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1. Einleitung

Optimierungsaufgaben werden in der Mathematik seit langem betrachtet. So
gehören notwendige Optimalitätsbedingungen für Extremalaufgaben ohne Neben-
bedingungen bzw. mit Nebenbedingungen in Gleichungsform und für Extremal-
probleme, wie sie in der Variationsrechnung betrachtet werden, schon zur klassischen
Mathematik. In den letzen Jahrzehnten erfuhr jedoch die Theorie der Optimierung
und der Lösungsmethoden einen gewaltigen Aufschwung. Ursachen dafür waren
einerseits wichtige Aufgabenstellungen in Technik, Ökonomie und Naturwissen-
schaften — es gibt heute kaum ein Gebiet, in dem nicht Optimierungsprobleme vor-

kommen —‚ andererseits die Entwicklung der elektronischen Rechentechnik; erst
dadurch wurde die Möglichkeit geschaffen, eine Vielfalt von Problemen bis zum

numerischen Resultat zu bearbeiten.
Diese Etappe begann l939, als der sowjetische Mathematiker L. W. Kantorowitsch

Methoden zur Lösung linearer Optimierungsprobleme veröffentlichte; es handelte
sich dabei um einen völlig neuen Aufgabentyp. In der folgenden Zeit wurden nicht
nur Theorie und Lösungsmethoden der linearen Optimierung durch eine sehr große
Zahl von Arbeiten ausgebaut und weitergeführt, sondern es entwickelte sich auch
die nichtlineare Optimierung, wobei eine zentrale Stellung die sogenannte konvexe
Optimierung einnimmt.

Vor etwa zwei Jahrzehnten begann auch die Entwicklung der Theorie der optima-
len Steuerung von Prozessen (optimale Prozesse). Seit der Formulierung von notwen-
digen Optimalitätsbedingungen in Form des Maximumprinzips von L. S. Pontrjagin
ist die Anzahl von Veröffentlichungen zu dieser Problematik sprunghaft angestiegen.
Anfangs betrachtete man dabei Prozesse, die durch gewöhnliche Differentialgleichun-
gen beschrieben werden. Später untersuchte man auch Probleme, bei denen das mathe-
matische Modell aus partiellen Differentialgleichungen oder Integralgleichungen
bestand. Parallel dazu wurden Optimierungsprobleme im Zusammenhang mit Model-
len, die durch Differenzengleichungen beschrieben werden, untersucht.

Die ersten Arbeiten beschäftigten sich zunächst mit theoretischen Fragestellungen,
d. h. mit notwendigen und hinreichenden Optimalitätsbedingungen und Existenzaus-
sagen. Da die gewonnenen Optimalitätsbedingungen nicht immer einen praktikablen
Algorithmus zur Berechnung der optimalen Steuerung liefern, wurde die Entwicklung
numerischer Lösungsmethoden erforderlich.

Es sei hier darauf hingewiesen, daß eine wichtige Aufgabe der gegenwärtigen
mathematischen Forschung darin besteht, von den konkreten Aufgabenstellungen der
verschiedenen Optimierungsgebiete zu abstrahieren und unter Verwendung funktio-
nalanalytischer Methoden eine einheitliche Theorie aufzubauen. Eine solche Opti-
mierungstheorie in allgemeinen Räumen gestattet es, eine Vielzahl von Problemen
unter einem einheitlichen Gesichtspunkt zu betrachten (vgl. Bd. 22).

Das Ziel des vorliegenden Buches besteht darin, dem Nichtmathematiker eine Ein-
führung in die Grundlagen der Theorie optimaler Prozesse zu geben. Voraussetzung
zum Verständnis sind Kenntnisse aus der linearen Algebra, der Differentialrechnung
für Funktionen mit mehreren Variablen und über gewöhnliche und partielle Differen-
tialgleichungen. Auf eine Beweisführung wird verzichtet. Wesentliche Ergebnisse
werden durch Beispiele erläutert.

Die Autoren bedanken sich für zahlreiche Hinweise bei Herrn Professor Dr. Sieber
und dem Herausgeber, Herrn Professor Dr. Beyer.



2. Optimale Prozesse und damit zusammenhängende Begriffe

Ziel dieses Abschnittes ist es, die Grundlagen der Theorie optimaler Prozesse zu

entwickeln. Hierzu müssen zunächst die beiden Begriffe „Prozeß“ und „Optimalität“
näher erläutert werden. Dabei wird es sich erweisen, daß weitere Begriffe erforder-
lich. sind. Von diesen seien vorab solche genannt wie „Steuerung“, „Steuerbereich“
und „Phasenraum“.

Unter einem Prozeß versteht man im allgemeinen eine Folge sich in der Zeit ändern-
der Zustände eines Systems. Der Begrifi” des Systems wird in seiner intuitiv verständ-
lichen Form Verwendet (vgl. [l1]).

Es sei erwähnt, daß ein System dem Charakter seiner wesentlichen Bestandteile nach von physi-
kalischer, technischer, ökonomischer, biologischer, chemischer u.a. Natur sein kann.

Die Prozesse werden in entsprechender Weise unterschieden. Als Beispiele von Pro-
zessen seien hier der Flug einer Rakete, der Lauf einer Turbinenwelle, die Produktion
von bestimmten Erzeugnissen sowie die Vorgänge in chemischen Reaktoren genannt;
aber auch die Vorgänge in einem Telefonkabel sowie die Veränderungen auf einem
Parkplatz, gemessen in freien Parkplätzen, sind Prozesse. Die Vielfalt dieser wenigen
Beispiele weist schon darauf hin, daß der Begriff des Prozesses im obigen Sinne sehr
allgemein ist. Für unsere Zwecke ist es erforderlich, ihn zu spezifizieren und zu prä-
zisieren.

Prozesse können unter verschiedenen Gesichtspunkten klassifiziert werden. Wir
nennen drei Klassifizierungen.

So kann man in Abhängigkeit von den zeitlichen Veränderungen zwischen diskon-
tinuierlichen und kontinuierlichen bzw. — wie man auch sagt — zwischen diskreten
und stetigen Prozessen unterscheiden. Ein Prozeß der ersten Art ist dadurch gekenn-
zeichnet, daß die Zeit nur diskrete (im allgemeinen äquidistante) Werte annimmt,
und der Prozeß somit eine Folge endlich vieler oder höchstens abzählbar vieler unter-
schiedlicher Zustände bzw. getrennter Stufen darstellt. Als Beispiel eines solchen Pro-
zesses kann die Benutzung des Parkplatzes angesehen werden. Demgegenüber durch-
läuft die Zeit bei einem stetigen Prozeß alle Werte eines Intervalls, so daß er im all-
gemeinen aus überabzählbar unendlich vielen Zuständen bestehen kann.

Der Flug der Rakete, der Lauf der Turbinenwelle und die Produktion eines Erzeugnisses (z.B.
unter den Bedingungen des Dreischichtsystems) sind Beispiele stetiger Prozesse. Die Abgrenzung
stetiger Prozesse von diskreten schließt jedoch nicht aus, daß stetige Prozesse auch als diskrete auf-
gefaßt und dargestellt werden. Das macht der Physiker, wenn er die Schwingungen einer Saite model-
liert und dabei ein gewisses Stückchen dieser SaiteAs während einer endlichen Zeitdauer At betrach-
tet; das macht auch der Ökonom, wenn er die Ergebnisse des Produktionsprozesses kumulativ für
einen Tag, für eine Dekade oder für einen Monat erfaßt.

Eine zweite Möglichkeit der Klassifizierung ergibt sich, wenn man den Zustand
des Prozesses in einem fixierten Augenblick in Abhängigkeit von einem Anfangs-
zustand und den zwischenzeitlichen Einwirkungen auf den Prozeß untersucht. lst diese
Abhängigkeit eindeutig bestimmt, so spricht man von einem deterministischen Pro-
zeß. Als Beispiele hierfür können wir den Flug der Rakete sowie den Lauf der Tur-
binenwelle auffassen. Ist dagegen der Endzustand eines Prozesses durch seinen An-
fangszustand und die zwischenzeitlichen Einwirkungen nicht eindeutig bestimmt, son-
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dern unterliegt gewissen Wahrscheinlichkeitsverteilungen, so bezeichnet man ihn als
stochastischen Prozeß.

Wenn hier von Einwirkungen auf den Prozeß gesprochen wurde, so ist damit bereits
das dritte Klassifizierungsmerkmal genannt worden. Wir werden einen Prozeß näm-
lich steuerbar nennen, wenn man auf seinen Verlauf einwirken kann und die Ergeb-
nisse dieses Einwirkens kennt. In diesem Sinne ist durchaus nicht jeder Prozeß steuer-
bar.‘ S0 kann z.B. der Wetterverlauf gegenwärtig noch nicht zu den steuerbaren Pro-
zessen gerechnet werden.

Einen Hauptgegenstand dieses Buches bilden steuerbare deterministische Prozesse
und ihre mathematische Untersuchung. Dabei werden im 3. Abschnitt stetige und
im 4. Abschnitt diskrete Prozesse betrachtet. Stochastische Prozesse werden im
Band 19/1 behandelt.

Wir gehen zur mathematischen Beschreibung unseres Untersuchungsobjektes über.
Unter einem steuerbaren deterministischen Prozeß — im weiteren kurz Prozeß oder
steuerbarer Prozeß genannt — wollen wir einen solchen Prozeß verstehen, dessen Zu-
stand in jedem Augenblick durch eine gewisse Anzahl von Parametern — den soge—

nannten Phasenkaordinaten — eindeutig bestimmt ist. Wir nehmen an, es seien n sol-
cher Phasenkoordinaten erforderlich, und bezeichnen diese mit x‚—(t), i = 1, 2, ..., n.

Dabei bezeichnet in der Regel t die Zeit. Sie stellt in Abhängigkeit davon, ob der Pro-
zeß stetig oder diskret ist, eine stetige (vgl. 3.Abschn.) oder diskrete Größe (vgl.
4: Abschn.) dar. Die Abhängigkeit der Phasenkoordinaten von der Zeit ist berechtigt
und erforderlich, weil sich die Zustände in der Zeit ändern. Weiterhin soll der Prozeß
über gewisse Parameter — die sogenannten Steuerparameter oder auch Steuerungen ~

verfügen, durch die auf seinen Verlauf Einfluß genommen werden kann. Wir nehmen
an, es seien r solcher Steuerungen vorhanden und bezeichnen sie mit u,(t), j: 1,

2, r. Schließlich wird vorausgesetzt, daß der Prozeß vollständig bestimmt ist,
wenn sein Anfangszustand x,v(I0), i z 1. 2, ‚ n, sowie seine Steuerungen u‚(t)‚
j : 1, 2, ..., r, bekannt sind.

Gewöhnlich werden die Phasenkoordinaten x‚-(t) als Komponenten eines Vektors
x(t) 2 (x1(l), x2(t), ..., x„(t)) aufgefaßt. Für jedes feste t stellt der Vektor x(t) einen
Punkt im n-dimensionalen Raum R" dar. Er wird in diesem Zusammenhang Phasen-
raum genannt. Es ist üblich, jede Kurve in dem Phasenraum als Trajektorie zu bezeich-
nen. Somit beschreibt speziell der Phasenvektor x(t) eines Prozesses bei stetig ver-

änderlicher Zeit t eine Trajektorie im Raum R". Handelt es sich bei dem Prozeß um

die Bewegung eines Objektes im dreidimensionalen euklidischen Raum g wie z. B. die
der Rakete —, so unterscheiden sich im allgemeinen der Phasenraum und die Trajek-
torie dieses Prozesses grundsätzlich von dem Bewegungsraum R3 und der tatsäch-
lichen Bewegungslinie des Objektes. Analog wie bei den Phasenkoordinaten eines
Prozesses wird aus seinen Steuerungen der Steuervektor u(t) : (u1(t), L120‘), ..., u‚(t))
gebildet, der für jedes fixierte t einen Punkt im r—dimensionalen Steuerraum R’ dar-
stellt. Die Mengealler der Punkte, die vom Steuervektor eines Prozesses angenommen
werden bzw. für ihn zugelassen sind, bilden den Steuerbereich U g R’ des Prozesses.
In Abhängigkeit von der Art des Prozesses kann der Steuerbereich eine abgeschlos-
sene oder offene. eine beschränkte oder unbeschränkte Menge sein (vgl. Bd. l). Be-
trachtet man z.B. bei der Rakete die Beschleunigung als Steuerung und geht von der
durchaus realen Annahme aus, daß die Beschleunigung dem Betrage nach eine ge-
wisse maximale Größe zwar erreichen, sie jedoch auf Grund physikalischer und tech-
nischer Gegebenheiten nicht überschreiten darf, so erhält man als Steuerbereich eine
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beschränkte, abgeschlossene Menge. Es wird sich noch zeigen, daß sich die mathe-
matischen Aufgaben und Probleme für abgeschlossene oder offene Steuerbereiche
wesentlich unterscheiden.

Unter einem Prozeß werden wir also im weiteren ein Paar verstehen, das aus dem
Phasenvektor x(t) und dem Steuervektor u(t) gebildet wird, wobei letzterer zusammen
mit einem Anfangszustand x(to) den Phasenvektor x(t) und damit den Prozeß ein-
deutig festlegt. Wie das erfolgt, wird in Abschnitt 3. und 4. dargelegt (siehe z. B. Pro-
zeßgleichungen (3.6)).

Es ist nun noch der Begriff der Optimalität näher zu erläutern. Um hierbei auch
grafische Darstellungen benutzen zu können, beschränken wir uns auf stetige Pro-
zesse mit nur zwei Phasenkoordinaten, so daß der Phasenraum die x1,x2-Ebene ist.

Für diese Prozesse ergeben sich bei fixiertem Anfangszustand x(t0) = (x,(t0), x2(t;,))
in Abhängigkeit von der Wahl des Steuervektors uk(t) im allgemeinen unterschied-
liche Phasenvektoren x„(t) und damit unterschiedliche Trajektorien Tk (s. Bild 2.1).
Die Vielzahl der möglichen Trajektorien gestattet es nun, die Frage nach einer „besten“
Trajektorie zu stellen. Das ist eine ähnliche Situation, wie sie uns von der linearen
Optimierung her (vgl. Bd. 14) schon bekannt ist. Auch dort gestattete erst die Viel-
zahl der im Rahmen gegebener Auflagen möglichen Produktionsvarianten oder die
Vielzahl der im Rahmen geforderter Nährstoffgehalte möglichen Diätpläne die Aus-
wahl von „besten“ (optimalen) Varianten. Hier wie dort sind für eine solche Aus-
wahl natürlich Kriterien erforderlich. In der linearen Optimierung hingen die Kri-
terien von der jeweils betrachteten Aufgabe ab und konnten z. B, die maximale
Auslastung der Produktionskapazitäten oder den minimalen Preis beinhalten. Ana-
log verhält es sich bei den Prozessen, So können solche Kriterien z. B. für die Rakete
der minimale Treibstoflverbrauch oder der kürzeste Weg oder die geringste Zeit beim
Flug von einem Punkt zum anderen sein. Für die Turbinenwelle kann das Kriterium
darin bestehen, ihren Lauf in kürzester Zeit in vorgegebener Weise zu verändern. Der-
artige Kriterien werden Optimalitätskriterien genannt. Sie gestatten es, aus der Viel-
zahl der möglichen Trajektorien eines Prozesses diejenige auszuwählen, für die eine
charakteristische Prozeßgröße (z. B. Treibstoff, Weg, Zeit o. a.) ihren kleinsten oder
größten Wert annimmt. Die so ausgewählte Trajektorie sowie die Steuerung, die sie
erzeugt, und der zugehörige Prozeß werden optimal genannt.



3. Stetige Prozesse

Von den steuerbaren, deterministischen Prozessen werden jetzt diejenigen unter-
sucht, die im Abschnitt 2. als stetige bezeichnet worden sind. Dabei sei zunächst be-
merkt, daß die Stetigkeit eines Prozesses im obigen Sinne sich nur aufdie Zeit bezieht,
so daß die für die Zeit stehende Variable t beliebige Werte eines lntervalls annehmen
kann, dieses Intervall also stetig durchläuft. Die Stetigkeit des Prozesses bedeutet
jedoch keineswegs, daß auch die Prozeßparameter wie Phasenkoordinaten und Steue-
rungen selbst stetig sind. Im Gegenteil, es zeigt sich sogar, daß für eine Reihe von
praktischen Problemen die optimalen Prozesse gerade dadurch gekennzeichnet sind,
daß für sie gewisse Parameter, und zwar vorrangig die Steuerungen, Sprungstellen
besitzen. Dieser Hinweis ist von prinzipieller Bedeutung für das Verständnis der fol-
genden Darlegungen.

lm Kapitel 3. werden die Grundaufgabe der Theorie optimaler Prozesse einschließ-
lich ihrer Modifizierungen (siehe Abschn. 3.1., 3.3. und 3.5.) formuliert sowie ein
notwendiges Kriterium für die Optimalität entwickelt und Lösungsverfahren dar-
gelegt.

Zunächst muß jedoch etwas über den Zusammenhang zwischen den Steuerungen
und den Phasenkoordinaten eines Prozesses gesagt werden. Wir gehen bekanntlich
davon aus, daß die Phasenkoordinaten durch die Steuerungen eindeutig bestimmt
werden. Also müssen zwischen ihnen gewisse Beziehungen bestehen, deren mathe-
matische Form Gleichungen sind. Beachtet man nun, daß die von uns betrachteten
stetigen Prozesse im Prinzip Bewegungen sind, so darf man erwarten, daß die Glei-
chungen durch die Phasenkoordinaten und Steuerungen verknüpft sind, die Prozeß-
bewegung beschreiben. Aus der Physik ist aber bekannt, daß Bewegungsgleichungen
gewöhnlich gewisse Difierentialgleichungen sind (vgl. Band 7.1, Beispiel l.8). Daher
kann erwartet werden, daß die Phasenkoordinaten eines Prozesses mit seinen Steue-
rungen durch Differentialgleichungen verknüpft sind.

Beispiel 3. I: Wir betrachten — beginnend vorn Zeitpunkt to — die geradlinige Bewegung eines Kör-
pers mit der Masse m. Dieser Körper sei mit einem Antrieb versehen, durch den in jedem Augenblick
r eine Kraft entwickelt werden kann, die mit u(r) bezeichnet wird. Auf die Gerade, entlang der sich
der Körper bewegt, wird ein Nullpunkt und ein Maßstab aufgetragen, so daß der Ort, in dem sich der
Körper im Augenblick l befindet, mit x(t) bezeichnet werden kann. Dann sind mit ‚((1) die Geschwin-
digkeit und mit 56(1) die Beschleunigung des Körpers im Augenblick r gegeben. Auf den Körper möge

—/mu 1/(I)

T> »

0 K“) X Bild 3.1

neben der vom Antrieb entwickelten Kraft noch die Reibung wirken. Sie ist der Größe nach bekannt-
lich proportional zur Geschwindigkeit 3(1) und der Bewegungsrichtung immer entgegengesetzt (siehe
Bild 3.1). Bezeichnel man den Proportionalitätsfaktor mit p, so gilt nach dem Gesetz von Newton
folgende Bewegungsgleichung für den Körper:

mi<'(I) = u(f) - 17A"(f) (3.1)
oder

(3.2)sl
-

sm) = a.>'c(f) + bu(t) mit a = — ä. b =
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Mit (3.1) bzw. (3.2) haben wir bereits Differentialgleichungen erhalten. Für unsere Zwecke ist es vor-
teilhaft, die Gleichung (3.2) noch umzuformen. Hierzu werden die Bezeichnungen

m): x(t), x2(t)=x(t)‚ t; to (3.3)

eingeführt. Dabei sind diese Bezeichnungen nicht willkürlich, sondern entsprechen der Tatsache, daß
die Bewegung des Körpers in jedem Augenblick vollständig beschrieben wird durch den Ort, in dem
er sich befindet (entspricht x1(r)), sowie durch seine Geschwindigkeit (entspricht x2(t)). Somit liegt es

nahe, x‚(t) und x20) als Phasenkoordinaten des betrachteten Prozesses aufzufassen. Weiterhin kann
der Prozeß offensichtlich durch die vom Antrieb entwickelte Kraft u(t)gesteuert werden. Verwendet
man nun anstelle von x(t) die durch (3.3) eingeführten Größen, so kann (3.2) ersetzt werden durch

X10) : X20) }
_ ‚ l g t . (3.4)
x20) : ax2(i)—.— bu(t) °

Damit ist unsere obige Hypothese bestätigt worden: Für den betrachteten Prozeß sind die Phasen-
koordinaten und die Steuerung durch Differentialgleichungen miteinander verknüpft.

Das Ergebnis (3.4) ist allgemeingültig für eine ganze Klasse stetiger Prozesse. Ihr
charakteristisches Merkmal besteht darin, daß die Steuerungen L1_‚(t), j : l. ..., r, mit
den Phasenkoordinaten x,(t)‚ i = l, , n, durch ein System gewöhnlicher Differential-
gleichungen erster Ordnung der Art

dfflf’) =f,(x,(t), x,,(t), ll1(f),ll,.(f)), i: l, (3.5)

oder kürzer _

26.0) =f.(X(l). u(t)). i-—‘ l, n,

x(t) = «x(t). um) i (3.6)

verknüpft sind. Es ist bekannt (vgl. Band 7.1), daß (3.6) bei gegebenen Funktionen
u‚(r), j : 1, 2, ..., r, bezüglich x(t) lösbar ist und zusammen mit den Anfangswerten
x,°, i = l, 2, n, die Phasenkoordinaten x,(r), i: 1, 2, n, eindeutig bestimmt,
wenn die Funktionen f} die entsprechenden Eigenschaften besitzen. Daher werden
wir (3.6) die Prozeß- oder auch Bewegungsgléichung des Prozesses nennen.

lm weiteren betrachten wir solche Prozesse, deren Bewegungsgleichung die Form
(3.6) hat, wobei vorausgesetzt wird, daß die Funktionenfi, i = l, 2, ..., n, auf R" >< U
definiert und dort einschließlich ihrer partiellen Ableitungen erster Ordnung nach
x„. k r: 1, 2, ..., n, stetig sind. Die Funktionen)’, ergeben sich aus der Spezifik des je-
weiligen Prozesses. Man erhält sie im Ergebnis der mathematischen Modellierung
des realen Prozesses. Für das Beispiel 3.1 lauten diese Funktionen (vgl. (3.4))

11040). u0)) = >620‘), /5.»(X(t), u(I)) = 0x20) + 5140)-

bzw.

3.1. Grundaufgabe der Optimierung

Das mathematische Modell der betrachteten Prozesse umfaßt bisher das Diffe-
rentialgleichungssystem (3.6). Es wurde schon bemerkt, daß dieses System für ver-

schiedene Steuervektoren u(I) im allgemeinen unterschiedliche Phasenvektoren x(t)
als Lösungen besitzt und damit unterschiedliche Trajektorien des Prozesses liefert
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(vgl. Bild 2.1). Die Vielzahl der Trajektorien erlaubt die Frage nach einer optimalen
Steuerung und der zugehörigen optimalen Trajektorie. Dabei muß jetzt näher erläu-
tert werden, was als Optimalitätskriteritim gewählt wird. In der linearen Optimierung
wird das Optimalitätskriterium durch eine lineare Zielfunktion dargestellt. Für
stetige Prozesse nimmt das Optimalitätskriterium eine allgemeinere Form an und
wird durch ein Funktional J ausgedrückt, dessen Definitionsbereich die Steuer- und
Phasenvektoren des Prozesses sind. Der Wertebereich eines Funktionals ist bekannt-
lich eine Teilmenge der reellen Zahlen, so daß man nach dem kleinsten oder größten
Wert des Funktionals fragen kann. In der Theorie der optimalen Prozesse ist es üblich,
die Aufgaben als Minimumprobleme zu formulieren (vgl. [6], [ll], [13], [14], [19]).
Die Ursache hierfür ist in den ursprünglichen physikalischen und technischen Pro-
blemen zu sehen, die zur Theorie optimaler Prozesse führten. Das Wesen dieser Pro-
bleme bestand darin. einen Prozeß durch Energiezufuhr so zu steuern, daß er einen
im voraus festgelegten Verlauf nimmt oder diesem Verlauf möglichst nahe kommt
und dabei der Energieverbrauch minimal ist.

Im weiteren werden wir uns auf die Betrachtung solcher Prozesse beschränken, für
die das Funktional des Optimalitätskriteriums die Form eines bestimmten Integrals

J<u> = [‘.}”n<x<r), um) dr (3.7)
to

(Aufgabe von Lagrange) annimmt, wobei f, wiederum eine bekannte Funktion ist.
die sich aus der Spezifik des jeweiligen Prozesses ergibt, und von der vorausgesetzt
wird, daß sie die gleichen Stetigkeits- und Differenzierbarkeitseigenschaften wie die
Funktionenfi der Bewegungsgleichung (3.6) besitzt.

Beispiel 3.2: Wir betrachten erneut den in Beispiel 3.1 eingeführten Prozeß der geradlinigen Bewe-
gung eines Körpers. Hier ist es sinnvoll, die Frage zu stellen, wie die Bewegung aus eihem Zustand
x, 2 (x1°, X20) in einen anderen Zustand xx z (xfl, xz‘) zu vollziehen ist, daß dabei der Treibstoff-
verbrauch möglichst gering wird. In grober Näherung kann man annehmen, daß der Treibstofiver-
brauch im Intervall (I, t + Ar) proportional zu der Größe u3(t)At ist. Dann ergibt sich als Maß für
den Treibstofiverbrauch

tn

J(u) =_I-z‘u”(f)dt,
‘o

wobei c ein gewisser Proportionalitätsfaktor ist und t, die Zeitpunkte sind, in denen der Körper die
Zustände x,-, i = 0, l, durchläuft. Somit hängt in diesem Beispiel die Funktionfi, aus (3.7) gar nicht
vom Phasenvektor x(t) ab und hat die konkrete Form

fu(X(!). um) = 6149(1).

Bevor nun die Grundaufgabe formuliert wird, muß noch der für die Theorie opti-
maler Prozesse fundamentale Begrifi" der zulässigen Steuerung erklärt werden.

Definition 3.1: Es sei ein Prozeß mit fixierrem Sreuerbereich U g R’ gegeben. Dann
wird u(t) : (u,({), u2(r), u,(t)) ein zulässiger Steuervektor (bezüglich U) genannt,
wenn ein Intervall [r„, ti] derart existiert. daß gilt:

l. u(t) E Ufür alle t E [10, t1],
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2. alle Komponenten u,(t), j = l, 2, ..., r, und damit u(t) selbst, sind stückweise stetige
Funktionen in [t0, t1], wobei sie in den Sprungstellen r E (t0, 1,) Iinksseitig stetig
sein müssen

lim0u,(t) = uj('t), j = 1, 2, ..., r. (3.8)
f~>1—~

In manchen Publikationen wird der Begriff des zulässigen Steuervektors noch all-
gemeiner gefaßt (vgl. [20]). Aber schon mit der von uns angegebenen Definition des
zulässigen Steuervektors sind einige’ Probleme verbunden, die einer Erläuterung
bedürfen.

Erinnern wir uns daran, daß die Steuerungen 111(1) als solche Parameter eines Prozesses eingeführt
worden sind, durch die man auf ihn Einfiuß nehmen kann, so besagt die 2. Forderung der obigen
Definition, daß die Steuerungen Sprungstellen haben können. Hier ergeben sich natürlich sofort
zweierlei Einwände. Einerseits kann man fragen, ob denn nicht stetige Steuerungen die Realität besser
widerspiegeln, und andererseits ergibt sich die Frage, wie die Sprünge der Steuerparameter prak-
tisch realisiert werden können.

Der erste Einwand kann durch Hinweis auf entsprechende Ergebnisse entkräftet werden. Es zeigt
sich, daß für eine umfangreiche Menge von Prozessen die optimalen Lösungen gerade Steuerungen
mit Sprungstellen sind. Hierzu gehören die sogenannten schnelligkeitsoptimalen Prozesse (siehe
unten). Ein einfacher Vertreter hiervon ergibt sich als Spezialfall des Prozesses aus Beispiel 3.I. Setzt
man dort voraus, daß p = 0 ist und der Steuerparameter der Bedingung [u(t)] g 1 genügt, so hat
die Aufgabe, den Körper aus einem Zustand x0 = (x‚°, x2“) in einen anderen Zustand x1 = (x1‘,x2‘)
in der kürzesten Zeit zu überführen, eine optimale Lösung. Dabei erweist sich die optimale Steuerung
als eine stückweise konstante Funktion, die nur die Werte i l annimmt und eine Sprungstelle besitzt.

Der zweite Einwand ist schon schwerwiegender und hat Einfluß auf die Modellierung. Steuerungen
mit Sprungstellen bedeuten für die Realität nämlich, daß die entsprechenden Steuerparameter
trägheitslos sind. Die Parameter eines realen Prozesses besitzen aber im allgemeinen eine gewisse
Trägheit. Deshalb kommt es darauf an, die Steuerparameter so zu wählen, daß sie zwei Bedingungen
erfüllen: Der Prozeß muß durch sie gesteuert werden können, und ihre Trägheit muß so gering sein,
daß sie im Modell vernachlässigt werden kann. Die Erfahrungen lehren, daß das immer möglich ist
(vgl. [6]). Betrachtet man z. B. den Winkel u(t), den das Ruder eines Schiffes mit der Längsachse des
Schiffes bildet, so kann das Schiff zwar mit dieser Größe gesteuert werden, als Steuerparameter ist
oc(!)jedoch ungeeignet. Die Trägheit der Änderung des Winkels u(t) ist nämlich relativ groß, weil das
Ruder den Wasserwiderstand überwinden muß. Dagegen ist die Trägheit der Änderung der Winkel-
geschwindigkeit o'c(t) schon geringer und die von &(1) kann praktisch vernachlässigt werden. Es würde
sich also empfehlen, nicht o<(t), sondem r3l(t) als Steuerung zu wählen.

Zu dem Intervall [10, 1,] muß erläuternd bemerkt werden, daß bei gegebenem
Steuerbereich U zu zwei verschiedenen zulässigen Steuervektoren u(t) und 6(1) im all—

gemeinen auch unterschiedliche Zeitintervalle [to , n] bzw. [i0 , f,] gehören werden. So
sind z. B. im Fall der geradlinigen Bewegung des Körpers (vgl. Beispiele 3.1 und 3.2)
für U = {uz —1 g u g l} die Funktionen u(t) = cos t, t€[0,1,], mit beliebig fixier-
tem 1„ und u(t) = ät — 3, 1€ [4, 8], zulässige Steuerungen, deren zugehörige Zeit-
intervalle [0, 1,] bzw. [4, 8] unterschiedlich sind. Somit hat das Integral in (3.7) im all-
gemeinen für verschiedene Steuervektoren u(t) auch unterschiedliche Integrations-
grenzen.

Schließlich führt die 2. Forderung aus der Definition 3.1 noch zu einer mathemati-
schen Problematik. Wird nämlich in die rechte Seite der Bewegungsgleichung (3.6)
eines Prozesses ein zulässiger Steuervektor u(t) mit einer Sprungstelle T E (10 , t.) ein-
gesetzt, so sind i. a. auch die Funktionen zp‚(t) =f,—(x(t), u(t)) nur noch stückweise
stetig. Damit sind aber die Bedingungen des Existenz- und Eindeutigkeitssatzes (vgl.
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Bd. 7/1) nur noch in den Teilintervallen [t0,1] und [1, t,]‚jedoch nicht mehr in [t0, ll]
erfüllt, und für (3.6) kann in [t0 , t,] die Existenz einer stetig differenzierbaren Lösung
x(t) nicht mehr garantiert werden. Diese Schwierigkeit wird behoben, indem man

(3.6) zunächst für das Intervall (t0, r] löst und den dabei erhaltenen Vektor x(t) als
Anfangszustand für die Lösung von (3.6) in [1, t,] benutzt. Analog wird bei mehreren
Sprungstellen verfahren. Damit ist gesichert, daß (3.6) bei gegebenen Anfangswerten
x,°, i = 1, 2, ..., n, für jeden zulässigen Steuervektor u(t) eindeutig lösbar ist.

Definition 3.2: Es sei x(t) die Lösung von (3.6), die man bei gegebenen Anfangswerten
x,°, i = 1, 2, ..., n, undfixiertem zulässigem Steuervektor u(t) mit t E [t0, t,] erhalten
hat. Dann werden wir x(t) die dem zulässigen Steuervektor u(t) entsprechende Trajektorie
des Prozesses nennen und sagen, daß u(t) den Phasenpunkt x0 = (x,°, x2‘), ..., x„°)
in den Phasenpunkt x, = (x,‘, x3‘, x„1) mit x,‘ = x,-(t,) überführt.

Existieren nun für zwei fixierte Phasenpunkte x0 und x, mehrere Steuerungen, die
x0 in x, überführen, dann ergibt sich sofort die Frage nach einer „besten“ oder „opti-
malen“ Steuerung. Mathematisch wird diese Frage in Form der folgenden Grund-
aufgabe zur Bestimmung optimaler Prozesse formuliert.

Definition 3.3: Gegeben sei ein Prozeß mit der Bewegungsgleichung (3.6), dem Steuer-
bereich U g R’ und mit einer Funktion f0(x‚ u) die — genau wie die Funktionen f, in
(3.6) — für alle x = (x, , x2 , ..., x„) des Phasenraumes R” sowiefür alle u E U definiert
und einschließlich ihrer partiellen Ableitungen erster Ordnung nach x„ i = 1, 2, ..., n,
stetig ist. Dann ist für zwei vorgegebene Phasenpunkte x0, x, E R" unter allen zuläs-
sigen Steueruektoren u(t) mit t E [t0, t,], die x0 in x, überführen, derjenige zu bestim-
men, für den das Funktional

I

J(u) = J‘1fo(x(t),u(t))d2‘ , (3.7)
l0

den kleinsten Wert annimmt. Hierbei ist x(t) die Trajektorie, die dem Steuervektor
u(t) entspricht und den Bedingungen x(t0) = x0 sowie x(t,) = x, genügt.

Definition 3.4: Jede Lösung u(t) der Grundaufgabe wird optimaler Steuervektor von x0
nach x, genannt; die ihm entsprechende Trajektorie x(t) und der aus beiden gebildete
Prozeß heißen ebenfalls optimal.

Somit besteht die Grundaufgabe optimaler Prozesse in der Bestimmung optimaler
Steuervektoren und der ihnen entsprechenden optimalen Trajektorien. Es sei noch
besonders bemerkt, daß in der Grundaufgabe t0 und t, nicht gegeben sind und sich
erst mit der Bestimmung der optimalen Steuerung ergeben.

ln Abhängigkeit von der Art des Steuerbereiches U sowie den Eigenschaften der
Funktionenfi, i = 0, 1, ..., n, besitzt die Grundaufgabe unterschiedlichen mathema-
tischen Schwierigkeitsgrad. Ist z. B. U eine offene Teilmengel) von R’ oder U = R’,
so kann gezeigt werden, daß die Grundaufgabe in diesem Falle äquivalent zu Auf-
gaben der Variationsrechnung ist (vgl. [20]). Damit steht für diese Teilklasse von

Grundaufgaben optimaler Prozesse das umfangreiche Arsenal bekannter Aussagen

‘) Beispiele hierfür wären (vgl. Bd. 1): (-00, 0) Teilmenge des R‘; (— l, +1) Teilmenge des R‘;
((x„ x2) E R2 lx,2 + x22 < 4) Teilmenge des R2 u. ä.
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und numerischer Verfahren der Variationsrechnung zur Verfügung (vgl. [22], [l6]).
lst der Steuerbereich U dagegen eine abgeschlossene Teilmenge von R’, so versagt die
Variationsrechnung, und die Grundaufgabe ist mit prinzipiell neuen Schwierigkeiten
verbunden. Aber auch innerhalb dieser Klasse von Grundaufgaben gibt es wiederum
solche, die sich durch relative Einfachheit auszeichnen. Dazu gehören die sogenann-
ten schnelligkeitsoptimalen Prozesse, die man als Spezialfall der Grundaufgabe bei

/;‚(x‚ u) - 1

erhält. Für sie lautet das Funktional (3.7) einfach J(u) 2 t, —- I”, so daß das Wesen
dieser Prozesse darin besteht, den Steuervektor u(t) zu bestimmen, der einen Phasen-
punkt x0 in kürzester Zeit in einen anderen gegebenen Punkt x, überführt. Sind dar-
über hinaus die rechten Seiten der Bewegungsgleichung linear in allen Argumenten
d.h., gilt auch noch

n ‚-

fi(X‚ u) 21:2; a:jxjW'/%1l[7r'I"”/va i: 1a 2, m, "5

so ergibt sich bei gewissen zusätzlichen Bedingungen an U die Teilklasse der Soge-
nannten linearen schnelligkeitsoptimalen Prozesse, für die die umfassendsten Aus-
sagen bekannt sind (vgl. [6]).

Optimale Steuervektoren und die ihnen entsprechenden optimalen Trajektorien
besitzen einige allgemeine Eigenschaften, von denen wir hier die beiden folgenden
nennen:

1. Die „Eigenschaft eines zulässigen Steueruektors, optimal zu sein, ist invariant gegen-
über Paralleloerschiebungen entlang der t-Aclise. Mit anderen Worten: Ist u(t) für
t E [r„, t1] optimaler Steuervektor, dann ist es auch der Steuervektor am = u(t + h)
für tE [n], fl] mit f,- = ti; lt. Das beruht darauf, daß keine der Funktionenfi,
i: 0, 1, ..., n, explizit von t abhängt, und gestattet es, den Anfangspunkt to des Zeit-
intervalls für alle zulässigen Steuerungen einheitlich zu wählen.

2. Jeder Abschnitt einer optimalen Trajektorie ist selbst wieder optimale Trajektorie.
Ist also u*(t) mit t E [10, I1] optimaler Steuervektor, der x0 in x1 überführt, und x*(t)
die ihm entsprechende optimale Trajektorie, so gilt für zwei beliebig fixierte Punkte
x*(r„) und x*(r1), I0 §,r0 g T1 g t1, der optimalen Trajektorie folgendes: u*(t) ist
für IE [10,11] optimaler Steuervektor, der x*(r„) in x*(r,) überführt, und x*(t)‚
t E [rm T1], ist die ihm entsprechende optimale Trajektorie. Diese Eigenschaft ist ein
gewisses Analogon zum Bellmanschen Optimalprinzip (vgl. Abschn. 4.3.).

3.2. Pontrjaginsches Maximumprinzip

Es wurde schon erwähnt, daß die Methoden der Variationsrechnung für Grund-
aufgaben mit abgeschlossenen Mengen als Steuerbereich nicht angewendet werden
können. Daher muß für sie ein neuer Lösungsweg entwickelt werden. Die Basis hier-
für ist das Pontrjaginsche Maximumprinzip‘) (vgl. [20] und [5]). Seine Rolle und Be-

1) Hier ist die Bezeichnung „Prinzip“ historisch (vgl. [5]) und im Sinn eines Ausgangspunktes
zu sehen. Keinesfalls darf angenommen werden, daß mit ihm nur ein Grundsatz des Handels for-
muliert wird, der nicht bewiesen ist. Im Gegenteil, das Maximumprinzip ist streng bewiesen
(vgl. [20]).
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deutung für die Theorie optimaler Prozesse kann verglichen werden mit den notwen-
digen Bedingungen für das Extremum von difierenzierbaren Funktionen. Letztere
liefern bekanntlich zwar die Extrema nicht direkt, gestatten jedoch, einerseits zu

überprüfen, ob die Funktion in einem Punkt ein Extremum besitzen kann und ande-
rerseits die extremwertverdächtigen Punkte zu ermitteln. Analog hierzu besitzt auch
das Pontrjaginsche Maximumprinzip eine zweifache Bedeutung. Erstens kann mit
seiner Hilfe geprüft werden, ob eine fixierte zulässige Steuerung sowie die ihr ent-
sprechende Trajektorie optimal sein kann. Zweitens stellt es einen Ausgangspunkt
für die Ermittlung der optimalitätsverdächtigen Steuerungen dar.

Zur Formulierung des Maximumprinzips benötigen wir noch einige Begrilfe und
Symbole, die zunächst eingeführt werden.

Durch die Differentialgleichung

9in0‘) = fo(X(t)‚ 110)) (39)

wird eine neue Phasenkoordinate x„(t) eingeführt. Neben der Bewegungsgleichung
des Prozesses in der Form (3.6) werden wir das um die Gleichung (3.9) erweiterte
System

x,~(t) :f,(x(t), u(t)), i: 0, 1, ..., n, (3.10)

betrachten. Dabei gilt für jede fixierte zulässige Steuerung u(t), t E [t0, 1,], und einer
ihr entsprechenden Trajektorie x(t) wegen (3.9) und (3.7) immer

xoÜo) = 0, 950(11) Z -,(“)- (3-11)

Weiterhin benötigen wir Hilfsvariablen p,v(t), z’: 0, 1, ..., n, die durch das Diffe-
rentialgleichungssystem

„m Z 1g <3fi-9:-3!),(:04 ax p,,.(t), i = 0,1‚..., n, (3.12)

definiert werden. Das System (3.12) wird als das zum System (3.6) adjungierte System
bezeichnet. Man überzeugt sich leicht davon, daß (3.12) ein lineares Differential-
gleichungssystem in p ‚—(t) ist, dessen Koeffizienten für jeden fixierten zulässigen Steuer-
vektor u(t), t E [r„, n], und für die ihm entsprechende Trajektorie x(t) stückweise
stetige Funktionen der Zeit r sind; daher besitzt (3.12) für beliebige Anfangswerte
p,-(t0) : pf’, i = O, 1, ‚ n, eine eindeutige Lösung

P(t) = (1700), P10), . 1141)), (3»13)

die für alle t E [t„, t1] definiert und stetig ist. Natürlich hängt P(t) von dem Steuer-
Vektor u(t) und der Trajektorie x(t) ab. Jeden auf diese Weise ermittelten Vektor P(t)
werden wir Lösung von (3.12) nennen, die dem zulässigen Steuervektor u(r) und
einer seiner Trajektorien x(t) entspricht.

Schließlich führen wir durch die Definitionsgleichung

am: x, u) : p,f.(x, u) (3.14)
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noch die sogenannte Hamiltonfunktion ein. Mit ihr lassen sich die Systeme (3.10)
und (3.12) zu dem folgenden Hamiltonsystem vereinigen:

. Ö3?’ _

x‚(t) = Op‘ , g l = 0, 1, ...,n, (3.15)

. Ö9? .p‚(t) = — bx‘ , l = 0,1, ...,n. (3.16)

Darüber hinaus erweist sich die Hamiltonfunktion für die Theorie optimaler Pro-
zesse und insbesondere für die Formulierung der notwendigen Bedingungen in fol-
gendem Sinne von fundamentaler Bedeutung. Setzt man für P und x in (3.14) fixierte
Vektoren P und i: ein, so ergibt sich eine Funktion, die nur noch von u abhängt. Für
sie kann man die Frage nach dem Supremum über u E U stellen. Dieses Supremum
wird mit .//I(P, i) bezeichnet:

.//z(15,:2) = sup y/(15, ‚z, u). (3.17)
ueU

Wird das Supremum für ein gewisses u E U angenommen, so gibt ./f/(P, i) einfach
das Maximum von if bei fixierten P und i an. Das ist übrigens auf Grund der Kon-
struktion von if und der Stetigkeitseigenschaften vonf, immer dann der Fall, wenn

U eine abgeschlossene Menge ist. Deshalb wird das folgende Kriterium über die not-
wendigen Bedingungen auch Pontrjaginsches Maximumprinzip genannt (vgl. [20]).

Satz 3.1 (notwendige Optimalitärsbedingung): Dafür, daß ein zulässiger Steuervektor
u(t), t 6 [t0, t ‚], der x0 in x1 überführt, und die ihm entsprechende Trajektorie x(t) opti-
mal (im Sinne der Definition 3.4) sind, ist notwendig, daß eine ihnen entsprechende ste-
tige Lösung P(t) = (p0(t), p1(t), ..., p,,(t)) von (3.12) mit folgenden Eigenschaften exi-
stiert:

1. Die Lösung P(t)' besitzt wenigstens eine nicht identisch verschwindende Komponente,
d. h. P(t) e Ofür t E [to, t,];
2. Für beliebig fixiertes t6 [t0, t,] nimmt Jf(P(t), x(t), u) als Funktion von u E U in
u = u(t) ihr Maximum an

9V(P(t)‚ x(t), u(t)) = -l(P(f), x(t)); (3.18)

3. Im Endzeitpunkt t1 gelten die Beziehungen

PoÜi) ä 0 und =/f(P(f1),X(f1)) = 0- (3-19)

Weiterhin gilt: erfüllen P(t), x0(t), x(t) und u(t) das Hamiltonsystem (3.15), (3.16) so-
wie die obige'zwez'te Bedingung, dann sind po(t) und .//{(P(t), x(t)) als Funktionen der
Zeit konstant, so daß es genügt, die Bedingungen (3.19) für ein beliebiges IE [to, t1]
nachzupriifen.

Dieses Prinzip hat eine umfangreiche Verbreitung gefunden. Von den vielen Ver-
öffentlichungen, die seiner Anwendung und theoretischen Weiterführung gewidmet
sind, seien hier nur einige genannt. In [12] und vor allem in [2] sind zahlreiche prakti-
sche Beispiele aus der Technik und Physik behandelt und bis zur numerischen Lösung
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entwickelt worden. Eine Anwendung auf chemische Iirozesse zeigt [13]. Ansätze zu

möglichen Anwendungen des Maximumprinzips in der Okonomie findet man in [I ], [3],
[21] und [23]. In [17] ist eine umfassende Zusammenfassung numerischer Verfahren
gegeben.

Um dem Leser eine Vorstellung davon zu vermitteln, wie man das Maximumprin-
zip anwenden kann, betrachten wir das folgende Beispiel.

Beirpiel 3.3: Es wird die Grundaufgabe untersucht, bei der U = R’, X“ = (2, 1), x, = (6, 4) ist, die
Bewegungsgleichung die Gestalt

x,» = 11,1, i: i, 2, (3.20)

hat und das Funktional

31

J(u) = J. Yul’ + 1122 dt
in

gegeben ist. Mit anderen Worten, es ist der zulässige Steuervektor u(t) = (1410), 1420)), t E [10, t1] zu
bestimmen, für den das Funktional J(u) sein Minimum annimmt und außerdem die zugeh’ "ge

Lösung x(t) = (x,(!), x2(t)) von (3.20) den Phasenpunkt x0 in x, überführt, d.h., es muß x(t,») = xi,
i = 0, 1, gelten. Dabei sind to und I, ebenfalls nicht gegebene, sondern gesuchte Größen.

Zur Lösung dieser Aufgabe wenden wir das Maximumprinzip an und bilden zunächst die Hamilton-
funktion

«76’(P, x, u) = 170}/"12 + M22 + pm + P2"2-

Somit ergibt sich für die Definition der Hilfsfunktionen p‚-(t) das System (vgl. (3.16)):

017€'j;‚-= —-67;: , i=0,1,2.

Hieraus folgt sofort, daß die Hilfsfunktionen konstant sind:

17:0) = Ci:

wobei die Ci, i z: 0, l, 2, zunächst noch frei wählbare Integrationskonstanten sind. Die Hamilton-
funktion nimmt also die Form

176(1), X1 u) : Co 1/"12 ‘i’ "22 + Clul + C2112

an. Nun suchen wir (vgl. mit der zweiten Bedingung in Satz 3.1) das Maximum dieser Funktion be-
züglich u.

Aus den für das Maximum von 17€ notwendigen Bedingungen

‘—: +Cl-:O’ 1:1,;
Gui T1112 + 1122

folgt sofort, daß C,, :6: 0 sein muß, denn sonst würde auch C, = C2 = 0 folgen, und das wider-
spricht dem Maximumprinzip (siehe erste Bedingung). Da außerdem nach dem Maximumprinzip
p„(t1) S 0 gelten soll, erfüllen wir sicher alle Forderungen, wenn wir C„ : —l setzen. Somit ergibt
sich zunächst

36m x. u) : — 1/:13 + 112’ + C111, + C2142 (3.21)

mit ‘den notwendigen Maximumbedingungen

u‚* : C, Va,“ + a2“, ’: 1, 2, (3.22)

2 Bieß, Prozesse
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aus denen sich die Relation

“z”: _ C2

111* _ C1
(3.23)

ergibt. Nehmen wir nun einmal an, wir hätten u‚-* bereits explizit ermittelt und setzen diese Werte in
(3.21) ein. Dann ergibt sich unter Beachtung von (3.19) und (3.22) die Relation

0 = 36(1), x, u*) = V14," +142“ (——l + Cf + C23) oder Cf + C 2 = 1. (3.24)

Eine weitere Bedingung für die Ci ergibt sich‚ wenn wir die u‚-* in die Bewegungsgleichung (3.20) ein-
setzen und dabei (3.23) sowie die beiden Phasenpunkte x,~, i = 0, l, benutzen, Wir erhalten nämlich

t C z

x1(t) = 2 +fu1‘ dr sowie x20) = 1 + —C3fu1* dr, (3.25)

to In
woraus speziell für t = t1 nach entsprechender Division folgt

c, x2(t1)—1_ 4—1 _ 3

?,~;T)T2‘-7-7-2?‘ “"2"”

Man beachte, daß bei diesen Rechnungen u,” sowie to, t, noch nicht bekannt waren. Aus (3.24) und
(3.26) folgt nun als eine Möglichkeit

C1 = g, C, = - (3.27)

Somit nimmt die Hamilton-Funktion die Form

c7€(l’.x.u)=—Vufi+u22+%u;+-EH2

an. Man kann nun durch einige elementare Abschätzungen zeigen, daß diese Funktion immer kleiner
oder gleich null bleibt. Daher liefern die Lösungen u* = (u1*, 142*) von (3.22) nicht nur die für
relative Extrema der Funktion e76’ verdächtigen Punkte, sondern (beachte hierzu (3.24)) auch deren
absolutes Maximum. Hiernach kann bereits festgestellt werden: wenn eine zulässige Steuerung
u(t) = (u1(t), 112(1)) nicht der Bedingung (vgl. (3.23))

uzÜ) _ i
u,(r) — 4

genügt, dann kann sie nicht optimal sein. Zur endgültigen Bestimmung des optimalen Steuervektors
u*(t)einschliel3lich seines Definitionsbereiches [to , t,] bemerken wir zunächst, daß im gegebenen Falle
u*(t) nicht eindeutig bestimmt ist. Wählt man z.B. für u1*(t) eine beliebige positive stetige Funktion
und setzt dann u2*(t) = guflt), so erfüllen diese beiden Steuerparameter die Bedingungen (3.22)
und (3.23), wobei die C) gemäß (3.27) gewählt sind, und erteilen daher der Funktion :75 ihren maxi-
malen Wert 0. 1., kann man wegen der oben erwähnten ersten Eigenschaft der Steuervektoren beliebig
wählen (z.B. to = 0) und t, rnuß dann der Relation

‘i
4 z f u‚*(t)dt

0

_ 4
genügen. Der einfachste Fall ergibt sich, wenn man u1*(t) = 141* = const wählt. Dann ist t, = F .

Es sei schließlich noch erwähnt, daß die Parameterdarstellung (3.25) der optimalen Trajektorie mit
x = x1(t) und y = x2(t) sowie unter Verwendung der Gleichung (3.26) umgeformt werden kann auf
_v= g»: — . Dieses Ergebnis entspricht voll dem geometrischen Inhalt unserer Aufgabe. Wir
haben nämlich unter allen Kurven mit beliebigem Anstieg, die die beiden Punkte xn und x Verbin-
den, diejenige mit der geringsten Länge gesucht.
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Es sei im Rahmen dieses Abschnittes noch auf zwei Abwandlungen der Grundauf-
gabe optimaler Prozesse verwiesen. Die eine ergibt sich, wenn man statt zwei fester
Punkte x‘, und x, nur einen, etwa x0, vorgibt und gleichzeitig jedoch den Beginn to

und das Ende t1 des Prozesses als gegeben annimmt. Man spricht dann von einem
Prozeß mitfixierter Zeit undfreiem rechtem Ende (siehe 3.3.4.). Für derartige Prozesse
lautet das Maximumprinzip genau wie Satz 3.1, nur mit dem Unterschied, daß der
erste Teil der Bedingung (3.19) durch

P00) E -1: IE [t0st1]a

ersetzt werden‘ kann und die Bedingungen

PiÜi) : Ü» i=1,2,---= n,

hinzugefügt werden müssen.

Die andere Abwandlung der Grundaufgabe wurde bereits erwähnt. Sie ist ein
Spezialfall, der sich für

fio(x(t)‚ u(t)) E 1

ergibt, und wird Aufgabe der Zeitoptimalität genannt. Das Wesen dieser Aufgabe
wurde oben (s. S. 14) schon erläutert. Für sie gilt natürlich auch ein Maximumprinzip,
das aus dem allgemeinen Satz 3.1 abgeleitet werden kann. Wegen fi,(x, u) E 1 erhält
man nämlich

9€ = pa +i=Z"11>:fi(x, u).

Mit den ncuen Bezeichnungen

p = (111412, ...‚p„) und Ho». x. u) aäpimx. u)

ergeben sich dann

J€=p0+H bzw. H=c7€—p0 V (3.28)

und außerdem das folgende reduzierte Hamiltonsystem:

dx,» ÖH
:=—, i=l,2,...,n, (3.29)
dt 6p,-

dp, ÖH _

—dt———ö—xi, t—1,2‚...‚n. (3.30)

Die dabei vorgenommene Reduzierung des Vektors P um die Komponente po und
die damit verbundene Reduzierung der Gleichungssysteme (3.15) und (3.16) um die
Gleichung für i = 0 erweist sich als vorteilhaft, weil man das notwendige Kriterium
der Zeitoptimalität ohne po formulieren kann. Dazu wird wie für (76 auch für H bei
fixierten f) und i eine Größe M(f), i) eingeführt:

M(13,i)= S13 H03, fr, u).

2:1:



20 3. stetige Prozesse

Wegen (3.28) gilt dabei

M013): =4l(P.i)—11o mit P = (Po. P).

so daß sich die beiden Relationen (3.19) durch

M(P(T1)a X01» = ’Po(t1) 2 0

zusammenfassen lassen. Somit ergibt sich

Satz 3.2 (Notwendiges Kriterium für Zeitoptimalität): Dafür, daß ein zulässiger Steuer-
vektor u(t), t E [t0, t‚]‚ der x0 in x1 überführt, und die ihm entsprechende Trajektorie
x(t) einen schnelligkeitsoptimalen Prozeß bilden, ist notwendig, daß eine ihnen ent-
sprechende stetige Lösung p(t) = (p1(t), p2(t), , p,,(t)) von (3.30) mit folgenden Eigen-
schaften existiert:

1. Die Lösung p(t) besitzt wenigstens eine nicht identisch verschwindende Komponente,
d.h. p(t) $ o für t E [10, t1];

2. für beliebig fixiertes t E [t0‚ t‚] nimmt H(p(t)‚ x(t)‚ u) als Funktion von u E U in
ll = u(t) ihr Maximum an

H(PO), X0), u(t)) = M(P(f)‚ x(t));

3. im Endzeitpunkt t1 besteht die Relation

M(P01), X(t1)) ä 0-

Weiterhin gilt: Erfüllen p(t), x(t) und u(t) das Hamiltonsystem (3.29), (3.30) sowie die
obige zweite Bedingung, dann ist M(p(t), x(t)) als Funktion von t konstant, so daß es

genügt, die dritte Bedingung für irgendein t E [t„‚ ti] zu überprüfen.

3.3. Andere Aufgabentypen

3.3.1. Probleme mit beweglichem Endpunkt

Bei der Formulierung der Grundaufgabe (Def. 3.3) in 3.1. wurde davon ausge-
gangen, daß ein gegebener Punkt x0 in einen gegebenen Punkt x1 des Phasenraumes
zu überführen ist. Gegeben seien nun im Phasenraum die Bedingungen

I-‘,,(x)=O, k=1,...,m§n. (3.31)

Es werde vorausgesetzt, daß alle F,_.(x) zweimal differenzierbar nach allen x.- sind und
die Jacobische Matrix

( OFA,

OX,‘

den Maximalrang m besitzt. Man sagt dann auch, durch F;‚(x) = O ist eine glatte
Mannigfaltigkeit S l) im R" bestimmt. Wegen der Forderung, daß die Jacobische

1) Die Mannigfaltigkeit S besteht aus der Punktmenge des R", die durch den Schnitt der Hyper-
flächen (3.31) bestimmt wird.
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Matrix Maximalrang besitzen soll, sind die Vektoren grad F,_. linear unabhängig, sie
bilden eine Basis des Normalenraumes zu S, d.h.‚ jeder Vektor

ä 2.... grad F.
I.-= r

mit beliebigen Koeffizienten 1;. (nicht alle gleichzeitig gleich null) ist orthogonal zu S.
Wir betrachten nun in Verallgemeinerung der Grundaufgabe die folgende Aufgabe:

Unter allen zulässigen Steuervektoren u(t) mit t E [t0, t1] ist derjenige (optimale) zu

bestimmen, der x(t0) = x0 in x(I1) überführt, wobei

F1.- [X(h)] = 0, k = I, m,

gilt (Überführung von x0 in einen beliebigen Punkt von S) undfür den das Funktional

t, .

J: j‘;:,(x, u) dt (3.32)
‘o

den kleinsten Wert annimmt. Dabei genüge x(t) dem System (3.6)

i: = f(x, u).

Ist T der Tangentialraum an die Mannigfaltigkeit S im Punkte x(t‚), dann sagt man
auch:

Der Vektor p(t) erfüllt die Transoersalitätsbedingung im rechten Endpunkt der Trajek-
tarie x(t), wenn p(t,) zu Torthogonal ist, d. h. für jeden Vektor qT= (ql, , q„), der in T
liegt, gilt

pm q.- = (poo, q) = 01>. ’ (3.33)

Äquivalent dazu ist

p(t‚) = f f’ Ä], grad F,,.],,=tl (nicht alle l4.» gleich null). (3.34)
]x'=1

Angenommen, wir hätten unsere Aufgabe gelöst, dann ergibt sich ein bestimmter
Endpunkt x(t1). Daraus folgt, daß die zur Grundaufgabe formulierten Bedingungen
des Maximumprinzips auch hier erfüllt sein müssen. Das Maximumprinzip wird bei
Problemen mit beweglichem Endpunkt lediglich ergänzt durch die Transversalitäts-
bedingung (3.34).

/ \

Satz 3.3: Es sei n(t), t E [t0, t1], eine zulässige Steuerung, die x(t0) = x0 in x(t‚) E S
überführt, und x(t) die zugehörige Trajektorie. Notwendig dafür, daß x(t) undu(t) Lösun-
gen des oben formulierten Optimierungsproblems sind, ist die Existenz eines nicht iden-
tisch verschwindenden stetigen Vektors P(t), so daß das Maximumprinzip (Satz 3.1) und
im rechten Endpunkt die Tronsversalitätsbedingung erfüllt werden.

1) Wenn zwei Vektoren orthogonal sind, dann muß bekanntlich ihr Skalarprodukt gleich null sein.
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Bemerkung: Entsprechend folgt eine Transversalitätsbedingung für den Anfangs-
punkt im Fall, daß x(to) nicht fest vorgeschrieben ist, sondern in einer gegebenen
Mannigfaltigkeit liegt (Aufgabe: Schreiben Sie die entsprechenden Bedingungen
auf!).

Betrachten wir noch den Fall, daß lediglich einige Endwerte‚ etwa

X201): xi‘. i=1, m, m < "a

x,-(t1) beliebig, i: m + 1, ...‚ n,

gegeben sind.

Wir setzen dann

F;‚(x) = x‚_. — xi‘ = 0, k = 1, ...‚ m, (3.35)

und erhalten

6F,,. _ 0 für i+k‚
fix; _ {l für i=k.

Damit ergibt sich die Transversalitätsbedingung

—/'.‚- (beliebig) für i; m,
pi“) = { 0 für i> m (336)

d.h.‚ die Endwertepl(t1) sind nicht gegeben für diejenigen Indizes, für welche die
x‚-(t1) gegeben sind. Für das Differentialgleichungssystem für die 2n Funktionen x‚-(t)
und p‚(t)‚ also

i: = f(x, u),

aH
K’

sind somit insgesamt n Endwerte gegeben, nämlich

x‚(t1) für igm,
p,-(t1) für i>m.

Beispiel 3.4: Gegeben sei das System

331 = xx» xr(0) = I],

*2 = V: x2(0) = o;

Jul g 1.

Gesucht ist eine solche optimale Steuerung, die den Punkt x“ = x(0) in kürzester Zeit t1 in einen
Punkt der Geraden x1 = x2 überführt. Für den Endpunkt gilt offensichtlich die Bedingung

F1(x(’1))E xiÜi) — x201.) = 0-

Damit erhalten wir die Transversalitätsbedingung

11.0.) = —Ä‚

172(71) = A-



3. 3. Andere Aufgabentypen 23

Aus H = xzp, + up, erhalten wir mit Satz 3.2 als notwendige Bedingung für die optimale Steuerung
u = sgn P2 (falls p, $ 0). Weiter ist 131 = 0, p, = —p1 und damit unter Berücksichtigung der Trans-
versalitätsbedingung

171(!)= -1. 1J2(!)= Ät + M1 - t1)= M! - t1 + 1)-

p,(t) ist also eine lineare Funktion von t; es erfolgt ein Vorzeichenwechsel und damit höchstens eine
Umschaltung bezüglich der optimalen Steuerung. Die Umschaltzeit ist dann t, = t, — l.
Angenommen, wir würden vollständig mit u = +1 steuern. Dann folgt

2

x. = '7 +

x, = t

und als Trajektorie die Parabel

x2’ = 2(x‚ — ä).

Für den Endpunkt und die Endzeit ergibt sich wegen x1(I,) = x2(t,)

t2 1

’1=%+7

’1=1:f:‘I/E‘

Die zwei Werte entsprechen dabei den zwei Schnittpunkten der Parabel mit der Geraden x1 = x,
(vgl.- Bild 3.2).

d. h.

Bild 3.2
Optimale Trajektorie für Beispiel 3.4

x” X,

Nur der kleinere Wert ist für uns von Interesse‘ (warum?). Bezüglich der Hamiltonfunktion folgt

Hit-=t, z —;~X2<’1) + A-"f(t1)= "M: + Ä =1
1 _ ..

1 — t1 —

Wird nur mit u = —l gesteuert, folgt (führen Sie die Rechnung aus!)

t1=1;};V:.

für A = und damit sgn pg = +1 für r e [0, x1]. "
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1/9 ? 1/9 A

Wegen 1 + 7 >l — V7 und 1 — 7 < 0 liegen also ein schlechterer und ein unbrauch-

barer (warum?) Wert vor.

Zeigen Sie, daß man auch für die Steuerungen mit einer Umschaltung größere Werte für t1 erhält!

3.3.2. Probleme mit anderem Optimierungsziel

Bei vielen Aufgaben ist das Optimierungsziel nicht in der Form (3.32) (Aufgabe
von Lagrange) sondern als Funktion des Endpunk;es

F[X(t1)]

gegeben (Aufgabe von Mayer). Dabei soll F[x(t)] nach allen Argumenten zweimal
differenzierbar sein. In diesem Fall gilt

Satz 3.4: Ist das Optimierungsziel in der Form F[x(t,)] gegeben, dann ist natwendigfür
Optimalität einer Steuerung u(t) die Existenz eines stetigen, nichtidenlisch verschwin-
denden adjungierten Vektors p(t) als Lösung des Systems

. " Öf- ‚

p,-= —J_g1'pj a; ‚ z: 1, ...,n‚ (3.37)

mit den Transversalitätsbedingungen

BF "L 6Fk

pi“) : s Öxi z=t,—k=1 k axi t=t;’ (3.38)

so daß gilt

max H(X0), PO), II) = H(X(t), 9(1), u(t))‚ (3-39)
ll

max H|;=,l = 0 (3.40)
mit

H:__Z1p‚-fi. (3.41)

Für die Anwendungen bedeutsam ist u.a. der Fall, daß

Fixao} = g cixi(tl) (3.42)

zu minimieäen ist. Hier ist

6F ‚Ja: a c,- ‚ (3.43)

und damit folgt aus (3.38) die Endbedingung

_ "‘ aFk IP101) — 7C, r-A-Z Ä], —a}7l‘:t).
=1
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Aufgabe 3.1: Zeigen Sie, daß man auch die Aufgabe von Lagrange auf die Aufgabe von Mayer zu-

rückführen kann!

Aufgabe 3.2: Hat das zu minimierende Funktional die Form

t1

J z F[x(ti)] + fmx, u) dr,
‘o

spricht man auch von der Aufgabe von Bolza. Führen Sie diese Aufgabe auf die Aufgabe von

a) Lagrange, b) Mayer zurück!

Beispiel 3.5: Gegeben sei die chemische Folgereaktion 1. Ordnung A —> B —> C mit den Folgepro-
dukten A, B, C, den zugehörigen Konzentrationen x„'x„ x3 (x1 + x2 + x3 = 1) und den Geschwin-
digkeitskoeffizienten kl, k2. Das kinetische System (Prozeßgleichungen) ist dann

dxl
T '~ "‘/(xxx.

dxg _-Er — klxl A kzxz

mit den Anfangsbedingungen

x,(0) = l, x2(0) = O.

Die Geschwindigkeitskoeffizienten werden ingder Form

k: = krone-XD (— R—'T), z:1.2,

angenommen, wobei T(t)der Temperaturverlauf, E; die Aktivierungsenergien und R die Gaskonstante
sind. Gesucht ist ein solcher Temperaturverlauf T(t) mit T1 g T(t) g T2 (T1'~Ziindtemperatur der
Reaktion, T2 obere Grenztemperatur), so daß maximale Ausbeute hinsichtlich B, d.h. max x2,
erreicht wird. ‘

In diesem Fall liegt das Optimierungssziel in der Form (3.42) mit cl = 0, c, = 1 vor. Es folgt die
Hamiltonfunktion

H = "k1X1I71 ‘i’ (klxl — k2x2)172 : k1X1(P2 “ P1) * k2X2172

und das adjungierte System

%‘ : k1(P1 ’ P2)» 171(71) = *5] : O!

d
’%=k2172» P2Üi): "z: ’1-

Untersuchen wir Zunächst H auf stationäre Stellen bezüglich T. Es ist

6ä = k1,x1Q72 ’“ P1) ” k2’X2172s

wobei i

‚ dk- E - E- E
"i ‘T’: k‘°°?2lT°3‘p(_ R—'r)=17'?

gilt. Aus 2% = 0 erhalten wir

kt

Elklxl(p2 — 17i) r‘ E2k2x2l72 : 0,
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d.h.
k: _ Ezxzfle _

k2 _ E1«\’1(P2 — 171)

oder
exp E2 " E1 _ k2ooE2X2P2

RT.» _ k1ooE1x1(P2 T‘ P1)‘.

Unter der Annahme, daß die rechte Seite dieser Beziehung positiv ist, ergibt sich schließlich

E2 _ E1

k2ooE2x2P2

‚V100 Elxl (172 * P1)

I’:

Setzen wir
= X2172

x1(P2 m 171) ’

E2 .-' El
k2ocE2

klooE1

so folgt

T, = .

R ln q

62H
Zu überprüfen wäre noch, daß 6T? _T > 0 gilt (Aufgabel).

s

Zur Bestimmung von Ts ist damit die Kenntnis von q erforderlich. Kinetisches und adjungiertes
System sind jedoch nicht geschlossen integrierbar, so daß zur weiteren Lösung ein numerisches Ver-
fahren eingesetzt werden muß. Falls T; reell und T, g 7} g T2 gilt, ist somit Top. = I}. Anderen-
falls ist mit T1 bzw. T2 zu steuern, je nachdem, für welchen Wert sich das Minimum von H einstellt.

3.3.3. Nichtautonome Systeme

Bisher hatten wir Systeme (3.6) betrachtet, bei denen die rechten Seiten nicht expli-
zit von t abhingen, man spricht dann auch von einem autonomen System. Systeme der
Form

i: = f(x, u, t) (3.45)

nennt man auch nichtautonom. Dabei kann das Zielfunktional in der Form

‘i
J=ff‚(x‚ u, z) dt (3.46)

L0

gegeben sein.

Führen wir die zusätzliche Phasenkoordinate

x„.„ = I‘

ein, dann ergibt sich als weitere Differentialgleichung

dx„+‚
dt

\

= 1, xn+1(t0) : 70- (3-47)



3.3. Andere Aufgabentypen 27

Im Raum der Variablen x, , x2, x„„ liegt damit das autonome System

d I: .%=fi-(X, u, xm), t= 1, n,

dxn+1 __ i—dt—_ 1, (3.48)

H

J:ff„(x‚ u, x„„) dz (3.49)
to

vor, auf das unmittelbar das Maximumprinzip angewandt werden kann. Die Hamil—
tonfunktion für das neue System lautet

96* = g pm + m (3.50)

und mit

J6 =4_20 Pifi

‘7€*:‘?€+Pn+1-

Entsprechend ergibt sich das adjungierte System

d1’: "

dt j:0 Bx;

fl'_*fl=_Zn'3fL ._ (3.52)

Die Bedingung des Maximumprinzips

max é7€*=0

kann deshalb ersetzt werden durch

max 47€ = — p„„. (3.53)

Sind bezüglich des Endpunktes die Bedingungen _

F1.-[X(t1),t1]= 0‚ k =1,--.. m S n, (3-54)

zu erfüllen, so kann man die Transversalitätsbedingungen (3.34) unmittelbar anwen-
den, wobei zu beachten ist. daß gilt

ÖFL-

Bx,
P1 * f

p = p’ ‚ grad F/_.= OE.»

p" Bx"
n .1 6F’;

a:
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Ist z.B. der Endpunkt x(t1) = x1 fest vorgegeben, so ist lediglich x„„(t‚) im neuen
Phasenraum beliebig. Entsprechend. (3.36) folgt somit

pn+1(t1) = 0'

Beispiel 3.6: Gegeben sei

x1 = 214+ I, Iulg 1.

Gesucht ist eine zulässige Steuerung, für die die zugehörige Trajektorie den Punkt

x1(0) = l in den Punkt x,(t,) = 0

überführt, wobei

t1

J 2 f (x1 „L z) d: '

0

zum Minimum wird.

Mit x2 = I erhalten wir die Differentialgleichung

X2 = 1, x‚(0) = 0,

die Hamiltorifunktion

55‘ =P0(X1 + x2) + p1(2u + x2) + 112

und das adjungierte System sowie die Transversalitätsbedingungen

in Z 0: 110(11): ‘-1 !

ill = -170 r’: 1 y

I-72 = -170 “P1 = 1 -P1» P201) = 0-

Das Maximum von 47€’ ergibt sich für u = sgnpl (falls pl =l= O). Integration der entsprechenden
Differentialgleichung liefert

pl = 1+ C1

und somit

u = sgn (t + c1).

Die Funktion pf = t + c1 besitzt genau eine Nullstelle, d. h., es erfolgt ein Vorzeichenwechsel. Somit
kann es bezüglich der optimalen Steuerung höchstens eine Umschaltung geben. Dann muß jedoch
cl < 0 sein. Folgende drei Fälle sind damit zunächst möglich:

1. es wird nur mit u = 1 gesteuert,

2. es wird in [0, I2] mit u = —l und in (t2, t,) mit u : +1 gesteuert, wobei t2 = —c, gilt,

3. es wird nur mit u = —l gesteuert.

Für den 1. Fall ergibt sich I

t2
x1=7+2t+1.
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Wir überzeugen uns leicht, dal3 der Endpunkt 241(11) = 0 für t1 > 0 nicht erreicht werden kann. Be-
ginnen wir also mit u = —1. Dann folgt

t2
x1=7—2r+1.

Nehmen wir an, es ist keine Umschaltung erforderlich. Aus x,(t,) = 0 ergibt sich

z. = 2 i Vi.

Weiter ist

3€*|„= — r. + (z, — 2m, + c.>= — (2 i Vi) —(i V§)(2:l: V§+ c1): 0

und damit

c1=—1
also

p,=t— 1.

Für t S t, = 2 — Vi ist p, < 0, also tatsächlich

u = sgn p, = —l.

Der zugehörige Wert von J ist dann

l

J=f(x1+t)dt=§(7—4V§).
0

3.3.4. Probleme mit fester Endzeit

Im Unterschied zu den bisher betrachteten Problemstellungen soll nun neben to

auch t1 fest vorgegeben sein. Gegeben seien also das System (3.45) mit dem Optimie-
rungsziel (3.46), to und t1 sowie entsprechende Anfangs- und Endbedingungen. Setzt
man wieder x„„ = t, dann folgt die zusätzliche Differentialgleichung

dxn-H
dz

d.h., der Endwert von x„„ ist jetzt fest gegeben. Damit können wir in (3.46) t, als
variabel ansehen. Auswirkungen ergeben sich bezüglich der Transversalitätsbedin-
gungen.
Ist beispielsweise x(t„) in x(t,) zu überführen, so sind im (n + 1)-dimensionalen neuen
Phasenraum alle Endpunkte gegeben, d.h.‚ es ist keiner der Werte p,»(t1), i: 1, , n+1,
gegeben. Aus

‘7€*[!, z yglt, ‘l’ Pn+1(f1): O (3-56)

= 1 mit Xn+1(t0): to: xn+1(t1) = t1: (355)

folgt somit

c7€|:, = “Pn+1(’1)-

Die Bedingung St’ [ ‚l = 0 des Maximumprinzips entfällt, alle anderen Aussagen bleiben
gültig.
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lst x(t„) in einen Punkt der Mannigfaltigkeit

Fk[X(’1)a t1] = 0, k = l, ~--a ma

zu überführen, ergeben sich die Transversalitätsbedingungen

m .

p.~<t.)= —k§1zk7’l_ b“, z= 1, n, «

m BF;
I)n+1(71) = " Z ]*Ix-Tr, ”“ 7-m+1- (3-57)

k=1 = N

Beispiel 3.7: Gegeben sei

551 z X2» X110) = X210) = 1;

5:2 = u, x1(l) = o.

Gesucht ist eine Steuerung mit M g 6, so dal3

1

J —.= f u’ dt
o

minimal wird. Man nennt Aufgaben mit solchem Funktional auch Probleme mit minimalem Energie-
verbrauch. '

Wir erhalten mit pg z —1 entsprechend Bedingung (3.16) und Satz 3.1

47€ : 170142 ‘i’ 17x952 ‘l’ P2" : ~ll2 + P1X2 + 172"

-2 2

— ("—"£l) +171/\'z+p‘:

und
171 = 0. P2 = —p1. 112(1) = 0

ohne Endbedingung für pl. Maximierung von :76’ liefert (quadratische Funktion!)

u z I? falls mg g 12,

16sgnp2 falls l1I2| > 12.

Integration des adjungierten Systems ergibt unter Beachtung von p2(l) = 0

P1 = C1: P2’: ‘fit ‘l’ C2 2 "C1(t"])-
Unter Berücksichtigung des Verhaltens von p2(t) erhalten wir damit folgende Möglichkeiten:

1. Falls c, > 12, dann ist

{ 6 für
u:

0 f; t2:

—% c,(t V 1) für t2

S.

S15 1.
wobei

cl : — gilt.
t2—1

2. Falls -12 g c, g 12, dann ist

u: —;c1(:— 1).
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3. Falls cl < ~12, dann ist

-6 für 0 S tg t2,’
u _

—§c,(z — 1) für t2 g i; 1,
wobei

c _ 12

‘ _ :2 — 1

gilt.

Betrachten wir zunächst den 2. Fall. Durch Integration des Zustandssystems erhalten wir

I t2
x2*“—2‘C1(T—‘1‘)+ 1,

x1=—ic1<'—3-—t—2)+t+1.

Aus x‚(1) : 0 ergibt sich cl = -12, d.h., die erforderliche Bedingung ist erfüllt. Das Zielfunktional
hat für u = 6(t A I) den Wert

1

J=fu2d:=12.
0

Den 1. und 3. Fall behandeln wir gemeinsam, indem wir a = 6 bzw. -—-6 setzen. Dann folgt

at+l für tgtg,
i 2 2

x’ {—%—c‚(%—t—ä +t2)+at2+l für ‚gtg,

t1 ..‚—2—t2+t+l tur tgtz,

1 23 t2 t2 t3 t2 t2
x: "7‘Il?‘T"(%"*)‘%‘+%+’*(%“’*)l

+<ar2+1)<r—r2)+%r;+r2+1 für 7212-

2a .

Wegen x1(l)=0 und cl=——t erhalten wir2_

1 3 2

E%1("?+t2—’22+%)—ü%+0’2+2=0‚

und daraus durch Umformen

a(i— £+i>—a’—j+ar2+2=0,
3 3 3

12z;—2z2—2—7=o,

12’2=1:tV3+7-

Für a = 6 folgt t2 = 1 j; V3; beide Werte liegen nicht im Intervall [0, I]. Für a = —6 folgt t‚ =

bzw. 0, der l. Wert liegt nicht im entsprechenden Intervall; t2 = 0 ist identisch mit dem 2. Fall.
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Aufgabe 3.3: Lösen Sie das in Beispiel 3.7 gestellte Problem mit dem Optimierungsziel

‚ 1

J = f u dt!
o

Aufgabe 3.4: Gegeben sei x, = Zu + t, x,(0) : l, |u[ g l. Gesucht ist eine solche zulässige Steuerung,
für die

1 1

a) f x. dt‚ c) f (x, + u?) dt,
O 0

1

b) foc, + u) dz, d) x,(1)
U

minimal wird.

Beispiel 3.8: In einem Reaktor (als ideales Strömungsrohr angesehen) soll Äthylenoxid durch Über-
leitung eines Äthylen-Luft-Gemisches über einen Ag-Katalysator hergestellt werden. Dabei betrach-
ten wir nur die stationäre Betriebsweise und vernachlässigen Volumenänderungen des Reaktions-
gemisches. Neben der erwünschten Reaktion

02H, + 320, —. C2H.O

findet noch eine Totaloxydation

Czl-Iij + 30, —> ZCO2 + 2H2O

statt. Die Steuerung des Prozesses soll über die Abführung der Reaktionswärme durch einen Kühl-
mantel, d.h., durch das Temperaturprofil des Reaktionsrohres erfolgen. Setzen wir eine einfache
Langmuir-Hinshelwood-Kinetik Voraus, ergibt sich das Prozeßmodelll)

_1-xx1+ax.’
(1x, __T— (k: + kz)

dxg __ 1 —— x1

dt " ‘ Ti}:
mit x,(0) = x2(0) : 0, O g rg t1 (I, fest gegeben). Dabei bedeuten

x1(t) Gesamtumsetzungsgrad des C2H4 nach beiden Reaktionen,

x20) Umsetzungsgrad des CzH4 zu C2H,O,

T(I) Temperaturverteilung mit T, g Tg T2 (T, Zündtemperatur, T2 obere Grenztemperatur),

k,(T) Geschwindigkeitskoeffizienten der einzelnen Reaktionen (i = l, 2) mit
\E.

km = k... exp (— E. > 5..

R universelle Gaskonstante,

E,- Aktivierungsenergien der Reaktionen,

t Verweilzeit,

a > 0 Prozeßkonstante.

1) Vgl. Wolin, J. M.; G. M. Ostrowski, M. G. Slinko, Kinetika i Katalis (Hmxenma n mrrnnua),
IV/5, 1963, S. 760 bis 767.
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Gesucht ist eine solche zulässige Steuerung T(t), für die sich maximale Ausbeute bezüglich C.‚H‚0
ergibt, also ist x2(t,) zu maximieren (Spezialfall der Aufgabe von Mayer).

Wir erhalten zunächst

1- l -— l-
H = p1(k1+ k.) + p2k1 = [(k. + km + ml.

d ÖH 1

7;’; = — T! = (T5517, «k. + km», + km, pm : o,

‘i172T: : 07 17201) = ‘"1: 315° P20) = *1-

Wegen der Maximierung von x2(t,) ist H zu minimieren. Falls ein Minimum im Innern von [T„ Tn]
. ö .

liegt, rnuß dort: = 0 gelten. Es ist
6T

OH 1 —— .\‘1 ‚ ‚

T7:- [k1(p1 “ 1) + k‘2pA]

mit
, dk~ E - E - E~

"i : Tr” : km RT’: °“’<‘7e'T) : 7%‘-
OH . .. . .

Aus +6? = 0 folgt (die Losung werde mit Ts bezeichnet)

I

kx’(I71 ‘ 1) + [(2,171 Z 0:

also

E1k1(I71" 1) + E2k2pl = 0

oder

E2 * E! _ k2coE2pl H

m’ Rn ” k1ooE1(1 — pl) q

und, falls q > 0,

_ E2 _ E!
Ts z Rf,‘

. . 62H . .. . . . . .

Zeigen Sie, daßfi T T > 0 gilt, also tatsachlich ein Minimum von H vorliegt!
3 s

Wir haben nur Ts in Abhängigkeit von der noch nicht bekannten Funktionp‚(t) dargestellt. Dabei ist
p,(t) nicht durch geschlossene Integration zu gewinnen, hier müßte ein numerisches Verfahren ein-
gesetzt werden. Machen wir zunächst einige qualitative Aussagen. Bezüglich T, =f(p1) gilt;

pi | q Ti

p, > l q < 0 nicht reell
pi -+ 1 — 0 q -> w R -> +0
Pr>+0 ri->+0 729-0
pl < 0 q < 0 nicht reell

klooEl vPfiäflxfi” 4““ “i”

3 Bieß, Prozesse
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Damit können wir TS =f(p1) schematisch darstellen (vgl. Bild 3.3, dabei wurde

: p,w.gesetzt). Für 7} E [T1, T2] entspricht 7} der optimalen Temperaturführung. 1355s éugehgoroigé

Intervall für p, ist [p,2,pu} mit

P .= „MD i: i 2
u Eiki(Ti)+ E2/r2(T.) ' ’ l

73

72

T:

I

\
l

. "z... 912 /’17 7‘ /’7 Bild 33

Schematische Darstellung von Ts f f(p1)
in Beispiel 3.8

Für p, < 12,2 und p, > pl, ist entweder mit T, oder mit T2 zu steuern. Zur Entscheidung muß fiber-
prüft werden, für welchen Wert H zum Minimum wird (Aufgabe!) Schließlich erhalten wir

T2 für 17i <Pi2a
T: für P12 S 171$ Pu»

T) für P11 < 171;

Top! :

d. li., TU,” ist in Abhängigkeit von pl monoton fallend. Untersuchen wir p,(I) weiter. Es ist

d
sgn —;’‚—‘ = ssn we + km — kl]-

Wegen p,(t,) = 0 ergibt sich idpti < 0, d.h.‚ bei t, ist die Funktion monoton fallend. Es läßt sich
. . t E k . .

sogar weiter zeigen, daß solange p; g pm =fifi ist, gilt
l l 2 2

E k E ~ E k k(k1+k2)Pi—kiS(ki+k2) — : <0
1 L’

Damit ist p‚(t) in einem Intervall [12, t1] monoton fallend. Angenommen bei t2 ändert sich das Ver-
halten, d.h.‚ für t < ta ist p,(t) monoton zunehmend. Dann muß p1(f) S P102) gehen, 6S ergibt sich
also ein Widerspruch. Folgende qualitative Aussage ist damit möglich:

k:p‚(t) ist monoton fallend, es gilt 0 §p,(r) g k k
folgt sofort: V ‘ + 2

Top10‘): Topt[P1(’)] i

< 1. Da auch T„‚„(p,) monoton fallend ist,
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ist monoton zunehmend. Je nach dem Verhalten von pl sind also drei Reaktorfahrweisen möglich:

l. Es ist stets pl gpll. Dann gilt

Tom. = T2-

2. Es ist pl g pll, aber es gibt Werte mit pl; <pl.
Dann gilt

T _ 7; für Ogtgta,
"W Tl für n, < tg tl,

wobci 1,, aus pl(rl,) : pl; zu bestimmen ist.

3. Es gibt Werte mit pl, < pl. Dann gilt

Tl für 0 gtgtb,
T3 für Ib< té fa,
Tl für r„<tgr„

Tnpl 7

wobei r„ aus pl(tl,) = pll zu bestimmen ist.

Es soll aber noch einmal darauf hingewiesen werden, daß die Bestimmung von p, und damit Top,
den Einsatz von numerischen Verfahren erfordert,_ da die entsprechenden Difierentialgleichungs-
systeme nicht geschlossen integriert werden können.

3.3.5. Einige weitere Probleme

Neben den hier behandelten Aufgabenstellungen sind im Zusammenhang mit optimalen Prozes-
sen noch eine Reihe anderer Probleme von Bedeutung. Wir können hier keine umfassende Darstel-
lung geben. Erwähnt werden sollen lediglich drei weitere Aufgaben. Bezüglich ihrer mathematischen
Behandlung sei auf entsprechende Literatur verwiesen, z. B. [6], [20].

a) Probleme mit unbeschränktem Zeitintervall. Diese Probleme sind dadurch gekennzeichnet, daß als
Zeitintervall [10,00] gegeben ist und eine solche zulässige Steuerung gesucht wird, für die das un-

eigentliche Integral

ff.,(x, u) dt (3.58)

In

konvergiert und minimal wird.

b) Optimale Prozesse mit Verzögerung. Bei manchen Problemen tritt ein Verzögerungselfekt auf,
z. B. kann für die Weitergabe von entsprechenden Signalen eine zu berücksichtigende feste Zeit
Terforderlich sein. Nehmen wir an, daß diese Verzögerung lediglich den Zustand beeinfiußt, so
läßt sich das Problem durch

% = f [x(t), x(t — T), u(t)] (T> O, fest) ' (3.59)

beschreiben. Das Optimierungsziel kann dann z. B. in der Form

'1

f/..[x(:), x(r w T),u(r)1d: (3.60)
‘a

vorliegen .

3x
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e) Optimale Prozesse mit Parametern. Hängt ein Prozeß nicht nur von einem zeitabhängigen Steuer-
vektor u(t) ab, sondern zusätzlich von einem in einem gewissen Bereich frei wählbaren zeitunab—
hängigen (d. h. über das gesamte Zeitintervall konstanten) Parametervektor w, so spricht man auch
von einem Prozeß mit Parametern. Für das System

dxW = HXÜ), 11(1), W]

mit entsprechenden Anfangs- und Endbedingungen ist dann beispielsweise ein solcher Steuer-
vektor u(t) und Parametervektor w gesucht, dal3

tl
ff,,[x(z), u(!), W] dt (3.51)

‘o

minimal wird.

3.4. Numerische Methoden

3.4.1. Vorbemerkungen

Die numerischen Verfahren zur Bestimmung optimaler Steuerungen können wir in zwei Klassen
einteilen

1. Verfahren, die auf Maximumprinzipien aufbauen,

2. Verfahren, bei denen Maximumprinzipien nicht benutzt werden.

Es sei J(u) zu minimieren, der zulässige Steuerbereich sei U. In vielen Verfahren wird dann eine sog.
MinimaIfo/ge In") konstruiert. Dabei heißt die Folge lu") Minimalfolge, wenn für die zugehörige
Folge {.I(u"')] gilt

lim J(u"‘) = inf J(u).
l:—+oo ueU

Die Minimalfolge selbst braucht dabei nicht zu konvergieren. Auch falls keine optimale Steuerung
existiert, aber J(u) stetig und nach unten beschränkt ist, existiert eine Minimalfolge.

Die Existenz einer optimalen Steuerung ist gesichert, wenn die Konvergenz einer Minimalfolge
gegen eine zulässige Steuerung u und die Konvergenz der zugehörigen J(u"') gegen min J(u) vorliegt.
Konvergenzaussagen sind nur unter relativ starken Voraussetzungen möglich. Wir gehen deshalb
bei der Beschreibung einiger Verfahren auf dieses Problem nicht näher ein.

Ist lu"‘l eine Minimalfolge, dann kann zu jedem e > 0 ein k„(s) angegeben werden, so daß

0 g J(u"') — infJ(u) < e für alle k g kg

gi lt. Eine solche Steuerung (fast-optimale Steuerung) ist für praktische Probleme im allgemeinen aus-
reichend. Manche Verfahren liefern eine Minimalfolge, für die außerdem noch

J(u"“) g J(u"') Vk
gilt.

wir wollen im folgenden lediglich einige Verfahren kurz skizzieren; mehr darüber findet man in
Band 18. Beim Einsatz sollte _man eine Beratung mit einem erfahrenen Mathematiker unbedingt
durchführen.
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3.4.2. Einige Abstiegsverfahren

Wir wollen an folgende Problemstellung anknüpfen: Gegeben sei

i: = f(x‚ u, t), (3.62)

XV») Z X": 7E [10, 71i-

Gesucht ist eine solche zulässige Steuerung (bei zunächst unbeschränktem Steuerbereich), dal3

I1

J = Z‘ c,x,(I,) (c,- = const) (3.63)
1:1

minimal wird. Bei anderen Aufgabenstellungen sind die in Abschnitt 3.3. dargelegten Probleme zu

berücksichtigen.
Wir bilden zunächst die Hamiltonfunktion

n

H(x. p. u. z) =‘glP:fi (3.64;
i:

und das adjungierte System

. OH
17; ’ “ y (3-65)

17.0,) = -01, i=1, m, n.

Nun wenden wir die Idee des Gradientenverfalzrens zur Maximierung von H an (vgl. Band 15). Es sei
u‘ eine Ausgangssteuerung. Wir setzen in (3.62) ein, integrieren und erhalten die zugehörige Trajek-
torie x‘(t). Einsetzen von u‘(t) und x1(t) in (3.65) liefert nach Integration p1(t). Schließlich berechnen
wir den Gradienten von H bezüglich u für u‘, x‘, p‘, d. h.

gradufll x=xt_ ‘mu.’ p=p,. (3.66)

Mit geeigneten k(t) > 0 (Schrittweite des Gradientenverfahrens) wird als nächste Steuerung

u? : u‘ + k(t)grad„ H (3.67)

bestimmt und das Verfahren solange wiederholt, bis eine der im Gradientenverfahren üblichen Ab-
bruchbedingungen erfüllt ist. Es empfiehlt sich dabei, die entsprechenden Werte von (3.63) mit
zu vergleichen. Sind Beschränkungen für die Steuerungen gegeben, kann man z.B. das projizierte
Gradienrenverfahren sinngemäß anwenden.

Ein Verfahren, bei dem die Bildung des Gradienten durch die Maximierung von H ersetzt wird,
ergibt sich folgendermaßen: ‚

Nachdem zu u‘ wie im Gradientenverfahren x‘ und p‘ bestimmt wurden, berechnet man zunächst
ü aus

max H(x1‚ p‘, u, t) = H(x1, p‘, ü‘, i) (3.68)
u 6 U

und bildet die neue Steuerung

u: = ul + k(t)(fi1 — u1),k(t)> o. ' (3.59)

Für k(t) s 1 folgt z. B. n2 = ü‘. Auch hier ist k(t) so zu wählen. daß

H(x‘, p’, u’, t) g H(x‘, p‘, u‘, t) (3.70)

gilt. Zur Maximierung von H ist ein geeignetes Optimierungsverfahren einzusetzen, wodurch natün
lieh zusätzlich Schwierigkeiten entstehen.
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3.4.3. Behandlung als Zwei-Punkte-Randwertaufgabe

Wir gehen von der gleichen Aufgabe wie in 3.4.2. aus. Durch Maximierung der Hamiltonfunktion
sei die optimale Steuerung in Abhängigkeit von x, p und t bestimmt.
Es sei also

u(x, p, t) g (3.71)

die optimale Steuerung. Durch Einsetzen in (3.62) und (3.65) erhalten wir

i: = f(x, u, I) = f(x‚ u(x‚ p, t), t) = v(x, p, I), (3.72)

i) = g(x, p.u, r) = g(x‚ p. u(x‚p‚t)‚r)= w(x‚ p, t),

mit den Randbedingungen x,(!,,) r xi“, p,(t,) = —v,-, i = l, ..., n. Setzen wir

Heike»
so erhalten wir das Zn-dimensionale System

i = F(z‚ r) (3.73)

mit den Randbedingungen

Z1011) = Xi".
i : ,...,n,

Zu+t(f1) = -0.",

(sog. Zwet‘-Punkte-Randwertaufgabe vgl. Band l8; 5.3.1.). Stellen wir die Situation bezüglich der Rand-
bedingungen noch einmal zusammen:

t: t„ 21,22, ...‚z„, z„„, ...,z2„

gegeben nicht gegeben

i: t1 21:22:--uzm Zn+1a~--azzn

nicht gegeben gegeben

Die Schwierigkeiten liegen oflensichtlich darin, daß sowohl für eine Vorwärts- als auch für eine Rück-
wärtsiutegration von (3.73) nicht alle erforderlichen Randwerte bekannt sind. Schätzt man beispiels-
weise die fehlenden Werte 2,, +,(I,,), so erhält man nach Integration die Werte z,,+,(t1), die im allgemeinen
von den gegebenen Werten abweichen. Das Problem könnte gelöst werden, wenn es gelange, eine
geeignete Strategie zur Abänderung der Schätzwerte anzugeben. Eine Möglichkeit besteht im Einsatz
der sog. Regula falsi (vgl. Band 2; 7.7.2.).

3.4.4. Anwendung der Methode von Newton-Raphson

Die Methode van Newton-Raphsan (vgl. Band 18; 2.1.3.3.) wurde entwickelt zur Lösung eines
(nichtlinearen) Gleichungssystems

g(x) = 0.

Das Wesen besteht darin, dal3 man zu einer Näherungslösung x" eine verbesserte Lösung aus

g(xn+l) __ g(xn)._: (xn+1 _ xn) : __g(xn)



3.5. Systeme mit verteilten Parametern 39

oder kürzer

fig Ax = —g(x") (3.74)Ag: 6x

6 . . . . 6 -

bestimmt. Dabei ist T: die Matrix der partiellen Ableitungen 5% an der Stelle x".
x

Die Lösung wird also auf eine Folge zu lösender linearer Gleichungssysteme zurückgeführt. Liegen
keine Beschränkungen für die Steuerungen vor, dann ergeben sich nach Anwendung des Maximum-
prinzips auf die in 3.4.2. formulierte Aufgabe die notwendigen Bedingungen

x‚-= =Hpizn x.(r„):x.°.
L i:1,...,n‚ (3:75)

. ÖH
Pi: - TX = —Ha-,-. 171(11): “Ci:

l

ÖH gW=Hui=0, z=1‚...,m‚

also in vektorieller Schreibweise das System von 2n + m Gleichungen

x— H, = o,

l3 + Hx = 0, (3.76)

H„:0.

Auf dieses System läßt sich nun die Methode von Newton-Raphson anwenden.

3.5. Systeme mit verteilten Parametern

3.5.1. Zur Problemstellung

Es seien im folgenden

x ein m-dimensionaler Vektor mit den Koordinaten x1, ..., xm,

t die Zeit,

Q(x, t) eine n-dimensionale Vektorfunktion mit den Koordinaten Q, (x, t), ‚ Q„(x‚ t)
(Zustandsuektor oder Phasenvektor),

u(x, t) eine r-dimensionale Vektorfunktion mit den Koordinaten u. (x, t), ..., u‚(x‚ t)
(Steuervektor), '

U ein abgeschlossener Bereich eines r-dimensionalen linearen Vektorraumes
(Steuerbereic/2) ,

D der Definitionsbereich von Q(x, r) (bezüglich x und t).

Wir wollen in Übertragung des in 3.1 eingeführten Begiffs der zulässigen Steuerung
sagen: eine Steuerung u(x‚ t) heißt zulässig, wenn sie aufD definiert (und beschränkt) ist,
eine Zerlegung von D in Teilbereiche Dj mit UDj = D existiert, so daß u(x‚ t) stetig
aufjedem D]. ist (u „bereiehsweise“ stetig auf D) und wenn sie nur Werte aus U an-

nimmt.
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Ist ein System partieller Differentialgleichungen für Q(x‚ t) mit entsprechenden
Rand- und Anfangsbedingungen gegeben, das von u(x, t) abhängt, so sagt man auch,
es liegt ein System mit verteilten Parametern vor. Im Unterschied zu den in 3. l. bis 3.4.
behandelten Problemen wird hier also der Zustand durch eine Vektorfunktion mit
mehr als einer unabhängigen Variablen beschrieben.

Beispiel 3.9: Die eindimensionale induktive Erwärmung eines Körpers wird beschrieben durch

Q, : “Qua: + u(t)e’5“ ‚ ‚

Q(x, 0) = h(x) (Anfangsbedingung),

dabei sind Q(x‚ t) die Temperaturverteilung im Werkstück, x der Abstand von der Oberfläche des
Werkstücks mitOg x g l, t die Zeit mit t g O, Seine Kenngröße für das Abklingen der Heizwirkung,
u(t) die der Induktorspannung proportionale Steuerung. Auch hier lassen sich wichtige Optimierungs-
fordenmgen stellen, z. B. kann eine solche Steuerung gesucht sein, so daß in vorgegebener Zeit t,
eine gewünschte Temperaturverteilung R(x) möglichst gut angenähert wird, d.h., daß

l

j tgrx, n) — R(x)]? dx
o

minimal wird.

Es ist offensichtlich, daß man bei solchen Problemen mit noch größeren Schwierig-
keiten zu rechnen hat als bei Systemen, die durch gewöhnliche Diflerentialgleichun-
gen beschrieben werden. Wir wollen deshalb im folgenden lediglich ein spezielles
System betrachten, ein entsprechendes Maximumprinzip angeben und kurz zwei nu-

merische Verfahren erläutern.

3.5.2. Ein hyperbolisches System

Gegeben sei das System partieller Difierentialgleichungen

ÖZQt _ ÖQ ÖQ ._
axat_.f1(xs!sQ9‘7(E'9—8['a“(xst)): l—}>-van:

mit 0 g x g a, 0 g t g b, dem Steuerbereich U, den Rand- und Anfangsbedin-
gungen

Qi(0‚ f) = git), Q.-(X, 0) = /u(X) (3-78)

und den Anschlußbedingungen

Q,-(0, 0) = h‚(0) = g,~(0). (3.79)

Vektoriell schreiben wir kürzer

ÖZQ
Öxat = Qwl = f(x, f, Q, Q1, Qull),

Q(0, f) = EU). Q(x, 0) = h(x)‚ (3-80)

8(0) = 11(0)-
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Wir setzen Voraus:

1. Alle f; seien auf D stetig-differenzierbar bezüglich x und t und bezüglich der rest-
lichen Variablen zweimal stetig differenzierbar.

2. Alle h,v(x) und g,(t) seien stetig und stückweise stetig difierenzierbar.

Gesucht ist eine solche zulässige Steuerung u(x‚ t), daß die zugehörige Vektorfunk-
tion Q(x‚ t) das Funktional

n

J= 2c.Q.(a‚ b) (3.81)
i=1

_(c, gegebene Konstanten) minimiert.

Zunächst wollen wir zeigen, daß einige Aufgabenstellungen, bei denen das Ziclfunktional in ande-
rer Form vorliegt, sich auf die o. g. Aufgabenstellung zurückführen lassen.

Ist
a b

ffmx, z, Q, Q...o„ u) drdx (3.82)
o o

zu minimieren, führen wir durch

In I}

Q.,(x, t) zfffi, dz as (3.83)
0 o

eine zusätzliche „Zustandsfunktion“ ein. Es ergibt sich dann die zusätzliche Difierentialgleichung

a2Q
(‚x a‘; :fo(x. r, Q, o... 0,. u) (3.84)

mit den Rand- bzw. Anfangsbedingungen

Qo(O, 7) : Q1105; O) z 0 (3-85)

und dem Optimierungsziel in der Form (3.81), d.h.

Q„(a‚ b). (3.86)
Ist

a

ff. Ix. Q(x‚ b), om. b>1 dx (3.87)
u

zu minimieren, setzen wir

x .

Q.(x‚r) = ff. as (3.88)
)

und erhalten (

Ox öt .:1

QM‘). i) = 0‚

ÖEQn " [ Oft) ÖQ: Öfn (3 89)

4 o9.’ er 39... ‘

Inll

9.xx. o) = f"f. l5. ms), um} as (3.90)
0
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und
Qo(Il. b) (3-91)

als Optimierungsziel.

Aufgabe 3,5: Es sei F [Q(a‚ b)] zu minimieren, wobei F(Q) stetige partielle Ableitungen 2. Ordnung
nach allen Q,- besitzen möge.
Führen Sie durch Q„(x, t) : F [Q(x‚ t)] eine zusätzliche Zustandsfunktion ein. Geben Sie die ent-
sprechende Differentialgleichung, die Anfangs- und Randbedingungen und das Optimierungszicl an.

Hinweis: Vergleichen Sie mit der entsprechenden Problemstellung bei Systemen mit konzentrierten
Parametern (Abschnitt 3.3.2.).

Zur Formulierung des Maximumprinzips bezüglich der eingangs angegebenen
Aufgabenstellung führen wir die Hamiltonfunktion

Hoe. z, N, Q. Q... Q.. u) = S N.-f.-(x. r, Q. Q... Q.. u) (3.92)
1:1

ein. Dabei genüge die adjungierte Vektorfunktion N(x‚ z) dem System

am. aH d öH d aH .

‘am “6E‘E<W>‘”<:I7(7>'Q7)’ ’-‘~~"’ <3-93>

mit den Randbedingungen

ON) ÖH ..Ttw z — E; fur x w a, (3.94)

den Endbedingungen

ON, OH ..

Tx——ÜQT fur t—b (3.95)

und den Anschlußbedingungen

N„(a‚ b) = ——c,-. (3.96)

Dann gilt das Maximumprinzip in folgender Form

Satz 3.4: Gegeben sei (3.80) mit dem Optimierungsziel (3.81). Wenn u°(x‚ t) optimale
Steuerung ist und Q°(x. I), N°(x‚ I) die dieser Steuerung entsprechenden Lösungen von

(3.80) bzw. (3.93) —— (3.96) sind, so gilt

H(x‚ t, N“, Q0, Q1”, Q)’, u“) = 1:211} H(x, I, N°, Q”, Q}, Q,°, u) (3.97)

für fast alle (x, t) E D.

Bemerkung: Für lineare Systeme der Form

Q1: = C(X‚ ÜQ; + D06, llQi + E(X‚ I)Q + f(u) (3-93)

(C, D, E sind dabei (n, n)- bzw. (n, r)-Matrizen) ist die Bedingung von Satz 3.4 nicht
nur notwendig, sondern auch hinreichend.
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Beispiel 3.10: Gegeben sei Q1, = Q, + u mit Q(x, 0) z Q(0, t) = 0. Gesucht ist eine solche zu-

lässige Steuerung u mit lui g 1, daß

I 1

„(Q + a2) d1 dx
0 O

minimal wird.

Mit
.7: l

Q„:ff(Q+ ward;
0 O

erhalten wir zunächst

Qoart = Q+ M2, wen) = Qo(x‚ 0) = 0.

Die Hamiltonfunktion lautet

H: (Q + "2)No + (Q: + ION,

das adjungierte System

Nun = 0.

Nu = No * Nt
mit

N„‚=0 für x:l, N„=0 für t:l‚

N, = 0 für x = 1, M.

N(1,1)= o, N.,(1,1)= —1.

=—N für t=l‚

Es folgt sofort

N„(x, t) = —I
x

und folglich
N2 N2

z) '""

H=—Q+NQ,—u2+uN:~Q+NQ,—(u—~—« 4

Damit wird H maximal für

“U: T falls W132,

sgnN falls WI > 2.

Wir bestimmen deshalb zunächst N durch Lösung von

N1't+Nt+1=01
N,(l, t) == 0, N‚(x‚ 1): —N(x, 1), N(1, l) = 0.

Suchen Sie die Lösung, indem Sie die Hilfsfunktion N1 + N = P einführen!

Wir wollen einen Separationsansatz verwenden. Mit

N(x‚ t) = 'P(X) 'w(t)
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erhalten wir

q>’(x) - w) + 1p(x) ~ !p'(t) + 1 = o,

¢>(1)-11/(1): 0. ¢'(x) ' w(1) = -<P(x) '1/1(1),

<P(1) ' 50(1) : 0-

Durch Separation der Differentialgleichung nach den zwei unabhängigen Variablen folgt

<P'+<p—*7-‚ 1//=~% x

mit den allgemeinen Lösungen

(p: »—c,e‘-1', 1y=~%t+c2

und unter Berücksichtigung der zusätzlichen Bedingungen

i. = ale, c2 =

schließlich

N(x, t) = (1 — t)(1—- cl”).

>
-]

».
.

Für 051;] und Ogxgl gilt 0§1—tg1 und 1—e§1—e"“’g0, also
—2<1—e§N§0.Damitist

u" 1-. % = ä (1 A :)(1— em‘).

Aufgabe 3.6 : Zeigen Sie, dal3 gilt

Q1 :— z(2 — z) (e1'“ — am‘ + 2 or — 2),

Q„"(1‚ 1) : — 3} (e? — 4e + s).

Entsprechende Maximumprinzipien lassen sich auch für andere Aufgabenstellun-
gen formulieren. Von Interesse, insbesondere auch für praktische Problemstellungen,
sind beispielsweise Optimierungsprobleme bei Systemen von partiellen Differential-
gleichungen der Form

a i .

ö—€=.fi(x‚z‚ 0,12m), z= 1, ...‚n‚ (3.99)

oder auch

=fi(x‚ z, Q, Q„u)‚ z": 1, n, (3.100)

mit entsprechenden Zusatzbedingungen. Viele Prozesse werden auch über Anfangs-
bzw. Randbedingungen gesteuert, wobei sogar drei unabhängige Steuereinflüsse mög-
lich sind, und zwar über die Prozeßgleichungen, Anfangsbedingungen und Rand-
bedingungen. Eine eingehende Behandlung ist an dieser Stelle nicht möglich.
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3.5.3. Numerische Methoden
N

Bezüglich der numerischen Bestimmung optimaler Steuerungen bei Systemen mit verteilten Para-
metern gelten die in 3.4.1. gemachten Bemerkungen, wobei naturgemäß die Schwierigkeiten noch
zunehmen. So kann man beispielsweise versuchen, Gradientenverfahren, bedingte oder projizierte
Gradientenverfahren auszunutzen. Eine andere Möglichkeit besteht darin, daß man das gegebene
Problem durch Diskretisierung bezüglich gewisser Variabler oder aller Variabler auf ein Problem
mit konzentrierten Parametern oder auf ein vollständig diskretes System zurückführt. Wir wollen
dieses Vorgehen lediglich an zwei Beispielen erläutern.

Beispiel 3.11: Gegeben sei die Problemstellung von Beispiel 3.9. Wir führen eine Diskretisierung
bezüglich t durch, dazu bezeichnen wir

t,_. — !,_._1 =1, k =1,..., K,

Q(x, h.) : Q1.-(x)‚ u(x‚ t1.) = uz.-(X)

und ersetzen Q, (x, t‚„.) durch

1

-1- [QA-(X) m Q].’—1 (X)]-

Die gegebene partielle Diflerentialgleichung für Q(x, t) geht dann über in das System gewöhnlicher
Differentialgleichungen für die Funktionen Q;‚(x)

Qkz Z Qk—1,:z + Q1.» — Qk—1 + /M1.» k = 1, m, K,

Q, = 0.

Die ses Differentialgleichungssystem können wir leicht in ein System überführen, wie es bei Systemen
mit konzentrierten Parametern betrachtet wurde. Dazu schreiben wir einmal k Difierentialgleichun-

gen auf: Qtz = Q1 + [uh

Q2337: Q1.r+ Q2 " Q1 + (V2:

Qsz : Q21+ Q3 ’ Q2+ 11439

Qlrz = QI.«A1,.~.- + Q1. A Q/.——1 + ]”k~

Addition liefert sofort

I: l.—1 I.-

_Z Qix =2.‘ Q13; + Q1. +1_Z"[
l=l L=1 t=1

also
I:

Q/r: z Q/.v+/V2114“ k :1, m, K,
I‘;

d.h. bezüglich der Funktionen Q‚_.(x) ein System gewöhnlicher Difierentialgleichungen. Durch An-
wendung der Trapezformel (vgl. Band 2; Satz 10.13, oder Band 18; 4.3.4.) wird

1

f(Q+u‘-’)dt
0

ersetzt durch
1 l\’»1

7 nae + us) + (etc + um + (er + 1%).
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Damit erhalten wir als neues Optimierungsziel

1

glj [Q.,+ „g + 2(Q, + u?) + + 2(Q„_1 + u;_1) + Q,,»+ „ä dx.
0

Für das somit entstandene System mit konzentrierten Parametern lautet die Hamiltonfunktion

H: gm“ [Qo+ uä + 2(Q1+ u?) + + 2(QK—1 + u;_1) + QK + ui]
+ N.(Q1 + run '

‘l’ N2(Qz ‘i’ [(111 ‘i’ 142))

+ . ..

+ NK(QK +/(M1 + H2 + + 145))

K-1
= ;IN..Q., +_ g (IM. + N,)Q.+(§1N.. + N5) Q1;

l:

K

+ %[Nn"o‘: + INW12 + MEIN:
I:

K
+ um: + tuggzm-

.:

+ . . . . . . . . . . . . . . . . . . . . . .

K
+ lN0u§\._1+ 1u,„»__1 g N; + %[N9l!3\ + /u,,1v,{

1:k—1
und das adjungierte System

Nam = 0. N0.t(1): —1.

Nu Z I‘ N1:

N22 = ’* N2.

NK—1,.r =1’ NK—la

NK, =g1— NK, N,(1) = 0, i= 1, K.

Als Lösung des adjungierten Systems ergibt sich

N0 = —1,N, = [(1 — e“’”)‚ i= 1, ..., K—— l,
NR :§1(1 — e‘“‘).

Setzen wir _

s, N; = M; + K- i) (1 — w),

dann erhalten wir durch Maximierung von H für die optimale Steuerung

u“ = 0,

M 7 Es, falls |s,\ g 2, i:1W’Ki L

sgn S,-, falls [SA > 2,

SK, falls 15mg 1,

" i ’ isgn s‚\-‚ falls \S,;! > 1.
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Mitl-K=1undi;1folgtwegen1—e<l—~e‘”“'§0
*1<1(i~%)-1=1(K—i+%)<%l(K~i+§)(1—e)§%Sx§0
—1 < —1§ SK§ 0,

und

also
{gsi für i: 1, ...,K— 1,

u, =

5,- für z: K.

Berücksichtigen wir noch I - i z n, so ergibt sich

11:13 u, = g I(K — i+ g) (1 — e"*")

-xllifixronal — r. + $1) (1 « am) = in — n) (1 — e”)
für i< K und '

lim uK =1im%I(1— 6"‘) = 0.
l—v0 l—>0

Die Lösung unseres Näherungsproblems konvergiert also gegen die in Beispiel 3.9 entwickelte exakte
Lösung. '

Beispiel 3.12: Wir betrachten die gleiche Problemstellung und diskretisieren durch

z,„—t‚„_, =I, k: ],...‚K‚ K-l= 1,

x,,L—x,,,,,=h, m= l,...,M, M-h=1,

hinsichtlich beider Variablen. Zur Abkürzung setzen wir noch

Q(X‚„‚ ü.) = Q(m 'h.k -1) = Qmks

u(x‚„, 1k) = u(m - h, k - I) 2 u,„;‚..

Die Ableitungen werden durch die entsprechenden Differenzenquotienten ersetzt, also

Q‚(x‚„‚ to z ä (QM. — Qm,7:—1)a

l
n-lQ4-;(Xm» ü.) =

wobei noch

Qnk = Qmn = 0

gilt. Damit geht die Differentialgleichung über in das Gleichungssystem für die M ~ K Funktions-
werte Q„„‚

%(Qmk — Q„.-„‚.. — Q„.„.-l + Q‚„-i„..-1> = %<Q„„.. — Qm,k—1) + "min

(Qmk ‘ Qmaj: — Qm,k—1 ‘l’ Qm-IJK-l);

d.h.
l h - I

Qmk ’ Qm,k—i = ‘1jl’(Qm—l,k ‘ Qmvl,7.‘Al) + ü‘ "ml.-~

Die Lösung dieses Systems von M - KGleichungen für M - K Unbekannte ist leicht möglich. Es ergibt
sich (Entwickeln Sie die Lösung!)

;,.1 m 1 I:

Zum 'Qmi.-= m!_ h “:1 Tfi_ hww ‘E!
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Nun diskretisieren wir das Optimierungsziel, indem wir das Doppelimegral

1 1

J=f (Q + u9)dtdx
0 0

durch
M K

JMK : '1" +2.‘ Z (Qmk + 113d.)
m=1 k=1

ersetzen. Es folgt weiter (wobei g = l 1 h gesetzt wurde)

a1‘ ‚ ' .\[ 1' a I gOMA :M<2uafl+Z VQM)
UM; m=1I_=1 011,5

mit
OQ„„_. __ hIg”"‘”" für a g m,f3 g k,
614,5 — 0 sonst.

Aus 3211i = O erhalten wir somit(an

an = §(K— ß +1)u— gM-w).

Aufgabe 3.7: Überprüfen Sie, daß die hinreichende Bedingung für ein Minimum tatsächlich erfüllt
ist, u„g g 1 gilt und die Näherungslösung für] —> 0, h -> O gegen die exakte Lösung konvergiert.



4. Diskrete Prozesse

Von den steuerbaren, deterministischen Prozessen werden jetzt diejenigen unter-
sucht, die im Abschnitt 2. als diskrete bezeichnet worden sind. Dabei wird die
Grundaufgabe der Theorie optimaler diskreter Prozesse einschließlich gewisser Mo-
difizierungen (siehe Abschn. 4.1.) formuliert sowie zwei Kriterien für die Optimalität
und damit zusammenhängende Lösungsmethoden entwickelt (siehe Abschn. 4.2. und
4.3.). Von den beiden Methoden wird insbesondere die dynamische Optimierung aus-
führlicher dargelegt und ihre Anwendung an praktischen Beispielen demonstriert.

Bei der Behandlung stetiger Prozesse bezeichnete die Variable t i. a. die Zeit.
Davon müssen wir uns im Zusammenhang mit diskreten Prozessen lösen. Hier nume-
riert t einfach die Folge endlich vieler oder abzählbar unendlich vieler unterschied-
licher Zustände bzw. getrennter Stufen. Dabei kann der Unterschied zeitlicher Natur
sein, muß es aber nicht. Es sei z.B. eine Mehrstufenrakete mit begrenztem Startge-
wicht zu konstruieren, die einen Flugkörper in den Kosmos tragen soll. Jede Stufe
enthält einen gewissen Treibstoffvorrat; ist er verbraucht, wird die Stufe abgeworfen
und die nächste gezündet. Gewicht des Flugkörpers und Anzahl der Raketenstufen
seien bekannt. Dann ist es eine natürliche Aufgabe, den Treibstoff so über die einzel-
nen Stufen der Rakete zu verteilen, daß die Geschwindigkeit des Flugkörpers nach
Verbrauch des gesamten Treibstoffes maximal ist. Diese Aufgabe läßt sich als Opti-
mierungsproblem eines diskreten Prozesses formulieren (vgl. [7]), wobei seine „unter-
schiedlichen Zustände“ einfach aus den einzelnen Stufen der Rakete gebildet werden.
Numeriert man nun diese unterschiedlichen Zustände mit t, t = 1, 2, ‚ N (N — An-
zahl der Raketenstufen), so hat t offensichtlich keinerlei Beziehungen zur Zeit.

4.1. Aufgabenstellung

Die Grundaufgabe der Theorie optimaler diskreter Prozesse und die mit ihr in Zu-
sammenhang stehenden Begriffe haben eine Reihe Gemeinsamkeiten mit denen ste-
tiger Prozesse, wie sie am Anfang von Kapitel 3. und im Abschnitt 3.1. dargelegt wor-
den sind. Auf Grund dieser Analogien kann das Wesentliche hier in geraffter Form
ohne ausführliche Erläuterungen dargelegt werden. Lediglich die Unterschiede, die
sich zwischen den Darlegungen diskreter und stetiger Prozesse ergeben, werden stär-
ker herausgearbeitet.

Zur Entwicklung der Aufgabenstellung wird zunächst ein Beispiel betrachtet, auf
das wir uns im weiteren häufig beziehen.

Beispiel 4.1: In einer Lösung befinde sich ein gewisser Stofl’, der durch Spülung mit Wasser heraus-
gefiltert werden soll (vgl. [9] oder [7]). Es wird vorausgesetzt, daß sich dabei das Wasser nicht mit
der Lösung vermischt. Die Spülung wird in N gleichartigen Aggregaten durchgeführt, die die Lösung
nacheinander durchfließt (siehe Bild 4.1 a)). Es sei bekannt, daß die durch ein Aggregat ausgespülte
Stcffmenge gleich m(x, u) ist, wobei x die Stoffmenge angibt, die zu Beginn des Spülprozesses mit

um 11(2) um u(/V)
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Bild 4.la) System aus N in Reihe geschalteten Aggregaten
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der Lösung in das Aggregat geflossen ist, und u die bei der Spülung im Aggregat verwendete Wasser-
menge bezeichnet. Dann ist die Stoflmenge x(t), die das t-te Aggregat nach der Spülung zusammen

mit der Lösung verläßt, gleich der Stolfmenge x(t — 1), die mit der Lösung in ihn eingeflossen ist,
vermindert um die Menge m(x(t —‘ l), u(t))‚ die durch ihn ausgefiltert wurde:

x(t): x(t — 1) — m(x(t—1),u(t)), t: 1, 2, N, (4.1)

wobei x(0) = x0 die Stolfmenge bezeichnet, die in der Lösung enthalten ist, welche in das erste Aggre-
gat gegeben wird. Weiterhin möge das Ergebnis des gesamten Spülungsprozesses gemessen werden
können durch die Größe

I= a. [x(0) — x<N>1 — a2; um, (4.2)

wobei a, und a2 bekannte Parameter sind; hierin gibt die Differenz x(0) — x(N) die insgesamt ausge-
N

spülte Stoffmenge an, und die Summe 2,‘ u(t) stellt die verwendete Wassermenge dar. Offensichtlich
l/I

hängt dieses Ergebnis von der Größe (her in den einzelnen Aggregaten verwendeten Wassermengen
u(t) ab und ist durch sie vermittels (4.1) eindeutig bestimmt. Somit kann die Aufgabe gestellt werden
diejenigen u(t), t : I, 2, ...‚ N, zu bestimmen, für die das Spülungsergebnis I maximiert wird. Beach-
tet man nun noch, daß die verwendeten Wassermengen einer Bedingung der Art

0 S u(t)§ b(x(t—1)), t= 1, 2. M (4-3)

unterworfen werden müssen, wobei b(x) eine bekannte Funktion ist, die sich aus der Konstruktion
der Filteraggregate ergibt, so nimmt die obige Aufgabe folgende mathematische Form an: es ist eine
solche Folge von Werten u(l), u(2), ...‚ u(N) und die ihnen gemäß (4.1) entsprechende Folge x(1),
x(2), ...‚ x(N) zu bestimmen, die der Beschränkung (4.3) genügen und der Größe (4.2) ihren maxi-
malen Wert erteilen.

Erinnert man sich nun an die allgemeinen Ausführungen über steuerbare deter-
ministische Prozesse des Kapitels 2, so kann festgestellt werden, daß die mathemati-
sche Aufgabe, zu der das Beispiel 4.1 führte, bereits alle wesentlichen Elemente der
Theorie optimaler diskreter Prozesse enthält. Tatsächlich, es liegen endlich viele —

nämlich N — unterschiedliche „Zustände“ vor, u(t) kann als Steuerung, x(t) als
Phasenkoordinate und I als Optimalitätskriterium aufgefaßt werden. Dann ist durch
(4.3) der Steuerbereich und durch (4.1) die Prozeßgleichung gegeben. Somit liefert
das Beispiel 4.1 eine Vorstellung von der Grundaufgabe optimaler diskreter Prozesse.

Im allgemeinen treten als Steuerungen bzw. Phasenkoordinaten bei diskreten Pro-
zessen e genau wie bei stetigen - nicht nur jeweils eine, sondern mehrere „Größen
u‚(t), 112(1), ...‚ u‚(t) bzw. x1(t), x2(t), x,,(t) auf, die in gewohnter Weise als Kom-
ponenten von Vektoren

u(t) = (u1(t), ...,_ u,(t)) bzw. x(t) : (x,(t), ..., x,1(t))

eines r- bzw. n-dimensionalen Raumes aufgefaßt werden. Jetzt nimmt t jedoch nur

diskrete Werte t = O, l, ...‚ N an, wobei im weiteren Vorausgesetzt wird, daß N eine
fixierte natürliche Zahl ist. Bei stetigen Prozessen waren Steuer- und Phasenvektor
durch das Diflerentialgleichungssystem (3.6) miteinander verknüpft. Bei diskreten
Prozessen wird die Rolle von (3.6) durch das Differenzengleichungssystem

x(t)= f(x(t — 1), u(t)), t = 1,2, ..., N, (4.4)

übernommen, wobei f(x, u) : (f1(x, u), ‚ fi,(x, u)) ein Vektor ist, dessen Komponen-
ten bekannte Funktionen sind. Man erhält diese Funktionen fürjeden konkret gege-
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benen diskreten Prozeß durch die mathematische Modellierung seiner charakteri-
stischen Eigenschaften. So ergab sich im Beispiel 4.1 für das Difierenzengleichungs-
System (4.4) nur die eine Gleichung (4.1), und es könnte

f(x, u) = x — m(§c, u)

gesetzt werden.
Ist nun der Anfangszustand x(0) eines diskreten Prozesses bekannt 4 und das wird

im folgenden immer vorausgesetzt —, so sind nach Wahl einer Steuerung u(t), t = 1,

2, ..., N, alle weiteren Zustände x(t)‚ t x l, 2, ..., N, des diskreten Prozesses durch
das System (4.4) eindeutig bestimmt. Daher wird (4.4) auch hier (Vergleiche mit (3.6)
in Abschn. 3.1.) Prozeß- oder Bewegungsgleichung genannt. Der Terminus „Bewe-
gung“ ist nun allerdings im weiteren Sinne aufzufassen, weil ja t nicht mehr in jedem
Falle die Zeit repräsentiert.

Es sind noch die Begriffe „Steuerbereich“ und „zulässige Steuerungen“ präziser
zu fassen. lm allgemeinen wird bei diskreten Prozessen davon ausgegangen, daß im
r—dimensionalen Raum der Steuerungen R’ für jedes x aus dem Phasenraum und
jedest = l, 2, , N eine nichtleere Menge U‚(x) gegeben ist. Diese Menge wird Steuer-
bereich genannt, der dem Wert t und dem Phasenzustand x entspricht. In Anlehnung
an Beispiel 4.1 und an weitere praktische Probleme (vgl. [7], [9], [l9]) beschränken
wir uns hier auf Steuerbereiche der Art U‚(x(t — 1)). Dementsprechend wird folgende
Begriffsbildung vorgenommen:

Definition 4.1: Gegeben sei ein diskreter Prozeß mit dem Anfangszustand x(0) und den
Steuerbereichen U,(x) g R’ (x E R", t : l, 2, ..., N). Dann wird u(t) = (u1(t), u.2(t),

u,.(t)) eine zulässige Steuerung (bezüglich x(0) und U,(x)) genannt, wenn

u(l) E U2(X(t“1)): f=1,2,~--,N, (4-5)

gilt; dabei ist x(l) die Trajektarie, die in x(0) beginnt und durch (4.4) bestimmt ist.

Im Beispiel 4.1 ist der Steuerbereich durch (4.3) gegeben, hängt nicht explizit von
t ab und hat die Form

U(x(t — 1)) = {u E R1}O§ u; b(x(t— 1)}.

Jede Lösung von (4.4) und (4.5), bestehend aus u(t) und x(t), t : 1, 2, ..., N, stellt
einen diskreten Prozeß dar. Man erhält eine solche Lösung ausgehend von einem
gegebenen Anfangszustand x(0), indem man zunächst gemäß (4.5) eine zulässige
Steuerung u(l) E U1(x(0)) wählt, diese dann in (4.4) einsetzt und danach x( l) = f(x(O),
u(l)) bestimmt; nun wird x(l) wie x(O) zur Bestimmung von u(2) verwendet, und dieses
Vorgehen wird bis zur Ermittlung von u(N) und x(N) fortgesetzt.

Für das weitere wird noch folgender Begriff benötigt:

Definition 4.2: Es sei x(t), t = 1, 2, , N, die Lösung von (4.4), die man bei gegebenem
Anfangszustand x(0) und für eine zulässige Steuerung u(t) erhalten hat. Dann werden
wir x(t) die der zulässigen Steuerung u(t) entsprechende Trajektorie nennen, die in x(0)
beginnt.

Es sei bemerkt, daß im Unterschied zu den stetigen Prozessen die Trajektorie hier
nur eine diskrete Punktfolge im n-dimensionalen. Phasenraum bildet.

4*
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Nach der mathematischen Beschreibung diskreter Prozesse durch (4.4) und (4.5)
kann nun zur Frage der optimalen Steuerung derartiger Prozesse übergegangen wer-
den. Bezüglich des dazu erforderlichen Optimalitätskriteriums wird angenommen, daß
eine Größe der Form

J=§;m(x(t—1),u(t)) l (4.6)

maximiert bzw. minimiert werden soll. Dabei sindfi„(x, u), t = 1, 2, ..., N, bekannte
Funktionen von n + r Argumenten, die sich aus der Spezifik des jeweiligen Prozesses
ergeben und gewissermaßen das Ergebnis des Prozesses auf jeder seiner Stufe mes-
sen. So kann im Beispiel 4.1 die zu maximierende Größe (4.2) unter Berücksichtigung
von (4.1) umgeformt werden auf

1:3: [a1m(x(t— I), u(t)) — “WÜH?

hier hängen also die in (4.6) auftretenden Funktionen gar nicht von t ab, und es könnte
gesetzt werden

fo(x(! r 1), u(t)) = aim(x(t - 1), u(t)) - a2u(l)~

Existieren nun für einen diskreten Prozeß mit gegebenem Anfangszustand x(0)
mehrere zulässige Steuerungen, so entsteht die Frage nach der „besten“ oder „opti-
malen“ Steuerung. Mathematisch führt diese Frage zur folgenden Grundaufgabe der
Bestimmung optimaler diskreter Prozesse: .

Definition 4.3: Gegeben sei ein diskreter Prozeß mit dem Anfangszustand x(0), der
Bewegungsgleichung (4.4), den Steuerbereichen U‚(x) g R’ und dem Optimalitäts-
kriterium (4.6). Dann ist unter allen zulässigen Steuerungen u(t)‚ t = l, 2, ..., N, die-
jenige zu bestimmen, die der Größe (4.6) ein Maximum (bzw. ein Minimum) erteilt.
Dabei ist in (4.6) die der Steuerung u(t) entsprechende Trajektorie x(t) einzusetzen, die
in x(0) beginnt. Wir werden sagen, daß eine zulässige Steuerung und die ihr entspre-
chende Trajektorie, die die Grundaufgabe lösen, einen optimalen Prozeß bilden.

Die Grundaufgabe der Theorie optimaler stetiger Prozesse (vgl. Def. 3.3) war cha-
rakterisiert durch freie Zeit und feste Enden. Im Gegensatz dazu kann die Grundauf-
gabe optimaler diskreter Prozesse als Aufgabe mit fester Zeit (N ist fixiert und ge-
geben), einem festen Ende (x(0)) und einem freien Ende (x(N)) betrachtet werden.
Der wesentliche Unterschied ist vor allem darin zu sehen, daß wir es einmal mit
freier Zeit und zum anderen mit fester Zeit zu tun haben. Die Ursache dafür liegt
darin, daß für diskrete Prozesse meistens die Anzahl der Zustände gegeben ist und
nicht der Optimierung unterliegt.

Genau (wie in Kapitel 3. existieren natürlich auch Modifizierungen für die in der
Definition 4.3 formulierte Grundaufgabe. Einige seien hier kurz genannt. Weitere
findet man in [7] und [9]. '

So treten z. B. Aufgaben mit beweglichen Enden auf. In diesem Falle sind zwei Mengen Xu und XN
im Phasenraum R" gegeben, und es sind ein solcher Anfangszustand x(O) E X.) sowie eine solche zu-
lässige Steuerung u(t) (bezüglich x(0)) gesucht, die zusammen mit der ihr entsprechenden Trajektorie
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x(t), die in x(O) beginnt, der Größe (4.6) ihren maximalen Wert erteilt, wobei außerdem x(N) E XN
gelten muß. Entarten hierbei X0 und XN in zwei fixierte Punkte x(O) und x(N)‚ so erhält man als Spe-
zialfall die Aufgabe mit festen Enden.

Auch Aufgaben der folgenden Art ergeben sich: Für jedes t = O, 1, ..., N sei eine Menge X, im
Phasenraum gegeben. Dann sind ein solcher Anfangszustand x(O) E X.) sowie eine solche (bezüglich
x(O)) zulässige Steuerung u(t) gesucht, die zusammen mit der ihr entsprechenden Trajektorie x(t)‚ die
in x(O) beginnt, der Größe (4.6) ihren maximalen Wert erteilt, wobei außerdem x(t) E X, gelten muß.
Das sind Aufgaben mit beschränkten Phasenkoordinaten. Entarten hierbei die Mengen X, zum ganzen
Phasenraum: X, : R", = 0, 1, ..., N, so ergibt sich als Spezialfall die Aufgabe mit freien Enden.

Schließlich seien noch Prozesse erwähnt, bei denen sich die in (4.4) auftretenden Funktionen f von

Stufe zu Stufe ändern und damit explizit von t abhängen. Die Bewegungsgleichung (4.4) nimmt dann
die Form

X(!) T f;(x(t — 1). II(!)), f: 1, 2, ---. N.

an. Das ist ein Analogon zu den nichtautonomen stetigen Prozessen (vgl. Abschn. 3.3.3.). Hätten wir
im Beispiel 4.1 nicht gleichartige, sondern von Stufe zu Stufe unterschiedliche Aggregate vorausge-
setzt, dann wäre auch die ausgefilterte Stoffmenge von den Stufen abhängig gewesen, und anstelle
von (4.1) hätte sich

x(t) = x(t — 1) — m,(x(t —— 1), u(t))‚ t =1, 2, ..., N,

ergeben. Damit wlre ein konkreter Prozeß mit einer Bewegungsgleichung der obigen Art vorgestellt.

Im Zusammenhang mit der zu entwickelnden dynamischen Optimierung als einer
Lösungsmethode der Grundaufgabe sei auf einige Änderungen in den Bezeichnungen
von (4.4)-—v(4.6) hingewiesen. Dem Vorgehen der dynamischen Optimierung entspricht
es besser, wenn die Stufen des Prozesses entgegen dem Prozeßablauf numeriert wer-
den (vgl. Bild 4.lb‚ Seite 58). Außerdem werden die in der Prozeßgleichung (4.4)
auftretenden Funktionen mit T bezeichnet; diese Bezeichnung geht davon aus, daß in
jeder Stufe die Eingangsgrößen zusammen mit der Steuerung einer Transformation
unterworfen werden. Schließlich werden die Funktionen im Optimalitätskriterium
(4.6) mit G bezeichnet, was damit zusammenhängt, daß es bei einer Reihe praktischer
diskreter Prozesse darauf ankommt, in jeder Stufe einen Gewinn zu erzielen. Mit
diesen Anderungen nehmen die Relationen (4.4) bis (4.6) dann die folgende Form an:

x‚. = T„(x„+1, u„), n = 1, 2, ..., N, (4.7)

u„ E U„(x„+1)‚ n = l, 2, ..., N, (4.8)

N

G = §1Gn(Xn+1 ‚ Ila) = max! (4-9)

Die Formulierung der Grundaufgabe selbst bleibt unverändert; es wird lediglich an-

stelle von (4.4) — (4.6) auf die entsprechenden neuen Relationen (4.7) —- (4.9) Bezug
genommen.

4.2. Diskretes Maximumprinzip

Es wird jetzt eine erste Methode zur Lösung der in 4.1. formulierten Grundaufgabe
entwickelt. Sie hat sehr enge Beziehungen zu dem für stetige Prozesse bereits bekann-
ten Pontrjaginschen Maximumprinzip (vgl. Abschn. 3.2.) und kann aus diesem sogar
durch einen formalen Übergang von stetigen zu diskreten Prozessen hergeleitet werden
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(siehe [7]). Das Wesen der Methode besteht genau wie beim Pontrjaginschen Maxi-
mumprinzip darin, die Grundaufgabe durch eine andere Aufgabe zu ersetzen,
die i. a. leichter gelöst werden kann und besser für eine numerische Behandlung ge-
eignet ist. Dabei erweist sich die „Ersatzaufgabe“ ebenfalls als eine Optimierungs-
aufgabe‚ und mit ihrer Lösung erhält man gleichzeitig die Lösung der Grundaufgabe.

1m allgemeinen besteht die Methode in der Anwendung eines notwendigen Opti-
malitätskriteriums für mlässige Steuerungen. Dabei unterscheidet sich dieses notwen-
dige Kriterium für beliebige diskrete Prozesse jedoch in wesentlichen Teilen von dem
Pontrjaginschen Maximumprinzip für stetige Prozesse. Das ist im Wesen der Grund-
aufgabe diskreter Prozesse begründet (vgl. Anlage 3 in [9]). Allerdings kann man

'K1assen diskreter Prozesse angeben, für die ein Analogon zum Pontrjaginschen
Maximumprinzip gültig ist. Um einerseits diese Analogie zu den Ergebnissen von Ab-
schnitt 3.2.'herzustellen und um andererseits Vereinfachungen in der Darstellung zu

erreichen, werden wir im weiteren voraussetzen, daß die Funktionen f in (4.4) sowie
fi, in (4.6) linear in den Phasenkoordinaten x sind und f0 nicht explizit von t abhängt.»
Bezüglich der Steuerbereiche wird vorausgesetzt, daß sie weder von t noch von x ab-
hängen, also für alle Stufen des Prozesses und für alle Phasenpunkte x gleich sind:
U‚(x) = U, t= 1, 2, ..., N, x E R” beliebig. r

Wir betrachten also jetzt die Grundaufgabe (4.4)—(4.6) mit den soeben getroffenen
Vereinfachungen. Zur Formulierung ihrer „Ersatzaufgabe“ werden genau wie beim
Pontrjaginschen Maximumprinzip einige neue Begriffe benötigt.

Zunächst werden durch das Differenzengleichungssystem

pi(t_.1)=5‘ 
‚_:„ 6x

t=1,2,...,N, i=1,2,...,n,
gewisse Hilfsfunktionen eingeführt. Dabei wird angenommen, daß

pg = 1, (4.11)

p,-(N) = O, i= 1, 2, ...,/1, (4.12)

gilt. Bezüglich dieser Bedingungen vergleiche man die Ausführungen über die Aufgabe
mit fester Zeit und freiem rechten Ende am Schluß von Abschnitt 3.2. Mit den Be-
dingungen (4.11) und (4.12) besitzt (4.10) für jede zulässige Steuerung u(t), t : 1, 2,
..., N, und die ihr entsprechende Trajektorie x(t), t = 1. 2, ..., N, die in x(0) beginnt,
eine eindeutig bestimmte Lösung

P(t)=(po,p1(t), ...,p,.(t)), I = 0, l, ..., N.

Diese Lösung erhält man, indem man in (4.10) zunächst t : N setzt und die Bedin-
gungen (4.11) und (4.12) sowie die gewählte zulässige Steuerung und die ihr ent-
sprechende Trajektorie verwendet. Dadurch findet man p‚-(N ~ 1), i = 1,2, ..., n.

Danach wird in (4.10) t = N — l gesetzt, und unter Verwendung der bereits gefun-
denen p,(N — 1) können nun die Wertep,(N — 2) bestimmt werden. Auf diese Weise
wird die gesamte Lösung P(t), t= 0, 1, 2, , N, sukzessive— beginnend mit t = N ~ l
und fortschreitend bis t: 0- ermittelt. Jede auf diese Weise ermittelte Folge von
Vektoren P(t)‚ z: 0, 1, ..., N, werden wir Lösung von (4.10) — (4.12) nennen, die
der zulässigen Steuerung u(t) und ihrer Trajektorie x(t) entspricht.

pz.»(f)‚ (4-10)
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Auch für diskrete Prozesse wird wieder durch die Definitionsgleichung

5’€(P, x, u) = _é(:p,f,-(X, u) i (4.13)

eine Hamiltonfunktion eingeführt. Mit ihr kann dann das System (4.10) auch in der
Form pi(;_1): , ,':1’27__.,N’

geschrieben werden. Wesentlich ist jedoch, daß mit ihrer Hilfe unmittelbar die
„Ersatzaufgabe“ der Grundaufgabe formuliert werden kann. Es erweist sich nämlich,
daß folgende Aussage gültig ist.

Satz 4.1 (diskretes Maximumprinzip): Dafür, daß eine zulässige Steuerung u(t), t=
1, 2, ...‚ N, und die ihr entsprechende Trajektorie x(t)‚ die in x(0) beginnt, einer Grund-
aufgabe mit zu maximierender Größe (4.6) optimal (im Sinne der Definition 4.3j sind,
ist notwendig und hinreichend, daß für sie zusammen mit der ihnen entsprechenden
Lösung I’(t), t = l, 2, ..., N, von (4.10) 4 (4.12) gilt:

J€(P(t), x(t~ 1), u(t)) = mal1]xc7€(P(t), x(t— l), u), ;= 1, 2, N. (4.14)
u€

Wenn die Größe (4.6) in der Grundaufgabe nicht maximiert, sondern minimiert
werden soll, dann ist (4.11) zu ersetzen durch

p„=—1. 14.11’)

Mit (4.14) ist die Ersatzaufgabe formuliert, von der oben bereits gesprochen wurde.
Sie erweist sich im Gegensatz zur entsprechenden Aufgabe des Pontrjaginschcn
Maximumprinzips sogar als äquivalent zur Grundaufgabe, weil das diskrete Maxi-
mumprinzip als notwendiges und hinreichendes Kriterium formuliert werden konnte.
In diesem Zusammenhang muß unbedingt noch einmal betont werden, daß das dis-
krete Maximumprinzip in Form des Satzes 4.1 keine Allgemeingültigkeit besitzt, son-

dern nur auf die Klasse der diskreten Prozesse angewendet werden kann, die die
obigen vereinfachenden Voraussetzungen erfüllen. Die Aquivalenz zwischen Grund-
aufgabe und Ersatzaufgabe (4.14) wurde also erkauft durch die Einschränkung der
Klasse der zugelassenen diskreten Prozesse. Wie wesentlich diese Einschränkung für
die Gültigkeit des diskreten Maximumprinzips in der Formulierung von Satz 4.1 ist,
möge das folgende Beispiel (vgl. Beispiel 10.3 in [7]) demonstrieren. Gleichzeitig wird
im zweiten Teil dieses Beispiels angedeutet, wie man mit Hilfe des diskreten Maxi-
mumprinzips optimale Prozesse ermitteln kann.

Beispiel 4.2: Betrachtet wird die Grundaufgabe, deren Phasen- und Steuerraum eindimensional
sind, deren Bewegungsgleichung folglich nur aus einer Gleichung besteht, die von der Form

x(t)= u(t)‚ t= 1,2, ...‚ N, (4,15)

sei; weiter möge bezüglich des Steuerbereiches gelten: U = [-1, 1], und das Optimalitätskriterium
(4.6) möge die Form

I= §:fi,(x(r — 1), u(t)) : max!
r=i
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mit
ÄÜÜ ~ 1), 140))? 1420)“ 2x29 - 1) (4.15)

haben. Schließlich laute die Anfangsbedingung x(O) = O.

Für diese Grundaufgabe sind die obigen vereinfachenden Voraussetzungen nicht erfüllt, denn die
Funktionfl, ist olfensichtlich nicht linear in x. Diese Verletzung der Voraussetzungen gestattet es uns,
eine optimale Steuerung der betrachteten Grundaufgabe anzugeben, für die die Hamiltonfunktion
nicht ihr Maximum auf U annimmt. Damit ist dann gezeigt, daß das diskrete Maximumprinzip für
diese Aufgabe keine notwendige Bedingimg darstellt. Eine Steuerung mit den gewünschten Eigen-
schaften ist

u"(t)= 0, t= 1, 2, ...‚ N— 1, u“(N) =1. (4.17)

Sie ist aufjeden Fall zulässig; ihre entsprechende Trajektorie lautet wegen (4.15) und der Anfangs-
bedingung

x“(t)= 0, t = 0,1‚...‚ N— 1, x*(N) = 1. (4.18)

Mit diesen Werten ergibt sich I = 1. Allgemein folgt aber für jede zulässige Steuerung u(t) E U und
der ihr entsprechenden Trajektorie x(t) unter Berücksichtigung von (4.15) und (4.16) sowie der
Anfangsbedingung x(0) = 0 die Abschätzung

I: um) +3: [u’(t) — zum — 1)]

N N N—1

= 142(1) + Z i420) H 2 E I4’(t - 1) = M’(N) - Z 1420)
:=2 :=2 z=1

g 142m); 1.

Damit ist zunächst einmal gezeigt, daß die Steuerung (4.17) mit der ihr entsprechenden Trajektorie
x‘(t) einen optimalen Prozeß der betrachteten Grundaufgabe bilden.

Was ergibt nun das diskrete Maximumprinzip’! Für die Hilfsfunktionen gilt allgemein 11., = 1,

P1(N) = O und

P1“ " 1) : _4,,(,_ 1,

Daher ergibt sich für die gewählte Steuerung (4.17) und die ihr entsprechende Trajektorie x*(t)

p,*(t) : 0, t =1, 2, ..., N— 1. (4.19)

Die Hamiltonfunktion lautet wegen (4.15) und (4.16)

=7C’(P(t),x(t - 1), u(t)) = [u*(t) - 2x”(t — 1)1+p1(t)u(t).

Daher folgt für die der optimalen Steuerung (4.17) entsprechenden Trajektorie (4.18) und der zu-

gehörigen Lösung (4.19)

max5Ü(P*(t),X*(t— l)‚u)= maxu’: l, t= 1,2, ...,N— l,
uQU mit]

wogegen andererseits

:7€(P*(t),x*(t — 1), u*(t))= 0, ’ t= 1, 2, ...‚N—- 1,

gilt. Damit ist aber das Maximumprinzip für diese Grundaufgabe auf den Stufen t = 1, 2, ...‚ N — 1

nicht erfüllt.
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Ändern wir die zu Beginn des Beispiels formulierte Grnndaufgabe nun einmal so ab, daß die ver-

einfachenden Voraussetzungen erfüllt sind. Dazu genügt es, (4.16) durch

fi,(x(t — 1), u(t)) = u’(t) -— 2x(t — 1) (4.20)

zu ersetzen. Dann kann das diskrete Maximumprinzip angewendet werden und liefert den optimalen
Prozeß wie folgt: Gemäß (4.10) finden wir

p‚(t— 1) = —2, t= 1,2, ..., N.

Zusammen mit p1(N) = 0 liefert das die Hamiltonfunktion

c7f’(P(t)‚ x(t -1), u) = u’ -— 2x(t — 1) — Zu, t= l, 2, ..., N— 1,

:7€(P(N),x(N—— 1),’ u) = u? — 2x(N— 1).

Damit folgt aber unmittelbar
' 3-2x(t-—l)‚ t=1‚2‚...‚N—l‚

JE P ‚ — 1 ‚ =

‘i’??? ‘ m x“ ’ ‘Ö {1- 2x<N— 1),

wobei
u*(t) 2 ——1, t =1, 2, ..., N,

gewählt werden kann. Aus (4.15) findet man damit die dieser Steuerung entsprechende Trajektorie
x*(t) : -1, t = 1, 2, ..., N, mit dem Anfangszustand x(0) = O. Beide zusammen stellen den opti»
malen diskreten Prozeß der geänderten Aufgabe dar.

4.3. Dynamische Optimierung

Zur Lösung von Optimierungsaufgaben, insbesondere für diskrete (mehrstufige)
dynamische Modelle, hat sich neben dem Maximumprinzip die Methode der dyna-
mischen Optimierung bewährt. Der Grundgedanke dieser auf dem Optimalprinzip
von Bellman beruhenden Methode besteht darin, die optimalen Werte nicht für alle
Variablen eines Modells zugleich, sondern nacheinander für die einzelnen Stufen
des Modells aufzusuchen. Diese Vorgehensweise hat eine beträchtliche Senkung des
Rechenaufwandes zur Folge.

Die Methode der dynamischen Optimierung ist auf einen sehr breiten Kreis von
Modelltypen und Problemstellungen anwendbar. Es können sowohl diskrete als auch
stetige Modelle bearbeitet werden, und die Schaltungsstruktur der Stufen im Gesamt-
modell kann kompliziert sein. Nebenbedingungen für die Steuer- und Zustands-
Variablen, auch von komplizierter Art, stellen im allgemeinen kein Hindernis für die
Anwendbarkeit der Methode dar, ja das Vorhandensein solcher Restriktionen wirkt
sich oft günstig auf den rechnerischen Aufwand aus. Wegen des zyklischen Charak-
ters des Rechenablaufs ist die dynamische Optimierung gut für eine Programmierung
geeignet. .

Diese Aufzählung von Vorteilen darf aber nicht dazu führen, in der dynamischen
Optimierung eine ideale Methode zu sehen, die sich aufjedes noch so hochdimensio-
nale und komplexe Problem ohne Schwierigkeiten anwenden läßt. Grenzen der prak-
tischen Anwendbarkeit werden vor allem durch den mit der Zahl der Variablen stark
ansteigenden rechentechnischen Aufwand, d.h., Bedarf an Speicherplatz und Rechen-
zeit, gesetzt.
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Im Abschnitt 4.3.1. werden die Grundlagen der dynamischen Optimierung zu-

sammengestellt. Anschließend werden verschiedene Ergänzungen und Erweiterungen
der Methode besprochen, die für ihre Anwendung auf praktische Problemstellungen
wichtig erscheinen, Dabei wird Wert darauf gelegt, die Handhabung der Algorith-
men an einfachen Beispielen zu demonstrieren, die der Leser mit vertretbarem Zeit-
aufwand nachrechnen kann.

4.3.1. Zusammenstellung der Grundlagen

Grundaufgabe der optimalen Steuerungfür ein N-stufiges reihenförmiges System:

Wir betrachten ein System, das aus N in Reihe geschalteten Teilsystemen (Stufen)
besteht (Abb. 4.1b). Dabei bedeutet x„ den Vektor des Austrittszustandcs der Stufe

u u„ um u

l

l —
—

—
«

i

AI

l

5/ufe Jtufe _ Stu/9 „m Stufe

"rm N X/v "m; ” "n "” "m "2 7 "I

Bild 4.1 b) System aus N in Reihe geschalteten Stufen

Nr. n, und u„ den Vektor der auf Stufe n einwirkenden Steuergrößen. In bezug auf
dieses System wird folgende Aufgabe gestellt, die wir als Grundaufgabe der optimalen
Steuerung bezeichnen wollen:

Gegeben seien

— für alle Stufen Modellgleichungen (Transformationsgleichungen) der Form‘)

x„ z: „(x„„ , u„)‚ n = 1, 2, ..., N; (4.21)

— 7ulässige Bereiche für die Steuer- und Zustandsvektoren

ix‚. E un E U‚„ n = 1,2, ...,N; (4.22)

— der Anfangszustand

x„ +1 : a. (4.23)

Gesucht werden

— aus der Menge der zulässigen Steuerungen diejenigen optimalen (uf, ..., ufv), für
die gilt

1v

G z Z’ G„ (x„„‚ u,,) = max! (4.24)
71:1

-— die zugehörigen optimalen Zustände (xT, ..., xfv).

l) Auf die gegenüber den früheren Abschnitten geänderte Bezeichnungsweise wurde schon in Zu-
sammenhang mit den Formeln (4.7—4.9) hingewiesen. Insbesondere wird im folgenden n (früher
Dimension des Zustandsraumes) zur Bezeichnung der Stufennummer verwendet, dafür gibt s die
Dimension von Zustandsvektoren an.
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Diese Aufgabenstellung ist noch sehr allgemein. So ist offengelassen, von welcher
Form die Modellgleichungen (4.21) sind. Diese müssen nicht unbedingt in analyti-
scher Form vorliegen; es kann sich z.B. auch um eine tabellarisch gegebene ein-
deutige Zuordnung von Werten (Xn+l, u„) zu x„ handeln, analoges gilt für die Sum—

manden der Zielfunktion (4.24). Die Art der Beschränkungen (4.22) ist ebenfalls
offengelassen, die Zustands- und Steuerbereiche X„ bzw. U,, können stetige oder auch
diskrete Punktmengen sein usw.

Der Algorithmus der dynamischen Optimierung:

Zur Lösung der formulierten Grundaufgabe soll nun die Methode der dynamischen
Optimierung angewendet werden. Grundlage dieser Methode ist, wie schon erwähnt,
das Optimalprinzip von Bellman, das in bezug auf die Grundaufgabe folgendermaßen
formuliert werden kann:

Isl (uf, ..., ufy_,, ufiv) eine optimale Steuerung des N-stufigen Systems mit dem
Anfangszustand X_\‚'+1 : a, und ist X} der zugehörige Ausgangszustand von Stufe N.
so ist gleichzeitig (n1, , uj§v_1) eine optimale Steuerung des um die Stufe N verkün-
ten Systems mit dem Anfangszustand XE.

Es sei darauf hingewiesen, daß dieses Prinzip beweisbar ist, also einen mathemati-
schen Satz darstellt. Anschaulich besagt das Prinzip, wenn man es auf die verkürzten
Systeme wieder anwendet: Die Lösung der Grundaufgabe für die N-stufige Kette ent-
hält die optimalen Steuerungen aller kürzeren Ketten (die entstehen, wenn man von

links her eine oder mehrere Stufen wegstreicht), vorausgesetzt, daß man als deren
Anfangszustand den jeweiligen optimalen Zustandsvektor der Gesamtlösung ver-
wendet.

Der in Ausnutzung dieser Eigenschaft entwickelte Algorithmus der dynamischen
Optimierung umfaßt zwei Arbeitsabschnitte, von denen jeder aus N gleichartigen
Schritten besteht.

1. Arbeitsabschnitt: Die Einbettungstechnik 1)

Beginnend mit Stufe l wird „entgegen der Stromrichtung“ folgende Rekursions-
formel der Reihe nach für n = l, 2, N angewendet:

f;z(Xn+1) = max iGn(xn+l s um) ’i fn—1(Tn(Xn+1 a “n))i a

II
n

Xn+1 E A/n+1) “n E Un-

Dabei ist zu beachten

fil(xl) E 0: X.\'+1 = iai‘ (4-26)

In jedem Schritt der Einbettungstechnik gewinnt man zwei Funktionen:

f" (Xn;1) gibt den Maximalwert des zur Stufenfolge n 1 gehörenden Teils der Ziel-
funktion (4.24) in Abhängigkeit vom Eingangszustand x„„ an,

u„(x„„) gibt die zugehörige Steuerung in der Stufe n an, ebenfalls in Abhängigkeit
' vom Eingangszustand x„„ in die Teilkette.

1) Diese Bezeichnung geht auf Bellman zurück (imbedding-technique).
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Die Optima1funktionj’„(x„„) wird nur für den folgenden Schritt benötigt, u„(x„+‚)
muß für den zweiten Abschnitt des Algorithmus aufgehoben (z. B. als Tabelle abge-
speichert) werden. Im letzten Schritt ergibt sich der Zahlenwert fN(xN+,) = fN(a),
dies ist der gesuchte Optimalwert der Zielfunktion G. Die zugehörige Steuerung
uN(a) = ufv ist die tatsächliche optimale Steuerung der gesuchten Gesamtlösung in
der Stufe N. '

2„ Arbeitmbschnitt: Zusammenstellen der optimalen Lösung ‘)
Durch abwechselnde Benutzung der Modellgleichungen (4.21) und der mit der Ein-
bettungstechnik „auf Vorrat“ berechneten und (z.B. als Tabellen) abgespeicherten
Funktionen u„(x„„) wird, diesmal „in Stromrichtung“, durch die Stufenkette hin-
durchgerechnet. Das erfordert wiederum N Schritte:

u‚’{=u‚„(x,",+1)‚ n=N,N— 1,... I,

X’; : T„ (x,*,+1, ufi), (4.27)

Q?
wir

für (Funkfg/ffrr) x‚„, e X‚„,
erremnen und abspeichern:

(u)73(x,,,,)-max[(i,7(x,,.,,u,,)v1$,_;(fi,(x,,,,,u,,Jy
"n

(b) u„ (x,„,)

f/‘
nn

r/
lu

ny
sl

rz
nn

/lr

(n) /1u.r,, /‘ate//e der 5lnfe n V (Inferno/Mm) l

u;== u,,(x:,,,) l

(n) M//tel: Mm//y/eirm//zy : l

X;-'=7},(X7,,;/ll;7

Bild 4.2 Ablaufplan des Algorithmus der dynamischen Optimierung

1) In der englischsprachigen Literatur wird für diesen Abschnitt die sehr treffende Bezeichnung
„table-entry-technique“ verwendet. -
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wobei als Anfangswert zu benutzen ist:

xfv“ = a. (4.28)

In Abb. 4.2 ist der Algorithmus nochmals in kurzer Form als Ablaufplan dargestellt.
Man erkennt deutlich den zyklischen Charakter, der eine Programmierung erleich-
tert.

Die Arbeitsweise des Algorithmus soll nun noch anhand eines einfachen Bei-
spiels demonstriert werden.

Beisp1‘eI4.3: Der Druck eines Gases soll durch N hintereinander geschaltete Kompressoren von pa
auf pl erhöht werden. Die Anfangstemperatur sei 25‘. Nach jeder adiabatischen Kompression werde
das Gas isobar wieder auf diese Temperatur abgekühlt. Die Druckstufen sollen so gewählt werden,
daß die zur Kompression insgesamt benötigte Energie minimal ist. Um diese ‘Problemstellung in die
Form der Grundaufgabe zu bringen, führen wir x„ = 12,. als Zustandsvariable und un = pn/p,,+. als
Steuervariable ein (die Vektoren x und u sind hier also eindimensional). Damit erhalten wir

— Modellgleichungen

Xn = Tn(xn+x: an) = xn-H ‘ "n; n = ls 2, ---. N.

— zulässige Bereiche

1S “n Spi/xnn; n = l, 2, m, N,

— den Anfangszustand

xN+1 = Pm

— das Optimierungsziel

N N Rt}
G = 2 Gn(xn+1: an) = z ”'

n=1 1 an:

(u,," — l) = min!

G" stellt den Energieverbrauch der Stufe n dar. m bezeichnet die Gasmenge, R die Gaskonstante, das
.. . c —— c . .. .Verhaltnis a = 5% der spezifischen Warmen werde als konstant angenommen. Wir setzen

P

noch K = mm9 -

Für die Durchführung der Einbettungstechnik muß in unserem Fall in der Formel (4.25) natürlich
„max“ durch „min“ ersetzt werden. Im ersten Schritt ist das Problem

f,(x,) = min {K(u1“ — 1)} ,

1§"1§P1/X2, X1:-x¢'u1=171,

zu lösen. Weil pl vorgegeben ist, besteht der Steuerbereich für jeden xz-Wert nur aus einem Punkt:
u} = pl/xg. Wir erhalten demnach

_ _ P1 a
1l1(x2)— P1/x2: f1(x2) ’ K 7 “ 1 '

2

Im zweiten Schritt (Hinzunahme der Stufe 2) besteht die Aufgabe

f2(x3) = min {K(u2" -1) + K [(:—‘)" —

u: 2

1 g u, g p‚/x3.
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Wir setzen zunächst x2 = x3 - u, ein und suchen dann das Minimum durch Nullsetzen der Ableitung
des Klammerausdruckes nach u,

Kauf” — Ka (£5-E) - u,‘ 1““) : 0.
3

S0 erhalten wir
1

xx

a

T _;]

Entsprechend ergibt sich für n = 3, ..., N — I

1 H.

u„(x„+.>= L /‚.(x„+.>=nk ”‘ "-1
Xn+i xn+i .

und im letzten Schritt
1 u

1l.\'(~’€N+x) L11}- : (i) N ‚ f\'(XN+1) = 0* = ‘V ~ 1
Pa Pa

Damit ist die Einbettungstechnik abgeschlossen.
lm zweiten Arbeitsabschnitt wird nun durch abwechselnde Verwendung der Modellgleichungen

und der Funktionen u,,(x,,+,) die optimale Lösung zusammengestellt. So ergibt sich

—— im ersten Schritt:
1

*:‘£L ‘V~ x: . x db .:‘\"T\”—T~Hy (p ‚ xx pa up in im pi,
a

Ä im zweiten Schritt:

p \ T
"R21 = N—1(XR') : i

Pa
.\ L,

x_‘\‘—1 x xfv ' u: —l3 d.h-1 P.\‘—1 = I/172272 ‘P129

— allgemein:

"Z ’~— 1I..(X§’,+;) = N (unabh. von n)
a:

‚NL
n. = V921“ -p-,""*‘; n = 1,2,

Bemerkungen zur numerischen Durchführung und zum rechentechnischen Aufwand:

Bei der Anwendung des Algorithmus auf praktische Probleme wird es oft nicht
möglich sein, die Funktionen f,}(x,,+,), u,,(x,,+,) in geschlossener Form zu berechnen.
Man muß vielmehr meist so vorgehen, daß man den Zustandsbereich XJ+J durch ein
Punktgitter überdeckt, vgl. Abb. 4.3, und dann für jeden Gitterpunkt gemäß Formel
(4.25) die Maximierung vornimmt. (Hierbei ist zu betonen, daß durch den Algorith-
mus der dynamischen Optimierung nicht festgelegt ist, welches Suchverfahren zur

Bestimmung des Maximums benutzt wird.) Die so erhaltene Menge diskreter f„-
Werte wird zusammen mit den zugehorigen u„-Werten als Tabelle der Stufe n abge-
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Xm 7,2
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Bild 4.3 Überdeckung des zulässigen Bereiches X„„ eines (zweidimensionalen)
Zustandsvektors x,,+, durch ein Punktgitter und Inhalt der „Tabelle der Stufe n“

speichert. Bei dem in (4.25) erforderlichen Zurückgreifen auff„_‚ und beim Hinein-
gehen in die Tabelle u„(x„+l) während des zweiten Arbeitsabschnittes muß dann öfter
interpoliert werden, wobei i.a. lineare Interpolationsformeln verwendet werden.

Man kann sich vorstellen, daß mit zunehmender Dimension der Vektoren x„ und u„ sowohl der
Umfang der abzuspeichernden Tabellen als auch die Rechenzeit sehr stark ansteigen. Da sich die
Grenzen für die praktische Anwendbarkeit der dynamischen Optimierung hauptsächlich vom rechen-
technischen Aufwand her ergeben, ist es nützlich, die Größenordnung dieses Aufwandes abzuschät-
zen. Zu diesem Zweck nehmen wir an, daß jeder Zustandsvektor X”, des N-stufigen Systems s

Koordinaten, jeder Steuervektor u„ r Koordinaten besitzt und daß die durch (4.22) festgelegten zu-

lässigen Bereiche X,,+, s-dimensionale Quader sind, Abb. 4.3. Zerlegt man die i-te Kante des Quaders
in a; Teile, i: l . . . s, so entsteht ein Gitter aus

A:(üi+1)'(ü2+1)"" '(a‚+1)

Punkten. Im n-ten Schritt der Einbettungstechnik werden der Reihe nach für jeden Gitterpunkt
errechnet

- ein Zahlenwert für die Optimalfunktion f,,(x,,+1),

— r Koordinaten des zugehörigen Vektors u„(x„+1)._

Die „Tabelle der Stufe n“ benötigt deshalb A Speicherplätze für die fn-Werte und rA Plätze für die
Vektoren u„. Letztere werden während der Einbettungstechnik nicht weiter verwendet; man benötigt
sie erst wieder im zweiten Abschnitt des Algorithmus. Man kann die u„—Tabellen deshalb zunächst
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auf externen Speichermedien der Rechenanlage (2.13. Magnetbändem) deponieren. Im Gegensatz
dazu werden die entstandenen f„-Werte gemäß Rekursionsformel (4.25) bereits im nächsten Schritt
wieder gebraucht (danach allerdings nicht mehr). Zusammenfassend kann man sagen, daß folgen-
der Bedarf an Speicherplatz besteht:

Nss z 2 - A Plätze im schnellen Speicher (Kernspeicher) der Anlage, nämlich A für die ent-
stehenden f„-Werte und A für diejenigen des vorangegangenen Schrittes,

NSL z N - r - A Plätze im langsamen (externen) Speicher der Anlage für die u„-Tabellen der ins-
gesamt N Stufen. .

Eine grobe Abschätzung für die Rechenzeit läßt sich folgendermaßen gewinnen: Der bestimmende
Anteil kommt zweifellos durch die punktweise Berechnung der Werte f„(x„+,)‚ u,,(x,,+Q zustande.
Wird für jeden Rechengang die Zeit Ar benötigt, so ergibt sich

TzA1~N-A.

Aus den so entwickelten groben Abschätzungsbeziehungen lassen sich folgende
Faustregeln ablesen (wenn man noch die Teilungen a,- der Quaderkanten als ungefähr
gleich voraussetzt).

— Der Bedarf an schnellen Speichern wächst exponentiell mit der Dimension s der
Zustandsvektoren. Von der Zahl der Stufen hängt er nicht ab. (Das exponentielle
Anwachsen wird ersichtlich, wenn man in der obigen Formel fürA a1 = a2 = =

a, = a setzt.)

— Der Bedarf an langsamen Speichern wächst ebenfalls exponentiell mit s, zur Stufen-
zahl N und zur Dimension der Steuervektoren ist er proportional.

— Der Bedarf an Rechenzeit nimmt exponentiell mit s zu und ist proportional zur
Stufenzahl.

Wie man bemerkt, ist als „kritische Größe“ hinsichtlich der praktischen Durchführ-
barkeit der dynamischen Optimierung die Dimension der Zustandsvektoren anzu-
sehen, während Stufenzahl N und Zahl der Steuergrößen r den Bedarf an schnellen
Speichern, der immer noch den „Engpaß“ bei den verfügbaren Rechenanlagen bil-
det‚ wenig beeinflussen.

Die Abschätzungen machen die Erfahrungstatsache verständlich, daß Anwendun-
gen der dynamischen Optimierung über Probleme mit mehr als 3 bis 4 Zustands-
variablen je Stufe zur Zeit normalerweise nicht hinausgehen.

4.3.2. Einige andere Aufgabenstellungen

Die in der Praxis im Zusammenhang mit mehrstufigen Systemen auftretenden
Optimierungsprobleme können in verschiedenster Weise von der Form der Grund-
aufgabe abweichen. Aufgaben, bei denen die Zielfunktion nicht die Summenform
(4.24) hat, werden im Abschnitt 4.3.3. besprochen. Die Ausdehnung der Methode
auf den Fall, daß die Struktur der Stufenkopplung nicht eine reine Reihenschaltung
darstellt, ist Gegenstand des Abschnittes 4.3.4. Zunächst wollen wir auf einige nicht
so einschneidende Abwandlungen der Grundaufgabe eingehen und die entsprechen-
den Modifikationen des Algorithmus kennenlernen.
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Minimierungsaufgaben:

Wenn die Abweichung zur Grundaufgabe nur darin besteht, daß anstelle von

(4.24) die Forderung gestellt ist, das Minimum von G zu bestimmen, so ist dies gleich-
bedeutend damit, G’ z —G zu maximieren. Auf dasselbe läuft es hinaus, wenn man
statt- (4.25) als Rekursionsformel

f;»(Xn+1) = min {Gn(Xn+1 a um) +.f;t-1(Tn(xn+1) “n” (429)
"A

anwendet.

Bestimmung des Optimums als Funktion des Anfangszustandes:

In der Grundaufgabe war angenommen, daß der Anfangszustand zahlenmäßig
vorgegeben ist: xx“ = a. Bei praktischen Problemen wird man oft daran interes-
siert sein, die optimale Lösung für verschiedene denkbare x“, zu kennen, um auch
bei eintretenden Abweichungen von a die optimale Entscheidung trefien zu können.
In diesem Fall ist dann anstelle von (4.23) für XNH ein bestimmter Wertebereich
ACH, vorgegeben, und es besteht die Aufgabe, den Optimalwert von G sowie die
optimalen Steuerungen für alle Punkte dieses Bereiches zu ermitteln:

6* =f\'(xiv+i)ä “n* = “n*(".\‘+1)§ »X1v+1 E XA‘+1~

‘Am Algorithmus ändert sich dabei nichts. Man hat lediglich im letzten Schritt der
Einbettungstechnik die Maximierung über u_v nicht nur für einen Wert XNH = or, son-
dern für ein ganzes Punktgitter von xyfl-Werten durchzuführen.

Optimierung über den Anfangszustand:

In anderen Fällen ist der Anfangszustand x_\'+1 nicht als für den Prozeß gegeben
zu betrachten, sondern er soll, ebenso wie die u„‚ optimal bestimmt werden. x“,
spielt dann die Rolle von zusätzlichen Steuervariablen, und man muß an den letzten
Schritt der Einbettungstechnik noch eine Maximierung

G* = max {fi\'(X1\'+1)}§ X1\'+1 E XM-1, (4-30)
xN+l

anschließen.

Bestimmung des Optimums als Funktion des Endzustandes:

In Abweichung zur Grundaufgabe liege der Fall vor, daß nicht der Anfangs-
zustand xyfl, sondern der Endzustand x1 des Prozesses festgelegt ist. Bei der Suche
nach dem Maximum von G sind dann alle die Steuerungen zugelassen, die den
Prozeß von irgendeinem Anfangszustand xwfl‘ in den festgelegten Endzustand x,
führen. Jetzt ist also

0* =13-(x1)

gesucht. Auch hier könnte verlangt sein, dies nicht nur für einen xl-Wert, sondern
für einen ganzen Bereich X1 möglicher Werte zu tun.

5 Bieß, Prozesse
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Der Unterschied zwischen diesem Problem und der früher besprochenen Bestim-
mung des Optimums als Funktion des Anfangszustandes liegt nur in der „Richtung“
des Prozesses. Wenn man sich nämlich in Abb. 4.lb) die zwischen den Stufen verlaufen-
den Pfeile umgekehrt denkt, so wird aus dem Endzustand x1 der (jetzt gegebene) An-
fangszustand, und aus dem Anfangszustand x“, wird der Endzustand der Stufen-
kette. Die Richtung des Prozesses kommt aber im mathematischen Modell (4.2I—4.24)
nur durch die dort gewählte Form der Modellgleichungen (4.21) zum Ausdruck,

x„ = T,.(x..+1,un),

die so geschrieben sind, daß jeweils der Ausgangszustand der Stufe als Funktion des
Eingangszustandes und der Steuerung vorliegt. Wenn es also gelingt, die Beziehungen
(4.21) nach x„„ aufzulösen, so geht unser jetziges Problem genau in eine Aufgabe
des schon besprochenen Typs über und kann auf die übliche Weise behandelt werden.
Man bezeichnet diese Verfahrensweise als Zustandsinuersion. Formal ergibt sich
dabei folgender Rechengang:

— Auflösen der Modellgleichungen (4.21) nach den Eingangsgrößen:

X71: Tn(Xr1+19 an) H’ xn+1 : 0n(Xna urn); n : 1: 2s m: N:

— Umschreiben der Zielfunktion:

G‚.(9„(x‚.‚ un), un) = 1"„(x„‚ u„); n = 1, 2, N, (4.32)

— Anwendung der sinngemäß umgeschriebenen Rekursionsgleichungen. Anstelle von
(4.25, 4.26) haben diese jetzt folgende Form:

q2„(x„) = max {1’„(x„‚ nu) + <p.1+1(0n (xm u,.))},
n

x„ E X„‚ u‚. E U... n = N, N— 1, ..., 1, qaN+1(xN+,) E 0. (4.33)

Diese Formeln sind jetzt aber der Reihe nach für N, N — 1, ..., 1 anzuwenden; d.h.,
wenn wir Abb. 4.1b) zugrunde legen, verläuft die Einbettungstechnik jetzt „in Strom-
richtung“. Man spricht deshalb auch von einer Optimierung durch Vorwärtsrektzr-
sian.

— Entsprechend diesem Unterschied läuft die zweite Phase des Algorithmus, die Zu-
sammenstellung der optimalen Lösung‚ diesmal entgegen der Stromrichtung.

Ein solcher Übergang zur Vorwärtsrechnung erscheint im Prinzip einfach. Doch darf
man natürlich die Schwierigkeiten nicht übersehen, die sich beim Umkehren der
Modellgleichungen zeigen können. Die notwendige eindeutige Umkehrung der Trans-
formation (4.21) wird nicht immer möglich sein. Eine Rolle spielt auch die Dimension
der Zustandsvektoren, die ja für x„„ und x„ keineswegs immer gleich sein muß. Neh-
men wir an, es sei

dim x„+‚ = r, dim x„ : s,
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und denken wir daran, daß (4.21) eine Vektorgleichung ist, die ausführlicher geschrie-
ben folgendes beinhaltet:

Xn,1 = Tn,l(xlz+l‚la ‚ xn+1, r; “Ja

-702,2 = ‘Tn,2 (xn+1,1 a a xn+1,r§ “n) a (4-34)

: ,.,s(xn+1,1,-..,xn+1,,~; u”)-

Wenn wir eine Zustandsinversion durchführen wollen, so ist also ein System von s

Gleichungen nach den x„„„- aufzulösen. _

Im Falle r > s (mehr Variable am Eingang als am Ausgang der Stufe), ergibt sich
etwa, falls eine Auflösung überhaupt möglich ist,

Xn+1,: : 6n,i(xn,1 :--- ‚ xnga “n: Xn+i‚s+1‚u-‚ xn+1_r): i: I; 2:--~s S, (4-35)

d.h., neben u„ treten jetzt rechts (r e s) Größen x„„„„ x„„„ auf, die auch als
Steuervariable zu behandeln sind.

Im Falle r < s (weniger Variable am Eingang als am Ausgang) kann man etwa die
ersten r Gleichungen von (4.34) benutzen, um nach den x‚„‚1„- aufzulösen:

xn-4-1,1: 0n,i(xn,l9~-'5 xn,r§ “n): 11---1 r’

Setzt man dies in die verbleibenden (s —— r) Gleichungen von (4.34) ein, so entstehen
Beziehungen

gj(x„‚1‚...‚ x„‚s; u„) = 0, j = 1‚...‚ (s e r), (4-37)

die als zusätzliche Nebenbedingungen für X”, u„ zu behandeln sind.
Im Falle r : s ändert sich bei einer Inversion die Zahl der Steuervariablen und

Nebenbedingungen nicht.
Die Möglichkeit, die Berechnungsrichtung der dynamischen Optimierung umzu-

kehren, hängt, also davon ab, ob die Zustandsinversion durchführbar und vom
Reohenaufwand her zweckmäßig ist. ’

Falls eine Zustandsinversion nicht möglich ist, kannfiv(x‚) auch durch die normale
Rückwärtsrechnung ermittelt werden. Man muß dann allerdings bei den Schritten
der Einbettungstechnik x1 als zusätzlichen Parameter mitführen: Vor dem ersten
Schritt wird zunächst mittels der Modellgleichung

X1 = T1(X2a “1)

der Endzustand x1 in den zur Stufe 1 gehörigen Summanden der Zielfunktion ein-
geführt. Nehmen wir an, ul habe p Koordinaten

“1T : (um "1,p)-

Wenn wir die für n = 1 aufgeschriebenen Gleichungen (4.34) nach den um» auflösen,
so ergibt sich

~imFa11s=p

“i = “(Xv X2); G1(X2> “(Xv X2» = 61(X2! X1)-
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— im Fall s > p (durch Auflösen der ersten p Gleichungen)

“r = "’(x1,1s-«-a xl,p: X2)? G1(X2> u’) = €1(X2: 751,1 x142)-

Die restlichen (s — p) Gleichungen von (4.34) liefern zusätzliche Nebenbedingun-
gen für x1, x2.

— im Fall s <p
u1_‚- = w‚(x1‚ x2), i = l,..., s,

G1(x2, w1,...,w1., u1y„1,..., um) = C71(x2, x1, u1„,+1,...‚ um).

Der erste Schritt der Einbettungstechnik, Formel (4.25), liefert dann

f1(x1‚ x1) = muax {5(x2, X1, u1)}, (4.38)

wobei im Fall s g p die Maximierung entfällt, während im Fall s < p nur noch über
einen Teil der Steuervariablen zu maximieren ist. Die übrigen Schritte verlaufen dann
wie gewohnt, wobei Funktionen

i fn(Xn+1‚ X1)» “n(xn+l9 x1): n = 1: 29---2 N, (4-39)

entstehen. Zuletzt erhält man mittels

fzv(X1) = max lfv ("M1, X0} (4-40)
"nur

die gesuchte Optimalfunktion. Das Unangenehme bei dieser Vorgehensweise besteht
aber darin, daß die Tabellen der Einbettungstechnik jetzt außer von x„+1 auch noch
von x1 abhängen; sie sind also umfangreicher zu berechnen und abzuspeichern. Dies
kann ein ernstes Hindernis für die Durchführbarkeit der Methode werden.

4.3.3. Probleme, bei denen die Zielfunktion keine Summenform hat

Bei der im Abschnitt 4.3.1. formulierten Grundaufgabe war für die Zielfunktion G
die Summenform (4.24) vorausgesetzt. Wenn wir G als „Gewinn“ oder „Ertrag“ des
zu optimierenden Systems auffassen, so bedeutet dies, daß sich die in den einzelnen
Stufen erzielten Gewinne additiv zum Gesamtgewinn zusammensetzen. Dieser Fall
wird in den praktischen Anwendungen tatsächlich oft vorliegen, wobei die Abgren-
zung der einzelnen Stufen durch die gegebene Struktur des Systems nahegelegt wird.
Das muß aber nicht immer so sein. Es werden Fälle auftreten, bei denen es zunächst
viele Möglichkeiten gibt, das System in Stufen aufzuteilen, d.h. eine Dekom-
position für die rechnerische Behandlung vorzunehmen. Es ist dann eine Frage der
Zweckmäßigkeit, welche Variante man benutzt, und zu einzelnen Varianten kann
eine Zielfunktion gehören, die von der Summenform abweicht. Einige solche Fälle
wollen wir im folgenden besprechen.

Optimierung des Endzustandes:

Im Prinzip sehr einfach zu behandeln ist der Fall, daß das Optimierungskriterium
im Gegensatz zur Grundaufgabe die Form hat

G = 45(x1) = max! (4.41)
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Wir sprechen dann von einer Optimierung des Endzustandes.

Dieser Problemtyp läßt sich ohne Schwierigkeit auf die Grundaufgabe zurückführen.
Setzt man die Modellgleichung der Stufe l

x1 = T,(x2, ul)

in (4.41) ein, so hat man mit

(15(T‚ (x2, u,)) z G1(x2, ul),

G„(x„„ ‚ u„) E 0, I1 = 2, 3,..., N, (4.42)

das Problem bereits auf die Form der Grundaufgabe umgeschrieben.

Verallgemeinerte Dekomposition:

Wir betrachten jetzt folgende Problematik: Für die mathematische Behandlung
eines Systems ist eine Zerlegung in N Stufen entsprechend Abb. 4.1b) ins Auge gefaßt
worden. Es soll eine Optimierung bezüglich der Variablen u durchgeführt werden,
die zu maximierende Zielfunktion G setzt sich in gegebener Weise aus den Gewinn-
funktionen G„(x„„, u„) der einzelnen Stufen zusammen.

G z F [G1(X2> “1)> G2 (X32 “2)s --~s G.\'(X1\'+1e “AM = max! (4-43)
u,-~-IIN

Bei der Optimierung sind Nebenbedingungen (4.21—4.23) zu beachten, Es wird nun die
Frage gestellt, unter welchen Voraussetzungen man die Optimierungsaufgabe (4.21
bis 4.23, 4.43) zerlegen kann in N den einzelnen Stufen zugeordnete Teilprobleme,
wobei in jedem Teilproblem jeweils nur über die Steuervariablen der betreffenden
Stufe zu maximieren ist. Außerdem wird natürlich die Form der Teilprobleme ge-
sucht.

Für den Spezialfall, daß G eine Summenform (4.24) hat, wissen wir bereits, daß
eine solche Zerlegung möglich ist, wobei die Formeln (4.25, 4.26) die Teilaufgaben be-
schreiben. Für den allgemeinen Fall (4.43) wurde von Mitten [18] eine hinreichende
Bedingung gefunden. Um sie formulieren zu können, erinnern wir uns zunächst an

den Begriff der Monotonie einer Funktion:

Die reellwertige Funktion G : F(g) sei auf einer Teilmenge M der reellen Zahlen
definiert. Sie heißt dort monoton nicht abnehmend, wenn gilt:

Ausg < g’ folgt stets F(g) g F(g’);g, g’ E M. (4.44)

Wir führen noch folgenden Begrifi ein:

Definition 4.4: Die reellwerlige Funktion G = F(g1, g2, ..., gx) heiße separabel bezüg-
lich gg ‚ wenn zwei reellwertige Funktionen Qv , F_v_1 existieren, so daß gilt:

F(g1» 82a -~-s 8A‘) = QN [gm F.\‘—1(g1.s---, g.v—i)]- (4-45)
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Zur Erläuterung ein Beispiel: Für F(g1, gz, ga, g4) = g, + g; - (g2 + g1) gilt mit

@a=é’4+FaS F3=§a'(.£’2+g1)

die Eigenschaft (4.45), d. h., F ist bezüglich g, separabel, Dagegen ist 1?: g. -g3 + g, -g, offenbar
nicht separabel bezüglich g,. -

Unter Verwendung der Begriffe Monotonie und Separabilität kann nun folgender
Satz hinsichtlich des Optimierungsproblems (4.2l—4.23, 4.43) bcwiesen werden:

Satz 4.2: Ist G = F(G1, G2, ...‚ GN) separabel bezüglich Gy ‚

F(G1, G3‘) = <P1v[Gzv, F‚v_1(G1‚ G.v_1)]. (4-46)

und ist weiter Q‘; [G5, F3~_1] für jeden Wert von G; eine monoton nicht abnehmende
Funktion des Arguments E\'_1, so gilt

max F(G1, ..., GN) =

III, ---, ||N

max ÖN [GN (X0/+1: um‘): max FN—-1(G1(X2: “1): ---, GN~1(XN ‚ “N—1))]~ (4-47)
“N “n” »“N-1

Der Satz besagt, daß unter den genannten Voraussetzungen die Optimierung in zwei
Schritten ausgeführt werden kann. Im ersten Schritt werden die optimalen Steuerun-
gen der Stufen N — l, , 1 ermittelt, wobei sich als Ergebnis eine Funktion F}‘v-,(xN)
ergibt. Danach wird im zweiten Schritt durch

max 451V [GA‘(X1v+1s I-IN): F7v—1(T.v (X.\'+1s UND] (4-48)
“N l

die optimale Steuerung der Stufe N separat berechnet. Man hat damit das Gesamt-
problem in zwei äquivalente Teilprobleme zerlegt.

Der obige Satz zeigt, wie man die Optimierung eines N-stufigen Systems aufteilen
kann in die Optimierung der Stufe N und die Optimierung einer zur Stufenfolge
N — 1, ..., l gehörigen Funktion 17N_1. Auf FN_1 kann der Satz nochmals angewendet
werden, wenn für diese Funktion wieder Separabilität (bezüglich GN_1) und die ent-
sprechende Monotonieeigenschaft vorliegt. In günstigen Fällen erreicht man so tat-
sächlich die Zerlegung des Gesamtproblems in N den einzelnen Stufen zugeordnete
Teilaufgaben. Die Formulierung der zugehörigen Rekursionsgleichung ist jetzt leicht
zu finden: ‘

Vorgelegt sei also ein Optimierungsproblem (4.21~4.23, 4.43), wobei die Ziel-
funktion folgende Eigenschaften aufweist:

(a) F(G1,G2,...,G„-) ist fortlaufend separabel, d.h., es existieren Funktionen.
FN, FN_1, ..., F1, so daß gilt

F„(G1, G2 G„) = <15,,[Gn, F,,_1(G1, ..., G„_‚)]‚ n = N, N- 1, ...‚ 2, (4.49)

FN _=_ F.

(b) G5„[G„,F„„,] ist für jeden zulässigen Wert von G" eine monoton nicht ab-
nehmende Funktion des Arguments F„_1, n = N, N — l, ...‚ 2.
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Entsprechend (4.47) kann dann folgende Rekursionsgleichung zur Lösung der
N-stufigen Optimierungsaufgabe angewendet werden:

max F1(G1(X2‚ 111)); n : 1:

fn(Xn+1) = (4-50)
max $11 [Gn(xn+1a un)af;z—1(Tn(xn+1 a “n))]: n = 2: 3: ---; N;

Xn+1 E Xn+1§ “n E Un;

XN+1 = {"‘}-

Im übrigen unterscheidet sich der Rechengang nicht von dem im Abschnitt 4.3.1. ge-
schilderten Ablauf. Man hat also zunächst die N Schritte der Einbettungstechnik mit-
tels (4.50) durchzuführen, anschließend die N Schritte der Zusammenstellung der
optimalen Lösung, wobei ungeändert die Formeln (4.27, 4.28) zu verwenden sind.

Wir wollen die Rekursionsformeln noch an einigen Beispielen erläutern:

N
Beispiel 4.4: F(G,, , Gy) = Z G„(x„+„ u„). F ist fortlaufend separabel, denn man kann schreiben

n=1

¢n[Gns -Fn—1(G1:---2 Gn—1)]: G" + F —-1 ‚ (4-51)

n——1

F,,_1 = 3‘ G‚.‚ n = N, N—- l, ..., 2.
i=1

Die Monotonieeigenschaft ist erfüllt

F.-. s m, » G. + F.-. g G. + F;_,. ‚ (4.52)

Aus (4.50) entsteht die wohlbekannte Rekursionsgleichung (4.25).

N
Beixpiel4.5: F(G„ ..., Gy) = H G„(x„+„ u„). (4.53)

n=1 g

Auch diese Form ist fortlaufend separabel; man kann nämlich setzen:

@„[G„‚ F.-.<G„ G.-.>1 = G. - n-..
F„_1 = G„_1 - G„_2- ~G,; n = N, N— 1, ..., 2.

Die Monotonieeigenschaft ist sicher dann erfüllt, wenn gilt:

G„(x„„, u„) g 0 für alle zulässigen x,,+1, u„‚ n = l, 2, ..., N.

Als Rekursionsgleichung ergibt sich aus (4.50) in diesem Fall:

max G,(x2,u1); n=1,
.fl1(Xn+1) = (4.54)

u!

max Gn(xn+l» u.) -f„-1(T‚.(x„+:‚ II„)); n = 2, 3. N.
u n

Beispiel 46-" F(G11 "u G4) = G4(x5> '14) ‘l’ Gs(X4» us) ’ [G2 (X3: uz) + G1(x2: “J”-
Hier kann man setzen:

F=F4=G4+F3Z F3=Ga'F2Z Fz=Gz+F1§ F1=G1-



72 4. Diskrete Prozesse

Die Monotonieeigenschaft ist erfüllt, wenn G,(x,, n3) g 0 für alle erlaubten x., ua. Man erhält die
folgenden Rekursionsgleichungen:

f1(X2) z max G1(x2s ui) 2

“n

f2(Xa) = max [G2(xas I12) + f1(T2(¥a. “z))}.

f3(x4) = "Lax [G3 (XI: us) 'f2(T3 (X4: “Ü” ‚

fi:(x5) = max [G4 (X5; '14) + fa(T4 (xss "QM -

Beispiel 4.7: Auf vier Personengruppen, deren Stärke in Tabelle 4.l angegeben ist, sollen 26 (gleich-
artige) Dinge „möglichst gerecht“ verteilt werden. Als ideal wäre diejenige Verteilung anzusehen,
bei der auf jede Person dieselbe Stückzahl, nämlich 0,05 käme. Nun sind die betrefienden Dinge
aber nicht teilbar, d. h.‚ es kommt nur eine ganzzahlige Aufteilung in Betracht. Die ideale Verteilung
ist also nicht zu realisieren. Als „möglichst gerecht“ wird diejenige ganzzahlige Verteilung angesehen,
bei der die maximale Abweichung der tatsächlichen pro-Kopf-Zahl vom idealen Wert 0,05 möglichst
klein ausfällt.

Tabelle 4.1 Verteilungsproblem

Anzahl Ideale Verteilung Optimale Verteilungen
Gruppe Personen pro Kopf Stückzahl pro Kopf Stückzahl pro Kopf Stückzahl

n 2 I an = 131 0,05 6,55 0,046 6 0,053 7

II 89 0,05 4,45 0,045 4 0,045 4 _

III 249 0,05 12,45 0,052 13 0,048 12

IV 51 0,05 2,55 0,059 3 0,059 3

‚S‘ 520 26 26 26

Wir können diese Aufgabe als 4-stufiges Entscheidungsproblem darstellen, vgl. Abb. 4.4. Es
bedeuten

14„ die der Gruppe n zugeteilte Anzahl von Dingen,

x„ die den Gmppen 4 bis n insgesamt zugeteilte Stückzahl.

Als Modellgleichungen haben wir also:

x„ = T„(x„+„ u„) = x„.„ + u„; n = 1, 2, 3, 4. (4.55)

Dabei sind folgende Beschränkungen zu beachten;

x, = 26; x5 = 0; 11„ g Ound ganzzahlig, n = I, 2, 3, 4. (4:56)

i“; W3 H/Z HI,
l l 1 y

liruppe Gruppe __ 6/1/pp? Gruppe

[l7 Ill I I
X;-U X4=X5fL/4. X3=X¢H/3 XZ—X3rZ/I )(7=Xz¢U,=7

Bild 4.4 Verteilungsproblem
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4
Die Bedingung Z u,, = 26 ist mit (4.55, 4.56) automatisch erfüllt.

1

Zu jeder zulässigen Steuerung lassen sich Abweichungen A„ der Pro-Kopf-Zahl vom Idealwert be-
rechnen:

i_o05A =

n an
‚ n=1,2,3,4,

und als Maßzahl für die „Güte der Steuerung“ wird wie gesagt die größte Abweichung verwendet:

M: max {An AzyAay AIL

Gesucht wird als optimale Steuerung diejenige, bei der M einen möglichst kleinen Wert hat:

minM = min [max [A1, ..., Afl].
I! ll

Dieses Optimierungskriterium ist offenbar gleichbedeutend mit

max [min [—A,, ..., —A,]],
II

und wir erhalten, wenn wir zu unserer bisher verwendeten Bezeichnungsweise übergehen,

G = F[G1(N1), m. 54044)] = maxi,
..

M0,, 0,1 = min :G,, G49; G„ = ~ —- 0,05 i. (4.57)
71 l

Mit (4.5S—4.57) liegt ein Problem vor, welches der Aufgabenstellung (4.21—4.23, 4.43) entspricht.
Unsere jetzige Zielfunktion ist fortlaufend separabel, denn ofienbar gilt:

<1’n[Gm Fn—1(G1 5.1-1] = mill (Gm Fn—l);

F"_1 = min (G,,_1, ..., G1); n = 5, 4, 3, 2.

Die Monotonieeigenschaft ist ebenfalls erfüllt, denn aus

F,',_! g F;,_1 folgt min (Gm F,',_l) g min (G‚„ F}',_1).

Wir erhalten deshalb folgende Rekursionsbeziehung

max 6,; n = 1_‚

= u‘
f"""'+" max [min (G... „-.<T„<x‚.„‚ u..»)1; n : 2‚ s, 4, (m)

„n

die unter Beachtung der Nebenbedingungen (4.56) in der bekannten Weise auszuwerten ist.
Nun ist, wenn man die ideale Verteilung der Tabelle 4.1 ins Auge faßt, die Lösung fast zu erraten

(Auf- bzw. Abrunden auf die nächstgelegene ganze Zahl). Das Beispiel wird eigentlich nur deshalb
angeführt, um auf den breiten Anwendungsbereich der dynamischen Optimierung hinzuweisen. Man
sieht, daß die Zielfunktion G z. B. ‘auch durch eine Vorschrift „Suche die kleinste von N Zahlen“
gegeben sein kann. Auch Nebenbedingungen der Form (4.56), d.h. Forderungen der Ganzzahlig-
keit usw. stören die Anwendbarkeit der Methode nicht.

Wir wollen den Rechengang bei der Lösung noch andeuten: Zunächst kann man offenbar den
Rechenaufwand dadurch beträchtlich verringern, daß man in Hinblick auf die ungefähre Kenntnis
der Lösung die Bereiche der zulässigen Entscheidungen in vernünftiger Weise einengt, etwa:

141€ l5‚6‚7‚8}; M26 1,4,5, l; II: E {11.12.13,14};

144€ l1‚2‚3‚4i—
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Wegen der Form der Modellgleichungen und (4.56) ergeben sich dann für die Zustandsvariablen zu-

nächst die Möglichkeiten:

x.=.=0; x4E{1,2.3,4]; xaE{12,....181;

x2EI15,...,24); x,=26.

Im ersten Schritt der Einbettungstechnik ist wegen x1 = x2 + u, = 26, d.h. I11 = 26 —— x2, für jeden
Wert x2 die Entscheidung schon festgelegt. Man hat also, vgl. Tab. 4.2,

i 26»mm:-}7fifl—mmL

wobei wegen (4.56) für die Werte x2 = 15, 16, 17, 22, 23, 24 überhaupt keine zulässigen Entscheidun-
gen existieren. Im zweiten Schritt

"2 005"-§—, ,nm+wHfi(x3) = max [min {—

erhält man z. B. den Wert für x3 = 15 durch folgende Zahlenrechnung:

„2 — ä — 0,05’ f1(15 + uz) Minimum -

3 —0‚0l6 —o‚o11 —0‚Ol6

4 —0‚005 —o,oo3 —o‚oo5*

5 —o,oo6 »o,oo4 —o,oo5 ‚

6 —0,0l7 —o,o12 ~o,o17

Als Maximum der Minimalwerte hat man also f2(l5) = —0‚005, und dies tritt bei der Entscheidung
u2(15) z 4 ein. Entsprechend rechnet man für die anderen Werte von x3. Die Ergebnisse sind, zusam-
men mit denen der analogen Schritte drei und vier in der Tabelle 4.2 enthalten.

Tabelle 4.2 Tabellen der Einbettungstechnik für das Verteilungsproblem

zur Stufe I zur Stufe II zur Stufe HI zur'Stufe IV

x2 13052) l¢1(X2) X3 f2(Xa) “2(X3) x4 /£3054) 113054) x5 f:1(x5) "4(-X5)

15 12 —0,0l7 6 1 —0‚005 14 0 —0,009 3

16 13 ~0,0l1 5 2 —0‚005 13
17 14 —0‚O06 5 3 —0‚005 13; 12
18 —0,011 8 l5 —0‚005 4 4 ~0,005 12
19 ~0,003 7 16 —0‚005 4
20 -—0, 6 17 ~0,012 4
21 —0‚012 5 18 —0‚016 3

22
23
24
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Bei der Zusammenstellung der optimalen Lösung erhält man der Reihe nach:

x5:0 Il4‘°I,¢¥3 x4: 0+ 3: 3

zu x‚-—3 ausTab.4.2: 113,0”:-{i:; x3:{

zu x3:{i: ausTab.4‘2: u2,(,[,l={ i; x,:{i::
zu x2={§(9) ausTab.4.2: u15(,pL={ g; x1={§g:

Es gibt also vom Standpunkt des verwendeten Kriteriums aus zwei „gleich gerechte“ Entscheidun-
gen. Bei beiden beträgt die maximale Abweichung der tatsächlichen pro-Kopf-Zahl vom Idealwert
0,009.

4.3.4. Probleme mit allgemeinerer Struktur

Der nun folgende Abschnitt behandelt die Anwendung der dynamischen Optimie-
rung auf Systeme, bei denen als Stufenschaltung nicht eine einfache Kette, sondern
eine kompliziertere Kopplung vorliegt. Solche allgemeineren Strukturen treten in der
Praxis häufig auf. Man denke etwa an Produktionsanlagen der chemischen Industrie,
bei denen sich die Stromführung zwischen den einzelnen Apparaten verzweigt, Rück-
führungsströme auftreten usw. Da man sich jede komplexe Schaltungsstruktur auf—

gebaut denken kann aus Verzweigungen und Vereinigungen von Ketten, vorwärts
gerichteten Schleifen und Rückkopplungsschleifen, genügt es, diese vier Grundtypen
zu behandeln. Die Anwendung der Methode auf Kombinationen dieser Fälle bereitet
dann im Prinzip keine Schwierigkeiten mehr.

Die sich verzweigende Stufenfolgez

Wir betrachten ein System der in Abb. 4.5 dargestellten Struktur. Die Modell-
gleichungen der Stufen sollen in der Form

x„ = T,,(xn+1, u,,); I1=1,..., N+ M + L (n # N),

Xiv = T1V(i.\‘+.\[+ls 11x), (4-59)

xN+llI+l S TZ\'+J|«I+1(X.’V4;M+22 “N+M+1)

vorliegen.
l "/1 « "r

"N444 “,v;M+7 1, i " _ M ’

: * * w’ X7
‘ ‘ ;‘N»M»1

l

‘Nnwm "mm; .

;UMM "AM

X»/»M«1‘ X/WM ‘IM
Bild 4.5 Sich Verzweigende Stufenfolge
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Die Zielfunktion habe Summenform

N+M+L
G= 2 G„‚ (4.60)

n=l

wobei G„ jeweils vom Eingangszustand und vom Steuervektor der Stufe n abhängig
sei. Das Maximum der Zielfunktion

max G = fiV+.\l+L(X1V+ M+L+1) (4-61)

soll in Abhängigkeit vom Anfangszustand X_'v+_|[+[_+1 unter Beachtung gegebener zu-

lässiger Bereiche X„ ‚ U„ für die Zustands- und Steuergrößen bestimmt werden.
Die Einbettungstechnik ist hier in folgenden vier Abschnitten durchzuführen:

I: Rückwärtsrechnung im oberen Zweig (Stufen I bis N):
f1(x‚) = max G,(x2, n1),

fii(xn+1) = max {Gn(xn+1a lln) +.f;l—1(Tr1(xIz+1 2 um)” a 71 = 2: 3: ---3 Na (4-62)

(wobei im letzten Schritt X_v+1 als i‚y+„„ zu lesen ist). Als Ergebnis erhält man
f\-(iy+„„1) und natürlich die zu den Stufen gehörigen optimalen Steuerungen
“n(xn+l)- '

II: Rückwärtsrechnung im unteren Zweig (Stufen N + l bis N + M):

f\‘+1(X.\‘+2) = max GN+1(X.\'+2: “.\'-+1),
“N-+1

f;1(xn+l) z max {G71 (Xn+1 a um) +/".14 (Tn(Xn+1 ‚ 112:)”, (4-63)

n:N+l,N+2,...‚N+M.

Dies liefert zuletzt jfy‚„„(x„y+_t„„).

III: Hinzunahme der Verzweigungsstufe N + M + l:

f\'+A1+1(X.\‘+.\I+2) z max {G_\‘+.1I+I(X‚\'+JI+2‚ “.\'+.\/+1)
“.V+.\I+1

‘V f\'(TN+.11+1(X.\'+,11+2: “Au .\1+1)

+f:\'+.\I(T,\‘+.\I+1(X.\ 1'~.\I+2s “.\'+JI+1))} - (464)

IV: Rückwärtsrechnung durch die Restkette (Stufen N —§— M + 2 bis N + M + L)

J’..(x,.+1) = max {Gn(Xn+1s lln) +fn(Tn(Xu+1a |ln))}s

n=N+M+2,...,N+M»I—L. (4.65)

Dies liefert schließlich die gesuchte Abhängigkeit des Optimalwertesfn, _‚„L (x34 3‚iH1)
der Zielfunktion. Mit Hilfe der abgespeicherten Beziehungen für die Optimalwerte
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u„(‘x„„) der Steuergrößen kann man dann in üblicher Weise durch Vorwärtsrechnung
die Optimallösung zusammenstellen.

Man sieht, daß sich der Fall einer verzweigten Kette etwamit dem gleichen Aufwand
bearbeiten läßt wie eine unverzweigte Kette gleicher Stufenzahl.

Die Vereinigung zweier Ketten:

Das System habe jetzt die in Abb. 4.6 gezeigte Struktur. Die Modellgleichungen
der Stufen lauten

xn = T„(x„+i‚ m); n = 1. N + M + L (n =# N, N+ M),

Xx = Tn‘ (XN+1 s X.\'+.\I+1: lb‘): (4.66)

X.\‘+1II = T.’\'+M (i.\‘+JlI+1 7 u.\'+M)'

Die Zielfunktion hat wieder die Gestalt (4.60).
Zu beachten ist, daß

Gzv = GN(XN+1s XN+M+1‚ UN) (4.67)

von zwei Eingangsvektoren abhängig ist. Wir nehmen an, daß die Anfangszustände
fq-„m und x„„‚„„1 als fest betrachtet werden, d.h., daß

max G = f:V+M+L+1 (i\'+M+1 a X.\‘+M+L+1) (4-58)
II

gesucht wird.

f “MM “m!

MM v — — rm

3m/mi "MM

i "MAN

"Mr/M’~»,mm

Bild 4.6 Vereinigung zweier Ketten

Für die Anwendung der dynamischen Optimierung auf dieses System kommen zwei
Varianten in Frage, je nachdem, ob eine Zustandsinversion möglich bzw. rechnerisch
mit vertretbarem Aufwand durchführbar ist oder nicht.

Variante A: Es sei möglich, in einem der zusammentreffenden Zweige, etwa im obe-
ren (Stufen N + 1 bis N + M) die Zustandsinversion durchzuführen. Dann stehen die
Modellgleichungen in der Form

x„„=0„(x‚„u„); n=N+ l‚...,N+M— l, (4.69)

X.\‘+M+x = 9.\'+M (X.\'+M, “4\‘+2lI)
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zur Verfügung, und entsprechend sind die Summanden der Zielfunktion umgeschrie-
ben (vgl. hierzu 4.3.2.):

GN+M : I'.w‘+.11(iA‘+A1+1 s x1V+M: llN+M)S Gn = Fr: (Xn, 11a),

n=N+M~1,...,N+1. (4.70)

Wir haben damit den schon betrachteten Fall einer sich verzweigenden Stufenfolge
hergestellt, wobei die Aufgabenstellung von der damaligen nur dadurch abweicht, daß
außer dem Anfangszustand x„„„„1 auch noch der „Endzustand“ :2„+„„„ als fest
zu betrachten ist. -

Die Einbettungstechnik umfaßt folgende Arbeitsschritte:

I: Rückwärtsrechnung durch die Stufenfolge l, 2, ...‚ N — l unter Verwendung der
Formeln (4.62). Dies liefert f\-_1(xN).

II: Vorwärtsrekursion im oberen Zweig (Stufen N + M bis N + 1). Dabei sind (vgl.
4.3.2.) folgende Beziehungen zu Verwenden:

<PA‘+M(XN+.\1, i,\‘+M+1) = max Ii\'+_\1(i_\'+.\1+1 ‚ X_\‘+.11‚ u.\'+‚’\l)a (4-71)
“1v+.11

¢Pn(Xn, i,\'+,11+1) Z max {Fn(Xn, lln) + <Pn+i(9n(X„‚ Flu), i1\‘+.u+1)}s
u

u

n:N+M—l,...,N+1.

Zu bemerken ist, daß im ersten Schritt die Maximierung entfällt, wenn durch die
Modellgleichung der Stufe N + M

XN+M+1 = 91v+M(XA‘+M, ll./v+M) —’ ll1v+M = w (XN+M+1 ‚ Xlwzw)

bei festem :‘gy+M+1 für jeden Wert xN+M die Steuerung eindeutig festgelegt ist. Als
Ergebnis dieses Arbeitsabschnittes erhält man

‘P.\'+1(x1\’+1 a iAV+)1+l) ~

III: Hinzunahme der Vereinigungsstufe N:

fi\'(X1v+.\/+1‚ i,\'+,1I+1) : max {Gn(XN+1: X1\‘+M+1. um‘)
“Iv "N +1

+ fv-1(T.v (X.\‘+1 ‚ X.\‘+.11+x, In» + thv+i(x‚v+i‚ §.\’+n1+1)} » (4-72)

IV: Rückwärtsrechnung durch die Stufen N + M + 1, ..., N + M + L des unteren
Zweiges:

fiz(Xn+1a i.V+M+1) = max {Gn(Xn+1, um) +fn—1(Tn (Xn+1: urn), 72x\'+.\I+1)} y

n=N+M+1,...,N+M+L. (4.73)

Dies ergibt schließlich die gesuchte Abhängigkeit

.fl\’+lWI+L(x.V+ .\I+L+l s i_\'+.\I+1) '
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Variante B: Wir betrachten jetzt den Fall, daß eine Inversion der Modellgleichttngen
nicht ausgeführt werden kann. Die Einbettungstechnik verläuft dann folgender-
maßen.

I: Wie bei Variante A. Man erhält jfm_1(xN).

II: Rückwärtsrechnung im oberen Zweig (Stufen N + l bis N + M) mit dem Ziel,
fiV+M (iN+M+1, XNH) zu erhalten. Dabei ist als erster Schritt die Funktion

f1v+1(Xn'+2‚ xN+1) = max GM-1(X.\'+2s |l.v+1) (4-74)
“N+1

unter Beachtung der Nebenbedingung

XN+1 = TN+1(XN+2a |lA‘+1) (4-75)

zu bestimmen. Letzteres bedeutet, daß man zunächst mittels (4.75) die Steuervaria-
blen uyfl soweit wie möglich durch die Zustandsgrößen x_v+1‚ xN+2 ausdrückt und
diesin GM, einsetzt (vgl. 4.3.2.). Danach wird gemäß (4.74) über die nicht eliminier-
baren Steuergrößen maximiert. Wenn sich uml vollständig durch xx“, X“: aus-
drücken läßt, entfällt die Maximierung.
Die weiteren Schritte sind in der üblichen Art auszuführen:

fil(xn+1: x1\'+1) Z max {GM (xn+1> un) +f;I-1(Tn(Xn+1s un): x4\'+1)] s

I.

n=N+2,...,N+M. (4.76)

Sie liefern zuletzt f\ +_„(i_\ „m, XyH). Diese Funktion ist mit gay“ aus Variante A
identisch.

III: Hinzunahme der Vereinigungsstufe N. Hierbei gilt Formel (4.72), wenn man dort

(„+1 durch [(+51 ersetzt.

IV: Wie bei Variante A. Man erhéiltfN+M.,L(xN+M+;_+1, f:N+M+1).

Vergleicht man beide Arten des Vorgehens, so stellt man folgendes fest: Wenn in
der Aufgabenstellung der Anfangszustand :Zy+M+1 zahlenmäßig fest vorgegeben ist,
so ist Variante A mit geringerem rechentechnischen Aufwand verbunden, da dann die
in Abschnitt II entstehenden Funktionen zp„ nur in Abhängigkeit von einem Zustand
x„ abzuspeichern sind. Bei Variante B kommen dagegen zwei Zustände vor:f,,(x,,+1,
x341). Falls die optimale Lösung für einen ganzen Bereich von iN+_1,+1-Werten
gesucht wird, dürfte der Aufwand beider Varianten etwa gleich sein.

Beispiel 4.8: Zur Erläuterung des Rechenablaufes betrachten wir das in Abb. 4.7 dargestellte 6-stufige
System. Alle Zustands- und Steuervektoren sind eindimensional, die Modellgleichungen der Stufen
und die Summanden der Zielfunktion sind in Tabelle 4.3 zusammengestellt. Beschränkungen für die
Zustands- und Steuervariablen seien nicht vorhanden. Die Eingangszustände i3 und x, sind als
gegeben zu betrachten. Es soll das Minimum der Zielfunktion

6

G=2m
1L:1

bestimmt werden, und zwar in Abhängigkeit von 5:5, x7.
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x7 X5

Bild 4.7 Beispiel für eine Vereinigung zweier Ketten

Tabelle 4.3 Beispiel für eine Vereinigung zweier Ketten

Stufennummer Modellgleichung Summand G,,
n der Zielfunktion

1 x, = x2 — gal (ul + x2)’

2 xg:x3+%x5+u2 X32+X52+u22

3 x3 = M3 —- x‘ (x4 — 2)“ + (u, — I)?

4 x, = 5:5 + u, (775 — n4)?

5 x5 = x5"+ H5 x3 + äu,’

6 x5 = x7 v n5 (x, a 1)? —l- us”

Stufennummer optimale optimaler Zustand
n Entscheidung

l M1=%}5+%X‚ x‚=—%—)”c5+%x‚

2 112-0 x2=—%‘5+—]ä—x,

3 u3=§3:5+1 Y3 -3525

4 114-»-%5‘c5+l x,—%—:Tr_.-,+1

5 us — —%x, x5 * %x,

6 us = %x., x5 = %x7

Zum Vergleich führen wir die Berechnung mit beiden Varianten durch. Natürlich ist in den For-
meln jetzt „max“ durch „min“ zu eretzen.

Berechnung nach Variante A

I: Anwendung von (4.62) auf die Stufe n = 1 ergibt:

f1(x2) : min (M) ‘l’ X2)2-
“i
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Da für L11 keine Beschränkungen zu beachten sind, können wir das Minimum durch Nullsetzen der
ersten Ableitung suchen. Man erhält:

ÖGI

öul : 2(“1 ‘i’ x2) = 0 " 141052): "X2

und weiter durch Einsetzen in G,

f,(x‚) E 0.

II: In den Stufen 3, 4 wird die Zustandsinversion ausgeführt. Man erhält für Stufe 4 aus der Ta-
belle 4.3:

x4:3‘5+VA ‘* "a=x4—5C5a

G4 = (355 ‘ "D2 " F4 = (2555 — X02-

Da I‘, nicht von der Entscheidungsgröße u‘ abhängt (durch die Nebenbedingung x4 = 3:5 + u. ist
bei festem 5:5 für jeden Wert x, die Entscheidung eindeutig festgelegt), entfällt die Minimierung, d.h.‚
es gilt:

‘P4074: 555) E F4 = (2535 ‘ X92.

u„‚(x„ £5) z x4 — 525.

Im nächsten Schritt der Vorwärtsrekursion erhält man gemäß (4.71) für die Stufe 3:

x3:u3—x, -+ x4=u3—x3,

G3=(x4”2)2+(1la*1)2 ”’ F3=("a“x::"2)2+("3‘ 1)2y

‘Pa(x3u 325) = Ulllifl {fa + (2535 — "3 + m”) .

a

Mittels +3 {F3 + 172,} = 0 ergibt sich:

:p„(x3‚ 5:5) = äxf + »§5:52 + äxa - 535 — 425 + 2,

1130:3, 5:5) = 3x3 + §$c5 +1.

III: Hinzunahme der Vereinigungsstufe 2. Wir müssen die Formel (4.72) anwenden:

f2(x5‚ 565) = l (X32 + x52 + u?) + (P3053: 35) + 130ml,‘
s. z

wobei noch x2 : x3 + ä ~ x5 + a2 einzusetzen ist. Nullsetzen der partiellen Ableitungen nach x3 und
M2 ergibt

2 A A

X3(X5sx5)= "?'xs: "2(x5:X5) E0;

A 12 „ 2 „ 2f2(x5,x5):?x5 — 4x5+x5 + 2.

IV: Es schließt sich eine normale Rückwärtsrechnung durch die Stufen 5, 6 des unteren Zweiges
an. Mit (4.73) erhält man

A 4 „‚ l2 A A

130%, X5) = jXs' ‘i’ 7x52 — 4X5 ‘i’ 2,

”5(X6:S'5): ‘%Xe

6 Bieß, Prozesse
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und im letzten Schritt

/,(x„ 2.) = ‘T2252 — 4x, + 1—71x,2 — 2x, + 3,

4
“e(X7s3€s)= 7x7-

Die Einbettungstechnik ist damit zu Ende geführt. j;(x.,, 5:5) stellt den gesuchten Optimalwert der
Zielfunktion in Abhängigkeit von den Eingangsgrößen x.‚ und 5:5 dar. Die Zusammenstellung der
optimalen Lösung kann jetzt durch abwechselnde Benutzung der Optimalfunktionen für die 14„ und
der Modellgleichungen in üblicher Weise erfolgen. Die Ergebnisse sind in Tabelle 4.3 aufgeführt.

Berechnung nach Variante B

I: Verläuft wie bei Variante A.

II: Diesmal wird keine Inversion der Modellgleichungen vorgenommen, sondern eine normale
Rückwärtsrechnung durch die Stufen 3, 4 des oberen Zweiges ausgeführt. Gemäß (4.74, 4.75) besteht
im ersten Schritt das Ziel, f„(x.„ x3) zu gewinnen. Zu diesem Zweck muß man zunächst mittels der
Modellgleichung der Stufe 3

X3=u3—x‘ —> u;,=x3+x‘
und Einsetzen in den Summanden der Zielfunktion in diesen die Abhängigkeit von x3 hineinbringen:

Ga = (x4 — 2)2+ (X3 + x4 *1)”-

Wie man sieht, entfällt da.nn eine Minimierung bzgl. a3 und man hat

f„(x„ x3) = 2x,’ — 6x. + xf + 2x3x4 — 2x3 + 5.

u3(x,, X3) = x3 + x4.

Der zweite Schritt geht normal vonstatten:

fi‚(5:5, x3) = muin {(23 — m)? + f3(x3, T,()?5, um}.
.

Durch Nullsetzen der Ableitung nach u, ergibt sich:

u,(x3, £5)=1—§5E5 — 33x3,

f‚(x3‚5?55 = 5x32 + ggf + 3x, - 5:, — 45c, + 2.

Letzteres ist mit q23(x3, 3:5) aus Variante A identisch.

III: Verläuft wie bei Variante A.

IV: Verläuft wie bei Variame A.

Die vorwärts gerichtete Schleife:

Die vorwärts gerichtete Schleife, Abb. 4.8, enthält in der Stufe N + M + L + 1

eine Verzweigung, in der Stufe N eine Vereinigung. Da wir eine Kombination der
schon behandelten Fälle vor uns haben, wird sich auch der Rechengang aus Abschnit-
ten der damals ausführlich beschriebenen Art zusammensetzen. Dabei ist eine ganze
Reihe von Varianten möglich, je nachdem, ob man den oberen oder den unteren Zweig
der Schleife zunächst für sich optimiert, ob man dieses Teilergebnis in den Rest der
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Bild 4.8 Vorwärts gerichtete Schleife

Zielfunktion an der Vereinigungsstelle N oder an der Verzweigungsstelle N + M L
4- 1 einbezieht oder ob man für einen Teil des Systems eine Zustandsinversion vor-

nimmt.
Wir erläutern im folgenden nur eine dieser Möglichkeiten, wobei wir uns auf die

Beschreibung des prinzipiellen Ablaufs der Rechnung beschränken. Die Formulie-
rung der detaillierten Rekursionsbeziehungen dürfte auf Grund der früheren Erörte-
rungen keine Schwierigkeiten machen. Wie üblich wird angenommen, daß die Modell-
gleichungen jeweils den Ausgangszustand der Stufe als Funktion des Eingangs-
zustandes und der Steuerung darstellen, daß als Zielfunktion eine Summe über alle
Stufen vorliegt, und daß ihr Optimalwert in Abhängigkeit vom als fest zu betrachten-
den Anfangszustand xg\v+„+„‚\«„ des Gesamtsystems gesucht ist.
Die Einbettungstechnik verläuft dann in folgenden Abschnitten:

I: Rückwärrsreclmung durch die Stufen l bis N -— l. Als Ergebnis erhält man die
Optimalfunktion f\-_1(x_y).

II: Separate Optimierung des Teils der Zielfunktion, der zu einem der Zweige der
Schleife gehört (wir wählen beispielsweise den oberen Zweig mit den Stufen N — 1

bis N+ M). Die entstehende Optimalfunktion bezeichnen wir mit fi\'+_‘|[‚ sie ist in
Abhängigkeit von >”c_y+„„ und XA-H zu ermitteln. Dabei hat man so vorzugehen, wie
bei der Vereinigung zweier Ketten, Variante B, beschrieben. Als Ergebnis erhält man

f\’+.\1(X.\'+1 a i.\'+.\1+1)-

III: Einbeziehung des oberen Zweiges auf der Stufe N:

fv (X_\’+_\/+1: 33.\‘+_\1+x) : max {GK (X.\'+1: X.\‘+J1+1s “.\')
x,\'+r“JV

+ f\'—1(T.\'(X.\ +1 y X;\‘+M+1, “A + fx+_1I(X_\'+1‚;ii\‘+_\/;1)i. (477)

Danach Rückwärtsrechnung durch die Stufen N + M + 1, ...‚ N + M + L des unte-
ren Zweiges mit dem Ergebnis

fi\'+i11+L(x.\’+.\1+1.+1s iN+M+1)' (4-78)

Schließlich Einbeziehung der Verzweigungsstufe N + M + L + 1:

fl\"+-\I+I.+1(X.\'+}I+L+2) : max {GN+M+I.+1(X1\'+M+L+2s “.\'+JI+L+1)
“.\'+M+L+1

+ f:\'+_\/+L(T.\'+_\l+L+l (x1V+.\I+L+2 a “‚\’+ .\[+L+1):

T,\'+.1l+L+1(x.'\‘+ M+ I.+2 a |l_\'+ M+I.+1))}- (4-79)
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IV. Rückwärtsrechnung durch die restlichen Stufen N+ M+ L + 2 bis N+ M+ L + K
mit dem gesuchten Ergebnis

f\'+M+L+K (X1v+M+1_+K+1) - (4-80)

Beispiel 4.9.; Wir erweitern das als Beispiel 4.8 berechnete System (vgl. Abb. 4.7 und Tab. 4.3)
durch Anfiigen einer Stufe zu einer Vorwärtsschleife, wie in Abb. 4.9 dargestellt. Das Minimum des
siebenstufigen Systems soll in Abhängigkeit vom Anfangszustand x8 bestimmt werden.

{I17 """" ’ ’ ‘I Mmfe//y/air/my der 5/ufe 7

' 35- l 5y:/emyemali‘ ;-1,, ,„ ‚Z
1 /1bD.1r.7://It l 5 5 ‘l 7 3

l Tube/l: 4.3 l X7 ’ ‘X9 _ V

X l Summa/m derl/el/‘M/rl/an
7 i. „„„„ ___I

G7 - x31 51241172

Bild 4.9 Beispiel für eine vorwärts gerichtete Schleife

Der Rechenablauf ist im wesentlichen mit dem identisch, den wir im Beispiel 4.8 (Variante B)
hatten. Der einzige Unterschied besteht darin, daß wir mit dem damaligen Endergebnis noch einen
Schritt weiterrechnen müssen, da jetzt noch die Verzweigungsstufe 7einzubeziehen ist (letzte Maß-
nahme im Schritt III):

f7(/Vs) = min [G7(Xs’ "7) + f:s(/V1: 3'5)’ v

V1

Tabelle 4.4 Lösung des Beispiels einer vorwärts gerichteten Schleife

Stufe optimale Entscheidung optimaler Zustand

1 u,=—;:—x3+1i8 x,=—~:%x3~—152—

2 u2=0 x2=—z1T11xE—%

3 u3:%x5+—f% x3=—%x5—f—8

4 z1,C—'——1l2—x5—l-% x„——ä—xs+%

5 115: —%x„ x5:—I1Z-x5

6 “s: 3% Xs:%4xa

7 I u,=—-~1}2—xs+3L6 £5=T52Xa+~§§~

x7 ’ äxs
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Wenn wir x7, 5:5 durch die in Abb. 4.9 notierten Modellgleichungen ausdrücken, ergibt sich durch
Nullsetzen der Ableitung nach u,

l 1

"W i’: " 72'“ + ä
und damit weiter

. _ _ 53 2 4 25

’="‘8’ r E“ “ im“ T8"

Die optimalen Steuerungen und Zustände. die sich bei der anschließenden Zusammenstellung der
Gesamtlösung ergeben, sind in Tabelle 4.4 aufgeführt.

Die Rückkopplungsschleife:

Die in Abb. 4.10 dargestellte Rückkopplungsschleife geht aus der vorwärts gerich—
teten Schleife (Abb. 4.8) hervor, indem man dort die Stromrichtung des oberen Zwei-
ges umkehrt. Auch jetzt gibt es wieder verschiedene Möglichkeiten für die Durch-
Führung der dynamischen Optimierung. Wir erläutern hier nur den Fall, daß der
Beitrag des oberen, rückwärts gerichteten Zweiges bei der Stufe N einbezogen wird.
Bezüglich der Aufgabenstellung wird wieder vorausgesetzt, daß für jede Stufe die
Modellgleichttng den Ausgangsstrom als Funktion des Eingangsstromes und des
Steuervektors darstellt und daß die Zielfunktionsbeiträge dieselbe Abhängigkeit
zeigen. Gesucht wird das Maximum der Summe dieser Beiträge über alle Stufen, und
zwar in Abhängigkeit vorn Eingangsvektor X_\‘+_\1+]‚+]{+1 des Gesamtsystems.

X‘Nr?
AM ~ — MM

X N rM +1 r I

Bild 4.10 Rückkopplungsschleife

Man kann dann die Arbeitsabschnitte bei der Einbettungstechnik folgendermaßen
beschreiben:

I. Rückwärtsrechnung durch die Stufen l bis N — 1 mit dem Ergebnis fi\‘_1(X1v).

II. Separate Behandlung des oberen Zweiges durch Rückwärtsrechnung durch die
Stufenfolge N + 1, ‚ N + M mit dem Ziel, den optimalen Beitrag der zugehörigen
Teilsumme der Zielfunktion in Abhängigkeit von xx“ und im zu erhalten.
Hierbei ist wieder so vorzugehen, daß zunächst über den zur Stufe N + 1 gehörigen
Summanden zu optimieren ist:

f:V+1(XI\‘+2a XNH) = max G.V+1(XN+2: “.\‘+1)§ (4-81)
“J/+1

Nebenbedingung: xx“ = y+,(xN+2, “N+1).

7 Bieß. Prozesse
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Wenn durch Auflösen der Nebenbedingung der Entscheidungsvektor als Funktion
von xyrg, X341 dargestellt werden kann, entfällt die Maximierung.
Anschließend werden der Reihe nach die restlichen Stufen N+ 2 bis N + M ein-
bezogen, man erhält schließlich

fviLA/(ffiv ‚ X.\‘+1)-

III. Einbeziehung des Rückwärtszweiges an der Stufe N:

fv (X.\'+.\/+1: X.\'+1) : max {G.\'(X.\‘+.\1+1a UN) +f:\'—1(TN (XA'+_\/+1, |l_\'))
„X

/I f\‘+.\1(i‘.\' (X.\'+M+1 s lb‘), X.\'+1)}- (4-82)

Danach wird rückwärts durch die Stufen des unteren Zweiges hindurch gerechnet,
wobei man im Ergebnis erhält:

J".\‘+_\/+L(X.\‘+ M+1.+1, X.V+I)' (4-83)

Schließlich ist die Stufe N + M + L + l einzubeziehen (V: N + M —I~ L):

A fl'+1(XV+2) : max :GV+1(XV+2s x_V+1suV+1)
“$'+1"‘.\'+1

+fV(TV+1(xl'+2a X,\‘+1, 11m1), X.\'+1)i- (4-34)

IV. Zum Abschluß der Einbettungstechnik ist eine Rückwärtsrec/inung durch die
Stufen N+ M+ L + 2 bis N+ M + L + K durchzuführen, die schließlich das gefor-
derte Ergebnis fry+1u+L+[{(X‘\'+A\1+L+]{+1) liefert.
Mit den während des Rechenganges I.—IV. ebenfalls erhaltenen Abhängigkeiten der
Optimalwerte von u„ und den Modellgleichungen kann dann in üblicher Weise die
gesamte Optimallösung zusammengestellt werden.

Beispiel 4.10: Für das in Abb. 4.11 gezeigte fünfstufige System mit Rückkopplungsschleife sind die
Modellgleichungen sowie die Summanden der Zielfunktion in Tabelle 4.5 angegeben. Die entspre-
chenden Funktionen sind wieder einfach gewählt, um die Rechenergebnisse in geschlossener Form
erhalten zu können und nicht durch Wertetabellen darstellen zu müssen. Es wird die Aufgabe ge-
stellt,

5 .

fs(Xe) = min E Gn (4-35)
u, n5 n:1

7u bestimmen. Da außer den Modellgleichungen keine Nebenbedingungen für die Entscheidungs-
Variablen u, vorliegen, können die im Rechenverlauf notwendigen Minimierungen durch Nullsetzen

*4

Bild 4.1l Beispiel eines Systems mit Rückkopplungsschleife
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Tabelle 4.5 Beispiel eines Systems mit Rückkopplungsschleife

Stufe n Mödellgleichung Summand G„
der Zielfunktion

{x1:x4——u,

x, = u,

b.
) x2:x„Au2

x3:u3~x,

X4 : X5 +144

m
A

!
»

x5-—x6+x2+u5

(x4 " V1):

X32 + "22

5512 ‘i’ "32

X52 ‘l’ %'"¢2

(x5 ’ D2 ‘i’ "s2

Stufe n optimale Entscheidung optimaler Zustand

l 11,: Zisxs

2 112 : —%x5

3 143 : — Taxi;

4 u; 2 — 7252g

5 115 : — äxe

1 A 3
xx = fixe; X1‘ fixe

12
x2 x —fx,.,

x3 : 4-34
25 °

x, = Ex‘;

- ix
X5’ 25 “

87

der entsprechenden Ableitungen erreicht werden. Wenden wir uns nun dem Rm} engang der Ein-
bettungstechnik zu:

I. Entfällt bei diesem Beispiel, da der Verzweigungsstelle keine Stufen vorgelagert sind.

lI. Rückwärtsrechnung durch die Stufen 2, 3 des oberen Zweiges.

Zunächst ist auszuführen

Mxa, x2) = min Ix? + uf};
"2

Nebenbedingung: x2 2 x3 — n2.

Da hier durch die Nebenbedingung die Entscheidungsgröße eindeutig durch x3 , x2 festgelegt wird,

U2 E X3 * X2,

entfällt die Minimierung, und man erhält:

f2(X3‚ X2) : 2X32 ‘l’ x22 “ 2XaX2-
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Jetzt wird Stufe 3 einbezogen:

/a(31, X2) Z min {(312 ‘i? V32) ‘h Mxs, «"2)} -

uu

Trägt man hier zunächst x3 : U3 —- 3:1 ein und setzt danach die Ableitung nach n3 gleich null, -

so ergibt sich

"S051; X2) = %X2 ‘i’
und damit weiter

.&(5‘1sx2) : 'f'~"22+ 235512 + §x2 ‘Xv

Die Beiträge des oberen Zweiges und der Stufe 1 werden gekoppelt:

f,(x„ x2) = nilin {(x. — ul)? + äxfi + äufi + gxgr/1} =

I _

wobei i1 = u] eingesetzt wurde. Aus T} = 0 folgt:

u1(x., X2) I %x., — in
und weiter

f1(X4, X2) = -3082 + 31?/VEX2 + %1«\'22A

Hinzunahme der Stufe 4 ergibt durch entsprechende Rechnung

9 x5;“tfxss X2) = * X2 ’ ä‘

fi,(x5, x2) = %x52 -|- —;—x5.\‘2 + %x22.

Nun muß noch Stufe 5 einbezogen werden:

fs(Xs) : min im - 1)? + u? + f4(xs‚ Xzll ‚

u„a-,

wobei vor der Minimierung x5 = x6 + x2 + n5 einzusetzen ist. Man erhält

12
us: x2=——2?x5

* n“;
und weiter als Optimum der Gesamtzielfunktion

32 „

fs(xe) : ' "' 236+ 1-

Damit ist die Einbettungstechnik abgeschlossen, der Rechenabschnitt IV. entfällt hier. da links von

der Vereinigungsstelle 5 keine Stufen mehr vorhanden sind.
Die Zusammenstellung der optimalen Lösung kann nun leicht vorgenommen werden, die Ergeb-

nisse sind in Tab‘ 4.5 aufgeschrieben.

Abschließend ist folgende Bemerkung angebracht: Alle im Abschnitt über nicht
reihenförmige Systeme enthaltenen Beispiele vwirden bewußt einfach gewählt, um den
Lösungsverlauf übersichtlich und für den Leser mit erträglichem Zeitaufwand nach-
rechenbar zu gestalten. Die Optimalfunktionen konnten in allen Fällen in geschlos-
sener Form erhalten werden, und die Extremwertsuche machte wegen des Fehlens
V0n Nebenbedingungen in Ungleichungsform keine Schwierigkeiten. Bei praktischen
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Problemen werden solche günstigen Bedingungen oft nicht Vorhanden sein. Meist
wird man die Optimalfunktionen nur an diskreten Stellen, über einem Punktgitter
berechnen können, d.h. in Tabellenform abspeichern müssen. Mit steigender Stufen-
zahl und vor allem bei ansteigender Dimension der Zustandsvektoren x erhöht sich
der Speicherbedarf entsprechend stark und kann die praktische Durchführbarkeit
einer Berechnung in Frage stellen. Das Speicherproblem tritt vor allem auch dann auf,
wenn die Optimalfunktionen teilweise in Abhängigkeit von mehreren Zustandsvek-
toren tabellarisch abzuspeichern sind. Hinzu kommt die Schwierigkeit, bei den Rekur-
sionsschritten in „mehrdimensionalen“ Tabellen interpolieren zu müssen, wodurch
die Rechenzeit entsprechend ansteigt. Der bei umfangreicheren Problemen stark an-

steigende numerische und rechentechnische Aufwand darf also keineswegs unter-
schätzt werden und ist bei der Planung einer Problembearbeitung sorgfältig abzu-
schätzen.

4.3.5. Suboptimale Steuerungen

Die Problemstellung:

Als Lösung der in 4.3.1. formulierten Grundaufgabe erhält man die bezüglich des

-verwendeten Optimierungskriteriums beste Steuerung. Daneben wird man sich in
vielen Fällen auch für suboptimale Lösungen, d.h. für die „zweitbeste, drittbeste, ..."
Entscheidung interessieren. Die Kenntnis suboptimaler Lösungen kann aus verschie-
denen Gründen nützlich sein. Zunächst hat man, falls die optimale Variante aus

irgendeinem Grund nicht realisierbar ist, entsprechende Alternativen in der Hand.
Zum anderen wird der Einblick in die Eigenschaften des modellierten Prozesses
erweitert, wenn man weiß, wie er sich in der Nachbarschaft. des optimalen Punktes
verhält. Ein drittes Argument ist mehr rechnerischer Art: Wie wir gesehen haben, ist
es für die praktische Durchführung der dynamischen Optimierung meist notwendig,
die Zustandsbereiche X, zu diskretisieren. Aus Gründen der Speicherkapazität wird
man bei größeren Problemen oft mit relativ groben Punktgittern arbeiten müssen,
so daß die Frage auftritt, inwieweit die errechnete Optimallösung numerisch zuver-
lässig ist. Die Kenntnis suboptimaler Lösungen erleichtert eine solche Einschätzung.
Weichen die ersten suboptimalen Entscheidungen stark von der optimalen ab, so wird
dies oft ein Hinweis dafür sein, daß die verwendete Näherung zu grob war. Sind
andererseits die Abweichungen gering, so erscheint die optimale Lösung verläßlich.

Für das folgende setzen wir voraus, daß die Steuervariablen jeder Stufe nur endlich
viele Werte annehmen könnenß) Die Menge

V= {Illu = (H1412, Im); “n E Un9n=1:"'sN’ (4-86)

enthält dann ebenfalls nur endlich viele Elemente.

Definition 4.5: Vsei zerlegt in Untermengen V= V1 \/ V2 \/ -~-; V,- /\ Vk : ‚ZU + k),
so daß gilt.‘

G(u) : konstant: gk, Vu E V,_., gk > gk+l‚ k = 1, 2, (4.87)

Darm heißt jedes u E V,, k.—l7este Steuerung.

l) Gegebenenfalls kann man diese Voraussetzung durch Diskretisierung der Entscheidungs—
bereiche U„ schaffen.
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V1 enthält also speziell die optimalen Steuerungen. Eine Möglichkeit zur Ermitt-
lung suboptimaler Steuerungen wurde bereits von Bellman und Kalaba aufgezeigt,
indem diese von einer erweiterten Form des Optimalprinzips ausgingen. Der Algorith-
mus wurde von Fan und Wang [9] in rechentechnischer Hinsicht weiter ausgebaut.

Der Algorithmus:

Ein Rechenverfahren, mit dem man außer der optimalen auch die 2.- bis k.—besten
Steuerungen ermitteln kann, ergibt sich analog zum Verfahren der normalen dyna-
mischen Optimierung, wenn man von folgender Erweiterung des Optimalprinzips
ausgeht (wir betrachten ein N-stufiges System gemäß Abb. 4.1b).

Eine ksbeste Steuerung hat folgende Eigenschaft: Unabhängig vom Eintrittszustanci
in die erste Stufe (Nummer N) und der in dieser gewählten Steuerung stellen die
Steuerungen der folgenden Stufen (Nummern N—I bis I) eine der ].— bis k.—besten
Steuerungen des um die erste Stufe verkürzten Systems bez. des aus der ersten Stufe
resultierenden Zustandes (xx) dar.

Aus dem erweiterten Optimalprinzip folgt nun analog zum einfachen Fall die ent-
sprechende Rekursionsgleichung. Im Gegensatz zu Formel (4.25) haben wir im n-ten
Schritt der Einbettungstechnik bei der Maximierung über nu nicht nur die Optimal-
werte f„_1 des vorangegangenen Schrittes zuzulassen, sondern — wenn wir die k.-beste
Entscheidung suchen — auch die 2.-, 3.-, ‚ k.—besten Werte. Im folgenden soll bedeu-
ten:

maxllly den j-größten Wert von y,

f‘f/"(x,l+1) den j-größten Wert des zur Stufenfolge n, ..., 1 gehörenden Teils der Ziel-
funktion (4.24) in Abhängigkeit vom Eingangszustand x„„,

z:,l;”(x,,+,) die zugehörige Steuerung auf der Stufe n, ebenfalls in Abhängigkeit vom
Eingangszustand X„+i. -

Dann gilt

ffilbtmt) = ma>_W’tG„(x„+i‚ m) + f.‘li’.1(T,.(Xn+1, Iln))}; (4.88)
um‘

xn+1 E A/n+1; “n E Un§i i]: 2a

Diese Rekursionsformel ist mit j = 1, 2, k der Reihe nach für die Stufen n 1, 2,
, N anzuwenden, wobei zu beachten ist: I

/'{,f*(x,)so, j=l,2,...k; X\~+1:{a}. (4.259)

lm Gegensatz zum einfachen Algorithmus aus Abschnitt 4.3.1. entstehen jetzt in
jedem Schritt der Einbettungstechnik k Tabellen der in Tab. 4.6 angedeuteten Art.
Dabei vermerkt if,’ ’(x,,+1), daß der Maximalwert fSK )(X"+1) in (4.88) unter Verwendung
von fffii, d.h. der i.—besten Steuerung der Stufenfolge n — 1, ..., l erhalten wurde.
Im N-len Schritt ergeben sich die Zahlenwerte

fE'\i)(X.\‘+l) =/ma), j = 1. ‚ k;
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Tabelle 4.6 Tabelle Nr. j der Stufe n (j.-beste Werte)

Diese Tabelle ist für j = 1, Z . . . k zu berechnen
xn+1 (im Fallej = 1 fehlt der Bestandteil i'‚(7')(x‚))

f;{>x<‚.„)

ußf)(x„+i)

i§f’x(n+1)

und dies sind die j-größten Werte der Zielfunktion G, speziell ist f}\1.)(nz) der Optimal-
wert. Die zugehörigen Vektoren -

ug:>:u:<:>(«), j=1,---,k,
bedeuten die tatsächlichen aufStufe N anzuwendenden Steuerungen für die optimalen
und suboptimalen Lösungen.

Die zweite Phase des Algorithmus, die Zusammenstellung der optimalen und sub-
optimalen Lösungen, erfolgt dann analog wie im einfachen Fall des Abschnitts 4.3.1.

Zusammenstellung der j-besten Steuerung:

(a) Anfangswerte: x03 1 = a, i“, =j. (4.90).\ +

(b) Für n = N, N — 1, ...‚ 1 ist der Reihe nach folgendes auszuführen:

uff’ : uff::+1)(xff1,) aus Tab. in“ der Stufe n,

xff) = T”(x;’{11, uf{)) mittels Modellgleichung der Stufe n, (4.91)

i„ = iff’(xf{21) aus Tab. j der Stufe n.

Mitj= l erhält man so die optimale, mitj 2 2, 3, , k die suboptimalen Lösungen.
Auch der hier beschriebene Algorithmus ist offenbar leicht zu programmieren. Im
Vergleich zur „normalen“ dynamischen Optimierung erhöht sich im wesentlichen
nur die Anzahl der Größenvergleiche, so daß die Rechenzeit nicht sehr stark an-

steigt, wenn man außer der optimalen Lösung auch die ersten suboptimalen Steue»
rungen bestimmt. Der für die Tabellen der Einbettungstechnik benötigte Speicher-
platz steigt aber auf das k-fache, wenn man bis zur ksbesten Variante geht.

4.3.6. Stetige Probleme

Die stetige Form der Grundaufgabe und der Rekursionsbeziehung:

Wir wenden uns jetzt Systemen zu, bei denen die Koordinaten des Zustandsvektors
x und des Steuervektors u in stetiger Weise von einem Parameter t abhängen, wie das
in Abb. 4.12 veranschaulicht ist. Die sinngemäße Übertragung der in Abschnitt 4.3.1.



92 4. Diskrete Prozesse

Vllllllll

l l t
a e

Bild 4.12 Stetiger Entscheidungsprozeß

für den diskreten Fall formulierten Grundaufgabe auf den stetigen Fall führt zu fol»
gender Problemstellung, vgl. Abb. 4.12: Gegeben seien

—- als Modellgleichungen des Systems ein Satz von gewöhnlichen Differentialglei-
chungen der Form‘)

$5 m, x, u), o g z: e, (4.92)

— Beschränkungen für die Steuer- und Zustandsvariablen

x(I) E X, u(t) E U, 0 g t g 6, (4.93)

~ der Anfangszustand

x(0) = a, (4.94)

Gesucht werden

— aus der Menge der zulässigen Steuerungen diejenige optimale u*(r), 0 g t L; 6, für
die gilt

5

G V(g(t, x, u) dt z max! (4.95)
0

— der zugehörige optimale Zustandsverlauf x*(t)‚ O g t; 9.

ln konkreten Fällen wird der Parameter t oft die Bedeutung der Zeit (vom Beginn des
Prozesses an gerechnet) oder einer Länge (vom Eingang in die Stufe an gerechnet)
haben. t entspricht dem Stufenindex n, den wir bei den diskreten Modellen hatten,
wobei wir uns nicht daran stören wollen, daß t jetzt „in Stromrichtung“ zunimmt,
während wir n seinerzeit entgegen der Stromrichtung zählten. Aus der früheren
Summenform der Zielfunktion ist ein Integral geworden, wobei g(r, x, u) dt den Bei-
trag beschieibt, der zu einem Stufenabschnitt der „Länge dt“ gehört.

Das Optimalprinzip von Bellman kann jetzt folgendermaßen formuliert werden
(der Beweis ergibt sich analog zum diskreten Fall):

Eine optimale Steuerung hat folgende Eigenschaft: Unabhängig vom Anfangszustand
x(0) und der im Intervall 0 g t g r verwendeten Steuerung n(t) ist die Sreuerfimklion

u(t), r<t§0,
1) Die nach der Ableitung des Zustandsvektors aufgelösle Form der Modellgleichung wurde hier

gewählt, um die Darstellung zu vereinfachen, die Methode ist auch in anderen Fällen durchführbar.
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optimal bezüglich des zum Parameterintervall (1, 0] gehörigen Abschnitt des Prozesses,
wenn als dessen Anfangszustand ‚der aus dem vorangegangenen Intervall [0, 1] resul-
tierende Vektor x(r) genommen wird.

Hieraus ergibt sich durch Überlegungen, die „denen beim diskreten Modell ebenfalls
völlig analog sind, die folgende Funktionalgleichung:

1+3!

f(r, x(t)) : 132% f g(t, x, u) dt +f(r 4,- At, x(r + At)) ;

:5; ):€+AI1 1

f(6, x(0)) : o; o g z; 0 x Ar. (4.96)

Diese Beziehung entspricht der Rekursionsgleichung, die bei den diskreten mehrstufi-
gen Prozessen anzuwenden ist. Indem man den Klammerausdruck in eine Reihe nach
Potenzen von At entwickelt, einen Grenzübergang At» 0 vornimmt, und die für
das Maximum notwendigen Bedingungen ausnutzt, kann man ein System von par-
tiellen Differentialgleichungen ableiten, welches im Prinzip eine Ermittlung der opti-
malen Lösung gestattet [l8], [19]. Zur Gewinnung numerischer Lösungen ist dieser
Weg bei den meisten praktischen Aufgaben wenig geeignet. zweckmäßiger ist es, das
stetige Problem durch ein diskretes mehrstufiges Problem anzunähern. Dieser Bear-
beitungsweise wollen wir uns jetzt zuwenden.

Approximation durch ein diskretes mehrstufiges System:

Zur Diskretisierung des durch (4.92—4.95) beschriebenen Problems zerlegen wir das
t-Intervall [0, 0] zunächst in N Abschnitte

At=%; t„„=9—n-At, n=0‚...,N‚ (4.97)

die wir der Einfachheit halber als gleichlang annehmen wollen. Durch diese Maß-
nahme wird die stetige Stufe in N Teilstufen zerschnitten, vgl. Abb, 4.13. In jeder
Teilstufe ersetzen wir den tatsächlichen Verlauf der Steuerung u(r) und des Zu-
standes x(t) durch einen konstanten Verlauf:

u(r) z u(r„) = konstant = u„;

x(t) z XÜzH-il = konstant = X114-1; 7n+1 < t g fu- (4-98)

I
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Bild 4.13 Diskretisierung des stetigen Problems

8 Bieß, Prozesse
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Wir nähern also den i. allg. stetigen Verlauf der Kurven durch Treppenkurven an. In
jedem Teilintervall n werden weiter die Differentialgleichungen (4.92) durch Diffe-
renzcngleichungen approximiert:

E: N {(7:1) ' X(tn+1) z Xn ‘ xn+l
dt N At At ’

To, x, u‚) z m. X:-+1: un) = 104.... u.» (4.99)

Durch Gleichsetzen der Näherungsausdrücke erhalten wir als Modellgleichung der
Stufe n:

xn = Xn+1 + 'fn(Xn+1 ‚ un) ' At = Tn(xn+1 ‚ “n)~ (4-100)

Schließlich nähern wir das Integral (4.95) folgendermaßen durch eine Summe an:

e N 2,.

G = Ig(t,X,“)dt = Z Ig(f,X,I!)dt
O n=l 1„+1

N N

z 2180m Xn+1 a urn) ' At = z1Gn(xn+1a un)- (4-101)

Entsprechend ergeben sich aus (4.93) Beschränkungen für die Teilstufen

x,,EX,,, u,,EU,,, n =1,...‚N. (4.102)

In den Formeln (4.100—4.102) und x(0) = x„„ = a: haben wir das beabsichtigte dis-
krete Näherungsmodell vor uns, das nun mit dem im Abschnitt 4.3.1. beschriebenen
Algorithmus bearbeitet werden kann.

Diese Näherungstechnik ist natürlich auch für Problemtypen anwendbar, die von
der Grundaufgabe abweichen. Durch Lösung des Näherungsproblems erhalten wir
Folgen von Approximationspunkten für die optimalen Kurvenverläufe der Steuerung
u(t) und des Zustandes x(t)‚ Zwischenwerte kann man bei Bedarf durch Interpolation
berechnen. Die Güte der Näherung kann durch die Wahl einer hinreichend kleinen
Schrittlänge A! gesteigert werden.

Beispiel 4.1]: Es bestehe die Aufgabe, die optimale Steuerung zu folgendem Problem zu bestimmen
(x und u eindimensional):

dxdT=u‚ 0§t§5,

0éX(f)§3, -2§M(!)§2,
x(0) = 2 ‚

G = (x2 + u’) d! = min!

cb
w

l

Wir zerlegen das Intervall [0, 5] durch die Teilpunkte

r,,+1:5—n‘AI; n=0,...,N,
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in N Abschnitte gleicher Länge A1. Gemäß den Formeln (4.98—4.l02) ergibt sich das folgende
N-stufige Näherungsproblem:

x„ = x‚.+1 + 14,,-Ar,’ n =1‚...,N,

0§X..§3, —2§M,.§2,

XN+1 = 2,

N
G = X (x?,+1 + 143.)-At = mm!

n=l

Dieses kann nun mit dem Algorithmus der diskreten dynamischen Optimierung in der üblichen Art
behandelt werden. Wir deuten für den Fall N = 5, At = 1, die ersten Schritte der Einbettungstechnik
noch an:

1. Schritt:

f,(x1) = min {x22 + M12).
u ,2}l _

Der Klammerausdruck stellt eine Parabel dar, deren Scheitel bei u, = 0 liegt. Das Minimum befindet
sich also, unabhängig vom x2-Wert, an der Stelle Null, d. h.,

u1(«\’2) = Ü,

f1(-X2) = M2, Ü § X2 ä 3-

Tabelle 4.7 Lösung eines ‚Problems der optimalen Steuerung

Exakte Lösung Lösung für 5-stuflges Lösung für 10»stufiges
Näherungsmodell Näherungsmodell

7 uopl Xonx "am Xopt "apt Xe.-.1

— 2,000 2,000 2,000 — 1,561 \ 2,000

0,5 —1,213 1,213 —1,235 \ —o,952 \\ 1,219

1 „ —o‚735 0,736 ‘* 0,765 —o,5so ‘4 0,744

1,5 —0,446 0,447 —0‚471 —\ —0,353 0,454

2 ~0,271 0,270 \‘ 0,294 —0,214 0,277

2,5 —0,l63 0,165 —0,176 —0,129 0,170

3 — 0,098 0,101 0,118 —0,076 0,106

3,5 — 0,057 0,063 — 0,059 — 0,042 0,068

4 — 0,032 0,042 0,059 — 0,0l 9 0,047

4,5 — 0,014 0,030 0 \ ' 0 \ 0,037

5 0 0,027 \ 0,059 \ 0,037

G0,, 4,0 6,47 5,12
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2. Schritt:

m.) —= min Im? + M2’) + (x3 + u2)’l
“z5[*2, 2E

= min 2- [(142 + gm? + gxfl.

Diesmal liegt eine Parabel mit dem Scheitel bei n1 = —§x3 vor. Da für alle x3 E [0, 3] diese Stelle im
Inneren des Steuerbereiehes [—2, 2] liegt, erhalten wir die Optimalfunktion:

\
V2073) = ’%X3§

f§(x3): 3X32; 0§-’»’3§3-

Entspreehend ist die Einbetlungstechnik über die restlichen drei Stufen fortzusetzen, wonach die
optimale Lösung durch Vorwärtsrechnung zusammengestellt werden kann. Die Ergebnisse sind in
Tab. 4.7 zusammengestellt. Zum Vergleich sind dort auch die Zahlenwerte für ein Modell mit N = 10,
Schrittlänge Ar c 0,5 und für die exakte Lösung aufgeführt. Letztere kann durch Anwendung des
Maximumprinzips gefunden werden (vgl. Abschn. 4.4.2.). Die Werte der Näherungslösungen weichen
bei diesem Beispiel noch stark von den exakten Ergebnissen ab, ofienbar ist die verwendete Inter-
vallteilung nicht fein genug. Aber selbst solche groben Näherungen können von praktischem Nutzen
sein, beispielsweise dann, wenn man ein Steuerungsproblem mit Hilfe des Maximumprinzips lösen
will und dort als Ausgangspunkt für die numerische Behandlung den ungefähren Verlauf der Steuer-
iunktion u(t) benötigt.

4.4. Kombinierte Anwendung der dynamischen Optimierung
und des Maximumprinzips

In den vorangegangenen Abschnitten haben wir in den vom Maximumprinzip
einerseits und vom Bellmanschen Optimalprinzip andererseits ausgehenden Methoden
wirksame Hilfsmittel zur Lösung von Problemen der optimalen Steuerung kennen-
gelernt. Dabei zeigte es sich, daß nicht etwa jede dieser Methoden eindeutig einer
bestimmten Problemklasse zugeordnet ist, sondern daß in vielen Fällen prinzipiell
beide Vorgehensweisen anwendbar sind. Man kann sicher keine Aussage derart
machen, daß eine dieser Methoden der anderen grundsätzlich überlegen ist, vielmehr
hat jede ihre Vor- und Nachteile. Indem wir im folgenden beide Methoden von ver-
schiedenen Gesichtspunkten aus qualitativ vergleichen, werden sich aber Hinweise
dafür ergeben, wann in der Regel die eine, wann die andere zweckmäßiger einzu-
setzen ist. Im Anschluß daran erläutern wir Möglichkeiten der kombinierten Anwen-
dung beider Methoden.

4.4.l. Vergleich der Methoden

Um einige Vor- und Nachteile sichtbar zu machen, gehen wir von der folgenden
kurzen Charakterisierung beider Methoden aus.

Dynamische Optimierung: Das Problem wird in N nacheinander zu lösende Teil-
probleme für die Systemstufen zerlegt. In jedem Schritt wird der gesamte zulässige
Bereich des Eingangszustandes der betreffenden Stufe durch ein Punktgitter über-
deckt, für jeden Gitterpunkt wird „auf Vorrat“ das Teiloptimierungsproblem ge-
löst, und alle Ergebnisse werden abgespeichert. In den entstehenden Tabellen ist das
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gesuchte optimale Regime eingebettet, es wird anschließend, ausgehend vom gegebe-
nen Anfangszustand des Gesamtprozesses, herausgesucht.

Maximumprinzip: Durch eine Reihe notwendiger Bedingungen (zu bilden u.a. durch
Ableiten der Hamiltonfunktion) wird aus der Menge aller zulässigen Lösungen so-

fort eine kleine Teilmenge abgegrenzt, in der (falls existent) die optimale Lösung
enthalten ist. Die numerische Auswertung der Bedingungen erfolgt normalerweise
in Form einer iterativen oder Trial-error-Rechnung, d.h., es sind anfangs einige
Variablenwerte (Randwerte) zu schätzen und danach bis zum Abgleich zu verbessern.

Diese Gegenüberstellung weist auf folgende Unterschiede und Aspekte der prak-
tischen Anwendbarkeit beider Methoden hin [9]:

(a) Rechemechnischer Aufwand: Durch Verwendung der „Einbettungstechnik“ ergibt
sich bei der dynamischen Optimierung mit steigender Dimension des Problems schnell
ein außerordentlich hoher Bedarf an Speicherplatz und Rechenzeit. Im Abschnitt
4.3.1. wurde auf diesen Nachteil schon ausführlicher eingegangen, wobei sich zeigte,
daß der Aufwand in erster Linie durch die Zahl der Zustandsvariablen je Stute be-
stimmt wird. Man kann natürlich den Speicherbedarf dadurch senken, daß man die
Punktgitter über die Zustandsbereiche X,, relativ weitmaschig anlegt. Dadurch wird
aber die Zuverlässigkeit der in beiden Abschnitten des Algorithmus notwendigen
lnterpolationsrechnungen fragwürdig. Wie schon bemerkt, kann man einschätzen,
daß aus diesen Gründen die praktische Anwendung der dynamischen Optimierung
problematisch wird, wenn mehr als 3 bis 4 Zustandsvariable je Stufe vorhanden sind.
Aus dieser Sicht dürfte die dynamische Optimierung oft schlecht zur Behandlung
von Systemen geeignet sein, deren Schaltungsstruktur Schleifen enthält (vgl. Abschn.
4.3.4.), da dann die Rekursionsrechnung u. U. durch zusätzliche Zustandsvariablc
belastet ist. Auch die Anwendung auf stetige Probleme wird oft an rechentechnischen
Schwierigkeiten scheitern. Hier führt das Bellmansche Prinzip auf partielle Differen-
tialgleichungen. Diese können zwar durch Diskretisierung in Differenzengleichungen
umgewandelt werden, aber man wird ein diskretes Näherungsmodell mit vielen Stufen
verwenden müssen, um eine ausreichende Genauigkeit zu erzielen. Bei Verwendung
des Maximumprinzips sind diese Schwierigkeiten hinsichtlich des rechentechnischen
Aufwands, insbesondere was den Speicherbedarf betrifft, nicht in dem Maße vorhan-
den. Vor allem bei stetigen Modellen wird es deshalb oft vorzuziehen sein.

(b) Nebenbedingungen für die Zustandsuariablen: Das Vorhandensein von Beschrän-
kungen der Form x„ e’ X, macht bei der Methode der dynamischen Optimierung keine
Schwierigkeiten. Solche Nebenbedingungen werden im Rechengang automatisch da-
durch eingehalten, daß man die Punktgitter der Einbettungstechnik entsprechend
abgrcnzt. Beim Maximumprinzip führen Zustandsbeschränkungen dagegen zu

ernsten Komplikationen. Es ist zwar möglich, die Bedingungen des Maximumprinzips
auf diesen Fall auszudehnen, aber die Beziehungen werden dann sehr kompliziert
und sind numerisch schlecht auszuwerten. Da bei praktischen Problemen sehr häufig
Zustandsbeschränkungen vorliegen, wird hier ein wesentlicher Vorteil der dynami-
schen Optimierung sichtbar.

(e) Form der Moa'e/lgleichungen: Wie wir gesehen haben, erhält man beim Maximum-
prinzip die Gleichungen für die adjungierten Variablen durch Bilden der partiellen
Ableitungen der Hamiltonfunktion. Dies setzt voraus, daß die Modellgleichungen
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in einer analytischen, stetig nach den Zustandsvariablen differenzierbaren Form vor-

liegen. Für die Anwendbarkeit des Algorithmus des dynamischen Optimierung ist
dies keineswegs notwendig. Hier ist es nur erforderlich, daß durch die Beziehungen
x„ = T„(x„„‚ u„) eine eindeutige Zuordnung (x„„, u„) —> x„ gegeben ist, die aber
durchaus auch in Tabellenform oder durch verbale Regeln vorliegen kann. Beispiele
dieser Art haben wir in den Abschnitten 4.3.3., 4.3.5. behandelt.

(d) Sicherung des globalen Extremwertes: Wenn bei einem Problem im zulässigen
Bereich mehrere lokale Extremwerte vorhanden sind, so ist bei Anwendung des Maxi-
mumprinzips (Auswertung notwendiger Bedingungen l) i. allg. nicht gesichert, daß die
Behandlung den globalen Extremwert, d. h., wirklich das Optimum liefert. Die dyna-
mische Optimierung hingegen führt im Prinzip immer zum Optimum, da ja durch die
Einbettungstechnik der gesamte zulässige Bereich abgesucht wird. (Praktisch kann
allerdings durch ein zu grobes Punktgitter und die damit verbundenen lnterpolations-
fehler das Optimum „übersehen“ werden).

4.4.2. Möglichkeiten der kombinierten Anwendung beider Methoden '

Wenn wir eben die dynamische Optimierung und das Maximumprinzip miteinander
verglichen, ihre Vor- und Nachteile herausgestellt haben, so liegt die Frage nahe, ob
man nicht durch eine Kombination beider Methoden in gewissen Fällen die Vorteile
vereinigen kann. Aufzwei derartige Möglichkeiten gehen wir im folgenden kurz ein.

Die parallele Verbindung der Methoden:

Die Bezeichnung parallele Verbindung von dynamischer Optimierung und Maxi-
mumprinzip wurde von Fan [9] eingeführt. Gemeint ist damit die folgende Vorgehens-
weise. Es wird beabsichtigt, die optimale Lösung eines vorgelegten Problems mit
Hilfe des Maximumprinzips zu ermitteln. Um der Gefahr zu entgehen, hierbei even-

tuell nur ein relatives, vom Optimum verschiedenes Extremum zu erhalten, wird zu-
nächst die ungefähre Lage des Optimums mit Hilfe der dynamischen Optimierung
berechnet (Verwendung relativ weitmaschiger Punktgitter). Von dieser Näherungs-
lösung ausgehend wird anschließend die genaue optimale Lösung unter Anwendung
des Maximumprinzips bestimmt.

Die sequentielle Verbindung der Methoden:

Der Vorschlag zu einer sog. sequentiellen Verbindung der beiden Methoden geht
auf Lee zurück [14]. Er geht von der Tatsache aus, daß durch den Algorithmus der
dynamischen Optimierung in keiner Weise festgelegt wird, in welcher Weise das zu

optimierende Gesamtsystem in Stufen zerlegt wird und mit welchem Verfahren in den
einzelnen Schritten der Einbettungstechnik die Teiloptimierungen in den Stufen durch-
geführt werden. So kann man, wenn dies zweckmäßig erscheint, in einzelnen Stufen
z. B. auch das Maximumprinzip zur Optimierung verwenden. Dadurch wird folgende
Vorgehensweise möglich:

(1) Das Gesamtsystem wird in zweckmäßiger Weise in Subsysteme zerlegt (wobei ein
Subsystem aus einer einzigen Stufe oder auch aus einer Kombination mehrerer
Stufen bestehen kann).
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(2) Die Schaltungsstruktur der Subsysteme wird mittels der Methode der dynamischen
Optimierung bearbeitet.

(3) Bei den Teiloptimierungen in den Subsystemen, die im Verlaufe der Einbettungs-
technik durchzuführen sind, wird je nach Zweckmäßigkeit die dynamische Opti-
mierung oder das Maximumprinzip (oder eine andere geeignete Optimierungs-
methode) angewendet.

Wir erläutern diese Vorgehensweise an zwei Formen von Reihenschaltungen, damit
dürfte das Prinzip dann auch für kompliziertere Strukturen klar sein,

Zuerst wird das aus einer stetigen und N nachgeschalteten diskreten Stufen be-
stehende System der Abb. 4.l4a betrachtet. Das Optimierungsproblem sei durch
folgende Beziehungen beschrieben:

Modellgleichungen:

X.. = Tn(X,.+1, u‚.)‚ n = 1,2, N, (4.103)

‘ET’: = T(r, x, u), o g t gr. (4.104)

Beschränkungen:

x„eX„; u„eU„; n: l,2,...‚N‚ (4.105)

u(t)e U; 0 g t g T, (4.106)
sowie

xm, e XNH; x(T) = xN+,; x(0) = d (fest vorgegeben). (4.107)

u) 5/5//‘ye Stufe varyeyrnn//H

um
l"/1 ‚VI

xmr x,, x; x,

Jutuysfem S, Jmnys/em 5,

b) Jlef/ge Stufe flüfflgeitflfl/Iff

Juosysrem 51 5m;,~y,,,,,, 511.

Bild 4.l4 Systeme mit N diskreten und einer stetigen Stufe
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Optimierungsziel:

T N

G = jga, x, u) dt 2‘ G,,(x,,+,, u,,) : max! (4.108)
0 IL=1

Wir zerlegen das System in der angegebenen Art in die beiden Subsysteme I, II und
beschließen, die Teiloptimierung in S1 mit der dynamischen Optimierung, diejenige
in S” mit dem Maximumprinzip auszuführen.

Die Anwendung des Bellmanschen Optimalprinzips auf das aus den zwei Be-
standteilen SI, S11 zusammengesetzte Gesamtsystem liefert als Rekursionsformel:

G* 2 max fTg(t, x, u) dt +f\~(x(T))l., (4. I09)
u(t) 0

I

wobei f\(Xv+1) die Optimalfunktion von S1 in Abhängigkeit vom Eingangszustand
in dieses Subsystem darstellt und m“ = x(T) berücksichtigt wird. Zunächst muß
also f\~(xA\-H) für alle x_\-+1 E X”, in üblicher Weise durch Rückwärtsrechnung mittels
der dynamischen Optimierung errechnet werden. Nur in einfachen Fällen wird es

gelingen, diese Funktion in geschlossener Form zu erhalten, normalerweise fällt aber
f:y(xy+1) als Tabelle an. Dann ist es, um anschließend die Optimierung (4. 109) mit dem
Maximumprinzip vornehmen zu können, erforderlich, die Tabellenwerte durch einen
analytischen Ausdruck zu approximieren (z. B. durch ein Polynom). Ist dies geschehen,
so kann man die zu (4.109) gehörenden Bedingungen des Maximumprinzips auf-
stellen. Der Zustandsvektor x(I) besitze s Koordinaten: x(‘)(t), ..., x<‘>(t). In üblicher
Weise führen wir eine zusätzliche Koordinate ein

I

x‘*'“3(t) : fgo, x, u) dt —1—f\-(x(r)). i (4.1 l0)
0

Als zugehörige Differentialgleichung erhalten wir

dxuu) s als‘, dxu)

“i? = gl?‘ “l '1‘ "aw" ‘m

und weiter mit (4.104)

dx(s+l) v

d’ :g(t, x, u)+grad_,f\- ~T(t, x, u), (4.111)

x"*“)(0) = als”) = 0. ~ (4.112)

Dadurch bekommt die Zielfunktion die neue Gestalt

G 2 xl‘“l(T) = max! (4.113)

Auf das durch die Formeln (4.104, 4.106, 4.107, 4.111—4.113) beschriebene Problem
der optimalen Steuerung kann nun das Maximumprinzip in üblicher Form angewendet
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werden, worauf hier nicht näher eingegangen zu werden braucht. Als Lösung ergeben
sich die Funktionen

u*(r), x*(t), 0 g t g T.

Insbesondere erhält man auch

x*(T) = xf‘\~+,. (4.114)

Von (4.114) ausgehend kann man schließlich durch abwechselnde Verwendung der
Modellgleichungen (4.103) und der in der Einbettungstechnik erhaltenen Funktionen
u„(x„„) die Optimalwerte für das Subsystem SI zusammenstellen.

Die Bearbeitung des in Abb. 4.14b dargestellten Systems, bei dem jetzt die stetige
Stufe nachgeschaltet ist, verläuft ganz analog. Die Problemstellung wird jetzt durch
die Formeln (4.103—4.106‚ 4.108) und

xx“ : ß (fest vorgegeben); x1 = x(0) (4.107)

gegeben. Anstelle von (4.109) liefert das Optimalprinzip die Rekursionsbeziehung

N

G": = max G„(x„„, u,,) +f(T,(x2, u,)) , (4.115)
ul,..., u_- 11:1 v

wobei l
T

f(x(O)) : max f g(f‚ x, u) dt (4.116)
u1!‘EU 0

die Optimalfunktion ‘der stetigen Stufe ist und x(0): x1 = T1(x,, u,) eingesetzt
wurde. Zur Berechnung von (4.116) wird das Maximumprinzip benutzt. Mit

l

x<- "(o = (go, x, u) dz,
0

: g(t, x, u), x““)(0) = 0 (4.117)

wird
f(X(0)) = 1x‘*'“’(T)}- (4-113)

Hiervon ausgehend werden in bekannter Weise die Bedingungen des Prinzips auf-
gestellt und gelöst. Um anschließend die Teiloptimierung des Subsystems S; vorneh-
men zu können, muß allerdings (4.118) für alle x(0) = x, E X,, d.h. praktisch für ein
Punktgitter von x(0)-Werten, ermittelt werden. Ist dies geschehen, so kann man die
Rekursion über die Stufen von S. anschließen:

fi‚(X„+‚)= max {G„(x„+„u‚.) +fl.-1(T,.(x,.+1,u,.).‘. n — 1,2, N,‘ (4.119)
“ll

flu Ef(X(0))-
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Beispiel 4.12: Wir demonstrieren die sequentielle Verbindung der Methoden abschließend noch
durch Lösung des in Abb. 4.15 dargestellten Beispiels. Zunächst wird das Minimum des zur stetigen
Stufe S“ gehörenden Summanden der Zielfunktion bestimmt. Nach Einführen der Zusatzvariablen

= x2 + u’; x‘2’(0) = 0

I

xm = (x2 + u2)dt' x
’ d:

0

erhalten wir als Hamiltonfunktion

H = pu + 11”’ - (X2 + I12). (4.120)

Bild 4.15 Ein Beispiel

Subsystem S, Subsystem Sn

dx
x.=X2+m; x2=x3—2uz, ?=u; 0§t§5,

l§\f,§3,0<x2S2,x3=l, -2<u(t)S+2,

G = (X3 + um + (x22 + 14.2) + f(x= + u2)dt = min!
0

Die adjungierten Differentialgleichungen lauten

dp OHE: ‘*a;= - 17‘2"X, .v(5)=0,

(17

9&7 = —g;,— : o, p<1>(s) = 1. (4.121)

Sofort ergibt sich

p‘2’(r) = kanslanr = l . (4.122)

Damit reduziert sich das Problem auf die Lösung der folgenden Beziehungen:

i: = u, x(0) = x1,

p = 42x, [1(5)= 0, i (4.123)

p<u+x2+u2=min!
Das Minimum der Hamiltonfunktion kann hier durch Nullsetzen der Ableitung gefunden werden:

OH 1El-=p+2u=0 —> u=—7p. (4.124)
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Nach Einsetzen von (4.124) lassen sich die Diflerentialgleichungen in geschlossener Form lösen:

x(r) = A ~ [e"‘° + e"].

14(2) = A ~ [e'-1° — e"], (4.125)

xx

A " 1 + e‘“’ '

Als Optimalfunktion der stetigen Stufe erhalten wir durch Integration

5

f(x.) = 11x2 + u’) d: = c- x12,
o

1- e“°
C = fig: 1. (4.126)

Nun kann die Rekursion über die diskreten Stufen fortgeführt werden. Einbeziehung der Stufe I
ergibt

fx(X2) = ml'I1((X22 + M1’) + C‘ (X2 + M02),
"1

C
"1(X2) = - ‘G’: ‘ X2, (4-127)

2C + l
fx(«\?2) = fi ' X22-

Schließlich wird die Stufe 2 dazugenommen

_ 2C + 1

fz(xs) = mm (x3 + uz)’ +j' (X3 - 2142)’ ‚
„z C + 1

3C + 1

M2063) = ‘f: - X3, (4-I23)

' 9 - (zc + 1)

5W = ‘GT ' *3 -

Von x, : l ausgehend kann nun das optimale Regime zusammengestellt werden. Dies ergibt schließ-
lich

G‘_9(2C+1)_
’ 9C+5 ’

*_3c+1_ *_3C+3_
"2 ‘9c+5’ X’ ‘9c+5’

* 3C * 3

"1 =_3C~+—5‘ *1 =9’c_+7‘ <4-129)

41 3 t-IO —t."(')= '[° "H,

3 l0x*(t)=e—-—-[e" +e"].
(9C + 5) (1 + e-1°)
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t

3.1; Mit x„ :ff„(x‚ u) dt folgt
to

n. ~ Jux, u), mo) = o.

Im (n + 1)-dimensionalen Zustandsraum der Variablen (x„, x, , ..., x,,) ist dann x.,(t,) zu minimieren.

t

3.2: Mit x„ -— F[x(t)] + ff9(x, u) dr folgt
‘n

n or
' I: E —f,~<x,u) +f..(x,u) = Fo(x,u).

’_ 1 Ox,

Im n-dimensionalen Zustandsraum der Variablen (x„ ..., x„) ist ‘dann

i:f mx, u)dr
‘J

zu minimieren.

3.3=5€—m-v2+(p2—1)u, u:6sgn(p2—!), p2:~1’%(t—1),

6 für ogzgi—vä‚
-6 für 1—Vg<zg1.

ll:

3.4: a) 476’ 2 —x, + (Zu +t)p,, u = sgnpl = sgn (t ~1)= ~1,

mit’ = —x, + rp‘ + (Zp, — 1) u, u = sgn(2p,~1)= sgn (21 —— 3) = -1,
c)<7€: —x,+ Ip,+pf —~ (u—p1)’, 1/212,: t- 1,

d) H=(2u+t)p,, u:sgnp,= —1.

3.5: om : i‘ ( f Q„Q‚;‚ + i
i: «i=1 ÖQLÖQJ ÖQ;

Qo(0J) ‘— F[g(!)]. Qo(X» 0) = F[h(X)],

Opt.«Ziel: Q.,(a, b).

1:).

3.6: Es ist

Q‘) = %(1 — t) (ZeI + e"$ — el” — 2)

Q?” : % (1 i r) (Zea: _ era; , ein.)

und damit Qßt = Q‘) + u” erfüllt. Weiter ist

1

11

om, l) :}f(Q° + m2) d! dx = fl (4e — 5 —— s2).

00
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3.7: Es ist

w A Znl für a=y‚fi:Ö,
dz/„g du.” _ 0 sonst.

Die entsprechende Matrix der Ableitungen 2. Ordnung ist somit positiv definit.

Unter Benutzung von

IK:l‚ I§l(K-—;6+1)§l,

1§M—«»+1§M, ~§§g<0,

folgl sofort ~3—8l— S ll” g

Mit lfi t, nos :— x ergibt sich

lim I(K— ß +1): l — I, limg~"“"“ = e‘“v’
l—.o n—>0

und damit

lim 14,5 z §(l — t)(l — e17”).
n—»0
l—>0
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