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1. Problemstellung

Bei zahlreichen Prozessen in der Industrie, Landwirtschaft, Volkswirtschaftspla-
nung usw. hat man im Interesse der volkswirtschaftlichen Entwicklung die Frage nach
der optimalen Gestaltung von Verfahren, nach einem optimalen Einsatz vorhandener
Arbeitskräfte, Maschinen oder Rohstoffe, nach der Optimierung des Gewinns, der
Herstellungs- bzw. Transportkosten, der Prozeßdauer und von Maschinenstillstands-
zeiten zu beantworten. Dabei ist sowohl ein geeignetes mathematisches Modell zu
ermitteln als auch ein entsprechendes Lösungsverfahren anzuwenden.

Unter Optimierung verstehen wir die Auswahl günstiger Werte in bezug auf ein
Gütekriterium (Zielfunktion) unter Beachtung der Bedingungen (Restriktionen), die
uns durch die objektive Realität auferlegt werden.

Da nicht alle Bedingungen berücksichtigt werden können, muß ein die Wirklich-
keit möglichst gut widerspiegelndes, aber möglichst einfaches Modell aufgestellt wer-
den. Das zugehörige mathematische Modell hat, dann die Form eines Optimierungs-
problems.

Sind mehrere Gütekriterien zu berücksichtigen, so spricht man von Polyoptimierung
oder Vektoroptimierung. Sind sowohl das Gütekriterium als auch die Restriktionen
zufälliger Natur (im Sinne der Wahrscheinlichkeitsrechnung), so spricht man von

stochastischer Optimierung. Solche Probleme werden in diesem Buch nicht behandelt.
Bemerkenswerte Ergebnisse konnten bereits mit der linearen Optimierung erzielt

werden, doch ist die Anwendung nur linearer Modelle für die moderne Praxis nicht
ausreichend. Schon einfache Beispiele zeigen, daß praktischen Prozessen angepaßte
mathematische Modelle wichtige Nichtlinearitäten enthalten, die das Studium von
nichtlinearen Optimierungsproblemen erforderlich machen (vgl. Beispiel 1.2). Von
besonderer Bedeutung sind dabei die konvexen Optimierungsprobleme. Daher spielt
in den folgenden Darlegungen der Begriff der Konvexität eine zentrale Rolle.

Wir betrachten zunächst ein einfaches Beispiel.

Beispiel 1.1 z Die Funktion

f(x)= —xf—x§+4.\',+2x2~S,
deren Bild ein Rotationsparaboloid mit einer zur z-Achse parallelen Achse ist (in Bild 1.1 wird f

X2
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durch Niveaulinien skiuiert), nimmt ihr Minimum über der Menge

G =(xeR’|g1(x) = xi g 0. g2(x) = x2 2 0,
g3(X)=X§+Xz‘1§0, g4(X)=x1+2X2‘8§0;
g5(x) = 6x1 + 5x2 — 30 g 0}

im Punkte x° = (0, 4)T an (Bild 1.1); es istf(x°) = -—l3.

Das folgende Beispiel entnehmen wir einer elektrotechnischen Aufgabenstellung.

Beispiel 1.2: Eine Spannungsquelle E mit dem Innenwiderstand R0 ist über ein T-Netzwerk an den
Lastwiderstand R;_ angeschlossen (Bild 1.2). Das T-Netzwerk ist in seinen Widerständen R1, R;

R3 so zu dimensionieren‚ daß bei einer Schwankung von R,_ zwischen SOQ und 1500 eine Last-
änderung von höchstens -_t5% an der Spannungsquelle, bezogen auf die Last bei dem Sollwert
R,_ = 100 Q, eintritt. Gleichzeitig ist die an RL für RL = 100 Q abzugebende Leistung zu maximieren.

Zur Aufstellung des zugehörigen mathematischen Modells werden die Widerstände R in Q, die
Spannungen U in V, die Stromstärken I in A und die Leistungen Pin VA = W angegeben; anschlie-
ßend gehen wir zu dimensionslosen Größen über.

Nach den Kirchhoffschen Gesetzen der Elektrotechnik erhält man den Gesamtwiderstand

R2(R3 + RL)
R(R)=R +——j.
E‘ ‘ R‚+R3+R‚_

Bezeichnet man den Gesamtwiderstand RE für den Sollwert R‚_ = 100 Q mit RE (100), so folgt aus
der Bedingung der Aufgabenstellung

0,95 g i— g 1,05.
RE(100)

. Ra . . . . ..

Wegen der Monotonie von in RL folgen hieraus die Ungleichungen fur R„ R; und R3:

0,95 RE(l00) g R560); R,‘-(150); 1,05 RE(100),
(1.0)

R1_Z_0, R120, R3 O.lIV

Die zu maximierende Zielfunktion fergibt sich wegen

R2

R2 + R, + R,_ ’

I _ (R2 +R3 + RL)E

(R0 + R1) (R2 + R3 + R1_)+ R2(R3 + KL)

PL = 1,§R,_,1,_ = I
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für RL =100Q zu

100 E212;
f(Rl) R2» R3) = P100 = um, + R,)(Rz + R3 + 100) + R2(R3 + 100)?‘

Es ist also die Funktion f(R1, R2, R3) unter den Bedingungen (1.0) zu maximieren.

Als allgemeines Optimierungsproblem bezeichnen wir die Aufgabe, einen Extrem-
wert (etwa ein Minimum) einer Funktion f zu finden, wobei gewisse Nebenbedingun-
gen (Restriktionen) zu beachten sind. Wir schreiben dafür

min {f(x)[xeG}, (1 I)
G={xeR"|gi(x)g0VieI„;h‚(x)=OVjeI„} '

mit I, = {l, ...,m}, 1„ = {l‚ ...,k}.

Die speziellen Fälle Ig = ß bzw. 1„ = 0 sind zugelassen. Dabei heißen
f: R" —> R die Zielfunktion, g,-: R" —> R, ielg, und h): R” —> R, je I„‚ Restriktions-
funktionen und G zulässiger Bereich des Problems (l.l) (vgl. dazu G im Bild l.l).
‘ Jedes xeG heißt zulässiger Punkt von (l.l). Die in (l.l) gewählte Schreibweise
„min“ bedeutet, daß fürfdas Minimum oder Infimum bezüglich G zuermittelnist. Wird
das Minimum vonfbezüglich Gin x° e G angenommen, so nennt man x° Lösung (oder
Optimalpunkt) und f(x°) den Optimalwert des Problems (l.l). Wegen maxf(x) =

G

— min [—f(x)] können wir uns im folgenden auf Minimierungsprobleme besähränken.
xEG

Wird das Minimum vonfbezüglich G n U für eine gewisse Umgebung U von
x° e G in x° angenommen, so nennen wir x° eine lokale Lösung.

Wir nennen das Problem (l.l) nichtlinear, wenn wenigstens eine der Funktionen f,
g„ hJ nichtlinear ‘) ist, andernfalls heißt (l.l) lineares Problem. Lineare Optimierungs-
probleme wurden bereits in Band l4 behandelt.

Bei nichtlinearen Optimierungsproblemen treten folgende Schwierigkeiten im Ver-
gleich zu linearen Problemen auf:

s
.

. Der zulässige Bereich G wird im allgemeinen nicht durch Hyperebenen begrenzt
und ist nicht notwendig konvex.

2. Durch f(x) = const wird im allgemeinen keine Hyperebene des R”, sondern eine
(gekrümmte) Hyperfläche definiert.

3. Eine Lösung x° des Problems kann auch im Innern von G liegen.
Ein lokales Minimum vonfbezüglich G ist im allgemeinen kein globales Minimum
von f bezüglich G.

. Bei Ziel- und Restriktionsfunktionen müssen die bei den jeweiligen Aufgaben vor-
liegenden Eigenschaften wie Stetigkeit, (evtl. mehrfache) Diiferenzierbarkeit, Kon-
vexität usw. sowohl für die Theorie als auch bei Lösungsverfahren berücksichtigt
werden.

P
U

:

Daraus ergibt sich u. 5., daß die bekannten Lösungsverfahren für lineare Optimie-
rungsprobleme sich nicht ohne weiteres auf Probleme der Form (l.l) übertragen las-
sen.

1) Genauer schließen wir dabei auch die linear-affinen Funktionen aus. Die Funktion f: R‘ —> R"'
heißt linear-affin, wenn gilt f(x) = Ax + b, wobei A eine (m, n)-Matrix und b E R"' ist.
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Durch Spezialisierung der in (l.l) auftretenden Funktionen und Mengen erhält
man spezielle Klassen von nichtlinearen Optimierungsproblemen, von denen wir
einige angeben wollen:

a) klassische Optjmierungsprobleme (Extremwertaufgaben ohne Restriktionen bzw.
mit Restriktionen in Gleichungsform) für

I‚=(2l‚I„=0 bzw. I„=fl‚I„={=0‚ k<n;
b) konvexe Optimierungusprobleme für

I, =|= ß und f, g, konvex, h, linear-affin;

c) quadratische Optimierungsprobleme für

I, =‚% 0, f quadratisch, g,~, h, linear-affin;

d) separable Optimierungsprobleme für

I, zk ß, f und g, separabel, d. h. von der Form f(x) = 2fi‚(x‚)‚
v: l

3:00 = E_:1gtv(xv);

e) hyperbolische Optimierungsprobleme für

u(x)

u(x) '

Besondere Bedeutung haben in der nichtlinearen Optimierung die konvexen Pro-
bleme erlangt. Das liegt vor allem daran, daß Ä

a) viele Modelle aus der Praxis mit hinreichend guter Näherung auf ein konvexes
mathematisches Optimierungsproblem führen,

b) eine genauere Approximation durch konvexe (nichtlineare) als durch lineare
Modelle möglich ist,

c) in der Theorie der Optimierung und der Lösungsverfahren weittragende und gut
anwendbare Aussagen möglich sind.

Daher gehen wir auf konvexe Mengen und konvexe Funktionen im folgenden Ab-
schnitt näher ein.

I, + 0,fvon der F0rmf(x) =



2. Mathematische Grundlagen '

2.1. Konvexe Mengen

Bei nichtlinearen Optimierungsproblemen spielt der Begriff der Konvexität eine
wesentliche Rolle. Wir behandeln zunächst konvexe Mengen, wobei einige Begriffe
aus Band 14 wiederholt und ergänzt werden.

Definition 2.1: Eine Menge M g R” heißt konvex, wenn gilt:
x1, x2 e M}_’„€R+’Ä+„:l =>/Ix‘ +/;x’eM.

Die leere Menge 0 wollen wir als konvex ansehen.

Beispiel 2.1: a) Jede einelementige Menge {x}, x E R", und der R" selbst sind konvexe Mengen.
b) Bild 2.1 und Bild 2.2 zeigen geometrische Veranschaulichungen konvexer bzw. nichtkonvexer

Mengen im R2.

e?
Bild 2.1

N2 M:

c) Jedes abgeschlossene, ofiene oder halboflene Segment

[x‘, x2], (x2, x2), [x1, x2) bzw. (x1, x2] mit x‘, x2 e R”

ist eine konvexe Menge.

d) Jeder abgeschlossene oder offene Halbraum

{xeRM cTx g 0c} bzw. {xeR" i cTx < a}

sowie jede Hyperebene H = {x6 R" I eTx = cc} mit c e R”, c =§= o und o: e R sind konvexe Mengen.

Aus Definition 2.1 folgt sofort, daß eine Menge M g R" genau dann konvex ist,
wenn gilt:

x1, x2 e M => [x‘, X2] g M.

Aufgabe 2.1: Zeigen Sie, daß die Kreisfiäche

K := {xeR2 [ HXH ä r; r > 0}

eine konvexe Menge ist.

Aufgabe 2.2: Man zeige: Für eine beliebige (m, n)-Matrix A und beliebiges b e R"' ist die Menge

P: = {xER"IAx g b}
konvex.
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Konvexe Mengen lassen sich auch mit Hilfe des Begriffes der konvexen Linear-
kombination charakterisieren.
Definition 2.2: Ein Punkt x e R" heißt konvexe Linearkombination der Punkte
x‘, ...‚ x'" ER", wenn sich x in der Form darstellen Iäßt: ‘

x ~'-— 11x‘ + +Ä‚„x'" mit 11, ...,Ä„‚e R+,}.1 + + 1,, = 1.

In Bild 2.3 sind konvexe Linearkombinationen von zwei bzw. drei Punkten darge-
stellt.

X7

x=/1,x’+/lzx‘z
X3

X’+/1zX’+/W Bild 2.3

x’ 2
X

Man hat folgende Aussage (Beweis in [6]):
Satz 2.1: Eine Menge M g R" ist genau dann konvex, wenn jede konvexe Linearkombi-
nation von Punkten aus M wieder zu M gehört, wenn also gilt:

x‘, ...‚ x"‘ e M
Ä1‚...,Ä„‚eR+ 211x‘ + +}.,,,x"'eM. (2.1)
h1 + + 1,, = 1

Der nachstehende Satz gibt Auskunft über Operationen mit konvexen Mengen.

Satz 2.2: Es seien M1, M2 g R" konvexe Mengen und Ä e R. Dann sind die folgenden
Mengen wieder konvex:
l. die Summe M1 + M2 := {z I z = x + y; xeM1,y€Mz},
2. das skalare Vielfache AMI := {z l z = Äx; X e M1},
3. das kortesische Produkt M1 X M2 z: {z | z = (x, y)’, xe M1, ye M2}.‘)

Über den Durchschnitt konvexer Mengen hat man die folgende Aussage, deren
Beweis leicht zu führen ist (vgl. Band 14, S. 7):

Satz 2.3: Der Durchschnitt n M1 von beliebig vielen konvexen Mengen M,» g R",
iel

ie I (I beliebige Indexmenge), ist konvex.

Wir führen nun den Begriff des Eckpunktes einer konvexen Menge ein (vgl. Band
14, S. 8).

Definition 2.3: Es sei M g R" eine konvexe Menge. Ein Punkt xe M heißt Eckpunkt
(oder Extremalpunkt) von M, wenn es keine Darstellung der Form

x = ix‘ +/1X2 mit X1, x2eM,x1 =I= x2;Ä„u > 0,1 +u =1
gibt.

‘) Der einfacheren Schreibweise wegen stellen wir im folg nden einen Vektor <x)6Ml x M;
häufig in der Form (x, y)" dar und verwenden nicht die Schreibweise (x7, v7)".



2.1. Konvexe Mengen l3

In Bild 2.4 sind x‘ und x2 die Eckpunkte von M; in Bild 2.5 sind x‘, x2, x3 die
Eckpunkte von M; in Bild 2.6 sind x° und alle Punkte des von x‘ und x2 berandeten
Kurvenbogens Eckpunkte von M. Konvexe Mengen besitzen i. allg. unendlich
viele Eckpunkte, wohingegen konvexe Polyeder (vgl. Def. 2.5) als spezielle konvexe
Mengen nur endlich viele Eckpunkte aufweisen (vgl. Band 14, S. 8).

z x’ *2

X1 XI

x7 X’ Bild 2.5 Bild 2.6

Aus der Existenz unendlich vieler Eckpunkte bei konvexen Mengen folgt u. a.‚ daß
die bekannte Simplexmethode der linearen Optimierung bei Problemen mit konvexem
zulässigen Bereich i. allg. versagt, ganz abgesehen davon, daß Optimalpunkte
nicht auf dem Rand liegen müssen.

Die Eckpunkte einer konvexen Menge lassen sich in folgender Weise charakteri-
sieren (vgl. [21], S. 28/29):

Satz 2.4: Es sei M g R" eine konvexe Menge. x e M ist genau dann Eekpunkt von M,
wenn eine der beiden folgenden Bedingungen erfüllt ist:

l. Die Menge M \ {x} ist konvex.
2. Es gibt keine zwei Punkte x‘, x2 e M mit

x = %(x‘ +x2), x‘ =|= x2.

Jeder (beliebigen) Menge M g R” läßt sich in eindeutiger Weise eine konvexe
Menge zuordnen, die M umfaßt.

Definition 2.4: Es sei M g R" eine beliebige Menge. Unter der konvexen Hülle [M]
von M versteht man den Durchschnitt aller konvexen Mengen aus R", die M umfassen.

Aus Satz 2.3 folgt sofort, daß die konvexe Hülle einer Menge stets eine konvexe
Menge ist.

Beispiel 2.2: a) Die konvexe Hülle von zwei Punkten x‘, x’ E R” ist das Segment [x‘‚ x2].
b) Die konvexe Hülle von drei nicht auf einer Geraden liegenden Punkten x‘, x2, x3 e R” ist die

von diesen Punkten bestimmte Dreiecksfiäche (Bild 2.7).
c) Bild 2.8 zeigt die konvexe Hülle [M] der (schraffiert gezeichneten) Menge M.

[M]

Bild 2.8
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Beispiel 2.3: Für die Menge

1

1+»),
M1: x= (x1,X2)T6Rz)0§x2 g

ergibt sich die konvexe Hülle

[M] = {xeRzlO g x2 <1}U{(0,I)T},

d. h‘, die konvexe Hülle einer abgeschlossenen Menge ist i. allg. nicht abgeschlossen.

Zum Begriff der konvexen Linearkombination besteht folgende Beziehung (vgl.
[21], S. 20f.):

Satz 2.5: Die konvexe Hülle [M] einer Menge M g R" ist gleich der Menge aller kon-
vexen Linearkombinationen von Punkten aus M.

Für Verfahren zur Lösung linearer und nichtlinearer Optimierungsprobleme ist die
folgende spezielle Klasse von konvexen Mengen von Bedeutung.

Definition 2.5: Es sei M := {x1, ..., x'"} c R". Dann heißt die konvexe Hülle [M]
dieser Menge konvexes Polyeder.

Beispiel 2.4: Bild 2.4, Bild 2.7 und Bild 2.9 veranschaulichen konvexe Polyeder, die durch zwei, drei
bzw. fünf Punkte erzeugt werden.

2.2. Trennungssätze

Wenn in der Ebene zwei disjunkte konvexe Mengen gegeben sind, so folgt bereits
aus der Anschauung die Vermutung, daß diese Mengen durch eine Gerade „getrennt“
werden können derart, daß die eine Menge vollständig „auf der einen Seite“ und die
andere Menge vollständig „auf der anderen Seite“ dieser Geraden liegen. Aussagen
dieser Art, auf den R” übertragen, werden als Trennungssätze bezeichnet. Sie spielen
eine wichtige Rolle in der Theorie der konvexen Mengen und in der nichtlinearen
Optimierung.

Vorbereitend führen wir den Begriff der trennenden Hyperebene ein, und zwar für
beliebige Mengen.

Definition 2.6 : Es seien M1, M2 g R" zwei beliebige Mengen und H := {x e R” | cTx = ac}

eine Hyperebene. Dann sagt man:

l. H trennt M, und M2, wenn gilt:
x e M1 => cTx g o;

und
X e M2 = cTx g 0c ;
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2. H trennt M1 und M2 streng, wenn gilt:
xeM1=>cTx<oc

und
xeM2=>cTx>oc.

Die Mengen M„ MZ heißen dann trennbar bzw. streng trennbar.

Beispiel 2.5 : Beispiele für trennbare, streng trennbare bzw. nicht trennbare Mengen im R2 findet man
in Bild 2.10, Bild 2.11 bzw. Bild 2.12.

cr)r=zz

M, und M, si/zdstreng trennbar

Bild 2.10 Bild 2.1l
M, und M; sind Iren/war

M, und M? 5m’ nicht trennbar Bild Z12

Wir formulieren zunächst zwei Aussagen über trennende Hyperebenen, deren Be-
weise man in [2] bzw. in [6] findet.

Satz 2.6: Es sei M g R" eine nichtleere abgeschlossene konvexe Menge mit 0 ü": M. Dann
existiert eine Hyperebene H := {xeR" | cTx = cc} mit oc > 0 und

XE M => cTx > zx.

Satz 2.7: M g R" sei eine nichtleere konvexe Menge mit 0 e R"\M. Dann existiert eine
Hyperebene H := {x eR" [ cTx = 0} mit xeM => cTx g 0.

Damit lassen sich die folgenden beiden Aussagen beweisen:

Satz 2.8 (Trennungssatz): Es seien M1, M2 g R" zwei niehtleere konvexe Mengen mit
M1 n M2 = 0. Dann existiert eine trennende Hyperebene H := {XeR" I cTx = cc},
d. h., es gilt:

xeMl =>cTx g o; und xeMz =>cTx g (X.

Beweis: Die Menge M1 + (— M2) ist nach Satz 2.2 konvex, und wegen M1 n M2 = 0
gilt 0 e R"\(M1 + [—M2]). Daher existiert nach Satz 2.7 eine Hyperebene
H:= {xeR" [ cT-x = 0} mit

xeM1 + (-—M,)=>cTx ä 0;
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folglich gilt

yeM1,zeMz =>cT(y — z) g 0

und damit auch

/3:=infcTy;sup cTz=:y. <

yeM‚ zsM.

5+7Wir setzenoc := 2 und erhalten

zeMz=cTz g oc und yeM, =cTy g oc.

Anmerkung: Die Aussage von Satz 2.8 kann auch unter schwächeren Voraussetzun-
gen bewiesen werden.

Der folgende Satz gibt an, unter welchen Bedingungen zwei konvexe Mengen durch
zwei parallele nichtzusammenfallende Hyperebenen getrennt werden können.

Aufgabe 2.3: Es ist festzustellen, ob die Mengen

M1: ={(x‚y)TeR’|y; x2 + x für xi 0, y; —2x für x < 0},

M27 = {(X.J/)T5R2 l y < - ä“ M}

trennbar sind (Bild 2.13). Gegebenenfalls ist die Menge i) aller trennenden Hyperebenen (Geraden)
anzugeben.

m

‘X in’ =_l XQ \ y 4x4 \
xx i /»

Bild 2.13

Satz 2.9 (Strenger Trennungssatz): Es seien M1, M2 g R" zwei nichtleere abgeschlos-
sene konvexe Mengen mit M1 n M2 = 0, und wenigstens eine der beiden Mengen sei
beschränkt. Dann existiert eine streng trennende Hyperebene

H := {xeR" f cTx = a},
d. h.‚ es gilt:

xeMl => cTx > zx und xeMz => cTx < oz.

Auf den Beweis dieses Satzes gehen wir nicht ein.
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2.3. Konvexe Funktionen

In der nichtlinearen Optimierung nehmen die konvexen Optimierungsprobleme
eine herausragende Stellung ein. Dies ist bedingt durch spezifische Eigenschaften
konvexer Funktionen, wie sie in den folgenden Sätzen zum Ausdruck kommen.

Definition 2.7: Es seien M g R" eine nichtleere konvexe Menge undf: M —> R. Dann
heißt

1. fkonvex auf M, wenn gilt:

"1”‘2 E M 1 =f(/1x‘ + me) s A/(x1) + ur<x2>-1,,ueR+,l+,u=1 _ ’

2. f streng konvex auf M, wenn gilt:
1 2 1 2Z;i: z’: 1 } war + w) < xxx‘) + uf(x’);

3. fkonkav bzw. streng konkav aufM, wenn —fkonvex bzw. streng konvex auf M ist.

Dabei bedeutet R"+ die Menge {xe R 1 x > 0}.
Aus dieser Definition folgt sofort, daß jede auf M streng konvexe Funktion auch

konvex auf M ist.

Beispiel 2.6: Bild 2.14 zeigt eine konvexe Funktion f: R —> R.

D'ld 2.14

x’ M’+;¢x’ l

f konvex auf R

Beispiel 2.7 : a) Jede lineare Funktion f(x) = c"x, xeR", und jede linear-affine Funktion
f(x) = c"'x + er. x E R"; o: e R, ist sowohl konvex als auch konkav (auf R").

b) Die Funktion

f(x)=11x11= f, + + xi, xeR",

ist konvex auf R", denn es gilt für beliebige Ä, ‚a E R4, mit i. + ‚u = 1:

f(lx‘ + MK’) = 11/1x‘ + /4x’H é II/1x‘H + IlMX‘|I

= lHX‘H + 1411x211 = 1f(X‘) + M/(X2)-

2 Eigner, Optimierung
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c) Jede positiv semidefinite quadratische Form

f(x) = xTAx, x e R", A eine symmetrische (n,n)-Matrix,

ist auf R" konvex, jede. positiv definite quadratische Form ist auf R" streng konvex.

Aufgabe 2.4: Man ermittle die Konvexitätseigenschaften der Funktionf(x) = \/2-c, x E R... a) ohne
Zuhilfenahme, b) mit Hilfe der Differentialrechnung.

Über nichtnegative Linearkombinationen konvexer Funktionen gilt der

Satz 2.10: Es seienfi: M —> R, M g R”; i = 1, ..., m, konvexe Funktionen. Dann ist
auch die Funktion

m

f: = 2m)’, mit 1x1, ...,a,,, g 0
i=1

konvex auf M. ‚

Insbesondere folgt aus Satz 2.10, daß die Summe von konvexen Funktionen wieder
konvex ist, was im allgemeinen für Differenz, Produkt und Quotient von konvexen
Funktionen nicht zutrifft.

Beispiel 2.8: a) f(x) = 3e‘ — lnx ist auf M = (0, o0) konvex (sogar streng konvex), da f1(x) = e"
und f2(x) = —lnx auf M konvex (streng konvex) sind.

b) Die Funktionen fi(x) = x und f2(x) = x2 + x sind auf R konvex. Die Ditferenzfunktion

f(X) I: f1(X) —f2(X) = —x2

ist auf R nicht konvex (sondern streng konkav).

c) Die Funktionen f1(x) = x und f2(x) = —x sind auf R konvex. Ihre Produktfunktion

f(x) := fi(x)fz(x) = -x2
ist jedoch auf R nicht konvex.

d) Die Funktionen f1(x) = --x und f2(x) = x1 sind auf R konvex. Der Quotient

1

f(x) := flu) = — —

f2(x) x

ist auf (0, o0) nicht konvex, also auch nicht auf R.

Aufgabe 2.5: Die Funktion

f(X1, X2) = xi + 2x2. (x1. XÜTE R2»

ist auf Konvexitiit zu untersuchen.

Die Kenntnisse über konvexe Mengen lassen sich vorteilhaft auch für konvexe
Funktionen verwenden, wenn man den sog. „Epigraphen“ einer Funktion f bildet
(Def. 2.8). Dieser ist dann eine konvexe Menge, die bestimmt ist durch die Punkte
(x,f(x))T des Graphen Vonf und alle „über diesem Graphen“ liegenden Punkte.

Definition 2.8: Es seien M g R" undf: M —> R. Dann heißt die Menge

6Pif== {(X,7)T€R" X R lf(X) é 7} E R"“
der Epigraph (oder obere Halbzylinder) {Jan f.
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Bild 2.15 und Bild 2.16 zeigen die Epigraphen einer beliebigen bzw. einer konvexen
Funktion.

Bild 215 Bild 2.16
M x

/' km l/EXf Z19/ielz/II

' Konvexe Funktionen lassen sich mittels ihres Epigraphen charakterisieren gemäß

Satz 2.11: Es seien M g R” eine nichtleere konvexe Menge undf: M —> R. Dann gilt:
f konvex auf M ¢> epif ist eine konvexe Menge.

Beweis: 1. (=>): Es seien (x1, yl)’, (x2, y2)Te epif, d. h. f(x‘) g y„f(x1) g yz.
Dann folgt für beliebige Ä, [IE R+ mit Ä + ‚w = l wegen der Konvexität vonf

f(1X‘ + MX2) ä 1f(X1) + ,uf(X‘) é 171 + m»;

und damit

(/Ix’ + ,ux2, Z;/1 + ,uy2)T = /‘t(x‘, y1)T + ,u(x2, 'y2)Te epif.
Somit ist epifkonvex.

2. (<=): Für beliebige X‘, x2 e Mund beliebige Ä, ‚u e R+ mit Ä + ‚u = 1 folgt aus der
Konvexität von epi f

(X‘‚f(X1))T‚ (x2‚f(X’))T E 6pif= UK‘ + MX2, /1f(X‘) + l4f(X2))TE epif
und damit

f(1X‘ + MX2) é itf(x‘) + .uf(X2)’
Folglich ist f konvex auf M.

Bei Optimierungsproblemen werden Niveaumengen von Funktionen zur Dar-
stellung zulässiger Bereiche verwendet. Ist z. B. in (1.1)

G = {xeR" | g‚(x) g 0 Vi = 1, ...‚ m, g; konvex},

dann ergibt sich G als Durchschnitt der m Niveaumengen G, mit G. = {xeR"|
g,(x) _S_ O}, i = 1, ...‚ m (Bild 2.17 zeigt die Niveaumenge N, vonfzum Niveau on).

Niveaumengen konvexer Funktionen sind konvexe Mengen, denn es gilt

Satz 2.12: Es seien M g R" eine nichtleere konvexe Menge undf: M -—> R. Dann gilt

Die Niveaumengen

IV‘, := {xeR" [f(x) g on} und
N, := {xeR"]f(x) < 0c}

f konvex auf M =>

i sind konvexfür jedes ax e R.

2*
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Beweis: Wir zeigen die Konvexität von N“. Es sei X‘, X2 EN,“ d. h. f(x1) g ac,

f(x2) g 4x. Dann folgt für beliebige Ä, ‚ue R+ mit Ä + ‚u = 1 wegen der Konvexität
vonf

f(lx1 + /ac‘) é mx‘) + uf(x“) g la + im = «x

und damit Ax‘ + ,ux2 e JV“.
Die Umkehrung von Satz 2.12 gilt jedoch nicht, wie das Beispiel der Funktion

f(x) = x3, x e R, zeigt. Zwar ist für jedesoc e R die Menge IV, = {x e R I x3 g on} konvex,
jedoch ist f nicht konvex auf R.

Eine Veranschaulichung des Sachverhaltes geben Bild 2.17 und Bild 2.18.

Bild 2.17 Bild 2.18

f nicht konvex

Als eine Folgerung von Satz 2.11 ergibt sich

Satz 2.13: Es seien M g R" eine nichtleere konvexe Menge,f‚: M —> R, i = 1, ..., m,
konvexe Funktionen und für jedes x5 M die Menge {f,(x) l i = 1, ..., m} nach oben
beschränkt. Dann ist die Funktion

f(x) := max fi(x), xeM,
lE{l,...,m}

konvex aufM.

Beweis: Die fl, ...,f,. sind konvex auf M. Daher sind nach Satz 2.11 die Mengen
epifi, i = 1, ..., m, konvex. Wegen Satz 2.3 ist dann die Menge

m

‘nlepif: = epif
f:

ebenfalls konvex und damit f eine auf M konvexe Funktion.
Wir bringen nun die Konvexität einer Funktion in Verbindung mit den Begriffen

der Stetigkeit und partiellen (bzw. totalen) Differenzierbarkeit, wodurch die Anwen-
dung von Sätzen der Analysis möglich wird.

Das folgende Beispiel zeigt, daß eine konvexe Funktion f: M —> R, M g R", nicht
notwendig auf M stetig ist.

Beispiel 2.9: Die Funktion f: R4, —> R mit

1 für x = 0,
f(x) = i 2 „

‚ x fur x > 0

ist zwar konvex auf [0, o0), aber in x0 = O nicht stetig.
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Für offene konvexe Mengen hat man jedoch den

Satz 2.14: M g R" sei eine oflene konvexe Menge. Dann gilt:
f konvex auf M = fstetig auf M.

Den Beweis des Satzes findet man z. B. in [21].
Im folgenden setzen wir voraus, daß die betrachteten Funktionen gewisse Difleren-

zierbarkeitsforderungen erfüllen. Dann lassen sich Konvexität und strenge Konvexi—
tät von Funktionen charakterisieren durch:

Satz 2.15: Es seien M g R” eine oflene konvexe Menge undf: M —> R auf M stetig
partiell dzflerenzierbar. Dann gilt‘):
Lfkonvex aufM«=> (X2 — X1)TVf(X‘) g f(x2) —f(X‘) Vxl, X2 E M. (2.2)

2. fstrengkonvex aufM¢> (X2 — x1)TVf(X‘) <f(X2) ——f(x1) VX1, XZEM, X‘ =l= X2.

Beweis: Wir beschränken uns auf den Beweis der ersten Aussage, da der Beweis
für die zweite Aussage analog verläuft.

1. (=~): Für beliebige x‘, x2 e Mund beliebige Ä, ‚u > 0 mitÄ + ‚u = 1 gilt einerseits

f(lX‘ + /4X2)§ /1f(X‘) + .uf(X’) = f(X‘) + M[f(X’) -f(X‘)],
andererseits ist

f(/1X1 + im’) =f(X‘ + MX2 — X‘D.
Damit hat man die Ungleichung

§f(x2) _f(x1),

Anwendung des Mittelwertsatzes auf der linken Seite ergibt

(x2 — x‘)‘Vf(x‘ + 29m2 — x11) §f(x”) —/(xii mit 0e<o‚1).
Für ‚u —> +0 folgt daraus wegen der Stetigkeit von Vf die Beziehung

(X2 - X‘)TVf(X‘) §f(Xz) -f(X‘)-
2. (<=): Für beliebige X1, XZEM und beliebige Ä, ‚ue R+ mit Ä + ‚u = l folgt
11x1 + ‚ux2 e M und

f(x2) — /(zxl + 14x2) z «x2 — x‘)TVf(/ix‘ + ax’),
2 f(X‘) -f(1X‘ + MX2) 2 -‚u(X2 - XÖTVfÜX‘ + fix’)-

Multipliziert man die erste Ungleichung mit ‚u, die zweite mit Ä, so ergibt sich nach
Addition

Mflxz) + Äflx‘) -f(ÄX‘ + W42) ä 0,
und das war zu zeigen. 5

Die 1. Aussage von Satz 2.15 besagt, daß der Graph der Funktionfstets oberhalb
(oder auf) der in einem Punkt x‘ eM angelegten Tangentialhyperebene y = f(x1)
+ (x — x‘)TVf(x1) liegt.

1) Zur Bedeutung der Schreibweise Vf(x) vgl. Band 4, Abschn. 3.9.2.4.
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Bild 2.19 und Bild 2.20 veranschaulichen die Aussage von Satz 2.15 für den Fall
df
E’n = l, d. h. M g R. Dabei hat man im Falle n = 1 offensichtlich Vf(x) =

fix’) ~ A - - - - - - - 7e

fix’)

r(xv»rx‘-Mmx’) — — ~ — ~-

Hell) ‘“—‘ l(x’)+‘(x’-X’)Tvf(x7)

fix’)

l

1

I

_ 
x’ x1 x

f kunwx ‚w xi x

f streng kanvex

I

1

l

I

l

Bild 2.19

Bild 2.20 ’

In Band 2, Abschnitt 7.5.1., wurde gezeigt, daß eine zweimal difierenzierbare Funk-
tionf:1 —> R, I g R, genau dann aufI konvex ist, wenn giltf"(x) g 0 für alle x aus
dem Innern von I. Damit entscheidet das Vorzeichen der zweiten Ableitung über das
Konvexitätsverhalten von f.

Um für eine zweimal stetig partiell differenzierbare Funktion ffM —> R (M g R”
eine olTene Menge) die Konvexität charakterisieren zu können, führen wir die Hesse-
sche Matrix dieser Funktion ein.

Definition 2.9: Es seien M g R" eine oflene Menge, f: —> auf M zweimal stetig
partiell diflerenzierbar und x° e M. Dann heißt die symmetrische Matrix

0 fx,x.(X°) mfiz._x„(x°)
Hr(X ) 1= : :

fXnx‚(x0) fx„x„(XO)

Hessesche Matrix von f im Punkte x°.

Es gilt nun die folgende Aussage.

Satz 2.16: Ist M g R" eine oflene konvexe Menge und ist f: M —> R auf M zweimal
stetig partiell dzflerenzierbdr, dann gilt:

l. f konvex auf M ¢> yTH,(x)y positiv semidefinit für alle xe M.

2. f streng konvex auf M <= yTH,(x)y positiv definit für alle x e M.

Beweis: Wir beschränken uns auf den Beweis der ersten Aussage. Nach Definition
ist f genau dann konvex auf M, wenn f auf jedem in M liegenden Segment konvex
ist. Es seien x e M und y e R". Wir untersuchen nun die Funktion einer Variablen

m01) I=/(X + w), MEI,
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mit I := {/4 e R [ x + ,uye M} bezüglich Konvexität. Man findet unmittelbar

«m» 35212.0: + uy)y..

rp"(xt) =i_Zl J;Ifxzx.v(X + mm; = yTHAX + my-

Daher ist nach Band 2, Satz 7.10, fgenau dann konvex auf M, wenn gilt
yTH‚(x + ,uy) y g 0 für alle xe M und ye R".

Anmerkung: Der Beweis von Satz 2.16 kann auch mit Hilfe von Satz 2.15 geführt
werden.

Die Umkehrung der zweiten Aussage von Satz 2.16 gilt nicht. Wir betrachten dazu

Beispiel 2.10: Die Funktionf(x) = x‘, xe R, ist streng konvex. Es gilt H,(x) = 12x1 und daher
H,(0) = 0. Folglich ist yTH,(x)y nicht positiv definit für alle x e R.

Beispiel 2.1] : Die Funktion

f(x1, x2) = (x? + xi)’, (xi, x2)T E R2, ist auf R2 konvex.

Es gilt nämlich

H (x1 x2) _ (12):? + 4x§ Sxlxz J
f v r sx,x‚ 4g + 12x;

und somit für alle y = (yl, yl)" E R2

(.V1.}‘2)THf(X1a X2) = 4 1x2)? ‘l’ “fig ‘l’ 2(x1}’1 + xzyzlz + Xi)’: ‘l’ xäyäl ä Ü.

Aufgabe 2.6: Man beweise: Die Funktion

f(X) = e“, -YE R,

ist streng konvex.

2.4. Systeme linearer und konvexer Ungleichungen‘)

Bei der Herleitung von Optimalitätsbedingungen für nichtlineare Optimierungsprobleme benötigen
wir Aussagen über die Existenz von Lösungen linearer bzw. konvexer Systeme von Gleichungen und
Ungleichungen.

Ohne Beweis (vgl. dazu z. B. [15]) formulieren wir folgende allgemeine Aussage:

Satz 2.17: Ist A, (i = l, ..., 4) eine (m„ n)-Matrix und sind A1, A1, A3 keine Nullmatrizen, dann
besitzen die beiden Systeme

I. A‚x ä 0, Azx ä 0, A3x ä 0, A4x = 0

und .

1I.A}y1 + Agyz + A§y3 + Afy‘ = o,

y‘,.v’, y’ 2 0

1) Dieser Abschnitt ist zum Verständnis der folgenden Darlegungen nicht unbedingt erforderlich
und kann beim ersten Studium übergangen werden.
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Lösungen
xeR" bzw. y‘eR”" (i: l, ...‚4)

mit
Alx + y‘ > 0, Azx + y’ > 0, A3X + ya > 0.

Mittels Satz 2.17 lassen sich Sogenannte „Alternativsätze“ herleiten, die bezüglich zweier gegebener
Systeme I und II aussagen, daß genau eines der beiden Systeme eine Lösung besitzt. Bei dem folgen-
den Alternativsatz von Motzkin wollen wir die charakteristische Beweisführung für solche Aussagen
demonstrieren.

Satz 2.18 (Alternativsatz von Motzkin): Es seien A ‚ (i = l, 3, 4) eine (rm, n)-Matrix und A, nicht die
Nullmatrix. Dann hat entweder das System

I. Alx > 0, A37‘ ä 0, A4x = 0

oder das System

11. Afyl + A§y3 + Afy‘ = o, z;

fly’: 0, y‘ # 0

eine Lösung

xeR” bzw. y‘eR’"i (i = 1, 3,4),

d. h. niemals sind beide Systeme zugleich lösbar.

Beweis: 1. I => ~ III): Es seien x eine Lösung von System I und y‘ eRmr (i = 1, 3, 4) mit
y‘, y’ g 0,y‘ ä: 0. Dann folgt

xTA}'y1 + xTA§y3 + xTA'fy4 > o,

da xTAIy‘ = 0, xTA§y3 2 O, xTA'fy‘ > 0. Folglich hat das System II keine Lösung.

2. ~ I => II: I sei nicht lösbar. Dann gilt, wie man indirekt zeigen kann:

Alxgo, A3x;0, A4x=l]=>A1x:$>02).
Wegen Satz 2.17 hat man

Alx 2 0, A3x ä 0. A4x = 0

ATy‘ + A;‘y3 + Afy‘ = 0 => y‘ ä 0. y‘ # 0,
y‘ ä 0. y3 ä 0

d. h. II ‘ist lösbar.

Mit Hilfe von Satz 2.18 läßt sich der bekannteste Alternativsatz für lineare Systeme, der Satz von
Farkas-Minkowski, beweisen.

Satz 2.19 (Satz von Farkas-Minkowski): Es seien A eine (m, n)-Matrix und b e R". Dann hat entweder
das System

I. Ax g 0, bTx > O eine Lösung xeR"

oder das System

II. ATy = b, y ä 0 eine Lösung ye R”,

d. h. niemals sind beide Systeme zugleich lösbar."

‘) Die Bezeichnung I => ~II besagt, daß die Lösbarkeit des Systems I impliziert, daß II nicht lös-
bar ist (vgl. Band 1).

2) Alx Z} 0 bedeutet, daß nicht alle Koordinaten des Vektors Alx positiv sind,
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Beweis: Nach Satz 2,18 hat entwederleine Lösung Xe R" oder II’ b5 — ATy3 = 0, E g 0, .5 =# 0,
y’ 2 0 hat eine Lösung E e R, ya eR"'. Wegen 5e R folgt E > 0. Dividiert man II’ durch 5 und

3 .

setzt y = —yE—, so folgt die Äquivalenz von II’ und II. Damit ist Satz 2.19 bewiesen.

Wir interpretieren nun die Aussage von Satz 2.19 geometrisch und schreiben dazu die_Systeme I
und II in der Form

I: afx g 0, j: 1, in; bTx > o,
m N .

II: Z ab», = b, y, z o, j= 1, ...,m,
j=1

wobei a’ den j-ten Zeilenvektor von A und ä’ den j-ten Spaltenvektor von A’ bezeichnen (ofienbar
gilt E’ = a’).

I bedeutet geometrisch, daß ‚ein Vektor x e R" zu finden ist, der einen stumpfen Winkel (ä
-.54

mit den Vektoren a‘, ...‚ a" und einen spitzen Winkel mit dem Vektor b bildet. Nach II

ist der Vektor b als nichtnegative Linearkombination der Vektoren a‘, ...‚ a"' darzustellen.

Die beiden möglichen Fälle sind für n = 2, m = 3 in Bild 2.21 bzw. Bild 2.22 veranschaulicht.

{x|A_X‘fl) {Xf/11:17}

I/2/1:/72‘/o"n>z7r J1/mar I W47’ 17 ”"”7’/N0”

Bild 2.21 Bild 2.22

Aufgabe 2.7: Gegeben seien die drei Vektoren a‘ = a7 = a3 = (

a) Skizzieren Sie die Mengen

_K := {x = (x.‚x‚)TeR2 I a'Tx g o, i= 1, 2, 3},

B :={beR2|bTx§0VxeK}.

b) Ist b° = als nichtnegative Linearkombination von a‘, a’, a3 darstellbar? Gegebenenfalls

ist die Menge aller Zahlentripel (c,, c2, c3) zu ermitteln, für die gilt:

3

b" =Zc,ai; Q50, i= 1,2,3.
i=1
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Eine ähnliche Rolle wie die bisher angegebenen Aussagen über lineare Systeme in der linearen
Optimierung spielen die folgenden Sätze über konvexe Systeme in der nichtlinearen Optimierung
Die Beweise dieser Aussagen findet man z. B. in [6].

Satz 2.20: Es seien M g R" eine nichtleere konvexe Menge, f: R" —> R"‘ konvex aufM und h: R" -> R"
Iinear-uffin‘) mit 116;‘) = 0 für ein i e M. Dann gilt:

Das System

9 E|pER"',qeR" mit p#0 und
— T 1'hm keine p f(x) + q h(x) g 0 VxeM.

Lösung x e M

Mittels Satz 2.20 erhält man folgenden Alternativsatz für konvexe Systeme:

Satz 2.2]: Es seien ‘M g R" eine nichtleere konvexe Menge und f: R” —> R“ konvex auf M. Dann hat
entweder

I : f(x) < 0 eine Lösung xe M

oder es gilt

II: pTf(x) ä 0 Vxe M und ein geeignetes p e R1“, p # 0.

Satz 2.22: Es seien M g R" eine nichtleere kompakte’) konvexe Menge, 00,5“ eine beliebige Familie
aufM konvexer und unterhalbstetigeri‘) Funktionen fl: M —> R, (h,),E,‘ eine beliebige Familie linear-
affiner Funktionen hj: R" —> R. Dann gilt:

Für eine endliche Teilfamilie von (f,),e,I
D“ System . Mild eine endliche Teilfomilie von (hj)‚eh

fi(x) g O’ l e I1 existieren
hJ(")=0’ fell g peR$,q€R" mit (p,q)T# 0 und
hat keine Lösung m k

xeM. lZ1p;f.~,(x) + I21 q1h,~, (x) 2 0 VxeM. (2.3)

Im Falle I2 = 0 wird (2.3) zu einer strengen Ungleichung.

1) Eine Vektorfunktion f: R" —> R" mit f = (fl, ..., f,,,)T heißt konvex auf M g R”, wenn jede
Koordinatenfunktion fl, ..., f‚„ auf M konvex ist.

2) Vgl. dazu Band 4, Abschnitt 1.1.3.
3) f: M —> R, M g R", heißt unterhalbstetig auf M, wenn für jedes feste x° e M und zu beliebigem

e > 0 ein ö = Ö(s;x°) > Oexistiert mitf(x°) —e §f(x) vxeMn {x | „x _ x0“ < a},



3. Klassische Extremwertaufgaben

3.1. Extremwertaufgaben ohne Restriktionen

Aus dem Problem (1.1) erhält man klassische Optimierungsaufgaben, wenn man
f: R" —> R und I, = 1,, = ß wählt. Solche Aufgaben wurden für Funktionen einer
Variablen in Band 2, Abschnitt 7.3., und für Funktionen von n Variablen in Band 4,
Abschnitt 4.2., behandelt. Hinsichtlich weiterer Darlegmgen verweisen wir auf [7]
und [10].

Wir stellen zunächst einige Begriffe und Aussagen über klassische Extremwertaufga-
ben zusammen, um in Vorbereitung der weiteren Ausführungen sowohl Analogien
als auch Unterschiede zwischen klassischen Extremwertaufgaben und nichtlinearen
Optimierungsproblemen deutlich zu machen.

Im folgenden sei G g R" eine Menge, deren Inneres nicht leer sein soll.

Definition 3.1: 1. f: G —> R besitzt in x°eG ein globales oder absolutes Minimum
(Maximum) bezüglich G, wenn gilt:

f(X) äflx“) VXEG

(f(X) ä f(X°) VX G G)-

2. f: G —> R besitzt in x° e G ein lokales oder relatives Minimum (Maximum) bezüglich
G, wenn eine Umgebung U(x°) von x° existiert, so daß gilt:

f(X) äflx”) VX6 U(X°) n G

(f(X) ä f(X°) VX6 U(X°) n G)-

3. Gilt in (3.1) bzw. (3.2)fül‘ alle zulässigen x + x° jeweils die strenge Ungleichheit, so
spricht man von einem eigentlichen Extremum oder von einem Extremum im engeren
Sinne.

Für eine in x° e G hinreichend oft stetig partiell diflerenzierbare Funktionfbezeich-
net ~ T

Vf(X°) = <x°>, 5;: (x°))

(3.1)

(3.2)

den Gradienten vonfin x° und

özf 0 . .

H,(x°) =( (x )), z=1,...,n, ]= l,...‚n,
ömöx,

die Hessesche Matrix (der zweiten partiellen Ableitungen) vonf in x0.

Für das Problem

min {f(x) l Xe G g R“ , (3.3)

wobei G cine-offene Menge und f auf G zweimal stetig partiell differenzierbar ist,
gelten die in Band 2 auf Seite 133/ 134 angegebenen Kriterien.

Weitere hinreichende Bedingungen für die Existenz lokaler Extrema findet man in
[7].

Für konvexe Funktionen kann man weitergehende Aussagen machen.
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Satz 3.1:f: G —> R, G g R” oflen, sei aufG stetig diflerenzierbar und konvex. Dann gilt:
x° Lösung von (3.3) ¢> Vf(x°) = 0.

Beweis: Da die Aussage (=>) offensichtlich gilt, beschränken wir uns auf den Beweis
von (<=). Es sei Vf(x°) = 0 für ein x°eG. Dann gilt nach Satz 2.15 für beliebige xeG

0 = (X - X°)T‘7f(X°) S f(X) -f(X°)‚
d. h. x° ist Lösung von (3.3).

Satz 3.2: Ist G g R" eine konvexe Menge und ist f: G —> R konvex (konkav) auf G,
so ist jedes lokale Minimum (Maximum) von f bezüglich G zugleich ein globales
Minimum (Maximum) von fbezüglich G.

Beweis: Wir führen den Beweis für konvexe Funktionen und nehmen an, daß f
bezüglich G ein lokales Minimum in x‘ und ein globales Minimum in x° besitzt mit
f(x‘) >f(x°). Dann ist für beliebige Ä, ‚u e (0, l) mit Ä + ‚u = l:

f0-X° + MX1) S Äf(X°) + /tf(X’)
< 1f(X‘) + /4f(X1) =f(X‘)-

Für Ä —> +0 hat man Äx° + ‚axl —> X‘. Daher gibt es’ in jeder Umgebung von x‘
Punktexe Gmitf(x) <f(x‘), und das ist ein Widerspruch zur Voraussetzung, wonach
fin x1 ein lokales Minimum besitzt.

Satz 3.3: Es seien G g R” eine konvexe Menge undf: G —> R konvex auf G. Dann ist
die Menge Gm aller Punkte, in denenf ein lokales (und damit auch ein globales) Mini-
mum bezüglich G annimmt, konvex. -

Beweis: Für beliebige x‘, x2 e Gum und beliebige Ä, ‚a e [0, 1] mit Ä + /A = 1 gilt un-

ter Berücksichtigung von f(x‘) = f(x2) einerseits

fax‘ + /4X2) ä 1f(X1) + Mf(X’) =f(X‘)-
Andererseits muß gelten

f(lx‘ + MX2) ä f(x‘);
damit folgtf(/lx‘ + ,ux2) = f(x‘) und hieraus [x‘, x2] e Gm. Folglich ist Gm konvex.

3.2. Extremwertaufgaben mit Restriktionen

Wir formulieren hier einige Ergebnisse der klassischen Theorie der Lagrange-
Multiplikatoren für Optimierungsprobleme

min {f(x) l xe G},
G = {xeR" | h,(x) = O, jeI„ = {1,..., k}, l g k < n} # 0, (3.4)

wobei f: X —> R und h}: X —> R, j e I„, stetig partiell differenzierbar auf einer offenen
Menge X mit R" 2 X 2 G sein sollen. Es seien

öhl öhl
6x1 (x) Bx, (x)

J„(x) := _ z

611,, fih,
6x1 (x) ax“ (x)
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die Jacobische Matrix von h, in xeX und

Jn(X) )
X :=

J“ l lvflxr
die um Vf(X)T erweiterte Jacobische Matrix in Xe X. Mit r(J„(x)) und r(Jo(x)) be-
zeichnen wir die Rangzahlen der Matrizen J„(x) bzw. J0(x).

Mit Hilfe dieser Rangzahlen lassen sich Aussagen über die Existenz von Lösungen
des Problems (3.4) herleiten (vgl. Band 4, Abschnitte 4.2.3. und 4.2.4.).

Im Falle r(J0(x°)) = k + l besitzt f in x° e G kein lokales Extremum bezüglich G.
Nimmt also f in x°eG ein lokales Extremum bezüglich G an, so gilt notwendig
r(J0(x°)) < k + l.

Wir führen die Lagrange-Funktion

L(x, u) := u0f(x) +J2i1u,h,(x), (X, u)Te G >< R"“, (3.5)

ein mit den Lagrange-Multiplikatoren uo, ul, ..., uk.
Dann gelten die folgenden Lagrangeschen Multiplikatorregeln (vgl. [6]):

Satz 3.4: Es seien Xg R" eine offene Menge undf: X —> R, hj: X —-> R,je I,,, stetig par-
tiell diflerenzierbar auf X. Dann gilt."

Besitzt f in x° e G ein lokales Extremum bezüglich G und ist r(J0(x°)) = r(J,,(x°)), so

existiert ein Vektor u° = (a8, u‘‚’‚ ..., u,‘2)T eR"“ mit 148 =#= 0 (o. B. d. A. u‘; = 1) und
V‚L(x°‚ u°) = 0, d. h.

Vf(x°) +j=§1u}’Vh,(x°) = 0.

Im Falle r(J0(x°)) = r(J,,(x°)) = k sind die u)’, je I„‚ nach Festlegung von us 4: 0 ein-
deutig bestimmt. Im Falle r(J„(x°)) = r(J„(x°)) < k sind die u)’, je I„, nach Festlegung
von „g # 0 nicht eindeutig bestimmt.

Satz 3.5:Es seien Xg R" eine oflene Menge undf: X —> R, h]: X —> R,jeI,,, stetigpar-
tiell diflerenzierbar aufX. Dann gilt:
Besitzt f in x°e G ein lokales Extremum bezüglich G und ist r(Jo(x°)) > r(J„(x°)),
so existiert ein Vektor u° = (uß, uf, ..., uß)" e R"“, u“ =4= 0, mit u3 = 0 un

V,L(x°‚ u°) = 0, d. h.

k

Z u}’Vh,(X°) = 0.
J = I

Ein hinreichendes Kriterium für die Anwendung der Lagrange-Funktion findet
man in Band 4, Abschnitt 4.2.4.

Beispiel 3.1: Für die Aufgabe

min {f(x,,v) = x’ + (‚v - 2)’ |h(x..v) := .v + 1- x’ = 0}

mitf: R2 —> R, h: R2 —> R sind die in Bild 3.1 eingezeichneten Punkte x1 = (x1, yl)" und x2 = (xi, y2)',"

Lösungen, denn durch x‘ und x2 gehen die Niveaulinien f(x, y) = c mit dem kleinsten Wert co,
und zugleich liegen x1 und x2 auf der Parabel h(x, y) = 0.
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J/

“W” „f vffx‘)

ujv/7 Ix’)

ufvffxzl vr”{x7)

Bild 3.1

ujv/Mx’) \u§’vf(x’)

Die beiden Kurven f(x, y) = co und h(x, y) = 0 berühren sich in x1 und x2, d. h. die Gradienten
von fund h sind dort jeweils kollinear. Es gilt z. B.

u3Vf(X‘) + u}Vh(x1) = 0. (3.6)

Eine ähnliche Situation liegt im Punkt x3 vor. Hier berühren sich die Kurven f(x‚ y) = c3 und
h(x, y) = 0. Wegen c3 > cu ist x3 keine Lösung des gegebenen Problems, obwohl Vf(x3) und
Vh(x3) kollmear sind.

Im Punkte x4 sind Vf(x4) und Vh(x“) linear unabhängig. Man findet also kein u“ e R2, u“ ä: 0, so

daß eine (3.6) entsprechende Beziehung besteht. Wegen c4 > co ist x“ keine Lösung des Problems.

Beispiel 3.2: Wir betrachten die Aufgabe

m1'n{f(x) = X2 + (y — l)’ + :2 lh1(x) := x -1- yl = , h2(x) := X H l =0}
mit/, hl, h2: R3 »> R. Bild 3.2 zeigt den Schnitt des parabolischen Zylinders h1(x) = 0, der Ebene
h2(x) = 0 und der Niveaufiächef(x) = c2 mit der xy-Ebene. Durch die Restriktionen h1(x) = 0 und
h2(x) = O ist eine Gerade durch de_n Punkt (1, 0, 0)’ parallel zur z-Achse bestimmt. Die Kugel um

(0, I, 0)T mit dem Radius co = \/2 berührt diese Gerade im Punkt x0 = (1, O, O)’. Es gilt:
l 0 0

"(J;.(x°)) = VG 3 = 1; "(Jo(X0)) = r(1 o o = 2.

Z~2 0

5'4

x0 /vn‚. {x”}=vh,i’x”)

Ü"

Bild 3.2



4. Spezielle nichtlineare Optimierungsprobleme

Spezialisierungen in der allgemeinen Aufgabenstellung (1 . l) ermöglichen oft wesent-
lich schärfere Aussagen über die Art und die Lage des Optimums einerseits und brin-
gen andererseits auch bedeutende Erleichterungen bei der numerischen Behandlung
und Lösung des Problems. Die Spezialisierungen erhält man durch die Auswahl ge-
wisser Funktionenklassen für die Zielfunktion f bzw. für die Restriktionsfunktionen
g,~, iEIg, und h,,jeI,,.

4.1. Konvexe Optimierungsprobleme

Definition 4.1: Ein Optimierungsproblem (1.1) heißt konvex, wenn die Funktionen f,
gi, i e 1„ konvex und die Funktionen hj’ je I„, linear-ajfin sind:

min {f(x) l xeG}, (4.1)

G = {xeR" j g‚(x) g 0, ieI„; ajTx = b„jeI„}.
Viele von der Aufgabenstellung her zunächst nicht konvexe Optimierungsprobleme

lassen sich durch einfache äquivalente Umformungen auf konvexe Optimierungs-
probleme zurückführen.

Aufgabe 4.1: Man zeige, daß das Optimierungsproblem

max{f(x)[xeG}, G={x€R"\g,(x);O,ieIg}
mit konkaven Funktionen f, g„ i e I„auf ein konvexes Optimierungsproblem zurückgeführt werden
kann.

Aufgabe 4.2: Man zeige, daß das Optimierungsproblem

min {f(x) I x E G},

G ={xeR"1xeR'_',_;g,(x) g 0, ie1g;h,(x)= O, jeI,,}

mit konvexen Funktionen f, g„ i s 1„ und linear-affinen Funktionen hj,j E I„‚ ein konvexes Optimie-
rungsproblem ist.

Da jede linear-affine Funktion konvex ist, umfaßt die Klasse der konvexen Opti-
mierungsprobleme die Klasse der linearen Optimierungsprobleme. Während viele
Aussagen, die bei linearen Problemen gelten, auf konvexe Probleme übertragen wer-

den können, gehen einige Eigenschaften linearer Probleme bei konvexen Optimie-
rungsproblemen im allgemeinen verloren.

Für das Problem (4.1) gelten die folgenden Aussagen:

Satz _4.l: Der zulässige Bereich G des Problems (4.1) ist konvex.

Der Beweis folgt unmittelbar aus Satz 2.12 und Satz 2.3.

Satz 4.2: Jedes lokale Minimum von fbezüglich G ist zugleich ein globales Minimum
vonfbezüglich G.

Der Beweis folgt aus Satz 3.2.

Satz 4.3: Die Menge G„„ aller Lösungen des Problems (4.1) ist konvex.



32 4. Spezielle nichtlineare Optimierungsprobleme

Ist darüber hinaus die Zielfunktion f streng konvex, so existiert höchstens eine Lösung
des Problems (4.1).

Der Beweis folgt aus Satz 3.3.

Aufgabe 4.3: Beweisen Sie Satz 4.2 und die zweite Aussage von Satz 4.3!

Ohne Beweis führen wir den folgenden Satz an, der die Existenz einer Lösung bei
konvexen Optimierungsproblemen sichert.

Satz 4.4: Ist der zulässige Bereich G des Problems (4.1) niehtleer und beschränkt, so
existiert mindestens eine Lösung dieses Problems.

Gewisse Eigenschaften linearer Optimierungsprobleme gelten bei konvexen Opti-
mierungsproblemen nicht:

a) Auch wenn der zulässige Bereich G des Problems (4.1) ein Polyeder ist, braucht
eine Lösung des Problems nicht notwendig in einem Extremalpunkt von G zu liegen
(Bild 4.1).

X: r=7,72

/ ’/’—\\\
/ \

/ /
W24/2 2 r= 0,5 \g‚{x)=U

ul.ill.l\.i..

L
ll
ll
ll
ll
x

a4 (x)=17 gin) =0
Bild 4.1

b) Ist der zulässige Bereich G des Problems (4.1) unbeschränkt und f auf G nach
unten beschränkt, so ist die Existenz einer Lösung des Problems nicht gesichert wie
etwa bei dem Problem min {ex l x g 0}.

Für dilferenzierbare konvexe Zielfunktionenfhat man den wichtigen

Satz 4.5: Es seien X g R" eine oflene Menge, f." X —> R auf X stetig partiell difleren-
zierbar und der zulässige Bereich G des Problems (4.1) in X enthalten. Dann gilt:
1. x° e G ist genau dann Lösung von (4.1), wenn

(x — x°)TVf(x°) g o VxeG. (4.2)

2. Ist darüber hinaus x° ein innerer Punkt von G, so kann die Beziehung (4.2) ersetzt
werden durch

Vf(x°) = o. (4.3)
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Beweis: 1. x° e G sei Lösung von (4.1). Dann gilt:
f(x°) §f(x) VxeG.

Entwickelt manfan der Stelle x° gemäß der Taylor-Formel (Band 4, Abschnitt 4.1.),
so folgt

‘ 0 g (x — x°)T Vf(x°) + R2(x°, X — x°) (4.4)
mit

R.<x°‚ x — x°> _ 0
1' ——j—„f; ux — x°n

Zum Beweis von (4.2) nehmen wir an, daß ein is G existiert mit

d := (i —— X°)T Vf(x°) < 0.

Dann hat jedes

x01) := x° + AG: — x°), /le(0,1],
die Eigenschaft x(Ä)e G, da G konvex ist, und ferner gilt:

[x(/1) — x°1T V/<x°> = [ä — x°1T v/(x°> = d <

HXÜ) - X°|l Iii - X°II Iii — X°l|

Aus (4.4) erhält man für 1e (0, .1]

0 ä [X(Ä) - X°]’ Vf(X°) + R2(X°,X(/1) - X°)

und nach Division durch ]]x(Z) — x°|| } 0

[X - X°lT Vf(X°) R2(X°‚ X01) - X

Hi - X°H IIXÜ) - X°ll

Wegen lim x(Ä) = x° folgt aus (4.5) und (4.6)
L++0

0. (4.5)

°>0 g VÄE (0, 1]. (4.6)

d . R2(x°, x0.) — x°) d
0 ST l m= ‚m‘
- nx — x°n U330 uxa) — x°11 nx — x°n <

und damit ein Widerspruch. Folglich gilt (4.2).

2. Die Beziehung (4.2) sei erfüllt. Dann gilt wegen der Konvexität von f nach
Satz 2.15

0 ä (X - X°)’ Vf(X°) §f(X) -f(X°) VXGG,

d. h. x° ist Lösung von (4.1).

3. Der Beweis der zweiten Aussage wird Ihnen als Aufgabe überlassen.

0

Aufgabe 4.4: Beweisen Sie die zweite Aussage von Satz 4.5!

Beispiel 4.1: Das Problem

min {X} + x: + 4x1[(x1, X2)-FE G},

G ={(X1:X2)T5R2iX1 ä 0:-X2 ä 0, x1 + X2 ä 6, x2 ä (x1 " D1}

ist ein konvexes Optimierungsproblem. Für x° = (0, I)‘ findet man x° e G, Vf(x°) = und

(x — x°)T Vf(x°) = 4x, + 2(x, - 1) g 0 Vxe G,

3 Elster, Optimierung
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denn es ist .

4x, + 2(.\-2 — l) = 4x, + 2x2 — 2 g 2x} g 0 Vx, e R, V x, g (x, —1)’.

Damit ist auch (4.2) für alle x e G erfüllt.

Aufgabe 4.5: Unter Verwendung des in Bild 4.1 und in Beispiel 4.2 angegebenen zulässigen Bereiches
G ermittle man für die konvexen Optimierungsprobleme

a) min {f(x1,x2) = (X1 — 3)’ + (X2 — 3)’ l (X1.«"2)T5G},
b) min {f(-X1. X2) = (x1 " Ü: ‘i’ (x2 ‘ D2 i (X1: X2)-I-EG}

graphisch eine Lösung x° und überprüfe die Beziehungen (4.2) bzw. (4.3).

4.2. Quadratische Optimierungsprobleme

In der nichtlinearen Optimierung konnten effektive Lösungsverflahren bisher nur
für spezielle Problemklassen entwickelt werden. Zu den am gründlichsten behandelten
Problemen zählen diejenigen mit linear-affinen Restriktionen und nichtlinearer Ziel-
funktion. Eine solche Problemklasse, deren Lösungen vielfach unter Anwendung des
(modifizierten) Simplexverfahrens ermittelt werden, ist die der quadratischen Optimie-
rungsprobleme.

Definition 4.2: Ein Optimierungsproblem (1.1) nennen wir quadratisch, wenn esfolgende
Form besitzt:

min {Q(x) := cTx + xTCx l xeG},
G={xeR"lxeR’f„Axgb}. (4.7)

Dabei seien c e R", b e R"‘, A eine (m, n)-Matrix und C eine symmetrische (n, n)-Matrix.

Probleme, bei denen der zulässige Bereich G gemäß

G = {xeR"]Ax g b}
oder

G = {xeR" I XER'_',., Ax = b}

gegeben ist, können durch die aus der linearen Optimierung bekannten Transforma-
tionen (vgl. Band I4) auf die Form (4.7) zurückgeführt werden.

Zahlreiche Verfahren der nichtlinearen Optimierung, die speziell für quadratische
Probleme im Sinne von Definition 4.2 entwickelt wurden, setzen die Konvexität der
Zielfunktion Q des Problems (4.7) voraus.

Satz 4.6: 1. Das Problem (4.7) ist genau dann ein konvexes Optimierungsproblem, wenn

die Matrix C positiv semidefinit ist.

2. Ist die Matrix positiv definit, so ist dieZielfunktion Q streng konvex auf G.

Der Beweis folgt aus Satz 2.16. ' l

Aufgabe 4.6 : Beweisen Sie Satz 4.6!

Beispiel 4.2: Das in Bild 4.1 dargestellte Problem

min {f(x) = (x. — i): + (x2 — ä): ax e G},

G = {XER2 ]g1(x) := x, — 2 g 0, g2(x) := —x1 g 0,

§3(X)1= ‘(X1 + X2 ‘ 1) ä 0, g4(x) 3: (X1 " x2 ‘ 1) ä 0,

85(74): = x2 — 2 ä 0}
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ist ein konvexes quadratisches Optimierungsproblem mit der Zielfunktion

. l0 [-1 5 IQ(x)=xTCx+cTx+q, wobei C=(01), c=K_3), q=E.
T

Die feste Zahl q hat keinen Einfluß auf die Lösung x° = (ä, .

Sämtliche Eigenschaften konvexer Optimierungsprobleme bleiben für quadratische
Optimierungsproblemc mit positiv semidefiniter Matrix C erhalten. Darüber hinaus
läßt sich Satz 4.4 verschärfen zur Aussage von

Satz 4.7: Bei dem quadratischen Optimierungsprablem (4.7) seien C positiv semidefinit,
G =I= 0 und Q aufG nach unten beschränkt. Dann existiert mindestens eine Lösung x° e G
dieses Problems.

Beispiel 4.3: In Beispiel 4.2 ist der zulässige Bereich G =I= 0 offenbar ein konvexes Polyeder und
damit Q auf G nach unten beschränkt. Nach Satz 4.7 existiert also eine Lösung x° des Problems. Die

Niveaulinien der Zielfunktion sind konzentrische Kreise mit dem Mittelpunkt (ä, %- T. Die Ziel-

funktionQ ist wegen der positiven Definitheit von C streng konvex. Die Gleichung VQ(x) = 0 hat die

einzige Lösung x° = ä, Da x° ein innerer Punkt von G ist, folgt nach der zweiten Aussage

von Satz 4.5, dal3 x“ Lösung des gegebenen Problems ist.

Für konvexe quadratische Optimierungsprobleme folgt aus Satz 4.5 der

Satz 4.8: Es sei (4.7) ein konvexes quadratisches Optimierungsproblem. Dann gilt.’

1. x° e G ist genau dann Lösung von (4.7), wenn

(x — x°)T(2Cx° + c) 2 O VxeG. (4.8)

2. Ist darüber hinaus x° ein innerer Punkt von G, so kann die Beziehung (4.8) ersetzt
werden durch

2Cx° + c = 0. (4.9)

Aufgabe 4.7: Beweisen Sie Satz 4.8!

Aufgabe 4.8: 1. Für welche o; E R ist die Matrix C = 2) a) positiv delimit, b) positiv semidefi-
nit, c) indefinit? "‘

2. Man löse grafisch das Problem

min {Q(x) = TCx I Xe G}

für die Parameterwerte o: = 1, 4, 8 und für G gemäß Bild 4.1.

3. Man skizziere die Höhenlinien von Q für die Parameterwerte on = 1, 4, 8.

4.3. Separable Optimierungsprobleme

Wir beschränken uns hier auf Optimierungsprobleme (1.1) mit 1„ = 0.

Definition 4.3: Ein Optimierungsproblem

min {f(x) I xeG}, G = {xeR” l g‚(x) g 0, ieI„} (4.10)
3* .
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heißt separabel, wenn sich Zielfunktion f und Restriktionsfunktionen g‚-‚ ieI„ in der
folgenden Farm darstellen lassen:

f(x) = äpo»,
“H (4.11)

g:(x) = ¢_Yg:.(x.), feig-

Ein wesentliches Verfahren zur Lösung solcher Aufgaben besteht darin, daß die
f„(x‚) und g„‚(x,.)‚ i e 1„ v e {l‚ 2, ...‚ n}, durch Näherungspolygone ersetzt werden und
somit (bis auf gewisse Basiseintrittsbeschränkungen, die im Falle konvexer Probleme
sogar noch wegfallen) zur Lösung das Simplexverfahren benutzt werden kann. Im
Falle konvexer Probleme erhält man dann aus der Lösung des Näherungsproblems
eine Näherungslösung für das Ausgangsproblem (4.10).

Als Nachteil einer solchen Approximationsmethode muß in erster Linie die stark
zunehmende Anzahl der Variablen (in Abhängigkeit von der Unterteilung der Inter-
Valle, in denen die ursprünglichen Variablen variieren) angesehen werden.

Eingehendere Darlegungen über separable Optimierungsprobleme findet man in
[10] und [13].

Manche Probleme, deren Zielfunktion bzw. Restriktionsfunktionen ursprünglich
nicht die Form (4.ll) haben, können leicht in separable Probleme überführt werden.

Wenn in der Zielfunktion und/oder in den Restriktionsfunktionen als einzige nicht
„separierte“ Bestandteile Produkte x„x„ auftreten, so kann man durch Einführung
von zwei neuen Variablen

yu = am + X9), ye = am - g) (4-12)

das Produkt x„x„ ersetzen durch yfi — yä. Ersetzt man dann im gegebenen Problem
x„xg überall durch die Differenz y} — y: und fügt die Beziehungen (4.12) als neue
Restriktionen zum Problem hinzu, so ergibt sich ein separables Optimierungs-
problem.

Im Falle von positiven Variablen kann man das Produkt x„x„ auch durch die neue
Variable yv ersetzen und als zusätzliche Restriktion In y, = ln xv + ln x, hinzufügen.

Aufgabe 4.9: Man überführe folgende Probleme durch eine Variablentransformation in separable
Probleme:

a) max {3e"1 + x; | xe G},

G = {xeR2 | x1,x2 > 0, xix, g 16};

b) max {2x‚ + xi + ln(x3 x4)1xe G},

G = {xeR‘*ix,,x2,x, > O; x1,x2,x4 < g; x4 >1; x, sinx; + x§lnx4 g 17,

46'1": + sin[x2 cosx4] g l8}.

4.4. Hyperbolische Optimierungsprobleme

Bei der hyperbolischen Optimierung handelt es sich um die Optimierung eines
Quotienten zweier Funktionen unter gewissen Restriktionen. Im einfachsten Fall
betrachten wir den Quotienten aus zwei linear-affinen Funktionen. Da ein solcher
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Quotient i. allg. nichtkonvex ist, lassen sich die hyperbolischen Optimierungsprobleme
nicht in die Klasse der konvexen Probleme einordnen.

Hyperbolische Optimierungsprobleme sind aus praktischen Fragestellungen hervor-
gegangen, bei denen mitunter mehrere Funktionen zu optimieren sind (z. B. Anwach-
sen des Gewinns bei gleichzeitiger Minimierung der Selbstkosten oder Anwachsen
des Produktionsvolumens bei möglichst geringem Arbeitszeitaufwand). Zu diesem
Zweck bildet man Verhältnisfunktionen wie Stückkosten, Arbeitsproduktivität u. ä.
und ermittelt deren Optimum.

Definition 4.4: Ein Optimierungsproblem

min {f(x) l XEG}, G = {xeR" | g‚(x) g 0, ielg}

heißt hyperbolisch, wenn die Zielfunktion f die Form

f(x) = ‘;—E:l), v(x) >0,

hat.

Man beachte, daß das in Beispiel 1.2 angegebene elektrotechnische Problem die
Form eines solchen hyperbolischen Optimierungsproblems hat.

In den meisten Fällen werden lediglich hyperbolische Optimierungsprobleme mit
linearen Restriktionen behandelt. Solche Probleme lassen sich unter Beachtung der
jeweiligen Eigenschaften der Zielfunktion einteilen in

a) konvex-konkave Probleme mit

u konvex auf G, v konkav auf G; u(x)‚v(x) > 0 Vxe G;

b) quadratische Probleme mit
u(x) = xTCx + cTx + co, u(x) = xTDx + dTx + do; v

u(x), u(x) > 0 Vxe G,

wobei C eine positiv definite und D eine negativ definite (n, n)-Matrix darstellen;

c) quadratisch-lineare Probleme mit
u(x) = xTCx + cTx + co, v(x) = dTx + do; v(x) > 0 VXEG,

wobei C eine positiv definite (n, n)-Matrix darstellt;

d) lineare Probleme mit

u(x) = cTx + co, v(x) = dTx + do; v(x) > 0 VxeG.

Für lineare hyperbolische Optimierungsprobleme

cTx + co XEG}
5min I: fig

(4.13)

G = {xeR" I a”x g b„ ieI„}
gilt der

Satz 4.9: Ist der zulässige Bereich G des linearen hyperbolischen Optimierungsproblems
(4.13) beschränkt, so nimmt die Zielfunktion f ihr Minimum bezüglich G in einem
Extremalpunkt von G an.
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Dieser Satz, dessen Beweis wir hier übergehen, legt es nahe, jedem Problem (4.13)
ein äquivalentes lineares Optimierungsproblem zuzuordnen. v

Durch die Transformation; = x, t > 0, folgt aus (4.13) das Problem

cTy+cot T *Wm (VJ) ‘EG i‘,

6* : {(3t’)eRn+1

31T an aln
mit A = 5 = g 3 .

amT/ am! amn
0 D

Ist y eine Lösung des Problem (4.14), so ist oflbnbar auch Äy mit Ä > 0
t° 11°

Lösung dieses Problems (Aufgabe 4.10). __

Diese Eigenschaft sichert zusammen mit dTx + do > 0 Vx e G die Aquivalenz von
(4.14) mit folgendem linearen Problem:

min {cTy + cot | (y, t)Te G**},

min {

z> o, Ay — bt g o} (4.14)

4.15
G**={(’t’)eR~+1|Ay—bzg0,dTy+doz=1,z>o}. ( )

O 0

Jede Lösung GD) von (4.15) ergibt mittels x° = {T die zugehörige Lösung von

(4.13), und umgekehrt ergibt jede Lösung x° Von (4.13) mittels

1° —_— 4_
dTx° + do ’

0

in ) Von (4.15).

Wir nennen (4.15) das dem linearen hyperbolischen Optimierungsproblem (4.13)
zugeordnete lineare Optimierungsproblem.

Aufgabe 4.10: Man beweise: Ist (y°‚ t°)T eine Lösung des Problems (4.14), so ist auch (1y°‚ 12°)’
für beliebiges Ä > 0 eine Lösung dieses Problems.

Aufgabe 4.11 : Gegeben sei das Problem

yo = toxo’

die zugehörige Lösung

3x1—x2+3
mmi/(x) = xi + 2x2 + 1

xeG},

G: {xeR21x, + X2 g 4, 2x, —x2 g 2, x1,x2eR+}.

Man ermittle das zugehörige lineare Optimierungsproblem und löse es mit dem Simplexalgorithmus.
Wie lautet die Lösung des Ausgangsproblems?

4.5. Geometrische Optimierungsprobleme

Im Rahmen der Entwicklung der nichtlinearen Optimierung hat sich die geome-
trische Optimierung zu einer relativ selbständigen Teildisziplin entwickelt. Dabei ent-
stand die geometrische Optimierung wesentlich unter dem Einfluß von Aufgaben aus
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den Ingenieurwissenschaften. Eine lehrbuchmäßige Darstellung der geometrischen
Optimierung findet man in [5], während die Problemstellung der geometrischen
Optimierung in [1] dargelegt wird.

Man kann zeigen, daß zahlreiche nichtlineare Optimierungsprobleme in die Pro-
blemstellung der geometrischen Optimierung eingeordnet werden können.

In der geometrischen Optimierung kommt der sogenannten geometrischen Un-
gleichung besondere Bedeutung zu. Mit ihrer Hilfe lassen sich duale Paare geometri-
scher Optimierungsprobleme einführen (vgl. Abschnitt 6). Als Sonderfälle geome-
trischer Optimierungsprobleme erhält man u. a. die Posynomoptimierung und die er-

weiterte quadratische Optimierung (vgl. dazu [l]).
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In Abschnitt 3 erörterten wir Extremwertaufgaben mit Restriktionen in Gleichungs-
form. Dabei zeigte sich die große Bedeutung der Lagrange-Funktion und der La-
grange-Multiplikatoren. In diesem Abschnitt wollen wir nun der Frage nachgehen,
ob sich diese Begriffe auch bei Optimierungsproblemen mit Restriktionen in Unglei-
chungsform vorteilhaft verwenden lassen. Die gewonnenen Resultate, gelegentlich
unter der Bezeichnung Kuhn-Tucker-Thearie zusammengefaßt, nehmen eine zentrale
Stellung in der nichtlinearen Optimierung ein.

5.1. Zusammenhang zwischen nichtlinearen Optimierungsproblemen
und Sattelpunktproblemen

In Analogie zur Aussage von Satz 3.1 über klassische Extremwertaufgaben geht
es in diesem Abschnitt darum, notwendige und/oder hinreichende Optimalitäts-
bedingungen zu finden, indem die Existenz einer Lösung eines gegebenen Optimie-
rungsproblems durch die Existenz einer Lösung eines gewissen anderen Problems be-
schrieben wird. Solche Probleme können zugeordnete Ungleichungssysteme (vgl.
Satz 5.3), Gleichungssysteme (vgl. Satz 3.1 und Satz 3.5) oder andere Optimierungs-
probleme (vgl. Satz 5.1 und Abschnitt 6) sein.

Wir betrachten als Spezialfall von (1.1) das Optimierungsproblem

P: min {f(x) ] XEG},
G = {xeR" ] g,(x) g 0, ie 1,} (5.1)

mit f: R"—> R, g,:R"—> R, ielg.
Bei den folgenden Betrachtungen verzichten wir also auf Restriktionen der Form

h(x) = 0. Sie lassen sich z. B. durch g‚(x) g 0, g2(x) g 0 mit g, = h, g, = —h er-

fassen.
Zur Formulierung des Sattelpunktproblems benötigen wir

Definition 5.1: Es sei F: R"+"‘ —> R. Ein Punkt (x°, u°)T e R"+"‘ heißt Sattelpunkt der
Funktion F, wenn gilt:

F(x°‚ u) g F(x°, u°) g F(x‚ u°) VxeR", VueR"'. (5.2)

Beispiel 5.1: Die Funktion F(x‚ u) = x2 — u’, (x, u)"eR2, besitzt den Sattelpunkt (x°, u°)‘
= (O, 0)’, denn es ist (Bild 5.1)

F(x°, u) = —u2 g F(x°,u°) = 0 g x2 = F(x‚ u°) Vxe R, Vue R.

Wir formulieren nun das Sattelpunktproblem:

SP: Gegeben sei die Funktion

F(x‚ u) =f(x) + i u.g.<x)‚ (x, u)TeR"+'".
(=1

Gesucht sind ein x° e R" und ein u° e RT, so daß (x°, u°)T ein Sattelpunkt der Funk-
tion F ist.

Den Zusammenhang‘ zwischen den Lösungen der Probleme P und SP zeigt

Satz 5.1: (x°, u°)" Lösung von SP => x° Lösung von P.
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Beweis: 1. Wir zeigen zunächst x°eG. Aus der Sattelpunktbedingung F(x°‚ u)
g F(x°‚ u“) folgt

i£‘,lu,g,(x°) g f u,°g,(x°) vu, g o, i= 1, (5.3)
= i=l

Bild 5.1

Wählt man speziell u = u° + e", so folgt sofort

g„(x°) g O Vk = 1, ...‚ m, (5.4)

d. h. x° e G.

2. Zu zeigen bleibt, daß x° Lösung von P ist. Für einen beliebigen Punkt x e G gilt
wegen u? g 0 ViEIg unter Beachtung von (5.2)

f(X) ä f(X) +2 u§’gx(X) = F(X, 11°) ä F(x°‚ “°) ä F(x°‚ I!) VIPER’:-

Da diese Beziehung insbesondere auch für u = 0 richtig ist, hat man

f(x) g F(x°‚ 0) =f(x°) VxeG.
Die Umkehrung von Satz 5.1 gilt ohne zusätzliche Voraussetzungen nicht, wie das
folgende Beispiel zeigt.

Beispiel 5.2: Wir betrachten das Optimierungsproblem

P:min{—x]xeG}, G={xeR|—x§O,x2§0}={0)
und das Sattelpunktproblem

SP: Gesucht ist ein Sattelpunkt der Funktion

F(X.“) = -X - 141x + M276’. (XJÜT G R X R’.
Offenbar ist x° = 0 Lösung von P wegen G = {O}.
Wir nehmen an, daß (O, u°)" ein Sattelpunkt von F ist. Dann folgt nach Definition 5.1

—O—u,-0+ ur-O; -O—u‘1’-0+ ug-Oé -—x——u?x+u2x2.

Für x = 0 ist diese Bedingung erfüllt. Für x > O folgt

0 S X(-l ~ u‘1'+ 142x)
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und damit
o; —1—u‘,’+u:x.

Wegen u? g 0 ergibt sich hieraus -1- g n2 Vx > 0.
x

Diese Bedingung kann jedoch für kein endliches n2 erfüllt werden. Damit wurde gezeigt: x° = 0
ist Lösung von P, aber es gibt kein u° e R1, so daß (0, u°)" Lösung von SP ist.

Die Umkehrung von Satz 5.1 gilt bei Einführung einer gewissen Regularitätsbe-
dingung für den zulässigen Bereich G. Wir verwenden hier die Regularitätsbedingung
von Slater:

B: Es sei g‚: R" —> R, is I9. Es existiert wenigstens ein 2e G mit g,(i) < 0 VieI,,
d. h. G besitzt wenigstens einen inneren Punkt.

Anmerkung: Werden durch die Ungleichungen g,~(X) g O, i e lg’ auch Gleichungen
(vgl. die nach (5.1) angegebene Möglichkeit) beschrieben, so ist die Bedingung B
nicht erfüllbar. Man kann zeigen, daß B erfüllt ist, wenn die durch G aufgespannte
lineare Mannigfaltigkeit die Dimension n hat.

In Beispiel 5.2 ist die Bedingung B verletzt.

Satz 5.2: Im Problem (5.1) seien die Funktionen f, g„ i e Ig’ konvex und die Bedingung B
erfüllt. Dann gilt:

x° Lösung von P <> E|u° E R2, so daß (x°, u°)T Lösung von SP, x° e G.

Beweis: 1. (<=): Diese Aussage wurde unter schwächeren Voraussetzungen bereits
in Satz 5.1 bewiesen.

2. (=>): Wir betrachten das Ungleichungssystem

g,(x) < 0, i619, (5.5)

f(X) -f(X°) < 0-

Da x° Lösung von P ist, kann das System (5.5) keine Lösung besitzen. Daher existiert
nach Satz 2.21 ein Vektor u° = (uß, u)‘, ..., uf’,,)T E RT‘, u° =i= 0, mit

usmx) —/(x°)1 + £:.u?gi(x) 2 o vxeR".- (5.6)
i=l

Aus der Annahme ug = 0 folgt wegen der Regularitätsbedingung B und wegen
u° + 0

2lu‘2g.(i) <’0‚
‚=

und das ist ein Widerspruch zu (5.6). Also ist uf,’ > 0, und o. B. d. A. setzen wir
„g = 1. Damit ergibt sich aus (5.6)

m

f(X) -f(X°) +_§ u?g:(X) ä 0 VxeR".
also

F(x, I|°) g f(x°) Vx e R". (5.7)

Außerdem gilt offenbar
M

f(X°) E/"(X°) + §lu:gs(X°) VII = ("n u...)T 2 0,
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d" h" f(x°) g F(x°‚ u) VueRI. (5.8)

Aus (5.7) und (5.8) folgt

F(x°‚ u) g f(x°) g F(x, 11°) Vxe R”, Vu ER’: .

Setzt man x = x° und u = u“, so ergibt sich hieraus f(x°) = F(x°‚ u“) und damit

F(x°‚ u) g F(x°‚ 11°) g F(x, u°) Vx e R", Vue R1’,

d. h. (x°, u°)T ist Lösung von SP.

Anmerkungen: l. Der Inhalt von Satz 5.1 und Satz 5.2 wird häufig als globale
Kuhn-Tucker-Bedingzmg bezeichnet.

2. Eng verwandt mit der Aufgabe, für eine Funktion F: C >< D —> R, C >< D\
g R" x R"‘, einen Sattelpunkt zu bestimmen, ist die Frage, unter welchen Bedin-
gungen die Beziehung

max min F(x, u) = min max F(x‚ u) (5.9)
ueD xeC xeC usD

erfüllt ist. Auskunft darüber geben die sogenannten Minimax-Sätze. Sie haben u. a.

in der Spieltheorie erhebliche Bedeutung (vgl. dazu Band-l4‚ Band 21/1 und [2l]).

5.2. Lokale Optimalitätsbedingungen

Wir wollen nun eine Lösung des Problems P dadurch charakterisieren, daß die
im Sattelpunktproblem SP definierteiFunktion F an einer Stelle (x°, u°)T untersucht
wird. Dies gelingt für differenzierbare Funktionenf, g„ i619, und führt auf die soge-
nannten lokalen Kuhn—Tucker-Bedingungen. Dazu betrachten wir das Problem

P1 2 Es seien f: R" —> R, g,: R" ——> R, ie I„, partiell diflerenzierbar und

F(x, u) =f(x) + älmg, (x), (x, u)TeR" >< R"‘. (5.10)

Gesucht sind ein x° e R" und ein u” e R2, so daß gilt:

VxF(x°,u°) = 0, (5.11)

VuF(X°‚ 11°) S 0,

u°TV..F(x°, u“) = 0

mit V‚F = (F,,_, F,,,)T; V..F = (F.,,, F,,,,_)T = g = (g1,g,,,)T.
Die Bedingungen (5.11) und (5.12) bezeichnen wir als lokale Kuhn-Tucker-Bedingun-
gen.

(5.12)

Aufgabe 5.1: Man zeige: Aus u“ e R’: und der Gültigkeit von (5.12) folgt u?g,(x°) = 0 Vi e 1,.

Bevor wir auf den Zusammenhang zwischen den Problemen P, P1 und SP eingehen,
beweisen wir

Satz 5.3: Es seien X g R" eine oflene Menge mit X Q R’; und f: X —> R aufX stetig
partiell diflerenzierbar. Dann gilt:

fhat in x° eR'_'‚_ ein lokales} => { Vf(x°) g 0,
Minimum bezüglich R1 x°TVf(x°) = 0.
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Beweis: Nach Voraussetzung gilt für alle x e R'_',_:

/(x) =/(x°> + (x — x°)Tv/(x°) + ux — x°u a(x, x°) (5 B)
mit oc(x, x°) —> 0 für fix — x°|| —> + 0. l

Da f in x° ein lokales Minimum besitzt, existiert ein e > 0 mit

f(X) -f(X°) = (X - X°)TVf(X°) + HX - X°II 0¢(X, x°) ä 0 (5-14)

für alle XER’; mit Hx — x°|| < a. Wir wählen

x = x° + te’, ve{1, ...‚n}, te(0‚s),
und erhalten aus (5.14)

tf„„(x°) + tzx(x, x°) g 0 mit oc(x‚ x°) —> 0 für t —> +0.

Nach Division durch t > 0 und anschließendem Grenzübergang t —> + 0 folgt daraus
f;„(x°) g O Vv E{1, ..., n}, d. h.

Vf(x°) g 0.

Nun sei x2 die v-te Koordinate von x° und außerdem x3 > 0. Setzen wir x = x° — te”,
ve {1, ..., n}, so gilt XER’; für hinreichend kleines t > O, und wir erhalten wie oben

-fx„(X°) ä 0.
Damit ist notwendigfl„(x°) = 0 für x2 > 0, v e {l‚ ..., n}.

Folglich gilt
x°TVf(x°) = O.

Mit Hilfe von Satz 5.3 ergibt sich nun leicht die Aussage von

Satz 5.4: Es seienf: R” —> R, gi: R" —> R, i e 1,, stetigpartielldzflerenzierbar. Dann gilt:
(x°, u°)T Lösung von SP = (x°, u°)T Lösung von P1.

Beweis: Nach Voraussetzung gilt die Sattelpunktbedingung (5.2). Die Funktion
F(x‚ u°) hat in x° ein lokales Minimum. Daher gilt (Band 4, Satz 4.3)

V,F(x°, u°) = 0,

und das ist gerade (5.11).
Die Funktion —F(x°, 11) hat in u° ein lokales Minimum bezüglich R2. Daher gilt

nach Satz 5.3

V..F(x°‚ u°) g 0, u°TV„F(x°, u°) = 0,

und das sind die Bedingungen (5.12).
Die Umkehrung von Satz 5.4 gilt nur unter zusätzlichen Voraussetzungen.

Satz 5.5: Es seienf: R" ——> R, git R" ——> R, i Ely, konvex undstetigpartiell diflerenzierbar.
Dann gilt:

(x°, u°)’ Lösung von SP <=» (x°, u°)T Lösung von P1,

die Probleme SP und P1 sind also äquivalent.

Beweis: Wegen Satz 5.4 bleibt die Aussage (<=) zu beweisen. Die lokalen Kuhn-
Tucker-Bedingungen (5.11) und (5.12) seien erfüllt. Da F konvex in x ist, gilt nach
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Satz 2.15

F(x, u°) - F(x°‚ u°) g (x — x°)TVxF(x°, u°) = O

und damit
F(x°‚ u°) g F(x, u°) Vxe R". (5.15)

Da F linear in u und damit konkav in u ist, gilt für u e R2

F(x°‚ u) —— F(x°‚ u°) g (u — u°)TV„F(x°‚ u°)
= TV„F(XO, u°) — u°TV„F(x°, u°) g 0

und damit '

F(x°‚ u) g F(x°, u°) Vue R1‘. (5.16)

Aus (5.15) und (5.16) folgt, daß für F in (x°, u°)T die Sattelpunktbedingung (5.2) er-
fiillt ist, d. h. (x°, u°)" ist Lösung von SP.

Satz 5.5 und Satz 5.2 ergeben zusammen

Satz 5.6 (Satz von Kuhn und Tucker): Es seien im Problem P gemäß (5.1) die Funk-
tionen f: R" —> R, g,-: R" —> R, i 61„ konvex und stetig partiell dzflerenzierbar und die
Regularitätsbedingung B erfüllt. Dann gilt

.. Es existiert ein 11° e R“, so daß
x0 L0sung w" P Ö {(x°, u°)T Lösung von B: ist.

Bemerkung: Die linearen Restriktionen können in der Slater-Bedingung weggelas-
sen werden (vgl. [2]). Damit gilt Satz 5.6 für lineare und quadratische Optimierungs-
probleme (bei positiv semidefiniter Matrix C) ohne die Bedingung B.

Beispiel 5.3: Ermittelt man für das in Beispiel 5.2 gegebene Problem die lokalen Kuhn-Tucker-
Bedingungen, so ergibt sich als eindeutig bestimmte Lösung u? = — 1, d. h. es existiert kein u° e R2„ ,

so daß (5.11) und (5.12) erfüllt sind.

Zur Formulierung der folgenden Aussage benötigen wir

Definition 5.2: Gegeben seien das Problem P gemäß (5.1) und x° e G. Jede Restriktion
mit der Eigenschaft g‚(x°) = 0, i e lg’ heißt in x° aktive Restriktion.

Außerdem führen wir die Indexmenge

I°(x°) := {ieI, I g,(x°) = 0}

der in x° aktiven Restriktionen ein. Dann hat man

Satz 5.7: Im Problem P gemäß (5.1) seien die Funktionen f: R” —> R, g,: R" —> R, i e Ig,
stetig partiell diflerenzierbar und x° e G eine Lösung von P. Existiert ein z e R" mit

zTVg‚(x°) < 0 VieI°(x°)‚ (5.17)

so gibt es ein u° e RT, so daß (x°, u°)T Lösung von P1 ist.

Anmerkung: Die Bedingung (5.17) ist eine Regularitätsbedingung. Sie kann noch
abgeschwächt werden und impliziert bei stetig partiell differenzierbaren konvexen
Funktionen die Regularitätsbedingung B.

Beispiel 5.4: Wir ermitteln den Abstand der konvexen Menge

G={xeR‘|x1+x2;4, 2x, +x2;5}
vom Ursprung (0, 0)’.
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Die Aufgabe kann elementar gelöst werden. Aus der graphischen Darstellung ergibt sich sofort
die Vermutung, daß der gesuchte Abstand durch einen Punkt der Geraden xi + x; = 4 realisiert
wird. Er kann als Schnittpunkt dieser Geraden mit der dazu orthogonalen Ursprungsgeraden be-
rechnet werden. Als einzige Lösung ergibt sich dabei x° = (2, 2)".

Wir behandeln dieselbe Aufgabe nun als nichtlineares Optimierungsproblem, um die Wirkungs-
weise der bisherigen Aussagen zu verdeutlichen und zugleich eine einfache Kontrolle der Ergebnisse
zu ermöglichen.

Der einfacheren Rechnung wegen minimieren wir nicht Ilxll, sondern die Funktion

f(X)=]'1XH2 = X} + Xä

unter den linearen und damit konvexen Restriktionen

g1(x):=4-X1-x2§0, g2(x):=5-2x1—x2§0.
Für Ti = (0, 6)T gilt 1,71€) = —2 < O und 1,7265) = —-1 < 0. Daher ist B erfüllt, und wir können
Satz 5.2 anwenden. Für die Funktion

F(x, u) = x} + xi + u,(4 — x1 — x2) + u2(5 — 2x, — X2)

ergibt sich aus (5.11)

F‚„(x°, u“) = 2x‘; — u? — 211g = o, —-” (5.18)

F,,.(x°, u°) = zxg — 112- „g = o (5.19)

und aus (5.12) '

'F,,1(x°, u°) = 4 — x<,> — x‘; g o, (5.20)

F„„(x°, u”) = 5 — 2x‘; — xg g o, (5.21)

_ u°TV„F(x°‚ u“) = u‘}(4 ~ x2 ~ xg) + u;’(s — 2x2 — x3) = 0 (5.22)
SOWIE

u‘; g o, „g g 0. (5.23)

Wegen (5.20), (5.21) und (5.23) kann man (5.22) ersetzen durch

u‘‚’(4 — x‘; ~ xg) = o, r (5.22a)

ug(5 — 2x2 — x2) = o. (52215)

Fall]: u? = 0, a2 = 0. Dann folgt aus (5.18) und (5.19): xi’ = x2 = 0 und damit aus (5.20) und
(5.21) die Ungleichungen 4 g 0 bzw. 5 g 0, d. h., es ergibt sich ein Widerspruch.

Fall 2: u? = 0, 142 > 0. Dann folgt aus (5.22b), (5.18), (5.19)

x‘1’=ug=2,xg~= 1. .

Aus (5.20) ergibt sich damit 4 — 2 — l g 0, also ein Widerspruch.

Fall 3: uf > 0, 142 = 0. Dann folgt aus

(52221): x2 = 4 — xi’,

(5.18): 2x‘; — u‘; = 0,

(5.19): —2x‘} — u? = —8

und daraus

x9=2‚ xg=2, 149:4, ug=o.
Mit diesem Wervesystem sind auch (5.20), (5.21) sowie (5.23) erfüllt.

Der Fall u? > 0, ug > 0 braucht nicht mehr untersucht zu werden, denn nach Satz4.3 existiert wegen
der strengen Konvexität von f für das gegebene konvexe Problem höchstens eine Lösung. Nach
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Satz 5.6 ist x° genau dann Lösung von P, wenn (x°‚ u°)T Lösung von P1 ist, d. h. x° = (2, 2)’ ist die
einzige Lösung von P. Die x° zugeordnete Lösung (x°, u°)T von P1 ist aus dem obigen System
(5.18) - (5.23) eindeutig bestimmt.

Die geometrische Liisung des Problems folgt aus Bild 5.2. Man erkennt auch die geometrische
Bedeutung der ‘Bedingung (5.11): Der negative Gradient von fin x“ ist eine positive Linearkombina-
tion der Gradienten Vg‚(x°)‚ z" e I°(x°).

vf(x’)= (f)

. . l Bild 5.2

u,"vy,(X") =4 (i) \ 2 X1

y, (x) =4 -X,-X2 =0

yzfx) =:"~Zx,~x2:A7

Aus (5.22a) und (5.22b) folgt, daß der Lagrange-Multiplikator bei in x° nicht aktiven Restriktionen
gleich null ist.

Beispiel 5.5: Von einem Betrieb wird ein Produkt P während n Zeitabschnitten (Perioden) produ-
ziert. Das Erzeugnis P kann bis zu einer Menge von L Einheiten gelagert werden. Der Bedarf bj
der Periode j, j = 1, ..., n, ist jeweils bis zum Ende dieser Periode zu befriedigen. Dazu kann das Er-
zeugnis sowohl aus dem Lager als auch aus der laufenden Produktion verwendet werden. Die Lager-
kosten von K Währungseinheiten (Mark) pro Wareneinheit sind zu Beginn jeder Periode nach dem
zu diesem Zeitpunkt bestehenden Lagerbestand zu entrichten.

Zu Beginn der Periode 1 seien so ä L Wareneinheiten vorhanden, zum Ende der Periode n sollen
noch s1 Wareneinheiten vorhanden sein (für Reklamationen oder Nachbestellungen).

Wir setzen voraus, daß die Produktionskosten in jeder Periode mindestens proportional mit der
produzierten Stückzahl wachsen (wie es in der Praxis i. allg. der Fall ist), so daß die Produktions-
kosten in jeder Periode eine konvexe Funktion der produzierten Warenmenge sind.

Die Aufgabe bestehe darin, die Summe der Lagerkosten und der Produktionskosten über alle n

Perioden zu minimieren.

Zunächst stellen wir ein mathematisches Modell gemäß den obigen Darlegungen auf. Es bezeich-
nen fürj =1,...,n:

x, [Stück] die in der Periode j produzierte Warenmenge,
bj [Stück] den in der Periode j zu erfüllenden Bedarf,
y, [Stück] den zu Beginn der Periode j vorhandenen Lagerbestand,
fJ(x,) [Mark] die Produktionskosten in der Periode j.
Damit erhalten wir das konvexe Optimierungsproblem

min {/if,(xJ) + Knzyj l (x, y)T6GJ,
‘=1 j=l

G = {<x,y>TVeR" >< R"Jx,,y, 2 o‚y‚ guy, + x, e 12,. j =1,....n; (5.24)

‚V1 = So; )’;+1 = }’_1_+ X1 ‘ b), f =1; nun -1, J’, + X, — 17„ = 51}-
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Eliminiert man die Variable yj, j = 1, ..., n, so folgt das zu (5.24) äquivalente Problem

min {/ilf,(x,) + K [mo + i101 — v) (xv — [m] Xe 0*}, (5.25)

i
G* ={xeR"l—xg0, so+Z(x,,—b,,)§L,

v=l

J
so+Z(x,,—b,)§0, j=l,...,n—1;

v=l

n 7|

So+z(Xy‘by)§-V1, 5o+2(Xv— v)§51]~
v=l v=1

Wir setzen uT = (VT, u}, u}, ug) mit

VT = (17,, -.-.v,,). II? = (Im, u.„._.)‚ u} = (1421a”2,,._1). u;"=(u31,u3z)

und führen für das Problem (5.25) die Lagrange-Funktion ein:
n

F(x‚ u) =ji1fj(x_,) + K [mo + im — v) (xv — b,,)J — Evvxp ~

= y=l av:

l l

So+Z(x„-b‚)—L so+2(x‚—b„)
v=l v=1

+11? . . . . . . . . . . . . . . . . ‚ .. —u . . . . . . . . . . . . . ..

n—l nal

5o+z(xp—by)“l- so+Z(x.~/1»)
v=l v=l

n

+ (n31 — 1432) (so — S1 + Z (x, — b‚)); (x, u)Te R" X R3".
17:1

Dann erhält man die Kuhn-Tucker-Bedingungen:

0Ill o
x°eR", v°eR’,:, (o)eRi"“2, u3eR§_,

u
(5.26a)

2

a!" n—l
ax: (x?) + (n —— 1) K —— u‘: + 2104?, — 142,) + u; — n32

,.=

af n-l
2 (x2) + (n — 2) K — 1;‘; + Z(u',’,, — 142,) + M31 — a2,

ax: v=2
V,F(x°,u°) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = 0,

0/-
—lL(Xg—1) + K ‘ "L1 + “?,n—x “ “g,n—1 + "gi ‘ “g:
öxn-l
Ö

13% (xfi + + u‘; — ug’, (5.26b)
n

—-x,§0, v?.x;’=0, j=1,...,n,
l

so + ;1(x2 - b,,) —- L

§0; u‘,’,g1;(x°)=0, J‘=1,.-.,n-1,
II

so + 2 (x3 — 12,) — L (5-25°)
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g2(x°) := — ............. .. g 0; u3,g2,(x°) = 0, j= 1, ...,n — 1, (5.26d)

n

50“5i+2(xg"bv)
11:1

g3(x°) := n g o; u2‚.g„(x°) = 0, j = 1,2. (5.265)

‘So + 51 " E”? ” bu)
v=l

Da ein konvexes Optimierungsproblem vorliegt, ist jede Lösung des Systems (5.26a) — (5.26e) auch
Lösung des Problems (5.25) und damit (5.24). '

Zur Veranschaulichung betrachten wir folgendes Zahlenbeispiel.
Die Produktion-vonPläuft ein Jahr, das in 4 Perioden (Quartale) eingeteilt wird. Es seien

L = 2000, so = 500, S1 = 500, K = 500,f,—(x,) = 3000x,- + a,x,?,f = I, 2, 3, 4, sowie

j 1 2 3 4

b, 2000 4000 3000 1000

aj 2 1,75 0,75 o

Stellt man die Kuhn-Tucker-Bedingungen gemäß (5.26a)—(5.26e) auf, so folgt als eine mögliche Lösung

2500 v?=vg=vg=v2=0,
3000 _ ufi = 11?: = u‘); = 0,
3000 ’ ug, = 0, „g, = 6500, „g, = 5000,
1500 ’ a2, =a, u22=3O00—a, 0<u<3000.

xOg

Aufgabe 5.2: Mit Hilfe von Satz 5.6 ist das Problem

min {x} + xi — 8x1 — 10x21x60},
G = {xeRl I —x1 g 0, —x2 g O, 3x1 + 2x2

zu lösen. Anschließend ist die Lösung graphisch zu ermitteln.

II/
\

6}

Aufgabe 5.3: a) Unter Verwendung von Satz 5.7 ist für das Problem

min {—,\)1 — x; — txl — 2rx2 l xEG},
G={xeRzl—x1§O, —x,§0, x1+X2§4}

eine’L6sung x°(t)für t = 0 zu ermitteln. Anschließend ist das Problem für beliebiges te R graphisch
zu lösen. Ist die Zielfunktion konvex?

b) Ist die Lösung x°(t) stetig auf R?

c) Gibt es zu jedem te R genau eine Lösung?

Aufgabe 5.4 : Man löse das Problem

max{x1\xeG}, G = {xeR2 [x1 g O, x2 g O, (1 — x1)’ — x2 g 0}

graphisch und zeige für die Lösung x° e G, daß

a) die Kuhn-Tucker-Bedingungen in x° nicht erfüllt sind,
b) die in Satz 5.7 angegebene Regularitätsbedingung in x° verletzt ist.

4 Elster, Optimierung
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Aufgabe 5.5: Man löse das System (5.11), (5.12) für das Problem

min{(x1 — 3)’ + xi | xec},
G={xeR2|0§x1 §2, x;§0, ——x; go}.

Kann man Satz 5.6 anwenden, um auf die Lösung x° des Problems zu schließen? (Hinweis: Anwen-
dung von Satz 4.8).

Aufgabe 5.6 :Wennf: R" —-> R, g‚: R" —> R, i e 1„ stetig partiell dilferenzierbar sind, dann geht im
Problem P, bei der zusätzlichen Forderung xe R1 die Bedingung (5.11) über in

VxF(x°‚u°) ä 0,

x°TV‚F(x°‚ u°) = o.



6. _ Dualitätssätze

Dualitätssätze sind uns bereits aus der linearen Optimierung bekannt. Allgemein
beinhalten Dualitätssätze Aussagen über zwei einander zugeordnete (sogenannte
duale) Optimierungsprobleme P und D, von denen meist das eine (etwa P) als Mini-
mierungsproblem und das andere (D) als Maximierungsproblem formuliert ist.

Der wesentliche Inhalt einer Dualitätsaussage besteht darin, daß unter gewissen
Voraussetzungen die Gleichheit der Optimalwerte der Zielfunktionen der Pro-
bleme Pund D garantiert werden kann. Dualitätssätze geben jedoch im allgemeinen
keine Auskunft darüber, wie die Lösungen der dualen Probleme ermittelt werden.

Wir behandeln im folgenden Dualitätssätze, die

a) als Anwendungen der Kuhn-Tucker-Theorie (vgl. Abschnitt 5.) angesehen werden
können,

b) sich auf Dualitätssätze der linearen Optimierung zurückführen lassen.

Außerdem kann man Dualitätsaussagen mit Hilfe der Theorie der konjugierten
Funktionen herleiten (vgl. dazu [6]).

6.1. Dualitätssatz der linearen Optimierung

Wir betrachten die dualen linearen Optimierungsprobleme (Band 14, Abschnitt 3.2.)

Pl: min {cTx j X601},
G, = {xeR" l XER1, Ax g b};

D1: max {uTb [ ue G,*},

G?‘ = {ueR”' [ ueR’_';,ATu g c}

mit der (m, n)—Matrix A, b e R"' und ceR".
Für das Problem P, seien die Regularitätsbedingung B (vgl. 5.1.) erfüllt und x° e G1

eine Lösung. Dann existiert nach Satz 5.6 und Aufgabe 5.6 ein u° e R’;'_, so daß für

F(x‚ u) = cTx + uT(b —— Ax)
gilt:

V‚F(x°‚ u°) = c — ATu° g 0, (6.1)

x°TV,F(x°, u°) = x°"c — x°"ATu° = o, (6.2)

V„F(x°, 11°) = —Ax° + b g 0, (6.3)

u°TV„F(x°‚ u°) = —u°TAx° + u°Tb = 0. (6.4)

Aus (6.2) und (6.4) folgt

cTx° = u°Tb; (6.5)

aus (6.1) und (6.3) erhält man x° e G„ u° e G,*.
Es gilt

uTb g cTx Vxe G1, VueGf
und damit auch

max uTb g min cTx.
neGf xeGl

4*
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Mit (6.5) ergibt sich so als Sonderfall des Dualitätssatzes der linearen Optimierung
(Band 14, Abschnitt 3.2.2.) der

Satz 6.1: Es seien P, und D, gegeben und x° e G, eine Lösung von P,. Dann existiert ein
u° e R’;'_, so daß u° Lösung von D, ist, und es gilt: «

cTx° = min cTx = max uTb = u°Tb. ‘ (6.6)
xeG, ueG,"

Anmerkung: Eine zu Satz 6.1 analoge Aussage erhält man durch Vertauschen der
Probleme P, und D,. Dies ist zulässig, da das zu D, duale Optimierungsproblem wieder
ein primales Problem ist.

6.2. Dualitätssatz von Wolfe

Wir wollen nun für die dualen nichtlinearen Optimierungsprobleme

P: min {f(x) | xeG},
G = {XeR" l g:(X) ä 0, i€1a},‘)

D: max {F(x, u) := f(x) +iäu,g,(x) l (X, u)T E G*} ,

G* = {(x, u)TeR" >< R”‘ l (x, u)TeR" >< R1, V,F(x, u) = 0}

einen Dualitätssatz angeben, der von Wolfe stammt (vgl. [6]). Dabei seien f: R" —> R,
g,: R" —> R, i e lg, konvex und stetig partiell differenzierbar.

Die entsprechenden dualen linearen Optimierungsprobleme erhält man nach dem
hier aufgestellten Prinzip für F(x, u) = cTx + uT(—Ax + b) (Aufgabe 6.5).

Während man bei den Problemen P, und D, nach der Bemerkung 2 in 6.1. von einer
Lösung von P, auf eine Lösung von D, und umgekehrt schließen kann, enthält der
folgende Dualitätssatz nur eine Implikation.

Satz 6.2 (Satz von Wolfe): Es seien P und D gegeben, für P die Regularitätsbedingung
B erfüllt und x° e G eine Lösung von P.
Dann existiert ein u° e R1, so daß (X°, u°)T Lösung von D ist, und es gilt:

f(x°) = minf(x) = max F(x, u) = F(x°, u°). (6.7)
xsG (x.u)TeG*

Beweis: x” e G sei Lösung von P. Wegen der Konvexität von F in x für jedes feste
u e R’: hat man für (x, u)T, (x’, u)’, (x”, u)T e G* nach Satz 2.15 unter Beachtung der
Restriktionen von D

F(x’‚ u) — F(x, u) g (x’ — x)T VxF(x, u) = 0, (6.8)

F(x”, u) — F(x, u) g (x” ~ x)T VxF(X, u) = 0. (6.9)

Setzen wir x = x” in (6.8) und X = x’ in (6.9), so folgt
F(x’, u) = F(x”‚ u) \7’(x’, u)’, (x”, u)T e G*,

also ist F für jedes feste u ER’; auf G* von x unabhängig. Mit
F(x°‚ u°) := max F(x°, u) (6.10)

usRT

1) Das Problem P stimmt offenbar mit dem Problem (5.1) überein.
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ergibt sich daher

F(x°,u°) g max F(x°, u) = max F(x‚ u) g F(x, u) \7’(x, u)TeG*
(x°,n)TEG‘ (x,II)TEG‘

und wegen (6.10) und Satz 5.6

V‚F(x°‚ u°) = 0.

Daher ist (x0, u°)T eine Lösung von D.
Wie im Beweis von Satz 5.2 oder mit Hilfe von Satz 5.6 zeigt man leicht (Auf-

gabe 6.1)
f(x°) = F(x°, u°).

Die Aussage von Satz 6.2 ist insofern unbefriedigend,‘ als bisher kein Verfahren
(insbesondere keine exaktes Verfahren) zur Lösung von P zur Verfügung steht, um
daraus auf die Lösbarkeit von D und auf den optimalen Wert der Zielfunktion von

D schließen zu können. Hingegen kann man bereits mit den in Abschnitt 3 und
Abschnitt 5 entwickelten Methoden Probleme der Form D exakt lösen.

Es ist also auch für Anwendungen von Wichtigkeit, über solche Dualitätssätze zu

verfügen, die als Äquivalenz formuliert werden können. Eine solche Aussage enthält
der folgende Abschnitt.

6.3. Dualitätssatz von Dom

Wir betrachten die dualen nichtlinearen Optimierungsprobleme

P: min {f(x) I xeÖ},

Ö = {xeR" | xeR'i, Ax g b};

Ü: max {H(x‚ u) = f(x) —- x7 Vf(x) + uTb I (x, u) Te G_*},

(—}* = {(x, u)TeR" >< R"' | (x, u)TeR" x Rf‘, ATu g Vf(x)}
mit der (m, n)-Matrix A, beR"‘, und der stetig partiell differenzierbaren konvexen
Funktion f. Für diese Probleme wurde von Dorn die folgende Dualitätsaussage be-
wiesen (vgl. [6]). i

Satz 6.3 (Satz von Dorn): Gegeben seien P und I‘). Dann gilt:

l. Ist x” e Ü eine Lösung von P, so existiert ein u° e R’;‘_, so daß (x°, u°)T Lösung von Ü
ist mit i

f(x°) = min f(x) = max H(x, u) = H(x°, u°). (6.11)
xeE (x‚u)TeÜ" v

2. Ist (x", u°)T E 5* eine Lösung von Ü, so ist x° Lösung von P, und es gilt (6.1 l).

Beim Beweis dieses Satzes verwendet man den Dualitätssatz der linearen Optimie-
rung. __

DieBrauchbarkeit von Satz 6.3 zeigt folgende Überlegung:
Ist ein nicht notwendig konvexes Problem der Form Ü gegeben, so kann es folgen-

dermaßen gelöst werden:
a) Ermittlung des zugehörigen konvexen Problems P.
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b) Das Problem P wird gelöst (etwa mittels eines Gradientenverfahrens wie in Ab-
schnitt 7 beschrieben); x° sei eine Lösung von P.

c) Setzt man x = x° in D, so ergibt sich ein lineares Optimierungsproblem in u.‘)

d) Dieses lineare Optimierungsproblem wird gelöst. Seine Lösung u° ergibt zusammen

mit x° eine Lösung des gegebenen Problems D.

Beispiel 6.1: Das Problem

max {(x1 — S)‘ + (x2 — 4)’ — 4x,(x1 — 5)’ — 2x2(x2 — 4) — 15x3 — 3x4 I XE-61*},

6* = {xE R‘ x x„ „an, x3, x4e R+; —4(x1 — 5)3 — 2x3 — 3x4 g o,
I

—2(x2 — 4) — 3x3 + 2x4 g 0}

hat offenbar die Form von Ü, wobei

f(x)=(x1— s)‘ + (x2 — 4)‘.A = (j u‚ = x3. u. = x4

zu nehmen ist. Das zugehörige konvexe Problem P ist

minnx. — s)“ + (x. — 4>= a x66}.
ö: {xeR2!xeRfi_, 2x1 + 3x, g 15, 3x1 — 2x2 g 3}.

Die Lösung x" = (3, 3)" von Pfindet man z. B. graphisch. Setzt man nun in der ursprünglichen Auf-
gabe x1 = 3, x2 = 3, so gelangt man nach einfachen Umformungen zu dem linearen Optimierungs-
problem

min {15141 + 31l; I ueGf},

G": = {ueR2|ueR2 ‚zu, + 3142 g 32,

3141 —- 2142 g 2}

mit der Lösung u° =

(70 92 70 92

Problems.

T T
F, F) . Folglich ist (3, 3, 1—3, F) eine Lösung des ursprünglichen

Aufgabe 6.1: Man vervollständige den Beweis von Satz 6.2.

Aufgabe 6.2: Gegeben sei das Optimierungsproblem

P: min{f(x) = —x2 + xflxeo}, G = {xeR2|x§ + 3% g1}.
' a) Man stelle das zu P gehörende duale Problem D auf und grenze mit seiner Hilfe den optimalen

Wert vonfein.

b) Die dualen Probleme P und D sind sowohl mit Hilfe der Kuhn-Tucker-Theorie (Abschnitt 5.)
als auch mit Hilfe der Theorie der Lagrange-Multiplikatoren (Abschnitt 3.) zu lösen. (Hinweis:
Beim Lösen von D sind Fallunierscheidungen für uJ > 0 und u, = O vorzunehmen.)

Aufgabe 6.3: Das Problem

max{—3x‘} — Zxfi + 5x3 — x4 {x66},
G = {xeR‘ l x,,x2 E R, x3‚x4e R+, 4x3 — 2x4 g 4x5}, 2x3 + x4 g 4x1}

1) Auch wenn man in b) nur eine Näherungslösung erhält, ist dieses Verfahren praktikabel, da
„kleine“ Störungen von x° in e) nur kleine Störungen der Lösung u“ in d) ergeben. Man sagt, das
lineare Optimierungsproblem sei stabil gegenüber kleinen Störungen von x°.
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ist mit Hilfe von Satz 6.3 zu lösen. (Hinweis: Bei der Lösung des primalen Problems verwende man
Satz 5.6 und Aufgabe 5.6. Bei der Lösung des linearen Problems in u verwende man das Simplex-
verfahren.)

Aufgabe 6.4: Für das in Beispiel 4.2 formulierte quadratische Optimierungsproblem gebe man das
zugehörige duale Problem im Sinne von Wolfe und im Fall einer positiv semidefiniten Matrix C auch
im Sinne von Dorn an. Man zeige, daß sich in beiden Fällen das gleiche duale Problem unter der Vor-
aussetzung, daß P eine Lösung besitzt, herleiten läßt.

Aufgabe 6.5: Man bilde für das primale Problem P: min {c"'x I Ax g b, xeR"} das zugehörige
duale Problem D mit Hilfe der in 6.3. angegebenen Vorschrift und vergleiche mit Band 14.
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7.1. Zur Einteilung der Lösungsverfahren

In den bisherigen Abschnitten wurde dargelegt, wie Optimierungsprobleme theo-
retisch zu behandeln sind. Jedoch gestatten die angegebenen Optimalitätskriterien wie
die Multiplikatorregel von Lagrange (Satz 3.4 und Band 4, Satz 4.5) und die loka-
len Kuhn-Tucker-Bedingungen (5.11), (5.12) nur in wenigen speziellen Fällen die
direkte Berechnung der Lösung des Optimierungsproblems aus dem jeweiligen System
der Bedingungen. Diese Lücke wollen wir nun schließen durch die Erörterung von
Lösungsverfahren der nichtlinearen Optimierung.

Unter einem Lösungsverfahren für ein Optimierungsproblem verstehen wir eine
Rechenvorschrift oder ein System solcher Vorschriften, das bei geeigneten Voraus-
setzungen über das Vorliegende Problem eine Punktfolge mit folgenden Eigenschaften
erzeugt:

a) Ist die Folge endlich, so ist der zuletzt erzeugte Punkt Lösung des Problems.
b) Ist die Folge unendlich, so besitzt sie entweder (eigentliche) Häufungspunkte,

die dann Lösung des Problems sind, oder sie besitzt keine (eigentlichen) Häufungs-
punkte, und das Problem ist unlösbar.

Da diese beiden Eigenschaften i. allg. nur bei konvexen Optimierungsproblemen
vorliegen, sprechen wir allgemeiner auch dann noch von einem Lösungsverfahren,
wenn die erzeugte Punktfolge einen Häufungspunkt besitzt, der den Kuhn-Tucker-
Bedingungen (5.1 l), (5.12) bzw. den Bedingungen (4.2) oder (4.3) genügt.

Man kann Lösungsverfahren für Probleme mit Restriktionen nach den verschie-
densten Gesichtspunkten einteilen, etwa nach strukturell-formalen, anwendungs-
bezogenen oder verfahrensmäßig-inhaltlichen Gesichtspunkten ([6], [11]). Im letzteren
Falle unterscheidet man danach, auf welche Art und Weise die Punktfolge erzeugt
wird:
l. Zurückführung auf simplexähnliche Verfahren (Abschnitt 7.2.),
2. Gradientenverfahren (Abschnitt 7.3.),

3. Zurückführung auf Probleme ohne Restriktionen (Abschnitt 7.4.),
4. lineare Approximationsverfahren (Abschnitt 7.5.),

5. direkte Verfahren, auch gradientenfreie oder Suchverfahren genannt (Abschnitt 7.6.).

Darüber hinaus gibt es zahlreiche weitere Klassen von Lösungsverfahren, auf die
wirjedoch nicht eingehen können (vgl. dazu [3], [6], [9], [l1], [l4], [l7], [l9], [22]).

In den letzten Jahren wurden verstärkt Versuche zur Schaffung einer einheitlichen
Theorie der Konvergenz der Lösungsverfahren für nichtlineare Optimierungsprobleme
unternommen (Vgl. dazu [l7], [9]). Neben der Konvergenz von Verfahren interessiert
vor allem deren numerische Stabilität. Letztere hängt von der Verstärkung oder Dämp-
fung von Eingangsfehlern ab, die z. B. beim Runden der Koordinaten der Punkte
und der benötigten Funktionswerte wegen der endlichen festen Wortlänge des Rech-
ners notwendig auftreten. Über die Stabilität von Lösungsverfahren liegen bisher
vorwiegend empirische Resultate vor.

Setzen wir ein stabiles Verfahren voraus, so interessieren Aussagen über die Kon-
vergenzgeschwindigkeit (Vgl. dazu [6], [l9], [22]), wobei meist stärkere Voraussetzun-
gen über das Problem erforderlich sind als zum Nachweis der Konvergenz des Ver-
fahrens.
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7.2. Verfahren für quadratische Optimierungsprobleme

7.2.1. Das Verfahren von Beale

Wir betrachten ein Verfahren zur Lösung von quadratischen Optimierungsproble-
men, welches viele Analogien zum Simplexverfahren der linearen Optimierung (Vgl.
Band l4) aufweist. Insbesondere ist es für das Verständnis des Verfahrens von Beale
([10]) unbedingt erforderlich, das in [20] Verwendete Austauschen von Basisvariablen
(BV) gegen Nichtbasisvariablen (NBV) zu beherrschen.

Gegeben sei das (spezielle) quadratische Optimierungsproblem

min {xTCx + cTx + co I xeG},
X1

G={xeR"[x= X2,x‘,xZ;0,x2=B,X1+B3x3+b, (7.1)
X3

Wobei gilt: Z1, Z2, Z3 bilden eine Zerlegung der Indexmenge

J = {1,...,n},
X1 = (xl)ieZ:’ X2 = (xi)/"Elm? X3 = (xk)keZ.a X = (xp)P5-7!

Co E R, B1 = (b.I!)iEZx.ieZn B3 = (bjx)jez..kez.s

C = (c‚„‚)„„‚e, symmetrisch und positiv semidefinit,

C = (C‚)peJ‚ b = (b1)jez„ b2 0-

Wir nennen die Variablen

x„ i eZ,, und x,,, keZ3, Nichtbasisvariable (NBV),

x), jeZ2, Basisvariable (BV).

Im allgemeinen kann man nicht erwarten, daß ein gegebenes Problem bereits die Form
(7.1) hat. Durch Methoden der linearen Optimierung‘) kann man aber ein System
von Ungleichungen und Gleichungen der Form

Alxl = b1,

Auxu g bu’

wobei evtl. Nichtnegativitätsbedingungen eingeschlossen sein sollen, stets auf die
Form

x2 = Blx‘ + B3x3 + b, b g 0, x‘,x2 g 0,

x4 = 11x1 + i;3x3 + B, B g o (7.2)

bringen, sofern es lösbar ist. Setzen wir den Ausdruck für x‘ gemäß (7.2) in
xTCx + cTx + co mit XT = (x”", X", X3T, x”) ein, so ergibt sich eine Zielfunktion,
die nicht mehr von X‘ abhängt. Der zulässige Bereich Ö des sich ergebenden Problems
wird durch die Restriktionen (7.2) bestimmt. Da aber x“ nicht vorzeichenbeschränkt

1) Methode der künstlichen Variablen ([20], S. 26-33, und [21], S. 170-174), Zweiphasen- und
Mehrphasen-Methode ([13]).
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ist, stellt die zweite Gleichung in (7.2) nur eine Bestimmungsgleichung für x4 dar. Sie
hat auf das Verfahren selbst keinen Einfluß 1).

Wir kommen nun zur Beschreibung des Verfahrens.

Schritt I: Setze x2 = Blx‘ + B3x3 + b in xTCx + cTx + co ein. Es folgt

do + 2d”x‘ +L2d3Tx3 + x”D13x3 + x"D31x1 + X”D,x1 + x3TD3x3.

Schritt 2: Schreibe die Restriktionen (zeilenweise) sowie die neue Zielfunktion in
folgendes Tableau:

Blockschreibweise lndexschreibweise

NBV NBV l l
x" x" 1 '. A1,’... 1

BV BV ‘ '

Simplex- { 2 Ä

tableau x B‘ B3 b I’ : I ‘

X1 D‘ D” d‘ ‘i zu’ 7J JEZz

.

Ziel- x3 D“ - D] d3 _ _ 5 _

tableau — _—— i ' ' .I d” d“. do 521:1’ ({.k' di- l e Z1

-\‘k dim’ ‘i/kk' du k E Z3

l _l/,' 5],‘. do

l i’ e z, k’ e z,
I

Im Gegensatz zur linearen Optimierung benötigen wir hier nicht nur eine Zeile für
die Koeffizienten der Zielfunktion, sondern ein quadratisches Schema, das als Ziel-
tableau bezeichnet wird.

Schritt 3: Optimalitätsbedingung bzw. Auswahl der Austausehspalte r

Fall 1: d, g 0 Vie-Z, und dk = 0 VkeZ3.
Dann ist

x10

x°= x” mit x‘°=0 x3°=b x3°=0‚
3o ’x

eine Lösung des Problems (7.1). (Während des Verfahrens auftretende zusätzliche
Variable, die nur zur Berechnung der Lösung x° dienen, werden nicht aufgeführt.
Andere bereits eliminierte (ursprüngliche) Variable müssen nachträglich berechnet
werden).
Das Verfahren ist beendet.

Fall 2: E1k0eZ3 mit dko =l= 0. Dann setze r: = k —> Schritt 4.

1) Während des Verfahrens auftretende Restriktionen dieser Art können daher, ohne das Verfahren
zu beeinflussen, vernachlässigt werden (Schritt 6, Fall 2).
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Fall 3: d,, = 0 VkeZ3, 3 i1,eZ1 mit din < 0. Dann setze r: = to —» Schritt 4.

Schritt 4: Nichtlösbarkeitsbedingung bzw. Hinzufügen von Zeilen und Festlegen
der Austauschzeile z. Setze

K = {kelzl b,,,d, > o},

t _ für K =l= 0, wobei = min bkl (Definition von 5622),
1 _.

b:

ibsri ibsri keK ibkr
oo für K=0‚

du
w" für d„>0‚

t2 =

oo für d„=0.
Fall 1 : t1 = t2 = 0o => Problem(7.l) besitzt keineLösung. DasVerfahrenistbeendet.
Fall 2: t1 g t2, t1 < eo. Dann setze z:= s -—> Schritt 5.
Fall 3: t2 < t1. Dann nimm Zeile mit Index r aus dem Zieltableau, ersetze den Zeilen-

index r durch den Indexjo, wobei
jo = l + max p

peZ1uZ‚uZ.

ist, und füge die Zeile

| x1, |...ag-„„... ‚..ag-„‚„.... E41»,

zum Simplextableau hinzu. Setze

Z2 := ZZ'u{j0};z:=j11 —> Schritt 5.

Schritt 5: Tausche die NBV x, gegen die BV x, aus: Pivotelementl) ist b,,,
a) Austausch im Simplextableau wie in der linearen Optimierung ([20]).
b) Austausch im Zieltableau:

Neben- )1. Austausch gemeinsam mit dem Simplextableau. Man erhält Matrix H.
rechnung i 2. Transponieren von H.

3. Nochmaliges Anwenden des Austauschschrittes auf die Matrix H
mit obigem Pivotelement ergibt neues Zieltableau.

Das erhaltene Zieltableau wird unter dasneue Simplextableau geschrieben —> Schritt 6.

Schritt 6: Fall 1a:reZ1 undz =j.,. Dann setze

Z1 := Z1\{r}, Z2 z: (Z2u{r})\{z}, Z3 2: Z3u{z}.
Fall Ib: reZ1 und_z = s. Dann setze

Z1 := (Z1u{z})\{r}, Z2 := (Z2u{r})\{z}‚ Z3 := Z3.

Fall 2a: r e Z3 und z = jo. Dann setze

Z1 := Z1,

Z2 := Z2\{z}
(die Zeile r im neuen Tableau wird gestrichen, da x, nicht vorzeichenbeschränkt ist),

Z3 z: (Z3u{z})\{r}.

1) In Band 14 wird dieses Element als Kreuzelement bezeichnet.
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Fall 2b: reZ3 und z = s. Dann setze

Z1 := Z,u{z}, Z2 := Z2\{z}, Z3 := Z3\{r}

(die Zeile r im neuen Tableau wird gestrichen, da x, nicht vorzeichenbeschränkt ist)
—> Schritt 3.

Stellt man die wiederholte Anwendung von Schritt 5 schematisch dar, so ergibt
sich die in Bild 7.1 dargestellte Blockstruktur. Über das dargelegte Verfahren hat man.

die Aussage von

Satz 7.1: Das oben angegebene Verfahren bricht nach endlich vielen Schritien n1it
Schritt 4 (Fall 1) oder mit Schritt 3 (Fall I) ab.’

ST 5/mp/exia/7/eau 05:’ Jpf/ma/£5 5T _

Z T Ze/fab/sau 027 Üpt/ma/as Z7’ Bild 7.1

Beispiel 7.1: Für das Problem

min{xf + xä — 8x1 — 10x3 I xEG},

G = {xER3|x1 ä 0,x2 ä 0,3m + x2 + 2x3 =18}

erhält man Z1 = {l}, Z2 = {2}, Z3 = {3} und gemäß Schritt 1 und Schritt 2 das folgende Tableau:

Schritt 3: Fall 2, r = 3,

NBV _ _ Schritt 4: K = {2} =1‘, = 9, s = 2,

BV ' V‘ 1d3l=5,d33=1=>’2=5
=> t2 < ti, d. h. F4113.

Somit ist eine neue Zeile hinzuzufügen.
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Wir ersetzen x3 wegen max {1, 2, 3} + l = 4 durch x4 und erhalten das Tableau

‘tZ=1,Z=2,4,Z=3NBV ’ $dz1=4-{} 2 t i’ 3 {}

BV

—\'2

Wir führen jetzt den Austausch mit b“ als Pivotelement durch und erhalten

Neben-
rechnung

NBV

neues
Simplex-
tahleau
neues

Ziel-
tableau NBV

NachvSchritt 6 wird wegen Fall 2a die Zeile mit x3 gestrichen und braucht daher nicht berechnet zu wer-
den. Es ergibt sich Z, = {l}, Z; = {Z}, Z_~, = {4}. Jetzt beginnen wir wieder mit Schritt 3.

Wir geben nun das Beispiel auf umstehender Seite insgesamt in der Blockstruktur an und setzen
jeweils unter die Blöcke die für die Durchführung der Schritte benötigten Parameter r, s, z, t1, t2,

Z1. Z2‚ Z3: K-
Schließlich erhält man das Schema:

Optimales Schema nach Schritt 3 (Fall 1).
NBV \, Y l Die für die Berechnung der Lösung unwe-

13v ' 2 ' 5 sentlichen Werte wurden durch „s“ ersetzt.
40 57

~ . o = _ o = o = _.\ * 40 Losung. x1 l3 , x2 0, x3 l3 ,

l * Ä

.‘ . 5 7
‚ l i Optimalwert: —‚\‚2_ 13

2
\ ü lt: ___

t 9
NBV X5 -V * 0

l 4 517

13' 13
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. 1

Nav NBV : NBV i
.

13v v, ‚v1, 1 13v ‚v, x41; 1 13v v; x. 1

' 1 2 x
‚v; ——3 —l HS ‚T; v3 —2 3 l -\'1 ‘T -*3‘

) 2 13 x
v, 0 1 —s _. x5 -9- T 3

1 2
v, 1 o —4 .v‚ 1 o -4 ‚v; 3 3 7

2 13 x
v. 0 1 —5 ‘J ‚v. 0 1 0 ’) ,\-4 3 T 7

1 1 4 u 75 I 4 8 m-4 -5 u — . 9 9 — 9

.

‚ 0 4 __1'_; I ‚1 _1_ i g
” 3 3 } 3 13 13 13

H o 1 o H 0 1 0 H 0 1 11

7 4 8 107 4 x 517

"4 "5 "5 T 3 " 3 F 13 13

1 4 I 0

‘ ° "4 “T ° T 1?
. v 1s 2 '

- ‚„ H‘ _; _ H’ _ IH‘ o 1 5 3 1 3 Ü 1 :

4 0 K ‚i „ ‚L7 .1 v, I

' "" 3 3 1:1 1

t>w o 1 q . „ ‚L _ i it „i
' l z 3 I3

Z;:{1},:~=3,:—2,
Z2:12‘,:>Z;=\'2,4},

ZJ:‘{3},T1=99

In =4,I2=5.
z :4,1<={2;,

Zeile mit ‚r, hinzugefügl.Zeile mit n hinzugefügt; Zeile mit x, gestrichen;

Bei diesem Beispiel handelt es sich um ein einfaches Prinzipbeispiel, das mit den bekannten Metho-
den der Analysis einfacher und schneller gelöst werden kann. Erst für Aufgaben größerer Dimension
erweist sich das angegebene Verfahren als vorteilhaft.

Die Schritte des Verfahrens sind in Bild 7.2 dargestellt.
. . . D

Aufgabe 7.1: Man zeige, daß die Matrix D = ( l D”
D31 D3

1

(Man betrachte in (7.1) den vereinfachten

), die aus Schritt 1 folgt, symmetrisch und

positiv semidefinit ist bezüglich der Vektorvariablen
Fall Z3 = ß.)

1) Diese Zeile kann zur Berechnung von x2 nach Beendigung des Verfahrens verwendet werden.
Wir benötigen sie nicht, da wir x2 direkt aus der Restriktion 3x1 + x2 + 2x3 18 berechnen.
Analoges gilt für x4 (vgl. Schritt 3, Fall 1).

2) Um die Rechnungen zu erleichtern, schreiben wir unter das Tableau die neue Pivotzeile „n“.
Für die Durchführung des Algorithmus selbst ist diese Zeile nicht erforderlich.

3) NBV.
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Ergänzende Bemerkungen

a) zu Schritt 3 (Fall 1):

Aufgabe 7.2: Mit Hilfe des Optimalitätskriteriums von Satz 4.5 für konvexe Optimierungsprobleme
zeige man:

d‘ ä 0,113 = 0=>x1 = 0,x’ = b‚x3 = 0istLösung

(man verwende die Aussage aus Aufgabe 7.1 und Satz 4.6).

"J

5 Jx‚+2x,=78
‚/

5.

x‚<0

Bild 7.2
.7

X-(§;)

b) Zu Schritt 3 (Fall 2): Existiert ein k EZ3 mit a}, # 0, so nimmt die Zielfunktion in Richtung von
—d,e* (e" k-ter Einheitsvektor des R") ab.

c) Zu Schritt 4 (Fall 2): Man kann bei beständig abnehmender Zielfunktion die Richtung von

—d„e" beibehalten, bis für eine Basisvariable gilt x, = 0 und erreicht dabei den Rand von G.
d) Zu Schritt 4 (Fall 3): Man muß die Richtung von —dke" bereits vorher abändern, da die

Zielfunktion nicht mehr abnimmt. Nach Satz 4.5 verschwindet dort die partielle Ableitung der Ziel-

funktion nach x‚. Setzen wir diese partielle Ableitung nach Multiplikation mit L gleich der neuen
Basisvariablen xi" gemäß 2

l Ö D D
xjD=-——— XT 1 13 x+2dTx]

2 6x, D31 D3
l

mit x = (:3), so ergibt sich nach Hinzunahme der neuentstandenen Zeile der Fall 2 in Schritt 4

mit x10 als Basisvariable x,
e) Zu Schritt 4 (Fall 1): Im Falle t, = co ist G in Richtung d‚.e' unbeschränkt. Im Falle t2 = oo ist

die Zielfunktion in Richtung d‚e' linear und streng abnehmend. Daher hat im Falle t1 = t; = co das
Problem keine Lösung.

_ f) Zu Schritt 3 (Fall 3): I._m Falle n1,, = 0 VkeZ3 und d, < 0 für ein iE Z1 ersetze man in den obigen
Überlegungen d‚e’ durch e’. Dann können die Formulierungen in analoger Weise übernommen
werden.

Aufgabe 7.3: Das Problem

min {Zxf + xi — 48x, — 40x; ] xe G},

G ={xeR2[x1 + X2 g 8,x1 g 6‚x1 + 3x2 §18,x1,x2 g 0},

ist mit Hilfe des angegebenen Verfahrens zu lösen!

Aufgabe 7.4: Gegeben sei das Problem

min{2x‚ — 3x, — 2x§1xeG},

G = {xeR2 1x1 + 4x2 g 4‚x1 + x; g 2,x; ä 0}.
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a) Ist das Verfahren von Beale anwendbar?
b) Existiert eine Lösung des Problems?

Aufgabe 7.5: Wir nehmen an, daß das Interesse eines Konsumenten an n Produkten durch eine
Nutzenfunktion Q(x) = xTCx + cTx (C negativ semidefinit) erfaßt werden kann, wobei x,-, j = 1, ..., n,
die Menge des Produktes j ist, die der Konsument kauft. Verfügt er über einen Betrag ß und ist
p‚- der Stückgutpreis des Produktes j, so findet man die maximale Menge x? jedes Produktes j, die der
Konsument kaufen kann, durch die Lösung eines Optimierungsproblems.

a) Man formuliere das quadratische Optimierungsproblem!
1

-3
b)Furn=2,p,=1,p,=2,,9=1o,c=(l8),c= 216 löse man dieses Problem

— 5
mit dem Verfahren von Beale!

7.2.2.

Für das Verfahren von Beale wurde von Land und Morton ein Analogon zur revi-
dierten Simplexmethode angegeben.

Neben dem Verfahren von Beale, das die Kuhn-Tucker-Bedingungen bzw. äqui-
valente Formulierungen nur als Optimalitätsbedingung benutzt, gibt es weitere Ver-
fahren, die die Simplexmethode verwenden und die Kuhn-Tucker-Bedingungen direkt
einbeziehen. Wir nennen hier die Verfahren von Wolfe (1959), Dantzig (1963) und
Jagannathan (1965).

Überblicke über Lösungsverfahren für quadratische Optimierungsprobleme findet
man in [l0], [13], [16].

Quadratische Optimierungsprobleme mit nicht notwendig konvexer Zielfunktion
werden u. a. in [17] behandelt.

Andere Lösungsverfahren

7.3.

7.3.1.

Das in diesem Abschnitt behandelte Verfahren unterscheidet sich im praktischen
Vorgehen wesentlich von dem in 7.2. erörterten Lösungsverfahren, obwohl 7.2.
theoretisch auch hier eingeordnet werden kann.

Wir betrachten das Problem

min {f(x) I XE G}, G __<; R”,

mit f: R" —> R stetig diflerenzierbar. '

Zur Beschreibung des Verfahrens benötigen wir die folgenden zwei Definitionen.

Definition 7.1: Eine Richtung se R" (s 4: 0) heißt zulässig im Punkt xe G, wenn eine
Zahl 1x0 > 0 existiert mit

x + as EG Voce [0, 940).

Eine zulässige Richtung s heißt Abstiegsrichtung im Punkt x° e G, wenn gilt:
s7 Vf(x°) < 0.

Ist s eine Abstiegsrichtung, so folgt nach dem Mittelwertsatz der Differentialrech-
nung für Funktionen einer Variablen für hinreichend kleines o: > 0:

f(x° + rxs) <f(x°).

Gradientenverfahren

Allgemeine Bemerkungen

(7.3)
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Definition 7.2: Existiert für einen Punkt x° e G keine Abstiegsrichtung, so nennen wir
ihn stationären Punkt.

Offenbar gilt in einem stationären Punkt für jede zulässige Richtung s die Beziehung

sTVf(x°) g 0. (7.4)

Gelten in x° bezügl. G gewisse Regularitätsbedingungen, so ist (7.4) mit den Kuhn-
Tucker-Bedingungen äquivalent (vgl. dazu [6])‘).

Bei den hier erörterten Verfahren wird eine i. allg. unendliche Punktfolge {xk} c: G
so konstruiert, daß sie Häufungspunkte besitzt und diese stationäre Punkte von (7.3)
sind. Damit sind die Glieder x" dieser Folge nur Näherungen eines stationären Punktes
von (7.3). Die Methode der Konstruktion solcher Folgen {x"} ergibt die Bezeichnung
für diese Verfahren. Beginnend mit einem Startpunkt x‘ e G bewegen wir uns in G
längs einer Abstiegsrichtung. Gelangen wir so zu einem Punkt x2 e G mitf(x2) < f(x1),
dann suchen wirin x2 eine neue Abstiegsrichtung und gelangen zu x3 e G usw. Genügt
die Auswahl der x" gewissen Bedingungen, so ist ein Häufungspunkt der Folge {x"}
zugleich stationärer Punkt des Problems (7.3). Je nach Wahl des Startpunktes können
sich dabei verschiedene stationäre Punkte ergeben (Bild 7.3). Die zu diesen stationären

Bild 7.3

Punkten gehörenden Funktionswerte der Zielfunktion sind i. allg. voneinander ver-
schieden, da stationäre Punkte i. allg. keine Lösung des Problems (7.3) sind. Wir kön-
nen also feststellen, daß dieses Verfahren im allgemeinen Fall nicht die Lösung von

(7.3) liefert, sondern nur Näherungen für stationäre Punkte. Dies bedeutet nicht, daß
die Gradientenverfahren ungenauer sind als andere Verfahren. Bei jedem Verfahren,
das nicht nach endlich vielen Schritten die exakte Lösung liefert, erhält man nur Nähe-
rungslösungen. Aber auch bei endlichen Verfahren wie bei der Simplexmethode liefert
der Rechner (wegen der endlichen Stellenzahl) nur Näherungslösungen.

Wir formulieren nun folgenden allgemeinen Algorithmus:

Schritt 1: Wähle einen Startpunkt x‘ e G.
Schritt 2: Setze k := 0.
Schritt 3: Setze k := k + l.

1) Werden bezüglich G keine Voraussetzungen gemacht, so kann der Fall eintreten, daß in x“ EG
a) keine zulässige Richtung existiert oder b) zwar zulässige Richtungen, aber keine Abstiegsrichtun-
gen existieren (‘z. B. G = {(x1,x2)Tlx1 = x2, x1 g O} U {(x1,x2)T [x1 g O,x; é 0},
a) X0 = (1,1)T, b)f(X) = ‘X1, X0 = (0‚0)T)-

o Elster, Optimierung
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Schritt 4: Erfüllt x" eine Abbruchbedingung?) Wenn ja —> Abbruch des Verfah—
rens; x" ist Näherung für einen stationären Punkt von (7.3). Wenn nein —> Schritt 5.

Schritt 5: Suche eine Abstiegsrichtung s" im Punkte x" e G.
Fall 1 : Es gibt keine Abstiegsrichtung in x" —> Abbruch des Verfahrens; x" ist sta-

tionärer Punkt von (7.3).
Fall 2: Es gibt eine Abstiegsrichtung s" in x". Bestimme s" —> Schritt 6.
Schritt 6: Bestimme a" als Lösung des Problems

min {f(x" + cask) | oc > 0, x" + ms" eG}.2)
Schritt 7: Setze x"“: = x" + oaks" —» Schritt 3.

Die einzelnen Verfahren, die als Relaxationsverfahren bezeichnet werden, unter-
scheiden sich in der konkreten Durchführung der Schritte 4, 5 und 6. Insbesondere
gibt es wesentliche Unterschiede bei der Auswahl von s" (Schritt 5):

a) s" wird als Lösung (Näherungslösung) eines (7.3) angepaßten Optimierungs-
problems erhalten: Richtungssuchverfahren;

b) s" wird durch eine Rechenvorschrift bestimmt.
Das von uns im folgenden behandelte reduzierte Gradientenverfahren gehört zur

zweiten Gruppe von Verfahren.

7.3.2. Das reduzierte Gradientenverfahren

Gegeben sei das spezielle Optimierungsproblem

min {f(x) l x e G}, (7.5)
G: {xeR"|x; 0, Ax=b}‚

wobei gilt: W :> G eine offene Menge, f: W —> R stetig differenzierbar, A eine nicht-
entartete (m, n)-Matrix, b e R"'.

Definition 7.3: Eine (m, n)—Matrix A (m g n) heißt nichtentartet, wenn gilt:
1. Je m Spalten von A sind linear unabhängig,
2. Jede Lösung x des Systems Ax = b, x g 0 hat mindestens m positive Koordinaten.

Unter den obigen Voraussetzungen kann man die Indexmenge J = {l‚ ..., n} in
Abhängigkeit vom Punkt xe G einteilen gemäß

J1(x) = {j‚eJ| x,’ > 0, i:1,...,m}; J2(x) = J\J1(x).

Ferner erklären wir die Vektoren der

Basisvariablen (BV): y(x) = (x,), j e J1(x) und

Nichtbasisvariablen (NBV): z(x) = (xi), j e J2(x).

Wir setzen

A = (a1, ..., a”) mit a’ = (aw), i = 1, ...‚m; jeJ,
B(X) = (aj)jeJ1(X)’ C(X) = (a’)jsJ.(x>-

1) Als Abbruchbedingung kann man u. a. bei gegebenem s > 0 die beiden folgenden Tests ver-

wenden: a)f(x"") —f(x") < e, b) Hx"“1 — x“1] < s. Näheres findet man in [9], [ll], [17].
z) Unter gewissen Voraussetzungen kann man anstelle der Lösungen dieser Aufgabe lediglich

Näheruugslösungen verwenden [17]. Vgl. dazu die Bemerkung über die Stabilität eines Optimierungs-
problems in 6.3.
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Wenn keine Verwechslungen möglich sind, ersetzen wir J1(x")‚ J2(x"), y(x")‚ z(x"),
B(x")‚ C(x") durch J’,‘, Q‘, y", z", Bk, Ck.

Unter f(y, z) verstehen wir den Funktionswert f(x)‚ wobei x in die zugehörigen
Vektoren y und z zerlegt wurde. Mit Vyf(§',i) und V,f(i,i) bezeichnen wir die
Gradienten von f bezüglich der Variablen xj, j e J1(x), bzw. xj, je J2(x), im Punkte
i = (i, i)" ‘). Schließlich bezeichnen wir mit B; 1 die Inverse der Matrix Bk (diese ln-
verse existiert, da A nichtentartet ist).

Der Algorithmus für das reduzierte Gradientenverfahren hat folgende Form:

Schritt I : Bestimme eine zulässige Basislösung mittels Methoden der linearen Opti-
mierung ([20]). Man erhält aus Ax = b, x g 0

y‘ = B,“b — Bf‘Cz1, B,“b > 0.

Tableau 1:

(N 1

yl —-B;‘C1 §Bf1b

Setaze :7}%:= B‚"b > 0, z}, := 0 (man kann y; und z}, auch anders wählen, vgl. Auf-
ga e I s.

Schritt 2: Setze k‚:= i.
Schritt 3: Berechne r’; s: ‚f(y’5‚ zä), r’; := V,f(y‘,§, zfi).
Schritt 4: Berechne (r")T := (—r’‚‘)T + (r';)TB,:‘Ck.
Schritt 5: Berechne

A25; z 1;l'(1)1;mr:"> 0 oder 2€, > 0,

Wenn AZ" = 0 —> Schritt l2, sonst —> Schritt 6.

Tableau 2:

l I I

k
i, _B_;C B-15 yk _‚k Ayx ( yo} )

Y k h k o y m)!“

(z’g)T o4’; .

("H91 cc’; = min Laj ,

kT J'ai‘ mylfl
(r ) Ay‘}<0

(All? a" - min ———Zgj2 _ .

Z13‘ T k jeJ'2‘ ‘A25!
J

<———-IAZIJI) 042 Az’;<0

1) Diese Schreibweise symbolisiert nur, daß die Zusammenfassung der Koordinaten von i und E

nach der Sortierung bez. der Indizes mit i übereinstimmt. Ein Koordinatenvergleich von z? und
(i, b1" ist nicht zulässig, z. B. i = (x1, x2, x3)T; i = (x3). z = (x1, x2)?
5lk
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k k

Wir vereinbaren, anstelle |:‘;’,(| bzw. das Zeichen 0o in das Tableau 2 zu setzen,
1 x

falls A2,?‘ 2 0 bzw. Ay,5‘ 2 0 gilt.
Schritt 6: Berechne Ay": = —B;‘C„Az".
Schritt 7: Berechne cc’; aus max {on | y’; + <xAy" 2 0}, cc’; aus max {ac J z’; + ocAz" 2 0}

(vgl. Tableau 2).
Schritt 8: Berechne cc" aus

min {f(y’5 + zxAy", z’; + ocAz") | 0 g on g min {oc’,‘, oc’;}}.

Schritt 9: Setze

9" I= y’; + :x“Ay",
i" := z’; + OLkAZk.

Wenn i” > 0(d. h. ac’; > ax“), setze man yä“: = 3"‘, 2'5“: = 2", B,“ := Bk, Ck“ := Ck
——> Schritt 10, sonst (d. h. a’; = an" < 1x2) —> Schritt 1l.

Schritt 10: k : = k + 1 —> Schritt 3.
Schritt I I: Tausche die BV von i" mit 52]‘ = 0 (j = jo) gegen eine positive NBV von

i” (i = i,,) aus. .

Verwende dazu das Austauschverfahren. Nach dem Austausch enthält das neue
Tableau 2 die folgenden Terme:
Tableau3: mit

(z*”)T 1 H._{y5‘ für j+j„‚
o‘ — » .. ._.

w“ —B;i1cm B2111: yt“ J f“ ’“’°’
ür i+‘,

<z::+1>T zz.+*:= .. . '.°
0 fur 1:10,

—>Schritt 10. v

Schritt 12: x’; ist ein stationärer Punkt. Das Verfahren ist beendet.
Anmerkung zum Algorithmus: Bis auf Schritt 3 und Schritt 8 werden alle anderen

auszuführenden Produktsummen mit Hilfe des Tableaus ausgeführt (vgl. auch Bei-
spiel 7.2). Schritt 3 und Schritt 8 werden in einer Nebenrechnung durchgeführt. Falls
kein Austausch erfolgt, bleiben B; ‘C„ und Bk” erhalten. Es kann dann mit dem vorher-
gehenden Tableau fortgesetzt werden.

Beispiel 7.2:

min {m x,)(4 o) (X1) — (32 34) C“) xe G}
’ 01 x2 ’ x2 ’

G: {xeR4{x‚ 20, 1': 1,...,4; X1 +x3 =2‚ x, +2x2 + x4=6}.
Damit hat man

x1
1 of 1 0 x 2 . 1 o‘ 1 0

(1 2 o 1) x: :(s) m" C:<12)'B=(o1)' A

. X4

Man stellt fest, daß nicht je zwei Spalten linear unabhängig sind. Obwohl die erste Bedingung in
Definition 7.3 nicht erfüllt ist, kann das Verfahren angewandt werden, wenn sich während des Ver-
fahrens zeigt, daß alle benötigten 13;‘ berechnet werden können. Existiert ein 8;‘ nicht, so liegt Ent-
artung vor und der Algorithmus muß abgeändert werden. Darauf gehen wir hier nicht ein.

Die zweite Bedingung in Definition 7.3 braucht nicht überprüft zu werden. Man stellt in Schritt ll
fest, ob sie erfüllt ist oder nicht.
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Schritt 1: Anfangstableau (Auflösen nach x3 und x4)
Tableau la:

x1 xz l

x3 -—l 0 2

x. -1 — 2 6

Wegen b > 0 ist (0, 0, 2, 6)"E Geine zulässige Lösung (ein Eckpunkt von G). Dabei hat ma

-1 o _ 2 _ _ -(_1_2)- -n 1c.(5)_1s ‘b,

Y1 = (X31954)-I-n Z1 = (X19752)-F, k = 1-

. 0
Schntte 3, 4, 5, 6: r}, = V,f(_v,§, zä) = (o),

xi = Vzf(y3,, 23) = 2G (1)) + C33‘) F0 =

Tableau 2a: ‘ Zur Berechnung von r":
. _ an _ m =

Z1 Z2 1 YÖ ‘Tly AV‘ 9 (r? + 0 ( 1) + ä- 2’
1 0 2 2 o 32 9‘(0)+0*'(_2)+4

ya .= — ~ Zur Berechnung von Ay":
n -1* -2 6 6 0* -43 -32 = 32(_-_1) + 4-(0).

(Z5): 0 0 -49 = 3~2(-1)* + «1(—2).

(-1-;)T 3 4

(H? E ii’

(A21)? 32 Ä

Schritt 7:
Tableau 2b:

1 1 x yll?’ *1
Z1 Z2 1 Yo “y A3’ ‘Ayfi Y

I
‚v3 -1 0 2 2 0 -32 '1—6- 0

3 7
y.. -1 -2 6 6 o -40 70- 7

(z.1,)T 0 0 __ = (X1

(—r5)T 32 4 16 1

(r1)T 32 4 zä
. J(Az‘)" 32 4 a; = Tm TVA,

Z1 1' 1

(m21) °° °° "‘5=°° ‘H?
1 Falls Ay,‘ g 0 bzw. A2,‘ ä O gilt, wird als Quotient jeweils co defi-

(i1)T 2 T niert, denn für diese Richtungen’ kann y, g 0 bzw. z, ä 0 nicht
verletzt werden.
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Schritte 8, 9 (Anwendung von Satz 5.3):

4 0 32~[2(o,0)<01)+(—32,—4)H4) I

ac‘ = min T———j———— — oo
4 o 32 ’ 16 ’2(s2,4;(01)(4)

_ 65 1 l 1

=m1n ———‚—‚O0 =oc1=———-
514 16 l6

Damit hat man 1x1 = cc} < cc; und folglich

<::)=w=<:>+:2<:::>=(§)»

(::)=il=(((§)+—117(3<i)=<;

(vgl. Tableau 2b).

Schritt 11: Wegen 31;, = 0 wird i; gegen 2, = 2 und damit x3 gegen x1 ausgetauscht.

Tableau 3a:

x, x2 l x3 x2 1 y‘;

x3 2 x, -l 0 2 2

" 7
x4 5 x. 1 -2 4 7
K an O 2

1
13T 0 —

Setze k = 2 und gehe zu Schritt 3:

8 0 x -—32 —l62 = 2 : 1 2

‘y V<:;)""°’ (o o) + < o) ( o)’

0 0 0 0
= 2 = x3 = 7

a <m><x2>+<_4>

Schritte: 4-8: Tableau 2c auf Seite 71.

Schritt 9:

1 4 0 0
2 2‚H + (-32, —4) 7

4 0 1 —

„ 2 1 Za2=—- =l>—=zxl
0 2

6969;
=> ac’ = cc}; i, wird gegen 32 ausgetauscht. Fortsetzung Tableau 3b auf S. 71.



7.3. Gradientenverfahren 71

Schritt 4-8:

Tableau 2c:
2

x x 1 2 — 2 A 2 *2‘ 3 2 Yo ‘y Y |AyI2[ Y

x1 —l 0 2 2 16 0 oo 2

x l 2 4 7 0 14 2 ""7 3‘ 0

1 1
Z3 0 T 7 = 0:}

7
(-r§)T 0 7

7
(1-‘)7 -16 7

(Az1)T o ä
23, T 2‘E O0 D0 o0 = (x1

(izfl 0 2 Fortsetzung Schritt 9 auf S. 70.

Tableau 3b:

X3 x4 yä ~—r§‘.

x, — 1 O 2 16
1 1

x2 -2- *7 2 0

3 1- '(lo) 0 0 r3 = (16) ~ (32) = (_16)
(_ri)T 0 0 y 4 4 0 ’

(r3)T -16 0 ‚g = (g),

(Az3)T 0 o

Nach den Schritten 5, 12 ist x3 = (2, 2, O, 0)T ein stationärer Punkt des Problems, und wegen Satz 4.5
ist x3 zugleich Lösung des Problems. Auch dieses Beispiel ist als einfaches Prinzipbeispiel aufzufassen.

7.3.3. Ergänzende Bemerkungen zum reduzierten Gradientenverfahren

Für das System Ax = b, b g 0 folgt mit Beachtung von Definition 7.3 die Existenz
der Zerlegung von A = (B, C) mit

By + Cz = b, also y = B"‘b — B“Cz.
Eigentlich hängen B, C von y ab; solange jedoch y > 0 gilt, sind diese Matrizen kon-
stant. Man erhält

G = {xeR" | x g 0, y(x) = B“(x)b — B‘1(x)C(x)z(x)},
f(y(X): Z(X)) =f(B“(X)b - B“‘(X)C(X)l(X)a Z(X))-
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Damit ergibt sich aus (7.5)

min {f(B"1b —— B-‘Cz, z) l z(x) g 0, xeG}.
Hat man nun ein x1 = (y‘, z1)T als Startpunkt mit y‘ > 0 gefunden, so verändert
sich das Vorzeichen von y‘ nicht, wenn man z‘ um Az‘ mit HAz‘][ < a (a hinreichend
klein) abändert. Hieraus erhält man, da B und C für alle z‘ + Az‘ mit [|Az1|| < s

konstant sind, die Aussage:
(yl, z‘) ist genau dann ein stationärer Punkt von (7.5), wenn gilt

Vg(z‘)TAz1 g 0 für alle A2‘ mit z‘ + A2‘ g 0, [[Az‘|| < e

mit g(z) =f(B‘1b — B"Cz, z).

Damit erhalten wir als stärkste Abstiegsrichtung von g (Vgl. Band 4, S. 61, S. 11l):

rT = -Vg(z)’ = - ‚f0, z)’ - Vyfly: Z)T Vzy(Z) |y=y(z) '

= —V7f(Y, Z)T + Vyf(y> Z)TB"C |y=B-=b—B-lcz

(vgl. dazu im Algorithmus die Schritte 3 und 4). Um die Voraussetzung

z + zxAz g 0 für zxe [0,zx0)

nicht zu verletzen, wählen wir

0 sonst.

Dann hat man folgende Aussage:

AZ’ = ‘r, für r, > O g oder z, > 0, jeJZ, (Z6)

Satz 7.2: x e G und Az seien gemäß Vorschrift (7.6) bestimmt. Dann gilt
Az = 0 => x ist stationärer Punkt des Problems (7.5).

Hieraus folgt das Abbruchkriterium im Schritt 5 des Algorithmus. Zugleich haben

wir für den allgemeinen Algorithmus in 7.3.1. den-Schritt 5 durchgeführt mit s = (2)7),
Ay = -—B“CAz. z

Für Schritt 6 dieses allgemeinen Algorithmus ist noch ad‘ g 0 zu bestimmen. Wir
lösen dazu das eindimensionale Optimierungsproblem

min{f(y+<xAy‚z +ocAz)|oc 2 0,y +:xAy 2 0,z +zxAz2 0}

(zx ist hier die Variable, y, Ay, z, Az sind hingegen fest).
Entweder löst man diese Aufgabe näherungsweise (vgl. dazu 7.6.) oder für einfache

Funktionen fexakt (vgl. Satz 7.3).
Daß die Bestimmung des größtmöglichen Wertes ax, für den y + ocAy g 0 und

z + ocAZ g 0 erfüllt ist, wie im Schritt 6, 7, 8 des Algorithmus in 7.3.2. erfolgen kann,
ist leicht einzusehen, wenn man alles koordinatenweise aufschreibt.

Satz 7.3: Für quadratische Optimierungsprableme mit positiv definiter Matrix C ergibt
sich die Größe on“ wie folgt.’

_(2xkTC + cT)Axk k‘ 7k

Zum Beweis vgl. Aufgabe 7.6.
Bei der Wahl von Az gemäß (7.6) ist nicht gesichert, daß ein Häufungspunkt von

{x"} zugleich auch stationärer Punkt von (7.5) ist. Eine Zusatzforderung garantiert

a" = min
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jedoch, daß jeder Häufungspunkt der Folge {x"} auch stationärer Punkt von (7.5) ist.

Satz 7.4: Wählt man beim reduzierten Gradientenverfahren Az gemäß

rf für rf > 0,
z,"r}‘ für rj‘ g 0,

und tauscht man in Schritt ll die größte NB V zj gegen die BVy_,o = 0 aus, so ist jeder
Häufungspunkt der Folge {xk} ein stationärer Punkt des Problems (7.5).

Az}‘:=

Aufgabe 7.6: Beweisen Sie Satz 7.3!
Aufgabe 7.7: a) Auf das Problem

min {x2 — 20:1 — 2)3 + 7(x, — 2) l xeG},

G={xeR2]O§x,§4,0§x2§3,x1+x2§5}

mit dem Startpunkt x‘ = ä ‚ x1, x2 als NBV, ist das reduzierte Gradientenverfahren anzuwenden.

b) Dieselbe Aufgabe für den Startpunkt x" = (
e) Tragen Sie für die Zielfunktion die Höhenlinien für

c = 0, 1- 2, 1 4, 6 in G ein! Der Iterationsverlauf ist zu skizzieren!
d) Wie lautet die Lösung des Problems?

7.3.4. Weitere Verfahren

Das Verfahren von Beale und andere Verfahren zur Lösung von quadratischen
Optimierungsproblemen können als spezielle Verfahren der zulässigen Richtungen auf-
gefaßt werden (z. B. das in [2] angegebene Verfahren von Frank und Wolfe). In [14]
findet man für diese speziellen Verfahren Programme in FORTRAN und ALGOL.

In [3] und [9] ist eine allgemeine Beschreibung der Verfahren der zulässigen Rich-
tungen angegeben, insbesondere sind dort auch Richtungssuchverfahren mit erfaßt.
In [6], [10], [11] werden speziell numerische Aspekte diskutiert. Verschiedene Varian-
ten bezüglich der Strahlminimierung (Schritt 6 im allgemeinen Algorithmus) werden
in [I3] und [17] erörtert.

Eine umfassende und allgemeine Begründung der Gradientenverfahren‘) erfolgt
in [22]. '

7.4. Straf- und Barriereverfahren

7.4.1. Allgemeine Bemerkungen

Die in diesem Abschnitt behandelten Verfahren sind auf Optimierungsprobleme
der Form

P: min {f(x) | xe G}, (7.7)

G={xER"lxeX, g,(x)§0, h,(x)=0, ielg, jelh}
anwendbar, wie sie in Abschnitt 1. definiert wurden.

1) Diese Bezeichnung ist eigentlich nur für spezielle Klassen von Verfahren gerechtfertigt. Geeigne-
ter ist die Bezeichnung Relaxations- bzw. Abstiegsverfahren.
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Die Menge X sei durch lineare Restriktionen beschrieben (X = R" ist nicht aus-
geschlossen).

Wir setzen voraus, daß das Problem P eine Lösung besitzt. Dem Problem P wird
eine Folge {Pk} von Ersatzproblemen zugeordnet gemäß

Pk: min {H(x,p,,) l xeX}, keN. (7.8)

Dabei seien die Funktionen H(-, pk) so beschaflen, daß die Probleme P,‘ folgende
Eigenschaften besitzen:

l. Für jedes k e N besitzt Pk mindestens eine Lösung, etwa x".
2. Jede Folge {x"} von Lösungen der Probleme Pk, k e N, enthält l (7 9)

eine konvergente Teilfolge, deren Grenzwert x“ eine Lösung von I '

P darstellt.

Die Methode der Konstruktion der Funktionen H(-, pk) führte auf die Bezeichnungen
Strafverfahren (in 7.4.2.) und Barriereverfahren (in 7.4.3.).

7.4.2. Strafverfahren

Wir stellen uns vor, daß ein Produktionsprozeß optimiert werden soll, wobei f
die Kostenfunktion darstellt und g‚(x) g 0, ieI„ sowie h,(x) = 0, j e I,,, gewissc Be-
schränkungen darstellen, deren Verletzung zwar technisch möglich, aber ökonomisch
nicht gerechtfertigt ist.

Der Bereich X hingegen soll diejenigen Restriktionen erfassen, die unter keinen
Umständen verletzt werden dürfen, da sonst der gesamte Produktionsprozeß in Frage
gestellt ist (z. B. Entstehen von Havarien).

Es ist nun möglich, das Verletzen der Restriktionen g‚(x) g 0 und h‚(x) = 0 da-
durch zu verhindern (bzw. zu reduzieren), daß eine Verletzung dieser Restriktionen
mit „Strafkosten“ geahndet wird, die die Kosten des Produktionsprozesses erhöhen.
Durch die Festlegung der Höhe dieser Strafkosten kann somit die Einhaltung der
Restriktionen gesteuert werden. Je höher die Strafkosten gewählt werden, desto
weniger werden die Restriktionen gi(x) g 0 und h,(x) = 0 verletzt.

Bei dem hier zu beschreibenden Verfahren gehen wir in ähnlicher Weise vor. Das
Verletzen der Restriktionen g‚(x) g 0, ie 1„ und h,(x) = 0, j e I„, wird mit einer Strafe
belegt; der Strafterm S: R" —> R+ wird mit einem Faktor pk multipliziert und zur

Funktion faddiert. Die so entstehende Funktion

H(x‚ p.) = f(x) + p..s<x>

nennen wir Straffunktion, wenn für sie außerdem gilt:
. f"

a) S: Rn/> R4, stetig, S(x) 1 (7.10)

b)pk+1>pk go \7'keN,1imp,,=oo. I
k—>oo

Durch die Forderung p„ —> oo für k —> oo und dem damit verbundenen unbegrenzten
Anwachsen der Strafkosten werden die Restriktionen g,-(x) g 0, h,(x) = 0 mit wach-
sendem k weniger verletzt.

Folgende Funktionen S haben sich bewährt: Es seien

>0 fiirt>0, =0 für t=O,
S1“) =0 für [so “d S2“) >o für „+0 0'113)
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stetige Funktionen. Dann setzen wir (Bild 7.4)

m)
H{X‚p,<)

357W 9:750

f(x)= ex’ Bild 7.4

S(x) = 113x S1(ga(x)) + 113x S2(/u(x)) l
oder ' J " (7.11b)

s<x) = 2 S1(gt(X)) + z: S2(h/(X))- l J
is], jeh.

Aufgabe 7.8: a) Zeigen Sie, daß mit S1(t) = max’ {0, t}, r g l, und Sz(t) = It|'‚ r g 1, die Funk-
tion S(x) die erste Bedingmg in (7.10) erfüllt!

b) Für welche Werte von r sind die Funktionen S1 und S2 einmal stetig difierenzierbar?

Beispiel 7.3:Für das Problem

P:min{f(x)= —x’|xe R, l —-x§0, x’ — 4 g 0}

ergibt sich wegen (7.10) und (7.11) für r = 2

H(x,pk) = —x’ + p„[max’{ 0, 1 — x} + max’ {O‚ x’ — 4)], (7.12)

X = R.

Schreiben wir (7.12) ausführlich auf, so folgt

I ——x’ +pk[(l — x)’ + (x’ — 4)’] für x < —2,

H ——x’+p„(1—x)’ für —2§x<1,
H("’”")‘ l —x’ ' für 1; x g 2.

—x’ + p,„(x’ — 4)’ für x > ’

dH(X,Pz¢)
Wegen < 0 Vx g 2 und pk ä 1 folgt, daß die Funktion H(x, p„) ihr Minimum nur für

x > 2 annehmen kann. Dort liefern aber die klassischen Methoden

0 = EC-1-(—-x2 + pk (x’ — 4)’) = 2x(—1 + 2p,,[x2 - 4])
X
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und somit

g 1 . .
x,‘ — 217k

als Lösung von P...

1

xo=limxk= lim A/: +4=2
k- eo k» w 211g

ist Lösung von P, wie man verifiziert.

Die folgenden Sätze kennzeichnen einige Eigenschaften der Straffunktionen
1108173)-

Satz 7.4: Es seien X g R" abgeschlossen undf: R" ——> R stetig. Existiert ein ze G, für
welches die Niveaumenge

N(f(Z)) = {X EX lf(X) é f(Z)}
kompakt ist, so besitzen alle Probleme Pk, k e N, Lösungen x".

Die obige Bedingung ist natürlich nur hinreichend für die Existenz von Lösungen
der Probleme Pk. Das Beispiel 7.3 erfüllt z. B. diese Forderung über die Kompaktheit
einer Niveaumenge nicht. Dennoch haben die Probleme P,, jeweils Lösungen x,,.

Satz 7.5: Es seien {x"} eine Folge von Lösungen der Probleme P„‚ k e N, undac = minf(x)
Gder Optimalwert des Problems P. Dann gilt: X‘

1- H(x",p:.) é H(x““,pm)
2.f(x") §f(x"“) ke N.
3-f(X") ä H(X"‚Pt) ä on

B‘W'bh“k fdB'd A E"‘L"ewets: 1r esc ran en uns au en eweis er ersten ussage. s sei x osung
von P„. Dann gilt

H(x"‚px) ä H(x‚p.) VxeX
und damit wegen pk g p,“ und S(x) g 0

H(X"‚pi) ä H(X"“‚pu) E H(X"*‘.17x+1)-
Satz 7.6: Ist {x"} eine Folge von Lösungen der Probleme Pk, k E N, so ist jeder Häu-
fungspzmkt 7': der Folge {x"} eine Lösung von P, d. h. es gilt:

ie G und f(?() = min f(x).
xsG

Der obige Satz garantiert die in (7.9) geforderten Eigenschaften der Probleme P„.
Für ein gegebenes Problem (7.7) hat man also die Folge {Pk} Von Problemen (7.8) zu

lösen und einen Häufungspunkt i der Lösungsfolge {x"} zu ermitteln. Die Probleme
Pk können auf Grund ihrer Struktur mit Verfahren aus 7.3. oder 7.2. gelöst werden.

Als Abbruchkriterium kann z. B. der Test

f(x""‘) -f(X") < 8

dienen. Bei konvexen Problemen könnte man eine zu {x"} gehörige Folge {z"} c G
konstruieren, deren zugeordnete Folge {f(z")} Von oben gegen den Optimalwert des
Problems P strebt. Dadurch ist mitf(z") — f(x") < e ein aussagekräftigeres Abbruch-
kriterium gegeben (vgl. Aufgabe 7.9).



7.4‚ Straf- und Barriereverfahren 77

Weitere Ausführungen zu Verfahren der Straffunktionen findet man in [6], [9], [l3].

Aufgabe 7.9: Es ist folgendes zu zeigen: Erfüllt eine Lösung x"- des Problems Pk. die Bedingung
x“° e G, so ist x"- zugleich Lösung des Problems P.

Aufgabe 7.10: Für das Problem

min{xf+2xälx1;0‚ x220, x§+x§;l}
ist die Folge {Pk} von Ersatzproblemen anzugeben und das Problem P,‘ in Abhängigkeit von pk zu

lösen. Für die Folge {x"} der Lösung ist ein Hiufungspunkt i zu ermitteln.

7.4.3. Barriereverfahren

Die Barriereverfahren hängen nach den Bemerkungen in 7.4.1. eng mit den Straf-
verfahren zusammen. Es gibt jedoch einige wesentliche Unterschiede:

a) Im Gegensatz zum Verfahren der Straffunktionen gilt stets {xk} c: G‘).
b) Es können nur Ungleichungsrestriktionen berücksichtigt werden (d. h. in (7.7)

gilt 1,, = (A).

c) Um eine Aussage analog zu Satz 7.6 zu beweisen, ist eine zusätzliche Regulari-
tätsbedingung erforderlich.

Wie in 7.4.2. konstruieren wir wieder eine Funktion H(x, qk). Die zur Funktion f
addierten Zusatzterme verhindern, daß der Bereich G verlassen wird, indem H bei
Annäherung an den Rand von G unbeschränkt wächst: Barriere (Bild 7_.5).

H[,X’(’7*’} H Wk): —X’-qk fl/1(x—7l+l/7(4—x7].7
-/<

I

| qk=7I7

_ I7(f/‘=-II7I‘
g‚.’x)=7-x
g‚(x)=x?—4

5,

gméfl

\9z{X)é0,

‘ 0 g /93m‘: 2 x

I 7x77
I

I

I
l\fm»)?

Bild 7.5

1) Eine Aussage analog zu der in Aufgabe 7.9 ist daher nicht möglich.
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Eine Funktion H mit derartigen Eigenschaften, die als Barrierefunktion bezeichnet
wird, erhalten wir wie folgt

1.H(x‚q‚.> = f(x)~+ q..B(x>, N

2.B: Q—>Rstetig‚G g Q g R"mit G = {xeQ I xeX,g‚(x) < 0‚ieI„},
3. lim B(x") = 0o für jede Folge {x"} c G mit

k—> D0 (7.13)

y = lim x"eG\Ö, nyu < oo,
k-vm

4. {qk} strebt monoton fallend gegen 0.

Ohne Beweis geben wir einige Realisierungen für die Abbildung B an:

a) B(x) = max b(——g,(x)), xe Ö, l
is], N

b) B(x) = XI‘, b(—g,(X)), X E G, (7.14)
1e ‚

mit b: (R+\{0}) —» R stetig, lim b(t) = 0o. J

1-» +0

Speziell können die folgenden Funktionen verwendet werden:

b(t) = t", r > O; b(t) = — ln t (Bild 7.5). (7.15)

Aufgabe 7.11: Man zeige, daß die Eigenschaften (7.13) für H(x, q) erfüllt sind, wenn man die
speziellen Abbildungen b(t) aus (7.15) verwendet.

Wichtige Eigenschaften der Barriereverfahren sind in den folgenden Sätzen ent-
halten:

Satz 7.7: Esseien G = {xeR" l xeX,g‚(x) g 0, ieI„} kompakt, Ö =|= 0 undf stetig.
Dann existieren stets Lösungen x" der Probleme Pk, d. h. zu jedem k e N existiert ein

x" e G mit
H(x"‚ m.) = mip H(x‚ ta)-

xeG

Satz 7.8 : Es seien {xk} eine Folge vonLäsungen der Probleme Pk, k e N, und cc = minf(x)
der Optimalwert des Problems P (mit 1„ = 0). Dann gilt: “G

1-f(X*) §f(X"*‘) g xx.

2. Für B(x) g 0 Vx e Ö gilt außerdem

H(Xka qk) ä H(xk+19 qk-n):

H(X"‚ 9x) gflx") g on.

Die Bedingung B(x) g 0 ist z. B. erfüllt, wenn in (7.14) gilt:

b(—g‚(x)) g 0 VxeX, VieI‚.
Verwendet man in (7.14) die erste der angegebenen Funktionen B, so genügt es, wenn
b(—g‚(x)) g 0 ist für mindestens einen Index i, der von x EX abhängig sein kann.

Im Gegensatz zu den Verfahren der Straffunktionen ist für eine zu Satz 7.6 analoge
Aussage über Verfahren der Barrierefunktionen eine Regularitätsbedingung an den
Bereich G erforderlich:

(RB) inff(x) = m'nf(x) = ac. (7.16)
GxeG xE
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Aufgabe 7.12: Es ist zu zeigen: a) im Falle Ö = G ist (RB) erfüllt.
b) Für das Problem y

xi — 1 für x < 1,

min{—x{g(x)§0,xeR} mit g(x)= 0 für 15x52,
x(x e 2) für x > 2

ist die Bedingung (RB) verletzt.

Satz 7.9: Es seien die Voraussetzungen von Satz 7.8 und die Bedingung (RB) erfüllt.
Dann ist jeder Häufungspunkt i? der Folge {x"} eine Lösung von P, d. h. es gilt

ieG und f(i) = minf(x) = oc.
xsG

Es gilt die gleiche Bemerkung wie nach Satz 7.6.
Außerdem kann man das in 7.4.2. angegebene Abbruchkriterium verwenden. Bei

konvexen Problemen kann man über das duale Problem der Folge {xk} eine andere
Folge {z"} zuordnen, so daß die zugehörige Folge {f(z")} von unten gegen den Opti-
malwert des Problems P strebt. Das Kriterium f(x") — f(z") < e liefert dann eine
aussagekräftigere Abbruchbedingung.

Weitere Ausführungen zu Verfahren der Barrierefunktionen findet man in [6], [9],
[13].

Aufgabe 7.13: Man löse das in Aufgabe 7.10 angegebene Problem mit Baniereverfahren für
b(t) = —ln t.

7.5i. Schnittebenenverfahren

7.5.1. Allgemeine Bemerkungen

Wir betrachten das konvexe Optimierungsproblem mit linearer Zielfunktion

P: min {cTx l xe G},
G = {xeR"|g‚(x) g O, i E19},

wobei gilt: G g R" beschränkt, g‚: R" —> R, i e Ig, konvex und differenzierbar.
Der Grundgedanke des Schnittebenenverfahrens ist der folgende:
Da G beschränkt ist, gibt es ein konvexes Polyeder M1 mit G g M1. Wir minimieren

nun cTx über M1. Aus der linearen Optimierung ([20]) ist bekannt, daß sich ein Eck-
punkt x‘ von M1 als Lösung dieses (linearen) Problems ergibt. Jetzt schneidet man

den Punkt x1 von G durch eine x1 und G trennende Hyperebene H1 = {x ER” j qTx 2 0c}

ab (Bild 7.6) und erhält als neues Polyeder M2 = {x e M1 l qTx g ac}. Man minimiert

Bild 7.6
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cTx über M2 und erhält x2 als Lösung, wählt wieder eine trennende Hyperebene H2
usw. Bei der Auswahl der Hyperebenen Hk nach gewissen Regeln ergibt sich die
Lösung x° als ein Häufungspunkt der durch dieses Vorgehen erzeugten Punktfolge
{x"}. Die Art und Weise der Auswahl der H,‘ bestimmt die unterschiedlichen Schnitt-
ebenenverfahren. Wir erörtern im folgenden das Verfahren von Kelley [13].

7.5.2. Das Schnittebenenverfahren von Kelley

Zunächst geben wir für dieses Verfahren den Algorithmus an.

Schritt I : Bestimme ein Polyeder M1 g G. Setze k := 1.

Schritt 2: Löse das Problem
min {cTx l xeM‚}. '

Schritt 3: Liegt die Lösung x" von Schritt 2 in G? Wennja —+ X" ist Lösung von P.
Das Verfahren ist beendet. Wenn nein —> Schritt 4.

Schritt 4: Wähle ein z" e {z Iz = Vg‚(x")‚ i e 1.,} mit I„—’= {ie I, | max g,(x") = g,(X")}
und setze 151a

Mk+1 = {XEMn l gi(Xk) ‘l’ (X — Xk)TZk S Ü}

mit isil,‘ beliebig, aber fest gewählt. Setze k := k + l —> Schritt 2 (damit gilt stets
G C Mk“ c Mk c c M1, Vgl. Bild 7.6).

Ist z. B.

G={xeR]g(x):=(x—1)(x+1)§0} und x“=2,
so stellt die Funktion h(x) := g(2) + (x — 2)z" die Tangente an g(x) im Punkte
(2, g(2)) dar (Bild 7.7). Analog zu den Verfahren in 7.3. und 7.4. kann man hier eben-
falls eine Abbruchbedingung festlegen.

Die folgenden Aussagen enthalten wichtige Eigenschaften des Verfahrens.

h ixigrx)

§(x“,‘-4 ------ r r

Satz 7.10: x° sei Lösung von min {cTx | x e G}. Dann gilt:
1. G g M,, Vk e N.
2. cTx" g cTX° Vke N.

Satz 7.11: 1. Gilt für eine Lösung x" des linearen Ersatzproblems X" e G, so ist x" auch
Lösung des Ausgangsproblems P.
2. Gilt x" G G Vk e N, so istjeder Häufungspunkt X von {x"} eine Lösung des Ausgangs-
problems. '
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Anmerkung: Für die Gültigkeit des Verfahrens genügt es, daß die Funktionen g„ is Ig,
auf der gesamten Menge M1 erklärt sind.

Beispiel 7.4: Für das Problem

min {Zxl + x2 [g,(x) é 0; i= 1,2}
mit

810‘) 3= (x1 " 3)2 + (X2 “ 2)2 - 4.

5'20‘) 5: (X1 — 3): "‘ X2

findet man leicht das Polyeder M1 = [0,5] x [0,4]. Hieraus folgt das lineare Optimierungsproblem

P1: min [(2, 1)T x1§5. x2§4, X120, i=1;2}-

Das folgende Tableau (vgl. [20]) ist optimal, und man erhält x‘ = x3, x4 sind nur Schlupf-

NBV variablen und für das Ergebnis ohne Bedeutung.

.' x 1 _ _BV xi u ‘ Vg1(x) = _ Vg2(x) = (206; _

x3 — l 5
x4 0 — I 4

CT 2 1 0

Wegen g‚(0) = 9, z‘ = 1, 2, I, = {l, 2} kann z‘ = Vg‚(0) oder z‘ = Vg‚(0) gewählt werden. Für

z‘ = Vg2(0) = ist die zusätzliche Restriktion

—6x1 — x2 g »9

mit der Schlupfvariablen x5 hinzuzufügen.

x1 x2 1 Dieses Tableau ist ein duales Simplextableau wegen

1 0 5 > 0. Mit -6 als Pivotelement folgt das nächste
x ._

x: O _1 4 Tableau nach dem dualen Simplexverfahren.

x5 i — l —- 9

c7 2 1 0

x5 x2 I 3 \

_ 1 i _7_ Dieses Tableau ist optimal mit der Lösung x2 = 7 .

x3 6 6 2 o
x4 0 — 1 4

1 1 3

*1 z ‘F 7
1 2

CT T ? 3

6 Elster, Optimierung
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Nach Schritt 4 folgt weiter
7 9 —3

g1<x*>= -7, g2(x1>=7, 12={2}. z2= (q).
. . 27 .

Neue Restriktion: ——3x‚ — x2 g ——4—‚ Schlupfvanable x6. Wegen x1 = %x, —%x‚ +-% folgt
1 1 9

nach Einsetzen in die neue Restriktion ——x5 ——x2 g —— und damit das neue duale Simplex-
tableau 2 2 4

x5 x2 1 x5 x2

1 1 7 1 1 ll
x3 7? F 7 x3 ‘T -7 T

x4 2 M 1 -1 a1 1

*1 7 "e" 7 —> xi 7 "7 7
l 1 9 9

*6 7 7 ‘7 x5 2 "1 7
= 2 1 9

a g ä 3 °’ 7 7 7
9

„ 2 _1 ä Tableau ist optimal: x3 =

O

Schritt 4 ergibt wieder
3

55 9 .._

810(3): ‘F, é’2(X3)=—1€‘; I3 ={2}J3= 2)-
- — 1

3 ‚ .

Neue Restriktion: —7x1 — x2__S_ —-—f%.

x5 x2 1 x5 x7 1

11 19
x3 -1 -1 _ „3 „ „ _

3 3 4 8

x4 0 -1 4 23
1 1 9 x4 * * T

X‘ T _? T —> 15

9 *1 * * T
x5 2 '1 7 27

1 1 9 xs * * T
"7 7 2 15 1 9

7 *2 1 7 7
T 2 L 3

° 7 3 2 „T 1 1 2
3 8 „

I 9
an 1 3- -E

1 15 1,875
Tableau ist optimal: x‘ = -8—( 9) = (1,125) .
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Man erkennt leicht aus Bild 7.8, daß x° = eine Lösung des Ausgangsproblems ist. Für die

4. Näherung gilt llx‘ — x°H = —8— z 0,158, und die Differenz zwischen cTx‘ und eTx° beträgt

X2

4

D M1 äM: EM: E M4

7.5.3. Weitere Verfahren

Die verschiedenen Schnittebenenverfahren unterscheiden sich im wesentlichen
durch die Art und Weise der Bestimmung der Schnittebene Hk. Bei dem von uns be-
schriebenen Verfahren von Kelley wird Hk durch die Restriktion

g«(x") + z"(X — X”) = 0. z" = Vgz(x")‚ ielt, e

bestimmt. Beim Verfahren von Kleibohm/Veinott (vgl. [6], [l6]) wählt man in G einen
inneren Punkt a und bestimmt den Durchstoßpunkt y" der durch a und x" bestimmten
Geraden mit dem Rand von G. Hk wird dann so festgelegt, daß G durch H in a berührt
wird und daß gilt int G n H = (Z). Numerisch ist dieses Verfahren nicht vorteilhaft,
da durch die auftretenden Rundungsfehler Teile von G mit weggeschnitten werden
können. Eine Verbesserung des Verfahrens erhält man, indem an Stelle eines festen
inneren Punktes a e G eine geeignete Folge {a"} C G Von inneren Punkten gewählt
wird.

Darüber hinaus gibt es auch Schnittebenenverfahren, die man bei nichtkonvexen
Optimierungsproblemen anwenden kann..Jedoch läßt sich für den allgemeinen Fall
keine Aussage über das Lösungsverhalten der konstruierten Folge {xk} angeben.

7.6. Direkte Verfahren

7.6.1. Allgemeine Bemerkungen

Direkte Optimierungsverfahren, oft auch Suchverfahren genannt, zeichnen sich
dadurch aus, daß für ihre Anwendung nicht die Ermittlung von Werten der Ableitun-
gen von Ziel- oder Restriktionsfunktionen erforderlich ist. Dadurch entfallen analy-
tische Vorarbeiten, die nicht oder nur fehlerbehaftet mit digitalen Rechenanlagen
ausgeführt werden können.
6:
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Eine lehrbuchmäßige Darstellung einer beträchtlichen Anzahl direkter Verfahren
findet man z. B. in [l1]. Allerdings fehlen dort meist Bedingungen, unter denen die
Verfahren mit Sicherheit eine Lösung des Optimierungsproblems ermitteln. Entspre-
chende Aussagen wurden für einige Verfahren in [6] bewiesen. Eine ausführliche Dar-
stellung dieser Klasse von Lösungsverfahren findet man in [4].

Direkte Verfahren können insbesondere auch dann Anwendung finden, wenn etwa
die Zielfunktionswerte nur experimentell bestimmbar sind und nicht durch Auswer-
tung einer in geschlossener analytischer Form vorliegenden Funktionsgleichung ge-
wonnen werden können. Auch beschränkt sich die Anwendbarkeit direkter Verfahren
nicht nur auf die Lösung konvexer Optimierungsprobleme. Allerdings kann beim
Vorhandensein nicht-globaler Extrema nur die Ermittlung eines lokalen Extremums
garantiert werden.

Wir geben deshalb zunächst eine Klasse von Funktionen an, bei denen jedes lokale
Extremum auch global ist.

Definition 7.4: Es seien M g R" eine nichtleere konvexe Menge undf: M —+ R. Dann
heißt f streng quasikonvex auf M, wenn gilt:

x‘, x2 e M
fix’) <f(X‘) ] =~ f(lX‘ + M’) <f(X‘). (7-17)
A,,ueR‘3,,l+,u=1 *

Für streng quasikonvexe Funktionen gelten die folgenden Eigenschaften (vgl. [6]):

1. f streng quasikonvex, } => f(lx1 + ,ux2) g f(x1) (7 18)
stetig undf(x2) =f(x‘) Vl,,ue R+, Ä + ‚u = 1. '

2. Die Niveaumengen

N. = {x lf(x) g a} und N. = {x If(x) < a}
sind konvex für jedes o: e R (vgl. Satz 2.12).

3. f konvex auf M => f streng quasikonvex auf M.
Das folgende Beispiel zeigt, daß die Umkehrung der letzten Aussage nicht gilt.
Beispiel 7.5: f(x) = ——e""', xe R, ist nicht konvex, aber streng quasikonvex auf R (Bild 7.9).

Bild 7.9

f ist zweimal stetig difierenzierbar mit

JE
< O für [k] > T,

2

JE
:0 für [XI §—-—.

2

f”(x) = 2(1 — 2x2)e~*‘

Nach Satz 2.16 ist daher f auf [- % konvex und aut‘(— oo, — bzw. <% eo)

konkav.
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Nun sei f(x2) < f(x1). Dann folgt x’ e (—x1, x1) und fügt‘ + fix’) < f(x‘) für alle l, „e R3,

i. + u = 1 (vgl. Bild 7.9). Wegen ix‘ + 14x2 e (—x1‚ x1) ist fgemäß Definition 7.4 streng quasikonvex.

Wir formulieren nun eine für direkte Verfahren wichtige Aussage über das Ver-
halten streng quasikonvexer Funktionen bezüglich lokaler und globaler Minima
(vgl. dazu Satz 3.2 und Satz 3.3).

Satz 7.12: Es seien G g R” abgeschlossen und konvex sowie f: G —> R auf G stetig,
nach unten beschränkt und streng quasikonvex. Dann nimmtfdas globale Minimum be-
züglic/z G auf einer nichtleeren konvexen abgeschlossenen Menge G° g G an. Weitere
lokale Minima von fexistieren nicht auf G.

Beweis: Jede auf einer abgeschlossenen Menge stetige und nach unten beschränkte
Funktion nimmt dort das globale Minimum auf einer abgeschlossenen Menge G“ an.
Wir nehmen an, daß G° nicht konvex ist. Dann gibt es Punkte X‘, X2 e G° und Zahlen
Ä, ‚ue R+ mitÄ + ‚u = l, so daß gilt:

f(1X1 + MX2) > für‘) = f(X2)
im Widerspruch zu (7.18). Also ist G° konvex.

Wir nehmen ferner an, daß neben X2 e G“ ein Punkt x3 e G mit

f(X‘) > fix’) (7-19)

existiert, wobei f in x3 ein lokales Minimum besitzen möge. Dann gibt es gemäß
Definition 3.1 eine Umgebung U(x3), so daß gilt:

f(x) g f(X3) Vxe U(X3) n G. (7.20)

Nun ist (X2, X3) g G und (X2, X3) n U(x3) ¢ 0. Folglich gibt es auch auf (X2, X3)
Punkte x, für die (7.20) gilt. Unter Berücksichtigung von (7.19) widerspricht dies
(7.17), also der Voraussetzung, daß f streng quasikonvex auf G ist. Mithin existiert
auf G\G° keine Stelle eines lokalen Minimums.

Ohne Beweis nennen wir _die

Folgerung:ferfülle die Voraussetzungen von Satz 7.l2‚ und es sei X2 E G°‚ x3 e G\G°.
Dann ist f auf [X2, X3]\G° streng monoton.

7.6.2. Der eindimensionale Fall

Wir betrachten zunächst die Anwendung direkter Verfahren auf Optimierungs-
probleme der Form

Pl: min {f(x) | xe[a, b] c R}.

Die Problemstellung wurde nicht nur historisch zuerst behandelt, sondern stellt
auch methodisch insofern einen Sonderfall dar, als dafür eine besondere Klasse von

Verfahren entwickelt wurde, aus der sich effektivste direkte Verfahren angeben lassen.
Das Prinzip dieser sogenannten Eliminationsverfa/1ren besteht darin, ausgehend von

[a‚ b] eine Folge {[a„‚ b„]} von Intervallen zu erzeugen, die sämtlich eine Lösung x0
des Problems PI enthalten.

Der Übergang von einem Intervall der Fqlge zum nächsten Intervall erfolgt durch
Elimination eines Teilintervalls, das x0 nicht enthalten kann. Die Ermittlung dieses
Teilintervalls gelingt z. B. bei stetiger, streng quasikonvexer Funktion f: [a, b] —> R

durch Vergleich der Funktionswerte in mindestens zwei inneren Punkten des Inter-
valls. '
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Dabei erweist sich die Verwendung von genau zwei Vergleichspunkten, von denen
derjenige mit dem kleineren Funktionswert jeweils für den folgenden Vergleich bei-
behalten wird, als ein elfektivstes Verfahren in folgendem Sinne:

Es sei b. — a, die maximale Länge eines Intervalles [a,,, bk], das in der beschriebenen
Folge mittels einer festen Anzahl (etwa n) Funktionswertberechnungen bestimmt
werden kann. Dann kann bei dem oben skizzierten Vorgehen das Sogenannte Ver-

.. .. . b — _

kurzungsverhaltms I';_ Z”, bezogen auf das Ausgangsrntervall [a‚ b], gegenüber

jedem anderen Vergleichsverfahren minimiert werden (vgl. [6], [4]).
Im folgenden beschreiben wir dieses Verfahren etwas genauer (Bild 7.10).

Bild 7.10

Algorithmus des Eliminationsverfahrens
Schritt 1: a1 := a, bl := b. Wähle x1e(a„ b‚), x2e(a1, b1),x1 ä: x1, Berechne

f(x1) undf(x2). Setze k := l.
Schritt 2: a) Im Falle f(x,,) <f(xH1), x,‘ < xx“, setze 11,,“ := a,,, bk“ := x,,+,,

wähle x,,+2 e (a,‘+1, b,.,+1)\{xk} und setze x“; := x, —> Schritt 3.
b) Im Falle f(x„) §f(xk+1), x,, < xk+1, setze a„„ := x„, bk” := b,,, wähle

75m2 5(l1k+1: bI:+1)\{xk+1} —> Schfitt 3-
e) Im Falle f(x,,) <f(x,.+,), xk > xx“, setze a„+1 := x,,+,, bk“ := bk, wähle

x„„ e (a„„, b„„)\{x„}, setze xk+1 := xk —> Schritt 3.
d) Im Falle f(x„) ;f(x,,+1), xk > .xk+1, setze ak+1 := a‚„ b“, := xk, wähle

xk+2 5(ak+1s bk+1)\{-xk-+1} " Schritt 3-
Schritt 3: Berechne f(x„+2). Setze k := k + 1.

a) Im Falle f(xk_1) =f(x,,) =f(x,,+1) sind xksl, xk, xktl Lösungen von Pl —>

Abbruch des Verfahrens.
b) Im Falle jxktl — x‚—„ | < e, e> 0 vorgegeben, ist x„+1 eine Näherungslösung —>

Abbruch des Verfahrens.
c) Sonst —> Schritt 2.

Offenbar sind für die Ermittlung von k Intervallen mittels Eliminationsverfahren
genau k Funktionswertberechnungen erforderlich.

Die Ermittlung einer Lösung x0 von P1 durch Eliminationsverfahren gelingt mit
Hilfe von

Satz 7.13: Es sei f: [a‚ b]—> R stetig und streng quasikonvex auf [a‚ b]. Es existiere
eine Zahl C e (0, l) derart, daß für die durch das obige Eliminationsverfahren erzeugte
Intervallfolge {[ak, b,,]} gilt:

max {b‚ — x‚+1‚ x,,+1 — a„} g C(l7,, — a,,) Vk e N. (7.21)
Dann bildet dieFoIge {[a‚„b‚„]} eineInterva/Ischaehtelung, die eineLösungxo vonPl erfaßt.
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Beim praktischen Rechnen erfolgt die Wahl der Lage der Punkte x‚„ ke N, häufig
nach folgendem Prinzip:

Die Länge eines Intervalles [am bk], k g 2, ist genau dann unabhängig vom Eintre-
ten eines der im Schritt 2 des Eliminationsverfahrens beschriebenen 4 Fälle, wenn x,‘+1

und xk symmetrisch zum Mittelpunkt des Intervalles [a„_1, b„_1]; k g 2, gewählt
werden.

Setzen wir voraus, daß für jedes k g 2 gilt:

a) bk — XIc+1 = bu-1 ‘ “kn = C071: " 01:) und

b) bk-l “ 11k—1 = bk — ak + bk+1 — aux:

so erhalten wir eine Teilung des Intervalles nach dem Goldenen Schnitt:

1 1 1 1 —f;=E+1, d.h.?=7(1+\/5)~1,618>1.

Wegen C e (0, 1) sind die Voraussetzungen von Satz 7.13 erfüllt. Wir erhalten speziell
das Verfahren des Goldenen Schnitts (vgl. [4], [6]).

In Schritt I bzw. 2 ist die Auswahl von x„ x2 bzw. x,.+2 wie folgt zu spezialisieren:

Schritt 1: Wähle
l l —

x1:= Ca1+ Czbl, f: (1 +\/5),
x2 := Czal + Cbl.

M
l

Schritt 2:

xk = Cak + C2b,, < xk+1 = Czak + Cbk.

a) Wähle xk+2 = Cakil + C2bk+1.

b) Wähle x“, C2ak+1 + Cb,,+1,

x,“ = Ca„ + C2b,, < xk = C211,, + Cb,,.

c) Wähle x‚„2 = C2a,‘+1 + Cb“,
d) Wähle xm = cam + Czbm.

Wir erläutern das Vorgehen beim Goldenen-Schnitt-Verfahren an einem einfachen
Beispiel.

Beispiel 7.6: Wir lösen PI mit

f(x) = x2,xe [-1, 3] C R.

Dazu setzen wir C z 0,618, C2 z 0,382. Da das Verfahren praktisch nach endlich vielen Schritten
abbrechen muß, verwenden wir eine Schranke s > O für Ix.“ — x,,| als Abbruchbedingimg. Dies
entspricht rechentechnischen Überleglmgen, da hinreichend dicht beieinander liegende reelle Zahlen
im Digitalrechner nicht mehr unterscheidbar sind. Um das Beispiel übersichtlich zu halten, wählen
wir s: = 0,0l. In Tabelle 7.1 läßt sich die Rechnung verfolgen. Der Abbruch erfolgt bei k = 10, und
man erhält xo E [-0,02]; 0,015], f(xo) < O‚000225. Die exakte Lösung ist x0 = 0, f(xg) = 0.
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Tabelle 7.1

k (Ix Xk f(X11) »\‘k+1 f(-"I1-1-V1) bk -\'k+2

l — 1,000 0,528 0,279 1,472 2,17 3,000 — 0,076

l l l \
2 —l,000 0,528 0 279 —0,076 0,00580 1,472 —0‚445

L

— 0,076 0,00580 — 0,445 0,198 0,528 0, l 573 —— I ‚O00

l4 -0,445 --0,076 0,00580 0,157 0,0247 0,528 —~ 0.215

l J. l Ls
5 -0.445 —0,076 0,00580 —o‚215 0,0463 0,157 0.015

M 16 —0,215 —0,076 0,00580 0.015 0.000225 0,157 0,068

/ 4 l
7 — 0,076 0,015 0,000225 0,068 0,00463 0,157 — 0,021

l l ‘i K:
— 0,021 0,000441 0.068 0,0340 0,0002258 — 0,076 ,0] 5

. i9 — 0,021 0,015 0‚000225 0,034 0,001 l6 0,068 0

l l l e;
l0 — 0,02l_ 0,0l 5 0 000225 0 0,000000 0,034 — 0,007

lll —0,02l 0 0‚0000OO (—0‚007) 0,015

7.6.3. Der n-dimensionale Fall

Im Falle n g 2 erweisen sich viele Eliminationsverfahren als unvertretbar aufwen-
dig. Daher werden hier direkte Verfahren verwendet, denen ein „Kletterprinzip“
zugrunde liegt (Kletterverfahren):

Durch eine geeignete Vorschrift wird eine Punktfolge {x"} erzeugt. Wir beschränken
uns auf den Fall x" e G Vk g l. Für die zugehörige Folge {f(x")} der Zielfunktions-
werte gilt dann im Falle eines Minimierungsproblems

f(X"*‘) §f(X") Vk ä 1.

Jeder Häufungspunkt der nach der Vorschrift erzeugten Folge {x"} ist dann Lösung
des Problems.

Häufig sind derartige direkte Verfahren zur Lösung von Problemen der Form

P2: min {f(x) I x E R"}

(Probleme ohne Restriktionen) Vorgesehen. Solche Aufgabenstellungen treten z. B.
bei Verfahren der Straf- und Barrierefunktionen auf (vgl. 7.4.).

Als Beispiel stellen wir das Verfahren der koordinatenweisen Suche (KS-Verfahren)
V01’.
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Wir bezeichnen im folgenden mit Lk = L„(x") die Gerade durch x" parallel zur
xj-Achse, j e {1‚ ...,n} und j = k + qn für ein gewisses ganzzahliges q.

Für n = 3 hat man z. B.

L, Parallele zur xl-Achse durch x‘,
L2 Parallele zur xz-Achse durch x2,
L3 Parallele zur x3-Achse durch x3,
L4 Parallele zur xl-Achse durch X‘.

Algorithmus des Kletterverfahrens

Schritt 1: Wähle x‘ e R" beliebig. Setze k := 2.
Schritt 2: Löse das Problem min {f(x) I xeL,_1}. x" sei eine zugehörige Lösung.
Schritt 3: a) Im Falle f(x") = f(x"“) = = f(x"+") Abbruch des Verfahrens.

Unter den Voraussetzungen von Satz 7.15 sind x", x"+‘, ..., x"*" Lösungen des Pro-
blems.

b) Im Falle Hx“ — x""|l < e Abbruch des Verfahrens. Unter den Voraussetzungen
von Satz 7.15 ist x" eine Näherungslösung des Problems.

c) Sonst k := k + 1 —> Schritt 2.

In Abb. 7.ll wird das Vorgehen im Falle n = 2 veranschaulicht.

X:

Z‘ [Z

V4 X:\ / Bild 7.11

—.

Ist f: R" —> R stetig, nach unten beschränkt und streng quasikonvex, so kann zur
Ausführung von Schritt 2 das Eliminationsverfahren verwendet werden. Dazu hat
man ein beschränktes Intervall auf L„_1 zu suchen, in welchem die Lösung x" liegt.
Die Existenz eines derartigen Intervalles ist durch die obigen Voraussetzungen ge-
sichert, wenn das Problem in Schritt 2 als lösbar vorausgesetzt wird. Zur Bestimmung
der Intervallenden a"“, b“" auf L„_1 bestimmen wir ausgehend von x"“ aufL,,_1
eine Folge {y’}, l = 0, i l, i2, äquidistanter Punkte, wobei gilt:

y° = x"‘1 ; y’ läuft fürl g 0 in Richtung der Koordinatenachse, zu der Lk_1 parallel
ist, und für l g 0 in entgegengesetzter Richtung.

Nun berechnen wir für ein I > 0 die Wertef(y') undf(y“). Wir können o. B. d. A.
f(y') g f(x") setzen (andernfalls hätte man f(y") g f(x") wegen der strengen Quasi-
konvexität von f). Anschließend berechnen wir die Werte f(y““‘) für i = l, 2,
solange, bis ein Index i0 auftritt mitf(y"“o) g f(y"“°+1).

7 Elam, Optimierung
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Die angegebenen Voraussetzungen sind jedoch nicht hinreichend dafür, daß jeder
Häufungspunkt der Folge {xk} eine Lösung von P2 ist, wie das durch Abb. 7.12 dar-
gestellte Beispiel zeigt. In diesem Falle ist offenbar x" = x"' Vk g kg . x"° ist also Häu-
fungspunkt von {x"}, x“ ist jedoch nicht Lösung des Minimierungsproblems. Als Ur-

X1

I3‘
f=4\ w]
H" ,

Lt,-7A Bild 7.12

sache dafür kann das Auftreten singulärerPunkte aufden Niveaulinien {x eR" |f(x) = ac}

verantwortlich gemacht werden. Solche Punkte können nicht auftreten, wennf als
stetig dilferenzierbar vorausgesetzt wird und Vf(x) = 0 nur für x e G° gilt. Man
beachte jedoch, daß damit nicht notwendig die Ermittlung des Gradienten vonf ver-

bunden ist.
Die erforderliche Verschärfung der Voraussetzungen gegenüber Satz 7.13 erfordert

die Verwendung einer weiteren Eigenschaft differenzierbarer Funktionen.

Definition 7.5: Sind M g R” eine nichtleere oflene Menge undf: M —> R differenzier-
bar auf M, dann heißtfpseudokonvex auf M, wenn gilt:

x1, x2 e M
f(X1) > f(X’)

Der Zusammenhang zwischen pseudokonvexen und streng quasikonvexen Funk-
tionen wird ausgedrückt durch den

} => (X2 — x‘)T Vf(x‘) < o. (7.22)

Satz 7.14: Sind M g R" eine nichtleere ojfene konvexe Menge undf: M —> R di eren-

zierbar auf M, dann gilt:

fpseudokonvex f streng quasikonvex
2

auf M auf M.

Zum Beweis vgl. [6].
Die Umkehrung des Satzes gilt nicht, wie Gegenbeispiele zeigen.

Aufgabe 7.14: Man zeige, dal3 die Funktion f(x) =* x’, x5 R, auf R zwar streng quasikonvex, aber
nicht pseudokonvex ist.

Es folgt nun eine Aussage über die Anwendbarkeit des KS-Verfahrens.

Satz 7.15: Es seif: R" —> R stetig diflerenzierbar undpseudokorwex. Für die durch
das KS-Verfahren erzeugte Folge {X"} existiere eine kompakte Menge X c R" mit
{x"} g X. Dann ist jeder Häufungspunkt dieser Folge {x"} eine Lösung von P2.
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Abschließend zeigen wir das Vorgehen an einem Beispiel, wobei wir auf die aus-
führliche Darlegung der Lösung des Optimierungsproblems (7.22) mittels Elimina-
tionsverfahren verzichten.

Beispiel 7.7: Wir lösen P2 mit

f(x) = x21 —2x,x2 + Zxä, xe R2.

Wegen der Notwendigkeit des Abbruches nach endlich vielen Schritten verwenden wir wieder eine
Schranke s > 0 für Ilx" — x""|I als Abbruchbedingung. Mit a = 0,1 erfolgt der Abbruch im Schritt
11. Man erhält x° z (0,125, 0,125)’ mit f(x°) < 0,016. Die exakte Lösung lautet x° = (0, 0)T,
f(x°) = 0. Der Verlauf der Rechnung ergibt sich aus Tabelle 7.2.

Tabelle 7.2

k i /(x*)

1 3,000 2,000 5,000

2 2,000 2,000 4,000

3 2,000 1,000 2,000

4 1 ‚O00 1 ‚O00 1 ‚O00

5 1,000 0,500 0,500

6 0,500 0,500 0,250

7 0,500 0,250 0,125

8 0,250 0,250 0,062

9 0,250 0,125 0,031

10 0,125 0,125 0,016

11 0,125 (0,062)
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2.1: Für beliebige x‘, x2 e Kund beliebige Z, /45 R+ mit Ä + ‚u = 1 gilt

H/1X1 + MXZII é ÄHXIH + Mllxzll ä 7-r + ‚ur = r

und damit Ax‘ + /tx‘ e K.

2.2: Für beliebige x‘, x’ GP und beliebige Ä, ‚u e R4, mit Ä + M = 1 gilt

A(lx‘ + ,ux2) = MAX‘) + ‚M(AX2) g lb + ‚ub = b

und damit ix‘ + MX2 e P.

2.3: M1, M2 g R2 sind konvexe Mengen (wegen Satz 2.11) mit M1 fl M2 = 0. Nach Satz 2.8 sind
M1 und M2 trennbar, und zwar durch jede der Geraden

H= {(x,y)TeR2 ly = ex} mit c e [—%, g].

2.4: a) Für x1, x2 e R„, x1 # x2, gilt bekanntlichü > \/x‚x2. Hieraus folgt für beliebi-
geÄ„u>0mit7.+‚u=1: 2

1/t(x; + xz) > 21/A/E,
1.xx + ‚ux2 > 17x1 + 2}./A x1x2 + ‚uzx2‚

V}-X1 +/4X2 >;~\/X—1+/4\/E
und damitf(}.x, + ‚ux2) > }.f(x1) +',uf(x;), d. h.fist streng konkav auf R,
b) Wenn wir die Stelle x0 = 0 ausschließen, so ist f auf R+\{0} zweimal diiferenzierbar mit

f”(x) = —— < 0. Nach Band 2, Satz 7.10, ist daher f streng konkav auf R+\{0}.

2.5: Nach Satz 2.10 istfals Summe der konvexen Funktionenfi(x,, x2) = x} und f2(x„ x2) = 2x2
konvex auf R2.

2.6: Wegenf”(x) = e“" > 0 Vxs R ist yH,(x)y = y’e"‘ positiv definit und daherfstreng konvex auf R.

2.7: a) a" 1 2

X2 b) Wählt manA = (e127) = 3 I), so

— a" l —l
läßt sich b° e Bnach Satz 2.19 als nicht-
negative Linearkombination der a’ (i =

1, 2, 3) darstellen:

2_ H, ATy=b°‚yä0.
Das Gleichungssystem

// 7V "Z ' 1 3 1 C‘ 2/ 4 „a I (2 1 _1) E: = (o) hat die Losung

' 3‚

ten hat.

Bild 2.23
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4.1: Das gegebene Problem kann in der Form geschrieben werden min {—f(x) I x e Ö},
G = {xeR" I —g,~(x) g 0, i e 1,}, wobei -—fund —g‚-‚ i e 1g’ konvexe Funktionen sind.

4.2: Man führe die Restriktionen E„(x) = —x„ g 0, k = 1, ..., n, ein.

4.3: a) fkonvex, G nach Satz 2.12 und Satz 2.3 konvex; Satz 3.2 ergibt daher die gewünschte Aussage
von Satz 4.2.
b) (Beweis indirekt): Die Annahme, daß x‘ und x2 ¢ x1 Lösungen des Problems (4.1) sind,
führt wegen

lf(x‘) + (1 — i.)f(x2) =f(/'.x1 + (1 — }.)x2) (Satz 4.3, 1. Aussage)

auf einen Widerspruch zur strengen Konvexität von f.

4.4: Ist x° ein innerer Punkt von G, so existiert wegen (4.2) ein s > 0 mit

(x — x°)T Vf(x°) z 0 Vx mit [Ex — x01: < s. (n)

Aus der Annahme Vf(x°) $ 0 folgt die Existenz eines i mit Hi — x°|[ < e und

(i — x°)T Vf(x°) > 0. (n)
Für y = —(i — i:°) + x° folgt wegen (w) einerseits (y — x°)T Vf(x°) g 0, andererseits hat
man wegen (n)

(y — x°>T Vf(x°) = «ä — x°>T Vf(x°) < o,

und das ist ein Widerspruch.

4.5: a) x° = (2, 2)T; (4.2) gilt, aber nicht (4.3) (x° ist kein innerer Punkt von G).
b) x° = (1, 1)"; x° ist innerer Punkt von G. (4.3) gilt und damit auch (4.2).

4.6: Es ist C = HQ(x) mit G konvex. Nach Satz 2.16 folgen die zu beweisenden Aussagen.

4.7: Es ist VQ(x°) = 2 Cx° + c; aus Satz 4.5 folgen die zu beweisenden Aussagen.

4.8:l.a)<x>4, b)o¢=4, c)oc<4

2.oc=]: x{’=(1,0)T und x‘,’,=(0,l)T; oc=4: x°=(1,0)T;
zx=8: X°=(l,0)T.

3. Höhenlinien sind
a) im Falle on = I: Hyperbeln

xTCx .= xi + 4x,x2 + x} = 3x’: — x'§ = c

mit dem Mittelpunkt (0, 0)‘ und den Asymptoten

(2 + \/§)x1 + x; = o, x. + (2 + \/§)x2 = o (Bild 4.2),

b) im Falle on = 4: Parallelgeraden

XTCX = xf + 4x1x2 + 4x2 = 5x’: = c

mit dem Anstieg — ä (Bild 4.3),

c) im Falle a = 8: Ellipsen _ __

9 65 9 — 65
xTCx = x? + 4x1x2 + 8%‘: —+2\/—x'f + ———2Lx’ä = c

mit dem Mittelpunkt (0, 0)" und mit q: gemäß

4
tan 24;: = — -7-— (Bild 4.4).
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X2

Bild 4.2

X2

X1

Bild 4.4

4.9: a) Im Problem

max {3e"I + X2 l xe G},

G ={(x1,x2)TeR2|x1 > 0, x2 > 0, Zlnxl + lnxz §ln16}
sind oflenbar die Variablen separiert.

b) Wir bilden in der Zielfunktion In (xgx4) = ln x3 + ln x4 und setzen

x5 = xx sinxz, x5 = xäln x4, x-‚ = 4e"1"-, X3 = x; cos x4.
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Durch Logarithmieren dieser Gleichungen und anschließendes Einsetzen in die Restriktionen
erhält man ein System von Gleichungen und Ungleichungen, in welchem die Variablen sepa-
riert sind. Dieses System kann leicht in die Form (4.10), (4.11) gebracht werden, wobei jedoch
zu beachten ist, daß die Ausgangsvariablen positiv sein müssen.

4.10: Es sei (y°‚ 1°)’ eine Lösung von (4.14). Dann ist

flyoJo) : c’y° + cot° = c’y°/1 + cot°Z =f(Zyo’b0).
dTy° + d;,t° dTy°/I + doz°,1

Für Ä > O ist At“ > O, A/'ly° —— bÄt° g 0 und damit (Äy°, 14°)’ E G’. Daher ist (Äy°, h0)’
Lösung von (4.14).

4.11: Dem gegebenen Problem ist das lineare Problem

min {3yl - ‚v2 + 3r1(y‚t)’ 6 G**}.

G**={()’»f)T5R3|y1+J’2—§4’,2)’1—y2§2V,Y3.0. }’1+2J’2+t=1‚’>0}

‚ i, -1- . Durch
9 9

Transformation folgt hieraus als Lösung des Ausgangsproblems (x{’‚ x2)’ = (0, 4)’.

zugeordnet. Mit der Simplexmethode folgt als Lösung (y‘f, yg, 1°)’ = O

5.1:Aus u“ e R}: und g(x°) g 0 folgt zunächst u?g‚(x°) g O VieI,. Aus der Annahme
u?g,»(x°) < O für ein i e I, erhält man u°’g(x°) < O im Widerspruch zu (5.12).

5.2: Es ist

x’Cx + c’x = xT<‘1)(1))x + (—s‚ —-10)x.

C ist positiv definit, G ist konvex;

F(x‚ u) =xf + ‚xi — 8x1 — 10x2 — u‚x1 — uzx; + u3(3x1 + 2x2 — 6).

Die lokalen Kuhn-Tucker-Bedingungen (5.11), (5.12) lauten

2x0» 8—u°+ 314°o o = 1 1 3 ___

V"F(" ’“ ) (2x: — 10 ~ 143+ 2:43) o’
_ X4;

V„F(x°‚ u°) = <-—xg > g 0, Ü)
3x2 + 2x3 — 6/

um’ = 0, 143x‘; = o, u§(3x‘,’ + 2x‘; — 6) = 0. _

Nach Satz 4.3, Satz 5.2 und Satz 5 .5 hat das gegebene Problem genau eine Lösung, und zwar die
Lösung des Systems (s):

1

x0 = —E(4, 33)?

Grafische Lösung: Bild 5.3. Es ist

x§+ x; — 8x1 —10x2 =(x1 —4)2 + (x, — s): — 41.

5.3: Die Zielfunktion des Problems ist für jedes t e R konkav, d. h. Satz 5.2 und Satz 5.5 sind nicht
anwendbar.
a)_Es ist

t2 5
—xä—xä—txl—2tx;=—(xl+?) —-(x2+t)‘+Tt2.

Als Lösung x° ergibt sich (Bild 5.4)
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f=Z

der
Bild 5_3 f Nlffl’//7L//7Kf€

Bild 5.4

~ v=<:> Kiemen?»

xee{<2>‚<:>}» °=<2>«
4
0

N

—4<t<0: x°=(

\
_

/

b) Nein, c) nein.

5.4: Man findet x° = (1, O)’ (Bild 5.5).

Bild 5.5

a) Es ist F(x, u) = —x‚—u1x‚—u2x‚ + u3(x; —(1 — x,)3).
Aus

V F(x° u“) = "1 ""5, = o
‘ ’ -142 +142

folgt u? = —l < 0, d. h. u° ¢R3,.

b) Es müßte gelten z"Vgz(x’) = -2; < 0 und zTVg3(x°) = z, < 0, und das ist nicht möglich.
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5.5: Als Lösung des Systems (5.11), (5.12) folgt

x° = (2, 0)T, u° = (O, 2, a, 00T mit o: g O.

Da das Innere von G leer ist, ist B nicht erfüllt und damit Satz 5.6 nicht anwendbar. Es ist

Vf(x°) = und x — x° g 0 Vxe G. Nach Satz 4.8 hat man (x — x°)"Vf(x°) g 0 Vxe G.

5.6: Es ist x e R’; e» — x g 0. Wir führen für das neue Problem die Lagrange-Funktion

i‘(x, u, v) = F(x, u) — vTx = f(x) + uTg(x) — vTx;

' xeR"‚ueRf,veR:,
ein. Dann folgt aus der (5.11) entsprechenden Bedingung

V,F(x°, u°, v°) = VxF(x°, u°) — v° = 0,

d. h. VxF(x°, u") = v° g 0.

Aus 12‘; =i= O folgt wegen (5.12) und Aufgabe 5.1 sofort

x? = 0 und damit xfgiij (x°, u°) = 0 Vj = 1, ...‚n‚

d. h. x°T VxF(x°, u°) = 0.

6.1: Nach Satz 5.6 ist (5.12) erfüllt. Daher gilt u°"g(x°) = 0, und hieraus folgt F(x°‚ 11°) = f(x°).

6.2: P:min{f(x)=xf—x2lxeG},G={xeRzlxf+aäg1},
D: max{F(x‚ u) = xi — x2 + u(xf + A‘; — 1) 1 (x, u)T E G*},

G‘ = {(x,u)TeR2 x R] u g o, V,F(x, u) = 0}.

a)f(X) 2 f(X°) = F(X°‚ 14°) ä F(Y. ü) VX E G, \'/(Y, u)T E G*‚

VxF(y, u) = (2.v1 + Zyw. -1 + 2.v2u)T = 0.

z. B.

x, = 0, x2 = 4%, ‚v, = 0, y; = 4}, u = 1 sind zulässig.

Daraus folgt n

f(x) = — gflx“) g F(y‚ u) = --:-.

~
]>

—
-

b) Lösung von P: x‘; = 0, x2 = 1;
l ‚ . .

Lösung von D: x2 = 0, x2 = I, u° = 704° = 0 ergibt einen Widerspruch).

6.3: D:max{—3x}—2Aä+5x3—x4lxeG}‚
G = {xeR‘ |x1,x2e R,x3,x,,eR+,4x3 — 2x4 g 4xi‚2x3 + x4 g 4x2},

4 3 4 -2 s
Vf(x) = "l = x3,u2 = x4,AT = (2 1),b=(_1).

f(x)=xf+2x‘;

F: min {f(X)]XEE}, ä = {xeR2{xER:,(_: g
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6.4:

6.5:

7.1

7.2:
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7_‚xg=Man erhält die Lösung x2 = 8 A
lu

r 3

83

— 4
D1: max {Sm — u; ] ul, u; ä 0,4141 —~ 2u2 g (z2,68)‚ 2141 + u; g 3} .

llll
1024

425
Man erhält als Lösung ul = „g = (z 1,08); ug = a2 = E; (z 0,83).

Duales Problem im Sinne von Dorn:

D: max{—xTCx —— uTb l (x, u)Te G*},

0* = {(x,u)TeR" x R”’1ueRf‘, —ATu g 2Cx + c}.

Duales Problem im Sinne von Wolfe:

D: max {xTCx + cTx + uT(Ax — b) — vTx [ (x, u)Te 6*},

ö" = {(x‚u,v)TeR" x R"' x R"IueRf'‚ veR:, 2Cx + c+ ATu — v = 0}.

Wegen Ö‘ hat man 2xTCx + cTx + xTATu — xTv = 0

und damit das Problem

max { —xTCx — uTb I (x, u)T G 6*},

5* = {(¥.u.v)TeR” >< R"' >< R" l ueR',;', veR';, — ATu + v = 2Cx + c}.

Wegen v E R’; sind folglich D und D identisch.

Aus F(x‚u) = cTx + uT(—Ax + b) folgt VxF(x, u) = c — ATu = 0 und damit F(x‚ u) = bTu
für ATu = cund D: max {b7u I ATu = c, ue RT}.

xTCx s (w, ‚an (E; 3;) (:2)

= x}'C“x, + x}'C22x2 + x'fC12xz + xgczm

mit GT1 z C11: C}-2 = C22’, Cf: = C21~

Einsetzen von x2 = Blxl + b ergibt

xTCx = xf(c„ + Bfcu + C1231 + B}‘C,2Bf)x* + dTx1 + dc

und damit D = C1, + Bfq, + C123, + Bfcnnf.
Wegen (*) folgt DT = D. Es gilt

E

B1

Aus der Annahme q = x”Dx1 < 0 für ein x1 # 0 folgt dann

(")

D = (ET, Bf) C ( ) (E Einheitsmatrix).

_ 1T 'r -r E 1O > q _ x (E ,B1)C x
B:

1- .. . „ . E 1=yCy furem yeR m1ty= B x
1

im Widerspruch zur Voraussetzung, wonach C positiv semjdefinit ist.

Es seien d, = 0, k e23, und L1,; 0, i621. ("')
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7.4:

7.5:

7.6:

7.7:

Lösungen der Aufgaben 99

Wegen der positiven Semidefinitheit ist Q(i) = iTDi + 267i + do mit i =

eine_konvexe Funktion. Nach Satz 4.6 ergibt sich wegen

IIV

l
(x3), x‘ 0,

X

l

VQG) = 2'1); + 2d,d = G3>,§1° = £30 = 0,

VQ(i°)T(§ — i“) = VQ(i°)1§ = 2a’; g o für alle x1 g o, x3 beliebig

0, x" = b.als Lösung des Problems x” = x30

x° = x°TCx° + cTx° = —~304.

a) C negativ semidefinit r» Verfahren nicht anwendbar.

b)x2 = O und x1 —> —0o =(2)eG und xTCx +cTx-—> — oo.

n

a)min{—Q(x)!xeG}, G: {xeR"\Z‘pjxj g fi‚x g 0 ‚

i=1

d .E (xTcx + cTx) = zxAxTcAx + 2xTcAx + cTAx = o, (*)

d2

doc:

i ä O ergibt sich a" = min {oc’,‘, a’; ä}. Im Falle 3c < 0 gibt es keine Abstiegsrichtung.

(...) = ZAxTCAX > 0 nach Voraussetzung. Auflösung von (*) nach o: ergibt ü. Im Falle

a) Tableau zu Startpunkt x‘, {T := (y, z)’, xT = (xx, xi).

x1 x2 1 yä VyfG) = (0. 0. 0)T,
„ —s —2 2 7 _

x3 —1 o 4 2 V‚f(x)=( (“l ) "L 1 (*)
x4 0 —l 3 1 x3

x5 —1 —1 5 1 y: (‚A‘), z =

zäT 2 2 x5 2

<2»/;;”‘<“2+v>>’
df(§Z + ocA§)

doc Ax, (u)
1

=0 r.» o4=—'»—
Axl

-7 0,9089
-—-1-;= r‘ = Az‘ = (-1), a} = oo, ac; = 7, cc‘ z 0,1559, zä z (13441),

„g = .2 = A22 = <°"_4129), a} z 19,75, a; = 042 b 1,8441, 23x013”).

7
0 0,9199 2 —- ——r§=1-3=Az3=(_l),z3z( 0 )z A/6 =x°‘,Az‘=0

0

=> x°‘ stationärer Punkt (vgl. Bild 7.13).
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b) Tableau zu Startpunkt x"

y‘ -

x1 x2 1 Y6 -1’, Ay‘ (min) yä

x, —_1 0 4 0,5 0 —s‚s 0,0769 o

x4 T -1 3 2 0 1 0o 2,0769

x, -1 —1 5 0,5 0 —s‚s 0,0909 0,0769

(z5)T 3,5 1 a, = 0,0769 0,0759 = a;

(r’)T = (-I'D’
= (MUT 6,5 -1

z]! T

(m) °° 1 ‘=“%
(£3? 4,0 0,9231

Danach Austausch von x3 gegen x, und Durchführung einer weiteren Iteration.

2 2 2x3 x2 1 yo —ry Ay

x, -— 1 0 4 4,0 17 0 0o

x4 0 — l 3 2,0769 0 l oo

x5 l — l 1 0,0769 0 1 00

(z§)" O 0,9231 o0

(—r§)' 0 -1 f)“

(r’)" — 17 — l Vyflg) = f“
(Az1)T 0 —1 5‘-

A f):2 1' = I

oo 0,9231 0,9231 = a2 mm) (m)
|Az,

Es folgt 23 = 3 , x°“ = ä ‚A23 = 0. Daher ist x°“ ein stationärer Punkt.

Obwohl x°‘“ nicht Stelle eines lokalen Minimums wie x“ oder 22°" ist, gilt dort A2‘ = 0,
d. h. x°‘" ist ein stationärer Punkt (lokales Maximum von f bei x2 = 0).
c) Vgl. Bild 7.13.
d) Nach dem Verlauf der Höhenlinie ist x°‘ die Lösung des Optimierungsproblems. Es gilt
f(x‘") z -5,0406, f(x°n) = —2‚ f(x°1") z 5,0405.

a)f: R -0 R und g: R —> R stetig 2 max {f(t),g(t)} stetig»

=> max {0‚ I} stetig => max'{O, t} stetig (r g 1).
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lt! stetig =>f(t) = m’ stetig (r ä 1) und

0 für ISO (—t)' für tsoP O = ~— ’ I‘: — 9

max h’) {f für t>0; m z’ für z>0.
b)r>l.

X1

Bild 7.13

7.9: xk" Lösung von P =f(x"=) g H(x"°‚p ) g o:

xk.‚ E G :, f(xk.,)k°; o; k" =>f(x"°) = ax.

7.10: Pk: min {x} + Zxä + pk max2{0,1— xi — xi} [ x1 _2_ O, x; g 0}, ("‘)

VH(x,1I:.) = (M I 4'7"” H X? " "§)"‘),
4x2 — 4ph(1 — x} — x§)x2

VH(x", „F (x — x") g 0 vxe U(x") n R: ergibt:

x" > 0 =~ Widerspruch, x" = 0 keine Lösung von Pk,

1 Einsetzen in (*) zeigt
x’,‘=0,x§>0:>x'2‘= 1——

Pk

2 "= ‘_.
.\J2‘=0,x"‘>0=)X1‘=A/1———-{ X pk

Pk 0

l
0 .

In Bild 7.14 ist der Sachverhalt skizziert (für p,‘ = k; I, II, III bedeutet k = 4, 5 bzw. 10).

Der Grenzübergang k —> eo ergibt x“ =

Bild 7.14
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7.11: b(t) = t", r > 0 ä b stetig für t > 0 i 2

b(t) = —ln t g, stetig für x E X

xh ye G\5=gi(x*>»g;(y> = o=~B<x*)—» oo.

7.12: a) x: sei Lösung von P, d. h. f(x°) = a, x° e G. Dann existiert wegen ä = G eine Folge

x" e G mit lim x" = x°, und es gilt
k-aoo

f(X°) = limf(x") ä infflx) ä inff(x) =f(X°)-
k—>oo xef; xeG

b) inf(—x) = —1 =}= inf(——x) = -2 (vgl. Bild 7.15).
xeÖ xeG

X2

Bild 7.15

7.13: Pk: min {xf + 2x12 + q,,ln(xf + xi — 1) 1 x, 2 0, x; g 0},

2
2x1 + qk4

VH(xq)= ”1+"§"1
, k 4x + q 2x2 ,2 k

x? + xi —— 1

VH(x", qk)T(x — x") ‚z 0 Vx E U(x") n R3 ergibt

x" > 0 = Widerspruch;

q q2 Einsetzen in H(x‚ q,,) zeigt
x’,‘=0=«x';=——:-+ /1+1” :2.

qk A/ ‘h;

i v: ‘7+ ”—

I
o

x

g/z"=0=>,\Jl‘=__q_k_+ ]+_ 4 '

2 OA
S

»

Der Grenzübergang 11„ —> 0 ergibt x“ =

7.14: f(x) = x3, xe R, ist differenzierbar und offenbar streng quasikouvex auf R. Für x1 = 0 und
x, < 0 gilt aber f(x1) > f(x2) und (x; — x1)f’(x‚) = 0. Daher ist fnicht pseudokonvex auf R.
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