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1. Problemstellung

Bei zahlreichen Prozessen in der Industrie, Landwirtschaft, Volkswirtschaftspla-
nung usw. hat man im Interesse der volkswirtschaftlichen Entwicklung die Frage nach
der optimalen Gestaltung von Verfahren, nach einem optimalen Einsatz vorhandener
Arbeitskrifte, Maschinen oder Rohstoffe, nach der Optimierung des Gewinns, der
Herstellungs- bzw. Transportkosten, der ProzeBdauer und von Maschinenstillstands-
zeiten zu beantworten. Dabei ist sowohl ein geeignetes mathematisches Modell zu
ermitteln als auch ein entsprechendes Losungsverfahren anzuwenden.

Unter Optimierung verstehen wir die Auswahl giinstiger Werte in bezug auf ein
Giitekriterium (Zielfunktion) unter Beachtung der Bedingungen (Restriktionen), die
uns durch die objektive Realitdt auferlegt werden.

Da nicht alle Bedingungen beriicksichtigt werden konnen, muB ein die Wirklich-
keit méglichst gut widerspiegelndes, aber moglichst einfaches Modell aufgestellt wer-
den. Das zugehorige mathematische Modell hat dann die Form eines Optimierungs-
problems.

Sind mehrere Giitekriterien zu beriicksichtigen, so spricht man von Polyoptimierung
oder Vektoroptimierung. Sind sowohl das Giitekriterium als auch die Restriktionen
zufalliger Natur (im Sinne der Wahrscheinlichkeitsrechnung), so spricht man von
stochastischer Optimierung. Solche Probleme werden in diesem Buch nicht behandelt.

Bemerkenswerte Ergebnisse konnten bereits mit der linearen Optimierung erzielt
werden, doch ist die Anwendung nur linearer Modelle fiir die moderne Praxis nicht
ausreichend. Schon einfache Beispiele zeigen, daB praktischen Prozessen angepafBte
mathematische Modelle wichtige Nichtlinearititen enthalten, die das Studium von
nichtlinearen Optimierungsproblemen erforderlich machen (vgl. Beispiel 1.2). Von
besonderer Bedeutung sind dabei die konvexen Optimierungsprobleme. Daher spielt
in den folgenden Darlegungen der Begriff der Konvexitit eine zentrale Rolle.

Wir betrachten zunichst ein einfaches Beispiel.
Beispiel 1.1: Die Funktion
fx) = =% — 2%+ 4x; + 2x, — 5,

deren Bild ein Rotationsparaboloid mit einer zur z-Achse parallelen Achse ist (in Bild 1.1 wird f

%

¥ Bild 11
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durch Niveaulinien skizziert), nimmt ihr Minimum iiber der Menge

G = {xER?g;(X) =x; 20, g£(X)=x, 20,
X =x+x,-120, g&=2x +2x,—8=0,
g5(x) = 6x; + 5x, — 30 = 0}

im Punkte x° = (0, 9T an (Bild 1.1); es ist f(x°) = —13.
Das folgende Beispiel entnehmen wir einer elektrotechnischen Aufgabenstellung.

Beispiel 1.2: Eine Spannungsquelle E mit dem Innenwiderstand Ry ist iiber ein 7-Netzwerk an den
Lastwiderstand Ry angeschlossen (Bild 1.2). Das T-Netzwerk ist in seinen Widerstinden R;, R,

Bild 1.2

R3 so zu dimensionieren, daB3 bei einer Schwankung von Ry zwischen 50 Q und 150 Q ¢ine Last-
4nderung von hdchstens +5% an der Spannungsquelle, bezogen auf die Last bei dem Sollwert
Ry = 100 Q, eintritt. Gleichzeitig ist die an Ry fiir R, = 100 Q abzugebende Leistung zu maximieren.
Zur Aufstellung des zugehérigen mathematischen Modells werden die Widerstinde R in Q, die
Spannungen U in V, die Stromstérken / in A und die Leistungen P in VA = W angegeben; anschlie-
Bend gehen wir zu dimensionslosen GroBen tiber.
Nach den Kirchhoffschen Gesetzen der Elektrotechnik erhilt man den Gesamtwiderstand

Ry(Rs + Ry)

Rp(R) = Ry + ——> " "L
e = Ry R, + Rs + Ry,

Bezeichnet man den Gesamtwiderstand Ry fiir den Sollwert Ry, = 100 Q mit R (100), so folgt aus
der Bedingung der Aufgabenstellung

Rg
0,95 < ————— = 1,05.
Rz(100)

R
Wegen der Monotonie von R—(%O)_ in Ry, folgen hieraus die Ungleichungen fiir Ry, R, und Rj:
E' .
0,95 Rg(100) = Rg(50); Rg(150) = 1,05 Rg(100),
(1.0)

Ry =0, R, Z0, R;z0.

1\

Die zu maximierende Zielfunktion f ergibt sich wegen
R,
Ry + Ry + R’
= (Ry +R5 + RYE
(Ro + Ry) (R + R3 + Ry) + Ry(R3 + Rp)

P =I1R. I =1
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fiir Ry, = 100Q zu

100 E2R2
Sf(Ry, Rz, R3) = Pigo =

[(Ro + Ry) (R, + Ry + 100) + Ry(Rs + 100)]> "

Es ist also die Funktion f(R;, Rz, R3) unter den Bedingungen (1.0) zu maximieren.

Als allgemeines Optimierungsproblem bezeichnen wir die Aufgabe, einen Extrem-
wert (etwa ein Minimum) einer Funktion f zu finden, wobei gewisse Nebenbedingun-
gen (Restriktionen) zu beachten sind. Wir schreiben dafiir

min {f®) | xeG}, .1
—{xeR"]g(x)<0V1e s hi(x) = 0V jel,} ’
mit ={,.,my, I,={1,..k}.

Die speziellen Falle I, =0 bzw. I, = 0 sind zugelassen. Dabei heillen
f:R* —» R die Zielfunktion, g;: R* —» R, i€ I, und A;: R* — R, jeI,, Restriktions-
funktionen und G zulassiger Bereich des Problems (1.1) (vgl. dazu G im Bild 1.1).
© Jedes xeG heifit zuldssiger Punkt von (1.1). Die in (1.1) gewidhlte Schreibweise
,»,min‘ bedeutet, daB fiir fdas Minimum oder Infimum beziiglich G zu ermittelnist. Wird
das Minimum von fbeziiglich G in x° € G angenommen, so nennt man x° Lésung (oder
Optimalpunkt) und f(x°) den Optimalwert des Problems (1.1). Wegen max fx) =

- mm [—/f(x)] k6nnen wir uns im folgenden auf Minimierungsprobleme bcschrankcn

W1rd das Minimum von f beziiglich G n U fiir eine gewisse Umgebung U von
x° e G in x° angenommen, so nennen wir x° eine lokale Lésung.

Wir nennen das Problem (1.1) nichtlinear, wenn wenigstens eine der Funktionen f,
&i, hy nichtlinear !) ist, andernfalls heiBt (1.1) lineares Problem. Lineare Optimierungs-
probleme wurden bereits in Band 14 behandelt.

Bei nichtlinearen Optimierungsproblemen treten folgende Schwierigkeiten im Ver-
gleich zu linearen Problemen auf:

—

. Der zuléssige Bereich G wird im allgemeinen nicht durch Hyperebenen begrenzt
und ist nicht notwendig konvex.

2. Durch f(x) = const wird im allgemeinen keine Hyperebene des R", sondern eine

(gekriimmte) Hyperflache definiert.

3. Eine Losung x° des Problems kann auch im Innern von G liegen.

Ein lokales Minimum von f beziiglich G ist im allgemeinen kein globales Minimum

von f beziiglich G.

. Bei Ziel- und Restriktionsfunktionen miissen die bei den jeweiligen Aufgaben vor-
liegenden Eigenschaften wie Stetigkeit, (evtl. mehrfache) Differenzierbarkeit, Kon-
vexitdt usw. sowohl fiir die Theorie als auch bei Losungsverfahren beriicksichtigt
werden.

>

W

Daraus ergibt sich u. é., dafB die bekannten Losungsverfahren fiir lineare Optimie-
rungsprobleme sich nicht ohne weiteres auf Probleme der Form (1.1) iibertragen las-
sen.

1) Genauer schlieBen wir dabei auch die linear-affinen Funktionen aus. Die Funktion f: R* - R™
heiBt linear-affin, wenn gilt f(x) = Ax + b, wobei A eine (m, n)-Matrix und b € R™ ist.
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Durch Spezialisierung der in (1.1) auftretenden Funktionen und Mengen erhélt
man spezielle Klassen von nichtlinearen Optimierungsproblemen, von denen wir
einige angeben wollen:

a) klassische Optimierungsprobleme (Extremwertaufgaben ohne Restriktionen bzw.
mit Restriktionen in Gleichungsform) fiir
I, =01, =0. bzw. I, =0,I,%0, k <n;
b) konvexe Optimierungsprobleme fiir
I, 0 und f, g konvex, A, linear-affin;
¢) quadratische Optimierungsprobleme fiir
I, + 0, f quadratisch, g;, 4; linear-affin;

d) separable Optimierungsprobleme fiir
1, # @, fund g; separabel, d. h. von der Form f(x) = ¥ f,(x,),
v=1
gi(x) = glgtv(xv);

e) hyperbolische Optimierungsprobleme fiir

_ u(x)
1, % 0, fvon der Form f(x) = 7:6(—)—
Besondere Bedeutung haben in der nichtlinearen Optimierung die konvexen Pro-
bleme erlangt. Das liegt vor allem daran, daf3

a) viele Modelle aus der Praxis mit hinreichend guter Naherung auf ein konvexes
mathematisches Optimierungsproblem fithren,

b) eine genauere Approximation durch konvexe (nichtlineare) als durch lineare
Modelle méoglich ist,

¢) in der Theorie der Optimierung und der Losungsverfahren weittragende und gut
anwendbare Aussagen moglich sind.

Daher gehen wir auf konvexe Mengen und konvexe Funktionen im folgenden Ab-
schnitt ndher ein.
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2.1. Konvexe Mengen

Bei nichtlinearen Optimierungsproblemen spielt der Begriff der Konvexitit eine
wesentliche Rolle. Wir behandeln zunichst konvexe Mengen, wobei einige Begriffe
aus Band 14 wiederholt und erginzt werden.

Definition 2.1: Eine Menge M < R" heifit konvex, wenn gilt:
x', x2eM

ApeRL A+ =1 = Ix! + ux*e M.

Die leere Menge O wollen wir als konvex ansehen.

Beispiel 2.1: a) Jede einelementige Menge {x}, x € R", und der R" selbst sind konvexe Mengen.
b) Bild 2.1 und Bild 2.2 zeigen geometrische Veranschaulichungen konvexer bzw. nichtkonvexer
Mengen im R2.

N
%

Bild 2.1 Bild 2.2

M M

c) Jedes abgeschlossene, offene oder halboffene Segment
[x', x?], (x!,x?), [x,x?) bzw. (x!},x?] mit x',x’eR"
ist eine konvexe Menge.
d) Jeder abgeschlossene oder offene Halbraum
{(XERY c"™x =&} bzw. {xeR"|c"x <&}
sowie jede Hyperebene H = {x€ R" | ¢"x = &} mit c€ R", ¢ % o und x € R sind konvexe Mengen.
Aus Definition 2.1 folgt sofort, daB eine Menge M < R" genau dann konvex ist,
wenn gilt:
xi, x?e M = [x!, x’] € M.
Aufgabe 2.1: Zeigen Sie, daB die Kreisfliche
K:={xeR*||x|=r; r>0}
eine konvexe Menge ist.
Aufgabe 2.2: Man zeige: Fiir eine beliebige (m, n)-Matrix A und beliebiges b € R™ ist die Menge

P: = {xeR"|Ax = b}
konvex.
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Konvexe Mengen lassen sich auch mit Hilfe des Begriffes der konvexen Linear-
kombination charakterisieren.

Definition 2.2: Ein Punkt x€ R" heifit konvexe Linearkombination der Punkte
x', ..., X" € R", wenn sich X in der Form darstellen lift: :

X =4x! + L +4,X" mit A, ., A,e R, A+ o+ 2, =

In Bild 2.3 sind konvexe Linearkombinationen von zwei bzw. drei Punkten darge-
stellt.

x!

x=Ax 2K
D\"-\:(z

X7

(X0 29%° Bild 2.3

x!
X2

Man hat folgende Aussage (Beweis in [6]):

Satz 2.1: Eine Menge M < R" ist genau dann konvex, wenn jede konvexe Linearkombi-
nation von Punkten aus M wieder zu M gehort, wenn also gilt:

LX"eM
Ay ey Ame€ RS =2x + ...+ A, X"eM. (2.1)
Mt i+ dp=

Der nachstehende Satz gibt Auskunft iiber Operationen mit konvexen Mengen.
Satz 2.2: Es seien M, M, = R" konvexe Mengen und A€ R. Dann sind die folgenden
Mengen wieder konvex:

1. die Summe M, + M, := {z|z =X + y;Xxe M,,ye M,},
2. das skalare Vielfache AM, := {z|z = JX;x€ M,},
3. das kartesische Produkt M, x M, := {z|z = (x,y)",xe M;,ye M,}.")

Uber den Durchschnitt konvexer Mengen hat man die folgende Aussage, deren
Beweis leicht zu fithren ist (vgl. Band 14, S. 7):

Satz 2.3: Der Durchschnitt ﬁ M, von beliebig vielen konvexen Mengen M; = R",

ie I (I beliebige Indexmenge), lst konvex.
Wir fiithren nun den Begriff des Eckpunktes einer konvexen Menge ein (vgl. Band
14, S. 8).
Definition 2.3: Es sei M = R" eine konvexe Menge. Ein Punkt x € M heifit Eckpunkt
(oder Extremalpunkt) von M, wenn es keine Darstellung der Form
x = Ax! + px? mit x!, x®eM,x' + x*;Lu>0,1+pu=1
gibt.

1) Der einfacheren Schreibweise wegen stellen wir im folg nden einen Vektor <X>EM1 x M,
haufig in der Form (x, y)T dar und verwenden nicht die Schreibweise (xT, yT)".
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In Bild 2.4 sind x' und x? die Eckpunkte von M; in Bild 2.5 sind x!, x2, x* die
Eckpunkte von M; in Bild 2.6 sind x° und alle Punkte des von x! und x? berandeten
Kurvenbogens Eckpunkte von M. Konvexe Mengen besitzen i. allg. unendlich
viele Eckpunkte, wohingegen konvexe Polyeder (vgl. Def. 2.5) als spezielle konvexe
Mengen nur endlich viele Eckpunkte aufweisen (vgl. Band 14, S. 8).

3 x?
X X

X’
Bild 2.4 ¥ )
x x* Bild 2.5 Bild 2.6

Aus der Existenz unendlich vieler Eckpunkte bei konvexen Mengen folgt u. a., daB
die bekannte Simplexmethode der linearen Optimierung bei Problemen mit konvexem
zuldssigen Bereich i. allg. versagt, ganz abgesehen davon, daB Optimalpunkte
nicht auf dem Rand liegen miissen.

Die Eckpunkte einer konvexen Menge lassen sich in folgender Weise charakteri-
sieren (vgl. [21], S. 28/29):

Satz 2.4: Es sei M < R" eine konvexe Menge. x € M ist genau dann Eckpunkt von M,
wenn eine der beiden folgenden Bedingungen erfiillt ist:
1. Die Menge M\ {x} ist konvex.
2. Es gibt keine zwei Punkte X', x> € M mit
1
X = 7(x1 +x2), x! # x2.

Jeder (beliebigen) Menge M < R" 1aBt sich in eindeutiger Weise eine konvexe
Menge zuordnen, die M umfafit.

Definition 2.4: Es sei M S R" eine beliebige Menge. Unter der konvexen Hiille [A]
von M versteht man den Durchschnitt aller konvexen Mengen aus R", die M umfassen.

Aus Satz 2.3 folgt sofort, daBl die konvexe Hiille einer Menge stets eine konvexe
Menge ist.

Beispiel 2.2: a) Die konvexe Hiille von zwei Punkten x!, x? € R" ist das Segment [x!, x?].
b) Die konvexe Hiille von drei nicht auf einer Geraden liegenden Punkten x*, x2, x® € R” ist die

von diesen Punkten bestimmte Dreiecksfliche (Bild 2.7).
¢) Bild 2.8 zeigt die konvexe Hiille [M] der (schraffiert gezeichneten) Menge M.

x° M
M={x7xx} /

b x? Bild 2.7

1d
X Bild 2.8
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Beispiel 2.3: Fir die Menge

M= {x=(x,x)T€R*| 0= x, =

ergibt sich die konvexe Hiille
[M]={xeR?*|0 = x, <1} U {0, DT},
d. h., die konvexe Hiille einer abgeschlossenen Menge ist i. allg. nicht abgeschlossen.

Zum Begriff der konvexen Linearkombination besteht folgende Beziehung (vgl.
[21], 8. 20f):
Satz 2.5: Die konvexe Hiille [M] einer Menge M < R" ist gleich der Menge aller kon-
vexen Linearkombinationen von Punkten aus M.

Fiir Verfahren zur Losung linearer und nichtlinearer Optimierungsprobleme ist die
folgende spezielle Klasse von konvexen Mengen von Bedeutung.

Definition 2.5: Es sei M := {x!, ..., x"} < R". Dann heifit die konvexe Hiille [M]
dieser Menge konvexes Polyeder.

Beispiel 2.4: Bild 2.4, Bild 2.7 und Bild 2.9 veranschaulichen konvexe Polyeder, die durch zwei, drei
bzw. fiinf Punkte erzeugt werden.

Bild 2.9

2.2, Trennungssiitze

Wenn in der Ebene zwei disjunkte konvexe Mengen gegeben sind, so folgt bereits
aus der Anschauung die Vermutung, daB diese Mengen durch eine Gerade ,,getrennt*
werden konnen derart, da3 die eine Menge vollstindig ,,auf der einen Seite* und die
andere Menge vollstandig ,,auf der anderen Seite* dieser Geraden liegen. Aussagen
dieser Art, auf den R” iibertragen, werden als Trennungssitze bezeichnet. Sie spielen
eine wichtige Rolle in der Theorie der konvexen Mengen und in der nichtlinearen
Optimierung.

Vorbereitend fithren wir den Begriff der trennenden Hyperebene ein, und zwar fiir
beliebige Mengen.

Definition 2.6: Es seien M, M, S R" zwei beliebige Mengenund H := {x € R*| ¢"x = x}
eine Hyperebene. Dann sagt man:
1. H trennt M, und M,, wenn gilt:
xeM,=cx <«
und
xeM,=c"x = «;
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2. H trennt M, und M, streng, wenn gilt:
XeM;=cx <«
und
xXeM, = ¢c'x > «.
Die Mengen M, M, heifien dann trennbar bzw. streng trennbar.

Beispiel 2.5 Beispiele fiir trennbare, streng trennbare bzw. nicht trennbare Mengen im R? findet man
in Bild 2.10, Bild 2.11 bzw. Bild 2.12.

cTr=u

My und M, sind streng trennbar

k=a . .
Bild 2.10 Bild 2.11

M, und M, sind frennbar

M, und M, sind nicht trennbar Bild 2.12

Wir formulieren zunéchst zwei Aussagen iiber trennende Hyperebenen, deren Be-
weise man in [2] bzw. in [6] findet.

Satz2.6: Essei M < R" eine nichtleere abgeschlossene konvexe Menge mit 0 M. Dann
existiert eine Hyperebene H := {xeR"| ¢'x = «} mit x > 0 und
XeM = ¢Tx > «.
Satz 2.7: M < R" sei eine nichtleere konvexe Menge mit 0 € R*\ M. Dann existiert eine
Hyperebene H := {x € R"| ¢"x = 0} mit xe M = ¢"x = 0.
Damit lassen sich die folgenden beiden Aussagen beweisen:
Satz 2.8 (Trennungssatz): Es seien M;, M, < R" zwei nichtleere konvexe Mengen mit

M; n M, = 0. Dann existiert eine trennende Hyperebene H := {xeR"|¢"™x = &},
d. h., es gilt:

XeM;=>cx <« und xeM,=c"x = «x.

Beweis: Die Menge M; + (— M) ist nach Satz2.2 konvex, und wegen M; N M, = §
gilt 0 € R"™\(M; + [—M;]). Daher existiert nach Satz 2.7 eine Hyperebene
H:= {xeR"| ¢’x = 0} mit

xXeM; + (=M;)=c"x = 0;
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folglich gilt

yeM,ze M,=c"(y—12)=0
und damit auch

f:=infc"y = sup ¢z =:y. i
yeM, 2eEM,

B +y

Wirsetzeno := 5 und erhalten

zeM,=>c"z<x und yeM,=c"y = «.

Anmerkung: Die Aussage von Satz 2.8 kann auch unter schwécheren Voraussetzun-
gen bewiesen werden.
Der folgende Satz gibt an, unter welchen Bedingungen zwei konvexe Mengen durch
zwei parallele nichtzusammenfallende Hyperebenen getrennt werden kdnnen.
Aufgabe 2.3: Es ist festzustellen, ob die Mengen
Mp:={(x,»)TeR?|y 2 x* + x fir x20, y= —2x fir x <0},
M,: = {(x,»)TeR? | y < — } Ix[}

trennbar sind (Bild 2.13). Gegebenenfalls ist die Menge § aller trennenden Hyperebenen (Geraden)
anzugeben.

y
My
s~/ .1,  *
/\\ Uy
i S
%x\
Q\ N
Bild 2.13

Satz 2.9 (Strenger Trennungssatz): Es seien M,, M, = R" zwei nichtleere abgeschlos-
sene konvexe Mengen mit My n M, = @, und wenigstens eine der beiden Mengen sei
beschrinkt. Dann existiert eine streng trennende Hyperebene

H:= {xeR"| c"x = &},
d. h., es gilt:
XxeM;=¢c"x>a und xeM,=c'x <«.

Auf den Beweis dieses Satzes gehen wir nicht ein.
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2.3. Konvexe Funktionen

In der nichtlinearen Optimierung nehmen die konvexen Optimierungsprobleme
eine herausragende Stellung ein. Dies ist bedingt durch spezifische Eigenschaften
konvexer Funktionen, wie sie in den folgenden Séitzen zum Ausdruck kommen.

Definition 2.7: Es seien M = R" eine nichtleere konvexe Menge und f: M — R. Dann
heif3t

1. fkonvex auf M, wenn gilt:
x!l, x’e M
’ axt + 2) < Af(x}) + 2 ;
R a1 ) T ) S I 4 )
2. f streng konvex auf M, wenn gilt:
x!, x?e M, x' £ x?
’ x4+ px?) < Af(xY) + 2);
Rt ] O ) < B + )
3. fkonkav bzw. streng konkav auf M, wenn —f konvex bzw. streng konvex auf M ist.

Dabei bedeutet R% die Menge {xe R | x > 0}.
Aus dieser Definition folgt sofort, daB jede auf M streng konyexe Funktion auch
konvex auf M ist.

Beispiel 2.6: Bild 2.14 zeigt eine konvexe Funktion f: R — R.
y
f)fp——————————=

\
MF()f(x?)

fix)
x"+ux?)

Bild 2.14

1 1
X1 AxT+px? Xy

f konvex auf R

Beispiel 2.7: a) Jede lineare Funktion f(x) = ¢"x, x€ R", und jede linear-affine Funktion
f(x) = ¢"x + &, x € R"; x € R, ist sowohl konvex als auch konkav (auf R").

b) Die Funktion
0 =Kl =/Z+ . + 2, xeR",
ist konvex auf R", denn es gilt fiir beliebige 4, x € Ry mit A + u = 1:
fOxt + px?) = 2xt + pxl < A+ ]|
=AY + plix?] = Af(x?) + pf(x?).

2 Elster, Optimierung
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c) Jede positiv semidefinite quadratische Form
f(x) = xTAx, x € R", A eine symmetrische (n,n)-Matrix,
ist auf R" konvex, jede positiv definite quadratische Form ist auf R” streng konvex.

Aufgabe 2.4: Man ermittle die Konvexitétseigenschaften der Funktion f(x) = \/ ;, x € Ry, a) ohne
Zuhilfenahme, b) mit Hilfe der Differentialrechnung.

Uber nichtnegative Linearkombinationen konvexer Funktionen gilt der

Satz 2.10: Es seien f;: M — R, M < R"; i = 1, ..., m, konvexe Funktionen. Dann ist
auch die Funktion

m
fi=Yofi mit oy, 6, =0
i=1

konvex auf M. .

Insbesondere folgt aus Satz 2.10, daBl die Summe von konvexen Funktionen wieder
konvex ist, was im allgemeinen fiir Differenz, Produkt und Quotient von konvexen
Funktionen nicht zutrifft.

Beispiel 2.8: a) f(x) = 3¢* — Inx ist auf M = (0, c0) konvex (sogar streng konvex), da f;(x) = e*
und f>(x) = —Inx auf M konvex (streng konvex) sind.

b) Die Funktionen f;(x) = x und f,(x) = x* + x sind auf R konvex. Die Differenzfunktion
f() 1= fi(x) = fo(x) = —x?
ist auf R nicht konvex (sondern streng konkav).
¢) Die Funktionen f;(x) = x und f,(x) = —x sind auf R konvex. Ihre Produktfunktion
fG) 1= i) fo(x) = —x*

ist jedoch auf R nicht konvex.

d) Die Funktionen f;(x) = —x und f5(x) = x2 sind auf R konvex. Der Quotient
f1(x) 1
fa) == ——
fa(x) x

ist auf (0, co0) nicht konvex, also auch nicht auf R.
Aufgabe 2.5: Die Funktion
Sy, x3) = xf + 2x2, (x1,%)T€R?,
ist auf Konvexitat zu untersuchen.

Die Kenntnisse iiber konvexe Mengen lassen sich vorteilhaft auch fiir konvexe
Funktionen verwenden, wenn man den sog. ,,Epigraphen® einer Funktion f bildet
(Def. 2.8). Dieser ist dann eine konvexe Menge, die bestimmt ist durch die Punkte
(x, f(x))* des Graphen von f und alle ,,iiber diesem Graphen* liegenden Punkte.

Definition 2.8: Es seien M = R" und f: M — R. Dann heifst die Menge
epif = {(x,»)Te R x R|f(x) =y} g R
der Epigraph (oder obere Halbzylinder) von f.
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Bild 2.15 und Bild 2.16 zeigen die Epigraphen einer beliebigen bzw. einer konvexen

Funktion.
v YOIy Y v Y2
Vﬁﬂf/f g A l|// ///
i 7

AN

/|

/

7

Bild 2.15 Bild 2.16
M X

M X

r beliediq 7 konvex

“Konvexe Funktionen lassen sich mittels ihres Epigraphen charakterisieren gemaf
Satz 2.11: Es seien M = R" eine nichtleere konvexe Menge und f: M — R. Dann gilt:
f konvex auf M <> epi f ist eine konvexe Menge.
Beweis: 1. (=>): Es seien (x!, )7, (x*, y2)"e epif, d.h. f(x)) £ y1, AX?) S 92
Dann folgt fiir beliebige 4, e R, mit A + u = 1 wegen der Konvexitit von f
SOXt + px?) £ (Y + pf(x?) < dys + py,
und damit
(Ox' + px?, 2yy + py2)" = Ax, )T + p(x?, p2)Te epif.
Somit ist epi f konvex.
2. («<=): Fiir beliebige x', x? € M und beliebige 4, g€ R, mit A + u = 1 folgt aus der
Konvexitit von epi f°
&5 )T, (32, f(x2)Teepi f= (x' + px?, Af(x1) + pf(x*))T e epif
und damit
SOxt + px?) S (XY + pf(x7).

Folglich ist f konvex auf M.
Bei Optimierungsproblemen werden Niveaumengen von Funktionen zur Dar-
stellung zuldssiger Bereiche verwendet. Ist z. B. in (1.1)

G={xeR"|g(x) =0 Vi=1,..,m, g, konvex},
dann ergibt sich G als Durchschnitt der m Niveaumengen G; mit G, = {xeR"|

gi(x) £ 0},i =1, ..., m (Bild 2.17 zeigt die Niveaumenge N, von fzum Niveau «).
Niveaumengen konvexer Funktionen sind konvexe Mengen, denn es gilt

Satz 2.12: Es seien M S R" eine nichtleere konvexe Menge und f: M — R. Dann gilt

Die Niveaumengen

N, = {xeR"|f(x) S &} und
J konvex auf M = l N, := {xeR"|f(x) < &}

sind konvex fiir jedes « € R.

2%
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Beweis: Wir zeigen die Konvexitdt von N,. Es sei x!, x?e N,, d. h. f(x!) £ «,
f(x?) £ «. Dann folgt fiir beliebige 4, ue R, mit 2 + x4 = 1 wegen der Konvexitit

von f
SOX + px?) £ MY + wf(x?) S Ao+ px = o

und damit Ax' + ux?€ N,.

Die Umkehrung von Satz 2.12 gilt jedoch nicht, wie das Beispiel der Funktion
f(x) = x*, x € R, zeigt. Zwar ist fiir jedesx € R die Menge N, = {x € R | x* < &} konvex,
jedoch ist f nicht konvex auf R.

Eine Veranschaulichung des Sachverhaltes geben Bild 2.17 und Bild 2.18.

y J

Bild 2.17 Bild 2.18

f konvex f nicht konvex

Als eine Folgerung von Satz 2.11 ergibt sich

Satz 2.13: Es seien M < R" eine nichtleere konvexe Menge, f;: M — R,i =1, ...,m,
konvexe Funktionen und fiir jedes xe M die Menge {f(x)|i =1, ..., m} nach oben
beschrinkt. Dann ist die Funktion

fx):= max fi(x),xeM,
ieft,...,m
konvex auf M.

Beweis: Die fi, ..., f sind konvex auf M. Daher sind nach Satz 2.11 die Mengen
epif;, i = 1, ..., m, konvex. Wegen Satz 2.3 ist dann die Menge

m
‘nlepif: = epif
i=

ebenfalls konvex und damit f eine auf M konvexe Funktion.

Wir bringen nun die Konvexitit einer Funktion in Verbindung mit den Begriffen
der Stetigkeit und partiellen (bzw. totalen) Differenzierbarkeit, wodurch die Anwen-
dung von Satzen der Analysis moglich wird.

Das folgende Beispiel zeigt, daB eine konvexe Funktion f: M — R, M < R", nicht
notwendig auf M stetig ist.

Beispiel 2.9: Die Funktion f: Ry — R mit
1 fir x=0,
fx) = {

x% fir x>0

ist zwar konvex auf [0, 00), aber in xo = 0 nicht stetig.
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Fiir offene konvexe Mengen hat man jedoch den

Satz 2.14: M < R" sei eine offene konvexe Menge. Dann gilt:
f konvex auf M = f stetig auf M.
Den Beweis des Satzes findet man z. B. in [21].
Im folgenden setzen wir voraus, dafl die betrachteten Funktionen gewisse Differen-

zierbarkeitsforderungen erfiillen. Dann lassen sich Konvexitit und strenge Konvexi-
tat von Funktionen charakterisieren durch:

Satz 2.15: Es seien M = R" eine offene konvexe Menge und f: M — R auf M stetig
partiell differenzierbar. Dann gilt*):
1. f konvex auf M < (x*> — x)TVf(x!) £ f(x?) — f(x}) Vx!,x*e M. 2.2)
2. fstreng konvex auf M < (x* — x')TVf(x!) < f(x?) — f(x') Vx!, x?eM,x! + x2
Beweis: Wir beschrianken uns auf den Beweis der ersten Aussage, da der Beweis
fiir die zweite Aussage analog verlduft.
1. (=): Fiir beliebige x*, x> € M und beliebige 4, x > 0 mit 2 + u = 1 gilt einerseits
JOXU + xS M) + pf(xD) = [ + ulf(x) = )],
andererseits ist
Jxt + ) = fx* + ulx? — x']).
Damit hat man die Ungleichung

SO+ plx® — XD — D) ey~ ).
- <

Anwendung des Mittelwertsatzes auf der linken Seite ergibt

(x2 — x)TVAx! + dulx® — x!]) £ f(x?) — f(x") mit 9e(0,1).
Fiir 4 — +0 folgt daraus wegen der Stetigkeit von Vf die Beziehung

(x* — x)TVAxY) = f(x?) — fx).
2. («=): Fiir beliebige x!, x> M und beliebige 4, ue R, mit 1 + u =1 folgt
Ax! + px*e M und

F0) — fUX + ux?) 2 20 — XYTVfOXE + ),

&) - fOx 4 px?) 2 —u(x® = X)IVOX + px?).

Multipliziert man die erste Ungleichung m1t 1, die zweite mit A, so ergibt sich nach
Addition

uf(x?) + A (x') — fOx* + ,uxz) 20,
und das war zu zeigen.

Die 1. Aussage von Satz 2.15 besagt, daB der Graph der Funktion f'stets oberhalb

(oder auf) der in einem Punkt x' e M angelegten Tangentialhyperebene y = f(x!)
+ (x — x)TVf(x!) liegt.

1) Zur Bedeutung der Schreibweise V/(x) vgl. Band 4, Abschn. 3.9.2.4.
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Bild 2.19 und Bild 2.20 veranschaulichen die Aussage von Satz 2.15 fiir den Fall

n = 1, d.h. M < R. Dabei hat man im Falle n = 1 offensichtlich Vf(x) = -g—i—

fix)
Fix9)
U1 af )|

) FOC)+l-X) Tl

fix')

f konvex

Bild 2.19

f streng konvex

Bild 2.20

In Band 2, Abschnitt 7.5.1., wurde gezeigt, daB eine zweimal differenzierbare Funk-
tionf: 7 — R, I < R, genau dann auf 7 konvex ist, wenn gilt /"' (x) = O fiir alle x aus
dem Innern von 1. Damit entscheidet das Vorzeichen der zweiten Ableitung iiber das
Konvexititsverhalten von f.

Um fiir eine zweimal stetig partiell differenzierbare Funktion f/*'M — R (M < R*
eine offene Menge) die Konvexitat charakterisieren zu kdnnen, fithren wir die Hesse-
sche Matrix dieser Funktion ein.

Definition 2.9: Es seien M < R" eine offene Menge, f: M — R auf M zweimal stétig
partiell differenzierbar und x° € M. Dann heifst die symmetrische Matrix

Frn(X%) o faum(x)
Hy(x%) = : :
Sine(X%) o Frenra(X°),
Hessesche Matrix von fim Punkte x°.
Es gilt nun die folgende Aussage.

Satz 2.16: Ist M = R* eine offene konvexe Menge und ist f: M — R auf M zweimal
stetig partiell differenzierbar, dann gilt:

1. f konvex auf M <> y"H (X)y positiv semidefinit fiir alle x € M.
2. f streng konvex auf M <= y"H(X)y positiv definit fiir alle x€ M.

Beweis: Wir beschrinken uns auf den Beweis der ersten Aussage. Nach Definition
ist /' genau dann konvex auf M, wenn f auf jedem in M liegenden Segment konvex
ist. Es seien x € M und y € R". Wir untersuchen nun die Funktion einer Variablen

@) = f(x +uy), pel,
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mit I := {ueR|x + uye M} beziiglich Konvexitit. Man findet unmittelbar
n
7' = Tfelx + py) yis
i=

7' = T T ferX + uyys = Y HAX + uy)y.

Dabher ist nach Band 2, Satz 7.10, f genau dann konvex auf M, wenn gilt
y'H (x + uy)y = 0 fiir alle xe M und ye R".

Anmerkung: Der Beweis von Satz 2.16 kann auch mit Hilfe von Satz 2.15 gefiihrt
werden.

Die Umkehrung der zweiten Aussage von Satz 2.16 gilt nicht. Wir betrachten dazu

Beispigl 2.10: Die Funktion f(x) = x*, x € R, ist streng konvex. Es gilt Hy(x) = 12x? und daher
H(0) = 0. Folglich ist y"H (x)y nicht positiv definit fiir alle x € R.

Beispiel 2.11: Die Funktion
fg, x2) = (32 + x3)?, (x5, x)T € R?, st auf R? konvex.
Es gilt namlich

1202 + 42 8xyx
Hp(xy, x2) = ( ! 2 5 )

8x1x; 4x} +-12x3

und somit fiir alle y = (yy, 2)T € R?

(31, y2)THy(x g, x2) <i:) =4[ + xBH3 + 20001 + x22)? + XD + 2B 2 0.
Aufgabe 2.6: Man beweise: Die Funktion
flx) =e* xeR,

ist streng konvex.

2.4. Systeme linearer und konvexer Ungleichungen®)

Bei der Herleitung von Optimalititsbedingungen fiir nichtlineare Optimierungsprobleme bendtigen
wir Aussagen liber die Existenz von Losungen linearer bzw. konvexer Systeme von Gleichungen und
Ungleichungen.

Ohne Beweis (vgl. dazu z. B. [15]) formulieren wir folgende allgemeine Aussage:

Satz 2.17: Ist A; (i = 1, ..., 4) eine (my, n)-Matrix und sind Ay, Ay, Az keine Nullmatrizen, dann
besitzen die beiden Systeme

I. Axx=0, Ax =0, Ax =0, Aix =0
und )
IL ATy! + AZy? + ATy + Afy* =0,

vLy4Ly =0

1) Dieser Abschnitt ist zum Verstidndnis der folgenden Darlegungen nicht unbedingt erforderlich
und kann beim ersten Studium {ibergangen werden.
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Losungen
XER" bzw. yleR™ (i=1,...,4)
mit
Ax+y'>0, Ax+y2>0, Axx+y®>0.

Mittels Satz 2.17 lassen sich sogenannte ,,Alternativsitze* herleiten, die bezliglich zweier gegebener
Systeme I und II aussagen, daB genau eines der beiden Systeme eine Losung besitzt. Bei dem folgen-
den Alternativsatz von Motzkin wollen wir die charakteristische Beweisfithrung fiir solche Aussagen
demonstrieren.

Satz 2.18 (Alternativsatz von Motzkin): Es seien A; (i = 1, 3, 4) eine (my, n)-Matrix und A, nicht die
Nullmatrix. Dann hat entweder das System

I Aix> 0, Azx = 0, Ax =0
oder das System
IL ATy! + ATy? + Afy* = 0, N
yLy'z0, y' %0
eine Losung
XER" -bzw. yleRmi (i=1,3,4),
d. h. niemals sind beide Systeme zugleich losbar.

Beweis: 1. 1 = ~1II'): Es seien x eine Losung von System I und y'e Rmi (i = 1, 3, 4) mit
y%, ¥ 2 0,y* # 0, Dann folgt

xTATy! + xTATy? + xTATy* > 0,
da xTAZy* = 0, x"ATy® = 0, x"ATy* > 0. Folglich hat das System II keine Losung.
2. ~ I = II: I sei nicht 1osbar. Dann gilt, wie man indirekt zeigen kann:
Ax=0, Axx=0, Ax=0=Ax3}032,
Wegen Satz 2.17 hat man
Aix =0, Ax = 0, Ax=10
ATY! + ATY® + AQy* = 0 =y'20, y=+0,
y'zo0, yz0
d. h. IT'ist 16sbar.
Mit Hilfe von Satz 2.18 148t sich der bekannteste Alternativsatz fiir lineare Systeme, der Satz von
Farkas-Minkowski, beweisen.

Satz 2.19 (Satz von Farkas-Minkowski): Es seien A eine (m, n)-Matrix und b € R". Dann hat entweder
das System
I. Ax=0, b™x > 0 eine Losung xe€ R"

oder das System
1. ATy = b, y = 0 eine Losung y€<€ R™,

d. h. niemals sind beide Systeme zugleich I6sbar.

1) Die Bezeichnung I = ~1I besagt, daB die Losbarkeit des Systems I impliziert, daB II nicht 15s-
bar ist (vgl. Band 1).
2) A;x ¥ 0 bedeutet, daB nicht alle Koordinaten des Vektors A;x positiv sind.
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Beweis: Nach Satz 2.18 hat entweder I eine Losung x € R* oder II’ b§ — ATy = 0, =0, £ + 0,
y3® = 0 hat eine Losung £ € R, y® € R™. Wegen &€ R folgt & > 0. Dividiert man II’ durch & und
3 .
setzt y = -yg—, so folgt die Aquivalenz von II” und II. Damit ist Satz 2.19 bewiesen.
Wir interpretieren nun die Aussage von Satz 2.19 geometrisch und schreiben dazu die Systeme I
und II in der Form
I: alx<0, j=1,.,m bTx>0,
m .
Im: Y aly;=b, y;20, j=1,..,m,
j=1

wobei a’ den j-ten Zeilenvektor von A und @/ den j-ten Spaltenvektor von AT bezeichnen (offenbar
gilt 3/ = a’).

I bedeutet geometrisch, daB ein Vektor x € R” zu finden ist, der einen stumpfen Winkel (3 —721)

P

mit den Vektoren al, ..., a™ und einen spitzen Winkel (<%) mit dem Vektor b bildet. Nach II
ist der Vektor b als nichtnegative Linearkombination der Vektoren al, ..., a™ darzustellen.

Die beiden moglichen Fille sind fiir » = 2, m = 3 in Bild 2.21 bzw. Bild 2.22 veranschaulicht.

. [Ax=0
{x1Ax=0} (xlAx=0

I nicht lésbar 1T ldsbar I lashar I nicht loshar
Bild 2.21 Bild 2.22
Aufgabe 2.7: Gegeben seien die drei Vektoren a! = (;), a? = (?), a® = ( })
a) Skizzieren Sie die Mengen
Ki={x=(x,x)TeR?|aTx 20, i=1,23]},

B:={beR*|b"x <0V xeK}.

b) Ist b° = ((2)) als nichtnegative Linearkombination von a', a2, a® darstellbar? Gegebenenfalls

ist die Menge aller Zahlentripel (cy, ¢, ¢3) zu ermitteln, fiir die gilt:

3
b° =Y cal; =0, i=1,23.

i=1
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Eine dhnliche Rolle wie die bisher angegebenen Aussagen iiber lineare Systeme in der linearen
Optimierung spielen die folgenden Sétze iiber konvexe Systeme in der nichtlinearen Optimierung
Die Beweise dieser Aussagen findet man z. B. in [6].

Satz 2.20: Es seien M = R" eine nichtleere konvexe Menge, f: R" — R™ konvex auf M und h: R" — R¥
linear-affin') mit h(X) = 0 fiir ein X € M. Dann gilt:

Das System

;g“;jg - IpeR™, qeR* mit p+ 0 und
= T, ) >

hat keine pf(x) + ¢"h(x) 2 0 VxeM.

Losung xe M

Mittels Satz 2.20 erhilt man folgenden Alternativsatz fiir konvexe Systeme:

Satz 2.21: Es seien'M S R" eine nichtleere konvexe Menge und f: R" — R™ konvex auf M. Dann hat
entweder
I: f(x) < 0 eine Losung xe M

oder es gilt
II: p™f(x) =0 VxeM und ein geeignetes p € RE,p#+ 0.

Satz 2.22: Es seien M S R" eine nichtleere kompakte®) konvexe Menge, (f))ser, eine beliebige Familie
auf M konvexer und unterhalbstetiger®) Funktionen f;: M — R, (hj)jer, eine beliebige Familie linear-
affiner Funktionen h;: R* — R. Dann gilt:

Fiir eine endliche Teilfamilie von (f3)ser,
Das System und eine endliche Teilfamilie von (hj)jer,
fix) =0, iel existieren
hi(x) =0, jel, ) = PERT, qeR* mit  (p, QT + 0 und
hat keine Losung m k
xeM. tzx pufy® + 121 qhy, (x) 20 VxeM. 2.3)

Im Falle I, = 9 wird (2.3) zu einer strengen Ungleichung.

1) Eine Vektorfunktion f: R" — R™ mit f = (f}, ..., f;,)" heiBt konvex auf M S R", wenn jede
Koordinatenfunktion fj, ..., f,, auf M konvex ist.

2) Vgl. dazu Band 4, Abschnitt 1.1.3.

3) f: M — R, M S R", heiBt unterhalbstetig auf M, wenn fiir jedes feste x° € M und zu beliebigem
e > 0ein & = d(e;x°) > 0 existiert mit f(x°) —¢ < f(x) ¥xeM~ {x|[x — x%| < J}.



3. Klassische Extremwertaufgaben

3.1. Extremwertaufgaben ohne Restriktionen

Aus dem Problem (1.1)erhalt man klassische Optimierungsaufgaben, wenn man
f:R"— R und [, = I, = @ wihlt. Solche Aufgaben wurden fiir Funktionen einer
Variablen in Band 2, Abschnitt 7.3., und fiir Funktionen von » Variablen in Band 4,
Abschnitt 4.2., behandelt. Hinsichtlich weiterer Darlegungen verweisen wir auf [7]
und [10].

Wir stellen zunéchst einige Begriffe und Aussagen iiber klassische Extremwertaufga-
ben zusammen, um in Vorbereitung der weiteren Ausfithrungen sowohl Analogien
als auch Unterschiede zwischen klassischen Extremwertaufgaben und nichtlinearen
Optimierungsproblemen deutlich zu machen.

Im folgenden sei G < R" eine Menge, deren Inneres nicht leer sein soll.

Definition 3.1: 1. /: G — R besitzt in x°e G ein globales oder absolutes Minimum
(Maximum) beziiglich G, wenn gilt:

10 2 fx°) VxeG
(f®) £ /%) VxeG).
2. f: G — R besitzt in x° € G ein lokales oder relatives Minimum (Maximum) beziiglich
G, wenn eine Umgebung U(x°) von x° existiert, so daf gilt:
f(x) 2 f(x°) VxeUX)nG
(/) < /(<) Vxe UK®) A G).
3. Gilt in (3.1) bzw. (3.2) fiir alle zuldssigen x =+ x° jeweils die strenge Ungleichheit, so
spricht man von einem eigentlichen Extremum oder von einem Extremum im engeren

Sinne.
Fiir eine in x° € G hinreichend oft stetig partiell differenzierbare Funktion f bezeich-

net o T
V) = (L (60 5 ()

3.1

(3.2)

den Gradienten von fin x° und
2
H,(x%) = ( 7

0x,0x;
die Hessesche Matrix (der zweiten partiellen Ableitungen) von fin x°.

<x°)), P=1um j=1, .

Fiir das Problem
min {f(x) | xeG € R}, 3.3)
wobei G eine-offene Menge und f auf G zweimal stetig partiell differenzierbar ist,
gelten die in Band 2 auf Seite 133/134 angegebenen Kriterien.
Weitere hinreichende Bedingungen fiir die Existenz lokaler Extrema findet man in
[711': iir konvexe Funktionen kann man weitergehende Aussagen machen.
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Satz 3.1:1: G —» R, G = R" offen, sei auf G stetig differenzierbar und konvex. Dann gilt:
x° Lésung von (3.3) < Vf(x°) = 0.

Beweis: Da die Aussage (=) offensichtlich gilt, beschranken wir uns auf den Beweis
von (<=). Es sei Vf(x°) = ofiirein x°eG. Dann gilt nach Satz 2.15 fiir beliebige xe G

0 = (x — x)TVf(x%) = f(x) — f(x%, \
d. h. x° ist Lésung von (3.3).
Satz 3.2: Ist G < R" eine konvexe Menge und ist f: G — R konvex (konkav) auf G,

so ist jedes lokale Minimum (Maximum) von f beziiglich G zugleich ein globales
Minimum (Maximum) von f beziiglich G.

Beweis: Wir fithren den Beweis fiir konvexe Funktionen und nehmen an, daB f
beziiglich G ein lokales Minimum in x! und ein globales Minimum in x° besitzt mit
f(x') > f(x°). Dann ist fiir beliebige 4, p € (0, ) mit A + p = 1:

SOX° + pxt) < A (x%) + uf(xh)
< M) + pfxt) = fx).
Fiir 2 - 40 hat man Ax° + px' — x'. Daher gibt es in jeder Umgebung von x

Punkte x € G mit f(x) < f(x!), und das ist ein Widerspruch zur Voraussetzung, wonach
fin x* ein lokales Minimum besitzt.

Satz 3.3: Es seien G < R" eine konvexe Menge und f: G - R konvex auf G. Dann ist
die Menge G,y aller Punkte, in denen fein lokales (und damtt auch ein globales) Mini-
mum beziiglich G annimmt, konvex.

Beweis: Fiir beliebige x*, x* € G, und beliebige 4, w € [0, 1] mit A + p = 1 gilt un-
ter Beriicksichtigung von f(x!) = f(x?) einerseits
fOXt + px?) £ Mf(xY) + pf(x?) = f(x1).
Andererseits muf gelten
fOx' + px?) z f(x');
damit folgt f(Ax" + ux?) = f(x')und hieraus [x!, x?] € G,,,. Folglich ist G,,, konvex.

3.2 Extremwertaufgaben mit Restriktionen

Wir formulieren hier einige Ergebnisse der klassischen Theorie der Lagrange-
Multiplikatoren fiir Optimierungsprobleme

min {f(x) | xe G},
={xXeR"|h(x) =0, jelh={1,...k}, 1 Sk<n}+0, (3.4)
wobei f: X - Rund ;: X — R, je 1, stetig partiell differenzierbar auf einer offenen
Menge X mit R" 2 X 2 G sein sollen. Es seien
6h h
L) S0

Ju(x) 1=
ahk 6h,

o, - (X)
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die Jacobische Matrix von 4; in x € X und

3609 1= (G7)

die um Vf(x)T erweiterte Jacobische Matrix in x € X. Mit r(J,(x)) und r(J,(x)) be-
zeichnen wir die Rangzahlen der Matrizen J,(x) bzw. Jo(x).

Mit Hilfe dieser Rangzahlen lassen sich Aussagen iiber die Existenz von Losungen
des Problems (3.4) herleiten (vgl. Band 4, Abschnitte 4.2.3. und 4.2.4.).

Im Falle r(Jo(x°)) = k + 1 besitzt fin x° € G kein lokales Extremum beziiglich G.
Nimmt also f in x°€ G ein lokales Extremum beziiglich G an, so gilt notwendig
r(Jo(x%) < k + 1.

Wir fithren die Lagrange-Funktion

L(x, u) := uof(x) + Z:u,h,(x), (x,u)Te G x R+, (3.5

ein mit den Lagrange-Multiplikatoren ug, uy, ..., U.
Dann gelten die folgenden Lagrangeschen Multlphkatorregeln (vgl. [6]):

Satz 3.4: Es seien X< R" eine offene Menge und f: X — R, h;: X — R, j€ I, stetig par-
tiell differenzierbar auf X. Dann gilt:

Besitzt fin x° € G ein lokales Extremum beziiglich G und ist r(Jo(x°)) = r(J,,(x°)), 50
existiert ein Vektor u® = (u, u, ..., u9)T € R¥** mit u§ + 0 (0. B.d. A. u§ = 1) und
ViL(x% u®) = 0, d. h.

Vix°) + Z PV hy(x°) = 0.

Im Falle r(Jo(x°)) = r(J,(x°)) = k sind die uf, jeI,, nach Festlegung von u + 0 ein-
deutig bestimmt. Im Falle r(Jo(x°)) = r(J,(x°) < k sind die ), j€ I,, nach Festlegung
von u3 + O nicht eindeutig bestimmt.
Satz 3.5: Es seien X< R" eine offene Menge und f: X — R, h;: X — R, je1,, stetig par-
tiell differenzierbar auf X. Dann gilt :

Besitzt fin x°€ G ein lokales Extremum beziiglich G und ist r(Jo(x°) > r(J,(x°),
so existiert ein Vektor w® = (ul, uf, ..., u)"T € R¥, w® %= 0, mit uy =0 un
VxL(x°, u®) = 0, d. h.

k
> ufVhy(x%) = 0.
Jj=1
Ein hinreichendes Kriterium fiir die Anwendung der Lagrange-Funktion findet
man in Band 4, Abschnitt 4.2.4.
Beispiel 3.1: Fur die Aufgabe
min {f(x,y) = x> + (y = 2> | h(x,») :=y + 1 — x* = 0}
mit f: R* — R, h: R?> - R sind die in Bild 3.1 eingezeichneten Punkte x* = (x;, y;)T und x2 = (x,, y,)T

Losungen, denn durch x! und x? gehen die Niveaulinien f(x, y) = ¢ mit dem kleinsten Wert co,
und zugleich liegen x! und x? auf der Parabel A(x, y) = 0.
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y

ul vfix*)

Bild 3.1

u]h )\

u0vf (X)

Die beiden Kurven f(x, ¥) = ¢, und A(x, y) = 0 beriihren sich in x* und x2, d. h. die Gradienten
von fund 4 sind dort jeweils kollinear. Es gilt z. B.
WVFx') + u}Vhx!) = 0. (3.6)
Eine édhnliche Situation liegt im Punkt x* vor. Hier beriihren sich die Kurven f(x, ») = c; und
h(x,y) = 0. Wegen c3 > ¢p ist x> keine Losung des gegebenen Problems, obwohl Vf(x®) und
VA(x3) kollinear sind.
Im Punkte x* sind V/(x*) und VA(x*) linear unabhéingig. Man findet also kein u* € R?, u* * 0, so
daB eine (3.6) entsprechende Beziehung besteht. Wegen ¢4 > ¢, ist x* keine Losung des Problems.

Beispiel 3.2: Wir betrachten die Aufgabe
min {f(x) = x>+ (y— D> + 22 | ly(x):=x—1-3*=0, hy(x) 1= x — 1 =0}
mit f, hy, hy: R® — R. Bild 3.2 zeigt den Schnitt des parabolischen Zylinders 4;(x) = 0, der Ebene

hy(x) = 0 und der Niveaufliche f(x) = ¢? mit der xy-Ebene. Durch die Restriktionen 4,(x) = 0 und
hy(x) = 0 ist eine Gerade durch den Punkt (1, 0, 0)T parallel zur z-Achse bestimmt. Die Kugel um

(0, 1, 0)T mit dem Radius ¢y = \/ 2 beriihrt diese Gerade im Punkt x° = (1,0, 0)7. Es gilt:

100 100
1(J,(x%) = r(l 0 O) =1; rJox®)=r(100]|=2.
2-2 0
A
by (0)=0
f=1—1
fy(x)=0_—
T
XY/ vh; (x°)=vh, (x°)
0 7] X
viix) Bild 3.2




4. Spezielle nichtlineare Optimierungsprobleme

Spezialisierungen in der allgemeinen Aufgabenstellung (1.1) ermdglichen oft wesent-
lich schirfere Aussagen iiber die Art und die Lage des Optimums einerseits und brin-
gen andererseits auch bedeutende Erleichterungen bei der numerischen Behandlung
und Losung des Problems. Die Spezialisierungen erhédlt man durch die Auswahl ge-
wisser Funktionenklassen fiir die Zielfunktion f bzw. fiir die Restriktionsfunktionen
g, i€l und hy, jel,.

4.1. Konvexe Optimierungsprobleme

Definition 4.1: Ein Optimierungsproblem (1.1) heifit konvex, wenn die Funktionen f,
g1, 1 €1, konvex und die Funktionen h;, j € I, linear-affin sind:
min {f(x) | xe G}, 4.1)
G={xeR|g(x) £0,iel;a™x = by, jel,}.

Viele von der Aufgabenstellung her zunéchst nicht konvexe Optimierungsprobleme
lassen sich durch einfache dquivalente Umformungen auf konvexe Optimierungs-
probleme zuriickfithren.

Aufgabe 4.1: Man zeige, dal das Optimierungsproblem

max (/®) |XG}, G ={xeR'|g(x) z0,icl,)}
mit konkaven Funktionen f, g;, i € I,, auf ein konvexes Optimierungsproblem zuriickgefiihrt werden
kann.

Aufgabe 4.2: Man zeige, daB das Optimierungsproblem
min {/(x) | xe G},
G={xeR"'|xeRy; g(x) =0, iely; hy(x) =0, jel,}
mit konvexen Funktionen f, g, i € I,, und linear-affinen Funktionen 4;, j € I, ein konvexes Optimie-
rungsproblem ist.

Da jede linear-affine Funktion konvex ist, umfaBt die Klasse der konvexen Opti-
mierungsprobleme die Klasse der linearen Optimierungsprobleme. Wéhrend viele
Aussagen, die bei linearen Problemen gelten, auf konvexe Probleme iibertragen wer-
den konnen, gehen einige Eigenschaften linearer Probleme bei konvexen Optimie-
rungsproblemen im allgemeinen verloren.

Fiir das Problem (4.1) gelten die folgenden Aussagen:
Satz 4.1: Der zuldssige Bereich G des Problems (4.1) ist konvex.
Der Beweis folgt unmittelbar aus Satz 2.12 und Satz 2.3.

Satz 4.2: Jedes lokale Minimum von f beziiglich G ist zugleich ein globales Minimum
von f beziiglich G.

Der Beweis folgt aus Satz 3.2.
Satz 4.3: Die Menge Gy, aller Losungen des Problems (4.1) ist konvex.
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Ist dariiber hinaus die Zielfunktion f streng konvex, so existiert hichstens eine Losung
des Problems (4.1).

Der Beweis folgt aus Satz 3.3.

Aufgabe 4.3: Beweisen Sie Satz 4.2 und die zweite Aussage von Satz 4.3!

Ohne Beweis fithren wir den folgenden Satz an, der die Existenz einer Losung bei
konvexen Optimierungsproblemen sichert.

Satz 4.4: Ist der zulissige Bereich G des Problems (4.1) nichtleer und beschrinkt, so
existiert mindestens eine Losung dieses Problems.

Gewisse Eigenschaften linearer Optimierungsprobleme gelten bei konvexen Opti-
mierungsproblemen nicht:

a) Auch wenn der zuldssige Bereich G des Problems (4.1) ein Polyeder ist, braucht

eine Losung des Problems nicht notwendig in einem Extremalpunkt von G zu liegen
(Bild 4.1).
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Bild 4.1

b) Ist der zuldssige Bereich G des Problems (4.1) unbeschrinkt und f alle G naqh
unten beschrinkt, so ist die Existenz einer Losung des Problems nicht gesichert wie
etwa bei dem Problem min {e* | x < 0}.

Fiir differenzierbare konvexe Zielfunktionen f hat man den wichtigen

Satz 4.5: Es seien X S R" eine offene Menge, f: X — R auf X stetig partiell differen-
zierbar und der zulissige Bereich G des Problems (4.1) in X enthalten. Dann gilt:
1. x° € G ist genau dann Lésung von (4.1), wenn
(x — xO)TVAx%) =0 VxeG. (4.2)
2. Ist dariiber hinaus X° ein innerer Punkt von G, so kann die Beziehung (4.2) ersetzt
werden durch
Vf(x°) = 0. 4.3)
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Beweis: 1. x° € G sei Losung von (4.1). Dann gilt:
S&x°) = f(x) VxeG.
Entwickelt man f'an der Stelle x° gemaB der Taylor-Formel (Band 4, Abschnitt 4.1.),

so folgt
0= (x — x9)TVAX®) + Ry(x% x — x° (4.4)
mit
0 — %0
lim Fe&HX =X _
x—Xx° ”X - X ”

Zum Beweis von (4.2) nehmen wir an, daf ein X € G existiert mit
d:= X - x9TVf(x° < 0.
Dann hat jedes
x(A) :=x° + A% — x%, 4e(0,1],
die Eigenschaft x(4) € G, da G konvex ist, und ferner gilt:
X(h = XT V) | R—xTV/&) ___d  _
(@) — x| Ix —x° % —x°|
Aus (4.4) erhalt man fiir A€ (0, .1]
0 = [x(A) — x°T" VA(x°) + R(x°, x(A) — x)
und nach Division durch |x() — x| > 0
& - xTV/(x%) Ry(x°, x(2) — x°)
% —x° Ix() — x°|
Wegen imir (1)((/1) = x° folgt aus (4.5) und (4.6)

0. 4.5)

0< Yie (O, 1]. (4.6)

d . Ry(x% x(4) — x° d
0 ——— + lim = — <
TR =X a0 x() — X % — x|
und damit ein Widerspruch. Folglich gilt (4.2).

2. Die Beziehung (4.2) sei erfiillt. Dann gilt wegen der Konvexitit von f nach
Satz 2.15
0= (x—x)TVx%) = f(x) — fx) VxegG,
d. h. x° ist Losung von (4.1).
3. Der Beweis der zweiten Aussage wird Thnen als Aufgabe iiberlassen.

0

Aufgabe 4.4: Beweisen Sie die zweite Aussage von Satz 4.5!
Beispiel 4.1: Das Problem
min {x{ + x3 + 4x; | (x;, x)T€ G},

G={(X1,X2)TGR21-X1 20,x20, X +x =6 x = —1)7%

ist ein konvexes Optimierungsproblem. Fiir x° = (0, 1) findet man x° € G, Vf(x°) = (g) und

x — x)T V&% = 4x; +2(x;, — 1) =20 VxeG,
3  Elster, Optimierung
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denn es ist ,
4y + 20 — D =4dx; + 2%, —222x320 Vx;eR, Vo= (x — 12

Damit ist auch (4.2) fiir alle x € G erfiillt.

Aufgabe 4.5: Unter Verwendung des in Bild 4.1 und in Beispiel 4.2 angegebenen zuléssigen Bereiches
G ermittle man fiir die konvexen Optimierungsprobleme

a) min {f(xy, x3) = (xy — 3) + (xz — 3)? | (x1, x)T € G},

b) min {f(xy, x;) = (x; — D? + (x3 — D2 | (x4, Xz)TGG}
graphisch eine Losung x° und iiberpriife die Beziehungen (4.2) bzw. (4.3).

4.2. Quadratische Optimierungsprobleme

In der nichtlinearen Optimierung konnten effektive Lésungsverfahren bisher nur
fiir spezielle Problemklassen entwickelt werden. Zu den am griindlichsten behandelten
Problemen zdhlen diejenigen mit linear-affinen Restriktionen und nichtlinearer Ziel-
funktion. Eine solche Problemklasse, deren Losungen vielfach unter Anwendung des
(modifizierten) Simplexverfahrens ermittelt werden, ist die der quadratischen Optimie-
rungsprobleme.

Definition 4.2: Ein Optimierungsproblem (1.1) nennen wir quadratisch, wenn es folgende
Form besitzt:
min {Q(x) := ¢"x + x"Cx | xe G},
G = {xeR"|xeR",Ax < b}. 4.7
Dabei seien c€ R", be R™, A eine (m, n)-Matrix und C eine symmetrische (n, n)-Matrix.
Probleme, bei denen der zuldssige Bereich G' gemaf

G = {xeR"| Ax < b}
oder
G = {xeR"|xeR}, AX = b}

gegeben ist, konnen durch die aus der linearen Optimierung bekannten Transforma-
tionen (vgl. Band 14) auf die Form (4.7) zuriickgefiihrt werden.

Zahlreiche Verfahren der nichtlinearen Optimierung, die speziell fiir quadratische
Probleme im Sinne von Definition 4.2 entwickelt wurden, setzen die Konvexitat der
Zielfunktion Q des Problems (4.7) voraus.

Satz 4.6: 1. Das Problem (4.7) ist genau dann ein konvexes Optimierungsproblem, wenn
die Matrix C positiv semidefinit ist.
2. Ist die Matrix C positiv definit, so ist die Zielfunktion Q streng konvex auf G.
Der Beweis folgt aus Satz 2.16. C
Aufgabe 4.6: Beweisen Sie Satz 4.6!
Beispiel 4.2: Das in Bild 4.1 dargestellte Problem
min {f/(x) = (x; = * + (x2 = * | x€ G},
G={xeR|g(x)i=x; —250, g,(x):= —x; =0,

g3(X) 1= —(x; +x, ~1) =0, ga(x):=(x; —x, = 1) =0,
gs(x):=x, —2=0}
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ist ein konvexes quadratisches Optimierungsproblem mit der Zielfunktion

10 [—1 5
= xT T. i = = = —
0(x) = xTCx + ¢'x + g, wobei C (0 1), c (_3), 9=

T
Die feste Zahl ¢ hat keinen EinfluB auf die Losung x° = (%, %) .
Samtliche Eigenschaften konvexer Optimierungsprobleme bleiben fiir quadratische
Optimierungsprobleme mit positiv semidefiniter Matrix C erhalten. Dariiber hinaus
1aBt sich Satz 4.4 verschirfen zur Aussage von

Satz 4.7: Bei dem quadratischen Optimierungsproblem (4.7) seien C positiv semidefinit,
G =+ 0 und Q auf G nachunten beschréiinkt. Dann existiert mindestens eine Losung x° € G
dieses Problems.

Beispiel 4.3: In Beispiel 4.2 ist der zuléssige Bereich G # @ offenbar ein konvexes Polyeder und
damit Q auf G nach unten beschrinkt. Nach Satz 4.7 existiert also eine Losung x° des Problems. Die

Niveaulinien der Zielfunktion sind konzentrische Kreise mit dem Mittelpunkt %, %- T‘ Die Ziel-
funktion Q ist wegen der positiven Definitheit von C streng konvex. Die Gleichung VQ(x) = 0 hat die
(%, %)T Da x° ein innerer Punkt von G ist, folgt nach der zweiten Aussage
von Satz 4.5, daB x° Losung des gegebenen Problems ist.

einzige Losung x° =

Fiir konvexe quadratische Optimierungsprobleme folgt aus Satz 4.5 der
Satz 4.8: Es sei (4.7) ein konvexes quadratisches Optimierungsproblem. Dann gilt:
1. x° € G ist genau dann Lisung von (4.7), wenn
(x — x9T2Cx° +¢) 20 VxeG. (4.8)

2. Ist dariiber hinaus x° ein innerer Punkt von G, so kann die Beziehung (4.8) ersetzt
werden durch

2Cx° + ¢ = 0. 4.9)
Aufgabe 4.7: Beweisen Sie Satz 4.8!

. Aufgabe 4.:_9: 1. Fiir welche o € R ist die Matrix C = (; i) a) positiv definit, b) positiv semidefi-
nit, ¢) indefinit?
2. Man 16se grafisch das Problem
min {Q(x) = xTCx | x€ G}
fiir die Parameterwerte &« = 1, 4, 8 und fiir G gemaB Bild 4.1.
3. Man skizziere die Hohenlinien von Q fiir die Parameterwerte o« = 1, 4, 8.

4.3. Separable Optimierungsprobleme

Wir beschranken uns hier auf Optimierungsprobleme (1.1) mit 7, = 9.
Definition 4.3: Ein Optimierungsproblem

min {f(X) | xeG}, G={XxeR"|g(x) <0, iel} (4.10)
g .
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heifst separabel, wenn sich Zielfunktion f und Restriktionsfunktionen g;, i€l,, in der
folgenden Form darstellen lassen:

@ = Zf6),
) @.11)
gi(x) = ;glgiv(xv)’ ie Ig-

Ein wesentliches Verfahren zur Losung solcher Aufgaben besteht darin, daB die
fux,)und g,,(x,), i€ I, v€ {1, 2, ..., n}, durch Naherungspolygone ersetzt werden und
somit (bis auf gewisse Basiseintrittsbeschrankungen, die im Falle konvexer Probleme
sogar noch wegfallen) zur Losung das Simplexverfahren benutzt werden kann. Im
Falle konvexer Probleme erhdlt man dann aus der Losung des Naherungsproblems
eine Naherungslosung fiir das Ausgangsproblem (4.10).

Als Nachteil einer solchen Approximationsmethode muf in erster Linie die stark
zunehmende Anzahl der Variablen (in Abhdngigkeit von der Unterteilung der Inter-
valle, in denen die urspriinglichen Variablen variieren) angesehen werden.

Eingehendere Darlegungen iiber separable Optimierungsprobleme findet man in
[10] und [13].

Manche Probleme, deren Zielfunktion bzw. Restriktionsfunktionen urspriinglich
nicht die Form (4.11) haben, kénnen leicht in separable Probleme iiberfiihrt werden.

Wenn in der Zielfunktion und/oder in den Restriktionsfunktionen als einzige nicht
,,separierte Bestandteile Produkte x,x, auftreten, so kann man durch Einfiihrung
von zwei neuen Variablen

Yo =300+ X)), Y = 3% — X%,) 4.12)

das Produkt x,x, ersetzen durch y? — y2. Ersetzt man dann im gegebenen Problem
x,%, lberall durch die Differenz y; — y2 und fiigt die Bezichungen (4.12) als neue
Restriktionen zum Problem hinzu, so ergibt sich ein separables Optimierungs-
problem.

Im Falle von positiven Variablen kann man das Produkt x,x, auch durch die neue
Variable y, ersetzen und als zusitzliche Restriktion In y, = In x, + In x, hinzufiigen.

Aufgabe 4.9: Man tiberfiihre folgende Probleme durch eine Variablentransformation in separable
Probleme:

a) max {3e** + x, [x€ G},
G={xeR?|x1,x, >0, x%x, =16};
b) max {2x; + x% + In(x3 x4) | x€ G},
G = {XeR*|xy,x2,X3> 0;  xy,%3,%4 < %; Xa>1; xpsinx, + xZInxg 217,
4e*1¥s + sin[x, cosx,] = 18}.
4.4. Hyperbolische Optimierungsprobleme
Bei der hyperbolischen Optimierung handelt es sich um die Optimierung eines

Quotienten zweier Funktionen unter gewissen Restriktionen. Im einfachsten Fall
betrachten wir den Quotienten aus zwei linear-affinen Funktionen. Da ein solcher
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Quotient i. allg. nichtkonvex ist, lassen sich die hyperbolischen Optimierungsprobleme
nicht in die Klasse der konvexen Probleme einordnen.

Hyperbolische Optimierungsprobleme sind aus praktischen Fragestellungen hervor-
gegangen, bei denen mitunter mehrere Funktionen zu optimieren sind (z. B. Anwach-
sen des Gewinns bei gleichzeitiger Minimierung der Selbstkosten oder Anwachsen
des Produktionsvolumens bei mdglichst geringem Arbeitszeitaufwand). Zu diesem
Zweck bildet man Verhaltnisfunktionen wie Stiickkosten, Arbeitsproduktivitét u. &.
und ermittelt deren Optimum.

Definition 4.4: Ein Optimierungsproblem
min {f(x) | xeG}, G ={xeR"|g(x)=0,iel}
heif3t hyperbolisch, wenn die Zielfunktion f die Form
u(x)

f(x)'_-'m,

v(x) >0,
hat.

Man beachte, daB das in Beispiel 1.2 angegebene elektrotechnische Problem die
Form eines solchen hyperbolischen Optimierungsproblems hat.

In den meisten Féllen werden lediglich hyperbolische Optimierungsprobleme mit
linearen Restriktionen behandelt. Solche Probleme lassen sich unter Beachtung der
jeweiligen Eigenschaften der Zielfunktion einteilen in

a) konvex-konkave Probleme mit
u konvex auf G, v konkav auf G; u(x),u(x) >0 VxeG;
b) quadratische Probleme mit
u(x) = xTCx + ¢'x + ¢y, v(x) = x"Dx + d™x + dy; :
u(x),v(x) >0 Vxeq,
wobei C eine positiv definite und D eine negativ definite (1, n)-Matrix darstellen;
c) quadratisch-lineare Probleme mit
u(x) = XxTCx + ¢™x + ¢g, v(x) =d™x + dy; v(x) >0 VxeG,
wobei C eine positiv definite (n, n)-Matrix darstellt;
d) lineare Probleme mit
u(x) = ¢™x + ¢, v(x) =d™x + dp; v(x) >0 VxeG.
Fiir lineare hyperbolische Optimierungsprobleme

. e’x + ¢
min {f(3) := gr——

XEG}’ (4.13)

G = {xeR"|a""x < by, iel,}
gilt der

Satz 4.9: Ist der zuliissige Bereich G des linearen hyperbolischen Optimierungsproblems
(4.13) beschrinkt, so nimmt die Zielfunktion f ihr Minimum beziiglich G in einem
Extremalpunkt von G an.
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Dieser Satz, dessen Beweis wir hier iibergehen, legt es nahe, jedem Problem (4. 13)
ein dquivalentes lineares Optimierungsproblem zuzuordnen.

Durch die Transformatlon—i—’ =X, t > 0, folgt aus (4.13) das Problem

cTy + ¢of T
Ty T dot ¥y, 0)'eG },

= (7)o
t
. A (a”) (au ﬂ1n>
mit =1 = : R
amT/ my - Amn

0
Ist (3, ) eine Losung des Problem (4.14), so ist offenbar auch (ly

°
Losung dieses Problems (Aufgabe 4.10).
Diese Eigenschaft sichert zusammen mit d"x + d, > 0 Vx € G die Aquivalenz von
(4.14) mit folgendem linearen Problem:

min {¢'y + cot | (y, )T € G**},

min {

£>0, Ay~ br < 0] @.14)

0

)mitl>0

415
G**:{(f)eRﬂH[Ay—bzg0,dTy+doz=1,z>o}. @19

0 0
Jede Losung (:’D) von (4.15) ergibt mittels x° = i’—o die zugehorige Losung von
(4.13), und umgekehrt ergibt jede Losung x° von (4.13) mittels

1

- 0 — 4050
d™x° + d,’ y ’

0
die zugehorige Losung (y ) von (4.15).
Wir nennen (4.15) das dem linearen hyperbolischen Optlmlerungsproblem (4.13)
zugeordnete lineare Optimierungsproblem.

Aufgabe 4.10: Man beweise: Ist (y°, °)T eine Losung des Problems (4.14), so ist auch (y°, 4t°)T
fiir beliebiges 4 > 0 eine Losung dieses Problems.

Aufgabe 4.11: Gegeben sei das Problem

xeG},

={XeR*|x; +x, =4, 2x —x =2, x,%€R}

3y —x, + 3

min —
i {f(x) X; 4+ 2x; + 1

Man ermittle das zugehdrige lineare Optimierungsproblem und Iose es mit dem Simplexalgorithmus.
Wie lautet die Losung des Ausgangsproblems?

4.5, Geometrische Optimierungsprobleme

Im Rahmen der Entwicklung der nichtlinearen Optimierung hat sich die geome-
trische Optimierung zu einer relativ selbstindigen Teildisziplin entwickelt. Dabei ent-
stand die geometrische Optimierung wesentlich unter dem EinfluB von Aufgaben aus
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den Ingenieurwissenschaften. Eine lehrbuchmiBige Darstellung der geometrischen
Optimierung findet man in [5], wahrend die Problemstellung der geometrischen
Optimierung in [1] dargelegt wird.

Man kann zeigen, daB zahlreiche nichtlineare Optimierungsprobleme in die Pro-
blemstellung der geometrischen Optimierung eingeordnet werden kénnen.

In der geometrischen Optimierung kommt der sogenannten geometrischen Un-
gleichung besondere Bedeutung zu. Mit ihrer Hilfe lassen sich duale Paare geometri-
scher Optimierungsprobleme einfithren (vgl. Abschnitt 6). Als Sonderfille geome-
trischer Optimierungsprobleme erhélt man u. a. die Posynomoptimierung und die er-
weiterte quadratische Optimierung (vgl. dazu [1]).
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In Abschnitt 3 erdrterten wir Extremwertaufgaben mit Restriktionen in Gleichungs-
form. Dabei zeigte sich die groBe Bedeutung der Lagrange-Funktion und der La-
grange-Multiplikatoren. In diesem Abschnitt wollen wir nun der Frage nachgehen,
ob sich diese Begriffe auch bei Optimierungsproblemen mit Restriktionen in Unglei-
chungsform vorteilhaft verwenden lassen. Die gewonnenen Resultate, gelegentlich
unter der Bezeichnung Kuhn-Tucker-Theorie zusammengefaB3t, nehmen eine zentrale
Stellung in der nichtlinearen Optimierung ein.

5.1. Zusammenhang zwischen nichtlinearen Optimierungsproblemen
und Sattelpunktproblemen

In Analogie zur Aussage von Satz 3.1 iiber klassische Extremwertaufgaben geht
es in diesem Abschnitt darum, notwendige und/oder hinreichende Optimalitéts-
bedingungen zu finden, indem die Existenz einer Losung eines gegebenen Optimie-
rungsproblems durch die Existenz einer Losung eines gewissen anderen Problems be-
schrieben wird. Solche Probleme koénnen zugeordnete Ungleichungssysteme (vgl.
Satz 5.3), Gleichungssysteme (vgl. Satz 3.1 und Satz 3.5) oder andere Optimierungs-
probleme (vgl. Satz 5.1 und Abschnitt 6) sein.

Wir betrachten als Spezialfall von (1.1) das Optimierungsproblem

P: min {f(x) | xe G},
G={xeR|g(x) 20, iel} 5.1
mit ffR"-> R, g:R >R, iel,.

Bei den folgenden Betrachtungen verzichten wir also auf Restriktionen der Form
h(x) = 0. Sie lassen sich z. B. durch g,(x) £ 0, g,(x) < Omit g, = 4, g, = —h er-
fassen.

Zur Formulierung des Sattelpunktproblems bendtigen wir

Definition 5.1: Es sei F: R*™ — R. Ein Punkt (x°, u®)T € R™™ heifit Sattelpunkt der
Funktion F, wenn gilt:
F(x° u) £ F(x° u°) < F(x,u’) VxeR", VYueR™. (5.2

Beispiel 5.1: Die Funktion F(x,u) = x? — u?, (x, u)T € R?, besitzt den Sattelpunkt (x°, u°)T
= (0, 0)T, denn es ist (Bild 5.1)

F(x° u) = —u? < F(x° u°) = 0 = x> = F(x,u®) VxeR, VueR.
Wir formulieren nun das Sattelpunktproblem:
SP: Gegeben sei die Funktion

F(x,n) = f(x) + éluig,(x), (x, u)T e Rrm,

Gesucht sind ein x° € R* und ein u® € R?, so daB (x°, u®)T ein Sattelpunkt der Funk-
tion F ist.
Den Zusammenhang zwischen den Losungen der Probleme P und SP zeigt

Satz 5.1: (x°, u®)T Lisung von SP = x° Lisung von P.
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Beweis: 1. Wir zeigen zunichst x°€ G. Aus der Sattelpunktbedingung F(x°, u)
< F(x°, u°) folgt

iZlu;g:(X“) =Y wex?) Yu 20, i=1,..,m. (5.3)
= i=1

7=Flxu) =x*~u?

Bild 5.1

Wihlt man spezielf u = u® + €, so folgt sofort
G(x) <0 Vk=1,..,m, (5.4)
d.h.x°eG.

2. Zu zeigen bleibt, daB x° Lésung von P ist. Fiir einen beliebigen Punkt x e G gilt
wegen u) = 0 Viel, unter Beachtung von (5.2)

J(x) =z f(x) +f-§1 wey(x) = F(x,u°) = F(x°,u%) = F(x°,u) VueR™.

Da diese Beziehung insbesondere auch fiir u = 0 richtig ist, hat man
fx) =2 Fx° 0) = f(x°) VxegG.
Die Umkehrung von Satz 5.1 gilt ohne zusétzliche Voraussetzungen nicht, wie das
folgende Beispiel zeigt.
Beispiel 5.2: Wir betrachten das Optimierungsproblem
P:min{-x|xeG}, G={xeR|-x=0,x*=0}=/{0}

und das Sattelpunktproblem
SP: Gesucht ist ein Sattelpunkt der Funktion

F(x,u) = —x — u3x + u,x?, (x,w)T € R X R2.

Offenbar ist x° = 0 Losung von P wegen G = {0}.
Wir nehmen an, daB (0, u®)” ein Sattelpunkt von F ist. Dann folgt nach Definition 5.1

—0—u O+ un 0= —0—ud 0+ u) 0= —x — udx + ulx?.
Fiir x = 0 ist diese Bedingung erfiillt. Fiir x > 0 folgt

0= x(—1—ud + udx)
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und damit
0= —1—ud+ ulx.
Wegen uf = 0 ergibt sich hieraus L =ud Vx> 0.
x

Diese Bedingung kann jedoch fiir kein endliches u3 erfiillt werden. Damit wurde gezeigt: x° = 0
ist Losung von P, aber es gibt kein u® € R%,, so daB (0, u®)T Losung von SP ist.

Die Umkehrung von Satz 5.1 gilt bei Einfithrung einer gewissen Regularitatsbe-
dingung fiir den zulédssigen Bereich G. Wir verwenden hier die Regularitatsbedingung
von Slater:

B: Es sei g;: R" — R, i€ l,. Es existiert wenigstens ein Xe G mit g(X) < 0 Viel,
d. h. G besitzt wenigstens einen inneren Punkt.

Anmerkung: Werden durch die Ungleichungen g;(x) < 0, i€ I, auch Gleichungen
(vgl. die nach (5.1) angegebene Moéglichkeit) beschrieben, so ist die Bedingung B
nicht erfiillbar. Man kann zeigen, daB B erfiillt ist, wenn die durch G aufgespannte
lineare Mannigfaltigkeit die Dimension » hat.

In Beispiel 5.2 ist die Bedingung B verletzt.

Satz 5.2: Im Problem (5.1) seien die Funktionen f, g;, i € I, konvex und die Bedingung B
erfiillt. Dann gilt:

x° Lisung von P <> 3u° € R%, so dafy (x°, u®)* Lisung von SP, x° € G.

Beweis: 1. («<=): Diese Aussage wurde unter schwicheren Voraussetzungen bereits
in Satz 5.1 bewiesen.

2. (=): Wir betrachten das Ungleichungssystem
gi(x) <0,iel,, (5.5)
S - f(x°) < 0.
Da x° Lésung von P ist, kann das System (5.5) keine Losung besitzen. Daher existiert
nach Satz 2.21 ein Vektor u® = (uf, u3, ..., up)" € R%*, u® # 0, mit
m
uglf(x) — fx)] + Elu?g,—(X) 20 VxeR- (5.6)
Aus der Annahme # = 0 folgt wegen der Regularititsbedingung B und wegen
u’ £ 0
3 uigi(X) <0,
i=
und das ist ein Widerspruch zu (5.6). Also ist u§ > 0, und o. B.d. A. setzen wir
uy = 1. Damit ergibt sich aus (5.6)
m
S&) = f(x%) + X ufgi(x) 20 VxeR",
i=1

also
F(x,u°) = f(x°) VxeR". (5.7

AuBerdem gilt offenbar
m
S0 2 f(x°) + X uig(x?) Vu= (uy, ..., tm)" 20,
i=1
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&b f(x%) = F(x%,u) VueRT. (5.8
Aus (5.7) und (5.8) folgt
Fx°w) < f(x°) < F(x,u®) VxeR", VueRT.
Setzt man x = x° und u = u°, so ergibt sich hieraus f(x°) = F(x°, u®) und damit
F(x°u) < F(x°,u% < F(x,u%) VxeR", VueR?,
d. h. (x°, u®)T ist Lésung von SP.

Anmerkungen: 1. Der Inhalt von Satz 5.1 und Satz 5.2 wird héufig als globale
Kuhn-Tucker-Bedingung bezeichnet.

2. Eng verwandt mit der Aufgabe, fiir eine Funktion F: Cx D> R, Cx D"
S R" x R™, einen Sattelpunkt zu bestimmen, ist die Frage, unter welchen Bedin-
gungen die Beziehung

max min F(x, u) = min max F(x, u) (5.9
ueD xeC xeC  ueD

erfiillt ist. Auskunft dariiber geben die sogenannten Minimax-Sctze. Sie haben u. a.
in der Spieltheorie erhebliche Bedeutung (vgl. dazu Band-14, Band 21/1 und [21]).

5.2, Lokale Optimalititshedingungen

Wir wollen nun eine Losung des Problems P dadurch charakterisieren, daB die
im Sattelpunktproblem SP definierte Funktion F an einer Stelle (x°, u®)T untersucht
wird. Dies gelingt fiir differenzierbare Funktionen f, g;, i€ I,, und fiihrt auf die soge-
nannten lokalen Kuhn-Tucker-Bedingungen. Dazu betrachten wir das Problem

P,: Es seien f: R* —» R, g;: R" —» R, ie I, partiell differenzierbar und

Fx,u) = f(x) + ﬁlu,g, (x), (x,u)TeR" x R™, (5:10)

Gesucht sind ein x° € R" und ein u® € R, so daB gilt:
VLF(x°, u%) = 0, .11
VuF(x% u®) £ 0,
uTV, F(x% u®) =0

mit VaF = (Fyyy oo, Fi)™s VoF = (Fupy ooy Fun)" = 8 = (815 s &m) -

Die Bedingungen (5.11) und (5.12) bezeichnen wir als lokale Kuhn-Tucker-Bedingun-
gen.

(5.12)

Aufgabe 5.1: Man zeige: Aus u® € R™ und der Giiltigkeit von (5.12) folgt u%;,(x°) = 0 VieI,.
+ 1 o

Bevor wir auf den Zusammenhang zwischen den Problemen P, P, und SP eingehen,
beweisen wir

Satz 5.3: Es seien X < R" eine offene Menge mit X 2 R, und f: X — R auf X stetig
partiell differenzierbar. Dann gilt:

[ hat in x° e R", ein lokales} - { Vix°) = 0,
Minimum beziiglich R". x°TVf(x%) = 0.
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Beweis: Nach Voraussetzung gilt fiir alle xe R :

S&®) = fx°) + (x = xO)TVXO) + [Ix — x°] a(x, x°) .13)
mit o(x,x% - 0 fir ||x — x°| > + 0. :
Da f'in x° ein lokales Minimum besitzt, existiert ein ¢ > 0 mit

S&®) — fx%) = (x = x)TVA) + |x — x% afx, x°) = 0 (514
fiir alle x e R%, mit [|x — x°|| < &. Wir wihlen
x=x%+1, ve{l,..,n}, te(0,e),
und erhalten aus (5.14)
1o (x%) + ta(x,x°) = 0 mit o(x,x°) - 0 fiir - +0.
Nach Division durch # > 0 und anschlieBendem Grenziibergang ¢t — + 0 folgt daraus
f(x® 20 Vve{l,..,n},dh
VAx®) = 0.
Nun sei x9 die »-te Koordinate von x° und auBlerdem x¢ > 0. Setzen wir x = x° — re’,
ve{l,...,n}, so gilt xe R" fiir hinreichend kleines ¢ > 0, und wir erhalten wie oben
—/fx(x%) 2 0.
Damit ist notwendig f;,(x%) = 0 fiir x) > 0, ve {1, ..., n}.
Folglich gilt
x°TVf(x°) = 0.
Mit Hilfe von Satz 5.3 ergibt sich nun leicht die Aussage von
Satz5.4: Esseienf: R" — R, g;: R" — R, i € I, stetig partiell differenzierbar. Dann gilt:
(x°, u®)T Ldsung von SP = (x°, u®)T Lésung von P,.
Beweis: Nach Voraussetzung gilt die Sattelpunktbedingung (5.2). Die Funktion
F(x, u®) hat in x° ein lokales Minimum. Daher gilt (Band 4, Satz 4.3)
ViF(x°,u%) = 0,
und das ist gerade (5.11).

Die Funktion — F(x°, u) hat in u® ein lokales Minimum beziiglich R%. Daher gilt
nach Satz 5.3

VoF(x%u%) £ 0, u”TV,F(x%u°) = 0,
und das sind die Bedingungen (5.12).

Die Umkehrung von Satz 5.4 gilt nur unter zusétzlichen Voraussetzungen.
Satz5.5: Esseienf: R" — R, g;: R" - R, i€ l,, konvex und stetig partiell differenzierbar.
Dann gilt:

(x°, )T Ldsung von SP <> (x°, u®)T Ldsung von P,
die Probleme SP und P, sind also dquivalent.

Beweis: Wegen Satz 5.4 bleibt die Aussage (<=) zu beweisen. Die lokalen Kuhn-
Tucker-Bedingungen (5.11) und (5.12) seien erfiillt. Da F konvex in x ist, gilt nach
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Satz 2.15
F(x,u% — F(x°u% = (x — x9)TV,F(x%u%) =0
und damit
F(x°%u® < F(x,u’) VxeR". (5.15)

Da F linear in u und damit konkav in u ist, gilt fiir ue R%
F(x°, u) — F(x° u%) < (u — u9)"V,F(x° u®)
= "V, F(x% %) — uTV,F(x% u®) £ 0
und damit '
F(x°w) < F(x°u% VYueR?. (5.16)
Aus (5.15) und (5.16) folgt, daB fiir Fin (x°, u®)T die Sattelpunktbedingung (5.2) er-
fiillt ist, d. h. (x°, u®)T ist Losung von SP.
Satz 5.5 und Satz 5.2 ergeben zusammen
Satz 5.6 (Satz von Kuhn und Tucker): Es seien im Problem P gemdf (5.1) die Funk-

tionen f: R* > R, g;: R* > R, i€ l,, konvex und stetig partiell differenzierbar und die
Regularititsbedingung B erfiillt. Dann gilt

Es existiert einu® € R%, so dafs

07
X Losung von P <> {(x", )T Losung von Py ist.

Bemerkung: Die linearen Restriktionen konnen in der Slater-Bedingung weggelas-
sen werden (vgl. [2]). Damit gilt Satz 5.6 fiir lineare und quadratische Optimierungs-
probleme (bei positiv semidefiniter Matrix C) ohne die Bedingung B.

Beispiel 5.3: Ermittelt man fir das in Beispiel 5.2 gegebene Problem die lokalen Kuhn-Tucker-
Bedingungen, so ergibt sich als eindeutig bestimmte Losung #? = —1, d. h. es existiert kein u®e R%,
so daB (5.11) und (5.12) erfiillt sind.

Zur Formulierung der folgenden Aussage bendtigen wir

Definition 5.2: Gegeben seien das Problem P gemdf (5.1) und x° € G. Jede Restriktion
mit der Eigenschaft g,(x°) = 0, i€ I,, heifit in x° aktive Restriktion.
AuBerdem fithren wir die Indexmenge
I°(x°) := {iel,| g(x°) = 0}
der in x° aktiven Restriktionen ein. Dann hat man
Satz 5.7: Im Problem P gemdf (5.1) seien die Funktionen f: R* —» R, g;: R* — R, iel,
stetig partiell differenzierbar und x° € G eine Lisung von P. Existiert ein z € R" mit
z'Vgi(x°) < 0 Viel’(x%), (5.17)
so gibt es ein u® e R, so dafp (x°, w®)* Ldsung von P, ist.
Anmerkung: Die Bedingung (5.17) ist eine Regularititsbedingung. Sie kann noch

abgeschwicht werden und impliziert bei stetig partiell differenzierbaren konvexen
Funktionen die Regularititsbedingung B.

Beispiel 5.4: Wir ermitteln den Abstand der konvexen Menge
G={xXeR*|x; +x,24, 2x;+ x, =5}
vom Ursprung (0, 0)7.
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Die Aufgabe kann elementar geldst werden. Aus der graphischen Darstellung ergibt sich sofort
die Vermutung, daB der gesuchte Abstand durch einen Punkt der Geraden x; + x, = 4 realisiert
wird. Er kann als Schnittpunkt dieser Geraden mit der dazu orthogonalen Ursprungsgeraden be-
rechnet werden. Als einzige Losung ergibt sich dabei x° = (2, 2)T.

Wir behandeln dieselbe Aufgabe nun als nichtlineares Optimierungsproblem, um die Wirkungs-
weise der bisherigen Aussagen zu verdeutlichen und zugleich eine einfache Kontrolle der Ergebnisse
zu ermoglichen.

Der einfacheren Rechnung wegen minimieren wir nicht [[x||, sondern die Funktion

f&x) = X2 = 2} + 5}
unter den linearen und damit konvexen Restriktionen
g1(X):i=4—-x —x =0, &KX :=5-2x—x=0.

Fiir X = (0, 6)T gilt g4(X) = —2 < 0 und g,(X) = —1 < 0. Daher ist B erfiillt, und wir kénnen
Satz 5.2 anwenden. Fiir die Funktion

Fx,u) = x2 + X2 + u3(4 — x; — %) + uy(5 — 2x; — x5)
ergibt sich aus (5.11)

Fy,(x%,u%) = 22 — uf — 219 =0, 7(5.18)
Fy(x°,u%) = 2x3 — uf — ud = 0 (5.19)
und aus (5.12) !
TF (00 =4 - 29— =0, (5.20)
F,x%u%) =5-2x3 - x3=0, (5.21)
: WTV Fx%u0) = @4 — 2 — ) + w5 — 223 —x) =0 (5.22)
sowie
W=0, uzo0. (5.23)
Wegen (5.20), (5.21) und (5.23) kann man (5.22) ersetzen durch
w4 -2 -x9) =0, ' (5.222)
ud(5 — 2x9 — 29 = 0. (5.22b)

Fall 1: u = 0,43 = 0. Dann folgt aus (5.18) und (5.19): x{ = x3 = 0 und damit aus (5.20) und
(5.21) die Ungleichungen 4 = 0 bzw. 5 = 0, d. h., es ergibt sich ein Widerspruch.

Fall 2: u? = 0,u? > 0. Dann folgt aus (5.22b), (5.18), (5.19)
M=u=22x5=1
Aus (5.20) ergibt sich damit4 — 2 — 1 <0, al;o ein Widerspruch.
Fall 3: u? > 0,u$ = 0. Dann folgt aus
(5.222)7 A8 =4— 2,

(5.18):  2x% - u?=0,
(5.19): —2x9 —ud=-8
und daraus

o _ o _ 0 _ 0 _
xX1=2, x=2, u7 =4, u; =0.

Mit diesem Wertesystem sind auch (5.20), (5.21) sowie (5.23) erfiillt.
Der Fall u > 0,49 > 0 braucht nicht mehr untersucht zu werden, denn nach Satz4.3 existiert wegen
der strengen Konvexitit von f fiir das gegebene konvexe Problem hochstens eine Losung. Nach
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Satz 5.6 ist x° genau dann Losung von P, wenn (x°, u®)T Losung von Py ist, d. h. x° = (2, 2)" ist die
einzige Losung von P. Die x° zugeordnete Losung (x°, u®)T von Py ist aus dem obigen System
(5.18) - (5.23) eindeutig bestimmt.

Die geometrische Losung des Problems folgt aus Bild 5.2. Man erkennt auch die geometrische
Bedeutung der Bedingung (5.11): Der negative Gradient von fin x° ist eine positive Linearkombina-
tion der Gradienten Vg;(x°), i € I°(x°).

%

vFx7)=(})
T TN A=)

! L Bild 5.2
%

! G X)=b-x=x,=0
9, (K)=5-2x=x,=0

Aus (5.22a) und (5.22b) folgt, daB der Lagrange-Multiplikator bei in x° nicht aktiven Restriktionen
gleich null ist.

Beispiel 5.5: Von einem Betrieb wird ein Produkt P wihrend n Zeitabschnitten (Perioden) produ-
ziert. Das Erzeugnis P kann bis zu einer Menge von L Einheiten gelagert werden. Der Bedarf b;
der Periode j,j =1, ..., n, ist jeweils bis zum Ende dieser Periode zu befriedigen. Dazu kann das Er-
zeugnis sowohl aus dem Lager als auch aus der laufenden Produktion verwendet werden. Die Lager-
kosten von K Wihrungseinheiten (Mark) pro Wareneinheit sind zu Beginn jeder Periode nach dem
zu diesem Zeitpunkt bestehenden Lagerbestand zu entrichten.

Zu Beginn der Periode 1 seien 5o = L Wareneinheiten vorhanden, zum Ende der Periode 7 sollen
noch s; Wareneinheiten vorhanden sein (fiir Reklamationen oder Nachbestellungen).

Wir setzen voraus, daB die Produktionskosten in jeder Periode mindestens proportional mit der
produzierten Stiickzahl wachsen (wie es in der Praxis i. allg. der Fall ist), so daB die Produktions-
kosten in jeder Periode eine konvexe Funktion der produzierten Warenmenge sind.

Die Aufgabe bestehe darin, die Summe der Lagerkosten und der Produktionskosten iiber alle 7
Perioden zu minimieren.

4

Zunichst stellen wir ein mathematisches Modell gemafl den obigen Darlegungen auf. Es bezeich-
nen furj=1,...,n:

x; [Stiick] die in der Periode j produzierte Warenmenge,

by [Stiick] den in der Periode j zu erfiillenden Bedarf,

y; [Stiick] den zu Beginn der Periode j vorhandenen Lagerbestand,

fi(x;) [Mark] die Produktionskosten in der Periode j.

Damit erhalten wir das konvexe Optimierungsproblem

min { Y f(x;) + Kzly, | (x, Y)TGGJ:
= i=

G= (W R X R'x, 3y 2 0,3y S Ly, +x2by j =Lun;  (5.24)

Yi=50, Yir1 =Yyt x;—by j=1.,n—1, ypt+ Xy — by =s1}.
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Eliminiert man die Variable y;, j = 1, ..., n, so folgt das zu (5.24) dquivalente Problem

min {/ﬁ‘, fj(xl) + K [nso + i (n—v(x, — b,)]
=1 v=1

X€ G*}, (5.25)

J
G* ={xeR"\—x§0, so+ 2 (x,— b)) =L,

v=1

Jj
So+ 2 (x,—b)20, j=1,..,n-1;
v=1

n n
S0+ D= b) 2 s s+ X6 — b)) gsl}.
v=1 v=1

Wir setzen u™ = (v7, uf, uf, u]) mit
T T :
V= (04,05 0y), U = (Upgs oy Uy y), ll; = (Uz1, s Upp_1)s “;r = (uyy, Uzp)

und fiihren fiir das Problem (5.25) die Lagrange-Funktion ein: .

n

F(x, u) =jzlfj (x) + K [n:o + > (=) (x, — b,,)] - Yo%,
= v=1

v=

1 1
s+ 2 (v, = b)) — L so + 2 (x, —by)
v=1 v=1
Ful | o —ul
n—1 n—1
so+ 2 (x,—b)—L so + > (x, — b))
v=1 y=

n
+ (u3y — ;) (se — s+ 2 (x, — b,)); x,wTeR" x R,
v=1

Dann erhélt man die Kuhn-Tucker-Bedingungen:

x’eR", VeR], (:g) eR¥™ 2, WeR%, (5.262)
gfl 6D+ @-DK-f 4+ :Z:(u‘l’v —ud) +uly —ud
gfz (€29) + —2)K- + ggu‘,’, —ul) 4wl — i,
VRF(OU0) = [ =0,
gg’f (=) + K=oy + =, +uly—u,
'j‘}% o+ Fud — | (5.26b)

-x%=0, v?x? =0, j=1,..,n,
1
so+ Xy —b)—L
v=1
g(x):= | . 20; e, x0=0, j=1,..,n-1,
n—1
so+ 2 (9—b)—L (5.26¢)
v=1
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&% == | S0 wey(x0)=0,j=1,.,0—1, (526d)

n
So = 81+ 2 (x) — b,)
0y . v=1 .0 0 :
2,(x% = ., =0; wex9 =0, j=12 (5.26e)
—So 5 — X (x5~ b)

=1

Da ein konvexes Optimierungsproblem vorliegt, ist jede Losung des Systems (5.26a) — (5.26¢) auch
Losung des Problems (5.25) und damit (5.24). '

Zur Veranschaulichung betrachten wir folgendes Zahlenbeispiel.

Die Produktion-von P liuft ein Jahr, das in 4 Perioden (Quartale) eingeteilt wird. Es seien
L = 2000, s, = 500, 5, = 500, K = 500, fj(x;) = 3000 x; + a;x?, j = 1,2, 3, 4, sowie

J 1 2 3 4

by | 2000 4000 3000 1000

aj; 2 1,75 0,75 0

Stellt man die Kuhn-Tucker-Bedingungen gemiB (5.26a)—(5.26¢) auf, so folgt als eine mogliche Losung

2500 W = =0=09=0,
o_ [3000) udy=uds=uls=0,
3000 ° udy =0, ud,=6500, uy;= 5000,

1500/ ud) =a, u3,=3000—a, O<a < 3000.

Aufgabe 5.2: Mit Hilfe von Satz 5.6 ist das Problem
min {x7 + x} — 8x; — 10x, | X G},
G={xeR?|—x; 20, —x, =0, 3x +2x,
zu 16sen. AnschlieBend ist die Losung graphisch zu ermitteln.

IIA

6}

Aufgabe 5.3: a) Unter Verwendung von Satz 5.7 ist fiir das Problem
min {—x} — x} — tx; — 2tx, | x€ G},
G={xeR?| —x; 20, —x; =0, x4 x,=4}
eine‘Losung x°(¢) fiir # = 0 zu ermitteln. AnschlieBend ist das Problem fiir beliebiges € R graphisch
zu losen. Ist die Zielfunktion konvex?

b) Ist die Losung x°(¢) stetig auf R?
c) Gibt es zu jedem 7 € R genau eine Losung?
Aufgabe 5.4: Man lose das Problem
max{x; |xeG}, G={xeR?|x;20, x,20, (1—x)%—x,20}
graphisch und zeige fiir die Losung x° € G, daB

a) die Kuhn-Tucker-Bedingungen in x° nicht erfiillt sind,
b) die in Satz 5.7 angegebene Regularititsbedingung in x° verletzt ist.

4  Tlster, Optimierung
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Aufgabe 5.5: Man 16se das System (5.11), (5.12) fir das Problem
min {(x; — 3)? + X3 | x€ G},
G={xeR*|0=x; =2, x50, —x; =0}
Kann man Satz 5.6 anwenden, um auf die Losung x° des Problems zu schlieBen? (Hinweis: Anwen-
dung von Satz 4.8).
Aufgabe 5.6: Wennf: R" — R, g;: R" — R, i€ I, stetig partiell differenzierbar sind, dann geht im
Problem Py bei der zusitzlichen Forderung x € R} die Bedingung (5.11) tiber in
VxF(x%u) z 0,

x°TV,F(x° u®) = 0.



6.  Dualitiitssiitze

‘Dualitatssitze sind uns bereits aus der linearen Optimierung bekannt. Allgemein
beinhalten Dualitatssatze Aussagen iiber zwei einander zugeordnete (sogenannte
duale) Optimierungsprobleme P und D, von denen meist das eine (etwa P) als Mini-
mierungsproblem und das andere (D) als Maximierungsproblem formuliert ist.

Der wesentliche Inhalt einer Dualititsaussage besteht darin, daB unter gewissen
Voraussetzungen die Gleichheit der Optimalwerte der Zielfunktionen der Pro-
bleme P und D garantiert werden kann. Dualititssitze geben jedoch im allgemeinen
keine Auskunft dariiber, wie die Losungen der dualen Probleme ermittelt werden.

Wir behandeln im folgenden Dualitatssétze, die
a) als Anwendungen der Kuhn-Tucker-Theorie (vgl. Abschnitt 5.) angesehen werden

konnen,
b) sich auf Dualitétssitze der linearen Optimierung zuriickfiihren lassen.

AuBerdem kann man Dualitatsaussagen mit Hilfe der Theorie der konjugierten
Funktionen herleiten (vgl. dazu [6]).

6.1. Dualitiitssatz der linearen Optimierung

Wir betrachten die dualen linearen Optimierungsprobleme (Band 14, Abschnitt 3.2.)
P;: min {¢"x | xe G,},
G, = {xeR"|XeR}, Ax 2 b};
D;: max {u"b | ue G},
G¥ = {(ueR"|ueR}, A" £ ¢}

mit der (m, n)-Matrix A, be R" und ce R".
Fiir das Problem P, seien die Regularitatsbedingung B (vgl. 5.1.) erfiillt und x° € G,
eine Losung. Dann existiert nach Satz 5.6 und Aufgabe 5.6 ein u® € R7, so daB fiir

F(x,u) = ¢"x + u’(b — Ax)

gilt:
VxF(x%u%) =¢c — AT > 0, 6.1)
x0TV F(x°, u%) = x°Te — x°TATu® = 0, 6.2)
VuF(x%u%) = —Ax° + b < 0, 6.3)
w0V, F(x%, u%) = —u’TAx® + u®"h = 0. 6.4)
Aus (6.2) und (6.4) folgt
¢"x® = u'Th; 6.5)

aus (6.1) und (6.3) erhélt man x° € Gy, u° € Gf.

Es gilt
u'b < ¢x VxeG, VueG¥
und damit auch

max u'b < min ¢"x.
ueG ¥ x€Gy

4%
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Mit (6.5) ergibt sich so als Sonderfall des Dualititssatzes der linearen Optimierung
(Band 14, Abschnitt 3.2.2.) der

Satz 6.1: Es seien P, und D, gegeben und x° € G, eine Lisung von P,. Dann existiert ein
u® e R%, so daff w® Lésung von D ist, und es gilt: .
¢"x% = min ¢"x = max u™ = u®"b. © o (6.6)
xeGy ueGF

Anmerkung: Eine zu Satz 6.1 analoge Aussage erhilt man durch Vertauschen der
Probleme P, und D;. Dies ist zuldssig, da das zu D, duale Optimierungsproblem wieder
ein primales Problem ist.

6.2. Dualititssatz von Wolfe

Wir wollen nun fiir die dualen nichtlinearen Optimierungsprobleme
P: min {f(x) | xe G},
G = (xeR"|g(x) £ 0,iel}.")

D: max {F(x, u) = f(x) +§‘,1 u;g(x) | (x,w)" e G*} R

G* = {(x,u)"eR" x R" | (x,w" € R" x R%, VxF(x,u) = 0}

einen Dualitdtssatz angeben, der von Wolfe stammt (vgl. [6]). Dabei seien f: R* — R,
g:: R" —» R, iel,, konvex und stetig partiell differenzierbar.
Die entsprechenden dualen linearen Optimierungsprobleme erhdlt man nach dem
hier aufgestellten Prinzip fiir F(x,u) = ¢"x + u"(—Ax + b) (Aufgabe 6.5).
Wéhrend man bei den Problemen P, und D; nach der Bemerkung 2 in 6.1. von einer
Losung von P, auf eine Losung von D, und umgekehrt schlieBen kann, enthilt der
folgende Dualitatssatz nur eine Implikation.

Satz 6.2 (Satz von Wolfe): Es seien P und D gegeben, fiir P die Regularititsbedingung
B erfiillt und x° € G eine Lisung von P.
Dann existiert ein u® € R, so dafs (x°, u®)" Losung von D ist, und es gilt:

J(x°%) = ménf(x) = max F(x,u) = F(x° u°). 6.7)

x,u)TeG*

Beweis: x° € G sei Lésung von P. Wegen der Konvexitit von F in x fiir jedes feste
ue R™ hat man fiir (x, w)™, (x’, w)T, (x”’, w)Te G* nach Satz 2.15 unter Beachtung der
Restriktionen von D

F(x',u) — F(x,u) = (x' — x)T VyF(x,u) =0, 6.8)
F(x",u) — F(x,u) = (x" — x)T ViF(x,u) = 0. (6.9)
Setzen wir x = x"" in (6.8) und x = x’ in (6.9), so folgt
F(x',u) = F(x",u) Y,uw)T, (x", u’eG*,
also ist F fiir jedes feste ue R auf G* von x unabhéngig. Mit
F(x° u®) := max F(x° u) (6.10)

m
ueRY

1) Das Problem P stimmt offenbar mit dem Problem (5.1) iiberein.



6.3. Dualititssatz von Dorn ) 53

ergibt sich daher
F(x°u% = max F(x° u) = max F(x u) = F(x,u) VY(x,u)TeG*
(x%,u)TeG* (x,u)TeG
und wegen (6.10) und Satz 5.6
VXF(x% u°% = 0.

Dabher ist (x°, u®)T eine Losung von D.
Wie im Beweis von Satz 5.2 oder mit Hilfe von Satz 5.6 zeigt man leicht (Auf-
gabe 6.1)

f(x%) = F(x° u°).

Die Aussage von Satz 6.2 ist insofern unbefriedigend, als bisher kein Verfahren
(insbesondere keine exaktes Verfahren) zur Losung von P zur Verfiigung steht, um
daraus auf die Losbarkeit von D und auf den optimalen Wert der Zielfunktion von
D schlieBen zu konnen. Hingegen kann man bereits mit den in Abschnitt 3 und
Abschnitt 5 entwickelten Methoden Probleme der Form D exakt 16sen.

Es ist also auch fiir Anwendungen von Wichtigkeit, iiber solche Dualititssitze zu
verfiigen, die als Aquivalenz formuliert werden konnen. Eine solche Aussage enthilt
der folgende Abschnitt.

6.3. Dualitiitssatz von Dorn

Wir betrachten die dualen nichtlinearen Optimierungsprobleme
P: min {f(x) | xe G},
G = {xeR"|xeR%: Ax = b};
D: max {H(x, u) = f(x) — X" VA(x) + u™b | (x, u) Te G*},
G* = {(x,W)TeR" x R"| (x, WTe R" x Rm, ATu £ Vf(x)}
mit der (m, n)-Matrix A, be R™, und der stetig partiell differenzierbaren konvexen

Funktion f. Fiir diese Probleme wurde von Dorn die folgende Dualititsaussage be-
wiesen (vgl. [6]).
Satz 6.3 (Satz von Dorn): Gegeben seien P und D. Dann gilt:
1. Ist X° € G eine Lisung von P, so existiert einu® € R’:, so dafy (x°, u®)T Losung von D
ist mit )
f(x° = min f(x) = max H(x,u) = H(x° u°). (6.11)
xeG (x,u)TeG* .

2. Ist (x°, u®)T € G* eine Losung von D, so ist x° Lisung von P, und es gilt (6.11).

Beim Beweis dieses Satzes verwendet man den Dualititssatz der linearen Optimie-
rung. .

Die Brauchbarkeit von Satz 6.3 zeigt folgende Uberlegung:

Ist ein nicht notwendig konvexes Problem der Form D gegeben, so kann es folgen-
dermaBen geldst werden:

a) Ermittlung des zugehorigen konvexen Problems P.



54 6. Dualititssitze

b) Das Problem P wird gelost (etwa mittels eines Gradientenverfahrens wie in Ab-
schnitt 7 beschrieben); x° sei eine Losung von P.

c) Setzt man x = x° in D, so ergibt sich ein lineares Optimierungsproblem in u.!)
d) Dieses lineare Optimierungsproblem wird geldst. Seine Lésung u® ergibt zusammen

mit x° eine Losung des gegebenen Problems D.

Beispiel 6.1: Das Problem

max {(x; — 5)* + (x — 4)? — dx;(x; — 5)° — 2x,(x; — 4) — 15x3 — 3x4 | xeG*},
= {X€R*| xq1, x,6R, x5, x4 € Ry; —4(x; — 5)° — 2x3 — 3x4, = 0,
2
—2(x; — 4) = 3x3 + 2x4 = 0}

hat offenbar die Form von D, wobei

100 = (1= 9%+ = A= (] ) m = =

zu nehmen ist. Das zugehorige konvexe Problem P ist
min {(x; — 9* + (x, — 9?|x€G},
={X€R*|xeR%, 2x; + 3x £ 15, 3x; — 2x, < 3}.

Die Losung x° = (3, 3)T von P findet man z. B. graphisch. Setzt man nun in der urspriinglichen Auf-
gabe x; = 3, x, = 3, so gelangt man nach einfachen Umformungen zu dem linearen Optimierungs-
problem

min {15u; + 3u, | ue G§},

G¥ = {ueR? |ue R%, 2uy + 3u, = 32,
3uy — 2u, = 2}
. " N 70 92 T " P
mit der Losung u® = Folghch ist (3,3, —, —| eine Losung des urspriinglichen
Problems. SENNE) 13

Aufgabe 6.1: Man vervollstindige den Beweis von Satz 6.2.
Aufgabe 6.2: Gegeben sei das Optimierungsproblem
P: min{/(x) = —x; + x}|x€G}, G={xeR*|x}+ 5 =1}
a) Man stelle das zu P gehdrende duale Problem D auf und grenze mit seiner Hilfe den optimalen
Wert von fein.

b) Die dualen Probleme P und D sind sowohl mit Hilfe der Kuhn-Tucker-Theorie (Abschnitt 5.)
als auch mit Hilfe der Theorie der Lagrange-Multiplikatoren (Abschnitt 3.) zu losen. (Hinweis:
Beim Losen von D sind Fallunterscheidungen fiir #; > 0 und #; = 0 vorzunehmen.)

’

Aufgabe 6.3: Das Problem
max { —3x} — 2x% + 5x3 — x4 | X€ G},
G={XER*|x;,x,€R, x3,x56 Ry, 4dx3—2xy =4x}, 2x3+ x4 < 4x,}
1) Auch wenn man in b) nur eine Niherungslosung erhilt, ist dieses Verfahren praktikabel, da

,-kleine* Stérungen von x° in c) nur kleine Stérungen der Losung u® in d) ergeben. Man sagt, das
lineare Optimierungsproblem sei stabil gegeniiber kleinen Storungen von x°.
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ist mit Hilfe von Satz 6.3 zu 16sen. (Hinweis: Bei der Losung des primalen Problems verwende man
Satz 5.6 und Aufgabe 5.6. Bei der Losung des linearen Problems in u verwende man das Simplex-
verfahren.)

Aufgabe 6.4: Fiir das in Beispiel 4.2 formulierte quadratische Optimierungsproblem gebe man das
zugehorige duale Problem im Sinne von Wolfe und im Fall einer positiv semidefiniten Matrix C auch
im Sinne von Dorn an. Man zeige, daB sich in beiden Fillen das gleiche duale Problem unter der Vor-

aussetzung, daB P eine Losung besitzt, herleiten 18t.

Aufgabe 6.5: Man bilde fiir das primale Problem P: min {¢"x | Ax < b, xe R"} das zugehorige
duale Problem D mit Hilfe der in 6.3. angegebenen Vorschrift und vergleiche mit Band 14.
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7.1. Zur Einteilung der Liosungsverfahren

In den bisherigen Abschnitten wurde dargelegt, wie Optimierungsprobleme theo-
retisch zu behandeln sind. Jedoch gestatten die angegebenen Optimalitatskriterien wie
die Multiplikatorregel von Lagrange (Satz 3.4 und Band 4, Satz 4.5) und die loka-
len Kuhn-Tucker-Bedingungen (5.11), (5.12) nur in wenigen speziellen Fillen die
direkte Berechnung der Losung des Optimierungsproblems aus dem jeweiligen System
der Bedingungen. Diese Liicke wollen wir nun schlieBen durch die Erérterung von
Losungsverfahren der nichtlinearen Optimierung.

Unter einem Lésungsverfahren fiir ein Optimierungsproblem verstehen wir eine
Rechenvorschrift oder ein System solcher Vorschriften, das bei geeigneten Voraus-
setzungen iiber das vorliegende Problem eine Punktfolge mit folgenden Eigenschaften
erzeugt:

a) Ist die Folge endlich, so ist der zuletzt erzeugte Punkt Losung des Problems.

b) Ist die Folge unendlich, so besitzt sie entweder (eigentliche) Haufungspunkte,
die dann Losung des Problems sind, oder sie besitzt keine (eigentlichen) Haufungs-
punkte, und das Problem ist unlgsbar.

Da diese beiden Eigenschaften i. allg. nur bei konvexen Optimierungsproblemen
vorliegen, sprechen wir allgemeiner auch dann noch von einem Losungsverfahren,
wenn die erzeugte Punktfolge einen Haufungspunkt besitzt, der den Kuhn-Tucker-
Bedingungen (5.11), (5.12) bzw. den Bedingungen (4.2) oder (4.3) geniigt.

Man kann Losungsverfahren fiir Probleme mit Restriktionen nach den verschie-
densten Gesichtspunkten einteilen, etwa nach strukturell-formalen, anwendungs-
bezogenen oder verfahrensméBig-inhaltlichen Gesichtspunkten ([6], [11]). Im letzteren
Falle unterscheidet man danach, auf welche Art und Weise die Punktfolge erzeugt
wird :

1. Zuriickfithrung auf simplexidhnliche Verfahren (Abschnitt 7.2.),

2. Gradientenverfahren (Abschnitt 7.3.),

3. Zuriickfithrung auf Probleme ohne Restriktionen (Abschnitt 7.4.),

4. lineare Approximationsverfahren (Abschnitt 7.5.),

5. direkte Verfahren, auch gradientenfreie oder Suchverfahren genannt (Abschnitt 7.6.).

Dariiber hinaus gibt es zahlreiche weitere Klassen von Lsungsverfahren, auf die
wir jedoch nicht eingehen konnen (vgl. dazu [3], [6], [9], [11], [14], [17], [19], [22]).

In den letzten Jahren wurden verstarkt Versuche zur Schaffung einer einheitlichen
Theorie der Konvergenz der Losungsverfahren fiir nichtlineare Optimierungsprobleme
unternommen (vgl. dazu [17], [9]). Neben der Konvergenz von Verfahren interessiert
vor allem deren numerische Stabilitét. Letztere hangt von der Verstarkung oder Damp-
fung von Eingangsfehlern ab, die z. B. beim Runden der Koordinaten der Punkte
und der benétigten Funktionswerte wegen der endlichen festen Wortlinge des Rech-
ners notwendig auftreten. Uber di¢ Stabilitit von Losungsverfahren liegen bisher
vorwiegend empirische Resultate vor.

Setzen wir ein stabiles Verfahren voraus, so interessieren Aussagen iiber die Kon-
vergenzgeschwindigkeit (vgl. dazu [6], [19], [22]), wobei meist stirkere Voraussetzun-
gen iiber das Problem erforderlich sind als zum Nachweis der Konvergenz des Ver-
fahrens.
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7.2. Verfahren fiir quadratische Optimierungsprobleme

7.2.1. Das Verfahren von Beale

Wir betrachten ein Verfahren zur Losung von quadratischen Optimierungsproble-
men, welches viele Analogien zum Simplexverfahren der linearen Optimierung (vgl.
Band 14) aufweist. Insbesondere ist es fiir das Verstindnis des Verfahrens von Beale
([10]) unbedingt erforderlich, das in [20] verwendete Austauschen von Basisvariablen
(BV) gegen Nichtbasisvariablen (NBV) zu beherrschen.

Gegeben sei das (spezielle) quadratische Optimierungsproblem

min {x"Cx + ¢'x + ¢, | xe G},
Xl
G = {XER" |x = (x2>, x!, x? = 0,x? = B;x' + B3x® + b}, (7.1)
XS
wobei gilt: Z,, Z,, Z; bilden eine Zerlegung der Indexmenge
J={1,..,n},
X' = (Xiezy, X = (Niezo X° = (ikezs X = (Xp)pers
co€ R, By = (bjjez,iez, Bs = (biljezikez,s
C = (Cpg)p,ges symmetrisch und positiv semidefinit,
¢ = (cphpers b= (bpjez., b= 0.
Wir nennen die Variablen
x;, i€Zy, und x, k € Z3, Nichtbasisvariable (NBV),
X;, j€Z,, Basisvariable (BV).
Im allgemeinen kann man nicht erwarten, daB ein gegebenes Problem bereits die Form
(7.1) hat. Durch Methoden der linearen Optimierung!) kann man aber ein System
von Ungleichungen und Gleichungen der Form
Ax! = D!,
Apx!I < b1,
wobei evtl. Nichtnegativitdtsbedingungen eingeschlossen sein sollen, stets auf die

Form
x2=B;x' +B;x*+b, b=>0, x',x>=>0,

x*=B;x! +B;x*+b, b= 0 (7.2)
bringen, sofern es l9sbar ist. Setzen wir den Ausdruck fiir x* gemaB (7.2) in
xXTCx + €™x + ¢ mit xT = (x!T, x2T, x3T, x*7) ein, so ergibt sich eine Zielfunktion,

die nicht mehr von x* abhiingt. Der zuléssige Bereich G des sich ergebenden Problems
wird durch die Restriktionen (7.2) bestimmt. Da aber x* nicht vorzeichenbeschrinkt

1) Methode der kiinstlichen Variablen ([20], S. 26-33, und [21], S. 170-174), Zweiphasen- und
Mehrphasen-Methode ([13]).
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ist, stellt die zweite Gleichung in (7.2) nur eine Bestimmungsgleichung fiir x* dar. Sie
hat auf das Verfahren selbst keinen EinfluB?).
Wir kommen nun zur Beschreibung des Verfahrens.

Schritt 1: Setze x> = B x' + B;3x® + bin x"Cx + ¢"x + ¢, ein. Es folgt
dy + 2d'7x! +.2d37x3 4 x!TD,5x° + x3TD;,x' + x!TD;x! + x3"TD;x3.

Schritt 2: Schreibe die Restriktionen (zeilenweise) sowie die neue Zielfunktion in
folgendes Tableau:

Blockschreibweise Indexschreibweise
NBVEla s : NBV i i
BY x1T *T B s I : AL 1
]
Simplex- % H
1
tableau { X B, L t i 1 5 P
X bjr 1 by bi i€z
x! D, Dy d! : : e
H
Ziel- x3 Dy Di'a 8 3 i .
tableau - — 3 y , .
1 I LA . . a4
Xk dyir iy’ di keZ,
1 di dy do
i i'ez, ke,

Im Gegensatz zur linearen Optimierung bendtigen wir hier nicht nur eine Zeile fiir
die Koeffizienten der Zielfunktion, sondern ein quadratisches Schema, das als Ziel-
tableau bezeichnet wird.
Schritt 3: Optimalititsbedingung bzw. Auswahl der Austauschspalte r

Falll:d; 20 VieZ, und d,=0 VkeZ,.

Dann ist

x10
x0={x?°] mit x1°=0, x**=b, x3°=0
X30

eine Losung des Problems (7.1). (Wéahrend des Verfahrens auftretende zusétzliche
Variable, die nur zur Berechnung der Losung x° dienen, werden nicht aufgefiihrt.
Andere bereits eliminierte (urspriingliche) Variable miissen nachtraglich berechnet
werden).

Das Verfahren ist beendet.

Fall 2: 3k € Z5 mit dy, + 0. Dann setze r: = k — Schritt 4.

1) Wihrend des Verfahrens auftretende Restriktionen dieser Art konnen daher, ohne das Verfahren
zu beeinflussen, vernachlissigt werden (Schritt 6, Fall 2).
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Fall 3:d, = 0 YkeZs;, 3ioeZ, mitd;y < 0. Dann setze r: = i, — Schritt 4.

Schritt 4: Nichtlgsbarkeitsbedingung bzw. Hinzufiigen von Zeilen und Festlegen
der Austauschzeile z. Setze

K = {keZ,| byd, > 0},

by by
t = {m fir K =+ 0, wobei —— Ibsrl 1]315111{1 o] (Definition von se Z,),
oo fir K =0,

dl'l‘
o fir d,=0.
Fall 1: ¢, = t, = co = Problem(7.1) besitzt keine Lésung. Das Verfahren ist beendet.
Fall 2: ¢, £ t,, t; < oo. Dann setze z:= s — Schritt 5.
Fall 3: 7, < t,. Dann nimm Zeile mit Index r aus dem Zieltableau, ersetze den Zeilen-
index r durch den Index j,, wobei
Jo=1+ max p
PEZ10ZyuZ,s
ist, und fiige die Zeile

(o [t | odw 14y

['d" fiir d, >0,
t, =

zum Simplextableau hinzu. Setze
Z, 1= Z, U {jo}; z i= jo — Schritt 5.
Schritt 5: Tausche die NBV x, gegen die BV x; aus: Pivotelement?) ist b,,,

a) Austausch im Simplextableau wie in der linearen Optimierung ([20]).
b) Austausch im Zieltableau:

Neben- | 1. Austausch gemeinsam mit dem Simplextableau. Man erhilt Matrix H.
rechnung { 2. Transponieren von H.
3. Nochmaliges Anwenden des Austauschschrittes auf die Matrix H
mit obigem Pivotelement ergibt neues Zieltableau.

Das erhaltene Zieltableau wird unter das neue Simplextableau geschrieben — Schritt 6.
Schritt 6: Fall la: re Z; und z = j,. Dann setze
Zy:=Z\{r}, Z,:=(Z,0{rP\{z}, Z;:=Z;0{z}.
Fall 1b: re Z; und, z = 5. Dann setze
= (Z,V{ZP\{r}, Z, := (Z,L{r)\{z}, Z; := Z;.
Fall 2a: r € Z3 und z = j,. Dann setze
Z, :=2,,
2 1= Zz\{z}
(die Zeile r im neuen Tableau wird gestrichen, da x, nicht vorzeichenbeschrankt ist),

Zs 1= (Z30{zph\{r}.

1) In Band 14 wird dieses Element als Kreuzelement bezeichnet.
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Fall 2b: re Z; und z = 5. Dann setze
Z, = Z,0{z}, Z,:=Z,\{z}, Z3:=Z;\{r}

(die Zeile r im neuen Tableau wird gestrichen, da x, nicht vorzeichenbeschrankt ist)
— Schritt 3.

Stellt man die wiederholte Anwendung von Schritt 5 schematisch dar, so ergibt
sich die in Bild 7.1 dargestelite Blockstruktur. Uber das dargelegte Verfahren hat man
die Aussage von

Satz 7.1: Das oben angegebene Verfahren bricht nach endlich vielen Schritten mit
Schritt 4 (Fall 1) oder mit Schritt 3 (Fall 1) ab!

i
mﬂr 51 07T
1
Ei
2
gl
ST Simplextableau 05T Optimales ST )
ZT Zieltablequ 07T Optimales ZT Bild 7.1

Beispiel 7.1: Fir das Problem
min {x} + x7 — 8x; — 10x3 | x€ G},
G={xeR|x; 20,x; 2 0,3x; + x + 2x3 = 18}

erhilt man Z, = {1}, Z, = {2}, Z3 = {3} und gemaB Schritt 1 und Schritt 2 das folgende Tableau:

T T Schritt 3: Fall 2, r = 3,
NBV . : x | 1 Schritt4: K = {2} =1, = 9,5 = 2,

BV Bl lds] = 5, dyz =1 =1, =5
! =1, < 1, d.h. Fall 3.

X -3 1 -2 18 Somit ist eine neue Zeile hinzuzufiigen.
T

x Tl b
T

NBV | ., 0 e s
I S5 0

Die Zeile mit dem Index r = 3 im Zieltableau lautet

T
B EEE
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Wir ersetzen x3 wegen max {1, 2, 3} + 1 = 4 durch x4 und erhalten das Tableau

mit Z, = {1}, Z, = {2,4}, Zs = {3}
NBV und z = 4.
Xy X3 1
BV
Xy -3 -2 18
o 0 ! A s
t

Xy 1 0 -4

NBVY| x3 0 1 | -5
T

1 -4 1 -5 1 0
1

Wir fiihren jetzt den Austausch mit b43 als Pivotelement durch und erhalten

Neben- 1 oy NBV i
rechnung SXp el L
BV |
H 0 I 0
neues x = 5] 8
Zqll=5 =25 € 2
Simplex- 5 i . i
1 0 L tableau
neues ¥y 1 0 iy
HY 0 1 -5 | Ziel- _ il
tableau  NBV{| x4 0 1 0
—4 0 [ 225 +
1 —4 0 =25

Nach Schritt 6 wird wegen Fall2a die Zeile mit x3 gestrichen und braucht daher nicht berechnet zu wer-
den. Es ergibt sich Z, = {1}, Z, = {2}, Z3 = {4}. Jetzt beginnen wir wieder mit Schritt 3.

Wir geben nun das Beispiel auf umstehender Seite insgesamt in der Blockstruktur an und setzen
jeweils unter die Blocke die fiir die Durchfiihrung der Schritte benétigten Parameter r#, s, z, #1, 25,
Z1, 22, Z3, K.

SchlieBlich erhélt man das Schema:

Optimales Schema nach Schritt 3 (Fall 1).
NBV Y - 1 Die fiir die Berechnung der Losung unwe-
BV S i sentlichen Werte wurden durch ,,+* ersetzt.
" 40 57
\ . : @0 Losung:x‘f:F, x3=0, x§=ﬁ;
5 : . 517
o ) Optimalwert: — ——l—-
T i o 13
2
X * * —
. 9
NBV<| x5 * * 0
1 4 0 517
13 13
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M T
NBV NBV | NBV |
BV Ny 1 BV ER Xy 1 BV Yol v |
3 2 8 ! 8
—3 -2 ‘. . - SR R s
X 3o-2 18 X2 3 2 ) X 3 5 .
2 13 8
vy (O . Vs s -
! 4
Xy 10 -4 X 1 0o | -4 2 - 5
2 8
3 3
X3 0o 1 -5 NHEA 0 1 0 HER > 51 5
1 1 41 0 fas gy 8
-4 -5 0 - - [ 5 5 -
t
1 20 4 ! 2 4
oo -4 B RN ERT
H 0 1 0 H 0 1 0 H 0 1 0
N 4 8 107 4 8 517
w4 5 3 31773 13 13 13
1 4 1 4
I 0 —4 -3 0 5 a1 T
2 8 2 ! 8
T - H" - — HT = |
H 0 1 5 T 1 s & 1 5
4 107 4 517
-4 0 =25 LN e S0 S
- 1 2 8 2 9 3
“ > By Roh o IR0 /4 RN LA L
- L 71733 - ERENERENE
Zy={1}r=35=2, Zy={lhr=1Ls=2, Zy =2} r=4,5=1,
8
Zy = (2= Z, = (2,4}, Zz:(z}.h=7, Z, ={l}=Z, = {1,5},
- ; 8
Zy=3hn=9 Zy= {4}, =4, Zy= (=4 n =,
Jo =4,1,=75, K ={2},z=2, Jo =z=5K={1},
z =4,K={2), ) o ) )
Zeile mit x; hinzugefiigt; Zeile mit xj gestrichen; Zeile mit x5 hinzugefiigt,

Bei diesem Beispiel handelt es sich um ein einfaches Prinzipbeispiel, das mit den bekannten Metho-
den der Analysis einfacher und schneller gelost werden kann. Erst fiir Aufgaben groBerer Dimension
erweist sich das angegebene Verfahren als vorteilhaft.

Die Schritte des Verfahrens sind in Bild 7.2 dargestellt.

Aufgabe 7.1: Man zeige, daB die Matrix D = (D‘ Dys

DSl D13
positiv semidefinit ist beziiglich der Vektorvariablen (xa). (Man betrachte in (7.1) den vereinfachten
Fall Z; = 0.) X

), die aus Schritt 1 folgt, symmetrisch und

') Diese Zeile kann zur Berechnung von xJ nach Beendigung des Verfahrens verwendet werden.
Wir bendtigen sie nicht, da wir x3 direkt aus der Restriktion 3x; + x, 4+ 2x3 = 18 berechnen.
Analoges gilt fiir x4 (vgl. Schritt 3, Fall 1).

2) Um die Rechnungen zu erleichtern, schreiben wir unter das Tableau die neue Pivotzeile ,,#x*.
Fir die Durchfiihrung des Algorithmus selbst ist diese Zeile nicht erforderlich.

3) NBV.
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Erganzende Bemerkungen
a) zu Schritt 3 (Fall 1):
Aufgabe 7.2: Mit Hilfe des Optimalitétskriteriums von Satz 4.5 fiir konvexe Optimierungsprobleme

zeige man:
d' 2 0,d%=0=x!= 0,x?> =b, x> = 0ist Losung

(man verwende die Aussage aus Aufgabe 7.1 und Satz 4.6).
X

IN % +2x,=T8

X=0

L Bild 7.2
3 6"5%’ 5
x=(3)

b) Zu Schritt 3 (Fall 2): Existiert ein k € Z; mit di & 0, so nimmt die Zielfunktion in Richtung von
—die® (e k-ter Einheitsvektor des R") ab.

¢) Zu Schritt 4 (Fall 2): Man kann bei bestédndig abnehmender Zielfunktion die Richtung von
—die* beibehalten, bis fiir eine Basisvariable gilt x, = 0 und erreicht dabei den Rand von G.

d) Zu Schritt 4 (Fall 3): Man muB die Richtung von —de* bereits vorher abindern, da die
Zielfunktion nicht mehr abnimmt. Nach Satz 4.5 verschwindet dort die partielle Ableitung der Ziel-

funktion nach x,. Setzen wir diese partielle Ableitung nach Multiplikation mit — gleich der neuen
Basisvariablen x;, gemif 2
1 0 D, D
xj, = = — |xT(" x4 2dTx
° 2 0x, D3y Dy
1
mit X = (is), so ergibt sich nach Hinzunahme der neuentstandenen Zeile der Fall 2 in Schritt 4
mit x;, als Basisvariable x..
€) Zu Schritt 4 (Fall 1): Im Falle #; = oo ist G in Richtung d,e” unbeschrinkt. Im Falle #, = oo ist
die Zielfunktion in Richtung d,e" linear und streng abnehmend. Daher hat im Falle #; = ¢, = oo das
Problem keine Losung.
.. ©) Zu Schritt 3 (Fall 3): Im Falledy, = 0 Vke& Z; und d; < 0 fiir ein i € Z; ersetze man in den obigen
Uberlegungen d,e” durch e". Dann kénnen die Formulierungen in analoger Weise {ibernommen
werden.
Aufgabe 7.3: Das Problem
min {2x} + x5 — 48x; — 40x, | x € G},
G={XER?|x; + x; = 8x; £ 6,x; + 3x; =18, x;,x, = 0},
ist mit Hilfe des angegebenen Verfahrens zu 16sen!
Aufgabe 7.4: Gegeben sei das Problem
min {2x; — 3x, — 2x} | x€ G},
G={XER?|x; +4x; £ 4,x1 + x £2,x, 2 0}
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a) Ist das Verfahren von Beale anwendbar?
b) Existiert eine Losung des Problems?

Aufgabe 7.5: Wir nehmen an, daB das Interesse eines Konsumenten an n Produkten durch eine
Nutzenfunktion Q(x) = x"Cx + ¢"x (C negativ semidefinit) erfaBt werden kann, wobei Xpj=1,...,n,
die Menge des Produktes j ist, die der Konsument kauft. Verfiigt er iber einen Betrag f und ist
p; der Stiickgutpreis des Produktes j, so findet man die maximale Menge x jedes Produktes j, die der
Konsument kaufen kann, durch die Losung eines Optimierungsproblems.

a) Man formuliere das quadratische Optimierungsproblem!

! 1

-3
b Firn=2p1 =1, p,=2,8 =10, c = (}2) c- 2 ] I5se man dieses Problem
LI

mit dem Verfahren von Beale!

7.2.2. Andere Losungsverfahren

Fiir das Verfahren von Beale wurde von Land und Morton ein Analogon zur revi-
dierten Simplexmethode angegeben.

Neben dem Verfahren von Beale, das die Kuhn-Tucker-Bedingungen bzw. aqui-
valente Formulierungen nur als Optimalitiatsbedingung benutzt, gibt es weitere Ver-
fahren, die die Simplexmethode verwenden und die Kuhn-Tucker-Bedingungen direkt
einbeziehen. Wir nennen hier die Verfahren von Wolfe (1959), Dantzig (1963) und
Jagannathan (1965).

Uberblicke iiber Losungsverfahren fiir quadratische Optimierungsprobleme findet
man in [10], [13], [16].

Quadratische Optimierungsprobleme mit nicht notwendig konvexer Zielfunktion
werden u. a. in [17] behandelt.

7.3. Gradientenverfahren

7.3.1.  Aligemeine Bemerkungen

Das in diesem Abschnitt behandelte Verfahren unterscheidet sich im praktischen
Vorgehen wesentlich von dem in 7.2. erérterten Losungsverfahren, obwohl 7.2,
theoretisch auch hier eingeordnet werden kann.

Wir betrachten das Problem

min {f(x) | xeG},G £ R", ) (7.3)

mit f/: R* — R stetig differenzierbar. '
Zur Beschreibung des Verfahrens benétigen wir die folgenden zwei Definitionen.

Definition 7.1: Eine Richtung s€ R" (s & 0) heifit zuldssig im Punkt x € G, wenn eine
Zahl oy > 0 existiert mit

X + as €G Vae|[0, xp).
Eine zuliissige Richtung s heifft Abstiegsrichtung im Punkt x° € G, wenn gilt:
sTVf(x°) < 0.

Ist s eine Abstiegsrichtung, so folgt nach dem Mittelwertsatz der Differentialrech-
nung fiir Funktionen einer Variablen fiir hinreichend kleines « > 0:

JS&X° + as) < f(x%).
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Definition 7.2: Existiert fiir einen Punkt x° € G keine Abstiegsrichtung, so nennen wir
ihn stationdren Punkt.
Offenbar gilt in einem stationaren Punkt fiir jede zuldssige Richtung s die Beziehung

sTVA(x°) = 0. (7.4

Gelten in x° beziigl. G gewisse Regularititsbedingungen, so ist (7.4) mit den Kuhn-
Tucker-Bedingungen dquivalent (vgl. dazu [6])?).

Bei den hier erérterten Verfahren wird eine i. allg. unendliche Punktfolge {x*} c G
so konstruiert, daB sie Hiufungspunkte besitzt und diese stationdre Punkte von (7.3)
sind. Damit sind die Glieder x* dieser Folge nur Ndherungen eines stationdren Punktes
von (7.3). Die Methode der Konstruktion solcher Folgen {x*} ergibt die Bezeichnung
fiir diese Verfahren. Beginnend mit einem Startpunkt x! € G bewegen wir uns in G
ldngs einer Abstiegsrichtung. Gelangen wir so zu einem Punkt x? € G mit f(x?) < f(x'),
dann suchen wir in x2 eine neue Abstiegsrichtung und gelangen zu x* € G usw. Geniigt
die Auswahl der x* gewissen Bedingungen, so ist ein Haufungspunkt der Folge {x*}
zugleich stationdrer Punkt des Problems (7.3). Je nach Wahl des Startpunktes kénnen
sich dabei verschiedene stationdare Punkte ergeben (Bild 7.3). Die zu diesen stationéren

Punkten gehorenden Funktionswerte der Zielfunktion sind i. allg. voneinander ver-
schieden, da stationire Punkte i. allg. keine Losung des Problems (7.3) sind. Wir kon-
nen also feststellen, daB dieses Verfahren im allgemeinen Fall nicht die Lésung von
(7.3) liefert, sondern nur Naherungen fiir stationéire Punkte. Dies bedeutet nicht, daB
die Gradientenverfahren ungenauer sind als andere Verfahren. Bei jedem Verfahren,
das nicht nach endlich vielen Schritten die exakte Losung liefert, erhélt man nur Nahe-
rungslésungen. Aber auch bei endlichen Verfahren wie bei der Simplexmethode liefert
der Rechner (wegen der endlichen Stellenzahl) nur Niherungslsungen.
Wir formulieren nun folgenden allgemeinen Algorithmus:

Schritt 1: Wihle einen Startpunkt x! € G,
Schritt 2: Setze k := 0.
Schritt 3: Setze k : =k + 1.

1) Werden beziiglich G keine Voraussetzungen gemacht, so kann der Fall eintreten, da} in x%eG
a) keine zulissige Richtung existiert oder b) zwar zuldssige Richtungen, aber keine Abstiegsrichtun-
gen existieren (z. B. G = {(xy,x2)7 | ¥y = 23, x;1 Z 0} U {(x1, x2)" [ %1 = 0,x, £ 0},

a)x° = (1, DT, b)fx) = —x;, x°=(0,0D.

5  Elster, Optimierung
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Schritt 4: Erfillt x* eine Abbruchbedingung?') Wenn ja — Abbruch des Verfah-
rens; x* ist Naherung fiir einen stationdren Punkt von (7.3). Wenn nein — Schritt 5.

Schritt 5: Suche eine Abstiegsrichtung s* im Punkte x* e G.

Fall 1: Es gibt keine Abstiegsrichtung in x* — Abbruch des Verfahrens; x* ist sta-
tiondrer Punkt von (7.3).

Fall 2: Es gibt eine Abstiegsrichtung s* in x*. Bestimme s* — Schritt 6.

Schritt 6: Bestimme «F als Losung des Problems

min {f(x* + as¥) |&x > 0, x*¥ + ask €G}.?)

Schritt 7: Setze x**': = x* + «*s* — Schritt 3.

Die einzelnen Verfahren, die als Relaxationsverfahren bezeichnet werden, unter-
scheiden sich in der konkreten Durchfithrung der Schritte 4, 5 und 6. Insbesondere
gibt es wesentliche Unterschiede bei der Auswahl von s* (Schritt 5):

a) s* wird als Losung (Naherungslosung) eines (7.3) angepaBten Optimierungs-
problems erhalten: Richtungssuchverfahren;

b) s* wird durch eine Rechenvorschrift bestimmt.

Das von uns im folgenden behandelte reduzierte Gradientenverfahren gehort zur
zweiten Gruppe von Verfahren.

7.3.2.  Das reduzierte Gradientenverfahren

Gegeben sei das spezielle Optimierungsproblem
min {f(x) | xe G}, (7.5)
G ={xeR"|x 20, Ax = b},

wobei gilt: W o G eine offene Menge, f: W — R stetig differenzierbar, A eine nicht-
entartete (m, n)-Matrix, b e R™.

Definition 7.3: Eine (m, n)-Matrix A (m < n) heifst nichtentartet, wenn gilt:

1. Je m Spalten von A sind linear unabhdingig.
2. Jede Losung x des Systems AX = b, x = 0 hat mindestens m positive Koordinaten.

Unter den obigen Voraussetzungen kann man die Indexmenge J = {1, ..., n} in
Abhingigkeit vom Punkt x € G einteilen gemal

Jix) = {jied|x;,>0, i=1,...,m}; Jo(x) = I\Ji().

Ferner erklaren wir die Vektoren der

Basisvariablen (BV): y(x) = (x;),j€Jy(x) und
Nichtbasisvariablen (NBV): z(x) = (x;), j € J2(x).
Wir setzen

A=('..,a") mit a'=(q),i=1,...,m; jeJ,
B(x) = (@)erixy CX) = @ )esn)-

1) Als Abbruchbedingung kann man u. a. bei gegebenem ¢ > 0 die beiden folgenden Tests ver-
wenden: a) f(x*1) — f(x*) < &, b)|x*! — x¥|| < ¢. Naheres findet man in [9], [11], [17].

2) Unter gewissen Voraussetzungen kann man anstelle der Losungen dieser Aufgabe lediglich
Niherungslosungen verwenden [17]. Vgl. dazu die Bemerkung tiber die Stabilitit eines Optimierungs-
problems in 6.3.
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Wenn keine Verwechslungen moglich sind, ersetzen wir J;(x¥), J>(x¥), y(x¥), z(x*),
B(x¥), C(x¥) durch J§, J3, y*, 2", By, C.

Unter f(y, z) verstehen wir den Funktionswert f(x), wobei x in die zugehdrigen
Vektoren y und z zerlegt wurde. Mit Vyf(¥,Z) und V,f(¥, Z) bezeichnen wir die
Gradienten von f beziiglich der Variablen x;, j€ J;(x), bzw. x;, j€ J5(x), im Punkte
X = (¥,Z)" *). SchlieBlich bezeichnen wir mit B;* die Inverse der Matrix By (diese In-
verse existiert, da A nichtentartet ist).

Der Algorithmus fiir das reduzierte Gradientenverfahren hat folgende Form:

Schritt 1: Bestimme eine zuldssige Basislésung mittels Methoden der linearen Opti-
mierung ([20]). Man erhdlt aus Ax = b, x = 0

y' = Bi'b — B7!Cz!, By'b > 0.
Tableau 1:
@t i1

vt | -Bflc, [ Brb

Setze: yg := Bi'b > 0, z§ := 0 (man kann y§ und zj auch anders wéhlen, vgl. Auf-
gabe 7.7).

Schritt 2: Setze k := 1.

Schritt 3: Berechne r¥ : = V,f(y§, z§), vk := V,f(y§, 25).

Schritt 4: Berechne ()" := (—r%)T + (r%)"B;1C;.

Schritt 5: Berechne

Azk: — {rf fir rf >0 oderzk > 0,

0 sonst.
Wenn Az* = 0 — Schritt 12, sonst — Schritt 6.
Tableau 2:
@ |1
¥* —B7 G, Bi b yg _.J; Ay* ( ygl )
NS
(298 of
(_‘Jz()T 0"1‘ = min lzk—oyj‘[-’
)T jel¥ J
Ay‘}<0
Azk T k
@z o% = min %’;-
zléj T . jelk | z.lI
(m) oy Az’}<0

1y Diese Schreibweise symbolisiert nur, daf die Zusammenfassung der Koordinaten von i_und z
nach der Sortierung bez. der Indizes mit X iibereinstimmt. Ein Koordinatenvergleich von X und
(¥, Z)T ist nicht zulissig, z. B. X = (x1, X3, ¥3)T; ¥ = (x3), Z = (¥, %)™
5%
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o %,
Wir vereinbaren, anstelle —— Az A "l bzw. I A k! das Zeichen co in das Tableau 2 zu setzen,
falls AzF = 0 bzw. Ayf = 0 gilt.

Schritt 6: Berechne Ay = —B,,’C,‘Az"

Schritt 7: Berechne of aus max {« | y§ + oAy* = 0}, of aus max {w | z§ + cAz* > 0}
(vgl. Tableau 2).
Schritt 8: Berechne o* aus
min {f(y§ + cAY*, 2§ + 6Az") |0 < o < min {of, a5}}.
Schritt 9: Setze
¥¢ o= yo + ofAyY,
7* 1= zf + oFAZk.
Wenn §* > 0(d. h.of > a") setzemanygtt: = ¥*, 25"t = 2K By, := By, Gy 1= C;
— Schritt 10, sonst (d. h. of = of < %) — Schritt 11.
Schritt 10: k : = k + 1 — Schritt 3.
Schritt 11: Tausche die BV von §* mit Jf = 0 (j = j,) gegen eine posmve NBV von
Z* (i = i,) aus.
Verwende dazu das Austauschverfahren. Nach dem Austausch enthalt das neue
Tableau 2 die folgenden Terme:

Tableau 3: mit
@ T 1 1l {yj‘ fur j =+ jo,
0j = . L
vert | =Bk Cus | Brdib | v+! Zi‘ fir j = jo,
(k+1)T AL {z‘ fir 7+ i,
0 oi . - . .
0 fir i=i,

- Schritt 10.

Schritt 12: x% ist ein stationdrer Punkt. Das Verfahren ist beendet.

Anmerkung zum Algorithmus: Bis auf Schritt 3 und Schritt 8 werden alle anderen
auszufithrenden Produktsummen mit Hilfe des Tableaus ausgefiihrt (vgl. auch Bei-
spiel 7.2). Schritt 3 und Schritt 8 werden in einer Nebenrechnung durchgefiihrt. Falls
kein Austausch erfolgt, bleiben B; !C; und B * erhalten. Es kann dann mit dem vorher-
gehenden Tableau fortgesetzt werden.

Beispiel 7.2:

min [(xl,xg)(g ?) ( ) — (32,34) <2) xe G},

G={xeR*|x; 20, i=1,..,4; x; +x3=2, X1 +2x;, + x4 = 6}.
Damit hat man

X1

1010\ ([x 2 ) 10 10
(1 200 1) 5 4(6) mit C=<1 2)’B=(o 1)' :
X4

Man stellt fest, daB3 nicht je zwei Spalten linear unabhingig sind. Obwohl die erste Bedingung in
Definition 7.3 nicht erfiillt ist, kann das Verfahren angewandt werden, wenn sich wihrend des Ver-
fahrens zeigt, daB alle benotigten B;‘ berechnet werden konnen. Existiert ein B;‘ nicht, so liegt Ent-
artung vor und der Algorithmus muBl abgeéndert werden. Darauf gehen wir hier nicht ein.

Die zweite Bedingung in Definition 7.3 braucht nicht tiberpriift zu werden. Man stellt in Schritt 11
fest, ob sie erfiillt ist oder nicht.

R R
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Schritt 1: Anfangstableau (Auflésen nach x3 und x4)

Tableau la:
X1 Xz 1
X3 -1 0 2
X4 -1 -2 6

Wegenb > 0ist (0, 0, 2, 6)T € G eine zuldssige Losung (ein Eckpunkt von G). Dabei hat man

S:} )=

= (x5, x)T, z

=] 2 -1
~B-1C, (6) B-'h,

= (x1, x)T,

Schritte 3, 4, 5, 6: 1y = Vf(v5, 2) = (g)’

1 = Vo f(ve, z) = 2 (3 ?) (2) +

k=1.

(Z

32
4) iz

o= (%)

69

Tableau 2a: Zur Berechnung von r*:
noon |1 % - Ay 0 (=1) + 0% (= 1)* + 32
1 2 o 2 0(0)+0*(2)+4
o5 = - ~ Zur Berechnung von Ay
Ya -1* -2 16 6 0x —40 =32=32=1) +4- ).
@y o o —40 = 32( (—D)* + 4( 2.
(=D’ 32 4
®HT 32 4
@2yt |32 4
Schritt 7:
Tableau 2b:
7y oz 1 v§ —rl Ayt ( Yo ) y!
1 22 (] y Ayt
1
V3 -1 0 2 2 0 =32 T 0
3 7
Ya -1 =2 6 6 0 —40 20 >
@b’ 0o o [
—ag
-r)T | 32 4 16 %1
HT 32 4
T 2 =
(Az}) 3 4 ol nun ] AZJI
1 T|
Z0J 1 1
0 ) =00| gl = —.
(1 Azl ) ? * =76
1 Falls Ay} = 0bzw. Az} = 0 gilt, wird als Quotient jeweils co defi-
@HT 2 7 niert, denn fiir diese Richtungenkann y; = 0 bzw. z; = 0 nicht

verletzt werden.
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Schritte 8, 9 (Anwendung von Satz 5.3):

- [2(0,0) (4 0) +(—32, —4)] (32)
«' = min 01 4 —,
40\ (32 ’16°
2(32’ 4)(0 1)( 4)
1 L1
= mn{——, —, 00 =o¢l=_—.
514 16 1

Damit hat man &' = «} < &} und folglich

(5= () - (2 -
()2 ()2 () - 3)

(vgl. Tableau 2b).

Schritt 11: Wegen 93 = 0 wird 73 gegen Z; = 2 und damit x; gegen x; ausgetauscht.
Tableau 3a:

|w o

)

(8]

Xy X 1 X3 X 1 vy
X3 2 X1 -1 0 2 2
= 7
X4 6 _ —
Xa 1 2 4 5
K * 0 2
1
23T 0 vy

Setze k = 2 und gehe zu Schritt 3:

= V"% = (3 0) (v = (79)= (775

0
00 0
= = = 7
vy - (30 +(4)-()
2
Schritte: 4-8: Tableau 2c auf Seite 71.
Schritt 9:
1\ /40 0
[2 (2,——) ( ) + (=32, —4) 7
4/\01 —
Ay 2 1

x2=— =1>—=0d
I
2/\0 1 3

= «? = a}; J4 wird gegen Z, ausgetauscht. Fortsetzung Tableau 3b auf S. 71.
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71
Schritt 4-8:
Tableau 2c:
X3 X2 1 o -r;  Ay? ( yg] ¥
. 7 1Ay?|
B -1 0 2 2 16 0 | o 2
7 1
X4 1 -2 4 > 0 -7 5 0
1 1
2 —_— s
@] 0 3 7=
7
—r2)T —
(—rz) 0
7
2yT “ -
(r?) 16 2
7
Az2)T 2
(Az?) 0
4\ \
(—IAZ,?| 0 0 00 = o3
22\T
@ 0.2 Fortsetzung Schritt 9 auf S. 70.
Tableau 3b:
X3 X4 Yo —r;’.
x -1 o |2 16
1 1
Xa 3 T3 2 0
@)" o0 o (16) _ (32) _ (—16
(_rg)T 0 0 y 4 4 0) ?
@ |16 0 5= (g),
@z3T | o o

Nach den Schritten 5, 12 ist x> = (2, 2, 0, 0)T ein stationérer Punkt des Problems, und wegen Satz 4.5
ist x3 zugleich Losung des Problems. Auch dieses Beispiel ist als einfaches Prinzipbeispiel aufzufassen.

7.3.3.  Ergiinzende Bemerkungen zum reduzierten Gradientenverfahren

Fiir das System Ax = b, b = 0 folgt mit Beachtung von Definition 7.3 die Existenz
der Zerlegung von A = (B, C) mit

By + €Cz=b, also y=B-'b—B'Cz.

Eigentlich hingen B, C von y ab; solange jedoch y > 0 gilt, sind diese Matrizen kon-
stant. Man erhélt

G={xeR[x20, yx) =B'(xb - B(x)CHXzx)},
SY(), 2(x) = fB-(x)b — B~ (x)C(x)z(x), 2(x)).



72 7. Losungsverfahren

Damit ergibt sich aus (7.5)
min {f(B-'b — B~'Cz,2z) | z(x) = 0, xeG}.
Hat man nun ein x! = (y!, z!)T als Startpunkt mit y' > 0 gefunden, so verindert
sich das Vorzeichen von y* nicht, wenn man z' um Az' mit |Az!|| < & (¢ hinreichend
klein) abdndert. Hieraus erhdlt man, da B und C fiir alle z* + Az' mit [[Az']| < ¢
konstant sind, die Aussage:
(y!, z*) ist genau dann ein stationdrer Punkt von (7.5), wenn gilt

Vg(z)™Az! = 0 fiir alle Az' mit z' + Az! > 0, |Az!|| <
mit g(z) = f(B~'b — B~1Cz, z).
Damit erhalten wir als stirkste Abstiegsrichtung von g (vgl. Band 4, S. 61 S. 111):
= =Vg@)" = =V, f(y. )" = Vof(y. 2)" V.3(2) ly=vx
= =V /¥, 2" + Vyf(y, 2)"B-'C |y-p-1p-B-icz
(vgl. dazu im Algorithmus die Schritte 3 und 4). Um die Voraussetzung
z+ oAz =0 fir «el0,x0)
nicht zu verletzen, wihlen wir

Az = {r, fiir r,>0 oder z; >0, jeJ,,
0 sonst.

(7.6)
Dann hat man folgende Aussage:

Satz 7.2: x € G und Az seien gemdf} Vorschrift (7.6) bestimmt. Dann gilt
Az = 0 = x ist stationiirer Punkt des Problems (1.5).
Hieraus folgt das Abbruchkriterium im Schritt 5 des Algorithmus. Zugleich haben

wir fiir den allgemeinen Algorithmusin 7.3.1. den-Schritt 5 durchgefithrt mits = (Ay)’
Ay = —B-'CAz. Az

Fiir Schritt 6 dieses allgemeinen Algorithmus ist noch o* = 0 zu bestimmen. Wir
16sen dazu das eindimensionale Optimierungsproblem

min {f(y + ¢Ay,z + «Az) |« 2 0,y + oAy 2 0,z + Az > 0}

(o ist hier die Variable, y, Ay, z, Az sind hingegen fest).

Entweder 16st man diese Aufgabe naherungsweise (vgl. dazu 7.6.) oder fiir einfache
Funktionen f exakt (vgl. Satz 7.3).

DaB die Bestimmung des gréBtméglichen Wertes «, fiir den y + «Ay = 0 und
z + «Az = 0 erfiillt ist, wie im Schritt 6, 7, 8 des Algorithmus in 7.3.2. erfolgen kann,
ist leicht einzusehen, wenn man alles koordinatenweise aufschreibt.

Satz 7.3: Fiir quadratische Optimierungsprobleme mit positiv definiter Matrix C ergibt
sich die Grife o wie folgt:
_(zkaC + CT)L\X" k‘ R
2AX)TCAXE
Zum Beweis vgl. Aufgabe 7.6.
Bei der Wahl von Az gemaB (7.6) ist nicht gesichert, daB ein Haufungspunkt von
{x*¥} zugleich auch stationérer Punkt von (7.5) ist. Eine Zusatzforderung garantiert

ok = min{
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jedoch, daB jeder Haufungspunkt der Folge {x*} auch stationirer Punkt von (7.5) ist.
Satz 7.4: Wihit man beim reduzierten Gradientenverfahren Az gemdf3
¥ fir rf >0,
k.
Azf:= "r" fur r“ <0,
und tauscht man in Schritt 11 die grofite NBV z; gegen die BV y; = 0 aus, so ist jeder
Héufungspunkt der Folge {x*} ein stationdirer Punkt des Problems (7.5).

Aufgabe 7.6: Beweisen Sie Satz 7.3!
Aufgabe 7.7: a) Auf das Problem
min {x; — 2(x; — 2> + 7(x; — 2) | x€ G},

G={xeR*|0=x; S40=x, <3, +x, <5}

mit dem Startpunkt x! = ; , X1, X, als NBV, ist das reduzierte Gradientenverfahren anzuwenden.
b) Dieselbe Aufgabe fiir den Startpunkt x' = ( 135)

¢) Tragen Sie fiir die Zielfunktion die Hohenlinien fiir
¢ =0, £2, +4, 6 in G ein! Der Iterationsverlauf ist zu skizzieren!
d) Wie lautet die Losung des Problems?

7.3.4. Weitere Verfahren

Das Verfahren von Beale und andere Verfahren zur Ldsung von quadratischen
Optimierungsproblemen konnen als spezielle Verfahren der zuldssigen Richtungen auf-
gefaBt werden (z. B. das in [2] angegebene Verfahren von Frank und Wolfe). In [14]
findet man fiir diese speziellen Verfahren Programme in FORTRAN und ALGOL.

In [3] und [9] ist eine allgemeine Beschreibung der Verfahren der zuldssigen Rich-
tungen angegeben, insbesondere sind dort auch Richtungssuchverfahren mit erfaf3t.
In [6], [10], [11] werden speziell numerische Aspekte diskutiert. Verschiedene Varian-
ten beziiglich der Strahlminimierung (Schritt 6 im allgemeinen Algorithmus) werden
in [13] und [17] erortert.

Eine umfassende und allgememe Begriindung der Gradientenverfahren?) erfolgt

n [22].

7.4. Straf- und Barriereverfahren

7.4.1.  Allgemeine Bemerkungen

Die in diesem Abschnitt behandelten Verfahren sind auf Optimierungsprobleme
der Form

P: min {f(x) | xe G}, (71.7)
G={xeR"|xeX, g(x) 20, h(x) =0, icl, jel}
anwendbar, wie sie in Abschnitt 1. definiert wurden.

1) Diese Bezeichnung ist eigentlich nur fiir spezielle Klassen von Verfahren gerechtfertigt. Geeigne-
ter ist die Bezeichnung Relaxations- bzw. Abstiegsverfahren.
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Die Menge X sei durch lineare Restriktionen beschrieben (X = R" ist nicht aus-
geschlossen).

Wir setzen voraus, daB3 das Problem P eine Losung besitzt. Dem Problem P wird
eine Folge {P;} von Ersatzproblemen zugeordnet gemif

Py: min {H(x, py) | xe X}, keN. (7.8)

Dabei seien die Funktionen H(-, p;) so beschaffen, daB3 die Probleme P, folgende
Eigenschaften besitzen:

1. Fiir jedes k € N besitzt P, mindestens eine Losung, etwa x*.
2. Jede Folge {x*} von Losungen der Probleme Py, k € N, enthilt l 1.9)
eine konvergente Teilfolge, deren Grenzwert x° eine Losung von l ¥

P darstellt.

Die Methode der Konstruktion der Funktionen H(, p;) fithrte auf die Bezeichnungen
Strafverfahren (in 7.4.2.) und Barriereverfahren (in 7.4.3.).

7.4.2.  Strafverfahren

Wir stellen uns vor, daB ein ProduktionsprozeB optimiert werden soll, wobei f
die Kostenfunktion darstellt und gy(x) < 0, i€ I,, sowie /;(x) = 0, j € I,, gewisse Be-
schrankungen darstellen, deren Verletzung zwar technisch méglich, aber 6konomisch
nicht gerechtfertigt ist.

Der Bereich X hingegen soll diejenigen Restriktionen erfassen, die unter keinen
Umsténden verletzt werden diirfen, da sonst der gesamte ProduktionsprozeB in Frage
gestellt ist.(z. B. Entstehen von Havarien).

Es ist nun mdglich, das Verletzen der Restriktionen g,(x) < 0 und A;(x) = 0 da-
durch zu verhindern (bzw. zu reduzieren), dafl eine Verletzung dieser Restriktionen
mit ,,Strafkosten‘* geahndet wird, die die Kosten des Produktionsprozesses erhGhen.
Durch die Festlegung der Hohe dieser Strafkosten kann somit die Einhaltung der
Restriktionen gesteuert werden. Je hoher die Strafkosten gewihlt werden, desto
weniger werden die Restriktionen g;(x) < 0 und A;(x) = 0 verletzt.

Bei dem hier zu beschreibenden Verfahren gehen wir in dhnlicher Weise vor. Das
Verletzen der Restriktionen g;(x) < 0, i€ I, und ;(x) = 0, j € ,,, wird mit einer Strafe
belegt; der Strafterm S: R" — R, wird mit einem Faktor p, multipliziert und zur
Funktion f addiert. Die so entstehende Funktion

H(x, po) = (%) + peS(x)
nennen wir Straffunktion, wenn fiir sie aulerdem gilt:

. pn . >0 fir x¢G, 1
@) §: R > Rostetie, S®|Z 0 fr xeq, (7.10)
b)peir > p =0 VkeN, lim p, = oo. l
k-

Durch die Forderung p, — oo fiir k — o0 und dem damit verbundenen unbegrenzten
Anwachsen der Strafkosten werden die Restriktionen g,(x) < 0, /;(x) = 0 mit wach-
sendem k weniger verletzt.

Folgende Funktionen S haben sich bewihrt: Es seien

=0 fir t=0,
>0 fir %0

>0 fir >0,

$iO{ 20 far r=o0 (7.11a)

und  S,(7) ‘
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stetige Funktionen. Dann setzen wir (Bild 7.4)

X
Hixp) |
AU0 :vs 0 -macigry | A0
| & =T~x
1 % (X)=x?~4
|
|
5RO

flx)=-x? Bild 7.4

S(x) = max Si(gi(x)) + max S5(hy(x)) l
oder o o (7.11b)
509 = 2 Si(a9) + % S:(4,00). |

Aufgabe 7.8: a) Zeigen Sie, daBl mit Sy(¢) = max" {0, ¢}, r = 1, und S,(t) = [¢[", r = 1, die Funk-
tion S(x) die erste Bedingung in (7.10) erfiillt!

b) Fiir welche Werte von r sind die Funktionen S und S, einmal stetig differenzierbar?
Beispiel 7.3:Fiir das Problem
P:min {f(x) = —x?|xeR, 1 —x =0, x> -4 =0}
ergibt sich wegen (7.10) und (7.11) firr = 2
H(x,p) = —x* + p[max?{ 0,1 — x} + max? {0, x? — 4}], (7.12)
X =R
Schreiben wir (7.12) ausfiihrlich auf, so folgt
[ =% + gl — 02 + (2 — 9?] fir x < -2,

) =+ p(l = %2 fir —2=sx<1,
Hopo = l - fir 1=x<2.
—x% + p(x? — 4)? fir x>~
dH(x, py) . . . .. .
Wegen ———="= < 0 Vx = 2 und p; = 1 folgt, daB die Funktion H(x, p;) ihr Minimum nur fiir

x > 2 annehmen kann. Dort liefern aber die klassischen Methoden

= _dfl; (=2 + g (2 — 42) = 2x(=1 + 2p[x* — 4])
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1
= [— +4
- A/Zpk

und somit

als Losung von Py.
1
Xo = lim x = lim A/—— +4=2
k- k- 2py

ist Losung von P, wie man verifiziert.

Die folgenden Sitze kennzeichnen einige Eigenschaften der Straffunktionen
H(x, py)-

Satz 7.4: Es seien X = R" abgeschlossen und f: R* — R stetig. Existiert ein z.€ G, fiir
welches die Niveaumenge

N(f@) = {xe X|f(x) < f(2)}
kompakt ist, so besitzen alle Probleme Py, k € N, Losungen x*.
Die obige Bedingung ist natiirlich nur hinreichend fiir die Existenz von Losungen
der Probleme P,. Das Beispiel 7.3 erfiillt z. B. diese Forderung iiber die Kompaktheit
einer Niveaumenge nicht. Dennoch haben die Probleme Py jeweils Losungen x;.

Satz 7.5: Es seien {x*} eine Folge von Lisungen der Probleme Py, k € N, und o = mm f x)
der Optimalwert des Problems P. Dann gilt:

L. H(x*, p) < HXM, prss)
2. f(x*) < f(x*¥Y) keN.
3./ S HGEAp) S«
Beweis: Wir beschranken uns auf den Beweis der ersten Aussage. Es sei x* Losung
von P;. Dann gilt
H(x*, p) < Hx,p) VxeX
und damit wegen py < pg,; und S(x) = 0
H(x*, py) < HX*, pr) < HXY, pess).
Satz 7.6: Ist {x*} eine Folge von Lisungen der Probleme Py, k€N, so ist jeder Hiiu-
fungspunkt X der Folge {x*} eine Losung von P, d. h. es gilt:

XeG und f(X)= mlg fx).

Der obige Satz garantiert die in (7.9) geforderten Eigenschaften der Probleme Py.
Fiir ein gegebenes Problem (7.7) hat man also die Folge {P;} von Problemen (7.8) zu
16sen und einen Haufungspunkt X der Losungsfolge {x*} zu ermitteln. Die Probleme
P, kénnen auf Grund ihrer Struktur mit Verfahren aus 7.3. oder 7.2. gelost werden.

Als Abbruchkriterium kann z. B. der Test

S = f(x9) <&

dienen. Bei konvexen Problemen kénnte man eine zu {x*} gehorige Folge {z"} = G
konstruieren, deren zugeordnete Folge {f(z")} von oben gegen den Optimalwert des
Problems P strebt. Dadurch ist mit f(z¥) — f(x*) < ¢ ein aussagekriftigeres Abbruch-
kriterium gegeben (vgl. Aufgabe 7.9).
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Weitere Ausfithrungen zu Verfahren der Straffunktionen findet man in [6], [9], [13].

Aufgabe 7.9: Es ist folgendes zu zeigen: Erfiillt eine Losung x*o des Problems Py, die Bedingung
xko e G, so ist x* zugleich Losung des Problems P.
Aufgabe 7.10: Fiir das Problem
min{x} + 23 x; 20, x, 20, x}+§21}

ist die Folge {Py} von Ersatzproblemen anzugeben und das Problem Py in Abhéngigkeit von p; zu
16sen. Fiir die Folge {x*} der Losung ist ein Haufungspunkt X zu ermitteln.

7.4.3.  Barriereverfahren

Die Barriereverfahren hingen nach den Bemerkungen in 7.4.1. eng mit den Straf-
verfahren zusammen. Es gibt jedoch einige wesentliche Unterschiede:

a) Im Gegensatz zum Verfahren der Straffunktionen gilt stets {x*} = G").

b) Es konnen nur Ungleichungsrestriktionen beriicksichtigt werden (d. h. in (7.7)
gilt 1, = 0).

¢) Um eine Aussage analog zu Satz 7.6 zu beweisen, ist eine zusitzliche Regulari-
tatsbedingung erforderlich.

Wie in 7.4.2. konstruieren wir wieder eine Funktion H(x, ¢;). Die zur Funktion f
addierten Zusatzterme verhindern, daB der Bereich G verlassen wird, indem H bei
Annéherung an den Rand von G unbeschrinkt wéchst: Barriere (Bild 7.5).

PN 45,6, )= =g Lln )+ (42200

Hx g,
1
I g0
. b(t)==Int
gi(x)=1—x
g (X)=x2-4
5 -
g, (=0
\g,{X)éU I
L0
03 \\/ \CJ 2 X
I g7
|
|
| 5
|
|

{\f () =-x2

Bild 7.5

1) Eine Aussage analog zu der in Aufgabe 7.9 ist daher nicht méglich.
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Eine Funktion H mit derartigen Eigenschaften, die als Barrierefunktion bezeichnet
wird, erhalten wir wie folgt
L HG&, q) = [0) + B0,
2.B:Q—Rstetig, G € 0 € R"mit G = {xeQ|xeX,g(x) <0,iel},
3.lim B(x*) = oo fiir jede Folge {x*} = G mit
Am B(x') i e (x}< (7.13)
y = lim x*e G\G, |y| < oo,
k— o0
4. {gi} strebt monoton fallend gegen 0.
Ohne Beweis geben wir einige Realisierungen fiir die Abbildung B an:
a) B(x) = max b(—gy(x)), xeG,
ielg -
b) B(x) = iZI b(—gi(x), xeG, (7.14)
€lg
mit b: (R\{0}) - R stetig, lim b(z) = oo.
t->+0

Speziell kénnen die folgenden Funktionen verwendet werden:
bt)y=tT", r>0; b(t)=—Int (Bild 7.5). (7.15)
Aufgabe 7.11: Man zeige, daB die Eigenschaften (7.13) fiir H(x, g) erfiillt sind, wenn man die
speziellen Abbildungen b(¢) aus (7.15) verwendet.

Wichtige Eigenschaften der Barriereverfahren sind in den folgenden Sitzen ent-
halten:

Satz 7.7: Es seien G = {xe R"| xe X, gi(x) < 0, i€ l,} kompakt, G =+ 0 und f stetig.
Dann existieren stets Losungen x* der Probleme Py, d. h. zu jedem k € N existiert ein
x¥ e G mit

H(x¥, q) = min H(x, g).

xeG
Satz 7.8: Es seien {x*} eine Folge von Losungen der Probleme Py, k € N, und « = min f(x)
der Optimalwert des Problems P (mit I, = 0). Dann gilt: XeG

Lf(x%) 2 f(x*) 2 .
2. Fiir BX)20 VxeG gilt auferdem
H(x*, g) 2 HX*?, g 1),
H, g9 2 ) 2 o.
Die Bedingung B(x) = 0 ist z. B. erfiillt, wenn in (7.14) gilt:
b(—gi(x)) = 0 VxeX, Viel,.

Verwendet man in (7.14) die erste der angegebenen Funktionen B, so geniigt es, wenn
b(—gi(x)) = 0 ist fiir mindestens einen Index 7, der von x € X abhéngig sein kann.
Im Gegensatz zu den Verfahren der Straffunktionen ist fiir eine zu Satz 7.6 analoge
Aussage iiber Verfahren der Barrierefunktionen eine Regularititsbedingung an den
Bereich G erforderlich: A
(RB)  inf f(x) = min f(x) = «. (7.16)
xeG

xeG
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Aufgabe 7.12: Es ist zu zeigen: a) im Falle G = G ist (RB) erfiillt.
b) Fiir das Problem .
x*—1 fir x<1,
min {—x|g(x) =0,xeR} mit g(x)= {0 fir 1=x=2,
x(x —2) fiur x> 2
ist die Bedingung (RB) verletzt.

Satz 7.9: Es seien die Voraussetzungen von Satz 7.8 und die Bedingung (RB) erfiillt.
Dann ist jeder Héufungspunkt X der Folge {x*} eine Lisung von P, d. h. es gilt

XeG und f(X) = min f(x) = .
xeG

Es gilt die gleiche Bemerkung wie nach Satz 7.6.

AuBerdem kann man das in 7.4.2. angegebene Abbruchkriterium verwenden. Bei
konvexen Problemen kann man iiber das duale Problem der Folge {x*} eine andere
Folge {z*} zuordnen, so daB die zugehorige Folge {f(z)} von unten gegen den Opti-
malwert des Problems P strebt. Das Kriterium f(x¥) — f(z¥) < ¢ liefert dann eine
aussagekraftigere Abbruchbedingung.

Weitere Ausfiithrungen zu Verfahren der Barrierefunktionen findet man in [6], [9],
[13].

Aufgabe 7.13: Man l6se das in Aufgabe 7.10 angegebene Problem mit Barriereverfahren fiir
b(t) = —Int.

7.5. Schnittebenenverfahren

7.5.1.  Allgemeine Bemerkungen

Wir betrachten das konvexe Optimierungsproblem mit linearer Zielfunktion
P: min {c¢"x|x€G},
G={xeR"|g(x) 0, iel},
wobei gilt: G £ R" beschrinkt, g;: R* — R, ie I, konvex und differenzierbar.

Der Grundgedanke des Schnittebenenverfahrens ist der folgende:

Da G beschrinkt ist, gibt es ein konvexes Polyeder M, mit G = M. Wir minimieren
nun ¢"x iiber M;. Aus der linearen Optimierung ([20]) ist bekannt, daB sich ein Eck-
punkt x! von M, als Losung dieses (linearen) Problems ergibt. Jetzt schneidet man
den Punkt x! von G durcheine x! und G trennende Hyperebene H, = {xeR"|q'x =«}
ab (Bild 7.6) und erhilt als neues Polyeder M, = {xe M, | q"x < «}. Man minimiert

X

Bild 7.6
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¢'x iiber M, und erhilt x? als Losung, wihlt wieder eine trennende Hyperebene H,
usw. Bei der Auswahl der Hyperebenen H, nach gewissen Regeln ergibt sich die
Losung x° als ein Haufungspunkt der durch dieses Vorgehen erzeugten Punktfoige
{x*}. Die Art und Weise der Auswahl der Hj bestimmt die unterschiedlichen Schnitt-
ebenenverfahren. Wir erértern im folgenden das Verfahren von Kelley [13].

7.5.2.  Das Schnittebenenverfahren von Kelley

Zunéchst geben wir fiir dieses Verfahren den Algorithmus an.
Schritt 1: Bestimme ein Polyeder M, 2 G. Setze k := 1.
Schritt 2: Lose das Problem
min {¢'x | x€ M;}.
Schritt 3: Liegt die Losung x* von Schritt 2 in G? Wenn ja — x* ist Losung von P.
Das Verfahren ist beendet. Wenn nein — Schritt 4.
Schritt 4: Wiahle ein z* € {z |z = Vg,(x*),i € I} mit [y= {i I, | max g;(x*) = g,(x¥)}
und setze Jel,
Mysy = {xe My | g(x¥) + (x — x¥)T2* < 0}
mit i e ], beliebig, aber fest gewahlt. Setze k := k + 1 — Schritt 2 (damit gilt stets
Gc M, €« My c...c My, vgl Bild 7.6).
Ist z. B.
G={xeR[gx):=(x—-1)(x+1) =0} und x*=2,
so stellt die Funktion A(x) := g(2) + (x — 2)z* die Tangente an g(x) im Punkte
(2, g(2)) dar (Bild 7.7). Analog zu den Verfahren in 7.3. und 7.4. kann man hier eben-
falls eine Abbruchbedingung festlegen.
Die folgenden Aussagen enthalten wichtige Eigenschaften des Verfahrens.
hix)glo
4 glxk)=4

Bild 7.7

-1

Satz 7.10: x° sei Losung von min {¢"x | x € G}. Dann gilt:

1.G< M, VkeN.

2. ¢™xF < ¢™x° VkeN.
Satz 7.11: 1. Gilt fiir eine Losung X* des linearen Ersatzproblems x* € G, so ist X* auch
Lésung des Ausgangsproblems P.
2. Giltx*§ G VkeN, so ist jeder Héufungspunkt X von {x*} eine Losung des Ausgangs-
problems. )
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Anmerkung : Fur die Giiltigkeit des Verfahrens geniigt es, daB die Funktionen g;, i€ I,
auf der gesamten Menge M, erklirt sind.

Beispiel 7.4: Fiir das Problem
min {2x; + X, | g;(x) £ 0; i = 1,2}
mit
g1(x) 1= (x; — 3> + (x2 — 2> — 4,

£2(%) 1= (x1 =3 — x2

findet man leicht das Polyeder M; = [0,5] x [0,4]. Hieraus folgt das lineare Optimierungsproblem

P, : min {(2, iy (2)

XN ES XS4, %20, i=1,2}‘

Das folgende Tableau (vgl. [20]) ist optimal, und man erhilt x! = (8), X3, X4 sind nur Schlupf-

NBY variablen und fiir das Ergebnis ohne Bedeutung.

: X | 1 _(20x = 3) 2(xy — 3)
BV | Vei(x) = (2(x2 _ 2)), Vea(x) = ( 1 )
X3 -1 5
X4 0 -1 4
c’ 2 1 0

Wegen g/(0) = 9, i = 1, 2, I; = {1, 2} kann z! = Vg,;(0) oder z! = Vg,(0) gewihlt werden. Fiir
2! = Vga(0) = (27 ist die zusitzliche Restriktion

—6x; — X, = —9

mit der Schlupfvariablen x5 hinzuzufiigen.

o - 1 Dieses Tableau ist ein duales Simplextableau wegen
1 2
" 5 (f) > 0. Mit —6 als Pivotelement folgt das néchste
X; - 0
xi 0 —1 4 Tableau nach dem dualen Simplexverfahren.
X5 i -1 -9
e’ 2 1 (1]
X5 Xz 1 ) 3
11 7 Dieses Tableau ist optimal mit der Losung x2 =( 2 |.
*s 6 6 2 ‘ 0
X4 0 -1 4
1 1 3
S A Y
1 2
T = 2
c 3 3 3

6 Elster, Optimierung
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Nach Schritt 4 folgt weiter

7 9 -3
s = -5 m6 =, b=, 22 (D).

s 27 .
Neue Restriktion: —3x; — x, = - Schlupfvariable x¢. Wegen x; = %x, —%x; +% folgt

1 1 9
nach Einsetzen in die neue Restriktion —gXs — X = vy und damit das neue duale Simplex-
tableau
Xs Xz 1 Xe Xz
1 1 7 1 1 11
B TE s | 2 w173 T3 | 3
X4 0 -1 4 X4 0 -1 4
1 1 3 1 1 9
- 66 2 || 3 3| 3
1 1 9 ) 1 9
* |7 7|77 *s -1 3
= 21 9
102 T o 2
T Sl
c T 3 3 3 3 2
9
. 2 -1 2 Tableau ist optimal: x3 = [ 7 |.
2 0
Schritt 4 ergibt wieder
3
55 9 J—
g:(x?) = — T’ & (x®) = _R_’ I = {2}, ® = _ ?)
3 63
triktion: ——x; — X £ ——x.
Neue Restriktion > Xy — X3 = e
Xe X2 1 X X7 1
1 1 11 19
X3 —T —-3- T X3 * * T
X4 0 -1 4 23
1 1 9 Xa ook e
1 33 T | 15
9 X1 * * <
X5 2 -1 > 27
1 1 9 X5 * * -
*1 2 2 |16 1 9
= O
. 21 9
¢ - = =
T 3| 2 e |2
1 9 3 8 N
% 1 5 T

1 /15 1,875
. ol xd o _ (M
Tableau ist optimal: x* = 3 ( 9) (1’1 25) .
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Man erkennt leicht aus Bild 7.8,_dal3 x0 = G) eine Losung des Ausgangsproblems ist. Fiir die
4. Naherung gilt [x* — x°|| = _Si ~ 0,158, und die Differenz zwischen ¢™x* und ¢"x° betrigt —;-

%

4

Bild 7.8

A1

D M @ M @ Hs E M
7.5.3. Weitere Verfahren

Die verschiedenen Schnittebenenverfahren unterscheiden sich im wesentlichen
durch die Art und Weise der Bestimmung der Schnittebene H,. Bei dem von uns be-
schriebenen Verfahren von Kelley wird H; durch die Restriktion

&i(x*) + 2(x — x¥) = 0, ¥ =Vg(xH), iek,

bestimmt. Beim Verfahren von Kleibohm/Veinott (vgl. [6], [16]) wihlt man in G einen
inneren Punkt a und bestimmt den DurchstoBpunkt y* der durch a und x* bestimmten
Geraden mit dem Rand von G. H, wird dann so festgelegt, daBl G durch H in a beriihrt
wird und daB gilt int G N H = . Numerisch ist dieses Verfahren nicht vorteilhaft,
da durch die auftretenden Rundungsfehler Teile von G mit weggeschnitten werden
konnen. Eine Verbesserung des Verfahrens erhilt man, indem an Stelle eines festen
inneren Punktes a € G eine geeignete Folge {a*} C G von inneren Punkten gewahlit
wird.

Dariiber hinaus gibt es auch Schnittebenenverfahren, die man bei nichtkonvexen
Optimierungsproblemen anwenden kann.. Jedoch 148t sich fiir den allgemeinen Fall
keine Aussage iiber das Losungsverhalten der konstruierten Folge {x*} angeben.

7.6. Direkte Verfahren

7.6.1.  Allgemeine Bemerkungen

Direkte Optimierungsverfahren, oft auch Suchverfahren genannt, zeichnen sich
dadurch aus, daB fiir ihre Anwendung nicht die Ermittlung von Werten der Ableitun-
gen von Ziel- oder Restriktionsfunktionen erforderlich ist. Dadurch entfallen analy-
tische Vorarbeiten, die nicht oder nur fehlerbehaftet mit digitalen Rechenanlagen
ausgefiihrt werden konnen.

6%
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Eine lehrbuchmiBige Darstellung einer betrichtlichen Anzahl direkter Verfahren
findet man z. B. in [11]. Allerdings fehlen dort meist Bedingungen, unter denen die
Verfahren mit Sicherheit eine Losung des Optimierungsproblems ermitteln. Entspre-
chende Aussagen wurden fiir einige Verfahren in [6] bewiesen. Eine ausfiihrliche Dar-
stellung dieser Klasse von Losungsverfahren findet man in [4].

Direkte Verfahren kénnen insbesondere auch dann Anwendung finden, wenn etwa
die Zielfunktionswerte nur experimentell bestimmbar sind und nicht durch Auswer-
tung einer in geschlossener analytischer Form vorliegenden Funktionsgleichung ge-
wonnen werden kénnen. Auch beschrankt sich die Anwendbarkeit direkter Verfahren
nicht nur auf die Losung konvexer Optimierungsprobleme. Allerdings kann beim
Vorhandensein nicht-globaler Extrema nur die Ermittlung eines lokalen Extremums
garantiert werden.

Wir geben deshalb zunéchst eine Klasse von Funktionen an, bei denen jedes lokale
Extremum auch global ist.

Definition 7.4: Es seien M < R" eine nichtleere konvexe Menge und f: M — R. Dann
heifit f streng quasikonvex auf M, wenn gilt:
xL, x>’eM
S(x?) < fix ] = fOx' + px?) < f(x"). (7.17)
AueRS, A+pu=1 :
Fiir streng quasikonvexe Funktionen gelten die folgenden Eigenschaften (vgl. [6]):
1. f streng quasikonvex, } = f(x* + pux?) < f(xY) 7.18)
stetig und f(x?) = f(x) Vi, peRud+pu=1. :
2. Die Niveaumengen
N, = {x|f® = 0o} und N, = {x|f(x) <o}
sind konvex fiir jedes « € R (vgl. Satz 2.12).
3. f konvex auf M = f streng quasikonvex auf M.
Das folgende Beispiel zeigt, da die Umkehrung der letzten Aussage nicht gilt.
Beispiel 1.5: f(x) = —e~*", x € R, ist nicht konvex, aber streng quasikonvex auf R (Bild 7.9).

7
. -z-f’ﬁyw 2
pr L i
1
I

Bild 7.9
f ist zweimal stetig differenzierbar mit
J2
<0 fir [x|] >—,
2
V2

=0 fir [x] & —.
2

f/(x) = 2(1 = 2x2)e*"

Nach Satz 2.16 ist daher f auf [— #, \/22] konvex und auf(— oo, — —‘/22 ) bzw. (_\42 s oo)

konkav.



7.6. Direkte Verfahren ) 85

Nun sei f(x2) < f(x1). Dann folgt x> € (—x%, 1) und f(Ax* + px?) < f(x') fiir alle 2, p€RY,
A+ p=1 (vgl. Bild 7.9). Wegen Ax! + ux®e (—x?, x?) ist f gemiB Definition 7.4 streng quasikonvex.

Wir formulieren nun eine fiir direkte Verfahren wichtige Aussage iiber das Ver-
halten streng quasikonvexer Funktionen beziiglich lokaler und globaler Minima
(vgl. dazu Satz 3.2 und Satz 3.3).

Satz 7.12: Es seien G = R" abgeschlossen und konvex sowie f: G — R auf G stetig,
nach unten beschrdnkt und streng quasikonvex. Dann nimmt f das globale Minimum be-
ziiglich G auf einer nichtleeren konvexen abgeschlossenen Menge G° = G an. Weitere
lokale Minima von f existieren nicht auf G.

Beweis: Jede auf einer abgeschlossenen Menge stetige und nach unten beschrinkte
Funktion nimmt dort das globale Minimum auf einer abgeschlossenen Menge G° an.
Wir nehmen an, daB G° nicht konvex ist. Dann gibt es Punkte x*, x?> € G° und Zahlen
2, pe R, mit 2 + p = 1, so daB gilt:

fOxt + px?) > f(x) = f(x?)

im Widerspruch zu (7.18). Also ist G konvex.
Wir nehmen ferner an, daB neben x? € G° ein Punkt x® € G mit

fxY) > f(x?) (7.19)
existiert, wobei f in x* ein lokales Minimum besitzen mdge. Dann gibt es gemilB
Definition 3.1 eine Umgebung U(x?), so daB gilt:

f® = fx*) VxeUx®) N G. (7.20)
Nun ist (x2,x3%) € G und (x%,x%) N U(x®) + 0. Folglich gibt es auch auf (x2, x%)
Punkte x, fiir die (7.20) gilt. Unter Beriicksichtigung von (7.19) widerspricht dies
(7.17), also der Voraussetzung, daB f streng quasikonvex auf G ist. Mithin existiert
auf G\ G° keine Stelle eines lokalen Minimums.

Ohne Beweis nennen wir die
Folgerung: f erfiille die Voraussetzungen von Satz 7.12, und es sei x* € G°, x* e G\ G°.
Dann ist f auf [x2, x>]\G° streng monoton.

7.6.2. Der eindimensionale Fall

Wir betrachten zunichst die Anwendung direkter Verfahren auf Optimierungs-
probleme der Form

Pl: min {f(x) | x€[a, b] = R}.

Die Problemstellung wurde nicht nur historisch zuerst behandelt, sondern stellt
auch methodisch insofern einen Sonderfall dar, als dafiir eine besondere Klasse von
Verfahren entwickelt wurde, aus der sich effektivste direkte Verfahren angeben lassen.

Das Prinzip dieser sogenannten Eliminationsverfahren besteht darin, ausgehend von
[a, b] eine Folge {[a,, b,]} von Intervallen zu erzeugen, die simtlich eine Ldsung x,
des Problems P1 enthalten.

Der Ubergang von einem Intervall der Fqlge zum nichsten Intervall erfolgt durch
Elimination eines Teilintervalls, das x, nicht enthalten kann. Die Ermittlung dieses
Teilintervalls gelingt z. B. bei stetiger, streng quasikonvexer Funktion f: [a, b] > R
durch Vergleich der Funktionswerte in mindestens zwei inneren Punkten des Inter-
valls. .



86 7. Losungsverfahren

Dabei erweist sich die Verwendung von genau zwei Vergleichspunkten, von denen
derjenige mit dem kleineren Funktionswert jeweils fiir den folgenden Vergleich bei-
behalten wird, als ein effektivstes Verfahren in folgendem Sinne:

Es sei by — g, die maximale Lange eines Intervalles [ay, by], das in der beschriebenen
Folge mittels einer festen Anzahl (etwa n) Funktionswertberechnungen bestimmt
werden kann. Dann kann bei dem oben skizzierten Vorgehen das sogenannte Ver-

. v by — @ s
kurzungsverhaltmsﬁ, bezogen auf das Ausgangsintervall [a, b], gegeniiber

jedem anderen Vergleichsverfahren minimiert werden (vgl. [6], [4]).
Im folgenden beschreiben wir dieses Verfahren etwas genauer (Bild 7.10).

Bild 7.10

Algorithmus des Eliminationsverfahrens

Schritt 1: ay := a, b; := b. Wahle x, € (a,, b,), x5 €(ay, by), x; + x,, Berechne
f(xy) und f(x,). Setze k := 1.

Schritt 2: a) Im Falle f(x,) < f(Xe+1)s Xk < Xgt1, SE1ZE Giyq 1= Gx, bpiy 1= Xpiq,
wiahle Xgi2 € (@es1, ber1) \{X¢} und setze xg.; 1= X — Schritt 3.

b) Im Falle f(x) = f(Xi+1), X < Xgs1, S€tZ€ Gy 1= Xpy bpsy 1= by, wihle
Xit2 € (@15 Des 1) \{Xe+ 1} — Schritt 3,

c) Im Falle f(xy) < f(Xk+1), Xg > Xgsy, S€1Z€ @iy i= X4y, bpsy := by, wihle
X+ € (@xe1s 1) \{Xi}, setze X4y 1= x; — Schritt 3.

d) Im Falle f(xp) = f(Xk+1), Xk > Xpsy, S€tze @iy 1= Gy, bysy 1= xi, wihle
X2 € (@i 15 by )\ {Xes1} — Schritt 3.

Schritt 3: Berechne f(xy+,). Setze k := k + 1.

a) Im Falle f(x;_1) = f(x) = f(xx+1) sind xz_y, X, X3y LOsungen von Pl —
Abbruch des Verfahrens.

b) Im Falle |x,:; — x| < &, 6> 0 vorgegeben, ist x;.+, eine Ndherungslésung —
Abbruch des Verfahrens.

c) Sonst — Schritt 2.

Offenbar sind fiir die Ermittlung von k Intervallen mittels Eliminationsverfahren
genau k Funktionswertberechnungen erforderlich.

Die Ermittlung einer Lésung x, von P1 durch Eliminationsverfahren gelingt mit
Hilfe von
Satz 7.13: Es sei f: [a, b]— R stetig und streng quasikonvex auf [a, b). Es existiere
eine Zahl C € (0, 1) derart, dap fiir die durch das obige Eliminationsverfahren erzeugte
Intervallfolge {[ay, by]} gilt:

max {bg — Xgi1, Xxr1 — @} < C(by — @) VkeN. (7.21)

Dann bildet die Folge {[ay, b;]} eine Intervallschachtelung, die eine Lisung x, vonP1 erfafit.
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Beim praktischen Rechnen erfolgt die Wahl der Lage der Punkte x;, k € N, hdufig
nach folgendem Prinzip:

Die Lange eines Intervalles [, b], & = 2, ist genau dann unabhéngig vom Eintre-
ten eines der im Schritt 2 des Eliminationsverfahrens beschriebenen 4 Falle, wenn x;
und x; symmetrisch zum Mittelpunkt des Intervalles [ax_q, by_;]; k = 2, gewidhlt
werden.

Setzen wir voraus, daB fiir jedes k£ = 2 gilt:

a) by — X1 = by — @y = C(by — @) und
b) b1 — @y = b — @ + by — Girs
so erhalten wir eine Teilung des Intervalles nach dem Goldenen Schnitt:

11 11 -
==cth d.h.—5=7(1+\/5)~1,618>1.

Wegen Ce (0, 1) sind die Voraussetzungen von Satz 7.13 erfiillt. Wir erhalten speziell

das Verfahren des Goldenen Schnitts (vgl. [4], [6]).
In Schritt 1 bzw. 2 ist die Auswahl von x;, x, bzw. x;,, wie folgt zu spezialisieren:

Schritt 1: Wihle
1 1 =
¥ = Cay + Chy, z=5(1 +4/3),
X, := C?%a; + Cb,.

|

Schritt 2:
xp = Cay + C?by, < x4y = C?ay + Chy.
a) Wahle xp4r = Cagyq + C?by,;y.
b) Wihle X2 = C?agyq + Chyyy,
Xer1 = Ca + C?by < x, = C?aqy + Cbhy.
c) Wihle x4, = C%aqyq + Chyyy.
d) Wahle xgio = Cayyq + C?byyg.
Wir erldutern das Vorgehen beim Goldenen-Schnitt-Verfahren an einem einfachen
Beispiel.
Beispiel 7.6: Wir 16sen P1 mit
f(x) = x%,xe[—1,3] < R.

Dazu setzen wir C % 0,618, C? ~ 0,382. Da das Verfahren praktisch nach endlich vielen Schritten
abbrechen muB, verwenden wir eine Schranke & > O fiir |xx; — x| als Abbruchbedingung. Dies
entspricht rechentechnischen Uberlegungen, da hinreichend dicht beieinander liegende reelle Zahlen
im Digitalrechner nicht mehr unterscheidbar sind. Um das Beispiel iibersichtlich zu halten, wéihlen
wir &: = 0,01. In Tabelle 7.1 148t sich die Rechnung verfolgen. Der Abbruch erfolgt bei & = 10, und
man erhilt xo € [—0,021; 0,015], f(xo) < 0,000225. Die exakte Losung ist xo = 0, f(xo) = 0.
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Tabelle 7.1
k Ay Xk S ) Xk+1 f(xks1) by Nk+2
1 —1,000 0,528 0,279 1,472 2,17 3,000 —0,076
1 1 1 \
2 —1,000 0,528 0,279 =0,076 0,00580 1,472 —0,445
1

—0,076 0,00580 —0,445 0,198 0,528 0,157

3 — 1,000

/ '
4 0,445 <7=0,076  0,00580 0,157 __ 0,0247 0,528 -0215
! ! 4 \

5 —0,445 —0,076 0,00580 —-0,215 0,0463 0,157 0,015
/ !
6 —0,215 —0,076 0,00580 0,015 0,000225 0,157 0,068
/ 4/4/ y
7 —0,076 0,015 0,000225 0,068 0,00463 0,157 —0,021
' Voo \
—0,021 0,000441 0,068 0,034

8 ~0,076 0,015  0,000225
/ _ !
9 —0,021 0,015 0,000225 0,034 0,00116 0,068 0
' ' I \
10 —0,021, 0,015 0,000225 0 0,000000 0,034 —-0,007
b
11 —0,021 0 0,000000 (—0,007) 0,015

7.6.3. Der n-dimensionale Fall

Im Falle n = 2 erweisen sich viele Eliminationsverfahren als unvertretbar aufwen-
dig. Daher werden hier direkte Verfahren verwendet, denen ein ,,Kletterprinzip
zugrunde liegt (Kletterverfahren):

Durch eine geeignete Vorschrift wird eine Punktfolge {x*} erzeugt. Wir beschrinken
uns auf den Fall X*e G Vk = 1. Fiir die zugehdrige Folge {/(x¥)} der Zielfunktions-
werte gilt dann im Falle eines Minimierungsproblems

SEEH) S () Ve z 1
Jeder Haufungspunkt der nach der Vorschrift erzeugten Folge {x*} ist dann Lésung
des Problems.
Haufig sind derartige direkte Verfahren zur Losung von Problemen der Form
P2: min {f(x) | x € R"}
(Probleme ohne Restriktionen) vorgesehen. Solche Aufgabenstellungen treten z. B.

bei Verfahren der Straf- und Barrierefunktionen auf (vgl. 7.4.).
Als Beispiel stellen wir das Verfahren der koordinatenweisen Suche (KS-Verfahren)

vor.
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Wir bezeichnen im folgenden mit L, = L(x¥) die Gerade durch x* parallel zur
x;-Achse, j€ {1, ...,n} und j = k + gn fiir ein gewisses ganzzahliges q.
Fiir » = 3 hat man z. B.
L, Parallele zur x,-Achse durch x*,
L, Parallele zur x,-Achse durch x2,
L, Parallele zur x3-Achse durch x3,
L, Parallele zur x,-Achse durch x*.
Algorithmus des Kletterverfahrens

Schritt 1: Wihle x* € R" beliebig. Setze k := 2.
Schritt 2: Lose das Problem min {f(x) | x € Lg_;}. x* sei eine zugehorige Losung.

Schritt 3: a) Im Falle f(x¥) = f(x**!) = .- = f(x**") Abbruch des Verfahrens.
Unter den Voraussetzungen von Satz 7.15 sind x¥, x*+1, ..., x*" Lésungen des Pro-
blems.

b) Im Falle |x* — x*~!|| < & Abbruch des Verfahrens. Unter den Voraussetzungen
von Satz 7.15 ist x* eine Ndherungslosung des Problems.
c) Sonst k := k + 1 — Schritt 2.

In Abb. 7.11 wird das Vorgehen im Falle n = 2 veranschaulicht.

%
L L
)
—=
x|
125
[7 \_‘Xb X
/ Bild 7.11
] X
]

Ist / R" — R stetig, nach unten beschrinkt und streng quasikonvex, so kann zur
Ausfithrung von Schritt 2 das Eliminationsverfahren verwendet werden. Dazu hat
man ein beschrinktes Intervall auf Z,_; zu suchen, in welchem die Losung x* liegt.
Die Existenz eines derartigen Intervalles ist durch die obigen Voraussetzungen ge-
sichert, wenn das Problem in Schritt 2 als 16sbar vorausgesetzt wird. Zur Bestimmung
der Intervallenden a*~*, b*~' auf L,_; bestimmen wir ausgehend von x** aufZ,_,
eine Folge {y’}, =0, + 1, +£2, ... dquidistanter Punkte, wobei gilt:

y° = xk1; y!lduft fiir / = 0 in Richtung der Koordinatenachse, zu der L,_, parallel
ist, und fiir / < 0 in entgegengesetzter Richtung.

Nun berechnen wir fiir ein / > 0 die Werte f(y*) und f(y~!). Wir kénnen o. B. d. A.
f(¥") = f(x*) setzen (andernfalls hiatte man f(y~*) = f(x¥) wegen der strengen Quasi-
konvexitat von f). AnschlieBend berechnen wir die Werte f(y=*) fur i = 1,2, ...
solange, bis ein Index i, auftritt mit f(y='~%) = f(y~'-ie+?).

7 Elster, Optimierung
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Die angegebenen Voraussetzungen sind jedoch nicht hinreichend dafiir, daB jeder
Haufungspunkt der Folge {x*} eine Losung von P2 ist, wie das durch Abb. 7.12 dar-
gestellte Beispiel zeigt. In diesem Falle ist offenbar x* = xk Vk = k, . x* ist also Hiu-
fungspunkt von {x*}, x* ist jedoch nicht Losung des Minimierungsproblems. Als Ur-

i‘i§ \
A

r=6

L/ka-V
Bild 7.12

X1

™~

sache dafiir kann das Auftreten singularer Punkte auf den Niveaulinien {xeR" | f(x) =«}
verantwortlich gemacht werden. Solche Punkte kdnnen nicht auftreten, wenn f als
stetig differenzierbar vorausgesetzt wird und Vf(x) = 0 nur fiir xe G° gilt. Man
beachte jedoch, daB damit nicht notwendig die Ermittlung des Gradienten von f ver-
bunden ist.

Die erforderliche Verscleéirfung der Voraussetzungen gegeniiber Satz 7.13 erfordert
die Verwendung einer weiteren Eigenschaft differenzierbarer Funktionen.

Definition 7.5: Sind M < R* eine nichtleere offene Menge und f: M — R differenzier-
bar auf M, dann heift f pseudokonvex auf M, wenn gilt:
x!, x2e M
f(x1) > f(x?)
Der Zusammenhang zwischen pseudokonvexen und streng quasikonvexen Funk-
tionen wird ausgedriickt durch den

} = (2 — xT Vf(x!) < 0. 1.22)

Satz 7.14: Sind M < R" eine nichtleere offene konvexe Menge und f: M — R differen-
zierbar auf M, dann gilt:

f pseudokonvex = [ streng quasikonvex
auf M auf M.

Zum Beweis vgl. [6].
Die Umkehrung des Satzes gilt nicht, wie Gegenbeispiele zeigen.

Aufgabe 7.14: Man zeige, daB die Funktion f(x) = x3, x€ R, auf R zwar streng quasikonvex, aber
nicht pseudokonvex ist.

Es folgt nun eine Aussage iiber die Anwendbarkeit des KS-Verfahrens.

Satz 7.15: Es sei f: R" — R stetig differenzierbar und pseudokonvex. Fiir die durch
das KS-Verfahren erzeugte Folge {x*} existiere eine kompakte Menge X = R" mit
{x*} € X. Dann ist jeder Haufungspunkt dieser Folge {x*} eine Losung von P2.
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AbschlieBend zeigen wir das Vorgehen an einem Beispiel, wobei wir auf die aus-
fithrliche Darlegung der Losung des Optimierungsproblems (7.22) mittels Elimina-
tionsverfahren verzichten.

Beispiel 7.7: Wir 16sen P2 mit
f(x) = x2 —2x,x, + 2x3, x€eR2.

Wegen der Notwendigkeit des Abbruches nach endlich vielen Schritten verwenden wir wieder eine
Schranke & > 0 fiir [x* — x*~1|| als Abbruchbedingung. Mit ¢ = 0,1 erfolgt der Abbruch im Schritt
11. Man erhilt x° % (0,125, 0,125 mit f(x°) < 0,016. Die exakte Losung lautet x° = (0, 0)T,
f(x° = 0. Der Verlauf der Rechnung ergibt sich aus Tabelle 7.2.

Tabelle 7.2

k xf x5 fxk)
1 3,000 2,000 5000
2 2,000 2,000 4,000
3 2,000 1,000 2,000
4 1,000 1,000 1,000
5 1,000 0,500 0,500
6 0,500 0,500 0,250
7 0,500 0,250 0,125
8 0250 0250 0,062
9 0250 0125 0,031

10 0,125 0125 0016

11 0,125  (0,062)
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2.1: Fiir beliebige x*, x2 € K und beliebige 4, € R, mit 2 + pu = 1 gilt

IAx! + px?|| = 2IxM + plx? S 2r + pr = r
und damit Ax* + ux?e K.

2.2: Fiir beliebige x*, x? € P und beliebige 4, u € R, mit 2 + u = 1 gilt

A@x! + px?) = MAX') + w(Ax?) S 2b + ub = b
und damit Ax! + ux?€ P.

2.3: M;, M, & R?sind konvexe Mengen (wegen Satz 2.11) mit M; (| M, = 9. Nach Satz 2.8 sind

M, und M, trennbar, und zwar durch jede der Geraden
H= {‘(x,y)TER2 |y =cx} mit ce[-4 1]
2.4: 2) Fiir x1, x, € Ry, x; # x5, gilt bekanntlich 2272 > /% x,. Hieraus folgt fiir beliebi-
ged,pp>0mitd 4+ p=1: 2
Aulxy + x3) > 2/1#\/;::,
Axy 4 puxy > 2Pxy 4 22/ x1x5 + p2x,,
BT > im
und damit f(Ax; + pxz) > Af(xy) + wuf(x;), d. h. fist streng konkav auf R_.

b) Wenn wir die Stelle xo = 0 ausschlieBen, so ist f auf R, \ {0} zweimal differenzierbar mit

1 1
fx) = — T_\/: < 0. Nach Band 2, Satz 7.10, ist daher fstreng konkav auf R, \ {0}.
x+/x

2.5: Nach Satz 2.10 ist f als Summe der konvexen Funktionen f;(xy, x2) = x3 und f3(x, x) = 2x;

konvex auf R2.

2.6: Wegen/”'(x) =e™* > 0 Vxe Rist yH(x)y = y?e~* positiv definit und daher f'streng konvex auf R.

2.7:a) alT 1 2
X b) Wihlt man A = (a“) =3 1}, so

a3T 1-1
14Bt sich b° € Bnach Satz2.19 als nicht-
negative Linearkombination der a’ (i =
1, 2, 3) darstellen:
ATy =p°,y = 0.

Das Gleichungssystem

; ' ¢y
2% 13 1 2 N
'/ g 7 3 (2 1_1) (cz)— (O) hat die Losung
4 ) 7 2 X 2y,
</K e a=-2.4, o g
/ 1= 3 5 6 2 3 3,
x

I\
S}

wobei man wegen ¢; =

die Bedingung -%- S =

ten hat.

Bild 2.23
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4.1: Das gegebene Problem kann in der Form geschriecben werden min {—f(x) | x € 6},
G = {xeR"| —gi(x) = 0, i€ I}, wobei —fund —g;, i € I,, konvexe Funktionen sind.

4.2: Man fithre die Restriktionen g,(x) = —x; < 0,k = 1, ..., n, ein.

4.3: a) fkonvex, G nach Satz2.12 und Satz 2.3 konvex; Satz 3.2 ergibt daher die gewiinschte Aussage
von Satz 4.2.

b) (Beweis indirekt): Die Annahme, daB x' und x? # x! Losungen des Problems (4.1) sind,
fuhrt wegen

Af(xY) + (1 — Dfx?) = fGx! + (1 — )x?)  (Satz 4.3, 1. Aussage)
auf einen Widerspruch zur strengen Konvexitit von f.

4.4: Ist x° ein innerer Punkt von G, so existiert wegen (4.2) ein ¢ > 0 mit

x—x)TV/x% =0 Vx mit [x —x° <e. (*)
Aus der Annahme Vf(x°) # 0 folgt die Existenz eines X mit ||X — x°|| < ¢ und

& — x9)TVfx° > 0. (%)
Fir y = —(% — x° + x° folgt wegen (+) einerseits (y — x°)T Vf(x°) = 0, andererseits hat

man wegen (*x%)
v - xOTV/x®) = =X = x)TV/(x%) <0,
und das ist ein Widerspruch.

4.5: a) x° = (2, 2)7; (4.2) gilt, aber nicht (4.3) (x° ist kein innerer Punkt von G).
b) x° = (1, 1)T; x° ist innerer Punkt von G. (4.3) gilt und damit auch (4.2).

4.6: Es ist C = Ho(x) mit G konvex. Nach Satz 2.16 folgen die zu beweisenden Aussagen.
4.7: Es ist VQ(x°) = 2 Cx° + ¢; aus Satz 4.5 folgen die zu beweisenden Aussagen.
4.8:1.a)x > 4, b)a =4, o« <4

2oa=1: xX =(,07 und x=@©0,DT; oa=4: x°=(,0T;
x=8: x°=(1,0)7T.

3. Hohenlinien sind
a) im Falle « = 1: Hyperbeln

XTCx =3 +dxx, + 3 =33 —x%3=c¢
mit dem Mittelpunkt (0, 0)T und den Asymptoten
@+ x+x=0 x+(2+/3)x =0 @Bid4s2),
b) im Falle &« = 4: Parallelgeraden
XTCx = 22 + 4xyx, + 4% =5x'3 = ¢
mit dem Anstieg — % (Bild 4.3),
¢) im Falle « = 8: Ellipsen o -
9+ 4/65 9 — /65
xTCx = 3% + 4xyx, + 8x% = ;/ x'3 + 2\/ X2=c

mit dem Mittelpunkt (0, 0)T und mit ¢ gemédB

4
tan 29 = — - (Bild 4.4).
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Xz

Bild 4.2

X

X

Bild 4.4

4.9: a) Im Problem
max {3e** + x, | x€ G},
G = {(x1,x)T€R? |x;, >0, x, >0, 2lnx; +Inx, < In16}
sind offenbar die Variablen separiert.
b) Wir bilden in der Zielfunktion In (x3x4) = Inx3 + In x, und setzen

X5 = Xy Sinxy, Xg = x3In x4, X7 = 4e¥¥s, xg = X5 COS X4.
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Durch Logarithmieren dieser Gleichungen und anschlieBendes Einsetzen in die Restriktionen
erhilt man ein System von Gleichungen und Ungleichungen, in welchem die Variablen sepa-
riert sind. Dieses System kann leicht in die Form (4.10), (4.11) gebracht werden, wobei jedoch
zu beachten ist, daB die Ausgangsvariablen positiv sein miissen.
4.10: Es sei (y°, t°)T eine Losung von (4.14). Dann ist
cTy0 + cot®  €Ty%4 + cot%
fa0 0 = ST ST ET RS pye, a),
dTy°+ doto dTy°l+ dolol

Fiir 2 > 0 ist A% > 0, Ay® — bAt® < 0 und damit (Ay°, 22°)T € G*. Daher ist (Ay°, A1°)T
Losung von (4.14).

4.11: Dem gegebenen Problem ist das lineare Problem
min {3y; — y2 + 3t (v, )T € G**},
G = {(, )T eR | y1 + 12 S 44,201 =y, S22 0, yy+ 20, +1=1,1>0}
zugeordnet. Mit der Simplexmethode folgt als Losung (9, »3, t9)T = (0, %, -;—) . Durch
Transformation folgt hieraus als Losung des Ausgangsproblems (x9, x3)T = (0, 4)".

5.1:Aus u® e R und g(x° = 0 folgt zunichst uJg,(x°) < O Vie I,. Aus der Annahme
ulg;(x%) < 0 fiir ein i € I, erhilt man u®"g(x®) < 0 im Widerspruch zu (5.12).

5.2: Esist
xTCx + ¢Tx = xT (é ?)x + (=8, —10)x.
C ist positiv definit, G ist konvex;
Fx,u) =x} + 23 = 8x; — 10x; — ugxy — upx; + uz(3xq + 2x, — 6).
Die lokalen Kuhn-Tucker-Bedingungen (5.11), (5.12) lauten

2x9 — 8 — ud + 3ud
0 40y — (“%1 1 3) _
VxF(x®, u%) <2x2 — 10— ud + 2ug> o

— X‘lj *)
VoF(x%u%) = | -3 <0, (
3 + 229 — 6,
udx =0, ugxd =0, u3x)+ 2x3 —6) =0. )
Nach Satz 4.3, Satz 5.2 und Satz 5.5 hat das gegebene Problem genau eine Losung, und zwar die
Losung des Systems (x):
1
x0 = —(4,33)T.
3 4,33)

Grafische Losung: Bild 5.3. Es ist
X34+ 2 — 8xy — 10x, = (x; — 4% + (xp — 5)> — 41.

5.3: Die Zielfunktion des Problems ist fiir jedes # € R konkav, d. h. Satz 5.2 und Satz 5.5 sind nicht
anwendbar.
a) Es ist

t\? 5
—x%—x%——txl—th2=—(x1+7) —-(x2+t)2+7t2.

Als Losung x° ergibt sich (Bild 5.4)
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X,
’ t M=) %
: P t=2 4|(9)t20 /,
\ t=0
\
\\ - -3
J
- _2 b
t=-2
f=-4
L /16
1=-6. p—7
F 0 by
g-0F o/ @ts-4 .
) f=—4 (,é),—é\stsa X
0 X — t=p \1=2
g,0)=0 ' 7 Gerade 1==¢
4 der
Bild 5.3 ty  Mittelpunkte
Bild 5.4

e
g o)

—4<1<0: x°=(

N
==

0
b) Nein, c) nein.

5.4: Man findet x° = (1, 0)T (Bild 5.5).

%
:f=7 {f=7,4
L
|
|
E P
g P
E b
E 7 | 0
E L {”); \i\v”” . . Bild55
1
Xp=(-x)°
a) Bs st F(X, u) = —x; —uy Xy — x5 + 3z —(1 — x1)3).
Aus
V, F(x°, u®) = -1 —uf =0
MU = —u§ +ul)

folgt ud = —1 < 0, d. h. u® ¢ R3,.

b) Es miiBte gelten z"Vg,(x?) = —z, < 0 und z"Vgs(x°) = z, < 0, und das ist nicht moglich.
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5.5: Als Losung des Systems (5.11), (5.12) folgt
x% = (2,07, u® = (0, 2, &, ®)T mit « = 0.

Da das Innere von G leer ist, ist B nicht erfiillt und damit Satz 5.6 nicht anwendbar. Es ist

Vf(x°) = (_(1)) und x — x° £ 0 VYxeG. Nach Satz4.8 hat man (x — x°)TVf(x°) = 0 vxeG.

5.6:Esistxe R, & —x = 0. Wir fithren fiir das neue Problem die Lagrange-Funktion
F(x,u,v) = F(x,u) = vIx = f(x) + uTg(x) — vTx;
' XER", ue R, VER",
ein. Dann folgt aus der (5.11) entsprechenden Bedingung
VxF(x% u®, v0) = V F(x° u®) — v° = 0,
d.h. VeFx%u®) =v° = 0.
Aus v‘!’ = 0 folgt wegen (5.12) und Aufgabe 5.1 sofort
0 . OF o .
x) =0 und damit x}’a—xj(xo,u Y=0 Vi=1,..,n,
d.h. x°T V,F(x%u) = 0.
6.1: Nach Satz 5.6 ist (5.12) erfiillt. Daher gilt u®Tg(x®) = 0, und hieraus folgt F(x°, u®) = f(x°).
6.2: P:min{f(x) = x} — x, |x€G},G={xeR?|x} + 2 = 1},
D:max {F(x, ) = 33 — x, + u(x? + x5 — 1) | (x, )T € G*},
G* = {(x,)TeR* X R|uz 0, VyF(x,u) = 0}.
a) f(x) = f(x%) = F(x° u°) = F(y, u) Vx€G, V(y, )T € G*,
ViF(@, ) = 2p1 + 2y1u, =1 + 2y,u)T = 0,
z.B.
x1=0, x2=3%, y»1=0, y=%, u=1 sind zuldssig.
Daraus folgt .
[ = ===z f%) z Fy,u) = —-i—.

0| =

b) Losung von P: x9 = 0,x2 = 1;

1 . .
Losung von D: x9 =0, x3 =1, u® = T(uO = 0 ergibt einen Widerspruch).

6.3: D: max {—3x% — 222 + 5x3 — x4 | X € G},
G = {xX€R*|xy, %, € R, x3, xs € Ry, dx3 — 2x4 < 4o, 2x5 + x4 = 45},
4x3 4 -2 5
Vi) = (4x:), Uy = x3, 1y = x4, AT = (2 1), b= (_1).
f0) = 2% + 243;

P: min {f(x)}xEE}, G= {xe RzlxeR:,(_; f) (2) = (_f)}
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Man erhilt die Losung x9 = —;— , X =

INEN

.73
g3

1111 425
1024

Bl: max {5141 — Uy | uy, uy = 0,4u; — 2uy =

Man erhilt als Losung u) = u3 =

6.4: Duales Problem im Sinne von Dorn:

D: max {—x"Cx — u"b | (x, wT € G*},
G* = {(x,wTe R" X R" lue R, —ATu = 2Cx + c}.
Duales Problem im Sinne von Wolfe:

D: max (xTCx + ¢Tx + uT(Ax — b) — vIx | (x, w)T € 6*},

G* = {(x, 1, WT€R" X R" X R*|ueR™, veR', 2Cx + ¢+ ATu—v = 0}.

Wegen G* hat man 2xTCx + ¢'x + xTATu — xTy = 0

und damit das Problem

max {—xTCx — u™b | (x,w)T e G~*},

G* ={(x',u,v)TeR" X R" X R*|ue R, veR%, — ATu+v=2Cx+c}.

Wegen v € R". sind folglich D und D identisch.

(~2,68), 2uy + up = 3}.

~ 1,08); ud = u? = ——(~ 0,83).
( ) uy = uf 512( )

6.5: Aus F(x,u) = ¢'x + uT(—Ax + b) folgt VxF(x,u) = ¢ — ATu = 0 und damit F(x, u) = bTu

7.1

fiir ATu = cund D: max {b"u| ATu = ¢,ue R7}.
Cy; C x*
Toy — (1T 52Ty [C11 C12
x'Cx =@, x )(C21 C22> (xz)
= x',rCuxl + x-zrczzxz + X}-Cuxz + X;szxx

mit CY; = Cyy, Ch, = Cy3,CT, = Cay.
Einsetzen von x? = B;x! + b ergibt

xTCx = XxJ(Cy; + BICy, + C1,B; + BIC,oBD)x! + d™x! + d
und damit D = C;; + BTC;; + C;,B; + BTC,,BT.
Wegen (*) folgt DT = D. Es gilt
E
Bl
Aus der Annahme ¢ = x'™Dx! < 0 fiir ein x!# 0 folgt dann

D= (ET,B))C ( ) (E Einheitsmatrix).

0> g =x'TET,B)C (E )xl
1

=yTCy firein yeR" mit y=<§ )x1
1

im Widerspruch zur Voraussetzung, wonach C positiv semidefinit ist.

7.2:Esseiendy, =0, k€Z;, undd; 20, i€Z,.

*)

()
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v

1
Wegen der positiven Semidefinitheit ist Q(X) = X'DX + 2d"X + dp mit X = (x ), x! =0,
X

eine_konvexe Funktion. Nach Satz 4.6 ergibt sich wegen y
1
VOx) = 2Dx + 2d,d = (:3>, X10 = X30 =,

VOEY)T (X — X% = VOE*)Tx = 2d™x = 0 fiiralle x' = 0, x3 beliebig

als Losung des Problems x'© = x3° = 0, x2° =b.
x0 = (:), x°TCx® + ¢Tx° = —304.
a) C negativ semidefinit = Verfahren nicht anwendbar.

b)x, =0 und xl»—ms(i‘)eG und xTCx +¢Tx - — 0.
2

a) min { —0(x) [x€ G}, G = {xeR"\ijx, =B x=0},
ji=1

308
b)af = = Xy =

156
59
d .
rm (xTCx + ¢Tx) = 2xAxTCAx + 2xTCAx + ¢TAx = 0, *)
X
d2

do?
& = 0 ergibt sich o* = min {«%, &%, &}. Im Falle & < 0 gibt es keine Abstiegsrichtung.

(...) = 2Ax"CAx > 0 nach Voraussetzung. Aufldsung von (*) nach « ergibt & Im Falle

a) Tableau zu Startpunkt x', XT:= (y,2)T, xT = (x;, X).

X1 X2 1|y Vi /&) = (0,0,0)7,
o [ =6 —27+7\ .
= |1 o0 |4 |2 V@ = (T
Xa 0 -1 3 1 X3
x5 | -1 -1 5001 y=<x4>, z=(;ﬁ).
2,
T 2 2 s
% + oA A
YE+adD L (2_xl /— RN .
do Ax1 Axl
-7 0,9089
—ri=rl= Azl = (_1), = 00, a) = 7’ ol & 0,155, Z=x (1,8441)’

. .
—2=r’=Az%= (0’1_41—9), o} X 19,75, o2 =o?x 18441, = (1’1323),

7
0 0,9199 2— [—
—r:=r3=Az3=( l)’ zg~( 0 )N A/6 =x% Az¢ =0
0
= x° stationdrer Punkt (vgl. Bild 7.13).
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b) Tableau zu Startpunkt x'

» -
X 1 3 - Ayt ( ) 2
1 X2 Yo Iy y 0 Ay} ] Yo
X3 -1 0 4 |05 0 | —-65 |00769 |0
X4 0 -1 3 |2 0 1 0 2,0769
Xs -1 -1 5 |05 0 | —55 |009009 |0,0769
1\T —_al
(zo) 35 1 ol = 0,0769 0,0769 = «}
)T = (=T
- AZI)T‘ 65 —1
z’l T L
(ra) N
@ 40 09231

Danach Austausch von x5 gegen x; und Durchfithrung einer weiteren Iteration.

y?
2 —r2 2 J
X3 X 1 Yo Iy Ay ( =Y )
x -1 0 4 |40 17 0 ©
X4 0 -1 3 | 2,0769 0 1 )
Xs 1 -1 1 | 00769 0 1 ©
)T 0 09231 ©
—)T 0 -1
(-r3) o,
" -7 -1 Vof @) = | fxu
(Bz?)" 0 -1 \fxs
D ~. fx
2 T = 2
<3 w 0931|0921 =az| VI® (fx,)
|Az}
Es folgt 23 = g , xM= 3 ,Az® = 0. Daher ist x°"! ein stationdrer Punkt.

Obwohl x°M! nicht Stelle eines lokalen Minimums wie x°* oder x°! ist, gilt dort Az* = 0,
d. h. x°1T st ein stationidrer Punkt (lokales Maximum von f bei x, = 0).
¢) Vgl. Bild 7.13.
d) Nach dem Verlauf der Hohenlinie ist x°! die Losung des Optimierungsproblems. Es gilt
(X)) & —5,0406, f(x°1) = —2, f(x°1I) x 5,0406.

a)f: R=> R und g: R — R stetig = max {f(¢), g(r)} stetig =

= max {0, 7} stetig = max"{0, ¢} stetig (* = 1).
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|t] stetig = f(¢) = [¢|" stetig (* = 1) und

0 fir =0, (=) fir t=0

r p— d i r= = s

max” {0, £} {t’ fir ¢ > 0; I tt fur ¢>0.
br>1.
X!

Bild 7.13

7.9: xko Losung von Py, = f(xk) < H(xko, pp) < o
xkoe G = f(xko) = &

7.10: Py: min {x} + 2x3 + p, max? {0,1 — x} — x5} | x; = 0, x, = 0},

2x; — 4p(l — X2 — B)xy
4x; — 4p(l — x% — xXD)x,)°

VAR, p)T(x — x) 20 Vxe U NR2 ergibt:

} = f(xko) = .

VH(x, py) = (

x¥ > 0 = Widerspruch, x* = 0 keine Losung von Py,

1 Einsetzen in (¥) zeigt
A=0x>0=>x= [1-—

P

2
~‘Jz‘=0,X'f>0$/f=A/1—;—! 0
k

Der Grenziibergang k — oo ergibt x° = (0 R
In Bild 7.14 ist der Sachverhalt skizziert (fiir p, = k; I, II, III bedeutet & = 4, 5 bzw. 10).

\Es\

'11/7/ X;

%

| L

Bild 7.14
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b(t)= —Int gy stetig fir xe X
xXfsye G\E:g,-(x")—»g,(y) =0=B(x" - o0.

7.11: b(t)y=1t",r>0 } b stetig fir 7 > 0 ]
= =

7.12: a) x° sei Losung von P, d. h. f(x°) = &, x° € G. Dann existiert wegen 5 = G eine Folge

x* € G mit lim x* = x°, und es gilt
k— o0

&%) = lim f(x*) = inf f(x) = inff(x) = f(x°).

k—>o0 xeG xeG

b)inf(—x) = —1 # inf (=x) = =2 (vgl. Bild 7.15).

xeG xeG

X

Bild 7.15

2 - 0 /1 2 X,
-

7.13: Peimin {x} + 253 + g In(x3 + X% — 1) | x; 2 0,x;, = 0},

2%y + il
s+ gy e
gy

4x, + T
X —_—2
2 qu%-{-x;'—-l

VHE, g)T(x — x¥) = 0 Vxe Ux¥ N R? ergibt

VH(x, q,) =

x¥ > 0 = Widerspruch;

2 Einsetzen in H(x, g;) zeigt
#;=0=x’;=—1"—+ 1+q—" —
4 1 9k A/ 9%
-+ /1 4+ —
a G | x= 2 4
X5 =0= ———2—+ 1+ — 0

Der Grenziibergang g, — 0 ergibt x° = ((1))

7.14: f(x) = x3, x € R, ist differenzierbar und offenbar streng quasikonvex auf R. Fiir x; = 0 und
X2 < 0 gilt aber f(x1) > f(x;) und (x; — x;)f’(x1) = 0. Daher ist f nicht pseudokonvex auf R.
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