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1. Einleitung

Optimierungsaufgaben werden in der Mathematik seit langem betrachtet. So
gehoren notwendige Optimalitdtsbedingungen fiir Extremalaufgaben ohne Neben-
bedingungen bzw. mit Nebenbedingungen in Gleichungsform und fiir Extremal-
probleme, wie sie in der Variationsrechnung betrachtet werden, schon zur klassischen
Mathematik. In den letzen Jahrzehnten erfuhr jedoch die Theorie der Optimierung
und der Losungsmethoden einen gewaltigen Aufschwung. Ursachen dafiir waren
einerseits wichtige Aufgabenstellungen in Technik, Okonomie und Naturwissen-
schaften — es gibt heute kaum ein Gebiet, in dem nicht Optimierungsprobleme vor-
kommen —, andererseits die Entwicklung der elektronischen Rechentechnik; erst
dadurch wurde die Moglichkeit geschaffen, eine Vielfalt von Problemen bis zum
numerischen Resultat zu bearbeiten.

Diese Etappe begann 1939, als der sowjetische Mathematiker L. W. Kantorowitsch
Methoden zur Losung linearer Optimierungsprobleme verdffentlichte; es handelte
sich dabei um einen véllig neuen Aufgabentyp. In der folgenden Zeit wurden nicht
nur Theorie und Lésungsmethoden der linearen Optimierung durch eine sehr groBe
Zahl von Arbeiten ausgebaut und weitergefiihrt, sondern es entwickelte sich auch
die nichtlineare Optimierung, wobei eine zentrale Stellung die sogenannte konvexe
Optimierung einnimmt.

Vor etwa zwei Jahrzehnten begann auch die Entwicklung der Theorie der optima-
len Steuerung von Prozessen (optimale Prozesse). Seit der Formulierung von notwen-
digen Optimalitdtsbedingungen in Form des Maximumprinzips von L. S. Pontrjagin
ist die Anzahl von Verdoffentlichungen zu dieser Problematik sprunghaft angestiegen.
Anfangs betrachtete man dabei Prozesse, die durch gewdhnliche Differentialgleichun-
gen beschrieben werden. Spiter untersuchte man auch Probleme, bei denen das mathe-
matische Modell aus partiellen Differentialgleichungen oder Integralgleichungen
bestand. Parallel dazu wurden Optimierungsprobleme im Zusammenhang mit Model-
len, die durch Differenzengleichungen beschrieben werden, untersucht.

Die ersten Arbeiten beschiftigten sich zunédchst mit theoretischen Fragestellungen,
d. h. mit notwendigen und hinreichenden Optimalitdtsbedingungen und Existenzaus-
sagen. Da die gewonnenen Optimalitdtsbedingungen nicht immer einen praktikablen
Algorithmus zur Berechnung der optimalen Steuerung liefern, wurde die Entwicklung
numerischer Losungsmethoden erforderlich.

Es sei hier darauf hingewiesen, daB eine wichtige Aufgabe der gegenwirtigen
mathematischen Forschung darin besteht, von den konkreten Aufgabenstellungen der
verschiedenen Optimierungsgebiete zu abstrahieren und unter Verwendung funktio-
nalanalytischer Methoden eine einheitliche Theorie aufzubauen. Eine solche Opti-
mierungstheorie in allgemeinen Raumen gestattet es, eine Vielzahl von Problemen
unter einem einheitlichen Gesichtspunkt zu betrachten (vgl. Bd. 22).

Das Ziel des vorliegenden Buches besteht darin, dem Nichtmathematiker eine Ein-
fithrung in die Grundlagen der Theorie optimaler Prozesse zu geben. Voraussetzung
zum Verstdndnis sind Kenntnisse aus der linearen Algebra, der Differentialrechnung
fiir Funktionen mit mehreren Variablen und tiber gewdhnliche und partielle Differen-
tialgleichungen. Auf eine Beweisfithrung wird verzichtet. Wesentliche Ergebnisse
werden durch Beispiele erldutert.

Die Autoren bedanken sich fiir zahlreiche Hinweise bei Herrn Professor Dr. Sieber
und dem Herausgeber, Herrn Professor Dr. Beyer.



2. Optimale Prozesse und damit zusammenhiingende Begriffe

Ziel dieses Abschnittes ist es, die Grundlagen der Theorie optimaler Prozesse zu
entwickeln. Hierzu miissen zundchst die beiden Begriffe ,,ProzeB* und ,,Optimalitit*
naher erldutert werden. Dabei wird es sich erweisen, daB weitere Begriffe erforder-
lich. sind. Von diesen seien vorab solche genannt wie ,,Steuerung®, ,,Steuerbereich*
und ,,Phasenraum®.

Unter einem Prozef$ versteht man im allgemeinen eine Folge sich in der Zeit dndern-
der Zusténde eines Systems. Der Begriff des Systems wird in seiner intuitiv verstand-
lichen Form verwendet (vgl. [11]).

Es sei erwihnt, daB3 ein System dem Charakter seiner wesentlichen Bestandteile nach von physi-
kalischer, technischer, 6konomischer, biologischer, chemischer u.a. Natur sein kann.

Die Prozesse werden in entsprechender Weise unterschieden. Als Beispiele von Pro-
zessen seien hier der Flug einer Rakete der Lauf einer Turbinenwelle, die Produktion
von bestimmten Erzeugmssen sowie die Vorgiinge in chemischen Reaktoren genannt;
aber auch die Vorgdnge in einem Telefonkabel sowie die Verdnderungen auf einem
Parkplatz, gemessen in freien Parkpldtzen, sind Prozesse. Die Vielfalt dieser wenigen
Beispiele weist schon darauf hin, daB3 der Begriff des Prozesses im obigen Sinne sehr
allgemein ist. Fiir unsere Zwecke ist es erforderlich, ihn zu spezifizieren und zu pra-
zisieren.

Prozesse konnen unter verschiedenen Gesichtspunkten klassifiziert werden. Wir
nennen drei Klassifizierungen.

So kann man in Abhdngigkeit von den zeitlichen Verdnderungen zwischen diskon-
tinuierlichen und kontinuierlichen bzw. — wie man auch sagt — zwischen diskreten
und stetigen Prozessen unterscheiden. Ein ProzeB der ersten Art ist dadurch gekenn-
zeichnet, daB die Zeit nur diskrete (im allgemeinen dquidistante) Werte annimmt,
und der ProzeB somit eine Folge endlich vieler oder hichstens abzihlbar vieler unter-
schiedlicher Zustande bzw. getrennter Stufen darstellt. Als Beispiel eines solchen Pro-
zesses kann die Benutzung des Parkplatzes angesehen werden. Demgegeniiber durch-
lauft die Zeit bei einem stetigen ProzeB3 alle Werte eines Intervalls, so daB er im all-
gemeinen aus iiberabzéhlbar unendlich vielen Zustinden bestehen kann.

Der Flug der Rakete, der Lauf der Turbinenwelle und die Produktion eines Erzeugnisses (z.B.
unter den Bedingungen des Dreischichtsystems) sind Beispiele stetiger Prozesse. Die Abgrenzung
stetiger Prozesse von diskreten schlieBt jedoch nicht aus, daB stetige Prozesse auch als diskrete auf-
gefaBt und dargestellt werden. Das macht der Physiker, wenn er die Schwingungen einer Saite model-
liert und dabei ein gewisses Stiickchen dieser Saite As wihrend einer endlichen Zeitdauer Az betrach-
tet; das macht auch der Okonom, wenn er die Ergebnisse des Produktionsprozesses kumulativ fiir
einen Tag, fiir eine Dekade oder fiir einen Monat erfaBt.

Eine zweite Moglichkeit der Klassifizierung ergibt sich, wenn man den Zustand
des Prozesses in einem fixierten Augenblick in Abhéngigkeit von einem Anfangs-
zustand und den zwischenzeitlichen Einwirkungen auf den ProzeB untersucht. Ist diese
Abhingigkeit eindeutig bestimmt, so spricht man von einem deterministischen Pro-
zeB. Als Beispiele hierfiir konnen wir den Flug der Rakete sowie den Lauf der Tur-
binenwelle auffassen. Ist dagegen der Endzustand eines Prozesses durch seinen An-
fangszustand und die zwischenzeitlichen Einwirkungen nicht eindeutig bestimmt, son-
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dern unterliegt gewissen Wahrscheinlichkeitsverteilungen, so bezeichnet man ihn als
stochastischen ProzeB.

Wenn hier von Einwirkungen auf den ProzeB gesprochen wurde, so ist damit bereits
das dritte Klassifizierungsmerkmal genannt worden. Wir werden einen ProzeB nam-
lich steuerbar nennen, wenn man auf seinen Verlauf einwirken kann und die Ergeb-
nisse dieses Einwirkens kennt. In diesem Sinne ist durchaus nicht jeder Prozef steuer-
bar. So kann z. B. der Wetterverlauf gegenwirtig noch nicht zu den steuerbaren Pro-
zessen gerechnet werden.

Einen Hauptgegenstand dieses Buches bilden steuerbare deterministische Prozesse
und ihre mathematische Untersuchung. Dabei werden im 3. Abschnitt stetige und
im 4. Abschnitt diskrete Prozesse betrachtet. Stochastische Prozesse werden im
Band 19/1 behandelt.

Wir gehen zur mathematischen Beschreibung unseres Untersuchungsobjektes iiber.
Unter einem steuerbaren deterministischen Prozel — im weiteren kurz ProzeB oder
steuerbarer ProzeB genannt — wollen wir einen solchen ProzeB verstehen, dessen Zu-
stand in jedem Augenblick durch eine gewisse Anzahl von Parametern — den soge-
nannten Phasenkoordinaten — eindeutig bestimmt ist. Wir nehmen an, es seien n sol-
cher Phasenkoordinaten erforderlich, und bezeichnen diese mit x(¢),i= 1,2, ..., n.
Dabei bezeichnet in der Regel ¢ die Zeit. Sie stellt in Abhidngigkeit davon, ob der, Pro-
zeB} stetig oder diskret ist, eine stetige (vgl. 3. Abschn.) oder diskrete GroBe (vgl.
4:Abschn.) dar. Die Abhdngigkeit der Phasenkoordinaten von der Zeit ist berechtigt
und erforderlich, weil sich die Zustdnde in der Zeit &ndern. Weiterhin soll der Prozef3
tiber gewisse Parameter — die sogenannten Steuerparameter oder auch Steuerungen —
verfiigen, durch die auf seinen Verlauf Einflu genommen werden kann. Wir nehmen
an, es seien r solcher Steuerungen vorhanden und bezeichnen sie mit wu;(t), j= 1,
2, ..., r. SchlieBlich wird vorausgesetzt, daB der ProzeB vollstindig bestimmt ist,
wenn sein Anfangszustand x,(,), i = 1, 2, ..., n, sowie seine Steuerungen u;(t),
j=1,2,..,r bekannt sind.

Gewohnlich werden die Phasenkoordinaten x;(¢) als Komponenten eines Vektors
X(t) = (x,(2), x5(t), ..., x,(¢)) aufgefaBt. Fiir jedes feste ¢ stellt der Vektor x(¢) einen
Punkt im n-dimensionalen Raum R" dar. Er wird in diesem Zusammenhang Phasen-
raum genannt. Es ist tiblich, jede Kurve in dem Phasenraum als Trajektorie zu bezeich-
nen. Somit beschreibt speziell der Phasenvektor x(7) eines Prozesses bei stetig ver-
anderlicher Zeit 7 eine Trajektorie im Raum R". Handelt es sich bei dem ProzeB um
die Bewegung eines Objektes im dreidimensionalen euklidischen Raum — wie z. B. die
der Rakete —, so unterscheiden sich im allgemeinen der Phasenraum und die Trajek-
torie dieses Prozesses grundsitzlich von dem Bewegungsraum R® und der tatsich-
lichen Bewegungslinie des Objektes. Analog wie bei den Phasenkoordinaten eines
Prozesses wird aus seinen Steuerungen der Steuervektor u(t) = (uy(¢), us(t), ..., ut))
gebildet, der fiir jedes fixierte # einen Punkt im r-dimensionalen Steuerraum R' dar-
stellt. Die Menge-aller der Punkte, die vom Steuervektor eines Prozesses angenommen
werden bzw. fiir ihn zugelassen sind, bilden den Steuerbereich U < R™ des Prozesses.
In Abhingigkeit von der Art des Prozesses kann der Steuerbereich eine abgeschlos-
sene oder offene, eine beschrankte oder unbeschrankte Menge sein (vgl. Bd. 1). Be-
trachtet man z.B. bei der Rakete die Beschleunigung als Steuerung und geht von der
durchaus realen Annahme aus, da3 die Beschleunigung dem Betrage nach eine ge-
wisse maximale Grofe zwar erreichen, sie jedoch auf Grund physikalischer und tech-
nischer Gegebenheiten nicht iiberschreiten darf, so erhdlt man als Steuerbereich eine
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beschrinkte, abgeschlossene Menge. Es wird sich noch zeigen, daB sich die mathe-
matischen Aufgaben und Probleme fiir abgeschlossene oder offene Steuerbereiche
wesentlich unterscheiden.

Unter einem Prozef8 werden wir also im weiteren ein Paar verstehen, das aus dem
Phasenvektor x(#) und dem Steuervektor u(z) gebildet wird, wobei letzterer zusammen
mit einem Anfangszustand x(7,) den Phasenvektor x(¢) und damit den ProzeB ein-
deutig festlegt. Wie das erfolgt, wird in Abschnitt 3. und 4. dargelegt (siche z. B. Pro-
zefgleéichungen (3.6)).

Es ist nun noch der Begriff der Optimalitit niher zu erliutern. Um hierbei auch
grafische Darstellungen benutzen zu kénnen, beschrinken wir uns auf stetige Pro-
zesse mit nur zwei Phasenkoordinaten, so daB der Phasenraum die x,, x,-Ebene ist.

Bild 2.1

Fiir diese Prozesse ergeben sich bei fixiertem Anfangszustand x(7o) = (x,(¢,), X2(7,))
in Abhingigkeit von der Wahl des Steuervektors w,(¢) im allgemeinen unterschied-
liche Phasenvektoren x,(#) und damit unterschiedliche Trajektorien 7} (s. Bild 2.1).
Die Vielzahl der méglichen Trajektorien gestattet es nun, die Frage nach einer ,,besten*
Trajektorie zu stellen. Das ist eine dhnliche Situation, wie sie uns von der linearen
Optimierung her (vgl. Bd. 14) schon bekannt ist. Auch dort gestattete erst die Viel-
zahl der im Rahmen gegebener Auflagen moglichen Produktionsvarianten oder die
Vielzahl der im Rahmen geforderter Néhrstoffgehalte moglichen Didtplane die Aus-
wahl von ,,besten‘ (optimalen) Varianten. Hier wie dort sind fiir eine solche Aus-
wahl natiirlich Kriterien erforderlich. In der linearen Optimierung hingen die Kri-
terien von der jeweils betrachteten Aufgabe ab und konnten z. B. die maximale
Auslastung der Produktionskapazitidten oder den minimalen Preis beinhalten. Ana-
log verhilt es sich bei den Prozessen. So konnen solche Kriterien z. B. fiir die Rakete
der minimale Treibstoffverbrauch oder der kiirzeste Weg oder die geringste Zeit beim
Flug von einem Punkt zum anderen sein. Fiir die Turbinenwelle kann das Kriterium
darin bestehen, ihren Lauf in kiirzester Zeit in vorgegebener Weise zu verdndern. Der-
artige Kriterien werden Optimalitiitskriterien genannt. Sie gestatten es, aus der Viel-
zahl der moglichen Trajektorien eines Prozesses diejenige auszuwihlen, fiir die eine
charakteristische ProzeBgroBe (z. B. Treibstoff, Weg, Zeit o. a.) ihren kleinsten oder
grofBten Wert annimmt. Die so ausgewéhlte Trajektorie sowie die Steuerung, die sie
erzeugt, und der zugehorige ProzeB werden optimal genannt.



3. Stetige Prozesse

Von den steuerbaren, deterministischen Prozessen werden jetzt diejenigen unter-
sucht, die im Abschnitt 2. als stetige bezeichnet worden sind. Dabei sei zunéchst be-
merkt, daB die Stetigkeit eines Prozesses im obigen Sinne sich nur auf die Zeit bezieht,
so daB die fiir die Zeit stehende Variable 7 beliebige Werte eines Intervalls annehmen
kann, dieses Intervall also stetig durchlduft. Die Stetigkeit des Prozesses bedeutet
jedoch keineswegs, daB auch die ProzeBparameter wie Phasenkoordinaten und Steue-
rungen selbst stetig sind. Im Gegenteil, es zeigt sich sogar, daB fiir eine Reihe von
praktischen Problemen die optimalen Prozesse gerade dadurch gekennzeichnet sind,
daB fiir sie gewisse Parameter, und zwar vorrangig die Steuerungen, Sprungstellen
besitzen. Dieser Hinweis ist von prinzipieller Bedeutung fiir das Versténdnis der fol-
genden Darlegungen.

Im Kapitel 3. werden die Grundaufgabe der Theorie optimaler Prozesse einschliel3-
lich ihrer Modifizierungen (siehe Abschn. 3.1., 3.3. und 3.5.) formuliert sowie ein
notwendiges Kriterium fiir die Optimalitdt entwickelt und Losungsverfahren dar-
gelegt.

Zunichst muf} jedoch etwas tiber den Zusammenhang zwischen den Steuerungen
und den Phasenkoordinaten eines Prozesses gesagt werden. Wir gehen bekanntlich
davon aus, daB die Phasenkoordinaten durch die Steuerungen eindeutig bestimmt
werden. Also miissen zwischen ihnen gewisse Beziehungen bestehen, deren mathe-
matische Form Gleichungen sind. Beachtet man nun, dal die von uns betrachteten
stetigen Prozesse im Prinzip Bewegungen sind, so darf man erwarten, da3 die Glei-
chungen durch die Phasenkoordinaten und Steuerungen verkniipft sind, die Proze§3-
bewegung beschreiben. Aus der Physik ist aber bekannt, daB Bewegungsgleichungen
gewohnlich gewisse Differentialgleichungen sind (vgl. Band 7.1, Beispiel 1.8). Daher
kann erwartet werden, daB3 die Phasenkoordinaten eines Prozesses mit seinen Steue-
rungen durch Differentialgleichungen verkniipft sind.

Beispiel 3.1: Wir betrachten — beginnend vom Zeitpunkt 7, — die geradlinige Bewegung eines Kor-
pers mit der Masse m. Dieser Korper sei mit einem Antrieb versehen, durch den in jedem Augenblick
t eine Kraft entwickelt werden kann, die mit u(z) bezeichnet wird. Auf die Gerade, entlang der sich
der Korper bewegt, wird ein Nullpunkt und ein MaBstab aufgetragen, so daf3 der Ort, in dem sich der
Korper im Augenblick 7 befindet, mit x(¢) bezeichnet werden kann. Dann sind mit x(¢) die Geschwin-
digkeit und mit %(7) die Beschleunigung des Korpers im Augenblick 7 gegeben. Auf den Korper moge

-px(t) u(t)

0 X(t) X Bild 3.1

neben der vom Antrieb entwickelten Kraft noch die Reibung wirken. Sie ist der Gréfe nach bekannt-
lich proportional zur Geschwindigkeit x() und der Bewegungsrichtung immer entgegengesetzt (siche
Bild 3.1). Bezeichnet man den Proportionalititsfaktor mit p, so gilt nach dem Gesetz von Newton
folgende Bewegungsgleichung fiir den Korper:

mi(t) = u(t) — pi(t) 3.1
oder

3.2)

S

$(1) = as(t) + bu(t) mit a= — %, b=
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Mit (3.1) bzw. (3.2) haben wir bereits Differentialgleichungen erhalten. Fiir unsere Zwecke ist es vor-
teilhaft, die Gleichung (3.2) noch umzuformen. Hierzu werden die Bezeichnungen

()= x(t), xy(t)=2x(t), t=1, (3.3)

eingefiihrt. Dabei sind diese Bezeichnungen nicht willkiirlich, sondern entsprechen der Tatsache, daf3
die Bewegung des Korpers in jedem Augenblick vollstindig beschrieben wird durch den Ort, in dem
er sich befindet (entspricht x,(r)), sowie durch seine Geschwindigkeit (entspricht x,(¢)). Somit liegt es
nahe, x,() und x,(r) als Phasenkoordinaten des betrachteten Prozesses aufzufassen. Weiterhin kann
der ProzeB offensichtlich durch die vom Antrieb entwickelte Kraft u(z) gesteuert werden. Verwendet
man nun anstelle von x(7) die durch (3.3) eingeftihrten GroBen, so kann (3.2) ersetzt werden durch

)'(1(’) = Xz(')
5t) = axo(t)+ bu(t)} 1zt G4

Damit ist unsere obige Hypothese bestétigt worden: Fiir den betrachteten Proze sind die Phasen-
koordinaten und die Steuerung durch Differentialgleichungen miteinander verkniipft.

Das Ergebnis (3.4) ist allgemeingiiltig fiir eine ganze Klasse stetiger Prozesse. Thr
charakteristisches Merkmal besteht darin, dal die Steuerungen u;(¢), j = 1, ..., r, mit
den Phasenkoordinaten x(¢), i = 1, ..., n, durch ein System gewohnlicher Differential-
gleichungen erster Ordnung der Art ‘

dxi(1)
dt

= fi(xy(1)s ooes x,(1), y(2), ooy u(2)), P=1, ., m, (3.5)

oder kiirzer |
xX(1) = fix(1), u@)), i=1,...n

WO =0 ue) 3.6)

verkniipft sind. Es ist bekannt (vgl. Band 7.1), daB (3.6) bei gegebenen Funktionen
ui(t), j=1,2, ..., r, beziiglich x(7) 16sbar ist und zusammen mit den Anfangswerten
xi=1,2,..,n, die Phasenkoordinaten x(¢), i = 1,2, ..., n, eindeutig bestimmt,
wenn die Funktionen f; die entsprechenden Eigenschaften besitzen. Daher werden
wir (3.6) die Prozef- oder auch Bewegungsgleichung des Prozesses nennen.

Im weiteren betrachten wir solche Prozesse, deren Bewegungsgleichung die Form
(3.6) hat, wobei vorausgesetzt wird, daB die Funktionen f;, i = 1, 2, ..., n, auf R*x U
definiert und dort einschlieBlich ihrer partiellen Ableitungen erster Ordnung nach
X, k=1,2, ..., n, stetig sind. Die Funktionen f; ergeben sich aus der Spezifik des je-
weiligen Prozesses. Man erhilt sie im Ergebnis der mathematischen Modellierung
des realen Prozesses. Fiir das Beispiel 3.1 lauten diese Funktionen (vgl. (3.4))

S, u(1) = x,(0), [o(x(0), u(®)) = axy(t) + bu(?).

bzw.

3.1. Grundaufgabe der Optimierung

Das mathematische Modell der betrachteten Prozesse umfaBt bisher das Diffe-
rentialgleichungssystem (3.6). Es wurde schon bemerkt, daB dieses System fiir ver-
schiedene Steuervektoren u(z) im allgemeinen unterschiedliche Phasenvektoren x(r)
als Losungen besitzt und damit unterschiedliche Trajektorien des Prozesses liefert
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(vgl. Bild 2.1). Die Vielzahl der Trajektorien erlaubt die Frage nach einer optimalen
Steuerung und der zugehdrigen optimalen Trajektorie. Dabei muf3 jetzt néher erldu-
tert werden, was als Optimalitdtskriterium gewahlt wird. In der linearen Optimierung
wird das Optimalitatskriterium durch eine lineare Zielfunktion dargestellt. Fiir
stetige Prozesse nimmt das Optimalitdtskriterium eine allgemeinere Form an und
wird durch ein Funktional J ausgedriickt, dessen Definitionsbereich die Steuer- und
Phasenvektoren des Prozesses sind. Der Wertebereich eines Funktionals ist bekannt-
lich eine Teilmenge der reellen Zahlen, so daB man nach dem kleinsten oder groBten
Wert des Funktionals fragen kann. In der Theorie der optimalen Prozesse ist es iiblich,
die Aufgaben als Minimumprobleme zu formulieren (vgl. [6], [11], [13], [14], [19]).
Die Ursache hierfiir ist in den urspriinglichen physikalischen und technischen Pro-
blemen zu sehen, die zur Theorie optimaler Prozesse fithrten. Das Wesen dieser Pro-
bleme bestand darin, einen Proze durch Energiezufuhr so zu steuern, daB er einen
im voraus festgelegten Verlauf nimmt oder diesem Verlauf moglichst nahe kommt
und dabei der Energieverbrauch minimal ist.

Im weiteren werden wir uns auf die Betrachtung solcher Prozesse beschrinken, fiir
die das Funktional des Optimalitatskriteriums die Form eines bestimmten Integrals

J@) = [ £(x(0), u(0) dt G.7)

(Aufgabe von Lagrange) annimmt, wobei f, wiederum eine bekannte Funktion ist,
die sich aus der Spezifik des jeweiligen Prozesses ergibt, und von der vorausgesetzt
wird, daB sie die gleichen Stetigkeits- und Differenzierbarkeitseigenschaften wie die
Funktionen f; der Bewegungsgleichung (3.6) besitzt.

Beispiel 3.2: Wir betrachten erneut den in Beispiel 3.1 eingefiihrten Proze der geradlinigen Bewe-
gung eines Korpers. Hier ist es sinnvoll, die Frage zu stellen, wie die Bewegung aus einem Zustand
Xp = (x,% x,9) in einen anderen Zustand x, = (x,', x,') zu vollziehen ist, daB dabei der Treibstoff-
verbrauch moglichst gering wird. In grober Nédherung kann man annéhmen, daB der Treibstoffver-
brauch im Intervall (7, r + Ar) proportional zu der GroBe u2(t)At ist. Dann ergibt sich als Ma8 fiir
den Treibstoffverbrauch

t
J(u) =fz‘142(r)dr,

ty

wobei ¢ ein gewisser Proportionalititsfaktor ist und #; die Zeitpunkte sind, in denen der Korper die
Zustande x;, i = 0, 1, durchlduft. Somit hangt in diesem Beispiel die Funktion f; aus (3.7) gar nicht
vom Phasenvektor x(7) ab und hat die konkrete Form

Sox(@),u(t)) = cu*(t).

Bevor nun die Grundaufgabe formuliert wird, mu3 noch der fiir die Theorie opti-
maler Prozesse fundamentale Begriff der zuldssigen Steuerung erkldrt werden.

Definition 3.1: Es sei ein Prozef$ mit fixiertem Steuerbereich U < R" gegeben. Dann
wird u(t) = (uy(t), uy(t), ..., u(t)) ein zulissiger Steuervektor (beziiglich U) genannt,
wenn ein Intervall [t,, t,] derart existiert, daf} gilt:

1.u(?) € U fiir alle t € [t,, t,],
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2. alle Komponenten uy(t),j = 1,2, ..., r, und damit w(t) selbst, sind stiickweise stetige
Funktionen in [t,, t,], wobei sie in den Sprungstellen v < (ty,t,) linksseitig stetig
sein miissen

lim uy(t) = uy(vr), j=1,2,..,r (3.8)
1570

In manchen Publikationen wird der Begriff des zulédssigen Steuervektors noch all-
gemeiner gefaB3t (vgl. [20]). Aber schon mit der von uns angegebenen Definition des
zuldssigen Steuervektors sind einige’ Probleme verbunden, die einer Erlduterung
bediirfen.

Erinnern wir uns daran, daf3 die Steuerungen u;(r) als solche Parameter eines Prozesses eingefiihrt
worden sind, durch die man auf ihn Einflu nehmen kann, so besagt die 2. Forderung der obigen
Definition, daB die Steuerungen Sprungstellen haben konnen. Hier ergeben sich natiirlich sofort
zweierlei Einwinde. Einerseits kann man fragen, ob denn nicht stetige Steuerungen die Realitit besser
widerspiegeln, und andererseits ergibt sich die Frage, wie die Spriinge der Steuerparameter prak-
tisch realisiert werden konnen.

Der erste Einwand kann durch Hinweis auf entsprechende Ergebnisse entkriftet werden. Es zeigt
sich, daB fiir eine umfangreiche Menge von Prozessen die optimalen Losungen gerade Steuerungen
mit Sprungstellen sind. Hierzu gehoren die sogenannten schnelligkeitsoptimalen Prozesse (siehe
unten). Ein einfacher Vertreter hiervon ergibt sich als Spezialfall des Prozesses aus Beispiel 3.1. Setzt
man dort voraus, dal p = 0 ist und der Steuerparameter der Bedingung |u(7)| = 1 geniigt, so hat
die Aufgabe, den K&rper aus einem Zustand x, = (x,°,x,°) in einen anderen Zustand x; = (x;!,x,")
in der kiirzesten Zeit zu iiberfiihren, eine optimale Losung. Dabei erweist sich die optimale Steuerung
als eine stiickweise konstante Funktion, die nur die Werte + I annimmt und eine Sprungstelle besitzt.

Der zweite Einwand ist schon schwerwiegender und hat Einflul auf die Modellierung. Steuerungen
mit Sprungstellen bedeuten fiir die Realitit nidmlich, daB die entsprechenden Steuerparameter
tragheitslos sind. Die Parameter eines realen Prozesses besitzen aber im allgemeinen eine gewisse
Trégheit. Deshalb kommt es darauf an, die Steuerparameter so zu wihlen, daB sie zwei Bedingungen
erfiillen: Der ProzeB muB3 durch sie gesteuert werden konnen, und ihre Trigheit muB so gering sein,
daB sie im Modell vernachléssigt werden kann. Die Erfahrungen lehren, daB das immer moglich ist
(vgl. [6]). Betrachtet man z. B. den Winkel «(¢), den das Ruder eines Schiffes mit der Lidngsachse des
Schiffes bildet, so kann das Schiff zwar mit dieser GroBe gesteuert werden, als Steuerparameter ist
«(t) jedoch ungeeignet. Die Trigheit der Anderung des Winkels x(¢) ist nimlich relativ groB, weil das
Ruder den Wasserwiderstand iiberwinden muB. Dagegen ist die Trigheit der Anderung der Winkel-
geschwindigkeit a(¢) schon geringer und die von x(7) kann praktisch vernachlissigt werden. Es wiirde
sich also empfehlen, nicht «(7), sondern &(¢) als Steuerung zu wihlen.

Zu dem Intervall [#,, #;] muB erlduternd bemerkt werden, dafl bei gegebenem
Steuerbereich U zu zwei verschiedenen zuldssigen Steuervektoren u(z) und é(¢) im all-
gemeinen auch unterschiedliche Zeitintervalle [t,, ¢;] bzw. [#,,7,] gehdren werden. So
sind z. B. im Fall der geradlinigen Bewegung des Korpers (vgl. Beispiele 3.1 und 3.2)
fir U = {u: —1 £ u £ 1} die Funktionen u(¢) = cos t, t € [0, ,], mit beliebig fixier-
tem #,, und u(t) = 4t — 3, ¢t € [4, 8], zuldssige Steuerungen, deren zugehdrige Zeit-
intervalle [0, 7,] bzw. [4, 8] unterschiedlich sind. Somit hat das Integral in (3.7) im all-
gemeinen fiir verschiedene Steuervektoren u(7) auch unterschiedliche Integrations-
grenzen.

SchlieBlich fiihrt die 2. Forderung aus der Definition 3.1 noch zu einer mathemati-
schen Problematik. Wird ndmlich in die rechte Seite der Bewegungsgleichung (3.6)
eines Prozesses ein zuldssiger Steuervektor u(z) mit einer Sprungstelle 7 € (¢, ¢,) ein-
gesetzt, so sind i. a. auch die Funktionen ¢,(f) = fi(x(¢), u(¢)) nur noch stiickweise
stetig. Damit sind aber die Bedingungen des Existenz- und Eindeutigkeitssatzes (vgl.
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Bd. 7/1) nur noch in den Teilintervallen [¢4, 7] und [z, #,], jedoch nicht mehr in [t,, #,]
erfiillt, und fiir (3.6) kann in [¢,, ¢,] die Existenz einer stetig differenzierbaren Lésung
x(t) nicht mehr garantiert werden. Diese Schwierigkeit wird behoben, indem man
(3.6) zunéchst fiir das Intervall [z, 7] 16st und den dabei erhaltenen Vektor x(z) als
Anfangszustand fiir die Losung von (3.6) in [z, #,] benutzt. Analog wird bei mehreren
Sprungstellen verfahren. Damit ist gesichert, daB3 (3.6) bei gegebenen Anfangswerten
x%i=1,2, ..., n, fiir jeden zuldssigen Steuervektor u(¢) eindeutig IGsbar ist.

Definition 3.2: Es sei x(t) die Losung von (3.6), die man bei gegebenen Anfangswerten
x;% i =1,2, ..., n, und fixiertem zulissigem Steuervektor u(t) mit t € [t,, t,] erhalten
hat. Dann werden wir x(t) die dem zuliissigen Steuervektor u(t) entsprechende Trajektorie
des Prozesses nennen und sagen, daf8 u(t) den Phasenpunkt x, = (x,°, x,°, ..., x,°)
in den Phasenpunkt x, = (x,*, x,*, ..., x,') mit x;* = x,(t,) iiberfiihrt.

Existieren nun fiir zwei fixierte Phasenpunkte x, und x, mehrere Steuerungen, die
X, in X, Uberfiihren, dann ergibt sich sofort die Frage nach einer ,,besten* oder ,,opti-
malen* Steuerung. Mathematisch wird diese Frage in Form der folgenden Grund-
aufgabe zur Bestirnmung optimaler Prozesse formuliert.

Definition 3.3: Gegeben sei ein Prozef3 mit der Bewegungsgleichung (3.6), dem Steuer-
bereich U< R" und mit einer Funktion fo(X, ) die — genau wie die Funktionen f; in
(3.6) — fiir allex = (xy, X,, ..., X,) des Phasenraumes R" sowie fiir alleu € U definiert
und einschlieflich ihrer partiellen Ableitungen erster Ordnung nach x;,i =1, 2, ..., n,
stetig ist. Dann ist fiir zwei vorgegebene Phasenpunkte Xo, X; € R" unter allen zuliis-
sigen Steuervektoren u(t) mit t € [to, t,], die X, in X, iiberfiihren, derjenige zu bestim-
men, fiir den das Funktional

Iy
J) = [ fo(x(2), u(r)) dt ‘ 3.7
fo
den kleinsten Wert annimmt. Hierbei ist X(t) die Trajektorie, die dem Steuervektor
u(?) entspricht und den Bedingungen x(t,) = X, sowie X(t,) = X, geniigt.

Definition 3.4: Jede Losung u(t) der Grundaufgabe wird optimaler Steuervektor von x,
nach X, genannt; die ihm entsprechende Trajektorie X(t) und der aus beiden gebildete
Prozefs heiffen ebenfalls optimal.

Somit besteht die Grundaufgabe optimaler Prozesse in der Bestimmung optimaler
Steuervektoren und der ihnen entsprechenden optimalen Trajektorien. Es sei noch
besonders bemerkt, daB in der Grundaufgabe #, und #; nicht gegeben sind und sich
erst mit der Bestimmung der optimalen Steuerung ergeben.

In Abhingigkeit von der Art des Steuerbereiches U sowie den Eigenschaften der
Funktionen f;, i = 0,1, ..., n, besitzt die Grundaufgabe unterschiedlichen mathema-
tischen Schwierigkeitsgrad. Ist z. B. U eine offene Teilmenge') von R" oder U = R",
so kann gezeigt werden, daB die Grundaufgabe in diesem Falle dquivalent zu Auf-
gaben der Variationsrechnung ist (vgl. [20]). Damit steht fiir diese Teilklasse von
Grundaufgaben optimaler Prozesse das umfangreiche Arsenal bekannter Aussagen

1) Beispiele hierfiir wiren (vgl. Bd. 1): (— o0, 0) Teilmenge des R'; (—1, +1) Teilmenge des R';
{(x1, x3) € R? |x{% + x,2 < 4} Teilmenge des R? u. .
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und numerischer Verfahren der Variationsrechnung zur Verfiigung (vgl. [22], [16]).
Ist der Steuerbereich U dagegen eine abgeschlossene Teilmenge von R, so versagt die
Variationsrechnung, und die Grundaufgabe ist mit prinzipiell neuen Schwierigkeiten
verbunden. Aber auch innerhalb dieser Klasse von Grundaufgaben gibt es wiederum
solche, die sich. durch relative Einfachheit auszeichnen. Dazu gehoren die sogenann-
ten schnelligkeitsoptimalen Prozesse, die man als Spezialfall der Grundaufgabe bei
Jo(x,w) =1
erhalt. Fir sie lautet das Funktional (3.7) einfach J(u) = 7, — 7y, so daBl das Wesen
dieser Prozesse darin besteht, den Steuervektor u(z) zu bestimmen, der einen Phasen-
punkt X, in kiirzester Zeit in einen anderen gegebenen Punkt x, iiberfiihrt. Sind dar-

iiber hinaus die rechten Seiten der Bewegungsgleichung linear in allen Argumenten
d.h., gilt auch noch

n r

N , _— ‘. o ik e | = el

fix,w) = Y aix; + 3 b, i=1,2,..,n,
=1 =1

so ergibt sich bei gewissen zusitzlichen Bedingungen an U die Teilklasse der soge-
nannten linearen schnelligkeitsoptimalen Prozesse, fiir die die umfassendsten Aus-
sagen bekannt sind (vgl. [6]).

Optimale Steuervektoren und die ihnen entsprechenden optimalen Trajektorien
besitzen einige allgemeine Eigenschaften, von denen wir hier die beiden folgenden
nennen:

1. Die Eigenschaft eines zuldssigen Steuervektors, optimal zu sein, ist invariant gegen-
iiber Parallelverschiebungen entlang der t-Achse. Mit anderen Worten: Ist u(z) fiir
t € [ty, t;] optimaler Steuervektor, dann ist es auch der Steuervektor u(7) = a(z + h)
fiir ¢ € [to, £;] mit 7; = t; — h. Das beruht darauf, daBl keine der Funktionen f;,
i=0,1,...,n, explizit von ¢ abhéngt, und gestattet es, den Anfangspunkt #, des Zeit-
intervalls fiir alle zuldssigen Steuerungen einheitlich zu wéhlen.

2. Jeder Abschnitt einer optimalen Trajektorie ist selbst wieder optimale Trajektorie.
Ist also u*(¢) mit 7 € [t,, t,] optimaler Steuervektor, der x, in x, iberfithrt, und x*(z)
die ihm entsprechende optimale Trajektorie, so gilt fiir zwei beliebig fixierte Punkte
x*(7y) und x*(7y), 1y = 79 = 7, = t,, der optimalen Trajektorie folgendes: u*(7) ist
fiir ¢ € [y, 7;] optimaler Steuervektor, der x*(zy) in x*(z,) uberfithrt, und x*(7),
t € [Ty, 7,], ist die ihm entsprechende optimale Trajektorie. Diese Eigenschaft ist ein
gewisses Analogon zum Bellmanschen Optimalprinzip (vgl. Abschn. 4.3.).

3.2. Pontrjaginsches Maximumprinzip

Es wurde schon erwéhnt, daB die Methoden der Variationsrechnung fiir Grund-
aufgaben mit abgeschlossenen Mengen als Steuerbereich nicht angewendet werden
konnen. Daher muB fiir sie ein neuer Losungsweg entwickelt werden. Die Basis hier-
fur ist das Pontrjaginsche Maximumprinzip*) (vgl. [20] und [5]). Seine Rolle und Be-

1) Hier ist die Bezeichnung ,,Prinzip* historisch (vgl. [5]) und im Sinn eines Ausgangspunktes
zu sehen. Keinesfalls darf angenommen werden, daB mit ihm nur ein Grundsatz des Handels for-
muliert wird, der nicht bewiesen ist. Im Gegenteil, das Maximumprinzip ist streng bewiesen
(vgl. [20]).
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deutung fiir die Theorie optimaler Prozesse kann verglichen werden mit den notwen-
digen Bedingungen fiir das Extremum von differenzierbaren Funktionen. Letztere
liefern bekanntlich zwar die Extrema nicht direkt, gestatten jedoch, einerseits zu
iiberpriifen, ob die Funktion in einem Punkt ein Extremum besitzen kann und ande-
rerseits die extremwertverddchtigen Punkte zu ermitteln. Analog hierzu besitzt auch
das Pontrjaginsche Maximumprinzip eine zweifache Bedeutung. Erstens kann mit
seiner Hilfe gepriift werden, ob eine fixierte zuldssige Steuerung sowie die ihr ent-
sprechende Trajektorie optimal sein kann. Zweitens stellt es einen Ausgangspunkt
fiir die Ermittlung der optimalitdtsverdachtigen Steuerungen dar.

Zur Formulierung des Maximumprinzips bendtigen wir noch einige Begriffe und
Symbole, die zunédchst eingefiihrt werden.

Durch die Differentialgleichung

%) = fo(x(2), u()) (3.9)

wird eine neue Phasenkoordinate x,() eingefithrt. Neben der Bewegungsgleichung
des Prozesses in der Form (3.6) werden wir das um die Gleichung (3.9) erweiterte
System

xdt) = fi(x(t),u(?)), i=0,1,..,n, (3.10)

betrachten. Dabei gilt fiir jede fixierte zuldssige Steuerung u(t), ¢ € [#,, #,], und einer
ihr entsprechenden Trajektorie x(¢) wegen (3.9) und (3.7) immer

Xo(to) = 0, xo(t;) = J(u). (3.11)

Weiterhin bendtigen wir Hilfsvariablen p(), i = 0, 1, ..., n, die durch das Diffe-
rentialgleichungssystem

pit) = — 2 %‘g’f’—!’—)— pi(t), i=0,1,..,n, (3.12)
k=0 X

i

definiert werden. Das System (3.12) wird als das zum System (3.6) adjungierte System
bezeichnet. Man iiberzeugt sich leicht davon, daB (3.12) ein lineares Differential-
gleichungssystem in p (1) ist, dessen Koeffizienten fiir jeden fixierten zuldssigen Steuer-
vektor u(?), 7 € [t,, t,], und fiir die ihm entsprechende Trajektorie x(z) stiickweise
stetige Funktionen der Zeit ¢ sind; daher besitzt (3.12) fiir beliebige Anfangswerte
pity) =po i=0,1, ..., n, eine eindeutige Losung

P(1) = (po(t), pr(1), ... Pu(1)), (3.13)

die fiir alle 7 € [t,, #,] definiert und stetig ist. Natiirlich hangt P(¢) von dem Steuer-
vektor u(?) und der Trajektorie x(¢) ab. Jeden auf diese Weise ermittelten Vektor P(t)
werden wir Losung von (3.12) nennen, die dem zulédssigen Steuervektor u(z) und
einer seiner Trajektorien x(¢) entspricht.

SchlieBlich fithren wir durch die Definitionsgleichung

K@, x 0= 3 pfi(xw) » (3.14)
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noch die sogenannte Hamiltonfunktion ein. Mit ihr lassen sich die Systeme (3.10)
und (3.12) zu dem folgenden Hamiltonsystem vereinigen:

. 0H i

x‘(t)=_€)p—;’ ,t=0,1,...,n, (3.15)
. A

() = —?DT,’ i=0,1,..n (3.16)

Dariiber hinaus erweist sich die Hamiltonfunktion fiir die Theorie optimaler Pro-
zesse und insbesondere fiir die Formulierung der notwendigen Bedingungen in fol-
gendem Sinne von fundamentaler Bedeutung. Setzt man fiir P und x in (3.14) fixierte
Vektoren P und X ein, so ergibt sich eine Funktion, die nur noch von u abhédngt. Fiir
sie kann man die Frage nach dem Supremum iiber u € U stellen. Dieses Supremum
wird mit .#(P, X) bezeichnet:

M(P, X) = sup #(P, X, u). (3.17)
uelU

Wird das Supremum fiir ein gewisses u € U angenommen, so gibt .#(P, X) einfach
das Maximum von 5# bei fixierten P und x an. Das ist tibrigens auf Grund der Kon-
struktion von & und der Stetigkeitseigenschaften von f; immer dann der Fall, wenn
U eine abgeschlossene Menge ist. Deshalb wird das folgende Kriterium tiber die not-
wendigen Bedingungen auch Pontrjaginsches Maximumprinzip genannt (vgl. [20]).

Satz 3.1 (notwendige Optimalititsbedingung): Dafiir, daf ein zulissiger Steuervektor
u(?), t € [to, t], der X, in X, tiberfiihrt, und die ihm entsprechende Trajektorie x(t) opti-
mal (im Sinne der Definition 3.4) sind, ist notwendig, daf} eine ihnen entsprechende ste-
tige Losung P(t) = (po(t), p1(1), ..., pu(t)) von (3.12) mit folgenden Eigenschaften exi-
stiert:

1. Die Losung P(t) besitzt wenigstens eine nicht identisch verschwindende Komponente,
d. h.P(t) £ 0 firt€[t,, t,];

2. Fiir beliebig fixiertes t € [t,, t,] nimmt H(P(t), x(t), w) als Funktion von w € U in
u = u(t) ihr Maximum an

H(P(1), X(1), u(r)) = HAP@), x(1)); (3.18)
3. Im Endzeitpunkt t, gelten die Beziehungen
po(t;) =0 und  A(P(1,), x(t,)) = 0. (3.19)

Weiterhin gilt: erfillen P(t), xo(t), x(¢) und u(t) das Hamiltonsystem (3.15), (3.16) so-
wie die obige-zweite Bedingung, dann sind po(t) und M (P(t), x(1)) als Funktionen der
Zeit konstant, so daf es geniigt, die Bedingungen (3.19) fiir ein beliebiges t € [t,, t,]
nachzupriifen.

Dieses Prinzip hat eine umfangreiche Verbreitung gefunden. Von den vielen Ver-
offentlichungen, die seiner Anwendung und theoretischen Weiterfiihrung gewidmet
sind, seien hier nur einige genannt. In [12] und vor allem in [2] sind zahlreiche prakti-
sche Beispiele aus der Technik und Physik behandelt und bis zur numerischen Lésung
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entwickelt worden. Eine Anwendung auf chemische Prozesse zeigt [13]. Ansétze zu
moglichen Anwendungen des Maximumprinzips in der Okonomie findet man in [1], [3],
[21] und [23]. In [17] ist eine umfassende Zusammenfassung numerischer Verfahren
gegeben.

Um dem Leser eine Vorstellung davon zu vermitteln, wie man das Maximumprin-
zip anwenden kann, betrachten wir das folgende Beispiel.

Beispiel 3.3: Es wird die Grundaufgabe untersucht, bei der U = R?, x, = (2, 1), x, = (6, 4) ist, die
Bewegungsgleichung die Gestalt

Xp=u, i=1,2, (3.20)

hat und das Funktional

tl
J(u)= f Ve + ug? dt

lﬂ

gegeben ist. Mit anderen Worten, es ist der zulissige Steuervektor u(t) = (u,(2), ux(t)), t € [ty, 1] zu
bestimmen, fiir den das Funktional J(x) sein Minimum annimmt und auBerdem die zugehorige
Losung x(r) = (x,(f), x5(7)) von (3.20) den Phasenpunkt X, in x, uiberfiihrt, d.h., es muB x(z,) = x;,
i =0, 1, gelten. Dabei sind #, und #, ebenfalls nicht gegebene, sondern gesuchte GroBen.

Zur Losung dieser Aufgabe wenden wir das Maximumprinzip an und bilden zunédchst die Hamilton-
funktion

J P, x, w) = pyVu® + ug* + pruy + potty.

Somit ergibt sich fiir die Definition der Hilfsfunktionen p,(#) das System (vgl. (3.16)):

Hieraus folgt sofort, daB die Hilfsfunktionen konstant sind:
pit)=GC;

wobei die C;, i = 0, 1, 2, zundchst noch frei wiahlbare Integrationskonstanten sind. Die Hamilton-
funktion nimmt also die Form

J P, x,u) = Co V”xz + uy® + Cruy + Couy

an. Nun suchen wir (vgl. mit der zweiten Bedingung in Satz 3.1) das Maximum dieser Funktion be-
zuglich u.
Aus den fiir das Maximum von J notwendigen Bedingungen
O _ Gy, i=1,2,
Oui Yu + u?

folgt sofort, daBB C, == 0 sein muB, denn sonst wiirde auch C; = C, = 0 folgen, und das wider-
spricht dem Maximumprinzip (siehe erste Bedingung). Da auBerdem nach dem Maximumprinzip
Ppolty) = 0 gelten soll, erfiillen wir sicher alle Forderungen, wenn wir Cy = —1 setzen. Somit ergibt
sich zunichst

I P, x,u) = — Vuy® + ug + Cyty + Colty (3.21)
mit den notwendigen Maximumbedingungen

u* = CiVu,* + u,*, i=1,2, (3.22)

2 BieB, Prozesse
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aus denen sich die Relation

uy* _ [

w* G (3.23)
ergibt. Nehmen wir nun einmal an, wir hitten «;* bereits explizit ermittelt und setzen diese Werte in
(3.21) ein. Dann ergibt sich unter Beachtung von (3.19) und (3.22) die Relation

0=JHP®,x,u*) =V T (—1+ C2+ C) oder C2+CP=1. (324

Eine weitere Bedingung fiir die C; ergibt sich, wenn wir die #;* in die Bewegungsgleichung (3.20) ein-
setzen und dabei (3.23) sowie die beiden Phasenpunkte x;, i = 0, 1, benutzen. Wir erhalten nimlich

t t
x(1) =2 +fu1* dr  sowie x,(f)=1- %ful* drz, (3.25)
t Y
woraus speziell fur 7 = #, nach entsprechender Division folgt

C,  x)—1 4—1 3

T, T xm—2"6—2"_ 4" (26)
Man beachte, daB bei diesen Rechnungen u;* sowie #,, #, noch nicht bekannt waren. Aus (3.24) und
(3.26) folgt nun als eine Moglichkeit

G=4% C=§. . 3.27)
Somit nimmt die Hamilton-Funktion die Form

%(P,x,u)=*‘V”12+“z2+%"1+%”2

an. Man kann nun durch einige elementare Abschitzungen zeigen, daB diese Funktion immer kleiner
oder gleich null bleibt. Daher liefern die Losungen u* = (u,*, u,*) von (3.22) nicht nur die fur
relative Extrema der Funktion J€ verdichtigen Punkte, sondern (beachte hierzu (3.24)) auch deren
absolutes Maximum. Hiernach kann bereits festgestellt werden: wenn eine zuldssige Steuerung
u(?) = (uy(¢), uy(¢)) nicht der Bedingung (vgl. (3.23))

u(t) 3
wit) 4

geniigt, dann kann sie nicht optimal sein. Zur endgiiltigen Bestimmung des optimalen Steuervektors
u*(¢) einschlieBlich seines Definitionsbereiches [#,, #,] bemerken wir zunéchst, dal im gegebenen Falle
u*(¢) nicht eindeutig bestimmt ist. Wahlt man z.B. fiir 4,*(¢) eine beliebige positive stetige Funktion
und setzt dann w,*(¢) = Iul*(t), so erfiillen diese beiden Steuerparameter die Bedingungen (3.22)
und (3.23), wobei die C; geméB (3.27) gewihlt sind, und erteilen daher der Funktion J ihren maxi-
malen Wert 0. #, kann man wegen der oben erwéhnten ersten Eigenschaft der Steuervektoren beliebig
wihlen (z.B. 7, = 0) und #, muB dann der Relation

tl
4= [u*(t)dt
0

geniigen. Der einfachste Fall ergibt sich, wenn man u,*(#) = u,* = const wahlt. Dann ist ¢, = P

Es sei schlieBlich noch erwihnt, daBl die Parameterdarstellung (3.25) der optimalen Trajektorie mit
x = x,(t) und y = x,(¢) sowie unter Verwendung der Gleichung (3.26) umgeformt werden kann auf
y=$x—}. Dieses Ergebnis entspricht voll dem geometrischen Inhalt unserer Aufgabe. Wir
haben nimlich unter allen Kurven mit beliebigem Anstieg, die die beiden Punkte x, und x verbin-
den, diejenige mit der geringsten Léinge gesucht.
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Es sei im Rahmen dieses Abschnittes noch auf zwei Abwandlungen der Grundauf-
gabe optimaler Prozesse verwiesen. Die eine ergibt sich, wenn man statt zwei fester
Punkte x, und x, nur einen, etwa X, vorgibt und gleichzeitig jedoch den Beginn ¢,
und das Ende ¢, des Prozesses als gegeben annimmt. Man spricht dann von einem
Prozef3 mit fixierter Zeit und freiem rechtem Ende (siehe 3.3.4.). Fiir derartige Prozesse
lautet das Maximumprinzip genau wie Satz 3.1, nur mit dem Unterschied, daB der
erste Teil der Bedingung (3.19) durch

pot) =—1, t€[ty, 1],
ersetzt werden' kann und die Bedingungen
p(t)=0, i=12..,n,

hinzugefiigt werden miissen.
Die andere Abwandlung der Grundaufgabe wurde bereits erwdhnt. Sie ist ein
Spezialfall, der sich fiir

Sox(@), u(@)) =1

ergibt, und wird Aufgabe der Zeitoptimalitit genannt. Das Wesen dieser Aufgabe
wurde oben (s. S. 14) schon erldutert. Fiir sie gilt natiirlich auch ein Maximumprinzip,
das aus dem allgemeinen Satz 3.1 abgeleitet werden kann. Wegen f;(x, u) = 1 erhilt
man namlich

I = py +EZZ"1pff:(x, u).
Mit den neuen Bezeichnungen

P (piopssesp) und  HE.X W= 3 pifix )
ergeben sich dann

H=py+H bzw. H=3 —p, ' (3.28)
und auflerdem das folgende reduzierte Hamiltonsystem:

dx; OH

S, il (3.29)
dp; 0H .
F TR T i=1,2,..,n (3.30)

Die dabei vorgenommene Reduzierung des Vektors P um die Komponente p, und
die damit verbundene Reduzierung der Gleichungssysteme (3.15) und (3.16) um die
Gleichung fiir i = 0 erweist sich als vorteilhaft, weil man das notwendige Kriterium
der Zeitoptimalitdt ohne p, formulieren kann. Dazu wird wie fiir J auch fiir H bei
fixierten p und X eine GroBe M (P, X) eingefiihrt:

M (p, X) = sup H(p, X, u).
uclU

2%
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Wegen (3.28) gilt dabei

M@, X)=MP,X)—p, mit P=(p,,p),
so daB sich die beiden Relationen (3.19) durch

M (1), x(t,)) = —po(ty) = 0
zusammenfassen lassen. Somit ergibt sich
Satz3.2 ( Notwendiges Kriterium fiir Zeitoptimalitdt): Dafiir, daf3 ein zuldssiger Steuer-
vektor u(t), t € [ty, t,], der X, in X, diberfiihrt, und die ihm entsprechende Trajektorie
x(t) einen schnelligkeitsoptimalen Prozef3 bilden, ist notwendig, daf eine ihnen ent-

sprechende stetige Losung p(t) = (py(t), pa(?), ..., pu(t)) von (3.30) mit folgenden Eigen-
schaften existiert:

1. Die Losung p(t) besitzt wenigstens eine nicht identisch verschwindende Komponente,
d.h. p(t) = o fiir 1 € [ty, 1,];

2. fiir beliebig fixiertes t € [ty, t;] nimmt H(p(t), x(t), w) als Funktion von u € U in
u = u(?) ihr Maximum an

H(p(®), x(), u(t)) = M (), x(1));
3. im Endzeitpunkt t, besteht die Relation
M(p(ty), x(1,)) = 0.

Weiterhin gilt: Erfiillen p(t), x(t) und u(t) das Hamiltonsystem (3.29), (3.30) sowie die
obige zweite Bedingung, dann ist M (p(t), x(t)) als Funktion von t konstant, so daf} es
geniigt, die dritte Bedingung fiir irgendein t € [t,, t,] zu tiberpriifen.

3.3. Andere Aufgabentypen

3.3.1. Probleme mit beweglichem Endpunkt

Bei der Formulierung der Grundaufgabe (Def. 3.3) in 3.1. wurde davon ausge-
gangen, daB ein gegebener Punkt X, in einen gegebenen Punkt x, des Phasenraumes
zu tberfithren ist. Gegeben seien nun im Phasenraum die Bedingungen

F(x)=0, k=1,..,m=n. (3.31)

Es werde vorausgesetzt, daBl alle Fj(x) zweimal differenzierbar nach allen x; sind und
die Jacobische Matrix

[ OF,

(, Ox,- )
den Maximalrang m besitzt. Man sagt dann auch, durch Fi(x) = 0 ist eine glatte
Mannigfaltigkeit S') im R" bestimmt. Wegen der Forderung, daB die Jacobische

1) Die Mannigfaltigkeit .S besteht aus der Punktmenge des R", die durch den Schnitt der Hyper-
flichen (3.31) bestimmt wird.
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Matrix Maximalrang besitzen soll, sind die Vektoren grad F) linear unabhéngig, sie
bilden eine Basis des Normalenraumes zu S, d.h., jeder Vektor

S A grad Fy
k=1

mit beliebigen Koeffizienten 4, (nicht alle gleichzeitig gleich null) ist orthogonal zu S.
Wir betrachten nun in Verallgemeinerung der Grundaufgabe die folgende Aufgabe:

Unter allen zulissigen Steuervektoren u(t) mit t € [t,, t,] ist derjenige (optimale) zu
bestimmen, der x(t,) = X, in X(t,) iiberfiihrt, wobei
Filx(t)]=0, k=1,...,m,

gilt (Uberfiihrung von x, in einen beliebigen Punkt von S) und fiir den das Funktional
t, .
J = [fo(x, w) dz (3.32)
ty

den kleinsten Wert annimmt. Dabei geniige X(t) dem System (3.6)
x = f(x, u).

Ist T der Tangentialraum an die Mannigfaltigkeit S im Punkte x(#,), dann sagt man
auch:

Der Vektor p(t) erfiillt die Transversalititsbedingung im rechten Endpunkt der Trajek-
torie x(t), wenn p(t,) zu T orthogonal ist, d.h. fiir jeden Vektor q* = (¢, ..., qy,), der in T
liegt, gilt

3 pi) a: = (0t ) = 0. ' (3.33)

Aquivalent dazu ist

p(t) = — f’ A grad Fy |y, (nicht alle 2 gleich null). (3.34)
K=t

Angenommen, wir hédtten unsere Aufgabe gelost, dann ergibt sich ein bestimmter
Endpunkt x(#;). Daraus folgt, daB die zur Grundaufgabe formulierten Bedingungen
des Maximumprinzips auch hier erfiillt sein miissen. Das Maximumprinzip wird bei
Problemen mit beweglichem Endpunkt lediglich erginzt durch die Transversalitits-
bedingung (3.34).

‘ \
Satz 3.3: Es seiu(t), t € [ty, t,], eine zuldssige Steuerung, die x(t)) = X, in x(t;) € S
iiberfiihrt, und x(t) die zugehdrige Trajektorie. Notwendig dafiir, daB x(t) und u(t) Losun-
gen des oben formulierten Optimierungsproblems sind, ist die Existenz eines nicht iden-
tisch verschwindenden stetigen Vektors P(t), so daf3 das Maximumprinzip (Satz 3.1) und
im rechten Endpunkt die Transversalititsbedingung erfiillt werden.

1) Wenn zwei Vektoren orthogonal sind, dann muB bekanntlich ihr Skalarprodukt gleich null sein.



22 3. Stetige Prozesse

Bemerkung: Entsprechend folgt eine Transversalititsbedingung fiir den Anfangs-
punkt im Fall, daB x(z,) nicht fest vorgeschrieben ist, sondern in einer gegebenen
Mannigfaltigkeit liegt (4ufgabe: Schreiben Sie die entsprechenden Bedingungen
auf!).

Betrachten wir noch den Fall, daBl lediglich einige Endwerte, etwa

x(t)=x1 i=1..,mIn,
xi(t)) beliebig, i = m+1,...,n,

gegeben sind.
Wir setzen dann

FX)=x—x'=0, k=1,..,m, (3.35)
und erhalten

aFk_{o fir i+ k,
ox; |1 fur i=k.

Damit ergibt sich die Transversalititsbedingung
_ |~/ (beliebig) fir i=m,

p'(tl)_{ 0 fir > m,

d.h., die Endwerte p,(t,) sind nicht gegeben fiir diejenigen Indizes, fiir welche die

x;(t;) gegeben sind. Fiir das Differentialgleichungssystem fiir die 2» Funktionen x(z)
und pi(t), also

(3.36)

x = f(x, u),

OH
ox’

sind somit insgesamt » Endwerte gegeben, ndmlich

xi(ty) fir i=m,
pity) fur i>m.

Beispiel 3.4: Gegeben sei das System
X = X, x,(0) = 4‘,
Xo=u, x(0) =0,
lu| < 1.

Gesucht ist eine solche optimale Steuerung, die den Punkt x° = x(0) in kiirzester Zeit #, in einen
Punkt der Geraden x; = x, uberfiihrt. Fiir den Endpunkt gilt offensichtlich die Bedingung

F(x(t) = x,(t) — x5(t) = 0.

Damit erhalten wir die Transversalititsbedingung
n(t) = —14,
poty) = 4.
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Aus H = x,p; + up, erhalten wir mit Satz 3.2 als notwendige Bedingung fiir die optimale Steuerung
u = sgn p, (falls p, == 0). Weiterist p, = 0, p, = —p, und damit unter Beriicksichtigung der Trans-
versalitatsbedingung

n)=—=%4 p)=k+Ai1—1)=2At—t+1).

Do(2) ist also eine lineare Funktion von #; es erfolgt ein Vorzeichenwechsel und damit hochstens eine
Umschaltung beziiglich der optimalen Steuerung. Die Umschaltzeit ist dann #, = #; —
Angenommen, wir wiirden vollstindig mit # = -1 steuern. Dann folgt

12 1
—7+7.

Xpg=1
und als Trajektorie die Parabel
Xt =2(x; — 1).
Fiir den Endpunkt und die Endzeit ergibt sich wegen x,(#,) = x,(t,)

_ 1
=2 t7

amr2 ]

Die zwei Werte entsprechen dabei den zwei Schnittpunkten der Parabel mit der Geraden x; = x,
(vgl: Bild 3.2).

d. h.

%2

Bild 3.2
Optimale Trajektorie fiir Beispiel 3.4

x0 X

Nur der kleinere Wert ist fiir uns von Interesse (warum?). Beziiglich der Hamiltonfunktion folgt

Hltmt, = —Axy(t) + 4"(’1) =—in+i=1
fir A= -1—~_—t‘ = l/— und damit sgn p, = +1'fiir 7 € [0, #,].
Wird nur mit ¥ = —1 gesteuert, folgt (fiihren Sie die Rechnung aus!)

9
w23
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] /9 5 ]/9 )

Wegen 1+ - >1-— V—7 und 1 — - < 0 liegen also ein schlechterer und ein unbrauch-
barer (warum?) Wert vor.

Zeigen Sie, daB man auch fiir die Steuerungen mit einer Umschaltung groBere Werte fiir #, erhalt!

3.3.2.  Probleme mit anderem Optimierungsziel

Bei vielen Aufgaben ist das Optimierungsziel nicht in der Form (3.32) (Aufgabe
von Lagrange) sondern als Funktion des Endpunkjes

Flx(t)]

gegeben (Aufgabe von Mayer). Dabei soll F[x(¢)] nach allen Argumenten zweimal
differenzierbar sein. In diesem Fall gilt

Satz 3.4: Ist das Optimierungsziel in der Form F[x(t,)] gegeben, dann ist notwendig fiir
Optimalitit einer Steuerung w(t) die Existenz eines stetigen, nichtidentisch verschwin-
denden adjungierten Vektors p(t) als Losung des Systems

R .
pi= —jgl'p, ;. i=1,..,n, (3.37)
mit den Transversalititsbedingungen
oF m  OF,
() =— — 3 = s 3.38
pdts) 0x; t=t, ké; ! 0x; |e=t, 3.38)
so daf} gilt
max H(x(1), p(1), w) = H(x(2), p(t), u(t), (3:39)
u
max H|.—, =0 (3.40)
mit
H:__le,-fi. (3.41)
Fiir die Anwendungen bedeutsam ist u.a. der Fall, da
Fx(t)] = _21 cixi(ty) (3.42)
zu minimieren ist. Hier ist
oF ¥
rr i, (3.43)

und damit folgt aus (3.38) die Endbedingung

_ m . OF|
pi(t) = —¢ _1,-2 Zk_é}?it:t). (3.44)

=1
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Aufgabe 3.1: Zeigen Sie, dal man auch die Aufgabe von Lagrange auf die Aufgabe von Mayer zu-
riickfithren kann!

Aufgabe 3.2: Hat das zu minimierende Funktional die Form

4y
J = FIx(t)] + [ fi(x, w) dr,
'0
spricht man auch von der Aufgabe von Bolza. Fiihren Sie diese Aufgabe auf die Aufgabe von
a) Lagrange, b) Mayer zuriick*

Beispiel 3.5: Gegeben sei die chemische Folgereakuon 1. Ordnung 4 — B — C mit den Folgepro-
dukten 4, B, C, den zugehdrigen Konzentrationen x,, x,, X3 (x; + X, + x; = 1) und den Geschwin-
digkeitskoeffizienten &y, k,. Das kinetische System (ProzeBgle1chungen) ist dann

dx

"# = —kixy,

dx.

Ei = kyxy — kox,

mit den Anfangsbedingungen
x,(0) =1, x,0)=0.

Die Geschwindigkeitskoeffizienten werden in der Form

k; = kico €Xp (— i=12,

E;
ﬁ) ’
angenommen, wobei 7'(¢) der Temperaturverlauf, E; die Aktivierungsenergien und R die Gaskonstante
sind. Gesucht ist ein solcher Temperaturverlauf 7'(t) mit 7; < T(t) =< T, (T;+Zindtemperatur der
Reaktion, T, obere Grenztemperatur), so daB maximale Ausbeute hinsichtlich B, d.h. max x,,
erreicht wird.

In diesem Fall liegt das Optimierungssziel in der Form (3.42) mit ¢; = 0, ¢, = 1 vor. Es folgt die
Hamiltonfunktion

H = —kx,py + (kixy — koXo)p, = kixa(py — p1) — koXops

und das adjungierte System

d
D= kap— ), Pt = —¢, =0,
d,
’% = kopo, po(ty) = —cy = —1.

Untersuchen wir zundchst H auf stationédre Stellen beziiglich 7. Es ist

0H , ,
3T ky'xy(py — p1) — ko' xaps,
wobei ‘
o dk E; E\ E ,
ki = g7 = kioo g e"”( RT) =gz ki

. 0H .
gilt. Aus BT = 0 erhalten wir

Ejkyx1(py — p1) — EpkaXopy = 0,
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d.h.
ﬁ _ Eyxyp,
ky — Exxy(p2— p1)
oder
exp E,—E _ kaooEaXops

RT,  kwoErxi(pa—p)°
Unter der Annahme, daf} die rechte Seite dieser Beziehung po'sitiv ist, ergibt sich schlieBlich

E,— E
koo EaXaDy

Rlno—r—r—F——
koo E1X1(py — 1)

Setzen wir
_ XoPsy
x1(pa — p1)°
E,—E,
k2oc£2 :
koo By

so folgt
T, =
RIn

0*H

Zu tiberprifen wire noch, da RV el

> 0 gilt (Aufgabe!).
=T,

Zur Bestimmung von 7 ist damit die Kenntnis von g erforderlich. Kinetisches und adjungiertes
System sind jedoch nicht geschlossen integrierbar, so daB zur weiteren Lsung ein numerisches Ver-
fahren eingesetzt werden muB. Falls 7; reell und 7y < T, < T, gilt, ist somit T,y = T;. Anderen-
falls ist mit 7} bzw. T, zu steuern, je nachdem, fiir welchen Wert sich das Minimum von H einstellt.

3.3.3. Nichtautonome Systeme
Bisher hatten wir Systeme (3.6) betrachtet, bei denen die rechten Seiten nicht expli-
zit von ¢ abhingen, man spricht dann auch von einem autonomen System. Systeme der
Form
x = f(x, u, t) (3.45)

nennt man auch nichtautonom. Dabei kann das Zielfunktional in der Form
L2}
J={f(x,u, 1) dt (3.46)
ED
gegeben sein.
Fiihren wir die zusétzliche Phasenkoordinate
Xpp =1
ein, dann ergibt sich als weitere Differentialgleichung
dxn+l

dt

\

=1, xml(fo) = Tly. (3.47)
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Im Raum der Variablen x;, X,, ..., X,;; liegt damit das autonome System

dx; .
G =S X)), =L,
dxnyy _ )
L, (3.48)
ll
T = [fo(%, 0, X,01) dt (3.49)

to

vor, auf das unmittelbar das Maximumprinzip angewandt werden kann. Die Hamil-
tonfunktion fiir das neue System lautet

H* = 3 pifi+ Prna (3.50)

i=0

und mit

H =‘_20‘ pifi

H* = + pusr- (3.51)
Entsprechend ergibt sich das adjungierte System

dp; n of; .
Sy Uy i=01,..
Q@ P ax e , 1, ..,m,

dpn+l — < a/; (352)

dr = TR
Die Bedingung des Maximumprinzips
max H* =0
kann deshalb ersetzt werden durch
max K = — ppy;. (3.53)
Sind beziiglich des Endpunktes die Bedingungen )
F.[x(t), 4,]=0, k=1,..,m=n, (3.54)

zu erfiillen, so kann man die Transversalitatsbedingungen (3.34) unmittelbar anwen-
den, wobei zu beachten ist, daB3 gilt

OF;

0x;

D1 :
p=|, |, eadF=| OF
Dn e

Pr+ o

' OF;
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Ist z.B. der Endpunkt x(#,) = x* fest vorgegeben, so ist lediglich x,,(#;) im neuen
Phasenraum beliebig. Entsprechend. (3.36) folgt somit

Pana(t) = 0.

Beispiel 3.6: Gegeben sei
Xy =2u+tu<1.
Gesucht ist eine zuldssige Steuerung, fiir die die zugehorige Trajektorie den Punkt

x,(0) = 1 in den Punkt x,(#;) = 0

uberfiihrt, wobei
tl
J= f (x, + 1) dt ‘
0

zum Minimum wird.
Mit x, = ¢ erhalten wir die Differentialgleichung

=1, x0)=0,
die Hamiltonfunktion
I+ = oy + %) + p12u+ x2) + ps
und das adjungierte System sowie die Transversalitidtsbedingungen
Po=0, pt)=-—1,
pr=-p=1,
Pe=—py—p1=1=—p;, puty)=0.

Das Maximum von J€* ergibt sich fiir u = sgn p, (falls p, == 0). Integration der entsprechenden
Differentialgleichung liefert

n=t+c
und somit

u=sgn(t -+ c).

Die Funktion p; = t + ¢, besitzt genau eine Nullstelle, d.h., es erfolgt ein Vorzeichenwechsel. Somit
kann es beziiglich der optimalen Steuerung hochstens eine Umschaltung geben. Dann muB jedoch
¢; < 0 sein. Folgende drei Fille sind damit zundchst moglich:

1. es wird nur mit # = 1 gesteuert,
2. es wird in [0, #,] mit # = —1 und in (f,, #;) mit « = -1 gesteuert, wobei 7, = —¢, gilt,

3. es wird nur mit = —1 gesteuert.

Fiir den 1. Fall ergibt sich s

t2
x1=7+2t+1.
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Wir tiberzeugen uns leicht, daB der Endpunkt x,(#,) = 0 fiir #; > 0 nicht erreicht werden kann. Be-
ginnen wir also mit # = —1. Dann folgt

12
x1=7—2!+1.

Nehmen wir an, es ist keine Umschaltung erforderlich. Aus x,(#;) = 0 ergibt sich
t=2+12.
Weiter ist
HH ==t E=D0+a)=—0QL1)—(£1DQLV2+e)=0
und damit

o =—1
also
n=t—1.

Fiir t < t, = 2 — J2ist p, < 0, also tatsiichlich
u=sgnp, = —1.

Der zugehorige Wert von J ist dann

¢,
J=f(x1+:)dt=§(7—4}/§).
0

3.34. Probleme mit fester Endzeit

Im Unterschied zu den bisher betrachteten Problemstellungen soll nun neben #,
auch ¢, fest vorgegeben sein. Gegeben seien also das System (3.45) mit dem Optimie-
rungsziel (3.46), 7, und #, sowie entsprechende Anfangs- und Endbedingungen. Setzt
man wieder x,;; = ¢, dann folgt die zusitzliche Differentialgleichung

X4y

@ I omit  Xun(t) =t, Xan(t) =1, (3.55)

d.h., der Endwert von x,., ist jetzt fest gegeben. Damit konnen wir in (3.46) #, als
variabel ansehen. Auswirkungen ergeben sich beziiglich der Transversalitatsbedin-
gungen.

Ist beispielsweise x(Z,) in x(#,) zu iiberfiihren, so sind im (n -+ 1)-dimensionalen neuen
Phasenraum alle Endpunkte gegeben, d.h., es ist keiner der Werte p(t,), i= 1, ..., n+1,
gegeben. Aus

F* |1, = It + pusa (1) =0 (3.56)
folgt somit
I |ty = —Pra(t).

Die Bedingung J¢|; = 0 des Maximumprinzips entfillt, alle anderen Aussagen bleiben
giiltig.
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Ist x(#,) in einen Punkt der Mannigfaltigkeit
Fi[x(t), ,]=0, k=1,..,m,

zu iiberfithren, ergeben sich die Transversalitét.sbedingungen

Pty = - 2 hg

m o OF,
Pra(t) == 3l = i (3.57)
k=1 t = ‘
Beispiel 3.7: Gegeben sei
X; = Xg, x1(0) = x,(0) = 1,

Xy = u, x,(1) = 0.

Gesucht ist eine Steuerung mit |u| < 6, so daB
1
J= f w2 dt
0

minimal wird. Man nennt Aufgaben mit solchem Funktional auch Probleme mit mlmmalem Energie-
verbrauch.

Wir erhalten mit p, = —1 entsprechend Bedingung (3.16) und Satz 3.1
I = Dol + pixy + pott = —u* + pyXy + pott
= - (”—"*) +P1"z+
und
p1=0, py=-—p;, p)=0
ohne Endbedingung fiir p,. Maximierung von J€ liefert (quadratische Funktion!)

(2o falls  |pyl < 12,

legnp2 falls  |[py| > 12.
Integration des adjungierten Systems ergibt unter Beachtung von p,(1) = 0
P1=2C, D= —Ct+ o= —c¢(t—1).
Unter Berticksichtigung des Verhaltens von py(t) erhalten wir damit folgende Moglichkeiten:
1. Falls ¢; > 12, dann ist

{ 6 fir 0=Z=t< 1,
b=

—dat—1 fir nL=<tr<1,
wobei

== gilt.

12
ty— 1
2. Falls —12 < ¢; < 12, dann ist

u=—%e(t—1.
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3. Falls ¢; < —12, dann ist

—6 fir 0=t=1,
"=
T lelae—1n e n=r=1,
wobei
oo 12
T, 1
gilt.

Betrachten wir zunéchst den 2. Fall. Durch Integration des Zustandssystems erhalten wir
1 t2
xzz——i-cl(T-—t) +1,
1 3 t?
X = _70‘<_6‘__)+t+ 1.

Aus x,(1) = 0 ergibt sich ¢, = —12, d.h., die erforderliche Bedingung st erfiillt. Das Zielfunktional
hat fir « = 6(t — 1) den Wert

1
J= fu2 dr =
0
Den 1. und 3, Fall behandeln wir gemeinsam, indem wir a = 6 bzw. —6 setzen. Dann folgt
{at+1 fir =1,

Xy =

1 t? 1,° "
——2—c1<7—t—%+r2>+at2+l fir = t,,

%12+r+1 fir ¢ty

Wegen x;(1)=0 und ¢ = — erhalten wir

'y —

a

RPN L IR Sy
12—'1("3 2l 3) ) LT A

und daraus durch Umformen

S YRS SR SR -
“(T T+3) a5 tat+2=0,

72t2~2——-0

12~1il/3+_

Fiira = 6folgt t, =1 4+ Vg; beide Werte liegen nicht im Intervall [0, 1]. Fir a = —6 folgt 7, = 2
bzw. 0, der 1. Wert liegt nicht im entsprechenden Intervall; 7, = 0 ist identisch mit dem 2. Fall.
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Aufgabe 3.3: Losen Sie das in Beispiel 3.7 gestellte Problem mit dem Optimierungsziel

1
J=[ud!
0
Aufgabe 3.4: Gegeben sei X; = 2u + 1, x,(0) = 1, |u| < 1. Gesucht ist eine solche zuldssige Steuerung,
fur die

1 1
a) [ de, <) [ G+ w2 dt,
0 0

1
b) [+ wadr, d) xi(1)
0

minimal wird.

Beispiel 3.8: In einem Reaktor (als ideales Stromungsrohr angesehen) soll Athylenoxid durch Uber-
leitung eines Athylen-Luft-Gemisches iiber einen Ag-Katalysator hergestellt werden. Dabei betrach-
ten wir nur die stationire Betriebsweise und vernachlissigen Volumendnderungen des Reaktions-
gemisches. Neben der erwiinschten Reaktion

C.H, + }0, - C,H,0
findet noch eine Totaloxydation

C.H, + 30, - 2CO, + 2H,0

statt. Die Steuerung des Prozesses soll iiber die Abfiihrung der Reaktionswirme durch einen Kiihl-
mantel, d.h., durch das Temperaturprofil des Reaktionsrohres erfolgen. Setzen wir eine einfache
Langmuir-Hinshelwood-Kinetik voraus, ergibt sich das ProzeBmodell')

dx1
= (ky + ko) = 1_*_(“1

dxz _ 1—x
dt ' T1Fax,
mit x;(0) = x,(0) = 0, 0 =< ¢t =< ¢, (z, fest gegeben). Dabei bedeuten
x,(2) Gesamtumsetzungsgrad des C,H, nach beiden Reaktionen,
x5(1) Umsetzungsgrad des C,H; zu C,H,0,
(1) Temperaturverteilung mit 7y, < T< T, (T, Zindtemperatur, T, obere Grenztemperatur),
k(T)  Geschwindigkeitskoeffizienten der einzelnen Reaktionen (i = 1, 2) mit

E \
K(T) = ki & (= &) Ex> Er,

T
R universelle Gaskonstante,
E; Aktivierungsenergien der Reaktionen,
t Verweilzeit,

a>0 ProzeBkonstante.

1) Vgl. Wolin, J. M.; G. M. Ostrowski, M. G. Slinko, Kinetika i Katalis (Kunerura n waramus),
1V/5, 1963, S. 760 bis 767.
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Gesucht ist eine solche zuldssige Steuerung T'(¢), fiir die sich maximale Ausbeute beziglich C,H,O
ergibt, also ist x,(#;) zu maximieren (Spezialfall der Aufgabe von Mayer).
Wir erhalten zunéchst

1-— 1—x

X
T+ax,  1+Fax [(ky + ko)py + kipal,

1—x
H=pillat k) T+ ok

d OH 1
"dgtl‘ = - By = (T-{-La::)_z [(ky + ko) Py + Kipol,  Pi(t) = 0,
47y =0, pt)=—1, also py(t)=—1.

dr

Wegen der Maximierung von x,(#,) ist H zu minimieren. Falls ein Minimum im Innern von [7;, 5]

liegt, muf} dortﬁ = 0 gelten. Es ist
0H 1—x , ’
or = m}‘[kx (py— 1) + ks'pi]
mit
_ dk; ) E; E\ E )
W = gr = kg o (= ) ~ b

a
Aus %—IT.{ = 0 folgt (die Losung werde mit 7 bezeichnet)

k(o — 1)+ k'py = 0,
also
Eyky(py — 1) + Eskapy = 0

oder

E,— E, _ koooEaP1 _
MPTRT, T hEd —p) ¢

und, falls ¢ > 0,

s E,— E
= Rag
02
Zeigen Sie, daﬁl

9T | 1 > 0 gilt, also tatsdchlich ein Minimum von H vorliegt!

=1s
Wir haben nur 7 in Abhéngigkeit von der noch nicht bekannten Funktion p,(¢) dargestellt. Dabei ist
pi(t) nicht durch geschlossene Integration zu gewinnen, hier miifite ein numerisches Verfahren ein-
gesetzt werden. Machen wir zundchst einige qualitative Aussagen. Beziiglich T; = f(p,) gilt:

P |q Ty
n>1 q<0 nicht reell
p—>1—0 g —> oo T, — +0
p—~>+0 q— +0 Ty— —0
<0 q<0 nicht reell
k1o Ex L g>140 T, > doo

->—_"2°= 40
P BB+ kaEs -

3 BieB, Prozesse
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Damit konnen wir Ty = f(p;) schematisch darstellen (vgl. Bild 3.3, dabei wurde —M—-
lcoEl + kaEL

= Py gesetzt). Fir T, € [Ty, T,] entspricht 7, der optimalen Temperaturfithrung. Das zugehorige
Intervall fur p, ist [pu,pu] mit

Eyky(T;) .
i = =T e =12
P ERT) + BTy
s
L
5
\
1
1
4
7.
N | P2 P b Bild 3.3
Schematische Darstellung von 7 = f(p,)
in Beispiel 3.8

Fiir p, < py2 und p, > py, ist entweder mit 7; oder mit T, zu steuern. Zur Entscheidung muB iiber-
priift werden, fiir welchen Wert H zum Minimum wird (Aufgabe!). SchlieBlich erhalten wir

T, fur p; <pun,
T, fur pp=p =pu,
T, fur py <p,

Topl =

d.h., T, ist in Abhingigkeit von p; monoton fallend. Untersuchen wir p,(t) weiter. Es ist

sen 2L — sqn [0k, + kg — k.

dr
Wegen p,(t;) = 0 ergibt sich dd <0, d.h., bei t, ist die Funktion monoton fallend. Es laft sich
sogar weiter zeigen, dafl solange pl < = _El‘k—lE—“,—k—lEETISt gilt
®t o — S G+ k) e — g = G Bk

Bk + Bk T Ed T Edks

Damit ist ps(¢) in einem Intervall [¢,, #;] monoton fallend. Angenommen bei 7, éindert sich das Ver-
halten, d.h., fiir # < ¢, ist p,(t) monoton zunehmend. Dann muB p,(t) =< p,(#,) gelten, es ergibt sich
also ein Widerspruch. Folgende qualitative Aussage ist damit moglich:

m(t) ist monoton fallend, es gilt 0 < p,(1) < S

ot < 1. Da auch T,,(p,) monoton fallend ist,
folgt sofort: . 2

Topt(') = Topt[Px(’)] ‘
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ist monoton zunehmend. Je nach dem Verhalten von p, sind also drei Reaktorfahrweisen moglich:
1. Es ist stets p; = p,,. Dann gilt
Topt =T,.

2. Es ist p; = pyy, aber es gibt Werte mit p;, < p;.
Dann gilt
T ¥{Ts fir 0=t=1,
T, fir f<t=1,
wobei t, aus p,(,) = p;, zu bestimmen ist.
3. Es gibt Werte mit p;; < p;. Dann gilt

T, fir 0=<t=<n,
Ty fur 1, <t=1,,
T, fiur f,<t=t,

Tnpl =

wobei 7, aus p,(#,) = p;; zu bestimmen ist.

Es soll aber noch einmal darauf hingewiesen werden, daB die Bestimmung von p; und damit T,
den Einsatz von numerischen Verfahren erfordert, da die entsprechenden Differentialgleichungs-
systeme nicht geschlossen integriert werden konnen.

3.3.5. Einige weitere Probleme

Neben den hier behandelten Aufgabenstellungen sind im Zusammenh’ang mit optimalen Prozes-
sen noch eine Reihe anderer Probleme von Bedeutung. Wir konnen hier keine umfassende Darstel-
lung geben. Erwihnt werden sollen lediglich drei weitere Aufgaben. Beziiglich ihrer mathematischen
Behandlung sei auf entsprechende Literatur verwiesen, z.B. [6], [20].

a) Probleme mit unbeschrinktem Zeitintervall. Diese Probleme sind dadurch gekennzeichnet, daB als
Zeitintervall [7,, o] gegeben ist und eine solche zuldssige Steuerung gesucht wird, fiir die das un-
cigentliche Integral

[ A, 0 de (3.58)
III

konvergiert und minimal wird.

b) Optimale Prozesse mit Verzogerung. Bei manchen Problemen tritt ein Verzogerungseffekt auf,
z.B. kann fiir die Weitergabe von entsprechenden Signalen eine zu beriicksichtigende feste Zeit
T erforderlich sein. Nehmen wir an, daB diese Verzogerung lediglich den Zustand beein fluBt, so
14Bt sich das Problem durch

% = £1x(), x(t — T), u(r)] (T > 0, fest) ‘ (3.59)

beschreiben. Das Optimierungsziel kann dann z.B. in der Form
tl
JAX@), x@ — 1), u®] dt (3.60)
ty

vorliegen.

3%
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c) Optimale Prozesse mit Parametern. Hangt ein ProzeB nicht nur von einem zeitabhingigen Steuer-
vektor u(z) ab, sondern zusitzlich von einem in einem gewissen Bereich frei wéihlbaren zeitunab-
héngigen (d.h. tiber das gesamte Zeitintervall konstanten) Parametervektor w, so spricht man auch
von einem Prozefl mit Parametern. Fiir das System

dx
a = f[x(¢), u(t), w]
t
mit entsprechenden Anfangs- und Endbedingungen ist dann beispielsweise ein solcher Steuer-
vektor u(z) und Parametervektor w gesucht, daB

tl
JAIx(), u(t), wlde (3.61)
to

minimal wird.

34. Numerische Methoden

3.4.1. Vorbemerkungen

Die numerischen Verfahren zur Bestimmung optimaler Steuerungen konnen wir in zwei Klassen
cinteilen

1. Verfahren, die auf Maximumprinzipien aufbauen,

2. Verfahren, bei denen Maximumprinzipien nicht benutzt werden.

Es sei J(u) zu minimieren, der zuldssige Steuerbereich sei U. In vielen Verfahren wird dann eine sog.
Minimalfolge {u*} konstruiert. Dabei heiBt die Folge {u*} Minimalfolge, wenn fiir die zugehorige
Folge {J(uk)) gilt

lim J(uk) = inf J(u).
koo wel

Die Minimalfolge selbst braucht dabei nicht zu konvergieren. Auch falls keine optimale Steuerung
existiert, aber J(u) stetig und nach unten beschrinkt ist, existiert eine Minimalfolge.

Die Existenz einer optimalen Steuerung ist gesichert, wenn die Konvergenz einer Minimalfolge
gegen eine zulissige Steuerung u und die Konvergenz der zugehorigen J(u*) gegen min J(u) vorliegt.
Konvergenzaussagen sind nur unter relativ starken Voraussetzungen moglich. Wir gehen deshalb
bei der Beschreibung einiger Verfahren auf dieses Problem nicht niher ein.

Ist {u”} eine Minimalfolge, dann kann zu jedem & > 0 ein k(&) angegeben werden, so daB

0= JW) —infJu) < e firalle k=k,

gilt. Eine solche Steuerung (fast-optimale Steuerung) ist fiir praktische Probleme im allgemeinen aus-
reichend. Manche Verfahren liefern eine Minimalfolge, fiir die auBerdem noch

Jkt) < Jk) Vi
gilt.

Wir wollen im folgenden lediglich einige Verfahren kurz skizzieren; mehr dariiber findet man in
Band 18. Beim Einsatz sollte man eine Beratung mit einem erfahrenen Mathematiker unbedingt
durchfiihren.
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3.4.2.  Einige Abstiegsverfahren
Wir wollen an folgende Problemstellung ankniipfen: Gegeben sei
x = f(x,u, 1), (3.62)
x(tg) = XY, 1€ 1y, 1,].
Gesucht ist eine solche zuldssige Steuerung (bei zunichst unbeschrianktem Steuerbereich), daB

n
J= X ex(t) (c; = const) (3.63)
=1

minimal wird. Bei anderen Aufgabenstellungen sind die in Abschnitt 3.3. dargelegten Probleme zu
berticksichtigen.
Wir bilden zunichst die Hamiltonfunktion

n
H(x,p,u,1) ‘:‘alpifi (3.64)
i=
und das adjungierte System
. [5):4
pi= o (3.65)

pilt) = —¢;, i=1,.,n

Nun wenden wir die Idee des Gradientenverfahrens zur Maximierung von H an (vgl. Band 15). Es sei
u! eine Ausgangssteuerung. Wir setzen in (3.62) ein, integrieren und erhalten die zugehorige Trajek-
torie x'(z). Einsetzen von u'(z) und x(¢) in (3.65) liefert nach Integration p'(#). SchlieBlich berechnen
wir den Gradienten von H beziiglich u fiir u!, x!, p*, d.h.

graduH |y yeut, p=pt. (3.66)
Mit geeigneten k(f) > 0 (Schrittweite des Gradientenverfahrens) wird als nachste Steuerung
u® = u' + k(t) grady H (3.67)

bestimmt und das Verfahren solange wiederholt, bis eine der im Gradientenverfahren iiblichen Ab-
bruchbedingungen erfiillt ist. Es empfiehlt sich dabei, die entsprechenden Werte von (3.63) mit
zu vergleichen. Sind Beschriankungen fiir die Steuerungen gegeben, kann man z.B. das projizierte
Gradientenverfahren sinngemafl anwenden.
Ein Verfahren, bei dem die Bildung des Gradienten durch die Maximierung von H ersetzt wird,
ergibt sich folgendermaBen:
Nachdem zu u* wie im Gradientenverfahren x! und p' bestimmt wurden, berechnet man zunéchst
u aus
max H(x!, p', u, 1) = H(', p', &, 1) (3.68)
ucl

und bildet die neue Steuerung

w = ul | k(7) @ — u), k() > 0. ' (3.69)
Fiir k()= 1 folgt z.B. u? = ui!. Auch hierist k(¢) so zu wihlen. da
H?, p, b, 1) = H(X, phoul, f) (3.70)

gilt. Zur Maximierung von H ist ein geeignetes Optimierungsverfahren einzusetzen, wodurch natiir-
lich zusitzlich Schwierigkeiten entstehen.
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3.4.3. Behandlung als Zwei-Punkte-Randwertaufgabe

Wir gehen von der gleichen Aufgabe wie in 3.4.2. aus. Durch Maximierung der Hamiltonfunktion
sei die optimale Steuerung in Abhédngigkeit von x, p und # bestimmt.

Es sei also

u(x, p, t) . (3.71)
die optimale Steuerung. Durch Einsetzen in (3.62) und (3.65) erhalten wir

x = f(x,u,¢) = f(x, u(x, p, #), 1) = v(x, p, 1), 3.72)

p =g, p,u,1)=g(x p,ulx,p,1)1)=wX,p,1),

mit den Randbedingungen x;(f,) = x;%, p{(t) = —c¢;,i =1, ..., n. Setzen wir

== (3)-¥-(3)-
so erhalten wir das 2n-dimensionale System

z=F(z,1t) (3.73)
mit den Randbedingungen

z(ty) = x°,
i=1,..,n,
Znyi(h) = —ciy

(sog. Zwei-Punkte-Randwertaufgabe vgl. Band 18; 5.3.1.). Stellen wir die Situation beziiglich der Rand-
bedingungen noch einmal zusammen:

t=1t,  Zi,Zyy ey Zn, Zpg1s wees Zon
gegeben nicht gegeben
t=1 21y Zgy eees 2y Zp41s e Zon
nicht gegeben gegeben

Die Schwierigkeiten liegen offensichtlich darin, daB sowohl fiir eine Vorwirts- als auch fiir eine Riick-
wirtsintegration von (3.73) nicht alle erforderlichen Randwerte bekannt sind. Schiitzt man beispiels-
weise die fehlenden Werte z,,.4,(#,), so erhilt man nach Integration die Werte z,, (#,), die im allgemeinen
von den gegebenen Werten abweichen. Das Problem konnte gelost werden, wenn es gelinge, eine
geeignete Strategie zur Abdnderung der Schitzwerte anzugeben. Eine Méglichkeit besteht im Einsatz
der sog. Regula falsi (vgl. Band 2;7.7.2.).

3.44. Anwendung der Methode von Newton-Raphson

Die Methode von Newton-Raphson (vgl. Band 18;2.1.3.3.) wurde entwickelt zur Losung eines
(nichtlinearen) Gleichungssystems
g(x) =0.
Das Wesen besteht darin, daB man zu einer Niherungslosung x” eine verbesserte Losung aus

[s)
g(x"+) — g(x") ~ Egi‘ & — x7) = —g(x")
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oder kiirzer

Jg
~ -2 = —g(x" 7
Ag 3% Ax g(x") (3.74)

0g;
bestimmt. Dabei ist % die Matrix der partiellen Ableitungen —Bé';i an der Stelle x".
i

Die Losung wird also auf eine Folge zu losender linearer Gleichungssysteme zuriickgefiihrt. Liegen
keine Beschriankungen fiir die Steuerungen vor, dann ergeben sich nach Anwendung des Maximum-
prinzips auf die in 3.4.2. formulierte Aufgabe die notwendigen Bedingungen

i oH
S = Hp = fi ) = %O,

i

i=1,...,m (3.75)

. 0H
pi=— ks = —Hz;, pdt)=—c;,
OH .
W=Hui=0, i=1,...,m,

also in vektorieller Schreibweise das System von 2n + m Gleichungen

X—Hy=0,
P+ Hy =0, (3.76)
H,=0.

Auf dieses System 148t sich nun die Methode von Newton-Raphson anwenden.

3.5. Systeme mit verteilten Parametern

3.5.1.  Zur Problemstellung

Es seien im folgenden
b ein m-dimensionaler Vektor mit den Koordinaten x;, ..., X,
t die Zeit,

Q(x, 7) eine n-dimensionale Vektorfunktion mit den Koordinaten Q (x, ), ..., Q.(x,1)
(Zustandsvektor oder Phasenvektor),

u(x,?) eine r-dimensionale Vektorfunktion mit den Koordinaten u, (X, 1), ..., u,(x, t)

(Steuervektor),

U ein abgeschlossener Bereich eines r-dimensionalen linearen Vektorraumes
(Steuerbereich),

D der Definitionsbereich von Q(x, #) (beziiglich x und 7).

Wir wollen in Ubertragung des in 3.1 eingefiihrten Begiffs der zulissigen Steuerung
sagen: eine Steuerung (X, t) heifit zuldssig, wenn sie auf D definiert (und beschréinkt) ist,
eine Zerlegung von D in Teilbereiche D; mit \JD; = D existiert, so daff u(x, t) stetig
auf jedem Dj ist (u,bereichsweise’ stetig auf D) und wenn sie nur Werte aus U an-
nimmt.
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Ist ein System partieller Differentialgleichungen fiir Q(x, ) mit entsprechenden
Rand- und Anfangsbedingungen gegeben, das von u(x, #) abhéngt, so sagt man auch,
es liegt ein System mit verteilten Parametern vor. Im Unterschied zu den in 3.1. bis 3.4.
behandelten Problemen wird hier also der Zustand durch eine Vektorfunktion mit
mehr als einer unabhéngigen Variablen beschrieben. '

Beispiel 3.9 Die eindimensionale induktive Erwidrmung eines Korpers wird beschrieben durch
Q= aQqy + u(t)e™S%,
Q(x,0) = h(x) (Anfangsbedingung),

dabei sind Q(x, t) die Temperaturverteilung im Werkstiick, x der Abstand von der Oberfliche des
Werkstiicks mit 0 < x < /, ¢ die Zeit mit # = 0, S eine KenngroBe fiir das Abklingen der Heizwirkung,
u(t)die der Induktorspannung proportionale Steuerung. Auch hier lassen sich wichtige Optimierungs-
forderungen stellen, z.B. kann eine solche Steuerung gesucht sein, so daf in vorgegebener Zeit ¢,
eine gewiinschte Temperaturverteilung R(x) moglichst gut angenéhert wird, d.h., da

1
J1oG, 1) — RO dx
0
minimal wird.
Es ist offensichtlich, da man bei solchen Problemen mit noch gréBeren Schwierig-
keiten zu rechnen hat als bei Systemen, die durch gewohnliche Differentialgleichun-
gen beschrieben werden. Wir wollen deshalb im folgenden lediglich ein spezielles

System betrachten, ein entsprechendes Maximumprinzip angeben und kurz zwei nu-
merische Verfahren erldutern.

3.5.2.  Ein hyperbolisches System

Gegeben sei das System partieller Differentialgleichungen

*0; 9Q 9Q .
Ix ot =filx, 1, Q,—Eg*a—at—,“(?ﬁ 1), i=1,...n (3.77)

mit 0 =< x =4, 0=1=b, dem Steuerbereich U, den Rand- und Anfangsbedin-

gungen

00, 1) =git), Qilx,0) = hi(x) (3.78)
und den AnschluBbedingungen

0,(0, 0) = h(0) = g:0). (3.79)
Vektoriell schreiben wir kiirzer

Q

Ox 01 =Qu=1(x,1Q,Q,;, Q;u),

Q(0, 1) =g(r), Q(x,0)=h(x), (3.80)
g(0) = h(0).
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Wir setzen voraus:

1. Alle f; seien auf D stetig-differenzierbar beziiglich x und 7 und beziglich der rest-
lichen Variablen zweimal stetig differenzierbar.

2. Alle hi(x) und g;(¢) seien stetig und stiickweise stetig differenzierbar.

Gesucht ist eine solche zuldssige Steuerung u(x, 7), daBl die zugehorige Vektorfunk-
tion Q(x, 7) das Funktional

n
J= 23 ciQi(a, b) (3.81)
i=1
(ci gegebene Konstanten) minimiert.
Zunichst wollen wir zeigen, daf einige Aufgabenstellungen, bei denen das Zielfunktional in ande-

rer Form vorliegt, sich auf die o. g. Aufgabenstellung zuriickfiihren lassen.
Ist

ab
[[A&1Q, Q. QW drdx (3.82)
00
zu minimieren, fithren wir durch
xt
O, 1) = [ [f, drd (3.83)
00
eine zusitzliche ,,Zustandsfunktion ein. Es ergibt sich dann die zusatzliche Differentialgleichung
Q.
= 60,0, Q) (3:84)

mit den Rand- bzw. Anfangsbedingungen

Q0(0,1) = Qy(x,0) =0 (3.85)
und dem Optimierungsziel in der Form (3.81), d.h.
Qo(a, ). (3.86)
Ist
[/ilx, QCx, b), Q, (x, b)] dx (3.87)
0

zu minimieren, setzen wir

Qn(x,t)=fﬂ dé ) (3.88)
]
und erhalten (
FQ _ n % 90
ox0r i 0Q; ot 00,

0,(0,1) =0,

fi (3.89)

s

1
mit

04(x,0) = [ £y1&, (&), W ()] dé (3.90)
0
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und

Qy(a, b) (3.91)
als Optimierungsziel.
Aufgabe 3.5: Es sei F [Q(a, b)] zu minimieren, wobei F(Q) stetige partielle Ableitungen 2. Ordnung
nach allen Q; besitzen moge.

Fithren Sie durch Q,(x, 1) = F [Q(x, t)] eine zusitzliche Zustandsfunktion ein. Geben Sie die ent-
sprechende Differentialgleichung, die Anfangs- und Randbedingungen und das Optimierungsziel an.

Hinweis: Vergleichen Sie mit der entsprechenden Problemstellung bei Systemen mit konzentrierten
Parametern (Abschnitt 3.3.2.).

Zur Formulierung des Maximumprinzips beziiglich der eingangs angegebenen
Aufgabenstellung fithren wir die Hamiltonfunktion

H(x,1,N,Q, Q;, Q;,u) = 21 Nifi(x, 1, Q. Qu, Qi u) (3.92)
ein. Dabei geniige die adjungierte Vektorfunktion N(x, 7) dem System

0*N;  OH d [/ OH d [ OH .

=T e <—an > - (‘—aQ,., ) i=1,..n, (3.93)
mit den Randbedingungen

ON; 0H "

=50 =90, fir x=a, (3.94)
den Endbedingungen

ON; oH "

o~ 90, fir t=5 (3.95)
und den AnschluBbedingungen

Ni(a, b) = —c;. (3.96)

Dann gilt das Maximumprinzip in folgender Form

Satz 3.4: Gegeben sei (3.80) mit dem Optimierungsziel (3.81). Wenn uw°(x, t) optimale
Steuerung ist und Q°(x, t), N°(x, 1) die dieser Steuerung entsprechenden Lisungen von
(3.80) bzw. (3.93) — (3.96) sind, so gilt

H(x, 1, N°, Q% Q,% Q. u’) = max H(x, t, N°, Q°, Q.°%, Q/°, u) (3.97)
fiir fast alle (x,t) € D. e
Bemerkung : Fir lineare Systeme der Form

Qui = C(x, Qe+ D(x, Q. + E(x, 1)Q + f(w) (3.98)

(C, D, E sind dabei (n, n)- bzw. (n, r)-Matrizen) ist die Bedingung von Satz 3.4 nicht
nur notwendig, sondern auch hinreichend.
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Beispiel 3.10: Gegeben sei Q. = Q, -+ u mit Q(x, 0) = Q(0, ) = 0. Gesucht ist eine solche zu-

lassige Steuerung u mit |u| < 1, daB
11
[[@+ w)dtax
00
minimal wird.
Mit
@t
Q= [[(©+ u) dv ds
0

0
erhalten wir zunachst

Qo =0+ 1%, Qy(0,1) = Qy(x,0)=0.
Die Hamiltonfunktion lautet

H=(Q+ )N, + (Q; + w)N,

das adjungierte System

No:t:O;
Ny =No— N,
mit
Noy=0 fur x=1, Nor =0 fir t=1,
N, =0 fur x=1, N, =—N fir t=1,

N, 1)=0, Ny,1)=—1.

Es folgt sofort
No(x, 1) = —1

.

und folglich

Ny, N
H=—Q+NQt-u2+uN=—Q+NQt—(u—~-i—> +

Damit wird H maximal fiir

w— 17 falls [N/ <2,
sgn N falls [N|> 2.
Wir bestimmen deshalb zunachst N durch Losung von
N.-rz+N¢+1=0,
N1, 1) =0, Ny(x,1)=—N(x,1), N(1,1)=0.
Suchen Sie die Losung, indem Sie die Hilfsfunktion N, 4 N = P einfiihren!
Wir wollen einen Separationsansatz verwenden. Mit

N(x, 1) = @(x) - y(t)
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erhalten wir
P YO+ e YO +1=0,
M)y (=0, ¢ -pl)=—g@)-yd),
P(1) - p(1) = 0.
Durch Separation der Differentialgleichung nach den zwei unabhingigen Variablen folgt

bo—i ye—L
Yre=h v=—7

mit den allgemeinen Losungen
. 1
¢=A—ce™, W:*7‘+C2
und unter Beriicksichtigung der zusétzlichen Bedingungen

A=ce, c3=

~| =

schlieBlich
N, =01 —1)(1—e™).

Fir 0=r=1 und 0=x=<1 gilt 0=<1—¢=<1 und 1—e=<1—e"™"=<0, also
—2 <1 —e= N= 0. Damit ist

u“r—%=%(l;t)(l—e"f).

Aufgabe 3.6: Zeigen Sie, daB gilt

Q0= ,;7 1R —1) (T — et 4 2er —2),

Q(1, 1) = — 21—4 (e? — de -+ 5).

Entsprechende Maximumprinzipien lassen sich auch fiir andere Aufgabenstellun-
gen formulieren. Von Interesse, insbesondere auch fiir praktische Problemstellungen,
sind beispielsweise Optimierungsprobleme bei Systemen von partiellen Differential-
gleichungen der Form

20 et Q. Qo =l (399)
oder auch
PO S Q Qo i1, (3.100)

mit entsprechenden Zusatzbedingungen. Viele Prozesse werden auch iiber Anfangs-
bzw. Randbedingungen gesteuert, wobei sogar drei unabhéngige Steuereinfliisse mog-
lich sind, und zwar iiber die ProzeBgleichungen, Anfangsbedingungen und Rand-
bedingungen. Eine eingehende Behandlung ist an dieser Stelle nicht moglich.
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3.5.3. Numerische Methoden
A\

Beziiglich der numerischen Bestimmung optimaler Steuerungen bei Systemen mit verteilten Para-
metern gelten die in 3.4.1. gemachten Bemerkungen, wobei naturgemiB die Schwierigkeiten noch
zunehmen. So kann man beispielsweise versuchen, Gradientenverfahren, bedingte oder projizierte
Gradientenverfahren auszunutzen. Eine andere Moglichkeit besteht darin, dal man das gegebene
Problem durch Diskretisierung beziiglich gewisser Variabler oder aller Variabler auf e¢in Problem
mit konzentrierten Parametern oder auf ein vollstindig diskretes System zuriickfiihrt. Wir wollen
dieses Vorgehen lediglich an zwei Beispielen erliutern.

Beispiel 3.11: Gegeben sei die Problemstellung von Beispiel 3.9. Wir fiihren eine Diskretisierung
beziiglich 7 durch, dazu bezeichnen wir

h—tra=1 k=1,..,K,
Qx, 1) = Qux), ulx, 1) = w(x)

und ersetzen Q; (x, ;) durch
10 — 0y (1.

Die gegebene partielle Differentialgleichung fiir Q(x, ¢) geht dann iiber in das System gewohnlicher
Differentialgleichungen fiir die Funktionen Qy(x)

Ok = Oz + O — Qpemr + lu, k=1,.., K,
Q= 0.

Die ses Differentialgleichungssystem konnen wir leicht in ein System tiberfithren, wie es bei Systemen
mit konzentrierten Parametern betrachtet wurde. Dazu schreiben wir einmal & Differentialgleichun-

f:
i Qi =01 + luy,
Qoy = Qup + Qe — Oy + lus,
Oz = Qar + O3 — Qs + lug,

Ore = Q1,0 + O — Qpy + lue.
Addition liefert sofort

3 k—1 k
20u=X0u+Q%+IZu
i=1 i=1 i=1

also

k
Opx = Qi+ 12114,, k=1,..,K,
1=

d.h. beziiglich der Funktionen Q,(x) ein System gewohnlicher Differentialgleichungen. Durch An-
wendung der Trapezformel (vgl. Band 2; Satz 10.13, oder Band 18; 4.3.4.) wird

1
J@+wyd
0

ersetzt durch

K—1
ST+ )+ (@ + )]+ [ (0 + ).
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Danmit erhalten wir als neues Optimierungsziel
1
3 [Qo+ g+ 2@t )+ 4+ 2(Qu-1 + ) + Oxc+ ui] dx.
0
Fur das somit entstandene System mit konzentrierten Parametern lautet die Hamiltonfunktion
H=3IN,[Qo+ 4+ 2(Qi+ ) + - + 2(Qx—1 + i) + O + u]

+ N(Qy + luy)
+ No(Qs + Iy + 1))

+ e
+ Ng(Qx + iy + up + -+ + ug))

K—1
= }INQ, + Z N+ N) 0+ GINy + Ng) O
1=
K
+ JINgui® + INguy® + by 21 N;
e

K
+ INyuy® + lu, 3 N;
i=2

+ .....................
K
+ INyu%_y + lug_y 3 N; + 31 Ny + lug Ng
i=k—1
und das adjungierte System
Niz =0,  Ny(1) = —1,
Nyg=1— Ny,
Nopy=1—N,,
Ng12=1—Ng_1,
Ngz=341—Ng, N@O=0, i=1..,K
Als Losung des adjungierten Systems ergibt sich
" Ne=—1LN,=I1—e", i=1.,K—1,

Ni = 31 — e2).

Setzen wir .
K
Si= YN =IG+K—D1—e™,
=i

dann erhalten wir durch Maximierung von H fiir die optimale Steuerung

u; =0,
Y b, falls |S|=2, el K—1
! sgn S;, falls [S;| > 2, it
_ { Sk falls Skl =1,
K sgn Sg, falls  [Sgl> 1.
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Mit/-K=1undi=1 folgt wegen 1 —e <1 —el™? <0
*1<1(i~%)~1=1(K—i+%)<%1(K*i+§)(1—e)é%sié()
—1<—-I=S¢=0,

also
{gsi fir i=1,.,K—1,
u =

S, fir i=K.
Beriicksichtigen wir noch /- i = t;, so ergibt sich

limu; =lim§I(K—i+ 5 A —e)
-0 -0

=limy( —+3D0 — e ) =} — 1)1 — &)
140
fiir i < K und ’

lim ug = lim§ /(1 — e7%) = 0.
140 140
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Die Losung unseres Naherungsproblems konvergiert also gegen die in Beispiel 3.9 entwickelte exakte

Losung.
Beispiel 3.12: Wir betrachten die gleiche Problemstellung und diskretisieren durch
te—ty=1 k=1,.,K K-I=1,
Xy — Xpy=h, m=1,..,.M, M-h=1,
hinsichtlich beider Variablen. Zur Abkiirzung setzen wir noch
Oy, 1) = Q(m - h, k- ) = Qs
U(Xp, 1) = u(m - hyk + 1) = wpy,.
Die Ableitungen werden durch die entsprechenden Differenzenquotienten ersetzt, also
1
Q(Xm, 1) = v (o Qm,k—l),
1
Qut (X, 1) = rei Qi — Qm—llk - Qm,k—l + Qm—l,k—l)s

wobei noch
Qo = Qo =0

gilt. Damit geht die Differentialgleichung iiber in das Gleichungssystem fiir die M - K Funktions-

werte O,

1 1
e ©Qmr — Qm«l)l.' - Qm,/.'—l + Qm—l,lr—l) = T (o Qm,k—l) + tmics

d.h.
O, O k1= 5—7 Qm-1,k — Cm-1,k-1) + 5—
nk m, 1 h B s 1 h

Die Losung dieses Systems von M - K Gleichungen fiir M - K Unbekannte ist leicht moglich. Es ergibt

sich (Entwickeln Sie die Losung!)

h-l m 1 k

Que= T Z | Ta e o
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Nun diskretisieren wir das Optimierungsziel, indem wir das Doppelintegral

11
J=[[©@+u)drdx
00
durch

M K
Jug=h14+3 X (Qui+ i)
m=1k=1

erseizen. Es folgt weiter (wobei &= 1 7 gesetzt wurde)
o vk / MK 90,
uk gy +S > 'in
7 m=1k=1 Ol,g

mit
Qi __ [ hlg™T fur  a=mp=<k,
Ougg 0 sonst.

Aus Mk

= 0 erhalten wir somit
Quyg

Ugp = (K — B+ 1) (1. — gM-o+),

Aufzabe 3.7: Uberpriifen Sie, daB die hinreichende Bedingung fiir ein Minimum tatséchlich erfiillt
ist, ugg = 1 gilt und die Naherungslosung fiir / — 0, # — 0 gegen die exakte Losung konvergiert.



4. Diskrete Prozesse

Von den steuerbaren, deterministischen Prozessen werden jetzt diejenigen unter-
sucht, die im Abschnitt 2. als diskrete bezeichnet worden sind. Dabei wird die
Grundaufgabe der Theorie optimaler diskreter Prozesse einschlieBlich gewisser Mo-
difizierungen (siehe Abschn. 4.1.) formuliert sowie zwei Kriterien fiir die Optimalitat
und damit zusammenhéngende Losungsmethoden entwickelt (siche Abschn. 4.2. und
4.3.). Von den beiden Methoden wird insbesondere die dynamische Optimierung aus-
fithrlicher dargelegt und ihre Anwendung an praktischen Beispielen demonstriert.

Bei der Behandlung stetiger Prozesse bezeichnete die Variable 7 i.a. die Zeit.
Davon miissen wir uns im Zusammenhang mit diskreten Prozessen 16sen. Hier nume-
riert ¢ einfach die Folge endlich vieler oder abzéhlbar unendlich vieler unterschied-
licher Zustéinde bzw. getrennter Stufen. Dabei kann der Unterschied zeitlicher Natur
sein, muB es aber nicht. Es sei z.B. eine Mehrstufenrakete mit begrenztem Startge-
wicht zu konstruieren, die einen Flugkdrper in den Kosmos tragen soll. Jede Stufe
enthilt einen gewissen Treibstoffvorrat; ist er verbraucht, wird die Stufe abgeworfen
und die nichste geziindet. Gewicht des Flugkorpers und Anzahl der Raketenstufen
seien bekannt. Dann ist es eine natiirliche Aufgabe, den Treibstoff so iiber di einzel-
nen Stufen der Rakete zu verteilen, daB die Geschwindigkeit des Flugkorpers nach
Verbrauch des gesamten Treibstoffes maximal ist. Diese Aufgabe ldBt sich als Opti-
mierungsproblem eines diskreten Prozesses formulieren (vgl. [7]), wobei seine ,,unter-
schiedlichen Zustdnde* einfach aus den einzelnen Stufen der Rakete gebildet werden.
Numeriert man nun diese unterschiedlichen Zustdnde mit ¢, t =1, 2, ..., N (N — An-
zahl der Raketenstufen), so hat ¢ offensichtlich keinerlei Beziehungen zur Zeit.

4.1. Aufgabenstellung

Die Grundaufgabe der Theorie optimaler diskreter Prozesse und die mit ihr in Zu-
sammenhang stehenden Begriffe haben eine Reihe Gemeinsamkeiten mit denen ste-
tiger Prozesse, wie sie am Anfang von Kapitel 3. und im Abschnitt 3.1. dargelegt wor-
den sind. Auf Grund dieser Analogien kann das Wesentliche hier in geraffter Form
ohne ausfithrliche Erlduterungen dargelegt werden. Lediglich die Unterschiede, die
sich zwischen den Darlegungen diskreter und stetiger Prozesse ergeben, werden star-
ker herausgearbeitet.

Zur Entwicklung der Aufgabenstellung wird zunéchst ein Beispiel betrachtet, auf
das wir uns im weiteren haufig beziehen.

Beispiel 4.1: In einer Losung befinde sich ein gewisser Stoff, der durch Spiilung mit Wasser heraus-
gefiltert werden soll (vgl. [9] oder [7]). Es wird vorausgesetzt, daB sich dabei das Wasser nicht mit
der Losung vermischt, Die Spiilung wird in N gleichartigen Aggregaten durchgefiihrt, die die Losung
nacheinander durchflieBt (siehe Bild 4.1a)). Es sei bekannt, daB die durch ein Aggregat ausgespiilte
Stoffmenge gleich m(x, ) ist, wobei x die Stoffmenge angibt, die zu Beginn des Spiilprozesses mit

u(n u(2) u(t) un)
- - v,
x(0) 7 x(1) 2 x_(i)ﬂx»(t N[y ﬁ»»{(ﬂﬁ;}
I I T BRI |

Bild 4.1a) System aus N in Reihe geschalteten Aggregaten

4 BicB, Prozesse
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der Losung in das Aggregat geflossen ist, und « die bei der Spiilung im Aggregat verwendete Wasser-
menge bezeichnet. Dann ist die Stoffmenge x(), die das 7-te Aggregat nach der Spiilung zusammen
mit der Losung verliBt, gleich der Stoffmenge x(¢ — 1), die mit der Losung in ihn eingeflossen ist,
vermindert um die Menge m(x(t — 1), u(t)), die durch ihn ausgefiltert wurde:

(1) = x(t — 1) — mx(t — 1), u(t), t=1,2,..,N, @1

wobei x(0) = x, die Stoffmenge bezeichnet, die in der Losung enthalten ist, welche in das erste Aggre-
gat gegeben wird. Weiterhin moge das Ergebnis des gesamten Spiillungsprozesses gemessen werden
kénnen durch die Grolie

N
I'= a[x(0) — x(N)] — @ gx u(t), (4.2)

wobei @, und a, bekannte Parameter sind; hierin gibt die Differenz x(0) — x(V) die insgesamt ausge-
N

spiilte Stoffmenge an, und die Summe 3 u(¢) stellt die verwendete Wassermenge dar. Offensichtlich
t=1

héingt dieses Ergebnis von der GroSe ciar in den einzelnen Aggregaten verwendeten Wassermengen
u(t) ab und ist durch sie vermittels (4.1) eindeutig bestimmt. Somit kann die Aufgabe gestellt werden
diejenigen u(t), t = 1, 2, ..., N, zu bestimmen, fiir die das Spiilungsergebnis / maximiert wird. Beach-
tet man nun noch, daB die verwendeten Wassermengen einer Bedingung der Art
0=u)=bx(r—1), t=12..,N, 4.3)

unterworfen werden miissen, wobei b(x) eine bekannte Funktion ist, die sich aus der Konstruktion
der Filteraggregate ergibt, so nimmt die obige Aufgabe folgende mathematische Form an: es ist eine
solche Folge von Werten (1), u(2), ..., u(N) und die ihnen gemiB (4.1) entsprechende Folge x(1),
x(2), ..., x(N) zu bestimmen, die der Beschrankung (4.3) geniigen und der Grofe (4.2) ihren maxi-
malen Wert erteilen.

Erinnert man sich nun an die allgemeinen Ausfithrungen iiber steuerbare deter-
ministische Prozesse des Kapitels 2, so kann festgestellt werden, daB3 die mathemati-
sche Aufgabe, zu der das Beispiel 4.1 fiihrte, bereits alle wesentlichen Elemente der
Theorie optimaler diskreter Prozesse enthilt. Tatsdchlich, es liegen endlich viele —
ndmlich N — unterschiedliche ,,Zustande* vor, u(¢) kann als Steuerung, x() als
Phasenkoordinate und 7 als Optimalitétskriterium aufgefaBt werden. Dann ist durch
(4.3) der Steuerbereich und durch (4.1) die ProzeBgleichung gegeben. Somit liefert
das Beispiel 4.1 eine Vorstellung von der Grundaufgabe optimaler diskreter Prozesse.

Im allgemeinen treten als Steuerungen bzw. Phasenkoordinaten bei diskreten Pro-
zessen — genau wie bei stetigen — nicht nur jeweils eine, sondern mehrere GroBen
(1), us(t), ..., u(t) bzw. xy(t), x5(1), ..., x,(¢) auf, die in gewohnter Weise als Kom-
ponenten von Vektoren

u(t) = (uy(t), ..., u(t))  bzw.  x(t) = (x,(7), ..., x.(7))

eines r- bzw. n-dimensionalen Raumes aufgefaBBt werden. Jetzt nimmt 7 jedoch nur
diskrete Werte 7 =0, 1, ..., N an, wobei im weiteren vorausgesetzt wird, daB} N eine
fixierte natiirliche Zahl ist. Bei stetigen Prozessen waren Steuer- und Phasenvektor
durch das Differentialgleichungssystem (3.6) miteinander verkniipft. Bei diskreten
Prozessen wird die Rolle von (3.6) durch das Differenzengleichungssystem

x(t)=f(x(t — D,u@®), t=1,2,..,N, (4.4)

ubernommen, wobei f(x, u) = (f;(X, ), ..., f,(X, u)) ein Vektor ist, dessen Komponen-
ten bekannte Funktionen sind. Man erhélt diese Funktionen fiir jeden konkret gege-
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benen diskreten ProzeB durch die mathematische Modellierung seiner charakteri-
stischen Eigenschaften. So ergab sich im Beispiel 4.1 fiir das Differenzengleichungs-
system (4.4) nur die eine Gleichung (4.1), und es kénnte

S, u)=x— m()lc, u)

gesetzt werden.

Ist nun der Anfangszustand x(0) eines diskreten Prozesses bekannt — und das wird
im folgenden immer vorausgesetzt —, so sind nach Wahl einer Steuerung u(z), t = 1,
2, ..., N, alle weiteren Zustidnde x(7), t = 1,2, ..., N, des diskreten Prozesses durch
das System (4.4) eindeutig bestimmt. Daher wird (4.4) auch hier (vergleiche mit (3.6)
in Abschn. 3.1.) ProzeB- oder Bewegungsgleichung genannt. Der Terminus ,,Bewe-
gung ist nun allerdings im weiteren Sinne aufzufassen, weil ja 7 nicht mehr in jedem
Falle die Zeit représentiert.

Es sind noch die Begriffe ,,Steuerbereich® und ,,zuldssige Steuerungen® préiziser
zu fassen. Im allgemeinen wird bei diskreten Prozessen davon ausgegangen, daB im
r-dimensionalen Raum der Steuerungen R’ fiir jedes x aus dem Phasenraum und
jedest = 1,2, ..., N eine nichtleere Menge U,(x) gegeben ist. Diese Menge wird Steuer-
bereich genannt, der dem Wert # und dem Phasenzustand x entspricht. In Anlehnung
an Beispiel 4.1 und an weitere praktische Probleme (vgl. [7], [9], [19]) beschrianken
wir uns hier auf Steuerbereiche der Art U,(x(z — 1)). Dementsprechend wird folgende
Begriffsbildung vorgenommen:

Definition 4.1: Gegeben sei ein diskreter Prozef8 mit dem Anfangszustand x(0) und den
Streuerbereichen U(X) < R” (X € R, t= 1,2, ..., N). Dann wird u(t) = (u,(t), uy(1),
..., ut)) eine zulissige Stewerung (beziiglich x(0) und U/(X)) genannt, wenn

u(?) € U(x(t—1)), t=1,2,..,N, 4.5)
gilt; dabei ist x(t) die Trajektorie, die in x(0) beginnt und durch (4.4) bestimmt ist.

Im Beispiel 4.1 ist der Steuerbereich durch (4.3) gegeben, hidngt nicht explizit von
t ab und hat die Form

Ux(t—1)={u € R I0=u= b(x(t— 1)}.

Jede Losung von (4.4) und (4.5), bestehend aus u(z) und x(¢), t = 1, 2, ..., N, stellt
cinen diskreten ProzeB dar. Man erhilt eine solche Losung ausgehend von einem
gegebenen Anfangszustand x(0), indem man zunédchst gemdB (4.5) eine zuldssige
Steuerung u(1) € U, (x(0)) wihlt, diese dann in (4.4) einsetzt und danach x(1) = f(x(0),
u(1)) bestimmt; nun wird x(1) wie x(0) zur Bestimmung von u(2) verwendet, und dieses
Vorgehen wird bis zur Ermittlung von u(N) und x(N) fortgesetzt.

Fiir das weitere wird noch folgender Begriff benstigt :

Definition 4.2: Es sei x(7), t = 1, 2, ..., N, die Losung von (4.4), die man bei gegebenem
Anfangszustand x(0) und fiir eine zuldssige Steuerung u(t) erhalten hat. Dann werden
wir X(t) die der zuldssigen Steuerung u(t) entsprechende Trajektorie nennen, die in x(0)
beginnt.

Es sei bemerkt, daB im Unterschied zu den stetigen Prozessen die Trajektorie hier
nur eine diskrete Punktfolge im n-dimensionalen. Phasenraum bildet.

4%
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Nach der mathematischen Beschreibung diskreter Prozesse durch (4.4) und (4.5)
kann nun zur Frage der optimalen Steuerung derartiger Prozesse iibergegangen wer-
den. Beziiglich des dazu erforderlichen Optimalitétskriteriums wird angenommen, da3
eine Grofle der Form

J= 2 fuls(t = 1), u00) ' “6)

maximiert bzw. minimiert werden soll. Dabei sind f;,(x, u), ¢ = 1, 2, ..., N, bekannte
Funktionen von n + r Argumenten, die sich aus der Spezifik des jeweiligen Prozesses
ergeben und gewissermaBen das Ergebnis des Prozesses auf jeder seiner Stufe mes-
sen. So kann im Beispiel 4.1 die zu maximierende GroBe (4.2) unter Beriicksichtigung
von (4.1) umgeformt werden auf

J= 3 lam(t = 1), ue) ~ a0l

hier hangen also die in (4.6) auftretenden Funktionen gar nicht von # ab, und es kénnte
gesetzt werden

Jox(t — 1), (1)) = aym(x(t — 1), u(1) — au(t).

Existieren nun fiir einen diskreten ProzeB mit gegebenem Anfangszustand x(0)
mehrere zuldssige Steuerungen, so entsteht die Frage nach der ,,besten‘ oder ,,opti-

malen* Steuerung. Mathematisch fithrt diese Frage zur folgenden Grundaufgabe der
Bestimmung optimaler diskreter Prozesse:

Definition 4.3: Gegeben sei ein diskreter Prozef8 mit dem Anfangszustand x(0), der
Bewegungsgleichung (4.4), den Steuerbereichen U(x) S R" und dem Optimalitits-
kriterium (4.6). Dann ist unter allen zuldssigen Steuerungen w(t), t =1, 2, ..., N, die-
Jjenige zu bestimmen, die der Grofe (4.6) ein Maximum (bzw. ein Minimum) erteilt.
Dabei ist in (4.6) die der Steuerung u(t) entsprechende Trajektorie X(t) einzusetzen, die
in x(0) beginnt. Wir werden sagen, dafi eine zulissige Steuerung und die ihr entspre-
chende Trajektorie, die die Grundaufgabe losen, einen optimalen ProzeB bilden.

Die Grundaufgabe der Theorie optimaler stetiger Prozesse (vgl. Def. 3.3) war cha-
rakterisiert durch freie Zeit und feste Enden. Im Gegensatz dazu kann die Grundauf-
gabe optimaler diskreter Prozesse als Aufgabe mit fester Zeit (N ist fixiert und ge-
geben), einem festen Ende (x(0)) und einem freien Ende (x(V)) betrachtet werden.
Der wesentliche Unterschied ist vor allem darin zu sehen, daB wir es einmal mit
freier Zeit und zum anderen mit fester Zeit zu tun haben. Die Ursache dafiir liegt
darin, daB fiir diskrete Prozesse meistens die Anzahl der Zustdnde gegeben ist und
nicht der Optimierung unterliegt.

Genau ,wie in Kapitel 3. existieren natiirlich auch Modifizierungen fiir die in der
Definition 4.3 formulierte Grundaufgabe. Einige seien hier kurz genannt. Weitere
findet man in [7] und [9].

So treten z. B. Aufgaben mit beweglichen Enden auf. In diesem Falle sind zwei Mengen X, und X
im Phasenraum R gegeben, und es sind ein solcher Anfangszustand x(0) € X, sowie eine solche zu-~
lassige Steuerung u(z) (beziiglich x(0)) gesucht, die zusammen mit der ihr entsprechenden Trajektorie
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x(¢), die in x(0) beginnt, der GroBe (4.6) ihren maximalen Wert erteilt, wobei auBerdem x(N) € Xy
gelten muB. Entarten hierbei X, und Xy in zwei fixierte Punkte x(0) und x(N), so erhilt man als Spe-
zialfall die Aufgabe mit festen Enden.

Auch Aufgaben der folgenden Art ergeben sich: Fiir jedes # = 0, 1, ..., N sei eine Menge X, im
Phasenraum gegeben. Dann sind ein solcher Anfangszustand x(0) € X, sowie eine solche (beziiglich
x(0)) zuliissige Steuerung u(z) gesucht, die zusammen mit der ihr entsprechenden Trajektorie x(¢), die
in x(0) beginnt, der GroBe (4.6) ihren maximalen Wert erteilt, wobei auBerdem x(#) € X; gelten muB.
Das sind Aufgaben mit beschrinkten Phasenkoordinaten. Entarten hierbei die Mengen X, zum ganzen
Phasenraum: X; = R", t = 0, 1, ..., N, so ergibt sich als Spezialfall die Aufgabe mit freien Enden.

SchlieBlich seien noch Prozesse erwéihnt, bei denen sich die in (4.4) auftretenden Funktionen f von
Stufe zu Stufe 4ndern und damit explizit von # abhédngen. Die Bewegungsgleichung (4.4) nimmt dann
die Form

x(0) = f,x(t — D, u(), 1=12,..,N,

an. Das ist ¢in Analogon zu den nichtautonomen stetigen Prozessen (vgl. A bschn. 3.3.3.). Hatten wir
im Beispiel 4.1 nicht gleichartige, sondern von Stufe zu Stufe unterschiedliche Aggregate vorausge-
setzt, dann wire auch die ausgefilterte Stoffmenge von den Stufen abhéngig gewesen, und anstelle
von (4.1) hitte sich

x(0) = x(t — 1) — m(x@ — 1D, u(®), t=12,..,N,

ergeben. Damit w!re ein konkreter ProzeB mit einer Bewegungsgleichung der obigen Art vorgestellt.

Im Zusammenhang mit der zu entwickelnden dynamischen Optimicrung als einer
Losungsmethode der Grundaufgabe sei auf einige Anderungen in den Bezeichnungen
von (4.4)—(4.6) hingewiesen. Dem Vorgehen der dynamischen Optimierung entspricht
es besser, wenn die Stufen des Prozesses entgegen dem ProzeBablauf numeriert wer-
den (vgl. Bild 4.1b, Seite 58). AuBerdem werden die in der ProzeBgleichung (4.4)
auftretenden Funktionen mit 7 bezeichnet; diese Bezeichnung geht davon aus, daB in
jeder Stufe die EingangsgroBen zusammen mit der Steuerung einer Transformation
unterworfen werden. SchlieBlich werden die Funktionen im Optimalitétskriterium
(4.6) mit G bezeichnet, was damit zusammenhingt, daB es bei einer Reihe praktischer
diskreter Prozesse darauf ankommt, in jeder Stufe einen Gewinn zu erzielen. Mit
diesen Anderungen nehmen die Relationen (4.4) bis (4.6) dann die folgende Form an:

Xp =T, (Xp41, W), n=1,2, ..., N, “.7)

u, € Up(Xns1), n=1,2..,N, 4.8)
N

G = 3 Gy(Xn41, W,) = max! 4.9)
n=1

Die Formulierung der Grundaufgabe selbst bleibt unverdndert; es wird lediglich an-
stelle von (4.4) — (4.6) auf die entsprechenden neuen Relationen (4.7) — (4.9) Bezug
genommen.

4.2. Diskretes Maxiﬂmmprinzip

Es wird jetzt eine erste Methode zur Losung der in 4.1. formulierten Grundaufgabe
entwickelt. Sie hat sehr enge Beziehungen zu dem fiir stetige Prozesse bereits bekann-
ten Pontrjagmschen Maximumprinzip (vgl. Abschn. 3.2.) und kann aus diesem sogar
durch einen formalen Ubergang von stetigen zu diskreten Prozessen hergeleitet werden
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(siche [7]). Das Wesen der Methode besteht genau wie beim Pontrjaginschen Maxi-
mumprinzip darin, die Grundaufgabe durch eine andere Aufgabe zu ersetzen,
die i. a. leichter gelost werden kann und besser fiir eine numerische Behandlung ge-
cignet ist. Dabei erweist sich die ,,Ersatzaufgabe‘ ebenfalls als eine Optimierungs-
aufgabe, und mit ihrer Losung erhélt man gleichzeitig die Losung der Grundaufgabe.

Im allgemeinen besteht die Methode in der Anwendung eines notwendigen Opti-
malititskriteriums fiir zuldssige Steuerungen. Dabei unterscheidet sich dieses notwen-
dige Kriterium fiir beliebige diskrete Prozesse jedoch in wesentlichen Teilen von dem
Pontrjaginschen Maximumprinzip fiir stetige Prozesse. Das ist im Wesen der Grund-
aufgabe diskreter Prozesse begriindet (vgl. Anlage 3 in [9]). Allerdings kann man

' Klassen diskreter Prozesse angeben, fiir die ein Analogon zum Pontrjaginschen
Maximumprinzip giiltig ist. Um einerseits diese Analogie zu den Ergebnissen von Ab-
schnitt 3.2. herzustellen und um andererseits Vereinfachungen in der Darstellung zu
erreichen, werden wir im weiteren voraussetzen, daBl die Funktionen f in (4.4) sowic
Jfoin (4.6) linear in den Phasenkoordinaten x sind und f; nicht explizit von ¢ abhéngt.-
Beziiglich der Steuerbereiche wird vorausgesetzt, da sie weder von 7 noch von x ab-
héngen, also fiir alle Stufen des Prozesses und fiir alle Phasenpunkte x glexch sind:

U(x)=U, t=1,2,.., N, X € R" beliebig.

Wir betrachten also Jetzt die Grundaufgabe (4.4)—(4.6) mit den soeben getroffenen
Vereinfachungen. Zur Formulierung ihrer ,,Ersatzaufgabe* werden genau wie beim
Pontrjaginschen Maximumprinzip einige neue Begriffe bendtigt.

Zunichst werden durch das Differenzengleichungssystem

pi— 1= 3 DD, w0)

=0
t=12,..,N, i=12,..,n
gewisse Hilfsfunktionen eingefiihrt. Dabei wird angenommen, daf
po=1 (@.11)
p(N)=0, i=1,2,..,n, _ (4.12)

gilt. Beziiglich dieser Bedingungen vergleiche man die Ausfithrungen tiber die Aufgabe
mit fester Zeit und freiem rechten Ende am Schlu8 von Abschnitt 3.2. Mit den Be-
dingungen (4.11) und (4.12) besitzt (4.10) fiir jede zulédssige Steuerung u(z), z =1, 2,
«., N, und die ihr entsprechende Trajektorie x(¢), t = 1, 2, ..., N, die in x(0) beginnt,
cine eindeutig bestimmte Losung

P@t) = (po, pi(1), .o, pu(t)), t=0,1,..., N.

Diese Losung erhdlt man, indem man in (4.10) zundchst ¢/ = N setzt und die Bedin-
gungen (4.11) und (4.12) sowie die gewihlte zuldssige Steuerung und die ihr ent-
sprechende Trajektorie verwendet. Dadurch findet man p;(N — 1), i=1,2, ..., n
Danach wird in (4.10) 7 = N — 1 gesetzt, und unter Verwendung der bereits gefun-
denen p;(N — 1) konnen nun die Werte p; (N — 2) bestimmt werden. Auf diese Weise
wird die gesamte Losung P(¢),7=0, 1, 2, ..., N, sukzessive — beginnend mit = N — |
und fortschreitend bis 7 = 0 — ermittelt. Jede auf diese Weise ermittelte Folge von
Vektoren P(7), =0, 1, ..., N, werden wir Losung von (4.10) — (4.12) nennen, die
der zuldssigen Steuerung u(z) und ihrer Trajektorie x(t) entspricht.

(o), (4.10)
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Auch fiir diskrete Prozesse wird wieder durch die Definitionsgleichung
F (P, x,u) = > pifi(x, ) (4.13)
i=0

eine Hamiltonfunktion eingefiihrt. Mit ihr kann dann das System (4.10) auch in der

Form
pit—1) = 0% (P(1), )gg_ D, u(®) , i=1,2,...,N,

geschrieben werden. Wesentlich ist jedoch, daB mit ihrer Hilfe unmittelbar die
,.Ersatzaufgabe* der Grundaufgabe formuliert werden kann. Es erweist sich ndmlich,
daf folgende Aussage giiltig ist.

Satz 4.1 (diskretes Maximumprinzip) : Dafiir, dafy eine zuldssige Steuerung u(t), t =
1,2, ..., N, und die ihr entsprechende Trajektorie x(t), die in x(0) beginnt, einer Grund-
aufgabe mit zu maximierender Grifle (4.6) optimal (im Sinne der Definition 4.3) sind,
ist notwendig und hinreichend, dafs fiir sie zusammen mit der ihnen entsprechenden
Losung P(t),t= 1,2, ..., N, von (4.10) — (4.12) gilt:

FEP®), x(t — 1), u(t)) = m%x FEPE), x(t—1),u), t=1,2,..,N. (414
ug;

Wenn die GroBe (4.6) in der Grundaufgabe nicht maximiert, sondern minimiert
werden soll, dann ist (4.11) zu ersetzen durch

Po=—1. @.11)

Mit (4.14) ist die Ersatzaufgabe formuliert, von der oben bereits gesprochen wurde.
Sie erweist sich im Gegensatz zur entsprechenden Aufgabe des Pontrjaginschen
Maximumprinzips sogar als dquivalent zur Grundaufgabe, weil das diskrete Maxi-
mumprinzip als notwendiges und Ainreichendes Kriterium formuliert werden konnte.
In diesem Zusammenhang mufB unbedingt noch einmal betont werden, daB das dis-
krete Maximumprinzip in Form des Satzes 4.1 keine Allgemeingiiltigkeit besitzt, son-
dern nur auf die Klasse der diskreten Prozesse angewendet werden kann, die die
obigen vereinfachenden Voraussetzungen erfiillen. Die Aquivalenz zwischen Grund-
aufgabe und Ersatzaufgabe (4.14) wurde also erkauft durch die Einschrinkung der
Klasse der zugelassenen diskreten Prozesse. Wie wesentlich diese Einschrankung fiir
die Giiltigkeit des diskreten Maximumprinzips in der Formulierung von Satz 4.1 ist,
moge das folgende Beispiel (vgl. Beispiel 10.3 in [7]) demonstrieren. Gleichzeitig wird
im zweiten Teil dieses Beispiels angedeutet, wiec man mit Hilfe des diskreten Maxi-
mumprinzips optimale Prozesse ermitteln kann.

Beispiel 4.2 Betrachtet wird die Grundaufgabe, deren Phasen- und Steuerraum eindimensional
sind, deren Bewegungsgleichung folglich nur aus einer Gleichung besteht, die von der Form

x(t)=u@), t=12,..,N, 4.15)
sei; weiter moge beziiglich des Steuerbereiches geften: U = [—1, 1], und das Optimalititskriterium
(4.6) moge die Form

I= gfo(-\'(f — 1), u(t)) = max!
=1
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mit
St — 1), u(®)) = w?(t) — 2x*(t — 1) (4.16)

haben. SchlieBlich laute die Anfangsbedingung x(0) = 0.

Fiir diese Grundaufgabe sind die obigen vereinfachenden Voraussetzungen nicht erfiillt, denn die
Funktion f; ist offensichtlich nicht linear in x. Diese Verletzung der Voraussetzungen gestattet es uns,
eine optimale Steuerung der betrachteten Grundaufgabe anzugeben, fiir die die Hamiltonfunktion
nicht ihr Maximum auf U annimmt. Damit ist dann gezeigt, daB8 das diskrete Maximumprinzip fiir

diese Aufgabe keine notwendige Bedingung darstellt. Eine Steuerung mit den gewiinschten Eigen-
schaften ist

w*(t)=0, t=12,..,N—1, w*(N)=1. 4.17)
Sie ist auf jeden Fall zuléssig; ihre entsprechende Trajektorie lautet wegen (4.15) und der Anfangs-
bedingung

x*(#)=0, t=0,1,..,N—1, x*N)=1. (4.18)

Mit diesen Werten ergibt sich I = 1. Allgemein folgt aber fiir jede zuldssige Steuerung u(f) € U und
der ihr entsprechenden Trajektorie x(¢) unter Beriicksichtigung von (4.15) und (4.16) sowie der
Anfangsbedingung x(0) = 0 die Abschitzung

I=uw)+ g [w?(6) — 2u*(t — 1)]
[=

N N N—1

= (1) + Z () — 2 2wt — 1) = u’(N) — 3 u*(t)
=2 = =1

SB#N)=1.

Damit ist zunichst einmal gezeigt, daB die Steuerung (4.17) mit der ihr entsprechenden Trajektorie
x*(t) einen optimalen ProzeB der betrachteten Grundaufgabe bilden.

Was ergibt nun das diskrete Maximumprinzip? Fir die Hilfsfunktionen gilt allgemein p, = 1,
p1(N)= 0 und

nit—1

SNy,

Daher ergibt sich fiir die gewihlte Steuerung (4.17) und die ihr entsprechende Trajektorie x*(z)
n*@®)=0, t=12,.,N—1. 4.19)
Die Hamiltonfunktion lautet wegen (4.15) und (4.16)
H @), x(t — 1), u(t)) = [12(t) = 2x*(t — D]+ py(t) u(t).

Daher folgt fiir die der optimalen Steuerung (4.17) entsprechenden Trajektorie (4.18) und der zu-
gehorigen Losung (4.19)

max I (P*(t), x*(t — 1), y) = maxw? =1, t=1,2,..,N—1,
u€U utU

wogegen andererseits
FEP*(t), x*(t — 1), u*¢t) =0, t=1,2,.,N—1,

gilt. Damit ist aber das Maximumprinzip firr diese Grundaufgabe auf den Stufen = 1,2,..., N — 1
nicht erfiillt.
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Andern wir die zu Beginn des Beispiels formulierte Grundaufgabe nun einmal so ab, daB die ver-
einfachenden Voraussetzungen erfiillt sind. Dazu geniigt es, (4.16) durch

Fiwle = 1, u@) = 120 — 2x(t — 1) @20)

zu ersetzen. Dann kann das diskrete Maximumprinzip angewendet werden und liefert den optimalen
ProzeB wie folgt: GemiB (4.10) finden wir

plt—1)=—2, t=12..,N.

Zusammen mit p,(N) = 0 liefert das die Hamiltonfunktion
HPE),x(t — D, u)=u®—2x(t — 1) —2u, t=1,2,..,N—1,
JEP(N), x(N — 1), u) = u* — 2x(N — 1).

Damit folgt aber unmittelbar
) 3—=2x(t —1), t=12,..,N—1,
max H (P(£), x(t — 1), u) =
e PO =D, ) {1 —2x(N— 1),
wobei
w*(t)=—1, t=1,2,..,N,

gewahlt werden kann. Aus (4.15) findet man damit die dieser Steuerung entsprechende Trajektorie
x*(t)= —1,t=1,2, ..., N, mit dem Anfangszustand x(0) = 0. Beide zusammen stellen den opti-
malen diskreten Prozef der gednderten Aufgabe dar.

4.3. Dynamische Optimierung

Zur Losung von Optimierungsaufgaben, insbesondere fiir diskrete (mehrstufige)
dynamische Modelle, hat sich neben dem Maximumprinzip die Methode der dyna-
mischen Optimierung bewihrt. Der Grundgedanke dieser auf dem Optimalprinzip
von Bellman beruhenden Methode besteht darin, die optimalen Werte nicht fiir alle
Variablen eines Modells zugleich, sondern nacheinander fiir die einzelnen Stufen
des Modells aufzusuchen. Diese Vorgehensweise hat eine betriichtliche Senkung des
Rechenaufwandes zur Folge.

Die Methode der dynamischen Optimierung ist auf einen sehr breiten Kreis von
Modelltypen und Problemstellungen anwendbar. Es konnen sowohl diskrete als auch
stetige Modelle bearbeitet werden, und die Schaltungsstruktur der Stufen im Gesamt-
modell kann kompliziert sein. Nebenbedingungen fiir die Steuer- und Zustands-
variablen, auch von komplizierter Art, stellen im allgemeinen kein Hindernis fiir die
Anwendbarkeit der Methode dar, ja das Vorhandensein solcher Restriktionen wirkt
sich oft giinstig auf den rechnerischen Aufwand aus. Wegen des zyklischen Charak-
ters des Rechenablaufs ist die dynamische Optimierung gut fiir eine Programmierung
geeignet. .

Diese Aufzahlung von Vorteilen darf aber nicht dazu fithren, in der dynamischen
Optimierung eine ideale Methode zu sehen, die sich auf jedes noch so hochdimensio-
nale und komplexe Problem ohne Schwierigkeiten anwenden 1463t. Grenzen der prak-
tischen Anwendbarkeit werden vor allem durch den mit der Zahl der Variablen stark
ansteigenden rechentechnischen Aufwand, d.h., Bedarf an Speicherplatz und Rechen-
zeit, gesetzt.
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Im Abschnitt 4.3.1. werden die Grundlagen der dynamischen Optimierung zu-
sammengestellt. AnschlieBend werden verschiedene Erganzungen und Erweiterungen
der Methode besprochen, die fiir ihre Anwendung auf praktische Problemstellungen
wichtig erscheinen. Dabei wird Wert darauf gelegt, die Handhabung der Algorith-
men an einfachen Beispielen zu demonstrieren, die der Leser mit vertretbarem Zeit-
aufwand nachrechnen kann.

43.1. Z tellung der Grundl

-}

Grundaufgabe der optimalen Steuerung’fiir ein N-stufiges reihenférmiges System:

Wir betrachten ein System, das aus N in Reihe geschalteten Teilsystemen (Stufen)
besteht (Abb. 4.1b). Dabei bedeutet x, den Vektor des Austrittszustandes der Stufe

u u, u

N

:

Stufe Stufe | Stufe o |Stufe
Xy [N X X L0 X% 0T K X T

Bild 4.1b) System aus N in Reihe geschalteten Stufen

-1 u

S—
-
(-~ =

Nr. n, und w, den Vektor der auf Stufe n einwirkenden SteuergroBen. In bezug auf
dieses System wird folgende Aufgabe gestellt, die wir als Grundaufgabe der optimalen
Steuerung bezeichnen wollen:

Gegeben seien

— fiir alle Stufen Modellgleichungen (Transformationsgleichungen) der Form?!)

Xp = T (Xpi15 W), n=12,..,N; (4.21)
— zulassige Bereiche fiir die Steuer- und Zustandsvektoren
%€ X, WEU, n=12.,N; (4.22)
— der Anfangszustand
Xy = €. (4.23)

Gesucht werden
— aus der Menge der zuldssigen Steuerungen diejenigen optimalen (uf, ..., w¥), fir
die gilt

N
G = 3 G,(Xni1, u,) = max! (4.24)
n=1
- die zugehdrigen optimalen Zustinde (x3, ..., x¥).

1) Auf die gegeniiber den fritheren Abschnitten geidnderte Bezeichnungsweise wurde schon in Zu-
sammenhang mit den Formeln (4.7-4.9) hingewiesen. Insbesondere wird im folgenden » (frither
Dimension des Zustandsraumes) zur Bezeichnung der Stufennummer verwendet, dafiir gibt s die
Dimension von Zustandsvektoren an.



4.3. Dynamische Optimierung 59

Diese Aufgabenstellung ist noch sehr allgemein. So ist offengelassen, von welcher
Form die Modellgleichungen (4.21) sind. Diese miissen nicht unbedingt in analyti-
scher Form vorliegen; es kann sich z.B. auch um eine tabellarisch gegebene ein-
deutige Zuordnung von Werten (X,4;, U,) Zu X, handeln, analoges gilt fiir die Sum-
manden der Zielfunktion (4.24). Die Art der Beschrinkungen (4.22) ist ebenfalls
offengelassen, die Zustands- und Steuerbereiche X, bzw. U, konnen stetige oder auch
diskrete Punktmengen sein usw.

Der Algorithmus der dynamischen Optimierung:

Zur Losung der formulierten Grundaufgabe soll nun die Methode der dynamischen
Optimierung angewendet werden. Grundlage dieser Methode ist, wie schon erwéhnt,
das Optimalprinzip von Bellman, das in bezug auf die Grundaufgabe folgendermafBen
formuliert werden kann:

Ist (ui, ..., wx_,uX) eine optimale Steuerung des N-stufigen Systems mit dem
Anfangszustand Xy ., = &, und ist X% der zugehirige Ausgangszustand von Stufe N,
so ist gleichzeitig (ay, ..., u}_;) eine optimale Steuerung des um die Stufe N verkiirz-
ten Systems mit dem Anfangszustand X%.

Es sei darauf hingewiesen, daB dieses Prinzip beweisbar ist, also einen mathemati-
schen Satz darstellt. Anschaulich besagt das Prinzip, wenn man es auf die verkiirzten
Systeme wieder anwendet: Die Losung der Grundaufgabe fiir die N-stufige Kette ent-
hilt die optimalen Steuerungen aller kiirzeren Ketten (die entstehen, wenn man von
links her eine oder mehrere Stufen wegstreicht), vorausgesetzt, daB man als deren
Anfangszustand den jeweiligen optimalen Zustandsvektor der Gesamtlosung ver-
wendet.

Der in Ausnutzung dieser Eigenschaft entwickelte Algorithmus der dynamischen
Optimierung umfaBBt zwei Arbeitsabschnitte, von denen jeder aus N gleichartigen
Schritten besteht.

1. Arbeitsabschnitt: Die Einbettungstechnik*)

Beginnend mit Stufe | wird ,.entgegen der Stromrichtung® folgende Rekursions-
formel der Reihe nach fiir n =1, 2, ... N angewendet:

Jo(Xni1) = max (G (Xns15> W) 4 frmy (T (Xngr, W)}
u

n

Xo41 € Xog1, W, €U, (4.25)
Dabei ist zu beachten
fulx) =0,  Xyyy = le}. (4.26)

In jedem Schritt der Einbettungstechnik gewinnt man zwei Funktionen:

Jn(Xns1) gibt den Maximalwert des zur Stufenfolge 7 -+ 1 gehdrenden Teils der Ziel-
funktion (4.24) in Abhédngigkeit vom Eingangszustand x,,; an,

u,(x,4;) gibt die zugehorige Steuerung in der Stufe # an, ebenfalls in Abhéngigkeit
* vom Eingangszustand X, in die Teilkette.

1) Diese Bezeichnung geht auf Bellman zuriick (imbedding-technique).
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Die Optimalfunktion f;,(X,;) wird nur fiir den folgenden Schritt bendtigt, w,(X,+)
mub fiir den zweiten Abschnitt des Algorithmus aufgehoben (z.B. als Tabelle abge-
speichert) werden. Im letzten Schritt ergibt sich der Zahlenwert fy(Xy+1) = fv(@),
dies ist der gesuchte Optimalwert der Zielfunktion G. Die zugehdrige Steuerung
uy(@) = ul ist die tatsichliche optimale Steuerung der gesuchten Gesamtlosung in
der Stufe N.

2. Arbeitsabschnitt: Z stellen der optimalen Lisung')

Durch abwechselnde Benutzung der Modellgleichungen (4.21) und der mit der Ein-
bettungstechnik ,,auf Vorrat* berechneten und (z.B. als Tabellen) abgespeicherten
Funktionen w,(x,,) wird, diesmal ,,in Stromrichtung®, durch die Stufenkette hin-
durchgerechnet. Das erfordert wiederum N Schritte:

w; = (X5 11), n=N,N—1,..1, )
x5 = To(Xh 41, UR), (4.27)

@

'Y
ni=1; 4 (x;)=0
\ .
Fiir CPunktgitter) Xpu; € Xpsr
errechnen und abspeichern: S
£
(@) 75(x”,])=max[ﬁ,,(x,,‘,,uﬂ)'f,,_f(T,,(x,,,,,u,,])j é
(D) up (Xpyp) :§
[N
:
[/ ]
(a) Aus , Tabelle der Stufe n* (Interpolation) |5
* . * | ==
Up = Up(xp,) | S5
(b) Mittels Modellgleichung : | EE
Xyt Ty Xy 4 E5
¥ | 85
NS
( n=17? D—H’{ ni=n-1 }———‘
I R

Bild 4.2 Ablaufplan des Algorithmus der dynamischen Optimierung

1) In der englischsprachigen Literatur wird fiir diesen Abschnitt die sehr treffende Bezeichnung
,table-entry-technique* verwendet.
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wobei als Anfangswert zu benutzen ist:
XNi1=e. (4.28)

In Abb. 4.2 ist der Algorithmus nochmals in kurzer Form als Ablaufplan dargestellt.
Man erkennt deutlich den zyklischen Charakter, der eine Programmierung erleich-
tert.

Die Arbeitsweise des Algorithmus soll nun noch anhand eines einfachen Bei-
spiels demonstriert werden.

Beispiel 4.3: Der Druck eines Gases soll durch N hintereinander geschaltete Kompressoren von p,
auf p, erhoht werden. Die Anfangstemperatur sei ©. Nach jeder adiabatischen Kompression werde
das Gas isobar wieder auf diese Temperatur abgekiihlt. Die Druckstufen sollen so gewahlt werden,
daB die zur Kompression insgesamt benétigte Energie minimal ist. Um diese Problemstellung in die
Form der Grundaufgabe zu bringen, fithren wir x, = p, als Zustandsvariable und u,, = p,/p,+: als
Steuervariable ein (die Vektoren x und u sind hier also eindimensional). Damit erhalten wir

— Modellgleichungen

Xn = Tpn(Xn41, Up) = Xp41Up; n=12,..,N,
— zuldssige Bereiche

1S < pif¥nya; n=12,.,N,
— den Anfangszustand

XN+1 = Pas

— das Optimierungsziel

N N mRd
G =3 Gplxns, p) = 3
n=1 1 a

n=

(4,* — 1) = min!

G, stellt den Energieverbrauch der Stufe n dar. m bezeichnet die Gasmenge, R die Gaskonstante, das

ki cp—c . . .
Verhiltnis @ = —P % der spezifischen Wirmen werde als konstant angenommen. Wir setzen
C,
P

nochK:.m_aRQ.

Fiir die Durchfiihrung der Einbettungstechnik muB in unserem Fall in der Formel (4.25) natiirlich
,,max‘* durch ,,min* ersetzt werden. Im ersten Schritt ist das Problem

filxy) = min (K(u,® — 1)},

1= < pyfx,, X1 = Xg* Uy = P,

zu losen. Weil p, vorgegeben ist, besteht der Steuerbereich fiir jeden x,-Wert nur aus einem Punkt:
u; = py/x,. Wir erhalten demnach

= = P\
uy(xg) = py/xe,  filxe) =K x_z —1].
Im zweiten Schritt (Hinzunahme der Stufe 2) besteht die Aufgabe
fix) = min {KW —D+K l(ﬂ)“ _ ll}
Uy Xo |

1< uy < pyfx;.
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Wir setzen zunéchst x, = x; « #, ein und suchen dann das Minimum durch Nullsetzen der Ableitung
des Klammerausdruckes nach u,

Kau,*™* — Ka (ﬂa) cuym(@t) =0,
X

So erhalten wir
1

a
2
‘1]

Entsprechend ergibt sich fir n = 3,..., N — 1
1

t, (Xjp41) = (L>T, SoGengr) = nk [(——pl )T— 1 ]

Xn+1 Xnt1

und im letzten Schritt
1

a
ay oy =t = (P5) ¥, frorid = v = NK[(A) ¥ ]
Po Pu
Damit ist die Einbettungstechnik abgeschlossen.
Im zweiten Arbeitsabschnitt wird nun durch abwechselnde Verwendung der Modellgleichungen
und der Funktionen u,(x,,) die optimale Losung zusammen gestellt. So ergibt sich

— im ersten Schritt:
1

/ N Ne—
u?{,=(§‘—) Vooxg = pacug. dh, py="ypY 7o

o
— im zweiten Schritt:

wh_y = uy_1(x%) = (-’l) N :
Py

J | P
Noa=xFud_, dh, pyog= Vpitop?s

— allgemein:
1

r = (k) = <.§‘_) V" (unabh. von 7)
«

Ne—_
Po= VPt pY s n=1,2,.,N.

Bemerkungen zur numerischen Durchfithrung und zum rechentechnischen Aufwand:

Bei der Anwendung des Algorithmus auf praktische Probleme wird es oft nicht
maoglich sein, die Funktionen f,(X,,+;), w.(X,+;) in geschlossener Form zu berechnen.
Man muf} vielmehr meist so vorgehen, daBl man den Zustandsbereich X,,,, durch ein
Punktgitter iberdeckt, vgl. Abb. 4.3, und dann fiir jeden Gitterpunkt gemi8 Formel
(4.25) die Maximierung vornimmt. (Hierbei ist zu betonen, daB} durch den Algorith-
mus der dynamischen Optimierung nicht festgelegt ist, welches Suchverfahren zur
Bestimmung des Maximums benutzt wird.) Die so erhaltene Menge diskreter f,-
Werte wird zusammen mit den zugehorigen u,-Werten als Tabelle der Stufe n abge-
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Xn+1,2
a1 1
Xost - Xps1
I 2 :
|
<| ot === Xpy
& ,JA“
—be ? -
RN
I s Tx[(zz,ﬂl)(az'lﬂ
. 1 Rner
‘ a4y 1
: - Xns1,1
N Tabelle der Stufe n
7 (a+1(qy#1
Gitterpunkte xfj X,,[f{ ° 0. ",[,—40’7’ A
Werfe der [1] 2
Funktion fy(Xpep) | o Xner) | 1 (Xpeg) tt
zugehorige Vektoren | il . .
Uy (Xp,7) ] Uyt | U Gt : |
| |

Bild 4.3 Uberdeckung des zuldssigen Bereiches X, eines (zweidimensionalen)
Zustandsvektors x,,;; durch ein Punktgitter und Inhalt der ,,Tabelle der Stufe n*

speichert. Bei dem in (4.25) erforderlichen Zuriickgreifen auf f,_; und beim Hinein-
gehen in die Tabelle u,(x,.,;) wihrend des zweiten Arbeitsabschnittes mufl dann ofter
interpoliert werden, wobei i.a. lineare Interpolationsformeln verwendet werden.

Man kann sich vorstellen, da8 mit zunehmender Dimension der Vektoren x,, und u, sowohl der
Umfang der abzuspeichernden Tabellen als auch die Rechenzeit sehr stark ansteigen. Da sich die
Grenzen fiir die praktische Anwendbarkeit der dynamischen Optimierung hauptsichlich vom rechen-
technischen Aufwand her ergeben, ist es niitzlich, die GréBenordnung dieses Aufwandes abzuschiit-
zen. Zu diesem Zweck nehmen wir an, daB jeder Zustandsvektor x,.; des N-stufigen Systems s
Koordinaten, jeder Steuervektor u, r Koordinaten besitzt und daB die durch (4.22) festgelegten zu-
lassigen Bereiche X, s-dimensionale Quader sind, Abb. 4.3. Zerlegt man die i-te Kante des Quaders
in g; Teile, i = 1...s, so entsteht ein Gitter aus

A=@+D @+ @+
Punkten. Im #-ten Schritt der Einbettungstechnik werden der Reihe nach fir jeden Gitterpunkt
errechnet
— ein Zahlenwert fiir die Optimalfunktion SuXnt1) s
— r Koordinaten des zupehérigen Vektors U, (Xp41)..
Die ,,Tabelle der Stufe n* bendtigt deshalb 4 Speicherpiﬁtze fir die f,-Werte und rA4 Plitze fur die

Vektoren u,,. Letztere werden wihrend der Einbettungstechnik nicht weiter verwendet; man benotigt
sie erst wieder im zweiten Abschnitt des Algorithmus. Man kann die u,-Tabellen deshalb zunichst
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auf externen Speichermedien der Rechenanlage (z.B. Magnetbindern) deponieren. Im Gegensatz
dazu werden die entstandenen f,-Werte gemdB Rekursionsformel (4.25) bereits im néchsten Schritt
wieder gebraucht (danach allerdings nicht mehr). Zusammenfassend kann man sagen, daB folgen-
der Bedarf an Speicherplatz besteht:

Ngg=2-4 Plitze im schnellen Speicher (Kernspeicher) der Anlage, nidmlich A fir die ent-
stehenden f;,-Werte und A4 fiir diejenigen des vorangegangenen Schrittes,

Ny~ N-r-A Plitze im langsamen (externen) Speicher der Anlage fiir die u,-Tabellen der ins-
gesamt N Stufen. -

Eine grobe Abschitzung fiir die Rechenzeit 146t sich folgendermaBen gewinnen: Der bestimmende
Anteil kommt zweifellos durch die punktweise Berechnung der Werte f;,(x;,41), Un(X,41) Zustande.
Wird fiir jeden Rechengang die Zeit At bendtigt, so ergibt sich

T~At-N-A.

Aus den so entwickelten groben Abschitzungsbeziehungen lassen sich folgende
Faustregeln ablesen (wenn man noch die Teilungen a; der Quaderkanten als ungefahr
gleich voraussetzt).

— Der Bedarf an schnellen Speichern wéchst exponentiell mit der Dimension s der
Zustandsvektoren. Von der Zahl der Stufen héngt er nicht ab. (Das exponentielle
Anwachsen wird ersichtlich, wenn man in der obigen Formel fird g, = a, = -+ =
a; = a setzt.)

— Der Bedarf an langsamen Speichern wéchst ebenfalls exponentiell mit s, zur Stufen-
zahl N und zur Dimension der Steuervektoren ist er proportional.

— Der Bedarf an Rechenzeit nimmt exponentiell mit s zu und ist proportional zur
Stufenzahl.

Wie man bemerkt, ist als ,,kritische GroBe* hinsichtlich der praktischen Durchfiihr-
barkeit der dynamischen Optimierung die Dimension der Zustandsvektoren anzu-
sehen, wihrend Stufenzahl N und Zahl der Steuergr68en r den Bedarf an schnellen
Speichern, der immer noch den ,,Engpal* bei den verfiigbaren Rechenanlagen bil-
det, wenig beeinflussen.

Die Abschidtzungen machen die Erfahrungstatsache verstiandlich, daB Anwendun-
gen der dynamischen Optimierung iiber Probleme mit mehr als 3 bis 4 Zustands-
variablen je Stufe zur Zeit normalerweise nicht hinausgehen.

4.3.2. [Einige andere Aufgabenstellungen

Die in der Praxis im Zusammenhang mit mehrstufigen Systemen auftretenden
Optimierungsprobleme konnen in verschiedenster Weise von der Form der Grund-
aufgabe abweichen. Aufgaben, bei denen die Zielfunktion nicht die Summenform
(4.24) hat, werden im Abschnitt 4.3.3. besprochen. Die Ausdehnung der Methode
auf den Fall, daB die Struktur der Stufenkopplung nicht eine reine Reihenschaltung
darstellt, ist Gegenstand des Abschnittes 4.3.4. Zunéchst wollen wir auf einige nicht
so einschneidende Abwandlungen der Grundaufgabe eingehen und die entsprechen-
den Modifikationen des Algorithmus kennenlernen.
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Minimierungsaufgaben :

Wenn die Abweichung zur Grundaufgabe nur darin besteht, daBl anstelle von
(4.24) die Forderung gestellt ist, das Minimum von G zu bestimmen, so ist dies gleich-

bedeutend damit, G’ = —G zu maximieren. Auf dasselbe lduft es hinaus, wenn man
statt (4.25) als Rekursionsformel
Jo(Xngr) = min (G, (Xp415 W) + fro1 (Tn(Xnt1, )} (429)
Un
anwendet.

Bestimmung des Optimums als Funktion des Anfangszustandes:

In der Grundaufgabe war angenommen, daB der Anfangszustand zahlenméBig
vorgegeben ist: Xy.; = «. Bei praktischen Problemen wird man oft daran interes-
siert sein, die optimale Losung fiir verschiedene denkbare Xy, zu kennen, um auch
bei eintretenden Abweichungen von « die optimale Entscheidung treffen zu kénnen.
In diesem Fall ist dann anstelle von (4.23) fiir xy,, ein bestimmter Wertebereich
Xyi vorgegeben, und es besteht die Aufgabe, den Optimalwert von G sowie die
optimalen Steuerungen fiir alle Punkte dieses Bereiches zu ermitteln:

G* = fy(xy+1);  WF =w (Xy4);  Xya € KXo

'Am Algorithmus dndert sich dabei nichts. Man hat lediglich im letzten Schritt der
Einbettungstechnik die Maximierung iiber uy nicht nur fiir einen Wert xy,; = «, son-
dern fiir ein ganzes Punktgitter von Xy ,,-Werten durchzufiihren.

Optimierung iiber den Anfangszustand:

In anderen Fillen ist der Anfangszustand Xy, nicht als fiir den ProzeB gegeben
zu betrachten, sondern er soll, ebenso wie die u,, optimal bestimmt werden. Xy,
spielt dann die Rolle von zusétzlichen Steuervariablen, und man muf an den letzten
Schritt der Einbettungstechnik noch eine Maximierung

G* = max {fy(xv+1)}; X1 € Xivirs (4.30)
XN41
anschlieBen.

Bestimmung des Optimums als Funktion des Endzustandes:

In Abweichung zur Grundaufgabe liege der Fall vor, daB nicht der Anfangs-
zustand Xy, sondern der Endzustand x, des Prozesses festgelegt ist. Bei der Suche
nach dem Maximum von G sind dann alle die Steuerungen zugelassen, die den
ProzeB von irgendeinem Anfangszustand Xy.; in den festgelegten Endzustand x,
fithren. Jetzt ist also

G* = fn(x,)

gesucht. Auch hier kdnnte verlangt sein, dies nicht nur fiir einen x,-Wert, sondern
fiir einen ganzen Bereich X; moglicher Werte zu tun.

5 BieB, Prozesse
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Der Unterschied zwischen diesem Problem und der frither besprochenen Bestim-
mung des Optimums als Funktion des Anfangszustandes liegt nur in der ,,Richtung®
des Prozesses. Wenn man sich ndmlich in Abb. 4.1b) die zwischen den Stufen verlaufen-
den Pfeile umgekehrt denkt, so wird aus dem Endzustand x; der (jetzt gegebene) An-
fangszustand, und aus dem Anfangszustand Xy, wird der Endzustand der Stufen-
kette. Die Richtung des Prozesses kommt aber im mathematischen Modell (4.21—4.24)
nur durch die dort gewdhlte Form der Modellgleichungen (4.21) zum Ausdruck,

X, = Tp(Xni1, W),

die so geschrieben sind, daB jeweils der Ausgangszustand der Stufe als Funktion des
Eingangszustandes und der Steuerung vorliegt. Wenn es also gelingt, die Beziechungen
(4.21) nach x,,; aufzuldsen, so geht unser jetziges Problem genau in eine Aufgabe
des schon besprochenen Typs iiber und kann auf die iibliche Weise behandelt werden.
Man bezeichnet diese Verfahrensweise als Zustandsinversion. Formal ergibt sich
dabei folgender Rechengang:

— Auflosen der Modellgleichungen (4.21) nach den EingangsgroBen:

X, = Tn(Xnt1 W) = Xngy = 0,(Xp, 0,); n=1,2,..., N, (4.31)

— Umschreiben der Zielfunktion:
Gn(on(xrn “n)) un) = Fn(Xn, l.ln); n=1,2, ey N, (432)

— Anwendung der sinngemé8 umgeschriebenen Rekursionsgleichungen. Anstelle von
(4.25, 4.26) haben diese jetzt folgende Form:

<]7n(xn) = n‘llax {F n (an “n) + @Pni1 (on (Xn, “n))} s

n

X0 € Xy WE€Usw n=NN-1,.,1, gyaGy)=0. (433

Diese Formeln sind jetzt aber der Reihe nach fiir N, N — 1, ..., 1 anzuwenden; d.h.,
wenn wir Abb. 4.1b) zugrunde legen, verlduft die Einbettungstechnik jetzt ,,in Strom-
richtung®. Man spricht deshalb auch von einer Optimierung durch Vorwidrtsrekur-
sion.

- Entsprechen;:l diesem Unterschied lduft die zweite Phase des Algorithmus, die Zu-
sammenstellung der optimalen Losung, diesmal entgegen der Stromrichtung.

Ein solcher Ubergang zur Vorwirtsrechnung erscheint im Prinzip einfach. Doch darf
man natiirlich die Schwierigkeiten nicht iibersehen, die sich beim Umkehren der
Modellgleichungen zeigen konnen. Die notwendige eindeutige Umkehrung der Trans-
formation (4.21) wird nicht immer méglich sein. Eine Rolle spielt auch die Dimension
der Zustandsvektoren, die ja fiir x,,;; und x,, keineswegs immer gleich sein muf3. Neh-
men wir an, es sei

dim X, =r, dimx,=ys,
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und denken wir daran, daB (4.21) eine Vektorgleichung ist, die ausfiihrlicher geschrie-
ben folgendes beinhaltet:

X1 = Tny(Xnga, 150> Xty rs Un)s

Xnp = Tog(nt1,15 w005 Xnt1,rs Un)s (439

Xn,s = Tns(Xns1,1500 > Xnt1,r5 Wn)-

Wenn wir eine Zustandsinversion durchfithren wollen, so ist also ein System von s
Gleichungen nach den x,., ; aufzuldsen.

Im Falle r > s (mehr Variable am Eingang als am Ausgang der Stufe), ergibt sich
etwa, falls eine Auflosung iiberhaupt moglich ist,

Xn+1,i = 6n,i(xn,1 seees Xnyss Uny Xngg s41s0ees xn+1,r): i= I; 2,05 s, (435)

d.h., neben u, treten jetzt rechts (r — s) GroBen X,41 641+ Xu41,, auf, die auch als
Steuervariable zu behandeln sind.

Im Falle r < s (weniger Variable am Eingang als am Ausgang) kann man etwa die
ersten r Gleichungen von (4.34) benutzen, um nach den x,., ; aufzuldsen:

Xn41,i = on,i(xn,l’“'a Xn,rs “n): i=1,..,r. (4'36)

Setzt man dies in die verbleibenden (s — ) Gleichungen von (4.34) ein, so entstehen
Beziehungen

& (Xngses Xnss Un) =0, j=1,..,(s—71), (4.37)

die als zusitzliche Nebenbedingungen fiir x,,, u, zu behandeln sind.

Im Falle r = s dndert sich bei einer Inversion die Zahl der Steuervariablen und
Nebenbedingungen nicht.

Die Mdoglichkeit, die Berechnungsrichtung der dynamischen Optimierung umzu-
kehren, hingt also davon ab, ob die Zustandsmversmn durchfithrbar und vom
Rechenaufwand her zweckmaBig ist.

Falls eine Zustandsinversion nicht moglich ist, kann fy(x,) auch durch die normale
Riickwirtsrechnung ermittelt werden. Man muB dann allerdings bei den Schritten
der Einbettungstechnik x, als zusitzlichen Parameter mitfithren: Vor dem ersten
Schritt wird zundchst mittels der Modellgleichung

x; =T (X2, w)

der Endzustand x; in den zur Stufe 1 gehorigen Summanden der Zielfunktion ein-
gefithrt. Nehmen wir an, u, habe p Koordinaten

'l = (”1,1 ”1,p)‘

Wenn wir die fiir » = 1 aufgeschriebenen Gleichungen (4.34) nach den u, ; aufldsen,
so ergibt sich

—im Fall s=p

U =X, Xp); G (X, @(xg, Xo)) = 61("2, Xy).
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— im Fall s > p (durch Auflésen der ersten p Gleichungen)
u = w(xl,la"" X1,p» Xo);  Gi(Xp, w) = G_l(x27 Xg,100 X1,p)-

Die restlichen (s — p) Gleichungen von (4.34) liefern zusétzliche Nebenbedingun-
gen fir x,, X,.

—im Fall s <p

u,i=o(X,X), i=1,.,s,

G (Xo, @15y O,y Uy i1 50eny Upp) = Gy (x,, Xy, Uy 5415005 Upp)e
Der erste Schritt der Einbettungstechnik, Formel (4.25), liefert dann

fi(Xe, X)) = muax (G (xe, Xy, W)}, (4.38)
wobei im Fall s = p die Maximierung entfillt, wiahrend im Fall s < p nur noch iiber

einen Teil der Steuervariablen zu maximieren ist. Die iibrigen Schritte verlaufen dann
wie gewohnt, wobei Funktionen

C fi(nss X)), W (Xngrs X)), n=1,2,.., N, (4.39)
entstehen. Zuletzt erhilt man mittels
Su(xp) = max {fy (Xy+1, X1)} (4.40)
XN+1

die gesuchte Optimalfunktion. Das Unangenehme bei dieser Vorgehensweise besteht
aber darin, daBl die Tabellen der Einbettungstechnik jetzt auBer von x,; auch noch
von X, abhingen; sie sind also umfangreicher zu berechnen und abzuspeichern. Dies
kann ein ernstes Hindernis fiir die Durchfiihrbarkeit der Methode werden.

4.3.3. Probleme, bei denen die Zielfunktion keine Summenform hat

Bei der im Abschnitt 4.3.1. formulierten Grundaufgabe war fiir die Zielfunktion G
die Summenform (4.24) vorausgesetzt. Wenn wir G als ,,Gewinn* oder ,,Ertrag® des
zu optimierenden Systems auffassen, so bedeutet dies, daB sich die in den einzelnen
Stufen erzielten Gewinne additiv zum Gesamtgewinn zusammensetzen. Dieser Fall
wird in den praktischen Anwendungen tatséchlich oft vorliegen, wobei die Abgren-
zung der einzelnen Stufen durch die gegebene Struktur des Systems nahegelegt wird.
Das muB} aber nicht immer so sein. Es werden Fille auftreten, bei denen es zunichst
viele Moglichkeiten gibt, das System in Stufen aufzuteilen, d.h. eine Dekom-
position fiir die rechnerische Behandlung vorzunehmen. Es ist dann eine Frage der
ZweckmaBigkeit, welche Variante man benutzt, und zu einzelnen Varianten kann
eine Zielfunktion gehoéren, die von der Summenform abweicht. Einige solche Fille
wollen wir im folgenden besprechen.

Optimierung des Endzustandes:

Im Prinzip sehr einfach zu behandeln ist der Fall, daB das Optimierungskriterium
im Gegensatz zur Grundaufgabe die Form hat

G = D(x,) = max! (4.41)
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Wir sprechen dann von einer Optimierung des Endzustandes.

Dieser Problemtyp 148t sich ohne Schwierigkeit auf die Grundaufgabe zuriickfiihren.
Setzt man die Modellgleichung der Stufe 1

x; = T(x,, u))
in (4.41) ein, so hat man mit
D(T, (x5, W) = G, (Xp, wy),
G,(Xp11,w,) =0, n=23,..,N, (4.42)

das Problem bereits auf die Form der Grundaufgabe umgeschrieben.

Verallgemeinerte Dekomposition:

Wir betrachten jetzt folgende Problematik: Fiir die mathematische Behandlung
eines Systems ist eine Zerlegung in N Stufen entsprechend Abb. 4.1b) ins Auge gefaBt
worden. Es soll eine Optimierung beziiglich der Variablen u durchgefiihrt werden,
die zu maximierende Zielfunktion G setzt sich in gegebener Weise aus den Gewinn-
funktionen G, (X,41, u,) der einzelnen Stufen zusammen.

G = F[Gy(X, W), Gy (X3, W), ..., Gy (Xy 41, Uy)] = max! (4.43)

upeuy

Bei der Optimierung sind Nebenbedingungen (4.21—4.23) zu beachten. Es wird nun die
Frage gestellt, unter welchen Voraussetzungen man die Optimierungsaufgabe (4.21
bis 4.23, 4.43) zerlegen kann in N den einzelnen Stufen zugeordnete Teilprobleme,
wobei in jedem Teilproblem jeweils nur iiber die Steuervariablen der betreffenden
Stufe zu maximieren ist. AuBerdem wird natiirlich die Form der Teilprobleme ge-
sucht.

Fiir den Spezialfall, daB G eine Summenform (4.24) hat, wissen wir bereits, dafl
eine solche Zerlegung moglich ist, wobei die Formeln (4.25, 4.26) die Teilaufgaben be-
schreiben. Fiir den allgemeinen Fall (4.43) wurde von Mitten [18] eine hinreichende
Bedingung gefunden. Um sie formulieren zu konnen, erinnern wir uns zunéchst an
den Begriff der Monotonie einer Funktion:

Die reellwertige Funktion G = F(g) sei auf einer Teilmenge M der reellen Zahlen
definiert. Sie heiBt dort monoton nicht abnehmend, wenn gilt:

Ausg < g’ folgt stets F(g) = F(g');8.8' € M. (4.44)

Wir fithren noch folgenden Begriff ein:

Definition 4.4: Die reellwertige Funktion G = F(g,, g, ..., gx) heifle separabel beziig-
lich gy , wenn zwei reellwertige Funktionen @y, Fy_, existieren, so daf gilt:

F(g1, g2, - ) = Py [gn, F,\‘—1(gp s D] (4.45)
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Zur Erlduterung ein Beispiel: Fiir F(gy, g2, 83, &) = &4 + &3 (g2 + &) gilt mit
Dy=g+F; Fy=g (g+g)

die Eigenschaft (4.45), d.h., F ist beziiglich g, separabel. Dagegen ist F= g4+ &3+ &+ & offenbar
nicht separabel beziiglich g,.

Unter Verwendung der Begriffe Monotonie und Separabilitdt kann nun folgender
Satz hinsichtlich des Optimierungsproblems (4.21—4.23, 4.43) bewiesen werden:

Satz 4.2: Ist G = F(G,, G, ..., Gy) separabel beziiglich Gy ,
F(Gy, ..., Gy) = Py Gy, Fy1(Gy, .., Gy )]s (4.46)

und ist weiter @y [Gy, Fy_,] fiir jeden Wert von Gy eine monoton nicht abnehmende
Funktion des Arguments Fy_;, so gilt

max F(Gy, ..., Gy) =

Up, s, Uy
max Dy [Gy (Xy11,Wy), Max Fy_(Gy(Xe, W), ooy Gy oy (Xy, uy )] (4.47)
uy UpsesUyog

Der Satz besagt, daB unter den genannten Voraussetzungen die Optimierung in zwei
Schritten ausgefiihrt werden kann. Im ersten Schritt werden die optimalen Steuerun-
gen der Stufen N — 1, ..., 1 ermittelt, wobei sich als Ergebnis eine Funktion Fy_,(Xy)
ergibt. Danach wird im zweiten Schritt durch

max Py [Gy (Xy 415 Wy), Fi—1 (Ty (X1, u))] (4.48)
“N \
die optimale Steuerung der Stufe N separat berechnet. Man hat damit das Gesamt-
problem in zwei dquivalente Teilprobleme zerlegt.

Der obige Satz zeigt, wie man die Optimierung eines N-stufigen Systems aufteilen
kann in die Optimierung der Stufe N und die Optimierung einer zur Stufenfolge
N —1, ..., 1 gehorigen Funktion Fy_;. Auf Fy_, kann der Satz nochmals angewendet
werden, wenn fiir diese Funktion wieder Separabilitit (beziiglich Gy_;) und die ent-
sprechende Monotonieeigenschaft vorliegt. In giinstigen Féllen erreicht man so tat-
sichlich die Zerlegung des Gesamtproblems in N den einzelnen Stufen zugeordnete
Teilaufgaben. Die Formulierung der zugehongen Rekursionsgleichung ist jetzt leicht
zu finden:

Vorgelegt sei also ein Optimierungsproblem (4.21—4.23, 4.43), wobei die Ziel-
funktion folgende Eigenschaften aufweist:

(a) F(Gy, Gy, ..., Gy) ist fortlaufend separabel, d.h., es existieren Funktionen.
Fy,Fy_y, ..., Fy, so daB gilt
Fo(Gy, Gy Gp) = B, (G, Frey (G oo Goy)l, n=N,N—1,...;2, (4.49)
Fy =F.

(b) D,[G,, F,—,] ist fiir jeden zuldssigen Wert von G, eine monoton nicht ab-
nehmende Funktion des Arguments F,_;,,n=N,N—1,...,2
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Entsprechend (4.47) kann dann folgende Rekursionsgleichung zur Losung der
N-stufigen Optimierungsaufgabe angewendet werden:

max Fi (G (X, w)); n=1,

u

Ja(Xns1) = max D, [GrKns1s W), fra(Trn(Xng1, W), =2, 3,..., N;

(4.50)
Xni1 € Xnv1;  Un € Up;
Xy = {e].
Im iibrigen unterscheidet sich der Rechengang nicht von dem im Abschnitt 4.3.1. ge-
schilderten Ablauf. Man hat also zunéchst die N Schritte der Einbettungstechnik mit-
tels (4.50) durchzufithren, anschlieBend die N Schritte der Zusammenstellung der

optimalen Losung, wobei ungedndert die Formeln (4.27, 4.28) zu verwenden sind.
Wir wollen die Rekursionsformeln noch an einigen Beispielen erldutern:

N
Beispiel 4.4: F(Gy, ..., Gy) = X Gp(X,41, u,). Fist fortlaufend separabel, denn man kann schreiben
n=1

DGy Frio1(Gys vy Gpod)] = G+ Fyy (4.51)

n—1
F,,=YG, n=N,N—1,..,2.
i=1
Die Monotonieeigenschaft ist erfiillt

Fia=F,

n—

1= G+ R =G, + F)_,. ) (4.52)
Aus (4.50) entsteht die wohlbekannte Rekursionsgleichung (4.25).

N
Beispiel 4.5: F(Gy, .., Gy) = II Gn(Xp+1,Un) . (4.53)
n=1 \

Auch diese Form ist fortlaufend separabel; man kann ndmlich setzen:
DGy Frs(Giy o Guod) = G oy,
Foy=Gp1:Gpq++ Gy n=NN-—1,.,2.
Die Monotonieeigenschaft ist sicher dann erfiillt, wenn gilt:
Gp(Xnt1, ) = 0 fiir alle zuldssigen Xp11, Uy, n=1,2,..,N.

Als Rekursionsgleichung ergibt sich aus (4.50) in diesem Fall:

max Gy (X,, uy); n=1,
uy

max Gy (X1, Un) * fo1 (Tn Kngr, Up)); = 2,3, .., N.
Un

Fonyn) = 454
Beispiel 4.6: F(Gy, -, Gy) = Gy(Xs5, Wy) + G3(Xq, Ug) + [Ga (X3, up) + Gy (%5, w))].
Hier kann man setzen:

F=F=G+F; F=GF; FR=G+HFh F=0.
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Die Monotonieeigenschaft ist erfiillt, wenn G;(x,, u;) = 0 fiir alle erlaubten x,, u;. Man erhilt die
folgenden Rekursionsgleichungen:

fi(xy) = max G(xp, uy),
g

foxg) = max [Gy(xg, up) + f1(Ta (X3, up))],

Sfi(x)) = n':‘ax [G5 (x4, ug) - £o(T5 (x4, w1,

s

Su(xs) = max [Gy (X5, ug) + f3(T4 (x5, up)].

Beispiel 4.7 : Auf vier Personengruppen, deren Stirke in Tabelle 4.1 angegeben ist, sollen 26 (gleich-
artige) Dinge ,,moglichst gerecht* verteilt werden. Als ideal wire diejenige Verteilung anzusehen,
bei der auf jede Person dieselbe Stiickzahl, nimlich 0,05 kiime. Nun sind die betreffenden Dinge
aber nicht teilbar, d.h., es kommt nur eine ganzzahlige Aufteilung in Betracht. Die ideale Verteilung
ist also nicht zu realisieren. Als ,,mdglichst gerecht* wird diejenige ganzzahlige Verteilung angesehen,
bei der die maximale Abweichung der tatséchlichen pro-Kopf-Zahl vom idealen Wert 0,05 moglichst
Kklein ausfallt.

Tabelle 4.1 Verteilungsproblem

Anzahl | Ideale Verteilung Optimale Verteilungen
Gruppe Personen | pro Kopf  Stiickzahl | pro Kopf  Stiickzahl | pro Kopf  Stiickzahl
n=I a,=131 | 0,05 6,55 0,046 6 0,053 7
I 89 | 0,05 4,45 0,045 4 0,045 4 .
jits 249 | 0,05 12,45 0,052 13 0,048 12
v 51| 0,05 2,55 0,059 3 0,059 3
X 520 26 26 26

Wir konnen diese Aufgabe als 4-stufiges Entscheidungsproblem darstellen, vgl. Abb. 4.4. Es
bedeuten

u, die der Gruppe n zugeteilte Anzahl von Dingen,
X, die den Gruppen 4 bis n insgesamt zugeteilte Stiickzahl.
Als Modellgleichungen haben wir also:
Xp = Tpn(Xpg1, Up) = Xpp1 + tp; n=1,2,3,4. (4.55)
Dabei sind folgende Beschridnkungen zu beachten:

x;=26; x;=0; u, = 0und ganzzahlig, n=1,2,3,4. (4:56)

e ) ) iy
U 1
Y Y Y
Gruppe Gruppe Gruppe Gruppe
v mn 1 I

Xe=0 Xy=Xstly Xg=X4*U3 N=x3tllp Xp=XptUy =11

Bild 4.4 Verteilungsproblem
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4
Die Bedingung 3 u,, = 26 ist mit (4.55, 4.56) automatisch erfillt.
1

Zu jeder zulidssigen Steuerung lassen sich Abweichungen A,, der Pro-Kopf-Zahl vom Idealwert be-
rechnen:

I 0,05

a!L

An = , n=1234,

und als MaBzahl fiir die ,,Giite der Steuerung‘ wird wie gesagt die groBte Abweichung verwendet:
M = max {4, Ay, Ay, As).
Gesucht wird als optimale Steuerung diejenige, bei der M einen mdoglichst kleinen Wert hat:

min M = min [max {4, ..., 4,}].
u u

Dieses Optimierungskriterium ist offenbar gleichbedeutend mit

max [min {—A4,, ..., — 4,1,
u

und wir erhalten, wenn wir zu unserer bisher verwendeten Bezeichnungsweise tibergehen,
G = F[Gy(), ooy Gy(uy)] = max!,
u

u"

FIGy, ..., Gl = min {Gy, ..., Gyf; G, = — i
n

0,05 l . (4.57)

Mit (4.55—4.57) liegt ein Problem vor, welches der Aufgabenstellung (4.21-4.23, 4.43) entspricht.
Unsere jetzige Zielfunktion ist fortlaufend separabel, denn offenbar gilt:

D, Gy Frea(Gy o+ Gyl = min (Gy, Frin),
Fypy=min (Gpy, .., G); n=54,3,2.
Die Monotonieeigenschaft ist ebenfalls erfiillt, denn aus
Fn < F,_, folgt min(G,, F,_,) = min(G,, F,_).

Wir erhalten deshalb folgende Rekursionsbeziehung

maxG; n=1,

) = (4.58)

Uy
max [min (G, fuy (T (X, )5 1 =2,3, 4,

u,

die un’er Beachtung der Nebenbedingungen (4.56) in der bekannten Weise auszuwerten ist.

Nun ist, wenn man die ideale Verteilung der Tabelle 4.1 ins Auge fa3t, die Losung fast zu erraten
(Auf- bzw. Abrunden auf die nichstgelegene ganze Zahl). Das Beispiel wird eigentlich nur deshalb
angefiihrt, um auf den breiten Anwendungsbereich der dynamischen Optimierung hinzuweisen. Man
sieht, daB3 die Zielfunktion G z.B. auch durch eine Vorschrift ,,Suche die kleinste von N Zahlen*
gegeben sein kann. Auch Nebenbedingungen der Form (4.56), d.h. Forderungen der Ganzzahlig-
keit usw. storen die Anwendbarkeit der Methode nicht.

Wir wollen den Rechengang bei der Losung noch andeuten: Zunéchst kann man offenbar den
Rechenaufwand dadurch betréichtlich verringern, daB man in Hinblick auf die ungefihre Kenntnis
der Losung die Bereiche der zuldssigen Entscheidungen in verniinftiger Weise einengt, etwa:

uw€1(5,67,8); we (45 wu€ (11,1213, 14);
ug € 1,2,3,4).
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Wegen der Form der Modellgleichungen und (4.56) ergeben sich dann fiir die Zustandsvariablen zu-
niichst die Moglichkeiten:

x=0; x€{,234; x¢€{12,..,18;
Xy € {15,...,24); x,=26.

Im ersten Schritt der Einbettungstechnik ist wegen x; = x, + u; = 26, d.h. #; = 26 — x,, fiir jeden
Wert x, die Entscheidung schon festgelegt. Man hat also, vgl. Tab. 4.2,

26—,
£ = = | 25 — 003

wobei wegen (4.56) fiir die Werte x, = 15, 16, 17, 22, 23, 24 iiberhaupt keine zuldssigen Entscheidun-
gen existieren. Im zweiten Schritt

605 s
-0, ,Am+w”

fo(x3) = max [min {—

erhélt man z.B. den Wert fiir x; = 15 durch folgende Zahlenrechnung:

wo | —lg - 0,05} £U5+ 1) Minimum .
3 —0,016 —0,011 —0,016
4 —0,005 —0,003 —0,005*
5 —0,006 —0,004 —0,006 ,
6 —0,017 —0,012 —0,017
Als Maximum der Minimalwerte hat man also £,(15) = —0,005, und dies tritt bei der Entscheidung

u,(15) = 4 ein. Entsprechend rechnet man fiir die anderen Werte von x;. Die Ergebnisse sind, zusam-
men mit denen der analogen Schritte drei und vier in der Tabelle 4.2 enthalten.

Tabelle 4.2 Tabellen der Einbettungstechnik fiir das Verteilungsproblem

zur Stufe I zur Stufe IT zur Stufe ITT zur Stufe IV *
Xg | filxz) w(xs) | X | fo(xs) us(x3) | Xy | f3(xa) u(xy) | X5 | filxs) uy(x5)
15 12| —0,017 | 6 1] —0,005 | 14 0 | —0,009 3
16 13| —0,011 | 5 2| —0,005 | 13

17 14| —0,006 | 5 3| —0,005 | 13;12

18| —0,011 | 8 15| —0,005 | 4 4] —0,005 | 12

19| —0,003 | 7 16| —0,005 | 4

20 —0,004 | 6 17| —0,012 | 4

21| —0,012 | 5 18| —0,016 | 3

22

23

24
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22
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24
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Bei der Zusammenstellung der optimalen Losung erhdlt man der Reihe nach:

x5 =0 Uy, opt = 3 Xy= 0+ 3= 3
zu x3=3 aus Tab. 4.2: uB’OPL:{i;; xaz{ gi};:ig
zu xzz{ig aus Tab. 4.2: u2,(,pl={ :; xZ:{igi 22?8
zu xgz{fg aus Tab. 4.2: M1,opc={ ,6/; xlz{i'gj: gzig

Es gibt also vom Standpunkt des verwendeten Kriteriums aus zwei ,,gleich gerechte* Entscheidun-
gen. Bei beiden betragt die maximale Abweichung der tatsdchlichen pro-Kopf-Zahl vom Idealwert
0,009.

4.3.4. Probleme mit allgemeinerer Struktur

Der nun folgende Abschnitt behandelt die Anwendung der dynamischen Optimie-
rung auf Systeme, bei denen als Stufenschaltung nicht eine einfache Kette, sondern
eine kompliziertere Kopplung vorliegt. Solche allgemeineren Strukturen treten in der
Praxis hiufig auf. Man denke etwa an Produktionsanlagen der chemischen Industrie,
bei denen sich die Stromfithrung zwischen den einzelnen Apparaten verzweigt, Riick-
fithrungsstrome auftreten usw. Da man sich jede komplexe Schaltungsstruktur auf-
gebaut denken kann aus Verzweigungen und Vereinigungen von Ketten, vorwirts
gerichteten Schleifen und Riickkopplungsschleifen, geniigt es, diese vier Grundtypen
zu behandeln. Die Anwendung der Methode auf Kombinationen dieser Fille bereitet
dann im Prinzip keine Schwierigkeiten mehr.

Die sich verzweigende Stufenfolge:

Wir betrachten ein System der in Abb. 4.5 dargestellten Struktur. Die Modell-
gleichungen der Stufen sollen in der Form

Xp = n(xn+1’ “n); n=1.,N+ M+ L (H#N),
xy = Ty Ry sar115 Uy), (4.59)

Xysare1 = Tviare (X.’V-i,dﬁ»?’ Uy ar41)

Uy 1y
Upspsl Uyepmsr | ‘ T >
: i i Xy Xy

Y { hetter

\

XNsMeLs1  Xneml |

vorliegen.

| Ut : upsy
Xyirger- XNM Xyr1

Bild 4.5 Sich verzweigende Stufenfolge
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Die Zielfunktion habe Summenform
N+M+L
G= 3 G, (4.60)
n=1
wobei G, jeweils vom Eingangszustand und vom Steuervektor der Stufe n abhingig
sei. Das Maximum der Zielfunktion

max G = fiysyer (Xv42r4241) (4.61)

soll in Abhingigkeit vom Anfangszustand Xy . a4z Unter Beachtung gegebener zu-
lassiger Bereiche X,,, U, fiir die Zustands- und Steuergrofen bestimmt werden.
Die Einbettungstechnik ist hier in folgenden vier Abschnitten durchzufithren:

1. Riickwdrtsrechnung im oberen Zweig (Stufen 1 bis N):

[i(x9) = max Gy(x,, uy),

ﬁz(xn-H) = max {Gn(xn—H’ “n) +,f;z—1 (T,,(X,,+1, “n))}’ n= 29 3, ey N, (462)

n

(wobei im letzten Schritt Xy.; als Xyia/4; zu lesen ist). Als Ergebnis erhélt man
fv(Xy+ar41) und natiirlich die zu den Stufen gehorigen optimalen Steuerungen

U (X41)- ‘
11: Riickwdrtsrechnung im unteren Zweig (Stufen N + 1 bis N+ M):

Jfr (X s2) = max Gy 41 (Xy 12, Uy 41),
UN41

So(ng1) = max {Gn(Xns1, W) + frig (Tu(Xns15 W)}, (4.63)
n=N+1,N+2,..,.N+ M.
Dies liefert zuletzt fi . ar(Xy+ar41)-

111: Hinzunahme der Verzweigungsstufe N +~ M + 1:

S anrs (X s ar42) = MAX (G ars1 (Xy 43405 Wy s 2141

UN M1
+ S5 (T g arsy (X s 21425 Wy ar41)
F e (T iaren (X s arses Wy ars1)) ) - (4.64)

1V: Riickwirtsrechnung durch die Restkette (Stufen N+ M -+ 2 bis N+ M + L)
ﬁt(xn—ﬂ) = max {Gn(xnﬂ’ “n) +fn(Tn(xn+1a “n))} >
n=N+M+2,., N+ M-+ L. (4.65)

Diesliefert schlieBlich die gesuchte Abhangigkeit des Optimalwertes fy + aryr. (X + ar41.41)
der Zielfunktion. Mit Hilfe der abgespeicherten Beziehungen fiir die Optimalwerte
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u,(X,.;,) der SteuergroBen kann man dann in iiblicher Weise durch Vorwértsrechnung
die Optimallosung zusammenstellen.

Mansieht, daBsich der Fall einer verzweigten Kette etwamit dem gleichen Aufwand
bearbeiten 146t wie eine unverzweigte Kette gleicher Stufenzahl.
Die Vereinigung zweier Ketten:

Das System habe jetzt die in Abb. 4.6 gezeigte Struktur. Die Modellgleichungen
der Stufen lauten

X, =T,(Xp41,8); n=1L., N+ M+L (ns=N,N+ M),
Xy = Ty (Xy41, Xy ar41, Uy, (4.66)
Xysm = Tyear Ry s ar415 v g an)-

Die Zielfunktion hat wieder die Gestalt (4.60).
Zu beachten ist, daB

Gy = Gy (Xy 41> XN+ M41> UN) (4.67)

von zwei Eingangsvektoren abhéngig ist. Wir nehmen an, daB die Anfangszustinde
Xy 4 me1 Und Xy iz, als fest betrachtet werden, d.h., da

max G = fy i arer(Rvsar41> Xy M4L41) (4.68)
u

gesucht wird.
LUy Ly

NeM ~T- N1
XNM+1 XNeM

| Uy prL

XNeM+L

XNimele1

Bild 4.6 Vereinigung zweier Ketten

Fiir die Anwendung der dynamischen Optimierung auf dieses System kommen zwei
Varianten in Frage, je nachdem, ob eine Zustandsinversion moglich bzw. rechnerisch
mit vertretbarem Aufwand durchfithrbar ist oder nicht.

Variante A: Es sei moglich, in einem der zusammentreffenden Zweige, etwa im obe-
ren (Stufen N + 1 bis N + M) die Zustandsinversion durchzufiihren. Dann stehen die
Modellgleichungen in der Form

X4 = 0,(Xp,0,); n=N+1,..,. N+ M—1, (4.69)

XN+M+1 = 9‘\'—!-1\/1 (XA\'+My Uy M)
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zur Verfiigung, und entsprechend sind die Summanden der Zielfunktion umgeschrie-
ben (vgl. hierzu 4.3.2.):

Gyamr = Ing st Ry anrsns Xveas Wyenn);  Go = L1(Xn, W),
n=N+M-1,..,N+1. (4.70)

Wir haben damit den schon betrachteten Fall einer sich verzweigenden Stufenfolge
hergestellt, wobei die Aufgabenstellung von der damaligen nur dadurch abweicht, da3
auBer dem Anfangszustand Xy ; yr4z4; auch noch der ,,Endzustand‘ Xy, a4, als fest
zu betrachten ist. -

Die Einbettungstechnik umfaBt folgende Arbeitsschritte:

1: Riickwirtsrechnung durch die Stufenfolge 1,2, ..., N — 1 unter Verwendung der
Formeln (4.62). Dies liefert fy_;(Xxy).

1I: Vorwdrtsrekursion im oberen Zweig (Stufen N + M bis N + 1). Dabei sind (vgl.
4.3.2.) folgende Beziehungen zu verwenden:

N (X s Xv s ar1) = MaxX Ly (Xy g w41, X401, Uy a)s 4.71)
UN+M
(Pn(xlu i&\'+,\1+1) = max {Fn(xn9 “n) + Pri1 (on(xns “n); iz\'+‘\l+1)} 5

“ll

n=N+M-1,..,N+1.

Zu bemerken ist, daB im ersten Schritt die Maximierung entféllt, wenn durch die
Modellgleichung der Stufe N + M

Xyeas1 = Onem(Xn 00 Uvgar) = Uy g nr = © (Xy 4 2415 X 400)

bei festem Xy, a4 fiir jeden Wert x5, die Steuerung eindeutig festgelegt ist. Als
Ergebnis dieses Arbeitsabschnittes erhdlt man

On 1 (X415 iN+M+1) .
111: Hinzunahme der Vereinigungsstufe N :

Sy (v ars1s Ry g are1) = Max (G (Xn 41, Xy 427415 Uy)
U XN 41

+ fvo1 (T Xy s a1, W) 4 @ (X X)) - (4.72)

1V: Riickwirtsrechnung durch die Stufen N+ M + 1, ..., N+ M + L des unteren
Zweiges:

JoGnsr> Xygar41) = Max {Gy (Xnar, Wa) + Sy (Tn (Knsr> W), Xy gari1)) s

“n,

n=N+M+1,..,. N+ M+ L. (4.73)
Dies ergibt schlieBlich die gesuchte Abhéngigkeit

S L (XN 42042415 XN 4 0141)
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Variante B: Wir betrachten jetzt den Fall, daB3 eine Inversion der Modellgleichungen
nicht ausgefithrt werden kann. Die Einbettungstechnik verlduft dann folgender-
maBen.

I: Wie bei Variante A. Man erhilt fy_,(Xy).

II: Riickwdrtsrechnung im oberen Zweig (Stufen N + 1 bis N + M) mit dem Ziel,
Sy +m(Xy+a415 Xyv41) zu erhalten. Dabei ist als erster Schritt die Funktion

Iy 1 (X2, Xy 1) = Max Gy i (X425 Uy 41) 4.74)
UN+1

unter Beachtung der Nebenbedingung,
Xy41 = Tvs1 (X2, Un 1) (4.75)

zu bestimmen. Letzteres bedeutet, daB man zunédchst mittels (4.75) die Steuervaria-
blen uy,; soweit wie moglich durch die ZustandsgroBfen Xy, Xy+o ausdriickt und
diesin Gy, einsetzt (vgl. 4.3.2.). Danach wird gemiB (4.74) iiber die nicht eliminier-
baren SteuergroBen maximiert. Wenn sich uy,, vollstindig durch Xy, Xy4. aus-
driicken 14Bt, entfdllt die Maximierung.

Die weiteren Schritte sind in der tiblichen Art auszufiihren:

Jo(Knirs Xy 1) = Max (G, (Knsr, W) + frmg (Tn Kngr, W), Xyi1)}s

n

n=N+2,., N+ M. (4.76)

Sie liefern zuletzt fy 1 v (Xy 41741, Xy41). Diese Funktion ist mit ¢y, aus Variante 4
identisch.

I1: Hinzunahme der Vereinigungsstufe N. Hierbei gilt Formel (4.72), wenn man dort
@y 41 durch fy,y ersetzt.
1V: Wie bei Variante 4. Man erhlt fy a2 (Xv+ m4L+1> XN 42741)

Vergleicht man beide Arten des Vorgehens, so stellt man folgendes fest: Wenn in
der Aufgabenstellung der Anfangszustand Xy 4, zahlenméBig fest vorgegeben ist,
so ist Variante A mit geringerem rechentechnischen Aufwand verbunden, da dann die
in Abschnitt II entstehenden Funktionen ¢, nur in Abhéngigkeit von einem Zustand
X, abzuspeichern sind. Bei Variante B kommen dagegen zwei Zustdnde vor: fn(Xn1,
Xy4). Falls die optimale Losung fiir einen ganzen Bereich von Xy az-Werten
gesucht wird, diirfte der Aufwand beider Varianten etwa gleich sein.

Beispiel 4.8 : Zur Erlduterung des Rechenablaufes betrachten wir das in Abb. 4.7 dargestelite 6-stufige
System. Alle Zustands- und Steuervektoren sind eindimensional, die Modellgleichungen der Stufen
und die Summanden der Zielfunktion sind in Tabelle 4.3 zusammengestellt. Beschriinkungen fiir die
Zustands- und Steuervariablen seien nicht vorhanden. Die Eingangszustinde X; und x, sind als
gegeben zu betrachten. Es soll das Minimum der Zielfunktion

6
G= 3G,

n=1

bestimmt werden, und zwar in Abhingigkeit von X;, x,.
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“15

Xy 3

Bild 4.7 Beispiel fiir eine Vereinigung zweier Ketten

Tabelle 4.3 Beispiel fiir eine Vereinigung zweier Ketten

Stufennummer | Modellgleichung Summand G,
n der Zielfunktion
1 Xy = Xp — %”1 (uy + xp)?
2 xzjxa‘f'%xﬁ‘f'"a Xg? + X5 4wt
3 X3 == Uy — Xy (g — 2 + (us — 1)?
4 Xy = X5+ uy (%5 — uy)?
5 Xy = Xg\+ us X2 + Fus?
6 Xo = X; — U (x; — 12 + u?
Stufennummer | optimale optimaler Zustand
n Entscheidung
2, 1 3 . 3
1 u1=?x5+ﬁx, xl———s—xr{—ﬁ—x,
2. 1
2 Uy = x2=~? 5+—T4—x.,
3 U= 2%+ 1 Xy = —23%;
4 ”4-"%%“‘1 X47%i5+1
5 Uy = —2%x, X5 = 1x,
6 Uy = %x, X = 3x,

Zum Vergleich fithren wir die Berechnung mit beiden Varianten durch. Natiirlich ist in den For-
meln jetzt ,,max* durch ,,min* zu eretzen.

Berechnung nach Variante A
1: Anwendung von (4.62) auf die Stufe » = 1 ergibt:

filxp) = min (u; + x5)°.
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Da fiir u, keine Beschrinkungen zu beachten sind, kénnen wir das Minimum durch Nullsetzen der
ersten Ableitung suchen. Man erhilt:

G,

Ouy

=2@+ x) =0 = w(x) = —x,

und weiter durch Einsetzen in G;
filx)) =0.

II: In den Stufen 3, 4 wird die Zustandsinversion ausgefiihrt. Man erhilt fiir Stufe 4 aus der Ta-
belle 4.3:

Xe=3Xt U > uy=x,— %,

Gy = (X5 — u)* - I'y= (2% — x)°.
Da I'; nicht von der EntscheidungsgroBe u, abhéingt (durch die Nebenbedingung x; = X5 - u, ist
bei festem X; fiir jeden Wert x, die Entscheidung eindeutig festgelegt), entfillt die Minimierung, d.h.,

es gilt:
@(xg5 %) = Iy = (235 — x)°,

Uy (x4, X5) = X4 — X5.
Im nichsten Schritt der Vorwirtsrekursion erhilt man gemiB (4.71) fiir die Stufe 3:
Xg = Uz — Xy —> X4 = U3 — X3,
Gy = (xg — 2%+ (ug — 1)* — Iy=(ug — x3 — 2)* + (uy — 1)%,
Py (xg, X5) = n.l‘m s + 2% — us + xp)°).

3
Mittels%‘3 {I’VJ -+ @4 = 0 ergibt sich:
@303, B) = B,® + SR+ g0 X5 — 4%+ 2,
Uy (X3, X5) = 3x3 + %5+ 1.
III: Hinzunahme der Vereinigungsstufe 2. Wir miissen die Formel (4.72) anwenden:

fo(xs, X5) = min {(x® + x3° + u5) + @53, X5) + filxa)),

T3, Uz

wobei noch x, = x3 4 % + x5+ uyeinzusetzen ist. Nullsetzen der partiellen Ableitungen nach x; und
u, ergibt

2 . N
xs(xsaxs)=_'§"x5; uy (x5, %5) = 0,

N 12 <
fo(xs, X5) = szz — 4%5 + x2 4 2.

IV: Es schlieBt sich eine normale Riickwirtsrechnung durch die Stufen 5, 6 des unteren Zweiges
an. Mit (4.73) erhédlt man
N 4 ., 12 s
o (x5 X5) = ?xs' + szz — 4% + 2,

N 2
Us(Xg, X5) = — 5 Xg

3

6 BieB, Prozesse



82 4. Diskrete Prozesse
und im letzten Schritt

. 12 N 11 A
fo(xq, x5)=Tx52 - 4xs+Tx72 — 2%+ 3,

: 4
U (X7, X5) = = X,.

7

Die Einbettungstechnik ist damit zu Ende gefiihrt. f;(x,, X;) stellt den gesuchten Optimalwert der
Zielfunktion in Abhéngigkeit von den Ei 6Ben x, und X5 dar. Die Zusammenstellung der
optimalen Losung kann jetzt durch abwechselnde Benutzung der Optimalfunktionen fiir die «, und
der Modelligleichungen in iiblicher Weise erfolgen. Die Ergebnisse sind in Tabelle 4.3 aufgefiihrt.

Berechnung nach Variante B
1: Verlduft wie bei Variante A.

II: Diesmal wird keine Inversion der Modellgleichungen vorgenommen, sondern eine normale
Riickwirtsrechnung durch die Stufen 3, 4 des oberen Zweiges ausgefiihrt. GemiB (4.74, 4.75) besteht
im ersten Schritt das Ziel, f5(x,, x;) zu gewinnen. Zu diesem Zweck muf} man zunichst mittels der
Modellgleichung der Stufe 3

X3 = Uy — X4 => U3= X3+ X4
und Einsetzen in dén Summanden der Zielfunktion in diesen die Abhéngigkeit von x; hineinbringen:
Gy = (xg — 2" + (x5 + x, — 12
Wie man sieht, entféllt dann eine Minimierung bzgl. #; und man hat
[f3(xg, X3) = 2x,2 — 6x4 + x3% + 2x3%; — 2x3 + 5.
Ug(Xg, X3) = X3+ Xg.
Der zweite Schritt geht normal vonstatten:

fi(%s, x3) = min {5 — u)* + f5(x3, T, (55, up))}.

Durch Nullsetzen der Ableitung nach u, ergibt sich:
U (g, ) =1 — 3% — §x,,
Silxg, Re) = Bx? + SR+ 4xp- X5 — 4%, + 2.
Letzteres ist mit g,(x;, ¥;) aus Variante 4 jdentisch.
III: Verlauft wie bei Variante A.
1V: Verlauft wie bei Variante A.

Die vorwirts gerichtete Schleife:

Die vorwirts gerichtete Schleife, Abb. 4.8, enthélt in der Stufe N+ M -+ L + 1
eine Verzweigung, in der Stufe N eine Vereinigung. Da wir eine Kombination der
schon behandelten Fille vor uns haben, wird sich auch der Rechengang aus Abschnit-
ten der damals ausfiihrlich beschriebenen Art zusammensetzen. Dabei ist eine ganze
Reihe von Varianten moglich, je nachdem, ob man den oberen oder den unteren Zweig
der Schleife zundchst fiir sich optimiert, ob man dieses Teilergebnis in den Rest der
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Ner
Xyt
XNeMrLtKe 1 yafor Y !
N1

. XNeMel+]
Bild 4.8 Vorwirts gerichtete Schleife

Zielfunktion an der Vereinigungsstelle N oder an der Verzweigungsstelle N + M -+ L
-+ 1 einbezieht oder ob man fiir einen Teil des Systems eine Zustandsinversion vor-
nimmt. '

Wir erlautern im folgenden nur eine dieser Moglichkeiten, wobei wir uns auf die
Beschreibung des prinzipiellen Ablaufs der Rechnung beschranken. Die Formulie-
rung der detaillierten Rekursionsbeziehungen diirfte auf Grund der fritheren Erdrte-
rungen keine Schwierigkeiten machen. Wie iiblich wird angenommen, daB die Modell-
gleichungen jeweils den Ausgangszustand der Stufe als Funktion des Eingangs-
zustandes und der Steuerung darstellen, daB als Zielfunktion eine Summe iiber alle
Stufen vorliegt, und daB ihr Optimalwert in Abhingigkeit vom als fest zu betrachten-
den Anfangszustand Xy ;474141 des Gesamtsystems gesucht ist.

Die Einbettungstechnik verlauft dann in folgenden Abschnitten:

I: Riickwdrtsrechnung durch die Stufen 1 bis N — 1. Als Ergebnis erhdlt man die
Optimalfunktion fy_;(Xy).

II: Separate Optimierung des Teils der Zielfunktion, der zu einem der Zweige der
Schleife gehort (wir wahlen beispielsweise den oberen Zweig mit den Stufen N + 1
bis N + M). Die entstehende Optimalfunktion bezeichnen wir mit fyy ./, sie ist in
Abhangigkeit von Xy 4 141 und Xy, zu ermitteln. Dabei hat man so vorzugehen, wie
bei der Vereinigung zweier Ketten, Variante B, beschrieben. Als Ergebnis erhdlt man
Sy (X415 X are1)-

III: Einbeziehung des oberen Zweiges auf der Stufe N:

Sy Xy s ars1s Xy garen) = Max {Gy (Xy 415 Xy 447415 Uy)
XN+ Uy

F v (T (X1 Xnvearers By) + fysor (X s Xn 40740 (4.77)

Danach Riickwirtsrechnung durch die Stufen N + M + 1,..., N + M + L des unte-
ren Zweiges mit dem Ergebnis

SN L (XN 214141 X4 0041) - (4.78)
SchlieBlich Einbeziehung der Verzweigungsstufe N + M + L + 1:

Sy erira Xy airee) = MaX {Gygyreres (XN Msr+9s U+ veL41)
UN+M+L+1

+ f\'+A\I+L(TN+J[+L+1 (XIV+JI+L+2 > Uy 4 .\I+L+1)’

'f\'+ weLa Xy g arsLi2, Uy g argri1))] - (4.79)
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IV. Riickwdrtsrechnung durch die restlichen Stufen N+ M+ L+2bis N+ M+ L+ K
mit dem gesuchten Ergebnis

Sy k(XN ML K1) (4.80)

Beispiel 4.9.: Wir erweitern das als Beispiel 4.8 berechnete System (vgl. Abb. 4.7 und Tab. 4.3)
durch Anfiigen einer Stufe zu einer Vorwirtsschleife, wie in Abb. 4.9 dargestellt. Das Minimum des
siebenstufigen Systems soll in Abhéngigkeit vom Anfangszustand x, bestimmt werden.

14 I 7 Modellgleichung der Stufe 7
g 7 )
X5 -1 System gemdB | 3 = Ly, sy, +2
Lot bing | S 28T
| Tabelle 4.3 2] )
X | Summand der Zielfunktion
7 Lo g

G =xg +12- 0,7

Bild 4.9 Beispiel fur eine vorwirts gerichtete Schleife

Der Rechenablauf ist im wesentlichen mit dem identisch, den wir im Beispiel 4.8 (Variante B)
hatten. Der einzige Unterschied besteht darin, daB wir mit dem damaligen Endergebnis noch einen
Schritt weiterrechnen miissen, da jetzt noch die Verzweigungsstufe 7 einzubeziehen ist (letzte MafB-
nahme im Schritt IIT):

fixg) = min {G; (x5, uy) + f5(x7, %5)) .
u,

Tabelle 4.4 Lsung des Beispiels einer vorwirts gerichteten Schleife

Stufe optimale Entscheidung optimaler Zustand
11 5 11 5
! “w=grret iy I V3
11 5
2 u, =0 Xo= = Xy Ty
1 23 1 5
: b=t Iy S SR )
1 31 1 14
4 “T Tt 3e u=ghtg
. 1
5 Us = — % Xg X5 = Xs
2 3
6 Uy = 5 Xg Xg ﬁxe
1 1 5 25
7 =—_ . Ry = — =
, “ %t 36 B=1p%t 36
X, = %%
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Wenn wir x,, X; durch die in Abb. 4.9 notierten Modellgleichungen ausdriicken, ergibt sich durch
Nullsetzen der Ableitung nach «,
1

1
) =~y Xty
und damit weiter

.53, 4 25
flx)) = 5g %8 — 3%t g

Die optimalen Steuerungen und Zustinde. die sich bei der anschlieBenden Zusammenstellung der
Gesamtlosung ergeben, sind in Tabelle 4.4 aufgefiihrt.

Die Riickkopplungsschleife:

Die in Abb. 4.10 dargestellte Riickkopplungsschleife geht aus der vorwirts gerich-
teten Schleife (Abb. 4.8) hervor, indem man dort die Stromrichtung des oberen Zwei-
ges umkehrt. Auch jetzt gibt es wieder verschiedene Moglichkeiten fiir die Durch-
fihrung der dynamischen Optimierung. Wir erldutern hier nur den Fall, daB der
Beitrag des oberen, riickwirts gerichteten Zweiges bei der Stufe N einbezogen wird.
Beziiglich der Aufgabenstellung wird wieder vorausgesetzt, daB fiir jede Stufe die
Modellgleichung den Ausgangsstrom als Funktion des Eingangsstromes und des
Steuervektors darstellt und daB die Zielfunktionsbeitrige dieselbe Abhdngigkeit
zeigen. Gesucht wird das Maximum der Summe dieser Beitrage iiber alle Stufen, und
zwar in Abhingigkeit vom Eingangsvektor Xy v.7+ x4+ des Gesamtsystems.

X

N+M

XNsMLrhr

XNeMtLt1
Bild 4.10 Ruckkopplungsschleife

Man kann dann die Arbeitsabschnitte bei der Einbettungstechnik folgendermafBien
beschreiben:

1. Riickwdrtsrechnung durch die Stufen 1 bis N — 1 mit dem Ergebnis fy_,(Xy).

I1. Separate Behandlung des oberen Zweiges durch Riickwartsrechnung durch die
Stufenfolge N + 1, ..., N + M mit dem Ziel, den optimalen Beitrag der zugehorigen
Teilsumme der Zielfunktion in Abhédngigkeit von Xy.; und Xy zu erhalten.
Hierbei ist wieder so vorzugehen, dafl zunéchst iiber den zur Stufe N + 1 gehorigen
Summanden zu optimieren ist:

fye1(Xn 42, Xy 1) = Max Gy (Xy 42, Uy 1) (4.81)
Uy 41

Nebenbedingung: Xy = Ty (X0, Uvi1)-

7 BieB, Prozesse
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Wenn durch Auflésen der Nebenbedingung der Entscheidungsvektor als Funktion
von Xy o, Xy dargestellt werden kann, entfillt die Maximierung.

AnschlieBend werden der Reihe nach die restlichen Stufen N + 2 bis N + M ein-
bezogen, man erhdlt schlieBlich

f\'+jl (i‘ Vs XA\‘H) .
IIT. Einbezichung des Riickwirtszweiges an der Stufe N:

Sy Xy g1y Xy 1) = max (Gy Xy arers 0y) + o (Ty Xy g 7415 Uy))
uy

A Ly (Ty (X s arens Ux), Xy sp)) - (4.82)

Danach wird riickwérts durch die Stufen des unteren Zweiges hindurch gerechnet,
wobei man im Ergebnis erhilt:

S L (Xy s a4 415 Xy 41) - (4.83)
SchlieBlich ist die Stufe N -+ M -+ L - 1 einzubeziehen (V' = N + M + L):
Sran(Xvie) = max (Gyyy(Xvia, Xy1, Upir)
Uy ir XN 41
+ v (T (X2, Xy g1s Wirgn), X)) - (4.84)

IV. Zum AbschluBl der Einbettungstechnik ist eine Riickwdrtsrechnung durch die
Stufen N+ M+ L+2 bis N+ M + L + K durchzufiihren, die schlieBlich das gefor-
derte Ergebnis fy i arsr+x (Xn 4 ar44541) liefert.

Mit den wihrend des Rechenganges I.—IV. ebenfalls erhaltenen Abhdngigkeiten der
Optimalwerte von u, und den Modellgleichungen kann dann in iiblicher Weise die
gesamte Optimallosung zusammengestellt werden.

Beispiel 4.10: Fiir das in Abb. 4.11 gezeigte fiinfstufige System mit Riickkopplungsschleife sind die
Modellgleichungen sowie die Summanden der Zielfunktion in Tabelle 4.5 angegeben. Die entspre-
chenden Funktionen sind wieder einfach gewéhlt, um die Rechenergebnisse in geschlossener Form
erhalten zu konnen und nicht durch Wertetabellen darstellen zu miissen. Es wird die Aufgabe ge-
stellt.
’ 5.
fi(x) = min ¥ G, (4.85)

ueus n=1

zu bestimmen. Da auBler den Modellgleichungen keine Nebenbedingungen fiir die Entscheidungs-
variablen #; vorliegen, konnen die im Rechenverlauf notwendigen Minimierungen durch Nullsetzen

X,
4
Bild 4.11 Beispicl eines Systems mit Riickkopplungsschleife



4.3. Dynamische Optimierung

Tabelle 4.5 Beispiel eines Systems mit Riickkopplungsschleife

Stufe n

Modellgleichung

Summand G,
der Zielfunktion

=)

(SR N )

Xy = Xg — Uy
{?\'1=u1

Xy = Xy — Uy
Xy = Uy — Xy
Xy = X5 + Uy

X5 = Xg + Xo o+ Uy

(xy — w)?

x5* + uy?

%2 +

X5t + %‘”42

(xg — 1)? + us®

Stufe n

optimale Entscheidung

optimaler Zustand

(¥

= 3 X,
=5
7
tty = 55X
2
ty = — 55X
Uy = = 55X
7
Uy = — 55X

1 N
X = fxs; Xy =
12
Xo= e
5
Xy = "Z—S‘Xe
Xy = 5 X
6
X5 = 55X

25

X

87

der entsprechenden Ableitungen erreicht werden. Wenden wir uns nun dem Rechengang der Ein-

bettungstechnik zu:

1. Entfdllt bei diesem Beispiel, da der Verzweigungsstelle keine Stufen vorgelagert sind.

II. Riickwdrtsrechnung durch die Stufen 2, 3 des oberen Zweiges.

Zunichst ist auszufiihren

fo(xg, X5) = min {xg? + u,?);
u.

Nebenbedingung: x, = x3 — 1.

Da hier durch die Nebenbedingung die EntscheidungsgroBe eindeutig durch x;, x, festgelegt wird,

Uy == X3 — X,

entféllt die Minimierung, und man erhilt:

So(xg, X9) = 2x5% + xo% — 223X,
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Jetzt wird Stufe 3 einbezoéen:

f3(R1, x) = min {(5\\'12 4 u?) + folxg, X)}.

ug

Tragt man hier zunichst x, = u; — X, ein und setzt danach die Ableitung nach u, gleich null, -
so ergibt sich

uy (Ry, x) = %Xz + ;}fl
und damit weiter
f3Gryx) = Fx2 + 3R+ 3xpe By
I1L. Die Beitrige des oberen Zweiges und der Stufe 1 werden gekoppelt:

filxg, x2) = min {(eg — w)* + 2 gt 4 Zu® + 3 xou) =min £,

uy ay
9
wobei X; = u; eingesetzt wurde. Aus % = 0 folgt:
1
U (Xg, %) = 3x, — Ex,
und weiter
15
filxa, x0) = —x4 + Tk ko

Hinzunahme der Stufe 4 ergibt durch entsprechende Rechnung

1 S
Uy (X5, Xo) = — Xy — —Q—xs,

9
f,,(x‘;,,vg)A—xs + 5 XA2+—’—X2 .

Nun mufl noch Stufe 5 einbezogen werden:

So(xg) = min {(xg — 1)* + u5* + fi(x;, x5)],

Us, Ty
wobei vor der Minimierung x; = x4 + x, -+ u; einzusetzen ist. Man erhalt

12

X == 5%

T
25 ¢

Uy = —
und weiter als Optimur der Gesamtzielfunktion
2
Silxg) = Vs’ — 2x+ 1.

Damit ist die Einbettungstechnik abgeschlossen, der Rechenabschnitt IV. entfallt hier, da links von
der Vereinigungsstelle 5 keine Stufen mehr vorhanden sind.

Die Zusammenstellung der optimalen Losung kann nun leicht vorgenommen werden, die Ergeb-
nisse sind in Tab. 4.5 aufgeschrieben.

AbschlieBend ist folgende Bemerkung angebracht: Alle im Abschnitt iiber nicht
reihenformige Systeme enthaltenen Beispiele wurden bewuBt einfach gewihlt, um den
Losungsverlauf iibersichtlich und fiir den Leser mit ertrdglichem Zeitaufwand nach-
rechenbar zu gestalten. Die Optimalfunktionen konnten in allen Féllen in geschlos-
sener Form erhalten werden, und die Extremwertsuche machte wegen des Fehlens
von Nebenbedingungen in Ungleichungsform keine Schwierigkeiten. Bei praktischen
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Problemen werden solche giinstigen Bedingungen oft nicht vorhanden sein. Meist
wird man die Optimalfunktionen nur an diskreten Stellen, iiber einem Punktgitter
berechnen konnen, d.h. in Tabellenform abspeichern miissen. Mit steigender Stufen-
zahl und vor allem bei ansteigender Dimension der Zustandsvektoren x erhoht sich
der Speicherbedarf entsprechend stark und kann die praktische Durchfiihrbarkeit
einer Berechnungin Frage stellen. Das Speicherproblem tritt vor allem auch dann auf,
wenn die Optimalfunktionen teilweise in Abhédngigkeit von mehreren Zustandsvek-
toren tabellarisch abzuspeichern sind. Hinzu kommt die Schwierigkeit, bei den Rekur-
sionsschritten in ,,mehrdimensionalen* Tabellen interpolieren zu miissen, wodurch
die Rechenzeit entsprechend ansteigt. Der bei umfangreicheren Problemen stark an-
steigende numerische und rechentechnische Aufwand darf also keineswegs unter-
schitzt werden und ist bei der Planung einer Problembearbeitung sorgfiltig abzu-
schatzen.

4.3.5.  Suboptimale Steuerungen

Die Problemstellung:

Als Losung der in 4.3.1. formulierten Grundaufgabe erhilt man die beziiglich des
- verwendeten Optimierungskriteriums beste Steuerung. Daneben wird man sich in
vielen Fillen auch fir suboptimale Losungen, d.h. fiir die ,,zweitbeste, drittbeste, ...*
Entscheidung interessieren. Die Kenntnis suboptimaler Losungen kann aus verschie-
denen Griinden niitzlich sein. Zunichst hat man, falls die optimale Variante aus
irgendeinem Grund nicht realisierbar ist, entsprechende Alternativen in der Hand.
Zum anderen wird der Einblick in die Eigenschaften des modellierten Prozesses
erweitert, wenn man weil3, wie er sich in der Nachbarschaft des optimalen Punktes
verhalt. Ein drittes Argument ist mehr rechnerischer Art: Wie wir gesehen haben, ist
es fiir die praktische Durchfithrung der dynamischen Optimierung meist notwendig,
die Zustandsbereiche X, zu diskretisieren. Aus Griinden der Speicherkapazitit wird
man bei groBeren Problemen oft mit relativ groben Punktgittern arbeiten miissen,
so daB die Frage auftritt, inwieweit die errechnete Optimalldsung numerisch zuver-
lassig ist. Die Kenntnis suboptimaler Losungen erleichtert eine solche Einschédtzung.
Weichen die ersten suboptimalen Entscheidungen stark von der optimalen ab, so wird
dies oft ein Hinweis dafiir sein, daB die verwendete Néherung zu grob war. Sind
andererseits die Abweichungen gering, so erscheint die optimale Losung verldBlich.
Fiir das folgende setzen wir voraus, daB die Steuervariablen jeder Stufe nur endlich
viele Werte annehmen konnen.') Die Menge

V= {ll]l.l 2(“15“2""’ “N); “ne Un,nzly"UN, (486)
enthélt dann ebenfalls nur endlich viele Elemente.
Definition 4.5: V sei zerlegt in Untermengen V=V \J Vo \/ s ViN\ Vi = (i += k),

so dafi gilt:
G(u) = konstant = g, VW€ Vi, g > gre, k= 1,2, ... 4.87)

Dann heifit jedes w ¢ V). k.-beste Steuerung.

) Gegebenenfalls kann man diese Voraussetzung durch Diskretisierung der Entscheidungs-
bereiche U, schaffen.
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V, enthélt also speziell die optimalen Steuerungen. Eine Moglichkeit zur Ermitt-
lung suboptimaler Steuerungen wurde bereits von Bellman und Kalaba aufgezeigt,
indem diese von einer erweiterten Form des Optimalprinzips ausgingen. Der Algorith-
mus wurde von Fan und Wang [9] in rechentechnischer Hinsicht weiter ausgebaut.

Der Algorithmus:

Ein Rechenverfahren, mit dem man auBer der optimalen auch die 2.- bis k.-besten
Steuerungen ermitteln kann, ergibt sich analog zum Verfahren der normalen dyna-
mischen Optimierung, wenn man von folgender Erweiterung des Optimalprinzips
ausgeht (wir betrachten ein N-stufiges System gemidl Abb. 4.1b).

Eine k.-beste Steuerung hat folgende Eigenschaft: Unabhingig vom Eintrittszustand
in die erste Stufe (Nummer N) und der in dieser gewdhlten Steuerung stellen die
Steuerungen der folgenden Stufen (Nummern N—1 bis 1) eine der 1.- bis k.-besten
Steuerungen des um die erste Stufe verkiirzten Systems bez. des aus der ersten Stufe
resultierenden Zustandes (Xy) dar.

Aus dem erweiterten Optimalprinzip folgt nun analog zum einfachen Fall die ent-
sprechende Rekursionsgleichung. Im Gegensatz zu Formel (4.25) haben wir im n-ten
Schritt der Einbettungstechnik bei der Maximierung iiber w, nicht nur die Optimal-
werte f,,_, des vorangegangenen Schrittes zuzulassen, sondern — wenn wir die k.-beste
Entscheidung suchen — auch die 2.-, 3.-, ..., k.-besten Werte. Im folgenden soll bedeu-
ten:

max‘/y den j-groBten Wert von y,

f‘ff>(x,l+1) den j-groBten Wert des zur Stufenfolge #, ..., 1 gehdrenden Teils der Ziel-
funktion (4.24) in Abhdngigkeit vom Eingangszustand X,

u(x,4,) die zugehérige Steuerung auf der Stufe n, ebenfalls in Abhangxgkelt vom
Eingangszustand x,,,,.

Dann gilt
fn (Xn41) = max(f){G,, (Xnt1, Un) +fn 1T (Xg1> W) (4.88)

Ui

X1 € Xog1s u, € Uy i {1, 2, ,_]}

Diese Rekursionsformel ist mit j = 1, 2, ..., k der Reihe nach fiir die Stufen n =1, 2,

., N anzuwenden, wobei zu beachten ist: .
) =0, j=1,2k; Xy =lej. (4.89)

Im Gegensatz zum einfachen Algorithmus aus Abschnitt 4.3.1. entstehen jetzt in
jedem Schritt der Embettungstechmk k Tabellen der in Tab. 4.6 angedeuteten Art.
Dabei vermerkt i9(X,41), daB der Maximalwert /5 (X,;,) in (4. 88) unter Verwendung
von £, d.h. der i.-besten Steuerung der Stufenfolge n — I, ..., 1 erhalten wurde.
Im N-ten Schritt ergeben sich die Zahlenwerte

fE’\D(XNﬂ) :ff"\lp(“)a J=1,k,
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Tabelle 4.6 Tabelle Nr. j der Stufe n (j.-beste Werte)

Diese Tabelle ist fiir j = 1,2 ...k zu berechnen
Xpt1 (im Falle j = 1 fehlt der Bestandteil i,')(x,))
FI%G)
“("j )(x041)
iDX(o10)

und dies sind die j.-groBten Werte der Zielfunktion G, speziell ist f{!(«) der Optimal-
wert. Die zugehorigen Vektoren

W) = uf@, =1,k

bedeuten die tatsdchlichen auf Stufe N anzuwendenden Steuerungen fiir die optimalen
und suboptimalen Losungen.

Die zweite Phase des Algorithmus, die Zusammenstellung der optimalen und sub-
optimalen Losungen, erfolgt dann analog wie im einfachen Fall des Abschnitts 4.3.1.

Zusammenstellung der j-besten Steuerung:
(a) Anfangswerte:x{ =@, iy4 =j. (4.90)
(b) Firn= N, N — 1, ..., | ist der Reihe nach folgendes auszufiihren:
u¥) = ufinid) (x9),) aus Tab. i,4; der Stufe n,
xW =T, (x9),, u®) mittels Modellgleichung der Stufe n, 4.91)
= i’(x{],) aus Tab. j der Stufe .

Mit j= 1 erhdlt man so die optimale, mit j = 2, 3, ---, k die suboptimalen Lésungen.
Auch der hier beschriebene Algorithmus ist offenbar leicht zu programmieren. Im
Vergleich zur ,,normalen* dynamischen Optimierung erhéht sich im wesentlichen
nur die Anzahl der GroBenvergleiche, so dall die Rechenzeit nicht sehr stark an-
steigt, wenn man auBer der optimalen Losung auch die ersten suboptimalen Steue-
rungen bestimmt. Der fiir die Tabellen der Einbettungstechnik benétigte Speicher-
platz steigt aber auf das k-fache, wenn man bis zur k.-besten Variante geht.

4.3.6.  Stetige Probleme

Die stetige Form der Grundaufgabe und der Rekursionsbezichung:

Wir wenden uns jetzt Systemen zu, bei denen die Koordinaten des Zustandsvektors
x und des Steuervektors u in stetiger Weise von einem Parameter ¢ abhidngen, wie das
in Abb. 4.12 veranschaulicht ist. Die sinngemiBe Ubertragung der in Abschnitt 4.3.1.
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Bild 4.12  Stetiger Entscheidungsprozef3
fiir den diskreten Fall formulierten Grundaufgabe auf den stetigen Fall fiihrt zu fol-
gender Problemstellung, vgl. Abb. 4.12: Gegeben seien

— als Modellgleichungen des Systems ein Satz von gewohnlichen Differentialglei-
chungen der Form?)

X rixw, 0=i=0, 4.92)
— Beschriankungen fiir die Steuer- und Zustandsvariablen

XNEX, wNEU, 0=1=0, (4.93)
— der Anfangszustand

x(0) =«. (4.94)

Gesucht werden

— aus der Menge der zuldssigen Steuerungen diejenige optimale u*(7), 0 = ¢ = 0, fiir
die gilt

]
G = [g(t, x, u) df = max! (4.95)
0

— der zugehdrige optimale Zustandsverlauf x*(z), 0= 17¢=0.

In konkreten Fillen wird der Parameter 7 oft die Bedeutung der Zeit (vom Beginn des
Prozesses an gerechnet) oder einer Linge (vom Eingang in die Stufe an gerechnet)
haben. 7 entspricht dem Stufenindex n, den wir bei den diskreten Modellen hatten,
wobei wir uns nicht daran stéren wollen, daB ¢ jetzt ,,in Stromrichtung* zunimmt,
wihrend wir n seinerzeit entgegen der Stromrichtung zdhlten. Aus der fritheren
Summenform der Zielfunktion ist ein Integral geworden, wobei g(7, x, n) d¢ den Bei-
trag beschieibt, der zu einem Stufenabschnitt der ,,Lange dz** gehort.

Das Optimalprinzip von Bellman kann jetzt folgendermaflen formuliert werden
(der Beweis ergibt sich analog zum diskreten Fall):

Eine optimale Steuerung hat folgende Eigenschaft: Unabhingig vom Anfangszustand
x(0) und der im Intervall 0 = t < 7 verwendeten Steuerung u(t) ist die Steuerfunktion

un, <=0,

1) Die nach der Ableitung des Zustandsvektors aufgeloste Form der Modellgleichung wurde hier
gewiihlt, um die Darstellung zu vereinfachen, die Methode ist auch in anderen Féllen durchfihrbar.
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optimal beziiglich des zum Parameterintervall (v, 0] gehirigen Abschnitt des Prozesses,
wenn als dessen Anfangszustand.der aus dem vorangegangenen Intervall [0, T] resul-
tierende Vektor x(t) genommen wird.

Hieraus ergibt sich durch Uberlegungen, die denen beim diskreten Modell ebenfalls
vollig analog sind, die folgende Funktionalgleichung:

T+ Al
f@,x(x) = max | [ g(t,x,w)dt+ f(r + At, x(z + AD) {5
u{t)eU

temorag LT
10, x0) =0; 0=7=60— Ar. (4.96)

Diese Beziehung entspricht der Rekursionsgleichung, die bei den diskreten mehrstufi-
gen Prozessen anzuwenden ist. Indem man den Klammerausdruck in eine Reihe nach
Potenzen von Ar entwickelt, einen Grenziibergang A¢ — 0 vornimmt, und die fur
das Maximum notwendigen Bedingungen ausnutzt, kann man ein System von par-
tiellen Differentialgleichungen ableiten, welches im Prinzip eine Ermittlung der opti-
malen Losung gestattet [18], [19]. Zur Gewinnung numerischer Losungen ist dieser
Weg bei den meisten praktischen Aufgaben wenig geeignet. ZweckméBiger ist es, das
stetige Problem durch ein diskretes mehrstufiges Problem anzunéhern. Dieser Bear-
beitungsweise wollen wir uns jetzt zuwenden.

Approximation durch ein diskretes mehrstufiges System:

Zur Diskretisierung des durch (4.92—4.95) beschriebenen Problems zerlegen wir das
t-Intervall [0, 6] zunéchst in N Abschnitte

At:%; tiyy=0—n-At, n=0,..,N, (4.97)
die wir der Einfachheit halber als gleichlang annehmen wollen. Durch diese MaB-
nahme wird die stetige Stufe in N Teilstufen zerschnitten, vgl. Abb. 4.13. In jeder
Teilstufe ersetzen wir den tatsichlichen Verlauf der Steuerung u(f) und des Zu-
standes x(7) durch einen konstanten Verlauf:

u(f) ~ u(t,) = konstant = u,;

X(1) =~ X(t,4;) = konstant = X,,4;; g <t = 1. (4.98)
! ' P
1 ! 1
| ut)! 1 !
! | ! !
Hih | xp Laen | xty Vo1
X(O)=x(ty,) 7//' ety /’if,”/;} Xk Sle T @)= xct;)
~ i —7 4
Z 1 A t
thrr =0 tr b e

Bild 4.13 Diskretisierung des stetigen Problems

8 BieB, Prozesse
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Wir nahern also den i. allg. stetigen Verlauf der Kurven durch Treppenkurven an. In
jedem Teilintervall n werden weiter die Differentialgleichungen (4.92) durch Diffe-
renzengleichungen approximiert:

ix_ -~ X(t) = X(ty+1) _ Xp — Xptg
dr ~ At A

T(t, %, w,) & T(ty, Xpi1, U,) = Tp(Xpa1, 1,). (4.99)

Durch Gleichsetzen der Néherungsausdriicke erhalten wir als Modellgleichung der
Stufe n:

X, = Xp41 + Tn(xnﬂ S uy) A = T, (Xpep, ) (4.100)

SchlieBlich nahern wir das Integral (4.95) folgendermaBen durch eine Summe an:

0 N
G=Jglt,x,uydt =% [ g@tx,u)ds
0

n=1 th41

N N
% 3 8llns Xurrs W) - A = T Gy, ). @.101)

Entsprechend ergeben sich aus (4.93) Beschriankungen fiir die Teilstufen
x,€X,, wecU, n=1,..,N. (4.102)

In den Formeln (4.100—4.102) und x(0) = xy+; = a haben wir das beabsichtigte dis-
krete Néherungsmodell vor uns, das nun mit dem im Abschnitt 4.3.1. beschriebenen
Algorithmus bearbeitet werden kann.

Diese Naherungstechnik ist natiirlich auch fiir Problemtypen anwendbar, die von
der Grundaufgabe abweichen. Durch Losung des Naherungsproblems erhalten wir
Folgen von Approximationspunkten fiir die optimalen Kurvenverldufe der Steuerung
u(?) und des Zustandes x(¢), Zwischenwerte kann man bei Bedarf durch Interpolation
berechnen. Die Giite der Ndherung kann durch die Wahl einer hinreichend kleinen
Schrittlinge Az gesteigert werden.

Beispiel 4.11: Es bestehe die Aufgabe, die optimale Steuerung zu folgendem Problem zu bestimmen
(x und « eindimensional):

od 0=t=5
dt_u’ ==,

0=x(=3, -2=5u®)=2,

x(0) =2,

G = [(x* + u*) dt = min!

o,

Wir zerlegen das Intervall [0, 5] durch die Teilpunkte

tiey =5—=n-At; n=0,..,N,



4.3. Dynamische Optimierung 95

in N Abschnitte gleicher Linge At. GemdB den Formeln (4.98—4.102) ergibt sich das folgende
N-stufige Ndherungsproblem:

Xp = Xpsg + Uy Aty n=1,..,N,
0=x,=3, -2=2u,=£2,

Xn+g = 2,
N
G = X (X341 + 43) - At = min!
n=1

Dieses kann nun mit dem Algorithmus der diskreten dynamischen Optimierung in der {blichen Art
behandelt werden. Wir deuten fiir den Fall N = 5, Ar = 1, die ersten Schritte der Einbettungstechnik
noch an:

1. Schritt:

fi(x2) = min {x,2 + 1%}
uel-2,2]

Der Klammerausdruck stellt eine Parabel dar, deren Scheitel bei #; = 0 liegt. Das Minimum befindet
sich also, unabhingig vom x,-Wert, an der Stelle Null, d. h.,

uy(x) =0,

filxa) = %%, 0= x; 3.

Tabelle 4.7 Losung eines Problems der optimalen Steuerung

Exakte Losung Losung fiir 5-stufiges Losung fiir 10-stufiges
Naiherungsmodell Néherungsmodell
4 Uopt Xopt Hopt Xopt Ugpt Xopt
—2,000 2,000 2,000 —1,561 N | 2,000
0,5 —1,213 1,213 —1,235 \_ —0952 \[* 1,219
1 | 0,735 0,736 > 0,765 -0,580 | 0,744
1,5 —0,446 0,447 —0,471 -\_ —0,353 0,454
2 —0,271 0,270 ™ 0,294 —0,314 0,277
25 —0,163 0,165 —-0,176 —0,129 0,170
3 —0,098 0,101 0,118 —0,076 0,106
35 —0,057 0,063 —0,059 —0,042 0,068
4 —0,032 0,042 0,059 —-0,019 0,047
4,5 —0,014 0,030 0 N 0 | 0037
5 0 0,027 0,059 0,037
Gopt 4,0 6,47 512
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2. Schritt:
filx;) = min ‘!(Xag + 1) + (¥ + up)?)

Ug€ [—2,2]

=min2- ((uy + 5 x)? + 3 x:2).

Diesmal liegt eine Parabel mit dem Scheitel bei u; = ——%xa vor. Da fiir alle x; € [0, 3] diese Stelle im
Inneren des Steuerbereiches [—2, 2] liegt, erhalten wir die Optimalfunktion:
A}
uy(xy) = *éX;z;

filxy) = 2x% 0=x;=<3.

Entsprechend ist die Einbettungstechnik iiber die restlichen drei Stufen fortzusetzen, wonach die
optimale Losung durch Vorwirtsrechnung zusammengestellt werden kann. Die Ergebnisse sind in
Tab. 4.7 zusammengestellt. Zum Vergleich sind dort auch die Zahlenwerte fiir ein Modell mit N = 10,
Schrittlinge Af = 0,5 und fir die exakte Losung aufgefiihrt. Letztere kann durch Anwendung des
Maximumprinzips gefunden werden (vgl. Abschn. 4.4.2.). Die Werte der Naherungslosungen weichen
bei diesem Beispiel noch stark von den exakten Ergebnissen ab, offenbar ist die verwendete Inter-
vallteilung nicht fein genug. Aber selbst solche groben Naherungen konnen von praktischem Nutzen
sein, beispielsweise dann, wenn man ein Steuerungsproblem mit Hilfe des Maximumprinzips 16sen
will und dort als Ausgangspunkt fiir die numerische Behandlung den ungefidhren Verlauf der Steuer-
funktion u(r) benotigt.

4.4. Kombinierte Anwendung der dynamischen Optimierung
und des Maximumprinzips

In den vorangegangenen Abschnitten haben wir in den vom Maximumprinzip
einerseits und vom Bellmanschen Optimalprinzip andererseits ausgehenden Methoden
wirksame Hilfsmittel zur Losung von Problemen der optimalen Steuerung kennen-
gelernt. Dabei zeigte es sich, daB nicht etwa jede dieser Methoden eindeutig einer
bestimmten Problemklasse zugeordnet ist, sondern daB in vielen Féllen prinzipiell
beide Vorgehensweisen anwendbar sind. Man kann sicher keine Aussage derart
machen, daB eine dieser Methoden der anderen grundsétzlich iiberlegen ist, vielmehr
hat jede ihre Vor- und Nachteile. Indem wir im folgenden beide Methoden von ver-
schiedenen Gesichtspunkten aus qualitativ vergleichen, werden sich aber Hinweise
dafiir ergeben, wann in der Regel die eine, wann die andere zweckmaBiger einzu-
setzen ist. Im AnschluB daran erlautern wir Moglichkeiten der kombinierten Anwen-
dung beider Methoden.

4.4.1.  Vergleich der Methoden

Um einige Vor- und Nachteile sichtbar zu machen, gehen wir von der folgenden
kurzen Charakterisierung beider Methoden aus.

Dynamische Optimierung: Das Problem wird in N nacheinander zu ldsende Teil-
probleme fiir die Systemstufen zerlegt. In jedem Schritt wird der gesamte zuldssige
Bereich des Eingangszustandes der betreffenden Stufe durch ein Punktgitter iiber-
deckt, fiir jeden Gitterpunkt wird ,,auf Vorrat* das Teiloptimierungsproblem ge-
16st, und alle Ergebnisse werden abgespeichert. In den entstehenden Tabellen ist das
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gesuchte optimale Regime eingebettet, es wird anschlieBend, ausgehend vom gegebe-
nen Anfangszustand des Gesamtprozesses, herausgesucht.

Maximumprinzip: Durch eine Reihe notwendiger Bedingungen (zu bilden u.a. durch
Ableiten der Hamiltonfunktion) wird aus der Menge aller zuldssigen Losungen so-
fort eine kleine Teilmenge abgegrenzt, in der (falls existent) die optimale Losung
-enthalten ist. Die numerische Auswertung der Bedingungen erfolgt normalerweise
in Form einer iterativen oder Trial-error-Rechnung, d.h., es sind anfangs einige
Variablenwerte (Randwerte) zu schitzen und danach bis zum Abgleich zu verbessern.

Diese Gegeniiberstellung weist auf folgende Unterschiede und Aspekte der prak-
tischen Anwendbarkeit beider Methoden hin [9]:

(a) Rechentechnischer Aufwand: Durch Verwendung der ,,Einbettungstechnik® ergibt
sich bei der dynamischen Optimierung mit steigender Dimension des Problems schnell
ein auBerordentlich hoher Bedarf an Speicherplatz und Rechenzeit. Im Abschnitt
4.3.1. wurde auf diesen Nachteil schon ausfiihrlicher eingegangen, wobei sich zeigte,
daB der Aufwand in erster Linie durch die Zahl der Zustandsvariablen je Stufe be-
stimmt wird. Man kann natiirlich den Speicherbedarf dadurch senken, daBl man die
Punktgitter iber die Zustandsbereiche X, relativ weitmaschig anlegt. Dadurch wird
aber die Zuverlédssigkeit der in beiden Abschnitten des Algorithmus notwendigen
Interpolationsrechnungen fragwiirdig. Wie schon bemerkt, kann man einschitzen,
dafB aus diesen Griinden die praktische Anwendung der dynamischen Optimierung
problematisch wird, wenn mehr als 3 bis 4 Zustandsvariable je Stufe vorhanden sind.
Aus dieser Sicht diirfte die dynamische Optimierung oft schlecht zur Behandlung
von Systemen geeignet sein, deren Schaltungsstruktur Schleifen enthilt (vgl. Abschn.
4.3.4.), da dann die Rekursionsrechnung u.U. durch zusitzliche Zustandsvariable
belastet ist. Auch die Anwendung auf stetige Probleme wird oft an rechentechnischen
Schwierigkeiten scheitern. Hier fithrt das Bellmansche Prinzip auf partielle Differen-
tialgleichungen. Diese konnen zwar durch Diskretisierung in Differenzengleichungen
umgewandelt werden, aber man wird ein diskretes Naherungsmodell mit vielen Stufen
verwenden miissen, um eine ausreichende Genauigkeit zu erzielen. Bei Verwendung
des Maximumprinzips sind diese Schwierigkeiten hinsichtlich des rechentechnischen
Aufwands, insbesondere was den Speicherbedarf betrifft, nicht in dem MaBe vorhan-
den. Vor allem bei stetigen Modellen wird es deshalb oft vorzuziehen sein.

(b) Nebenbedingungen fiir die Zustandsvariablen: Das Vorhandensein von Beschrin-
kungen der Form x,, € X, macht bei der Methode der dynamischen Optimierung keine
Schwierigkeiten. Solche Nebenbedingungen werden im Rechengang automatisch da-
durch eingehalten, daB man die Punktgitter der Einbettungstechnik entsprechend
abgrenzt. Beim Maximumprinzip fithren Zustandsbeschrankungen dagegen zu
ernsten Komplikationen. Es ist zwar moglich, die Bedingungen des Maximumprinzips
auf diesen Fall auszudehnen, aber die Beziehungen werden dann sehr kompliziert
und sind numerisch schlecht auszuwerten. Da bei praktischen Problemen sehr hiufig
Zustandsbeschrinkungen vorliegen, wird hier ein wesentlicher Vorteil der dynami-
schen Optimierung sichtbar.

(c) Form der Modellgleichungen: Wie wir gesehen haben, erhdlt man beim Maximum-
prinzip die Gleichungen fiir die adjungierten Variablen durch Bilden der partiellen
Ableitungen der Hamiltonfunktion. Dies setzt voraus, da3 die Modellgleichungen
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in einer analytischen, stetig nach den Zustandsvariablen differenzierbaren Form vor-
liegen. Fiir die Anwendbarkeit des Algorithmus des dynamischen Optimierung ist
dies keineswegs notwendig. Hier ist es nur erforderlich, daB durch die Beziehungen
X, = T,(Xy+1, u,) eine eindeutige Zuordnung (X, , u,) — X, gegeben ist, die aber
durchaus auch in Tabellenform oder durch verbale Regeln vorliegen kann. Beispiele
dieser Art haben wir in den Abschnitten 4.3.3., 4.3.5. behandelt.

(d) Sicherung des globalen Extremwertes: Wenn bei einem Problem im zulassigen
Bereich mehrere lokale Extremwerte vorhanden sind, so ist bei Anwendung des Maxi-
mumprinzips (Auswertung notwendiger Bedingungen!) i. allg. nicht gesichert, daB die
Behandlung den globalen Extremwert, d. h., wirklich das Optimum liefert. Die dyna-
mische Optimierung hingegen fiihrt im Prinzip immer zum Optimum, da ja durch die
Einbettungstechnik der gesamte zuldssige Bereich abgesucht wird. (Praktisch kann
allerdings durch ein zu grobes Punktgitter und die damit verbundenen Interpolations-
fehler das Optimum ,,tiibersehen‘* werden).

4.4.2. Moglichkeiten der kombinierten Anwendung beider Methoden -

Wenn wir eben die dynamische Optimierung und das Maximumprinzip miteinander
verglichen, ihre Vor- und Nachteile herausgestellt haben, so liegt die Frage nahe, ob
man nicht durch eine Kombination beider Methoden in gewissen Fillen die Vorteile
vereinigen kann. Auf zwei derartige Moglichkeiten gehen wir im folgenden kurz ein.

Die parallele Verbindung der Methoden:

Die Bezeichhung parallele Verbindung von dynamischer Optimierung und Maxi-
mumprinzip wurde von Fan [9] eingefiihrt. Gemeint ist damit die folgende Vorgehens-
weise. Es wird beabsichtigt, die optimale Losung eines vorgelegten Problems mit
Hilfe des Maximumprinzips zu ermitteln. Um der Gefahr zu entgehen, hierbei even-
tuell nur ein relatives, vom Optimum verschiedenes Extremum zu erhalten, wird zu-
néchst die ungefihre Lage des Optimums mit Hilfe der dynamischen Optimierung
berechnet (Verwendung relativ weitmaschiger Punktgitter). Von dieser Néherungs-
16sung ausgehend wird anschlieBend die genaue optimale Losung unter Anwendung
des Maximumprinzips bestimmt.

Die sequentielle Verbindung der Methoden:

Der Vorschlag zu einer sog. sequentiellen Verbindung der beiden Methoden geht
auf Lee zuriick [14]. Er geht von der Tatsache aus, daB3 durch den Algorithmus der
dynamischen Optimierung in keiner Weise festgelegt wird, in welcher Weise das zu
optimierende Gesamtsystem in Stufen zerlegt wird und mit welchem Verfahren in den
einzelnen Schritten der Einbettungstechnik die Teiloptimierungen in den Stufen durch-
gefiihrt-werden. So kann man, wenn dies zweckmaBig erscheint, in einzelnen Stufen
z. B. auch das Maximumprinzip zur Optimierung verwenden. Dadurch wird folgende
Vorgehensweise moglich:

(1) Das Gesamtsystem wird in zweckméBiger Weise in Subsysteme zerlegt (wobei ein
Subsystem aus einer einzigen Stufe oder auch aus einer Kombination mehrerer
Stufen bestehen kann).
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(2) Die Schaltungsstruktur der Subsysteme wird mittels der Methode der dynamischen
Optimierung bearbeitet.

(3) Bei den Teiloptimierungen in den Subsystemen, die im Verlaufe der Einbettungs-
technik durchzufiihren sind, wird je nach ZweckméBigkeit die dynamische Opti-
mierung oder das Maximumprinzip (oder eine andere geeignete Optimierungs-
methode) angewendet.

Wir erldutern diese Vorgehensweise an zwei Formen von Reihenschaltungen, damit
diirfte das Prinzip dann auch fiir kompliziertere Strukturen klar sein.

Zuerst wird das aus einer stetigen und N nachgeschalteten diskreten Stufen be-
stehende System der Abb. 4.14a betrachtet. Das Optimierungsproblem sei durch
folgende Beziehungen beschrieben:

Modellgleichungen:

Xp = To(Xps1, W), n=1,2,.., N, (4.103)

‘31—’; =T xu), 0<7<T (4.104)
Beschrankungen:

X, €X,; w,eU,; n=12..N, (4.105)

ut)eU;, O0ZLt<£T, (4.106)

sowie

Xni1 € Xnirs X(T) = Xy+q; x(0) = & (fest vorgegeben). (4.107)

a) Stetige Stufe yorgeschaltet
u)

\uy Un ur
¥ U}
x(@) Xy Xper Xp X2 X7
Jubsystem Sy Subsystem Sy

b) Stetige Stufe nachgeschaltet

x()

—
Subsystem S Subsystem Sy

Bild 4.14 Systeme mit NV diskreten und einer stetigen Stufe
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Optimierungsziel:

T N
G=[g(t,x, W di + 3 Gy(Xys, w,) = max! (4.108)
0

n=1

Wir zerlegen das System in der angegebenen Art in die beiden Subsysteme I, II und
beschlieBen, die Teiloptimierung in Sy mit der dynamischen Optimierung, diejenige
in S;; mit dem Maximumprinzip auszufiihren.

Die Anwendung des Bellmanschen Optimalprinzips auf das aus den zwei Be-
standteilen Sy, S;; zusammengesetzte Gesamtsystem liefert als Rekursionsformel:

T
G* = max { [g(t, x, uyde + fy (x(T))[l , (4.109)
uy g

wobei fy(xy4;) die Optimalfunktion von Sy in Abhdngigkeit vom Eingangszustand
in dieses Subsystem darstellt und xy., = x(7) beriicksichtigt wird. Zundchst muB
also fy(xy,,) fiir alle Xy, € Xy, in iiblicher Weise durch Riickwértsrechnung mittels
der dynamischen Optimierung errechnet werden. Nur in einfachen Féllen wird es
gelingen, diese Funktion in geschlossener Form zu erhalten, normalerweise fillt aber
fv(Xy4,) als Tabelle an. Dann ist es, um anschlieBend die Optimierung (4.109) mit dem
Maximumprinzip vornehmen zu konnen, erforderlich, die Tabellenwerte durch einen
analytischen Ausdruck zu approximieren (z. B. durch ein Polynom). Ist dies geschehen,
so kann man die zu (4.109) gehorenden Bedingungen des Maximumprinzips auf-
stellen. Der Zustandsvektor x(7) besitze s Koordinaten: x()(¢), ..., x¢*)(¢). In iiblicher
Weise filhren wir eine zusitzliche Koordinate ein

t
x4 (1) = [ g(t, %, w) dr + fiy (x(1)). © (4.110)
0
Als zugehorige Differentialgleichung erhalten wir

dx s+ s 0fy  dxld
—a = g(t,’X, u) + ig; X0 dr

und weiter mit (4.104)

dxts+1) :
g = 86X w + grad . fy - T, x, W), @.111)
XH(0) = als+D) = 0, . (4.112)

Dadurch bekommt die Zielfunktion die neue Gestalt
G = xt+1)(T) = max! 4.113)

Auf das durch die Formeln (4.104, 4.106,4.107,4.111—4.113) beschriebene Problem
der optimalen Steuerung kann nun das Maximumprinzip in iiblicher Form angewendet
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werden, worauf hier nicht ndher eingegangen zu werden braucht. Als Losung ergeben
sich die Funktionen

u¥(7), x*r), 0=r=T.
Insbesondere erhélt man auch

X¥(T) = XNy (4.114)
Von (4.114) ausgehend kann man schlieBlich durch abwechselnde Verwendung der
Modellgleichungen (4.103) und der in der Einbettungstechnik erhaltenen Funktionen
u,(X,1,) die Optimalwerte fiir das Subsystem S; zusammenstellen.

Die Bearbeitung des in Abb. 4.14b dargestellten Systems, bei dem jetzt die stetige
Stufe nachgeschaltet ist, verlauft ganz analog. Die Problemstellung wird jetzt durch
die Formeln (4.103—4.106, 4.108) und

Xy 4 = B (fest vorgegeben);  x, = x(0) (4.107")

gegeben. Anstelle von (4.109) liefert das Optimalprinzip die Rekursionsbeziehung

N
G* = max G (X1 W) + f(T1(Xe, wp))y 5 (4.115)
Upyenny uy =1 .
wobei
T
J(x(0) = max [ g(t, x, w) dt (4.116)
weU §

die Optimalfunktion der stetigen Stufe ist und x(0)= x; = Ty(x,, w) eingesetzt
wurde. Zur Berechnung von (4.116) wird das Maximumprinzip benutzt. Mit

t
X = [g(r, x, w) dt,
0

(s+1)
de =g(t.x,w), xt0)=0 (4.117)
wird
S(x(0)) = max {xt(T)]. (4.118)
utt

Hiervon ausgehend werden in bekannter Weise die Bedingungen des Prinzips auf-
gestellt und geldst. Um anschlieBend die Teiloptimierung des Subsystems S vorneh-
men zu kénnen, muB allerdings (4.118) fiir alle x(0) = x, € X;, d.h. praktisch fiir ein
Punktgitter von x(0)-Werten, ermittelt werden. Ist dies geschehen, so kann man die
Rekursion iiber die Stufen von S; anschlieBen:

FilXr) = Max (G (X1, W) + fica (Tu(Kins W)}, 7= 1,2,y N, (4.119)

n

Jo =7(x(0)).
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Beispiel 4.12: Wir demonstrieren die sequentielle Verbindung der Methoden abschlieBend noch
durch Losung des in Abb. 4.15 dargestellten Beispiels. Zundchst wird das Minimum des zur stetigen
Stufe Sy; gehorenden Summanden der Zielfunktion bestimmt. Nach Einfithren der Zusatzvariablen

! dx®
x? = ]‘(x2 + u?)de; Fra 24w xP0)=0
0
erhalten wir als Hamiltonfunktion
H=pu+p?®-(x*+ u?). (4.120)

i

.

g
—

Bild 4.15 Ein Beispiel

Subsystem Sy Subsystem Sy
dx
dr

1=sx53 05x,52; x3=1, =2=u@t)= +2,

Xy =Xy + Uy Xy = x3 — 2uy, =u; 0=t=5,

G = (3 + w)* + (2 + uy?) + f(xz + u?)dt = min!
[

Die adjungierten Differentialgleichungen lauten

dp 0H
& T T T T =0,
dp® OH
1:1[ = = 0, p@G)=1. 4.121)

Sofort ergibt sich
p 1) = konstant = 1. (4.122)
Damit reduziert sich das Problem auf die Losung der folgenden Beziehungen:
X =u, x(0) = xy,
p=-2x, p(=0, ) (4.123)
p-u+ x* + u? = min!
Das Minimum der Hamiltonfunktion kann hier durch Nullsetzen der Ableitung gefunden werden:

OH 1

$~=p+2u=0 - u==p. (4.124)
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Nach Einsetzen von (4.124) lassen sich die Differentialgleichungen in geschlossener Form losen:

x(1) = A- [0 + 7],

u(t) = A - [e1° — 1), (4.125)
X1
A= T3

Als Optimalfunktion der stetigen Stufe erhalten wir durch Integration
5
fG) = [ (2 + u)dt = C-xp2,
0

1—et0
C= Tiem~ 1. (4.126)

Nun kann die Rekursion iiber die diskreten Stufen fortgefithrt werden. Einbeziehung der Stufe 1
ergibt

fi(x2) = min {(x2 + u,?) + C- (x2 + u)?},

L
C
u(xz) = — C+1 t X2, (4.127)
2C+1
fib) = =1 X%

SchlieBlich wird die Stufe 2 dazugenommen

) 20+ 1
falxs) = I:l:ﬂ (x3 + u2)* + < i (x3 = 2u)*f,
_3Cc+1 i
uy(x3) = 95C 15 (4.128)
9-2C+ 1)
e O

Von x3 = 1 ausgehend kann nun das optimale Regime zusammengestellt werden. Dies ergibt schlie3-
lich

oo JeCHD

9C+s5 °

3C+ 1 3C+3
= X = o

9C + 5 9C +5
oo 20 P S 4.129
WET9Crs M Tocyse 129
w(r) = _3___ [e-10 — e1];

©OC+35)(1 +e19 ’

3

x*t) = ———————5 " [0 + ']

©OC + 5) (1 + e19)
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t
31 Mit x, = [ fo(x,wdr  folgt
tll

Yo = fo(x,u),  Xy(t) = 0

Im (n + 1)-dimensionalen Zustandsraum der Variablen (x,, X1, ..., X;,,) ist dann x¢(#,) zu minimieren,

i
3.2: Mit x, = FIx(0)] + [fy(x,u)dr  folgt
ty

n

OF
——fi(x,w) + fy(x, w) = Fy(x, 0).
0x;

Im n-dimensionalen Zustandsraum der Variablen (x;, ..., x,,) ist ‘dann

’l
[ Fatx, wydr
to
zu minimieren.

33: H =pxo+(po— Du, u=6sgn(p,—1), p=—V&@—1),

6 fir 0=r=1-V3,
—6 fur 1—YVi<r=1.

u=

34:2) H = —x,+ Qu-+1t)p,, u=sgnp, =sgn(t—1)=—1,
b)H = —x;+tpy+ 2py— Du, w=sgn(2p, — 1)=sgn (2t — 3) = —1,
QH = —xi+ 1 +pP— (w—p), wu=p=1t—1,
d) H= Qu-+1t)p;, u=sgnp, = —1.
3.5: Qoxy = .g: ( g #F QJlQIr i
=151 00y aQ 0Q;
00(0,1) = Flg()],  Qo(x,0) = F[h(x)],
Opt.-Ziel: Qq(a, b).

£)s

3.6: Es ist

00=1(0—1(Qe*+ 77 —eltz —2)
Qg[ — % (1 — 1) (2% — =% — eltm)

und damit Q9, = Q9 + u° erfiillt. Weiter ist

11
0,01, 1) :ff(go + u%) di dx = 21_4 e —5—e).
00
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3.7: Es ist

0% A{an fir a=y p=29,
Otigg O,y 10 sonst.

Die entsprechende Matrix der Ableitungen 2. Ordnung ist somit positiv definit.
Unter Benutzung von

K=1 ISIK—-p+D=1,

1=sM—a+1sM —}=<g<0,

folgt sofort % Sug= %

Mit /f = t, na = x ergibt sich

limI(K—B+1)=1—1t limgMetl=g¢"
-0 n—>0

und damit
lim ug = J(1 — 1) (1 — €'72).
n-+0 -

-0
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