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Vorwort

Da seit dem Erscheinen der ersten Auflage mehr als ein Dutzend Jahre vergangen sind,
machte sich eine gründliche Überarbeitung des Bandes nötig. Das Kapitel „Gleichungssy-
steme“ wurde erweitert durch Ausführungen zur Lösung von tridiagonalen linearen Glei-
chungssystemen; die Ausführungen zur Interpolation wurden stark verändert; der Ab-
schnitt „Anfangswertaufgaben bei gewöhnlichen Differentialgleichungen“ wurde völlig
neu verfaßt.

Die moderne Entwicklung und der weitverbreitete Einsatz von elektronischen Rechen-
anlagen (Computern) üben starken Einfluß auf die numerische Mathematik aus. Zwischen
numerischer Mathematik und Informatik haben sich enge Wechselbeziehungen entwik-
kelt. Die moderne Rechentechnik hat neue Maßstäbe in der Wertung und Einschätzung
numerischer Verfahren gebracht, Einfluß auf die theoretische Weiterentwicklung der nu-
merischen Mathematik genommen, in großem Umfang zur Weiter- und Neuentwicklung
numerischer Algorithmen gefiihrt und es ermöglicht, immer größere und komplexere Pro-
bleme in Angriff zu nehmen. Dieser Entwicklung wurde bei der Überarbeitung dieses
Bandes zum Beispiel bei der Auswahl der Verfahren und durch die relativ gründliche Be-
handlung von Stabilitätsfragen Rechnung getragen. Die Autoren versuchen der legitimen
Forderung nach Querverbindungen zur Informatik auch dadurch nachzukommen, daß an

das Ende jedes Kapitels ein Abschnitt „Programmierung und Software“ angefügt wurde.
Für drei ausgewählte grundlegende Verfahren werden Programmablaufpläne angegeben,
Die Angabe von vollständigen Programmen oder von Programmablaufplänen für jedes
Verfahren würde den Rahmen und den Umfang dieses Bandes sprengen und ist der Spe-
zialliteratur vorbehalten; ein Verzeichnis ausgewählter, weiterführender Spezialliteratur
ist dem eigentlichen Literaturverzeichnis beigefügt. Ein tieferes Eindringen in die nume-
rische Mathematik erfordert ohnehin die gleichzeitige Beschäftigung mit Informatik, zum

Beispiel das rechentechnische Realisieren der jeweils betrachteten Algorithmen und den
Einsatz von Programmsystemen.

Die Neugestaltung des Bandes ist das Ergebnis vieler Diskussionen in verschiedenen Gre-
mien. Wir danken dem Herausgeberkollektiv, insbesondere Herrn Prof. Dr. rer. nat. ha-
bil. H. Kadner (Dresden), für wertvolle Hinweise in Vorbereitung und bei der Abfassung
dieser Auflage. Zu Dank sind wir auch unserem Kollegen Dr. rer. nat. V. Wiebigke (Merse-
burg) für Hinweise zur Gestaltung des Abschnitts “Programmierung und Software“ ver-

pflichtet. Die Autoren sind für kritische Bemerkungen zur weiteren Verbesserung des In-
halts und der Darstellung stets dankbar.

Merseburg‚ im Februar 1987 Die Verfasser
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1. Einführung

Die moderne Entwicklung in Technik, Naturwissenschaft und Ökonomie konfrontiert
die auf diesen Gebieten in der Praxis Tätigen immer häufiger mit mathematischen Pro-
blemen, die exakt entweder nur äußerst umständlich oder überhaupt nicht lösbar sind. In
diesen Fällen müssen Verfahren der numerischen Mathematik zur genäherten Lösung
herangezogen werden.

Der Weg von einer in einem der eben genannten Anwendungsbereiche gestellten Auf-
gabe zu numerischen Resultaten verläuft in mehreren Schritten.

I . Schritt.’

Der zu behandelnde technische, naturwissenschaftliche oder ökonomische Vorgang
muß z. B. durch Vernachlässigung nicht wesentlicher Einflußgrößen zu einem hinrei-
chend einfachen, den wirklichen Vorgang approximierenden, d.h. näherungsweise beschrei-
benden Modellvorgang idealisiert werden.

2. Schritt:
Dieser Modellvorgang oder kurz dieses Modell ist mathematisch zu fassen, z.B. sind die

quantitativen Beziehungen in Gestalt von Gleichungen zu beschreiben. Als Ergebnis er-

hält man das mathematische Modell des Vorganges. Danach ist zu prüfen, ob die nun vor-

liegende mathematische Problemstellung sachgemäß gestellt ist. Dazu gehört im wesentli-
chen, die Existenz von Lösungen festzustellen und u. U. die Stabilität der Problemstellung
(der Aufgabe) nachzuweisen.

3. Schritt:

Ist das Modell nicht auf analytischem Wege lösbar, so wird man ein geeignetes numeri-
sches Verfahren als Näherungsverfahren auswählen. Diese Entscheidung wird von vielen
Faktoren beeinflußt: von der zur Verfügung stehenden Rechentechnik, von der Software-
situation, von den spezifischen Anforderungen und Eigenschaften der Aufgabe, von den
jeweils traditionell verwendeten Numerik-Bausteinen, von den vorhandenen numeri-
schen Erfahrungen u. v. a. m. Generell sollte man nach folgendem Schema vorgehen:

Man informiere sich in der zuständigen Softwarebank, ob für das vorliegende Modell
auf dem vorhandenen Computer nutzbare Software vorliegt. Wenn ja, dann nutze man

diese (damit wird das Studium der folgenden Kapitel dieses Buches keinesfalls hinfällig,
denn Beschreibungen numerischer Software sind ohne entsprechende Numerik-Grund-
kenntnisse im allgemeinen nicht oder nur schwer verständlichl).

Ist keine sofort nutzbare Software vorhanden (z. B. weil der verfügbare Computer kei-
nen Compiler für die verwendete Sprache enthält), so sollte als nächstes versucht werden,
passende Software aus Programmsammlungen (Büchern) zu übernehmen. Ist auch das
nicht erfolgreich, weil möglicherweise das gegebene Modell zu komplex ist, dann erst
sollte man selbst einen ausgewählten numerischen Algorithmus zum Programm aufberei-
ten bzw. einen Software-Fachmann zu Rate ziehen.

4. Schritt:

Bei der Umsetzung des numerischen Algorithmus in ein Programm sollte man stets die
Grundregel der strukturierten Programmierung berücksichtigen: Die Struktur des Programms
muß der Struktur des Algorithmus entsprechen — einzelne, relativ selbständige Teilrech-
nungen sollten stets in selbständigen Programmeinheiten (Unterprogrammen, Prozedu-
ren) abgearbeitet werden. Dieses Vorgehen hat den Vorteil, daß möglicherweise für Teil-
und Hilfsrechnungen (z.B. Lösung linearer Gleichungssysteme) vorhandene Softwarebau-
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steine eingesetzt werden können. Man kann mit jeder Programmiersprache gut struktu-
rierte, übersichtlich aufgebaute Programme aufstellen; es gibt jedoch Sprachen, die dieses
Vorgehen besonders unterstützen (PASCAL). Nachdem man jede Programmeinheit ein-
zeln getestet hat, kann man dann zum Test des gesamten Programmes übergehen und da-
nach die Nutzrechnungen durchführen.

5. Schritt:

Die Rechnung wird durchgeführt. Anschließend sind die numerischen Resultate kri-
tisch zu werten.

Nun soll auf einige spezifische Probleme bei numerischen Rechnungen besonders ein-
gegangen werden: N

Wir nennen eine Problemstellung (eine Aufgabe) stabil, wenn bei kleinen Anderungen
der Ausgangsgrößen die Anderung der Lösung klein bleibt. Zur Verdeutlichung des Be-
griffs der Stabilität der Problemstellung bringen wir folgendes Beispiel,

Beispiel 1.1: Wir betrachten die Anfangswertaufgabe

y"=y‚y(0)=1‚y’(0)= -1.

Diese besitzt die Lösung y = e", Wird jedoch die zweite Anfangsbedingung nur wenig verändert,

z. B. y'(0) = —l + e bzw. y'(0) = -1-e (e >0), so erhält man die Lösung y, =(1~§>e”‘ +%e"

bzw. y_, =(1 + e" - ä e". Die Lösungen y,(x) und y_,(x), die jeweils durch eine nur kleine

Änderung eines Anfangswertes erhalten wurden, unterscheiden sich jedoch wesentlich von y(x), da

lim y(x) = 0, aber lim y„(x) = +00 und lim y‚;(x) = —m_gilt. Somit ist das Problem instabil. Dage-

gen ‘ist z.B. die Anfangswertaufgabe y’ = -y, y(0) = 1 stabil; den Nachweis empfehlen wir dem Leser
als Übung.

Da nur mit Zahlendarstellungen mit endlicher Stellenzahl (finiten Zahlen) gerechnet
werden kann, spielt sich die numerische Mathematik in einer endlichen Teilmenge der
rationalen Zahlen‘ ab. Wegen der Finitheit der Zahlen sind die numerischen Resultate
mit Rundungsfehlern behaftet. Eine weitere Folge der Finitheit der Zahlen ist, daß der Be-
griff „unendlich groß“ durch den Begriff „sehr groß“ ersetzt werden muß.

Wenn sich der für die ersten Rechenschritte zugelassene Rundungsfehler in den folgen-
den Schritten nicht vergrößert, so heißt der Rechenpmzeß stabil, wenn aber dieser Fehler
von Schritt zu Schritt wächst (wenn sich die lokalen Rundungsfehler akkumulieren),
dann heißt der Rechenprazeß instabil. Die Stabilität des Rechenprozesses ist in unserer Zeit
durch den Einsatz von Computern, auf denen umfangreiche Rechnungen mit sehr großer
Zahl von Rechenschritten durchgeführt werden, zu einer sehr wichtigen Frage geworden.
Die Instabilität eines Rechenprozesses kann folgende Ursachen haben:

a) Die Problemstellung (Aufgabe) ist instabil. Mit diesem Begriff befaßten wir uns be-
reits (siehe Beispiel 1.1). In diesem Falle kann die Instabilität des Rechenprozesses nicht
behoben werden.

Ist die Aufgabe nicht stabil, so behilft man sich oft dadurch, daß man zu benachbarten,
stabilen Aufgaben übergeht und diese löst. Dieses Vorgehen wird als Regularisierung be-
zeichnet.

Die Stabilität der Aufgabe ist eine wesentliche Voraussetzung dafür, daß man die Auf-
gabe als korrekt gestellt bezeichnen darf.

b) Das verwendete numerische Lösungsverfahren führt zur Instabilität des Rechenpro-
zesses. Man nennt dann das Lösungsverfahren selbst instabil und kann die Instabilität des
Rechenprozesses, falls die Problemstellung stabil ist, meist durch Wechsel des Lösungs-
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Verfahrens, d.h. durch Wahl eines stabilen Lösungsveifahrens, beheben. Zur Erläuterung
soll folgendes Beispiel dienen.

Beispiel 1.2: Zu berechnen sei die Zahlenfolge

1

1
I,,=— x”e"dx (1.1)

e 0

fiir n = 0,1, 2, ‚„, N. Es gilt
I

1 1n=:Jyn=1—:. um

Wenden wir auf das in (1.1) rechts stehende Integral die partielle Integration
I l

iIx”e‘dx= 1- nlJx""e"dx
e u e o

an, so finden wir die Rekursionsformel

h=1-nh„. (Lb
Weiterhin gilt

0<I‚„‚<I„ und lim I„=0, (1.4)
"am

was wir ohne Beweis mitteilen.

Wenn wir die Zahlen l,,, n = 1, 2, 3, N, nach der Rekursionsformel (1.3) unter Berücksichtigung
von (1.2) berechnen, müssen wir schon nach wenigen Schritten feststellen, daß die Zahlen für wach-
sendes n im Gegensatz zu (1.4) nicht monoton nach Null gehen, sondern aufgrund der Rundungsfeh-
ler von den wahren Werten immer mehr abwandern. Je nach der Genauigkeit der Rechnung (d. h. je
nach der Anzahl der mitgeführten Stellen), ist diese Erscheinung eher oder später deutlich festzu-
stellen. In Spalte 1 der Tabelle 1.1 sind die auf zwei Dezimalen nach dem Komma exakten Werte für
I0 bis lg angegeben, in Spalte 2 finden Sie die nach (1,3) mit der gleichen Genauigkeit berechneten
Werte.

Tabelle 1.1

n 1 2 3 4

0 0,63 0,63 0,63 0,63
l 0,37 0,37 0,37 0,37
2 0,26 0,26 0,26 0,26
3 0,21 0,22 0,21 0,21
4 0,17 0,12 0,17 0,17
5 0,15 0,40 0,15 0,15
6 0,13 — 1,40 0,13 0,13
7 0,11 10,80 0,12 0,11
8 0,10 —85,40 0 0,10

Bezeichnen wir für ein festes n mit I„ den exakten und mit I'„ den nach (1.3) berechneten Wert, so ist

a=L+h
der Fehler von I], Aus

I'‚„1=1-(n+1)1-„ und I,,,,1=1~(n+1)I,,



l. Einführung 9

folgt durch Subtraktion

'n~1=i,.+1—L.«1=—("+1)(L—1».)=—(n+1)t,.- (1.5)

Die Beziehung (1.5) zeigt, daß bei diesem Verfahren der absolute Fehler von Ä, +1 durch Multiplika-
tion des absoluten Fehlers von 1.„ mit *(n + 1) entsteht (wobei wir den bei der Berechnung von 7„ ‚l

möglicherweise auft ‘ u Rn " ‘ L‘ Vern U" ‘ I Mit w L ‘ Schrittzahl, d. h.

mit wachsendem n, werden also die Werte von 1„ zunehmend verfälscht, das Verfahren ist instabil
und damit unbrauchbar.

Setzen wir aber wegen lim 1„ = 0 für ein genügend großesj l,- = 0 und berechnen die !‚„ n =j A 1,
"am

..., 1, 0, aus der aus (1.3) folgenden Beziehung

1- 1„
——n— (1.6)rt — l

rückwärts, erhalten wir ein stabiles Lösungsverfahren, Den Nachweis empfehlen wir dem Leser zur

Übung. In der Spalte 3 bzw. 4 der Tab. 1.1 sind die nach diesem Verfahren auf zwei Dezimalen nach
dem Komma genau berechneten Werte von I„ angegeben, wobei in Spalte 3 I3 = 0 und in Spalte 4

Im = O gesetzt wurde. Man sieht, daß im Rahmen unserer geforderten Genauigkeit bereits bei Wahl
von Im = 0 die genauen Werte von I3, I7, Io erhalten werden.

Neben den Rundungsfehlem treten bei numerischen Rechnungen noch Datenfehler
(Eingangsfehler) und Verfahrensfehler auf. Der Datenfehler ist der Fehler des Resultats
einer Rechnung, der eine Folge der Ungenauigkeit der eingehenden Daten ist. Die Daten-
fehler können wie Rundungsfehler behandelt werden, die vor Beginn der Rechnung ge-
macht worden sind.

Die Verfahrensfehler haften dem gewählten numerischen Verfahren an und sind somit
auch ohne Rundungsfehler vorhanden. Sie sind letztlich eine Folge des in der numeri-
schen Mathematik notwendigen Ersatzes analytischer Prozesse durch finite Prozesse. Bei
der Approximation eines Grenzprozesses spricht man auch vom Abbruchfehler, beim Er-
satz der Zahlengeraden durch ein diskretes Punktsystem vom Diskretisierungsfehler. Zur
Verdeutlichung bringen wir ein einfaches Beispiel.

Beispiel 1.3: Das bestimmte Integral
3

dJ7‘ = ln 3

l

soll nach der bekannten Keplerschen Faßregel durch eine gewichtete Summe von Funktionswerten
approximiert werden. Man erhält

3

dx 2 1 l 10

JT7(“47+?)“9“-
Der Verfahrensfehle Fv ist die Differenz des strengen lntegralwertes und des strengen Summen». .-

tes‚ also
l

FV = In 3 —

Der Rundungsfehler FR ist die Differenz des strengen Summenwertes und des vom Rechenautoma-
ten mit finiter Stellenzahl gelieferten Summenw „es bei Berücksichtigung von vier Dezimalen nach
dem Komma, also

FR =%— 1,1111 : 0,00001

Rundungsfehler und Verfahrensfehler sind im allgemeinen miteinander verflochten, sie
überlagern sich in komplizierter Weise und können bezüglich ihres Einflusses auf das Re-
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sultat oft sehr schwer oder gar nicht getrennt werden. Die Überlagerung der Fehler läßt
häufig nur schlechte Abschätzungen mit nur groben Schranken für das gesuchte Ergebnis
zu.

Zur Erweiterung und Vertiefung der in diesem Abschnitt gebrachten Fehlerbetrachtun-
gen empfehlen wir [l6], [28].

Hauptgegenstand der numerischen Mathematik sind die Bereitstellung von Lösungsalgo—
rithmen (im allgemeinen Näherungsverfahren) und die Erforschung ihrer Eigenschaften.
Die Untersuchung der Verfahrensfehler stand dabei bis zur Mitte des 20.Jahrhunderts im
Vordergrund; mit der Einführung der Computer erlangte die Untersuchung der Stabilität
große Bedeutung.

In den folgenden Abschnitten wenden wir uns speziellen numerischen Problemstellun-
gen zu. Wir stellen uns das Ziel, die wichtigsten Grundbegriffe und Verfahren der nume-

rischen Mathematik unter Berücksichtigung ihrer Eignung in der maschinellen Rechen-
technik zu vermitteln und den Leser zu befähigen, für in der Praxis auftretende Probleme
geeignete numerische Verfahren zu finden und anwenden zu können.



2. Lösung von Gleichungssystemen und Gleichungen

2.1. Zur numerischen Lösung nichtlinearer Gleichungssysteme

2.1.1. Problemstellung; einleitende Bemerkungen

Die numerische Bestimmung der Lösungen von Gleichungssystemen und Gleichungen
stellt einen wesentlichen Komplex innerhalb der numerischen Mathematik dar. Wir wen-

den uns zuerst der allgemeinen Problemstellung der Lösung beliebiger, d. h. nichtlinearer
Gleichungssysteme zu, werden hier allgemeine Vorgehensweisen demonstrieren und
dann durch Spezialisierung Lösungsverfahren für eine Gleichung und für lineare Glei-
chungssysteme gewinnen und darlegen.

Gesucht seien die reellen Werte der Veränderlichen x„ x2, x„, die das Gleichungs-
system

fl(x,,x2,.1.,x,,)=0, 1'=1,2,...,n, (2.1)

befriedigen. Dabei seien die „ i= l, 2, ..., n, gegebene reellwertige Funktionen der n

Veränderlichen; sie seien nicht alle linear und sollen stetige partielle Ableitungen genü-
gend hoher Ordnung besitzen. Falls wie in dem System (2.1) die Zahl der Gleichungen
mit der der Unbekannten übereinstimmt, heißt das nichtlineare Gleichungssystem nor-

mal. Wir werden hier nur normale Systeme betrachten. Normale, nichtlineare Glei-
chungssysteme können keine, genau eine, mehrere oder sogar unendlich viele Lösungen
besitzen.

Da es einerseits keine universell geeignete Methode zur Lösung normaler nichtlinearer
Gleichungssysteme gibt, andererseits diese Systeme in den modernen Anwendungen der
Mathematik eine immer größere Rolle spielen, wurde vor allem in der neueren Zeit eine
große Zahl von speziellen Verfahren zur Lösung solcher Systeme entwickelt.

Bevor wir zur Behandlung von Lösungsmethoden übergehen, wollen wir uns ein Bei-
spiel für das Auftreten nichtlinearer Gleichungssysteme ansehen.

Beispiel 2.1: Ein Körper vom Gewicht G hängt an zwei elastischen Seilen, die an zwei Punkten befe-
stigt sind. Diese Punkte liegen in gleicher Höhe und haben den Abstand a voneinander. Die span-
nungslose Länge des ersten Seiles ist p„ die des zweiten pf, die elastische Konstante beider Seile
ist c.

Der Neigungswinkel des ersten Seils wird mit x und der des zweiten mit y bezeichnet. Zur Bestim-
mung von x und y findet man dann folgende Gleichungen:

. G P .

f1(x, y)=s1nx*-;;cosx—71s1n(x+y)=0,

. G P .f,(x, y)=s1ny—Ecosy-T1s1n(x+y)=0.

Mit G = 80 N, a : 10,00 m, p, : 5,00 m, p; : 3,35 m und c = 50% lauten sie

f‚(x, y) = sin x~ 0,160 cos x- 0,335 sin (x + y) = 0, (2 2)

f2(x, y) : siny e 0,160 cosy — 0,500 sin (x + y) = 0. '

Für das Auftreten nichtlinearer Gleichungssysteme ließe sich noch eine Reihe weiterer
Beispiele angeben. Erwähnt sei nur noch, daß z.B. die notwendigen Bedingungen fiir ein
Extremum einer nichtlinearen Funktion mehrerer Veränderlicher i.allg. ein nichtlineares
Gleichungssystem darstellen und daß bei der Behandlung von Randwertproblemen bei
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nichtlinearen Differentialgleichungen mit dem Differenzenverfahren (siehe Abschnitt 5.)
nichtlineare Gleichungssysteme zu lösen sind. Wenden wir uns nun einigen Lösungsver-
fahren zu.

2.1.2. Eliminationsverfahren

Man wird meist versuchen, die Anzahl der Gleichungen des Systems (2.1) zu reduzie-
ren.

Wenn es gelingt, irgendeine Gleichung des Systems (2.1) explizit nach einer Unbe-
kannten, z.B. x1, aufzulösen, erhalten wir dann durch Substitution dieses Ausdruckes für
x, in allen anderen Gleichungen n - 1 Gleichungen mit n - 1 Unbekannten:

q‚-(x2‚x3_...,x„)=0, i=1,2,...,n~1.
Gelingt uns aus einer Gleichung dieses Systems wieder die Auflösung nach einer Unbe-
kannten, erhalten wir ein System von n — 2 Gleichungen mit n — 2 Unbekannten. So fort-
fahrend, finden wir nach n — 1 Schritten eine Gleichung mit einer Unbekannten, aus de-
ren Lösung wir rückwärts die zugehörigen Werte der anderen Unbekannten bestimmen
können.

In der Regel wird dieses Vorgehen jedoch nicht vollständig durchführbar sein; es blei-
ben dann s Gleichungen mit s Unbekannten übrig (s < n).

2.1.3. Iterationsverfahren

Iterationsverfahren sind Verfahren der schrittweisen Annäherung. Aus einer vorgegebe-
nen Näherung für die Lösung wird durch Anwendung einer Iterationsvorschrift eine wei-
tere Näherung berechnet, auf diese wird dann wieder die Iterationsvorschrift angewandt
usw. Es wird somit eine Folge konstruiert, deren Elemente als Näherungen für die jeweils
gesuchte Lösung angesehen werden können. Wichtigste Fragen bei der Anwendung eines
Iterationsverfahrens sind die Beschaffung der Anfangsnäherung und die Untersuchung, ob
die zu berechnende Folge von Näherungen gegen die gesuchte Lösung konvergiert.

Zur Anwendung eines Iterationsverfahrens wird das System (2.1) auf folgende Form ge-
bracht:

X.‘=4Pi(X1,X2y~~uXn)s i=1;2y n-‚n- (2-3)

Die Operationen, durch die diese Transformation realisiert wird, können beliebiger Art
sein, es ist nur erforderlich, dal3 jede Lösung des Systems (2.1) dem System (2.3) genügt.
Es wird vorausgesetzt, daß die Funktionen qz,-, i = 1, 2, n, in der Umgebung der ge-
suchten Lösungen genügend oft stetig differenzierbar sind.

2.1.3.1. Iterationsverfahren in Gesamtschritten

Ausgehend von einer gegebenen Anfangsnäherung x, = x§°’, i = 1, 2, ..., n, für die ge-
suchte Lösung x‚— = m, wird nach der Iterationsvorschrift

x57” " = cp,-(x‘,k’, x{", ..., xf,""), (2.4)

i=1,2,...,n; k=0,1,2,...,
eine Folge von n-Tupeln (x{"’, x5“, ..., xff’) konstruiert.

(Die zur Zählung der Verfahrensschritte benutzten Hochzahlen werden in Klammern
gesetzt, um sie von Exponenten im Sinne der Potenzrechnung zu unterscheiden.)

Wenn für k—> 0° x§-"’ ~> oz, gilt, so sagt man, daß das Iterationsverfahren zur gesuchten
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Lösung konvergiert. Das Iterationsverfahren in Gesamtschritten konvergiert, wenn eines
der folgenden Kriterien erfüllt ist:

3% am. 50’; . ._axl + 3x2 .. ax” <1, :—1,2,...,n, (2.5)

3011 San am .=axi + axi +,.. an <1, I 1,2,...,n, (2.6)

wobei die Ableitungen an der Stelle x, = m, x2 = 0:2, ..., x„ = an zu bilden sind. Weil die
0:1, a2, ..., an unbekannt sind, werden dafür die x30’, xf’, ...‚ xff” benutzt; diese Werte
müssen aber genügend nahe der Lösung liegen.

Verwenden wir die Vektarschreibweise

(xi, x1, ...,x,,)T=x; (an, 1x1, ...‚ac„)T=a;

(an, Im, awn)’ = W.

so können die Gleichungen (2.4) in der Form

„m n = Wurm)

geschrieben werden. Für eine Lösung a des Systems (2.1) gilt die Gleichung

4X = <P(0r)‚

d. h.‚ a: ist ein Fixpunkt (unveränderlicher Punkt) der Abbildung (Funktion) (p. In der
Furzktionalanalysis werden unter allgemeinen Voraussetzungen Sogenannte Fixpunktsätze
bewiesen, die u. a. Aussagen über die Konvergenz des Iterationsverfahrens gegen einen
Fixpunkt enthalten. Unsere obigen Konvergenzaussagen sind Spezialfalle eines solchen
Fixpunktsatzes.

Schwierigkeiten bei der Lösung nichtlinearer Gleichungssysteme entstehen bei der Be-
stimmung einer Anfangsnähemng für die Lösung, weil fast alle Verfahren nur zum Ziele
fuhren, wenn die Anfangsnäherung genügend nahe bei der Lösung liegt. Bei zwei Glei-
chungen mit zwei Unbekannten finden Sie eine Anfangsnäherung leicht graphisch, sonst
ist man auf eine umfassende Tabellierung der Funktionen j}(x,, x2, ..., x,,),j = 1, 2, ..., n,

angewiesen. Bei angewandten Problemstellungen läßt sich oft aus praktischen Überlegun-
gen der Bereich, in dem die gesuchte Lösung liegt, genügend genau eingrenzen.

Beispiel 2.2: Von dem nichtlinearen Gleichungssystem

f1(X1,X2):2X§’ XIX2 ‘ 5X1+1= 0‚
f2(X1aX2)= xi + 312x: -X§=0

ist die bei x, = 3,4, x, = 2,2 liegende Lösung auf zwei Dezimalen nach dem Komma genau zu be-
stimmen.

Wir bringen das System auf folgende Weise auf die Form (2.3):

X1: i ‘V%'(X1(5 ‘i’ X2) ‘ 1) : 1P1(X1. X2)»

X2 : iVX1+ “EX1 I W2(X1y X2)-

Da wir eine positive Lösung suchen, werden im folgenden nur Wurzeln mit positivem Vorzeichen be-
trachtet. Es gibt eine Vielzahl von anderen Umformungen; wichtig ist, daß man eine Umformung fin-
det, für die ein Konvergenzkriterium erfüllt ist.

Für x?" = 3,4 und xi” = 2,2 gilt

3'171

ax;
3%
8x1

3012

ax}
a‘P1

3x,
= 0,53, = 0,25, = 0,62 , =0‚



14 2. Lösung von Gleichungssystemen und Gleichungen

damit ist das Konvergenzkriterium (2.5) erfüllt. (Zur Sicherung der Konvergenz ist schon die Erfül-
lung eines dieser Kriterien ausreichend.)

Die Iterationsvorschrift (2.4) lautet

X(lk+1): L:_(x(]k)(5 + X510) _ 1 y

x[”"=1/x‘1"’+31gx(1"’, k=0, 1,2,...

Beginnend mit x‘,°’ = 3,4 und xf’ = 2,2 erhalten wir folgende Werte (wegen der oben geforderten Ge-
nauigkeit muß die Rechnung mit drei Dezimalen nach dem Komma durchgeführt werden):

x3" = 11% (3,4 (5 + 2,2) — 1) = 3,426; xg" = 3,4 + 31g 3,4 = 2,235;

x<fi>= ‘/%(3,426 (5 + 2,235)— 1) = 3,457; x<;>= 3,426+ 3lg3,426 =2,243;

xf’ = 3,464; x?’ = 2,252;

x5" = 3,476; xg" = 2,256;

x‘15’= 3,480; x5” = 2,258;

xä‘) = 3,483; x55’ = 2,259;

x‘,7’ = 3,483; x9’ = 2,260;

X(18)= 3,483; x?) = 2,260.

Durch Runden erhalten wir das gesuchte Ergebnis

ac‚=3,48‚ ae‚=2,26.

Wenn man dieses Iterationsverfahren auf eine Gleichung mit einer Unbekannten f(x) = O an-

wendet, dann lautet die Iterationsvorschrift

x"‘*" = ¢I(x‘*’), k = 0, 1, 2,

und Konvergenz liegt vor, wenn

l¢I’(0c)l <1
gilt.

Aufgabe 2.1: Lösen Sie das nichtlineare Gleichungssystem aus Beispiel 2.1 mit den leicht aus einer
Skizze zu ermittelnden Anfangsnäherungen x”) = 30°, y‘°’ = 30° und der Umformung

x = arcsin [0,160 cos x + 0,335 sin (x + y)]‚
y = arcsin[0,160 cosy + 0,500 sin (x + y)].

Die Konvergenz sei gesichert. Die Lösung wird auf zwei Dezimalen nach dem Komma genau ge-
wünscht.

2.1.3.2. Iterationsverfahren in Einzelschritten

Dieses Verfahren unterscheidet sich von der Iteration in Gesamtschritten lediglich
durch die folgendermaßen veränderte Iterationsvorschrift:

xs-*+'> = qz.<x<,*+1>,x;*+*>, x252", x2". x<:>>, (2.7)
i=1,2,...,n; k=O,1,2,...

Hierbei setzt man also rechts für jede Veränderliche jeweils den letzten fiir sie erhaltenen
Wert ein. Die Konvergenzbedingungen dieses Verfahrens sind verschieden von denen des
lterationsverfahrens in Gesamtschritten, auf sie wollen wir hier nicht eingehen.

Aufgabe 2.2: Behandeln Sie das nichtlineare Gleichungssystem aus Beispiel 2.2 mit den dort gemach-
ten Angaben mit dem Iterationsverfahren in Einzelschritten!
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2.1.3.3. Verfahren von Newton-Raphson

Bei der Darlegung dieses Verfahrens beschränken wir uns auf zwei Gleichungen mit
zwei Unbekannten, um Schreibarbeit zu sparen:

fl(x1a X2) = 0.

f2(-X1: X2) = 0«

Es sei wieder x‘,°’, xf’ eine erste Näherung für die gesuchte Lösung a], a2. Durch Taylor-
Entwicklung der Funktionen f1(x1, x2), fz(x„ x2) an der „Stelle“ (x‘,°’‚ x9”) und Vernach-
lässigung der Potenzen von (x, — x59’), i = 1, 2, deren Exponenten größer als eins sind, fin-
den wir folgende Darstellung:

ax
man, x2) ~/.<x§°’, x§°*> + 7‘! (x:°% x‘2°’> on - xa°’>

a/
* aT‘2<xi°% x?) (x2 — x35 = o,

a/am, x2) =fz(xä°’‚ x9”) + a—;(x&°’, xg°’> (x1 — xi”)

+ §—<x<,°>, x9”) (X2 — x§°’> = o.
2

Wir setzen x, ~ x§-°’ = Ax§°’, i = 1, 2, und erhalten zur Bestimmung der sog. Korrekturen
Axf-0’ das lineare Gleichungssystem

öfi afl?(X(1°’, x‘z°’)AX§°’ + §;“(X§°’, X20’) AX?” = —f;(X§°). X9»),
l 2

afl (o) (o) (o) L3 (o) (o) <o> - m) (o) (2.8)T(x, ‚x2 )Ax1 + (X, ,xz )Ax2 —-f2(x1,x2).
ax, 6x2

Hat man dieses lineare Gleichungssystem gelöst, findet man als neue Näherungslösung
(wegen des Fehlers bei der Linearisierung ist es noch nicht die exakte Lösung)

x3" = x‘,°’ + Axgm, xg» + Ax‘2°‘.

Nun wird die Taylor-Entwicklung wiederholt, jetzt an der „Stelle“ (x‘,", x5"), und wir kom-
men mit AXE." = x, - X‘,-" zu dem linearen Gleichungssystem zur Bestimmung der AXE“:

3f af§X_1(x(‘1>) xg1>)Ax(11) + §’i(X<‘1), x;1>)Axg1) = _fl(x(l1)’ X(2l))>

1

afz (1) (l) H) (1) (1) (1)— (1) Ü)‘a'x*1“(X;,X2 )AX1 +a:(X1sx2 )Axz “‘fz(x1:x2)-

Als neue Näherungslösung finden wir

‘,2’ = x‘1“+ Axg", x"? = xg1>+ Axg".

Entsprechend wird das Verfahren fortgesetzt. Das im (k + 1)-ten Schritt zu lösende li-
neare Gleichungssystem lautet

3/ afi
a—x‘l(xl"’‚ x2“) M +»-3-x7<x‘.*>, x;*>> Axi’ = —n<xi*>‚ m
ö 8
$<x:*>. mM + a—f:<x<.*>. x;*>> Axw = ans“, m

l
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Als neue Näherungslösung ergibt sich
xtzlwl): X(lk)+AX(1k)’ x(Zk+-1): x(2k)+Ax(2k)_

Nach der ausführlichen Darlegung des Verfahrens für zwei Gleichungen bereitet es sicher
keine Schwierigkeiten, das Verfahren auf größere Systeme anzuwenden. Die auftretenden
linearen Gleichungssysteme sind durch geeignete numerische Verfahren, wie sie in Ab—

schnitt 2.3. dargelegt werden, zu lösen,
Die Konvergenz des Verfahrens von Newton-Raphson ist schwierig nachzuweisen. Es

läßt sich zeigen, daß das Verfahren von Newton-Raphson konvergiert, wenn die im Ver-
fahren auftretenden linearen Gleichungssysteme lösbar sind, d. h., wenn die sog. Jacobi-
sehe Matrix

Ämi
3x1 8x,,

J(x)= 3 E

i ä
ax} 8x,,

an den einzelnen Iterationspunkten nichtsingulär ist und die Anfangsnäherung genügend
nahe bei der Lösung ist.

Beispiel 2.3: Wir wollen das nichtlineare Gleichungssystem aus Beispiel 2.1 mit dem Verfahren von

Newton-Raphson lösen:

f,(x, y‘) = sin X - 0,160 cosx - 0,335 sin (x + y) = 0,

f2(X,y) = siny - 0,160 cosy - 0,500sin (x + y) = 0,
xlü) = 30°‘ y(0) = 30°’

Als erstes berechnen wir die Ableitungen der Funktionen f, und f2:

% = cosx + 0,160 sinx A 0,335 cos (x + y),

a
8L}: = -0,335 cos(x +y)‚

aT2 = -0,500 cos (x +y),

a .T? = cosy + 0,160 smy - 0,500 cos(x + y).

1/1. ‚ i- ‚ i- _ i _ _ _ _Wegen ex 0,778, ay — 0,168, ex — 0,250, ay —0,696,f,—0,0713 undf1— 0,0716 an der

Stelle (x‘°’, y‘°’) lautet das Gleichungssystem (2.8)

0,778 Ax‘°’ i 0,168 Ay‘°’ = -0,0713 ,

*0,25O Ax‘°’ + 0,696 Ay‘°’ = 0,0716,

daraus folgt Ax”) = -0,0752 = *4,31°, Ayw’ = 0,0759 = 4,35° und xl“ = 25,69°, ym = 34,35“. Wieder-
holen wir die Rechnung mit x‘“ und y“), finden wir als Gleichungssystem (2.9)

0,803 Ax“) A 0,168 Ay‘“ = 0,0009,

—0,250Ax‘“ + 0,666 Ay“) = 0,0011,

hieraus folgt xm = 0,0016 = o,o9°, y‘“ z 0,0022 : 0,l3° und xw : 25,78*’, w‘ : 34,4s°.
Hier brechen wir das Verfahren ab, bei Weiter-rechnen kommt es auf Grund der Rundungsfehler

nur noch zu geringfügigen altemierenden Anderungen in der 2. Dezimalen nach dem Komma

(x‘3’ : 25,79“, y”) = 34,49°, x“) = 25,78“, y“) = 34,47“).

Die gesuchte Lösung lautet nach Rundung: a, = 25,8°, u; = 34,5°,
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Im Falle der Konvergenz führt bei gleicher Anfangsnäherung das Verfahren von

Newton-Raphson schneller zur Lösung als das Iterationsverfahren in Gesamtschritten, es

hat eine größere Konvergenzgeschwindigkeit. Als Maßzahl für die Konvergenzgeschwindig-

keit verwendet man die Sogenannte Ordnung der Konvergenz: Eine Folge {x”"} konvergiert
von der Ordnung p g 1 gegen einen Grenzwert u, wenn es eine Konstante C gibt mit

|x<*+1>—u|;c|x<k>—a|v‚ k=0,1,2,
(Im Fall p =1 sei C< 1.) Die Ordnung der Konvergenz beträgt beim Verfahren von
Newton-Raphson 2 und beim Iterationsverfahren in Gesamtschritten 1.

Liegt eine Gleichung mit einer Unbekannten f(x) = 0 vor, so liefert die Linearisierung mit-
tels Taylor-Entwicklung

flfl~flflW+fUWHx-flW=&
und die Iterationsvorschrift lautet damit

f(X110)
(k~1)_—= (l<)_ I (k) =x x f,(x(k)), f(x )=#0, k 0,1,2,...

Dieses Verfahren gehört zu den bekanntesten Verfahren zur Lösung einer Gleichung mit
einer Unbekannten (siehe Band 2 dieses Lehrwerkes).
Es ist bekannt als Tangentennäherungs- oder Newton-Verfahren.

Aufgabe 2.3: Bestimmen Sie die in der Nähe von x, = 0,4 und x2 = 0,9 liegende Lösung des nichtli-
nearen Gleichungssystems

4xf+x§+2x,x2-X1-2=0,
2xf+3x1x1-+-X;-3=0

mit dem Verfahren von Newton-Raphson; geben Sie x57’ und x52’ auf5 Dezimalen nach dem Komma
genau an!

2.1.4. Minimierungsverfahren

Bei diesem Verfahren wird das Problem der Bestimmung der Lösungen des nichtlinea-
ren Gleichungssystems (2.1) ersetzt durch das Problem der Bestimmung der Minima
einer Testfunktion F(x1, x2, ‚.., x„), die so gewählt wird, daß sie genau für die Lösungen
des Gleichungssystems ein Minimum vom Werte Null annimmt. Als Testfunktion ist z.B.
geeignet:

Fmm„„m=Zmma„„mr
r=l

Die Bestimmung der Minima der Testfunktion kann nicht auf klassischem Wege gesche-
hen, weil die notwendigen Bedingungen für ein Extremum einer Funktion mehrerer Ver-
änderlicher i.a11g. ein nichtlineares Gleichungssystem darstellen, sondern es sind die aus
der Optimierung dafür bekannten Verfahren (z. B. Gradientenverfahren), die auch An-
fangsnäherungen benötigen, zu verwenden.

2.2. Zur numerischen Lösung nichtlinearer Gleichungen

Für die numerische Bestimmung der Lösungen einer beliebigen nichtlinearen Glei-
chung mit einer Unbekannten f(x) = 0 existieren im wesentlichen drei grundlegende Ver-
fahren:

a) die bekannte regula falsi (Verfahren des Eingabelns),
b) das gewöhnliche Iterationsverfahren (siehe Abschnitt 2.1.3.1.),
c) das Newton-Verfahren (siehe Abschnitt 2.1.3.3.).

2 Oelschlägel, Methoden
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Ist die nichtlineare Gleichung speziell eine algebraische Gleichung (Polynomglei-
' chung) m-ten Grades,

p(x)=ao+a1x+azx’+~.+amx’"=0, am*0, (2-10)

so existieren für m = 1, 2, 3, 4 exakte Lösungsformeln, die für m = 3 und m = 4 in ihrer
Anwendung allerdings schon so kompliziert sind, daß man in diesen Fällen meist auf nu-
merische Verfahren zurückgreift. Die obengenannten drei Verfahren zur Lösung nichtli-
nearer Gleichungen sind auf algebraische Gleichungen natürlich anwendbar, liefern aber
jeweils nur eine Lösung. Dagegen liefert das speziell fiir algebraische Gleichungen entwik-
kelte Verfahren von Graeffe sämtliche m Lösungen (in ihrer Vielfachheit gezählt). Bezüg-
lich dieses Verfahrens verweisen wir auf die Literatur, z. B. [28].

Den speziellen Gegebenheiten der Nullstellensuche bei Polynomen trägt auch das Ver-
fahren von Bairstow [30] Rechnung.

Als weitere Verfahren zur Lösung einer Gleichung sind auch Halbierungsverfahren ge-
bräuchlich. Wir legen hier im folgenden ein spezielles I-Ialbierungsverfahren fiir algebrai-
sche Gleichungen dar, wobei wir zu seiner Begründung die Intervallarithmetik benutzen,
da diese auch für Fehlerbetrachtungen zunehmend an Bedeutung gewinnt.

In der Intervallarithmetik werden die für die Menge R der reellen Zahlen in bekannter
Weise erklärten Verknüpfungen folgendermaßen auf die Menge J(R) aller abgeschlossenen
und beschränkten Intervalle erweitert:

{an a2] + [bu b2] = [a1 + bx, I12 + 1721,13-[1.3]+[—4, ‘1]=[‘3.2],
[an a2] ' [bu b2] = [a1 ‘ 172,-12 ‘ 171]. Z. B- [L 3] - ["4‚ " 1] = [Ä 7],

m, a1]'[b1a b2]: [m_in<a.»b,»>, max<a,I>,>], 2.3. H, 11-[2,41= l-8‚ 41.
L] L]

tat. u2]:[bla bu = Im. 112]’ [ 1 172,7)‘-] (b,>0oder b2<O),

z. B. [-2, 5]=[2, 3] = [-1,

Wenn man das Intervall [a, a] mit der reellen Zahl a identifiziert, gehen die Intervallver-
knüpfungen in die gewöhnlichen Verknüpfungen reeller Zahlen über. Es seien A, B, C In-
tervalle aus ./(R); dann gelten für die oben definierten Verknüpfungen folgende Ge-
setze

A+B=B+A, A+(B+C)=(A+B)—‘C‚
A~B=l_3-A, A‘(B-C)=(A~B)-C.

Für viele Anwendungen ist es erforderlich, für die Funktionswerte einer stetigen Funktion
f(x) auf dem Intervall X = [x], x2] eine lntewallabschätzung U(f, X) = [u„ uz] mit
U :> {f(x) | x e X} zu finden. Für ein Polynom p(x) = a0 + 111x + + a„‚x"' ist

U(p‚ X) = [am a0] + [ah ai] X+ + [a,,,, a,,,] X"' (X’" = m-mal) (2.11)

eine solche Intervallabschätzung der Funktionswerte auf dem Intervall X. Diese Intervall-
abschätzung besitzt folgende Eigenschaften:

I) Für alle XeJ(R) gilt {p(X) I xeX} C U(p‚ X).
2) Aus Xc Y folgt stets U(p‚ X) c U(p, Y).
3) Aus der Konvergenz einer Folge X, :> X2 :> X3 a gegen eine reelle Zahl x = [x, x]

folgt die Konvergenz der Folge der Abschätzungen U(p‚ X1) 3 U(p‚ X1) 3 gegen
den Funktionswert p(x).
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Nun sei die Aufgabe vorgelegt, für eine algebraische Gleichung (2.10) sämtliche reellen
Lösungen ark, welche diese in einem vorgegebenen Intervall X = [x„ x2] besitzt, einzeln
beliebig genau in Intervalle [x„, x„2] einzuschließen (unter Benutzung von Abschätzungs-
formeln der Algebra läßt sich mit Hilfe der Koeffizienten a0, a„ a„‚ stets ein Inter-
vall X angeben, in dem sämtliche Lösungen der algebraischen Gleichung liegen).

Beim Halbierungsverfahren berechnet man als erstes die Intervallabschätzung U(p, X)
gemäß (2.11). Gilt 0 e U(p, X), dann hat wegen der Eigenschaft 1) p(x) keine Nullstelle
(und damit die algebraische Gleichung keine Lösung) in X. Andernfalls wird X = [x„ x2]

in seine beiden Hälften X, = [x„ X1 E’ x2] und X2 = [X1 E x2

U(p, X2) berechnet und wieder geprüft, ob 0 E U(p, X,) bzw. 0 e U(p, X2). Gilt für eines
der Intervalle X,- mit Os U(p, X,~), so scheidet dieses aus, denn dann ist sicher, daß es

keine Nullstelle von p(x) enthält. Für diejenigen X„ für welche 0 e U(p, X‚) gilt, wird das
Verfahren entsprechend fortgesetzt. Die Eigenschaft 2) sichert, daß die eventuell vorhan-
denen Nullstellen von p(x) in immer kleiner werdende Intervalle eingeschachtelt werden,
wegen der Eigenschaft 3) werden dabei als Grenzwert genau alle reellen Nullstellen von
p(x) in X berechnet.

Beispiel 2.4: Es sollen die reellen Lösungen der algebraischen Gleichung p(x) : 2 — 3x + x3 im Inter-
vall X = [—l‚ 1] mit dem Halbierungsverfahren bestimmt werden.

‚X4 zerlegt, U(p, X,) sowie

I. Schritt: Wir finden

U07. X) = U(1I‚ [‘1‚ 1]) Z [Ä 21 ’ [3, 3]‘[’1» 1] + 1-1, 113 = [—2. 6]-

Wegen 0 e [-2, 6] wird das Verfahren mit diesem Intervall fortgesetzt.

2. Schritt: Wir zerlegen X=[~1,1] in seine beiden Hälften X, : [—1, 0], X2=[0, 1] und finden
U(p, X,) = [1, 5], U(p, X2) =[-1‚ 3]. Wegen 0 e [1, 5] scheidet das Intervall X, aus, wegen 0 e [A1, 3]
wird das Verfahren mit X2 fortgesetzt.

3. Schritt: Wir zerlegen X2 = [0, 1] in seine beiden Hälften X2, 1 [0, X22 = [17.
4 17 7 12 4 17

U(p, X2,) = [?, T], U(p, X22) = [—-8-, Wegen 0e [?, T} scheidet das Intervall X2, aus,

I] und finden

wegen 0 e [—%, wird das Verfahren mit X22 fortgesetzt.

Allgemein erhalten wir im n-ten Schritt als Nullstellen-Einschließungsintervall

X222 :[1—%,1];fiir nave finden wir die Lösung o: =11

Mit diesem Anwendungsbeispiel konnte die Vielfalt der Einsatzmöglichkeiten der Inter-
vallrechnung in der numerischen Mathematik nur angedeutet werden. Über die Bedeu-
tung dieser Vorgehensweise, insbesondere für die Erfassung und Verfolgung von Ein-
gangsfehlem, wird ausführlich in [5] informiert.

2.3. Iterative Lösung linearer inhomogener Gleichungssysteme

Wir betrachten nun lineare inhomogene Gleichungssysteme von n Gleichungen mit n

Unbekannten:

a„x, + a,2x2 + + a„‚x„ = 11„

021x11’ azzxz +1’ aznxn = (12,

E E E E (2.12)

a„,x, + zz„2x2 + + a„„x„ = a„.
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Für das System (2.12) schreiben wir kurz

2 a,-kxk = a,-, i= 1, 2, n. (2.13)
k =l

Zur Sicherung der eindeutigen Lösbarkeit setzen wir voraus, daß die Koeffizientendeter-
minante von null verschieden ist,

Zur Anwendung des Iterationsverfahrens in Gesamtschritten formen wir Gleichung
(2.13) um:

b4
: i—l n

aikxk: Za‚-„xk+a,-‚-x‚-+ Z aikxk=a„ i=1‚2,...,n.
k=lk k=r+lu l

Daraus folgt:

1 i-l n I

x, = -a— a,kxk+ Z a,»kxk- 11,-), a‚-,-4=0‚ 1= 1, 2, ..., n. (2.14)
ii k=l k=i‘l

Die rechte Seite von Gleichung (2.14) entspricht der Funktion (p, bei nichtlinearen Syste-
men, die Forderung a‚-, #= 0, i = 1, 2, ...‚ n, läßt sich durch entsprechende Umordnung des

‘ Systems (2.12) infolge unserer Voraussetzung immer erfüllen. Ausgehend von einer An-
fangsnäherung x, = x59’, i = 1, 2, ...‚ n, der gesuchten Lösung x, = a, wird nach der Itera-
tionsvorschrift

i - l
1 " ‚

xE"*"=-— Za.„x‘;’+ Z a.-1x‘;‘—a1— ‚ z=1‚2‚...‚n. (2.15)
“ii k=l k=r+l

eine Folge von Näherungswerten (x‘,”>, xfl, ..., xff’) berechnet. Die hinreichenden Konver-
genzkriterien (2.5) und (2.6) lauten jetzt

" a. " a. _

„‚.= + 2 <1, 1=1,2,...,n, (2.16)

k : 1 " k I ' + l " (Zeilensummenkriterium)
k’! n

_ a< av
,,k= —'* + 2 —'* <1, k=l‚2‚...‚n (2.17)

1:1 an i:k+1 au’
(Spaltensummenkriterium).

Die Kriterien hängen nicht von der Anfangsnäherung ab; durch eine unglückliche Wahl
der Anfangsnäherung wird also die Konvergenz nicht beeinflußt.

Beispiel 2.5: Für das lineare‘ inhomogene Gleichungssystem

3 3 8X|+?X3+?X3=?‚

l 2x1+x1+?x3—?,

wollen wir, ausgehend von der Anfangsnäherung x‘,°’ = x§"’ = x?’ =1 drei Schritte mit dem ltera-
tionsverfahren in Gesamtschritten durchführen. Das Verfahren konvergiert, weil das Spaltensum-
menkriterium erfüllt ist:

—=£ -=1 —=i#1 Saß: 5J‘; 5-

(Das Zeilensummenkriterium ist nicht erfüllt.)
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Wir berechnen nun nach Gleichung (2.15) die Näherungen

1 2
Xi" : D711’ 0112x211) + ‘113X(3m ‘ 01) = ?7

(1) m

1 4
X2 ‘ "‘ (1121-X(10) 1‘ 023x; ‘ '12) = ‘—‚an 5

1 8
x51): "" (‘131X(10) + an)‘: ‘ a3) = —‚an 5

2s 104x‘,2)=E: 1,1200, x‘1”=fi=0,8320,

20 130
x5“ = —F = —0,s000, xg” = ~T2?= ~1,040o,

52 242
xgn =f = 2,0300, x5” = m =1,9350.

Die exakte Lösung ist x, = 1, x2 = -1, x3 = 2.

Die im Abschnitt 1. erläuterte Stabilität der Problemstellung ist auch bei der Aufgabe
der Lösung eines linearen Gleichungssystems von Bedeutung. Bei einer bestimmten Kon-
stellation und bei bestimmten Größenverhältnissen der Koeffizienten a‚-„ kann der Fall
eintreten, daß sich bei kleinen Änderungen der a,-k und a, (i, k = 1, 2, ..., n) die Lösung
des Gleichungssystems stark ändert. Man nennt in diesem Falle das Gleichungssystem
schlecht konditioniert. In der Literatur, z. B. in [11], werden sog. Konditionszahlen angege-
ben; anhand der Größe dieser Konditionszahlen kann man Aussagen über das Stabilitäts»
verhalten der Aufgabe treffen. Untersuchungen zur numerischen Behandlung schlecht
konditionierter linearer Gleichungssysteme sind in [21] enthalten.

Aufgabe 2.4: Geben Sie die der Gleichung (2.15) entsprechende Iterationsvorschrift für das Itera-
tionsverfahren in Einzelschritten an und führen Sie mit diesem Verfahren drei Schritte fiir das Glei-
chungssystem aus Beispiel 2.5 durch! Verwenden Sie dabei dieselbe Anfangsnäherung!

2.4. Eliminationsverfahren fiir lineare Gleichungssysteme

Die in Abschnitt 2.1.2. angedeutete Methode der Lösung von Gleichungssystemen
durch Elimination läßt sich im Falle linearer Gleichungssysteme systematisch ausführen;
die Regeln dazu sind unter dem Namen Gaußscher Algorithmus bekanntund in Band 13

dieses Lehrwerks ausführlich beschrieben. Auf wichtige numerische Fragen im Zusam-
menhang mit der Anwendung des Gaußschen Algorithmus wird umfassend z. B. in [12]
und [16] hingewiesen. Das betrifft vor allem die Pivotwahl, d. h, die Wahl des entscheiden-
den Koeffizienten fiir einen Eliminationsschritt.

Der Gaußsche Algorithmus ist universell anwendbar auf jedes lineare Gleichungssy-
stem. Allerdings erhebt sich die Frage, ob es fiir spezielle lineare Gleichungssysteme
nicht speziell zugeschnittene, effektiver arbeitende Lösungsmethoden gibt. Wir wollen
uns am Beispiel der Proganki-Methode fiir tridiagonale lineare Gleichungssysteme davon
überzeugen, daß es durchaus lohnt, die Spezifik eines Spezialfalles gezielt numerisch aus-
zunutzen.

Gegeben sei also ein lineares Gleichungssystem (2.13) mit der speziellen Eigenschaft

a,.,.=0 fiir|i—j|>1. (2.18)
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Man kann sich dann zur Beschreibung des Algorithmus von der Doppelindizierung lösen
und das Gleichungssystem folgendermaßen aufschreiben:

dlx, + clxz = b1

111x, + 112x, + cgx; = b2

03x2 + d3x3 + 03x4 . = b3

'- '- j g (2.19)

an-ixn-z + dn—1Xn—1 + Cn-ixn = n—x

u,,x,,-, + d,,x,, = b„

Es sei d1 4: 0. Dann kann man x1 aus der zweiten Gleichung eliminieren, man erhält als
neue zweite Gleichung

d;x‚ + 02x3 = b;

a2 ‚ a2
—c und b =b —-—b.d1 l z z d] 1

In analoger Weise kann man bei d; * 0 aus der zweiten und dritten Gleichung x2 elimi-
nieren usw. Allgemein ergibt sich dann:

mit d§= d2~

‚ _ ‚

dk+lxk+-1+ €k+1Xk+z — bkrl:

din = dk+1" “z? Ck: (230)

bIk+1:bk+1‘ "gt; b2.

Die gesuchten Unbekannten x1, ..., x„ erhält man dann durch Rückwärtsrechnung:

xt=——b’*—;:x"*‘‚ k=n—1‚n—2,...,1. (2.21)

Die Formeln (2.20), (2.21) lassen erkennen, daß die Lösung tridiagonaler linearer Glei-
chungssysteme außerordentlich einfach und schnell vonstatten gehen kann. Es wäre also
eine Vergeudung von Rechenzeit und Speicherplatz bzw. Arbeitszeit, würden solche Glei-
chungssysteme mit dem Standard-Gauß-Algorithmus behandelt werden.

Weitere Spezialfalle linearer Gleichungssysteme, für die spezielle Verfahren hoher Ef-
fektivität entwickelt wurden, sind Gleichungssysteme mit sog. Bandmatrizen verschiede-
ner Bandbreite oder große, schwach besetzte „Systeme. Schwach besetzte Systeme zeichnen
sich dadurch aus, daß die Koeffizientenmatrix zu einem großen Teil aus Nullen besteht
und nur relativ wenige Nichtnullelemente existieren.

Sehr bedeutsam sind auch die vielen Algorithmen für Systeme mit symmetrischen Ko-
efiizientenmatrizen. Hier wurden die grundlegenden Ideen von Cholesky geliefert, der
eine effektive Zerlegung der Koeffizientenrnatrix entwickelte. Für alle Interessenten an

dieser Problematik sei zum weiterführenden Studium z.B. [l1], [l2], [30] empfohlen.

2.5. (Matrizen-)Eigenwertproble1n

Von großer Wichtigkeit für zahlreiche Anwendungen in der modernen Technik ist fol-
gende Aufgabenstellung:

Gesucht sind Werte eines zunächst unbestimmten Parameters ‚i, für die das lineare ho-
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mogene Gleichungssystem
(an - l)x1 + aux; + + a„‚x„ = O

a„x1+(a„ — ,1)x2 + + az„x„ = 0

E E S E (2.22a)

a‚„x‚ + a,,2x2 + + (a,,,, - Ä) x„ = 0

bzw. in Matrizenschreibweise

(A — lE)x = 0 (2.22b)

nichttriviale Lösungen besitzt, und diese Lösungen sind auch gesucht. Die Koeffizienten
aik der Matrix A seien reell.

Als homogenes Gleichungssystem besitzt (2.22) genau dann uichttriviale Lösungen
x $ 0, wenn die Koefiizientendeterminante des Systems verschwindet:

an ‘ Ä “i2 aln

det<A—2E) = ‘,‘“ i'll" ?’" =0; (2.23)

an an: ann ‘ Ä

Gleichung (2.23) stellt eine algebraische Gleichung n-ten Grades zur Bestimmung des
Parameters ‚i, die charakteristische Gleichung, dar. Ihre n Wurzeln /1,. heißen Eigenwerte
der Matrix A. '

Genau für diese Eigenwerte /1, hat das System (2.22) von null verschiedene Lösungen x,
die Eigenlösungen oder Eigenvektoren. Diese sind wegen des homogenen Gleichungssy-
stems nur bis auf einen willkürlichen Faktor bestimmbar. Für die weiteren Darlegungen
setzen wir voraus, daß die Matrix A diagonulähnlich ist, d.h. daß sie sich durch eine Koor-
dinatentransformation (Ähnlichkeitstransformation) in eine Diagonalmalrix überführen
läßt. Zu den diagonalähnlichen Matrizen gehören als wichtiger Sonderfall die symmetri-
schen Matrizen (a,-,, = ak,-). Bei den diagonalähnlichen Matrizen existieren genau n linear
unabhängige Eigenvektoren. Die Lösungsverfahren für Eigenwertaufgaben kann man in
direkte und iterative Verfahren unterteilen. Bei den direkten Verfahren werden die charak-
teristischen Gleichungen aufgestellt, ihre Wurzeln A, bestimmt und anschließend die zu-
gehörigen Eigenvektoren berechnet. Verfahren dieser Art werden angewandt bei Matrizen
kleiner Reihenzahl oder wenn sämtliche Eigenwerte der Matrix gesucht werden. Nur
einen oder einige wenige Eigenwerte erhält man bei der Anwendung von iterativen Ver-
fahren. Man bekommt jedoch bei diesen Verfahren automatisch die zugehörigen Eigen-
vektoren und umgeht die charakteristische Gleichung. Da in den meisten Fällen, insbe-
sondere bei Matrizen größerer Reihenzahl, nicht die Gesamtheit aller Eigenwerte
interessiert, kommt den iterativen Verfahren die größere praktische Bedeutung zu. Wir
geben deshalb hier das Iterationsverfahren von R. v. Mises an.

Ausgehend von einem beliebigen n-dimensionalen Vektor 2“” wird nach der Iterations-
Vorschrift

z<"+1>=Az(v>‚ v=0, 1,2, (2.24)

eine Folge von iterierten Vektoren z") = (z§"’, ..., z‘,,"’)T gebildet, deren Eigenschaften wir
jetzt untersuchen. Da bei diagonalähnlichen Matrizen die n Eigenvektoren x, linear unab-
hängig sind, können wir z“) folgendermaßen darstellen:

2“” = clx, + czx; + + c„x„. (2.25)

Aus dem System (2.22b) folgt Ax=‚lx‚ A2x=AAx=I.2x und allgemein A"x= 1”x, aus
Gleichung (2.24) folgt z") = A"z‘°’, und damit gilt unter Berücksichtigung von Gleichung
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(2.25) für die iterierten Vektoren
z”) = A”z‘°) = e11 {x1 + c22§x2 + + c,,).;‘,x,,

Ä V v

= 1[‘[c,x1 + c2 x2 + 4 c,, m]. (2.26)
1 1

Nehmen wir an, die Eigenwerte seien auf folgende Weise geordnet:

IÄiI > IÄzI ä Mal ä ä IM (2.27)

— Ä, heißt in diesem Fall dominant —, dann werden die Faktoren in Gleichung
1

(2,26) mit zunehmendem v immer kleiner, und es besteht für v—> 00 die asymptotische
Annäherung

2"” —> ,1;c,x,, (2.28)

1“” "—> 1,1"’ (wegen 1"’ "—>A{* ‘c,x,) (2.29)

oder statt der Beziehung (2.29)
<v+ i)

qs" = "In —>21. (2.30)

Nach der Beziehung (2.28) konvergiert also z“) gegen den (nur bis auf einen willkürlichen
Faktor bestimmbaren) Eigenvektor x‚. Die Beziehung (2.30) gilt natürlich nur für die
Komponenten 15"’ zweier aufeinanderfolgender iterierter Vektoren z"), für die die entspre-
chenden Komponenten des Eigenvektors x, von null verschieden sind. Außerdem muß
der Ausgangsvektor so gewählt werden, daß c, i 0 ist. Falls die Voraussetzung (2.27) nicht
erfiillt ist, ist das Verfahren auch anwendbar; nähere Ausführungen hierzu sind in [30] zu
finden. Ist der betragskleinste Eigenwert gesucht, so kann dieser mit diesem Verfahren

durch Ubergang zur inversen Matrix A", zu der die Eigenwerte x,=7 gehoren, be-

stimmt werden.

Beispiel 2.6: Mit dem Iterationsverfahren von R.v.Mises sollen der betragsgrößte Eigenwert sowie der
zugehörige Eigenvektor der Matrix

121
A= 211

111

näherungsweise bestimmt werden. Ausgehend von 11°’ = (1, 1, 1)’ liefert die Rechnung nach Glei-
chung (2.24) die in Tabelle 2.1 angegebenen Werte. Damit ist ‚I, = 3,732 und

780
x,= 780 .

571

Geben wir x, als Vektor mit dem Betrag 1 an, dann ist

0,628
x1= 0,628 .

0,459

Tabelle 2.1

zu) q(il) zu; a?) 1(3) 4(3) zu) qto) 2(5) Es)

4 4 15 3,7500 56 3,7333 209 3,7321 780 3,7321
4 4 15 3,7500 56 3,7333 209 3,7321 780 3,7321
3 3 11 3,6667 41 3,7273 153 3,7321 571 3,7321
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2.6. Programmierung und Software

Gleichungen und Gleichungssysteme sowie die Matrizen-Eigenwertaufgaben gehören
zu den klassischen numerischen Standardaufgaben. Deshalb existieren auch leistungsfä-
hige Programme fiir viele Standard- und Spezialfälle.

Während nichts dagegen einzuwenden ist, für die Nullstellenbestimmung einer Funk—

tion ein kleines BASIC-Programm im Dialog am Kleincomputer selbst zu erarbeiten,
sollte für die Lösung von Systemen stets zuerst nach fertiger Software gesucht werden.
Diese enthält nämlich im allgemeinen neben der reinen Umsetzung des Algorithmus eine
Fülle zusätzlicher Maßnahmen zur Erzielung hoher oder gewünschter Genauigkeit, zur

TEST:=N0RM(F1X)

J

' Lösung Von AY=B

-0

Bild 2.1, Newton-Raphson-Verfahren
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Gewährleistung der Stabilität sowie zur umfassenden Information des Nutzers über Ei-
genschaften seines Problems. Das alles wird der Anfänger nie in sein Programm aufneh-
men können

In [12] findet man ALGOL—60-Programme für lineare Gleichungssysteme und Matri-
zen-Eigenwertaufgaben. Das Programmpaket Numerische Mathematik (PP NUMATH-l)
des VE Kombinat ROBOTRON bietet in Form von FORTRAN-Subroutinen zehn Soft-
warebausteine zur Lösung linearer Gleichungssysteme an [31, 3.1.1.6.], darüber hinaus
werden Softwarebausteine zur Lösung von Eigenwertproblemen [31, 3.4.1.6.] sowie zur

Lösung nichtlinearer Gleichungssysteme [31, 3.4.2.6.] angeboten.
Die Lösung nichtlinearer Gleichungssysteme ist vorherrschender Gegenstand des Bu-

ches [25], in dem auf weitere Software verwiesen wird.
Für alle, die jedoch eigene Programme entwickeln müssen (oder wollen), sei jedoch be-

sonders darauf hingewiesen, daß bei Programmen für lineare Gleichungssysteme die Art
der Pivotisierung entscheidend für die Leistungsfähigkeit des Programms ist; Programme
zur Umsetzung von Iterationsverfahren dagegen erfordern sauberes Formulieren von Ab-
bruchbedingungen.

Bild 2.1 enthält einen Programmablaufplan für das Newton-Raphson-Verfahren.



3. Approximation

3.1. Aufgabenstellung

Unter Approximation (Annäherung) im engeren Sinne versteht man die Ersetzung
einer gegebenen Funktion durch eine geeignet bestimmte andere Funktion. Diese Pro-
blemstellung tritt auf, wenn

a) für eine durch Messungen in Tabellenform oder grafisch erhaltene Funktion für wei-
tere Untersuchungen eine formelmäßige Darstellung benötigt wird,

b) eine komplizierte (d. h. schwierig zu handhabende) formelmäßig gegebene Funktion
in einem bestimmten Bereich durch eine „einfachere“ Funktion angenähert werden
soll.

Wir formulieren nun die Approximationsaufgabe allgemein: Auf einer Menge X soll
eine gegebene Funktion y =f(x) durch eine Funktion y = F(x) aus einer vorgegebenen
Funktionsklasse unter Berücksichtigung bestimmter Forderungen angenähert werden.
F(x) heißt dann approximierende Funktion. Die Menge X kann ein Intervall [a‚ b] sein
oder nur aus diskreten Punkten x0, x1, ..., x„ bestehen. Im ersten Fall spricht man von ste-
tiger, im zweiten von diskreter (oder punktweiser) Approximation.

Die aus einer bestimmten Funktionenklasse (d. h. ihrer Form nach) gewählte Funktion
F(x) enthält dabei noch eine Anzahl freier Parameter ac, a1, ..., am:

F(X)=F(X; au, a1, ---‚a„.)‚ (3-1)

die so zu bestimmen sind, daß die jeweiligen Approximationsforderungen erfüllt werden.
Als praktisch wichtige Beispiele sind bekannt:

a) Annäherung durch (gewöhnliche) Polynome

F(x) = a0 + a‚x + + a,,,x’", (3.2)

b) Annäherung durch verallgemeinerte Polynome

F(x) = ao¢Io(x) + a1¢h(x) + + amwmoc), (3.3)

c) Annäherung durch Exponentialfunktionen der Form

F(x) = a0e"P*1" + + a„e“""".

Wir werden uns in den weiteren Darlegungen meist auf die Approximation durch Funk»
tionen der Form (3.2) und (3.3) beschränken; sie enthalten die Parameter linear und sind
deshalb leichter zu behandeln.

Den Ansatz c) benutzt man zur Beschreibung von Schwingungen; die Koeffizienten
a„„, ..., an,” sind dann im allgemeinen komplex.

Bei fest vorgegebener Funktionenklasse unterscheiden sich die verschiedenen Approxi-
mationsarten im wesentlichen durch die unterschiedlichen Forderungen an die approxi-
mierende Funktion. Je nach der zugrundegelegten Forderung erhält man f.irf(x) bei glei-
cher Funktionenklasse von F(x) sich i. allg. in den Parametern unterscheidende
approximierende Funktionen.

Im folgenden wenden wir uns den gebräuchlichen Approximationsarten zu. (Zu diesen
gehört auch die im Band 2 dieses Lehrwerks behandelte Taylor-Entwicklung, bei der eine
formelmäßig gegebene Funktion f(x) durch ein Polynom (3.2) angenähert wird. An das
approximierende Polynom wird dabei die Forderung gestellt, mit der gegebenen Funktion
f(x) an einer Stelle im Funktionswert und in einer bestimmten Zahl von Ableitungswer-
ten übereinzustimmen.)
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3.2.

3.2.1.

Interpolation

Die Interpolationsaufgabe

Bei der Interpolation fordert man Übereinstimmung von f(x) und F(x) an n + 1 festen,
paarweise verschiedenen Stellen (sog. Stützstellen) xk:

F(Xk)=f(Xk)‚ k=0‚1‚
Die Funktionswerte flxk) (k = 0, n) werden auch Stützwerte genannt.

Bei der Polynominterpolation sucht man ein Polynom (3.2) möglichst kleinen Grades,
das die Interpolationsforderung (3.4) erfüllt.

(3.4)

Satz 3.1: Es gibt höchstens ein Intemolationspo’
rung erfüllt, d. h. das das Gleichungssystem

vom Grad n, das die Interpolationsforde-

ao+a1xk+a2xfi+ ...+a,,xfi=f(xk), k=0‚ (3.5)

befriedigt.

Beweis: Angenommen, es gäbe zwei verschiedene Interpolationspolynome p(x) und q(x),
jeweils vom Grad n. Dann wäre

h(x) = p(x) - q(x)

ebenfalls ein Polynom vom Grad n. Wegen

P(Xk) =f(-Xk),
q(Xk) :f(Xk) ‚

gilt dann

an}

k=0‚ ..., "a

h(xk)=0, k=0,...,n.
Dies bedeutet aber nichts anderes, als daß h(x) n + 1 Nullstellen besitzen müßte, Das
steht aber im Widerspruch zu obiger Feststellung, daß h(x) ein Polynom vom Grade n

wäre. Also ist die Annahme falsch und die Behauptung des Satzes bewiesen. I

Satz 3.2: Es gibt genau ein Interpolationspobmom vom Grade n, das die Imupolationsforderuug
erfüllt.

Beweis: Daß es höchstens ein Interpolationspolynom gibt, wurde bereits im vorigen Satz
bewiesen. Nun braucht nur noch gezeigt zu werden, daß es mindestens ein solches Poly-
nom gibt. Diesen Beweis fuhren wir konstruktiv, d.h., wir geben ein Polynom an und zei-
gen, daß es die Interpolationsforderung erfüllt. Wir betrachten das Polynom

F(x> = Z/(x‚>—L.—(x> (3.6)
i=0

~ _ (X*Xo)(X‘X1)<--(x’Xi-1)(X*Xi+i)HWX-Xn)
m" L“) ’ (x. — x0) (x. — x.) (x,- — x.» (x. — x.«. .> (x.- — x.) ' m’
Es gilt wegen (3.7)

und damit folgt aus (3.6) fiir alle k = 0, l, ...‚ n

F(xk) =f(xi) ' L(Xk) =f(Xk)- (3.8)
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Da fiir alle i= 0, ..., n die L‚-(x) Polynome n-ten Grades sind, hat das Polynom (3.6)
höchstens den Grad n (beim Zusammenfassen können sich Potenzen von x aufheben).
Damit ist unter Berücksichtigung von (3.8) nachgewiesen, daß das Polynom (3,6) die Lö-
sung der gewöhnlichen Interpolationsaufgabe ist.

Somit ist der Beweis beendet. I

3.2.2. Der Interpolationsfehler

Die Abweichungen zwischen der gegebenen Funktion f(x) und dem nach der La-
grangeschen bzw. Newtonschen Interpolationsformel bestimmten Interpolationspolynom
läßt sich durch Angabe des Restgliedes gemäß f(x) = F(x) + R„„(x) mathematisch fas-
sen. Man findet für das Restglied unter Zugrundelegung der Stützstellen x0, x„ ...‚ x„

x“ x0) (x
(n+1)!

wobei E eine im allgemeinen unbekannte Stelle zwischen der größten und der kleinsten
der n + 2 Stellen x, x0, ..., x„ ist. Für praktische Zwecke ist allerdings durch die Kenntnis
dieser Darstellung des Restgliedes nicht vie1 gewonnen, da z. B. für tabellarisch gegebene
Funktionen die Bestimmung der (n + 1)-ten Ableitung ein schwieriges Problem sein
kann.

Es ist offensichtlich, dal3 diese Form des Restgliedes nur für Funktionen f(x) gilt, die
entsprechend oft stetig differenzierbar sind. Das sei hier vorausgesetzt.

RM<x) = ( ' x") fl"’“(f)‚ (3.9)

Beispiel 3.1: Das Interpolationspolynom höchstens 2.Grades, das mit der Funktion y :f(x) = 2* an

den Stellen x0 = -1‚ x, = 0 und x; = 1 iibereinstimmt, lautet

F(x)=l+%x+%x’. (3.10)

Wegen f’"(x) = 2"(1n 2)3 lautet nach (3.9) das Restglied

: (x+1)(x—0)(x—1)
3!

R,(x) 2‘(ln2)3.

Fragen wir nach dem Fehler von F(x) bei x = so müssen wir

R;(%)=-1—16-2’(ln2)3‚ 4:521,

abschätzen. Weil die Funktion y = 2‘ mit x streng monoton wächst, gilt

_(ln2)3 i _(ln2)3 i
16 2§R’(2)§ 15 2'

-0,0416 g 12,; —o,o1o4.

Aus (3110) finden wir als Näherung für 2/" = 1/‚2- = 1,4142 den Wert = 1,4375, d.h., der Fehler

beträgt —(),0233 und liegt im errechneten Fehlerintervall.

3.2.3. Berechnung des lnterpolationspolynoms

Nach Abschnitt 3.2.1. gibt es genau ein Interpolationspolynom; man erhält die Koeffi-
zienten ao, ...‚ a„ dieses Polynoms durch Lösung des linearen Gleichungssystems (3.5).
Hierzu gibt es nun verschiedene Methoden, die zu verschiedenen Darstellungen des Interpo-
lationspolynoms tiihren. Eine Form kennen wir bereits — die in (3.6) bis (3,8) angegebene
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Lagrange-Darstellung. Sie entstand dadurch, daß Lagrange das System (3.5) allgemein ge-
löst hat, so daß man nur noch in die fertige Formel einzusetzen braucht:

Beispiel 3.2: Die durch die Wertetafel if _g i ä

durch ein lnterpolationspolynom approximiert werden. Wir berechnen gemäß (3,7)

(X‘X1)(X'X2)(X‘X3j = (x-1)(x-2)(x—4) = x3—7x1+14x—s

4
7 gegebene Funktion y =f(x) soll

Lou)“ (Xo‘X1)(Xo’X2)(Xo’X3) -8 -8 ’

L10‘): (x*x0)(x-x2)(x—x3) :x(x~2)(x—4) =x3-6x1-+-8x
(X1 - xo) (xi e x2) (x; - x3) 3 3 ’

L0‘): (x-xo)(x*x‚)(x*x3) =x(x-1)(x'4) :x3—5xZ+4x
2 (x2 - xo) (x2 - X1) (x2 - x3) *4 -4 ’

L = (x*x0)(x—x,)(x~x1) :x(x-1)(x—2) ZX3-3x1+2x.
30‘) (X3 ’ X0) (X3 ’ X1) (X3 “ X1) 24 24 Y

nach (3,6) erhalten wir dann

l 13
F(x) = -3L„(x) + L‚(x) + 2L2(x) + 7L3(x) : y x3 — 3x’ + TX - 3.

Bild 3.1 zeigt den Verlauf des gefundenen lnterpolationspolynoms.

Bild 3.1. Interpolationspolynom nach
Lagrange (zu Beispiel 342)

Die Lagrange-Darstellung des lnterpolationspolynoms ist recht unhandlich und wird
selten praktisch genutzt. Sie ist aber sehr nützlich für theoretische Überlegungen, z.B. bei
der numerischen Integration. Die Lagrange-Darstellung führt vor allem dann zu hohem
Aufwand, wenn man durch Hinzunahme weiterer Stützstellen den Grad des Interpola-
tionspolynoms erhöhen möchte. Hier verwendet man vielmehr die Newton-Darstellung des
Interpolationspolynoms. Die Newton-Darstellung hat die Form

F(x) = ca + c1(x - xo) + cz(x-xo) (x- Xl) +

+c„(x - xo) (x-xl) (x-xm), (im
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wobei die Koeffizienten co, ..., c„ nach einer von Newton angegebenen Rekursionsformel
im sogenannten Steigungsschema einfach ermittelt werden können. Hierauf wird in Band 1

dieses Lehrwerks im Abschnitt 9. ausführlich eingegangen. Sind speziell die Stützstellen
äquidistant (gleichabständig) verteilt, so vereinfacht sich das Steigungsschema zum Diffe-
renzenschema, und aus der Newton-Darstellung lassen sich verschiedenartige Darstellun-
gen, die sog. Differenzenfarmeln, ableiten. Dazu gehören z.B. die Darstellungen nach Gre-
gozy-Newton, Stirling und Bessel. In [28] wird Theorie und Praxis der Differenzen-Interpo-
lationsformeln ausführlich behandelt.

3.2.4. Konvergenz von Folgen von Interpolationspolynomen

Es ist ein weit verbreiteter Irrtum anzunehmen, daß mit Vergrößerung der Zahl der
Stützstellen das Interpolationspolynom sich zwangsläufig besser der gegebenen Funktion
anpaßt.

Beispiel 3.3: Die Funktion

1

fix) 7 1 + x7

wird im Intervall -5 g x g 5 unter Verwendung von 7, 13 und 19 äquidistant verteilten Stützstellen
interpoliert.
Bild 3.2 zeigt den Verlauf von f(x) sowie der resultierenden Interpolationspolynome sechsten, zwölf»
ten bzw. achtzehnten Grades.

men (zu Beispiel 3.3)

Wie leicht zu erkennen ist, beginnt das Interpolationspolynom mit steigender Stützstellenzahl im-
mer stärker um die gegebene Funktion zu oszillieren. Die wachsende Anzahl der Stützstellen fiihrt
zwar zur Erhöhung des Grades des Interpolationspolynoms, aber offensichtlich nicht zu besserer An»
näherung — im Gegenteil!

Wer sich mit dem mathematischen Hintergrund dieses Phänomens näher beschäftigen
will, dem sei das Buch von Natanson „Konstruktive Funktionentheorie“ [l9] empfoh-
len,

Wir merken uns: Es gibt stetige Funktionen, für die trotz Vergrößerung der Zahl der
Stützstellen keine Annäherung des Interpolationspolynoms an diese Funktion erfolgt.
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3.2.5. Spline-Interpolation

Das soeben mitgeteilte Phänomen führte zur Suche nach einer Funktionenklasse, mit
deren Hilfe man so interpolieren kann, daß bei Vergrößerung der Stützstellenzahl mit Si-
cherheit eine bessere Annäherung erfolgt, ohne daß dabei gleichzeitig die interpolierende
Funktion numerisch unhandlich wird. Solche Funktionen fand man in der Menge der
stückweise polynomialen Funktionen, auch als Splines bezeichnet:

Das Intervall [a, b] sei vermittels einer Zerlegung A in n + 1 Teilintervalle zerlegt:

(3.12)

Dann nennt man eine Funktion q1(x) einen Spline des Grades 2m e 1 mit Stetigkeitsver-
lust w über A, wenn folgendes gilt:

a) cp(x) ist in jedem Teilintervall [x‚-, x„ 1], i = O,

2m e 1,

b) ip(x) ist in den inneren Knoten x1, ..., x„ stetig und besitzt dort stetige Ableitungen
bis einschließlich der Ordnung 2m - 1 — u) (1 g w g m).

Kurz gesagt sind Splines aneinandergefiigte Polynomstücke ungeraden Grades, wobei
in den inneren Knoten nicht alle Ableitungen stetig ineinander übergehen.

Die in Bild 3.3 dargestellte Funktion ist offensichtlich eine Spline—Funktion, denn sie
besteht abschnittsweise aus Polynomen 3. Grades, aber in den Knoten geht die dritte Ab-
leitung nicht stetig ineinander über.

Um etwas vertrauter mit dieser neuen Funktionenklasse zu werden, wollen wir folgen-
den Satz beweisen:

A=a=x„<x1<...<x„<x„„=b.

, n, ein Polynom vom Grad

Satz 3.3: Splinefunktionen, die nach den beschriebenen Prinzipien konstruiert sind, können
2m + nw Bedingungen erfüllen.

Beweis: Da der Spline im ersten, zweiten, „., (n + 1)-ten Teilintervall von [a, b] jeweils
ein Polynom (2m - 1)»ten Grades ist, stehen 2m(n + 1) Koeffizienten zur Verfügung. Da
in x, jedoch Stetigkeit, stetige 1.Ableitung, ‚.„ stetige (2m — 1 — w)-te Ableitung gefordert
wird (das sind 2m - w Forderungen), reduziert sich die Anzahl der frei verfügbaren Koef-
fizienten auf 2m(n + 1) - (2m - w). Im nächsten Knoten x2 müssen ebenfalls 2m - w

Forderungen erfüllt werden, so daß sich die Anzahl der frei verfügbaren Koeffizienten auf
2m(n + 1) - 2(2m - w) reduziert. Betrachtet man alle weiteren inneren Knoten, so erhält
man schließlich, daß den ursprünglich vorhandenen 2m(n + 1) Koeffizienten zur Bestim-
mung des Splines bereits n(2m - w) Stetigkeitsforderungen gegenüberstehen. Daraus er-

gibt sich, daß jeder Spline 2m(n + 1) - n(2m - w) = 2m + nw freie Koeffizienten besitzt.
Damit ist die Behauptung bewiesen. I

Im folgenden wollen wir Splines, die nach obigen Konstruktionsprinzipien aufgebaut
sind, als Elemente des Splineraumes Sp(m, A, w) bezeichnen. Die Aussage des Satzes
lautet dann kurz

dimSp(m, A, w) = 2m + nw. (3.13)

Nun wenden wir uns den beiden möglichen Extrema bei der Wahl von w zu:

Splines mit w = 1 heißen Lagrange-Splines, sie haben den geringsten Stetigkeitsverlust
in den inneren Knoten und sind also die glattesten unter allen Splines. Es gilt

dimSp(m, A, 1) = 2m + n. (3.14)

Splines mit w = m heißen Hermite-Splines, sie haben den größten Stetigkeitsverlust in den
inneren Knoten. Es gilt

dimSp(m, A, m)=m(n+2). (3.15)
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Veranschaulichen kann man sich das am besten am Fall m = 2: Hier sind Polynome drit-
ten Grades aneinandergesetzt, wobei fiir u) = 1 (Lagrange) Stetigkeit bis zur zweiten Ab-
leitung über ganz [a‚ b] gesichert ist. Bei w = m = 2 (Hermite) dagegen ist der Spline nur

bis zur ersten Ableitung über [a‚ b] stetig, die zweite Ableitung kann dagegen in den inne-
ren Knoten Sprünge haben. Vergleicht man (3.14) und (3.15), so_ stellt man fest, daß Her-
mite—Splines stets mehr freie Koeffizienten haben als Lagrange-Splines.

Aufgabe 3.1: Begründen Sie, warum das so sein muß; veranschaulichen Sie sich Lagrange- und Her- *
mite-Splines für m = 1 und m = 3!

Außerordentlich bedeutsam ist die aus (3.13) ablesbare Feststellung, daß die Dimen-
sion von Splines stets sowohl vom Grad m als auch von der Knotenzahl n abhängt, Damit
ist gegenüber der Arbeit mit klassischen Polynomen eine neue Qualität erreicht, denn bei
Polynomen war die Erhöhung der Anzahl der für die Erfüllung von Bedingungen verfiig-
baren Koeffizienten unweigerlich mit einer Erhöhung des Grades verbunden. Wir stellen
also fest: Mit Splines kann man beim Interpolieren die Anzahl der Stützstellen erhöhen,
ohne daß sich der Grad der Polynomstücke in den einzelnen Teilintervallen erhöhen
muß.

Betrachten wir nun die Spline-Interpolation im einzelnen, wobei wir uns auf den Fall
m = 2 beschränken wollen (kubische Spline-Interpolation):

Gegeben seien eine Funktion f(t) sowie n + 2 Stützstellen to, t1, ..., t,,, t,,+ 1. Gesucht ist
ein interpolierender Spline. Man wählt zweckmäßig die Stützstellen als die Knoten des
gesuchten interpolierenden Splines und erhält damit die Bedingungen

¢(x,-)=f(x,-), x,-=t,v, J'=0,...,n+1. (3.16)

Betrachtet man nun die Anzahl der verfügbaren Koeffizienten
bei m = 2, w = 1 (Lagrange): dim Sp(2, A, 1) = 4 + n,
bei m = 2, w = 2 (Hermite): dim Sp(2, A, 2) = 2(n + 2),
so stellt man fest, daß die Interpolationsforderung (3.16) weder Lagrange- noch Hermite-
Spline eindeutig festlegt. Man kann also weitere Forderungen willkürlich festlegen und
sich damit interpolierende kubische Splines mit gewünschten zusätzlichen Eigenschaften er-
zeugen. Aus der Fülle der Möglichkeiten, solche Zusatzforderungen zu wählen, sei hier
nur jeweils eine für Lagrange- bzw. Hermite-Splines genannt:

Bei kubischen Lagrange-Splines kann man noch zwei Zusatzforderungen angeben.
Man wählt oft dafür die Forderung nach bestimmten Randanstiegen:

¢’(xo) =f'(xo),
<p'(xm> =/<x„ ‚o. ‘m’

Bei Hermite-Splines kann man im‚kubischen Fall bereits n + 2 zusätzliche Forderungen
stellen. Man gibt hier oft z.B. neben den Funktionswerten auch noch die Ableitungswerte
in den Knoten vor:

W09) =f(x,-), x

BeLrpiel 3.4: Die durch die Wertetafel aus Beispiel 3.2 gegebene Funktion soll durch einen kubischen
Lagrange-Spline interpoliert werden. Zusätzlich gelte für die Ableitungswerte am Rande

223 , _151
a?» “W75

1,-, j=0‚...,n+1. (3.18)

a2’(0) =

Elementares Vorgehen liefert fiir die 12 unbekannten Koeffizienten der drei kubischen Polynome in
den Intervallen [0, 1], [1, 2] und [2, 4] insgesamt sechs Gleichungen zur Sicherung der Stetigkeitsfor-
derungen in den inneren Knoten, vier Gleichungen aus der Interpolationsforderung sowie zwei Glei-

3 Oelschlägel, Methoden
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chungen aus den Zusatzforderungen, Man erhält:

(0,1): (vor) = —3 +—x v —x3,

(1, 2): q1(x) = —%+%x - 24868 x’ +:—Zx3,

_ 294 281 108 2 9

(“V "’(")‘74‘s"T6_"+W" ‘R
Durch Einsetzen kann man sich überzeugen, daß an den Stiitzstellen x 2 0, 1, 2, 4 sowohl (,v(x) als
auch q2'(x) und qz”(x) stetig ineinander übergehen. In Bild 3.3 ist die gefundene Splinefunktion dau-

gestellt.

x’.

Bild 3.3. Interpolation durch eine kubische Spli-
nefunktlon (zu Beispiel 3.3)

Wenden wir uns nun dem Spezialfall äquidistanter Stützstellen zu:

i b - a

n + 1 ’

)9=a+jh, h j=0‚...‚n+1. (3.19)

Für Splines mit gleichabständigen Knoten existieren häufig benutzte Basisdarstellungen.
So kann man z. B. jeden kubischen Lagrange-Spline q2(x) E Sp(2‚ A, 1) darstellen als Li-
nearkombination aus n + 4 Basissplines (B-Splines):

n+2

4p(x) = Z akBk(x). (3.20)
=—1

Dabei haben die kubischen B-Splines folgende Form:

(X‘Xi-2)3‚ X€[xi—2» Xi—1],

h’ + 3h2(X ‘ Xi-1) + 3h(X " Xi-l): “ 3(X " xi—1)3, X G [Xi—zy xi],
B.-(x) = F h’ + 3h’(x‚-„ - x) + 3h(xm - x)’ - 3(xm - x)’, x 6 [x.-, xm], (3-21)

(Xi+1—x)3, X€[xi+1»Xi+2]»
0 sonst.

Man sieht sofort, daß jeder kubische B-Spline nur auf vier Teilintervallen, d. h. in drei
Knoten der Zerlegung von [a, b], von Null verschieden ist. Dies bedeutet, daß das aus der
Interpolationsforderung (3.16) und den Zusatzforderungen resultierende lineare Glei-
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chungssystem für a‚„ no, ..., a‚„ a‚„, schwach besetzt wird und eine spezielle Struktur
erhält. Je nach Art der Zusatzforderungen kann diese spezielle Struktur sogar Bandstruk-
tur bis hin zur Tridiagonalität erhalten. Damit können spezielle numerische Verfahren
(siehe Abschnitt 2.4.) zur Anwendung kommen.

3.3. Approximation im Mittel

Bei dieser Approximationsart fordert man, daß im stetigen bzw. diskreten Fall das Inte-
gral bzw. die Summe über die Fehlerquadrale

b

a. = [um -f(x)l’dx (3.22)

bzw.

Q. = gern») -f(xk) 12 (3.23)

minimal wird. Bei (3.22) muß f(x) formelmäßig vorliegen, während die Anwendung von
(3.23) vor allem bei gegebenen Wertetabellen angebracht ist. F(x) ist aus einer bestimm-
ten Funktionenklasse vorzugehen. Als solche ist z.B. die Klasse (3.3) der verallgemeiner-
ten Polynome

F(x>= Z eine)
k=0

mit linear unabhängigen Funktionen <po(x), ..., a‚„ (x) gebräuchlich, die auch die gewöhn-
lichen Polynome (3.2) umfaßt.

Besonders von praktischer Bedeutung ist die diskrete Approximation im Mittel.

3.3.1. Diskrete Approximation im Mittel

Eine Methode, die diskrete Approximation im Mittel rechnerisch durchzuführen, ist
die von C. F. Gauß entwickelte Methode der kleinsten Quadrate.

Die Funktion y = f(x) sei durch die Wertetafel

X X0 "X1 X"

f(x) yo Y1 y„

gegeben; sie soll durch eine Funktion der Gestalt (3.1)

F(x) = F(x; a0, a1, ..., a‚„)

approximiert werden. Wir setzen m < n voraus; im Fall m = n könnten die Koeffizienten
a0, ...‚ a‚„ aus dem Gleichungssystem

F(xk) =f(xk), k=0, l, ...‚ m, (3.24)

bestimmt werden; wegen der punktweisen Übereinstimmung der beiden Funktionen er-

hält man Qd = 0 und wird auf die im Abschnitt 3.2. behandelte Interpolation zurückge-
führt. Im Fall m > n lassen sich die Koeffizienten nicht eindeutig bestimmen. Für Qd fin-
den wir gemäß (3.23)

o. = Z (Fm; “o, a1. a.) -yd’; (3.25)
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da die x„ und yk fest vorgegeben sind, ist Qd nur eine Funktion der Konstanten an, a„ ...,

am; wir schreiben deshalb

Qd = Qu(0o‚ a„ am) = Z {F(xk; ac: K11» am) w}?

Nach der Approximationsforderung ist Q‚3(ao, a1, ..., am) zu minimieren; die notwendigen
Bedingungen dafur lauten

30.: A 3Qa _ 9Qa _

ago 0, am 0, au" 0. (3.26)

Dieses Gleichungssystem für die Konstanten a0, ..., a,,, ist zu lösen. Die Gleichungen
(3.26) bezeichnet man als Nonnalgleichungen. Wir wollen voraussetzen, daß das System
(3.26) genau eine Lösung do, 6,, ..., ä„‚ besitzt, für die Qd(ao„..,a,„) ein Minimum an-

nimmt. (Ist F(x) speziell ein Polynom, so hat das Gleichungssystem (3.26) stets eine ein-
deutige Lösung‚ falls die Punkte x0, x1, ..., x„ sämtlich voneinander verschieden sind und
außerdem m g n gilt.) Dann ist

F(x) = F(x;1io, d1, ..., dm) (3.27)

die gesuchte approximierende Funktion.

Beispiel 3.5: Die durch eine Wertetafel (Tabelle 3.1, Spalten 2 und 3) gegebene Funktion y =f(x) soll

durch eine Funktion der Form F(x) = % + a, approximiert werden.

In diesem Beispiel ist also q1o(x) = 1/x und qp,(x) = 1, F(xk; no, 11,) wird zu

F(XkZ “o; a1) : ‘1o1Pn(Xk) + ‘11W1(Xk) = 110/Xk ‘l’ al-

Tabelle 3.1

l 2 3 4 5 6

1 1 ykk _ __ _Xk ‚Vk X‘ xi x)‘

0 1 6,80 1,000 1,000 6,800
1 2 4,80 0,500 0,250 2,400
2 3 3,90 0,333 0,111 1,300
3 4 3,10 0,250 0,062 0,775
4 5 3,00 0,200 0,040 0,600
5 6 2,80 0,167 0,028 0,467

Z 21 24,40 2,450 1,491 12,342

5 2

Wegen Q4 = ‚(zu [:—: + a, — n} finden wir als Normalgleichungen gemäß (3.26)

69a: ‘F _ H: L: ’[& _ ]=an“ 2; “+4, y, xk o, au‘ 2); Xk+a, y, o.

Durch Umformung erhalten wir das folgende Gleichungssystem für die 'r‘ rameter a‘, und a1:

l 1 lagZ"x7+fl1Z;:Z%, aaZ?k+a1Z1=Zyk.
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Durch Einsetzen der Summen, die in den Spalten 4, 5, 6 der Tabelle 3.1 berechnet wurden, ergibt sich

1,491 an + 2,450 a1: 12,342,

2,450 an + 6 a, : 24,4

mit der Lösung a“„=4,84, a’,=2,09. Damit lautet die gesuchte approximierende Funktion y

F(x) = + 2,09.

Um bei praktischen Aufgabenstellungen sinnvolle Ergebnisse zu erzielen, wird man F(x)
nicht aus einer willkürlichen Funktionenklasse wählen, sondern aus einer solchen, die
Funktionen enthält, die in der Bildkurve mit der nach der Wertetafel skizzierten Funk-
tion y = f(x) etwa übereinstimmen und in ihrer Struktur dem physikalischen Inhalt des
betrachteten Prozesses entsprechen (z. B. wird man für Abkühlungsvorgänge die Klasse
der Exponentialfunktionen wählen).

Zur Erleichterung des Vergleichs der Bildkurven sind z.B. in [6] Bildkurvenscharen für
eine Reihe von Funktionenklassen dargestellt.

Zur Beurteilung der Güte der gefundenen approximierenden Funktion F(x; do, ..., ä„‚)
reicht in der Praxis oftmals ein Vergleich zwischen yk und F(x); da, ..., dm) für
k = 0, 1, ..., n aus. Es empfiehlt sich, dazu eine Skizze der Bildkurven anzufertigen._

Wir wenden uns nun einem praktisch wichtigen und relativ einfach zu handhabenden
Spezialfall zu, der diskreten Approximation im Mittel durch Polynome im einzelnen.

Wegen F(x) = no + a‚x + + a„‚x”' giltjetzt
n

Q4010, a1, m, am): Z lao+ alxk+ +0mXT ‘.Vk]Z~
k=0

Die Norrnalgleichungen (3.26) lauten nun

SQ "_;1= "'— =ado 2k;0[a(, + alxk + + a„‚xk yk] 0,

a n

L2 [a0+a1x,,+...+-a,,,x§("—y,,]x,,=0,
3'11 k=0

a n$22 [a0+ a1xk+ +a,,,x’,:‘ -y,(]xZ' =0
50»: k=0

oder nach entsprechender Umordnung unter Verwendung der Gaußschen Abkürzung fiir

Summen durch eckige Klammern uk = [u]
k = 0

(n+1)ao+[x]u, +..‚+[x”']a‚„ =[y]‚
[X]ao+[X2]‘11 + »-»+[X””']ü‚„=[Xyl‚

[X2]ao+[X3]a1 + +[X"'”] a».=[X1yL (3.23)

lX”'] 110+ [X”"‘] a: + + [X2”']I1n. = [X”‘y}.

Damit haben wir ein lineares Gleichungssystem mit symmetrischer Koeffizientenmatrix
für die m + l gesuchten Koeffizienten ak gefunden, das mit Hilfe eines der in Abschnitt 2.

genannten Verfahren, z.B. dem Gaußschen Algorithmus, gelöst werden kann. Besonders
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geeignet ist hierfür das Verfahren von Cholesky, das eine Abwandlung des Gaußschen Al-
gorithmus fur Gleichungssysteme mit symmetrischer Koeflizientenmatrix ist (siehe z. B.
[30]). Unter Benutzung seiner eindeutig bestimmten Lösung (siehe Bemerkung im Ab-
schnitt 3.3.1.) d0, 6„ ..., ä„, erhält man als approximierende Funktion
F(x) = do + dlx + + zi,,,x"‘.

Beispiel 3.6: Eine Messung der Sättigung y des Niederschlagswassers mit Luftsauerstoff (bei 760 mm

Hg) ergab die in den Spalten 2 und 3 der Tabelle 3,2 angegebene Abhängigkeit von derT eratur t.
Eine Skizze der Bildkurve zeigt, daß diese nahezu den Verlauf einer quadratischen Parabel hat. Wir
setzen deshalb F(t) = a0 + 11,: + n21’. Das Gleichungssystem (3.28) lautet konkret

7a, + 105a, + 2275a, = 73,47,

1o5a,,+ 2275a, + 55125a2= 940,95,

2275a, + 55125a‚+ 142187571; = 19 273,25.

Tabelle 3.2

1 2 3 4 5 6 7 8 9

k 111°C] Yk1'“‘5/11 ii Y1 X2 11: Yk 11W F01)

0 0 14,56 0 0 0 0,00 0,00 14,49
1 5 12,73 25 125 625 63,65 318,25 12,80
2 10 11,25 100 1000 10 000 112,50 1125,00 11,32
3 15 10,06 225 3375 50 625 150,90 2263,00 10,06
4 20 9,09 400 8000 160 000 131,80 3636,00 9,02
5 25 8,26 625 15 625 390 625 206,50 5162,50 8,19
6 30 7,52 900 27000 810000 225,60 6768,00 7,59

Z 105 73,47 2 275 55125 1421875 940,95 19273,25

Man erhält die Lösung do = 14,492, ti, = —0,361, ä; = 0,004. Somit ist die gesuchte approximierende
Funktion

F(t) = 14,492 — 0,3611 + 0,00417.

In Spalte 9 von Tabelle 3.2 sind die Werte der Funktion F(t) angegeben.

Aufgabe 3.2: Der elektrische Widerstand R eines Leiters wurde bei verschiedenen Temperaturen t ge-
messen, Es ergaben sich folgende Werte:

t[°C]|19 [25 130 |36 |40 |45 [50
R [n] | 76,30 | 77,80 1 79,75 | 80,80 | 82,35 | 83,90 1 85,10

Die Bildkurve R =f(t) zeigt einen fast linearen Verlauf: Führen Sie die diskrete Approximation im
Mittel mit einem Polynom 1. Grades durch! 1

Auf die diskrete Approximation im Mittel durch Polynome lassen sich einige andere
Aufgabenstellungen zurückführen. Statt z.B. eine gegebene Funktion y = f(x) durch eine
Exponentialfunktion der Gestalt F(x) = a010“I" zu approximieren, kann man Y= 1gf(x)
durch die lineare Funktion G(x) = 1g F(x) = alx + lg no approximieren und dann zur Aus-
gangsaufgabe zurückkehren.

In [6] sind für einige Funktionenklassen die dazu notwendigen Transformationen be-
schrieben.

Für Polynome höheren Grades wird die Approximation nach der Methode der klein-
sten Quadrate rechnerisch umfangreich. Man benutzt dann zweckmäßig ein anderes Kon-
struktionsverfahren für das approximierende Polynom‚ das sog. Orthogonalpobm ver-
wendet. Hierzu verweisen wir auf die Literatur, z. B. [9], ’
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3.3.2. Stetige Approximation im Mittel

Wir beschränken uns auf die Approximation einer gegebenen stetigen Funktion durch
verallgemeinerte Polynome

F(x) = ao¢o(x) + a1<m(x) + + a,..a2...(x) (3.3)

auf einem Intervall [a, b], wobei die <12,-(x) (i = 0, ..., m) ebenfalls stetig seien.
Das Fehlerquadratintegral (3.22) ergibt sich damit zu (der Index bezieht sich im folgen—

den auf die Anzahl der Funktionen q2,-(x)):

b

Q... = I[ao¢o(x) + a141h(X) + + a».<1In.(X) —f(x)]2dx- (3.29)

Zur Bestimmung des Minimums von Q," = Q,,,(ag, a], ..., am) setzen wir die partiellen Ab-
leitungen von Q‚„ nach den Parametern au, ax, ..., a„‚ gleich null:

I7

9% = 2J [a0W0(X) + a1¢».<x> + + anew) -f(x)] <11.-(x) dx = o.

i=0,1,...,m. (3.30)

Unter Benutzung der Abkürzungen

b b

(ea.-. <z2,—) = Ia),-(x)¢,(x)dx, (f, <12.-)=[f(x)¢.-(x>dx

erhalten wir aus (5.130) das lineare System der Nflormalgleichungen

ao(wo‚ Wo) + 01(‘Po»‘P1)+ + amüpo, am) = (L we),

ao(‘I7os (P1) + “1(‘17xa W1) ‘i’ ‘i’ l1m(‘P1s ‘Pm) 2 (f: (P1); (3-31)

ao(avo. em) + am, im.) + + amm. mm) = (I2 m),

das eine eindeutige Lösung a0, ail, ä„‚ besitzt, wenn die Funktionen cp„(x)‚ q2‚(x)‚
qa„‚(x) auf dem Intervall [11, b] linear unabhängig sind. Die lineare Unabhängigkeit eines
Funktionssystems läßt sich mit der Wronski-Determinante (siehe Band 7/1) nachweisen.
Die approximierende Funktion lautet damit F(x) = ä„q2„(x) + ä,qa1(x) + + d,,,(p,,,(x);
ihr entspricht ein minimales Fehlerquadratintegral vom Wert

b

Q." = fläowoix) + 51117105) + + W» —/<x>12dx.
a

Offensichtlich erhöht die zur Aufstellung des Gleichungssystems (3.31) notwendige Be-
rechnung von m(m + 1) Integralen den Rechenaufwand erheblich. Da das Funktionssy-
stem tp‚-(x) (i = 0, l, ..., m) jedoch vorgegeben wird, ist es sinnvoll, solche Funktionensy-
steme auszuwählen, für die

b

_ =o r" ‘ ',
<<p.‚a»,->—Jaz‚ix>a2‚<x>dx{>0 f)‘; ‚f; (3.32)

a
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gilt. Denn dann erhält man sofort die Parameter a0, ...‚ a„‚ aus

b

(f W [f(x)¢.(x)dx
as (W142) =",——, i=0, 1, (3.33)

J.[<r.-(x)]1dx
a

Funktionensysteme‚ für die (3.32) gilt, nennt man orthogonale Funktionemysteme. Die
nach (3.33) berechneten Parameter heißen Fourier-Kaeflizienten (im allgemeinsten Sinne)
der Funktion f(x) bezüglich des orthogonalen Funktionensystems np,-(x) (i =O‚ 1, ...,

m).
Ein wichtiges Beispiel für ein orthogonales Funktionensystem ist das trigonometrische

Funktionensystem

‚ n n: _ Zn
wo(x)=1, wx(x)=s1n-Ex, w2(x)=c0s;x, ¢2s(x)=s1n7x,

2rr _ rrr rrrq1,.(x)=cosTx,...,q2,,,_,(x)=s1n7x, zp,,,(x)=cos7x

<p>0, mgerade, r=%) auf jedem Intervall der Länge 2p. Wir legen das Intervall

[-p, p] zugrunde. Die Funktionen rpl-(x) (i = 0, 1, ..., m) besitzen die Periode 2p. Für die-
ses Funktionensystem gilt

p

(1,1)= Ilzdx = 2p,
‘P

P

sin—x, cosflx) = [sinflxcosflxdx = 0,
p _p p p

P

sin1x,sinflx)=_[sin £xsinl:xdx={0 ü.“ {*1}
p p ‚p p fur =1,

P

cosflygcosflx):Jcosflxcosflxdx={0 fl."
p p ‚p p p p fur i=1.

in

P

Schreiben wir jetzt das verallgemeinerte Polynom (3.3) in der für dieses Funktionensy-
stem üblichen Form

F(x)=21+a coslx-+‘..+a,cosflx+b1sin£x++b,sinflx,
2 ‘ p p p

(3.34)
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so erhalten wir aus (3.33) sofort

I’

a,=%:[f(x)cos%xdx, i=0, 1. ...‚ r,

„ (3.35)

bei Innsinflxcx, i: 1,2, r.
p ‚p p

Diese Koeffizienten a,- und b, heißen trigorzometrische Fourier-Koeflizienten der Funktion
f(x), die entsprechende approximierende Funktion der Gestalt (3.34) heißt trigonometri-
sches Fourier-Polynom der Funktion f(x). Durch Grenzübergang r-+ w erhält man hieraus
die bekannte trigonametrische Fourier-Reihe der Funktion f(x)

f(x)=-21+ (mcoS-lgx + b‚sin%x).

Die Darstellung einer Funktion durch das trigonornetrische Fourier-Polynom bzw. die
Fourier—Reihe nennt man auch harmonische Analyse (weitergehende, insbesondere theore—

tische Untersuchungen hierzu findet man z. B. im Band 3 „Unendliche Reihen“ dieses
Lehrwerks).

Sind die in (3.35) auftretenden Integrale kompliziert oder nicht geschlossen lösbar,
oder ist die Funktion f(x) nur als Wertetabelle gegeben, so ist man zur Berechnung der
Fourier-Koelfizienten auf Näherungsverfahren angewiesen. Aus der Vielzahl der Verfah-
ren, die sich im wesentlichen durch das verwendete numerische Integrationsverfahren un-

terscheiden, skizzieren wir hier das Verfahren von Runge.
Dabei wird das Intervall [—p, p] durch die Punkte

2kxk=—p+T, k=1,2,...,n-1,

in n Teilintervalle der Länge h =2—np zerlegt. Dann können die Integrale (3.35) nähe-

rungsweise durch die folgenden Summen ersetzt werden:

a, =L ifixgcosflx, =Ä if(x,,)cos [i<~rr+ 2kTr>:|,
I’ k=l P lnk: n

i=0, 1, r, (3.36)

_ h " , in _Ä " ‚ ‚ _ Zknb,- p k;lf(xk)sm p xk- n ;:1f(xk)s1n[z( rr+ n )],
i=1, 2, ...,r.

Zur Vermeidung von Komplikationen und aus Genauigkeitsgründen sollte n g 4r gewählt
werden.

Beispiel 3. 7: Die Fourier-Koeffizienten a0, a1, b, der Funktion f(x) = x + 2, x e [-2, 2], sollen nach
den Formeln (3.36) näherungsweise berechnet werden, Wir wählen n : 8 (h : 0,5) und rechnen nach
dem Schema von Tabelle 3.3.

Wir finden damit fiir die Parameter

1 1u,,:%~1s:4,5, a,=T(~2)=-0,5, b,=T4,s224=1,2o71.
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Die approximierende Funktion lautet somit

F(x) = 2,25 — o,'5 cos%x + 1,2071 ging;

Tabelle 3.3

k xk f(xk) a, = —„ + Ni cos m, sin an, f(xk) cos m, f(xk) sin m,
I!

1 —1,5 0,5 —135° ~0,7071 —0,707l —0,3536 . —0,3536
2 -1 1 — 90° 0 —1 0 *1
3 —0,5 1,5 — 45° 0,7071 -0,7071 1,0607 —1,0607
4 0 2 0° 1 0 2 0

5 0,5 2,5 45° 0,7071 0,7071 1,7678 1,7678
6 1 3 90° 0 1 0 3

7 1,5 3,5 135° —0,707l 0,7071 —2,4749 2,4749
8 2 4 180° -1 0 —4 0

2 18,0 ~2,0000 4,8284

Ein weiteres wichtiges orthogonales Funktionensystem ist das der Legendreschen Polynome

1 d’ . .

<P:(X)=1’.-(X)=fi§(XZ—1)', i=0,1, (3-37)

auf dem Intervall [—1, 1]. Die ersten fünf Legendreschen Polynome P„(x) = 1, P,(x) = x,

Pz(x) = ä (3x: —1),P3(x)=%(5x3 - 3x), P„(x) = ä (35x" - 30x7 + 3) zeigt Bild 3.4.
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Bei Kenntnis der ersten beiden Polynome lassen sich alle weiteren auch nach der Rekur-
sionsformel

(i+ 1)P,»+, = (2i + 1)xP‚ v iP‚v_‚

berechnen. Es gilt
l

J 0 fiir i¢j,
P,-,P- = P,- P» d = 2 _ . .( 1) A1 (X) KX) X „+1 für 1:},

damit erhält man nach (3.33) als Fourier-Koeffizienten der Funktion f(x) bezüglich der
Legendreschen Polynome

1

2i + 1 _115:"? Jf(x)P‚-(x)dx‚ z=0,1, ...,m. (3.38)
—1

Aufgabe 3.3: Approximieren Sie die Funktion f(x) = e‘ auf dem Intervall [~1, 1] unter Benutzung
der Legendreschen Polynome durch ein Polynom 2.Grades.

Von großer Bedeutung sind auch die Tschebyscheff-Polynome, auf die im folgenden
Abschnitt näher eingegangen wird. e

3.4. Weitere Approximationsarten

Neben der Gauß-Äpproximation, bei der gefordert wird, dal3 die Fehlerquadrat-
summe

Q4 = £0 [F(Xk) ‘f(Xk)]Z

bzw. im stetigen Fall das Fehlerquadratintegral

b

Q = J'[F(x) —f(X)}2dX
a

minimal wird, sind noch andere Approximationsarten gebräuchlich.
So wird bei der Tschebyscheff-Approximation, die auch als gleichmäßige Approxima-

tion bezeichnet wird, die approximierende Funktion aus der Forderung bestimmt, daß der
betragsmäßig maximale Abstand zu minimieren ist, d. h.,

T4 = k Q3?“ „ |F(xk) am» <3.39>

R = a 5:’; „ IF(x) —/<x>| (3.40)

ist zu minimieren.
Die klassische Aufgabe der gleichmäßigen Approximation besteht darin, unter allen

Polynomen n - l-ten Grades ein solches Polyrtom

p„„(t) = ao+ 1111+ + a„..,t""
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zu ermitteln, das im Sinne der gleichmäßigen Approximation das Polynom

mm=V
im Intervall [e l, 1] am besten annähert. .

Dieses Problem hat eine eindeutige Lösung in Form der Tschebyscheff-Polynome (vgl.
Band 12,1.2.3.)

To(1)=1
T1(!) =2

T2(t) = :2 —% (3.41)

3
T3(t)= t3*j4*t

1
T,.+1(t)=tT..(t)'jT,.—1(t), n=1,2,.-.~

Für Tschebyscheff-Polynome gilt die folgende „gewichtete“ Orthogonalitätsbeziehung:

H 1 O für n #= m,
Z T,,(x)T,,,(x)dx = 1-r (3.42)

x,1‘/1-:
Große Anwendung finden die Tschebyscheff-Polynome z. B. bei der sog. schnellen Fou-
rier-Transformation zur Entwicklung von Funktionen nach Polynomen.

Bei der Methode der kleinsten Absolutbeträge ist die Summe bzw. das Integral über die
Abweichungsbeträge

22„_1 für n = m.

Md = go um) —/<xo| ' (3.43)

bzw.

b

M = Jinx) -f(x)| dx (3.44)
u

zu minimieren.
Obwohl die letztgenannten Approximationsarten in den Anwendungen durchaus ihren

Platz haben, dominiert aufgrund der relativen Einfachheit und der statistischen Deutung
noch die Gaußsche Fehlerquadratmethode.

3.5. Programmierung und Software

Zur Interpolation bietet PP NUMATH-l vier Basismoduln in Form von FORTRAN-
Subroutinen an [31, 3.2.1.]. Der Anwender muß hier insbesondere überlegen, wie er die
Ergebnisse geschickt darstellt.

Die Auswertung der Formeln zur linearen diskreten Approximation im Mittel ist ein—

fach und heutzutage schon häufig durch Tastendruck auf einem entsprechend hergerich-
teten Taschen- oder Tischrechner möglich. Im allgemeinen schließen sich an die Ermitt—
lung der Ausgleichsgerade jedoch noch weitere statistische Rechnungen an (z.B. Angabe
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der Vertrauensintervalle für die Koeffizienten), so daß Programme für Rechnungen dieser
Art besser in der Statistik-Software (z. B. [32]) gesucht werden sollten.

Setzt man Rechnungen zur Fehlerquadratmethode und zu weiterführenden statisti-
schen Untersuchungen jedoch selbst in Programme um, so hat man oft Formeln, in denen
annähernd gleich große Zahlen voneinander subtrahiert werden (z. B. Mittelwert minus
Meßwerte). Das unkritische Übernehmen dieser Formeln ins Programm führt zu numeri»
schen Instabilitäten! Viele Statistikbücher geben deshalb Umformungen an, in denen der-
artige Subtraktionen nicht mehr auftauchen.



4. Numerische Integration

4.1. Einführung

Wir betrachten Verfahren zur Lösung bestimmter Integrale

b

1= Jfooqx. (4.1)
a

Das Intergral sei nicht uneigentlich. Verfahren zur numerischen bestimmten Integration
werden auch als Quadraturvezfahren bezeichnet.

Die Aufgabe, ein unbestimmtes Integral, d.h. eine Stammfunktion von f(x)

F(x) = {f(x) dx (4.2)

numerisch zu berechnen, kann auch mit den Quadraturverfahren behandelt werden: Da das unbe-
stimmte Integral (4.2) bekanntlich auch in der Form

F(x)= Jfmdt (4.3)
a

geschrieben werden kann, erhält man Funktionswerte einer Stammfunktion für eine diskrete Punkt-
menge x0, x„ .„, x„ durch Berechnung der bestimmten Integrale

m.) = Innen. m.) = Ixmdr, m.) = J/mdz

bei beliebig vorgegebener Zahl a.

Ein numerisches Integrationsverfahren muß dann angewendet werden, wenn entweder
f(x) fonnelmäßig gegeben ist und die geschlossene (d. h. formelmäßige) Integration zu
aufwendig oder undurchführbar ist, oder wenn von f(x) nur eine Wertetabelle bekannt
ist.

4.2. Mittelwertformeln

Wir wollen vorerst voraussetzen, daß der Integrand f(x) in (4.1) formelmäßig gegeben
ist oder daß man an jeder beliebigen Stelle den Funktionswert berechnen kann. Eine Qua-
draturforrnel hat allgemein die Form

b

[f(x) dx = ‚(zu W1;/.(Xk)« (431)

Dabei unterscheiden sich die einzelnen Formeln voneinander durch die Anzahl der
Summanden (n + l), durch die Zahlen xk und w,‘ (k = 0, ...‚ n). Die x,, werden Stützstel-
len und die wk werden Gewichte der Quadraturformel genannt. Das Integral wird somit
berechnet als ein gewichtetes Mittel von Funktionswenen, woraus sich der Name „Mittel-
wertformeln“ ergibt.

Bei der Herleitung von Mittelwertformeln in der Form (4.4) gibt man sich die Anzahl



4.2. Mittelwenformeln 47

der Summanden vor und ermittelt die restlichen Größen so, daß die Formel Polynome
möglichst hohen Grades noch exakt integriert, d. h‘, daß sie möglichst genau wird.

h

Beispiel 441: Wir wollen eine möglichst genaue Quadraturforrnel für If(x)dx entwickeln, wobei
—h

n i l vorgegeben sei. Wir versuchen, ein Polynom 4. Grades exakt zu integrieren, d, h.,
h

4 4 4 ‚

J( z w. z w. 2 v)
‚h m = u m = o m = o

für alle Koeffizienten c„‚ (m = O, 4). Die formelmäßige Berechnung des Integrals in (") und nach-
folgender Vergleich derFaktoren von co, A47) c. auf der linken und rechten Seite liefert das System

w‘, + w; = 2h,

wgxo + wlxl = O,

2
wuxä + mxä = ?h3‚

WDXS+WIXI:O> Ü‘)
2

wgxg + w1x§= -5-h5.

Dieses System besteht aus fiinf Gleichungen für vier Unbekannte, Aus den ersten vier Gleichun-

gen erhält man wo = w, = h, xo 2 Ag;/3—. Diese Werte erfüllen die fünfte Gleichung nicht, somit

können nur Polynome dritten Grades berücksichtigt werden, und man erhält
h

' h h kt!/<x>dx=h/—;¢3' +13%? . < >

—n

Diese Formel integriert Polynome bis einschließlich dritten Grades exakt,

Allgemein kann man sagen: Hat eine Quadraturformel m zu bestimmende Parameter
(Stützstellen und Gewichte), so kann man stets die exakte Integration von Polynomen
(m - 1)—ten Grades fordern. In Sonderfällen (s. Abschn. 4.2.2.) werden sogar noch Poly-
nome m-ten Grades exakt integriert.

4.2.1. Quadraturformeln von Gaul!

Quadraturformeln, die die Maximalgenauigkeit für eine vorgegebene Anzahl von Stütz-
stellen erreichen, sind die Formeln von Gauß, die nur für Integrale mit symmetrischem
Integrationsintervall angegeben werden (durch eine Transformation kann man stets ein
solches Intervall erreichen):

2h/<0) + #1/"<0, (n = o), (4.5)
h

dx ‘—‘ [(*’") aus Beispiel 4.1] + %fw(f), (n = I), (4.6)
-n

§[s/(—%»/E) + am) + s/(§JE + %750fl‘><:>,

(n = 2). (4.7)

Den Quadraturfehler ermittelt man durch Abschätzen des Restgliedes, wobei E eine Zwi-
schenstelle aus [—h, h] ist. Die Stützstellen der Gaußschen Quadraturformeln sind die
Nullstellen der Legendreschen Polynome (s. [2], [19], [28]).
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4.2.2. Quadraturformeln von Newton-Cotes

Hierbei werden die n + 1 Stützstellen x). äquidistant vorgegeben:

xk=a+kh mit h=[’;“, k=0,...,n. (4.8)

Verfügbar für die Genauigkeit sind somit nur noch die n + 1 Gewichte wk.

Für n = 1, ...‚ 4 lauten die Formeln:

h h’ ‚ '

3[f(xo) +f(x1)] - if (E), (4,9)

° ämxu) + 4f(x1)+f(xz)]— 375/“’(f), (4.10)

J“")d"= 3h 3h‘ 4)

" TL/(Xo) + 3f(x1)+ 3f(xz) +f(x3)] - W!‘ (f). (4.11)

%[7f(Xo) + 321cc.) + l2f(x2) + 32f(x3) + 7f(x1)] — 27271615). (4.12)

Die Stützstellen sind jeweils aus (4.8) zu entnehmen. Eine besondere Eigenschaft dieser
Formeln ist es, daß für gerades n sogar Polynome vom Höchstgrad n + 1 exakt integriert
werden (m. a.W.: (4.10) ist so genau wie (4.11)). Die Quadraturformeln (4.9) und (4.10)
sind als Trapez- und Keplersche Faßregel bekannt, (4.11) heißt 3/8—Regel.

4.2.3. Quadraturformeln von Tschebyscheff

Damit die Fehler der Funktionswerte gleichmäßig in den Integralwert eingehen, wird ge—

fordert, daß alle Gewichte gleich groß sind: w) : w (k =0, ..., n). Es verbleiben somit
noch die n + 1 Stützstellen und die Größe w. Deshalb werden die angegebenen Formeln
Polynome (n + 1)-ten Grades exakt integrieren. Es ergibt sich für n = 0, 1, 2

h 2h -f(0) + Ru, (4.13)

Jf(x)dx= h[f(-§5>+f(§~/3-)] +R1, (4.14)

"' 2h h hT[r(—;»/2') +f(0) +/(34/2' + R2. (4.15)

Die Formeln sind bis n = 7 brauchbar. Für n = 8 und n =10 ergeben sich keine reellen
Stützstellen. Die Restglieder sind z. B. in [28] angegeben.

4.2.4. Verallgemeinerte Mittelwertformeln

Durch Zerlegung des Integrationsintervalls und Anwendung der Trapezregel bzw. der Faß-
regel erhält man die verallgemeinerte Trapezregel

b

_[f(X) dX z *g“[f(Xo) + 2f(X1) + 2f(x2) + + 2f(X..-1) +f(x„)] (4-16)
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und die bekannte Simpson-Regel (n gerade)

b

Jfbfidxzglflxo) + 4f(X1) + 2f(X2) + + Zfm-z) + 4f(X..—1)+f(x..)],
a

4 (4.17)
wobei die Stellen xk nach Vorgabe von n aus (4.8) folgen.

Beispiel 4.2:f(x) = 1/x, a = 1, b = 5, Verwendung von (4.16).

n = 1 m, = 4): J.=§<r(1>+f<s»=2,4,

n= 2 (hz=2): J2=%(f(1)+2f(3)+f(5))= 1,86667,

n= 4 (h3= i): J3:%(f(1)+2f(2)+2f(3)+2f(4)+f(5))=L68334,

n = 8 (h4 = 0,5): J4 = 2;-(f(1)+ 2f(1‚5) + + 2f(4,5) +f(5)) = 1,628 97,

n: 16 (h.=0,25): J,=1,61441,
n z 32 (h5 = 0,125): J5 = 1,610 68,

n = 64 (h6 = 0.0625): J7 = 1,609 75.

Der Vergleich mit dem exakten Wert in 5 = 1,609 44 zeigt, daß man fiir n = 64 in die Nähe des exak-
ten Wertes kommt, d, h. dal3 über 60 Funktionswertberechnungen notwendig sind. Diese langsame
Konvergenz ist ein Nachteil der Trapezregel.

4.3. Romberg-Algorithmus

Zur Kuuucr nzbeschleunigung der verallgemeinerten Trapezregel, d.h‚ zur Erzielung der
gleichen Genauigkeit mit weniger Funktionsweitberechnungen, benutzt man das Extrapo-
lationsprinzip. Man interpretiert dabei J1 als J(h,), J1 als J(h;), (h, > h; > „.) und ver-

sucht auf geeignete Weise, den Wert J... = 1(0), der wegen der Konvergenz der Trapezregel
mit dem gesuchten Integralwert übereinstimmt, näherungsweise aus den Werten J(h1),
J(h2), J(h,,) zu berechnen. Man stellt dazu das Interpolationspolynom von J(h) mit
Hilfe von J(h,), ..., J(h,,) auf und ermittelt den Funktionswert dieses Polynoms an der
Stelle h =0. Da diese Stelle außerhalb des von h1 und h„ begrenzten Intervalls liegt,
spricht man von Extrapolation.

J

1 5 n n n n n n n n n n n n n n n I

1 z 3 6 5 m 15 In’

Bild 4.1. Veranschaulichung des Extrapolationsverfahrens (zu Beispiel 4.3)

4 Oelschlägel, Methoden
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Beispiel 4.3: Es werden die Ergebnisse von Beispiel 4.2 verwendet. In Bild 4.1 sind die Integralnähe-
rungen über h7 sowie die ersten Interpolationspolynome eingetragen. (Das Auftragen über h’ erweist
sich bei der formelmäßigen Behandlung als zweckmäßig.) Die Gerade schneidet bei In = 1,69, die
Parabel bei J1; =1,62‚ und die (nicht mehr eingezei “ ‘ ) kubische Parabel durch vier Punkte
schneidet bei J1, = 1,61 die Ordinatenachse. Der Index 14 besagt, daß dieser Wert aus 1„ J2, J3 und
J4 extrapoliert wurde. J” ist somit entstanden unter Verwendung von 9 Funktionswerten, hat aber die
gleiche Genauigkeit wie J7 in Beispiel 4.2!

Das Extrapolations-Quadraturverfahren, das in dem Beispiel eine Konvergenzbeschleu-
nigung offenbarte, hat diese Eigenschaft auch allgemein (s. [21]).

Offenbar ist es nicht notwendig, das gesamte Interpolationspolynom aufzustellen, da
nur der Wert für h = 0 interessiert. Die Zahlen Jn, J„, I14, können nacheinander nach
dem Romberg-Algorithmus berechnet werden.

Es wird vorausgesetzt, daß h, = b — a, h2 = L h3 = h1 gewählt wird. Unter Ver-
2 ’ T’

wendung des Steigungsschemas (vgl. Band 1, Abschnitt 9.6.) erhält man die Gleichungen
der Interpolationspolynome. Aus dem Interpolationspolynom 1‚Grades folgt fiir h2 = O:

_ 11-]; _ ,_ Jl-J, .

J,2—J,+—r_h§( h,)«J2+—-—3 _ (4.18)

Das Interpolationspolynom 2.Grades liefert für h’ = 0:

J, - J1 J2 — J,
J—J hlvhi hz-h’

Jia =-71+ä(‘h5+ (‘h9 (‘h5

2 _ hi z _ häUnter Verwendung von (4.18) und wegen h, — T, h3 — —4~ folgt

16 J v]
J13:-I12 +1—5 [J3 + ’3 2 du}. (4.19)

Definiert man nun analog (4.18) eine weitere Größe J23 nach

J2: = J3 + (4.20)

so erhält man damit

16 J — JJ1:=Jiz+flJza‘Jizl=-li3+%' (4-21)

Die allgemeine Beschreibung des Romberg-Algorithmus lautet:

J- — J- ‚

'ljk=tlj+l,k+d%ljätbf—i- (4.22)

Die Formeln (4.18) und (4.20) ergeben sich aus (4.22), wenn man J1=J„‚ J2 =J„‚
setzt.

Die Rechnung erfolgt vorteilhaft in einem Schema:

| 1 2 3 4

J1

J2 Ju
J3 J2: J1;
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Beispiel 4.4: Wir berechnen mit dem Romberg-Schema noch einmal die im vorigen Beispiel grafisch
5

. ‚ 1
ermittelten Wene In, 1„ und J” fur —dx:

l X

1 2 3

2,4
1,86 667 1,68 889
1,68 334 1,62223 1,61779
1,62 897 1,61085 1,61009 1,60 997

Mit dem Romberg-Verfahren wurde somit unter Verwendung von 9 Funktionswertberechnungen der
5

Näherungswert 1,60 997 für das Integral Jédx erhalten.
I

Bild 4.2 enthält einen Programmablaufplan zur Umsetzung des Romberg-Algorithmus.
Bild 4.3 schildert dazu das Unterprogramm mit der Trapezregel.

Die hier zur Konvergenzbeschleunigung benutzte Extrapolationsidee stammt von Ri-
chardson und ist in ihrer Anwendbarkeit keinesfalls nur auf die Trapezregel bei bestimm-
ten Integralen beschränkt. Man verwendet Richardson-Eattrapolation auch erfolgreich bei
numerischer Differentiation und der Lösung von Anfangswertaufgaben, wobei zu einem
gegebenen Basisverfahren nach bestimmter Vorschrift ein Extrapolationstableau aufge-
stellt wird [16].

4.4. Programmierung und Software

Trapez- und Simpsonregel gelten als beliebte Übungsaufgaben für Programmieranfän-
ger‚ auch die Einbettung der Trapezregel als Unterprogramm in ein Romberg-Programm
wird oft gefordert. Im Vergleich zu anderen numerischen Standardaufgaben kann hier
auch der Anfänger brauchbare Programme schreiben. Umfangreiche Organisations-,
Steuer- und Diagnoseprozesse sind nicht erforderlich, sofern nicht Integranden besonde-
rer Kompliziertheit vorliegen.

Im PP NUMATI-I—1 werden drei Basismoduln angeboten — für tabellarisch gegebene
Integranden sowie für analytisch gegebene Integranden und niedrige bzw, hohe Genauig-
keitsforderung.
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T (J,K J:=T(.’J+’l,K) +

+(T(J+’l.K )— T(3,K—1))/(1+>1sat( K-3 )—1)

ABS lT(1,K )+ T (1,K—1))>EPS

AND K<KMAX

Bild 4.2‘
< STOP > Romberg-Verfahren
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N= =(B—A)/H

Yß7=FKT(A)
YE==FKT(B)
TRAP:=1zI.5aKH*(‘{¢+YE_)

n

RETURN

Bild 4.3. Trapezregel-Unterprogramm zum Romberg-Ver-
fahren



5. Numerische Lösung gewöhnlicher
Differentialgleichungen

5.1. Einführung
Wie schon im Abschnitt 2.6. des Bandes „Gewöhnliche Differentialgleichungen,

Teil 1“ dieses Lehrwerks beont wurde, ist die Lösbarkeit einer Differentialgleichung
(DGl) auf formelmäßigem Wege ein Spezialfall, der allerdings nach wie vor große Bedeu-
tung besitzt. In der Regel sind jedoch die bei praktischen Problemen auftretenden DGln
nicht formelmäßig (man sagt auch „geschlossen“) lösbar, zu ihrer Lösung müssen dann
numerische Methoden angewandt werden. Ein weiterer Sachverhalt spricht ebenfalls fiir
numerische Lösungsmethoden: Praktische Probleme erfordern im allgemeinen nicht die
Ermittlung der gesamten Lösungsschar der DG1.

Wir wollen im folgenden also nicht die Lösung von DGln schlechthin, sondern die Lö-
sung von Problemen betrachtet, die aus DGln und Bedingungen bestehen. Je nach Art der
Bedingungen unterscheidet man Anfangs- (AWA) und Randwertaufgaben (RWA), zu de-
nen als Spezialfall noch die Eigenwertaufgaben (EWA) gehören. Wir wollen nur solche
Aufgaben betrachten, bei denen die Anzahl der Bedingungen mit dem Grad der DGl
übereinstimmt (s. auch Band 7, Teil l).

Wir wenden uns nun den genannten Aufgabenstellungen zu.

5.2. Anfangswertaufgaben

5.2.1. Anfangswertaufgaben bei Diflerentialgleichungen erster Ordnung

5.2.1.1. Einführung, Problemstellung

Wir betrachten zuerst Verfahren zur Lösung von Problemen, deren mathematisches
Modell die Form

y’ =f(x‚y)‚ (5-1)

y(Xo) = y01 (5-2)

besitzt.
Dabei werde die Lösungsfunktion für x g x0 gesucht. Dann nennt man das Problem

(5,1), (5.2) eine Anfangswertaufgabe (AWA), und (5.2) heißt Anfangsbedingung (AB), Die
Bedingungen für Existenz und Einzigkeit der Lösung einer AWA sind in jedem Lehrbuch
über höhere Mathematik enthalten (s. auch Band 7, Teil 1). Die DG1 (5.1) heißt DGl
1. Ordnung in expliziter Form und ist ein Spezialfall der impliziten DGl 1. Ordnung
F(x, y, y’) = 0. Ist die Lösungsfunktion für x g x0 gesucht, so nennen wir (5.1), (5.2) ein
Endwertproblem; durch die Transformation t= —x kann ein Endwertproblem auf eine
AWA zurückgeführt werden.

Wir wenden uns jetzt der Beschreibung numerischer Verfahren zu, die die Näherungs-
lösungsfunktion in Form einer Wertetabelle liefern:

I j: ; (5.3)

die yl, yz, y3‚ sind Näherungswerte für die exakten Lösungswerte y(x,), y(x2), y(x,),
Dazu müssen die Argumentstellen x1, x2, x3, vorgegeben werden.

Allen Verfahren zur Lösung von Anfangswertaufgaben ist gemeinsam, daß nacheinan-
der die Zahlen y„ yz, ya, bis zum gegebenen Endpunkt ermittelt werden. Die Ermitt-
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lung eines Funktionswertes der Lösungsfunktion nennt man dabei einen Schritt. Das Ver-
fahren besteht dann in der schrittweisen Anwendung einer Formel zur Berechnung des
neuen Funktionswertes aus den bereits vorhandenen Funktionswerten.

Im folgenden sollen einige der bekannten Verfahren beschrieben werden.

5.2.1.2. Ausgangspunkte numerischer Lösungsmethoden

Die Wertetabelle (5.3) sei bereits bis einschließlich (x„, y,,) (n g 0, fest) berechnet wor-

den. Dabei wollen wir voraussetzen, daß die Argumentstellen x0, x„ gleichabständig
(mit der Schrittweite h) vorgegeben seien, d. h.

x„=x0+kh, k=0, 1,2,... (5.4)

Wir integrieren nun beide Seiten der DGl (5.1) von x„ bis x,,,,1:

xj.ly’dxzxflf(x‚y(x))dx (5.5)

und erhalten

y(X„u)=y(X„)+ J f(x‚y(x))dx. (5-5)

Setzen wir für y(x„) den vorhandenen Näherungswert y,, ein, so erhalten wir für die Be—

rechnung des Nähemngswertes y„ i, die Vorschrift

Xnai

y...1=yn+ I f(X, y(X)) dX- (5.7)
Xn

Die im Argument des Integranden vorkommende Funktion y = y(x) ist die gesuchte Lö-
sung; das bestimmte Integral läßt sich also nicht formelmäßig berechnen. Je nach Art der
angewandten Integrationsformel erhält man ein spezielles Lösungsverfahren:

a) Unter Verwendung einer Rechteckregel (ohne Restglied) ergibt sich

X...

ym =y„ + J f(x.y)dx =y„ + (x,.+r xn)‘/(x,..y..)
XVI

=y„ + hf(x„‚ m. (5.8)

b) Unter Verwendung einer anderen Rechteckregel ergibt sich

yn+1=.yr1 +(Xn+1‘ xr1)f(-xn+lsyn+1)=yn+ hf(xn+1vyn+1)- (5-9)

c) Unter Verwendung der Trapezregel ergibt sich

h
ym=y..+7[f(x,.+1,ym)+f(x,..y..)]. (5-10)

d) Ersetzt man in (5.7) den Integranden durch das durch die Punkte (x„ -4, y,, -4),
(x,, _ 3, y,, -3), (x„‚ y„) eindeutig bestimmte Interpolationspolynom, so erhält man

nach Ausführung der Integration das Verfahren

‚m=y„+7g5a9o1;;—2774g_‚+2e1m_2—1274g-,+25m.‚.) (5.11)

mit fk=f(xk.yk), k=n-4,...,n-
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e) Betrachtet man die Punkte (x,,_3, y,,_;), (x,,_2, y,,_2), ..., (x„„‚ y„„) und verfährt
wie unter c), erhält man das Verfahren

y„„ =y„ + „LOQSUM, + 646f„ — 246f,,_,+106f,,_2 -19f,,-,) (5.12)

mit f;,=f(xk,yk) (k=n—3,...,n+1).

Allgemein haben die auf diese Weise aus (5.7) erzeugten Verfahren die Gestalt

y‚„i=F(V„+i‚y„‚y„-i‚-.-‚y‚.-i+i)‚ (5-13)

wobei die Funktion F durch die verwendete Integrationsformel gegeben wird.
Im Falle k =1 spricht man von einem einfach rückgreifenden Verfahren oder Ein-

schrittverfahren, im Falle k > 1 von einem k-fach rückgreifenden Verfahren oder Mehr-
schrittverfahren.

Tritt y„ ‚. 1 als Argument der Funktion F auf, dann liegt ein implizites, anderenfalls ein
explizites Verfahren vor.

Die auf den Formeln (5.8) bis (5.12) basierenden Verfahren heißen:
a) Streckenzugverfahren von Euler-Cauchy (explizites Einschrittverfahren),
b) implizites Euler-Cauchy-Verfahren (implizites Einschrittverfahren),
c) verbessertes Euler-Cauchy-Verfahren (implizites Einschrittverfahren),
d) Extrapolationsverfahren von Adams (explizites Mehrschrittverfahren, Sfach rück-

greifend),
e) Interpolationsverfahren von Adams (implizites Mehrschrittverfahren, 4fach rück-

greifend).
Vor Beginn der Rechnung mit einem k-fach rückgreifenden Verfahren müssen in einer

Anlaufrechnung (Startrechnung) mit einem Einschrittverfahren die Werte y], yz, ..., yk_,
bestimmt werden, yo ist als Anfangswert gegeben.

5 .2.l .3. Prediktor-Korrektor-Verfahren

Wir betrachten das verbesserte Euler-Cauchy-Verfahren. Als erstes wird man bei einer
konkreten Aufgabe versuchen, die Gleichung (5.10) nach y„„ aufzulösen. Gelingt dies
nicht, so muß man sich eine Näherung y‘„°’„ für y„„ verschaffen und diese Näherung
nach der Vorschrift '

ym =yn +§[f(xm,y‘;11)+f<xn,yn>J (5.14)

iterativ verbessern.

* Aufgabe 5.1: Berechnen Sie nach Formel (5.14) y, fiir die Anfangswertaufgabe y’ = x +y’‚ y(0) = 1

mit h = 0,1 und y?” = 1.

Da die Iterationen die Rechnung erschweren, beschränkt man sich auf eine Iteration
pro Schritt und versucht dafür möglichst gute Anfangsnäherungen y‘,°’‚ yg”, zu fin-
den.

In unserem Falle bietet sich dafür z. B. das einfache Euler-Cauchy-Verfahren (5.10)
an:

y‘,.°’+1=y,.+ hf(x„‚y‚.>. (5-15)

Läßt sich nun zeigen, daß diese Anfangsnäherung bereits recht gut ist, so begnügt man

sich häufig mit einem Iterationsschritt und schreibt Anfangs- und Verbesserungsformel
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zusammen auf:

‚v‘„°1‚ =y„ + hf(x„‚y„)‚

yfll. =y„ +%[f(xn+1;y:103-1)+f(xmyr1)]~

Die erste Formel von (5.16) wird als Prediktor und die zweite Formel als Korrektur be-
zeichnet. Der Wert yffl, ist dann schon die neue Näherung y„„.

Beispiel 5.1: y’ = x +y’, y(0) = 1, h : 0,1, Rechnung mit Formel (5.16):

1. Schritt: Prediktor: y‘1°‘= yo + h(x0 +y(Z,) = 1,1,

(5.16)

Korrektor: y<,1> :y0 + g (X1 + (ygvuz + X0 wg) = 1,1155.

2. Schritt: Prediktor: yf’ =y, + h(x, + y?) 2 1,249 934,

Korrektor: yg“ = y, +;(x1 + (yg°>)1 + x1+ y{)=1‚264 392.

Nachdem die Begriffe Prediktor und Korrektor an einem einfach—rückgreifenden Verfah-
ren verdeutlicht wurden, wollen wir mehrfach-rückgreifende implizite Verfahren (z. B.
(5.12)) betrachten. Auch bei solchen Verfahren wird man in der Regel nicht nach y„„
auflösen können und iterieren müssen. Folglich ist die Ermittlung eines geeigneten Pre-
diktors zur Vermeidung der Iterationen wiederum sinnvoll.

Aufgabe 5.2: Überlegen Sie, warum ein Prediktor zur Formel (5.12) am günstigsten ein vierfach-rück-
greifendes explizites Verfahren sein sollte!

Bevor nun einige Prediktor-Verfahren angegeben werden, wollen wir uns verdeutlichen,
wie man solche Verfahren allgemein herleiten kann. Da gibt es zunächst einmal die Me-
thode der Anwendung einer Integrationsformel auf das Integral in (5.7). Betrachtet man

alle so entstandenen Formeln, so stellt man fest, daß sie die Form
Prediktor:

y‘‚.°’‚1 =y.. + h[b1f(x.., ya) + b7f(Xn n 1. yn—1) + + b:J(Xn—k,1> y,.—:m)], (5-17)

Korrektor: ‚

1'911: yr: 1° h[dof(Xn+1, )’(n01 1) + dL/(xm h) + + dkf(Xn—k+1:.Vn—k+1)]

haben und sich in der Anzahl und im Wert der Koeffizienten b‚- (i =1, ..., k) und d,-

(j = Ü, k) unterscheiden, Die Uberlegung, daß die Genauigkeit u. U. größer werden
kann. wenn anstelle von y,, eine Linearkombination von Funktionswenen benutzt wird,
führte zum verallgemeinerten Ansatz

Prediktor:

yS.0).1= alyn + + ak)’n—k+1 ‘l’ h[blf(xnxyn) + ‘L bkf(xn—k+layn—l<*1)]x (5-18)
Korrektor:

V2111: clyn +1’ Ck.Yn—k« 1 + h[dof(-X"; 1,yL"’. 1) ‘l’ + dkflXn-Iu l! yn~1+1)]»

Mit diesem Ansatz haben wir uns vom Ausgangspunkt (5.7) gelöst. Die Zahlen aj, b], e], d,-

(j = l, k) und do werden nun nach verschiedenen Gesichtspunkten ermittelt. Dazu
zählen aufjeden Fall Genauigkeit und Stabilität.

Eine Maßzahl für die Genauigkeit einer konkreten Formel (5.18) ist die Anzahl der
übereinstimmenden Summanden der Taylorentwicklungen von y(x„„) und y‚„ I, wobei
y(x‚-) =y‚- (j = n, n — 1, ...‚ n — k + 1) angenommen wird und an der Stelle y„ entwickelt
wird‘

Beispiel 5.2: Wir betrachten das Verfahren (5.8):

yn.1=yn + hf(-X71: y„J— (5.19)
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Die Taylorentwicklung von y(x„ ‚ 1) lautet:

y"(x‚.)
21

y’(x„)
1!y(x„.r)=y(x„)+ (xm ’x„)+ (x‚..r-x‚.)’+ (5.20)

und unter Verwendung von y’ =f(x‚y)‚ y" =1; +j}f folgt

h2
y(X,.+1) = y„ + hf(X.1.y,.) + TL/Axm yr.) +fy(Xmy,.)f(Xmyn) + -~]- (5-21)

Vergleicht man (5.19) und (5421) miteinander, so findet man Übereinstimmung in zwei Summanden.
Es gilt somit

hi
vom 1) -.v,.+1 = Tl/;((x-myn) +./;I(xn:yn).f(Xrnyr1) + u-l- (5.22)

Man sagt dann, der Fehler ist von der Ordnung hi oder kurz, das Verfahren hat die Ordnung l, Es ist
üblich, diesen Sachverhalt durch die Gleichung

y(x1+1)—y,1+1= 0W) (5.23)

auszudrücken.

So, wie man durch Vergleich der Taylorentwicklungen die Genauigkeit eines Verfah-
rens feststellen kann, ist umgekehrt nach Vorgabe der Genauigkeit die Ermittlung der
Zahlen aj, bl‘, cj, d, (j = 1, ‚..‚ k) und do möglich, Auf diesem Wege sind die folgenden Ver-
fahren entstanden:

a) Verfahren von Stetter (y(x„ ‚ 1) - y„ ,1 = 0015)):

y‘„°li = -4y‚. + 5y„—. + 2hl2f(x‚.‚y„) +f(x..—1,y,.—1)],
h (5.24)

y‘1”+1=y1—1+§[f(x..+1,y§°l1)+ 4f(x‚.‚y„) +f(x..~1,yn—1)]-

b) Verfahren von Hamming (y(x„ r 1) - y„ r 1 = 0015)):

4yfli =y„—s + -3-M2/(Xmy,.) *f(x..r1,y,.— 1) + 2f(xn»2.y..—2)].
(5.25)

1 3h
y;*1. =;[9y1 —y1_21 +71/<x1+1,y;°1 ‚> + 2/<x1,.v1> -/<x,_1,yn_1>1.

Weitere Verfahren findet der Leser in der angegebenen Literatur.

Aufgabe 5.3: Berechnen Sie mit dem Verfahren von Stetter Nähemngen für y(x2) und y(x3) der Lö-
sung von y’ = x + y’, y(0) = 1 mit h = 0,1. Entnehmen Sie y, aus Beispiel 5.11

Für den Spezialfall, daß Prediktor und Korrektor eines Mehrschrittverfahrens die glei-
che Ordnung haben und daß diese Ordnung bekannt ist, läßt sich das Verfahren durch
eine Korrekturrechnung noch verbessern:

Wir setzen voraus, daß die Zahlen cl, C2 und r in den Fehlergleichungen

y(x1+1)*y2°11 = c1h’y")(51)‚

y<x1.1> —y‘„'1‚ = c1h'y<'><£1) ‘m’

bekannt sind (derartige Fehlergleichungen ergeben sich häufig aus Restgliedern der Tay-
lorentwicklungen, wobei E, und E; gewisse Zwischenstellen aus [x,1‚ x,„ 1] sind).

Unter der Voraussetzung, daß die r-te Ableitung von y im Intervall [x„‚ x„ r 1] konstant
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ist, folgt

yknlll —y:i0il : ’C2h'ym(5z) 1’ C1hr.}’m(f1)=(C1‘ C2) hrK- 1 (5-27)

Daraus folgt '

<1) _ (o)Kh‚=}’„+i—)’n+i. (5.28)
c, c2

Die letzte Gleichung kann man in beide Gleichungen von (5.26) einsetzen und erhält da-
mit

y(l)+ _ y(0)

y(xn+ 1) - yL°l1= c1

(5.29)
yil 1 - y‘„°l 1

_ (l) —y(x..+1> y1+1-cz „ü:

Die rechts stehenden Zahlen sind nach Beendigung des Schrittes alle bekannt, man kann
also nach jedem Schritt den Verfahrensfehler von Prediktor- und Korrektorwert einfach
ermitteln.

Beispiel 5.3: Beim Verfahren von Hamming gilt c, = ‘IT:-, c, = —%.

Damit erhält man:

Fehler des Prediktorwertes: y(x‚„ 1) ' yf,°l1 = %(Y§1”+1 ’ V5101 i)?

Fehler des Korrektorwertes: y(x„„ 1) — yffl, = —T:T(y‘,,‘l, — y§,°1 1).

Eine Verbesserung des Prediktorwertes durch Hinzufügung des aus (5.29) gefundenen
Fehlers ist jedoch erst nach der Korrekturrechnung möglich. Man behilft sich damit, daß
man den Prediktorwert mit dem Fehler des vorigen Prediktorwertes korrigiert:

y:‘:1:=y<1°:1 +äm” *y‘1‘”>- (5.30)

Diese Formel nennt man Modifikator des Hamming—Verfahrens, und damit haben wir die
endgültige Form dieses Verfahrens, das aus Prediktor, Modifikator und Korrektor besteht,
gefunden:

4
y£10)+1=)’n~3 +Th[2/l(xn:yn) _.f(-xn-lvyn-1) +2f(Xn—21yn—2)]a

SEyilff =yE."11 + 121 (y‘1"- y‘1°’), (5.31)

1 3 1

y9:1= §[9.V11— yr: -11 + g hL/(X111, yifi) + 2/<x1‚ y1> «x1- 1. y1-1>1.

Beirpiel 5.4: y’ —y2 — x = 0, y(0)=1, h = 0,1. Es sollen mit (5.31) Näherungen fiir y(O‚4) und y(0,5)
berechnet werden.

Da der Prediktor dreifach-rückgreifend ist, müssen wir y1‚ y, und y, aus einer Startrechnung besor-
gen. Wir verwenden hier die Ergebnisse von Beispiel 5.6: y, = 1,116 492, y, = 1,273 563 und
y; = 1,488 018. Weiter gilt f(x, y) = x+yZ,x.1 = 0 und y.,=1.
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Rechnung:

yflu) =1+ %[2f(0,3; 1,488 018) -f(O,2; 1,273 563) + 2f(0‚1; 1,116 492)]

= 1,78 605,

yg‘/3) = y)”, da y, aus der Startrechnung stammt,

y?’ = %[9- 1,488 018 ~1,116492]+ Lé:‘[f(0,4; 1,786 605) + 2f(0,3;1,4880l8)

~f(0,2; 1,273 563)] = 1,789 397,

0,4
y?’ 3 1,116 492 + T [2f(0,4; 1,739 597) -f(0,3; 1,488 018) + 2f(0,2; 1,273 563)]

= 2,227 331, ’

ygm = 2,227 331+ % [1,7s9 397 — 1,786 605) = 2230415,
l .

yg” = {[9 ~ 1,789 397 - 1,273 563] + P-ä-LKOJ; 2230415)

+2f(0,4; 1,789 397) -f(0,3; 1,488 018)] = 2,235 043.

5.2.1.4. Einscluittverfahren

Wir betrachten wiederum das verbesserte Euler-Cauchy-Verfahren (5.10). Man kann
sich schnell durch Einsetzen klarmachen, daß der Formelsatz

1
yn+1 =yn + 7(k‘{" + 165"’)

mit (5.32)

W’ = hf(X,.,y,.),
kp = hf(x„ + h, y„ + k‘{”)

nur eine andere Schreibweise des Prediktor-Korrektor—Verfahrens (5.16) ist.
Betrachten wir weiter das Einschrittverfahren

1
ym =y„ + 3061"’ + 2k?’ + 2163"’ + 165"’)

mit

k)” = hf(x‚.‚y.)‚
whk(2’”=hf(x,,+7,y,,+T>, (5.33)

h k""
kg“ = nx(x. + 7, yn + T7),
ks” = Im. + h. y. + kg").

das als ein Runge-Kutta-Verfahren der Ordnung 4 bekannt ist (siehe Band 7, Teil 1, sowie
die Literaturhinweise), so können wir die allgemeine Form eines verbesserten einfach-
rückgreifenden Verfahrens zur Lösung von Anfangswertaufgaben 1. Ordnung erkennen:
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y,,,1 =y,, + a1k‘{" + a2k‘,"’ + + a,,k§,"’

mit k‘{” = hf(x.., ya),

'52” = h/(Xn + bzh. yn + C2k‘1'”), (5.34)

k?" = hf(x„ + bah. yn + Czké”),

k?’ = (X„ + bph, yn + 01:75,73 1).

Die Herleitung eines Verfahrens erfolgt wiederum so, daß p vorgegeben wird und aus der
Forderung nach möglichst hoher Ordnung die Koeffizienten 11„ ...‚ a„‚ b2, ..., b, und
c1, ...‚ c, bestimmt werden.

Beispiel 5.5: Mit p = 2 ergibt sich (5.34) durch Einsetzen von k‘,"’ und kg") zu

y,.+1= y„ + a1hf(x‚„y‚.) + uzhf(x‚. + bzh. y‚. + czhf(x‚.‚ m). (5.35)

Die Taylorentwicklnng von f im letzten Summanden an der Stelle (x„, y„) liefert

3' = y.. + a1hf(x.., ya) + a2h[f(xm ya) +f1(x,.. ya) bzh + fy(x..,y,.)czf(xmy,.)+<-.1. (5-36)

Der Vergleich mit der Taylorentwicklung von y(x„4 1)

y(x,.+1) l in. + hf(x„‚ x.) + Z-‚zl/‚(xm y..) +f,(xn. y,.)f(x,1, yn) + m] (5.37)

(siehe Beispiel 5.4) nach Potenzen von h erbringt das Gleichungssystem

(a1 + a2) hf(x„‚y„) = h/(Xm ‚m,

414111/,<x1.y,>= "72/104. m, <s.3s>

u2czh’fy(xm y,.)f(xn. M.) = h72fy(xn. y,.)f(xn, ya)

mit der einen Lösung a1= a, = b, = c; =1.i
2 ‚

Damit ist wiederum das verbesserte Euler-Cauchy-Verfahren gefunden worden. (Es gibt noch un-

endlich viele andere Lösungen, d.1-1. unendlich viele andere Verfahren mit p = 2.)

Beispiel 5.6: Von der Lösungsfunktion der AWA y’ - x =y’, y(0)=1, sollen Näherungen für die
Funktionswerte an den Argumentstellen x, = 0,1, x; = 0,2 und x3 = 0,3 berechnet werden.

Wir verwenden das Runge-Kutta-Verfahren (5.33)
Durch Vergleich mit (5.3) und (5.4) liest man ab:

f(X,y)=x+y2, x„=0, y„=1 sowie h=0,l.
Rechnung:

k?’ = 0,1f<o; 1) = 1,

k?’ = 0,1f(0,05; 1,05) = 0,115 250,

kg”) = 0,1f(0,05; 1,057 625) = 0,116 857,

kf’ = 0,1f(0,1; 1,116 875) = 0,134 737,

y, =%(0,1+ 0,23 050 + 0,233 714 + 0,134 737) + 1 = 1,116 492,

kg" = 0,1/(0,1; 1,115 492) = 0,134 655,

kg" = O,1f(0,15; 11331320) = 0,155143,

kg“ = 0,1f(0,15;1,194064)= 0,157 579,

kg" = 0,1f(0,2;1,274071)= 0,132 326,

y, :1,273 563,

H,” = 0,1821%, k§”= 0,211230, k§2’= 0,215 213, k?’ = 0,251 e45,

y, = 1,488 01s.
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Durch Verwendung des Rechensch kann der Schreibaufwand stark gesenkt werden.

Das Rechenschema hat zweckmäßig folgende Form:

n x y f(x‚y) = x + yl hf(x, y)

0 0 1 1 0,1
0,05 1,05 1,15250 0,115 250
0,05 1,057 625 1,16857 0,116 857
0,1 1,116 875 1,34 737 0,134 737

1 0,1 1,116492 1,34655 0,134655
0,15 1,183 820 1,55143 o,155143
0,15 1,194064 1,57 579 0,157 579
0,2 1,274 071 1,82 326 0,182 326

2 0,2 1,273 563

Man kann unter Verwendung der Taylorentwicklungen von y„„ und y(x,,,1) verbesserte
einfachwückgreifende Verfahren von beliebig hoher Ordnung entwickeln. Andererseits
kann man auf diesem Wege die Ordnung eines vorliegenden Verfahrens ermitteln. Das ist
u.U. sinnvoll, da es Verfahren gibt, die für O(h') entwickelt sind und dann sogar die Ord-
nung 0(h’”) besitzen.

Ist die Ordnung eines Verfahrens bekannt, so ergibt sich die Möglichkeit einer Betrach-
tung des Verfahrensfehlers sowie einer Korrekturrechnung auf folgende Weise:

Das Verfahren besitze die Ordnung r - 1. Man berechnet mit der vorgegebenen Schritt-
weite h die Werte y, und yz. Danach berechnet man noch einmal y, mit einem Schritt und
der Schrittweite 2h. Den mit der kleineren Schrittweite berechneten Näherungswert für
y(x2) wollen wir mit y; und den anderen Näherungswert mit y?‘ bezeichnen.

Aus Plausibilitätsbetrachtungen folgt dann näherungsweise

1
y(Xz) ‘J’? =10? wr‘). (5439)

Da die Zahlen r, y; und y?‘ bekannt sind, kann die Beziehung (5.39) zur Korrektur von y;
benutzt werden:

1y‘z‘°"=y{+F:T §“y§‘)- (5.40)

In gleicher Weise können alle weiteren Funktionswertnäherungen mit geradem Index kor-
rigiert werden. Zu dieser Korrekturmöglichkeit ist kritisch zu bemerken, daß bei einer
Rechnung mit Korrektur jedes zweiten Wertes ein ganzes Drittel des Rechenaufwandes
nur für die Korrektur benötigt wird. Es existiert jedoch noch keine andere praktikable
Fehlerabschätzung für derartige Verfahren; praktikable Fehlerabschätzungen und Fehler-
einschließungen sind noch Gegenstand der Forschung.

1,6 - x2 - y’
Beispiel 5.7: y’ = 15 + x2 Jr xy, y(0)=0, x,=0,1, x2=0,2,

1. Berechnung von y; mit h = 0,1: y; = 0,2060
‘ .33 d. h. = 5.

2. Berechnung von y; mit h = 0,2: y;“ = 0,2059 } Rechnung m" (5 )’ r

Damit ergibt sich

y'2‘°“ : 0,2060 + % 0,0001 : 0,2060 + 0,000 007. J

Der Fehler kann vernachlässigt werden.
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Die Korrekturrechnung gibt uns auch nachträglich Auskunft über die richtige Wahl der
Schrittweite. Da die Schrittweite sowohl Aufwand als auch Genauigkeit bestimmt, ist ihre
günstigste Wahl von großer Bedeutung.

In der Regel werden die Argumentstellen x„ (k = 1, 2, ...), an denen der Funktionswert
der Lösungsfunktion gesucht wird, vorgegeben sein. Damit ist auch die Maximalgröße der
Schrittweite gegeben. Man beginnt somit mit h = xi — xo die Rechnung. Ist die an y; an-
zubringende Korrektur nicht zu groß, so kann die Schrittweite beibehalten werden. An-
dernfalls muß sie verkleinert und die Rechnung noch einmal von vorn begonnen werden
usw. Hat man auf diese Weise die Schrittweite ermittelt, mit der y; genau genug berech-
net wird, so wird diese Schrittweite für y; beibehalten. Sie kann dann wieder vergrößert
werden, wenn die Korrekturgröße einen Betrag unterhalb einer vorgegebenen Schranke
liefert.

Aufgabe 5.4: Die Schrittweite h sei für die vorgegebene Genauigkeit von y„ AVA, yg ausreichend gewe-
sen. Bei der Korrektur von ym stem man fest, daß der Betrag des Korrekturgliedes zu groß ist. Welche
Funktionswerte müssen mit halber Schrittweite noch einmal berechnet werden?

Zur Sicherung von Existenz und Eindeutigkeit der Lösung einer Anfangswertaufgabe
(5.1), (5.2) fordert man meist u. a., daß die Funktion f(x, y) in einem Gebiet G der
x—y-Ebene, das die Lösung enthält, einer Lipschitz-Bedingung genügt: es gibt eine Kon-
stante L, so daß für alle Punktepaare (x, y‚) und (x, yz) des Gebietes G

lf(x. yx) -f(x, yz)| ä Llyi - „vzl (5.41)

gilt (L heißt Lipschitz-Konstante).
Zur Schrittweitensteuerung betrachtet man häufig die Schrittkennzahl

K = L- h, (5.42)

L ist dabei eine Schranke des Betrages der partiellen Ableitung fy,

mI:_L. xn§X§Xn+1- (5.43)

Für die in der Praxis üblichen Genauigkeitsforderungen sollte bezüglich der Schrittkennzahl

0,1: K g 0,2 (5.44)

gelten. Beim Runge-Kutta-Verfahren (5.33) kann auf einfache Weise während der Rech-
. .. . . h

nung die Größe der Schrittkennzahl verfolgt werden, Es gilt namlich fur x = x„ + 7,
1 1

‚v; =y„ +7/<§"’, yz=y,.+7k(x")

1i _ (n _ i l (n)

/<x,y.)—r<x,y2>=’<""+2’y"+2"2’> f(""+2’y"+2"‘
yl-yl y„+%k‘z"’*y„-%kl”

_}l_(kgn) ‚_ kg»)

%(k(2n) _ k<1n))
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und damit kann näherungsweise

i (H)- (n)

L- _h_‘*f i - 2 i

— Va kgn) _ kgn)

1? (k?) _ kam) h
()_ ()k; k,"

gesetzt werden. Daraus folgt für die Schrittkennzahl

kg") _ ktzn)K=L‘h=2 . (5.45)

In der Praxis werden Runge-Kutta-Verfahren mit selbsteinstellender Schrittweite ver-

wandt, die die Schrittweite meist über die Schrittkennzahl (5.45) steuern.

5.2.1.5. Stabilitätseigenschaften der Näherungsverfahren

Bei der Untersuchung der Eigenschaften von Lösungsverfahren für Anfangswertaufga-
ben spielen die Begriffe Konsistenz, Konvergenz und Stabilität eine besondere Rolle. Die
das Lösungsverfahren charakterisierenden Gleichungen approximieren die Gleichungen
der Anfangswertaufgabe; viele Verfahren werden ja z. B. — wie dargelegt — durch nähe-
rungsweise Berechnung des Integrals in (5.7) erhalten. Dieser Sachverhalt wird durch den
Begriff der Konsistenz des Näherungsverfahrens mit dem ursprünglichen Problem präzi-
siert. Bei der Konvergenz eines Lösungsverfahrens geht es um die Konvergenz der mit
ihm für verschiedene Schrittweiten erzeugten Näherungslösungen gegen die exakte Lö-
sung der Anfangswertaufgabe für h—>0. Der Begriff der Stabilität (des Verfahrens) erfaßt
den Einfluß der bei Anwendung des Lösungsverfahrens unvermeidlich auftretenden Run-
dungsfehler auf die Näherungslösung. Zwischen diesen Begriffen bestehen enge Bezie-
hungen, z.B. ist ein stabiles und konsistentes Verfahren auch konvergent.

Große Probleme bei der numerischen Behandlung bereiten Sogenannte steife Differen-
tialgleichungen. Sie sind dadurch charakterisiert, daß in der allgemeinen Lösung neben
langsam veränderlichen Anteilen auch schnell abklingende Anteile auftreten. Wir be-
trachten dazu folgendes

Beispiel 5.8: Die Anfangswertaufgabe

y’ = *10‘y +10‘:-2“ — e“, y(0) = y„‚ x e[0,1] (5.46)

besitzt die Lösung

y(x) = (yo -1)e"""‘ + e“. (5,47)

Die Anwendung des Streckenzugverfahrens von Euler-Cauchy führt nach (5.8) auf die Gleichung

y„„ = (1 — 10“h))’». + h(10‘e"‘~ ~ e"‘~), (5.48)

durch fortlaufendes Senken des Indexes um 1 folgen hieraus die Gleichungen

y„ =(1—10‘h)yn_,+ h(1o4e*9»-x — w» n), (5,49)

y,._, = (1 — l0‘h)y„„ + h(10‘e"‘~—2 — e”‘~ I), (5.50)

y, =(1f10‘h)y0+ h(10“e”‘°-e“°). (5.51)

Setzen wir in Gleichung (5.49) für y„„ die rechte Seite von Gleichung (5.50) ein, erhalten wir

y„ = (1 — 10"h)’y„. 2 + (1 — 104m h(10‘e"‘~' 2 — ew-z)
+ h(l0‘e"M-e
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Setzen wir diese Vorgehensweise fort, finden wir für y„ die Darstellung
n l

y„ :(1—10'h)"y„+ Z (1—10“h)"h(10“e"‘~+*- e"‘~ H), (5.52)
k=0

Die Lösung (5.47) verändert sich in einem kleinen Intervall [0, t] sehr schnell wie y = e"°"‘ und dann
im Nestintervall [1,1] langsam wie y=e"‘. (Das Intervall schneller Änderung nennt man auch
Grenzschicht.) In der Grenzschicht muß sicher mit kleiner Schrittweite h gerechnet werden, um die
schnelle Änderung der Lösung zu erfassen; aber es zeigt sich, daß dies auch außerhalb der Grenz-
schicht notwendig ist. Aus der Gleichung (5.52) ersieht man. dal3 aus Stabilitätsgründen

|1 — 10”h| él (5.53)

gewählt werden muß, sonst wächst rechts der erste Term mit wachsendem n über alle Grenzen. Aus
(5.53) folgt

h g 0,0002,

es sind also mindestens 5000 Schritte zur Erzeugung der Näherungslösung auf dem Intervall [0, 1]

erforderlich. Im Spezialfall yo = l fehlt auf der rechten Seite von (5.52) zwar der erste Term, trotzdem
kann h wegen des Terms (l — 10‘h)" unter dem Summenzeichen nicht größer gewählt werden.
Verwenden wir zur Lösung das implizite Euler-Cauchy-Verfahren (5.9), erhalten wir

y„„ = y„ + h(—10‘y,,.,+10‘e”‘~'l- e”‘~‘ I) (5.54)

oder nach y‚. +1 aufgelöst

y‚„‚ = (1 + 10‘h)"(y,, + h10‘e”‘~“ - he"‘"‘|). (5.55)

Die der Gleichung (5.52) entsprechende Darstellung lautet jetzt

y„ : (1 + 10‘h)"‘y0 + Z (1+10‘h)"‘h(10‘e"~*M- e”‘~*M), (5.56)
k=l

aus der Stabilitätsbedingung

1(1+ 10‘h)“|§ 1 (5,57)

erwachsen jetzt keine Beschränkungen für die Schrittweite,

Das in diesem Beispiel Erkannte läßt sich verallgemeinern. Bei steifen Differentialglei-
chungen sind implizite Lösungsverfahren den expliziten vorzuziehen,

Wir wollen nun noch etwas tiefer in die Eigenschaften der Lösungsverfahren eindrin-
gen. Den folgenden Untersuchungen legen wir — wie üblich — die Testaufgabe

dy _ _

dx - Äy, y(xo) —yo (5-58)

zugrunde, der Faktor ‚l darf dabei komplex sein:

Ä=a+ib. (5.59)

Die Testaufgabe hat die Lösung

y =yoe"‘‚ (5.60)

ausgehend von der Lösung kann man leicht zeigen, daß die Testaufgabe für a g 0 stabil
und für u > O instabil ist (im Falle a < 0 spricht man von asymptotischer Stabilität),

Wir wenden nun einige Näherungsverfahren auf die Testaufgabe an.

a) Streckenzugverfahren von Euler-Cauchy (5.8):

ym =y„ + hin = (1 + him. " (5.61)

S Oelschlägel, Methoden
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b) implizites Euler-Cauchy-Verfahren (5.9):

ym =y,.+ Mym.
5.62

y„„=(1—hA)-1y„‚ ( )

c) verbessertes Euler-Cauchy-Verfahren (5.10):

h
yn+1=yn +701». + /lym),

2 + Ah (563)
yn+l = Hy»,

d) Runge-Kutta-Verfahren (5.33):
Aus k‘{" = hAy,,,

2 Z

k?’ = h1 y„ + My" = hiya JL.2 2

,. _ My" I12/1’ nkg’ —h‚i(y„+ 2 + 4 )
_ hilly” h3A3yn
— h/1y,, + 2 + LT‚

Z 2 3 Jkp = “(h + My” ++ )
2 4

folgt

hz/l’ h’)? hü‘y,,-1—(1+h,l+T+ 6 + 24 )y,,, (5.64)

e) Extrapolationsverfahren von Adams (5.11):

hi
y,,41=y,, + -7-2F(1901y,, ~ 2774y,,_, + 2616y,,_2

-1274y,,,3+251y,,,..). (5.65)

Mathematisch gesehen, stellen die Gleichungen (5.61) bis (5.65) homogene lineare Diffe-
renzengleichungen dar, diese haben die allgemeine Gestalt

yn+l+a0yn+alyn-1+--'+ak-1yn—I¢+1=0 (556)

(homogene Differenzengleichung k-ter Ordnung). Macht man den Ansatz y,,+1= e"'”"
= (e’)"*‘ = 2"" (e’ = z), wird man zur Gleichung

2"“ + aoz" + 1112"" + + ak_,z””‘” = z"”‘*‘(z“+ 1102"" + + ak,1) = 0

geführt. Das Polynom

p(z>=z"+aoz""+..~+ak—1 (5.67)

heißt charakteristisches Polynom der Differenzengleichung (5.66). In der Stabilitätstheo»
rie wird gezeigt, daß ein Näherungsverfahren (bei Anwendung auf die Testaufgabe) stabil
ist, wenn die Nullstellen des charakteristischen Polynoms der zugehörigen Differential-
gleichung dem Betrage nach kleiner oder gleich 1 sind, sonst ist das Verfahren instabil.
Stellt man die stärkere Forderung, daß alle Nullstellen dem Betrage nach kleiner als 1

sein sollen, spricht man von asymptotischer Stabilität des Näherungsverfahrens. Die
Menge der Werte hi, für die die Differenzengleichung die Bedingung der asymptotischen
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Stabilität erfüllt, heißt Stabilitätsgebiet des Näherungsverfahrens. Da der Koeffizient ‚t
komplex sein kann, werden die Stabilitätsgebiete in der komplexen M-Ebene dargestellt.
Dabei ist nur die linke Halbebene interessant, weil in der rechten Halbebene a > 0 gilt
und somit dort die Testaufgabe instabil ist, d.h. nicht ohne weiteres numerisch behandel—
bar,

Für das Streckenzugverfahren von Euler-Cauchy (5.8) mit der Differenzengleichung
(5.61) fiihrt die Fordemng der asymptotischen Stabilität zur Abschätzung

|1 +h1|<1 (/{=a+ib) (5.68)

oder (ha +1)? + hzb’ <1,
das Stabilitätsgebiet ist in diesem Falle also das Innere des Einheitskreises mit dem Mit-
telpunkt ha = -1, hb = 0.

Für das implizite Euler-Cauchy-Verfahren (5.9) mit der Differenzengleichung (5.62)
fuhrt die Bedingung

|<1 — um < 1

zur Ungleichung

(ha-1)2+h2b1>1, (5.69)

das Stabilitätsgebiet ist das Äußere des Einheitskreises mit dem Mittelpunkt ha =1,
hb = 0,

In Bild 5.1 und Bild 5.2 sind die Stabilitätsgebiete bekannter Verfahren skizziert.

\ r‘¢293°.°3'3°3* ll"/‘
,.?o.o.o.o..o.o.<u| ‚.

Bild 5.1. Bild 5.2.
Stabiiitätsgebiete. Stabilitätsgebiet des impliziten Euler-
1. 4fach zurückgreifendes Cauchy-Verfahrens
explizites Adams-Verfahren,
2. Streckenzugverfahren,
3. Runge-Kutta-Verfahren

Natürlich sind möglichst große Stabilitätsgebiete in der linken Halbebene für die An-
wendung der Verfahren günstig. Anhand der Ausdehnung der Stabilitätsgebiete werden
die Näherungsverfahren auch klassifiziert. Umfaßt z.B. das Stabilitätsgebiet die gesamte
linke Halbebene (außer der imaginären Achse), heißt das Näherungsverfahren A-stabil.
Das implizite Euler-Cauchy-Verfahren ist A-stabil, es besitzt ein optimales Stabilitätsge
biet. Es gibt viele weitere spezielle Stabilitätsbegriffe.

5:
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a: Aufgabe 5.5: Berechnen Sie Näherungen für die Funktionswerte y(0, 1), y(0, 2), y(0, 3), y(0, 4) und
y(0, 5) der Lösungsfunktion des Problems

‚ 2
y =y—y—’§, y(o>=1.

Benutzen Sie dazu das Verfahren von Hamming mit Modifikator (5.31) und als Startrechnung das
Runge-Kutta-Verfahren (5.33)!

at Aufgabe 5.6: Klassifizieren Sie die folgenden Verfahren zur Lösung von Anfangswertaufgaben 1.0rd«
nung:
a) Verfahren von Fehlberg (4. Ordnung)

1 h
y„+ l = 7x9» + 9y‚. 1 ‘y,.~ z) + -17[6f(x,.+1,.vm)+18f(x,..y..)], (5.70)

b) Verfahren von Gill (4. Ordnung)

1 .„ /1 „ /1 „ „y„.„:?(k.‚ *+2<1—- 7)k‘Z’+2(1+ -2—)k§’-1-kfl)

mil k‘1"‘= hf(xm y„)‚
n h km

k‘2':hj‘(x,,+7,y,,+T' ‚ (5.71)

h l 1 „ 1 A

k§”’=hf<x.+7,yr<7*\l7)’<1’+<1—\l7>k§’),

Am _ 1 n) 1k1 —hf x,,+h,y,,- 7 kg+1+ 7 kg“.

=0: Aufgabe 5. 7; Ermitteln Sie das Stabilitätsgebiet fiir das verbesserte Euler-Cauchy-Verfahren (5.10).

5.2.2. Anfangswertaufgaben bei Systemen von Differentialgleichungen
erster Ordnung

Wir betrachten jetzt Probleme, deren mathematisches Modell die Form

yi =fi(x‚ yr, yz), y1(xo) = ym. (5.72)

y; = fz(X‚ yla Y2) a y2(Xo) : yoz .

hat. Die Dösungsfunktionen y, = y,(x) und y; = y‚(x) werden dabei für x ä x0 gesucht.
Die Lösungsfunktionen sollen wieder in Form einer Wertetabelle näherungsweise er-

mittelt werden, wobei die Argumentstellen, an denen Näherungen für y,(x) und yz(x) er-

mittelt werden, übereinstimmen sollen:

x x0 x, x2 x3

yl ym yu Y21 „V31 (5-73)

‚V2 „V02 ‚V12 „V22 Y32

Wir fiihren folgende Vektoren ein:

f) vr=( ‚ = I .

f2 y Y2)

Damit läßt sich (5.72) in der Vektorschreibweise angeben:

Y’ = f(x,y1,yz) = f(x‚ y), (5_74)

„ _ y
Y(Xo) — Yo “ (V32). (575)
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Die Abhängigkeit der Komponenten des Vektors f von y, und y; ist in (5.74) einfach da-
durch ausgedrückt worden, daß man f(x, yl, yz) = f(x, y) setzte.

. Zu berechnen sind Näherungen yn, yn, für y‚(x‚)‚ y‚(xz) und yu, yn, für y2(x1),
y2(x2), In der Vektorschreibweise heißt das, daß die

y„= Ü“) für n = 1,2, 3,
h2

zu ermitteln sind.
Mit Hilfe dieser Vektorschreibweise kann man alle Verfahren, die bisher für AWA bei

DGln 1. Ordnung angegeben wurden, auf AWA bei Systemen übertragen. Das sei zu-

nächst am Streckenzugverfahren von Euler—Cauchy (5.8) demonstriert:
Das Verfahren wird in Vektorschreibweise aufgeschrieben:

ym = y„ + hf(x„‚ n) (5.76)

Damit ist schon die Rechenvorschrift zur Berechnung der Vektoren y„ yz, gegeben.
Die Anwendung von (5.76) auf unser konkret gegebenes System (5.72) erhält man durch
komponentenweises Aufschreiben von (5.76):

.Vn+1_1 : )’n1 h fl(xruynl:yn2)) 577
<ym,2> (ynl)-+— <f2(x..,y..1,ynz) ‘ (' )

Weiter betrachten wir das Runge-Kutta-Verfahren (5.33):

ly„„ = y„ + ?(k‘,"’ + 2kg“ + 2kg") + kß”)

mit k?” = hf(x‚.‚ h),
kg" = hr(x„ + ä h, y„ + äkfi”), (5.78)

„ 1 1
kg > = hf(x„ + 7h, y„ + 5kg“),

k?’ = hf(x„ + h, y. + k§”)).

Die Hilfsgrößen k‘,"’‚ ...‚ kf,"’ sind jetzt ebenfalls Vektoren. Die Anwendung von (5.78) auf
das System (5.72) liefert die Formeln:

ymn : ym LK/’<31’>+2,(k§T)+2,<k§1’)+0.3?”
(yntlfl) <y,.2> 5 k)? k‘z”2’ k3’? k)?

k§",’ z h f1(x,.,yn1,ynz)>
k)? 2(35).’ ynls ynl) )

1 1 1 „

fi(x‚. + 7 h, ya; + 3 /<‘{i’> ynz + 7 H2’)

+

mil

k)?’ =„ (5.79)
kg’? 1 1 <n> 1 km

f2 Xn+'2‘h:yn1+?k11wJ’n2+7 i2

/.(x„ +§h,yn1+§k;:>,yn2+§k§";)

1 1
f2<Xn +§h,yn1+ gkazhynz +7142)

h( 1(Xn + h, yn1+ k§"1’.ynz ‘i’

fz(x‚. + h,y,.1+ k§”1’,ynz + kää’)

k S"?

k 22’
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Beispiel 5.9:

y1=f1(x‚y1‚yz)= x -y1+ 2y2,y1(0)=1,
y; =f2(x,y1,yz) = x + 4y1~y§,yz(0)— '1.

Es wird ein Schritt mit h = 0,1 durchgerechnet:

k‘1"1’= 0.1f1(0;1; -1)= -0‚3‚
k}? = 0,1fi(0; 1; -1) = 0,3,

k‘2",’ = 0,1f,(0,05; 0,85; ~0,85) = —0,25,

kg"; = 0,1f;(0,05; 0,85; —0,85) : 0,2728,

kg‘? = 0,1f;(0,05; 0,875; —0,8636) = ~0,2552,

kg‘? : O,1f,(0,05; 0,875; —0,8636) = 0,2804,

kf,’ = 0,1f1(0,1; 0,7448; —O,7196) = —0,2084,

kg‘? = 0,1f‚(0,1; 0,7448; —O,7196) = 0,2561,

yu :1+%[—0,3 - 0,5 - 0,5104 - 0,2084] = 0,7469,

yn 1 ~1+%[0,3 + 0,5456 + 0,5608 + 0,2561] : v0,7229.

Die Anwendung von Mehrschrittverfahren auf Systeme erfolgt analog; wir wollen dies an

dem Verfahren von Stetter (5.24) demonstrieren. Aus der Vektorschreibweise dieses Ver-
fahrens ergibt sich der folgende Formelsatz für das Problem (5.72):

Prediktor:

y(r10)+1.1) ___ _4 (£111) + 5 yn— 1,1) + 2h [2 <f1(xm „Van 5012))

(N91 1, 2 n2 n — 1,2 f2(Xm yrm yr12)

+ (.f1(xn — 1» yn — 1,1» yn —1,2))]

f2(Xn — 1, yn — 1.1, )’„— 1,2)

Korrektor:

Y§.D+1,1 _ yn—1,1 h f1(Xn+1»y(;1°3«1,1,y<;1o3- 1,2) f1(Xm )’n1,,Vn2)
(1) ‘ + _ (m (o) + 4
„+12 n—1,2 3 f2(Xn+1..Vn'+1,1».Vn+1,z) f2(Xmy;.1,,Vn2)

+ (f1(xn — i: yn — 1,1. yn A 1,z))]

/‘2(-xn -1‚ yn — 1,1: yn —1,2)

Beispiel 5.10: Wir berechnen mit diesem Verfahren unter Verwendung der Ergebnisse von Bei-
spiel 5.9 die Funktionswertnäherungen ‚v2, und yzz für y‚(x‚) bzw, y,(x2) mit x; = 0, 2.

y<,°,> = —4 < 0,7469 + 5- 1 + 0,2 [2f,(0,1; 0,7469; —0,7229) +f,(0; 1; -1)]
= 0,5753,

_y;°,1= —4(—0,7229) + 5(—1)+ 0,2 [2f2(0,1; 0,7469; —0,7229) +f2(0; 1; —1)]

= —0,4824,

0,1
y‘2’,’ = 1 + T[f,(0,2; 0,5753; —0,4824) + 4f,(0,1; 0,7469; —0,7229) +f,(0; 1; v1)]

: 0,5763,

y§‘2’ : —1 + 9§1—[f1(0,2; 0,5753; — 0,4824) + 4f,(0,1; 0,7469; ~ 0,7229) +f‚(0; 1; —1)]

: —0,4824.

Die gesuchten Näherungen lauten somit y,(x2) = 0,5763, yz(xz) z v0,4824.

Liegt ein System mit mehr als zwei DGln vor, so ist das lediglich beim Aufschreiben
der Komponenten der „Vektorvorschrift“ (z. B. (5.78) für das Runge-Kutta-Verfahren) zu
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berücksichtigen. Für den Anwender ist somit die Verwendung der angegebenen Verfahren
für Systeme mit beliebig vielen DGln ohne Schwierigkeiten möglich. Kompliziert wird
dagegen die Untersuchung derartiger Verfahren (für Systeme) auf Ordnung und Stabilität
sowie die Herleitung von Formeln zur Fehlerabschätzung und Korrektur. In der Regel
bleibt die Ordnung eines Verfahrens für eine AWA 1. Ordnung bei der Anwendung auf
Systeme erhalten.

5.2.3. Anfangswertaufgaben bei gewöhnlichen Differentialgleichungen
höherer Ordnung

Zur Lösung von AWA bei DGln höherer Ordnung gibt es sowohl Ein— als auch Mehr-
schrittverfahren, z. B. von Nyström und von Falkner (siehe z. B. in [1], [7]). Andererseits
kann man bekanntlich derartige AWA auf AWA bei einem System von DGln 1. Ordnung
zurückführen (siehe Band 7/1 dieses Lehrwerkes). Damit sind alle Verfahren der vorigen
Abschnitte anwendbar.

Beispiel 5.11: v" = 1 i xv’ e x21), v(0) : 1, 1/(0) : 2.

Mit u’ = u, ergibt sich die AWA bei einem System

u’ = u, 0(0) : 1,

u’=1*xu*x2v, u(0)=2.

5.2.4. Programmierung und Software

Programme zur Lösung von Anfangswertaufgaben, in denen nur die Rechenvorschrift
umgesetzt ist und die sonst keine Schrittweiten- oder Fehlerdiagnosen bzw. -mechanis-
men enthalten, sind wertlos! Man sollte sich also nicht von der scheinbaren Einfachheit
der angegebenen Algorithmen täuschen lassen: brauchbare Programme zur Lösung von

Anfangswertaufgaben enthalten weitaus mehr an Organisation, Fehlerdiagnose, Schritt-
weitensteuerung‚ Stabilitätssicherung usw. als an eigentlicher Rechnung. Deshalb sei vor
übertriebener Eigeninitiative gewarnt, zumal die vom Computer als „Ergebnis“ ausgege-
benen Zahlen sich nicht ohne weiteres auf ihre Richtigkeit prüfen lassen (bei Gleichungs-
systemen hatte man da wenigstens noch die Möglichkeit des Einsetzens in die Ausgangs-
aufgabe).

PP NUMATH-l bietet sechs international bewährte Software-Bausteine, wiederum in
Form von FORTRAN-Subroutinen [31, 3.6.1.7.], die im Betriebssystem OS/ES auf ESER-
Anlagen verfügbar sein können. Sollte doch die Notwendigkeit bestehen, selbst ein Pro-
gramm zur Lösung von Anfangswertaufgaben schreiben zu müssen, so muß sehr viel Sorg-
falt auf die Steuerung der Schrittweite gelegt werden, so wie es im Abschnitt 5.2.1.4.
angedeutet worden ist.

In Bild 5.3 wird der prinzipielle Rechnungsgang bei Umsetzung des einfachen Runge-
Kutta-Verfahrens mit selbsteinstellender Schrittweite durch einen Programmablaufplan
dargestellt.

5.3. Randwertaufgaben

5.3.1. Einführung

Ein mathematisches Modell heißt Randwertaufgabe, wenn es aus einer DGl n-ter Ord-
nung (oder einem System von n DGln LOrdnung)

F(x‚y‚y’‚ ...,y"") = 0 (5.80)
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E X,Y,>(MAX,H,ALFA

H:=ALFA3kH

YK1== H>*F(X,Y)

I YK2:= HI<F(X+H/2,Y+YK1/2)

| YK3'.= H¥F(X+H/2,Y+YK 2/2)

l ‘am: HaKF(X+H‚Y+YK3l

llK:=2¥ABS((YK3 —YK2)/(Y+<2—Ym»]

Bild 5.3. Runge-Kutta-Verfahren mit selbsteinstellender Schrittweite (0 < o: < 1)

und n Bedingungen der Form

V‚-(y(xi)‚y’(xi)‚ -.-‚y‘"“’(xi)‚y(xz)‚ ...,y‘”'”(x2), ...,y(x,..),
.V""”(Xm)) =0, J‘: 1, n, (5.81)

besteht.
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Die Bedingungen (5.81) sind Forderungen an die Lösungsfunktion sowie ihre Ableitun-
gen in m verschiedenen vorgegebenen Punkten x1, ...‚ xm. Die Lösungsfunktion ist in der
Regel im Intervall [x,, x,,,} zu ermitteln. Das Problem (5.80), (5.81) wird m-Punkt-RWA ge-
nannt; von besonderer Bedeutung fiir die Praxis sind Zweipunkt—R WA (m = 2), die wir im
folgenden betrachten, wobei der Zusatz „Zweipunkt“ weggelassen wird.

Eine lineare RWA besteht aus einer linearen DGl n—ter Ordnung

LU] = cn(x)y‘"’ + ck 1(x)y‘”"" + + c1(x)y’ + co(x)y = r(x) (5.82)

und n linearen Randbedingungen

n e 1

U,~[y] = 2 (or,-:J""(a) + I—‘7,xV""(b)) = V,» j = 1. n. (5.83)
k = O

Dabei sind r(x) und die c‚.(x) gegebene Funktionen und at,-k, /3,-,, und y, gegebene Konstan-
ten. L[y] heißt linearer Differentialoperator, und die U‚-[y] heißen lineare Randoperataren,
deren Eigenschaften wir als bekannt voraussetzen wollen. Die RWA

F(X‚y‚y’‚y”) =0‚ y(a) =y., ‘y(b) =yb (5.84)

ist die einfachste RWA, weil mindestens an zwei verschiedenen Stellen Bedingungen an
die Lösungsfunktion gestellt werden müssen (bei einer Bedingung erhält man eine AWA,
die demnach eine spezielle RWA ist), Hierbei ist die Lösung in dem Intervall [a, b] zu be-
rechnen. Wir wollen an dieser Aufgabe einige Verfahren demonstrieren, wobei die expli-
zite Form

y”=f(x‚y‚y’)‚ y(a)=y..‚ y(b)=yb (5.85)

verwendet wird.

5.3.2. Zurückführung auf Anfangswertaufgaben

Wir lösen die Differentialgleichung aus (5.85) mit der Anfangsbedingung y(a) = y„‚
y’(a) = y;_,, wobei yf,), willkürlich vorgegeben worden ist, mit einem in 5.2.3, angegebenen
Verfahren. Die Lösung wollen wir y,(x) nennen. Wenn y‚(b) =y„ gilt, haben wir die Lö-
sung des Problems (585) gefunden, dann ist y(x) = y,(x). Wenn die rechte Randbedin-
gung nicht erfiillt ist, wird nach bestimmten Strategien diejenige Anfangssteigung ge-
sucht, für die die rechte Randbedingung erfüllt wird. Dieses Vorgehen bezeichnet man
auch als „Einschießen“.

Bei linearen Problemen

Liyl = cz(x)y” + c1(x)y'+ co(x)y = r(x), (536)
y(a) =y.,, y(b) =yb

löst man die beiden AWA

I: L[y] = r(x). y(a) =y‚„ y’(a) =y.u.
11:1-[y]= r(x). y(a) =y,., y’(a) :yu.2>

mit beliebig vorgegebenen verschiedenen Anfangssteigungen y„_‚ und ya‘; und erhält dann,
wie in [30] hergeleitet wird, die Lösung der RWA aus

yr - yu(b) yi(b) - M;
y(X) = y:(X)+ y11(X)- (5.37)

Die Formel ist auch dann noch brauchbar, wenn für y, und y„ nur Näherungen vorlie-
gen.
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Beispiel 5.12: y" i y = 4x v x3, y(0) : 0, y(1) = 3.

Es werden die AWA
Iiy"-y=4x-X3. y(0)=0, y'(0)=0,

11:y"2v=4x- x3, y(0) =0‚ y’(0) = 3,

gelost. Man erhalt y,(1) = -(e‘ - e“) + 3, y,,(1)= —2— (e‘ e e”) + 3. Damit ergibt sich

l 2
y(X) = ?y1(X) + 3‘yn (X).

Die Funktionen y‚(x), yu (x) und y(x) sind in Bild 5.4 angegeben.

Y

, _

y‚m

y(x)

{ 
n n n n nn n

U W M 1in7 M» 17.5 0.5 9.7 M M 7.0 x

Bild 5.4. Schießmeihode zur Lösung von Randwertaufgaben durch Zurückfiihrung auf
Anfangswertaufgaben (zu Beispiel 5.12)

Bei nichtlinearen Randwertaufgaben muß die unbekannte Anfangsbedingung (bzw, der
Satz unbekannter Anfangsbedingungen bei Systemen erster Ordnung) iterativ ermittelt
werden. Jeder Iterationsschritt erfordert dabei die Lösung einer Anfangswertaufgabe
und — bei Systemen — die Lösung eines nichtlinearen Gleichungssystems. Außerordent-
lich erfolgreich wurde in jüngster Zeit mit der Mehrfachschießmeünode (Mehrzielmethode,
multiple shooting) gearbeitet, bei der die Anfangswertaufgaben jeweils nur über einem
Teil des Lösungsintervalls gelöst werden. Obwohl sich dadurch gegenüber dem Einfache
schießen die Zahl der zu bestimmenden Anfangswerte vervielfacht, steigt der Rechenauf-
wand durch Ausnutzung spezieller Strukturen nicht in gleichem Maße an. Außerdem ge—

lingt es mit diesem Vorgehen, die Unwägbarkeiten des Lösungsverhaltens nichtlinearer
Randwertaufgaben numerisch zu beherrschen. Man vgl. hierzu [26].

5.3.3. Differenzenverfahren

Wir gehen wiederum vom Problem (5.85) aus und setzen uns das Ziel, eine Werteta-
belle

x ]|xo=a 1x, ix; |x3 | |x„_, |x„=b
y H ya lyn lyz I)’: | |y„—n

(5.88)
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der Näherungswerte der Lösungsfunktion zu ermitteln, wobei die Argumentwerte gleich-
b — a

abständig sein sollen, cl. h. xk = a + k - h, k = 0, ..., n, mit h = . Da die Lösung der

DGl an den Stellen xk(k = 1, ‘.., n - 1) interessiert, schreibt man sich die DGl aus (5.85)
an diesen Stellen auf

y”(xi) =f(xi‚ .V(X1)» .Vl(X1));

y"(xz) =f(x2, y(x2), y’(x2>). (5-89)

y”(xn—l) =f(Xn—1:y(Xn—1)ayI(XnA1))~

Dieses System besteht aus n — 1 Gleichungen für die 3(n -1) „Unbekannten“
y(x1), y(xn—1), .v’(x;), y’(x..—x), y”(xx), y"(x,.—z)«

Das Prinzip des Dzjferenzenverfahrens besteht darin, in (5.89) und den Randbedingun alle
Diff» m’ '‚ ' durch Dijm 1 ' zu or N an Die einfachsten Ersetzungsfor-
meln sind

y/(xk) =%(yk+1” m,

y'<xt> v}; m — n- o, (5.90)

y'(xk) = ä (yhl —yk_ 1) („zentrale Differenz“),

y”(xk) = % (ym - 2yk + ym).

Derartige Formeln erhält man unter Verwendung der Taylorschen Formel. Wir schreiben
Gleichheitszeichen und beachten, daß die rechts auftretenden Zahlen yk _ „ yk, y,, .. 1 Nähe-
rungen für y(xk_,), y(x,,) bzw. y(x‚„1) sind.

Setzt man Formeln aus (5.90) in (5.89) ein, so erhält man ein i.allg‚ nichtlineares Glei-
chungssystem, das nur noch die gesuchten Funktionswertnäherungen enthält.

Beispiel 5.13: Bei der Knickbiegung eines Stabes unter Einfluß einer axial angreifenden Druckkraft
und einer verteilten Querbelastung erhält man die Verteilung der Biegemomente y(x) als Lösung der
(vereinfachten) DGl

y”+(1+x’)y= s1 i")

mit den Randbedingungen

y(-1) =y(1) I 0.

Zur Anwendung des obigen Verfahrens geben wir uns n =6 vor und erhalten damit h=%,
2 1 1 2 , _ _ _

x, = —?, x, = ~?, x; = 0, x4 : ?, x5 = ?. Wir schreiben die DGl an diesen Stellen auf:

y”(xi)+ (1 + Xi)y(Xk)= “I, k= 1, 5.

Danach werden die Ableitungswerte (hier sind es die Zahlen y”(xk), k 2 i, „., 5) mittels einer For-
mel aus (5.90) ersetzt:

1F(ym-2yk+y:.—x)+(1+xi)yk:~1. k=1.~.,5.
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. . . l .

Diese Gleichu wird umgestellt und h = — eingesetzt.
3

9.Vk+1—(18—(1+X§))yk+9.vk—;=-1. k=1.~- Ü”)

Nun wird das System ausführlich aufgeschrieben:

k=l (xk:"%>: 9y;-(18-<1+%))y,+9y0=-1,

8 ) 1k=2 (xk=—%): 9y;—(1—(1 ;)yz+9y.=—,
k=3 (xk=0): 9y,-(18-(1+0))y3 +9y1='-1,

l 1
k=4 (xk=?): 9y;-(18-(14-3)>y,,+9y3=‘1,

<xk=%): 9y5-<18-<1+%))y5+9y4=-1.

Das Gleichungssystem besteht aus 5 Gleichungen für 7 Unbekannte yo,
wertproblem zu lösen haben, auch die Randhr--‘-I
fern im vorliegenden Fall gerade die fehlenden Gleichungen

.+._

k=5

..., ys. Da wir aber ein Rand-
ben" ‘ ' “im werden. Diese lie-

y(-1)=yo= 0, y(1) =ys = 0.

Damit haben wir das Randwertproblem auf die Lösung eines Gleichungssystems zurückgeführt; die
Lösung lautet ‚

y1= 0,5172, y, = 0,8404, y, = 0,9486, ‚v4 = 0,8404, y5 = 0,5172.

(Man kann die Rechnung durch Ausnutzen der Symmetrie des Problems zu x = 0 vereinfachen.)

Aufgabe 5.8: Ermitteln Sie eine Wertetabelle der Lösungsfunktion von y” + xzy = -2,
y(-1)=y(1)= 0 mit h = 0,5.

Zur Anwendung des Differenzverfahrens auf RWA bei DGln höherer Ordnung benutzt
man die Differenzenfonneln

‚u 1
Y (Xk)=‘2’h’3‘(}’k+2‘2yk+t+2yk—1+)'k—2)‚ (591)

1
.Vm(Xk) ‘F („Via ’ 4yk+1+ 6yk’ 4.Vk-1”.Vk—z)

und geht wie oben beschrieben vor.
Zur Genauigkeitssteigerung beim Differenzenverfahren benutzt man genauere Diffe-

renzenforrneln als (5.90) und (5.91). Eine verbesserte Differenzenformel fiir die 1.Ablei-
tung ist z. B.

, 1
y(xk)=fi(yk—2_8yk-l+8yk+1_yk+2)- (5-92)

Die Herleitung solcher Formeln erfolgt unter Verwendung der Taylorentwicklung (s. [29],

[7]).

5.3.4. Ansatzmethoden

Während mit dem Diflerenzenverfahren nur eine Wertetabelle der Lösungsfunktion
der RWA berechnet wird, erhält man mit den Ansatzmethoden eine Näherungslösung in
formelmäßiger Darstellung. Dazu gibt man sich einen Ansatz

y'(x) = g(x‚ a1, am), (5-93)
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meist von der Form

y'<x> = webe) + Z ak¢71«(X)
k=l

mit linear unabhängigen Funktionen rp1(x), ..., ¢2,,,(x), vor und bestimmt dann die Para-
meter al, ..., a„‚ so, daß die Randbedingungen exakt und die DGl der RWA möglichst gut
erfüllt werden. Es wird fir die DGl (5.85) z. B. gefordert:

b

M1011, am) = JWOC) [)7"(X) —f(x, fix), )7'(x))]2dX—* min! (5.94)

oder a

M2011, .--, am) = i!) W(Xk) [}7"(Xr) — f(xk, }7(Xk), )7'(Xk))]Z —> min? (5,95)

oder

Ms(fl1‚ ---‚ Hm) = aI:1:l§blJ7"(X) *f(X, fix), )7'(X))|—*miI1! (5-95)

Dabei sind a und b die Grenzen des Intervalls, in dem die Lösung der RWA berechnet
werden soll, und x0, ..., x„ vorgegebene Stellen aus diesem Intervall. Die Funktion w(x)
(w(x) > 0 für 0 g x g b) heißt Gewichlsfunktion; durch geeignete Vorgabe von w(x) kann
man erreichen, daß die sogenannte „Defektfunktion“ i” — f(x, y, f’) unterschiedlich stark
bewertet wird.

M1 und M, entsprechen der stetigen bzw. diskreten mittleren Approximation, d.h. der
Fehlerquadratmethode, M3 entspricht der Tschebyscheff-Approximation.

Wir wollen nun voraussetzen, daß die Funktion }7(x) = g(x, a1, ..., a,,,) unabhängig von

der Wahl der Parameter a], ..., am immer die Randbedingungen erfülle, so daß diese Para-
meter nur noch so gewählt werden müssen, daß die DGl nach einer der obigen Forderun-
gen (5.94) bis (5.96) möglichst gut erfüllt wird. Wir überlegen uns, wie wir diejenigen
Werte von a1, ..., am ermitteln können, für die M1(a,, ..., am) minimal wird. Nach der
klassischen Extremwertermittlung ergibt sich das Gleichungssystem (wir wollen w(x) = 1

setzen) fiir a1, ..., am:
b

SM‘ = 2 J [y"'(x) -f(x. y"<x>, y"<x>>1 [1w"<x>—f<x,y<x>,y'<x>>1]dx = o.Ba, a Ba,

(5.97)
b

aM. . -‚ a g - -‚ d _0
aam =2 [y (x)'f(x.y(x),y(x))] Tmly (x) f<x‚y(x)‚y(x))l x- -

a

Dieses System ist ein Spezialfall von

b

iWKx) -f(x‚ fix), y"(x))l w(x) dx = 0,
a

(5.98)
b

JDWX) -f(x‚ fix), i'(X))] v„.(x) dX = 0-
a
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Alle Ansatzmethoden zur Lösung der RWA (5.85), bei denen zur Vereinfachung der
Rechnung die Parameter a1, a„‚ aus einem Gleichungssystem der Form (5.98) mit or-

thogonalen Funktionen v,(x), ..., v,,,(x) bestimmt werden, heißen Verfahren nach dem
Prinzip der Fehlerorlhogonalität.

Wir wollen uns im folgenden mit dem Spezialfall „Lineare Randwertaufgaben und li-
neare Ansätze“ ausführlicher beschäftigen. Man benutzt zur Lösung von (5.82), (5.83) li-
neare Ansätze:

y‘<x> = a»o<x> + kZ amor). (5.99)
=r

wobei

vf’ k=0‚ ,

u,m1={g k=1_Wm’ ;=1,...,n, (5.100)

gelte (d.h., (po erfüllt die RB, und alle anderen (pk verschwinden an dem Rand). Somit er-
füllt i für alle a1, ..., am die Randbedingungen.

Zur Bestimmung der Parameter a], ...‚ a„‚ wollen wir M, mit w(x) = 1 verwenden: Es
gilt

LU] = L[lPo] + aiLlwi] + + amLlazml

und (5.101)

3L[y']
an,‘ =L[q)k], k=1,,..,m.

Die Defektfunktion lautet jetzt L[fl — r(x), und unter Beachtung von (5,101) erhält man

durch Einsetzen dieser Defektfunktion anstelle von j”—f(x‚ )7, i’) in (5.97) das Glei-
chungssystem

D

[um — r(x)1 aiak [LU] — r(x)1dx = 0, k = 1. m. (5.102)

woraus folgt:

b

JILWJ-r(x)]L[<m]dx=0, k=1, (5-103)

und damit erhält man nach einigen Umstellungen

b b

iwJL[%lL[<IIt]dX=[(r(X)—Llmo])Ll<IJk]dX‚ k=1‚ (5-104)
j=l

a 11

An (5.104) erkennt man wieder das Prinzip der Fehlerorthogonalität (v‚.(x) = L[q1k]).
Ein weiteres nach diesem Prinzip arbeitendes Verfahren für lineare RWA ist die Me-

thode von Galerkin. Hierbei wird in (5.103) anstelle von L[q7k] nur (pk geschrieben, d.h. es

gilt W0‘) = <zIk(x):

b

[[L[}7]-r(x)](pk(x)dx=()‚ k=1,...,m. (5.105)
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Durch Anwendung von (5.101) ergeben sich die Galerkin-Gleichungen

b b

i ‘fill-[¢7j] <m(x)dx=J(r(x) - L[¢1o])a7k(x)dx, k= 1. m. (5.106)
a a

Zur Demonstration beider Methoden betrachten wir das folgende Beispiel:

sin x _

sin 1
Beispiel 5.14: y" + y= —x‚ y(0) =y(1) = 0 (exakte Lösung: y = x). Man liest ab:

Lly] = y" +y‚ r(x) = ‘X.

Wir verwenden den Ansatz aus [7]:

J70‘): 01(X“X2) + az(X’ X3).

der stets die Randbedingungen erfüllt. Man liest wiederum ab: zp„(x) = 0, w,(x) = x — x’,
wz(x) = x - x’. Wegen Llw] = 0. L[<1n]= w? + an = -2 + x e x’, Llwzl = W2’ + w: = -6x + x - x’
ergibt sich aus der Fehlerquadratmethode (5.104) das Gleichungssystem

1 l

«JEZ + xvx1)(—2 + xv x2)dx+ z11I(—6x+ x - X3) (-2 + x—x7)dx
o n

l

= J‘(‘X) (-2 + x - x’)dx,
o

l l

u]J(-2 + x - x’) (-6x+ x-x3)dx+ a1I(—6x+ x’ x’) (~6x+ x - x3)dx
n n

l

= J’(-x) (-6x + x - x3)dx
0

mit :11: 0,0181, a; = 0,1695.
Aus den Galerkin-Gleichungen (5.106) folgt

l l

a1[(—2 + x— X’) (x - x’)dx+ a‚J.(-6x+ x-X3) (x— xZ)dx
o u

l

=I('x) (x-x1)dx.

l D Z

a,_[(~2 +xix7)(;c—x’)dx+a2f(~6x+x-x3)(x-x3)dx
0 0

l

= I (~x) (x - x3)dx
0

mit a, = 0,0227 und a, = 0,1701.
Die Berechnung der bestimmten Integrale kann elementar erfolgen.

Eine Vereinfachung der Rechnung erhält man, wenn man die Interpolationsforderung
auf die Defektfunktion anwendet, d. h. wenn man fordert, daß die Defektfunktion
LL17] — r(x) an m nicht notwendig äquidistant vorgegebenen Stellen x„ ...‚ x„‚ verschwin-
den soll:

L[}7(x„)]-r(x„)=0, k=l‚„.,m. (5.107)

Man nennt ein auf (5.107) basierendes Verfahren auch Kollokationsverfahren.
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Beirpiel 5.15: Wir behandeln das Problem aus dem Beispiel 5.14 mit dem dort gegebenen Ansatz. Mit
1 2 ‘

X: = j und X2 = 7 erhalten Wir Wegen L[,\7(Xk)l = t11L[U71(Xk)]+ a2L[W2(xk)] (k = 1. 2)

1 17 1 l
“*(’“T(?))*"2(‘°'? r

2 2 2 2 2a,(—2+T—<?))+a,<*-6-3+?

mit der Lösung a1: 0,0216, a2 = 0,1731.

Das Kollokationsverfahren liefert bei geeigneter Wahl der Kollokationsstellen ausge-
zeichnete Näherungen für die Lösung des Problems. Von der Güte dieser Aussagen kann
man sich dabei eine Vorstellung machen, indem man die Defektfunktion aufzeichnet.
Genauere Fehlerabschätzungen lassen sich unter Zuhilfenahme theoretischer Untersu-
chungen realisieren.

5.3.5. Eigenwertaufgaben

Eigenwertaufgaben sind homogene RWA mit einem Parameter (siehe Band 7/2, Ab-
schnitt 6.). Die Lösung von Eigenwertaufgaben, d. h. die Ermittlung der Eigenwerte und
Eigenfunktionen, ist mit allen Verfahren zur Lösung von RWA möglich.

Beispiel 5.16: y" + ,1(1+ x1)y = 0, y(0) = y(1) = 0.
Die Anwendung des Differenzenverfahrens mit h = 1/3 liefert das Gleichungssystem

-(18-1T()}.>y1+9y1=0,

139y,-<18-T).)y2=0

fiir die Näherungen y, und y, (f.iry(1/3) bzw. y(2/3)).
Die Ermittlung der ‚i-Werte, für die das Gleichungssystem nichttrivial lösbar ist, ist ein Matrizen-Ei-
genwervProblem (siehe Abschnitt 2.5.).

Verwendet man Ansatzmethoden zur Lösung von Eigenwertaufgaben, so fuhrt man da-
bei das Problem ebenfalls auf ein Matrizen-Eigenwert<Problem zurück.

Da die Zurückführung des Problems auf Matrizen-Eigenwertberechnung hinsichtlich
der Genauigkeit der erhaltenen Eigenwerte sowie der Fehlerabschätzung einige Wünsche
offenläßt, wurden Verfahren entwickelt, die Eigenwertnäherungen direkt berechnen und
eine zufriedenstellende Fehleraussage liefern, Eine ausführliche Monografie dieser Ver—

fahren liegt mit [8] vor, woraufwir den Leser zum weiteren Studium verweisen müssen.

5.3.6. Ritz-Verfahren
Dieses Verfahren zur Lösung von RWA und EWA nimmt wegen seiner theoretischen

Grundlagen eine Sonderstellung ein, Die Grundaufgabe der Variationsrechnung, eine
Funktion y zu ermitteln, fiir die ein Integral, z.B.

b

JF(x‚y‚y')dx= [F[y]dx, (5.108)

unter gewissen Bedingungen minimiert wird, fuhrt (siehe [7]) auf die notwendige Bedin-
gung fur die Lösungsfunktion

ML} _ L 3FU1 = 0
8y dx Öy’ ’

(5.109)
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die man als Eulersche DGI bezeichnet, sowie auf gewisse Randbedingungen. Bei der An-
wendung des Ritz-Verfahrens auf RWA geht man umgekehrt vor: Man sucht zu einem
vorliegenden Randwertproblem ein Variationsproblem, das die gegebene DGl als Euler-
sche DGl besitzt. Dann versucht man, das entstandene Variationsproblem näherungs-
weise zu lösen.

Beispiel 5,17: Aus einer physikalischen Problemstellung (Kippen eines Trägers) folgt die Eigenwert-
aufgabe

y" + lX’y = 0. y’(0) = y(1) : 0.

Das zugehörige Variationsproblem lautet
l

1 1 , .öH?Ax7y2—?y7]dx:min!

Mit dem Ansatz i = a,(1 - x7) + a‚(1 - x‘) geht das Variationsproblem in eine Aufgabe der Mini-
mierung einer Funktion zweier Veränderlicher über:

l

M4(u1, (11) = I 1x577 -%}7'1]dx : min!,
o

und man erhält das Gleichungssystem

BM 4 8 8 32
‘ =(——+:}.) a,+<+——+—3-T5-A) a1=0,

Ba; 3 105 5

aM._ _§ 32 _1_5 32 :

au, ‘( 5+315’1)“‘+( 7 +2311)“ Ü’

woraus 1,=16,28, /12 2127.7 folgt,

An diesem Beispiel erkennt man die grundlegende Problematik der genäherten Be-
handlung von EWA bei DG1n: Das Problem besitzt abzählbar unendlich viele Lösungen,
das Näherungsverfahren liefert nur endlich viele Näherungen.

Das Ritz-Verfahren ist somit eine weitere Ansatzmethode. Das Aufsuchen des Varia-
tionsproblems zu einer gegebenen RWA erfordert Erfahrung; für die wichtigsten in der
Technik auftretenden RWA sind die zugehörigen Variationsprobleme in [7] angegeben.
Wird das Ritz-Verfahren auf EWA angewandt, so liefern die erhaltenen Näherungen bei
positiv definiten Problemen obere Schranken für die Eigenwerte.

5.3.7. Programmierung und Software

Das numerische Vorgehen bei der Lösung von Randwertaufgaben erfordert stets die Lö-
sung von diversen Hilfsproblemen, insbesondere die Lösung von Gleichungssystemen.
Programme zur Lösung von Randwertaufgaben bestehen demnach aus vielen Einze1bau-
steinen‚ wobei ein hoher Organisationsaufwand zur geschickten Übergabe der Daten von

Programmeinheit zu Programmeinheit nötig ist.
Fragen der Fehlersteuerung, die in den vorangegangenen Ausführungen aus Platzgrün-

den nicht behandelt werden konnten, fuhren zur weiteren Erhöhung der Komplexität der
Programme. Aus all dem folgt, daß der numerisch noch wenig Erfahrene viel Zeit und
Sorgfalt investieren müßte, wollte er selbst einen brauchbaren Randwert-Solver entwik-
keln.

Für Randwertaufgaben bei Systemen von Differentialgleichungen erster Ordnung hält
PP NUMATH-l zwei Softwarebausteine bereit. Es sei aber nicht verschwiegen, dal3 zur

6 Oelschlägel, Methoden
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Nutzung dieser Subroutinen wesentlich umfassendere Kenntnisse der Numerik von RWA
erforderlich sind, als sie hier vermittelt werdenkonnten. Dazu enthält [31] in 3.6.2.7. ent-
sprechende Literaturhinweise. Erwähnt werden soll hier aber auch [10]. Dieses Buch ent-
hält den Quelltext eines FORTRAN-Programms zur Lösung von RWA nach dem Mehr-
fachschießverfahren einschließlich einer sehr ausführlichen Beschreibung.



6. Numerische Behandlung partieller
Differentialgleichungen

6.1. Einführung

In den folgenden Abschnitten legen wir zwei Methoden zur numerischen Lösung par-
tieller DGln jeweils an einem Beispiel zur Information kurz dar.

Der Leser wird bereits an diesen Beispielen eine Vorstellung davon erhalten, welch gro-
ßer Aufwand zur numerischen Lösung partieller DGln notwendig ist.

Die Theorie partieller DGln beherrscht gegenwärtig erst eine gewisse Anzahl typischer
Fragestellungen hinsichtlich Existenz, Eindeutigkeit der Lösung und Konvergenz der An-
näherung durch bestimmte Näherungsfolgen.

Wegen der Kompliziertheit der Problematik sind bei praktischen Problemstellungen —

soweit möglich — theoretische Voruntersuchungen durchzuführen; die erhaltenen nume-

rischen Resultate sind einer kritischen Wertung zu unterziehen.

6.2. Differenzenverfahren

Wir betrachten ein mathematisches Modell, das aus einer partiellen DG1 für eine Funk-
tion zweier Veränderlicher

Fx 149123114 özu 6214 =0
’y’ ’ ax’ 3y’ 3x7 ’ Sxay‘ By‘ ’

sowie aus Bedingungen an die Lösungsfunktion besteht. Für die Lösungsfunktion u(x‚ y),
die (6.1) und den gegebenen Bedingungen genügt, werden Näherungswerte in Form einer
Wertetafel ermittelt:

(6.1)

(6.2)

Dazu müssen die Zahlen x„, x„, yo, yl, vorgegeben sein. Durch die vorliegenden
Bedingungen sind dann auch bereits einige der Funktionswerte bekannt: Liefern die Be-
dingungen die Funktionswerte um, um, ...‚ um, d.h. die oberste Zeile von (6.2), so heißen
sie Anfangsbedingungen. Folgen aus den zur behandelten Problemstellung gehörenden
Bedingungen sowohl die in der ersten Zeile als auch die in der ersten und letzten Spalte
von (6.2) stehenden Werte, so spricht man von Anfangsrandbedingungen. Liefern die vor-
liegenden Bedingungen darüber hinaus noch zu einem festen Index m die Werte u„‚„,
u„„‚ ...‚ u„„‚ (d. h. die m—te Zeile), so liegen Randbedingungen vor. Bei Randwertproble-
men wird die Lösung dann nur im Intervall x0 g x g x„, yo gy §y,,, gesucht (ein Rand»
wertproblem ergibt sich z. B. bei der Berechnung der Durchbiegung einer gespannten
Platte), Nachdem die Argumentstellen x,- und y,- vorgegeben und die aus den Bedingungen
folgenden Funktionswerte festgestellt sind, ergibt sich die Aufgabe, die Näherungen u„ fiir
die restlichen Funktionswerte u(x„ yj) zu ermitteln. Dazu ist das Differenzenverfahren
universell anwendbar.

Die Argumentstellen werden gleichabständig vorgegeben: x„- = x0 + ih (i = 0, n) und
y,- = yo +jk (j = 0, 1, 2, ...). wobei h * k sein kann. Das Prinzip des Differenzenverfahrens
besteht wiederum in der Ersetzung der Differentialquotienten durch Differenzenquotien-

6.
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ten (DQ). Die einfachsten Differenzenformeln lauten:

%(u„1_‚- — u,,-), „vorderer DQ“

Lipid = ä (Il,+1.i ‘ u„1„-), „zentraler DQ“ (6.3)

-:'(u,-3 — u,-_ U), „hinterer DQ“

1? (111,41 ~ u,-,~), „vorderer DQ“

E?= 31]; (141141 — n11- 1), „zentraler DQ“ (6.4)

ä; (a1, — u1‚-_1)‚ „hinterer DQ“

=%2'(u1-,1_j*2u1j+u1_1‚j)‚ (6.5)

=fi(U,+1,j+1 ‘ ui+1,j—l ‘ ui—1,J+1+ “i—1,,‘—1), (66)

=%(u1‚j11—2u„+u1‚_1). (6.7)

Wir schreiben Gleichheitszeichen und beachten, daß analog 5.3.3. die rechts auftretenden
Zahlen Näherungswerte sind.

. . . . „ . 82a au . .

Beuplel 6.1: Gesucht ist die Losung der pamellen DGl 5}; - e—y = O, die den Bedingungen

u(0‚ y) : u(1‚y) : 0, u(x, 0) : 4x(1 v x) genügt. Die Lösung sei fiiry ä 0 gesucht. Man liest ab, daß
1 1 .

0 g x g 1 gill. Nach Vorgabe von h = — und k = — ergibt sich das folgende Schema:
4 32

Xg=0 x1 =0,25 x2 =0,5 x3=0‚75 x4:1

yo=0 um=0 um=0,75 u2o=1 u311=0,75 u„‚=0
y1= 0,03125 um = O u11= 0,5 M21: 0,75 M31: 0,5 M“ : 0

y; = 0,0625 um = 0 uu = 0,375 M22 : 0,5 a3; = 0,375 u“ = 0
y; = 0,09375 um = 0 u13 = 0,25 uz, = 0,375 H33 = 0,25 11.3 = 0

y4=0,l25 1104:0 u„=0‚1875 1424:0125 u3..=0,1875 u...=0

Bedingungen erhält man:JAus den vorliege

u(0,y) = 0 liefert um = um = um = = 0,
u(1‚y)= 0 liefert um = ll“ = u„ = = 0,

u(x, 0) = 4x(1- x) liefert 1419 = 0,75, um =1, M30 = 0,75.

Es liegt somit eine Anfangsrandwertaufgabe vor.

Die Differenzengleichung lautet LB.

1 1?(lli+1,,'2".j+"i—x,j)‘?('4;.,~1’"y):0: (6.8)

1
und wegen k = 7 h’ erhält man dann

"i+i‚i+"i—i1j’2“ii’vi=Ü. (69)
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Die Gleichung (6.9) läßt sich nach ul“j4.1 umstellen, und damit hat man die Formel

luLj#I:7(ui‘l,j+ui'l,j) (5-10)

zur schrittweisen Berechnung der Funktionswerte einer Zeile aus den Funktionswerten der vorigen
Zeile gefunden. Die Ergebnisse sind oben bereits eingetragen.

Von besonderer Bedeutung bei der Anwendung des Differenzenverfahrens auf partielle
DGln mit Bedingungen ist die Wahl der Stellen (x‚-, y,-), an denen der Funktionswert der
Lösungsfunktion ermittelt werden soll. Sie liegen aufeinem Teilbereich der x, y-Ebene, des-
sen Form durch die jeweiligen Bedingungen bestimmt ist (z.B. Halbstreifen bei Anfangs-
RWA, Rechteck bei RWA). Die bisher verwendeten Stellen waren gerade die
Gitterpunkte eines Rechteckgitters auf diesem Teilbereich. Es zeigte sich im Beispiel 6.1,
daß dort die Wahl des Rechteckgitters günstig war, denn dadurch lagen viele Gitterpunkte
auf dem Rand, und somit brauchte deren Funktionswert nicht berechnet zu werden.

Ergibt sich jedoch z.B. ein Kreis als Bereich, in dem die Lösungsfunktion gesucht ist,
so ist die Verwendung des Rechteckgitters offenbar nicht mehr sinnvoll. In diesem Fall
empfiehlt sich die Wahl einesGitters, das durch konzentrische Kreise und Radien gebil-
det wird. Dann müssen andere Differenzenformeln benutzt werden.

Einen Überblick über die gebräuchlichsten Gitter erhält man z. B. in [20] und [7]. Für
ein tieferes Eindringen in die Differenzenverfahren empfehlen wir [22].

Abschließend wird an der Aufgabe aus Beispiel 6.1 eine einfache Stabilitätsüberprü-
fung bei Anfangs—RWA vorgeführt.

Beispiel 6.2: Wir wollen untersuchen, ob das Differenzenverfahren (6.10) stabil ist.
Unter der Annahme, daß an einer Stelle in der Rechnung, etwa bei (x,, yj), der Fehler e vorliegt,

stellen wir nach (6.10) den Einfluß dieses Fehlers an den übrigen Gitterpunkten fest und erhalten so

das folgende, leicht verständliche e-Schema:

Xi—z X1-1 X: Xi+l XM2

y,- 0 0 5 0 0
y‚-„ 0 0,55 0 0,55 0

y‚v„ 0,255 0 0,55 0 0,255
„,3 0 0,3755 0 0,3755 0

y‚»„ 0,258 0 0,3759 0 0,255

Wir erkennen, daß der Einfluß des Fehlers abnimmt, das Verfahren ist somit stabil.
Nun wollen wir untersuchen, ob das Differenzenverfahren stabil bleibt, wenn wir anstelle des vor-

. . ‚ . . a .

deren Differenzenquotienten fur die Ersetzung der ersten Ableitung a—: den — genauere Werte lie-

fernden — zentralen Differenzenquotienten aus (6.4) benutzen. Man erhält dabei die Rechenvor-
schrift

u„„=u‚;‚.,+2u‚_„‚V4u„+2u„1J. (6.10’)

Nun stellen wir wieder das s-Schema auf:

Xwz Xi-i Xx Xni X.+2

y!‘ _‚ 0 0 0 0 0

y,- 0 0 e 0 0

y‚-„ 0 2e -45 2e 0

y,-+2 25 416$ 255 -165 26
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Wir sehen, dal3 durch die Verwendung des zentralen Differenzenquotienten das Verfahren instabil
geworden ist, eine Erscheinung, die nicht nur bei diesem Beispiel festzustellen ist.
Wir betrachten nun noch einmal das stabile Verfahren (6.10). Ungünstig dabei erscheint das Verhält-

1 ‚ . . . . .

nis k/h’ = 7, weil man schon bei geringer Schrittweite in x-Richtung mit sehr kleiner Schrittweite

in y-Richtung vorgehen muß.
Setzt man aber in (6.8) k : h’, so erhält man die Vorschrift

'4;/+1='l1«1,j’"ij+'1i—1,j (6-10”)

und das e-Schema:

X.'—2 Xi'—i Xi X.'+1 Xnz

y, 0 0 c O 0

_yj+l 0 s -e s 0
y/„Z e —2s 3s -2e e

y‚-„ -3s 6e -7e 6e ~35

Der Einfluß des Fehlers s vergrößert sich von Zeile zu Zeile. Selbst bei Durchführung der Rechnung
mit einer sehr großen Anzahl von Dezimalen werden die Fehler nach genügend vielen Schritten die
Funktionswerte völlig verfälschen. Dieses Verfahren ist also instabil. Setzen wir allgemein k = phi, so

‚ 1 . „ . .

kann man nachweisen (s. [7])‚ daß das Verfahren nur fur 0 < p g fl bei dem vui iegenden Beispiel

stabil ist.

Aufgabe 6.1: Untersuchen Sie mit Hilfe des e-Schemas, ob das Verfahren für die Anfangs-RWA aus

Beispiel 6.1 mit p =-ä— auch unter Verwendung des zentralen Diiferenzenquotienten stabil wird!

6.3. Ansatzmethoden

6.3.1. Galerkin-Verfahren

Randwertaufgaben bei partiellen DGln können in gleicher Weise wie RWA bei ge-
wöhnlichen DGln mittels eines Ansatzes

W(x‚y)=W(x‚y;ai‚ am) (6.11)

näherungsweise gelöst werden, wobei die Konstanten a„ ...‚ a„‚ so bestimmt werden, daß
die Randbedingungen exakt und die DGln möglichst gut erfüllt sind. Dazu können alle
Methoden des Abschnitts 5.3.4. verwendet werden. Die Anwendung der Galerkinschen
Gleichungen (5.92) soll im folgenden an einem Beispiel ausführlich demonstriert wer-
den.

Beispiel 6.3: Gesucht ist die Durchbiegung einer an den Längsseiten y = 0 und y = b fest eingespann-
ten und an den Querseiten x = O und x = a gelenkig und unverschieblich gelagerten Rechteckplatte
der Länge a und der Breite b unter einer Trapezlast,
Mathematisches Modell:

3‘w 8‘w 8°w n
DGI, AAwA§7+2a?W+W—(—:x+ m+n)[D

(u, b, n, m, D sind gegebene Konstanten).
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Randbedingungen:
2

1)fiir x=0 und x=a: w=0 und Tf+%=o,
a

2) für y=0 und y=b: w=0 und a—:=o.

Ansatz: w<x,y> = a1«m(x,y> + azvI2(x. y) mit

‚ n . n
q:1(x,y) = sxnjxsmzjy,

. Zn .

cp2(x, y) = smTxs1n2%y.

Dieser Ansatz erfiillt die Randbedingungen.

Zur Ermittlung von a, und a; wird die Methode von Galerkin auf partielle DGln übertragen: Die

Defektfunktion lautet jetzt AM + a—’i)x — " 2'" ‚ und damit erhält man aus (5.92) die Gleichun-

gen
11 b

_ +‘I!(AAwwLffix—%)tpk(x,y)dxdy=0‚ k=l‚2.

Da der Laplace-Differentialoperator A linear ist, d.h.

AAW = AA(l11€P1 ‘l’ 02012) = 411413071 “V ‘HAAW2,

erhält man die Galerkinschen Gleichungen in der Form
ab b a b

_[(AA¢n)w1dxdy+ azj J(AAwz)<v1dxdy=%J J (‘%x+ n + m) andxdy,
D Ü 0 0 I)

“I

m
jm

bb a u b

a, J(AAw,)¢1dxdy + azf J-(AAq:1)qz2dxdy :—;-J J (*%X+ n + m) qqdxdy.
n o o o n°'

—
—

:n

Vergleicht man mit (5.106), so erkennt man, daß der lineare Differentialoperator L[az] durch den li-
nearen Operator AA»? und die einfachen integrale durch Bereichsintegmle ersetzt wurden. Mit

. 1t _ n 8 4 1 rr 8 4AAqz1=1r‘s1n7x[s1nZ?y(7;+j+T>—cos’Ty(7+fl)],

. n . rr 16 16 8 n 8 16AA¢rz:7r451I127x|:S1n2Ty(7+ azbz +F>—cos2Ty(7+ 112,71)]

ergibt sich nach Einsetzen und Integration

80m + n) b‘
ü :‚

‘ D115[3(i)4»l—8(i>2+16]
Ll a

„ ___L_1 _ .

W)‘ + zeü dL1 (1

Die Beispiele 6.1 und 6.3 zeigten, daß zur Lösung partieller DGln mit Bedingungen die
Methoden aus Abschnitt 5.3. angewendet werden können. Wie bereits an diesen einfachen
Beispielen zu erkennen war, ist die numerische Behandlung kompliziert. Aus diesem
Grunde empfiehlt sich vor Beginn der numerischen Behandlung die theoretische Durch-



88 6. Numerische Behandlung partieller Differentialgleichungen

dringung der Aufgabenstellung, um das der jeweiligen Aufgabenstellung am besten ange-
paßte Verfahren zu finden. Nähere Ausführungen hierzu findet der Leser z. B. in [7], [20],
[24].

6.3.2. Finite-Elemente-Methode (FEM)

Die FEM ist ein modernes Näherungsverfahren zur Lösung vor allem von Randwertauf-
gaben bei partiellen Differentialgleichungen. Sie stellt eine Erweiterung der Spline-An-
satzmethode auf mehrdimensionale Gebiete dar. Dazu wird das Grundgebiet in elemen-
targeometrische finite Elemente, bei zweidimensionalen Aufgaben z.B. in Dreiecke, E1,
E2, ..., E,,, zerlegt. Auf jedem Element E, wird die Näherungslösung w des Problems als
Polynom ersten bis fünften Grades angesetzt, also bei zweidimensionalen Aufgaben z. B.
in der Form

w = c, + czx + cgy, (6.12)

w=c1+ c2x+c3y+c,,x2+ c5xy+ céyz. (6.13)

Die Approximationsfunktion (Näherungslösung) wird also elementweise bestimmt, wobei
auf stetigen Übergang an den Elementrändern geachtet wird. Auf jedem finiten Element
werden n Sogenannte Knotenpunkte P,, P2, ..., P,, festgelegt, wobei (im Normalfall) die
Anzahl der Knoten mit der Anzahl der Koeffizienten in der Approximationsfunktion
übereinstimmen muß. Danach werden die Koeffizienten durch die noch unbekannten
Funktionswerte der Approximationsfunktion in den Knoten ausgedrückt. Soll z.B. die ge-
suchte Lösung auf dem Element E, durch

w = c, + 02x + C3)’ + c,,x2 + csxy + cgy’ (6.14)

approximiert werden, so wählen wir 6 Knotenpunkte P‚(x„ ys), s = l, ..., 6, und bestim-
men die cj,j =1, ..., 6, so daß

W(Xs, yx) = 01+ CzXs + Cay: + 04X5 + 65X5)’: + Cay? (6-15)

für s = 1, 2, ...‚ 6 gilt. Wir erhalten

6

c,= Z am mit wtz=w<xi‚yi>‚ j= 1, (6.16)
k = 1

wobei die Koeffizienten ac,-k von den Koordinaten der Knoten abhängen:

am = “jk (xi, yi, X6: ys). (6-17)

Setzen wir die für die e, erhaltenen Ausdrücke in die Beziehung (6.14) ein, so finden wir
eine Darstellung

6

w = ‘(Z fiwk;
:1

die fk heißen Formfunktionen. Es gilt an den Knotenpunkten Px(x„ y‚)

1 m: k=s,
fk("=’y*)’io fiir k¢s.

Unter Verwendung von Variationsprinzipien (vgl. Ritz<Verfahren) oder des Galerkin-
Verfahrens (siehe Beispiel 6.3) wird die Differentialgleichung durch ein Integral über das
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Grundgebiet ersetzt. Das Integral wird in eine Summe von Integralen fiber die finiten Ele-
mente zerlegt und in jedes Integral fiir w die entsprechende Darstellung (6.18) eingesetzt.
Man erhält ein Gleichungssystem aus dem (nach Einarbeitung der zugehörigen Rand-
und/oder Anfangsbedingungen) die Näherungswene an den Knotenpunkten w, ermittelt
werden können. Bezüglich Einzelheiten müssen wir auf die Literatur verweisen (z. B.
[l3], [29]).



2.1:

2.2:

2.3:

2.4:

3.1:

3.2:

3.3:

5.1:

5.2:

5.3:

5.4:

5.5:

5.6:

5.7:

Lösungen der Aufgaben

u, = 25,79°, 062 = 34,49°.

x,” = x,” = 3,483; xf’ = xg” = 2,260.

x3” = 0,50017; x2“ = 0,999 86 (exakte Lösung u, = i; u, =1>.
2

i-l n

Xivfl) F ‘all? ;l'1.'kX7.v”) + kgflüikxi” ” fit»

i=1,2,..., n; v=0,1,2,...; a,,»*0.

x," = 0,4000, x?’ = 0,7744, x," = 0,9567,

xg” = —0,6800, x32’ = -0,9661, xf’ = -0,9990,
xg” = 2,0560, xg2> = 2,0383, x2” = 2,0085.

Auf Grund geringerer Stetigkeitsforderungen haben Hermite-Splines stets mehr freie Koeffi-
zienten als Lagrange-Splines. Für m = 1 sind Lagrange- und Hennite-Splines identisch: es

sind die Streckenzüge über [a, b] mit lediglich stetigen: Anschluß der Funktionswerte in den
Knoten. Für m = 3 sind Lagrange-Splines aneinandergefiigte Polynome 5.Grades mit steti-
gem Übergang der ersten bis vierten Ableitung. Herrnite-Splines mit m : 3 sind ebenfalls
stückweise Polynome 5.Grades, aber nur mit stetigem Übergang der ersten und zweiten Ablei-
tung.

R = 0,291 + 70,80,

F(x) : 1,1752 P„(x) + 1,1072 P,(x) + 0.3575 P200
: 0,9964 + 1,1037x + 0,5363x’.

y, = 1,117 433.

Als Korrektor muß ein Extrapolationsverfahren möglichst hoher Ordnung gesucht werden,
Mehr als vier Rückgriffe sind aber nicht günstig, da dann die Anzahl der Rückgriffe des ge-
samten Prediktor-Korrektor-Verfahrens steigen würde.

y, = 1,1155 aus Beispiel 5.1.

x3“) = 1,275 736, x3‘) = 1,273 495,

x?’ = 1,481 104, x2" = 1,486 339.
y; und yw müssen noch einmal berechnet werden. Wurde die Schrittweite halbiert, so kann da-
nach für y, bereits wieder eine Korrekturrechnung durchgeführt werden,

h=0,1, x„=kh, k=0,1,...,5.
Staitrechnung (Runge-Kutta-Verfahren):
y1=1,096025; y; = 1,187 379; y3 = 1,277 840.
Hamming-Verfahren:

yf’ = 1,370 158; y?” =1,370158;

y?” = 1,467 443; ' y? = 1,467 630;

yf," = 1,370 360;

yß" = 1,467 546.

a) dreifach rückgreifendes implizites Verfahren (Startrechnung fi1ry„ y; erforderlich),
b) verbessertes einfach-rückgreifendes explizites Verfahren (keine Startrechnung notwendig).

Aus (5.63) folgt zur Ermittlung des Stabilitätsgebietes die Ungleichung
2 + ‚U:
2_Äh ]2+A.h1<|2—Ah|

und hieraus
(2 + Im)“ + hzbz < (2 - ha)2 + h7b1,
dies vereinfacht sich zu

ha < 0,
d.h„ das Verfahren ist A-stabil.

< 1 bzw.
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x *1 | -0,5 ] 0 | 1

y || 0 | 0,8 I 1,05 I 0,8 I 0

6.1: Differenzengleichung:
u,-‘J-+1 = u,-_u+ u,;J-_1A2u'~,+ u,,M.
Das s-Schema zeigt, daß das Verfahren auch bei dieser Wahl von p bei Verwendung des zen-

tralen Differenzenquotienten instabil wird.

5.8:
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