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1. Einleitende Betrachtungen

Unter den Optimierungsmethoden nehmen die Methoden der linearen Optimierung
einen bedeutenden Platz ein. Die groBe praktische Bedeutung besteht vor allem
darin, da3 diese Methoden mathematisch einfach und iibersichtlich dargestellt wer-
den konnen und vollstindig auf Elektronenrechnern bearbeitbar sind. Weit schwie-
rigere Bedingungen liegen bei der nichtlinearen Optimierung vor. SchlieBlich besti-
tigt die Erfahrung, da3 zahlreiche nichtlineare Probleme in der Volks- und Betriebs-
wirtschaft mit linearen Methoden oft mit einer zufriedenstellenden Genauigkeit
gelost werden konnen.

Die Methoden der linearen Optimierung gestatten es, aus einer Vielzahl von még-
lichen Varianten die 6konomisch giinstigste auszuwdhlen. Bei den meisten prakti-
schen Entscheidungsproblemen ist die Anzahl der moglichen Varianten so groB, da
unter diesen die 6konomisch beste durch Vergleich aller méglichen Varianten nicht
mehr oder selbst bei kleineren Problemen gegebenenfalls nur durch einen erheblichen
Rechenaufwand ermittelt werden kann.

Um von diesem erforderlichen Aufwand eine Vorstellung zu geben, wird z.B. an-
genommen, daf} in einer groferen Betriebsabteilung 20 verschicdene Maschinen
bereitstehen, um 20 verschiedene Werkstiicke zu bearbeiten. Jedes Werkstiick kann
auf jeder Maschine bearbeitet werden. Die Bearbeitungszeiten eines beliebigen Werk-
stiickes auf jeder Maschine sind gegeben. Diese Arbeitszeiten sind im allgemeinen
verschieden, und jeder Maschine ist genau ein Werkstiick zur Bearbeitung zuzuordnen.

Welche Zuordnung mull vorgenommen werden, damit die gesamte Bearbeitungs-
zeit minimal wird? Insgesamt gibt es 20! = 1. --- - 20 mogliche Zuordnungsvarian-
ten, wenn eine feste Maschinenanordnung vorausgesetzt wird. Wie kann aus dieser
Anzahl die Variante der geringsten Bearbeitungszeit ermittelt werden? Der nichst-
liegende Weg, dieses Problem zu 1sen, wire zundchst der, alle moglichen Varianten
und die sich dabei ergebenden Gesamtbearbeitungszeiten aufzuschreiben. Danach
wird die Variante mit der kleinsten Gesamtbearbeitungszeit ausgesucht.

Wiirde ein duBerst schneller Digitalrechner eine Variante in 10-° Sekunden er-
mitteln und die dazu gehGrende Bearbeitungszeit berechnen, so wiirde er bei 365 Ar-
beitstagen zu 24 Stunden pro Jahr etwa 80000 Jahre benétigen, um durch Vergleich
aller Varianten die optimale Losung zu finden. Andererseits kdnnte die Losung
dieser Aufgabe einem Praktiker mit viel Betriebserfahrung iibertragen werden.
Die Praxis zeigt, daB solche Fachleute bei der empirischen Herstellung einer Lésung
im allgemeinen nicht zu sehr fehlgreifen. Die Erfahrung reicht aber nicht aus, um
die beste Losung herauszufinden. Wird diese wirklich einmal gefunden, so ist es Zufall.

Dagegen wird ein weit besserer Losungsweg durch den Einsatz mathematischer
Methoden erdffnet. Mit ihrer Hilfe konnen derartige Optimierungsprobleme prizise
und mit relativ geringem Rechenaufwand gelost werden.

Im Jahre 1939 wurde von Kantorowitsch erstmalig eine lineare Optimierungs-
aufgabe dargestellt, die sich aus einer bestimmten Klasse von Produktionsproble-
men ergab. Er entwickelte hierzu gleichzeitig eine Losungsmethode, die er ,,Methode
der Auflosungsmultiplikatoren nannte. Dantzig verdffentlichte 1947 eine Losungs-
methode fiir Probleme der linearen Optimierung, die unter dem Namen Simplex-
methode bekannt wurde und heute als die klassische Losungsmethode fiir Probleme
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der Linearoptimierung gilt. Seit dieser Zeit sind unzihlige Arbeiten aus allen Berei-
chen der Betriebs- und Volkswirtschaft iiber Probleme erschienen, die eine optimale
Entscheidung zwischen verschiedenen Handlungsmoglichkeiten verlangen, die sich
mit mannigfachen exakten und approximativen Losungsverfahren beschaftigen.

Die mathematischen Voraussetzungen zur linearen Optimierung wurden im
Band 13 ,,Lineare Algebra“ bereitgestellt. Grundlage fiir die anschlieBenden Dar-
legungen soll der n-dimensionale lineare Vektorraum oder n-dimensionale euklidische
Raum R* sein.

Jeder Punkt P(x,, ..., x,) des Raumes R” wird durch einen Vektor x mit den Kom-
ponenten x,, ..., x, dargestellt. Diese Komponenten werden durch eine Matrix zu-
sammengefaBt. Wird der Vektor x als einspaltige Matrix dargestellt, so wird er als
Spaltenvektor bezeichnet; wird x als Zeilenmatrix zusammengefaBt, so wird er als
Zeilenvektor bezeichnet und durch ein ~T* gekennzeichnet:

X1
x=|: |,xT =[x, e, X,].
Xn
Diese Darstellung von Vektoren als spezielle Matrizen (Zeilenmatrix oder Spalten-
matrix) hat den Vorteil, da die Rechengesetze der Matrizenrechnung durchgingig
und einheitlich genutzt werden konnen. Die Multiplikation einer Matrix mit einem
Vektor kann so z. B. als vollstindige Matrizenmultiplikation dargestellt werden. Aus

diesem Grunde muB der Vektor entweder als Zeilenmatrix oder als Spaltenmatrix
dargestellt werden (vgl. Bd. 13, 3. Aufl,, S. 67).

Als n-dimensionaler Vektorraum wird die Menge aller n-dimensionalen Vektoren
bezeichnet, die als Linearkombination von » linear unabhéngigen Vektoren gebildet
werden kénnen.

Im vorgegebenen Raum gelten die folgenden beiden Eigenschaften:

1. Ist x,y € R*, so folgt: zT = xT + yT = [x, + yy, ..., X, + ,] ist ebenfalls ein Ele-
ment des R".

2. Ist x € R, A beliebige reelle Zahl, so folgt: 2 - xT = [1- x,, ..., A - x,] ist ebenfalls
ein Element des R”.

In den folgenden Darlegungen werden lineare Funktionen und lineare Ungleichun-
gen betrachtet.

Vergleiche Band 1 und 13, Abschnitte iiber lineare Funktionen, bzw. Band 13, Ab-
schnitt 3.6. Systeme von linearen {Ungleichungen und Alternativsitze.

Z(x) ist genau dann eine lineare Funktion, wenn Z(x) = ¢Tx + a ist (x, ¢ € R"
a reell und konstant).

Ein System
@y X+ Gye Xo+ @y, Xy = by,
Gyy Xy + Gyy Xo+ 0+ Goy Xg = by,
............................. (1.1)
Any Xy + Qg Xp + 0+ An Xp = by,

Xy Xyy ey Xy 20,
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mit den Konstanten a; (i=1,...,m; j=1,...,n), b;(i=1,...,m) und den Varia-
blen x; (j= 1, ..., n) heiBt lineares Ungleichungssystem mit n Nichtnegativititsbedin-
gungen.

Ein Vektor heift nichtnegativ, wenn alle Komponenten nicht negativ sind. Daher
konnen wir das System (1.1) folgendermaBen schreiben:

Ax=b, x=o,

mit
Q11 Gyp > Gyg X1 by
a, Gy - @, X, b.
A= | ™ o, ox=|"? und  b=|"?
Apy Gpg G Xn bn

(vgl. Band 13).

Jeder Vektor x, dessen sidmtliche Komponenten nicht. negativ sind und der das
Ungleichungssystem Ax < b erfiillt, heiBt zuldssige Lisung des Systems

Ax=bh, x=o.
Die Losung

Unter dem Verbindungsvektor vom Vektor x; € R* zum Vektor x, € R* verstehen
wir den Vektor X3 = X; — X,; ist x ein beliebiger Ortsvektor nach einem Punkte von
X3, dann ist

1ge aller zuld 1 Losungen wird als Losungsbereich bezeichnet.

1)

X=Xy + AXg =X+ A(x, — X)) mit 011,
d.h.
x = Ax; + (1 — 2) x, (fiir 7= 2 vgl. Bild L.1).

Fiir die weiteren Betrachtungen brauchen wir den Begriff der konvexen Punktmenge,
wobei jeder beliebige Punkt P; durch einen n-dimensionalen Vektor x; festgelegt sei.
Die Menge M ist dann und nur dann eine konvexe Punktmenge, wenn fiir beliebige
P, € M, P, € M die durch den Vektor x = Ax, + (1 — 1) X, mit 0 < A = 1 dargestellten
Punkte ebenfalls zu M gehoren.

Bild 1.1

Wenn die Menge M nicht konvex ist, so heiB3t die konvexe Menge M; mit M, 2 M die
konvexe Hiille von M, wenn M, die kleinste konvexe Menge ist, die M enthilt (vgl.
Bild 1.2). Ist die Menge M konvex, dann ist M; = M, d.h, die Menge M stimmt mit
ihrer konvexen Hiille iiberein. Bild 1.3 zeigt eine konvexe Menge (n = 2) und



8 1. Einleitende Betrachtungen

Bild 1.4 eine nicht-konvexe Menge (n = 2); Bild 1.5 veranschaulicht, daB der Durch-
schnitt M, n M, konvex ist, wenn M, und M, selbst konvex sind. Die Punkte im
Inneren bzw. im Inneren und auf dem Rand eines Kreises oder eines Winkelraumes
(n = 2) sowie einer Kugel und eines Wiirfels (n = 3) stellen z. B. konvexe Mengen
dar.

Bild 1.2 Bild 1.3

Bild 1.4 MMy Bild 1.5

Als konvexe Linearkombination der g Vektoren

P15 P2 -5 Py
bezeichnet man

P= APy + AP+ -+ + APy,
mit

q
Sh=1 und 0=4<=1.
i=1

Wenn ein durch den Vektor x dargestellter Punkt P einer konvexen Menge nicht
auf dem Verbindungsvektor zweier Punkte der Menge liegt, so nennt man diesen
Punkt einen Eckpunkt oder Extrempunkt. In der Relation fiir den Verbindungsvektor
zweier Punkte ist dann entweder 4 = 0 oder A = 1, womit die in der Definition zu-
gelassene Gleichheit diesen Sonderfall beinhaltet.

Eine konvexe Punktmenge kann durchaus unendlich viele Extrempunkte oder
Eckpunkte enthalten; Beispiele hierfiir sind die Punkte im Inneren bzw. im Inneren
und auf dem Rand eines Kreises oder einer Kugel. Wenn eine konvexe Punktmenge
M beschrinkt ist und endlich viele Eckpunkte enthilt, dann nennt man M ein
konvexes Polyeder.

Diese erlduterten Begriffe sollen auf den Ldsungsbereich eines Systems linearer
Ungleichungen angewendet werden. Es gilt der folgende
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Satz 1.1: Der zulissige Losungsbereich des Systems S.1.1
Ax<b, x=o
ist konvex, falls er existiert.
Beweis. Wenn Ax; =b und Ax, =< b, dann gelten mit 0 < 4 < 1 auch
A, <4 und (1 - DA, < (1—A)b,
woraus sich sofort
A+ (1 -=Dx]<b
ergibt. Wegen X, = o und x, = o ist
X+ (1—-NHx,=0

eine Losung, die im zuldssigen Losungsbereich liegt, der also konvex ist. Damit ist
der Satz bewiesen. m

Wenn der zuldssige Losungsbereich dariiber hinaus beschrinkt ist, dann ist er ein
konvexes Polyeder (vgl. 2.4.).



2. Die lineare Optimierungsaufgabe

2.1. Einfiihrung in die Problemstellung
2.1.1.  Das Grundproblem

Ein lineares Optimierungsproblem (kurz LOP) ist eine Extremwertaufgabe mit
Nebenbedingungen. Eine lineare Funktion (Zielfunktion; ZF) von mehreren Ver-
anderlichen ist unter Beriicksichtigung linearer Gleichungen und Ungleichungen als
Nebenbedingungen (NB) zu maximieren oder zu minimieren. Von allen Losungen
eines Systems mehrerer linearer Gleichungen und linearer Ungleichungen ist also
eine solche Losung zu bestimmen, fiir die der Funktionswert der Zielfunktion opti-
mal ist.

Zum besseren Verstindnis der Problemstellung der linearen Optimierung seien
an den Anfang zwei einfache Beispiele gestellt, um anschlieBend Zielfunktion und
Nebenbedingungen allgemein zu formulieren.

Beispiel 2.1: In einer Betriebsabteilungsind auf dendrei Maschinen M, , M,, M,eine
noch unbestimmte Anzahl von jeder der beidenWerkstiickarten E, und E, zu bearbeiten.
Gegeben sind die Bearbeitungszeiten jedes Werkstiickes auf jeder Maschine in Stun-
den pro Werkstiick (h/St.) und der Zeitfonds jeder Maschine in Stunden (h) (s. Tab.
2.1). Die Maschine M, darf z. B. nicht mehr als 8000 h belastet werden. Wieviel Werk-
stiicke E, und E, sind zu bearbeiten, damit der Gesamtzeitfonds maximal ausgelastet
wird?

Tabelle 2.1.
Arbeitsaufwand | Zeit-
(h/St.) fonds
E, E, (h)
M, 10 10 8000
M, 10 30 18000
M, 20 10 14000

Zu diesem Problem wird das mathematische Modell aufgestellt; die praktische
Aufgabenstellung wird in die Sprache der Mathematik iibertragen. Werden der Reihe
nach die Anzahlen der zu bearbeitenden Werkstiicke von E; und E, mit x; = 0 und
x, = 0 bezeichnet, so gelten fiir die drei Maschinen M, M, und M; die folgenden drei
Ungleichungen:

10x, + 10x, = 8000
10x, + 30x, = 18000
20x; + 10x, = 14000.

Die linken Seiten der Ungleichungen bedeuten die benétigten und die rechten Seiten
die zur Verfiigung stehenden Arbeitszeiten.

Z = 40x, + 50x,
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stellt die Gesamtbearbeitungszeit dar. Sie ist zu maximieren, um den Zeitfonds so
gut wie moglich auszunutzen. Somit lautet das mathematische Modell der angegebenen
Aufgabenstellung:

Die lineare Zielfunktion :
ZF: Z = 40x, + 50x; 2.1)
ist unter Beriicksichtigung der folgenden Nebenbedingungen zu maximieren:

NB: 10x; + 10x, = 8000,
10x, + 30x, = 18000, (2.2)
20x; + 10x, =< 14000,
x = 0, x,=0.

Unter allen moglichen Losungen der Nebenbedingungen ist diejenige gesucht, die
die Zielfunktion maximiert.

Drei mogliche Losungen sind z.B.
1. x{) = [x, x.] = [700, 0],
2. x5y = [x1, X,] = [0, 600],
3. x3y = [x1, X2] = [300, 500],
denn werden die Zahlenwerte fiir x, und x, in die Nebenbedingungen eingesetzt, so

sind diese erfiillt.
Zu x(;y:

NB:  10-700+10-0= 7000 < 8000,
10-700+30-0= 7000 < 18000,
20+ 700 + 10 - 0 = 14000 < 14000,

700 =0, 0=0.

ZF:  Z(xq) =40 700 + 50 - 0 = 28000.

Die bendtigte Gesamtbearbeitungszeit betragt also 28000 h, wenn 700 St. vom Werk-
stiick £, und 0 St. vom Werkstiick E, bearbeitet werden. 12000 h werden bei diesem
Produktionsprogramm vom Gesamtzeitfonds nicht genutzt.

Gegeniiber der Losung x(;y ist die Losung X(») besser, da bei ihr nur 10000 h vom
Gesamtzeitfonds ungenutzt bleiben, bzw. 30000 h genutzt werden.

Die Losung x(;) ist weit besser als die beiden vorhergehenden, da bei ihr nur noch
3000 h ungenutzt bleiben und 37000 h genutzt werden.

AbschlieBend sei noch erwéhnt, daBl x¢;) von allen moglichen Losungen von (2.2)
die gesuchte Optimallésung ist. Wie eine solche Optimallgsung eines LOP berechnet
werden kann, wird Gegenstand der folgenden Abschnitte sein.
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Beispiel 2.2: Gesucht ist das Produktionsprogramm fiir die Erzeugnisse E; und E;,
die aus den Materialarten M, und M, hergestellt werden konnen. Gegeben sind die
Materialaufwandfaktoren und die Materialkontingente (s. Tab. 2.2). Die Abgabe-
preise einer Einheit von E; bzw. von E, betragen 10,— bzw. 20,— M. Gesucht ist ein
Produktionsprogramm, welches maximale Geldeinnahmen sichert und bei dem min-
destens 50 bzw. 100 Einheiten von E;, bzw. E, erzeugt werden.

Tabelle 2.2.
Einheit M, pro Einheit M, pro
Erzeugungseinheit Erzeugungseinheit
E, 0,15 0,2
E, 0,2 0.1
60 40

Materialmenge M, | Materialmenge M,

Werden mit x; und x, die Anzahlen von E)-Einheiten und E,-Einheiten bezeichnet,
so betragen die Geldeinnahmen

Z = 10x; + 20x,,
und der Verbrauch an Material M, und M, wird durch
-0,15x, + 0,2x,

‘und
0,2x; + 0,1x,
gegeben. Damit lautet das mathematische Modell:
ZF: Z = 10x, + 20x, = max’). ) 2.3)
NB: 0,15x, +02x, £ 60,
0,2x, +0,1 x, = 40,
(2.4)
X1 = 50,
X, < 100.

Aus der Menge aller Losungen, die den Nebenbedingungen (2.4) geniigen, ist wieder-
um die Losung mit maximalem Funktionswert Z gesucht.

Allgemein kann ein lineares Optimierungsproblem wie folgt formuliert werden:
Die lineare Funktion
Z (Xyy oo X) = €121 + o0 X,

ist unter Beriicksichtigung der folgenden linearen Gleichungen bzw. Ungleichungen

1) Das Zeichen - soll die Forderung ausdriicken, daB die Funktion (unter den gegebenen Neben-
bedingungen) ihren maximalen (bzw. minimalen) Wert annehmen soll.
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Zu maximieren

ay; X + o aXe = by,
Ay X + vt Ay Xy = by,
@y Xy A o+ Gy X = b,y
x; 20 fir i=1,..,n.
In Matrixschreibweise stellt sich das Problem folgendermaBen dar:
Z(x) = ¢Tx = max,
Ax < b,
X = 0.
Dabei gelten die folgenden Bezeichnungen:
et=ep, 0], X=Xy e, X]
bt = [by, ..., by],
Ay i
Al : .
Ay > Ay

2.1.2.  Graphische Lésungsmoglichkeit

Betrachtet wird die Optimierungsaufgabe des Beispieles 2.1:

ZF: Z = 10x, + 20x, L= max. (2.3)
NB: (1) 0,15x, + 0,2x, < 60,
(2) 0,2 x, + 0,1x, < 40, @.4)
(3) X1 = 50,
@) x, = 100.

Geometrisch stellt der zuldssige Losungsbereich von (2.4') nach Abschnitt 1. ein
konvexes Polyeder des R? dar, falls er beschriankt ist. Es wird sich zeigen, daB3 die
Linearform (2.3) ihr Maximum an einem Eckpunkt des durch die Nebenbedingun-
gen (2.4') festgelegten konvexen Polyeders annimmt (vgl. Simplextheorem 2.4.). Bei
Aufgaben mit zwei Variablen x,, x, konnen der zuldssige Losungsbereich und die
Zielfunktion in einem kartesischen Koordinatensystem graphisch dargestellt werden.
Im Bild 2.1" ist der zulédssige Losungsbereich von (2.4) durch das konvexe Losungs-
polyeder (schraffiert) dargestellt.

Dieser zulédssige Losungsbereich ist der Durchschnitt der Losungsmengen der vier
Nebenbedingungen von (2.4'). Er kann wie folgt bestimmt werden. Betrachtet
werden der Reihe nach die 4 Nebenbedingungen (von 2.4") (sie sind durchnumeriert).
Die erste NB von (2.4") lautet:

0,15x; + 0,2x, =< 60.
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Gesucht sind alle Punkte (Ldsungen) im Koordinatensystem, die dieser Ungleichung
geniigen. Zur Bestimmung dieser Punkte wird die Gerade

£::0,15x, + 0,2x, = 60

% - 400 F
00 \} \p(50;2625)
200 " 3
N
100 - N
\, N
N
0 00 200 300 400~
g]—-» "72 i
Bild 2.1’ Bild 2.1”

in das Koordinatensystem eingetragen. Im Bild 2.1" ist sie mit g, bezeichnet. Die ein-
gezeichnete Gerade g, ist mit zwei Pfeilen versehen. Sic teilt die gesamte Ebene in
zwei Halbebenen. Alle Punkte, die entweder auf der Geraden g, oder in der Halb-
ebene liegen, die durch die Richtung der Pfeile festgelegt ist, erfiillen die Ungleichung:

0,15x; + 0,2x, < 60.

Die Punkte in der dieser Halbebene gegeniiber liegenden Halbebene (ohne Trenn-
gerade g,) erfiillen die Ungleichung
0,15x; + 0,2x, > 60.
Wenn also die Gerade g, eingezeichnet ist, findet man sehr leicht die zu dieser Ge-
raden gehorende Halbebene, deren Punkte die vorgegebene Ungleichung erfiillen,
indem man z.B. die Koordinaten (0,0) des Ursprunges in die Nebenbedingung
(Ungleichung) fiir x, und x, einsetzt. Erfillt der Punkt (0,0) die Nebenbedingung,
so ist von beiden Halbebenen diejenige auszuwéhlen (etwa mit einem Pfeil zu mar-
kieren), in der auch gleichzeitig der Ursprung liegt. Erfiillt der Ursprung die Neben-
bedingung nicht, so ist die andere Halbebene die gesuchte Losungsmenge. Im Bei-
spiel gilt fiir den Ursprung (x;, x,) = (0,0) bezogen auf die Nebenbedingung (1):
0,15-0 + 0,2-0 < 60.

Folglich wird die Halbebene bezogen auf die Gerade g, als Lésungsmenge markiert,
in der der Ursprung enthalten ist. Im Bild 2.1’ sind fiir alle vier Nebenbedingungen
die Geraden der Reihe nach mit g, g,, g3, g4 bezeichnet und die entsprechenden
Halbebenen durch Pfeile markiert. Die Punktmenge, die dem Durchschnitt dieser
vier Halbebenen angehdrt, ist im Bild 2.1" schraffiert. Diese schraffierte Punktmenge
ist das gesuchte konvexe Polyeder (zuldssiger Losungsbereich).

Im Bild 2.1 sind fiir verschiedene Werte Z der Zielfunktion (2.3") die dazugeho-
renden Geraden eingetragen. Fiir Z wurden die beiden Werte 2000 und 6000 ge-
wihlt. Neben jeder eingezeichneten Geraden ist der jeweilige Z-Wert vermerkt.
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AuBerdem ist eine beliebige Schargerade 10x; + 20x, = C eingezeichnet. C wird
als Scharparameter bezeichnet. Fir einen bestimmt gewidhlten C-Wert wird eine
ganz bestimmte Gerade aus der Menge der durch 10x; + 20x, = C festgelegten
Geradenschar ausgewéhlt. Alle Geraden dieser Schar sind parallel. Die an der all-
gemeinen Schargeraden angefiigten Pfeile deuten folgendes an: Wird die Schar-
gerade in Pfeilrichtung parallel verschoben, so wéchst der Scharparameter C an.

Im Bild 2.1 sind schlieBlich beide Bilder 2.1" und 2.1” vereinigt (einige Bezeich-
nungen sind weggelassen). Aus den bisherigen Erlduterungen wird deutlich: Opti-
male Losungen von (2.3')—(2.4') sind somit geometrisch alle die Punkte, die sowohl
dem Losungspolyeder als auch derjenigen Geraden mit dem gréBten Scharparameter
C (Maximum!) der Geradenschar 10x; + 20x, = C angehdren. Die optimalen
Losungen werden also gefunden, indem die im Bild 2.1 eingezeichnete beliebige
Schargerade 10x; + 20x, = C so lange parallel in der angedeuteten Pfeilrichtung,
d. h. in Richtung wachsender C, verschoben wird, bis mindestens noch ein Polyeder-
punkt, bei jeder weiteren Verschiebung in dieser Richtung jedoch kein Polyeder-
punkt mehr auf der Geraden liegt. Damit nehmen der Parameter C und folglich Z
den maximalen Wert an. Diese Schargerade mit dem gréBten Parameter geniigt der
Gleichung 10x, + 20x, = 5750 und enthélt vom Polyeder nur den Punkt (50;
262,5). Somit lautet die optimale Losung:

x; =50, x,=2625, Z=5750.

Xz
300 \1 |
L ~|
200 \W‘Z‘Hm
-
~ \
0= ot o
[ \ | 10%+20x3=C
L\ ~ 4
! - ! (|
0 200 300 40 X
0Ky #2057 = 2060
Bild 2.1 Bild 2.2

Die folgenden vier Beispiele sollen einige der mdglichen Formen des Losungs-
bereiches aufzeigen:

Beispiel 2.3.:
— X+ X =5,
X, + x, 10,

x20 (i=12).
Bild 2.2 zeigt den Losungsbereich.
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Beispiel 2.4: X% I
X — Xs £ —6, 5 /

X +x =1,
x=20 (i=12).
Wie Bild 2.3 zeigt, kann die

Forderung x; = 0 nicht erfullt
werden. Der Losungsbereich ist

IA 1A

leer.
7
v‘s 0| +1 X7
Bild 2.3
I
Beispiel 2.5 :
X +x =25,
- X T+ X =2,
x, + 2x, = 10,
=0 (i=12).
Die dritte Ungleichung ist iiberfliissig, wie uns Bild 2.4 zeigt.
Xz
/
S TN Bild 2.4
/z +5> +0IN ¥1
I ¥

Beispiel 2.6:
—Xx+x, <3,
Xy —2x, £ 2,
20 (=1,2).
In diesem Falle wird ein unbeschrinkter Losungsbereich geliefert (vgl. Bild 2.5).
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Bild 2.5

Aufgabe 2.1: Von folgenden Nebenbedingungen ist der zuldssige Losungsbereich gesucht.
a)NB: —x; + x», £2, b) NB:x; + x; =2, ¢) NB: —x; + 2x, = 10,

Xy — 3%, =3, X;— X223, X+ x; £10,
Xy,x, = 0. Xy + 2x; £ 6, —x; — 2x; = —4,
X, % = 0. X, % =20,

Aufgabe 2.2: Ein Betrieb produziert aus drei Rohstoffen die Produkte P, und P,. Aus den nach- *
stehenden Daten ist ein Produktionsprogramm anzugeben, das maximalen Gewinn sichert. Die
Optimierungsaufgabe ist zeichnerisch zu l6sen.

Verbrauch pro Einheit | Verfugbare
P, ! P, ' Rohstoffmenge
Rohstoff 1 2 4 16
Rohstoff 2 2 1 10
Rohstoff 3 4 0 20
Gewinn 2 3

Aufgabe 2.3: Die Produkte Py und P, werden auf den Maschinengruppen M, und M, bearbeitet. *
Der Maschinengruppe M, steht hdchstens 6 Zeiteinheiten (ZE), M, hochstens 4 ZE zur Verfiigung.
Der Gewinn von Produkt P; betrigt 3 Mark (M) pro Mengeneinheit (ME), von P, 2 M/ME. Ge-
sucht ist der Produktionsplan mit maximalem Gewinn. Fiir eine Mengeneinheit von P; werden

3 ZE auf M, und 1 ZE auf M, bendtigt. Fiir eine ME von P, werden 1 ZE auf M, und 1 ZE auf M,
benotigt. Gesucht ist das mathematische Modell und die Lésung des Problems durch graphisches
Vorgehen.

2.1.3.  Weitere Beispiele mit Aufgaben aus der Praxis

Beispiel 2.7: Nehmen wir an, daf3 fir die Realisierung eines Produktionsprogramms
mehrere Maschinen zur Verfiigung stehen, die gegeneinander austauschbar sind. Bei
den einzelnen Maschinen stehen die folgenden Produktionskapazititen zur Verfiigung:

Maschine M; 180 Minuten
Maschine M, 100 Minuten
Maschine M; 150 Minuten
Maschine M, 100 Minuten

2 Seiffart, Optimierung
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Die genannten freien Kapazititen sollten fiir die Herstellung folgender Erzeugnisse
in Anspruch genommen werden:

Erzeugnis E; mit 30 Stiick; ein Erzeugnis E, kann auf der Maschine M, in 7 Minuten,
auf M, in 5 Minuten, auf M; in 4 Minuten oder auf M, in 4 Minuten hergestellt werden.

Erzeugnis E, mit 30 Stiick; ein Erzeugnis E, kann auf M, in 4 oder auf M, in
3 Minuten hergestellt werden. :

Erzeugnis E; mit 50 und Erzeugnis E, mit 40 Stiick, die in analoger Weise auf ver-
schiedenen Austauschmaschinen in unterschiedlicher Minutenzahl hergestellt werden
konnen, wie der Tabelle 2.3 zu entnehmen ist.

Tabelle 2.3.

. ) Maschine geplante
rzeugnis M, M, | My | M, | Stiickzahl

E, 7 5 4 4 30

E, 4 3 - - 30

E, - 2 4 5 50

E, 6 5 - 3 40

Freie 180 100 150 100

Produktions-

kapazitét

E, kann nicht auf den Maschinen M; und M, hergestellt werden, E; nicht auf M,
und E, nicht auf M;. Die entsprechenden Felder der Tabelle 2.3 sind durch einen
Querstrich markiert.

Die Aufgabe besteht in der Aufstellung eines optimalen Maschinenbelegungsplanes,
d.h., die Erzeugnisse E, bis E, sind in der Weise den erwahnten Maschinen zu-
zuordnen, daB die geringstmégliche Inanspruchnahme freier Produktionskapazitit zur
Erfiillung der gegebenen Aufgabe erreicht wird. Das bedeutet, dal die verschiedenen
Felder der Tabelle 2.3 in der Weise mit der Stiickzahl der einzelnen Erzeugnisse zu
besetzen sind, da3 die Summe der Erzeugungsmengein jeder Zeile gleich der geplanten
Anzahl der einzelnen Erzeugnisse ist, dal die zur Herstellung dieser Erzeugnisse auf
den einzelnen Maschinen benétigten Bearbeitungszeiten die freien Produktionskapazi-
titen nicht iiberschreiten und daB die Gesamtbearbeitungszeit ein Minimum annimmt.

Wird mit x;; = 0 die Stiickzahl des Erzeugnisses E; bezeichnet, die auf der Maschine
M; hergestellt werden soll, so konnen die folgenden linearen Nebenbedingungen auf-
gestellt werden.

NB: X114 X2+ X+ Xy =30, X1y + 4%y, + 6x,; = 180,
Xo1 -+ Xop = 30, 5X12 + 3Xpp + 235 + Sxyp = 100,
Xgp + Xgz+ Xgq= 50, 4x;5 + 4dx33 =150,

Xg1+ Xgo + xy,= 40, 4xy, + 5x34 + 3344 = 100,

alle x;; = 0.
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Die Gesamtbearbeitungszeit ist zu minimieren:
ZF: Z=Txy1 4 4xy1 + 6X41 -+ Sxy5 + 3Xps + 255 + 5X4p + 4X15 + 4X55
+ 4xy, + 5x54 + 3x44 = min.

Damit wurde die aufgeworfene praktische Problemstellung durch ein mathematisches
Modell der linearen Optimierung erfafit. Das vorliegende Modell ist ein spezielles
lineares Optimierungsproblem, ein sogenanntes Verteilungsproblem. Fiir diese und
dhnliche Problemstellungen wird in Abschnitt 4.3. eine besondere Losungsmethode
dargelegt.

Beispiel 2.8: Wenn auf verschiedenen Maschinen in einem Produktionsbetrieb
mehrere Auftrdge mit unterschiedlicher Zeitdauer bearbeitet werden, indem jeder Auf-
trag hintereinander einige Maschinen durchlduft, so tritt das Problem der Reihen-
folgewahl der einzelnen Auftrage fiir den gesamten Fertigungsablauf auf.

Wir betrachten drei Auftrage P,, Py, P;, die der Reihe nach zuerst auf der Maschine
M, , anschlieBend auf der Maschine M, bearbeitet werden sollen.

Fiir jeden Auftrag ist auf jeder Maschine eine ganz bestimmte Bearbeitungszeit
vorgesehen; diese Zeiten sind in einer Bearbeitungsmatrix T zusammengefal3t:

4 3 iy b
T=|2 1 |=|ty t,
25 t31 Iy

In der ersten Zeile sind die Bearbeitungszeiten des Auftrages P, der Reihe nach fiir
die Maschinen M, und M, mit 4 und 3 Zeiteinheiten vermerkt, in den restlichen
beiden Zeilen sind die Bearbeitungszeiten der Auftrige P, und P; angegeben. Ge-
sucht ist die Reihenfolge der Bearbeitung der Auftrige auf den beiden Maschinen,
damit die Gesamtbearbeitungszeit minimal wird.

Um das mathematische Modell dieser Problemstellung aufzustellen, wird mit
150 =1,2,3;j=1,2) die Bearbeitungszeit eines Auftrages bezeichnet, der in einer
gewihlten Bearbeitungsreihenfolge auf der Maschine Af; an i-ter Stelle steht. Die
Wartezeit des i-ten Auftrages, die nach der Fertigstellung des Auftrages auf der
Maschine M, bis zur Aufnahme der Bearbeitung auf der Maschine M, vergeht, sei
w;; . Die Stillstandszeit der Maschine A/, die nach der Bearbeitung des Auftrages
P;_; bis zur Aufnahme der Bearbeitung des Auftrages P; vergeht, sei S;_;,; (i = 2, 3;
j=12).

Die eben eingefithrten Bezeichnungen sind in Bild 2.6 geometrisch verdeutlicht. In
einem kartesischen Koordinatensystem sind in der Abbildung auf der y-Achse die

¥ ‘ * ‘%
, o 2 2 22 iy
My — B
L w1 i
Re * F
P U1 Gr 5% /
! s b/

Bild 2.6

2%
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Maschinen M; und M, markiert. Auf der x-Achse sind die Zeiteinheiten abgetragen.
Die Bearbeitungszeiten sind durch die dick ausgezogenen Linien, die Stillstand-
zeiten der Maschinen durch die Unterbrechungen zwischen den dick»n Linien und
die Wartezeiten durch die schrig ansteigenden Linien zwischen den einze.ien Maschi-
nen dargestellt. (Der Wert von w; ist gleich der Lénge der Projektion der schrig
aufsteigenden Linien auf die x-Achse.)

Aus der geometrischen Darstellung sind unmittelbar die folgenden Beziehungen
abzuleiten:

Si1+ 831+ Wy = Wiy + 12 + S,

Sor + 151+ Wiy = Wy + 52+ Sy
Der Zusammenhang mit den fest vorgegebenen Bearbeitungszeiten #; und den Be-
arbeitungszeiten # kann folgendermaBen beschrieben werden:

1= xpty, =123 j=12,
r=1

oder, in Matrizenschreibweise,
T* = XT,
wobei X eine quadratische dreireihige Matrix mit den folgenden Eigenschaften ist:

3
2xy=1 Jj=123
i=1

3
Sxy=1, i=123;
=1

x;=0 oder x;=1.
Wie leicht zu sehen ist, enthélt die Matrix X in jeder Zeile und Spalte genau eine Eins,
die restlichen Zahlen sind Nullen. Durch Multiplikation der Matrix T mit allen mog-
lichen X, deren Elemente den eben genannten Bedingungen geniigen, entstehen Matri-
zen T*, die aus moglichen Zeilenpermutationen von T hervorgehen. Die Elemente der
Permutationsmatrix X sind dann so zu bestimmen, dafl die Gesamtfertigungszeit

Z=tf1+ i+ 3+ tio + Si2 + Soe
ein Minimum wird. Die Summe fiir Z ist unmittelbar aus Bild 2.6 abzulesen.
Werden alle Bedingungen ausfiihrlich zusammengestellt, so folgt:
ZF: Z = S5+ Spa+ Txy1 + 3x15 + TXy3 + 3xa1 + 1Xe5 + 5Xag
+ 3x31 + 1x35 + 5x35 — min.
NB: S11— Syo 4 way - 3xp1 — 1xpp — 5xy5 4 4%y + 2X55 + 2X,3 =0,
Sy1— Sap + Wiy — Way — 3Xa1 — 1Xap — 5Xa3 + 44Xy + 2X55 + 2X33 =0,

3

Sxy=1, j=123,
i=1

3

Sxy=1, i=1,23,
j=1

Sy =0, wy=0, x;=0 oder x;=1.
Damit ist das lineare Optimierungsmodell des speziellen Beispiels aufgestellt, wel-
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ches allerdings mit der zusitzlichen Forderung behaftet ist, daB die x;; entweder gleich
0 oder gleich 1 sein miissen. Losungsmdoglichkeiten dieser und dhnlicher Problem-
stellungen sind im Abschnitt 4.5. angegeben.

Die optimalen Reihenfolgen des betrachteten Beispiels lauten: 1. Ps, P, P, und
2. Py, P,, P,; die optimale Bearbeitungszeit ist Z = 11. In Bild 2.7 ist der Bearbei-
tungsablauf der optimalen Reihenfolge P;, P,, P, geometrisch veranschaulicht.

t=¢ =3 Gt

M- P S

Wor=1 577 |

4. - . I

=2 b=t ty=? !

i . L ! ;
- | L Bild 2.7

2 ' 7 n o t

2.2. Die Normalform

Als Normalform eines linearen Optimierungsproblems wird die folgende Optimie-
rungsaufgabe bezeichnet: Die lineare Funktion

Z(X15 Xy ey Xyim) = C1X1 + X+ + CorrmXnsm (2.52)

ist unter Beriicksichtigung der folgenden linearen Gleichungen zu maximieren:

y1 X+ Gyo Xo+ o @y X+ X = by,
Gp1 Xy + Ao Xy =+ ++o 4 Gy Xy + X2 =b,,
............................................. (2.5b)
Ay X1+ Ao X+ o+ B Xn +Xnsm=bm,
x;=0 fir j=12,..,n+m,
by =0 fir i=1,2,..,m.
Oder in Matrixschreibweise:
ZF: Z = Z(x) = cTx = max;
NB: Ax=Db, /
<o, 2.5)
b =o.
Oder in Vektorschreibweise:
ZF: Z = Z(x) = ¢Tx = max;
NB: alx; + allx, + . 4 altmy, . =b,
(2.5")

X=o, b =o.



22 2. Die lineare Optimierungsaufgabe

Dabei gilt:
cl= [cla Coseens Cpyeeey cn+m]:
X1 by
X = ’.C? s b= lfﬁ {
Xnim by,
ay, a, 1 00
A= | %12 0 0

@y @y 00 1 [(m, n+ m)
a®) bedeutet den i-ten Spaltenvektor der Koeffizientenmatrix A (i = 1, ..., n + m).

Jedes lineare Optimierungsproblem ldBt sich durch geeignete Umformungen auf
eine Normalform der Gestalt (2.5) zuriickfithren. Hierzu sind im allgemeinen die
folgenden sechs Umformungsschritte erforderlich, die gleichzeitig an einem Beispiel
erlautert werden.

Gegeben ist die Optimierungsaufgabe:
ZF: Z, = —2x; + 4x, — min;

NB: 2%+ 3x, = —1,
X— X= 2, (2.6)
—6x; + 2x, = —4,

x, = 0, x, beliebig.

Diese Aufgabe weicht von der Normalform (2.5) erheblich ab. Die Verdnderliche x,
kann auch negative Werte annehmen. Es liegt keine Maximierungs-, sondern eine
Minimierungsaufgabe vor. Die rechten Seiten der Nebenbedingungen sind nicht alle
= 0. SchlieBlich sind die Nebenbedingungen Ungleichungen. Die Aufgabe besteht
in der Bestimmung eines dquivalenten LOP, das so wie die Normalform (2.5) auf-
gebaut ist und dessen optimale Losung mit der optimalen Losung des Ausgangs-
problems iibereinstimmt.

1. Umformungsschritt: Einfilhrung von Nichtnegativititsbedingungen.

Falls die. Verdnderliche x; auch negative Werte annehmen darf, wird x; durch cine
Differenz zweier nichtnegativer Verdnderlicher ersetzt:

Xp=x*—x;*  mit x*=0,x**=0. 2.7)
Diese Substitution ist moglich, da x; jeden beliebigen Wert annimmt, wenn x;* und
x;** unabhéngig voneinander alle nichtnegativen Werte durchlaufen.
Im Beispiel ist x; bereits nichtnegativ gefordert; x, dagegen ist beliebig wihlbar,
kann also insbesondere auch negative Werte annehmen. Aus (2.6) entsteht somit
durch Substitution

Xy = Xo* — x,** (2.8)
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das folgende Optimierungsproblem:
ZF: Zy = —2x; + 4x,* — 4x,** L min;
NB: 2x; 4 3x,* — 3x,** < —1,
X— XX+ w2, 2.9
—6x; + 2x,* — 2x,%F = —4,
x =0, x*=0, x**=0.

Die Losung, die der optimalen Losung von (2.9) vermittels der Substitution (2.8)
zugeordnet ist, ist die gesuchte optimale Losung des Ausgangsproblems (2.6).

2. Umformungsschritt: Uberfithrung einer Minimierungs- in eine Maximierungs-
aufgabe.

Die Aufgabe, die lineare Funktion c¢;x, + ¢x, + -+ -+ ¢,x, zu minimieren, ist
aquivalent mit der Maximierung der entsprechenden negativen linearen Funktion
—C1X; — CoXy — -+ —C,X,. Ein LOP, in welchem die Zielfunktion zu minimieren
ist, andert sich daher nicht, wenn die mit — 1 multiplizierte Zielfunktion maximiert
wird. Das dem LOP (2.9) dquivalente Optimierungsproblem lautet demnach:

ZF: Zy=—Zy =+ 2x; — 4x,* + 4x,** - max;
NB: 2x; + 3x.*% — 3x,** < —1,
Xi— X*+ M= 2, (2.10)
—6x1 4 2x,* — 2x,** = —4,
x =0, x*=0, x**=0.

[0

3. Umformungsschritt: Einfihrung nichtnegativer rechter Seiten der Nebenbedin-
gungen.

Die Nebenbedingungen, deren rechte Seite negativ sind, werden mit —1 multipli-
ziert. Durch diese Multiplikation werden positive rechte Seiten erzeugt.

Ist z.B.
<—b
Xy + ot ax, { =—b, mit b >0,
> —b,

so folgt nach der Multiplikation mit —1
>b
—ay X, — — ApXp { =b mit b >0.
<b
Das LOP (2.10) geht damit iiber in
ZF: Zy = +2x; — 4x,* + 4x,** = max;
NB: —2x, — 3x.* + 3x,** = 1,
Xi— X5 =2, 2.11)
6x; — 2xy% + 2x** = 4,
X1, Xo®, X,¥*% = 0.
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4. Umformungsschritt: Uberfithrung von Ungleichungen in Gleichungen.
Die Nebenbedingung
\Xy + Xo+ o+ ax, = b
ist mit folgenden beiden Nebenbedingungen dquivalent
Xy + o+ X, + X, =b, x,=0.

x; ist ein¢ neue eingefiithrte Verdnderliche, die nicht negativ werden darf und als
Schlupfvariable bezeichnet wird. Sie gibt den Betrag an, um den a;x; + -+ + a,x,
kleiner als b ist. '

Ganz analog gilt:
ax, + o+ ax,=b
ist mit den beiden Nebenbedingungen
ax;+ - +ax,—x,=b und x,=0
aquivalent. Jetzt gibt x, den Betrag an, um den a,x, + --- + a,x, groBler als b ist.
Das LOP (2.11) geht iiber in

ZF: Zy = +2x; — 4x,* + dx,** - max;

NB: —2x; — 3x* - 3x,* —xg - =1,
xn— ¥4+ ¥4+ x,=2, (2.12)
6x1 — 2x,* + 2x,** =4, .

X1, Xo¥, X%, X1, Xgp = 0.

Mit den soeben dargestellten vier Umformungsschritten kann zu jedem linearen Opti-
mierungsproblem ein entsprechendes dquivalentes LOP von folgender Form angege-
ben werden:

ZF: X, + 0+ X, = max;
NB:  a;;x+ -+ ainX, = by,

A1 Xy + "'+amnxn=bms (213)

x;=0, j=1,..,n,
b; =0, i=1,..,m.
5. Umformungsschritt: Einfiihrung von kiinstlichen Variablen.

Die Normalform (2.5) kann nun aus (2.13) erhalten werden, indem (2.13) kiinst-
lich verdndert wird. In die Zielfunktion und Nebenbedingungen werden die kiinst-
lichen Variablen

Xnt1s ees Xpim = 0

eingefiihrt, also
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ZF: Z=0X; + ot exy — Mxp— - —Mx,,, — max;
NB: 1%+ o @y X+ Xpg = b, (2.14)
ApiX1+ o+ AuaXn + Xnim = b,
b; =0,
= } i=1,..,m,
Xpii 2 0, ’

x;=0, j=1,..,n.

Das Problem (2.14) wird als adjungiertes Problem zum Ausgangsproblem (2.13) be-
zeichnet. M ist eine hinreichend groBe positive Zahl (M > 0). Das adjungierte Pro-
blem ist mit der Normalform (2.5) identisch, wenn

Cos1 = = Cpam = —M
gesetzt wird.

Wenn die kiinstlichen Variablen x,., ..., X,+,» = 0 sind, so geht das adjungierte
Problem in das Ausgangsproblem (2.13) iiber. Besitzt das Ausgangsproblem eine
Losung, so hat das adjungierte Problem ebenfalls eine Losung, in der alle kiinstlichen
Variablen gleich null sind, und die restlichen Losungskomponenten stimmen mit
der optimalen Losung von (2.13) iiberein. Falls (2.13) iiberhaupt 16sbar ist, miissen
in der optimalen Losung von (2.14) alle x,.,, ..., X,+, zufolge der groBen Zahlen-
koeffizienten M gleich null sein, denn anderenfalls hat die Zielfunktion einen beliebig
kleinen Wert. Daraus folgt, daB die Maximalldsung vom adjungierten Problem mit
der Maximallgsung vom Ausgangsproblem identisch ist (falls die Losungskompo-
nenten X,4; =0, ..., X,+, = 0 unberiicksichtigt bleiben).

Das adjungierte Problem von (2.12) hat die folgende Form:

ZF: Zy= + 2x; — 4x* + 4x,**F — Mxy — Mxyo - max;
NB: — 2x; — 3x* + 3x,**F — x + X =1,
X — xF 4 X + X5 =2, (2.15)
6x; — 2x,* + 2x,** + X =4, ’

X5 Xo®, X0®%, X1, Xoos Xp1s X = 0.

Es sei hier besonders vermerkt, daB bei dem vorliegenden Beispiel nur zwei kiinst-
liche Variable x;, und x,, in die 1. bzw. 3. Nebenbedingung einzufiihren sind. In der
2. Nebenbedingung ist die Einfithrung einer weiteren kiinstlichen Variablen nicht not-
wendig, da bereits x,, in der gewiinschten eliminierten Form vorhanden ist und in den
restlichen Nebenbedingungen nicht vorkommt.

6. Umformungsschritt: Umnumerierung der neu eingefiihrten Variablen.

SchlieBlich kann durch Umnumerierung der neu eingefiihrten Variablen die gleiche
Bezeichnung wie in der Normalform erreicht werden. Im Problem (2.15) wird daher

Xy = Xp, X® = X, %™ = Xg, Xg = Xy Xpg = Xgs Xep = Xg, Xje = X7
gesetzt, und es folgt:
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ZF: Z =4 2x, — 4x;, + 4x; — Mx; — Mx, = max;

NB: —2x; — 3%, + 3x3 — X, + X35 =1,
X, — Xo+ X3 + Xg =2, (2.16)
6x; — 2x5 + 2x;3 +x, =4, '

x; =0, i=12..7.
Eine optimale Lésung x von (2.16) lautet (sie wird in 3.1.4. berechnet):
xT=[x=0,x=0,x=2,x,=50x=0,x =0,x, =0].
Damit folgt fiir die optimale Losung des Ausgangsproblems (2.6)
X =0,x=-2,
Z = -8. )
Durch die Einfithrung von Schlupf- und kiinstlichen Variablen ist aus dem urspriing-
lichen Problem die dazugehdrige dquivalente Normalform entstanden. Wahrend im
Beispiel (2.6) nur zwei Verdnderliche vorliegen, so enthilt die entsprechende Normal-
form (2.16) dagegen 7 Verédnderliche. Fiir praktische Berechnungen gehen die Bestre-
bungen dahin, den Problemumfang so klein wie moglich zu halten, damit der Rechen-
aufwand moglichst gering gehalten werden kann. Bei vielen LOP sind kiinstliché
Variable zur Aufstellung der gewiinschten Normalform nicht erforderlich, oder die
Einfithrung einer einzigen kiinstlichen Variablen reicht aus. Diese Eigenschaft haben
die folgenden LOP:
1.ZF:  Z=c™x £+ max;
NB: AX< b,
X 2o,
b =o.
In diesem ersten Beispiel wird die Normalform sofort erhalten, wenn die Schlupf-
variablen X4, ..., X,+n eingefithrt werden.
2.ZF: Z=c"x =+ max;
NB: Ax 2 b,
X o,
b=o.

vV v

Hier werden zunéchst die Schlupfvariablen x,.,, ..., X,+n = 0 eingefithrt. Damit
folgt:

ZF: Z=cx FCaXg+ o+ Cyxn = max;

NB: Ay Xy + v Qg X — X = by,
Ay Xy + Qo Xy — Xns2 = b,, 2.17)
A1 X1+ o+ Ay Xn "xn+m=bm-

Zur Aufstellung der Normalform ist die Einfithrung nur einer kiinstlichen Verdnder-
lichen erforderlich, wenn alle Nebenbedingungen bis auf eine mit —1 multipliziert
werden. Ausgenommen bleibt die Nebenbedingung mit der groBten rechten Seite,
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die zu allen anderen Gleichungen addiert wird. Wird mit
b, = max {b;}
1<ism

bezeichnet, so folgt aus (2.17):

(@1 — @11) X1 + =+ (Gen — @1a) Xn — Xpo + Xnia =b,— by,
Ap1 Xy + + Gen Xn — Xnie —be’
(@e1 — @p1) X1+ o (Gen — @) Xn = Xnge + Xnim = be — b
Wird K
b= @y —ay, bj=b—b=0 fir i=*e
und

bek = Qo Bc = be

gesetzt, so folgt nach Einfithrung der kiinstlichen Variablen x,,.,.;:

Z=cx; + X, — MX,, p.; = Max;
byy Xy et by Xy = Xpo + Xp =by,
by X + + ben X — Xnte + Xnims1 = be7
buy X+ v byn Xu — X + Xnim = b,

=0, i=1,..,n+m+1.

Im iibrigen wird man immer bemiiht sein, die spezielle Gestalt der Nebenbedingungen
so zu nutzen, daB moglichst wenige kiinstliche Variable einzufiihren sind.

Die Uberfiihrung eines beliebigen LOP in die Normalform hat den Vorteil, daf
von der Normalform ausgehend unmittelbar der Simplexalgorithmus mit dem dazu-
gehorenden 1. Rechenblatt begonnen werden kann.

Ein Nachteil der Einfithrung von kiinstlichen Variablen ist die damit verbundene
ProblemvergréBerung. Weitere Moglichkeiten der Bestimmung einer zuldssigen Basis-
16sung und damit einer ersten Basisdarstellung sind in der Spezialliteratur zu finden,
wie z.B. die Zwei-Phasen-Methode.

Aufgabe 2.4: In einem landwirtschaftlichen Gebiet sollen zwei Gefliigelsorten gehalten werden *
(S, S2). Zur Fitterung der Tiere stehen zwei Futtermittel zur Verfligung (¥;, F,) und zwar 8 Men-
geneinheiten (ME) von F; und 180 ME von F,. Der Bedarf an Futter pro Tier ist in der folgenden
Tabelle gegeben:

|si|s:
Fl1 |1
Rl |2
Es sollen mindestens 2 Tiere der Sorte S; gehalten werden. Der Gewinn pro Tier betrigt fiir S, 2

und fir S, 3 Geldeinheiten.
Gesucht ist das mathematische Modell mit dem Ziel der Gewinnmaximierung.
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w Aufgabe 2.5: Ein Schiff mit einer Ladefdhigkeit von 7000t und einer Laderaumkapazitit von

*

*

10000 m® soll drei Giiter G;, G, und Gj in solchen Mengen laden, daB der Frachtertrag moglichst
erofs wird. Die folgende Tabelle enthélt fiir jedes Gut die angebotene Menge M in t, den bendstigten
Laderaum R in m®/t und den Frachtertrag F in Mark/t.

Gesucht ist das mathematische Modell. Was bedeuten die Variablen im Modell?

| G | 6 Gs
M 3500 | 4000 | 2000
R 1.2 11 1,5
Fo s 30 35 -

Aufzabe 2.6+ Aus Rundeisens*ang=n der Lange / = 20 m sollen hergestellt werden:
mindestens 8000 Stiick der Linge /; = 9m,
10000 Stiick der Lange /, = 8 m und
6000 Stiick der Lange /3 = 6 m.
Es ist das mathematische Modell fiir einen minimalen Materialverbrauch zu ermitteln.

Aufgabe 2.7: Die folgenden Optimierungsprobleme sind auf die Normalform zu bringen.

a) ZF: Z =2x; + Xx; — X3 — Xg==min;

I
5]

NB: X; — X3 — 2X3 — X4 s
2xy + X — 3x3+ x4 =6,
X+ X+ X3+ x3=17,

x =0 i=1,2,34.

b) ZF: Z= x,— xs==max;

NB: 2%, — X3 — X4+ x5=0,
—2x; +2x3 — x4+ x520,

x; = 2x; — X4+ x50,

X1+ x2+ X3 =21,

%20, i=1,234,5.

¢ ZF: Z= x; —2x;+ 3x3==min;

NB: —2x1+ x; +3x3=2,
2x; + 3%, +4x3 =1,
x; beliebig.

2.3. Grundlegende Eigenschaften von Loésungen

Fiir die anschlieBenden Betrachtungen wird die Normalform eines linearen Opti-
mierungsproblems zugrunde gelegt (vgl. (2.5)).

Die lineare Funktion

Z(Xy5 Xas eees Xpim) = C1Xy + -k CpanXivm
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ist unter Beriicksichtigung der folgenden linearen Gleichungen zu maximieren:

11X+ Aip Xy o G Xp + Xnp =by,
Gy1 Xy + Qo Xp & o+ oy Xy + Xni2 = b,
Ay X1 F Ao X+ o+ Qpn X + Xnsm = bu, (2.13)

x; 20 fir j=1,2,..,n+m,
b, =0 fir i=1,2..,m

In Matrixschreibweise (vgl. (2.5")):

ZF: Z = Z(x) = ¢Tx = max;

NB: Ax=bh, )
xZo, (2.18")
b=o.

In Vektorschreibweise (vgl. (2.57)):

ZF: Z = Z(x) = ¢'x = max;

NB: allx; + a@x, + -+ attmy,  =h,

x=o, (2.18")
b=o.

Ohne Beschrinkung der Allgemeinheit sei vorausgesetzt, daB der Rang der Koeffi-
zientenmatrix A des Gleichungssystems von (2.18) gleich dem Rang der erweiterten
Matrix [A, b] (Voraussetzung fiir die Losbarkeit des Gleichungssystems) und gleich
m ist.

Es werden die folgenden Begriffe definiert:

Definition 2.1: Jede Lisung x von AX = b, die der Bedingung x = o geniigt, wird im
Jfolgenden als zuldssige Losung (ZL) bezeichnet.

Definition 2.2: Je m linear unabhdngige Spaltenvektoren von A bilden eine Baszs B, die
zu diesen Vektoren gehirigen Variablen heiffen Basisvariable (BV) und alle restlzchen
Variablen Nichtbasisvariable (NBV).

Definition 2.3: Ist das Gleichungssystem von (2.18) so umgeformt, dafs fiir irgendeine
Basis B die BV durch die NBV ausgedriickt sind und die Zielfunktion nur noch von den
NBV abhingig ist, so wird von einer Basisdarstellung (BD) der Lisungsmannigfaltig-
keit des LOP gesprochen.

Allgemein hat die BD einer beliebigen Basis B von (2.18) die folgende Gestalt,
wenn ohne Beschrankung der Allgemeinheit die BV der Reihe nach mit X, 41, ..., Xpum
und die NBV der Reihe nach mit x,, ..., x, bezeichnet werden:

Fii Xy +rigXey + oot e Xp X =k
Fa1 Xyt repXo + o X + Xni2 =k,
......................................................... (2.19)
Pmi X1+ Fma X + o+ 4 Fypn Xn + Xnim =km

&iX1 T & Xy + A guXa + Zp(x) = c.

D.2.1

D.2.2

D.2.3
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Mit Zg(x) wird die Zielfunktion Z bezeichnet, wenn in ihr alle BV zur Basis B eli-
miniert sind. r;;, k;, g und ¢ (i=1,2,...,m; j=1,2,...,n) sind Zahlenwerte, die
bei der Umformung des Gleichungssystems von (2.18) in die Basisdarstellung (2.19)
aus den Werten g;;, b; und ¢; hervorgehen.

Definition 2.4: Gegeben sei eine beliebige Basis B von A und die dazugehirige BD.
Eine Lisung x von Ax = b, bei der alle NBV gleich null sind, heifit Basislosung (BL). Eine
BL heifit dariiber hinaus zuldssige Basislosung (ZBL), wenn alle BV nicht negativ sind.

Sind z. B.in (2.19) alle k; = 0, soist die BLxg = {0, ..., 0, ky, ..., k,,} eine ZBL; die
BD wird dann als zuldssige Basisdarstellung bezeichnet (ZBD). Eine BL bzw. ZBL ist
also eine Losung, die nur hochstens m von null verschiedene Losungskomponenten
hat.

Definition 2.5: Die Zahlen g; (j= 1, ..., n) in der zur beliebigen Basis B gehirenden
BD (2.19) werden als Formkoeffizienten und die Zahl ¢ als Basiszahl bezeichnet.

In (2.18) bilden z.B. die Vektoren a(**1), ... a(»*m) eine Basis B [a(»*1), ... a(r+m)],
da sie linear unabhéngig sind. x,11, X,+2, ..., X1 sind die zu dieser Basis gehdrenden
BV, und x,, ..., x, sind die NBV. Fiir diese Basis lautet die Basisdarstellung:

G Xy + ot G Xn T X = by,
Ay Xy + o Gan Xy + Xn.o = by,
...................................... (2.20)
Ay Xy + 0+ Ayn Xn + Xnim
&1 Xy ot gaXy +Z
mit
¢ =Cpabi+ A+ oo bus
& =—0 +Ca @y + o Cui Gy
o = — Cp + Cpix Gz + 0 A Cpm Aoy
gn=—"Cnt Cr1@int = +CnimGumn-

Dabei ist zu beachten, dafB3 die letzte Gleichung von (2.20) aus der Zielfunktion von

_ (2.18) entstanden ist, indem die BV x,41, ..., X, 4+, mit Hilfe der m Nebenbedingun-

gen eliminiert worden sind. Da nach (2.18) die Werte b; [i = 1, ..., m] nicht negativ
sind, ist
X1 =0,x=0,..,% =0,X%1 = b1, e, Xy4m = Dy
eine ZBL der Basis
B [atth), aln+?) . al+m)],
Zu jeder BD gehort genau eine BL.
Die Anzahl der Mengen von m linear unabhingigen Vektoren, die man aus den
m + n Spaltenvektoren von A bilden kann, d.h. die Anzahl der voneinander ver-

schiedenen Basen bei einem LOP mit m Gleichungen und m + n Variablen, kann

+ . . n-+m . .
hochstens (” m) sein, so daB3 es also nur hochstens ( m )verschledene BL (ein-

geschlossen sind die ZBL) geben kann.
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An dem folgenden Beispiel werden die angegebenen Definitionen néher erldutert.
Gegeben ist das LOP:

ZF:  Z=3x,+4x, — max;
NB: X1 42X, + X3 = 80,
Xy + X4 = 30, (2.21)
2% 4+ X, + x5 = 100,
X1y eees X3 = 0.

Die Koeffizientenmatrix A hat die folgende Gestalt:

12100
A=]0 1 0 1 0|=[a",a®,a®, a®,a®)],
21001

Von den 5 Spaltenvektoren a®), a®), a®, a®) und a®) lassen sich die folgenden
Dreierkombinationen bilden:

a), a®), a®), ah), a), a®),

1. 6.

2. am, a®), al), 7. a®), a®), al),
3. alh), a®), a(), 8. a®), a®), a®),
4. am), a®), a®), 9. a®, a®), a),
5.

am), a®), a), 10. a®), a@), a®),

also genau (2) = % Kombinationen. Die 5. Kombination bildet keine Basis,

da die Spalten a®), a®), a®) nicht linear unabhingig sind; es gilt namlich:
11 0]

a®h,a®, a® =10 0 0

12 01

=0.

Die restlichen 9 Kombinationen bilden 9 verschiedene Basen, die im folgenden ent-
sprechend der Kombinationsnummer bezeichnet werden. B, ist darunter nicht ent-
halten.

Die Basisdarstellung und BL bzw. ZBL zu den einzelnen Basen haben die folgende
Form:
1. B, [a®), a®), a®)]:

BD;: BL;:

—tx i+ = 35, xp, = [35,30,-15,0,0];
+, X = 30,  Z(kp)—225.

—3x 4% +x; = —15.

X+ x5 +Z= 225.
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2. B, [a®), a®, a¥]:

BD,:

=X+ §Xs X = 40,
+3x; — 3x; + Xy = 20,
—2xs+ x5 +x,= 10,
+5x;+ 35 + Z = 200.

3. B; [a®), a®, a®)]:

BD;:
X3 — 2X4 + X = 20,
+ X + Xy = 30,
—2x3 + 3x, + x;= 30,
3x3 — 2x, + Z =180.

4. B, [a®), a®), alh)]:

BD,:
Ixg+ 3xs 4+ x = 50,
Sxy— §x; + X3 = 30,
1x, +xy= 30,
—3x,+ 3x; + Z = 150.
6. Bg [a), alt), a®)]:
BDg:
X3+ 2%, + X, = 80,
+ Xy + x4 = 30,
—2x3— 3x, + x5 = —60,
3x3 + 2x, + Z = 240.
7. B, [a®, a®), a®]:
BD;:
2x; + 1x5+ X =100,
—3x, — 2x5 + X3 = —120,
—2x; — 1xs +x,= -70,
5x, + 4x; + Z=400.

ZBL,:

xp, = [40,20,0,10,0];
Z(xp,) = 200.

ZBL;:

xg, = [20, 30,0, 0, 30];
Z(xg,) = 180.

ZBL,:

xp, = [50,0,30,30,0];
Z(xp,) = 150.

BL,:

xp, = [80,0,0, 30, —60];
Z(xp,) = 240.

BL;:

xg, = [0,100, —120, —70, 0];
Z(xp,) = +400.
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8. Bg [a®), a®, a®)]: )
BD;: ZBLg:

+ Xq+ X, = 30, xp, = [0, 30, 20,0, 70];
+ X —2x, + X3 = 20, Z(xp,) = 120.
+2x - x + x;= 170,
—3x; + 4x, + Z =120.
9. By [a®), a®), a®)]:
BD,: BL,:
x4 bxs 4+ x, = 40, xg, = [0,40,0, 10, 60];
—ix, —ix, + x4 = —10, Z(xp,) = 160.
+x;=60.
+ Z = 160.
10. By, [a®), ah), a®]:
BDy: ZBL,:
X+ 2%, + x3 xg, = [0,0, 80,30, 100];
X, + x4 Z(xg,) = 0.
2x1+ X, + x5
—3x, — 4x, +Z

Die BD zur Basis B, [a)), a®), a®)] kann z.B. folgendermafen aufgestellt werden:

Es wird das Ausgangsgleichungssystem von (2.21) geldst, indem die Verdnder-
lichen x;, x, und x; in Abhédngigkeit von x, und x; berechnet werden. Aus

1. x4+ 2x, + x;= 80,

+ X = 30— x,,
2%+ X, =100 — x;
z.B. folgt nach der Cramerschen Regel:
80 21
30-x, 1 0
= 100—x; 1 O : 30 — x, — 100 + x5
1 21 -2
o 10
2 10
" =354 35— 3.

3 Seciffart, Optimicrung
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Analog erhalt man:
X, = 30 — x4,
Xg=—15+3 x,+ § x;.
Aus der Zielfunktion werden x,, x, und x; eliminiert, indem fiir diese Verinderlichen
die gerade berechneten rechten Seiten eingesetzt werden:
Z =3x, + 4x, = 120 — 4x, + 105 + 3x, — $x,,
Z =225—5x —3xs.
Insgesamt folgt also
X = 35+ix,—1ix;,
Xy = 30— x,
Xy=—15+8x+ x5,

Z = 225— $x; — 3x.

Durch Umstellung entsteht daraus unmittelbar die BD;. In entsprechender Weise
konnen die anderen BD berechnet werden.

24. Das Simplextheorem und das Simplexkriterium

Der Zusammenhang zwischen einer ZBL und einem Eckpunkt (Extrempunkt) des
zugehorenden Losungsbereiches wird durch folgenden Satz gegeben:

Satz 2.1: Eine zuldssige Losung x von (2.18) aus 2.3. ist dann und nur dann ein Eck-
punkt, wenn x ZBL ist.")

Beweis: 1. Es sei x eine zuldssige Basisldsung. Ohne Einschrankung der Allgemein-

heit sei B [a®), ..., a{™)] eine Basis von (2.18) aus 2.3.; die BV von x lauten:

x; >0, ...,x, >0, und die NBV von x sind Xy =0, ...; Xp4m = 0.
Aus (2.18) folgt:

alx; + a®x, + - + almx, =b.
Es wird angenommen, daB x kein Extrempunkt ist. Daher kann x folgendermafen
dargestellt werden:

x=x0+ (1 -2Hx®, 011
x® und x@ sind voneinander verschieden und gehoren dem Losungsbereich von
(2.18) an, d.h., es gilt: .

xM £ x®), AxM =b, Ax® =b, x® =0, x® =0.
Aus diesen Bedingungen folgt fiir x*) und x®, daB alle Komponenten auBler den
ersten m gleich null sind. Also gilt fiir x® und x®)

xM =[x, x, ..., x1,0,..., 0],

X® = [x®, xP?, .., x®,0, ..., 0]

1) AusschluB des Entartungsfalles, d.h., es sind nur ZBL mit genau m BV groBer als null zugelas-
sen. Im Abschnitt 3.1.3. wird der Entartungsfall gesondert behandelt.
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und daher
alx() + a®x® + - +almx =b,
ax® + a®x® + .. +almx® =,
Durch Subtraktion der letzten beiden Gleichungen folgt:
2l (x{) — x®) + - +alm (x — x@) = 0.
Da a®, ..., a(™ linear unabhingig sind, folgt aus der letzten Gleichung schlieBlich
X —x®=0 firalle i=1,..,m, dh,x®=x®,
Das ist aber ein Widerspruch zur Annahme. Also ist x ein Extrempunkt.

2. x sei Extrempunkt des Lésungsbereiches von(2.18). Dabei wird angenommen, dafl
die Komponenten x, ..., x, von x groBer als null und die restlichen gleich null sind.
Also gilt:

allx; 4 -+ alx, =b.

In einer Zwischenbetrachtung wird zunédchst indirekt gezeigt, daB die a®), ..., a®
linear unabhéngig sind: Es wird angenommen, a®), ..., a(") seien linear abhingig.
Also gilt:

Aa® 4 La® 4+ -+ a0 =0

M4+ A2 0.

Fiir ¢ >> 0 folgen aus den beiden letzten die zwei neuen Gleichungen:
aW (x; + chy) + a® (xp + cdp) + -+ a0 (x, +cA)=Db

a® (x, — cA) + a® (X, — cdp) + - + 2D (x, — cA) = b.
Losungen dieser beiden neuen Gleichungen sind

XM =[x, + ¢4y, ooy X, + €4, 0, ..., 0]

X® = [x; — ¢y, ey X, — €Ay, 0, ..., 0].

Da der Entartungsfall ausgeschlossen ist, existiert ein ¢ > 0 hinreichend klein, so daB
x® = 0 und x® = 0 sind, d.h., x®» und x® sind ZL von (2.18). SchlieBlich gilt:

Xx=1x0+ | x®,

mit
und

und

d.h., x ist kein Extrempunkt. Das ist aber ein Widerspruch zur Voraussetzung.
‘Nunmehr folgt aber aus der linearen Unabhingigkeit der Vektoren a®), ..., a®, daf
r = m ist. Da aber die Entartung ausgeschlossen ist, folgt #= m. Also ist x eine ZBL.®

Aus dem eben bewiesenen Satz folgt nun unmittelbar die bereits in Kapitel 1. auf-
gestellte Behauptung:
Wenn der zuldssige Losungsbereich von (2.18) beschrinkt ist, dann ist er ein kon-

vexes Polyeder. Da die Anzahl der ZBL kleiner oder gleich <n tnm) ist, folgt, daB

auch die Anzahl der Eckpunkte des Losungsbereiches von (2.18) kleiner oder gleich
(n+m

{ ), also endlich ist.

3%
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Satz 2.2: Simplextheorem. Ein lineares Optimierungsproblem
Ax =b,x = o, ¢Tx = max
nimmt das Optimum an einer ZBL an, sofern es losbar ist.")

Beweis: Es wird angenommen, da3 x(© eine optimale Losung von (2.18) und keine
ZBL bzw. kein Eckpunkt ist. Folglich 148t sich x(© in der folgenden Form darstellen:

7 q
X = 3 2x), D=1 0= <1,
= i=1

i=1,..,q,

wobei x1), ..., x@ Extrémpunkte des Losungsbereiches von (2.18) sind. Somit gilt:

q
max {cTx} = ¢Tx©) = ¢T {Z‘ Aixi")}
i=1

c 4 q
= > AeTx() < ¢Tx®) 3 4,

i=1 i=1

— ¢Tx(®)
mit
max {cTx} = ¢Tx*)
1=ise
Also folgt:

max (cTx) = ¢Tx®) = ¢Tx(©),
Damit ist gezeigt, da der Extrempunkt x*) bzw. die ZBL eine optimale Losung ist.

Damit ist das Simplextheorem bestétigt, da zu jeder optimalen Losung auch eine
optimale ZBL angegeben werden kann. ®

Sind xM, x®), ..., x*) optimale Losungen von (2.18), so ist auch
2 . . 2
x© = >Ax®H mit Ji=10=1<1
i=1 i=1

fiir i=1,..,p

eine optimale Losung von (2.18), d.h., alle Punkte der konvexen Hiille von x,
x@), ..., x® sind optimale Losungen, denn es gilt:

V4 Vi
cTx©) = ¥ 2,eTx() = ¢TxW) 3 4, = ¢Tx®) = max (eTx).
i=1 i=1
Zur Bestimmung einer optimalen Losung eines linearen Optimierungsproblems
sind nach dem Simplextheorem nur die ZBL zu betrachten. Unter diesen Losungen
ist eine Optimallgsung enthalten. Es erhebt sich die Frage: Wann ist eine ZBL die
gesuchte optimale Losung?

Das Simplexkriterium gibt dariiber eine hinreichende Auskunft:

1) Der Entartungsfall sei ausgeschlossen, d. h., ZBL mit weniger als m positiven BV sind nicht vor-
handen. Durch eine in dem Abschnitt {iber den Entartungsfall betrachtete Umformung wird gezeigt,
daB jeder Problem auf ein nichtentartetes Problem zuriickfiihrbar ist.
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Satz 2.3: Simplexkriterium. Ist xg =[x, = 0, x, = 0, ..., x, = 0, x,; = ky, ...,
Xn+m = k] eine ZBL (alle k;=0,i=1, ..., m) des LOP und hat die Zielfunktion in
der dazugehorenden Basisdarstellung die Form

&iX t &Xo+ v+ &X, tZ=c,
wobei

gi=0 fir j=1,..,n
gilt, so folgt: xg ist eine Maximallosung.

Beweis: Ist x eine beliebige ZL, also gilt: Ax = b, x = o, so folgt aus der Basisdar-
stellung (2.19)

Z(x) = ¢ — giX; — gaXp — * — Gy
Auflerdem gilt:
Z(xp)=c.

Da g;=0und x;=0 fiir alle j=1,...,n gilt, so ist g;x; = 0 fiir alle j, und damit gilt:

C—g1X — =Xy S €,
also
Z(x) = Z(xn).

Die letzte Ungleichung besagt, der Funktionswert jeder beliebigen ZL ist nicht gro-
Ber als der Funktionswert Z(xg) der Losung xg, also ist xp eine maximale Losung.
Damit ist der Beweis erbracht. &

Wenn die zu einer ZBL gehorende Basisdarstellung bekannt ist, kann damit sofort
auf Grund der Formkoeffizienten entschieden werden, ob die ZBL eine optimale
Losung ist. Der Entartungsfall sei ausgeschlossen.

Beispiel 2.9: In dem Optimierungsproblem

ZF: Z = —x, + 2x;5 + 4x3 = max;

NB: 2%+ Xo+ X3 =1,
—X;— Xo+ X3+ X4 =1, (2.22)
3x; — 2%y — X3 + x5 = =8,

x=0, i=1,2,..5,
ist die folgende ZBL xp gegeben (durch Einsetzen in die Nebenbedingungen ist sofort
iberpriifbar, daB xp eine ZBL ist):
BV: x,=3, x3=4, x;=2;
XB
NBV: x,=0, x,=0.
Zu xg gehort die folgende Basis:
1 1 0
a®=|—1]1, a®—=| 1
-2 -1 1

S.2.3
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denn
1 10
|a®,a®),al)|= ‘ -1 1 =2%0.
=2 —1 1]

Werden die BV x;, x;, x; in Abhéngigkeit der NBV x, und x, ausgedriickt, so folgt:
X3=4— éxl 2x4,
Xo=3—3x;+ §x,,
x5 =2—8x + §x,.

Damit konnen die BV x, und x; aus der ZF eliminiert werden. Es folgt:
Z=-x%+206-3x+x)+4(@ - ix —ix).
Z=122— 6x; — x4.

Die BD, die zur vorgegebenen ZBL xg gehort, lautet damit:

i+ ix+x = 4,
3x—x + X, = 3,
Bxi—4x, +x5= 2,
6x; + 1x, + Z =22.

Dag, = 6 > 0und g, = 1 > 0sind, so folgt aus dem Simplexkriterium, xg = [0 3,4,
0, 2] ist eine maximale Losung von (2.22).

Nun bleibt noch offen: Wie kann eine solche optimale ZBL mit ihrer BD bei einem
allgemeinen LOP errechnet werden?

Hieriiber gibt nun der Simplexalgorithmus Auskunft (s. 3.1.1.)



3. Losungsmethoden der linearen Optimierung

3.1. Die Simplexmethode

In den folgenden Ausfiihrungen steht die Frage zur Diskussion, wie ein lineares
Optimierungsproblem zweckmiBig gelost werden kann. Es ist eine Extremwert-
aufgabe mit Nebenbedingungen zu 13sen: Eine lineare Funktion von mehreren
Verinderlichen ist unter Beriicksichtigung linearer Gleichungen und Ungleichungen
als Nebenbedingungen zu maximieren oder zu minimieren. Dabei entsteht die Frage:
Konnen die tiblichen Losungsmethoden der Analysis herangezogen werden, d. h.
konnen mit Hilfe der Differentialrechnung unter Benutzung einer Lagrange-Funktion
notwendige und hinreichende Bedingungen fiir das Auffinden optimaler Losungen
angegeben werden? Ditse Frage mufl sofort verneint werden, weil bestimmte not-
wendige Voraussetzungen zur Anwendung dieser Methoden nicht erfillt sind. Mit
diesen Methoden kénnen relative (lokale) Maximal- oder Minimalldsungen ermittelt
werden, die im inneren des zuldssigen Losungsbereiches liegen und wenn Optimie-
rungsprobleme vorliegen, deren Nebenbedingungen nur die Gleichungsform haben.
In der linearen Optimierung geht es aber um die Bestimmung von absoluten (glo-
balen) Optimallgsungen; diese Forderung entsteht bereits bei der Betrachtung
entsprechender Problemstellungen aus der Praxis. Es ist also die Losung gesucht, die
beziiglich des zuldssigen Losungsbereiches den maximalen bzw. minimalen Wert der
Zielfunktion besitzt. Dariiber hinaus kann gezeigt werden, daB3 bei einem linearen
Optimierungsproblem die optimale Losung ein Randpunkt des zuldssigen Losungs-
bereiches ist (vgl. Simplextheorem), d. h. die tiblichen Methoden der Analysis sind
zur Bestimmung der Optimallésung nicht anwendbar. SchlieBlich liegen in der LO
Nebenbedingungen in Ungleichungsform vor (z. B. die Nichtnegativititsbedingung
der Variablen), die ohnehin eine Verallgemeinerung der diesbeziiglichen Ldsungs-
moglichkeit fordern. Es ist also in der linearen Optimierung eine neue Losungs-
methodik erforderlich. ’

Die Simplexmethode ist ein Losungsalgorithmus zur Auffindung einer optimalen
Losung eines LOP. Auf Grund des Simplextheorems reicht es aus, nur die ZBL auf
Optimalitit zu untersuchen. Bei dem Simplexalgorithmus wird von einer zuldssigen
Basisdarstellung ZBD (vgl. 2.3.) ausgegangen. In ihr sind alle k, (i = 1, ..., m) nicht-
negativ. Eine solche ist fiir jedes LOP nach Uberfiihrung in die Normalform (vgl. 2.2.)
unmittelbar gegeben. Die zur ZBD gehérende Basis werde mit B, und die Basiszahl
mit ¢, bezeichnet. Es gilt also, wenn die entsprechende ZBL mit xg, bezeichnet wird,

Z(xg,) = ¢y.

Ein Iterationsschritt des Algorithmus besteht in der Auffindung einer neuen
Basis B, mit der dazugehdrenden ZBL xg , fiir die der Wert der Zielfunktion
Z(xp,) = ¢; (¢; = ¢) nicht kleiner als ¢, ist.

Nach p-maliger Anwendung eines solchen Iterationsschrittes (p endlich) wird er-
reicht, daB alle Formkoeffizienten in der Zielfunktion, die zur zuletzt ermittelten
Basisdarstellung gehoren, nicht negativ sind.

Auf Grund des Simplexkriteriums ist die zu dieser Basisdarstellung gehorige
ZBL Xg, dann eine Optimalldsung, sofern diese iiberhaupt existiert.

Beispiel fiir den Ablauf des Simplexalgorithmus: Am Beispiel (2.21) soll zunéchst
der Ablauf des Simplexalgorithmus erldutert werden. Dieses LOP lautet:
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ZF: Z=73x +4x, L max;

NB: X+ 2%, + X3 = 80,
X + Xy = 30, (3.1)

2%+ X + x; = 100,

X1, Xos Xg, Xy, X5 = 0.

Da (3.1) bereits in der Normalform vorliegt, kann unmittelbar eine erste ZBD an-
gegeben werden, von der ausgegangen wird.

ZBD,: X1+ 2%, + X3 = 80,
X + x4 = 30, .
2%+ X, + x; = 100, 3.2)
—3x; — 4x, +Z = 0.
Die entsprechende ZBL zu (3.2) lautet
ZBL,: xgo = [0, 0, 80, 30, 100]; Z(XB.,) =0. (3.3)

Es wird nun versucht, aus der ZBD, eine andere ZBD; mit der Basis B, und der ZBL
xp, zu erzeugen, deren Basiszahl ¢; = ¢, ist, d.h., es soll

Z(xp,) = Z(xB,)
sein.

Zu diesem Zweck wird eine Losung betrachtet, die aus der Basisdarstellung (3.2)
folgt, wenn alle NBV bis auf eine gleich null gesetzt werden. Diese eine Verdnder-
liche wird gleich 4, > 0 gesetzt, also z.B.

NBV: x, =0, x,=4,>0.
Aus (3.2) folgt die Losung x4,

x= 0

Xy= 4y,

x;= 80 —24,, (3.4)
x;= 30— 4,,

x; =100 — 4,,

(Z= 0+44,).

Diese Losung x4, ist eine ZL, solange alle Losungskomponenten nichtnegativ sind,
d.h. also fir
80 30 100
FAR A Il
Andererseits wichst Z um so mehr an, je groBer 4, gewdhlt wird. Um Z(x4,) = 44,
zu maximieren, wird
4; = min {40, 30, 100} = 30 >0
gesetzt. Mit 4, = 30 folgt damit aus (3.4) die Losung
xp, = [% =0, x,=30,x; =20, x,=0,x =70], 3.5)
Z(xp)=4-30=120=¢,.

OgAlgmin{
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xp, ist eine weitere ZBL, da die drei den von null verschiedenen Lésungskomponen-
ten entsprechenden Vektoren linear unabhéngig sind.

Um die ZBL xp, auf Optimalitit zu priifen, ist die zu dieser Losung gehdrende
BD aufzustellen.

War in xg, noch x, BV und x, NBV, so ist dagegen in xg, x, BV und x, NBV. x, und
x, haben die Plitze vertauscht. Um die zu xp, geh6rende BD aus (3.2) zu erhalten,
sind x;, X, und x; zu eliminieren. Diese Elimination wird erreicht, indem die 2. Glei-
chung von (3.2) nach x, aufgelost wird. AnschlieBend wird der fiir x, erhaltene Aus-
druck in die restlichen Gleichungen eingesetzt. Es ergibt sich:

X1+ 2 [30 — x4] + x5 = 80,
+ X4 + X = 30,
2x; 4+ [30 — x4] + X5 = 100,
—3x;— 4[30 — x,] +Z= 0.
Damit lautet die gesuchte ZBD,
X, — 2X4 + X3 = 20,
+ X + Xy = 30, (3.6)
2%, — Xy + X5 = 10,
—3x; + 4x, + Z = 120.

Der 1. Iterationsschritt der Simplexmethode ist mit der Aufstellung der Basisdar-
stellung der Basis B, = [a®), a®), a®)] beendet.

Der 2. Iterationsschritt beginnt, indem wiederum versucht wird, aus der nunmehr
vorliegenden Basisdarstellung mit der Basis B; und der ZBL xg, eine andere Basis-
darstellung mit der Basis B, und der ZBL xp, zu erzeugen, deren Basiszahl ¢, = ¢,
ist.

Zu diesem Zwecke wird die NBV, die zu dem kleinsten negativen Formkoeffizien-
ten in (3.6) gehort, gleich 4, gesetzt:

x,=4,=20, x,=0.
Aus (3.6) folgt die Losung x4,

xi= A,

x,= 30,

x;= 20— 4,,
x,= 0,

x5 = 70— 24,,
Z = 120 + 34,.

Fiir 0 < 4, < min (£, 9} = 20 ist x,, eine ZL. Um Z(x,,) zu maximieren, wird
4, = 20 gesetzt. Es entsteht eine weitere ZBL, die mit xp, bezeichnet wird:

X, = [x; = 20, x, = 30, x; = 0, x, = 0, x; = 30],
Z(xg,) = ¢, = 180. 3.7
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xp, ist eine ZBL, da die den von null verschiedenen Lésungskomponenten x;, x,
und x; entsprechenden Vektoren linear unabhingig sind.

Werden die beiden Losungen xg, und xg, verglichen, so haben x; und x; die Plitze
vertauscht. Die BD zu xg, wird aus (3.6) erhalten wenn x;, X, und x; ellmlmert wer-
den. Es folgt:

—2x, + X = 20,

+ X + X, = 30,

+ 220 — x5+ 2x,] — x, + x5 = 170,

— 320 — x5 + 2x4] + 4x, + Z = 120.

Damit lautet die der Losung (3.7) entsprechende ZBD,:
—2x4+ X, = 20,
Xy + X5 = 30,
—2x3 + 3x, + x5 = 30, (3.8)
3x; — 2x4 + Z=180. ,

Der 2. Iterationsschritt ist mit der Aufstellung der ZBD, zur Basis B, [a(), a®), a®)]
beendet. Da in (3.8) noch nicht alle Formkoeffizienten = 0 sind, wird analog die
3. Iteration angeschlossen. Es entsteht die folgende ZBD; mit der ZBL xg .

—ixs+ 3x5+ x; = 40,

Fxs— 5% + X3 = 20, ' (3.9
—3x3+ §x; + X = 10,

§x3+ 3 x5 + Z = 200.
xp, = [x; =40, x,=20, x;=0, x,=10, x;=0], (3.10)

Z(xp,) = 200 = c;.

Da in (3.9) alle Formkoeffizienten = 0 sind, folgt nach dem Simplexkriterium, daf3
B, die gesuchte optimale Losung mit einem maximalen Funktionswert von

Z(xp,) = 200
ist.

Der Aufbau des Simplexalgorithmus ist damit zunéchst am Beispiel dargelegt. Bei
jeder Tteration wird von einer ZBL zu einer solchen ZBL iibergegangen, deren Funk-
tionswert nicht kleiner als der vorhergehende ist. Diese Iterationen werden so lange
wiederholt, bis eine optimale ZBL erreicht ist, d.h. die Formkoeffizienten alle nicht-
negativ sind.

Es besteht bei diesem Vorgehen eine prinzipielle Frage: Bricht das Verfahren nach
endlich vielen Schritten ab, weil eine optimale Losung vorliegt? Diese Frage wird
in den anschliefenden allgemeinen Ausfithrungen mit ja beantwortet werden.
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3.1.1.  Der Simplexalgorithmus

Bei den folgenden Betrachtungen wird das LOP (2.18) zugrunde gelegt und an-
genommen, daB die k-te Iteration bereits durchgefiihrt ist und eine ZBD, mit der
entsprechenden ZBL xp, vorliegt.

ZBD;: ryyxXi+ P Xy oo i X+ Xpa =k,
Far X+ o+ Fog Xo + o A Fon Xy +Xns =k,, (3.11)
Py X1+ o Fya Xa+ 0 P X + Xnim =k,
QX et G Xe ot G K +Z=cp
k=0, i=1,..,m;
xp,=[X1 =0, Xa=0,% 1=k, .., Xpim=kanl, ) (3.12)
Z(xp,) = cx-

Weiterhin wird vorausgesetzt, daB3 alle moglichen m-Tupel von Vektoren der erwei-
terten Koeffizientenmatrix von (2.18) linear unabhéngig sind. Das Problem ist dann
nicht entartet.

Es kann der folgende Satz formuliert werden:

Satz 3.1 (Hauptsatz der Simplexmethode): Gegeben sei eine ZBL: Xg, (nichtentartet)
und die dazu gehirende ZBDy., und fiir mindestens ein j = a gilt: g, < 0, ri; > 0 fiir
mindestens ein i = 1, ..., m; dann folgt:

Es existiert eine ZBLy,: Xp,,, und somit die ZBDy,, mit Z(xp,, ) > Z(Xiy1)-

Der Beweis dieses Satzes folgt unmittelbar aus dem folgenden konstruktiven Vor-
gehen:

Es konnen in (3.11) die folgenden drei — sich gegenseitig ausschlieBenden — Fille
vorliegen:

1.g; = 0 fiir alle j= 1, ..., n. Nach dem Simplexkriterium folgt, daB xp, eine opti-
male Losung von (2.18) mit dem optimalen Funktionswert Z(xp,) = c; ist.
Damit wire der Iterationsalgorithmus beendet.

2. Es ist fiir mindestens ein j = a
”\) 8a < 0;
MHriu=0 fir i=1,..,m

Unter diesen Voraussetzungen kann man beliebig groBe Funktionswerte finden, d.h.
(2.18) hat keine optimale Losung; diese existiert nicht.

Beweis: In (3.11) werden fiir die NBV die foigenden Werte eingesetzt:
X,=4>0 und x;=0,i=1,..,ni+a.

Es entsteht aus (3.11) die folgende ZL:

S.3.1
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Xy X=A4>0, x;==X3=Xp==X=0,
Xpa =k — 11,4,
Xnio = ko — 1304,

............... (3.13)

mit

Z(xg)= o + A(—g).
Da g, <Oundry, < 0fiiri=1,..., msind, kann 4 beliebig gro3 gewahlt werden,
ohne die Zuldssigkeit der Lésung x4 zu verletzen (x4 = 0 fiir alle 4 = 0). Dariiber
hinaus wichst Z(x4) = ¢, — 4g, unbeschrinkt, sobald 4 beliebig groBl gewihlt wird.
Damit ist die Nichtexistenz einer optimalen Losung gezeigt.

3. Es ist fiir mindestens ein j = a
2) & <0,
p) rig > 0 fir mindestens ein i =1, 2, ..., m.
Unter diesen Voraussetzungen kann eine ZBD,,; mit entsprechender ZBL Xg,,, 8¢
funden werden, deren Basiszahl c;,, > ¢; ist (*> gilt nur bei Nichtentartung, sonst =).
Die Aufstellung von ZBD,.,; erfolgt in der (k + 1)-ten Iteration, die folgendermafen
auszufiihren ist:
Es werden in (3.11) die NBV x; = O fiirj= 1, ..., n;j &= aund die NBVx, = 4 >0
gesetzt.
Dann entsteht die folgende Losung x4: )
X4 X, =4>0, Xp= =X =Xga ==X, =0,
Xns1 =k —r.4,
Xnio =Ky — 134, (3.14)
Xnim =kn—Inad,
Z(xg)=c; —&A.
X4 ist nur fiir

0< A< min (ﬁ):ﬁ=zl,m (.15)
1=i=m \lia Tia
'ia>0

eine ZL, denn wenn 4 > :c—l gilt, so folgt
la

Xpni=ky— 1, - 4 <0,

d.h., x4ist nicht zulédssig. Sind alle k; > 0, so ist auch 4;,, > 0. Anderenfalls kann
A4y gleich null sein. Es wird sich zeigen, daB bei Nichtentartung alle k; > 0 sein
miissen.
Um Z(x,) moglichst groB zu gestalten, wird
ki
A=A, = v
gesetzt.
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Damit ergibt sich die Losung
X, Xa = Ay >0, Xy= v =Xo 3 =Xgy==x,=0,
Xnow = ki =1l 20,
ky—ry iy 20,

Il

Xni2

Xnem = km - rmaAk-u =0.

Die BV x,4; von xp, nimmt in der Lésung xp,,, den Wert Null an. Dagegen hat die
NBV x, =0 in der gleichen Loésung den Wert 4,.,. Dariiber hinaus ist XB,,, eine
weitere ZBL, denn die den von null verschiedenen Losungskomponenten entspre-
chenden Vektoren von (3.11) sind linear unabhéngig.

Die Determinante

)
00 r, 00
1.0

der Vektoren a(®+1), ... a(H-1) q@) qnldl) q(ntm) jst ndmlich von null ver-
schieden (wegen r;, % 0). Um die zu xp, gehSrende ZBD aus (3.11) zu erhalten, ist
nach den neuen BV X,, X,11, -oos Xysio15 Xnils1 oo Xpem aufzuldsen. Diese Elimination
wird vollzogen, indem in der /-ten Gleichung von (3.11) x, eliminiert wird. Da ry, >0
ist, folgt:
UL S/ UV R S
Ta T Tia Ta

AnschlieBend wird der fiir x, erhaltene Ausdruck in die restlichen Gleichungen ein-
gesetzt. Nach einer entsprechenden Zusammenfassung liegt die gesuchte ZBDy,,
vor.

Die zu dieser Basisdarstellung gehorende Basiszahl ¢;,; nimmt folgenden Wert an:
Z(XBk+‘) = Cpa1 = € — Ll g1
Da g, < 0 und 4, > 0 sind, gilt

Cri1 > Ck,

Zsw,,,) > Z(sny).
Damit ist die (k + 1)-te Iteration beendet.

Fiir die Lésung eines LOP ist nunmehr entscheidend, daB3 der angefithrte Simplex-
algorithmus nach endlich vielen Iterationsschritten abbricht, da ein solches Problem
nur endlich viele Basen besitzt, denn eine bereits benutzte Basis kann bei Weiterfiih-

also
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rung der Iterationen nicht zweimal auftreten, weil die Folge der Basiszahlen ¢, ¢;,
Cy,... bei Nichtentartung streng monoton ansteigt.

Als Nachtrag zur Nichtentartung wird schlieflich bewiesen: Ist ein LOP nicht ent-
artet, so sind alle k; in der BD jeder beliebigen Basis ungleich null.

Beweis: Ohne Beschriankung der Allgemeinheit wird angenommen, daf in (2.18)
die Vektoren a(), ..., a(m) eine beliebige Basis bilden. Der Vektor b ist dann durch
die folgende eindeutige Linearkombination darstellbar:

X a® + x,a® + oo b x, alm) = b; (3.16)
dabei gilt:

xy=ky, Xo=Kkoy ..o, Xp=Fp.
Ist nun ein k; gleich null, z.B. k, = 0, dann folgt aus (3.16)

kpa® 4 o+ k, alm) —b=0.

Die Vektoren a®), ..., a("), b sind also linear abhéngig. Das Ergebnis steht aber im
Widerspruch zur Nichtentartung.

3.1.2.  Rechenblatt zur Simplexmethode

Zur Aufstellung eines Rechenblattes wird von der Normalform

ZF: Z=0¢x Xy + ot X +CuaXna T o Crpm Xagm = MAX;

NB: Xy Ao Xy + o H @i Xy + Xn = by,
Ay1 X+ Gy Xy + o+ Gan Xp + Xns2 =b,, (317)
A1 X1+ Ao Xo+ + + Ayp X + Xpsm =bu,

x=0, j=1,..,n4+m b =0, i=1,..,m

ausgegangen (vgl. (2.5)). Nach (3.17) wird das in (3.18) "dargestellte Ausgangs-
rechenblatt (Simplextableau) 1 aufgestellt.

1 NBV x;, x, - x, b

BV -1 | ¢ “Cn 0|0

Xps1 | Cnpr |G @z v ap [ by | @
Xniz  |Cnio | @21 @an  Gan by | Qe (3.18)
0o T

Xnim |Cosm | Gn1 @mz * Gmn| by | Gm
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Das Simplextableau 1 ist folgendermaBen aufgebaut:

In der ersten Zeile befinden sich die Nichtbasisvariablen (NBV) x;, ..., x,,. In die
erste Spalte sind die Basisvariablen (BV) x4, ..., X+, cingetragen. In der 2. Zeile
und 2. Spalte sind die Koeffizienten der Zielfunktion zu den entsprechenden x; an-
gegeben. Aus Griinden der ZweckmaBigkeit ist in der 2. Zeile der 1. Koeffizient gleich
—1 und der letzte gleich null gesetzt.

Die Mitte des Blattes (d. h. die 3. bis zur (m + 2)-ten Zeile und die 3. bis zur (n + 2)-
ten Spalte) fiillen die Koeffizienten der NB von (3.17) aus.

In der vorletzten Spalte sind die rechten Seiten der Nebenbedingungen von (3.17)
notiert. SchlieBlich sind noch eine unbesetzte G-Zeile zum Eintragen der Form-
koeffizienten bzw. der Basiszahl und eine Q-Spalte zur Bestimmung der nach (3.15)
zu bildenden Quotienten g; angefiihrt. Jede Simplexiteration kann durch die Auf-
stellung eines weiteren Rechenblattes ganz schematisch durchgefithrt werden und
besteht in den folgenden Umrechnungsschritten. Bevor diese Schritte beginnen, wer-
den die a;;, b;, ¢; in das 1. Tableau eingetragen.

1. Schritt:

Zuerst werden die in der G-Zeile einzutragenden Formkoeffizienten g, bzw. die
Basiszahl ¢ nach folgenden Formeln berechnet:

&= ;Cn‘i a—cp, (k=1,..,n)

C*ZCnﬂ i

Diese Formeln entstehen, wenn in der Ausgangszielfunktion die NBV mit Hilfe der
Nebenbedingungen eliminiert werden. Es werden also die Produktsummen der 1.
mit den restlichen Spalten gebildet und die Ergebnisse in der G-Zeile eingetragen.
Mit diesem einfachen Vorgehen ist das oben vorzeitig erwdhnte Eintragen der ,,—1¢
und der ,,0° in die 2. Zeile von (3.18) bereits gerechtfertigt. AnschlieBend ist zu ent-
scheiden, ob alle Formkoeffizienten nicht negativ sind:

min {g,} = g = 0?

1=k=n

Ist g; = 0, so folgt, dal die dem Rechenblatt entsprechende Losung optimal ist.

Sie wird aus dem Tableau abgelesen, indem alle NBV gleich null gesetzt werden. Die
Werte der BV sind gleich den entsprechenden in der b-Spalte. Ist g; < 0, so wird
die Spalte mit dem g; als Eingangsspalte markiert. (Die Spaltenclemente kdnnen
z.B. unterstrichen werden.) Diese Spalte wird im folgenden als Eingangsspalte be-
zeichnet, weil ndmlich die NBV x; im nédchsten Rechenblatt als BV auftritt.

2. Schritt:

Nach der Markierung der Eingangsspalte wird das Minimum (3.15) berechnet,
indem man die Zahlen ¢; durch Division der-Elemente der b-Spalte durch die Ele-
mente der Eingangsspalte bildet und das Minimum aufsucht. Dabei ist zu beachten,
daB3 diese Quotienten nur fiir positive Elemente der Eingangsspalte zu bilden sind.
Diese Quotienten werden in die Q-Spalte eingetragen. Die Positionen der Q-Spalte,
fiir die kein Quotient existiert, bleiben unbesetzt. Falls alle Werte der Eingangsspalte
nichtpositiv sind, kann das Verfahren abgebrochen werden, da nach Fall 2 (S.43)
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das LOP keine optimale Losung besitzt. Die Zeile, die dem kleinsten Element der
QO-Spalte entspricht, wird im folgenden als Ausgangszeile bezeichnet und entspre-
chend markiert (z.B. konnen die Zeilenelemente unterstrichen werden). Die dieser
Zeile entsprechende BV erscheint im néchsten Blatt als NBV.
Es wird also berechnet:
b,
=L fi .>0;
q: r» ur g, >0;
fiir a;, < 0 existiert keing, (i = 1, ..., m),
min  {g;} = q.
1<ism
>0
In den weiteren Schritten werden die Zahlenwerte des neuen Rechenblattes berech-

net, die entsprechend den Ausgangswerten mit a;;, b;, ¢;, g; bezeichnet werden.

3. Schritt:

Die auszutauschenden Variablen und die dazugehorigen Zielfunktionskoeffizienten
werden ausgewechselt. Alle anderen Bezeichnungen werden in das neue Rechenblatt
iibernommen:

BV x; «~—> NBVXx;, c.<—¢.

4. Schritt:
Ist a;; das Element, welches sich am Kreuzungspunkt der Eingangsspalte und Aus-

gangszeile befindet (Kreuzelement), so ist L das entsprechende Element im neuen
Tableau ap
1

Kreuzelement (3.192)

- 1
Kreuzelement: a;; = a—; neues Element =
]

Die der Ausgangszeile entsprechenden Elemente sind nach den folgenden Formeln
zu berechnen.

Kreuzzeile: Gy = 4, b, = EL, =1, n jEk
(7] ay,
(3.19b)
altes Element
neues Element: = —8—.
Kreuzelement

Bis auf das Vorzeichen lassen sich die der Eingangsspalte entsprechenden Elemente
ebenso berechnen:

Kreuzspalte: @; = — Z“ . m=-— 51" i=1,.,m ik
o " (3.19¢)
altes Element

neues Element: = — ———.
Kreuzelement
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5. Schritt:

Alle restlichen Elemente ergeben sich nach folgenden Formeln:

_ a,ay . -
aiizaif_l*) ik j*+I

g
by = b — —aféi, i+ ks
K (3.194d)
= 81, L
g -g -5, <1
] =8 an J
7 o—c — Bibe
ag,
entsprechendes Element  entsprechendes Element
i lte " der A il
neues Element = altes Element — der Eingangsspalte or Ausgangszele
Kreuzelement

Nach diesen 5 Schritten ist das neue Rechenblatt ausgefiillt, aus ihm ist die ZBD
mit der ZBL zu entnehmen. Die Betrachtungen werden mit dem 2. Schritt weiter-
gefiihrt. Dabei ist zu beachten, daB nunmehr die Berechnung der Formkoeffizienten
bzw. der Basiszahl zur Kontrollrechnung benutzt wird, da bereits nach dem 5. Schritt
diese Zahlenwerte vorliegen.

Das Zahlenbeispiel (3.1) wurde bereits ohne Benutzung eines Rechenblattes nach
dreimaliger Durchfiihrung der Simplexiteration geldst. Bei der Losung wurden die
ZBD (3.2), (3.6), (3.8) und (3.9) erhalten. Wird zu dieser Berechnung das Rechenblatt
benutzt, so ergeben sich die folgenden, den ZBD entsprechenden Rechenblitter, die
nach Anwendung der oben angegebenen Iterationsschritte der Reihe nach ausein-
ander hervorgehen.

Ausgangstableau:
1 NBV x; x, b 2 NBV x; x, b
"BV [ -1] 3 4y 0] 0 BV |-1] 3 o oo
X3 0 1 2| 8 | 40 X3 0O 1 -2] 20|20
Xy 0 0 1 30 30 X5 4 0 1] 31}
Xs5 0 2 1 100 | 100 X5 0 2 —1] 70| 35
G|-3 -4 0 G|-3 41120

Das Kreuzelement ist doppelt unterstrichen. Die Elemente der Ein- und Ausgangs-
reihe sind unterstrichen.

4 Seciffart, Optimierung
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3 NBV x; x b 4 NBV x5 x; b
BV| -1 (U] 0| Q BV| —1 0 0 0| Q
X, 3 1 -2 20| /- X 31-% 3 40
Xy 4 0 1 30 | 30 X, 4 go-1 20
X5 0f-2 3 30| 10 X4 0|—-% 1 10
G 3 -2 | 180 G 2 2 [200

Die optimale Losung lautet:
x; = 40,

x;= 0,
x, =20, x,=10, Z=1200.
Das Rechenblatt bei kiinstlichen Variablen wird nun

X5 =

das Beispiel (2.16) bzw. (2.6) betrachtet):

ZF: Z =+ 2x; — 4x, + 4x3 — Mx; — Mx, — max;
NB: — 2% — 3%+ 3x3— x4, + x5 =1,
X — Xo+ X3 + xg =2,
6x; — 2x5 + 2x3 +x,=4,
%=0, i=1,..17.
Das Ausgangstableau lautet:
1 NBV x x X x b
BV | -1 2 —4 4 0 0| Q
o [-M{-2 -3 3 -1| 1|}
X | 0] 1 -1 1 of 2|2
X |-M| 6 -2 2 0 4| 2

0

wie folgt aufgestellt (es wird

(3.20)

In (3.20) ist allerdings jetzt die G-Zeile als Doppelzeile vorgesehen. Nach Ausfiihrung

des 1. Schrittes ergeben sich ndmlich Formkoeffizienten der Form
&g = a; + b" - M.
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In der oberen Hilfte der G-Zeile werden die Anteile a; eingetragen, die unabhingig
von M sind, im unteren Teil analog die Anteile ;, die mit M multipliziert worden
sind. In (3.20) sind diese Zahlenwerte entsprechend eingetragen. Im 1. Schritt ist
weiter zu entscheiden, ob alle Formkoeffizienten nichtnegativ sind:

min {g,} = min |a; + b, - M| = 0.
1=k=n 1=k=n

Bei der Bestimmung des Minimums ist zundchst das Minimum der unteren Reihe der
G-Zeile zu ermitteln, da die Koeffizienten dieser Zeile fiir die GroBe der Formkoeffi-
zienten ausschlaggebend sind. M sei geniigend groB gewihlt.

Falls es kleiner als null ausféllt, ist die Spalte, die diesem Minimum entspricht, be-
reits Eingangsspalte. Ist das Minimum gleich null, sossind die entsprechenden a,
in der oberen Reihe der G-Zeile zu minimieren. Es entstehen aus (3.20) die folgenden
Tableaus:

2 NBV x x, X5 Xy b

BV | -1 2 4 -M o] ofo
2 1 1 1

I I e R S ol B I
5 1 1 5

X5 0 3 0 -5 11
22 2 2 10 10

I It S S O B
14 4 4 4
-3 0 33| 3

P

22 5 2 10
-3 0 3 -3 |3

Im Tableau 2 kann die Spalte, die der NBV x; entspricht, gestrichen werden, da die
kiinstliche Variable nicht mehr in die Basis aufgenommen wird. In den folgenden
Tableaus ist diese Spalte auch nicht mehr berechnet.

Im Tableau 3 kann die Spalte, die der NBV x; entspricht, ebenfalls gestrichen wer-
den, da die kiinstliche Variable x, nicht mehr in die Basis aufgenommen wird. Eben-

4%
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falls kann nun die untere Zeile der Doppelzeile G weggelassen werden, da keine
kiinstliche Variablen mehr in der Basis enthalten sind:

3 NBV x; x x b

BV -1 |-M —4 40 |0 |0
X | 4 %—l—ég—/
x | 0 %oégs
w2l 3 0 oa|zm|?
T
22 22 22

4 NBV x, x,

BV -1 | -4 2 0
X3 4 | -1 3 2
x | 0] o 21]0
x ] 0| o 11| s

G 0 10 8

Die optimale Losung lautet:
x1:0, X, =0, x3=2, x4:5a xGZO:

Z =8 (x5 = x; = 0kiinstl. Variable).

*  Aufgabe 3.1: Mit der Simplexmethode sind zu 16sen: a) Aufgabe 2.4; b) Aufgabe 2.6.

*  Aufgabe 3.2: Ein Betrieb exportiert drei Plaststoffe Py, P, und P3, die aus Materialien My, M,, M5,
M, hergestellt werden. Der Absatz von 1 kg P, bzw. P, bringt 2,3 Deviseneinheiten, der von 1 kg P
bringt 1 Deviseneinheit. Der Materialbedarf bei der Produktion und die zur Verfiigung stehenden
Materialmengen sind der folgenden Tabelle zu entnehmen:
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M, M, M; M,

Materialbedarf fiir 1 kg P 0 3 1 4
Materialbedarf fiir 1 kg P, 2 2 2 0
Materialbedarf fiir 1 kg P3 2 2 1 1
Zur Verfiigung stehende 120 150 150 100

Mengen (kg)

Mit der Simplexmethode sind die zu produzierenden Mengen von Py, P, und P; so zu bestimmen
daB der Devisgngewinn moglichst groB wird.
3.1.3.  Nichtlésbarkeit

An den beiden anschlieBenden Beispielen sollen die zwei moglichen Fille der Nicht-
losbarkeit eines LOP betrachtet und erldutert werden.

Beispiel 3.1:
ZF: Z= X+ 2x, — max;
NB: -+ =1,
X+ x=1,
x—2x, =1,
X1, Xy = 0.
Normalform:

Z= x;+ 2x, — Mx; = max;

=X+ Xp+ X3 =1,

+x1+ X — X4 +x=1,

X — 2x, + X5 =1.
Rechentableaus:

1 NBV x, x, x, b

BV | -1 1 2 0 0] ¢

X3 0 -1

|o
—
—_

Ly
X |[-M| 1 1 -1| 1[1
x | ol 1 =2 of 1|
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2
BY

BV

X2

X5

NBV x, x3 x, b
-1 1 0 0f 0
2| -1 1 0 1
M| 2 -1 -1|0
0-1 2 0] 3
-3 2 0| 2
G
2 1 1] 0
NBV x5 x3 x, b
-1 |{-M 0 0| 0
208 4 =3
11 3 -4 —4]0
o 4 ¥ 43
$o4-1|2
G | N
1 0 0| 0

Abbruch des Verfahrens, da in der Spalte der NBV x, alle Koeffizienten negativ
sind! Der Losungsbereich und der Wertevorrat der Zielfunktion sind unbeschrankt
(vgl. Bild 3.1).

Bild 3.1
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Beispiel 3.2:
ZF: Z = x, + x, — max;
NB: -+ X, =5,
Xt ox =1,
X+ 2x =4,
X, Xy = 0.
Normalfgm:
Z = x; + X, — Mx, — max;
=X+ X — X3+ Xy =,

X+ Xy + x5 =1,
Xy + 2x, +x5 =4,
x; =0

Rechentableaus:
1 NBV x x x5 b

BV | -1 1 1 0 0

55
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Abbruch des Verfahrens, zwar sind alle Formkoeffizienten nichtnegativ, aber es ist
noch die kiinstliche Variable x, mit dem positiven Wert 4 in der entsprechenden zu-
lassigen Basislosung als BV vorhanden. Der Losungsbereich des Ausgangsproblems
ist damit die leere Menge (vgl. Bild 3.2).

%

i Bild 3.2

3.1.4.  Der Entartungsfall

Der Entartungsfall liegt vor, wenn ZBL mit weniger als m von null verschiedenen
BV auftreten. Er tritt immer dann auf, wenn im Minimum (3.15) mindestens zwei

Quotienten = den kleinsten Wert annehmen. Nach der Ausfiihrung der Transforma-

ia
tion entsteht eine ZBL mit weniger als 7 von null verschiedenen BV. Diese Entartung
bedingt, dal moglicherweise mehrere Transformationen auszufithren sind, bei denen
sich der Wert der Zielfunktion nicht dndert. Es existieren sogar Beispiele, wo
sich von einer Iteration zur anderen einmal der Funktionswert nicht dndert und
zum anderen nach einer Reihe von Iterationen die urspriingliche Basisdarstellung
wieder entsteht, d. h., es liegt ein Iterationszyklus vor, und damit kann die Simplex-
methode nicht nach endlich vielen Iterationsschritten abbrechen. Die optimale
Losung kann nicht erhalten werden. Allerdings sind bisher nur wenige theoretisch
konstruierte Beispiele bekannt, die solche Zyklen enthalten. Bei der Berechnung
auf elektronischen Digitalrechnern werden solche Entartungen dadurch vermieden,
daB bei mehreren ,,Mdglichkeiten* rein ,,zuféllig” entschieden wird, so daf es un-
wahrscheinlich ist, den gleichen Zyklus mehrfach zu durchlaufen.

Dieser Entartungsfall und seine Beseitigung soll an folgendem Beispiel erldutert
werden:

ZF: Z = x; + X, — max;
NB: X + 2x, =170,
2+ X = 80, (3.21)
X1 — 3x, = 0,
X1 = 30,
X1, X, = 0.



3.1. Die Simplexmethode

In Bild 3.3 ist dieses LOP geometrisch veranschaulicht.

X
80

1 ! 1 1
N 20N 30N 4DN 50 60 03080 X
~

Bild 3.3
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Im Bild 3.3 ist festzustellen, daB der Eckpunkt (30,20) des zuldssigen Losungs-
bhereiches tliberbestimmt ist, d. h. durch diesen verlaufen mehr als zwei Geraden, die
durch die Nebenbedingungen (3.21) festgelegt sind.

Die Normalform und das erste und zweite Rechentableau von (3.21) lauten:

ZF: Z = x; + x, = max;

NB: Xy + 2%, + X3 =10,
2%+ X, + X4 =80,

x; — 3x, + X5 = 0,

X + x6 =30,

X1y ey Xg = 0.

1 NBV x x b 2
BV|-1| 1 1] o0]¢ BV
xx | 0| 1 2|7 |70
1 x
x | 0] 2 1[80 |40
x | 0 1L =300 X‘
x | 0| 1 0]30]30 N
G -1 -1] 0 .

(3.22)
NBV  x; X, b
-1 0 1 ()
70
0| —1 51700 %
80
0| =2 7180 | 5
1 1 -3 0l
30
0]l -1 3 |3]|35
G 1 -4 0
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Bereits im ersten Rechenblatt tritt die Entartung des LOP hervor, denn die BV x; ist

gleich null.

Nur drei von vier BV sind von Null verschieden.
x; wird mit x5 ausgetauscht, dabei dndert sich die Basiszahl Null nicht (s. zweites
Rechentableau). Der Funktionswert hat sich nicht vergroBert.

3 NBV  x; Xg b
BV|-1| 0 o | olo
w0 2 -3 |20
x| ol & -2 w030
= = (3.22a)
X1 1 2 1 30 o
X | U|-% 5 |10
G 1 4 Das Minimum in der Q-Spalte ist
3 3 |40 nicht eindeutig bestimmt. BV x,
— wird aus der Basis eliminiert.
4 NBV x, x, b 5 NBV x, x b
BV | -1 0 0 0 ] BV | -1 0 0 0|0
xx | 0ol—2 3]l oo x| O0]|-32 1]o0
x | 0 3 —7l3 || x| 0o|-% 3|30
X, 1 0 1 30 | 30 Xy 1 2 =1 130
xx | 1| 1 =22 4| x| 1=t 3|2
Gl 1 -1]5% G131 1|50

BV x;=0, weil in 3 keine eindeutige
Entscheidung moglich ist.

Die optimale Losung lautet:
x; = 30, x,= 0,
x5 =20, x5 = 30,

x3= 0, x¢= 0, Z=150.

Der Funktionswert hat sich nicht
vergroBert.
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Diese Entartung wird durch eine Abwandlung des Problems (3.22) behoben. Es
werden alle BV x; (BV der Normalform) durch x; — &' ersetzt (¢! > 0):

ZF: Z = x, + X, — max;

NB: X+ 2%, + X3 =70+ &,
2%+ X, + x4 =80 + & (3.23)
x; — 3x, . + x5 =0 + &%,
X, + x5 =30 + &,
x; = 0.

Die Koeffizienten der &' sind gleich denen der x; der linken Seiten von (3.23). Zahlen-
mafBig unterscheidet sich das LOP (3.22) nicht wesentlich vom Ausgangsproblem,
wenn ¢ hinreichend klein gewéhlt wird. Diese Abwandlung verhindert die Entartung.
Dabei wird angenommen, daB der Simplexalgorithmus auf das Ausgangssystem
(3.23) angewandt wird. Die Rechenbldtter nehmen jetzt die folgende Gestalt an:

1 NBV  x;  x, b e g & &

BV | 1 1 1{ofl o o o o
X | 0 1 27| 1 0o 0 o
xx | o] 2 18| 0o 1 0 o
x |0 1 3o o o 1 o0
x | 0 1 o0]3 ]| 0o o o 1

2 NBV x5 x b e e &

x»w | 0l-1 s|7| 1 0 -1 o0
x» | 0f-2 7|8 ]| 0o 1 -2 o
x| 1 1 =31 0] o o 1 o0
x| 0]-1 3[30] 0 0 -1 1

Q
—
|
>
o
o
o
=]
[S]
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An den einzelnen Rechenblittern ist nun zu erkennen, daB die Koeffizienten der
¢'-Spalten gar nicht extra mitzufiihren sind, da sie im wesentlichen im nichterweiterten
Rechenblatt ebenfalls auftreten. Wenn diese Spalten nicht mitgefiihrt werden, ergibt
sich im Bedarfsfalle die folgende einfache Regel zu ihrer nachtriglichen teilweisen
Berechnung: Falls das Minimum der Quotientenspalte bei dem Vorgehen der Simplex-
methode nicht eindeutig bestimmt ist, wird eine Tabelle aufgestellt (vgl. (3.22a) und
(3.25)), in der die BV in der 1. Spalte dieser Tabelle aufgefiihrt werden, fiir die der
Quotient in der Q-Spalte am kleinsten ist. ZeilenméBig werden die &' nach steigenden
Potenzen geordnet abgetragen. Alle Elemente der Spalten & sind bis auf ein Element
gleich null, wo der Index i von &' mit dem Index der aufgefiihrten BV {ibereinstimmt.
Dieses eine Element ist gleich 1 und steht dort, wo sich die Zeilen und Spalten mit
gleichem Index kreuzen.

Die Elemente der Spalten ¢, wo der Index i nicht bei den aufgefiihrten BV auf-
tritt, sind null, falls auch dieser Index i nicht bei den Indizes der NBV auftritt.

Tritt dagegen der Index i bei den Indizes der NBV auf, so werden die entsprechen-
den Elemente aus dem Rechenblatt (im Beispiel Rechenblatt (3.24)) aus der Spalte
zur NBV x; ausgewihlt. Ausgewihlt werden diejenigen Elemente, die zu den aufge-
fiihrten BV gehoren.

Nach (3.22a) bzw. (3.24) entsteht so die Tabelle:

l & et &b &8
%3 ' 1 0 3 -3 (3.25)
% 0 1 I -3

AnschlieBend wird jede Zeile der Tabelle durch das entsprechende Element der Ein-
gangsspalte dividiert. Eingangsspalte ist in diesem Falle die Spalte x5 des Rechen-
blattes (3.24). Aus (3.25) entsteht auf diese Weise (3.26):

| & &t & d
X3 3 0 1 -3 (3.26)
Xy 0 3 1 -7

In der neuen Spalte werden von links nach rechts fortschreitend die Elemente der
einzelnen Spalten verglichen. Sobald die Elemente einer Spalte verschieden sind, wird
in dieser Spalte das kleinste Element aufgesucht. Ist diese Entscheidung nicht ein-
deutig, wird sie unter Zuhilfenahme der nachfolgenden Spalten herbeigefiihrt. Im
Beispiel ist es in der 1. Spalte das 2. Element (vgl. (3.26). Folglich wird im Rechen-
blatt (3.24) die dazugehérende BV (x,) aus der Basis eliminiert. Diese Entscheidung
ist immer eindeutig zu treffen, da anderenfalls die in Frage kommenden Zeilen des
Rechenblattes identisch sein miissen, dann konnten sie aber bis auf eine gestrichen
werden.

Nichtlosbarkeit:

Wird die Simplexmethode mit dieser Zusatzvorschrift bei Nichteindeutigkeit der
Auswahl der Ausgangszeile angewandt, so kann gezeigt werden, daB mit dem Sim-
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plexalgorithmus nach endlich vielen Iterationsschritten die optimale Ldsung erhalten
wird. Eine bereits benutzte Basis kann bei der Weiterfithrung der Iteration nicht
erneut auftreten. Auf den Beweis dieser Sachlage wird nicht eingegangen.

3.1.5. Die revidierte Simplexmethode

Jeder Iterationsschritt nach der Simplexmethode verlangt die vollstindige Auf-
stellung einer ZBD. Aber fiir den weiteren Entscheidungsproze3 werden nur die Form-
koeffizienten, die Koeffizienten der Eingangsspalte und die k;-Werte (rechte Sei-
ten) benutzt.

Das Vorgehen der revidierten Simplexmethode besteht nun darin, nur diese not-
wendigen Informationen direkt aus dem Ausgangssystem mit Hilfe der reziproken
Basismatrix zu berechnen.

Ausgegangen wird von dem LOP (2.18"):

Z =X+ o Cpam Xpam = max;

Al xy 4 -+ At x, 4 o 4 altmx = b, (3.27)
X=o,

(b= o).

b = o ist in den folgenden Betrachtungen nicht erforderlich. Wenn wir (3.27) umstel-
len, erhalten wir die Form

alix; + - +aMx, + - fatvmy, . =b,
—C Xy T G Xy — "'—cn+7nxn+m+Z:0’ (3'28)
x=0.

Die Basisdarstellung einer beliebigen Basis
B = [a"tD), ... a+m)]
von (3.28) hat die in (2.19) angegebene Form, wenn ohne Beschrankung der Allgemein-

heit die BV der Reihe nach mit x,4;, ..., X,+,, und die NBV der Reihe nach mit
Xy, ..., X, bezeichnet werden. Diese Form lautet:

Xy +reXe + o i Xn + Xng =ky,

Fo1 Xy + FaeXy o TonXy + Xnio = ko,
............................................ (3.29)
Fua Xy + ProXe + o Fyn Xy +xn+m=kmy

giX1 t&Xy + vt gnXn +Z =c.

In Vektordarstellung kann (3.29) folgendermafBen angegeben werden:

FO xy 4 e+ F x, + XB) = k. (3.30)
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Dabei gilt:
r) 14 x(B
i) = , =] : , XB= s
8i T'mi z
Xnt1 k kl
xB =] : , k= , k=|:
Xnim ¢ kn

Aus (3.27) folgt weiter mit Hilfe der Basismatrix B = [a("+)), ..., a(r+m)]

allx; + - + aMx, + Bx(B) = b. (3.31)
Wird (3.31) von links mit B~! multipliziert, so entsteht
B lal)x; + -« 4+ B-lalMx, + x(B) = B-1h, (3.32)
Wird die Matrix
a(itl)  q(r+2) .. glnem) B 0
T
—Cny1 —Cnyz = Cnym 1 —cp ;1

gesetzt, wobei mit c}; der Vektor [¢,.1, ..., Cn.n] bezeichnet wird, so gilt:

B! 0
Bi= : ;
cf, B 1
denn es folgt:
E 0
B1B=
0 1

B! existiert also genau dann, wenn B! existiert. SchlieBlich folgt aus (3.28)

a) am _ b
T e SR
—¢ —Cn 0

Aus dieser Gleichung entsteht (nach Multiplikation mit B-?)

B1a®x, + - 4+ B-1a® x, 4+ X(B = B-1D, (3.33)

wenn

a® _ [b
al) = [ J und b= {0 } gesetzt werden.
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Ein Vergleich der beiden Formeln (3.30) und (3.33) liefert:

fH=B1a®, i=1,..,n,

bzw.

ré) = B-tal),

gi=c3B 'a¥ — V= [cfB, 1]a"- (3.34)
Fiir die BV und Basiszahl folgt (NBV: x; = -+ = x,, = 0):

XB=B1h=k
bzw.

x(B = B-1p = Kk,
c=Z(xg)=c3B'b. (3.35)

Nach den Formeln (3.34) und (3.35) sind damit alle Informationen, die zu einer Sim-
plexiteration erforderlich sind, aus der reziproken Basismatrix zu berechnen.

Damit ist der Iterationsalgorithmus der revidierten Simplexmethode entsprechend
dem Vorgehen des Simplexalgorithmus folgendermafBen aufzustellen:

Es wird angenommen, daB die k-te Iteration bereits durchgefiihrt ist und die rezi-
proke Basismatrix B! vorliegt.

Nach der Formel (3.34) werden die Formkoeffizienten g; (j= 1, ..., n) berechnet.
Es wird der kleinste bestimmt:

go= min {g}. (3.36)
1=sjsn

Ist a nicht eindeutig bestimmt, so kann der kleinste dieser Indizes genommen werden.

AnschlieBend wird r(® = B! a®) berechnet. Danach wird ganz wie bei der Sim-
plexmethode die BV bestimmt, die aus der Basis zu entfernen ist, indem das folgende
Minimum berechnet wird:

’.7;;0 ia a

(vgl. (3.15)).

Ist wiederum der Index / der aus der Basis zu entfernenden Basisvariablen nicht
eindeutig bestimmt, so wird der kleinste dieser Indizes gewdhlt.

Nunmehr ist die reziproke Matrix Bi7!; zu berechnen, die der neuen Basis

By = [al*th), .. a@), ., alm)]
1, ., I, .., m
entspricht. Der Vektor a(**!) ist gegen a®) auszutauschen. Nach (3.34) gilt:
1 2 ! mm+1
1 0wry -0 0

e

0.g, 0 1
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Die Matrix B}, entsteht durch linksseitige Multiplikation der Matrix

10..4_"_“...00 1

Tia
01..-"2 .00 2
Fa
1
P-l0o0 1 o0 1 (3.39)

Ta
00— 10| m
T

005201 |m+l
T .

mit der reziproken Matrix B,~%. Denn es gilt R - P = E, d.h. P = R-%. Nach (3.38)
ist aber

R B =Bily,
also
Bil = PB; . (3.40)

Es ergeben sich daher aus (3.40) die folgenden Transformationsformeln, wenn die

Elemente der Matrix By " mit B; und die Elemente der Matrix Bj; mit ,5,; bezeich-
net werden:

ﬂ;;-:@, j=1,.,m+1;
e (3.402)
Fia . .
Bi=Bi—By-—a, i+l i=1,.,m+l.

Tla

Da
x®+) =Bl b=PB; ' b=Px™

gilt, folgt entsprechend
.

>

kit =
Tia

F; . .
k*=k —k %, i+l i=1,..,m,
Tl
8a
s
Tla

c*=c—k;-

*

— k
wenn mit k* = [

_ [k )
. } der transformierte Vektor von k = [ } bezeichnet wird.
¢ ¢

b Seiffart, Optimierung
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Das sind aber bis auf die Bezeichnung die gleichen Transformationsformeln wie
bei der Simplexmethode (vgl. (3.17)).
Diese Iteration ist solange zu wiederholen, bis alle g, = 0 sind.

3.1.6.  Rechenblatt zur revidierten Simplexmethode
Kern des Rechenblattes der revidierten SM ist die reziproke Matrix

~ Bl 0
B = :
cEB i1

Weiterhin sind die Vektoren k, ¥ und die Indizes der BV einzutragen. Es wird des-
halb zur Aufstellung eines Rechenblattes wieder von der Normalform ausgegangen

(vgl. (2.5)).
ZF: Z=c¢X;+ CoXo+ o+ CyXy+ Cpsy Xne1 + oo+ Covmg Xpym — Max;

NB: 1%+ GaXot v @i Xy F Xnn = by,
1 Xy + GapXp + v Qo Xy + Xnio =by,, (341
A1 Xy + Ao Xo + o+ G Xn + Xnim =bm,

x,=0, j=1,.,n+m b;=0,i=1,..,m.
Nach (3.41) wird das in (3.42) dargestellte Ausgangsrechenblatt aufgestellt. Dieses
Rechenblatt ist folgendermaBien aufgebaut: In der 1. Spalte sind die Indizes der BV
eingetragen. Die anschlieBenden m + 1 Spalten bilden die reziproke Matrix B~!
von (3.41):

1 Bvy | B! k a | Q
n+1 1 0 -0 O b | ra| @
n+2 0 1 - 0 0 b, Toq 92
. . . i . . . (3.42)
n+m 0 0 -1 O bw | Tma| 9n
Cni1 Cny2 " Cpuim 1 4 8a

In die letzte Spalte des stark umrandeten Teiles ist der Vektor K eingetragen. In den
folgenden beiden Spalten werden die noch im Laufe der Iteration zu berechnenden
Komponenten T® und die nach (3.37) zu bildenden Quotienten eingetragen.

Jede Iteration ist durch die Aufstellung eines weiteren Rechenblattes ganz schema-
tisch durchzufiihren und besteht in den folgenden Schritten:
1. Schritt:

Nachdem die Daten von (3.41) in der 1. Spalte und in dem stark umrandeten Teil
von (3.42) eingetragen sind, werden ausgehend von der Koeffizientenmatrix (3.41)
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simtliche Formkoeffizienten nach (3.34) berechnet. Nach (3.35) gilt speziell
c=cp Bl:b= Z ¢, * b;. Der kleinste Formkoeffizient g, und der zugehorige

i=1

Spaltenindex a werden in die ,,a**-Spalte eingetragen. AnschlieBend wird r@ = B~ a®@
berechnet und in der a-Spalte erganzend vermerkt. Die a-Spalte stellt bei der noch
auszufiihrenden Simplextransformation die Eingangsspalte dar.

2. Schritt:

Zunéchst wird das Minimum (3.37) berechnet, indem die ¢; (Minimierungsglieder)
durch Division der Elemente der k-Spalte durch die Elemente der a-Spalte gebildet
werden. Dabei ist zu beachten, dafl die Quotienten nur fiir positive Elemente der
a-Spalte zu bilden sind. Diese Quotienten werden in die Q-Spalte eingetragen. Die
Elemente der Q-Spalte, fiir die kein Quotient existiert, bleiben unbesetzt. Falls alle
Werte der Eingangsspalte nicht positiv sind, kann das Verfahren abgebrochen wer-
den, da nach (3.13) das LOP keine optimale Losung besitzt. Die Zeile, die dem klein-
sten Element der Q-Spalte entspgicht, wird im folgenden als Ausgangszeile bezeichnet
und entsprechend markiert. (Diese Zeilenelemente konnen z.B. wieder unterstrichen
werden.)

3. Schritt :

Nun kann das Ausgangsrechenblatt (3.42) nach einer vollstindigen Simplextrans-
formation geméB (3.40a) neu erstellt werden, und ein Iterationsschritt nach der
revidierten SM ist ausgefiihrt. Das gesamte Verfahren ist anhand der beiden folgen-
den Beispiele durchgerechnet.

Beispiel 3.3 (vgl. 2.21)):

Z = 3x; + 4x, = max;
X+ 2% + X3 = 80,
Xy + X4 =30,
2%+ x, + x5 = 100, X1s ey X5 = 0.

Dieses Beispiel ist bereits in der Normalform gegeben. Die Koeffizientenmatrix
nach (3.28) bzw. (3.33) lautet:

1 2100
01010
[5(1)’ §<2)’ a®), aw, 5(5)] — 210 0 1
-3—-4 00 0
Das 1. Rechenblatt wird ausgefiillt:
1 BVJ B k| 2]e

5 0 0 1 0 | 100 1 { 100
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Das 1. Rechenblatt wird mit der Simplextransformation in das 2. Rechenblatt trans-
formiert. Das Kreuzelement ist in der vorletzten Spalte durch Fettdruck markiert
und auBerdem unterstrichen?):

2 1
3 1 -2 0| 2] 1]2
2 1 03] o]y
5 -1 1 ]o|7]| 21|35
0 4 0|1 |120]-3
3 4
1 1 2 oo |2 (f-2]}+
2 0 1 0|0 3] 1]30
s -2 3 1o |3] 3]0
3 =2 0 |1 [180 -2

4
1 |- 210 | 40
2 2 —1 o | 2
4 1-3 1 3o |10

20 2|1 ]200]>0

Das Verfahren bricht mit dem 4. Rechenblatt ab, da der kleinste Formkoeffizient > 0
ist. Die optimale Losung lautet:

x; =40, x, = 20, x3 =0, x, = 10, x; = 0,

Z = 200.
Beispiel 3.4 (vgl. (2.6) bzw. (2.16)):
Z = 2x, — 4x, + 4x3 — Mx; — Mx, — max;
—2%; — 3%y + 3% — x4 + x5 =1,
X1 — Xo+ X3 + xg =2,
6x; — 2x5 + 2x; + x; =4,

X1y ey X7 = 0.

1) Bei den folgenden Rechenblittern wird der Einfachheit halber die Kopfzeile weggelassen.
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Die Koeffizientenmatrix [a®), ..., a?] lautet:

-2 -3 3-1100
1 -1 1 0010
6 =2 2 0 0 0 1

1 3.0
s 1o ol 1] 3]}
6 1 0 1|2
7 o 1 |o|4af2]2 (3.43)

0o 0 0 1 0|4

-1 0 -1 0 |=5}-5

In (3.43) ist allerdings wieder die G-Zeile als Doppelzeile vorgesehen. Im oberen Teil
dieser Zeile sind die Koeffizientenanteile der Zielfunktion vermerkt, die nicht mit M
behaftet auftreten. Im unteren Teil sind dagegen die mit M behafteten Koeffizienten-
anteile eingetragen. Die Doppelzeile wird genau wie die Doppelzeile bei der Simplex-
methode mitgefithrt und entsprechend behandelt. Das Kreuzelement ist in (3.43)
wiederum fett gedruckt. Nach Ausfithrung der Simplextransformation ergibt sich das
2. Tableau:

2 1 0
1 1 2 ,
3 Lo 0 o L-E
1 5 5
6 l-—+ 1 o o | 3| 3|1
2 10 22 10
71-3 0 1 o| | | 5
4 41
ERER B BN
2 10 22
7 0 -1 0 =53
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Analog folgen:

3 4 0
3 S0 2 olo [ ¥-5]y
6 -z 1 - |o|n] sl
1-%05503%5
SENCINE- B R B
0 o0 6000

4
3 0 0 } 2
0 1 -} 0
-1 0 3 5
00 2|18 |>o0

Sobald alle kiinstlichen Variablen aus der Basis heraustransformiert sind, enthilt die
untere Hélfte der G-Doppelzeile nur noch Nullen. Sie ist bei den nachfolgenden Rech-
nungen wegzulassen.

Die optimale Lsung nach Rechenblatt 4 lautet:

X3=2,%=0,x,=35,

X =0,x=0,

(x5 = 0, x; = 0, kiinstl. Variable),

Z=38.
In (3.20) wurde dasselbe Beispiel mit der Simplexmethode durchgerechnet. Ein Ver-
gleich zeigt, daB bei beiden Losungsmethoden die gleichen Iterationsschritte durch-
gefiihrt werden. Die notwendigen Informationen werden nur unterschiedlich ermit-
telt.

Da mit der (reguldren) Simplexmethode jedes beliebige lineare Optimierungspro-
blem zur Losung gefiihrt werden kann, erhebt sich die Frage: Warum wurden in der
linearen Optimierung neben der Simplexmethode weitere Losungsalgorithmen ent-
wickelt? Die Beantwortung dieser Frage wird deutlich, wenn man bei einem solchen

Problem nach rechentechnischen Vorteilen bei der praktischen Realisierung der
Losung fragt.
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So wurde die revidierte Simplexmethode in erster Linie fiir die Anwendung auf
elektronischen Rechenautomaten entwickelt. Rechentechnische Vorteile der revidier-
ten Simplexmethode sind:

1. Es sind weniger Daten zu berechnen und zu speichern. Hierdurch kénnen grofBere
Probleme auf Elektronenrechnern bewiltigt werden. Jede Iteration verlangt bei der
Simplexmethode (m + 1) - (n+ 1) Eintragungen. Bei der revidierten SM reduziert
sich diese Anzahl auf (m+ 1)2. Ist bei einem Problem die Anzahl der Variablen gegen-
iiber der Zeilenanzahl groB, so erfolgt eine beachtliche Einsparung.

2. Bei vielen LOP treten in der urspriinglichen Koeffizientenmatrix sehr viele Nul-
len auf. Oft sind es bis zu 90%, der Koeffizienten und mehr. Da bei der revidierten SM
immer von dieser Ausgangsmatrix ausgegangen wird, reduziert sich die Anzahl der
auszufiithrenden Multiplikationen ganz erheblich. Da man bei den einzelnen Rechen-
schritten immer wieder auf die Ausgangswerte in der Problemstellung zuriickgreift,
wird das unkontrollierte Anwachsen von Rundungsfehlern auf ein Minimum her-
abgedriickt.

3. Es existiert bei der revidierten SM eine sehr einfache Methode, die bei Entartung
einen moglichen Zyklus verhindert.

4. SchlieBlich sind bei der revidierten Simplexmethode die Kontrollmoglichkeiten
besser, die durch Multiplikation der Koeffizientenmatrix mit ihrer Inversen zur Ein-
heitsmatrix sehr einfach gegeben sind.

3.2. Duale Optimierungsprobleme

3.2.1.  Duale Probleme

Zu jedem linearen Optimierungsproblem kann ein duales lineares Optimierungs-
problem angegeben werden.

Es sei folgendes OP gegeben:

ZF: Z=1c¢X; + Xy + -+ X, —max;
NB: A X+ @GaXxs ot Xy = by,
Gy X + Gpo Xy + -+ + Gyp Xy = by, (3.44)

A1 Xy + ApaXo + o+ AuXn = by,
x; =20, i=1,..,n,
oder in Matrizenschreibweise
ZF: Z(x) = ¢Tx = max;
NB: Ax < b, (3.44)
X =o0.
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Aus den Parametern des LOP (3.44), die durch ¢, b und A gegeben sind, kann das fol-
gende LOP aufgestellt werden. Zundchst in Matrizenschreibweise:
ZF: W(y)=bTy = min; .
NB: ATy = ¢, (3.45")
y=o.
Wenn die Komponenten des verdnderlichen Vektorsy von (3.45) mit y,.15 «ves Voim
bezeichnet werden, so lautet (3.45") ausfiihrlich geschrieben folgendermaBen:
ZF: W= bl Y + b2 Ynyp + oo F bmyﬂ+m :; min;
NB: @1 Yo Gy Yoz + 0 F G Yaum = €1
Ayo Yui1 + a9 Yaso T+ Qo Yoam = Cos (3.45)

Ayn Yni1 F Qon Yusz +  + G Ynom = Cns
Va1 20, j=1,2.,m
Die zundchst umstdndlich erscheinende Bezeichnung der y-Komponenten, deren
Numerierung nicht mit dem Index 1, sondern mit (» + 1) beginnt, ist fiir spétere
Festlegungen zweckmiBig.
Die beiden LOP (3. 44) und (3. 45) bzw. (3.44") und (3.45") werden als zueinander
dual bezeichnet. Wird ein Problem als primales OP benannt (Ausgangsproblem), so

ist das andere das dazugehorende duale OP. Es kann sowohl das eine als auch das
andere als primales OP angesehen werden.

Als Beispiel wird folgendes LOP betrachtet.
Primales OP:
ZF: Z=2x;+ 5x, = max;
NB: I+ O0x, =4,
Ox, + Ix, <3, (3.46)
Ix, + 2x, =8,
X 20; x,=0.

Das duale Problem von (3.46) lautet:

Duales OP:
ZF: W = 4y, + 3y, + 8y; = min
NB: 1y +0ps+ 1y, =2 2, - (3.47)
Ops + 1ys+ 2y = 5,

V3, ¥4, 5 2 0.
Jedes beliebige LOP, bei dem der eine Teil der Nebenbedingungen aus Gleichungen,
der andere Teil aus Ungleichungen besteht (in beiden Richtungen) und bei dem einige
Variable nicht vorzeichenbeschrinkt sind, kann immer auf ein Problem der Form
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(3.44) zuriickgefiihrt werden (vgl. Umformungsschritte zur Herstellung der Normal-
form 2.2.). Damit kann unmittelbar nach (3.45) das duale Problem erstellt werden.

Bei derartigen gemischten LOP ergeben sich bei der eben erwihnten Zuriickfiih-
rung folgende Zuordnungsregeln.

Primales Problem ' Duales Problem
(Maximierungsproblem) (Minimierungsproblem)
Nebenbedingungen Variable

i-te NB: Ungleichung £ 0 — y,,; 20,
20 =y, =0,

i-te NB: Gleichung —> Y.+ beliebig.

Variable Nebenbedingungen

x 20 — j-te NB: Ungleichung = 0,
x =20 — j-te NB: Ungleichung £°0,
x; beliebig — j-te NB: Gleichung.

An dem Beispiel (3.48) werden diese Zuordnungen erldutert (vgl. (2.6)—(2.10)):

ZF: Z, = 2x, + 4x, — min
—2x—3x, 21,
X — X, 22, (3.48)
— 6x; + 2x, = —4,

x; 20, x, beliebig.

Die Zuriickfiihrung auf die Form (3.44) wird erreicht, indem x, = X, — X, mit x,,
X, = 0 substituiert, die 1. NB mit —1 multipliziert, die 3. NB durch das dquivalente
Paar von Ungleichungen '

—6x; + 2x, £ —4,

—6x, + 2x, = —4

A

ersetzt und durch Vorzeichenwechsel in der ZF ein Maximierungsproblem erzeugt
wird. Es entsteht das folgende dquivalente primale Problem zu (3.48):

Primales OP:
Z = —2x, — 4X; + 4x, = max;
2%, + 3%, — 3%, < —1,
X — X+ X, £2, (3.49)
—6x; + 2X, — 2x, < —4,
+6x; — 2x, + 2%, < 4,
X1, Xg, Xg = 0.
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Das entsprechende duale OP lautet nach (3.45):
Duales OP:
W=—1y,' + 2y; — 4y + 4y, = min;
24 + 1ys — 65’ + 6y, = =2,
3y — lys + 29 — 20 = —4, (3.50)
=3y + 1y; — 295 + 29, = +4,
yds¥5, 965 v7 = 0.

Da in den Nebenbedingungen von (3.50) die Koeffizienten von yg" und y,” sich nur
um das Vorzeichen unterscheiden, so kann y — y;" = ys gesetzt werden, wobei y;
nicht vorzeichenbeschrinkt ist. Weiterhin konnen die beiden letzten Nebenbedin-
gungen von (3.50) durch die Gleichung
Wi = 1ys+ 2= —4
ersetzt werden. AuBerdem kann man y, = — y,” setzen, und (3.50) kann in folgender
Form geschrieben werden:
W= 1y, + 25 — 4y, = min;
=2+ 1y; — 6y = =2,
=3y — 1ys + 2y = —4,
Y4 =0, y; =0, y, beliebig.

(3.51)

Der Vergleich von (3.48) und (3.51) bestitigt die oben angegebenen Zuordnungs-
regeln.

Sind insbesondere die Nebenbedingungen des primalen Problems Gleichungen, so
sind alle Variable des dualen Problems nicht vorzeichenbeschrinkt. Hat also das pri-
male Problem die Form
ZF: Z = ¢Tx = max;

NB: Ax=b, (3.52)

Xx=o,

so lautet das duale Problem

ZF: W =bTy = min;

NB: ATy =>c¢, (3.53)

(y ist nicht vorzeichenbeschrankt).

Mit den folgenden Bezeichnungen werden die Ungleichungen von (3.44) und (3.45)
in Gleichungen umgeformt: Die Schlupfvariablen von (3.44) werden der Reihe nach
mit X,41, ..., Xpem = 0 und die Schlupfvariablen von (3.45) der Reihe nach mit

Y15 -5 Y bezeichnet. Es entstehen die beiden Probleme (3.54) und (3.55). (3.54) wird
als erweitertes primales und (3.55) als erweitertes duales Problem bezeichnet.
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Erweitertes primales OP (bzw. erweitertes duales OP):

ZF:
NB:

Z=ci X1+ CrXy+ -+ Cpxy
Ay Xy + A Xo + 0 + A1 Xy + Xpyy

Ay Xy + Az X5 + o + Ao Xy

Am1Xy + AaXy + =0 + Gy Xy

Xis ooy Xnem g 0-

QOder in Matrizenschreibweise:

ZF:

75

(3.54)

(3.54)

wenn die Bezeichnungen A = [A, E], ¢T = [cy, ..., ¢, 0, ..., 0], XT = [X;, ce) Xy oons
Xp+m] gelten.

Erweitertes duales OP (bzw. erweitertes primales OP):

ZF:
NB:

W=b1pn1 +byyns + -
. 11 Ynsr o1 Proa + o
Ao Y1+ Qoo Yo + o

Qin Yns1 + Gon Yo+ o

V15 eees Yurm = 0.

+ b Vnim = min;
+ Ant Yusm — V1= €1,

+ @nz Ynim — V2= Cay

+ Qun Ynim — Yn = Cn,

(3.5%)

Das Problem (3.55) ist wiederum zum Problem (3.54) dual, welches die folgende Rech-
nung sofort bestétigt:

Das duale Problem von (3.54) lautet nach (3.52) und (3.53)

W =bTy < min;
XTy =c.

Hieraus folgt aber unmittelbar

W =Db"y = min;
Aly =,

y=o,

also das Problem (3.45) bzw. (3.55).

(3.56)
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3.2.2.  Das Dualitiitsprinzip

Zwischen dem primalen und dem dualen Problem besteht eine ganze Reihe von
inneren Beziehungen. Einige davon werden im folgenden hergeleitet.

Satz 3.2 (Dualititssatz): Existiert eine beliebige Losung x des primalen und eine
beliebige Losung y des dualen Problems, dann gilt stets

Z(x) = W(y),

und beide Probleme besitzen eine optimale Lisung. Sind Xo bzw. yo optimale Losungen
des primalen bzw. dualen Problems, so gilt

Z(xo) = W(yo)

und umgekehrt.

Es ist also jeder beliebige Funktionswert des primalen nicht groBer als ein belie-
biger Funktionswert des dualen Problems. Dariiber hinaus ist der optimale Funktions-
wert des primalen gleich dem optimalen des dualen Problems.

Beweis: Ausgegangen wird von der Existenz zweier beliebiger Losungen x und y.
Laut Definition gilt zunéchst

Z(x0) 2 Z(x),]
W(yo) £ M(y),

wenn Xo und yo optimale Losungen sind (deren Existenz wir im folgenden aber
noch zu beweisen haben). Nach (3.45) gilt ¢* < yTA. Wird (3.44") benutzt, so folgt:

Z(x) = oTx = (Y'A) x = yT(Ax) < yTb =bTy = W(y).
Also gilt immer
Z(x) = W(y).

Aus dieser Ungleichung folgt, daB die Funktion des primalen Problems nach oben
beschrinkt ist, und damit existiert eine optimale Losung des primalen Problems. (Das
wurde bereits im Zusammenhang mit der Simplexmethode in Abschnitt 3.1. gezeigt.)
Nun ist weiter zu zeigen, daB aus der Existenz x, auch die Existenz von y, folgt und
die Gleichheit

Z(xo) = W(yo)

besteht. Ausgegangen wird von dem erweiterten primalen Problem (3.54’). Wenn x,
eine optimale Losung von (3.44) ist, so kann die optimale Losung X, von (3.54")
unmittelbar angegeben werden, indem die Werte der Schlupfvariablen hinzugefiigt
werden. Werden mit Xo* die BV und mit B die Basismatrix der optimalen Lésung X,
bezeichnet, so gilt:

AX, = b = Bxo*, ©TX, = c*Txo*;
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c* ist der zu xo* gehorende Vektor der Zielfunktionskoeffizienten. Nach dem Sim-
plexkriterium gilt:

c*TBA—-¢T >0 (vgl. (3.34))
oder '
c*TB1A > ¢T.

Aus der letzten Ungleichung folgt nach (3.56), daf3

C*TB1 = y,T

zunéchst eine zuldssige Losung des dualen Problems (3.45") ist. Weiter gilt fiir diese
Losung aber

W = yo'b = ¢*TB~'b = ¢*Txo* = Z.

Danmit ist gezeigt, daB y, existiert und Optimallésung des dualen Problems (3.45) ist
und die Funktionswerte gleich sind. SchlieBlich wird noch gezeigt, da} aus der Gleich-
heit der Funktionswerte (¢Tx, = bTy,) zweier Losungen X, und y, ihre Optimalitat
folgt.

Aus der Giiltigkeit ¢Tx = bTy fiir zwei beliebige Losungen folgt:

1. bTy, = ¢Txo =< bTy, d.h., yo ist optimale Losung von (3.45);

2. ¢'x < bTy, = ¢Txo, d.h., X, ist optimale Losung von (3.44).
Damit ist Satz 3.2 vollstindig bewiesen. ®m

Satz 3.3: Ist X, eine optimale Lisung des erweiterten primalen OP (3.54'), xo* der S.3.3
Vektor der Basisvariablen von X, c* der Vektor mit den Komponenten der entsprechen-
den Koeffizienten der Zielfunktion von Z, die zu Xo* gehdren, und B! die reziproke
Basismatrix, so ist

yI = ¢*IB-1
eine optimale Liosung des dualen Problems (3.45).

Der Beweis dieses Satzes wurde bereits bei der Beweisfithrung des Satzes 3.2 mit
erbracht. Ebenso gilt die analoge Aussage.

Satz 3.3 Ist YoT = [y1, ..., Yuim] €ine optimale Losung des erweiterten dualen Pro- S.3.3'
blems (3.55), yo* der Vektor der Basisvariablen von yo, b* der Vektor mit den Kompo-
nenten der entsprechenden Koeffizienten der Zielfunktion von W, die zu 'y, gehiren,
und B! die reziproke Basismatrix, so ist

x‘fl)? = p*TB-1

eine optimale Losung des primalen Problems (3.44).
Der Beweis ist ganz analog zum Beweis des Satzes 3.3 zu fiihren.
Bei dem folgenden Satz 3.4 wird von dem erweiterten primalen und dualen Problem

(3.54) und (3.55) ausgegangen und ohne Beschriankung der Allgemeinheit angenom-
men, daBl B [a"+1) ... a(»+m)] die optimale Basis sei.
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S.3.4 Satz 3.4: Hat ein optimales Rechenblatt des erweiterten primalen Problems (3.54) die

Form (3.57),

NBV x;, x, X,
BV -1 |¢ o C, 0
Xos1| O |y rpn Tin ky
Xniz| 0 | ryy 1o Fan ks,
Xnim 0 | Fon I;,,,
G|& & &n ¢

3.57)

so existiert ein optimales Rechenblatt des erweiterten dualen Problems (3.55), das die zu
(3.57) spiegelsymmetrische Gestalt (3.58) hat:

BV

p4t

Ya

(3.58)

NBV yui1 Vusz ** Vnim
—1 | =b, —by, - —b, 0
—r —T9 —Fm1 &1
0 | —ry —ro T 8
0 ~Tin  ~Ten vt T g
G| Kk ke kn |—c

Auf den Beweis dieses Satzes wird verzichtet. Der Zusammenhang der zueinander
dualen Rechenblitter (3.57) und (3.58) wird noch einmal durch den Satz 3.5 zusam-

mengefaBt:

S.3.5 Satz 3.5: a) Die Indizes der BV im primalen optimalen Rechenblatt (3.57) sind die
len opti

gleichen wie die Indizes der NBV im

gekehrt.

A

len Rechenblatt (3.58) und um-

b) Die Werte der BV der optimalen Lisung von (3.57) sind gleich den Werten in der
G-Zeile im dualen optimalen Rechenblatt (3.58), die zu den NBV mit gleichem Index
gehdren und umgekehrt.

Die durch die Sitze angegebenen Ergebnisse werden an den folgenden zwei Bei-

spielen demonstriert.
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Beispiel 3.5:
Primales OP
ZF: Z = 18x; + 9x, == max;
NB: 2%+ 0x, =1,
I +2x, =1,
Ox; +4x, < 1,
X1, Xy = 0.

Die Normalform bzw. das erweiterte primale Problem lautet:

ZF: Z = 18x; + 9x, - max;

NB: 2%+ 0xy + X3 =1,
1x; + 2x, + x4 =1,
0x; + 4x, +x5=1,

Xy ey X5 = 0.

Nach der Simplexmethode ergeben sich die folgenden drei Rechenblatter:

1 NBV X1 X

BV |-1 | 18 9 0

nw 0 20 1

x| o 12 11

x| 0| 0 4 1]
~18 -9 0

2 NBV x x,

BV | —1 0 9 0

x| 18 3 04| |

X4 0f(—-% 2 3 1

X | 0 0 4] 1|3
9 -9 9

79

(3.59)

(3.59)
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3 NBV X3 X3

BV | -1 0EH0 0
x | 18 b0 3
Xy 0|-% -3} 0
Xa 9 0 i i
9 225 | 11,25

Daserweiterte duale Problem von (3.59) lautet:

ZF: W= ys+ y+ s = min;
NB: 2p3+ 1y -n =18,
2ps+ 4y =9,
Yisees Y5 = 0.

Von (3.61) wird die Normalform (3.62) erstellt.

W=—=ys— yi— ys— Mys— My, = max;
2y5 + 1y, — N + Vs =18,
2y, + 4y; —Ja +»=9,
V15w ¥2 2 0.

Nach der Simplexmethode entstehen die folgenden Rechenblatter:

1. NBV y» w ¥y on )

BV | -1 -1 -1 -1 0 0 0

yo | =M | 2 1 0 -1 0 | 18]
yp | =M | 0 2 4 0 -1 9| 1

(primales optimales Rechenblatt)

(3.60)

(3.61)

(3.62)



3.2. Duale Optimierungsprobleme

2 NBV  y»s y »n »

81

VB| -1 | -1 -1 0 o0 0 :
v | =M | 2 1 -1 o0 | 18 9
U 0 3 0 -} 2,25

1 L 0 o} | —225

-2 -1 1 o0 |-18

(duales optimales Rechenblatt)

(3.63)

Bvi-1|-1 0 0 0

ys |1 P -4 0 9

y; | -1 y 0 -1 2,25
0 i 1 |-11,25

Der Vergleich der beiden optimalen Rechenblitter (3.60) und (3.63) bestitigt die im
Satz 3.4 bzw. Satz 3.5 angefiihrten Bezichungen.

Beispiel 3.6:
Primales OP:

ZF: Z =X, + Xy + X3 + X, = min;
NB: Xy +x,=4,
X+ Xy =38,
X + X3 =1,
X3+ x4 =35,
x =0,
i=1,2,34.
Duales OP:
ZF: W = 4y; + 8y; + Ty; + 5ys = max;
NB: Y+ Ve =1,
Yo+ V2 =1,
nt pn=l,
Vs + =1,
yi = 0.

6 Seiffart, Optimierung

(3.64)

(3.65)
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Oder das erweiterte duale Problem:

W =4y;+ 8ys + Ty, + S5ys = max;
Yst Ve + 1 =1,
Yot » + e =1, (3.65)
Yot + s =1,
s + W +y=1.

Die optimale Losung von (3.65) kann ohne Rechentableau durch folgende Uberlegung
erhalten werden:

Alle optimalen Losungen miissen die Nebenbedingungen (3.65) wegen der positiven
Koeffizienten in der Zielfunktion mit dem Gleichheitszeichen erfiillen, da anderen-
falls eine Losung mit groBerem Funktionswert angegeben werden kann.

Alle optimalen Losungen sind folglich in der Linearkombination
1

0
y=in+{0-2y, mt 0=2=1, y,= 1
0
und
0 Vs
_ 1 | e
2= |= Vs
s

enthalten. Da W(y,) = 11 und W(y,) = 13 ist, folgt
W(y)= A1+ (1—2)13 £ 13 = W(y,),
d.h., y, ist die einzige optimale Losung von (3.65).
y, ist entartet, da nur y; = 1 und yg = 1 positive BV sind. Zur Basis gehoren damit
die Vektoren

1 0
1 0
0 und 1 b
0 1

die den Variablen ys und yg entsprechen. Zwei weitere Vektoren werden beliebig
erganzt. Es seien dies die Vektoren, die zu y, und y, gehoren. Bei der Erganzung muf
darauf geachtet werden, daB die so gewahlten Vektoren linear unabhéngig sind. Also
gilt:
BV [ys, 7, ¥s> yals

1000

1100

0110

0011

B—
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Es folgt:
1 0 00
o -1 1 0 0
BY=1 1.1 10
-1 1-11

Nach Satz 3.3 kann somit unmittelbar eine optimale Losung des primalen Problems
(3.64) aufgestellt werden:

1

xI=b*TB'=[8,7,50]| | _

-1

=)
—_ -0 O
-0 O O

Xo=

[=RRV I S =)

Die Uberpriifung der Optimalitit kann sofort geschehen. x, erfiillt die NB von (3.64).
Weiterhin ist Z(xo) = 13, d.h., xo ist optimale Losung, denn 13 ist von z eine untere
Schranke, weil W(y,) = 13 ist.

3.2.3.  Die duale Simplexmethode

Bei den folgenden Betrachtungen wird von dem Satz 3.4, dem erweiterten primalen
Problem (3.54) und dem erweiterten dualen Problem (3.55) der vorhergehenden
beiden Abschnitte ausgegangen. Es entspricht jedem Simplextableau eines LOP
ein duales Rechenblatt, und es ist ganz gleich, ob das duale Problem oder das
primale Problem gelost wird. Liegt also ein LOP als Ausgangsproblem vor, so kann
das duale Problem aufgestellt und nach der Simplexmethode geldst werden. Wird
dabei nicht das iibliche Simplextableau, sondern das diesem entsprechende duale
Rechenblatt ausschlieBlich als Berechnungsgrundlage benutzt, so bezeichnet man
diesen Losungsalgorithmus als duale Simplexmethode. Vor der Angabe der allgemei-
nen Transformationsformeln wird dieser Losungsalgorithmus an dem folgenden Bei-
spiel eingefiihrt.

Zu 16sen ist das primale Problem
W=y,+ y;+ ys=min;
2y, + 1y, =18,
2y, +4y; =29,

(3.66)

Vs Yas ¥s = 0.

6%
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Das erweiterte duale Problem lautet:

Z = 18x; + 9x, = max;
2x; + Oxy + x3 =1,
1x; + 2x, + Xy =1, (3.67)
0x; + 4x, +x=1,

X1y ey X3 = 0.

Dieses Problem wird mit der Simplexmethode geldst; es ergeben sich die folgenden
Rechenblitter:

1 NBV x x 1* NBV  y; y s

BV|-1] 18 9]0]¢Q BV |—1 | =1 =1 —1 0

x | 0 2 0| 1|14 » 0 |-2-1 0/]-18

w | o AERE v, | 0] 0-2-4] 9

x5 | 0 0 4|1 | G| 1 1 1 0
G|-18 9]0 o %+t

2 NBV x; x 2* NBV  y oy ys

BV | -1 0o 0|0 ]oQ BV|-1]| 0-1-1] 0

x | 18 50|} o -1 =% 3 0]+9

wlol-y 2011 v, | 0] 0-2—-4]|-9

x | 0 0 4| 1|4 G| 3 & 1]-9
G 9 -9 |9 TR S

3 NBV x; x5 3* NBV  y y ye

BV|-1] 0 o0 0 BV|-1]| 0o0-1 o0} 0

x [ 18] 4 0 § v | =1]=3+3 0] 9

Xy -3 -} 0

. o 1 " ys | =1 0+3 -3 225
G| 9 225 |11.25 G| § 0 }]|-11.25
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Neben den Rechenblittern 1, 2 und 3 sind die dualen Rechenblatter beigefiigt. Der
Ubergang von einem solchen dualen Rechenblatt zum folgenden kann nach der du-
alen Simplexmethode wie folgt durchgefithrt werden:

Die Auswahl des Kreuzelementes erfolgt anders als bei der Simplexmethode:

a) Das Kreuzelement wird aus der Zeile gewahlt, wo sich in der letzten Spalte des
Rechenblattes das kleinste negative Element befindet. (In 1* ist es in der 2. Zeile —18).
Diese Zeile wird wie bei der SM als Ausgangszeile (Kreuzzeile) bezeichnet.

b) Das Kreuzelement mufl immer negativ sein.

c) Die Spalte, die das Kreuzelement enthélt, wird wie folgt bestimmt: Alle Elemente
der G-Zeile werden durch die Betrdge der entsprechenden negativen Elemente der
Ausgangszeile dividiert (fiir Elemente der Kreuzzeile, die 0 oder positiv sind, werden
keine Quotienten gebildet). Die dabei entstehenden Quotienten werden bei der dualen
Simplexmethode in der Q-Zeile vermerkt, die im Gegensatz zur SM jetzt als letzte
Zeile im Rechenblatt vermerkt ist (in 1* entstehen die Quotienten §, 1). Die Spalte
mit dem kleinsten Quotienten in der Q-Zeile wird wieder als Eingangsspalte (Kreuz-
spalte) bezeichnet (in 1* ist es die y;-Spalte; das Kreuzelement ist also gleich —2).

Nun kann die Vertauschung der durch das Kreuzelement festgelegten BV mit der
Nichtbasisvariablen und die Berechnung der Elemente des folgenden Rechenblattes
wie bei der Simplexmethode erfolgen, denn die Simplextransformationsregeln sind
in den Spalten und Zeilen symmetrisch. Es entsteht also nach dieser Transformation
das gleiche duale Rechenblatt wie es durch Anwendung der Simplextransformation
auf das primale Rechenblatt mit nachfolgender Umschreibung in das duale entstehen
wiirde. Am durchgerechneten Beispiel findet man diese Transformationsregeln un-
mittelbar bestatigt.

Nunmehr wird folgendes allgemeine LOP vorgegeben:

ZF: Z=cx + Xy + 4 X, = max;
NB: Ay Xy + ot @Ga Xy 2 by,
Ay x; + "“+ AynXn Z by,
....................... (3.68)
A1 Xy + o F Xy 2 by,
X =0,
6 <0, j=1l..,n

Vektor b der rechten Seiten von (3.68) unterliegt keiner Vorzeichenbeschrankung.
Durch Einfithrung der Schlupfvariablen X, .1, ..., X,+n» geht (3.68) in das folgende
aquivalente Problem iiber:

ZF: Z = 1%+ Xy + o CpXy = max;
ND: 1% + o A Xa — Xngg = by,
Xy + vt Aen Xy — Xpip = bo,

............................ (3.69)
Ay X1+ ot Aun Xy = Xpom = by,

x]g()’ P
¢ =0, j=1,..,n+m.
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Nach (3.69) kann das zuldssige Ausgangstableau aufgestellt werden, weil alle Koef-
fizienten der Zielfunktion = 0 sind. ’

NBV  x, Xy v Xy
BV -1 c € G 0
Xns1 0| —an —as —a, |—b
Xni2 0 —dy1 Oy vt —Qop —b, (3.70)
Xn+m 0 Any  —ns Amn bm
G | —¢ —Cy —c, 0

Sind in (3.70) alle b; <0 (i=1,...,m), so wiirde bereits die optimale Ldsung
Xy = - =x,=0, x,4; = —b; vorliegen. Andernfalls wird unmittelbar die duale Sim-
plexmethode zur Losung herangezogen.

Es wird
min (—b;) = —b, (3.71)

1=ism

berechnet. Durch den Index r wird die Ausgangszeile festgelegt. AnschlieBend werden
fir alle k = 1, ..., n mit a,;, < 0 die Quotienten

_ & _ %
lae|

T

und
ge =min {g;} (1 <k <n)

gebildet. Durch den Index e wird die Eingangsspalte festgelegt. Danach folgt eine
Simplextransformation. Dieses Vorgehen wird so lange wiederholt, bis das optimale
Rechenblatt vorliegt.

Bei verschiedenen praktischen LO-Problemen tritt der Fall ein, daB die rechten
Seiten in den Nebenbedingungen variieren. Geht man bei diesen Problemstellungen
zum dualen Problem iiber, so erscheinen die verdnderlichen Koeffizienten in der Ziel-
funktion; ein vorhandenes Rechenblatt kann fiir die Weiterrechnung benutzt werden,
auch wenn sich die Koeffizienten der Zielfunktion dndern. Bei anderen Problemen
bewirkt unter Umstéinden der Ubergang zum dualen Problem, daB sofort eine erste
zuldssige Basislosung mit der entsprechenden zuldssigen Basisdarstellung angegeben
werden kann.

SchlieBlich kann das duale Problem mitunter einfacher gelost werden, und die
duale Simplexmethode ist vorteilhaft anzuwenden.
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Am anschlieBenden Beispiel wird die eben dargestellte duale Simplexmethode voll-

stindig zur Losung benutzt.

ZF: Z = —5x, — 6x, — max;
NB: 2%+ Xo— X3 = 6,
2x; + 4x, — X =12,
4x, —x;= 4,
Xiy s X5 = 0.

Die Rechenblatter lauten:

(3.72)

1 NBV x; x, 2 NBV x x4

BV | -1 -5 -6 0 BV [ -1 -5 0 0

X3 0] -2 -1 | —6 X 0 -3 3| -3

Xy 0| -2 —4 |-12 X | —6 1 -1 3

X [ 0 0 -4 -4 x| 0] 2 -1 8
5 6| 0 2 8 |-18
E o 4 6

3 NBV x3 x

BV | -1 0 0 0
w |=5 -2 3| 2
X, | —6 I -3 2
X; 0 E 4

G £ % |-22

Daim Rechenblatt 3 in der G-Zeile und in der letzten Spalte alle Elemente (ausgenom-
men —22) nichtnegativ sind, ist 3 das optimale Rechenblatt, und die optimale Losung

von (3.72) lautet:
=2, x=0,
Xo=2, x,=0,
x;=4.

Z = —22 ist der optimale Wert der Zielfunktion.
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Aufgabe 3.3: Ein Werk erhilt Bleche von 200 cm Breite und 500 cm Liange. Wie viele dieser Bleche
werden zur Herstellung von mindestens

30 Blechen von 110 cm Breite und 500 cm Linge,

40 Blechen von 75 cm Breite und 500 cm Lénge,

15 Blechen von 60 cm Breite und 500 cm Linge

gebraucht damit der Blechabfall minimiert wird? Die Aufgabe ist mit der dualen Simplexmethode
zu l6sen!

3.2.4. Dual zulissige Losung

Der Unterschied zwischen der SM und der DSM liegt in den verschiedenen An-
fangsbedingungen. Da in den gegebenen Nebenbedingungen in vielen Fillen aus der
Praxis obere und untere Beschrankungen vorliegen, sind die Basiswerte b; des Glei-
chungssystems positiv oder negativ. Zwar konnen entsprechend kiinstliche Variable
eingefiihrt werden (vgl. Normalform), aber trotzdem ist die DSM der SM vorzuziehen,
da die Voraussetzung fiir eine dual zulidssige Basislosung — einheitliche Vorzeichen der
g, — in der Praxis oft durch die Zielfunktion gegeben ist.

Mit Hilfe einer Leitgleichung 148t sich aber auch der Fall sehr vorteilhaft behandeln,
bei dem in der Ausgangsform eines Problems gemischte Vorzeichen fiir die Basiswerte
und die Zielfunktion auftreten. Durch Abdnderung des Auswahlprinzips fiir die Leit-
gleichungen kann in einem ersten Schritt eine dual zuldssige Basislosung erzeugt wer-
den. Fiir das Gleichungssystem wird also vorausgesetzt, dal es eine Leitgleichung
enthilt, die in die erste Zeile des Ausgangstableaus geschrieben wird und die folgende
Bedingungen erfiillt: Fiir die Leitgleichung

Zau‘xk”‘lh gilt @, >0, b;>0, k=1,..,n

Diese Voraussetzung ist einfacher zu erfiillen als die einer zuldssigen bzw. dual zulds-
sigen Basislosung. Sie fordert eine Gleichung einheitlicher Vorzeichen der Koeffi-
zienten und ist in den meisten Féllen in der Praxis gegeben. Ist sie nicht vorhanden, so
148t sie sich durch Umformung des Gleichungssystems erreichen. x, ,, wird als kiinst-
liche Zusatzvariable in die Leitgleichung eingefiihrt.

Die kiinstliche Zusatzvariable x,., dieser Leitgleichung muf3 im ersten Schritt eli-
miniert werden. Um die auszutauschende Spalte x, festzulegen, wird folgendes Aus-
wahlprinzip gewihlt:

o]

max {ﬁ} —— (.13)
1=k=n (Gix

9;<0

Es wird also im ersten Schritt entgegen dem iiblichen Auswahlprinzip der groBte
Quotient gesucht, um einheitliche Vorzeichen in der G-Zeile zu erreichen, d.h. eine
dual zuldssige Basislosung. Nun kann das Auswahlprinzip der DSM angewendet
werden.

Mit dem Bestehen einer Leitgleichung und dem vorbereitenden Austauschschritt
kann von einer beliebigen Ausgangsmatrix ausgehend ohne groBere vorbereitende
Rechnung sofort in der beschriebenen Weise vorgegangen werden.
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Am folgenden Beispiel soll das Vorgehen demonstriert werden. x, wurde als kiinst-
liche Zusatzvariable bereits hinzugefiigt.

ZF: Z=— x4+ 2x,+ 4x;
2%+ Xo+ X3+ x4

= max;

= 7, Leitgleichung

—X1— Xp+ X + X5 = 1,
3x, — 2X,— X3 + xg= -8,
X15 e Xg = 0.
1 NBV x; x, Xx3
BV |—-1 | -1 2 4 0
X4 2 1 1 7
X5 0]-1 -1 1 1
Xg 0 3 -2 -1 |-8
G 1 -2 —4 0
0 Jooo2 4

Austausch der kiinstlichen BV x, nach Auswahlprinzip.

Nach dem Austausch wird die Spalte mit x, weggelassen.

DSM

2 NBV x x

BV | -1 |-1 2 0

X3 2 1 7

X5 -3 -2 |-6

Xg 5 -1 |-1
G 9 2|28
(0] 3 1

Die optimale Lsung lautet
x=3, x=0,
x3=4, x;,=0, -Z=22,

X=2,

3

BV

X3

X2

X

(3.74)
NBV x, X5

-1 1 -1 0 0
1 1

4 5 5 4
3 1

2 5 5 3
13 1

0 3 5 2

G 6 1 22
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3.3. Parametrische lineare Optimierung

3.3.1.  Problemstellung

Bei praktischen Problemstellungen der linearen Optimierung dndern sich oft die
rechten Seiten der Nebenbedingungen oder die Koeffizienten der Zielfunktion. So
entstehen Erweiterungen derart, dal entweder die Koeffizienten der Zielfunktion
oder die rechten Seiten der Nebenbedingungen linear von einem oder mehreren Para-
metern abhdngen.

Eine Aufgabenstellung mit einer solchen linearen Parameterabhéngigkeit wird als
parametrisches lineares Optimierungsproblem bezeichnet. An einem Beispiel einer
parametrischen Optimierungsaufgabe aus einem metallurgischen Betrieb soll die
Abhingigkeit der rechten Seiten der Nebenbedingungen von nur einem Parameter A
erldutert werden.

Beispiel 3.7: Der Forderablauf eines Rohstoffbetriebes ist iiber ein Netz von
Transportwegen zu bewaltigen. -

In Bild 3.4 ist dieses Netz vereinfacht dargestellt. Die rechteckigen Felder bedeuten
die Forderbénder, die durch seitlich eingetragene Zahlen numeriert sind. Die Aufgabe-
stellen der Rohstoffe auf die BandstraBe sind durch vertikale bzw. horizontale Pfeile
markiert. Diese Aufgabestellen kénnen direkt von Reichsbahnwagen, von einer
Schlitzbunkeranlage, von einer Tiefbunkeranlage oder von Rohstoffhalden aus be-
schickt werden.

Von den Aufgabestellen gehen 11 verschiedene Forderwege aus, die in Bild 3.4 mit
Ay, Ay, 43, B, B;, By, B, Cs, Cy, Dy und D,, bezeichnet sind. Durch die eingezeich -

7 3 ]
o S -
*41 *35 o= 5 [ 71 ]
- U | Spg——— S, - 1 Y T
SEE ] o () |
i8] ] 21 “w
. Brecher- 29 %
HE | |38
Tl 30 Ca9) F-Dm -
75—~~~ . i
i | Jieb H—
Schurre LAz
LBy .y P38 79
26 ___ _ _ ____ 1 31
!
L 32
i 36 i
i
g _é_ ' 0
28 e 7
1
! !
= — —= —= —
[ Ag.3) 1 Lﬂu 7 _I ! Cog) l I Diso..1m) I !
4. 42 43 4 3

Bild 3.4



3.3. Parametrische Optimierungsprobleme 91

neten Kreise sind die Verzweigungen der BandstraBe angedeutet. Die Bander 41, 42,
43, 44 und 45 miinden in eine Moéllerbunkeranlage, die aus 28 Doppelbunkertaschen
besteht.

Mit den Varianten 4, , A, und 4, die iiber Band 41 fiihren, sind die Bunkertaschen
1 bis 9 zu beschicken, mit den Varianten B,, B;, B; und B, iiber Band 42 die Taschen 5
bis 9, mit den Varianten Cs und C, iber Band 43 die Taschen 8 bis 18 und mit den
Varianten D, und D,, iiber Band 44 bzw. 45 die Taschen 14 bis 28.

Zwischen den Béndern 23 und 24 bzw. 29 und 30 ist ein Brecher und zwischen den
Béndern 11 und 10 bzw. 34 und 35 ein Sieb eingebaut.

Eine Aufgabe des Rohstoffbetriebes ist es, die mit Reichsbahnwagen ankommen-
den Einsatzstoffe sofort in die Schlitzbunkeranlage, auf Halde, in die Tiefbunker-
anlage oder sofort auf die BandstraBe zu entladen. Weiterhin hat der Rohstoff-
betrieb den Ofenbetrieb mit den erforderlichen Einsatzmaterialien fiir die Erzeugung
von Gieflereiroheisen und Sonderroheisen in den Niederschachtdfen zu beliefern.
Hierbei sind einzelne Sortimente nach Menge und Qualitit zu beriicksichtigen. Fiir
die richtige Versorgung der Niederschachtofen mit Einsatzstoffen sind die 28 Moller-
bunker in der Méllerung nach einem festgelegten Bunkerbeschickungsplan so gefiillt
zu halten, daB ein reibungsloser und gleichmaBiger Produktionsablauf im Ofenbetrieb
garantiert wird. Eine weitere Aufgabe des Rohstoffbetriebes ist es schlieBlich, eine
gewisse Aufbereitung der Mollerstoffe vorzunehmen. So sind einige Rohstoffe abzu-
sieben bzw. mit Brechern zu zerkleinern.

Zur Bewiltigung dieser Aufgaben ist die mengenmaBige Auslastung der Aufgaben-
bereiche und der Forderwege so zu bestimmen, da3
1. die tagliche Gesamtforderzeit minimal wird und
2. die gesamte Forderung in moglichst kurzer Zeit beendet ist.

Bei den zu fordernden Mollerstoffen handelt es sich um verschiedene Materialien,
die in drei Gruppen einzuteilen sind:

a) zu brechende Stoffe R,,
b) abzusiebende Stoffe R,,
¢) normal zu foérdernde Stoffe R;.

Normal zu férdernde Stoffe konnen iiber alle Varianten transportiert werden, ab-
zusiebende Stoffe nur iiber die Varianten, die ein Sieb enthalten (4;, Cs, Cy), zu
brechende Stoffe nur {iber Varianten, die einen Brecher enthalten (4,, 4,, By, B;, B;
und B;).

Zur Aufstellung eines mathematischen Modells ist von folgenden Daten auszu-
gehen:

Die zunichst unbestimmten Mengen, die iiber die einzelnen Varianten zu fordern
sind, werden mit x;; bezeichnet. Der Index i (i = 1, 2, ..., 11) gibt die Variante und
der Index j(j = 1,..., 3) gibt den Rohstoff an. Die Leistungskoeffizienten [min/m?*
bzw. min/t] jedes einzelnen Bandes sind als gegeben vorauszusetzen. Der Leistungs-
koeffizient #;; der i-ten Fordervariante und des j-ten Rohstoffes ist dann durch den
kleinsten Leistungskoeffizienten der Bander, die zu diesem Wege gehoren, festgelegt.

Allgemein wird mit m;, j = 1,2, 3, die Férdermenge in m?/Tag bezeichnet, die man
von R; bendtigt. Aus diesem Grunde ist die Tabelle 3.1 in drei Spalten eingeteilt. Die
eingesetzten Zeichen M deuten an, daB iiber die zu diesen Zeilen gehorenden Varian-
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ten die in den Spalten dafiir in Frage kommenden Rohstoffe nicht zu transportieren
sind. M ist ein hinreichend groBer Zeitwert.

Bei der Aufstellung eines Modells wird vorausgesetzt, dal an den Aufgabestellen
der einzelnen Fordervarianten alle Rohstoffe, die eventuell von dort zu fordern sind,

Tabelle 3.1
zu brechende | zu siebende normal
Rohstoffe Rohstoffe zu fordernde
Mengen m?/Tag Rohstoffe
m my mg
A-Lauf Ay ty M ts
A, 251 M Ias
A, M I3 tys
B-Lauf B, 141 M [
. B, ts( M t53
B Te1 M Tg
B; I M I73
C-Lauf Cs M tgo tgs
Cy M 1o ty3
D-Lauf Dy, M M 1o
Dy, M M tis

vorhanden seien. Diese Voraussetzung ist sehr einschneidend und im besonderen
nicht unbedingt erfiillt, wenn z.B. einige Rohstoffe aus irgendwelchen Griinden von
der Halde zu fordern sind bzw. an einigen Aufgabeorten die benétigten Rohstoffe
fehlen. Endlich kénnen bei Eingangsschwankungen der Rohstoffe, die etwa durch
Zugverspatungen hervorgerufen werden, erhebliche Storungen im Forderablauf ein-
treten, wenn nach der aufgeschliisselten optimalen Losung geférdert wird.

Die beiden Optimierungsfunktionen ,,Minimierung der Gesamtforderzeit und
,,Minimierung der maximalen Bandauslastung® konnen in der folgenden parametri-
schen Optimierung vereint werden.

Fiir die M-Felder sind in den folgenden allgemeinen Gleichungen die entsprechen-
den x;; = 0 zu setzen. Werden die Leistungskoeffizienten in min/m® zugrunde gelegt,
so nimmt die Gesamtforderzeit Z als Zielfunktion folgende Gestalt an:

1 3
Z =% ¥ ty-x; = min.
i=1j=1
Die Nebenbedingungen (3.75) bis (3.86) haben folgende Form: Die Summe der in den
einzelnen Laufen geforderten Stoffe muB den im Mollerplan vorgesehenen Gesamt-
mengen entsprechen:
11

Z xy=nmy, x;=0, j=12,3. (3.75)

=1
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Die Gesamtforderzeit jedes einzelnen Bandlaufs darf 2 Minuten nicht iibersteigen
(4 ist die maximale Bandauslastung). Da sich die einzelnen Varianten gegenseitig aus-
schliefen, ergibt sich die Gesamtforderzeit aus der Summe dieser sich ausschlieBen-
den Varianten:

3 3

2 2tyxy < (3.76)
i=1j=1

7 3

22 Xy = A4, (3.77)
i=4 j=1

9 3

D dtyxy =4, (3.78)
=8 j=1

11 3

> Styxy; = —1007 + 4. (3.79)
=10 j=1

Bei der Nebenbedingung (3.79) ist zu beachten, dal iiber die Varianten D,, und
D,, zusammen 1007 Minuten am Tag unbedingt andere Rohstoffe zu fordern sind.

Da die gleichen Arbeitskrifte sowohl die A- als auch als die B-Varianten bedienen,
darf die Summe der Forderzeiten all dieser Varianten 21 h = 1260 min nicht iiber-
schreiten. Diese Zeit entspricht der praktisch erreichbaren Arbeitszeit bei einer drei-
schichtigen Bedienung:

I Mq

3
2: %y < 1260. (3.80)
Die Gesamtforderzeit der Bénder 8 und 9 darf 24 nicht iibersteigen:

2 tlixll = (381)
i=3,7,8,10 j=
Die Gesamtforderzeit der Varianten 4,, A, und A; bzw. B;, A, und B bzw. B,
B; und C, darf 2 nicht iibersteigen, da diese drei Varianten gemeinsam gleiche Bander
benutzen. An den iibrigen Stellen, an denen mehrere Varianten zusammentreffen,
ist eine solche Beschrinkung nicht notwendig, weil dort noch weitere Binder zu-
geschaltet werden konnen.

3

,_122‘3 g; tyxy = A, (3.82)
3

2. g,l Xy = A, (3.83)
3

PP A (3.84)

1=4,7,9 )=

Die Kapazitat der Mollerbunker der A4- und der B-Varianten ist relativ gering. Bei
einem Fassungsvermogen der Bunkertaschen von je 200 m® konnen in den Bunkern
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5 bis 9 des B-Bereiches nur 2000 m® gelagert werden, also im A- und B-Bereich zu-
sammen nur 3600 m?:

Xy < 2000, ‘ (3.85)

X, = 3600. (3.86)

Mit der maximalen Bandauslastung 4 sind damit beide Problemstellungen in einem
parametrischen Optimierungsproblem mit parameterabhéngigen rechten Seiten der
Nebenbedingungen vereint. Fiir jeden mdglichen Parameter ist die minimale Forder-
zeit zu bestimmen.

3.3.2. Die Losung parametrischer Optimierungsprobleme

Bei vielen mathematischen Problemen konnen die Losungen in Abhdngigkeit von
einigen Problemvariablen in geschlossenen Formeln angegeben werden. So kann z.B.
bei einem linearen Gleichungssystem mit beliebigen rechten Seiten eine Losung mit
Hilfe der reziproken Matrix berechnet werden. Sobald die rechten Seiten fest vor-
gegeben sind, kann die Losung unmittelbar durch eine Matrizenmultiplikation an-
gegeben werden.

Es erhebt sich die Frage, ob die optimale Losung eines LOP auch in Abhéngigkeit
einiger Parameter angegeben werden kann. Besonders einfach ist diese Forderung
bei den folgenden LOP (3.87) und (3.88) zu erfiillen, bei denen die Koeffizienten der
Zielfunktion bzw. die rechten Seiten linear von einem Parameter 7 abhidngen.

ZF: Z=(cT+cTH)x =max; (Hh<t=1y)

NB: Ax<b, (3.87)
X = 0.
ZF: Z = ¢Tx = max;
NB: AXx=DbT+bTt (4, <1Z1y) (3.88)
X = 0.

In (3.87) und (3.88) ist
T+ Tt = [, + &1ty ¢y + Coty oy Cq + Cut] = [61F, o.vy 2]
und
BT+ b2t = [by + Byt ey by + b t] = [By*, e, B, *]
mit beliebigem reellem 1.

Die Aufgabenstellung lautet zusammengefaBt: Fiir jeden Parameter faust, =<7 =1,
ist von (3.87) bzw. (3.88) eine optimale Losung anzugeben.

Zu (3.87) und (3.88) ist in (3.89) und (3.90) jeweils ein Beispiel angegeben.
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ZF: Z=(1—1)x + (1 —2t)x, = max;

NB: X1 — Xz =1,
2%+ X =5,
—2x; + 1x, =1, (3.89)
X1, Xp =0,
—1=tr<=5.
ZF: Z=— x;— 5x,— X3 = max;
NB: —1x; = 2, + 2x = —1+1¢, (3.90)

I = Ix, — 1xg = — 1+ 21,
X1, X, %320, =T=t=6.

Die Parameterabhingigkeit der Koeffizienten der ZF von (3.89) bedeutet, daf3 die
Richtung der Zielfunktion (Gerade!) sich mit dem Parameter ¢ dndert. Somit hiangt
die optimale Losung wesentlich vom Parameter ¢ ab. Der Losungsbereich von (3.89)
ist in Bild 3.5 schraffiert. Fiir die Parameter t; = 1,1, = 0 und #; = } sind die ent-
sprechenden Zielfunktionen fiir einen beliebigen Z-Wert eingetragen. Die Rich-
tung, in der die Zielfunktion anwichst, ist durch Pfeile gekennzeichnet.

\
X2

Bild 3.5

X1

Aus Bild 3.5 sind fiir die einzelnen Parameterwerte ¢, #, und #, jeweils optimale Lo-
sungen zu entnehmen:

t; = 1: Optimale Losung: x;, =1,x,=0,Z=0;
t, = 0: Optimale Losung: x, =1,x,=3,Z=4;
t, = }: Optimale Losung: x;, =2.x,=1,Z=1.
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Die Parameterabhéngigkeit der rechten Seite von (3.90) bedeutet, daB die Hyper-
ebenen, durch die der Losungsbereich begrenzt wird, durch den Parameter parallel
verschiebbar sind. Daher hidngt wiederum die optimale Losung wesentlich vom Para-
meter ab.

Wird fiir ¢ ein ganz bestimmter Wert ¢, in (3.89) eingesetzt, so kann die optimale
Losung z.B. mit der Simplexmethode berechnet werden.

Die lineare Abhéngigkeit der Koeffizienten der Zielfunktion von ¢ bewirkt, daB die
Formkoeffizienten g, (k = 1, ..., n) und die Basiszahl c einer beliebigen Basisdarstel-
lung ebenfalls linear von ¢ abhdngen. Sie haben der Reihe nach die Form

g+ gt und c+ct.

Um den Parameter ¢ mit in das Rechenblatt zu iibernehmen, ist die letzte Tableau-
zeile wieder wie bei dem Vorgehen mit kiinstlichen Variablen als Doppelzeile zu ge-
stalten. Die Anteile g, und ¢ werden in der oberen und die Anteile g, und ¢ in der un-
teren Hilfte der Doppelzeile vermerkt.

Es sei das optimale Rechenblatt von (3.87) fiir den Parameter #, durch (3.91) dar-
gestellt. Daher sind alle

&+gth=0, j=1,..,n,
und ¢ + ct, ist der optimale Funktionswert.

NBV X, e Xy
‘BV =1 |+t - cut Cato 0
Xni1 0 ' Fin ky
(3.91)
Xnem 0 Im1 Tmn km
& &n 4
G I
& o &n ) c

Dariiber hinaus ist dieses Rechenblatt fiir alle --Werte optimal, die den Ungleichungen
gi+gt=0, j=1,..,n, (3.92)
geniigen. Aus (3.92) folgt:

= g—: fir g >0 (3.92)
und
r<-— g—: fir g <0. (3.92")
Also sind die Ungleichungen (3.92") gleichzeitig fiir alle
=t =max {— &) (3.93a)
>0 &)
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und die Ungleichungen (3.92") gleichzeitig fiir alle
t< 7= min {— T’} (3.93b)

erfiillt. ¢ ist eine untere und 7 eine obere Parameterschranke. Da fiir ¢ = ¢, alle Un-
gleichungen (3.92) erfullt sind, muf3

121,51

sein. Falls kein g; > 0 existiert, ist £ = —oo; gibt es dagegen kein g; < 0,s0ist7 = +00.
Andernfalls ist fiir 7=t bzw. t =7 mindestens ein Formkoeffizient von (3.92) gleich
null. Wird ein solcher mit g; + g;¢ bezeichnet, so kann x; in die Basis eingefiihrt
werden, falls in (3.91) mindestens ein r;; > 0 ist (i = 1, 2, ..., m).

Sind ndmlich alle r; = 0, dann hat entsprechend dem Simplexalgorithmus das
Problem fiir alle # = 7 bzw. ¢ = ¢ eine unbeschriankte Losung, da diese -Werte der
Ungleichung g; + g;t = 0 geniigen. Nach der Einfithrung der Variablen x; in die
Basis kann aus den neuen Formkoeffizienten ein weiteres Parameterintervall mit der
entsprechenden optimalen Losung angegeben werden. Die obere Schranke 7 wird im
neuen Rechenblatt untere Schranke bzw. die untere Schranke # wird obere Schranke. So
konnen der Reihe nach sich liickenlos anfiigende Parameterintervalle mit den dazu-
gehorenden optimalen Losungen gefunden werden.

Wird in (3.89) #, = 1 gesetzt, so entsteht das Rechenblatt(3.94), wenn die Schlupf-
variablen x;, x, und x; = 0 eingefiihrt werden.

1 NBV x Xy b
BV |—1 | 1—-¢t 1-2¢ 0 (0]
X3 0 1 -1 1 1
Xy 0 2 1 5 3 (3.94)
X5 0| -2 1 1 /

-1 -1 0

G |
+1 +2 0

Die Formkoeffizienten lauten:
—14+4=020,-1+2,=120.

Mit (3.94) ist fiir z, = 1 bereits ein optimales Rechenblatt gegeben. (3.94) ist dariiber
hinaus fiir alle # = 1 optimal. Ist also

I=t £t < =+0o,

7 Seiffart, Optimierung
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so lautet eine optimale Losung von (3.89):

XM x; =0, x=0, ZEW)=0, 1=1¢<+oo.

Da —1+ t, = 0 ist, wird x; in die Basis eingefiihrt.

2 NBV x5 x b
BV | -1 0 1-2¢t 0| 0
x |1—¢ 1 -1 1 /
Xy 0] -2 3 3 1 (3.95)
X5 0 2 -1 3 /

+1 =2 1

G .
-1 3 -1
Es gilt:

1-7,=20, —2+3t,=0.

(3.95) ist nach (3.93a) bzw. (3.93b) fiir alle
f=f=t=h=1=1

optimal. Die optimale Lésung von (3.89) lautet fiir dieses Intervall:
x®:x; =1, x,=0, Zx®)=1—¢ 3=t=1.

Ganz analog werden die folgenden Rechenblitter und die dazugehérenden opti-
malen Losungen berechnet.

3

BV

x®:

NBV Xg X4 b
-1 0o 0 0 0
1—1t 1 i 216
1-2t|—3% 3 1 /
0 5 -3 41 3
-1 3|3
G
1 -1 |—4
X;=2, Xo=1, Z=3—-4t, s =t=3%
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4 NBV x;, x, b

BV | -1 0o 0] 0| Q
X 1-¢t |-} % 1
X, | 1=2t] § % 3
X3 0 i 3
boa| 4
G
S

XWXy =1, x=3, Z=4-Tt, —o0o <1=1}.

Damit ist nicht nur fiir —1 = ¢ = 5, sondern fiir jeden beliebigen reellen Para-
meterwert die optimale Losung angegeben, deren Losungskomponenten und Funk-
tionswert aus einer der vier angefithrten Losungen x), ..., x) zu entnehmen sind.

Liegt ein parametrisches LOP der Form (3.88) vor, so wird die letzte Spalte im
Rechenblatt durch eine Doppelspalte ersetzt. Fiir einen bestimmten Parameter ¢ = £,
kann die Normalform und das optimale Rechenblatt etwa wieder mit der Simplex-
methode berechnet werden. Hat dieses optimale Rechenblatt die Gestalt (3.96), so gilt:

g:=0 fir k=1,..,n.

NBV x;, - x,
BV —1le ¢
Xna1 | Cusa | Fix o Tan k, 1;1
(3.96)
Xnim | Cosm| Ym1 " Vn km l;m
Glg & |[c |c¢
Die optimale Losung lautet
x;=0 fir j=1,..,n
und ~ ~
Xniw = Ky +katg, ooy Xpim =Ky + kuty, Z=c+ cty. (3.97)
Da alle g, von ¢ unabhéngig sind, ist die Losung fiir alle ¢ optimal, fiir die
ki+kit=0 (i=1,..,m) (3.98)

* v
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gilt. Aus der letzten Ungleichung folgt:

tg—%fﬁra>0

und

zg—%-mra<u

i

Eine neue untere Schranke  bzw. eine neue obere Schranke 7 folgt damit wieder aus

t = t = max (— gl (3.99a)
£>0 ky
bzw.
- . k;
t < 7= min {—— ?’ (3.99b)
k<0 ky

[vel. (3.93)].

Wiederum ist fiir # = ¢ bzw. ¢ = ¢ mindestens eine Losungskomponente von (3.97)
gleich null. Wird diese mit k; + k¢ bezeichnet, so kann die BV x; mit der dualen Sim-
plexmethode (s. 3.2.3.) aus der Basis entfernt werden. Die restlichen k; + tk; dndern
sich dabei wertmaBig fiir ¢ bzw. 7 nicht. AnschlieBend kann ein neues Parameterinter-
vall mit der dazugehdrenden optimalen Losung angegeben werden.

Wird in (3.90) ¢, = 1 gesetzt, so entsteht das Rechenblatt (3.100), wenn die Schlupf-
variablen x,, x5 = 0 eingefithrt werden. Es ist gleichzeitig optimal.

1 NBV x; x; x3

BV!I-1|-1 -5 -1

x| 0 =1 =2 42 [-1]1
xs | 0| 1 -1 -1 |-1]2 (3.100)

ol 1

wien

Die optimale Losung lautet:
X =0,x=0,x3=0,
xy=—14+1=0, x;=—1+2t,=1, Z=0, t,=1.

Weiterhin ist (3.100) fiir alle # = 1 optimal; damit folgt fiir die optimale Lsung
von (3.90) im Intervall 1 =< ¢t < +oco:

xM: %, =0, x=0, x3=0, Z(xW)=0.

ty =1 ist eine untere und 7, = 4o eine obere Schranke. Da —1 + ¢, = 0 ist, wird
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x, aus der Basis entfernt. Nach der dualen Simplexmethode folgt das Rechenblatt 2:
2 NBV x; x; x5

BV | -1 0 -5 -1 0

w |-1]-1 2 -1 1 -1
x | 0] 1 =3 —1 |2 3 (3.101)

G 1 3 3 |-1 1

0| 1 3

Es gilt: 1—1, =0, -2+ 37, = 0. (3.101) ist also nach (3.99) fiir alle
j=h=st=h=n=1

optimal. Es folgt:
X xy=1—1 x,=0, x3=0, Zx®)=¢t—1, 3 =1<1.

Ganz analog sind die folgenden Rechenblatter und die dazugehérenden optimalen
Losungen zu berechnen.

3 NBV x;, x X3

BV | -1 0 0 —1 0
x@®: x=-3+1,
X1 -1 "‘% % _‘% _% 1 x2=§—t,
X |5 |—-3 -3 —} 2 -1 Z=-3+4,
<t=<3%.
G 2 1 4 |-3 4 psrsd
Q 6 3
4 NBV x;, x5 x
BV|-1] 0 o0 —1 0 X0: x, =0,
X =§—-11
_ 11 _—3 1|3
X3 1 Ey 3 1 I i oo <=1,
SNl e e i)- Z=—4+71.
G 1 3 3 |-4 7
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Damit ist wiederum nicht nur fiir —7 < ¢ = 6, sondern fiir jeden beliebigen reellen
Parameterwert die optimale Losung angegeben, deren Losungskomponenten und
Funktionswert aus einer der vier angegebenen Losungen x@), ..., x) zu entnehmen
sind.

3.4. Ganzzahlige lineare Optimierung

3.4.1. Problemstellung

Bei vielen linearen Optimierungsproblemen besteht die zusitzliche Einschrankung,
daB einige oder alle Losungskomponenten der optimalen Losung ganzzahlig sein
miissen. Bei einem solchen Problem ist also von allen ganzzahligen Losungen eines
Systems mehrerer linearer Gleichungen oder Ungleichungen eine solche Losung zu
bestimmen, fiir die der Funktionswert der linearen Zielfunktion optimal ist. Diese
Aufgabenstellung wird als ganzzahliges lineares Optimierungsproblem bezeichnet.

Haben nur einige Losungskomponenten der optimalen Losung ganzzahlig zu sein,
so wird die Aufgabenstellung ein gemischtganzzahliges Optimierungsproblem genannt.
Ein gemischtganzzahliges lineares Optimierungsproblem kann wie folgt formuliert
werden:

Die lineare Funktion
Z(x,y) = cIx + ¢cTy
ist unter Beriicksichtigung der folgenden Nebenbedingungen zu maximieren:
Ax + Ky <b;
X = o0, ganzzahlig,
y=2o.

Dabei ist x ein ny-zeiliger Spaltenvektor mit nichtnegativen ganzzahligeri Kompo-
nenten, y ein (n — ny)-zeiliger und b ein m-zeiliger Vektor. ¢T ist ein n;-spaltiger
und €T ein (n — ny)-spaltiger Zeilenvektor. A und A sind Koeffizientenmatrizen mit
dem Format [m, m] und [m, n — n,]. Ist n, = n, so liegt ein (,,reines**) ganzzahliges
lineares Optimierungsproblem vor. Viele praktische Problemstellungen sind auf
ganzzahlige Optimierungsprobleme zuriickfithrbar. Die Variablen stellen dabei
ganzzahlige Einheiten dar wie z.B. Zahl der Arbeiter, Zahl der Fahrten mit einem
Fahrzeug, Stiickzahlen von Produkten oder moglichen Varianten. Dariiber hinaus
sind auch bestimmte nichtlineare Optimierungsprobleme auf ganzzahlige lineare
Probleme zuriickfiihrbar.

In den beiden folgenden Beispielen werden spezielle Probleme behandelt.

Beispiel 3.8: 3 Leisten sind zur Herstellung eines bestimmten Erzeugnisses notwen-
dig. 2 Leisten miissen je 1,5 m (Meter) und eine muB 2 m lang sein. Zur Verfiigung
stehen 300 Leisten mit einer Lange von je 6,5 m und 80 Leisten mit einer Lange von
je 5,5m. Wie sind die zur Verwendung stehenden Leisten zu schneiden, damit eine
maximale Stiickzahl des obengenannten Erzeugnisses hergestellt werden kann?
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Eine 6,5 m lange Leiste kann nach den folgenden 4 Varianten in 2 m bzw. 1,5m
Stiicke geteilt werden:

1 Leiste zu 6,5 m Anzahl Anzahl
der 2-m-Leisten der 1,5-m-Leisten
1. Variante 3 0
2. Variante 2 1
3. Variante 1 3
4. Variante 0 4
Analog:
1 Leiste zu 5,5 m Anzahl Anzahl
der 2-m-Leisten der 1,5-m-Leisten
5. Variante 2 1
6. Variante 1 2
7. Variante 0 3

Wird mit x; (i=1,...,7) die Anzahl der Leisten bezeichnet, die nach der i-ten
Variante zerschnitten werden, so gelten die beiden Gleichungen

X, + X2 + X3 + x, = 300,
X5+ x5+ x; = 80.

Sie besagen, daB die Anzahl der zu teilenden Leisten 300 bzw. 80 sein muB. Die An-
zahlen der 2-m-Leisten und 1,5-m-Leisten sind der Reihe nach durch

3x;+ 2x5 + 1x3 + 2x; + 1xg
und
1x; + 3x3 + 4x, + 1x5 + 2x5 + 3x;

gegeben. Die Gleichung
2 (3x; + 2x5 + 1x5+ 2x; + 1xg) = 1xy + 3x5 + 4x, + 1x; + 2x5 + 3x;

gewihrleistet, da die Anzahl der Leisten von 1,5 m Liange doppelt so grof3 ist, wie die
Anzahl der 2-m-Leisten. Die Anzahl der 2-m-Leisten kann als Zielfunktion benutzt
werden, da diese mit der Anzahl der Erzeugnisse iibereinstimmt. SchlieBlich miissen
in der optimalen Losung alle Variablen ganzzahlig sein.

Zusammengestellt folgt als mathematisches Modell dieser Optimierungsaufgabe:
ZF: Z = 3%+ 2xy + x3+ 2x; + X4 = max;
NB: Xy + Xo + X3+ Xy =300,
X5+ xg+x;, = 80, (3.102)
6x; + 3xy — X3 — 4x, + 3x; — 3x; = O,
x; = 0, ganzzahlig fir i=1, ..., 7.
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Beispiel 3.9: Eine Betriebsabteilung arbeitet in vier Schichten zu je 6 Stunden. Die
erste Schicht beginnt um 4.00 Uhr. Die Schichten sind mit einer Mindestanzahl von
3 bzw. 7 bzw. 10 bzw. 4 Arbeitskraften zu besetzen. Jede Arbeitskraft arbeitet wih-
rend zweier Schichten hintereinander und hat am folgenden Arbeitstag frei. Es ist
ein Schichtplan mit einer Mindestanzahl von Arbeitskréften aufzustellen.

Das mathematische Modell dieses Optimierungsproblems wird folgendermafen
aufgestellt: x; bezeichnet die Anzahl der Arbeitskrifte, die mit Beginn der i-ten
Schicht ihre Arbeit aufnehmen (i = 1, 2, 3, 4).

Die Variablen x; miissen also ganzzahlig sein und den folgenden Nebenbedingungen
geniigen:

%

X+ Xy 3,

Xg + X

YA,
S~

X3+ Xp

X3+ X3

%

%
=)

Xi

Die bendtigte Gesamtanzahl der Arbeitskrifte ist 2 (x, + x, + x3 + x,), da jede
Arbeitskraft am folgenden Tage nicht einsetzbar ist.

Das Modell dieser Optimierungsaufgabe lautet demnach:
ZF: Z=2(x, + X, + X3+ Xx,) = min;

NB: X1 +x, =3,
X1+ X, =1,
Xo+ X3 =10,

xX3+x, =4,
x; = 0, x; ganzzahlig,
i=1,..,4.

3.4.2. Die Losung ganzzahliger Optimierungsprobleme

Ein ganzzahliges Optimierungsproblem kann zundchst ohne Beriicksichtigung
der Forderung der Ganzzahligkeit aller oder einiger Variabler gelost werden.
AnschlieBend konnen die in der optimalen Losung auftretenden gebrochenen
Variablen auf die nidchsten ganzen Zahlen auf- oder abgerundet werden. Dabei ist
zu beachten, daB die entstehende ganzzahlige Losung dem Losungsbereich angehort.
Nur wenn die Werte der nichtganzzahligen Variablen sehr groB sind, wird durch das
Auf- oder Abrunden eine ganzzahlige Losung erhalten, deren Funktionswert wenig
vom optimalen abweicht. Bei kleinen nichtganzzahligen Variablen kann der Funk-
tionswert der abgerundeten Losung erheblich vom optimalen abweichen.
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Von dem LOP

ZF: | Z=8x,+ 4x, = max;
NB: —2x;+ 3x, = 6,
8x; + 3x, = 20, (3.103)
x, =0, x, = 0, ganzzahlig,
ist der Losungsbereich in Bild 3.6 angegeben. Ohne Ganzzahligkeitsbedingung lautet
die optimale Losung:
21 44 344

=5 Z=?z23.

o 2n,2=20

| Bild 3.6
4 X1

Werden x, und x, abgerundet, so entsteht die ganzzahlige Lésung
x=1,x=2; Z=16.

Die optimale ganzzahlige Losung lautet aber:
x=2,x=1 Z=20.

Hierbei ist x; aufgerundet und x, iiber 2 hinweg abgerundet.

Gomory?) hat sowohl fiir das ganzzahlige als auch fiir das gemischt-ganzzahlige
Problem eine Losungsmethode angegeben. Beide Probleme werden nach Gomory so
gelost, daB zunichst die Ganzzahligkeit von einigen oder von allen Variablen un-
beriicksichtigt bleibt. Das Problem wird mit der Simplexmethode bis zum optimalen
Endtableau durchgerechnet. Falls bestimmte oder alle Variable die Forderung der
Ganzzahligkeit nicht erfiillen, wird durch Hinzufiigen von weiteren Nebenbedin-
gungen der zuldssige Losungsbereich so verkleinert,dal der dabei entstehende kleinere

1) Gomory, R. E., Outline of an Algorithm for Integer Solutions to Linear Programs. Bulletin of
the American Mathematical Society, Vol. 64, 1958, S. 275-278.
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Losungsbereich nur noch Eckpunkte mit ganzzahligen Koordinaten hat und daB aber
auch keine ganzzahligen Punkte des urspriinglichen Losungsbereiches ausgeschlossen
werden (vgl. die Bilder 3.6 und 3.7). Der Losungsbereich in Bild 3.6 des Beispieles
(3.103) ist durch die zusitzlichen Nebenbedingungen I, II, III in Bild 3.7 auf einen
Losungsbereich mit nur ganzzahligen Eckpunkten verkleinert

X2

Bild 3.7

Xt

Das Hinzufiigen von zusitzlichen Nebenbedingungen wird im Verfahren von
Gomory systematisch durchgefiihrt.

Es sei angenommen, daB die Basisdarstellung der Optimallosung ohne Ganzzahlig-
keitsbedingung eines ganzzahligen LOP die folgende Gestalt habe (ohne Beschrin-
kung der Allgemeinheit werden die letzten m Variablen als BV betrachtet):

Fyy Xy oo FpXp 4 Xps =k,
Fo1 Xyt oo 4 FopXp + Xnt2 =k,
................................................... (3.104)

Die Optimallosung lautet: [0, ..., 0, ki, ..., k,,]. Die Basiszahl ¢ ist der optimale Funk-
tionswert, und die Formkoeffizienten g; [j= 1, ..., n] sind nichtnegativ.

Mit [k] wird diejenige ganze Zahl bezeichnet, die der Ungleichungk — 1 < [k] < k
geniigt. Um eine zusitzliche Nebenbedingung zu formulieren, sei x,.; = k; eine
Variable, die die Ganzzahligkeitsbedingung nicht erfiillt.

Liegt ein ganzzahliges LOP vor, so wird folgende neue Gleichung zum Gleichungs-
system (3.104) hinzugefiigt:

—TaXy — FiaXa — = — FinXp + Xpii = — Ki- (3.105)
Hierbei ist x,.; eine neue nichtnegative Schlupfvariable,
ki=ki—[kil und Fij=ry—[r]
fir j=1, ..., n.
Liegt dagegen ein gemischt ganzzahliges LOP vor und wird angenommen, daB die
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Variablen x;, j = 1, ..., m; n; = n ganzzahlig sein sollen, so wird ebenfalls die Glei-
chung (3.105) hinzugefiigt, allerdings gilt jetzt:

{ru}s Jj=m, fry} = {ki},
k; )
BE - {}k'-} A=Ay J=ny, {ri} > {kib,
v Tijs jzm+1, ry=0,
k . .
1{_;[{}]{‘_]'(_"1‘1)’ jznm+1, r;<O0,

mit {ry}=ry—1[ry] und (k}=k,—[k].

Somit entsteht die folgende Basisdarstellung:

ri Xy o e X+ X =kh

Fui X1+ o4 s Xn +xﬂ-rm=km) (3106)
'?11 X1 - ;tn in + Xpoo = —kt:

&iXy ot gnXa +Z =c.

Die urspriingliche Optimallosung ist unzuléssig, da —k; < 0 ist. Mit Hilfe der dualen
Simplexmethode (s. 3.2.3.) kann eine neue ZBL gefunden werden. Ist in dieser Losung
fiir noch eine weitere bzw. mehrere Unbekannte die Ganzzahligkeitsforderung nicht
erfiillt, so wird der beschriebene Algorithmus wiederholt.

Das Gomory-Verfahren ist unter gewissen Zusatzbedingungen als endlich erwiesen.
Entsprechende Einzelheiten und die Beweise hierzu sind der Spezialliteratur zu ent-
nehmen.

Beispiel 3.10: Das optimale Tableau der Zuschnittaufgabe (3.102) aus 3.4.1. ohne
Beriicksichtigung der Ganzzahligkeit der Variablen ist in (3.107) gegeben.

NBV Xo Xy Xy Xp

12 o 1 o o
N IR TR Y
x|l 210 o 1 1]s0 (3.107)
IR I I T e
S I A E

Die nicht-ganzzahlige optimale Losung lautet:
x=8+%, x=0 x=2914+2, x=0, x;=380,
Xe=0, x=0, Z=477+21%
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x; = 8 ++ # ist z.B. nicht ganzzahlig. Daher wird zur Basisdarstellung, die zu (3.107)
gehort, die folgende Nebenbedingung hinzugefiigt, die aus den Koeffizienten der
x,-Zeile von (3.107) nach (3.105) gebildet worden ist.

—“4x—dx—dx— Xt X =%
Es entsteht das ergdnzte Tableau (3.108):

NBV  x, x, x5 X

BV | -1 2 1 0 0
x | 1| 3 F # 0§ |¥1+7
X5 2 0 0 1 1 80 (3.108)
PO IR TR
%00t -4 -4 <1 | -
G 1 1 1 2 477+ 1

Mit der dualen Simplexmethode wird X, aus der Basis entfernt. Nach dieser Eli-
mination liegt das optimale ganzzahlige Tableau (3.109) vor:

NBV X x4 x5 X

x | 1] 8 1 0 3 |20
x | 21 0 0o 1 1|80 (3.109)
x | 3 1 -1 -1 -1 8
x | 20-7 1 1 1} 1

G| + o o 1 |4am

Eine ganzzahlige optimale Losung lautet damit nach (3.109):
x; =8, x;=1, x3=291, x, =0, x; =80, x =x,=0, Z=477.

Am Tableau (3.109) ist schlieSlich noch zu erkennen, daB3 ebenfalls x, bzw. x; in
die Basis eingefiihrt werden konnen, ohne daB sich der Funktionswert dndert. Daher
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ergeben sich noch die beiden anderen ganzzahligen optimalen Lésungen:
1.x=9, x=0, x3=290, x,=1, x;=280,
Xe=x,=0, Z=477,
2.x=9, x3=0, x3=291, x,=0, x;,=179,
xs=1, x,=0, Z=4717.



4. Spezielle lineare Optimierungsprobleme

Jedes lineare Optimierungsproblem ist mit der Simplexmethode oder einem anderen
Algorithmus (revidierte SM oder duale SM) zu 16sen. Die lineare Optimierung wire
damit tiberhaupt nicht problematisch, wenn die Anzahl der Verdnderlichen bei
Problemstellungen nicht so grof wiaren und wenn die genannten Lsungsalgorithmen
schneller konvergieren wiirden. Aus diesem Grunde ist es verstidndlich, daB zur Lo-
sung derartiger Aufgaben, die aus praktisch relevanten Problemstellungen resultieren,
es unbedingt erforderlich ist, Elektronenrechner zur Hilfe zu nehmen. Um also ein
groBeres lineares Optimierungsproblem zu l6sen, ist es daher zweckmiBig, dies-
beziigliche Programmpakete zur Losung linearer Optimierungsprobleme zu nutzen.
Bei der Nutzung solcher Programme bezogen auf einen Rechner sind nur noch die
Problemparameter anzugeben (Koeffizienten der Zielfunktion, Koeffizienten der
Nebenbedingungen usw.). Vom Rechner wird dann die gesuchte optimale Losung
ermittelt.

Die AusmaBe derartiger Probleme bedingen eine groBle Anzahl von Rechen-
operationen und einen groBen Speicherbedarf bei der Benutzung von Elektronen-
rechnern, so daB der Rechenaufwand fiir viele praktische Berechnungen trotzdem
noch zu hoch wird. Dabei ist noch von den Schwierigkeiten abgesehen, die bei der
Aufstellung eines solchen Modells aus einer praktischen Aufgabe resultieren kénnen.
Schon ein fiir praktische Belange nicht sehr grofies Transportproblem von 20 Erzeu-
gern, die ein ganz bestimmtes Erzeugnis in gewisser Menge herstellen, und 20 Ver-
brauchern, die in bestimmten Mengen das Erzeugnis beziehen, fiihrt auf ein lineares
Optimierungsproblem von ca. 40 Nebenbedingungen mit 400 Verdnderlichen, wenn
die Verteilung so erfolgen soll, dal die Gesamttransportkosten méglichst klein sind.
Um allein die Daten der Koeffizientenmatrix dieses Problems zu speichern, werden
normalerweise schon ca. 16000 Speicherplitze bendtigt. So sind in den letzten Jahren
fiir derartige spezielle Probleme besondere Algorithmen entwickelt worden, die den
Rechenaufwand erheblich reduzieren. Es gibt insbesondere gleich mehrere z. T.
gleichwertige Algorithmen fiir die Losung des angefiihrten Transportproblems. Diese
Maéglichkeiten der besonderen Beriicksichtigung der speziellen Struktur der Neben-
bedingungen bei einigen linearen Optimierungsproblemen sind zur Zeit bei weitem
noch nicht restlos ausgeschopft.

4.1. Transportprobleme

Das Transportproblem ist eine von den mannigfaltigen Aufgabenstellungen der
linearen Optimierung, deren Nebenbedingungen eine spezielle Struktur aufweisen
und somit eine Losungsvereinfachung gestatten. '

Bereits 1939 bearbeitete L. V. Kantorowitsch eine Klasse von Optimierungspro-
blemen, die eng mit dem klassischen Transportproblem verwandt ist. Die Anwen-
dung dieser Probleme war auf die Zuteilung von Arbeiten auf Maschinen gerichtet.
Gleichzeitig wurde von ihm ein zu dieser Zeit aber noch unvollstandiger Losungs-
algorithmus aufgestellt. Die nunmehrige Normalform des Problems mit einer kon-
struktiven Losungsmethode wurde zuerst von L. Hitchcock 1941 erarbeitet. Wihrend
des zweiten Weltkrieges beschiftigte sich T. C. Koopmanns mit der Untersuchung
von Lésungen des Transportproblems und deren Anwendungsmdéglichkeiten. In den
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letzten 30 Jahren wurden eine ganze Reihe von Problemerweiterungen und weiteren
Losungsalgorithmen zum Transportproblem entwickelt.

Im folgenden wird ein spezieller Losungsalgorithmus angegeben.

4.1.1.  Problemstellung und mathematisches Modell des Transportproblems

Erkldrung am Beispiel

Gegeben seien drei Erzeuger, E,, E, und E;, die ein Erzeugnis von gleicher Qualitit
produzieren. Zum Beispiel seien die Erzeuger E;, E, und E; drei Ziegeleibetriebe, die
normale Mauersteine herstellen. E,, E, und E; erzeugen wihrend einer fest vorgege-
benen Zeitdauer (z.B. in einem Monat oder in einem Quartal) der Reihe nach
a,=11-10% a, = 11 -10* und a; = 8 - 10* Mauersteine als Erzeugungseinheiten. Wei-
terhin sind vier Verbraucher V;, Vs, V5 und ¥, vorhanden, die das Produkt in ganz

Bild 4.1

bestimmter Menge benétigen. V;, V,, V5 und ¥V, seien z.B. vier GroBbaustellen, die
wihrend der gleichen Zeitdauer der Reihe nach b, = 5. 104, b, =9 - 10%, by = 9 - 10*
und b, = 7 - 10* Mauersteine benétigen. In Bild 4.1 sind E;, E, und E; durch kleine
Kreise und V;, V,, V5 und ¥V, durch kleine Dreiecke schematisch dargestellt.

Tabelle 4.1
Verbraucher

" Ve Vs Vy

€11 Cro C13 C1a _
E, 7 p 5 3 11=a
Erzeugungs-
¢ o ¢ 2
Erzeuger | E, | ! 5 2 4 8 5 . 9 11=a, E‘:Lg:i;;n
C31 C32 C33 C34 =
E 6 3 1 2| 8=
Gesamt-
5=b 9=b, 9=b; 7T=b,| 30 erzeugung
= Gesamt-

Verbrauchsmengen in Einheiten verbrauch
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Die Gesamterzeugung von 30 - 10* Mauersteinen ist gleich dem Gesamtverbrauch.
SchlieBlich sind von jedem Erzeuger zu jedem Verbraucher die Transportkosten pro
Einheit gegeben. Sie sind als Zahlen bzw. c;;-Koeffizienten mit den entsprechenden
Zuordnungsrichtungen in Bild 4.1 eingetragen. ¢;, sind die Transportkosten (z.B. in
100 M Einheiten), die anfallen, wenn eine Einheit des Produktes (z. B. 10* Mauer-
steine) vom Erzeuger E; zum Verbraucher V; transportiert wird (i=1,2,3;/=1,2,
3,4). Zum Beispiel erfordert der Transport von 10* Mauersteinen von E; nach V;
7 Transportkosteneinheiten (z.B. 7 - 100 M).

In der Tabelle 4.1 sind die Einheitskosten zusammengestellt. Das Transportpro-
blem besteht in der Aufstellung eines Transportplanes, nach dem jeder Verbraucher
seine bendtigten Mengen unter Beriicksichtigung minimaler Gesamttransportkosten
erhalt.

Wird die noch zu bestimmende Menge (eine Einheit betrage 10* Mauersteine), die
vom Erzeuger E; zum Verbraucher V; geliefert wird, mit x;; bezeichnet (i = 1, 2, 3;
i=1,2,3,4), so kann ein Verteilungsplan nach Tabelle 4.2 aufgestellt werden.

Tabelle 4.2
Ve Vs W,

Ey | X1 Xio X3 Xy | @
Ey | Xa1 Xoo Xoz Xoq | Gy

Es | X531 Xzo X33 Xpy | G5

by by, b; by

Hiernach bedeuten z.B. x,,, X5, X,3 und x,, die Mengen, die der Reihe nach von E,
an die Verbraucher V;, V5, ¥ und V, zu transportieren sind. Die Summe dieser Men-
gen muB gleich der gesamten Erzeugungsmenge von E, sein, also

X+ X+ X3+ Xy =ap = 1.

Analog gilt:

Xo1 + Xoo F Xoz + Xoy =ay =11,

4.
X3yt Xgo + Xz3 + Xzg=a3 = 8. “.n

Weiterhin bezeichnen x,,, x;, und x;, die Mengen, die der Verbraucher ¥, der Reihe
nach von den Erzeugern E;, E, und E; erhilt. Die Summe dieser Mengen muB gleich
der Bedarfsmenge von V; sein, also

X1 4 X+ X3 =b,=5.
Analog gilt:
Xig+ Xoa + X320 =0, =9, (4.2)
X1z + Yoz + Xz3 =b3 =9,
Xyt Xog + Xgy=by=7.
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Alle Liefermengen x;; sind groBer oder mindestens gleich null. Wird von E; nach
¥, die Menge x, , transportiert, so entstehen ¢, - x;; = 7 - x;; Transportkosteneinhei-
ten (100 M sei eine Transportkosteneinheit). Fiir den Transport der Menge x;; von
E; nach V; werden ¢;; - x;; Transportkosteneinheiten bendtigt. Die Gesamttransport-
kosten Z ergeben sich als Summe aller Einzelkosten. Also gilt:

Z = €1y Xy1F CraXpa o F Gy X33+ Caq X3y “43)

Die im Verteilungsplan angegebenen x;; sind so zu bestimmen, daB die Kostenfunk-
tion Z nach (4.3) als Zielfunktion unter Beriicksichtigung der Nebenbedingungen
(4.1) und (4.2) ein Minimum annimmt. Das mathematische Modell des angefiihrten
Beispiels hat damit zusammengefaB3t die folgende Form:

ZF: Z =Tx11 + 8xy5 + 5x15 + 3x14 + 2X31 + 4% + 5Xa3 + Ixoy + 6X3; + 3x3,
+ 1x35 + 2x3, - min;

NB: X111 X19+ X153+ Xi4 =11,
+ Xa1 + X2+ Xoz + Xay =11,

+ X3+ Xzo+ X33+ X34 = 8,

X11 + Xo1 + X31 =3,

X192 + Xz + X32 =9,

X13 + Xa3 + X33 =9,

X14 + Xo4 + x4 = 7,

xy = 0.

4.4)

Werden die allgemeinen Koeffizienten ¢;;, a; und b; benutzt, so folgt unter Verwen-
dung der Summenschreibweise:

3 4

ZF:  Z=2 X c¢;-xy—min;
=1 =1
4
NB: Dxy=a;,i=1,23; (4.5)
i=t

3
Dxy=b;,j=1,2,3,4;
i=1

x; = 0.

Da alle Elemente der Koeffizientenmatrix der Nebenbedingungen (4.4) die Werte 0
oder 1 annehmen und in jeder Spalte dieser Matrix nur zwei Werte gleich 1 und die
restlichen gleich 0 sind, wird der besondere Aufbau eines Transportproblems als
lineares Optimierungsmodell deutlich. SchlieBlich ist irgendeine Nebenbedingung von
(4.4) eine Linearkombination der restlichen; sie kann also — ohne damit die Lésungs-
mannigfaltigkeit einzuschridnken — unberiicksichtigt bleiben. So entsteht z.B. die
7. Gleichung aus (4.4), wenn die 1., 2. und 3. Gleichung addiert und davon die 4., 5.
und 6. Gleichung subtrahiert werden. Das lineare Optimierungsmodell (4.4) umfaft
also 3+ 4 — 1 = 6 Nebenbedingungen mit 3 - 4 = 12 Unbekannten x;;.

8  Seiffart, Optimierung
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Allgemeine Darstellung

Von den m Erzeugern E,, ..., E,, erzeugt jeder wihrend einer bestimmten Zeit der
Reihe nach ein Produkt gleicher Qualitit von ay, ..., a,, Produktionseinheiten. Wih-
rend dieser Zeit bendtigen die n Verbraucher Vi, ..., V, der Reihe nach b,, ..., b,
Einheiten dieses Produktes. Zu den Voraussetzungen ,,gleiche Qualitat und ,,feste
Zeitdauer* wird die Voraussetzung ,,Gesamterzeugung gleich Gesamtverbrauch® hin-
zugefiigt, d.h., es gilt die folgende Gleichung:

m n
a,= 2 b,.
i=1 j=1
Es sind ferner die Transporteinheitskosten ¢;; (i = 1, ..., m; j = 1, ..., n) gegeben, die
zum Transport einer Einheit des Produktes vom Erzeuger E; zum Verbraucher V;
bendtigt werden. In der Tabelle 4.3 sind diese eingetragen.

Gesucht ist ein Transportplan, nach dem jeder Verbraucher seine geforderten
Mengen unter Beriicksichtigung minimaler Gesamttransportkosten erhilt.

Tabelle 4.3
e oV o Va
E, Ci1 | G2 | Cin a,
E, Coy | Cop | Can as
Ey | Cor | Cua | = | Cun | @u
m n
b, by by Zas = Zbi

Die einzelnen noch zu bestimmenden Transportmengen werden — wie bereits am
Beispiel erldutert — mit x;; bezeichnet (i = 1, ..., m; j = 1, ..., n), und ein allgemeiner
Verteilungsplan kann nach Tabelle 4.4 gegeben werden:

Tabelle 4.4

v V, -V,
E, X11 | X12 | Xin a
E, Xo1 | X2 | Xon a,
Em Xm1 | Xme o Xmn a,

b, by w b,
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Fiir die Zielfunktion und die Nebenbedingungen gelten die folgenden Gleichungen

m n
ZF:  Z=2 2 ¢;x, - min;

i=1 j=1

n
NB: Dxy=a, i=1..,m (4.6)
j=1

m
2xiy=by, j=1,...nm
§=1

Xij =0,
oder ausfiihrlich:

ZF: Z=ci 1 X+ Cp X+ o “++ Cpp Xpn = min;
NB: Xi1+ X+ 0+ X =a,
Xpy F Xop F o Xpn = das,

Xm1teXpe + ot Xpn = A,

X11 + Xy et Xy =b,

Xig + Xop + Xno = b,

Xin + Xon + Xun = bn.

x; = 0.
(4.7

Wiederum kann eine Gleichung der Nebenbedingungen weggelassen werden, da sie
sich, wie im Beispiel angedeutet, aus den restlichen Gleichungen (4.7) linear kombi-
nieren laBt. Daf die restlichen linear unabhéngig sind, wird im folgenden Abschnitt
gezeigt. Ein allgemeines Transportproblem mit m Erzeugern E; und n Verbrauchern
V; ist somit auf ein lineares Optimierungsmodell mit m - n nicht negativen Verander-
lichen und m + n— 1 Gleichungen als Nebenbedingungen zuriickzufiithren. Dabei
haben die Nebenbedingungen einen speziellen Aufbau. Wird der zur Verdnderlichen
x;; gehdrende Spaltenvektor der Koeffizientenmatrix von (4.7) mit p() bezeichnet, so
sind alle Komponenten von pt# bis auf die i-te und (m + j)-te gleich null, und die
beiden von Null verschiedenen Komponenten sind gleich 1.

4.1.2.  Losungsalgorithmen zum Transportproblem

Grundlagen

Zum besseren Verstindnis der folgenden Losungsmoglichkeiten werden zunéchst
einige Sitze zum Transportproblem angefiihrt.

Werden die Verdnderlichen x;; zu der Matrix X = [x;;] und die Transporteinheits-
kosten ¢;; zu der Matrix C = [c;;] zusammengefaBt, so gelten die folgenden Sitze:

g%
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Satz 4.1: Eine Losung des Transportproblems existiert immer.
. P 2 . , a; - b; .
Beweis: Wird 3 a; = 3' b; = a gesetzt, so ist X = [x;;] mit x;; = '—a—’- =0 eine

i=1 i=1
Losung (i=1,...,m; j= 1, ..., n), denn es gilt:

& L oab a; 2 a
th_1=2"’=~l—2b;=az;=%
j=1

j=1 a a j=1

m m

ab, a
le].z szi'bI:bi'
i=1 a a

=1

Damit ist der Beweis erbracht, da alle geforderten Bedingungen erfiillt sind. m

Satz 4.2: Eine Liosung mit hochstens m + n — 1 positiven.x;; existiert immer.

Beweis: Zum Beweis wird die ,,Nordwestecken-Regel (NWR) benutzt. Diese
Regel wurde von Dantzig aufgestellt und ist von Charnes und Cooper unter diesem
Namen eingefiihrt worden. Eine Losung wird nach der NWR folgendermaBen auf-
gebaut:

In der Losungsmatrix wird in der linken oberen Ecke mit x,, als erster Variablen
begonnen, die als Basisvariable aufgefaBt wird. Es wird x,, = min (a,, b,) gesetzt
und in den Verteilungsplan eingetragen. Dabei konnen die drei folgenden Moglich-
keiten auftreten:

1. Wenn a, < b, ist, wird allen anderen Variablen in der 1. Zeile der Wert null
gegeben; sie werden als Nichtbasisvariable aufgefaBt und nicht in den Verteilungsplan
eingetragen. Die 1. Zeile wird von den weiteren Betrachtungen ausgeschlossen.

2. Wenn a, > b, ist, werden dagegen alle restlichen Variablen in der 1. Spalte gleich
null gesetzt und ebenfalls als Nichtbasisvariable nicht in den Verteilungsplan ein-
getragen. Die 1. Spalte wird von den weiteren Betrachtungen ausgeschlossen.

3. Wenn schlieBlich a, = b, ist, werden entweder alle restlichen Variablen der
1. Zeile oder der 1. Spalte gleich null gesetzt, als Nichtbasisvariable aufgefaBt und nicht
in den Verteilungsplan eingetragen. Die entsprechende Zeile oder Spalte wird von den
weiteren Betrachtungen ausgeschlossen. Liegt nur noch eine Zeile, aber mehrere Spal-
ten vor, dann ist eine Spalte zu streichen. Liegt dagegen nur noch eine Spalte, aber
mehrere Zeilen vor, so ist eine Zeile zu streichen.

AnschlieBend wird in allen drei Fillen

a, durch @, — x;; = @, — min (a,, b;) und
b, durch b, — x;; = b, — min (a,, b,) ersetzt.

Die Berechnungen beginnen erneut in der NW-Ecke der reduzierten Losungsmatrix
und werden solange wiederholt, bis alle Variablen als Basisvariable (BV) bzw. Nicht-
basisvariable (NBV) festgelegt sind. Im ganzen werden m + n — 1 Eintragungen vor-
genommen. Falls einer der m + n — 1 Werte null ist, so ist diese Null unbedingt ein-
zutragen, da diese Null eine BV ist, die von den NBV zu unterscheiden ist.

Nach dieser Regel werden genau m + n — 1 Variable ausgewihlt, denn diese An-
zahl stimmt mit der Anzahl der Zeilen und Spalten iiberein, wenn von ihr 1 subtrahiert
wird, da bei dem letzten Schritt sowohl die Spalte als auch die Zeile gestrichen wird.
Damit ist Satz 4.2 bewiesen. ®

\
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Wird die NWR auf das Beispiel angewendet, so entstehen der Reihe nach die inden
folgenden Matrizen eingetragenen Losungskomponenten:

rs 111 6
X = 1
8
5997
rse 760
X = 11
i 1s
5997
03
rs6 760
X=| 3 1t 8 (4.8)
L 18
5997
03
0
[se 60
X=| 38 [1180
| 8
599
031
0
56 11
X, = 38 11
4.9
17 8 “9)
5997

Die Matrix X, aus (4.9) ist die sich nach der NWR ergebende Ausgangslgsung.

Satz 4.3: Eine Losung X = [x;;] ist dann und nur dann optimale Losung eines Trans- S.4.3
portproblems mit der Kostenmatrix C= [c;;], wenn X optimale Losung des gleichen
Transportproblems, aber mit der Kostenmatrix

D = [dyj] = [ci; + pi + 4i]
ist, wobei p;, q; beliebige Zahlen sind. Die Matrizen C und D heiflen dquivalent.
Beweis: Die Zielfunktion zur Kostenmatrix D = [d;;] wird mit Z* und die zur
Kostenmatrix C mit Z bezeichnet.
m n
ZvX) = 2; 21' dixy= 2 ey + pi+ gl xy
i=1j= i g

= 2 ZCU X+ 2 Zpixi;'"r S Zgxy
i J i j g

= 2 2051 Xy + ZP:' (inj) + qu(zxﬁ)
1] J 12 J J 7

= 2 ZC’M Xy + szai + Z‘IJbi'
1 J 1 J



118 4. Spezielle lineare Optimierungsprobleme

Der Ausdruck Z pidi + 3 q;b; ist konstant (unabhanglg von X) und wird mit ¢

bezeichnet. Es gllt also
ZH(X)=Z(X) + c.

Damit ist gezeigt, daB3 die Zielfunktionen Z und Z* sich fiir jede beliebige Losung X
nur um den gleichen konstanten Faktor ¢ unterscheiden, also:

Ist X zur Kostenmatrix [c;;] optimal, so ist X auch zur Kostenmatrix [d;;] optimal
und umgekehrt. m

Auf Grund dieses Satzes kann folgendes Vorgehen bei der Losung gewéhlt wer-
den. Die Matrix [c;;] ist in eine solche Matrix [d;;] umzuformen, dal unmittelbar eine
optimale Losung aus der Matrix [d;;] abgelesen werden kann. Damit ist die auf diese
Weise gefundene Losung ein gesuchter optimaler Transportplan zur Ausgangs-
matrix [c;;].

Die angedeutete Umwandlung der Matrix [¢;;] in die gewiinschte Matrix [d;;] wird
durch mehrere Iterationsschritte vollzogen. Aus diesem Grunde wird die Ausgangs-
matrix C = [¢;;] mit Cy = (C = [¢;;]) = [c;;°] bezeichnet. Grundlage fiir die einzelnen
Iterationen bilden die zuldssigen Basislosungen, da nach dem Simplextheorem das
Optimum an einer zuldssigen Basislosung angenommen wird.

Es gibt eine Reihe von Methoden, die zu einer zuldssigen Basislosung (genau
m -+ n — 1 Basisvariable) fiihren.

Eine erste Moglichkeit, eine ZBL zu ermitteln, ist die bereits erlauterte NWR. Nach
dieser Regel werden genau m 4 n — 1 Variable als Basisvariable ausgewihlt. Es bleibt
noch zu zeigen, dafl die zu diesen Variablen gehdrenden Vektoren p™¥) auch linear
unabhingig sind. Rechentechnisch ist diese ZBL nicht sehr praktisch, da die Basis-
variablen unter Nichtbeachtung der Werte der Koeffizienten der Zielfunktion ge-
wihlt werden. Die Anzahl der Iterationen zur Ermittlung einer optimalen ZBL kann
erheblich reduziert werden, wenn zur Auswahl der Basisvariablen diese Kostenkoef-
fizienten beriicksichtigt werden.

Im folgenden werden noch zwei weitere Methoden erldutert, die unter besonderer
Beriicksichtigung der Kostenmatrix zur Ermittlung einer zuldssigen Basislosungfiihren.

Die Methode des kleinsten Elementes: Bei der Methode des kleinsten Elementes
wird das kleinste Element der Kostenmatrix C = [¢;;] betrachtet. Wird dieses Ele-
ment mit ¢,; bezeichnet, so gilt:

c~mm{c,,} i=1,..,m; j=1,..,n
(,)

(r, s) kann immer eindeutig bestimmt werden, wenn zusitzlich gefordert wird, daB
bei mehreren kleinsten Elementen das Element bevorzugt wird, bei dem der erste
Index am kleinsten ist. AnschlieBend wird

X;s = min (ara bx)
gesetzt und als Basisvariable eingetragen. Genau wie bei der NWR wird auch hier

a, durch a, — x,,=a, — min (a,, b,)
und
b, durch b, — x,,= b, — min (a,, b,)
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ersetzt. Ist min (a,, by) = a, bzw. by, so wird die Zeile r bzw. Spalte s der Matrix [c;;]
von den weiteren Betrachtungen ausgeschlossen. Gilt a, = b, so wird entweder die
Zeile oder die Spalte ausgeschlossen. Liegt nur noch eine Zeile, aber mehrere Spalten
vor, dann ist eine Spalte zu streichen. Liegt dagegen nur noch eine Spalte, aber meh-
rere Zeilen vor, so ist eine Zeile zu streichen. Die Berechnungen beginnen erneut mit
der reduzierten Losungsmatrix und werden solange wiederholt, bis alle Variablen
festgelegt sind.

Auch hier werden wie bei der NWR genau m + n — 1 Eintragungen vorgenom-
men. Wird diese Methode auf das Beispiel aus 4.1.1. angewendet, so entstehen der
Reihe nach die in die Matrizen (4.10) bis (4.11) eingetragenen Losungskomponenten.

78 5 37 r 111
c=|2459]| x= 11
6-3-(1)-2 | | 8 ] so
5997
1
7 8537 r 111
|
c=| @459 X=|5 11 6
| 8 ]so
6—3-1-2 3997
0 1
785 @3) 7 r 7711 4 (4.10)
|
C=|(2459 X=|3 11 6
| | L s J]so
6-3-1-2 3997
0 10
78 537 r 7111 4
i |
C=| 2-(4-5-9 X=| 356 11 60
| L 8 ]so
6—3—1-2 5997
0310
78 () 3] 31771
c=|24509 56 1
631 2] Xo= s |s @11
5997

In (4.11) ist der vollstindige Losungsplan X, angegeben.

Die Vogelsche Approximationsmethode

Von jeder Reihe (Zeile oder Spalte) der Kostenmatrix C wird die Differenz der zwei
kleinsten Elemente gebildet. AnschlieBend wird von einer Reihe mit der groBten Diffe-
renz das kleinste Element bestimmt. Ohne Beschrinkung der Allgemeinheit kann an-
genommen werden, da3 das Element ¢,, der Matrix C diese Eigenschaften besitzt.
AnschlieBend wird wie bei der NWR verfahren.

Es wird x;; = min (a, b,) gesetzt und in den Verteilungsplan eingetragen. Anschlie-
Bend wird wieder eine Reihe der Matrix von den weiteren Betrachtungen ausgeschlos-
sen und a; bzw. b, durch a;, — x;; bzw. b, — x,, ersetzt. Die Berechnungen beginnen
erneut mit den noch nicht ausgeschlossenen Elementen der Koeffizientenmatrix und
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werden so lange wiederholt, bis alle Variablen festgelegt sind. Ist in einer Reihe nur
noch ein Element zu bcriicksichtigen so wird die diesem Element entsprechende
Losungskomponente vorrngiga behandelt. Auch hier werden wie bei der NWR genau
m + n — 1 Eintragungen vorgenommen.

Diese Approximationsmethode wird ebenfalls am Belsplel aus 4.1.1. erlautert:

4141 ;

2[ 7 853 11

:2[(2)459} X=[5 JHG 4.12)
1l 6312 8

5997
0

Von jeder Reihe der Matrix C sind die Differenzen der zwei kleinsten Elemente links
und oberhalb der Matrix in (4.12) vermerkt. Im Beispiel kann sowohl die 1. als auch
die 3. Spalte als Reihe der groBten Differenz gewahlt werden. Die 1. Spalte wird bevor-
zugt. Das kleinste Element ¢,; = 2 ist in C durch Klammern besonders markiert. Die
dem c,, entsprechende Variable x,, der Matrix X wird optimal gewahlt und einge-
tragen, also Xx,; = min (a,, ;) = min (11,5) = 5. Die 1. Spalte wird gestrichen und
die Berechnungen werden wiederholt. In (4.13) sind die Eintragungen des nach-
folgenden analogen Schrittes vorgenommen.

141
2178 53 1

C=1| 2459 X=|5 6 (4.13)
1Le32 8 80

0997
1

In (4.14) — (4.16) sind die restlichen Berechnungen der Reihe nach eingetragen:

406
21 78 50) . 7 711 4
c=1| 24509 X=| s 6 (4.14)
6-3-1-2 8 0
0917
0
40
3 7853 774
c=1 2(4)59 X=| 56 60 (4.15)
|
6-3-1-2 8 0
0910
3
7853 317111
C=| 2459 X,=| 56 1 (4.16)
6312 8 8

5997
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In (4.16) ist mit X, die endgiiltige Approximationslosung bezeichnet. Genau 3 + 4 — 1
= 6 Variable sind groBer als null.

Durch die drei angefithrten Methoden wird jeweils eine Basislosung erhalten. Um
diesen Sachverhalt zu beweisen, werden folgende Festlegungen getroffen:

Eine beliebige Menge von Losungskomponenten heifle Kombination. Eine Folge
von Losungskomponenten der Form

Xiyirs Xiyigs Xiyjys Xigjas o
soll eine Kette heilen. Eine Kette heif3t ein Zyklus, wenn sie die Gestalt

Xijis Xirgys Xigjas +ees Xig> Xigja

hat. Eine Kombination heiit zyklisch, wenn sie wenigstens einen Zyklus enthilt,
andernfalls heiBt sie nichtzyklisch.

Satz 4.4: Jede Menge von Vektoren p'“) ist dann und nur dann linear abhdngig, wenn
die dazu gehorende Kombination zyklisch ist. (p%) ist der Spaltenvektor der Neben-
bedingungen von (4.7), der zur Variablen x;; gehort).

Beweis: Wenn die Menge p®/) linear abhéngig ist, dann existiert eine nichttriviale
Linearkombination, die den Nullvektor ergibt. pt:/1) sei ohne Beschrinkung der All-
gemeinheit ein Vektor, dessen Koeffizient der Linearkombination von null verschie-
den ist. Da der Nullvektor als Linearkombination entstehen soll, mufl der Vektor
pti’z) mit nichtverschwindenden Koeffizienten zur Linearkombination gehdren.
Ebenso mufB noch ein Vektor p‘+») mit nichtverschwindenden Koeffizienten dazu
gehéren, da die (m + j,)-te Komponente von pt2) von null verschieden ist. Es kann
somit eine Folge von Vektoren konstruiert werden:

P(i.i‘)’ p<-',i.)’ p(-',i,)’

Andererseits ist die Anzahl der Vektoren endlich, d.h., es muB der Vektor p¢:i) ent-
halten sein. Die dazugehorige Menge der Komponenten x;; ist aber zyklisch.

Ist andererseits die Kombination, die zur Vektormenge pt/) gehort, zyklisch, so
sind die entsprechenden Vektoren dieser Kombination linear abhingig, denn es kann
sofort eine nichttriviale Linearkombination angegeben werden, wenn die Koeffi-
zienten der Linearkombination, die dem Zyklus entsprechen, abwechselnd +1 oder
—1 gesetzt werden. B

Satz 4.5: Jede Menge von m + n Lisungskomponenten ist zyklisch.
Beweis: Da alle m + n Vektoren pti) zu dem Vektor mit den Komponenten

m n
S S
=1, =1, ., —1; +1,..,+1

orthogonal sind, folgt, daB alle Vektoren einem (m + n — 1)-dimensionalen Raum an-
gehoren, d.h., sie sind linear abhéngig. Also ist die Menge der m + n Losungskom-
ponenten zyklisch. m

Weiterhin folgt aus der NWR unmittelbar, daf3 die Kombination der m + n — 1
Basisvariablen nicht zyklisch ist, also sind die dazugehérigen Vektoren linear unab-
héngig und bilden damit eine Basis im (m + n)-dimensionalen Raum.

S.4.4

S.4.5
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Damit sind alle Basen des (m + n)-dimensionalen Raumes des vorliegenden allge-
meinen Transportproblems und die nichtzyklischen Mengen aus m + n— 1 Lésungs-
komponenten einander umkehrbar eindeutig zugeordnet, und es lassen sich alle Eigen-
schaften der Basen mehrdimensionaler Riume aufdiese nichtzyklischen Kombinationen
mit m + n — 1 Losungskomponenten iibertragen. Es sollen hier zwei wichtige Eigen-
schaften genannt werden:

Eigenschaft 1:

K, sei eine nichtzyklische Kombination mit m + n — 1 Elementen, und x;; sei
nicht in ihr enthalten. Dann enthilt die Kombination K, die aus K; durch Hinzu-
fiigen von x;; erhalten wird, einen und nur einen Zyklus K.

Eigenschaft 2:

Ist X;; = x;; und X;; € K und wird X;; aus K, gestrichen, so ist die daraus entstehende
Kombination von m + n — 1 Elementen wieder nichtzyklisch.

Die Potentialmethode als Losungsalgorithmus

Nachdem eine ZBL X, mit genau m 4 n — 1 BV und die Kostenmatrix C, des
Transportproblems vorliegt, kann der Losungsalgorithmus mit der Ausfithrung der
1. Iteration begonnen werden.

Um nicht die erste, sondern eine beliebige Iteration allgemein zu erldutern, wird
angenommen, daB die k-te Iteration bereits durchgefiihrt ist. Nach der k-ten Itera-
tion bereits liegen die folgenden Matrizen vor:

1. eine zuléssige Basislosung X, = [x5] (geriau m + n — 1 BV),

2. eine Matrix C; = [cf}]

Diese beiden Matrizen sind der Reihe nach durch k-malige Umformung infolge der
bereits ausgefiihrten k Iterationen aus X, und C, hervorgegangen. k = 0 zeigt an, dal
noch keine Iteration durchgefiihrt ist.

Durchfithrung der (k + 1)-ten Iteration:

Schritt 1: Berechnung der Matrix Cy4; = [cf»‘]-“];

a) Zuerst werden m Zahlen pf und n Zahlen q;” aus folgendem Gleichungssystem
berechnet:

pErgi+ =0 fur ij mit x5 BV. (4.17)

Dieses Gleichungssystem besteht aus m + n — 1 linearen inhomogenen Gleichungen
mit m + n Unbekannten. Der Rang der Koeffizientenmatrix stimmt mit dem Rang
der erweiterten Matrix iiberein und ist gleich m + n — 1, denn die Koeffizienten-
matrix ist gleich der Transponierten der Matrix der Basisvektoren. Das Gleichungs-
system (4.17) wird demnach durch einfach unendlich viele Losungen erfiillt. Fiir die
nachfolgende Umformung ist eine einzige Losung ausreichend. Diese Lésung wird
erhalten, indem ohne Beschrinkung der Allgemeinheit p* = 0 gesetzt wird. Die restli-
chen Losungskomponenten sind duflerst praktisch zu berechnen. Diese Berechnung
wird am nachfolgenden Beispiel ausfiihrlich demonstriert.

b) Nach der Losung des Gleichungssystems (4.17) wird die Matrix C;, berechnet.
Es gilt:

Cin= [C{Fjﬂj = f0'5j+pf°+ q;t .
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Die Matrix Cj,, hat die Eigenschaft, daB alle ihre Elemente gleich null sind, die den
Basisvariablen der Losung X entsprechen.

¢) Die Losungsmatrix X, wird mit Hilfe der Matrix Cj,, auf Optimalitit getestet.
Mit Z,,, wird die Zielfunktion bezeichnet, die der Matrix C., entspricht. Es gilt
Zy(X,) = 0. Ist min (™) = k7' =0, so folgt, daB X, optimalzu Z,.,(X,) ist, und
damit folgt nach Satz 4.3, daB X, eine optimale Losung ist. Ist cf;;“ <0, sokannnach
Schritt 2 eine zuldssige Basislosung (ZBL) X, aufgestellt werden, fiir die

Zy(Xpe1) = Zy(Xp)

gilt.

Schritt 2: Berechnung von X,

Es wird x};q = 0, gesetzt. Anschliefend werden die urspriinglichen BV neu berech-
net. Alle anderen Elemente von X; bleiben nach wie vor null.
Im nachfolgenden Beispiel ist die praktische Berechnung der BV ersichtlich.

Wird die so entstehende Losung mit X, = [x}] bezeichnet, so gilt
) Zk«l(ik) = Czlf;l . er

Damit der Funktionswert moglichst klein wird, ist @, so groB wie moglich zu wihlen,
da c§" < 0 ist. Andererseits kann aber O, nicht groBer als

min {xz';} =xk
fur 7, j mit
=xk-0,
gewihlt werden. Wird 0, = xfs in die Losung X eingesetzt, so entsteht die Losung
Xj+1. Nach der Eigenschaft 2 ist X, wieder eine Basislosung, d.h., die m +n—1BV
bilden keine zyklische Kombination. Es gilt:

Zk+l(xk+l) = C;;-I . xlrcs .
Nach Satz 4.3 gilt weiter

ZO(chvl) = ZO(Xk) + L’;;lxlrc; .

Mit der Erstellung der Matrizen X, und C,,, ist die (k + 1)-te Iteration beendet. Im
folgenden wird das Beispiel aus Tabelle 4.1 mit dem angegebenen Iterationsalgorith-
mus gelost. Die Kostenmatrix C, und die nach der NWR gebildete ZBL X, in (4.9)
haben die folgende Form:

e 5 37n° 56 . .11
C=|2 @O 9 |p Xo= 38 .11 (4.18)

6 3 (1) 2 ]p .. 17] 8

9" 92" q5° q4° 5997

Die Gesamttransportkosten werden mit Z, bezeichnet:
Zy(X,) = 150.



124 4. Spezielle lineare Optimierungsprobleme

In der Matrix X, sind nur die m + n — 1 BV eingetragen. Die den BV entsprechenden
Elemente der Matrix C, sind durch Klammern hervorgehoben.

1. Iteration:

Schritt 1: Die Matrix C, wird zu einer Matrix C, umgeformt, indem zeilen- und
spaltenweise der Reihe nach die noch zu bestimmenden Zahlen p,°, p.°, p,° und ¢,°,
g-°, q5°, q,° addiert werden. Diese Zahlen sind zusitzlich rechts und unterhalb der
Matrix C, in (4.18) eingetragen. Es gilt also:

T4+p+q:" 8+p°+q." S+p°+g° 3+p°+4°
Ci=[2+4p"+q° 4+p°+q" 5+p"+4° 9+p"+4q° |-
6+p°+q" 3+p°+ " 14+p°+ ¢ 2+p°+4
Die Zahlen p,° und ¢,° werden nun so bestimmt, daB alle Elemente von C, gleich null
gesetzt werden, die den BV von X, entsprechen:
p° +q,° =-17,
P’ +q5° = -8,
P’ + ¢° =—4,
P’ + ¢5° = -5,
ps° +:q5° =-1,
ps° +q°=—-2.

Die Koeffizientenmatrix von (4.19) ist gleich der Transponierten zur Matrix der ent-
sprechenden Basisvektoren, hat also den Rang 6. Wird p,° = 0 gesetzt, so folgt:

(4.19)

=0, "= -1,
P =4, g = -8,
p’=8, g:'= -9,
q,°=—10.
Diese p; und g; sind ohne erheblichen praktischen Rechenaufwand auch folgender-
mafen zu ermitteln:

Es wird p,° = 0 gesetzt. AnschlieBend werden die ¢,° derjenigen Spalten von C,, die
in der 1. Zeile ein ,,Klammerelement* besitzen, so bestimmt, daf3 die den ,,Klammer-
elementen‘* entsprechenden Elemente der zu berechnenden Matrix C; gleich null
werden. Es entsteht:

o ® 5 3 n°=0
C = 2 “) 5) 9
6 3 n @

Anschliefend werden die p;° derjenigen Zeilen analog bestimmt, die in den zuvor
betrachteten Spalten ,,Klammerelemente* besitzen. Dieses Vorgehen wird solange
wiederholt, bis alle Zahlen p; und g; ermittelt worden sind.
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Es entstehen die in den Matrizen (4.20) angegebenen Ergebnisse:

ra@ ® 5 370
CG=| 2 @ ) 9 |+4
6 3 (1) @]

-7 -8
ra@ @® 5 370
C=| 2 &4 & 9 |+4 (4.20)
6 3 (1) @ ]
-7 -8 -9

) ® 5 370
G=| 2 @ ¢ 9 |+4
6 3 (1) (2 |+8

-7 -8 -9
[ ® 5 370
C=| 2 @4 (5 9 |+4 4.21)
6 3 () ) ]+8
-7 -8 =9 —-10

In (4.21) sind schlieBlich die gesuchten Zahlen vollstdndig angegeben. Die Matrix C,
nimmt damit die folgende Gestalt an:

0 0 —4 —7
C = [—1 0 0 3 } (4.22)
73 0 0

Die Matrizen C, und C, sind nach Satz 3 dquivalent. Wird die Zielfunktion der
Matrix C, mit Z; bezeichnet, so gilt: !
Zi(Xy) = 0.
Die Gesamttransportkosten der Losung X, bezogen auf die dquivalente Matrix C,
betragen null. C, enthilt die drei negativen Elemente —1, —4, —7.
Schritt 2: Es wird die Variable x;;, die ‘dem Kleinsten Element —7 entspricht, gleich
0, gesetzt; also x?, = 6.
Anschliefend werden die Basisvariablen von X, neu berechnet. Es entsteht die
Losung X, mit
5 6—0, - 0, 11
Xx=|- 3+6, 8-0, - 11 (4.23)
1+60, 7—6, 1 3
5 9 9 7
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Zur Berechnung der Losung X, kann folgendes Vorgehen gewihlt werden: Man
geht von X, aus; an die Stelle x9, wird @, gesetzt. In dieser nunmehr vorliegenden
zyklischen Kombination wird der eindeutige Zyklus bestimmt, indem alle Spalten, die
nur ein Element der Kombination enthalten, gestrichen werden. AnschlieBend streicht
man alle Zeilen, die von der reduzierten Matrix X, nur noch ein Element der Kombi-
nation enthalten. Diese Reduzierung wird solange wiederholt, bis keine Reihe mehr
zu streichen ist. Die nicht mehr reduzierbaren Elemente der Kombination bilden den
Zyklus. Der Zyklus ist nach der Streichung der 1. Spalte der Matrix X, in (4.24) ein-

gezeichnet.
£ O\
5 <6 LN
X, = | 3\)> : . (4.24)
[ 14 7
| ~—r

Die Durchlaufrichtung des Zyklus ist bedeutungslos. Wenn die Elemente des
Zyklus der Reihe nach durchnumeriert werden, indem bei @, als 1. Element be-
gonnen wird, so entsteht aus X, die Matrix X,, wenn von allen geraden Zyklusele-
menten O, subtrahiert und zu allen ungeraden Elementen (auBer dem 1. Element)
0, addiert wird.

Die Matrix X, entsteht aus X,, wenn 0, gleich dem Minimum der geraden Ele-
mente im Zyklus gesetzt wird:

0, = min {6, 8,7} = 6. (4.25)
Wird O, = 6 in X, eingesetzt, so entsteht die in (4.26) angegebene Matrix X,:
5. -6711
X,=[-92-J11, (4.26)
711 8 '
5997

Es gilt:

Z(X))=—-7-6=—-42.
Nach Satz 3 gilt:

Z(X;) =150 — 42 = 108.

Die Probe bestitigt diese Kosten. Damit ist die 1. Iteration beendet.

Im Zyklus der Matrix X, wird das kleinste gerade Element x,, gleich null, wenn
Oy = 6 gesetzt wird; es wird aus dem Zyklus herausgenommen und wird NBV und
nicht mehr eingetragen. Die restlichen m + n — 1 Elemente sind zyklenfrei und bilden
die neuen BV. Falls im allgemeinen Fall mehrere gerade Elemente gleich null werden,
wenn der groBtmogliche Wert fiir ©, in X, eingesetzt wird, so darf nur ein gerades
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Element, welches null ist, aus dem Zyklus als neue NBV herausgenommen werden.
Mit den restlichen Nullelementen im Zyklus wird als BV so weitergerechnet, als ob
sie von null verschieden sind.?)

Die 1. und die weiteren Iterationen zusammengestellt liefern folgende Ergebnisse:

(M 8 5 3710 5 6-0, 0, 11
CG=[2 @ & 9 |+, X= 3+6, 8—0, 11,
L6 3 (1) ( |+8 1+6, 7-0,| 8
-7 -8 -9 —10 5 9 9 7
e e .
X, = 38 ;
L 7]
Zy(X,) = 150.
1. Iteration:
[© 0 —4 (-7 0 (5-0, 6+6,]11
C=|-1 @0 © 3 |-7, X,=| 6, 9 2-6, 11,
L 7 3 0 (©]|-7 ] 7+0, 1-6,| 8
o7 7 17 5 9 9 7
s 6
X, = 9 2 ;
Y

min (c) = cly= -7 < 0;
6,=6,
Zy(X;) = 150 — 42 = 108.
2. Iteration:

© 7 3 010 4 7711
8) © (0 3 |8, X,=1[19 1 11,
3 0 0 |8 8§ |8
—8 -8 0 5997
0, 7111
1+@2 9 1-6, 11
8 ] 8
9 7
min (¢? =c21:—8<0;
@1=1,
Zy(Xy) =108 — 8- 1
= 100.

1) Wenn mehrere gerade Elemente im Zyklus von X gleich null werden, so ist das Transport-
problem entartet (vgl. SchluB des Abschnittes).
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3. Iteration:

(0 -1 (=5 ©] O 3 1 7711
C=1|(0) (0 0 11 0, Xz=[29 11,
8 3 © 8 |-5 ‘ 8 8
0 0 5 0 5997
306, 1+60; 7711
)_{3=[2+03 9—93 j'll;
0, 8— 0, 8
5 9 9 7
min (¢}) = ¢fs = -5 <0,
6,=1,

Zy(X3) =100 — 5 = 95.
4. Iteration:

0 -1 (0 @71 0 4 77111
C4=[(O) © 5 llJ—Z, X4=[5 6 }11
0 3 8

9

3 (-2 0 3 5
2 2 0 0 5 9 7
min (cfj) = ¢ = -2 < 0;

0;=3,
Zy(X,)=95—6=189.
5. Iteration:
2100
C=|0039];
500 3
aus min (¢)=0=0
Der Entartungsfall

Ein allgemeines lineares Optimierungsproblem ist entartet; wenn eine ZBL vor-
handen ist, in der mindestens eine BV gleich null ist. Ein Transportproblem ist ent-
artet, wenn eine ZBL existiert, in der nicht alle m + n — 1 BV von null verschieden
sind. Dieser Entartungsfall kann vermieden werden, wenn das ,,gestorte* Transport-
problem (4.27) betrachtet wird, welches aus (4.5) durch Einfithrung eines ¢ > 0 her-
vorgeht.

folgt, X, ist Optimallosung; Zy(X,) = 89.

4.27)




4.1. Transportprobleme 129

Fiir ¢ = 0 entsteht das Ausgangsproblem. Es kann gezeigt werden, daB in jeder ZBL
alle m + n — 1 BV groBer als null sind, d.h. keine zuldssige BL entartet ist, wenn

0<e< L

m

gilt. Wird das gestorte Problem gelost und anschlieBend e = 0 gesetzt, so ist die erhal-
tene Losung optimal. Fiir die praktische Berechnung ist aber der Entartungsfall ohne
Bedeutung. Eine ,,e-Stérung® braucht nicht vorgenommen zu werden. Sind in dem
Zyklus der Matrix X, bei maximaler Wahl von @, mehrere Variable gleich null, so
wird nur eine von diesen BV als neue NBV gewihlt. Diese Wahl kann rein zuféllig
geschehen.

Aufgabe 4.1: Von drei Zementfabriken, die alle die gleiche Qualitét herstellen und auch die gleichen
Kapazititen von 20 t in einem bestimmten Zeitabschnitt haben, werden fiinf Betonwerke beliefert,
die in dem gleichen Zeitabschnitt den Bedarf von By: 15t, By: 11t, B3: 12t, B4: 9 t, Bs: 13 t Haben.
Die Transportkosten einer Tonne Zement von den Zementfabriken zu den Betonwerken sind in der
folgenden Tabelle gegeben:

5 |o |n |8 |s
z, 14 16 |12 4 14
Z, 13 12 10 - 15
z, 15 18 14 7 11

Wegen Straenbauarbeiten ist die Strecke von Z, nach By gesperrt. Es sind der optimale Transport-
plan und die dazugehdrenden Transportkosten zu bestimmen.

Aufgabe 4.2: Von 4 Oltanks sollen 3 groBe Heizhduser mit Heizol bzliefert werden. Der Bedarf der
Heizhduser sei 20, 30, 50 Einheiten. Die zur Verfligung stehenden Mengen seien 25, 25, 20, 30 Ein-
heiten in einem bestimmten Zeitabschnitt. Die Transportkosten pro Einheit sind in der nachstehenden
Matrix gegeben. Es ist der optimale Transportplan und die dazugehtrenden Transportkosten zu be-
rechnen.

8 12 4
10 11 5
14 13 10
9 10 3

4.1.3.  Verallgemeinerungen des Transportproblems

In den vorhergehenden Abschnitten 4.1.1. und 4.1.2. wurde das sogenannte ,,klas-
sische* Transportproblem betrachtet, indem drei bestimmte Voraussetzungen zu
Grunde gelegt wurden:

1. Gleiche Qualitdt des Transportgutes bei allen Erzeugern.

2. Alle vorgegebenen Ausgangsdaten beziehen sich auf ein fest vorgegebenes Zeit-
intervall.

9  Seiffart, Optimierung
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3. Die Gesamterzeugung ist gleich Gesamtverbrauch

Bei praktischen Problemstellungen sind diese Voraussetzungen oft nicht erfiillt. So
ist die Gesamterzeugung in einer vorgegebenen Zeitperiode im allgemeinen von dem
Gesamtverbrauch verschieden. Trotzdem lassen sich diese und dhnliche verdnderten
Probleme durch einfache Modifikationen auf das ,.klassische* Transportproblem
zuriickfiihren.

1. Wird angenommen, daf die Gesamterzeugung gréBer als der Gesamtverbrauch
ist, so kann ein scheinbarer (fiktiver) Verbraucher zunichst eingefiihrt werden, der
scheinbar die iiberschiissige Menge bezieht, die aber in Wirklichkeit gar nicht zur
Verteilung kommt, sie wird als Reservemenge bei dem einen oder anderen Erzeuger
in noch zu bestimmenden Einheiten zu lagern sein. Um die vorliegende Problemstel-
lung nicht zu erschweren, wird von eventuell anfallenden Lagerkosten abgesehen.
Liegt also ein Problem mit m Erzeugern E; (i = 1, ..., m) und n Verbrauchern V;
(j=1,...,n) vor und gilt

m n
2“5 > Eb/,
i=1 J=1

so wird ein fiktiver Verbraucher V,., eingefiihrt. Sein Bedarf b,., wird als Differenz
zwischen Gesamterzeugung und Gesamtverbrauch angesetzt, also

m n
bn+1 = Zai - be‘
i=1 j=1

Die Transportkostenkoeffizienten ¢; ,+; (i = 1, ..., m) von den einzelnen Erzeugern,
bezogen auf den fiktiven Verbraucher, werden alle gleich null gesetzt. Das muf} so

sein, weil in Wirklichkeit keine Transportkosten anfallen. Es gilt also g

v
Cignt1=0.

Das nunmehr neu entstandene Ersatzproblem mit m Erzeugern und n + 1 Verbrau-
chern ist aber ein ,,klassisches* Transportproblem und kann als solches zur Losung
gefithrt werden. An dem folgenden Beispiel wird das Vorgehen verdeutlicht:

Gegeben ist folgendes Problem
Ve Vs

E |34 2|6
E |13 4|38

53 4| 14>12

Gesamterzeugung: 14 Einheiten, Gesamtverbrauch: 12 Einheiten.
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Das Ersatzproblem lautet:

V, Vo Vs V,

E |3 4206
E {1 3 4 0]38

53 4 2| 14=14

Der Bedarf des scheinbaren Verbrauchers ist mit 2 Einheiten anzusetzen. Die auf ¥,
bezogenen Transportkoeffizienten sind alle gleich null.

Die optimale Losung dieses Ersatzproblems, die mit der Potentialmethode ermit-
telt werden kann, lautet:

.. 4 2]6
X, =

53 - -8

534 2

Die optimale Losung des Ausgangsproblems lautet damit: Der Ezeuger E; hat
4 Einheiten seiner Gesamterzeugung an den Verbraucher ¥; zu liefern, 2 Einheiten
werden von E; nicht ausgeliefert, sie werden bei dem Erzeuger E, fiir spétere Anfor-
derungen gelagert. E, hat dagegen alle 8 Erzeugungseinheiten auszuliefern.

2. Fallt bei praktischen Problemstellungen die Gesamterzeugung kleiner als der
Gesamtverbrauch aus, so wird das Optimierungsziel, Minimierung der Gesamttrans-
portkosten im allgemeinen nicht im Vordergrund stehen, da andere verteilungspoli-
tische Gesichtspunkte zu beriicksichtigen sind, um den Bedarf der Verbraucher best-
moglich abzudecken, die transportkostenméBig ungiinstig liegen. Trotzdem sind sol-
che Problemstellungen, bei denen die Verteilung nach minimalen Gesamttransport-
kosten gesucht ist, von Bedeutung, wenn z. B. Fehlmengen durch Importe abgedeckt
werden konnen oder aber die Verbraucher Zwischenlager halten, deren Gesamtlager-
kapazitit in der Regel groBer als die Gesamterzeugungsmenge ist.

Gilt also
m n
2 a; < > by,
i=1 j=t

so wird ein fiktiver Erzeuger E,,;, eingefiihrt. Seine Erzeugungsmenge a,,,, wird als
Differenz zwischen Gesamtverbrauch und Gesamterzeugung angesetzt, also

n m
Ay = ij - 2a.
j=1 i=1
Die Transportkostenkoeffizienten ¢,,.,; (j= 1, ...,n) vom fiktiven Erzeuger E,
zu den einzelnen Verbrauchern werden alle gleich null gesetzt, da in Wirklichkeit keine
Transpertkosten anfallen. Das nunmehr entstandene Ersatzproblem kann wieder
als ,,klassisches* Transportproblem gelost werden.

3. Bei manchen praktischen Transportproblemen kommen oft zusitzliche Be-
schrinkungen in der Form hinzu, dal die Anzahl der zu transportierenden Einheiten

9%
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eine vorgegebene Schranke nicht iiberschreiten darf. Durch eine einfache Modifika-
tion des Ausgangsproblems kann ein dquivalentes ,,klassisches* Ersatzproblem kon-
struiert werden, und somit kann es mit den bekannten Methoden zur Losung gefiihrt
werden. .

Gegeben sei das folgende Beispiel:

Vi Vo Vs

E |5 8 1] 18
E |8 7 5| 14

710 15| 32=32

Bei der Aufstellung des optimalen Transportproblems ist darauf zu achten, daB aus
verkehrstechnischen Griinden auf der Strecke E;V; hochstens 8 Einheiten beférdert
werden konnen. In der Tabelle4.5 ist ein modifiziertes Transportproblem angegeben,
Tabelle 4.5
Vl V2 V3

E,|5 8 1] 8
E,|5 8 M| 10
E |8 7 5| 14

710 15| 32=32

indem der Erzeuger E, in zwei Erzeuger E,, und E;, aufgegliedert wurde. E,, erzeugt
von den 18 Einheiten 8 und E,, die restlichen 10 Einheiten. E,, kann nur die Ver-
braucher ¥, und ¥, beliefern. Die Verbindung E,, — V; wurde ausgeschlossen, indem
der Transportkostenkoeffizient M hinreichend grof3 gewihlt wurde.

Die optimale Losung X, des in der Tabelle 4.5 angegebenen Problems lautet

.. 8]
X,=|7 3
77
Die optimale Losung X, bezogen auf das Ausgangsproblem, hat dann folgende Form:
7 3 8
X, = . .
077

Besteht die Forderung, daB3 die Strecken von E, zu den einzelnen Verbrauchern
z.B. nur mit 6 Einheiten befahren werden konnen, so wird entsprechend der Tabelle
4.6 ein dquivalentes Transportproblem angegeben, indem der Erzeuger E, in drei
Erzeuger E,,, E,, und E,; aufgegliedert wird. Die Erzeugungsmengen aller Ej;
(j=1,2,3) werden mit 6 Einheiten angesetzt. Bestimmte Transportkoeffizienten
werden hinreichend groB gewihlt und mit M bezeichnet, da auf diesen Transport-
wegen jeglicher Transport auszuschlieBen ist. Da E, aber nur 14 Einheiten erzeugt,
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werden die iiberzdhligen Einheiten (im Beispiel 3 -6 — 14 = 4) von einem fiktiven
Verbraucher aufgenommen, dessen Transportkoeffizienten wieder alle gleich null
gesetzt werden bis auf die Verbindung E, V,, die mit M angesetzt wird. Auf der Ver-
bindung E, ¥, darf also kein Transport stattfinden.

Tabelle 4.6
e Ve Vs Wy

18

&
oo
S
<

o o o X
(=}

Ey| M M 5
7 10 15 4

Die optimale Losung X, des modifizierten Problems lautet:

1 4 13
< 6
Xo = 6 . -
2 4
Damit hat die optimale Losung X, bezogen auf das Ausgangsproblem, folgende Form:
- 1 4 13718
Tle 6 214
7 10 15

4. Oft werden in den Erzeugungszentren mehrere Sorten von Erzeugnissen her-
gestellt. Jeder Erzeuger kann dariiber hinaus seine Produktionshohen der einzelnen
Sorten frei wéhlen (allerdings in bestimmten Kapazititsgrenzen). Die Aufgaben-
stellung wird an einem einfachen Beispiel erldutert, indem 2 Sorten jeweils mit gleicher
Qualitét eines Produktes, 2 Erzeuger und 3 Verbraucher zugrunde gelegt werden. In
der Tabelle 4.7 sind fiir das Beispiel bestimmte Zahlenwerte angegeben.

Tabelle 4.7
Vi Vo Vi
4 2 a 80
E, 3 P 3 a::}al 70} 100 ay+a=a

2 5 3 ay,

90 N
a, 80 120 @y +apza

£ 1 4 2 ay,
bl 1 b21 b31
bl 2 b22 b32
20 50 40

60 30 20
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Mit a;,. ist die maximale Produktionskapazitit der Sorte k (k = 1, 2) des Erzeugers
E; (i = 1, 2) bezeichnet. Mit b;,, ist die Bedarfsmenge der Sorte k (k = 1, 2) des Ver-
brauchers V; (j= 1, 2, 3) bezeichnet. a; (i = 1, 2) stellt die Gesamtproduktionskapa-
zitdt des Erzeugers E; dar. Es gilt fiir beide Erzeuger, daB a;, + a;; = a; ist, d.h. die
Summe der Teilkapazitaten ist nicht kleiner als die Gesamtkapazitit.

Bestimmte Zahlenwerte sind fiir a;;, b;; und a; in der Tabelle 4.7 vermerkt. Die
Transportkostenkoeffizienten eines jeden Erzeugers zu den einzelnen Verbrauchern
sind durch Doppelzeilen dargestellt, da sie im allgemeinen von Sorte zu Sorte ver-
schieden sind. Jeweils die erste Zeile beinhaltet die Kostenkoeffizienten, bezogen auf
die erste Sorte, und die zweite Zeile die Kostenkoeffizienten auf die zweite Sorte.

Die Produktionshohen der einzelnen Erzeuger E; bezogen auf die Sorte k& werden
mit aj; bezeichnet (i = 1, 2; k = 1, 2). Im einzelnen sind folgende zusatzliche Neben-
bedingungen zu beriicksichtigen:

ai1+ ais = a, = 100, a;, = ap, = 80, als = a5 =10,

a3+ ass = a, = 120, a3 = a,; =90, ajs = a5, = 80.

Die Summe der Produktionshdhen aller Sorten eines Erzeugers ist gleich der Gesamt-
kapazitdt des Erzeugers. Dabei ist zu beachten, daB die Produktionshdhe jeder ein-
zelnen Sorte die betreffende Teilkapazitit des Erzeugers nicht iibersteigt.

Die gesamte Problemstellung besteht nun in der folgenden Aufgabenstellung: Der
Verteilungsplan und die einzelnen Produktionshhen der Erzeuger sind so zu bestim-
men, daB die Gesamttransportkosten so klein wie moglich werden.

Zu beachten ist also, daff auch die einzelnen Produktionshohen optimal festzu-
legen sind. Fiir jede Moglichkeit der Wahl der Produktionsh6hen kann ein optimaler
Verteilungsplan ermittelt werden. Von all diesen mdoglichen optimalen Vertellungs-
plénen ist also der mit den geringsten Transportkosten gesucht.

Werden fiir das Beispiel die einzelnen Produktionshdhen aj, = 30, a3, =70,
a3, = 80, a3, =40 vorgegeben (die notwendigen Nebenbedingungen sind erfiillt,
siche Tabelle 4.8), so kann fiir jede Sorte getrennt der optimale Verteilungsplan als
Losung eines ,,klassischen‘* Transportproblems berechnet werden.

Tabelle 4.8
vy V.o Vs

E, 1 4 2 30 100
3 2 3 70

E 2 5 3 80 120
? 1 4 2 40
20 50 40

60 30 20



4.1. Transportprobleme 135

Fiir die erste Sorte lautet das klassische Transportproblem:
Vi V2 Vs

E, 1 4 2 |30
E,| 2 5 3 |80

20 50 40
Die optimale Losung X, lautet:
20 - 10
X, = .
- 50 30

Analog berechnet man die optimale Losung fiir die zweite Sorte.
Der optimale Verteilungsplan fiir die im Beispiel vorgegebenen Produktionshéhen
lautet}schlieBlich:

Vi Va Vs
E| 2 - 10 30} 160
20 30 20 |70
PR }120
40 . . |40
20 50 40
60 30 20

Die Gesamttransportkosten K betragen 600 Kosteneinheiten.
Demgegeniiber lautet aber der optimale Verteilungsplan mit den optimal berechne-
ten Produktionshohen folgendermaBen:

Tabelle 4.9
Vl V2 V3
E 20 50 - 70} 100
-3 - |30
40 | 40
Bl o . 2 80} 120
20 50 40
60 30 20

Die Gesamttransportkosten belaufen sich jetzt auf 500 Kosteneinheiten, d.h. 165 %
Einsparung gegeniiber dem vorhergehenden Verteilungsplan, wo die Produktions-
hohen unabhingig von den Transportkostenkoeffizienten willkiirlich festgelegt wor-
den waren.
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Bleibt noch die Frage bestehen, wie der optimale Verteilungsplan mit optimalen
Produktionshohen berechnet werden kann. Die gestellte Problemstellung wird eben-
falls durch eine Modifikation des gegebenen Transportproblems auf ein ,,klassisches*
Transportproblem zuriickgefithrt werden. Jeder Erzeuger E; wird durch zwei Erzeu-
ger Ej(k=1,2) und jeder Verbraucher durch zwei Verbraucher V. (k =1,2)
ersetzt. Es wird angenommen, daB3 V;, nur die Sorte k bezieht und E;; nur die Sorte
k erzeugt.

Als Erzeugungsmenge von E;, wird die Teilkapazitit a;, und als Bedarfsmenge

von ¥, wird b;, gewiahlt. SchlieBlich werden noch die fiktiven Verbraucher V;
(i = 1, 2) eingefiihrt, deren Bedarf jeweils gleich der Differenz zwischen der Summe
der Teilkapazitdten des Erzeugers E; und der Gesamtkapazitit a; ist.

Bei der Gesamtdarstellung des nun vorliegenden ,,klassischen Transportpro-
blems sind allerdings einige Kostenkoeffizienten wieder hinreichend groB3 zu wéhlen,
also gleich M zu setzen, d.h., die betreffenden Verbindungswege sind fiir den Trans-
port auszuschlieBen. Fiir das angefiihrte Beispiel entsteht das folgende ,,klassische
Transportproblem:

Viv Vie Var Vae Vir Vas Vi V3
E,| 1 M 4 M 2 M 0 M|S80
E,| M 3 M 2 M 3 0 M|70
E,, 2 M 5 M 3 M M 0 90
Eyw | M 1 M 4 M 2 M 0 80

20 60 50 30 40 20 50 50

Wird dieses Problem z.B. mit der Potentialmethode geldst, so entsteht die optimale
Losung:
20 - 50 - - . 10
< S .30 - . 40 -
X, =
0 ... 40 - . 50
60 - . - 20

Die optimale Losung des Ausgangsproblems lautet:

20 50 - 70
0 - 30} 198
Xo=| cooeennnn
o 40
40 120
60 - 2080
20 50 40
60 30 20

Sie stimmt aber mit dem in der Tabelle 4.9 bereits angegebenen optimalen Vertei-
lungsplan bei optimalen Produktionshohen iiberein.
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Die gesamte Problemstellung mit Losungsmethode wurde am Beispiel bereits so
dargestellt, daB sie auf Probleme mit beliebig vielen Sorten iibertragen werden kann.

5. Zum AbschluB soll noch eine Problemstellung am Beispiel skizziert werden, die
in der Praxis sehr hiufig auftritt, indem Produkte oft iiber mehrere Zwischenstufen
zum Verbraucher zu transportieren sind. Da der Transport iiber mehrere Stufen zu
bewiltigen ist, werden dementsprechende Transportaufgaben als mehrdimensionale
Transportprobleme bezeichnet.

Im folgenden Beispiel wird von zwei Erzeugern E, und E, mit einer jeweiligen
Erzeugungskapazitit von 40 und 60 Einheiten ausgegangen. Von den Erzeugern ist
ein Produkt gleicher Qualitdt in einer festen Frist tiber drei Zwischenlager L,, L, und
L; mit einer Lagerkapazitdt von 30, 35 und 85 Einheiten zu den Endverbrauchern
¥, und V, mit einem Bedarf von 42 und 48 Einheiten zu liefern.

Die betreffenden Transportkosteneinheiten sind in der Tabelle 4.10 zusammen-
gestellt.

Tabelle 4.10
L, L, L

E | 10 13 7 | 40
E, 8§ 10 9 | 60

14 8 5 7 |4
v, 6 5 9 |48

30 35 85

Bei oberflichlicher Betrachtung kénnte man meinen, daB der Verteilungsplan
erhalten wird, wenn die gesamte Problemstellung iiber zwei Teilprobleme schritt-
weise zur Losung gefiihrt wird. Am Beispiel wird aber deutlich, daf dieses Vorgehen
im allgemeinen nicht zum Ziel fithrt. Wird jedes Teilproblem fiir sich geldst, so ent-
steht fiir das erste Teilproblem die folgende optimale Lsung des entsprechend erwei-
terten Problems

L L, L

E| - - 40 |40

E | 30 - 30 |60

E, | - 35 15 | 50
30 35 85

Dieser Losung entsprechend wird das Lager L, voll belegt. Lager L, bleibt leer. Lager
L; wird mit 70 Produkteinheiten nicht voll ausgelastet. Die Transportkosten K; des
1. Teilproblems belaufen sich auf

K, = 790 Kosteneinheiten.
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Zum zweiten Teilproblem lautet die optimale Losung des entsprechenden erweiterten
Problems

L L, L
Vel - 42 | 4
V| 30 - 18 |48
Vil - - 10 |10

30 0 70

Entsprechend der Losung wird ¥; aus Lager L; mit 42 Einheiten beliefert. ¥, wird aus
L, und L, mit jeweils 30 und 18 Einheiten beliefert. 10 Einheiten bleiben im Lager L,
zur Reserve zuriick.

Die Transportkosten K, des 2. Teilproblems lauten
K, = 636 Kosteneinheiten.

Die somit entstandenen Transportkosten betragen fiir den Gesamtverteilungsplan
K = K, + K, = 1426 Kosteneinheiten.
Wird jetzt allerdings das Gesamtproblem nicht in zwei Schritten geldst, sondern mit

einer fiir diese Problemstellung besonderen Losungsmethode, so entsteht folgender
optimaler Transportplan

L L L
E | - - 40 |40
E,| 30 20 10 | 60
Vi| - 2 40 |4
V.| 30 18 - | 48
30 20 50

(30) (35) (85) <« Gesamtlagerkapazitit.
Die optimalen Gesamtkosten betragen
K, = 1370 Kosteneinheiten,

die sich aus den Kosten der beiden Teilprobleme K; = 810 und K, = 560 zusammen-
setzen.

Die Kosten der Verteilung im 1. Teilproblem sind allerdings bei der optimalen
Losung um 20 Kosteneinheiten héher als im vorhergehenden schrittweise geldsten
Problem. Die Erhohung der Kosten wird aber bei der optimalen Verteilung im 2. Teil-
problem mit einer Einsparung von 76 Kosteneinheiten gegeniiber den vorhergehenden
Kosten zu einer doch letzten Endes erzielten Gesamteinsparung ausgeglichen.
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Die Einsparung von 76 Kosteneinheiten entsteht durch die giinstigere Verteilung
der Lagermengen in den einzelnen Zwischenlagern.

Die am Beispiel skizzierte Aufgabenstellung kann auf » beliebige Transportstufen
erweitert werden. Auf entsprechende Losungsmethoden soll hier nicht weiter ein-
gegangen werden.

4.2, Zuordnungsprobleme
4.2.1.  Problemstellung und mathematisches Modell

Das Zuordnungsproblem ist ein spezielles lineares Optimierungsproblem und eng
mit dem Transport- und Verteilungsproblem verbunden. Es stellt einen Spezialfall
des Verteilungsproblems und dariiber hinaus des Transportproblems dar. Daher laBt
es sich in entsprechender Weise wie ein Transportproblem 15sen.

Beim Zuordnungsproblem geht es um die optimale Zuordnung von Mitteln und
Objekten. Dabei kann nur je ein Mittel einem Objekt zugeordnet werden.

Folgende Beispiele sollen die Problemstellung verdeutlichen:

a) In einem Betrieb stehen zur Fertigung von n Produkten n Maschinen zur Ver-
fugung. Jede Maschine eignet sich zur Herstellung jedes Produktes unterschiedlich
gut. Es ergeben sich je nach Zuordnung verschiedene Arbeitszeiten. Jede Maschine
soll nur einem Produkt zugeordnet werden. Bei dieser Zuordnung geht es darum,
die Gesamtfertigungszeit zu minimieren. '

b) Ein Transportunternehmen verfiigt iiber » Kraftwagen. An n verschiedenen
Orten wird genau ein Wagen benétigt. Die Kraftwagen sind den Orten so zuzuordnen,
daB minimale Gesamttransportkosten entstehen.

c) Ein Abbaubetrieb hat » Abbaugruben und » Abbaumaschinen. Diese Maschinen
erbringen in den einzelnen Gruben unterschiedliche Abbauleistungen. Die Maschinen
sind den Gruben so zuzuordnen, daB3 die Gesamtabbauleistung ein Maximum wird.

Das Zuordnungsproblem 1aBt sich mathematisch in folgender Weise darstellen:

1. Zielfunktion:

n n

Z=2 2 cyxy;~min (bzw. max) (4.28)

i=1j=1

. 1 fir Zuordnung i — j,

mit  Xxj; = . L

0 fiir Nichtzuordnung i — j.
Hierbei gibt der Index i das Einsatzmittel und der Index j das Zuordnungsobjekt an.
¢;; ist der Kostenfaktor fiir die Zuordnung des Mittels i zum Objekt ;. x;; gibt den
Vollzug einer erfolgten Zuordnung an: x;; = 1 heiBit, daB das Mittel i dem Objekt j
zugeordnet worden ist. Wenn x;; = 0 ist, so liegt keine Zuordnung vor.

2. Nebenbedingungen:

a) der Mittel: =~ ' xy; =1 (fiir alle i);
— 4.28)

b) der Objekte: 2 x; =1 (fiir alle ).

=1
Diese Nebenbedingungen besagen, daB jedes Mittel nur einem Objekt und jedem
Objekt nur ein Mittel zugeordnet wird.
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Ist die Anzahl der Mittel und der Objekte nicht gleich, so kann das Problem durch
Einfiigen entweder von fiktiven Mitteln oder von fiktiven Objekten auf den Fall (4.28)
zuriickgefithrt werden.!) Im folgenden wird immer vom Fall (4.28) ausgegangen. Die
Kostenfaktoren c;; kénnen in einer Kostenmatrix C zusammengefa3t werden. Hierbei
entspricht jede Zeile einem Einsatzmittel und jede Spalte einem Zuordnungsobjekt:

€11t Cin
C=le]=
Cn1 *** Cun
Es gehort ebenfalls die Zuordnungsmatrix X dazu:
[ X1+ X
X=[x;]=
xﬂl o xnn

In der Zuordnungsmatrix X ist in jeder Zeile und jeder Spalte genau ein x;; = 1 so zu
setzen (alle anderen x;; = 0), daf die Zielfunktion ein Minimum bzw. ein Maximum
annimmt.

4.2.2.  Losungsalgorithmen

Die Potentialmethode

Da die Optimallésung jedes Transportproblems ganzzahlig ist, kann das Zuord-
nungsproblem als spezielles Transportproblem (n Erzeuger, n Verbraucher und alle
Erzeugnismengen ¢; und Verbrauchsmengen b; gleich eins) gelost und folgendermafen
geschrieben werden:

. n
ZF: Z=2 2 c¢;x;—min (bzw. max);

i=1j=1

n
NB: Dxy=1, i=1,..,n;

j=t

5
Dxy=1, Jj=1,.,n  x;=0.
=1

Allerdings ist dieses Transportproblem sehr stark entartet. Die Entartung kann aber
durch die e-Stormethode behoben werden. Beim folgenden Beispiel soll daher die
Potentialmethode zur Losung benutzt werden.

Gegeben ist die Kostenmatrix

12 2 4 1

6 4
Qﬂm=3i§8,

4 6 6 17

zu der eine minimale Zuordnung anzugeben ist.

1) Unter einer zuldssigen bzw. optimalen Losung des ersten Problems versteht man dann eine
zuldssige bzw. optimale Losung des zugehorigen Problems (4.28).
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Nach der. Vogelschen Approximationsmethode wird die folgende Anfangsldsung
berechnet:

-0 1
0 1
Xo= [xy] = 0 - 1

1
Drei Variable mit dem Wert 0 sind als BV hinzugefiigt.
1. Iteration:

2 @2 4 O] o0 (7 0 0 0
| © B 5 4 |-1 q_|0 00 2
=13 1 @ s ’ =19 4 0 9
@ 6 6 7 1 053 7
-5 2 -4 -1 :

Da min (c;) = 0 gilt, ist die optimale Zuordnung bereits durch X, gegeben. Sie lautet:

Mittel 1 wird Objekt 4,
Mittel 2 wird Objekt 2,
Mittel 3 wird Objekt 3,
Mittel 4 wird Objekt 1

zugeordnet. Der Wert der Zielfunktion ist
Z=1+342+4=10.

Die eben benutzte Potentialmethode zur Losung des Zuordnungsproblems ist aber
nur dann geeignet, wenn ein Nédherungsverfahren zum Auffinden einer guten Aus-
gangslosung die Zahl der anschlieBenden Iterationen erheblich herabsetzt. In den
meisten Fallen miissen viele Iterationen durchgefiihrt werden, bis die Optimallosung
vorliegt. Das ist darauf zuriickzufiihren, daB jede Ausgangslosung entartet ist.

Im folgenden soll noch die ungarische Losungsmethode angegeben werden, die im
allgemeinen schneller als die Potentialmethode zur Losung fiihrt.

Die ungarische Losungsmethode

Die Grundlagen fiir diese Methode wurden von den ungarischen Mathematikern
Konig und Egervary geschaffen. Kuhn wandte im Jahre 1955 deren Uberlegungen
zur Losung des Zuordnungsproblems mit Erfolg an. Sein Verfahren nannte er zu
Ehren von Ko6nig und Egervary die ,,Ungarische Methode*.

Beschreibung des Algorithmus: Zunéchst sind einige Festlegungen zu treffen. Im
folgenden werden die Zeilen und Spalten der Matrix C = [c;;] als Reihen bezeichnet.

Wird eine Menge von Elementen der Matrix C betrachtet, so sollen diese Elemente
unabhdngig heilen, wenn nicht mehr als eines in einer Reihe liegt. Das Zuordnungs-
problem besteht also in der Auswahl von n unabhéngigen Elementen der Matrix C,
5o dafB} ihre Summe ein Minimum ist.

Weiterhin wird im ProzeB der Losung der quadratischen Matrix C und ihrer dqui-
valenten Matrizen das Zeichen + eingefiihrt, welches rechts von bzw. iiber den ent-
sprechenden Reihen steht. Alle Elemente, die eine solche mit + gekennzeichnete
Reihe enthilt, werden als ausgesondert bezeichnet.
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Der Algorithmus der ungarischen Methode besteht aus einem Vorbereitungsschritt
und einer endlichen Zahl weiterfithrender Iterationen. Jede Iteration fiihrt zu einer
aquivalenten Umgestaltung der Ausgangsmatrix und zu einer VergroBerung der Zahl
der unabhéngigen Elemente. Die optimale Zuordnung wird schlieBlich durch die Stel-
lung der » unabhangigen Elemente in der letzten Matrix bestimmt, die zu C d4quivalent
ist (die unabhdngigen Elemente werden besonders gekennzeichnete Nullen sein).

Vorbereitungsschritt: Bei dem Transportproblem wurde bereits gezeigt, dal3 zur
Kostenmatrix C zeilenweise und spaltenweise beliebige Zahlen p; und ¢; addiert wer-
den konnen, ohne die optimale Losung dadurch zu beeintrachtigen. Falls ein Maxi-
mierungsproblem vorliegt, ist durch Vorzeichenwechsel sofort das entsprechende
Minimierungsproblem anzugeben. Dies gilt unmittelbar auch fiir das Zuordnungs-
problem als spezielles Transportproblem.

1. Liegt ein Maximum-Problem vor, so wird folgende Umrechnung durchgefiihrt:

a) Es sind alle Spalténmaxima von C zu bestimmen:

¢; = max {¢j, ..., ¢,;} fur alle j.
AnschlieBend wird die zu C dquivalente Matrix C’ = [c;] nach der Formel
= q; = Cij
ermittelt.
b) Weiterhin werden alle Zeilenminima von C’ gebildet:
pi =min {¢/1, ..., Cly}-
Dann wird die zu C’ dquivalente Matrix C, = [¢%] nach der Formel
¢y =cj—pi
berechnet.
2. Liegt dagegen ein Minimum-Problem vor, so wird
a) ¢; = min {c,;, ..., ¢,;} fur alle j gebildet und die dquivalente Matrix C' nach
C = eyl = [ei; — g5
ermittelt.

b) SchlieBlich wird wie nach 1b) die Matrix C, bestimmt.

3. Es wird versucht, in jeder Spalte und Zeile genau eine Null mit dem Zeichen ,,**
(Stern) zu versehen oder, anders ausgedriickt, moglichst viele Null-Elemente, die un-
abhdngig sind, mit ,,** zu versehen. ,,** bedeutet die Zuordnung, die aus dem Index-
paar des entsprechenden gesternten Elementes hervorgeht.

Als Ergebnis dieses Vorbereitungsschrittes wird in jedem Falle ein dquivalentes
Minimum-Problem mit der Kostenmatrix C, erhalten, die in jeder Zeile und jeder
Spalte (in jeder Reihe) mindestens eine Null enthilt.

Iterationen. Es wird angenommen, daB3 bereits die k-te Iteration durchgefiihrt ist
und somit die zu C, dquivalente Matrix C, :[cfv‘j], cf] = 0, vorliegt. Dann ist die fol-
gende Entscheidung zu treffen:

Enthdlt C, n unabhangige ,,**-Nullen?

Wenn ja, dann ist die optimale Losung erreicht und an den ,,*““~-Nullen abzulesen,
denn der Funktionswert der dabei entstehenden Losung ist ein Minimum, ndmlich

gleich null. Wenn nein, so enthilt also C, weniger als n ,,**-Nullen, und es folgt die
(k + 1)-te Iteration.
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(k + 1)-te Iteration: Alle Spalten der Matrix C, die 0* enthalten, werden durch
das Zeichen + abgesondert; + wird jeweils oberhalb der entsprechenden Spalte ver-
merkt.

1. Schritt: Dieser Schritt beginnt mit der Frage: Sind alle nichtmarkierten Nullen
von C; durch ein + abgesondert? Wenn ja, so ist der erste Schritt beendet, und es
wird zum 3. Schritt iibergegangen. Wenn nein, dann wird die nicht abgesonderte
Null mit einem Strich (") versehen.

a) Wenn die Zeile der eben gebildeten 0" keine (unabhéngige Null) 0* enthélt, so
wird zum 2. Schritt iibergegangen.

b) Wenn die Zeile dagegen eine 0* enthilt, so wird die Spaltenabsonderung, die
am Anfang der (k + 1)-ten Iteration wegen dieser unabhiangigen Null durchgefiihrt
wurde, riickgingig gemacht und dafiir die Zeile dieser 0* (bzw. von 0') abgesondert.
(Eine Absonderung + wird in den Matrizen des folgenden Beispiels riickgéngig ge-
macht, indem + durch & ersetzt wird.) AnschlieBend wird wieder zum Anfang des
1. Schrittes iibergegangen.

2. Schritt: Dieser besteht zundchst in der Erzeugung einer Nullenkette. Ausgegan-
gen wird von der Spalte der zuletzt mit einem Strich versehenen Null, und in dieser
Spalte wird zur 0* {ibergegangen, falls diese vorhanden ist. In der Zeile von 0* wird
zu einer 0’ iibergegangen usw. Es kann gezeigt werden, daB diese Nullenkette eindeutig
bestimmt ist. Sie beginnt und endet mit einer 0'. Im zweiten Teil dieses Schrittes er-
folgt eine Neumarkierung der Nullen der Kette:

aus 0" wird 0%;

aus 0* wird 0.
Die umbenannte Matrix wird mit C,., bezeichnet. Damit ist die (k + 1)-te Iteration
beendet. Die Matrix C,,, enthilt genau eine 0* mehr als die Ausgangsmatrix C,.

3. Schritt: Dieser Schritt beginnt mit der Berechnung von
= min [cf]
fiir alle (7, )-Paare, deren Elemente in C, nicht abgesondert sind. AnschlieBend wird
die Matrix Cj = [¢f;' ] folgendermafien berechnet:

¢ — h fir nicht ausgesonderte Elemente;
[C{,;:‘] = ci«‘]- fiir einfach ausgesonderte Elemente;
cf-’,- + & fiir doppelt ausgesonderte Elemente.

Oder anders ausgedriickt: C} geht aus der Matrix C;, hervor, indem von allen Ele-
menten der nicht abgesonderten Zeilen von C,. & subtrahiert und zu allen Elementen
der abgesonderten Spalten 4 addiert wird. Alle Bezeichnungen und Markierungen
von C; werden in die Matrix C}. iibernommen. Nach der Aufstellung der Matrix C},
wird an ihr der 1. Schritt vollzogen usw. In der Matrix C} ist mindestens eine neue
Null enthalten, die noch nicht abgesondert ist. Der 1. und 3. Schritt kénnen laufend
miteinander abwechseln. Es kann gezeigt werden, daB3 nach p-maligem Wechsel des
1. und 3. Schrittes der 2. Schritt folgt, wobei p endlich ist. (Auf diese Beweise soll hier
verzichtet werden.) Es werden also gebildet:

Ci, Cpy ..., Cp = Cpy
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Im Bild 4.2 ist dieser Iterationsalgorithmus nochmals tibersichtlich dargestellt.

Algorithmus
Ungarische Losungsmethode

Vorbereitungsschritt

enthilt [c};] weniger
als n mal 0*?

ja

Spalten von [c};] mit 0* werden
abgesondert durch +

3. Schritt

sind alle 0 von [c};]
durch " +" abgesondert?

nein

nicht abgesonderte 0
wird markiert (0' — 0)

I
|

2. Schritt

nein

enthilt Zeile
von 0' eine 0%?

ja

¥
Zeile von 0' wird
abgesondert und L
X Spaltenabsonderung
Bild 4.2 von 0* wird geldscht
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Dieser Iterationsalgorithmus soll an dem folgenden Beispiel erlautert werden.

Beispiel 4.1: In einem Betrieb sollen 4 verschiedene Arbeiten auf 4 Arbeiter ver-
teilt werden. Jeder Arbeiter verrichtet die einzelnen Arbeiten entsprechend seiner
Qualifikation unterschiedlich gut. Es ist der Zuordnungsplan aufzustellen, bei dem
der Gesamtnutzeffekt ein Maximum wird.

Arbeiter
Arbeiten B, B, B, B,
Ay 33 45
A, 2 6 1 4
As 8§ 2 3 2
A, 4 9 6 1

In der Zuordnungsmatrix C = [c;;] bedeutet ¢;; den Nutzeffekt, der vorhanden ist,
wenn der Arbeiter B; die Arbeit 4; verrichtet:

3 3 45
2 6 1 4
C=[cy]l=
d=17%5 2 3 2
L4 9 6 1
Vorbereitungsschritt
Da es ein Maximumproblem ist, folgt nach Fall 1a)
[5 6 2 0
, 6 3 51
C = =
[ei] 07 3 3
14 0 0 4 |
Nach 1b) ergibt sich folgende dquivalente Matrix C,:
[5 6 2 0]
_re1_]5 2 40
G=lel=\ge7 3 3
| 4 0¥ 0 4

In der Matrix C, sind schlieBlich drei unabhéngige Nullen durch einen Stern mar-
kiert. Da in ihr nicht vier unabhingige 0* vorkommen, beginnt die 1. Iteration.

Es werden’die Spalten der unabhingigen Nullen abgesondert:

+ + +
56 2 0
52 40

=107 3 3
4 00 4

10 Seiffart, Optimierung
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1. Schritt

Eine Null ist nicht abgesondert, namlich das Element ¢,; = 0. Diese Null erhilt
einen Strich. Die 4. Zeile wird abgesondert und das Pluszeichen iiber der 2. Spalte
geloscht (+ wird durch @ ersetzt):

+ -
56 2 0%
5240

C, =

‘lor7 33
4 00 4 |+

Da alle Nullen von C, abgesondert sind, folgt der 3. Schritt.
3. Schritt

a) Berechnung von /:
h=min {6,2,7,2,4,3} =2.
b) Berechnung von Cj:

5.4 0 0*
ci= 5020
0*5 1 3
6 00 6 |.
Es folgt wieder der 1. Schritt.
1. Schritt
- [-]
5 4 0 0%+
5020
Ch=
"Tlors 103
6 00 6 [+

In diesem Schritt werden der Reihe nach die beiden Nullen ¢}3=0 und c}, =0
mit einem Strich versehen. Danach folgt der 2. Schritt.

2. Schritt
a) Erzeugung einer Nullenkette (diese ist durch Pfeile gekennzeichnet):
N hamd
5 40 O*T
Cl— 502 0|
°lors 103
16 00 6
b) Neumarkierung der Nullenkette in der Matrix C}:
5 4 0% 0
*
C - 5020
05 1 3

|6 050 6
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Die 1. Iteration ist beendet. Die Matrix C, enthilt 4 unabhingige Nullen. Die Losung
ist an den unabhingigen Nullen abzulesen. Die Matrix des Zuordnungsplanes lautet:

X, =

(=N =)
-0 O O
OO O -
S o= O

Das bedeutet:

Arbeiter B, verrichtet die Arbeit A4; mit einem Nutzeffekt von 8,
Arbeiter B, verrichtet die Arbeit 4, mit einem Nutzeffekt von 9,
Arbeiter B, verrichtet die Arbeit 4; mit einem Nutzeffekt von 4,
Arbeiter B, verrichtet die Arbeit 4, mit einem Nutzeffekt von 4,

Gesamtnutzeffekt: 25

Aufgabe 4.3: Das folgende Zuordnungsproblem ist mit der Ungarischen Methode zu 16sen :

10212 672
1

[Cu] =

9O ®o WL

4
9
3
0
5

DN Ww O B oo
RN -
=RV SIS
9 R oL w

€1X;j= max sein.

6
=1

6 6
Dabei soll a) Z= 3, 3 ¢ijx;;= min, bZ=73% ]

i=1ij=1 i=17]

4.3. Verteilungsprobleme

Verteilungsprobleme sind lineare Optimierungsaufgaben, deren Nebenbedingun-
gen einen ganz bestimmten Aufbau haben. Thr spezieller Aufbau geht durch Verall-
gemeinerung der Nebenbedingungen aus einem Transportproblem hervor.

Solche Aufgaben haben z.B. eine groBe praktische Bedeutung in der Planung und
Organisation der Produktion eines Betriebes. Nehmen wir an, daB fiir die Realisie-
rung eines Produktionsprogramms mehrere Maschinen zur Verfiigung stehen, die
teilweise oder vollig gegeneinander austauschbar sind. Fiir diese Maschinen sind
technisch begriindete Arbeitsnormen, die zur Verfiigung stehende Maschinenzeit und
die benétigten Aufwendungen fiir die Produktion bekannt.

Die Produktion ist so auf die Maschinen zu verteilen, daB die Gesamtaufwendun-
gen fiir die Realisierung des Programms moglichst gering sind.

In Tabelle 4.11 sind die Ausgangsdaten fiir ein solches Verteilungsproblem (in die-
sem Falle kann man auch von einem Maschinenbelegungsproblem sprechen) fiir n
Maschinen M, ..., M, und m Produkte E,, ..., E,, angeordnet.

10%
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Tabelle 4.11

Maschinen Produktions-
programm
Produkte M, M, M, ME
c c ¢
E, . 1 Ln a,
by x4 byjxis byn Xin
¢ c ¢
E, i1 if in a,
biy xi1 by xy bin Xin
c c c
Em m1 mj mn a,
bmlxml bm/xm] bmn Xmn
Maschinen-
zeitfond h b, | by v | b,

b;; gibt fiir die Maschine M; die Bearbeitungszeit fiir eine Einheit des Produktes E;
an, ¢;; ist eine Bewertung fiir die Produktion dieser Produktionseinheiten (Kosten,
Maschinenzeit, Energieverbrauch u.a.), g; ist die zu produzierende Menge des Pro-
duktes E; und b; ist die auf der Maschine M; zu Verfiigung stehende Maschinenzeit.

Wird mit x;; die Menge des Produktes E; bezeichnet, die auf der Maschine M;
bearbeitet wird, so entsteht das folgende Optimierungsproblem, wenn die Gesamt-
bewertung Z der Produktion so klein wie mdglich werden soll:

m n
ZF: Z=3 3 cyxy = min;
=1 =1

=a, i=1,..,m,

'Ms
&

NB:

“
s L

by x5 < by, j=1,..,n,

x;;=0.
Gegeniiber einem Transportproblem sind im zweiten Block der Nebenbedingungen
die Koeffizienten nicht alle gleich eins oder null, sondern allgemeiner (b;; = 0).
Im folgenden werden mehrere Varianten eines Verteilungsproblems unterschieden
die aber alle mit dem gleichen Algorithmus zur Losung gefiihrt werden konnen.

i
L

m n
Variante 1: Z =3 3 ¢yy X;; = min;

i=1j=1
n .

XXy =a, i=1,..,m,

=t 4.29
- _ (4.29)
iy xip = by, i=1,..,n,

=1

x;;=0.
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Variante 2: Z = 2 2 ¢y Xy = min;

i=1j=1

3 .
2xy =a, i=1,..
=1

m
_Zib,x,,_b,, j=1..
<

x;;=20.

m N
Variante 3: Z= 3 3 c¢;;x;; = min;

n
Sayx;=a, i=1,..
j=1

m
Sbyxysb,  j=1 .
=

x;; = 0.

m n
Variante 4: Z= 3 3 ci;x;; = min;

i=1j=1

n
Jax; = a, i=1,..
=1

m
Zlb,,xi,=b,», j=1,..
i=

Xy 2 0.

m n
Variante 5: Z= 3 3 c¢;;x;; = min;

i=1j=1

n

Sayx, = a, i=1,..
=1

m

> Xy = by, j=1
i=1

x;,=20

m n
Variante 6: Z= 3 2 Ci5 Xy = min;

sm,

s M,

149

(4.30)

(4.31)

(4.32)

(4.33)
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n
Za”x“+x1 nel = @; + XA, i=1,..,m,
”m (4.39
gszxﬂ = by, j=1..,n,
x; =0,

Xins1 = 0, 2 beliebig reell.

Das Problem (4.29) ist als Spezialfall im Problem (4.30) enthalten (b;; = c;;). In
(4.31) ist wiederum (4.30) als Spezialfall enthalten (a;; = 1). (4.31) und (4.32) unter-
scheiden sich nur in der Bezeichnung. Wird z.B. in (4.31)

, / . .
a;=bi, b;=a, a;;="0b;; und b;=aj

gesetzt und werden i und j vertauscht, so entsteht das Problem (4.32). Allerdings
durchlauft i die Werte von 1 bis # und j die Werte von 1 bis m. Diese Formatédnderung
ist fiir das Problem bedeutungslos. (4.33) ist als Spezialfall in (4.32) enthalten (b;; = 1).
(4.34) ist gegeniiber den anderen Problemen ein parametrisches Verteilungsproblem,
2 ist der Parameter. Wird in (4.34) 2 = 0 gesetzt und die Schlupfvariable x; ., weg-
gelassen, so entsteht (4.32). In (4.34) sind also die Probleme (4.29) bis (4.33) als Spe-
zialfélle enthalten.

Im Abschnitt 2.1.4. ist das folgende mathematische Modell eines Forderproblems
aus der Praxis erarbeitet worden:

Die lineare Funktion
11 3 ! )
Z=3 3't;;x; [ min]
i=1j=1
ist unter Beriicksichtigung der folgenden Nebenbedingungen zu minimieren:

11
I Sxy=b; j=123 b =60, by=1730, b= 1275,

=1

3 3
2. 3 Styxyy =4
i=1j=1
7 3
3 Stiixi =4,
i=4 j=1
5. 3 (4.35)
4. 28' Stiyx; =4,
=

.
o
A

g

S £,y %, < —1007 + 4,

N

1y X,y < 1260,

Mo Lz
bge TLM,

Xy = 0.
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Die gesamte Forderzeit ist durch Z gegeben. A (A = 1440 min) bedeutet die maximale
Bandauslastung von Transportbéndern in Minuten, #; die Forderleistung in Minuten
pro m® der i-ten Transportvariante des j-ten Einsatzstoffes, b; (m?) die Einsatzstoffe
und x;; die festzulegenden Mengen (m®), die iiber die einzelnen Varianten zu fordern
sind. Der Index i (i =1, ..., 11) gibt die Variante und der Index j(j= 1, 2, 3) gibt
den Rohstoff an. Die restlichen in 2.1.4. angegebenen Nebenbedingungen lassen sich
ebenfalls noch beriicksichtigen. Darauf wird nicht weiter eingegangen, zumal sie den
Losungsbereich bei den in der Tabelle 4.12 angegebenen Koeffizienten und Forde-
rungen nicht beeinflussen. Das parametrische lineare Optimierungsproblem (4.35)
1aBt sich auf das in der Tabelle 4.12 angegebene parametrische Verteilungsmodell
zuriickfiihren. Die #;; sind zahlenmaBig in dieser Tabelle in den entsprechenden x;;-
Feldern angegeben, und zwar in der ersten Zeile dieser Felder doppelt. Die drei ersten
Nebenbedingungen werden durch die drei ersten Spalten realisiert. Durch die 4. bis
8. fiktiv eingefiihrte Spalte werden die Nebenbedingungen 4 bis 8 im Zusammenhang
mit den ersten drei Spalten realisiert. In der letzten Zeile treten allerdings durch die
fiktiv eingefithrten Spalten zusitzliche Parameter auf, die die Losung in 4.3.2. nicht
verandern.

Die freien Felder sind bei der Berechnung nicht zu beriicksichtigen. Man denke
sich hier hinreichend groBe Zielfunktionskoeffizienten, so daBl die zugehdrenden
Losungsvariablen in jeder optimalen Losung gleich null sind. In den stark ein-
gerahmten Feldern sind die Losungswerte einer Ausgangsbasislosung fiir das Para-
meterintervall 1435,25 < 1 < +oo nach der im folgenden Abschnitt 4.3.2. dargeleg-
ten Methode angegeben.

Wird der in 4.3.2. dargelegte Losungsalgorithmus benutzt, so folgt fiir das Para-
meterintervall 1140 = 2 = 1007 die in der Tabelle 4.13 angegebene optimale Para-
meterlosung, die zunichst die kleinste untere Parameterschranke (4 = 1007) enthilt,
da b; = —1007 + 7 nicht negativ werden darf.

Tabelle 4.13

1140 = 4 = 1007 A=1140 2= 1007

X3 = —3114,10+ 3,810 - 4 ~1229,00 ~ 722,00
Xy = 4152,14—2857-2 ~ 895,00 ~ 1275,00
xq = 60,00 —0,000- 4 ~ 60,00 ~ 60,00
Xeo = 4844,10— 38101 ~ 501,00 ~ 1008,00
X103 = —2877,14 + 2,857 - 4 ~ 380,00 ~ 0,00
Z = 2146,78 — 0,400 - A ~ 1690,78 ~ 1743,98

Diese untere Schranke wird durch die 5. Nebenbedingung vorgeschrieben. Wird
diese Engpafibedingung aus der Betrachtung herausgenommen, indem sie konstant,
und zwar gleich null gesetzt wird, so lassen sich weitere Parameterintervalle angeben.
In den Tabellen 4.14 und 4.15 sind fiir die anschlieBenden Parameterintervalle die
Losungen enthalten.
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Tabelle 4.14

1007 = 4 = 825,53 A= 1007 A= 825,53
Xz = — 956,25+ 1,666 - 1 ~ 722,00 ~ 420,00
Xg3 = 1275,00+ 0,000 - A ~ 1275,00 ~ 1275,00
Xy = . 60,00+ 0,000-1 ~ 60,00 ~ 60,00
Xep = 2686,25 — 1,666 4 ~ 1008,00 ~ 1310,00
Z = 1794,34 — 0,050 - 1 ~ 1743,98 ~ 1753,00
Tabelle 4.15

825,53 = 1= 630 A= 825,53 A =630
Xz = 1730,00 — 1,587 -4 ~ 420,00 ~ 730,00
Xz = —2306,66 + 4,340 - A ~ 1275,00 ~ 427,00
Xg = 60,00 + 0,000 - 4 ~ 60,00 ~ 60,00
X,3 = 3581,66 — 4,340 - 4 ~ 0,00 ~ 847,00
Xgp = 0,00 + 1,587 - 4 ~ 1310,00 =~ 1000,00
Z = 278825-1250-4 =~ 1753,00 ~ 2001,00

44. Rundreiseprobleme

4.4.1. Problemstellung

Gegeben sind » verschiedene Orte O;, i=1, 2, ..., n. a;; (i &) sei die Entfernung
(in km), die ein Reisender zuriickzulegen hat, wenn er von O; nach O; fihrt. Anstelle
der ,.Entfernung‘ a;; konnen auch andere Parameter wie Kosten, Zeit usw. gesetzt
werden. g;; wird im allgemeinen ungleich a;; vorausgesetzt. Das Rundreiseproblem
oder auch ,,Traveling-Salesman-Problem‘‘ genannt, kann folgendermafBen formuliert

werden:

Ein Reisender, der in einem Ort startet, mochte alle restlichen Orte einmal und nur
einmal besuchen und zum Ausgangsort zuriickkehren. In welcher Reihenfolge hat er
die Orte zu besuchen, damit die Gesamtlange des Reiseweges minimal ist?

Die Entfernungen a;; sind in der quadratischen Entfernungsmatrix (oder Rundreise-

matrix) angeordnet:
M ay ay,
A=| % M - ay,

| Gy ny M
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Dabei bedeutet der Zeilenindex den Ausgangsort und der Spaltenindex den Zielort.
Die Elemente der Hauptdiagonalen sind zunéchst nicht definiert, da ja z. B. O; nicht
gleichzeitig Ausgangs- und Zielort sein soll. Um eine Reise, die einem Hauptdiagonal-
element entsprechen wiirde, zu vermeiden, wird a;; = M fir alle i = 1, ..., n gesetzt.
M ist dabei eine hinreichend groBe Zahl, die bewirkt, daB das Element a;; in der Ge-
samtldnge eines optimalen Reiseweges nicht enthalten sein kann.

Mathematisch bedeutet das Traveling-Salesman-Problem zunédchst wie beim Zu-
ordnungsproblem, daB aus jeder Zeile und Spalte der Entfernungsmatrix genau ein
Element so auszuwihlen ist, daB die Gesamtsumme der ausgewihlten Elemente ein
Minimum ergibt. Uberdies muB noch die folgende Bedingung erfiillt werden, die den
Unterschied zum Zuordnungsproblem bedingt:

Werden namlich die ausgewéhlten Elemente so aneinandergereiht, daB3 der erste
Index eines Elementes gleich dem zweiten Index des vorhergehenden ist, so miissen alle
n Indizes durchlaufen werden, bevor der Index des Ausgangselementes wieder er-
scheint. Der Reisende darf also erst dann wieder zum Ausgangsort zuriickkehren.
nachdem alle anderen n — 1 Orte von ihm passiert wurden. Es wird also eine Aufein-
anderfolge

Qiyiys Qigiys woos Qiningyy e+ fir k==l und iy =1i

von Elementen der Matrix A so gesucht, daB
n
z=3 iyiyiy
r=1

ein Minimum wird.

4.4.2.  Verzweigungsmethode als Losungsalgorithmus

In den letzten 15 Jahren wurden zur Losung des Rundreiseproblems mehrere Ver-
fahren entwickelt. Mit einigen sind aber nur kleinere Probleme naherungsweise oder
exakt zu 16sen, da der Rechenaufwand mit zunehmendem Problemumfang enorm
ansteigt. Im folgenden soll ein Losungsverfahren von Little, Murty, Sweeney und
Karel?') angegeben werden, welches die optimale Lsung unabhingig vom speziellen
Beispiel garantiert, programmtechnisch leicht durchfiihrbar ist und eine annehmbare
Rechenzeit nicht iiberschreitet.

Dieses Losungsverfahren geht aus der allgemeinen Losungsmethodik ,,Branch and
Bound* hervor, indem die speziellen Bedingungen des Rundreiseproblems heran-
gezogen werden.?) Im folgenden soll die Losungsmethodik ,,Branch and Bound*
kurz mit ,,Verzweigungsverfahren bezeichnet werden.

Branch and Bound kann man als intelligent konstruiertes Suchen im Raum aller még-
lichen Losungen bezeichnen. Man versucht die Minimallosung eines Optimierungs-
problems mit einer endlichen Anzahl von méglichen Losungen zu bestimmen, indem
die gesamte Losungsmenge in elementfremde Teilmengen aufgespalten wird. Fiir

1) Little,J. D. C., et al., ,,An Algorithm for the Traveling Salesman Problem* Oper. res. 11
S. 972989 (1963).

2) ,,Branch and Bound‘ kann etwa wie folgt ibersetzt werden: Verzweigen und Beschrianken.
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jede dieser Teilmengen wird eine untere Schranke fiir den Minimalwert der Ziel-
funktion aller Elemente der Teilmenge ermittelt. Die Teilmenge, die durch eine Aus-
wahlfunktion herausgesucht wird, wird weiter aufgespalten und fiir die neu ent-
stehenden Teilmengen werden wieder untere Schranken berechnet. Der Proze8l wird
so lange fortgesetzt, bis eine Teilmenge gefunden wird, die nur ein Losungselement ent-
"hilt und deren Zielfunktionswert nicht grofer ist als das Minimum der unteren
Schranken aller anderen nicht aufgespalteten Teilmengen. Damit ist eine Minimal-
16sung ermittelt. Wie leicht einzusehen ist, konvergiert der ProzeB, wenn der Losungs-
bereich endlich ist und die Aufspaltung endlich viele Schritte bendtigt. Der ProzeB
kann als Baum dargestellt werden, wobei die Verzweigungspunkte die Teilmengen
und die Endpunkte die Gesamtheit der noch zu betrachtenden Teilmengen dar-
stellen.

4.4.2.1. Mathematische Darstellung des Verzweigungsverfahrens

Gegeben ist eine endliche Menge B (Losungsmenge). Jedem x € B wird eine reelle
Zahl f(x) zugeordnet. Gesucht ist f{(x,) mit min [f(x)] = f(x,).

Voraussetzungen s

1. Jede Teilmenge B; von B kann wieder in mp; elementenfremde Teilmengen zer-
legt werden. Diese Zerlegung von B; in Teilmengen werde mit K(B;) und als Klassen-
einteilung bezeichnet.

2. Jeder Teilmenge C einer Klasseneinteilung kann eine reelle Zahl U(C) zugeord-
net werden, wobei f(x) = U(C) fiir alle x ¢ C gilt. U(C) wird als Schranke bezeichnet.

3. Von jeder Klasseneinteilung C, kann eine bestimmte Teilmenge ausgezeichnet
werden. Die ausgezeichnete Teilmenge werde mit A(C,) bezeichnet.

4. Enthilt eine Teilmenge C von B nur ein Element x, so sei U(C) = f(x).
Sind diese Voraussetzungen erfiillt, kann folgendes Verfahren angegeben werden:
(1) Man setzt B = B} = B, =0, %=1.
(2) Man bildet K(B}) = ‘B}, B}, ..., B;EH} .
(3) Man berechnet
UB;) fiur A=1,..,my.
(4) Man setzt K,(B) = K(B?) und bestimmt mit
A [K(B)] = By}, =1
(5) Man bildet

K(B#) = {B?, Bi, .., By } .
X ”

(6) Man berechnet

U(B3) mit A=1,2, Y
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(7) Man setzt
Ky(B) = Ki(B) \J K(B}:) — Bl
und bestimmt
4 [Ky(B)] = B}; I=p=2).
Die allgemeinen Schritte, die sich mod 3 wiederholen, sind dann (r = 1, ...):

Schritt (3r 4 1): Man setzt
r—1 r—1
K(B)= UK(B)— UBS mit po=0,7%=1
=0 =1

und bestimmt
A[K(B)] =By mit 1=y =r.
Mit Hilfe der 3. Voraussetzung wird eine Teilmenge ausgesondert.
Schritt (3r 4+ 2): Man bildet

K(Bl)= {Bl“, B, .. B } .
B

Von der ausgesonderten Teilmenge wird eine Klasseneinteilung vorgenommen.
Schritt (3r + 3): Man berechnet

U(BitY) mit A=1,2,.., My,
’r
Von den Teilmengen der Klasseneinteilung werden untere Schranken berechnet.

Das Verfahren bricht ab, wenn eine einelementige Teilmenge C, (x, € C;) ausge-

sondert wird und U(C,) = min {U(C)} gilt. C ist dabei eine beliebige Teilmenge
CEE(B)
der jeweiligen Klasseneinteilung.

Dann gilt: Wegen U(C,) = f(x,) ist x, die gesuchte Minimallsung.

Der Rechenaufwand des Verfahrens hingt wesentlich von der Giite der unteren
Schranken und von der Art der Auswahl ab. Die Berechnung der unteren Schranken
ist stark dem jeweiligen Problem anzupassen. Die Auswahl bzw. Auszeichnung der
Teilmengen einer Klasseneinteilung kann oft giinstig wie folgt gewahlt werden:

Berechnet wird
min {U(C)} = U(Cy),
CER(B)
und daher gilt
A[K(B)] = C.
Die eben dargelegte ,,Branch-and-Bound‘‘-Methode wird sowohl im anschlieBen-
den Abschnitt bei der Losung des Rundreiseproblems als auch bei der Losung der

Reihenfolgeprobleme im Abschnitt 4.5. der jeweiligen Problemstellung angepaBt und
spezifiziert angegeben.
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4.4.2.2. Die Anwendung auf das Rundreiseproblem

1. Wie beim Zuordnungsproblem wird von der Rundreisematrix A das kleinste
Zeilen- und anschlieBend das kleinste Spaltenelement von jeder Zeile und jeder Spalte
subtrahiert, so daB eine reduzierte Rundreisematrix A, entsteht, die in jeder Zeile und
jeder Spalte mindestens eine Null enthilt.

Zunéchst werden also die Zeilenminima

pi =min (@, ..., a,},i=1,..,n,

und die Matrix
A = [a;] = [ai; — pil

gebildet. AnschlieBend werden die Spaltenminima
g; = min (@, ..., @yj}, j=1,..., 1,

von A und die Matrix
A, =[a]']= [@; - )]

berechnet.

Werden mit ¢ ein beliebiger Reiseweg, mit S die Summe aller ReduktionsgrofBen
pi und ¢; und mit Z(¢) bzw. Z,(¢) die Lange des Reiseweges von A bzw. A, bezeichnet,
so gilt

Z(ty=Z,(1t)+ S.
Da Z,(¢) = 0 ist, folgt: S ist eine untere Schranke aller moglichen Wege ¢.

Am Beispiel der Rundreisematrix

M 29 26 22 0
36 M 50 38 0

A=A = 12 53 M 46 0 (4.36)
26 27 40 M 0

00 0 0 M

soll der Losungsalgorithmus erldutert werden. In der Rundreisematrix kann es auch
vorkommen, daB einige Elemente von vornherein gleich null sind (vgl. Beispiel).
Die reduzierte Matrix von (4.36) stimmt mit der Matrix A iiberein, da S = 0 ist.

2. Das Verfahren wird fortgesetzt, indem die Menge aller moglichen Reisewege
(Losungswege) in Untermengen solange aufgespalten wird, bis eine optimale Losung
gefunden ist. Bei der Aufspaltung werden untere Schranken als Kriterien benutzt.

Ausgangspunkt dieser Aufspaltung ist in Bild 4.3 der Kreis, der die Menge aller
moglichen Reisewege bedeuten soll. Der Kreis, der i, j enthélt (kurz: Kreis if) kenn-
zeichne die Menge aller Losungen, die die Reisestrecke von Ort O; nach Ort O, (kurz
Verbindung 0;0;) enthalten.
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Menge aller
mdglichen
Reisewege

@ @ Bild 4.3

Dagegen kennzeichnet Kreis ij die Lésungsmenge, die die Verbindung 0;0; nicht
enthalt. Offenbar zerfillt die gesamte Losungsmenge in die Kreise ij und ij. Eine wei-
tere Verzweigung liegt am Kreis ij. Der Kreis k/ kennzeichnet die Lésungsmenge, die
die Verbindung 0;0; und 0,0, enthilt. Dagegen kennzeichnet der Kreis k/ die
Losungsmenge, die zwar die Verbindung 0;0;, aber nicht 0,0, enthilt.

Um Aufspaltungskriterien anzugeben, wird jedem Element 4} der reduzierten
Matrix A, ein ©;; mit dem Zahlenwert
0i; = ai; + By
zugeordnet. Dabei gilt

: (1)
&y = min {ail }»
1=1n
=i

fi; = min {aﬁr})}.
1=k=n
ki
;; bzw. f;; ist das kleinste Element der i-ten Zeile bzw. j-ten Spalte, wenn von dem
Elementag) bei der Minimierung abgesehen wird.
Zur Matrix A, [vgl. (4.36)] gehoren die folgenden matrizenmaBig angeordneten
0,;-GroBen:

o 0 0 0 22
0O 0 0 0 36
0 0 0 0 12 (4.37)
0O 0 0 0 26

12 .27 26 22 0
Nur fiir aﬁ})= 0 kénnen die @;; von null verschieden sein. Fiir ajj’ >0 folgt auf Grund
der Definition der reduzierten Matrix A, : ©;; = 0.

Die Werte in (4.37) sollen im folgenden aus rechenpraktischen Griinden in der
reduzierten Matrix A, vermerkt werden. Die @-Werte, die gleich null sind, werden
nicht vermerkt:
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M 29 26 22 0%
36 M 50 38 0%
A= 12 53 M 46 0O (4.38)
26 27 40 M 0%
012 027 020 022 M
Nach diesen Vorbereitungen soll nun der Ablauf des Losungsalgorithmus am Bei-
spiel (4.36) beschrieben werden.
1. Schritt
Die Matrix A [s. (4.36)] wird reduziert. Es entsteht die Matrix A, [s. (4.36)]. Der
Kreis aller moglichen Reisewege hat die untere Schranke S = 0 (s. Bild 4.4).
2. Schritt

In der Matrix (4.36) wird jedem Nullelement ein @;; zugeordnet. Es entsteht die
Matrix (4.38). Mit den @-Werten wird nun eine Einteilung aller Reisewege in Unter-
mengen mit groBeren unteren Schranken als S = 0 méglich. Wird z.B. Oy = 12
betrachtet und mit x eine Losung bezeichnet, die dem Kreis 3,5 angehért (d.h. 0;0;
nicht enthilt), so gibt es in x einen Ort O;, + O;, zu dem man von O; aus gelangt.
Ebenso gibt es einen Ort O;, + O, von dem man nach O; gelangt. ag}f + af-,l‘rf gehort
zur Wegldnge von x, und es gilt: :

(1 1
aff)+al} 2 Oy =12.

Bild 4.4
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Daher hat die Menge der Losungen zum Kreise 3,5 eine untere Schranke von min-
destens S+ 12=0+ 12 = 12.

Damit die neue Schranke moglichst groB ausfallt, wird das Indexpaar i, j mit dem
groBten ©);; ausgewihlt. Im Beispiel ist @,; = 36 der groBte Wert. Somit wird die

gesamte Losungsmenge in die beiden Losungsmengen aufgeteilt, die den Kreisen 2,5
und 2,5 entsprechen. Eine untere Schranke, die zur Losungsmenge des Kreises i, j
gehort, wird mit Uj; ;) bezeichnet. Aus 6,; = 36 folgt daher

Uzs = 0+ 36 = 36.

In Bild 4.4 sind die zu einem Kreis gehorenden unteren Schranken unterhalb der
Kreise vermerkt.

3. Schritt

Eine untere Schranke Up, 5 wird aus der Matrix A, ermittelt, die durch die Strei-
chung der Elemente der 2. Zeile und 5. Spalte aus der Matrix A; hervorgeht. Diese
Elemente konnen deshalb gestrichen werden, weil unter diesen nicht mehr gewéhlt
werden kann, da 0,0; festliegt. Auch das Element a$y der Matrix A, darf nicht mehr
ausgewahlt werden, da sonst der Kurzzyklus 0,050, entstehen wiirde. Das Element
ald) wird deshalb-durch M ersetzt. A, lautet somit:

123 4
1T M292622722
31253 Mm46 |12

274262740 M |26
sLomoo]fo

0100

(4.39)

Die Matrix A, wird reduziert. Es entsteht die reduzierte Matrix A; (4.40). Die Reduk-
tionsgroBen p; und g; sind in (4.39) vermerkt:

1 2 3 4

ITM 6 4 08
3] 0% 40 M 34
A=yl 0 014 M (440)

5L00 M 0 0°

Die Summe der ReduktionsgréBen S = 61 von A, und der unteren Schranke des
vorhergehenden Kreises ergibt die untere Schranke Ug,, also

Ui,y =0 + 61.
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4. Schritt

Der Kreis mit der kleinsten unteren Schranke der bisher entstandenen beiden

Kreise 2,5 und 2,5 wird weiter aufgespalten.?) Im Beispiel ist es der Kreis 2,5. Jetzt
ist wieder von der Matrix A, auszugehen. Das groBte O;; aufer ©y; = 36 wird be-

stimmt. Man erhilt @;, = 27. Damit wird der Kreis 2,5 in die beiden Kreise 5,2 und 5,2
aufgespalten.
Eine Reduktion der Matrix

M?29 26220
36 M 50 38 M |36
Ay =11253 M 46 0
262740 M O
OMOO0M
27
ergibt fiir Usz) = O,; + O5, = 36 + 27 = 63.

U0y wird bestimmt, indem die 5. Zeile und 2. Spalte der Matrix A, gestrichen
werden und das Element @ durch M ersetzt wird. Es entsteht die Matrix A;:

1 345
1[M262207 0
A-=2 36 50 38 M | 16
> 3|112M46 0 | O
412640M 0 | O
12 26 22
A, wird zur Matrix A; reduziert:
1 345
1M 0 00
A=2 8 8 0 M
® 73] 0M24 0
41414 M O

Es folgt U0 = 76.

5. Schritt
Wiederum wird mit dem Kreis der kleinsten unteren Schranke weitergerechnet.

Der Kreis 2,5 wird in die Kreise 3,1 und 3,1 aufgespalten, da die Matrix A; in (4.40)
den groBten O-Wert bei Oy, = 34 hat. Es folgt

Uit = 61 + 34 =95.

1) Die Auswahlfunktion der Klasseneinteilung wird also so gewihlt, daB die Klasse mit der
kleinsten unteren Schranke weiter aufgespalten wird.

11  Seiffart, Optimierung
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Die Schranke Ug;;y entsteht wiederum durch die Reduktion der Matrix A,, die aus
A, durch Streichung der 3. Zeile und der 1. Spalte und durch Ersetzung des Element-
tes a{3) durch M entsteht:

2 3 4
16 M 0°
A, =4 02 14 M| (4.41)
S5{M 0¥ 0°
Da die ReduktionsgroBe von A, null ist, folgt
Ug,y = 61.

Der Kreis 3,1 wird in die Kreise 4,2 und 4,2 aufgespalten, da in A, der groBte ©-Wert
0,5 = 20 ist. Es folgt Ugg = 81.
Uu,» entsteht analog durch die Reduktion der Matrix Aq, die durch Streichung
der 4. Zeile und 2. Spalte aus A; entsteht:
3 4
1[M oM
s51om o |
Die ReduktionsgroBe ist wiederum gleich null:
U,y = 61.
Weitere Aufspaltung fiihrt zu den Kreisen 1,4 und 1,4. Die Losungsmenge des
Kreises 1,4 ist leer, da die einzig noch verbleibende Verbindung O, O, nicht zulissigist.
Uq.p) = 61; da aus Ag durch Streichung der 1. Zeile und 4. Spalte lediglich noch
die Verbindung 0,0, iibrigbleibt, enthélt der Kreis 5,3 nur noch eine Losung
0,0,0,050,
mit dem Funktionswert 61. Da alle anderen Kreise keine kleinere untere Schranke
besitzen, ist diese Losung optimal.

A=

4.5. Reihenfolgeprobleme

Nach den ersten Veréffentlichungen iiber Reihenfolgeprobleme vor ca. 20 Jahren
ist besonders in der letzten Zeit in der Literatur eine grole Anzahl von neuen Bei-
tragen erschienen. Diese befassen sich sowohl mit komplexen als auch mit speziellen
Problemstellungen und deren Losungsmoglichkeiten. Sie heben die Notwendigkeit
der praktischen Bewiltigung derartiger Aufgabenstellungen besonders hervor, gleich-
zeitig zeigen sie aber auch, daB praktische Losungsalgorithmen vorerst nur fiir be-
stimmte Problemkomplexe vorliegen. Die auftretenden Losungsschwierigkeiten
fiir den Gesamtkomplex sind durch die vielfdltigen Variationsmdoglichkeiten wesent-
lich bestimmt, die sowohl in den zu erfiillenden Nebenbedingungen als auch in den
unterschiedlichen Zielstellungen zum Ausdruck kommen.

Im vorliegenden Abschnitt werden fiir einen bestimmten Problemkomplex die
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funktionalen Abhingigkeiten der einzelnen Zielstellungen in ihrer wechselseitigen
Verflechtung dargestellt und verschiedene praktische Losungsmethoden der kombi-
natorischen Analyse angegeben.

4.5.1. Problemstellung und mathematische Modelle

Bei einem Reihenfolgeproblem kommt es darauf an, die in einem bestimmten Pro-
duktionsprogramm enthaltenen Arbeitsgegenstinde (Lose, Produkte, Auftrige,
Einzelteile), deren technologische Durchldufe vorgegeben sind, in einer solchen
Reihenfolge auf den Arbeitsplatzen (Maschinen, Maschinengruppen, Baugruppen)
zu bearbeiten, damit ein hochstmoglicher Nutzeffekt besteht.

Im allgemeinen sind die Arbeitszeitaufwénde der Arbeitsgegenstinde auf den ver-
schiedenen Arbeitspldtzen unterschiedlich. Erschwerend kommt hinzu, daB die Ma-
schinenfolge, die ein Auftrag zu seiner Bearbeitung zu durchlaufen hat, ebenfalls fiir
jeden Auftrag eine andere sein kann. Diese Unterschiede bedingen, daBl im Produk-
tionsablauf sowohl Wartezeiten der Auftrige (Arbeitsgegenstinde) zwischen den
einzelnen Bearbeitungen auf den Maschinen (Arbeitsplétze), als auch Stillstands-
zeiten der Maschinen auftreten.

Unter Stillstandszeit wird im folgenden die Zeit verstanden, wihrend der eine
Maschine nicht belegt werden kann. Dabei seien Reparaturzeiten der Maschinen
fiir das Auftreten von Stillstandszeiten ausgeschlossen.

Ebenso wird die Wartezeit als Zeit eingefiihrt, wahrend der ein Auftrag nicht
bearbeitet werden kann. Dabei soll eine Wartezeit nur durch die gewahlten Bearbei-
tungsfolgen der Auftrage auf den verschiedenen Maschinen entstehen.

Sowohl die Stillstandszeiten als auch die Wartezeiten sind ausschlieBlich von die-
sen Bearbeitungsfolgen abhingig, wenn die Maschinenfolgen der Auftrige durch die
Maschinen und die einzelnen Bearbeitungszeiten festliegen.

Bei der Losung eines Reihenfolgeproblems kommt es also darauf an, die Bearbei-
tungsfolgen fiir alle Maschinen so festzulegen, daf alle Bearbeitungs- und Ablauf-
bedingungen fiir die Auftrége erfiillt sind und dariiber hinaus vom wirtschaftlichen
Standpunkt ein optimaler Ablauf erzielt wird.

Zur Erreichung dieses Zieles kann die Optimierung nach verschiedenen Gesichts-
punkten erfolgen, so z.B.

1. Minimierung der Gesamtdurchlaufszeit aller Auftrige,
2. Minimierung der Gesamtstillstandszeit aller Maschinen,
3. Minimierung der Gesamtwartezeit aller Auftrége.

Reihenfolgeprobleme treten vorwiegend in der Einzel- und Kleinserienfertigung auf,
die besonders im Maschinen-, Werkzeug-, Vorrichtungs- und Anlagenbau vorzufin-
den ist. Aber unter dhnlichen Voraussetzungen treten sie ebenso im Bauwesen, Forst-
wesen, in der Landwirtschaft oder in der Gebrauchsgiiterindustrie auf. Erlduternd
soll z.B. im Bauwesen die wenig verdnderte Problematik angedeutet werden. So be-
steht vor allem in der Bauproduktion die Aufgabe, einmal die Arbeitskontinuitit
der Brigaden zu gewiéhrleisten und zum anderen die Ausbauzeit (Gesamtfertigungs-
zeit) der Objekte zu minimieren. Jetzt entsprechen den Maschinen die Brigaden und
den Auftrigen die einzelnen Arbeitsplitze (Objekte). Die Forderung der Arbeits-

11*
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kontinuitdt bedeutet, daB keine Stillstandszeiten zugelassen sind. Neben der Mini-
mierung der Gesamtfertigungszeit kann als mdogliche andere Zielstellung auch die
Minimierung der gesamten Wartezeit der einzelnen Auftrage gewihlt werden.

In den folgenden Ausfiihrungen werden m Auftrige P; (i = 1, ..., m) zugrunde
gelegt, die auf n Maschinen M; (j = 1, ..., n) zu bearbeiten sind. Mit dieser Beziehung
gelten bei einem Reihenfolgeproblem im allgemeinen die folgenden Voraussetzungen:

1. Mit t;; wird die Bearbeitungszeit des Auftrages P; auf der Maschine M; bezeich-
net. Alle auftretenden Bearbeitungszeiten sind konstant und fest vorgegeben. Die
erforderliche Riistzeit ist in #;; mit enthalten. Diese Bearbeitungszeiten werden im fol-
genden iiber eine Bearbeitungsmatrix

Ly o i
- [ i }
tut = ton
zusammengefalt.
2. Zwei und mehr Auftrige werden auf einer Maschine nicht gleichzeitig bearbeitet.
Ein Auftrag soll auch gleichzeitig nicht auf zwei und mehr Maschinen bearbeitet wer-

den. AuBerdem soll jede Maschine so frith als méglich mit Auftragen belegt werden.
(Verdnderungen dieser Voraussetzung sind in [27] enthalten.)

3. Es werden keine anderen Zeiten als Bearbeitungszeiten, Wartezeiten und Still-
standszeiten beriicksichtigt.

4. Die Bearbeitung eines Auftrages ist auf jeder Maschine ohne zeitliche Unter-
brechung durchzufiihren. Der Auftrag P; geht friihestens erst dann zur Bearbeitung
auf die folgende Maschine iiber, wenn der gesamte Auftrag auf der vorhergehenden
Maschine vollstindig bearbeitet ist.

S. Fiir jeden Auftrag P; ist eine ganz bestimmte Maschinenfolge vorgegeben, nach
der P; die Maschine zu passieren hat. Diese Maschinenfolgen konnen in einer Maschi-
nenfolgematrix W zusammengefaB8t werden. Die Zeilenanzahl von W stimmt mit der
Anzahl der Auftrige und die Spaltenanzahl mit der Maschinenanzahl iiberein.

Lautet z.B.

123
W=[3I—],
321

so hat P, zuerst M, anschlieBend M, und schlieBlich M; zu passieren, P; der Reihe
nach M5, M,, My, P, aber nur M; und dann M,. M, ist dabei von P, nicht zu pas-
sieren (kann iibersprungen werden). Von der Matrix W sind die folgenden besonderen
Fille hervorzuheben.

5.1. Jeder Auftrag kann nach einer beliebigen Maschinenfolge bearbeitet werden
(W wird bedeutungslos).

5.2. Fiir jeden der Auftrige ist eine ganz bestimmte Maschinenfolge vorgegeben
(Uberspringen erlaubt). Zu verschiedenen Auftrigen kann es unterschiedliche Ma-
schinenfolgen geben.
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5.3. Fiir jeden Auftrag ist die gleiche Maschinenfolge vorgeschrieben. Ohne Be-
schrinkung der Allgemeinheit kann gefordert werden, dal3 der Auftrag P;(i=1,...,m)
der Reihe nach auf den Maschinen M,, M,, ..., M, zu bearbeiten ist. (Uberspringen
ist nicht erlaubt, allerdings kann #;; = 0 als Bearbeitungszeit zugelassen werden.)

5.4. Genau wie 5.3. und Uberspringen gestattet.

In den Bildern 4.5, 4.6 und 4.7 sind die drei letzten charakteristischen Fille gra-
phisch veranschaulicht.

M,

frac Bild 4.5.
o Unterschiedliche Maschinenfolge.
A B B Uberspringen erlaubt
M, M, My Bild 4.6.
;’ ]—i m f_—i Gleiche Maschinenfolge.
pé L__! ],__,‘ !___! Uberspringen nicht erlaubt

P  — Bild 4.7.
P Gleiche Maschinenfolge
A O’H"‘ ‘J:l‘]_L___J Iﬁ'—" Uberspringen moglich

6. Nach jedem Fertigungsplan werden die einzelnen Maschinen von einer ganz
bestimmten Auftragsfolge (Auftragsreihenfolge) passiert. Bei vielen Problemen wird
daher die Voraussetzung hinzugefiigt: Jede Maschine wird von der gleichen Auftrags-
folge durchlaufen. Passieren also der Reihe nach die Auftrige P; , P;,, ..., P; die
Maschine M,, so sind die restlichen A; in der gleichen Relhenfo]ge zu durchlaufen
dabei ist iy, ..., i,, eine Permutation der Zahlen 1, 2, .

Im folgenden werden nur die Voraussetzungen 1. bis 4., 5.3 und 6. beriicksichtigt,
d.h., es werden nur Reihenfolgeprobleme mit gleichen Maschinen- und Bearbeitungs-
folgen betrachtet.

In diesem Problemkomplex sind sieben besondere Problemstellungen hervorzu-
heben, die der Reihe nach mit RFP 1, 2, 3, 4, 5, 6 und 7 bezeichnet werden.

Nach der Einfiithrung einiger Bezelchnungen werden die einzelnen Problemstellun-
gen in einer Ubersicht zusammengestellt.

% = 0 sei die Bearbeitungszeit des Auftrages auf der Maschine M;, der in der
Bearbeitungsfolge an i-ter Stelle steht (i =1, ...,m; j=1,...,n).

w;; = 0 sei die Wartezeit des in der Bearbeltungsfolge an i-ter Stelle stehenden
Auftrages, die nach Beendigung der Bearbeitung auf der Maschine M; bis zum Beginn
der Bearbeitung auf der Maschine M;., anfillt (i=1,...,m; j= 1, ey ).

sij 2 0 sei die Stillstandszeit der Maschine M; zwischen Bearbeitungsende und
Bearbeitungsanfang der beiden Auftrige, die an i-ter und (i + 1)-ter Stelle in der
Bearbeitungsfolge stehen (i=1,...,m — 1; j=1,..., n). 8, j = 1, ..., n, ist die Still-
standszeit der Maschine M; von Beginn der Bearbeitung des ersten Auftrages auf der
Maschine M, bis zum Beginn der Bearbeitung des ersten Auftrages auf der Maschine M;.

fi sei die jeweilige Zielfunktion der Reihenfolgeprobleme 1 bis 7 (i = 1, ..., 7).
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Ubersicht der Problemstellungen:

RFP Minimierungsziel f; Besonderheiten

1 Gesamtfertigungszeit
2 Gesamtstillstandszeit s;; und w;; beliebig = 0,
3 Gesamtwartezeit
4 Gesamtfertigungszeit L

. ) wi; =0, 5;; = 0 beliebig
5 Gesamtstillstandszeit
6 Gesamtfertigungszeit

s;; =0, w;; = 0 beliebi

7 Gesamtwartezeit i = ¢

Die eben eingefiihrten Bezeichnungen sind in Bild 4.8 an einem allgemeinen Beispiel
von 3 Auftragen und 3 Maschinen geometrisch verdeutlicht.

In einem kartesischen Koordinatensystem sind in dem Bild auf der y-Achse die
Maschinen M;, M,, M; markiert. Auf der x-Achse sind die Zeiteinheiten abgetragen.

¥ * *
i 03 ty 9 Oy 3 bs
7 P S R e
y Sz Moyt Mrsy )
S e 5o 7T
5 t M s t Wt s, 5,
7 LA 7S S R o S | Bild 4.8

t

Die Bearbeitungszeiten sind durch die dick ausgezogenen Linien, die Stillstandszeiten
der Maschinen durch die Unterbrechungen zwischen den dicken Linien und die
Wartezeiten durch die schrigansteigenden Linien zwischen den einzelnen Maschinen
dargestellt.

Fiir jedes zugelassene Reihenfolgeproblem kann ein lineares Optimierungspro-
blem in einfacher und iibersichtlicher Form vollstindig zusammengestellt werden.
Die Nebenbedingungen sind unmittelbar aus Bild 4.8 allgemein abzulesen. Es gilt:

Syt B+ Wy =Wy + e+ 510
S1o+ a4 Woy = Wi + 15+ 515

(4.42)
Spy 11+ Wa = Way + 155 + So0
Sag + to 4 Wio = Wao + 135+ Sog
oder zusammengefaBt:
Sipt g+ Wi,y = Wi+ e + 80 (4.43)

i=1,2; j=1,2.
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Allgemein gilt fiir m Auftrige und n Maschinen
Sip o g Wisnys = Wig + 01 + Sipa (4.44)
i=1l,..,m—1; j=1,..,n—1,

oder !
=i T Sy = Wig Wi = —tha+ thin (4.45)
i=1,.,m—1; j=1,..,n—1.

Durch (4.44) bzw. (4.45) sind damit die Nebenbedingungen fiir den gesamten Pro-

blemkomplex gegeben.

Bevor die Zielfunktionen naher angegeben werden, sind die Zeiten ¢ durch die

Bearbeitungszeiten f;; auszudriicken. Mit X wird die Matrix [x;;],,» bezeichnet,
deren Elemente x;; den folgenden Bedingungen geniigen:

m
L Yx;=1,
i=1

m .
2. 3x;=1, (4.46)
j=1
30=x;,=1; 4j=1,.,m
X;; ganzzahlig.

Die Matrix X enthilt auf Grund dieser Bedingungen in jeder Zeile und Spalte nur
ein Element, welches eins ist, alle restlichen sind null. Die Anzahl der voneinander
verschiedenen X stimmt mit der Anzahl der moglichen Reihenfolgen der Auftrige
iiberein und betrdgt m!. Jede Reihenfolge wird durch eine entsprechende Zeilenpermu-

tation von T beschrieben.
Es sei

T*=X .-T=[tf]; ti= ;1 Xy + by (4.47)

In der Matrix T* sind die m! verschiedenen Zeilenpermutationen von T enthalten, je
nachdem, wie die Matrix X gewihlt wird. Werden z.B. alle Hauptdiagonalelemente
der Matrix X gleich eins und alle restlichen gleich null gesetzt, so folgt:

T*=T.

In diesem Fall wird durch T* die natiirliche Reihenfolge der Auftrige P, ..., P,, be-
schrieben.

Die Zielfunktionen der sieben Reihenfolgeprobleme sind ebenfalls unmittelbar aus
Bild 4.8 allgemein abzulesen.

Zu den Nebenbedingungen (NB) (4.45), in denen einige Variable den Wert Null
annehmen, kommen die folgenden Zielfunktionen (ZF) hinzu:

m—1 m
RFP1: ZF: fi= 3 sin+ > tf, — min; (4.48/1)
=0 i=1

NB: (4.45).
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m—1 n

RFP2: ZF: fy= 3 s, - min; (4.48/2)
NB: (445,

RFP3: ZF: fi= 3 'S'w,, = min; (4.48/3)
NB: (445)

RFP4: ZF: f, = ijlsm + 3ty min; - (4.48/4)
NB: (4.45L)_3nit wu’: 0 fiur i=1,..,m; =1l,..,n—1.

RFPS5: ZF: fy= '_S’l 2"' ;4 = min; (4.48/5) _
NB: (4.457):1nii:tlwi,=0 fir i=1,..m; j=1,..,n—1.

RFP6: ZF: f,= 5o + ﬁ; % L min; (4.48/6)
NB: (445) mit s, =0 fir i=1,oom—13 j—1,.m.

REPT: ZF: fi= 3 'S ., L min; 4.48/7)

i=1j=1

NB: (4.45) mit s;;=0 fir i=1,..,m—1; j=1,..,n.

Damit ist fiir jedes aufgeworfene Problem ein gemischt-ganzzahliges lineares Opti-
mierungsmodell angegeben. Bei allen Problemen besteht die Aufgabe in der Bestim-
mung einer solchen Reihenfolge der Auftrage (bzw. einer solchen Matrix nach (4.46)),
die die entsprechende Zielfunktion minimiert. In jedem Problemkomplex sind die
rechten Seiten der Nebenbedingungen fiir alle unterschiedenen Probleme stets die
gleichen. Da einige Variable s;; oder w;; gleich null sind, nehmen die linken Seiten
spezielle Formen an, und es treten weiterhin Unterschiede durch die einzelnen Ziel-
funktionen auf.

Fiir jedes Reihenfolgeproblem 148t sich aus dem Optimierungsmodell eine Formel
zur Berechnung des Funktionswertes der Zielfunktion bei vorgegebener Reihenfolge
ableiten. Eine ausfiihrliche Ableitung ist in [27] gegeben. Hier seien nur die einzelnen
Darstellungen iibersichtlich zusammengestellt.

Im folgenden wird ausschlieBlich die natiirliche Reihenfolge der Auftrdge betrach-
tet. Es gilt daher nach (4.46) und (4.47):

X11=Xpp =+ =Xppy=1,

alle restlichen x;; = 0 und damit T* = T.
Es sei

m
T=3
i=1

i

T\-

tis (4.49)

J

n k—1 :
Tu= 3 ty+ 2t (4.50)
Py R =
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m k-1
Tiy= 2 ty+ Zt, (4.51)
i<k =1
Zyy=min (T + Zi 1,6 — Zi_1,n)s Zox=0; 4.52)
1=ks=n
Zi = LT}:E,[TI,@ + Zty 1= Zny 1)y Zio=0. (4.53)

Mit diesen Bezeichnungen lauten die Zielfunktionen bei Vorgabe der natiirlichen
Reihenfolge fiir die RFP 1, 4, 5 folgendermaBen:

m=1 n—1
RFPI: fi=T— 3 Zn=T— 3 Zny; (4.59)
i=1 j=1
m=1
RFP4: f; =T — 3 min {T,}; (4.55)
i=llsk=n
m=1 n
REPS: f,= S max | Ti,—n-T,-k}. (4.56)
i=115ksn lr=1

Weitere Darstellungen sind in [27] enthalten.

4.5.2.  Ein Losungsalgorithmus

Im folgenden soll ein Sonderfall zum RFP 1 betrachtet werden, indem die Anzahl
der Maschinen n = 2 gesetzt wird.

Aus Tabelle 4.16 sind fiir ein Beispiel mit m = 5 und »n = 2 die einzelnen Bearbei-
tungszeiten ¢;; — gerechnet pro Tag — zu ersehen. Jeder der fiinf vorliegenden Auftrige
Py, Py, Py, P,und P; passiert zuerst die Maschine M, und anschlieBend die Maschine
M,. In Bild 4.9 sind vier verschiedene von den insgesamt 5! = 120 Reihenfolgemdog-
lichkeiten graphisch dargestellt, wobei die eingezeichneten stark ausgezogenen Linien
die Bearbeitungszeit des Produktes P; auf der entsprechenden Maschine bedeuten.
Die Werte in der dort angegebenen Zahlenspalte a bzw. b stellen die Ausnutzung
in % bzw. die Fertigungszeit in Tagen dar.

Tabelle 4.16
Ml Mz

Py tu:6 ha=35

P, t,, =13 thy =2

Py 5, =8 f3=3

Py | ;=4 tio=9

Py ts, =2 150 =3
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a%| b
I 5 A
s Tk s 3 i
M; L AR TR - 2| 33
Wl ABE A A
A L 3L W 76 | a1
i 5 b KA A
g, T
Z — - a2
My Pt A &7 2%
I A S A W
BT E R AT 90| 25 )
Gl A I A A A ‘ Bild 4.9
§ ¢ o % 2 % 7 3

Dieser Sonderfall wurde von Johnson geldst. In [8] beschreibt Johnson eine Regel
zur}Ermittlung der optimalen Reihenfolge. Er zeigt dort, daB in einer optimalen An-
ordnung der Auftrag P; vor dem Auftrag P, bearbeitet werden muB, wenn

min {t;y, o} < min (£}, £io)
gilt. Daraus resultiert die Losungsregel, die aus folgenden Einzelschritten besteht:
Schritt 1: Es wird h = min {t;,, ;,} gebildet.
1sism

Schritt 2: Wenn h = t;; ist, wobei i, einen ganz bestimmten Index der Menge
1,2, ..., m bedeutet, so wird der Auftrag P;, in der Reihenfolge zuerst bearbeitet.
Wenn / = t;, ist, so wird der Auftrag P;, zuletzt bearbeitet. Ist

h=min {t;,, t,5}
1=i=m
nicht eindeutig, so wird definitionsgemédB der Auftrag mit dem kleinsten Index ge-
wihlt und nach den beiden eben angefiihrten Entscheidungsmerkmalen angeordnet.

Nach Beendigung des Schrittes 2 werden die restlichen P; in der Weiterfithrung
ohne P;, betrachtet, indem die Schritte 1 und 2 fiir die restlichen (m — 1) Auftrige
wiederholt werden. Dieser Zyklus wird so lange wiederholt, bis alle Auftridge ange-
ordnet sind. Fiir das Beispiel der Tabelle 4.16 entsteht nach dieser angefiihrten Regel
die optimale Reihenfolge P;, P,, P,, Py, P,. Nach der 1. Ausfithrung der beiden
Schritte ergibt sich, daB P, zuletzt zu bearbeiten ist. Es werden in der Weiterfithrung
nur noch P, P,, P, und P; betrachtet. Nachdem die Schritte 1 und 2 zum 2. Male
ausgefiihrt sind, zeigt sich: P; ist zuerst zu bearbeiten. Analog folgen die restlichen
Anordnungen.

Wird das RFP 1 fiir m Auftrige und drei Maschinen M,, M, und M, betrachtet,
so ist von Johnson gezeigt worden, daB fiir einen Spezielfall eine optimale Reihen-
folge durch entsprechende Anwendung der angefiihrten Regel bestimmt werden
kann. Dieser Spezialfall liegt vor, wenn entweder

1. min {#;,}) = max {t;}
1=i=m 1=ism
oder
2. min {t;3} = max {t;,}
1=ism 1<i=m

gilt.
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Aus der Tabelle 4.17 ist ein Beispiel des Spezialfalles 2. zu entnehmen. Um fiir dieses
Beispiel eine optimale Anordnung der Auftrige zu ermitteln, wird die Summe der
ersten beiden und der letzten beiden Spalten der Tabelle 4.17 in einer neuen Tabelle
4.18 erstellt. Nun wird die obige Regel auf die Zahlenwerte der Tabelle 4.18 ange-
wandt. Die daraus entstehende Reihenfolge Py, P,, P,, P;, P; ist eine optimale Lo-
sung des Beispiels der Tabelle 4.17.

Tabelle 4.17 Tabelle 4.18
l M, M, M, M, +M, | M,+ M,
P, 5 4 11 P, 9 15
P, 3 6 9 P, 9 15
Py 7 7 12 Py 14 19
P, 2 8 13 P, 10 21
P 9 2 8 P; 11 10

Wird bei dem RFP 1 die Voraussetzung 4 durch die Forderung — nach seiner
vollstindigen Bearbeitung kann frithestens ein Einzelteil des Auftrages bereits zur
néchsten Maschine iibergehen, ohne daB die restlichen Einzelteile auf der vorher-
gehenden Maschine fertig sind — ersetzt, so entsteht die folgende verdnderte Situation,

In Bild 4.10 ist ein Bearbeitungsplan fiir einen Auftrag P; mit drei Einzelteilen auf
vier Maschinen dargestellt. Durch die punktierten Linien in Bild 4.10 sind die erfor-
derlichen Riistzeiten markiert. In Bild 4.11 bzw. 4.12 ist ein Treppenzug eingezeich-
net, der eine rechte bzw. linke Begrenzung des Bearbeitungsplanes von Bild 4.10 dar-
stellt; die einzelnen Treppenstufen sind mit ¢}, ..., ¢} bzw. mit £3, ..., t3 bezeichnet.

Fiir jeden Auftrag P;, der auf n Maschinen zu bearbeiten ist, konnen in der dar-
gestellten Art und Weise zwei Zahlenreihen ¢}, ..., t}, und #3, ..., ¢}, angegeben wer-
den, die graphisch den linken und rechten Begrenzungstreppenzug des Bearbeitungs-
planes von P; darstellen.

M - {
M [N —— :
1
- e S
M, ;
W S —
My !
. Bild 4.10
t
7
b
M, ! -t
4 , b 1
s G2 Il
"
) :
" !
'
H

Bild 4.11
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M/' i 2 tiZJ !
My - liz |
M- r,-z, |
Ml |

Die Johnsonsche Losungsregel kann ebenfalls fiir den Sonderfall, da zwei Maschinen
vorliegen, zur Losung herangezogen werden. Aus der Tabelle 4.19 sind fiir ein Bei-
spiel mit m = 5 und n = 2 die einzelnen Zahlen, die die Auftriage wahrend der Bearbei-
tung charakterisieren, zu entnehmen.

Bild 4.12

Tabelle 4.19

M, M,

P 12 12

[ Lo 1
P, 2 4 5 3
P, 4 6 8 6
Py 7 10 11 8
P, 2 3 6 5
Py 37 10 6

Die Losungsregel von Johnson ist zur Losung des Zahlenbeispiels auf die 1. und
4, Zahlenspalte der Tabelle 4.19 anzuwenden. Als Ergebnis folgt: P,, P, Ps, Ps, Ps
ist eine gesuchte optimale Reihenfolge fiir das vorgegebene Zahlenbeispiel.

Wenn die folgenden Bedingungen erfiillt sind:
min (t}) = max (%) (4.57)
1=i=m 1=ism
oder
min (7%) 2
1<igm 1

max (%), (4.58)
i<
so kann die Regel auch auf den Fall n = 3 Maschinen iibertragen werden. Die Erldu-
terung der Regel erfolgt wieder am Beispiel. Aus der Tabelle 4.20 sind fiir m = 5 und
n =13 die einzelnen Zahlen, die die Auftrige wiahrend der Bearbeitung charakteri-
sieren, zu entnehmen. Fiir dieses Zahlenbeispiel ist die Voraussetzung (4.57) erfiillt.

Tabelle 4.20
M, M, M,

Py 1 2 1 2 1 2

tia Ia tis iz tiz i3
P, 4 7 2 4 10 5
P, 5 11 3 2 7 2
P 6 11 1 2 8 2
P, 4 6 3 4 4 1
P, 4 8 2 1 1 4
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Es werden die Zeilensummen aus der 1. und 3. Zahlenspalte und aus der 4. und
6. Zahlenspalte der Tabelle 4.20 gebildet. Diese Summen sind der Reihe nach in der
Tabelle 4.21 enthalten. Nunmehr ist die Losungsregel von Johnson auf die Zahlen
der Tabelle 4.21 anzuwenden. Als Ergebnis folgt: P,, P;, P,, P;, P, ist eine gesuchte
optimale Reihenfolge fiir das vorgegebene Zahlenbeispiel. Die Beweise hierzu konnen
in [27] nachgelesen werden.

Tabelle 4.21
N | i | e
1 6 9
2 8 4
3 7 4
4 7 5
5 6 5

4.5.3. Rundreiseproblem und Reihenfolgeproblem

Im folgenden werden die RFP 4 und 5 betrachtet. Jedes dieser Probleme ist auf ein
Rundreiseproblem zuriickfithrbar. Um diese Zuriickfithrung vorzunehmen, wird
zu der vorgegebenen Bearbeitungsmatrix T = [t;;] noch eine Zeile mit lauter Nullen
hinzugefiigt, d.h., es wird ein fiktiver Auftrag P, mit den Bearbeitungszeiten t,; = 0,
j=1..,n emgefuhrt Damit sind (m + 1) Auftridge vorhanden. Steht der ﬁktlve
Auftrag in der Reihenfolge an erster (oder letzter) Stelle, so iiberblickt man sofort,
dafB keine Verdnderung des Funktionswertes der Ausgangssituation eintritt. Steht
der fiktive Auftrag nicht an erster (oder letzter) Stelle, so ist der Funktionswert groBer
als der oder gleich dem Funktionswert der Ausgangssituation. Daher gilt: Das Mini-
mum wird bei einer Reihenfolge angenommen, in der der fiktive Auftrag an erster
(oder letzter) Stelle steht. Die Formel (4.74) nimmt mit dieser Erweiterung die fol-
gende Form an:

n mAl
22’11 > min (T,

i=0j= i=0 1<k<n

Hieraus folgt unmittelbar:

m—1
fi= Z;)gi.iA (4.59)
i=

n
8,11 = 2 lisy,; — Min { 2 Ly + Z’z 1, i}
j=t 1=k=n G=k+1
Da in der letzten Gleichung g; ;+, nur von den Bearbeitungszeiten zweier benachbar-
ter Zeilen der Bearbeitungsmatrix abhéngig ist, kann fiir jede beliebige Aufeinander-
folge zweier Auftrige ein solcher Summand berechnet werden. Fiir die Aufeinander-
folge der Auftrage P, und P, entsteht:

n n k—1
8rs = > ts; — min { Dt+ 2> ts,}
=1 1k<n lji=k+1 =
fir r=+s; rs=0,..,m.
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Nachdem die m - (m + 1) Werte der g,, berechnet sind, werden sie in Matrizenform
angeordnet. Dabei ist zu beachten, daB fiir die Hauptdiagonale keine Werte definiert
sind. Hier werden Zahlen eingesetzt, die hinreichend grof3, aber sonst beliebig ge-
wihlt werden. Diese Matrix wird mit G = [g,,] bezeichnet. Fiir [g,,] ist nun das Rund-
reiseproblem zu I6sen.

Ist die Aufeinanderfolge der Elemente
{gii, Birigs oo 8iy_yiy> 8iyiyyys ooes gimin}
eine optimale Losung der Rundreisematrix G und ist i, = 0, so ist
Py, 5 o5 Piys Pigs ey P,
eine gesuchte optimale Reihenfolge der Auftrige zum RFP4, und es gilt

m
fi= 3 i
p-

iy

Der optimale Funktionswert von f; stimmt also mit dem optimalen Funktionswert
des Rundreiseproblems G iiberein.

Fiir das Beispiel

[510 2
T=|5 38
14 96
lautet die Matrix G:
[— 17 (16) 19
0) — 9 13
G= (o) 6 — 8
[0 (6) 8 —

Die optimale Lésung von G ist durch Klammern in der Matrix markiert.
Es folgt die optimale Aufeinanderfolge

18025 8235 8315 G10)+

Hieraus folgt, P,, P, P, ist die optimale Reihenfolge, und
Ji= o2+ a3+ g1+ 810 =30

ist der optimale Funktionswert des RFP 4.

Das Reihenfolgeproblem 5 148t sich ganz analog auf ein Rundreiseproblem zuriick-
fithren.

Die Formel (4.56) lautet:
m—1 n m—1_
fi= 2 max { Tu_n'Ttk}:Egi,m
i=11=k=n lr=1 i=1
mit
o n
&i, 141 = Max {2 Tiv—n- Tik}‘

1=k=n lr=1
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In dieser Darstellung hangt ebenfalls g;;,, nur von den Bearbeitungszeiten zweier
benachbarter Zeilen der Bearbeitungsmatrix ab. Fiir jede beliebige Aufeinanderfolge
zweier Auftrige kann ein solcher Summand berechnet werden. Fiir die Aufeinander-
folge der Auftrage P, und P, entsteht

n n y=1

8rs = Max {2( 2 trj+2t!1)—‘n ( 2yt 2’:1)}

1=k=n b=1 \j<yt1 =1 j=k+1
r+=s r,s=1,..,m.

Die Elemente g,, werden in Matrizenform angeordnet. Dabei ist zu beachten, daf

fir die Hauptdiagonale keine Werte definiert sind. Hier werden wieder Zahlen ein-

gesetzt, die hinreichend groB, aber sonst beliebig gewéhlt werden. Die entstandene

Matrix ist noch durch eine 1. Spalte und 1. Zeile mit Nullen zu réndern, damit ein
,.getrennter* Zyklus entsteht, d.h. damit gesichert ist, daB ein Paar von Auftrdgen
nicht aufeinanderfolgt. Die Matrix wird mit G bezeichnet. Ganz analog gilt:
Ist die Aufeinanderfolge der Elemente
{isiss Birias o iy _yiy> Ziyiy oo o> gim_io}
eine optimale Losung der Rundreisematrix G und ist i, = 0, so ist
Py s Pipy Pis s Py

eine gesuchte optimale Reihenfolge der Auftrige zum RFP 5, und es gilt
m

fi= %Ei,iw; Ins1 = lo-
Zum angefiihrten Beispiel gehort folgende G-Matrix:
—(© 0 0
0 — (6) 13
06 — (3|
© 8 10 —
Die optimale Losung ist wieder durch Klammern in der Matrix markiert und lautet

{015 812, 8255 &30} -
Also ist P,, P,, P, die gesuchte optimale Reihenfolge mit f; = 9.

G-

4.54. Die Anwendung des Verzweigungsverfahrens auf das Reihenfolgeproblem

Fiir alle angegebenen Reihenfolgeprobleme sind mit der ,,Branch-and-Bound*-
Methode praktische Losungsmoglichkeiten bekannt. Im folgenden wird nur fiir das
RFP 1 ein ,,Branch-and-Bound‘‘-Algorithmus angegeben.

Die Zielfunktion des RFP 1 besteht in der Minimierung der Durchlaufszeit der m
Auftrage auf n Maschinen und kann fo]gendermaﬁen dargestellt werden:

m—1 K
ke Z'tu+2' 2yt Z' fm/] (4.60)

=2 j=ki_1 J=kp—1
K"‘lék1§k2= “SkpaiSn
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Der Algorithmus ergibt sich analog zur allgemeinen Darstellung der ,,Branch-and-
Bound*“-Methode. Die gesamte Losungsmenge P stellt die Menge aller Permutationen
der Auftragsnummern dar. Mit p =iy, ..., i,, wird eine beliebige Permutation der
Menge P bezeichnet. Die Losungsmenge mrd in Klassen aufgespalten. P; ., ist
die Klasse aller Auftragsreihenfolgen, die mit P; . ,;, beginnen. Von Jeder Klasse
wird eine untere Schranke bestimmt.

Der Aufbau des ,,Branch-and-Bound‘‘-Algorithmus ist in den folgenden drei
Punkten zusammengestellt:

1. Aus (4.60) emsteht eine untere Schranke A4, von f;, wenn nur die Teilmenge

1< k= - =ky = nder Menge aller Kombinationen K berucksxchtlgt wird. Es
gilt dann:
m
fi= A, = max {2t1,+ St 2 tm,} (4.61)
1=k=n 1

Aus (4.61) folgt fiir eine beliebige Permutation p:
fiza=mx S Bus 30 )

1=k=n
In der Schranke A4 treten nur zwei Glleder der Permutation p auf, ndmlich i, und i,,.
Liegt z.B. 7, fest, so gibt es nur m — 1 Mdglichkeiten, i,, zu wahlen. Werden fiir alle
v = i, mit v = 1, ..., m die m — 1 Schranken 4 gebildet und mit 4; die kleinste be-
zeichnet, so ist 4; eine untere Schranke aller Funktionswerte der Reihenfolge, bei
denen der Auftrag P; an erster Stelle steht.

Wird daher mit P; (< P) die Menge aller Permutationen p bezeichnet, die mit 7
beginnen, so gilt fiir alle p € P;:

fi = A, = min {max [Zthr St 2 fu,]} (4.62)

2<,,sm 1=k=n

In (4.62) bedeutet 2 t;,; die Stillstandszeit der Maschine M von Beginn der Bearbei-

tung des Auftrages P auf der ersten Maschine bis zum Beginn der Bearbeitung von
P;, auf der Maschine M - Der letzte Summand in (4.62) hingt nur von den Bearbei-
tungszeiten der dem Auftrag P; nachfolgenden Auftrige ab.

2. Um einen Verzweigungs-Algorithmus aufzustellen, ist es notwendig, eine untere
Schranke

aller Zielfunktionswerte derjenigen Reihenfolgen anzugeben, bei denen der Reihe
nach die Auftrige P;, ..., P;; zuerst bearbeitet werden (1 = 2 < m). Wird also mlt
P, ..., ;, die Menge aller Permutationen p bezeichnet, die mit “den Zahlen i, ...
begmnen so gilt fiir alle p € P; , ..., ;, nach (4.62)

\
F(p) = Ay~ min {max [zzm Vi + 2m+ by zm]}~
Ati=psm ligksn —k+1
(4.63)

Der letzte Summand der Min-Max-Glieder von (4.63) hidngt wiederum nur von den
Bearbeitungszeiten der dem Auftrag P;, nachfolgenden Auftrige ab. In (4.63) bedeu-
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tet Vi, die Stillstandszeit der Maschine M, von Beginn der Bearbeitung des Auf-
trages P;, auf M; bis zum Ende der Bearbeitung von P;, auf M.

3. Das Optimum ist gefunden, wenn mindestens eine Permutation p* einen Ziel-
funktionswert

fip*)= min {Ai, ,,,,, ilJ
vp €P;
1=i=m
hat, das heiBt, wenn an einem Ende des Verzweigungs-Baumes zu einem Knoten eine
einzige Permutation p* gehort und deren Gesamtfertigungszeit gleich dem Minimum
der unteren Schranke aller Knoten ist.
Die V;,; werden folgendermaBen berechnet:

Wird mit f;,; die Zeit bezeichnet, nach der der Auftrag P;, auf der Maschine
vollstindig bearbeitet ist, so gilt fiir das betrachtete RFP 1 d1e folgende Rekursions-
formel:

Sige=max (fi,_5 fip—1) + tiyr . (4.64)
mit fluk =fl}0 =0.
Dabei ist f;, ; die Zeit, zu der M friihestens P aufnehmen kann, undfl -1 ist die
Zeit, nach der P;, frithestens auf der vorhergehenden Maschine fertig ist und auf die
néchste ubereehen kann.

Da —1
Vi,-_k = Z Sv!c = Slk + et Sl—l, ks
y=1
Sy = max (0, fip—1 — fip)s
Sye=max (0, f; k-1~ fi,1)s
Si—1,x=max (0, f k-1 — fi, )
ist, folgt:

A-1 )
Vi = 2 max (O,fivﬂk—l —fi,k)- (4.65)
v=1

Werden von dem Beispiel

5102
[t = [5 3 8}

4 96
fiir die natiirliche Reihenfolge die f;; berechnet, so gilt:
. fir fie fis) @ 5 @IS wl7
le fzz fza = (0)10 (0)18 (1)26
,f31 f:sa ﬁm . 14 27 23 -

Die in der letzten Matrix zusétzlich eingefiihrten, eingeklammerten Zahlen sind spal-
tenweise die einzelnen Summanden von (4.65) fiir k = 1, 2, 3. Sie sind unmittelbar aus
den f;,, nach (4.64) zu berechnen.

12 Seiffart, Optimierung
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Zur Bearbeitungsmatrix

68 4
183
636
457

wird im folgendendas RFP 1 gelost. Bei der Anwendung des Algorithmus sind zunichst
die Maximierungsglieder (4.63) zu berechnen. In der Tabelle 4.22 sind der Reihe
nach diese Maximierungsglieder bei festem i, zeilenweise angegeben. In den ersten
Spalten dieser Zeilen sind die Anfangsglieder i, , ..., i, der Permutation p und in den
nachfolgenden n Spalten (im Beispiel n = 3) die V;;, bei festem 7; und k hinzugefiigt.

Nach jedem vollen Satz von Max1mlerungsghedern folgt jeweils das entsprechende
Minimierungsglied. Die zusammengehorenden Maximierungsglieder sind ohne Zwi-
schenraum hintereinander angefiihrt. Die Minimierungsglieder sind durch Abstande
hervorgehoben. In der letzten Spalte sind die unteren Schranken'4;, . ., ;, vermerkt.
An Stelle der V;;, = 0 (fiir alle k) sind in den der ersten Bezelchnungszelle folgenden
m Zeilen die Bearbeitungszeiten der Matrix T eingetragen. Die Nebenrechnungen
zyr Bestimmung der V;; und der Maximierungsglieder sind nicht mit in der Ta-
belle 4.22 vermerkt, kénnen aber ebenfalls rationell ausgefiihrt werden. Im AnschluB

T=[t]=

Tabelle 4.22 .
Byeedn | Vi | Vi | Vigs | 1u=1 =2 | i,=3 |i=4 | 4iy,niy

1 6 8 4 363736 |37 344036 (40| 374136 |41 37
2 1 8 3 | 373331 |37 343531 |35 373631 |37 35
3 6 3 6 | 373831 |38 363731 (37 374131 (41 37
4 4 5 7 | 373631 |37| 363531 (36| 343831 |38 36
21 0 0 5 343536 {36 373636 |37 36
23 0 0 0 | 373331 |37 373631 |37 37
24 0 0 2 | 373333 |37 343533 |35 35
241 0 0 1 343534 |35 35
243 0 0 0 | 373333 |37 37

Optimale Lésung: P,, Py, P, Py, f,=35.

an die Tabelle 4.22 ist die optimale Lésung mit Funktionswert angegeben. SchlieBlich
sind in Bild 4.13 alle notwendigen Verzweigungen durch die eingekreisten Anfangs-
glieder i, ..., i; mit den dazugehorenden Schranken schematisch dargestellt.

@7 35 @37 ®3€

7N\
0, @
=35 37 Bild4.13




S. Bemerkungen zur geschichtlichen Entwicklung

Die Untersuchung von Extremaleigenschaften und die Charakterisierung von
Gebilden mit Hilfe von Extremaleigenschaften beginnt bereits in der als antike
Mathematik bezeichneten Entwicklungsepoche der Mathematik. Zunédchst sind es
geometrische und physikalische Fragestellungen, die beantwortet werden:. Welches
von allen Dreiecken mit zwei gegebenen Seiten hat die groBte Fliche? Wie erfolgt die
Reflexion des Lichtes an einem Spiegel? Das zweite Problem stellt ein Minimierungs-
problem dar, denn es ist die Entfernung ven jedem Punkte des einfallenden Strahles
iiber den Reflexionspunkt zu jedem Punkt des ausfallenden Strahles kleiner als der
Weg iiber jeden anderen Punkt des Spiegels; auch die fiir die Zuriicklegung des Weges
bendtigte Zeit ist fiir den Weg iiber den Reflexionspunkt minimal. Das Erkennen des
Reflexionsgesetzes geht vermutlich auf Heron von Alexandrien (um 100 u. Z.) zu-
riick. Mehr als 1500 Jahre vergehen, bis durch Pierre de Fermat (1601—1665) das fiir
den Ubergang von einem Medium ins andere giiltige Brechungsgesetz (Fermatsches
Prinzip der geometrischen Optik) gefunden wird, das er auch fiir den Fall gekriimm-
ter Grenzflichen untersucht und das noch heute z.B. fiir die Berechnung von Linsen-
systemen angewendet wird. C.F. GauBl (1777-1855) entwickelt die Methode der
kleinsten Quadrate. Weiterhin werden Extremaleigenschaften mit Hilfe von Unglei-
chungen beschrieben; beispielsweise ist aus dem Vergleich von geométrischem und arith-

/ 2
metischem Mittel xy = (iy) ablesbar, da} von allen Rechtecken das Quadrat den

groBten Flacheninhalt hat. Mechanische Probleme wie z.B. die Frage nach dem Vor-
handensein des stabilen Gleichgewichtes werden als Extremalproblem (Minimum an
potentieller Energie) erkannt.

Alle bisher genannten Probleme sind variablenabhingig; die Kenntnis der Funk-
tionen einer oder mehrerer reeller Verdnderlicher und der Aussagen iiber die Existenz
von Extremwerten ohne oder mit Nebenbedingungen geniigen zur L&sung von
Extremalproblemen, wenn die Funktionen Tangenten mit sich stetig &indernder Tan-
gentenrichtung besitzen.

Zu einer anderen Art von Extremalproblemen gelangen wir, wenn nach den Be-
dingungen gefragt wird, unter denen sich eine gekriimmte Oberflache bei sog. Form-
anderung nicht verdndert. J. L. Lagrange (1736—1813) beantwortet 1760 diese Frage:
er charakterisiert diese Fliachen als Flichen mit verschwindender mittlerer Kriim-
mung. Es sind die Minimalflichen, die sich auch als Losung der von J. Plateau
(1801—1883) aufgeworfenen Frage nach der Flache mit méglichst kleiner Oberfliche
iiber einer geschlossenen Kurve ergeben. Experimentell ergeben sich diese Mini-
malflichen, wenn die mit Draht nachgebildete Kurve in eine Seifenwasserlosung
getaucht wird; die sich bildende Haut ist die kleinstmdgliche Fliche, weil die poten-
tielle Energie infolge der kleinsten Oberflichenspannung minimal ist. Mathema-
tisch gesehen handelt es sich um ein Variationsproblem, das gesuchte Extremum
ist vom Verhalten der Kurve im ganzen abhingig.

Die Untersuchungen iiber Theorie und Anwendung dieser beiden Arten von
Extremwerten ist neben den bereits genannten Mathematikern u.a. verkniipft mit
den Namen L. Euler (1707—1783), A. M. Cauchy (1789—1857), G. Monge (1746
bis 1818), C. G.J. Jacobi (1804—1851), W. R. Hamilton (1805-1865), P. G. L. Di-
richlet (1805—-1859), K. Weierstra3 (1815—1897), B. Riemann (1826—1866), S. Lie

‘12%



180 5. Geschichtliche Entwicklung

(1842—1899), D. Hilbert (1862—1944), C. Carathéodory (1873—1950), R. Courant
(geb. 1888), T. Rado; die entwickelten analytischen Hilfsmittel werden oftmals zur
Untersuchung von Problemen aus anderen Teilgebieten der Mathematik wie aus der
Arithmetik, der Zahlentheorie, der Geometrie, der Topologie oder aus der Physik
angewendet, oder die analytischen Methoden werden haufig zielgerichtet zur Losung
von Problemen aus anderen Gebieten entwickelt.

Wenn eine lineare Funktion von # reellen Verdnderlichen auf Extrema zu unter-
suchen ist, so gibt es diese nur im Falle von Nebenbedingungen, die zunéchst durch
ein System von linearen Gleichungen oder Ungleichungen reprisentiert werden sollen.
Dieses System bestimmt ein konvexes Polyeder, innerhalb dessen die Extremwerte
der linearen Zielfunktion zu ermitteln sind. Extremwerte liegen fiir lineare Funktionen
am Rande des Polyeders. Es miissen daher im Unterschied zur Problemstellung der
klassischen Mathematik Funktionen untersucht werden, die Tangenten mit sich
nicht stetig dndernder Tangentenrichtung besitzen; die Aufgabenstellung verlangt die
Untersuchung von ,,Kantenfunktionen*, deren Tangentenrichtungen in den End-
punkten der Kanten Unstetigkeiten besitzen. Diese Aufgabenstellung liegt den nicht-
entarteten linearen Optimierungsproblemen zugrunde.

Die ersten Arbeiten hierzu stammen aus dem Jahre 1939 von L. W. Kantoro-
witsch und M. K. Gawurin. Das Simplextheorem (vgl. 2.4.), das Optimalitétskrite-
rium fir lineare Optimierungsprobleme, formuliert G. B. Dantzig 1947, verdffent-
licht es aber erst 1951. Zu dieser Zeit wird bereits an verschiedenen speziellen
linearen Optimierungsproblemen gearbeitet: F. L. Hitchcock formuliert 1941 das
Transportproblem (vgl. 4.1.) und ' gibt eine Losung an; andere Losungsmethoden
stammen von T. C. Koopman (1951), M. M. Flood (1953), J. Bily, M. Fiedler und
F. Nozicka (1958), W. Vogel (1967). Eine Lsung des Zuordnungsproblems (vgl. 4.2.),
eines speziellen Transportproblems, gibt H. W. Kuhn 1955 (sog. ungarische Methode);
spater wird gezeigt, daB diese Losungsverfahren auch fiir Transportprobleme an-
wendbar ist.

Neben den linearen Optimierungsproblemen mit spezieller Struktur gibt es Klas-
sen von linearen Optimierungsproblemen, deren Behandlung z.B. durch Forderun-
gen an die Ganzzahligkeit der Losungen notwendig wird; man bezeichnet sie als
ganzzahlige lineare Optimierungsprobleme (auch diskrete lineare Optimierung)
(vgl. 2.1.3.). Brauchbare Losungsalgorithmen stammen von R. Gomory (1958, 1963).
Zu speziellen Modellen wie dem Rundreiseproblem (vgl. 4.4.) liefern M. M. Food
(1956) und M. Schoch (1966) Beitrage; das Reihenfolgeproblem (vgl. 4.5.) wird von
E. Seiffart (1963, 1969) und B. Bank (1969) bearbeitet. Die Losung ganzzahliger line-
arer Optimierungsprobleme erfordert Uberlegungen aus der elementaren Zahlentheorie
und aus der Gruppentheorie, die besonders von J. Piehler (1970) herangezogen werden.

Ebenfalls praktischen Bediirfnissen entspringt die Beriicksichtigung der Tatsache,
daB ein oder mehrere Koeffizienten der Zielfunktion oder der Nebenbedingungen
oder die rechten Seiten der Nebenbedingungen von einem Parameter oder mehreren
Parametern linear oder nichtlinear abhéngen;wir sprechen dann von ein- und mehr-
parametrischer linearer bzw. nichtlinearer Optimierung (vgl. 2.1.4.). Hier geht es um
die Beantwortung der Frage, fiir welche Werte des Parameters oder der Parameter
stabile optimale Losungen erreicht werden. Im Zusammenhang mit diesem Problem-
kreis sind R. L. Willner (1957) und G. B. Dantzig (1966) sowie die erste umfassende
deutschsprachige Darstellung von F. Nozi¢ka, J. Guddat, H. Hollatz und H. Bank
(1973) zu nennen.
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Wenn ein Koeffizient oder mehrere Koeffizienten eines linearen Optimierungs-
problems Zufallscharakter aufweisen, so kann dieser bei geringer Streuung vernach-
lassigt werden. Bei groferen Streuungsintervallen muf3 die Zufallsabhidngigkeit be-
riicksichtigt werden; wir sprechen von stochastischer linearer Optimierung. Systema-
tische Untersuchungen beginnen am Anfang der 50er Jahre, erste Ergebnisse stam-
men von G. B. Dantzig (1955), R. J. Freund (1956), G. Tinter (1956), G. B. Dantzig
und A. R. Ferguson (1956), A. Charnes, W. W. Cooper, G. H. Symonds (1958) so-
wie A. Charnes und W. W. Cooper (1959, 1963).

Um die enormen Fortschritte in der Behandlung von Extremalproblemen in den
letzten 25 bis 30 Jahren einigermalen abgerundet darzustellen, knnen wir nicht die
Entstehung der nichtlinearen Optimierung, ferner die sog. dynamische Optimie-
rung sowie die Theorie der optimalen Prozesse unerwéhnt lassen.

Zwar Dbestitigt die Praxis immer wieder, da mit der linearen Optimierung
viele Probleme geldst werden konnen, aber dennoch gelingt nicht in jedem Falle eine
Linearisierung bzw. ist sie manchmal unmdglich. Der genaueren Widerspiegelung
der realen Verhiltnisse dient die Aufhebung der Beschrinkung fiir Zielfunktion und
Nebenbedingungen. Wenn entweder die Zielfunktion und eine oder mehrere Neben-
bedingungen oder nur eine oder mehrere Nebenbedingungen nicht linear sind, spre-
chen wir von nichtlinearer Optimierung. Die notwendigen und hinreichenden Be-
dingungen fiir die optimalen Losungen solcher Probleme sprechen H. W. Kuhn und
A. W.Tucker bereits 1951 aus. Das Kuhn-Tucker-Theorem ist das Optimalititskrite-
rivm fir nichtlineare Optimierungsprobleme (vgl. Band 15). Die nichtlineare Opti-
mierung entwickelt sich parallel zur linearen Optimierung. Sie ist in ihren Anfingen
verbunden mit Arbeiten u.a. von G.B. Dantzig (1956), P. Wolfe und M. Frank
(1956), K.J. Arrow und H. Uzawa (1958), P. Wolfe (1959), G. Zoutendijk (1959,
1960), H. Houthakker (1960), J. B. Rosen (1960, 1961); bisher ist es nur fiir wenige
Klassen dieser Optimierungsprobleme gelungen, allgemeine Losungsverfahren her-
zuleiten.

Bei der dynamischen Optimierung handelt es sich nicht um eine besondere Art von
Optimierungsproblemen, sondern um besondere Losungsverfahren. Der Name bezieht
sich zunéchst auf Probleme, bei denen eine Zeitabhingigkeit des Prozesses vorhan-
den ist. Die Verdffentlichung des von R.Bellman formulierten Optimalititsprinzips
und seiner Anwendungen erfolgt 1957, weitere Ergebnisse folgen 1961 und von
E. Dreyfus 1962. Von J. Pichler stammt eine Einfiithrung in die Probleme der dynami-
schen Optimierung (1967). Es zeigt sich, daB die entwickelten Methoden auch auf
zeitunabhingige und lineare Probleme und zur numerischen Losung bestimmter
Variationsprobleme angewendet werden konnen.

In den verschiedensten Bereichen der gesellschaftlichen Praxis begegnen wir dyna-
mischen Systemen, in denen in bezug auf die Zeit stetige Prozesse ablaufen. Die hierzu
ausgearbeitete Theorie kann in gewisser Weise einerseits als Erweiterung der mit
Hilfe der linearen und der nichtlinearen Optimierung und andererseits auch als Fort-
fithrung der mit Hilfe der Differentialrechnung und der Variationsrechnung 18sbaren
Extremalprobleme angesehen werden; es handelt sich um die Theorie der optimalen
Prozesse. Das Optimalitétskriterium ist das auf L. S. Pontrjagin und seine Schule
zuriickgehende notwendige Kriterium, das 1961 bekannt wurde und als Pontrjagin-
sches Maximumprinzip bezeichnet wird. Zur mathematischen Theorie und zu den
mathematischen Methoden der optimalen Prozesse sei auf die Arbeiten von L.S.
Pontrjagin, W. G. Boltjanski, R. W. Gamkrelidse und E. F. Mistschenko (1956 uf.)
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verwiesen. Anwendungen auf Probleme aus verschiedenartigen Bereichen werden
u.a. von A. A, Feldbaum (1966), K. A. Bagrinowski (1968), B. Biersack (1968),
N. N. Krassowski (1968), G. Zeidler (1969) untersucht.

Die lineare Optimierung ist eines von vielen mathematischen Teilgebieten, das
wesentlich zur Losung verschiedenartiger Extremalprobleme beitrégt. Sie basiert auf
der Entwicklung von Analysis und Geometrie, verwendet besonders Methoden und
Ergebnisse der kombinatorischen Analysis und der linearen Algebra (vgl. Band 13,
Kapitel 6); das frither wenig beachtete Gebiet der linearen Ungleichungen findet hier
umfassende Anwendung; es sei an die Ergebnisse von J. Farkas (1901), E. M. L.
Beale (1955) und S. N. Tschernikow (1966) erinnert. Es interessieren nicht nur theo-
retische Ergebnisse, sondern der numerischen Exekutive, dem gut konvergierenden
Algorithmus gilt besondere Aufmerksamkeit. Zu vielen anderen Teilgebisten der
Mathematik wie u.a. zur Spieltheorie und zur Graphentheorie (vgl. Band 21) gibt es
wertvolle Beziehungen. In die mathematische Ausbildung der Diplomingenieure
fand die lineare Optimierung vor ca. 10 bis 12 Jahren als fakultative Lehrveranstal-
tung Aufnahme im Fachstudium und gehdrt nunmehr zu den obligatorischen Lehr-
gebieten des mathematischen Grundstudiums. Und gerade diese Entwicklung unter-
streicht die Bedeutung der linearen Optimierung fiir Theorie und Praxis, fiir Lehre
und Forschung.
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2.2: ZF: Z = 2x; + 3x, = max;
NB: | 2x, +4x, 16,
2x, + 1x; £ 10,
4x, =20,
Xy, X2 =2 0.
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Optimale Losung: x; = 4, x, = 2, Z = 14 (Bild L 4).

Bild L 4

2.3: ZF: Z = 3x; + 2x, L max;
NB: X1+ x2 =56,
X1+ X2 =45 x1,x,20.

Optimale Lésung: x; = 1, x, = 3,Z = 9 (BildL 5).

BildLS5

X1

2.4: xy - Anzahl der Tiere von Sy; x, — Anzahl der Tiere von S;.
ZF: Z = 2x; + 3x,=max;
NB: X1+ x, =8,
x; + 2x, = 180,

Xx1,%2 = 0, ganzzahlig.

2.5: x; - geladene Menge G;int (i = 1,2, 3).
ZF: Z = 25x; + 30x, + 35x3 &= max;
NB: x4+ xa+ xS 7000,
1,2x; + 1,1x, + 1,5x3 < 10000,

0 =< x; <4000, 0 < x, = 4000, 0 = x3 = 2000.
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2.6: Schnitt- Anzahl x; der Rund- Anzahl der Langen Abfall
variante i eisenstangen, die nach | einer Rundeisenstange (m)
Variante i geschnitten | nach entsprechender
werden Schnittvariante
L=9 |L=8 |h=6
1 Xy 2 0 0 2
2 X 1 1 0 3
3 X3 1 0 1 5
4 X4 0 2 0 4
5 Xs 0 1 2 0
6 X6 0 0 3 2
6
ZF: Z= ) x;=min;
i=1
NB: 2x; + x5 + x3 = 8000,
Xz + 2x4 + X5 = 10000,
X3 + 2x5 + 3x6 = 6000;

x; 2 0(i =1, ..., 6) und ganzzahlig.

2.7:2) ZF Z = —2x; — X3 + X3 + X4 — Mxs — Mxg — Mx, == max;

NB: x; —x; — 2x3 — X4 + X5 =2,
2xy + X3 — 3x3 + X4 + X6 =6,
X1+ X2+ X3+ x4 +x,=17;
xz0;i=1,..,7.
2.7: b) ZF: Z = x4 — X5 — Mx;o = max;
NB: x; — x3+2x5+ X4 — X5 + X¢ — Xo =1,
3x; + X3 — X3+ x4 — X5 + x; — Xg =1,
3%, + X3+ X4 — Xs + x5 — X =1,
X1+ X2+ X3 — Xo + X10=1;
x20;i=1,..,10. B
2.7: 0) ZF: Z = —%; + %; + 2%, — 2%, — 3%3 + 3%3 — Mx, — Mxs = max;
NB: —2%; + 2%, + %, — X, + 3% — 3%+ x4 =2,
2%y — 2%, + 3%, — 3%, + 4%3 — 4%, +x5=1;

Xiy Koy X4, X5 2 030 =1,2,3.

Eine entsprechende Umnumerierung kann noch vorgenommen werden.

3.1: a) Optimale Losung: Anzahl der Tiere von Sy gleich 6,
Anzahl der Tiere von S, gleich 2.
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b) Folgende Schnittvarianten sind moglich:

Schnitt- Anzahl [} I, 3 Abfall
variante

1 Xy 2 0 0 2

2 Xz 1 1 0 3

3 X3 1 0 1 5

4 Xa 0 2 0 4

5 X5 0 1 2 0

6 X6 0 0 3 2

Optimale Losung: Nach Schnittvariante 1 sind 4000, nach Schnittvariante 4 sind 3500 und
nach Schnittvariante 5 sind 3000 Eisenstangen entsprechend der Variante zu zerschneiden.

3.2: Optimale Lésung: Es sind 60 kp von P, und 10 kp von P, zu produzieren. Der Gewinn betrigt
dann 200 Deviseneinheiten.
3.3: Optimale Losung: Die Schnittaufgabe beinhaltet 4 Schnittvarianten; diese sind in Bild L 6
verdeutlich. 30 Bleche sind nach der 1. Variante zu schneiden, 10 Bleche nach der 4. Variante.
Es entsteht ein minimaler Abfall von 25 m?.
BildL6
1 Variante 2 Variante 4 Variante
e 200em e
f 10cm Toem | 80emi] - (E0em|60cm 60cm) 75cm IGﬂcm \60cm
Toem 30cm 2imf; Sem
}
§
S
3
4.1: Der optimale Transportplan ist in der folgenden Matrix zusammengefaft:
8 . 39 .7 2
1 9. ] 20
7 . . .13 20
151112913
Die optimalen Transportkosten betragen 654 Geldeinheiten.
4.2: Der optimale Transportplan ist in der folgenden Matrix zusammengefaBt:
20 . 57 25
.10 15) 25
.20 .| 20
..300 30
20 30 50

Die optimalen Transportkosten betragen 715 Geldeinheiten.
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4.3: a) Die minimale Zuordnung ist durch folgende Matrix zusammengefaf3t:

- 1
R B
1..... , Z=23.
R I
S B
L N l : 4
b) Die maximale Zuordnung ist durch folgende Matrix zusammengefaBt:

- =
1] z=ss.
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