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1. Einleitende Betrachtungen

Unter den Optimierungsmethoden nehmen die Methoden der linearen Optimierung
einen bedeutenden Platz ein. Die große praktische Bedeutung besteht vor allem
darin, daß diese Methoden mathematisch einfach und übersichtlich dargestellt wer-

den können und vollständig auf Elektronenrechnern bearbeitbar sind. Weit schwie-
rigere Bedingungen liegen bei der nichtlinearen Optimierung vor. Schließlich bestä-
tigt die Erfahrung, daß zahlreiche nichtlineare Probleme in der Volks- und Betriebs-
wirtschaft mit linearen Methoden oft mit einer zufriedenstellenden Genauigkeit
gelöst werden können.

Die Methoden der linearen Optimierung gestatten es, aus einer Vielzahl von mög-
lichen Varianten die ökonomisch günstigste auszuwählen. Bei den meisten prakti-
schen Entscheidungsproblemen ist die Anzahl der möglichen Varianten so groß, daß
unter diesen die ökonomisch beste durch Vergleich aller möglichen Varianten nicht
mehr oder selbst bei kleineren Problemen gegebenenfalls nur durch einen erheblichen
Rechenaufwand ermittelt werden kann.

Um von diesem erforderlichen Aufwand eine Vorstellung zu geben, wird Z.B. an-

genommen, daß in einer größeren Betriebsabteilung 20 verschiedene Maschinen
bereitstehcn, um 20 verschiedene Werkstücke zu bearbeiten. Jedes Werkstück kann
aufjeder Maschine bearbeitet werden. Die Bearbeitungszeiten eines beliebigen Werk-
stückes auf jeder Maschine sind gegeben. Diese Arbeitszeiten sind im allgemeinen
verschieden, und jeder Maschine ist genau ein Werkstück zur Bearbeitung zuzuordnen.

Welche Zuordnung muß vorgenommen werden, damit die gesamte Bearbeitungs-
zeit minimal wird? Insgesamt gibt es 20! : l - - 20 mögliche Zuordnungsvarian-
ten, wenn eine feste Maschinenanordnung vorausgesetzt wird. Wie kann aus dieser
Anzahl die Variante der geringsten Bearbeitungszeit ermittelt werden? Der nächst-
liegende Weg, dieses Problem zu lösen, wäre zunächst der, alle möglichen Varianten
und die sich dabei ergebenden Gesamtbearbeitungszeiten aufzuschrciben, Danach
wird die Variante mit der kleinsten Gesamtbearbeitungszeit ausgesucht.

Würde ein äußerst schneller Digitalrechner eine Variante in 10*” Sekunden er-

mitteln und die dazu gehörende Bearbeitungszeit berechnen, so würde er bei 365 Ar-
beitstagen zu 24 Stunden pro Jahr etwa 80000 Jahre benötigen, um durch Vergleich
aller Varianten die optimale Lösung zu finden. Andererseits könnte die Lösung
dieser Aufgabe einem Praktiker mit viel Betriebserfahrung übertragen werden.
Die Praxis zeigt, daß solche Fachleute bei der empirischen Herstellung einer Lösung
im allgemeinen nicht zu sehr fehlgreifen, Die Erfahrung reicht aber nicht aus. um

die beste Lösung herauszufinden. Wird diese wirklich einmal gefunden, so ist es Zufall.
Dagegen wird ein weit besserer Lösungsweg durch den Einsatz mathematischer

Methoden eröffnet. Mit ihrer Hilfe können derartige Optimierungsprobleme präzise
und mit relativ geringem Rechenaufwand gelöst werden.

Im Jahre 1939 wurde von Kantorowitsch erstmalig eine lineare Optimierungs-
aufgabe dargestellt, die sich aus einer bestimmten Klasse von Produktionsproble-
men ergab. Er entwickelte hierzu gleichzeitig eine Lösungsmethode, die er „Methode
der Auflösungsmultiplikatoren“ nannte. Dantzig veröffentlichte 1947 eine Lösungs-
methode für Probleme der linearen Optimierung, die unter dem Namen Simplex-
methode bekannt wurde und heute als die klassische Lösungsmethode für Probleme
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der Linearoptimierung gilt. Seit dieser Zeit sind unzählige Arbeiten aus allen Berei-
chen der Betriebs- und Volkswirtschaft über Probleme erschienen, die eine optimale
Entscheidung zwischen verschiedenen Handlungsmöglichkeiten verlangen, die sich
mit mannigfachen exakten und approximativen Lösungsverfahren beschäftigen.

Die mathematischen Voraussetzungen zur linearen Optimierung wurden im
Band 13 „Lineare Algebra“ bereitgestellt. Grundlage für die anschließenden Dar-
legu ngen soll der n-dimensionale lineare Vektorraum oder n—dimensionale euklidische
Raum R" sein.

Jeder Punkt P(x1, ..., x„) des Raumes R" wird durch einen Vektor x mit den Kom-
ponenten x1, ..., x,, dargestellt. Diese Komponenten werden durch eine Matrix zu-

sammengefaßt. Wird der Vektor x als einspaltige Matrix dargestellt, so wird er als
Spaltenvektor bezeichnet; wird x als Zeilenmatrix zusammengefaßt, so wird er als
Zeilenvektor bezeichnet und durch ein v1“ gekennzeichnet:

xl

x= S ‚KT = (xi. ...‚x„l.
X»

Diese Darstellung von Vektoren als spezielle Matrizen (Zeilenmatrix oder Spalten-
matrix) hat den Vorteil, daß die Rechengesetze der Matrizenrechnung durchgängig
und einheitlich genutzt werden können. Die Multiplikation einer Matrix mit einem
Vektor kann so z. B. als vollständige Matrizenmultiplikation dargestellt werden. Aus
diesem Grunde muß der Vektor entweder als Zeilenmatrix oder als Spaltenmatrix
dargestellt werden (vgl. Bd. 13, 3. Aufl., S. 67).

Als n—dimensionaler Vektorraum wird die Menge aller n-dimensionalen Vektoren
bezeichnet. die als Linearkombination von n linear unabhängigen Vektoren gebildet
werden können.

Im vorgegebenen Raum gelten die folgenden beiden Eigenschaften:

l. lst x, y E R“, so folgtz zT = KT + yT : [x1 + ,V1»...,x,, + y,,] ist ebenfalls ein Ele-
ment des R".

2. lst x E R", Ä beliebige reelle Zahl, so folgt: Ä - xT x [Ä - x1, ...‚ Ä - x„] ist ebenfalls
ein Element des R”.

ln den folgenden Darlegungen werden lineare Funktionen und lineare Ungleichun-
gen betrachtet.

Vergleiche Band 1 und 13, Abschnitte über lineare Funktionen, bzw. Band l3, Ab-
schnitt 3.6. Systeme von linearen Ungleichungen und Alternativsätze.

Z(x) ist genau dann eine lineare Funktion, wenn Z(x) = cTx + a ist (x, c E R"
a reell und konstant).

Ein System

an x1+a12 x2 + "'+aln M; [71,

412i x1 +1122 x241’ "'+a2n xng b2!
. . . . . . . . . . . . . . . . . . . . . . . . . . . .. (1.1)

11ml -X1‘? “m2 x2 ‘l’ ‘l’ am» X» S bms

xxsxes ---sxngos
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mit den Konstanten 11,-, (t'= 1, ...‚m; j= 1, ...,n), b.- (i= l, ...‚m) und den Varia-
blen x,» (j= 1, ..., n) heißt lineares Ungleichungssystem mit n Nichtnegativitätsbedin-
gungen.

Ein Vektor heißt nichtnegativ, wenn alle Komponenten nicht negativ sind. Daher
können wir das System (1.1) folgendermaßen schreiben:

Axgb, x20,
mit

an “i2 aln x1 b1

a ---a x bA: a?‘ ff f" ‚ x: _2 und b=

am am2"' am. x.. _bm

(vgl. Band l 3).

Jeder Vektor x, dessen sämtliche Komponenten nicht. negativ sind und der das
Ungleichungssystem Ax g b erfüllt, heißt zulässige Lösung des Systems

Ax g b, x 2 o.

Die Lösungsmenge aller zulässigen Lösungen wird als Lösungsbereich bezeichnet.

Unter dem Verbindungsvektor vom Vektor x, E R" zum Vektor x, E R" verstehen
wir den Vektor x, : x, ~ x2; ist x ein beliebiger Ortsvektor nach einem Punkte von

x3, dann ist

x=x2+/'lx3=x2+}.(x1—x2) mit 0§}.§ l,
d.h.

x: /lx,+(1 ~11) X2 (fürn= 2 vgl. Bild 1.1).

Für die weiteren Betrachtungen brauchen wir den Begriff der konvexen Punktmenge,
wobei jeder beliebige Punkt P; durch einen n-dimensionalen Vektor x.- festgelegt sei.
Die Menge M ist dann und nur dann eine konvexe Punktmenge, wenn für beliebige
P, E M, P, E M die durch den Vektor x = Ax, + (1 — A) x2 mit 0 g i. g 1 dargestellten
Punkte ebenfalls zu M gehören.

Bild 1.1

Wenn die Menge M nicht konvex ist, so heißt die konvexe Menge M, mit M, g M die
konvexe Hülle von M, wenn M, die kleinste konvexe Menge ist, die M enthält (vgl.
Bild 1.2). Ist die Menge M konvex, dann ist M, = M, d. h, die Menge M stimmt mit
ihrer konvexen Hülle überein. Bild 1.3 zeigt eine konvexe Menge (n = 2) und
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Bild 1.4 eine nicht-konvexe Menge (n = 2); Bild 1.5 veranschaulicht, dal3 der Durch-
schnitt M, n M2 konvex ist, wenn M, und M; selbst konvex sind. Die Punkte im
Inneren bzw. im Inneren und auf dem Rand eines Kreises oder eines Winkelraumes
(n = 2) sowie einer Kugel und eines Würfels (n = 3) stellen z. B. konvexe Mengen
dar.

Bild 1.2 Bild 1.3

Bild 1.4 Bild 1.5

Als konvexe Linearkombination der q Vektoren

P1: P2‚ ---‚ Pq

bezeichnet man

P = 1117i + 12172 JV‘ + Äapa!

mit
U21.21 und Og/1,-._<_ l.

1' 4 l

Wenn ein durch den Vektor x dargestellter Punkt P einer konvexen Menge nicht
auf dem Verbindungsvektor zweier Punkte der Menge liegt, so nennt man diesen
Punkt einen Eckpunkt oder Extrempunkt. In der Relation für den Verbindungsvektor
zweier Punkte ist dann entweder Ä = 0 oder Ä = 1, womit die in der Definition zu-

gelassene Gleichheit diesen Sonderfall beinhaltet.
Eine konvexe Punktmenge kann durchaus unendlich viele Extrempunkte oder

Eckpunkte enthalten; Beispiele hierfür sind die Punkte im Inneren bzw. im Inneren
und auf dem Rand eines Kreises oder einer Kugel. Wenn eine konvexe Punktmenge
M beschränkt ist und endlich viele Eckpunkte enthält, dann nennt man M ein
konvexes Polyeder,

Diese erläuterten Begrifle sollen auf den Lösungsbereich eines Systems linearer
Ungleichungen angewendet werden. Es gilt der folgende
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Satz 1.1: Der zulässige Läsungsbereich des Systems S-1-1

Ax g b, x g o

ist konvex, falls er existiert.

Beweis. Wenn Ax, g b und Axg g b, dann gelten mit 0 < Ä < l auch

ÄAx, g lb und (l — Ä) Axg g (l — Ä)b,

woraus sich sofort

AUX, +(1 — 10x2]; b

ergibt. Wegen x, g o und x2 g o ist

/1x1+(l —/I)x2;o
eine Lösung, die im zulässigen Lösungsbereich liegt, der also konvex ist. Damit ist
der Satz bewiesen. I

Wenn der zulässige Lösungsbereich darüber hinaus beschränkt ist, dann ist er ein
konvexes Polyeder (vgl. 2.4.).



2. Die lineare Optimierungsaufgabe

2.1. Einführung in die Problemstellung

2.1.1. Das Grundproblem

Ein lineares Optimierungsproblem (kurz LOP) ist eine Extremwertaufgabe mit
Nebenbedingungen. Eine lineare Funktion (Zielfunktion; ZF) von mehreren Verl
änderlichen ist unter Berücksichtigung linearer Gleichungen und Ungleichungen als
Nebenbedingungen (NB) zu maximieren oder zu minimieren. Von allen Lösungen
eines Systems mehrerer linearer Gleichungen und linearer Ungleichungen ist also
eine solche Lösung zu bestimmen, für die der Funktionswert der Zielfunktion opti-
mal ist.

Zum besseren Verständnis der Problemstellung der linearen Optimierung seien
an den Anfang zwei einfache Beispiele gestellt, um anschließend Zielfunktion und
Nebenbedingungen allgemein zu formulieren.

Beispiel2.1: In einer Betriebsabteilungsind aufdendreiMaschinen M„ M2, M, eine
noch unbestimmteAnzahl vonjeder der beidenWerkstückarten E, und E, zu bearbeiten.
Gegeben sind die Bearbeitungszeiten jedes Werkstückes auf jeder Maschine in Stun-
den pro Werkstück (h/St.) und der Zeitfonds jeder Maschine in Stunden (h) (s. Tab.
2.1). Die Maschine M, darf z.B. nicht mehr als 8000 h belastet werden. Wieviel Werk-
stücke E, und E2 sind zu bearbeiten, damit der Gesamtzeitfonds maximal ausgelastet
wird?

Tabelle 2. l.

Arbeitsaufwand Zeit-
(h/St.) fonds

E1 E2 (h)

M, 10 I0 8 000
M2 10 30 18 000
M3 20 l0 14 000

Zu diesem Problem wird das mathematische Modell aufgestellt; die praktische
Aufgabenstellung wird in die Sprache der Mathematik übertragen. Werden der Reihe
nach die Anzahlen der zu bearbeitenden Werkstücke von E, und E, mit x, g 0 und
x2 0 bezeichnet, so gelten für die drei Maschinen M, , M2 und M, die folgenden drei
Ungleichungen:

10x, + 10x2 :_\i 8000

10x, + 30x2 g 18000

20x, + 10x. S 14000.

Die linken Seiten der Ungleichungen bedeuten die benötigten und die rechten Seiten
die zur Verfügung stehenden Arbeitszeiten.

Z : 40x, + 50x2
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stellt die Gesamtbearbeitungszeit dar. Sie ist zu maximieren, um den Zeitfonds so

gut wie möglich auszunutzen. Somit lautet das mathematische Modell der angegebenen
Aufgabenstellung:

Die lineare Zielfunktion <

ZF: Z = 40x, + 50x2 (2.1)

ist unter Berücksichtigung der folgenden Nebenbedingungen zu maximieren:

NB: 10x1 + 10x2 g 8000,

10x, + 30x, g 18000, (2.2)

20x1+10x2 g 14000,

x, g 0, x2 3 0.

Unter allen möglichen Lösungen der Nebenbedingungen ist diejenige gesucht, die
die Zielfunktion maximiert.

Drei mögliche Lösungen sind z. B.

1. x3, = [x„ x2] = (700, 0],

2. xä, = [x1, x2] = [0, 600],

3. x5, = [x1, x2] = [3o0, 500],

denn werden die Zahlenwerte für x, und x2 in die Nebenbedingungen eingesetzt, so
sind diese erfüllt.

Zu x0):

NB: 10~700+10-0= 7000g 8000,

10-700+30-0: 7000gl8000,

20- 700+ l0 - 0: 14000 g 14000,

70020, 020.

ZF: Z(x(,)) = 40 - 700+ 50 . 0: 28000.

Die benötigte Gesamtbearbeitungszeit beträgt also 28000 h, wenn 700 St. vom Werk-
stück E1 und 0 St. vom Werkstück E2 bearbeitet werden. 12000 h werden bei diesem
Produktionsprogramm vom Gesamtzeitfonds nicht genutzt.

Gegenüber der Lösung xm ist die Lösung X43) besser, da bei ihr nur 10000 h vom
Gesamtzeitfonds ungenutzt bleiben, bzw. 30000 h genutzt werden.

Die Lösung xm ist weit besser als die beiden vorhergehenden, da bei ihr nur noch
3000 h ungenutzt bleiben und 37000 h genutzt werden.

Abschließend sei noch erwähnt, daß xm von allen möglichen Lösungen von (2.2)
die gesuchte Optimallösung ist. Wie eine solche Optimallösung eines LOP berechnet
werden kann, wird Gegenstand der folgenden Abschnitte sein.
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Beispiel 2.2: Gesucht ist das Produktionsprogramm für die Erzeugnisse E, und E2,
die aus den Materialarten M1 und M2 hergestellt werden können. Gegeben sind die
Materialaufwandfaktoren und die Materialkontingente (s. Tab. 2.2). Die Abgabe-
preise einer Einheit von E1 bzw. von E2 betragen 10,- bzw. 20,- M. Gesucht ist ein
Produktionsprogramm, welches maximale Geldeinnahmen sichert und bei dem min-
destens 50 bzw. 100 Einheiten von E1 bzw. E2 erzeugt werden.

Tabelle 2.2.

Einheit M1 pro Einheit M2 pro
Erzeugungseinheit Erzeugungseinheit

E1 0,15 0,2
E2 0,2 0,1

60 40
Materialmenge M1 Materialmenge M2

Werden mit x1 und x2 die Anzahlen von E1-Einheiten und E2—Einheiten bezeichnet,
so betragen die Geldeinnahmen

Z = 10x1 + 20x2,

und der Verbrauch an Material M1 und M2 wird durch

‘ 0,15x1 + 0‚2x2
‘und

0,2x1 + 0,lx2

gegeben. Damit lautet das mathematische Modell:

ZF: Z = 10x1 + 20x2 max‘). _ (2.3)

NB: 0,15 x1 +O,2 x2 g 60,

0,2 x1 + 0,1 x2 g 40,
(2.4)

x1 ä 50,

x2 g 100.

Aus der Menge aller Lösungen, die den Nebenbedingungen (2.4) genügen, ist wieder-
um die Lösung mit maximalem Funktionswert Z gesucht.

Allgemein kann ein lineares Optimierungsproblem wie folgt formuliert werden:

Die lineare Funktion

Z051: -"7 xn) = C1751 ‘i’ + crux»

ist unter Berücksichtigung der folgenden linearen Gleichungen bzw. Ungleichungen

‘) Das Zeichen g soll die Forderung ausdrücken, dal3 die Funktion (unter den gegebenen Neben-
bedingungen) ihren maximalen (bzw. minimalen) Wert annehmen soll.



2.1. Einführung in die Problemstellung l3

zu maximieren

an xx ‘i’ "'+a1nxn gbla

azlxx + "'+a2nxn .5. b2,

am x1 + + amn Xn E bms

x,- g 0 für i= 1, ...‚n.

In Matrixschreibweise stellt sich das Problem folgendermaßen dar:

Z(x) : cTx g max,

Ax g b,

x g o.

Dabei gelten die folgenden Bezeichnungen:

V c1‘: [c„ ...‚ c„], xT= [x1, ..., x,,]

bT= [b,, ..., bm],

„u a”
A Z . .

„m1 am”

2.1.2. Graphische Lösungsmöglichkeit

Betrachtet wird die Optimierungsaufgabe des Beispieles 2.l :

ZF: Z = 10x1 + 20x2 gmax. (2.3')
NB: (1) 0,l5x1 + 0,2x2 g 60,

(2) 0,2 x, + 0,1x2 g 4o, (2.4')
(3) xx ä 50;
(4) x2 g 100.

Geometrisch stellt der zulässige Lösungsbereich von (2.4') nach Abschnitt l. ein
konvexes Polyeder des R2 dar, falls er beschränkt ist. Es wird sich zeigen, daß die
Linearform (2.3’) ihr Maximum an einem Eckpunkt des durch die Nebenbedingun-
gen (2.4’) festgelegten konvexen Polyeders annimmt (vgl. Simplextheorem 2.4.). Bei
Aufgaben mit zwei Variablen x(‚x2 können der zulässige Lösungsbereich und die
Zielfunktion in einem kartesischen Koordinatensystem graphisch dargestellt werden.
Im Bild 2.l’ ist der zulässige Lösungsbereich von (2.4’) durch das konvexe Lösungs-
polyeder (schraffiert) dargestellt.

Dieser zulässige Lösungsbereich ist der Durchschnitt der Lösungsmengen der vier
Nebenbedingungen von (2.4’). Er kann wie folgt bestimmt werden. Betrachtet
werden der Reihe nach die 4 Nebenbedingungen (von 2.4’) (sie sind durchnumeriert).
Die erste NB von (2.4’) lautet:

0,15x, + 0,2x2 _S_ 60.
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Gesucht sind alle Punkte (Lösungen) im Koordinatensystem, die dieser Ungleichung
genügen. Zur Bestimmung dieser Punkte wird die Gerade

g‚: 0,l5x‚ + 0,2xz = 60

,9 \ b
l

35W} W50,-2525)

200 ~

.\\
i l

700 \_\ 94

\ BKi ‘J ‘

u wo 212a m 4uD\ x,

gib-v ‘<2 X7

Bild 2.1’ Bild 2.1”

in das Koordinatensystem eingetragen. lin Bild 2.1’ ist sie mit g, bezeichnet. Die ein-
gezeichnete Gerade g, ist mit zwei Pfeilen versehen. Sie teilt die gesamte Ebene in
zwei Halbebenen. Alle Punkte, die entweder auf der Geraden g, oder in der Halb-
ebene liegen‚ die durch die Richtung der Pfeile festgelegt ist, erfüllen die Ungleichung:

0,15x, + 0,2x2 g 60.

Die Punkte in der dieser Halbebene gegenüber liegenden Halbebene (ohne Trenn-
gerade g1) erfüllen die Ungleichung

0,l5x, + O,2x2 > 60.

Wenn also die Gerade g, eingezeichnet ist, findet man sehr leicht die zu dieser Ge-
raden gehörende Halbebene, deren Punkte die vorgegebene Ungleichung erfüllen,
indem man z. B. die Koordinaten (0,0) des Ursprunges in die Nebenbedingung
(Ungleichung) für xi und x2 einsetzt. Erfüllt der Punkt (0,0) die Nebenbedingung,
so ist von beiden Halbebenen diejenige auszuwählen (etwa mit einem Pfeil zu mar-
kieren), in der auch gleichzeitig der Ursprung liegt. Erfüllt der Ursprung die Neben-
bedingung nicht, so ist die andere Halbebene die gesuchte Lösungsmenge. Im Bei-
spiel gilt für den Ursprung (x„ x2) = (0,0) bezogen auf die Nebenbedingung (l):

0,15-0+ 0,2-og 60.
Folglich wird die Halbebene bezogen auf die Gerade g, als Lösungsmenge markiert,
in der der Ursprung enthalten ist. lm Bild 2.1’ sind für alle vier Nebenbedingungen
die Geraden der Reihe nach mit g1,g2,g3,g., bezeichnet und die entsprechenden
Halbebenen durch Pfeile markiert. Die Punktmenge, die dem Durchschnitt dieser
vier Halbebenen angehört, ist im Bild 2.1’ schraffiert. Diese schraffierte Punktmenge
ist das gesuchte konvexe Polyeder (zulässiger Lösungsbereich).

lm Bild 2.1” sind für verschiedene Werte Z der Zielfunktion (2.3’) die dazugehö-
renden Geraden eingetragen. Für Z wurden die beiden Werte 2000 und 6000 ge-
wählt. Neben jeder eingezeichneten Geraden ist der jeweilige Z-Wert vermerkt.
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Außerdem ist eine beliebige Schargerade l0x‚ + 20x2 = C eingezeichnet. C wird
als Scharparameter bezeichnet. Für einen bestimmt gewählten C-Wert wird eine
ganz bestimmte Gerade aus der Menge der durch 10x1 + 20x1 = C festgelegten
Geradenschar ausgewählt. Alle Geraden dieser Schar sind parallel. Die an der all-
gemeinen Schargeraden angefügten Pfeile deuten folgendes an: Wird die Schar-
gerade in Pfeilrichtung parallel verschoben, so wächst der Scharparameter C an.

Im Bild 2.1 sind schließlich beide Bilder 2.1’ und 2.l” vereinigt (einige Bezeich—

nungen sind weggelassen). Aus den bisherigen Erläuterungen wird deutlich: Opti-
male Lösungen von (2.3’)—(2.4') sind somit geometrisch alle die Punkte, die sowohl
dem Lösungspolyeder als auch derjenigen Geraden mit dem größten Scharparameter
C (Maximum!) der Geradenschar 10x, + 20x2 = C angehören. Die optimalen
Lösungen werden also gefunden, indem die im Bild 2.1 eingezeichnete beliebige
Schargerade l0x1 + 20x2 = C so lange parallel in der angedeuteten Pfeilrichtung,
d. h. in Richtung wachsender C, verschoben wird, bis mindestens noch ein Polyeder-
punkt, bei jeder weiteren Verschiebung in dieser Richtung jedoch kein Polyeder-
punkt mehr auf der Geraden liegt. Damit nehmen der Parameter C und folglich Z
den maximalen Wert an. Diese Schargerade mit dem größten Parameter genügt der
Gleichung 10x1 + 20x2 = 5750 und enthält vom Polyeder nur den Punkt (50;
262,5). Somit lautet die optimale Lösung:

x, = 50, X2 = 262,5, Z = 5750.

“x
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Bild 2.1 Bild 2.2

Die folgenden vier Beispiele sollen einige der möglichen Formen des Lösungs-
bereiches aufzeigen:

Beispiel 2.3. :

e x, + x2 g 5,

x1 + x2 g 10,

x,- g 0 (i: 1,2).

Bild 2.2 zeigt den Lösungsbereich,
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Beispiel 2.4:

xi — x3 —6,

x, + x2 1,

x,- g O (i: l,2).
Wie Bild 2.3 zeigt, kann die
Forderung xi g 0 nicht erfüllt
werden. Der Lösungsbereich ist
leer.

IIA
IIA

Bild 2.3

E

Beispiel 2.5.’

xl ‘F -Y2 é 5,

—— x, + x2 g 2,

x, 1‘ 2x2 g 10,

x,- g 0 (i= 1,2).

Die dritte Ungleichung ist überflüssig, wie uns Bild 2.4 zeigt.

Bild 2.4
/Z DI . +5>I +®\X1

Beispiel 2.6:

— x, T‘ x2 g 3,

xx — 2x2 g 2,

x,- g O (i= 1,2).

In diesem Falle wird ein unbeschränkter Lösungsbereich geliefert (vgl. Bild 2.5).
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Bild 2.5

Aufgabe 2.1: Von folgenden Nebenbedingungen ist der zulässige Lösungsbereich gesucht.

a)NB:-x1+ x2§2, b)NB:x1+ xzgz, C)NBZ—.\‘1‘r2Xz§ 10,

x,—3x2§3, x1Ax2;3, x1+x2§10,
x,,x2 g 0. x1 + 2x2 g 6, ~x1 —— 2x2 g -4,

x1,x2 :0. x1,x2 20.
Aufgabe 2.2: Ein Betrieb produziert aus drei Rohstoffen die Produkte P, und P2. Aus den nach- *

stehenden Daten ist ein Produktionsprogramm anzugeben, das maximalen Gewinn sichert. Die
Optimierungsaufgabe ist zeichnerisch zu lösen.

Verbrauch pro Einheit I Verfügbare
P1 P2 I Rohstoffmenge

Rohstoll 1 2 4 16

Rohstotf 2 2 1 l0
Rohstoff 3 4 0 20

Gewinn 2 3

Aufgabe 2.3: Die Produkte P, und P2 werden auf den Maschinengruppen M, und M; beubeitet- *

Der Maschinengruppe M, steht höchstens 6 Zeiteinheiten (ZE), M2 höchstens 4 ZE zur Verfügung.
Der Gewinn von Produkt P, beträgt 3 Mark (M) pro Mengeneinheit (ME), von P2 2 MKME. Ge-
sucht ist der Produktionsplan mit maximalem Gewinn. Für eine Mengeneinheit von P1 werden
3 ZE aufMl und 1 ZE auf M2 benötigt. Für eine ME von P2 werden 1 ZE aufM‚ und 1 ZE aufMl
benötigt. Gesucht ist das mathematische Modell und die Lösung des Problems durch graphisches
Vorgehen.

2.1.3. Weitere Beispiele mit Aufgaben aus der Praxis

Beispiel 2.7: Nehmen wir an, daß für die Realisierung eines Produktionsprogramms
mehrere Maschinen zur Verfügung stehen, die gegeneinander austauschbar sind. Bei
den einzelnen Maschinen stehen die folgenden Produktionskapazitäten zur Verfügung:

Maschine M, 180 Minuten
Maschine M2 100 Minuten
Maschine M3 150 Minuten
Maschine M4 100 Minuten

2 Seiflart. Optimierung
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Die genannten freien Kapazitäten sollten für die Herstellung folgender Erzeugnisse
in Anspruch genommen werden:

ErzeugnisEl mit 30 Stück; ein ErzeugnisE‚ kann auf der Maschine M2 in 7 Minuten,
aufM2 in 5 Minuten, aufMg in 4 Minuten oder aufM4 in 4 Minuten hergestellt werden.

Erzeugnis E2 mit 30 Stück; ein Erzeugnis E2 kann auf M, in 4 oder auf M2 in
3 Minuten hergestellt werden. '

Erzeugnis E3 mit 50 und Erzeugnis E2 mit 40 Stück, die in analoger Weise auf ver-

schiedenen Austauschmaschinen in unterschiedlicher Minutenzahl hergestellt werden
können, wie der Tabelle 2.3 zu entnehmen ist.

Tabelle 2.3.
_ Maschine geplante

Emugn“ M, M2 M3 M, Stückzahl

E2 7 5 4 4 30

E2 4 3 — — 30

E3 — 2 4 5 50

E2 6 5 3 40

Freie 180 100 150 100
Produktions-
kapazität

E2 kann nicht auf den Maschinen M3 und M4 hergestellt werden, E2 nicht auf M,
und E, nicht auf M3. Die entsprechenden Felder der Tabelle 2.3 sind durch einen
Querstrich markiert.

Die Aufgabe besteht in der Aufstellung eines optimalen Maschinenbelegungsplanes‚
d.h., die Erzeugnisse E, bis E4 sind in der Weise den erwähnten Maschinen zu-

zuordnen, daß die geringstmögliche Inanspruchnahme freier Produktionskapazität zur
Erfüllung der gegebenen Aufgabe erreicht wird. Das bedeutet, daß die verschiedenen
Felder der Tabelle 2.3 in der Weise mit der Stückzahl der einzelnen Erzeugnisse zu

besetzen sind, daß die Summe der Erzeugungsmenge in jeder Zeile gleich der geplanten
Anzahl der einzelnen Erzeugnisse ist, daß die zur Herstellung dieser Erzeugnisse auf
den einzelnen Maschinen benötigten Bearbeitungszeiten die freien Produktionskapazi-
täten nicht überschreiten und daß die Gesamtbearbeitungszeit ein Minimum annimmt.

Wird mit x22 g 0 die Stückzahl des Erzeugnisses E; bezeichnet, die auf der Maschine
Mj hergestellt werden soll, so können die folgenden linearen Nebenbedingungen auf-
gestellt werden.

NB? 3511+ 3512+ 7513+ 3514330: 7x11+4)C21 +6X41§ 180,

3521+ X22 :30! 5982+3x22+2x:z2+5X42§_100y

X32+ 2533+ X34: 5'07 43513 +4x33 §150:

3541+ x42 i’ x44:40: 4x14 +5-x34+3x.14§1007
alle x,-JV ‚ja 0.
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Dic Gesamtbearbeitungszeit ist zu minimieren:

ZF5 Z: 7x11 + 4x21 + 6x41-F 5x12 ‘i’ 3x22 + 2.7632 ‘i’ 5x42 ‘i’ 4x13 Jr 4X33

+ 41614 + 5x31 Jr‘ 3x“ min.

Damit wurde die aufgeworfcne praktische Problemstellung durch ein mathematisches
Modell der linearen Optimierung erfaßt. Das vorliegende Modell ist ein spezielles
lineares Optimierungsproblem‚ ein sogenanntes Verteilungsproblem. Für diese und
ähnliche Problemstellungen wird in Abschnitt 4.3. eine besondere Lösungsmethode
dargelegt.

Beispiel 2.8: Wenn auf verschiedenen Maschinen in einem Produktioiisbetrieb
mehrere Aufträge mit unterschiedlicher Zeitdauer bearbeitet werden, indemjederAuf-
trag hintereinander einige Maschinen durchläuft, so tritt das Problem der Reihen-
folgewahl der einzelnen Aufträge für den gesamten Fertigungsablauf auf.

Wir betrachten drei Aufträge P1, Pg, P3 , die der Reihe nach zuerst auf der Maschine
M„ anschließend auf der Maschine M2 bearbeitet werden sollen.

Für jeden Auftrag ist auf jeder Maschine eine ganz bestimmte Bearbeitungszeit
vorgesehen; diese Zeiten sind in einer Bearbeitungsmatrix T zusammengefaßt:

4 3 I11 t12

T: 2 l = t2, tn
2 5 731 t32

In der ersten Zeile sind die Bearbeitungszeiten des Auftrages P, der Reihe nach für
die Maschinen M, und M: mit 4 und 3 Zeiteinheiten vermerkt, in den restlichen
beiden Zeilen sind die Bearbeitungszeiten der Aufträge P2 und P3 angegeben. Ge-
sucht ist die Reihenfolge der Bearbeitung der Aufträge auf den beiden Maschinen,
damit die Gesamtbearbeitungszcit minimal wird.

Um das mathematische Modell dieser Problemstellung aufzustellen, wird mit
1,";- (i r l, 2, 3;j 2 l, 2) die Bearbeitungszeit eines Auftrages bezeichnet, der in einer
gewählten Bearbeitungsreihenfolge auf der Maschine Mi an i-ter Stelle steht. Die
Wartezeit des i-ten Auftrages, die nach der Fertigstellung des Auftrages auf der
Maschine M, bis zur Aufnahme der Bearbeitung auf der Maschine M2 vergeht, sei

w,-1. Die Stillstandszeit der Maschine M„ die nach der Bearbeitung des Auftrages
P,-‚1 bis zur Aufnahme der Bearbeitung des Auftrages P; vergeht, sei S‚-_]„- (i = 2, 3;
j = 1, 2).

Die eben eingeführten Bezeichnungen sind in Bild 2.6 geometrisch verdeutlicht. In
einem kartesischen Koordinatensystem sind in der Abbildung auf der y-Achse die

i I‘

w; I] '22 522 ‘.72
M, e - - - - - - - - - - - - - - - « - ~ » — — - --

11,,-.7 P71 /njg
f x *

M ‘:1 __ ’2z ____ H n 1/

7 „w 5,?"

Bild 2.6

2*
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Maschinen M1 und M2 markiert. Auf der x—Achse sind die Zeiteinheiten abgetragen.
Die Bearbeitungszeiten sind durch die dick ausgezogenen Linien, die Stillstand-
zeiten der Maschinen durch die Unterbrechungen zwischen den dicken Linien und
die Wartezeiten durch die schräg ansteigenden Linien zwischen den einzemtän Maschi-
nen dargestellt. (Der Wert von wir, ist gleich der Länge der Projektion der schräg
aufsteigenden Linien auf die x-Achse.)

Aus der geometrischen Darstellung sind unmittelbar die folgenden Beziehungen
abzuleiten:

S11 ‘i’ 7:1 ‘i’ W21 : W11 ‘i’ tiz ‘l’ S12;

521+ 751 ‘l’ W31: W21 ‘l’ 532 ‘i’ S22-

Der Zusammenhang mit den fest vorgegebenen Bearbeitungszeiten t,-,- und den Be-
arbeitungszeiten I}; kann folgendermaßen beschrieben werden:

t;;=2'x„r„‚ i=1‚2‚3‚j=1‚2‚
r=1

oder, in Matrizenschreibweise‚

T* = XT‚
wobei X eine quadratische dreireihige Matrix mit den folgenden Eigenschaften ist:

3

Z961-;=1, /'=1,2,3;
5:1

3

Ex,-,=1, i=1,2,3;
f=1
xi, = O oder xi, = 1.

Wie leicht zu sehen ist, enthält die Matrix X in jeder Zeile und Spalte genau eine Eins,
die restlichen Zahlen sind Nullen. Durch Multiplikation der Matrix T mit allen mög-
lichen X, deren Elemente den eben genannten Bedingungen genügen, entstehen Matri-
zen T*‚ die aus möglichen Zeilenpermutationen von T hervorgehen. Die Elemente der
Permutationsmatrix X sind dann so zu bestimmen, daß die Gesamtfertigungszeit

Z: T1*1+ T1‘2+t§2+t§2+S12+ S22

ein Minimum wird. Die Summe für Z ist unmittelbar aus Bild 2.6 abzulesen.

Werden alle Bedingungen ausführlich zusammengestellt, so folgt:
ZF: Z: S12+S22+7x11+3x,2+7x13+3x21+1x22+5x23

+ 3x31 + 1x32 + 5x33 % min.

NE s„—s„+w„43n‚—u„-5„„+u„+2n,+n„=o
S21‘ S22 ‘l’ W31 ” W21 * 39521 _ 19522 — 5x23 ‘i’ 4x31 ‘i’ 2x32 ‘l’ 2x33: 0:

3

.m=L j=L;;
'=1

3

Ex”: 1, i= 1,2,3,
j=l
S" 2 0, m, 2 0, x1, 2 0 oder xi, = l.

Damit ist das lineare Optimierungsmodell des speziellen Beispiels aufgestellt, wel-
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ches allerdings mit der zusätzlichen Forderung behaftet ist, daß die x,~, entweder gleich
0 oder gleich l sein müssen. Lösungsmöglichkeiten dieser und ähnlicher Problem-
Stellungen sind im Abschnitt 4.5. angegeben.

Die optimalen Reihenfolgen des betrachteten Beispiels lauten: l. P3, P1, P2 und
2. P3, P2, P1; die optimale Bearbeitungszeit ist Z = ll. In Bild 2.7 ist der Bearbei-
tungsablauf der optimalen Reihenfolge P3, P,, P2 geometrisch veranschaulicht.

M;-

W"?
MI

Bild 2.7

2.2. Die Normalform

Als Normalform eines linearen Optimierungsproblems wird die folgende Optimie-
rungsaufgabe bezeichnet: Die lineare Funktion

Z(x1, x2, ..., x,,+,,,) = 01x, + 62x2 + + c„+,„x„+‚„ (2.5a)

ist unter Berücksichtigung der folgenden linearen Gleichungen zu maximieren:

a1lx1+al2x2+"'+a1nxn+xn+l =17):

(121 x1 +a22x2+ "'+a2nxn +xn+2 =b2‚
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5b)

am1xl+aw12x2+ ‘”+amnxn +Xn+m=bm‚
x, g 0 für j= 1,2, ...‚n+m,
b. g 0 für i= 1,2, ...‚m.

Oder in Matrixschreibweise:

ZF: Z= Z(x): cTx max;

NB: Ax 2 b, ,

X g o’ (2.5 )

b g o.

Oder in Vektorschreibweise:

ZF: Z: Z(x)= cTx é max;

NB: a“>x1 + amxg + + a("*"'>x,,,,,,, = b,
(2.5”)

xgo, bgo.
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Dabei gilt:

CT: [C12 c2: "v: cm "'1 cn+m]:

X1 bl

x = f? ‚ b: b’ ‚

xnvm m

an ah, 1 0 0

A : an an 0 1 0

am am. 0 0 1 (m. n + m)

a”) bedeutet den i-ten Spaltenvektor der Koeffizientenmatrix A (i z 1, ..., n + m).

Jedes lineare Optimierungsproblem läßt sich durch geeignete Umformungen auf
eine Normalform der Gestalt (2.5) zurückführen. Hierzu sind im allgemeinen die
folgenden sechs Umformungsschritte erforderlich, die gleichzeitig an einem Beispiel
erläutert werden.

Gegeben ist die Optimierungsaufgabe:

ZF: Z, z —2x1 + 4x2 min;

NB: 2x1+3x2§—1,

xl- X2 g 2, (2-6)

—6x1 + 2x2 : —4,

x1 g O, x2 beliebig.

Diese Aufgabe weicht von der Normalform (2.5) erheblich ab. Die Veränderliche x2

kann auch negative Werte annehmen. Es liegt keine Maximierungs-‚ sondern eine
Minimierungsaufgabe vor. Die rechten Seiten der Nebenbedingungen sind nicht alle
g 0. Schließlich sind die Nebenbedingungen Ungleichungen. Die Aufgabe besteht
in der Bestimmung eines äquivalenten LOP, das so wie die Normalform (2.5) auf-
gebaut ist und dessen optimale Lösung mit der optimalen Lösung des Ausgangs-
problems übereinstimmt.

1. Umformzmgsschritt: Einführung von Nichtnegativitätsbedingungen.

Falls die Veränderliche x,- auch negative Werte annehmen darf, wird x.- durch eine
Differenz zweier nichtnegativer Veränderlicher ersetzt:

x,- = x,~* — x,«** mit xi-* g 0, x,-** g O. (2.7)

Diese Substitution ist möglich, da x,- jeden beliebigen Wert annimmt, wenn x.»* und
x,.** unabhängig voneinander alle nichtnegativen Werte durchlaufen.

Im Beispiel ist xi bereits nichtnegativ gefordert; x2 dagegen ist beliebig wählbar,
kann also insbesondere auch negative Werte annehmen. Aus (2.6) entsteht somit
durch Substitution

x2 = xi — x.3** (2.8)
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das folgende Optimierungsproblem:

ZF: Z2 = ~2x1+ 4x2* — 4x2** g‘ min;

NB: 2x1 + 3x2* — 3x2** g v1,
x1# x2* ’l‘ x2“: g 2: (29)

—6x1 + 2x2* — 2x2** : —4,

x1; 0, x2* g 0, x2** g 0.

Die Lösung, die der optimalen Lösung von (2.9) vermittels der Substitution (2.8)
zugeordnet ist, ist die gesuchte optimale Lösung des Ausgangsproblems (2.6).

2. Umformungsschritt: Überführung einer Minimierungs- in eine Maximierungs-
aufgabe.

Die Aufgabe, die lineare Funktion 61x1 + 62x2 + + c„x„ zu minimieren, ist
äquivalent mit der Maximierung der entsprechenden negativen linearen Funktion
—c,x‚ — 62x2 — «c„x„. Ein LOP, in welchem die Zielfunktion zu minimieren
ist, ändert sich daher nicht, wenn die mit —l multiplizierte Zielfunktion maximiert
wird. Das dem LOP (2.9) äquivalente Optimierungsproblem lautet demnach:

ZF: Z3 = —Z2 : + 2x1 — 4x2* + 4x2** g max;

NB: 2x, + 3x2* — 3x2** g -1,
x1‘ x2*+ x2** g 25 (2-10)

—6x1 + 2x2* — 2x2** :

xi g 0, x2* g 0, x2** g 0-

3. Umformungsschritt: Einführung niehtnegativer rechter Seiten der Nebenbedim
gungen.

Die Nebenbedingungen, deren rechte Seite negativ sind, werden mit Al multipli-
ziert. Durch diese Multiplikation werden positive rechte Seiten erzeugt.

Ist z.B.

< _bl
alxl + + a„x‚. : —b1 mit b, > 0,

> —b,

so folgt nach der Multiplikation mit —l

> bl
-alxl — — a,,x,, { = b1 mit b; > 0.

< bl

Das LOP (2.10) geht damit über in

ZF: Z2 = +2x1 — 4x2* + 4x2** max;
NB: —2x1 — 3x2* + 3x2** g 1,

x1 — x2* + x2** g 2, (2.11)

6x, — 2x2* + 2x2** = 4,
x1,x2*, x2** g 0.
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4. Umformungsschritt: Überführung von Ungleichungen in Gleichungen.

Die Nebenbedingung

a1x,+ agxg + + a„x„ g b

ist mit folgenden beiden Nebenbedingungen äquivalent

alx, + + a„x„ + x5 = b, x, g 0.

xx ist ein neue eingeführte Veränderliche‚ die nicht negativ werden darf und als
Schlupfvariable bezeichnet wird. Sie gibt den Betrag an, um den alx, + + aux"
kleiner als b ist. '

Ganz analog gilt:

alx, + + a,,x,, g b

ist mit den beiden Nebenbedingungen

a,x1 + + a„x„ — x,= b und x, g 0

äquivalent. Jetzt gibt x_, den Betrag an, um den a,x1 + + a„x„ größer als b ist.

Das LOP (2.11) geht über in

ZF: Z3 = +2x, — 4x2* + 4x2** max;

NB: —2x‚ — 3x2* + 3x2** — x5, - = 1,

x1 — x2* + x2** + x‚g = 2, (2.12)

6x1 — 2x2* + 2x2** = 4, '

Xi, 352*: X2”. Xsis 95:2 2 0-

Mit den soeben dargestellten vier Umformungsschritten kann zu jedem linearen Opti-
mierungsproblem ein entsprechendes äquivalentes LOP von folgender Form angege-
ben werden:

ZF: clxl + ---+c„x„ gmax;

NB: ' a11x1+"'+alnxn =b1s

am1x1+ "”+amnxn=bm:
x‚g0‚ j=l,...,n,
12.20, i: l,...,m.

5. Umformungsschritt: Einführung von künstlichen Variablen.

Die Normalform (2.5) kann nun aus (2.13) erhalten werden, indem (2.13) künst-
lich verändert wird. In die Zielfunktion und Nebenbedingungen werden die künst-
lichen Variablen

xn-H9 m, xn+m ä 0

eingeführt, also
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ZF: Z= 01x1 + + c„x„ — Mx„„ — —Mx„„„ max;

NB: aux] + ‘l’ alnxn ‘i’ xn+1 : b1:

am1x1+ "'+amnxn +xn+m:bm:
b. 2 0,

l N ‘i: 1,...,m,
xn+i 2 0,’

an; 0, j= 1,...,n.

Das Problem (2.14) wird als ddjungiertes Problem zum Ausgangsproblem (2.13) be-
zeichnet. M ist eine hinreichend große positive Zahl (M >> 0). Das adjungierte Pro-
blem ist mit der Normalform (2.5) identisch, wenn

Cn+1= = Cm-m = “M

gesetzt wird.

Wenn die künstlichen Variablen x„„, ..., x„+‚„ = O sind, so geht das adjungierte
Problem in das Ausgangsproblem (2.13) über. Besitzt das Ausgangsproblem eine
Lösung, so hat das adjungierte Problem ebenfalls eine Lösung, in der alle künstlichen
Variablen gleich null sind, und die restlichen Lösungskomponenten stimmen mit
der optimalen Lösung von (2.13) überein. Falls (2.13) überhaupt lösbar ist, müssen
in der optimalen Lösung von (2.14) alle x„+1‚ ..., x,,+,,, zufolge der großen Zahlen-
koeffizienten M gleich null sein, denn anderenfalls hat die Zielfunktion einen beliebig
kleinen Wert. Daraus folgt, daß die Maximallösung vom adjungierten Problem mit
der Maximallösung vom Ausgangsproblem identisch ist (falls die Lösungskompo-
nenten x„„ = 0, ..., x,,+,,, = 0 unberücksichtigt bleiben).

Das adjungierte Problem von (2.12) hat die folgende Form:

ZF: Z = + 2x, — 4x„* + 4x2** — Mx,,, — Mx,,2 % max;

NB: — 2x1 — 3xz* + 3x2** — x3, + x“ = 1,

x1 — x2* + x2“ + x„ = 2, (2.15)

6x, — 2x2* + 2x,“ + xm = 4, V

X1: X2*: -X2”, xu: x52, xn: xk2 ä 0-

Es sei hier besonders vermerkt, daß bei dem vorliegenden Beispiel nur zwei künst-
liche Variable x‚„ und xk, in die 1. bzw. 3. Nebenbedingung einzuführen sind. In der
2. Nebenbedingung ist die Einführung einer weiteren künstlichen Variablen nicht not-
wendig, da bereits x32 in der gewünschten eliminierten Form vorhanden ist und in den
restlichen Nebenbedingungen nicht vorkommt.

6. Umformungsschritt: Umnumerierung der neu eingeführten Variablen.
Schließlich kann durch Umnumerierung der neu eingeführten Variablen die gleiche

Bezeichnung wie in der Normalform erreicht werden. Im Problem (2.15) wird daher

xx = X1» -752* = x2, X2” = X3; x51: X4; X11 = X5, x32 = Xe, xkz = x7

gesetzt, und es folgt:
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ZF: Z: + 2x, — 4x2 + 4x3 — Mxä — M», max;

NB: —2x‚ 4 3x2 + 3x3 — x4 + x5 = 1,

x,— x2+ x3 +x5 =2, (2.16)

6x,—2x2+2x3 +x7=4,
x, g 0, i: 1,2, ...‚7.

Eine optimale Lösung x Von (2.16) lautet (sie wird in 3.1.4. berechnet):

xT= [x, = 0,x2=0,x3 = 2,X4 = 5,x;, = 0,x6 = 0,x7 = 0].

Damit folgt für die optimale Lösung des Ausgangsproblems (2.6)

x1 : 0, x2 : —2,

Z = —8. _

Durch die Einführung von Schlupf— und künstlichen Variablen ist aus dem ursprüng-
lichen Problem die dazugehörige äquivalente Normalform entstanden. Während im
Beispiel (2.6) nur zwei Veränderliche vorliegen, so enthält die entsprechende Normal-
form (2.16) dagegen 7 Veränderliche. Für praktische Berechnungen gehen die Bestre-
bungen dahin, den Problemumfang so klein wie möglich zu halten, damit der Rechen-
aufwand möglichst gering gehalten werden kann. Bei vielen LOP sind künstliche
Variable zur Aufstellung der gewünschten Normalform nicht erforderlich, oder die
Einführung einer einzigen künstlichen Variablen reicht aus. Diese Eigenschaft haben
die folgenden LOP:

1. ZF: Z = cTx max;

NB: Ax g b,

X g o,

b g o.

In diesem ersten Beispiel wird die Normalform sofort erhalten, wenn die Schlupf-
variablen x„„ ‚ ...‚ x,,+,,, eingeführt werden,

2. ZF: Z z cTx max;

NB: Ax g b,
x o,
b o.

Hier werden zunächst die Schlupfvariablen x,,+,, ..., x,,+,,, g 0 eingeführt. Damit
folgt:

IlV
H

V

ZF: Z=c,x1 +cgx.2+~~-+c,.x,, ‘;max;

NB: aux: +4--+a1..x..—x..+1 :bi‚
1121951 ‘i’ "'+a2nxn ‘X:-+2 :172y (2-17)

am1x1+ "'+amnxn "xn+m=bm-
Zur Aufstellung der Normalform ist die Einführung nur einer künstlichen Veränder-
lichen erforderlich, wenn alle Nebenbedingungen bis auf eine mit —1 multipliziert
werden. Ausgenommen bleibt die Nebenbedingung mit der größten rechten Seite,
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die zu allen anderen Gleichungen addiert wird. Wird mit

be max {bi}
léiém

bezeichnet, so folgt aus (2.17):

(ae1'aX1)xl+ "‘+(aen_a1n)xn —xn+e+xn+l “ e-

(an ~ am) xi + + (den — am.) x‚. - xm + 2mm = be — bmv

Wird g

b‚»‚„=a„„—a„»„‚ bl=b¢—b,»20 für i4=e
und _

bei: = asks be = be

gesetzt, so folgt nach Einführung der künstlichen Variablen x‚„„‚„:

Z = clxl + + c,, x,, — Mx,,,m+1é, max;

1711351 ‘i’ "'+b1nxn —xnL2+Xn+1 =lr1y

belxl +- +benxn' —xM +x„„„‚i =IZ‚

bmlxl+ --+b‚„„x„-x„„ +x..„„=b_‚
x120, i=1,...,n+m+1.

Im übrigen wird man immer bemüht sein, die spezielle Gestalt der Nebenbedingungen
so zu nutzen, dal3 möglichst wenige künstliche Variable einzuführen sind.

Die Überführung eines beliebigen LOP in die Normalform hat den Vorteil, daß
von der Normalform ausgehend unmittelbar der Simplexalgorithmus mit dem dazu-
gehörenden 1. Rechenblatt begonnen werden kann.

Ein Nachteil der Einführung von künstlichen Variablen ist die damit verbundene
Problemvergrößerung. Weitere Möglichkeiten der Bestimmung einer zulässigen Basis-
lösung und damit einer ersten Basisdarstellung sind in der Spezialliteratur zu finden,
wie z.B. die Zwei-Phasen-Methode.

Aufgabe 2.4: In einem landwirtschaftlichen Gebiet sollen zwei Gefiügelsorten gehalten werden
(S1 , S2). Zur Fütterung derTiere stehen zwei Futtermittel zur Verfügung (F, , F2) und zwar 8 Men-
geneinheiten (ME) von F1 und I80 ME von F2. Der Bedarf an Futter pro Tier ist in der folgenden
Tabelle gegeben:

|sifsz
nii 1

F21 2

Es sollen mindestens 2 Tiere der Sorte S, gehalten werden. Der Gewinn pro Tier beträgt für S1 2

und für S; 3 Geldeinheiten.
Gesucht ist das mathematische Modell mit dem Ziel der Gewinnmaximierung.

I-



28 2. Die lineare Optimierungsaufgabe

'-= Aufgabe 2.5: Ein Schifi’ mit einer Ladefähigkeit von 7000t und einer Laderaumkapazität von

IX
-

i-

10000 m" soll drei Güter G, , G2 und G3 in solchen Mengen laden, daß der Fraehtertrag möglichst
groß wird. Die folgende Tabelle enthält für jedes Gut die angebotene Menge M in t, den benötigten
Laderaum R in m3/t und den Frachtertrag Fin Mark/t.

Gesucht ist das mathematische Modell. Was bedeuten die Variablen im Modell?

1 G1 l G2 G3

M 3500 | 4000 2000
R 1.2 1,1 1,5

-P . 25 30 35 ’

Aufgabe 2.6‘ Aus Rundeisensangen der Länge I = 20 m sollen hergestellt werden:
mindestens 8000 Stück der Länge ll = 9 m,
10000 Stück der Länge l2 = 8 m und
6000 Stück der Länge 13 2 6 m.

Es ist das mathematische Modell für einen minimalen Materialverbrauch zu ermitteln.

Aufgabe 2.7: Die folgenden Optimierungsprobleme sind auf die Normalform zu bringen.

a) ZF: Z= 2x, + x2 — x3 — x4¢min;

NB: x1~x2—2X3—.\'4=2,

2x1+x2—3x3+x.,,=6,

x1+x2+ x3+x.,=7,
x, 3 0: t'=1,2,3,4.

b) ZF: Z= x4 —- xsimax;
NB: 2x;— x3-x4+x5;0,

-Zx, +2x3 ——x4+x5 :0,
x, —-2x; —x4+x5;0,
x, + x, + x3 :1,

x120, i= l‚2,3,4‚5.

c) ZF: Z= x, — 2x; + 3x3_£min;

NB: —2x1 + x; + 3x3 = 2,

2x1 + 3x2 + 4x3 =1,
x, beliebig.

2.3. Grundlegende Eigenschaften von Lösungen

Für die anschließenden Betrachtungen wird die Normalform eines linearen Opti-
mierungsproblems zugrunde gelegt (vgl. (2.5)).

Die lineare Funktion

Z0511 x2; --~a xn+m) = C1-751+ '5' cn+n.J\'nm
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ist unter Berücksichtigung der folgenden linearen Gleichungen zu maximieren:

allxl +01~2x2 ‘l’ "'+a1nxn +xn+l =bu
021751 471722352 ‘l’ '"+a2nxn +xn+2 =l72s

am xi + am x2 + + am. x„ + x„+‚„ — bm, (2.18)
x, g 0 für j: 1,2, ...,n+m,
b. g 0 für i: 1,2, ...,m.

In Matrixschreibweise (vgl. (2.5’)):

ZF: Z = Z(x) = cTx max;

NB: Ax = b, 2 18,
x 2 o, ( « )

b 2 o.

In Vektorschreibweise (vgl. (2.5”)):

ZF: Z z Z(x) 2 cTx max;

NB: a“) + am + + a("*’">x = b,i‘! x2 n+m

x ’: o;

b g o.

Ohne Beschränkung der Allgemeinheit sei vorausgesetzt, daß der Rang der Koeffi-
zientenmatrix A des Gleichungssystems von (2.18) gleich dem Rang der erweiterten
Matrix [A‚ b] (Voraussetzung für die Lösbarkeit des Gleichungssystems) und gleich
m ist.

Es werden die folgenden Begriffe definiert:

Definition 2.1: Jede Lösung x von Ax = b, die der Bedingung x i; o genügt, wird im
folgenden als zulässige Lösung (ZL) bezeichnet. _

Definition 2.2: Je m linear unabhängige Spaltenvektoren von A bilden eine Basis B, die
zu diesen Vektoren gehörigen Variablen heißen Basisvariable (BV) und alle restlichen
Variablen Nichrbasisvariable (NBV).

Definition 2.3: Ist das Gleichungssystem von (2.18) so unzgeformt, daß für irgendeine
Basis B die BV durch die NBV ausgedrückt sind und die Zielfunktion nur noch von den
NBV abhängig ist, so wird von einer Basisdarstellung (BD) der Lösungsmannigfaltig-
keit des LOP gesprochen.

Allgemein hat die BD einer beliebigen Basis B von (2.18) die folgende Gestalt,
wenn ohne Beschränkung der Allgemeinheit die BV der Reihe nach mit x,,+1 , , x„+,„
und die NBV der Reihe nach mit x1, ..., x„ bezeichnet werden:

rl1x1+rl2x2 + "'+"1nxn +xn+1 ‘k1
V21x1+’22X2 + "'+"2nXn +xn+2 k2

. . . . . . . . . . . . . . . . . . . . ‚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. (2.19)

rmxi + rmzxz + + r„„.x‚. + x‚.‚„. = km

81x1 +g2x2 + “'+gmxn +ZB(X)=C-

D.2.1

D.2.2

D.2.3
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D.2.5

. (2.18) entstanden ist, indem die BV x„„,
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Mit ZB(x) wird die Zielfunktion Z bezeichnet, wenn in ihr alle BV zur Basis B eli-
miniert sind. r‚4‚-, k,-,g,- und c(i= l, 2, ..., m; j: 1, 2, n) sind Zahlenwerte, die
bei der Umformung des Gleichungssystems von (2.18) in die Basisdarstellung (2.19)
aus den Werten a‚-‚-, b,- und c,- hervorgehen.

Definition 2.4: Gegeben sei eine beliebige Basis B von A und die dazugehörige BD.
Eine Lösung x von Ax = b, bei der alle NBV gleich null sind, heißt Basislösung (BL). Eine
BL heißt darüber hinaus zulässige Basislösung (ZBL), wenn alle BV nicht negativ sind.

Sind z. B. in (2.19) alle k,- g 0, so ist die BL x3 = {0, ..., 0, k„ ..., k,,,} eine ZBL; die
BD wird dann als zulässige Basisdarstellung bezeichnet (ZBD). Eine BL bzw. ZBL ist
also eine Lösung, die nur höchstens m von null Verschiedene Lösungskomponenten
hat.

Definition 2.5: Die Zahlen g,- (j : 1, ..., n) in der zur beliebigen Basis B gehörenden
BD (2.19) werden als Formkneffizienten und die Zahl c als Basiszahl bezeichnet.

In (2.18) bilden z.B. die Vektoren a<"“>, ..., a1"*"'> eine Basis B [a<"+‘>, ..., aE"+"‘>],
da sie linear unabhängig sind. x„„ ‚ x„„‚ ..., x,,+,,, sind die zu dieser Basis gehörenden
BV, und x1, ..., x„ sind die NBV. Für diese Basis lautet die Basisdarstellung:

(111961 +"'+a1nxn +xn-I 2 19

1121-751 ‘i’ ""i‘a2nxn +x7n2 "[729
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.20)

aml -761+ + awn xn +xn«m

81x1 +‘ +gnxn +2
mit

C : C‘n.1 b1 ‘i‘ ‘i’ Cum; bin:

g! = ‘C14’ cud all + +cn+m am]:

32 : ‘C2 + C 1 an + + cn+7iza1n2>

gr: : _ cu ‘i’ c1l»1 am + +cn+m anm-

Dabei ist zu beachten, daß die letzte Gleichung von (2.20) aus der Zielfunktion von

‚ x„+„‚ mit Hilfe der m Nebenbedingun-
gen eliminiert worden sind. Da nach (2.18) die Werte bi [i : l, ..., m] nicht negativ
sind, ist

x1 : 0: X2 : o, »--9 xu : 0: xn+1 = bis m’ xn+1n Z bm

eine ZBL der Basis
B [a(n+1), a(u*2), m’ „(in m)]_

Zu jeder BD gehört genau eine BL.

Die Anzahl der Mengen von m linear unabhängigen Vektoren, die man aus den
m+nSpa1tenvektoren von A bilden kann, d.h. die Anzahl der voneinander ver-

schiedenen Basen bei einem LOP mit m Gleichungen und m + n Variablen, kann
n + m . „ n + m . .

höchstens sein, so daß es also nur hochstens m verschiedene BL (ein-

geschlossen sind die ZBL) geben kann.
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An dem folgenden Beispiel werden die angegebenen Definitionen näher erläutert.
Gegeben ist das LOP:

ZF: , Z = 3x1 + 4x2 g max;

NB: x. + 2x2+ x3 2 80,

x2 + x4 : 30, (2.21)

2x1+ x2 +x5= 100,

x1, ..., x5 2 0.

Die Koeffizientenmatrix A hat die folgende Gestalt:

1 2 1 o 0

A: o 1 o 1 o =[a<1>‚a<2>‚a<3)‚a<4>‚am].

2 1 0 o 1

Von den 5 Spaltenvektoren aW,a<2),a<3>,a<‘> und a“) lassen sich die folgenden
Dreierkombinationen bilden:

1_ a11),a(2), 31:3), 6_ 3(1), au), alö),

2_ a<1),a<2),a«t4), 7, am, a<3),a14),

3, a(1),a<2), 3(5), 3_ am, am), 3(5),

4_ am, am), am, 9_ au), au), 3(5),

5_ an), am), 3(5), 10_ am), au), a5),

also genau : Kombinationen. Die 5. Kombination bildet keine Basis,

da die Spalten a“), a“), a“) nicht linear unabhängig sind; es gilt nämlich:

1 1 O

ja“), a“), 1103i: . 0 0 0 = 0.

j 2 0 1 i

Die restlichen 9 Kombinationen bilden 9 verschiedene Basen, die im folgenden ent-
sprechend der Kombinationsnummer bezeichnet werden. B5 ist darunter nicht ent-
halten.

Die Basisdarstellung und BL bzw. ZBL zu den einzelnen Basen haben die folgende
Form:

1. B1 [a(‘1,a(’>,a(3>]:

BD,: BL,:

—§ 364+ §x5+x, = 35, X”, = [35, 30,—15, 0, O];

+x4 -n- x9 : 30, 20113,) z 225.

—3x4”%x5 +xt -15
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2. B2 [a“>, a“), am]:

BD2:

‘:lix3+§xa+x1 = 40,

+§x3~§x5 +x2 — 20,

—§X3+ §x5 +754 10a

+§x3+§x5 +Z=200.

3. B3 [a<‘>, am, a‘-">]:

BD3:

x3 — 2x4 + x, = 20,

+ x4 + x2 = 30,

—2X3+3X4 +355: 30s

3x3—2x4 +Z=130

4. B, [a<‘>, a“), 21W]:

BD4:

§x2+§x5+x1 — 50,

%x2~§x5 +x3 = 30,

6. B6 [a<‘>, a<‘>, 21153]:

BDG:

x3 + 2x2 + x1 = 80,

.7. B, [a(2>, a“), am]:

BD‚:

2x1 + 1x5 + x, = 100,

— 3x, — 2x5 +x3 = -120,

— 2x1 — 1x5 +x4 = -70,

5x1 + 4x5

ZBL2:

X3‘ = [40, 20, 0, 10, O];

Z(xB,) = 200.

ZBL3:

x33 2 [20, 30,0, 0, 30];

Z(X11.) =

ZBL,:

xus = [50, O, 30, 30, O];

Z(x;;5) = 150.

BL5:

xm = [80, o, o, 3o, -60];
z(x„‚) = 240.

BL7:

X31 = [0, 100, —-120, -70, 0];

Z(Xn,) = +400-
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8. B3 {au}, am, 1115)]: _

BD3: ZBL3:

+ x2 + x2 = 30. X3, = [0. 30. 20, 0. 70l;

+ x, — 2x2 + x3 2 20, Z(xg‚) = 120.

+2x‚— x2 +x5= 70,

— 3x, + 4x4 + Z = 120.

9. B9 [a(2>, am, a"’?]:

BL,:

xB_ = [0, 40, 0, ——10, 60];

Z(xB_) = 160.

10. B10 [a<3>, a“), am]:

BD„‚: ZBL,o:

x2 + 2x2 + x2 X3" = [0, O, 80, 30, 100];

x2 + x, Z(XBm) = 0.

2x2 + x2 + x;

~3x1 ~ 4x2 + Z

Die BD zur Basis B1 [a“>, a“), am] kann z.B. folgendermaßen aufgestellt werden:

Es wird das Ausgangsgleichungssystem von (2.21) gelöst, indem die Veränder-
lichen x,, x2 und x2 in Abhängigkeit von x, und x5 berechnet werden. Aus

1. xl+2x2+ x3: 80,

+ x2 = 30—x4‚
2x2 + x2 = 100 — x5

z.B. folgt nach der Cramerschen Regel:

80 2 1

30 — x, 1 0

x: 100—x;‚ 1 0 30—x4—I00+x3
‘ 1 2 1 * -2

0 1 0

2 1 0

x1:35+Ä24„f2i.

3 Sei€Tarz, Optimierung
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Analog erhält man:

x2 = 30 — x4,

x3=—15+§x4+ éxa.

Aus der Zielfunktion werden x1, x2 und x3 eliminiert, indem für diese Veränderlichen
die gerade berechneten rechten Seiten eingesetzt werden:

Z= 3x1 + 4x2 = 120 — 4x4 +105 + äx4 — -3x5,

Z = 225 — gm, — äxs.

Insgesamt folgt also

35 + äx, — éxa,
30 - x4 ,

-15 + äxa + %xa,

225--§x4~ 53x5.

Durch Umstellung entsteht daraus unmittelbar die BD‚. In entsprechender Weise
können die anderen BD berechnet werden.

2.4.

Der Zusammenhang zwischen einer ZBL und einem Eckpunkt (Extrempunkt) des
zugehörenden Lösungsbereiches wird durch folgenden Satz gegeben:

Das Simplextheorem und das Simplexkriterium

Satz 2.1: Eine zulässige Lösung x van (2.18) aus 2.3. ist dann und nur dann ein Eek-
punkt. wenn x ZBL ist?)

Beweis: 1. Es sei x eine zulässige Basislösung. Ohne Einschränkung der Allgemein-
heit sei B [a“>, ..., a‘"‘>] eine Basis von (2.18) aus 2.3.; die BV von x lauten:

x, > 0, ...‚ x„‚ > 0, und die NBV von x sind x„„, = 0, ...‚ x,,+,,, = 0.

Aus (2.18) folgt:
amx, + amxg + + a<'">x,,, = b.

Es wird angenommen, daß x kein Extrempunkt ist. Daher kann x folgendermaßen
dargestellt werden:

x: Äx(1)+(1—‚i)x(2)‚ 0< }.< l;
x“) und x19) sind voneinander verschieden und gehören dem Lösungsbereich von
(2.18) an, d.h.‚ es gilt: .

x“) ¢ x“), Ax“) = b, Ax“) = b, x“) g 0, x”) g O.

Aus diesen Bedingungen folgt fiir x“) und xi”, daß alle Komponenten außer den
ersten m gleich null sind. Also gilt für x“) und X“?

x“) 2 [x‘1”, xgl), ...‚ x311), 0, ...‚ 0],
xi?) : [x‘1‘3>, xf), ..., xii’, 0, ...‚ O]

1) Ausschluß des Entartungsfalles, d. h.‚ es sind nur ZBL mit genau m BV größer als null zugelas-
sen. Im Abschnitt 3.1.3. wird der Entartungsfall gesondert behandelt.
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und daher

go‘/x;1)+ az2)x<21) + + a<m)x<"1l) = b,

awxg?) + amxg) + + a‘”‘>xff> = b.

Durch Subtraktion der letzten beiden Gleichungen folgt:
a<1)(x(11>_ x(12)) + + au») (x(m1) _ x?) = o_

Da a“), ..., a”) linear unabhängig sind, folgt aus der letzten Gleichung schließlich

x3‘) — x,-(2) = o für alle i: l, m, d.h., xm = x“).
Das ist aber ein Widerspruch zur Annahme. Also ist x ein Extrempunkt.

2. x sei Extrempunkt des Lösungsbereiches von(2.l8). Dabei wird angenommen, daß
die Komponenten x, , , x, von x größer als null und die restlichen gleich null sind.

Also gilt:
amx, + + amx, = b_

In einer Zwischenbetrachtung wird zunächst indirekt gezeigt, daß die a“), ..., a“)
linear unabhängig sind: Es wird angenommen, a”), ..., a") seien linear abhängig.
Also gilt:

2,3“) + 12a“) + + 1,3l’) = 0

m“ 23 + + 2,2 e 0.

Für c > O folgen aus den beiden letzten die zwei neuen Gleichungen:

a“) (x, + c}.1)+ a“) (x2 + e12) + + a") (x, + c/1,) = b

a(1>(x1~ c/11)+ am (x, — ex?) + + du) (x, ~ c}.,) = b.

Lösungen dieser beiden neuen Gleichungen sind

x“) = [x1 + e11, ..., x, + C2,, O, ..., O]

x“) = [x1 — c/1,, ..., x, — cl“ 0, ..., 0].

Da der Entartungsfall ausgeschlossen ist, existiert ein c > 0 hinreichend klein, so daß
x0) 2 0 und x“) g 0 sind, d.h., x“) und x“) sind ZL von (2.18). Schließlich gilt:

x z _1_,xu) + g ‚((2),

und

und

d.h., x ist. kein Extrempunkt. Das ist aber ein Widerspruch zur Voraussetzung.
Nunmehr folgt aber aus der linearen Unabhängigkeit der Vektoren a“), , a"), daß

r g m ist. Da aber die Entartung ausgeschlossen ist, folgt r 2 m. Also ist x eine ZBL.l

Aus dem eben bewiesenen Satz folgt nun unmittelbar die bereits in Kapitel l. auf-
gestellte Behauptung:

Wenn der zulässige Lösungsbereich von (2.18) beschränkt ist, dann ist er ein kon-

vexes Polyeder. Da die Anzahl der ZBL kleiner oder gleich (n ist, folgt, daß

auch die Anzahl der Eckpunkte des Lösungsbereiches von (2.18) kleiner oder gleich
(n + m
\ ), also endlich ist.

3*
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Satz 2.2: Simplextheorem. Ein lineares Optimierungsproblem

Ax=b,x g o‚c'1‘x%max

nimmt das Optimum an einer ZBL an, sofern es lösbar ist!)
Beweis: Es wird angenommen, daß x(°) eine optimale Lösung von (2.18) und keine

ZBL bzw. kein Eckpunkt ist. Folglich läßt sich x<°> in der folgenden Form darstellen:

x‘°’ = f/txw, $2., = 1, o g z. < 1,
i=l i=1

i= 1, ..., q,

wobei x“), ...‚ x44) Extrempunkte des Lösungsbereiches von (2.18) sind. Somit gilt:

max {cTx] = cTx<°> = cT im”);
i:1

- r q

: Z A1-cTx<'> g cTxV‘) 2' ii
i=1 i:1

= cTxtk)

mit
max {cTx“>} z cTxV‘)

1212:1

Also folgt:

max (cTx) = cTx<"? = cTx(°).

Damit ist gezeigt, dal3 der Extrempunkt xi“) bzw. die ZBL eine optimale Lösung ist.
Damit ist das Simplextheorem bestätigt, da zu jeder optimalen Lösung auch eine
optimale ZBL angegeben werden kann. l

Sind xi’), x42), ...‚ x“) optimale Lösungen von (2.18), so ist auch

xlmzfilx”) mit f2.=1‚ogt.<1
1:1 1-=1

für i=1,...,p
eine optimale Lösung von (2.18), d.h.‚ alle Punkte der konvexen Hülle von xi‘),
x”), ...‚ x0’) sind optimale Lösungen, denn es gilt:

27 I’
cTxio) : 2' ÄicTx“) = cTx“) Z‘ 21-= cTxl‘) = max (cTx).

i=1 i=1

Zur Bestimmung einer optimalen Lösung eines linearen Optimierungsproblems
sind nach dem Simplextheorem nur die ZBL zu betrachten. Unter diesen Lösungen
ist eine Optimallösung enthalten. Es erhebt sich die Frage: Wann ist eine ZBL die
gesuchte optimale Lösung?

Das Simplexkriterium gibt darüber eine hinreichende Auskunft:

1) Der Entartungsfall sei ausgeschlossen, d. h.‚ ZBL mit weniger als m positiven BV sind nicht vor-

handen. Durch einein dem Abschnitt über den Entartungsfall betrachtete Umformung wird gezeigt,
daß jeder Problem aufein nichtentartetcs Problem zurückführbar ist.
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Satz 2.3: Simplexkriterium. Ist X]; = [x1 = 0, x2 = O, ..., x„ = 0, x,“ = kl, ...,

Xn+m = km] eine ZBL (alle k,- g O, i: 1, ..., m) des LOP un hat die Zielfunktion in
der dazugehörenden Basisdarstellung die Form

gm + gzxz + + g‚„x„ + Z = c,
wobei

8;" 2 0

gilt, so folgt: xn ist eine Maximallösung.

für j=1,...,n

Beweis: Ist x eine beliebige ZL, also gilt: Ax = b, x 2 o, so folgt aus der Basisdar-
stellung (2.19)

Z(x) = C - gm — gm — — gm-

Außerdem gilt:

Z(X3) = c.

Da 5,7,; 0 und xi; O für a11ej=1,...,n gilt, so ist g‚x‚- g 0 für allej‚ und damit gilt:

C _glx1 — ‘gnxn g C;
also

Z(X)§ Z(xn)-

Die letzte Ungleichung besagt, der Funktionswert jeder beliebigen ZL ist nicht grö-
ßer als der Funktionswert Z(xB) der Lösung x3, also ist x3 eine maximale Lösung.
Damit ist der Beweis erbracht. I

Wenn die zu einer ZBL gehörende Basisdarstellung bekannt ist, kann damit sofort
auf Grund der Formkoeffizienten entschieden werden, 0b die ZBL eine optimale
Lösung ist. Der Entartungsfall sei ausgeschlossen.

Beispiel 2.9: In dem Optimierungsproblem

ZF: Z = —x, + 2x2 + 4x3 =1 max;

NB: 2x1 + x2 + x3 = 7,

ex, — x2 + x3 + x4 = 1, (2.22)

3x1— 2x2 — x3 + x5 = >8,

x,;0, i=1,2,...,5,
ist die folgende ZBL xn gegeben (durch Einsetzen in die Nebenbedingungen ist sofort
überprüfbar, daß x13 eine ZBL ist):

BV: x2 = 3, x3 : 4,

B NBV: x1 = 0, x4 = 0.

Zu X1; gehört die folgende Basis:

1 1

_ 1 , a(3) = 1

-2 g -1

x5=2;
x

am = am =

S.2.3
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denn
l 1 1 0‘

1a<2>,a<'~‘),a<5>l=1 -1 1 0 = 2 =§= 0.

‚—2 —l l i’

Werden die BV x2, x3, x5 in Abhängigkeit der NBV x, und x4 ausgedrückt, so folgt:

x3: 4 — 5x1 " $354,

x2: 3‘ 'éx1+§x4»
x5: 2- ‘—2"=x1 + 5x4.

Damit können die BV x2 und x3 aus der ZF eliminiert werden. Es folgt:

Z: ‘X1 + 2C’ — "Ext + §x.|)+4(4" äxr " 5351)-

Z=22—6x,~x4.

Die BD, die zur vorgegebenen ZBL x3 gehört, lautet damit:

gx‚+;x.+x3 = 4,

%x1”§-"4 +x2 = 3.

§x1‘§x4 +755: 2:

6x1+lx, +Z =22.

Da g,‘ = 6 > 0 und g, = l > 0 sind, so folgt aus dem Simplexkriteriunr, x3 = [0, 3, 4,
0, 2] ist eine maximale Lösung von (2.22). u

Nun bleibt noch ofien: Wie kann eine solche optimale ZBL mit ihrer BD bei einem
allgemeinen LOP errechnet werden?

Hierüber gibt nun der Simplexalgorithmus Auskunft (s. 3.1.1.)
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3.1. Die Simplexmethode

In den folgenden Ausführungen steht die Frage zur Diskussion, wie ein lineares
Optimierungsproblem zweckmäßig gelöst werden kann. Es ist eine Extremwert-
aufgabe mit Nebenbedingungen zu lösen: Eine lineare Funktion von mehreren
Veränderlichen ist unter Berücksichtigung linearer Gleichungen und Ungleichungen
als Nebenbedingungen zu maximieren oder zu minimieren. Dabei entsteht die Frage:
Können die üblichen Lösungsmethoden der Analysis herangezogen werden, d. h.
können mit Hilfe der Differentialrechnung unter Benutzung einer Lagrange-Funktion
notwendige und hinreichende Bedingungen für das Auffinden optimaler Lösungen
angegeben werden? Diese Frage muß sofort verneint werden, weil bestimmte not-
wendige Voraussetzungen zur Anwendung dieser Methoden nicht erfüllt sind. Mit
diesen Methoden können relative (lokale) Maximal- oder Minimallösungen ermittelt
werden, die im inneren des zulässigen Lösungsbereiches liegen und wenn Optimie-
rungsprobleme vorliegen, deren Nebenbedingungen nur die Gleichungsform haben.
In der linearen Optimierung geht es aber um die Bestimmung von absoluten (glo-
balen) Optimallösungen; diese Forderung entsteht bereits bei der Betrachtung
entsprechender Problemstellungen aus der Praxis. Es ist also die Lösung gesucht, die
bezüglich des zulässigen Lösungsbereiches den maximalen bzw. minimalen Wert der
Zielfunktion besitzt. Darüber hinaus kann gezeigt werden, daß bei einem linearen
Optimierungsproblem die optimale Lösung ein Randpunkt des zulässigen Lösungs-
bereiches ist (vgl. Simplextheorem), d. h. die üblichen Methoden der Analysis sind
zur Bestimmung der Optimallösung nicht anwendbar. Schließlich liegen in der LO
Nebenbedingungen in Ungleichungsform vor (z. B. die Nichtnegativitätsbedingung
der Variablen), die ohnehin eine Verallgemeinerung der diesbezüglichen Lösungs-
möglichkeit fordern. Es ist also in der linearen Optimierung eine neue Lösungs-
methodik erforderlich. '

Die Simplexmethode ist ein Lösungsalgorithmus zur Auffindung einer optimalen
Lösung eines LOP. Auf Grund des Simplextheorems reicht es aus, nur die ZBL auf
Optimalität zu untersuchen. Bei dem Simplexalgorithmus wird von einer zulässigen
Basisdarstellung ZBD (vgl. 2.3,) ausgegangen. In ihr sind alle k, (i = l, ...‚ m) nicht-
negativ. Eine solche ist fürjedes LOP nach Überführung in die Normalform (vgl. 2.2.)
unmittelbar gegeben. Die zur ZBD gehörende Basis werde mit B0 und die Basiszahl
mit co bezeichnet. Es gilt also, wenn die entsprechende ZBL mit x30 bezeichnet wird,

Z(xB„) = co.

Ein Iterationsschritt des Algorithmus besteht in der Auffindung einer neuen

Basis B, mit der dazugehörenden ZBL x3‘, für die der Wert der Zielfunktion
Z(X|;‘) z cl (c1 g co) nicht kleiner als co ist.

Nach p-maliger Anwendung eines solchen Iterationsschrittes (p endlich) wird er-
reicht, daß alle Formkoeffizienten in der Zielfunktion, die zur zuletzt ermittelten
Basisdarstellung gehören, nicht negativ sind.

Auf Grund des Simplexkriteriums ist die zu dieser Basisdarstellung gehörige
ZBL Xgfl dann eine Optimallösung, sofern diese überhaupt existiert.

Beispiel für den Ablauf des Simplexalgorithmus: Am Beispiel (2.21) soll zunächst
der Ablauf des Simplexalgorithmus erläutert werden. Dieses LOP lautet:
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ZF: Z = 3x1 + 4x2 g max;
NB: x1 + 2x2 + x3 = 80,

x2 + x4 = 30, (3.1)

2x1 + x2 + x5 = 100,

Xi: x2, x3: 954,355 ä 0-

Da (3.1) bereits in der Normalform vorliegt, kann unmittelbar eine erste ZBD an-
gegeben werden, von der ausgegangen wird.

ZBD„: x1 + 2x2 + x3 = 80,
x2 + x4 = 30 , _

2x1 + x2 + x5 = 100, (3.2)

—3x, -— 4x2 + Z = 0.

Die entsprechende ZBL zu (3.2) lautet

ZBL0: xgn = [0, O, 80, 30, 100]; Z(xB“) = O. (3.3)

Es wird nun versucht, aus der ZBD„ eine andere ZBD1 mit der Basis B1 und der ZBL
XE‘ zu erzeugen, deren Basiszahl c1 g ca ist, d.h., es soll

Z(Xn,) 2 Z0411.)
sein.

Zu diesem Zweck wird eine Lösung betrachtet, die aus der Basisdarstellung (3.2)
folgt, wenn alle NBV bis auf eine gleich null gesetzt werden. Diese eine Veränder-
liche wird gleich A1 > 0 gesetzt, also z.B.

NBV: x1 = 0, x2 = A1 > 0.

Aus (3.2) folgt die Lösung x211:

= O

x2: Ar,
x3 = 80 — 2A1, (3.4)

x,,= 30—— A1,

x5=l00— A],
(Z= 0+4A1).

Diese Lösung X4‘ ist eine ZL, solange alle Lösungskomponenten nichtnegativ sind,
d.h. also für

80 30 100 _

T’T' 1 —3°-

Andererseits wächst Z um so mehr an, je größer A1 gewählt wird. Um Z(x4_) = 4A,
zu maximieren, wird

A1 = min «[40, 30, 100} = 30 > 0

gesetzt. Mit A1 = 30 folgt damit aus (3.4) die Lösung

x131 = [x1 ä 0, x2 = 30, x3 = 20, x4 = 0, x5 = 70], (3.5)

Z(X3I) = 4 - 30 = 120 = C1.

0§A,gmin{
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ist eine weitere ZBL, da die drei den von null verschiedenen Lösungskomponen-
ten entsprechenden Vektoren linear unabhängig sind.

Um die ZBL x3‘ auf Optimalität zu prüfen, ist die zu dieser Lösung gehörende
BD aufzustellen.

War in X30 noch x, BV und x2 NBV, so ist dagegen in x3‘ x2 BV und x2NBV. x2 und
x2 haben die Plätze vertauscht. Um die zu xg_ gehörende BD aus (3.2) zu erhalten,
sind x3, x2 und x5 zu eliminieren. Diese Elimination wird erreicht, indem die 2. Glei-
chung von (3.2) nach x2 aufgelöst wird. Anschließend wird der für x2 erhaltene Aus-
druck in die restlichen Gleichungen eingesetzt. Es ergibt sich:

x1+2[30—x.‚]+x3 = 80,

+ x2 + x2 = 30,

2x1 ‘l’ [30 — x4] ‘l’ x5 = 100;

~3x,— 4[30 — x2] + Z= O.

Damit lautet die gesuchte ZBD,

x1 — 2x4 + x3 = 20,

+ x4 + x2 = 30, (3.6)

2x1 — x4 + x5 = 70,

~3x, + 4x4 + Z= 120.

Der 1. Iterationsschritt der Simplexmethode ist mit der Aufstellung der Basisdar-
Stellung der Basis B, =‘ [a<3>, a“), a(53] beendet.

Der 2. Iterationsschritt beginnt, indem wiederum versucht wird, aus der nunmehr
vorliegenden Basisdarstellung mit der Basis B1 und der ZBL x31 eine andere Basis-
darstellung mit der Basis B2 und der ZBL x3, zu erzeugen, deren Basiszahl c2 g c,
ist.

Zu diesem Zwecke wird die NBV, die zu dem kleinsten negativen Formkoeffizien-
ten in (3.6) gehört, gleich A2 gesetzt:

x‚=A2;O‚ x4=0.
Aus (3.6) folgt die Lösung xAz

x1 = A2:

x, = 30,

x3 = 20 — A2,

x4 = 0;

X5 = 70 — 2.42,

Z = 120 + 3A2.

Für 0 g A2 g min {ä g} = 20 ist x2,’ eine ZL. Um Z(x2‚„) zu maximieren, wird
A2 = 20 gesetzt. Es entsteht eine weitere ZBL, die mit x3, bezeichnet wird:

xB_ = [x, = 20, x2 = 30, x3 = 0, x, = 0, x2, = 30],

Z(xg_) = c2 = 180. (3.7)
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x32 ist eine ZBL, da die den von null verschiedenen Lösungskomponenten x1, x2

und x5 entsprechenden Vektoren linear unabhängig sind.
Werden die beiden Lösungen x11‘ und x3, verglichen, so haben x1 und x1 die Plätze

vertauscht. Die BD zu xm wird aus (3.6) erhalten, wenn x1, x2 und x5 eliminiert wer-
den. Es folgt:

xg — 2x1 + x1 = 20,

+ x. + x2 = 30,

+2[20—x3+2x„]— x, +x5 = 70,

——3[20—x3+ 2x„1]+4x1 +Z=l20.

Damit lautet die der Lösung (3.7) entsprechende ZBD2:

x3 — 2x, + x, = 20,

x4 + x2 = 30,

—2x3 + 3x1 + x5 = 30, (3.8)

3x3—2x, +Z=l80. ,

Der 2. Iterationsschritt ist mit der Aufstellung der ZBD2 zur Basis B2 [a(‘>, a“), a<5>]

beendet. Da in (3.8) noch nicht alle Formkoeffizienten g 0 sind, wird analog die
3. Iteration angeschlossen. Es entsteht die folgende ZBD3 mit der ZBL x31.

——§x;,+§x5+x, = 40,

5x3 — 5x5 + x2 = 20, i (3.9)

—§x-3+ §x5 + x, = l0,

%x3+5x5 +Z=200.
x3, = [x1 = 40, x2 = 20, x3 = 0, x, = l0, x5 = 0], (3.10)

Z(xg‚) = 200 = c3.

Da in (3.9) alle Formkoeffizienten ; 0 sind, folgt nach dem Simplexkriterium, daß
x33 die gesuchte optimale Lösung mit einem maximalen Funktionswert von

Z(x1;‚) = 200
ist.

Der Aufbau des Simplexalgorithmus ist damit zunächst am Beispiel dargelegt. Bei
jeder Iteration wird von einer ZBL zu einer solchen ZBL übergegangen, deren Funk-
tionswert nicht kleiner als der vorhergehende ist. Diese Iterationen werden so lange
wiederholt, bis eine optimale ZBL erreicht ist, d.h. die Formkoeffizienten alle nicht-
negativ sind.

Es besteht bei diesem Vorgehen eine prinzipielle Frage: Bricht das Verfahren nach
endlich vielen Schritten ab, weil eine optimale Lösung vorliegt? Diese Frage wird
in den anschließenden allgemeinen Ausführungen mit ja beantwortet werden.
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3.1.1. Der Simplexalgorithmus

Bei den folgenden Betrachtungen wird das LOP (2.18) zugrunde gelegt und an-
genommen, daß die kvte Iteration bereits durchgeführt ist und eine ZBD„ mit der
entsprechenden ZBL Xßk vorliegt.

ZBD„: r,,x1+-~-+r,ax,, + ---+r„‚x„+x‚.„ =k,,
’21x1+" +r2nxa 4-‘ +r2nxn +Xn+2 =k25 (3-11)

rml-x1+ "+rnmxa+ "'+rmnxn +xn+m “km:

g1xl+"'+ga-xa +"'+gnxn +Z=cka
k, g 0, i_= l, ...‚m;

Xnk: [x1 = 0, ..., x,. = 0, x„„ = kl, ..., x,,.,,, = km], (3.12)

Z(X3k)= ck.

Weiterhin wird vorausgesetzt, daß alle möglichen in-Tupel von Vektoren der erwei-
terten Koeffizientenmatrix von (2.18) linear unabhängig sind. Das Problem ist dann
nicht entartet.

Es kann der folgende Satz formuliert werden:

Satz 3.1 (Hauptsatz der Simplexmethode): Gegeben sei eine ZBL„: Xßk (nichtentartet)
und die da:u gehörende ZBDk, undfür mindestens ein j = a gilt: g, < 0, r,,, > O für
mindestens ein i = 1, ‚ m; dann folgt:

Es existiert eine ZBLH1: xgm und somit die ZBD,,+, mit Z(x3m) > Z(x,H_,).

Der Beweis dieses Satzes folgt unmittelbar aus dem folgenden konstruktiven Vor-
gehen:

Es können in (3.11) die folgenden drei — sich gegenseitig ausschließenden — Fälle
vorliegen:

1. g,- O für alle j= 1, ...‚ n. Nach dem Simplexkriterium folgt, daß Xgk eine opti-
male Lösung von (2.18) mit dem optimalen Funktionswert Z(x3k) = ck ist.
Damit wäre der lterationsalgorithmus beendet.

2. Es ist für mindestens einj: a

“\) gr: < O:

/3)riI1 é 0

Unter diesen Voraussetzungen kann man beliebig große Funktionswerte finden, d.h.
(2.18) hat keine optimale Lösung; diese existiert nicht.

Beweis: In (3.11) werden für die NBV die folgenden Werte eingesetzt:

xa = A > 0

Es entsteht aus (3.11) die folgende ZL:

für i: l, ...‚ m.

und x.-=0,i=1,...,n,i#a.

S.3.1
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x4: x..=A>0‚ xi =~--=xa_1=x..+1=---=x,.=0,
xn+l =k1 ‘Hall,
xn+2 =k2 — (MA,

. . . . . . . . . . . . . .. (3.13)

mit
Z(XA)= ck + A(—ga)-

Da gm < 0 und r‚-„ g 0 für i: 1, ...‚ m sind, kann A beliebig groß gewählt werden,
ohne die Zulässigkeit der Lösung x4 zu verletzen (x4 g 0 für alle A g 0). Darüber
hinaus wächst Z(XA) = ck e Ag„ unbeschränkt, sobald A beliebig groß gewählt wird.
Damit ist die Nichtexistenz einer optimalen Lösung gezeigt.

3. Es ist für mindestens einj: a

A) gm < 0,
fl) r,-L, > O für mindestens ein i= 1, 2, ...‚ m.

Unter diesen Voraussetzungen kann eine ZBD,,.+, mit entsprechender ZBL x3“) ge-
funden werden, deren Basiszahl cm > 6„ ist (> gilt nur bei Nichtentartung, sonst g).
Die Aufstellung von ZBDM erfolgt in der (k + l)-ten Iteration, die folgendermaßen
auszuführen ist:

Es werden in (3.11) die NBV x,- = 0 fürj: l, ...‚ n;j # a und die NBV x„ : 11> 0
gesetzt.

Dann entsteht die folgende Lösung X42 V

x4: x„=A >O‚ x,=-~-=x,,_1=xa+1=~-~=x,,=0,

‚X714 :k1_rl41A9
xn+2 = k2 * "MA s (3-14)

xn+m :km‘ rmaAa

Z(x4)= ck - gad-
X4 ist nur für

ogA s min <—ki)=£=A,M (3.15)
_ _1§i§m rm rm

rm>0

eine ZL, denn wenn A > gilt, so folgt
la

xy.+z=kt—Tza'A<0,
d.h., xAist nicht zulässig. Sind alle k,~ > O, so ist auch A H1 > O. Anderenfalls kann
A,,+1 gleich null sein. Es wird sich zeigen, daß bei Nichtentartung alle k,- > 0 sein
müssen.

Um Z(x4) möglichst groß zu gestalten, wird
k

A : AM1 =

gesetzt.
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Damit ergibt sich die Lösung

XBHf xa = Alm-l > 0: xx = = xa—1 = xau 2 = X» : 0.

xn+1 = kl — r1aA}c+1 ä 0,

Xn+2 = k2 — r2aAIc+1 2 Ü,

xn+m = km ’ rmaAk+1 2 0-

Die BV x„„ von Xgk nimmt in der Lösung xgk“ den Wert Null an. Dagegen hat die
NBV x„ = 0 in der gleichen Lösung den Wert Akil. Darüber hinaus ist xnk“ eine

weitere ZBL, denn die den von null verschiedenen Lösungskomponenten entspre-
chenden Vektoren von (3.11) sind linear unabhängig.

Die Determinante

der Vektoren aw“), ..., a"‘*"1>, a’\">, a5"*‘*1>‚...,a<"*’"7 ist nämlich von null ver-
schieden (wegen r„‚ + 0). Um die zu xgkfl gehörende ZBD aus (3.11) zu erhalten, ist
nach den neuen BV x„‚ x„+„ , x‚„‚_1 , xmm ..., x,,+,,, aufzulösen. Diese Elimination
wird vollzogen, indem in der I-ten Gleichung von (3.11) x„ eliminiert wird. Da m, > 0
ist, folgt:

k r 1xa:_r _ix1_..._ix,__ _xM_
rm rm rm rm

Anschließend wird der für xu erhaltene Ausdruck in die restlichen Gleichungen ein-
gesetzt, Nach einer entsprechenden Zusammenfassung liegt die gesuchte ZBD,,+,
vor.

Die zu dieser Basisdarstellung gehörende Basiszahl ck“ nimmt folgenden Wert an:

Z(XB„+‚) : C/(+1 = Ck — gaAk+1-

Da 8a < 0 und Ära > O sind, gilt

Cm; > Cm

Z(XB,,+,) > Z(XB,)-
Damit ist die (k + 1)—te Iteration beendet.

Für die Lösung eines LOP ist nunmehr entscheidend, dal3 der angeführte Simplex-
algorithmus nach endlich vielen Iterationsschritten abbricht, da ein solches Problem
nur endlich viele Basen besitzt, denn eine bereits benutzte Basis kann bei Weiterfüh-

also
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rung der Iterationen nicht zweimal auftreten, weil die Folge der Basiszahlen co, c1,
c„,... bei Nichtentartung streng monoton ansteigt.

Als Nachtrag zur Nichtentartung wird schließlich bewiesen: Ist ein LOP nicht ent-
artet‚ so sind alle k,» in der BD jeder beliebigen Basis ungleich null.

Beweis: Ohne Beschränkung der Allgemeinheit wird angenommen, daß in (2.18)
die Vektoren a“), ..., a4“) eine beliebige Basis bilden. Der Vektor b ist dann durch
die folgende eindeutige Linearkombination darstellbar:

x‚a“>+x2 a(2l+ ---+x,,, a<"'>=b; (3.l6)

dabei gilt:

x‚:k1‚ x2:I<2, ...,x,,,=k,,,.

Ist nun ein k,- gleich null, z.B. k, = 0, dann folgt aus (3.16)

kga“) + + km am) ~ b : 0.

Die Vektoren a“), ..., a0"), b sind also linear abhängig. Das Ergebnis steht aber im
Widerspruch zur Nichtentartung.

3.1.2. Recheublatt zur Simplexmethode

Zur Aufstellung eines Rechenblattes wird von der Normalform

2F: Z: c1 x1 +c2x2 ‘l" “'+C'n-xn +cn+lxn+l+ '"+cn+m-xrhm max;

NB: a„x‚+a„x2+--—+a„x„+x„„ =b„
a2lx1+a22X2 "i" "'+ üznxn + 55m2 = Z725 (337)

am1xl+am2x2+ "'+amnxn +xn+m = bma

x,;0, j=1,...,n+m, b.;0, i=l,...,m
ausgegangen (vgl. (2.5)). Nach (3.17) Wird das in (3.18) dargestellte Ausgang:-
rechenbIatt (Simp./extableau) 1 aufgestellt.

1 NBV x1 x2 x„ b

BV —l c, c2 -~-yc,, O Q

»"n+1 cm-1 an "12 a1» b1 ‘I1

Xn-2 Cn.2 021 922 a2» b2 ‘I2 (3-18)

xrwm 6117m am} am2 am» bm qm
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Das Simplextableau 1 ist folgendermaßen aufgebaut:

In der ersten Zeile befinden sich die Nichtbasisvariablen (NBV) x„ ...‚ x„. In die
erste Spalte sind die Basisvariablen (BV) x„„, ..., x„+„‚ eingetragen. In der 2. Zeile
und 2. Spalte sind die Koeffizienten der Zielfunktion zu den entsprechenden x, an-
gegeben. Aus Gründen der Zweckmäßigkeit ist in der 2. Zeile der 1. Koeffizient gleich
~1 und der letzte gleich null gesetzt.

Die Mitte des Blattes (d.h. die 3. bis zur (m + 2)-ten Zeile und die 3. bis zur (n + 2)-
ten Spalte) füllen die Koeffizienten der NB von (3.17) aus.

In der vorletzten Spalte sind die rechten Seiten der Nebenbedingungen von (3.17)
notiert. Schließlich sind noch eine unbesetzte G-Zeile zum Eintragen der Form-
koeffizienten bzw. der Basiszahl und eine Q-Spalte zur Bestimmung der nach (3.15)
zu bildenden Quotienten q, angeführt. Jede Simplexiteration kann durch die Auf-
stellung eines weiteren Rechenblattes ganz schematisch durchgeführt werden und
besteht in den folgenden Umrechnungsschritten. Bevor diese Schritte beginnen, wer-

den die a‚»‚-, b‚-‚ c, in das 1. Tableau eingetragen.

1. Schritt:
Zuerst werden die in der G-Zeile einzutragenden Formkoeffizienten g„ bzw. die

Basiszahl c nach folgenden Formeln berechnet: '

m

H}: = ZCn-i0zk — Ck, (k :15-"9 V‘)
ist

ill

C = ECn1i bi-
i:l

Diese Formeln entstehen, wenn in der Ausgangszielfunktion die NBV mit Hilfe der
Nebenbedingungen eliminiert werden. Es werden also die Produktsummen der I.
mit den restlichen Spalten gebildet und die Ergebnisse in der G-Zeile eingetragen.
Mit diesem einfachen Vorgehen ist das oben vorzeitig erwähnte Eintragen der „—l“
und der „O“ in die 2. Zeile von (3.18) bereits gerechtfertigt. Anschließend ist zu ent-
scheiden, ob alle Formkoeffizienten nicht negativ sind:

min {gt} = g: ä 0?
igkgn

Ist g: 2 0, so folgt, daß die dem Rechenblatt entsprechende Lösung optimal ist.
Sie wird aus dem Tableau abgelesen, indem alle NBV gleich null gesetzt werden. Die
Werte der BV sind gleich den entsprechenden in der b—Spalte. Ist g; < 0, so wird:
die Spalte mit dem g; als Eingangsspalte markiert. (Die Spaltenelemente können
z.B. unterstrichen werden.) Diese Spalte wird im folgenden als Eingangsspalte be-
zeichnet, weil nämlich die NBV x; im nächsten Rechenblatt als BV auftritt.

2. Schritt:
Nach der Markierung der Eingangsspalte wird das Minimum (3.15) berechnet,

indem man die Zahlen q, durch Division der Elemente der b-Spalte durch die Ele-
mente der Eingangsspalte bildet und das Minimum aufsucht. Dabei ist zu beachten,
daß diese Quotienten nur für positive Elemente der Eingangsspalte zu bilden sind.
Diese Quotienten werden in die Q-Spalte eingetragen. Die Positionen der Q-Spalte,
für die kein Quotient existiert, bleiben unbesetzt. Falls alle Werte der Eingangsspalte
nichtpositiv sind, kann das Verfahren abgebrochen werden, da nach Fall 2 (S.43)
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das LOP keine optimale Lösung besitzt. Die Zeile, die dem kleinsten Element der
Q-Spalte entspricht, wird im folgenden als Ausgangszeile bezeichnet und entspre-
chend markiert (z.B. können die Zeilenelemente unterstrichen werden). Die dieser
Zeile entsprechende BV erscheint im nächsten Blatt als NBV.

Es wird also berechnet:

b- ..

q, =—' fur aie > 0;
die

für a,»e g 0 existiert kein q, (i = 1, ..., m),

min {qt} = qk.
lgigm
„i, > o

In den weiteren Schritten werden die Zahlenwerte des neuen Rechenblattes berech-

net, die entsprechend den Ausgangswerten mit Z1,-,-, b,-, E,-, g, bezeichnet werden.

3. Schritt:
Die auszutauschenden Variablen und die dazugehörigen Zielfunktionskoeffizienten

werden ausgewechselt. Alle anderen Bezeichnungen werden in das neue Rechenblatt
übernommen:

BVx„<——> NBVJQ, c„.<——> cl.

4. Schritt:

Ist a“ das Element, welches sich am Kreuzungspunkt der Eingangsspalte und Aus-
. . 1 .

gangszeile befindet (Kreuzelement), so 1st — das entsprechende Element im neuen
Tableau “k!

1

1 <3-19*‘)

_ 1

Kreuzelement: a“ 2 a—; neues Element =

n

Die der Ausgangszeile entsprechenden Elemente sind nach den folgenden Formeln
zu berechnen.

. - — b. .

Kreuzzeile: a“ = %, b,, = 2-‘-, j= 1, ..., n, _] + k;
kl kl 3.l9b

altes Element ( )
neues Element: =-

Bis auf das Vorzeichen lassen sich die der Eingangsspalte entsprechenden Elemente
ebenso berechnen:

Kreuzspalte: 5,1: — E, g, = — i, i=1‚..., m, i =;= k;
am am

(3.19e)
altes Element

neues Element: = —a.

Kreuzelement
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5. Schritt:

Alle restlichen Elemente ergeben sich nach folgenden Formeln:

ä.-‚=a.—‚—%‚ i+k‚ 1+1;
am

l7i=b„-———a;’b”‚ i=l=k;
‘“ (3.l9d)

ET: =g1_Llakj S lilaa“

E = c _ gib}: ‚

“k;
entsprechendes Element entsprechendes Element

. . .1
neues Element 2 altes Element _ der Emgangsspalte der Ausgangszei e

Kreuzelement

Nach diesen 5 Schritten ist das neue Rechenblatt ausgefüllt, aus ihm ist die ZBD
mit der ZBL zu entnehmen. Die Betrachtungen werden mit dem 2. Schritt weiter-
geführt. Dabei ist zu beachten, daß nunmehr die Berechnung der Formkoeffizienten
bzw. der Basiszahl zur Kontrollrechnung benutzt wird, da bereits nach dem 5. Schritt
diese Zahlenwerte vorliegen.

Das Zahlenbeispiel (3.1) wurde bereits ohne Benutzung eines Rechenblattes nach
dreimaliger Durchführung der Simplexiteration gelöst. Bei der Lösung wurden die
ZBD (3.2), (3.6), (3.8) und (3.9) erhalten. Wird zu dieser Berechnung das Rechenblatt
benutzt, so ergeben sich die folgenden, den ZBD entsprechenden Rechenblätter, die
nach Anwendung der oben angegebenen Iterationsschritte der Reihe nach ausein-
ander hervorgehen.

Ausgangstableau:

1 NBV x, x, b 2 NBV x, x, b

i BV —1 3 4 o Q BV —1 3 o 0 Q

x3 0 1 _2_ 80 40 x3 0 l ——Ä Q 20

x, 0 2 1 30 30 xg 4 2 l 30 -/-

x;, 0 2 i 100 100 x5 0 3 -1 70 35

G -3 —_4 0 G j 4 120

Das Kreuzelement ist doppelt unterstrichen. Die Elemente der Ein- und Ausgangs-
reihe sind unterstrichen.

4 SeHTart, Optimierung
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3 NBV x3 x4 b 4 NBV x3 x5 b

BV —l 0 0 O Q BV —1 0 O 0 Q

x, 3 1 -3 20 -/v x, 3 — ä ä 40

x2 4 0 l 30 30 x2 4 § '— ‚E, 20

x5 0 —2 i E 10 x4 0 — § § 10

G 3 -3 180 G g § 200

Die optimale Lösung lautet:

x‚=40‚ x3: 0, x5:

x2=20, x‚= l0, Z2200.
Das Rechenblatt bei künstlichen Variablen wird nun

das Beispiel (2.16) bzw. (2.6) betrachtet):
wie folgt aufgestellt (es wird

ZF: Z= + 2x, — 4x2 + 4x3 — Mxg, — Mx, ;‘ max;

NB: — 2x, — 3x2 + 3x3 — x4 + x5 z ‚

x1 — x2 + x3 + x6 =

6x1—2x2+2x3 +x7=4,
x, g 0, i: 1, ...,7.

Das Ausgangstableau lautet:

1 NBV x1 x2 x3 x, b

BV -1 2 —4 4 0 0 Q

x5 —M -3 -1 —; I. ä

x5 0 1 -1 O 2 2 (3.20)

x7 —M 6 -2 0 4 2

—2 4 0 0

—4 5 1

In (3.20) ist allerdings jetzt die G-Zeile als Doppelzeile vorgesehen. Nach Ausführung
des 1. Schrittes ergeben sich nämlich Formkoeffizienten der Form

g.—=a.-+b‚--M.
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In der oberen Hälfte der G-Zeile werden die Anteile a,- eingetragen, die unabhängig
von M sind, im unteren Teil analog die Anteile b„ die mit M multipliziert worden
sind. In (3.20) sind diese Zahlenwerte entsprechend eingetragen. Im 1. Schritt ist
weiter zu entscheiden, ob alle Formkocffizienten nichtnegativ sind:

min {gk} : min {a„. + bk - M} g 0.
igksn 12kg:;

Bei der Bestimmung des Minimums ist zunächst das Minimum der unteren Reihe der
G-Zeile zu ermitteln, da die Koeffizienten dieser Zeile für die Größe der Formkoeffi-
zienten ausschlaggebend sind. M sei genügend groß gewählt.

Falls es kleiner als null ausfällt, ist die Spalte, die diesem Minimum entspricht, be-
reits Eingangsspalte. Ist das Minimum gleich null, solsind die entsprechenden a„
in der oberen Reihe der G-Zeile zu minimieren. Es entstehen aus (3.20) die folgenden
Tableaus:

2 NBV x, x2 x5 x, b

BV —l 2 —4 —M 0 o Q

2 1 1 I
X3 4 *7 " i"; T /

5 1 1 5

Xe ° T ° ‘s T T 1

22 2 2 l0 10

Xv "M ‘ä 2"? T T ä

14 4 4 4

"3 ° T *7 F
G

22 5 2 l0
"3 ° ? *7 ‘ä

Im Tableau 2 kann die Spalte, die der NBV x‚-‚ entspricht, gestrichen werden, da die
künstliche Variable nicht mehr in die Basis aufgenommen wird. In den folgenden
Tableaus ist diese Spalte auch nicht mehr berechnet.

Im Tableau 3 kann die Spalte, die der NBV x7 entspricht, ebenfalls gestrichen wer-

den, da die künstliche Variable x, nicht mehr in die Basis aufgenommen wird. Eben-

4*
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falls kann nun die untere Zeile der Doppelzeile G weggelassen werden, da keine
künstliche Variablen mehr in der Basis enthalten sind:

3 NBV x7 x2 x, b

BV —1 4g «4 +0 o Q

x3 4 g —1 —ä g /

x5 o g o i: ä 5

xi 2 ä g ä g 5

E 0 _2_" I?
22 22 22

4 NBV x2 x1

BV ~1 -4 2 0

x3 4 —l 3 2

x5 0 o 2 o

x, 0 0 ll 5

G 0 l0 8

Die optimale Lösung lautet:

x1:0‚ X2:0: x3:29 -754:5: 356:0:

Z = 8 (x5 = x, = 0 künstl. Variable).

* Aufgabe 3.1: Mit der Simplexmethode sind zu lösen: a) Aufgabe 2.4; b) Aufgabe 2.6.

* Aufgabe 3.2: Ein Betrieb exportiert drei Plaststofle P1 , I’; und P3 , die aus Materialien M1 , M2, M3,
M4 hergestellt werden. Der Absatz von l kg P, bzw. P1 bringt 2,3 Deviseneinheiten, der von 1 kg P3
bringt l Deviseneinheit. Der Materialbedarf bei der Produktion und die zur Verfügung stehenden
Materialmengen sind der folgenden Tabelle zu entnehmen:
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M, M2 M3 M4

Materialbedarf für l kg P, 0 3 1 4
Materialbedarf für 1 kg P, 2 2 2 0

Materialbedarf für 1 kg P3 2 2 1 1

Zur Verfügung stehende 120 150 150 100
Mengen (kg)

Mit der Simplexmethode sind die zu produzierenden Mengen von P„ P, und F, so zu bestimmen
dab der Devisengewinn möglichst groß wird.

3.1.3. Nichtlösbarkeit

An den beiden anschließenden Beispielen sollen die zwei möglichen Fälle der Nicht-
lösbarkeit eines LOP betrachtet und erläutert werden.

Beispiel 3. I :

ZF: Z= x, + 2x, % max;
NB: —x, + x, g 1,

x, + x2 g 1,

x1 " 2x2 g 1,

x1: x2 ä 0-

Normalform:

Z = x, + 2x2 — Mxe g max;
—x, + x2 + x3 = 1,

+x,+ x, —x„ +x,=l‚
x, — 2x2 + x5 = 1.

Rechentableaus:

1 NBV x, x, x, b

BV -1 1 2 0 0 Q

Xe 0 "l l 2 L 1

x5 —M 1 i —1 1 1

x5 0 1 -3 0 l /

—l —_ 0 0

G

—l —l +1 —l
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2 NBV x, x3 x, b

BV —l l 0 0 0 Q

x,.,—M3i—loo
x,0—l_203-/-

-3202
G

BV—1~M000Q

x2 2 g

m
it»

!

m
-

I N

l 0 0 0

Abbruch des Verfahrens, da in der Spalte der NBV x, alle Koeffizienten negativ
sind! Der Lösungsbereich und der Wertevorrat der Zielfunktion sind unbeschränkt
(Vgl. Bild 3.1).
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Beispiel 3.2:

ZF: Z=x1+x2.#_.max;
NB: —x1 + x2 g 5,

751+ x2 E 1,

x, + 2x2 g 4,

x1,x2 g 0.

Normalfo_rm:

Z=x1+x2—Mx4=[max;
—x1+x2—x3+x, =5,

x, + x2 + x5 = 1,

x1+ 2x2 + x6 = 4,

x, g 0.

Rechentableaus:

l NBV x1 x, x3 b

BV —1 l I 0 0

BV —1 l 0 O 0
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Abbruch des Verfahrens, zwar sind alle Formkoeffizienten nichtnegativ, aber es ist
noch die künstliche Variable x, mit dem positiven Wert 4 in der entsprechenden zu-
lässigen Basislösung als BV vorhanden. Der Lösungsbereich des Ausgangsproblems
ist damit die leere Menge (vgl. Bild 3.2).

. ‚ „ ‚ l .

—5 "4 —3 -2 -7 L 7 2 a 4\5 x, EM“

3.1.4. Der Entartungsfall

Der Entammgsfall liegt vor, wenn ZBL mit weniger als m von null verschiedenen
BV auftreten. Er tritt immer dann auf, wenn im'Minimum (3.15) mindestens zwei

Quotienten f den kleinsten Wert annehmen. Nach der Ausfuhrung der Transforma-
II

tion entsteht eine ZBL mit weniger als m von null verschiedenen BV. Diese Entartung
bedingt, daß möglicherweise mehrere Transformationen auszuführen sind, bei denen
sich der Wert der Zielfunktion nicht ändert. Es existieren sogar Beispiele, wo

sich von einer Iteration zur anderen einmal der Funktionswert nicht ändert und
zum anderen nach einer Reihe von Iterationen die ursprüngliche Basisdarstellung
wieder entsteht, d. h.‚ es liegt ein Iterationszyklus vor, und damit kann die Simplex-
methode nicht nach endlich vielen Iterationsschritten abbrechen. Die optimale
Lösung kann nicht erhalten werden. Allerdings sind bisher nur wenige theoretisch
konstruierte Beispiele bekannt, die solche Zyklen enthalten. Bei der Berechnung
auf elektronischen Digitalrechnern werden solche Entartungen dadurch vermieden,
daß bei mehreren „Möglichkeiten“ rein „zufällig“ entschieden wird, so daß es un-

wahrscheinlich ist, den gleichen Zyklus mehrfach zu durchlaufen.
Dieser Entartungsfall und seine Beseitigung soll an folgendem Beispiel erläutert

werden:

ZF: Z = x, + x2 g’ max;

NB: x1 + 2x2 g 70,

2x1 ‘i’ x2 g 80> (3421)

xx _ 3x2 g Ü,

x1 g 309

x], x2 2 0.
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In Bild 3.3 ist dieses LOP geometrisch veranschaulicht.

Bild 3.3

Im Bild 3.3 ist festzustellen, daß der Eckpunkt (30,20) des zulässigen Lösungs-
hereiches überbestimmt ist, d. h. durch diesen verlaufen mehr als zwei Geraden, die
durch die Nebenbedingungen (3.21) festgelegt sind.

Die Normalform und das erste und zweite Rechentableau von (3.21) lauten:
ZF: Z=x,+x‚%max;
NB: x, + 2x2 + x3 = 70,

2x, + x2 + x, = 80, (3.22)
x, —— 3x2 + X5 = 0,
x, + x5 = 30,

x„ ..., x6 g 0.

l NBV x, x2 b 2 NBV x5 x, b

BV -1 1 1 0 Q BV —1 o 1 0 Q

O 2 70 70
x3 i x3 o —1 5 7o Q
x, 0 2 1 80 40 _

_ 80
x5 0 l _: 2 0 X4 0 -2 1 80 -7-

x6, 0 _1_ K0 30 30 xi l 1 j 0 /,

G —i —1 0 x6 0 _l i 3-0 ¥

G 1 :1 0
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Bereits im ersten Rechenblatt tritt die Entartung des LOP hervor, denn die BV xölist
gleich null.
Nur drei von vier BV sind von Null verschieden.
x1 wird mit x5 ausgetauscht, dabei ändert sich die Basiszahl Null nicht (s. zweites
Rechentableau). Der Funktionswert hat sich nicht vergrößert.

3 NBV x5 x6 b

BV -1 0 0 0 Q

x3 o ä —§ 20 3o

x, o ä _ g Q 30
= — (3.22 a)

x1 1 g 1 30 -/-

1 l
x2 1 —— 7 T 10 -/-

G 1 4 40 Das Minimum in der Q-Spalte ist
_ T ? nicht eindeutig bestimmt. BV x,

_ wird aus der Basis eliminiert.

4 NBV x4 x5 b 5 NBV x, x3 b

BV —1 0 0 0 Q BV -1 0 0 0 Q

x3 0 —2 3 0 0 x5 O —§ ä 0

x5 0 3 —7 30 -/- x5 0 —§ ä 30

x, 1 0 1 30 30 x, 1 ä —}, 30

xn 1 1 -2 20 -/- x2 1 —§ f: 20

G 1 -1 50 G ä ä 50

BV x3: 0, weil in 3 keine eindeutige Der Funktionswert hat sich nicht
Entscheidung möglich ist. vergrößert.

Die optimale Lösung lautet:
x1:30, x4: O,

x2:20, x5:3O‚
xx: 0, x(;= 0, Z=50
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Diese Entartung wird durch eine Abwandlung des Problems (3.22) behoben. Es
werden alle BV xi (BV der Normalform) durch x, — e‘ ersetzt (a‘ > 0):

ZF: Z=x1+x2%max;
NB: x, + 2x2 + x3 = 70 + a3,

2x. + x2 + x4 = 80 + e‘, (3.23)

x, — 3x2 - 4.- x5 = 0 + £5,

x1 + x6 = 30 + e“.

xi 2 0.

Die Koeffizienten der e‘ sind gleich denen der x,- der linken Seiten von (3.23). Zahlen-
mäßig unterscheidet sich das LOP (3.22) nicht wesentlich vom Ausgangsproblem,
wenn a hinreichend klein gewählt wird. Diese Abwandlung verhindert die Entartung.
Dabei wird angenommen, daß der Simplexalgorithmus auf das Ausgangssystem
(3.23) angewandt wird. Die Rechenblätter nehmen jetzt die folgende Gestalt an:

l NBV x, x2 b 53 s‘ a5 s“

BV 1 1 1 0 0 O 0 0

x3 0 1 2 70 1 0 0 0

x4 0 2 1 80 0 I 0 0

x5 0 _1_ -3 0 0 O 1 0

x6 0 1 0 30 0 0 0 1

G — 1 — 1 0 O 0 0 0

2 NBV x5 x2 b e‘ s4 6° e”

BV — l 0 1 O 0 0 0 0

x3 0 — l 5 70 1 0 — 1 0

x4 0 -2 7 80 0 1 -2 0

x, 1 1 — 3 O O 0 1 0

x5 0 — 1 _3 30 0 0 — 1 1

G I -4 0 0 0 0 0
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b s3 e‘ £5 s‘3 NBV x5 x5

(3.24)
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An den einzelnen Rechenblättern ist nun zu erkennen, daß die Koeffizienten der
ä-Spalten gar nicht extra mitzuführen sind, da sie im wesentlichen im nichterweiterten
Rechenblatt ebenfalls auftreten. Wenn diese Spalten nicht mitgeführt werden, ergibt
sich im Bedarfsfalle die folgende einfache Regel zu ihrer nachträglichen teilweisen
Berechnung: Falls das Minimum der Quotientenspalte bei dem Vorgehen der Simplex-
methode nicht eindeutig bestimmt ist, wird eine Tabelle aufgestellt (vgl. (3.22a) und
(3.25)), in der die BV in der l. Spalte dieser Tabelle aufgeführt werden, für die der
Quotient in der Q-Spalte am kleinsten ist. Zeilenmäßig werden die e‘ nach steigenden
Potenzen geordnet abgetragen. Alle Elemente der Spalten a’ sind bis auf ein Element
gleich null, wo der Index i von a‘ mit dem Index der aufgeführten BV übereinstimmt.
Dieses eine Element ist gleich l und steht dort, wo sich die Zeilen und Spalten mit
gleichem Index kreuzen.

Die Elemente der Spalten s‘, wo der Index i nicht bei den aufgeführten BV auf-
tritt, sind null, falls auch dieser Index i nicht bei den Indizes der NBV auftritt.

Tritt dagegen der Index i bei den Indizes der NBV auf, so werden die entsprechen-
den Elemente aus dem Rechenblatt (im Beispiel Rechenblatt (3.24)) aus der Spalte
zur NBV x, ausgewählt. Ausgewählt werden diejenigen Elemente, die zu den aufge-
führten BV gehören.

Nach (3.22 a) bzw. (3.24) entsteht so die Tabelle:

l a3 s4 s5 a“

x3 1 1 0 g —g (3.25)

x4 - 0 l ä —

Anschließend wird jede Zeile der Tabelle durch das entsprechende Element der Ein-
gangsspalte dividiert. Eingangsspalte ist in diesem Falle die Spalte x5 des Rechen-
blattes (3.24). Aus (3.25) entsteht auf diese Weise (3.26):

l £3 a4 s5 e‘

x3 i5’ 0 1 —% (3-25)

x4 0 1 —7

In der neuen Spalte werden von links nach rechts fortschreitend die Elemente der
einzelnen Spalten verglichen. Sobald die Elemente einer Spalte verschieden sind, wird
in dieser Spalte das kleinste Element aufgesucht. Ist diese Entscheidung nicht ein-
deutig, wird sie unter Zuhilfenahme der nachfolgenden Spalten herbeigeführt. Im
Beispiel ist es in der l. Spalte das 2. Element (vgl. (3.26). Folglich wird im Rechen-
blatt (3.24) die dazugehörende BV (x4) aus der Basis eliminiert. Diese Entscheidung
ist immer eindeutig zu treffen, da anderenfalls die in Frage kommenden Zeilen des
Rechenblattes identisch sein müssen, dann könnten sie aber bis auf eine gestrichen
werden.

Nichtlösbarkeit:

Wird die Simplexmethode mit dieser Zusatzvorschrift bei Nichteindeutigkeit der
Auswahl der Ausgangszeile angewandt, so kann gezeigt werden, daß mit dem Sim-
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plexalgorithmus nach endlich vielen Iterationsschritten die optimale Lösung erhalten
wird. Eine bereits benutzte Basis kann bei der Weiterführung der Iteration nicht
erneut auftreten. Auf den Beweis dieser Sachlage wird nicht eingegangen.

3.1.5. Die revidierte Simplexmethode

Jeder Iterationsschritt nach der Simplexmethode verlangt die vollständige Auf-
stellung einer ZBD. Aber für den weiteren Entscheidungsprozeß werden nur die Form-
koeffizienten, die Koeffizienten der Eingangsspalte und die ki-Werte (rechte Sei-
ten) benutzt.

Das Vorgehen der revidierten Simplexmethode besteht nun darin, nur diese not-
wendigen Informationen direkt aus dem Ausgangssystem mit Hilfe der reziproken
Basismatrix zu berechnen.

Ausgegangen wird von dem LOP (2.l8"):

Z : c1x1+ + c„„,„‚ x„+„‚ max;

am x1 + + av-2 x,, + + a("*'">x,„‚„ = b, (3.27)

X g o,

(520)-

b ; o ist in den folgenden Betrachtungen nicht erforderlich. Wenn wir (3.27) umstel-
len, erhalten wir die Form

a<‘7x1 + + a<">x,. + + a("*"‘>x,„„‚ = b,

—c1x1— "'—cnxn “ "'—'cn+mxn+m+Z=0>
x g 0.

Die Basisdarstellung einer beliebigen Basis

B = [a<»+1>,a<»+m>]

VOI1 (3.28) hat die in (2.19) angegebene Form, wenn ohne Beschränkung der Allgemein-
heit die BV der Reihe nach mit x„„, ...‚ x„„„„ und die NBV der Reihe nach mit
x1, ...‚ x„ bezeichnet werden. Diese Form lautet:

r,1x,+r,2x2 +---+r1,,x,.+x,,,, =k,,
rzlxl +r22x2 + ---+r2,,x,. +x,.,;, =k„
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. (3.29)

rmxl T‘X’>rmgxg + r,,,,,x,, + x,,.,mV= km,

g,x, +g2x2 + ~--+g,.x,, +Z =c.

In Vektordarstellung kann (3.29) folgendermaßen angegeben werden:

i<1>x,+ +1’-<'*>xn +if”>=|?. (3.30)
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Dabei gilt:

‚u‘; ‚h, x13.

;<»'> = ‚ ‚m: j im): ‚

g: rmi Z

Xn+1 k k:
xw) = ‚ k = ‚ k z '

xn+m C km

Aus (3.27) folgt weiter mit Hilfe der Basismatrix B = [a"'“3, ..., a<"*”'>]

amx, + + a(">x,. + BX(B) = b. (3.31)

Wird (3.31) von links mit B“ multipliziert, so entsteht

B"‘a“>x1 + + B“a("lx„ + x”) = B“b. (3.32)

Wird die Matrix
„(mm a(n+2) „(mm 0 B 0

= = T3

T
‘crwl ”cn+2 _cn¢m l “CB ' l

gesetzt, wobei mit e}; der Vektor [c„+, , ...‚ c„„„] bezeichnet wird, so gilt:

B“ 0

B“ = ; ;

e; B4 B l

denn es folgt:

E O

1-345:
0 1

B“ existiert also genau dann, wenn B“ existiert. Schließlich folgt aus (3.28)

au) am __ b
xl+ ...+ x"+Bx(B)_—_ .

vc, —c 07|

Aus dieser Gleichung entsteht (nach Multiplikation mit B“)

E-I am x, + + 13-! aw x„ + zu» = E-1?», (3.33)

wenn

_ . am - b
a“) = und b = gesetzt werden.

—c‚ O
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Ein Vergleich der beiden Formeln (3.30) und (3.33) liefert:

r<-'>=1’;-1i<-'>‚ i=l‚...‚n,
bzw.

rt-‘) = 3-130‘),

g, = e; 13'121“) w a» = {e}, B“, 1] i“? (3.34)

Für die BV und Basiszahl folgt (NBV: x, = = x„ = 0):

EU” = fi-I B = E
bzw.

x<B> = B‘1b : k,

c = Z(xB) = e; B“ b. (3.35)

Nach den Formeln (3.34) und (3.35) sind damit alle Informationen, die zu einer Sim-
plexiteration erforderlich sind, aus der reziproken Basismatrix zu berechnen.

Damit ist der Iterationsalgorithmus der revidierten Simplexmethode entsprechend
dem Vorgehen des Simplexalgorithmus folgendermaßen aufzustellen:

Es wird angenommen, daß die k—te Iteration bereits durchgeführt ist und die rezi-
proke Basismatrix B)?‘ vorliegt.

Nach der Formel (3.34) werden die Formkoeffizienten g,- (j: l, ..., n) berechnet.
Es wird der kleinste bestimmt:

g„= min {g,-}. (3.36)
léjén

Ist a nicht eindeutig bestimmt, so kann der kleinste dieser Indizes genommen werden.

Anschließend wird H") = B" a“) berechnet. Danach wird ganz wie bei der Sim-
plexmethode die BV bestimmt, die aus der Basis zu entfernen ist, indem das folgende
Minimum berechnet wird:

o g A g min = "l = Aka (3.37)
1552m ria 71a
r,v,,>0

(vgl. (3.15)).

Ist wiederum der Index I der aus der Basis zu entfernenden Basisvariablen nicht
eindeutig bestimmt, so wird der kleinste dieser Indizes gewählt.

Nunmehr ist die reziproke Matrix Bf}; zu berechnen, die der neuen Basis

Bk.” = [a"‘“>, ..., a“), ..., a("*'">]
l, ..., I, ..., m

entspricht. Der Vektor a<"*‘) ist gegen a“? auszutauschen. Nach (3.34) gilt:

l 2 I m m+ 1

1 0 rm o 0

13,,-IE“: ‘ i ‘ ’ ‘ = R. (3.38)

o
o

O
9

gQ
§‘

!.
a

O
»
:

-
o
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Die Matrix E111 entsteht durch linksseitige Multiplikation der Matrix

1o..._"l_“...0o 1

"zu

o1..._ri...oo 2
rla

P: o o 1 0 0 I (3.39)E

00-..—5'"—“.--.10 m
rla

0 0--.—fi-~01 m+1
__ 71a _

mit der reziproken Matrix if‘. Denn es gilt R — P = E, d.h. P = R“. Nach (3.38)
ist aber

R‘! - E? = figii,
also

13;}. = Pig’. (3.40)

Es ergeben sich daher aus (3.40) die folgenden Transformationsforrneln, wenn die

Elemente der Matrix 1-3;‘ mit ßi, und die Elemente der Matrix fig}, mit ‚B; bezeich-
net werden:

.511‘fli‘,-=~, j:1,...,m+1;
rla

(3.40a)
ri . .

fi§}=;3,,v—fl,]--#, 14:], z=1,...,m+1.

Da
i(Bk+-I): §l;11g= P§k—1§= Pits»

gilt, folgt entsprechend

kW24,
rla

‚g ria .4, .kt =k;—kl-If, 1+], t=1,...,m,
la

c*=c—k;«f1",
a

_ k* _ _ k ‚ 4

wenn mit k* = [ * ] der transformierte Vektor von k = [ j bezeichnet wird.
c c

5 Seilfart, Optimierung
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Das sind aber bis auf die Bezeichnung die gleichen Transformationsformeln wie
bei der Simplexmethode (vgl. (3.17)).

Diese Iteration ist solange zu wiederholen, bis alle gm ä 0 sind.

3.1.6. Rechenblatt zur revidierten Simplexmethode

Kern des Rechenblattes der revidierten SM ist die reziproke Matrix

B“ o
Ü“ = ~

c§B"‘ g l

Weiterhin sind die Vektoren E, H“) und die Indizes der BV einzutragen. Es wird des-
halb zur Aufstellung eines Rechenblattes wieder von der Normalform ausgegangen
(vgl. (2.5)).

ZF: Z= C1x1+ 62x2 + + c‚.x„ + cm xm + + cw. xm. % max;

NB: a1,x,+ a12x2+ ~~+a1,,x,. +x,.+, =b1,

4121551 ‘l’ (122952 ‘i’ ‘l’ an xn ‘i’ xnmz = I72, (3-41)

am1x1+am2x2+ --~+am..x.. +x,.4m =bm9
x,-:0, j=1,...,n+m; b,-;0,i=I,...,m.

Nach (3.41) wird das in (3.42) dargestellte Ausgangsrechenblatt aufgestellt. Dieses
Rechenblatt ist folgendermaßen aufgebaut: In der 1. Spalte sind die Indizes der 13V

eingetragen. Die anschließenden m+ l Spalten bilden die reziproke Matrix B“
von (3.41):

1 BVJ B“ k a Q

n + 1 1 0 0 0 bl r„ ql

I1 + 2 0 l 0 0 b2 72a qz

. . . . . . . . (3.42)

n + m 0 0 1 0 bm rma qm

cnAl cm? cn- m 1 C ga

In die letzte Spalte des stark umrandeten Teiles ist der Vektor E eingetragen. In den
folgenden beiden Spalten werden die noch im Laufe der Iteration zu berechnenden
Komponenten H“) und die nach (3.37) zu bildenden Quotienten eingetragen.

Jede Iteration ist durch die Aufstellung eines weiteren Rechenblattes ganz schema-
tisch durchzuführen und besteht in den folgenden Schritten:

I. Schritt.’
Nachdem die Daten von (3.41) in der l. Spalte und in dem stark umrandeten Teil

von (3.42) eingetragen sind, werden ausgehend von der Koeffizientenmatrix (3.41)
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sämtliche Formkoeffizienten nach (3.34) berechnet. Nach (3.35) gilt speziell

c = e; - B“ - b = c„+‚- - b,-. Der kleinste Formkoeffizient g„ und der zugehörige
.=1

Spaltenindex a werden in die ,,a“—Spalte eingetragen. Anschließend wird r“) = B“ am
berechnet und in der a-Spalte ergänzend vermerkt. Die a—Spalte stellt bei der noch
auszuführenden Simplextransformation die Eingangsspalte dar.

2. Schritt:
Zunächst wird das Minimum (3.37) berechnet, indem die q. (Minimierungsglieder)

durch Division der Elemente der k-Spalte durch die Elemente der a-Spalte gebildet
werden. Dabei ist zu beachten, daß die Quotienten nur für positive Elemente der
a-Spalte zu bilden sind. Diese Quotienten werden in die Q-Spalte eingetragen. Die
Elemente der Q-Spalte, für die kein Quotient existiert, bleiben unbesetzt. Falls alle
Werte der Eingangsspalte nicht positiv sind, kann das Verfahren abgebrochen wer-
den, da nach (3.13) das LOP keine optimale Lösung besitzt. Die Zeile, die dem klein-
sten Element der Q-Spalte entspricht, wird im folgenden als Ausgangszeile bezeichnet
und entsprechend markiert. (Diese Zeilenelemente können z.B. wieder unterstrichen
werden.)

3. Schritt:
Nun kann das Ausgangsrechenblatt (3.42) nach einer vollständigen Simplextrans-

formation gemäß (3.40a) neu erstellt werden, und ein Iterationsschritt nach der
revidierten SM ist ausgeführt. Das gesamte Verfahren ist anhand der beiden folgen-
den Beispiele durchgerechnet.

Beispiel 3.3 (vgl. (2.21)):
Z = 3x, + 4x2 % max;

x1+2x2+x3 =80,
x2 + x4 2 30,

2x1+ x2 +x5= 100, x1,...,x5;0.
Dieses Beispiel ist bereits in der Normalform gegeben. Die Koeffizientenmatrix
nach (3.28) bzw. (3.33) lautetz

1 2 1 0 0

O 1 0 1 0
[§<1)’ am), 543), au), 5(5)] = 2 1 0 0 1

—3 —4 O 0 O

Das 1. Rechenblatt wird ausgefüllt:

1 BVJ E4 k 2 Q

5 0 0 1 0 100 1 100
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Das l. Rechenblatt wird mit der Simplextransformation in das 2. Rechenblatt trans-
formiert Das Kreuzelement ist in der vorletzten Spalte durch Fettdruck markiert
und außerdem unterstrichen‘):

2 1

3 1 -2 o 2o 1 20

2 1 o 3o o /

5 -1 1 0 70 2 35

o 4 0 1 120 -3

3 4

1 1 -2 0 0 2o -2 ‚

2 0 1 0 o 30 1 3o

5 -2 3 1 0 30 g 1o

3 -2 0 1 180 —2

4

1 -1 g o 4o

2 3 —g o 2o

4 —_-; 1 g o 1o

g0g12o0>o

Das Verfahren bricht mit dem 4. Rechenblatt ab, da der kleinste Formkoeffizient > 0
ist. Die optimale Lösung lautet:

x1=40,x._,=20,x3=0,x4=10,x5=O,
Z = 200.

Beispiel 3.4 (vgl. (2.6) bzw. (2.16)):

Z = 2x1 — 4x2 + 4x3 — Mxs — Mx, ; max;

—2x,~3x2+3x3—x4+x5 = ,

x,— x2+ x3 +x3 =2,
6x1—2x.3+2x3 +x7= ,

x1, ...,x7 g 0.

‘) Bei den folgenden Rechenblältern wird der Einfachheit halber die Kopfzeile weggelassen.
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Die Koeffizientenmatrix [§\"), ..., 5(7)] lautet:

—-2 —3 3 —1 l O 0

1 -1 l 0 0 1 0

6 -2 2 0 0 0 I

1 3 Q

5 1 o o 1 g g,

6 1 o 2 1 2

7 o 1 o 4 2 2 (3.43)

0 0 01 0—4

-1 0-1 0 -5 :5

In (3.43) ist allerdings wieder die G-Zeile als Doppelzeile vorgesehen. Im oberen Teil
dieser Zeile sind die Koeffizientenanteile der Zielfunktion vermerkt, die nicht mit M
behaftet auftreten. Im unteren Teil sind dagegen die mit M behafteten Koeffizienten-
anteile eingetragen. Die Doppelzeile wird genau wie die Doppelzeile bei der Simplex-
methode mitgeführt und entsprechend behandelt. Das Kreuzelement ist in (3.43)
wiederum fett gedruckt. Nach Ausführung der Simplextransformation ergibt sich das
2. Tableau:

2 1 Q

l 1 2 ‚

3 7 o o o T 4T

1 5 5
6 —? 1 o o T T 1

2 10 22 10
7 —§ o 1 o ? 3 2.2

4 1 143 o 0 1 1 _§

2 l0 22

3 ° '1 ° '7 “a”



70 3. Lösungsmethoden der linearen Optimierung

Analog folgen:
3 4 Q

3 f: ° ä 0 3%-%~/~
6 —2i2-1-232 o ä i451

1-225 o ä 0 ä L125

o 0 ..... o o o

4

3 o o g 2

o 1 —; o

—l o s

00 218 >0

Sobald alle künstlichen Variablen aus der Basis heraustransformiert sind, enthält die
untere Hälfte der G-Doppelzeile nur noch Nullen. Sie ist bei den nachfolgenden Rech-
nungen wegzulassen.

Die optimale Lösung nach Rechenblatt 4 lautet:

x:z=2‚Xe:0‚X4=5‚
x1 = 0, x2 = 0,

(x5 : 0, x7 = 0, künstl. Variable),

Z = 8.

In (3.20) wurde dasselbe Beispiel mit der Simplexmethode durchgerechnet. Ein Ver-
gleich zeigt, daß bei beiden Lösungsmethoden die gleichen Iterationsschritte durch-
geführt werden. Die notwendigen Informationen werden nur unterschiedlich ermit—
telt.

Da mit der (regulären) Simplexmethode jedes beliebige lineare Optimierungspro-
blem zur Lösung geführt werden kann, erhebt sich die Frage: Warum wurden in der
linearen Optimierung neben der Simplexmethode weitere Lösungsalgorithmen ent-
wickelt? Die Beantwortung dieser Frage wird deutlich, wenn man bei einem solchen
Problem nach rechentechnischen Vorteilen bei der praktischen Realisierung der
Lösung fragt.
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So wurde die revidierte Simplexmethode in erster Linie für die Anwendung auf
elektronischen Rechenautomaten entwickelt. Rechentechnische Vorteile der revidier-
ten Simplexmethode sind:

1. Es sind weniger Daten zu berechnen und zu speichern. Hierdurch können größere
Probleme auf Elektronenrechnern bewältigt werden. Jede Iteration verlangt bei der
Simplexmethode (m + 1) - (n + 1) Eintragungen. Bei der revidierten SM reduziert
sich diese Anzahl auf (m + 1)2. Ist bei einem Problem die Anzahl der Variablen gegen-
über der Zeilenanzahl groß, so erfolgt eine beachtliche Einsparung.

2. Bei vielen LOP treten in der ursprünglichen Koeffizientenmatrix sehr viele Nul-
len auf. Oft sind es bis zu 90% der Koeffizienten und mehr. Da bei der revidierten SM
immer von dieser Ausgangsmatrix ausgegangen wird, reduziert sich die Anzahl der
auszuführenden Multiplikationen ganz erheblich. Da man bei den einzelnen Rechen-
schritten immer wieder auf die Ausgangswerte in der Problemstellung zurückgreift,
wird das unkontrollierte Anwachsen von Rundungsfehlern auf ein Minimum her-
abgedruckt.

3. Es existiert bei der revidierten SM eine sehr einfache Methode, die bei Entartung
einen möglichen Zyklus verhindert.

4. Schließlich sind bei der revidierten Simplexmethode die Kontrollmöglichkeiten
besser, die durch Multiplikation der Koeffizientenmatrix mit ihrer Inversen zur Ein-
heitsmatrix sehr einfach gegeben sind.

3.2. Duale Optimierungsprobleme

3.2.1. Duale Probleme

Zu jedem linearen Optimierungsproblem kann ein duales lineares Optimierungs-
problem angegeben werden.

Es sei folgendes OP gegeben:

ZF: Z=c1x1 +c2x2 + ---+c,,x,. émax;
NB: a11x1+a,2x.2 + -~+a1,,x,,§b,,

021751 ‘l’ 5122352 + ‘l’ aznxn g b2» (3-44)

amxl + amzxz + + am..x.. § bm:

xi g 0, i= 1, ...,n,

oder in Matrizenschreibweise

ZF: Z(x) = cTx % max;

NB: Ax g b, (3.44’)

x g o.



72 3. Lösungsmethoden der linearen Optimierung

Aus den Parametern des LOP (3.44), die durch c, h und A gegeben sind, kann das fol-
gende LOP aufgestellt werden. Zunächst in Matrizenschreibweise:

ZF: W(y)=bTy%min; .

NB: ATy g c, (3.45’)

y g o.

Wenn die Komponenten des veränderlichen Vektorsy von (3.45’) mit y„„, ..., y„+‚„
bezeichnet werden, so lautet (3.45’) ausführlich geschrieben folgendermaßen:

ZF: W: b1 yr-~1 + b2 yfl-rz + + bmymm min;

NB: a11J’n+1+fl21,Vnv.2+ "'+am1yn+m; C1.

‘112}’n+1 +a22.Vn.2 + +am2yn+m ä '32: (3-45)

a1nyn+1 + a2nyn+2 + + amnJ/„m ä Cm

y“, g 0, j= 1, 2, ..., m.

Die zunächst umständlich erscheinende Bezeichnung der y-Komponenten, deren
Numerierung nicht mit dem Index 1, sondern mit (n + 1) beginnt, ist für spätere
Festlegungen zweckmäßig. -

Die beiden LOP (3.44) und (3.45) bzw. (3.44’) und (3.45’) werden als zueinander
dual bezeichnet. Wird ein Problem als primales OP benannt (Ausgangsproblem), so

ist das andere das dazugehörende duale OP. Es kann sowohl das eine als auch das
andere als primales OP angesehen werden.

Als Beispiel wird folgendes LOP betrachtet.

Primales OP:

ZF: Z = 2x, + 5x2 g max;

NB: Ix, + 0x2 g 4,

0x1 + 1x2 g 3, (3.46)

1x1 + 2x2 g 8,

x, g 0; x2 g 0.

Das duale Problem von (3.46) lautet:

Duales OP:

ZF: W=4,Va+3y4+ 8y5;7min;

NB: lyg + 0y4 + lys ä 2, - (3.47)

073 +1351 + 2,V5 2 5a

ya: y4: ‚V5 ä 0-

Jedes beliebige LOP, bei dem der eine Teil der Nebenbedingungen aus Gleichungen,
der andere Teil aus Ungleichungen besteht (in beiden Richtungen) und bei dem einige
Variable nicht vorzeichenbeschränkt sind, kann immer auf ein Problem der Form
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(3.44) zurückgeführt werden (vgl. Umformungsschritte zur Herstellung der Normal-
form 2.2.). Damit kann unmittelbar nach (3.45) das duale Problem erstellt werden.

Bei derartigen gemischten LOP ergeben sich bei der eben erwähnten Zurückfüh-
rung folgende Zuordnungsregeln.

Primales Problem I Duales Problem

(Maximierungsproblem) (Minimicrungsproblem)

Nebenbedingungen Variable

i-te NB: Ungleichung g O —>y„+‚- g 0,

Z 0 —’yn+i .5. 0,

i-te NB: Gleichung —> y„+‚- beliebig.

Variable Nebenbedingungen

x,- g 0 —> j-te NB: Ungleichung g O,

x; g 0 —> j-te NB: Ungleichung g 0,

x,- beliebig —> j-te NB: Gleichung.

An dem Beispiel (3.48) werden diese Zuordnungen erläutert (vgl. (2.6)-(2.10)):

ZF: Z, = 2x, + 4x2 ä mm

~ 2x1 — 3x2 g l,
x2 — x2 g 2, (3.48)

— 6x2 + 2x2 = -4,
x2 g 0, x2 beliebig.

Die Zurückführung auf die Form (3.44) wird erreicht, indem x2 g x2 — x2 mit x2,
x2 g 0 substituiert, die 1. NB mit -1 multipliziert, die 3. NB durch das äquivalente
Paar von Ungleichungen '

—6x, + 2x2 g —4‚

—6x1 + 2x2 g —4

A

ersetzt und durch Vorzeichenwechsel in der ZF ein Maximierungsproblem erzeugt
wird. Es entsteht das folgende äquivalente primale Problem zu (3.48):

Primales OP:

Z _= —2x, —— 4x2 + 4x2 g max;

2x, + 322- 3x2 g —l‚

X1 — 32 + 9762 S 2, (349)
—6x1 + 2x2 — 2x2 g —4‚

+6x, — 2x2 + 2x2 g 4,

X1. E2» x2 ä 0-
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Das entsprechende duale OP lautet nach (3.45):

Duales OP:

W: —1y,' + 2y5 — 4y,-,' + 4y,’ g min;

2h’ ‘i’ lya ‘ Gysl ‘i’ 6Y7, ä *2,
3y4’ — lys + Zys’ — 2y7' 2 —4‚ (3-50)

‘3y4, ‘l’ 17s — 2%’ ‘i’ 2h’ g +4:
y4’,ys, ye’ ‚ y/ ä 0.

Da in den Nebenbedingungen von (3.50) die Koeffizienten von y‚-‚’ und y,’ sich nur

um das Vorzeichen unterscheiden, so kann ye’ ~ y7’ = ye gesetzt werden, wobei yr,
nicht vorzeichenbeschränkt ist. Weiterhin können die beiden letzten Nebenbedin-
gungen von (3.50) durch die Gleichung

3}’! ‘ lye» + Zys = -4

ersetzt werden. Außerdem kann man y, = — y,’ setzen, und (3.50) kann in folgender
Form geschrieben werden:

W=' 1y4+ 2y. — 4y6 ‘e min;

—2J’4 + 1}’: ‘ 6}"e 3 ‘2:
‘3.V4 " lys ‘i’ Zyo = -4;

y, g 0, ya 2 0, y; beliebig.

(3.51)

Der Vergleich von (3.48) und (3.51) bestätigt die oben angegebenen Zuordnungs-
regeln.

Sind insbesondere die Nebenbedingungen des primalen Problems Gleichungen, so

sind alle Variable des dualen Problems nicht vorzeichenbeschränkt. Hat also das pri-
male Problem die Form

ZF: Z = cTx =[ max;

NB: Ax = h, (3.52)

x 2 o,

so lautet das duale Problem

ZF: W=bTy—f_min;

NB: ATy g c, (3.53)

(y ist nicht vorzeichenbeschränkt).

Mit den folgenden Bezeichnungen werden die Ungleichungen von (3.44) und (3.45)
in Gleichungen umgeformt: Die Schlupfvariablen von (3.44) werden der Reihe nach
mit x,,+1,...,x,,+,,, g O und die Schlupfvariablen von (3.45) der Reihe nach mit
yl , ..., y„ bezeichnet. Es entstehen die beiden Probleme (3.54) und (3.55). (3.54) wird
als erweitertes primales und (3.55) als erweitertes duales Problem bezeichnet.
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Erweitertes primales OP (bzw. erweitertes duales OP):

ZF: Z=c1x1+c2x2+---+c,,x,. .%max;

NB: a11x1+a12x2+~~— +a,,.x,.+x,.,,1 =b1,

an x1 + an x1 + + a2,, x„ + x,,+2 = b2, (3.54)

am1x1 + amzxz + + amnxn + Xn+m = bun

x,, ..., x,.+,,, g 0.

Oder in Matrizenschreibweise:

ZF: Z=E1T%max;

NB: Xi = b, (3.54')

0

wenn die Bezeichnungen Ä = [A‚ E], ET = [ch ..., c,,, 0, ..., O], i1‘ = [x„ ...‚ x,„ ...‚

x„z„‚] gelten.

Erweitertes duales OP (bzw. erweitertes primales OP):

ZF3 W: bl .Vnv1 + b2 ;v»-2 + ‘l’ bill yn+m min;

NB: _al1yn+l+a21yn+2+ ‘"+am1yu+m_yl=cl:
012 J’n+1 + 922 yn+2 + + “m2 yn+m — ‚V2 = C2, (3-55)

a1nyn+1+ a2nyn+2 + + amnym-m _ yn = cm

Y1: ...,y..+m 2 0-

Das Problem (3.55) ist wiederum zum Problem (3.54) dual, welches die folgende Rech-
nung sofort bestätigt:

Das duale Problem von (3.54) lautet nach (3.52) und (3.53)

W = bT y + min;

ÄTy g E. (3.56)

Hieraus folgt aber unmittelbar

W = bTy ;_ min;

ATy ä c,

y 2 o,

also das Problem (3.45) bzw. (3.55).
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3.2.2. Das Dualitätsprinzip

Zwischen dem primalen und dem dualen Problem besteht eine ganze Reihe von

inneren Beziehungen. Einige davon werden im folgenden hergeleitet.

Satz 3.2 (Dualitätssatz): Existiert eine beliebige Lösung x des primalen und eine
beliebige Lösung y des dualen Problems, dann gilt stets

Z(x) S W(y)‚

und beide Probleme besitzen eine optimale Lösung. Sind x0 bzw. yo optimale Lösungen
des primalen bzw. dualen Problems, so gilt

Z(Xo) : WW0)

und umgekehrt.

Es ist also jeder beliebige Funktionswert des primalen nicht größer als ein belie-
biger Funktionswert des dualen Problems. Darüber hinaus ist der optimale Funktions-
wert des primalen gleich dem optimalen des dualen Problems.

Beweis: Ausgegangen wird von der Existenz zweier beliebiger Lösungen x und y.
Laut Definition gilt zunächst

Z(Xo) ä Z(X)‚i

W(yo) S W(Y)‚

wenn Vxo und yo optimale Lösungen sind (deren Existenz wir im folgenden aber
noch zu beweisen haben). Nach (3.45) gilt cT g yTA. Wird (3.44’) benutzt, so folgt:

Z(X) = CTX S (yTA) X = YT(AX) S yTb : bTy = WM.

Also gilt immer

Z(X) S W(Y)-

Aus dieser Ungleichung folgt, daß die Funktion des primalen Problems nach oben
beschränkt ist, und damit existiert eine optimale Lösung des primalen Problems. (Das
wurde bereits im Zusammenhang mit der Simplexmethode in Abschnitt 3.1. gezeigt.)
Nun ist weiter zu zeigen, daß aus der Existenz x0 auch die Existenz von yo folgt und
die Gleichheit

2(30) = WW0)

besteht. Ausgegangen wird von dem erweiterten primalen Problem (3.54’). Wenn x0
eine optimale Lösung von (3.40 ist, so kann die optimale Lösung i0 von (3.54’)
unmittelbar angegeben werden, indem die Werte der Schlupfvariablen hinzugefügt
werden. Werden mit xo* die BV und mit B die Basismatrix der optimalen Lösung i0
bezeichnet, so gilt:

KEG = b = Bxo*, ETEO = c*Txo*;
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c* ist der zu x0* gehörende Vektor der Zielfunktionskoeffizienten. Nach dem Sim-
plexkriterium gilt:

c* TB‘1K — er g o (vgl.(3.34))
oder -

c*TB“K g ET.

Aus der letzten Ungleichung folgt nach (3.56), daß

„wg-I = y0T

zunächst eine zulässige Lösung des dualen Problems (3.45’) ist. Weiter gilt für diese
Lösung aber

W= ygTb = c*TB“b = c*Txo* = Z.

Damit ist gezeigt, daß yo existiert und Optimallösung des dualen Problems (3.45) ist
und die Funktionswerte gleich sind. Schließlich wird noch gezeigt, daß aus der Gleich-
heit der Funktionswerte (cTxo = bTyn) zweier Lösungen x0 und yo ihre Optimalität
folgt.

Aus der Gültigkeit cTx g bTy für zwei beliebige Lösungen folgt:

1- bTYo = cTxo E 13T)’, d.h., yo ist optimale Lösung von (3.45);

2. cTx g bTyo = CTXQ, d.h., xo ist optimale Lösung von (3.44).

Damit ist Satz 3.2 Vollständig bewiesen. I

Satz 3.3: Ist E, eine optimale Lösung des erweiterten prima/er: OP (3.54’), xo* der
Vektor der Basisvariablen von i0, c* der Vektor mit den Komponenten der entsprechen-
den Koeffizienten der Zielfunktion von Z, die zu xo* gehören, und B" die reziproke
Basismatrix, so ist

yr z c*TB-l

eine optimale Lösung des dualen Problems (3.45).

Der Beweis dieses Satzes wurde bereits bei der Beweisführung des Satzes 3.2'mit
erbracht. Ebenso gilt die analoge Aussage.

Satz 3.3'i Ist 50T = [y1, ..., y,,+,.] eine optimale Lösung des erweiterten dualen Pro-
blems (3.55), yo* der Vektor der Basisvariablen von yo, b* der Vektor mit den Kompo-
nenten der entsprechenden Koejfizienten der Zielfunktion von W, die zu E, gehören,
und B“ die reziproke Basismatrix, so ist

XE : b*TB—1

eine optimale Lösung des primaleti Problems (3.44).

Der Beweis ist ganz analog zum Beweis des Satzes 3.3 zu führen.
Bei dem folgenden Satz 3.4 wird von dem erweiterten primalen und dualen Problem

(3.54) und (3.55) ausgegangen und ohne Beschränkung der Allgemeinheit angenom-
men, daß B [a("“>, ...‚ al"*"’3] die optimale Basis sei.

S.3.3

S.3.3’
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Satz 3.4: Hat ein optimales Rechenblatt des erweiterten primalen Problems (3.54) die
Form (3.57),

NBV x1 x2 x„

BV —1 cl C2 c,, 0

X..+1 0 r„ r, 2 r„, kl
xm 0 r„ r22 r2„ k2 (357)

x"+"' rm1 rm2 "mu lém

G 81 E2 En C

so existiert ein optimales Rechenblatt des erweiterten dualen Problems (3.55), das die zu

(3.57) spiegelsymnzetrische Gestalt (3.58) hat:

NBV ym JIM yn+m

BV -1 —b2 —b2 —b„‚ 0

y. —r„ —r.21 —r„„ g]

yg O —r,2 —r2.2 —r,„2 g2 (3.58)

.1, E; '_°{.;""‚;.l""i}.. i.

G k. kg k,,, —c

Auf den Beweis dieses Satzes wird verzichtet. Der Zusammenhang der zueinander
dualen Rechenblätter (3.57) und (3.58) wird noch einmal durch den Satz 3.5 zusam-

mengefaßt:

Satz 3.5: a) Die Indizes der BV im primalen optimalen Rechenblatt (3.57) sind die
gleichen wie die Indizes der NBV im dual optimalen Ra’ “ t (3.58) und um-

gekehrt.

b) Die Werte der BV der optimalen Lösung von (3.57) sind gleich den Werten in der
G-Zeile im dualen optimalen Rechenblatt (3.58), die zu den NBV mit gleichem Index
gehören und umgekehrt. "

Die durch die Sätze angegebenen Ergebnisse werden an den folgenden zwei Bei-
spielen demonstriert.
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Beispiel 3.5 :

Primales OP

ZF: Z = 18x1 + 9x2 -_;-max;

NB: 2x1 + Ox; g 1,

1x1 + 2x2 g 1, (3.59)

0x1 + 4x2 S 1,
x1, x2 g 0.

Die Normalform bzw. das erweiterte primale Problem lautet:

ZF: Z = 18x1 + 9x2 =_‘ max;

NB: 2x1 + 0x2 + x3 = ‚

1x1 + 2x2 + x1 = 1, (3.59’)

0x1+4x2 +x5=1,
x1, ...‚ x5 g 0.

Nach der Simplexmethode ergeben sich die folgenden drei Rechenblätter:

1 NBV x1 x2

BV —1 18 9 o

x2 0 g 2 l ä

x4 o 1 2 1 1

x5 o g 4 1 ./.

—-18 —9 o

BV-l 09 0

x. 18 19% 1|
x1 0 —13%1
x5 0 2; 1.1

9-9 9
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3 NBV x3 x5

BV _1 O 0 0 (primales optimales Rechenblatt)

x, 18 g 0

x4 0 _ é _ ä 0 (3.60)

x2 9 0 z} i

9 2,25 11,25

Das:erweiterte duale Problem von (3.59) lautet:

ZF5 W: ‚V3 ‘l’ ‚V4 + ya min}

NB: 2y3 +1y, — yl = 18,

2y4 + 4y; - y2 = 9, (3-61)

y}: u-„Vs E 0-

Von (3.61) wird die Normalform (3.62) erstellt.

W= -ys - y; - y; - Mys — My» ? max;

Zys + 1)’; - ‚V1 + ya = 18. (3-62)

2y4+4)’3 ‘J’: +}’7: 9;

yl: ---:y7 ä 0-

Nach der Simplexmethode entstehen die folgenden Rechenblätter:

1 NBV ya Y4 ya ,V1 ‚V2

BV —1 —1 -1 —1 0 0 O

ye —M 2 1 0 —1 0 18 -,3
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2 NBV ya y; ‚V1 J’:

VB -1 —l -1 0 0 0 '

y,,—M21—1018 9

3 NBV J’; ‚V1 yz

BV _1 _1 0 0 0 (duales optimales Rechenblatt)

— — 9
y“ 1 ä é 0 (3.63)
yr’ 4 g o — 3 2,25

0 g. 3 —ll‚25

Der Vergleich der beiden optimalen Rechenblätter (3.60) und (3.63) bestätigt die im
Satz 3.4 bzw. Satz 3.5 angeführten Beziehungen.

Beispiel 3.6:
Primales OP:

ZF: Z=x1+x2+x3+x,%min;
NB: x1 + x4 ; 4,

x1 + x2 2 89

x2 + x3 g 7, (3.64)

x3 + X4 Z 5»

xi 2 0,
i = 1,2, 3, 4.

Duales OP:

ZF: W= 4y5 + 8y‘, + 7y, + Syg % max;

NB: ya ‘l’ ‚Vs S 1,

ye + Y7 E 1: (3.65)

Y7 + ys g 1»

ys + ya S 1,

ya ä 0-

6 Seifian, Optimierung
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Oder das erweiterte duale Problem:

W= 4y5 + 8y6 + 7y7 + Sys T; max;

ya ‘i’ ye ‘i’ yl = 1,

ye + ‚V7 + .72 2 1a (3-65’)

y7 + Y8 + 73 = 1,

ya ‘i’ ys ‘i’ .74 = 1-

Die optimale Lösung von (3.65) kann ohne Rechentableau durch folgende Überlegung
erhalten werden:

Alle optimalen Lösungen müssen die Nebenbedingungen (3.65) wegen der positiven
Koeffizienten in der Zielfunktion mit dem Gleichheitszeichen erfüllen, da anderen-
falls eine Lösung mit größerem Funktionswert angegeben werden kann.

Alle optimalen Lösungen sind folglich in der Linearkombination

l
0

y=lyt+(l—7»)yz mit Oélél, y1= 1

0
und

0 ys

_ 1 _ ys

y2— 0 H ‚V7

1 ya

enthalten. Da W(y1) = ll und W(y,) 2 13 ist, folgt
W(y)= Äll + (l — Ä) 13 g l3 = W(y2),

d.h., y; ist die einzige optimale Lösung von (3.65).
yg ist entartet‚ da nur ye = l und ya = l positive BV sind. Zur Basis gehören damit

die Vektoren

l 0

l 0
0 und l ‚

0 l
die den Variablen ya und ys entsprechen. Zwei weitere Vektoren werden beliebig
ergänzt. Es seien dies die Vektoren, die zu y7 und y4 gehören. Bei der Ergänzung muß
darauf geachtet werden, daß die so gewählten Vektoren linear unabhängig sind. Also
gilt:

Bviysa 7aysay4];

1000
1100

B: o 1 l o

0011
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Es folgt:

1 0 0 0

4 —1 l 0 O

B» = 1—1 1 0

~1 1 -1 1

Nach Satz 3.3’ kann somit unmittelbar eine optimale Lösung des primalen Problems
(3.64) aufgestellt werden:

1 o o o

1 o o
x§=b*TB“=[8,7,5,0] 1_l 1 0 ,

-1 1—1 1

x0=

©
U

II
\>

O
\

Die Überprüfung der Optimalität kann sofort geschehen. x0 erfüllt die NB von (3.64).
Weiterhin ist Z(x0) : l3, d.h., x0 ist optimale Lösung, denn 13 ist von z eine untere
Schranke, weil W(y2) = 13 ist.

3.2.3. Die duale Simplexmethode

Bei den folgenden Betrachtungen wird von dem Satz 3.4, dem erweiterten primalen
Problem (3.54) und dem erweiterten dualen Problem (3.55) der vorhergehenden
beiden Abschnitte ausgegangen. Es entspricht jedem Simplextableau eines LOP
ein duales Rechenblatt, und es ist ganz gleich, ob das duale Problem oder das
primale Problem gelöst wird. Liegt also ein LOP als Ausgangsproblem vor, so kann
das duale Problem aufgestellt und nach der Simplexmethode gelöst werden. Wird
dabei nicht das übliche Simplextableau, sondern das diesem entsprechende duale
Rechenblatt ausschließlich als Berechnungsgrundlage benutzt, so bezeichnet man

diesen Lösungsalgorithmus als duale Simplexmethode. Vor der Angabe der allgemei-
nen Transformationsformeln wird dieser Lösungsalgorithmus an dem folgenden Bei-
spiel eingeführt.

Zu löscn ist das primale Problem

W= ya + ‚V4 + ya % min;

2}'3+ 1h 218,
212 + 4y5 2 9,

(3.66)

}’3,J’4,ys 2 0-
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Das erweiterte duale Problem lautet:
Z = 18x1 + 9x2 ‘=_ max;

2x, + 0x2 + x3 = ,

Ix, + 2x2 + x, = l, (3.67)

0xl+4x.2 +x5=1,
x1, ...‚ x5 0.

Dieses Problem wird mit der Simplexmethode gelöst; es ergeben sich die folgenden
Rechenblätter:

1 NBV x1 x2 1* NBV ya y; y5

BV —1 I8 9 0 Q BV -1 -1 -1 ~1 0

x3 0 2 0 1 g 11 0 -2 -1 0 —18

x, 0 1 2 1 l 3'2 ° ° -2 "4 -9

xo 0 0 4 1 G 1 1 1 o

G —l8 —9 0 Q 5 } ,’

2 NBV x3 x2 2* NBV y, y, y5

BV -1 0 0 0 Q BV —1 0 -1 —l 0

xi 1g ä 0 ä yg —l —§ g 0 +9

x4 0 _ 2 g i yz 0 0 -2 ——4 --9

xo 0 0 4 l i G 5 5 1 *9

G 9 -9 9 i f

3 NBV x3 x, 3* NBV yl y, yz

BV -1 0 0 0 BV —l 0 —l 0 0

x1 18 g 0 5 h _1 _é H 0 9

x, 0 —§ —§ O x

x2 0 i i y, —l 0 +35 —; 2,25

G 9 2,25 11,25 G g o 1 —11,25
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Neben den Rechenblättern 1, 2 und 3 sind die dualen Rechenblätter beigefügt. Der
Übergang von einem solchen dualen Rechenblatt zum folgenden kann nach der du-
alen Simplexmethode wie folgt durchgeführt werden:

Die Auswahl des Kreuzelementes erfolgt anders als bei der Simplexmethode:
a) Das Kreuzelement wird aus der Zeile gewählt, wo sich in der letzten Spalte des

Rechenblattes das kleinste negative Element befindet. (In 1 * ist es in der 2. Zeile — l 8).
Diese Zeile wird wie bei der SM als Ausgangszeile (Kreuzzeile) bezeichnet.

b) Das Kreuzelement muß immer negativ sein.

c) Die Spalte, die das Kreuzelement enthält, wird wie folgt bestimmt: Alle Elemente
der G-Zeile werden durch die Beträge der entsprechenden negativen Elemente der
Ausgangszeile dividiert (für Elemente der Kreuzzeile, die 0 oder positiv sind, werden
keine Quotienten gebildet). Die dabei entstehenden Quotienten werden bei der dualen
Simplexmethode in der Q-Zeile vermerkt, die im Gegensatz zur SM jetzt als letzte
Zeile im Rechenblatt vermerkt ist (in 1* entstehen die Quotienten ä, 1). Die Spalte
mit dem kleinsten Quotienten in der Q-Zeile wird wieder als Eingangsspalte (Kreuz-
spalte) bezeichnet (in 1* ist es die yg-Spalte; das Kreuzelement ist also gleich —2).

Nun kann die Vertauschung der durch das Kreuzelement festgelegten BV mit der
Nichtbasisvariablen und die Berechnung der Elemente des folgenden Rechenblattes
wie bei der Simplexmethode erfolgen, denn die Simplextransformationsregeln sind
in den Spalten und Zeilen symmetrisch. Es entsteht also nach dieser Transformation
das gleiche duale Rechenblatt wie es durch Anwendung der Simplextransformation
auf das primale Rechenblatt mit nachfolgender Umschreibung in das duale entstehen
würde. Am durchgerechneten Beispiel findet man diese Transformationsregeln un-
mittelbar bestätigt.

Nunmehr wird folgendes allgemeine LOP vorgegeben:

ZF: Z=c,x‚+c2x2 + ---+c„x„ =‘_max;

NB: a,,x1+-~+a1,.x,. ;b,,
5721-x1+ ‘i’ aZnxn ä b2:
. . . . . . . . . . . . . . . . . . . . . .. (3.68)

amlxl+ + am”. 2 bma

-X1; 0: 1

c, S 0, 1- " ’n

Vektor b der rechten Seiten von (3.68) unterliegt keiner Vorzeichenbeschränkung.
Durch Einführung der Schlupfvariablen x,,+1,..., x,,+,,, geht (3.68) in das folgende
äquivalente Problem über:

ZF: Z = c,x1 + cgxz + + c„x„ max;

ND: aux; + -~+ a1,,x,, ——x,,,, =b,,
5213i ‘i’ ‘i’ “nxn — X7272 = I727

. . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.69)

amlxl + + amnxn _ xvum = bmy

x1 ä 0s61:0’ j=1,...,n+m.
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Nach (3.69) kann das zulässige Ausgangstableau aufgestellt werden, weil alle Koef-
fizienten der Zielfunktion g 0 sind. '

NBV xi x2 x„

BV -1 cl C2 _c,, 0

-xn—l 0 fall #012 ‘an. ’b1

Xnfz 0 -021 ‘i122 “am ‚ ‘b2 (3,70)

xn+m O Aaml —am2 —amn "bin

G —c1 —c2 —c„ 0

Sind in (3.70) alle b,- g 0 (i= 1,...,m), so würde bereits die optimale Lösung
x1 = = x„ = O, x„„‚- = —b‚- vorliegen. Andernfalls wird unmittelbar die duale Sim<
plexmethode zur Lösung herangezogen.

Es wird

min (—b‚-) = Ab, (3.71)
léiém

berechnet. Durch den Index r wird die Ausgangszeile festgelegt. Anschließend werden
für alle k = 1, ...‚ n mit an; < 0 die Quotienten

= 8k = ‘Ck
lam} firm?

‘I1:

und

11g =‘min {in} (1 ä k S H)

gebildet. Durch den Index e wird die Eingangsspalte festgelegt. Danach folgt eine
Simplextransformation. Dieses Vorgehen wird so lange wiederholt, bis das optimale
Rechenblatt vorliegt.

Bei verschiedenen praktischen LO-Problemen tritt der Fall ein, daß die rechten
Seiten in den Nebenbedingungen variieren. Geht man bei diesen Problemstellungen
zum dualen Problem über, so erscheinen die veränderlichen Koeffizienten in der Ziel-
funktion; ein vorhandenes Rechenblatt kann für die Weiterrechnung benutzt werden,
auch wenn sich die Koeffizienten der Zielfunktion ändern. Bei anderen Problemen
bewirkt unter Umständen der Übergang zum dualen Problem, daß sofort eine erste
zulässige Basislösung mit der entsprechenden zulässigen Basisdarstellung angegeben
werden kann.

Schließlich kann das duale Problem mitunter einfacher gelöst werden, und die
duale Simplexmethode ist vorteilhaft anzuwenden.
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Am anschließenden Beispiel wird die eben dargestellte duale Simplexmethode voll-
ständig zur Lösung benutzt.

ZF: Z : ~5x, — 6x2 g max;

NB: 2x,+ xg- x3 = 6,

2x1 + 4x2 — x, = l2, (3-72)

4x2 — x5 = 4,

x1, , x4-, g O

Die Reehenblätter lauten:

1 NBV x, x2 2 NBV x, x,

BV ~1 ~5 -6 0 BV ——l -5 0 0

v3 0 —2 -1 —6 x3 0 —§ —§ -3

Y4 0 —2 —4 -12 x2 —6 ä ——l 3

»c„ 0 0 -4 —4 x5 0 2 «l 8

5 6 0 2 g -18

Q ä ä Q ä 6

3 NBV x3 x,

BV ——l 0 0 0

x1 —5 —§ g 2

x; —6 ä «ä 2

x, 0 ä- -% 4

G ä g} ~22

Da im Rechenblatt 3 in der G-Zeile und in der letzten Spalte alle Elemente (ausgenom-
men —22) nichtnegativ sind, ist 3 das optimale Rechenblatt, und die optimale Lösung
von (3.72) lautet:

xi: 5 X3:0s
x2=2, x4=0,
x5=4.

Z = —22 ist der optimale Wert der Zielfunktion.
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Aufgabe 3.3: Ein Werk erhält Bleche von 200 cm Breite und 500 cm Länge. Wie viele dieser Bleche
werden zur Herstellung von mindestens

30 Blechen von 110 cm Breite und 500 cm Länge,
40 Blechen von 75 cm Breite und 500 cm Länge,
15 Blechen von 60 cm Breite und 500 cm Länge

gebraucht, damit der Blechabfall minimiert wird? Die Aufgabe ist mit der dualen Simplexmethode
zu lösen! V

3.2.4. Dual zulässige Lösung

Der Unterschied zwischen der SM und der DSM liegt in den verschiedenen An-
fangsbedingungen. Da in den gegebenen Nebenbedingungen in vielen Fällen aus der
Praxis obere und untere Beschränkungen vorliegen, sind die Basiswerte b,- des Glei-
chungssystems positiv oder negativ. Zwar können entsprechend künstliche Variable
eingeführt werden (vgl. Normalform), aber trotzdem ist die DSM der SM vorzuziehen,
da die Voraussetzung für eine dual zulässige Basislösung — einheitliche Vorzeichen der
g, — in der Praxis oft durch die Zielfunktion gegeben ist.

Mit Hilfe einer Leitgleichung läßt sich aber auch der Fall sehr vorteilhaft behandeln,
bei dem in der Ausgangsform eines Problems gemischte Vorzeichen für die Basiswerte
und die Zielfunktion auftreten. Durch Abänderung des Auswahlprinzips für die Leit-
gleichungen kann in einem ersten Schritt eine dual zulässige Basislösung erzeugt wer-
den. Für das Gleichungssystem wird also Vorausgesetzt, daß es eine Leitgleichung
enthält, die in die erste Zeile des Ausgangstableaus geschrieben wird und die folgende
Bedingungen erfüllt: Für die Leitgleichung

k§"1a,kxk=b1 gilt a1k>0, b,>0, k=l,...‚n.

Diese Voraussetzung ist einfacher zu erfüllen als die einer zulässigen bzw. dual zuläs-
sigen Basislösung. Sie fordert eine Gleichung einheitlicher Vorzeichen der Koeffi-
zienten und ist in den meisten Fällen in der Praxis gegeben. Ist sie nicht Vorhanden, so

läßt sie sich durch Umformung des Gleichungssystems erreichen. x„„ wird als künst-
liche Zusatzvariable in die Leitgleichung eingeführt.

Die künstliche Zusatzvariable x„„ dieser Leitgleichung muß im ersten Schritt eli-
miniert werden. Um die auszutauschende Spalte x, festzulegen, wird folgendes Aus-
wahlprinzip gewählt:

2 l

max = g,_.a. (3.73)
15kg:. au»
ok<o

Es wird also im ersten Schritt entgegen dem üblichen Auswahlprinzip der größte
Quotient gesucht, um einheitliche Vorzeichen in der G-Zeile zu erreichen, d.h. eine
dual zulässige Basislösung. Nun kann das Auswahlprinzip der DSM angewendet
werden.

Mit dem Bestehen einer Leitgleichung und dem vorbereitenden Austauschschritt
kann von einer beliebigen Ausgangsmatrix ausgehend ohne größere vorbereitende
Rechnung sofort in der beschriebenen Weise vorgegangen werden.
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Am folgenden Beispiel soll das Vorgehen demonstriert werden. x, wurde als künst-
liche Zusatzvariable bereits hinzugefügt.

ZF: Z=— x1+2x2+4x3 gmax;
2x1 + x2 + x3 + x4 = 7, Leitgleichung

—x,— x2+ x3 +x5 = 1,

3x1—2x2~ x3 +x6=—8,

1 NBV x, x2 x3

BV ~—1 -1 2 4 0

x4. 2 1 1 7

x5 o -1-1 1 1 (3.74)

G 1-2 -4 O

Q 2 4

Austausch der künstlichen BV_ x, nach Auswahlprinzip.

Nach dem Austausch wird die Spalte mit x4 weggelassen.‘

2 NBV x1 x2 3 NBV x, x5

13v —1 —1 2 o DSM BV -1 -1 o o

x3 0 2 1 7 x3 4 ä ä 4

x5 —3 -2 -6 3 l

x5 5 -1 —1 x2 3 7 -7 3

13 1

G 9 2 28 xs 0 7 -3 2

Q 3 1 G 6 1 22

Die optimale Lösung lautet

x2=3, x120,
x3=4‚ x5='0‚ Z=22.
x„=2,
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3.3. Parametrische lineare Optimierung

3.3. 1. Problemstellung

Bei praktischen Problemstellungen der linearen Optimierung ändern sich oft die
rechten Seiten der Nebenbedingungen oder die Koeffizienten der Zielfunktion. So
entstehen Erweiterungen derart, daß entweder die Koeffizienten der Zielfunktion
oder die rechten Seiten der Nebenbedingungen linear von einem oder mehreren Para-
metern abhängen.

Eine Aufgabenstellung mit einer solchen linearen Parameterabhängigkeit wird als
parametrisches lineares Optimierungsproblem bezeichnet. An einem Beispiel einer
parametrischen Optimierungsaufgabe auseinem metallurgischen Betrieb soll die
Abhängigkeit der rechten Seiten der Nebenbedingungen von nur einem Parameter Ä

erläutert werden.

Beispiel 3.7: Der Förderablauf eines Rohstoffbetriebes ist über ein Netz von
Transportwegen zu bewältigen. —

In Bild 3.4 ist dieses Netz vereinfacht dargestellt. Die rechteckigen Felder bedeuten
die Förderbänder, die durch seitlich eingetragene Zahlen numeriert sind. Die Aufgabe-
stellen der Rohstoffe auf die Bandstraße sind durch vertikale bzw. horizontale Pfeile
markiert. Diese Aufgabestellen können direkt von Reichsbahnwagen, von einer
Schlitzbunkeranlage, von einer Tiefbunkeranlage oder von Rohstoffhalden aus be-
schickt werden.

Von den Aufgabestellen gehen ll verschiedene Förderwege aus, die in Bild 3.4 mit
A1, A2, AR, B,, B„, B6, B7, C3, C9, Dm und D“ bezeichnet sind. Durch die eingezeich-

5

V’

/BIV;'L‘/I€I'»

Bild 3.4
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neten Kreise sind die Verzweigungen der Bandstraße angedeutet. Die Bänder 41, 42,
43. 44 und 45 münden in eine Möllerbunkeranlage, die aus 28 Doppelbunkertaschen
besteht.

Mit den Varianten A, , A2 und A3, die über Band 41 führen, sind die Bunkertaschen
1 bis 9 zu beschicken, mit den Varianten B4, B5 , B6 und B7 über Band 42 die Taschen 5

bis 9, mit den Varianten C3 und C9 über Band 43 die Taschen 8 bis 18 und mit den
Varianten D10 und D” über Band 44 bzw. 45 die Taschen 14 bis 28.

Zwischen den Bändern 23 und 24 bzw. 29 und 30 ist ein Brecher und zwischen den
Bändern 11 und 10 bzw. 34 und 35 ein Sieb eingebaut.

Eine Aufgabe des Rohstolfbetriebes ist es, die mit Reichsbahnwagen ankommen-
den Einsatzstolfe sofort in die Schlitzbunkeranlage, auf Halde, in die Tiefbunker-
anlage oder sofort auf die Bandstraße zu entladen. Weiterhin hat der Rohstoff-
betrieb den Ofenbetrieb mit den erforderlichen Einsatzmaterialien für die Erzeugung
von Gießereiroheisen und Sonderroheisen in den Niederschachtöfen zu beliefern.
Hierbei sind einzelne Sortimente nach Menge und Qualität zu berücksichtigen. Für
die richtige Versorgung der Niederschachtöfen mit Einsatzstoffen sind die 28 Möller-
bunker in der Möllerung nach einem festgelegten Bunkerbeschickungsplan so gefüllt
zu halten, daß ein reibungsloser und gleichmäßiger Produktionsablauf im Ofenbetrieb
garantiert wird. Eine weitere Aufgabe des Rohstolfbetriebes ist es schließlich, eine
gewisse Aufbereitung der Möllerstoffe vorzunehmen. So sind einige Rohstoffe abzu-
sieben bzw. mit Brechern zu zerkleinern.

Zur Bewältigung dieser Aufgaben ist die mengenmäßige Auslastung der Aufgaben-
bereiche und der Förderwege so zu bestimmen, daß

1. die tägliche Gesamtförderzeit minimal wird und
2. die gesamte Förderung in möglichst kurzer Zeit beendet ist.

Bei den zu fördernden Möllerstoffen handelt es sich um verschiedene Materialien,
die in drei Gruppen einzuteilen sind:

a) zu brechende Stoffe R1,

b) abzusiebende Stoffe R2,

c) normal zu fördernde Stoffe R3.

Normal zu fördernde Stoffe können über alle Varianten transportiert werden, ab-
zusiebende Stoffe nur über die Varianten, die ein Sieb enthalten (A5„ C3, C9), zu

brechende Stolfe nur über Varianten, die einen Brecher enthalten (A„ A2, B4, B5, B6

und B7).

Zur Aufstellung eines mathematischen Modells ist von folgenden Daten auszu-

gehen:

Die zunächst unbestimmten Mengen, die über die einzelnen Varianten zu fördern
sind, werden mit x,-,~ bezeichnet. Der Index i (i = l, 2, ...‚ 11) gibt die Variante und
der Index j(j = 1, ..., 3) gibt den Rohstoff an. Die Leistungskoeffizienten [min/m”
bzw. min/t] jedes einzelnen Bandes sind als gegeben vorauszusetzen. Der Leistungs-
koeffizient r‚-‚- der i-ten Fördervariante und des j-ten Rohstoffes ist dann durch den
kleinsten Leistungskoeffizienten der Bänder, die zu diesem Wege gehören, festgelegt.

Allgemein wird mit m,~,j = 1, 2, 3, die Fördermenge in m3/Tag bezeichnet, die man

von R, benötigt. Aus diesem Grunde ist die Tabelle 3.1 in drei Spalten eingeteilt. Die
eingesetzten Zeichen M deuten an, daß über die zu diesen Zeilen gehörenden Varian-
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ten die in den Spalten dafür in Frage kommenden Rohstoffe nicht zu transportieren
sind. M ist ein hinreichend großer Zeitwert.

Bei der Aufstellung eines Modells wird vorausgesetzt, daß an den Aufgabestellen
der einzelnen Fördervarianten alle Rohstoffe, die eventuell von dort zu fördern sind,

Tabelle 3.1

zu brechende zu siebende normal
Rohstoffe Rohstoffe zu fördernde

Mengen m3/Tag Rohstoffe

m1 m2 ms

A-Lauf A1 t1 , M t1 3

A2 721 M t2 3

A3 M 13. 133

B-Lauf B, t4 1 M t4 3

. B5 z„ ‚r M t53

Be 7e 1 M ts 3

B7 77 1 M t7 3

C-Lauf C5 M is 2 t8 3

C9 M I92 I93

D-Lauf D10 M M 1m
D1 1 M M 711.3

vorhanden seien. Diese Voraussetzung ist sehr einschneidend und im besonderen
nicht unbedingt erfüllt, wenn z.B. einige Rohstofie aus irgendwelchen Gründen von
der Halde zu fördern sind bzw. an einigen Aufgabeorten die benötigten Rohstoffe
fehlen. Endlich können bei Eingangsschwankungen der Rohstoffe, die etwa durch
Zugverspätungen hervorgerufen werden, erhebliche Störungen im Förderablauf ein-
treten, wenn nach der aufgeschliisselten optimalen Lösung gefördert wird.

Die beiden Optimierungsfunktionen „Minimierung der Gesamtförderzeit“ und
„Minimierung der maximalen Bandauslastung“ können in der folgenden parametri-
schen Optimierung vereint werden.

Für die M-Felder sind in den folgenden allgemeinen Gleichungen die entsprechen-
den xg, = 0 zu setzen. Werden die Leistungskoeffizienten in min/m“ zugrunde gelegt,
so nimmt die Gesamtförderzeit Z als Zielfunktion folgende Gestalt an:

11 3

Z =Z Z2,-,~x,»j_émin.
i=1 j=1

Die Nebenbedingungen (3.75) bis (3.86) haben folgende Form: Die Summe der in den
einzelnen Läufen geförderten Stoffe muß den im Möllerplan vorgesehenen Gesamt-
mengen entsprechen:

11

2 xii: m1: X1720; J‘: 1.2. 3~ (3-75)
z»1
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Die Gesamtförderzeit jedes einzelnen Bandlaufs darf i. Minuten nicht übersteigen
(Ä ist die maximale Bandauslastung). Da sich die einzelnen Varianten gegenseitig aus-

schließen, ergibt sich die Gesamtförderzeit aus der Summe dieser sich ausschließen
den Varianten:

3 3

Z Ztuxw S Ä (3-76)
i=1 j=1

7 3

Z Z t.‚x„ g 71, (3.77)
i=4 j=1

9 S

Z Z:„x„ g 2., (3.78)
i=8 j=1

1% il

Z0 Z 7.,)... g —IO07 + ‚t. (3.79)
i=1 j=1

Bei der Nebenbedingung (3.79) ist zu beachten, dal3 über die Varianten Dm und
D, 1 zusammen 1007 Minuten am Tag unbedingt andere Rohstoffe zu fördern sind.

Da die gleichen Arbeitskräfte sowohl die A- als auch als die B-Varianten bedienen,
darf die Summe der Förderzeiten all dieser Varianten 2l h = 1260 min nicht über-
schreiten. Diese Zeit entspricht der praktisch erreichbaren Arbeitszeit bei einer drei-
schichtigen Bedienung:

7 3

Z Z t„-x„ g 1260. (3.80)

3

Z‘ t‚-‚.x„ g 21. (3.81)

Die Gesamtförderzeit der Varianten A„ Ag und A3 bzw. B5, A: und B6 bzw. B4,
B, und C9 darf Ä nicht übersteigen, da diese drei Varianten gemeinsam gleiche Bänder
benutzen. An den übrigen Stellen, an denen mehrere Varianten zusammentreffen,
ist eine solche Beschränkung nicht notwendig, weil dort noch weitere Bänder zu-

geschaltet werden können.

3

g 12273 :,.,.x.., g 71, (3.82)
v: , ;r=

‘:5 Z 6 ä t‚-,x„ g A, (3.33)

3

4 7 9 _21‘t„x„ g /1. (3.84)
I: , J:

Die Kapazität der Möllerbunker der A- und der B-Varianten ist relativ gering. Bei
einem Fassungsvermögen der Bunkertaschen von je 200 m“ können in den Bunkern
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5 bis 9 des B—Bereiches nur 2000 m” gelagert werden, also im A- und B-Bereich zu-

sammen nur 3600 m3:

7 3

xi, ‘ 2000, i (3.85)
T

n n

H
/\

4J
7

xii
r

IIA 3600. (3.86)
1 ü. u

.
H

Mit der maximalen Bandauslastung Ä sind damit beide Problemstellungen in einem
parametrischen Optimierungsproblem mit parameterabhängigen rechten Seiten der
Nebenbedingungen vereint. Für jeden möglichen Parameter ist die minimale Förder-
zeit zu bestimmen.

3.3.2. Die Lösung parametrischer Optimierungsprobleme

Bei vielen mathematischen Problemen können die Lösungen in Abhängigkeit von
einigen Problemvariablen in geschlossenen Formeln angegeben werden. So kann z.B.
bei einem linearen Gleichungssystem mit beliebigen rechten Seiten eine Lösung mit
Hilfe der reziproken Matrix berechnet werden. Sobald die rechten Seiten fest vor-
gegeben sind, kann die Lösung unmittelbar durch eine Matrizenmultiplikation an—

gegeben werden.
Es erhebt sich die Frage, ob die optimale Lösung eines LOP auch in Abhängigkeit

einiger Parameter angegeben werden kann. Besonders einfach ist diese Forderung
bei den folgenden LOP (3.87) und (3.88) zu erfüllen, bei denen die Koeffizienten der
Zielfunktion bzw. die rechten Seiten linear von einem Parameter t abhängen.

ZF: Z=(cT+ETt)x%max; (ngtgrz)
NB: Axg b, (3.87)

x ._>, o.

ZF: Z=cTx%max;

NB: Ax = bT + ET: (z, g z g 1,) (3.88)

x 2 o.

In (3.87) und (3.88) ist

cT + ETt = [cl + Elt, c2 + E21, ..., c,, + E,,t] = [c,*, ..., c,,*]

und

bT + ET; = (b. + 3.:, 1a,. + 5m r] = [b,*, b‚„*]

mit beliebigem reellem r.

Die Aufgabenstellung lautet zusammengefaßt: Für jeden Parameter r aus t1 g I; t2

ist von (3.87) bzw. (3.88) eine optimale Lösung anzugeben.

Zu (3.87) und (3.88) ist in (3.89) und (3.90) jeweils ein Beispiel angegeben.
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ZF: Z=(1—t)x1+(1—2t)x2+max;
NB: x, — x2 g 1,

2x14" X2 g 5,

—2x1+lx2 g 1, (3.89)

x1: x2 Z0,
~1§t§ 5.

ZF: Z=—x1v5x2— xggmax;
NB: —1x,— 2x2 + 2x3 g ~1+t, (3.90)

lxl- 1x2— 1x3§—l +21,

xl!x21x-3:0) —7§ 7.5.6»

Die Parameterabhängigkeit der Koeffizienten der ZF von (3.89) bedeutet, daß die
Richtung der Zielfunktion (Gerade!) sich mit dem Parameter t ändert. Somit hängt
die optimale Lösung wesentlich vom Parameter t ab. Der Lösungsbereich von (3.89)
ist in Bild 3.5 schraffiert. Für die Parameter t1 : 1, ta x 0 und t3 z ä sind die ent-
sprechenden Zielfunktionen für einen beliebigen Z-Wert eingetragen. Die Rich-
tung, in der die Zielfunktion anwächst, ist durch Pfeile gekennzeichnet.

X7

Bild 3.5

x7

Aus Bild 3.5 sind für die einzelnen Parameterwerte t, , t9 und L, jeweils optimale Lö-
sungen zu entnehmen:

t, = 1: Optimale Lösung: x1: l, x2 = O, Z = 0;

I2 : 0: Optimale Lösung: v, 2 l, x2 = 3, Z = 4;

t‚. = ä: Optimale Lösung: x; : 2. x2 : 1. Z : 1.



96 3. Lösungsmethoden der linearen Optimierung

Die Parameterabhängigkeit der rechten Seite von (3.90) bedeutet, daß die Hyper-
ebenen, durch die der Lösungsbereich begrenzt wird, durch den Parameter parallel
verschiebbar sind. Daher hängt wiederum die optimale Lösung wesentlich vom Para-
meter ab.

Wird für t ein ganz bestimmter Wert t.) in (3.89) eingesetzt, so kann die optimale
Lösung z.B. mit der Simplexmethode berechnet werden.

Die lineare Abhängigkeit der Koeffizienten der Zielfunktion von t bewirkt, dal3 die
Formkoeffizienten gt (k = l, , n) und die Basiszahl c einer beliebigen Basisdarstel-
lung ebenfalls linear von t abhängen. Sie haben der Reihe nach die Form

gk + E)! und c + Et.

Um den Parameter t mit in das Rechenblatt zu übernehmen, ist die letzte Tableau-
zeile wieder wie bei dem Vorgehen mit künstlichen Variablen als Doppelzeile zu ge-
stalten. Die Anteile gk und c werden in der oberen und die Anteile Ei. und E in der un-
teren Hälfte der Doppelzeile vermerkt.

Es sei das optimale Rechenblatt von (3.87) für den Parameter to durch (3.91) dar-
gestellt. Daher sind alle

g,+§,t° :0, j= l, ...‚n‚

und c + Et.) ist der optimale Funktionswert.

NBV x, x,.

‘BV vl cl + 511., c,, + Euro 0

xrhl 0 711 rln kl

' ° ' ' (3.91)
xrum 0 rm1 rm» km

g1 gn C

G . ....... ‚.

gl '" gr: I E

Darüber hinaus ist dieses Rechenblatt für alle t-Werte optimal, die den Ungleichungen

g,-+§,~t;0, j=1,...,n, (3.92)

genügen. Aus (3.92) folgt:

‘x g — g für g, > o (3.92')

und I

r; — ä für g, < o. (3.920
7

Also sind die Ungleichungen (3.92’) gleichzeitig für alle

t g g = max {— i‘. (3.93a)
7‚->0 5’/J
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und die Ungleichungen (3.92") gleichzeitig für alle

zg i: min l- i} (3.93b)
§,<v

erfüllt. g ist eine untere und i eine obere Parameterschranke. Da für t = to alle Un-
gleichungen (3.92) erfüllt sind, muß

52mg?
sein. Falls kein g, > 0 existiert, ist; = —<><>; gibt es dagegen kein E, < 0, so ist i = + 0o.
Andernfalls ist für t2; bzw. t: T mindestens ein Formkoeffizient von (3.92) gleich
null. Wird ein solcher mit g, + Elt bezeichnet, so kann x, in die Basis eingeführt
werden, falls in (3.91) mindestens ein m > 0 ist (i = l, 2, ..., m).

Sind nämlich alle I‘.-z E 0, dann hat entsprechend dem Simplexalgorithmus das
Problem für alle t g i bzw. t g g eine unbeschränkte Lösung, da diese t-Werte der
Ungleichung g; + §,z g 0 genügen. Nach der Einführung der Variablen x; in die
Basis kann aus den neuen Formkoeffizienten ein weiteres Parameterintervall mit der
entsprechenden optimalen Lösung angegeben werden. Die obere Schranke T wird im
neuen Rechenblatt untere Schranke bzw. die untere Schranke {wird obere Schranke. So
können der Reihe nach sich lückenlos anfügende Parameterintervalle mit den dazu-
gehörenden optimalen Lösungen gefunden werden.

Wird in (3.89) to = 1 gesetzt, so entsteht das Rechenblatt(3.94), wenn die Schlupf-
variablen x3, x, und x5 g 0 eingeführt werden.

1 NBV x1 x2 b

BV —l 1 —- t 1 — 2t 0 Q

x3 0 _1_ —1 1 1

x, 0 2 l 5 ä (394)

x, 0 ——2 1 1 /

— 1 —1 0
G _ .

+1 +2 0

Die Formkoeffizienten lauten:

~1+t.,=0;0,4l+2t0=1;O.
Mit (3.94) ist für to = l bereits ein optimales Rechenblatt gegeben. (3.94) ist darüber
hinaus für alle t g 1 optimal. Ist also

1:Z1§’<?1:+°°y
7 Seifian. Optimierung
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so lautet eine optimale Lösung von (3.89):

x“): x1 = O, x2 = 0, Z(x(1>) = 0, 1g t < +00.

Da —1 + f, = 0 ist, wird x1 in die Basis eingeführt.

2 NBV x3 x2 b

BV -1 O l — 2t 0 Q

x1 1 — t 1 —l l -/~

x, 0 -2 _3_ 3 1 (395)

x5 0 2 -1 3 ~/-

+1 -2 1

G .

—l 3 -1

Es gilt:
14120, —2+311:o.

(3.95) ist nach (3.93 a) bzw. (3.93 b) für alle

§=?2§7§72=£1=1
optimal. Die optimale Lösung von (3.89) lautet für dieses Intervall:

x“): x1= l, x2=0‚ Z(x(2>)= 1 — t; g; 2; 1.

Ganz analog werden die folgenden Rechenblätter und die dazugehörenden opti-
malen Lösungen berechnet.

3 NBV x3 x, b

BV —l 0 0 0 Q

x, l — t ä g 2 6

x2 1 — 2t —§ g 1 /

x5 0 .—§ 4 3

-% ä 3
G

1 —1 —4

x“): x1=2, x221, Z=3—4t, §grg§.
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4 NBV x5 x. b

BV —1 0 0 o Q

x, 1~t —;1; E; 1

x2 1—2t g ä 3

x3 O ä :1; 3

i ä 4
G

-% -2% -7

x<‘1:x,:1, x2=3, Z=4—7t, —oo<t§§.

Damit ist nicht nur für —1 g t g 5, sondern für jeden beliebigen reellen Para-
meterwert die optimale Lösung angegeben, deren Lösungskomponenten und Funk-
tionswert aus einer der vier angeführten Lösungen x“), ..., x“) zu entnehmen sind.

Liegt ein parametrisches LOP der Form (3.88) vor, so wird die letzte Spalte im
Rechenblatt durch eine Doppelspalte ersetzt. Für einen bestimmten Parameter t = to

kann die Normalform und das optimale Rechenblatt etwa wieder mit der Simplex-
methode berechnet werden. Hat dieses optimale Rechenblatt die Gestalt (3.96), so gilt:

ggo für k=l,...,n.

NBV x, ~- x,,

BV —l c, - c„

xn+l Cn-‚i "11 " V1» k] E1

' ' ' E E (3.96)

xmm cn—m rm} rmn km 12m

G gi ~ g. c 5

Die optimale Lösung lautet

x7:0 für j=1,...,n
und _

x,,,, : kl + k,to, ..., x„‚„‚ = km + kmto, Z = c + Eto. (3.97)

Da alle g,, von t unabhängig sind, ist die Lösung für alle t optimal, für die

k; + Er 0 (i = l, ..., m) (3.98)
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gilt. Aus der letzten Ungleichung folgt:

zg-E für IZ>o
ki

und .

zg-L für /€‚.<o.
k.

Eine neue untere Schranke 5 bzw. eine neue obere Schranke? folgt damit wieder aus

t g t: max — (3.99a)
- L7,«>n k’;

bzw.
- . k.

t g t= mm —— _— (3.99b)
L7,~<0 ki

[vgl. (3.93)].
Wiederum ist für t 2 g bzw. t : i mindestens eine Lösungskomponente von (3.97)

gleich null. Wird diese mit k; + Et bezeichnet. so kann die BV x, mit der dualen Sim-
plexmethode (s. 3.2.3.) aus der Basis entfernt werden. Die restlichen k; + I75,- ändern
sich dabei wertmäßig für g bzw. i nicht. Anschließend kann ein neues Parameterinter-
vall mit der dazugehörenden optimalen Lösung angegeben werden.

Wird in (3.90) to z l gesetzt, so entsteht das Rechenblatt (3.100), wenn die Schlupf-
variablen x„ x5 g O eingeführt werden. Es ist gleichzeitig optimal.

1 NBV x1 x2 x3

BV —1 —1 v5 —-1

x. o —1—2+2 —11

x5 o 1-1 —1 —1 2 (3.100)

Q 1 w
ie

:

Die optimale Lösung lautet:

x‚=0,x.2=0,x3=0‚
x.= ~l+ 1t.,=0, x5=—l +2to= 1, Z=0, t.,= 1.

Weiterhin ist (3.100) für alle t g l optimal; damit folgt für die optimale Lösung
von (3.90) im Intervall 1 g t g +o<::

X“): x, = 0, x2 = 0, x3 = 0, Z(x<’)) 2 0.

g, = 1 ist eine untere und 71 = +00 eine obere Schranke. Da —l + f, = 0 ist, wird
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x, aus der Basis entfernt. Nach der dualen Simplexmethode folgt das Rechenblatt 2:

2 NBV x, x2 x3

(3.101)

BV —1 O -5 —1

x1 -1 —1 2 -1 1 -1

x5 0 1 -3 -1 -2 3

G 1 3 3 —l l

Q ~/- 1 3

Es gilt: l — _t, g O, -2 + 35 2 O. (3.101) ist also nach (3.99) für alle

§=£2§t§?‘.’=!l=1
optimal. Es folgt:

x‘2>:x1=1—t, x2=O‚ x3=0‚ Z(x(2))=t—1,§§t§1.
Ganz analog sind die folgenden Rechenblätter und die dazugehörenden optimalen
Lösungen zu berechnen.

3 NBV x, x5 x3

BV —l O 0 —1

x1 ‘l ‘ä 5 “ä “*1 1

x2 -5 -% -% -% ä -1

G 2 1 4 —3 4

Q 6 3

4 NBV x, x5 x1

BV -1 0 0 —1

x3 "1 31 ‘ä "g i ‘g
x2 -5 -% -1 “:1; ä -%

G l 3 3 —4 7

x9): x1=—§+t,
x2=§—ta

Z=—3+4t,
%§t§§-

N
l

Ü
.

H
8

3

LÖ
ss

+ :fi
C

«—
5'

~
.£

>



102 3. Lösungsmethoden der linearen Optimierung

Damit ist wiederum nicht nur für ——7 g t g 6, sondern für jeden beliebigen reellen
Parameterwert die optimale Lösung angegeben, deren Lösungskomponenten und
Funktionswert aus einer der vier angegebenen Lösungen x“), ...‚ x“) zu entnehmen
sind.

3.4. Ganzzahlige lineare Optimierung

3.4. 1. Problemstellung

Bei vielen linearen Optimierungsproblemen besteht die zusätzliche Einschränkung,
daß einige oder alle Lösungskomponenten der optimalen Lösung ganzzahlig sein
müssen. Bei einem solchen Problem ist also von allen ganzzahligen Lösungen eines
Systems mehrerer linearer Gleichungen oder Ungleichungen eine solche Lösung zu

bestimmen, für die der Funktionswert der linearen Zielfunktion optimal ist. Diese
Aufgabenstellung wird als ganzzahligen lineares Optimierungsproblem bezeichnet.

Haben nur einige Lösungskomponenten der optimalen Lösung ganzzahlig zu sein,
so wird die Aufgabenstellung ein gemischtganzzahliges Optimierungsproblem genannt.
Ein gemischtganzzahliges lineares Optimierungsproblem kann wie folgt formuliert
werden:

Die lineare Funktion

Z(x‚ y) = cTx+ ETy

ist unter Berücksichtigung der folgenden Nebenbedingungen zu maximieren:

Ax + Ky g b;

X lIV o , ganzzahlig,

llVy 0.

Dabei ist x ein nl-zeiliger Spaltenvektor mit nichtnegativen ganzzahligen Kompo-
nenten, y ein (n — nQ-zeiliger und b ein m-zeiliger Vektor. cT ist ein nl-spaltiger
und ET ein (n — n1)—spa1tiger Zeilenvektor. A und A sind Koeffizientenmatrizen mit
dem Format [m‚ n1] und [m‚ n — m]. Ist n1 : n, so liegt ein („reines“) ganzzahliges
lineares Optimierungsproblem vor. Viele praktische Problemstellungen sind auf
ganzzahlige Optimierungsprobleme zurückführbar. Die Variablen stellen dabei
ganzzahlige Einheiten dar wie z.B. Zahl der Arbeiter, Zahl der Fahrten mit einem
Fahrzeug, Stückzahlen von Produkten oder möglichen Varianten. Darüber hinaus
sind auch bestimmte nichtlineare Optimierungsprobleme auf ganzzahlige lineare
Probleme zurückführbar.

In den beiden folgenden Beispielen werden spezielle Probleme behandelt.

Beispiel 3.8: 3 Leisten sind zur Herstellung eines bestimmten Erzeugnisses notwen-
dig. 2 Leisten müssen je 1,5 In (Meter) und eine muß 2 m lang sein. Zur Verfügung
stehen 300 Leisten mit einer Länge von je 6,5 m und 80 Leisten mit einer Länge von
je 5.5 m. Wie sind die zur Verwendung stehenden Leisten zu schneiden, damit eine
maximale Stückzahl des obengenannten Erzeugnisses hergestellt werden kann?
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Eine 6,5 m lange Leiste kann nach den folgenden 4 Varianten in 2 m bzw. 1,5 m

Stücke geteilt werden:

1 Leiste zu 6,5 m Anzahl Anzahl
der 2-m-Leisten der 1,5-m—Leisten

l. Variante 3 O

2. Variante 2 1

3. Variante 1 3

4. Variante 0 4

Analog:

1 Leiste zu 5,5 m Anzahl Anzahl
der Z-m-Leisten der l‚5-m-Leisten

5. Variante 2 l
6. Variante 1 2
7. Variante 0 3

Wird mit x,»(i= l, ...,7) die Anzahl der Leisten bezeichnet, die nach der i-ten
Variante zerschnitten werden, so gelten die beiden Gleichungen

x1+x2+x3+x‚=300,
x5+x6+x‚= 80.

Sie besagen, daß die Anzahl der zu teilenden Leisten 300 bzw. 80 sein muß. Die An-
zahlen der 2—m-Leisten und LS-m-Leisten sind der Reihe nach durch

3x1 + 2x2 + 1x3 + 2x5 + 1x6

und
1x2 + 3x3 + 4x; + 1x5 + 2x6 + 3x7

gegeben. Die Gleichung

2 (3x‚ + 2x2 + 1x3 + 2x5 + 1x6) = 1x2 + 3x3 + 4x, + 1x5 + 2x5 + 3x‚

gewährleistet, daß die Anzahl der Leisten von 1,5 m Länge doppelt so groß ist, wie die
Anzahl der 2-m—Leisten. Die Anzahl der 2-m-Leisten kann als Zielfunktion benutzt
werden, da diese mit der Anzahl der Erzeugnisse übereinstimmt. Schließlich müssen
in der optimalen Lösung alle Variablen ganzzahlig sein.

Zusammengestellt folgt als mathematisches Modell dieser Optimierungsaufgabe:

ZF: Z= 3x1+ 2x2 + x3 + 2x5 + x6 7L max;

NB: x,+x2+x3+x4 =300‚

x5+x5+x7 = 80, (3.102)

6x, + 3x2 — x3 — 4x4 + 3x5— 3x, = O,

x, g 0, ganzzahlig für i: l, ..., 7.
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Beispiel 3.9: Eine Betriebsabteilung arbeitet in vier Schichten zu je 6 Stunden. Die
erste Schicht beginnt um 4.00 Uhr. Die Schichten sind mit einer Mindestanzahl von

3 bzw. 7 bzw. l0 bzw. 4 Arbeitskräften zu besetzen. Jede Arbeitskraft arbeitet wäh-
rend zweier Schichten hintereinander und hat am folgenden Arbeitstag frei. Es ist
ein Schichtplan mit einer Mindestanzahl von Arbeitskräften aufzustellen.

Das mathematische Modell dieses Optimierungsproblems wird folgendermaßen
aufgestellt: x; bezeichnet die Anzahl der Arbeitskräfte, die mit Beginn der i-ten
Schicht ihre Arbeit aufnehmen (i: l, 2, 3, 4).

Die Variablen x; müssen also ganzzahlig sein und den folgenden Nebenbedingungen
genügen:

H
V351+)‘; 3,

-X2+-xx llV r‘
nv .3x3+x2

x4+x3 H
V

H
V oXi

Die benötigte Gesamtanzahl der Arbeitskräfte ist 2 (x, + x2 + x3 + x4), da jede
Arbeitskraft am folgenden Tage nicht einsetzbar ist.

Das Modell dieser Optimierungsaufgabe lautet demnach:

ZF: Z:2(x1+x2+x3+x4)=:min;
NB: x1 +x,;3,

-351+-X2 27:
X2+Xa Z10,

x3 + X4 2 4‚

x,- g 0, xi ganzzahlig,

i: l, ..., 4.

3.4.2. Die Lösung ganzzahliger Optimierungsprobleme

Ein ganzzahliges Optimierungsproblem kann zunächst ohne Berücksichtigung
der Forderung der Ganzzahligkeit aller oder einiger Variabler gelöst werden.
Anschließend können die in der optimalen Lösung auftretenden gebrochenen
Variablen auf die nächsten ganzen Zahlen auf- oder abgerundet werden. Dabei ist
zu beachten, daß die entstehende ganzzahlige Lösung dem Lösungsbereich angehört.
Nur wenn die Werte der nichtganzzahligen Variablen sehr groß sind, wird durch das
Auf- oder Abrunden eine ganzzahlige Lösung erhalten, deren Funktionswert wenig
vom optimalen abweicht. Bei kleinen nichtganzzahligen Variablen kann der Funk-
tionswert der abgerundeten Lösung erheblich vom optimalen abweichen.
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Von dem LOP

ZF: _Z: 8x, + 4x3 max;

NB: —2x1 + 3x2 g 6,

8x1 + 3x2 g 20, (3.103)

x, g O, x2 g O, ganzzahlig,

ist der Lösungsbereich in Bild 3.6 angegeben. Ohne Ganzzahligkeitsbedingung lautet
die optimale Lösung:

_Ä _fi PL‘
‘ 15’x1

Werden x, und x2 abgerundet, so entsteht die ganzzahlige Lösung

x1=1,x2=2; Z: 16.

Die optimale ganzzahlige Lösung lautet aber:

x,=2,x2:1; Z=20.

Hierbei ist x, aufgerundet und x2 über 2 hinweg abgerundet.

Gomory‘) hat sowohl für das ganzzahlige als auch für das gemischt-ganzzahlige
Problem eine Lösungsmethode angegeben. Beide Probleme werden nach Gomory so

gelöst, daß zunächst die Ganzzahligkeit von einigen oder von allen Variablen un-

berücksichtigt bleibt. Das Problem wird mit der Simplexmethode bis zum optimalen
Endtableau durchgerechnet. Falls bestimmte oder alle Variable die Forderung der
Ganzzahligkeit nicht erfüllen, wird durch Hinzufügen von weiteren Nebenbedin-
gungen der zulässige Lösungsbereich so verk1einert,dal3 der dabei entstehende kleinere

‘) Gomory, R. E., Outline of an Algorithm for Integer Solutions to Linear Programs. Bulletin of
the American Mathematical Society, Vol. 64, 1958, S. 275-278.
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Lösungsbereich nur noch Eckpunkte mit ganzzahligen Koordinaten hat und daß aber
auch keine ganzzahligen Punkte des ursprünglichen Lösungsbereiches ausgeschlossen
werden (vgl. die Bilder 3.6 und 3.7). Der Lösungsbereich in Bild 3.6 des Beispieles
(3.103) ist durch die zusätzlichen Nebenbedingungen I, II, III in Bild 3.7 auf einen
Lösungsbereich mit nur ganzzahligen Eckpunkten verkleinert

X2

‚/
3 o a a

Bild 3.7

XI

Das Hinzufügen von zusätzlichen Nebenbedingungen wird im Verfahren von
Gomory systematisch durchgeführt.

Es sei angenommen, daß die Basisdarstellung der Optimallösung ohne Ganzzahlig-
keitsbedingung eines ganzzahligen LOP die folgende Gestalt habe (ohne Beschrän-
kung der Allgemeinheit werden die letzten m Variablen als BV betrachtet):

r11x1+"'+’1nxn +xn+1 =k1r
r21x1+"'+r2nxn +xn+2 =k2s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.104)

31x1 + ‘i’ gnxn

Die Optimallösung lautet: [0, ‚ 0, k], ...‚ km]. Die Basiszahl c ist der optimale Funk-
tionswert, und die Formkoeffizienten g,- [j= 1, ...‚ n] sind nichtnegativ.

Mit [k] wird diejenige ganze Zahl bezeichnet, die der Ungleichung k — l < [k] g k
genügt. Um eine zusätzliche Nebenbedingung zu formulieren, sei xm-= k,- eine
Variable, die die Ganzzahligkeitsbedingung nicht erfüllt.

Liegt ein ganzzahliges LOP vor, so wird folgende neue Gleichung zum Gleichungs-
system (3.104) hinzugefügt:

—7nx1 “ 7.'2X2 * — Fin-xn + im" = “Tfiv (3-105)

Hierbei ist 2m- eine neue nichtnegative Schlupfvariable,

F; = k; — [k‚-] und F.-,» = n, — [r,-,~]

fi.irj= 1, ..., n.

Liegt dagegen ein gemischt ganzzahliges LOP vor und wird angenommen, daß die
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Variablen xi, j = I, ..., n1; n, g n ganzzahlig sein sollen, so wird ebenfalls die Glei-
chung (3.105) hinzugefügt, allerdings gilt jetzt:

{m}, 1.5711, {ri,'}§{k:‘;s
'k,- .

7 1#}ki}'(1“{"i1})u J im» lrii} > {ks}:

"’” r.,, j;n.+1, m20,
k . .'("ii)s 1275+], ’u’<0‚

mit {m} 2 rii “ ['11] und lkil = kt ‘ [kt]-

Somit entsteht die folgende Basisdarstellung:

71x351 +"'+r1nxn+xn+l =k1»

rm x1 + + rm x,. + x„‚„‚ = k,,,, (3.106)

';11 xl — Fin in + xnu ‘ "En
glxl + ---+g„x„ i +Z =c.

Die ursprüngliche Optimallösung ist unzulässig, da -1?‚- < O ist. Mit Hilfe der dualen
Simplexmethode (s. 3.2.3.) kann eine neue ZBL gefunden werden. Ist in dieser Lösung
für noch eine weitere bzw. mehrere Unbekannte die Ganzzahligkeitsforderung nicht
erfüllt, so wird der beschriebene Algorithmus wiederholt.

Das Gomory-Verfahren ist unter gewissen Zusatzbedingungen als endlich erwiesen.
Entsprechende Einzelheiten und die Beweise hierzu sind der Spezialliteratur zu ent-
nehmen.

Beispiel 3.10: Das optimale Tableau der Zuschnittaufgabe (3.102) aus 3.4.1. ohne
Berücksichtigung der Ganzzahligkeit der Variablen ist in (3.107) gegeben.

NBV‘ x2 x; x5 x,

—1 2 o 1 o o

xi 1 g ‘TO ä 9 291+?‘
x5 2 o o 1 i so (3-107)

xi 3 i -3‘ —§r m? 3+?‘

i A L g 477+!

Die nicht-ganzzahlige optimale Lösung lautet:

x,=8+%, x,=0, x3=291+%-, x4=0, x5=80,

x.~,=0, x,=0, Z=477+%.
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x, = 8 + % ist z.B. nicht ganzzahlig. Daher wird zur Basisdarstellung, die zu (3.107)
gehört, die folgende Nebenbedingung hinzugefügt, die aus den Koeffizienten der
xl-Zeile von (3.107) nach (3.105) gebildet worden ist.

“9X2"%X4“%xs- ’%'x7+§1=”%-

Es entsteht das ergänzte Tableau (3.108):

NBV x2 x, x5 x7

BV -1 2 0 1 0 0

x3 1 5% ‘‚—° % % 291+%

x5 2 0 0 1 1 80 (3_108)

X1 3 i‘ —% ~3* H’? 3+%

f1 0 ‚ "1 “% ‘% ‘i "%

G % ' % % 477+%

Mit der dualen Simplexmethode wird i1 aus der Basis entfernt. Nach dieser Eli-
mination Iiegt das optimale ganzzahlige Tableau (3.109) vor:

NBV X, x, x5 x,

x3 1 ä 1 0 g 291

x5 2 0 0 1 1 80 (3_109)

x1 3 l — —l ~—1 8

X2 2 — ä 1 1 ä 1

03.001477

Eine ganzzahlige optimale Lösung lautet damit nach (3.109):

x, =8, x2: 1, 13:29], x420, x5280, x6=x7=0, Z=477.

Am Tableau (3.109) ist schließlich noch zu erkennen, daß ebenfalls x4 bzw. x6 in
die Basis eingeführt werden können, ohne daß sich der Funktionswert ändert. Daher
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ergeben sich noch die beiden anderen ganzzahligen optimalen Lösungen:

1. x1=9, x220, x3=290, x4=1, x5= 80,

xs:x7=0, Z=477;

2. x1=9, x2=0, x3=29l, x4=0, x:,=79,
xG=1, x‘-=0, Z=477.
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Jedes lineare Optimierungsproblem ist mit der Simplexmethode oder einem anderen
Algorithmus (revidierte SM oder duale SM) zu lösen, Die lineare Optimierung wäre
damit überhaupt nicht problematisch, wenn die Anzahl der Veränderlichen bei
Problemstellungen nicht so groß wären und wenn die genannten Lösungsalgorithmen
schneller konvergieren würden. Aus diesem Grunde ist es verständlich, daß zur Lö-
sung derartiger Aufgaben, die aus praktisch relevanten Problemstellungen resultieren,
es unbedingt erforderlich ist, Elektronenreehner zur Hilfe zu nehmen. Um also ein
größeres lineares Optimierungsproblem zu lösen, ist es daher zweckmäßig, dies-
bezügliche Programmpakete zur Lösung linearer Optimierungsprobleme zu nutzen.
Bei der Nutzung solcher Programme bezogen auf einen Rechner sind nur noch die
Problemparameter anzugeben (Koeffizienten der Zielfunktion, Koeffizienten der
Nebenbedingungen usw.). Vom Rechner wird dann die gesuchte optimale Lösung
ermittelt.

Die Ausmaße derartiger Probleme bedingen eine große Anzahl von Rechen-
operationen und einen großen Speicherbedarf bei der Benutzung von Elektronen-
rechnern, so daß der Rechenaufwand für viele praktische Berechnungen trotzdem
noch zu hoch wird. Dabei ist noch von den Schwierigkeiten abgesehen, die bei der
Aufstellung eines solchen Modells aus einer praktischen Aufgabe resultieren können.
Schon ein für praktische/Belange nicht sehr großes Transportproblem von 20 Erzeu-
gern, die ein ganz bestimmtes Erzeugnis in gewisser Menge herstellen, und 20 Ver-
brauchern, die in bestimmten Mengen das Erzeugnis beziehen, führt auf ein lineares
Optimierungsproblem von ca. 40 Nebenbedingungen mit 400 Veränderlichen, wenn

die Verteilung so erfolgen soll, daß_die Gesamttransportkosten möglichst klein sind.
Um allein die Daten der Koeffizientenmatrix dieses Problems zu speichern, werden
normalerweise schon ca. 16000 Speicherplätze benötigt. So sind in den letzten Jahren
für derartige spezielle Probleme besondere Algorithmen entwickelt worden, die den
Rechenaufwand erheblich reduzieren. Es gibt insbesondere gleich mehrere z. T.
gleichwertige Algorithmen für die Lösung des angeführten Transportproblems. Diese
Möglichkeiten der besonderen Berücksichtigung der speziellen Struktur der Neben-
bedingungen bei einigen linearen Optimierungsproblemen sind zur Zeit bei weitem
noch nicht restlos ausgeschöpft.

4.1. Transportprobleme

Das Transportproblem ist eine von den mannigfaltigen Aufgabenstellungen der
linearen Optimierung, deren Nebenbedingungen eine spezielle Struktur aufweisen
und somit eine Lösungsvereinfachung gestatten. '

Bereits 1939 bearbeitete L. V. Kantorowitsch eine Klasse von Optimierungspro-
blemen, die eng mit dem klassischen Transportproblem Verwandt ist. Die Anwen-
dung dieser Probleme war auf die Zuteilung von Arbeiten auf Maschinen gerichtet.
Gleichzeitig wurde von ihm ein zu dieser Zeit aber noch unvollständiger Lösungs-
algorithmus aufgestellt. Die nunmehrige Normalform des Problems mit einer kon-
struktiven Lösungsmethode wurde zuerst von L. Hitchcock 1941 erarbeitet. Während
des zweiten Weltkrieges beschäftigte sich T. C. Koopmanns mit der Untersuchung
von Lösungen des Transportproblems und deren Anwendungsmöglichkeiten. In den
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letzten 30 Jahren wurden eine ganze Reihe von Problemerweiterungen und weiteren
Lösungsalgorithmen zum Transportproblem entwickelt.

Im folgenden wird ein spezieller Lösungsalgorithmus angegeben.

4.1.1. Problemstellung und mathematisches Modell des Transportproblems

Erklärung am Beispiel
Gegeben seien drei Erzeuger, E1 ‚ E2 und E3 , die ein Erzeugnis von gleicher Qualität

produzieren. Zum Beispiel seien die Erzeuger E1, E2 und E3 drei Ziegeleibetriebe, die
normale Mauersteine herstellen. E1, E2 und E3 erzeugen während einer fest vorgege-
benen Zeitdauer (z.B. in einem Monat oder in einem Quartal) der Reihe nach
a1 = l1 - 104, a2 = ll - 10‘ und a3 = 8 - 10‘ Mauersteine als Erzeugungseinheiten. Wei-
terhin sind vier Verbraucher V1, V2, V3 und V, vorhanden, die das Produkt in ganz

Bild 4.1

bestimmter Menge benötigen. V1, V2, V3 und V, seien z.B. vier Großbaustellen, die
während der gleichen Zeitdauer der Reihe nach b1 = 5 - 104, b2 = 9 - 10‘, b3 z 9 - 10‘
und b, = 7 ~ 10‘ Mauersteine benötigen. In Bild 4.1 sind E1, E2 und E3 durch kleine
Kreise und V1, V2, V3 und V, durch kleine Dreiecke schematisch dargestellt.

Tabelle 4.1
Verbraucher

V1 V2 V11 V,

E‘ C11 7 C12 8 C13 5 C14 3 11=a1

_ r Erzeugungs—
Erzeuger E, e“ 2 Ü“ 4 C23 5 e“ 9 l1=a2 mengenin

Einheiten

E3 5'31 6 C32 3 C33 1 C34 2 8in3

Gesamt-
5=b1 9:172 9=b3 7=b4 30 erzeugung

——_—v =Gesamt-
Verbrauchsmengen in Einheiten Verbrauch
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Die Gesamterzeugung von 30- 104 Mauersteinen ist gleich dem Gesamtverbrauch.
Schließlich sind von jedem Erzeuger zu jedem Verbraucher die Transportkosten pro
Einheit gegeben. Sie sind als Zahlen bzw. cü-Koeffizienten mit den entsprechenden
Zuordnungsrichtungen in Bild 4.1 eingetragen. q, sind die Transportkosten (z.B. in
100 M Einheiten), die anfallen, wenn eine Einheit des Produktes (z. B. 10‘ Mauer-
steine) vom Erzeuger E,- zum Verbraucher V, transportiert wird (i : 1, 2, 3;j = 1, 2,
3, 4). Zum Beispiel erfordert der Transport von 10* Mauersteinen von E, nach V,
7 Transportkosteneinheiten (z.B. 7 V 100 M).

In der Tabelle 4.1 sind die Einheitskosten zusammengestellt. Das Transportpro—
blem besteht in der Aufstellung eines Transportplanes, nach dem jeder Verbraucher
seine benötigten Mengen unter Berücksichtigung minimaler Gesamttransportkosten
erhält.

Wird die noch zu bestimmende Menge (eine Einheit betrage l0‘ Mauersteine), die
vom Erzeuger E; Zum Verbraucher V,- geliefert wird, mit x‚-‚- bezeichnet (i 2 1, 2, 3;
i: 1, 2, 3, 4), so kann ein Verteilungsplan nach Tabelle 4.2 aufgestellt werden.

Tabelle 4.2

V, Va V3 V,

El xii x1” x13 x14 a1

E2 x21 x22 x23 x24 a2

Es x31 x32 x33 x34 a3

b1 b2 bs b4

Hiernach bedeuten z.B. x„, x,2, x,3 und x„ die Mengen, die der Reihe nach von E,
an die Verbraucher V„ V2, V;, und V, zu transportieren sind. Die Summe dieser Men-
gen muß gleich der gesamten Erzeugungsmenge von E, sein, also

x„ + x„+x,3+x„ : a, = 11.

Analog gilt:

x21+X22+x23+x24=a2=11y
x3,+x„+x„+x3,=a3= 8.

(4.1)

Weiterhin bezeichnen x„, x2, und x3 , die Mengen, die der Verbraucher V, der Reihe
nach von den Erzeugern E, , E2 und E3 erhält. Die Summe dieser Mengen muß gleich
der Bedarfsmenge von V, sein, also

x„+ x2, + x“ = b, = 5.

Analog gilt:

x,2+x„+x32=b2=9‚ (4.2)

x„+ x23+ x33: b3: 9,

x,„‚+ x„+ x3, = b, = 7.
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Alle Liefermengen x.~, sind größer oder mindestens gleich null. Wird von E, nach
V, die Menge x, L transportiert, so entstehen cl 1 - x1 1 = 7 ~ x11 Transportkosteneinhei-
ten (100 M sei eine Transportkosteneinheit). Für den Transport der Menge x‚-,- von
E; nach V, werden c,-,- - xi, Transportkosteneinheiten benötigt. Die Gesamttransport-
kosten Z ergeben sich als Summe aller Einzelkosten. Also gilt:

Z=C11x11+C12x12+"'+l's3x33+C34X24- (4-3)

Die im Verteilungsplan angegebenen xi,» sind so zu bestimmen, daß die Kostenfunk-
tion Z nach (4.3) als Zielfunktion unter Berücksichtigung der Nebenbedingungen
(4.1) und (4.2) ein Minimum annimmt. Das mathematische Modell des angeführten
Beispiels hat damit zusammengefaßt die folgende Form:

ZF: Z = 7x„ + 8x12 + 5x13 + 3x14 + 2x31 + 4x22 + 5x23 + 9x2‚+ 6x31+ 3x32

+1x33+2x34+min;
NB: x„+x„+x„+x„ =1l‚

+x„+x„+x23+x„ =ll,
+x31+x32+x33+x34 = 8,

X11 +x21 + X31 = 5;

X12 +9522 +9532 = 9,

x13 +3523 +5533 = 9.

X14 +7524 +3534 = 7;

x1, 2 0.

(4.4)

Werden die allgemeinen Koeffizienten c‚<„ a.» und b, benutzt, so folgt unter Verwen-
dung der Summenschreibweise:

ZF: Z = Z cl, - xi, min;
:/:1

u

M
aw

NB: x1,.= a,., i= 1,2, 3; (4.5)

t
.

(„
H ‚

.-

Zxn=b;»,j= 1,213.4;
1:1

M720.

Da alle Elemente der Koeffizientenmatrix der Nebenbedingungen (4.4) die Werte 0
oder 1 annehmen und in jeder Spalte dieser Matrix nur zwei Werte gleich 1 und die
restlichen gleich 0 sind, wird der besondere Aufbau eines Transportproblems als
lineares Optimierungsmodell deutlich. Schließlich ist irgendeine Nebenbedingung von
(4.4) eine Linearkombination der restlichen; sie kann also w ohne damit die Lösungs-
mannigfaltigkeit einzuschränken — unberücksichtigt bleiben. So entsteht z.B. die
7. Gleichung aus (4.4), wenn die l.‚ 2. und 3. Gleichung addiert und davon die 4., 5.

und 6. Gleichung subtrahiert werden. Das lineare Optimierungsmodell (4.4) umfaßt
also 3 + 4 — 1 = 6 Nebenbedingungen mit 3 - 4 = 12 Unbekannten x‚-‚-.

8 Seiffarl, Optimierung
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Allgemeine Darstellung

Von den m Erzeugern E1, ..., E,“ erzeugt jeder während einer bestimmten Zeit der
Reihe nach ein Produkt gleicher Qualität von a1, ..., am Produktionseinheiten. Wäh-
rend dieser Zeit benötigen die n Verbraucher V1, ..., V,, der Reihe nach b1,..., b„
Einheiten dieses Produktes. Zu den Voraussetzungen „gleiche Qualität“ und „feste
Zeitdauer“ wird die Voraussetzung „Gesamterzeugung gleich Gesamtverbrauch“ hin-
zugefügt, d.h., es gilt die folgende Gleichung:

m 7L

ai = Z b,.
5:1 j=1

Es sind ferner die Transporteinheitskosten 6,-, (i = l, ..., m;j = l, ..., n) gegeben, die
zum Transport einer Einheit des Produktes vom Erzeuger E; zum Verbraucher V,-

benötigt werden. In der Tabelle 4.3 sind diese eingetragen.

Gesucht ist ein Transportplan‚ nach dem jeder Verbraucher seine geforderten
Mengen unter Berücksichtigung minimaler Gesamttransportkosten erhält.

Tabelle 4.3

V1 V2 V„

Ei C1 1 Ci2 (‘in a!

E2 92i C22 C2» a2

Em cm) cm2 cm n am

m M.

bl b2 b» z“: = 2b!

Die einzelnen noch zu bestimmenden Transportmengen werden — wie bereits am

Beispiel erläutert — mit x,~,» bezeichnet (i = 1, ..., m;j = l, ..., n), und ein allgemeiner
Verteilungsplan kann nach Tabelle 4.4 gegeben werden:

Tabelle 4.4

V1 V2 V"

E] x1 1 x12 x1 n a1

E2 x21 x22 xzn a2

Em xml xmz "' xmn an

b, b2 b"
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Für die Zielfunktion und die Nebenbedingungen gelten die folgenden Gleichungen

71

ZF: Z= f’ Zc„x„%min;
5:1 j=1

NB: Exl-,=ai, i=1‚...‚m; (4.6)
j=l

771

Ex” = b,, j= l, ...‚n;
i=1

xi, g 0,

oder ausführlich:

ZF5 Z:C11X11+4’12x12+ "'+Cmnxmn+min;
NB: x,1+x,2+«~~+x1,. =a,,

X2x+x22+ "'+X2n =92;

xm1+‘xm2 + + xmn : am:

X11 +X21 “'+xm1 :b1s
X19 +X22 +xm2 =b2s

x1» +x2n"' +xmn =bn-
x1730.

(4.7)

Wiederum kann eine Gleichung der Nebenbedingungen weggelassen werden, da sie

sich, wie im Beispiel angedeutet, aus den restlichen Gleichungen (4.7) linear kombi-
nieren läßt. Daß die restlichen linear unabhängig sind, wird im folgenden Abschnitt
gezeigt. Ein allgemeines Transportproblem mit m Erzeugern E; und n Verbrauchern
V,» ist somit auf ein lineares Optimierungsmodell mit m - n nicht negativen Veränder-
lichen und m + n — 1 Gleichungen als Nebenbedingungen zurückzuführen. Dabei
haben die Nebenbedingungen einen speziellen Aufbau. Wird der zur Veränderlichen
x,-,- gehörende Spaltenvektor der Koeffizientenmatrix von (4.7) mit pi") bezeichnet, so
sind alle Komponenten von pW) bis auf die i-te und (m +j)-te gleich null, und die
beiden von Null verschiedenen Komponenten sind gleich 1.

4.1.2. Lösungsalgorithmen zum Transportproblem

Grundlagen

Zum besseren Verständnis der folgenden Lösungsmöglichkeiten werden zunächst
einige Sätze zum Transportproblem angeführt.

Werden die Veränderlichen xi; zu der Matrix X = [x,-,-] und die Transporteinheits-
kosten c,-‚- zu der Matrix C : [c,~,»] zusammengefaßt, so gelten die folgenden Sätze:

8x
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Satz 4.1: Eine Lösung des Transportproblems existiert immer.

. m n . . - - b. _

Beweis: Wird z‘ a1 = Z11), = a gesetzt, so ist X = [x11] mit x1,- = a’ a ’ g 0 eine
J:=1

Lösung (i: 1, m;j= 1, ...‚ n), denn es gilt:

” " a-b- a- " a2xtj=ZL_=_iZb,:g1—=gL’
5:1 j=1 a 415:; a

m m b aZ'x1.].=Z‘;:,.bI=b1_
{=1 i=1 (1 a

Damit ist der Beweis erbracht, da alle geforderten Bedingungen erfüllt sind. I

Satz 4.2: Eine Lösung mit höchstens m + n — 1 positiven,x,<,- existiert immer.

Beweis: Zum Beweis wird die ,,Nordwestecken-Regel“ (NWR) benutzt. Diese
Regel wurde von Dantzig aufgestellt und ist von Charnes und Cooper unter diesem
Namen eingeführt worden. Eine Lösung wird nach der NWR folgendermaßen auf-
gebaut:

In der Lösungsmatrix wird in der linken oberen Ecke mit x11 als erster Variablen
begonnen, die als Basisvariable aufgefaßt wird. Es wird x11 2 min (a1, b1) gesetzt
und in den Verteilungsplan eingetragen. Dabei können die drei folgenden Möglich-
keiten auftreten:

1. Wenn a1 < b1 ist, wird allen anderen Variablen in der 1. Zeile der Wert null
gegeben; sie werden als Nichtbasisvariable aufgefaßt und nicht in den Verteilungsplan
eingetragen. Die 1. Zeile wird von den weiteren Betrachtungen ausgeschlossen.

2. Wenn a1 > b1 ist, werden dagegen alle restlichen Variablen in der l. Spalte gleich
null gesetzt und ebenfalls als Nichtbasisvariable nicht in den Verteilungsplan ein-
getragen. Die 1. Spalte wird von den weiteren Betrachtungen ausgeschlossen.

3. Wenn schließlich a1 = b1 ist, werden entweder alle restlichen Variablen der
l.Zeile oder der l.Spalte gleich null gesetzt, als Nichtbasisvariable aufgefaßt und nicht
in den Verteilungsplan eingetragen. Die entsprechende Zeile oder Spalte wird von den
weiteren Betrachtungen ausgeschlossen. Liegt nur noch eine Zeile, aber mehrere Spal-
ten vor, dann ist eine Spalte zu streichen. Liegt dagegen nur noch eine Spalte, aber
mehrere Zeilen vor, so ist eine Zeile zu streichen.

Anschließend wird in allen drei Fällen

a1 durch a1 — x11: a1 ~ min (a1, b1) und

b1 durch b1 — x11 : b1 — min (a1, b1) ersetzt. \

Die Berechnungen beginnen erneut in der NW-Ecke der reduzierten Lösungsmatrix
und werden solange wiederholt, bis alle Variablen als Basisvariable (BV) bzw. Nicht-
basisvariable (NBV) festgelegt sind. Im ganzen werden m + n — l Eintragungen vor-
genommen. Falls einer der m + n — l Werte null ist, so ist diese Null unbedingt ein-
zutragen, da diese Null eine BV ist, die von den NBV zu unterscheiden ist.

Nach dieser Regel werden genau m + n — 1 Variable ausgewählt, denn diese An-
zahl stimmt mit der Anzahl der Zeilen und Spalten überein, wenn von ihr 1 subtrahiert
wird, da bei dem letzten Schritt sowohl die Spalte als auch die Zeile gestrichen wird.
Damit ist Satz 4.2 bewiesen. I
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Wird die NWR auf das Beispiel angewendet, so entstehen der Reihe nach die in den
folgenden Matrizen eingetragenen Lösungskomponenten:

'5 n5
x: 11

s
5997

'56 so
x: ]11

_ s
M97
o3

‘S6 60
x: 3 Jug (4-3)

_ s
5997
03

0

F56 60
x= 3s Jnso

_ s
599
031

o

56 ll
x„_ 38 11

4.9
l7 8 ()

5997

Die Matrix X0 aus (4.9) ist die sich nach der NWR ergebende Ausgangslösung.

Satz 4.3: Eine Lösung X = [x‚-‚-] ist dann und nur dann optimale Lösung eines Tmns- S.4.3
portprablems mit der Kostenmatrix C: [c,-‚-]‚ wenn X optimale Lösung des gleichen
Transportproblems, aber mit der Kostenmatrix

D = [dij] = [Cu + Pa + qil
ist, wobei pg, q‚- beliebige Zahlen sind. Die Matrizen C und D heißen äquivalent.

Beweis: Die Zielfunktion zur Kostenmatrix D = [(1,7] wird mit Z+ und die zur
Kostenmatrix C mit Z bezeichnet.

Z+(X)=1§:]_=§1'dz'1xr7 = [Cu + Pi + 517] xi:

= €615 x114‘ JZPiXz'z'+ jzqixn

= "z‘1x:7+ 1217i (JZXU) + Jzqiigxn‘)

= 2i1§'CijX¢7+ 1Zp,,a1+ jZq,b,.
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Der Ausdruck pga; + I/‚bi ist konstant (unabhängig von X) und wird mit e

bezeichnet. Es gilt also

Z*(X) = Z(X) + c.

Damit ist gezeigt, daß die Zielfunktionen Z und 2* sich für jede beliebige Lösung X
nur um den gleichen konstanten Faktor c unterscheiden, also:

Ist X zur Kostenmatrix [c,»,-] optimal, so ist X auch zur Kostenmatrix [d‚-‚-] optimal
und umgekehrt. I

Auf Grund dieses Satzes kann folgendes Vorgehen bei der Lösung gewählt wer-

den. Die Matrix [c‚-,-] ist in eine solche Matrix [d‚-‚-] umzuformen, daß unmittelbar eine
optimale Lösung aus der Matrix [d‚-‚] abgelesen werden kann. Damit ist die auf diese
Weise gefundene Lösung ein gesuchter optimaler Transportplan zur Ausgangs-
matrix [cii].

Die angedeutete Umwandlung der Matrix [c‚-‚-] in die gewünschte Matrix [d,«,-] wird
durch mehrere Iterationsschritte vollzogen. Aus diesem Grunde wird die Ausgangs-
matrix C e: [c‚-‚-] mit C0 : (C : [c,-,»]) = [c,-,-0] bezeichnet. Grundlage für die einzelnen
Iterationen bilden die zulässigen Basislösungen, da nach dem Simplextheorem das
Optimum an einer zulässigen Basislösung angenommen wird.

Es gibt eine Reihe von Methoden, die zu einer zulässigen Basislösung (genau
m s n — 1 Basisvariable) führen.

Eine erste Möglichkeit, eine ZBL zu ermitteln, ist die bereits erläuterte NWR. Nach
dieser Regel werden genau m + n — l Variable als Basisvariable ausgewählt. Es bleibt
noch zu zeigen, daß die zu diesen Variablen gehörenden Vektoren pi") auch linear
unabhängig sind. Rechentechnisch ist diese ZBL nicht sehr praktisch, da die Basis-
variablen unter Nichtbeachtung der Werte der Koeffizienten der Zielfunktion ge-
wählt werden. Die Anzahl der Iterationen zur Ermittlung einer optimalen ZBL kann
erheblich reduziert werden, wenn zur Auswahl der Basisvariablen diese Kostenkoef-
fizienten berücksichtigt werden.

Im folgenden werden noch zwei weitere Methoden erläutert, die unter besonderer
Berücksichtigung der Kostenmatrix zur Ermittlung einerzulässigen Basislösungführen.

Die Methode des kleinsten Elementes." Bei der Methode des kleinsten Elementes
wird das kleinste Element der Kostenmatrix C = [c,~,»] betrachtet. Wird dieses Ele-
ment mit c„_‚ bezeichnet, so gilt:

a}, = min {c,»,~}; i: l, ..., m; j: I, ..., n.
(M)

(r, s) kann immer eindeutig bestimmt werden, wenn zusätzlich gefordert wird, daß
bei mehreren kleinsten Elementen das Element bevorzugt wird, bei dem der erste
Index am kleinsten ist. Anschließend wird

xrs = min (an bx)

gesetzt und als Basisvariable eingetragen. Genau wie bei der NWR wird auch hier

a, durch a, — x„ = a, ~ min (a,, b_,)

und
b„. durch b, — x„ 2 b, — min (a,, b,)
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ersetzt. Ist min (a,, bx) 2 a, bzw. bx, so wird die Zeile r bzw. Spalte r der Matrix [c‚-‚-]

von den weiteren Betrachtungen ausgeschlossen. Gilt a, = b5, so wird entweder die
Zeile oder die Spalte ausgeschlossen. Liegt nur noch eine Zeile, aber mehrere Spalten
vor, dann ist eine Spalte zu streichen. Liegt dagegen nur noch eine Spalte, aber meh-
rere Zeilen vor, so ist eine Zeile zu streichen. Die Berechnungen beginnen erneut mit
der reduzierten Lösungsmatrix und werden solange wiederholt, bis alle Variablen
festgelegt sind.

Auch hier werden wie bei der NWR genau m + n — l Eintragungen vorgenom-
men. Wird diese Methode auf das Beispiel aus 4.1.1. angewendet, so entstehen der
Reihe nach die in die Matrizen (4.10) bis (4.11) eingetragenen Lösungskomponenten.

7s 5 3’ ‘ ‘l1
c: 2459 _x= 11

6—3—(1)—2 A ‚ 8 J s o
5997

1

7 853- r '11
C: (25459 X: 5 116

i _ s _i<o
6~3-1~-2- 59917

o 1

7s5(‘3)- i 7"114 (4-10)

c= 2459 x: 5 116
i i _ s _80
64-1-2- 5997

010

7 353- r 7114
i iC: 24,044 x: 56 1160

_ s _$o
5"3“1‘2 - 5997

0310
78(5)3' 3l7‘ll

c— 2459 56 11

6312_ °= s _s (“Ü
5997

In (4.11) ist der vollständige Lösungsplan Xi, angegeben.

Die Vogelsche Approximatiansmethode
Von jeder Reihe (Zeile oder Spalte) der Kostenmatrix C wird die Differenz der zwei

kleinsten Elemente gebildet. Anschließend wird von einer Reihe mit der größten Diffe-
renz das kleinste Element bestimmt. Ohne Beschränkung der Allgemeinheit kann an-
genommen werden, daß das Element cu der Matrix C diese Eigenschaften besitzt.
Anschließend wird wie bei der NWR verfahren.

Es wird x11 = min (a1, b,) gesetzt und in den Verteilungsplan eingetragen. Anschlie-
ßend wird wieder eine Reihe der Matrix von den weiteren Betrachtungen ausgeschlos-
sen und al bzw. bl durch a1 — xn bzw. b, — x11 ersetzt. Die Berechnungen beginnen
erneut mit den noch nicht ausgeschlossenen Elementen der Koeffizientenmatrix und
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werden so lange wiederholt, bis alle Variablen festgelegt sind. Ist in einer Reihe nur

noch ein Element zu berücksichtigen, so wird die diesem Element entsprechende
Lösungskomponente vorrngiga behandelt. Auch hier werden wie bei der NWR genau
m —i- n — 1 Eintragungen vorgenommen. 1 ‘

Diese Approximationsmethode wird ebenfalls am Beispiel aus 4.1.1. erläutert:
4141 _

2 7853 11

c=2[(2)459J x=[5 J116 (412)
1 6312 8

5997
0

Von jeder Reihe der Matrix C sind die Differenzen der zwei kleinsten Elemente links
und oberhalb der Matrix in (4.12) vermerkt. Im Beispiel kann sowohl die 1. als auch
die 3. Spalte als Reihe der größten Differenz gewählt werden. Die 1. Spalte wird bevor—
zugt. Das kleinste Element cm = 2 ist in C durch Klammern besonders markiert. Die
dem c2, entsprechende Variable x21 der Matrix X wird optimal gewählt und einge-
tragen, also x21 = min (a2, bl) = min (l1,5) = 5. Die 1. Spalte wird gestrichen und
die Berechnungen werden wiederholt. In (4.13) sind die Eintragungen des nach-
folgenden analogen Schrittes vorgenommen.

141
2 7853 11

c=1 24 5 9 x: 5 6 (4,13)

1 63(1)2 8 so
0997

1

In (4.14) ~ (4.16) sind die restlichen Berechnungen der Reihe nach eingetragen:

406
2 785(3) . 7 114

c=1 ‘2459 x: s 6 (4_14)

643—1—2 8 o
0917

o

4o’
3 7353 7 4

l ;

c=1 2(4)59 x= 56 60 (4.15)
l l

6—3~1—2 s o
0910

3

7853 31711

c: 2459 x,,= 56 11 (4.16)

6312 8 8

5997
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In (4.16) ist mit X“ die endgültige Approximationslösung bezeichnet. Genau 3 + 4 A 1

= 6 Variable sind größer als null.

Durch die drei angeführten Methoden wird jeweils eine Basislösung erhalten. Um
diesen Sachverhalt zu beweisen, werden folgende Festlegungen getroffen:

Eine beliebige Menge von Lösungskomponenten heiße Kombination. Eine Folge
von Lösungskomponenten der Form

xiiin xiiiga xigigs xixjza

soll eine Kette heißen. Eine Kette heißt ein Zyklus, wenn sie die Gestalt

Xt‚5„ xmp 75m3, ---‚ XML, xiii;

hat. Eine Kombination heißt zyklisch, wenn sie wenigstens einen Zyklus enthält,
andernfalls heißt sie nichtzyklisch.

Satz 4.4: Jede Menge von Vektoren pi"? ist dann und nur dann linear abhängig, wenn
die dazu gehörende Kombination zyklisch ist. (pW ist der Spaltenvektor der Neben-
bedingungen von (4.7), der zur ‘Variablen x,»,~ gehört).

Beweis: Wenn die Menge p('7> linear abhängig ist, dann existiert eine nichttriviale
Linearkombination, die den Nullvektor ergibt. plülz) sei ohne Beschränkung der All-
gemeinheit ein Vektor, dessen Koeffizient der Linearkombination von null verschie-
den ist. Da der Nullvektor als Linearkombination entstehen soll, muß der Vektor
pÜ-hl mit nichtverschwindendcn Koeffizienten zur Linearkombination gehören.
Ebenso muß noch ein Vektor p<"z"x> mit nichtverschwindenden Koeffizienten dazu
gehören, da die (m + j2)—te Komponente von p<":72J von null verschieden ist. Es kann
somit eine Folge von Vektoren konstruiert werden:

Pan‘), p<-32".), „mm,

Andererseits ist die Anzahl der Vektoren endlich, d.h., es muß der Vektor pWn) ent-
halten sein. Die dazugehörige Menge der Komponenten x,»,- ist aber zyklisch.

Ist andererseits die Kombination, die zur Vektormenge pm") gehört, zyklisch, so

sind die entsprechenden Vektoren dieser Kombination linear abhängig, denn es kann
sofort eine nichttriviale Linearkombination angegeben werden, wenn die Koeffi-
zienten der Linearkombination‚ die dem Zyklus entsprechen, abwechselnd +1 oder
—l gesetzt werden. I

Satz 4.5: Jede Menge von m + n Läsungskomponenten ist zyklisch.

Beweis: Da alle m + n Vektoren p’-'7) zu dem Vektor mit den Komponenten

m l1

/j""-\ /--"+
-1, —l‚ ...‚ —l; +1, ...‚ +1

orthogonal sind, folgt, daß alle Vektoren einem (m + n — 1)-dimensionalen Raum an-
gehören, d.h., sie sind linear abhängig. Also ist die Menge der m + n Lösungskom-
ponenten zyklisch. I

Weiterhin folgt aus der NWR unmittelbar, daß die Kombination der m + n — l
Basisvariablen nicht zyklisch ist, also sind die dazugehörigen Vektoren linear unab-
hängig und bilden damit eine Basis im (m + n)—dimensionalen Raum.

S.4.4

S.4.5
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Damit sind alle Basen des (nz + n)-dimensionalen Raumes des vorliegenden allge-
meinen Transportproblems und die nichtzyklischen Mengen aus m + n — 1 Lösungs-
komponenten einander umkehrbar eindeutig zugeordnet, und es lassen sich alle Eigen-
schaften der Basen mehrdimensionaler Räume aufdiese nichtzyklischen Kombinationen
mit m +11 — 1 Lösungskomponenten übertragen. Es sollen hier zwei wichtige Eigen-
schaften genannt werden:

Eigenschaft 1:
K, sei eine nichtzyklische Kombination mit m + n — l Elementen, und x‚-‚- sei

nicht in ihr enthalten. Dann enthält die Kombination , die aus K, durch Hinzu-
fügen von x,»,» erhalten wird, einen und nur einen Zyklus K.

Eigenschaft 2:
Ist E, = x,»,~ und 2;, E K und wird 5g,- aus K2 gestrichen, so ist die daraus entstehende

Kombination von m + h — 1 Elementen wieder nichtzyklisch.

Die Potentialmethode als Lösungsalgorithmus

Nachdem eine ZBL X0 mit genau m + n — l BV und die Kostenmatrix C0 des
Transportproblems vorliegt, kann der Lösungsalgorithmus mit der Ausführung der
1. Iteration begonnen werden.

Um nicht die erste, sondern eine beliebige Iteration allgemein zu erläutern, wird
angenommen, daß die k-te Iteration bereits durchgeführt ist. Nach der k-ten Itera-
tion bereits liegen die folgenden Matrizen vor:

1. eine zulässige Basislösung X,, = (genau m + n — l BV),
2. eine Matrix Ck =

Diese beiden Matrizen sind der Reihe nach durch k-malige Umformung infolge der
bereits ausgeführten k Iterationen aus X0 und C0 hervorgegangen. k = 0 zeigt an, daß
noch keine Iteration durchgeführt ist.

Durchführung der (k + l)-ten Iteration:

Schritt I: Berechnung der Matrix CH, = [cg-+1];

a) Zuerst werden m Zahlen pi‘ und n Zahlen qf aus folgendem Gleichungssystem
berechnet:

pf+q§°+c5‘,.:o für 1;; mit x{‘,.Bv. (4.17)

Dieses Gleichungssystem besteht aus m + n — 1 linearen inhomogenen Gleichungen
mit m + n Unbekannten. Der Rang der Koeffizientenmatrix stimmt mit dem Rang
der erweiterten Matrix überein und ist gleich m + n — l, denn die Koeffizienten—
matrix ist gleich der Transponierten der Matrix der Basisvektoren. Das Gleichungs-
system (4.17) wird demnach durch einfach unendlich viele Lösungen erfüllt. Für die
nachfolgende Umformung ist eine einzige Lösung ausreichend. Diese Lösung wird
erhalten, indem ohne Beschränkung der Allgemeinheit p’; 2 0 gesetzt wird. Die restli-
chen Lösungskomponenten sind äußerst praktisch zu berechnen. Diese Berechnung
wird am nachfolgenden Beispiel ausführlich demonstriert.

b) Nach der Lösung des Gleichungssystems (4.17) wird die Matrix CH, berechnet.
Es gilt:

cm1 = [cicjfl] = lC'5‚-+pf°+ ‘I; -
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Die Matrix CH, hat die Eigenschaft, daß alle ihre Elemente gleich null sind, die den
Basisvariablen der Lösung X„. entsprechen.

c) Die Lösungsmatrix X„ wird mit Hilfe der Matrix CM auf Optimalität getestet.
Mit Zk+1 wird die Zielfunktion bezeichnet, die der Matrix Cm entspricht. Es gilt
Z„„(X„) = O. Ist min (c:»}+1) 2 CS1 20, so folgt, daß X„ optimal zu Z‚_.„(X„) ist, und
damit folgt nach Satz 4.3, daß X,, eine optimale Lösung ist. Ist cg” < 0, so kann nach
Schritt 2 eine zulässige Basislösung (ZBL) XL.“ aufgestellt werden, für die

_ Z0(Xk+l) g
gilt.

Schritt 2: Berechnung von X„„
Es wird Xfiq = 0k gesetzt. Anschließend werden die ursprünglichen BV neu berech-

net. Alle anderen Elemente von X). bleiben nach wie vor null.
Im nachfolgenden Beispiel ist die praktische Berechnung der BV ersichtlich.

Wird die so entstehende Lösung mit X) = bezeichnet, so gilt

V Z1~16(k): 55:1 ' 0k-

Damit der Funktionswert möglichst klein wird, ist 0L. so groß wie möglich zu wählen,

da vgl < 0 ist. Andererseits kann aber 0„ nicht größer als

min = x12

für i, j mit

= — 8,.

gewählt werden. Wird 0,, = x55 in die Lösung Xi eingesetzt, so entsteht die Lösung
Xhl. Nach der Eigenschaft 2 ist X“, wieder eine Basislösung, d.h., die m + n — l BV
bilden keine zyklische Kombination. Es gilt:

Zk+1(Xk+l) = 9;;-1 ‘ xlrcs »

Nach Satz 4.3 gilt weiter

zo(x1-1)= zum) + cijlxi, .

Mit der Erstellung der Matrizen X‚_„ und CH, ist die (k + l)—te Iteration beendet. Im
folgenden wird das Beispiel aus Tabelle 4.1 mit dem angegebenen Iterationsalgorith-
mus gelöst. Die Kostenmatrix C0 und die nach der NWR gebildete ZBL X0 in (4.9)
haben die folgende Form:

(7) (8) 5 3 p,° 5 6 . . 11

c0: 2 (4) (5) 9 pg), X.,= 3 8 . 11 (4.18)

6 3 (i) (2) p30 ..17 8

41° 42° 43° qi” 5 9 9 7

Die Gesamttransportkosten werden mit Z0 bezeichnet:

Z0(Xo) = 150.
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In der Matrix X0 sind nur die m + n — l BV eingetragen. Die den BV entsprechenden
Elemente der Matrix C0 sind durch Klammern hervorgehoben.

I. Iteration.‘

Schritt 1: Die Matrix C0 wird zu einer Matrix C, umgeformt, indem zeilen- und
spaltenweise der Reihe nach die noch zu bestimmenden Zahlen pl", P20, p30 und q,°,
q2°, q-3°, q,” addiert werden. Diese Zahlen sind zusätzlich rechts und unterhalb der
Matrix Co in (4.18) eingetragen. Es gilt also:

7 +Pi0+ 410 8+P10+ 42° 5+P1O+ 43° 3+P1O+ 44°

C; = 2+p2°+ 41° 4+p2°+ 42° 5 +p2”+ I13" 9 +p2"+q4" -

6+P30+ 910 3+Pa°+ 420 l+173°+ 43° 2 +1730 ‘l’ 4:0

Die Zahlen p,-° und qj° werden nun so bestimmt, daß alle Elemente von C, gleich null
gesetzt werden, die den BV von X0 entsprechen:

171° + 41° = *7,
P10 ‘i’ 420 = "8,

P20 “l” 42° = -4,
P20 + 430 = ‘5,

P30 + 430 = ‘I;
P30 + 44° = *2 -

Die Koeffizientenmatrix von (4.19) ist gleich der Transponierten zur Matrix der ent-
sprechenden Basisvektoren, hat also den Rang 6. Wird 121° = 0 gesetzt, so folgt:

1710: 0a 410: -7:
172° = 4, I12“ = -8‚
P30 = 8: 430 = *9:

q,° = ——10.

Diese p,- und q,- sind ohne erheblichen praktischen Rechenaufwand auch folgender-
maßen zu ermitteln:

Es wird p‚° = 0 gesetzt. Anschließend werden die q]-0 derjenigen Spalten von C0, die
in der I. Zeile ein „Klammerelement“ besitzen, so bestimmt, daß die den „Klammer—
elementen“ entsprechenden Elemente der zu berechnenden Matrix C, gleich null
werden. Es entsteht:

(U (8) 5 3 Ih° = 0

Co = 2 (4) (5) 9

6 3 (1) (2)

(4.19)

Anschließend werden die p,-° derjenigen Zeilen analog bestimmt, die in den zuvor

betrachteten Spalten „Klammerelemente“ besitzen. Dieses Vorgehen wird solange
wiederholt, bis alle Zahlen p, und q,- ermittelt worden sind.
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Es entstehen die in den Matrizen (4.20) angegebenen Ergebnisse:

r (7) (s) 5 3 “ o

c„= 2 (4) (5) 9 +4

6 3 (1) (2).
-7 —-8

" (7) (8) 5 3 ‘ o

C„: 2 (4) (5) 9 +4 (4.20)

6 3 (1) (2)-
—7 vs ~9

‘ (7) (8) 5 3 ‘ o

q: 2 (4) (5) 9 +4
6 3 (l) (2)j+8

-7 -8 -9

r (7) (8) 5 3 " o

co: 2 (4) (5) 9 +4 (4.21)

6 3 (1) (2))+8
-7 -8 -9 -10

In (4.21) sind schließlich die gesuchten Zahlen vollständig angegeben. Die Matrix C,
nimmt damit die folgende Gestalt an:

0 0 —4 -7
C1=[—1 0 0 3m (4.22)

7 3 O 0

Die Matrizen C0 und C1 sind nach Satz 3 äquivalent. Wird die Zielfunktion der
Matrix C, mit Z, bezeichnet, so gilt: ’

Z1(Xo) = 0-

Die Gesamttransportkosten der Lösung X0 bezogen auf die äquivalente Matrix C,
betragen null. C, enthält die drei negativen Elemente —l, -4, —7.

Schritt 2: Es wird die Variable x.-,~, die ‘dem kleinsten Element -7 entspricht, gleich
(90 gesetzt; also x94 = Q0.

Anschließend werden die Basisvariablen von X0 neu berechnet. Es entsteht die
Lösung X0 mit

5 6 — 0,, - 00 ll
X0: - 3+0(, 8-00 - ll (4.23)

1 + 90 7 — 9„ 8

5 9 9 7
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Zur Berechnung der Lösung X0 kann folgendes Vorgehen gewählt werden: Man
geht von X0 aus; an die Stelle x94 wird Q0 gesetzt. In dieser nunmehr vorliegenden
zyklischen Kombination wird der eindeutige Zyklus bestimmt, indem alle Spalten, die
nur ein Element der Kombination enthalten, gestrichen werden. Anschließend streicht
man alle Zeilen, die von der reduzierten Matrix Xc. nur noch ein Element der Kombi-
nation enthalten. Diese Reduzierung wird solange wiederholt, bis keine Reihe mehr
zu streichen ist. Die nicht mehr reduzierbaren Elemente der Kombination bilden den
Zyklus. Der Zyklus ist nach der Streichung der 1. Spalte der Matrix X0 in (4.24) ein-
gezeichnet.

/T
5 (6 ' (90

X.‚: 1 ' - (4.24)

l 7
I \‚1

Die Durchlaufrichtung des Zyklus ist bedeutungslos. Wenn die Elemente des
Zyklus der Reihe nach durchnumeriert werden, indem bei 00 als 1. Element be-
gonnen wird, so entsteht aus X0 die Matrix X0, wenn von allen geraden Zyklusele-
menten Q„ subtrahiert und zu allen ungeraden Elementen (außer dem 1. Element)
90 addiert wird.

Die Matrix X, entsteht aus X0, wenn 9., gleich dem Minimum der geraden Ele-
mente im Zyklus gesetzt wird:

00 = min {6, 8, 7} = 6. (4.25)

Wird 90 = 6 in X, eingesetzt, so entsteht die in (4.26) angegebene Matrix X1:

5 - - 6 11

X,=[-92-J11. (4.26)

. 7 1 8 '

5 9 9 7

Es gilt:

Z‚(X‚) = -7 - 6 = -42.

Nach Satz 3 gilt:

Z„(X,) = 150 — 42 = 108.

Die Probe bestätigt diese Kosten. Damit ist die l. Iteration beendet.

Im Zyklus der Matrix X0 wird das kleinste gerade Element x„ gleich null, wenn

Q0 z 6 gesetzt wird; es wird aus dem Zyklus herausgenommen und wird NBV und
nicht mehr eingetragen. Die restlichen m + n — I Elemente sind zyklenfrei und bilden
die neuen BV. Falls im allgemeinen Fall mehrere gerade Elemente gleich null werden,
wenn der größtmögliche Wert für 0, in X,‘ eingesetzt wird, so darf nur ein gerades
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Element, welches null ist, aus dem Zyklus als neue NBV herausgenommen werden.
Mit den restlichen Nullelementen im Zyklus wird als BV so weitergerechnet, als ob
sie von null verschieden sindfi)

Die 1. und die weiteren Iterationen zusammengestellt liefern folgende Ergebnisse:

'(7) (s) 5 39 o _ s6—9„ 0., 11

c0: 2 (4) (s) 9 +4, x0: 3+9„ 8-0., 11,

L 6 3 (1) (2)‚+s 1+0„ 7—9„_ s

-7 —s —9 —1o 5 9 9 7
‚5 6 ‚

x0: 3s ;

_ 1 7s
z„(x„)=1so.

1. Iteration:
’(o) o —4 (—7)' o 5-0. 6+01 11

c,= -1 (0) (o) 3 —7‚ E: 0, 92-0, 11,

L 7 3 (o) (o) —7 7+8‚1—6‚ 8

o 7 7 7 5 9 9 7
,5 6s

X‚= 9 2 ;

l 7 1s
min(c};)=c%4=—7<0;

00:6,
24x1): 150 — 42 z 1os.

2. Iteration:
(0)7 3 (o) o *4 7 11

c„=[(—s) (o) (o) 3 8, X2= 19 1 11,

o 3 (o) o V8 8 8

0‘—8 -3 0 5 9 9 7

4-02 02 7’11
x,=[1+02 91—(-)2 11

8 _ s

5 9 9 7

min (c2) = C31: -8 < 0;

01 =1;
Zo(X2)= 108 — 8- l

= 100.

1) Wenn mehrere gerade Elemente im Zyklus von K, gleich null werden, so ist das Transport-
problem entartet (vgl. Schluß des Abschnittes).
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3. Iteration:
(0) —l (-5) (0)' O 3 l 7 ll

C3: (0) (0) 0 11 0,. X3: 2 9 ll,
8 3 (0) 8 -5 i 8 8

O 0 5 0 5 9 9 7

3-93 1+03 7 11

i3=':2+03 9-93 ]11;
63 8-03 8

5 9 9 7

min (cf-g) z c§;,= -5 < 0,

02:1.
Zo(X3)=l00—5=95.

4. Iteration:
O —l (0) (0) 0 4.7 ll

C4=[(0) (0) 5 11 J-Z, X4=[5 6 J11
3 (-2) (0) 3 0 3 5 8

2 2 0 0 5 9 9 7

nun(c:‚>=c;2=—2<o;
9a=3‚

Z0(X4)=95~6=89.
5. Iteration:

2 1 0 0

C5: 0 O 3 9 ,

,5 0 0 3

aus min (cf-g) = 0 g 0 folgt, X4 ist Optimallösung; Z.,(X4) = 89.

Der Entartungsfall
Ein allgemeines lineares Optimierungsproblem ist entartet; wenn eine ZBL vor-

handen ist, in der mindestens eine BV gleich null ist. Ein Transportproblem ist ent-
artet, wenn eine ZBL existiert, in der nicht alle m + n — 1 BV von null verschieden
sind. Dieser Entartungsfall kann vermieden werden, wenn das „gestörte“ Transport-
problem (4.27) betrachtet wird, welches aus (4.5) durch Einführung eines 5 > 0 her-
vorgeht.

(4.27)
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Für e = 0 entsteht das Ausgangsproblem. Es kann gezeigt werden, daß in jeder ZBL
alle m + n — 1 BV größer als null sind, d.h. keine zulässige BL entartet ist, wenn

‚ ,1
0x.s<~——

m

gilt. Wird das gestörte Problem gelöst und anschließend e = 0 gesetzt, so ist die erhal-
tene Lösung optimal. Für die praktische Berechnung ist aber der Entartungsfall ohne
Bedeutung. Eine „s-Störung“ braucht nicht vorgenommen zu werden. Sind in dem
Zyklus der Matrix Xk bei maximaler Wahl von 01. mehrere Variable gleich null, so
wird nur eine von diesen BV als neue NBV gewählt. Diese Wahl kann rein zufällig
geschehen.

Aufgabe 4.1: Von drei Zementfabriken, die alle die gleiche Qualität herstellen und auch die gleichen
Kapazitäten von 20t in einem bestimmten Zeitabschnitt haben, werden fünf Betonwerke beliefert,
die in dem gleichen Zeitabschnitt den Bedarf von B‚: 15 t, B2: l1 t, B3: l2 t, B4: 9 t, B5: 13 t haben.
Die Transportkosten einer Tonne Zement von den Zementfabriken zu den Betonwerken sind in der
folgenden Tabelle gegeben:

l B1 l 132 | B3 l B4 l B5

2. 14 16 ’ 12 | 4 14

z, 13 12 1o — 15

23 15 1s 14 i 7 11

Wegen Straßenbauarbeiten ist die Strecke von Z2 nach B4 gesperrt. Es sind der optimale Transport-
plan und die dazugehörenden Transportkosten zu bestimmen.

Aufgabe 4.2: Von 4 Öltanks sollen 3 große Heizhäuser mit Heizöl beliefert werden. Der Bedarf der
Heizhäuser sei 20, 30. 50 Einheiten. Die zur Verfügung stehenden Mengen seien 25, 25, 20, 30 Ein-
heiten in einem bestimmten Zeitabschnitt. Die Transportkosten pro Einheit sind in der nachstehenden
Matrix gegeben. Es ist der optimale Transportplan und die dazugehörenden Transportkosten zu be«

rechnen.

8 12 4
10 11 5

14 13 10

9 10 3

4.1.3. Verallgemeinerungen des Transportproblems

In den vorhergehenden Abschnitten 4.1.1. und 4.1.2. wurde das sogenannte „klas-
sische“ Transportproblem betrachtet, indem drei bestimmte Voraussetzungen zu
Grunde gelegt wurden:

1. Gleiche Qualität des Transportgutes bei allen Erzeugern.

2. Alle vorgegebenen Ausgangsdaten beziehen sich auf ein fest vorgegebenes Zeit-
intervall.

9 Se1fTarl,OpKimEcrung
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3. Die Gesamterzeugung ist gleich Gesamtverbrauch

‘I/I YL

2' a, = Z b,.
.'=1 j=1

Bei praktischen Problemstellungen sind diese Voraussetzungen oft nicht erfüllt. So
ist die Gesamterzeugung in einer vorgegebenen Zeitperiode im allgemeinen von dem
Gesamtverbrauch verschieden. Trotzdem lassen sich diese und ähnliche veränderten
Probleme durch einfache Modifikationen auf das „klassische“ Transportproblem
zurückführen.

1. Wird angenommen, daß die Gesamterzeugung größer als der Gesamtverbrauch
ist, so kann ein scheinbarer (fiktiver) Verbraucher zunächst eingeführt werden, der
scheinbar die überschüssige Menge bezieht, die aber in Wirklichkeit gar nicht zur
Verteilung kommt, sie wird als Reservemenge bei dem einen oder anderen Erzeuger
in noch zu bestimmenden Einheiten zu lagern sein. Um die vorliegende Problemstel-
lung nicht zu erschweren, wird von eventuell anfallenden Lagerkosten abgesehen.
Liegt also ein Problem mit m Erzeugern E; (i= 1, ...‚ m) und n Verbrauchern V,
(j: l, ...‚ n) vor und gilt

f“: > 31b]!
i-l 3-1

so wird ein fiktiver Verbraucher V„„ eingeführt. Sein Bedarf b„„ wird als Differenz
zwischen Gesamterzeugung und Gesamtverbrauch angesetzt, also

m u

bn+1 = Eai- Ebl‘
I'=1 j=1

Die Transportkostenkoeffizienten c‚—_„+, (i = 1, ..., m) von den einzelnen Erzeugern,
bezogen auf den fiktiven Verbraucher, werden alle gleich null gesetzt. Das muß so

sein, weil in Wirklichkeit keine Transportkosten anfallen. Es gilt also ü

V _.

c«‘:n+1 — 0~

Das nunmehr neu entstandene Ersatzproblem mit m Erzeugern und n + 1 Verbrau-
chern ist aber ein „klassisches“ Transportproblem und kann als solches zur Lösung
geführt werden. An dem folgenden Beispiel wird das Vorgehen verdeutlicht:

Gegeben ist folgendes Problem

V, V2 V3

E,3426
E21348

5 3 4 l4>l2

Gesamterzeugung: l4 Einheiten, Gesamtverbrauch: 12 Einheiten.
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Das Ersatzproblem lautet:

V, V, V, V,

E1/34206
5,13408

5342 l4=l4

Der Bedarf des scheinbaren Verbrauchers ist mit 2 Einheiten anzusetzen. Die auf V,
bezogenen Transportkoeffizienten sind alle gleich null.

Die optimale Lösung dieses Ersatzproblems, die mit der Potentialmethode ermit-
telt werden kann, lautet:

--42'6
X„=

53--8
5342

Die optimale Lösung des Ausgangsproblems lautet damit: Der Ezeuger E1 hat
4 Einheiten seiner Gesamterzeugung an den Verbraucher V3 zu liefern, 2 Einheiten
werden von E1 nicht ausgeliefert, sie werden bei dem Erzeuger E1 für spätere Anfor-
derungen gelagert. E2 hat dagegen alle 8 Erzeugungseinheiten auszuliefern.

2. Fällt bei praktischen Problemstellungen die Gesamterzeugung kleiner als der
Gesamtverbrauch aus, so wird das Optimierungsziel, Minimierung der Gesamttrans-
portkosten im allgemeinen nicht im Vordergrund stehen, da andere verteilungspoli-
tisehe Gesichtspunkte zu berücksichtigen sind, um den Bedarf der Verbraucher best-
möglich abzudecken, die transportkostenmäßig ungünstig liegen. Trotzdem sind sol-
che Problemstellungen, bei denen die Verteilung nach minimalen Gesamttransport-
kosten gesucht ist, von Bedeutung, wenn z.B. Fehlmengen durch Importe abgedeckt
werden können oder aber die Verbraucher Zwischenlager halten, deren Gesamtlager-
kapazität in der Regel größer als die Gesamterzeugungsmenge ist.

Gilt also
77l 7L

Z 51i < Z by,
i=1 j=1

so wird ein fiktiver Erzeuger Em} eingeführt. Seine Erzeugungsmenge am“ wird als
Differenz zwischen Gesamtverbrauch und Gesamterzeugung angesetzt, also

ll 71l

17m4 = Eb; — Ear
.7 1 1:1

Die Transportkostenkoeffizienten cmlm-(j: 1, ...‚n) vom fiktiven Erzeuger EM,
zu den einzelnen Verbrauchern werden alle gleich null gesetzt, da in Wirklichkeit keine
Transportkosten anfallen. Das nunmehr entstandene Ersatzproblem kann wieder
als „klassisches“ Transportproblem gelöst werden.

3. Bei manchen praktischen Transportproblemen kommen oft zusätzliche Be—

schränkungen in der Form hinzu, daß die Anzahl der zu transportierenden Einheiten

gar
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eine vorgegebene Schranke nicht überschreiten darf. Durch eine einfache Modifika-
tion des Ausgangsproblems kann ein äquivalentes „klassisches“ Ersatzproblem kon-
struiert werden, und somit kann es mit den bekannten Methoden zur Lösung geführt
werden. ‚

Gegeben sei das folgende Beispiel:

V, V, V3

E,58l 18

E2875 14

71015 32=32

Bei der Aufstellung des optimalen Transportproblems ist darauf zu achten, daß aus
verkehrstechnischen Gründen auf der Strecke E, V, höchstens 8 Einheiten befördert
werden können, In der Tabelle 4.5 ist ein modifiziertes Transportproblem angegeben,

Tabelle 4.5

V, V2 V,

15„ 5 8 1 8

E12 5 8 M 10

E, s 7 5 14

71015 32:32
indem der Erzeuger E, in zwei Erzeuger E„ und E, 2 aufgegliedert wurde. E„ erzeugt
von den 18 Einheiten 8 und E12 die restlichen 10 Einheiten. E,2 kann nur die Ver-
braucher V, und V2 beliefern. Die Verbindung Em — V, wurde ausgeschlossen, indem
der Transportkostenkoeffizient M hinreichend groß gewählt wurde.

Die optimale Lösung X0 des in der Tabelle 4.5 angegebenen Problems lautet
8 ‚

Z, = 7 3

7 7

Die optimale Lösung X0 , bezogen auf das Ausgangsproblem, hat dann folgende Form:

7 3 8
x0 = ‚ .

0 7 7

Besteht die Forderung, daß die Strecken von E, zu den einzelnen Verbrauchern
z.B. nur mit 6 Einheiten befahren werden können, so wird entsprechend der Tabelle
4.6 ein äquivalentes Transportproblem angegeben, indem der Erzeuger E2 in drei
Erzeuger E“, E22 und E23 aufgegliedert wird. Die Erzeugungsmengen aller E2,-

(j: 1,2, 3) werden mit 6 Einheiten angesetzt. Bestimmte Transportkoeffizienten
werden hinreichend groß gewählt und mit M bezeichnet, da auf diesen Transport-
wegen jeglicher Transport auszuschließen ist. Da E? aber nur 14 Einheiten erzeugt,
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werden die überzähligen Einheiten (im Beispiel 3- 6 — 14 = 4) von einem fiktiven
Verbraucher aufgenommen, dessen Transportkoeffizienten wieder alle gleich nul]
gesetzt werden bis auf die Verbindung E1 V4, die mit M angesetzt wird. Auf der Ver-
bindung E,V, darf also kein Transport stattfinden.

Tabelle 4.6

V1 V2 V3 V4

E, 5 8 1 M L8

E21 s M M o 6

E22 M 7 M 0 6

E23 M M 5 0 6

710154

Die optimale Lösung X0 des modifizierten Problems lautet:
'1 4 13

— _ 6

°_ . 6 . .

2 4

Damit hat die optimale Lösung X0, bezogen aufdas Ausgangsproblem, folgende Form:
4 1 4 13 18

=i6 6 2i14'
7 lO 15

4. Oft werden in den Erzeugungszentren mehrere Sorten von Erzeugnissen her-
gestellt. Jeder Erzeuger kann darüber hinaus seine Produktionshöhen der einzelnen
Sorten frei wählen (allerdings in bestimmten Kapazitätsgrenzen). Die Aufgaben-
stellung wird an einem einfachen Beispiel erläutert, indem 2 Sorten jeweils mit gleicher
Qualität eines Produktes, 2 Erzeuger und 3 Verbraucher zugrunde gelegt werden. In
der Tabelle 4.7 sind für das Beispiel bestimmte Zahlenwerte angegeben.

Tabelle 4.7

V1 V2 Va

‘l 4 2 a 80
E; 3 2 3 “Hai 70}1oo a1,+a12;a1

2 5 3 a2,
E2142m

90
}a2 8O}120 021+ 022 2 a2

bll 172l b3!
blz Z722 b32
2o 50 4o
60 3o 2o
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Mit an ist die maximale Produktionskapazität der Sorte k (k z l, 2) des Erzeugers
E,- (i 2 1, 2) bezeichnet. Mit b„. ist die Bedarfsmenge der Sorte k (k = 1, 2) des Ver-
brauchers V, (j: 1, 2, 3) bezeichnet. a,- (i = l, 2) stellt die Gesamtproduktionskapa-
zität des Erzeugers E; dar. Es gilt für beide Erzeuger, daß an + a,-2 g a,- ist, d.h. die
Summe der Teilkapazitäten ist nicht kleiner als die Gesamtkapazität.

Bestimmte Zahlenwerte sind für aik, b,-,_. und a,- in der Tabelle 4.7 vermerkt. Die
Transportkostenkoeffizienten eines jeden Erzeugers zu den einzelnen Verbrauchern
sind durch Doppelzeilen dargestellt, da sie im allgemeinen von Sorte zu Sorte ver-

schieden sind. Jeweils die erste Zeile beinhaltet die Kostenkoeffizienten, bezogen auf
die erste Sorte, und die zweite Zeile die Kostenkoeffizienten auf die zweite Sorte.

Die Produktionshöhen der einzelnen Erzeuger E; bezogen auf die Sorte k werden
mit a5. bezeichnet (i : l, 2; k = l, 2). Im einzelnen sind folgende zusätzliche Neben-
bedingungen zu berücksichtigen:

ai1+ai2=a1:l00‚ ül12üi1=80y fli2§a12=70y

aäl+aä2=a2=120‚ a-Ä1Sa2i=90‚ aé2§a22=80-

Die Summe der Produktionshöhen aller Sorten eines Erzeugers ist gleich der Gesamt-
kapazität des Erzeugers, Dabei ist zu beachten, daß die Produktionshöhe jeder ein-
zelnen Sorte die betreffende Teilkapazität des Erzeugers nicht übersteigt.

Die gesamte Problemstellung besteht nun in der folgenden Aufgabenstellung: Der
Verteilungsplan und die einzelnen Produktionshöhen der Erzeuger sind so zu bestim-
men, daß die Gesamttransportkosten so klein wie möglich werden.

Zu beachten ist also, daß auch die einzelnen Produktionshöhen optimal festzu-
legen sind. Für jede Möglichkeit der Wahl der Produktionshöhen kann ein optimaler
Verteilungsplan ermittelt werden. Von all diesen möglichen optimalen Verteilungs-
plänen ist also der mit den geringsten Transportkosten gesucht. '

Werden für das Beispiel die einzelnen Produktionshöhen ah = 30, a§.2 = 70,
aél z 80, ag, = 40 vorgegeben (die notwendigen Nebenbedingungen sind erfüllt,
siehe Tabelle 4.8), so kann für jede Sorte getrennt der optimale Verteilungsplan als
Lösung eines „klassischen“ Transportproblems berechnet werden.

Tabelle 4.8

V1 V2 V3

E‘ 1 4 2 30 I 00

3 2 3 70

E 2 5 3 80 2

2 1 4 2 40 1 0

20 50 40

60 30 20
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Für die erste Sorte lautet das klassische Transportproblem:

V; V2 V3

E1 1 4 2 30

E2 2 5 3 80-

20 50 40

Die optimale Lösung X, lautet:

20 - 10
x1 2 .

~ 50 30

Analog berechnet man die optimale Lösung für die zweite Sorte.
Der optimale Verteilungsplan für die im Beispiel vorgegebenen Produktionshöhen

lautetischließlich:

V1 V2 V3

E1 20 - l0 30: 100

20 30 20 70

E - 50 30 } 120

2 40 - - 40

20 50 40

60 30 20

Die Gesamttransportkosten K betragen 600 Kosteneinheiten.
Demgegenüber lautet aber der optimale Verteilungsplan mit den optimal berechne-

ten Produktionshöhen folgendermaßen:

Tabelle 4.9

V1 V2 V3

E1 20 5o - 70}100

- 30 ~ 30

40 4o

E“ 60 . 2o solm
20 5o 40

60 3o 20

Die Gesamttransportkosten belaufen sich jetzt auf 500 Kosteneinheiten, d.h. 165%
Einsparung gegenüber dem vorhergehenden Verteilungsplan, wo die Produktions-
höhen unabhängig von den Transportkostenkoeffizienten willkürlich festgelegt wor-

den waren.
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Bleibt noch die Frage bestehen, wie der optimale Verteilungsplait mit optimalen
Produktionshöhen berechnet werden kann. Die gestellte Problemstellung wird eben-
falls durch eine Modifikation des gegebenen Transportproblems auf ein „klassisches“
Transportproblem zurückgeführt werden. Jeder Erzeuger E,- wird durch zwei Erzeu—

ger E‚-„ (k: l, 2) und jeder Verbraucher durch zwei Verbraucher V”. (k = 1,2)
ersetzt. Es wird angenommen, daß Vjk nur die Sorte k bezieht und E,-A. nur die Sorte
k erzeugt.

Als Erzeugungsmenge von E„. wird die Teilkapazität a‚-‚„. und als Bedarfsmenge

von V„‚ wird b,»,, gewählt. Schließlich werden noch die fiktiven Verbraucher V;
(i = 1, 2) eingeführt, deren Bedarf jeweils gleich der Differenz zwischen der Summe
der Teilkapazitäten des Erzeugers E; und der Gesamtkapazität a; ist.

Bei der Gesamtdarstellung des nun vorliegenden „klassischen“ Transportpro-
blems sind allerdings einige Kostenkoeffizienten wieder hinreichend groß zu wählen,
also gleich M zu setzen, d.h., die betreffenden Verbindungswege sind für den Trans-
port auszuschließen. Für das angeführte Beispiel entsteht das folgende „klassische“
Transportproblem:

V” V12 V21 V22 V3, V32 Z 72

E“ 1 M 4 M 2 M 0 M 80

E12 M 3 M 2 M 3 0 M 70

E21 2 M 5 M 3 M M 0 90

5,2 M 1 M 4 M 2 M 0 80

20 60 50 30 40 20 50 50

Wird dieses Problem z. B. mit der Potentialmethode gelöst, so entsteht die optimale
Lösung:

20 - 50 - - - 10

e - - - 30 k - 40 -x =

° . . . 40 . . 5o

60 ~ ~ - 20

Die optimale Lösung des Ausgangsproblems lautet:

20 5o . 7o
100

3o - 30l
x„= . . . . . . . . ..

. . 40
4° 120

60 . 20 so

20 50 40

so 30 20

Sie stimmt aber mit dem in der Tabelle 4.9 bereits angegebenen optimalen Vertei-
lungsplan bei optimalen Produktionshöhen überein.



4.1. Transportprobleme 137

Die gesamte Problemstellung mit Lösungsmethode wurde am Beispiel bereits so

dargestellt, daß sie auf Probleme mit beliebig vielen Sorten übertragen werden kann.

5. Zum Abschluß soll noch eine Problemstellung am Beispiel skizziert werden, die
in der Praxis sehr häufig auftritt, indem Produkte oft über mehrere Zwischenstufen
zum Verbraucher zu transportieren sind. Da der Transport über mehrere Stufen zu

bewältigen ist, werden dementsprechende Transportaufgaben als mehrdimensionale
Transportprobleme bezeichnet.

Im folgenden Beispiel wird von zwei Erzeugern E, und E2 mit einer jeweiligen
Erzeugungskapazität von 40 und 60 Einheiten ausgegangen. Von den Erzeugern ist
ein Produkt gleicher Qualität in einer festen Frist über drei Zwischenlager L1, L2 und
L3 mit einer Lagerkapazität von 30, 35 und 85 Einheiten zu den Endverbrauchern
V, und V2 mit einem Bedarf von 42 und 48 Einheiten zu liefern.

Die betreffenden Transportkosteneinheiten sind in der Tabelle 4.10 zusammen-
gestellt.

Tabelle 4.10

L1 L2 L3

E, l0 13 7 40

E2 8 10 9 60

V185742
1/„65943

30 35 85

Bei oberflächlicher Betrachtung könnte man meinen, daß der Verteilungsplan
erhalten wird, wenn die gesamte Problemstellung über zwei Teilprobleme schritt-
weise zur Lösung geführt wird. Am Beispiel wird aber deutlich, daß dieses Vorgehen
im allgemeinen nicht zum Ziel führt. Wird jedes Teilproblem für sich gelöst, so ent-
steht für das erste Teilproblem die folgende optimale Lösung des entsprechend erwei-
terten Problems

Ll L2 L3

E1 . . 4o 4o

E2 3o . 3o 60

E, . 35 15 5o

3o 35 s5

Dieser Lösung entsprechend wird das Lager L1 voll belegt. Lager L2 bleibt leer. Lager
L3 wird mit 70 Produkteinheiten nicht voll ausgelastet. Die Transportkosten K1 des
1. Teilproblems belaufen sich auf

K, = 790 Kosteneinheiten.
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Zum zweiten Teilproblem lautet die optimale Lösung des entsprechenden erweiterten
Problems

L, L2 ‚ L3

V, - 42 42

V2 30 - 18 48

V3 - - 1o 10

3o 0 70

Entsprechend der Lösung wird V1 aus Lager L3 mit 42 Einheiten beliefert. V, wird aus
L, und L3 mit jeweils 30 und l8 Einheiten beliefert. l0 Einheiten bleiben im Lager L3
zur Reserve zurück.

Die Transportkosten K2 des 2. Teilproblems lauten

K2 = 636 Kosteneinheiten.

Die somit entstandenen Transportkosten betragen für den Gesamtverteilungsplan

K = K1 + K2 = 1426 Kosteneinheiten.

Wird jetzt allerdings das Gesamtproblem nicht in zwei Schritten gelöst, sondern mit
einer für diese Problemstellung besonderen Lösungsmethode, so entsteht folgender
optimaler Transportplan

L, L2 L3

E1 - . 4o 4o

E2 30 2o 1o 60

V. - 2 4o 42

V2 30 18 - 48

30 20 5o

(30) (35) (85) <— Gesamtlagerkapazitéit.

Die optimalen Gesamtkosten betragen

K0 = 1370 Kosteneinheiten,

die sich aus den Kosten der beiden Teilprobleme K, = 810 und IQ = 560 zusammen-

setzen.
Die Kosten der Verteilung im l. Teilproblem sind allerdings bei der optimalen

Lösung um 20 Kosteneinheiten höher als im vorhergehenden schrittweise gelösten
Problem. Die Erhöhung der Kosten wird aber bei der optimalen Verteilung im 2. Teil-
problem mit einer Einsparung von 76 Kosteneinheiten gegenüber den vorhergehenden
Kosten zu einer doch letzten Endes erzielten Gesamteinsparung ausgeglichen.
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Die Einsparung von 76 Kosteneinheiten entsteht durch die günstigere Verteilung
der Lagermengen in den einzelnen Zwischenlagern.

Die am Beispiel skizzierte Aufgabenstellung kann auf n beliebige Transportstufen
erweitert werden. Auf entsprechende Lösungsmethoden soll hier nicht weiter ein-
gegangen werden.

4.2. Zuordnungsprobleme

4.2.1. Problemstellung und mathematisches Modell

Das Zuordnungsproblem ist ein spezielles lineares Optimierungsproblem und eng
mit dem Transport- und Verteilungsproblem verbunden. Es stellt einen Spezialfall
des Verteilungsproblems und darüber hinaus des Transportproblems dar. Daher läßt
es sich in entsprechender Weise wie ein Transportproblem lösen.

Beim Zuordnungsproblem geht es um die optimale Zuordnung von Mitteln und
Objekten. Dabei kann nur je ein Mittel einem Objekt zugeordnet werden.

Folgende Beispiele sollen die Problemstellung verdeutlichen:

a) In einem Betrieb stehen zur Fertigung von n Produkten n Maschinen zur Ver-
fügung. Jede Maschine eignet sich zur Herstellung jedes Produktes unterschiedlich
gut. Es ergeben sich je nach Zuordnung verschiedene Arbeitszeiten. Jede Maschine
soll nur einem Produkt zugeordnet werden. Bei dieser Zuordnung geht es darum,
die Gesamtfertigungszeit zu minimieren. '

b) Ein Transportunternehmen verfügt über n Kraftwagen. An n verschiedenen
Orten wird genau ein Wagen benötigt. Die Kraftwagen sind den Orten so zuzuordnen,
daß minimale Gesamttransportkosten entstehen.

c) Ein Abbaubetrieb hat n Abbaugruben und n Abbaumaschinen. Diese Maschinen
erbringen in den einzelnen Gruben unterschiedliche Abbauleistungen. Die Maschinen
sind den Gruben so zuzuordnen, daß die Gesamtabbauleistung ein Maximum wird.

Das Zuordnungsproblem läßt sich mathematisch in folgender Weise darstellen:
1. Zielfunktion:

Z = Zn‘ Zn‘ c,-,xi, min (bzw. max) (4.28)
i=1 j=1

_ 1 für Zuordnung i—>j,
mit Xai = .. . . .

0 fur Nichtzuordnung z —>}.

Hierbei gibt der Index i das Einsatzmittel und der Index j das Zuordnungsobjekt an.
0.-,- ist der Kostenfaktor für die Zuordnung des Mittels i zum Objekt j. x‚-‚- gibt den
Vollzug einer erfolgten Zuordnung an: x5,- = 1 heißt, daß das Mittel i dem Objekt j
zugeordnet worden ist. Wenn xi,- = 0 ist, so liegt keine Zuordnung vor.

2. Nebenbedingungen:

a) der Mittel: AZ x,, = 1 (für alle i);
‘if (4.28’)

b) der Objekte: Ext, = 1 * (für allej).
'—1

Diese Nebenbedingliingen besagen, daß jedes Mittel nur einem Objekt und jedem
Objekt nur ein Mittel zugeordnet wird.



140 4. Spezielle lineare Optimierungsprobleme

Ist die Anzahl der Mittel und der Objekte nicht gleich, so kann das Problem durch
Einfügen entweder von fiktiven Mitteln oder von fiktiven Objekten auf den Fall (4.28)
zurückgeführt werden!) Im folgenden wird immer vom Fall (4.28) ausgegangen. Die
Kostenfaktoren c,»,~ können in einer Kostenmatrix C zusammengefaßt werden. Hierbei
entspricht jede Zeile einem Einsatzmittel und jede Spalte einem Zuordnungsobjekt:

"11 Cin

C = [Cw] = "

cu] cm:

Es gehört ebenfalls die Zuordnungsmatrix X dazu:

>x11 xln

xnl xnn

In der Zuordnungsmatrix X ist injeder Zeile und jeder Spalte genau ein x‚-‚» = l so zu
setzen (alle anderen xii : 0), daß die Zielfunktion ein Minimum bzw. ein Maximum
annimmt.

4.2.2. Lösungsalgorithmen

Die Potentialmethode
Da die Optimallösung jedes Transportproblems ganzzahlig ist, kann das Zuord-

nungsproblem als spezielles Transportproblem (n Erzeuger, n Verbraucher und alle
Erzeugnismengen a,- und Verbrauchsmengen b,- gleich eins) gelöst und folgendermaßen
geschrieben werden:

ZF: Z = ä Zn‘ cu xi, ‘g min (bzw. max);
5:13:11

NB: Zn‘xij=1, i=1,...,n;

Allerdings ist dieses Transportproblem sehr stark entartet. Die Entartung kann aber
durch die e—Störmethode behoben werden. Beim folgenden Beispiel soll daher die
Potentialmethode zur Lösung benutzt werden.

Gegeben ist die Kostenmatrix

12 2 4 l
6 3 5 4

C = = ‚o [CM] 3 4 2 8

4 6 6 7

zu der eine minimale Zuordnung anzugeben ist.

1) Unter einer zulässigen bzw. optimalen Lösung des ersten Problems versteht man dann eine
zulässige bzw. optimale Lösung des zugehörigen Problems (4.28).
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Nach der. Vogelschen Approximationsmethode wird die folgende Anfangslösung
berechnet:

Drei Variable mit dem Wert O sind als BV hinzugefügt.

I . Iteration.’

12 (2) 4 (1) o ’7 o o o

m: (6) (3) 5 4 —1‚ w: o o o 2

(3) 4 (2) 8 o 4 o 9

(4) 6 6 7 _ 1 o 5 3 7

—5 —2 —4 -1 ’

Da min (c},-) _2_ 0 gilt, ist die optimale Zuordnung bereits durch X0 gegeben. Sie lautet:

Mittel l wird Objekt 4,
Mittel 2 wird Objekt 2,
Mittel 3 wird Objekt 3,

Mittel 4 wird Objekt l
zugeordnet. Der Wert der Zielfunktion ist

Z=l+3+2+4=10.
Die eben benutzte Potentialmethode zur Lösung des Zuordnungsproblems ist aber
nur dann geeignet, wenn ein Näherungsverfahren zum Auffinden einer guten Aus-
gangslösung die Zahl der anschließenden Iterationen erheblich herabsetzt. In den
meisten Fällen müssen viele Iterationen durchgeführt werden, bis die Optimallösung
vorliegt. Das ist darauf zurückzuführen, daß jede Ausgangslösung entartet ist.

Im folgenden soll noch die ungarische Lösungsmethode angegeben werden, die im
allgemeinen schneller als die Potentialmethode zur Lösung führt.

Die ungarische Lösungsmethode
Die Grundlagen für diese Methode wurden von den ungarischen Mathematikern

König und Egervary geschaffen. Kuhn wandte im Jahre 1955 deren Überlegungen
zur Lösung des Zuordnungsproblems mit Erfolg an. Sein Verfahren nannte er zu
Ehren von König und Egervary die „Ungarische Methode“.

Beschreibung des Algorithmus: Zunächst sind einige Festlegungen zu trefien. Im
folgenden werden die Zeilen und Spalten der Matrix C = [c,~,-] als Reihen bezeichnet.

Wird eine Menge von Elementen der Matrix C betrachtet, so sollen diese Elemente
unabhängig heißen, wenn nicht mehr als eines in einer Reihe liegt. Das Zuordnungs-
problem besteht also in der Auswahl von n unabhängigen Elementen der Matrix C,
so daß ihre Summe ein Minimum ist.

Weiterhin wird im Prozeß der Lösung der quadratischen Matrix C und ihrer äqui-
valenten Matrizen das Zeichen + eingeführt, welches rechts von bzw. über den ent-
sprechenden Reihen steht. Alle Elemente, die eine solche mit + gekennzeichnete
Reihe enthält, werden als ausgesondert bezeichnet.
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Der Algorithmus der ungarischen Methode besteht aus einem Vorbereitungsschritt
und einer endlichen Zahl weiterführender Iterationen. Jede Iteration führt zu einer
äquivalenten Umgestaltung der Ausgangsmatrix und zu einer Vergrößerung der Zahl
der unabhängigen Elemente. Die optimale Zuordnung wird schließlich durch die Stel-
lung der n unabhängigen Elemente in der letzten Matrix bestimmt, die zu C äquivalent
ist (die unabhängigen Elemente werden besonders gekennzeichnete Nullen sein).

Vorbereitungsschritt: Bei dem Transportproblem wurde bereits gezeigt, daß zur

Kostenmatrix C zeilenweise und spaltenweise beliebige Zahlen p; und q, addiert wer-

den können, ohne die optimale Lösung dadurch zu beeinträchtigen. Falls ein Maxi-
mierungsproblem vorliegt, ist durch Vorzeichenwechsel sofort das entsprechende
Minimierungsproblem anzugeben. Dies gilt unmittelbar auch für das Zuordnungs-
problem als spezielles Transportproblem.

1. Liegt ein Maximum-Problem vor, so wird folgende Umrechnung durchgeführt:
a) Es sind alle Spaltenmaxima von C zu bestimmen:

q‚- = max {cm ..., c„‚—} für alle j.
Anschließend wird die zu C äquivalente Matrix C’ : [cfj] nach der Formel

%:%-%
ermittelt.

b) Weiterhin werden alle Zeilenminima von C’ gebildet:
p,- = min {c{1, ..., c{,,}.

Dann wird die zu C’ äquivalente Matrix C0 = [cg-] nach der Formel

63-’,- = 6.2- — Pa

berechnet.

2. Liegt dagegen ein Minimum-Problem vor, so wird
a) q,- = min {cu-, ..., cu,-} für alle j gebildet und die äquivalente Matrix C’ nach

C’ : [Cb] Z [CH ’ [h]
ermittelt.

b) Schließlich wird wie nach lb) die Matrix Co bestimmt.
3. Es wird versucht. in jeder Spalte und Zeile genau eine Null mit dem Zeichen „*“

(Stern) zu versehen oder, anders ausgedrückt, möglichst viele Null-Elemente, die un-

abhängig sind, mit ,,*“ zu versehen. ,,*“ bedeutet die Zuordnung, die aus dem Index-
paar des entsprechenden gesternten Elementes hervorgeht.

Als Ergebnis dieses Vorbereitungsschrittes wird in jedem Falle ein äquivalentes
Minimum—Problem mit der Kostenmatrix C‘, erhalten, die in jeder Zeile und jeder
Spalte (in jeder Reihe) mindestens eine Null enthält.

Iterationen. Es wird angenommen, daß bereits die k-te Iteration durchgeführt ist
und somit die zu C.) äquivalente Matrix Ck :[cf‘,~], g 0, vorliegt. Dann ist die fol-
gende Entscheidung zu treffen:

Enthält C‚_. n unabhängige ,,*“-Nullen?
Wenn ja, dann ist die optimale Lösung erreicht und an den „*“-Nullen abzulesen,

denn der Funktionswert der dabei entstehenden Lösung ist ein Minimum, nämlich
gleich null. Wenn nein, so enthält also Ck weniger als n ,,*“-Nullen, und es folgt die
(k + l)-te Iteration.
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(k + l)-te Iteration: Alle Spalten der Matrix Ck, die 0* enthalten, werden durch
das Zeichen + abgesondert; + wird jeweils oberhalb der entsprechenden Spalte ver-

merkt.

1. Schritt: Dieser Schritt beginnt mit der Frage: Sind alle nichtmarkierten Nullen
von Ck durch ein + abgesondert? Wenn ja, so ist der erste Schritt beendet, und es

wird zum 3. Schritt übergegangen. Wenn nein, dann wird die nicht abgesonderte
Null mit einem Strich (’) versehen.

a) Wenn die Zeile der eben gebildeten 0’ keine (unabhängige Null) 0* enthält, so

wird zum 2. Schritt übergegangen.

b) Wenn die Zeile dagegen eine 0* enthält, so wird die Spaltenabsonderung, die
am Anfang der (k + 1)-ten Iteration wegen dieser unabhängigen Null durchgeführt
wurde, rückgängig gemacht und dafür die Zeile dieser 0* (bzw. von 0’) abgesondert.
(Eine Absonderung + wird in den Matrizen des folgenden Beispiels rückgängig ge-
macht, indem + durch EB ersetzt wird.) Anschließend wird wieder zum Anfang des
1. Schrittes übergegangen.

2. Schritt: Dieser besteht zunächst in der Erzeugung einer Nullenkette. Ausgegan-
gen wird von der Spalte der zuletzt mit einem Strich versehenen Null, und in dieser
Spalte wird zur 0* übergegangen, falls diese vorhanden ist. In der Zeile von 0* wird
zu einer 0’ übergegangen usw. Es kann gezeigt werden, daß diese Nullenkette eindeutig
bestimmt ist. Sie beginnt und endet mit einer 0’. Im zweiten Teil dieses Schrittes er-

folgt eine Neumarkierung der Nullen der Kette:
aus 0' wird 0*;
aus 0* wird 0.

Die umbenannte Matrix wird mit CH, bezeichnet. Damit ist die (k + l)-te Iteration
beendet. Die Matrix CH, enthält genau eine 0* mehr als die Ausgangsmatrix Ch.

3. Schritt: Dieser Schritt beginnt mit der Berechnung von

h = min

für alle (i, j)-Paare‚ deren Elemente in C1, nicht abgesondert sind. Anschließend wird
die Matrix C}, = [:31 ] folgendermaßen berechnet:

— h für nicht ausgesonderte Elemente;

[C5331] = cf, für einfach ausgesonderte Elemente;

cf’,- + h für doppelt ausgesonderte Elemente.

Oder anders ausgedrückt: C}, geht aus der Matrix Ck hervor, indem von allen Ele-
menten der nicht abgesonderten Zeilen von Ck h subtrahiert und zu allen Elementen
der abgesonderten Spalten h addiert wird. Alle Bezeichnungen und Markierungen
von C,_. werden in die Matrix C}. übernommen. Nach der Aufstellung der Matrix C},

wird an ihr der l. Schritt vollzogen usw. In der Matrix Ci. ist mindestens eine neue
Null enthalten, die noch nicht abgesondert ist. Der l. und 3. Schritt können laufend
miteinander abwechseln. Es kann gezeigt werden, daß nach p-maligem Wechsel des
1. und 3. Schrittes der 2. Schritt folgt, wobeip endlich ist. (Auf diese Beweise soll hier
verzichtet werden.) Es werden also gebildet:

c... Ci, C’; = Cm-1
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Im Bild 4.2 ist dieser lterationsalgorithmus nochmals übersichtlich dargestellt

Algorithmus
Ungarische Lösungsmethode

Vorbereitungsschritt

enthält [ab] weniger
als n mal 0’?

ja

Spalten von [c',‘,] mit 0* werden
abgesondert durch +

3. Schritt
sind alle 0 von [cfi-‘J-]

durch " +" abgesondert?

nein

nicht abgesonderte O

wird markiert (0‘ —» 0)

l

l

2. Schritt

nein
enthält Zeile

von 0' eine 0*?

ja

V

Zeile von 0' wird
abgesondert und

B“ 4 7 Spaltenabsonderung
l ._ von 0* wird gelöscht
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Dieser Iterationsalgorithmus soll an dem folgenden Beispiel erläutert werden.

Beispiel 4.1: In einem Betrieb sollen 4 verschiedene Arbeiten auf 4 Arbeiter ver-
teilt werden. Jeder Arbeiter verrichtet die einzelnen Arbeiten entsprechend seiner
Qualifikation unterschiedlich gut. Es ist der Zuordnungsplan aufzustellen, bei dem
der Gesamtnutzeffekt ein Maximum wird.

Arbeiter
Arbeiten B1 B2 B3 B;

A, 3 3 4 5

A2 2 6 1 4

A3 8 2 3 2

A4 4 9 6 l
In der Zuordnungsmatrix C = [c,-‚-] bedeutet c5,- den Nutzefiekt, der vorhanden ist,
wenn der Arbeiter Bi die Arbeit A, verrichtet:

' 3 3 4 5

2 6 1 4

Gag”: 8 2 3 2

_ 4 9 6 l

Varbereitungsschritt
Da es ein Maximumproblem ist, folgt nach Fall la)

5 6 2 0

‚ 6 3 5 1

C:[c"]= 0 7 3 3

4 0 0 4

Nach lb) ergibt sich folgende äquivalente Matrix C0:

5 6 2 0*
,5 2 4 0

C°:[c9’]= 0* 7 3 3

4 0* 0 4 A

In der Matrix C0 sind schließlich drei unabhängige Nullen durch einen Stern mar-
kiert. Da in ihr nicht vier unabhängige 0* vorkommen, beginnt die 1. Iteration.

Es werden:die Spalten der unabhängigen Nullen abgesondert:

++ +
5620*
5240

C°” o*733
4o*o4

l0 Seiffart, Optimierung
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1. Schritt
Eine Null ist nicht abgesondert, nämlich das Element q; = 0. Diese Null erhält

einen Strich. Die 4. Zeile wird abgesondert und das Pluszeichen über der 2. Spalte
gelöscht (+ wird durch as ersetzt):

+ e + _

5 6 2 0*
5 2 4 Oc =

° 0* 7 3 3

4 0* 0’ 4 +

Da alle Nullen von C0 abgesondert sind, folgt der 3. Schritt.

3. Schritt
a) Berechnung von h:

I1 = min {6, 2, 7, 2, 4, 3} = 2.

b) Berechnung von Cä:

s 4 o 06*

C3: 5 0 2 0

0*5 1 3

6 0* O’ 6 +

Es folgt wieder der 1. Schritt.

I.Schritt
— ea

5 4 0’ 0* -

5 0 2 0’C‘:
" o*5 1 3

6 0* 0’ 6 k r

In diesem Schritt werden der Reihe nach die beiden Nullen c}3 = 0 und cf, x 0
mit einem Strich versehen. Danach folgt der 2. Schritt.

2. Schritt
a) Erzeugung einer Nullenkette (diese ist durch Pfeile gekennzeichnet):

_ <——

5 4 0’ 0*?

C1: 5 0 2 0’ _

° 0* 5 1 3

6 0* 0’ 6

b) Neumarkierung der Nullenkette in der Matrix C3:

’5 4 0* 0

Cl 2 5 0 2 0*
0* 5 1 3

60*06
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Die 1. Iteration ist beendet. Die Matrix C1 enthält 4 unabhängige Nullen. Die Lösung
ist an den unabhängigen Nullen abzulesen. Die Matrix des Zuordnungsplanes lautet:

x,=
O

’—
O

O

I-
IO

O
O

O
O

O
*
—

-

O
0
’-
O

Das bedeutet:

Arbeiter B] verrichtet die Arbeit A„ mit einem Nutzeflekt von 8,

Arbeiter B2 verrichtet die Arbeit A, mit einem Nutzeflekt von 9,

Arbeiter 8;, verrichtet die Arbeit A, mit einem Nutzeflekt von 4,

Arbeiter B, verrichtet die Arbeit A2 mit einem Nutzeflekt von 4,

Gesamtnutzefiekt: 25

Aufgabe 4.3: Das folgende Zuordnungsproblem ist mit der Ungarischen Methode zu lösen:

10212 672
l

[Cu] =

\l
©

O
0
\O

U
I 4

9

3

0
5c

h
w

x
o
i-
*-

s
o

\l
J
>

0
O

O
\l
.I

I

m
m

w
m

ä
\]

-b
O

0
lJ

IU
l

6 6 6 6

Dabei soll a) Z: qfxyii min, b)? = Z Z c‚-jx‚-j_i max sein.
1 l) l i=1i=1

4.3. Verteilungsprobleme

Verteilungsprobleme sind lineare Optimierungsaufgaben, deren Nebenbedingun-
gen einen ganz bestimmten Aufbau haben. Ihr spezieller Aufbau geht durch Verall-
gemeinerung der Nebenbedingungen aus einem Transportproblem hervor.

Solche Aufgaben haben z.B. eine große praktische Bedeutung in der Planung und
Organisation der Produktion eines Betriebes. Nehmen wir an, daß für die Realisie-
rung eines Produktionsprogramms mehrere Maschinen zur Verfügung stehen, die
teilweise oder völlig gegeneinander austauschbar sind. Für diese Maschinen sind
technisch begründete Arbeitsnormen, die zur Verfügung stehende Maschinenzeit und
die benötigten Aufwendungen für die Produktion bekannt.

Die Produktion ist so auf die Maschinen zu verteilen, daß die Gesamtaufwendun-
gen für die Realisierung des Programms möglichst gering sind.

In Tabelle 4.ll sind die Ausgangsdaten für ein solches Verteilungsproblem (in die-
sem Falle kann man auch von einem Maschinenbelegungsproblem sprechen) für n

Maschinen M„ ..., Mn und m Produkte E1, ..., E„, angeordnet.

10*
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Tabelle 4.1 l
Maschinen Produktions-

programm
Produkte M1 M, M„ ME

c c cE1 i1 17 11| a!
bllxll buxu blnxln

c c c-Ei 1.1 LI in ai

bu xu bii xi] bin Xzn

c c cEm ml m1 m» am

bmlxml bmfxmj bmn xmn

Maschinen-
zeitfond h b1 b, b,.

b.-,~ gibt für die Maschine M, die Bearbeitungszeit für eine Einheit des Produktes E,-

an, c,»,- ist eine Bewertung für die Produktion dieser Produktionseinheiten (Kosten,
Maschinenzeit, Energieverbrauch u. a.), a,- ist die zu produzierende Menge des Pro-
duktes E; und b, ist die auf der Maschine M,- zu Verfügung stehende Maschinenzeit.

Wird mit x‚<‚- die Menge des Produktes E; bezeichnet, die auf der Maschine M,
bearbeitet wird, so entsteht das folgende Optimierungsproblem, wenn die Gesamt-
bewertung Z der Produktion so klein wie möglich werden soll:

m n

ZF: Z = 2’ 2' c1, xi, ä min;
i 1 j=1

n

NB: Ex” ==a„‚ i=1‚...,m,
'=11m .

gib x„gb„ 1=1‚...,n,

352430-
Gegenüber einem Transportproblem sind im zweiten Block der Nebenbedingungen
die Koeffizienten nicht alle gleich eins oder null, sondern allgemeiner (b‚-‚- g 0).

Im folgenden werden mehrere Varianten eines Verteilungsproblems unterschieden
die aber alle mit dem gleichen Algorithmus zur Lösung geführt werden können.

m n

Variante 1: Z= Z Z c„ xi, ä min;
i=l 5:1

7|

Ext, =a‚-, i= 1‚...,m,
J'=1 4.29m h c >

Äc„x‚-‚;b„ z: 1,...,n,
,=

x,-,-_‘>_0.
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m fl

Variante 2: Z = 2' Z cuxfl ;‘ m1n;
i=1 jxl

e II u
.

1| D
-l

77i

21b„x„;b„ j=l‚...
‚=

M420.

m fl

Variante 4: Z= Z Z‘ cu xi, ä mm;
‚-=1 j=l

‘ll

Z‘a,,xl-,§a,-, 1=l,...
j=1

mzlb„x„=b„ j=l,...
‚=

xi, z. 0.

m W

Variante 5: Z = Z Z‘ ct, x„- mm;
i=1j=1

m 7|

Variante 6: Z= Z Z cu x‘, mm;
s=15=1

...‚ m,

...‚ m,

149

(4.30)

(4.31)

(4.32)

(4.33)
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fl

2‘a.,x,,+x.-_,,,, =a.+oci}., i=l,...,m,
j=1

m - (4.34)

Hb„-x„ =b„ _1=1,...,n,

352'720,

xl-„H g 0, i. beliebig reell.

Das Problem (4.29) ist als Spezialfall im Problem (4.30) enthalten (b‚-‚- = c,-,~). In
(4.31) ist wiederum (4.30) als Spezialfall enthalten (a,-,~ 2 1). (4.31) und (4.32) unter-
scheiden sich nur in der Bezeichnung. Wird z.B. in (4.31)

a,- = bf], b; : a)’, 11,-, : bi} und 17,-, = a)’;

gesetzt und werden i und j vertauscht, so entsteht das Problem (4.32). Allerdings
durchläuft i die Werte von 1 bis n undj die Werte von I bis m. Diese Formatänderung
ist für das Problem bedeutungslos. (4.33) ist als Spezialfall in (4.32) enthalten (b,»,- = 1).
(4.34) ist gegenüber den anderen Problemen ein parametrisches Verteilungsproblem,
7. ist der Parameter. Wird in (4.34) i. = 0 gesetzt und die Schlupfvariable x,~,,,+, wag-
gelassen, so entsteht (4.32). In (4.34) sind also die Probleme (4.29) bis (4.33) als Spe-
zialfälle enthalten.

Im Abschnitt 2.1.4. ist das folgende mathematische Modell eines Förderproblems
aus der Praxis erarbeitet worden:

Die lineare Funktion
11 21

, .

Z= 2:11‘/xw l? mm]
1: F

ist unter Berücksichtigung der folgenden Nebenbedingungen zu minimieren:

11

1. Zx,~j=b7; j=1,2,3: b, = 60, bi: 1730, b3: 1275,
i=1

3 ‘d A

2. Z (Er.-,xi,-g A,
i:1_7:1

7 33. t1,-xug 7.,

i"? (4.35)

4. Z „A3, g Z,
i=8j=1

l1 3 A

5. Z’ §‘t1-,x,-,3 —lO07+ ‚t,
z'=10j:1

T 3

6. 22mm,; 1260,

X,-120.
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Die gesamte Förderzeit ist durch Z gegeben. Ä (2 g 1440 min) bedeutet die maximale
Bandauslastung von Transportbändern in Minuten, ti] die Förderleistung in Minuten
pro m“ der i-ten Transportvariante des jvten Einsatzstoffes, b,- (m3) die Einsatzstelle
und x,-,» die festzulegenden Mengen (m3), die über die einzelnen Varianten zu fördern
sind. Der Index i(i: 1, ..., ll) gibt die Variante und der Index j(j= l, 2, 3) gibt
den Rohstoff an. Die restlichen in 2.1.4. angegebenen Nebenbedingungen lassen sich
ebenfalls noch berücksichtigen. Darauf wird nicht weiter eingegangen, zumal sie den
Lösungsbereich bei den in der Tabelle 4.12 angegebenen Koeffizienten und Forde-
rungen nicht beeinflussen. Das parametrische lineare Optimierungsproblem (4.35)
läßt sich auf das in der Tabelle 4.12 angegebene parametrische Verteilungsmodell
zurückführen. Die ti, sind zahlenmäßig in dieser Tabelle in den entsprechenden x‚-‚--

Feldern angegeben, und zwar in der ersten Zeile dieser Felder doppelt. Die drei ersten
Nebenbedingungen werden durch die drei ersten Spalten realisiert. Durch die 4. bis
8. fiktiv eingeführte Spalte werden die Nebenbedingungen 4 bis 8 im Zusammenhang
mit den ersten drei Spalten realisiert. In der letzten Zeile treten allerdings durch die
fiktiv eingeführten Spalten zusätzliche Parameter auf, die die Lösung in 4.3.2. nicht
verändern.

Die freien Felder sind bei der Berechnung nicht zu berücksichtigen. Man denke
sich hier hinreichend große Zielfunktionskoeffizienten, so daß die zugehörenden
Lösungsvariablen in jeder optimalen Lösung gleich null sind. In den stark ein-
gerahmten Feldern sind die Lösungswerte einer Ausgangsbasislösung für das Para-
meterintervall 1435,25 g Ä < +ao nach der im folgenden Abschnitt 4.3.2. dargeleg-
ten Methode angegeben.

Wird der in 4.3.2. dargelegte Lösungsalgorithmus benutzt, so folgt für das Para-
meterintervall 1140 3 i. g 1007 die in der Tabelle 4.13 angegebene optimale Para-
meterlösung, die zunächst die kleinste untere Parameterschranke (Ä = 1007) enthält,
da b7 = ‚1007 + i. nicht negativ werden darf.

Tabelle 4.13

1140;z;1007 z=1140 /1=1007

x32 z —3114,10 + 3,810 - A z 1229,00 z 722,00
M, = 4152,14 — 2,857 - z z 895,00 z 1275,00
x‚„ z 60,00 — 0,000 - 71 z 60,00 z 60,00
x„ z 4844,10 — 3,810-A z 501,00 z 1008,00
xm z ~2877,14 + 2,857 - A z 380,00 z 0,00

z = 2146,78 — 0,400 - ‚t z 1690,78 z 1743,98

Diese untere Schranke wird durch die 5. Nebenbedingung vorgeschrieben. Wird
diese Engpaßbedingung aus der Betrachtung herausgenommen, indem sie konstant,
und zwar gleich null gesetzt wird, so lassen sich weitere Parameterintervalle angeben.
In den Tabellen 4.14 und 4.15 sind für die anschließenden Parameterintervalle die
Lösungen enthalten.
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Tabelle 4.14

153

1007 g Ä g 825,53 5 Ä = 1007 Ä = 825,53

x32 = — 956,25 + 1,666 - Ä z 722,00 z 420,00
x33 = 1275,00 + 0,000 - Ä z 1275,00 z 1275,00
x41 = 60,00 + 0,000 - Ä z 60,00 z 60,00
x“ = 2686,25 — 1,666 - Ä z 1008,00 z 1310,00

Z = 1794,34 — 0,050 - Ä z 1743,98 z 1753,00

Tabelle 4.15

825,53 g Ä g 630 Ä = 825,53 Ä = 630

x32 = 1730,00 — 1,587 - i. z 420,00 z 730,00
x33 = —2306,66 + 4,340 - Ä z 1275,00 z 427,00
x„ = 60,00 + 0,000 ~ Ä z 60,00 z 60,00
x73 = 3581,66 —— 4,340 - Ä z 0,00 z 847,00
n, = 0,00+ 1,587 » Ä z 1310,00 z 1000,00

Z = 2788,25 — 1,250 - Ä z 1753,00 z 2001,00

4.4. Rundreiseprobleme

4.4.1. Problemstellung

Gegeben sind n verschiedene Orte 0;, i = 1, 2, ..„ n. 11.-,- (i =i= j) sei die Entfernung
(in km), die ein Reisender zurückzulegen hat, wenn er von 0,- nach 0, fährt. Anstelle
der „Entfernung“ aü können auch andere Parameter wie Kosten, Zeit usw. gesetzt
werden. a‚<‚- wird im allgemeinen ungleich a7,- vorausgesetzt. Das Rundreiseproblem
oder auch ,‚Traveling-Salesman-Problem" genannt, kann folgendermaßen formuliert
werden :

Ein Reisender, der in einem Ort startet, möchte alle restlichen Orte einmal und nur
einmal besuchen und zum Ausgangsort zurückkehren. In welcher Reihenfolge hat er
die Orte zu besuchen, damit die Gesamtlänge des Reiseweges minimal ist?

Die Entfernungen 11,-,- sind in der quadratischen Entfernungsmatrix (oder Rundreise-
matrix) angeordnet:

M an aln A

A: 4121 M “an

„ anl “n2 M
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Dabei bedeutet der Zeilenindex den Ausgangsort und der Spaltenindex den Zielort.
Die Elemente der Hauptdiagonalen sind zunächst nicht definiert, da ja z. B. 0,- nicht
gleichzeitig Ausgangs- und Zielort sein soll. Um eine Reise. die einem Hauptdiagonal-
element entsprechen würde, zu vermeiden, wird am : M für alle i: l, ..., n gesetzt.
M ist dabei eine hinreichend große Zahl, die bewirkt, daß das Element a,-,- in der Ge-
samtlänge eines optimalen Reiseweges nicht enthalten sein kann.

Mathematisch bedeutet das Traveling-Salesman-Problem zunächst wie beim Zu-
ordnungsproblem, daß aus jeder Zeile und Spalte der Entfernungsmatrix genau ein
Element so auszuwählen ist, daß die Gesamtsumme der ausgewählten Elemente ein
Minimum ergibt. Überdies muß noch die folgende Bedingung erfüllt werden, die den
Unterschied zum Zuordnungsproblem bedingt:

Werden nämlich die ausgewählten Elemente so aneinandergereiht, daß der erste
Index eines Elementes gleich dem zweiten Index des vorhergehenden ist, so müssen alle
n Indizes durchlaufen werden, bevor der Index des Ausgangselementes wieder er-

scheint. Der Reisende darf also erst dann wieder zum Ausgangsort zurückkehren.
nachdem alle anderen n — l Orte von ihm passiert wurden. Es wird also eine Aufein-
anderfolge

am}, am}, ...‚ aim-„fl, i‚„. #i‚ für k 4:1 und i,,+,= i1

von Elementen der Matrix A so gesucht, daß
YL

Z 2 Zarvim
v=1

ein Minimum wird.

4.4.2. Verzweigungsmethode als Lösungsalgorithmus

In den letzten I5 Jahren wurden zur Lösung des Rundreiseproblems mehrere Ver-
fahren entwickelt. Mit einigen sind aber nur kleinere Probleme näherungsweise oder
exakt zu lösen, da der Rechenaufwand mit zunehmendem Problemumfang enorm
ansteigt. Im folgenden soll ein Lösungsverfahren von Little, Murty, Sweeney und
Karel‘) angegeben werden, welches die optimale Lösung unabhängig vom speziellen
Beispiel garantiert, programmtechnisch leicht durchführbar ist und eine annehmbare
Rechenzeit nicht überschreitet.

Dieses Lösungsverfahren geht aus der allgemeinen Lösungsmethodik „Branch and
Bound“ hervor, indem die speziellen Bedingungen des Rundreiseproblems heran-
gezogen werden?) Im folgenden soll die Lösungsmethodik „Branch and Bound“
kurz mit ,,Verzweigungsverfahren“ bezeichnet werden.

Branch and Bound kann man als intelligent konstruiertes Suchen im Raum aller mög-
lichen Lösungen bezeichnen. Man versucht die Minimallösung eines Optimierungs-
problems mit einer endlichen Anzahl von möglichen Lösungen zu bestimmen, indem
die gesamte Lösungsmenge in elementfremde Teilmengen aufgespalten wird. Für

‘) Little, J. D. C.‚ et al.‚ „An Algorithm for the Traveling Salesman Problem“ Oper. res. 11

S. 972—989 (1963).

2) „Branch and Bound“ kann etwa wie folgt übersetzt werden: Verzweigen und Beschränken.
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jede dieser Teilmengen wird eine untere Schranke für den Minimalwert der Ziel-
funktion aller Elemente der Teilmenge ermittelt. Die Teilmenge, die durch eine Aus-
wahlfunktion herausgesucht wird, wird weiter aufgespalten und für die neu ent-
stehenden Teilmengen werden wieder untere Schranken berechnet. Der Prozeß wird
so lange fortgesetzt, bis eine Teilmenge gefunden wird, die nur ein Lösungselement ent-
hält und deren Zielfunktionswert nicht größer ist als das Minimum der unteren
Schranken aller anderen nicht aufgespalteten Teilmengen. Damit ist eine Minimal-
lösung ermittelt. Wie leicht einzusehen ist, konvergiert der Prozeß, wenn der Lösungs-
bereich endlich ist und die Aufspaltung endlich viele Schritte benötigt. Der Prozeß
kann als Baum dargestellt werden, wobei die Verzweigungspunkte die Teilmengen
und die Endpunkte die Gesamtheit der noch zu betrachtenden Teilmengen dar-
stellen.

4.4.2.1. Mathematische Darstellung des Verzweigungsverfahrens

Gegeben ist eine endliche Menge B (Lösungsmenge). Jedem x E B wird eine reelle
Zahlf(x) zugeordnet. Gesucht lSlf(X0) mit min }f(x)} :f(x„).

Voraussetzungen .'

l. Jede Teilmenge B,» von B kann wieder in mBi elementenfremde Teilmengen zer-
legt werden. Diese Zerlegung von B; in Teilmengen werde mit K(B,-) und als Klassen-
einteilung bezeichnet.

2. Jeder Teilmenge C einer Klasseneinteilung kann eine reelle Zahl U(C) zugeord-
net werden, wobeif(x) 2 U(C) für alle x E C gilt. U(C) wird als Schranke bezeichnet.

3. Von jeder Klasseneinteilung C, kann eine bestimmte Teilmenge ausgezeichnet
werden. Die ausgezeichnete Teilmenge werde mit A(C‚) bezeichnet.

4. Enthält eine Teilmenge C von B nur ein Element x, so sei U(C) =f(x).

Sind diese Voraussetzungen erfüllt, kann folgendes Verfahren angegeben werden:

(l) Man setzt B = B? = B52“, yo = 0, 11,, = 1.

(2) Man bildet 1<(B‘3)= {B}, 3;, 31%} .

(3) Man berechnet l

U(B‚{) für Ä = l, ...‚m„„‚i.

(4) Man setzt K1(B) = K(Bf) und bestimmt mit

A [K1(B)]= B,"f, ,u1 = 1.

(5) Man bildet

K(B:;): {Bi B3, B3,, }.
Bf:

(6) Man berechnet

U(B}) mit Ä = 1, 2, ...‚ mm“.
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(7) Man setzt

K48) = K1(B) v 1<(B:‘;) ~ Br:

und bestimmt

A IKz(B)l = Bi‘; (1 E #2 § 2)-

Die allgemeinen Schritte, die sich mod 3 wiederholen, sind dann (r = I, ...):

Schritt (3r + 1): Man setzt

r-l Ä r-1 ‘

Im): uK(Bf:)— UB5‘,-‘ mit uo= o, 70?] .

i=0 i=l

und bestimmt

A [K,(B)] = Bf; mit 1 g n, g r.

Mit Hilfe der 3. Voraussetzung wird eine Teilmenge ausgesondert.

Schritt (-3r + 2): Man bildet

K(B:‘:)= ist“. Ba“, 19;,*;‘,,} .

h

Von der ausgesonderten Teilmenge wird eine Klasseneinteilung vorgenommen.

Schritt (3r + 3): Man berechnet

U(B;+‘) mit z = 1, 2, m3”.
"1

Von den Teilmengen der Klasseneinteilung werden untere Schranken berechnet.
Das Verfahren bricht ab, wenn eine einelementige Teilmenge C0 (x0 E C0) ausge-

sondert _wird und U(C(,) = min {U(C)} gilt. C ist dabei eine beliebige Teilmenge
C€K_.(B)

der jeweiligen Klasseneinteilung.

Dann gilt: Wegen U(C„) =f(x„) ist x0 die gesuchte Minimallösung.

Der Rechenaufwand des Verfahrens hängt wesentlich von der Güte der unteren
Schranken und von der Art der Auswahl ab. Die Berechnung der unteren Schranken
ist stark dem jeweiligen Problem anzupassen. Die Auswahl bzw. Auszeichnung der
Teilmengen einer Klasseneinteilung kann oft günstig wie folgt gewählt werden:

Berechnet wird

min {U(C)l= l/(Co),
C€K,.(B)

und daher gilt

A[K‚(B)] = C0.

Die eben dargelegte „Branch-and-Bound"-Methode wird sowohl im anschließen-
den Abschnitt bei der Lösung des Rundreiseproblems als auch bei der Lösung der
Reihenfolgeprobleme im Abschnitt 4.5. der jeweiligen Problemstellung angepaßt und
spezifiziert angegeben. _
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4.4.2.2. Die Anwendung auf das Rundreiseproblem

l. Wie beim Zuordnungsproblem wird von der Rundreisematrix A das kleinste
Zeilen- und anschließend das kleinste Spaltenelement von jeder Zeile und jeder Spalte
subtrahiert, so daß eine reduzierte Rundreisematrix Ax entsteht, die in jeder Zeile und
jeder Spalte mindestens eine Null‘ enthältr

Zunächst werden also die Zeilenminima

Pa = min {ai17'~~! 0;n}»l'=1,--», n,

und die Matrix

Ä = [5-'1'] = [aw "Pal
gebildet. Anschließend werden die Spaltenminima

q; = min liq,-. ...,?z..;}, i: I. n,

von Ä und die Matrix

A1 = (“im = [an ‘ ‘Iil

berechnet.

Werden mit t ein beliebiger Reiseweg, mit S die Summe aller Reduktionsgrößen
p,» und q,- und mit Z(t) bzw. Z,(t) die Länge des Reiseweges von A bzw. A1 bezeichnet,
so gilt

Z(t) = Z1(t) + S.

Da Z1(t) g 0 ist, folgt: S ist eine untere Schranke aller möglichen Wege t.

Am Beispiel der Rundreisematrix

M 29 26 22 0

36 M 50 38 0

A = A, = 12 53 M 46 0 (4.36)

26 27 40 M 0

0000M

soll der Lösungsalgorithmus erläutert werden. In der Rundreisematrix kann es auch
vorkommen, daß einige Elemente von vornherein gleich null sind (vgl. Beispiel).

Die reduzierte Matrix von (4.36) stimmt mit der Matrix A überein, da S = 0 ist.

2. Das Verfahren wird fortgesetzt, indem die Menge aller möglichen Reisewege
(Lösungswege) in Untermengen solange aufgespalten wird, bis eine optimale Lösung
gefunden ist. Bei der Aufspaltung werden untere Schranken als Kriterien benutzt.

Ausgangspunkt dieser Aufspaltung ist in Bild 4.3 der Kreis, der die Menge aller
möglichen Reisewege bedeuten soll. Der Kreis, der i, j enthält (kurz: Kreis ij) kenn-
zeichne die Menge aller Lösungen, die die Reisestrecke von Ort 0,- nach Ort 0, (kurz
Verbindung 0.0,-) enthalten.
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Menge am
Z may//than

r?m=r/Eye

ä 6 Bild 4.3

Dagegen kennzeichnet Kreis i-j die Lösungsmenge, die die Verbindung 0‚-O‚- nicht
enthält. Offenbar zerfällt die gesamte Lösungsmenge in die Kreise ij und Eine wei-
tere Verzweigung liegt am Kreis Der Kreis kI kennzeichnet die Lösungsmenge, die
die Verbindung O50,- und OkO, enthält. Dagegen kennzeichnet der Kreis k! die
Lösungsmenge‚ die zwar die Verbindung 0,0,-, aber nicht 0„01 enthält.

Um Aufspaltungskriterien anzugeben, wird jedem Element n23,’ der reduzierten
Matrix A, ein 9,‘,- mit dem Zahlenwert

9;; : Ni + ßii
zugeordnet. Dabei gilt

xx”: min {afqw},
zgzgu

l#_1’

zx,-j bzw. ßij ist das kleinste Element der i-ten Zeile bzw. j—ten Spalte, wenn von dem

Elementag) bei der Minimierung abgesehen wird.
Zur Matrix A, [vgl. (4.36)] gehören die folgenden matrizenmäßig angeordneten

QÜ-Größen:

0 0 0 0 22

0 0 0 0 36

0 0 0 0 12 (4.37)

0 0 0 0 26

12 27 26 22 0

Nur für aw: 0 können die G; von null verschieden sein. Für a?) >O folgt aufGrund
_] _ Ä l . J

der Definition der reduzierten Matrix A,: 0,-,- = 0.

Die Werte in (4.37) sollen im folgenden aus rechenpraktischen Gründen in der
reduzierten Matrix A, vermerkt werden. Die Q-Werte, die gleich null sind, werden
nicht vermerkt:
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M 29 26 22

36 M 50 38 03°

A1 = 12 53 M 46 0” (4.38)

26 27 40 M
012 027 026 0'32 M

Nach diesen Vorbereitungen soll nun der Ablauf des Lösungsalgorithmus am Bei-
spiel (4.36) beschrieben werden.

1. Schritt

Die Matrix A [s. (4.36)] wird reduziert. Es entsteht die Matrix A, [s. (4.36)]. Der
Kreis aller möglichen Reisewege hat die untere Schranke S : 0 (s. Bild 4.4).

2. Schritt

In der Matrix (4.36) wird jedem Nullelement ein 0,», zugeordnet. Es entsteht die
Matrix (4.38). Mit den Q-Werten wird nun eine Einteilung aller Reisewege in Unter-
mengen mit größeren unteren Schranken als S: 0 möglich. Wird z.B. 035 = 12

betrachtet und mit x eine Lösung bezeichnet, die dem Kreis Ü angehört (d. h. 0305
nicht enthält), so gibt es in x einen Ort 0,-‘ # 03, zu dem man von 03 aus gelangt.

Ebenso gibt es einen Ort 0,-‘ i 03, von dem man nach O3 gelangt. a2}: + af-:2 gehört
zur Weglänge von x, und es gilt: '

u) f1)
113,3 + a,-,5 g Q35: 12.

\

Bild 4.4
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Daher hat die Menge der Lösungen zum Kreise Ü eine untere Schranke von min-
destens S+ 12 = 0+ 12 = 12.

Damit die neue Schranke möglichst groß ausfällt, wird das lndexpaar i, j mit dem
größten 0,‘, ausgewählt. Im Beispiel ist 025 = 36 der größte Wert. Somit wird die

gesamte Lösungsmenge in die beiden Lösungsmengen aufgeteilt, die den Kreisen Ü
und 2,5 entsprechen. Eine untere Schranke, die zur Lösungsmenge des Kreises i, j
gehört, wird mit Um) bezeichnet. Aus 025 2 36 folgt daher

U@;=0+36= 36.

In Bild 4.4 sind die zu einem Kreis gehörenden unteren Schranken unterhalb der
Kreise vermerkt.

3. Schritt

Eine untere Schranke I/(2,5) wird aus der Matrix A, ermittelt, die durch die Strei-
chung der Elemente der 2. Zeile und 5. Spalte aus der Matrix A1 hervorgeht. Diese
Elemente können deshalb gestrichen werden, weil unter diesen nicht mehr gewählt
werden kann, da 0205 festliegt. Auch das Element n92’ der Matrix A, darf nicht mehr
ausgewählt werden, da sonst der Kurzzyklus 020502 entstehen würde. Das Element
ag;> wird deshalb durch M ersetzt. A2 lautet somit:

12 3 4

1 M292622 22

3 1253M46 12

2:4 262740M 26

5 OM00 0

o 1 o o

(4.39)

Die Matrix A2 wird reduziert. Es entsteht die reduzierte Matrix A3 (4.40). Die Reduk-
tionsgrößen p; und q,- sind in (4.39) vermerkt:

1234

1 M 6 4 o6

3 034 4o M 34

A324 o" o6 14 M “'40)
5 0°M0‘0°

Die Summe der Reduktionsgrößen S = 61_ von A2 und der unteren Schranke des
vorhergehenden Kreises ergibt die untere Schranke U(2,5;, also

U1”) = 0 + 61.
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4. Schritt

Der Kreis mit der kleinsten unteren Schranke der bisher entstandenen beiden

Kreise 2,5 und Ü wird weiter aufgespalten. 1) Im Beispiel ist es der Kreis 2,5. Jetzt
ist wieder von der Matrix A1 auszugehen. Das größte 0,-,- außer (925 2 36 wird be-

stimmt, Man erhält 052 = 27. Damit wird der Kreis Z5 in die beiden Kreise 5,2 und Ü
aufgespalten.

Eine Reduktion der Matrix

M 29 26 22 O

36 M 50 38 M 36

A4 = 12 53 M 46 0

26 27 40 M 0

0 M 0 0 M

27

ergibt für U5, = 0.2;, + 052 = 36 + 27 = 63.

U(5_2) wird bestimmt, indem die 5. Zeile und 2. Spalte der Matrix A4 gestrichen
werden und das Element a; durch M ersetzt wird. Es entsteht die Matrix A_-,:

l 3 4 5

1 M 26 22 0 0

2 36 50 38 M 16

° 3 12 M 46 0 0

4 26 40 M 0 O

12 26 22

A5 wird zur Matrix A5 reduziert:

1345

Es folgt U(;,_g) = 76.

5. Schrirt '

Wiederum wird mit dem Kreis der kleinsten unteren Schranke weitergerechnet.

Der Kreis 2,5 wird in die Kreise 3,1 und Ü aufgespalten, da die Matrix A3 in (4.40)
den größten 0-Wert bei 931 = 34 hat. Es folgt

U(fi,= 61+ 34= 95.

1) Die Auswahlfunktion der Klasseneinteilung wird also so gewählt, daß die Klasse mit der
kleinsten unteren Schranke weiter aufgespalten wird.

ll Scifian, Optimierung
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Die Schranke Um) entsteht wiederum durch die Reduktion der Matrix A„ die aus
A3 durch Streichung der 3. Zeile und der 1. Spalte und durch Ersetzung des Element-
tes a}? durch M entsteht:

2 3 4

_ 1 6 M 0°

A7=4 02° 14 M 4 (4.41)

5 M 0“ 0°

Da die Reduktionsgröße von A, null ist, folgt

U(3_„ = 61.

Der Kreis 3,1 wird in die Kreise 4,2 und 43 aufgespalten, da in A7 der größte 9-Wert
6,2 = 20 ist. Es folgt um = 81.

Um?) entsteht analog durch die Reduktion der Matrix A5, die durch Streichung
der 4. Zeile und 2. Spalte aus A, entsteht:

3 4

1 M OM

5 0J! 0o '

Die Reduktionsgröße ist wiederum gleich null:

Um) = 51-

Weitere Aufspaltung führt zu den Kreisen 1,4 und 1,4. Die Lösungsmenge des

Kreises T} ist leer, da die einzig noch verbleibende Verbindung 0,03 nicht zulässig ist.
U(‚_„ = 61; da aus A3 durch Streichung der 1. Zeile und 4. Spalte lediglich noch

die Verbindung 0503 iibrigbleibt, enthält der Kreis 5,3 nur noch eine Lösung

0104020503

mit dem Funktionswert 61. Da alle anderen Kreise keine kleinere untere Schranke
besitzen, ist diese Lösung optimal.

As:

4.5. Reihenfolgeprobleme

Nach den ersten Veröffentlichungen über Reihenfolgeprobleme vor ca. 20 Jahren
ist besonders in der letzten Zeit in der Literatur eine große Anzahl von neuen Bei-
trägen erschienen. Diese befassen sich sowohl mit komplexen als auch mit speziellen
Problemstellungen und deren Lösungsmöglichkeiten. Sie heben die Notwendigkeit
der praktischen Bewältigung derartiger Aufgabenstellungen besonders hervor, gleich-
zeitig zeigen sie aber auch, daß praktische Lösungsalgorithmen vorerst nur für be-
stimmte Problemkomplexe vorliegen. Die auftretenden Lösungsschwierigkeiten
für den Gesamtkomplex sind durch die vielfältigen Variationsmöglichkeiten wesent-
lich bestimmt, die sowohl in den zu erfüllenden Nebenbedingungen als auch in den
unterschiedlichen Zielstellungen zum Ausdruck kommen.

lm vorliegenden Abschnitt werden für einen bestimmten Problemkomplex die
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funktionalen Abhängigkeiten der einzelnen Zielstellungen in ihrer wechselseitigen
Verflechtung dargestellt und verschiedene praktische Lösungsmethoden der kombi-
natorischen Analyse angegeben. v

4.5.1. Problemstellung und mathematische Modelle

Bei einem Reihenfolgeproblem kommt es darauf an, die in einem bestimmten Pro-
duktionsprogramm enthaltenen Arbeitsgegenstände (Lose, Produkte, Aufträge,
Einzelteile), deren technologische Durchläufe vorgegeben sind, in einer solchen
Reihenfolge auf den Arbeitsplätzen (Maschinen, Maschinengruppen, Baugruppen)
zu bearbeiten, damit ein höchstmöglicher NutzelTekt besteht.

Im allgemeinen sind die Arbeitszeitaufwände der Arbeitsgegenstände auf den ver-

schiedenen Arbeitsplätzen unterschiedlich. Erschwerend kommt hinzu, daß die Ma-
schinenfolge, die ein Auftrag zu seiner Bearbeitung zu durchlaufen hat, ebenfalls für
jeden Auftrag eine andere sein kann. Diese Unterschiede bedingen, daß im Produk-
tionsablauf sowohl Wartezeiten der Aufträge (Arbeitsgegenstände) zwischen den
einzelnen Bearbeitungen auf den Maschinen (Arbeitsplätze), als auch Stillstands-
zeiten der Maschinen auftreten.

Unter Stillstandszeit wird im folgenden die Zeit verstanden, während der eine
Maschine nicht belegt werden kann. Dabei seien Reparaturzeiten der Maschinen
für das Auftreten von Stillstandszeiten ausgeschlossen.

Ebenso wird die Wartezeit als Zeit eingeführt, während der ein Auftrag nicht
bearbeitet werden kann. Dabei soll eine Wartezeit nur durch die gewählten Bearbei-
tungsfolgen der Aufträge auf den verschiedenen Maschinen entstehen.

Sowohl die Stillstandszeiten als auch die Wartezeiten sind ausschließlich von die-
sen Bearbeitungsfolgen abhängig, wenn die Maschinenfolgen der Aufträge durch die
Maschinen und die einzelnen Bearbeitungszeiten festliegen. '

Bei der Lösung eines Reihenfolgeproblems kommt es also darauf an, die Bearbei-
tungsfolgen für alle Maschinen so festzulegen, daß alle Bearbeitungs— und Ablauf-
bedingungen für die Aufträge erfüllt sind und darüber hinaus vom wirtschaftlichen
Standpunkt ein optimaler Ablauf erzielt wird.

Zur Erreichung dieses Zieles kann die Optimierung nach verschiedenen Gesichts-
punkten erfolgen, so z‚B.

l. Minimierung der Gesamtdurchlaufszeit aller Aufträge,

2. Minimierung der Gesamtstillstandszeit aller Maschinen,

3. Minimierung der Gesamtwartezeit aller Aufträge.

Reihenfolgeprobleme treten vorwiegend in der Einzel- und Kleinserienfertigung auf,
die besonders im Maschinen-, Werkzeug-, Vorrichtungs- und Anlagenbau vorzufin-
den ist. Aber unter ähnlichen Voraussetzungen treten sie ebenso im Bauwesen, Forst-
wesen, in der Landwirtschaft oder in der Gebrauchsgüterindustrie auf. Erläuternd
soll z.B. im Bauwesen die wenig veränderte Problematik angedeutet werden. So be-
steht vor allem in der Bauproduktion die Aufgabe, einmal die Arbeitskontinuität
der Brigaden zu gewährleisten und zum anderen die Ausbauzeit (Gesamtfertigungs-
zeit) der Objekte zu minimieren. Jetzt entsprechen den Maschinen die Brigaden und
den Aufträgen die einzelnen Arbeitsplätze (Objekte). Die Forderung der Arbeits-

11*
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kontinuität bedeutet, daß keine Stillstandszeiten zugelassen sind. Neben der Mini-
mierung der Gesamtfertigungszeit kann als mögliche andere Zielstellung auch die
Minimierung der gesamten Wartezeit der einzelnen Aufträge gewählt werden.

In den folgenden Ausführungen werden m Aufträge P,- (i : 1, ..., m) zugrunde
gelegt, die aufn Maschinen M‚- (j : 1, ..., n) zu bearbeiten sind. Mit dieser Beziehung
gelten bei einem Reihenfolgeproblem im allgemeinen die folgenden Voraussetzungen:

1. Mit t,«,- wird die Bearbeitungszeit des Auftrages P,« auf der Maschine M,- bezeich-
net. Alle auftretenden Bearbeitungszeiten sind konstant und fest vorgegeben. Die
erforderliche Rüstzeit ist in t‚-‚— mit enthalten. Diese Bearbeitungszeiten werden im fol-
genden über eine Bearbeitungsmatrix

tll im
T: 5 E

tml tmn

zusammengefaßt.

2. Zwei und mehr Aufträge werden auf einer Maschine nicht gleichzeitig bearbeitet.
Ein Auftrag soll auch gleichzeitig nicht auf zwei und mehr Maschinen bearbeitet wer-

den. Außerdem solljede Maschine so früh als möglich mit Aufträgen belegt werden.
(Veränderungen dieser Voraussetzung sind in [27] enthalten.)

3. Es werden keine anderen Zeiten als Bearbeitungszeiten, Wartezeiten und Still-
standszeiten berücksichtigt.

4. Die Bearbeitung eines Auftrages ist auf jeder Maschine ohne zeitliche Unter-
brechung durchzuführen. Der Auftrag P‚- geht frühestens erst dann zur Bearbeitung
auf die folgende Maschine über, wenn der gesamte Auftrag auf der vorhergehenden
Maschine vollständig bearbeitet ist.

5. Für jeden Auftrag Pi ist eine ganz bestimmte Maschinenfolge vorgegeben, nach
der Pi die Maschine zu passieren hat. Diese Maschinenfolgen können in einer Maschi-
nenfolgematrix W zusammengefaßt werden. Die Zeilenanzahl von W stimmt mit der
Anzahl der Aufträge und die Spaltenanzahl mit der Maschinenanzahl überein.

Lautet z. B,

123
W:[31—j,

321
so hat P, zuerst M„ anschließend M2 und schließlich M3 zu passieren, P3 der Reihe
nach M3, M2, M,, P2 aber nur M3 und dann M‚. M2 ist dabei von P2 nicht zu pas-
sieren (kann übersprungen werden). Von der Matrix W sind die folgenden besonderen
Fälle hervorzuheben.

5.1. Jeder Auftrag kann nach einer beliebigen Maschinenfolge bearbeitet werden
(W wird bedeutungslos).

__5.2. Für jeden der Aufträge ist eine ganz bestimmte Maschinenfolge vorgegeben
(Überspringen erlaubt). Zu verschiedenen Aufträgen kann es unterschiedliche Ma-
schinenfolgen geben.
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5.3. Für jeden Auftrag ist die gleiche Maschinenfolge vorgeschrieben. Ohne Be-
schränkung der Allgemeinheit kann gefordert werden, daß der Auftrag P_,;(i = 1, ‚ m)
der Reihe nach auf den Maschinen M, ‚ M2, ...‚ M„ zu bearbeiten ist. (Überspringen
ist nicht erlaubt, allerdings kann 1,-,- = 0 als Bearbeitungszeit zugelassen werden.)

5.4. Genau wie 5.3. und Überspringen gestattet.

In den Bildern 4.5, 4.6 und 4.7 sind die drei letzten charakteristischen Fälle gra-
phisch veranschaulicht.

P; K d: Bild 4.5.

P3 ° ’ um’ Unterschiedliche Maschinenfolge.
5 ‘f Überspringen erlaubt

M, M; M3 Bild 4.6.

g Gleiche Maschinenfolge.
p; Überspringen nicht erlaubt

‚V, ‚w, ‚V3 M,
F’ I 1"” ” Bild 4.7.

P2 Gleiche “ " ‘-109
F, JE’ ' ‘fig’ Überspringen möglich

6. Nach jedem Fertigungsplan werden die einzelnen Maschinen von einer ganz
bestimmten Auftragsfolge (Auftragsreihenfolge) passiert. Bei vielen Problemen wird
daher die Voraussetzung hinzugefügt: Jede Maschine wird von der gleichen Auftrags-
folge durchlaufen. Passieren also der Reihe nach die Aufträge Pix. Pik, ...‚ Pim die
Maschine M1, so sind die restlichen M, in der gleichen Reihenfolge zu durchlaufen;
dabei ist i1, ...‚ im eine Permutation der Zahlen 1, 2, ...‚ m.

Im folgenden werden nur die Voraussetzungen l. bis 4., 5.3 und 6. berücksichtigt,
d.h.‚ es werden nur Reihenfolgeprobleme mit gleichen Maschinen- und Bearbeitungs-
folgen betrachtet.

In diesem Problemkomplex sind sieben besondere Problemstellungen hervorzu-
heben, die der Reihe nach mit RFP l, 2, 3, 4, 5, 6 und 7 bezeichnet werden.

Nach der Einführung einiger Bezeichnungen werden die einzelnen Problemstellun-
gen in einer Übersicht zusammengestellt.

I}; 2 0 sei die Bearbeitungszeit des Auftrages auf der Maschine M‚-‚ der in der
Bearbeitungsfolge an i-ter Stelle steht (i = l, ...‚ m;j: 1, ...‚ n).

w‚-‚» g 0 sei die Wartezeit des in der Bearbeitungsfolge an i-ter Stelle stehenden
Auftrages, die nach Beendigung der Bearbeitung auf der Maschine Mj bis zum Beginn
der Bearbeitung auf der Maschine MM anfällt (i = 1, ..., m; j: 1, ...‚ n).

5,-,- g. 0 sei die Stillstandszeit der Maschine M; zwischen Bearbeitungsende und
Bearbeitungsanfang der beiden Aufträge, die an i-ter und (i + l)-ter Stelle in der
Bearbeitungsfolge stehen (i = 1...., m — l;j = 1, ...‚ n). so,-, j = l, ...‚ n, ist die Still-
standszeit der Maschine M!‘ von Beginn der Bearbeitung des ersten Auftrages auf der
Maschine M, bis zum Beginn der Bearbeitung des ersten Auftrages aufder Maschine M‚-.

f,- sei die jeweilige Zielfunktion ‘der Reihenfolgeprobleme 1 bis 7 (i = l, ...‚ 7).
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Übersicht der Problemstellungen:

RFP l Minimierungsziel f, | Besonderheiten

1 Gesamtfertigungszeit

2 Gesamtstillstandszeit s,-, und w,-, beliebig g 0,

3 Gesamtwartezeit

4 Gesamtfertigungszeit _ _

_ 4 w„ = 0, si, 2 0 beliebig
5 Gesamtstillstandszeit

6 Gesamtfertigungszeit
» =0, - 20b l" b’

7 Gesamtwartezeit s” w” _ e 1e lg

Die eben eingeführten Bezeichnungen sind in Bild 4.8 an einem allgemeinen Beispiel
von 3 Aufträgen und 3 Maschinen geometrisch verdeutlicht.

In einem kartesischen Koordinatensystem sind in dem Bildauf der y-Achse die
Maschinen M1, M2, M3 markiert. Auf der x-Achse sind die Zeiteinheiten abgetragen.

Bild 4.8

Die Bearbeitungszeiten sind durch die dick ausgezogenen Linien, die Stillstandszeiten
der Maschinen durch die Unterbrechungen zwischen den dicken Linien und die
Wartezeiten durch die schrägansteigenden Linien zwischen den einzelnen Maschinen
dargestellt.

Für jedes zugelassene Reihenfolgeproblem kann ein lineares Optimierungspro-
blem in einfacher und übersichtlicher Form vollständig zusammengestellt werden.
Die Nebenbedingungen sind unmittelbar aus Bild 4.8 allgemein abzulesen. Es gilt:

5'11 +133 + W21 = W11 + 1:24” S12

312 + 62+ W22 = W12 + fies‘? 513
(4.42)

S21 +t§1*1 +W31 = W21 + [$2 +522

522 + 75"? ‘l’ W32 = W22 + 133 ‘i’ S23

oder zusammengefaßt:

5:7 ‘i’ 11:14‘ + wi+l‚l = W114‘ 155+: + Smn (4-43)

i=1,2; j=l‚2.
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Allgemein gilt für m Aufträge und n Maschinen

511+ tz*.~1,;i+ Wind = Wi1+ Üij+1 ‘i’ ‘zum (4-44)

i=1,...,m—1; j=1,...,n—l,
oder

—si‚7rl ‘i’ St; ‘ W11 + Wi+1,1= ‘tz*+1.j ‘i’ t:j+1 (445)
'=1,...,m— l; j= l,...,n— 1.

Durch (4.44) bzw. (4.45) sind damit die Nebenbedingungen für den gesamten Pro-
blemkomplex gegeben.

Bevor die Zielfunktionen näher angegeben werden, sind die Zeiten t3} durch die
Bearbeitungszeiten 1;, auszudrücken. Mit X wird die Matrix [x‚>‚-]„„„‚ bezeichnet,
deren Elemente xi,- den folgenden Bedingungen genügen:

l._;1‘x,,= l,

2. fix“ = 1, ' (4.46)
j=1

3.0§x,,§ 1; i‚j= l,...,m;
x„ ganzzahlig.

Die Matrix X enthält auf Grund dieser Bedingungen in jeder Zeile und Spalte nur

ein Element, welches eins ist, alle restlichen sind null. Die Anzahl der voneinander
verschiedenen X stimmt mit der Anzahl der möglichen Reihenfolgen der Aufträge
überein und beträgt nz!. Jede Reihenfolge wird durch eine entsprechende Zeilenpermu-
tation von T beschrieben.

Es sei

1* = X - T = [:3]; z}; z im, - :„‚. (4.47)

In der Matrix T* sind die m! verschiedenen Zeilenpermutationen von T enthalten, je
nachdem, wie die Matrix X gewählt wird. Werden z.B. alle Hauptdiagonalelemente
der Matrix X gleich eins und alle restlichen gleich null gesetzt, so folgt:

T*=T.

In diesem Fall wird durch T* die natürliche Reihenfolge der Aufträge P1, ..., Pm be-
schrieben.

Die Zielfunktionen der sieben Reihenfolgeprobleme sind ebenfalls unmittelbar aus
Bild 4.8 allgemein abzulesen.

Zu den Nebenbedingungen (NB) (4.45), in denen einige Variable den Wert Null
annehmen, kommen die folgenden Zielfunktionen (ZF) hinzu:

A1 m

RFP1: ZF:f1=mZs1,,+ 2't§‘,,‘;min; (4.48/1)
(=0 i=1

NB: (4.45).
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RFP 2: ZF: f2 = Elf s), 4 min; (448/2)

NB: (4.451)=.U:l

RFP 3: ZF: f3 = EM, g min; (4.48/3)

NB: (4.457 F1

RFP 4; ZF: z, = ifs” + :2; g min; i (4.42/4)

NB:(4.45L)—:nitw1,:0 für i=1,...,m; =1,...,n—l.

RFP 5: ZF: f5 = E1 s), ;' min; (448/5) fl

NB: (4.457):1n:i=txw,,=0 für i= l‚...‚m; j= 1,...,n— 1.

RFP 6: ZF: f; = s.„. + 13:. 4 min; (4.48/6)

NB: (4.45)m1t:‚=0 für i: 1,...,m~ 1; j=1,...,n.

RFP 7: ZF: f7 = f 153112„ :—f_ min; (4.48/7)
i=1_7'=1

NB: (4.45) mit s,»,=0 für i=1‘,...,m—1; j= l,...‚n.
Damit ist für jedes aufgeworfene Problem ein gemischt-ganzzahliges lineares Opti-
n1ierungsmodell angegeben. Bei allen Problemen besteht die Aufgabe in der Bestim-
mung einer solchen Reihenfolge der Aufträge (bzw. einer solchen Matrix nach (4.46)),
die die entsprechende Zielfunktion minimiert. In jedem Problemkomplex sind die
rechten Seiten der Nebenbedingungen für alle unterschiedenen Probleme stets die
gleichen. Da einige Variable s‚-‚- oder w,-,- gleich null sind, nehmen die linken Seiten
spezielle Formen an, und es treten weiterhin Unterschiede durch die einzelnen Ziel-
funktionen auf.

Für jedes Reihenfolgeproblem läßt sich aus dem Optimierungsmodell eine Formel
zur Berechnung des Funktionswertes der Zielfunktion bei vorgegebener Reihenfolge
ableiten. Eine ausführliche Ableitung ist in [27] gegeben. Hier seien nur die einzelnen
Darstellungen übersichtlich zusammengestellt.

Im folgenden wird ausschließlich die natürliche Reihenfolge der Aufträge betrach-
tet. Es gilt daher nach (4.46) und (4.47):

X11:-X22: "'=xmm=1s
alle restlichen x,-, z 0 und damit T* = T.
Es sei

m 7|.

T= 2 2m; (4.49)
5:1 1:1

n k-l l

T.) = 2‘ t), + 21mm; (4.50)
Fi=k+1
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m k-l
T;„- = Zt„+ 25m; (4.51)

i=k+1 i=l

Zu = min {T1'1+ Zi~1,lc “ Zi—1,n}) Z01: = 0? (4-52)
igkgn

Zij = min iTicj ‘l’ Zlc, I~1 " Z;rl,I—l}s Z120 = 0- (4-53)
12kg:‘

Mit diesen Bezeichnungen lauten die Zielfunktionen bei Vorgabe der natürlichen
Reihenfolge für die RFP 1, 4, 5 folgendermaßen:

RFP 1: f, = T —m_j:Z,.,, : T—31‘1Z’,,,,; (4.54)
1= ;=

m—1

RFP4: f, = T— Z min {Tm}; (4.55)
i=11§lr§n

m-l n

RFP5: f5: 2 max l T‚.,—n.T,.„}. (4.56)
i:11§k§n r=1

Weitere Darstellungen sind in {27} enthalten.

4.5.2. Ein Lösungsalgorithmus

Im folgenden soll ein Sonderfall zum RFP l betrachtet werden, indem die Anzahl
der Maschinen n = 2 gesetzt wird.

Aus Tabelle 4.16 sind für ein Beispiel mit m = 5 und n = 2 die einzelnen Bearbei-
tungszeiten I,-j — gerechnet pro Tag — zu ersehen. Jeder der fünf vorliegenden Aufträge
P„ P2, P3, P4 und P5 passiert zuerst die Maschine M1 und anschließend die Maschine
M2. In Bild 4.9 sind vier verschiedene von den insgesamt 5! = 120 Reihenfo1gem6g~
lichkeiten graphisch dargestellt, wobei die eingezeichneten stark ausgezogenen Linien
die Bearbeitungszeit des Produktes P,» auf der entsprechenden Maschine bedeuten.
Die Werte in der dort angegebenen Zahlenspalte a bzw. b stellen die Ausnutzung
in % bzw. die Fertigungszeit in Tagen dar.

Tabelle 4.16

M1 M2

P1 t„ : 6 I12 = 5

P2 :2, = 3 tn = 2

P3 I3, = 8 2'32 = 3

P, ' I“ z 4 t„ = 9

P5 t5, = 2 152 : 3
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Dieser Sonderfall wurde von Johnson gelöst. In [8] beschreibt Johnson eine Regel
zuräErmittlung der optimalen Reihenfolge. Er zeigt dort, daß in einer optimalen An-
ordnung der Auftrag P,- vor dem Auftrag Pk bearbeitet werden muß‚ wenn

min {tin 71:2} < min i111, Ti-zi

gilt. Daraus resultiert die Lösungsregel‚ die aus folgenden Einzelschritten besteht:

Schritt 1: Es wird h = min {t,~1, I52} gebildet.
lSiSm

Schritt2: Wenn h = im ist, wobei z}, einen ganz bestimmten Index der Menge
1, 2, ..., m bedeutet, so wird der Auftrag Pg” in der Reihenfolge zuerst bearbeitet.
Wenn h : t,-D2 ist, so wird der Auftrag P,-„ zuletzt bearbeitet. Ist

h = min "u: ti2}
Iéiém

nicht eindeutig, so wird definitionsgemäß der Auftrag mit dem kleinsten Index ge-
wählt und nach den beiden eben angeführten Entscheidungsmerkmalen angeordnet.

Nach Beendigung des Schrittes 2 werden die restlichen P,- in der Weiterführung
ohne P,“ betrachtet, indem die Schritte 1 und 2 für die restlichen (m — 1) Aufträge
wiederholt werden. Dieser Zyklus wird so lange wiederholt, bis alle Aufträge ange-
ordnet sind. Für das Beispiel der Tabelle 4.16 entsteht nach dieser angeführten Regel
die optimale Reihenfolge P5, P4, P1, P3, P2. Nach der 1. Ausführung der beiden
Schritte ergibt sich, daß P2 zuletzt zu bearbeiten ist. Es werden in der Weiterführung
nur noch P„ P3, P, und P3 betrachtet. Nachdem die Schritte 1 und 2 zum 2. Male
ausgeführt sind, zeigt sich: P5 ist zuerst zu bearbeiten. Analog folgen die restlichen
Anordnungen.

Wird das RFP 1 für m Aufträge und drei Maschinen M1, M2 und M3 betrachtet,
so ist von Johnson gezeigt worden, daß für einen Spezielfall eine optimale Reihen-
folge durch entsprechende Anwendung der angeführten Regel bestimmt werden
kann. Dieser Spezialfall liegt vor, wenn entweder

{tn} 2 :1 {tn}1. m x
1 igm

"n
lgigm

oder
2- min {U3} 2 max itizi

1§i§m 1§i§m
gilt.
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Aus der Tabelle 4.17 ist ein Beispiel des Spezialfalles 2. zu entnehmen. Um für dieses
Beispiel eine optimale Anordnung der Aufträge zu ermitteln, wird die Summe der
ersten beiden und der letzten beiden Spalten der Tabelle 4.17 in einer neuen Tabelle
4.18 erstellt. Nun wird die obige Regel auf die Zahlenwerte der Tabelle 4.18 ange-
wandt. Die daraus entstehende Reihenfolge P„ P2, P4, P3, P5 ist eine optimale Lö-
sung des Beispiels der Tabelle 4.17.

Tabelle 4.17 Tabelle 4.18

I M1 M2 M3 M, +M2 M2 + M3

P1 5 4 1l P1 9 15

P2 3 6 9 P2 9 15

P3 7 7 12 P3 14 19

P4 2 8 13 P, 10 21

P5 9 2 8 P5, 11 10

Wird bei dem RFPl die Voraussetzung 4 durch die Forderung — nach seiner
vollständigen Bearbeitung kann frühestens ein Einzelteil des Auftrages bereits zur

nächsten Maschine übergehen, ohne daß die restlichen Einzelteile auf der vorher-
gehenden Maschine fertig sind — ersetzt, so entsteht die folgende veränderte Situation.

In Bild 4.10 ist ein Bearbeitungsplan für einen Auftrag P,- mit drei Einzelteilen auf
vier Maschinen dargestellt. Durch die punktierten Linien in Bild 4.10 sind die erfor-
derlichen Rüstzeiten markiert. In Bild 4.11 bzw. 4.12 ist ein Treppenzug eingezeich-
net, der eine rechte bzw. linke Begrenzung des Bearbeitungsplanes von Bild 4.10 dar-
stellt; die einzelnen Treppenstufen sind mit {,5 , , I}; bzw. mit t5 , , t5 bezeichnet.

Für jeden Auftrag P‚-, der auf n Maschinen zu bearbeiten ist, können in der dar-
gestellten Art und Weise zwei Zahlenreihen t,-‘1, ..., tL-1,. und IE1, ..., ti angegeben wer-

den, die graphisch den linken und rechten Begrenzungstreppenzug des Bearbeitungs-
planes von P; darstellen.

M4 _ „=„ 
l

M3 — -====+—+—-1—1 ß

I
M, - -===i——i—+——i i

M! e:::: I,

' Bild 4.10

g.’
M‘ _ H L4

[J l

M; - ' I[II I
M — r ‚
I t1! x

M, :

' Bild 4.11
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M4 — z

I ti 3 I

M3 " 1:2 j

M ‘ til, I

Ml I

t
Bild 4.12

Die Johnsonsche Lösungsregel kann ebenfalls für den Sonderfall, daß zwei Maschinen
vorliegen, zur Lösung herangezogen werden. Aus der Tabelle 4.19 sind für ein Bei-
spiel mit m = 5 und n = 2 die einzelnen Zahlen, die die Aufträge während der Bearbei-
tung charakterisieren, zu entnehmen.

Tabelle 4.19

M, M2

Pi 1 2 i 2

7 i1 Tn 112 Tie

P1 2 4 5 3

P2 4 6 8 6
P3 7 l0 l 1 8

P4 2 3 6 5

P5 3 7 10 6

Die Lösungsregel von Johnson ist zur Lösung des Zahlenbeispiels auf die 1. und
4. Zahlenspalte der Tabelle 4.19 anzuwenden. Als Ergebnis folgt: P1, P4, P5, Pg, P3
ist eine gesuchte optimale Reihenfolge für das vorgegebene Zahlenbeispiel.

Wenn die folgenden Bedingungen erfüllt sind:

13g: (a) 233x (n42) (4.57)
ä 1:1” : I: NB

oder
1§_1i<n (ifs) :1g1_<X(f32), (4-58)
:t:m :1: m

so kann die Regel auch auf den Fall n : 3 Maschinen übertragen werden. Die Erläu-
terung der Regel erfolgt wieder am Beispiel. Aus der Tabelle 4.20 sind für m = 5 und
n = 3 die einzelnen Zahlen, die die Aufträge während der Bearbeitung charakteri<
sieren, zu entnehmen. Für dieses Zahlenbeispiel ist die Voraussetzung (4.57) erfüllt.

Tabelle 4.20

M, M2 M3

P‘ r 2 l 2 1 2

In In h2 h2 713 in

P, 4 7 2 4 10 5

P2 5 1 l 3 2 7 2
P3 6 1 1 1 2 8 2
P4 4 6 3 4 4 l
P5 4 8 2 l l 4
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Es werden die Zeilensummen aus der 1. und 3. Zahlenspalte und aus der 4. und
6.Zahlenspalte der Tabelle 4.20 gebildet. Diese Summen sind der Reihe nach in der
Tabelle 4.2l enthalten. Nunmehr ist die Lösungsregel von Johnson auf die Zahlen
der Tabelle 4.21 anzuwenden. Als Ergebnis folgt: P1, P‘-,, P4, P3, P2 ist eine gesuchte
optimale Reihenfolge für das vorgegebene Zahlenbeispiel. Die Beweise hierzu können
in [27] nachgelesen werden.

Tabelle 4.21

Nr. 1 i.‘ l if
1 6 9
2 8 4
3 7 4
4 7 5

5 6 5

4.5.3. Rundreiseproblem und Reihenfolgeproblem

Im folgenden werden die RFP 4 und 5 betrachtet. Jedes dieser Probleme ist auf ein
Rundreiseproblem zurückführbar. Um diese Zurückführung vorzunehmen, wird
zu der vorgegebenen Bearbeitungsmatrix T : [t,-,~] noch eine Zeile mit lauter Nullen
hinzugefügt, d.h.‚ es wird ein fiktiver Auftrag P0 mit den Bearbeitungszeiten to,» = O,

j: l, ...‚ n eingeführt. Damit sind (m + 1) Aufträge vorhanden. Steht der fiktive
Auftrag in der Reihenfolge an erster (oder letzter) Stelle, so überblickt man sofort,
daß keine Veränderung des Funktionswertes der Ausgangssituation eintritt. Steht
der fiktive Auftrag nicht an erster (oder letzter) Stelle, so ist der Funktionswert größer
als der oder gleich dem Funktionswert der Ausgangssituation. Daher gilt: Das Mini-
mum wird bei einer Reihenfolge angenommen, in der der fiktive Auftrag an erster
(oder letzter) Stelle steht. Die Formel (4.74) nimmt mit dieser Erweiterung die fol-
gende Form an:

m n m-l _

fa: Z Etu- 2 mm {Tm}-
i=Uj=]. i=0 lglggn

Hieraus folgt unmittelbar:
m—l

f! = z(;gi.i¢l (4 59)

mit '

n n lc—1

Emu = Zt1+1,7 " mi" { Z 117+ Z7i—1,7}«
i=1 lékén j=k+1 j=l

Da in der letzten Gleichung g,-Y.-+1 nur von den Bearbeitungszeiten zweier benachbar-
ter Zeilen der Bearbeitungsmatrix abhängig ist, kann für jede beliebige Aufeinander-
folge zweier Aufträge ein solcher Summand berechnet werden. Für die Aufeinander-
folge der Aufträge P, und P, entsteht:

n n k—-1

g„ = 2' ts, — min { Z t,,+ E15,}
i=1 1§k§n ;'=:c+1 i=1

für r +s; r‚s= 0, ...‚m.
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Nachdem die m - (m + 1) Werte der gm berechnet sind, werden sie in Matrizenform
angeordnet. Dabei ist zu beachten, daß für die Hauptdiagonale keine Werte definiert
sind. Hier werden Zahlen eingesetzt, die hinreichend groß, aber sonst beliebig ge-
wählt werden. Diese Matrix wird mit G = [g,,] bezeichnet. Für [g„] ist nun das Rund-
reiseproblem zu lösen.

Ist die Aufeinanderfolge der Elemente

1:86,13’ gm,’ a gi,,_,z',,: gzVi,,+_, ---9 gimin}

eine optimale Lösung der Rundreisematrix G und ist i, = 0, so ist

Pi”), ..., Pim, Pg“, ..., P,-H

eine gesuchte optimale Reihenfolge der Aufträge zum RFP 4, und es gilt
7/1

f: =1_§08i,,i,+, —

Der optimale Funktionswert von f, stimmt also mit dem optimalen Funktionswert
des Rundreiseproblems G überein.

Für das Beispiel

5 l0 2

T: 5 3 8

4 9 6

lautet die Matrix G:

— 17 (16) 19

0 H 9 13

G: (o) 6 — (8)

0 (6) 8 —

Die optimale Lösung von G ist durch Klammern in der Matrix markiert.

Es folgt die optimale Aufeinanderfolge

i802: 823: 8x1: gm}-

Hieraus folgt, P2, P3, P1 ist die optimale Reihenfolge, und

fa :gu2+g23 +831 +810 : 30

ist der optimale Funktionswert des RFP 4.

Das Reihenfolgeproblem 5 läßt sich ganz analog auf ein Rundreiseproblem zurück-
führen.

Die Formel (4.56) lautet:
m-l n m—1_

f5:Z m3x{1nr*"'T4k}:2gi,i-I
{=1 12kg; r:' .=i

mit
W fl

gt,i+l=maX{ 1T1r“"'T1Ic}-
1§1r§n i:
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In dieser Darstellung hängt ebenfalls fg,~,,~+1 nur von den Bearbeitungszeiten zweier
benachbarter Zeilen der Bearbeitungsmatrix ab. Für jede beliebige Aufeinanderfolge
zweier Aufträge kann ein solcher Summand berechnet werden. Für die Aufeinander-
folge der Aufträge P, und P, entsteht

n n v-l n k<1

§r:=maX Z tri+2ts1)”n'( Z 117+ Zt:I)}’
xgkgn v=1 j:v+1 j=1 j=k+l j=l

r+s r,s=1,...,m.
Die Elemente g„ werden in Matrizenform angeordnet. Dabei ist zu beachten, daß
für die Hauptdiagonale keine Werte definiert sind. Hier werden wieder Zahlen ein-
gesetzt, die hinreichend groß, aber sonst beliebig gewählt werden. Die entstandene
Matrix ist noch durch eine 1. Spalte und 1. Zeile mit Nullen zu rändern, damit ein
„getrennter“ Zyklus entsteht, d.h. damit gesichert ist, daß ein Paar von Aufträgen
nicht aufeinanderfolgt. Die Matrix wird mit Ü bezeichnet. Ganz analog gilt:

Ist die Aufeinanderfolge der Elemente

{im}, .:’z,z., ‚ §z,_,z,, §i,1-W, ---, §i,,,i°}

eine optimale Lösung der Rundreisematrix Ö und ist i„ = 0, so ist

P,-M, ..., Pim, Pin, .‚.‚ P1-H

eine gesuchte optimale Reihenfolge der Aufträge zum RFP 5, und es gilt
77i _

fa = §)gz',iv+_: imYl =11»-

Zum angeführten Beispiel gehört folgende Ö-Matrix:

— (0) O 0

0 — (6) 13

0 6 ~ (3) '

(0) 8 l0 —

Die optimale Lösung ist wieder durch Klammern in der Matrix markiert und lautet

{güla gm: §23: gaoi-
Also ist P„ P2, P3 die gesuchte optimale Reihenfolge mit f}, = 9.

E:

4.5.4. Die Anwendung des Verzweigungsverfahrens auf das Reihenfolgeproblem

Für alle angegebenen Reihenfolgeprobleme sind mit der „Branch-and—Bound“-
Methode praktische Lösungsmöglichkeiten bekannt. Im folgenden wird nur für das
RFP 1 ein „Branch-and-Bound"Algorithmus angegeben.

Die Zielfunktion des RFP 1 besteht in der Minimierung der Durchlaufszeit der m

Aufträge auf n Maschinen und kann folgendermaßen dargestellt werden:
k, m-l k; n

f:=maX Ztu+Z' Z fu+ 2' Im]: (4-60)
K j=1 i:2J'=lr,'_1 j=x;,,,_1

K"‘1§k1§k2§“'§km—1§n-
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Der Algorithmus ergibt sich analog zur allgemeinen Darstellung der „Brauch-and-
Bound“-Methode. Die gesamte Lösungsmenge P stellt die Menge aller Permutationen
der Auftragsnummern dar. Mit p : i„ ..., i„‚ wird eine beliebige Permutation der
Menge P bezeichnet. Die Lösungsmenge wird in Klassen aufgespalten. P‚-l„__„;, ist
die Klasse aller Auftragsreihenfolgen, die mit Pivwi, beginnen. Von jeder Klasse
wird eine untere Schranke bestimmt.

Der Aufbau des „Branch-and-Bound“-Algorithmus ist in den folgenden drei
Punkten zusammengestellt:

1. Aus (4.60) entsteht eine untere Schranke A„ von fx, wenn nur die Teilmenge
l g k, x = k„,_, g n der Menge aller Kombinationen K berücksichtigt wird. Es
gilt dann: v

L‘—1 m n

f1;A0=max{Zt1,+Ztik+ 2 am}. (4.61)
Iglcgn 5=1 i=1 j=Ic+1

Aus (4.61) folgt für eine beliebige Permutation p:
k—1 m n

f, g A = max {Z15},-+ zum“ Z‘ t,<m,-}-
lékén jrl i:1 j=/(+1

In der Schranke A treten nur zwei Glieder der Permutation p auf, nämlich i, und i„,.
Liegt z.B. i, fest, so gibt es nur m — l Möglichkeiten, i„‚ zu wählen. Werden für alle

v =9: i, mit v = 1, ..., m die m — 1 Schranken A gebildet und mit A,‘ die kleinste be-
zeichnet, so ist A,-, eine untere Schranke aller Funktionswerte der Reihenfolge, bei
denen der Auftrag P‚-_ an erster Stelle steht.

Wird daher mit P,-I (< P) die Menge aller Permutationen p bezeichnet, die mit i,
beginnen, so gilt für alle p E Pilz

k-l m n

f, g A,‘ j min {max [E rm-+ z‘ t„„+‘ Z ti-J”. (4.62)
i=1 }=lc+1 J22/zém lgrcgn i=1

x-—1

In (4.62) bedeutet Z t‚-„- die Stillstandszeit der Maschine M, von Beginn der Bearbei-
' 1

tung des Auftragejs=P,»_ auf der ersten Maschine bis zum Beginn der Bearbeitung von
P,-_ auf der Maschine Mk. Der letzte Summand in (4.62) hängt nur von den Bearbei-
tungszeiten der dem Auftrag P„ nachfolgenden Aufträge ab.

2. Um einen Verzweigungs-Algorithmus aufzustellen, ist es notwendig, eine untere
Schranke

Aa‚....‚a,

aller Zielfunktionswerte derjenigen Reihenfolgen anzugeben, bei denen der Reihe
nach die Aufträge Pg], ..., Pg}. zuerst bearbeitet werden (1 g Ä g m). Wird also mit
P‚-l, ..., ,-) die Menge aller Permutationen p bezeichnet, die mit den Zahlen i„ ..., i‚«_

beginnen, so gilt für alle p E P,-_, ..., ,-A nach (4.62)
k-l m 7L

f.<p) g A1-,....,1-I = min { max l 2 2.„» + 1a„ + 2 n, + 2 rm
l+1§u§m igkgn j=i i=1 ‘1 '

(4.63)

Der letzte Summand der Min-Max-Glieder von (4.63) hängt wiederum nur von den
Bearbeitungszeiten der dem Auftrag P31 nachfolgenden Aufträge ab. In (4.63) bedeu-
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tet VW. die Stillstandszeit der Maschine M‚_. von Beginn der Bearbeitung des Auf-
trages P‚-‚ auf Mk bis zum Ende der Bearbeitung von P‚-Ä auf M„.

3. Das Optimum ist gefunden, wenn mindestens eine Permutation p* einen Ziel-
funktionswert

f1(P*) = min {Az',,...,i;_J
V1’ 5 1’t„...‚i‚1

hat, das heißt, wenn an einem Ende des Verzweigungs-Baumes zu einem Knoten eine
einzige Permutation p* gehört und deren Gesamtfertigungszeit gleich dem Minimum
der unteren Schranke aller Knoten ist.

Die 17,2%. werden folgendermaßen berechnet:

Wird mitfi-lk die Zeit bezeichnet, nach der der Auftrag Pi; auf der Maschine M„
vollständig bearbeitet ist, so gilt für das betrachtete RFP l die folgende Rekursions—
formel:

flzk : max (figqk; fl1k41) + (ilk W

mit flu}; =f,'}._n =

Dabei istf,-,_‘L. die Zeit, zu der M„. frühestens P,-1 aufnehmen kann, undfl-l,c_, ist die
Zeit, nach der P,-5’ frühestens auf der vorhergehenden Maschine fertig ist und auf die
nächste übergehen kann.

Da 1-1

Vi,-_k = Z Sm : Slk+ + 514m,
v=1

Sm = max (09fi'g7C~l ~f1~.:c),

5,1; Z max (0s.fz',,+,k—1‘f[,k)s

524,1-= max (oufi,-_L'—l ‘fi1_.lc)
ist, folgt:

2/1 '

Va}: = E max (0‚fi„„i_i -fi‚i)- (4.65)
v=1

Werden von dem Beispiel

5 l0 2

[til] = [5 3 s]
4 9 6

für die natürliche Reihenfolge die fii. berechnet, so gilt:

a rfll /"12 fis (o) 5 (0)15 (1)17

ßi f22 fza = (0)10 (0)18 (1)26

fa” fgg f33 _ l4 27 23

Die in der letzten Matrix zusätzlich eingeführten, eingeklammerten Zahlen sind spal-
tenweise die einzelnen Summanden von (4.65) für k : l, 2, 3. Sie sind unmittelbar aus

den f,“ nach (4.64) zu berechnen.

12 Seifian, Optimierung
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Zur Bearbeitungsmatrix

684
183
636
457

wird im folgendendas RFP 1 gelöst. Bei derAnwendung des Algorithmus sind zunächst
die Maximierungsglieder (4.63) zu berechnen. In der Tabelle 4.22 sind der Reihe
nach diese Maximierungsglieder bei festem i,1 zeilenweise angegeben. In den ersten
Spalten dieser Zeilen sind die Anfangsglieder i1, ...‚ i ,1 der Permutation p und in den
nachfolgenden n Spalten (im Beispiel n = 3) die I/1-1,, bei festem ii und k hinzugefügt.

Nach jedem vollen Satz von Maximierungsgliedern folgt jeweils das entsprechende
Minimierungsglied. Die zusammengehörenden Maximierungsglieder sind ohne Zwi-
schenranm hintereinander angeführt. Die Minimierungsglieder sind durch Abstände
hervorgehoben. In der letzten Spalte sind die unteren schrankenAil __ „Ä vermerkt.
An Stelle der VM. = 0 (für alle k) sind in den der ersten Bezeichnungszeile folgenden
m Zeilen die Bearbeitungszeiten der Matrix T eingetragen. Die Nebenrechnungen
zur Bestimmung der VW, und der Maximierungsglieder sind nicht mit in der Ta-
belle 4.22 vermerkt, können aber ebenfalls rationell ausgeführt werden. Im Anschluß

T =[t.'1]=

Tabelle 4.22 .

i1i1 1 V,-11 [ V,~/12' V,-z3| i„=1 i„=2 1 i1: 3 | z'„=4 |A„-_‚___„-1

1 6 8 4 363736 37 344036 40 374136 41 37
2 1 8 3 373331 37 343531 35 373631 37 35
3 6 3 6 373831 38 363731 37 374131 41 37
4 4 5 7 373631 37 363531 36 343831 38 36

21 O 0 5 343536 36 373636 37 36
23 0 0 0 373331 37 373631 37 37
24 0 0 2 373333 37 343533 35 35

241 0 0 1 343534 35 35
243 0 0 0 373333 37 37

Optimale Lösung: P2, P4, P1, P3, f1 = 35.

an die Tabelle 4.22 ist die optimale Lösung mit Funktionswert angegeben. Schließlich
sind in Bild 4.13 alle notwendigen Verzweigungen durch die eingekreisten Anfangs-
glieder i1, ...‚ 1' 1 mit den dazugehörenden Schranken schematisch dargestellt.

a. Ö.

5 in Bild 4.13



5. Bemerkungen zur geschichtlichen Entwicklung

Die Untersuchung von Extremaleigenschaften und die Charakterisierung von

Gebilden mit Hilfe von Extremaleigenschaften beginnt bereits in der als antike
Mathematik bezeichneten Entwicklungsepoche der Mathematik. Zunächst sind es

geometrische und- physikalische Fragestellungen, die beantwortet werden: Welches
von allen Dreiecken mit zwei gegebenen Seiten hat die größte Fläche? Wie erfolgt die
Reflexion des Lichtes an einem Spiegel? Das zweite Problem stellt ein Minimierungs-
problem dar, denn es ist die Entfernung von jedem Punkte des einfallenden Strahles
über den Refiexionspunkt zu jedem Punkt des ausfallenden Strahles kleiner als der
Weg über jeden anderen Punkt des Spiegels; auch die für die Zurücklegung des Weges
benötigte Zeit ist für den Weg über den Refiexionspunkt minimal. Das ‘Erkennen des
Refiexionsgesetzes geht vermutlich auf Heron von Alexandrien (um 100 u. Z.) zu-

rück. Mehr als 1500 Jahre vergehen, bis durch Pierre de Fermat (1601-1665) das für
den Übergang von einem Medium ins andere gültige Brechungsgesetz (Fermatsches
Prinzip der geometrischen Optik) gefunden wird, das er auch für den Fall gekrümm-
ter Grenzflächen untersucht und das noch heute z. B. für die Berechnung von Linsen-
systemen angewendet wird. C. F. Gauß (1777-1855) entwickelt die Methode der
kleinsten Quadrate. Weiterhin werden Extremaleigenschaften mit Hilfe Von Unglei-
chungen beschrieben; beispielsweise ist aus dem Vergleich von geometrischem undarith-

x + y
2

r 2

metischem Mittel xy g ( ) ablesbar, daß von allen Rechtecken das Quadrat den

größten Flächeninhalt hat. Mechanische Probleme wie z‚B. die Frage nach dem Vor-
handensein des stabilen Gleichgewichtes werden als Extremalproblem (Minimum an
potentieller Energie) erkannt.

Alle bisher genannten Probleme sind variablenabhängig; die Kenntnis der Funk-
tionen einer oder mehrerer reeller Veränderlicher und der Aussagen über die Existenz
von Extremwerten ohne oder mit Nebenbedingungen genügen zur Lösung von
Extremalproblemen, wenn die Funktionen Tangenten mit sich stetig ändernder Tan-
gentenrichtung besitzen.

Zu einer anderen Art von Extremalproblemen gelangen wir, wenn nach den Be-
dingungen gefragt wird, unter denen sich eine gekrümmte Oberfläche bei sog. Form-
änderung nicht verändert. J. L. Lagrange (1736-1813) beantwortet 1760 diese Frage;
er charakterisiert diese Flächen als Flächen mit verschwindender mittlerer Krüm-
mung. Es sind die Minimalflächen, die sich auch als Lösung der von J. Plateau
(1801-1883) aufgeworfenen Frage nach der Fläche mit möglichst kleiner Oberfläche
über einer geschlossenen Kurve ergeben. Experimentell ergeben sich diese Mini-
malfiächen, wenn die mit Draht nachgebildete Kurve in eine Seifenwasserlösung
getaucht wird; die sich bildende Haut ist die kleinstmögliche Fläche, weil die poten-
tielle Energie infolge der kleinsten Oberflächenspannung minimal ist. Mathema-
tisch gesehen handelt es sich um ein Variationsprob1em‚ das gesuchte Extremum
ist vom Verhalten der Kurve im ganzen abhängig.

Die Untersuchungen über Theorie und Anwendung dieser beiden Arten von

Extremwerten ist neben den bereits genannten Mathematikern u.a. verknüpft mit
den Namen L. Euler (1707-1783), A. M. Cauchy (1789-1857), G. Monge (1746
bis 1818). C. G. .1. Jacobi (1804-1851), W. R. Hamilton (1805-1865), P. G. L. Di-
richlet (1805-1859), K. Weierstraß (1815-1897), B. Riemann (1826-1866), S. Lie

12*
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(1842—1899), D. Hilbert (1862-1944), C. Carathéodory (1873-1950), R. Courant
(geb. 1888), T. Rado; die entwickelten analytischen Hilfsmittel werden oftmals zur

Untersuchung von Problemen aus anderen Teilgebieten der Mathematik wie aus der
Arithmetik, der Zahlentheorie, der Geometrie, der Topologie oder aus der Physik
angewendet, oder die analytischen Methoden werden häufig zielgerichtet zur Lösung
von Problemen aus anderen Gebieten entwickelt.

Wenn eine lineare Funktion von n reellen Veränderlichen auf Extrerna zu unter-
suchen ist, so gibt es diese nur im Falle von Nebenbedingungen‚ die zunächst durch
ein System von linearen Gleichungen oder Ungleichungen repräsentiert werden sollen.
Dieses System bestimmt ein konvexes Polyeder, innerhalb dessen die Extremwerte
der linearen Zielfunktion zu ermitteln sind. Extremwerte liegen für lineare Funktionen
am Rande des Polyeders. Es müssen daher im Unterschied zur Problemstellung der
klassischen Mathematik Funktionen untersucht werden, die Tangenten mit sich
nicht stetig ändernder Tangentenrichtung besitzen; die Aufgabenstellung verlangt die
Untersuchung von „Kantenfunktionen“, deren Tangentenrichtttngen in den End-
punkten der Kanten Unstetigkeiten besitzen. Diese Aufgabenstellung liegt den nicht-
entarteten linearen Optimierungsproblemen zugrunde.

Die ersten Arbeiten hierzu stammen aus dem Jahre 1939 von L. W. Kantoro-
witsch und M. K. Gawurin. Das Simplextheorem (vgl. 2.4.), das Optimalitätskrite-
rium für lineare Optimierungsprobleme, formuliert G. B. Dantzig 1947, veröflent-
licht es aber erst 1951. Zu dieser Zeit wird bereits an verschiedenen speziellen
linearen Optimierungsproblemen gearbeitet: F. L. Hitchcock formuliert 1941 das
Transportproblem (vgl. 4.1.) und gibt eine Lösung an; andere Lösungsmethoden
stammen von T. C. Koopman (1951), M. M. Flood (1953), J. Bily, M. Fiedler und
F. Noäicka (1958), W. Vogel (1967). Eine Lösung des Zuordnungsproblems(vg1. 4.2.),
eines speziellen Transportproblems, gibt H. W. Kuhn 1955 (sog. ungarische Methode);
später wird gezeigt, daß diese Lösungsverfahren auch für Transportprobleme an-
wendbar ist.

Neben den linearen Optimierungsproblemen mit spezieller Struktur gibt es Klas-
sen von linearen Optimierungsproblemen, deren Behandlung z.B. durch Forderun-
gen an die Ganzzahligkeit der Lösungen notwendig wird; man bezeichnet sie als
ganzzahlige lineare Optimierungsprobleme (auch diskrete lineare Optimierung)
(vgl. 2.1.3.). Brauchbare Lösungsalgorithmen stammen von R. Gomory (1958, 1963).
Zu speziellen Modellen wie dem Rundreiseproblem (vgl. 4.4.) liefern M. M. Food
(1956) und M. Schoch (1966) Beiträge; das Reihenfolgeproblem (vgl. 4.5.) wird von
E. Seiffart (1963, 1969) und B. Bank (1969) bearbeitet. Die Lösung ganzzahliger line-
arer Optimierungsprobleme erfordert Überlegungen aus der elementaren Zahlentheorie
und aus der Gruppentheorie, die besonders von J. Piehler(1970) herangezogen werden.

Ebenfalls praktischen Bedürfnissen entspringt die Berücksichtigung der Tatsache,
daß ein oder mehrere Koeffizienten der Zielfunktion oder der Nebenbedingungen
oder die rechten Seiten der Nebenbedingungen von einem Parameter oder mehreren
Parametern linear oder nichtlinear abhängemwir sprechen dann von ein- und mehr-
parametrischer linearer bzw. nichtlinearer Optimierung (vgl. 2.1.4.). Hier geht es um

die Beantwortung der Frage, für welche Werte des Parameters oder der Parameter
stabile optimale Lösungen erreicht werden. Im Zusammenhang mit diesem Problem-
kreis sind R. L. Willner (1957) und G. B. Dantzig (1966) sowie die erste umfassende
deutschsprachige Darstellung von F. Noziöka, J. Guddat, H. Hollatz und H. Bank
(1973) zu nennen.
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Wenn ein Koeffizient oder mehrere Koeffizienten eines linearen Optimierungs-
problems Zufallscharakter aufweisen, so kann dieser bei geringer Streuung vernach-
lässigt werden. Bei größeren Streuungsintervallen muß die Zufallsabhängigkeit be-
rücksichtigt werden; wir sprechen von stochastischer linearer Optimierung. Systema-
tische Untersuchungen beginnen am Anfang der 50er Jahre, erste Ergebnisse stam-
men von G. B. Dantzig (1955), R. J. Freund (1956), G. Tinter (1956), G. B. Dantzig
und A. R. Ferguson (1956), A. Charnes, W. W. Cooper, G. H. Symonds (1958) so-

wie A. Charnes und W. W. Cooper (1959, 1963).
Um die enormen Fortschritte in der Behandlung von Extremalproblemen in den

letzten 25 bis 30 Jahren einigermaßen abgerundet darzustellen, können wir nicht die
Entstehung der nichtlinearen Optimierung, ferner die sog. dynamische Optimie-
rung sowie die Theorie der optimalen Prozesse unerwähnt lassen.

Zwar bestätigt die Praxis immer wieder, daß mit der linearen Optimierung
viele Probleme gelöst werden können, aber dennoch gelingt nicht in jedem Falle eine
Linearisierung bzw. ist sie manchmal unmöglich. Der genaueren Widerspiegelung
der realen Verhältnisse dient die Aufhebung der Beschränkung für Zielfunktion und
Nebenbedingungen. Wenn entweder die Zielfunktion und eine oder mehrere Neben-
bedingungen oder nur eine oder mehrere Nebenbedingungen nicht linear sind, spre-
chen wir von nichtlinearer Optimierung. Die notwendigen und hinreichenden Be-
dingungen für die optimalen Lösungen solcher Probleme sprechen H. W. Kuhn und
A. W. Tucker bereits 1951 aus. Das Kuhn-Tucker-Theorem ist das Optimalitätskrite-
rium für nichtlineare Optimierungsprobleme (vgl. Band 15). Die nichtlineare Opti-
mierung entwickelt sich parallel zur linearen Optimierung. Sie ist in ihren Anfängen
verbunden mit Arbeiten u.a. von G. B. Dantzig (1956), P. Wolfe und M. Frank
(1956), K.J. Arrow und H. Uzawa (1958), P. Wolfe (1959), G. Zoutendijk (1959,
1960), H. Houthakker (1960), J. B. Rosen (1960, 196l); bisher ist es nur für wenige
Klassen dieser Optimierungsprobleme gelungen, allgemeine Lösungsverfahren her-
zuleiten.

Bei der dynamischen Optimierung handelt es sich nicht um eine besondere Art von

Optimierungsproblemen, sondern um besondere Lösungsverfahren. Der Name bezieht
sich zunächst auf Probleme, bei denen eine Zeitabhängigkeit des Prozesses vorhan-
den ist. Die Veröffentlichung des von R.Bellman formulierten Optimalitätsprinzips
und seiner Anwendungen erfolgt 1957, weitere Ergebnisse folgen 1961 und von

E. Dreyfus I962. Von J. Piehler stammt eine Einführung in die Probleme der dynami-
schen Optimierung (1967). Es zeigt sich, daß die entwickelten Methoden auch auf
zeitunabhängige und lineare Probleme und zur numerischen Lösung bestimmter
Variationsprobleme angewendet werden können.

In den verschiedensten Bereichen der gesellschaftlichen Praxis begegnen wir dyna-
mischen Systemen, in denen in bezug auf die Zeit stetige Prozesse ablaufen. Die hierzu
ausgearbeitete Theorie kann in gewisser Weise einerseits als Erweiterung der mit
Hilfe der linearen und der nichtlinearen Optimierung und andererseits auch als Fort-
führung der mit Hilfe der Differentialrechnung und der Variationsrechnung lösbaren
Extremalprobleme angesehen werden; es handelt sich um die Theorie der optimalen
Prozesse. Das Optimalitätskriterium ist das auf L. S. Pontrjagin und seine Schule
zurückgehende notwendige Kriterium, das 1961 bekannt wurde und als Pontrjagin—
sches Maximumprinzip bezeichnet wird. Zur mathematischen Theorie und zu den
mathematischen Methoden der optimalen Prozesse sei auf die Arbeiten von L. S.
Pontrjagin, W. G. Boltjanski, R. W. Gamkrelidse und E. F. Mistschenko (1956 uf.)
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verwiesen. Anwendungen auf Probleme aus verschiedenartigen Bereichen werden
u.a. von A. A. Feldbaum (1966), K. A. Bagrinowski (1968), B. Biersack (1968),
N. N. Krassowski (1968), G. Zeidler (1969) untersucht.

Die lineare Optimierung ist eines von vielen mathematischen Teilgebieten, das
wesentlich zur Lösung verschiedenartiger Extremalprobleme beiträgt. Sie basiert auf
der Entwicklung von Analysis und Geometrie, verwendet besonders Methoden und
Ergebnisse der kombinatorischen Analysis und der linearen Algebra (vgl. Band 13,
Kapitel 6); das früher wenig beachtete Gebiet der linearen Ungleichungen findet hier
umfassende Anwendung; es sei an die Ergebnisse von J. Farkas (1901), E. M. L.
Beale (1955) und S. N. Tschernikow (1966) erinnert. Es interessieren nicht nur theo-
retische Ergebnisse, sondern der numerischen Exekutive, dem gut konvergierenden
Algorithmus gilt besondere Aufmerksamkeit. Zu vielen anderen Teilgebieten der
Mathematik wie u.a. zur Spieltheorie und zur Graphentheorie (vgl. Band 21) gibt es

wertvolle Beziehungen. In die mathematische Ausbildung der Diplomingenieure
fand die lineare Optimierung vor ca. 10 bis 12 Jahren als fakultative Lehrveranstal-
tung Aufnahme im Fachstudium und gehört nunmehr zu den obligatorischen Lehr-
gebieten des mathematischen Grundstudiums. Und gerade diese Entwicklung unter-
streicht die Bedeutung der linearen Optimierung für Theorie und Praxis, für Lehre
und Forschung.
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2.1: a)

X1

La":ung.<.'7ere/‘ch un17e::hrbnk! Bild L I

Bild L 2

Bild L 3

2.2: ZF: Z = 2x, + 3x;

NB: " 2x, + 4x;
2x1 + Ix,
4x1

X1. X2

5 n: 35

16,

10,
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\
||/

\
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Optimale Lösung: x, = 4, x; = 2, Z = 14 (Bild L 4).

2.3: ZF; Z = 3x, + 2x2 max;

NB: 3x, + x; g 6,

X14’ «‘72§4§X1,X2§0.
Optimale Lösung: x, = 1, x; = 3, Z = 9 (Bild L 5).

2.4: x, — Anzahl der Tiere von S,; x2 — Anzahl der Tiere von S2.

ZF: Z = 2x, + 3x2$max;

NB: x, + x1 § 8,

x, + 2x; 2180,

x, , x2 g 0, ganzzahlig.

2.5: x, ~ geladene Menge G, in t (i = 1, 2, 3).

ZF: Z = 25x, + 30x; + 35x3#max;

N’B: x, + x; + x3 g 7000,’

l,2x1 + 1,1x2 + l,5x3 510000,

0§x1§4000,0§.x2§4000,0§x3§2O00.
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2.6: Schnitt- Anzahl x, der Rund- Anzahl der Längen Abfall
Variante i eisenstangen, die nach einer Rundeisenstange (m)

Variante i geschnitten nach entsprechender
werden Schnittvariante

11:9 ]1‚=s |13=5

1 x1 2 0 0 2

2 x; 1 l 0 3

3 x3 1 0 l 5

4 x‘ 0 2 0 4
5 x5 0 l 2 0

6 x5 0 0 3 2

6

ZF: Z= 2 x,$min;
I‘-1

NB: 2x1 + xz + x3 ä 8000,

x2 + 2x4 + x5 ä 10000,

x3 + 2x5 + 3x5 ä 6000;

x; g 0 (i = 1, ...‚ 6) und ganzzahlig.

2.7: a) ZF Z: —2x‚ — x2 + x3 + x4 — Mxs —- Mxs — Magma;
NB: x1—x2—2x3—x4+x5 =2,

2x,+x,—}x3+x4 +x6 = ,

x,+x;+ x3+x4 +x,=7;
x. ä 0;i= l‚...,7.

2.7: b) ZF: Z = x4 -— x5 — il/lxmimax;

NB: x,—xz+2x3+x4——x5+x5 —x9 =1,
3x1+ x2— x3+x4—x5 +x, —x9 =1,

3x2+ x3+x4—x5 +xg——x9 =1,
x,+ x2+ x3 —x9+x‚o=];
x‚g0;i=1‚..„l0. x

2.7: c) ZF: Z = —2"c1 + fl + 222 — 2?; ~ 35:3 + 353 — Mx4 — Mx5_—'_.max;

NB: —2)?1+2§1 +22 -E2 +3i~3—3§3+x.. =2,
2)'(1—2§1+3.?;—3f2+4)"c3—-4?; +x,=1;

7?;,f,,x4,x5 __>. 0; i = 1,2, 3.

Eine entsprechende Umnumerierung kann noch vorgenommen werden.

3.1: a) Optimale Lösung: Anzahl der Tiere von S, gleich 6,

Anzahl der Tiere von S; gleich 2.
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3.2:

3.3:

4.1:

4.2:

Lösungen der Aufgaben

b) Folgende Schnittvarianten sind möglich:

Schnitt- Anzahl I, I, y l3 Abfall
Variante

1 x1 2 O 0 2

2 x2 l l 0 3

3 x3 l 0 I 5

4 x4 0 2 0 4
5 x, 0 l 2 0
6 x5 0 0 3 2

Optimale Lösung: Nach Schnittvariante 1 sind 4000, nach Schnittvariante 4 sind 3500 und
nach Schnittvariante 5 sind 3000 Eisenstangen entsprechend der Variante zu zerschneiden.

Optimale Lösung: Es sind 60 kp von P2 und l0 kp von P1 zu produzieren. Der Gewinn beträgt
dann 200 Deviseneinheiten.

Optimale Lösung: Die Schnittaufgabe beinhaltet 4 Schnittvarianten; diese sind in Bild L 6

verdeutlich. 30 Bleche sind nach der l. Variante zu schneiden, 10 Bleche nach der 4. Variante.
Es entsteht ein minimaler Abfall von Z5 m’.

Bild L 6

7 Var/an/a 2 i/ar/anle J Varmfe A Var/an‘:

Zflflcm 230m 337:“ ,_ _7/f_J@w

t 770cm 770cm 505734‘ ww mu. mm 75m [Mm 605m

i /im firm [ 2I7r7n 5:/n
r

l

ES‘
‘E,

‘
A

4
A
4
+

4
A

Der optimale Transportplan ist in der folgenden Matrix usammengefaßt:

8 3 9 . 20
. 9 . . 20;
7 . l3 20

l5 l1 12 9 l3
Die optimalen Transportkosten betragen 654 Geldeinheiteu.

ll

Der optimale Transportplan ist in der folgenden Matrix zusammengefaßt:

20 . 5 25

‚ l0 15 25
. 20 20
. ‚ 30 30

20 30 50
Die optimalen Transportkosten betragen 715 Geldeinheiteu.
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4.3: a) Die minimale Zuordnung ist durch folgende Matrix zusammengefaßt:

. . . . . l
. l .

1 . . . . . , Z=23
‚ . . . l .

. l . .

. I .

b) Die maximale Zuordnung ist durch folgende Matrix zusammengefaßt:

1 . . . . .

. 1 .

. . . l Z=58

. 1 . . . '

. 1 .
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