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Vorwort

Da seit dem Erscheinen der ersten Auflage mehr als ein Dutzend Jahre vergangen sind,
machte sich eine griindliche Uberarbeitung des Bandes nétig. Das Kapitel ,,Gleichungssy-
steme“ wurde erweitert durch Ausfithrungen zur Losung von tridiagonalen linearen Glei-
chungssystemen; die Ausfiihrungen zur Interpolation wurden stark verdndert; der Ab-
schnitt ,Anfangswertaufgaben bei gewShnlichen Differentialgleichungen wurde vollig
neu verfaBt.

Die moderne Entwicklung und der weitverbreitete Einsatz von elektronischen Rechen-
anlagen (Computern) iiben starken EinfluB auf die numerische Mathematik aus. Zwischen
numerischer Mathematik und Informatik haben sich enge Wechselbeziehungen entwik-
kelt. Die moderne Rechentechnik hat neue MaBstdbe in der Wertung und Einschitzung
numerischer Verfahren gebracht, EinfluBl auf die theoretische Weiterentwicklung der nu-
merischen Mathematik genommen, in groBem Umfang zur Weiter- und Neuentwicklung
numerischer Algorithmen gefiihrt und es erméglicht, immer groBere und komplexere Pro-
bleme in Angriff zu nehmen. Dieser Entwicklung wurde bei der Uberarbeitung dieses
Bandes zum Beispiel bei der Auswahl der Verfahren und durch die relativ griindliche Be-
handlung von Stabilitdtsfragen Rechnung getragen. Die Autoren versuchen der legitimen
Forderung nach Querverbindungen zur Informatik auch dadurch nachzukommen, daB an
das Ende jedes Kapitels ein Abschnitt ,,Programmierung und Software“ angefiigt wurde.
Fiir drei ausgewdhlte grundlegende Verfahren werden Programmablaufpline angegeben.
Die Angabe von vollstindigen Programmen oder von Programmablaufplinen fiir jedes
Verfahren wiirde den Rahmen und den Umfang dieses Bandes sprengen und ist der Spe-
zialliteratur vorbehalten; ein Verzeichnis ausgewihlter, weiterfiihrender Spezialliteratur
ist dem eigentlichen Literaturverzeichnis beigefiigt. Ein tieferes Eindringen in die nume-
rische Mathematik erfordert ohnehin die gleichzeitige Beschiftigung mit Informatik, zum
Beispiel das rechentechnische Realisieren der jeweils betrachteten Algorithmen und den
Einsatz von Programmsystemen.

Die Neugestaltung des Bandes ist das Ergebnis vieler Diskussionen in verschiedenen Gre-
mien. Wir danken dem Herausgeberkollektiv, insbesondere Herrn Prof. Dr. rer. nat. ha-
bil. H. Kadner (Dresden), fiir wertvolle Hinweise in Vorbereitung und bei der Abfassung
dieser Auflage. Zu Dank sind wir auch unserem Kollegen Dr.rer.nat. V. Wiebigke (Merse-
burg) fiir Hinweise zur Gestaltung des Abschnitts “Programmiening und Software“ ver-
pflichtet. Die Autoren sind fiir kritische Bemerkungen zur weiteren Verbesserung des In-
halts und der Darstellung stets dankbar.

Merseburg, im Februar 1987 Die Verfasser



[N N TR R
AN AN
[ SRS

2.1.3.1.
2132,
2.13.3.

2.14.
22.
23.
24.
2.5.
2.6.

3.1

3.2.

321
3.22.
3.23.
3.24.
3.2.5.

33.
33.1
332

3.4.
3.5.

4.1.

4.2.

4.2.1.
422.
4.2.3.
4.2.4.

43.
4.4,

SN

Inhalt

EinfUhrung . . . . . . . . e 6
Lésung von Gleich ystemen und Gleichungen . . . .. ... ........... 11
Zur numerischen Losung nichtlinearer Gleichungssysteme . . . . . ... ... ... . 11
Problemstellung; einleitende Bemerkungen . . . . . ... ... ... ......... 11
Eliminationsverfahren . . . . . ... ... ... ... ... .. .. 0L 12
Iterationsverfahren . . . . . . ... ... ... ... 12
Iterationsverfahren in Gesamtschritten . . . . . .. ... ................ 12
Iterationsverfahren in Einzelschritten . . ... ... .................. 14
Verfahren von Newton-Raphson . . . . ... ... ... ... ............. 15
Minimierungsverfahren . . . . .. ... ... ... ... L 17
Zur numerischen Losung nichtlinearer Gleichungen . . . . ... ... ........ 17
Iterative Losung linearer inhc Gleich ysteme . ... ... ... L. 19
Eliminationsverfahren fiir lineare Gleichungssysteme . . . . . . . .. .. ....... 21
(Matrizen-) Eigenwertproblem . . . . . . . . ... ... ... 22
Programmierung und Software . . . . . ... ... ... ... ... 25
ADPPIoXimation . . . . . . ... e e 27
Aufgabenstellung . . . . ... .. 27
Interpolation . . . . . . . . . ... e e 28
Die Interpolationsaufgabe . . . . . . . .. ... ... ... 28
Der Interpolationsfehler . . . . ... ... ... ... ... L 29
Berechnung des Interpolationspolynoms . . . . . . . ... ... ... .. 29
Konvergenz von Folgen von Interpolationspolynomen . . . . . . ... ........ 31
Spline-Interpolation . . . . .. ... ........... e e e e 32
Approximation im Mittel . . . .. ... ... ... 35
Diskrete Approximation im Mittel . . . . . ... ... ... ... ........... 35
Stetige Approximation im Mittel . . . . .. ... ... ... ... .. ......... 39
Weitere Approximationsarten . . . . . . . . . . ... e 43
Programmierung und Software . . . . . ... ... ... .. ... 44
Numerische Integration . . . . .. ... ... ... .. ... .. ... ... .. ... 46
Einfihrung . . . . . . . . .. 46
Mittelwertformeln . . . . ... ... .. L 46
Quadraturformelnvon GauB . . . . .. ... ... L. 47
Quadraturformeln von Newton-Cotes . . . . . . ... ... .. ... v, 48
Quadraturformeln von Tschebyscheff . . . . . . .. ... ... ... .......... 48
Verallgemeinerte Mittelwertformeln . . . . . ... ... ... ............. 48
Romberg-Algorithmus . . . . . . . .. ... ... 49
Programmierung und Software . . . . ... ... ... ... ... . 51
Numerische Losung gewohnlicher Differentialgleichungen . . . . . . ... ... ... 54

Einfihrung . . . . . . ... 54



Inhalt 5

5.2. Anfangswertaufgaben . . . ... ... ... L. 54
5.2.1. Anfangswertaufgaben bei Differentialgleichungen erster Ordnung . . . . . ... ... 54
5.2.1.1.  Einfuhrung, Problemstellung . . . . .. .. ... ... ... .. ... on... 54
5.2.1.2.  Ausgangspunkte numerischer Losungsmethoden . . . . .. ... ... ........ 55
5.2.1.3.  Prediktor-Korrektor-Verfahren 56
5.2.1.4.  Einschrittverfahren . ... ... ...... .. 60
§.2.1.5.  Stabilitatseigenschaften der Naherungsverfahren . . . ... ... ... ........ 64
5.2.2. Anfang bei Sy von Diff ialgleich erster Ordnung . . . 68
5.2.3. Anfangswertaufgaben bei gewohnlichen Differentialgleich hoherer Ordnung . . 71
5.24. Programmierung und Software . . . . .. . ... ... ... ... .. ... ... ... 71
5.3. Randwertaufgaben . . . . . . .. .. ... ... 71
5.3.1. Einfihrung . . . . ............... 71
5.3.2. Zuriickfilhrung auf Anfangswertaufgaben . 73
5.33. Differenzenverfahren . . . ... .. .. ... ... ... .. 74
5.3.4. Ansatzmethoden . . . . .. ... ... 76
5.3.5. Eigenwertaufgaben . . . . . . . ... ... 80
5.3.6. Ritz-Verfahren . . . . . .. ... .. ... 80
5.3.7. Programmierung und Software . . . . ... ... ... ... ... 81
6. Numerische Behandlung partieller Differentialgleichungen . . . . . . ... ... ... 83
6.1. Einfihrung . . . . . . . . .. 83
6.2. Differenzenverfahren . . . . . ... ... ... ... ... 83
6.3. Ansatzmethoden . . . . . ... ... 86
6.3.1. Galerkin-Verfahren . . . . . . ... ... .. ... 86
6.3.2. Finite-Elemente-Methode (FEM) . . . . . ... ... ... ... ... ........ 88
Losungen der Aufgaben . . . . . . . . . . . ... 90
N T Te s 50 50 000 0 6 0006000000000 0600Ea00000000008003800030 92

Namen- und SachregiSter . . . . . . . . . . . o i e e e 94



1. Einfiihrung

Die moderne Entwicklung in Technik, Naturwissenschaft und Okonomie konfrontiert
die auf diesen Gebieten in der Praxis Tatigen immer hdufiger mit mathematischen Pro-
blemen, die exakt entweder nur duBerst umstédndlich oder iiberhaupt nicht 16sbar sind. In
diesen Fillen miissen Verfahren der numerischen Mathematik zur gendherten Losung
herangezogen werden.

Der Weg von einer in einem der eben genannten Anwendungsbereiche gestellten Auf-
gabe zu numerischen Resultaten verlduft in mehreren Schritten.

1. Schritt:

Der zu behandelnde technische, naturwissenschaftliche oder 6konomische Vorgang
muB z. B. durch Vernachldssigung nicht wesentlicher EinfluBgroBen zu einem hinrei-
chend einfachen, den wirklichen Vorgang approximierenden, d.h. ndherungsweise beschrei-
benden Modellvorgang idealisiert werden.

2. Schritt:

Dieser Modellvorgang oder kurz dieses Modell ist mathematisch zu fassen, z.B. sind die
quantitativen Beziehungen in Gestalt von Gleichungen zu beschreiben. Als Ergebnis er-
hidlt man das mathematische Modell des Vorganges. Danach ist zu priifen, ob die nun vor-
liegende mathematische Problemstellung sachgemiB gestellt ist. Dazu gehort im wesentli-
chen, die Existenz von Losungen festzustellen und u. U. die Stabilitdit der Problemstellung
(der Aufgabe) nachzuweisen.

3. Schritt:

Ist das Modell nicht auf analytischem Wege 10sbar, so wird man ein geeignetes numeri-
sches Verfahren als Ndherungsverfahren auswéhlen. Diese Entscheidung wird von vielen
Faktoren beeinfluBit: von der zur Verfiigung stehenden Rechentechnik, von der Software-
situation, von den spezifischen Anforderungen und Eigenschaften der Aufgabe, von den
jeweils traditionell verwendeten Numerik-Bausteinen, von den vorhandenen numeri-
schen Erfahrungen u.v.a.m. Generell sollte man nach folgendem Schema vorgehen:

Man informiere sich in der zustindigen Softwarebank, ob fiir das vorliegende Modell
auf dem vorhandenen Computer nutzbare Software vorliegt. Wenn ja, dann nutze man
diese (damit wird das Studium der folgenden Kapitel dieses Buches keinesfalls hinfillig,
denn Beschreibungen numerischer Software sind ohne entsprechende Numerik-Grund-
kenntnisse im allgemeinen nicht oder nur schwer verstidndlich!).

Ist keine sofort nutzbare Software vorhanden (z. B. weil der verfiigbare Computer kei-
nen Compiler fiir die verwendete Sprache enthilt), so sollte als nichstes versucht werden,
passende Software aus Programmsammlungen (Biichern) zu iibernehmen. Ist auch das
nicht erfolgreich, weil moglicherweise das gegebene Modell zu komplex ist, dann erst
sollte man selbst einen ausgewihlten numerischen Algorithmus zum Programm aufberei-
ten bzw. einen Software-Fachmann zu Rate ziehen.

4. Schritt:

Bei der Umsetzung des numerischen Algorithmus in ein Programm sollte man stets die
Grundregel der strukturierten Programmierung beriicksichtigen: Die Struktur des Programms
muB der Struktur des Algorithmus entsprechen — einzelne, relativ selbstindige Teilrech-
nungen sollten stets in selbstéindigen Programmeinheiten (Unterprogrammen, Prozedu-
ren) abgearbeitet werden. Dieses Vorgehen hat den Vorteil, daB moglicherweise fiir Teil-
und Hilfsrechnungen (z. B. Losung linearer Gleichungssysteme) vorhandene Softwarebau-
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steine eingesetzt werden konnen. Man kann mit jeder Programmiersprache gut struktu-
rierte, iibersichtlich aufgebaute Programme aufstellen; es gibt jedoch Sprachen, die dieses
Vorgehen besonders unterstiitzen (PASCAL). Nachdem man jede Programmeinheit ein-
zeln getestet hat, kann man dann zum Test des gesamten Programmes iibergehen und da-
nach die Nutzrechnungen durchfiihren.

5. Schritt:

Die Rechnung wird durchgefiihrt. AnschlieBend sind die numerischen Resultate kri-
tisch zu werten.

Nun soll auf einige spezifische Probleme bei numerischen Rechnungen besonders ein-
gegangen werden: .

‘Wir nennen eine Problgmstellung (eine Aufgabe) stabil, wenn bei kleinen Anderungen
der AusgangsgroBen die Anderung der Losung klein bleibt. Zur Verdeutlichung des Be-
griffs der Stabilitdt der Problemstellung bringen wir folgendes Beispiel.

Beispiel 1.1: Wir betrachten die Anfangswertaufgabe

YV'=y,y0=1y0)=-1
Diese besitzt die Losung y = e~*. Wird jedoch die zweite Anfangsbedingung nur wenig verdndert,
2.B. y'(0)=—1+¢ bzw. y'(0) = ~1—& (¢ >0), so erhilt man die Losung y, = (1 ~§) e +§e*
bzw. y_. = (1 + %) (Gtis= % e*. Die Losungen y,(x) und y_.(x), die jeweils durch eine nur kleine
Anderung eines Anfangswertes erhalten wurden, unterscheiden sich jedoch wesentlich von y(x), da
lim y(x) =0, aber lim y,(x) =+ und lim y_,(x) = —M\gilL Somit ist das Problem instabil. Dage-

gen 'i'st z.B. die Anfangswertaufgabe y’ = —y, y(0) = 1 stabil; den Nachweis empfehlen wir dem Leser
als Ubung.

Da nur mit Zahlendarstellungen mit endlicher Stellenzahl (finiten Zahlen) gerechnet
werden kann, spielt sich die numerische Mathematik in einer endlichen Teilmenge der
rationalen Zahlen ab. Wegen der Finitheit der Zahlen sind die numerischen Resultate
mit Rundungsfehlern behaftet. Eine weitere Folge der Finitheit der Zahlen ist, daB der Be-
griff ,unendlich groB“ durch den Begriff ,sehr groB“ ersetzt werden muB.

Wenn sich der fiir die ersten Rechenschritte zugelassene Rundungsfehler in den folgen-
den Schritten nicht vergroBert, so heiBt der Rechenprozef stabil, wenn aber dieser Fehler
von Schritt zu Schritt wichst (wenn sich die lokalen Rundungsfehler akkumulieren),
dann heiBt der Rechenprozef instabil. Die Stabilitdt des Rechenprozesses ist in unserer Zeit
durch den Einsatz von Computern, auf denen umfangreiche Rechnungen mit sehr groBer
Zahl von Rechenschritten durchgefiihrt werden, zu einer sehr wichtigen Frage geworden.
Die Instabilitdt eines Rechenprozesses kann folgende Ursachen haben:

a) Die Problemstellung (Aufgabe) ist instabil. Mit diesem Begriff befaB8ten wir uns be-
reits (siehe Beispiel 1.1). In diesem Falle kann die Instabilitit des Rechenprozesses nicht
behoben werden.

Ist die Aufgabe nicht stabil, so behilft man sich oft dadurch, daB man zu benachbarten,
stabilen Aufgaben iibergeht und diese 10st. Dieses Vorgehen wird als Regularisierung be-
zeichnet.

Die Stabilitdt der Aufgabe ist eine wesentliche Voraussetzung dafiir, daB man die Auf-
gabe als korrekt gestellt bezeichnen darf.

b) Das verwendete numerische Losungsverfahren fiihrt zur Instabilitdt des Rechenpro-
zesses. Man nennt dann das Losungsverfahren selbst instabil und kann die Instabilitat des
Rechenprozesses, falls die Problemstellung stabil ist, meist durch Wechsel des Losungs-
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verfahrens, d.h. durch Wahl eines stabilen Losungsverfahrens, beheben. Zur Erlduterung
soll folgendes Beispiel dienen.

Beispiel 1.2: Zu berechnen sei die Zahlenfolge
1
1
I,=—| x"e*dx (1.1)
e
0
fuirn=0,1,2, ..., N. Esgilt
1
,o=ife,dx=1_l, 12
e e
0
Wenden wir auf das in (1.1) rechts stehende Integral die partielle Integration
1 1

iJ.x"e"dx= = nljx"'le"dx
€5 €5

an, so finden wir die Rekursionsformel

L=1-nl,_,. 1.3)
Weiterhin gilt

0<I.1<I, und limI,=0, (1.4)
oot

was wir ohne Beweis mitteilen.

Wenn wir die Zahlen I,, n = 1, 2, 3, ..., N, nach der Rekursionsformel (1.3) unter Beriicksichtigung
von (1.2) berechnen, miissen wir schon nach wenigen Schritten feststellen, daB die Zahlen fiir wach-
sendes n im Gegensatz zu (1.4) nicht monoton nach Null gehen, sondern aufgrund der Rundungsfeh-
ler von den wahren Werten immer mehr abwandern. Je nach der Genauigkeit der Rechnung (d. h. je
nach der Anzahl der mitgefiihrten Stellen), ist diese Erscheinung eher oder spiter deutlich festzu-
stellen. In Spalte 1 der Tabelle 1.1 sind die auf zwei Dezimalen nach dem Komma exakten Werte fiir
I, bis Iy angegeben, in Spalte 2 finden Sie die nach (1.3) mit der gleichen Genauigkeit b h
Werte.

Tabelle 1.1

n 1 2 3 4

0 0,63 0,63 0,63 0,63
1 0,37 0,37 0,37 0,37
2 0,26 0,26 0,26 0,26
3 0,21 0,22 0,21 0,21
4 0,17 0,12 0,17 0,17
5 0,15 0,40 0,15 0,15
6 0,13 - 1,40 0,13 0,13
7 0,11 10,80 0,12 0,11
8 0,10  -85,40 0 0,10

Bezeichnen wir fiir ein festes n mit I, den exakten und mit I, den nach (1.3) berechneten Wert, so ist

ta=I,-1,

der Fehler von I,. Aus

Lioi=1-(+DI, und L.,=1-(+1I,
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folgt durch Subtraktion
tir=hoy = L=+ D)L= L)= -+, s

Die Beziehung (1.5) zeigt, daB bei diesem Verfahren der absolute Fehler von I, , , durch Multiplika-
tion des absoluten Fehlers von I, mit —(n + 1) entsteht (wobei wir den bei der Berechnung von I, ,
moglicherweise auft den Rund fehler vernachléssi ). Mit wachsender Schrittzahl, d. h.
mit wachsendem n, werden also die Werte von I, zunehmend verfélscht, das Verfahren ist instabil
und damit unbrauchbar.

Setzen wir aber wegen lim I, = 0 fiir ein geniigend groBes j /; = 0 und berechnen die I,, n =j — 1,

n—w

..., 1, 0, aus der aus (1.3) folgenden Beziehung

C1-1,

Loy=—2> (16)
riickwirts, erhalten wir ein stabiles Losungsverfahren. Den Nachweis empfehlen wir dem Leser zur
Ubung. In der Spalte 3 bzw. 4 der Tab. 1.1 sind die nach diesem Verfahren auf zwei Dezimalen nach
dem Komma genau berechneten Werte von I, angegeben, wobei in Spalte 3 Iz =0 und in Spalte 4
I,y = 0 gesetzt wurde. Man sieht, daB im Rahmen unserer geforderten Genauigkeit bereits bei Wahl
von I, =0 die genauen Werte von k, I, ..., I, erhalten werden.

Neben den Rundungsfehlern treten bei numerischen Rechnungen noch Datenfehler
(Eingangsfehler) und Verfahrensfehler auf. Der Datenfehler ist der Fehler des Resultats
einer Rechnung, der eine Folge der Ungenauigkeit der eingehenden Daten ist. Die Daten-
fehler konnen wie Rundungsfehler behandelt werden, die vor Beginn der Rechnung ge-
macht worden sind.

Die Verfahrensfehler haften dem gewihlten numerischen Verfahren an und sind somit
auch ohne Rundungsfehler vorhanden. Sie sind letztlich eine Folge des in der numeri-
schen Mathematik notwendigen Ersatzes analytischer Prozesse durch finite Prozesse. Bei
der Approximation eines Grenzprozesses spricht man auch vom Abbruchfehler, beim Er-
satz der Zahlengeraden durch ein diskretes Punktsystem vom Diskretisierungsfehler. Zur
Verdeutlichung bringen wir ein einfaches Beispiel.

Beispiel 1.3: Das bestimmte Integral

3
d
J—" =1n3
X
1
soll nach der bekannten Keplerschen FaBregel durch eine gewichtete Summe von Funktionswerten
approximiert werden. Man erhilt

3

dx 2 1 1 10
JT‘?(““T*?)‘T'

Der Verfahrensfehler Fy ist die Differenz des strengen Integralwertes und des strengen Summenwer-
tes, also

10
Fy=In3 9
Der Rundungsfehler Fy ist die Differenz des strengen Summenwertes und des vom Rechenautoma-
ten mit finiter Stell hl gelieferten S wertes bei Beriicksichtigung von vier Dezimalen nach
dem Komma, also
Fy =%- 1,1111 = 0,00001.

Rundungsfehler und Verfahrensfehler sind im allgemeinen miteinander verflochten, sie
iiberlagern sich in komplizierter Weise und konnen beziiglich ihres Einflusses auf das Re-
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sultat oft sehr schwer oder gar nicht getrennt werden. Die Uberlagerung der Fehler 148t
hiufig nur schlechte Abschdtzungen mit nur groben Schranken fiir das gesuchte Ergebnis
zu.

Zur Erweiterung und Vertiefung der in diesem Abschnitt gebrachten Fehlerbetrachtun-
gen empfehlen wir [16], [28].

Hauptgegenstand der numerischen Mathematik sind die Bereitstellung von Losungsalgo-
rithmen (im allgemeinen N#herungsverfahren) und die Erforschung ihrer Eigenschaften.
Die Untersuchung der Verfahrensfehler stand dabei bis zur Mitte des 20.Jahrhunderts im
Vordergrund; mit der Einfithrung der Computer erlangte die Untersuchung der Stabilitét
groBe Bedeutung.

In den folgenden Abschnitten wenden wir uns speziellen numerischen Problemstellun-
gen zu. Wir stellen uns das Ziel, die wichtigsten Grundbegriffe und Verfahren der nume-
rischen Mathematik unter Beriicksichtigung ihrer Eignung in der maschinellen Rechen-
technik zu vermitteln und den Leser zu befdhigen, fiir in der Praxis auftretende Probleme
geeignete numerische Verfahren zu finden und anwenden zu kénnen.



2. Losung von Gleichungssystemen und Gleichungen

2.1. Zur numerischen Losung nichtlinearer Gleichungssysteme

2.1.1.  Problemstellung; einleitende Bemerkungen

Die numerische Bestimmung der Losungen von Gleichungssystemen und Gleichungen
stellt einen wesentlichen Komplex innerhalb der numerischen Mathematik dar. Wir wen-
den uns zuerst der allgemeinen Problemstellung der Losung beliebiger, d.h. nichtlinearer
Gleichungssysteme zu, werden hier allgemeine Vorgehensweisen demonstrieren und
dann durch Spezialisierung Losungsverfahren fiir eine Gleichung und fiir lineare Glei-
chungssysteme gewinnen und darlegen.

Gesucht seien die reellen Werte der Verdnderlichen x,, x,, ..., x,, die das Gleichungs-
system

filxy, X5 oo %) =0, i=1,2,..,m, @1

befriedigen. Dabei seien die f, i =1, 2, ..., n, gegebene reellwertige Funktionen der n
Veridnderlichen; sie seien nicht alle linear und sollen stetige partielle Ableitungen genii-
gend hoher Ordnung besitzen. Falls wie in dem System (2.1) die Zahl der Gleichungen
mit der der Unbekannten {ibereinstimmt, heiBt das nichtlineare Gleichungssystem nor-
mal. Wir werden hier nur normale Systeme betrachten. Normale, nichtlineare Glei-
chungssysteme konnen keine, genau eine, mehrere oder sogar unendlich viele Losungen
besitzen.

Da es einerseits keine universell geeignete Methode zur Losung normaler nichtlinearer
Gleichungssysteme gibt, andererseits diese Systeme in den modernen Anwendungen der
Mathematik eine immer groBere Rolle spielen, wurde vor allem in der neueren Zeit eine
groBe Zahl von speziellen Verfahren zur Losung solcher Systeme entwickelt.

Bevor wir zur Behandlung von Losungsmethoden iibergehen, wollen wir uns ein Bei-
spiel fir das Auftreten nichtlinearer Gleichungssysteme ansehen.

Beispiel 2.1: Ein Korper vom Gewicht G hiingt an zwei elastischen Seilen, die an zwei Punkten befe-
stigt sind. Diese Punkte liegen in gleicher Hohe und haben den Abstand a voneinander. Die span-
nungslose Linge des ersten Seiles ist p;, die des zweiten p,; die elastische Konstante beider Seile
ist c.

Der Neigungswinkel des ersten Seils wird mit x und der des zweiten mit y bezeichnet. Zur Bestim-
mung von x und y findet man dann folgende Gleichungen:

A G D .
= e 2R + )=
filx, y) =sin x e cos x G sin (x + y) =0,

. G .
falx, y)=smy—;cosy—%sm(x+y)=0.

Mit G=80N, a =10,00m, p; =5,00m, p,=335mund c= 50% lauten sie

fi(x, y) =sin x— 0,160 cos x — 0,335 sin (x +y) =0, @2

fo(x, y) =sin y = 0,160 cos y — 0,500 sin (x +y) = 0. -
Fiir das Auftreten nichtlinearer Gleichungssysteme lieBe sich noch eine Reihe weiterer
Beispiele angeben. Erwihnt sei nur noch, daB z.B. die notwendigen Bedingungen fiir ein
Extremum einer nichtlinearen Funktion mehrerer Verdnderlicher i.allg. ein nichtlineares
Gleichungssystem darstellen und daB bei der Behandlung von Randwertproblemen bei
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nichtlinearen Differentialgleichungen mit dem Differenzenverfahren (siehe Abschnitt 5.)
nichtlineare Gleichungssysteme zu 16sen sind. Wenden wir uns nun einigen Losungsver-
fahren zu.

2.1.2. Eliminationsverfahren

Man wird meist versuchen, die Anzahl der Gleichungen des Systems (2.1) zu reduzie-
ren.

Wenn es gelingt, irgendeine Gleichung des Systems (2.1) explizit nach einer Unbe-
kannten, z.B. x,, aufzuldsen, erhalten wir dann durch Substitution dieses Ausdruckes fiir
X, in allen anderen Gleichungen n — 1 Gleichungen mit n — 1 Unbekannten:

(%, X3, ..., X,) =0, i=1,2,...,n—-1.

Gelingt uns aus einer Gleichung dieses Systems wieder die Auflosung nach einer Unbe-
kannten, erhalten wir ein System von n — 2 Gleichungen mit n — 2 Unbekannten. So fort-
fahrend, finden wir nach n — 1 Schritten eine Gleichung mit einer Unbekannten, aus de-
ren Losung wir riickwirts die zugehdrigen Werte der anderen Unbekannten bestimmen
konnen.

In der Regel wird dieses Vorgehen jedoch nicht vollstindig durchfiihrbar sein; es blei-
ben dann s Gleichungen mit s Unbekannten {ibrig (s < n).

2.1.3. Iterationsverfahren

Iterationsverfahren sind Verfahren der schrittweisen Anndherung. Aus einer vorgegebe-
nen Niherung fir die Losung wird durch Anwendung einer Iferationsvorschrift eine wei-
tere Ndherung berechnet, auf diese wird dann wieder die Iterationsvorschrift angewandt
usw. Es wird somit eine Folge konstruiert, deren Elemente als Ndherungen fiir die jeweils
gesuchte Losung angesehen werden konnen. Wichtigste Fragen bei der Anwendung eines
Iterationsverfahrens sind die Beschaffung der Anfangsndherung und die Untersuchung, ob
die zu berechnende Folge von Nédherungen gegen die gesuchte Losung konvergiert.

Zur Anwendung eines Iterationsverfahrens wird das System (2.1) auf folgende Form ge-
bracht:

Xi = @i(xy, Xg, .y Xn), i=1,2,...,n 2.3)

Die Operationen, durch die diese Transformation realisiert wird, konnen beliebiger Art
sein, es ist nur erforderlich, daB jede Losung des Systems (2.1) dem System (2.3) geniigt.
Es wird vorausgesetzt, daB die Funktionen ¢;, i =1, 2, ..., n, in der Umgebung der ge-
suchten Losungen geniigend oft stetig differenzierbar sind.

2.1.3.1. Iterationsverfahren in Gesamtschritten
Ausgehend von einer gegebenen Anfangsniherung x; = x{¥, i =1, 2, ..., n, fiir die ge-
suchte Losung x; = o, wird nach der Iterationsvorschrift
X0 =gy, x P, L, x ), Q4
i=1,2,..,n k=0,1,2,...,
eine Folge von n-Tupeln (x{, x{¥, ..., x¥) konstruiert.
(Die zur Zdhlung der Verfahrensschritte benutzten Hochzahlen werden in Klammern

gesetzt, um sie von Exponenten im Sinne der Potenzrechnung zu unterscheiden.)
Wenn fiir k— o x — o; gilt, so sagt man, daB das Iterationsverfahren zur gesuchten
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Losung konvergiert. Das Iterationsverfahren in Gesamtschritten konvergiert, wenn eines
der folgenden Kriterien erfiillt ist:

o 3; 3; -
ax, Py 3%, <1, i=1,2,...,n, (2.5)
99, | | 39, On .
—— |+ ...+ = 8
%, ax; ax <1, i=1,2,...,n, (2.6)
wobei die Ableitungen an der Stelle x; = «;, x, = &, ..., X, = &, zu bilden sind. Weil die
o, &, ..., @, unbekannt sind, werden dafir die x{¥, x”, ..., x benutzt; diese Werte

miissen aber geniigend nahe der Losung liegen.
Verwenden wir die Vektorschreibweise

1, %5, %)= (0, 0, oy )T = 0
(@, 92 00" =@,
so konnen die Gleichungen (2.4) in der Form
xk*+D = g (x(®)
geschrieben werden. Fiir eine Losung o des Systems (2.1) gilt die Gleichung
x=g@(x),

d.h., & ist ein Fixpunkt (unveranderlicher Punkt) der Abbildung (Funktion) @. In der
Funktionalanalysis werden unter allgemeinen Voraussetzungen sogenannte Fixpunktsdtze
bewiesen, die u.a. Aussagen iiber die Konvergenz des Iterationsverfahrens gegen einen
Fixpunkt enthalten. Unsere obigen Konvergenzaussagen sind Spezialfdlle eines solchen
Fixpunktsatzes.

Schwierigkeiten bei der Losung nichtlinearer Gleichungssysteme entstehen bei der Be-
stimmung einer Anfangsndherung fiir die Losung, weil fast alle Verfahren nur zum Ziele
fithren, wenn die Anfangsniherung geniigend nahe bei der Losung liegt. Bei zwei Glei-
chungen mit zwei Unbekannten finden Sie eine Anfangsnaherung leicht graphisch, sonst
ist man auf eine umfassende Tabellierung der Funktionen fj(x, x,, ..., X,),j=1,2, ..., n
angewiesen. Bei angewandten Problemstellungen 1Bt sich oft aus praktischen Uberlegun-
gen der Bereich, in dem die gesuchte Losung liegt, geniigend genau eingrenzen.

Beispiel 2.2: Von dem nichtlinearen Gleichungssystem
fi(xy, %) = 2x3 = x;3, = 5x,+1=0,
o1, X)) = x1 +31gx; - x3=0
ist die bei x; = 3,4, x, =2,2 liegende Losung auf zwei Dezimalen nach dem Komma genau zu be-

stimmen.
Wir bringen das System auf folgende Weise auf die Form (2.3):

1
x =% 7‘(X1(5 +x2) = 1) = @i(x1, x2),
Xy = 2yx; +31gx; = @y(xy, x5).

Da wir eine positive Losung suchen, werden im folgenden nur Wurzeln mit positivem Vorzeichen be-
trachtet. Es gibt eine Vielzahl von anderen Umformungen; wichtig ist, daB man eine Umformung fin-
det, fiir die ein Konvergenzkriterium erfiillt ist.

Fiir x? = 3,4 und x{¥ = 2,2 gilt

i
ax,

S,
9x,

op
ax;

=0,

=0,53, ‘aV"yozs ‘

=0,62,
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damit ist das Konvergenzkriterium (2.5) erfiillt. (Zur Sicherung der Konvergenz ist schon die Erfiil-
lung eines dieser Kriterien ausreichend.)
Die Iterationsvorschrift (2.4) lautet

xt 0= s -1,
xFD = Yx P+ 31gxP k=0,1,2,...

Beginnend mit x{” = 3,4 und x{¥ = 2,2 erhalten wir folgende Werte (wegen der oben geforderten Ge-
nauigkeit muB die Rechnung mit drei Dezimalen nach dem Komma durchgefiihrt werden):

x®= 1/% (3,4 (5+2,2) — 1) =3,426; X =34+31g34 =2235;
x® = ,/% (3,426 (5+2,235)— 1) =3,457;  x(® =/3,426 + 31g3,426 =2,243;

xP =3,464; xP=2252;
X =3476; X =2,256;
X =3,480; X =2,258;
X = 3,483; x© =2259;
x{P=13,483; x{ =2,260;
x® =3,483; x®=2260.

Durch Runden erhalten wir das gesuchte Ergebnis
o, =3,48, o =2,26.

Wenn man dieses Iterationsverfahren auf eine Gleichung mit einer Unbekannten f(x) = 0 an-
wendet, dann lautet die Iterationsvorschrift

x®*V=g(x®), k=0,1,2,..,
und Konvergenz liegt vor, wenn

[o'(e)] <1
gilt.

Aufgabe 2.1: Losen Sie das nichtlineare Gleich aus Beispiel 2.1 mit den leicht aus einer
Skizze zu ermittelnden Anfangsniherungen x© = 30°, y© = 30° und der Umformung

x = arcsin [0,160 cos x + 0,335sin (x + )],
y = arcsin[0,160 cosy + 0,500 sin (x + y)].

Die Konvergenz sei gesichert. Die Losung wird auf zwei Dezimalen nach dem Komma genau ge-
wiinscht.

2.1.3.2. Iterationsverfahren in Einzelschritten

Dieses Verfahren unterscheidet sich von der Iteration in Gesamtschritten lediglich
durch die folgendermaBen veridnderte Iterationsvorschrift:
XD = @D, XD, xEAD, X, xB), (X))
i=1,2,...,nm k=0,1,2,...
Hierbei setzt man also rechts fiir jede Verdnderliche jeweils den letzten fiir sie erhaltenen

Wert ein. Die Konvergenzbedingungen dieses Verfahrens sind verschieden von denen des
Iterationsverfahrens in Gesamtschritten, auf sie wollen wir hier nicht eingehen.

Aufgabe 2.2: Behandeln Sie das nichtlineare Gleich aus Beispiel 2.2 mit den dort gemach-
ten Angaben mit dem Iterationsverfahren in Einzelschritten!
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2.1.3.3. Verfahren von Newton-Raphson

Bei der Darlegung dieses Verfahrens beschrinken wir uns auf zwei Gleichungen mit
zwei Unbekannten, um Schreibarbeit zu sparen:

Silxy, x) =0

f(x1, x) =0
Es sei wieder x{, x{¥ eine erste Niherung fiir die gesuchte Losung a;, a,. Durch Taylor-
Entwicklung der Funktionen f;(xy, x,), fo(x;, X,) an der ,Stelle“ (x{®, x{”) und Vernach-

lissigung der Potenzen von (x; — x'%), i = 1, 2, deren Exponenten groBer als eins sind, fin-
den wir folgende Darstellung:

Fio, 320 = 62, 59+ 2 (0, x) (5, = x)
afl x@, x0) (x; = xP) =0

Sl ) ~ O, x®) + i(x“” ) (x; - x©)
fz S (X0 (= x) =0

Wir setzen x; — x¥ = Ax®, i=1,2, und erhalten zur Bestimmung der sog. Korrekturen
Ax\” das lineare Gleichungssystem

afl

(X(O) x(O))Ax(0)+ fl (X(O) x(O))Ax(O) —f,(x“’) x(O))

2.8
afz( O x®) AxP® = —£,(x?, xP). @8

afz

(x(o) x(l))) Ax(o) +

Hat man dieses lineare Gleichungssystem gelost, findet man als neue Néherungslosung
(wegen des Fehlers bei der Linearisierung ist es noch nicht die exakte Losung)

X =x0+Ax0, X0 +AxQ.

Nun wird die Taylor-Entwicklung wiederholt, jetzt an der ,Stelle (x{", x{"), und wir kom-
men mit Ax{’ = x; — x{¥ zu dem linearen Gleichungssystem zur Bestimmung der Ax{":

3f1 f1

(x(l) x(l)) Ax(l) ot x(l) x(l)) Ax(l) = _fl(x(ln’ xgl)))

f2 fz 2.9
(xu) xP) Ax (D + L2 (x‘” *P) Ax® = —£,(x P, x).
Als neue Nﬁherungslésung finden wir
xP=xP+AxP, xP=xP+ Ax®.

Entsprechend wird das Verfahren fortgesetzt. Das im (k + 1)-ten Schritt zu losende li-
neare Gleichungssystem lautet

afl (x(k) x(k))Ax(k)+ af‘ (x(k) x(k))Ax(k) _fl(x(xk); x(zk))

8fz fz

(x(k) x(k)) Ax(k) S (x(k) x(*)) Ax“‘) __fl(x(k)y x(zk))~
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Als neue Niherungslosung ergibt sich

x(k+l) - x(k) + Ax(k) x(2k+1) = x(Zk) + Ax(zk).

Nach der ausfiihrlichen Darlegung des Verfahrens fiir zwei Gleichungen bereitet es sicher
keine Schwierigkeiten, das Verfahren auf groBere Systeme anzuwenden. Die auftretenden
linearen Gleichungssysteme sind durch geeignete numerische Verfahren, wie sie in Ab-
schnitt 2.3. dargelegt werden, zu losen.

Die Konvergenz des Verfahrens von Newton-Raphson ist schwierig nachzuweisen. Es
14Bt sich zeigen, daB das Verfahren von Newton-Raphson konvergiert, wenn die im Ver-
fahren auftretenden linearen Gleichungssysteme lsbar sind, d. h., wenn die sog. Jacobi-

sche Matrix

J(x)=

i

X,

A

Ax,

an den einzelnen Iterationspunkten nichtsinguldr ist und die Anfangsnédherung geniigend

nahe bei der Losung ist.

Beispiel 2.3: Wir wollen das nichtlineare Glei

Newton-Raphson 16sen:

+ Rei

aus piel 2.1 mit dem Verfahren von

filx, y‘) =sinx — 0,160 cos x — 0,335sin(x +y) =0
fo(x,y) =siny — 0,160 cosy — 0,500sin (x + y) =

xO =30° y© =

30°.

Als erstes berechnen wir die Ableitungen der Funktionen f; und f;:

i)

——=cosx + 0,160sin x — 0,335 cos (x + y),

Ax
o

o
Ax

o

a—y= —0,335cos (x +y),

= -0,500cos(x +y),

=2 cosy + 0,160siny — 0,500 cos (x + y).

Ay

Wegen ?l‘— =0,778, aaf'

=-0,168,

Zf 0,250, afz = 0,69, £, = 0,0713 und f, = —0,0716 an der

Stelle (x“”, »©) lautet das Gleichungssystem (2.8)

0,778 Ax©® —

0,168 Ay® = —0,0713,

—-0,250 Ax© + 0,696 Ay® = 0,0716,
daraus folgt Ax® = ~0,0752 = —4,31°, Ay® = 0,0759 = 4,35° und x = 25,69°, y» = 34,35°. Wieder-
holen wir die Rechnung mit x*’ und y®, finden wir als Gleichungssystem (2.9)
0,803 Ax® — 0,168 Ay = 0,0009,
—0,250 Ax™ + 0,666 Ay = 0,0011,
hieraus folgt x = 0,0016 = 0,09°, y® = 0,0022 = 0,13° und x@ = 25,78°, y = 34,48°.
Hier brechen wir das Verfahren ab, bei Weiterrechnen kommt es auf Grund der Rundungsfehler
nur noch zu geringfiigigen alternierenden Anderungen in der 2. Dezimalen nach dem Komma

(x®=2579°, y® =3449°, x@® =2578° y@ = 34,47°).
Die gesuchte Losung lautet nach Rundung: «; = 25,8°, o, = 34,5°.
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Im Falle der Konvergenz fiihrt bei gleicher Anfangsndherung das Verfahren von
Newton-Raphson schneller zur Losung als das Iterationsverfahren in Gesamtschritten, es
hat eine groBere Konvergenzgeschwindigkeit. Als MaBzahl fiir die Konvergenzgeschwindig-
keit verwendet man die sogenannte Ordnung der Konvergenz: Eine Folge {x*} konvergiert
von der Ordnung p = 1 gegen einen Grenzwert «, wenn es eine Konstante C gibt mit

|x®*D - g|< C|x®—aP,  k=0,1,2, ...

(Im Fall p=1 sei C<1.) Die Ordnung der Konvergenz betrigt beim Verfahren von
Newton-Raphson 2 und beim Iterationsverfahren in Gesamtschritten 1.

Liegt eine Gleichung mit einer Unbekannten f(x) = 0 vor, so liefert die Linearisierung mit-
tels Taylor-Entwicklung

FG0) = f(x®) + f'(x®) (x = x®) =0,
und die Iterationsvorschrift lautet damit
f(x®)
fl( x(k)) &
Dieses Verfahren gehort zu den bekanntesten Verfahren zur Losung einer Gleichung mit

einer Unbekannten (siehe Band 2 dieses Lehrwerkes).
Es ist bekannt als Tangentennéherungs- oder Newton-Verfahren.

x(k~l)=x(k)_ f’(x“")#O, k=0, 1,2’

Aufgabe 2.3: Bestimmen Sie die in der Nihe von x; = 0,4 und x, = 0,9 liegende Losung des nichtli-
nearen Gleichungssystems

Axi+ x3+2x,x, - x,—2=0,

2x34+3xx,+x2-3=0

mit dem Verfahren von Newton-Raphson; geben Sie x{ und x{’ auf 5 Dezimalen nach dem Komma
genau an!

2.1.4. Minimierungsverfahren

Bei diesem Verfahren wird das Problem der Bestimmung der Losungen des nichtlinea-
ren Gleichungssystems (2.1) ersetzt durch das Problem der Bestimmung der Minima
einer Testfunktion F(x,, x,, ..., X,), die so gewdhlt wird, daB sie genau fiir die Losungen
des Gleichungssystems ein Minimum vom Werte Null annimmt. Als Testfunktion ist z.B.
geeignet:

F(Xy, Xy oy Xa) = 2 filxy, Xa, ooy Xa) P
i=1

Die Bestimmung der Minima der Testfunktion kann nicht auf klassischem Wege gesche-
hen, weil die notwendigen Bedingungen fiir ein Extremum einer Funktion mehrerer Ver-
dnderlicher i.allg. ein nichtlineares Gleichungssystem darstellen, sondern es sind die aus
der Optimierung dafiir bekannten Verfahren (z. B. Gradientenverfahren), die auch An-
fangsndherungen benétigen, zu verwenden.

2.2. Zur numerischen Losung nichtlinearer Gleichungen

Fiir die numerische Bestimmung der Losungen einer beliebigen nichtlinearen Glei-
chung mit einer Unbekannten f(x) = 0 existieren im wesentlichen drei grundlegende Ver-
fahren:

a) die bekannte regula falsi (Verfahren des Eingabelns),

b) das gewohnliche Iterationsverfahren (siehe Abschnitt 2.1.3.1.),

c) das Newton-Verfahren (sieche Abschnitt 2.1.3.3.).

N

Oelschligel, Methoden
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Ist die nichtlineare Gleichung speziell eine algebraische Gleichung (Polynomglei-
" chung) m-ten Grades,

p(x)=ag+ ax+ax*+ ... +a,x"=0, a,*0, (2.10)

so existieren fiir m = 1, 2, 3, 4 exakte Losungsformeln, die fir m =3 und m =4 in ihrer
Anwendung allerdings schon so kompliziert sind, daB man in diesen Féllen meist auf nu-
merische Verfahren zuriickgreift. Die obengenannten drei Verfahren zur Losung nichtli-
nearer Gleichungen sind auf algebraische Gleichungen natiirlich anwendbar, liefern aber
jeweils nur eine Losung. Dagegen liefert das speziell fiir algebraische Gleichungen entwik-
kelte Verfahren von Graeffe simtliche m Losungen (in ihrer Vielfachheit gezéhlt). Beziig-
lich dieses Verfahrens verweisen wir auf die Literatur, z. B. [28].

Den speziellen Gegebenheiten der Nullstellensuche bei Polynomen tridgt auch das Ver-
fahren von Bairstow [30] Rechnung.

Als weitere Verfahren zur Losung einer Gleichung sind auch Halbierungsverfahren ge-
briauchlich. Wir legen hier im folgenden ein spezielles Halbierungsverfahren fiir algebrai-
sche Gleichungen dar, wobei wir zu seiner Begriindung die Intervallarithmetik benutzen,
da diese auch fiir Fehlerbetrachtungen zunehmend an Bedeutung gewinnt.

In der Intervallarithmetik werden die fiir die Menge R der reellen Zahlen in bekannter
Weise erklirten Verkniipfungen folgendermaBen auf die Menge J(R) aller abgeschlossenen
und beschrinkten Intervalle erweitert:

lay, i) + [by, bo) =[a, + by, @, + b), 2. B. [1, 3] + [—4, =1] = [-3, 2],
lay, ao] = [by, bo] =[a, = by, @, = b)), z.B. [1, 3] = [-4, = 1] =[2,7],

(a1, a;]- [by, b)) = [m_i,n(a,-b,a, max <a.b,>] ,2.B.[-2,1][2, 4] =[-8, 4],
L] L)

lay, a2 [by, bil = [, @)- [i,i] (B> 0 oder b, < 0),
5 B

z.B.[-2,5]:[2, 3] = [—l, %}
Wenn man das Intervall [a, a] mit der reellen Zahl a identifiziert, gehen die Intervallver-
kniipfungen in die gewShnlichen Verkniipfungen reeller Zahlen iiber. Es seien 4, B, C In-
tervalle aus J(R); dann gelten fiir die oben definierten Verkniipfungen folgende Ge-
setze

A+B=B+A4, A+(B+C)=(A+B)+C,
A'B=6-A, A (B-C)=(4-B)-C.

Fiir viele Anwendungen ist es erforderlich, fiir die Funktionswerte einer stetigen Funktion
f(x) auf dem Intervall X =[x,, x,] eine Intervallabschitzung U(f, X) = [uy, u;] mit
U > {f(x) | x € X} zu finden. Fiir ein Polynom p(x) = ag+ ayx + ... + a,x™ ist

U(p, X) = [ao, ao] + [ay, a;) X + ... + [ay, a,] X" (X"=X-X...X, m-mal) (2.11)

eine solche Intervallabschitzung der Funktionswerte auf dem Intervall X. Diese Intervall-
abschitzung besitzt folgende Eigenschaften:
1) Fiir alle Xe J(R) gilt {p(x) | xe X} c U(p, X).
2) Aus X c Y folgt stets U(p, X) < U(p, Y).
3) Aus der Konvergenz einer Folge X; o X, o X; o ... gegen eine reelle Zahl x =[x, x]
folgt die Konvergenz der Folge der Abschitzungen U(p, X,) o U(p, X,) o ... gegen
den Funktionswert p(x).



2.3. Iterative Losung linearer inhomogener Gleichungssysteme 19

Nun sei die Aufgabe vorgelegt, fiir eine algebraische Gleichung (2.10) simtliche reellen
Losungen a;, welche diese in einem vorgegebenen Intervall X =[x, x,] besitzt, einzeln
beliebig genau in Intervalle [x;;, Xi,] einzuschlieBen (unter Benutzung von Abschétzungs-
formeln der Algebra 148t sich mit Hilfe der Koeffizienten ay, a,, ..., a, stets ein Inter-
vall X angeben, in dem sdmtliche Losungen der algebraischen Gleichung liegen).

Beim Halbierungsverfahren berechnet man als erstes die Intervallabschitzung U(p, X)
gemiB (2.11). Gilt 0 ¢ U(p, X), dann hat wegen der Eigenschaft 1) p(x) keine Nullstelle
(und damit die algebraische Gleichung keine Losung) in X. Andernfalls wird X = [x;, x,]
xl-;-xz] und X, = [x,;—x
U(p, X,) berechnet und wieder gepriift, ob 0 € U(p, X,) bzw. 0 € U(p, X,). Gilt fur eines
der Intervalle X; mit 0 ¢ U(p, X;), so scheidet dieses aus, denn dann ist sicher, daB es
keine Nullstelle von p(x) enthilt. Fiir diejenigen X;, fir welche 0 € U(p, X)) gilt, wird das
Verfahren entsprechend fortgesetzt. Die Eigenschaft 2) sichert, daB die eventuell vorhan-
denen Nullstellen von p(x) in immer kleiner werdende Intervalle eingeschachtelt werden,
wegen der Eigenschaft 3) werden dabei als Grenzwert genau alle reellen Nullstellen von
p(x) in X berechnet.

in seine beiden Hilften X, = [xl, 2 5 xz] zerlegt, U(p, X,) sowie

Beispiel 2.4: Es sollen die reellen Losungen der algebraischen Gleichung p(x) =2 — 3x + x* im Inter-
vall X =[—1, 1] mit dem Halbierungsverfahren bestimmt werden.

1. Schritt: Wir finden
Up, X)=Up,[-1,1) = 12,21 - [3,3]- [-1, U+ [~ 1, 1P = [-2, 6].
Wegen 0 € [-2, 6] wird das Verfahren mit diesem Intervall fortgesetzt.

2. Schritt: Wir zerlegen X =[—1, 1] in seine beiden Hilften X, =[-1,0], X, =10, 1] und finden
U(p, X)) =1, 5], U(p, X,) = [—1, 3]. Wegen 0 ¢ [1, 5] scheidet das Intervall X, aus, wegen 0 € [—1, 3]
wird das Verfahren mit X, fortgesetzt.

3. Schritt: Wir zerlegen X, = [0, 1] in seine beiden Hilften X, = [0, %] Xyn= [%, 1] und finden

U(p, Xn) = [%, %], U(p, Xp) = [7-;—, %] Wegen 0 ¢ %, 18—7] scheidet das Intervall X,, aus,
wegen 0 € [—%, %] wird das Verfahren mit X, fortgesetzt.
Allgemein erhalten wir im n-ten Schritt als Nullstellen-EinschlieB i vall

X 2= [1 7%, 1]; fiir n— o finden wir die Losung o = 1.

Mit diesem Anwendungsbeispiel konnte die Vielfalt der Einsatzmoglichkeiten der Inter-
vallrechnung in der numerischen Mathematik nur angedeutet werden. Uber die Bedeu-
tung dieser Vorgehensweise, insbesondere fiir die Erfassung und Verfolgung von Ein-
gangsfehlern, wird ausfiihrlich in [5] informiert.

2.3. Iterative Losung linearer inhomogener Gleichungssysteme
Wir betrachten nun lineare inhomogene Gleichungssysteme von n Gleichungen mit n
Unbekannten:
ayxyt apx, + ..+ a,x, = ay,
ayx;+apx, + ...+ ax,=a,,
i : : H (2.12)
AnXy + Xy ..ot g Xy = 4.
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Fiir das System (2.12) schreiben wir kurz

M=

Ay Xy = aj, (SN (2.13)
K

1

Zur Sicherung der eindeutigen Losbarkeit setzen wir voraus, daB die Koeffizientendeter-
minante von null verschieden ist.
Zur Anwendung des Iterationsverfahrens in Gesamtschritten formen wir Gleichung
(2.13) um:
i-1
Z A Xy = Z Xy + a;x; + Z apxy=a;, i=12,.

=i+l

Daraus folgt:

i-1
'=__<Zalkxk+ Z A Xy — “i); a; 0, i=1,2,..,n .14

a; e
Die rechte Seite von Gleichung (2.14) entspricht der Funktion g; bei nichtlinearen Syste-
men, die Forderung a; #0, i =1, 2, ..., n, 1dBt sich durch entsprechende Umordnung des

' Systems (2.12) infolge unserer Voraussetzung immer erfiillen. Ausgehend von einer An-
fangsniherung x; = x{*, i =1, 2, ..., n, der gesuchten Losung x; = o; wird nach der Itera-
tionsvorschrift

i-1
x"’”"—%(Z apx + Z apxP — a ) i=1,2,...,n, (2.15)
i \k=1

eine Folge von Niherungswerten (x‘l”>, x‘z”, ..., x) berechnet. Die hinreichenden Konver-
genzkriterien (2.5) und (2.6) lauten jetzt

i-1

a; a;
w=Y ||+ £l<1, i=1,2,...,n, (2.16)
k=1| Gii k=i+1| Qi . I
(Zeilensummenkriterium)
k-1 n
B= 3 |2y Y | ERicr, k=1,2,..,n 2.17)
=1l Qi i=k+1l Qi

(Spaltensummenkriterium).

Die Kriterien hidngen nicht von der Anfangsndherung ab; durch eine ungliickliche Wahl
der Anfangsndherung wird also die Konvergenz nicht beeinfluBt.

Beispiel 2.5: Fiir das lineare inhomogene Gleichungssystem

3 3 8
X1 +?x2 +?x3—?,
1 1 2
?xl + X, +?x3—?,
1
THETREx=
wollen wir, ausgehend von der Anf: dherung x{¥ = x{¥ = x{” = 1 drei Schritte mit dem Itera-

tionsverfahren in Gesamtschritten durchfiihren. Das Verfahren konvergiert, weil das Spaltensum-
menkriterium erfuillt ist:

I-2p-d g 4
H S,Mz 5,/43 5

(Das Zeilensummenkriterium ist nicht erfiillt.)
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Wir berechnen nun nach Gleichung (2.15) die Ndherungen

1 2
x{P= *a—” (apx{ + ax? - a)) = 5
x) = -1 (ax? + apx{ = ay) = _i,
ay N
x0= -1 (x4 g X0 gy=2
3 PR 32X ) =7
xﬁz):%z 1,1200, xﬁ”=%=0,8320,
20 130
() - () e A L
x$ 25 0,8000, x§ 125 1,0400,
52 242
@)= =2 - ()= 2 =
xP =33 2,0800, x5’ =775 1,9360.

Die exakte Losung ist x; =1, x; = —1, x;=2.

Die im Abschnitt 1. erlduterte Stabilitdt der Problemstellung ist auch bei der Aufgabe
der Losung eines linearen Gleichungssystems von Bedeutung. Bei einer bestimmten Kon-
stellation und bei bestimmten GroBenverhéltnissen der Koeffizienten a; kann der Fall
eintreten, daB sich bei kleinen Anderungen der a; und g; (i, k=1,2, ..., n) die Losung
des Gleichungssystems stark @ndert. Man nennt in diesem Falle das Gleichungssystem
schlecht konditioniert. In der Literatur, z. B. in [11], werden sog. Konditionszahlen angege-
ben; anhand der GroBe dieser Konditionszahlen kann man Aussagen iiber das Stabilitéts-
verhalten der Aufgabe treffen. Untersuchungen zur numerischen Behandlung schlecht
konditionierter linearer Gleichungssysteme sind in [21] enthalten.

Aufgabe 2.4: Geben Sie die der Gleichung (2.15) entsprechende Iterationsvorschrift fir das Itera-
tionsverfahren in Einzelschritten an und fithren Sie mit diesem Verfahren drei Schritte fiir das Glei-
chungssystem aus Beispiel 2.5 durch! Verwenden Sie dabei dieselbe Anfangsndherung!

2.4.  Eliminationsverfahren fiir lineare Gleichungssysteme

Die in Abschnitt 2.1.2. angedeutete Methode der Losung von Gleichungssystemen
durch Elimination 1Bt sich im Falle linearer Gleichungssysteme systematisch ausfiihren;
die Regeln dazu sind unter dem Namen GauBscher Algorithmus bekannt und in Band 13
dieses Lehrwerks ausfiihrlich beschrieben. Auf wichtige numerische Fragen im Zusam-
menhang mit der Anwendung dés GauBschen Algorithmus wird umfassend z. B. in [12]
und [16] hingewiesen. Das betrifft vor allem die Pivotwahl, d.h. die Wahl des entscheiden-
den Koeffizienten fiir einen Eliminationsschritt.

Der GauBsche Algorithmus ist universell anwendbar auf jedes lineare Gleichungssy-
stem. Allerdings erhebt sich die Frage, ob es fur spezielle lineare Gleichungssysteme
nicht speziell zugeschnittene, effektiver arbeitende Losungsmethoden gibt. Wir wollen
uns am Beispiel der Progonki-Methode fuir tridiagonale lineare Gleichungssysteme davon
iiberzeugen, daB es durchaus lohnt, die Spezifik eines Spezialfalles gezielt numerisch aus-
zunutzen.

Gegeben sei also ein lineares Gleichungssystem (2.13) mit der speziellen Eigenschaft

a;=0 fiir|i—j|>1. (2.18)
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Man kann sich dann zur Beschreibung des Algorithmus von der Doppelindizierung losen
und das Gleichungssystem folgendermaBen aufschreiben:

dix; + ¢1x, =b
ayx, + dyxy + 03 =b,

a3x; + dix; + ¢3x4 : = b
- e : (2.19)
Ano1Xp-2F Gy 1Xp-1F Cuo1X, = byy
Xy tdpX, =b,
Es sei d; # 0. Dann kann man x,; aus der zweiten Gleichung eliminieren, man erhilt als
neue zweite Gleichung

dyxy + ¢x3 = b))

& r—p, -2
4 ¢, und by=0b, 4 by.

In analoger Weise kann man bei d, + 0 aus der zweiten und dritten Gleichung x, elimi-
nieren usw. Allgemein ergibt sich dann:

mit dy=d, -

7 g
di X1t G X2 = by,

, a
dk+l=dk+l_—fij] Cr» (2.20)
k
, A+1 4,
b1 =byoy——— b}
k+1 k+1 dk k
Die gesuchten Unbekannten x,, ..., x, erhdlt man dann durch Riickwirtsrechnung:
n
, 2.21)
b — (
xg%:’,‘x"i, k=n-1,n-2,..,1.
k

Die Formeln (2.20), (2.21) lassen erkennen, daB die Losung tridiagonaler linearer Glei-
chungssysteme auBerordentlich einfach und schnell vonstatten gehen kann. Es wire also
eine Vergeudung von Rechenzeit und Speicherplatz bzw. Arbeitszeit, wiirden solche Glei-
chungssysteme mit dem Standard-GauB-Algorithmus behandelt werden.

Weitere Spezialfille linearer Gleichungssysteme, fiir die spezielle Verfahren hoher Ef-
fektivitdat entwickelt wurden, sind Gleichu ysteme mit sog. Bandmatrizen verschiede-
ner Bandbreite oder groBe, schwach besetzte Systeme. Schwach besetzte Systeme zeichnen
sich dadurch aus, daB die Koeffizientenmatrix zu einem groBen Teil aus Nullen besteht
und nur relativ wenige Nichtnullelemente existieren.

Sehr bedeutsam sind auch die vielen Algorithmen fiir Systeme mit symmetrischen Ko-
effizientenmatrizen. Hier wurden die grundlegenden Ideen von Cholesky geliefert, der
eine effektive Zerlegung der Koeffizientenmatrix entwickelte. Fiir alle Interessenten an
dieser Problematik sei zum weiterfiihrenden Studium z.B. [11], [12], [30] empfohlen.

2.5. (Matrizen-)Eigenwertproblem

Von groBer Wichtigkeit fiir zahlreiche Anwendungen in der modernen Technik ist fol-
gende Aufgabenstellung:
Gesucht sind Werte eines zunéchst unbestimmten Parameters 4, fiir die das lineare ho-
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mogene Gleichungssystem
(@ —A)x;tapx;+ ...+ a;,x,=0
ayx,+(ay—A)xy+ ...+ a3, x, =0
5 H i H (2.22a)
Xy + Xy + .+ (@ —A) X, =0
bzw. in Matrizenschreibweise
(A-AE)x=0 (2.22b)

nichttriviale Lésungen besitzt, und diese Losungen sind auch gesucht. Die Koeffizienten
a; der Matrix A seien reell.

Als homogenes Gleichungssystem besitzt (2.22) genau dann nichttriviale Losungen
x #+ 0, wenn die Koeffizientendeterminante des Systems verschwindet:

ay—4 ap cee Qg
detA—iB)=|Tt  GmTA @ (2.23)
a, ay e Ay — A

Gleichung (2.23) stellt eine algebraische Gleichung n-ten Grades zur Bestimmung des
Parameters A, die charakteristische Gleichung, dar. Thre n Wurzeln 4; heiBen Eigenwerte
der Matrix A. i

Genau fiir diese Eigenwerte 4; hat das System (2.22) von null verschiedene Losungen x,
die Eigenlo: oder Eig ktoren. Diese sind wegen des homogenen Gleichungssy-
stems nur bis auf einen willkiirlichen Faktor bestimmbar. Fiir die weiteren Darlegungen
setzen wir voraus, daBl die Matrix A diagonalihnlich ist, d.h. daB sie sich durch eine Koor-
dinatentransformation (Ahnlichkeitstransformation) in eine Diagonalmatrix iiberfiihren
1aBt. Zu den diagonaldhnlichen Matrizen gehoren als wichtiger Sonderfall die symmetri-
schen Matrizen (a; = ay;). Bei den diagonaldhnlichen Matrizen existieren genau n linear
unabhingige Eigenvektoren. Die Losungsverfahren fiir Eigenwertaufgaben kann man in
direkte und iterative Verfahren unterteilen. Bei den direkten Verfahren werden die charak-
teristischen Gleichungen aufgestellt, ihre Wurzeln 4; bestimmt und anschlieBend die zu-
gehorigen Eigenvektoren berechnet. Verfahren dieser Art werden angewandt bei Matrizen
kleiner Reijhenzahl oder wenn sdmtliche Eigenwerte der Matrix gesucht werden. Nur
einen oder einige wenige Eigenwerte erhdlt man bei der Anwendung von iterativen Ver-
fahren. Man bekommt jedoch bei diesen Verfahren automatisch die zugehdrigen Eigen-
vektoren und umgeht die charakteristische Gleichung. Da in den meisten Fillen, insbe-
sondere bei Matrizen groBerer Reihenzahl, nicht die Gesamtheit aller Eigenwerte
interessiert, kommt den iterativen Verfahren die groBere praktische Bedeutung zu. Wir
geben deshalb hier das Iterationsverfahren von R.v. Mises an.

Ausgehend von einem beliebigen n-dimensionalen Vektor z© wird nach der Iterations-
vorschrift

20D = A0, »=0,1,2, ..., (2.24)

eine Folge von iterierten Vektoren z® = (z{, ..., z{")T gebildet, deren Eigenschaften wir
jetzt untersuchen. Da bei diagonaldhnlichen Matrizen die n Eigenvektoren x; linear unab-
hingig sind, kénnen wir z® folgendermaBen darstellen:

2O =X + Xy + ... + X, (2.25)

Aus dem System (2.22b) folgt Ax = Ax, A’x = AAx = A%k und allgemein A’x = ’x, aus
Gleichung (2.24) folgt z* = A’z®, und damit gilt unter Beriicksichtigung von Gleichung
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(2.25) fuir die iterierten Vektoren
20 = A20 = c Aix; + Ay + ..+ ALK,

L\ »
=lexit oSttt In X, |- (2.26)
N A
Nehmen wir an, die Eigenwerte seien auf folgende Weise geordnet:
[l > 1Al 2 43| = ... = |4a] 2.27)

— A, heiBt in diesem Fall dominant —, dann werden die Faktoren (%) in Gleichung
1

(2.26) mit zunehmendem » immer kleiner, und es besteht fiir v— o die asymptotische
Anndherung

z®— Aleix,, (2.28)
20D — 2,20 (wegen z®*D— 41" e x)) 2.29)
oder statt der Beziehung (2.29)
r+1)
v = z'zﬁ”) -1, (2.30)

Nach der Beziehung (2.28) konvergiert also z* gegen den (nur bis auf einen willkiirlichen
Faktor bestimmbaren) Eigenvektor x,. Die Beziehung (2.30) gilt natiirlich nur fur die
Komponenten z{" zweier aufeinanderfolgender iterierter Vektoren z, fiir die die entspre-
chenden Komponenten des Eigenvektors x; von null verschieden sind. AuBerdem muB
der Ausgangsvektor so gewéhlt werden, daB ¢, # 0 ist. Falls die Voraussetzung (2.27) nicht
erfiillt ist, ist das Verfahren auch anwendbar; nihere Ausfiihrungen hierzu sind in [30] zu
finden. Ist der betragskleinste Eigenwert gesucht, so kann dieser mit diesem Verfahren

durch Ubergang zur inversen Matrix A~!, zu der die Eigenwerte = gehoren, be-
stimmt werden.

Beispiel 2.6: Mit dem Iterationsverfahren von R.v.Mises sollen der betragsgroBte Eigenwert sowie der
zugehorige Eigenvektor der Matrix

121
A=(211
111

niherungsweise bestimmt werden. Ausgehend von z® = (1, 1, 1)T liefert die Rechnung nach Glei-
chung (2.24) die in Tabelle 2.1 angegebenen Werte. Damit ist 4, = 3,732 und

780
x;={780}.
571

Geben wir x; als Vektor mit dem Betrag 1 an, dann ist

0,628
x;={0,628 |.
0,459

Tabelle 2.1
20 ¢ | z@ | g® 2® | ¢® 2@ ¢ 20 ®
4 4 15 3,7500 56 3,7333 209 3,7321 780 3,7321
4 4 15 3,7500 56 3,7333 209 3,7321 780 3,7321
3 3 11 3,6667 41 3,7273 153 3,7321 5711 3,7321
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2.6. Programmierung und Software

Gleichungen und Gleichungssysteme sowie die Matrizen-Eigenwertaufgaben gehdren
zu den klassischen numerischen Standardaufgaben. Deshalb existieren auch leistungsfa-
hige Programme fiir viele Standard- und Spezialfille.

Wihrend nichts dagegen einzuwenden ist, fiir die Nullstellenbestimmung einer Funk-
tion ein kleines BASIC-Programm im Dialog am Kleincomputer selbst zu erarbeiten,
sollte fiir die Losung von Systemen stets zuerst nach fertiger Software gesucht werden.
Diese enthilt ndmlich im allgemeinen neben der reinen Umsetzung des Algorithmus eine
Fiille zusitzlicher MaBnahmen zur Erzielung hoher oder gewiinschter Genauigkeit, zur

@

[ TesT:=noRrM (Fx) ]

Bild 2.1. Newton-Raphson-Verfahren
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Gewihrleistung der Stabilitdt sowie zur umfassenden Information des Nutzers iber Ei-
genschaften seines Problems. Das alles wird der Anfinger nie in sein Programm aufneh-
men konnen ...

In [12] findet man ALGOL-60-Programme fiir lineare Gleichungssysteme und Matri-
zen-Eigenwertaufgaben. Das Programmpaket Numerische Mathematik (PP NUMATH-1)
des VE Kombinat ROBOTRON bietet in Form von FORTRAN-Subroutinen zehn Soft-
warebausteine zur Losung linearer Gleichungssysteme an [31, 3.1.1.6.], dariiber hinaus
werden Softwarebausteine zur Losung von Eigenwertproblemen [31, 3.4.1.6.] sowie zur
Losung nichtlinearer Gleichungssysteme [31, 3.4.2.6.] angeboten.

Die Losung nichtlinearer Gleichungssysteme ist vorherrschender Gegenstand des Bu-
ches [25], in dem auf weitere Software verwiesen wird.

Fiir alle, die jedoch eigene Programme entwickeln miissen (oder wollen), sei jedoch be-
sonders darauf hingewiesen, daB bei Programmen fiir lineare Gleichungssysteme die Art
der Pivotisierung entscheidend fir die Leistungsfiahigkeit des Programms ist; Programme
zur Umsetzung von Iterationsverfahren dagegen erfordern sauberes Formulieren von Ab-
bruchbedingungen.

Bild 2.1 enthilt einen Programmablaufplan fir das Newton-Raphson-Verfahren.
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3.1. Aufgabenstellung

Unter Approximation (Anndherung) im engeren Sinne versteht man die Ersetzung
einer gegebenen Funktion durch eine geeignet bestimmte andere Funktion. Diese Pro-
blemstellung tritt auf, wenn

a) fur eine durch Messungen in Tabellenform oder grafisch erhaltene Funktion fiir wei-
tere Untersuchungen eine formelmaBige Darstellung bendtigt wird,

b) eine komplizierte (d.h. schwierig zu handhabende) formelmiaBig gegebene Funktion
in einem bestimmten Bereich durch eine ,einfachere“ Funktion angenédhert werden
soll.

Wir formulieren nun die Approximationsaufgabe allgemein: Auf einer Menge X soll
eine gegebene Funktion y = f(x) durch eine Funktion y = F(x) aus einer vorgegebenen
Funktionsklasse unter Beriicksichtigung bestimmter Forderungen angendhert werden.
F(x) heiBt dann approximierende Funktion. Die Menge X kann ein Intervall [a, b] sein
oder nur aus diskreten Punkten x,, xy, ..., x, bestehen. Im ersten Fall spricht man von ste-
tiger, im zweiten von diskreter (oder punktweiser) Approximation.

Die aus einer bestimmten Funktionenklasse (d. h. ihrer Form nach) gewéhlte Funktion
F(x) enthilt dabei noch eine Anzahl freier Parameter ay, a;, ..., ap,:

F(x) = F(x; ag, ay, ..., ), (3.1)

die so zu bestimmen sind, daB die jeweiligen Approximationsforderungen erfiillt werden.
Als praktisch wichtige Beispiele sind bekannt:
a) Anndherung durch (gewohnliche) Polynome

F(x)=ag+ ayx+ ... + apx™, 3.2)
b) Annédherung durch verallgemeinerte Polynome

F(x) = ap@o(x) + a191(x) + ... + @ppu(x), (3.3)
c) Anndherung durch Exponentialfunktionen der Form

F(x) = age®+ " + ... + a,e%+1*,

Wir werden uns in den weiteren Darlegungen meist auf die Approximation durch Funk-
tionen der Form (3.2) und (3.3) beschrinken; sie enthalten die Parameter linear und sind
deshalb leichter zu behandeln.

Den Ansatz c) benutzt man zur Beschreibung von Schwingungen; die Koeffizienten
@41, ..., @yp+1 Sind dann im allgemeinen komplex.

Bei fest vorgegebener Funktionenklasse unterscheiden sich die verschiedenen Approxi-
mationsarten im wesentlichen durch die unterschiedlichen Forderungen an die approxi-
mierende Funktion. Je nach der zugrundegelegten Forderung erhélt man fiir f(x) bei glei-
cher Funktionenklasse von F(x) sich i. allg. in den Parametern unterscheidende
approximierende Funktionen.

Im folgenden wenden wir uns den gebrduchlichen Approximationsarten zu. (Zu diesen
gehort auch die im Band 2 dieses Lehrwerks behandelte Taylor-Entwicklung, bei der eine
formelméBig gegebene Funktion f(x) durch ein Polynom (3.2) angenéhert wird. An das
approximierende Polynom wird dabei die Forderung gestellt, mit der gegebenen Funktion
f(x) an einer Stelle im Funktionswert und in einer bestimmten Zahl von Ableitungswer-
ten libereinzustimmen.)
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3.2. Interpolation
3.2.1. Die Interpolationsaufgabe
Bei der Interpolation fordert man Ubereinstimmung von f(x) und F(x) an n + 1 festen,
paarweise verschiedenen Stellen (sog. Stiitzstellen) x;:
F(xy) = f(x0), k=0,1,..,n. (3.4

Die Funktionswerte f(x;) (k =0, ..., n) werden auch Stitzwerte genannt.
Bei der Polynominterpolation sucht man ein Polynom (3.2) moglichst kleinen Grades,
das die Interpolationsforderung (3.4) erfuillt.

Satz 3.1: Es gibt hochstens ein Interpolationspolynom vom Grad n, das die Interpolationsforde-
rung erfiillt, d. h. das das Gleichungssystem

ag+ ayxg + axi+ ..+ axt=f(x), k=0,..,n, (3.5)
befriedigt.

Beweis: Angenommen, es gibe zwei verschiedene Interpolationspolynome p(x) und g(x),
jeweils vom Grad n. Dann wire

h(x)=p(x) = q(x)
ebenfalls ein Polynom vom Grad n. Wegen
pOa) =f0xa), 0,

q(x) = f(x), B
gilt dann

sn,

h(x) =0, k=0,...,n.

Dies bedeutet aber nichts anderes, als daB A(x) n + 1 Nullstellen besitzen miite. Das
steht aber im Widerspruch zu obiger Feststellung, daB h(x) ein Polynom vom Grade n
wire. Also ist die Annahme falsch und die Behauptung des Satzes bewiesen. @

Satz 3.2: Es gibt genau ein Interpolationspolynom vom Grade n, das die Interpolationsforderung
erfiillt.

Beweis: Daf es hochstens ein Interpolationspolynom gibt, wurde bereits im vorigen Satz
bewiesen. Nun braucht nur noch gezeigt zu werden, daB es mindestens ein solches Poly-
nom gibt. Diesen Beweis fithren wir konstruktiv, d.h., wir geben ein Polynom an und zei-
gen, daB es die Interpolationsforderung erfiillt. Wir betrachten das Polynom

F(x)= Y f(x)- Li(x) (3.6)
i=0
mit Li(x) = (x = x0) (x = x1) oo (x = X)) (X = Xj41) .. (X — X) a7

(o = x0) (o = x1) o (6= Xi1) (X = Xiaq) on (X = X)
Es gilt wegen (3.7)
1 fir i=k, L
Li(xk)_{o fir i+k, i k=0,1,...,n
und damit folgt aus (3.6) fur alle k=0, 1, ..., n
F(xi) = f(xe) - L(xi) = f(xe). (3.8)
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Da fiir alle i =0, ..., n die Ly(x) Polynome n-ten Grades sind, hat das Polynom (3.6)
hochstens den Grad n (beim Zusammenfassen konnen sich Potenzen von x aufheben).
Damit ist unter Beriicksichtigung von (3.8) nachgewiesen, daB das Polynom (3.6) die Lo-
sung der gewShnlichen Interpolationsaufgabe ist.

Somit ist der Beweis beendet. &

3.2.2. Der Interpolationsfehler

Die Abweichungen zwischen der gegebenen Funktion f(x) und dem nach der La-
grangeschen bzw. Newtonschen Interpolationsformel bestimmten Interpolationspolynom
148t sich durch Angabe des Restgliedes gemidB f(x) = F(x) + R,.(x) mathematisch fas-
sen. Man findet fiir das Restglied unter Zugrundelegung der Stiitzstellen xg, x1, ..., X,

X X)Ly
Ryr(x) iSO, 39
wobei £ eine im allgemeinen unbekannte Stelle zwischen der groBten und der kleinsten
der n + 2 Stellen x, Xy, ..., x, ist. Fiir praktische Zwecke ist allerdings durch die Kenntnis
dieser Darstellung des Restgliedes nicht viel gewonnen, da z.B. fiir tabellarisch gegebene
Funktionen die Bestimmung der (n + 1)-ten Ableitung ein schwieriges Problem sein
kann.
Es ist offensichtlich, daB diese Form des Restgliedes nur fiir Funktionen f(x) gilt, die
entsprechend oft stetig differenzierbar sind. Das sei hier vorausgesetzt.

Beispiel 3.1: Das Interpolationspolynom hochstens 2. Grades, das mit der Funktion y = f(x) = 2* an
den Stellen xo= —1, x; =0 und x, =1 iibereinstimmt, lautet

F(x)=l+%x+%xz. (3.10)

Wegen f"(x) = 2%(In 2)* lautet nach (3.9) das Restglied

_ Gt (x-0)(x—1)
a 3!

Ry(x) 2¢(In2)%.

Fragen wir nach dem Fehler von F(x) bei x = %—, sO miissen wir
R 2 =—L~25(ln2)3 -1=sé=s1
*\2 16 ’ =c=

abschitzen. Weil die Funktion y = 2* mit x streng monoton wichst, gilt

(2 1) __(n2’ 1
16 2)=7716 2

ZéRa(

—0,0416 = R; (%) = -0,0104.

Aus (3.10) finden wir als Niherung fiir 2= \/—2_ =1,4142 den Wert F(%) =1,4375, d.h., der Fehler

betrdgt —0,0233 und liegt im errechneten Fehlerintervall.

3.2.3. Berechnung des Interpolationspolynoms

Nach Abschnitt 3.2.1. gibt es genau ein Interpolationspolynom; man erhilt die Koeffi-
zienten ay, ..., a, dieses Polynoms durch Losung des linearen Gleichungssystems (3.5).
Hierzu gibt es nun verschiedene Methoden, die zu verschied D Il des Interpo-
lationspolynoms flihren. Eine Form kennen wir bereits — die in (3.6) bis (3.8) angegebene
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Lagrange-Darstellung. Sie entstand dadurch, daB Lagrange das System (3.5) allgemein ge-
16st hat, so daB man nur noch in die fertige Formel einzusetzen braucht:

x| O] 1] 2| 4
=31 1] 217 7%
durch ein Interpolationspolynom approximiert werden. Wir berechnen gemiB (3.7)
Gox)(x=x)(x=x) _ (x-D@x-2)(x-4) _x~Tx>+14x -8

Beispiel 3.2: Die durch die Wertetafel b Funktion y = f(x) soll

Ly(x) = (%0 — x1) (X0 — X3) (Xo — X3) 3 = ,
Lix) = (X=X (x=x) (x=x3) _ x(x=2)(x=4) =x3~6x7+8x’
(1 = Xo) (%1 = X) (X1 — X3) 3 3
Ly(x) = (X=X) (x=x) (x=%) _ x(x=1D(x=4) :x3~5x2+4x,
(32 = x0) (32 = x1) (X2 = X3) ) 2
Ly(x) = (x=x) (x=x) (x=X) _ x(x=1D(x=2) :X3—3x2+2x;
(x3 = x0) (x3 = x1) (X3 = X3) 24 24

nach (3.6) erhalten wir dann

F(x) = —3Ly(x) + Ly(x) + 2Ly(x) + TL3(x) = % x3—3x2+ 12—3)( S5

Bild 3.1 zeigt den Verlauf des gefundenen Interpolationspolynoms.

Y

Bild 3.1. Interpolationspolynom nach
Lagrange (zu Beispiel 3.2)

Die Lagrange-Darstellung des Interpolationspolynoms ist recht unhandlich und wird
selten praktisch genutzt. Sie ist aber sehr niitzlich fiir theoretische Uberlegungen, z.B. bei
der numerischen Integration. Die Lagrange-Darstellung fiihrt vor allem dann zu hohem
Aufwand, wenn man durch Hinzunahme weiterer Stiitzstellen den Grad des Interpola-
tionspolynoms erhohen mochte. Hier verwendet man vielmehr die Newton-Darstellung des
Interpolationspolynoms. Die Newton-Darstellung hat die Form

F(x) =+ e1(x = xo) + e(x = xp) (x = xp) + ...

3.11
+6a(x = Xg) (x = x1) .. (X = Xp-1), @10
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wobei die Koeffizienten ¢, ..., ¢, nach einer von Newton angegebenen Rekursionsformel
im sogenannten Steigungsschema einfach ermittelt werden konnen. Hierauf wird in Band 1
dieses Lehrwerks im Abschnitt 9. ausfiihrlich eingegangen. Sind speziell die Stiitzstellen
dquidistant (gleichabstidndig) verteilt, so vereinfacht sich das Steigungsschema zum Diffe-
renzenschema, und aus der Newton-Darstellung lassen sich verschiedenartige Darstellun-
gen, die sog. Differenzenformeln, ableiten. Dazu gehoren z.B. die Darstellungen nach Gre-
gory-Newton, Stirling und Bessel. In [28] wird Theorie und Praxis der Differenzen-Interpo-
lationsformeln ausfiihrlich behandelt.

3.2.4. Konvergenz von Folgen von Interpolationspolynomen

Es ist ein weit verbreiteter Irrtum anzunehmen, daB mit VergroBerung der Zahl der
Stiitzstellen das Interpolationspolynom sich zwangsldufig besser der gegebenen Funktion
anpaft.

Beispiel 3.3: Die Funktion

1
e
wird im Intervall —5 < x < 5 unter Verwendung von 7, 13 und 19 dquidistant verteilten Stiitzstellen
interpoliert.
Bild 3.2 zeigt den Verlauf von f(x) sowie der resultierenden Interpolationspolynome sechsten, zwolf-
ten bzw. achtzehnten Grades.

Bild 3.2. Folge von
\/ |l Interpolationspolyno-
¥ men (zu Beispiel 3.3)

Wie leicht zu erkennen ist, beginnt das Interpolationspolynom mit steigender Stiitzstellenzahl im-
mer starker um die gegebene Funktion zu oszillieren. Die hsende Anzahl der Stiitzstellen fiihrt
zwar zur Erh6hung des Grades des Interpolationspolynoms, aber offensichtlich nicht zu b An-
ndherung — im Gegenteil!

Wer sich mit dem mathematischen Hintergrund dieses Phinomens niher beschiftigen
will, dem sei das Buch von Natanson ,Konstruktive Funktionentheorie“ [19] empfoh-
len.

Wir merken uns: Es gibt stetige Funktionen, fiir die trotz VergroBerung der Zahl der
Stiitzstellen keine Annédherung des Interpolationspolynoms an diese Funktion erfolgt.
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3.2.5. Spline-Interpolation

Das soeben mitgeteilte Phdnomen fiihrte zur Suche nach einer Funktionenklasse, mit
deren Hilfe man so interpolieren kann, daB bei VergroBerung der Stiitzstellenzahl mit Si-
cherheit eine bessere Anndherung erfolgt, ohne daB dabei gleichzeitig die interpolierende
Funktion numerisch unhandlich wird. Solche Funktionen fand man in der Menge der
stiickweise polynomialen Funktionen, auch als Splines bezeichnet:

Das Intervall [a, b] sei vermittels einer Zerlegung A in n + 1 Teilintervalle zerlegt:

Ata=xp<x;<... <X, < Xp+1=b. (3.12)

Dann nennt man eine Funktion ¢(x) einen Spline des Grades 2m — 1 mit Stetigkeitsver-
lust w {iber A, wenn folgendes gilt:

a) @(x) ist in jedem Teilintervall [x;, x;. ], i=0, ..., n, ein Polynom vom Grad

2m -1,
b) @(x) ist in den inneren Knoten x, ..., x, stetig und besitzt dort stetige Ableitungen
bis einschlieBlich der Ordnung 2m —1—w (1= w < m).

Kurz gesagt sind Splines aneinandergefiigte Polynomstiicke ungeraden Grades, wobei
in den inneren Knoten nicht alle Ableitungen stetig ineinander iibergehen.

Die in Bild 3.3 dargestellte Funktion ist offensichtlich eine Spline-Funktion, denn sie
besteht abschnittsweise aus Polynomen 3.Grades, aber in den Knoten geht die dritte Ab-
leitung nicht stetig ineinander iiber.

Um etwas vertrauter mit dieser neuen Funktionenklasse zu werden, wollen wir folgen-
den Satz beweisen:

Satz 3.3: Splinefunktionen, die nach den beschriebenen Prinzipien konstruiert sind, konnen
2m + nw Bedingungen erfiillen.

Beweis: Da der Spline im ersten, zweiten, ..., (n + 1)-ten Teilintervall von [a, b] jeweils
ein Polynom (2m — 1)-ten Grades ist, stehen 2m(n + 1) Koeffizienten zur Verfiigung. Da
in x; jedoch Stetigkeit, stetige 1. Ableitung, ..., stetige (2m — 1 — w)-te Ableitung gefordert
wird (das sind 2m — w Forderungen), reduziert sich die Anzahl der frei verfiigbaren Koef-
fizienten auf 2m(n + 1) — (2m — w). Im néchsten Knoten x, miissen ebenfalls 2m — w
Forderungen erfuillt werden, so daB sich die Anzahl der frei verfiigbaren Koeffizienten auf
2m(n + 1) — 2(2m — w) reduziert. Betrachtet man alle weiteren inneren Knoten, so erhilt
man schlieBlich, daB den urspriinglich vorhandenen 2m(n + 1) Koeffizienten zur Bestim-
mung des Splines bereits n(2m — w) Stetigkeitsforderungen gegeniiberstehen. Daraus er-
gibt sich, daB jeder Spline 2m(n + 1) — n(2m — w) = 2m + nw freie Koeffizienten besitzt.
Damit ist die Behauptung bewiesen. &

Im folgenden wollen wir Splines, die nach obigen Konstruktionsprinzipien aufgebaut
sind, als Elemente des Splineraumes Sp(m, A, w) bezeichnen. Die Aussage des Satzes
lautet dann kurz

dim Sp(m, A, ) =2m + nw. (3.13)

Nun wenden wir uns den beiden mdoglichen Extrema bei der Wahl von w zu:
Splines mit w =1 heiBen Lagrange-Splines, sie haben den geringsten Stetigkeitsverlust
in den inneren Knoten und sind also die glattesten unter allen Splines. Es gilt

dim Sp(m, A, 1) =2m + n. (3.14)

Splines mit @ = m heiBen Hermite-Splines, sie haben den groBten Stetigkeitsverlust in den
inneren Knoten. Es gilt

dim Sp(m, A, m) =m(n +2). (3.15)
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Veranschaulichen kann man sich das am besten am Fall m = 2: Hier sind Polynome drit-
ten Grades aneinandergesetzt, wobei fiir = 1 (Lagrange) Stetigkeit bis zur zweiten Ab-
leitung iiber ganz [a, b] gesichert ist. Bei @ = m =2 (Hermite) dagegen ist der Spline nur
bis zur ersten Ableitung iiber [a, b] stetig, die zweite Ableitung kann dagegen in den inne-
ren Knoten Spriinge haben. Vergleicht man (3.14) und (3.15), so stellt man fest, daB Her-
mite-Splines stets mehr freie Koeffizienten haben als Lagrange-Splines.

Aufgabe 3.1: Begriinden Sie, warum das so sein muB; v haulichen Sie sich L - und Her- *

mite-Splines fiir m =1 und m = 3!

AuBerordentlich bedeutsam ist die aus (3.13) ablesbare Feststellung, daB die Dimen-
sion von Splines stets sowohl vom Grad m als auch von der Knotenzahl n abhingt. Damit
ist gegeniiber der Arbeit mit klassischen Polynomen eine neue Qualitit erreicht, denn bei
Polynomen war die Erh6hung der Anzahl der fiir die Erfiillung von Bedingungen verfiig-
baren Koeffizienten unweigerlich mit einer Erh6hung des Grades verbunden. Wir stellen
also fest: Mit Splines kann man beim Interpolieren die Anzahl der Stiitzstellen erhohen,
ohne daB sich der Grad der Polynomstiicke in den einzelnen Teilintervallen erhohen
muB.

Betrachten wir nun die Spline-Interpolation im einzelnen, wobei wir uns auf den Fall
m = 2 beschriinken wollen (kubische Spline-Interpolation):

Gegeben seien eine Funktion f(f) sowie n + 2 Stiitzstellen t,, t,, ..., t,, #,. 1. Gesucht ist
ein interpolierender Spline. Man wiihlt zweckmiBig die Stiitzstellen als die Knoten des
gesuchten interpolierenden Splines und erhilt damit die Bedingungen

o) =f(x), x=t  j=0,..,n+1 (3.16)

Betrachtet man nun die Anzahl der verfligbaren Koeffizienten
bei m =2, w =1 (Lagrange): dimSp(2, A, 1) =4 + n,
bei m =2, w =2 (Hermite): dim Sp(2, A, 2) =2(n + 2),
so stellt man fest, daB die Interpolationsforderung (3.16) weder Lagrange- noch Hermite-
Spline eindeutig festlegt. Man kann also weitere Forderungen willkiirlich festlegen und
sich damit interpolierende kubische Splines mit gewiinschten zusdtzlichen Eigenschaften er-
zeugen. Aus der Fiille der Moglichkeiten, solche Zusatzforderungen zu wihlen, sei hier
nur jeweils eine fur Lagrange- bzw. Hermite-Splines genannt:

Bei kubischen Lagrange-Splines kann man noch zwei Zusatzforderungen angeben.
Man wihlt oft dafir die Forderung nach bestimmten Randanstiegen:

@'(x0) = f(x0),

@' (Xps1) =f (X0 1)- 3.17)

Bei Hermite-Splines kann man im kubischen Fall bereits n + 2 zusitzliche Forderungen
stellen. Man gibt hier oft z. B. neben den Funktionswerten auch noch die Ableitungswerte
in den Knoten vor:

') =f(x), X
Beispiel 3.4: Die durch die Wertetafel aus Beispiel 3.2 gegebene Funktion soll durch einen kubischen
Lagrange-Spline interpoliert werden. Zusitzlich gelte fiir die Ableitungswerte am Rande

23 151
w60 PP

4, j=0,..,n+1. (3.18)

9'(0)=
Elementares Vorgehen liefert fiir die 12 unbekannten Koeffizienten der drei kubischen Polynome in
den Intervallen [0, 1], [1, 2] und [2, 4] insgesamt sechs Gleichungen zur Sicherung der Stetigkeitsfor-
derungen in den inneren Knoten, vier Gleichungen aus der Interpolationsforderung sowie zwei Glei-

3 Oelschldgel, Methoden
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chungen aus den Zusatzforderungen. Man erhilt:

. _ 223 39
©,1): @)= 3+—46 X=X

. :ﬁﬂ ﬂ _& 2 ﬂ 3
1,2): o) %6 + %6 x s x +46X s

. -294 281 108 , 9 s
A T T T S T
Durch Einsetzen kann man sich iiberzeugen, daB an den Stiitzstellen x =0, 1, 2, 4 sowohl @(x) als
auch @'(x) und @”(x) stetig ineinander iibergehen. In Bild 3.3 ist die gefundene Splinefunktion dar-
gestellt.

Bild 3.3. Interpolation durch eine kubische Spli-
nefunktion (zu Beispiel 3.3)

Wenden wir uns nun dem Spezialfall dquidistanter Stiitzstellen zu:
_b-a
n+1’

x;=a+ jh, h Jj=0,..,n+1. 3.19)
Fiir Splines mit gleichabstindigen Knoten existieren hiufig benutzte Basisdarstellungen.
So kann man z.B. jeden kubischen Lagrange-Spline @(x) € Sp(2, A, 1) darstellen als Li-
nearkombination aus n + 4 Basissplines (B-Splines):

n+2

o(x)= ZlakBk(x)- (3.20)

Dabei haben die kubischen B-Splines folgende Form:

(x = x-)°, X € [X;-2, Xi-1l,
B3+ 3h%(x = ;o) + 3h(x = x;-)? = 3(x — %1, x€[xi-y, X1,

Bi(x) = e B3+ 3h%(x;0 1 — X) + 3R (X1 — x)* = 3(x;41 = X)*, X €[x;, Xir1], 321
(xiv1— %), X € [Xi4 15 Xival,
0 sonst.

Man sieht sofort, daB jeder kubische B-Spline nur auf vier Teilintervallen, d. h. in drei
Knoten der Zerlegung von [a, b], von Null verschieden ist. Dies bedeutet, daB das aus der
Interpolationsforderung (3.16) und den Zusatzforderungen resultierende lineare Glei-
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chungssystem fiir a_,, a, ..., a,, a,,, schwach besetzt wird und eine spezielle Struktur
erhilt. Je nach Art der Zusatzforderungen kann diese spezielle Struktur sogar Bandstruk-
tur bis hin zur Tridiagonalitdt erhalten. Damit konnen spezielle numerische Verfahren
(siehe Abschnitt 2.4.) zur Anwendung kommen.

3.3.  Approximation im Mittel

Bei dieser Approximationsart fordert man, daB im stetigen bzw. diskreten Fall das Inte-
gral bzw. die Summe iiber die Fehlerquadrate

b

0= [[F(x) —f(x)Pdx (3.22)
bzw.
0= X, [F0w) = f(x0)F (3.23)

minimal wird. Bei (3.22) muB f(x) formelméBig vorliegen, wihrend die Anwendung von
(3.23) vor allem bei gegebenen Wertetabellen angebracht ist. F(x) ist aus einer bestimm-
ten Funktionenklasse vorzugeben. Als solche ist z. B. die Klasse (3.3) der verallgemeiner-
ten Polynome

F(x)= Y a,px(x)
k=0

mit linear unabhéngigen Funktionen @y(x), ..., @,(x) gebrauchlich, die auch die gewohn-
lichen Polynome (3.2) umfaBt.
Besonders von praktischer Bedeutung ist die diskrete Approximation im Mittel.

3.3.1. Diskrete Approximation im Mittel
Eine Methode, die diskrete Approximation im Mittel rechnerisch durchzufiihren, ist

die von C. F. GauB entwickelte Methode der klei Quadrate.
Die Funktion y = f(x) sei durch die Wertetafel

X Xo "X

S Yo [yl | on

gegeben; sie soll durch eine Funktion der Gestalt (3.1)
F(x)=F(x; ay, ay, ..., a,)

approximiert werden. Wir setzen m < n voraus; im Fall m = n konnten die Koeffizienten
ay, ..., a, aus dem Gleichungssystem

F(x) = f(x), k=0,1,...,m, (3.24)

bestimmt werden; wegen der punktweisen Ubereinstimmung der beiden Funktionen er-
hélt man Q4 =0 und wird auf die im Abschnitt 3.2. behandelte Interpolation zuriickge-
fithrt. Im Fall m > n lassen sich die Koeffizienten nicht eindeutig bestimmen. Fiir Q, fin-
den wir gemaB (3.23)

Qi= Y, [F(x; ao, ay, ..., an) = 9il; (3.25)
=0
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da die x; und y, fest vorgegeben sind, ist Q4 nur eine Funktion der Konstanten ag, ay, ...,

a,; Wir schreiben deshalb

Q4= Qu(ao, ay, ..., y) = Z [F(x; ao, @y, ..., @) = Wi)* -

Nach der Approximationsforderung ist Qy(do, ay, ..., a,) zu minimieren; die notwendigen
Bedingungen dafiir lauten

804 _, 9Qs_ 80 _
34, 0, 3a, 0, .., 3a, 0. (3.26)
Dieses Gleichungssystem fiir die Konstanten ay, ..., a, ist zu 16sen. Die Gleichungen

(3.26) bezeichnet man als Normalgleichungen. Wir wollen voraussetzen, daB das System
(3.26) genau eine Losung 4, d, ..., 4, besitzt, fur die Qq(ay,...,a,) ein Minimum an-
nimmt. (Ist F(x) speziell ein Polynom, so hat das Gleichungssystem (3.26) stets eine ein-

deutige Losung, falls die Punkte x,, x;, ..., X, simtlich voneinander verschieden sind und
auBerdem m < n gilt.) Dann ist
F(x) = F(x; dg, dy, ..., @) 3.27)

die gesuchte approximierende Funktion.

Beispiel 3.5: Die durch eine Wertetafel (Tabelle 3.1, Spalten 2 und 3) gegebene Funktion y = f(x) soll
durch eine Funktion der Form F(x) = % + a, approximiert werden.
In diesem Beispiel ist also @o(x) = 1/x und @,(x) =1, F(x;; aq, a;) wird zu

F(xi; ag, @) = ao@o(xi) + a191(xx) = ao/x¢ + a;.

Tabelle 3.1
1 2 3 4 5 6
1 1 by
k X Vi == e Lk
- * Xk x; Xk
-0 1 6,80 1,000 1,000 6,800
1 2 4,80 0,500 0,250 2,400
2 3 3,90 0,333 0,111 1,300
3 4 3,10 0,250 0,062 0,775
4 S 3,00 0,200 0,040 0,600
5 6 2,80 0,167 0,028 0,467
¥ 21 24,40 2,450 1,491 12,342

S 2
Wegen Qy = Z [Z—i+ a — yk] finden wir als Normalgleichungen gemiB (3.26)

k=0
3 _,% [ a ] 1 30 _, ¢ [ a ]
= 2 +a - —_= —=4 = L4 - =
dagy zkzx:o Xk S Xk o da, 2k§° Xk Sl 0.
Durch Umformung erhalten wir das folgende Gleich ystem fir die P: apund a;:

1 1 1
aan—iHlZ;:Zi—:, ﬂoZ?k*alZl:Z}’k-
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Durch Einsetzen der Summen, die in den Spalten’4, 5, 6 der Tabelle 3.1 berechnet wurden, ergibt sich
1,491 ay + 2,450 a, = 12,342,
2,450ay+6a, =244

mit der Losung do=4,84, a,=2,09. Damit lautet. die gesuchte approximierende Funktion

F(x) = 484 222 42,00,

Um bei praktischen Aufgabenstellungen sinnvolle Ergebnisse zu erzielen, wird man F(x)
nicht aus einer willkiirlichen Funktionenklasse wéhlen, sondern aus einer solchen, die
Funktionen enthilt, die in der Bildkurve mit der nach der Wertetafel skizzierten Funk-
tion y = f(x) etwa iibereinstimmen und in ihrer Struktur dem physikalischen Inhalt des
betrachteten Prozesses entsprechen (z. B. wird man fiir Abkiihlungsvorgéinge die Klasse
der Exponentialfunktionen wéhlen).

Zur Erleichterung des Vergleichs der Bildkurven sind z.B. in [6] Bildkurvenscharen fiir
eine Reihe von Funktionenklassen dargestellt.

Zur Beurteilung der Giite der gefundenen approximierenden Funktion F(x; dy, ..., dn)
reicht in der Praxis oftmals ein Vergleich zwischen y, und F(x;; ay, ..., d,) fur
k=0,1, ..., n aus. Es empfiehlt sich, dazu eine Skizze der Bildkurven anzufertigen._

Wir wenden uns nun einem praktisch wichtigen und relativ einfach zu handhabenden
Spezialfall zu, der diskreten Approximation im Mittel durch Polynome im einzelnen.
Wegen F(x) =ay+ ajx + ... + a,x™ gilt jetzt

n
Qu(ay, ay, ..., ap) = Z [ag+ ayxi + ... + awx? — w2,
k=0

Die Normalgleichungen (3.26) lauten nun

aQ &

d= Za0+a1xk+ Lt anxP -] =0
3 n

Qd Z [ao+ @i+ ...+ @px} — ] X% =0,
30, z
SE=2) [a0+ aXit .+ X~ Yyl xE =0
da, k=0

oder nach entsprechender Umordnung unter Verwendung der GauBschen Abkiirzung fir

Summen durch eckige Klammern (Z u = [u]
k=0

(n+1)ag+[x]a;, +..+[x"a, =[],
[xlag+ [x}ay  +...+[x"" a,=[w],
[xMag+[x*1ay  +...+[x""a,=[x%], (3.28)
[x™ao+ [x"*ay + ... + [x*" @, =[x"y].

Damit haben wir ein lineares Gleichungssystem mit symmetrischer Koeffizientenmatrix
fiir die m + 1 gesuchten Koeffizienten a; gefunden, das mit Hilfe eines der in Abschnitt 2.
genannten Verfahren, z. B. dem GauBschen Algorithmus, gelost werden kann. Besonders
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geeignet ist hierfiir das Verfahren von Cholesky, das eine Abwandlung des GauBschen Al-
gorithmus fiir Gleichungssysteme mit symmetrischer Koeffizientenmatrix ist (siehe z. B.
[30]). Unter Benutzung seiner eindeutig bestimmten Losung (siehe Bemerkung im Ab-
schnitt 3.3.1.) @, dy, ..., 4, erhdlt man als approximierende Funktion

F(x)=dy+ d\x+ ...+ d,x™.

Beispiel 3.6: Eine Messung der Sittigung y des Niederschl s mit Luft off (bei 760 mm
Hg) ergab die in den Spalten 2 und 3 der Tabelle 3.2 b Abhiéngigkeit von der T t.
Eine Skizze der Bildkurve zeigt, daB diese nahezu den Verlauf einer quadratischen Parabel hat. Wir
setzen deshalb F(f) = ao + a,t + a,t2. Das Gleichungssystem (3.28) lautet konkret

Tag+ 105a;+  2275a,= 7347,
105ay+ 2275a,+ 55125a,= 940,95,
2275ay+ 55125a, + 1421875a, = 19273,25.

Tabelle 3.2
1 2 3 4 5 6 7 8 9
k #[°C] nl™] 7 I I B Vi £y F(t)
0 0 14,56 0 0 0 0,00 0,00 14,49
1 N 12,73 25 125 625 63,65 318,25 12,80
2 10 11,25 100 1000 10000 112,50 1125,00 11,32
3 15 10,06 225 3375 50625 150,90 2263,00 10,06
4 20 9,09 400 8000 160000 181,80 3636,00 9,02
5 25 8,26 625 15625 390625 206,50 5162,50 8,19
6 30 7,52 900 27000 810000 225,60 6768,00 7,59
> 105 73,47 2275 55125 1421875 940,95 19273,25

Man erhilt die Losung d, = 14,492, 4, = —0,361, d, = 0,004. Somit ist die gesuchte approximierende
Funktion

F(1) = 14,492 — 0,361¢ + 0,0047%.
In Spalte 9 von Tabelle 3.2 sind die Werte der Funktion F(f) angegeben.
Aufgabe 3.2: Der elektrische Widerstand R eines Leiters wurde bei verschiedenen Temperaturen ¢ ge-
messen. Es ergaben sich folgende Werte:

t°C] |19 |25 |30 |36 |40 |45 |50

R[2]]76,30]77,80 79,75 [ 80,80 | 82,35 | 83,90 | 85,10

Die Bildkurve R = f(1) zeigt einen fast linearen Verlauf Fiihren Sie die diskrete Approximation im
Mittel mit einem Polynom 1. Grades durch!

Auf die diskrete Approximation im Mittel durch Polynome lassen sich einige andere
Aufgabenstellungen zuriickfithren. Statt z.B. eine gegebene Funktion y = f(x) durch eine
Exponentialfunktion der Gestalt F(x) = a(l0* zu approximieren, kann man Y = Ig f(x)
durch die lineare Funktion G(x) = Ig F(x) = a;x + 1g ao approximieren und dann zur Aus-
gangsaufgabe zuriickkehren.

In [6] sind fiir einige Funktionenklassen die dazu notwendigen Transformationen be-
schrieben.

Fiir Polynome hoheren Grades wird die Approximation nach der Methode der klein-
sten Quadrate rechnerisch umfangreich. Man benutzt dann zweckméBig ein anderes Kon-
struktionsverfahren fiir das approximierende Polynom, das sog. Orthogonalpolynome ver-
wendet. Hierzu verweisen wir auf die Literatur, z. B. [9].
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3.3.2. Stetige Approximation im Mittel

Wir beschrinken uns auf die Approximation einer gegebenen stetigen Funktion durch
verallgemeinerte Polynome

F(x) = ay@o(x) + a;0,(x) + ... + p@p(x) (3.3)

auf einem Intervall [a, b], wobei die @;(x) (i =0, ..., m) ebenfalls stetig seien.
Das Fehlerquadratintegral (3.22) ergibt sich damit zu (der Index bezieht sich im folgen-
den auf die Anzahl der Funktionen ¢;(x)):

b

Qn= I[ao¢o(x) +a,9i(X) + ... + ap@n(x) = f(x)Pdx. (3.29)

a

Zur Bestimmung des Minimums von Q,, = Q,,(ay, ay, ..., a,) setzen wir die partiellen Ab-
leitungen von Q,, nach den Parametern ay, 4, ..., 4, gleich null:

b

3
aQa'." = 2_[[“0‘1’00‘) T a191(x) ...+ an@n(x) — f(X)] @(x)dx =0,

a

i=0,1,...,m. (3.30)

Unter Benutzung der Abkiirzungen
b b

(@, @) = Iw,-(x)zpj(x)dx, o) = If(X)w,-(X)dx
erhalten wir aus (3.30) das lineare System der Normalgleichungen

ay(@o, @o) + ai(@o, @) + ... + an(@o, @) = (£, @o),
ao(@o, @1) + ay(@y, @) + ... + an(@), ¥) = (£, 1), (3.31)

a)(@o, Pm) + a1(@1, @) + ... + A0 ( @y Pr) = (5 @)

das eine eindeutige Losung g, dy, ..., d, besitzt, wenn die Funktionen @q(x), @,(x), ...,
@m(x) auf dem Intervall [a, b] linear unabhingig sind. Die lineare Unabhingigkeit eines
Funktionssystems 148t sich mit der Wronski-Determinante (siehe Band 7/1) nachweisen.
Die approximierende Funktion lautet damit F(x) = do@o(x) + d1¢1(x) + ... + dm@Pm(x);
ihr entspricht ein minimales Fehlerquadratintegral vom Wert

b

0n= f[dm(x) + @pu(X) + ..+ Gy Pn(x) — f(X) P dx.

a

Offensichtlich erhoht die zur Aufstellung des Gleichungssystems (3.31) notwendige Be-
rechnung von m(m + 1) Integralen den Rechenaufwand erheblich. Da das Funktionssy-
stem @;(x) (i=0, 1, ..., m) jedoch vorgegeben wird, ist es sinnvoll, solche Funktionensy-
steme auszuwihlen, fir die

b
N _ =0 fir i=*j
@ ) an(x)q:,(x)dx{>0 o (3.32)

a
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gilt. Denn dann erhdlt man sofort die Parameter a, ..., a, aus

b

Jf(X)w.(x)dx
a=S® _:_ o1 m (3.33)
(@5 @) b Ty .
I[wi(X)lzdx
Funktionensysteme, fir die (3.32) gilt, nennt man orthogonale Funkti . Die

nach (3.33) berechneten Parameter heiBen Fourier-Koeffizienten (im allgemeinsten Sinne)
der Funktion f(x) beziiglich des orthogonalen Funktionensystems ¢,(x) (i=0, 1, ...,
m).

Ein wichtiges Beispiel fiir ein orthogonales Funktionensystem ist das trigonometrische
Funktionensystem

2
@o(x) =1, Wx(x)=5iﬂ%X, wz(X)=COS%x, ws(x)ZsinTHx,

2n . rm
@4(x) = cosTx, ooy Pm—1(Xx) = sme, Pm(x) = COSTX

(p>0, m gerade, r=%) auf jedem Intervall der Linge 2p. Wir legen das Intervall

[—p, p] zugrunde. Die Funktionen ¢;(x) (i =0, 1, ..., m) besitzen die Periode 2p. Fiir die-
ses Funktionensystem gilt

P
1,1 = I 12dx = 2p,
-p

. im . jm ir i¥j
sin —x51n~j~p—xdx={0 L ' jf

J

in n 0 fur i#*}j,
cos—;xcos—xdx =

p fur i=j,

Ly R

i jTT . im jTt
sin’—x, cosl—x> = Ism——x cos]—xdx =0,
p p b p p

1, sinﬂx) = (1, cosﬂ—r—x> =0 fur allei.
p p

Schreiben wir jetzt das verallgemeinerte Polynom (3.3) in der fir dieses Funktionensy-
stem iiblichen Form

rmn LT LI
F(x) =2 4 g,cos = x + ... + 4,008 x + b,sin—x + ... + b sin—x,
2 p p p
(3.34)
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so erhalten wir aus (3.33) sofort

a;= f(x)cosTxdx i=0,1,...,r,

'=|H

(3.35)

b=

N R ——

F(x)sin%xdx, i=1,2,..,r

SR

Diese Koeffizienten a; und b; heiBen trigonometrische Fourier-Koeffizienten der Funktion
f(x), die entsprechende approximierende Funktion der Gestalt (3.34) heiBt trigonometri-
sches Fourier-Polynom der Funktion f(x). Durch Grenziibergang r— « erhilt man hieraus
die bekannte trigonometrische Fourier-Reihe der Funktion f(x)

fx) =% Z‘( cos—x+ b; s1n7x>

Die Darstellung einer Funktion durch das trigonometrische Fourier-Polynom bzw. die
Fourier-Reihe nennt man auch harmonische Analyse (weitergehende, insbesondere theore-
tische Untersuchungen hierzu findet man z. B. im Band 3 ,Unendliche Reihen“ dieses
Lehrwerks).

Sind die in (3.35) auftretenden Integrale kompliziert oder nicht geschlossen losbar,
oder ist die Funktion f(x) nur als Wertetabelle gegeben, so ist man zur Berechnung der
Fourier-Koeffizienten auf Ndherungsverfahren angewiesen. Aus der Vielzahl der Verfah-
ren, die sich im wesentlichen durch das verwendete numerische Integrationsverfahren un-
terscheiden, skizzieren wir hier das Verfahren von Runge.

Dabei wird das Intervall [—p, p] durch die Punkte

2kp

x"z_p+T’ k=1,2,...,n-1,

in n Teilintervalle der Linge h =Tp zerlegt. Dann konnen die Integrale (3.35) nédhe-

rungsweise durch die folgenden Summen ersetzt werden:

a,=i Zf(xk)cosi—nxk=£ Zf(xk)cos[ < rr+2k—ﬂ>],
P p n &=

i=0,1,...,r, (3.36)
h < . im 2 o . 2km

i Xi) Sin——Xx3 = — xp)sin | if —m+———||,

12 s 2 s+ )]

i=1,2,..,r

Zur Vermeidung von Komplikationen und aus Genauigkeitsgriinden sollte n = 4r gewéhlt
werden.

Beispiel 3.7: Die Fourier-Koeffizienten aq, a,, b; der Funktion f(x) = x + 2, x € [~2, 2], sollen nach
den Formeln (3.36) naherungsweise berechnet werden. Wir wihlen n = 8 (h = 0,5) und rechnen nach
dem Schema von Tabelle 3.3.

Wir finden damit fir die Parameter
1

aot%~18:4,5, alz%(—Z): -0,5, b1=7'4,8284=1,2071A
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Die approximierende Funktion lautet somit

F(x)=2,25-05 cos%x +1,2071 sin%m

Tabelle 3.3
k Xy Sf(xi) g=—-m+ 2km €OS o sin oy f(x;) cos oy S(x;) sin oy
n

1 -1,5 0,5 -135° -0,7071 -0,7071  —0,3536 . —0,3536
2 =l 1 - 90° 0 -1 0 Sl

3 -0,5 1,5 - 45° . 0,7071 -0,7071 1,0607 —-1,0607
4 0 2 0° 1 0 2 0

5 0,5 2,5 45° 0,7071  0,7071 1,7678 1,7678
6 1 3 90° 0 1 0 3

7 1,5 35 135° -0,7071  0,7071  —2,4749 2,4749
8 2 4 180° =l 0 -4 0

Y 18,0 —2,0000 4,8284

Ein weiteres wichtiges orthogonales Funktionensystem ist das der Legendreschen Polynome

- L& o i
@i(x) = Pi(x) = o DL =01, m, (3.37)
auf dem Intervall [—1, 1]. Die ersten fiinf Legendreschen Polynome Py(x) =1, Pi(x) = x,

Py(x) = % (Bx2=1), Py(x) = -;— (5x3 = 3x), Py(x) = % (35x* = 30x2 + 3) zeigt Bild 3.4.
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_____________ i Bild 3.4. Legendre-Polynome
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Bei Kenntnis der ersten beiden Polynome lassen sich alle weiteren auch nach der Rekur-
sionsformel

(i+1) Py =Qi+1)xP,—iPi_,
berechnen. Es gilt

1

0 fur i#j,
(P, P)= IP,-(x)Pj(x)dx= PP
4 i1 T ish

damit erhdlt man nach (3.33) als Fourier-Koeffizienten der Funktion f(x) beziiglich der
Legendreschen Polynome

1

L _l'f(x) Pi(x)dx, i=0,1,..., m (3.38)
-1

a;=

Aufgabe 3.3: Approximieren Sie die Funktion f(x) = e* auf dem Intervall [—1, 1] unter Benutzung
der Legendreschen Polynome durch ein Polynom 2. Grades.

Von groBer Bedeutung sind auch die Tschebyscheff- Polynome auf die im folgenden
Abschnitt ndher eingegangen wird.

3.4. Weitere Approximationsarten

Neben der GauB-Approximation, bei der gefordert wird, daB die Fehlerquadrat-
summe

0= Z [F(x0) = f(x) P

bzw. im stetigen Fall das Fehlerquadratintegral
b

Q= ![F(X) = f())Pdx

minimal wird, sind noch andere Approximationsarten gebrauchlich.

So wird bei der Tschebyscheff-Approximation, die auch als gleichméaBige Approxima-
tion bezeichnet wird, die approximierende Funktion aus der Forderung bestimmt, daB8 der
betragsmiBig maximale Abstand zu minimieren ist, d.h.,

To=, 0 IFG) = £l (3.39)
bzw.
L=, sy plFO) —f@)] (3.40)

ist zu minimieren.
Die klassische Aufgabe der gleichméaBigen Approximation besteht darin, unter allen
Polynomen n — 1-ten Grades ein solches Polynom

Pua(t)=agtagt+ ...+ a, "1
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zu ermitteln, das im Sinne der gleichmédBigen Approximation das Polynom
() =1

im Intervall [—1, 1] am besten annéhert.
Dieses Problem hat eine eindeutige Losung in Form der Tschebyscheff ~Polynome (vgl.
Band 12, 1.2.3))

Ty(t) =1
T(t)=t
Ty(t) = 2 —% (3.41)

3
=3 - =
L) ==t

L= M0 -5 Toos®,  n=1,2,....

Fiir Tschebyscheff-Polynome gilt die folgende ,gewichtete“ Orthogonalitdtsbeziehung:
+1
0 fur n#*m,
I T,()Ty(x)dx=7 m (3.42)

1 __
5Vl =x? " Y 221

GroBe Anwendung finden die Tschebyscheff-Polynome z. B. bei der sog. schnellen Fou-
rier-Transformation zur Entwicklung von Funktionen nach Polynomen.

Bei der Methode der kleinsten Absolutbetrige ist die Summe bzw. das Integral iiber die
Abweichungsbetrige

fir n=m

M= k;) [F(x) = £(x0)| - (3.43)
bzw.
b
M, = wa) - f0)ldx (3.44)

zu minimieren.

Obwohl die letztgenannten Approximationsarten in den Anwendungen durchaus ihren
Platz haben, dominiert aufgrund der relativen Einfachheit und der statistischen Deutung
noch die GauBsche Fehlerquadratmethode.

3.5. Programmierung und Software

Zur Interpolation bietet PP NUMATH-1 vier Basismoduln in Form von FORTRAN-
Subroutinen an [31, 3.2.1.]. Der Anwender muB hier insbesondere iiberlegen, wie er die
Ergebnisse geschickt darstellt.

Die Auswertung der Formeln zur linearen diskreten Approximation im Mittel ist ein-
fach und heutzutage schon hdufig durch Tastendruck auf einem entsprechend hergerich-
teten Taschen- oder Tischrechner moglich. Im allgemeinen schlieBen sich an die Ermitt-
lung der Ausgleichsgerade jedoch noch weitere statistische Rechnungen an (z.B. Angabe
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der Vertrauensintervalle fiir die Koeffizienten), so daB Programme fiir Rechnungen dieser
Art besser in der Statistik-Software (z. B. [32]) gesucht werden sollten.

Setzt man Rechnungen zur Fehlerquadratmethode und zu weiterfithrenden statisti-
schen Untersuchungen jedoch selbst in Programme um, so hat man oft Formeln, in denen
anndhernd gleich groBe Zahlen voneinander subtrahiert werden (z. B. Mittelwert minus
MeBwerte). Das unkritische Ubernehmen dieser Formeln ins Programm fiihrt zu numeri-
schen Instabilitdten! Viele Statistikbiicher geben deshalb Umformungen an, in denen der-
artige Subtraktionen nicht mehr auftauchen.



4. Numerische Integration

4.1. Einfiihrung

Wir betrachten Verfahren zur Losung bestimmter Integrale
b
I=Jf(x)t_:1x. 4.1)

Das Intergral sei nicht uneigentlich. Verfahren zur numerischen bestimmten Integration
werden auch als Quadraturverfahren bezeichnet.

Die Aufgabe, ein unbestimmtes Integral, d. h. eine Stammfunktion von f(x)

F(x)= [f(x)dx 4.2)

numerisch zu berechnen, kann auch mit den Quadraturverfahren behandelt werden: Da das unbe-
stimmte Integral (4.2) bekanntlich auch in der Form

x

F(x)= Jf(t)dt 4.3)
a
geschrieben werden kann, erhdlt man Funktionswerte einer Stammfunktion fiir eine diskrete Punkt-
menge X, Xy, ..., X, durch Berechnung der bestimmten Integrale
X x, x.
Foo=[rman  Fop=[sway ... Fe =] rwar

bei beliebig vorgegebener Zahl a.

Ein numerisches Integrationsverfahren mu8 dann angewendet werden, wenn entweder
f(x) formelméBig gegeben ist und die geschlossene (d. h. formelmiBige) Integration zu
aufwendig oder undurchfiihrbar ist, oder wenn von f(x) nur eine Wertetabelle bekannt
ist.

4.2. Mittelwertformeln

Wir wollen vorerst voraussetzen, daB der Integrand f(x) in (4.1) formelmiBig gegeben
ist oder daB man an jeder beliebigen Stelle den Funktionswert berechnen kann. Eine Qua-
draturformel hat allgemein die Form

b

_[f(x)dx ~ Y wif(x). @49
k=0

Dabei unterscheiden sich die einzelnen Formeln voneinander durch die Anzahl der
Summanden (n + 1), durch die Zahlen x; und w; (k =0, ..., n). Die x; werden Stiitzstel-
len und die w, werden Gewichte der Quadraturformel genannt. Das Integral wird somit
berechnet als ein gewichtetes Mittel von Funktionswerten, woraus sich der Name , Mittel-
wertformeln“ ergibt.

Bei der Herleitung von Mittelwertformeln in der Form (4.4) gibt man sich die Anzahl
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der Summanden vor und ermittelt die restlichen GroBen so, daB die Formel Polynome
mdglichst hohen Grades noch exakt integriert, d. h., daB sie moglichst genau wird.
h

Beispiel 4.1: Wir wollen eine moglichst genaue Quadraturformel fiir j f(x)dx entwickeln, wobei
-h

n =1 vorgegeben sei. Wir versuchen, ein Polynom 4. Grades exakt zu integrieren, d. h.,
h

4 4 4
m =Wy mX 0 1 mX1
CuX™ | dx = W Xt W Cux]' &)
Sp\m=0 m=0 m=0

fiir alle Koeffizienten ¢, (m =0, ..., 4). Die formelméBige Berechnung des Integrals in (*) und nach-
folgender Vergleich der Faktoren von ¢y, ..., ¢, auf der linken und rechten Seite liefert das System

wo +w, =2h,
woxo + wix; =0,

2
Wwox3 + wyx?= 3 < h,

woxy + wix; =0, **)

2
woxg+ wixi= ?h5.

Dieses System besteht aus fiinf Gleichungen fiir vier Unbekannte. Aus den ersten vier Gleichun-
gen erhdlt man wy=w,=h, xo= ‘-;i;/3— . Diese Werte erfiillen die fiinfte Gleichung nicht, somit
konnen nur Polynome dritten Grades beriicksichtigt werden, und man erhalt

h

: II(X)dx a[f(-53) +1(55)]- )

Diese Formel integriert Polynome bis einschlieBlich dritten Grades exakt.

Allgemein kann man sagen: Hat eine Quadraturformel m zu bestimmende Parameter
(Stiitzstellen und Gewichte), so kann man stets die exakte Integration von Polynomen
(m — 1)-ten Grades fordern. In Sonderfdllen (s. Abschn. 4.2.2.) werden sogar noch Poly-
nome m-ten Grades exakt integriert.

4.2.1. Quadraturformeln von Gauf§

Quadraturformeln, die die Maximalgenauigkeit fiir eine vorgegebene Anzahl von Stiitz-
stellen erreichen, sind die Formeln von GauB, die nur fiir Integrale mit symmetrischem
Integrationsintervall angegeben werden (durch eine Transformation kann man stets ein
solches Intervall erreichen):

2hf(0) + 3 f"(f), (n=0), 4.5)
h
Jf(x) dx = { [(***) aus Beispiel 4.1] + %fﬂ)(f), (n=1), (4.6)
-h
h h h’
v [Sf(—?w/g) +8£(0) + Sf(? E)] + W/“"(f),
(n=2). 4.7)

Den Quadraturfehler ermittelt man durch Abschitzen des Restgliedes, wobei & eine Zwi-
schenstelle aus [—h, k] ist. Die Stiitzstellen der GauBschen Quadraturformeln sind die
Nullstellen der Legendreschen Polynome (s. [2], [19], [28]).
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4.2.2. Quadraturformeln von Newton-Cotes

Hierbei werden die n + 1 Stiitzstellen x; dquidistant vorgegeben:

xe=a+kh mit h=b;“, k=0,..,n. 4.8)

Verfiigbar fiir die Genauigkeit sind somit nur noch die n + 1 Gewichte w;.
Fir n=1, ..., 4 lauten die Formeln:

h n '

7 o) + )] = 757D, 4.9
1 3 2 Lfx0) + 470 + Fx] - f‘"(f) 4.10)
Jf(x) dx=1 3. B
‘ 3 Vo) +30x)) +3f0x) + fx9)] = 80 90, .11

7
2 107k + 3200 + 12/ + 32/ + 0] i OB, (@12)

Die Stiitzstellen sind jeweils aus (4.8) zu entnehmen. Eine besondere Eigenschaft dieser
Formeln ist es, daB fiir gerades n sogar Polynome vom Hochstgrad n + 1 exakt integriert
werden (m.a. W.: (4.10) ist so genau wie (4.11)). Die Quadraturformeln (4.9) und (4.10)
sind als Trapez- und Keplersche FaBregel bekannt, (4.11) heiBt 3/8-Regel.

4.2.3. Quadraturformeln von Tschebyscheff

Damit die Fehler der Funktionswerte gleichmdfig in den Integralwert eingehen, wird ge-
fordert, daB alle Gewichte gleich groB sind: wy =w (k=0, ..., n). Es verbleiben somit
noch die n + 1 Stiitzstellen und die GroBe w. Deshalb werden die angegebenen Formeln
Polynome (n + 1)-ten Grades exakt integrieren. Es ergibt sich fir n=0, 1, 2

2h- f(0) + Ry, (4.13)

ff(x)dx— { ( %ﬁ)V(%ﬁ)] + Ry, 4.14)
” = [f(—gﬁ)ﬂ(owf(%ﬁ)] +R,. @.15)

Die Formeln sind bis n = 7 brauchbar. Fiir n =8 und n =10 ergeben sich keine reellen
Stiitzstellen. Die Restglieder sind z. B. in [28] angegeben.

4.2.4. Verallgemeinerte Mittelwertformeln

Durch Zerlegung des Integrationsintervalls und Anwendung der Trapezregel bzw. der Fa3-
regel erhdlt man die verallgemeinerte Trapezregel

b

Jf(X) dx =~ ‘2h“[f(Xo) +2f(x) + 2f(x0) + oo+ 2f(xn 1) + ()] (4.16)
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und die bekannte Simpson-Regel (n gerade)
b

Jf(x)dx*—;l'[f(Xo) FA4f(x) + 2f(x) + ..+ 20 (X -2) + 4 (Xa- 1) + F(X0)],

. 4.17)
wobei die Stellen x; nach Vorgabe von n aus (4.8) folgen.

Beispiel 4.2: f(x) =1/x, a =1, b =5, Verwendung von (4.16).

ne L =ty L= 3G O) =24,
n= 2 (h,=2): Jz=%(f(l)+2f(3)+f(5))=1,86667,
n= 4 (hy=1: ]3:%(/-(1)*'2f(2)+2f(3)+2f(4)+f(5))=1,68334,

n=8 (h=0)5): Ji= 'Oé—s(f(l) T2f(1,5) + ... +2f(4,5) + £(5)) = 1,62897,

n=16 (hy=0,225): Js=1,61441,
n=32 (hs=0,125): Jo=1,61068,
n=64 (hs=0,0625): J,=1,60975.
Der Vergleich mit dem exakten Wert In S = 1,609 44 zeigt, daB man fiir n = 64 in die Néhe des exak-

ten Wertes kommt, d. h. daB iiber 60 Funktionswertberechnungen notwendig sind. Diese langsame
Konvergenz ist ein Nachteil der Trapezregel.

4.3. Romberg-Algorithmus

Zur Konvergenzbeschleunigung der verallgemeinerten Trapezregel, d.h. zur Erzielung der
gleichen Genauigkeit mit weniger Funktionswertberechnungen, benutzt man das Extrapo-
lationsprinzip. Man interpretiert dabei J, als J(h,), J, als J(h,), ... (h; > h, > ...) und ver-
sucht auf geeignete Weise, den Wert J., = J(0), der wegen der Konvergenz der Trapezregel
mit dem gesuchten Integralwert iibereinstimmt, ndherungsweise aus den Werten J(h,),
J(hy), ..., J(h,) zu berechnen. Man stellt dazu das Interpolationspolynom von J(h) mit
Hilfe von J(h,), ..., J(h,) auf und ermittelt den Funktionswert dieses Polynoms an der
Stelle h =0. Da diese Stelle auBerhalb des von k; und h, begrenzten Intervalls liegt,
spricht man von Extrapolation.

J

1,6/
D S S S S S S S S

12 3 4§ 0 % "
Bild 4.1. Veranschaulichung des Extrapolationsverfahrens (zu Beispiel 4.3)

4 Oelschldgel, Methoden
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Beispiel 4.3: Es werden die Ergebnisse von Beispiel 4.2 verwendet. In Bild 4.1 sind die Integralndhe-
rungen iiber 42 sowie die ersten Interpolationspolynome eingetragen. (Das Auftragen iiber h2 erweist
sich bei der formelmiBigen Behandlung als zweckmiBig.) Die Gerade schneidet bei J;, = 1,69, die
Parabel bei J;; =1,62, und die (nicht mehr eingezeichnete) kubische Parabel durch vier Punkte
schneidet bei J;, = 1,61 die Ordinatenachse. Der Index 14 besagt, daB dieser Wert aus Jy, J,, J; und
J, extrapoliert wurde. J,, ist somit entstanden unter Verwendung von 9 Funktionswerten, hat aber die
gleiche Genauigkeit wie J; in Beispiel 4.2!

Das Extrapolations-Quadraturverfahren, das in dem Beispiel eine Konvergenzbeschleu-
nigung offenbarte, hat diese Eigenschaft auch allgemein (s. [21]).

Offenbar ist es nicht notwendig, das gesamte Interpolationspolynom aufzustellen, da
nur der Wert fiir & = 0 interessiert. Die Zahlen Jy,, Jy3, J14, ... konnen nacheinander nach
dem Romberg-Algorithmus berechnet werden.
hy _h

2’ hs = 27
wendung des Steigungsschemas (vgl. Band 1, Abschnitt 9.6.) erhidlt man die Gleichungen
der Interpolationspolynome Aus dem Interpolationspolynom 1.Grades folgt fiir 2= 0:

Es wird vorausgesetzt, daB h,=b —a, h, = gewihlt wird. Unter Ver-

Ji— 17 d2 =4
Jp=4+ hz h2 (-h)=J+ 3T (4.18)
Das Interpolationspolynom 2. Grades liefert fiir A2 = 0:
Limh Ly
Jy— . h2—h2 h2-h?
J=J+ h%;;g (_h%)"' 2 h2§ h22 : (- hz)( hz)
h? h3
Unter Verwendung von (4.18) und wegen h3 = T‘, hi= —42~ folgt
16 Jy—J.
To=lot 1z [,3 =EE —Ju}A “.19)
Definiert man nun analog (4.18) eine weitere GroBe J,; nach
Ip=U5+ % (4.20)
so erhdlt man damit
16 Jys =T,
T =T+ o Uy = Jl = oy + 2 @an
Die allgemeine Beschreibung des Romberg-Algorithmus lautet:
J; =Jx-
ij=Jj+"k+_.l+_1:"__JxLL. (4.22)

4=

Die Formeln (4.18) und (4.20) ergeben sich aus (4.22), wenn man J, =J,;, J,=Jy, ...
setzt.
Die Rechnung erfolgt vorteilhaft in einem Schema:

| 1 2 3 4
Iy
I Ji2
' I Jis

-!4 -_/34 !24 -!14
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Beispiel 4.4: Wir berechnen mit dem Romberg-Schema noch einmal die im vorigen Beispiel grafisch
5

ermittelten Werte J;,, Ji3 und Jy4 fir ’[%dx:
1

1 2 3
2,4
1,86 667 1,68 889
1,68334 1,62223 1,61779
1,62897 1,61085 1,61009 1,60997

Mit dem Romberg-Verfahren wurde somit unter Verwendung von 9 Funktionswertberechnungen der
5

Niaherungswert 1,60 997 fiir das Integral j%dx erhalten.
1

Bild 4.2 enthilt einen Programmablaufplan zur Umsetzung des Romberg-Algorithmus.
Bild 4.3 schildert dazu das Unterprogramm mit der Trapezregel.

Die hier zur Konvergenzbeschleunigung benutzte Extrapolationsidee stammt von Ri-
chardson und ist in ihrer Anwendbarkeit keinesfalls nur auf die Trapezregel bei bestimm-
ten Integralen beschrinkt. Man verwendet Richardson-Extrapolation auch erfolgreich bei
numerischer Differentiation und der Losung von Anfangswertaufgaben, wobei zu einem
gegebenen Basisverfahren nach bestimmter Vorschrift ein Extrapolationstableau aufge-
stellt wird [16].

44.  Programmierung und Software

Trapez- und Simpsonregel gelten als beliebte Ubungsaufgaben fiir Programmieranfén-
ger, auch die Einbettung der Trapezregel als Unterprogramm in ein Romberg-Programm
wird oft gefordert. Im Vergleich zu anderen numerischen Standardaufgaben kann hier
auch der Anfdnger brauchbare Programme schreiben. Umfangreiche Organisations-,
Steuer- und Diagnoseprozesse sind nicht erforderlich, sofern nicht Integranden besonde-
rer Kompliziertheit vorliegen.

Im PP NUMATH-1 werden drei Basismoduln angeboten — fiir tabellarisch gegebene
Integranden sowie fiir analytisch gegebene Integranden und niedrige bzw. hohe Genauig-
keitsforderung.
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1

]

T(IK):E=T(I+1,K) +
F(T(I+K )= T(I,K=1))/(bx%( K-3 )=1)

ABS (T(1,K)+T(1,K-1)>EPS
AND  K<KMAX

Bild 4.2.
( sToP ) Romberg-Verfahren
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N:=(B-A)/H

Yo =FKT (A)
YE: = FKT(B)
[TRAP:=2.5¥H*(Yg+YE) |

ly: = Friavien ]

[TRAP: =TRAP — H xY ]

n
RETURN

Bild 4.3. Trapezregel-Unterprogramm zum Romberg-Ver-
fahren




5. Numerische Lésung gewohnlicher
Differentialgleichungen

5.1. Einfiihrung

Wie schon im Abschnitt 2.6. des Bandes ,Gewohnliche Differentialgleichungen,
Teil 1¢ dieses Lehrwerks beont wurde, ist die Losbarkeit einer Differentialgleichung
(DG]) auf formelméBigem Wege ein Spezialfall, der allerdings nach wie vor groBe Bedeu-
tung besitzt. In der Regel sind jedoch die bei praktischen Problemen auftretenden DGIn
nicht formelmaBig (man sagt auch ,geschlossen®) losbar, zu ihrer Losung miissen dann
numerische Methoden angewandt werden. Ein weiterer Sachverhalt spricht ebenfalls fiir
numerische Losungsmethoden: Praktische Probleme erfordern im allgemeinen nicht die
Ermittlung der gesamten Losungsschar der DGI.

Wir wollen im folgenden also nicht die Losung von DGlIn schlechthin, sondern die Lo-
sung von Problemen betrachtet, die aus DGIn und Bedingungen bestehen. Je nach Art der
Bedingungen unterscheidet man Anfangs- (AWA) und Randwertaufgaben (RWA), zu de-
nen als Spezialfall noch die Eigenwertaufgaben (EWA) gehoren. Wir wollen nur solche
Aufgaben betrachten, bei denen die Anzahl der Bedingungen mit dem Grad der DGI
ubereinstimmt (s. auch Band 7, Teil 1).

Wir wenden uns nun den genannten Aufgabenstellungen zu.

5.2.  Anfangswertaufgaben
5.2.1. Anfangswertaufgaben bei Differentialgleichungen erster Ordnung

5.2.1.1. Einfiihrung, Problemstellung

Wir betrachten zuerst Verfahren zur Losung von Problemen, deren mathematisches
Modell die Form

Y =fxy), G-I
¥(x0) = Yo, (5.2)

besitzt.

Dabei werde die Losungsfunktion fiir x = x, gesucht. Dann nennt man das Problem
(5.1), (5.2) eine Anfangswertaufgabe (AWA), und (5.2) hei8t Anfangsbedingung (AB). Die
Bedingungen fiir Existenz und Einzigkeit der Losung einer AWA sind in jedem Lehrbuch
iiber hohere Mathematik enthalten (s. auch Band 7, Teil 1). Die DGI (5.1) heit DGI
1. Ordnung in expliziter Form und ist ein Spezialfall der impliziten DG1 1. Ordnung
F(x,y,y") = 0. Ist die Losungsfunktion fiir x < x, gesucht, so nennen wir (5.1), (5.2) ein
Endwertproblem; durch die Transformation ¢t = —x kann ein Endwertproblem auf eine
AWA zuriickgeflihrt werden.

Wir wenden uns jetzt der Beschreibung numerischer Verfahren zu, die die Ndherungs-
16sungsfunktion in Form einer Wertetabelle liefern:

x | xo | x | x | % | ...

y Iw Tn I»n o |
die y,, ¥3, 3, ... sind Ndherungswerte fiir die exakten Losungswerte y(x;), y(x,), y(x3), ....
Dazu miissen die Argumentstellen x;, x,, X3, ... vorgegeben werden.

Allen Verfahren zur Losung von Anfangswertaufgaben ist gemeinsam, daB nacheinan-
der die Zahlen y;, y,, y3, ... bis zum gegebenen Endpunkt ermittelt werden. Die Ermitt-

; (5.3)
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lung eines Funktionswertes der Lésungsfunktion nennt man dabei einen Schritt. Das Ver-
fahren besteht dann in der schrittweisen Anwendung einer Formel zur Berechnung des
neuen Funktionswertes aus den bereits vorhandenen Funktionswerten.

Im folgenden sollen einige der bekannten Verfahren beschrieben werden.

5.2.1.2. Ausgangspunkte numerischer Losungsmethoden

Die Wertetabelle (5.3) sei bereits bis einschlieBlich (x,, y,) (n = 0, fest) berechnet wor-
den. Dabei wollen wir voraussetzen, da3 die Argumentstellen x,, x;, ... gleichabstidndig
(mit der Schrittweite ) vorgegeben seien, d. h.

X = Xo + Kh, k=0,1,2,... 5.4

Wir integrieren nun beide Seiten der DGI (5.1) von x, bis x,.:

xr’y’dx = xj ‘f(x,y(X))dx (5.5)

und erhalten

Y(Xns1) =y(xa) + J S(x, y(x))dx. (5.6)

Setzen wir fiir y(x,) den vorhandenen Naherungswert y, ein, so erhalten wir fiir die Be-
rechnung des Néherungswertes y, ., die Vorschrift

Yne1=nt I f(x, y(x)) dx. (5.7)

Die im Argument des Integranden vorkommende Funktion y = y(x) ist die gesuchte Lo-
sung; das bestimmte Integral 148t sich also nicht formelméaBig berechnen. Je nach Art der
angewandten Integrationsformel erhdlt man ein spezielles Losungsverfahren:

a) Unter Verwendung einer Rechteckregel (ohne Restglied) ergibt sich

Xpi

Vet =t | SO0 9% =0+ (e = 50 £ 30)

= Ya + B (X, Y- (5.8)
b) Unter Verwendung einer anderen Rechteckregel ergibt sich

Y1 =Y+ Xns1 = X)) fXn s 15 Yus D) =Y+ Bf (X i1, Vs 1) 5.9
c) Unter Verwendung der Trapezregel ergibt sich

h
Iner = Va3 1, Vs ) + (6 )] (5.10)
d) Ersetzt man in (5.7) den Integranden durch das durch die Punkte (x,_4, Jn-4),

(Xp=3,Yn-3)s ---» (X, y») eindeutig bestimmte Interpolationspolynom, so erhilt man
nach Ausfithrung der Integration das Verfahren

Vae1=n +7;%(1901f,, — 2774f,_, + 2616f,_, — 1274f, , +251f,_)  (5.11)

mit  fi = f(x Vi), k=n—4,.., n.
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e) Betrachtet man die Punkte (x,-3, Yu-3), (Xn-2, Yn-2); +-» (Xn+1, Yas1) und verfihrt
wie unter c¢), erhidlt man das Verfahren

Yns1=Vnt %(251)2” + 646, — 246f,_, + 106f,_, — 19f,-3) (5.12)
mit  fi = f(xi, %) (k=n-3,..,n+1).
Allgemein haben die auf diese Weise aus (5.7) erzeugten Verfahren die Gestalt

Yn+1= FOns1s Yo Ya=15 -+ Yn-k+1)» (5.13)

wobei die Funktion F durch die verwendete Integrationsformel gegeben wird.

Im Falle k=1 spricht man von einem einfach riickgreifenden Verfahren oder Ein-
schrittverfahren, im Falle k > 1 von einem k-fach riickgreifenden Verfahren oder Mehr-
schrittverfahren.

Tritt y, ., als Argument der Funktion F auf, dann liegt ein implizites,-anderenfalls ein
explizites Verfahren vor.

Die auf den Formeln (5.8) bis (5.12) basierenden Verfahren heiBen:

a) Streckenzugverfahren von Euler-Cauchy (explizites Einschrittverfahren),

b) implizites Euler-Cauchy-Verfahren (implizites Einschrittverfahren),

c) verbessertes Euler-Cauchy-Verfahren (implizites Einschrittverfahren),

d) Extrapolationsverfahren von Adams (explizites Mehrschrittverfahren, Sfach riick-

greifend),

e) Interpolationsverfahren von Adams (implizites Mehrschrittverfahren, 4fach riick-

greifend).

Vor Beginn der Rechnung mit einem k-fach riickgreifenden Verfahren miissen in einer
Anlaufrechnung (Startrechnung) mit einem Einschrittverfahren die Werte y;, y,, ..., Yk-1
bestimmt werden, y;, ist als Anfangswert gegeben.

5.2.1.3. Prediktor-Korrektor-Verfahren

Wir betrachten das verbesserte Euler-Cauchy-Verfahren. Als erstes wird man bei einer
konkreten Aufgabe versuchen, die Gleichung (5.10) nach y, ., aufzuldsen. Gelingt dies
nicht, so muB man sich eine Niherung y©,, fiir y,., verschaffen und diese Niherung
nach der Vorschrift ’

v+ =

h
Vit =t 5 o1, Y% 0) + f G )] (5.14)

iterativ verbessern.

* Aufgabe 5.1: Berechnen Sie nach Formel (5.14) y, fiir die Anfangswertaufgabe y’ = x + y?, y(0) = 1
mit h =0,1 und y =1.

Da die Iterationen die Rechnung erschweren, beschrinkt man sich auf eine Iteration
pro Schritt und versucht dafiir moglichst gute Anfangsndherungen y{, y{, ... zu fin-
den.

In unserem Falle bietet sich dafiir z. B. das einfache Euler-Cauchy-Verfahren (5.10)
an:

V1= Yut B (X, 90). (5.15)

LdBt sich nun zeigen, daB diese Anfangsndherung bereits recht gut ist, so begniigt man
sich hdufig mit einem Iterationsschritt und schreibt Anfangs- und Verbesserungsformel
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zusammen auf:

YO = It W (X, 20),

h
Y=yt U a1, 2% + St )]
Die erste Formel von (5.16) wird als Prediktor und die zweite Formel als Korrektor be-
zeichnet. Der Wert y!), ist dann schon die neue Niherung y, , ;.
Beispiel 5.1: y' = x + y%, y(0) = 1, h = 0,1, Rechnung mit Formel (5.16):
1. Schritt: Prediktor:  y® = yo+ h(xo+y3) = 1,1,

(5.16)

Korrektor: y® = yp + g (1 + (Y0P + %0+ y3) = 1,1155.
2. Schritt: Prediktor:  y¥ =y, + h(x; + y?) = 1,249934,

Korrektor: y{ =y, + %(xz + OO + x, +y) = 1,264 392.
Nachdem die Begriffe Prediktor und Korrektor an einem einfach-riickgreifenden Verfah-
ren verdeutlicht wurden, wollen wir mehrfach-riickgreifende implizite Verfahren (z. B.
(5.12)) betrachten. Auch bei solchen Verfahren wird man in der Regel nicht nach y, .,
auflosen konnen und iterieren miissen. Folglich ist die Ermittlung eines geeigneten Pre-
diktors zur Vermeidung der Iterationen wiederum sinnvoll.
Aufgabe 5.2: Uberlegen Sie, warum ein Prediktor zur Formel (5.12) am giinstigsten ein vierfach-riick- *
greifendes explizites Verfahren sein sollte!

Bevor nun einige Prediktor-Verfahren angegeben werden, wollen wir uns verdeutlichen,
wie man solche Verfahren allgemein herleiten kann. Da gibt es zundchst einmal die Me-
thode der Anwendung einer Integrationsformel auf das Integral in (5.7). Betrachtet man
alle so entstandenen Formeln, so stellt man fest, daB sie die Form
Prediktor:

V1= Yut RO Ky 92) + bof (Xn -1y Yu-) oo+ B ks 1y Yuo ke 0], (5.17)
Korrektor: .

YO =Ynt hldof (Xn i1, ¥ D+ dif G o) + oo+ df (X ks 1, Yn- k4 1)]
haben und sich in der Anzahl ung_l im Wert der Koeffizienten b; (j=1, ..., k) und 4;
(j=0, ..., k) unterscheiden. Die Uberlegung, daB die Genauigkeit u. U. groBer werden
kann, wenn anstelle von y, eine Linearkombination von Funktionswerten benutzt wird,
fithrte zum verallgemeinerten Ansatz
Prediktor:

YO =yt ot Yy gy + b O Y2) + s+ B f (X ki1, Y-k )], (5.18)
Korrektor:

YO =yt ot aVn-ker F AL f (X 1, YO D) F o+ A fKnm ke 1y Y-k D]
Mit diesem Ansatz haben wir uns vom Ausgangspunkt (5.7) gelost. Die Zahlen a;, b;, ¢;, d;
(=1, ..., k) und d; werden nun nach verschiedenen Gesichtspunkten ermittelt. Dazu
zihlen auf jeden Fall Genauigkeit und Stabilitat.

Eine MaBzahl fir die Genauigkeit einer konkreten Formel (5.18) ist die Anzahl der
iibereinstimmenden Summanden der Taylorentwicklungen von y(x,. ;) und y,.,, wobei
y(x)=y (G=nn—1,.., n—k+1) angenommen wird und an der Stelle y, entwickelt
wird:

Beispiel 5.2: Wir betrachten das Verfahren (5.8):
Yne1=Ynt R (X, ¥a) - (5.19)
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Die Taylorentwicklung von y(x, .,) lautet:
Y"(xn)

2!

Y (xa)
1

Y1) = y(xa) + (Xns1 = Xp) + (ns1 = X2+ ooy (5.20)

und unter Verwendung von y’ = f(x, y), y" = f, + f,f folgt
hl
Y(Xns1) = Yn + B (X, yo) + 5 UCon ya) + £, Gens ) i ) + - (5.21)

Vergleicht man (5.19) und (5.21) miteinander, so findet man Ubereinstimmung in zwei Summanden.
Es gilt somit

h2
Y1) = Yuo1 = 7 Uem y) + £ y2) S 30) + -] (522
Man sagt dann, der Fehler ist von der Ordnung h* oder kurz, das Verfahren hat die Ordnung 1. Es ist
tiblich, diesen Sachverhalt durch die Gleichung
V(1) = Va1 = 0(h?) (5.23)
auszudriicken.

So, wie man durch Vergleich der Taylorentwicklungen die Genauigkeit eines Verfah-
rens feststellen kann, ist umgekehrt nach Vorgabe der Genauigkeit die Ermittlung der
Zahlen a;, b;, ¢;, d; (j =1, ..., k) und dy moglich. Auf diesem Wege sind die folgenden Ver-
fahren entstanden:

a) Verfahren von Stetter (y(x, ) = Ya+1 = 0(h%)):

Y= =4yt 5yn 1+ 2R121 (X, ) + F (X1 Yu- D],

h (5.24)
Va1 = 1+ 3 UGy, 21 + 4 Gy y) + F -1, a- D)
b) Verfahren von Hamming (y(X,+1) = Yp+1 = 0(A%)):
4
Vi1 = Y3t 5 RO Y0 = a1 9-1) + 2 (a2, 3a-2)),
(5.25)

1 3h
Y& :§[9}’n = Yn-2l +TU(XM1,YE?)+ D+ 2f (% ¥a) = f(Xn-1, Ya-D]1-

Weitere Verfahren findet der Leser in der angegebenen Literatur.

Aufgabe 5.3: Berechnen Sie mit dem Verfahren von Stetter Naherungen fiir y(x,) und y(x;) der Lo-
sung von y’ = x + y% y(0) = 1 mit & =0,1. Entnehmen Sie y, aus Beispiel 5.1.

Fiir den Spezialfall, daB Prediktor und Korrektor eines Mehrschrittverfahrens die glei-
che Ordnung haben und daB diese Ordnung bekannt ist, 1aBt sich das Verfahren durch
eine Korrekturrechnung noch verbessern:

Wir setzen voraus, daB die Zahlen ¢,, ¢, und r in den Fehlergleichungen

Y(Xn+1) ‘}’51011 = chyO(&), (5.26
Y(Xni1) =¥ = hyO(E) 26)
bekannt sind (derartige Fehlergleichungen ergeben sich hédufig aus Restgliedern der Tay-
lorentwicklungen, wobei &, und &, gewisse Zwischenstellen aus [x,, x, ] sind).

Unter der Voraussetzung, daB die r-te Ableitung von y im Intervall [x,, x, . ;] konstant



5.2. Anfangswertaufgaben 59

ist, folgt
Vi — = —ahy (&) + ehy (&) = (¢ - ) hK. ‘ (5.27)
Daraus folgt .
(1) (0)
Kh' = M_ (5.28)
= ¢

Die letzte Gleichung kann man in beide Gleichungen von (5.26) einsetzen und erhilt da-
mit

(1) ©)
Y
YO =¥y = e =R
(529
YR =Y

}’(xﬁl)_}’gll: a-c
Die rechts stehenden Zahlen sind nach Beendigung des Schrittes alle bekannt, man kann
also nach jedem Schritt den Verfahrensfehler von Prediktor- und Korrektorwert einfach
ermitteln.

1

Q=75

Beispiel 5.3: Beim Verfahren von Hamming gilt ¢, = %,

Damit erhilt man:

Fehler des Prediktorwertes: y(x,.;) =y, = gi O —y;

Fehler des Korrektorwertes: y(x,.+,) —y% ;= —l—gl-(y;‘ll -y9).

Eine Verbesserung des Prediktorwertes durch Hinzufligung des aus (5.29) gefundenen
Fehlers ist jedoch erst nach der Korrekturrechnung moglich. Man behilft sich damit, da3
man den Prediktorwert mit dem Fehler des vorigen Prediktorwertes korrigiert:

P =y® + (y“’ ). (5.30)

Diese Formel nennt man Modifikator des Hamming-Verfahrens, und damit haben wir die
endgiiltige Form dieses Verfahrens, das aus Prediktor, Modifikator und Korrektor besteht,
gefunden:

Y=ty h[2f(xmy,.) S 13 Y1) + 2f (X2, V-],

.
W=y, + (y“’ »9), (5.31)

[0))

Y=g 99 = Va3 UG, Y2+ 20k 30) = ka1, - ).

Beispiel 5.4:y' —y*~x =0, y(0) =1, h = 0,1. Es sollen mit (5.31) Niherungen fiir y(0,4) und y(0,5)
berechnet werden.

Da der Prediktor dreifach-riickgreifend ist, miissen wir y;, y, und y; aus einer Startrechnung besor-
gen. Wir verwenden hier die Ergebnisse von Beispiel 5.6: y,=1,116492, y,=1,273563 und
3 =1,488018. Weiter gilt f(x, y) = x+ y% xo=0 und y,= 1.
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Rechnung:
yo=1+ 0;—4[2f(0,3; 1,488018) — £(0,2; 1,273 563) + 2/(0,1; 1,116 492)]
=1,78605,
(“’) =y, da y; aus der Startrechnung stammt,
yp= —[9 1,488018 — 1,116492] + —[f(O 4; 1,786 605) + 2/(0,3; 1,488 018)
-f(0,2;1 273 563)] =1,789397,
y®=1,116492 + — [2f(0 4;1,789597) — £(0,3; 1,488 018) + 2/(0,2; 1,273 563)]
=2,227831,

y(sl/z) _ 112

2,227831 + e [1,789397 — 1,786 605) = 2,230415,

= %[9 +1,789397 - 1,273 563] + %’3—[[(0,5; 2,230415)
+2£(0,4; 1,789 397) — £(0,3; 1,488 018)] = 2,235043.

5.2.1.4. Einschrittverfahren

Wir betrachten wiederum das verbesserte Euler-Cauchy-Verfahren (5.10). Man kann
sich schnell durch Einsetzen klarmachen, daB der Formelsatz

Yoo = 9t (R + k)
mit (5.32)

kP = Bf G 30),
K = B ey + by ya + k)

nur eine andere Schreibweise des Prediktor-Korrektor-Verfahrens (5.16) ist.
Betrachten wir weiter das Einschrittverfahren

Ves1= —(k(")+2k(")+2k(")+ k(n))

mit
k§® = hf(xn, y2),
hoo kD
k(2n=,,f(xn+?yn+ ] > (5.33)

h K
) — 2
kS hf(xn oIt )
K = hf e, + B,y + k),

das als ein Runge-Kutta-Verfahren der Ordnung 4 bekannt ist (sieche Band 7, Teil 1, sowie
die Literaturhinweise), so konnen wir die allgemeine Form eines verbesserten einfach-
riickgreifenden Verfahrens zur Losung von Anfangswertaufgaben 1. Ordnung erkennen:
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Yne1=Ynt ak” + ek + L+ gk
mit Kk = hf(x, ya),
K = hf(xy + byh, o + k"), (5.34)
k= hf(x, + bsh, y, + ¢:k57),
K = (x,+ byh, yy + 6,k ).

Die Herleitung eines Verfahrens erfolgt wiederum so, daB p vorgegeben wird und aus der
Forderung nach moglichst hoher Ordnung die Koeffizienten @, ..., a,, b, ..., b, und
¢, ..., ¢, bestimmt werden.

Beispiel 5.5: Mit p =2 ergibt sich (5.34) durch Einsetzen von k{” und k{” zu

Yne1=Yat athf(Xp, yu) + @hf(Xy + boh, yu + b (X, y0)) - (5.35)
Die Taylorentwicklung von f im letzten Summanden an der Stelle (x,, y,) liefert
7= Ynt @A (X, Yn) + @R [f(Xn, Ya) + S5 (X, Yn) b2k + £, (X, Y1) €2f (K, yo) + .1 (5.36)

Der Vergleich mit der Taylorentwicklung von y(x, . ;)

Y(Xns1) =Yn t A (X yu) + ;—:lfx(xm Yn) 1y s Yu) f Xy Yu) + ] (5.37)
(siehe Beispiel 5.4) nach Potenzen von h erbringt das Gleichungssystem

(a; + @) f(xp, ,Vn) = hf(xn Yn)s

bk (X Ya) = 2 f,(xm Yn)s (5.38)

a6, h%f, (X, Y) f Xy Y) = Tfy(x,., ) f (Xns ¥n)

mit der einen Losung a, = a, = by=c,=1.

1
I

Damit ist wiederum das verbesserte Euler-Cauchy-Verfahren gefunden worden. (Es gibt noch un-
endlich viele andere Losungen, d.h. unendlich viele andere Verfahren mit p = 2.)

Beispiel 5.6: Von der Losungsfunktion der AWA y’ — x = y%, y(0) =1, sollen Niherungen fiir die
Funktionswerte an den Argumentstellen x; = 0,1, x, = 0,2 und x; = 0,3 berechnet werden.
Wir verwenden das Runge-Kutta-Verfahren (5.33).
Durch Vergleich mit (5.3) und (5.4) liest man ab:
fx,y)=x+y? X =0, y=1 sowie h=0,1.
Rechnung:
kP =0,170;1) =1,
kY =0,1£(0,05; 1,05) = 0,115 250,
Kk =0,1£(0,05; 1,057 625) = 0,116 857,
kQ =0,1f(0,1; 1,116 875) = 0,134 737,

» =%(0,1 +0,23050 +0,233714 +0,134737) + 1 = 1,116 492,

K =0,1£(0,1; 1,116 492) = 0,134 655,

kD =0,1£(0,15; 1,183 820) = 0,155 143,

k® =0,1£(0,15; 1,194 064) = 0,157 579,

kP =0,1£(0,2; 1,274071) = 0,182 326,

¥, =1273563,

k®=0,182196, k? =0,211230, k? = 0215213, kP = 0,251 645,
y; =1,488018.
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Durch Ver dung des Rech h kann der Schreibaufwand stark gesenkt werden.

Das Rechenschema hat zweckmiBig folgende Form:

n x y fle,y)=x+y hf(x,y)

0 0 1 1 0,1
0,05 1,05 1,15250 0,115250
0,05 1,057625 1,16857 0,116 857
0,1 1,116875 1,34737 0,134737

1 0,1 1,116 492 1,34655 0,134 655
0,15 1,183820 1,55143 0,155143
0,15 1,194 064 1,57579 0,157579
0,2 1,274071 1,82326 0,182326

2 0,2 1,273563

Man kann unter Verwendung der Taylorentwicklungen von y,., und y (x,. ) verbesserte
einfach-riickgreifende Verfahren von beliebig hoher Ordnung entwickeln. Andererseits
kann man auf diesem Wege die Ordnung eines vorliegenden Verfahrens ermitteln. Das ist
u.U. sinnvoll, da es Verfahren gibt, die fiir O(A") entwickelt sind und dann sogar die Ord-
nung O(h"*1) besitzen.

Ist die Ordnung eines Verfahrens bekannt, so ergibt sich die Méglichkeit einer Betrach-
tung des Verfahrensfehlers sowie einer Korrekturrechnung auf folgende Weise:

Das Verfahren besitze die Ordnung r — 1. Man berechnet mit der vorgegebenen Schritt-
weite h die Werte y, und y,. Danach berechnet man noch einmal y, mit einem Schritt und
der Schrittweite 2h. Den mit der kleineren Schrittweite berechneten Niherungswert fiir
y(x,) wollen wir mit y¥ und den anderen Néherungswert mit y3* bezeichnen.

Aus Plausibilitdtsbetrachtungen folgt dann nédherungsweise

1
Y(x2) 'y§=ﬁ0’§ = y3). (5.39)

Da die Zahlen r, y¥ und y3* bekannt sind, kann die Beziehung (5.39) zur Korrektur von y¥
benutzt werden:
1

YET=yE ST 0 ). (5.40)
In gleicher Weise konnen alle weiteren Funktionswertndherungen mit geradem Index kor-
rigiert werden. Zu dieser Korrekturmoglichkeit ist kritisch zu bemerken, daB bei einer
Rechnung mit Korrektur jedes zweiten Wertes ein ganzes Drittel des Rechenaufwandes
nur fiir die Korrektur bendtigt wird. Es existiert jedoch noch keine andere praktikable
Fehlerabschitzung fiir derartige Verfahren; praktikable Fehlerabschdtzungen und Fehler-
einschlieBungen sind noch Gegenstand der Forschung.
1,6 — x2—y?

Beispiel 5.7: y' = 15+x %’

y(0) =0, x;=0,1, x,;=0,2, ...

1. Berechnung von y, mit A =0,1: y% =0,2060

Rechi it (5.33),d.h. r=5.
2. Berechnung von y, mit h = 0,2: y3*=0,2059 } echaung mit (5.33), r

Damit ergibt sich
Yk =0,2060 + =h 0,0001 = 0,2060 + 0,000 007.

15 =
Der Fehler kann vernachléssigt werden.
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Die Korrekturrechnung gibt uns auch nachtraglich Auskunft iiber die richtige Wahl der
Schrittweite. Da die Schrittweite sowohl Aufwand als auch Genauigkeit bestimmt, ist ihre
giinstigste Wahl von groBer Bedeutung.

In der Regel werden die Argumentstellen x; (k =1, 2, ...), an denen der Funktionswert
der Losungsfunktion gesucht wird, vorgegeben sein. Damit ist auch die MaximalgroBe der
Schrittweite gegeben. Man beginnt somit mit 2 = x, — x, die Rechnung. Ist die an y¥ an-
zubringende Korrektur nicht zu groB, so kann die Schrittweite beibehalten werden. An-
dernfalls muB sie verkleinert und die Rechnung noch einmal von vorn begonnen werden
usw. Hat man auf diese Weise die Schrittweite ermittelt, mit der y, genau genug berech-
net wird, so wird diese Schrittweite fiir y; beibehalten. Sie kann dann wieder vergroBert
werden, wenn die KorrekturgroBe einen Betrag unterhalb einer vorgegebenen Schranke
liefert.

Aufgabe 5.4: Die Schrittweite h sei fiir die vorgegebene Genauigkeit von y,, ..., yg ausreichend gewe-
sen. Bei der Korrektur von y,, stellt man fest, daB der Betrag des Kon‘ekturglxedes zu groB ist. Welche
Funktionswerte milssen mit halber Schrittweite noch einmal berechnet werden?

Zur Sicherung von Existenz und Eindeutigkeit der Losung einer Anfangswertaufgabe
(5.1), (5.2) fordert man meist u. a., daB die Funktion f(x, y) in einem Gebiet G der
x-y-Ebene, das die Losung enthilt, einer Lipschitz-Bedingung geniigt: es gibt eine Kon-
stante L, so daB fiir alle Punktepaare (x, y,) und (x, y,) des Gebietes G

|fO6 y0) = £, y)| = Liyy = pal (5.41)

gilt (L heiBt Lipschitz-Konstante).
Zur Schrittweitensteuerung betrachtet man haufig die Schrittkennzahl

K=L-h, (5.42)
L ist dabei eine Schranke des Betrages der partiellen Ableitung f,,

HISL XS XS Xpeq (5.43)
Fiirdie in der Praxis iiblichen Genauigkeitsforderungen sollte beziiglich der Schrittkennzahl

0,1=K=<0,2 (5.44)

gelten. Beim Runge-Kutta-Verfahren (5.33) kann auf einfache Weise wihrend der Rech-

. . h
nung die GroBe der Schrittkennzahl verfolgt werden. Es gilt ndmlich fir x = x, + 2

1 1.
N=yt kD =yt kP
h 1 h 1
PR P PRGN )
f(x,yl)‘f(x,yz)=f<x" P 2"2) f("" D 2"‘)
= 1 1
nor Int 5K =y =5k

1

_h_ (kg") —_ kgn))

3 5=k
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und damit kann ndherungsweise

(k= k)

_,2_.‘ k(}n)_ ké")

gesetzt werden. Daraus folgt fiir die Schrittkennzahl

k(n) — k(ﬂ)
K=LAh=2—E§;)—:—k—§,,—)~. (5.45)

In der Praxis werden Runge-Kutta-Verfahren mit selbsteinstellender Schrittweite ver-
wandt, die die Schrittweite meist iiber die Schrittkennzahl (5.45) steuern.

5.2.1.5. Stabilitdtseigenschaften der Ndherungsverfahren

Bei der Untersuchung der Eigenschaften von Losungsverfahren fiir Anfangswertaufga-
ben spielen die Begriffe Konsistenz, Konvergenz und Stabilitdt eine besondere Rolle. Die
das Losungsverfahren charakterisierenden Gleichungen approximieren die Gleichungen
der Anfangswertaufgabe; viele Verfahren werden ja z. B. — wie dargelegt — durch nihe-
rungsweise Berechnung des Integrals in (5.7) erhalten. Dieser Sachverhalt wird durch den
Begriff der Konsistenz des Ndherungsverfahrens mit dem urspriinglichen Problem prézi-
siert. Bei der Konvergenz eines Losungsverfahrens geht es um die Konvergenz der mit
ihm fiir verschiedene Schrittweiten erzeugten Naherungslosungen gegen die exakte Lo-
sung der Anfangswertaufgabe fiir #— 0. Der Begriff der Stabilitdt (des Verfahrens) erfaSt
den EinfluB der bei Anwendung des Losungsverfahrens unvermeidlich auftretenden Run-
dungsfehler auf die Néherungslosung. Zwischen diesen Begriffen bestehen enge Bezie-
hungen, z.B. ist ein stabiles und konsistentes Verfahren auch konvergent.

GroBe Probleme bei der numerischen Behandlung bereiten sogenannte steife Differen-
tialgleichungen. Sie sind dadurch charakterisiert, daB in der allgemeinen Ldsung neben
langsam verdnderlichen Anteilen auch schnell abklingende Anteile auftreten. Wir be-
trachten dazu folgendes

Beispiel 5.8: Die Anfangswertaufgabe

y'=-10% +10% > —e% ¥(0) = y,, x€[0,1] (5.46)
besitzt die Losung

YX) = Qo= De 0 e G4D
Die Anwendung des Streckenzugverfahrens von Euler-Cauchy fiihrt nach (5.8) auf die Gleichung

Ynsr=(1=10°h) y, + h(10% ¥ — &™), (5.48)
durch fortlaufendes Senken des Indexes um 1 folgen hieraus die Gleichungen

Yo =Q1-10R)y,_1 + h(lO‘e”;"" —e %), (5.49)

Yn-1=(1=10%h) y,_, + h(10% *-2 — e ~*-2) (5.50)

v = (1= 10°) yo+ h(10% % — 7). (5.51)

Setzen wir in Gleichung (5.49) fiir y, -, die rechte Seite von Gleichung (5.50) ein, erhalten wir

o= (1= 10°h)2 y, 5+ (1 = 10%h) h(10% %2 — g=1-3)
+ h(10% -1 — g *n-1),
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Setzen wir diese Vorgehensweise fort, finden wir fiir y, die Darstellung

n-1
yu=(1=10)yo+ 3 (1= 10*h)*h(10% e -4-1 — =% k-1), (5.52)
k=0

Die Losung (5.47) verindert sich in einem kleinen Intervall [0, #] sehr schnell wie y = e 1%* und dann
im R’eslinlervall [t,1] langsam wie y =e*. (Das Intervall schneller Anderung nennt man auch
Gredzschicht.) In der Grenzschicht muB sicher mit kleiner Schrittweite & gerechnet werden, um die
schnelle Anderung der Losung zu erfassen; aber es zeigt sich, daB dies auch auBerhalb der Grenz-
schicht notwendig ist. Aus der Gleichung (5.52) ersieht man, daB aus Stabilitdtsgriinden

I1-10%|=1 (5.53)
gewihlt werden muB, sonst wichst rechts der erste Term mit wachsendem n tiber alle Grenzen. Aus
(5.53) folgt

h =0,0002,
es sind also mindestens 5000 Schritte zur Erzeugung der Niherungslosung auf dem Intervall [0, 1]
erforderlich. Im Spezialfall y, = 1 fehlt auf der rechten Seite von (5.52) zwar der erste Term, trotzdem

kann h wegen des Terms (1 — 10*4)* unter dem Summenzeichen nicht groBer gewihlt werden.
Verwenden wir zur Losung das implizite Euler-Cauchy-Verfahren (5.9), erhalten wir

Yas1=Yn+ h(=10%),, 1 + 10% %1 — g *n+1) (5.54)
oder nach y, . ; aufgelost
Yoe1=(1+10%0)"1(y, + h10% *n+1 — he~*n+1). (5.55)
Die der Gleich (5.52) ent hende Darstellung lautet jetzt
o= (1+10%h)""y, + Z (1+10°h) " *h(10%*n-k+1 — g *n-k+1) (5.56)
k=1

aus der Stabilitdtsbedingung
|1 +10%) =1 (5.57)

erwachsen jetzt keine Beschrinkungen fiir die Schrittweite.

Das in diesem Beispiel Erkannte 14Bt sich verallgemeinern. Bei steifen Differentialglei-
chungen sind implizite Losungsverfahren den expliziten vorzuziehen.

Wir wollen nun noch etwas tiefer in die Eigenschaften der Losungsverfahren eindrin-
gen. Den folgenden Untersuchungen legen wir — wie iiblich — die Testaufgabe

d;
Frea SR TCORY (5.58)

zugrunde, der Faktor 4 darf dabei komplex sein:

A=a+ib. (5.59
Die Testaufgabe hat die Losung

y=ye™, (5.60)

ausgehend von der Losung kann man leicht zeigen, daB8 die Testaufgabe fiir a < 0 stabil
und fiir @ > 0 instabil ist (im Falle a < 0 spricht man von asymptotischer Stabilitdt).
Wir wenden nun einige Naherungsverfahren auf die Testaufgabe an.

a) Streckenzugverfahren von Euler-Cauchy (5.8):
Yus1=Ynt hAyy = (1 + h2) y,, ’ (5.61)

5 Oelschlagel, Methoden
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b) implizites Euler-Cauchy-Verfahren (5.9):

Yne1=Yat hAYnin,
5.62
Soor= (= k), G
¢) verbessertes Euler-Cauchy-Verfahren (5.10):

h
Yue1 =Yt 5 (Wt i),

2+ i -63)
Yner =5 pn
d) Runge-Kutta-Verfahren (5.33):
Aus  k\" = hiy,,
272
ko = ha(y, + 220 =y + BAB
2 2
hiy, h2A?
m = Y AA Y
k§ hﬁ(y,, + 2 + 3
_ h24%y, h34%,
= hiy, + 2 + T
272 373
kP = hily, + hdy, + WA +_u.".
2 4
folgt
h22%  hA* | R4t
y,,,l—(1+h,l+ 5 + 3 + 24 )y,,, (5.64)
e) Extrapolationsverfahren von Adams (5.11):
Vs =+ g (19013, = 27743, + 26163,
1274y, + 251y,_). (5.65)

Mathematisch gesehen, stellen die Gleichungen (5.61) bis (5.65) homogene lineare Diffe-
renzengleichungen dar, diese haben die allgemeine Gestalt

}’n+1+ao,"nf*"11,"n—1+--»+ak—1yn—k+1=0 (5.66)
(homogene Differenzengleichung k-ter Ordnung). Macht man den Ansatz y,,, =e"™*?
=(en"*1=z""1 (e’ = z), wird man zur Gleichung

2"t @y a2t Lzt =R (R gkl g ) =0
gefiihrt. Das Polynom

p(z)=zF+apz* '+ ..+t @, (5.67)

heiBt charakteristisches Polynom der Differenzengleichung (5.66). In der Stabilitétstheo-
rie wird gezeigt, daB ein Niherungsverfahren (bei Anwendung auf die Testaufgabe) stabil
ist, wenn die Nullstellen des charakteristischen Polynoms der zugehorigen Differential-
gleichung dem Betrage nach kleiner oder gleich 1 sind, sonst ist das Verfahren instabil.
Stellt man die stirkere Forderung, daB alle Nullstellen dem Betrage nach kleiner als 1
sein sollen, spricht man von asymptotischer Stabilitit des Néherungsverfahrens. Die
Menge der Werte A4, fiir die die Differenzengleichung die Bedingung der asymptotischen



5.2. Anfangswertaufgaben 67

Stabilitit erfiillt, heiBt Stabilititsgebiet des Néaherungsverfahrens. Da der Koeffizient 1
komplex sein kann, werden die Stabilitdtsgebiete in der komplexen hi-Ebene dargestellt.
Dabei ist nur die linke Halbebene interessant, weil in der rechten Halbebene a > 0 gilt
und somit dort die Testaufgabe instabil ist, d. h. nicht ohne weiteres numerisch behandel-
bar.

Fiir das Streckenzugverfahren von Euler-Cauchy (5.8) mit der Differenzengleichung
(5.61) fiihrt die Forderung der asymptotischen Stabilitét zur Abschitzung

1+ hi|<1 (A=a+ib) (5.68)
oder (ha + 1) + h2b* < 1,
das Stabilitdtsgebiet ist in diesem Falle also das Innere des Einheitskreises mit dem Mit-
telpunkt ha = —1, hb = 0.
Fiir das implizite Euler-Cauchy-Verfahren (5.9) mit der Differenzengleichung (5.62)
fiihrt die Bedingung
11 -h1) <1
zur Ungleichung
(ha—1)*+ h?b%>1, (5.69)
das Stabilititsgebiet ist das AuBere des Einheitskreises mit dem Mittelpunkt ha =1,
hb=0.
In Bild 5.1 und Bild 5.2 sind die Stabilitédtsgebiete bekannter Verfahren skizziert.

1 2 ha
)
Bild 5.1. Bild 5.2.
Stabilitdtsgebiete. Stabilitdtsgebiet des impliziten Euler-
1. 4fach zuriickgreifendes Cauchy-Verfahrens

explizites Adams-Verfahren,
2. Streckenzugverfahren,
3. Runge-Kutta-Verfahren

Natiirlich sind moglichst groBe Stabilitdtsgebiete in der linken Halbebene fiir die An-
wendung der Verfahren giinstig. Anhand der Ausdehnung der Stabilitdtsgebiete werden
die Niherungsverfahren auch klassifiziert. UmfaBt z. B. das Stabilitdtsgebiet die gesamte
linke Halbebene (auBer der imagindren Achse), heiBt das Néherungsverfahren A-stabil.
Das implizite Euler-Cauchy-Verfahren ist A-stabil, es besitzt ein optimales Stabilitéitsge-
biet. Es gibt viele weitere spezielle Stabilitdtsbegriffe.

5%
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% Aufgabe 5.5: Berechnen Sié Niherungen fiir die Funktionswerte y(0, 1), y(0, 2), y(0, 3), y(0, 4) und
(0, 5) der Losungsfunktion des Problems
2x
'=y-—, 0)=1.
V=Ey—T »(0)
Benutzen Sie dazu das Verfahren von Hamming mit Modifikator (5.31) und als Startrechnung das
Runge-Kutta-Verfahren (5.33)!
% Aufgabe 5.6: Klassifizieren Sie die folgenden Verfahren zur Losung von Anfangswertaufgaben 1.0rd-
nung:
a) Verfahren von Fehlberg (4. Ordnung)
1 h
Yaer =77 O+ 1= yu-2) + 77 (67 G 1, e ) + 187 (xn 3) ], (5.70)
b) Verfahren von Gill (4. Ordnung)
1 1
Yns1 :% (k‘."” + 2(1 - 1/7 ) Ky + 2(1 + ,/? ) kP + kg'”)
mit k{” = hf(x,, y,),
h ki
m = 2 571
kY hj‘(x,,+2,y,,+ 2 ) ( )
1
O CRR A C VA PR (R )xe).
m_ L 1
K=\ xnt b yu= 4[5 kP H |1+ /5 ) K7
% Aufgabe 5.7: Ermitteln Sie das Stabilitéitsgebiet flir das verbesserte Euler-Cauchy-Verfahren (5.10).

5.2.2. Anfangswertaufgaben bei Systemen von Differentialgleichungen
erster Ordnung

Wir betrachten jetzt Probleme, deren mathematisches Modell die Form

Yi=A0 91,9, y1(X0) = yor, (5.72)
Ya=h06 L), yaXo) = Yoo .
hat. Die Losungsfunktionen y, = y;(x) und y, = y,(x) werden dabei fir x = x, gesucht.
Die Losungsfunktionen sollen wieder in Form einer Wertetabelle ndherungsweise er-

mittelt werden, wobei die Argumentstellen, an denen Naherungen fiir y,(x) und y,(x) er-
mittelt werden, iibereinstimmen sollen:

x Xo X X, X3
1 Yo yu Y Y3 (5.73)
Y2 Yoz Y12 Y2 Y3

Wir fithren folgende Vektoren ein:
f1> (y
f= ( , = ‘)‘
2 y Y2
Damit 14Bt sich (5.72) in der Vektorschreibweise angeben:
Y =1(x, 1, ) = f(x, y), (5.74)

—y = (Yo
¥(Xo) = ¥o (,Voz>' (5.75)
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Die Abhéngigkeit der Komponenten des Vektors f von y; und y, ist in (5.74) einfach da-
durch ausgedriickt worden, daB man f(x, y,, y,) = f(x, y) setzte.

. Zu berechnen sind Ndherungen y,;, y, ... fur y;(x;), y1(x2) und yyy, ya, ... fr y,(xy),
ya(x,), ... In der Vektorschreibweise heif3t das, daB die

Yn1 8
n= fir n=1,2,3,...
Y (}’n2> H

zu ermitteln sind.

Mit Hilfe dieser Vektorschreibweise kann man alle Verfahren, die bisher fiir AWA bei
DGIn 1. Ordnung angegeben wurden, auf AWA bei Systemen iibertragen. Das sei zu-
nichst am Streckenzugverfahren von Euler-Cauchy (5.8) demonstriert:

Das Verfahren wird in Vektorschreibweise aufgeschrieben:

Vo1 = Yn + AE(X, ¥a) - (5.76)

Damit ist schon die Rechenvorschrift zur Berechnung der Vektoren yy, y,, ... gegeben.
Die Anwendung von (5.76) auf unser konkret gegebenes System (5.72) erhilt man durch
komponentenweises Aufschreiben von (5.76):

Yn+1,1 Ynm fl(xn,ynlaYnZ))
)= 5.77
(yM 1,2) (.Ynz) (fz(xm Ynts Yn2) @FD
Weiter betrachten wir das Runge-Kutta-Verfahren (5.33):
Yas1=Yn+ —-(k"” + 2k + 2k§” + k()
mit k{” = hf(x,, y,),
ki = hf(x,, + %h, Y.+ %kﬁ’”), (5.78)
ki = hf(x,, + %h, Yo+ %kg’”) ,
K = hf(x, + by, + k).

Die HilfsgroBen k{”, ..., k{” sind jetzt ebenfalls Vektoren. Die Anwendung von (5.78) auf
das System (5.72) liefert die Formeln:

Yn+1,1 Ym 1 [k 3% 3% k{
= = +2- +2- +
(yntl,Z) (y,.z> 6 [(k({? 4 k% 2 3% kP
KR\ Z py (i s ynZ))
Kk 5 (Xn, ynls )]’

1 n 1 n
(k(z'i) fl(Xn = Yt 2 k(u)x yﬂ2+7k(12))
)

(ké’;’) _ )
k n) 1 9
B A g hom + 3k )

(k(")> h( 1(%n + By oy + kg’i s V2 kg’?))
Ky So(X + by Yoy + KD, Y+ K5Y)

+

mit

(5.79

]
?T
55
Ss—

1 1 1
f2<xn Shymt5 2 kD, ym + 2

1 1 1
fl(xn S hymt ) S kSD, v + 7"(2’5)
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Beispiel 5.9:
Yi=h06y, ) = x =y + 290, 1(0) =1,
V2= h(% 31, 32) = x + 4y =y, 3(0) = — 1.
Es wird ein Schritt mit 2 = 0,1 durchgerechnet:
kP =0,1A0;1; -1)=-03,
k9 =0,1£,0;1; 1) = 0,3,
k® = 0,1£,(0,05; 0,85; —0,85) = —0,25,
kY =0,1£,(0,05; 0,85; —0,85) = 0,2728,
k) =0,1£,(0,05;0,875; —0,8636) = —0,2552,
k$Y = 0,1£,(0,05; 0,875; —0,8636) = 0,2804,
k® =0,1£,(0,1; 0,7448; —0,7196) = —0,2084,
k) =0,1£5(0,1; 0,7448; —0,7196) = 0,2561,

yn =1+ %[-0,3 —0,5-0,5104 — 0,2084] = 0,7469,
Yy =-1+ %[0,3 +0,5456 + 0,5608 + 0,2561] = —0,7229.

Die Anwendung von Mehrschrittverfahren auf Systeme erfolgt analog; wir wollen dies an
dem Verfahren von Stetter (5.24) demonstrieren. Aus der Vektorschreibweise dieses Ver-
fahrens ergibt sich der folgende Formelsatz fiir das Problem (5.72):

Prediktor:
Y1 1) — (inl) Yn-1 1) [ <f1(xm Yn Yn2)>
)= -4 +5 T+ 2h(2
()’5.01 1,2 'n2 n-1,2. S2(Xns Ya1s Yn2)
+ (fl(xn ~1Yn-1,1 Yn— 1,2))]
So(%n -1 Va1 Yu-12/ 1
Korrektor:

ygim — (Yn-11 i fi(xn 1, }’201 1,1,)’?3- 1,2 [1(Xn Vs Y2)
[0} - + ) ) +4
n+1,2 n- 12, 3 fz(xnn,ynll,lvyMl,z So(Xny Yn1s Yn2)
+ (fl(xn -1 Vn-1,1Vn- 1,2))]

So(Xn -1, Yn- 1,1 Yn— 1,2)

Beispiel 5.10: Wir berechnen mit diesem Verfahren unter Verwendung der Ergebnisse von Bei-
spiel 5.9 die Funktionswertndherungen y,; und y,, fir y,(x,) bzw. y,(x,) mit x, =0, 2.

YR =—-4-0,7469 + 5- 1 + 0,2[2£,(0,1; 0,7469; —0,7229) + £,(0; 1; —1)]
=0,5753,

Y9 = —4(-0,7229) + 5(-1) + 0,2[2,(0,1; 0,7469; —0,7229) + £,(0; 1; —1)]
= —0,4824,

y=1+ %[ £1(0,2; 0,5753; —0,4824) + 4£,(0,1; 0,7469; —0,7229) + £,(0; 1; —1)]
=0,5763,

yp=-1+ 0;—1[f2(0,2; 0,5753; —0,4824) + 4/,(0,1; 0,7469; — 0,7229) + f,(0; 1; —1)]

—0,4824.

Die gesuchten Naherungen lauten somit y,(x;) = 0,5763, y,(x;) = —0,4824.

Liegt ein System mit mehr als zwei DGIn vor, so ist das lediglich beim Aufschreiben
der Komponenten der ,, Vektorvorschrift (z.B. (5.78) fiir das Runge-Kutta-Verfahren) zu
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beriicksichtigen. Fiir den Anwender ist somit die Verwendung der angegebenen Verfahren
fiir Systeme mit beliebig vielen DGIn ohne Schwierigkeiten moglich. Kompliziert wird
dagegen die Untersuchung derartiger Verfahren (fiir Systeme) auf Ordnung und Stabilitit
sowie die Herleitung von Formeln zur Fehlerabschdtzung und Korrektur. In der Regel
bleibt die Ordnung eines Verfahrens fiir eine AWA 1. Ordnung bei der Anwendung auf
Systeme erhalten.

5.2.3. Anfangswertaufgaben bei gewohnlichen Differentialgleichungen
héherer Ordnung

Zur Losung von AWA bei DGIn hoherer Ordnung gibt es sowohl Ein- als auch Mehr-
schrittverfahren, z. B. von Nystrom und von Falkner (siehe z.B. in [1], [7]). Andererseits
kann man bekanntlich derartige AWA auf AWA bei einem System von DGIn 1.Ordnung
zuriickfihren (siehe Band 7/1 dieses Lehrwerkes). Damit sind alle Verfahren der vorigen
Abschnitte anwendbar.

Beispiel 5.11: v =1 - xv’ — x?v, v(0) =1, v'(0) =2.
Mit v’ = u, ergibt sich die AWA bei einem System
v =u v(0)=1,
u'=1-xu—x%, u(0)=2.

5.2.4. Programmierung und Software

Programme zur Losung von Anfangswertaufgaben, in denen nur die Rechenvorschrift
umgesetzt ist und die sonst keine Schrittweiten- oder Fehlerdiagnosen bzw. -mechanis-
men enthalten, sind wertlos! Man sollte sich also nicht von der scheinbaren Einfachheit
der angegebenen Algorithmen tduschen lassen: brauchbare Programme zur Losung von
Anfangswertaufgaben enthalten weitaus mehr an Organisation, Fehlerdiagnose, Schritt-
weitensteuerung, Stabilitdtssicherung usw. als an eigentlicher Rechnung. Deshalb sei vor
iibertriebener Eigeninitiative gewarnt, zumal die vom Computer als ,Ergebnis“ ausgege-
benen Zahlen sich nicht ohne weiteres auf ihre Richtigkeit priifen lassen (bei Gleichungs-
systemen hatte man da wenigstens noch die Moglichkeit des Einsetzens in die Ausgangs-
aufgabe).

PP NUMATH-1 bietet sechs international bewihrte Software-Bausteine, wiederum in
Form von FORTRAN-Subroutinen [31, 3.6.1.7.], die im Betriebssystem OS/ES auf ESER-
Anlagen verfugbar sein konnen. Sollte doch die Notwendigkeit bestehen, selbst ein Pro-
gramm zur Losung von Anfangswertaufgaben schreiben zu miissen, so muB sehr viel Sorg-
falt auf die Steuerung der Schrittweite gelegt werden, so wie es im Abschnitt 5.2.1.4.
angedeutet worden ist.

In Bild 5.3 wird der prinzipielle Rechnungsgang bei Umsetzung des einfachen Runge-
Kutta-Verfahrens mit selbsteinstellender Schrittweite durch einen Programmablaufplan
dargestellt.

5.3. Randwertaufgaben
5.3.1. Einfithrung

Ein mathematisches Modell heiBt Randwertaufgabe, wenn es aus einer DG n-ter Ord-
nung (oder einem System von n DGlIn 1. Ordnung)

F(x, 9, ...,y™=0 (5.80)
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/E X, Y, XMAX ,H,ALFA/

3
I YK1:= H*F(X,Y) ]

[ vx2:= H%F](X+H/2,Y+YK1IZ) |
[ v«s:= e (a2 TR 20 |
[ vs: = H#FI(X+H,Y+YK3) )

IlK:=2¥ABS((YK3 —YKZ)/(YKZ—YKH)]

Bild 5.3. Runge-Kutta-Verfahren mit selbsteinstellender Schrittweite (0 < x < 1)

und n Bedingungen der Form

Vi (x1), ' (x1), o0y ¥ 70 (x0), 2 (32), -, YOV (60), s Y (), s

YOO (xa)) =0, j=1,..,n, (5.81)
besteht.
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Die Bedingungen (5.81) sind Forderungen an die Losungsfunktion sowie ihre Ableitun-
gen in m verschiedenen vorgegebenen Punkten x, ..., x,,. Die Losungsfunktion ist in der
Regel im Intervall [x,, x,,] zu ermitteln. Das Problem (5.80), (5.81) wird m-Punkt-RWA ge-
nannt; von besonderer Bedeutung fiir die Praxis sind Zweipunkt-RWA (m = 2), die wir im
folgenden betrachten, wobei der Zusatz ,,Zweipunkt“ weggelassen wird.

Eine lineare RWA besteht aus einer linearen DGI n-ter Ordnung

LIy1= (x)y™ + ¢, 1(x) y@ P+ o+ (%) "+ co(x) y = r(x) (5.82)
und n linearen Randbedingungen

n-1
Ulyl= 3 oy ®(@) + Bry®(®)) =, j=1,..,n. (5.83)
k=0
Dabei sind r(x) und die c,(x) gegebene Funktionen und o, B und y; gegebene Konstan-
ten. L[y] heiBit linearer Differentialoperator, und die U[y] heiBen lineare Randoperatoren,
deren Eigenschaften wir als bekannt voraussetzen wollen. Die RWA

Fx»,y,y0=0, y@=y., “y® = (5.84)

ist die einfachste RWA, weil mindestens an zwei verschiedenen Stellen Bedingungen an
die Losungsfunktion gestellt werden miissen (bei einer Bedingung erhélt man eine AWA,
die demnach eine spezielle RWA ist). Hierbei ist die Losung in dem Intervall [a, b] zu be-
rechnen. Wir wollen an dieser Aufgabe einige Verfahren demonstrieren, wobei die expli-
zite Form

Y =fny),  y@ =y,  y(bd)=y (5.85)
verwendet wird.

5.3.2. Zuriickfithrung auf Anfangswertaufgaben

Wir 16sen die Differentialgleichung aus (5.85) mit der Anfangsbedingung y(a) = y,,
y'(a) =y,,, wobei y, , willkiirlich vorgegeben worden ist, mit einem in 5.2.3. angegebenen
Verfahren. Die Losung wollen wir y;(x) nennen. Wenn y;(b) =y, gilt, haben wir die Lo-
sung des Problems (5.85) gefunden, dann ist y(x) = yi(x). Wenn die rechte Randbedin-
gung nicht erfiillt ist, wird nach bestimmten Strategien diejenige Anfangssteigung ge-
sucht, fur die die rechte Randbedingung erfiillt wird. Dieses Vorgehen bezeichnet man
auch als ,EinschieBen*.

Bei linearen Problemen

Lyl = cx(x)y" + e1(x)y" + co(x) y = r(x), (5.86)
@)=y,  y®) =y
16st man die beiden AWA
LLlyl=r(x), y@=y, '@ =y,
I:Liyl=r(x), Y@=y, Y@=y,
mit beliebig vorgegebenen verschiedenen Anfangssteigungen y,; und y,, und erhilt dann,
wie in [30] hergeleitet wird, die Losung der RWA aus

= yuld) (b)) =y
yex)= yi(6) = yu(d) nex+ »1(b) = yu(b) yul).

(5.87)

Die Formel ist auch dann noch brauchbar, wenn fiir y; und y; nur Néherungen vorlie-
gen.
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Beispiel 5.12:y" —y =4x — x*, y(0)=0, y1)=3.
Es werden die AWA
Ly —y=d4x-x,  y0)=0, y(©0)=0,
Ly’ —y=d4x-x*  y0)=0, y(©0)=3,
gelost. Man erhilt yi(1) = —(e! —e™!) + 3, yy(1) = % (e!' —e™!) + 3. Damit ergibt sich

Y(X)=%Yl(x) +%yu(X)»

Die Funktionen y;(x), y;(x) und y(x) sind in Bild 5.4 angegeben.

y
s
yy(x)
3 -
yQ),
2k
1k
¥ (x)
. n T L 1 1 L
0 o1 02 0,3 04 05 06 07 0.6 09 0 x

Bild 5.4. SchieBmethode zur Losung von Randwertaufgaben durch Zuriickfithrung auf
Anfangswertaufgaben (zu Beispiel 5.12)

Bei nichtlinearen Randwertaufgaben muf3 die unbekannte Anfangsbedingung (bzw. der
Satz unbekannter Anfangsbedingungen bei Systemen erster Ordnung) iterativ ermittelt
werden. Jeder Iterationsschritt erfordert dabei die Losung einer Anfangswertaufgabe
und — bei Systemen — die Losung eines nichtlinearen Gleichungssystems. AuBerordent-
lich erfolgreich wurde in jlingster Zeit mit der Mehrfachschieffmethode (Mehrzielmethode,
multiple shooting) gearbeitet, bei der die Anfangswertaufgaben jeweils nur {iber einem
Teil des Losungsintervalls gelost werden. Obwohl sich dadurch gegeniiber dem Einfach-
schieBen die Zahl der zu bestimmenden Anfangswerte vervielfacht, steigt der Rechenauf-
wand durch Ausnutzung spezieller Strukturen nicht in gleichem MaBe an. AuBerdem ge-
lingt es mit diesem Vorgehen, die Unwégbarkeiten des Losungsverhaltens nichtlinearer
Randwertaufgaben numerisch zu beherrschen. Man vgl. hierzu [26].

5.3.3. Differenzenverfahren

Wir gehen wiederum vom Problem (5.85) aus und setzen uns das Ziel, eine Werteta-
belle
x |[x%o=a | x | x | x; | ... | X1 | X, =0
y  Mlwe I Tw Ty T T

(5.88)
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der Nédherungswerte der Losungsfunktion zu ermitteln, wobei die Argumentwerte gleich-
abstdndig sein sollen, d.h. x,=a+ k-h, k=0, ..., n, mit h = b;na‘ Da die Losung der

DGl an den Stellen x,(k = 1, ..., n — 1) interessiert, schreibt man sich die DGI aus (5.85)
an diesen Stellen auf

Y =G, y(x), ¥ (x1),
V() =[x, y(x0), ¥ (x2)), (5.89)

VO =1) = f -1, Y Xn= 1), ¥’ (Xn 1)) -

Dieses System besteht aus n — 1 Gleichungen fiir die 3(n —1) ,Unbekannten“
YD), ey Y(Xn=1), Y1), ey Y (Ko 1), YD), ey ¥ ().

Das Prmzzp des Differenzenverfahrens besteht darin, in (5.89) und den Randbedingungen alle
Differentialquoti durch Differ q zu ersetzen. Die einfachsten Ersetzungsfor-
meln sind

V'(x) = % Ver1 = 20)s

V@) =5 Ok~ e, (5.90)
(%) = 2h (Vk+1— V-1 (yzentrale Differenz®),

V(%) = F Des1 = 20+ Ye-1)-

Derartige Formeln erhélt man unter Verwendung der Taylorschen Formel. Wir schreiben
Gleichheitszeichen und beachten, daBl die rechts auftretenden Zahlen y; _ , yi, yx + ; Ndhe-
rungen fur y(x; -1), y(x;) bzw. y(x;.,) sind.

Setzt man Formeln aus (5.90) in (5.89) ein, so erhdlt man ein i.allg. nichtlineares Glei-
chungssystem, das nur noch die gesuchten Funktionswertndherungen enthilt.

Beispiel 5.13: Bei der Knickbiegung eines Stabes unter EinfluB einer axial angreifenden Druckkraft
und einer verteilten Querbelastung erhdlt man die Verteilung der Biegemomente y(x) als Losung der
(vereinfachten) DGI

YA+ xy=-1 *)
mit den Randbedingungen
yD=ym)=
1

Zur Anwendung des obigen Verfahrens geben wir uns n =6 vor und erhalten damit h=7,
2

1 1 2 . . A q
X = -5 Xy = -3 x3=0, x4 = 3 X5 = 3 Wir schreiben die DGI an diesen Stellen auf:

Y+ A+ xPyx)=-1, k=1,.,5.

Danach werden die Ableitungswerte (hier sind es die Zahlen y”(xx), k =1, ..., 5) mittels einer For-
mel aus (5.90) ersetzt:

1
7 D= Wty ) F A xPy= -1 k=15,
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i a . 1 .
Diese Gleichung wird umgestelit und h = 3 eingesetzt:

Wie1— (8= (A +x2) ye+ 91 =-1, k=1,..,5. &)

Nun wird das System ausfiihrlich aufgeschrieben:

A
k=2 <xk:7%>: 9, ( —< +i)>y2+9y1 1,

k=3 (x=0): ye— (18— (1+0)y; +9y,=-1,

9

0))

1 1
k=4 (xch): 9ys <18—< 3>>y4+9y3=~
k=5 (xk=%): 9y5—<18—(1+%)>y5+9y,=—

Das Gleichungssystem besteht aus 5 Gleichungen fiir 7 Unbekannte y,, ..., y¢. Da wir aber ein Rand-
wertproblem zu 16sen haben, mii auch die Randbedi: beriicksichtigt werden. Diese lie-
fern im vorliegenden Fall gerade die fehlenden Gleichungen

y=D=y=0, y1)=y=0.

Damit haben wir das Randwertproblem auf die Losung eines Gleichungssystems zuriickgefiihrt; die
Losung lautet

»1=05172, y,=0,8404, y;=09486, y,=0,8404, ys=05172.

(Man kann die Rechnung durch Ausnutzen der Symmetrie des Problems zu x = 0 vereinfachen.)

Aufgabe 5.8: Ermitteln Sie eine Wertetabelle der Losungsfunktion von y” + x2y = -2,
y(=1)=y(1) =0 mit » =0,5.

Zur Anwendung des Differenzverfahrens auf RWA bei DGIn hoherer Ordnung benutzt
man die Differenzenformeln

m 1
y (Xk)=ﬁ?(}’k+z_2}’k+\+2yk—1+}’k—2)) (5.91)

1
YO0 =57 (Dr+2 = 4Ps1 + 6y = 4Yk-1 = Ye-2)

und geht wie oben beschrieben vor.

Zur Genauigkeitssteigerung beim Differenzenverfahren benutzt man genauere Diffe-
renzenformeln als (5.90) und (5.91). Eine verbesserte Differenzenformel fiir die 1. Ablei-
tung ist z. B.

, 1
y(xk)=m(J’k—2_8)’k—x+8}’k+1_Yk+z)~ (5.92)
Die Herleitung solcher Formeln erfolgt unter Verwendung der Taylorentwicklung (s. [29],
.
5.3.4. Ansatzmethoden

Wihrend mit dem Differenzenverfahren nur eine Wertetabelle der Losungsfunktion
der RWA berechnet wird, erhilt man mit den Ansatzmethoden eine Naherungsldsung in
formelmiBiger Darstellung. Dazu gibt man sich einen Ansatz

V(x)=g(x, ay, ..., an), (5.93)
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meist von der Form
Fx) = @o(x) + 3 argi(x)
k=1

mit linear unabhéngigen Funktionen ¢,(x), ..., @,(x), vor und bestimmt dann die Para-
meter ay, ..., a, so, daB die Randbedingungen exakt und die DG1 der RWA moglichst gut
erfiillt werden. Es wird fiir die DGI (5.85) z. B. gefordert:

b

Mi(ay, ..., ay) = JW(X) [7"(x) = f(x, $(x), ¥'(x))}? dx— min! (5.94)
oder

My(ay, ..., ay) = Z w () [57(x) = f(xs ¥ (), ¥'(x)) P — min! (5.95)
oder

Mi(ay, ..., ay) = Eg:bli"(x) = f(x, (x), y'(x))| = min! (5.96)

Dabei sind @ und b die Grenzen des Intervalls, in dem die Losung der RWA berechnet
werden soll, und x,, ..., x, vorgegebene Stellen aus diesem Intervall. Die Funktion w(x)
(w(x) >0 fir 0 = x < b) heiBt Gewichtsfunktion; durch geeignete Vorgabe von w(x) kann
man erreichen, daB die sogenannte , Defektfunktion“ y” — f(x, y, ') unterschiedlich stark
bewertet wird.

M, und M, entsprechen der stetigen bzw. diskreten mittleren Approximation, d.h. der
Fehlerquadratmethode, M; entspricht der Tschebyscheff-Approximation.

Wir wollen nun voraussetzen, da3 die Funktion y(x) = g(x, ay, ..., a,) unabhéngig von
der Wahl der Parameter ay, ..., a, immer die Randbedingungen erfiille, so daB diese Para-
meter nur noch so gewahlt werden miissen, daB die DGI nach einer der obigen Forderun-
gen (5.94) bis (5.96) moglichst gut erfiillt wird. Wir {iberlegen uns, wie wir diejenigen
Werte von aj, ..., a, ermitteln konnen, fur die M,(ay, ..., a,) minimal wird. Nach der
klassischen Extremwertermittlung ergibt sich das Gleichungssystem (wir wollen w(x) =1

setzen) fur ay, ...,
b

ZI["'(x) = fx, 5(x), §' ()] [—[‘”(x)—f(x,y'(x),y"(x))l] dx=0,

a

aM1

(5.97)

b
M, I 15760 = 0 9660 7001 [ 5700 = 550, 761 ax =0

Dieses System ist ein Spezialfall von
b

[D’”(x) =[x, 3(x), )] oi(x) dx =0,

(5.98)
b

J[ﬁ”(X) =[x 9(x), 7"(x))] vm(x) dx = 0.
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Alle Ansatzmethoden zur Lésung der RWA (5.85), bei denen zur Vereinfachung der
Rechnung die Parameter ay, ..., a,, aus einem Gleichungssystem der Form (5.98) mit or-
thogonalen Funktionen v(x), ..., v,(x) bestimmt werden, heiBen Verfahren nach dem
Prinzip der Fehlerorthogonalitdt.

Wir wollen uns im folgenden mit dem Spezialfall ,Lineare Randwertaufgaben und li-
neare Ansitze“ ausfithrlicher beschiftigen. Man benutzt zur Losung von (5.82), (5.83) li-
neare Ansitze:

F(x) = polx) + kZ ai(x), (5.99)
=1
wobei
_[v fuir k=0, .
Uled {0 fir k=1,..,m, J-boom (5.100)

gelte (d.h., @, erfiillt die RB, und alle anderen ¢, verschwinden an dem Rand). Somit er-
fullt y fur alle ay, ..., a, die Randbedingungen.

Zur Bestimmung der Parameter aj, ..., a, wollen wir M; mit w(x) =1 verwenden: Es
gilt
L[y]1= Ll + aiL[@] + ... + anL[@n]
und (5.101)
OL[y]

3a, =Llgl, k=1,...,m.

Die Defektfunktion lautet jetzt L[y] - r(x), und unter Beachtung von (5.101) erhélt man
durch Einsetzen dieser Defektfunktion anstelle von y” — f(x, y, 7') in (5.97) das Glei-
chungssystem

b
[wn-ron 2 wim-renas=0,  k=1,.m, (5.102)
'k

woraus folgt:

b

J[L[i]—r(x)]L[wk]dx=0, k=1,...,m, (5.103)
und damit erhdlt man nach einigen Umstellungen

b b

ZI‘IJJ.L[%]L[q)k]dx=I(’(X)_L[¢BJ)L[Wk]dx» k=1,..,m. (5.104)

a a

An (5.104) erkennt man wieder das Prinzip der Fehlerorthogonalitét (vi(x) = L{@]).
Ein weiteres nach diesem Prinzip arbeitendes Verfahren fiir lineare RWA ist die Me-
thode von Galerkin. Hierbei wird in (5.103) anstelle von L[¢;] nur ¢ geschrieben, d.h. es
gilt v(x) = @i(x):
b

I[L[y']—r(X)lwk(X)dx=0, k=1,..,m. (5.105)
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Durch Anwendung von (5.101) ergeben sich die Galerkin-Gleichungen
b b

79

ZajJL[wjlw(X)dx=J(r(x>—L[¢o])a:k(x)dx, k=1,..,m.  (5106)

Zur Demonstration beider Methoden betrachten wir das folgende Beispiel:

Beispiel 5.14: y" +y=—x, y(0)=y(1) =0 (exakte Losung: y = :;2—; -
Liy]=y"+y, r(x) = —x.
Wir verwenden den Ansatz aus [7]:

x). Man liest ab:

F(x) = ay(x = x?) + ay(x — x?),

der stets die Randbedingungen erfillt. Man liest wiederum ab: @o(x) =0, @,(x)=x— x?,

@a(x) = x = x*. Wegen L{go] =0, L[@1] = @] + ¢, = ~2+ x = x, L[gg] = ¢y + ¢, = —6x + x —

ergibt sich aus der Fehlerquadratmethode (5.104) das Gleichungssystem
1 1
a,J.(72 +x—x) (24 x—-x)dx + azj(*6x+ x=x%) (=2+x—x¥dx

0 0

1
= [(—X) (=2 +x—-x%)dx,

0

1 1

a,I(—2+x—x2) (—6x+x—x3)dx+a;J(—6x+X7x3)(——6x+x—x3)dx
0 0
1

= I(-x) (—6x+ x — x3)dx
]
mit a, =0,0181, a, = 0,1695.
Aus den Galerkin-Gleichungen (5.106) folgt
1 1
alj(72 +x—x%) (x— x¥)dx+ UQJ’(_6X+ x = x% (x = x?)dx
0 0
1

=0 - xax,
0
1 1
aIJ‘(~2 +x-x?) (x—x)dx+ azj(v6x+x— x%) (x — x¥)dx
0 o
1
= J.(-x) (x — x%)dx
o
mit a, =0,0227 und a, = 0,1701.
Die Berechnung der bestimmten Integrale kann elementar erfolgen.

x?

Eine Vereinfachung der Rechnung erhdlt man, wenn man die Interpolationsforderung
auf die Defektfunktion anwendet, d. h. wenn man fordert, daB die Defektfunktion
L[y]— r(x) an m nicht notwendig d4quidistant vorgegebenen Stellen x,, ..., x,, verschwin-

den soll:

Lyl —r(x) =0, k=1,..,m. (5.107)

Man nennt ein auf (5.107) basierendes Verfahren auch Kollokationsverfahren.
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Beispiel 5.15: Wir behandeln das Problem aus dem Beispiel 5.14 mit dem dort gegebenen Ansatz. Mit

1 p
xn=7 und x, =% erhalten wir wegen L[y (x)] = a;L[g,(xx)] + a;L[@y(x)] (k=1,2)

1 1)\? 1.1
o205 (5)) a5 s
2 2)\? 2.2
o202 () raf-o2s2

mit der Losung a; = 0,0216, a, = 0,1731.

Das Kollokationsverfahren liefert bei geeigneter Wahl der Kollokationsstellen ausge-
zeichnete Nédherungen fiir die Losung des Problems. Von der Giite dieser Aussagen kann
man sich dabei eine Vorstellung machen, indem man die Defektfunktion aufzeichnet.
Genauere Fehlerabschitzungen lassen sich unter Zuhilfenahme theoretischer Untersu-
chungen realisieren.

5.3.5. Eigenwertaufgaben

Eigenwertaufgaben sind homogene RWA mit einem Parameter (siche Band 7/2, Ab-
schnitt 6.). Die Losung von Eigenwertaufgaben, d.h. die Ermittlung der Eigenwerte und
Eigenfunktionen, ist mit allen Verfahren zur Losung von RWA méglich.

Beispiel 5.16:y" + A(1+ x%)y =0, y(0)=y(1)=0.
Die Anwendung des Differenzenverfahrens mit h = 1/3 liefert das Gleichungssystem

- (18- 4)m+ =0,
9y1—<18—1—3/1>y2=0
9

fiir die Ndherungen y, und y, (fir y(1/3) bzw. y(2/3)).
Die Ermittlung der A-Werte, fiir die das Gleichungssystem nichttrivial 19sbar ist, ist ein Matrizen-Ei-
genwert-Problem (siehe Abschnitt 2.5.).

Verwendet man Ansatzmethoden zur Losung von Eigenwertaufgaben, so fiihrt man da-
bei das Problem ebenfalls auf ein Matrizen-Eigenwert-Problem zuriick.

Da die Zuriickfiihrung des Problems auf Matrizen-Eigenwertberechnung hinsichtlich
der Genauigkeit der erhalfenen Eigenwerte sowie der Fehlerabschitzung einige Wiinsche
offenldBt, wurden Verfahren entwickelt, die Eigenwertnidherungen direkt berechnen und

eine zufriedenstellende Fehleraussage liefern. Eine ausfiihrliche Monografie dieser Ver-
fahren liegt mit [8] vor, worauf wir den Leser zum weiteren Studium verweisen miissen.

5.3.6. Ritz-Verfahren

Dieses Verfahren zur Losung von RWA und EWA nimmt wegen seiner theoretischen
Grundlagen eine Sonderstellung ein. Die Grundaufgabe der Variationsrechnung, eine
Funktion y zu ermitteln, fiir die ein Integral, z.B.

b

IF(x, »yhdx= IF[y]dx, (5.108)

unter gewissen Bedingungen minimiert wird, fiihrt (siehe [7]) auf die notwendige Bedin-
gung fiir die Losungsfunktion

OF[y] ~ d 9F[y] -0

Ay dx 9y’ ’

(5.109)
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die man als Eulersche DGI bezeichnet, sowie auf gewisse Randbedingungen. Bei der An-
wendung des Ritz-Verfahrens auf RWA geht man umgekehrt vor: Man sucht zu einem
vorliegenden Randwertproblem ein Variationsproblem, das die gegebene DGI als Euler-
sche DGI besitzt. Dann versucht man, das entstandene Variationsproblem ndherungs-
weise zu 10sen.
Beispiel 5.17: Aus einer physikalischen Problemstellung (Kippen eines Trégers) folgt die Eigenwert-
aufgabe

y'+axly =0, Y'(0)=y(1)=0.
Das zugehorige Variationsproblem lautet

1

LIPTPICR B = min!
J.[zlxy 2y dx = min!

Mit dem Ansatz y = a,(1 — x?) + a,(1 — x*) geht das Variationsproblem in eine Aufgabe der Mini-
mierung einer Funktion zweier Verdnderlicher iiber:
1

My(ay, a)) = -[ [% Axy? —%i'z] dx = min!,
0

und man erhdlt das Gleichungssystem
Mo (A s (2 ) w0,

3a; 3 7105 57315
M, [ 8. % 16, 32 _
aa,‘( 5*315‘)“‘*( 7*231‘)"2 0

woraus 4; = 16,28, 1, = 127,7 folgt.

An diesem Beispiel erkennt man die grundlegende Problematik der genéherten Be-
handlung von EWA bei DGlIn: Das Problem besitzt abzéhlbar unendlich viele Losungen,
das Naherungsverfahren liefert nur endlich viele Naherungen.

Das Ritz-Verfahren ist somit eine weitere Ansatzmethode. Das Aufsuchen des Varia-
tionsproblems zu einer gegebenen RWA erfordert Erfahrung; fir die wichtigsten in der
Technik auftretenden RWA sind die zugehorigen Variationsprobleme in [7] angegeben.
Wird das Ritz-Verfahren auf EWA angewandt, so liefern die erhaltenen Néherungen bei
positiv definiten Problemen obere Schranken fiir die Eigenwerte.

5.3.7. Programmierung und Software

Das numerische Vorgehen bei der Losung von Randwertaufgaben erfordert stets die Lo-
sung von diversen Hilfsproblemen, insbesondere die Losung von Gleichungssystemen.
Programme zur Losung von Randwertaufgaben bestehen demnach aus vielen Einzelbau-
steinen, wobei ein hoher Organisationsaufwand zur geschickten Ubergabe der Daten von
Programmeinheit zu Programmeinheit nétig ist.

Fragen der Fehlersteuerung, die in den vorangegangenen Ausfiihrungen aus Platzgriin-
den nicht behandelt werden konnten, fiihren zur weiteren Erhohung der Komplexitit der
Programme. Aus all dem folgt, daB der numerisch noch wenig Erfahrene viel Zeit und
Sorgfalt investieren miiite, wollte er selbst einen brauchbaren Randwert-Solver entwik-
keln.

Fiir Randwertaufgaben bei Systemen von Differentialgleichungen erster Ordnung hilt
PP NUMATH-1 zwei Softwarebausteine bereit. Es sei aber nicht verschwiegen, daBl zur

6 Oelschlagel, Methoden
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Nutzung dieser Subroutinen wesentlich umfassendere Kenntnisse der Numerik von RWA
erforderlich sind, als sie hier vermittelt werden konnten. Dazu enthilt [31] in 3.6.2.7. ent-
sprechende Literaturhinweise. Erwdhnt werden soll hier aber auch [10]. Dieses Buch ent-
hilt den Quelltext eines FORTRAN-Programms zur Losung von RWA nach dem Mehr-
fachschieBverfahren einschlieBlich einer sehr ausfiihrlichen Beschreibung.



6. Numerische Behandlung partieller
Differentialgleichungen

6.1. Einfithrung

In den folgenden Abschnitten legen wir zwei Methoden zur numerischen Losung par-
tieller DGIn jeweils an einem Beispiel zur Information kurz dar.

Der Leser wird bereits an diesen Beispielen eine Vorstellung davon erhalten, welch gro-
Ber Aufwand zur numerischen Losung partieller DGIn notwendig ist.

Die Theorie partieller DGIn beherrscht gegenwirtig erst eine gewisse Anzahl typischer
Fragestellungen hinsichtlich Existenz, Eindeutigkeit der Losung und Konvergenz der An-
naherung durch bestimmte Nédherungsfolgen.

Wegen der Kompliziertheit der Problematik sind bei praktischen Problemstellungen —
soweit moglich — theoretische Voruntersuchungen durchzufiihren; die erhaltenen nume-
rischen Resultate sind einer kritischen Wertung zu unterziehen.

6.2. Differenzenverfahren

Wir betrachten ein mathematisches Modell, das aus einer partiellen DGI fir eine Funk-
tion zweier Verdnderlicher
Flx u_alg u  Pu  du -0
Yoy Qy’ dx2’ dxdy’ Qy?r’
sowie aus Bedingungen an die Losungsfunktion besteht. Fiir die Losungsfunktion u(x, y),
die (6.1) und den gegebenen Bedingungen geniigt, werden Niaherungswerte in Form einer
Wertetafel ermittelt:

6.1)

[ = | |=
Yo Ugo Uy Uno
pa Uoy Uy Uny 6.2)
Y2 Upz Uy Uny
Dazu miissen die Zahlen x, ..., X,, Yo, Y1, ... vorgegeben sein. Durch die vorliegenden

Bedingungen sind dann auch bereits einige der Funktionswerte bekannt: Liefern die Be-
dingungen die Funktionswerte ug, Ui, ..., Un, d.h. die oberste Zeile von (6.2), so heiBen
sie Anfangsbedingungen. Folgen aus den zur behandelten Problemstellung gehdrenden
Bedingungen sowohl die in der ersten Zeile als auch die in der ersten und letzten Spalte
von (6.2) stehenden Werte, so spricht man von Anfangsrandbedingungen. Liefern die vor-
liegenden Bedingungen dariiber hinaus noch zu einem festen Index m die Werte ug,y,
Uims -+, Unm (d.h. die m-te Zeile), so liegen Randbedingungen vor. Bei Randwertproble-
men wird die Losung dann nur im Intervall xy = x < x,,, Yo =y = y» gesucht (ein Rand-
wertproblem ergibt sich z. B. bei der Berechnung der Durchbiegung einer gespannten
Platte). Nachdem die Argumentstellen x; und y; vorgegeben und die aus den Bedingungen
folgenden Funktionswerte festgestellt sind, ergibt sich die Aufgabe, die Ndherungen u; fiir
die restlichen Funktionswerte u(x;, y;) zu ermitteln. Dazu ist das Differenzenverfahren
universell anwendbar.

Die Argumentstellen werden gleichabstdndig vorgegeben: x; = xo + ik (i =0, ..., n) und
Y =yo+jk (j=0,1,2,...), wobei h *+ k sein kann. Das Prinzip des Differenzenverfahrens
besteht wiederum in der Ersetzung der Differentialquotienten durch Differenzenquotien-

6
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ten (DQ). Die einfachsten Differenzenformeln lauten:
r

%(Mm.; - uy), ,vorderer DQ“
GL;,;y_,i = % (Wis1,j— Ui-vj), ,zentraler DQ* 6.3)
'}; (uj—ui—y,)), hinterer DQ“
.
%(ll.;jn = uy), ,vorderer DQ“
@%;yll = 2_115 (yj+1— u5-1), nzentraler DQ“ 6.4)
‘}’c‘ (uy—uyj-1), Hhinterer DQ“
%}QZ%(WHJ'2MU»+ ui-1;), '(6.5)
az%):ym:ﬁ(“lﬂ,hl i1 T Uiy T lio 1), (6.6)
%ﬁ)ﬁ=%(uw”*2ua+ Uj_1). 6.7)

Wir schreiben Gleichheitszeichen und beachten, daB analog 5.3.3. die rechts auftretenden
Zahlen Niaherungswerte sind.

- s T . Fu  du . §
Beispiel 6.1: Gesucht ist die Losung der partiellen DGI T a_y =0, die den Bedingungen
u(0,y) = u(l,y) =0, u(x, 0) = 4x(1 — x) geniigt. Die Losung sei fiir y = 0 gesucht. Man liest ab, da3

0 = x =1 gilt. Nach Vorgabe von h = 1 und k= L ergibt sich das folgende Schema:

4 32
x0=0 x;=0,25 x,=0,5 x3=0,75 xs=1
Y0=0 U =0 uyp=0,75 Uy =1 u3=0,75 Uy =0
y1=0,03125 ugp =0 uy; =0,5 uy; =075 u3; =0,5 uy =0

y,=0,0625 up =0 up =0,375 Uy =0,5 U3, =0,375 Uup=0

y3=10,09375 ug; =0 u;; =025 U3 =0375  uyy,=0,25 Uy =0

¥4=0,125 ugs =0 Uy =0,1875  wuy =025 uy=0,1875  wuy=0
Aus den vorliegenden Bedingungen erhilt man:

u(0,y)=0 liefert wugpy=ugp = up=...=0,
u(l,y)=0 liefert wug=ugy=ugpy=...=0,
u(x,0)=4x(1—x) liefert wu;o=0,75, up=1, u3o=0,75.

Es liegt somit eine Anfangsrandwertaufgabe vor.
Die Differenzengleichung lautet z. B.

1 1
F("Hl,/"z”ﬁ"'uifl,j)_i("“4!7"ij):0’ 6.8)
und wegen k = % h? erhiilt man dann

Uier,jt Ui-1,J = 2541 =0. (6.9)
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Die Gleichung (6.9) 1aBt sich nach u; ; ., umstellen, und damit hat man die Formel
1
Uyjer =7 (Uiea;F tien) (6.10)

zur schrittweisen Berechnung der Funktionswerte einer Zeile aus den Funktionswerten der vorigen
Zeile gefunden. Die Ergebnisse sind oben bereits eingetragen.

Von besonderer Bedeutung bei der Anwendung des Differenzenverfahrens auf partielle
DGIn mit Bedingungen ist die Wahl der Stellen (x; y;), an denen der Funktionswert der
Losungsfunktion ermittelt werden soll. Sie liegen auf einem Teilbereich der x, y-Ebene, des-
sen Form durch die jeweiligen Bedingungen bestimmt ist (z. B. Halbstreifen bei Anfangs-
RWA, Rechteck bei RWA). Die bisher verwendeten Stellen waren gerade die
Gitterpunkte eines Rechteckgitters auf diesem Teilbereich. Es zeigte sich im Beispiel 6.1,
daB dort die Wahl des Rechteckgitters giinstig war, denn dadurch lagen viele Gitterpunkte
auf dem Rand, und somit brauchte deren Funktionswert nicht berechnet zu werden.

Ergibt sich jedoch z.B. ein Kreis als Bereich, in dem die Losungsfunktion gesucht ist,
so ist die Verwendung des Rechteckgitters offenbar nicht mehr sinnvoll. In diesem Fall
empfiehlt sich die Wahl eines. Gitters, das durch konzentrische Kreise und Radien gebil-
det wird. Dann miissen andere Differenzenformeln benutzt werden.

Einen Uberblick iiber die gebrauchlichsten Gitter erhilt man z. B. in [20] und [7). Fiir
ein tieferes Eindringen in die Differenzenverfahren empfehlen wir [22].

AbschlieBend wird an der Aufgabe aus Beispiel 6.1 eine einfache Stabilitatsiiberprii-
fung bei Anfangs-RWA vorgefiihrt.

Beispiel 6.2: Wir wollen untersuchen, ob das Differenzenverfahren (6.10) stabil ist.

Unter der Annahme, daB an einer Stelle in der Rechnung, etwa bei (x;, y;), der Fehler ¢ vorliegt,
stellen wir nach (6.10) den EinfluB dieses Fehlers an den iibrigen Gitterpunkten fest und erhalten so
das folgende, leicht verstidndliche e-Schema:

Xi-2 Xi-1 Xi Xi+1 Xi+2
¥ 0 0 £ 0 0
Vi1 0 0,5¢ 0 0,5¢ 0
Yi+2 0,25¢ 0 0,5¢ 0 0,25¢
Yi+3 0 0,375¢ |0 0,375¢ |0
Vi+a 0,25¢ 0 0,375¢ |0 0,25¢

Wir erkennen, daB der EinfluB des Fehlers abnimmt, das Verfahren ist somit stabil.
Nun wollen wir untersuchen, ob das Differenzenverfahren stabil bleibt, wenn wir anstelle des vor-

. . S . du .
deren Differenzenquotienten fiir die Ersetzung der ersten Ableitung a—y den — genauere Werte lie-

fernden — zentralen Differenzenquotienten aus (6.4) benutzen. Man erhilt dabei die Rechenvor-
schrift

Uy =Uyjoq+ 20— duy+ Uiy . (6.10)

Nun stellen wir wieder das -Schema auf:

Xi-2 Xi-1 Xi Xi+1 Xi+2
Yi-1 0 0 0 0 0
Y 0 0 € 0 0
Yi+1 0 2e —4e 2e 0
Yi+2 2e —16e 25¢ —16e 2e
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Wir sehen, daB durch die Verwendung des zentralen Differenzenquotienten das Verfahren instabil
geworden ist, eine Erscheinung, die nicht nur bei diesem Beispiel festzustellen ist.
Wir betrachten nun noch einmal das stabile Verfahren (6.10). Ungiinstig dabei erscheint das Verhilt-
1 . . . N R
nis k/h%= 7 weil man schon bei geringer Schrittweite in x-Richtung mit sehr kleiner Schrittweite
in y-Richtung vorgehen muB.
Setzt man aber in (6.8) k = h?, so erhilt man die Vorschtift

Upjar=Uisrj— U+ Uioyj (6.10")

und das e-Schema:

Xi-2 Xi-1 Xi Xi+1 Xi+2
¥ 0 0 € 0 0
Yi+1 0 3 - e 0
Yi+2 € —2¢ 3e -2 €
Yi+3 -3¢ 6e —Te 6e -3¢

Der EinfluB des Fehlers ¢ vergréBert sich von Zeile zu Zeile. Selbst bei Durchfithrung der Rechnung
mit einer sehr groBen Anzahl von Dezimalen werden die Fehler nach geniigend vielen Schritten die
Funktionswerte vollig verfilschen. Dieses Verfahren ist also instabil. Setzen wir allgemein k = ph?, so

1. . Lo
kann man nachweisen (s. [7]), daB das Verfahren nur fiir 0 < p < - bei dem vorliegenden Beispiel
stabil ist.

Aufgabe 6.1: Untersuchen Sie mit Hilfe des e-Schemas, ob das Verfahren fiir die Anfangs-RWA aus

Beispiel 6.1 mit p =—;— auch unter Verwendung des zentralen Differenzenquotienten stabil wird!

6.3. Ansatzmethoden
6.3.1. Galerkin-Verfahren

Randwertaufgaben bei partiellen DGIn kénnen in gleicher Weise wie RWA bei ge-
wohnlichen DGIn mittels eines Ansatzes

WX, ) =w(x,y; aj, ..., am) (6.11)

ndherungsweise gelost werden, wobei die Konstanten ay, ..., a,, so bestimmt werden, daB
die Randbedingungen exakt und die DGIn moglichst gut erfiillt sind. Dazu kénnen alle
Methoden des Abschnitts 5.3.4. verwendet werden. Die Anwendung der Galerkinschen
Gleichungen (5.92) soll im folgenden an einem Beispiel ausfiihrlich demonstriert wer-
den.

Beispiel 6.3: Gesucht ist die Durchbiegung einer an den Liingsseiten y = 0 und y = b fest eingespann-
ten und an den Querseiten x =0 und x = a gelenkig und unverschieblich gelagerten Rechteckplatte
der Linge a und der Breite b unter einer Trapezlast.

Mathematisches Modell:

'w A'w 3w n
DGL: AAwA‘a-x—‘+2 axay? +W—<—;x+m+n)/D

(a, b, n, m, D sind gegebene Konstanten).
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Randbedingungen:
X _ . _ azw w
1) fir x=0 und x=a: w=0 und e ay =0,
Cl
2) fir y=0 und y=5: w=0 und S_:ZO‘

Ansatz: W(x, y) = a191(X, y) + a,@(x, y) mit
= sinT xsin? -
@i(x, y) =sin 7 Xsin’ 5y,
T S|4
@(x, y) = sin P xsin’ by.
Dieser Ansatz erfiillt die Randbedingungen.

Zur Ermittlung von a; und a, wird die Methode von Galerkin auf partielle DGIn iibertragen: Die

+
Defektfunktion lautet jetzt AAW + a—'i)x -2 Dm , und damit erhélt man aus (5.92) die Gleichun-

gen

ab

+m
II AAW+“X* D )(pk(x,y)dxdy=0, k=1,2.
00

Da der Laplace-Differentialoperator A linear ist, d.h.
AAV = AA(a,9; + a,0)) = a;AA@; + a,AA;,

erhilt man die Galerkinschen Gleichungen in der Form

b ab ab
j(AA(p,)qz,dxder aZJ I(Mw;)wldxdy=%J- j (-%er n+ m> @;dxdy,
0 00 00

°'—.=

b ab
J(Aqu,) @, dxdy + azj I(AAtpz) @,dxdy :%J Jl (7—:;-x+ n+ m) @,dxdy.
0 00 00

°'——-=n

Vergleicht man mit (5.106), so erkennt man, daB der lineare Differentialoperator L[] durch den li-
nearen Operator AAw und die einfachen Integrale durch Bereichsintegrale ersetzt wurden. Mit

L, T 8 4 1 8 4
AAg, = n"sm [SIHZTy(_bT+W+_> — cos —y( 5 T at )];

—tsin? Ty [sime Ty (26 16 8 o om (8 . 16
AAg, = ' sin’ ax[sm by(a‘+42b2+b‘ Cos' by b“+a2b1

ergibt sich nach Einsetzen und Integration

8(2m + n) b*
a; = 3% 2 ,
pr* [3(—) +s(—> +1]
a a
nb*
a,=

= .
4D7’ [3 (3)‘ +2 (i) + 1]

a a
Die Beispiele 6.1 und 6.3 zeigten, daB zur Losung partieller DGIn mit Bedingungen die
Methoden aus Abschnitt 5.3. angewendet werden konnen. Wie bereits an diesen einfachen

Beispielen zu erkennen war, ist die numerische Behandlung kompliziert. Aus diesem
Grunde empfiehlt sich vor Beginn der numerischen Behandlung die theoretische Durch-
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dringung der Aufgabenstellung, um das der jeweiligen Aufgabenstellung am besten ange-
paBte Verfahren zu finden. Nihere Ausfithrungen hierzu findet der Leser z. B. in [7], [20],
[24].

6.3.2. Finite-Elemente-Methode (FEM)

Die FEM ist ein modernes Néiherungsverfahren zur Losung vor allem von Randwertauf-
gaben bei partiellen Differentialgleichungen. Sie stellt eine Erweiterung der Spline-An-
satzmethode auf mehrdimensionale Gebiete dar. Dazu wird das Grundgebiet in elemen-
targeometrische finite Elemente, bei zweidimensionalen Aufgaben z.B. in Dreiecke, E,
E,, ..., E, zerlegt. Auf jedem Element E; wird die Niherungslosung w des Problems als
Polynom ersten bis fiinften Grades angesetzt, also bei zweidimensionalen Aufgaben z.B.
in der Form

w=oc + cx + ey, (6.12)

w=cy+ X + ey + cyx? + csxy + ¢y, (6.13)
Die Approximationsfunktion (Ndherungslosung) wird also elementweise bestimmt, wobei
auf stetigen Ubergang an den Elementrindern geachtet wird. Auf jedem finiten Element
werden n sogenannte Knotenpunkte P, P, ..., P, festgelegt, wobei (im Normalfall) die
Anzahl der Knoten mit der Anzahl der Koeffizienten in der Approximationsfunktion
iibereinstimmen muB. Danach werden die Koeffizienten durch die noch unbekannten
Funktionswerte der Approximationsfunktion in den Knoten ausgedriickt. Soll z.B. die ge-
suchte Losung auf dem Element E; durch

W=+ X + ey + cx? + csxy + cey? (6.14)

approximiert werden, so wihlen wir 6 Knotenpunkte P(x,, y;), s =1, ..., 6, und bestim-
men die ¢, j =1, ..., 6, so daB

W(Xe Y5) = €1 F 0o F oYy + €x2 + esXy + €2 (6.15)
fir s =1, 2, ..., 6 gilt. Wir erhalten

6
6=, ouwe mit we=wlxey), J=1,...6, (6.16)
k=1
wobei die Koeffizienten «; von den Koordinaten der Knoten abhéngen:
i = O (X1, Y1, -5 Xey Vo) - (6.17)

Setzen wir die fiir die ¢; erhaltenen Ausdriicke in die Bezichung (6.14) ein, so finden wir
eine Darstellung

6
w= kawk; (6.18)
=1

die f; heiBen Formfunktionen. Es gilt an den Knotenpunkten P,(x;, y;)

1 fur k=s,
f*(""y*)'{o fir k+s.

Unter Verwendung von Variationsprinzipien (vgl. Ritz-Verfahren) oder des Galerkin-
Verfahrens (siehe Beispiel 6.3) wird die Differentialgleichung durch ein Integral iber das
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Grundgebiet ersetzt. Das Integral wird in eine Summe von Integralen iiber die finiten Ele-
mente zerlegt und in jedes Integral fiir w die entsprechende Darstellung (6.18) eingesetzt.
Man erhilt ein Gleichungssystem aus dem (nach Einarbeitung der zugehorigen Rand-
und/oder Anfangsbedingungen) die Naherungswerte an den Knotenpunkten w, ermittelt
werden konnen. Beziiglich Einzelheiten miissen wir auf die Literatur verweisen (z. B.
[13], [29D).



2.1
2.2:

2.3:

2.4:

3.1

3.2:
3.3:

5.1:
5.2

5.3

5.4

5.5:

5.6:

5.7:

Losungen der Aufgaben

0 =2579, @y =3449°.
xP=x{"=3483;  xP=x{=2260.

1
x®=10,50017; xP =10,99986 (exakte Losung &, = Fia= 1).

x®*D = _ai Z apx¢tY + Z apx — a,-),

il k=i+1
i=1,2,...,n; v=0,1,2,..; a; #0.
x{ =0,4000, X =0,7744, xP =0,9567,
x{ = -0,6800, xP =-0,9661, x$ = -0,9990,
x§V=2,0560, xP =2,0383, x§$ =2,0085.

Auf Grund geringerer Stetigkeitsforderungen haben Hermite-Splines stets mehr freie Koeffi-
zienten als Lagrange-Splines. Fiir m =1 sind Lagrange- und Hermite-Splines identisch: es
sind die Streckenziige iiber [a, b] mit lediglich stetigem AnschluB der Funktionswerte in den
Knoten. Fiir m= 3 sind Lagr: Splines inandergefiigte Polynome 5. Grades mit steti-
gem Ubergang der ersten bis vierten Ableitung. Hergxite-Splines mit m =3 sind ebenfalls
stiickweise Polynome 5.Grades, aber nur mit stetigem Ubergang der ersten und zweiten Ablei-
tung.
R =0,29¢ + 70,80.
F(x) = 1,1752 Py(x) + 1,1072 Py(x) + 0,3575 Py(x)
=0,9964 + 1,1037x + 0,5363x2.

y1=1,117433.
Als Korrektor muB8 ein Extrapolationsverfahren moglichst hoher Ordnung gesucht werden.
Mehr als vier Riickgriffe sind aber nicht giinstig, da dann die Anzahl der Riickgriffe des ge-
samten Prediktor-Korrektor-Verfahrens steigen wiirde.
» = 1,1155 aus Beispiel 5.1.

x® =1,275736, X =1,273495,

§°’ 1,481104, x{V =1,486339.
Yo und y;o miissen noch einmal berechnet werden. Wurde die Schrittweite halbiert, so kann da-
nach fiir y, bereits wieder eine Korrekturrechnung durchgefiihrt werden.
h=0,1, xi = kh, k=0,1,...,5.
Startrechnung (Runge-Kutta-Verfahren):
y1=1,096025; ¥y, =1,187379; y3=1,277840.
Hamming-Verfahren:

yP=1,370158; y:m =1,370158; ¥ =1,370360;
YO =1467443; y(sm =1,467630; ¥§¥ =1,467 546.

a) dreifach riickgreifendes implizites Verfahren (Startrechnung fiir y;, y, erforderlich),

b) verbessertes einfach-riickgreifendes explizites Verfahren (keine Startrechnung notwendig).
Aus (5.63) folgt zur Ermittlung des Stabilitdtsgebietes die Ungleichung

2+4h

> h <1 bzw. |2+4h|<|2-ih|

und hieraus

(2 + ha)*+ h2b* < (2 — ha)* + h?b?,
dies vereinfacht sich zu

ha <0,

d.h., das Verfahren ist A-stabil.




Losungen der Aufgaben 91

se X
y o
6.1:  Differenzengleichung:
Upjey=Uoyj+ Uy — 2Uy+ Uiy .
Das e-Schema zeigt, daB das Verfahren auch bei dieser Wahl von p bei Verwendung des zen-

tralen Differenzenquotienten instabil wird.

| -1 | -05 |0 | 1
[ o T o8 [105 [o8 |o
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