplikation von
links mit x7

X;AX;, = AxiBx. (5.40)

Subtrahiert man nun (5.40) von (5.39) und setzt die infolge der Symmetrie von A
und B geltenden Beziehungen

XzBXj = x;erk, X',I;ij = X}rAxk

ein, erhilt man
0 = (& — 2)) X/ Bx;. .

Wegen 4 + 4; gilt also
x;Bx, = 0. (5.41)

Zu verschiedenen Eigenwerten gehérige Eigenvektoren sind demnach nicht unmittel-
bar orthogonal, sondern nur in dem durch (5.41) festgelegten Sinn.

Auch der Rayleigh-Quotient 148t sich in die Untersuchung der allgemeinen Eigen-
wertaufgabe einbeziehen, wenn man ihn in der Form

T
R(x) = %‘:T’; (X + 0) (5.42)

definiert. Um garantieren zu kénnen, daB der Nenner von R(x) nicht null wird, ist
dazu allerdings die zusitzliche Voraussetzung erforderlich, daB die Matrix B positiv
definit ist. Die sich unter dieser Voraussetzung insgesamt fiir die Eigenwerte und
Eigenvektoren ergebenden Aussagen werden ohne Beweis im folgenden Satz an-
gegeben. ‘

Satz 5.29: Es werde vorausgesetzt, daf die in der aligemeinen Eigenwertaufgabe (5.36)
stehenden Matrizen A, B symmetrisch sind und die Matrix B zusdtzlich positiv definit
ist. Dann sind alle Eigenwerte }, der allgemeinen Eigenwertaufgabe (5.36) reell, und die
Eigenvektoren r, konnen in reeller Form dargestellt werden. Ferner existiert stets ein
volistindiges System linear unabhingiger Eigenvektoren, die der verallgemeinerten
Orthogonalititsbeziehung

fBr, =0 fir j+k
geniigen und die Normierungsvorschrift
Br, = 1

erfiillen. Der verallgemeinerte Rayleigh-Quotient (5.42) besitzt die gleichen Extremal-
eigenschaften (5.35) wie der Rayleigh-Quotient fiir die spezielle Eigenwertaufgabe.

11*

S.5.29



164 5. Anwendungen der linearen Algebra

5.2.8. Anwendungen

5.2.8.1. Hauptachsentransformation quadratischer Formen

Unter emer n-dimensionalen quadratischen Gleichung versteht man eine Gleichung
der Gestalt ~

2 2 a.i‘kxjxk + 2 bixi + ¢o = 0. (5.43)
iS1 £ k=1

Der quadratische Anteil dieser Gleichung besteht dabei aus einer sogenannten
quadratischen Form. Bei dieser Schreibweise kommt das Produkt zweier verschiedener
Variablen x;, x; zweimal vor: einmal im Summanden a;;x;x, und einmal im Sum-
manden a,;x,x;, was zunachst natiirlich unzweckmiBig erscheint, da bei der Zu-
sammenfassung beider Summanden die Form kurzer geschrieben werden konnte.
Das doppelte Auftreten der Summanden benutzt man jedoch dazu, die Symmetrie-
beziehung

ay; = ay (J+ k)

herzustellen. Bildet man nun aus den Koeffizienten der Gleichung (5.43) die Matrix
A = (a;) und den Vektor bT = [b,, ..., b,], so kann (5.43) in der Gestalt

XTAX + bT™x + ¢, = 0 (5.49)

geschrieben werden, wobei A eine symmetrische Matrix ist. Die Bedeutung der im
Abschnitt 5.2.4. eingefiihrten Ahnlichkeitstransformation (Darstellung fiir symme-
trische Matrizen im Abschn. 5.2.5.1.) besteht nun gerade darin, daB durch den Uber-
gang zu einem speziellen Koordinatensystem die Matrix A Diagonalform erhilt
und somit die quadratische Form nur noch rein quadratische Glieder aufweist. Faf3t
man diese dann noch mit den linearen Gliedern zusammen (quadratische Ergdnzung!),
so weist die gesamte quadratische Gleichung nur noch Quadrate und eine Konstante
auf. Im einzelnen sind dabei folgende Schritte auszufiihren.

Schritt 1. Berechnung der Eigenwerte 4, und Eigenvektoren r, von A.

Schritt 2. Orthogonalisierung derjenigen Eigenvektoren, die zu einem mehrfachen
Eigenwert gehoren; Normierung samtlicher Eigenvektoren.

Schritt 3. Koordinatentransformation (y* = [y,, ..., y,] neue Koordinaten)

x = Ry, R =1, .., 1] (5.45)
Ergebnis: Quadratische Gleichung der Gestalt
AVi+ Ayi+ o+ Ayi4dy,+doy, + .o+ dy,+ co =0. (5.46)
Schritt 4. Gilt 4, # 0, so konnen durch

2 dk 2 dl%
MY + dye = }'k(yk + '2—};') - 4—1’"

die linearen Glieder von (5. 46) mit den quadratischen Gliedern vereinigt werden.
Will man spater gewisse im y-Koordinatensystem beschriebene Punkte wieder
im urspriinglichen x-Koordinatensystem angeben, so erfolgt dies ebenfalls mit der
Beziehung (5.45).
Dadurch, daB in (5.45) die Koeffizienten der quadratischen Terme gerade die
Eigenwerte der Matrix A sind, 148t sich bei den quadratischen Gleichungen mit zwei
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Verdnderlichen — den Gleichungen der Kurven 2. Ordnung oder Kegelschnitts-
gleichungen — die Art des durch sie beschriebenen chelschmtts erkennen. Geht man
z. B. von der Gleichung

A1 X3+ 200,X1X5 + Ay%5 + byxy + byxy + ¢ =0
aus, so kann man diese in der Form

x"TAX + b™X + ¢, =0 ‘ (*)
mit AT = A schreiben. Die Eigenwerte von A werden aus der Gleichung

det(A —AE) =0
bestimmt. Die zugehorigen normierten und orthogonalisierten Eigenvektoren seien ry
und r,. Bildet man R = [r;, r,] und x = Ry, so geht

xTAXx + b™x + ¢, =0
iber in

y"RTARy + bRy + ¢, = 0; (#%)
dabei ist RTAR eine Diagonalmatrix, deren Diagonalelemente die Eigenwerte von A
sind. Aus

a1 X3 4+ 2a,,X,X, + A0%3 + bixy + byx, ¥ co =0
wird dann :

My 4 Ay: + (ruaby + raiby) yo + (riaby + ragby) yo 4+ co = 0.

Fir 4y, A, = 0 148t sich die letzte Gleichung l'xmformen in

A zdil ’ A  \* Co =0
1()’1 .I,.___l.) -+ 2<y2 +_j}:2.) + 0 S
wenn

(d2+ d2)+co

dy = ryby + raby, dy = rishy + 12k, Co = — vy 7y
‘ 1 2

gesetzt wird.

Wir unterscheiden folgende Kegelschnitte:
I. Fir Cy # 0:
(1) Ay F+= 25, 444, >0
Ay >0, 2, >0, Co <0 - (reelle) Ellipse,

(hier wie im folgenden sind die jeweils entsprechenden Fille weggelassen; z. B. ergibt
Ay < 0,1, <0, Cy > 0 natiirlich ebenfalls eine reelle Ellipse)

Ay >0, 4, >0, C; >0 - imaginire Ellipse,
) A F4,, LA, <0 —~ Hyperbel,
(3) 11 = j-2 + 0

Ay =2,>0, Co < 0 - (reeller) Kreis,

Ay =12,>0, Cy > 0 - imaginérer Kreis,

.
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11. fiir C, = 0:
(4) A4, = Ay, 244, >0 - zwel imagindre Gerade,
Aidy <0 - zwei reelle Gerade;

11i. aus der Gleichung
Myt + Ay +diy, +dyy, +co=0
erhélt man
(5) fiir 2, # 0, 2, = 0, d, + 0 — Parabel;
6) fird, #0, 1, =0, d, = d> =0, Ajcy < 0 - zwei parallele reelle Gerade,
i #+0,4,=0,d =d, =0, ,co >0 - zwei parallele imaginire Gerade;
(7) fir A, 4= 0,4, =0,d,=d, =¢c, =0 — zwei zusammenfallende Gerade
(y,-Achse).
Im Falle dreier Verdnderlicher (n = 3) erhilt man ganz analog fiir 2,, 7.,, 723 &= 0
aus (x) die Diagonalform (#x), dann durch quadratische Ergianzung
).l(y‘ +i)2+/‘. (}' +—d—2—).2+7. (y +—d"—)3+ Co=0
2, 2172 T4, S\ 27, ©
dy =ryby + ry1by + rygbsy, dy = ripby + ragby + rysbs,
@ d &

T, T,

dy = ri3hy + ra3by + rizhy, Co = —( )'*‘Co

und hieraus die folgenden Flichen 2. Ordnung:

I. Fir Co + 0:

(1) 4, >0,4, >0, i3 >0, Cy <0 - (reelles) Ellipsoid,
Ay >0, 4, >0, 23 >0, Cy >0 - imaginares Ellipsoid,

2) 2, >0, 4, >0, 73 <0, Cy < 0 - einschaliges Hyperboloid,
Ay >0, 4, >0, 23 <0, Co > 0 — zweischaliges Hyperboloid;

II. fir Cy = 0:
(3) 4 >0, 2, >0, iy < 0 — (reeller) Kegel,
Ay >0, 4, > 0, /iy > 0 - imaginarer Kegel;
II1. aus der Gleichung ‘
Myi+ Ay 4+ +diy + dyyy + dsys + o =0
erhilt man '
4) fird, >0, 4, >0, 23 =0, dy += 0 — elliptisches Paraboloid,
A >0, 4, <0, i3 =0, dy = 0 - hyperbolisches Paraboloid,
(5) firi; =0, 1, =0, i3 =0, d, =0, d; + 0 — parabolischer Zylinder,
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- (6) fird; >0,4,>0,4;,=0,d,=d, =d;; =0, ¢, <0
- — (reeller) elliptischer Zylinder,
4>0,2,>0,43=0,d, =d, =d; =0, co>0
- imagindrer elliptischer Zylinder,
A >0,4,<0,43=0,d,=d,=d;=0,¢c,<0
hyperbolischer Zylinder;
(D fiird, >0, 4, =0,4,=0,d, =d, =dy =0, co <0
— Paar paralleler (reeller) Ebenen,
A>0,4,=0,2,=0,d, =d,=d;=0, ¢, >0
' ' — Paar paralleler imaginirer Ebenen;
@) fird, >0,2,<0,23=0,d, =d, =d; =0, co =0
— Paar sich schneidender (reeller) Ebenen,
A, >0,4,>0,4;=0,d, =d, =d3 =0,.¢ =0,
— Paar sich schneidender imaginirer Ebenen,
2,>0,4,=0,4;=0,dy =dy, =d3 =0, ¢, =0
— zwei zusammenfallende Ebenen.

Beispiel 5.24: Wir betrachten den durch die Gleichung
5x§+2x§—4x1x2+2x1—6xz+4=0
beschriebenen Kegelschnitt. Diese Gleichung erhilt die Form (5.44), wenn

5 -2 27
“[—2, 2]’ "=[—6]’ o=t

gesetzt wird. Aus der charakteristischen Gleichung .

5-4 =2 -

ergeben sich die Eigenwerte
Ay=1, 2, =6,

Da sie voneinander verschieden und beide positiv sind, handelt es sich um eine Ellipse. Aus den
beiden Gleichungssystemen (A — 4,E) r, = o werden die Eigenvektoren

1 1 1 2 '
ry = \/5— 2 , Iy = \/g‘ -1
berechnet. Als Transformationsgleichungen erhdlt man gemaB (5.45)
1 1 ‘
Xy = —\/5— (1 + 2y,), Xz = "‘—\/5— @2yy — y2). (5.47)

Wir setzen nun diese Substitutionen in die gegebene Kegelschnittgleichung ein. Es entsteht dann

R+62 -2 p+2/5m+4=0
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und daraus
-\ 2
_ s )
(Yx kY 5)2 + ( ) 6 =1
11 11 :
6 36

Aus dieser Form der Ellipsengleichung kénnen die Koordinaten y‘l'"’ »& des Ellipsenmittelpunkts
und die Léingen a, b der Halbachsen abgelesen werden: :

'ygm)=\/—5—’ a=\/ﬁ7ga
y(zvn)____._\/S—/6, b=\/ﬁ-/6'\

Der Ellipsenmittelpunkt kann mit Hilfe der Formeln (5.47) auch im x-Koordinatensystem beschrie-
ben werden:

™ = 2/3, X = 13/6.

Die Lingen der Halbachsen sind auch im x-System die gleichen, da die beiden Koordinatensysteme
durch eine orthogonale Transformation auseinander hervorgehen. Die Richtung der Ellipsen-Haupt-
achsen wird im x-System durch die Eigenvektoren ry, r, angegeben. —

Als Anwendungsbeispiel in der Mechanik sei auf die Ermitﬂung der Haupt-
spannungsrichtungen im Rahmen der Untersuchungen des allgemeinen Spannungs-
und Deformationszustandes hingewiesen.

5.2.8.2. Tragerschwingung mit Einzelmassen

Von den in der mathematischen Praxis auftretenden Eigenwertproblemen darf
behauptet werden, daf} sie zum grofen Teil aus der Technik, und dort wiederum aus
der Physik, Chemie und den verwandten Gebieten Mechanik und Elektrotechnik
stammen. Es sind in den meisten Fillen Schwingungsvorginge, aber auch Probleme
bei Knickungs- oder bei Dehnungsvorgiangen in der Mechanik oder bei energetischen
Untersuchungen in der Physik, die auf Eigenwertprobleme fiihren. In nahezu allen
dieser Falle erfolgt die Beschreibung des praktischen Problems zunichst durch diffe-
rentielle Beziehungen, die letztlich zu einem Eigenwertproblem bei Differential-
gleichungen fiithren, und erst bei der mathematischen L&sung eines solchen Problems,
sei es durch Diskretisierung oder durch Ansatzmethoden, treten Matrizeneigenwert-
probleme auf.

m, my my
el s ERR = IR i

7/9/7;\1@\\{,2 . . ./yni/;;?

—_———— e =T Vs Bild 5.1

Als typisches Beispiel fiir das Auftreten von Eigenwertaufgaben bei Schwingungs-
vorgiangen wahlen wir die Schwingung eines Tréigers mit Einzelmassen (Bild 5.1).
Der Trager sei beiderseits gelenkig gelagert, habe die Lange / und die Biegesteifigkeit
EJ; seine Masse soll gegeniiber den Einzelmassen vernachlissigbar sein. Die n Einzel-
massen seien, vom linken Aufpunkt an gerechnet, in den Entfernungen x,, x,, ..., x,
angebracht. Die Ausbiegung y des Trégers soll nur an den Stellen untersucht werden,
an denen die Massen angebracht sind, es sind also nur die Auslenkungen y,, ¥», ..., V,
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zu bestimmen. Auf die Berechnung der EinfluBBkoeffizienten aj,, die iiber die Be-
zichung

Ve = ayK;
den EinfluB einer an der Stelle x; wirkenden Kraft X auf die Auslenkung y, an der

Stelle x; angeben, kénnen wir hier nicht eingehen, sondern miissen das Ergebnis
angeben:

_ X - x)* ( X X x ) I
w=—gmr \’z Y15 ~ma-xy) @rks))
und sonst gilt @,; = a;. Zusammen mit dem Tragheitsprinzip
Ky = —my;

und der Symmetrie der EinfluBkoeffizienten a;;, = q; ergibt sich daraus das lineare
System von Differentialgleichungen zweiter Ordnung

Vi = —Quy Yy — oMY, — oo = A1y,
Yo = =Py — 0P Y s — = Aty
Yn = — a1y, — (12,,1112}"2 T e T ann'nnj}m

welches mit den Matrizen

ayy Gy ... Qyp 1y 0 .07

A=| %2 @2 Gy M = 0 m, ...0

Ay, Aoy oo Oy 0 0 ..om,
und dem Vektor y* = [y, ¥2, ..., ¥} in der Gestalt
y = —AMy (5.48)
geschrieben werden kann. Wir wollen nur die sogenannten Eigenschwingungen be-

trachten, bei denen alle Massen mit gleicher Frequenz o und gleicher Phase schwin-
gen. Fiir den zeitlichen Verlauf der Durchbiegung y,(¢) kann dann der Ansatz

Yu(t) = yi cos wt

gemacht werden. Eingesetzt in (5.48) ergibt sich wegen y, = —w?y, das Eigenwert-
problem

y = w?AMy,

o | B . . .
das nach der Substitution 4 = P die Form einer speziellen Eigenwertaufgabe an-
nimmt:

AMy = ly; v (5.49)

dabei ist jedoch die Matrix AM im allgemeinen nicht symmetrisch. Eine fir die wei-
tere Behandlung glinstigere Form der Aufgabe entsteht durch die Substitution

z = My,

denn damit erhilt (5.49) die Form einer allgemeinen Eigenwertaufgabe
Az = AM~1z
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mit einer symmetrischen Matrix A und der positiv definiten Matrix

-L 0...0
ny
1
M-1 = ;7—1;..0
0 0. L

Dieses Eigenwertproblem erfiillt somit alle Voraussetzungen des fiir diese Aufgaben
im Abschnitt 5.2.7. angegebenen Satzes 5.29.

5.2.9. Aufgaben

5.1: Man berechne die Eigenwerte und zugehorigen Eigenvektoren der Matrix

5 —1 -1
1 3 1
-2 2 4

5.2: Zur Matrix

4 0 2
-6 1 —4
7 -6 0 -3

{

sind die Eigenwerte und ein volistindiges System von Eigenvektoren (d. h., ein System mit maxi-
maler Zahl linear unabhéngiger Eigenvektoren) zu berechnen.

5.3: Man berechne die Eigenwerte und Eigenvektoren der Matrix

1 2 -1
-2 3 1
-3 8 1

5.4: Die Matrix
1 -1 0
-1 3 ./2
02 1
ist durch eine Ahnlichkeitstransformation in Diagonalgestalt zu uiberfithren. Wie lautet die 'l:rans-
formationsmatrix R?

5.5: Man beweise: Eine quadratische Matrix A ist genau dann reguldr, wenn ihre Eigenwerte
samtlich von null verschieden sind. '

% 5.6: Die beiden Matrizen

A___[ 2 \/5/2], B~[ 23 —1/2]

N B EETENG
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sind vertauschbar und diagonaldhnlich; sie haben folglich nach Satz 5.27 gleiche Eigenvektoren.
Man iberzeuge sich von diesen Eigenschaften durch Nachpriifen der Vertauschbarkeit und Berech-
nung der Eigenvektoren.
5.7: Es ist zu zeigen, daB die quadratische Gleichung

5x% + 6y% + 722 — 4xy — 4yz = 36

ein Ellipsoid darstellt, dessen Halbachsen dic Lingen 2 - \/ 5, \/ 6 und 2 haben und in Richtung
der Vektoren .

2 2 ' -1
=12, n=|-1}, r=
i -2 -2

weisen.

5.8: Das in Abschnitt 5.2.8.2. beschriebene Problem der Balkenschwingung erhilt bei einander
gleichen Einzellasten die Form einer speziellen Eigenwertaufgabe. Fiir den Fall von drei gleichen
und gleichabstdndig verteilten (s. Bild 5.2) Lasten berechne man die charakteristischen Kreis-
frequenzen w und die zugehorigen Ausbiegungs-Vektoren.

mm s

|
I
1

|
| ;Zl

e

!
[
.
i
1

7 7
it it

—t —e

_{__m__.ls

5.3. Austauschverfahren

5.3.1. = Der Austauschschritt

Eine lineare Funktion
Yy = X, + ayx, + k, ayy, ay., k konstant,

stellt geometrisch eine Ebene im Raum dar. Fir £ = 0 enthilt die Ebene den Null-
punkt; es wird in diesem Fall von einer Linearform oder einer hioniogenen linearen
Funktion gesprochen.

Es seien zwei Linearformen gegeben:

Yi = apXy + agsN, (5.50)

und
Yo = Ay X + drnYs. (5.51)
Fir a;; # 0 ist
1 a, .
Xy = 'y — — X5, 5,52
LEaL T aL ™ (5.52)

(5.52) setzen wir in (5.51) ein und erhalten

a- a,»a
ya= By 4 (a22 - -'-ZA) x,. (5.53)
agy ayy
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(5.52) und (5.53) stellen zwei abgeleitete Linearformen dar; x; ist abhidngige Ver-
inderliche, y, unabhédngige Veranderliche geworden. x; und y, sind also ausgetauscht
worden, daher die Bezeichnung ,,Austauschschritt*‘. Die folgende schematische Dar-
stellung erleichtert die Ubersicht:

|x1 X2 |}"1 X2
1 as,
yy | @11 Q12 Xy | —— e
— ayy a, (5.54)
sy ay5dz4
Y2 | Q21 a2z Y2 | —— Gy ———
asy ag;

Als Stiitzelement oder Pivotelement) bezeichnet man das im Kreuzungspunkt der
Spalte (Pivotspalte) und der Zeile (Pivotzeile) der miteinander auszutauschenden Ele-
mente (hier: Spalte unter x; bzw. Zeile neben y,) stehende Element (hier: ay,).

Bei der Durchfiihrung der Austauschschritte gilt fiir alle Elemente, die nicht in der
Pivotzeile oder in der Pivotspalte stehen, die sog. Rechteckregel:

Diagonal gegeniiber dem Stiitz- oder Pivotelement (hier: beim Element a,,) wird
folgende ., Korrektur angebracht: Es wird das durch das Pivotelement dividierte
Produkt der beiden in der anderen Diagonale als das Pivotelement stehenden. Elemente
Q2434 )

(von diesem Element) subtrahiert (hier: a, —
11

Linearformen von mehreren Variablen:
yi=2aux; =123, (5.5%)

Beliebiger Austausch z. B. von x3; mit y,: Voraussetzung ist, daB a,; (3. Spalte ist
,,Pivotspalte®, 2. Zeile ist ,,Pivotzeile*) ungleich null ist.

Schema:
Xy X2 X3 X4
Y1 ayy Az a3 dia o
- (5.56)
Y2 az, aszs 3 aza
Y3 asy as> sz | azs
Xy X2 )2 N4
a3,0,3 A3>0y3 a3 A344;3
)1 ay, ———— ay; ———— — Ay — ———
a3 a3 aszs a3
az, ass 1 ara
- X3 —— - _— _— (5.57)
as3 (X azs3 dz3
. 31433 a>>0d33 azz Q54433
Y3 a3y — ——— d3; — ————— — A3q4 — ———
dz3 dz3 dasz3 azs

Die am Austausch nicht beteiligten Elemente x,, x,, x, verhalten sich wie x> vom
Beispiel (5.54) und y,, y; wie y, vom Beispiel (5.54).

1) pivot, frz. Angcl, Zapfen, Stiitze
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Regel:
a) Das Pivotelement (Stiitzelement) geht in seinen reziproken Wert iiber;

b) die iibrigen Elemente der Pivotspalte werden durch das Pivotelement divi-
diert ;

¢) die iibrigen Elemente der Pivotzeile werden durch das Pivotelement divi-
diert und mit dem entgegengesetzten Vorzeichen versehen.

d) Die restlichen Elemente der Matrix werden transformiert, indem man
Jeweils das Rechteck aus 4 Elementen derart bildet, daff in der dem zu
transformierenden Element gegeniiberliegenden Ecke das Pivotelement
steht; dann wird die Rechteckregel angewendet.

Der Austauschprozef ist reversibel; wenn man auf (5.57) den Austausch mit dem
. 1 .
Pivotelement o ausiibt, gelangt man zu (5.56), d. h., wenn x,, X5, X3, X4, Vs V25 V3

23
die Relationen (5.57) erfiillen, so erfiillen sie auch aie Relationen (5.56).

5.3.1.1. Beispiel

Beispiel 5.25:
X1 X X3 X1 Y3 X3
yi 2 1 3 »1 0,5 0,5 2,5 .
Y2 4 2 5 -y, 1 1 4 (5-58)
V3 3 E_ 1 X2 -1,5 0,5 -0,5
—-1,5 a -0,5

In (5.58) ist unter die alte Matrix die neue Pivotzeile — ohne das Element der Pivot-
spalte — geschrieben, die sog. ,,Kellerzeile*. Nun ist z. B. a,,; folgendermafen zu
transformieren:

as,a, as;
Ay > a3y, — 22 o a;; + (—‘“‘ ayz;
U5y azp
oder a,, folgendermaBen:
' a31432 t3q .
dyy > dyy ————= =03 + | — azs;
as> as;
oder a,; folgendermaBen:
Aa33ds, Aas3
Ay3 = Q3 — ——— = a3 + | — ass.
azz asa
a3y 33

Dabei sind — o und — die unter den zu transformierenden Elementen stehen-

32 32 .
den Elemente der Kellerzeile und a,, sowie a,, die neben den zu transformierenden
Elementen stehenden Elemente der Pivotspalte. Damit kann die letzte Teilregel (d)
fiir einen Austauschschritt folgendermaBen formuliert werden:

d) Ein Element im Rest der Matrix wird transformiert, indem man zu die-
sem das Produkt addiert, welches aus dem darunterstehenden Element der
Kellerzeile und dem danebenstehenden Element der Pivotspalte gebildet wird.
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Die Berechnung eines transformierten Elementes erfordert hiernach genau eine
Multiplikation oder Division; also ergibt sich: Ein Austauschschritt fiir m Funktionen

und n Verdnderliche erfordert mn Multiplikationen und Divisionen, fiir m = n also
n? Operationen.

5.3.1.2. Der Austauschschritt wird riickgiingig gemacht

Wir vertauschen y; wieder mit x,.

| X1 Y3 X3 Xy X, X3
Vi 0,5 0,5 2,5 Y1 2 1 3
Y2 1 1 4 oy, 4 2
x| ZL5 05 =03 pno|32
o3

Als Transformierte erhalten wir die Ausgangsmatrix.

5.3.1.3. Summenkontrollen

Wenn die Zeilensumme gleich 1 ist und alle x, = 1 gesetzt werden, dann sind alle
y; = 1. Da die Zeilensummen nur in Ausnahmefillen gleich 1 sind, machen wir sie
zu 1, indem wir eine Spalte (die o-Spalte) anfiigen; bei dem Austauschschritt wird
die angefiigte o-Spalte wie jede x-Spalte transformiert. Die Rechenkontrolle besteht
darin, daB nach der Transformation die Zeilensummen der transformierten Matrix
ebenfalls gleich 1 sein miissen. Wir betrachten wiederum (5.58)

l X; X, X3 o | X1 Vi X3 o
Y1 2 l 3 -5 . Y1 0,5 0,5 2,5 '—2,5 (5.59)
V2 2 5 -10 2 11 4 =5
¥s 302 1 =5 x» | =15 05 =05 25
-1,5 -0,5 2,5

5.3.2. Transponierte Beschriftung

Aus der Matrix (5.56) kénnen auch Linearformen gebildet werden, indem man sie
nach Spalten statt nach Zeilen liest:

I Uy Uy - U3 [
—u a1 asz a3 aja (5.60)
—uy azy az: azs3 aza

—Us asz, ZX}) ass A34



5.3. Austauschverfahren 175

Ausgeschrieben:

Z. B.: Uy = —QaAyqUy — AUy — Az U3

oder allgemein:

3 , v '
vy = =Y auu fir i=1,23,4. (5.61)
- k=1 .

Die Formen v, in (5.61) heiflen die zu den urspriinglichen Formen (5.56) transpo-
nierten Formen. Es soll mit (5.61) ein Austauschschritt vorgenommen werden, und
zwar soll wiederum mit dem Pivotelement a,; gearbeitet werden, d. h. v; soll unab-
hangige und u, abhingige Variable werden. Durchfiihrung nach den Regeln a) bis d),
nur dafl in b) und c) die Worter ,,Spalte** und ,,Zeile‘* vertauscht werden:

l Uy ' ’172 U3 Vg4 ' vy Uy —Uy 273
—da;s3
—Up | a4y a2 a3 Q4 —Uy | &y X12 e Gia
N 23
azy a> 1 Az
—Uy | 4z az, az3 Aza U3
= : azs Aazs az3 Qaz3
—das3
—Usz | dzy a3z aszs A3q —Uz | &3y 032 ~Z K34
23
mit
21413 az,Q;3
K1y = Ay ——, Kz = dyp3 ———,
’ az3 azs
Ar44;3 az1033
Kig = Ayg — — Ray =d3zy ————
azs Qas3
32933 34033
K32 = A3z ————, K34 = 34 — —.
az3 ass

Nachtragliche Vorzeichendnderung ergibt schlieBlich:

|v1 v, u, Vs
/
ay3
—Uy | %11 Xy2 - L3P
az3
—das; —daz; 1 —aza .
Gy, | T e o (5.62)
Qz3 azs3 az3 azs
sz
—Uz | K3y K32 —_— X34
az3

Damit stimmt (5.62) genau mit (5.57) iiberein. Es gilt der folgende

Satz 5.30 (Dualititssatz): Ein Austauschschritt fiir gegebene Linearformen stimmt voll- S.5.30
stdndig iiberein mit dem Austauschschritt fiir die transponierten Formen, der dasselbe
Pivotelement benutzt.
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Den entstehenden Nachteil, daB nach (5.54) die Vorzeichen in der Pivotzeile ge-
indert werden miissen, d. h. die Pivotzeile anders behandelt werden muf als die
Pivotspalte, kann man vermeiden, indem (5.57) folgendermaBen geschrieben wird:

| x1 X2 2 Xs
a3

Y1 | G111 Xq2 o K14
Gz3

x Az (¥} -1 Az4

—x; | —& 22 I 24

a3 az3 azs a3

4

as3

Y3 | &3y X32 — X34
asz3

Man spricht hier von einem modifizierten Austausch.

5.3.3. Inversion

Bei n gegebenen Linearformen von n Variablen soll versucht werden, durch wiedc;r-
holte Austauschschritte alle x an den linken Rand und alle y an den oberen Rand
zu bringen. Wir greifen zuriick auf Beispiel 5.25 (vgl. (5.58)).

Nach Austausch von X, und y; ergab sich

*1 X2 X3 ‘ Xy V3 X3
» 2 1 3 » 0,5 0,5 2,5
y2 4 2 5 AR 1 1 4
V3 3 ; X2 ~1,5 0,5 —0,5
15 -05

Wir wenden das Verfahren noch einmal an; zu diesem Zweck suchen wir ein Pivotelement, das
ungleich 0 ist, z. B. a;4:

X1 Y3 X3 Y1 V3 X3
Y1 0,5 0,5 2,5 X3 2 -1 =5
” T 4 Ty, 2 0 -1
X2 :Iﬁ 0,5 -0,5 X -3 2 7
-1 -5
Das letzte Pivotelement ist nicht mehr wihlbar; es ist hier a,5:

Y1 ¥3 X3 M Y3 Y2
X1 2 -1 -5 Xy -8 - 5
2 2 0 1T . 2 0 -1
Xy 7 —.?: ; =l X3 11 -7

2 0
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Das Resultat schreiben wir in folgender Form:

Xy = —8y; + 5y, — 3
X3 = 1lyy — Ty, + 2y3 (5.63)

X3 =2y1 — ¥z

Die zugehorige Matrix

-8 5 -1
11 -7 2 (5.64)
2 -1 0

ist die inverse Matrix von (5.58).

Fiir einen Austauschschritt bei einer Matrix vom Format (n, n) brauchen wir n®
Multiplikationen und Divisionen, fiir die Inversion einer solchen Matrix demnach n®
Divisionen und Multiplikationen, da n Austauschschritte erforderlich sind.

Beispiel 5.26: Das folgende Gleichungssystem soll durch Inversion geldst werden:
-2X1+ Xz + 3x3 = 4,‘

dxy + 2%, + 5x3 6, : (5.65)
3X1 + 2x2 + X3 -3,

i

Die Koeffizientenmatrix A ist die Ausgangsmatrix von (5.58) (Beispiel 5.25). Es wird verlangt,
daB y;, y,, ¥ die Werte 4, 6, — 3 haben sollen. Setzt man diese Werte in die inversen Former (5.63)
ein, so ergibt sich '

xp =1, x;=—4, x3= 2 (566)

als Losung des Gleichungssystems. Wegen der eingangs (vgl. 5.3.1.) nachgewiesenen Reversibilitit
des Austauschprozesses stellt (5.66) tatsichlich eine Losung von (5.65) dar. — Das Einsetzen in die
inversen Formen verlangt n*> Multiplikationen.

Wenn & Gleichungssysteme mit derselben Koeffizientenmatrix A und k verschiedenen rechten
Seiten aufzuldsen sind, miissen also

n® + kn?
Multiplikationen und Divisionen durchgefiihrt werden.

Beispiel 5.27: Wenn in (5.65) die rechten Seiten alle gleich null sind, also das zugehdorige homo-
gene Gleichungssystem

2x1 + X, + 3X3 = 0,
4x, + 2X2 + 5x3 =0, (5.67)
3x; + 2x, + x;‘=0 -
zu 10sen ist, so gibt es bei diesem Beispiel nur die triviale Losung (oder Null-Losung)
Xy =X, =x3=0,
weil sich aus (5.63) ergibt, daB fiir y, = y, = y; = 0 auch
X3 =X, =x3=0
folgt.

12 Manteuffel, Lineare
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Beispiel 5.28: Es soll die Inversion fiir folgende Linearformen durchgefiihrt werden:

X1 X2 X3 Xa X1 X2 Y1 Xa
1 -4 -1 1 3 X3 4 1 1 -3
V2 -16 -—14 2 7 L e -8 -12 2 1
3 —-60 =55 7 25 V3 —-32 —48 7 4
Ya -28 =17 5 16 Ya -8 -12 5 1
4 1 -3 8 12 =2
X1 X2 SN Y2
X3 -20 =35 7 -3
- X4 8 12 -2 1 (5.68)
Y3 0 0 : -1 4
Ya 0 0 3 1

Die Inversion von (5.68) kann nicht weitergefiihrt werden, weil alle Elemente, die als Pivotelement
in Frage kommen, gleich null sind.
Folgerungen:
a) Die verbleibenden y-Zeilen ergeben die Relationen
y3=—y1 +4y2; ya=3y1+y:
d. h., die gegebenen Linearformen sind voneinander abhingig.

b) Die sich fiir die y-Zeilen ergebenden Relationen kénnen als ,,partielle Inversion' angesehen
werden.

Beispiel 5.29: Nun soll das zum Beispiel 5.28 gehorige homogene Gleichungssystem betrachtet
werden:
Wenn in (5.68) y; = y, = y3 = y4 = 0 gesetzt wird, so ergibt sich
x3 = —20x;y — 35x,5, x4 =8x; + 12x,. (5.69)

Werden x; und x, beliebig gewdhlt und x; und x4 dann ausgerechnet, so stelien diese 4 Werte eine
nichttriviale Losung des homogenen Gleichungssystems dar (wegen der Reversibilitit des Austausch-
prozesses); (5.69) stellt bei beliebigen x;, x, die allgemeine Losung dar (zweifach unendlich viele
Losungen).

Es gilt also:

Satz 5.31: Wenn der Inversionsprozef bei einem homogenen Gleichungssystem voll-
stindig durchgefiihrt werden kann, so besitzt dieses Gleichungssystem nur die triviale

Losung.

Beispiel 5.30: Das inhomogene lineare Gleichungssystem
- X3+ 2x; — x3=13,
—2x3 — X3 — x3=0, (5.70)
3x; — X+ 2x3=2
ist nicht 1osbar (Addition ergibt 0 = 5, eine unsinnige Aussage).
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Daraus ergibt sich nun folgendes hinreichende Kriterium fiir die Lsbarkeit linea-
rer Gleichungen:

Ein System von n linearen Gleichungen mit n Unbekannten ist eindeutig los-
bar, wenn das zugehorige homogene System nur die triviale Losung besitzt.

Man vergleiche die hier erhaltenen Ergebnisse mit den Sitzen 3.1 und 3.2 sowie
den diesbeziiglichen Uberlegungen in den Abschnitten 4.1. und 4.2.

5.3.4. AbschlieBende Bemerkungen

1. Der Austauschschritt versagt, wenn das Pivotelement gleich‘ null ist.

2. Der Austauschschritt wird ungenau, wenn der Betrag des Pivotelements
klein ist, d. h., wenn sein Wert nahe bei der Null, dem Ausnahmewert,
liegt.

3. Unter allen als Pivotelement in Frage kommenden Elementen wihlt
man stets das absolut grofBte aus.

4. Wenn die als Pivotelemente in Frage kommenden Elemente gegen-
uber den tbrigen Elementen klein sind, so befindet man sich in der
Nihe eines Ausnahmefalles (2). Die Inversion wird in ihrem weiteren
Verlauf unsicher. ‘

5.4. Matrizen und Vektoren in der Betriebswirtschaft

I. Matrizen und andere Hilfsmittel der linearen Algebra konnen in der Betriebs-
wirtschaft zur iibersichtlichen Darstellung bekannter betriebswirtschaftlicher Gré8en
und Zusammenhénge benutzt werden (z. B. Gewinn, Leistungsbilanzen);

11. betriebswirtschaftliche Aufgaben lassen sich oftmals mit Hilfe elementarer

Methoden der linearen Algebra 16sen (z. B. Selbstkostenermittlung, Planungs-
aufgaben);

III. es ist moglich, mit den einmal eingefiihrten Begriffen der linearen Algebra
mathematisch und betriebswirtschaftlich sinnvolle Fragen zu stellen (z. B. lineare
Optimierungsprobleme), zu deren Losung die dafiir entwickelten mathematischen
Methoden herangezogen werden kénnen.

Im folgenden werden zu diesen drei Punkten Beispiele angegeben und an einem
Modellbetrieb erlautert.

5.4.1. Modellbetrieb, Definitionen®)

Vorgelegt sei als Modellbetrieb ein Betrieb mit kontinuierlicher Fertigung, der aus
zwei Teilbetrieben besteht und aus zwei Eingangsleistungen (Rohbraunkohle, Geld)
zwei Ausgangsleistungen (Dampf, elektr. Energie) erzeugt. Die Beziehungen zwischen

1) Bemerkungen zur Schreibweise
A; (Skalar): Durchlaufmenge der Leistung «; im Gesamtbetrieb
I; (Vektor): Leistungsvektor des i-ten Teilbetriebes;
7 (Skalar): Produktionsdauer (= Durchsatzkomponente);
t (Vektor): Durchsatzvektor der nichtbeeinfluBbaren DurchsatzgroBen.

12#%
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den Teilbetrieben kénnen in einem FluBbild (Bild 5.3) oder in einer sogenannten
Leistungstabelle (Tab. 5.1) angegeben werden. Dabei soll ein fester Rechnungs-
abschnitt (z. B. 1 Stunde) zugrunde liegen. A

Im folgenden werden Erzeugung durch ein positives und Verbrauch durch ein
negatives Vorzeichen gekennzeichnet; Aufwinde und Fertigprodukte sollen schlecht-
hin als Leistungen bezeichnet werden.

Ein Betrieb bestehe nun allgemein aus » Teilbetrieben und erzeuge (bzw. verbrauche)
in kontinuierlichem FertigungsprozeB m Leistungen o, &5, &3, ..., &y,; 4, sei die (vor-
zeichenbehaftete) Durchlaufmenge der Leistung «; wahrend eines festen Rechnungs-
zeitraumes im Gesamtbetrieb, gemessen in Einheiten der Leistung «;; A, sei die

Geld (L) Rohbrovnkonie (L )
600 M sot
420M . Imun

Teilbetrieb 1 ( Hesselonfagen )

200t
‘_é_—imw |50t
| iveriess  ( mroinen) |
30MWh
Bild 5.3
Dampf (L7) £nergie (Ly)
50t 21Milh
Tabelle 5.1
Gesamt- Teilbetrieb | Teilbetriecb | Mengen-
betrieb 1 II einheiten

Q

% | L;Dampf 50 200 —150 t

E

&
g | £ | L, elektr. Energie 21 -9 30 MWh
@)
=
2
3 3 L; Rohbraunkohle —80 —80 t

:g .

E

Z | Ly Geld —600 —420 —180 M
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entsprechende Menge im k-ten Teilbetrieb (i = 1,2, ...,m; k= 1,2, ..,n). (Im
Modellbetrieb giltn = 2, m = 4undz.B. 4, = 21,2, = —600,45; = —80,4,, = 30

usw.).
GemiB unserer Vorzeichenvereinbarung gilt dann
=Y I (5.71)
k=1
oder
1=3Y 1. (Kopplungsgleichung),
k=1
wobei
2'1 llk
l = %2 ’ lk = %21‘
j‘m é'mk

als Leistungsvektoren des Gesamtbetriebes bzw. k-ten Teilbetriebes eingefiihrt werden;
lund I, (k = 1, ..., n) sind also die als Vektoren aufgefaBBten Spalten der Leistungs-
tabelle. v
" L=[1,, ..., 1] heiBt Leistungsmatrix des Betriebes wihrend des vorgegebenen
Rechnungsabschnittes.

In unserem Beispiel ist

50 200 —150
21 -9 30
L= [1,11312]= _80 ’_80 0

—600 —420 —180

Die auf zwei (oder mehrere) Rechnungsabschnitte bezogene Leistungsmatrix erhilt
man durch einfache Addition der Leistungsmatrizen der zugehérigen einzelnen
Rechnungsabschnitte. Die Leistungen in der Leistungstabelle wollen wir der Einfach-
heit halber so angeordnet annehmen, daB «,, a5, ..., x, Endprodukte und &, 4 1, ..., &,
Aufwande bedeuten. Dabei wird (einschrinkend) vorausgesetzt, dal keine Zwischen-
produkte oder dgl. auftreten, die weder zu den Fertigprodukten noch zu den Auf-
wianden gerechnet werden kénnten, d. h., alle in den verschiedenen Teilbetrieben her-
gestellten Erzeugnisse sollen verkaufbar sein. Die Vektoren

}'1 Zlk
f = . > fk =
ﬂ'v Z'vk

sollen als Fertigproduktvektoren und

)bv+ 1 }‘v+ 1,k
a= E > y = S
lm )'mk

als Aufwandvektoren des Gesamtbetriebes bzw. des k-ten Teilbetriebes (k = 1, ..., n)
bezeichnet werden; es gilt also

= [Z] 1 = [ﬁ‘] (k=1,...,n). (5.72)

a



182 5. Anwendungen der lincaren Algebra

In unserem Modellbetrieb ist » = 2 und z. B.
200

200 —380 f, —9
L=1_9]" ™= _po)° " la]~| -s0

—420

5.4.2. Darstellung des Gewinns

Ist p; der zu zahlende bzw. zu fordernde Preis pro Einheit der Leistung «; (i = 1,
..., m) (o; unabhingig von sign 4;), so ergibt sich der Gewinn G des Gesamtbetriebes zu

G= ﬁ@ili = p'l
i=1
T T f T 7 5.73
=[popal| | =pif + paa (5.73)

und der Gewinn G, des k-ten Teilbetriebes zu

Gy =1_Zl 0k = Pk

f1 : ,
= . Bl [ | = Bt + i, 574
wenn
P = o1, s 0l = [pe, pal,

(mit pf = [0y, ---,0,), P2 = [0,41> .-, 0,x]) als Preisvektor eingefiihrt wird.
Die Gleichungen (5.73) und (5.74) lassen sich zusammenfassen zu

G, Gy, ..., G,] = p"L. (5.75)

Unter Beachtung von (5.74) und der Kopplungsgleichung (5.71) erhilt man aus (5.73)
noch die nahezu selbstverstindliche Beziehung

G=3 G,. (5.76)
k=1

Nimmt man in unserem Modellbetrieb folgende Preise an:
p; = 6 M prot Dampf, 03 = 4Mprot Kohle,
02 = 40 M pro MWh, 04 = 1 M (pro M),

so ergibt sich ein Gewinn (stiindlich) von

50

21
-80
—600

=6-50+40-21 + 4-(—80) + 1-(—600) = 220 M.

=p'l = [6, 40, 4, 1]
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5.4.3. Kostenrechnung
Kostenrechnung beinhaltet eine Bewertung der Fertigprodukte (= Ermittlung der
Selbstkosten fiir die Fertigprodukte), die hier so durchgefiihrt wird, daB

a) gleiche Erzeugnisse (etwa aus verschiedenen Teilbetrieben) auch gleich bewertet
werden und

b) der Gewinn jedes Teilbetriebes verschwinden wiirde, wenn man die Fertig-
produkte zum Selbstkostenpreis verkaufen wiirde (Kostendeckung).

Es sei ,
PT = (01, .. Oys Oyi1s - Om) = (ST, Pa).
Gesucht ist mithin ein Selbstkostenvektor
sT = [0y, ...,0,]

derart, daB
Gt =Gl = %R | = 5" + pla = 0 (77
k

firk = 1,2, ..., n gilt.

(5.77) ist ein lineares inhomogenes Gleichungssystem mit # Gleichungen und
v Unbekannten; mit den Matrizen F = [f, ..., f,], A = [a,, ..., a,] 1aBt es sich in
der Form

F's = —A"p, (5.78)
schreiben. Im Falle » = 1 und det FT & 0 erhilt man die eindeutige Ldsung
s = —FT-1ATp,.

Weiterhin kann (5.77) mehrdeutig I6sbar sein; dann konnen, je nach Rangabfall
des Systems, fiir einen Teil der Fertigprodukte Selbstkosten vorgegeben werden.
Sollte (5.77) unlosbar sein, so 148t sich nach Pichler (Pichler, O.: Mathematik in
der Betriebswirtschaft, MTW-Mitteilungen III, 1956, S. 105-112, S. 170-175) durch
Aufspaltung von Leistungsarten (,,Pooling*) oder Zusammenfassung von Teil-
betrieben (oder beides zugleich) das Gleichungssystem (5.77) in ein I6sbares Svstem
tiberfiihren.

Im angegebenen Modellbetrieb erhilt man p*T = [sT, p;] = [0,, 0,. 4. 1], das
Gleichungssystem (5.77) ergibt sich zu

s™f, + p.a; =0,
s'f, = paa, = 0,

also
[0, 0,] [?;_Og] + [4, 1][:428] =0,
[ T+ ] 0] = 00
d. h.

20001 - 90'2 = 740,
—1500; + 300, = 180.
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Das System ist eindeutig 16sbar, die Losungen sind die Selbstkosten fiir Dampf
o; =512Mprot

und fiir Energie
o, = 31,61 M pro MWh.

Mit Hilfe der Selbstkosten 148t sich der Gesamtgewinn noch auf die einzelnen
Fertigprodukte aufteilen; aus den Gleichungen (5.77) und (5.74) ergibt sich

G= P;f+Paa—(Pf—ST)f—Z(Qt_Ui)/Ii ZGU

G, ist der Gewinnanteil des i-ten Fertigprodukts a, (i = 1, ..., ).

5.4.4. Planungsaufgaben

Die Produktionshohe eines Betriebes bzw. Teilbetriebes hingt ab von gewissen
Parametern, z. B. Einsatzmengen der unterschiedlichen Rohstoffe in den einzelnen
Teilbetrieben, Produktionsdauer (Zeit), Rohstoffeigenschaften, Luftdruck, Luft-
temperatur u. a., die im folgenden als Durchsatzgroflen bezeichnet werden sollen.
Diese Abhidngigkeit kann nach Pichler als linear angenommen werden, wenn nur
geniigend viele, das Betriebsgeschehen beeinflussende Parameter als DurchsatzgréBen
beriicksichtigt werden. Sind d,, ..., d;, diese Durchsitze im k-ten Teilbetrieb, so gilt
demnach

A = OOy + 0F0z + ... + @0, (5.79)

mit gewxssen Konstanten w® (i =1,...,m; j=1,...,8; k =1, ...,n), deren Er--
mittlung ein technologisches Problem ist bzw. auf Erfahrungswerten oder statistischen
Erhebungen beruht. Wir stellen uns hier auf den Standpunkt, daB diese Konstanten
bekannt sind.

Mit den sogenannten Kopplungsmatrizen W, = [0{P] lassen sich die Gleichungen
(5.79) zu

L=Wd, (k=1,..,n ' (5.80)

zusammenfassen ;

e
d. =
6skk

ist der Durchsatzvektor des k-ten Teilbetriebes.
Fiir den Gesamtbetrieb erhilt man aus der Kopplungsglelchung (5.80)

—~
EJI
o

n n dl
=Zlk=ZWkdk=[W1,---,W..][ ] 1
k=1 k=1
d,
d,
Es ist méglich, daB einzelne DurchsatzgréBen im Vektor | -

d,
z. B. ist es denkbar, daB die Lufttemperatur fiir mehrere Teilbetriebe DurchsatzgroBe
ist; die Zeit (Produktionsdauer) kann in jedem Teilbetrieb DurchsatzgroBe sein.

] mehrfach auftreten,
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dl dl
Aus l : ] soll nun ein Vektor d abgeleitet werden, der jede in [ : ] vorkommende

d'l d’l
DurchsatzgroBe genau einmal als Komponente enthilt. Addiert man in der Matrix
[W,, ..., W,] die zu gleichen Durchsatzgroflen gehorigen Spalten und ordnet alle

Spalten entsprechend der Konstruktion von d an, so erhilt man die Gesamt-Kopp-
lungsmatrix W; Gleichung (5.81) 148t sich damit vereinfachen zu

1=wd. (5.82)

Weiterhin wollen wir die vorgegebenen nichtbeeinflufbaren Durchsatzgrifien (z. B.

Lufttemperatur) des Vektors d zu einem Vektor t zusammenfassen und die restlichen,
sogenannten freien Durchsdtze zu einem Vektor d. Ohne Beschriankung der Allgemein-

heit sei d so angeordnet, da3

i-[!]

gilt. Gleichung (5.82) lafit sich dann in der Form

f 911 G12 d
[ ][]
a 921 922 t ( )
schreiben (mit f = q,,d + q,,t). Gleichung (5.83), die Grundgleichung fiir den Be-
triebsablauf, zeigt:

Sind die freien und nichtbeeinfluffbaren Durchsatzgrifen festgelegt, so lassen sich
die daraus ergebende Produktionshohe und der erforderliche Aufivand a sofort ablesen.

GroBere Bedeutung hat (5.83) aber bei der Losung folgender Planungsaufgabe:

Wie hoch sind die Aufivendung (a) und die einzelnen Durchséitze (d) festzulegen,
um eine vorgegebene Produktionshéhe (f) zu erreichen?

Ist q,, quadratisch und det q,, = 0, so 1aBt sich die Losung dicser Aufgabe sofort
angeben; es ist (vgl. (5.83))

qii'f = d + q5'q,qt
und also

"d ot — 45719 f f
R T Y R
a 42191 922 — 421911 912 t ot

P wird Strukturmatrix genannt. ;

In allen anderen Fillen hat man das inhomogene Gleichungssystem f = q,d zu
untersuchen, das entweder eindeutig oder mehrdeutig 16sbar ist (zur Erreichung der
vorgegebenen Produktionshéhe f kénnen je nach Rangabfall des Systems noch einige
freie Durchsitze beliebig festgelegt werden) oder liberhaupt nicht 16sbar ist (die vor-
gegebene Produktionsh6he kann nicht erreicht werden, wie auch immer die Durch-
satze gewahlt werden mégen).

Anwendung im Modellbetrieb

Als Durchsatzgrofien im Teilbetrieb I werden
0, = abgegebene Dampfmenge,
7 = Produktionsdauer
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und im Teilbetrieb II
d, = erzeugte Energie,
v = Produktionsdauer

angenommen, also

) o
d = [tl] = [12]
(in Bild 5.3: §; = 200t, d, = 30 MWh, 7 = 1 Std.).
Mit den Kopplungsmatrizen

1,00 0 -5 0
—0,04 -1 . 1 0
wl = _0’40 und “2 = 0 0 (5-85)
—-1,00 -220 -2 =120
. . 200 301\ .. .
erhdlt man {bei d;, = 11 d, = 1 die Leistungsvektoren 1, (vgl. (5.80)) zu
1,00 -0 2007 -5 0 -150
1= —-0,04 -1 [200] B -9 L — 1 0 [30] _ 30
Y| —0,40 0 1] =80’ * 0 0 1] 0
-1,00 -220 —420 -2 —=120 —180
und
d,] -
1=11+lz=[W1,W2][d =Wd
und
-5 7
1,00 5 0 5, 200
W= —-0,04 1 -1 dizlel=1 30
| —0,40 0 01}’ N rz - 1
—-1,00 -2 —340_

(die 2. Spalte von W, und die 2. Spalte von W, gehdren beide zur gleichen Durch-
satzgroBe 7, diese beiden gleichartigen EinfluBspalten werden addiert und ergeben die

3. Spalte von W; entsprechend erscheint 7 als 3. Komponente im Durchsatzvektor d).

61] t = 7, so liefert (5.83)

Nimmt man §,, 6, als freie Durchsitze an, also d = [ 5
2

q11=[
‘121=[

1,00 ~5] _[ o]
_0,04 1 ’ 412 = -1 3

= [—348];

22

~0.,40 o]
-100 -2/ 1
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q,, ist quadratisch und det q,, = 0, gemaB (5.84) erhilt man die Strukturmatrix P zu

. Che —qi1'qs2
P= -1 -1
1921911 922 — 92195 912
125 625 625 |
0,05 1,25 1,25 .
= O e R . (5.86)
-0,50 -2,50 @ -2,50
—-1,35 —8,75 —348,75

Als Produktionshohe fiir den Gesamtbetrieb im Produktionszeitraum von 2 Stunden
200]

10])°

t = [2]. Gesucht sind die dazu erforderlichen Aufwénde a, die Durchsatze d und die

Leistungsvektoren 1, und 1,.
Die Gleichungen (5.84) und (5.86) liefern sofort

seien 200 t Dampf und 10 MWh elektrische Energie vorgeschrieben, d. h. f =

1,25 6,25 | 6,25 . 295 N
[ d] I st Bl f ol BN RN N P
= —0,50 —2,50 —2,50 5 —130 is |
| —1,35 —875  —348,75_| —1055 A
aus (5.80) und (5.85) folgt ‘
1,00 0 325
—-0,04 —1 | 1325 -15
L=Wdi=1 040 o [ 2} =| 130 |
-1,00 —-220 —765
-3 0 —125
1 0] [25 25
]2 = W2d2 = 0 0 [ 2:! = 0
-2 =120 —290

Erforderlich sind mithin 130t Rohbraunkohle und 1055 M. Teilbetrieb 1 muB
325t Dampf abgeben und Teilbetrieb II 25 MWh Energie — alles bezogen auf
2 Stunden.

'5.4.5. Ein Optimierungsproblem

Jeder Betrieb ist bestrebt, einen moglichst hohen Gewinn zu erreichen. Diesem
Bestreben sind naturgemiB Grenzen gesetzt: Kapazitatsgrenzen fiir gewisse Durch-
sitze, Zuteilungsgrenzen fiir bestimmte Aufwinde, Mindestforderungen nach
einigen wenig Gewinn bringenden Fertigprodukten usw. Es miissen also folgende
(komponentenweise zu verstehende) Ungleichungen erfiillt werden:

L1, d4,2dsd. |
(Unter den Komponenten vonl,, d, kann auch — o auftreten, ebenso + co unter den

Komponenten von 1y, dy; die entsprechenden Komponenten von 1 oder d sind dann
nach oben bzw. unten unbeschrankt.)

¢
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Mittels Gleichung (5.82) 148t sich das Bestreben, einen moglichst groen Gewinn
zu erzielen, folgendermaBen formulieren:

Es ist ein Durchsatzvektor d zu bestimmen, der der linearen Form
G=7p1l=(p™W)d
unter den Nebenbedingungen
L, S Wd <1,
4, Sd=<d,
einen maximalen Wert erteilt.

Das ist ein sogenanntes lineares Optimierungsproblem, {iir das in Band 14 Losungs-
methoden bereitgestellt werden.

5.5. Matrizen in der Mechanik — Losung des Biegeproblems
eines beliebig gestiitzten geraden Trigers

5.5.1. Zur Theorie der Balkenbiegung

Der elementaren Balkentheorie liegt die lineare Differentialgleichung der elastischen
Linie zugrunde. Unter der elastischen Linie versteht man eine Kurve durch die Punkte
der einzelnen Tréigerquerschnitte, die bei einer Biegung des Trigers spannungsfrei
bleiben. Mit den Bezeichnungen nach Bild 5.4 lautet die Differentialgleichung

M
7'(&) = — —E(—(g (5.87)
mit
B(&) = EJ(§) (Biegesteifigkeit),
M(&) - Biegemoment,
E - Elastizititsmodul,
J(£) - Fliachentragheitsmoment.

Bei kleinen Durchsenkungen # gilt fiir den Biegewinkel ¢:
7 =tang ~ sing ~ ¢ > 7€) = @(&).

Unter diesen Voraussetzungen soll das Zeichen ,,~“ in den folgenden Ausfiithrungen
durch ,,="* ersetzt werden, d. h.

7'(€) = (&). (5.88)

Um zwischen den mechanischen Grollen Biegemoment, Querkiaft und Streckenlast
analytische Beziehungen herleiten zu konnen, ist es erforderlich, ein Balkenelement

p(E)
o
[ Meg A S T \\M(f)rdld(f)
Vil v J
o€ ackr-aace)

7

Bild 5.5
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mit den dazugehérigen SchnittgréBen (Biegemoment und Querkraft) zu betrachten
(Bild 5.5). )

Die in Bild 5.5 eingetragenen SchnittgréBen miissen mit der duBeren Last p(£)
im Gleichgewicht stehen.

Es gilt demzufolge:

~0(®) + p(&) € + 0®) + dOE®) = 0,
ME) + 06+ 06 % + a0®) % — me) - ame) = 0.

Man erhélt dann wegen —;_- dg()dé~0

dM(§)

G (), 50
do() '
i -p(§),

Setzt man diese Beziehungen in die zweimal differenzierte Differentialgleichung (5.87)
ein, so erhalt man die lineare Differentialgleichung 4. Ordnung der elastischen Linie

{B(&) 1" (&))" = p(®). (5.90)

Fir den Fall konstanter Biegesteifigkeit, auf den wir uns im weiteren beschrinken
wollen, erhalt (5.90) die Form

By®(&) = p(&). . (5.91)

5.5.2. Herleitung der Feldmatrix

Einen Balken, der sich aus n Teilabschnitten konstanter Biegesteifigkeit B, (v = 1,
2, ..., n) zusammensetzt, zeigt Bild 5.6.

. R V... 01 n
2) n)
@ G @ C Bild 5.6

Ein Stiick konstanter Biegesteifigkeit des Trigers, z. B. der durch » gekennzeichnete
Abschnitt, soll das »-te Feld genannt werden. Die Feldgrenzen sollen die Indizes
,»» — 19 fiir die linke Seite und ,,»** fiir die rechte Seite erhalten. Die Lange des »-ten
Feldesist dann /, = &, — &,_;. Die Differentialgleichung (5.91) 148t sich dann fiir den
v-ten Abschnitt in folgender Form schreiben:

BayP(&,) = pié,). (5.92)

Integriert man (5.92) und fiihrt als Integrationskonstanten die mechanischen Gréfien
an der linken Feldgrenze (Index ,,» — 1°) ein, so erhilt man fiir die GréBen

&), @), M(E,), @&, und p(£)

>
-
>
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an einer beliebigen Stelle &,_; innerhalb des v-ten Feldes fiinf lineare Gleichungen:

IEY = 1oy + Epros — EFM - %QH +E) - 1
B :, & N
(&) = Py-1 — “B:'Mv—x - TB;Qv—-l + ‘/’v(fv) -1 (5.93)
ME) = M, + & Oy + JT(E) 1
0£) = 0,1 + OyE) - 1
1 = 1

Die tiberstrichenen Glieder auf der rechten Seite von (5.93) haben ihren Ursprung in
der Belastung des »-ten Feldes. Sie bedeuten im einzelnen:

&
0.6 = - [ @ dz,

0

EV
ME) =] Ol ds,
0

£, (5.94)
1 —
. f M(2) dz,

v
0

65;(5\') = -

&
(&) = [73(2) dz.
0

Die letzte der Gleichungen (5.93) resultiert aus der Differentialgleichung (5.92),
die durch p,(§,) # 0 dividiert wurde.

Da bei der Berechnung der Biegung gerader Trager die mechanischen Bezie-
hungen linear sind, erhalten wir auch ein lineares Gleichungssystem.-

FaBt man die mechanischen Grofen einschlieBlich der ,,1** zu einem Vektor zu-
sammen - einem sogenannten Zustandsvektor, da er den mechanischen Zustand an
einer bestimmten Stelle widerspiegelt, — so kann (5.93) als Produkt zweier Matrizen
wegen der Linearitdt der Gleichungen wie folgt geschrieben werden:

we) | [t e -5 -2 w@ || e
2
pE |01 =S S ey | e
v v (5.93)
Mv(gv) =10 0 1 fv Mv(sv) Mv—l
Qv(év) 00 0 1 -Q:(E\) Qv—l
1 ] loo o o 1 1

Dic Zustandsvektoren sollen mit x, bezeichnet werden. Die transponierten Vektoren
aus (5.95) lauten dann:

X (&) = &), pi&), M(E), 0.6, 1],
x:—'l = [7]'—1 s> To-1> Mv-—l ’ Qv—l " l]



5.5. Matrizen in der Mechanik 191

Die in (5.95) vorkommende Dreiecksmatrix ist eine Ubertragungsmatrix (speziell
eine Feldmatrix), da sie den mechanischen Zustand vom Anfang des »-ten Feldes
auf eine beliebige Stelle im Innern des »-ten Feldes tibertrigt. Die Feldmatrix fir das
v-te Feld soll mit F,(§,) bezeichnet werden. Damit 18t sich dann das Matrixprodukt
(5.95) schreiben:

x,(&,) = F(§) %,-1- (5.95)

Den Zustandsvektor x,(4,) = x, erhdlt man dadurch, dal man in der Feldmatrix
&, = A, setzt:
X, = Fv(}'v) xv-l = vav-l . (595,’)

Fiir den in Bild 5.6 dargestellten Trager mit # Feldern!) kann man dann schreiben

X, = ann—l’
Xp-1 = Mp-1Xp-2,
x; = FiXo,

X,, = F"F"_an_zF —-3 e F1x°.

Dabei 1aBt sich das Produkt der n Feldmatrizen noch zusammenfassen zu einer
Gesamtiibertragungsmatrix U. Es gilt dann

x, = Ux, (5.96)

Fir die praktische Behandlung eines Tragers nach Bild 5.6, der z. B. an beiden
Seiten gestiitzt ist, wire es aber sehr vorteilhaft, die in (5.96) vorkommende Uber-
tragungsmatrix U zu bilden. Die Rechnung verlauft wesentlich einfacher, wenn man
nach dem Falkschen Schema fiir die Matrizenmultiplikation zunachst bildet

x; = FiX,,
x, = Fy(F1x0) = Fox,,

X, = n(Fn-lx —2) = ann-l'

Da die Elemente der Zustandsvektoren und der Feldmatrizen mechanische Gréfen
bzw. QuerschnittsgréBen und Langen sind, haben sie unterschiedliche Dimensionen.
Es macht sich dabei erforderlich, dimensionslose Grof8en einzufiihren. Um aber auch
in den Matrizen Elemente zu erhalten, die gr68enmaBig nicht zu unterschiedlich sind,
werden die folgenden Vereinbarungen getroffen:

Ao [m] und Q [kN] werden Bezugsgrofen,
N = 102'15-17%’ ¥y = Ioz‘Pv’
M} = M(QAO)—I’ Ql: = QV.Q_I:

8, = A a _ B,10?
Yoo ’ 0B
B.(&) f‘-i—;, ‘ (»=12,..,n). (5.97)

1) ohne Zwischenstiitzen
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Der dimensionslose, transponierte Zustandsvektor wird mit x¥T bezeichnet, und die
dimensionslose Feldmatrix heiBt FX*(&,) bzw. F¥:
X:T = [77:9(’7:" M,*, Qv*’ 1]:

ey - BE) B

o “6a n*&,)
0 1 _BE&) B g
F}¢) = % 20, (5.98)
R 1 BE)  MFE) |
00 0 1 0*(&)
) 0 0 1 a
_ 5 s -
1 ﬂv - 20L, —6(1‘, ’7:
8, B -
01 -—= - 7z
F3(,) = F¥ = %y 20 77 (5.98)
0 0 1 B, M*
0 0 0 1 O
(0 0 0 0 1

Die Elemente der letzten Spalte der Feldmatrizen errechnet man mit den dimensions-
losen mechanischen GroBen entsprechend (5.94). Fiir (5.95) hat man somit zu
schreiben

X = Ity | (5.99)
analog dazu gilt:
x* = F¥F*_, ... F¥F¥xg.

Fir die wichtigsten Belastungsfille sind die Elemente der letzten Spalte der Feld-
matrix in der Tabelle 5.2 angegeben (die GroBen in der Tabelle sind nach (5.97)
bezeichnet).

Mit den oben entwickelten Feldmatrizen kann man einen geraden Triger voll-
standig behandeln, wenn dessen Felder lediglich durch Anderungen der konstanten
Biegefestigkeit B, (v = 1, 2, ..., n) gekennzeichnet sind. Wenn dagegen neben der
Anderung der Biegefestigkeit an einem Feldende noch eine Zwischenbedingung auf-
tritt, reichen die bisher entwickelten Hilfsmittel nicht mehr aus (vgl. hierzu Manteuffel/
Seiffart, Einfiihrung in die lineare Algebra und lineare Optimierung, Abschnitt 4.2.3.
bis 4.2.5.).

13  Manteuffel, Lineare



6. Bemerkungen zur geschichtlichen Entwicklung

Zu den Teilgebieten der Mathematik, die in den letzten Jahrzehnten Eingang in
die mathematische Grundausbildung der Ingenieure, Naturwissenschaftler, Oko-
nomen und Landwirte gefunden haben, gehort die lineare Algebra. Methoden und
Modelle aus diesem Gebiet liegen zahlreichen und unterschiedlichen Anwendungen
in den verschiedenartigsten Bereichen der gesellschaftlichen Praxis zugrunde.

Im wesentlichen sind es wohl drei Komponenten, die die lineare Algebra im Laufe
der Entwicklung gepragt haben. Da sind zunichst diejenigen Methoden und Hilfs-
mittel, die jeweils zur Bewiltigung von anfallenden praktischen Problemen benétigt
wurden. So wurde der Begriff der geometrischen Addition von gerichteten Strecken
von Simon Stevin (1548-1620) fiir das Krifteparallelogramm und das Kriftepolygon
gebraucht. Der eigentliche Auf- und Ausbau der Vektorrechnung begann im
19. Jahrhundert, als man die geometrische Addition von gerichteten Strecken zur
Darstellung von Zusammenhangen in der Geometrie, in der Mechanik, in der Elektro-
technik benutzte. Die anschauliche Interpretation von Netzplinen basiert auf der
Betrachtung von Knoten und (gerichteten) Kanten, und verschiedene Rechen-
operationen mit komplexen Zahlen gestatten eine vektorielle Deutung.

Determinanten wurden bereits von' G. W. v. Leibniz (1646-1716) verwendet.
Einige zahlentheoretische Untersuchungen tiber quadratische Formen von C. F. GauB3
(1777-1855) lassen vermuten, dafl ihm der Begriff der Matrix vertraut war; explizit
hat er ihn nicht benutzt. ’

Im 19. Jahrhundert erfolgten die ersten Anwendungen des Matrixbegriffes in der
Geometrie (Transformationen) und in der Elektrotechnik; in der Gegenwart sind
Technische Mechanik, Netzplantechnik, Spieltheorie und viele andere Gebiete ohne
das Hilfsmittel Matrizen nicht mehr denkbar. Die theoretischen Untersuchungen
wurden durch G. Frobenius (1849-1917), 1. Schur (1875-1941) und viele andere
etwa bis zum gegenwartigen Stand gebracht.

Die Untersuchungen von Zahlen werden seit friithester Zeit durchgefiihrt, und so-
lange es schriftliche Uberlieferungen gibt, befinden sich darunter auch Darstellungen
von Rechengesetzen, Aussagen liber Eigenschaften von Zahlen. Das ist auch vollig
verstiandlich, sind doch ,,Zahl und Figur nirgends anders hergenommen als aus der
wirklichen Welt* (F. Engels).

Aus den Uberlieferungen der Babylonier, der Chinesen, der Agypter, der Griechen
entnehmen wir'die Kenntnis vieler Ergebnisse der elementaren Zahlentheorie. Linear-
formen mit zwei und mehr Unbestimmten untersuchte schon Diophant (um 250 u. Z.),
um Aussagen tiber lineare Kongruenzen, tiber Dreiecks- und Pyramidalzahlen zu
machen. Daneben haben quadratische Formen z. B. bei der Untersuchung von Kon-
gruenzen, bei der Zerlegung einer Zahl in eine Summe von zwei und mechr Quadraten,
bei Untersuchungen iiber Primzahlen eine Rolle gespiclt. Viele beriihmte Namen
finden sich unter denen, die Ergebnisse zu diesen Problemen vorlegten: Pythagoras
(570-501 v. u. Z.), G. W. Leibniz (1646-1716), P. de Fermat (1601-1665), L. Euler
(1707-1783), C. F. GauB (1777-1855), J. L. Lagrange (1736-1816), A. M. Legendre
(1752-1833), Ch. Hermite (1822-1901), J.J. Sylvester (1814-1897), P. L. Tscheby-
scheff (1821-1894) und viele andere.

Die zweite wesentliche Komponente ist die Entwicklung und Herausbildung
des allgemeinen Raumbegriffs. Schon Diophant versuchte, neben den zweiten bzw.
dritten Potenzen als Quadrate und Kuben sich auch fiir héhere Potenzen eine ent-
sprechende anschauliche Terminologie zu verschaffen. Bei Stifel (1487-1545) wurden
diese Bestrebungen ebenfalls sehr deutlich. Als J. d’Alembert (1717-1783) vorschlug,
die Zeit als vierte Dimension einzufiihren und J. L. Lagrange (1736-1813) mecha-
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nische Systeme mit allgemeinen Koordinaten beschrieb, war die Herausbildung des
Begriffs des n-dimensionalen Raumes fast vollendet. C. G. Jacobi (1804-1850)
berechnete das Volumen einer n-dimensionalen Kugel und A. Cayley (1821-1895)
prigte den Begriff der n-dimensionalen Geometrie. Die gegenseitigen Lagebezie-
hungen mehrdimensionaler Ebenen zueinander wurden fiir den n-dimensionalen
Raum von H. GraBmann (1809-1877) untersucht, und L. Schlaefli (1814-1895)
klassifizierte die regelméBigen Polyeder. Die mehrdimensionale Geometrie erwies
sich vor allem auch fiir die moderne Physik als von auBerordentlicher Bedeutung
(Relativitatstheorie, Quantenmechanik), und die Formulierung der Axiome des
n-dimensionalen Euklidischen Raumes geht auf Publikationen von H. Weyl (1885
bis 1955) (Raum, Zeit, Materie; 1918) und J. v. Neumann (1903-1957) (Mathe-
matische Grundlagen der Quantenmechanik, 1932) zuriick. Wesentlich fiir die For-
mulierung der Axiome ist der Begriff der linearen Abhédngigkeit von Vektoren. Eine
weitere Verallgemeinerung und Abstrahierung ftihrt zur Betrachtung topologischer
Réaume, die wir u. a. D. Hilbert (1862-1943) und J. Dieudonné verdanken.

Als dritte Komponente ist die Entwicklung der Mengenlehre anzusehen. Das Be-
mithen, mathematische Aussagen nicht fiir einzelne Objekte, sondern fiir Gesamt-
heiten von Objekten, die eindeutig charakterisiert werden konnen, zu formulieren,
ist wohl so alt wie die Mathematik selbst. Und es ist keineswegs ein bemerkens-
wertes, sondern im Gegenteil das tibliche, gerechtfertigte und durchdachte Vorgehen,
daf} z. B. eine Aussage liber die Summe der Innenwinkel nicht fiir ein spezielles Drei-
eck, sondern allgemein fiir die Menge aller méglichen Dreiecke gemacht wird. Um
so erstaunlicher ist es, daB der Mengenbegriff und damit die Mengenlehre erst im
letzten Drittel des 19. Jahrhunderts entstanden sind. Der Begriinder der Mengenlehre
ist G. Cantor (1845-1918). Die von ihm gegebenen Begriffsbildungen und Schluf3-
weisen wurden zunichst nicht nur miBverstanden, sondern sogar abgelehnt. Aber
mit dem 20. Jahrhundert begannen sich diese Ideen durchzusetzen, und sie erwiesen
sich als grundlegend fiir die gesamte Mathematik. Ohne Mengenlehre sind die
Teilgebiete der Mathematik heute nicht mehr denkbar; sie hat der Zersplitterung
der Mathematik in viele nebeneinanderstehende Gebiete entgegengewirkt und
ist — wenn auch meist nur implizit — wesentlicher Bestandteil unserer Schulmathe-
matik.

Als theoretische Grundlagen der gesamten heutigen linearen Algebra darf man
die Betrachtung von Substitutionen und Transformationen in topologischen line-
aren Riumen ansehen.

Die Anwendungen der entwickelten Methoden und Theorien sind — wie wir
gesehen haben - i. allg. recht schnell erfolgt. Bemerkt sei noch, da in der im
1. Jahrtausend v. u. Z. in China geschriebenen ,,Mathematik in neun Biichern*‘ be-
reits lineare Gleichungssysteme von n Gleichungen mit » Unbekannten gelost werden.

_Auch den indischen Mathematikern des 7. Jahrhunderts u. Z. ist die Losung solcher
Gleichungssysteme bekannt.

Erwahnen wollen wir den Beginn des umfassenderen Einsatzes gerade von Ver-
fahren der linearen Algebra auf 6konomische Problemstellungen. L. W. Kantoro-
witsch beschaftigte sich 1939 mit der Anwendung mathematischer Methoden auf
Fragen der Planung und Organisation der Produktion; O. Pichler untersuchte 1942
Fragen der Planung beim kontinuierlichen FertigungsprozeB in der chemischen
Industrie. Gerade die aus 6konomischen Aufgabenstellungen kommenden Impulse
und Anforderungen erwiesen sich in der Folgezeit und besonders in den letzten
40 Jahren als auBerordentlich wesentlich fiir die Erweiterung des Einsatzbereiches
der Mathematik.

Technik, Physik, Okonomie und die Mathematik selbst sind zum Einsatzgebiet

13* :
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der linearen Algebra geworden, es wird immer wieder bestitigt, daB ,,... alle wissen-
schaftlichen Abstraktionen die Natur tiefer, getreuer, vollstindiger widerspiegeln‘
(W. 1. Lenin). :

Die allseitige Entwicklung der Informationswissenschaft und die immer bessere
Beherrschung der mathematisch-kybernetischen Betrachtungsweise sind wesent-
liche Voraussetzungen fiir den erfolgreichen und effektiven Einsatz mathematischer
Methoden. Die Mathematik ist durch den Einbau abstrakter Begriffe wie Menge,
Matrix, Korper, Raum nicht weltfremd geworden, sondern sie hat ihre Anwendungs-
bereiche erweitert. Die entwickelten mathematischen Hilfsmittel haben die Denk-
und Arbeitsmoglichkeiten erweitert; ihr Einsatz zeigt uns, daB3 der dialektische Weg
der Erkenntnis der Wahrheit, der Erkenntnis der objektiven Realitdt von der leben-
digen Anschauung zum abstrakten Denken und von diesem zur Praxis fiihrt. -



7. Losungen der Aufgaben

1.1: Esist a,a, = a;a; = a,a; = O und q; = a, = a3 (= 15), Volumen V = 3375,

_ pna + Ab
Y

1.2:g
1
1.3: OAB: f, =7 (b x a),
1
OBC: f, =—£(c X b),
1 1 :
ABC:f3=E{(c-b)x(a—b)}=3{cxa—cxb—bxa},

1 .
OAC: f4 = -E(a X c),

1 .
f1+f2+f3+f4=—2-{bxa+cxb+cxa—cxb—-bxa+a><c}50.

' 1
1.4: v = 2rn = 500= [m] ist die Winkelgeschwindigkeit der Rotation; fithrt man

e; — 3e2 + 203
o—i——2" "3
[e, —_ 332 + 263_]
—>
r = OP der Ortsvektor zum Punkt P ist.

3007 e + €2 + ) vl 26| 2
v= == (€1 € 3)s V| = = ~ — .
V14 :;]4 min

= als Vektor der Winkelgeschwindigkeit ein, so gilt v = w x r, wobei

1.5: b+ iAla —b) =,u<b +-;-); (1)
b
a+v(b—a)=z<a+3); )]

1 2
(l)liefert(l—-';i)a+(1—i.-—;c)b:o, d. h. ).=§-, /.¢=—§;

1
(2) entsteht aus (1) durch Vertauschungvonaund b, d.h. v=41= 3

1.6: Verhiltnis 1: 2.
— —
Hohenschnittpunkt: A sei der Schnittpunkt zweier Hohen h; = AH und h, = BH. d sei der Vek-

—
tor CH. Es gilt hy(d — h;) = 0 und h,(d — h;) = 0, d. h. h;d = h;h, = h,d oder d(h; — h;) = 0.
—
d steht mithin senkrecht auf der Gegenseite AB; d ist Hohe, da die Hohe im Dreieck eindeutig be-
stimmt ist.
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1.7: Wahlt man ein Tetraeder mit der Kantenldnge 1 und ein Koordinatensystem wie im Bild an-
gegeben, so gilt:

- 1
1 —
— 2
1 2 =
—> —> — - 3
od=|o|, oB=|./3 | oC= \—’—6— .
0 2 _
2
0 —_—
e— 3—
— B 1 ]
1 2 7
2 — 2
1 2 NG
R=|o]+2| /3 +3 — | = 2\/3— s
0 2 _ 2
0 A/Z Ve
3

- 7 — 8 A
IRl =5, cos(R,OA)=-l—(-), COS(R’OB)=1—6’ cos(R,OC)=E.

1.8: Kegelmantel; Offnungswinkel 120°, Seitenlinge s = [x| = 1.

1.9: _kbxc
9:g= @bo)

1.10: a sei der Ortsvektor zum Mittelpunkt des Kreises, g der Ortsvektor zum Punkt P. Kreis:
(x — a)®> — r? = o, Gerade durch P: x = p + Ze, dabei sei e ein verdnderlicher Einheitsvektor.

Schnittpunkte:

P+4e—a)?—-r2=o0
oder A2 + 2e(p — a) + (p — a)?> — r? = o; das ist eine quadratische Gleichung mit den Losungen
71, 223 1441, 12,| sind die fraglichen Abstinde, ihr Produkt ist 4,4, = (p — a)> — r? = const (nach
Vieta unabhéngig von e).

1 1
1.11: (a) Schnittgerade x = | 2 | + {2 {;
0 1
® ¢==
Y= '2"
. 1
e
© Py(—1,1,6), 040,2,1); Schatten P1Q, = | —4 |;
-5

. —_
Schattenldnge |P,Q,| = \/:1__5_

1.12: r = ae, + A(be, — ae,) + u(ce; — ae,) = (1 — A — u) aey + Abe; + uce; (Achsen-
abschnittsgleichung der Ebene).



2.2:

2.3:

2.4:

2.5:

7. Losungen der Aufgaben

5 0 -5 -3
0 —-10 -20 -21
C=
7 7 7 12
10 9 8 14
2 0 1 00
a)P=[ ]; b)P=]|0 2 0
0 3
0 0 5

a3 3a2 6 4

a) A3 =
) [0 a3

o

0 af

ol

—sin ngp
cos np

cos np
sin ngp

]

WIN W= _WwlN

“ ]; c) A3

199

13
21

~14
-22

-[a ]

] . Man benutze vollstindige Induktion.

Cy =

WIN W= WwiN

2.6: Man beachte, daB hier (E — A) (E + A) = (E + A) (E — A) und (E — A)T = (E + A) gilt,

2.7: a) Es gilt (—1)"det (A + 4,E) = det (—A — A4E) = det (AT — 4E) = det (A — L,E)T

2.8:

also p(—4;) = 0.

_1
Ay

det (A — LE)T = 0, also

/-

b) (—4)" det (A E) = det(-4A + E) =

0.

|
|

a) A~

|

=0
D Get(-AE+AT) = —
detan det=4 ) = Fer@an
1 —a 0 0
b)A_1= 0 1 —a 0 ;
0 0 1 —a
0 0 o0 1
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[~ 2 3
1 a 2a* 2a -5 1
01 a 0 1
c) Al = H d Al = — — 1 -5
) 0 01 a ) - 18 ] 1
| 0 0 O 1
2.9:;
1 -3 0 0 -4
0 1 -3 0 1
A—l - -1 —
©) 0 0 1 -3 (AB) 2
0 0 0 1 1
2.10: det A = ~16. 2.11:detC = —2.
2.12: 24, 213:3)x; =3, b)x = -3,
X2 = —9, X2 = 9.
214.:
1 3 3 2
00 7
det A = =0.
00 -3 1
00 0 -4

2.15: Man schreibe a x (b + ¢) mit Hilfe einer Determinante und forme um.

2.16:

aa ab ac
[abc] [abc] = [ba bb be
ca ¢cb cc

7.17: Man benutze vollstindige Induktion.

2.18: D kann aufgefa8t werden als Polynom n-ten Grades in x,, ¢(«) ist dann Polynom 1. Grades

in x,.

Multipliziert man in D die k-te Zeile mit a*=! (k = 1, ..., n) und addiert anschlieBend alle Zeilen
zur ersten Zeile, so kann aus der ersten Zeile der gemeinsame Faktor ¢(x,) herausgezogen werden.
Distalso durch ¢(x,) (» = 1, ..., n) teilbar; da die ¢(«,) lineare Polynome in x, sind, ist D auch durch
@(o1) P(2) ... p(cxy) teilbar. Das Produkt ¢(u;) ... ¢(x,) ist selbst ein Polynom n-ten Grades in x,,

also gilt
D= C-(p(oc,) --.¢(an)) .

wobei C nicht von x, abhingt. Durch Vergleich des Koeffizienten von x, auf beiden Seiten von (1)

(n=1) (r=2)
ergibt sich C = (—1) 2

2.19: Man bilde die Transponierte, D = DT = D, also D = D.
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2.20: Es sei D = « + if. Multipliziert man jede Zeile von D mit (—1i), so erhilt man (—i)"D
= (DY) = D = « — if. Es gilt:
1 fir n = 4,
—ifirn=4m+ 1,

V=N i i = am+ 2,
ifirn=4m+ 3,
damit ergibt sich:
zu a) D = D (nur) fir n = 4m, D reell;

b) D = —D (nur) fiir n = 4m + 2, D rein imagindr.

2.21: Esiist

detA 0 ... O
0 detA .. O

n
AB = LZ a,,‘A,,‘] = 0 . . s
=1

0 .. O detA
also det (AB) = det A2det B = (det A)";

1. Fall det A &= 0 — det B = (det A)™!;

n detA =0firi=1
2.Falldet A =0 Ay = ( =
¢ _)kgxa“ " l 0 sonst } 0

(fiir alle i; die Spalten von B sind also linear abhingig, d. h. det B = 0, d. h. auch det B = (det A)*~*
(=0). .

2.22: Es gilt det A = det (AT) = det (—A) = (—1)"det A = —det A, also det A = 0.

1 5 7
3.l:x1=7, x2=§,x3=—8—. 3.2: x;, =7 —p.
1
3.3:k = 14. 3.4: x; = -7+ p. 3.5: x; = — 5 @3 +1).
3.6:k=2; x,=0. 3.7: k= -2,

3.8: det (A — AE) = 0 ist zu losen.
det(A—JE)= —(13 — 422 + 52— 2) = — (A — D2 (A — 2).
74 = 2, = 1: Rang der Koeffizientenmatrix des Gleichungssystems ist 1; Losung:

2
-t = §f2
31
-t
*
1y, t, beliebig;
/3 = 2: Rang der Koeffizientenmatrix des Gleichungssystems ist 2; Ldsung:
1

x=17|21}, tbelicbig.
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23 10 * !
3.9:x=—9—-, y=z=—?. 3.10: 1 = 0; y|=p| -2}, pbeliebig.
z 1
n n n f;
311: Y x Ly =Y apxix, =Y aux? + 3 (ay + a) xix = 0,
i=1 k=1 i=1 i,k=kl
i<
d.h oa;=0, ay = —ay (G, k=1,2,..,n). Die Matrix [a;] ist also schiefsymmetrisch, also

det [a;] = 0, da » ungerade.

4.1: Die Vektoren aller Systeme sind jeweils voneinander linear unabhingig, stellen demnach
Basen dar.

4.2: Der Nullvektor erfiillt alle Axiome und Gesetze.
4.3: Bestatigung durch Ausrechnen.
4.4: Zum Beispiel ist a, = (—1, 1, —1, 1) ein geeigneter Vektor.

4.5:34 = 281 + 282 + ag.
3 7 5
4.6: Die Vektoren a;, i = 1,2, 3, 4, sind eine Basis; a = —a; + —a, — —a; — a4; die Vektoren

by, i = 1,2, 3, 4, sind linear abhiingig. 47 47 4
4.7: Die Abbildungen @, und @, geniigen den Linearititsbedingungen.

5.1: Eigenwerte: 4, = 2,1, = 4, A3 = 6; Eigenvektoren: .

0 1 1
r = 1), rpb=1}111{, r3= 0
-1 0 -1

5.2: Eigenwerte: 4; = 0,4, = 13 = 1;

Eigenvektoren:
1 0 2
rp=|-=-2, rp={11], rz3= 0
-2 0 -3

5.3: Eigenwerte: 4, = 1, = 0,43 = §
Eigenvektoren: Zum doppelten Eigenwert 4 = 0 existiert nur ein Eigenvektor ry;

5 0

r = 1 , I3 = 1
[

7 2

5.4: Transformationsmatrix

[ ~12 216 =36
R=| -12 0 V32
RINEIRINERRING
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5.5: a) A reguldr, Ar = Ar,r + 0 —» A~! existiert » A~'Ar = JA"'r— 0% r=2A"r- 1+ 0.

b) Es sei 4 = O fiir alle Eigenwerte — Das homogene lineare Gleichungssystem Ar = o hat nur die
triviale Losung (denn wire r eine nichttriviale Losung, so hitte A den Eigenwert 2 = 0 mit r als zu-
gehorigem Eigenvektor) — A ist reguldr.

5.6: Vertauschbarkeit: .
/3 12
AB = v P BA;
12 3/3
1/2,4, = 5/2;
7306, 12 = \/3)2.

Da beide Matrizen nur einfache Eigenwerte haben, sind sie diagonaldhnlich. Gemeinsame Eigen-
vektoren von A und B sind

127 \/3—/2
"=[~\/3—/2]’ rﬁ[ 12 ]

5.7: Zugehorige symmetrische Formmatrix:

Eigenwerte von A: 4,

1l

Eigenwerte von B: u;

5 -2 0
A=|-2 6 —2|;
0 -2 7

Eigenwerte: 2y = 3,2, = 6,43 = 9;
Eigenvektoren: ry, r,, r3 (siche Aufgabenstellung);
Transformierte quadratische Form (5.46):

3)7 + 65 + 95 = 36.

. T68ES . .
5.8: Mit der Abkiirzung pt = —— = —— = Wergxbt sich

Hy =16 + 11\/ 2 (Grundschwingung),
Uy =2 (1. Oberschwingung),
s =16 — 11\/2_ (2. Oberschwingung).

Die zugehorigen Ausbiegungs-Vektoren sind
23/44 2 —~23/44

r = \/5,r2= 0f, r3= \/;

23/44 -1 —23/44
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Euler 194
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Krifteparallelogramm 10, 194
Kriftepolygon 194

Kreis 165

Kronecker-Symbol 22

Lagrange 194

Laplacescher Entwicklungssatz 72
Legendre 194

Leibniz 194

Leistungsbilanz 179
Leistungsmatrix 181
Leistungsvektor 181

lineare Abbildung 119, 121

- -, Rang 122

— Abhingigkeit 17, 18, 117
— Mannigfaltigkeit 119

— Transformation 119

— Unabhingigkeit 18, 117

— Ungleichung 106

linearer Vektorraum 114, 115
Linearform 83, 120, 171
Linearitdtsbedingungen 119

" Linearkombination 116

Losbarkeit eines Gleichungssystems 90
Losung, duale 103

-, primale 108

Losungsraum 119

Losungsvektor 83

Mannigfaltigkeit, lineare 119

Matrix 45

—, antihermitesche 49

—, antimetrische 48 ~

--, assoziierte 48

-, Berechnung der reziproken 73

-, charakteristische Wurzeln der 129

-, diagonaldhnliche 145

-, endliche 63

—, Format einer 46 .

—, hermitesche 48, 147

-, inverse 61, 73, 157

-, konjugierte 48

-, Multiplikation einer, mit einem Skalar 50
—, Ordnung einer 47

-, orthogonale 61, 155

—, positiv definite 128, 152
—, positiv semidefinite 128
-, Potenzen einer 63

-, quadratische 46

-, Rang ciner 78 ‘

-, reziproke 61, 73, 157
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Matrix, reziproke, cines Produkts 62
-, schief hermitesche 49, 153

-, schiefsymmetrische 48, 153

-, Spur ciner 132

-, Summe der Hauptdiagonalclemente einer 132
-, symmetrische 47, 147

-, transponierte 47

-, Typ eincr 46

-, unendliche 63

Matrizen, Addition von 49

-, dhnliche 141

-, Differenz von 49

-, glcichartige 49

-, Subtraktion von 49

—, Summe von 49

—, unitare 151, 155

-, verkettbare 51

-, vertauschbare 157

Mengenlehre 195

Modellbetrieb 179

Moduin 114

Moment einer Kraft 30
Multiplikation von Matrizen 50, 51
- — Vektoren 20
Multiplikationsmatrix 57

Nebendiagonale 47

Nebenraum 119

v. Neumann 195
Nichtnegativitatsbedingungen 106
Normalenvektor 37

Normalform, Hessesche 36, 37
normierte Eigenvektoren 135
Nullabbildung 120

Nullmatrix 50

Nullraum 122

Nullstellen des charakteristischen Polynoms 131
Nullteiler 54

Nullvektor 8

Ordnung einer Matrix 47
orthogonale Matrix 61, 155
Orthogonalititsrelation 23, 143, 163
Ortsvektor 8, 37

Parabel 166

parabolischer Zylinder 166
Paraboloid 166
Parallelepiped 27
Parallelverschiebung von Vektoren 8
partielle Inversion 178
Permutationen 65

Pichler 195

Pivotelement 172
Planungsaufgaben 179, 184
Polyeder, konvexe 109
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Polycder, regelmifige 195
Polygone, konvexe 109
Polygonzug, n-teiliger 11

Polynom, charakteristisches 131
positiv definit 128, 152

- semidefinit 128

Potenzen einer Matrix 63

primale Losung 108

Produkt, duBeres 24

-, gemischtes 27

-, inneres 20, 51

-, kartesisches 116

-, mehrfaches 27

-, skalares 20, 51

-, —, in Komponentendarsteilung 23
-, vektorielles 20, 24

-, —, in Komponentendarstellung 26
-, vierfaches 29

Pythagoras 194

quadratische Form 127, 129, 164, 194
- Matrix 46

Rang der Koeffizientenmatrix 90

- ciner linearen Abbildung 122

- — Matrix 78

— - Menge von Vektoren 117
Ranggleichung 88

Raum, reeller linearer 115
Raumbegriff 194
Rayleigh-Quotient 159
Rechteckregel 172

Reduktion quadratischer Formen 129
Regel, Cramersche 63, 96
regelmaBige Polyeder 195
reziproke Eigenwerte 157

—~ Matrix 61, 73, 157

— — eines Produkts 62
Richtungskosinus eines Vektors 14

Sarussche Regel 17, 65
schiefhermitesche Matrix 49, 153
schiefsymmetrische Matrix 48, 153
Schlaefli 195

Schlupfvariable 108
SchluBkontrolle 86

Schur 194

Schwingung eines Tragers 168
Selbstkostenermittlung 179
Selbstkostenvektor 183
Sinusfunktion, Additionstheorem der 33
skalare GroBen 7

- Komponenten 12

Skalarmatrix 58

Spaltenindex 46

Spaltenvektor 46
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Spatprodukt 28

Spiegelung 76

- an der Hauptdiagonale 47, 66
Spur einer Matrix 132
Stauchung 143

Stellungsvektor 37

Stevin 194

Stifel 194

Streckung 143

Strukturmatrix 185
Stiitzelement 172

Subtraktion von Matrizen 49

— - Vektoren 10

Summe von Matrizen 49

— — Vektoren 10
Summenproben 86

Sylvester 194

symmetrische Matrix 47, 147
System von linearen Ungleichungen 106
Systeme, dquivalente 117

Tangentialgeschwindigkeit 30

Tréger, beliebig gestiitzter gerader 188

Trigerschwingung mit Einzelmassen 168

Tragheitsgesetz der quadratischen Formen 129

Transformation in topologischen linearen
Riumen 195

-, lineare 119

-, orthogonale 75

Transformationsmatrix 75

transponierte Beschriftung 174

Transponierte des Produkts 55

— einer Matrix 47

Tschebyscheff 194

Typ einer Matrix 46

UberschuBvariable 108
Ubertragungsmatrix 191
Unabhingigkeit, lineare 18, 117
unendliche Matrix 63

Ungleichung, Cauchy-Schwarzsche 24
Ungleichungen, lineare 106

unitidre Matrizen 151, 155

- Vektoren 149

Vektoren 7

-, Addition von 9, 11

-, Differenz zweier 10

-, freie 8

-, gebundene 8

-, kollineare 8, 25

-, komplanare 17

-, (komplex) orthogonale 149"

-, linienfliichtige 8

-, Multiplikation von 20

-, orthogonale 22

-, Parallelverschiebung von 8

Vektoren, Subtraktion von 9

-, Summe von 10

-, unitdre 149

vektorielle Komponenten 11, 12

Vektorprodukt, vierfaches 29

Vektorraum, komplexer 116

-, linearer 114, 115

Vektorraume, duale 120

Vektorraumes, Dimension einer 117

Vektors, Betrag eines 7

-, Koordinaten eines 12

-, Linge eines 7

-, Multiplikation eines, mit einem Zahlen-
faktor 8

-, Orientierung eines 7

-, Richtung eines 7

-, Richtungskosinus eines 14

Vektorsysteme, dquivalente 117

-, reziproke 31

verkettbare Matrizen 51

vertauschbare Matrizen 157

Vertauschungsmatrix 58

Vertauschungssatz 28

Vietascher Wurzelsatz 132

Weyl 195

Zahlkorper 115
Zeilenindex 46
Zeilenvektor 46
Zustandsvektor 190
Zylinder, clliptischer 167
-, hyperbolischer 167

-, parabolischer 166



